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Abstract

Tissue-resident macrophages are the first responder cells of the immune system that
phagocytose, present antigens and promote inflammation by secreting soluble factors
(cytokines, chemokines, nitric oxide, etc) that act in an autocrine and paracrine manner.
This response has been shown to be heterogeneous at mRNA level in single cells
suggesting not all macrophages ‘fire” an equal response. Such heterogeneity can have
implications on how inflammation is established or modulated when there is a
pathogenic invasion locally such as in wounds or systemically, as in the case of severe
blood infections. Here, we ask how single and repeated challenge with LPS affects
heterogeneity of macrophage communities. Through combining empirical
measurements of inflammatory proteins such as TNE, IL-6, NOS2, and IL-18 Pro at the
single-cell level with mathematical simulations, we show distinct heterogenous
communities of macrophages emerge following primary and secondary LPS challenges.
Furthermore, we show that restricting inter-cellular communication or impairing
microRNA-mediated silencing, a key cellular process thought to determine population
heterogeneity, affect the composition of macrophage communities and responses to LPS.
Overall, our results demonstrate that macrophage communities of diverse
micro-composition can demonstrate similar macroscopic cytokine responses indicating

that population-level robustness and plasticity underpin innate immunity to LPS.
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Chapter 1

Introduction

1.1 Pathogens and innate immunity

The environment that we live in contains a plethora of pathogenic microbes and toxic
substances; in order to survive, all animals must defend against the attack of these
disease causing agents by recognising them as foreign and mounting an immune

response (Chaplin, 2010).

In a typical infection, the immune response is classified into an innate response that is
fast and broad acting, and adaptive mechanism which is highly specific to a pathogen
(Janeway et al., 2001). The two responses are distinct in terms of specificity but are
closely interconnected and are carefully orchestrated by specialised immune cells. In a
simplified narrative, a pathogen (which can be bacteria, fungus or virus) must first
traverse through the epithelial layer (first line of defence) which typically involves tissue
damage that leads to damage signalling, activation of tissue-resident macrophages, and
recruitment of neutrophils and monocytes which respond to the presence of the
pathogen by phagocytosis and secretion of specialised proteins such as cytokines to
signal other cells involved in the immune system (Turner et al., 2014) in an autocrine (self
acting), paracrine (acting nearby) and endocrine (far acting) manner to initiate and

propagate an immune response (Chaplin, 2010).
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Professional antigen presenting cells (APCs) such as dendritic cells present peptides
derived from the pathogen (antigens) to T cells. This event either triggers T-cell
mediated killing by cluster of differentiation (CD) molecule 8+ (CD8+) T-cytotoxic cells
that recognise the antigen and/or leads to the generation of memory B cells (mediated
by CD4+ T-helper cells) that can facilitate the recognition of this antigen in a future
infection. In this way, the adaptive immune system can mount a much stronger and

specific response to that particular pathogen in a future encounter (Chaplin, 2010).

As a broad acting, non-specific arm of the immune system, innate immunity
encounters the pathogen first, promotes inflammation, contains the infection and shapes
the adaptive response. However, innate immune cells such as macrophages are also key
in resolution of inflammation and tissue repair, not just initiation (Zhang and Mosser,

2008) as discussed in the sections ahead.

1.1.1 Macrophages and their role in immunity

The word macrophage in Greek means ’big eater” and true to their name these large cells
phagocytose pathogens and dead cells upon encounter. Macrophages belong to a group
of cells called leukocytes that include cells like neutrophils, eosinophils, basophils,
megakaryocytes and monocytes derived from a common parent cell, the common
myeloid progenitor. Macrophages are ubiquitous and found in almost all organs and
tissues most of which are derived from embryonic progenitor populations such as the
yolk-sac or foetal liver while some originate from the adult bone marrow. Macrophages
derived from the bone marrow are, usually, monocytes that circulate in the blood as a
patrolling population that are recruited to tissues upon infection or wound healing. This
activates the monocytes to differentiate into monocyte-derived macrophages and
dendritic cells which, in addition, to fighting the infection can replenish the

resident-tissue macrophage population.
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Most of the tissue-resident macrophages are of yolk-sac or foetal liver origin and are
long-term residents that specialise considerably depending on the tissues they live in.
While tissue-resident macrophages are self-persisting populations that can stay lifelong
in some tissues, monocytes on the other hand have a short life-span and are replenished
constantly by the haematopoietic stem cells in the bone marrow (Wynn, Chawla, and

Pollard, 2013; Zhao et al., 2018).

Upon tissue injury or infection, resident macrophages recognise pathogen associated
molecular patterns (PAMP) that are specific to pathogens or damage associated
molecular patterns (DAMP) by specialised receptors such as pattern recognition
receptors (or PRRs) and become activated. Activation leads to an enhanced ability of
macrophages to phagocytose and, also, shape the ensuing inflammatory response by
secreting small signalling proteins called cytokines and chemokines (CHEMOtactic
cytoKINES) that can direct nearby macrophages to respond and even recruit neutrophils

and monocytes (Bianchi, 2007; Mogensen, 2009).

The role of macrophages, however, is not limited to promoting inflammation. After
an early inflammatory phase, macrophages assume a wound-resolving phenotype by
producing growth factors (Shimokado et al., 1985; Willenborg et al., 2012; Rappolee et al.,
1988; Chujo et al., 2009; Berse et al., 1992) like TGF-p that promote cell proliferation,
wound healing and synthesis of extracellular-matrix components (Murray and Wynn,
2011). Next, assuming a more anti-inflammatory phenotype, these macrophages secrete
interleukin-10 (IL-10), inhibitory factors like TGF-p and express cell surface receptors
programmed cell death ligands 1 and 2 (PD-L1 and PD-L2) to dampen the immune
response, which if left unchecked can cause cellular death and delay in tissue repair
(Khalil et al., 1989; Said et al., 2010; Shouval et al., 2014; Zigmond et al., 2014). Recent
research indicates that distinct macrophage and monocyte populations are involved in

different stages of inflammation, repair and resolution (Gundra et al., 2014; Vannella
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et al., 2014). It is, however, unknown whether an individual macrophage can adopt all
these characteristics of being inflammatory, wound healing or anti-inflammatory at
different times taking cues from the local tissue micro-environment or whether distinct
functional macrophage and monocyte subsets are responsible to regulate these different

activities (Wynn and Vannella, 2016).

Traditionally, macrophage response, as described above, has been either classical
macrophage (M1) response which leads to the production of inflammatory cytokines
such as tumour necrosis factor (TNF) and interleukins such as IL-6, IL-15 etc or as M2
(alternatively activated) described as a more wound healing and repair oriented
phenotype secreting the anti-inflammatory cytokine IL-10, growth factor TGF-B and
Argl. In recent years, this dichotomy has been challenged and macrophage response is
considered highly dependent on the activating stimulus and that M1 and M2 responses
are two extremes of an extensive spectrum of responses (Martinez and Gordon, 2014). A
transcriptomic study in human macrophages experimentally showed the existence of a
spectrum of phenotypes, and thus, expanding the M1 and M2 phenotypes to a range of
activation profiles (Xue et al., 2014). Judith Allen and colleagues have since suggested a
naming convention for macrophage phenotypes based on how they are activated. As an
example, macrophages that are activated by lipopolysaccharide (LPS) treatment can be
named as M(LPS) as per this nomenclature method (Murray et al, 2014). This
understanding expands the phenotypic repertoire of macrophages and describes the

heterogeneity of macrophage response in greater detail.

1.1.2 Pathogen recognition by innate immune cells

Macrophages recognise PAMPs from bacteria, fungus and viruses. @ PAMPs are
recognised by PRRs that are either cellular membrane-bound PRRs (such as Toll-like
Receptors and C-type Lectin Receptors) or cytoplasmic PRRs (RIG-1-like Receptors and

NOD-like Receptors). Toll-like Receptors (or TLRs) are key immunological mediators of
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response to a pathogenic encounter. There are 10 TLRs in humans (TLR1-10) and 12 in
mice (TLR1-9; 11-13) each specialised to recognise non-self ligands from a variety of
PAMP sources such as bacteria, fungus, protozoa, and viruses (Mogensen, 2009; Takeda

and Akira, 2004).

Some TLRs recognize more than one type of pathogen. For example, TLR4, that
recognises LPS from most gram-negative bacteria as well as glycoinositol phospholipids
from protozoa and envelope glycoproteins from viruses. Similarly, TLR2, another
toll-like receptor, can recognise zymosan from fungi, peptidoglycan from bacteria,
GPI-mucin from protozoa and envelope glycoproteins from viruses (Yoshimura et al.,
1999; Schwandner et al., 1999; Mogensen and Paludan, 2005). TLRs are not always
surface-bound but can be cytoplasmic in location such as TLR3 that recognises

double-stranded RNA from viruses (Liu et al., 2008).

Upon binding a TLR agonist, macrophages go through a signalling cascade via the
TLR/agonist pathway that induces the translocation of inflammation-associated
transcription factors such as NF-xB, activating protein 1 (AP1) and interferon regulatory
factors (IRFs) leading to transcription of pro-inflammatory cytokines like TNE, IL-6,
IL-18 and IL-12, type 1 interferon and chemokines (Zhang and Ghosh, 2001; Medzhitov,
2001; Takeda and Akira, 2004).

1.1.2.1 LPS as a PAMP

LPS, also referred to as endotoxin, is a large molecule found on the outer membrane of
the cell wall of gram-negative bacteria and is an important PAMP recognised uniquely
by TLR4 (Hoshino et al., 1999; Poltorak et al., 1998). Structurally, LPS comprises of a
hydrophobic Lipid A and a hydrophillic polysaccharide chain which consists of an inner
core, outer core and an O-antigen. The O-antigen is a highly variable unit in terms of

number of repeating oligosaccharides. ~Gram-negative bacterial species are often
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sub-classified into serovars to describe within species variation based on the O-antigen
structure and has been shown to describe the virulence of a particular serovar. However,
the main PAMP component of LPS for TLR based inflammatory signalling is the lipid A
core. This component can contain different number of acylation chains which can show
inter-species variability. Six acylated chains and diphosphorylation of Lipid A core in
Escherichia coli have shown to elucidate a standard TLR4 response. Bacteria such as
Yersinnia spp. with fewer than six acyl chains in the Lipid A core of their LPS tend to
have a dampened LPS/TLR4 inflammatory response (Montminy et al., 2006). Francisella
tularensis, a human pathogen, shows an inability to elicit a TLR response and, thus, is
able to escape the innate response. The Lipid A core of Francisella LPS is hypo-acylated
and monophosphorylated (Tan et al., 2015). Thus, Lipid A core serves as the primary
source of PAMP and pathogens modifying this core component have been shown to

escape/alter the immune response (reviewed by Rosadini and Kagan, 2017).

1.1.2.2 TLR4 as a PRR

TLR4 receptors are expressed by a range of cells including monocytes, macrophages,
myeloid-derived dendritic cells and microglia. LPS binds to TLR4 to elicit an
inflammatory response in cells expressing TLR4. LPS binding to TLR4 is a complex
process and requires several accessory proteins like LPS binding protein (LBP), cluster of
differentiation molecule 14 (CD14) and MD2 (Lymphocyte antigen 96) (Wright et al.,
1989; Wright et al.,, 1990; Shimazu et al., 1999). LBP which binds monomeric LPS
molecules, can then bind to CD14 which then delivers LPS to a complex of TLR4/MD2
(Park and Lee, 2013). It has been shown, using surface plasmon resonance (SPR), that
LPS binds to recombinant TLR4, CD14 and MD2 separately in that order of increasing
affinity. This not only suggests that CD14 can transfer LPS to MD2 but also that LPS can
bind directly to TLR4 or MD2 (Shin et al., 2007).
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TLR4/MD2 complex upon binding to LPS, homodimerises leading to structural
changes that bring the two intracellular Toll/IL-1 receptor (TIR) domains in close
proximity. This then recruits TIR-domain containing adaptor proteins TIRAP (TIR
domain containing adaptor protein) and TRAM (TRIF-related adaptor molecule) which
then engages MyD88 (Myeloid Differentiation primary response gene 88) and TRIF (TIR
domain containing adaptor inducing IFN-B) respectively (Horng, Barton, and

Medzhitov, 2001; Fitzgerald et al., 2003).

The TLR4/MD2 signal transduction can proceed by the MyD88-dependent pathway
and lead to the formation of a complex consisting of MyD88 and IL-1 receptor associated
kinase 1,2,4 (IRAK1, IRAK2 and IRAK4) known as myddsome (Lin, Lo, and Wu, 2010).
The myddsome activates TNF receptor-associated factor 6 (TRAF6) which further
activates transforming growth factor-B-activated kinase 1 (TAK1) that activates the
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-xB) and the mitogen
activated protein kinase (MAPK) switching on inflammatory gene expression (Chen

et al., 2001).

Alternatively, signal transduction from LPS binding can proceed via the
MyD88-independent pathway or TRIF-dependent response as the LPS-bound TLR4 is
endocytosed (??) by the macrophage (Kagan et al., 2008). TRIF-dependent pathway then
activates the NF-xB pathway and inducing interferon genes by activating the
transcription factor Interferon Regulatory Factor 3 (IRF3). While activating
IRF3-dependent interferon-p genes (Doyle et al., 2002), the MyD88 independent response
also provides a second wave of translocation of NF-«B to the nucleus, further activating

pro-inflammatory genes (Yamamoto, Sato, and Hemmi, 2003).

Inflammatory responses that are TLR4 induced can be severe and cause a septic

shock mediated by an overwhelming immune response that can lead to organ damage,
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FIGURE 1.1: Bi-phasic NF-xB activation due to TLR4 endocytosis

Transcription factor NF-xB induction/translocation occurs by the downstream signalling of the
TLR4/MD2 binding of bacterial LPS leading to the transcription of an early phase of protein
expression. As the TLR4 receptor is endocytosed by the cell this leads to a second wave of
late-phase NF-«B activation.
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thus, requiring the TLR4 pathway-induced gene expression to be tightly regulated.
Indeed, TLR4 pathway is regulated at multiple levels starting at the top with radio
protective 105 (RP105), a homolog of TLR4. RP105 complexes with MD1, a homolog of
MD2, and then interacts with the TLR4/MD2 complex inhibiting the association of LPS
(Divanovic et al., 2005). Downstream of the TLR4/LPS signalling there are many other
proteins such as MyD88s (Janssens et al., 2003), IRAK-M (Kobayashi et al., 2002), A20
(Boone et al., 2004), TRAF1 (Su et al., 2006) that can inhibit MyD88, IRAKs, TRAF6, TRIF
respectively, thus, regulating proteins of both the MyD88 dependent and independent
pathway of TLR4/LPS response.

1.2 Regulation of inflammation by cytokines and inflammatory

mediators

An efficient immune response is orchestrated by small secretory proteins and molecules
that can act on cells producing them, nearby cells or by recruiting cells from blood
vessels while facilitating movement by increasing vascular permeability. Innate immune
cells can efficiently communicate with a variety of professional immune cells and other
cells expressing cytokine receptors by secreting cytokines and by chemokines to
encourage chemotaxis. In addition, growth factors and inorganic molecules such as nitric
oxide (reviewed by Sharma, Al-Omran, and Parvathy, 2007) and reactive oxygen species

(reviewed by Mittal et al., 2014) have important microbicidal and inflammatory roles.

Cytokines including chemokines and other mediators are able to influence a variety
of immune cells and can also be redundant in their activity with different cytokines
performing a similar function. The crude overall functions of this type of regulation is to
effect either a pro-inflammatory or anti-inflammatory response (reviewed by Jun-Ming
and An, 2007). TNE, IL-18, IL-6, IL-8, IL-18, nitric oxide are central to inflammatory

action of innate immune response, and are expressed by numerous cell types and are
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involved in a wide variety of biological activities, immune responses like cytokine
production, chemotaxis, proliferation, survival and have pathological role in various
diseases. A balance between such an inflammatory cocktail flowing around the site of
infection (or systemically) and anti-inflammatory signals such as TGF-g, 1L-10, IL-4,
IL-13, eventually, leads to the resolution of inflammation (Turner et al., 2014; Dinarello,
2018; Hunter and Jones, 2015; Kalliolias and Ivashkiv, 2016; Sharma, Al-Omran, and
Parvathy, 2007; Couper, Blount, and Riley, 2008). This balance is critical and, as an
example, the ratio of IL-10 to TNF has been shown to be higher in non-survivors of

systemic infections like sepsis compared to survivors (Gogos et al., 2002).

1.21 TNF

TNF is one of the most important secreted small protein that can shape the immune
response by inducing inflammation, apoptosis or necroptosis. Many inflammation-led
chronic conditions like rheumatoid arthritis (RA), inflammatory bowel disease (IBD),
psoriasis etc are approved to be treated using commercially available TNF targeting
neutralisation antibodies to reduce inflammation (Bradley, 2008; Kalliolias and Ivashkiv,

2016) .

Tnf gene is a single-copy gene encoded in the 6th and 17th chromosome in humans
and mouse genome respectively. TNF expression is regulated by the transcription factors
NF-xB and nuclear factor activated T-cells (NFAT). TNF is expressed as a transmembrane
(27 kDa) protein (Kriegler et al., 1988) that can be proteolytically cleaved by the
metalloprotease ADAM Metallopeptidase Domain 17 (ADAM17) also known as TNF
Converting Enzyme (TACE) as shown by Bell et al., 2007.

TNF signals via TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2) that are
expressed on self or other (Hsu, Xiong, and Goeddel, 1995; Rothe et al., 1995). While

TNEFR1 is found to be expressed in almost all cells, TNFR2 is expressed more exclusively
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on neurons, immune cells and endothelial cells (Yang et al., 2018).

The soluble form of the protein (17kDa) and the transmembrane TNF can bind to
TNFR1 while only the transmembrane form can bind to TNFR2 (Grell et al., 1995). TNFR
signalling based on the two receptors have been proposed to either promote
inflammation (Waetzig et al., 2004) and tissue degeneration via TNFR1 route or tissue

survival and regeneration via TNFR?2 signalling (Fischer et al., 2011; Fischer et al., 2014).

Homotrimeric TNFR1 accepts homotrimers of TNF as ligand resulting in the
recruitment of the TNFRI1 associated death domain (TRADD) protein that then
progresses through four possible pathways mediated either by a complex I or complex
IIa, IIb and Ilc. Complex I formation leads to the activation of NF-xB and MAPKs while
complex Ila and IlIb progresses with the cysteine-aspartic protease Caspase-8 dependent
cellular apoptosis (Micheau and Tschopp, 2003). Complex Ilc, also known as the
necrosome, directs the cell towards necroptotic pathway by activating mixed lineage
kinase domain-like protein or MLKL (Degterev et al., 2005). TNFR1 signalling, thus,
leads to a celullar decision of whether to initiate an inflammatory response or induce
cellular death. Although not clearly understood, current understanding suggests that the
abundance of anti-apoptosis protein such as cellular FLICE-inhibitory protein (c-FLIPy)
that binds to Caspase-8 to block the apoptotic signal may be crucial in determining
which pathway is switched on (Micheau et al., 2001). Similarly, it has been shown, in
mice, the deubiquitinating protein A20 can restrict the ubiquitination of
Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) that promotes the
necrosome (complex Ilc of TNFR1 pathway) formation and, in that way, stop the cell
from undergoing necroptosis (Onizawa et al., 2015). The above mechanisms indicate
ways in which the decision to switch on complex I-mediated TNFR1 pathway is selected

and, thereby, leading to cell survival.
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Cells of the myeloid lineage such as macrophages are the major producers of TNF and

it is one of the early response cytokine secreted upon TLR4/LPS signal transduction.

1.2.2 IL-6

IL-6 is an important pro-inflammatory cytokine that can affect cells locally and
systemically. IL-6 has been known by a variety of names such as B cell stimulatory factor
2 (BSF-2), interferon B2, hepatocyte stimulating factor (HSF) until the discovery that all
those proteins were, in fact, the same protein. As the old names suggest, IL-6 can
differentiate B-cells into antibody producing cells, induce antiviral effects and upon
reaching liver activate the production of acute-phase proteins exemplifying the diversity
of its actions. One of the important inflammatory effects of IL-6 is to promote infiltration
of neutrophils and, subsequently, of monocytes and T-lymphocytes. Monoclonal
antibodies targeting the IL-6 receptor (IL-6R) have been used clinically to treat
inflammatory arthritis suggesting its importance in inflammation-led diseases (Tanaka,

Narazaki, and Kishimoto, 2014)

IL-6 is a 21-28 kDa glycosylated protein that is encoded in the 5th and 7th
chromosome in mouse and human genome respectively. It is produced in response to
PAMPS, TNF and IL-1B by almost all immune and stromal cells. IL-6 signalling requires
two receptors, IL-6 receptor (IL-6R) and glycoprotein 130 (gp130). IL-6 receptors are
either membrane-bound (mIL-6R) or soluble (sIL-6R) and, similarly, membrane-bound
gp130 and a soluble gp130 (sgp130) is also known (Yamasaki et al., 1988; Hibi et al., 1990;
Novick et al., 1989). IL-6 induced signal transduction occurs through IL-6R and

glycoprotein 130 (gp130) via classical and trans-signalling.

In classical signalling, IL-6 binds to mIL-6R and gp130 forming a hexamer (2
molecules of each, Skiniotis et al., 2005) or a tetramer (with 2 gp130 molecules,

Murakami et al., 1993) and this requires the need for both IL-6R and gp130 to be
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expressed as transmembrane proteins which only occurs in leukocytes, megakaryocytes
and hepatocytes. Thus, classical signalling is limited only to a few type of cells. In
contrast, trans-signalling occurs when sIL-6R binds to IL-6 and, then, binds to the
membrane bound gp130 which is ubiquitously expressed in all cells. Trans-signalling
has been shown to be associated with inflammation progression (Campbell et al., 2014;

Jones et al., 2011).

As a regulatory mechanism, sgp130 can bind to sIL-6R and IL-6 to form a complex
that blocks IL-6 trans-signalling (Narazaki et al., 1993). In order to show the effect of
sgp130 induced trans-signalling blocking, transgenic mice that expressed the generated
protein sgp130Fc (10-times more potent in inhibiting IL-6/IL-6R complex than sgp130)
were used as a model of acute inflammation using the air pouch model. In comparison
to wild-type mice the transgenics showed reduced recruitment of neutrophils and
macrophages, thus, confirming the crucial role of IL-6 trans-signalling in inflammation

progression (Chalaris et al., 2019).

The source of sIL-6R has been attributed to two independent mechanisms one of
which involves the proteolytic cleavage of the membrane bound IL-6R through ADAM
proteases. Human IL-6R are shed by ADAM10 and ADAM17 whereas in mice ADAM10
helps shed the receptor (Garbers et al., 2011). The second mechanism proposed as a
source for sIL-6R utilises alternative splicing of the receptor without the transmembrane

domain (Csilla Holub et al., 1999).

In both types of IL-6 signalling, gp130 bound to IL-6/IL-6R complex activates janus
kinases 1 and 2 (JAK1, JAK2), tyrosine kinase (Tyk2), signal transducer and activator of
transcription 1 and 3 (STAT1, STAT3) and the mitogen-activated protein kinase (MAPK)
cascade (Murakami et al., 1993; Heinrich et al.,, 2003). STAT1, STAT3 mediated

inflammation is tightly regulated by suppressors of cytokine signalling 3 or SOCS3
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(Croker et al., 2003), and absence of SOCS3 has been associated with IL-6 mediated
induction of anti-inflammatory response by suppression of the pro-inflammatory TNF

and IL-12 (Yasukawa et al., 2003).

1.2.3 NOS2 and nitric oxide

Nitric oxide synthases (NOS) are a group of enzymes that catalyse the formation of
citrulline and nitric oxide (NO) from L-arginine at the expense of NADPH and oxygen.
There are three known isoforms, NOS1 (neuronalNOS) and NOS3 (endothelialNOS) are
constitutively expressed genes whereas NOS2 (inducibleNOS) is only induced upon LPS
or cytokine stimulation. Nitric oxide levels (measured as nitrates) are highly enhanced in
diseases like RA, osteoarthritis (OA) and ankylosing spondylitis establishing its critical

role in inflammatory conditions (Sharma, Al-Omran, and Parvathy, 2007; Bogdan, 2015).

Nos2 gene is encoded by the 7th and 11th chromosome in humans and mouse
respectively and remains completely silent until induced by a immune signal/stimulus
in a calcium independent manner. In mice, NOS2, a 130 kDA protein, is expressed by
macrophages stimulated by LPS, IFN-v, IL-1, IL-6 and TNF (Kleinert et al., 2004). The
transcription factors associated with these stimuli such as IRF-1, a complex of STAT1,
STAT2 and IRF-9 known as the interferon-stimulated gamma factor (ISGF3) and NF-xB
have all been shown to interact with the Nos2 promoter. Nos2 transcription has been
shown to require a sequential association of transcription factors. NF-xB binding to the
Nos2 promoter leads to the general transcription factor II human (TFIIH; also found in
mice) being recruited. TFIIH remains bound to the site even after NF-«xB is no longer
associated where it awaits the arrival of a RNA Polymerase II that is recruited by ISFG3.
Upon arrival, TFIIH phosphorylates the polymerase to begin transcription, thereby,
creating a factor-recruitment model that fires only after NF-xB and the IFN induced

signal are both detected (Farlik et al., 2010).
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Regulation of nitric oxide production by NOS2 is also affected by other metabolic
and environmental states such as hypoxia. Limited availability of oxygen in hypoxia is
required for NOS2-mediated NO catalysis. Further, under hypoxic conditions NOS2 is
unable to attach to the actin cytoskeleton (mediated by a-actinin 4) which is a
precondition for NOS2 activity. Other factors include the osmolarity of the inflammatory
environment, it was shown that nitric oxide production is enhanced when concentration

of Na* is higher (Jantsch et al., 2015).

Nitric oxide is a highly potent pro-inflammatory molecule that can act as an
autocrine/paracrine mediator due to its lipid solubility and, therefore, easy permeability
across the cell membrane. However, the biological lifetime of nitric oxide is short (six
seconds) which restricts its actions spatially and temporally. The mode of action of nitric
oxide ranges from direct bactericidal/static effects by hindering growth in E. coli and L.
monocytogenes (Liew et al., 1990) and in conjunction with other molecules to form

S-nitrosothiols, superoxide anions, tyrosine nitrates etc.

124 IL-18

IL-1B is an acute phase cytokine that has a role similar to TNF and can induce the
production of TNF and IL-6 in macrophages. It can cause systemic changes by inducing
fever upon reaching the hypothalamus and initiating acute phase proteins in the liver.
Excessive IL-1pB production has been associated with many autoinflammatory diseases
like the heritable Mediterranean Fever that causes fever and inflammation of the
peritoneum, Muckle-Wells syndrome whose symptoms include periodic fever and
utricaria, neonatal-onset multi system inflammatory disorder (NOMID) that causes
persistent inflammation, particularly affecting the nervous system. All these diseases can
be successfully treated with targeted therapy towards IL-18 (Guo, Callaway, and Ting,
2015).
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Mature IL-1B is a 17.5 kDa protein that is encoded in chromosome 2 of the human
and mouse genome. LPS induced activation of Il1b gene is under the control of the
transcription factor NF-xB (Hiscott et al., 1993) like TNF but can also be induced during
glycolysis inhibition by hypoxia inducible factor or HIF-1a (Tannahill et al., 2013). Upon
transcription, IL-1p is first translated into a pro-form of the protein which is 31 kDa and
is inactive. The bioactive form of Pro-IL-18 is dependent on the activation of the
interleukin converting enzyme (ICE1) also known as caspase-1 that can proteolytically
cleave pro-IL-1B. Caspase-1 is under the control of a protein complex termed as the
inflammasome. Inflammasomes are complexes of multiple proteins that assemble in the
cytoplasmic matrix upon sensing PAMPs or DAMPs that regulate the activation of
caspase-1. The inflammasome is named after the scaffolding protein involved in the
complex formation. A Nod-like receptor (NLR), NLRP3 forms an inflammasome that is
activated in response to many stimulus and must be primed by the binding of LPS to
TLR4 (Guo, Callaway, and Ting, 2015). Following this step, a second priming like ATP
can induce the inflammasome to make mature caspase-1 that can then lead to the
formation of active IL-18 from its pro-form. Thus, mature IL-18 is not produced just by
the stimulus provided by LPS and requires a second stimulus for the activation of

caspase-1 in order for IL-18 to be released (Netea et al., 2009; Xie et al., 2014).

After the immune response has been initiated, inflammasome is deactivated by T cell
derived IFN-7 and other type I IFN, CD40L, miR-223 (reviewed by Latz, Xiao, and Stutz,
2013) and feedback loop on the duration of caspase-1 activity (Boucher et al., 2018). IL-1
signalling is mediated by interleukin 1 receptors, IL-1R1 and IL-1R2 of which the former
binds to IL-1p resulting in the formation of an IL-1R1/IL-1R3 (IL-1 receptor 3) complex.
IL-1R1/IL-1R3 complex both have an intracellular TIR domain that dimerise to attract
MyD88 proteins (Muzio et al., 1997; Medzhitov et al., 1998; Burns et al., 1998). The death
domain of MyD88 further recruits IRAK4 and then IRAK1. Hyperphosphorylated
IRAK1 then recruits TRAF6, TAK1 leading to the degradation of IKK leading to NF-xB
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translocation to the nucleus (reviewed by Bent et al., 2018).

IL-1R2, on the other hand, is a decoy receptor and IL-1p binding to the receptor does
not take part in any signalling further and, therefore, blocks IL-18 signalling cascade
(Colotta et al., 1993). IL-1B can also be blocked by the secreted soluble IL-1 receptor
agonist (IL-1Ra) that can compete against IL-1R1 (Arend et al., 1998) while it does not

bind to the decoy receptor IL-1R2.

1.2.5 Cytokine response upon a second LPS exposure

The adaptive immune cells exhibit immunological memory owing to the capability of T
and B cells to act in an antigen specific manner. In contrast, the innate immune cells are
better known for an immediate response to a broader spectrum of pathogens. In recent
years, it has been proposed that innate cells can respond based on a previous stimulation

with an antigen (Netea et al., 2016).

Macrophages stimulated with TLR agonists have been shown to be hypo-responsive
upon re-stimulation and elicit a reduced pro-inflammatory response (Carey F] and
Zalesky, 1957; Flohé et al, 1999). Macrophage hypo-responsiveness termed as
tolerisation (Figure 1.2) has not only been associated with the down regulation of TLRs
(Medvedev, Kopydlowski, and Vogel, 2000; Medvedev et al., 2002), but, it also involves
extensive gene reprogramming with the activation of alternative anti-inflammatory
pathways and many anti-microbial genes (Foster, Hargreaves, and Medzhitov, 2007;

Biswas and Lopez-Collazo, 2009; Mages, Dietrich, and Lang, 2008).

It has been shown that LPS tolerance regulates two type of genes, the non-tolerisable
that do not get suppressed upon LPS re-stimulus or those that are not hypo-responsive
(Foster, Hargreaves, and Medzhitov, 2007). It was also shown in the same study that

histone trimethylation (H3K4) induced at promoters when responding to LPS is no
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FIGURE 1.2: Hyporesponsive cytokine expression upon a second LPS
exposure

Macrophages upon sensing LPS switch on a pro-inflammatory phase by producing cytokines that
promote inflammation locally and systemically. However, a repeated dose (second LPS dose)
renders them in a hypo-responsive state. Some of the molecular mechanisms that drive this are
attributed to down-regulation of TLR4, miRNA-mediated regulation of inflammatory mediators
and signalling proteins and by epigenetic regulation of tolerised genes such as methylation and
deacetylation.
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longer associated on secondary stimulus on genes like Il6 (Foster, Hargreaves, and
Medzhitov, 2007). Tnf and Il1b promoters are associated with H3K9 dimethylated
histones to repress transcription in human monocyte-like THP1 cells. While these are
remodelled at the first dose of LPS, they are also present in the secondary LPS stimulus,
thus, conferring a tolerance or hypo-responsiveness (Chan et al., 2005; El Gazzar et al.,
2007; Chen et al., 2009). A second layer of regulatory control is seen in the dependence of
LPS-induced genes on the remodelling of the nucleosome by the SWI/SNF
(SWltch/Sucrose NonFermentable) complex that seems to differentially affect
LPS-induced genes. While Tnf is shown to be not dependent on the SWI/SNF
remodelling induced expression, Il6 and Nos2 are dependent on this re-modelling
(Ramirez-Carrozzi et al., 2006, Ramirez-Carrozzi et al., 2009). This suggests that LPS
dose re-programs macrophages at the gene promoter level and, this describes an
important molecular mechanism of LPS-induced tolerance or hyporesponsiveness

(Seeley and Ghosh, 2017).

Antigen priming can have disparate consequences.  Studies of vaccines in
epidemiological studies showed that non-specific effects of certain vaccines like BCG
protected the host from other diseases (Netea and Meer, 2017). This suggested an
apparent protective effect of antigen-priming on innate cells. = Upon secondary
challenges, innate cells not only show a pronounced reduction in the pro-inflammatory
response but also express anti-inflammatory cytokines like IL-10 and TGFp (Biswas and
Lopez-Collazo, 2009). An overbearing immune response to wounds and infections often
results in a serious life threatening condition known as sepsis. An abundance of
pro-inflammatory cytokines released in sepsis leads to systemic inflammation. As the
condition progresses the hyporesponsiveness, thus induced, creates an
anti-inflammatory environment which has been related to higher incidences of
secondary infections and death in clinical patients (Hotchkiss et al., 2009; Vught et al,,

2016). As such, the innate immune system goes into a cycling of environments which can



20 Chapter 1. Introduction

rarely be ameliorated, highlighting the need to understand this hyporesponsive

phenotype.

The above ascertains that tolerisation is a complex phenotypic change, and any
heterogeneity associated with LPS tolerance or hypo-responsiveness may be an
important area of focus to better understand a community of macrophages responding

to repeated exposure to PAMPs.

1.3 Heterogeneity in macrophages

Macrophages are generally regarded as a heterogeneous cell population and this
heterogeneity can be attributed to many factors such as their developmental-origin and
maturation stages, tissue micro-environment and how they are activated. Here we
discuss the heterogeneity associated with macrophages at an organ/tissue level, within

tissue, and finally at level of antigen response.

1.3.1 Tissue and organ level heterogeneity

Macrophages can be thought of as a distributed organ-system that maintain
homoeostasis across the human body (reviewed here Gordon and Pliiddemann, 2017).
Although, their primary purpose may be to respond to infection, they don a variety of
roles in the course of their long term development in the respective tissues. An early
source of heterogeneity of macrophages is introduced based on their lineage that may be
traced back to their developmental origin like yolk-sac progenitors, foetal liver

progenitors or haemopoetic stem cells in the adult bone marrow.

Fate mapping analysis has shown that most tissue-resident macrophages are formed
in the early embryo (Yona et al., 2013). These early macrophage progenitors also called

erythromyeloid progenitors, are placed in tissues during organogenesis where they
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persist into adult life eventually being termed tissue-resident macrophages. These are a
self-persisting population, sometimes, for life. The heterogeneity of tissue-resident
macrophages can be exemplified by the diverse functions that they are involved in. For
example, microglia are a resident macrophage population of the central nervous sytem
and apart from scavenging infectious organisms, are also able to interact with live and
apoptotic neurons. Alveololar macrophages that serve on the frontline of alveolar-blood
interface as a first line cellular defence against pathogens and particles also play an
important role in surfactant metabolism. The surfactant reduces the breathing effort by
lowering the surface tension at the alveolar epithelium which can lead to respiratory
distress. Similarly, splenic red pulp macrophages have been shown to be distinct from
monocyte-derived macrophages and can phagocytose IgG-opsonised red blood cells by
activating FcyR receptors (Nagelkerke et al.,, 2018). The presence of such diverse
tissue-resident macrophages were then shown to have unique gene expression by
Gautier et al, 2012 between microglia, spleen, lung (alveolar) and peritoneal
macrophages in mice and that such diversity due to the micro-environment may shape

the chromatin landscape of these tissue-resident macrophages (Lavin et al., 2014).

1.3.2 Heterogeneity within tissue

While tissue-resident macrophages from different organs may be heterogeneous among
themselves, resident population within a specific tissue is also known to be
heterogeneous. Although self persisting, upon infection resident cells make cytokines
and chemokines that attract neutrophils and monocytes patrolling the blood vessels
encouraging them to extravasate into the infected tissue. This infiltration of monocytes
and their subsequent differentiation into macrophages may increase/replace resident
macrophages once the infection is resolved. Since these monocyte-derived macrophages
are from a different lineage (derived from haemopoeitic stem cell in the bone marrow)
they introduce heterogeneity in the resident population. Kupffer cells that are known to

be the largest resident macrophage population are often re-inforced by
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monocyte-derived macrophages because the latter encounter PAMPs and DAMPs more
often than other resident population due to their location in the liver. Previous research
has shown that these monocyte-derived macrophages are easily distinguishable by the
expression of the macrophage marker F4/80 levels. A general idea surrounding this is
that embryonic origin macrophages self renew themselves whereas monocyte-derived
macrophages cannot differentiate into a qualified resident population. Cardiac (Molawi
et al., 2014) and intestinal macrophages (Bain et al., 2014) in mice, that are both of
embryonic origin, self-renew slowly with age and stop after weaning respectively.
Instead, monocyte-derived macrophages are recruited to replenish the resident
population without renewal. Other studies have shown the opposite, where recruited
monocyte-derived macrophages can gradually differentiate and adopt the transcription
profile of a fully functional resident cell population as in the case of Kupffer cells in the

liver (Scott et al., 2016).

Despite the presence of two models of replenishment of tissue-resident macrophages,
considerable heterogeneity is introduced in the tissue micro-environment upon the
recruitment of cells that become long-term residents either by being constantly
replenished or by adopting the transcription profile of the host cells (Molawi et al., 2014;
Bain et al., 2014; Scott et al., 2016).

1.3.2.1 Quorum sensing in immune cells

Quorum sensing is a is a process of communication between bacterial cells leading to the
production chemical molecules (also called autoinducers). Sensing the diffusion gradient
(Redfield, 2002) of these chemicals, bacteria can alter gene expression and regulate many
critical processes like making biofilms, conjugation, virulence etc (Miller and Bassler,
2001). Similar to this, mammalian immune system exhibits such quorum sensing which
has been shown recently. This type of sensing in immune-cell populations is unlike

paracrine effect which affects a few cells around the cell producing the paracrine signal.
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Immune quorum sensing spans longer space and induces an all or none population-level
response when inducing proteins are present above a threshold concentration (reviewed

by Antonioli et al., 2019).

Quorum sensing in immune populations has been suggested as a model of
homeostasis in CD4+ T cells that is IL-2 mediated sensing of acitvated cells (Almeida
et al., 2012) which Reynolds et al.,, 2014 further characterise using a stochastic
Markov-based mathematical model, analysing the elimination of IL-2 and regulatory T
cell populations post infection. Montaudouin et al., 2013 showed that B cells can detect
immunoglobulin IgG by FcyRIIB receptor and, thereby, monitor the number of activated
B cells.  Further, they suggest that the number of activated immunoglobulin

IgM-secreting B cells can be kept under check by this quorum sensing mechanism.

Quorum sensing has been proposed in macrophages as well (reviewed by Antonioli
et al., 2019) which refers to, among others, two very interesting studies. Postat et al., 2018
found in Leishmania major infections (an intracellular parasite) mice show an increased
recruitment of mononuclear phagocytes in the site of infection along with elevated levels
of chemokines such as CXCL1, CXCL10, CCL2 and CCL3 upon treating the mice with a
specific NOS2 inhibitor. Further, they showed that NOS2 suppressed cells produced
more TNF, IL-18 and CCL3 at the single-cell level. Then by comparing cellular
metabolism in wild type and Nos2-/~ macrophages, they inferred that nitric oxide
mediated suppression of respiration reduced the ATP:ADP ratio and, thereby, decreased
macrophage activity. In order to check whether this effect was largely restricted to a
single cell type, the authors mixed NOS2 competent cells with deficient cells to see if
competent cells can affect the other cells. Although, they did not see such an effect at low
densities but in a 1:1 ratio, respiration of Nos2-/- cells was reduced. Such a density-based
effect on respiration restriction was then shown in vivo to conclude that nitric oxide

mediates the downregulation of inflammatory response and it is dependent on NOS2
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producing cells being present in a minimum density of 5000 per cubic millimetre (Postat

etal., 2018).

Chen et al., 2015 while studying hair plucking, and the consequent regeneration, in
mice found that regeneration only occurs if the plucking density is greater than 10
squared millimetre. Intriguingly, this stimulated the plucked and the unplucked follicles
to regenerate leading to more hair being regenerated than lost. Next, to understand
mechanisms, microarray analysis was done to generate a sequence of events 12, 24, 48
and 96 hour post hair follicle injury. The authors find CCL2 as a key component of
carrying the quorum signal to recruit TNF producing macrophages to the site,
speculating that TNF may be stimulating hair regeneration through Wnt signalling in
keratinocytes (Chen et al., 2015).

These studies together suggest that populations can show an all or none response to

stimulus that is governed by a cell density-dependent diffusion sensing quorum effect.

1.3.3 Activation-induced heterogeneity

Interestingly, heterogeneity within a pure myeloid population activated by LPS has also
been reported using single cell RNASeq study that found large-scale cell-to-cell variation
in bone-marrow derived dendritic cells in their expression of cytokines suggesting
population heterogeneity within a seemingly pure population (Shalek et al., 2013). In
this study, 18 single cells along with three replicates of a population of 10,0000 cells each
were sequenced to look at the transcript signature at 4 hours post LPS stimulus. While
gene expression between the replicates of population seem to correlate tightly (Pearson r
> 0.98), individual cells showed large variation (0.29 < r < 0.62). Further, they found that
a subset of the highly expressed genes (> 250 transcripts per million) in the single cell
dataset had a higher co-efficient of variation (CV) along with bimodal expression

patterns. mRNA levels in highly producing cells were one or more orders of magnitude
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greater than the low producers. II6, Cxcll, Cxcl10 mRNA were confirmed using
RNA-fluorescence in situ hybridisation (FISH) as a visual confirmation of this

bimodality (Shalek et al., 2013).

The above suggests that the bimodal response in cytokine production in the
population along with the increased cell-to-cell variability in highly expressed genes can
be attributed to heterogeneity in the responding population. Mechanisms that introduce
antigen-induced heterogeneity may include bi-phasic NF-xB signalling due to TLR4
endcytosis (as previously in figure 1.1 and detailed later in figure 1.6) and, the additional
TNFR1 and IFN-B signalling upon activation (Figure 1.3). Investigations in clonal
populations have shown that TNF and LPS induced NF-«xB expression are distinct, with
LPS inducing a less dampened NF-xB expression in comparison. Further, Covert et al.,
2005 suggest that this effect is seen because TLR4/LPS pathway involves MyD88
dependent and the TRIF-mediated pathways, that are on their own oscillatory and
dampened, but together produced a more sustained NF-xB expression. It can be
speculated from this study that autocrine/paracrine TNF signalling may induce
heterogeneous populations. Indeed, in a study from the same group (Lee et al., 2009) two
distinct temporal LPS-induced NF-«B nuclear localisation trajectories are presented that
do not appear when either MyD88 or TRIF is knocked out. Individual knockouts could
not, especially, explain why NF-«xB nuclear localisation persisted for hours in the
wild-type model. It was then attributed to be an effect of paracrine signalling by TNF to
drive a positive NF-«kB expression via the TNFR1 pathway. This was confirmed by
neutralising TNF with soluble TNFR1 (Lee et al., 2009). Xue et al., 2015 using isolated
single cells showed reduced secretion of LPS-induced cytokines such as IL-6 and IL-10 in
a human monocytic cell line U937. Using modelling and experiments, they further
showed that paracrine signalling by TNF by a small subset of cells (that highly expressed

TNF) was necessary but not sufficient for producing IL-6 and IL-10 in large amounts.
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FIGURE 1.3: Secreted TNE, IL-13 and IFN-B provide additional stimulus
to the LPS response

LPS stimulation leads to the expression of TNF, IL-1p5, IL-6, IFN-B. The release of these into the
extra-cellular space and binding to their respective surface receptors increase the initial
LPS-mediated response to increase IL-6 expression. NOS2 expression depends on the IFN-5
induced transcription factor activation.

Other sources of heterogeneity may be due to the effects of
transcription-independent communication between heterologous and cytokine receptors
(Bezbradica and Medzhitov, 2009). More recently, Allen and Medzhitov have suggested
that the fraction of population responding by producing an inflammatory cytokine in

response to LPS may be regulated by the circadian clock (Allen et al., 2019).

In summary, it has been shown by multiple studies that clonal macrophage
populations can elicit heterogeneous responses to antigens like LPS and that this

heterogeneity can be, in part, contributed by autocrine and paracrine effects.

1.3.4 Why study immune-cell heterogeneity

A heterogeneous response to antigens such as LPS as described can be biologically
advantageous. Satija and Shalek reviewed phenotypic advantages that can be conferred
on immune cells due to variability in protein production within a seemingly clonal

population (Satija and Shalek, 2014). Variability in expression of receptor proteins such
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as CD25 expression in CD8+ T cells has been shown to determine future outcome of T
cells. Those CD8+ T cells that express high levels of CD25 become inclined to
differentiate into memory cells that are long-lived (Kalia et al., 2010). Rand et al showed
that individual cells producing IFN-B are stochastically limited and a reliable anti-viral
response is co-ordinated by paracrine response amplification (Rand et al., 2012) allowing
restraint and co-ordination. NF-xB dynamics in response to TNF has been shown to be
digital in lower doses whereas analogue responses are recorded at higher doses when all
cells respond (Tay et al., 2010) suggesting immune cells may leverage ensemble coding

as described in Satija and Shalek, 2014.

In this thesis we are interested in visually representing heterogeneity of cytokine
expression in model macrophages and to quantitate the effect of disrupting established
models (as illustrated in Figure 1.4) that can induce heterogeneity in cytokine response.
Post transcriptional repression of protein expression has been associated with cell-to-cell
variability (Garg and Sharp, 2016) and in the next few sections, miRNAs are introduced
as a potential regulatory in mammalian cells to make a case why they should be

considered in immune-cell responses and our hypothesis.

1.4 microRNAs as non-coding regulatory RNAs

Several studies show convincingly the role of miRNAs in regulation of macrophage
activation, polarization and response to LPS (reviewed by Curtale, Rubino, and Locati,
2019) The discovery of microRNAs (miRNAs) in 1993 in Caenorhabditis elegans introduced
a new class of evolutionarily conserved regulatory single stranded RNA. In C. elegans,
downregulation of a protein, LIN-14, was essential for the larval stage to progress. This
LIN-14 was found to be dependent on the transcription of lin-4. However, lin-4 was
translated only into small RNA molecules but not translated. Later, it was found that the

transcribed RNA showed antisense pairing to the 3’ untranslated region (UTR) of the
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FIGURE 1.4: Sources of population heterogeneity in macrophages
responding to antigen (LPS)

Cells (right panel) represent macrophage population response to LPS upon different
perturbations (left panel) that can induce population level heterogeneity in terms of cytokine
production such as LPS dose, transcription factor and regulation imposed, temporally distinct
LPS treatments, secretory effects and quorum sensing.
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lin-14 mRNA. Since then, many laboratories reported miRNAs in plants, animals and
humans that are 22-24 nucleotide long, non-coding and bind target messengerRNA

(mRNA) to repress its translation.

miRNAs are essential to development and homeostasis, as studies in mice have
shown that loss of miRNA can lead to developmental defects in most organs along with
physiological and behavioural defects. miRNAs show antisense pairing to their target
mRNA, however, the seed sequence that pairs with the mRNA is short and between 6-8
nucleotides long at the 5" end of the miRNA. Short seed sequences can recognise 3" UTRs
of many mRNA and, also, many miRNAs can target the same 3" UTR, often, resulting in
a many to many relationship between miRNAs and mRNAs. There are 1234 mouse and
1917 human sequenced miRNAs that have been described and catalogued on miRBase
(v22.1), an online repository that catalogues miRNAs. The human genome consists of
around 21,000 protein coding genes, 60% of which are considered to have conserved

miRNA targets (Friedman et al., 2009).

1.4.1 Biogenesis and mode of action

miRNAs are transcribed and transported to the ribosomes by a canonical
pathway (Bartel, 2004) cleaved to an active form by Dicer (Harfe et al., 2005) and

suppress mRNA expression by either disrupting translation or mRNA degradation.

Canonical miRNAs are transcribed by RNA polymerase II (Pol II) as a 1kb primary
miRNA (pri-miRNA). These pri-miRNAs have a region that folds on itself to form a
hairpin-like structure with single-stranded tails on the 5 and the 3" end. The
microprocessor complex consisting of the ribonuclease III endonuclease Drosha and two
molecules of the double-stranded RNA binding protein DiGeorge syndrome critical
region 8 (DGCRS) that binds to the hairpin (Figure 1.5). The two RNase III domains of

Drosha then clips the tails on the 5" and 3’ end to form an approximate 60 base pair long
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stem-loop that is termed as the precursor miRNA (pre-miRNA). In the next step,
pre-miRNA is exported out of the nucleus by the protein exportin 5 (XPO5) and
RAs-related Nuclear protein (RAN) GTP. Upon export into the cytoplasm, pre-miRNA is
cleaved at the loop by the endonuclease DICER giving rise to a miRNA duplex that
consists of the miRNA along with the passenger strand miRNA. DICER is assisted by its
partner protein transactivating response RNA-binding protein (TRBP) and the protein
activator of the interferon-induced protein kinase (PACT). The duplex, thus, formed has
two nucleotide long overhangs on both the 3" end resulting from the cuts made first by
Drosha and then by DICER. The duplex is then loaded onto an Argonaute2 (AGO2)
protein (Figure 1.5) in an ATP dependent manner (Yoda et al., 2009). The duplex once
loaded returns AGO2 to a lower energy state which encourages the passenger strand to

be unloaded and degraded (Kawamata and Tomari, 2010).

The guide strand loaded on to the AGO2 protein is called the minimal RNA-induced
silencing complex (miRISC). The miRISC then interacts with regions of the target mRNA
that are called miRNA response elements (MREs). If the complementarity (Figure 1.5) is
near-perfect the mRNA is degraded by AGO2-induced slicing of the mRNA via its
endonuclease activity. However, animals seldom show perfect complementarity of
miRNAs and MREs and, in case of imperfect complementarity, the silencing miRISC
complex weakly binds to the mRNA while AGO2 and other factors repress translation
and destabilisation of mRNA, finally leading to its degradation (Bartel, 2018) (Figure
1.5).

1.4.2 miRNAs and macrophages responding to LPS

Toll-like receptors on myeloid cells are central in the role of innate immunity as they
detect PAMPs and initiate an inflammatory response by secreting cytokines, chemokines

and other inflammatory mediators. The TLR-mediated gene expression is controlled
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FIGURE 1.5: microRNA biogenesis and mode of action

Canonical miRNA biogenesis pathway showing pre-processing by DGCRS8 and Drosha of
primary miRNA transcript to pre-miRNA inside the nucleus. Once exported out to the cytoplasm
pre-miRNA are cleaved to a mature form by Dicer. Mature miRNA is then loaded onto a
RNA-induced silencing complex (AGO2 and associated proteins). mRNAs which are targeted by
miRNAs are repressed by partial or perfect complementarity.
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tightly by transcription factors and various signalling intermediates that signal via
MyD88 or TRIF signalling routes that lead to translocation of NF-xB, IRF3 and AP-1 to
the nucleus. miRNAs are known to target many proteins involved in this pathway, thus,

forming another layer of protein regulation (Figure 1.6a).

TLR4 is targeted by miRNA let-7b (Teng et al., 2013), let-7i (Chen et al., 2007) from the
lethal-7 family and miR-181b (Jiang et al., 2018) and, as such, repressed upon LPS

activation.

Downstream of the toll-like receptor, Inhibitor of nuclear factor kappa-B kinase
subunit epsilon (IKKe) has been shown to be targeted by miR-155 during Helicobacter
pylori infection. IKKe is a signalling protein in the TRIF mediated TLR4 pathway and
activates the transcription factor IRF3. The overexpression of miR-155 in this context
leads to the downregulation of the cytokines IL-8 and CXCL1 (Xiao et al., 2009). Up
stream in the TRIF dependent TLR4/LPS pathway Zou et al., 2017 have shown miR-3178
can decrease the activation of NF-xB by post-transcriptionally targeting TNF
receptor-associated factor 3 (TRAF3). miR-124 is upregulated in RAW264.7 murine
macrophage cell-line upon Bacillus Calmette-Guerin (BCG) infection in a MyD88
dependent manner while targeting multiple signalling components including TLR6,
TRAF6, MyD88 and TNF (Ma et al., 2014). IRAK1 mRNA in RAW264.7 cells are targeted
and negatively regulate TNF, NF-«xB and IL-6 (Xu et al., 2013). miR-132 reduces
expression of IL-6 and IL-18 by decreasing levels of its target protein p300 (Lagos et al.,
2010). miR-146a (Taganov et al., 2006) have been shown to negatively regulate IRAK1
and TRAFe6.

Negative regulators of the TLR4/LPS signalling pathway such as A20 which inhibits
signal transduction to the sequestered NF-xB complex has also been shown to be

targeted by let-7f in the context of Mycobacterium tuberculosis infection in RAW264.7 cells
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and bone-marrow derived macrophages (Kumar et al., 2015).

The above suggests that miRNAs can act as positive and negative modulators of the
LPS induced inflammatory response. It is difficult to ascertain whether miRNAs in a

concerted manner promote or suppress inflammation.

1.4.3 miRNAs in protein expression noise and population variability

miRNA can have profound effects in disease, cancer and development, that is why as a
system of regulatory RNAs their global role in protein expression has also intrigued
scientists. Bartel and Chen, 2004 proposed the idea that miRNAs render precision to
protein expression by comparing miRNA induced silencing to a adjustable resistor or
rheostat in an electric circuit, suggesting miRINA expression in a cell type can be adjusted
to have different effects on a target mRNA. Since, multiple miRNAs can target the same
mRNA, they suggested by varying the expression level of the miRNA and depending on
its complementarity to the target a range of outcomes can be achieved. Thus, allowing
the possibility of tuning mRNA targets meaning that the protein expression is not

repressed but only fine-tuned to an active yet dampened level (Bartel and Chen, 2004).

Protein expression is noisy (Thattai and Oudenaarden, 2010) in a population of cells
and within a single cell over time. This variability in expression of a protein has been
described mathematically and experimentally (in E. coli) as the sum of two orthogonal
components, intrinsic and extrinsic noise (Swain, Elowitz, and Siggia, 2002; Elowitz,
Levine, and Siggia, 2002). This was confirmed to be true in mammalian cells (Raj et al.,
2006) and shown to propagate in gene networks (Pedraza and Oudenaarden, 2005), thus,
suggesting their role in introducing heterogeneity in clonal populations. Intrinsic noise
was defined as inherent stochasticity in reactions related to transcription and translation
whereas extrinsic noise a consequence of by the stochastic variation in concentrations of

molecules such as polymerases and regulatory proteins required in the expression of the
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target protein (Swain, Elowitz, and Siggia, 2002; Elowitz, Levine, and Siggia, 2002).
Schmiedel et al., 2015 experimentally and mathematically probed the idea that miRNAs
can render precision to protein expression by affecting intrinsic and extrinsic noise in

protein expression.

Using a two reporter system (fluorescent) with a bidirectional reporter, Schmiedel
et al., 2015 quantified protein levels and any corresponding noise in mouse embryonic
stem cells. By appropriately binning from bi-plots of the two fluorescent signals obtained
from flow cytometry experiments they quantified the noise (defined as standard
deviation/mean) or the co-efficient of variation when the reporter transcript had 3" UTR
that was miRNA targeted or not. Their experiments showed that variance was indeed
decreased when protein expression was low but, intriguingly, noise in expression
increased when the protein was expressed at higher levels. In order to understand this
effect they described the problem mathematically which predicted that while intrinsic
noise did indeed reduce with miRNA induction, with the increased expression of the
protein, the extrinsic noise increased as well as leading to an overall increase in the noise
(Schmiedel et al.,, 2015). This increase in the extrinsic noise associated with gene
expression is due to the variation in the expression of miRNAs. The two opposing

results due to miRNA-induced post-transcriptional repression is depicted in figure 1.6b.

Studies on heterogeneity have found that housekeeping genes tend to be normally
(or log normally) distributed in single cell populations (Shalek et al., 2013; Kumar et al.,
2014; Klein et al., 2015) while there is a subset of cells that display increased cell-to-cell
variability whose distribution is bi-modal or heterogeneous. Further Kumar et al., 2014
also showed that knocking out microRNA biogenesis proteins (Dicer-/- and DGRC8-/-) in
mouse pluripotent stem cells, result in a population with little variation in the
pluripotency genes (or ‘ground state’) that are highly variable in wild-type. Garg and

Sharp, 2016 speculate if extrinsic noise contributed by miRNA pool that increases
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variance in highly expressed genes (Schmiedel et al.,, 2015) can contribute in the
variability in wildtype pluripotency factors as shown by Kumar et al., 2014; Klein et al.,
2015.

In another study, Blevins et al., 2015 in developing mouse thymocytes showed that
miRNA-deficient cells have increased population CV (co-efficient of variation) in the
expression of T-cell activation marker suggesting the role of miRNAs in regulating
cell-to-cell variability in immune cells. Overall, this shows that miRNAs as global
regulators of protein expression can not only suppress translation but can contribute to

population heterogeneity and, even, be a determinant of phenotypic changes.

1.5 Mathematical description of biological complexity

Biological systems such as biochemical pathways, cells, tissues, organs, and uni- and
multi-cellular organisms can be all described as complex systems. To understand these
systems, careful biological experiments and statistical methods need to be employed to
dissect mechanisms, and these approaches may consider scales ranging from
biochemistry and molecular biology to large-scale tissue function and interactions within
an organism or between organisms. Because of this complexity, ascertaining how a
biological system interacts with numerous biological entities is not easy to understand
(Martins, Ferreira, and Vilela, 2010; Walpole, Papin, and Peirce, 2013; Ji et al., 2017). For
example, how a whole organ may respond to cancer is difficult to delineate using only
molecular biology approaches and statistical comparisons, because each cell must be
viewed in the context of its immediate neighbourhood and its broader ecological context
within the tissue and organism (Ferreira, Martins, and Vilela, 2003; Owen, Byrne, and
Lewis, 2004). Such systems-level understanding requires the usage of mathematical, and

often computational, methods to help define the biological system in question, as well as
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FIGURE 1.6: miRNA regulated inflammatory response and contribution
to population heterogeneity

a LPS-induced TLR4 signalling pathway leads to the downstream induction of three major

transcription factors, NF-«xB, IRF3 and AP-1 that contribute to the inflammatory gene signature of

a macrophage. Proteins regulating this pathway (positively or negatively) are in turn

post-transcriptionally regulated by miRNAs as depicted in the cartoon. b miRNAs have also
been shown to introduce cell-to-cell variability in a population of seemingly identical cells i) by
reducing intrinsic noise in endogenous genes and, consequently variability or ii) by increasing

the extrinsic noise in a highly-expressed gene.
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a theoretical model (Kitano, 2002; Tomlin and Axelrod, 2007).

In the last two decades with the human genome being sequenced and sequencing
costs becoming economically feasible, and not limited to specialist laboratories, the
amount of data available to a biologist about their model organism has increased many
folds. Sequencing can not only inform about the genetic code but also what is being
expressed (transcriptomics) with temporal resolution. This, then demands the need for
computational analysis of these gene networks to understand cellular or population
behaviour (Smolen, Baxter, and Byrne, 2000; Ay and Arnosti, 2011; Grimes, Potter, and
Datta, 2019).

Besides de-constructing large network models, mathematical modelling can help to
describe a complex process with simplified parameters that can be estimated by
calibrating the model outputs to empirical outputs. This approach not only helps in
model validation in describing large-scale phenomenological results (Wood and Coe,
2007; Wood et al., 2008) but also to deduce parameters to describe interesting features
such as kinetics over time or threshold values of a complex process or events (Renshaw,

1993; Lema-Perez et al., 2019)

Biological systems modelling has mostly relied on continuous deterministic solutions
using ordinary differential equations (ODE) to describe the biological problems being
studied. This is a particularly useful paradigm when, for example, the abundance of the
reacting species in the system can be quantified in terms of concentration (Murray, 2002).
The ODE approach assumes that these concentrations change via fixed deterministic
trajectories. These models can elucidate average behaviour of systems but sometimes fail
to capture the inherent stochastic nature of many biological processes (McAdams and
Arkin, 1997; Gillespie, 2007; Wilkinson, 2009) such as gene expression where noise (or

stochasticity) can be associated with low copy numbers of reacting molecules such as
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DNA and transcription factors (Guptasarma, 1995; Paulsson, Berg, and Ehrenberg, 2000;
Paulsson, 2005). Deterministic systems fail to capture the effects of low copy numbers
that can result in a noisy trajectory where no two cells have the same trajectory
associated with protein expression. Comparisons of deterministic and stochastic models
of the prokaryotic lac operon has illustrated the role of stochasticity in modulating
system behaviour (Stamatakis and Mantzaris, 2009). In order to capture such
heterogeneity, probability theory based methods can be an effective way of accounting
for the unpredictability of a complex biological system (McAdams and Arkin, 1997;
Gillespie, 2007; Wilkinson, 2009).

1.5.1 Probabilistic modelling and Markov process

Probability-theory based modelling of biological events is different from the ODE based
approach in the fundamental sense that the reactions (or other biological interactions) do
not have associated deterministic rates governing a continuous state-space, but instead
consider discrete events with an associated probability per unit time of occurring. This
modelling paradigm, as such, associates a chance associated with an event and removes
the certainty of an event to happen with a said rate. Given a low number of reactants,
models based on probability can add a stochastic flavour to the outputs of the master
equation, which can be thought of as an equation which captures the probabilistic
changes within a system (Gillespie, 1977). Explicitly solving a probability master
equation analytically although possible (Jahnke and Huisinga, 2007; Shahrezaei and
Swain, 2008)is often an intractable task, and thus there is a need to approximate the
master equation (Kampen, 2007) or simulate the time-evolution using algorithms which

accurately represent the behaviour of the underlying master equation (Gillespie, 2007).

A mathematical system that allows probability-theory based deductions of a complex
system is a Markov chain. The key defining property of a Markov chain is that,

conditional on knowledge of the present state of the system, the future behaviour of the
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system is independent of the system’s state at any earlier time i.e. the system is
memoryless. Markov chains have been extensively used to model biological systems,
which can be thought of mathematically as being defined by the states of an
n-dimensional system along with the probabilities of switching from one state to another
(Gillespie, 1992). For example, a cell that is expressing a gene or not, represents two
states that have probabilities associated with switching on or off from that state. The
important characteristic of the Markov chain, that it has no memory such that the
transition from one state to another only depends on the current state, makes this
mathematical framework appropriate for a wide range of biological models (Wilkinson,

2009).

The Doob-Gillespie algorithm is an exact algorithm which can provide fast and
accurate solutions for models based on Markov chains; it simulates a sample trajectory
from the probability mass function of a master equation using the Markov property. It
was first described by Joseph Doob in 1945 (Doob, 1945) and then presented by Dan
Gillespie (Gillespie, 1976) in a very well-described paper with simulations comparing
ODE solutions with the Doob-Gillespie algorithm. The algorithm traces the
time-evolution of species of a system by choosing the time to next reaction and the

reaction that describes the system in time.

1.6 Choice of the biological model

1.6.1 Macrophage-like RAW264.7 cells

As a model system, we chose RAW264.7 cells that are adherent murine macrophage-like
cell line that were derived from the ascites of a tumour induced in a male BAB/14 mouse
injected with a preparation of Abelson murine leukemia virus. This immortalised
cell-line shows the properties of macrophages and can partake in neutral red dye

endocytosis, secretion and synthesis of lysozyme, and zymosan and latex bead
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phagocytosis. This macrophage cell line can also mediate lysis and phagocytosis of
sheep erythrocytes which is antibody-mediated. The cells are LPS sensitive and cell
growth is inhibited (50% of the population) by 0.5 ng/ml of LPS and a 100ng/ml dose
stalls growth of all cells for upto four days (Raschke et al., 1978). Since the cell line was
created using a viral transformation it is possible that viral particles remain in the cell
line, however, no viral activity was detected by fibroblast focus-forming assay or by the

plaque assay to detect the presence of retroviruses (Raschke et al., 1978).

RAW264.7 cells express cluster of differentiation molecule 11B (CD11b) and EGF-like
module-containing mucin-like hormone receptor-like 1 (also known as F4/80) both
macrophage markers associated with cell adherence stably over multiple passages ( 20)
in culture. Many other genes have tested to be stably expressed in this cell-line over
passages such CD14, iNOS (or NOS2), hypoxia-inducible factor 2a (HIF-2x), cluster of

differentiation molecule 11¢ also known as CD11c¢ (Taciak et al., 2018).

In this thesis, we measure four pro-inflammatory proteins produced by macrophages
in response to LPS. TNEF, IL-15, IL-6 and NOS2 are all expressed by RAW264.7 cells and
the bi-phasic NF-«xB expression induces an early TNF response with an increased IL-6
and NOS2 expression is seen at later time points (Xue et al., 2005; Wang et al., 2008). It
was also indicated that RAW264.7 cells closely mimic primary bone-marrow derived
macrophages in the expression of surface receptors and the response to microbial ligands

(Berghaus and Moore, 2010).

However, it must be noted that RAW264.7 cells are immortalised and, thus, represent
cells that otherwise would not have proliferated in vivo. This makes them an artificial

model system for macrophages that can change with continuous culture.
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1.6.2 Thioglycollate-elicited peritoneal macrophages

In order to confirm our findings in primary cells we extracted peritoneal macrophages
from C57BL/6 female mice. Peritoneal macrophages are a well-researched macrophage
type that is tissue-resident and elicit an inflammatory response (Cassado, D'Império
Lima, and Bortoluci, 2015). It is however, duly noted that the peritoneal macrophages in
our study were thioglycollate-elicited and, therefore, were a mix of resident and

monocyte-derived macrophages (Ghosn et al., 2010).

1.7 Motivation and hypothesis

We have discussed inherent macrophage heterogeneity in the previous sections and how
this heterogeneity in a seemingly clonal population can manifest, discussing
contributing factors like antigen dose and pre-exposure, gene activation, inter-cellular
communication, quorum sensing and, at a more fundamental level, by noisy expression

in highly expressed genes targeted combinatorially by miRNAs (Figure 1.4).

Putting the above in the context of immune cells and immune response, we
hypothesise that single-cell protein measurements in clonal macrophage population can
be used to show and represent heterogeneity in response to single, repeated doses of LPS

or to miRNA depletion.

We question if we can capture and visually represent the pro-inflammatory response
to an antigen in a clonal population of RAW264.7 cells in the context of variability. Are
there sub-populations in the cell community (those responding to antigen) that, in
principle, play a similar inflammatory role and, if so, do these communities respond to
LPS dose(s), intercellular communication, cellular density and global miRNA regulation.
We quantitate pro-inflammatory TNF, IL-6, NOS2 (and IL-B in later experiments) to

identify and track sub-populations in the community to see if this response is robust or is
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their plasticity in these communities. Further, in order to see how such communities
evolve over time and whether or not they have an effect in shaping the response, we use
simple mathematical models to predict temporal trajectories of empirical outcomes to fit
underlying parameters that may contribute to the qualitative and quantitative changes

to the community structure.

1.7.1 Aims

1. Capture and visually represent heterogeneous macrophage response to primary
and secondary challenges of LPS and develop methods to compare heterogeneous

communities composed of cells expressing TNF, IL-6, NOS2 and IL-13 (Chapter 4)

2. Use mathematical models to simulate time evolution of these communities to

obtain rate vectors that describe transitions between sub-populations. (Chapter 5)

3. Show how sub-populations are affected by depleting the miRNA bio-machinery

proteins such as Dicer (Chapter 6)
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Chapter 2

Methods

2.1 Methods and Materials

2.1.1 Mammalian cell culture
2.1.1.1 Animals and ethics statement

Wild type C57BL/6 mice were bred in the animal facility at University of York and cages
were ventilated individually. Animal welfare and care were considered foremost and UK
home office guidelines, complying with the ASPA act, 1986, were followed for all animal

protocols .

2.1.1.2 Extraction/culture of peritoneal macrophages

4-6 week old C57BL/6 wild type mice were injected with 200ul of 4% thioglycolate in
the peritoneal cavity to induce macrophage recruitment (Zhang, Goncalves, and Mosser,
2008). After four days the mice were euthanised by overdose of anaesthesia. The cells
were then extracted by lavage in ice cold Gibco Roswell Park Memorial Institute (RPMI)
1640 medium supplemented with 1% streptomycin-penicillin mixture, 1% L-glutamine
and 10% fetal calf serum (Hyclone). After centrifuging at 4°C at 1500RPM for 5 minutes,
cells were resuspended in red blood lysing buffer (Hybri-Max, Sigma) and left to stand
at room temperature for 5 minutes. Finally, harvested cells were plated and let to stand

for adhering to tissue culture plate at 37°C and 5% CO,. The cells were then washed
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with phosphate-buffered saline (PBS, Gibco) to remove non-adherent cells. Media was

replaced and cells were used for further experiments.

2.1.1.3 RAW264.7 cell culture

Murine macrophage-like cell line, RAW264.7 were obtained from frozen stocks at the
Lagos laboratory. Cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 1% streptomycin-penicillin mixture, 1% L-glutamine and 10% fetal
calf serum (Hyclone) in Corning T25 flasks and then passaged onto T75 flasks (Corning).
Cells were detached for passaging using 1x Trypsin-EDTA (Invitrogen) by incubating at
37°C for 10 minutes. Cells were detached completely by gently scraping with cell scraper
with a cross-ribbed handle (VWR). Upon reaching 70-80% confluency, cells were either
cryopreserved in a mixture of 90% FCS and 10% dimethyl sulfoxide (DMSO) in Corning
cryogenic vials or plated in 24 well plates for further experiments at passage 4 or 5.
RAW264.7 cells were centrifuged at 1500RPM at 25°C for 5 minutes for the purposes of

washing or re-suspending.

2.1.1.4 HEK293T cell culture

Human embryonic kidney 293 cells with a mutant version SV40 T antigen (HEK293T)
were obtained from frozen stocks at the Lagos laboratory. Cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 1%
streptomycin-penicillin mixture, 1% L-glutamine and 10% fetal calf serum (Hyclone) in
10cm dishes and passaged upon 60-70% confluency. Cells were detached for passaging
using 1x Trypsin-EDTA (Invitrogen) by incubating at 37°C for 5 minutes and gentle
tapping. Cells were cryopreserved as above or used for experiments at passage 4.

HEK293T cells were centrifuged at 1200RPM at 25°C for 5 minutes.
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2.1.2 LPS-induced challenge or hyporesponsiveness protocol

Thioglycollate-elicited peritoneal macrophages (TPEMs) were plated at 1,000,000 cells
per well for a minimum of 4 hours prior to experiments. 200-250,000 RAW264.7 cells
were plated overnight before experiments. All cells were plated in a Corning 24 well

plate in 50011 of DMEM.

For LPS titration experiments, cells were either stimulated with purified Escherechia
coli lipopolysaccharide (LPS; Sigma-Aldrich) or were left in media (untreated) on day 1
(Figure 2.1). Cells were challenged with 1, 10, 100 or 1000 ng/ml of LPS. Supernatant
was collected at 24 hours for ELISA and stored at -20°C. Cells were harvested for flow

cytometry at 16 or 24 hour from LPS stimulus.

For inducing hyporesponsiveness, cells were either stimulated with 10 or 1000 ng/ml
of LPS or left untreated in media on day 0 (Figure 2.2). After 24 hours (day 1), cells were
washed twice with PBS and replaced with media (Media/Media) or with media
containing 1000 ng/ml of LPS (10/1000; 1000/1000 or Media/1000) as represented in
Figure 2.2. Challenged (Media/1000) and twice-challenged (10/1000; 1000/1000) were
compared to ascertain hyporesponsiveness by measuring TNF and IL-6 by ELISA in the

supernatant.



46 Chapter 2. Methods

Untreated
Challenged
T » Harvest at ‘x’ hour
Day 1 from Day 1
LPS 24 hour for ELISA;
stimulus 16 or 24 hour
for Flow

FIGURE 2.1: LPS stimulus protocol

Cells were either left untreated in media or challenged with LPS (1, 10, 100, 1000 ng/ml) on day 1
(lower panel) and harvested for flow cytometry at 16 or 24 hours post stimulus. Supernatant was
collected at 24 hour for ELISA.
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Untreated
(Media/Media)
Challenged
1000 ng/ml (Media/1000)
Twice challenged
‘ @ (10/1000)
@ @ Twice challenged
(1000/1000)
I J » Harvest at ‘x’ hour
Day 0 Day 1 from Day 1
primary Secondary 24 hour for ELISA;
LPS LPS 8,12, 16, 24 hour
stimulus stimulus for Flow

FIGURE 2.2: LPS induced hypo-responsiveness protocol

Cells were either left untreated in media or stimulated with LPS (10 or 1000 ng/ml) on day 0
(lower panel). On day 1 cells were either left untreated (Media/Media) or challenged with 1000
ng/ml LPS (Media/1000; 10/1000; 1000/1000). 10/1000 and 1000/1000 received two doses of
LPS while Media /1000 represented cells that were only challenged once. Cells were then
harvested for flow cytometry at 8, 12, 16 or 24 hours post secondary challenge (day 1).
Supernatant was collected at 24 hour post day 1 for ELISA.
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2.1.3 Flow Cytometry

RAW264.7 or thioglycollate-elicited peritoneal macrophages were collected after
washing in ice-cold PBS and then detaching the cells with Accutase (Biolegend). Prior to
collection, cells were incubated in 10ug/ml of Brefeldin A (BFA) to block protein
transport (Misumi et al.,, 1986). BFA incubations were used at varying durations as
described in Figure 2.3 as an example and is, also, explicitly mentioned in each

experiment.

Cells and all reagents were maintained at 4°C throughout the intra-cellular staining
protocol. Harvested cells were washed twice in PBS and re-suspended in approximately
50ul of PBS. Cells were stained with 100ul of 1:1000 Zombie Aqua live/dead stain
(Biolegend) in PBS on ice for 8-10 minutes in the dark. Cells were then washed with
Flow cytometry staining (FACS) buffer (PBS, 0.5% BSA, 0.05% sodium azide), aspirated
and re-suspended in 501 FACS buffer. Fc receptors were blocked with 5ul of 2mg/ml
rat IgG for five minutes. Cells were then stained with surface receptor antibodies for 20
minutes on ice in the dark. Cells were washed with FACS buffer and then fixed with BD
Cytofix for 20 minutes on ice in the dark. Cells were washed twice with permeability
buffer (BD Cytoperm). Intracellular staining was performed with the cocktail of
antibodies made in permeability buffer. The list of the antibodies for surface and
intra-cellular staining are listed in table 2.1. Intracellular stains were washed off with
FACS buffer after staining for 20 minutes on ice in the dark. Cells were washed again

with FACS buffer, re-suspended in about 4001 FACS buffer and run on BD LSR Fortessa.

Single stain controls and isotype controls were used in all experiments. An example
of gating strategy used for intracellular staining along with its isotype control is shown in
Figure 2.4. FCS 3.0 files from Fortessa runs were recorded on FACS Diva software. Unless
mentioned explicitly, cells were pre-gated on live cells, singlets, forward scatter and side

scatter (for gating intact cells), F4/804 and/or CD11b+ using FlowJo.
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16 hour LPS+BFA

v

4 hour LPS 12 hour LPS+BFA =
8 hour LPS - 8 hour LPS+BFA _
T 12 hour LPS _ 4 hour LPS+BFA _ l
Day 1
primary/secon Harvest
dary at 16 hour
stimulus (post day 1)

FIGURE 2.3: Brefeldin A incubation for intra-cellular staining

Cells on day 1 were stimulated with LPS and BFA to obtain shorter or longer periods of
intra-cellular staining as described in the cartoon and harvested for flow cytometry staining at
the end of the incubations.
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Manufacturer| Antibody Clone Fluorophore | Isotype | Dilution
against

Biolegend TNF MP6-XT22 | BV421 IgG1 1:300
Biolegend IL-6 MP5-20F3 APC IgG1 1:200
Biolegend GM-CSF MP1-22E9 | PE-Cy7 IgG2a 1:400
Biolegend CD11b M1/70 PE-Cy7 IgG2b 1:400
Biolegend F4/80 BMS8 FITC IgG2a 1:200
Biolegend CDo64 X54-5/71 PerCP/Cy5.5 | IgG1 1:200
Biolegend TLR2 CB225 PE IgG2a 1:200
Biolegend TLR4 APC SA15-21 IgG2a 1:200
Biolegend CD86 PE GL-1 IgG2a 1:200
ThermoFisher| NOS2 CXNFT e-Fluor 610 | IgG2a 1:300
Scientific

ThermoFisher| IL-18 Pro NJTEN3 PE IgG1 1:200
Scientific

TABLE 2.1: Antibodies used for flow cytometry
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Isotype Control for anti-TNF (IgG1), anti-NOS2 (IgG2a) and
anti-IL-6 (IgG1) antibodies
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FIGURE 2.4: TNE IL-6, NOS2 positivity fractions as determined by
respective isotype controls

Cells were pre-gated for live, single, intact cells, CD11b and F4/80. CD11b+ F480+ populations
were then used to gate TNF+ and TNF- populations. TNF+ and TNF- sub-populations were
individually gated to IL-6+ and NOS2+ sub-populations using bi-plots. The resulting 8
sub-populations were then used to calculate their individual percentage in all CD11b+ F480+
population. Top row shows the isotype control TNF, IL6 and NOS2 based on which the
positive/negative gates were established and applied to sample (bottom row)
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2.1.4 ELISA

IL—6, TNF and IL-18 concentrations in the cell culture supernatant were measured by
enzyme-linked immunosorbent assay (ELISA). Nunc Maxisorp flat-bottom 96-well
plates from ThermoFisher Scientific were used for all ELISA experiments. Biolegend
ELISA MAX Standard kits for TNF, IL-6 and IL-18 were used to measure the respective
cytokine levels. Capture antibodies were added to wells at 1 in 200 dilution in coating
carbonate buffer (Biolegend). After an overnight incubation at 4°C for coating of the
plates with capture antibodies, the wells were blocked with 10% FCS in tris-buffered
saline (TBS) or TBST (20mM Tris hydrochloride pH 7.4, 150mM NaCl with
0.05%TWEEN) for 2 hours at 37°C. Standards (Biolegend) and samples were diluted
appropriately and added in duplicates to wells. Plates were incubated for 2 hours at
37°C at room temperature. Wells were washed in TBST 4—5 times and then biotinylated
antibodies (1:500 in 10% FCS in TBST) were added to the wells. After incubation at 37°C
for 1 hour, plates were washed in TBST and Biolegend Avidin horseradish peroxidase
(HRP, 1:10000) was added to the wells for 30 minutes. TMB buffer or
3,3",5,5’-tetramethylbenzidine (Biolegend) was used as a substrate for HRP. The reaction
was stopped using 2N sulfuric acid. Absorbance was read at 450nm with a wavelength
correction at 570nm using a VersaMax Microplate Reader (Molecular Devices). Standard
curves were generated using 4-parameter non-linear fitting to known standard
concentrations using SoftMax Pro software. Optical density of the unknowns that fit
within the linear range of the standard curve was used to calculate the concentration of

the sample.
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2.1.5 Greiss Assay

Greiss assay was used to measure nitrite concentrations in the supernatants.
Diazotization reaction in Greiss assay was carried out as per manufacturer’s intructions
(Promega) by adding sulfanilamide to the supernatant and then NED (0.1%
N-1-napthylethylenediamine dihydrochloride) in a 96-well plate. Plates were incubated
at room temperature for 5-10 minutes to allow for colour to develop. Standards were run
in duplicates or triplicates to determine nitrite concentration. Plates were read on

VersaMax microplate reader capturing absorbance between 520 and 550nm.

2.1.6 RNA interference

RAW?264.7 cells were plated at 50,000 cells per well in a 6 well plate overnight. The next
day, the cells were transfected with 50nM siRNA ON-TARGETplus mouse Dicer siRNA
SMARTPOOL at 50nM or a non-targeting control procured from Dharmacon. The
transfection was facilitated using TransIT-siQUEST (Mirrus Bio) in reduced serum
Opti-MEM (Gibco) as the transfection mixture. Opti-MEM was replaced with full
DMEM 5-6 hours post transfection. Cells were checked for siRNA efficiency by western
blot 24-48 hours post transfection. Cells treated with Dicer siRNA were referred to as the

siDicer group.

All LPS titration and hyporesponsiveness experiments for siDicer treated cells were

carried as per protocol described in sub-section 2.1.2 but in 6-well plates in 2ml of media

2.1.7 TNF neutralisation

MP6-XT22 monoclonal anti-TNF-a antibody was used to neutralise soluble TNF-« in cell
culture supernatants. Antibody was a gift from Dr. Louis Boon (Bioceros). Antibody
neutralisation efficiency was measured by mRNA levels of IL-6, NOS2, IL-12p40 and IL-

1B and by measuring protein concentration of TNF and IL-6 in cell culture supernatants.
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2.1.8 Western Blotting

Cells were washed with ice cold PBS. Protein extracts were prepared by treating cells
with RIPA or radio-immunoprecipitation assay (RIPA) buffer (150mM NaCl, 10mM Tris
HCL pH 7.2, 5mM EDTA, 0.1% Triton X-100, 0.1% SDS and 1% sodium deoxycholate)
and then scraped directly from the plate. To inhibit protease activity, a cocktail of
protease inhibitors P0044, P8340, P57266 (Sigma) were added in a 1 in 100 volume to
RIPA buffer. The cell lysate was then collected and centrifuged at 10000g for 15 minutes

after letting it stand on ice for 10 minutes. Lysates were stored in -20°C.

Total protein concentration was determined by a BCA (Bicinchoninic acid) assay from
ThermoFisher Scientific. Samples were diluted 1 in 6 before quantification. 5ul of diluted
sample and standards were added to the wells of a 96 well plate along with the working
solution for BCA assay (made as per manufacturer’s instructions). Plate was incubated
at 37°C for 30 minutes for colour to develop and read on Molecular Devices VersaMax
plate reader at 562nm. Standard curves were generated using bovine serum albumin
(BSA) and from which the sample concentration was determined. Appropriate amounts
of sample volume were determined to load 10ug of protein per lane in an SDS-page gel
containing acrylamide. Samples were denatured by mixing them with sample loading
buffer(4x, 250 mM Tris HCI pH 6.8, 8% SDS, 40% glycerol, 5% pB-mercaptoethanol and

0.05% bromophenol blue) incubating them in heating block at 95°C for 10 minutes.

Samples were loaded onto an 8% SDS-page gel and run on a Bio-Rad PowerPac at
120V for 60—90 minutes for resolving proteins. After the run, gel was cut and
sandwiched between blotting papers and with a polyvinylidene difluoride or PVDF
membrane underneath to encourage transfer on a semi-dry western transfer unit
(Bio-Rad) at 0.2A and limited to a maximum voltage of 25V. The PVDFs were activated
by washing them in methanol for 1 minute before setting up the transfer cell. Upon

successful transfer, membrane was blocked in 5% non-fat dry milk (Sigma-Aldrich) in
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TBST with 0.1% TWEEN for 1 hour at room temperature. Membranes were left
overnight in primary antibodies at 4°C with constant rolling in a falcon tube.
HRP-conjugated secondary antibodies were added to the membranes thereafter at room
temperature for 1 hour. The membranes were washed in TBST in-between and after
antibody incubations 5 minutes each time for three times. After secondary incubation,
the membrane was incubated in room temperature using ECL (GE Healthcare), a
chemiluminescent substrate for HRP. The luminescence was developed on film and band
quantification was done using Image]J (National Insitutes of Health, NIH). Quantification
of target proteins were normalised to the loading controls, B-actin and GAPDH.

Antibodies used are listed in table 2.2.

2.1.9 RNA Extraction

Cultured cells in wells were washed with PBS and then lysed in 700u1 QIAzol (Qiagen)
for processing the same day or stored in -80°C if RNA extraction was conducted on a
later date. RNA extraction of lysed cells in QIAzol was done using Direct-zol mini prep
(Zymoresearch) or using miRNAeasy kit (Qiagen) according to the manufacturer’s
insructions. RNA was eluted in nuclease free water and stored in RNAse-free tubes
(Appleton Woods). RNA quality was gauged on Thermofisher’s NanoDrop ND 2000
spectrophotometer based on A260/280 and A260/230 ratios.

Manufacturer | Antibody against | Clone | Dilution
Cell Signalling Cas9 7A9-3A3 | 1:1000
Biolegend Dicerl N167/7 1:100
Abcam B-Actin AC-15 1:5000
Abcam GAPDH 6C5 1:5000

TABLE 2.2: Antibodies used for western blotting
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2.1.10 cDNA synthesis

Purified RNA was reverse transcribed to make c¢DNA using random hexamers
(Promega). 50-200ng of RNA was loaded per cDNA sample in PCR tubes with 1ul of
random hexamers, 1ul of 10uM dNTPs along with upto 13ul nuclease-free water. The
sample strips were centrifuged briefly and then placed in a thermocycler (BIO-RAD) at
65°C for 5 minutes and then cooled to 4°C. 4yl of First strand buffer, 0.511 of RNAseOUT,
2ul of 0.1IM DTT, and 0.5ul of 200U/ ul Supersctipt III (all from Invitrogen) were then
added to each PCR tube. The samples were kept in the thermocycler for 10 minutes at
25°C, 50 minutes at 50°C and then finally, 5 minutes at 85°C to stop the reaction. Samples

were stored at -20°C.

2.1.11 gRT-PCR

SYBR Green master mix (Applied Biosystems) was used to quantify mRNA expression.
10pu] of SYBR Green per reaction was added along with 0.6yl of 10uM forward and
reverse primers and 7.8yl of nuclease free water to MicroAmo Fast Optical 96-well plates
(Applied Biosystems). 1ul of cDNA was then added directly into the master mix in the
wells. Plates were sealed with adhesive films (Applied Biosystems), centrifuged at 1200g
for 90 seconds and run on StepOnePlus Real-Time PCR Systems (Applied Biosystems)
for 40 amplification cycles (95°C-60°C). Hprt and/or Gapdh were used as loading

controls and analysis was done using the AACT (comparative cycle threshold) method.

2.1.12 CRISPR-Cas9 gene editing

RAW?264.7 cells were plated at a density of 100,000 cells per well in a 24 well plate the
night before transfection. Edit-R Cas9 Expression plasmids with puromycin resistance
gene and synthetic RNAs (GE Dharmacon) were used to transfect RAW264.7 cells. Three
pre-designed Edit-R crRNAs (CRISP RNA) for Dicer as per table 2.3 were selected for
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knocking out Dicer. Cas9 nuclease expression plasmid (Dharmacon) was mixed with
tractrRNA ( trans-activating crRNA; Dharmacon) and crRNA (Dharmacon) in
eppendorfs to obtain a final concentration of 25nM of the guide RNA
(tractrRNA+crRNA) and 1ug/well of Cas9 plasmid in serum free media. The mix was
allowed to stand in room temperature for 5 minutes. 50u1 of 60yg/ml DharmaFECT Duo
transfection reagent (Dharmacon) was added to the plasmid and guide mixture and
incubated at room temperature for 20 minutes. The final volume of the mix was brought
up to 500u] with antibiotic-free DMEM. The transfection mix was added and the cells
were incubated in 37°C with 5% CO; for 48 hours. Cells were then split into DMEM

containing 5ug/ml puromycin (Fisher Scientific) for selecting clones.

2.1.13 Transformation

Agilent XL-1 Blue supercompetent cells were used to amplify plasmids required for
lentiviral assembly. Pre-made ampicillin (Sigma) supplemented agar plates were kept at
room temperature to warm up. 30-50ul of XL-1 bacteria were added in a tube. The tube
was swirled gently and then the 50-500ng of the required plasmid (with a ampicillin
resistance gene) was added to the bacteria. The tube was incubated on ice for 30 minutes.
The bacteria-plasmid mixture was given a heat pulse in a 42°C water bath for 45
seconds. After a brief incubation on ice for 2 minutes, 900ul1 of pre-warmed SOCS media
(2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM
MgSO4, and 20 mM glucose) was added. Finally, about 80ul of transformed bacteria
were plated on agar plates with ampicillin. Appropriate negative and positive controls

were used to confirm ampicillin based selection. Single colonies were picked from Agar

Target crRNA sequence Manufacturer Part number

Dicer | GCTCGAAGAGGTGAGTTAAT | Dharmacon | CM-040892-01-0002
Dicer | GTGTTGAGTGGTACAATAAC | Dharmacon | CM-040892-02-0002
Dicer | CAAATTCTGAATGGGATATG | Dharmacon | CM-040892-04-0002

TABLE 2.3: ctRNAs used for Edit-R Dharmacon transient transfection of
Cas9 nuclease plasmids.
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plates with ampicillin to culture transformed bacteria further. Plasmids were purified by
Qiagen HiSpeed Midi kit using resin based binding of DNA. Resin-bound DNA was

then eluted by QIAprecipitators using ispropanol as per manufacturer’s instructions.

2.1.14 Lentiviral production and infection

Lentiviruses were packaged in HEK293T cells obtained from frozen stocks in the Lagos
laboratory. Transfection was carried out in 10cm tissue culture dishes (Corning) with
3—4x10° cells plated a day before the transfection in full DMEM. On the day of the
transfection, media was replaced with 8ml of warm reduced serum media Opti-MEM
(Gibco) per plate. The plasmids lentiCrisprV2 (Addgene-52961), VSV-G
(Addgene-14888) and A8.14 (Addgene-79047) were gifts from Dr. Tyson V Sharp (Barts
Cancer Institute, London). 15ul Transfection reagent FuGENE (Promega) was added to
35ul Opti-MEM directly avoiding the tube walls per plate in an eppendorf. The mixture
was allowed to stand for 5 minutes at room temperature. Approximately 1.5-2ug of
DNA each for the transfer, packaging and envelope plasmid was then added to 50ul of
Opti-MEM in a separate eppendorf. Finally, the DNA and FuGENE mix were added to
each other to make up the total volume upto 100ul and allowed to stand at room
temperature for 20—30 minutes. Effectively, the final transfection mix contained about
3ul of FuGENE per ug of plasmid DNA. The transfection mixture was added onto plates
dropwise. Control green fluorescence protein (GFP) expressing plasmids (pCSGW;
Bainbridge et al., 2001, available in Lagos laboratory) were used to check if transfection
was successful. 60 hours post transfection, viruses were harvested by passing the culture
supernatant through a 0.45um filter. Viruses harvested from different plates were pooled
and aliquoted into 1ml eppendorfs and frozen at -80°C for later use

100,000 RAW264.7 cells were seeded in a six well plate a day before lentiviral infection.
1ml aliquots lentiviruses were thawed and warmed to 37°C for 2-3 minutes. Media from

the wells were replaced with 1ml of lentiviruses. Lentiviral infection was confirmed
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using GFP viruses 24 hours after infection. Cells infected with lentiCripsrV2 were split

into puromycin for selection.

2.1.15 Limiting Dilutions

Monoclonal cell populations were selected by limiting dilutions in 96 well tissue culture
plates (Corning) in full DMEM with 5ug/ml puromycin. Cells from transfection or
lentiviral infections were grown in puromycin and then collected, counted and diluted to
approximately 50-100 cells per 10ml of media. The cell suspension was well mixed by
vortexing and 100yl of the suspension was added to each well to achieve a rough cell
density of 0.5-1 cell per well. Plates were then left undisturbed for 10-15 days and then
observed under a light microscope to look for wells with monocolonal colonies. These

clones were further expanded for analysis.

2.1.16 Data Analysis

FlowJo (FlowJo LLC) was used to analyse all flow cytometry data. StepOne Software
(Applied Biosystems) was used to analyse and export raw qPCR data which was further

processed on Microsoft Excel.

2.1.17 Statistics

Statistical analysis was done using Graphpad Prism 6, Matlab and R. Statistics used were
mentioned in figure legends. In general, goodness of fit was measured by the R? statistic.
Treatment groups were compared using paired t-tests. Pie charts compositions were
compared using Pearson’s correlation matrix, Bray Curtis metric or t-SNE. Linear
models were fitted by specifying the response and predictor variables in our empirical

dataset in MATLAB 2017a.
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Chapter 3

LPS challenge and inter-cellular
communication drive macrophage

population heterogeneity

3.1 Introduction

Clonal populations like pluripotent stem cells have been shown to have a variable gene
expression landscape. Genes related to endogenous housekeeping roles are normally
distributed and stably expressed in the population while genes involved in development
and metabolism have been shown to be differentially expressed with bimodal
distribution patterns (Kumar et al., 2014; Klein et al., 2015). A parallel of this response
has been seen in differentiated but homogeneous myeloid cells that show instability or
heterogeneity in the expression of key inflammatory proteins when stimulated with LPS
(Shalek et al., 2013). Such bi-modality in the response in key inflammatory cytokines can
play a critical role in response outcomes (Satija and Shalek, 2014) of immune cells. The
challenge is to understand contributing factors that leads to this variability and how this
can then be used to modulate outcome. In Chapter 1, possible contributory factors were
discussed, especially in the context of a clonal population of cells responding to LPS. In

response to LPS pro-inflammatory cytokines and mediators such as TNF, IL-6, NOS2 and



62 Chapter 3. LPS challenge and inter-cellular communication drive heterogeneity

IL-1p8 are expressed and/or secreted by macrophages. At the population level, LPS can
have an effect on the amount of pro-inflammatory cytokines expressed both when LPS
concentration in the environment is altered (Amura et al.,, 1998; Yang et al., 2017;

Matsuura et al., 2010).

In this chapter, using flow cytometry, we look at expression of pro-inflammatory
proteins at single-cell level to describe temporal snapshots of heterogeneous
communities within a clonal population responding to LPS and show that these
communities vary when the size of the LPS dose is perturbed. Further, we show that the
community compositions can be significantly altered even with a crude disruption to

inter-cellular communication and change in cellular density.

3.2 Aims

The prominent aim of this chapter was to determine if RAW264.7 cells respond
heterogeneously to LPS and, if this heterogeneity can differentiate between primary LPS

challenge as described below:

1. To describe a method to capture and visually represent population heterogeneity of
LPS-induced pro-inflammatory response of RAW264.7 cells as a function of

proteins measured at a single-cell level.

2. Compare population heterogeneity between LPS dose, inter-cellular
communication and cell density to show if perturbing each of these factors can

affect heterogeneity.
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3.3 LPS induces pro-inflammatory cytokine secretion

3.3.1 RAW264.7 cells secrete TNE, IL-6 and nitric oxide upon LPS stimulus

As key inflammatory mediators, TNF (Kalliolias and Ivashkiv, 2016), IL-6 (Hunter and
Jones, 2015) and NOS2 (Bogdan, 2015) were chosen as our experimental outputs of an
inflammatory response. We stimulated our macrophage model, RAW264.7 cell line with
LPS to check cytokine secretion at 24 hours. Both TNF and IL-6 were found to be present
in the culture supernatant. In addition, nitric oxide was found in the supernatant while
none of the three inflammatory mediators were found at detection levels in untreated cells
(Figure 3.1). Numerous studies have shown cytokine secretion in RAW264.7 cells upon
LPS stimulus (Xiang et al., 2009; Kong et al., 2007; Dai et al., 2019; Zhuang and Wogan,
1997) and confirm our finding that RAW264.7 cell line, can secrete TNF, IL-6, nitric oxide

upon stimulus with LPS.

3.4 Cytokine response at single-cell level is heterogeneous

3.4.1 Single-cell staining reveals cytokines have temporal profiles

To see how population level results translate to single-cell, we measured TNEF, IL-6 and
NOS2 upon LPS stimulus by flow cytometry. NOS2, the enzyme that catalyses the
production nitric oxide, was measured to get an indirect representation of nitric oxide
levels (Griffith and Stuehr, 1995). We stained our selected markers after 4 hours (Figure
3.2a) with LPS and Brefeldin A (BFA) to block secretion such that TNF and IL-6 could be
stained intracellularly. We also stained cells after 24 hours (Figure 3.2b) of activation

which included a 4 hour BFA incubation at the end (20 hour LPS + 4 hour LPS+BFA).

Labelling cells with an antibody against TNF, revealed that TNF expresses earlier
than IL-6 or NOS2, staining positive in more than half the population (Figure 3.2a) at
higher doses of LPS (10 and 100 ng/ml). Also, small differences between 100 and 1000
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FIGURE 3.1: RAW264.7 cells produce TNE, IL-6 and nitric oxide upon
stimulation with LPS

Bar plots showing TNEF, IL-6 and nitric oxide (NO) levels in control and LPS-treated (1000 ng/ml,
24 hour) RAW264.7 cells. p-values were calculated using paired t-tests (n=6-10).
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ng/ml of LPS in terms of frequency and median fluorescence was observed in TNF
expression (Figure 3.2). At a low dose of 1 ng/ml, TNF positive cells are fewer than 50%,
suggesting LPS dose to have an effect, at a single cell level, on how many cells respond to
the stimulus. 24 hours of LPS stimulus with a 4hr BFA incubation showed only a small
fraction of TNF+ cells Figure 3.2b. The median fluorescence intensity of these small
fraction in all three LPS doses (when compared to untreated cells/media) showed an
increase after 24 hours (Figure 3.2c for TNF). These positive fractions that appeared to

express TNF in an analog way did not titrate to LPS dose (Figure 3.2b and ¢ for TNF)

No IL-6 staining was detected at 4 hours of LPS stimulus suggesting IL-6 is made by
RAW264.7 cells late into the LPS stimulus, whereas an increase in the mean fluorescence
intensity was observed at 24hr (Figure 3.2c for IL-6). Since IL-6 was detected at the
population level in the culture supernatant after a 24 hour LPS stimulus (Figure 3.1), this
suggested that the empirical time points may be insufficient to capture the appearance
and disappearance of IL-6 positive cells (Figure 3.2a&b for IL-6). No LPS dose induced

difference was noticed in the staining for IL-6 at 24 hours.

NOS2+ cells appeared late into LPS stimulus with more than 50% cells staining
positive for NOS2 at the highest dose of 1000 ng/ml and more than 20% cells responding
at lower doses of LPS (Figure 3.2b for NOS2). In addition to LPS dose-dependency of
NOS2 positivity, there was also an increase in the amount of NOS2 being produced at
higher doses as indicated by an increased fraction of cells in the highest log-bin of Figure
3.2b fluorescence intensity and is represented by the consequent jump in the median
fluorescence of NOS2 (Figure 3.2¢c). No NOS2 staining was detected within four hours of

LPS stimulus across the LPS doses (Figure 3.2a).

Overall, these single-cell temporal snapshots showed these proteins have distinct

temporal profiles and that LPS dose induces heterogeneity in the response to LPS with
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FIGURE 3.2: Single cell staining reveals distinct kinetics for TNF and
NOS2

Histograms showing distribution of fluorescence intensity for TNFE, IL-6 and NOS2 in RAW264.7
cells cultured in media only or at 1, 10 and 100 ng/ml concentration of LPS for a 4 hour
(LPS+BFA) and b 24 hour (20 hour LPS + 4 hour LPS+BFA). ¢ Before-after plots showing median
fluorescence intensity of TNF, IL-6 and NOS2 for Media, and LPS doses of 1, 10, 100 ng/ml at 4
and 24 hour. Count of cells=50-100,000
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fractions of populations responding to stimulus (TNF and NOS2 at 4hr and 24hr, Figure
3.2a and b) and, further, that a fraction of cells may even remain positive even after the
rest of the population switches off, as seen in the case of TNF and IL-6 (Figure 3.2a and

b) negating any all or none response in any of the measured proteins.

3.4.2 LPS response spurs a heterogeneous community in RAW264.7 cells
3.4.2.1 TNE IL-6 and NOS2 positive cells can be visualised at 16 hours

We then stimulated RAW264.7 cells for 16 hours in LPS (12 hours in LPS plus 4 hours
with the addition of BFA) to see if all three proteins can be visually represented and
quantitated. Indeed, at 16 hours we could obtain a temporal snapshot of protein
expression of TNF, IL-6 and NOS2. This temporal snapshot represents protein
accumulation in a period of 4 hours (i.e. the duration of BFA incubation) between 12hr
and 16hr of LPS stimulus and captures phenotype in terms of protein expression. Any
fluctuations that may be present in a period less than 4 hours is ignored. To this effect, it
has been reported that pre-made cytokines, such as TNEF, can take about 30 minutes to be
released (Salamanca et al., 2008) or can take up to 2 hours for de novo synthesis such as
IL-6 that takes about an hour for gene expression and another hour for protein
expression (Hoadley and Hopkins, 2003). As such we assume that a minimum 4 hour
BFA incubation can capture the ‘phenotypic” state of a single RAW264.7 cell based on

whether it stains positive or negative for TNF, IL-6 and /or NOS2.

TNF expression (accumulation between 12-16 hours of LPS stimulus) titrated
between LPS doses (Figure 3.3a&b for TNF) whereas median fluorescence was much
higher for 1000ng/ml dose in comparison to the lower doses. In fact, the lower doses did
not show a big difference between their median fluorescence suggesting, although more
cells became positive as the dose of LPS increased between 1 ng/ml to 100 ng/ml on

average they made similar amounts. In contrast, 1000 ng/ml of LPS not only increased
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the frequency of cells expressing TNF but also increased the intensity of expression
(Figure 3.3c). TNF expression snapshot between 12-16 hours was bi-modal in
comparison to Figure 3.2a suggesting, especially at higher doses, most cells start
expressing TNF early and, while some switch off expression, some continue to make

TNF (Figure 3.3a).

IL-6 expression titrated almost equally well in terms of the frequency of positive cells
and median fluorescence intensity of the population to the LPS dose suggesting that IL-6
expression of RAW264.7 cells, at least, at this time point is affected by LPS dose (Figure
3.3). Approximately, 50-75% of cells at higher doses of LPS (100 and 1000ng/ml
respectively) and 13-21% of cells were positive at lower doses (Figure 3.3b), thus,
showing IL-6 to be heterogeneously expressed based on the amount of LPS in the

environment.

NOS2 expression upon LPS stimulus for 16 hours indicated that by this time point
almost all cells start switching on NOS2 at high doses while there are about 27% cells at
the lowest dose of LPS that do not switch on NOS2 production (Figure 3.3b).
Interestingly, the range of NOS2 positive cells in the higher doses (10, 100 and
1000ng/ml) is narrow at 87-96% of the population suggesting that the size of the LPS
dose may not have effect on whether NOS2 is switched on or not. However, on
analysing the median fluorescence intensity, it is revealed that although most cells do
switch on NOS2 production at low doses, the amount they make is much lesser than at
higher doses of LPS (Figure 3.3). When NOS2 amount and frequency are both

considered NOS2 response is heterogeneous and titrates to LPS dose.

Labelling cells with respective antibodies at this timepoint revealed that all three of
the measured inflammatory mediators are LPS dependent and that each have a distinct

behaviour. IL-6 expressing cells varied most (13%-75%) while TNF positive cells
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FIGURE 3.3: Heterogeneous population response titrates to LPS dose

a Histograms showing distribution of fluorescence intensity for TNF, IL-6 and NOS2 in
RAW264.7 cells cultured in media only or at 1, 10, 100 and 1000 ng/ml concentration of LPS for
16 hours (12 hours LPS + 4 hours LPS+BFA). Before-after plots showing b percentage positive of

total cells and ¢ median fluorescence intensity of TNEF, IL-6 and NOS2. Count of cells=100,000
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(18%-41%) and NOS2 positive cells (73%-96%) showed lower variation to LPS dose
respectively. The results also suggested that there are some cells within the responding
population that when responding to a high dose of LPS are possibly high producers of
TNF (Figure 3.3a&c). Similarly, IL-6 staining, although uni-modal showed a right tail
which appeared more prominent at higher LPS doses suggesting the presence of a
heterogeneous population of cells that maybe high producers of IL-6 (Figure 3.3a). The
distribution of NOS2 expression, on the other hand, in all doses of LPS showed a small
population of cells that were either negative or made less NOS2 in comparison to the

majority of the population (Figure 3.3a).

Next, in order to capture the temporal snapshot at 16 hours of LPS stimulation for all
the three proteins, we then looked at fluorescence intensity (of TNF, IL-6 and NOS2
antibodies) per cell to obtain information on whether, on an individual basis, cells were
TNEF, IL-6 and NOS2 positive. As such, leading to 8 possible sub-populations within the
parent population such as cells that were positive for all three proteins
(TNF+IL6+NOS2+) and triple negative cells (TNF-IL6-NOS2-). The other possible
combinations consist of single and double positive cells and are represented as a pie
chart and enumerated in the legend in Figure 3.4. These sub-populations are represented
as slices of the pie to visualise macrophage heterogeneity as community composition of

the RAW264.7 population.

To draw these pie charts (technique inspired from SPICE, Roederer, Nozzi, and
Nason, 2011), we obtained the information for the pie by first gating on live cells. Next,
we gated on the live population for single cells by selectively gating out populations that
have higher forward scatter width in comparison to their forward scatter area to reject
cells that may have clumped together. Further cells were subjected to a forward scatter
versus side scatter gate for cell size and granularity to select intact cells. Next, cells that

stained positive for both CD11b and F4/80, as canonical macrophage surface markers
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(Taylor et al., 2005), were included in our analysis. Suitable isotype controls (Figure 2.4
in Chapter 2) were then employed to identify background fluorescence of TNF, IL-6 and
NOS2 in stimulated RAW264.7 cells.

Next we gated on TNF positive cells using a histogram to identify cells that
expressed TNF against the isotype background. The TNF positive and negative
populations were then gated separately to make bi-plots for IL6 and NOS2 to fragment
the populations into the subtypes as described in Figure 3.4. Pies obtained with the
above method represent population heterogeneity as community composition and can
be used to compare treatments visually to draw insights of population heterogeneity in

LPS-induced response.
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FIGURE 3.4: Visualising heterogeneous response as a community of sub-
populations

Cells were pre-gated for live, single, intact cells, CD11b and F4/80. CD11b+ F480+ population
was then used to create TNF+ and TNEF- sub-populations. TNF+ and TNE- sub-populations were
individually gated to IL-6+ and NOS2+ sub-populations using bi-plots. The resulting 8
sub-populations were then used to calculate their individual percentage in all CD11b+ F480+
population. The frequency data was then plotted as a pie chart with each pie slice representing a
subset as enumerated in the legend.
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3.4.3 LPS dose alters community consistency within a clonal population

We next compared temporal snapshots of community compositions across LPS doses to
visually depict differences between the effects of LPS dose (Figure 3.5a). The media only
or untreated cells depicted a homogeneous community which composed primarily of
triple negative cells (TNF-IL-6-NOS2-) and some TNF+ cells (approximately 4%). Pie
charts depicting community composition of cells stimulated with low doses (1 and 10
ng/ml LPS) and higher doses (100 and 1000ng/ml) were visually different and distil the
underlying information of the histograms (Figure 3.2a) of all three proteins for an
individual cell. The communities indicate a fundamental difference between dose
response where higher doses tend to increase the frequencies of cells that have the
strongest inflammatory response by making all three of the measured proteins while
lower doses have a sizeable proportion of cells that are negative for any one, two or three

of these proteins.

Double positive cells TNF+IL-6+NOS2- cells form a negligible proportion of cells
(less than 1%) across LPS doses and, it may be inferred, that cells making both TNF and
IL-6 but not NOS2 are rare, although, this may be a temporal effect. Cells making both
TNF and NOS2 but not IL-6 (TNF+IL-6-NOS2+) form about 10-15% of the population
and are consistent across LPS doses while TNF-IL-6+NOS2+, another double positive

subset consistently increased with increasing LPS dose (Figure 3.5a).

Among single positive populations (those that were positive for only one of the three
proteins) single positive TNF cells seem to be higher (5-9% versus 1-2%) in lower doses
of LPS. Single positive IL-6 cells constituted a small sub-population (0.5-2%) increasing
with LPS dosage. Single positive NOS2 cells formed a sizeable proportion of the
population in 1, 10 and 100ng/ml LPS doses whereas it halved at the highest LPS dose
(1000 ng/ml) (Figure 3.5a).
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FIGURE 3.5: Visualising LPS stimulated RAW264.7 cells reveal

heterogeneous communities

a Pie charts representing sub-population frequencies of RAW264.7 cells stained for TNF, IL-6 and
NOS2 cultured in Media, or 1, 10, 100 and 1000 ng/ml of LPS. b integratedMFI (iMFI) bar plots to
show TNE, IL-6 and NOS2 amounts as calculated from subset frequency and mean fluorescence

intensity.
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We then analysed if these sub-populations showed differential expression intensity of
an individual protein i.e. whether triple positive TNF cells had a higher fluorescence
intensity than single positive TNF cells. For this, we calculated the magnitude of the
response also known as the integrated MFI (iMFI, Shooshtari et al., 2010) by multiplying
sub-population frequency with mean fluorescence intensity. Triple positive cells
produced most TNF at high doses (100 and 100ng/ml) whereas in low doses double
positive cells for TNF and NOS2 but not IL-6 (TNF+IL-6-NOS2+) expressed more TNF
(Figure 3.5b). Double positive cells for TNF and IL-6 but not NOS2 (TNF+IL-6+NOS2-)
that were shown earlier to be a negligible sub-population, as expected, did not
contribute much in TNF amount while, in contrast, single positive TNF+IL6-NOS2-
sub-populations made small contributions to the overall TNF amount despite being
present (at about 10-15%) across all LPS doses (Figure 3.5a&b). This may indicate that
some sub-populations, although positive for TNF, are low producers and, as such,

further contribute to the heterogeneity in TNF secretion.

IL-6 amount was unaffected by TNF+IL-6+NOS2- (as in the case of TNF) and the
single positive IL-6 sub-population, constituting a small proportion of cells, were part of
this group. In addition, the mean fluorescence intensity of these sub-populations for IL-6
was not higher than the other sub-populations to have any affect in overall IL-6
expression. Double positive cells for IL-6 and NOS2 but not TNF (TNF-IL-6+NOS2+)
and the triple positive sub-populations were the highest producers of IL-6. Interestingly,
double positive population (TNF-IL-6+NOS2+) that increased with higher LPS dose

produced more IL-6 than the triple positive population (Figure 3.5a&Db).

NOS2 staining intensity when multiplied by various NOS2 positive sub-populations
suggested a similar pattern with respect to double (TNF-IL-6+NOS2+) and triple positive
populations contributing to most of the protein expression. Double positive cells IL-6

and NOS2 but not TNF made up to twice more NOS2 at higher doses of 100 and
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1000ng/ml LPS. At low doses, however, NOS2 production could be attributed to single
positive NOS2 cells (TNF-IL-6-NOS2+) or the double positive cells for TNF and NOS2
but not IL-6 (TNF+IL6-NOS2+).

Thus far, we have described a method to qualitatively visualise the heterogeneity in
protein production of a population responding to LPS in terms of response-community
composition. Further, utilising the mean fluorescence intensity (iMFI) of a
sub-population we have then shown how much a sub-population contributes to the
protein expression within the community. In this particular case, we demonstrate that
heterogeneous response induced by LPS in RAW264.7 cells can be visually represented,
quantified and that there are distinct sub-populations that manifest upon LPS activation
of a macrophage community. It is shown that certain sub-populations of the LPS induced
pro-inflammatory community, produce less or more protein compared to others as a
function of how many cells there are in the sub-population and how much, on average,

they make.

3.4.4 LPS induced community is variable but shows a trend

We then repeated experiments as described in Figure 3.5 to obtain RAW264.7 community
compositions responding to LPS at 16 hours to show that considerable plasticity
underpins LPS response as visually apparent in Figure 3.6 the pie slices of which are
quantified in Figure 3.7b. Untreated cells did not show variability in their composition
across the experiments, however, each of the LPS dose showed considerable variability
between experiments. This variability appeared to be more pronounced as the LPS dose
increased, as such, 1000 ng/ml LPS dose showed greater fluctuations to community
composition than the lowest dose. This suggests that cells responding to high doses of

LPS may be more susceptible to the unevenness in the response.
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FIGURE 3.6: LPS induced communities show inter-experimental
variability

Pie charts representing sub-population frequencies of RAW264.7 cells stained for TNEF, IL-6 and
NOS2. Count of cells=50,000-100,000. a, b, ¢, d and e represent individual experiments.
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We then quantified the frequency of cells overall positive for TNF, IL-6 and NOS2 to
check if dose-induced effects of LPS can be uniquely identified on these three species as
independent measures (Figure 3.7a). Mean TNF+ cells after 16 hours of LPS stimulus
remained between 23-35% between the lowest and highest LPS dose. NOS2+ cells
titrated to LPS doses with mean NOS2+ cells between 59%-90% between lowest and
highest dose of LPS and with a greater range between high and low of dose LPS in
comparison to TNE. However, mean NOS2+ cells showed low variability (75%-90%)
between 10, 100 and 1000 ng/ml of LPS and, thereby, offering low predictability between
higher doses (Figure 3.7a). IL-6+ cells predict LPS dose most effectively with mean IL-6+
cells rising incrementally at 5, 17, 41 and 57% for 1, 10, 100 and 1000ng/ml LPS
treatment. In addition to variability between LPS doses, IL-6+ cells were highly variable
among experiments across all species for all doses with an average co-efficient of
variation or CV (standard deviation/mean, expressed as a percentage) of 41% as
compared to 30% and 6% for TNF+ and NOS2+ cells respectively. Intriguingly, TNF+
cells are the most variable with a CV of 52% at 1 ng/ml when a single dose of LPS is
considered (calculation not shown, Figure 3.7a). From these results, it can be speculated
that a population of RAW264.7 are variable in the production of TNF when LPS doses
are low while IL-6 production is generally variable and with higher doses of LPS more

prone to higher variability in IL-6+ cells.

In Figure 3.7b, we checked if the variability, in community composition shown
between experiments show any overall consistency to discriminate between LPS doses.
We speculate that the presence of TNF+IL-6+4NOS2+ and TNF-IL-6+4NOS2+
sub-populations are a determinant of high doses of LPS whereas higher proportions of
TNEF-IL-6-NOS2- cells are a key component of the community responding to low doses
of LPS. Using t-SNE based unbiased clustering reveals triple positive cells and
TNEF-IL-6+NOS2+ to separate out as a distinct cluster (Figure 3.8a) while clustering on

the basis of sub-populations separate low to high doses of LPS (Figure 3.8b).
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FIGURE 3.7: LPS induced communities are variable but underlying
patterns are consistent

Scattered dot plots showing mean and standard deviation of a TNF+, IL6+ and NOS2+ b TNE,

IL6, NOS2 sub-populations of RAW264.7 cells cultured in 1, 10, 100 and 1000 ng/ml LPS.
Individual dots in both a and b represent independent experiments. n=4-5
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Interestingly, these two sub-populations also correlated well with R? = 0.64 (Appendix

Figure 8.1).
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3.4.5 TLR4 expression and cell size do not contribute to response

heterogeneity

We next wanted to see if this LPS induced heterogeneous response had a simple
explanation based on heterogeneous expression of the surface receptor TLR4 that
initiates the LPS-induced response. We found that it is expressed uni-modally in
untreated cells (Figure 3.9a). This suggested TLR4 is tightly expressed and, as such,
absence of any underlying sub-populations with differential TLR4 expression. 12 hours
of LPS stimulus resulted in the down regulation of TLR4 approximately half as much as
higher doses (10, 100 and 1000ng/ml; Figure 3.9b). While low dose of LPS effect may
lead to a weaker downstream response, the distribution of TLR4 expression itself may

not contribute to the heterogeneous response (Figure 3.9a).

We also looked at the expression of co-stimulatory cluster of differentiation molecule
86 (CD86), as an activation marker of macrophages (Delgado et al., 1999; June et al., 1994)
which appeared to be bi-modally expressed in a clonal population. Upon LPS stimulus,
however, CD86 was upregulated with the population median increasing towards a more
uniformly activated distribution (Figure 3.9a&b). Again, like TLR4, CD86 activation was
half as much at the lowest dose than the higher doses. CD86 may be further examined
as a determinant of the heterogeneous outcomes to LPS (Figure 3.9a) but was not the
focus of this study. We then looked at cell size and found that there was no difference in
the expression levels of TNF, IL-6 or NOS2 across sizes of cells as measured by forward
scatter and seemed to uniformly fill the log-decades of fluorescence intensity for all three
proteins as compared to untreated cells (Figure 3.9¢). Based on this we infer that size of

RAW264.7 cells may not be the cause for a heterogeneous response to LPS.
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3.5 First challenge of LPS shapes community composition

3.5.1 Inter-cellular communication drives macrophage community

Having shown community compositions change rapidly at approximately 8 hours into
the first LPS stimulus (Figure 4.3), we wanted to know if the first LPS challenge does
indeed change the community composition across LPS doses or whether this was just an
effect seen at high doses of LPS. Towards this end, we treated RAW264.7 cells with 4, 8,
12 and 16 hours of BFA incubation in a total 16 hour LPS stimulation (Figure 3.10) to
reveal that cytokines produced in single cells had distinct distributions for IL-6 and
NOS2, especially, at longer incubations of BFA (Figure 3.10a) and community
composition differences between 4 and 8 hr BFA and 12 and 16 hr BFA incubations were

visually distinct (Figure 3.10b).

Histograms describing single-cell distributions of TNF, IL-6 and NOS2 revealed large
proportions of populations to be positive for each protein at the 16hr and 12hr BFA
incubation, and can be explained trivially by maximum accumulation effect appearing at
longer incubation periods (Figure 3.10a). In 16 hour BFA community, a small proportion
of TNF+ cells was found piled up at the highest fluorescence intensity bin. This may
suggest that either a high TNF producing population is lost if the cells are allowed
secretion for the first four hours (as this population is not seen in 12, 8 and 4 hr BFA
incubations) or, alternatively, upon LPS stimulus a small proportion of TNF+ cells
produce a lot more TNF than the rest of the population. These high producers appeared
irrespective of LPS dose. Interestingly, effect on TNF expression upon secretion
restriction for 12 (or 16) hours was not pronounced. The effect of LPS dose in terms of
increasing median fluorescent intensity of TNF was more prominent in the shorter
incubations of BFA suggesting the role of secretion in dampening the effect of TNF
positivity and/or, simply, that higher doses of LPS correlate with higher proportion of

TNF+ cells, that remain longer into the stimulus. TNF intensity distributions at high
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doses of LPS (100 and 1000 ng/ml) at 4 hr BFA incubation seemed distinctly bi-modal
compared to lower doses suggesting, that at higher doses, late phase TNF production

characteristics of a population is more pronounced (Figure 3.10b, TNF).

IL-6 positive cells were distributed as a long right-tailed uni-modal population at 4hr
and 8hr BFA incubations whereas the distribution appeared to be more bi-modal when
secretion was restricted for more than or equal to 12 hours. The bi-modal population is
interesting because the cells that belonged to the smaller mode were IL-6+ as well
suggesting either a fraction of cells are high IL-6 producers in the first 4 hours into LPS
stimulus or that restriction of secretion leads to high IL-6 producing cells that follow a
distinct distribution to the majority population. Interestingly, despite restrictions in

secretion IL-6 positivity titrated for all LPS doses and conditions (Figure 3.10b, IL-6).

NOS2 protein distribution showed positive cells titrated to LPS across the LPS doses
but with 1 ng/ml stimulus leading to a more bi-modal response. Other higher doses
seemed to increase NOS2 positivity comparably. However, NOS2, which is not secreted,
is most affected at lower BFA incubations as is evident by its median fluorescence
intensity increase with LPS dose (4 and 8 hr BFA incubation). In terms of NOS2, it must
be noted that while NOS2 positivity of a cell is not affected much by restricting secretion,
the amount of NOS2 made (median fluorescence intensity) is effected (Figure 3.10a,

NOS2).

Combining the histogram data for each individual cell and visually inspecting
community compositions across our treatment regime (LPS dose and BFA time), we find
that communities that have secretion restricted for more than 8 hours are distinct from
those that secrete for longer (Figure 3.10b). The time period between 0-8hr or 0-12hr into
LPS stimulation may be crucial in shaping the heterogeneity of macrophage response to

LPS. As shown previously, RAW264.7 cell communities responding to LPS have a higher
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proportion of triple positive cells making TNF, IL-6 and NOS2. This is observed as dose
of LPS increases and by increasing BFA time. Thus, implying the inflammatory response
of these macrophage-like cells is not only stronger with LPS dose but also without
community feedback. This suggests that inter-cellular communication is required for

optimal resolution of macrophage responses to LPS.
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1000 ng/ml concentration of LPS for b 16 hour LPS+BFA; 4 hour LPS and 12 hour LPS+BFA; 8
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3.6 Community-level effects are retained upon adding another

cytokine

To test whether the effects we observed was restricted by our choice of TNE, IL-6 and
NOS2, we expanded our panel to include two other inflammatory mediators IL-1b-pro
and GM-CSFE. We chose IL-1p because it is an acute phase inflammatory cytokine (Zheng
et al., 1995) and is widely implicated in inflammatory diseases (Ren and Torres, 2009).
We chose the antibody for pro-IL-18 or the inactive form as IL-18 is released from cells
with an alternative mechanism than ER/Golgi traffic as it lacks a signal sequence
(Rubartelli et al., 1990). GM-CSF is a growth factor implicated in myeloid cell T-cell cross
talk and GM-CSF producing macrophages can be instrumental in tissue damage (Becher,
Tugues, and Greter, 2016). We included pro-IL-18 and GM-CSF to see if community
sub-populations could still be observed within the new panel (Appendix figure 8.3). Our
results, indicated that an 8 hour divide exists when inflammatory communities change

composition.

We next performed further experiments including pro-IL-18 along with TNEF, IL-6
and NOS2 to look at sub-populations based on the four proteins. A total of 16
theoretically possible sub-populations were plotted as communities whose secretion was
restricted for 16, 12, 8 or 4 hour as shown in Figure 3.11. These results confirmed again
that community level differences exist between LPS dose. Also, that restricting secretion,
shows a change in community composition between the 8-12 hour time after LPS

challenge (Figure 3.11).

Interestingly, community compositions were also indicative of what sub-populations
are unlikely to appear (Figure 3.11) suggesting proteins that are unlikely to be expressed

along side other.



3.6. Community-level effects are retained upon adding another cytokine 89

+LPS
1ng/ml 10ng/ml 100ng/ml 1000ng/mi

16hr BFA
(restriction of
| | secretion) |

4 hours +
12hr BFA

J\

8 hours +
8hr BFA

J1

12 hours +
4hr BFA

\

B TNF-NOS2+|L1b+IL6+
TNF+NOS2+IL1b+|L6- = TNF-NOS2+IL1b+IL6-
.
[

TNF+NOS2+IL1b+IL6+

TNF-NOS2+IL1b-IL6+

TNF+NOS2+IL1b-IL6+
TNE-NOS2+IL1b-IL6-

TNF+NOS2+IL1b-IL6-

TNF+NOS2-IL1b+IL6+ TNF-NOS2-|L1b+IL6+
TNF+NOS2-IL1b+IL6- TNE-NOS2-IL1b+IL6-
TNF+NOS2-IL1b-IL6+ TNFE-NOS2-IL1b-IL6+

TNF-NOS2-IL1b-IL6-

TNF+NOS2-IL1b-IL6-

FIGURE 3.11: Community composition complexity is increased on adding
another cytokine

Pie charts depicting sub-populations based on TNE, IL-6, NOS2 and pro-IL-15 in RAW264.7 cells
cultured in media only or at 1, 10, 100 and 1000 ng/ml concentration of LPS for a 16 hour
LPS+BFA; 4 hour LPS and 12 hour LPS+BFA; 8 hour LPS and 8 hour LPS+BFA; 12 hour LPS and 4
hour LPS+BFA. Count of cells=50-100,000



90 Chapter 3. LPS challenge and inter-cellular communication drive heterogeneity

3.6.0.1 Restriction of secretion alters responses to LPS

Next we analysed the four-dimensional data set from LPS and BFA treatments (Figure
3.11) using a Pearson’s correlation matrix to show that communities with longer
secretion do not correlate well with communities with secretion longer than 8 hours
while communities of 4 hr and 8 hr BFA were strongly correlated as did 12 hr and 16 hr
BFA communities. Communities with 4 hr and 8 hr BFA incubations when compared

with 16 hr BFA communities had correlations value close to zero (Figure 3.12).

A pie-by-pie comparison reveals some correlation (<0.7) between communities that
are treated with low doses LPS (1 and 10 ng/ml) and whose secretion has been restricted
longer than 8 hr BFA with communities treated with high doses of LPS whose secretion
is restricted for less than or equal to 8 hours. This suggests, although, community
composition diversity is dependent on restriction of secretion but there exists a
continuum of composition diversity which is also affected, if modestly, by the dose of
LPS (Figure 3.12). Overall, our correlation analysis confirms what we have visually
shown previously (Figure 3.10) that treatments where secretion is restricted for longer
than 8 hours do not correlate with treatments where secretion restriction is less than 8
hours.

We further probed our data set with an ecological ordination metric Bray-Curtis
dissimilarity to see how communities separate from each other representing qualitative
and quantitative differences in community composition induced by LPS. The effect of
LPS dose on communities is only apparent when secretion is restricted for less than 8
hours (Figure 3.13).The treatments where restriction of secretion is longer than 8 hours
cluster close to each other suggesting antigen itself incapable of causing a differential
effect when secretion is restricted. Control populations that are treated with BFA but not
LPS all lie close to each other and away from the LPS stimulated samples and, thus, are

distinct and distant in composition.
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FIGURE 3.12: LPS stimulated RAW264.7 macrophages show weak to no
correlation to those that have their secretion restricted for longer than 8
hours.

Pearson’s co-efficient matrix displayed as heat map to compare linear correlations between
RAW264.7 sub-populations as shown in Figure 3.11. Correlation value -1, 0 and 1 represent
anti-correlation, no correlation and maximum correlation.
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A Bray-Curtis dissimilarity matrix was calculated for population sub-populations based on
RAW264.7 sub-populations as shown in Figure 3.11 and the corresponding non-metric
dimension plotted as an XY scatter plot. Shorter distances represent greater community
similarity between treatments (LPS dose and BFA incubation time)
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3.6.0.2 Isolated communities resemble communities whose secretion is restricted

Since restriction of secretion with BFA can stop autocrine/paracrine effects but also
create an artificial environment for the cell. Therefore in order to recreate a condition
where paracrine effects may have less effects, we plated an equal number of cells
(250,000) alongside in a 24 well plate and in a T75 flask. A T75 flask is approximately 40
times the surface area of a well in a 24 well plate. Thus, by increasing the distance
between cells and the volume of media, we checked the effect on the community
composition of the cells. 4hr BFA time in a T75 visually appeared to be more akin to
parallel treatments in a 24 well plate that had secretion restricted for 12 hours (Figure
3.14) with a correlation score of 0.89 and even correlated better (score=0.74) with 16hr
BFA in 24 well as compared to the identical treatment in a 24 well (score=0.3). Since
isolation does not stop autocrine signalling some of the sub-populations that appear in
the cells cultured in T75 flask may be due to exclusive autocrine effects. However, the
higher correlation to restriction secretion scenario must then suggest a greater role of

paracrine effects in LPS induced communities.



94 Chapter 3. LPS challenge and inter-cellular communication drive heterogeneity

LPS_1000ng.m|_BFA4_T75

(a) (b)

24 well/4hr BFA 24 well/16hr BFA
LPS_100ng.ml_BFA16 (H0:59

\ 0.22

0.24

LPS_1ng.ml_BFA12 [ 0.44

T75/4hr BFA 24 well/12hr BFA |-

LPS_1000ng.mI_BFA8

LPS_100ng.mi_BFA8 | 0.36
LPS_10ng.mI_BFA8 0.09
LPS_1ng.mI_BFA8 | 0.17
LPS_1000ng.mi_BFA4 | 0.3
LPS_100ng.mi_BFA4 | 0.07

LPS_10ng.m|_BFA4 | 0.07

LPS_10ng.ml_BFA16

LPS_1ng.mi_BFA16

LPS_1000ng.m|_BFA12

LPS_100ng.mi_BFA12

LPS_10ng.m|_BFA12 | 0.33

Pearson's

mE TNF+NOS2+IL1b+IL6+ Ml TNF-NOS2+I|L1b+|L6+ Correlation LPS 1oar BFAd T
mm TNF+NOS2+IL1b+IL6- == TNF-NOS2+IL1b+IL6- b | ¢ :
mm TNF+NOS2+IL1b-IL6+ mm TNF-NOS2+IL1b-IL6+ 10 05 00 05 10 T75/4hr BFA
TNF+NOS2+IL1b-IL6- TNF-NOS2+IL1b-IL6-
TNF+NOS2-IL1b+IL6+ TNF-NOS2-IL1b+IL6+
TNF+NOS2-IL1b+IL6- TNF-NOS2-IL1b+IL6-
mm TNF+NOS2-IL1b-IL6+ TNF-NOS2-IL1b-IL6+

TNF+NOS2-IL1b-IL6- mm TNF-NOS2-IL1b-IL6-

FIGURE 3.14: Cells stimulated in isolation and allowed to secrete make
communities that are similar to secretion restricted (>8hr) communities

a Pie charts representing RAW264.7 communities based on TNF, IL-6, NOS2 and pro-IL1J
expression in cells grown 24 well plates or in T75 flasks. b Pearson’s correlation between
community grown in T75 flask versus other treatments (representing cells grown in 24 well
plates).
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3.6.1 Anti-TNF treatment does not disrupt macrophage response community

In previous sections, we have showed that TNF+ cells are an important part of the
LPS-induced response community with TNF+IL6+NOS2+ to be a prominent identifier of
LPS dose magnitude and increases as secretion of RAW264.7 cells are restricted. Further,
we have also shown that upon LPS stimulation up to 97% cells are positive for TNF in
the first 8 hours. This led us to question, if secreted TNF along with LPS has a strong
effect in shaping the heterogeneous community-led response. A host of anti-TNF drugs
are medically prescribed in conditions like rheumatoid arthritis (Seymour et al., 2001) to
reduce the exacerbating effects of inflammation. Neutralising antibodies used in
RAW264.7 cultures reduced the mRNA pro-inflammatory proteins like IL-6, NOS2,
IL-12p40 by about 20% (Figure 3.15). TNF mRNA, however, did not show any decrease
while TNF at the protein level showed 40% decrease in supernatant. IL-6 showed a
similar decrease as well at the protein level when the highest concentration of anti-TNF
was used (100ug/ml) (Figure 3.15). The results suggested that neutralising TNF may be
reducing the overall levels of other TNF-inducible genes, however, it does not indicate
whether this happens in all cells by decreasing the amount of TNF produced per cell or if
it effect only a fraction of cells. We hypothesized if the decrease is due to TNF affecting a
fraction of cells it could then further affect the community composition upon LPS

stimulus.

No community level effects were observed when TNF was neutralised with a high
dose (100 pug/ml) of anti-TNF antibody and the composition of communities appeared
qualitatively similar (data not shown). However, it was observed that anti-TNF
antibodies increased the percentage of cells that were producing TNF when responding
to 1000 ng/ml of LPS doubling it at 16 hours from stimulus. This may suggest a negative

feedback loop that reduces the number of cells producing TNF. (Figure 3.16).
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FIGURE 3.15: Anti-TNF neutralising antibody suppresses IL-6, NOS2 and
IL12p40 mRNA up to 20%.

a Bar plots showing the fold repression of TNEF, IL-6, NOS2 and IL12p40 mRNA Cells (n=1) and b
scatter plots to show levels of TNF and IL-6 in the supernatant when treated with isotype control
(100pg/ml) or anti-TNF neutralising antibody at 25, 50 and 100ug/ml concentration (n=2).
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FIGURE 3.16: Neutralising TNF increases the number of late phase TNF
producing cells

Histograms showing fluorescence intensity distribution of RAW264.7 cells cultured for 16 hour in
LPS (12 hour LPS and 4 hour LPS+BFA). Histograms show percentage TNF+ population in three
replicates (middle and bottom rows) treated with either isotype control or TNF neutralising
antibody. Positive cell gating as per isotype control for antibody targeting TNF (top row)
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3.6.2 Thioglycollate-elicited peritoneal macrophage response to LPS is

heterogeneous

In order to verify if heterogeneous communities to LPS was not an effect limited to
RAW264.7 cells, due to cell-line characteristics such as continuous growth and, cell-lines
being adjusted to growing in cell culture media, we harvested thioglycollate-elicted

peritoneal macrophages and cultured them in vitro.

We first characterised thioglycollate-elicited peritoneal macrophages (TEPMs) soon
after harvest to look at surface protein expression to show that they are a highly
heterogeneous population (Figure 3.17) as thioglycollate elicitation leads to monocyte
recruitment without activation adding on to the tissue-resident peritoneal macrophage
population. Among the four mice harvested, all had a similar size and granularity but
could be differentiated using the F4/80 surface marker expression with typically 77-83%
of the cells F4/80+, 9-15% F4/80 low and 5-6% F4/80 high (Figure 3.17a&b). CD86, as a
co-stimulatory molecule, was bi-modally expressed (as seen in RAW264.7 cells, 3.9).
These results suggested our harvest could consist of tissue resident (F4/80 high), a mix
of monocyte-derived macrophages and small tissue residents (F4/80+) and infiltrating
monocytes (F4/80 low). However, upon in vitro culture, this F4/80 expression pattern
was lost (Figure 3.18) and, therefore, should not have large effects on the response to

LPS.

Next, we looked at heterogeneous responses to LPS in peritoneal macrophages as a
temporal snapshot at 16 hours of stimulation. As we have shown in previous sections,
community transitions may occur at around 8 hour of LPS stimulus (Figures 4.3, 3.10)
we either incubated the TEPM culture for 8 hour or 16 hour in BFA for a total of culture
in LPS for 16 hour. Despite a longer BFA incubation of 8 hours (Figure 3.19, 8 hour + 8
hrs BFA) we could identify heterogeneous sub-populations in the in vitro peritoneal

population across all doses of LPS and secretion restriction resulted in a visually distinct
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FIGURE 3.17: Surface expression of F4/80 shows distinct populations in

thioglycollate-elicited peritoneal macrophages

Flow-cytometry gating shown for ex-vivo thioglycollate-elicited peritoneal macrophages (TPEM)
to show a populations sub-types using bi-plots of F4/80 and CD11b/CD86. b Histograms to
show distributions of F4/80 and CD86 fluorescence intensiy. n=4 biological repeats
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FIGURE 3.18: F4/80 expression is more uniform upon in vitro culture of
peritoneal macrophages

Flow-cytometry gating shown for cultured TPEMs for a period of 24 hours with CD11b and
F4/80 expression (bottom row)
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community composition.

LPS dose comparison in TEPMs (8 hours + 8 hr BFA, Figure 3.19) showed a
heterogeneous population where negative cells, single positive TNF-IL6+NOS2-, double
positive TNF-IL6+NOS2+ & TNF+IL6+NOS2- and the triple positive populations
comprised the sub-populations in the community at 16 hours when cells were incubated
in BFA for 8 hours. As the dose of LPS was increased number of negative cells reduced
along with an increase in the triple positive and TNF-IL6+NOS2+ sub-populations as
shown earlier in RAW264.7 cells (8 hours plus 8 hr BFA, Figure 3.10). However, a
reduced proportion of cells that were overall positive for NOS2 were reported (13-42%
among all conditions) as compared to 54-86% in RAW264.7 cells at 16 hours of LPS
stimulation (Figure 3.10) suggesting fewer TEPMs make NOS2 or that NOS2 is switched
on later into the LPS stimulus when compared to RAW264.7 cells. Similarly, overall IL-6
positive cells were higher in TEPMs (76-89%) than RAW264.7 (8-59%) with much
reduced variability in TEPMs (4% variability compared to 50% in RAW264.7) co-efficient

of variation).
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FIGURE 3.19: Thioglycollate-elicited peritoneal macrophages for
heterogeneous communities and are affected secretion restriction

Pie charts depicting sub-populations in cultured TPEMs in media only or at 1, 10, 100 and 1000
ng/ml concentration of LPS for 16 hour LPS+BFA; 8 hour LPS and 8 hour LPS+BFA; 8 hour LPS
and 8 hour LPS+BFA; 12 hour LPS and 4 hour LPS+BFA. Mouse 1 and 2 represent biological
repeats. Count of cells = 50,000
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3.7 Discussion

3.7.1 Conclusions

The results presented in this chapter regard macrophage heterogeneity as affected by
temporal responses to LPS, LPS doses and intercellular communication. Heterogeneous
responses presented as temporal snapshots of macrophage response to antigen,
measuring three or more response proteins, can be visualised as a complex community
of distinct sub-populations (Figure 3.4). Based on our results we make the following

conclusions:

e Diverse community compositions indicate considerable population heterogeneity in

RAW?264.7 macrophages.
e Community compositions depend on LPS dose.

o TNF+IL6+NOS2+ and TNF-IL6+NOS2+ sub-populations are predominantly affected
by LPS dose.

e Restricting inter-cellular communication leads to dissimilar community compositions.

e TNF blockade does not alter community composition but doubles the frequency of late-

stage TNF positive cells.

o RAW264.7 cells at low density make more late-stage TNF positive cells. Community
composition of this population resembles communities that have their secretion

restricted.

e Thioglycollate elicited peritoneal macrophages (TPEMs) form distinct LPS-induced
communities and are affected by secretion restriction. However, their response is

distinct from RAW?264.7 cells.
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e Macrophage, both RAW264.7 and TPEM, communities responding to LPS rapidly

change community composition between 8 and 12 hours of LPS stimulus

3.7.2 Visualisation method

In this chapter, firstly, we present a technique that can be used to compare temporal
snapshots of protein expression for quantification of sub-populations within a
LPS-activated macrophage population. This protein expression snapshot shows whether
a cell is positive or negative for each of the measured fluorescently labelled antibodies on
a flow cytometer. Pie charts, akin to those described in the SPICE software (Roederer,
Nozzi, and Nason, 2011), represent a community of cells responding to an activator such
as LPS at any particular time. Visualising heterogeneous sub-populations as a
community can not only be used to probe the heterogeneity in LPS activated cells
(Shalek et al., 2013) at a protein level but can also be used to enquire how heterogeneous
communities may evolve in phenotypic changes such as in endotoxin tolerant or trained
immune cells (Biswas and Lopez-Collazo, 2009; Netea, Quintin, and Van Der Meer,
2011). Further, this method allows exploring community composition of our selected
proteins upon restriction of secretion that is known to alter response in bone-marrow
derived dendritic cells in a paracrine dependent manner (Shalek et al., 2014) and other

perturbations such as population density effects (Chen et al., 2015; Postat et al., 2018).

In general, visualising response as a community can be adapted to proteins of interest
to probe consequences of heterogeneous protein expression on function. By temporally
tracking communities with or without additional perturbations, it may be further
possible to explore the ordering of community sub-populations in time. Interestingly,
such ordering, analogously, has been shown using pseudo-temporal analysis of
single-cell transcriptomic data of human myoblasts to map cell fate decisions (Trapnell

etal., 2014).
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Finally, our methods capture activation-induced heterogeneity as a community of
diverse phenotypes and clearly describes the percentage of cells that are positive or
negative for each/all measured proteins. However, this type of visualisation loses
underlying fluorescence information at the per-cell level and does not describe the
distribution within a positive population. In that sense, one cannot differentiate between
high and low producers, or the absence of them from the pie-chart representation. For
example, NOS2 expression in our dataset is seen to have high and low expressing cells
even while most cells are positive (NOS2 histogram, Figure 3.10). As such, there may be

additional differences in the amount that are overlooked by our method.

3.7.3 RAW264.7 macrophages respond as a community

It is shown that murine macrophage-like RAW264.7 cells, despite being a clonal
population respond to LPS with considerable heterogeneity. In that sense, upon
antibody staining for TNF, IL-6 and NOS2 at 16 hours, we find at least 5 and up to all 8
different possible sub-populations in the response. Two of the most under represented
sub-populations were TNF+IL6+NOS2- and TNF-IL6+NOS2- cells across LPS doses and
experiments. This suggested that these states are possibly short-lived and, thus, are

never represented in our minimum 4 hour BFA accumulation.

Upon measuring four cytokines per cell (TNF, IL-6, NOS2 and pro-IL-1p) we found
up to 11 different sub-populations out of a possible 16 (2%, where 4 is the number of
cytokines stained for). While, the addition of a cytokine, increased the number of
possible sub-populations, not all possible sub-populations were found to exist in the
community (ie those that represented at least 1% of the total population) suggesting,
again that some sub-populations are not likely to exist within a community or

undetectable with the current method.



106 Chapter 3. LPS challenge and inter-cellular communication drive heterogeneity

This suggests while LPS does activate RAW264.7 cells, there is a secondary effect that
shapes the course of inflammation and such diverse sub-populations require careful

dissection of how this community is shaped.

While it is known that LPS dose has an effect on how much cytokine is produced at
the population level (Amura et al., 1998; Yang et al., 2017; Matsuura et al., 2010), as per
our knowledge, not much is known about how populations respond as a community to
LPS dose. We show that LPS dose has considerable effect in community composition
which may effect cell priming within a community that can shape hypo or

hyper-responsiveness to second dose of LPS.

Further, we go onto show that communities are plastic in terms of relative
frequencies of sub-population representation but the variability does not change the
overall dose induced community composition. Plasticity in community composition can
be attributed to a number of cell culture related factors such as cell density and plating,
reagent concentration or temporal factors such as length of pre-stimulus or overnight
incubation period, length of BFA incubation and, consequently, time-taken to harvest
cells or errors in length of cell culture. Care was taken that these factors remained
comparable between experiments and, thus, effects manifesting due to such errors must
either be less or suggest that small perturbations of one or more of these factors can have

large effects on community composition of macrophages responding to LPS (Figure 3.7).

Intuitively, triple and double positive populations are more pro-inflammatory than
single positive or negative cells. When comparing LPS doses we find, by unbiased
clustering, that TNF+IL6+NOS2+ and TNF-IL6+NOS2+ sub-populations were most
different from the other sub-populations and were more prevalent in 100 and 1000
ng/ml LPS dose. This suggests that increasing LPS dose increases the inflammatory

response even 16 hours into the LPS response. This is interesting because we also show
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that almost 97% of all cells go through TNF in the first 8 hours of stimulus (4hr + 4hr
BFA, Figure 4.3) when stimulated with 1000ng/ml of LPS. Since all RAW264.7 cells go
through a TNF+ stage in the first eight hours, one explanation of the heterogeneous
community composition could be due to this early TNF-release in an autocrine or
paracrine manner, along with LPS, could shape the community compositions, as
measured at a later time point (12 or 16 hours). Further, it may be speculated that
TNF-IL6+NOS2+ cells which cluster along with TNF+IL6+NOS2+ cells, and are enriched
in high doses of LPS may be a community of cells which have previously been triple

positive and have, in time, lost TNF positivity (see correlation in Appendix Figure 8.1).

Interesingly, most TNF+ cells (sum of all TNF+ sub-populations) in the first 8 hours
(97%, 4hr + 4hr BFA, Figure 4.3) switch off TNF (below 25%, 8hr + 4hr BFA, Figure 4.3)
by 12 hours of LPS stimulus. This may be attributed to the anti-inflammatory IL-10
(Saraiva and O’Garra, 2010). IL-10 is known to be upregulated at mRNA levels in
RAW?264.7 cells at around 4 hours into stimulus (Zhu et al., 2018) and peak at 8 hours
into LPS stimulus at the protein level in both mice (Van Laethem et al., 1998) and human
macrophages (Chanteux et al., 2007, Giambartolomei et al., 2002). Further, studies in
mice have also shown that knocking out IL-10 leads to increased TNF mRNA levels in

the first 24 hours after LPS stimulus (Anderson et al., 2017).

Despite regulatory effects of IL-10, as discussed above, at 16 hours between 24-41%
cells are TNF+ (sum of all TNF+ sub-populations, Figure 3.7). This could be because
IL-10 is possibly not able to completely block TNF while it can also be because of the
bi-phasic nature of NF-«B activation. Upon TLR4/LPS endocytosis, a late phase NF-xB
activation has been shown to occur between 8-12 hours (Han et al., 2002) which can lead
to a second wave of TNF production. Further a secondary NF-xB activation can also

occur because of TNF binding to its receptor TNFR (Hayden and Ghosh, 2014).
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While TNF seemed to play a central role in our experiments with large LPS doses
distinguishable by triple positive (TNF+IL6+NOS2+) populations and most cells going
through a TNF+ phase in the early response to LPS, we were unable to disrupt
community composition at a late stage (16 hours) into LPS stimulus by neutralising TNF
in the cell culture. Interestingly, however, TNF+ cells (sum of all TNF+ subpopulations)
doubled in percentage in comparison to control suggesting the lack of TNF in culture
was promoting an inflammatory response. This late doubling of TNF+ cells could have
an effect in the community composition after the 16 hour time point but this was not

pursued further.

3.74 Community communication

Previously, using short and long BFA incubations to depict early and late phase
response, we showed community consistency in 1000/1000 treatments. Since BFA, in
addition to capturing accumulation, also restricts intercellular communication, we
showed that community compositions switch to distinct community types at around 8
hours into LPS stimulus. Distinct bi-modal IL-6 production and lower NOS2 levels with
almost all cells positive for TNF were the hallmark of the response when secretion was
restricted (Figure 3.10). This 8 hour switch was yet again observed when community
complexity was increased by adding pro-IL-18 to our measurement (Figure 3.11, 3.12,
3.13). Our results indicate that loss of autocrine and paracrine signalling leads to an
increased inflammatory response. While our disruption of autocrine and paracrine
signalling is crude, it shows the importance of autocrine and paracrine signalling in
RAW?264.7 cells. We then plated the same number of RAW264.7 macrophages in a culture
vessel that was approximately 40 times bigger than the usual culture plate to show that
communities responding to LPS when cells are not clustered or near each other, correlate
more to communities whose secretion is restricted (Fig 3.14). Since isolation is more

likely to stop paracrine effects than autocrine, our results suggest that paracrine



3.7. Discussion 109

signalling may be crucial for dampening the inflammatory response as previously
suggested in bone-marrow derived dendritic cells at the mRNA level (Shalek et al., 2014)

and in isolated human monocyte-derived macrophages (Xue et al., 2015).

Community structure of thioglycollate elicited peritoneal macrophages (TEPM)
suggested that TPEMs respond to LPS in a heterogeneous manner and form
communities that titrate to LPS dose and restriction of secretion makes the community
appear distinct to when secretion is not restricted (Fig 3.19). However, the changes to
community composition upon LPS titration is only modest and is likely to be due to the
increased LPS sensitivity of primary cells to RAW264.7 cells. Interestingly, IL-6
production in TPEMs was bi-modal in comparison and NOS2 staining was moderate in
comparison to unimodal analog responses observed for IL-6 and and strong NOS2
staining in RAW264.7. Sub-populations such as single positive for IL-6
(TNF-IL6+NOS2-) which are prominent in TPEMs were not observed in RAW264.7
communities. This suggests that TPEMs and RAW264.7 have fundamental differences in

how they respond to LPS and form different communities.
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Chapter 4

Macrophage heterogeneity is a
determinant of secondary LPS

challenge

41 Introduction

Macrophages exposed to LPS twice can become hypo-responsive in their ability to
produce cytokines (Biswas and Lopez-Collazo, 2009; Netea, Quintin, and Van Der Meer,
2011). In this chapter, we use visualisation and secretion restriction methods employed
in Chapter 3 to investigate the effects of LPS-induced heterogeneous macrophage
communities can affect the response-outcome to secondary doses of LPS in terms of

community composition and population-level responses.

4,2 Aims

The aim of this chapter was to determine if RAW264.7 cells respond heterogeneously to

secondary LPS challenges.
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4.3 Second dose of LPS induces a hypo-response

4.3.1 Upon secondary exposure to LPS RAW264.7 cells make less of TNE, IL-6

and nitric oxide

We stimulated RAW264.7 cells for 24 hours with LPS and then re-stimulated with a
second dose and collected cell supernatant. TNF, IL-6 and nitric oxide showed a
significant decrease at the population level confirming that LPS can induce a
hypo-response in RAW264.7 cells in vitro (Figure 4.1). When the first dose of LPS was
small (10 ng/ml), the hypo-response induced at the population level was less

pronounced than when cells were pre-treated with a higher dose of LPS.

While 1000/1000 treatment induced hypo-response in terms of TNF, IL-6 and nitric
oxide, 10/1000 treatment induced hypo-response in terms of TNF and IL-6 but not nitric

oxide. (Figure 4.1)
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FIGURE 4.1: Re-stimulated RAW264.7 cells are hypo-responsive

Bar plots showing TNEF, IL-6 and nitric oxide (NO) levels in RAW264.7 cells stimulated once
(Media/1000), or twice (10/1000 or 1000/1000) where 10 and 1000 represent 10 and 1000 ng/ml
of LPS post second stimulus at 24 hours into culture. p-values were calculated using paired
t-tests (n=3-6, bars=standard deviation).
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44 Community composition determines response to secondary

stimulation with LPS

4.4.1 Heterogeneous community responses can be identified by protein

accumulation

We next wanted to identify if a secondary dose of LPS, that induces a hypo- response at
the population level (Figure 4.1) spur distinct communities compared to primary
responses to LPS when probed at the single cell level. Twice-challenged cells showed
similar consistency to cells that were challenged only once (Figure 4.2a) when
community composition was compared at 16 hours post stimulus. This occurs both in
the low (10ng/ml) and high dose (1000ng/ml) pre-stimulus (Figure 4.2a). Despite
showing that a second dose of LPS induces hypo-responsiveness (with population level
measurements Figure 4.1 in RAW264.7 cells), at the single-cell level there were more cells
that were overall positive for TNF (24% for 10/1000; and 12% for 1000/1000) and IL-6
(10% for 10/1000; and 16% for 1000/1000) as compared to approximately 6% and 10%
TNF and IL-6 positive cells in single challenge (Media/1000) community (inferred from
Figure 4.2a). Negative sub-populations were approximately twice as many in both
10/1000 and 1000/1000 communities when compared to the single challenge,
Media/1000. However, these negative cells comprised of a small proportion of the total
cells (approximately 10%). This indicated that upon a second challenge, cells switching
on cytokine production may be delayed in time after stimulus, while there is also an

increased population of negative cells that are part of the community.

In a separate experiment, to check if this delay in switching on cytokines, as
suggested above, is evident, we compared communities of single challenge and two
challenges of LPS after 24 hours (20 hours plus 4 hr BFA, Figure 4.2b). Indeed, cells that
were overall positive for TNF in twice-challenged communities were 3.5 and 4 times

(10/1000 and 1000/1000) higher than those exposed to LPS once. Cells that were overall
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positive for IL-6 were twice more frequent in 1000/1000 communities when compared to
Media/1000 suggesting late IL-6 production (like TNF) in twice-challenged cells.
However, 10/1000 communities showed a decrease in IL-6+ cells at 24 hours (8%) from
10% at 16 hours when compared to approximately 10% and 12% IL-6+ cells in
Media/1000 communities at 16 hr and 24 hr. This can be speculated as a differential
effect that is seen due to the size of the pre-stimulus (10 vs 1000 ng/ml) but it must be
noted that since 16 hr (Figure 4.2a) and 24 hr timepoint (Figure 4.2b) information is
derived from two different experiments, this difference can also be attributed to
empirical variability as shown previously (sub-section 3.4.4). Interestingly, negative cells
between Media/1000 and 1000/1000 were 16% and 14% percent, respectively, showing
both the treatments were unable to distinguish between non-responsive cells by this time
point.  10/1000 community were, however, 31% negative being twice as high as

Media /1000 (Figure 4.2b).

Figure 4.2a&b indicate that twice challenged communities have higher TNF
(1000/1000 and 10/1000) and IL-6 (1000/1000) producing cells at 16hr and 24hr in twice
challenged while NOS2 producing cells are lower or equal but community compositions
are, by appearance, hard to distinguish, because sub-populations in the community that
do show a change between Media /1000 and 10 or 1000/1000 are small populations. One
subset, TNF+IL6-NOS2+, stands out at 16hr (Figure 4.2a) and 24hr (Figure 4.2b) of
second stimulus and is 2-4 times (16 hour) and 3.6 times (24 hour) higher in
twice-challenged cells compared to the Media/1000 community. As this sub-population
represents 16% of 10/1000 (16 hour), 8% of 1000/1000 (16 hour), 17% of 10/1000 (24
hour) and 18% of 1000/1000 (24 hour) of the total community, it maybe an important
part of the response when RAW264.7 cells are stimulated twice with LPS, and at least,

between 16 and 24 hours of second stimulus.

As a visibly discernible hypo-response, in RAW264.7 (from the temporal snapshot of
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FIGURE 4.2: Hypo-responsive communities appear more pro-
inflammatory at 16 and 24 hours

Pie charts representing sub-population frequencies of RAW264.7 cells stained for TNF, IL-6 and
NOS2 when cells were either unstimulated (Media/Media), stimulated once (Media/1000), or
twice (10/1000 or 1000/1000) at a 12 hour in LPS and 4 hour in LPS+BFA b 20 hour in LPS and 4
hour in LPS+BFA ¢ 8 hour in LPS and 16 hour LPS+BFA; 24 hour LPS+BFA; 24 hour LPS and 16
hour LPS+BFA post second stimulus at 24 hours into culture. Count of cells=100,000.
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the twice-challenged communities at 16 and 24 hour with 4 hour BFA incubation) was
not observed, we then visualised communities by trapping proteins in the cells for
longer to see if protein accumulation can be used to visualise hypo-response. Looking at
accumulation of proteins over a 16 hour BFA incubation in a total of 24 hour stimulus ( 8
hour LPS and 16 hour LPS+BFA, Figure 4.2c) we show that approximately 38%, 32%,
80% of the 10/1000 community were TNEF, IL-6 and NOS2 positive over the 24 hour
period (8 hour LPS plus 16 hour LPS+BFA) compared to the Media/1000 community
where TNF+, IL-6+ and NOS2+ cells were about 58%, 60% and 95% respectively. This
showed that the response to a second dose of LPS is overall modest. In terms of
community composition, notably, the triple negative (approximately 5-fold more ) and
the TNF-IL6-NOS2+ single positive sub-populations (2-fold greater) were prominent in
the 10/1000 community while in the Media/1000 community the triple positive,
TNF+IL6+NOS2+ and TNF-IL6+NOS2+ were 3 fold and 50% more respectively. This
effect was exaggerated when we cultured cells for 24 hours in LPS with BFA (Figure 4.2c,
24 hr BFA) to show that approximately 70% of the Media/1000 community was triple
positive in 24 hours, thus, suggesting that each of these 70% cells must have made all the
three proteins in the 24 hour hour period. In contrast, triple positive sub-populations
was limited to only 24% of all cells in a twice-challenged community. Similarly, there are
22% cells that do not make TNF in the entire 24 hour period in 10/1000 community
whereas Media/1000 community suggests that all cells go through a TNF phase i.e. each

cell makes TNF at some point during the 24 hour LPS stimulus.

Macrophages responding to a second challenge of LPS are hypo-responsive and this
phenotypic change is known to persist for days (Biswas and Lopez-Collazo, 2009). In
order to see if this could be captured in terms of heterogeneity of community between
Media/1000 and 10/1000 we cultured cells for 40 hours post second stimulus (Figure
4.2¢, 24 hr plus 16 hr BFA). 10/1000 community was found to be qualitatively different
with certain TNF+ sub-populations such as TNF+IL6-NOS2+ and TNF+IL6-NOS2-
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comprising 18% of the total population. In comparison, these sub-populations were
negligible in the Media/1000 community (<0.5%) which had a higher percentage of
TNF-IL6+NOS2+ cells (16%) in comparison to 3% in 10/1000. Also, 10/1000 community
had 3 times more negative cells suggesting twice-challenged communities switch

cytokines off faster.

Figure 4.2¢ suggests that IL-6 may be critical in determining the hypo-response in
RAW264.7 cells with overall IL-6+ cells being consistently more in the Media/1000
community which is not apparent in the 4 hr BFA incubation experiments at 16hr and
24hr post secondary stimulus (Figure 4.2a&b). It is important to note here that long BFA
incubations are restricting secretion and the ability of the communities to interact in an
autocrine and paracrine manner indicating community compositions represented here

may be affected by the lack of autocrine or paracrine effects.

4.4.2 Single-challenged communities undergo a compositional change at 8

hours of LPS stimulus

4 hour BFA incubation at 16 and 24 hour post second LPS stimulus showed few overall
TNF+ cells while accumulation over 16/24 hour period showed up to 97% cells being
TNF positive in the Media /1000 community (Figure 4.2). Such a high percentage of TNF+
cells (sum of all TNF+ sub-populations) suggested that most cells must then go through a
TNF+ stage upon LPS stimulus. To test this we looked at the first 8, 12 and 16 hours of LPS
stimulus with a short 4 hour BFA incubation. We found that indeed, and again, 97% cells
were TNF+ in the first eight hours of the LPS response in the Media/1000 community
(Figure 4.3, 4 hours plus 4 hr BFA). This finding is also in line with TNF being an early
response protein (Bradley, 2008).

While 10/1000 community was 68% cells overall positive for TNF hyporesponsiveness
was most pronounced in the 1000/1000 community with just 11% making TNF in the first

eight hours of the response (Figure 4.3, 4 hours LPS plus 4 hr LPS+BFA). Interestingly,
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the 10/1000 community shows a high percentage of TNF+ cells (6 times) higher than
1000/1000 community that switch off rapidly to 14% at 12 hours suggesting that a low
dose pre-stimulus does not decrease the capability of a population of cells to switch on
TNF compared to a higher dose pre-stimulus. Further, the communities of 10/1000 and
1000/1000 comprised of 7% and 10% negative sub-population confirming again that a
small percentage of cells do not respond to the second dose of LPS (as opposed to 2% of
cells in Media/1000).

The community structure in longer LPS stimulations (Figure 4.3, 8 plus 4 and 12 plus
4) of 12 and 16 hours exhibit similar subset composition as described earlier with less
changes between 12 and 16 hours of LPS stimulus in terms of community composition.
However, while overall TNF+ cells decrease over 8, 12 and 16 hours into LPS stimulus,
the number of overall TNF+ cells first decrease (between 8 and 12 hours) then increase
(between 12 and 16 hours) in both 10/1000 and 1000/1000 communities. This indicates a
small percentage of cells become positive for TNF later when responding to the secondary
stimulus, as shown earlier (Figure 4.2a&Db).

We have shown that accumulation over long periods of LPS stimulation such as 16
hours and 24 hours show visual community differences in the single versus
twice-challenged cells and that such a community-level switch occurs early on at around
8 hours into the LPS stimulus in Media/1000 community. We then restricted secretion
for 16, 12, 8 or 4 hours during a 16 hour LPS stimulus (Media/1000) or re-stimulus
(10/1000 or 1000/1000) (Figure 4.4) to show that, indeed, by trapping proteins longer in
the cells we can again show that a visual change is observed in the community
composition between 16 hour or 12 hour BFA incubations where effective secretion time
is 0 hours and 4 hours in Media/1000 communities versus 8 hour. Further, community
compositions change between 8 hour and 4 hour BFA incubation in Media/1000
community. Twice-challenged communities appear to be much less affected by BFA

incubations, and as such, by environmental effects.
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Pie charts representing sub-population frequencies of RAW264.7 cells stained for TNF, IL-6 and
NOS2 when cells were unstimulated (Media/Media), stimulated once (Media/1000), or twice

(10/1000 or 1000/1000) for 4 hour in LPS and 4 hour LPS+BFA; 8 hour in LPS and 4 hour

LPS+BFA; 12 hour in LPS and 4 hour LPS+BFA post second stimulus at 24 hours into culture.

Count of cells=50,000-100,000.
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Both temporal analysis (Figure 4.2 and 4.3) and longer BFA incubations (Figure 4.4)
showed that cells that are challenged with LPS for the first time go through
(approximately 97%) a TNF positive state within first 0-8 hours. In addition, the
Media/1000 community changed after 8 hours into LPS stimulus. Twice-challenged
communities, on the other hand, were hypo-responsive with fewer cells responding by
producing TNF in the first 8 hours with 10/1000 communities showing compositional
change to modest changes in the 1000/1000 community across BFA incubations (Figure

4.4)
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Pie charts depicting sub-population frequencies of RAW264.7 cells stained for TNF, IL-6 and
NOS2 when cells were unstimulated (Media/Media), stimulated once (Media/1000), or twice

(10/1000 or 1000/1000) for 16 hour LPS+BFA; 4 hour in LPS and 12 hour LPS+BFA; 8 hour in LPS
and 8 hour LPS+BFA; 12 hour in LPS and 4 hour LPS+ BFA post second stimulus at 24 hours into

culture. Count of cells=50,000-100,000.
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4.5 Discussion

4.5.1 Conclusions

The results presented in this chapter regard macrophage heterogeneity as affected by

secondary response to LPS. Based on our results we make the following conclusions:

e Communities responding to a secondary LPS challenge are temporally more consistent.

e TNF+ cells in a hypo-responsive community are lower in the first 12 hours of the

response.

4.5.2 Hypo-responsive communities

Populations challenged with LPS (1000 ng/ml) were hypo-responsive in the production
of TNF, IL-6 and nitric oxide in the culture supernatant when pre-treated with 1000
ng/ml while populations pre-treated with 10 ng/ml failed to show hypo-response in
levels of nitric oxide (Figure 4.1). Analysing community hyporesponsiveness, we found
small difference in the communities of twice challenged and challenged populations at
16 and 24 hours. While 10/1000 and 1000/1000 communities had a higher proportion of
negative cells when compared to communities that were treated with LPS only once
(Media/1000) there were more TNF+ subpopulations in hyporesponsive communities.
While TLR4 and TNF can induce a late phase NF-xB activation, it is possible that IL-15
that is only secreted upon the second challenge of LPS in RAW264.7 cells (Appendix

Figure 8.2) can enhance higher activation of late-phase NF-«xB (Han et al., 2002).

Hyporesponsive cells appeared distinct as a community both when BFA was added
for 16 hours post first 8 hours of LPS stimulus to capture the late phase inflammatory
response in RAW264.7 which seemed to be dictated largely by the consistency and

robustness in the community structure of 1000/1000 (Figure 4.2) and when shorter and
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longer BFA incubations were used to probe the first 16 hours of inflammatory response
by hypo-responsive communities (Figure 4.3, 4.4). The consistency in TNF+
subpopulations in 1000/1000 communities suggest that at the single cell level the
hypo-responsive communities may be most resistant to making TNF. The most striking
trait of hypo-responsiveness seemed to be that the population behaved as a distinct
community of cells containing several phenotypes with respect to whether they were
positive to TNEF, IL-6 and NOS2. Our results suggest that while hypo-responses to LPS
(endotoxin tolerance or trained immunity) do involve molecular signatures such as
chromatin re-modelling and phenotypic changes as acknowledged in literature (Foster,
Hargreaves, and Medzhitov, 2007; Biswas and Lopez-Collazo, 2009; Seeley and Ghosh,
2017), it is not a uniform effect in terms of response. As such, not all pre-stimulated

populations respond to LPS as an all or none response but as a diverse community.

4.5.3 Summary and future work

Heterogeneity between a RAW264.7 population responding to LPS challenge versus
those that were challenged twice was shown to be more modest in comparison to the
first challenge. This is observed when communities are visually represented and
compared in the first 8 hours or at later time points such as 12, 16 or 24 hours (Figure
4.3). Interestingly, changes in composition upon restricting secretion in twice-challenged
communities was modest too (Figure 4.3). Numerous histone modifications, nucleosome
modelling and DNA methylation have been suggested that suppress the production of
inflammatory cytokines like TNF, IL-6 and NOS2 upon LPS tolerance (Seeley and Ghosh,
2017) despite this we observe heterogeneous sub-populations that remain in the
community for longer than 16 hours. It will be interesting to check if these communities
have any spatial preferences and we would like to explore this by looking at
communities by immunofluorescence. It will be further useful to know whether
sub-populations make IL-10 or TGF-f differentially. As RAW264.7 cells do not represent

physiologically relevant macrophages we checked if our results could be extended to
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primary cells we looked at thioglyocllate-elicited peritoneal macrophages and found we
can indeed find heterogeneous sub-populations. We think looking at heterogeneity in
terms of community composition in macrophages responding to antigen can help us
learn more about macrophage community composition, especially, in times of

immunosuppression.
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Chapter 5

Mathematical descriptions of

population heterogeneity

5.1 Introduction

LPS-induced activation of macrophages marks the beginning of a complex immune
response process. This can lead to resolution of infection when the inflammatory
response is sufficient and controlled or, in cases, to the immune system switching from
an overtly inflammatory response to an immuno-suppressive state that can lead to
severe life threatening conditions like sepsis (Nathan and Ding, 2010; Rittirsch, Flierl,
and Ward, 2008; Fleischmann et al., 2016). Mathematical understanding of this immune
system failure can help develop strategies for interventions, and methods have been
developed to describe the pro-inflammatory and immunosuppressive environment
(Day, Metes, and Vodovotz, 2015; Maiti et al., 2015; Torres et al., 2019).

Models have gone further to predict the switch to immunosuppressive phenotypes of
immune cells. Using concentrations of pro-inflammatory immune mediator proteins,
such as cytokines, clinical outcomes of sepsis have been predicted using personalised
models (Brady, R. et al.,, 2018). Inflammatory signalling by cytokines produced by
immune cells can affect the cells themselves (autocrine), other like or unlike cells

(paracrine), and sometimes have far reaching effects (endocrine), such as cytokines like
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TNF and IL-1p reaching the hypothalamus in the brain to modulate body temperature
(Gourine et al., 1998). Modelling such a process in detail would require hundreds of

parameters and can pose problems of over fitting (Lee et al., 2018).

Single cell-dynamics has been modelled to describe average behaviour of cells over
time (Wilkinson, 2009). However, mean-field models discount the heterogeneity in
macrophage responses, even in clonal populations, shown in cells of myeloid origins and
described extensively in our current work in Chapter 4. Further, in the general
introduction, (Figure 1.4, Chapter 1) we have discussed the reasons why these
heterogeneous populations emerge. We hypothesise that heterogeneous responses of
immune cells to LPS can hold the key to understanding how dissimilar effects can be
produced from seemingly identical populations. Understanding the dynamics of this
heterogeneity mathematically can provide critical information to drive testable

hypothesis experimentally.

5.1.1 Aims
In this chapter, we aim to

1. Describe how an immunosuppressive phenotype can develop after repeated
exposure to antigen using simple modelling paradigms with a specific aim to
characterise immunosuppression (or hyporesponsiveness) in terms of population

heterogeneity.

2. Modity our simple model to understand effects of signalling, given our empirical set
up and description, to describe transition rates between sub-populations (or subsets

described in Chapter 4).
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5.1.2 Modelling - Methods employed

Ordinary Differential Equation (ODE) models were written as functions and numerically
solved using the built-in ode45 solver in MATLAB. ode45 is implemented in MATLAB
using Dormand-Prince pair, an explicit Runge-Kutta formula (Dormand and Prince,

1980).

Parameter estimation of ODE models was done using the function lsqcurvefit in
MATLAB that uses non-linear curve fitting to find a vector of values that are a local
minimiser to a sum of squares function using the Levenberg-Marquardt algorithm

(Levenberg, 1944; Marquardt, 1963).

Bespoke code for implementing stochastic simulations algorithm (or the Gillespie

algorithm) was written in MATLAB.

Parameter estimation of Gillespie-based models was performed by
rejection-sampling of parameter values drawn from negative binomial, uniform and
normal distributions. Parameter estimates were accepted if the model output fell in the
95 percentile confidence interval of the empirical dataset or within a error percentage
mentioned in the relevant results section. Where possible, parameter space was bound

based on numbers estimated from the ODE model.

MATLAB version 2017a was used for the purposed of coding and simulations.

5.2 Modelling paradigm

We describe temporal changes in population heterogeneity of a community of cells in
terms of whether a sub-population of the community is expressing a particular protein

or not. In other words, this community of cells is comprised of two phenotypes - one that
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makes the inflammatory protein in question and the other that does not. (This partition
into two phenotypes is generalised to allow more complex phenotypes, and to include
the possibility of hypo-responsive cells, later in this chapter). Traditionally, models
describing phenotypes have been modelled using chemical kinetics (Wilkinson, 2009).
This assumes that the system has a high number of reactants and products and, thus, the
behaviour is deterministic. Such models have been implemented widely using ordinary
differential equations (ODEs). Although, these models can sometimes be solved
analytically and describe average behaviour of a system, it fails to describe the

stochasticity associated with single cell heterogeneity (Wilkinson, 2009).

ODE modelling assumes the reactants and products of the system to be continuous
variables, while in contrast the phenotypes within a real population are always discrete.
Stochastic modelling that is based on an underlying master equation describing the
probability space of species (or phenotypes) assumes discrete numbers. The use of
discrete numbers can then be used to describe biological experiments where a small
number of species are involved (Wilkinson, 2009). Our experimental results showed
large variation in proportion of cells positive for TNF (up to 52% co-efficient of variation)
between experiments which raises the case for stochastic methods to describe the system,
and suggests that average behaviour may not be sufficient to describe the system. Based
on the above reasons, we use stochastic modelling, specifically, the Gillespie-Doob
algorithm (Gillespie, 1976) to exactly simulate the time-evolution of communities of

macrophage populations that are either positive or negative for one or more proteins.

5.2.1 Gillespie-Doob Algorithm

The Gillespie-Doob algorithm, as introduced in Chapter 1, describes the biological (or
other) system based on reaction propensities and a state vector, X, that holds the number
of each reactant (Gillespie, 1976). Reaction propensities are defined as probabilities that

determine which reaction will occur in the next calculated time interval. These time
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intervals (time to next reaction) are exponentially distributed random variables so that
time is treated continuously rather than as fixed discrete steps. The algorithm first
initialises time (f = t;,;1;,1) and state vector, X where X = [Xj, Xy, ..., X,,]. A rate vector, R
where R = [Ry, Ry, ..., Ry, holds the associated rate of each reaction of the defined M
reaction channels. For example, in the system

Ry

X1 X,

X, (5.1)

R; and R; are the per-capita rates that govern X; to switching to X», and vice versa,

respectively.

The algorithm iterates over a user-defined number of iterations or until a fixed in
silico time has elapsed. Upon each iteration, two random numbers are generated from a
standard uniform distribution, n; and n,. Next a propensity vector, A,, is calculated as
the product of the rates governing state switch and the count of species in that state to
obtain its probability or propensity of occurring when a reaction is fired. In a
Gillespie-Doob simulation, containing two reaction channels as in equation 5.1, the

propensity vector is calculated as the following

Ay = X1Rq, XoR> (5.2)

and in vector pseudocode form as A, = [X1R; X2Rz]. Next a combined propensity A, is
calculated by summing the individual propensities. Time to reaction is then calculated on

the basis of A, and random variable n; as

Frext = 1/(ln(n1)Ao) (5~3)

i.e. an exponential random variable with a mean of 1/Ay. Once t,.y; is calculated, the

algorithm calculates the reaction which will occur at this time based on the smallest
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integer that is greater than nyA,. The selected integer (or index in pseudocode terms)
then decides which reaction will occur (equation 5.2). In this way, the algorithm
accounts for the two possible reactions in an unbiased way. The algorithm updates time
to t = tinitial + tnext and updates the count in the state vector e.g. increasing X, by 1 and
decreasing X; by 1 if the forwards reaction is selected. The algorithm returns and starts a
new iteration until a break in the simulation is encountered based on a user-defined

number of iterations or maximum time, t = ¢ Final-

5.2.2 Comparison with ODE and analytical solutions

We implemented the Gillespie-Doob algorithm in MATLAB using bespoke code, and
tested it using a well characterised population growth model, the logistic equation. The

logistic equation, in ODE form, can be written as

‘;’; — Bx(1 = xo/K) (5.4)

where ‘;—’t‘ is the rate of change of a population, f is logistic growth rate, K the carrying

capacity of a population while x( represents the initial population.

This ODE can also be explicitly solved analytically and its solution is given by
xr = xoK/ (xo + (K — xo)e’ﬁt) (5.5)

In Figure 5.1 20 runs of model implementing the Gillespie-Doob algorithm were plotted.
We show that the ODE solution for the same equation traces the average behaviour of
our stochastic model over the entire solution trajectory. The correctness of the ODE
solution implemented using ode45 in MATLAB is further validated by plotting the
analytical solution (given by equation 5.5) that explicitly calculates the population size at
a given time, . Thus, we conclude that our stochastic model is mathematically robust

and can be further used to model problems set in our chapter aims.
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FIGURE 5.1: Gillespie model average represents the ODE solution and
both are true to the analytical solution

20 stochastic runs of Gillespie based algorithm for solving a logistic equation with two different

values of logistic rates (red and blue trajectories) and the same death rate and carrying capacity

were plotted against the corresponding ODE solution and analytically predicted time-evolution

of population count with (a) showing overall trajectories and (b) a closer look at the disposition
of the three solutions
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5.3 Modelling cell populations responding to LPS

5.3.1 Positive-state model definition

We first model the non protein-expressing negative state (N) or the protein-expressing
positive state of a cell (P) as a 2-state model that has a fixed forward and backward rate
describing the transition between positive and negative states (Figure 5.2a). We call this
the positive-state model. The protein, modelled here, is physiologically only produced
upon macrophage activation by antigens like LPS and is functionally inflammatory
(Zhang and An, 2007). The response to LPS in the in silico cell environment is, therefore,
modelled as a direct positive effect on the forward rate that describes the transition of a
cell to the P state such that

arps = a(1+ pL) (5.6)

where ayps is the overall forward rate which takes into account the LPS in the
environment, « is the forward rate in the absence of LPS, L is the concentration of LPS in
the environment and y is a constant that describes the magnitude of the response to LPS
concentration. The linear assumption in equation 5.6 is used for simplicity to induce
plausible local LPS dynamics, bound between 0 and 1000, at the cost of introducing a

single unknown, .

Upon describing the above model as an ODE, we have

‘;i; — Na(14 uL) — BP (57)

where 2P represents rate of change in the number of cells in the positive state with

respect to time, P, N are the number of in silico cells in the positive and negative state

respectively, f is the rate at which cells in the positive state change to negative state.
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We model the decay of LPS concentration, L as a simple first order exponential decay

in continuous time. This can then be expressed as

L(t) = Loe™® (5.8)

where Ly and L(f) represent the concentration of LPS at time zero and ¢ respectively, and
¢ is the constant LPS decay rate.
At a time dependent quasi-equilibrium, where the dynamics of L are assumed to occur

on a slower time scale than those of P and N, equation 5.7 can be used to write

i Na(1+ Loe™°
quasi — ( ﬁ ) (59)

where rate of change of P, ‘é—f = 0 and P}

quasi Tepresents the number of in silico cells in

the positive-state at quasi-equilibrium. It can be inferred from equation 5.9 that in the

absence of LPS in the environment,

Nu
P = — 5.10
3 (5.10)

which is the equilibrium (P*) dynamics for the simple case where 2 species switch

between each other with rates «, p.

Further, equation 5.7 can be re-written as

‘Zl; = (T —P)a(1+uL) — BP (5.11)

where T is total number of cells since N + P = T at any given time.

Equation 5.11 can be exactly solved to the following closed form equation given the initial
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condition P(0) =0

P(t) = ¢ —tetp) / ' Tt B (Loape /5 ([, yo=0t41) gy (5.12)
0

5.3.1.1 Positive-state model simulation with arbitrary rates

We then simulate the positive-state model to show that over a period of 24 hour, 50% of
the population is in positive state without LPS in the environment (Figure 5.2b). The
simulation shows that in the absence of LPS the proportion of simulated cells that are in
the positive-state are equal to those in the negative-state, thus, showing that the
simulated results are true to the underlying analytically calculated equilibrium dynamics
at L=0 (equation 5.10). Inflammatory proteins require activation (Zhang and An, 2007),
and in the absence of a stimulus to activate an immune response the proportion of
positive cells is likely to be small. This suggests that in a physiologically relevant context
« must be small in comparison to B to constrain the positive-state proportion when there

is no LPS in the environment (equation 5.10).

Next we simulate the effects of LPS dose by simulating the model, again with
arbitrary rates (¢ = 0.005 and B = 1) in Figure 5.3 to illustrate that the magnitude of LPS
concentration and its decay can affect how fast the positive-state proportion increases,
how high the positive-state proportion rises and how fast the positive-state proportion
becomes negative. Parameters for this model can be estimated to fit to the empirical
results obtained at 16 hour or 24 hour upon the first challenge of LPS (Figure 3.7,
Chapter 4) and, can be used to predict the time-evolution of positive proportions of
inflammatory proteins (data not shown).

Next we simulated the model to mimic macrophage cell populations that induce a
hypo-response from our empirical results in (Figure 4.1, Chapter 4) when stimulated

with LPS twice in Figure 5.4 to show that our current simplistic model definition cannot
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FIGURE 5.2: Positive-state model description and output when there is
no LPS in the environment

(a) In silico cells in the positive-state model can assume two states. Negative and positive state
transitions are defined by « and B rates (b) 20 stochastic realisations of the time-evolution of cells
positive-state as a proportion of the total population when there is no LPS in the environment ie

L =0,a =1, B =1.The bars denote 95% confidence intervals of the mean.
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FIGURE 5.3: LPS dose affects the rise and fall of positive cells
differentially

Positive-state model was simulated for LPS doses 0, 1, 10, 100 and 1000 with arbitrary forward
rate (« = 0.005, B = 1) with a fixed arbitrary LPS decay rate (6§ = 0.5). 20 stochastic runs for each
dose (magenta=0, yellow=1, green=10, blue=100 and cyan=1000) were run for 24 simulated hour

with bar graphs plotted in black representing 95% confidence interval of the mean (of all 20
trajectories for each dose). Inset represents the trajectories traced by the analytical solution of
equation 5.12 for LPS doses (magenta=0, yellow=1, green=10, blue=100 and cyan=1000)



5.3. Modelling cell populations responding to LPS 139

induce a hypo-response in terms of predicting a smaller proportion of positive-state cells
upon secondary stimulus. Artificially changing the values a and B at the beginning of
the in silico secondary dose of LPS can induce hypo-response in terms of a smaller
proportion of positive-state cells (data not shown). While this change of rates may
provide a trivial explanation for hypo-responsiveness upon two doses of LPS, such a
modification to the model would suggest that all macrophages upon secondary stimulus
with LPS respond with a different rate. The idea that rates change per se for the
population agrees with population-level studies on the hypo-responsive phenotype that
posit that phenotypic changes reduce the amount of inflammatory proteins (Biswas and
Lopez-Collazo, 2009). However, based on our experimental results (Chapter 4), we have
shown that the response to a secondary LPS challenge is heterogeneous and is associated
with overall lower proportions of macrophages positive for inflammatory proteins such
as TNF, IL-6, NOS2 and pro-IL-18. This leads us to speculate that modelling
hypo-responsive populations must include states that may capture a non-responsive

state upon LPS challenge.

5.3.2 Non-responsive (nr) model definition

We next introduce two new cell states within the positive-state model to capture the
hypo-responsive phenotype upon re-stimulus with LPS based on established knowledge
(Biswas and Lopez-Collazo, 2009). This modified model (or nr-model) includes a
non-responsive state which refers to an in silico cell that, temporarily, cannot respond to
LPS along with a non-responsive (permanent) type that can no longer respond. Cells can
transition into the non-responsive state by a rate < from the positive state, thus
constraining only cells that have responded to LPS to be able to make this transition. The
non-responsive cell can then switch back to the negative state with a rate of ;. The in
silico non-responsive cell can also switch to the non-responsive (permanent) state with a

rate of 7. Upon assuming this state, an in silico cell can no longer switch to any other
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FIGURE 5.4: Two temporally separated LPS doses induces similar
response from in silico cells.

Positive-state model was simulated for LPS dose of 1000 at 0 hour and a second dose of LPS at 24
hour and the time-evolution plotted between 0-48 hour with arbitrary forward rate (« = 0.005,
B = 1) and a fixed LPS decay rate (J = 0.5). 20 stochastic runs are plotted (magenta) with error

bars (blue) representing 95% confidence interval of the mean (of all 20 trajectories for each dose).
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state (Figure 5.5) and, therefore, becomes hypo-responsive for the duration of the

simulation.

Simulating this model with arbitrary parameter valuesofa =1, =1,y =1,8, =1,
72 = 1 to plot the trajectory for positive-state proportions, we show that the added
complexity associated with the additional states (and the rates associated with them) can
lead to a sharp decline in the peak of the positive-state and a longer right tail. The lower
peak is because of the increased probability of leaving the positive state (with rates ¢y =1
and B> = 1) while the right tail is due to contribution of more negative cells that can
become positive later into the time-evolution as influenced by B,. Most interestingly, we
can track the proportion of non-responsive (permanent) state over time (Figure 5.6,
plotted in black). At quasi-equilibrium, the largest fraction comprises in silico of the
permanently non-responsive state suggesting that the model tends to adopt a fully

non-responsive (permanent) state.

5.3.2.1 nr model - Assumptions

As a basis for future, more complex, modelling studies, it is useful to be clear about the
assumptions used in the nr model. These are enumerated below:

1. Individual proteins are treated independently by the model

Simulated cells respond to LPS and can be in a positive-state for an inflammatory
protein.  This activation of macrophages is treated without considering effects of
cytokines being secreted in the environment and consequently, affecting the
positive-state proportion for the inflammatory protein, under consideration.

2. In-silico cells in the negative proportion can only become positive.

The model does not allow for the non-responsive state to transition back to the positive
state and, thus, forces the model to only allow for LPS-induced a dependent transition to
the positive state.

3. A fixed arbitrary constant is used to model LPS utilisation/degradation
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FIGURE 5.5: nr model description

a. In-silico cells can be in one of 4 different states that can transition via 5 routes upon stimulus.
Negative, positive, non-responsive and non-responsive (permanent). Non-responsive cells can
transition back to the negative-state or can transition to a non-responsive (permanent) state.
LPS bound to TLR4 is endocytosed and is related to late-phase activation of NF-xB to
initiate a second-wave of inflammatory proteins. This is not considered in the model.
Thus, LPS degradation and endocytosis (or intake) is both modelled as simple

exponential depletion from the environment.
4. Effects of cell density are ignored
There are no density-dependent or frequency-dependent processes within the modelling

framework.

5.3.3 Parameter estimation - nr model

We then fitted our nr model to empirical data pertaining to TNEF, IL-6, NOS2 and
pro-IL-1p positive cells at one temporal snapshot (16 hour of LPS stimulus), treating each
cytokine independently. Since 16 hour was the end-point of our LPS stimulus
experiments, we hoped to find a large number of parameter sets that would qualitatively
match the end point proportions from our experiments, while revealing diverse

trajectories of reaching that end point. We estimated parameters by drawing random
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FIGURE 5.6: nr model example output

a. In-silico cells can be in 4 different states via 5 routes upon stimulation. Negative, positive,
non-responsive and non-responsive (permanent). Non-responsive cells can transition back to the
negative-state or can transition to a non-responsive (permanent) state. b. nr model was simulated

with L = 1000 at 0 hour and a second dose (L=1000) at 24 hour. The time-evolution is plotted
between 0-48 hour witha =1, =1,7v=1,72 =1, B2 = 1 and a fixed LPS decay rate (6 = 0.5).

20 stochastic runs are plotted (magenta) with error bars (blue) representing 95% confidence

interval of the mean (of all 20 trajectories for each dose) simulated
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numbers from a negative binomial and normal distribution repeatedly, and then
simulating the nr model using that parameter set, analysing upon each iteration if a set
of parameter values approached the 95% confidence interval of the mean value of our

empirical dataset at the simulated 16 hour time point (Figure 3.7, Chapter 4; n=4-5).

Next, we used the set of parameter sets as returned above (hereafter referred to as
the 'rough fit") to fit to a more temporally resolved experimental data set (described in
Figure 4.3 in Chapter 4) with data points at 8, 12, and 16 hour post primary and secondary
challenge of LPS (‘specific fit"). Primary or first challenge is represented as Media /1000
(LPS challenge with 100 ng/ml) while secondary challenge as 10/1000 and 1000/1000.
Our empirical results were derived using flow cytometry to capture frequency of positive
cells (TNF, IL-6, NOS2 and/or pro-IL-1p) at a single-cell level and is based on at least

n=85,000 cells per data point.

5.3.3.1 TNF

Analysing the parameter values from the ‘rough fit" as described previously (Figure
5.7a), our results indicated that a wide range of parameter values can fit our empirical
data set at 16 hour of LPS stimulus. On average, values of « (the rate at which in-silico
cells become positive) was the highest, followed by p2 (the rate at which a
non-responsive cell transitioned to a negative state) and 7, (the rate at which
non-responsive cells transition to the non-responsive (permanent) state). Mean values of
B (the rate at which cells in the positive state can transition to the negative state) and 7,
were comparable. The range of ; values was the lowest among all parameter values.
While, on average, all parameters were well represented (in magnitude) in the set of
possible parameter values that fit to the experimental data, some individual parameter
sets included parameter values which were very close to zero. This suggests that a

diverse set of time-evolution trajectories can fit our experimental end point at 16 hour.
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We next looked at the parameter values more closely by segregating them based on
increasing values of « (Figure 5.7b). When values of « are less than the 25th percentile (of
all predicted values of &) almost all parameters are, on average, greater than a. Higher
values of 7, on average compared to 8 suggested a greater probability of simulated cells
to transition to the TNF non-responsive state. A higher 7, than B in these parameter
sets suggest the greater probability of transitioning to the TNF non-responsive

(permanent) state from the non-responsive state.

The parameter sets where « values were in the inter-quartile region of all predicted «
values were very similar (to # < 25th percentile) in terms of differences between their
means. However, 8 values were lower than « values, thus, increasing the chance of cells

to transition from negative to TNF positive state even with decreasing LPS concentration.

Estimated parameter sets with a values (selected between 75th percentile and 1.2),
mean B values were higher than 7. This suggests TNF positive cells to have a higher
probability to transition to TNF negative state than TNF non-responsive. In addition,
since mean 3, values were greater than 7, the probability of becoming non-responsive

(permanent) was less.

Next, comparing parameter sets with the highest a values (x > 1.2), mean f value
was lower than mean < while on the other hand B, was higher than 7;. In other words,
while TNF positive cells had a higher chance of becoming TNF non-responsive based on
this parameter set, the chances of becoming non-responsive (permanent) was lower
(Figure 5.7b). In conclusion, we show that the 'rough fit" parameter estimation provided
us with a diverse set of parameters that could fit the empirical data point at 16 hour, and
that these parameter sets allow a diverse range of possible routes/trajectories of the nr

model behaviour to fit that end point.
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Box and whiskers plot showing the calculated parameter values for nr model estimated based on
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to obtain the frequency of TNF positive cells (n=4-5 for each LPS dose) a) Shows the overall
parameter sets that were estimated b) Parameter sets were segregated based on the values of &



5.3. Modelling cell populations responding to LPS 147

We next used parameter sets derived above (Figure 5.8a) to estimate parameters for
the ’specific” fit (Figure 5.8c) as described in sub-section 5.3.3. Parameters that best
approximated the empirical datasets were used to simulate the time-evolution of TNF
positive cells over a 48 hour period. The first 24 hour period represented the first

challenge while the 24-48 hour period represented second challenge.

Trajectories for the time-evolution of TNF positive cells (Figure 5.8c, 10/1000 and
1000/1000), do indeed, predict an overall hypo-response in both 10/1000 or 1000/1000
treatments such that the peak TNF positive population is higher in the first LPS dose
compared to the second dose of LPS. TNF positive cells in the 10/1000 treatment during
the first LPS dose appear to decrease faster as the LPS concentration in the first stimulus
is lower (10 vs 1000) but also because of the added contribution of the increasing
numbers in the non-responsive or non-responsive (permanent) states (Figure 5.8c).
Model simulation also predicts the proportion of TNF positive cells at 16 hour (first
dose) to be lower than at 40 hour (16 hour post second LPS) in 10/1000 and was
observed in in-vitro experiments as well (Figure 4.3, Chapter 4). This is, however, not

evident in the model simulation for the 1000/1000 treatment.

Overall, the parameter estimated nr model for TNF captures a hyporesponsiveness
because of an increasing pool of non-responsive cells that cannot respond to LPS. In the
nr model the non-responsive state (NRS) and non-responsive (permanent) state (NRPS),
taken together, represent the number of non-responding cells at any given time during
the simulation. The time-evolution of these TNF non-responding cells is shown in Figure
5.9 for treatments 10/1000 and 1000/1000. When the first LPS dose is low (10/1000), the
model predicts that about 50% of the population becomes either non-responsive or
non-responsive (permanent) within the first 10 hour of the stimulus. This shows that
upon the second LPS dose half the population is not immediately affected by LPS. Only

cells in the non-responsive state transitioning to the negative state can go on to become
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FIGURE 5.8: Peak TNF positive proportion decreases at second stimulus

a Box and whiskers plot showing the estimated paramters for TNF by nr model simulatoins
based on empirical data as shown in before-after plot in b. ¢ nr model was simulated for first LPS
dose (10 or 1000) at 0 hour and a second dose of LPS (1000) at 24 hour and the time-evolution
plotted between 0-48 hour with estimated forward rate « = 0.0128, g = 0.1828, v = 0.0901,

72 = 0.0020, B2 = 0.0161 and a fixed LPS decay rate (6 = 0.5). 20 stochastic runs representing
TNF positive cells are plotted (cyan) with error bars (black) representing 95% confidence interval
of the mean (of all 20 trajectories for each dose). Empirical data in red asterisks and crosses.
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TNF positive. Thus, lower values of B, upon second LPS dose can affect the total pool of
cells (negative state) available to respond to LPS and become TNF positive (Figure 5.9).
This non-responding population (NRS + NRPS) increases yet again upon the second LPS
dose and increases to up to 70% of the total population. When the first LPS dose is
higher (1000/1000) within the first 24 hour of the simulation 70% of the population
becomes non-responding (NRS + NRPS). Second LPS dose also increases the total
number of non-responding cells up to about 80%. This increase is not as pronounced as
in the case of the 10/1000 simulation as a high first dose reduces the number of negative
(or cells available to respond to LPS) which in turn reduces the number of TNF positive
cells that can further increase the non-responding cell population (Figure 5.9). Our
model supports the idea that, that upon responding to LPS, macrophages become
non-responsive very quickly and are unable to respond to a second LPS dose with equal
numbers. TNF positive cells become non-responding with higher magnitudes of LPS

and with repeated doses.
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5.3.3.2 IL-6

We then estimated parameters for IL-6 positive cells as described in sub-section 5.3.3 to
first obtain a ‘rough’ fit of parameters and then a "specific’ fit to check if the model can
explain empirical data pertaining to first (1000 only) and secondary challenges of LPS
(10/1000 and 1000/1000; Figure 5.10).

IL-6 positive cells were greater during the first LPS dose in comparison to the second
LPS challenge for both 10/1000 and 1000/1000 treatments, at least in terms of the initial
peak in IL-6 positive population with approximately 50% of the cells responding to LPS
for both challenges with the higher (1000) or lower (10) first dose (Figure 5.10; left panel).
In 1000/1000 treatment, the proportion of cells that were IL-6 positive was higher
throughout the duration of the stimulus (i.e. comparing 0-24 hours and 24-40 hours).
This was not true for the 10/1000 population with a higher proportion of IL-6 positive
cells 10 hour post secondary stimulus (34-48 hours) as compared to IL-6 positive cells
between 10-24 hours post first LPS challenge. This suggests that in the hypo-responsive
population (10/1000), while the initial peak of IL-6 positive population is lower, IL-6
positive populations do not switch off as fast as in the first challenge (Figure 5.10; left
panel). This may suggest an explanation for an increased IL-6 amount in supernatant of
twice challenged (10/1000) as compared to twice challenged (1000/1000) RAW264.7 cells

in culture (Figure 4.1, Chapter 4).

We then looked at the proportion of cells in the non-responsive state (NRS) and
non-responsive (permanent) state (NRPS) taken together to look at the time-evolution of
non-responding IL-6 cell population (Figure 5.10; right panel). Our results indicate that
the IL-6 non-responding population at low first dose increases up to approximately 80%
within the first 5 hours corresponding to the decrease of IL-6 positive cells at first
stimulus. This population steadily decreases over 24 hours and increases the proportion

of cells in the negative state. This suggests that upon the second dose about 50% of the



152 Chapter 5. Mathematical descriptions of population heterogeneity

population is available to respond to LPS. This explains the approximate halving of the
total proportion of IL-6 positive cells at first and second stimulus (Figure 5.10; left panel).
IL-6 non-responding population (NRS + NRPS) in 1000/1000 treatment at first dose
reaches a total of 80% within the first five hours and decreasing slightly over 24 hours.
The second dose of LPS increases this non-responding population to approximately 80%
(Figure 5.10). Overall, the nr model parameters estimated for empirical IL-6 proportions
predict that only half the in-silico population responds to LPS and a hypo-response to

secondary dose is observed with a more pronounced effect in 1000/1000 treatment.

5.3.3.3 pro-IL-18

We then estimated parameters for the nr model to fit empirical results for pro-IL-1 to
observe model behaviour, using the methods outlined above in sub-section 5.3.3. As
observed earlier for TNF and IL-6, pro-IL-18 positive cells decreased upon the second
dose of LPS for both 10/1000 and 1000/1000 treatments (Figure 5.11). Simulating the nr
model with estimated parameters shows a sharp increase in pro-IL-18 positive cells
observed when LPS stimulus is low (10) or high (1000). Estimated parameter values
were & = B = 71 = 72 = 0.05 suggesting that upon LPS stimulus (first or second) cells in
the negative state would switch on pro-IL-18 and then transition to a non-responsive
state or the negative state with equal probability. Further, based on a high f, value, cells
transitioning to the non-responsive state can switch back to negative state (82 = 6 * 7).
Overall, non-responding (NRS + NRPS) cells comprised 15-20% of the total population
after first stimulus, while at the end of secondary stimulus for both (10/1000 and
1000/1000) reach 30% (Figure 5.11; right panel) of the total population. The results
suggest that pro-IL-1B non-responding populations may have a stronger effect, given
above mentioned parameters, on overall pro-IL-18 positive numbers when the

population is challenged multiple times with LPS.
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FIGURE 5.10: IL-6 positive cells do not peak as high upon second dose of

LPS

a)nr model was simulated for first LPS dose (10 or 1000) at 0 hour and a second dose of LPS

(1000) at 24 hours and the time-evolution plotted between 0-48 hours with estimated forward rate
x«=01,=011,9=0.77, 72 = 0.01, B2 = 0.14 for IL-6 and a fixed LPS decay rate (6 = 0.5). 20
stochastic runs representing IL-6 positive cells are plotted (cyan) with error bars (black)

representing 95% confidence interval of the mean (of all 20 trajectories for each dose)

b)Time-evolution of IL-6 non-responding states (non-responsive state, NRS + non-responsive
permanent state, NRPS) over two LPS doses. 20 stochastic runs representing IL-6 (NRS+NRPS)
are plotted (yellow) with error bars (black) representing 95% confidence interval of the mean (of
all 20 trajectories for each dose). Empirical data in red asterisks and crosses.
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FIGURE 5.11: pro-IL-18 non-responsive cells increase steadily to 30% at

48 hours

a nr model was simulated for first LPS dose (10 or 1000) at 0 hour and a second dose of LPS
(1000) at 24 hours and the time-evolution plotted between 0-48 hours with estimated forward rate
« = 0.05, 5 = 0.05, ¥ = 0.05, 7, = 0.05, B, = 0.3 for pro-IL-18 and a fixed LPS decay rate
(6 = 0.5). 20 stochastic runs representing positive cells are plotted (cyan) with error bars (black)

representing 95% confidence interval of the mean (of all 20 trajectories for each dose). b
Time-evolution of pro-IL-18 non-responding states (non-responsive state, NRS + non-responsive
permanent state, NRPS) over two LPS doses. 20 stochastic runs representing NRS+NRPS are
plotted (yellow) with error bars (black) representing 95% confidence interval of the mean (of all

20 trajectories for each dose). Empirical data in red asterisks and crosses.
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5.3.34 NOS2

NOS?2 is upregulated upon LPS stimulus and catalyses nitric oxide, a potent mediator for
inflammation (Bogdan, 2015). Using the empirical data point for NOS2 positive cells, we
then estimated parameters that best fit the NOS2 dataset as outlined in sub-section 5.3.3.
Parameter fitting for NOS2 revealed that it was difficult to fit the NOS2 positive
empirical data points to the nr model, particularly, to the first challenge of LPS.
Visualising the empirical data points it appears that NOS2 positive cells increase more
slowly than suggested by the model fit upon LPS stimulus (Figure 5.12). The lower
gradient in increasing NOS2 positive cells is also evidenced by published studies
suggesting NOS2 requires additional signalling to LPS to be transcribed (Farlik et al.,
2010).

The model, however seems to fit the second dose of LPS better and indicates a
gradual decrease in overall NOS2 positive cells. 48 hours into the simulation, the model
suggests that upto 60-65% remain positive for NOS2.  While the number of
non-responding cells (NRS + NRSP) increases, linearly, with LPS dose and time, only
about 16% of the population is non-responding after 48 hours (post first and second
stimulus). At 24 hours after first stimulus, this percentage is even lower (approximately
8%), suggesting hypo-response in terms of NOS2 positive cells, if any, may not be

associated with the non-responding cell state.
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FIGURE 5.12: NOS2 non-responding populations comprise just 8% after
first LPS dose

a nr model was simulated for first LPS dose (10 or 1000) at 0 hour and a second dose of LPS
(1000) at 24 hours and the time-evolution plotted between 0-48 hours with estimated forward rate
« = 0.0503, B = 0.0595, ¥ = 0.0068, v, = 0.0405, B> = 0.0358 for NOS2 and a fixed LPS decay rate

(6 = 0.5). 20 stochastic runs representing positive cells are plotted (cyan) with error bars (black)
r