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Abstract

Tissue-resident macrophages are the first responder cells of the immune system that

phagocytose, present antigens and promote inflammation by secreting soluble factors

(cytokines, chemokines, nitric oxide, etc) that act in an autocrine and paracrine manner.

This response has been shown to be heterogeneous at mRNA level in single cells

suggesting not all macrophages ‘fire’ an equal response. Such heterogeneity can have

implications on how inflammation is established or modulated when there is a

pathogenic invasion locally such as in wounds or systemically, as in the case of severe

blood infections. Here, we ask how single and repeated challenge with LPS affects

heterogeneity of macrophage communities. Through combining empirical

measurements of inflammatory proteins such as TNF, IL-6, NOS2, and IL-1β Pro at the

single-cell level with mathematical simulations, we show distinct heterogenous

communities of macrophages emerge following primary and secondary LPS challenges.

Furthermore, we show that restricting inter-cellular communication or impairing

microRNA-mediated silencing, a key cellular process thought to determine population

heterogeneity, affect the composition of macrophage communities and responses to LPS.

Overall, our results demonstrate that macrophage communities of diverse

micro-composition can demonstrate similar macroscopic cytokine responses indicating

that population-level robustness and plasticity underpin innate immunity to LPS.
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Chapter 1

Introduction

1.1 Pathogens and innate immunity

The environment that we live in contains a plethora of pathogenic microbes and toxic

substances; in order to survive, all animals must defend against the attack of these

disease causing agents by recognising them as foreign and mounting an immune

response (Chaplin, 2010).

In a typical infection, the immune response is classified into an innate response that is

fast and broad acting, and adaptive mechanism which is highly specific to a pathogen

(Janeway et al., 2001). The two responses are distinct in terms of specificity but are

closely interconnected and are carefully orchestrated by specialised immune cells. In a

simplified narrative, a pathogen (which can be bacteria, fungus or virus) must first

traverse through the epithelial layer (first line of defence) which typically involves tissue

damage that leads to damage signalling, activation of tissue-resident macrophages, and

recruitment of neutrophils and monocytes which respond to the presence of the

pathogen by phagocytosis and secretion of specialised proteins such as cytokines to

signal other cells involved in the immune system (Turner et al., 2014) in an autocrine (self

acting), paracrine (acting nearby) and endocrine (far acting) manner to initiate and

propagate an immune response (Chaplin, 2010).
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Professional antigen presenting cells (APCs) such as dendritic cells present peptides

derived from the pathogen (antigens) to T cells. This event either triggers T-cell

mediated killing by cluster of differentiation (CD) molecule 8+ (CD8+) T-cytotoxic cells

that recognise the antigen and/or leads to the generation of memory B cells (mediated

by CD4+ T-helper cells) that can facilitate the recognition of this antigen in a future

infection. In this way, the adaptive immune system can mount a much stronger and

specific response to that particular pathogen in a future encounter (Chaplin, 2010).

As a broad acting, non-specific arm of the immune system, innate immunity

encounters the pathogen first, promotes inflammation, contains the infection and shapes

the adaptive response. However, innate immune cells such as macrophages are also key

in resolution of inflammation and tissue repair, not just initiation (Zhang and Mosser,

2008) as discussed in the sections ahead.

1.1.1 Macrophages and their role in immunity

The word macrophage in Greek means ’big eater’ and true to their name these large cells

phagocytose pathogens and dead cells upon encounter. Macrophages belong to a group

of cells called leukocytes that include cells like neutrophils, eosinophils, basophils,

megakaryocytes and monocytes derived from a common parent cell, the common

myeloid progenitor. Macrophages are ubiquitous and found in almost all organs and

tissues most of which are derived from embryonic progenitor populations such as the

yolk-sac or foetal liver while some originate from the adult bone marrow. Macrophages

derived from the bone marrow are, usually, monocytes that circulate in the blood as a

patrolling population that are recruited to tissues upon infection or wound healing. This

activates the monocytes to differentiate into monocyte-derived macrophages and

dendritic cells which, in addition, to fighting the infection can replenish the

resident-tissue macrophage population.
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Most of the tissue-resident macrophages are of yolk-sac or foetal liver origin and are

long-term residents that specialise considerably depending on the tissues they live in.

While tissue-resident macrophages are self-persisting populations that can stay lifelong

in some tissues, monocytes on the other hand have a short life-span and are replenished

constantly by the haematopoietic stem cells in the bone marrow (Wynn, Chawla, and

Pollard, 2013; Zhao et al., 2018).

Upon tissue injury or infection, resident macrophages recognise pathogen associated

molecular patterns (PAMP) that are specific to pathogens or damage associated

molecular patterns (DAMP) by specialised receptors such as pattern recognition

receptors (or PRRs) and become activated. Activation leads to an enhanced ability of

macrophages to phagocytose and, also, shape the ensuing inflammatory response by

secreting small signalling proteins called cytokines and chemokines (CHEMOtactic

cytoKINES) that can direct nearby macrophages to respond and even recruit neutrophils

and monocytes (Bianchi, 2007; Mogensen, 2009).

The role of macrophages, however, is not limited to promoting inflammation. After

an early inflammatory phase, macrophages assume a wound-resolving phenotype by

producing growth factors (Shimokado et al., 1985; Willenborg et al., 2012; Rappolee et al.,

1988; Chujo et al., 2009; Berse et al., 1992) like TGF-β that promote cell proliferation,

wound healing and synthesis of extracellular-matrix components (Murray and Wynn,

2011). Next, assuming a more anti-inflammatory phenotype, these macrophages secrete

interleukin-10 (IL-10), inhibitory factors like TGF-β and express cell surface receptors

programmed cell death ligands 1 and 2 (PD-L1 and PD-L2) to dampen the immune

response, which if left unchecked can cause cellular death and delay in tissue repair

(Khalil et al., 1989; Said et al., 2010; Shouval et al., 2014; Zigmond et al., 2014). Recent

research indicates that distinct macrophage and monocyte populations are involved in

different stages of inflammation, repair and resolution (Gundra et al., 2014; Vannella
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et al., 2014). It is, however, unknown whether an individual macrophage can adopt all

these characteristics of being inflammatory, wound healing or anti-inflammatory at

different times taking cues from the local tissue micro-environment or whether distinct

functional macrophage and monocyte subsets are responsible to regulate these different

activities (Wynn and Vannella, 2016).

Traditionally, macrophage response, as described above, has been either classical

macrophage (M1) response which leads to the production of inflammatory cytokines

such as tumour necrosis factor (TNF) and interleukins such as IL-6, IL-1β etc or as M2

(alternatively activated) described as a more wound healing and repair oriented

phenotype secreting the anti-inflammatory cytokine IL-10, growth factor TGF-β and

Arg1. In recent years, this dichotomy has been challenged and macrophage response is

considered highly dependent on the activating stimulus and that M1 and M2 responses

are two extremes of an extensive spectrum of responses (Martinez and Gordon, 2014). A

transcriptomic study in human macrophages experimentally showed the existence of a

spectrum of phenotypes, and thus, expanding the M1 and M2 phenotypes to a range of

activation profiles (Xue et al., 2014). Judith Allen and colleagues have since suggested a

naming convention for macrophage phenotypes based on how they are activated. As an

example, macrophages that are activated by lipopolysaccharide (LPS) treatment can be

named as M(LPS) as per this nomenclature method (Murray et al., 2014). This

understanding expands the phenotypic repertoire of macrophages and describes the

heterogeneity of macrophage response in greater detail.

1.1.2 Pathogen recognition by innate immune cells

Macrophages recognise PAMPs from bacteria, fungus and viruses. PAMPs are

recognised by PRRs that are either cellular membrane-bound PRRs (such as Toll-like

Receptors and C-type Lectin Receptors) or cytoplasmic PRRs (RIG-1-like Receptors and

NOD-like Receptors). Toll-like Receptors (or TLRs) are key immunological mediators of
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response to a pathogenic encounter. There are 10 TLRs in humans (TLR1-10) and 12 in

mice (TLR1-9; 11-13) each specialised to recognise non-self ligands from a variety of

PAMP sources such as bacteria, fungus, protozoa, and viruses (Mogensen, 2009; Takeda

and Akira, 2004).

Some TLRs recognize more than one type of pathogen. For example, TLR4, that

recognises LPS from most gram-negative bacteria as well as glycoinositol phospholipids

from protozoa and envelope glycoproteins from viruses. Similarly, TLR2, another

toll-like receptor, can recognise zymosan from fungi, peptidoglycan from bacteria,

GPI-mucin from protozoa and envelope glycoproteins from viruses (Yoshimura et al.,

1999; Schwandner et al., 1999; Mogensen and Paludan, 2005). TLRs are not always

surface-bound but can be cytoplasmic in location such as TLR3 that recognises

double-stranded RNA from viruses (Liu et al., 2008).

Upon binding a TLR agonist, macrophages go through a signalling cascade via the

TLR/agonist pathway that induces the translocation of inflammation-associated

transcription factors such as NF-κB, activating protein 1 (AP1) and interferon regulatory

factors (IRFs) leading to transcription of pro-inflammatory cytokines like TNF, IL-6,

IL-1β and IL-12, type 1 interferon and chemokines (Zhang and Ghosh, 2001; Medzhitov,

2001; Takeda and Akira, 2004).

1.1.2.1 LPS as a PAMP

LPS, also referred to as endotoxin, is a large molecule found on the outer membrane of

the cell wall of gram-negative bacteria and is an important PAMP recognised uniquely

by TLR4 (Hoshino et al., 1999; Poltorak et al., 1998). Structurally, LPS comprises of a

hydrophobic Lipid A and a hydrophillic polysaccharide chain which consists of an inner

core, outer core and an O-antigen. The O-antigen is a highly variable unit in terms of

number of repeating oligosaccharides. Gram-negative bacterial species are often
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sub-classified into serovars to describe within species variation based on the O-antigen

structure and has been shown to describe the virulence of a particular serovar. However,

the main PAMP component of LPS for TLR based inflammatory signalling is the lipid A

core. This component can contain different number of acylation chains which can show

inter-species variability. Six acylated chains and diphosphorylation of Lipid A core in

Escherichia coli have shown to elucidate a standard TLR4 response. Bacteria such as

Yersinnia spp. with fewer than six acyl chains in the Lipid A core of their LPS tend to

have a dampened LPS/TLR4 inflammatory response (Montminy et al., 2006). Francisella

tularensis, a human pathogen, shows an inability to elicit a TLR response and, thus, is

able to escape the innate response. The Lipid A core of Francisella LPS is hypo-acylated

and monophosphorylated (Tan et al., 2015). Thus, Lipid A core serves as the primary

source of PAMP and pathogens modifying this core component have been shown to

escape/alter the immune response (reviewed by Rosadini and Kagan, 2017).

1.1.2.2 TLR4 as a PRR

TLR4 receptors are expressed by a range of cells including monocytes, macrophages,

myeloid-derived dendritic cells and microglia. LPS binds to TLR4 to elicit an

inflammatory response in cells expressing TLR4. LPS binding to TLR4 is a complex

process and requires several accessory proteins like LPS binding protein (LBP), cluster of

differentiation molecule 14 (CD14) and MD2 (Lymphocyte antigen 96) (Wright et al.,

1989; Wright et al., 1990; Shimazu et al., 1999). LBP which binds monomeric LPS

molecules, can then bind to CD14 which then delivers LPS to a complex of TLR4/MD2

(Park and Lee, 2013). It has been shown, using surface plasmon resonance (SPR), that

LPS binds to recombinant TLR4, CD14 and MD2 separately in that order of increasing

affinity. This not only suggests that CD14 can transfer LPS to MD2 but also that LPS can

bind directly to TLR4 or MD2 (Shin et al., 2007).
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TLR4/MD2 complex upon binding to LPS, homodimerises leading to structural

changes that bring the two intracellular Toll/IL-1 receptor (TIR) domains in close

proximity. This then recruits TIR-domain containing adaptor proteins TIRAP (TIR

domain containing adaptor protein) and TRAM (TRIF-related adaptor molecule) which

then engages MyD88 (Myeloid Differentiation primary response gene 88) and TRIF (TIR

domain containing adaptor inducing IFN-β) respectively (Horng, Barton, and

Medzhitov, 2001; Fitzgerald et al., 2003).

The TLR4/MD2 signal transduction can proceed by the MyD88-dependent pathway

and lead to the formation of a complex consisting of MyD88 and IL-1 receptor associated

kinase 1,2,4 (IRAK1, IRAK2 and IRAK4) known as myddsome (Lin, Lo, and Wu, 2010).

The myddsome activates TNF receptor-associated factor 6 (TRAF6) which further

activates transforming growth factor-β-activated kinase 1 (TAK1) that activates the

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the mitogen

activated protein kinase (MAPK) switching on inflammatory gene expression (Chen

et al., 2001).

Alternatively, signal transduction from LPS binding can proceed via the

MyD88-independent pathway or TRIF-dependent response as the LPS-bound TLR4 is

endocytosed (??) by the macrophage (Kagan et al., 2008). TRIF-dependent pathway then

activates the NF-κB pathway and inducing interferon genes by activating the

transcription factor Interferon Regulatory Factor 3 (IRF3). While activating

IRF3-dependent interferon-β genes (Doyle et al., 2002), the MyD88 independent response

also provides a second wave of translocation of NF-κB to the nucleus, further activating

pro-inflammatory genes (Yamamoto, Sato, and Hemmi, 2003).

Inflammatory responses that are TLR4 induced can be severe and cause a septic

shock mediated by an overwhelming immune response that can lead to organ damage,
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FIGURE 1.1: Bi-phasic NF-κB activation due to TLR4 endocytosis

Transcription factor NF-κB induction/translocation occurs by the downstream signalling of the
TLR4/MD2 binding of bacterial LPS leading to the transcription of an early phase of protein

expression. As the TLR4 receptor is endocytosed by the cell this leads to a second wave of
late-phase NF-κB activation.
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thus, requiring the TLR4 pathway-induced gene expression to be tightly regulated.

Indeed, TLR4 pathway is regulated at multiple levels starting at the top with radio

protective 105 (RP105), a homolog of TLR4. RP105 complexes with MD1, a homolog of

MD2, and then interacts with the TLR4/MD2 complex inhibiting the association of LPS

(Divanovic et al., 2005). Downstream of the TLR4/LPS signalling there are many other

proteins such as MyD88s (Janssens et al., 2003), IRAK-M (Kobayashi et al., 2002), A20

(Boone et al., 2004), TRAF1 (Su et al., 2006) that can inhibit MyD88, IRAKs, TRAF6, TRIF

respectively, thus, regulating proteins of both the MyD88 dependent and independent

pathway of TLR4/LPS response.

1.2 Regulation of inflammation by cytokines and inflammatory

mediators

An efficient immune response is orchestrated by small secretory proteins and molecules

that can act on cells producing them, nearby cells or by recruiting cells from blood

vessels while facilitating movement by increasing vascular permeability. Innate immune

cells can efficiently communicate with a variety of professional immune cells and other

cells expressing cytokine receptors by secreting cytokines and by chemokines to

encourage chemotaxis. In addition, growth factors and inorganic molecules such as nitric

oxide (reviewed by Sharma, Al-Omran, and Parvathy, 2007) and reactive oxygen species

(reviewed by Mittal et al., 2014) have important microbicidal and inflammatory roles.

Cytokines including chemokines and other mediators are able to influence a variety

of immune cells and can also be redundant in their activity with different cytokines

performing a similar function. The crude overall functions of this type of regulation is to

effect either a pro-inflammatory or anti-inflammatory response (reviewed by Jun-Ming

and An, 2007). TNF, IL-1β, IL-6, IL-8, IL-18, nitric oxide are central to inflammatory

action of innate immune response, and are expressed by numerous cell types and are
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involved in a wide variety of biological activities, immune responses like cytokine

production, chemotaxis, proliferation, survival and have pathological role in various

diseases. A balance between such an inflammatory cocktail flowing around the site of

infection (or systemically) and anti-inflammatory signals such as TGF-β, IL-10, IL-4,

IL-13, eventually, leads to the resolution of inflammation (Turner et al., 2014; Dinarello,

2018; Hunter and Jones, 2015; Kalliolias and Ivashkiv, 2016; Sharma, Al-Omran, and

Parvathy, 2007; Couper, Blount, and Riley, 2008). This balance is critical and, as an

example, the ratio of IL-10 to TNF has been shown to be higher in non-survivors of

systemic infections like sepsis compared to survivors (Gogos et al., 2002).

1.2.1 TNF

TNF is one of the most important secreted small protein that can shape the immune

response by inducing inflammation, apoptosis or necroptosis. Many inflammation-led

chronic conditions like rheumatoid arthritis (RA), inflammatory bowel disease (IBD),

psoriasis etc are approved to be treated using commercially available TNF targeting

neutralisation antibodies to reduce inflammation (Bradley, 2008; Kalliolias and Ivashkiv,

2016) .

Tnf gene is a single-copy gene encoded in the 6th and 17th chromosome in humans

and mouse genome respectively. TNF expression is regulated by the transcription factors

NF-κB and nuclear factor activated T-cells (NFAT). TNF is expressed as a transmembrane

(27 kDa) protein (Kriegler et al., 1988) that can be proteolytically cleaved by the

metalloprotease ADAM Metallopeptidase Domain 17 (ADAM17) also known as TNF

Converting Enzyme (TACE) as shown by Bell et al., 2007.

TNF signals via TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2) that are

expressed on self or other (Hsu, Xiong, and Goeddel, 1995; Rothe et al., 1995). While

TNFR1 is found to be expressed in almost all cells, TNFR2 is expressed more exclusively
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on neurons, immune cells and endothelial cells (Yang et al., 2018).

The soluble form of the protein (17kDa) and the transmembrane TNF can bind to

TNFR1 while only the transmembrane form can bind to TNFR2 (Grell et al., 1995). TNFR

signalling based on the two receptors have been proposed to either promote

inflammation (Waetzig et al., 2004) and tissue degeneration via TNFR1 route or tissue

survival and regeneration via TNFR2 signalling (Fischer et al., 2011; Fischer et al., 2014).

Homotrimeric TNFR1 accepts homotrimers of TNF as ligand resulting in the

recruitment of the TNFR1 associated death domain (TRADD) protein that then

progresses through four possible pathways mediated either by a complex I or complex

IIa, IIb and IIc. Complex I formation leads to the activation of NF-κB and MAPKs while

complex IIa and IIb progresses with the cysteine-aspartic protease Caspase-8 dependent

cellular apoptosis (Micheau and Tschopp, 2003). Complex IIc, also known as the

necrosome, directs the cell towards necroptotic pathway by activating mixed lineage

kinase domain-like protein or MLKL (Degterev et al., 2005). TNFR1 signalling, thus,

leads to a celullar decision of whether to initiate an inflammatory response or induce

cellular death. Although not clearly understood, current understanding suggests that the

abundance of anti-apoptosis protein such as cellular FLICE-inhibitory protein (c-FLIPL)

that binds to Caspase-8 to block the apoptotic signal may be crucial in determining

which pathway is switched on (Micheau et al., 2001). Similarly, it has been shown, in

mice, the deubiquitinating protein A20 can restrict the ubiquitination of

Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) that promotes the

necrosome (complex IIc of TNFR1 pathway) formation and, in that way, stop the cell

from undergoing necroptosis (Onizawa et al., 2015). The above mechanisms indicate

ways in which the decision to switch on complex I-mediated TNFR1 pathway is selected

and, thereby, leading to cell survival.
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Cells of the myeloid lineage such as macrophages are the major producers of TNF and

it is one of the early response cytokine secreted upon TLR4/LPS signal transduction.

1.2.2 IL-6

IL-6 is an important pro-inflammatory cytokine that can affect cells locally and

systemically. IL-6 has been known by a variety of names such as B cell stimulatory factor

2 (BSF-2), interferon β2, hepatocyte stimulating factor (HSF) until the discovery that all

those proteins were, in fact, the same protein. As the old names suggest, IL-6 can

differentiate B-cells into antibody producing cells, induce antiviral effects and upon

reaching liver activate the production of acute-phase proteins exemplifying the diversity

of its actions. One of the important inflammatory effects of IL-6 is to promote infiltration

of neutrophils and, subsequently, of monocytes and T-lymphocytes. Monoclonal

antibodies targeting the IL-6 receptor (IL-6R) have been used clinically to treat

inflammatory arthritis suggesting its importance in inflammation-led diseases (Tanaka,

Narazaki, and Kishimoto, 2014)

IL-6 is a 21-28 kDa glycosylated protein that is encoded in the 5th and 7th

chromosome in mouse and human genome respectively. It is produced in response to

PAMPS, TNF and IL-1β by almost all immune and stromal cells. IL-6 signalling requires

two receptors, IL-6 receptor (IL-6R) and glycoprotein 130 (gp130). IL-6 receptors are

either membrane-bound (mIL-6R) or soluble (sIL-6R) and, similarly, membrane-bound

gp130 and a soluble gp130 (sgp130) is also known (Yamasaki et al., 1988; Hibi et al., 1990;

Novick et al., 1989). IL-6 induced signal transduction occurs through IL-6R and

glycoprotein 130 (gp130) via classical and trans-signalling.

In classical signalling, IL-6 binds to mIL-6R and gp130 forming a hexamer (2

molecules of each, Skiniotis et al., 2005) or a tetramer (with 2 gp130 molecules,

Murakami et al., 1993) and this requires the need for both IL-6R and gp130 to be
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expressed as transmembrane proteins which only occurs in leukocytes, megakaryocytes

and hepatocytes. Thus, classical signalling is limited only to a few type of cells. In

contrast, trans-signalling occurs when sIL-6R binds to IL-6 and, then, binds to the

membrane bound gp130 which is ubiquitously expressed in all cells. Trans-signalling

has been shown to be associated with inflammation progression (Campbell et al., 2014;

Jones et al., 2011).

As a regulatory mechanism, sgp130 can bind to sIL-6R and IL-6 to form a complex

that blocks IL-6 trans-signalling (Narazaki et al., 1993). In order to show the effect of

sgp130 induced trans-signalling blocking, transgenic mice that expressed the generated

protein sgp130Fc (10-times more potent in inhibiting IL-6/IL-6R complex than sgp130)

were used as a model of acute inflammation using the air pouch model. In comparison

to wild-type mice the transgenics showed reduced recruitment of neutrophils and

macrophages, thus, confirming the crucial role of IL-6 trans-signalling in inflammation

progression (Chalaris et al., 2019).

The source of sIL-6R has been attributed to two independent mechanisms one of

which involves the proteolytic cleavage of the membrane bound IL-6R through ADAM

proteases. Human IL-6R are shed by ADAM10 and ADAM17 whereas in mice ADAM10

helps shed the receptor (Garbers et al., 2011). The second mechanism proposed as a

source for sIL-6R utilises alternative splicing of the receptor without the transmembrane

domain (Csilla Holub et al., 1999).

In both types of IL-6 signalling, gp130 bound to IL-6/IL-6R complex activates janus

kinases 1 and 2 (JAK1, JAK2), tyrosine kinase (Tyk2), signal transducer and activator of

transcription 1 and 3 (STAT1, STAT3) and the mitogen-activated protein kinase (MAPK)

cascade (Murakami et al., 1993; Heinrich et al., 2003). STAT1, STAT3 mediated

inflammation is tightly regulated by suppressors of cytokine signalling 3 or SOCS3
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(Croker et al., 2003), and absence of SOCS3 has been associated with IL-6 mediated

induction of anti-inflammatory response by suppression of the pro-inflammatory TNF

and IL-12 (Yasukawa et al., 2003).

1.2.3 NOS2 and nitric oxide

Nitric oxide synthases (NOS) are a group of enzymes that catalyse the formation of

citrulline and nitric oxide (NO) from L-arginine at the expense of NADPH and oxygen.

There are three known isoforms, NOS1 (neuronalNOS) and NOS3 (endothelialNOS) are

constitutively expressed genes whereas NOS2 (inducibleNOS) is only induced upon LPS

or cytokine stimulation. Nitric oxide levels (measured as nitrates) are highly enhanced in

diseases like RA, osteoarthritis (OA) and ankylosing spondylitis establishing its critical

role in inflammatory conditions (Sharma, Al-Omran, and Parvathy, 2007; Bogdan, 2015).

Nos2 gene is encoded by the 7th and 11th chromosome in humans and mouse

respectively and remains completely silent until induced by a immune signal/stimulus

in a calcium independent manner. In mice, NOS2, a 130 kDA protein, is expressed by

macrophages stimulated by LPS, IFN-γ, IL-1β, IL-6 and TNF (Kleinert et al., 2004). The

transcription factors associated with these stimuli such as IRF-1, a complex of STAT1,

STAT2 and IRF-9 known as the interferon-stimulated gamma factor (ISGF3) and NF-κB

have all been shown to interact with the Nos2 promoter. Nos2 transcription has been

shown to require a sequential association of transcription factors. NF-κB binding to the

Nos2 promoter leads to the general transcription factor II human (TFIIH; also found in

mice) being recruited. TFIIH remains bound to the site even after NF-κB is no longer

associated where it awaits the arrival of a RNA Polymerase II that is recruited by ISFG3.

Upon arrival, TFIIH phosphorylates the polymerase to begin transcription, thereby,

creating a factor-recruitment model that fires only after NF-κB and the IFN induced

signal are both detected (Farlik et al., 2010).
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Regulation of nitric oxide production by NOS2 is also affected by other metabolic

and environmental states such as hypoxia. Limited availability of oxygen in hypoxia is

required for NOS2-mediated NO catalysis. Further, under hypoxic conditions NOS2 is

unable to attach to the actin cytoskeleton (mediated by α-actinin 4) which is a

precondition for NOS2 activity. Other factors include the osmolarity of the inflammatory

environment, it was shown that nitric oxide production is enhanced when concentration

of Na+ is higher (Jantsch et al., 2015).

Nitric oxide is a highly potent pro-inflammatory molecule that can act as an

autocrine/paracrine mediator due to its lipid solubility and, therefore, easy permeability

across the cell membrane. However, the biological lifetime of nitric oxide is short (six

seconds) which restricts its actions spatially and temporally. The mode of action of nitric

oxide ranges from direct bactericidal/static effects by hindering growth in E. coli and L.

monocytogenes (Liew et al., 1990) and in conjunction with other molecules to form

S-nitrosothiols, superoxide anions, tyrosine nitrates etc.

1.2.4 IL-1β

IL-1β is an acute phase cytokine that has a role similar to TNF and can induce the

production of TNF and IL-6 in macrophages. It can cause systemic changes by inducing

fever upon reaching the hypothalamus and initiating acute phase proteins in the liver.

Excessive IL-1β production has been associated with many autoinflammatory diseases

like the heritable Mediterranean Fever that causes fever and inflammation of the

peritoneum, Muckle-Wells syndrome whose symptoms include periodic fever and

utricaria, neonatal-onset multi system inflammatory disorder (NOMID) that causes

persistent inflammation, particularly affecting the nervous system. All these diseases can

be successfully treated with targeted therapy towards IL-1β (Guo, Callaway, and Ting,

2015).
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Mature IL-1β is a 17.5 kDa protein that is encoded in chromosome 2 of the human

and mouse genome. LPS induced activation of Il1b gene is under the control of the

transcription factor NF-κB (Hiscott et al., 1993) like TNF but can also be induced during

glycolysis inhibition by hypoxia inducible factor or HIF-1α (Tannahill et al., 2013). Upon

transcription, IL-1β is first translated into a pro-form of the protein which is 31 kDa and

is inactive. The bioactive form of Pro-IL-1β is dependent on the activation of the

interleukin converting enzyme (ICE1) also known as caspase-1 that can proteolytically

cleave pro-IL-1β. Caspase-1 is under the control of a protein complex termed as the

inflammasome. Inflammasomes are complexes of multiple proteins that assemble in the

cytoplasmic matrix upon sensing PAMPs or DAMPs that regulate the activation of

caspase-1. The inflammasome is named after the scaffolding protein involved in the

complex formation. A Nod-like receptor (NLR), NLRP3 forms an inflammasome that is

activated in response to many stimulus and must be primed by the binding of LPS to

TLR4 (Guo, Callaway, and Ting, 2015). Following this step, a second priming like ATP

can induce the inflammasome to make mature caspase-1 that can then lead to the

formation of active IL-1β from its pro-form. Thus, mature IL-1β is not produced just by

the stimulus provided by LPS and requires a second stimulus for the activation of

caspase-1 in order for IL-1β to be released (Netea et al., 2009; Xie et al., 2014).

After the immune response has been initiated, inflammasome is deactivated by T cell

derived IFN-γ and other type I IFN, CD40L, miR-223 (reviewed by Latz, Xiao, and Stutz,

2013) and feedback loop on the duration of caspase-1 activity (Boucher et al., 2018). IL-1β

signalling is mediated by interleukin 1 receptors, IL-1R1 and IL-1R2 of which the former

binds to IL-1β resulting in the formation of an IL-1R1/IL-1R3 (IL-1 receptor 3) complex.

IL-1R1/IL-1R3 complex both have an intracellular TIR domain that dimerise to attract

MyD88 proteins (Muzio et al., 1997; Medzhitov et al., 1998; Burns et al., 1998). The death

domain of MyD88 further recruits IRAK4 and then IRAK1. Hyperphosphorylated

IRAK1 then recruits TRAF6, TAK1 leading to the degradation of IKK leading to NF-κB
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translocation to the nucleus (reviewed by Bent et al., 2018).

IL-1R2, on the other hand, is a decoy receptor and IL-1β binding to the receptor does

not take part in any signalling further and, therefore, blocks IL-1β signalling cascade

(Colotta et al., 1993). IL-1β can also be blocked by the secreted soluble IL-1 receptor

agonist (IL-1Ra) that can compete against IL-1R1 (Arend et al., 1998) while it does not

bind to the decoy receptor IL-1R2.

1.2.5 Cytokine response upon a second LPS exposure

The adaptive immune cells exhibit immunological memory owing to the capability of T

and B cells to act in an antigen specific manner. In contrast, the innate immune cells are

better known for an immediate response to a broader spectrum of pathogens. In recent

years, it has been proposed that innate cells can respond based on a previous stimulation

with an antigen (Netea et al., 2016).

Macrophages stimulated with TLR agonists have been shown to be hypo-responsive

upon re-stimulation and elicit a reduced pro-inflammatory response (Carey FJ and

Zalesky, 1957; Flohé et al., 1999). Macrophage hypo-responsiveness termed as

tolerisation (Figure 1.2) has not only been associated with the down regulation of TLRs

(Medvedev, Kopydlowski, and Vogel, 2000; Medvedev et al., 2002), but, it also involves

extensive gene reprogramming with the activation of alternative anti-inflammatory

pathways and many anti-microbial genes (Foster, Hargreaves, and Medzhitov, 2007;

Biswas and Lopez-Collazo, 2009; Mages, Dietrich, and Lang, 2008).

It has been shown that LPS tolerance regulates two type of genes, the non-tolerisable

that do not get suppressed upon LPS re-stimulus or those that are not hypo-responsive

(Foster, Hargreaves, and Medzhitov, 2007). It was also shown in the same study that

histone trimethylation (H3K4) induced at promoters when responding to LPS is no
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FIGURE 1.2: Hyporesponsive cytokine expression upon a second LPS
exposure

Macrophages upon sensing LPS switch on a pro-inflammatory phase by producing cytokines that
promote inflammation locally and systemically. However, a repeated dose (second LPS dose)

renders them in a hypo-responsive state. Some of the molecular mechanisms that drive this are
attributed to down-regulation of TLR4, miRNA-mediated regulation of inflammatory mediators
and signalling proteins and by epigenetic regulation of tolerised genes such as methylation and

deacetylation.
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longer associated on secondary stimulus on genes like Il6 (Foster, Hargreaves, and

Medzhitov, 2007). Tnf and Il1b promoters are associated with H3K9 dimethylated

histones to repress transcription in human monocyte-like THP1 cells. While these are

remodelled at the first dose of LPS, they are also present in the secondary LPS stimulus,

thus, conferring a tolerance or hypo-responsiveness (Chan et al., 2005; El Gazzar et al.,

2007; Chen et al., 2009). A second layer of regulatory control is seen in the dependence of

LPS-induced genes on the remodelling of the nucleosome by the SWI/SNF

(SWItch/Sucrose NonFermentable) complex that seems to differentially affect

LPS-induced genes. While Tnf is shown to be not dependent on the SWI/SNF

remodelling induced expression, Il6 and Nos2 are dependent on this re-modelling

(Ramirez-Carrozzi et al., 2006; Ramirez-Carrozzi et al., 2009). This suggests that LPS

dose re-programs macrophages at the gene promoter level and, this describes an

important molecular mechanism of LPS-induced tolerance or hyporesponsiveness

(Seeley and Ghosh, 2017).

Antigen priming can have disparate consequences. Studies of vaccines in

epidemiological studies showed that non-specific effects of certain vaccines like BCG

protected the host from other diseases (Netea and Meer, 2017). This suggested an

apparent protective effect of antigen-priming on innate cells. Upon secondary

challenges, innate cells not only show a pronounced reduction in the pro-inflammatory

response but also express anti-inflammatory cytokines like IL-10 and TGFβ (Biswas and

Lopez-Collazo, 2009). An overbearing immune response to wounds and infections often

results in a serious life threatening condition known as sepsis. An abundance of

pro-inflammatory cytokines released in sepsis leads to systemic inflammation. As the

condition progresses the hyporesponsiveness, thus induced, creates an

anti-inflammatory environment which has been related to higher incidences of

secondary infections and death in clinical patients (Hotchkiss et al., 2009; Vught et al.,

2016). As such, the innate immune system goes into a cycling of environments which can
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rarely be ameliorated, highlighting the need to understand this hyporesponsive

phenotype.

The above ascertains that tolerisation is a complex phenotypic change, and any

heterogeneity associated with LPS tolerance or hypo-responsiveness may be an

important area of focus to better understand a community of macrophages responding

to repeated exposure to PAMPs.

1.3 Heterogeneity in macrophages

Macrophages are generally regarded as a heterogeneous cell population and this

heterogeneity can be attributed to many factors such as their developmental-origin and

maturation stages, tissue micro-environment and how they are activated. Here we

discuss the heterogeneity associated with macrophages at an organ/tissue level, within

tissue, and finally at level of antigen response.

1.3.1 Tissue and organ level heterogeneity

Macrophages can be thought of as a distributed organ-system that maintain

homoeostasis across the human body (reviewed here Gordon and Plüddemann, 2017).

Although, their primary purpose may be to respond to infection, they don a variety of

roles in the course of their long term development in the respective tissues. An early

source of heterogeneity of macrophages is introduced based on their lineage that may be

traced back to their developmental origin like yolk-sac progenitors, foetal liver

progenitors or haemopoetic stem cells in the adult bone marrow.

Fate mapping analysis has shown that most tissue-resident macrophages are formed

in the early embryo (Yona et al., 2013). These early macrophage progenitors also called

erythromyeloid progenitors, are placed in tissues during organogenesis where they
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persist into adult life eventually being termed tissue-resident macrophages. These are a

self-persisting population, sometimes, for life. The heterogeneity of tissue-resident

macrophages can be exemplified by the diverse functions that they are involved in. For

example, microglia are a resident macrophage population of the central nervous sytem

and apart from scavenging infectious organisms, are also able to interact with live and

apoptotic neurons. Alveololar macrophages that serve on the frontline of alveolar-blood

interface as a first line cellular defence against pathogens and particles also play an

important role in surfactant metabolism. The surfactant reduces the breathing effort by

lowering the surface tension at the alveolar epithelium which can lead to respiratory

distress. Similarly, splenic red pulp macrophages have been shown to be distinct from

monocyte-derived macrophages and can phagocytose IgG-opsonised red blood cells by

activating FcγR receptors (Nagelkerke et al., 2018). The presence of such diverse

tissue-resident macrophages were then shown to have unique gene expression by

Gautier et al., 2012 between microglia, spleen, lung (alveolar) and peritoneal

macrophages in mice and that such diversity due to the micro-environment may shape

the chromatin landscape of these tissue-resident macrophages (Lavin et al., 2014).

1.3.2 Heterogeneity within tissue

While tissue-resident macrophages from different organs may be heterogeneous among

themselves, resident population within a specific tissue is also known to be

heterogeneous. Although self persisting, upon infection resident cells make cytokines

and chemokines that attract neutrophils and monocytes patrolling the blood vessels

encouraging them to extravasate into the infected tissue. This infiltration of monocytes

and their subsequent differentiation into macrophages may increase/replace resident

macrophages once the infection is resolved. Since these monocyte-derived macrophages

are from a different lineage (derived from haemopoeitic stem cell in the bone marrow)

they introduce heterogeneity in the resident population. Kupffer cells that are known to

be the largest resident macrophage population are often re-inforced by
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monocyte-derived macrophages because the latter encounter PAMPs and DAMPs more

often than other resident population due to their location in the liver. Previous research

has shown that these monocyte-derived macrophages are easily distinguishable by the

expression of the macrophage marker F4/80 levels. A general idea surrounding this is

that embryonic origin macrophages self renew themselves whereas monocyte-derived

macrophages cannot differentiate into a qualified resident population. Cardiac (Molawi

et al., 2014) and intestinal macrophages (Bain et al., 2014) in mice, that are both of

embryonic origin, self-renew slowly with age and stop after weaning respectively.

Instead, monocyte-derived macrophages are recruited to replenish the resident

population without renewal. Other studies have shown the opposite, where recruited

monocyte-derived macrophages can gradually differentiate and adopt the transcription

profile of a fully functional resident cell population as in the case of Kupffer cells in the

liver (Scott et al., 2016).

Despite the presence of two models of replenishment of tissue-resident macrophages,

considerable heterogeneity is introduced in the tissue micro-environment upon the

recruitment of cells that become long-term residents either by being constantly

replenished or by adopting the transcription profile of the host cells (Molawi et al., 2014;

Bain et al., 2014; Scott et al., 2016).

1.3.2.1 Quorum sensing in immune cells

Quorum sensing is a is a process of communication between bacterial cells leading to the

production chemical molecules (also called autoinducers). Sensing the diffusion gradient

(Redfield, 2002) of these chemicals, bacteria can alter gene expression and regulate many

critical processes like making biofilms, conjugation, virulence etc (Miller and Bassler,

2001). Similar to this, mammalian immune system exhibits such quorum sensing which

has been shown recently. This type of sensing in immune-cell populations is unlike

paracrine effect which affects a few cells around the cell producing the paracrine signal.
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Immune quorum sensing spans longer space and induces an all or none population-level

response when inducing proteins are present above a threshold concentration (reviewed

by Antonioli et al., 2019).

Quorum sensing in immune populations has been suggested as a model of

homeostasis in CD4+ T cells that is IL-2 mediated sensing of acitvated cells (Almeida

et al., 2012) which Reynolds et al., 2014 further characterise using a stochastic

Markov-based mathematical model, analysing the elimination of IL-2 and regulatory T

cell populations post infection. Montaudouin et al., 2013 showed that B cells can detect

immunoglobulin IgG by FcγRIIB receptor and, thereby, monitor the number of activated

B cells. Further, they suggest that the number of activated immunoglobulin

IgM-secreting B cells can be kept under check by this quorum sensing mechanism.

Quorum sensing has been proposed in macrophages as well (reviewed by Antonioli

et al., 2019) which refers to, among others, two very interesting studies. Postat et al., 2018

found in Leishmania major infections (an intracellular parasite) mice show an increased

recruitment of mononuclear phagocytes in the site of infection along with elevated levels

of chemokines such as CXCL1, CXCL10, CCL2 and CCL3 upon treating the mice with a

specific NOS2 inhibitor. Further, they showed that NOS2 suppressed cells produced

more TNF, IL-1β and CCL3 at the single-cell level. Then by comparing cellular

metabolism in wild type and Nos2-/- macrophages, they inferred that nitric oxide

mediated suppression of respiration reduced the ATP:ADP ratio and, thereby, decreased

macrophage activity. In order to check whether this effect was largely restricted to a

single cell type, the authors mixed NOS2 competent cells with deficient cells to see if

competent cells can affect the other cells. Although, they did not see such an effect at low

densities but in a 1:1 ratio, respiration of Nos2-/- cells was reduced. Such a density-based

effect on respiration restriction was then shown in vivo to conclude that nitric oxide

mediates the downregulation of inflammatory response and it is dependent on NOS2
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producing cells being present in a minimum density of 5000 per cubic millimetre (Postat

et al., 2018).

Chen et al., 2015 while studying hair plucking, and the consequent regeneration, in

mice found that regeneration only occurs if the plucking density is greater than 10

squared millimetre. Intriguingly, this stimulated the plucked and the unplucked follicles

to regenerate leading to more hair being regenerated than lost. Next, to understand

mechanisms, microarray analysis was done to generate a sequence of events 12, 24, 48

and 96 hour post hair follicle injury. The authors find CCL2 as a key component of

carrying the quorum signal to recruit TNF producing macrophages to the site,

speculating that TNF may be stimulating hair regeneration through Wnt signalling in

keratinocytes (Chen et al., 2015).

These studies together suggest that populations can show an all or none response to

stimulus that is governed by a cell density-dependent diffusion sensing quorum effect.

1.3.3 Activation-induced heterogeneity

Interestingly, heterogeneity within a pure myeloid population activated by LPS has also

been reported using single cell RNASeq study that found large-scale cell-to-cell variation

in bone-marrow derived dendritic cells in their expression of cytokines suggesting

population heterogeneity within a seemingly pure population (Shalek et al., 2013). In

this study, 18 single cells along with three replicates of a population of 10,0000 cells each

were sequenced to look at the transcript signature at 4 hours post LPS stimulus. While

gene expression between the replicates of population seem to correlate tightly (Pearson r

> 0.98), individual cells showed large variation (0.29 < r < 0.62). Further, they found that

a subset of the highly expressed genes (> 250 transcripts per million) in the single cell

dataset had a higher co-efficient of variation (CV) along with bimodal expression

patterns. mRNA levels in highly producing cells were one or more orders of magnitude
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greater than the low producers. Il6, Cxcl1, Cxcl10 mRNA were confirmed using

RNA-fluorescence in situ hybridisation (FISH) as a visual confirmation of this

bimodality (Shalek et al., 2013).

The above suggests that the bimodal response in cytokine production in the

population along with the increased cell-to-cell variability in highly expressed genes can

be attributed to heterogeneity in the responding population. Mechanisms that introduce

antigen-induced heterogeneity may include bi-phasic NF-κB signalling due to TLR4

endcytosis (as previously in figure 1.1 and detailed later in figure 1.6) and, the additional

TNFR1 and IFN-β signalling upon activation (Figure 1.3). Investigations in clonal

populations have shown that TNF and LPS induced NF-κB expression are distinct, with

LPS inducing a less dampened NF-κB expression in comparison. Further, Covert et al.,

2005 suggest that this effect is seen because TLR4/LPS pathway involves MyD88

dependent and the TRIF-mediated pathways, that are on their own oscillatory and

dampened, but together produced a more sustained NF-κB expression. It can be

speculated from this study that autocrine/paracrine TNF signalling may induce

heterogeneous populations. Indeed, in a study from the same group (Lee et al., 2009) two

distinct temporal LPS-induced NF-κB nuclear localisation trajectories are presented that

do not appear when either MyD88 or TRIF is knocked out. Individual knockouts could

not, especially, explain why NF-κB nuclear localisation persisted for hours in the

wild-type model. It was then attributed to be an effect of paracrine signalling by TNF to

drive a positive NF-κB expression via the TNFR1 pathway. This was confirmed by

neutralising TNF with soluble TNFR1 (Lee et al., 2009). Xue et al., 2015 using isolated

single cells showed reduced secretion of LPS-induced cytokines such as IL-6 and IL-10 in

a human monocytic cell line U937. Using modelling and experiments, they further

showed that paracrine signalling by TNF by a small subset of cells (that highly expressed

TNF) was necessary but not sufficient for producing IL-6 and IL-10 in large amounts.
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FIGURE 1.3: Secreted TNF, IL-1β and IFN-β provide additional stimulus
to the LPS response

LPS stimulation leads to the expression of TNF, IL-1β, IL-6, IFN-β. The release of these into the
extra-cellular space and binding to their respective surface receptors increase the initial

LPS-mediated response to increase IL-6 expression. NOS2 expression depends on the IFN-β
induced transcription factor activation.

Other sources of heterogeneity may be due to the effects of

transcription-independent communication between heterologous and cytokine receptors

(Bezbradica and Medzhitov, 2009). More recently, Allen and Medzhitov have suggested

that the fraction of population responding by producing an inflammatory cytokine in

response to LPS may be regulated by the circadian clock (Allen et al., 2019).

In summary, it has been shown by multiple studies that clonal macrophage

populations can elicit heterogeneous responses to antigens like LPS and that this

heterogeneity can be, in part, contributed by autocrine and paracrine effects.

1.3.4 Why study immune-cell heterogeneity

A heterogeneous response to antigens such as LPS as described can be biologically

advantageous. Satija and Shalek reviewed phenotypic advantages that can be conferred

on immune cells due to variability in protein production within a seemingly clonal

population (Satija and Shalek, 2014). Variability in expression of receptor proteins such
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as CD25 expression in CD8+ T cells has been shown to determine future outcome of T

cells. Those CD8+ T cells that express high levels of CD25 become inclined to

differentiate into memory cells that are long-lived (Kalia et al., 2010). Rand et al showed

that individual cells producing IFN-β are stochastically limited and a reliable anti-viral

response is co-ordinated by paracrine response amplification (Rand et al., 2012) allowing

restraint and co-ordination. NF-κB dynamics in response to TNF has been shown to be

digital in lower doses whereas analogue responses are recorded at higher doses when all

cells respond (Tay et al., 2010) suggesting immune cells may leverage ensemble coding

as described in Satija and Shalek, 2014.

In this thesis we are interested in visually representing heterogeneity of cytokine

expression in model macrophages and to quantitate the effect of disrupting established

models (as illustrated in Figure 1.4) that can induce heterogeneity in cytokine response.

Post transcriptional repression of protein expression has been associated with cell-to-cell

variability (Garg and Sharp, 2016) and in the next few sections, miRNAs are introduced

as a potential regulatory in mammalian cells to make a case why they should be

considered in immune-cell responses and our hypothesis.

1.4 microRNAs as non-coding regulatory RNAs

Several studies show convincingly the role of miRNAs in regulation of macrophage

activation, polarization and response to LPS (reviewed by Curtale, Rubino, and Locati,

2019) The discovery of microRNAs (miRNAs) in 1993 in Caenorhabditis elegans introduced

a new class of evolutionarily conserved regulatory single stranded RNA. In C. elegans,

downregulation of a protein, LIN-14, was essential for the larval stage to progress. This

LIN-14 was found to be dependent on the transcription of lin-4. However, lin-4 was

translated only into small RNA molecules but not translated. Later, it was found that the

transcribed RNA showed antisense pairing to the 3’ untranslated region (UTR) of the
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FIGURE 1.4: Sources of population heterogeneity in macrophages
responding to antigen (LPS)

Cells (right panel) represent macrophage population response to LPS upon different
perturbations (left panel) that can induce population level heterogeneity in terms of cytokine

production such as LPS dose, transcription factor and regulation imposed, temporally distinct
LPS treatments, secretory effects and quorum sensing.
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lin-14 mRNA. Since then, many laboratories reported miRNAs in plants, animals and

humans that are 22-24 nucleotide long, non-coding and bind target messengerRNA

(mRNA) to repress its translation.

miRNAs are essential to development and homeostasis, as studies in mice have

shown that loss of miRNA can lead to developmental defects in most organs along with

physiological and behavioural defects. miRNAs show antisense pairing to their target

mRNA, however, the seed sequence that pairs with the mRNA is short and between 6-8

nucleotides long at the 5’ end of the miRNA. Short seed sequences can recognise 3’ UTRs

of many mRNA and, also, many miRNAs can target the same 3’ UTR, often, resulting in

a many to many relationship between miRNAs and mRNAs. There are 1234 mouse and

1917 human sequenced miRNAs that have been described and catalogued on miRBase

(v22.1), an online repository that catalogues miRNAs. The human genome consists of

around 21,000 protein coding genes, 60% of which are considered to have conserved

miRNA targets (Friedman et al., 2009).

1.4.1 Biogenesis and mode of action

miRNAs are transcribed and transported to the ribosomes by a canonical

pathway (Bartel, 2004) cleaved to an active form by Dicer (Harfe et al., 2005) and

suppress mRNA expression by either disrupting translation or mRNA degradation.

Canonical miRNAs are transcribed by RNA polymerase II (Pol II) as a 1kb primary

miRNA (pri-miRNA). These pri-miRNAs have a region that folds on itself to form a

hairpin-like structure with single-stranded tails on the 5’ and the 3’ end. The

microprocessor complex consisting of the ribonuclease III endonuclease Drosha and two

molecules of the double-stranded RNA binding protein DiGeorge syndrome critical

region 8 (DGCR8) that binds to the hairpin (Figure 1.5). The two RNase III domains of

Drosha then clips the tails on the 5’ and 3’ end to form an approximate 60 base pair long
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stem-loop that is termed as the precursor miRNA (pre-miRNA). In the next step,

pre-miRNA is exported out of the nucleus by the protein exportin 5 (XPO5) and

RAs-related Nuclear protein (RAN) GTP. Upon export into the cytoplasm, pre-miRNA is

cleaved at the loop by the endonuclease DICER giving rise to a miRNA duplex that

consists of the miRNA along with the passenger strand miRNA. DICER is assisted by its

partner protein transactivating response RNA-binding protein (TRBP) and the protein

activator of the interferon-induced protein kinase (PACT). The duplex, thus, formed has

two nucleotide long overhangs on both the 3’ end resulting from the cuts made first by

Drosha and then by DICER. The duplex is then loaded onto an Argonaute2 (AGO2)

protein (Figure 1.5) in an ATP dependent manner (Yoda et al., 2009). The duplex once

loaded returns AGO2 to a lower energy state which encourages the passenger strand to

be unloaded and degraded (Kawamata and Tomari, 2010).

The guide strand loaded on to the AGO2 protein is called the minimal RNA-induced

silencing complex (miRISC). The miRISC then interacts with regions of the target mRNA

that are called miRNA response elements (MREs). If the complementarity (Figure 1.5) is

near-perfect the mRNA is degraded by AGO2-induced slicing of the mRNA via its

endonuclease activity. However, animals seldom show perfect complementarity of

miRNAs and MREs and, in case of imperfect complementarity, the silencing miRISC

complex weakly binds to the mRNA while AGO2 and other factors repress translation

and destabilisation of mRNA, finally leading to its degradation (Bartel, 2018) (Figure

1.5).

1.4.2 miRNAs and macrophages responding to LPS

Toll-like receptors on myeloid cells are central in the role of innate immunity as they

detect PAMPs and initiate an inflammatory response by secreting cytokines, chemokines

and other inflammatory mediators. The TLR-mediated gene expression is controlled
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FIGURE 1.5: microRNA biogenesis and mode of action

Canonical miRNA biogenesis pathway showing pre-processing by DGCR8 and Drosha of
primary miRNA transcript to pre-miRNA inside the nucleus. Once exported out to the cytoplasm

pre-miRNA are cleaved to a mature form by Dicer. Mature miRNA is then loaded onto a
RNA-induced silencing complex (AGO2 and associated proteins). mRNAs which are targeted by

miRNAs are repressed by partial or perfect complementarity.
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tightly by transcription factors and various signalling intermediates that signal via

MyD88 or TRIF signalling routes that lead to translocation of NF-κB, IRF3 and AP-1 to

the nucleus. miRNAs are known to target many proteins involved in this pathway, thus,

forming another layer of protein regulation (Figure 1.6a).

TLR4 is targeted by miRNA let-7b (Teng et al., 2013), let-7i (Chen et al., 2007) from the

lethal-7 family and miR-181b (Jiang et al., 2018) and, as such, repressed upon LPS

activation.

Downstream of the toll-like receptor, Inhibitor of nuclear factor kappa-B kinase

subunit epsilon (IKKε) has been shown to be targeted by miR-155 during Helicobacter

pylori infection. IKKε is a signalling protein in the TRIF mediated TLR4 pathway and

activates the transcription factor IRF3. The overexpression of miR-155 in this context

leads to the downregulation of the cytokines IL-8 and CXCL1 (Xiao et al., 2009). Up

stream in the TRIF dependent TLR4/LPS pathway Zou et al., 2017 have shown miR-3178

can decrease the activation of NF-κB by post-transcriptionally targeting TNF

receptor-associated factor 3 (TRAF3). miR-124 is upregulated in RAW264.7 murine

macrophage cell-line upon Bacillus Calmette-Guerin (BCG) infection in a MyD88

dependent manner while targeting multiple signalling components including TLR6,

TRAF6, MyD88 and TNF (Ma et al., 2014). IRAK1 mRNA in RAW264.7 cells are targeted

and negatively regulate TNF, NF-κB and IL-6 (Xu et al., 2013). miR-132 reduces

expression of IL-6 and IL-1β by decreasing levels of its target protein p300 (Lagos et al.,

2010). miR-146a (Taganov et al., 2006) have been shown to negatively regulate IRAK1

and TRAF6.

Negative regulators of the TLR4/LPS signalling pathway such as A20 which inhibits

signal transduction to the sequestered NF-κB complex has also been shown to be

targeted by let-7f in the context of Mycobacterium tuberculosis infection in RAW264.7 cells
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and bone-marrow derived macrophages (Kumar et al., 2015).

The above suggests that miRNAs can act as positive and negative modulators of the

LPS induced inflammatory response. It is difficult to ascertain whether miRNAs in a

concerted manner promote or suppress inflammation.

1.4.3 miRNAs in protein expression noise and population variability

miRNA can have profound effects in disease, cancer and development, that is why as a

system of regulatory RNAs their global role in protein expression has also intrigued

scientists. Bartel and Chen, 2004 proposed the idea that miRNAs render precision to

protein expression by comparing miRNA induced silencing to a adjustable resistor or

rheostat in an electric circuit, suggesting miRNA expression in a cell type can be adjusted

to have different effects on a target mRNA. Since, multiple miRNAs can target the same

mRNA, they suggested by varying the expression level of the miRNA and depending on

its complementarity to the target a range of outcomes can be achieved. Thus, allowing

the possibility of tuning mRNA targets meaning that the protein expression is not

repressed but only fine-tuned to an active yet dampened level (Bartel and Chen, 2004).

Protein expression is noisy (Thattai and Oudenaarden, 2010) in a population of cells

and within a single cell over time. This variability in expression of a protein has been

described mathematically and experimentally (in E. coli) as the sum of two orthogonal

components, intrinsic and extrinsic noise (Swain, Elowitz, and Siggia, 2002; Elowitz,

Levine, and Siggia, 2002). This was confirmed to be true in mammalian cells (Raj et al.,

2006) and shown to propagate in gene networks (Pedraza and Oudenaarden, 2005), thus,

suggesting their role in introducing heterogeneity in clonal populations. Intrinsic noise

was defined as inherent stochasticity in reactions related to transcription and translation

whereas extrinsic noise a consequence of by the stochastic variation in concentrations of

molecules such as polymerases and regulatory proteins required in the expression of the
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target protein (Swain, Elowitz, and Siggia, 2002; Elowitz, Levine, and Siggia, 2002).

Schmiedel et al., 2015 experimentally and mathematically probed the idea that miRNAs

can render precision to protein expression by affecting intrinsic and extrinsic noise in

protein expression.

Using a two reporter system (fluorescent) with a bidirectional reporter, Schmiedel

et al., 2015 quantified protein levels and any corresponding noise in mouse embryonic

stem cells. By appropriately binning from bi-plots of the two fluorescent signals obtained

from flow cytometry experiments they quantified the noise (defined as standard

deviation/mean) or the co-efficient of variation when the reporter transcript had 3’ UTR

that was miRNA targeted or not. Their experiments showed that variance was indeed

decreased when protein expression was low but, intriguingly, noise in expression

increased when the protein was expressed at higher levels. In order to understand this

effect they described the problem mathematically which predicted that while intrinsic

noise did indeed reduce with miRNA induction, with the increased expression of the

protein, the extrinsic noise increased as well as leading to an overall increase in the noise

(Schmiedel et al., 2015). This increase in the extrinsic noise associated with gene

expression is due to the variation in the expression of miRNAs. The two opposing

results due to miRNA-induced post-transcriptional repression is depicted in figure 1.6b.

Studies on heterogeneity have found that housekeeping genes tend to be normally

(or log normally) distributed in single cell populations (Shalek et al., 2013; Kumar et al.,

2014; Klein et al., 2015) while there is a subset of cells that display increased cell-to-cell

variability whose distribution is bi-modal or heterogeneous. Further Kumar et al., 2014

also showed that knocking out microRNA biogenesis proteins (Dicer-/- and DGRC8-/-) in

mouse pluripotent stem cells, result in a population with little variation in the

pluripotency genes (or ’ground state’) that are highly variable in wild-type. Garg and

Sharp, 2016 speculate if extrinsic noise contributed by miRNA pool that increases
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variance in highly expressed genes (Schmiedel et al., 2015) can contribute in the

variability in wildtype pluripotency factors as shown by Kumar et al., 2014; Klein et al.,

2015.

In another study, Blevins et al., 2015 in developing mouse thymocytes showed that

miRNA-deficient cells have increased population CV (co-efficient of variation) in the

expression of T-cell activation marker suggesting the role of miRNAs in regulating

cell-to-cell variability in immune cells. Overall, this shows that miRNAs as global

regulators of protein expression can not only suppress translation but can contribute to

population heterogeneity and, even, be a determinant of phenotypic changes.

1.5 Mathematical description of biological complexity

Biological systems such as biochemical pathways, cells, tissues, organs, and uni- and

multi-cellular organisms can be all described as complex systems. To understand these

systems, careful biological experiments and statistical methods need to be employed to

dissect mechanisms, and these approaches may consider scales ranging from

biochemistry and molecular biology to large-scale tissue function and interactions within

an organism or between organisms. Because of this complexity, ascertaining how a

biological system interacts with numerous biological entities is not easy to understand

(Martins, Ferreira, and Vilela, 2010; Walpole, Papin, and Peirce, 2013; Ji et al., 2017). For

example, how a whole organ may respond to cancer is difficult to delineate using only

molecular biology approaches and statistical comparisons, because each cell must be

viewed in the context of its immediate neighbourhood and its broader ecological context

within the tissue and organism (Ferreira, Martins, and Vilela, 2003; Owen, Byrne, and

Lewis, 2004). Such systems-level understanding requires the usage of mathematical, and

often computational, methods to help define the biological system in question, as well as
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FIGURE 1.6: miRNA regulated inflammatory response and contribution
to population heterogeneity

a LPS-induced TLR4 signalling pathway leads to the downstream induction of three major
transcription factors, NF-κB, IRF3 and AP-1 that contribute to the inflammatory gene signature of

a macrophage. Proteins regulating this pathway (positively or negatively) are in turn
post-transcriptionally regulated by miRNAs as depicted in the cartoon. b miRNAs have also

been shown to introduce cell-to-cell variability in a population of seemingly identical cells i) by
reducing intrinsic noise in endogenous genes and, consequently variability or ii) by increasing

the extrinsic noise in a highly-expressed gene.
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a theoretical model (Kitano, 2002; Tomlin and Axelrod, 2007).

In the last two decades with the human genome being sequenced and sequencing

costs becoming economically feasible, and not limited to specialist laboratories, the

amount of data available to a biologist about their model organism has increased many

folds. Sequencing can not only inform about the genetic code but also what is being

expressed (transcriptomics) with temporal resolution. This, then demands the need for

computational analysis of these gene networks to understand cellular or population

behaviour (Smolen, Baxter, and Byrne, 2000; Ay and Arnosti, 2011; Grimes, Potter, and

Datta, 2019).

Besides de-constructing large network models, mathematical modelling can help to

describe a complex process with simplified parameters that can be estimated by

calibrating the model outputs to empirical outputs. This approach not only helps in

model validation in describing large-scale phenomenological results (Wood and Coe,

2007; Wood et al., 2008) but also to deduce parameters to describe interesting features

such as kinetics over time or threshold values of a complex process or events (Renshaw,

1993; Lema-Perez et al., 2019)

Biological systems modelling has mostly relied on continuous deterministic solutions

using ordinary differential equations (ODE) to describe the biological problems being

studied. This is a particularly useful paradigm when, for example, the abundance of the

reacting species in the system can be quantified in terms of concentration (Murray, 2002).

The ODE approach assumes that these concentrations change via fixed deterministic

trajectories. These models can elucidate average behaviour of systems but sometimes fail

to capture the inherent stochastic nature of many biological processes (McAdams and

Arkin, 1997; Gillespie, 2007; Wilkinson, 2009) such as gene expression where noise (or

stochasticity) can be associated with low copy numbers of reacting molecules such as
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DNA and transcription factors (Guptasarma, 1995; Paulsson, Berg, and Ehrenberg, 2000;

Paulsson, 2005). Deterministic systems fail to capture the effects of low copy numbers

that can result in a noisy trajectory where no two cells have the same trajectory

associated with protein expression. Comparisons of deterministic and stochastic models

of the prokaryotic lac operon has illustrated the role of stochasticity in modulating

system behaviour (Stamatakis and Mantzaris, 2009). In order to capture such

heterogeneity, probability theory based methods can be an effective way of accounting

for the unpredictability of a complex biological system (McAdams and Arkin, 1997;

Gillespie, 2007; Wilkinson, 2009).

1.5.1 Probabilistic modelling and Markov process

Probability-theory based modelling of biological events is different from the ODE based

approach in the fundamental sense that the reactions (or other biological interactions) do

not have associated deterministic rates governing a continuous state-space, but instead

consider discrete events with an associated probability per unit time of occurring. This

modelling paradigm, as such, associates a chance associated with an event and removes

the certainty of an event to happen with a said rate. Given a low number of reactants,

models based on probability can add a stochastic flavour to the outputs of the master

equation, which can be thought of as an equation which captures the probabilistic

changes within a system (Gillespie, 1977). Explicitly solving a probability master

equation analytically although possible (Jahnke and Huisinga, 2007; Shahrezaei and

Swain, 2008)is often an intractable task, and thus there is a need to approximate the

master equation (Kampen, 2007) or simulate the time-evolution using algorithms which

accurately represent the behaviour of the underlying master equation (Gillespie, 2007).

A mathematical system that allows probability-theory based deductions of a complex

system is a Markov chain. The key defining property of a Markov chain is that,

conditional on knowledge of the present state of the system, the future behaviour of the
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system is independent of the system’s state at any earlier time i.e. the system is

memoryless. Markov chains have been extensively used to model biological systems,

which can be thought of mathematically as being defined by the states of an

n-dimensional system along with the probabilities of switching from one state to another

(Gillespie, 1992). For example, a cell that is expressing a gene or not, represents two

states that have probabilities associated with switching on or off from that state. The

important characteristic of the Markov chain, that it has no memory such that the

transition from one state to another only depends on the current state, makes this

mathematical framework appropriate for a wide range of biological models (Wilkinson,

2009).

The Doob-Gillespie algorithm is an exact algorithm which can provide fast and

accurate solutions for models based on Markov chains; it simulates a sample trajectory

from the probability mass function of a master equation using the Markov property. It

was first described by Joseph Doob in 1945 (Doob, 1945) and then presented by Dan

Gillespie (Gillespie, 1976) in a very well-described paper with simulations comparing

ODE solutions with the Doob-Gillespie algorithm. The algorithm traces the

time-evolution of species of a system by choosing the time to next reaction and the

reaction that describes the system in time.

1.6 Choice of the biological model

1.6.1 Macrophage-like RAW264.7 cells

As a model system, we chose RAW264.7 cells that are adherent murine macrophage-like

cell line that were derived from the ascites of a tumour induced in a male BAB/14 mouse

injected with a preparation of Abelson murine leukemia virus. This immortalised

cell-line shows the properties of macrophages and can partake in neutral red dye

endocytosis, secretion and synthesis of lysozyme, and zymosan and latex bead
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phagocytosis. This macrophage cell line can also mediate lysis and phagocytosis of

sheep erythrocytes which is antibody-mediated. The cells are LPS sensitive and cell

growth is inhibited (50% of the population) by 0.5 ng/ml of LPS and a 100ng/ml dose

stalls growth of all cells for upto four days (Raschke et al., 1978). Since the cell line was

created using a viral transformation it is possible that viral particles remain in the cell

line, however, no viral activity was detected by fibroblast focus-forming assay or by the

plaque assay to detect the presence of retroviruses (Raschke et al., 1978).

RAW264.7 cells express cluster of differentiation molecule 11B (CD11b) and EGF-like

module-containing mucin-like hormone receptor-like 1 (also known as F4/80) both

macrophage markers associated with cell adherence stably over multiple passages ( 20)

in culture. Many other genes have tested to be stably expressed in this cell-line over

passages such CD14, iNOS (or NOS2), hypoxia-inducible factor 2α (HIF-2α), cluster of

differentiation molecule 11c also known as CD11c (Taciak et al., 2018).

In this thesis, we measure four pro-inflammatory proteins produced by macrophages

in response to LPS. TNF, IL-1β, IL-6 and NOS2 are all expressed by RAW264.7 cells and

the bi-phasic NF-κB expression induces an early TNF response with an increased IL-6

and NOS2 expression is seen at later time points (Xue et al., 2005; Wang et al., 2008). It

was also indicated that RAW264.7 cells closely mimic primary bone-marrow derived

macrophages in the expression of surface receptors and the response to microbial ligands

(Berghaus and Moore, 2010).

However, it must be noted that RAW264.7 cells are immortalised and, thus, represent

cells that otherwise would not have proliferated in vivo. This makes them an artificial

model system for macrophages that can change with continuous culture.
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1.6.2 Thioglycollate-elicited peritoneal macrophages

In order to confirm our findings in primary cells we extracted peritoneal macrophages

from C57BL/6 female mice. Peritoneal macrophages are a well-researched macrophage

type that is tissue-resident and elicit an inflammatory response (Cassado, D’Império

Lima, and Bortoluci, 2015). It is however, duly noted that the peritoneal macrophages in

our study were thioglycollate-elicited and, therefore, were a mix of resident and

monocyte-derived macrophages (Ghosn et al., 2010).

1.7 Motivation and hypothesis

We have discussed inherent macrophage heterogeneity in the previous sections and how

this heterogeneity in a seemingly clonal population can manifest, discussing

contributing factors like antigen dose and pre-exposure, gene activation, inter-cellular

communication, quorum sensing and, at a more fundamental level, by noisy expression

in highly expressed genes targeted combinatorially by miRNAs (Figure 1.4).

Putting the above in the context of immune cells and immune response, we

hypothesise that single-cell protein measurements in clonal macrophage population can

be used to show and represent heterogeneity in response to single, repeated doses of LPS

or to miRNA depletion.

We question if we can capture and visually represent the pro-inflammatory response

to an antigen in a clonal population of RAW264.7 cells in the context of variability. Are

there sub-populations in the cell community (those responding to antigen) that, in

principle, play a similar inflammatory role and, if so, do these communities respond to

LPS dose(s), intercellular communication, cellular density and global miRNA regulation.

We quantitate pro-inflammatory TNF, IL-6, NOS2 (and IL-β in later experiments) to

identify and track sub-populations in the community to see if this response is robust or is
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their plasticity in these communities. Further, in order to see how such communities

evolve over time and whether or not they have an effect in shaping the response, we use

simple mathematical models to predict temporal trajectories of empirical outcomes to fit

underlying parameters that may contribute to the qualitative and quantitative changes

to the community structure.

1.7.1 Aims

1. Capture and visually represent heterogeneous macrophage response to primary

and secondary challenges of LPS and develop methods to compare heterogeneous

communities composed of cells expressing TNF, IL-6, NOS2 and IL-1β (Chapter 4)

2. Use mathematical models to simulate time evolution of these communities to

obtain rate vectors that describe transitions between sub-populations. (Chapter 5)

3. Show how sub-populations are affected by depleting the miRNA bio-machinery

proteins such as Dicer (Chapter 6)
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Chapter 2

Methods

2.1 Methods and Materials

2.1.1 Mammalian cell culture

2.1.1.1 Animals and ethics statement

Wild type C57BL/6 mice were bred in the animal facility at University of York and cages

were ventilated individually. Animal welfare and care were considered foremost and UK

home office guidelines, complying with the ASPA act, 1986, were followed for all animal

protocols .

2.1.1.2 Extraction/culture of peritoneal macrophages

4-6 week old C57BL/6 wild type mice were injected with 200µl of 4% thioglycolate in

the peritoneal cavity to induce macrophage recruitment (Zhang, Goncalves, and Mosser,

2008). After four days the mice were euthanised by overdose of anaesthesia. The cells

were then extracted by lavage in ice cold Gibco Roswell Park Memorial Institute (RPMI)

1640 medium supplemented with 1% streptomycin-penicillin mixture, 1% L-glutamine

and 10% fetal calf serum (Hyclone). After centrifuging at 4◦C at 1500RPM for 5 minutes,

cells were resuspended in red blood lysing buffer (Hybri-Max, Sigma) and left to stand

at room temperature for 5 minutes. Finally, harvested cells were plated and let to stand

for adhering to tissue culture plate at 37◦C and 5% CO2. The cells were then washed
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with phosphate-buffered saline (PBS, Gibco) to remove non-adherent cells. Media was

replaced and cells were used for further experiments.

2.1.1.3 RAW264.7 cell culture

Murine macrophage-like cell line, RAW264.7 were obtained from frozen stocks at the

Lagos laboratory. Cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM)

supplemented with 1% streptomycin-penicillin mixture, 1% L-glutamine and 10% fetal

calf serum (Hyclone) in Corning T25 flasks and then passaged onto T75 flasks (Corning).

Cells were detached for passaging using 1x Trypsin-EDTA (Invitrogen) by incubating at

37◦C for 10 minutes. Cells were detached completely by gently scraping with cell scraper

with a cross-ribbed handle (VWR). Upon reaching 70-80% confluency, cells were either

cryopreserved in a mixture of 90% FCS and 10% dimethyl sulfoxide (DMSO) in Corning

cryogenic vials or plated in 24 well plates for further experiments at passage 4 or 5.

RAW264.7 cells were centrifuged at 1500RPM at 25◦C for 5 minutes for the purposes of

washing or re-suspending.

2.1.1.4 HEK293T cell culture

Human embryonic kidney 293 cells with a mutant version SV40 T antigen (HEK293T)

were obtained from frozen stocks at the Lagos laboratory. Cells were cultured in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 1%

streptomycin-penicillin mixture, 1% L-glutamine and 10% fetal calf serum (Hyclone) in

10cm dishes and passaged upon 60-70% confluency. Cells were detached for passaging

using 1x Trypsin-EDTA (Invitrogen) by incubating at 37◦C for 5 minutes and gentle

tapping. Cells were cryopreserved as above or used for experiments at passage 4.

HEK293T cells were centrifuged at 1200RPM at 25◦C for 5 minutes.
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2.1.2 LPS-induced challenge or hyporesponsiveness protocol

Thioglycollate-elicited peritoneal macrophages (TPEMs) were plated at 1,000,000 cells

per well for a minimum of 4 hours prior to experiments. 200-250,000 RAW264.7 cells

were plated overnight before experiments. All cells were plated in a Corning 24 well

plate in 500µl of DMEM.

For LPS titration experiments, cells were either stimulated with purified Escherechia

coli lipopolysaccharide (LPS; Sigma-Aldrich) or were left in media (untreated) on day 1

(Figure 2.1). Cells were challenged with 1, 10, 100 or 1000 ng/ml of LPS. Supernatant

was collected at 24 hours for ELISA and stored at -20◦C. Cells were harvested for flow

cytometry at 16 or 24 hour from LPS stimulus.

For inducing hyporesponsiveness, cells were either stimulated with 10 or 1000 ng/ml

of LPS or left untreated in media on day 0 (Figure 2.2). After 24 hours (day 1), cells were

washed twice with PBS and replaced with media (Media/Media) or with media

containing 1000 ng/ml of LPS (10/1000; 1000/1000 or Media/1000) as represented in

Figure 2.2. Challenged (Media/1000) and twice-challenged (10/1000; 1000/1000) were

compared to ascertain hyporesponsiveness by measuring TNF and IL-6 by ELISA in the

supernatant.
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FIGURE 2.1: LPS stimulus protocol

Cells were either left untreated in media or challenged with LPS (1, 10, 100, 1000 ng/ml) on day 1
(lower panel) and harvested for flow cytometry at 16 or 24 hours post stimulus. Supernatant was

collected at 24 hour for ELISA.
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FIGURE 2.2: LPS induced hypo-responsiveness protocol

Cells were either left untreated in media or stimulated with LPS (10 or 1000 ng/ml) on day 0
(lower panel). On day 1 cells were either left untreated (Media/Media) or challenged with 1000
ng/ml LPS (Media/1000; 10/1000; 1000/1000). 10/1000 and 1000/1000 received two doses of

LPS while Media/1000 represented cells that were only challenged once. Cells were then
harvested for flow cytometry at 8, 12, 16 or 24 hours post secondary challenge (day 1).

Supernatant was collected at 24 hour post day 1 for ELISA.
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2.1.3 Flow Cytometry

RAW264.7 or thioglycollate-elicited peritoneal macrophages were collected after

washing in ice-cold PBS and then detaching the cells with Accutase (Biolegend). Prior to

collection, cells were incubated in 10ug/ml of Brefeldin A (BFA) to block protein

transport (Misumi et al., 1986). BFA incubations were used at varying durations as

described in Figure 2.3 as an example and is, also, explicitly mentioned in each

experiment.

Cells and all reagents were maintained at 4◦C throughout the intra-cellular staining

protocol. Harvested cells were washed twice in PBS and re-suspended in approximately

50µl of PBS. Cells were stained with 100µl of 1:1000 Zombie Aqua live/dead stain

(Biolegend) in PBS on ice for 8-10 minutes in the dark. Cells were then washed with

Flow cytometry staining (FACS) buffer (PBS, 0.5% BSA, 0.05% sodium azide), aspirated

and re-suspended in 50µl FACS buffer. FC receptors were blocked with 5µl of 2mg/ml

rat IgG for five minutes. Cells were then stained with surface receptor antibodies for 20

minutes on ice in the dark. Cells were washed with FACS buffer and then fixed with BD

Cytofix for 20 minutes on ice in the dark. Cells were washed twice with permeability

buffer (BD Cytoperm). Intracellular staining was performed with the cocktail of

antibodies made in permeability buffer. The list of the antibodies for surface and

intra-cellular staining are listed in table 2.1. Intracellular stains were washed off with

FACS buffer after staining for 20 minutes on ice in the dark. Cells were washed again

with FACS buffer, re-suspended in about 400µl FACS buffer and run on BD LSR Fortessa.

Single stain controls and isotype controls were used in all experiments. An example

of gating strategy used for intracellular staining along with its isotype control is shown in

Figure 2.4. FCS 3.0 files from Fortessa runs were recorded on FACS Diva software. Unless

mentioned explicitly, cells were pre-gated on live cells, singlets, forward scatter and side

scatter (for gating intact cells), F4/80+ and/or CD11b+ using FlowJo.
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FIGURE 2.3: Brefeldin A incubation for intra-cellular staining

Cells on day 1 were stimulated with LPS and BFA to obtain shorter or longer periods of
intra-cellular staining as described in the cartoon and harvested for flow cytometry staining at

the end of the incubations.
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Manufacturer Antibody
against

Clone Fluorophore Isotype Dilution

Biolegend TNF MP6-XT22 BV421 IgG1 1:300
Biolegend IL-6 MP5-20F3 APC IgG1 1:200
Biolegend GM-CSF MP1-22E9 PE-Cy7 IgG2a 1:400
Biolegend CD11b M1/70 PE-Cy7 IgG2b 1:400
Biolegend F4/80 BM8 FITC IgG2a 1:200
Biolegend CD64 X54-5/71 PerCP/Cy5.5 IgG1 1:200
Biolegend TLR2 CB225 PE IgG2a 1:200
Biolegend TLR4 APC SA15-21 IgG2a 1:200
Biolegend CD86 PE GL-1 IgG2a 1:200
ThermoFisher
Scientific

NOS2 CXNFT e-Fluor 610 IgG2a 1:300

ThermoFisher
Scientific

IL-1β Pro NJTEN3 PE IgG1 1:200

TABLE 2.1: Antibodies used for flow cytometry
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FIGURE 2.4: TNF, IL-6, NOS2 positivity fractions as determined by
respective isotype controls

Cells were pre-gated for live, single, intact cells, CD11b and F4/80. CD11b+ F480+ populations
were then used to gate TNF+ and TNF- populations. TNF+ and TNF- sub-populations were

individually gated to IL-6+ and NOS2+ sub-populations using bi-plots. The resulting 8
sub-populations were then used to calculate their individual percentage in all CD11b+ F480+

population. Top row shows the isotype control TNF, IL6 and NOS2 based on which the
positive/negative gates were established and applied to sample (bottom row)
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2.1.4 ELISA

IL−6, TNF and IL-1β concentrations in the cell culture supernatant were measured by

enzyme-linked immunosorbent assay (ELISA). Nunc Maxisorp flat-bottom 96-well

plates from ThermoFisher Scientific were used for all ELISA experiments. Biolegend

ELISA MAX Standard kits for TNF, IL-6 and IL-1β were used to measure the respective

cytokine levels. Capture antibodies were added to wells at 1 in 200 dilution in coating

carbonate buffer (Biolegend). After an overnight incubation at 4◦C for coating of the

plates with capture antibodies, the wells were blocked with 10% FCS in tris-buffered

saline (TBS) or TBST (20mM Tris hydrochloride pH 7.4, 150mM NaCl with

0.05%TWEEN) for 2 hours at 37◦C. Standards (Biolegend) and samples were diluted

appropriately and added in duplicates to wells. Plates were incubated for 2 hours at

37◦C at room temperature. Wells were washed in TBST 4−5 times and then biotinylated

antibodies (1:500 in 10% FCS in TBST) were added to the wells. After incubation at 37◦C

for 1 hour, plates were washed in TBST and Biolegend Avidin horseradish peroxidase

(HRP, 1:10000) was added to the wells for 30 minutes. TMB buffer or

3,3’,5,5’-tetramethylbenzidine (Biolegend) was used as a substrate for HRP. The reaction

was stopped using 2N sulfuric acid. Absorbance was read at 450nm with a wavelength

correction at 570nm using a VersaMax Microplate Reader (Molecular Devices). Standard

curves were generated using 4-parameter non-linear fitting to known standard

concentrations using SoftMax Pro software. Optical density of the unknowns that fit

within the linear range of the standard curve was used to calculate the concentration of

the sample.
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2.1.5 Greiss Assay

Greiss assay was used to measure nitrite concentrations in the supernatants.

Diazotization reaction in Greiss assay was carried out as per manufacturer’s intructions

(Promega) by adding sulfanilamide to the supernatant and then NED (0.1%

N-1-napthylethylenediamine dihydrochloride) in a 96-well plate. Plates were incubated

at room temperature for 5-10 minutes to allow for colour to develop. Standards were run

in duplicates or triplicates to determine nitrite concentration. Plates were read on

VersaMax microplate reader capturing absorbance between 520 and 550nm.

2.1.6 RNA interference

RAW264.7 cells were plated at 50,000 cells per well in a 6 well plate overnight. The next

day, the cells were transfected with 50nM siRNA ON-TARGETplus mouse Dicer siRNA

SMARTPOOL at 50nM or a non-targeting control procured from Dharmacon. The

transfection was facilitated using TransIT-siQUEST (Mirrus Bio) in reduced serum

Opti-MEM (Gibco) as the transfection mixture. Opti-MEM was replaced with full

DMEM 5-6 hours post transfection. Cells were checked for siRNA efficiency by western

blot 24-48 hours post transfection. Cells treated with Dicer siRNA were referred to as the

siDicer group.

All LPS titration and hyporesponsiveness experiments for siDicer treated cells were

carried as per protocol described in sub-section 2.1.2 but in 6-well plates in 2ml of media

2.1.7 TNF neutralisation

MP6-XT22 monoclonal anti-TNF-α antibody was used to neutralise soluble TNF-α in cell

culture supernatants. Antibody was a gift from Dr. Louis Boon (Bioceros). Antibody

neutralisation efficiency was measured by mRNA levels of IL-6, NOS2, IL-12p40 and IL-

1β and by measuring protein concentration of TNF and IL-6 in cell culture supernatants.
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2.1.8 Western Blotting

Cells were washed with ice cold PBS. Protein extracts were prepared by treating cells

with RIPA or radio-immunoprecipitation assay (RIPA) buffer (150mM NaCl, 10mM Tris

HCL pH 7.2, 5mM EDTA, 0.1% Triton X-100, 0.1% SDS and 1% sodium deoxycholate)

and then scraped directly from the plate. To inhibit protease activity, a cocktail of

protease inhibitors P0044, P8340, P57266 (Sigma) were added in a 1 in 100 volume to

RIPA buffer. The cell lysate was then collected and centrifuged at 10000g for 15 minutes

after letting it stand on ice for 10 minutes. Lysates were stored in -20◦C.

Total protein concentration was determined by a BCA (Bicinchoninic acid) assay from

ThermoFisher Scientific. Samples were diluted 1 in 6 before quantification. 5µl of diluted

sample and standards were added to the wells of a 96 well plate along with the working

solution for BCA assay (made as per manufacturer’s instructions). Plate was incubated

at 37◦C for 30 minutes for colour to develop and read on Molecular Devices VersaMax

plate reader at 562nm. Standard curves were generated using bovine serum albumin

(BSA) and from which the sample concentration was determined. Appropriate amounts

of sample volume were determined to load 10µg of protein per lane in an SDS-page gel

containing acrylamide. Samples were denatured by mixing them with sample loading

buffer(4x, 250 mM Tris HCl pH 6.8, 8% SDS, 40% glycerol, 5% β-mercaptoethanol and

0.05% bromophenol blue) incubating them in heating block at 95◦C for 10 minutes.

Samples were loaded onto an 8% SDS-page gel and run on a Bio-Rad PowerPac at

120V for 60−90 minutes for resolving proteins. After the run, gel was cut and

sandwiched between blotting papers and with a polyvinylidene difluoride or PVDF

membrane underneath to encourage transfer on a semi-dry western transfer unit

(Bio-Rad) at 0.2A and limited to a maximum voltage of 25V. The PVDFs were activated

by washing them in methanol for 1 minute before setting up the transfer cell. Upon

successful transfer, membrane was blocked in 5% non-fat dry milk (Sigma-Aldrich) in
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TBST with 0.1% TWEEN for 1 hour at room temperature. Membranes were left

overnight in primary antibodies at 4◦C with constant rolling in a falcon tube.

HRP-conjugated secondary antibodies were added to the membranes thereafter at room

temperature for 1 hour. The membranes were washed in TBST in-between and after

antibody incubations 5 minutes each time for three times. After secondary incubation,

the membrane was incubated in room temperature using ECL (GE Healthcare), a

chemiluminescent substrate for HRP. The luminescence was developed on film and band

quantification was done using ImageJ (National Insitutes of Health, NIH). Quantification

of target proteins were normalised to the loading controls, β-actin and GAPDH.

Antibodies used are listed in table 2.2.

2.1.9 RNA Extraction

Cultured cells in wells were washed with PBS and then lysed in 700µl QIAzol (Qiagen)

for processing the same day or stored in -80◦C if RNA extraction was conducted on a

later date. RNA extraction of lysed cells in QIAzol was done using Direct-zol mini prep

(Zymoresearch) or using miRNAeasy kit (Qiagen) according to the manufacturer’s

insructions. RNA was eluted in nuclease free water and stored in RNAse-free tubes

(Appleton Woods). RNA quality was gauged on Thermofisher’s NanoDrop ND 2000

spectrophotometer based on A260/280 and A260/230 ratios.

Manufacturer Antibody against Clone Dilution
Cell Signalling Cas9 7A9-3A3 1:1000

Biolegend Dicer1 N167/7 1:100
Abcam β-Actin AC-15 1:5000
Abcam GAPDH 6C5 1:5000

TABLE 2.2: Antibodies used for western blotting
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2.1.10 cDNA synthesis

Purified RNA was reverse transcribed to make cDNA using random hexamers

(Promega). 50-200ng of RNA was loaded per cDNA sample in PCR tubes with 1µl of

random hexamers, 1µl of 10µM dNTPs along with upto 13µl nuclease-free water. The

sample strips were centrifuged briefly and then placed in a thermocycler (BIO-RAD) at

65◦C for 5 minutes and then cooled to 4◦C. 4µl of First strand buffer, 0.5µl of RNAseOUT,

2µl of 0.1M DTT, and 0.5µl of 200U/µl Supersctipt III (all from Invitrogen) were then

added to each PCR tube. The samples were kept in the thermocycler for 10 minutes at

25◦C, 50 minutes at 50◦C and then finally, 5 minutes at 85◦C to stop the reaction. Samples

were stored at -20◦C.

2.1.11 qRT-PCR

SYBR Green master mix (Applied Biosystems) was used to quantify mRNA expression.

10µl of SYBR Green per reaction was added along with 0.6µl of 10µM forward and

reverse primers and 7.8µl of nuclease free water to MicroAmo Fast Optical 96-well plates

(Applied Biosystems). 1µl of cDNA was then added directly into the master mix in the

wells. Plates were sealed with adhesive films (Applied Biosystems), centrifuged at 1200g

for 90 seconds and run on StepOnePlus Real-Time PCR Systems (Applied Biosystems)

for 40 amplification cycles (95◦C-60◦C). Hprt and/or Gapdh were used as loading

controls and analysis was done using the ∆∆CT (comparative cycle threshold) method.

2.1.12 CRISPR-Cas9 gene editing

RAW264.7 cells were plated at a density of 100,000 cells per well in a 24 well plate the

night before transfection. Edit-R Cas9 Expression plasmids with puromycin resistance

gene and synthetic RNAs (GE Dharmacon) were used to transfect RAW264.7 cells. Three

pre-designed Edit-R crRNAs (CRISP RNA) for Dicer as per table 2.3 were selected for



2.1. Methods and Materials 57

knocking out Dicer. Cas9 nuclease expression plasmid (Dharmacon) was mixed with

tracrRNA ( trans-activating crRNA; Dharmacon) and crRNA (Dharmacon) in

eppendorfs to obtain a final concentration of 25nM of the guide RNA

(tracrRNA+crRNA) and 1µg/well of Cas9 plasmid in serum free media. The mix was

allowed to stand in room temperature for 5 minutes. 50µl of 60µg/ml DharmaFECT Duo

transfection reagent (Dharmacon) was added to the plasmid and guide mixture and

incubated at room temperature for 20 minutes. The final volume of the mix was brought

up to 500µl with antibiotic-free DMEM. The transfection mix was added and the cells

were incubated in 37◦C with 5% CO2 for 48 hours. Cells were then split into DMEM

containing 5µg/ml puromycin (Fisher Scientific) for selecting clones.

2.1.13 Transformation

Agilent XL-1 Blue supercompetent cells were used to amplify plasmids required for

lentiviral assembly. Pre-made ampicillin (Sigma) supplemented agar plates were kept at

room temperature to warm up. 30-50µl of XL-1 bacteria were added in a tube. The tube

was swirled gently and then the 50-500ng of the required plasmid (with a ampicillin

resistance gene) was added to the bacteria. The tube was incubated on ice for 30 minutes.

The bacteria-plasmid mixture was given a heat pulse in a 42◦C water bath for 45

seconds. After a brief incubation on ice for 2 minutes, 900µl of pre-warmed SOCS media

(2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM

MgSO4, and 20 mM glucose) was added. Finally, about 80µl of transformed bacteria

were plated on agar plates with ampicillin. Appropriate negative and positive controls

were used to confirm ampicillin based selection. Single colonies were picked from Agar

Target crRNA sequence Manufacturer Part number
Dicer GCTCGAAGAGGTGAGTTAAT Dharmacon CM-040892-01-0002
Dicer GTGTTGAGTGGTACAATAAC Dharmacon CM-040892-02-0002
Dicer CAAATTCTGAATGGGATATG Dharmacon CM-040892-04-0002

TABLE 2.3: crRNAs used for Edit-R Dharmacon transient transfection of
Cas9 nuclease plasmids.
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plates with ampicillin to culture transformed bacteria further. Plasmids were purified by

Qiagen HiSpeed Midi kit using resin based binding of DNA. Resin-bound DNA was

then eluted by QIAprecipitators using ispropanol as per manufacturer’s instructions.

2.1.14 Lentiviral production and infection

Lentiviruses were packaged in HEK293T cells obtained from frozen stocks in the Lagos

laboratory. Transfection was carried out in 10cm tissue culture dishes (Corning) with

3−4x106 cells plated a day before the transfection in full DMEM. On the day of the

transfection, media was replaced with 8ml of warm reduced serum media Opti-MEM

(Gibco) per plate. The plasmids lentiCrisprV2 (Addgene-52961), VSV−G

(Addgene-14888) and ∆8.14 (Addgene-79047) were gifts from Dr. Tyson V Sharp (Barts

Cancer Institute, London). 15µl Transfection reagent FuGENE (Promega) was added to

35µl Opti-MEM directly avoiding the tube walls per plate in an eppendorf. The mixture

was allowed to stand for 5 minutes at room temperature. Approximately 1.5-2µg of

DNA each for the transfer, packaging and envelope plasmid was then added to 50µl of

Opti-MEM in a separate eppendorf. Finally, the DNA and FuGENE mix were added to

each other to make up the total volume upto 100µl and allowed to stand at room

temperature for 20−30 minutes. Effectively, the final transfection mix contained about

3µl of FuGENE per µg of plasmid DNA. The transfection mixture was added onto plates

dropwise. Control green fluorescence protein (GFP) expressing plasmids (pCSGW;

Bainbridge et al., 2001, available in Lagos laboratory) were used to check if transfection

was successful. 60 hours post transfection, viruses were harvested by passing the culture

supernatant through a 0.45µm filter. Viruses harvested from different plates were pooled

and aliquoted into 1ml eppendorfs and frozen at -80◦C for later use

100,000 RAW264.7 cells were seeded in a six well plate a day before lentiviral infection.

1ml aliquots lentiviruses were thawed and warmed to 37◦C for 2-3 minutes. Media from

the wells were replaced with 1ml of lentiviruses. Lentiviral infection was confirmed
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using GFP viruses 24 hours after infection. Cells infected with lentiCripsrV2 were split

into puromycin for selection.

2.1.15 Limiting Dilutions

Monoclonal cell populations were selected by limiting dilutions in 96 well tissue culture

plates (Corning) in full DMEM with 5µg/ml puromycin. Cells from transfection or

lentiviral infections were grown in puromycin and then collected, counted and diluted to

approximately 50-100 cells per 10ml of media. The cell suspension was well mixed by

vortexing and 100µl of the suspension was added to each well to achieve a rough cell

density of 0.5-1 cell per well. Plates were then left undisturbed for 10-15 days and then

observed under a light microscope to look for wells with monocolonal colonies. These

clones were further expanded for analysis.

2.1.16 Data Analysis

FlowJo (FlowJo LLC) was used to analyse all flow cytometry data. StepOne Software

(Applied Biosystems) was used to analyse and export raw qPCR data which was further

processed on Microsoft Excel.

2.1.17 Statistics

Statistical analysis was done using Graphpad Prism 6, Matlab and R. Statistics used were

mentioned in figure legends. In general, goodness of fit was measured by the R2 statistic.

Treatment groups were compared using paired t-tests. Pie charts compositions were

compared using Pearson’s correlation matrix, Bray Curtis metric or t-SNE. Linear

models were fitted by specifying the response and predictor variables in our empirical

dataset in MATLAB 2017a.
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Chapter 3

LPS challenge and inter-cellular

communication drive macrophage

population heterogeneity

3.1 Introduction

Clonal populations like pluripotent stem cells have been shown to have a variable gene

expression landscape. Genes related to endogenous housekeeping roles are normally

distributed and stably expressed in the population while genes involved in development

and metabolism have been shown to be differentially expressed with bimodal

distribution patterns (Kumar et al., 2014; Klein et al., 2015). A parallel of this response

has been seen in differentiated but homogeneous myeloid cells that show instability or

heterogeneity in the expression of key inflammatory proteins when stimulated with LPS

(Shalek et al., 2013). Such bi-modality in the response in key inflammatory cytokines can

play a critical role in response outcomes (Satija and Shalek, 2014) of immune cells. The

challenge is to understand contributing factors that leads to this variability and how this

can then be used to modulate outcome. In Chapter 1, possible contributory factors were

discussed, especially in the context of a clonal population of cells responding to LPS. In

response to LPS pro-inflammatory cytokines and mediators such as TNF, IL-6, NOS2 and
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IL-1β are expressed and/or secreted by macrophages. At the population level, LPS can

have an effect on the amount of pro-inflammatory cytokines expressed both when LPS

concentration in the environment is altered (Amura et al., 1998; Yang et al., 2017;

Matsuura et al., 2010).

In this chapter, using flow cytometry, we look at expression of pro-inflammatory

proteins at single-cell level to describe temporal snapshots of heterogeneous

communities within a clonal population responding to LPS and show that these

communities vary when the size of the LPS dose is perturbed. Further, we show that the

community compositions can be significantly altered even with a crude disruption to

inter-cellular communication and change in cellular density.

3.2 Aims

The prominent aim of this chapter was to determine if RAW264.7 cells respond

heterogeneously to LPS and, if this heterogeneity can differentiate between primary LPS

challenge as described below:

1. To describe a method to capture and visually represent population heterogeneity of

LPS-induced pro-inflammatory response of RAW264.7 cells as a function of

proteins measured at a single-cell level.

2. Compare population heterogeneity between LPS dose, inter-cellular

communication and cell density to show if perturbing each of these factors can

affect heterogeneity.
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3.3 LPS induces pro-inflammatory cytokine secretion

3.3.1 RAW264.7 cells secrete TNF, IL-6 and nitric oxide upon LPS stimulus

As key inflammatory mediators, TNF (Kalliolias and Ivashkiv, 2016), IL-6 (Hunter and

Jones, 2015) and NOS2 (Bogdan, 2015) were chosen as our experimental outputs of an

inflammatory response. We stimulated our macrophage model, RAW264.7 cell line with

LPS to check cytokine secretion at 24 hours. Both TNF and IL-6 were found to be present

in the culture supernatant. In addition, nitric oxide was found in the supernatant while

none of the three inflammatory mediators were found at detection levels in untreated cells

(Figure 3.1). Numerous studies have shown cytokine secretion in RAW264.7 cells upon

LPS stimulus (Xiang et al., 2009; Kong et al., 2007; Dai et al., 2019; Zhuang and Wogan,

1997) and confirm our finding that RAW264.7 cell line, can secrete TNF, IL-6, nitric oxide

upon stimulus with LPS.

3.4 Cytokine response at single-cell level is heterogeneous

3.4.1 Single-cell staining reveals cytokines have temporal profiles

To see how population level results translate to single-cell, we measured TNF, IL-6 and

NOS2 upon LPS stimulus by flow cytometry. NOS2, the enzyme that catalyses the

production nitric oxide, was measured to get an indirect representation of nitric oxide

levels (Griffith and Stuehr, 1995). We stained our selected markers after 4 hours (Figure

3.2a) with LPS and Brefeldin A (BFA) to block secretion such that TNF and IL-6 could be

stained intracellularly. We also stained cells after 24 hours (Figure 3.2b) of activation

which included a 4 hour BFA incubation at the end (20 hour LPS + 4 hour LPS+BFA).

Labelling cells with an antibody against TNF, revealed that TNF expresses earlier

than IL-6 or NOS2, staining positive in more than half the population (Figure 3.2a) at

higher doses of LPS (10 and 100 ng/ml). Also, small differences between 100 and 1000
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FIGURE 3.1: RAW264.7 cells produce TNF, IL-6 and nitric oxide upon
stimulation with LPS

Bar plots showing TNF, IL-6 and nitric oxide (NO) levels in control and LPS-treated (1000 ng/ml,
24 hour) RAW264.7 cells. p-values were calculated using paired t-tests (n=6-10).
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ng/ml of LPS in terms of frequency and median fluorescence was observed in TNF

expression (Figure 3.2). At a low dose of 1 ng/ml, TNF positive cells are fewer than 50%,

suggesting LPS dose to have an effect, at a single cell level, on how many cells respond to

the stimulus. 24 hours of LPS stimulus with a 4hr BFA incubation showed only a small

fraction of TNF+ cells Figure 3.2b. The median fluorescence intensity of these small

fraction in all three LPS doses (when compared to untreated cells/media) showed an

increase after 24 hours (Figure 3.2c for TNF). These positive fractions that appeared to

express TNF in an analog way did not titrate to LPS dose (Figure 3.2b and c for TNF)

No IL-6 staining was detected at 4 hours of LPS stimulus suggesting IL-6 is made by

RAW264.7 cells late into the LPS stimulus, whereas an increase in the mean fluorescence

intensity was observed at 24hr (Figure 3.2c for IL-6). Since IL-6 was detected at the

population level in the culture supernatant after a 24 hour LPS stimulus (Figure 3.1), this

suggested that the empirical time points may be insufficient to capture the appearance

and disappearance of IL-6 positive cells (Figure 3.2a&b for IL-6). No LPS dose induced

difference was noticed in the staining for IL-6 at 24 hours.

NOS2+ cells appeared late into LPS stimulus with more than 50% cells staining

positive for NOS2 at the highest dose of 1000 ng/ml and more than 20% cells responding

at lower doses of LPS (Figure 3.2b for NOS2). In addition to LPS dose-dependency of

NOS2 positivity, there was also an increase in the amount of NOS2 being produced at

higher doses as indicated by an increased fraction of cells in the highest log-bin of Figure

3.2b fluorescence intensity and is represented by the consequent jump in the median

fluorescence of NOS2 (Figure 3.2c). No NOS2 staining was detected within four hours of

LPS stimulus across the LPS doses (Figure 3.2a).

Overall, these single-cell temporal snapshots showed these proteins have distinct

temporal profiles and that LPS dose induces heterogeneity in the response to LPS with
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FIGURE 3.2: Single cell staining reveals distinct kinetics for TNF and
NOS2

Histograms showing distribution of fluorescence intensity for TNF, IL-6 and NOS2 in RAW264.7
cells cultured in media only or at 1, 10 and 100 ng/ml concentration of LPS for a 4 hour

(LPS+BFA) and b 24 hour (20 hour LPS + 4 hour LPS+BFA). c Before-after plots showing median
fluorescence intensity of TNF, IL-6 and NOS2 for Media, and LPS doses of 1, 10, 100 ng/ml at 4

and 24 hour. Count of cells=50-100,000
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fractions of populations responding to stimulus (TNF and NOS2 at 4hr and 24hr, Figure

3.2a and b) and, further, that a fraction of cells may even remain positive even after the

rest of the population switches off, as seen in the case of TNF and IL-6 (Figure 3.2a and

b) negating any all or none response in any of the measured proteins.

3.4.2 LPS response spurs a heterogeneous community in RAW264.7 cells

3.4.2.1 TNF, IL-6 and NOS2 positive cells can be visualised at 16 hours

We then stimulated RAW264.7 cells for 16 hours in LPS (12 hours in LPS plus 4 hours

with the addition of BFA) to see if all three proteins can be visually represented and

quantitated. Indeed, at 16 hours we could obtain a temporal snapshot of protein

expression of TNF, IL-6 and NOS2. This temporal snapshot represents protein

accumulation in a period of 4 hours (i.e. the duration of BFA incubation) between 12hr

and 16hr of LPS stimulus and captures phenotype in terms of protein expression. Any

fluctuations that may be present in a period less than 4 hours is ignored. To this effect, it

has been reported that pre-made cytokines, such as TNF, can take about 30 minutes to be

released (Salamanca et al., 2008) or can take up to 2 hours for de novo synthesis such as

IL-6 that takes about an hour for gene expression and another hour for protein

expression (Hoadley and Hopkins, 2003). As such we assume that a minimum 4 hour

BFA incubation can capture the ’phenotypic’ state of a single RAW264.7 cell based on

whether it stains positive or negative for TNF, IL-6 and/or NOS2.

TNF expression (accumulation between 12-16 hours of LPS stimulus) titrated

between LPS doses (Figure 3.3a&b for TNF) whereas median fluorescence was much

higher for 1000ng/ml dose in comparison to the lower doses. In fact, the lower doses did

not show a big difference between their median fluorescence suggesting, although more

cells became positive as the dose of LPS increased between 1 ng/ml to 100 ng/ml on

average they made similar amounts. In contrast, 1000 ng/ml of LPS not only increased
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the frequency of cells expressing TNF but also increased the intensity of expression

(Figure 3.3c). TNF expression snapshot between 12-16 hours was bi-modal in

comparison to Figure 3.2a suggesting, especially at higher doses, most cells start

expressing TNF early and, while some switch off expression, some continue to make

TNF (Figure 3.3a).

IL-6 expression titrated almost equally well in terms of the frequency of positive cells

and median fluorescence intensity of the population to the LPS dose suggesting that IL-6

expression of RAW264.7 cells, at least, at this time point is affected by LPS dose (Figure

3.3). Approximately, 50-75% of cells at higher doses of LPS (100 and 1000ng/ml

respectively) and 13-21% of cells were positive at lower doses (Figure 3.3b), thus,

showing IL-6 to be heterogeneously expressed based on the amount of LPS in the

environment.

NOS2 expression upon LPS stimulus for 16 hours indicated that by this time point

almost all cells start switching on NOS2 at high doses while there are about 27% cells at

the lowest dose of LPS that do not switch on NOS2 production (Figure 3.3b).

Interestingly, the range of NOS2 positive cells in the higher doses (10, 100 and

1000ng/ml) is narrow at 87-96% of the population suggesting that the size of the LPS

dose may not have effect on whether NOS2 is switched on or not. However, on

analysing the median fluorescence intensity, it is revealed that although most cells do

switch on NOS2 production at low doses, the amount they make is much lesser than at

higher doses of LPS (Figure 3.3). When NOS2 amount and frequency are both

considered NOS2 response is heterogeneous and titrates to LPS dose.

Labelling cells with respective antibodies at this timepoint revealed that all three of

the measured inflammatory mediators are LPS dependent and that each have a distinct

behaviour. IL-6 expressing cells varied most (13%-75%) while TNF positive cells
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FIGURE 3.3: Heterogeneous population response titrates to LPS dose

a Histograms showing distribution of fluorescence intensity for TNF, IL-6 and NOS2 in
RAW264.7 cells cultured in media only or at 1, 10, 100 and 1000 ng/ml concentration of LPS for
16 hours (12 hours LPS + 4 hours LPS+BFA). Before-after plots showing b percentage positive of

total cells and c median fluorescence intensity of TNF, IL-6 and NOS2. Count of cells=100,000
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(18%-41%) and NOS2 positive cells (73%-96%) showed lower variation to LPS dose

respectively. The results also suggested that there are some cells within the responding

population that when responding to a high dose of LPS are possibly high producers of

TNF (Figure 3.3a&c). Similarly, IL-6 staining, although uni-modal showed a right tail

which appeared more prominent at higher LPS doses suggesting the presence of a

heterogeneous population of cells that maybe high producers of IL-6 (Figure 3.3a). The

distribution of NOS2 expression, on the other hand, in all doses of LPS showed a small

population of cells that were either negative or made less NOS2 in comparison to the

majority of the population (Figure 3.3a).

Next, in order to capture the temporal snapshot at 16 hours of LPS stimulation for all

the three proteins, we then looked at fluorescence intensity (of TNF, IL-6 and NOS2

antibodies) per cell to obtain information on whether, on an individual basis, cells were

TNF, IL-6 and NOS2 positive. As such, leading to 8 possible sub-populations within the

parent population such as cells that were positive for all three proteins

(TNF+IL6+NOS2+) and triple negative cells (TNF-IL6-NOS2-). The other possible

combinations consist of single and double positive cells and are represented as a pie

chart and enumerated in the legend in Figure 3.4. These sub-populations are represented

as slices of the pie to visualise macrophage heterogeneity as community composition of

the RAW264.7 population.

To draw these pie charts (technique inspired from SPICE, Roederer, Nozzi, and

Nason, 2011), we obtained the information for the pie by first gating on live cells. Next,

we gated on the live population for single cells by selectively gating out populations that

have higher forward scatter width in comparison to their forward scatter area to reject

cells that may have clumped together. Further cells were subjected to a forward scatter

versus side scatter gate for cell size and granularity to select intact cells. Next, cells that

stained positive for both CD11b and F4/80, as canonical macrophage surface markers
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(Taylor et al., 2005), were included in our analysis. Suitable isotype controls (Figure 2.4

in Chapter 2) were then employed to identify background fluorescence of TNF, IL-6 and

NOS2 in stimulated RAW264.7 cells.

Next we gated on TNF positive cells using a histogram to identify cells that

expressed TNF against the isotype background. The TNF positive and negative

populations were then gated separately to make bi-plots for IL6 and NOS2 to fragment

the populations into the subtypes as described in Figure 3.4. Pies obtained with the

above method represent population heterogeneity as community composition and can

be used to compare treatments visually to draw insights of population heterogeneity in

LPS-induced response.
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FIGURE 3.4: Visualising heterogeneous response as a community of sub-
populations

Cells were pre-gated for live, single, intact cells, CD11b and F4/80. CD11b+ F480+ population
was then used to create TNF+ and TNF- sub-populations. TNF+ and TNF- sub-populations were

individually gated to IL-6+ and NOS2+ sub-populations using bi-plots. The resulting 8
sub-populations were then used to calculate their individual percentage in all CD11b+ F480+

population. The frequency data was then plotted as a pie chart with each pie slice representing a
subset as enumerated in the legend.
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3.4.3 LPS dose alters community consistency within a clonal population

We next compared temporal snapshots of community compositions across LPS doses to

visually depict differences between the effects of LPS dose (Figure 3.5a). The media only

or untreated cells depicted a homogeneous community which composed primarily of

triple negative cells (TNF-IL-6-NOS2-) and some TNF+ cells (approximately 4%). Pie

charts depicting community composition of cells stimulated with low doses (1 and 10

ng/ml LPS) and higher doses (100 and 1000ng/ml) were visually different and distil the

underlying information of the histograms (Figure 3.2a) of all three proteins for an

individual cell. The communities indicate a fundamental difference between dose

response where higher doses tend to increase the frequencies of cells that have the

strongest inflammatory response by making all three of the measured proteins while

lower doses have a sizeable proportion of cells that are negative for any one, two or three

of these proteins.

Double positive cells TNF+IL-6+NOS2- cells form a negligible proportion of cells

(less than 1%) across LPS doses and, it may be inferred, that cells making both TNF and

IL-6 but not NOS2 are rare, although, this may be a temporal effect. Cells making both

TNF and NOS2 but not IL-6 (TNF+IL-6-NOS2+) form about 10-15% of the population

and are consistent across LPS doses while TNF-IL-6+NOS2+, another double positive

subset consistently increased with increasing LPS dose (Figure 3.5a).

Among single positive populations (those that were positive for only one of the three

proteins) single positive TNF cells seem to be higher (5-9% versus 1-2%) in lower doses

of LPS. Single positive IL-6 cells constituted a small sub-population (0.5-2%) increasing

with LPS dosage. Single positive NOS2 cells formed a sizeable proportion of the

population in 1, 10 and 100ng/ml LPS doses whereas it halved at the highest LPS dose

(1000 ng/ml) (Figure 3.5a).
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FIGURE 3.5: Visualising LPS stimulated RAW264.7 cells reveal
heterogeneous communities

a Pie charts representing sub-population frequencies of RAW264.7 cells stained for TNF, IL-6 and
NOS2 cultured in Media, or 1, 10, 100 and 1000 ng/ml of LPS. b integratedMFI (iMFI) bar plots to
show TNF, IL-6 and NOS2 amounts as calculated from subset frequency and mean fluorescence

intensity.
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We then analysed if these sub-populations showed differential expression intensity of

an individual protein i.e. whether triple positive TNF cells had a higher fluorescence

intensity than single positive TNF cells. For this, we calculated the magnitude of the

response also known as the integratedMFI (iMFI, Shooshtari et al., 2010) by multiplying

sub-population frequency with mean fluorescence intensity. Triple positive cells

produced most TNF at high doses (100 and 100ng/ml) whereas in low doses double

positive cells for TNF and NOS2 but not IL-6 (TNF+IL-6-NOS2+) expressed more TNF

(Figure 3.5b). Double positive cells for TNF and IL-6 but not NOS2 (TNF+IL-6+NOS2-)

that were shown earlier to be a negligible sub-population, as expected, did not

contribute much in TNF amount while, in contrast, single positive TNF+IL6-NOS2-

sub-populations made small contributions to the overall TNF amount despite being

present (at about 10-15%) across all LPS doses (Figure 3.5a&b). This may indicate that

some sub-populations, although positive for TNF, are low producers and, as such,

further contribute to the heterogeneity in TNF secretion.

IL-6 amount was unaffected by TNF+IL-6+NOS2- (as in the case of TNF) and the

single positive IL-6 sub-population, constituting a small proportion of cells, were part of

this group. In addition, the mean fluorescence intensity of these sub-populations for IL-6

was not higher than the other sub-populations to have any affect in overall IL-6

expression. Double positive cells for IL-6 and NOS2 but not TNF (TNF-IL-6+NOS2+)

and the triple positive sub-populations were the highest producers of IL-6. Interestingly,

double positive population (TNF-IL-6+NOS2+) that increased with higher LPS dose

produced more IL-6 than the triple positive population (Figure 3.5a&b).

NOS2 staining intensity when multiplied by various NOS2 positive sub-populations

suggested a similar pattern with respect to double (TNF-IL-6+NOS2+) and triple positive

populations contributing to most of the protein expression. Double positive cells IL-6

and NOS2 but not TNF made up to twice more NOS2 at higher doses of 100 and
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1000ng/ml LPS. At low doses, however, NOS2 production could be attributed to single

positive NOS2 cells (TNF-IL-6-NOS2+) or the double positive cells for TNF and NOS2

but not IL-6 (TNF+IL6-NOS2+).

Thus far, we have described a method to qualitatively visualise the heterogeneity in

protein production of a population responding to LPS in terms of response-community

composition. Further, utilising the mean fluorescence intensity (iMFI) of a

sub-population we have then shown how much a sub-population contributes to the

protein expression within the community. In this particular case, we demonstrate that

heterogeneous response induced by LPS in RAW264.7 cells can be visually represented,

quantified and that there are distinct sub-populations that manifest upon LPS activation

of a macrophage community. It is shown that certain sub-populations of the LPS induced

pro-inflammatory community, produce less or more protein compared to others as a

function of how many cells there are in the sub-population and how much, on average,

they make.

3.4.4 LPS induced community is variable but shows a trend

We then repeated experiments as described in Figure 3.5 to obtain RAW264.7 community

compositions responding to LPS at 16 hours to show that considerable plasticity

underpins LPS response as visually apparent in Figure 3.6 the pie slices of which are

quantified in Figure 3.7b. Untreated cells did not show variability in their composition

across the experiments, however, each of the LPS dose showed considerable variability

between experiments. This variability appeared to be more pronounced as the LPS dose

increased, as such, 1000 ng/ml LPS dose showed greater fluctuations to community

composition than the lowest dose. This suggests that cells responding to high doses of

LPS may be more susceptible to the unevenness in the response.
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FIGURE 3.6: LPS induced communities show inter-experimental
variability

Pie charts representing sub-population frequencies of RAW264.7 cells stained for TNF, IL-6 and
NOS2. Count of cells=50,000-100,000. a, b, c, d and e represent individual experiments.



78 Chapter 3. LPS challenge and inter-cellular communication drive heterogeneity

We then quantified the frequency of cells overall positive for TNF, IL-6 and NOS2 to

check if dose-induced effects of LPS can be uniquely identified on these three species as

independent measures (Figure 3.7a). Mean TNF+ cells after 16 hours of LPS stimulus

remained between 23-35% between the lowest and highest LPS dose. NOS2+ cells

titrated to LPS doses with mean NOS2+ cells between 59%-90% between lowest and

highest dose of LPS and with a greater range between high and low of dose LPS in

comparison to TNF. However, mean NOS2+ cells showed low variability (75%-90%)

between 10, 100 and 1000 ng/ml of LPS and, thereby, offering low predictability between

higher doses (Figure 3.7a). IL-6+ cells predict LPS dose most effectively with mean IL-6+

cells rising incrementally at 5, 17, 41 and 57% for 1, 10, 100 and 1000ng/ml LPS

treatment. In addition to variability between LPS doses, IL-6+ cells were highly variable

among experiments across all species for all doses with an average co-efficient of

variation or CV (standard deviation/mean, expressed as a percentage) of 41% as

compared to 30% and 6% for TNF+ and NOS2+ cells respectively. Intriguingly, TNF+

cells are the most variable with a CV of 52% at 1 ng/ml when a single dose of LPS is

considered (calculation not shown, Figure 3.7a). From these results, it can be speculated

that a population of RAW264.7 are variable in the production of TNF when LPS doses

are low while IL-6 production is generally variable and with higher doses of LPS more

prone to higher variability in IL-6+ cells.

In Figure 3.7b, we checked if the variability, in community composition shown

between experiments show any overall consistency to discriminate between LPS doses.

We speculate that the presence of TNF+IL-6+NOS2+ and TNF-IL-6+NOS2+

sub-populations are a determinant of high doses of LPS whereas higher proportions of

TNF-IL-6-NOS2- cells are a key component of the community responding to low doses

of LPS. Using t-SNE based unbiased clustering reveals triple positive cells and

TNF-IL-6+NOS2+ to separate out as a distinct cluster (Figure 3.8a) while clustering on

the basis of sub-populations separate low to high doses of LPS (Figure 3.8b).
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FIGURE 3.7: LPS induced communities are variable but underlying
patterns are consistent

Scattered dot plots showing mean and standard deviation of a TNF+, IL6+ and NOS2+ b TNF,
IL6, NOS2 sub-populations of RAW264.7 cells cultured in 1, 10, 100 and 1000 ng/ml LPS.

Individual dots in both a and b represent independent experiments. n=4-5
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Interestingly, these two sub-populations also correlated well with R2 = 0.64 (Appendix

Figure 8.1).
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FIGURE 3.8: Low and high LPS doses and inflammatory perpetrators
cluster by unbiased approaches

Clustering analysis using t-SNE with a perplexity value of 5 for: a RAW264.7 community
sub-populations as from Figure 3.7 b With LPS doses shown as either low (1 and 10ng/ml) or

high (100 and 1000ng/ml)
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3.4.5 TLR4 expression and cell size do not contribute to response

heterogeneity

We next wanted to see if this LPS induced heterogeneous response had a simple

explanation based on heterogeneous expression of the surface receptor TLR4 that

initiates the LPS-induced response. We found that it is expressed uni-modally in

untreated cells (Figure 3.9a). This suggested TLR4 is tightly expressed and, as such,

absence of any underlying sub-populations with differential TLR4 expression. 12 hours

of LPS stimulus resulted in the down regulation of TLR4 approximately half as much as

higher doses (10, 100 and 1000ng/ml; Figure 3.9b). While low dose of LPS effect may

lead to a weaker downstream response, the distribution of TLR4 expression itself may

not contribute to the heterogeneous response (Figure 3.9a).

We also looked at the expression of co-stimulatory cluster of differentiation molecule

86 (CD86), as an activation marker of macrophages (Delgado et al., 1999; June et al., 1994)

which appeared to be bi-modally expressed in a clonal population. Upon LPS stimulus,

however, CD86 was upregulated with the population median increasing towards a more

uniformly activated distribution (Figure 3.9a&b). Again, like TLR4, CD86 activation was

half as much at the lowest dose than the higher doses. CD86 may be further examined

as a determinant of the heterogeneous outcomes to LPS (Figure 3.9a) but was not the

focus of this study. We then looked at cell size and found that there was no difference in

the expression levels of TNF, IL-6 or NOS2 across sizes of cells as measured by forward

scatter and seemed to uniformly fill the log-decades of fluorescence intensity for all three

proteins as compared to untreated cells (Figure 3.9c). Based on this we infer that size of

RAW264.7 cells may not be the cause for a heterogeneous response to LPS.
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FIGURE 3.9: TLR4 expression distribution and cell-size effects are
negligible in stimulated RAW264.7 cells.

Histograms showing a distribution of fluorescence intensity b Before-after plots showing median
fluorescence intensity for TLR4 and CD86 in RAW264.7 cells cultured in media only or at 1, 10,
100 and 1000 ng/ml concentration of LPS for 12 hours c Bi-plot shows each cell as a dot with

y-axis representing size of the cells and x-axis the fluorescence intensity of TNF, IL-6 and NOS2.
Count of cells=50-100,000
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3.5 First challenge of LPS shapes community composition

3.5.1 Inter-cellular communication drives macrophage community

Having shown community compositions change rapidly at approximately 8 hours into

the first LPS stimulus (Figure 4.3), we wanted to know if the first LPS challenge does

indeed change the community composition across LPS doses or whether this was just an

effect seen at high doses of LPS. Towards this end, we treated RAW264.7 cells with 4, 8,

12 and 16 hours of BFA incubation in a total 16 hour LPS stimulation (Figure 3.10) to

reveal that cytokines produced in single cells had distinct distributions for IL-6 and

NOS2, especially, at longer incubations of BFA (Figure 3.10a) and community

composition differences between 4 and 8 hr BFA and 12 and 16 hr BFA incubations were

visually distinct (Figure 3.10b).

Histograms describing single-cell distributions of TNF, IL-6 and NOS2 revealed large

proportions of populations to be positive for each protein at the 16hr and 12hr BFA

incubation, and can be explained trivially by maximum accumulation effect appearing at

longer incubation periods (Figure 3.10a). In 16 hour BFA community, a small proportion

of TNF+ cells was found piled up at the highest fluorescence intensity bin. This may

suggest that either a high TNF producing population is lost if the cells are allowed

secretion for the first four hours (as this population is not seen in 12, 8 and 4 hr BFA

incubations) or, alternatively, upon LPS stimulus a small proportion of TNF+ cells

produce a lot more TNF than the rest of the population. These high producers appeared

irrespective of LPS dose. Interestingly, effect on TNF expression upon secretion

restriction for 12 (or 16) hours was not pronounced. The effect of LPS dose in terms of

increasing median fluorescent intensity of TNF was more prominent in the shorter

incubations of BFA suggesting the role of secretion in dampening the effect of TNF

positivity and/or, simply, that higher doses of LPS correlate with higher proportion of

TNF+ cells, that remain longer into the stimulus. TNF intensity distributions at high
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doses of LPS (100 and 1000 ng/ml) at 4 hr BFA incubation seemed distinctly bi-modal

compared to lower doses suggesting, that at higher doses, late phase TNF production

characteristics of a population is more pronounced (Figure 3.10b, TNF).

IL-6 positive cells were distributed as a long right-tailed uni-modal population at 4hr

and 8hr BFA incubations whereas the distribution appeared to be more bi-modal when

secretion was restricted for more than or equal to 12 hours. The bi-modal population is

interesting because the cells that belonged to the smaller mode were IL-6+ as well

suggesting either a fraction of cells are high IL-6 producers in the first 4 hours into LPS

stimulus or that restriction of secretion leads to high IL-6 producing cells that follow a

distinct distribution to the majority population. Interestingly, despite restrictions in

secretion IL-6 positivity titrated for all LPS doses and conditions (Figure 3.10b, IL-6).

NOS2 protein distribution showed positive cells titrated to LPS across the LPS doses

but with 1 ng/ml stimulus leading to a more bi-modal response. Other higher doses

seemed to increase NOS2 positivity comparably. However, NOS2, which is not secreted,

is most affected at lower BFA incubations as is evident by its median fluorescence

intensity increase with LPS dose (4 and 8 hr BFA incubation). In terms of NOS2, it must

be noted that while NOS2 positivity of a cell is not affected much by restricting secretion,

the amount of NOS2 made (median fluorescence intensity) is effected (Figure 3.10a,

NOS2).

Combining the histogram data for each individual cell and visually inspecting

community compositions across our treatment regime (LPS dose and BFA time), we find

that communities that have secretion restricted for more than 8 hours are distinct from

those that secrete for longer (Figure 3.10b). The time period between 0-8hr or 0-12hr into

LPS stimulation may be crucial in shaping the heterogeneity of macrophage response to

LPS. As shown previously, RAW264.7 cell communities responding to LPS have a higher
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proportion of triple positive cells making TNF, IL-6 and NOS2. This is observed as dose

of LPS increases and by increasing BFA time. Thus, implying the inflammatory response

of these macrophage-like cells is not only stronger with LPS dose but also without

community feedback. This suggests that inter-cellular communication is required for

optimal resolution of macrophage responses to LPS.



3.5. First challenge of LPS shapes community composition 87

FIGURE 3.10: Restricting secretion of signalling proteins can give visual
insights on community composition

a Histograms showing distribution of fluorescence intensity for TNF, IL-6 and NOS2 and b pie
charts depicting sub-populations in RAW264.7 cells cultured in media only or at 1, 10, 100 and
1000 ng/ml concentration of LPS for b 16 hour LPS+BFA; 4 hour LPS and 12 hour LPS+BFA; 8
hour LPS and 8 hour LPS+BFA; 12 hour LPS and 4 hour LPS+BFA. Count of cells=50-100,000
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3.6 Community-level effects are retained upon adding another

cytokine

To test whether the effects we observed was restricted by our choice of TNF, IL-6 and

NOS2, we expanded our panel to include two other inflammatory mediators IL-1b-pro

and GM-CSF. We chose IL-1β because it is an acute phase inflammatory cytokine (Zheng

et al., 1995) and is widely implicated in inflammatory diseases (Ren and Torres, 2009).

We chose the antibody for pro-IL-1β or the inactive form as IL-1β is released from cells

with an alternative mechanism than ER/Golgi traffic as it lacks a signal sequence

(Rubartelli et al., 1990). GM-CSF is a growth factor implicated in myeloid cell T-cell cross

talk and GM-CSF producing macrophages can be instrumental in tissue damage (Becher,

Tugues, and Greter, 2016). We included pro-IL-1β and GM-CSF to see if community

sub-populations could still be observed within the new panel (Appendix figure 8.3). Our

results, indicated that an 8 hour divide exists when inflammatory communities change

composition.

We next performed further experiments including pro-IL-1β along with TNF, IL-6

and NOS2 to look at sub-populations based on the four proteins. A total of 16

theoretically possible sub-populations were plotted as communities whose secretion was

restricted for 16, 12, 8 or 4 hour as shown in Figure 3.11. These results confirmed again

that community level differences exist between LPS dose. Also, that restricting secretion,

shows a change in community composition between the 8-12 hour time after LPS

challenge (Figure 3.11).

Interestingly, community compositions were also indicative of what sub-populations

are unlikely to appear (Figure 3.11) suggesting proteins that are unlikely to be expressed

along side other.
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FIGURE 3.11: Community composition complexity is increased on adding
another cytokine

Pie charts depicting sub-populations based on TNF, IL-6, NOS2 and pro-IL-1β in RAW264.7 cells
cultured in media only or at 1, 10, 100 and 1000 ng/ml concentration of LPS for a 16 hour

LPS+BFA; 4 hour LPS and 12 hour LPS+BFA; 8 hour LPS and 8 hour LPS+BFA; 12 hour LPS and 4
hour LPS+BFA. Count of cells=50-100,000
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3.6.0.1 Restriction of secretion alters responses to LPS

Next we analysed the four-dimensional data set from LPS and BFA treatments (Figure

3.11) using a Pearson’s correlation matrix to show that communities with longer

secretion do not correlate well with communities with secretion longer than 8 hours

while communities of 4 hr and 8 hr BFA were strongly correlated as did 12 hr and 16 hr

BFA communities. Communities with 4 hr and 8 hr BFA incubations when compared

with 16 hr BFA communities had correlations value close to zero (Figure 3.12).

A pie-by-pie comparison reveals some correlation (<0.7) between communities that

are treated with low doses LPS (1 and 10 ng/ml) and whose secretion has been restricted

longer than 8 hr BFA with communities treated with high doses of LPS whose secretion

is restricted for less than or equal to 8 hours. This suggests, although, community

composition diversity is dependent on restriction of secretion but there exists a

continuum of composition diversity which is also affected, if modestly, by the dose of

LPS (Figure 3.12). Overall, our correlation analysis confirms what we have visually

shown previously (Figure 3.10) that treatments where secretion is restricted for longer

than 8 hours do not correlate with treatments where secretion restriction is less than 8

hours.

We further probed our data set with an ecological ordination metric Bray-Curtis

dissimilarity to see how communities separate from each other representing qualitative

and quantitative differences in community composition induced by LPS. The effect of

LPS dose on communities is only apparent when secretion is restricted for less than 8

hours (Figure 3.13).The treatments where restriction of secretion is longer than 8 hours

cluster close to each other suggesting antigen itself incapable of causing a differential

effect when secretion is restricted. Control populations that are treated with BFA but not

LPS all lie close to each other and away from the LPS stimulated samples and, thus, are

distinct and distant in composition.
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FIGURE 3.12: LPS stimulated RAW264.7 macrophages show weak to no
correlation to those that have their secretion restricted for longer than 8

hours.

Pearson’s co-efficient matrix displayed as heat map to compare linear correlations between
RAW264.7 sub-populations as shown in Figure 3.11. Correlation value -1, 0 and 1 represent

anti-correlation, no correlation and maximum correlation.
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FIGURE 3.13: LPS stimulated RAW264.7 macrophages with secretion
restricted for lesser than 8 hours are show separation with LPS dose

A Bray-Curtis dissimilarity matrix was calculated for population sub-populations based on
RAW264.7 sub-populations as shown in Figure 3.11 and the corresponding non-metric

dimension plotted as an X,Y scatter plot. Shorter distances represent greater community
similarity between treatments (LPS dose and BFA incubation time)



3.6. Community-level effects are retained upon adding another cytokine 93

3.6.0.2 Isolated communities resemble communities whose secretion is restricted

Since restriction of secretion with BFA can stop autocrine/paracrine effects but also

create an artificial environment for the cell. Therefore in order to recreate a condition

where paracrine effects may have less effects, we plated an equal number of cells

(250,000) alongside in a 24 well plate and in a T75 flask. A T75 flask is approximately 40

times the surface area of a well in a 24 well plate. Thus, by increasing the distance

between cells and the volume of media, we checked the effect on the community

composition of the cells. 4hr BFA time in a T75 visually appeared to be more akin to

parallel treatments in a 24 well plate that had secretion restricted for 12 hours (Figure

3.14) with a correlation score of 0.89 and even correlated better (score=0.74) with 16hr

BFA in 24 well as compared to the identical treatment in a 24 well (score=0.3). Since

isolation does not stop autocrine signalling some of the sub-populations that appear in

the cells cultured in T75 flask may be due to exclusive autocrine effects. However, the

higher correlation to restriction secretion scenario must then suggest a greater role of

paracrine effects in LPS induced communities.
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FIGURE 3.14: Cells stimulated in isolation and allowed to secrete make
communities that are similar to secretion restricted (>8hr) communities

a Pie charts representing RAW264.7 communities based on TNF, IL-6, NOS2 and pro-IL1β
expression in cells grown 24 well plates or in T75 flasks. b Pearson’s correlation between

community grown in T75 flask versus other treatments (representing cells grown in 24 well
plates).
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3.6.1 Anti-TNF treatment does not disrupt macrophage response community

In previous sections, we have showed that TNF+ cells are an important part of the

LPS-induced response community with TNF+IL6+NOS2+ to be a prominent identifier of

LPS dose magnitude and increases as secretion of RAW264.7 cells are restricted. Further,

we have also shown that upon LPS stimulation up to 97% cells are positive for TNF in

the first 8 hours. This led us to question, if secreted TNF along with LPS has a strong

effect in shaping the heterogeneous community-led response. A host of anti-TNF drugs

are medically prescribed in conditions like rheumatoid arthritis (Seymour et al., 2001) to

reduce the exacerbating effects of inflammation. Neutralising antibodies used in

RAW264.7 cultures reduced the mRNA pro-inflammatory proteins like IL-6, NOS2,

IL-12p40 by about 20% (Figure 3.15). TNF mRNA, however, did not show any decrease

while TNF at the protein level showed 40% decrease in supernatant. IL-6 showed a

similar decrease as well at the protein level when the highest concentration of anti-TNF

was used (100ug/ml) (Figure 3.15). The results suggested that neutralising TNF may be

reducing the overall levels of other TNF-inducible genes, however, it does not indicate

whether this happens in all cells by decreasing the amount of TNF produced per cell or if

it effect only a fraction of cells. We hypothesized if the decrease is due to TNF affecting a

fraction of cells it could then further affect the community composition upon LPS

stimulus.

No community level effects were observed when TNF was neutralised with a high

dose (100 µg/ml) of anti-TNF antibody and the composition of communities appeared

qualitatively similar (data not shown). However, it was observed that anti-TNF

antibodies increased the percentage of cells that were producing TNF when responding

to 1000 ng/ml of LPS doubling it at 16 hours from stimulus. This may suggest a negative

feedback loop that reduces the number of cells producing TNF. (Figure 3.16).
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FIGURE 3.15: Anti-TNF neutralising antibody suppresses IL-6, NOS2 and
IL12p40 mRNA up to 20%.

a Bar plots showing the fold repression of TNF, IL-6, NOS2 and IL12p40 mRNA Cells (n=1) and b
scatter plots to show levels of TNF and IL-6 in the supernatant when treated with isotype control

(100µg/ml) or anti-TNF neutralising antibody at 25, 50 and 100µg/ml concentration (n=2).
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FIGURE 3.16: Neutralising TNF increases the number of late phase TNF
producing cells

Histograms showing fluorescence intensity distribution of RAW264.7 cells cultured for 16 hour in
LPS (12 hour LPS and 4 hour LPS+BFA). Histograms show percentage TNF+ population in three

replicates (middle and bottom rows) treated with either isotype control or TNF neutralising
antibody. Positive cell gating as per isotype control for antibody targeting TNF (top row)
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3.6.2 Thioglycollate-elicited peritoneal macrophage response to LPS is

heterogeneous

In order to verify if heterogeneous communities to LPS was not an effect limited to

RAW264.7 cells, due to cell-line characteristics such as continuous growth and, cell-lines

being adjusted to growing in cell culture media, we harvested thioglycollate-elicted

peritoneal macrophages and cultured them in vitro.

We first characterised thioglycollate-elicited peritoneal macrophages (TEPMs) soon

after harvest to look at surface protein expression to show that they are a highly

heterogeneous population (Figure 3.17) as thioglycollate elicitation leads to monocyte

recruitment without activation adding on to the tissue-resident peritoneal macrophage

population. Among the four mice harvested, all had a similar size and granularity but

could be differentiated using the F4/80 surface marker expression with typically 77-83%

of the cells F4/80+, 9-15% F4/80 low and 5-6% F4/80 high (Figure 3.17a&b). CD86, as a

co-stimulatory molecule, was bi-modally expressed (as seen in RAW264.7 cells, 3.9).

These results suggested our harvest could consist of tissue resident (F4/80 high), a mix

of monocyte-derived macrophages and small tissue residents (F4/80+) and infiltrating

monocytes (F4/80 low). However, upon in vitro culture, this F4/80 expression pattern

was lost (Figure 3.18) and, therefore, should not have large effects on the response to

LPS.

Next, we looked at heterogeneous responses to LPS in peritoneal macrophages as a

temporal snapshot at 16 hours of stimulation. As we have shown in previous sections,

community transitions may occur at around 8 hour of LPS stimulus (Figures 4.3, 3.10)

we either incubated the TEPM culture for 8 hour or 16 hour in BFA for a total of culture

in LPS for 16 hour. Despite a longer BFA incubation of 8 hours (Figure 3.19, 8 hour + 8

hrs BFA) we could identify heterogeneous sub-populations in the in vitro peritoneal

population across all doses of LPS and secretion restriction resulted in a visually distinct
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FIGURE 3.17: Surface expression of F4/80 shows distinct populations in
thioglycollate-elicited peritoneal macrophages

Flow-cytometry gating shown for ex-vivo thioglycollate-elicited peritoneal macrophages (TPEM)
to show a populations sub-types using bi-plots of F4/80 and CD11b/CD86. b Histograms to

show distributions of F4/80 and CD86 fluorescence intensiy. n=4 biological repeats
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FIGURE 3.18: F4/80 expression is more uniform upon in vitro culture of
peritoneal macrophages

Flow-cytometry gating shown for cultured TPEMs for a period of 24 hours with CD11b and
F4/80 expression (bottom row)



3.6. Community-level effects are retained upon adding another cytokine 101

community composition.

LPS dose comparison in TEPMs (8 hours + 8 hr BFA, Figure 3.19) showed a

heterogeneous population where negative cells, single positive TNF-IL6+NOS2-, double

positive TNF-IL6+NOS2+ & TNF+IL6+NOS2- and the triple positive populations

comprised the sub-populations in the community at 16 hours when cells were incubated

in BFA for 8 hours. As the dose of LPS was increased number of negative cells reduced

along with an increase in the triple positive and TNF-IL6+NOS2+ sub-populations as

shown earlier in RAW264.7 cells (8 hours plus 8 hr BFA, Figure 3.10). However, a

reduced proportion of cells that were overall positive for NOS2 were reported (13-42%

among all conditions) as compared to 54-86% in RAW264.7 cells at 16 hours of LPS

stimulation (Figure 3.10) suggesting fewer TEPMs make NOS2 or that NOS2 is switched

on later into the LPS stimulus when compared to RAW264.7 cells. Similarly, overall IL-6

positive cells were higher in TEPMs (76-89%) than RAW264.7 (8-59%) with much

reduced variability in TEPMs (4% variability compared to 50% in RAW264.7) co-efficient

of variation).
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FIGURE 3.19: Thioglycollate-elicited peritoneal macrophages for
heterogeneous communities and are affected secretion restriction

Pie charts depicting sub-populations in cultured TPEMs in media only or at 1, 10, 100 and 1000
ng/ml concentration of LPS for 16 hour LPS+BFA; 8 hour LPS and 8 hour LPS+BFA; 8 hour LPS

and 8 hour LPS+BFA; 12 hour LPS and 4 hour LPS+BFA. Mouse 1 and 2 represent biological
repeats. Count of cells = 50,000
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3.7 Discussion

3.7.1 Conclusions

The results presented in this chapter regard macrophage heterogeneity as affected by

temporal responses to LPS, LPS doses and intercellular communication. Heterogeneous

responses presented as temporal snapshots of macrophage response to antigen,

measuring three or more response proteins, can be visualised as a complex community

of distinct sub-populations (Figure 3.4). Based on our results we make the following

conclusions:

• Diverse community compositions indicate considerable population heterogeneity in

RAW264.7 macrophages.

• Community compositions depend on LPS dose.

• TNF+IL6+NOS2+ and TNF-IL6+NOS2+ sub-populations are predominantly affected

by LPS dose.

• Restricting inter-cellular communication leads to dissimilar community compositions.

• TNF blockade does not alter community composition but doubles the frequency of late-

stage TNF positive cells.

• RAW264.7 cells at low density make more late-stage TNF positive cells. Community

composition of this population resembles communities that have their secretion

restricted.

• Thioglycollate elicited peritoneal macrophages (TPEMs) form distinct LPS-induced

communities and are affected by secretion restriction. However, their response is

distinct from RAW264.7 cells.
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• Macrophage, both RAW264.7 and TPEM, communities responding to LPS rapidly

change community composition between 8 and 12 hours of LPS stimulus

3.7.2 Visualisation method

In this chapter, firstly, we present a technique that can be used to compare temporal

snapshots of protein expression for quantification of sub-populations within a

LPS-activated macrophage population. This protein expression snapshot shows whether

a cell is positive or negative for each of the measured fluorescently labelled antibodies on

a flow cytometer. Pie charts, akin to those described in the SPICE software (Roederer,

Nozzi, and Nason, 2011), represent a community of cells responding to an activator such

as LPS at any particular time. Visualising heterogeneous sub-populations as a

community can not only be used to probe the heterogeneity in LPS activated cells

(Shalek et al., 2013) at a protein level but can also be used to enquire how heterogeneous

communities may evolve in phenotypic changes such as in endotoxin tolerant or trained

immune cells (Biswas and Lopez-Collazo, 2009; Netea, Quintin, and Van Der Meer,

2011). Further, this method allows exploring community composition of our selected

proteins upon restriction of secretion that is known to alter response in bone-marrow

derived dendritic cells in a paracrine dependent manner (Shalek et al., 2014) and other

perturbations such as population density effects (Chen et al., 2015; Postat et al., 2018).

In general, visualising response as a community can be adapted to proteins of interest

to probe consequences of heterogeneous protein expression on function. By temporally

tracking communities with or without additional perturbations, it may be further

possible to explore the ordering of community sub-populations in time. Interestingly,

such ordering, analogously, has been shown using pseudo-temporal analysis of

single-cell transcriptomic data of human myoblasts to map cell fate decisions (Trapnell

et al., 2014).
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Finally, our methods capture activation-induced heterogeneity as a community of

diverse phenotypes and clearly describes the percentage of cells that are positive or

negative for each/all measured proteins. However, this type of visualisation loses

underlying fluorescence information at the per-cell level and does not describe the

distribution within a positive population. In that sense, one cannot differentiate between

high and low producers, or the absence of them from the pie-chart representation. For

example, NOS2 expression in our dataset is seen to have high and low expressing cells

even while most cells are positive (NOS2 histogram, Figure 3.10). As such, there may be

additional differences in the amount that are overlooked by our method.

3.7.3 RAW264.7 macrophages respond as a community

It is shown that murine macrophage-like RAW264.7 cells, despite being a clonal

population respond to LPS with considerable heterogeneity. In that sense, upon

antibody staining for TNF, IL-6 and NOS2 at 16 hours, we find at least 5 and up to all 8

different possible sub-populations in the response. Two of the most under represented

sub-populations were TNF+IL6+NOS2- and TNF-IL6+NOS2- cells across LPS doses and

experiments. This suggested that these states are possibly short-lived and, thus, are

never represented in our minimum 4 hour BFA accumulation.

Upon measuring four cytokines per cell (TNF, IL-6, NOS2 and pro-IL-1β) we found

up to 11 different sub-populations out of a possible 16 (24, where 4 is the number of

cytokines stained for). While, the addition of a cytokine, increased the number of

possible sub-populations, not all possible sub-populations were found to exist in the

community (ie those that represented at least 1% of the total population) suggesting,

again that some sub-populations are not likely to exist within a community or

undetectable with the current method.
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This suggests while LPS does activate RAW264.7 cells, there is a secondary effect that

shapes the course of inflammation and such diverse sub-populations require careful

dissection of how this community is shaped.

While it is known that LPS dose has an effect on how much cytokine is produced at

the population level (Amura et al., 1998; Yang et al., 2017; Matsuura et al., 2010), as per

our knowledge, not much is known about how populations respond as a community to

LPS dose. We show that LPS dose has considerable effect in community composition

which may effect cell priming within a community that can shape hypo or

hyper-responsiveness to second dose of LPS.

Further, we go onto show that communities are plastic in terms of relative

frequencies of sub-population representation but the variability does not change the

overall dose induced community composition. Plasticity in community composition can

be attributed to a number of cell culture related factors such as cell density and plating,

reagent concentration or temporal factors such as length of pre-stimulus or overnight

incubation period, length of BFA incubation and, consequently, time-taken to harvest

cells or errors in length of cell culture. Care was taken that these factors remained

comparable between experiments and, thus, effects manifesting due to such errors must

either be less or suggest that small perturbations of one or more of these factors can have

large effects on community composition of macrophages responding to LPS (Figure 3.7).

Intuitively, triple and double positive populations are more pro-inflammatory than

single positive or negative cells. When comparing LPS doses we find, by unbiased

clustering, that TNF+IL6+NOS2+ and TNF-IL6+NOS2+ sub-populations were most

different from the other sub-populations and were more prevalent in 100 and 1000

ng/ml LPS dose. This suggests that increasing LPS dose increases the inflammatory

response even 16 hours into the LPS response. This is interesting because we also show
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that almost 97% of all cells go through TNF in the first 8 hours of stimulus (4hr + 4hr

BFA, Figure 4.3) when stimulated with 1000ng/ml of LPS. Since all RAW264.7 cells go

through a TNF+ stage in the first eight hours, one explanation of the heterogeneous

community composition could be due to this early TNF-release in an autocrine or

paracrine manner, along with LPS, could shape the community compositions, as

measured at a later time point (12 or 16 hours). Further, it may be speculated that

TNF-IL6+NOS2+ cells which cluster along with TNF+IL6+NOS2+ cells, and are enriched

in high doses of LPS may be a community of cells which have previously been triple

positive and have, in time, lost TNF positivity (see correlation in Appendix Figure 8.1).

Interesingly, most TNF+ cells (sum of all TNF+ sub-populations) in the first 8 hours

(97%, 4hr + 4hr BFA, Figure 4.3) switch off TNF (below 25%, 8hr + 4hr BFA, Figure 4.3)

by 12 hours of LPS stimulus. This may be attributed to the anti-inflammatory IL-10

(Saraiva and O’Garra, 2010). IL-10 is known to be upregulated at mRNA levels in

RAW264.7 cells at around 4 hours into stimulus (Zhu et al., 2018) and peak at 8 hours

into LPS stimulus at the protein level in both mice (Van Laethem et al., 1998) and human

macrophages (Chanteux et al., 2007; Giambartolomei et al., 2002). Further, studies in

mice have also shown that knocking out IL-10 leads to increased TNF mRNA levels in

the first 24 hours after LPS stimulus (Anderson et al., 2017).

Despite regulatory effects of IL-10, as discussed above, at 16 hours between 24-41%

cells are TNF+ (sum of all TNF+ sub-populations, Figure 3.7). This could be because

IL-10 is possibly not able to completely block TNF while it can also be because of the

bi-phasic nature of NF-κB activation. Upon TLR4/LPS endocytosis, a late phase NF-κB

activation has been shown to occur between 8-12 hours (Han et al., 2002) which can lead

to a second wave of TNF production. Further a secondary NF-κB activation can also

occur because of TNF binding to its receptor TNFR (Hayden and Ghosh, 2014).
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While TNF seemed to play a central role in our experiments with large LPS doses

distinguishable by triple positive (TNF+IL6+NOS2+) populations and most cells going

through a TNF+ phase in the early response to LPS, we were unable to disrupt

community composition at a late stage (16 hours) into LPS stimulus by neutralising TNF

in the cell culture. Interestingly, however, TNF+ cells (sum of all TNF+ subpopulations)

doubled in percentage in comparison to control suggesting the lack of TNF in culture

was promoting an inflammatory response. This late doubling of TNF+ cells could have

an effect in the community composition after the 16 hour time point but this was not

pursued further.

3.7.4 Community communication

Previously, using short and long BFA incubations to depict early and late phase

response, we showed community consistency in 1000/1000 treatments. Since BFA, in

addition to capturing accumulation, also restricts intercellular communication, we

showed that community compositions switch to distinct community types at around 8

hours into LPS stimulus. Distinct bi-modal IL-6 production and lower NOS2 levels with

almost all cells positive for TNF were the hallmark of the response when secretion was

restricted (Figure 3.10). This 8 hour switch was yet again observed when community

complexity was increased by adding pro-IL-1β to our measurement (Figure 3.11, 3.12,

3.13). Our results indicate that loss of autocrine and paracrine signalling leads to an

increased inflammatory response. While our disruption of autocrine and paracrine

signalling is crude, it shows the importance of autocrine and paracrine signalling in

RAW264.7 cells. We then plated the same number of RAW264.7 macrophages in a culture

vessel that was approximately 40 times bigger than the usual culture plate to show that

communities responding to LPS when cells are not clustered or near each other, correlate

more to communities whose secretion is restricted (Fig 3.14). Since isolation is more

likely to stop paracrine effects than autocrine, our results suggest that paracrine
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signalling may be crucial for dampening the inflammatory response as previously

suggested in bone-marrow derived dendritic cells at the mRNA level (Shalek et al., 2014)

and in isolated human monocyte-derived macrophages (Xue et al., 2015).

Community structure of thioglycollate elicited peritoneal macrophages (TEPM)

suggested that TPEMs respond to LPS in a heterogeneous manner and form

communities that titrate to LPS dose and restriction of secretion makes the community

appear distinct to when secretion is not restricted (Fig 3.19). However, the changes to

community composition upon LPS titration is only modest and is likely to be due to the

increased LPS sensitivity of primary cells to RAW264.7 cells. Interestingly, IL-6

production in TPEMs was bi-modal in comparison and NOS2 staining was moderate in

comparison to unimodal analog responses observed for IL-6 and and strong NOS2

staining in RAW264.7. Sub-populations such as single positive for IL-6

(TNF-IL6+NOS2-) which are prominent in TPEMs were not observed in RAW264.7

communities. This suggests that TPEMs and RAW264.7 have fundamental differences in

how they respond to LPS and form different communities.
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Chapter 4

Macrophage heterogeneity is a

determinant of secondary LPS

challenge

4.1 Introduction

Macrophages exposed to LPS twice can become hypo-responsive in their ability to

produce cytokines (Biswas and Lopez-Collazo, 2009; Netea, Quintin, and Van Der Meer,

2011). In this chapter, we use visualisation and secretion restriction methods employed

in Chapter 3 to investigate the effects of LPS-induced heterogeneous macrophage

communities can affect the response-outcome to secondary doses of LPS in terms of

community composition and population-level responses.

4.2 Aims

The aim of this chapter was to determine if RAW264.7 cells respond heterogeneously to

secondary LPS challenges.
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4.3 Second dose of LPS induces a hypo-response

4.3.1 Upon secondary exposure to LPS RAW264.7 cells make less of TNF, IL-6

and nitric oxide

We stimulated RAW264.7 cells for 24 hours with LPS and then re-stimulated with a

second dose and collected cell supernatant. TNF, IL-6 and nitric oxide showed a

significant decrease at the population level confirming that LPS can induce a

hypo-response in RAW264.7 cells in vitro (Figure 4.1). When the first dose of LPS was

small (10 ng/ml), the hypo-response induced at the population level was less

pronounced than when cells were pre-treated with a higher dose of LPS.

While 1000/1000 treatment induced hypo-response in terms of TNF, IL-6 and nitric

oxide, 10/1000 treatment induced hypo-response in terms of TNF and IL-6 but not nitric

oxide. (Figure 4.1)
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FIGURE 4.1: Re-stimulated RAW264.7 cells are hypo-responsive

Bar plots showing TNF, IL-6 and nitric oxide (NO) levels in RAW264.7 cells stimulated once
(Media/1000), or twice (10/1000 or 1000/1000) where 10 and 1000 represent 10 and 1000 ng/ml

of LPS post second stimulus at 24 hours into culture. p-values were calculated using paired
t-tests (n=3-6, bars=standard deviation).
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4.4 Community composition determines response to secondary

stimulation with LPS

4.4.1 Heterogeneous community responses can be identified by protein

accumulation

We next wanted to identify if a secondary dose of LPS, that induces a hypo- response at

the population level (Figure 4.1) spur distinct communities compared to primary

responses to LPS when probed at the single cell level. Twice-challenged cells showed

similar consistency to cells that were challenged only once (Figure 4.2a) when

community composition was compared at 16 hours post stimulus. This occurs both in

the low (10ng/ml) and high dose (1000ng/ml) pre-stimulus (Figure 4.2a). Despite

showing that a second dose of LPS induces hypo-responsiveness (with population level

measurements Figure 4.1 in RAW264.7 cells), at the single-cell level there were more cells

that were overall positive for TNF (24% for 10/1000; and 12% for 1000/1000) and IL-6

(10% for 10/1000; and 16% for 1000/1000) as compared to approximately 6% and 10%

TNF and IL-6 positive cells in single challenge (Media/1000) community (inferred from

Figure 4.2a). Negative sub-populations were approximately twice as many in both

10/1000 and 1000/1000 communities when compared to the single challenge,

Media/1000. However, these negative cells comprised of a small proportion of the total

cells (approximately 10%). This indicated that upon a second challenge, cells switching

on cytokine production may be delayed in time after stimulus, while there is also an

increased population of negative cells that are part of the community.

In a separate experiment, to check if this delay in switching on cytokines, as

suggested above, is evident, we compared communities of single challenge and two

challenges of LPS after 24 hours (20 hours plus 4 hr BFA, Figure 4.2b). Indeed, cells that

were overall positive for TNF in twice-challenged communities were 3.5 and 4 times

(10/1000 and 1000/1000) higher than those exposed to LPS once. Cells that were overall
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positive for IL-6 were twice more frequent in 1000/1000 communities when compared to

Media/1000 suggesting late IL-6 production (like TNF) in twice-challenged cells.

However, 10/1000 communities showed a decrease in IL-6+ cells at 24 hours (8%) from

10% at 16 hours when compared to approximately 10% and 12% IL-6+ cells in

Media/1000 communities at 16 hr and 24 hr. This can be speculated as a differential

effect that is seen due to the size of the pre-stimulus (10 vs 1000 ng/ml) but it must be

noted that since 16 hr (Figure 4.2a) and 24 hr timepoint (Figure 4.2b) information is

derived from two different experiments, this difference can also be attributed to

empirical variability as shown previously (sub-section 3.4.4). Interestingly, negative cells

between Media/1000 and 1000/1000 were 16% and 14% percent, respectively, showing

both the treatments were unable to distinguish between non-responsive cells by this time

point. 10/1000 community were, however, 31% negative being twice as high as

Media/1000 (Figure 4.2b).

Figure 4.2a&b indicate that twice challenged communities have higher TNF

(1000/1000 and 10/1000) and IL-6 (1000/1000) producing cells at 16hr and 24hr in twice

challenged while NOS2 producing cells are lower or equal but community compositions

are, by appearance, hard to distinguish, because sub-populations in the community that

do show a change between Media/1000 and 10 or 1000/1000 are small populations. One

subset, TNF+IL6-NOS2+, stands out at 16hr (Figure 4.2a) and 24hr (Figure 4.2b) of

second stimulus and is 2-4 times (16 hour) and 3.6 times (24 hour) higher in

twice-challenged cells compared to the Media/1000 community. As this sub-population

represents 16% of 10/1000 (16 hour), 8% of 1000/1000 (16 hour), 17% of 10/1000 (24

hour) and 18% of 1000/1000 (24 hour) of the total community, it maybe an important

part of the response when RAW264.7 cells are stimulated twice with LPS, and at least,

between 16 and 24 hours of second stimulus.

As a visibly discernible hypo-response, in RAW264.7 (from the temporal snapshot of
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FIGURE 4.2: Hypo-responsive communities appear more pro-
inflammatory at 16 and 24 hours

Pie charts representing sub-population frequencies of RAW264.7 cells stained for TNF, IL-6 and
NOS2 when cells were either unstimulated (Media/Media), stimulated once (Media/1000), or

twice (10/1000 or 1000/1000) at a 12 hour in LPS and 4 hour in LPS+BFA b 20 hour in LPS and 4
hour in LPS+BFA c 8 hour in LPS and 16 hour LPS+BFA; 24 hour LPS+BFA; 24 hour LPS and 16

hour LPS+BFA post second stimulus at 24 hours into culture. Count of cells=100,000.
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the twice-challenged communities at 16 and 24 hour with 4 hour BFA incubation) was

not observed, we then visualised communities by trapping proteins in the cells for

longer to see if protein accumulation can be used to visualise hypo-response. Looking at

accumulation of proteins over a 16 hour BFA incubation in a total of 24 hour stimulus ( 8

hour LPS and 16 hour LPS+BFA, Figure 4.2c) we show that approximately 38%, 32%,

80% of the 10/1000 community were TNF, IL-6 and NOS2 positive over the 24 hour

period (8 hour LPS plus 16 hour LPS+BFA) compared to the Media/1000 community

where TNF+, IL-6+ and NOS2+ cells were about 58%, 60% and 95% respectively. This

showed that the response to a second dose of LPS is overall modest. In terms of

community composition, notably, the triple negative (approximately 5-fold more ) and

the TNF-IL6-NOS2+ single positive sub-populations (2-fold greater) were prominent in

the 10/1000 community while in the Media/1000 community the triple positive,

TNF+IL6+NOS2+ and TNF-IL6+NOS2+ were 3 fold and 50% more respectively. This

effect was exaggerated when we cultured cells for 24 hours in LPS with BFA (Figure 4.2c,

24 hr BFA) to show that approximately 70% of the Media/1000 community was triple

positive in 24 hours, thus, suggesting that each of these 70% cells must have made all the

three proteins in the 24 hour hour period. In contrast, triple positive sub-populations

was limited to only 24% of all cells in a twice-challenged community. Similarly, there are

22% cells that do not make TNF in the entire 24 hour period in 10/1000 community

whereas Media/1000 community suggests that all cells go through a TNF phase i.e. each

cell makes TNF at some point during the 24 hour LPS stimulus.

Macrophages responding to a second challenge of LPS are hypo-responsive and this

phenotypic change is known to persist for days (Biswas and Lopez-Collazo, 2009). In

order to see if this could be captured in terms of heterogeneity of community between

Media/1000 and 10/1000 we cultured cells for 40 hours post second stimulus (Figure

4.2c, 24 hr plus 16 hr BFA). 10/1000 community was found to be qualitatively different

with certain TNF+ sub-populations such as TNF+IL6-NOS2+ and TNF+IL6-NOS2-
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comprising 18% of the total population. In comparison, these sub-populations were

negligible in the Media/1000 community (<0.5%) which had a higher percentage of

TNF-IL6+NOS2+ cells (16%) in comparison to 3% in 10/1000. Also, 10/1000 community

had 3 times more negative cells suggesting twice-challenged communities switch

cytokines off faster.

Figure 4.2c suggests that IL-6 may be critical in determining the hypo-response in

RAW264.7 cells with overall IL-6+ cells being consistently more in the Media/1000

community which is not apparent in the 4 hr BFA incubation experiments at 16hr and

24hr post secondary stimulus (Figure 4.2a&b). It is important to note here that long BFA

incubations are restricting secretion and the ability of the communities to interact in an

autocrine and paracrine manner indicating community compositions represented here

may be affected by the lack of autocrine or paracrine effects.

4.4.2 Single-challenged communities undergo a compositional change at 8

hours of LPS stimulus

4 hour BFA incubation at 16 and 24 hour post second LPS stimulus showed few overall

TNF+ cells while accumulation over 16/24 hour period showed up to 97% cells being

TNF positive in the Media/1000 community (Figure 4.2). Such a high percentage of TNF+

cells (sum of all TNF+ sub-populations) suggested that most cells must then go through a

TNF+ stage upon LPS stimulus. To test this we looked at the first 8, 12 and 16 hours of LPS

stimulus with a short 4 hour BFA incubation. We found that indeed, and again, 97% cells

were TNF+ in the first eight hours of the LPS response in the Media/1000 community

(Figure 4.3, 4 hours plus 4 hr BFA). This finding is also in line with TNF being an early

response protein (Bradley, 2008).

While 10/1000 community was 68% cells overall positive for TNF hyporesponsiveness

was most pronounced in the 1000/1000 community with just 11% making TNF in the first

eight hours of the response (Figure 4.3, 4 hours LPS plus 4 hr LPS+BFA). Interestingly,
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the 10/1000 community shows a high percentage of TNF+ cells (6 times) higher than

1000/1000 community that switch off rapidly to 14% at 12 hours suggesting that a low

dose pre-stimulus does not decrease the capability of a population of cells to switch on

TNF compared to a higher dose pre-stimulus. Further, the communities of 10/1000 and

1000/1000 comprised of 7% and 10% negative sub-population confirming again that a

small percentage of cells do not respond to the second dose of LPS (as opposed to 2% of

cells in Media/1000).

The community structure in longer LPS stimulations (Figure 4.3, 8 plus 4 and 12 plus

4) of 12 and 16 hours exhibit similar subset composition as described earlier with less

changes between 12 and 16 hours of LPS stimulus in terms of community composition.

However, while overall TNF+ cells decrease over 8, 12 and 16 hours into LPS stimulus,

the number of overall TNF+ cells first decrease (between 8 and 12 hours) then increase

(between 12 and 16 hours) in both 10/1000 and 1000/1000 communities. This indicates a

small percentage of cells become positive for TNF later when responding to the secondary

stimulus, as shown earlier (Figure 4.2a&b).

We have shown that accumulation over long periods of LPS stimulation such as 16

hours and 24 hours show visual community differences in the single versus

twice-challenged cells and that such a community-level switch occurs early on at around

8 hours into the LPS stimulus in Media/1000 community. We then restricted secretion

for 16, 12, 8 or 4 hours during a 16 hour LPS stimulus (Media/1000) or re-stimulus

(10/1000 or 1000/1000) (Figure 4.4) to show that, indeed, by trapping proteins longer in

the cells we can again show that a visual change is observed in the community

composition between 16 hour or 12 hour BFA incubations where effective secretion time

is 0 hours and 4 hours in Media/1000 communities versus 8 hour. Further, community

compositions change between 8 hour and 4 hour BFA incubation in Media/1000

community. Twice-challenged communities appear to be much less affected by BFA

incubations, and as such, by environmental effects.
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FIGURE 4.3: Hypo-responsive communities are more consistent in their
response in the first 8 hours

Pie charts representing sub-population frequencies of RAW264.7 cells stained for TNF, IL-6 and
NOS2 when cells were unstimulated (Media/Media), stimulated once (Media/1000), or twice

(10/1000 or 1000/1000) for 4 hour in LPS and 4 hour LPS+BFA; 8 hour in LPS and 4 hour
LPS+BFA; 12 hour in LPS and 4 hour LPS+BFA post second stimulus at 24 hours into culture.

Count of cells=50,000-100,000.
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Both temporal analysis (Figure 4.2 and 4.3) and longer BFA incubations (Figure 4.4)

showed that cells that are challenged with LPS for the first time go through

(approximately 97%) a TNF positive state within first 0-8 hours. In addition, the

Media/1000 community changed after 8 hours into LPS stimulus. Twice-challenged

communities, on the other hand, were hypo-responsive with fewer cells responding by

producing TNF in the first 8 hours with 10/1000 communities showing compositional

change to modest changes in the 1000/1000 community across BFA incubations (Figure

4.4)
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FIGURE 4.4: Prolonged restriction of secretion is associated with more
modest changes in cells stimulated twice with LPS compared to cells

stimulated once

Pie charts depicting sub-population frequencies of RAW264.7 cells stained for TNF, IL-6 and
NOS2 when cells were unstimulated (Media/Media), stimulated once (Media/1000), or twice

(10/1000 or 1000/1000) for 16 hour LPS+BFA; 4 hour in LPS and 12 hour LPS+BFA; 8 hour in LPS
and 8 hour LPS+BFA; 12 hour in LPS and 4 hour LPS+ BFA post second stimulus at 24 hours into

culture. Count of cells=50,000-100,000.
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4.5 Discussion

4.5.1 Conclusions

The results presented in this chapter regard macrophage heterogeneity as affected by

secondary response to LPS. Based on our results we make the following conclusions:

• Communities responding to a secondary LPS challenge are temporally more consistent.

• TNF+ cells in a hypo-responsive community are lower in the first 12 hours of the

response.

4.5.2 Hypo-responsive communities

Populations challenged with LPS (1000 ng/ml) were hypo-responsive in the production

of TNF, IL-6 and nitric oxide in the culture supernatant when pre-treated with 1000

ng/ml while populations pre-treated with 10 ng/ml failed to show hypo-response in

levels of nitric oxide (Figure 4.1). Analysing community hyporesponsiveness, we found

small difference in the communities of twice challenged and challenged populations at

16 and 24 hours. While 10/1000 and 1000/1000 communities had a higher proportion of

negative cells when compared to communities that were treated with LPS only once

(Media/1000) there were more TNF+ subpopulations in hyporesponsive communities.

While TLR4 and TNF can induce a late phase NF-κB activation, it is possible that IL-1β

that is only secreted upon the second challenge of LPS in RAW264.7 cells (Appendix

Figure 8.2) can enhance higher activation of late-phase NF-κB (Han et al., 2002).

Hyporesponsive cells appeared distinct as a community both when BFA was added

for 16 hours post first 8 hours of LPS stimulus to capture the late phase inflammatory

response in RAW264.7 which seemed to be dictated largely by the consistency and

robustness in the community structure of 1000/1000 (Figure 4.2) and when shorter and
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longer BFA incubations were used to probe the first 16 hours of inflammatory response

by hypo-responsive communities (Figure 4.3, 4.4). The consistency in TNF+

subpopulations in 1000/1000 communities suggest that at the single cell level the

hypo-responsive communities may be most resistant to making TNF. The most striking

trait of hypo-responsiveness seemed to be that the population behaved as a distinct

community of cells containing several phenotypes with respect to whether they were

positive to TNF, IL-6 and NOS2. Our results suggest that while hypo-responses to LPS

(endotoxin tolerance or trained immunity) do involve molecular signatures such as

chromatin re-modelling and phenotypic changes as acknowledged in literature (Foster,

Hargreaves, and Medzhitov, 2007; Biswas and Lopez-Collazo, 2009; Seeley and Ghosh,

2017), it is not a uniform effect in terms of response. As such, not all pre-stimulated

populations respond to LPS as an all or none response but as a diverse community.

4.5.3 Summary and future work

Heterogeneity between a RAW264.7 population responding to LPS challenge versus

those that were challenged twice was shown to be more modest in comparison to the

first challenge. This is observed when communities are visually represented and

compared in the first 8 hours or at later time points such as 12, 16 or 24 hours (Figure

4.3). Interestingly, changes in composition upon restricting secretion in twice-challenged

communities was modest too (Figure 4.3). Numerous histone modifications, nucleosome

modelling and DNA methylation have been suggested that suppress the production of

inflammatory cytokines like TNF, IL-6 and NOS2 upon LPS tolerance (Seeley and Ghosh,

2017) despite this we observe heterogeneous sub-populations that remain in the

community for longer than 16 hours. It will be interesting to check if these communities

have any spatial preferences and we would like to explore this by looking at

communities by immunofluorescence. It will be further useful to know whether

sub-populations make IL-10 or TGF-β differentially. As RAW264.7 cells do not represent

physiologically relevant macrophages we checked if our results could be extended to
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primary cells we looked at thioglyocllate-elicited peritoneal macrophages and found we

can indeed find heterogeneous sub-populations. We think looking at heterogeneity in

terms of community composition in macrophages responding to antigen can help us

learn more about macrophage community composition, especially, in times of

immunosuppression.
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Chapter 5

Mathematical descriptions of

population heterogeneity

5.1 Introduction

LPS-induced activation of macrophages marks the beginning of a complex immune

response process. This can lead to resolution of infection when the inflammatory

response is sufficient and controlled or, in cases, to the immune system switching from

an overtly inflammatory response to an immuno-suppressive state that can lead to

severe life threatening conditions like sepsis (Nathan and Ding, 2010; Rittirsch, Flierl,

and Ward, 2008; Fleischmann et al., 2016). Mathematical understanding of this immune

system failure can help develop strategies for interventions, and methods have been

developed to describe the pro-inflammatory and immunosuppressive environment

(Day, Metes, and Vodovotz, 2015; Maiti et al., 2015; Torres et al., 2019).

Models have gone further to predict the switch to immunosuppressive phenotypes of

immune cells. Using concentrations of pro-inflammatory immune mediator proteins,

such as cytokines, clinical outcomes of sepsis have been predicted using personalised

models (Brady, R. et al., 2018). Inflammatory signalling by cytokines produced by

immune cells can affect the cells themselves (autocrine), other like or unlike cells

(paracrine), and sometimes have far reaching effects (endocrine), such as cytokines like
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TNF and IL-1β reaching the hypothalamus in the brain to modulate body temperature

(Gourine et al., 1998). Modelling such a process in detail would require hundreds of

parameters and can pose problems of over fitting (Lee et al., 2018).

Single cell-dynamics has been modelled to describe average behaviour of cells over

time (Wilkinson, 2009). However, mean-field models discount the heterogeneity in

macrophage responses, even in clonal populations, shown in cells of myeloid origins and

described extensively in our current work in Chapter 4. Further, in the general

introduction, (Figure 1.4, Chapter 1) we have discussed the reasons why these

heterogeneous populations emerge. We hypothesise that heterogeneous responses of

immune cells to LPS can hold the key to understanding how dissimilar effects can be

produced from seemingly identical populations. Understanding the dynamics of this

heterogeneity mathematically can provide critical information to drive testable

hypothesis experimentally.

5.1.1 Aims

In this chapter, we aim to

1. Describe how an immunosuppressive phenotype can develop after repeated

exposure to antigen using simple modelling paradigms with a specific aim to

characterise immunosuppression (or hyporesponsiveness) in terms of population

heterogeneity.

2. Modify our simple model to understand effects of signalling, given our empirical set

up and description, to describe transition rates between sub-populations (or subsets

described in Chapter 4).
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5.1.2 Modelling - Methods employed

Ordinary Differential Equation (ODE) models were written as functions and numerically

solved using the built-in ode45 solver in MATLAB. ode45 is implemented in MATLAB

using Dormand-Prince pair, an explicit Runge-Kutta formula (Dormand and Prince,

1980).

Parameter estimation of ODE models was done using the function lsqcurvefit in

MATLAB that uses non-linear curve fitting to find a vector of values that are a local

minimiser to a sum of squares function using the Levenberg-Marquardt algorithm

(Levenberg, 1944; Marquardt, 1963).

Bespoke code for implementing stochastic simulations algorithm (or the Gillespie

algorithm) was written in MATLAB.

Parameter estimation of Gillespie-based models was performed by

rejection-sampling of parameter values drawn from negative binomial, uniform and

normal distributions. Parameter estimates were accepted if the model output fell in the

95 percentile confidence interval of the empirical dataset or within a error percentage

mentioned in the relevant results section. Where possible, parameter space was bound

based on numbers estimated from the ODE model.

MATLAB version 2017a was used for the purposed of coding and simulations.

5.2 Modelling paradigm

We describe temporal changes in population heterogeneity of a community of cells in

terms of whether a sub-population of the community is expressing a particular protein

or not. In other words, this community of cells is comprised of two phenotypes - one that
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makes the inflammatory protein in question and the other that does not. (This partition

into two phenotypes is generalised to allow more complex phenotypes, and to include

the possibility of hypo-responsive cells, later in this chapter). Traditionally, models

describing phenotypes have been modelled using chemical kinetics (Wilkinson, 2009).

This assumes that the system has a high number of reactants and products and, thus, the

behaviour is deterministic. Such models have been implemented widely using ordinary

differential equations (ODEs). Although, these models can sometimes be solved

analytically and describe average behaviour of a system, it fails to describe the

stochasticity associated with single cell heterogeneity (Wilkinson, 2009).

ODE modelling assumes the reactants and products of the system to be continuous

variables, while in contrast the phenotypes within a real population are always discrete.

Stochastic modelling that is based on an underlying master equation describing the

probability space of species (or phenotypes) assumes discrete numbers. The use of

discrete numbers can then be used to describe biological experiments where a small

number of species are involved (Wilkinson, 2009). Our experimental results showed

large variation in proportion of cells positive for TNF (up to 52% co-efficient of variation)

between experiments which raises the case for stochastic methods to describe the system,

and suggests that average behaviour may not be sufficient to describe the system. Based

on the above reasons, we use stochastic modelling, specifically, the Gillespie-Doob

algorithm (Gillespie, 1976) to exactly simulate the time-evolution of communities of

macrophage populations that are either positive or negative for one or more proteins.

5.2.1 Gillespie-Doob Algorithm

The Gillespie-Doob algorithm, as introduced in Chapter 1, describes the biological (or

other) system based on reaction propensities and a state vector, X, that holds the number

of each reactant (Gillespie, 1976). Reaction propensities are defined as probabilities that

determine which reaction will occur in the next calculated time interval. These time
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intervals (time to next reaction) are exponentially distributed random variables so that

time is treated continuously rather than as fixed discrete steps. The algorithm first

initialises time (t = tinitial) and state vector, X where X = [X1, X2, ..., Xn]. A rate vector, R

where R = [R1, R2, ..., RM], holds the associated rate of each reaction of the defined M

reaction channels. For example, in the system

X1
R1
R2

X2 (5.1)

R1 and R2 are the per-capita rates that govern X1 to switching to X2, and vice versa,

respectively.

The algorithm iterates over a user-defined number of iterations or until a fixed in

silico time has elapsed. Upon each iteration, two random numbers are generated from a

standard uniform distribution, n1 and n2. Next a propensity vector, Av, is calculated as

the product of the rates governing state switch and the count of species in that state to

obtain its probability or propensity of occurring when a reaction is fired. In a

Gillespie-Doob simulation, containing two reaction channels as in equation 5.1, the

propensity vector is calculated as the following

Av = X1R1, X2R2 (5.2)

and in vector pseudocode form as Av = [X1R1 X2R2]. Next a combined propensity Ao is

calculated by summing the individual propensities. Time to reaction is then calculated on

the basis of Ao and random variable n1 as

tnext = 1/(ln(n1)Ao) (5.3)

i.e. an exponential random variable with a mean of 1/A0. Once tnext is calculated, the

algorithm calculates the reaction which will occur at this time based on the smallest
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integer that is greater than n2Ao. The selected integer (or index in pseudocode terms)

then decides which reaction will occur (equation 5.2). In this way, the algorithm

accounts for the two possible reactions in an unbiased way. The algorithm updates time

to t = tinitial + tnext and updates the count in the state vector e.g. increasing X2 by 1 and

decreasing X1 by 1 if the forwards reaction is selected. The algorithm returns and starts a

new iteration until a break in the simulation is encountered based on a user-defined

number of iterations or maximum time, t = t f inal .

5.2.2 Comparison with ODE and analytical solutions

We implemented the Gillespie-Doob algorithm in MATLAB using bespoke code, and

tested it using a well characterised population growth model, the logistic equation. The

logistic equation, in ODE form, can be written as

dx
dt

= βx(1 − x0/K) (5.4)

where dx
dt is the rate of change of a population, β is logistic growth rate, K the carrying

capacity of a population while x0 represents the initial population.

This ODE can also be explicitly solved analytically and its solution is given by

xt = x0K/(x0 + (K − x0)e−βt) (5.5)

In Figure 5.1 20 runs of model implementing the Gillespie-Doob algorithm were plotted.

We show that the ODE solution for the same equation traces the average behaviour of

our stochastic model over the entire solution trajectory. The correctness of the ODE

solution implemented using ode45 in MATLAB is further validated by plotting the

analytical solution (given by equation 5.5) that explicitly calculates the population size at

a given time, t. Thus, we conclude that our stochastic model is mathematically robust

and can be further used to model problems set in our chapter aims.
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FIGURE 5.1: Gillespie model average represents the ODE solution and
both are true to the analytical solution

20 stochastic runs of Gillespie based algorithm for solving a logistic equation with two different
values of logistic rates (red and blue trajectories) and the same death rate and carrying capacity
were plotted against the corresponding ODE solution and analytically predicted time-evolution
of population count with (a) showing overall trajectories and (b) a closer look at the disposition

of the three solutions
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5.3 Modelling cell populations responding to LPS

5.3.1 Positive-state model definition

We first model the non protein-expressing negative state (N) or the protein-expressing

positive state of a cell (P) as a 2-state model that has a fixed forward and backward rate

describing the transition between positive and negative states (Figure 5.2a). We call this

the positive-state model. The protein, modelled here, is physiologically only produced

upon macrophage activation by antigens like LPS and is functionally inflammatory

(Zhang and An, 2007). The response to LPS in the in silico cell environment is, therefore,

modelled as a direct positive effect on the forward rate that describes the transition of a

cell to the P state such that

αLPS = α(1 + µL) (5.6)

where αLPS is the overall forward rate which takes into account the LPS in the

environment, α is the forward rate in the absence of LPS, L is the concentration of LPS in

the environment and µ is a constant that describes the magnitude of the response to LPS

concentration. The linear assumption in equation 5.6 is used for simplicity to induce

plausible local LPS dynamics, bound between 0 and 1000, at the cost of introducing a

single unknown, µ.

Upon describing the above model as an ODE, we have

dP
dt

= Nα(1 + µL)− βP (5.7)

where dP
dt represents rate of change in the number of cells in the positive state with

respect to time, P, N are the number of in silico cells in the positive and negative state

respectively, β is the rate at which cells in the positive state change to negative state.
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We model the decay of LPS concentration, L as a simple first order exponential decay

in continuous time. This can then be expressed as

L(t) = L0e−δt (5.8)

where L0 and L(t) represent the concentration of LPS at time zero and t respectively, and

δ is the constant LPS decay rate.

At a time dependent quasi-equilibrium, where the dynamics of L are assumed to occur

on a slower time scale than those of P and N, equation 5.7 can be used to write

P∗
quasi =

Nα(1 + L0e−δt)

β
(5.9)

where rate of change of P, dP
dt = 0 and P∗

quasi represents the number of in silico cells in

the positive-state at quasi-equilibrium. It can be inferred from equation 5.9 that in the

absence of LPS in the environment,

P∗ =
Nα

β
(5.10)

which is the equilibrium (P∗) dynamics for the simple case where 2 species switch

between each other with rates α, β.

Further, equation 5.7 can be re-written as

dP
dt

= (T − P)α(1 + µL)− βP (5.11)

where T is total number of cells since N + P = T at any given time.

Equation 5.11 can be exactly solved to the following closed form equation given the initial
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condition P(0) = 0

P(t) = e
L0αµe−δt

δ −t(α+β)
∫ t

0
Tαeαt+βt−(L0αµe−δt)/δ(L0µe−δt+1)dt (5.12)

5.3.1.1 Positive-state model simulation with arbitrary rates

We then simulate the positive-state model to show that over a period of 24 hour, 50% of

the population is in positive state without LPS in the environment (Figure 5.2b). The

simulation shows that in the absence of LPS the proportion of simulated cells that are in

the positive-state are equal to those in the negative-state, thus, showing that the

simulated results are true to the underlying analytically calculated equilibrium dynamics

at L=0 (equation 5.10). Inflammatory proteins require activation (Zhang and An, 2007),

and in the absence of a stimulus to activate an immune response the proportion of

positive cells is likely to be small. This suggests that in a physiologically relevant context

α must be small in comparison to β to constrain the positive-state proportion when there

is no LPS in the environment (equation 5.10).

Next we simulate the effects of LPS dose by simulating the model, again with

arbitrary rates (α = 0.005 and β = 1) in Figure 5.3 to illustrate that the magnitude of LPS

concentration and its decay can affect how fast the positive-state proportion increases,

how high the positive-state proportion rises and how fast the positive-state proportion

becomes negative. Parameters for this model can be estimated to fit to the empirical

results obtained at 16 hour or 24 hour upon the first challenge of LPS (Figure 3.7,

Chapter 4) and, can be used to predict the time-evolution of positive proportions of

inflammatory proteins (data not shown).

Next we simulated the model to mimic macrophage cell populations that induce a

hypo-response from our empirical results in (Figure 4.1, Chapter 4) when stimulated

with LPS twice in Figure 5.4 to show that our current simplistic model definition cannot
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FIGURE 5.2: Positive-state model description and output when there is
no LPS in the environment

(a) In silico cells in the positive-state model can assume two states. Negative and positive state
transitions are defined by α and β rates (b) 20 stochastic realisations of the time-evolution of cells
positive-state as a proportion of the total population when there is no LPS in the environment ie

L = 0, α = 1, β = 1 . The bars denote 95% confidence intervals of the mean.
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FIGURE 5.3: LPS dose affects the rise and fall of positive cells
differentially

Positive-state model was simulated for LPS doses 0, 1, 10, 100 and 1000 with arbitrary forward
rate (α = 0.005, β = 1) with a fixed arbitrary LPS decay rate (δ = 0.5). 20 stochastic runs for each
dose (magenta=0, yellow=1, green=10, blue=100 and cyan=1000) were run for 24 simulated hour

with bar graphs plotted in black representing 95% confidence interval of the mean (of all 20
trajectories for each dose). Inset represents the trajectories traced by the analytical solution of

equation 5.12 for LPS doses (magenta=0, yellow=1, green=10, blue=100 and cyan=1000)
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induce a hypo-response in terms of predicting a smaller proportion of positive-state cells

upon secondary stimulus. Artificially changing the values α and β at the beginning of

the in silico secondary dose of LPS can induce hypo-response in terms of a smaller

proportion of positive-state cells (data not shown). While this change of rates may

provide a trivial explanation for hypo-responsiveness upon two doses of LPS, such a

modification to the model would suggest that all macrophages upon secondary stimulus

with LPS respond with a different rate. The idea that rates change per se for the

population agrees with population-level studies on the hypo-responsive phenotype that

posit that phenotypic changes reduce the amount of inflammatory proteins (Biswas and

Lopez-Collazo, 2009). However, based on our experimental results (Chapter 4), we have

shown that the response to a secondary LPS challenge is heterogeneous and is associated

with overall lower proportions of macrophages positive for inflammatory proteins such

as TNF, IL-6, NOS2 and pro-IL-1β. This leads us to speculate that modelling

hypo-responsive populations must include states that may capture a non-responsive

state upon LPS challenge.

5.3.2 Non-responsive (nr) model definition

We next introduce two new cell states within the positive-state model to capture the

hypo-responsive phenotype upon re-stimulus with LPS based on established knowledge

(Biswas and Lopez-Collazo, 2009). This modified model (or nr-model) includes a

non-responsive state which refers to an in silico cell that, temporarily, cannot respond to

LPS along with a non-responsive (permanent) type that can no longer respond. Cells can

transition into the non-responsive state by a rate γ from the positive state, thus

constraining only cells that have responded to LPS to be able to make this transition. The

non-responsive cell can then switch back to the negative state with a rate of β2. The in

silico non-responsive cell can also switch to the non-responsive (permanent) state with a

rate of γ2. Upon assuming this state, an in silico cell can no longer switch to any other
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FIGURE 5.4: Two temporally separated LPS doses induces similar
response from in silico cells.

Positive-state model was simulated for LPS dose of 1000 at 0 hour and a second dose of LPS at 24
hour and the time-evolution plotted between 0-48 hour with arbitrary forward rate (α = 0.005,
β = 1) and a fixed LPS decay rate (δ = 0.5). 20 stochastic runs are plotted (magenta) with error

bars (blue) representing 95% confidence interval of the mean (of all 20 trajectories for each dose).
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state (Figure 5.5) and, therefore, becomes hypo-responsive for the duration of the

simulation.

Simulating this model with arbitrary parameter values of α = 1, β = 1, γ = 1, β2 = 1,

γ2 = 1 to plot the trajectory for positive-state proportions, we show that the added

complexity associated with the additional states (and the rates associated with them) can

lead to a sharp decline in the peak of the positive-state and a longer right tail. The lower

peak is because of the increased probability of leaving the positive state (with rates γ = 1

and β2 = 1 ) while the right tail is due to contribution of more negative cells that can

become positive later into the time-evolution as influenced by β2. Most interestingly, we

can track the proportion of non-responsive (permanent) state over time (Figure 5.6,

plotted in black). At quasi-equilibrium, the largest fraction comprises in silico of the

permanently non-responsive state suggesting that the model tends to adopt a fully

non-responsive (permanent) state.

5.3.2.1 nr model - Assumptions

As a basis for future, more complex, modelling studies, it is useful to be clear about the

assumptions used in the nr model. These are enumerated below:

1. Individual proteins are treated independently by the model

Simulated cells respond to LPS and can be in a positive-state for an inflammatory

protein. This activation of macrophages is treated without considering effects of

cytokines being secreted in the environment and consequently, affecting the

positive-state proportion for the inflammatory protein, under consideration.

2. In-silico cells in the negative proportion can only become positive.

The model does not allow for the non-responsive state to transition back to the positive

state and, thus, forces the model to only allow for LPS-induced α dependent transition to

the positive state.

3. A fixed arbitrary constant is used to model LPS utilisation/degradation
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FIGURE 5.5: nr model description

a. In-silico cells can be in one of 4 different states that can transition via 5 routes upon stimulus.
Negative, positive, non-responsive and non-responsive (permanent). Non-responsive cells can
transition back to the negative-state or can transition to a non-responsive (permanent) state.

LPS bound to TLR4 is endocytosed and is related to late-phase activation of NF-κB to

initiate a second-wave of inflammatory proteins. This is not considered in the model.

Thus, LPS degradation and endocytosis (or intake) is both modelled as simple

exponential depletion from the environment.

4. Effects of cell density are ignored

There are no density-dependent or frequency-dependent processes within the modelling

framework.

5.3.3 Parameter estimation - nr model

We then fitted our nr model to empirical data pertaining to TNF, IL-6, NOS2 and

pro-IL-1β positive cells at one temporal snapshot (16 hour of LPS stimulus), treating each

cytokine independently. Since 16 hour was the end-point of our LPS stimulus

experiments, we hoped to find a large number of parameter sets that would qualitatively

match the end point proportions from our experiments, while revealing diverse

trajectories of reaching that end point. We estimated parameters by drawing random
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FIGURE 5.6: nr model example output

a. In-silico cells can be in 4 different states via 5 routes upon stimulation. Negative, positive,
non-responsive and non-responsive (permanent). Non-responsive cells can transition back to the
negative-state or can transition to a non-responsive (permanent) state. b. nr model was simulated

with L = 1000 at 0 hour and a second dose (L=1000) at 24 hour. The time-evolution is plotted
between 0-48 hour with α = 1, β = 1, γ = 1, γ2 = 1, β2 = 1 and a fixed LPS decay rate (δ = 0.5).

20 stochastic runs are plotted (magenta) with error bars (blue) representing 95% confidence
interval of the mean (of all 20 trajectories for each dose) simulated
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numbers from a negative binomial and normal distribution repeatedly, and then

simulating the nr model using that parameter set, analysing upon each iteration if a set

of parameter values approached the 95% confidence interval of the mean value of our

empirical dataset at the simulated 16 hour time point (Figure 3.7, Chapter 4; n=4-5).

Next, we used the set of parameter sets as returned above (hereafter referred to as

the ’rough fit’) to fit to a more temporally resolved experimental data set (described in

Figure 4.3 in Chapter 4) with data points at 8, 12, and 16 hour post primary and secondary

challenge of LPS (’specific fit’). Primary or first challenge is represented as Media/1000

(LPS challenge with 100 ng/ml) while secondary challenge as 10/1000 and 1000/1000.

Our empirical results were derived using flow cytometry to capture frequency of positive

cells (TNF, IL-6, NOS2 and/or pro-IL-1β) at a single-cell level and is based on at least

n=85,000 cells per data point.

5.3.3.1 TNF

Analysing the parameter values from the ’rough fit’ as described previously (Figure

5.7a), our results indicated that a wide range of parameter values can fit our empirical

data set at 16 hour of LPS stimulus. On average, values of α (the rate at which in-silico

cells become positive) was the highest, followed by β2 (the rate at which a

non-responsive cell transitioned to a negative state) and γ2 (the rate at which

non-responsive cells transition to the non-responsive (permanent) state). Mean values of

β (the rate at which cells in the positive state can transition to the negative state) and γ1

were comparable. The range of γ1 values was the lowest among all parameter values.

While, on average, all parameters were well represented (in magnitude) in the set of

possible parameter values that fit to the experimental data, some individual parameter

sets included parameter values which were very close to zero. This suggests that a

diverse set of time-evolution trajectories can fit our experimental end point at 16 hour.
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We next looked at the parameter values more closely by segregating them based on

increasing values of α (Figure 5.7b). When values of α are less than the 25th percentile (of

all predicted values of α) almost all parameters are, on average, greater than α. Higher

values of γ2 on average compared to β suggested a greater probability of simulated cells

to transition to the TNF non-responsive state. A higher γ2 than β2 in these parameter

sets suggest the greater probability of transitioning to the TNF non-responsive

(permanent) state from the non-responsive state.

The parameter sets where α values were in the inter-quartile region of all predicted α

values were very similar (to α < 25th percentile) in terms of differences between their

means. However, β values were lower than α values, thus, increasing the chance of cells

to transition from negative to TNF positive state even with decreasing LPS concentration.

Estimated parameter sets with α values (selected between 75th percentile and 1.2),

mean β values were higher than γ1. This suggests TNF positive cells to have a higher

probability to transition to TNF negative state than TNF non-responsive. In addition,

since mean β2 values were greater than γ2 the probability of becoming non-responsive

(permanent) was less.

Next, comparing parameter sets with the highest α values (α > 1.2), mean β value

was lower than mean γ while on the other hand β2 was higher than γ2. In other words,

while TNF positive cells had a higher chance of becoming TNF non-responsive based on

this parameter set, the chances of becoming non-responsive (permanent) was lower

(Figure 5.7b). In conclusion, we show that the ’rough fit’ parameter estimation provided

us with a diverse set of parameters that could fit the empirical data point at 16 hour, and

that these parameter sets allow a diverse range of possible routes/trajectories of the nr

model behaviour to fit that end point.
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FIGURE 5.7: Parameters estimation for TNF+ dataset reveal average α
values greater than the other parameters

Box and whiskers plot showing the calculated parameter values for nr model estimated based on
empirical data point at 16 hour of LPS stimulus with 1, 10, 100 and 1000 ng/ml of RAW264.7 cells

to obtain the frequency of TNF positive cells (n=4-5 for each LPS dose) a) Shows the overall
parameter sets that were estimated b) Parameter sets were segregated based on the values of α
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We next used parameter sets derived above (Figure 5.8a) to estimate parameters for

the ’specific’ fit (Figure 5.8c) as described in sub-section 5.3.3. Parameters that best

approximated the empirical datasets were used to simulate the time-evolution of TNF

positive cells over a 48 hour period. The first 24 hour period represented the first

challenge while the 24-48 hour period represented second challenge.

Trajectories for the time-evolution of TNF positive cells (Figure 5.8c, 10/1000 and

1000/1000), do indeed, predict an overall hypo-response in both 10/1000 or 1000/1000

treatments such that the peak TNF positive population is higher in the first LPS dose

compared to the second dose of LPS. TNF positive cells in the 10/1000 treatment during

the first LPS dose appear to decrease faster as the LPS concentration in the first stimulus

is lower (10 vs 1000) but also because of the added contribution of the increasing

numbers in the non-responsive or non-responsive (permanent) states (Figure 5.8c).

Model simulation also predicts the proportion of TNF positive cells at 16 hour (first

dose) to be lower than at 40 hour (16 hour post second LPS) in 10/1000 and was

observed in in-vitro experiments as well (Figure 4.3, Chapter 4). This is, however, not

evident in the model simulation for the 1000/1000 treatment.

Overall, the parameter estimated nr model for TNF captures a hyporesponsiveness

because of an increasing pool of non-responsive cells that cannot respond to LPS. In the

nr model the non-responsive state (NRS) and non-responsive (permanent) state (NRPS),

taken together, represent the number of non-responding cells at any given time during

the simulation. The time-evolution of these TNF non-responding cells is shown in Figure

5.9 for treatments 10/1000 and 1000/1000. When the first LPS dose is low (10/1000), the

model predicts that about 50% of the population becomes either non-responsive or

non-responsive (permanent) within the first 10 hour of the stimulus. This shows that

upon the second LPS dose half the population is not immediately affected by LPS. Only

cells in the non-responsive state transitioning to the negative state can go on to become
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FIGURE 5.8: Peak TNF positive proportion decreases at second stimulus

a Box and whiskers plot showing the estimated paramters for TNF by nr model simulatoins
based on empirical data as shown in before-after plot in b. c nr model was simulated for first LPS

dose (10 or 1000) at 0 hour and a second dose of LPS (1000) at 24 hour and the time-evolution
plotted between 0-48 hour with estimated forward rate α = 0.0128, β = 0.1828, γ = 0.0901,

γ2 = 0.0020, β2 = 0.0161 and a fixed LPS decay rate (δ = 0.5). 20 stochastic runs representing
TNF positive cells are plotted (cyan) with error bars (black) representing 95% confidence interval

of the mean (of all 20 trajectories for each dose). Empirical data in red asterisks and crosses.
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TNF positive. Thus, lower values of β2 upon second LPS dose can affect the total pool of

cells (negative state) available to respond to LPS and become TNF positive (Figure 5.9).

This non-responding population (NRS + NRPS) increases yet again upon the second LPS

dose and increases to up to 70% of the total population. When the first LPS dose is

higher (1000/1000) within the first 24 hour of the simulation 70% of the population

becomes non-responding (NRS + NRPS). Second LPS dose also increases the total

number of non-responding cells up to about 80%. This increase is not as pronounced as

in the case of the 10/1000 simulation as a high first dose reduces the number of negative

(or cells available to respond to LPS) which in turn reduces the number of TNF positive

cells that can further increase the non-responding cell population (Figure 5.9). Our

model supports the idea that, that upon responding to LPS, macrophages become

non-responsive very quickly and are unable to respond to a second LPS dose with equal

numbers. TNF positive cells become non-responding with higher magnitudes of LPS

and with repeated doses.
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FIGURE 5.9: Non-responding TNF population increases with first and
second dose.

Time-evolution of TNF non-responding states (non-responsive state, NRS + non-responsive
permanent state, NRPS) over two LPS doses. First dose at 0 hour and second at 24 hour. 20
stochastic runs representing TNF (NRS+NRPS) are plotted (yellow) with error bars (black)

representing 95% confidence interval of the mean (of all 20 trajectories for each dose)
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5.3.3.2 IL-6

We then estimated parameters for IL-6 positive cells as described in sub-section 5.3.3 to

first obtain a ’rough’ fit of parameters and then a ’specific’ fit to check if the model can

explain empirical data pertaining to first (1000 only) and secondary challenges of LPS

(10/1000 and 1000/1000; Figure 5.10).

IL-6 positive cells were greater during the first LPS dose in comparison to the second

LPS challenge for both 10/1000 and 1000/1000 treatments, at least in terms of the initial

peak in IL-6 positive population with approximately 50% of the cells responding to LPS

for both challenges with the higher (1000) or lower (10) first dose (Figure 5.10; left panel).

In 1000/1000 treatment, the proportion of cells that were IL-6 positive was higher

throughout the duration of the stimulus (i.e. comparing 0-24 hours and 24-40 hours).

This was not true for the 10/1000 population with a higher proportion of IL-6 positive

cells 10 hour post secondary stimulus (34-48 hours) as compared to IL-6 positive cells

between 10-24 hours post first LPS challenge. This suggests that in the hypo-responsive

population (10/1000), while the initial peak of IL-6 positive population is lower, IL-6

positive populations do not switch off as fast as in the first challenge (Figure 5.10; left

panel). This may suggest an explanation for an increased IL-6 amount in supernatant of

twice challenged (10/1000) as compared to twice challenged (1000/1000) RAW264.7 cells

in culture (Figure 4.1, Chapter 4).

We then looked at the proportion of cells in the non-responsive state (NRS) and

non-responsive (permanent) state (NRPS) taken together to look at the time-evolution of

non-responding IL-6 cell population (Figure 5.10; right panel). Our results indicate that

the IL-6 non-responding population at low first dose increases up to approximately 80%

within the first 5 hours corresponding to the decrease of IL-6 positive cells at first

stimulus. This population steadily decreases over 24 hours and increases the proportion

of cells in the negative state. This suggests that upon the second dose about 50% of the
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population is available to respond to LPS. This explains the approximate halving of the

total proportion of IL-6 positive cells at first and second stimulus (Figure 5.10; left panel).

IL-6 non-responding population (NRS + NRPS) in 1000/1000 treatment at first dose

reaches a total of 80% within the first five hours and decreasing slightly over 24 hours.

The second dose of LPS increases this non-responding population to approximately 80%

(Figure 5.10). Overall, the nr model parameters estimated for empirical IL-6 proportions

predict that only half the in-silico population responds to LPS and a hypo-response to

secondary dose is observed with a more pronounced effect in 1000/1000 treatment.

5.3.3.3 pro-IL-1β

We then estimated parameters for the nr model to fit empirical results for pro-IL-1β to

observe model behaviour, using the methods outlined above in sub-section 5.3.3. As

observed earlier for TNF and IL-6, pro-IL-1β positive cells decreased upon the second

dose of LPS for both 10/1000 and 1000/1000 treatments (Figure 5.11). Simulating the nr

model with estimated parameters shows a sharp increase in pro-IL-1β positive cells

observed when LPS stimulus is low (10) or high (1000). Estimated parameter values

were α = β = γ1 = γ2 = 0.05 suggesting that upon LPS stimulus (first or second) cells in

the negative state would switch on pro-IL-1β and then transition to a non-responsive

state or the negative state with equal probability. Further, based on a high β2 value, cells

transitioning to the non-responsive state can switch back to negative state (β2 = 6 ∗ γ2).

Overall, non-responding (NRS + NRPS) cells comprised 15-20% of the total population

after first stimulus, while at the end of secondary stimulus for both (10/1000 and

1000/1000) reach 30% (Figure 5.11; right panel) of the total population. The results

suggest that pro-IL-1β non-responding populations may have a stronger effect, given

above mentioned parameters, on overall pro-IL-1β positive numbers when the

population is challenged multiple times with LPS.
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FIGURE 5.10: IL-6 positive cells do not peak as high upon second dose of
LPS

a)nr model was simulated for first LPS dose (10 or 1000) at 0 hour and a second dose of LPS
(1000) at 24 hours and the time-evolution plotted between 0-48 hours with estimated forward rate
α = 0.1, β = 0.11, γ = 0.77, γ2 = 0.01, β2 = 0.14 for IL-6 and a fixed LPS decay rate (δ = 0.5). 20

stochastic runs representing IL-6 positive cells are plotted (cyan) with error bars (black)
representing 95% confidence interval of the mean (of all 20 trajectories for each dose)

b)Time-evolution of IL-6 non-responding states (non-responsive state, NRS + non-responsive
permanent state, NRPS) over two LPS doses. 20 stochastic runs representing IL-6 (NRS+NRPS)
are plotted (yellow) with error bars (black) representing 95% confidence interval of the mean (of

all 20 trajectories for each dose). Empirical data in red asterisks and crosses.
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FIGURE 5.11: pro-IL-1β non-responsive cells increase steadily to 30% at
48 hours

a nr model was simulated for first LPS dose (10 or 1000) at 0 hour and a second dose of LPS
(1000) at 24 hours and the time-evolution plotted between 0-48 hours with estimated forward rate

α = 0.05, β = 0.05, γ = 0.05, γ2 = 0.05, β2 = 0.3 for pro-IL-1β and a fixed LPS decay rate
(δ = 0.5). 20 stochastic runs representing positive cells are plotted (cyan) with error bars (black)

representing 95% confidence interval of the mean (of all 20 trajectories for each dose). b
Time-evolution of pro-IL-1β non-responding states (non-responsive state, NRS + non-responsive

permanent state, NRPS) over two LPS doses. 20 stochastic runs representing NRS+NRPS are
plotted (yellow) with error bars (black) representing 95% confidence interval of the mean (of all

20 trajectories for each dose). Empirical data in red asterisks and crosses.
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5.3.3.4 NOS2

NOS2 is upregulated upon LPS stimulus and catalyses nitric oxide, a potent mediator for

inflammation (Bogdan, 2015). Using the empirical data point for NOS2 positive cells, we

then estimated parameters that best fit the NOS2 dataset as outlined in sub-section 5.3.3.

Parameter fitting for NOS2 revealed that it was difficult to fit the NOS2 positive

empirical data points to the nr model, particularly, to the first challenge of LPS.

Visualising the empirical data points it appears that NOS2 positive cells increase more

slowly than suggested by the model fit upon LPS stimulus (Figure 5.12). The lower

gradient in increasing NOS2 positive cells is also evidenced by published studies

suggesting NOS2 requires additional signalling to LPS to be transcribed (Farlik et al.,

2010).

The model, however seems to fit the second dose of LPS better and indicates a

gradual decrease in overall NOS2 positive cells. 48 hours into the simulation, the model

suggests that upto 60-65% remain positive for NOS2. While the number of

non-responding cells (NRS + NRSP) increases, linearly, with LPS dose and time, only

about 16% of the population is non-responding after 48 hours (post first and second

stimulus). At 24 hours after first stimulus, this percentage is even lower (approximately

8%), suggesting hypo-response in terms of NOS2 positive cells, if any, may not be

associated with the non-responding cell state.
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FIGURE 5.12: NOS2 non-responding populations comprise just 8% after
first LPS dose

a nr model was simulated for first LPS dose (10 or 1000) at 0 hour and a second dose of LPS
(1000) at 24 hours and the time-evolution plotted between 0-48 hours with estimated forward rate
α = 0.0503, β = 0.0595, γ = 0.0068, γ2 = 0.0405, β2 = 0.0358 for NOS2 and a fixed LPS decay rate
(δ = 0.5). 20 stochastic runs representing positive cells are plotted (cyan) with error bars (black)

representing 95% confidence interval of the mean (of all 20 trajectories for each dose). b
Time-evolution of non-responding states (non-responsive state, NRS + non-responsive

permanent state, NRPS) over two LPS doses. 20 stochastic runs representing NRS+NRPS are
plotted (yellow) with error bars (black) representing 95% confidence interval of the mean (of all

20 trajectories for each dose). Empirical data in red asterisks and crosses.



5.3. Modelling cell populations responding to LPS 157

5.3.3.5 Non-responding states vary for each protein

Simulating the nr model for TNF, IL-6, pro-IL-1β and NOS2 shows that non-responding

states do form a part of the response to LPS. However, more interestingly, the number of

cells in the non-responding states (NRS + NRPS) varied for each protein. In Figure 5.13,

we show that TNF (67%) and IL-6 (54%) populations tend to show the highest

proportion of non-responding cells in all of the four proteins considered. While NRS

cells for TNF was high, the percentage of TNF NRPS cells is low at 2%, thus, suggesting

TNF cells do not assume NRPS state and, as such, available to replenish the negative

pool depending on the rate, β2. In the IL-6 population 16% of the cells at 24 hours

become NRPS suggesting that a portion of the population after becoming IL-6 positive

turns off its capability to turn on IL-6 (Figure 5.13).

pro-IL-1β positive cells had comparable percentage of NRS (9.3%) and NRPS (11.6%)

cells with approximately 21% non-responsive cells. NOS2 populations showed the lowest

percentage of cells in the non-responding (10%) category with half each in the NRS and

the NRPS state (Figure 5.13). Interestingly, for NOS2 17% cells remained in the negative

state (data not shown) at 24 hours suggesting, cells may not assume a non-responding

state for NOS2.
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FIGURE 5.13: Non-responding states vary for each protein

Bar plots showing percentage of non-responsive (NRS) and non-responsive (permanent) state
(NRPS) for TNF, IL-6, pro-IL-1β and NOS2 post first in silico LPS dose at 24 hours.
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5.4 Modelling signalling in macrophage communities

In Chapter 4, we showed that macrophages responding to LPS, respond as communities

of heterogeneous sub-populations. We further showed that these community

compositions were affected by restriction of secretion (Chapter 4, Figure 3.10) by a

chemical method, Brefeldin A (BFA) and isolation of macrophages by growing them in

larger culture vessel and volume (Chapter 4, Figure 3.14). In order to describe

communities within a macrophage population that evolve upon LPS stimulus, we

expanded the nr model to a more general model that allowed transitions between each

of the eight possible sub-populations made up of TNF, IL-6 and NOS2 positive cells. (For

simplicity, LPS dynamics were not considered in this model.) The transitions were

described for all forward and backward probabilities leading to a total of 56 (8

sub-populations capable of transitioning to 7 others) parameters are represented in a

cube (Figure 5.14a) where each vertex can connect to seven other vertices. The

underlying algorithm used was also a Gillespie-Doob based bespoke implementation of

the model, referred to as the cube model in this chapter.

In the cube model, sub-populations TNF-IL6-NOS2-, TNF+IL6+NOS2+,

TNF+IL6+NOS2-, TNF+IL6-NOS2+, TNF+IL6-NOS2-, TNF-IL6+NOS2+,

TNF-IL6+NOS2-, TNF-IL6-NOS2+ are represented as X, T6N, T6, TN, T, 6N, 6 and N

respectively for the sake of brevity.

Equation 5.13, 5.14 and 5.15 represent examples of reactions that are built into the model.

X
x_t6n
t6n_x T6N (5.13)

T
t_t6
t6_t T6 (5.14)
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N
n_t
t_n T (5.15)

where x_t6n is the rate/probability with which negative cells (X) transition to triple

positive (T6N) cells. The back rate t6n_x then gives the rate at which the transition from

triple positive to negative occurs. Similarly, equation 5.14 and 5.15 describe the

transition rates between T, T6 and N, T respectively.

The model can be simulated to obtain the time-evolution of each subset and define

trajectories for the rise/fall of the sub-populations. The model can also be simulated to

fit to an empirical end point to represent macrophage community in silico. Randomly

sampled parameter values were used to simulate the cube model, with the outcomes

plotted as a pie chart to represent a basic output (Figure 5.14b).

5.4.0.1 cube model - Assumptions

Assumptions made regarding the reactions in the cube model are as enumerated below:

1. All possible transitions within the cube model are allowed Cytokines expressed by

macrophages can affect themselves or other macrophages. While NOS2 expression is

dependent upon TNF and IFN-β cells can co-express both these proteins. Similarly, LPS

induces TNF and IL-6 production while increased production of IL-6 may be associated

with TNFR1 signalling via TNF binding in an autocrine or paracrine manner (see Figure

1.3 in Chapter 1).

2. No external perturbation of the model was allowed

The cube model only simulates transition probabilities which are, in turn, affected only

by the number of cells of the relevant sub-population. LPS dynamics, and the possibility

of density dependence and other non-linearities, are not considered.
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FIGURE 5.14: 8 sub-population of the community as represented on the
vertices of the cube model

a) Cube showing 8 different sub-populations used in the model that allows transitions via edges
and diagonals. b) Representative example output of the cube model simulated with arbitrary

parameter values to generate an in silico pie chart to represent community composition.
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5.4.1 Parameter estimation

In order to explore possible parameter space for the transition probabilities or rates of

the cube model, we estimated parameters based on our experimental data points where

secretion was restricted by incubating cells stimulated with LPS in 4, 8 12 and 16 hours of

BFA (Figure 3.10, Chapter 4). We estimated the parameters of the cube model by

simulating the model with 56 random variables picked from a negative binomial

distribution repeatedly for 5e106 individual simulation runs to obtain sets of parameters

that fitted 95% confidence interval of empirical data mean (n=3).

Parameter estimates for empirical data pertaining to 4 hour BFA (12 hour LPS + 4

hour LPS+BFA) and 8 hour BFA (8 hour LPS + 8 hour LPS+BFA) represent cases when

restriction was restricted the least and we considered separately under the ’signalling’

group.

As above, parameter estimates to 12 hour BFA (4 hour LPS + 12 hour LPS+BFA) and 16

hour BFA (16 hour LPS+BFA) were considered separately under the ’restricted secretion’

group.

5.4.1.1 Estimated parameters - signalling

Parameter estimation, as described in the previous subsection, was used to fit

experimental end points at 16 hours for the ’signalling group’. 2,464 possible parameter

sets were obtained to fit the empirical data pertaining to 12 hour LPS and 4 hour

LPS+BFA. For empirical data pertaining to 8 hour LPS and 8 hour LPS+BFA, 151

independent sets of parameters were estimated by the simulations. These parameter

values were then plotted for each of the conditions to show mean and variance of the

parameters in a box and whiskers plot (Figure 5.15)
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Parameter estimations indicated that all transitions towards a triple positive

sub-population i.e. t_t6n, n_t6n, 6_t6n, x_t6n, t6_t6n, tn_t6n and 6n_t6n were lowest

among other parameter values. The parameter values predicted for x_t6n (transition rate

describing the transition from triple negative to triple positive) to be the least variable

and its mean the lowest overall among all estimated parameters. This suggests that triple

positive sub-populations appear at a slow rate in LPS challenged community and are

lost at a fast rate (as suggested by the corresponding back rates; Figure 5.15a) when

secretion is not restricted. In fact, most of the large parameter values described the

transition from the triple positive (t6n) state to a lesser inflammatory state (single or

double positive) indicated that if some in silico cells are to transition to the triple positive

state, a high probability will be associated with them to transition to a single or double

positive state (Figure 5.15a).

Parameters such as 6_tn and 6n_tn were high and, also, interesting because they

represented a diagonal on the cube which in in vitro terms can indicate

cytokine/community based signalling as diagonally placed vertices in a cube are not

directly connected to each other. This means that for a TNF-IL6+NOS2- cell to transition

to a TNF+IL6-NOS2+ cell (6_tn) it has to switch off IL6 and switch on TNF and NOS2

(Figure 5.15a).

Parameter values for the 8 hour BFA empirical end point x_t6n was low, and one of

the 5 lowest parameters by mean. The other parameters that had a lower mean were

t_t6n, x_6n and tn_6n (Figure 5.15b). Similar to previous results for 4 hour BFA, 8 hour

BFA results showed an overall decrease in the probability of transitioning to the triple

positive state. The parameter 6n_t6n , which dictates the transition from a double

positive TNF-IL6+NOS2+ to triple positive cells, was on average higher than all other

parameters that describe transitions to the triple positive sub-population. Interestingly,

this suggests that cells that are positive for IL6 and NOS2 have a high tendency to
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become triple positive upon secretion restriction. In other words, this can also mean that

the triple positive sub-populations, upon switching off TNF, contribute to the

TNF-IL6+NOS2+ sub-population.

The tn_6n parameter was one of the lowest while its corresponding reverse

probability tn_6n was one of the highest in the estimates, suggesting a strong tendency

of double positive TNF-IL6+NOS2+ to become TNF+IL6-NOS2+. Furthermore, the

parameter x_tn had the highest mean value suggesting in vitro cells to transition upon

LPS stimulus to TNF+IL6-NOS2+ sub-population with a high probability.

A correlation between parameters estimated for 4 and 8 hour BFA incubation

empirical datasets were produced to see if some parameters are co-dependent and in any

way redundant in the analysis (Figure 5.16). The average of top and bottom 5%

correlation values were found to be 0.06 and -0.08. Maximum correlation and

anti-correlation were 0.17 and -0.14. This suggests that the estimated parameters are

independent and that when secretion is not restricted there is little or no co-dependence

between the parameters.

5.4.1.2 Estimated parameters - secretion restriction

We next estimated parameters for the cube model, as described subsection 5.4.1, was

used to fit experimental end points at 16 hours for the ’restricted secretion’ group. 11

independent parameter sets were estimated for 12 hour BFA incubation while 118

parameter sets estimated for 16 hour BFA incubation.

Parameters estimated for the 12 hour BFA experimental end point, a high transition

rate was predicted for negative cells to switch to TNF+IL6+NOS2+, triple positive

sub-population (x_t6n) and, in addition, high transition rates for transitioning to the



5.4. Modelling signalling in macrophage communities 165

FIGURE 5.15: Parameter estimation of cube model based on empirical
dataset

Box and whiskers plot to show the values of the parameters of the cube models as estimated
based on empirical data pertaining to LPS stimulated macrophage community at 16 hours post

stimulus with a) for 4 hour Brefeldin (BFA) incubation and b) 8 hour BFA incubation.
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FIGURE 5.16: Parameter estimates for cube model (8/12hr secretion) show
little to no correlation between them.

Spearman’s correlation matrix was calculated and plotted as a heatmap with colour shading
ranging between -1 (maximum anti-correlation) and 1 (maximum correlation). The diagonal

values represent correlation of a parameter to itself and therefore is equal to 1 (white).
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triple positive sub-population (t6_t6n, 6_t6n) were also observed. This suggested an

overall high inflammatory potential when restriction is restricted for 12 hour

(empirically)

Next we estimated parameters for 16 hour BFA experimental end point. Similar to

the estimates for 12 hour BFA, parameter estimates for 16 hour BFA indicated that the

diagonal transition rate (x_t6n) was the third largest among the estimated parameters.

The parameters x_t and x_tn had the highest mean value among all parameters. Further,

parameter estimates of x_6 and x_n also suggest that, when secretion is restricted, cells in

the negative state have the highest probability to either transition to the

TNF+IL6-NOS2+ or TNF+IL6-NOS2- state, or with lesser probability to the triple

positive state (Figure 5.17b).

Correlation between parameters estimated for emprical datasets pertaining to 0 and

12 hour BFA incubation or restricted secretion showed slightly higher values of

correlation between parameters (Figure 5.18). The average of top and bottom 5%

correlation values were found to be 0.25 and -0.17. Maximum correlation and

anti-correlation were 0.43 and -0.52. A higher on average correlation is expected as with

decreased secretion and, therefore, increased accumulation the expectation of redundant

transitions increase. Of note here, however, is the anti-correlation between x_tn and x_t

(-0.52) suggesting a preference of in-sillico cells to switch to triple positive (or double

positive for TNF and IL-6) than become positive for TNF and NOS2.
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FIGURE 5.17: Parameter estimation of cube model based on empirical
dataset

Box and whiskers plot to show the values of the parameters of the cube models as estimated
based on empirical data pertaining to LPS stimulated macrophage community at 16 hour post

stimulus with a) for 12 hour Brefeldin (BFA) incubation and b) 16 hour BFA incubation.
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FIGURE 5.18: Parameter estimates for cube model (restricted secretion)
show little correlation between them

Spearman’s correlation matrix was calculated and plotted as a heatmap with colour shading
ranging between -1 (maximum anti-correlation) and 1 (maximum correlation). The diagonal

values represent correlation of a parameter to itself and therefore is equal to 1 (white).
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5.4.2 Simplified cube model did not fit experimental data

Since the number of parameters in the cube model is very high and our experimental

data set is restricted to one time point, our model is prone to over fit the data. For this

reason we checked if simpler cases of the cube model can fit the experimental data. We

assumed that cells switching on to a protein positive state do so independently of other

proteins. In terms of cube model transitions, this means that all parallel edges have equal

rates, thus, a cell that is TNF+ can transition to a TNF+IL6+ state with an equal rate as

compared to a negative cell that may transition to a IL6+ state. Also, all diagonal rates

were fixed at 0 reducing the number of parameters of the model to not allow any such

fast transitions.

We estimated parameters for cube model with equal rates for parallel edges to find

that it was insufficient to fit the data with these parameters only. This suggests that

parallel edges of the cube model requires unequal rates to fit the empirical data. It

implicitly, also, suggests that community communication (differential rates and,

speculatively diagonal transitions) may be important in shaping in silico communities

that resemble the empirical macrophage communities.

The cube model is conceptually simple and parsimonious, but it includes a large

number of parameters which need to be fitted to data, and therefore any conclusions

drawn from this model ought to be treated with caution and considered in the context of

other possible models. For example, the transition rates between cell-states may be

dependent on the density of cell-states, introducing non-linearities which are not

captured in the current model. To capture such non-linearities would require adding yet

more parameters to the model. Nevertheless, if further data become available, and in

particular data with a higher temporal resolution, then such considerations are worth

pursuing.
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5.5 Discussion

In conclusion, we use simple modelling approaches to help understand the possible

mechanisms underpinning the complex dynamics observed in Chapter 4.

First, we model the proportion of cells positive for an inflammatory protein in

response to LPS, treating each inflammatory protein independently, to show that:

• the addition of non-responding states within the model can be used to model hypo-

response to a secondary dose of LPS; without such states, the model outputs cannot

be readily matched to experimental observation.

• non-responding states (NRS + NRPS) vary in proportion, and evolve differentially, for

various proteins when the parameters of the model are estimated from empirical

results.

• While pro-IL-1β, NOS2 and IL-6 positive cells can assume non-responsive and non-

responsive (permanent) state, TNF positive cells do not become permanently non-

responsive.

Second, we model sub-populations within a LPS responding macrophage community to

show that:

• sub-population interdependence can be modelled in a heterogeneously. responding

community.

• restricting secretion globally can have specific effects on the transition probabilities of

responding sub-populations, such as an increased transition rate for negative state

to triple positive state or increased rates to respond to LPS stimulus.
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5.5.1 Hypo-responsive populations modelled as distinct populations are

different for different proteins

We create a simple model whose dynamics are dictated by LPS concentration in the

environment to calculate the fraction of the population that is positive for a given

cytokine or inflammation- associated protein. Upon adding non-responding states to the

model, we mimic a hypo-responsiveness in terms of a decreased fraction of positive cells

responding to a second in-silico LPS dose. We show that non-responding populations

vary by size and also have a different composition for individual proteins. This is best

displayed in Figure 5.13 to show that while TNF non-responding population is

comprised solely of a non-responsive (NRS) state each of the other protein populations

comprise of NRS and non-responsive (permanent) state (NRPS) states. This specifically

means that upon second dose of LPS some of the cells that are in the NRPS state for IL-6,

IL-β Pro or NOS2 cannot respond to the stimulus.

LPS-induced tolerance has been shown to manifest through genes that become

non-responsive or those that remain responsive (Foster, Hargreaves, and Medzhitov,

2007). Histone H3K4 trimethylation associated with transcription of IL-6 upon first

challenge of LPS is lost when bone-marrow derived macrophages are challenged twice

(Foster, Hargreaves, and Medzhitov, 2007). Histone modifications could be a mechanism

by which NRPS cells, as defined in the nr model, manifest. NRS or non-responsive state

in the model can represent cells that are temporarily attenuated such as by the reduction

of TLR4 expression after LPS challenge (Nomura et al., 2000) or even fine-tuned by

miRNA targeting of TLR4 (Chen et al., 2007; Teng et al., 2013; Jiang et al., 2018.

Simulating the nr model for TNF (estimated parameters) revealed that TNF positive cells

can become non-responsive but only about 2% of the population becomes

non-responsive (permanent). This is interesting because histone modifications are

known to occur for TNF (H3K9 dimethylated histones on promoter). However, while

LPS-responsive genes are shown to be dependent on SWI/SNF dependent, Tnf is shown
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to have little dependence (Ramirez-Carrozzi et al., 2006; Ramirez-Carrozzi et al., 2009).

This may be a plausible reason why TNF cells do not become permanently

non-responsive (NRPS) and requires further investigation.

It would then be interesting to experimentally test the presence or absence of

NRS/NRPS states. Interestingly, the overall non-responding state (NRS + NRPS) had the

highest representation in simulated models for TNF and IL-6. Intuitively, this may

suggest that probing TNF or IL-6 negative cells within hypo-responsive community

in-vitro may reveal more about the characteristics of LPS induced hyporesponsiveness or

tolerance.

5.5.2 Modelling community inter-dependence

In order to understand signalling and its effects on sub-populations within a community

of macrophages responding to LPS, we re-defined our model (cube model) to add 8

states representing 8 sub-populations of TNF, IL-6 and NOS2 (TNF+IL6+NOS2+,

TNF+IL6+NOS2-, TNF+IL6-NOS2+, TNF+IL6-NOS2-, TNF-IL6+NOS2+,

TNF-IL6+NOS2-, TNF-IL6-NOS2+, TNF-IL6-NOS2-). We also removed the LPS

dynamics from the model to see how sub-populations evolve over time under implicitly

constant LPS conditions. Fitting this model to experiments in Figure 3.10, Chapter 4, we

show that LPS stimulation along with restriction of secretion has strong effects on

transition rates of a cell in a negative state (TNF-IL6-NOS2-) to transition to the

TNF+IL6-NOS2+ or TNF+IL6-NOS2- state. Interestingly, transition rates also suggested

that cells in the negative state can also become single positive for TNF (TNF+IL6-NOS2-)

or NOS2 (TNF-IL6-NOS2+) or IL6 (TNF-IL6+NOS2-) in decreasing order of probability.

While it is apparent from our experimental results that secretion restriction does increase

the proportion of triple positive sub-population, thereby suggesting an increase in

overall inflammatory potential, our modelling results go a step further in suggesting the
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overall rates at which this occurs. Parametrising the cube model can trace the

time-evolution of sub-populations.

While simple cases of cube model that treat each protein independently were not able

to fit the empirical data, our cube model sets up a modelling platform that can be used to

model sub-population feedbacks that can modify community heterogeneity. This can be

achieved by estimating the parameters of the cube model with additional more

experimental data at different time points. The addition of density dependence and LPS

dynamics within cube model framework may be able to explain the interdependence of

states and their emergence. An addition of the dynamics of brefeldin and its effects on

secretion may be built into the cube model to modify rates based on whether a cell at any

given time is secreting or not. This not only effects the accumulation of the protein in the

cell but also the autocrine/paracrine effects of the protein being secreted. While such

possibilities were considered these were not attempted within the time stipulated for the

thesis.

5.5.3 Summary and future work

We used simple mathematical models to understand hyporesponsiveness and by

classifying responding populations into a negative, positive non-responsive (NRS) and

non-responsive (permanent) state (NRPS). The model was able to capture apparent

hyporesponsive behaviour for these proteins and provided output of the composition of

NRS and NRPS state. Here, we propose the existence of, previously unknown cell states

that explain macrophage hyporesponsiveness upon activation. Our model can be used

for other cytokines and their expression at the single-cell level to find the relative

proportion of NRS and NRPS states. However, it cannot be used to understand the

mechanistic basis of single-cell protein expression behaviour. For this, individual-based
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models will be required to be built.

However, the nr model does not capture how individual proteins are affected by the

environment. We built a more complex model to capture this information and estimated

the parameters of this model to fit empirical data pertaining to conditions at which

secretion was restricted or not. Both our models answer different questions by

suppressing complexity in underlying behaviour. nr model does not capture effects of

community on individual proteins while cube does not capture LPS dynamics. This

phenomenological approach proved useful in understanding heterogeneous population.

The potential of the cube model, however, can be further explored with more

experimental data.

In order to understand how macrophage communities evolve and interact it would

be interesting to mathematically model communities based on future work suggested in

Chapter 4 such as the use of spatial information on how sub-populations of

macrophages evolve. Using this information, more sophisticated individual based

models maybe created to model emergent behaviour
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Chapter 6

Dicer knock down affects

composition, distribution and

variability in LPS induced proteins

6.1 Introduction

miRNAs repress protein expression to act as a post transcriptional regulatory

framework. Taken together, miRNAs regulate a myriad of cellular processes such as

differentiation, development, homeostasis and regulate immune cells during an

inflammatory response. The repression of messengerRNA (mRNA) by miRNAs is a

many to many relationship where a miRNA can repress one or more proteins or many

miRNAs can simultaneously target one mRNA. This allows miRNAs to have differential

effects on protein targets, some being finely tuned by about 6% while others being

repressed up to 50% (Guo et al., 2010; Baek et al., 2008).

miRNA primary transcripts are processed through a canonical pathway to become

mature miRNAs that are cleaved by Dicer, an endonuclease, to their functional form

which can then bind to their mRNA targets. While loss of individual miRNAs can have

large effects on specific cellular and signalling processes, the loss of Dicer has been
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shown to have global effects, such as loss of variability in expression of pluripotency

factors by embryonic stem cells (ESCs) that is seen in otherwise uniform populations.

This implies that in addition to affecting mean expression of their targets, miRNAs might

also determine variance in gene expression. This variability in expression of

pluripotency factors is attributed to the ability of ESCs to differentiate towards multiple

cell fates (Kumar et al., 2014; Klein et al., 2015). The ability of miRNAs to increase noise

(variability) in gene expression of highly expressed genes (Schmiedel et al., 2015) may

contribute to differential expression of highly expressed genes (Shalek et al., 2013), such

as pluripotency factors (Garg and Sharp, 2016). In this chapter, we question if disrupting

the miRNA biomachinery by knocking down Dicer induce changes to LPS-stimulated

macrophage communities as described in (Chapter 4).

6.2 Aims

1. To show if communities of LPS stimulated RAW264.7 macrophage change in

composition upon knocking down Dicer.

2. Evaluate underlying expression patterns of our chosen proteins (TNF, IL-6, NOS2

and pro-IL-1β) within the Dicer-deficient communities.

3. Theoretically investigate the effect of Dicer on kinetics of expression of

pro-inflammatory proteins during LPS challenge.
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6.3 Dicer expression in RAW264.7 cells can be knocked down for

up to 72 hours

A global reduction in miRNAs can be induced in cells by knocking down Dicer (Kumar

et al., 2007; Kumar et al., 2009). In order to characterise the effects of LPS in miRNA

deficient macrophages, we transfected RAW264.7 cells with siRNA that specifically

targeted the Dicer mRNA (Figure 6.1).

We checked protein levels of Dicer at 24 (first LPS stimulus) and 72 hours (harvest of

cells) post transfection to show that Dicer levels were reduced at first LPS challenge and

for the duration until cells were harvested for intra-cellular staining. Further the reduced

levels across treatments show that LPS treatment did not affect the reduction in Dicer

levels (Figure 6.1).

6.4 Dicer-knock down populations can make TNF and IL-6 and

are hypo-responsive on secondary stimulus

We measured cytokine levels of TNF and IL-6 in Dicer knock down cells to confirm that

secreted cytokines in Dicer knock down populations could be detected in the culture

supernatant. Like untransfected RAW264.7 cells, Dicer knock down populations

produced TNF and IL-6 on LPS challenge and were hypo-responsive on secondary

challenges. Hypo-responsiveness was greater when the first challenge dose was higher

(1000/1000 vs 10/1000, Figure 6.2) in both siDicer and NTC populations.
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FIGURE 6.1: Dicer knock down in RAW264.7 cells

Western blots showing Dicer along with β-actin levels in untreated (Media/Media; Media),
challenged (Media/100) and twice-challenged (10/10000; 1000/1000) RAW264.7 cells that were

either transfected with not-template control (NTC) or an siRNA for Dicer.

FIGURE 6.2: Dicer knock-down RAW264.7 cells are hypo-responsive

Bar-plots showing TNF and IL-6 levels in supernatant from untreated (M/M), challenged
(Media/1000), twice-challenged (10/1000; 1000/1000) pertaining to siDicer and NTC treatments.

n=2-3 for TNF; n=1-2 for IL-6.
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6.5 Dicer knockdown induces changes in community

composition

In order to visualise differences between communities responding to LPS for Dicer

knock down, RAW264.7 cells we first looked at community structure at 24 hour (20 hour

LPS and 4 hour LPS+BFA). RAW264.7 cells transfected with a non-targeting siRNA

(NTC) or Dicer siRNA (siDicer) were challenged with 1, 10, 100 and 1000 ng/ml of LPS.

We included a control for untransfected cells to account for any density-related effects

due to cell isolation as seen before in Chapter 4 as the transfections were carried out in

culture plates with a surface area five times greater and a cell density (at plating) of

approximately 50,000 (see Chapter 2). siDicer communities in comparison to

untransfected and NTC communities showed compositional changes (Figure 6.3).

Communities between untransfected and non-targeting control (NTC) were very

similar in the middle doses of LPS (10 and 100 ng/ml) while showing variation in the

frequency of triple negative sub-population at 1 ng/ml (7% increase in NTC) LPS

challenge and that of triple positive (TNF+IL6+NOS2+) and TNF+IL6-NOS2+

sub-populations at 1000 ng/ml. Compared to the untransfected community, NTC

community (1000 ng/ml) comprised of approximately twice as many triple positive

sub-populations with 16% TNF+IL6-NOS2+ sub-population compared to 9.5% in the

untransfected control. Overall TNF+ cells, in that way, were twice as many in the NTC

community (at 41% from 22.5%). These differences between untransfected and NTC

communities (Figure 6.3) suggest that the transfection itself can affect community

composition, possibly, due to the activation of TLR3 by double stranded RNA

(Alexopoulou et al., 2001) or transfection reagent induced activation of interferon

signaling (Guo et al., 2019). The above illustrates that untransfected communities should

not be directly compared with siDicer communities. Due to this it must also be noted

that transfected cells are activated and hence do not represent wild-type response for
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which a knock-out cell line is preferable.

Comparing NTC and siDicer communities next, it was visually apparent that both

the communities are sensitive to dose and triple positive and double positive

TNF-IL6+NOS2+ sub-populations to be prominent at higher doses of LPS. At lower

doses, both NTC and siDicer communities are dominated by the negative

sub-population comprising 57% and 72.8% of the community. As miRNAs are known to

repress protein expression, it is counter intuitive to expect more negative cells in

population that has reduced Dicer expression (Figure 6.3). However, our results

consistently showed a higher frequency of negative sub-population in siDicer

communities (compared to NTC communities) across all doses of LPS at 24 hours post

LPS challenge. This may suggest that miRNA as a regulatory network repress switching

off of inflammatory mediators. Interestingly, the increased frequency of negative

sub-population also accompanied a decrease in the frequency of the triple positive

sub-population (5.3% to 3.3%, 100 ng/ml; 23% to 15.3%, 1000 ng/ml) in siDicer

communities. This suggests that siDicer communities are less inflammatory overall with

less cells producing all three proteins and more cells producing none. The double

positive TNF-IL6+NOS2+, that we have earlier shown to be associated with higher doses

of LPS and correlating with the triple positive population (Chapter 4), was marginally

higher (26.5% compared to 24.8%, 1000 ng/ml; 10.6 % compared to 7%, 100 ng/ml)

suggesting this sub-population to be affected differentially by Dicer knock down. At

lower doses, fewer single positive TNF-IL6-NOS2+ sub-population were observed in

siDicer communities and it may be speculated that single positive cells for NOS2 may

switch to a negative sub-population faster in Dicer deficient environment (Figure 6.3).

Overall the LPS dose effect observed between the communities was visualised by

Bray-Curtis dissimilarity matrix that put untransfected and NTC close to each other

while separating on the basis of LPS dose. siDCR communities on the other hand were

distant from untransfected/NTC controls to suggest the differences in composition.
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FIGURE 6.3: Dicer knock-down have an effect on triple positive and
negative sub-populations

Pie charts derived from flow cytometry data representing community composition based on
sub-populations of TNF, IL-6 and NOS2 positive cells for untransfected, NTC and siDicer groups

treated with 0, 1, 10, 100 or 1000 ng/ml of LPS (20 hour LPS and 4 hour LPS+BFA). Count of
cells=100,000.
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(Figure 6.5a)

6.5.1 Twice challenged communities at 24 hours appear similar

Next, we looked at community compositions of cells that were challenged twice as

compared to those that were challenged only once with LPS. Twice-challenged

communities (10/1000 or 1000/1000, Figure 6.4), at 24 hours post secondary stimulus,

were visually similar when compared to challenged communities between NTC and

siDicer groups. Media/1000 or the single challenge community changed more in

comparison (Figure 6.4, 6.5b).

While not directly comparable, untransfected twice challenged communities

(Untransfected control, Figure 6.4) also appeared similar to NTC and siDicer groups,

especially, the 10/1000 communities. Both 10/1000 and 1000/1000 communities showed

a small increase in negative sub-populations in siDicer group compared to NTC.

However, while 10/1000 siDicer community had more triple positive (TNF+IL6+NOS2+)

sub-populations (8.7% compared to 4.2% in 10/1000 NTC). On the other hand,

1000/1000 community had a smaller triple positive population (13.6% in comparison to

23.50% in NTC). At the overall TNF+ cells, 10/1000 NTC and siDicer communities were

both 31% positive while in 1000/1000, siDicer communities were only 30% overall

positive for TNF (in comparison to 41% in NTC). The differences suggested a reduced

inflammatory response from Dicer knock down 1000/1000 community at 24 hours post

secondary stimulus stage (Figure 6.4).

The Media/1000 community between siDicer and NTC groups communities were

the most distant (Figure 6.5b) and this was visually evident with the double positive,

TNF-IL6+NOS2+ sub-population representing 30% of the entire community in siDicer

group while the NTC group only comprised of 4% of this sub-population. In the Dicer

knock down community, 10% cells were triple positive as compared to 2% in the NTC
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group (Figure 6.4).
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FIGURE 6.4: Hyporesponsive communities change little between NTC
and siDicer groups

Pie charts derived from flow cytometry data representing community composition of TNF, IL-6
and NOS2 positive cells for untransfected, NTC and siDicer groups treated with 0, 1, 10, 100 or

1000 ng/ml of LPS (20 hour LPS and 4 hour LPS+BFA). Count of cell=100,000
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FIGURE 6.5: Community compositions NTC and untransfected
communities differ by LPS dose while hypo-responsive communities

differ little.

Bray-Curtis matrices representing community composition dissimilarities with respect to a) LPS
dose titration and b) challenged and twice-challenged communities (M/1000; 10/1000;

1000/1000) across untransfected (NoT), NTC and siDicer groups.
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6.6 Single positive pro-IL-1β cells increase upon Dicer knock

down in RAW264.7 cells

pro-IL-1β is the immature form of IL-1β, an acute-phase cytokine,and is implicated to

have profound effects in inflammatory response and disease progression (Bent et al.,

2018; Ren and Torres, 2009; Wojdasiewicz, Poniatowski, and Szukiewicz, 2014) upon

caspase dependent cleavage. We included the pro-form of the cytokine in our panel to

check if it is introduces any new sub-populations upon Dicer knock down in RAW264.7

cells.

pro-IL-1β was observed, plotted against TNF intensity in Figure 6.6a, and showed

overall higher positive pro-IL-1β populations upon Dicer knock down as compared to

NTC. Higher number of pro-IL-1β positive cells were, especially, more prominent at

lower doses of LPS with respect to NTC or untransfected cells. The second quadrant of

the bi-plots showed a high frequency of pro-IL-1β+TNF- cells in Dicer knock down

group (Figure 6.6). This led us to question if the increase in pro-IL-1β positive cells were

correlated to increased number of triple negative (TNF-IL6-NOS2-) sub-population

observed to increase in Dicer knock down communities treated with LPS with greater

frequencies at lower doses (Figure 6.3).

Indeed, upon gating sub-populations that were negative for TNF, IL-6 and NOS2,

and then looking at pro-IL-1β distribution, we found twice as many pro-IL-1β positive

cells in the siDicer treatment across all doses at 24 hours post stimulus (Figure 6.6b).

NTC and untransfected groups both comprised of 2-4% of this single positive IL-1β

population at 100 and 1000 ng/ml LPS and between 4-9% at 1 and 10 ng/ml LPS. In

siDicer treatment, single positive (pro-IL-1β) cells represented between 14 and 29% of the

population at 1 and 10 ng/ml respectively. At 100 and 1000 ng/ml LPS challenge, this

sub-population represented 6 and 11% of the total population. Our results suggest that
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FIGURE 6.6: Dicer knock down increases pro-IL-1β positive cells

Pre-gated a) flow cytometry (see methods) bi-plots between TNF and pro-IL-β fluorescence
staining positive and negative populations and b) pro-IL-1β intensity of TNF-IL6-NOS2-

(negative) population for untransfected, NTC and siDicer groups across LPS treatments of 1, 10
100 and 1000 ng/ml. Isotype control (first bi-plot/histogram in each row for a) and b)) was used

to gate positive and negative populations.
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the miRNA regulatory framework plays an important role in regulating pro-IL-1β

populations that may persist, at higher frequencies even 24 hours post LPS stimulus.

6.7 pro-IL-1β levels increase per cell upon Dicer knock down

We next looked at overall pro-IL-1β distribution to see if Dicer knock down affects all

cells producing pro-IL-1β. Distribution of pro-IL-1β was observed to be heavy

right-tailed at low doses and distinctly bi-modal for untransfected and NTC controls.

Dicer knock down, however, had profound effects on the distribution of pro-IL-1β in the

population. The population was distinctly bi-modal even at a low dose of LPS (1 ng/ml)

suggesting more cells to become high-producers of pro-IL-1β in the absence of miRNA

regulation (Figure 6.7a). The bi-modality in pro-IL-1β production increased with higher

LPS dose and at the highest dose most of the population was high pro-IL-1β producing

(Figure 6.7a). This is further exemplified by the constant rise in the median pro-IL-1β

fluorescence intensity with respect to NTC peaking at 3 times the intensity 1000 ng/ml

LPS treatment (Figure 6.7b). pro-IL-1β intensity in Dicer knock down population

showed between 2.8 to 4 times fold increase median intensity with respect to NTC

consistently over different doses of LPS (Figure 6.8a). The highest dose (as represented

by L1000 and M/1000) showed between 2.5-5 fold increase but high variability across

experiments suggesting the absence of miRNAs might increase the noise in the

production of IL-1β within the population at the highest dose of LPS. The strong effect

on pro-IL-1β median intensity fold change was not as pronounced in the twice

challenged population as compared to the challenged population, M/1000 (Figure 6.8a).

This may suggest the hypo-responsive populations to be more resistant to the effect of

miRNA loss-induced expression of pro-IL-1β such that additional regulatory

mechanisms may exist in a hypo-responsive population.
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We then compared previously described single positive pro-IL-1β positive

population (Figure 6.6b) with the overall (all F4/80 positive cells) pro-IL-1β distribution

(Figure 6.7a) and found that single positive sub-population was distinct in their

expression of pro-IL-1β expression (Appendix figure 8.4).

An overall pro-IL-1β increase in all cells upon Dicer knock down suggests there is a

strong activation of pro-IL-1β in the absence of Dicer and, consequently, miRNAs. We

then looked at TargetScan (Agarwal et al., 2015) to look for conserved miRNA targets

IL-1β but found only poorly conserved targets (Appendix Table 8.1). Further, the 3’ UTR

(untranslated region) of the IL-1β mRNA is short (495 nucleotides in mouse) which

further decreases the likelihood (Matoulkova et al., 2012) of IL-1β to be targeted by

miRNAs.

6.8 TNF levels are affected at low dose of LPS upon knocking

down Dicer

TNF expression was bi-modal at high doses (100 and 1000 ng/ml) while analog at low

doses after 24 hours of LPS stimulus between untransfected, NTC and siDicer groups

(Figure 6.7a). The median TNF produced (as indicated by the fluorescence intensity) by

the population was similar at high doses with small increase in median TNF in low doses

of LPS (Figure 6.7b). This suggested while the loss of miRNAs had no effect at high doses

in overall amount, the same showed a positive knock on effect on how much TNF was

being produced per cell. This is supported by the analog nature of the distribution of

the staining. The fold change of median fluorescence intensity of TNF with respect to

NTC showed that at low doses median TNF intensity is higher across two experiments

while at high doses the fold change was not as high (Figure 6.8b). The media only (or

stimulated) population showed an increase as more TNF staining was observed in siDicer

than NTC in untreated cells (Figure 6.8b), however, the median intensity itself was not
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comparable (Figure 6.7b). We also looked at the fold change in median intensity of TNF

in hypo-responsive twice-challenged cells to find no difference in the intensity of TNF

staining. This sugggested that at 24 hours post secondary challenge miRNA effects in

hypo-responsive cells do not have an effect suggesting limited miRNA-led regulation of

TNF, at least at this time point (Figure 6.8b).
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FIGURE 6.7: pro-IL-1β shows positive fold change when compared to
non-transfected controls.

Pre-gated (a) flow cytometry histograms for pro-IL-1β and TNF fluorescence intensity for
untransfected, NTC and siDicer groups are overlaid for comparison. (b) population median

fluorescence intensity for NTC and siDicer groups each for IL-1βPro and TNF are represented in
before-after plots. 1, 10, 100 and 1000 ng/ml of LPS treatment in per group.
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FIGURE 6.8: Dicer knock-down has subtle effects on TNF but profound
effects on pro-IL-1β expression

Scatter plots showing comparison of fold change in MFI (median fluorescent intensity) between
siDCR and NTC groups for Media (0ng/ml), LPS1 (1 ng/ml), LPS1 (10 ng/ml), LPS1 (100 ng/ml)

and LPS1000 (1000 ng/ml) and M/M, M/1000 (challenged), 10/1000 (twice-challenged) and
1000/1000 (twice-challenged) for a) pro-IL-1β b) TNF
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6.9 Dicer knock down populations have higher median IL-6

staining at high doses of LPS

Population distribution of IL-6 staining revealed distributions that were uni-modal across

LPS doses in untransfected, NTC and siDicer groups (Figure 6.9a). The median intensity

of siDicer group was comparable to that the NTC group except at the highest dose where

the Dicer knock down population had a larger median intensity suggesting that Dicer

knock down increased IL-6 production in the population but only at the highest dose

(Figure 6.9b). However, when interpreting median intensity as a fold change between

siDicer and NTC very small differences in the intensity fold change was variable at the

highest dose and, therefore, were inconclusive (Figure 6.10b).

6.10 Dicer knock down decreases NOS2 levels in the population

NOS2 staining was observed to be bi-modal at 1, 10 and 100 ng/ml of LPS challenges in

the untransfected control while at the highest dose of LPS (1000 ng/ml) the distribution

of NOS2 staining was mostly uni-modal with most cells positive for NOS2 staining. NTC

and Dicer populations were uni-modally distributed at 100 and 1000 ng/ml of LPS dose

suggesting transfection to have a positive effect on the NOS2 staining of the cells (Figure

6.9a). However, the increase in median fluorescence intensity of NOS2 in the siDicer

populations across LPS dose was linear in comparison to the NTC populations that had

an higher median intensity at all doses which peaked at 1000 ng/ml LPS dose (Figure

6.9b). The lower NOS2 levels expressed as a fold change between siDicer and NTC

groups at 100 ng/ml LPS dose showed a 20% drop in the median intensity of NOS2

staining. This drop increased to 40% at the highest dose of LPS. This was, however, not

observed in Media/1000 (single-challenged) populations which had twice as many cells

at LPS stimulus (Figure 6.10a). This leads to the speculation that when Dicer is available,

the overall regulatory effect of miRNAs is to increase the production of NOS2 in
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FIGURE 6.9: Dicer knock down decreases NOS2 levels in the population
while IL-6 levels remain unaffected

Pre-gated (a) histograms for pro-IL-1β and NOS2 fluorescence intensity for untransfected, NTC
and siDicer groups are overlaid for comparison. (b) Population median fluorescence intensity for
NTC and siDicer groups each for IL-6 and NOS2 are represented in before-after plots. 1, 10, 100

and 1000 ng/ml of LPS treatment in per group.
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RAW264.7 but this effect is further dependent on the size and density of the population.

6.11 Dicer knock down affects the cell-to-cell variability of

proteins

It has been shown using dual reporter systems (Schmiedel et al., 2015) and endogenous

targets (Blevins et al., 2015) that miRNA affect the cell-to -cell variability interpreted

using the co-efficient of variation (CV) statistic to represent variability. As CV is

normalised to mean (CV=standard-deviation/mean), it can be indicative of the

variability in the populations of different means. We calculated the CV of fluorescence

intensities of each of our chosen proteins to check if Dicer knock down affected the

cell-to-cell variability of protein expression.

Dicer knock down decreased the CV of pro-IL-1β expression for all doses of LPS

indicating that Dicer knock down has an overall effect of decreasing the variability of

cells. This increased variability is stronger at low doses of LPS (or when the median

intensity of the population is lower) in comparison to higher doses (Figure 6.11). The

decrease in CV was observed when comparing challenged and twice-challenged

populations in the expression of pro-IL-1β as well. The above results suggest that

pro-IL-1β is expressed with greater variability in presence of Dicer, or consequently,

mature miRNAs.

NOS2 CV was higher for the siDicer group when compared to its respective NTC

control indicating that as Dicer is knocked down, the cell-to-cell variability of the NOS2

population increases (Figure 6.11). In populations challenged twice with LPS, the

1000/1000 treatment showed an increased CV upon Dicer knock down, the 10/1000

treatment had a smaller CV with respect to NTC suggesting, possibly, a small difference
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FIGURE 6.10: NOS2 fluorescence intensity shows negative fold change
when compared to non-transfected controls.

Scatter plots showing comparison of fold change in MFI (median fluorescent intensity) between
siDCR and NTC groups for Media (0 ng/ml), LPS1 (1 ng/ml), LPS1 (10 ng/ml), LPS1 (100

ng/ml) and LPS1000 (1000 ng/ml) and M/M, M/1000 (challenged), 10/1000 (twice-challenged)
and 1000/1000 (twice-challenged) for a) NOS2 b) IL-6
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in the two treatments as to how NOS2 variability is affected when populations are

pre-stimulated with a low dose of LPS. Interestingly, the challenged (Media/1000)

control population did not register a drop or increase in CV upon Dicer knock down

suggesting the density of cells to have a role in maintaining the cell-to-cell variability

(Figure 6.11).

TNF CV was found to be higher upon Dicer knockdown but this increase was less

obvious or even absent at higher doses of LPS stimulus. The CV in twice-challenged

population was unpredictable across the experimental repeats. IL-6 CV was mostly

unchanged across the LPS doses and in twice challenged populations when compared

siDicer was compared to NTC. Some of the repeats, however, showed an increase in the

CV making overall predictions difficult (Figure6.12).
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FIGURE 6.11: Dicer knock affects the cell-to-cell variability of pro-IL-1β
and NOS2

Before-after plots to show change in CV within NTC and siDicer groups for 1, 10, 100 and 1000
ng/ml of LPS treatment for first LPS challenge and M/1000, 10/1000 and 1000/1000 for second

challenge for pro-IL-1β and NOS2
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FIGURE 6.12: Dicer knock does not affects the cell-to-cell variability of
TNF and IL-6

Before-after plots to show change in CV within NTC and siDicer groups for 1, 10, 100 and 1000
ng/ml of LPS treatment for first LPS challenge and M/1000, 10/1000 and 1000/1000 for second

challenge for TNF and IL-6
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6.12 In-silico cell states are sensitive to Dicer knockdown

We then questioned how the nr model (described in Chapter 5) fits the data obtained for

overall pro-IL-1β positive cells, especially, when Dicer is knocked down. Following the

methods of Chapter 5, we estimated the parameters for nr model for NTC and siDicer

separately and accepted parameters that fit (+/-5%) the number of pro-IL-1β positive

cells across all four LPS doses (Figure 6.6a) at 24 in silico hours.

Figure 6.13a shows that mean value of parameter β that describes the rate at which

positive cells become negative was lower in siDicer and close in magnitude to the value

of α. The value of α, the rate at which negative cells become positive, was similar

between both NTC and siDicer. The parameter γ1, the rate at which positive cells turn

non-responsive, was low for both treatments suggesting that fewer cells become

non-responsive (NRS). The mean value of γ2, however, was higher in NTC than siDicer

suggesting that a higher probability is associated with NRS cells to switch to the

non-responsive (permanent) state (NRPS) in the NTC treatment. Further, mean β2 value

was lower in NTC (than in siDicer) suggesting, fewer cells to become negative from the

NRS state (Figure 6.13a).

The results suggest that as γ1 is low, majority of the transitions within the simulated

models of NTC and siDicer will be effected by α and β values, especially, when LPS in

the in silico environment decreases. This means that most of the variance in the

trajectories of siDicer and NTC (Figure 6.13b) can be explained by a lower rate of

switching off from positive to negative states. Further, the nr model simulation suggests

that Dicer knock down may decrease the number of NRPS cells (because of the low γ2

value) and increase the negative pool from a NRS state.

Figure 6.13 trajectories suggest that a variance in percentage positive pro-IL-1β cells
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is apparent from an early time point at low doses (1 and 10) whereas this variance is less

pronounced in magnitude and at early time points at high doses of LPS (100 and 1000).
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FIGURE 6.13: In-silico cell states are sensitive to Dicer knockdown

a) Box and whisker plots showing estimated values of α, β, γ1, γ2, β2 as estimated for NTC and
siDicer treatments. Number of parameter sets estimated were 8 for NTC and 13 for siDicer b)
Parameter values estimated in a for NTC and siDicer were averaged and used to simulate 20

stochastic runs of the nr model per treatment (NTC and siDicer) with error bars (black)
representing 95% confidence interval of the mean (of all trajectories per dose). LPS 1, 10, 100 and

1000 for NTC in green, blue, cyan and magenta and all siDicer doses in red.
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6.13 Discussion

6.13.1 Conclusions

In this chapter we looked at the effects of knocking down Dicer on RAW264.7

community composition when responding to a first or secondary dose of LPS. We show

results pertaining to composition, distributions of inflammatory protein expression and

cell-to-cell variability at 24 hours from first or secondary stimulus. We make the

following observations in conclusion:

• We report compositional differences in Dicer knock down RAW264.7 macrophages to

non-targeting control (NTC) communities.

• Dicer knock down has a strong positive effect on pro-IL-1β expression

• TNF and IL-6 also have small positive effect on their expression level upon Dicer knock

down while NOS2 is repressed.

• Cell-to-cell variability of NOS2 and pro-IL-1β are affected differentially in Dicer knock

down populations.

• Parameters estimated for nr state model to capture pro-IL-1β positive cells for NTC and

siDicer treatments, revealed that Dicer knock down can affect in silico cell states.
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6.13.2 Dicer knock-down alters sub-population frequencies

We show that knocking down Dicer can either increase or decrease sub-population

frequencies within a community of RAW264.7 cells responding to LPS. Describing

community composition in terms of sub-populations of TNF, IL-6 and NOS2 producing

cells, we show that the most pro-inflammatory sub-population TNF+IL6+NOS2+

decreases when Dicer is knocked down. Interestingly, TNF-IL6-NOS2- sub-populations

increase upon Dicer knockdown. This suggests that Dicer or miRNAs, globally, increase

the inflammatory potential of RAW264.7 cells while in the absence of this regulatory

network, a larger proportion of negative cells are found with fewer triple positive

populations. This suggests that these sub-populations may be maintained by a

differential miRNA expression pattern as shown in cancer phenotypes such prostate

cancer cells (Ambs et al., 2008). Interestingly, miRNAs are known to be determinants of

inflammation in macrophages responding to bacteria (Zhou, Li, and Wu, 2018; Curtale,

Rubino, and Locati, 2019) and have been shown to be differentially expressed upon

secondary stimulus of LPS, in an endotoxin tolerised state (miR-146b, Renzi et al., 2015;

miR-222, Seeley et al., 2018; miR-125a∼99b∼let-7e cluster, Curtale et al., 2018) to signify

their relevance in phenotypic decisions. This may suggest that macrophage response to

LPS is a consequence of communities that differentially express proteins and miRNAs.

This is further supported by the inflammatory sub-population TNF-IL6+NOS2+

which is present in communities responding to high LPS doses and is increased upon

Dicer knock down. While this increase may be a variability in the experimental result it

can also mean that miRNAs can also repress the inflammatory response by acting

differentially on this sub-population.

Analysing triple negative sub-populations in Dicer knock down communities, we

find that it is acutally a heterogeneous population and is a mix of negative population

(for TNF, IL-6, NOS2 and IL-1β) and single positive IL-1β population. We show that this
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population is twice as frequent compared to NTC or untransfected RAW264.7 cells and

are expressed bi-modally. Analysing the single positive pro-IL-1β sub-population with

respect to the overall distribution of pro-IL-1βducing cells, this sub-population is

uni-modal and a low producer of pro-IL-1β (Appendix figure 8.4)

As, the pro-IL-1β populations were twice as frequent we tested the percentage of

positive cells per LPS dose for Dicer knock down populations and non-targeting controls

(NTC) by fitting them to the nr model. Based on the parameter estimates we can

speculate that while β (rate at which positive cells transition to negative) may be a

prominent mechanism how Dicer may affect cell populations to attain the basal rate,

alternative ways to reach the negative state can exist in Dicer knock down populations as

exemplified by the higher β2 rate (rate at which non-responsive cells transition to

negative) in siDicer population (Figure 6.13). Our model suggests that underlying,

mathematically modelled, states may be affected by knocking down Dicer.

6.13.3 Protein expression

As previously discussed, miRNAs play a role in changing overall frequencies of the

inflammatory sub-populations in the LPS-induced community. Further it is observed

that the absence of miRNAs can positively or negatively affect the overall expression, in

terms of fluorescence intensity, of certain proteins. Whether the absence of miRNAs lead

to repression or over-expression is dependent on what the overall additive effects of

miRNAs (directly or indirectly targeting the protein of interest) is.

We show that pro-IL-1β expression intensity increases up to 5-fold when comparing

intensities of siDicer populations with respect to NTC upon LPS challenge. This

increased expression intensity is also accompanied by a subsequent increase in the

number of overall pro-IL-1β positive cells in the Dicer knock down population. (Varol

et al., 2017) showed increased pro-IL-1β expression in Dicer-deficient mice microglia
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suggesting Dicer-dependent activation to occur in vivo as well. This indicates that

miRNA-mediated regulation may be uniformly relevant throughout the population and

may or may not contribute to phenotypic fates in the responding community.

This being said, however, it is highly unlikely that these effects are caused directly by

repression due to miRNA targeting of pro-IL-1β based as the 3’ UTR untranslated region

(UTR) in mouse is 459 nucleotides in length with no conserved miRNA targeting sites

(Appendix Table 8.1). Is is also unlikely that a small 3’ UTR may be targeted by poorly

conserved miRNAs (Matoulkova et al., 2012). This suggests that the increase in pro-IL-1β

positive cells and its associated increase in intensity may be caused by additive effects of

miRNAs targeting other regulatory proteins and signalling molecules and that miRNAs

may be, collectively, dampening the ability of negative populations to turn positive and

positive population to become hyper-responsive in terms of pro-IL-1β expression.

Alternatively, other Dicer-dependent non-coding RNA such as Alu (Kaneko et al., 2011)

and activate the NLRP3 inflammasome (Gelfand et al., 2015) explaining the preferential

activation of pro-IL1β and not the other proteins measured in this study. This may be the

reason why we observe increased single positive pro-IL-1β cells upon Dicer knockdown.

We also observed an overall decrease in the intensity of NOS2 expression in the Dicer

knock down population suggesting miRNAs, in a global sense, may encourage the

production of NOS2 implying an opposite role in how miRNAs collectively, affect highly

expressed proteins, perhaps suggesting their importance in LPS-induced response.

6.13.4 Cell-to-cell variability

While Blevins et al., 2015 suggest that cell-to-cell variability decreases in endogeneous

protein expression, Schmiedel et al., 2015 suggest that cell-to-cell variability may increase

in highly expressed proteins thar are also combinatorially targeted by miRNAs due to

increase in the miRNA pool induced noise. In our results, we observe two highly
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expressed proteins that showed disparate co-efficient of variance (CV) trends.

Cell-to-cell variability decreases upon Dicer knock down for pro-IL-1β suggesting

miRNAs to have an overall tendency to increase the variance in pro-IL-1β expression.

This may explain how diverse IL-1β populations were identified in our results (Figure

6.7b, Appendix Figure 8.4).

NOS2 expression showed increased CV upon the first challenge of LPS suggesting

miRNAs to have a role of decreasing the noise in expression (Figure 6.11).

Both IL-1β (459 nucleotides) and NOS2 (397 nucleotides) have short 3’ UTRs and poorly

conserved sites for miRNAs (appendix Table 8.1, Table 8.2) based on TargetScan

predictions (Agarwal et al., 2015). Since, IL-1β and NOS2 are unlikely to be miRNA

targets because of a short 3’UTR (Matoulkova et al., 2012) and no conserved miRNA sites

on them, it suggests that cell-to-cell variability affected by Dicer knock down may be a

complex process and its effect to cell-to-cell variability may not be trivial.

6.13.5 Summary and Future work

Our observations, in this chapter, were limited to a single time-point (24 hours post

primary or secondary stimulus) and was limited by the lack of complete Dicer. Also, we

do not measure miRNA Further, our hypo-response experiments showed compositional

changes in challenged populations (Media/1000) that were different from the otherwise

identified trends. While this could be an effect of a different starting population size in

Media/1000 populations it remains to be tested. It must be noted that community

composition is limited by the choice of proteins in our experimental set up and may not

necessarily capture all possible sub-populations (inflammatory phenotypes) within the

inflammatory response continuum that may be affected upon knocking down Dicer.

As future work, we would like to intra-cellularly stain for Dicer in populations

responding to LPS to tease out heterogeneity that is either suppressed or expressed due
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to miRNAs as a global regulatory system. Also, it would be further interesting to look at

effects caused by knocking down Argonaute (miRNA-mRNA targeting) and Drosha

(miRNA biomachinery).
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Chapter 7

Discussion

7.1 Summary

In this thesis, we characterise population response of RAW264.7 to LPS and reveal

communities underlying this response. We further find communities within a

twice-challenged population that are otherwise known to be phenotypically distinct and

hypo-responsive. Based on this, we build simple mathematical models to understand the

heterogeneous basis for hypo-response and, more complex ones to determine how

communities of RAW264.7 cells evolve in time. miRNAs have been known to fine-tune

protein expression and cell-to-cell variability. To investigate if miRNAs have a role in

maintaining or establishing LPS-induced heterogeneous communities in RAW264.7 cells,

we knock down Dicer, a core protein in miRNA biogenesis pathway. Below we list our

main findings:

RAW264.7 cells respond as communities to LPS

• Response to LPS is heterogeneous and can be visually represented as a complex

community.

• Community composition is dependent on the magnitude of LPS dose.

• Restricting inter-cellular communication in RAW264.7 has large effects on community

composition.
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• Twice-challenged populations form communities that are more resistant temporally

and perturbations to inter-cellular communication.

In-silico communities provide useful insights to underlying processes and

sub-population transitions

• Hypo-responsiveness can be modelled by including non-responding cellular states

within a population responding to in silico secondary LPS challenge.

• Restriction of secretion promotes the transition of cells in the negative state to the triple

positive (TNF+IL6+NOS2+) state.

• Inter-cellular communication can be mimicked by the cube model to gain useful

insights such as rates that describe sub-population transition rates that can model

time-evolution of community heterogeneity and point out towards possible

interactions between the community.

miRNAs can have complex effects on fine-tuning of protein expression and community

composition

• Community compositions are affected on knocking down Dicer.

• pro-IL-1β expression is upregulated up to 5-fold but this is unlikely due to direct

targeting of miRNAs.

• Variance in pro-IL-1β expression decreases while it increases for NOS2.
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7.1.1 Integration of mathematical modelling to experimental approaches in

studying heterogeneity

Mathematical modelling of biological processes can precisely define dynamics of

complex systems like multi-cellular organisms at the protein, cellular, or even

organismal level. While complex agent-based models (ABM; Bonabeau, 2002) can be

created to simulate emergent behaviour of a system, simple phenomenological models

can be used to ask questions without having to understand the underlying system

(Merks and Glazier, 2005). We approached the problem of representing heterogeneity

and hypo-responsiveness in cell populations with simple phenomenological approaches.

Simplistic approaches, however, are often bound to failure and, thus, a large part of

the mathematical modelling process involved the creation of models that did not explain

our empirical data. However, upon adding and subtracting attributes or terms (Hammer

and Pitchford, 2006) to various models we were able to describe hypo-responsiveness in

terms of in silico cell states. This allowed us to explore the rates associated with the

emergence of these states along with final outcomes in terms of composition of the

population. Thus, approaching problems of biological complexity by iterating through

simple models can be a useful modelling methodology.

Using pie charts to represent heterogeneity in macrophage communities helped us

visualise the idea of macrophage sub-populations influencing each other in a continuum

of heterogeneous communities responding to LPS and secondary effects. This inspired the

idea to create the cube model (Chapter 5) to model sub-population transitions. The ideas

explored with the cube model may be interesting to approach using individual-based

or agent based methods. To model global miRNA behaviour with single-cell effects to

model cell-to-cell variability in protein expression it may be useful to model macrophage

populations at the single-cell level (as agents in an ABM, Bonabeau, 2002) to show how

macrophage populations, fine-tuned by miRNAs emerge in time, micro-environment, and
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antigen-induced response.

7.1.2 Innate immune responses are community-led

Variability in gene expression in eukaryotic cells (McAdams and Arkin, 1997; Elowitz,

Levine, and Siggia, 2002; Paulsson, 2004) often has phenotypic consequences (Eldar and

Elowitz, 2010; Blake et al., 2006). This suggests that genetically equal populations show

considerable cell-to-cell variability that scales with abundance, particularly, of proteins

that are stress induced (Bar-Even et al., 2006; Newman et al., 2006). Phenotypic

heterogeneity conferred from heterogeneous gene expression in yeast has been shown to

be a response mechanism to cope with environmental stress (Bódi et al., 2017). Similarly,

variability in innate immune response to stimulus has been shown to be heterogeneous

in mammalian immune cells (Shalek et al., 2013; Shalek et al., 2014). This is most notable

in the high transcriptional variability of cytokines and their receptors upon stimulus in

LPS stimulated phagocytes of human and mice origin (Hagai et al., 2018). Chapter 3

provides a visual representation of RAW264.7 cells that respond to LPS (as an external

stimuli) as a community comprising of distinct sub-populations that may, in part, be a

result of transcriptional variability of cytokines. The sub-population frequencies within

the responding community are calculated from per-cell fluorescence staining levels

against respective isotype controls to measure protein expression in binary yes or no

terms. Using 3 or 4 highly expressed inflammatory proteins (TNF, IL-6, NOS2 and/or

pro-IL-1β) that result in a total of 8(23) or 16(24) sub-populations we show that response

to LPS, indeed, triggers a heterogeneous response within the population.

While cytokine transcriptional variability may be one of the defining factors of the

underlying heterogeneous response, immune cell response plasticity has been known to

be affected by other factors such as autocrine and paracrine signalling (Xue et al., 2015;

Caldwell et al., 2014; Shalek et al., 2014), and post-transcriptional regulation by miRNAs

(Zhou, Li, and Wu, 2018). Temporal perturbations in transcription factors involved in
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LPS induced genes may modulate response, as in the all or nothing response in NF-κB

activity during early phase activation (Mitchell and Hoffmann, 2018). While the early

phase activation is via MyD88 signalling, the subsequent noisy and graded late phase

activation is TRIF-mediated (Mitchell and Hoffmann, 2018).

We show at the protein level, that community composition is altered temporally, by

increasing the magnitude of LPS and upon restricting secretion. The frequency of the

triple positive (TNF+IL6+NOS2+) and double positive (TNF-IL6+NOS2+)

sub-populations in the community increase upon stronger LPS stimulus suggesting that

the dose of LPS affects sub-populations and not just the overall levels as indicated by the

median fluorescence intensity of a single protein staining within a population. It is worth

noting that certain sub-populations that are theoretically plausible (such as

TNF+IL6+NOS2- or TNF-IL6+NOS2-) are absent or less frequent in RAW264.7

communities responding to LPS. This suggests certain sub-populations may either be

rare or that community-mediated processes such as cytokine signalling can dampen

their presence. We then show that a restriction of both autocrine and paracrine secretion

can alter communities significantly making them more inflammatory. This alteration of

communities was observed when secretion was restricted for longer than 8 hours but

less than 12 hours suggesting this time to be crucial in shaping population heterogeneity.

The possible contributors to this effect may be the activation of late phase NF-κB which

is TRIF-mediated and can lead to a gradated, sensitive to noise response shaping the

overall community into a heterogeneous population (Mitchell and Hoffmann, 2018).

Other contributors to this effect may be the production of anti-inflammatory cytokine

IL-10 (Saraiva and O’Garra, 2010)and TNFR1-TRADD mediated NF-κB signalling with

TNF binding to its own receptor (Hayden and Ghosh, 2014). It is possible that this

gradated response may then be disrupted with the restriction of secretion.
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7.1.3 Twice-challenged communities do not change in composition in

response to LPS

Innate immune cells pre-exposed to LPS show a dampened immune response when

re-stimulated with LPS. This effect is physiologically relevant in the appearance of an

immuno-suppressive phase in sepsis and is associated with increased mortality

(López-Collazo and Del Fresno, 2013). The TLR4 response to LPS induces chromatin

modifications priming anti-microbial effectors while silencing pro-inflammatory genes

(Foster, Hargreaves, and Medzhitov, 2007).

In this thesis (Chapter 4) we show that RAW264.7 cells when challenged twice with

LPS are hypo-responsive, as a population, in terms of secreted TNF and IL-6. However,

at the single-cell level, challenged and single-challenged communities of TNF, IL-6 and

NOS2 appear very similar. Interestingly, upon visually representing communities of

challenged and twice-challenged populations at different time points, twice-challenged

communities did not appear to change as much as the challenged community. This was

observed to be true when secretion was restricted as well. This may mean that

heterogeneity, in terms of, community composition is maintained in hypo-responsive

communities despite the overall lower response. Whether a hypo-responsive population,

that is phenotypically distinct from populations that are not pre-exposed to LPS are

inherently heterogeneous or if certain ’rogue’ triple positive or double positive cells

remain within a hypo-responsive population remains an unanswered question. Such

rogue populations may be important in chronic inflammatory settings such as

atherosclerosis where macrophage response is continually shaped by the

micro-environment (Chistiakov et al., 2015).

A bottom-up approach (Satija and Shalek, 2014) to characterise LPS challenged and

twice-challenged populations by sequencing single-cells by RNA sequencing or by

time-of-flight mass cytometry may be crucial to understand the continuum of
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macrophage response communities. Building single-cell trajectories in pseudo-time to

track how sub-populations, within a responding macrophage community, evolve

(Trapnell et al., 2014) may further our understanding in the mediators of macrophage

response heterogeneity. In Chapter 4, we conceived a mathematical model (cube model)

that describes the time-evolution of macrophage sub-populations in terms of the

probabilities associated with sub-populations switching between each other.

Pseudo-time based parametrisation of this model to find probabilistic rates associated

with appearance (or disappearance) of sub-populations over time can provide important

clues to interdependences between sub-populations. Overall, single-cell based

approaches, visual representations of heterogeneity and mathematically led-approaches

to understanding how heterogeneity comes about in macrophage population can greatly

benefit the understanding of macrophage communities and, even heterogeneous

community responses in general.

7.1.4 MiRNAs can fine-tune expression but also community composition

MiRNAs fine tunes protein expression on a per cell basis acting as a post transcriptional

regulatory framework. Interestingly, miRNA-mediated silencing can also result in lower

cell-to-cell variability in endogenous proteins (Blevins et al., 2015) or an increase in the

variance when multiple miRNAs target a single highly expressed protein (Schmiedel

et al., 2015). In the results discussed in this thesis, protein expression variability (between

cells) of pro-IL-1β and NOS2 show opposite trends. The variability in the expression of

pro-IL-1β upon Dicer knockdown decreased suggesting Dicer (or miRNAs) when

present, increases the variance in pro-IL-1β expression.

Schmiedel et al., 2015 showed that highly expressed genes that are combinatorially

targeted by miRNAs increase the extrinsic noise due to the variability in the miRNA pool

itself. This extrinsic noise in the expression of the target protein expression then

increases variability between cells. The idea of a variable pool of highly-expressed
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miRNA has been recently suggested to be anti-correlated to predicted target gene

expression using half-cell sequencing (Wang et al., 2019). These studies suggest that

increased miRNA noise between cells adds to the extrinsic noise of target protein

expression and has been shown, to computationally, favour the bi-modality in target

protein distribution (Del Giudice et al., 2018). This effect was apparent at high doses of

LPS in this study, in pro-IL-1β expression where Dicer knock down population appeared

to be more uni-modal than the (non-targeting) control population.

Dicer knock down pro-IL-1β populations were not only less noisy but their

expression increases up to 5-fold (Chapter 6). Interestingly, Il1b has a short 3’ UTR (459

nucleotides) which decreases its susceptibility to combinatorial targeting (Matoulkova

et al., 2012), especially, due to the lack of highly conserved miRNAs sites in the UTR

(source: Targetscan; Agarwal et al., 2015). This begs the question if certain undiscovered

miRNAs target Il1b or if knocking down Dicer can disrupt a series of regulatory proteins

that keep pro-IL-1β in check.

Garg and Sharp, 2016 proposed that noisy miRNA-mRNA circuits may be a source of

generating phenotypic outcomes such that noisy genes under miRNA control may be

susceptible to developing into physiologically different cells. Computational modelling

of extrinsic noise was shown as a determinant of bi-modality (Del Giudice et al., 2018).

We show that such a phenotypic variability can, indeed, be observed upon comparing

LPS-challenged community compositions of Dicer knock down populations with Dicer

unaffected communities. Further, of much interest, is why twice-challenged

communities were more resistant to community composition change. This may mean

that hypo-responsive communities as a population have reduced plasticity and yet form

heterogeneous communities when analysed at the single cell-level.
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7.1.5 Conclusion

Macrophages have been explored as communities but only recently been appreciated at

the single-cell level. In this work we show that RAW264.7 macrophage-like cells respond

to LPS as communities that consist of distinct sub-populations. This work demonstrates

that a wealth of insight can be gained by single-cell studies with regards to the

determinants of macrophage population heterogeneity and community responses.

Finally, combining experimental results and mathematical approaches, our study can be

used to probe heterogeneity in populations, not just limited to macrophages.
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Chapter 8

Appendix
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FIGURE 8.1: Triple positive cells and TNF- double positive cells correlate
and may constitute similar populations

Scatter plot to show TNF+IL6+NOS2+ and TNF-IL6NOS2+ sub-populations from n=4-5
independent for treatments of 1, 10, 100 and 1000 ng/ml of LPS dose for 16 hours. R2 value is
used as the estimator for goodness of fit and dotted lines represent 95% confidence intervals.
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FIGURE 8.2: IL-1β is secreted upon two doses of LPS in RAW264.7 cells

Scatter dot plot showing IL-1β levels in RAW264.7 cells stimulated once (Media/1000), or twice
(10/1000 or 1000/1000) where 10 and 1000 represent 10 and 1000 ng/ml of LPS post second

stimulus at 24 hours into culture. n=3; mean levels indicated by horizontal line
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FIGURE 8.3: TNF, pro-IL-1β and GM-CSF communities appear to change
in composition on restricting secretion

Pie charts depicting sub-populations based on TNF, pro-IL-1β, GM-CSF in RAW264.7 cells
cultured in media only or at 1, 10, 100 and 1000 ng/ml concentration of LPS for a 16 hour

LPS+BFA; 4 hour LPS and 12 hour LPS+BFA; 8 hour LPS and 8 hour LPS+BFA; 12 hour LPS and 4
hour LPS+BFA. Count of cells=50-100,000
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FIGURE 8.4: Single positive pro-IL-1β have distinct expression profiles
and are low producers

Histograms overlaid to compare expression intensity of single positive pro-IL-1β staining
compared to overall pro-IL-1β staining for all gated F/480 positive macrophages for NTC and
siDicer groups. Isotype controls (first plot, each row) are shown for comparison with positive

populations for 1, 10, 100 and 1000 ng/ml of LPS treatment.
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miRNA Conserved sites Poorly conserved sites
miR-138-5p 0 1
miR-455-5p 0 1

miR-125-5p/351-5p 0 1
miR-140-5p 0 1

miR-383-5p.2 0 1
miR-148-3p/152-3p 0 1

miR-129-5p 0 1

TABLE 8.1: TargetScan search for miRNAs targeting mouse IL-1β mRNA

miRNA Conserved sites Poorly conserved sites
miR-130-3p/301-3p 0 1
miR-148-3p/152-3p 0 1

miR-302-3p 0 1
miR-291-3p/294-3p/295-3p/302-3p 0 1

miR-17-5p/20-5p/93-5p/106-5p 0 1
miR-33-5p 0 1

TABLE 8.2: TargetScan search for miRNAs targeting mouse NOS2 mRNA
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List of Abbreviations

AGO Argonaute

AP1 Activator protein 1

APC Antigen Presenting Cell

BFA Brefeldin A

CD Cluster of Differentiation

CV Co-efficient of Variation

DAMP Damage-Associated Molecular Patterns

DGCR DiGeorge syndrome chromosomal

GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor

Ig Immunoglobulin

IL-1β Pro Interleukin-1β

IL-10 Interleukin-10

IL-6 Interleukin-6

INF Interferon

IRF Interferon Regulatory Transcription Factor

JAK Janus Kinases

kDa kilo Dalton

LPS Lipopolysaccharides

NF-κB Nuclear Factor - κB

NLRP Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing

NOS2 Nitric Oxide Synthase 2

ODE Ordinary Differential Equation
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PAMP Pathogen-Associated Molecular Pattern

PRR Pattern Recognition Receptor

STAT Signal Transducer and Activator of Transcription

SWI/SNF SWItch/Sucrose NonFermentable

TGF-β Transforming Growth Factor-β

TLR Toll-Like Receptor

TNF Tumour Necrosis Factor

TNFR Tumour Necrosis Factor Receptor

UTR Untranslated Region

XPO5 Exportin 5
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