
Advancing Mixed Criticality

Scheduling Techniques to

Support Industrial

Applications

Stephen Andrew Law

Doctor of Philosophy

University of York

Computer Science

January 2020

ii

Abstract

Safety critical software development is an extremely costly endeavour;

software developers must forever target efficient processes that reduce

software cost, while allowing significant increases in system size. The

key challenge being how to reduce software cost, without compromising

safety or quality.

The focus of this thesis is to research the development and temporal

proof of a mixed criticality system. The thesis, which attempts to define

an end to end process, begins by studying appropriate and efficient meth-

ods for assessing the timing performance of system components. The key

being an approach that can be applied automatically at an early point

in the design lifecycle.

The thesis then progresses to study how existing mixed criticality

research needs to be advanced and matured in order to support an

industrial safety critical application. This includes the definition of a

scheduling model designed to provide the necessary protections advised

by international aviation guidelines. In the final part of this thesis the

timing process and mixed criticality system model are brought together

to explore how a real system using these techniques could be validated.

iii

iv

Contents

Abstract iii

List of Figures ix

List of Tables xiii

List of Symbols xvii

Acknowledgements xix

Declaration xxi

1 Introduction 1

1.1 Software Development Life-cycle 4

1.2 Assessing a Component’s Timing Behaviour 6

1.3 Process Proportionate to System 9

1.4 Coping With WCET Pessimism 12

1.5 Difficulties of Applying Academic Research to Industry . 13

1.6 Thesis Proposition . 14

1.7 Thesis Structure . 15

2 The Industrial Context: A Current FADEC System 19

2.1 Current Approach to WCET 20

2.2 Target Processor . 21

v

2.3 Current Scheduling Approach and Architecture 22

2.4 System Model . 24

2.5 Summary . 26

3 Obtaining Reliable Task Timing Profiles 27

3.1 Literature Survey . 28

3.1.1 Measurement-Based WCET Techniques 29

3.1.2 Garbage in, Garbage out 33

3.1.3 Producing Measurement Data to Support

WCET Analysis 35

3.1.4 Summary of the Literature Surrounding

WCET Analysis 38

3.2 Target Application . 39

3.3 Optimisation Algorithms 41

3.3.1 Solution Generation 43

3.3.2 Temperature Control 45

3.3.3 Stopping Criteria 46

3.3.4 Derivation of a WCET 46

3.4 Automatic Software Execution 47

3.4.1 System Setup . 48

3.4.2 Initial Algorithm Design 49

3.4.3 Initial Results and Analysis 50

3.4.4 Assessing the Importance of System State 60

3.4.5 Improving Coverage 65

3.4.6 Targeting Hard to Reach Paths 70

3.4.7 Increasing Confidence 71

3.4.8 Fitness Function Evaluation 76

3.5 Summary . 87

vi

4 Developing Mixed Criticality Systems for Real Platforms 91

4.1 Literature Survey . 94

4.1.1 Scheduling Theory 95

4.1.2 Static Schedulability Analysis 100

4.1.3 System Definition 102

4.1.4 Summary . 105

4.2 Mixed Criticality System Design 106

4.2.1 Certification Requirements 106

4.2.2 Partitioning . 107

4.2.3 Derivation of Task Timing Parameters 113

4.2.4 RTOS and Target Hardware Requirements 114

4.2.5 Schedulability Analysis Extensions 115

4.2.6 Review Against Certification Requirements 120

4.3 Current Rolls-Royce Approach to

Scheduling . 123

4.3.1 Open Source Industrial Example 125

4.4 Porting Existing System to the MCS Architecture 128

4.4.1 Porting Tasks Without Clustering 129

4.4.2 Clustering to Support System Design 131

4.4.3 Porting Tasks By Period 135

4.4.4 Porting Tasks By Transaction 137

4.4.5 Porting Tasks By Jitter 140

4.4.6 Porting Tasks By Deadline 143

4.4.7 Results from Applying the Clustering Techniques

to the Rolls-Royce Control System 147

4.4.8 Large Scale Evaluation 148

4.5 Resilient System Design 157

4.5.1 Handling Overruns 158

vii

4.5.2 Resilient Schedulability Analysis Updates for Over-

heads . 161

4.5.3 Porting an Existing System to the Resilient Model 163

4.5.4 Open Source Control System 164

4.5.5 Rolls-Royce Control System 166

4.5.6 Large Scale Evaluation 169

4.5.7 Summary . 171

5 Assessing Low Criticality Task Service 173

5.1 Assessing the Service Afforded to a Low DAL Task . . . 177

5.1.1 Goal Structuring Notation 178

5.1.2 Specification . 181

5.1.3 Evaluation . 183

5.1.4 Confidence . 185

5.1.5 Validation . 188

5.1.6 Summary . 190

5.2 Industrial System Use Case Application 190

5.2.1 Simulator Configuration 190

5.2.2 Non-Volatile Memory Access 192

5.3 Summary . 205

6 Conclusions and Future Work 207

6.1 Review of Work Completed 208

6.2 Future Work . 210

6.3 Final Remarks . 212

A Open Source Control System Example Taskset 215

List of Figures

1.1 Typical Software Development ‘V’ lifecycle. 4

1.2 Typical Software Development ‘W’ lifecycle. 5

3.1 Timing Analysis Process. 48

3.2 iPoint Coverage Obtained for the VCA Test Code Item. . 53

3.3 WCET Calculated for the VCA Test Code Item. 53

3.4 Condensed VCA Control Flow Graph. 54

3.5 Error Handling Code Structure Found Within the VCA

Control Flow Graph. 56

3.6 Maximum Loop Counts Observed for the VCA Test Code

Item (Mean Across All Tests). 59

3.7 iPoint Coverage Obtained for the VCA Test Code Item,

Including Addition of State Variable Control. 62

3.8 WCET Results for the VCA Test Code Item Following the

Addition of State Variable Control. 62

3.9 Average Loop Counts Obtained for the VCA Test Code

Item Following the Addition of State Variable Control. . 63

3.10 CFG Coverage Improvement Examples Following the Ad-

dition of State Variable Control. 64

3.11 CFG Coverage Improvement Examples Following the Ad-

dition of State Variable Control. 64

ix

3.12 Example Control Flow Graph. 67

3.13 iPoint Coverage Obtained for the VCA Test Code Item

Following Addition of the BC Fitness Function. 69

3.14 WCET Results for the VCA Test Code Item Following

Addition of the BC Fitness Function. 69

3.15 iPoint Coverage Obtained for the VCA Test Code Item

Following Addition of the BCH Fitness Function. 72

3.16 WCET for the VCA Test Code Item Following Addition

of the BCH Fitness Function. 72

3.17 iPoint Coverage Obtained for the VCA Test Code Item

Following Addition of the Lo and BCHLr Fitness Functions. 75

3.18 Maximum Loop Iterations Observed for the VCA Test

Code Item Following Addition of the Lo and BCHLr Fit-

ness Functions. 75

3.19 Average Maximum Loop Counts Observed for the VCA

Test Code Item Following Addition of the Lo and BCHLr

Fitness Functions. 76

3.20 ACDT Mean HWM Observed as the Test Progresses. . . 78

3.21 VCA Mean HWM Observed as the Test Progresses. . . . 78

3.22 iPoint Coverage Obtained for the VCP Code Item. . . . 81

3.23 Maximum Loop Counts Obtained for the VCP Code Item. 82

3.24 Maximum Loop Counts Obtained for the Insert Sort Code

Item. 83

3.25 Comparison of the distribution differences for each fitness

function combination, for InsertSort. Shaded bars indicate

statistically significant results. 86

3.26 WCET Results Calculated for the ACDP Test Item. . . . 87

3.27 WCET Results Calculated for the VCP Test Item. 88

x

3.28 Comparison of the distribution differences for each fitness

function combination, for VCP. Shaded bars indicate sta-

tistically significant results. 89

3.29 Comparison of the distribution differences for each fitness

function combination, for VCA. 90

4.1 AMC+ State Flow Diagram. 98

4.2 Resilient State Flow Diagram. 99

4.3 Partitioned Scheduler Statechart. 109

4.4 Example Partitioned Scheduler Operation. 111

4.5 Partitioned Scheduler Statechart with Overheads. 116

4.6 Example Control System Transaction Set [38]. 126

4.7 Clustering Results From Applying Algorithm 6 to the Open

Source Control System Example. 136

4.8 Clustering Results From Applying Algorithm 7 to the Open

Source Control System Example. 139

4.9 Clustering Results From Applying Algorithm 8 to the Open

Source Control System Example. 142

4.10 Clustering Results From Applying Algorithm 9 to the Open

Source Control System Example. 145

4.11 Schedulability of a 10, 50 and 100 Task System at Varying

Target Utilisations. 150

4.12 RTOS Overheads Calculated for each Clustered System. 151

4.13 Schedulability of a 10, 50 and 100 Task System With No

Transactions. 152

4.14 Maximum WCET Scaling Factor to Provide a Schedulable

System. 153

4.15 Number of Schedulable Tasks with Varying Transaction

Rates [10%, 25% and 50%]. 154

xi

4.16 Number of Schedulable Tasks with Varying Jitter Rates of

[0%, 5% and 10%]. 155

4.17 Number of Schedulable Tasks with Low, Medium and High

RTOS Overheads. 156

4.18 Resilient State Flow Diagram. 160

4.19 Schedulability of a 10, 50 and 100 Task System at Varying

Target Utilisations. 170

5.1 Goal Structured Notation Argument for the Overall Low

DAL Requirement. 180

5.2 Goal Structured Notation Argument Exploring the Prob-

ability Assessment of the Requirement. 184

5.3 Goal Structured Notation Argument Exploring the Confi-

dence of the Analysis. 186

5.4 Goal Structured Notation Argument Exploring the Cor-

rectness of the Analysis. 188

5.5 Box Plot Diagrams Showing the Range of Job Skip Inter-

val Times, With a Zoomed-Plot on the Right Around the

Minimum Requirement (AMC High Failure Rate). 196

5.6 Histogram Illustrating the Difference in Results Randomly

Selected From a Fitted Distribution and an Actual Distri-

bution. 198

5.7 Changes in Mean (top) and Minimum (bottom) of the

Time Between Job Skip Bursts Over Simulation Time. . 201

5.8 Changes in Confidence Interval of the Time Between Job

Skip Bursts Over Simulation Time. 201

5.9 Comparison of EMD over 1000 Simulations. 203

5.10 Assessing the Probability of Failure. 205

xii

List of Tables

3.1 Test Code Items Used for the Analysis. 40

3.2 The Number of Tests That Achieved Greater than 90%

iPoint Coverage. 52

3.3 Objective 2 - The Number of Tests That Achieved Greater

than 90% iPoint Coverage. 80

4.1 Clustering Results When Applied to an Open Source En-

gine Control Case Study. 131

4.2 Clustering Results When Applied to an Open Source En-

gine Control Case Study. 131

4.3 Clustering Results When Applied to the Rolls-Royce Air-

craft Engine Control System. 131

4.4 Clustering Results When Applied to the Rolls-Royce Air-

craft Engine Control System. 132

4.5 Clustering Results When Applied to an Aircraft Engine

Control Case Study. 136

4.6 Clustering Results When Applied to an Aircraft Engine

Control Case Study. 137

4.7 Clustering Results When Applied to the Open Source En-

gine Control Case Study. 139

xiii

4.8 Clustering Results When Applied to the Open Source En-

gine Control Case Study. 140

4.9 Clustering Results When Applied to the Open Source En-

gine Control Case Study. 142

4.10 Clustering Results When Applied to the Open Source En-

gine Control Case Study. 143

4.11 Clustering Results When Applied to an Aircraft Engine

Control Case Study. 146

4.12 Clustering Results When Applied to an Aircraft Engine

Control Case Study. 146

4.13 Clustering Results When Applied to the Rolls-Royce Air-

craft Engine Control System. 147

4.14 Clustering Results When Applied to the Rolls-Royce Air-

craft Engine Control System. 147

4.15 Clustering Results When Applied to the Open Aircraft

Engine Control Resilient Case Study. 165

4.16 Clustered Overheads When Applied to the Open Aircraft

Engine Control Resilient Case Study. 165

4.17 Clustering Results When Applied to the Rolls-Royce Re-

silient Case Study - Experiment 1. 166

4.18 Clustered Overheads When Applied to the Rolls-Royce

Resilient Case Study - Experiment 1. 167

4.19 Clustering Results When Applied to the Rolls-Royce Re-

silient Case Study - Experiment 2. 168

4.20 Clustered Overheads When Applied to the Rolls-Royce

Resilient Case Study - Experiment 2. 169

5.1 Percentile Outlier Assessment for the NVM Case Study. . 197

xiv

5.2 Exceedance Probability from a Fitted Distribution of Sim-

ulation Results for the NVM Case Study. 199

5.3 Failure Rate Assessed from Extended Simulation. Number

of Failures per 109s for the NVM Case Study. 199

5.4 Minimum Time Between Requirement Errors For The Non-

Volatile Memory Access Case Study. 202

5.5 Mean Time Between Requirement Errors For The Non-

Volatile Memory Access Case Study. 202

A.1 Example Control System Task Set. 218

xv

xvi

List of Symbols

Symbol Meaning

Ti The period of task i

Li The criticality of task i

CL
i The worst case execution time of task i, which may op-

tionally have a criticality L

Di The deadline of task i

Ri The worst case response time of task i

Ji The completion jitter time influencing task i

Pi The priority of task i

Si The number of consecutive job skips that a robust task

i can support before failing to comply with the task’s

temporal requirements

JF The number of job failures measured within a system

F The number of job failures a system can tolerate without

jobs being dropped or deadlines missed

M The number of job failures a system can tolerate with-

out deadlines being missed, once all robust tasks have

dropped Si jobs

xvii

xviii

Acknowledgement

I am grateful to my colleagues at Rolls-Royce for their encouragement

and guidance on my work, and for providing the time I needed to com-

plete this thesis. In particular, I would like to thank Ivan Ellis, Phil

Elliot, Jeff Hobday and Guy Partridge. Furthermore, for their time and

patience spent reviewing my work: Duncan Brown and Stuart Hutches-

son. Thanks also go to colleagues at the University of York for their

fruitful discussions, including Benjamin Lesage.

Special thanks go to my supervisors, and friends, at Rolls-Royce and

York: Mike Bennett and Iain Bate. Thanks for your advice and guidance,

but in particular thanks for picking me up during the times over the last

(almost) seven years it felt as if finishing this work was not possible.

Most of all though, thanks to Kat. You never fail to support and be-

lieve in me. Thanks for your patience during the weekends and evenings

you have spent talking to the back of my laptop screen, and especially

thanks for spending your well-timed maternity leave proof reading this

thesis1. I owe you more than I can say.

1and raising 678 comments, mostly about, poorly placed, commas - I hope I caught

them all,.

xix

xx

Declaration

I declare that this thesis is a presentation of original work and I am the

sole author. This work has not previously been presented for an award at

this or any other University. All sources are acknowledged as references.

Parts of this thesis have been published in or submitted to:

S. Law, and I. Bate, Achieving appropriate test coverage for reliable

measurement-based timing analysis, Proceedings of the 28th Euromicro

Conference on Real-Time Systems (ECRTS), 2016.

S. Law, I. Bate, and B. Lesage, Industrial Application of a Partition-

ing Scheduler to Support Mixed Criticality Systems, Proceedings of the

31st Euromicro Conference on Real-Time Systems (ECRTS), 2019.

S. Law, B. Lesage, and I. Bate , Justifying the Service Provided

to Low-Criticality Tasks in a Mixed-Criticality System, Proceedings of

the 28th International Conference on Real Time Networks and Systems

(RTNS), 2020.

Additionally the research undertaken in Chapter 3 has been extended

by a fellow researcher and is published in the following paper:

B. Lesage, S. Law, and I. Bate, TACO: An industrial case study of

Test Automation for COverage, Proceedings of the 26th International

Conference on Real-Time Networks and Systems (RTNS), 2018.

The paper shows that the approach described in Chapter 3 can be

scaled to analyse a full industrial system. The results of this analysis,

xxi

which were obtained from applying the approach to a live Rolls-Royce

aircraft engine control project, are being used to support certification of

the project.

xxii

Chapter 1

Introduction

One of the greatest problems facing safety critical software developers

is that of software cost [1]. This is a problem that has plagued the

software development industry for a number of years. However, the ever

greater reliance on software controlled systems, coupled with the need for

constantly increasing software features means this ever present problem

must be continually addressed.

The ever advancing march towards increased efficiency and feature

base ultimately guides software systems down a path of ever greater

complexity and ever finer control. However, this increase in software scale

can only be achieved if software costs on a per line basis are reduced. For

instance, in the last thirty years the amount of software on board Boeing

aircraft has roughly doubled every two years [2][3]. For a commercial

company to remain competitive it cannot simply be assumed that the

total cost of the software system will increase at the same rate.

Therefore, the desire for ever more complex system features must be

met by equivalent reductions in software development costs. The prob-

lem is exemplified by the fact that safety criticality software is relied

upon to perform in accordance with its requirements. Therefore, it is es-

1

sential that corners are not cut and that software quality is not adversely

affected. Indeed, cost reduction must not be allowed to impact on the

safety of the developed system [4], [5].

One of the principal reasons that safety critical components are so

expensive to develop, is that they must be developed against robust pro-

cesses designed to provide safety assurance against all use cases. Such

components can be found in a multitude of industries and products; such

as Defence, Nuclear, Marine, Rail and Avionics, amongst others. Typi-

cally, development of such components follows the guidance or standards

set out in one of the many global guideline documents such as ISO26262,

EN50128 and DO-178C; used for the automotive, rail and aerospace in-

dustries respectively. There are a significant number of parallels across

each standard, particularly in the use of ‘Integrity’ or ‘Assurance’ levels,

which represent a classification used to define each software component

based on its impact to wider system safety should said component fail to

execute in accordance with its requirements. In this thesis, the term is

considered synonymous with a component’s ‘criticality’.

The focus of this thesis is on the development of avionics systems,

according to DO-178C [6]. Therefore the term used to describe a software

component’s criticality is the Development Assurance Level, or DAL, as

originally defined by ARP4754 [7] and used throughout DO-178C.

The software aspects of the aircraft and engine certification process

assures that the software systems and components are ready for deploy-

ment in service. DO-178C contains a comprehensive set of objectives that

should be fulfilled to certify each component, thus providing confidence

in its operation. The greater the DAL (the higher the DAL) assigned to

each software component, the greater the level of confidence should be

achieved, and therefore the more certification objectives that need to be

2

accomplished. In other words the greater the consequence of failure of

the software component, the greater the effort required to develop and

assure said component.

Ensuring conformance to high DAL software certification objectives

can be a laborious and expensive process. It involves confirming that

each high level requirement traces through architecture and design to

the code that implements it, and vice versa. The software must then

be reviewed and analysed to confirm conformance to standard as well as

confirming the accuracy and consistency of the software. Tests should be

derived according to each requirement, which in turn should be shown

to test the entire code base. The rigour and the process followed should

be dictated by the DAL of the system.

The methods employed to facilitate the reduction of software cost in

an industrial scale project is a topic large enough to fill several theses.

Instead, in this thesis, as set out in the remainder of the introduction,

software cost reduction is targeted by focusing on real time system as-

pects of software development. Firstly, appropriately automated and

efficient methods of gaining confidence in a software component’s tem-

poral operation, its Worst Case Execution Time (WCET), are researched.

Secondly, this thesis studies how these WCET results can be used along

with new processes, techniques and architectures, to allow components

of different criticalities to co-exist on the same processing platform; thus

allowing system developers to better target their certification effort. The

research undertaken identified a number of significant issues that needed

to be addressed with the existing published literature in academia, this

thesis provides extensions to address said shortfalls.

This introduction now steps through some of the issues that this thesis

aims to address.

3

1.1 Software Development Life-cycle

Figure 1.1: Typical Software Development ‘V’ lifecycle.

A typical software design lifecycle, known as the V-model, is illus-

trated in Figure 1.1. The lifecycle follows a process on the left hand

side of progressively more detailed requirements and design definition,

ultimately reaching code development. On the right hand side a corre-

sponding set of verification and validation steps confirm the code com-

plies with each layer of design. The lifecycle allows the development of

a structured approach to software engineering, well suited to large scale

industrial production.

The principal issue with this approach is the delay of verification

activities to the so called ‘right hand side’ of the ‘V’. The later in the

software development life-cycle a problem, issue or bug is identified in a

software system, the more costly it is to fix. This was illustrated by the

Constructive Cost Model, COCOMO [8], which showed it typically costs

20-100 times more to fix an error identified after delivery than during

requirements definition.

An improvement to the V model is that of the ‘W’ model, originally

introduced by Herzlich [9] as illustrated in Figure 1.2. This model fol-

4

lows a principal of verifying each step of the software design as soon as

the requirements or design have been produced. This allows issues to

be identified as close to development as possible, with a view to fixing

problems before they propagate through the software design.

Figure 1.2: Typical Software Development ‘W’ lifecycle.

The key to this early verification process is not necessarily to produce

certification evidence, as this is arguably only produced on the right hand

side of the ‘W’. The key instead is to identify bugs and issues as early as

possible, ideally as soon as a developer has produced a requirement or

design. This focus on quickly and iteratively developing quality software

is a cornerstone of agile software development techniques[10]. However,

in order to facilitate this developers require the right tools, processes and

infrastructure to perform software analysis.

Being able to perform software analyses early in a design lifecycle

forms a key requirement for the work researched in this thesis. Issues are

identified with existing techniques for measurement based timing analy-

sis; which are built on the assumption that the data to drive the analysis

methods already exists. Chapter 3 explores the development of auto-

mated techniques to aid these processes.

5

1.2 Assessing a Component’s Timing Be-

haviour

One of the key properties of a software system that must be analysed for

certification is the worst case timing performance of the system. Typical

avionics applications will be designed according to a number of timing

related requirements, for example a response to a specific event shall be

completed within a set time. In order to prove compliance to such re-

quirements the timing performance at the system level must be assessed.

This assessment uses schedulability analysis, which requires as a key in-

put an understanding of the Worst Case Execution Time (WCET) of

every component within the system.

There are two principal methods for analysing a software component’s

WCET; static and measurement based.

Static analysis takes the code of the System Under Test (SUT), analy-

ses the possible paths through the code, and by modelling the target hard-

ware; calculates which path through the SUT will produce the WCET.

The analysis gains from being able to fully examine the full set of paths

through the SUT. However, the primary drawback of static analysis is

the technique’s reliance on accurate processor models. As developers

look to use ever more complex processors; the complexity, portability

and potentially pessimism of these models increases accordingly [11].

Measurement Based Timing Analysis (MBTA) approaches rely on

measuring the execution of the SUT to provide measured times which

are then used to derive WCET bounds. The advantage of this approach

is that times can be derived from the actual target hardware, with no

reliance on complex timing models. However, the technique suffers from

the fact that the software must be executed on the target hardware (or

6

equivalent cycle accurate simulator) with a sufficient level of coverage to

provide accurate results.

In practise, if robust and accurate processor timing models can be

developed then the use of purely static analysis methods should provide

safe results. However, it is arguably not cost effective to generate accurate

timing models of even the simplest processors in use today [12]; including

in the industrial system used throughout this thesis [13]. Therefore,

the focus of this thesis is purely on measurement based WCET analysis

techniques and how they may be improved and automated for use by

complex industrial programmes.

Traditionally one measurement technique used in industry has sim-

ply been to time the SUT as it is executed as part of standard software

verification tests. The maximum observed execution time (MOET, or

High Water Mark - HWM) is then taken forward with the addition of

a safety bound (defined through engineering judgement) to produce an

acceptably sound WCET [14]. Were a system developer able to obtain

full path coverage across a system under test, then this approach could

potentially provide a reliable WCET. However, obtaining full path cov-

erage quickly becomes infeasible as system complexity increases, and so

the biggest risk with this approach is that the testing may not drive the

worst case path, producing an optimistic result. Ultimately, even the ap-

plication of an engineering judgement inflation factor may not produce

a safe result [12].

More recently hybrid measurement tools have been applied within

industry [15], [16] which aim to address potential optimism in MBTA

approaches by combining timing measurements taken during software

execution with statically analysed source code information. This reduces

the amount of coverage required when producing the timing measure-

7

ments over exhaustive HWM testing, however the process still requires

an extensive amount of coverage [12], [16], [17].

Across the academic literature a number of measurement based WCET

tools or processes have been proposed [17], [18]. Again these all sim-

plify the problem, removing the need for obtaining full path coverage.

However, they all still assume the method and process for driving the

SUT is robust, reliable and sound. In an industrial project this may be

generated through software verification activites. Crucially though, this

requirement for extensive coverage pushes WCET analysis using a hybrid

measurement technique to a late stage in the software design lifecycle.

This is less than ideal as it strips system developers of the ability to anal-

yse to provide guidance for optimisation at design time. Furthermore, it

delays software timing analysis to a point in the design lifecycle where it

is significantly more expensive to resolve issues that arise.

Alternatively, in academia a number of techniques have looked at

using the power of automatic test generation to automatically execute

an SUT [14], [19], [20]. However, these techniques are assumed to be

able to drive the worst case path, which potentially if executed for long

enough they will. Unfortunately, when applied to a complex industrial

scale system, being developed against tight project timescales, expecting

such a tool to obtain a safe WCET in reasonable time is unreasonable.

Furthermore, the techniques do not offer support, evidence or validation

that the produced results can be relied upon.

Instead this thesis focuses on how automatic test case generation tech-

niques can be tailored to support industrial scale hybrid measurement

based timing analysis with a scaleable, portable and efficient approach.

Thus allowing system developers to obtain the information they need

both to optimise their designs and to facilitate de-risking of software cer-

8

tification as soon as the software code has been developed. The approach

is analysed against a representative set of software components provided

by a real avionics system use case, as well as a set of publicly available

WCET benchmarks.

1.3 Process Proportionate to System

The higher a software component’s criticality; the greater the effort in-

volved in the development and verification of the component. In practise,

all software components are verified to a certain level; if not for safety crit-

ical purposes, then for business or mission critical reasons. This means

that even lower criticality components should perform as expected. How-

ever, the critical point is that these components have not been proven

to a high criticality confidence level to execute as required. It should

therefore be assumed that the information, validation, proof or verifica-

tion evidence produced for lower criticality components may not provide

a full understanding of the component [21].

It is perfectly common for safety critical systems to contain software

components with differing safety requirements, and therefore different

criticality levels. A good example in most control system architectures is

the dual integration of high criticality control and lower criticality moni-

toring systems. Given that these lower criticality systems have not been

proven to the same level as the higher criticality components, it is essen-

tial for software certification to prove that if a low criticality component

fails, it cannot impact the behaviour, operation or performance of the

high criticality component. Arguably it is important to assume the low

criticality component will fail at some point in time, with an appropriate

safety case put in place to protect the wider system.

9

Traditional software architectures treat each individual processor in

a system as belonging to a single DAL, meaning all components execut-

ing within that processor must be verified to the highest criticality of

the processor. This would lead to an example architecture where one

processor may support control software, and one processor may support

monitoring components.

This inflexible architecture approach can lead to the introduction

of additional processors, even though processor utilisation levels could

feasibly allow software co-location. Furthermore, this can also lead to

the introduction of significant cross-system communication requirements,

potentially adding unnecessary complexity to the system. This approach

therefore has the potential to lead to higher development and production

costs, as well as increased overall size, weight, and power use.

In the literature a Mixed Criticality System (MCS) is a system which

combines software of multiple DALs on the same processor. The techni-

cal objective of which is to provide sufficient evidence that a low DAL

component cannot jeopardise any high DAL component’s temporal or

functional requirements, while still providing a level of service to the low

DAL component. One approach to MCS development is to deploy the

partitioned architecture defined by the ARINC 653 standard [22]. This

standard defines a partitioned model principally aimed at the develop-

ment of Integrated Modular Avionics (IMA), but is capable of supporting

partitions developed against different DALs. The issue with the ARINC

653 approach is that the solution defined for temporal partitioning, es-

sentially a two-level scheduler with time division, makes the approach

difficult to apply to a complex control system [23]. This is because it can

lead to the introduction of higher release jitter, longer end-to-end trans-

action response times and in general it can be difficult to accommodate

10

a complex task schedule, including aperiodic operations, into fixed time

partitions [23].

Since Vestal’s seminal work [24] on the topic of an MCS scheduling

a significant number of academic works have been published on the de-

velopment of MCSs. In particular, much of this work has focused on the

temporal partitioning aspects of mixed criticality scheduling [25]–[30].

However, while addressing temporal partitioning, these methodologies

do not progress far enough to allow integration of an MCS into a high

criticality system. Crucially, the literature does not address how such

a system should be designed, analysed, validated and certified. This

includes the appropriate handling of overheads, and how to assess the

service afforded to low criticality tasks. This is particularly important

as in order to deliver a credible product, system integrators may need

to provide guarantees on the minimum level of service provided to low

criticality functionality.

This thesis aims to address these issues by contributing a design for a

MCS, justified against the certification guidelines provided in DO-178C

[6]. This includes how such a system should be designed and analysed.

Secondly, the thesis describes the application of this MCS to a large com-

plex industrial application, and introduces a process that could be used

to study and understand the service afforded to a set of low criticality

tasks. The developed system is assessed against the avionics system re-

quirements, certification evidence and performance at the system level.

In addition, several publicly available system examples are used to assess

and review the approach.

11

1.4 Coping With WCET Pessimism

In order to provide sound WCET results to the appropriate level of con-

fidence it is logical, and almost expected, that timing analysis processes

will induce pessimism [31]. This can be induced at the task level due

to system designs that incorporate infeasible paths, or through analysis

deficiencies when viewing code constructs such as loops. This pessimism

is extrapolated as schedulability analysis expects each task to execute to

its WCET, all on the same iteration. For instance, in a complex control

system a reaction to two opposite events (such as reacting to an over-

speed and an underspeed) may appear on the worst case path, and be

assumed to happen on the same iteration.

Identifying such forms of pessimism when viewed at the macro level

is easy. However, when viewed at the system level featuring thousands of

functions such identification quickly becomes infeasible in a cost effective

time-frame. The system, and key safety critical functionality, must be

confirmed to comply with its requirements, even if executed against the

worst case. However, if the system is not executing to the worst case, then

is it possible to use the spare utilisation generated by WCET pessimism

for useful execution?

One possible solution for this would be to execute less time critical

operations within an idle task, or as the lowest priority tasks within

the system, on the assumption that key safety critical operations will

interrupt their execution when required. This offers an easy method for

utilising spare execution time, however, the process provides no ability

to add timing constraints against the software executed in the idle time.

Where it is desirable for less critical components to be developed against

temporal requirements, a more advantageous approach would be to utilise

some of the techniques introduced by MCS schedulers.

12

Such approaches, for instance [25]–[27] allow less critical components

to execute within a system, provided that high criticality components ex-

ecute within certain, less pessimistic, possibly optimistic, timing budgets.

The techniques introduced in these papers provide the facilities to prove

adherence of high criticality tasks against their timing requirements, this

is based on the assumption that when necessary all low criticality tasks

will be disabled. Extensions to these models, such as [32]–[34], employ

methods such as elastic scheduling or graceful degradation to attempt

to extend service provided to low criticality components. However, at

present all of these techniques lack mechanisms to assess the service pro-

vided to low criticality tasks within such a system. These low criticality

tasks will still have some system function, even if not a safety critical

function, and therefore understanding how they execute in practise is

still important from a system verification point of view.

This thesis aims to address this by identifying an iterative process,

based around a system simulator, that aims to provide a mechanism for

assessing the service afforded to a low critical task. The process is broken

down using a Goal Structuring Notation (GSN) [35], before being applied

to a real industrial case study.

1.5 Difficulties of Applying Academic Re-

search to Industry

Sections 1.1, 1.2, 1.3 and 1.4 have introduced some of the real-time soft-

ware development problems facing industry today. There are processes

and methods in the published academic literature that have the potential

to aid industry; these include the application of automatic test generation

and preemptive mixed criticality scheduling. However, these techniques

13

have yet to be tested and analysed in large scale industrial projects,

and as noted by Quinton [36] and Davis et al. [15] there are significant

difficulties that face the application of academic research in industry.

These difficulties in part come from the fact that there are few robust

industrial scale examples that can be used to develop and test techniques

and processes at the scale required for industry [36]. This has in some

cases led to academic research that focuses on solving problems not found

in industry, or alternatively research that focuses on new problems, as-

suming the problems of yesterday have been solved.

This thesis aims to advance and extend the academic research al-

ready available in the literature and to examine how it can be applied to

real industrial applications. The key contribution that encompasses all

of the work in this thesis is in the application of the reviewed and up-

dated approaches to a real industrial mixed criticality application, with

no assumptions or simplifications made to the system being studied. The

system used for this analysis is introduced in Chapter 2; consisting of a

control system taken directly from a Rolls-Royce aircraft engine.

1.6 Thesis Proposition

The central proposition of this thesis is:

Automatic test case generation techniques can be extended to reli-

ably target hybrid measurement based timing analysis to produce sound

WCET profiles. These produced WCET profiles can then be used to aid

the development and validation of mixed criticality schedulers, provided

the certification objectives, overheads of the scheduler, and the service

provided to low criticality tasks are not neglected.

The key strands to this thesis are as follows:

14

• To study the application of automatic software execution towards

industrial scale hybrid measurement based WCET analysis. The

key contributions being an algorithm designed to provide the tim-

ing measurements required by a hybrid measurement based WCET

analysis tool, as well as results from applying the technique to an

industrial scale case study.

• To identify how a mixed criticality system may be developed and

certified. The key contribution being a design for a mixed critical-

ity scheduler, overhead analysis and run-time monitoring system

defined according to certification standards.

• To show how an existing industrial scale project may be ported

to a mixed criticality system. The key contribution being a process

for automatically porting an existing system to a preemptive system

while minimising system overheads.

• To present a coherent system development process that uses the

defined automated WCET analysis techniques to develop and val-

idate the mixed criticality system. The key contribution being a

process for validating the service afforded to a low criticality task

within a mixed criticality system.

1.7 Thesis Structure

Chapter 2 introduces the current industrial system that is used through-

out this thesis. The tooling, techniques and processes researched in this

thesis have all been adapted and applied to the DAL-A aircraft engine

control system introduced. Several different variants of the control sys-

tem are used throughout this thesis, in all cases without modification,

15

and in some cases as part of a live development project. This forms one

of the central themes of this thesis - the processes, techniques and tooling

studied are tested and applied to a real certified system in order to test

their effectiveness and applicability.

Chapter 3 considers how the timing performance of the system may

be analysed automatically using measurement based approaches. The

chapter assesses possible options for automatic software execution from

the available literature on automatic test case generation. It discusses

the development of a set of algorithms designed to automatically drive a

software component to produce the required timing information; before

applying each algorithm, as part of a comprehensive statistical evalua-

tion, to a set of components provided by the system defined in Chapter

2.

Chapter 4 studies the definition of an industrially appropriate, cer-

tifiable, Mixed Criticality System. The chapter begins with a review of

the existing literature. It then advances to identify the key requirements

from a certification point of the view for the system, before researching

and assessing how such a system can be designed and verified. It then

progresses to assess the most efficient way of porting the system described

in Chapter 2 to the new scheduler. In particular, this involves the porting

of the non-preemptive system to the fully preemptive mixed criticality

scheduler. The system’s static schedulability is analysed, along with an

exploration of the benefits of the new system.

Chapter 5 extends the system developed in Chapter 4, and defines

a process that would allow the produced system to be validated. This

includes the development of a new process to examine how the service

provided to low criticality tasks within the system can be assessed; a

process which utilises the timing analysis tooling researched in Chapter

16

3. Finally, this process is applied to a set of case studies for the system

in question in order to assess the process’ applicability and effectiveness.

Chapter 6 summarises the work conducted in this thesis, and pro-

vides guidance for future research in this area.

17

18

Chapter 2

The Industrial Context: A

Current FADEC System

This thesis focuses on the industrial application and extension of ad-

vanced real time systems research. As such it discusses the develop-

ment of a single industrial target: a high criticality Rolls-Royce air-

craft engine control system, or Full Authority Digital Engine Controller

(FADEC). The system used throughout this research is analysed directly

from project, with no simplification or modification.

As introduced by [15]:

FADECs are responsible for the control and monitoring of aircraft en-

gines. They play a vital role in not only the reduction of hazardous events

related to the aircraft engine, but also the overall safety and certification

of the aircraft. FADECs do much more than inject fuel and control the

engine. They help keep both the aircraft’s cabin and fuel at the right tem-

perature, receive information and commands from the cockpit and send

back information, they also log information about the engine for future

maintenance, and play other vital roles such as helping the aircraft brake

on landing via the use of thrust reversers. Over time, this has led to an

19

increase in the amount of software in the system, most of which is hard

real-time.

The Rolls-Royce FADEC architecture is currently going through the

most ambitious redesign in over 30 years. The new FADEC architecture

is being updated in order to support the Rolls-Royce UltraFanTM en-

gine architecture, in itself the greatest aircraft engine core architecture

change in 60 years. The UltraFanTM engine will introduce a powered

gear box into the centre of the jet engine, and will require a significant

step increase in software system size, with the new control system esti-

mated to be several times larger than existing FADEC systems. This is

within a climate where software development cost is already considered

a significant problem [1].

The following sections now explore the current system’s WCET pro-

cess, target processor, scheduling methodology and architecture.

2.1 Current Approach to WCET

The FADEC aircraft engine control software, which is written predom-

inantly in the SPARK 95 subset of Ada; consists of several hundred

individual tasks formed by several hundred thousand lines of code. Each

software component is analysed using the hybrid measurement based tool

RapiTime, from Rapita Systems Ltd.

RapiTime automatically instruments the system source code and anal-

yses the structure of the code. When the instrumented code runs on the

target; the instrumentation produces a timing trace that is then analysed

off-line and together with a high-level structural analysis to produce a

timing profile for the software.

The Rolls-Royce approach to software certification using RapiTime,

20

as described in [13], is to integrate the tooling with the low-level software

verification process. This allows timing measurements to be taken as

software verification is performed, delivering sound results in time for

certification.

This process, however, while being used successfully to certify several

projects since 2015, is far from ideal from a cost effective point of view.

The principal issue being that the generation of accurate timing data

is left to a point in the design lifecycle which is too late for cost effec-

tive optimisation. This has had the consequence of separating system

developers from the optimality of the code they produce.

One approach to improve this may be to require each engineer to

manually execute the code they have just produced. However, this ap-

proach is less than ideal for two reasons. Firstly, as the WCET of each

function must take account of each function it calls, in a complex con-

trol system, this approach quickly becomes infeasible as the size of the

test space increases. Secondly, each tester would have to derive a test

that provides the appropriate coverage of the whole system-under-test

that is required by the hybrid measurement based analysis tool. On the

one hand this is a process that could also allow the early identification

of software bugs. However on the other; a software developer would be

expected to develop a greater number of test drivers to generate enough

system coverage, than they would have to produce purely to debug their

code.

2.2 Target Processor

The target processor used throughout this thesis is the Rolls-Royce in-

house processor. The Rolls-Royce processor is a packaged device that

21

integrates a core, memory, IO and tracepoint interfaces. Being targeted

at the safety-critical embedded sector, the device is DO-254 – Level A

compliant. It has extensive single-event-upset protection and is suitable

for harsh environments. The processor does not incorporate a data or

instruction cache due to their impact on timing predictability.

The processor has been carefully designed to ensure that each instruc-

tion’s execution is time-invariant. In other words each instruction will

take the same time to execute, regardless of the data its operation is

performed upon. These design features further ensure that previous pro-

cessor state has no effect on the current operation of the device. The use

of such a deterministic processor allows worst case timing measurements

of software components, including the scheduler, to be taken during nor-

mal operation, without the need for special builds [13], [37]. Finally,

the processor provides the facility for implementing user and supervisor

mode memory partitioning.

This processor is targeted throughout this thesis as it provides a real

example of a processor in use in both current and future avionics appli-

cations. However, an implicit requirement of this research is to keep the

developed techniques platform independent, although such independence

is not explored further within this thesis and is saved for future work.

2.3 Current Scheduling Approach and Ar-

chitecture

The current scheduler used within the FADEC software system is a fixed

priority non-preemptive scheduler; the initial development of which is

discussed in [38]. The system, and each component within it, must be

carefully developed in order to avoid long blocking terms and excessive

22

scheduler overheads. The scheduler was developed to the highest critical-

ity standards, against DO-178C, and has been in use on all Rolls-Royce

FADEC systems for almost 20 years.

An important aspect of the system, and its associated schedulabil-

ity analysis tooling, is the use of a repeatable algorithm (i.e. one that

always produces the same results) that takes all the temporal require-

ments of each task and uses them to calculate a deadline for each task.

Task priorities are then assigned using the Deadline Monotonic Priority

Ordering (DMPO) algorithm where the task with the shortest deadline

is given the highest priority. If all deadlines are met, then all the timing

requirements are met; the method ensures the schedule is correct by con-

struction. This approach has a further advantage, key to industry, that

by incorporating the timing requirements for each task into its design-

time calculated deadline; the system can easily be proved, reviewed and

understood by engineers and system integrators [39].

The current FADECs designs consist of a large number (> 200) of

tasks. Because of the real-time, hardware controlling nature of the con-

trol system, a number of tasks (in the order of 5% of the total number

of tasks) have completion jitter requirements. To comply with their re-

quirements, these tasks must execute within the jitter requirement of

their period. Typically these tasks tend to take on the highest priority

(lowest deadline) across the system.

Furthermore, in order to prove adherence to system level temporal re-

quirements, such as the system’s response time to certain engine events,

the control system task set has been designed to incorporate a large

number of transactions. A transaction is a sequence of tasks that must

execute in a defined order. Transactions can contain sets of tasks with

different periods, and tasks that are defined against a jitter requirement.

23

Together a task’s jitter requirement, transaction requirements, and pe-

riod form the set of temporal requirements which are used to define the

deadline of the task.

At present all tasks within the system are defined as high criticality

DAL-A tasks, and so all tasks are designed and proven against the most

stringent development standards. Furthermore, all tasks are treated as

hard real time tasks. In practise, some tasks, assuming a carefully or-

chestrated safety argument could be made, could be treated as lower

criticality tasks, or indeed as soft real time tasks. This however is not

currently possible without an appropriately designed mixed criticality

scheduler, appropriate system level partitioning and a robust validation

of the service provided to any tasks treated as soft real time and/or

lower criticality tasks. The available literature does not yet provide such

guarantees and validation processes.

This is important because it is not simply acceptable to assume that

soft real time tasks and/or low criticality tasks can be disabled for ex-

tended periods of time. The tasks still have a business critical operation;

even if they do not have a safety critical one. In essence, a task’s criti-

cality is not necessarily related to its ‘importance’. Therefore, it is only

possible to consider mixed criticality operation, if as part of a system

certification, or mission validation effort, the service provided to low

criticality tasks is understood.

2.4 System Model

A task, or partition, is a schedulable entity which consists of a number

of components. This task completes a system functionality which carries

a failure condition. This failure condition reflects the system-level effect

24

that a failure of this task may cause and leads to the derivation of a DAL,

also referred to as a criticality level. The criticality level of the task is

denoted by Li where (as defined by DO-178C [40]) Li ∈ {A,B,C,D,E}.

Level A indicates the highest level, E indicates the lowest level such that

A ≥ B ≥ C ≥ D ≥ E.

A system is defined as a collection of tasks denoted by τi where 1 ≤

i ≤ N . Each task τi is denoted by a deadline Di, a period Ti, a

criticality level Li, and one or many WCETs Ci. A task is said to

have a hard deadline if the task must complete before said deadline;

whereas a soft deadline allows deadlines to be missed without having an

adverse impact on the safe operation of the component. The current

system model assumes if a task exceeds its deadline it is permitted to

continue to completion.

Other parameters which describe a task include the completion jitter

Ji which denotes the maximum permissible variation of the period Ti for

the completion of the task. Once a task has been scheduled it may be

assigned a priority Pi where 1 ≤ Pi ≤ N . It is possible for the execution

of one task τi to be reliant on the completion of another task τj. Such

an interaction is described as a transaction. Transactions are formed in

order to aid the proof of system-level timing requirements, where it may

need to be proven that the system performs a set sequence of activities

in order, and within a set interval of time. The maximum response time

of a task Ri is calculated as the sum of the WCET Ci, the interference

suffered by the task Ii and the blocking suffered by the task Bi; where

the Interference Ii is the sum of the time delay between release of the

task, and execution as caused by higher priority tasks. The blocking time

Bi is the time delay between release of the task and when the task begins

to execute, as caused by lower priority tasks.

25

Finally, a hard deadline task τi is said to be schedulable if its worst

case response time (WCRT) Ri, is less than or equal to its deadline

Di.

2.5 Summary

This chapter has introduced the industrial context, from the point of

view of a real aircraft engine control system, or FADEC. The system

is introduced in order to provide a sound base to assess the research

conducted in the following chapters.

Introduction of the system has already presented a number of research

challenges that are revisited in the following chapters, these include:

• How to efficiently assess the timing properties of a complex sys-

tem encompassing thousands of different functions developed over

a multi-year programme.

• How to appropriately schedule complex task sets, including the

appropriate handling of transactional and jitter requirements.

• How to provide assurances that all tasks (including low criticality

tasks) comply with their requirements.

26

Chapter 3

Obtaining Reliable Task

Timing Profiles

The understanding of, and confidence in, a software component’s WCET

is a key validation step that must be completed during the verification

and certification of a safety critical system. DO-178C dictates that a sys-

tem developer should understand the worst case timing behaviour of the

system, and be able to provide confidence that any timing requirements

in the software design have been complied with in the implemented sys-

tem. One principal method for ensuring compliance to timing require-

ments is to analyse the WCRT of each task, which in turn requires a

bound on the WCET for each task to be identified. This WCET analysis

should take account of any performance effects introduced by either the

compiler, or any advanced hardware features. The analysis should also

provide an understanding of the timing behaviour of the task within the

integrated system with all inter-system timing impacts taken into con-

sideration. Ultimately, this worst case behaviour must accurately reflect

the performance of the system in service.

In practise, even on a simple processor analysis of a program’s WCET

27

can become an extremely difficult and expensive process to perform to an

industrial scale, frequently requiring significant engineering effort. This

chapter explores how data to support hybrid measurement-based WCET

analysis can be reliably generated automatically to help mitigate this

problem.

Section 3.1 now explores the available literature on both measurement

based timing analysis, and on automatic test case generation. Section

3.2 examines the target application for timing analysis, before Sections

3.3 and 3.4 explore an automated timing analysis approach built upon

optimisation algorithms. The approach followed in Section 3.4 begins by

examining the effectiveness of a purely random optimisation algorithm

(or search), as well as the application of the current approach found in

the literature. The section then progresses to examine how this algorithm

can be improved and refined using a series of examples taken both from

industry and from openly available benchmarks.

3.1 Literature Survey

Throughout the literature survey discussed in this section the actual-

WCET is assumed to be unknown. The term accuracy is used to denote a

WCET approaching the actual-WCET of the system in question, whereas

a sound WCET is used to denote a WCET which rests above the actual-

WCET. The aim of a timing analysis process should be to provide a sound

WCET, with acceptable accuracy to firstly avoid undue pessimism and

secondly to provide a real representation of the final target system timing

performance. Finally, any industrial scale process must be efficient and

repeatable to allow affordable large scale application.

28

3.1.1 Measurement-Based WCET Techniques

Industrial techniques in the past have centred on the simple process of

taking High Water Mark (HWM) timings from software test executions

[14]. This approach is easy to implement and guarantees to provide mea-

surements of the real system; and provided the System Under Test (SUT)

executes full path coverage it should provide a sound result. However,

should the testing not provide full path coverage then this approach risks

producing optimistic results as the software may not execute the worst

case path. As a system expands, the number of possible paths increases

accordingly, and the number of tests required to obtain this coverage can

be assumed to grow at a similar rate. In essence, in a complex software

program the possible search space, which includes the worst case path,

increases to such a size that this kind of analysis becomes unsound and

infeasible.

Research targeting sound and affordable measurement-based timing

analysis has taken two main paths; hybrid approaches, and probabilis-

tic approaches. Hybrid approaches combine structural information ob-

tained through static analysis, to measurements taken during execution.

In contrast, probabilistic approaches apply statistical theorems over a

large number of execution time measurements to produce a probabilis-

tic distribution of execution times; ultimately producing a WCET value

against an expected exceedance probability.

Hybrid measurement techniques aim to simplify the execution time

measurement search space to an affordable, achievable and practical level;

while improving the safety of general measurement-based approaches.

Deverge & Puaut [17] for instance use structural analysis to condense

the SUT into a number of clusters. Each cluster is then analysed indi-

vidually, the aim being to achieve full path coverage through the cluster.

29

Each path is then timed to produce an observed WCET for the cluster.

These cluster-WCETs are then combined using data extracted from the

structural analysis phase to produce a final WCET.

The method relies on the assumption that each cluster is context

independent from all other clusters. The authors suggest three areas

where this assumption is broken - Global Mechanisms (cache, branch

predictors, etc), Variable Latency Instructions (instructions with variable

timing behaviour, e.g. integer multiplication, or FPU operations) and

Statistical Execution Interference phenomenon (due to delayed memory

accesses or memory operations) [17]. It is suggested that in order for

clusters to be handled independently, these three causes of processor

unpredictability must be mitigated.

Stattelmann & Martin [18] present a measurement-based tool that

also breaks the SUT into a number of easily traceable segments. How-

ever, they overcome the requirement that each segment be independent

by formulating the WCET as a product of its execution history, or con-

text. The SUT is divided into a number of program segments, which

are executed on hardware and analysed by trace hardware. The context-

sensitive evaluation relies on the tracing hardware being able to consider

the execution history prior to a run of the segment. This execution his-

tory is extracted as the first part of the code segment is executed and

added to the Control Flow Graph (CFG) of the program segment under

test [18].

Once all the trace data and execution history has been extracted, the

execution times for each basic block are annotated onto each node of

the CFG, but only where the node’s execution context matches. This

produces a context dependent set of times for each basic block. The

execution history is then traced through the CFG to identify the path

30

containing the largest execution time [18].

The tool developed as part of [18], was tested on the Mälardalen

WCET Benchmark Suite [41] and the DEBIE-1 benchmark. It showed

how the context dependent measurements were able to obtain results

higher that the maximum end to end observed times of a longer run, but

also lower than results obtained through non-context dependent analysis.

Petters [42] proposes a process that uses source code instrumentation

to target analysis, measurement and specific paths through the code in

order to produce context sensitive manageable blocks for analysis. These

block times are then rolled up to produce a system level result. One risk

with this approach is that the instrumentation and measurement control

is inserted into the code, which can be expected to affect code execution

and compiler optimisations, meaning the analysed system may not reflect

the final un-instrumented system.

Ultimately though, the risks with each of these solutions is their scal-

ability; because as the complexity of the system increases the number of

sections the code is broken down into would also increase accordingly.

For a large industrial scale project this could lead to tens of thousands of

functions all being analysed to provide path coverage, or all producing a

context-sensitive WCET equation, and so the processing, or engineering

effort required would be significant. For instance; the current Rolls-Royce

control system introduced in Section 2 consists of over 5000 functions,

executing over 250,000 lines of code.

The RapiTime tool from Rapita Systems is a commercially available

hybrid measurement-based timing analysis tool, which is already in use in

industry [13], [15], [16]. RapiTime statically analyses the source code of

the SUT to obtain a tree based representation of the code. The tool then

observes the execution of the software as it executes on target hardware

31

and appends this timing information to the tree based representation

[43]. This provides a time profile for each basic block through the code,

which is then combined in a final calculation stage to provide a WCET

estimate. The key is that this breakdown to basic block level is hidden

from the user of the tool.

As the analysis is built around measuring the actual execution time

of the target hardware, the tool is easily ported to new hardware and

software architectures. However, this also means the tool requires a

pre-defined comprehensive test set to properly drive the SUT, ensur-

ing enough coverage is obtained to generate accurate results [44]. This

means that the tool cannot be applied to a system until a point where

verification activities have matured, therefore the analysis is delayed until

a later, more costly, point in the design lifecycle.

Finally, Measurement-Based Probabilistic Timing Analysis (MBPTA)

was first proposed by Stewart & Burns [45]. This was later extended by

Hansen et al. [46] and Cucu-Grosjean et al. [47]. The basis of these

techniques is the use of Extreme Value Theory to fit an appropriate dis-

tribution to the observations captured. The WCET is then extracted

from the distribution for a chosen level of probability that it has ex-

ceeded. The problem is that in order to provide reliable results the input

data fed into the tool must be independent and identically distributed,

which in practice is hard to achieve. Secondly, the level of code measure-

ments required, in some cases branch, decision and state coverage, makes

the problem of obtaining reliable measurements to support this type of

analysis even harder to solve [48].

32

3.1.2 Garbage in, Garbage out

Accurate and sound measurement-based timing analysis tooling, regard-

less of the approach utilised to simplify the problem, is wholly reliant on

the data input into the analysis [11]. If insufficient or inadequate timing

information is input into the process, then the results that are produced

by the tooling may not provide a sound, let alone accurate, result. Addi-

tionally, as more complex processor architecture features such as caches

are considered, the amount of timing information and data required to

provide a sound WCET can be expected to increase even further [12].

Particularly, due to the introduction of timing anomalies [49].

Colin and Petters present an investigation into the effects that differ-

ent advanced processor features have on the WCET and on its probabilis-

tic analysis [50]. The features investigated include data and instruction

cache, branch prediction units and out of order execution units. The pa-

per’s aim is to show that benefits in performance offered by the advanced

features can be seen in the WCET analysed on these architectures.

The analyses performed, over five complex algorithms, tested ten con-

figurations with and without the advanced processor features under test.

Tests were performed using randomly generated test vectors. The inves-

tigation in [50] utilised the pWCET tool [51]; the results of which show an

interesting correlation between advanced processor features and timing

improvements. However, it also highlights how the advanced processor

features tested significantly increase the complexity of achieving enough

test coverage to obtain accurate results.

Betts et al. attempt to address issues concerning coverage by intro-

ducing a new concept for measuring WCET coverage for measurement-

based approaches [44]. Their coverage metric is based on an amalga-

mation of three approaches which, when combined, form the basis for

33

approving that enough test data has been produced to support dynamic

analysis.

The principle of building an instrumentation point graph (IPG) is

introduced. The graph splits the SUT into a number of execution units,

divided between instrumentation points. The IPG details the execution

unit’s interactions between these points, and this forms the basis for the

metric’s algorithm. The three metrics introduced in [44] are firstly Sim-

ple Pipeline Coverage, which measures that every execution unit between

instrumentation points has been executed. Secondly, Pairwise Pipeline

Coverage, which measures that every node into each instrumentation

point, and every node out of each point has been tested. And finally

Pipeline Hazard Path Coverage (PHPC) which measures that every stat-

ically defined pipeline hazard has been observed at least once during

testing.

This final metric PHPC is perhaps the most difficult to define and

indeed fulfil. The metric is reliant on static analysis of the SUT to

identify potential structural and data dependent pipeline hazards, which

of course requires detailed knowledge of the pipeline the SUT targets,

therefore affecting the portability of the tool. The process of identifying

the SUT’s pipeline hazards through static analysis is also not a trivial

task. To fully achieve this would not only require knowledge of the

current instruction’s effect on the pipeline, but also on the current and

previous state of the pipeline. Arguably this level of analysis would

quickly prove infeasible if applied to a large industrial system.

Ultimately, the previous work discussed in this section has explored

how confidence can be built that sound WCETs have been obtained

through measurement based coverage. However, each method assumes

that the measurements required to drive analysis already exist, without

34

addressing how the measurements can be produced. With respect to the

requirements placed on these measurements; techniques that try to break

down the SUT into sets of sections to be analysed exhaustively, such as

[17], [18], risk scalability or in the case of [42], correctness. In some cases

it is unclear what coverage is required to obtain a sound result, such as

in the case of probabilistic timing analysis techniques [46], [47]. Finally,

extended coverage metrics have been proposed by [44], [52], however these

risk requiring infeasible levels of coverage.

3.1.3 Producing Measurement Data to Support

WCET Analysis

Optimisation algorithms, specifically search algorithms, are designed to

iteratively and efficiently improve on a defined solution through extensive

trial and error. Wegener [19] and Tracey [14] both illustrate how search

algorithms could be used for test data generation.

Wegener’s early work [19] built off Jones et al. [20] and presented

an investigation into how genetic algorithms can be used to estimate the

minimum and maximum execution times of software targeting embedded

systems. Tracey introduced a framework of tools designed to automat-

ically generate test data to perform dynamic analysis on an SUT. One

of the targeted analyses being the analysis of the WCET. The work has

been targeted toward safety-critical systems using strongly typed Ada

[14]. The framework introduced is primarily based on search algorithms,

which produced good results when compared to system HWM observa-

tions. However, the drawback was that the tool had to achieve path

coverage to obtain a sound and accurate WCET.

Khan and Bate [53] introduce the idea of incorporating multi-criteria

optimisations into a search based WCET analysis tool. The method

35

adopted used a number of fitness function parameters in order to at-

tempt to drive the worst case path. These included advanced processor

features known to cause larger WCET values, such as cache misses, but

also focused in on low level software coverage such as loop iterations.

The paper concluded that no one fitness function provided better results

across all test code items, and that the fitness function chosen should be

dependent on the target environment. However, the paper focused on a

number of processor or software features that are not necessarily present

in safety-critical systems and also failed to consider coverage which is

of importance to certification. Nevertheless, the work did indicate that

using optimisation algorithms focused on the features that contribute to

higher-WCET figures could produce more reliable results.

Williams [54] proposes a static analysis tool which aims to identify

a test vector to exercise every path through the code under test. The

WCET can then be read off as the HWM observed during testing. This

was extended by Williams and Muriel [55] with an analysis into possible

simplifications that can be made to avoid the analysis requiring full path

coverage. This includes maximising loop counts and assuming branches

are always taken. The paper recognises that further investigation and

justification is required, however it does indicate possible areas where

MBTA coverage requirements could be simplified.

Wenzel [56] introduces an MBTA tool designed to calculate sound

WCET bounds of safety-critical software. The tool uses a combination of

static analysis and dynamic measurement of the SUT in order to compute

sound WCET bounds. It statically analyses the feasible paths through

the code and then uses search algorithms to identify test vectors to exe-

cute each path. This is achieved through a combination of test data reuse,

random search, genetic algorithms and finally model checking [56]. Un-

36

fortunately the tool places a number of restrictions and assumptions on

the code under test; for example the tool is only capable of analysing

acyclic code and does not allow function calls. This means that unfor-

tunately the compromises required to use the tool are significant, and

would not be acceptable in an industrial environment.

Building off this Bünte et al. [52] examined the effectiveness of using

model checking [57] to produce test suites with enough coverage to pro-

vide reliable WCET estimates once combined using Implicit Path Enu-

meration Technique (IPET). Their research focuses on identifying effec-

tive coverage metrics to drive a model checking test suite generator - the

so called FORTAS framework. This was extended by Bünte et al. [12]

where the research combines the results produced with a genetic algo-

rithm, which then aims to identify larger execution times. One drawback

is that the tool analyses software that has been simplified to ensure each

decision point relies on only a single variable. Furthermore, some of the

benchmark tests utilised had to be simplified to allow analysis using the

bounded model checker [52]. This may not be appropriate to an indus-

trial program where the cost of simplifying hundred of thousands of lines

of code could make this process infeasible.

This work was further extended by Kirner et al. in [58], [59]. Their

initial work [58] examines how compiler optimisations affect source to

object code traceability, and therefore which optimisations affect the test

vectors produced by the model checking test suite generator tool. It

defines which optimisations need to be turned off in order to guarantee

source to object traceability for various code constructs. The paper also

examines the effect that turning these optimisations off has on a test

processor (Intel Core 2 Duo) for a limited set of Mälardalen benchmarks

[41]. Finally, their later work [59] expands on the FORTAS toolset with

37

the implementation of context-sensitive-IPET.

The FORTAS framework represents some of the most advanced work

in the field of generating traces for measurement-based timing analysis

tooling in the available research. However, its scalability remains limited

by its bounded model checking tooling. Furthermore, the restrictions

placed on the source code being analysed, including code simplification

and compiler optimisations, may limit its usability. However, if these can

be addressed then the tooling and techniques offer potentially analogous

tooling to those discussed in this thesis.

3.1.4 Summary of the Literature Surrounding

WCET Analysis

A review of the available literature has illustrated some of the key issues

surrounding WCET analysis. As discussed in the introduction to this

section, an industrial WCET tool should be expected to provide sound,

accurate results efficiently. These results should be able to be produced

and reproduced as part of an affordable process that ultimately provides

a system designer with confidence in the result.

Techniques that have focused on soundness and accuracy, risk unac-

ceptable scalability and inefficiency. Conversely, techniques that focus

on efficiency, risk poor accuracy and incorrectness. Whereas techniques

that restrict the target application to improve WCET tooling efficiency,

risk leading to unacceptably expensive product restrictions. Ultimately,

a compromise of these different requirements must be sought.

This thesis chapter is concerned with using search algorithms to gen-

erate good data for input into Measurement Based Timing Analysis

(MBTA) tools. The general proposition is that a search algorithm, or

indeed any test data generation technique, cannot be expected to stum-

38

ble across the WCET of a software component if that is its only target.

Instead the optimisation algorithm should be focused on generating the

right coverage to support sound measurement-based WCET analysis.

This allows the search algorithm to be focused on a smaller, more

manageable search space that delivers the ‘good input data’ required by

the timing analysis method adopted. The work differs from previous

approaches, such as the work of Wenzel [56] and Bünte [12] as firstly

the fitness functions used have been specifically tailored to target the

type of data needed by the MBTA tool. Secondly, while the approach

has been designed to analyse industrial software developed and reviewed

against strict standards, the analysis places no further restrictions on the

software under test (unlike approaches such as the FORTAS framework

[12], [52], [58], [59]). Finally, the approach has been investigated on a

processor, and software set taken directly from an industrial system. This

includes software that incorporates a large amount of previous software

state, which significantly increases the search space.

3.2 Target Application

In order to study the application of automatic test generation techniques

to the derivation of measurement-based timing data, a set of test code

items was compiled. Aiming to provide a broad subset of examples cov-

ering the principal architectural components found in real systems, the

test code items were derived from both the Rolls-Royce system defined

in Chapter 2 and from the Mälardalen WCET benchmarks [41].

The Rolls-Royce test code items introduced in Table 3.11 consist of

a set of complex ‘high level’ software components with a considerable

1The acronyms used for the Rolls-Royce test code items are not expanded as their

full name may reveal commercially sensitive information.

39

Table 3.1: Test Code Items Used for the Analysis.

Name Source Loops LOC MCC
Inputs

I/F/B/SI/SF/SB

QSort Mälardalen Y 121 21 0/20/0/0/0/0

Qurt Mälardalen Y 166 19 0/3/0/0/0/0

Select Mälardalen Y 114 20 1/100/0/0/0/0

InsertSort Mälardalen Y 7 5 100/0/0/0/0/0

F Rolls-Royce Y 1101 154 0/17/12/194/32/24

ACDF Rolls-Royce N 85 9 0/7/4/16/0/6

ACDN Rolls-Royce N 167 14 0/6/6/15/2/8

ACDP Rolls-Royce Y 254 27 0/8/5/16/0/6

ACDT Rolls-Royce Y 395 55 0/26/13/48/0/18

VCA Rolls-Royce Y 590 68 1/40/17/9/6/6

VCP Rolls-Royce Y 922 94 1/44/43/10/11/9

VCS Rolls-Royce N 205 21 0/6/2/0/0/0

number of inputs, which collectively control the operation of the code.

Table 3.1 denotes whether a test code item includes Loops and the to-

tal number of executable lines of code for each item (LOC). The Mc-

Cabe Cyclometic Complexity (MCC) metric [60] is shown to provide a

range of how many independent paths there are through the code. Fi-

nally, the number of inputs that drive the test code item are shown as

I/F/B/SI/SF/SB; denoting each input variables type as I = Integers,

F = Floats, B = Booleans, SI = State Integer, SF = State Float and

SB = State Boolean. Where State variables are parameters that are

both read from, and written to by the test code item, for instance, these

variables could hold a previous system parameter for comparison on the

next iteration of the control code.

40

The four standard benchmarks used for the analysis were taken from

the Mälardalen WCET Benchmarks [41]. A large number of the bench-

marks were not included as they provided constant execution times when

executed on the target processor and hence were not sufficiently inter-

esting. The benchmarks used were chosen as the execution time of each

varies significantly as the input search space is traversed, and because

they contain input data dependent loops. Finally, two of the chosen

Mälardalen benchmarks (InsertSort and Select) were extended to create

a larger search space. In both cases the number of input variables was

increased from 10 to 100.

3.3 Optimisation Algorithms

The search algorithm used for the analysis is a derivative of the simulated

annealing algorithm, originally presented in [61]. The basic algorithm is

shown in Algorithm 1.

The simulated annealing algorithm was chosen over other algorithms,

such as a genetic algorithm, because of its ability to narrow down on a

good solution, while also searching over a large part of the search space.

Although the key to this work is the fitness functions proposed; there is

no reason why these fitness functions could not be used to drive a genetic

algorithm.

On each iteration the GenNewSolution function pseudo-randomly

selects a new input solution to the function under test. This solution

is generated from the previous solution, with only a minor change to a

single randomly selected variable. FitFunc is then used to assess the new

solution’s fitness, which is accepted by the if statement on line 5, if an

improvement, or pseudo-randomly selected or rejected if a degradation.

41

As the test progresses the pseudo-random selection of worse solutions

will reduce, as controlled by Temp. Finally, StoppingCriteria assesses

whether to stop the search.

ALGORITHM 1: Simulated Annealing.
1: Temp = [0.01, 0.1]

2: while NOT StoppingCriteria() do

3: NewSolution = GenNewSolution(CurrSolution)

4: Fitness = FitFunc(TestCode(NewSolution))

5: if random(0..1) <exp(Fitness / Temp) then

6: CurrSolution = NewSolution

7: else

8: ignore new solution

9: end if

10: Temp = CalculateNewTemp(Temp)

11: end while

The initial algorithm parameters were defined using an extensive trial

and error approach against the following criteria:

• Sufficient exploration of the search space, initially allowing regu-

lar solution degradation while ensuring solution improvements are

always accepted and pursued.

• Execute for a sufficient length of time, with the initial evaluation

target being to execute for significantly longer than necessary.

• Each fitness function should use the same algorithm parameters to

ensure fairness and control across experiments.

The search algorithm parameters discussed in the following sections

were derived through this approach, and are not discussed extensively

as they do not form a key contribution of this work. The key for the

42

fitness function improvement, discussed later in the following section, is

that the parameters aim to provide a fair playing field for studying the

different fitness functions that do form one of the principal contributions

of this work.

The following sub-sections now discuss the key parameters of the

simulated annealing algorithm used throughout this analysis. This is

with the exception of discussion on a specific fitness function, which is

addressed and discussed in the following section.

3.3.1 Solution Generation

The software architectural model provides information on each input

into the test code item. This includes the range and type of the input,

thus allowing the search algorithm to narrow down the search space for

analysis. The initial set of inputs is pseudo-randomly chosen, using a

time-seeded random function at system initialisation.

One of the principal aims for the algorithm should be to identify

and then focus in on a good solution. Therefore, the derivation of a

new solution on each iteration of the algorithm is based on a minor

modification to the previous set of input vectors. This is introduced in

Algorithm 2.

As the simulated annealing algorithm begins each iteration one input

variable is randomly chosen. Depending on whether this variable can

be represented as an integer, a float or a boolean; the value is either

changed by 10% (integers), changed by 10 or 20% (floats) or inverted

(booleans). For integers and floats the actual change performed, and

whether it represents an increase or decrease, is pseudo-randomly chosen.

This creates a new solution with just one variable altered. The algorithm

includes a check to ensure the minimum amount integers and floats are

43

ALGORITHM 2: Solution Generation.
Input CurrSolution

Output CurrSolution

1: I = random(0..NumInputs)

2:

3: if type(I) == Integer then

4: δ = dAbs(CurrSolution[I]/10)e

5: if CurrSolution[I] - δ < CurrSolution[I].Min then

6: CurrSolution[I] = random(CurrSolution[I] + δ or CurrSolution[I].Min)

7: else if CurrSolution[I] + δ > CurrSolution[I].Max then

8: CurrSolution[I] = random(CurrSolution[I] - δ or CurrSolution[I].Max)

9: else

10: CurrSolution[I] = CurrSolution[I] + random(−δ or δ)

11: end if

12:

13: else if type(I) == Float then

14: ChangeRatio = Random(10.0 or 20.0)

15: δ = Max(MinPrecision, Abs(CurrSolution[I])/ChangeRatio)

16: if CurrSolution[I] - δ < CurrSolution[I].Min then

17: CurrSolution[I] = random(CurrSolution[I] + δ or CurrSolution[I].Min)

18: else if CurrSolution[I] + δ > CurrSolution[I].Max then

19: CurrSolution[I] = random(CurrSolution[I] - δ or CurrSolution[I].Max)

20: else

21: CurrSolution[I] = CurrSolution[I] + random(−δ or δ)

22: end if

23:

24: else

25: CurrSolution[I] = NOT(CurrSolution[I])

26: end if

27:

28: return(CurrSolution)

44

altered by does not tend to zero. This ensures integers and floats can

traverse the zero positive/negative boundary.

If the target system model provides type ranges, as is the case with

the Rolls-Royce control system, then these type ranges are taken into

account when making the decision as to whether to increase or decrease

the variable.

3.3.2 Temperature Control

The temperature (Temp) is the key parameter that controls the operation

of the algorithm. As shown by line 5 of Algorithm 1, while solution

improvements are always accepted, the Temperature weights whether or

not a solution degradation is accepted or not. A higher temperature

means the solution is more likely to be accepted.

The temperature is designed to slowly decrease over time; therefore

ensuring that as the test progresses the algorithm becomes less accepting

of worse solutions. Ultimately, the temperature decreases to such a point

that the algorithm becomes a standard hill climbing algorithm.

The temperature was designed to decrease slowly from a starting

point where all solutions are accepted, to a point where no worse solutions

are accepted, over a period of roughly 10,000 iterations. This was shown

through trial and error to provide an acceptably slow cooling period

across each fitness function.

One modification from the original algorithm suggested by Kirk-

patrick et al. [61] has been made. That is, if no solutions are accepted

after 200 iterations, then the temperature is increased to reheat the search

[62]. This reheating schedule was shown to avoid the simulated annealing

algorithm being caught in a local minimum, which is regarded as one of

the risks with the algorithm.

45

3.3.3 Stopping Criteria

It is generally not known when the WCET, or the worst case path, has

been observed; and so the derivation of a stopping criteria is extremely

difficult. Therefore, the stopping criteria used in this algorithm follows

a similar approach successfully used by Tracey [63] in that it aims to

execute for a sufficiently long period of time, before identifying when no

further improvements are being made. The stopping criteria is ultimately

balanced to allow the algorithm to execute for significantly longer than

felt necessary, only stopping when no solutions have been accepted in the

previous 33% of total test iterations. This is on the basis of a minimum

of 1000 iterations.

This stopping criteria was defined following a process of trial and

error, crucially the same criteria is used throughout the following sections

to ensure a level playing field for all tests.

3.3.4 Derivation of a WCET

The derivation of a WCET using the search based algorithm described

in this chapter follows the standard qualified Rolls-Royce process for

obtaining WCET figures for software certification, as described in [13].

The process, which uses RapiTime from Rapita Systems Ltd, instruments

the software under test with a series of low overhead tracepoints (called

iPoints). As each iPoint is executed the processor outputs a timing trace

which is captured by monitoring hardware. These timing tracepoints are

input into the RapiTime tool which merges them with the source code

structure in order to produce a WCET result.

The approach is qualified as a Tool Qualification Level 5 tool (Verifi-

cation tool) according to DO-330 [64]. This qualification is based on the

following key assumptions:

46

• A software architecture amenable to analysis; including defined

component and hardware boundaries.

• A processing architecture that supports analysis and provides accu-

rate non-intrusive tracing and time-stamping of software execution.

• Comparison between the code tested and the delivered code to

ensure the results are representative of the final system.

The minimum requirement for the approach when targeting the Rolls-

Royce processor (introduced in Chapter 2) is for the software traces to

demonstrate full branch coverage, with each loop being exercised to its

maximum. This requirement is derived from the tool qualification re-

quirements for the process, as discussed further in [13].

In the context of this work, the search algorithm is used to auto-

matically execute the software under test. As the software under test

executes, iPoints (iPoints/tracepoints) are output by the processor and

captured for input into the RapiTime tooling infrastructure. The aim

of this work, therefore, is to produce the right coverage to allow the

RapiTime tool to produce a sound WCET result.

3.4 Automatic Software Execution

This section focuses on the design and development of a search algorithm

to automatically drive hybrid measurement-based timing analysis. The

key contribution of the section is the derivation of a targeted fitness

function which focuses on deriving the right data to support the analysis

from across a feasible search space.

47

3.4.1 System Setup

The process followed by the WCET analysis tooling is defined in Figure

3.1. The blocks highlighted in red show manual steps, which currently

form part of the formal software development process at Rolls-Royce.

The blocks highlighted in blue are the additional automated steps added

as part of this study. These are described below:

Figure 3.1: Timing Analysis Process.

• I/O Identification - Derivation of the inputs to each test code

item from the software architectural model.

• Test Vector Generation - Configuration of a simulated annealing

search algorithm to drive the inputs to the test code item.

• Timing Test Execution - Output of software timing information

for input into the hybrid measurement-based timing analysis tool.

48

The current process, which follows the red workflow, requires engi-

neers to define functional tests (Test Development stage) which pro-

vide full code coverage from the highest level of a schedulable entity, right

through all sub-functions. This requirement means that timing informa-

tion is not available for development engineers until a very late stage in

the design lifecycle. This means engineers do not have the information

they need to easily optimise their code and delays identification of timing

issues until a late stage in the design lifecycle.

The ultimate aim of the process would be for the Timing Test Ex-

ecution stage to merge results from Test Development, and from the

Test Vector Generation stages for software certification. With the

automated Test Vector Generation stage providing indicative results

at an earlier stage in the software design lifecycle to the Test Develop-

ment stage. The results in this thesis focus on the results from the Test

Vector Generation stage.

3.4.2 Initial Algorithm Design

The initial search algorithm compares two different fitness functions. The

first is a purely random unguided search where all solutions are accepted;

this is denoted as Ran. The second fitness function used is the currently

accepted approach as used by Wegener [19], Tracey [14] and Jones [20];

denoted ET. This fitness function was shown by Khan [53] to generally

give the most appropiate WCET result.

ET is designed to attempt to identify the largest execution time possi-

ble. As each new solution is executed its operation is timed. The current

execution time is then assessed against the previously accepted execu-

tion time. This is shown in Equation (3.1), where CurrT ime is a signed

integer containing the time of the current solution, PrevT ime is the pre-

49

viously accepted best solution and FitnessET is the fitness calculated.

The subtraction of one from the time difference ensures that an identical

execution time is not viewed as an improvement.

FitnessET =
CurrT ime− PrevT ime− 1

PrevT ime
(3.1)

The algorithm setup used is as defined in the previous section, with

the exception of the stopping criteria for the Ran fitness function. The

fitness function randomly accepts all solutions, and therefore measuring

time since the last solution acceptance is irrelevant. As a consequence

Ran is allowed to run for longer than any other fitness function. However,

when the results are post processed, only the first X are processed; where

X is set to the median of the other fitness functions.

3.4.3 Initial Results and Analysis

The simulated annealing algorithm introduced in Section 3.4.2 was ap-

plied to the test code items introduced in Section 3.2. The simulated

annealing algorithm was executed fifty times, each time with a different

initial seed fed into the pseudo random number generator. The fifty re-

sults from both the Ran and ET fitness functions were compared using a

χ2 statistical test [65][66]. A p-value of less than 0.05 was obtained which

showed that the comparison of the results were statistically significant.

This provided confidence that fifty tests provided sufficient results for

analysis.

The Rolls-Royce test code items used for this analysis are taken from

the highest system level of the aircraft engine control system. Each task

calls a number of sub-functions; the execution path followed through

these sub-functions being reliant on the input arguments provided by

their parent task, and so in some cases it is not possible to achieve full

50

block coverage of each sub-function. Therefore, the analysis of the results

discussed throughout the following sections is concerned with reviewing

the coverage achieved in comparison to the coverage achieved across the

whole set of simulated annealing configurations.

The results presented in this section are considered to be the ini-

tial state results, based on processes for determining measurement-based

timing analysis coverage defined by Wegener [19] and Tracey [14].

The initial results are summarised in Table 3.2. These show the num-

ber of tests for each fitness function2 that managed to achieve coverage

greater than 90% of the possible instrumentaton point (iPoint) coverage

for each code item. The results indicated that the fitness functions ob-

tained reliable coverage of the Mälardalen benchmarks, with the Qurt

test code item receiving the lowest coverage. However, the coverage for

the industrial examples was extremely poor.

In order to review the results in more detail, the coverage obtained

for both fitness functions and the performance of the search algorithm

was reviewed in depth for each test code item. For brevity only the

analysis performed on the VCA test code item is discussed throughout

the following sections. The VCA test code item was chosen because it

contains a number of loops and hard to reach paths that together lead

directly to longer execution times.

Figure 3.23 shows the iPoint coverage obtained for the VCA test code

item after fifty iterations of the Ran and ET controlled simulated an-

2The acronyms ET NS and Ran NS are used to denote the two initial fitness

functions. The acronym NS stands for No State and is examined further in Section

3.4.4.
3Each box and whisker plot throughout this thesis displays the 25th to 75th per-

centile as the limits of the box, with the 50th percentile (the median) marked with

a bold line. The plot also shows the 5th and 95th percentiles as whiskers above and

below the box, with any further outliers being shown with circle marks.

51

Table 3.2: The Number of Tests That Achieved Greater than 90% iPoint

Coverage.

Item MCC Ran NS ET NS

Qsort 21 50 50

Qurt 19 46 48

Select 20 50 50

InsertSort 5 50 50

F 154 50 50

ACDF 9 0 0

ACDN 14 0 0

ACDT 55 0 0

ACDP 27 0 0

VCA 68 0 0

VCP 94 0 0

VCS 21 0 0

nealing algorithms. The iPoint coverage is shown as a percentage of the

total coverage possible from the top level of the function, and so offers a

perceived target for each fitness function to hit.

As is shown by Figure 3.2 the ET fitness function is not too dissimilar

to the Ran fitness function for the VCA test code item. Furthermore,

these initial results suggest a relation between the iPoint coverage ob-

tained and the resulting WCET calculated by the RapiTime tool. This

is mirrored by the results outlined in Figure 3.3 which shows a box and

whisker plot comparing the WCET obtained by each test execution.

Figure 3.4 shows the full Control Flow Graph (CFG) for the VCA test

code item. The graph shows the structure of the VCA function using a

mapping of the iPoints inserted into the code, each oval shaped node

52

R
an

_N
S

E
T

_N
S

50

60

70

80

iP
oi

nt
 C

ov
er

ag
e

O
bt

ai
ne

d

Figure 3.2: iPoint Coverage Obtained for the VCA Test Code Item.

R
an

_N
S

E
T

_N
S

1000

1500

2000

2500

W
C

E
T

 C
al

cu
la

te
d

Figure 3.3: WCET Calculated for the VCA Test Code Item.

53

Figure 3.4: Condensed VCA Control Flow Graph.

54

indicates a iPoint with the arrowed-edges showing the possible routes in

and out of each iPoint. This graph has been compressed as sequential

non-decision iPoints have been condensed into their preceding iPoint,

denoted using a rectangular node. A sequential non-decision iPoint se-

quence essentially refers to a sequence of iPoints that will all be executed

if the first iPoint is executed, in other words there is no decision to alter

the iPoint path. Each node is shaded to indicate the coverage obtained

as the ET fitness function executed. A fully green node indicates that

this iPoint was executed in all fifty tests, a red node indicates this iPoint

was never executed. Finally, yellow/green nodes indicate a node where

some, but not all, tests executed this node; with the percentage of tests

and the level of green shading used to denote how many tests successfully

executed this iPoint.

It is important to remember with all CFG plots shown throughout

this chapter, that these graphs reflect the structure of the code, and not

the execution time of the code. That is, one iPoint to iPoint transition

cannot be expected to have the same execution time as another.

Inspection of these graphs illustrates why Figures 3.2 and 3.3 suggests

there is a relationship between high block coverage and a sound WCET.

The graph shows how one decision in particular leads to the execution of

an additional 46 iPoints; adding a significant contribution to the WCET.

This specific decision and path are shown in Figure 3.5, which shows that

only 47% of the fifty tests traversed this path.

The code that introduces this hard to reach path is shown in Listing

3.1. The decision on line 18 represents entry into a set of fault handling

code, which is executed if condition is evaluated false. This evaluation is

based on the setting of thirteen input variables and two state variables.

Essentially this decision represents a very hard path to reach, as entry

55

Figure 3.5: Error Handling Code Structure Found Within the VCA Con-

trol Flow Graph.

56

to the path requires the correct configuration of fifteen variables. Two

of these variables (state boolean1 and state boolean2) are controlled by

previous iterations of the test, and so prove even more difficult for the

search algorithm to control. This is because state variables are both

inputs to the function, but also outputs. As the function is able to

change their value accordingly. These values for instance may record an

element of feedback in a tight control loop.

1 l c l b o o l e a n 1 := boolean1 or boolean2

2 l c l b o o l e a n 2 := (boolean3 and

3 (not boolean4) and l c l b o o l e a n 1)

4 l c l b o o l e a n 3 := (s t a t e b o o l e a n 1 and

5 (not boolean5 or boolean6)

6 cond i t i on := s t a t e b o o l e a n 2 or

7 boolean7 or

8 boolean8 or

9 boolean9 or

10 boolean10 or

11 boolean11 or

12 boolean12 or

13 boolean13 or

14 l c l b o o l e a n 2 or

15 l c l b o o l e a n 3

16) ;

17 iPo in t (21007) ;

18 i f c ond i t i on then

19 iPo in t (21008) ;

20 e l s e

21 iPo in t (21009) ;

Listing 3.1: VCA Hard to Reach Path

Inspection of the code reveals that this path controls entry to a sec-

tion of error handling code. Not only is entry into this section of code

57

reliant on a specific set of inputs, but furthermore these inputs, some of

which indicate different data faults, actually inhibit execution of different

operations elsewhere in the code. This means that in order to reach and

execute this branch, a shorter execution time path must be followed to

reach the branch.

In the case of the Ran fitness function, as the fitness function accepts

all solutions, the algorithm is actually able to exercise a relatively large

part of the search space; therefore stumbling across the long hard to

reach path regularly. However, the ET fitness function is disadvantaged

because in order to execute the hard to reach branch, the current solution

must be allowed to ‘degrade’ substantially, that is, several lower execution

time solutions must be accepted. This means the fitness function is

essentially reliant on the random decision to accept a degraded solution

and the function is not able to direct the search towards these harder to

reach paths.

A similar issue was discovered on the VCP and ACDT fitness func-

tions, and in fact can be said to be a common occurrence throughout

the control system. In the case of VCA, entry to the hard to reach path

is guarded by error control logic. This same logic has the effect of lim-

iting execution of other parts of the function, i.e., one error may stop

the function from performing one operation and a second may stop it

from performing another operation. However, only when both are seen

together does the result lead the function to take the hard to reach path.

As well as error handling code, it was also found that different system pa-

rameters, such as whether the engine was idling, or whether the aircraft

was on the ground, can lead to significantly different execution paths.

In addition to highlighting this hard to reach path, the CFG plots also

show that the fitness functions were unable to reliably execute a large

58

number of iPoints. As previously noted, the execution time between two

iPoints cannot be assumed to be related in any way to the execution time

between a different pair of iPoints. This means that we can only have

confidence in the WCET produced when we have sufficient coverage of

the system.

Finally, the analysis performed so far has concentrated on code cov-

erage, however a valid WCET also relies on a thorough exploration of

the loops found within the code, which can have a significant effect on

the WCET. Figure 3.6 shows a boxplot of the maximum number of loop

iterations observed across each test. This is calculated as follows: the

maximum number of iterations observed for each loop is recorded as

each test progresses, and after completion the mean across all loops is

calculated for each test and used to create this plot.

R
an

_N
S

E
T

_N
S

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
M

ax
im

um
 O

bs
er

ve
d

Lo
op

 C
ou

nt
s

Figure 3.6: Maximum Loop Counts Observed for the VCA Test Code

Item (Mean Across All Tests).

59

The plot shows how the ET fitness function was able to drive each

loop through the VCA test code item to a significantly higher number of

iterations than that of the Ran fitness function. This is understandable

because higher loop counts will directly lead to higher WCET results

when compared to the same execution path with a lower execution time.

This suggests the ET fitness function is perhaps better suited to exploring

maximum loop counts than it is higher block coverage.

This initial analysis has highlighted a number of issues with the cur-

rent process as detailed below:

• The system under test contains a large amount of system state,

which is carried forwards through iterations of the test. The current

state of the art algorithm is not designed to, nor proves able to,

handle this state appropriately to allow sufficient exploration of the

system.

• Both fitness functions have difficulties reliably executing hard to

reach paths.

• The use of a single fitness function focused purely on obtaining

larger execution times results in poor coverage of iPoints, affecting

confidence in the resulting WCET.

3.4.4 Assessing the Importance of System State

The analysis in the previous section highlighted that the initial current

state algorithm proves unable to obtain coverage that provides sufficient

confidence in a WCET estimation, and in half of cases, produces results

that do not approach the WCET of the function under test. One of the

issues identified was that the algorithm was not able to handle system

state.

60

State variables are commonly found across Control System architec-

tures, which use previous outputs for feedback to create stable control

algorithms. In the initial search algorithm these state variables made it

more difficult to execute hard to reach paths because the search algorithm

had no direct control over them.

Two methods were investigated for handling state variables as fol-

lows. Initially, state variables were treated as other input variables and

were randomly initialised and altered in exactly the same way. This im-

proved the obtained results, however it was found that a more efficient

method was to randomly choose whether to alter a state variable or to

carry forward the previous iterations state variable setting. This allows

the function under test to influence the state variables in a more rep-

resentative way, essentially allowing the function under test to perform

some of the hard work.

To analyse the results at the system level, the set of test code items

were repeated fifty times. The iPoint coverage obtained, and the WCET

calculated, for the VCA test code item is shown in Figures 3.74, 3.8 and

3.9. As the figures imply, the coverage as a whole increased significantly.

This was because the search algorithm was better able to traverse state

controlled decisions. Two examples of these improvements are shown in

Figures 3.10 and 3.11, which compare the CFG coverage obtained during

the initial analysis (on the left of each plot) to the coverage obtained by

this state-handling improvement (on the right).

Secondly, the maximum number of loop iterations also increased sig-

nificantly, with all variable loops seeing a notable increase in their max-

imum observed number of iterations.

4The acronym NS is used throughout this chapter to denote the initial No State

results

61

R
an

_N
S

E
T

_N
S

R
an E
T

80

100

120

140

iP
oi

nt
 C

ov
er

ag
e

O
bt

ai
ne

d

Figure 3.7: iPoint Coverage Obtained for the VCA Test Code Item,

Including Addition of State Variable Control.

R
an

_N
S

E
T

_N
S

R
an E
T

1000

1500

2000

2500

3000

W
C

E
T

 C
al

cu
la

te
d

Figure 3.8: WCET Results for the VCA Test Code Item Following the

Addition of State Variable Control.

62

●

●

●●●●

R
an

_N
S

E
T

_N
S

R
an E
T

1

2

3

4

M
ea

n
M

ax
im

um
 O

bs
er

ve
d

Lo
op

 C
ou

nt
s

Figure 3.9: Average Loop Counts Obtained for the VCA Test Code Item

Following the Addition of State Variable Control.

It is worth noting that one issue with treating state variables as inputs

is that the input space that must be manipulated increases accordingly.

For test targets that have a number of state variables that strongly con-

trol the execution of the function this is a necessary requirement. How-

ever, a risk is that state variables that have little or no control over the

execution of the function may actually lead to a poorer exploration of

the search space.

While taking control of state variables significantly increased cover-

age, the large range of results in the boxplots illustrate that there is still

a lot of variability in the produced results. This is shown on inspection of

the CFG in that the particular hard to reach path around iPoint 21007

(labelled in each CFG figure as I 21007), discussed in the previous sec-

tion, is executed more often (now greater that 50% of tests), but still

proves difficult to execute.

63

Figure 3.10: CFG Coverage Improvement Examples Following the Addi-

tion of State Variable Control.

Figure 3.11: CFG Coverage Improvement Examples Following the Addi-

tion of State Variable Control.

64

3.4.5 Improving Coverage

Analysis of the results produced so far show that the search algorithm,

with ET and Ran fitness functions, has so far proved unreliable at ob-

taining sufficient iPoint coverage across each test code item. Essentially,

the algorithms do not adequately target improving poor coverage.

Analysis of the control system functions being tested have revealed a

number of key properties:

• At times it may be necessary to accept significantly lower execution

times, over several iterations, to identify new paths and branches.

• ET’s focus on execution time results means it quickly loses focus

when set against difficult to reach paths. This has been shown by

the fact that a random fitness function is able to produce compa-

rable results.

• Neither fitness functions focus on achieving full coverage. For in-

stance they show little focus on individual blocks or branches, such

as those shown in Figure 3.11. As already stated, it is not safe to

assume that the number of iPoints in a block is proportional to its

execution time - as a lack of coverage, leads to a lack of WCET

confidence.

In order to attempt to focus on obtaining greater iPoint coverage,

two new fitness functions were defined - Unique Execution Times (UET)

which aims to focus on identifying new unseen paths, and Branch Cov-

erage (BC), which aims to maximise code structural coverage.

UET aims to return a high fitness when a new path has been tra-

versed. Paths themselves are not monitored, as maintaining a list of

which paths have been executed and then checking against this list was

deemed to lead to unnecessary complexity. Instead, the fitness function

65

keeps a record of each solution’s execution time, and counts how many

times each unique time has been observed. The fewer times the execution

time of the current solution has been observed, the better the fitness of

the solution. This is defined by Equation (3.2) where TimeCounter is

an array that stores a counter for each execution time value, so a newly

observed execution time would return a TimeCounter value of zero.

FitnessUET =
1− TimeCounter(CurrT ime)

100
(3.2)

The algorithm is designed as a simple path coverage metric which is

designed to provide a wide execution of the solution space. As the same

previously observed execution time is seen again, the fitness calculated

will steadily decrease. This ensures that the space around previously

observed execution times is still explored. This fitness function assumes

that different paths will always have different execution times. In prac-

tise, even when executing on a deterministic processor different source

code paths should lead to different object code constructs, and therefore

different execution times. However, it is possible that two paths could

have the same execution time, which represents a risk with this fitness

function.

BC assesses the fitness at every branch through the current path.

Each branch’s fitness is calculated as the normalised sum of the number

of edges out of the branch. The solution fitness is then calculated as

the average fitness of all branches on the current path. For example,

referring to Figure 3.12, if the current solution’s path includes block C,

(or the previously unseen blocks) B or E then the fitness calculated will

be significantly higher than if the path traverses through blocks D, F, G,

H or I. Thus the algorithm is weighted more towards the full execution of

each branch through the code, and is weighted less towards path coverage.

66

START

A

IC

D

END

H

B

E F G

Figure 3.12: Example Control Flow Graph.

Bünte et al. [52] proposed the use of Modified Condition/Decision

Coverage (MCDC) to provide WCET coverage. However, it is argued

here that MCDC is not necessary in this context as it would not offer

further refinement of the results over branch coverage. Ultimately this

would lead to a harder search, without necessarily providing better re-

sults. For example, referring to Figure 3.12, it is not of importance how

the decision was made at block D, only that both blocks E and F were

executed. If the decision at D is based on a large number of variables

(N), then the search space would increase from 2, to 2N .

Equations (3.3 and 3.4) show how the fitness for the current solution

is calculated; where unseen is an array which records each edge which

has not been executed, Eb denotes edges from this node and Bp denotes

branches on the current path. The division by Bp ensures the result is

67

normalised before being input into Line 5 of Algorithm 1. This means

that the fitness is weighted more towards hitting new branches, and not

against the number of branches or edges in the current path.

CurrF itnessBC =
1

Bp

Bp∑
b=0

(
1

Eb

Eb∑
e=0

unseen(e)

)
(3.3)

unseen(e) =

1, if e has never been traversed

0, if e has been traversed

(3.4)

For the BC fitness function, as a new path is discovered the fitness will

increase significantly. To balance this the fitness used by the simulated

annealing algorithm is taken to be the average of the previous fifty results.

A moving average is used in order to ensure that the algorithm continues

to investigate newly discovered areas of the search space, by spreading

out the fitness spikes seen at this point over the next set of iterations.

Figures 3.13 and 3.14 show the iPoint coverage and WCET results

obtained with the new fitness functions targeting coverage.

The results indicate that the UET fitness function performed poorly

compared to the latest state-controlling updates of the previous section.

This was found on review to be because the search space for the UET

fitness function is significantly larger, leading to a more difficult search.

This is further exemplified by the fact that in order to hit some of the

hardest to reach paths, the algorithm must repeatedly focus its attention

on one area. However, this produces ever degrading solutions for the

UET fitness function, leading the algorithm to drift away from these

hard to reach paths and decisions.

The BC algorithm did not uncover new branches or iPoints that had

not been executed before, but it was able to achieve greater coverage

more reliably. For instance, a number of low level single iPoints were

68

R
an

_N
S

E
T

_N
S

R
an E
T

U
E

T

B
C

80

100

120

140

iP
oi

nt
 C

ov
er

ag
e

O
bt

ai
ne

d

Figure 3.13: iPoint Coverage Obtained for the VCA Test Code Item

Following Addition of the BC Fitness Function.

R
an

_N
S

E
T

_N
S

R
an E
T

U
E

T

B
C

1000

1500

2000

2500

3000

W
C

E
T

 C
al

cu
la

te
d

Figure 3.14: WCET Results for the VCA Test Code Item Following

Addition of the BC Fitness Function.

69

executed more reliably. Interestingly though, the hard to reach branch

introduced in Figure 3.5, while being executed in the majority of cases,

was not executed in a higher percentage of tests than the ET fitness

function with state control.

The results have indicated that a focus on code coverage is able to

produce more reliable results than a focus on execution time, or on path

coverage. However, the fitness function is still unable to reliably target

hard to reach paths.

3.4.6 Targeting Hard to Reach Paths

The results so far show how difficult it is to reliably execute hard to reach

paths. Therefore, an addition to the BC fitness function was introduced

in order to focus the algorithm on executing partially-covered decisions.

Branch Coverage History (BCH) uses the same basic fitness calcula-

tion as BC (Equation 3.3). However, as each branch through the current

solution’s path is analysed, the input vector used to drive the current

solution is stored against that branch. If after fifty iterations the solu-

tion has been rejected continuously, then the set of outgoing edges that

have not been fully executed is examined, and one is chosen at random.

The input vector stored against this branch is then adopted as the new

input vector. This is designed to attempt to lift the algorithm from poor

solutions and focus it on the area around branches that have only been

partially executed.

Solution Array[b] = CurrSolution, b = 0..Bp (3.5)

70

NewSolution =



GenNewSolution(CurrSolution)

if Reject <= 50

Solution Array[rand(BNFE)]

if Reject > 50

(3.6)

Equations (3.5) and (3.6) describe how the algorithm operates. On

each iteration the current solution (CurrSolution) is recorded against

each branch found upon the current path, as denoted by Bp. Equation

(3.6) replaces line 3 of Algorithm 1. On each iteration if the previous

fifty solutions have been rejected then the next solution (NewSolution)

is set to equal a solution taken from the Solution Array. The array value

chosen is selected from the set of solutions that drive branches that have

not been fully executed (BNFE).

Figures 3.15 and 3.16 update the VCA results with the new fitness

function. The coverage obtained overall matched BC, however the num-

ber of tests which executed the hard to reach path increased to 65%,

compared to the original 50% for the ET fitness function.

3.4.7 Increasing Confidence

The focus of the fitness functions so far has been on improving branch

coverage. However, the second element that must be considered is the

number of iterations of each loop through the system. If loops are not

executed to their maximum number of iterations; then this may have

an optimistic effect on the resultant WCET. Therefore, an expansion

towards achieving the maximum number of iterations of each loop was

suggested.

71

R
an

_N
S

E
T

_N
S

R
an E
T

U
E

T

B
C

B
C

H

80

100

120

140

iP
oi

nt
 C

ov
er

ag
e

O
bt

ai
ne

d

Figure 3.15: iPoint Coverage Obtained for the VCA Test Code Item

Following Addition of the BCH Fitness Function.

R
an

_N
S

E
T

_N
S

R
an E
T

U
E

T

B
C

B
C

H

1000

1500

2000

2500

3000

W
C

E
T

 C
al

cu
la

te
d

Figure 3.16: WCET for the VCA Test Code Item Following Addition of

the BCH Fitness Function.

72

Loops (Lo) calculates the average number of iterations of each loop

on the current path. The result is then normalised using the maximum

observed number of iterations. The algorithm is based on previous work

by Khan [53]. Using the CFG in Figure 3.12; block H will be identified as

a loop back edge, the fitness for the solution in this case will be calculated

as the number of times block H has executed on the current path. In

cases where there is more than one loop then the average number of

iterations for all loops in the test item will be calculated as the fitness.

As a final step the fitness is normalised by dividing the fitness by the

highest fitness ever observed. Equation (3.7) shows the operation of the

fitness function, where LP represents the number of iterations for each

loop on the current path, and NL the number of loops on the current

path.

CurrF itnessLo =
1

Fitnessmax

1

Lp

Lp∑
l=0

(LoopIter(l)) (3.7)

Finally, Branch Coverage Loops (BCHLr) combines a search for high

branch coverage, with one for high loop counts. The function combines

the result produced using BCH, with the result using Lo to produce

a fitness function that begins by trying to identify unseen blocks, but

evolves as the search progresses to concentrate on identifying higher loop

counts. Equation (3.8) illustrates how the fitness is calculated. WL

is used to weight the effect of the loop fitness calculation (Lo) and is

initialised to zero.

CurrF itnessBCHLr =
(WL ∗ CurrF itnessLo) + CurrF itnessBCH

1 +WL

(3.8)

As the test progresses, and the branch coverage obtained increases, then

WL, the loop fitness weighting, is increased. This changes the priority

73

of the fitness function as the test progresses from initially focusing on

branch coverage, towards a focus on maximising loop counts.

Figure 3.17 shows the iPoint coverage obtained for the additional

fitness functions. As can be noted, the iPoint coverage obtained for the

Lo function is on a par with the coverage obtained for the branch coverage

fitness functions, including the fitness function with history. It can also

be observed that the BCHLr fitness function was able to outperform

the branch coverage fitness functions, even though the addition of loop

counts into the fitness function equation does not have an impact on

branch coverage fitness. The reason for this increase was caused by the

design of the VCA test code item being studied. The function includes

a number of loops, including one around the hard to reach path which

proved elusive to other fitness functions. This means the BCHLr and Lo

are unfairly weighted towards this path. This anomaly is addressed in

the following section which discusses a wider fitness function evaluation.

Figure 3.18 shows a box and whisker plot reviewing the maximum

loop counts observed across the set of tests for the VCA test code item.

The results indicate that the fitness functions focusing on loop counts

were able to obtain the highest average number of iterations for each

loop, with the branch coverage and ET fitness functions closely behind.

As shown by Figure 3.19 the iPoint coverage and loop counts observed

are mirrored by the WCET results. The figure shows the fitness functions

taking into account loop counts, and crucially the combination of branch

coverage and loop counts, as producing the best results.

This section has discussed the design of a series of fitness functions

aiming to obtain sound and reliable measurements to support timing

analysis. It has presented a logical design flow based on the properties

of the code under test. The next section now explores how these fitness

function perform against a wider evaluation.

74

●●●●●●●●

R
an

_N
S

E
T

_N
S

R
an E
T

U
E

T

B
C

B
C

H Lo

B
C

H
Lr

80

100

120

140

iP
oi

nt
 C

ov
er

ag
e

O
bt

ai
ne

d

Figure 3.17: iPoint Coverage Obtained for the VCA Test Code Item

Following Addition of the Lo and BCHLr Fitness Functions.

●

●

●●●●

●●●●●●●●

R
an

_N
S

E
T

_N
S

R
an E
T

U
E

T

B
C

B
C

H Lo

B
C

H
Lr

1

2

3

4

M
ea

n
M

ax
im

um
 O

bs
er

ve
d

Lo
op

 C
ou

nt
s

Figure 3.18: Maximum Loop Iterations Observed for the VCA Test Code

Item Following Addition of the Lo and BCHLr Fitness Functions.

75

●
●

●●●●
●
●

R
an

_N
S

E
T

_N
S

R
an E
T

U
E

T

B
C

B
C

H Lo

B
C

H
Lr

1000

1500

2000

2500

3000

W
C

E
T

 C
al

cu
la

te
d

Figure 3.19: Average Maximum Loop Counts Observed for the VCA Test

Code Item Following Addition of the Lo and BCHLr Fitness Functions.

3.4.8 Fitness Function Evaluation

In order to assess the effectiveness of the set of developed fitness func-

tions; each algorithm was executed against the set of test code items

introduced in Section 3.2 fifty times. In all cases each fitness function

was executed for significantly longer than perceived necessary, as intro-

duced by Section 3.3.3. Crucially, all tests across all fitness functions and

code items used the same search algorithm configuration, with only the

fitness function changing.

All results analysed throughout this section were produced from tests

which are able to control state variables, as introduced by Section 3.4.4.

It has already been stated that an industrial WCET tool should be

expected to provide sound results efficiently that can be produced and

reproduced as part of an affordable process that ultimately provides a

76

system designer with confidence in the result. The fitness functions de-

veloped as part of this section are now assessed against this criteria based

on three key areas - efficiency, confidence and sound WCETs.

Efficiency

A typical Rolls-Royce Aircraft Engine Control System consists of sev-

eral thousand functions that must all be evaluated to identify the WCET

of the system as a whole. Therefore, even though it could be argued that

a simple search algorithm left to execute indefinitely could eventually

stumble upon perfect results, in an industrial setting this approach is not

practical or cost effective. An industrial grade WCET must be trusted

to analyse results efficiently and reliably.

To assess the efficiency of each fitness function, the HWM for each

test iteration was collected during execution. The mean HWM for each

fitness function at each iteration was then calculated across all fifty test

runs, and plotted for analysis. For the majority of the test code items the

test results for each fitness function varied by less than 10% as each test

progressed. However, in the cases of ACDT, VCP and VCA the difference

was more profound. The results for ACDT and VCA are shown in Figures

3.20 and 3.21.

Firstly, all individual tests for every fitness function on all test code

items completed in less than 20,000 trial iterations. This took approx-

imately twelve hours to execute. In the case of the simple test code

items each trial completed in approximately 2000 iterations, which took

on average one hour to execute.

In an industrial context if each trial takes one hour, provided there

is enough server power to allow multiple concurrent tests, this could be

deemed acceptable. However, for the more complex functions the fact

that each individual trial takes twelve hours illustrates the importance

77

Figure 3.20: ACDT Mean HWM Observed as the Test Progresses.

Figure 3.21: VCA Mean HWM Observed as the Test Progresses.

78

of identifying a test result efficiently. It also illustrates the importance

of the algorithm identifying when no more progress is being made, and

to stop searching. This is particularly pertinent for the small functions

which may not see a significant improvement across their test run.

Figure 3.20 shows the mean HWM for the ACDT test item over time,

for each fitness function, which provides a representation of test progres-

sion. The graph shows how as each test progresses all the fitness functions

were able to obtain results similar to each other, with the exception of

UET. One possible reason for this is the size of the input space and

number of complex paths through this function, which the UET fitness

function was not able to manipulate as effectively.

VCA, shown in Figure 3.21, on the other hand presented a much

larger difference in mean HWM figures. In this case BCHLr was able

to produce the best observed HWMs throughout the test. By 10,000

iterations all the fitness functions had stopped improving.

Both Figures 3.20 and 3.21 illustrate the difficulty of identifying an

appropriate stopping criterion. The same criteria, as introduced by Sec-

tion 3.3.3 was used for all fitness functions to ensure a fair test, however

in the case of the Ran and UET fitness functions because the tests quickly

cease to improve on their results the fitness functions quickly stop search-

ing. Arguably, the Ran and UET fitness functions could use a different

stopping criteria to force them to execute for longer, however, this ap-

proach was not taken during this analysis due to a desire to avoid giving

one fitness function a further advantage over another.

In summary, the progression of each fitness function’s progression over

time illustrated that all the algorithms were capable of producing results

efficiently for the simple code functions. For the more complex functions

BCHLr performed well over all functions; with Lo, ET and BCH able to

79

produce good results in most of the test code items.

Confidence

Industry cannot rely on just reliably achieving a high predicted WCET

because for certification it is important we are able to argue about con-

fidence in the degree of system coverage. It is not appropriate, or possi-

ble, to argue that the WCET is understood without illustrating sufficient

coverage has been obtained. The objective of this section is to evaluate

the relative branch coverage and loop iteration counts achieved by the

different approaches by reviewing the iPoint coverage during each test.

Table 3.3 shows the number of test runs for each fitness function that

obtained iPoint coverage within 90% of the maximum possible.

Table 3.3: Objective 2 - The Number of Tests That Achieved Greater

than 90% iPoint Coverage.

Item MCC Ran ET BC BCH Lo BCHLr UET

Qsort 21 50 50 50 50 50 50 50

Qurt 19 46 48 49 43 48 48 49

Select 20 50 50 50 50 50 50 50

InsertSort 5 50 50 50 50 50 50 50

F 154 50 50 50 50 50 50 50

ACDF 9 47 48 50 49 49 50 38

ACDN 14 50 48 45 46 48 49 34

ACDT 55 50 50 49 50 50 50 42

ACDP 27 19 25 45 43 40 45 14

VCA 68 17 25 28 30 32 42 24

VCP 94 10 25 28 25 32 35 30

VCS 21 50 50 50 50 50 50 50

Mean 40 43 45 45 46 47 40

80

For all of the simpler test code items (those with McCabe complexity

of 21 or less) the iPoint coverage for all fitness functions was 100% in

most cases. The other tests showed lower iPoint coverage for some of the

fitness functions. Again this indicated for simple code items all of the

fitness functions were able to obtain reliable results.

For the more complex functions the variance between fitness functions

was more profound. A number of the functions, such as ACDP and VCP,

contain a number of hard to reach paths. For ACDP for instance the

branch coverage fitness functions were able to narrow in on these paths

more reliably, and thus achieved higher iPoint coverage.

R
an E
T

U
E

T

B
C

B
C

H Lo

B
C

H
Lr

180

190

200

210

220

230

iP
oi

nt
 C

ov
er

ag
e

O
bt

ai
ne

d

Figure 3.22: iPoint Coverage Obtained for the VCP Code Item.

In the case of VCP, illustrated in Figure 3.22; again ET and BC failed

to obtain consistent branch coverage. One contributing factor to this was

the size of the input space for VCP, which is considerably larger than a

number of the other test code items and results in a much larger search

space.

81

The second requirement for providing confidence in the produced

WCET results is sufficient exploration of loops; the aim being to max-

imise loop iteration counts. Figure 3.23 shows the mean maximum loop

counts obtained for each test run of the VCP test code item. The BCHLr

and Lo fitness functions were able to obtain the highest median loop

counts; however there were a significant number of outliers sitting high

above the median, with UET obtaining the highest single outlier. As

with the coverage results presented in Figure 3.22 this was attributed

to the size of the VCP search space, making the search difficult for all

fitness functions to obtain coverage.

●

R
an E
T

U
E

T

B
C

B
C

H Lo

B
C

H
Lr

3.5

4.0

4.5

5.0

5.5

M
ea

n
M

ax
im

um
 O

bs
er

ve
d

Lo
op

 C
ou

nt
s

Figure 3.23: Maximum Loop Counts Obtained for the VCP Code Item.

Finally, Figure 3.24 shows the maximum loop counts obtained for the

Insert Sort test code item. The results indicated the highest range in

maximum loop counts observed across all test code items, which was at-

tributed to the fact the source code item contains a nested loop structure,

the execution of which is wholly reliant on the input test vectors. All fit-

82

●

●

●

●

●

R
an E
T

U
E

T

B
C

B
C

H Lo

B
C

H
Lr

1100

1200

1300

1400

1500

1600

M
ea

n
M

ax
im

um
 O

bs
er

ve
d

Lo
op

 C
ou

nt
s

Figure 3.24: Maximum Loop Counts Obtained for the Insert Sort Code

Item.

ness functions instantly obtained full block coverage through this fitness

function, and so the ET and Lo fitness functions, whose focus included

increasing loop counts straight away, were then better able to focus on

increasing the double nested loop’s number of iterations. The BCH and

BCHLr’s searches however were affected because the fitness function’s

initial focus on obtaining large block counts had no purpose and saw no

improvement, which appeared to negatively affect the search.

In summary, BCHLr has again been shown to provide reliable results

across all test code items. Other fitness functions, such as BCH or Lo,

were able to obtain similar results for some test code items, but also

produced poorer results in other test code items, such as VCA and VCP.

This was shown to be because BCHLr was able to execute specific hard

to reach paths. Without a focus on reaching these paths; other fitness

functions like ET were unable to reliably achieve high iPoint coverage.

83

Sound WCETs

The final objective to assess the set of fitness functions against is in

the production of sound WCET figures. This objective is analysed by

reviewing the results produced by the RapiTime tool after parsing each

test’s measurements. As the Actual-WCET is not known each individ-

ual test was executed for significantly longer than necessary, with the

results from all tests being compared against each other. This allows an

assessment to be performed into the reliability of each individual fitness

function, with particular attention paid to the results when compared

to the ET fitness function. A comparison between the maximum HWM

obtained and the WCET calculated is performed to assess how the data

input guides the result. The median is used throughout this evaluation

as it best reflects where the majority of the results lie. This follows the

aim of this analysis - to produce good approximations the majority of

the time, rather than a better result only once.

Finally, a statistical analysis was used to assess whether any of the

WCET distributions from each fitness function was significantly different

from any other. This was used in order to confirm the results represented

a large enough sample to show significance [65]. The data analysed is

non-parametric (does not follow a normal distribution) and only one

data source was used therefore a Friedman test with an alpha level of

0.05 was chosen for the analysis. This revealed that there was a signifi-

cant difference between the fitness functions for all tests, this is denoted

in this section as the Friedman chi-squared result (χ2
r), the degrees free-

dom and the p value. Following the Friedman test a Wilcoxon-Nemenyi-

McDonald-Thompson [66] was used to reveal which fitness functions pro-

duced significantly different distributions.

For the smaller code items, with McCabe complexities of 21 or less,

84

the variance between each fitness function was very low. All fitness func-

tions obtained WCET figures within 10% of each other, with ET generally

performing best. For the InsertSort test code item the overall Friedman

test result was χ2
r(6) = 67.8, p < 0.015 which indicated an overall sig-

nificance. Figure 3.25 illustrates the results of the Wilcoxon-Nemenyi-

McDonald-Thompson test; each fitness function was compared against

each of the other fitness functions. The bar for each result indicates

which fitness function in the comparison performed best by showing the

result of total difference between each fitness function. A shaded boxplot

indicates a significant result (p <0.05). For instance, the first bar on the

left indicates that BC performed slightly better than BCH, as the result

of ‘subtracting’ BC from BCH provides a negative result. However, the

result is not significant and so should be disregarded.

The figure shows how the Lo, ET and BCHLr fitness functions were

able to achieve consistently better results than the fitness functions that

just focused on iPoint coverage alone. This was most likely because

the InsertSort test code item only contains five iPoints, which are fully

executed very early in the search, and so the branch coverage functions

quickly moved to an unguided search.

For the Mälardalen WCET benchmark functions in general there was

a large difference between the HWM and estimated WCET. Qsort for in-

stance observed a HWM for each fitness function of between 8% and 15%

of the calculated WCET. In a similar vein the difference between fitness

functions was marginal for the Select code item; however the HWM ob-

served was less than 1% of the WCET calculated. This was because of the

effect of an infeasible path which spans over a triple depth nested loop.

5χ2 results throughout this thesis are denoted using the following terminology -

χ2([degrees of freedom], n = [number of samples)] = [result]), [statistical significance].

85

●

●

●

●

●

●●●

●

●

B
C

H
 −

 B
C

B
C

H
Lr

 −
 B

C

E
T

 −
 B

C

Lo
 −

 B
C

R
an

 −
 B

C

U
E

T
 −

 B
C

B
C

H
Lr

 −
 B

C
H

E
T

 −
 B

C
H

Lo
 −

 B
C

H

R
an

 −
 B

C
H

U
E

T
 −

 B
C

H

E
T

 −
 B

C
H

Lr

Lo
 −

 B
C

H
Lr

R
an

 −
 B

C
H

Lr

U
E

T
 −

 B
C

H
Lr

Lo
 −

 E
T

R
an

 −
 E

T

U
E

T
 −

 E
T

R
an

 −
 L

o

U
E

T
 −

 L
o

U
E

T
 −

 R
an

−20

−10

0

10

20

%
 D

iff
er

en
ce

Figure 3.25: Comparison of the distribution differences for each fitness

function combination, for InsertSort. Shaded bars indicate statistically

significant results.

These results indicate the benefit of building a hybrid measurement-based

tool on top of an automatic software execution mechanism rather than

just relying on the latter to produce reliable results.

The largest difference between the different fitness function’s WCET

results was produced by the VCA, ACDP and VCP code items.

The VCP code item, shown in Figures 3.27 and 3.28, exhibited a sig-

nificant variance of up to 30% between WCET figures (χ2
r(6) = 84.9, p <

0.01). This was found to be due to the size of the input space which

led to a significantly larger search space and a lower resultant iPoint

coverage. As well as this the function contains a number of loops whose

execution is reliant on the data input into the test code. This highlighted

86

●

R
an E
T

U
E

T

B
C

B
C

H Lo

B
C

H
Lr

700

800

900

1000

1100

1200

1300

W
C

E
T

 C
al

cu
la

te
d

Figure 3.26: WCET Results Calculated for the ACDP Test Item.

one flaw with the BCH/BC fitness functions, in that they were unable to

focus the algorithm on increasing the number of iterations of the loops

found in the test code. The loop coverage fitness functions, in particular

BCHLr, were able to exploit this type of code construct, and produced

the highest, most consistent result.

The VCA function, as discussed earlier, showed a strong correlation

between iPoint coverage and estimated WCET. For VCA the variance be-

tween the maximum and minimum estimated WCET results approached

50%, as shown by Figure 3.29 (χ2
r(6) = 91.5, p < 0.01).

3.5 Summary

This chapter studied how reliable, automated, timing analysis can be

performed in order to identify the timing properties of a system. The

existing approaches and literature, even when applied to deterministic

87

R
an E
T

U
E

T

B
C

B
C

H Lo

B
C

H
Lr

4500

5000

5500

6000

6500

7000

7500

W
C

E
T

 C
al

cu
la

te
d

Figure 3.27: WCET Results Calculated for the VCP Test Item.

processors, is lacking when it comes to the definition of approaches to

generate data to support measurement-based timing analysis, with most

techniques relying on data already being available. The chapter has

aimed to identify the applicability of optimisation algorithms to the gen-

eration of such data.

The chapter identified the requirements for the generation of timing

data to support measurement-based timing analysis, before identifying

appropriate techniques for obtaining the right data, reliably. The ap-

proaches were assessed incorporating both open source benchmarks, and

closed source real industrial examples, to analyse their abilities.

The ultimate achievement of this chapter has been to produce a set of

fitness functions aimed to drive the efficient, and automated, definition of

task timing properties. The results provide indications of maximum loop

counts as well as HWMs and WCETs for each task. Furthermore, the

results provide a comprehensive set of task timing profiles from execution

88

●

B
C

H
 −

 B
C

B
C

H
Lr

 −
 B

C

E
T

 −
 B

C

Lo
 −

 B
C

R
an

 −
 B

C

U
E

T
 −

 B
C

B
C

H
Lr

 −
 B

C
H

E
T

 −
 B

C
H

Lo
 −

 B
C

H

R
an

 −
 B

C
H

U
E

T
 −

 B
C

H

E
T

 −
 B

C
H

Lr

Lo
 −

 B
C

H
Lr

R
an

 −
 B

C
H

Lr

U
E

T
 −

 B
C

H
Lr

Lo
 −

 E
T

R
an

 −
 E

T

U
E

T
 −

 E
T

R
an

 −
 L

o

U
E

T
 −

 L
o

U
E

T
 −

 R
an

−40

−20

0

20

40
%

 D
iff

er
en

ce

Figure 3.28: Comparison of the distribution differences for each fitness

function combination, for VCP. Shaded bars indicate statistically signif-

icant results.

with representative inputs, these profiles provide indications for how each

task may execute in operation.

Since the work performed in this chapter was published in [37], Lesage

[67] has demonstrated that the approach can be scaled to a full aircraft

engine control system. Given the scale of the analysis performed by

Lesage, the work focused on the BCHLr, Ran and ET fitness functions

only. The work, which included an extensive amount of tooling infras-

tructure development, targeted a live project that was certifying a sister

system to the control system introduced in Chapter 2.

One area not examined during this Chapter, and is left to future work,

is an evaluation to identify whether combinations of the developed fitness

functions could prove even more effective. The BCHLr fitness function

89

●●

●

●
●●●

●

●●

●
●●●

●

●●
●

●●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●●

●

●
●

●

●●

●●

●
●

●●●
●
●
●●

●
●●

●
●

●

●

●
●

B
C

H
 −

 B
C

B
C

H
Lr

 −
 B

C

E
T

 −
 B

C

Lo
 −

 B
C

R
an

 −
 B

C

U
E

T
 −

 B
C

B
C

H
Lr

 −
 B

C
H

E
T

 −
 B

C
H

Lo
 −

 B
C

H

R
an

 −
 B

C
H

U
E

T
 −

 B
C

H

E
T

 −
 B

C
H

Lr

Lo
 −

 B
C

H
Lr

R
an

 −
 B

C
H

Lr

U
E

T
 −

 B
C

H
Lr

Lo
 −

 E
T

R
an

 −
 E

T

U
E

T
 −

 E
T

R
an

 −
 L

o

U
E

T
 −

 L
o

U
E

T
 −

 R
an

−60

−40

−20

0

20

40

60
%

 D
iff

er
en

ce

Figure 3.29: Comparison of the distribution differences for each fitness

function combination, for VCA.

for instance is a combination of branch coverage and loop counts. Future

work could examine whether the fitness function would also benefit from

the addition of execution time measurements, or even a measure of more

advance processor feature consequences, such as cache misses.

Chapter 4 now steps away from WCET analysis to discuss the devel-

opment of a mixed criticality system. The system proof of which relies

on the timing information provided in this chapter.

90

Chapter 4

Developing Mixed Criticality

Systems for Real Platforms

Real time embedded software tasks developed for safety critical systems,

such as civil aircraft engine controls, are typically developed according to

a specific Development Assurance Level (DAL) [6]. The DAL indicates a

criticality level for a component and is assigned based on the consequence

to the system’s safety that a failure of this component could cause. This

thesis considers the model presented in DO-178C [6] with the criticality

level of the task denoted by Li where Li ∈ {A,B,C,D,E}. Level A

indicates the highest level, E indicates the lowest level such that A ≥

B ≥ C ≥ D ≥ E. It is typically assumed that the amount of effort

assigned to producing enough evidence to prove the correct operation of

a software component monotonically increases with its DAL [24]1.

In accordance with DO-178C [6], where two components developed

against different DALs are integrated in the same system; it is neces-

1Although Vestal [24] cited DO-178B, and therefore only contained criticality levels

A, B, C and D, the work in this thesis assumes a simple extension to incorporate DAL

E

91

sary to guarantee that high criticality components are protected from

‘unproven’ low criticality components. In other words, as defined by

Rushby [68]; partitioning should be implemented with the aim of en-

suring the behaviour and performance of software in one partition is

unaffected by the software in other partitions. This is required because

the lower DAL component does not have the same level of evidence of

lack of error as the higher DAL component, and so partitioning must

be used to isolate higher DAL components from any failure in lower

DAL components. There are two forms of partitioning that must be em-

ployed [68]: temporal partitioning, which is concerned with the response

time of a component; and spatial partitioning, which is concerned with

the hardware and memory space of a component.

From an industrial point of view; approaches in the past have required

all software components that execute on a processor be verified to the

same DAL. This means a system that employs software of multiple crit-

icality levels maintains physical partitioning across multiple processors

to separate different software components with differing DALs. Alterna-

tively, where system requirements make it desirable for lower-criticality

software to share the same processor as a high-criticality piece of soft-

ware, then they are both developed to the same highest criticality level.

This approach leads to higher development and production costs, as well

as increased overall size, weight, and power use.

A further advantage to the use of Mixed Criticality System (MCS)

schedulers is in their ability to help system developers cope with WCET

pessimism. It is known that WCET analysis techniques induce significant

pessimism. From reviewing the current system introduced in Chapter 2

it was identified that there are three principal reasons for this. Firstly,

the use of defensive programming which introduces error handling logic;

92

secondly through the introduction of infeasible worst case paths; and

finally through the use of pessimistic loop bounds.

Arguably the WCET and associated schedulability analysis should

incorporate error handling logic, with its addition not being considered

pessimistic. However, the logic may indicate entry into a reactive system

state, such as system shutdown or system reset, which means that in-

corporation of this handling logic into the schedulability analysis of the

system could be argued as pessimistic. Whereas infeasible paths are fre-

quently inadvertently introduced into complex control systems as soft-

ware components are designed to handle different system level events.

For example, an aircraft engine control system cannot be expected to

respond to an engine overspeed on the same cycle that it responds to

an engine underspeed. However, the system level schedulability analysis

may assume this to be the case. Finally, pessimistic loop bounds are

induced when the control system is viewed at the system level. As, for

instance, communication interface WCET analysis assumes messages are

sent at the highest possible rate, when in practise actual transmission

rates nay be significantly lower.

When viewed at the macro level it is easy to identify that such anal-

ysis consequences are pessimistic. However, when viewed at the system

level encompassing the analysis of thousands of software functions, iden-

tifying and combating such pessimism quickly becomes infeasible in a

cost effective timeframe.

One way that forms of pessimism can be identified at the system

level is by comparing analysed WCETs to system test observed HWMs.

A safety critical system can be expected to be subjected to an exhaustive

test campaign, which should test the system extensively. This provides a

test setup well suited to providing tight, but potentially optimistic, HWM

93

times which can be used in comparison to estimated WCET times to

identify areas of particular pessimism. The generation of such metrics, for

example, was explored in Chapter 3. However, the risk with attempting

to use HWMs for analysis improvement, or to reduce pessimism across

a system, is that the times may introduce optimism - therefore their use

must be carefully controlled with necessary system protections put in

place. One of the focuses of this chapter is on the development of such

controls.

This chapter explores two avenues. The first is how an appropri-

ate mixed criticality partitioned system can be developed according to

certification standards. The second is how an existing single criticality

system can be ported to this new mixed criticality architecture, with the

aim of supporting both low criticality components, robust high criticality

components and standard high criticality components; and how such a

system can be utilised to combat the introduction of WCET pessimism.

4.1 Literature Survey

In the literature an MCS is a system which combines software of mul-

tiple DALs on the same processor. The technical objective of which is

to provide sufficient evidence that a low criticality component cannot

jeopardise any high criticality component’s temporal or functional re-

quirements, while still providing a level of service to the low criticality

component. One approach to MCS development is to deploy the parti-

tioned architecture defined by the ARINC 653 standard [22]. This stan-

dard defines a partitioned model principally aimed at the development of

Integrated Modular Avionics (IMA), but capable of supporting partitions

developed against different DALs. The issue with the ARINC 653 ap-

94

proach is that the solution defined for temporal partitioning, essentially

a two-level scheduler with time division, makes the approach difficult to

apply to a complex control system [23]. This is because it can lead to

the introduction of higher completion jitter, longer end-to-end transac-

tion response times and in general it can be difficult to accommodate a

complex task schedule into fixed time partitions [23].

The advantage of an ARINC-653 system is that it provides an inte-

grated whole system design, encompassing scheduling theory alongside

wider system design, designed against certification guidelines. As ex-

plored further in this literature, this is to a certain extent missing from

the existing literature on wider MCS papers.

This literature survey now considers three key areas of MCS design,

firstly Scheduling Theory, where arguably the largest body of research has

been conducted. Secondly, Schedulability Analysis, focusing in particular

on two seminal papers, and finally wider System Design, where it is

argued that further refinements to the existing literature is required.

4.1.1 Scheduling Theory

Vestal [24] was one of the first publications to consider the schedulability

of a MCS. The work draws the comparison that the reliability of the

WCET figure used for each task is commensurate to its criticality. This

is based on the observation that lower DAL tasks are not developed, or

verified, to the same rigour that higher DAL tasks are; and therefore the

output WCET figures cannot be expected to be as reliable.

Vestal essentially introduces a model where a task can be considered

to have multiple WCETs which individually provide a different degree

of assurance that true execution times for a task will not exceed the

analysed value. Where each assurance level is taken from the set L ∈

95

{A,B,C,D,E}, it can be assumed that the WCET for task τi follows

the rule CA
i ≥ CB

i ≥ CC
i ≥ CD

i ≥ CE
i .

In practice each task will only be analysed to the level of assurance

required for that task, with the aim being to only expend the amount

of WCET analysis effort that is proportional to the required assurance.

Assuming a dual criticality system - each high criticality task would

be required to have two WCET figures - CHI
i and CLO

i , whereas a low

criticality task has one WCET figure2 - CLO
i .

Building off Vestal’s work, Baruah et al. [25] introduced three models

for Mixed Criticality Scheduling - partitioned criticality, Static Mixed

Criticality (SMC) and Adaptive Mixed Criticality (AMC).

Partitioned criticality [25] (also referred to as Criticality Monotonic

Priority Ordering) is the simplest form of mixed criticality scheduling,

where priorities are assigned according to each task’s criticality. Ac-

cordingly a task with a higher criticality will always be scheduled with

a higher priority than another task of lower criticality. This approach

should ensure a timing error in a low criticality task cannot affect the

temporal requirements of a high criticality task, therefore requiring no

run time monitoring. However, there is no consideration in the paper as

to whether this approach is sufficient, and because the scheduler will al-

ways execute a high criticality task if one is ready, it makes it significantly

more difficult to meet low criticality task deadlines. One advantage of-

fered by the approach is that run-time monitoring may not be required,

however as Baruah et al. [25] point out, many safety critical systems

already incorporate this for the purpose of error detection.

SMC and AMC [25] on the other hand assign task priorities according

2Vestal’s original model noted that a low criticality task would also have a CHI
i ,

however in practise this may not be known.

96

to their temporal requirements, regardless of criticality. SMC allows low

or high criticality tasks to execute up to their CLO
i or CHI

i respectively;

but they are then prevented from executing further [26]. This offers a stop

dead point where any task must cease executing and provides adequate

protection for high criticality tasks from low criticality tasks.

The AMC protocol builds off this; however, whereas SMC de-schedules

one task if it executes for longer than CL
i , AMC de-schedules all low crit-

icality tasks if any high criticality task executes for longer than its CLO
i .

While the original paper did not explicitly define a recovery point, an ob-

vious route back to re-enabling low criticality tasks is to use the Idle Task

or state of the system. This is referred to in this paper as AMC+ and is

based around the simple mode change protocol in [69]. The AMC+ pro-

tocol is achieved through a scheduler mode change which is summarised

in Figure 4.1.

The AMC protocol therefore offers the potential for exploiting as-

sumed pessimism between a task’s CLO
i and CHI

i because the system

schedulability is assessed in the ‘normal’ mode using each task’s CLO
i .

This supersedes SMC which uses high criticality tasks CHI
i . However, the

approach places an assumption that each task’s CLO
i is credible, which

in practise cannot be proven. Execution of a task beyond its CLO
i is as-

sumed to be an extremely rare event. Were this not to be the case then

the service offered to low criticality tasks would reduce significantly.

Bate et al. [70] explored AMC and offer a further improvement by

taking account of slack and gain time provided by tasks that finish before

their Ci in order to delay the switch to high mode. Their Bailout pro-

tocol aims to provide better service for low criticality tasks by providing

levels of degradation as well as a faster route back to normal service.

The Bailout protocol uses the AMC response time analysis method, and

97

Figure 4.1: AMC+ State Flow Diagram.

therefore does not provide greater static schedulability over AMC. How-

ever, during dynamic analysis the Bailout protocol is shown to provide

greater service for low criticality tasks.

The resilient model [34] utilises graceful degradation to improve low

criticality task performance. The model employs resilience at the system

level towards a certain number of timing faults, and robustness at the

task level where certain ‘robust’ tasks are capable of skipping individual

jobs when requested. Importantly, a task’s robustness is independent

from its criticality. Together these two techniques ensure the system

does not resort to a state where low criticality tasks are denied service

until absolutely necessary.

Burns et al. [34] introduced the following definitions for a robust

mixed criticality system:

Definition 4.1. A robust task is one that can safely drop one non-started

job in any extended time interval.

Definition 4.2. The robustness of a complete system is measured by

its F count (how many job overruns can it tolerate without jobs being

dropped or deadlines missed) and its M count (the number of job overruns

98

Figure 4.2: Resilient State Flow Diagram.

the system can tolerate once each robust task has dropped one job).

Definition 4.3. A resilient system is one that aims to achieve graceful

degradation to adequately cope with more than M overruns.

Definition 4.4. A fault is measured when one task overruns its CLO.

Definition 4.5. An error is the manifestation of one or many faults and

represents the point where a task fails to adhere to its timing require-

ments.

In short, in this context a resilient system employs robustness to cope

with one or many faults, while avoiding errors.

The resilient scheduling model introduced in [34] is capable of coping

with F faults, before reverting to the ‘Resilient Mode’ where robust tasks

skip their jobs. At this point the system is capable of coping with further

faults up to a total of M faults, where F < M . Once the fault count

increases above M , the system reverts to the ‘High Criticality’ mode,

99

as with the AMC model. Once the system reaches the idle state, the

fault count is reset and, if required, the system reverts to the ‘Normal

Mode’. This is illustrated in Figure 4.2, where JF provides a count of

the number of job faults.

The schedulability analysis presented in the paper provides a proof

that high criticality, robust tasks, comply with their schedulability re-

quirements. The analysis also provides a bound on the number of jobs a

robust task may skip between idle points. However, the analysis provides

no guarantees on the service given to low criticality tasks, or indeed the

time between individual robust task skip bursts. This is a problem that

is explored in Chapter 5 of this thesis.

Finally, as opposed to the fixed priority techniques explored so far

in this literature survey, a large body of work has also been produced

focusing on dynamic priority algorithms, such as Earliest Deadline First

based methodologies [71]–[73]. This thesis focuses on the development of

a MCS to support a safety critical aerospace domain. While the debate

about the most optimal approach rages, the principal requirement for a

safety critical application is the development and proof of a safe system.

Therefore, as fixed priority systems offer the simplest route to system

verification and proof, they form the focus of this work.

4.1.2 Static Schedulability Analysis

The static schedulability analysis used for the AMC+ implementation

was introduced by Baruah et al. [25]. The schedulability analysis is

performed in three stages. The response time of each task is assessed in

the high and then low modes. Finally, the response times of the high

criticality tasks are assessed during a mode change from low to high.

As long as all tasks execute for less than their CLO then the system

100

remains in the low, or normal, mode. The low-criticality mode WCRT,

RLO
i , is calculated using Equation 4.1, where hp(i) is the set of higher

priority tasks than task τi. The equation should be recursively solved

until the input RLO
i matches the output RLO

i .

RLO
i = CLO

i +
∑

j∈hp(i)

(⌈
RLO

i

Tj

⌉
CLO

j

)
(4.1)

Should any task execute for longer than its CLO then the system will

revert to the high mode, where only high criticality tasks are permitted

to execute. The response time calculation for the high-criticality mode

WCRT, RHI
i , is shown in Equation 4.2; where hpH(i) is the set of high

criticality higher priority tasks than task τi. Again this function should

be recursively solved.

RHI
i = CHI

i +
∑

j∈hpH(i)

(⌈
RHI

i

Tj

⌉
CHI

j

)
(4.2)

Low criticality tasks are not considered when in the high-criticality

mode as they are de-scheduled by the system. The sufficient mode change

analysis [25] then defines the response time analysis for a high criticality

task during a low-to-high mode change as shown in Equation 4.3. In this

equation hpL(i) shows the set of low criticality higher priority tasks.

R∗i = CHI
i +

∑
j∈hpH(i)

(⌈
R∗i
Tj

⌉
CHI

j

)
+

∑
k∈hpL(i)

(⌈
RLO

i

Tk

⌉
CLO

k

)
(4.3)

This ensures the interference from low criticality tasks is capped as

R∗i must be greater than RLO
i .

The focus of the MCS literature studied so far in this literature survey

has been towards scheduling theory, this research has offered significant

advances on the understanding on how such systems could be developed.

101

However, as highlighted by Ekberg and Yi [74], and by Altmeyer et al.

[31] development of a MCS cannot be assumed to be restricted to devel-

opment of the scheduler. MCS development must also take account of

the wider scheduler and RTOS design and analysis, as well as examining

what assumptions MCS operation places on the tasks within a system,

particularly low criticality tasks. This is vital as development of a system

employing components of differing criticalities cannot simply be viewed

as a scheduling problem. The following section now explores existing pa-

pers that have focused on the development of MCS at the system level.

4.1.3 System Definition

This section now explores wider system issues that must be addressed

to support MCS development, and identifies where the existing liter-

ature has tried to address these. Altmeyer et al. [31] examine what

assumptions MCS development places upon WCET and highlight the is-

sues which currently exist within WCET analysis techniques. It outlines

how MCS developers currently lack the necessary information, or in some

cases, confidence required to produce sound MCS systems. The paper es-

sentially highlights how development of MCS scheduling techniques must

not be considered in isolation, but instead must be considered as part of a

wider system. The paper highlights one of the many holes that currently

exist within the literature surrounding MCS development, in that MCS

development places a greater emphasis on assessing WCET confidence.

One of the general issues with a number of the refinements made to

the Vestal model is that the papers lacked details of how the implemen-

tation would ensure the properties needed for certification. The analyses

for instance does not consider overheads as part of the analysis, and the

papers do not consider how overheads could be reduced. Furthermore,

102

an analysis of what requirements each scheduling method places on the

hardware and RTOS, in the way of required facilities, has not been ex-

plored. It is simply assumed these features are already present and that

their overheads can be neglected. Finally, there has been very little

work actually looking at the implementation of a MCS into a real sys-

tem. Therefore, the existing literature leaves many unanswered questions

about how effective a MCS can be in practice.

Looking at wider system development; Sousa et al. [75] identify the

overheads induced by a multi-core task-split system. The work assesses

each overhead source, and incorporates the overheads into the schedu-

lability analysis for a slot-based system. However, this work does not

progress far enough to allow full end to end system development. For

instance, a method for measuring the identified overheads, or indeed

minimising them, is not presented.

Freitag et al. [76] divides tasks of different criticalities across differ-

ent cores on a multi-core processor, in order to simplify system proof.

The system supervisor analyses the interference induced by low criti-

cality cores on high criticality cores, disabling the low criticality core if

required. Herman et al. [77] perform an analysis of the development of a

mixed criticality multi-core system. However, the initial analysis does not

progress far enough to support actual development, for instance through

proof of the effect of overheads on the schedulability of the system. Fi-

nally, Paolillo et al. [78] examines the benefits of porting an industrial

case study to a mixed criticality system; finding that the potential low

criticality task utilisation is high, but also identifying how the identifica-

tion of sound task WCETs had a significant effect on the service afforded

to low criticality tasks. The paper however did not progress far enough

to explore how such a system could be implemented and certified.

103

Several papers have looked at reducing the cost of system overheads

in schedulable systems principally following two main approaches: firstly

making the analysis less pessimistic and secondly reducing the actual

overheads.

In terms of the analysis pessimism, a number of papers have focused

on the area of Cache-Related Preemption Delays (CRPD) where an un-

derstanding is derived of the impact of on-the-cache contents and which

parts of the software cannot preempt each other [79]. Alternatively, Davis

et al. [80] consider how MCS schedulers can be modified to attempt to

avoid extended context switching times thanks to the cost of changing

processor mode. The paper is one of the first papers to consider temporal

partitioning in the context of the additional overheads induced by spa-

tial partitioning processor features. Additionally, Burns and Davis [81]

explore how tasks in a MCS can invoke final pre-emption-blocking points

in order to defer being preempted at a point when a task job is about

to complete. The method is shown to produce a greater proportion of

schedulable systems. However, what is unclear is how such a task set can

be developed in practice, whether each task would need to be manually

analysed and altered, or whether RTOS features are required to avoid

preempting a task when it reaches a certain point in its execution.

Focusing on the reduction of RTOS overheads; overlooking the obvi-

ous aim that any RTOS or scheduler must be designed to be as efficient as

possible; two main areas of research have been performed on reducing the

occurrences of overheads. Firstly, a number of researchers have looked

at minimising the number of priority levels, for example in the work by

Audsley et al. [82], which has demonstrated that this process can lead

to a reduction in the number of task context switches. The second ap-

proach is grouping a number of software components (tasks in the original

104

Rolls-Royce control software) into larger schedulable tasks (referred to

here as SuperTasks). This approach is the same philosophy as adopted in

AUTOSAR systems where runnables are grouped to form tasks as part

of reducing overheads [83]–[85]. However, the approaches either ignore

inter-task dependencies (transactions) [83], or require the possibility to

duplicate tasks shared between transactions [85]. This means, for in-

stance, the approach would not be suitable for the system introduced in

Chapter 2.

4.1.4 Summary

A review of the available literature reveals that while there has been a

large field of work completed on identifying appropriate, efficient schedul-

ing methodologies; there has been less work focused on MCS design. This

leaves a gap between what is possible and what is usable as the techniques

presented fail to take account of real system effects such as inter-task re-

lationships, or system overheads. The work that has been completed

on MCS design, or on handling overheads, has either focused on reduc-

ing overheads through efficient system design, or at improving WCET

processes. However, neither have necessarily tried to apply these tech-

niques in an industrial project, or indeed, alongside the MCS scheduling

methodologies discussed elsewhere.

In summary, the available literature has yet to study, and extend,

MCS research towards a full end-to-end system integration, incorporating

real system overheads, analysis techniques, and criticality requirements.

The following section now aims to do this by examining how a system to

allow mixed criticality integration can be designed, to fulfil certification

requirements, to support a real industrial system. This includes how

requirements for appropriate task partitioning can be fulfilled, and how

105

a system may be developed and analysed. The chapter then continues

to explore how a legacy system can be automatically ported to this new

MCS design.

4.2 Mixed Criticality System Design

This section discusses the development of a two-level MCS. Initially the

certification requirements for a MCS, as guided by DO-178C [40], are

introduced. The section then progresses to examine the features of a

MCS designed to comply with these requirements.

In this thesis ‘high criticality’ refers to the highest criticality com-

ponent permitted to execute upon the processor (nominally DAL A);

whereas low criticality components refer to any components that have a

lower criticality than the highest processor component (DALs B, C, D

and E).

4.2.1 Certification Requirements

This section examines the certification requirements surrounding the de-

velopment of a Mixed Criticality Scheduler; the target system studied

being an aircraft engine control system. Accordingly, only the guidelines

detailed in DO-178C [40] are explored in this section. However the guide-

lines are considered similar to those detailed in other software domains

such as ISO26262 [86] and IEC61508 [21].

DO-178C Section 2.4 defines five requirements for partitioning as fol-

lows:

1. A partitioned software component should not be allowed to contam-

inate another partitioned software component’s code, input/output

(I/O), or data storage areas.

106

2. A partitioned software component should be allowed to consume

shared processor resources only during its scheduled period of exe-

cution.

3. Failures of hardware unique to a partitioned software component

should not cause adverse effects on other partitioned software com-

ponents.

4. Any software providing partitioning should have the same or higher

software level as the highest level assigned to any of the partitioned

software components.

5. Any hardware providing partitioning should be assessed by the sys-

tem safety assessment process to ensure that it does not adversely

affect safety.

In essence DO-178C expects that in the absence of evidence to prove

that a low criticality component may execute outside of its design defined

boundaries, it is essential that protection is put in place to prove that

promiscuous components cannot affect the wider system. This ensures

that the evidence provided for high criticality components to show com-

pliance against their requirements is still valid when co-located with low

criticality components.

4.2.2 Partitioning

This section explores the design of a partitioned scheduler to support

a Mixed Criticality System. One potential option would be to use the

scheduling methodology defined by ARINC 653. However, this model is

based on a strict time slicing model which is considered too restrictive

for the implementation of a control system with extensive hardware in-

107

teraction, which relies on adherence to strict periodic execution against

strict jitter requirements [23].

The assumption that should be made for a low criticality task is that

the task may execute, if allowed, for longer than its observed HWM; its

CLO
i is assumed to be optimistic. However, due to the rigorous testing

regime the software undergoes and the extensive in-test and in-flight

monitoring, it is known that it is rarely exceeded.

From a certification point of view as the evidence to prove other-

wise may not have been produced to the same level as a high criticality

component, then a certification authority must assume a low critical-

ity component is more likely to contain an error. Thus, as guided by

the requirements noted in Section 4.2.1, partitioning must be employed

to prove that any errors that occur in a low criticality partition cannot

propagate to a high criticality partition.

The scheduler proposed in this work implements two key protection

mechanisms to implement a DO-178C partitioned architecture: the use

of timer driven interrupts, and the use of processor memory protection.

Figure 4.3 shows the statechart for the interrupt-driven scheduler. This

is explored in more detail in the following subsections.

4.2.2.1 Temporal Partitioning

A timer-driven interrupt is employed both to control the release of new

tasks by invoking a scheduler tick, and to interrupt low criticality com-

ponents when they reach their CLO
i . As the interrupt handler prepares to

switch in a task, one of the final operations is to set the interrupt timer

to the lowest of either 1) the time to the next task release, or 2) in the

case of a low criticality task, the allowed execution time remaining.

High criticality tasks are not regulated in the same way. If a high

108

Figure 4.3: Partitioned Scheduler Statechart.

109

criticality task executes beyond its CLO
i then it is permitted to continue.

However, the next time the scheduler executes it will identify the need

to move into the high criticality mode. This is controlled by the ‘Handle

Overrun’ block within Figure 4.3. The operation of the ‘Handle Overrun’

block is dependent on the scheduling methodology chosen. For instance,

in the case of the AMC+ algorithm [69], the block will transition the

system into the high criticality mode. When in high criticality mode,

any low criticality tasks that are ready to execute will be suspended.

The ‘Identify Highest Priority Task’ block is then responsible for

choosing which task should run next. The process simply chooses the

highest priority task that is currently ready to execute.

Return to the normal mode is controlled by the idle task, which is de-

veloped to the highest criticality of the system. Crucially, low criticality

tasks that have been suspended while the system executed in the high

criticality mode are not released again until their next scheduled periodic

execution. This is illustrated in Figure 4.4, which shows a simple exam-

ple task set. At point A the highest priority high criticality task overruns

its CLO
i . Being a high criticality task it is permitted to continue, however

when the task completes its job at point B the interrupt handler identi-

fies the overrun and moves the system to the high criticality mode. This

mode change blocks the release and execution of the low criticality task.

Then at point C as the system enters the Idle task, the system mode is

reverted back to the Normal mode. However, the low criticality task is

not released again until point D, the next scheduled periodic execution

point. This controlled execution resumption is important as it avoids in-

ducing offsets which could affect the validity of the static schedulability

analysis.

110

Figure 4.4: Example Partitioned Scheduler Operation.

4.2.2.2 Spatial Partitioning

Processor memory protection is employed in a User/Supervisor arrange-

ment. All tasks execute in a design-defined protected area of memory,

with access to different hardware features or memory regions either per-

mitted or restricted as necessary. Should any task execute outside these

fixed boundaries, then an interrupt is raised and the interrupt handler

handles the data error. This is enforced by the scheduler setting the

proper User Mode when returning to a task, as illustrated in Figure 4.3.

The memory protection employed ensures that each component ex-

ecuting on the processor cannot execute outside its design time defined

boundaries, thus providing protection for high criticality tasks from low

criticality task promiscuous memory or hardware interactions.

111

4.2.2.3 System Partition Assignment

Each software partition executes within its own area of memory, has a de-

fined set of permitted hardware accesses, and has its own defined tempo-

ral requirements; which in the case of low criticality components, restrict

the component’s execution. In order to support this type of execution

the following design constraints must be placed upon each partition:

• Each partition represents a thread-safe self contained execution

unit.

• Each partition contains software developed to the same criticality

level.

• No partition can arbitrarily enter a critical section, or block an

interrupt from occurring.

Arguably the final constraint is a significant restriction. Partitions

may need to use critical sections or block interrupts from occurring, for

example for performing writes to hardware, but these must be performed

through top level system calls, where the application of such operations

can be controlled and analysed.

Where a partition needs to send a message or communicate with an-

other task, this communication is handled through a defined memory

interface which is both developed to the highest DAL and contains pro-

tections to constrain any task blocking or priority inheritance. The worst

case blocking time must then be analysed and incorporated into the sys-

tem schedulability analysis.

The approach for critical operations used in this application relies on

a simple critical section entry and exit approach, where the RTOS pro-

vides mechanisms to temporarily disable interrupts. This allows simple

112

analysis to be performed to provide a bounded blocking time, which can

be confirmed will not inhibit key system utilities such as watchdog servic-

ing. This approach is pessimistic from a timing point of view, however in

the system targeted, where inter-partition and inter-task dependencies

are already minimised, the approach is sufficient. Were a more com-

plex system with significant inter-dependencies need to be ported to this

architecture, then a more complex, less pessimistic, approach may be

required.

4.2.3 Derivation of Task Timing Parameters

The derivation of appropriate CLO
i and CHI

i figures for each task is vital

to ensure the schedulability of the system can be properly assessed [31].

This section explores both the assumptions placed on CLO
i and CHI

i , as

well as how each parameter can be defined.

A number of mixed criticality scheduling methodologies, such as those

defined from the AMC model [25], have the same underlying assumption

- that all tasks will complete by the CLO
i , and that any task exceeding

CLO
i can be treated as a one off fault. The AMC protocol itself for

instance will stop all low criticality tasks if any high criticality exceeds

its CLO
i . Therefore an optimistic CLO

i will lead to little or no service for

low criticality tasks.

For high criticality tasks the analysed CHI
i represents an absolutely

sound WCET figure. The schedulability analysis, and partitioning scheme,

assume this time is never exceeded.

Chapter 3 established a process for the early automated identifica-

tion of system timing parameters producing two timing parameters for

each analysed task. In the context of a mixed criticality system - the

raw HWM times derived directly from execution of the search algorithm

113

would be used for a task’s CLO
i . Whereas the analysed results once in-

put into the hybrid measurement based WCET analysis tooling would

be used for the task’s CHI
i .

Furthermore, the development of safety critical aircraft engine control

systems for certification requires an extensive test regime to be followed.

This includes considerable integration testing, which provides as an out-

put system level HWM times and measurements for WCET analysis.

These HWMs are used at Rolls-Royce to build further confidence that,

throughout an entire test campaign covering thousands of flight cycles,

no larger task execution time has been observed. This HWM is therefore

well suited to supplement a task’s CLO
i , with the analysed WCET able to

supplement each task’s CHI
i as an engine development programme ma-

tures. The CLO
i figure can be said to be sound, but has not been proven

not to be optimistic. While the CHI
i is assumed to be pessimistic, but

sound. The advantage of this approach is that the figures used for each

task’s CLO
i and CHI

i improve throughout the software design life-cycle;

from initial results provided through the work in Chapter 3, up to a

certifiable result as a project approaches certification deadline.

4.2.4 RTOS and Target Hardware Requirements

In order to provide a system that enables partitioned operation and is

capable of being certified, the RTOS and target hardware must provide

a defined set of features. From the point of view of the target hardware,

the processor must provide hardware support for invoking and controlling

timer driven interrupts, as well as a controllable memory protection unit

(MPU) to provide the required spatial partitioning.

This work is designed to be RTOS agnostic, with the RTOS sim-

ply invoking the scheduler, and providing the required utilities, such as

114

mechanisms to suspend the release of tasks, or force the completion of

already executing jobs - both required to control the execution of low

criticality tasks. However, it is important that the RTOS overheads are

not only easily calculated, but that they are also linearly proportional

to the number of tasks in the system. This ensures the overheads of the

RTOS and scheduler can be easily incorporated into the schedulability

analysis of the system at design time.

Finally, the target hardware, RTOS and all protections that they

provide, must be developed according to the highest DAL of the system.

4.2.5 Schedulability Analysis Extensions

One of the shortfalls identified in the existing literature surrounding MCS

schedulability analysis was the inclusion of the RTOS and scheduler over-

heads. This section now explores how the overheads of such a system can

be broken down, and how the AMC schedulability analysis equations

need to be expanded to support inclusion of the identified overheads.

In order to include the execution time of the scheduler shown in Fig-

ure 4.5 into the response time analysis for the system, the overheads were

broken down into three constituent parts as described below:

1. Tick Overhead - δT (Figure 4.5 - dot/dash line, red). It includes:

• The pre-emption of the executing task.

• The handling of system services, e.g. the watchdog.

• The context switch and calling of the highest priority task.

• The release of any tasks into the ready state. Measured sepa-

rately as δR. (Figure 4.5 - solid line, green).

2. Start Task Time - δS (Figure 4.5 - dashed line, blue). It includes:

115

Figure 4.5: Partitioned Scheduler Statechart with Overheads.

116

• The initial time taken to context switch each task into the

executing state. Except for the highest priority task, which is

accounted for in the tick overhead.

3. Stop Task Time - δE (Figure 4.5 - dotted line, yellow).

• The end time taken when a task finishes executing and returns

to the scheduler.

Task releases were fixed to only occur on a scheduler tick, and the

scheduler tick is the only component that can interrupt another task.

The execution time of each overhead was measured during normal sys-

tem operation, which included at certain points, the schedule’s critical

instance. This ensured the maximum execution time for each overhead

was captured by ensuring observation of the instance where the maximum

number of tasks are moved into the released state.

The release overhead was measured and recorded against the number

of tasks being released. This allowed the release overhead of each task

to be assessed, which supported the design principle that the system

overheads should either be linear, or less than linear, against the number

of tasks being released.

The credibility of this maximum observed overhead is based on the

following implementation details:

• The use of a time deterministic target processor. As introduced in

Chapter 2.

• Tasks are only released on the system tick. The system tick period

is equal to the greatest common divisor of the tasks’ period. All

other task periods in the system are a harmonic of the tick period.

117

• Each overhead is measured while the system executes a full system

test campaign on a full simulation rig.

• The RTOS is carefully designed to ensure the task release overhead

is linearly proportional to the number of tasks in the system.

Finally, each overhead was factored into the analysis through syn-

thetic tasks, in the same way originally introduced by Burns et al. [87],

which was discussed further in Section 4.1.2. This method of essentially

viewing certain overheads as tasks provides a safe and suitable method

for taking account of the periodicity of the overheads. It allows the over-

heads to be placed at the appropriate place in the schedule to ensure

correct analysis of interference.

The target for this assessment is on the AMC algorithm, originally

presented by Baruah et al. [25]. In order to aid the following discussion

the equations for the response time analysis of each task in the low crit-

icality mode, high criticality mode and during a mode change are shown

in Equations 4.1, 4.2 and 4.3.

RLO
i = CLO

i +
∑

j∈hp(i)

(⌈
RLO

i

Tj

⌉
CLO

j

)
(4.1)

RHI
i = CHI

i +
∑

j∈hpH(i)

(⌈
RHI

i

Tj

⌉
CHI

j

)
(4.2)

R∗i = CHI
i +

∑
j∈hpH(i)

(⌈
R∗i
Tj

⌉
CHI

j

)
+

∑
k∈hpL(i)

(⌈
RLO

i

Tk

⌉
CLO

k

)
(4.3)

The effect that the tick overhead has on the response time of a task

can then be calculated as follows:

δMODE
T =

⌈
RMODE

i

TTICK

⌉
CTICK +

∑
j∈MODE(i)

(⌈
RMODE

i

Tj

⌉
CREL

)
(4.4)

118

In Equation 4.4, as in the following Equations 4.5 and 4.6 the value of

RMODE
i used should either be RLO

i , RHI
i or R∗i depending on whether the

low mode, high mode or mode change response time is being calculated.

Secondly, the set of higher priority tasks used in each equation (de-

noted as j ∈MODE(i) or j ∈ hpMODE(i)) should be limited to those

tasks permitted to execute in order to avoid undue pessimism. The

scheduler tick occurs in all scheduler modes, as well as during a mode

change. However the release overhead for low criticality tasks will only

occur in the low mode, or during a mode change from low criticality to

high. This low criticality task release overhead cannot be ignored dur-

ing a mode change because the release of these tasks occurs before the

highest criticality task begins to execute.

The start and stop overheads of each task are calculated as follows:

δMODE
S =

∑
j∈hpMODE(i)

(⌈
RMODE

i

Tj

⌉
CSTART

)
(4.5)

δMODE
E =

∑
j∈hpMODE(i)

(⌈
RMODE

i

Tj

⌉
CEND

)
(4.6)

Equations 4.1 and 4.2 can therefore be extended as follows:

RLO
i = CLO

i +CSTART + δLOT +
∑

j∈hp(i)

(⌈
RLO

i

Tj

⌉
CLO

j

)
+ δLOS + δLOE (4.7)

RHI
i = CHI

i +CSTART + δHI
T +

∑
j∈hpH(i)

(⌈
RHI

i

Tj

⌉
CHI

j

)
+ δHI

S + δHI
E (4.8)

Finally Equation 4.3 can be extended as follows:

119

R∗i = CHI
i + CSTART + δ∗T +

∑
j∈hpH(i)

(⌈
R∗i
Tj

⌉
CHI

j

)
+

∑
k∈hpL(i)

(⌈
RLO

i

Tk

⌉
CLO

k

)
+ δ∗S + δ∗E (4.9)

This overhead model is built on two key assumptions. Firstly, that

the overheads of the system are understood; and secondly, that a switch

from a one criticality task to a different criticality task, and the asso-

ciated context switch, takes the same time as switching between tasks

of the same criticality. The first requirement is key for any safety crit-

ical system and is therefore deemed an acceptable restriction. If the

second assumption cannot be fulfilled, or if the system must support a

more complex context or thread switching mechanism then the overhead

model, and the associated priority assignment mechanism may need to

be adapted in a similar way to the work presented by Davis et al. [80].

Finally, based on the partition assignment requirements introduced

in Section 4.2.2.3, no task is able to arbitrarily block an interrupt from

occurring. Therefore, no blocking term is included in these equations.

Should this be required, then the equations could simply be extended

by adding the worst case system blocking time (B) to the start of each

equation.

4.2.6 Review Against Certification Requirements

The system design notes highlighted so far are now discussed against

the certification requirements identified from DO-178C. The system de-

sign is discussed in the context of executing within the Current System

introduced in Chapter 2.

1. A partitioned software component should not be allowed to contam-

120

inate another partitioned software component’s code, input/output

(I/O), or data storage areas.

• The control system software is developed and tested against

appropriate standards which for business-critical as well as

safety-critical reasons can be expected to comply with its re-

quirements.

• The memory and hardware areas that are permitted for each

partition are defined at design time, and passed to the RTOS

at initialisation.

• The RTOS controls the target processor’s user/supervisor mode

configuration in order to regulate the operation of each par-

tition; ensuring any memory transgressions are stopped and

handled appropriately.

2. A partitioned software component should be allowed to consume

shared processor resources only during its scheduled period of exe-

cution.

• All low criticality tasks are bounded by the target hardware’s

scheduler controlled timing interrupt, which when calling a low

criticality task will be set to interrupt the task when it reaches

its CLO.

• High criticality tasks are not interrupted except by a sched-

uler tick. This is based on the trusted WCET analysis process

followed for high criticality tasks. That is, a high criticality

task’s CHI is trusted.

3. Failures of hardware unique to a partitioned software component

should not cause adverse effects on other partitioned software com-

121

ponents.

• If a failure prevents the software timing interrupt providing the

expected protection then the hardware timing watchdog, which

is accepted and proven in use, combined with an independent

two-lane (duplex) architecture, will ensure acceptable safety.

• The spatial partitioning employed shall ensure a task cannot

interact with address regions outside of its permitted bounds

• A high criticality component cannot rely on data from a lower

DAL component for its safe operation.

• Hardware components are certified to at least the same stan-

dard as that of their software driver equivalents.

4. Any software providing partitioning should have the same or higher

software level as the highest level assigned to any of the partitioned

software components.

• The RTOS, interrupt handler, scheduler and software timing

watchdog should all be developed to the highest DAL and are

executed as protected ‘supervisor’ mode components.

5. Any hardware providing partitioning should be assessed by the sys-

tem safety assessment process to ensure that it does not adversely

affect safety.

• The processor, including the timing and memory supervision

components, have been verified to DO-254 DAL-A and have

been used on multiple certified systems.

This section aimed to discuss the design of a partitioned scheduler to

support a mixed criticality system. The scheduler aims to comply with

122

the certification guidelines presented in DO-178C. The next section now

progresses to discuss how an existing system can be ported to the MCS

discussed in this section.

4.3 Current Rolls-Royce Approach to

Scheduling

This section builds off the Current System definition already provided in

Chapter 2; and provides system information and background relevant to

the partitioned system design discussed throughout this chapter.

‘Visual Fixed Priority Scheduler’ (VisualFPS) is a task attribute as-

signment and scheduling analysis tool framework developed initially by

Bate and Burns [39] and then used by Rolls-Royce on all their FADECs

since 2002 [15].

The current FADEC approach features a non-preemptive scheduler

where all tasks are released by a clock tick which has a period equal to

the greatest common divisor of the tasks’ periods [39]. Timing protection

is provided by a hardware timing watchdog that counts down from the

clock tick period. If the counter is not reset before it reaches zero then

the processor is reset, re-initialising the system. When combined with a

dual lane architecture each with independent power supplies, sensors and

actuators, the use of a hardware timing watchdog ensures the likelihood

of a processor or software fault leading to a hazardous safety event is

acceptably low.

From an industrial perspective, an aim of this work is to change the

processing platform, scheduling mechanisms and tooling by only the min-

imum amount necessary; as the tooling is well understood and accepted

by engineers and certification authorities respectively.

123

The example used for this analysis has already been certified as a

DAL-A system. The system consists of a large number of tasks, each of

which has a measured HWM and an analysed WCET, obtained using a

hybrid-measurement based approach [13][37][67]. The HWM and WCET

were used for the CLO
i and CHI

i respectively.

The timing requirements for the task set include independent task

requirements of period Ti (taken from the set [2.5, 5, 10, 12.5, 25, 50,

100, 200, 500]ms), deadline Di and in approximately 5% of cases; com-

pletion jitter Ji. Approximately 50% of tasks form part of a transaction,

which may consist of between two and eleven tasks. The transaction

requirements are further complicated by two factors. Firstly, some tasks

appear in more than one transaction; and secondly, within a transaction

it may be the case that some tasks have different periods. For example,

a transaction may run a sequence of tasks with periods of 25, 50, 50,

25, 100 and then 25 respectively. An important decision taken is to use

a repeatable algorithm (i.e. one that always produces the same results)

that takes all the requirements and uses them to calculate the dead-

line for each task. Task priorities are then assigned using the Deadline

Monotonic Priority Ordering (DMPO) algorithm where the task with the

shortest deadline is given the highest priority. If all deadlines are met,

all the timing requirements are met. The method ensures the schedule

is correct by construction. This approach has a further advantage, key

to industry, that by incorporating the timing requirements for each task

into its design-time calculated deadline; the system can be easily proved,

reviewed and understood by engineers and system integrators [39].

Finally, with respect to inter-task data transactions; each task is de-

signed to communicate with a common interface, and follows a format of

input-process-output. Furthermore, tasks are designed to execute upon

124

the data that is currently available and will not wait until fresh data is

available. Where fresh data is required to move between tasks this is

generally controlled by a transaction. This approach has the advantage

of simplifying access to shared resources between tasks, and is therefore

not considered further as part of this work.

In order to produce a set of mixed criticality tasks to integrate into

the new MCS, a number of low criticality tasks were added to the task

set. These tasks were chosen to mimic lower criticality monitoring func-

tionality, which at present is distributed across different processing nodes

in the control system. These additional monitoring functions took the

total number of tasks in the system to 228.

4.3.1 Open Source Industrial Example

The control system design discussed so far throughout this section is

taken from a commercially sensitive aircraft engine control system, and

therefore cannot be discussed in detail in an open document. Hence,

while the larger system introduced so far represents the end target sys-

tem, this subsection introduces an open source industrial example which

provides some of the same features as the commercially sensitive control

system, but which can be discussed in more detail.

The initial work on the VisualFPS scheduling scheme, as discussed in

Bate’s thesis [38], provided an example control system task set. The task

set is introduced in Table A.1 in Appendix A. The intertask transaction

set is shown in Figure 4.6. The task set is used as originally presented

with two modifications. Firstly, in order to provide a task set with mul-

tiple independent transactions sets, the three transactions highlighted in

red were deleted. Secondly, four low criticality tasks were added to the

schedule as denoted at the end of Table A.1 (Tasks P72 lo, P73 lo, P74 lo

125

Figure 4.6: Example Control System Transaction Set [38].

and P75 lo). The addition of these four tasks (overlooking their different

criticality) makes the task set un-schedulable when analysed using the

existing VisualFPS process.

The process introduced by Bate [38] (which has since been further

developed and used by Rolls-Royce) statically calculates the deadline for

each task taking into account Period, Jitter and Transaction require-

ments. By then prioritising using the DMPO technique this offers a

system which can be easily proven by design. Table A.1 shows the calcu-

lated deadlines for each task, with each deadline being calculated using

Algorithm 3.

126

ALGORITHM 3: Calculating Each Task’s Deadline.
1: /* Initially set each task’s deadline to equal its period */

2: for i ∈ τi do

3: Di = Ti

4: end for

5:

6: /* If a task has a jitter requirement, then set the deadline to the lower of the

deadline, or the jitter plus WCET */

7: for i ∈ τi do

8: if Di > Ji + Ci then

9: Di = Ji + Ci

10: end if

11: end for

12:

13: /* Iterate over each transaction, in reverse order, to ensure that each task

preceding another in a transaction has a lower deadline */

14: while TaskSetChanging do

15: TaskSetChanging = FALSE

16: for j ∈ TransactionSet do

17: for i ∈ reverse(Transactionj) do

18: if i == Transaction′jLAST then

19: k = i

20: else if Di ≥ Dk then

21: Di = Dk − 1

22: TaskSetChanging = TRUE

23: k = i

24: end if

25: end for

26: end for

27: end while

127

The algorithm first sets each task’s Deadline to its Period. It then

iterates over each task that has a Jitter requirement and calculates a new

Deadline for the task based on the task’s Jitter requirement and WCET.

Finally, the algorithm iterates over each Transaction and ensures that

each task in a Transaction has a lower Deadline than each task that

succeeds it in the same Transaction.

4.4 Porting Existing System to the MCS

Architecture

The development costs involved in producing safety critical software are

so great that any update, whether to tooling infrastructure or to the

architecture of the system itself, must support legacy software as a pre-

requisite. It is therefore important to understand how a legacy, non

pre-emptive system such as the current Rolls-Royce control system can

be ported to the new scheduler. Porting such a system also allows a

study of the benefits of a real MCS industrial example to be analysed.

From an architectural requirements point of view there are a number

of key differences between a non pre-emptive and a pre-emptive system.

In particular, from a timing perspective, a non pre-emptive system is

susceptible to blocking from large tasks; whereas a pre-emptive system,

if not designed carefully, can suffer from larger overheads.

The current Rolls-Royce control system architecture consists of a large

number of tasks, carefully designed to reduce the effects of task blocking

in the current non pre-emptive scheduler (Section 4.3). The overhead

assessment and implementation rules defined in Section 4.2.5 illustrated

how the approach of using a large number of individual scheduled tasks

is less desirable for a pre-emptive model. This is because firstly the

128

RTOS overheads of the pre-emptive RTOS are significantly higher than

the overheads of the non-pre-emptive system due to the introduction of

context switching and MCS task monitoring; but also because the over-

heads increase with the number of tasks, and their associated releases

in the system. By reducing the number of tasks called from the RTOS,

the number of tasks MODE(i) is reduced to MODESUPER TASK(i) (re-

ferring to Equation 4.4 where MODESUPER TASK(i) << MODE(i)),

reducing the overhead induced by task releases. Furthermore, the num-

ber of higher priority tasks hpMODE(i) is reduced in Equations 4.5 and

4.6, reducing the start and stop task induced overheads.

The aim of this process is therefore to take a set of control system

tasks and to efficiently and appropriately port them over to a set of RTOS

SuperTasks.

Definition 4.6. A SuperTask is an RTOS called function, constructed

using one or many tasks.

There are two aspects that must be considered when porting compo-

nents from one architecture to another. The first is the correct handling

and protection of data transfers that are conducted across the system.

The second is in the correct allocation of tasks to fulfil the temporal re-

quirements of the compiled system. This thesis is concerned principally

with the latter. The former, which primarily revolves around utilising a

strict input-process-output architecture, is considered in parallel work.

4.4.1 Porting Tasks Without Clustering

In order to provide an initial state for comparison and potential improve-

ment, the existing Rolls-Royce and open-source systems were ported di-

rectly over to the new pre-emptive MCS. Firstly, each task was directly

129

ported over to create an RTOS SuperTask. This set of RTOS SuperTasks

were then prioritised using the DMPO scheme. Finally, the overheads

for the system were calculated using the methodology set out in Section

4.2.5.

The maximum computation time for the RTOS and MCS run time

monitoring system was analysed as the following:

• CTICK = 35µs

• CREL = 7µs

• CSTART = 25µs

• CSTOP = 30µs

These figures were measured using the Rolls-Royce qualified process

as defined by [13]. These overheads were used for the Rolls-Royce and

Open source example systems discussed in the following sections. How-

ever, in Section 4.4.8 it is shown that the trends in the results and the

contributions of the chapter are still applicable for varying overheads.

4.4.1.1 Open Source System

The results of applying the schedulability analysis introduced in Section

4.2.5 to the open source system are shown in Tables 4.1 and 4.2. The

results show how the system suffers from over 10% overheads which leads

to a significant number (30%) of tasks failing their schedulability analysis.

4.4.1.2 Rolls-Royce System

The results from porting the Rolls-Royce control system to the new MCS

are shown in Tables 4.3 and 4.4. In this case the RTOS overheads mea-

sured 45% of total system utilisation, creating a system where in excess

of 75% of tasks failed their schedulability analysis.

130

#SuperTasks Schedulable Tasks Transaction Pass?

NoClustering 75 70.7% Yes

Table 4.1: Clustering Results When Applied to an Open Source Engine

Control Case Study.

δS δE δT δSUM

NoClustering 3.8% 4.6% 2.5% 10.9%

Table 4.2: Clustering Results When Applied to an Open Source Engine

Control Case Study.

It is clear that porting the existing control systems to a MCS pre-

emptive system produces a system no longer able to comply with its

requirements. Therefore, the following sections now examine how this

system can be ported in such a way that allows it to still maintain its

temporal correctness.

4.4.2 Clustering to Support System Design

The principal aim of clustering the set of control system tasks is to create

a system that complies with its temporal requirements following execu-

tion of response time analysis. Based on the temporal requirement set,

and on the design objectives of the MCS discussed in Section 4.2, the

following success factors can be identified to confirm a system is schedu-

#SuperTasks Schedulable Tasks Transaction Pass?

NoClustering 228 24.1% Yes

Table 4.3: Clustering Results When Applied to the Rolls-Royce Aircraft

Engine Control System.

131

δS δE δT δSUM

NoClustering 17.6% 21.1% 6.3% 45.0%

Table 4.4: Clustering Results When Applied to the Rolls-Royce Aircraft

Engine Control System.

lable:

• No SuperTask can contain two or more tasks of different criticali-

ties. Thus ensuring the MCS rules surrounding partitioning can be

maintained at the RTOS level.

• The response time of each individual task must be less than the

task’s calculated deadline. The deadline is calculated using Algo-

rithm 3.

• For each transaction, any task preceding another task should have

a higher priority than the succeeding task.

The basic algorithm for clustering a set of tasks is shown in Algo-

rithm 4. The first part of the algorithm to Line 4 creates an ordered set

of tasks from highest priority to lowest priority. The method for creat-

ing this ordered set on Line 4 is explored and analysed in the following

subsections.

Once the ordered set of tasks have been identified the algorithm steps

through the task set in priority order and divides tasks into SuperTasks,

this process is shown in Algorithm 5. The first task is automatically

placed in the first SuperTask. This SuperTask takes on the period, dead-

line and criticality of the task. All successive tasks are placed in the same

SuperTask if the following rules apply:

132

ALGORITHM 4: Task Clustering Algorithm.
1: /* Calculate task deadlines using Algorithm 3 */

2: UnOrderedTasks = CalculateTaskDeadlines(Period, Jitter, Transactions)

3: /* Create OrderedTaskSet according to the defined clustering method */

4: OrderedTaskSet = OrderTaskSet(ClusteringMethod)

5:

6: Move OrderedTaskSet[0] into SuperTask[0]

7: SuperTask[0].Period = OrderedTaskSet[0].Period

8: SuperTask[0].Criticality = OrderedTaskSet[0].Criticality

9: SuperTask[0].WCET = OrderedTaskSet[0].WCET

10:

11: j = 0

12: for i in 1..OrderedTaskSet.Length do

13: if AddToSuperTask(j, i) then

14: Move OrderedTaskSet[i] into SuperTask[j]

15: SuperTask[j].Deadline =

Min(OrderedTaskSet[i].Deadline, SuperTask[j].Deadline)

16: SuperTask[j].Period =

GreatestCommonDivisor(OrderedTaskSet[i].Period, SuperTask[j].Period)

17: SuperTask[j].WCET = OrderedTaskSet[i].WCET + SuperTask[j].WCET

18: else

19: j++

20: Move OrderedTaskSet[i] into SuperTask[j]

21: SuperTask[j].Period = OrderedTaskSet[i].Period

22: SuperTask[j].Deadline = OrderedTaskSet[i].Deadline

23: SuperTask[j].Criticality = OrderedTaskSet[i].Criticality

24: SuperTask[j].WCET = OrderedTaskSet[i].WCET

25: end if

26: end for

27:

28: Apply DMPO to SuperTask set

133

ALGORITHM 5: AddToSuperTask(SuperTask j, Task i).

1: /* Identify Whether Task(i) can Join SuperTask(j) */

2: if OrderedTaskSet[i].Period is harmonic of OrderedTaskSet[i-1].Period

and OrderedTaskSet[i].Criticality == SuperTask[j].Criticality

and SuperTask[j].Period ≥ (OrderedTaskSet[i].WCET + SuperTask[j].WCET)

then

3: return true

4: end if

5: return false

• The task’s period is a harmonic of the SuperTask period, or the

SuperTask’s period is a harmonic of the task’s period.

• The task’s criticality is the same as the SuperTask’s criticality.

• The addition of a task into the SuperTask will not increase the

SuperTasks total execution time to more than its period.

If any of these rules fail, then the task is placed into a new SuperTask.

The SuperTask then assumes the lowest period and deadline of the tasks

inside the SuperTask. Any task with a greater period than its SuperTask

period is placed inside a static counter controlled conditional statement

which ensures the task is only executed on its period. For instance a

50ms task inside a 25ms SuperTask will execute every other invocation

of the SuperTask.

Once this allocation of tasks to SuperTasks has completed, the set of

SuperTasks is prioritised using the DMPO scheme.

The following sections identify and investigate different methods for

ordering the task set (OrderTaskSet(ClusteringMethod) from Algo-

rithm 4). These methods focus on the temporal requirements of the task

set. Parameters such as the task’s criticality were not used for ordering

the task set in order to comply with the requirements of the MCS design.

134

4.4.3 Porting Tasks By Period

The first method of task prioritising uses the Rate Monotonic Priority

Ordering scheme [88] by setting the Deadline of each task to its Period.

The algorithm for performing this operation is shown in Algorithm 6. As

indicated, all tasks are ordered and that ordered set is broken down into

SuperTasks based purely on their period.

ALGORITHM 6: OrderTaskSet(Period).

1: /* Order tasks by Period */

2: OrderTaskSet = UnOrderTaskSet

3: while TaskSetChanging do

4: TaskSetChanging = FALSE

5: for i ∈ OrderTaskSet do

6: for j ∈ (i...τj) do

7: if Tj < Ti then

8: OrderTaskSet = SwapTasks(i, j)

9: TaskSetChanging = TRUE

10: end if

11: end for

12: end for

13: end while

14: return OrderTaskSet

Figure 4.7 shows the result of the task clustering by period algorithm

on the open source industrial example. The figure focuses on the trans-

actions present in the system, all tasks not listed (and not part of a

transaction) are ordered according to their period in the same way.

The figure shows how the algorithm risks breaking transactional re-

quirements, as for instance SuperTask 1 executes before SuperTask 2 and

4; despite SuperTasks 2 and 4 containing preceding transactional tasks

to SuperTask 1’s in the transaction shown at the top of the figure.

135

Figure 4.7: Clustering Results From Applying Algorithm 6 to the Open

Source Control System Example.

#SuperTasks Schedulable Tasks Transaction Pass?

NoClustering 75 70.7% Yes

Period 7 62.7% No

Table 4.5: Clustering Results When Applied to an Aircraft Engine Con-

trol Case Study.

136

δS δE δT δSUM

NoClustering 3.8% 4.6% 2.5% 10.9%

Period 0.4% 0.4% 1.5% 2.3%

Table 4.6: Clustering Results When Applied to an Aircraft Engine Con-

trol Case Study.

The results when performing schedulability analysis on the newly

clustered SuperTask set based on the open source example is shown is

Tables 4.5 and 4.6. The results show that the SuperTask set produces

a system with significantly lower overheads, reduced by a factor of five.

However, the clustering algorithm fails to fulfill transactional require-

ments because of a lack of focus on ensuring the correct ordering of

transactions. Secondly, the number of tests failing their response time

analysis actually increases. This was identified to be down to the failure

of tasks with jitter requirements to comply with their temporal require-

ments as they were prioritised lower down the system schedule.

4.4.4 Porting Tasks By Transaction

Clustering tasks by period identified issues where task transactions, or

jitter requirements, were not taken into account. Therefore the second

approach investigated focused principally on transactional requirements.

Additionally, as most tasks with a jitter requirement also form part of a

transaction, this method also aimed to capture jitter requirements. The

algorithm for the transaction clustering method is shown in Algorithm

7. In this case the tasks in transactions were first broken out into Super-

Tasks, before the remaining task set was ordered into SuperTasks based

on their period. Next, the clustered SuperTask sets are prioritised using

the DMPO.

137

ALGORITHM 7: OrderTaskSet(Transaction).

1: /* Iterate over each transaction, in reverse order, to ensure that each task

preceding another in a transaction has a lower deadline */

2: while TaskSetChanging do

3: TaskSetChanging = FALSE

4: for j ∈ TransactionSet do

5: for i ∈ Transactionj do

6: Add i to OrderTaskSet

7: if i == Transaction′jFIRST then

8: k = i

9: else if OrderTaskSet[k] follows OrderTaskSet[i] then

10: OrderTaskSet = SwapTask(i, k)

11: TaskSetChanging = TRUE

12: k = i

13: end if

14: end for

15: end for

16: end while

17:

18: /* Iterate over the tasks not yet ordered and order based on Period */

19: while Any Task 6∈ OrderTaskSet do

20: MinPeriod = MAX

21: for j 6∈ OrderTaskSet do

22: if Tj < MinPeriod then

23: k = j

24: MinPeriod = Tj

25: end if

26: end for

27: Append k to OrderTaskSet

28: end while

29: return OrderTaskSet

138

Figure 4.8: Clustering Results From Applying Algorithm 7 to the Open

Source Control System Example.

#SuperTasks Schedulable Tasks Transaction Pass?

NoClustering 75 70.7% Yes

Period 7 62.7% No

Transaction 4 49.3% Yes

Table 4.7: Clustering Results When Applied to the Open Source Engine

Control Case Study.

139

δS δE δT δSUM

NoClustering 3.8% 4.6% 2.5% 10.9%

Period 0.4% 0.4% 1.5% 2.3%

Transaction 2.3% 2.7% 2.0% 7.0%

Table 4.8: Clustering Results When Applied to the Open Source Engine

Control Case Study.

Figure 4.8 shows the SuperTask breakdown for the open source con-

trol system. As opposed to the Period clustering method this algorithm

ensures that all transactions are maintained inside individual SuperTasks.

All tasks that do not form part of a transaction are then broken down into

SuperTasks based on their period, before each SuperTask is prioritised

using the DMPO.

Tables 4.7 and 4.8 show the results from applying this clustering

algorithm to the open source control system. The results confirm that

all transactional requirements have been complied with, and again the

overhead for the RTOS has been reduced. Interestingly the number of

SuperTasks, when compared to the Period clustering technique, is lower;

however, the RTOS overhead is higher. This is because while there were

only four tasks in the system, these four tasks had very low periods and

therefore much higher overheads over a given timeframe.

4.4.5 Porting Tasks By Jitter

A second iteration from the Period clustering method was developed

to focus on tasks with jitter requirements. This algorithm, denoted in

Algorithm 8, prioritises tasks with jitter requirements. Secondly, tasks

that form part of a transaction are moved into SuperTasks, in a similar

140

way to the clustering by transaction algorithm; before all remaining tasks

are broken down based on their period.

ALGORITHM 8: OrderTaskSet(Jitter).

1: /* Add tasks with jitter requirements into OrderTaskSet in period order */

2: while TaskSetChanging do

3: TaskSetChanging = FALSE

4: for i 6∈ OrderTaskSet do

5: if Ji 6= 0 then

6: Add i to OrderTaskSet

7: for j ∈ OrderTaskSet do

8: if j == OrderTaskSet[0] then

9: k = j

10: else if Tk > Tj then

11: OrderTaskSet = SwapTask(j, k)

12: TaskSetChanging = TRUE

13: k = j

14: end if

15: end for

16: end if

17: end for

18: end while

19:

20: /* Use the cluster by Transaction algorithm to sort the remaining tasks. */

21: OrderTaskSet = OrderTaskSet(Transaction)

22: return OrderTaskSet

141

Figure 4.9: Clustering Results From Applying Algorithm 8 to the Open

Source Control System Example.

#SuperTasks Schedulable Tasks Transaction Pass?

NoClustering 75 70.7% Yes

Period 7 62.7% No

Transaction 4 49.3% Yes

Jitter 14 33.3% No

Table 4.9: Clustering Results When Applied to the Open Source Engine

Control Case Study.

142

δS δE δT δSUM

NoClustering 3.8% 4.6% 2.5% 10.9%

Period 0.4% 0.4% 1.5% 2.3%

Transaction 2.3% 2.7% 2.0% 7.0%

Jitter 4.6% 5.5% 2.7% 12.7%

Table 4.10: Clustering Results When Applied to the Open Source Engine

Control Case Study.

Figure 4.9 shows the breakdown of SuperTasks following execution of

the cluster by jitter algorithm. Tables 4.9 and 4.10 show the schedula-

bility analysis results obtained from analysing the jitter clustered task

set for the open source control system example. Again, the results show

a further degradation in the number of schedulable tasks. In this case

partly down to the increased number of SuperTasks, with its resultant

increase in scheduler overheads.

4.4.6 Porting Tasks By Deadline

Clustering tasks by Period, Transaction or Jitter has proved unreliable as

focusing on one of these requirements and neglecting others has proved

an ineffective way of clustering tasks. This was perceived to be because

it is not possible to prioritise one temporal parameter over another, with-

out producing an un-schedulable system. Therefore, the final algorithm

focuses on clustering tasks by Deadline. As the Deadline is calculated us-

ing the period and any transactional or jitter requirements, this approach

should ensure all temporal requirements receive equal weight. The tech-

nique is shown in Algorithm 9.

143

ALGORITHM 9: OrderTaskSet(Deadline).

1: /* Order tasks by Deadline */

2: OrderTaskSet = UnOrderTaskSet

3: while TaskSetChanging do

4: TaskSetChanging = FALSE

5: for i ∈ OrderTaskSet do

6: for j ∈ (i...τj) do

7: if Dj < Di then

8: OrderTaskSet = SwapTasks(i, j)

9: TaskSetChanging = TRUE

10: end if

11: end for

12: end for

13: end while

14: return OrderTaskSet

There are two variants to this algorithm as follows:

• Deadline D - The algorithm does not allow tasks to co-exist in the

same SuperTask if they have different deadlines. This aims to en-

sure that tasks with tight deadlines can be prioritised accordingly.

• Deadline P - The algorithm does allow tasks with dissimilar dead-

line to co-exist within a SuperTask, provided the rules set out in

the original rules within Algorithm 4 are maintained.

Figure 4.10 shows the SuperTask breakdown for the Deadline D clus-

tering algorithm. The Deadline P equivalent diagram is not shown as

all tasks in this set of transactions would be placed within the same

SuperTask.

The results from applying the two additional clustering algorithms

to the open source control system are shown in Tables 4.11 and 4.12.

The results show how the use of each task’s deadline as a clustering

144

Figure 4.10: Clustering Results From Applying Algorithm 9 to the Open

Source Control System Example.

technique produces improved results. In both cases all task transactional

requirements are complied with. However, the Deadline D algorithm

produces a system with a larger number of SuperTasks, which produces

RTOS overheads so high that the response time analysis of tasks lower

down the system schedule fails.

Comparing the results produced across all of the clustering algorithms

the results appear to indicate that clustering by deadline is the most ap-

propriate technique. Furthermore, the results show how the Deadline P

algorithm does not produce the system with the lowest number of Super-

Tasks, or the lowest RTOS overhead. This confirms that using optimisa-

tion targets such as lowest number of SuperTask or minimum overheads

are not the only objectives for this process.

145

#SuperTasks Schedulable Tasks Transaction Pass?

NoClustering 75 70.7% Yes

Period 7 62.7% No

Transaction 4 49.3% Yes

Jitter 14 33.3% No

Deadline D 43 90.7% Yes

Deadline P 10 100.0% Yes

Table 4.11: Clustering Results When Applied to an Aircraft Engine Con-

trol Case Study.

δS δE δT δSUM

NoClustering 3.8% 4.6% 2.5% 10.9%

Period 0.4% 0.4% 1.5% 2.3%

Transaction 2.3% 2.7% 2.0% 7.0%

Jitter 4.6% 5.5% 2.7% 12.7%

Deadline D 1.7% 2.0% 1.9% 5.6%

Deadline P 0.4% 0.5% 1.5% 2.5%

Table 4.12: Clustering Results When Applied to an Aircraft Engine Con-

trol Case Study.

This study has identified a potential clustering method that works

well with the industrial case study obtained from Bate [38]. The fol-

lowing sections now perform a wider study of the clustering techniques

to investigate whether the method is still the most appropriate when

conducted against a large number of different systems.

146

4.4.7 Results from Applying the Clustering Tech-

niques to the Rolls-Royce Control System

The clustering algorithms were first applied to the Rolls-Royce control

system introduced in Section 4.3. The results are shown in Tables 4.13

and 4.14.

#SuperTasks Schedulable Tasks Transaction Pass?

NoClustering 228 24.1% Yes

Period 17 85.5% No

Transaction 10 9.2% Yes

Jitter 53 38.2% No

Deadline D 167 40.4% Yes

Deadline P 15 100.0% Yes

Table 4.13: Clustering Results When Applied to the Rolls-Royce Aircraft

Engine Control System.

δS δE δT δSUM

NoClustering 17.6% 21.1% 6.3% 45.0%

Period 2.5% 3.0% 2.1% 7.6%

Transaction 4.0% 4.8% 2.5% 11.4%

Jitter 13.1% 15.7% 5.1% 33.9%

Deadline D 11.7% 14.1% 4.7% 30.5%

Deadline P 0.8% 0.9% 1.6% 3.3%

Table 4.14: Clustering Results When Applied to the Rolls-Royce Aircraft

Engine Control System.

The results show that the Deadline P clustering method was the only

algorithm able to generate a schedulable system. This was despite the

147

fact that it was not the algorithm that produced the task set with the

smallest number of Super Tasks. The Period and Transaction clustering

algorithms failed to prioritise tasks with jitter requirements, and so those

tasks presented worst case response times that would have failed to meet

their tight timing requirements. Whereas the Jitter clustering algorithm

failed to correctly order transactions, and created a system with a larger

number of high rate SuperTasks, leading to a higher RTOS utilisation

which left the system unschedulable. The Deadline D method correctly

ordered transactional tasks and prioritised tasks with jitter requirements.

However, as it did not group together tasks with different deadlines, it

created a system with a prohibitively large RTOS overhead.

In comparison to the original system, this partitioned approach al-

lowed low criticality tasks totalling 44% utilisation to be added into the

system without compromising schedulability across all clustering algo-

rithms. This would not have been possible in the existing legacy system

and was only made feasible as the analysis was able to capitalise on the

difference between each high criticality task’s CLO
i and CHI

i .

4.4.8 Large Scale Evaluation

The previous sections have tested the clustering algorithms against two

real control systems. However, it is important to ensure that these results

are reflected when applied to a large range of different systems to ensure

that the algorithms are not biased towards the two control systems tested

so far. To ensure the avoidance of bias a number of system parameters

were varied through the analysis, these included overhead rates, size and

length of transactions and the number of tasks with jitter requirements.

In order to perform this analysis a large number of task sets were ran-

domly generated, with the clustering algorithms being applied to each

148

set. The random task set generator used is based on a version of the

UUniFast algorithm [89], and was extended, as detailed below, to feature

jitter requirements and transaction requirements. The random task set

generation assessment was performed at varying target utilisations from

30% to 100% (at an interval of every 5%), with a varying number of tasks

(10, 50, 100). Each clustering technique was then applied to each gener-

ated task set. Finally, the result was statically analysed to confirm every

task’s response time was less than its deadline and that each transaction

was correctly ordered. One thousand tests were then performed for each

test configuration. Finally, to provide an ideal case for comparison, a

zero overhead test was also performed across each generated task set.

Key characteristics of the real engine control software were identified

(and simplified) to constrain the generated tasksets as follows:

• Harmonic periods from the set (2.5, 5, 10, 12.5, 25, 50, 100, 200,

500)ms, inline with the real system introduced in section 4.3.

• 5% of tasks randomly chosen to contain a jitter requirement. If

part of a transaction only a task at the beginning or end of the

transaction was given a jitter requirement.

• Transactions consisting of three tasks, randomly chosen from the

existing set. The number of transactions in the system was set to

one fifth of the number of tasks, and transactions could include

tasks with different periods.

• The CLO
i for each task was randomly defined based on the system

level target utilisation. Each task’s CHI
i was randomly selected

from the range CLO
i ≤ CHI

i ≤ 2CLO
i .

• The criticality of each task was randomly selected to produce a

149

system with between 60% and 80% high DAL tasks, with the re-

maining tasks set to be low DAL tasks.

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

No Clustering
Period

Trans
Jitter

D_D
D_P

No Overhead

Figure 4.11: Schedulability of a 10, 50 and 100 Task System at Varying

Target Utilisations.

This follows principles similar to the approach defined by Kramer et

al. [90] where key characteristics are extracted from a real application

and fed into a generator to derive representative benchmarks. However,

the tasksets used by Kramer et al. [90] follow the AUTOSAR runnable

150

No Clustering Period Trans Jitter D_D D_P No Overhead
0

20

40

60

80

100

RT
OS

 U
til

isa
tio

n
%

50% Target System Utilisation

No Clustering Period Trans Jitter D_D D_P No Overhead
0

20

40

60

80

100

RT
OS

 U
til

isa
tio

n
%

70% Target System Utilisation

No Clustering Period Trans Jitter D_D D_P No Overhead
0

20

40

60

80

100

RT
OS

 U
til

isa
tio

n
%

90% Target System Utilisation

Figure 4.12: RTOS Overheads Calculated for each Clustered System.

model and do not include transactions which have a profound effect on

the scheduling approach.

One break from the real engine control system is in the number of

tasks defined for each system. In the large scale evaluation task sets

of size 10, 50 and 100 tasks are used, whereas the Rolls-Royce system

contains more than 200 tasks. Smaller task sets are used because it did

not prove possible to define (without bias) a task set containing hundreds

of tasks that were schedulable even without system overheads.

Figure 4.11 shows the number of schedulable tests out of the one thou-

151

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

No Clustering
Period

Jitter
D_D

D_P
No Overhead

Figure 4.13: Schedulability of a 10, 50 and 100 Task System With No

Transactions.

sand executed for each clustering algorithm at varying target utilisation

configurations. The experiments showed that for a small task system

there was not a great difference across the different methods, with the

exception of the Transaction method. From the inspection of the results

this was largely because the Transaction method failed to take account

of tasks with tight jitter requirements, which consequently receive lower

priorities and failure against their response time analysis.

152

No Clustering Period Trans Jitter D_D D_P No Overhead
0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

Fa
ct

or

50% Target Utilisation

No Clustering Period Trans Jitter D_D D_P No Overhead
0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

Fa
ct

or

70% Target Utilisation

No Clustering Period Trans Jitter D_D D_P No Overhead
0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

Fa
ct

or

90% Target Utilisation

Figure 4.14: Maximum WCET Scaling Factor to Provide a Schedulable

System.

For a system with 50 tasks, as shown in the second plot of Figure 4.11,

the difference between the clustering methods is more profound. Neither

the Transactions nor the Period methods are able to generate reliably

schedulable systems, failing to take account of jitter requirements. The

Jitter algorithm fares better, but a general failure to preserve transac-

tions causes the schedulability of the solutions to suffer as the task set

utilisation grows. The only algorithms able to track near the No Over-

head ideal are the Deadline algorithms, with the Deadline P faring best

153

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

No Clustering
Period

Trans
Jitter

D_D
D_P

No Overhead

Figure 4.15: Number of Schedulable Tasks with Varying Transaction

Rates [10%, 25% and 50%].

as it is able to minimise RTOS overheads by producing systems with less

SuperTasks. This hypothesis is further supported in Figure 4.12. This

shows the RTOS overhead produced by each clustering method.

These results are amplified as the task set size grows to 100 tasks,

where again the only algorithm following a similar trend to the No Over-

head ideal is the Deadline P algorithm. One irregularity with the results

is the fact that for 50 and 100 task systems no clustering algorithms are

154

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

No Clustering
Period

Trans
Jitter

D_D
D_P

No Overhead

Figure 4.16: Number of Schedulable Tasks with Varying Jitter Rates of

[0%, 5% and 10%].

able to achieve a 100% set of schedulable tests. This is because of the

effect of transactions as shown by Figure 4.13 which shows the same test

as shown by Figure 4.11, however without Transactions.

Figure 4.14 shows the analysed maximum possible WCET inflation

factor, or sensitivity, for a 100 task system at varying target utilisation

(50%,70%,90%). That is, the maximum figure that every CLO
i and CHI

i

can be multiplied by before the system is no longer schedulable. There-

155

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

No Clustering
Period

Trans
Jitter

D_D
D_P

No Overhead

Figure 4.17: Number of Schedulable Tasks with Low, Medium and High

RTOS Overheads.

fore, a value above or below one would indicate an increase or decrease

(for an initially unschedulable system) in task times respectively. The re-

sults showed the Deadline P clustering method maintaining the highest

inflation factor across all three target utilisations with other algorithms,

in particular Period and Transaction, tracking inflation factors close to

zero. The results further indicate that even No Clustering is frequently

better than Jitter, Period and Transaction.

156

Comparing Figure 4.12 to Figures 4.11 and 4.14; even though Period

tended to have the lowest overhead, it tended to produce less schedulable

solutions. This is because the algorithm frequently produces a system

with the lowest number of RTOS tasks. However, these tasks do not

take account of jitter or temporal requirements, and so is in general not

schedulable. Either because tasks with jitter requirements have high re-

sponse times, or because transaction orders are not maintained. This

further supports the assertion that this clustering operation is not nec-

essarily aiming to simply minimise RTOS overheads.

In order to further review the effectiveness of the different clustering

algorithms the analysis was extended through application to different

systems with varying transactions rates (Figure 4.15), varying jitter rates

(Figure 4.16) and varying overheads (Figure 4.17). This analysis shows

how the clustering algorithms performed when presented with different

system configurations which moved beyond the assumptions introduced

by the avionic control system.

Again, the results showed that the Deadline P was reliably the best

clustering method. It was shown to be reliable while other clustering

algorithms’ performance varied significantly across the different system

parameters.

4.5 Resilient System Design

The previous sections of this chapter have aimed to show how an MCS

can be developed based on the AMC protocol. This chapter now explores

how this work can be extended to the Resilient model as proposed by

Burns et al. [34]. The resilient model aims to apply principles of graceful

degradation to the MCS problem by introducing the notion of robust

tasks.

157

This model aligns well to an industrial use case as the model promises

to delay moving into the high criticality mode to a later point than

potentially offered by the AMC model without dynamic reconfiguration

of the system. Furthermore, the concept of a robust task is well aligned to

the design of a control system. A robust task is a task that is able to drop

one job without affecting its system level requirements [34]; where said

task’s robustness is independent from its criticality. In the Rolls-Royce

control system there exists a number of tasks, or operations, that can be

considered as robust. These include for instance, tasks that communicate

with monitoring equipment or write tracing data to non volatile memory

devices. Both operations could feasibly be paused for a short period of

time without having system level safety consequences, provided they are

able to restart their operations and execute their operations for a period

of time after the pause in service.

So, while the focus of the resilient model is within the field of MCS,

it also offers the potential to increase the system utilisation of single

criticality systems, provided one or many tasks can be treated as robust.

Studying the scheduler design discussed in Section 4.2; the resilient

model can be easily inserted into the model with the only changes made

being inside the scheduler around the Handle Overrun operation and

with the static schedulability analysis process. These required changes

are discussed in the following sections.

4.5.1 Handling Overruns

The system state model for the resilient algorithm is shown in Figure

4.18. The operation of the scheduler in each mode is discussed below:

158

• Normal Mode

– All tasks are released and executed when defined by their tem-

poral requirements.

– All low criticality tasks are prevented from executing further

than their CLO.

– Should any high criticality task execute for longer than its

CLO then the Job Failure (JF) is incremented.

– If the JF counter increases above the Fail Operational (F)

threshold, then the system reverts to the Resilient mode.

– Each time the system reaches the idle task, the JF counter is

reset to zero.

• Resilient Mode

– Each robust task skips a number of jobs equal to the task’s

design time determined skip factor - Sj.

– All other tasks are released, and executed as with the Normal

Mode, with the JF count continuing to record high criticality

CLO overruns.

– If the JF counter increases above the Fail Robust (M) thresh-

old, then the system reverts to the High Criticality mode.

– Should the system reach the idle task, the JF counter is reset

to zero and the system reverts back to the Normal mode.

• High Criticality Mode

– Only high criticality tasks are permitted to execute.

159

– If a robust task has not yet dropped Sj jobs since the original

move into the Resilient Mode, then it may continue to do so

until Sj is reached.

– Should the system reach the idle task, the JF counter is reset

to zero, and the system reverts back to the Normal mode.

Figure 4.18: Resilient State Flow Diagram.

From this task model it can be assumed that F < M , and finally that

the same assumptions surrounding the credibility of CLO and CHI , as set

out in Section 4.2.3, still apply.

This section has explored the operation of the resilient scheduler in

each system mode. The following section explores the updates required to

the static schedulability analysis of a resilient system to support scheduler

overheads.

160

4.5.2 Resilient Schedulability Analysis Updates for

Overheads

This section explores the updates required to the static schedulability

analysis model presented in [34] in order to support RTOS overheads.

This analysis builds off the equations originally defined in Section 4.2.5.

Normal Mode - As long as JF < F then all tasks are permitted

to execute. However, an additional load must be taken into account to

reflect the fact that a number of high criticality tasks (up to JF) may

execute up to their CHI . The original equation as presented in [34] is

shown in Equation 4.10.

RF
i = LD(RF

i , F) + CLO
i +

∑
j∈hp(i)

(⌈
RF

i

Tj

⌉
CLO

j

)
(4.10)

Where LD is a multiset which equals the F largest CDF [CHI − CLO]

higher priority task loads. CDF must be added
⌈
RF

i

Tj

⌉
times.

In order to incorporate the overheads identified in Section 4.2.5, this

equation must be updated accordingly:

RF
i = LD(RF

i , F)+CLO
i +CSTART +δFT +

∑
j∈hp(i)

(⌈
RF

i

Tj

⌉
CLO

j

)
+δFS +δFE

(4.11)

Resilient Mode - While F ≤ JF < M then all tasks are released,

however robust tasks will drop up to Sj jobs. The original schedulability

analysis equation for the Resilient mode is shown in Equation 4.12. This

equation is updated to include overheads in Equation 4.13. In this case δS

and δE must be broken down to ensure that the start and stop overheads

for robust tasks are correctly handled.

161

RM
i = LD(RM

i ,M) + CLO
i +

∑
j∈hp(i)

((⌈
RM

i

Tj

⌉
− Sj

)
(CLO

j)

)
(4.12)

Where LD must also be reduced by (
⌈
RM

i

Tj

⌉
− Sj).

RM
i = LD(RM

i ,M) + CLO
i + δMT +∑

j∈hp(i)

((⌈
RM

i

Tj

⌉
− Sj

)
(CLO

j + CSTART + CSTOP)

)
(4.13)

This assumes the following:

⌈
RM

i

Tj

⌉
>

⌈
RF

i

Tj

⌉
(4.14)

High Criticality Mode - Once JF exceeds M , the system reverts

to the high criticality mode, where only high criticality tasks execute.

The analysis of the mode change to this high criticality mode is shown

in Equation 4.15

RHI∗
i = CHI

i +
∑

j∈hpH(i)

((⌈
RHI∗

i

Tj

⌉
− SH

j

)
CHI

j

)

+
∑

k∈hpL(i)

((⌈
RM

i

Tk

⌉
− SL

k

)
CLO

k

)
(4.15)

This equation can be extended to encompass overheads as follows:

RHI∗
i = CHI

i +δHI
T +

∑
j∈hpH(i)

((⌈
RHI∗

i

Tj

⌉
−SH

j

)
(CHI

j +CSTART+CSTOP)

)

+
∑

k∈hpL(i)

((⌈
RM

i

Tk

⌉
− SL

k

)
(CLO

j + CSTART + CSTOP)

)
(4.16)

162

This section has explored how the industrial MCS architecture de-

signed in Section 4.2 can be extended to support a resilient system de-

sign. The following section explores whether the process of clustering

tasks to support efficient system design is still appropriate for this new

scheduler design.

4.5.3 Porting an Existing System to the Resilient

Model

Section 4.4.2 defined the following rules for breaking a task set down into

SuperTasks:

• No SuperTask can contain two tasks of different criticalities. Thus

ensuring the MCS rules surrounding partitioning can be maintained

at the RTOS level.

• The response time of each individual task must be less than the

task’s calculated deadline. The deadline being calculated as defined

in Algorithm 3.

• For each transaction, any task preceding another task should have

a higher priority than the succeeding task.

In order to support a resilient task model the following rule must also

be defined:

• No SuperTask can contain two tasks with different robustness skip

factors (Sj). The SuperTask takes on the robustness skip factor

value of its set of tasks.

This rule ensures that the RTOS and scheduler is able to correctly

control the release of robust tasks.

163

The following sections now explore the ability of the clustering algo-

rithms defined in Section 4.4 to porting the existing systems defined in

Section 4.3 to a resilient system. The section then continues to explore

the clustering algorithm’s applicability to a resilient system by using the

same random task set generation technique defined in Section 4.4.8.

As with the previous analysis the overhead figures were measured

using the qualified Rolls-Royce process, and were defined as follows:

• CTICK = 37µs

• CREL = 8µs

• CSTART = 28µs

• CSTOP = 31µs

Throughout this section the number of high criticality overruns the

system must tolerate (F) is set to 10, and the number of high criticality

overruns that must be tolerated while robust tasks skip a job (M) is set to

16. In practice such figures should be chosen to maximise the efficiency

and schedulability of the system under development. However, for the

purpose of providing a level playing field for the analysis that follows

these values were fixed.

4.5.4 Open Source Control System

The open source control system taskset was adopted directly from the

system introduced in Table A.1, however all low criticality tasks were

also treated as robust tasks.

The results from applying the different clustering algorithms to the

open source control system are shown in Tables 4.15 and 4.16. The results

show that for the resilient system the Deadline P clustering technique is

164

#SuperTasks Schedulable Tasks Transaction Pass?

NoClustering 75 66.7% Yes

Period 7 62.7% No

Transaction 4 49.3% Yes

Jitter 14 33.3% No

Deadline D 43 88.0% Yes

Deadline P 10 100.0% Yes

Table 4.15: Clustering Results When Applied to the Open Aircraft En-

gine Control Resilient Case Study.

δS δE δT δSUM

NoClustering 4.3% 4.8% 2.7% 11.8%

Period 0.4% 0.4% 1.6% 2.5%

Transaction 2.5% 2.8% 2.2% 7.6%

Jitter 5.1% 5.6% 2.9% 13.7%

Deadline D 1.9% 2.1% 2.0% 6.0%

Deadline P 0.5% 0.5% 1.6% 2.7%

Table 4.16: Clustered Overheads When Applied to the Open Aircraft

Engine Control Resilient Case Study.

again the most appropriate, being the only algorithm able to produce a

schedulable system. In comparison to the same system results obtained

for the AMC system, it can be noted that the overheads increased by

a small amount, which can be directly attributed to the higher RTOS

execution time (CTICK , CREL, CSTART and CSTOP). This increased over-

head is induced due to the small additional task release and supervision

time that is required to be performed by the RTOS.

165

The results reflect the fact that the same clustered task set is produced

for both the AMC and for the resilient scheduling models. This is because

under the AMC model low criticality tasks were broken out into separate

tasks. Now as these same tasks are treated as robust they are still moved

into their own super tasks in the same way. That is, the addition of the

new clustering rule has no effect on this system.

4.5.5 Rolls-Royce Control System

#SuperTasks Schedulable Tasks Transaction Pass?

NoClustering 228 14.5% Yes

Period 17 79.4% No

Transaction 10 7.9% Yes

Jitter 53 31.6% No

Deadline D 171 33.3% Yes

Deadline P 15 100.0% Yes

Table 4.17: Clustering Results When Applied to the Rolls-Royce Re-

silient Case Study - Experiment 1.

For the Rolls-Royce control system; two approaches were followed.

For the first experiment the whole set of low criticality tasks were treated

as robust. The second was a more ambitious approach where as well as

low criticality tasks, a number of high criticality tasks which could be

identified as providing monitoring output, communication, or non volatile

memory accesses were all marked as robust. This produced a system with

approximately 10% of tasks being treated as robust.

As with the open source control system example in the previous sec-

tion; Experiment 1 (results shown in Table 4.17) produced identical re-

166

δS δE δT δSUM

NoClustering 19.7% 21.8% 7.1% 48.6%

Period 2.8% 3.1% 2.3% 8.2%

Transaction 4.5% 5.0% 2.8% 12.3%

Jitter 14.7% 16.3% 5.7% 36.6%

Deadline D 13.4% 14.8% 5.3% 33.4%

Deadline P 0.9% 1.0% 1.7% 3.6%

Table 4.18: Clustered Overheads When Applied to the Rolls-Royce Re-

silient Case Study - Experiment 1.

sults to the same system when ported to the AMC model. Once again

this is because robust tasks are treated by the clustering algorithm in the

same way as low DAL tasks. When reviewing the schedulability of the

system it can be seen that the Deadline P algorithm is the only clustering

algorithm able to produce a schedulable system. Given the clustered sys-

tem properties for the resilient system, match those of the AMC system,

these results are as expected.

Table 4.18 shows the RTOS overheads measured for the robust system

once ported to the resilient model. Again in comparison to the AMC

model the overheads have increased slightly. This is to be expected given

the small increase in required RTOS compute time.

The results for the second experimental Rolls-Royce system are shown

in Table 4.19. Before porting this system to the resilient scheduling model

a number of tasks were tagged as robust tasks. These tasks were identified

as robust based on the effect on their operation and the wider system, if

they were to skip a job. This includes, for instance, long-delay memory

accessing tasks or communications tasks.

The clustering results indicate that the number of SuperTasks in each

167

clustered system increased for each clustering method, except for the

Transaction based method. This is mirrored with an equivalent increase

in RTOS overheads as shown in Table 4.20. The increase in the num-

ber of clustered tasks can be attributed to the additional robust tasks

which were broken out into new SuperTasks. In the case of the Transac-

tion clustering method - as each transaction exists to regulate and prove

data interactions (according to strict timing requirements), no tasks that

form part of a transaction could be considered as robust. This means

the Transaction clustering method for the resilient system mirrors the

operation of the AMC system.

#SuperTasks Schedulable Tasks Transaction Pass?

NoClustering 228 15.8% Yes

Period 26 82.0% No

Transaction 10 7.9% Yes

Jitter 61 31.1% No

Deadline D 172 33.3% Yes

Deadline P 25 100.0% Yes

Table 4.19: Clustering Results When Applied to the Rolls-Royce Re-

silient Case Study - Experiment 2.

As with the AMC clustered results, the results for the clustered Re-

silient model indicated that only the Deadline P clustering algorithm was

able to produce a schedulable system. These results, combined with the

results from the open source aircraft engine control system example in

Section 4.5.4, indicate that the developed clustering algorithms are also

applicable to the resilient system scheduler. Section 4.5.6 now reapplies

the large scale evaluation to the resilient scheduling model to identify

whether the clustering approaches are still applicable.

168

δS δE δT δSUM

NoClustering 19.7% 21.8% 7.1% 48.6%

Period 3.3% 3.7% 2.4% 9.4%

Transaction 4.5% 5.0% 2.8% 12.3%

Jitter 15.2% 16.8% 5.8% 37.8%

Deadline D 13.4% 14.8% 5.3% 33.6%

Deadline P 1.5% 1.7% 1.9% 5.1%

Table 4.20: Clustered Overheads When Applied to the Rolls-Royce Re-

silient Case Study - Experiment 2.

4.5.6 Large Scale Evaluation

In order to further study the applicability of the clustering algorithms in-

troduced throughout this section, the large scale evaluation originally in-

troduced in Section 4.4.8 was reapplied to the resilient scheduling model.

The task set generator was configured using the same process followed

in Section 4.4.8, with the additional step that between 10% and 30% of

tasks were randomly identified as robust tasks. Each task’s robustness

and criticality were treated as independent task parameters.

Figure 4.19 shows the number of schedulable task sets produced for

each clustering algorithm when trying to define a 10, 50 and 100 task

system. The results correlate with the AMC system results, and again

show the Deadline clustering algorithms (in particular the Deadline P al-

gorithm) to be the clustering technique able to obtain the highest number

of schedulable task sets reliably. Overall it can also be noted that the

number of schedulable task sets has reduced compared to the AMC algo-

rithm, as indicated by the real system application in the previous section,

this can be attributed to the addition of extra SuperTasks to support ro-

169

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

No Clustering
Period

Trans
Jitter

D_D
D_P

No Overhead

Figure 4.19: Schedulability of a 10, 50 and

100 Task System at Varying Target Utilisations.

bust tasks. The result of which leads to higher RTOS overheads in the

produced system.

The results also indicate that the Transaction, Jitter the Period clus-

tering algorithms are further disadvantaged by the introduction of robust

tasks, in all cases the algorithms fare worse than a system without clus-

tering at all.

This section has reapplied the clustering algorithms (designed to port

170

an existing non-preemptive system to the AMC pre-emptive system) to

the resilient scheduling model. The aim of the analysis was to provide

confidence that the developed techniques are not unique to, or influenced

by, the AMC system. The results indicate that the approach is also

applicable to the resilient scheduling model, with comparative results

between the two systems being obtained.

4.5.7 Summary

This chapter has aimed to present the development of a MCS to sup-

port industrial applications. The section has discussed the certification

requirements for a MCS system and presented a system design aimed at

complying with such requirements. The developed system utilises tem-

poral and spatial partitioning to achieve separation between different

criticality tasks.

The chapter progressed to discuss how the suggested system could be

developed, including the appropriate assessment of task timing proper-

ties (using the work discussed in Chapter 3) and the analysis of RTOS

overheads. These RTOS overheads are incorporated into an updated set

of static schedulability algorithms. The chapter progressed to assess the

developed system against the certification requirements defined; this re-

view identifies assumptions and key requirements placed on the system

that allows an initial certification safety case to be developed.

Following this system definition the chapter advances to analyse how

an existing system may be ported to the new MCS system. This analysis,

when faced with unacceptable system overheads, identifies an approach

for reducing system overheads through task clustering. Different cluster-

ing techniques are identified according to various task timing properties,

and a comprehensive assessment is presented which identifies the most

171

appropriate method. Finally, the system is advanced and extended to

support a resilient scheduling model, in order to assess the approaches

wider applicability.

Ultimately this chapter has presented a mixed criticality system def-

inition, together with an initial approach to support certification. The

newly developed system allows expansion of a Rolls-Royce example sys-

tem to support additional tasks totalling 40% extra utilisation, which

would not have been possible previously.

The approach, which utilises the timing analysis techniques discussed

in Chapter 3, provides a method for developing a system, and for proving

compliance of high criticality tasks against their requirements. However,

the approach lacks the ability to demonstrate adherence of low critical-

ity, or robust, tasks against their temporal requirements. This is because

both scheduling methodologies discussed (the AMC+ and Resilient mod-

els) rely on the ability to deny service to low DAL, or robust tasks, at

certain times. There is currently no process for identifying the length or

frequency of such denied service, and therefore no ability to certify, or

prove, the system as a whole.

Chapter 5 now expands on this shortfall and discusses an approach

aiming to allow low criticality, and/or robust, task certification.

172

Chapter 5

Assessing Low Criticality

Task Service

Chapter 3 developed a process for identifying the timing properties of a

software task and Chapter 4 built on this work by focusing on the devel-

opment processes for a Mixed Criticality System (MCS). Together these

two chapters provided a process for developing and statically proving the

operation of high DAL tasks within an MCS. This provides the mecha-

nisms required for proving compliance of high DAL tasks against their

timing requirements. However, this work currently does not provide any

process for defining the service provided to low DAL tasks. This chapter

now seeks to fill this gap by exploring how a system integrator may assess

such service.

Regardless of the scheduling methodology employed, the general as-

sumption in the literature is that low DAL components can be denied

service at times of heightened system utilisation. In practice, in a well

designed system this should only occur in extreme cases, if ever. Un-

fortunately, however, this potential lack of service cannot be quantified

without analysing the performance of the integrated system in operation.

173

This is because it is not known how many tasks, if any, may execute be-

yond their timing bound within a certain time window without executing

the system in a representative environment. This means it is difficult to

obtain concrete proof that a low DAL component will receive a good

enough level of service to fulfil its mission requirements.

One strategy to combat this in an MCS may be to increase CLO timing

budgets across the system in order to ensure that low DAL components

are ‘never’ denied service. However, the more a task’s CLO increases

towards its CHI ; the less the system is able to benefit from utilising

the CHI pessimism. Furthermore, (unless CLO == CHI) then even this

approach cannot be guaranteed to provide the necessary service in all

cases. The key question to be answered is; how often do tasks exceed

their CLO timing budget? In essence, it is difficult to understand the

performance afforded to low DAL tasks in an MCS without performing

a dynamic assessment in a representative environment.

Several papers have explored approaches aiming to improve low DAL

task support. For example, Jan et al. [28] and Su & Zu [32], looked at

applying the elastic task model, originally proposed by Buttazzo et al.

[29], to an MCS. Rather than de-scheduling all tasks, this model instead

extends the period of low DAL tasks to reduce the utilisation on the sys-

tem, this has also been extended to support graceful degradation by Gill

et al. [33]. In contrast, the so-called imprecise mixed criticality model

[30] reduces low DAL execution budgets in order to improve wider system

performance. This was advanced by Huang et al. [91] with extensions to

support graceful degradation. Additionally, Burns & Baruah [92] reduce

the priority of low DAL tasks as required, effectively executing low DAL

tasks during periods of high system utilisation in system slack time only.

The overriding assumption with all of these approaches is that the

174

temporal properties of low DAL tasks can be altered, be it by reducing

service, or execution time, without affecting its overall requirements. In

some cases this may be acceptable. However, this is wholly dependant

on the requirements of the low DAL task, which may require real time

operation.

Chapter 4 introduced the AMC [25] and resilient models [34], as well

as other variants derived from the original Vestal [24] model such as the

Bailout model [27]. All three techniques aim to delay a move to the

high criticality mode until necessary. However, even though the move to

the high DAL mode may be delayed, it still may occur at some point.

The proposed protocols do not offer a way to understand when a move

may occur, or what impact (by way of duration and frequency of loss of

service) this may have on the low DAL, and/or robust, task.

In single criticality systems a number of approaches applicable to en-

suring soft real time task service could also be applied to an MCS. Sys-

tems exploring tasks with m-k (or m-n) firm deadlines [93], [94] provide a

way of formalising the requirements for soft real time (or low criticality)

tasks. The methods suggest ways of prioritising tasks that are approach-

ing a failure in their m-k requirement, either through dynamic methods

[93] or static methods [94]. However, the techniques still represent a best

effort approach, even once tasks approaching m-k requirement errors are

offered greater service, an indication of the quality of service that may

be achieved is not provided.

Weakly hard systems [95] build on similar principals to m-k-firm sys-

tems and offer methods where soft real time tasks can be disabled for

defined periods of time. This type of system has already been extended

to support an MCS based on the AMC model [96]. In this instance, low

criticality tasks are still executed when in the high criticality mode, but

175

with reduced service as the tasks are forced to skip a statically defined

number of jobs. This provides a system integrator with the ability to

bound the minimum quality of service afforded to low criticality tasks.

The disadvantage with this approach is that the schedulability analysis

in the high criticality mode must account for a number of low critical-

ity jobs executing, thereby reducing the potential of an MCS to harness

WCET pessimism through exploitation of the difference between CLO

and CHI .

One paper that has attempted to quantify low DAL service is Medina

et al. [97] which defines a probabilistic process for assessing the perfor-

mance of low criticality tasks. This work offers a good example of how

low DAL service could be quantified. However, the paper assumes that

task timing error rates are already known, and does not provide guidance

on how they could be assessed.

In summary, the predominant MCS models available in the literature

concentrate on high DAL task requirements, with the static analysis

showing that in the worst case low DAL tasks will receive no service.

Methods such as expanding low DAL task execution parameters aimed

to improve low DAL task overall service; and the resilient model’s use

of graceful degradation aimed to provide some control on reducing low

DAL task service. However, ultimately, although the previous work of-

fers many ways to help improve low-DAL task performance, it does not

address how to assess this performance and service in a meaningful way

that could be used to support certification.

From an industrial point of view this represents a significant barrier

to the adoption of MCS models in a safety critical context. Should the

low DAL components being integrated still carry some safety related

consequence of failure, for example DAL C components, then the task’s

176

compliance to its requirements will still need to be assessed. Even if the

component’s failure cannot affect the safety of the aircraft, in the case

of a DAL E component, then it cannot be assumed the component can

simply be denied service permanently. The component’s operation must

have some useful, mission critical, operation; otherwise it would not have

been developed in the first place. Therefore, it is essential that system

integrators have a process for quantifying the service afforded to low

DAL components. If not for safety, then for business or mission critical

reasons.

This chapter examines how a system integrator may assess the service

afforded to a low DAL task. The aim is to describe a strategy that could

be employed to assess the performance given to a low DAL component in

order to allow an informed decision on system performance to be made.

The process developed, as well as the processes and tooling developed

through Chapters 3 and 4 are then applied to a use case taken from a

Rolls-Royce aircraft engine control system.

5.1 Assessing the Service Afforded to a Low

DAL Task

Regardless of the method chosen to control low DAL or robust tasks the

performance of said tasks is wholly dependant on the actual performance

of the system. Therefore, the process conducted here is based on a statis-

tical assessment of a set of execution results extracted from either a test

rig execution during a system-level test campaign, or from a scheduler

simulation of the system in question. This chapter predominately follows

the results obtained from simulation; the use of which allows a signifi-

cantly larger data set to be compiled. However, ultimately these results

177

would be supplemented and improved by results obtained from a full end

to end test campaign when the system is available and integrated. The

statistical assessment would then be repeated on this new results base.

The simulator is designed to be initialised using execution profiles

extracted from the system during task-level testing designed to mimic

system behaviour while in operation [37]. This is in line with the pro-

cess introduced in Chapter 3. This ensures that the execution profiles

provide a realistic representation of the task’s actual performance when

in operation. As an added benefit, the simulation and system provides

the facilities required to perform a ‘what-if’ analysis based on changing

error rates.

The results are then input into a statistical assessment that provides

a measure of confidence in compliance to low DAL component require-

ments, as well as providing an understanding of the probability of failing

to comply. Together these results should allow a system integrator to

make a guided decision on whether the low DAL component’s perfor-

mance is acceptable or not.

The following section introduces a Goal Structuring Notation (GSN)

[35] argument for the approach, as well as providing results from applying

the analysis to an industrial case study integrated into the AMC+ and

resilient models.

5.1.1 Goal Structuring Notation

Within this and the following sections, the process is defined using GSN

[35]. GSN is chosen to present the process introduced in this section as

it represents a widely used and accepted procedure for presenting certi-

fication cases. The principal purpose of a goal structure is to show how

goals (claims about the system) are successively broken down into sub-

178

goals until a point is reached where claims can be supported by direct

reference to available evidence (solutions). As part of this decomposition,

using the GSN it is also possible to make clear the argument strategies

adopted (e.g. adopting a quantitative or qualitative approach), the ra-

tionale for the approach (assumptions, justifications) and the context in

which goals are stated (e.g. the system scope or the assumed operational

role). The GSN arguments in this section use Goals (G), Assumptions

(A), Statements (St) and Solutions (S) [35].

Figure 5.1 shows the principal GSN argument for the approach. The

principal goal (G0) that the service provided to each low DAL task is

sufficient, is analysed using a statistical analysis of results obtained by a

simulation of the system.

The strategy for the analysis is broken down into four key sub goals,

as follows:

• G1 - Specification - The requirement for the low DAL task can be

expressed in a form that allows assessment.

• G2 - Evaluation - The simulation output provides an understanding

of the likelihood of an error.

• G3 - Confidence - The simulation has obtained sufficient coverage

of the system.

• G4 - Validation - The simulation is a valid representation of a real

system.

Ultimately these goals are designed to form a circular argument.

Should the service afforded to each low criticality task prove to be unac-

ceptable, when assessed against G1, then steps G2 and G3 are designed

to be easily repeatable to allow efficient system update. Given that the

179

Figure 5.1: Goal Structured Notation Argument for the Overall Low

DAL Requirement.

process is built around a representative simulation of the system (as as-

sessed by G4), this repetitive process can be performed at an early, cost

effective point in the design life-cycle.

To support this process the following assumptions have been made

about the wider system:

180

• The occurrence of an individual task overrun is very rare. Ratio-

nale: The defined CLO for each task, representing the computation

time beyond which a task would register a fault, has been generated

from an extensive testing regime and carries with it a high level

of confidence. However, being derived from a simple measurement

technique it should still be assumed to be optimistic. Very rare as-

sumes to be less than 1 in 10,000 task invocations

• Individual task overruns are independent and are not reliant on the

current operation of the control system. Rationale: an overrun is

an event unique to each task, and not a systematic event caused

by an operation at the system level. For example, response to an

engine fault condition.

• Task overruns can be assumed to be independent of hardware oper-

ation. Rationale: The system is designed to be resilient to external

hardware failures. Secondly, the target processor design is compli-

ant with DO-254 recommendations as a high criticality device, and

has been designed to be resilient against sources of error, such as

Single Event Upset.

The following sections now describe each of these goals in more detail.

5.1.2 Specification

In order to assess the service required for a low DAL, or robust, task to

execute against its requirements, it is important to specify the problem

appropriately. The first requirement for a task to be considered as low

DAL is that the task must be able to skip one, or even all, of its jobs

without affecting the safety of the overall system.

181

For a task to be considered robust, but high DAL, in the resilient

model; it is necessary for the task to be able to miss S jobs, with S being

the task’s job skip parameter.

The process proposed in this thesis uses a scheduler simulator. The

simulator takes as input a set of timing profiles for each task, generated

through the process identified in Chapter 3. The simulator acts as the

scheduler, randomly selecting an execution for the highest priority ready

task from the task’s timing profile. The simulator then advances a record

of the current time to the lower of either the next task release time, or

to the completion time of the highest priority task.

Using this simulator (which executes approximately 10 times faster

than real processor time) repeated combinations of task execution times

can be examined to measure the service received by each low DAL task.

The simulator outputs the time measured between each individual job

skip burst. A job skip burst is defined as a successive set of job skips,

that does not stretch over the idle task.

Each low DAL, or robust task, requirement should then define two

parameters to allow requirement testing:

• The maximum permissible length of a job skip burst. In other

words, the maximum allowed number of jobs that can be skipped

consecutively.

• The minimum time between each job skip burst.

Crucially, the definition of the required job skip intervals should be

accompanied by a safety assessment which identifies a chance or fre-

quency, of failure that may be deemed acceptable. A failure being when

the task fails to comply with its requirements. This level of failure can

then be used throughout the Evaluation (discussed in the following sec-

182

tion) to support an engineering judgement on what may or may not be

acceptable.

5.1.3 Evaluation

Once the specification to be assessed has been properly defined, the next

step in the process is to analyse the results obtained by the scheduler

simulator to understand the probability of failing to comply with the low

DAL task’s requirements. This aims to provide a real measure that can

be used to make a decision on whether the service given to the low DAL

task is acceptable or not.

Figure 5.2 shows the process for understanding the probability of the

low DAL task suffering a timing requirement error. Goal G2 is split

into two parts. The first is an assessment based on the observed perfor-

mance of the system (G5, G6), and the second is a statistical inference

to understand the exceedance probability of the sample (G7).

Are we confident the requirement will be complied with?

Goals G5 and G6 examine the full range of results obtained from the

simulator. The target is to review whether the spread of job skip interval

times provide confidence that requirement will be complied with in a

significant majority of cases.

Goal G5 advocates the use of box plot diagrams to allow a visual

assessment of the median and inter-quartile range of job skip times. To

provide confidence it should be confirmed that any times close to the

requirement are outliers, and do not represent a substantial percentage

of the results obtained from the simulator.

Secondly, Goal G6 uses a percentile test to provide a statistical mea-

sure indicating where the majority of results reside. Again any times

close to the requirement should be confirmed as in the minority.

183

Figure 5.2: Goal Structured Notation Argument Exploring the Probabil-

ity Assessment of the Requirement.

Ultimately, the aim of this assessment is to identify whether periods

of time when the low DAL tasks are disabled are acceptably infrequent

according to the Specification.

How frequently will we fail to comply with the requirement?

In line with Goal G7; once an evaluation has been performed to pro-

vide confidence that breaches of the requirement are rare, the next step

is to attempt to quantify the actual probability of breaking the require-

ment.

Understanding the probability of breaking the requirement is assessed

in one of two ways. If the requirement has been broken during testing,

then the probability of this exceedance is estimated using an Empirical

184

Cumulative Distribution Function (ECDF), in line with Goal G8. How-

ever, if the requirement has not been broken then the exceedance proba-

bility is estimated using an extreme value theory on a fitted distribution

of job skips, in line with Goal G9.

Goal G8 assumes that enough information (i.e. enough requirement

compliance failures) has been provided by the simulation to fit a dis-

tribution and to read a result directly from the fitted distribution. If

the simulation does not provide enough information to perform this as-

sessment (i.e. there are insufficient failures to provide confidence in a

directly read result), then G9 performs a statistical inference using the

fitted distribution that aims to assess the tail of the distribution to un-

derstand the potential exceedance. This is read by assessing the job skip

frequency.

5.1.4 Confidence

An evaluation of the results, as discussed in the previous section, can

only be trusted if we can have confidence that the statistical analysis

is performed across a significantly large sample that represents the real

performance of the system. Goal G3 seeks to confirm this is the case and

aims to understand whether enough testing has taken place.

Figure 5.3 shows the extension to Goal G3. This goal is fulfilled by

ensuring the simulation executes for long enough to indicate that most

execution time variations have been observed (G10), and that further

exploration of the search space does not reveal new results (G11).

Has the simulation executed for long enough?

Goal G10 is concerned with understanding whether a single simula-

tion executes for long enough, and is supported by an assessment that

reviews whether continued simulation reveals any additional differences

185

Figure 5.3: Goal Structured Notation Argument Exploring the Confi-

dence of the Analysis.

or significant differences in the distribution. This is important to un-

derstand as it helps build the argument that the statistical analysis is

performed across a fully representative set of execution profiles. This is

tested by reviewing the minimum time between job skips (G16, S6), as

well as the confidence interval (G17, S7) and the mean (G18, S8). In all

186

cases the aim of the assessment is to review whether, as the simulation

continues, the results have converged.

Does a large scale evaluation reveal different results?

Goal G11 is concerned with understanding whether a large scale eval-

uation over a large number of simulations produces a similar result to

that of a single simulation. This aims to provide further confidence that

the search space has been explored sufficiently. The goal confirms firstly

whether the analysis is repeatable when a large scale simulation is per-

formed, and secondly that the results from multiple short simulations

create a combined result equivalent to one long simulation.

Goal G11 is supported by an equivalence test of the job skip dis-

tributions over 100 (independently seeded) executions of the simulator

using both a χ2 distribution test (G13) and an Earth Movers Distribu-

tion (EMD) test (G14). In both cases the simulation from the first test

is used for comparison against the other 99. Secondly, G15 claims that

when two short simulations are appended together they provide equiv-

alent results to one long simulation. This analysis also uses the χ2 and

EMD equivalence tests.

The χ2 distribution equivalence test provides an assessment of whether

the two simulation distributions have been formed from the same master

distribution. That is, are the two distributions independent, or equiv-

alent to one another. The use in this context allows the assessment to

confirm that a repeat of the simulation yields the same or equivalent re-

sults. The EMD test is so called based on an analogy of how it operates.

The question posed by the test is given two mounds of earth, or soil, how

much soil needs to be moved from one mound to the other before the two

mounds are equivalent. Used alongside the χ2 test, the statistic provides

further confidence that a repeat of the simulation produces equivalent

results.

187

5.1.5 Validation

The process so far has focused on a simulation of the system. This is

advantageous as the simulation can provide a much larger data set to

analyse than is possible from execution on a real system test rig. Sec-

ondly, the results can be generated much faster than possible on real

hardware. However, it is important to review the results, and the simu-

lator, to ensure they reflect a valid representation of the real system.

Figure 5.4: Goal Structured Notation Argument Exploring the Correct-

ness of the Analysis.

Figure 5.4 extends the GSN argument and examines how the analysis

provides representative results of the actual system performance. The

goal has two steps. Firstly, it confirms that the initial simulation is con-

figured with representative timing profiles. Secondly, the goal is verified

using real results obtained from test rig operation (G22).

Is the simulation configured correctly?

Goal G21 concerns the input timing profiles used to generate the

simulator results. As noted in the introduction to this section, the initial

simulation should be set up using a set of task timing profiles generated

through task-level execution in a representative environment, as detailed

188

further in Chapter 3. These timing profiles provide a representative set

of results for the scheduler simulation to randomly iterate over.

Once a full system test rig campaign has been completed, the results

from the real system should be used to both improve the simulator and to

compliment the simulation produced results in order to improve accuracy.

This full system test campaign is expected to provide a significantly larger

set of results to boost confidence in the statistical analysis, arguably

approaching a point where the simulation may not be required. However,

these results would be expected to take significantly longer to generate,

and would be provided at a time in the software design life-cycle too late

to allow for cost effective improvement.

One risk with this approach is that the test rig campaign may indicate

the simulation is flawed. This is a significant risk with any approach

utilising a simulator and is in this case unavoidable. Nevertheless, the

risks are mitigated by the fact that, as is frequently the case, the software

project contains a number of legacy components for whom timing data

should exist. The risk is further mitigated by an assumption that the

simulation can be refined as soon as software testing begins rather than

waiting for its completion. The key is that the simulation provides an

easy environment for fast and efficient whole system (repeated) analysis.

Does real world execution match the simulation?

The second step to understanding if the results represent the real sys-

tem is to compare a set of the produced simulation results against results

obtained from the real system to ensure that they are both sufficiently

similar. To do this, a subset of test rig results should be used to repeat

the distribution analysis conducted to confirm Goal G11 in Figure 5.3.

This is in order to verify that the sub-set of test rig results produce a

similar distribution to the super-set of simulation results.

189

5.1.6 Summary

This section has presented a process for assessing the service provided to a

low DAL task within an MCS. The process utilises a scheduler simulator,

seeded with real system parameters, to perform an extensive statistical

analysis of potential system execution profiles. The next section now

applies the process to an industrial case study to examine how the process

performs against both the AMC+ and resilient scheduling models.

5.2 Industrial System Use Case Applica-

tion

This section now presents the results from applying the process for assess-

ing low DAL service introduced in the previous section to a Rolls-Royce

use case taken from the existing system introduced in Section 2.

5.2.1 Simulator Configuration

To facilitate this assessment the following process was followed for defin-

ing execution profiles:

• The Rolls-Royce aircraft engine control system task set introduced

in Chapter 2, and ported to a mixed criticality system in Chapter

4, was imported into the scheduler simulator introduced in this

chapter. Both the AMC+ and resilient models were implemented.

• The RTOS overheads for each scheduler implemented were mea-

sured using the process defined in Chapter 4. The overheads were

measured as the system executed on the Rolls-Royce in-house pro-

cessor.

190

• The system test High Water Marks (HWM) and analysed WCETs

were used for CLO and CHI respectively.

• The timing profiles provided from Chapter 3 were used to generate

a ‘rate of timing fault’ as follows: for the BCHLr fitness function

the 95% measured execution time was treated as CLO, with the

number of times the fitness function obtained a time greater than

95% of the maximum measured execution time treated as a fault.

This counter was then used to produce the ‘rate of timing fault’ for

each task.

• On each release of a task the ‘rate of timing fault’ was used by

the pseudo-random simulator to choose the job’s execution time.

If no fault was selected for this invocation, then a random number

between the tasks Best Case Execution Time (BCET) and CLO

was chosen. Otherwise, if a fault was selected a random number

between the task’s CLO and CHI was used.

• In order to ensure these execution profiles did not adversely skew

the obtained results, or process; a high ‘rate of timing fault’ profile

and low ‘rate of timing fault’ profile were also created. These were

calculated as 10*[rate of fault] and 0.1*[rate of fault] respectively.

The simulator was executed on a high performance server in order

to build up a comprehensive set of results. The execution time of each

task was output by the simulator, as was information on whether a task

executes, or is blocked. This data was analysed to measure the time

between low criticality, or robust task job skips. A single execution sim-

ulates thirty minutes of scheduler time.

This section now progresses to examine the use case in detail. The

Specification for the use case is defined, before an Evaluation of its

191

low DAL task service and an argument surrounding Confidence in the

simulation is built. At this time as system level test results and timing

profiles are not available, Validation of the digital twinning simulation

approach is left to future work.

5.2.2 Non-Volatile Memory Access

In order to provide a secure record of engine performance, the control

system regularly writes system parameters to flash memory. While non-

volatile and secure, the time taken to write to this flash memory is con-

siderable, with the task’s execution time being directly proportional to

the amount of data being written. Therefore, the amount of data written

to the data store is minimised as far as possible; essentially its WCET is

restricted. However, in order to support future design and maintenance

goals, it is desirable to reduce this limitation.

The control system contains a periodic task responsible for writing

data to flash memory. This task reads from a memory buffer written

to by other tasks, before copying the buffer to the flash memory. At

present the task is developed as a high DAL component and treated as

a hard real time task. However, the task could more easily be designed

to execute for longer, with an assumption that it may periodically drop

jobs. Secondly, as the flash memory records are not used during flight,

but instead for maintenance, the task could be developed against lower

criticality processes. This assumes the necessary protection mechanisms

are put in place, as defined in Chapter 4, to protect the wider system.

The flash memory task has been ported into the Rolls-Royce system

discussed in Chapter 4, where it is treated as a robust low DAL task.

The schedulability analysis for the control system was updated, while

the period of the flash memory task was decreased, and the execution

192

time increased. Overall this increased the permissible utilisation of the

task by a factor of 60. This increase was only permitted thanks to the

MCS’s exploitation of the difference between the analysed (sound, safe

and pessimistic) WCET used for the CHI and the (test measured, robust

but potentially optimistic) system test measured high water mark time

used for each task’s CLO.

The system was implemented using both the AMC+ and the re-

silient models. In both cases the task set was clustered using the Dead-

line P clustering technique. The AMC modelled system was shown to be

schedulable in the low DAL mode, high DAL mode and during a mode

change from the low to high modes. The resilient model was shown to be

schedulable in the low DAL, fail robust (F-mode), fail resilient (M-mode)

and high DAL modes; as well as the transitions between each mode, as

defined by the robust model [34].

The following subsections now explore the service provided to the

Non-Volatile Memory (NVM) task, following the process defined in Sec-

tion 5.1.

5.2.2.1 Specification

The newly configured flash memory task is designed to continuously write

data when called to do so. If the task misses an execution then it will

simply resume writing to memory from the next entry in the memory

buffer. The principal requirement is that the memory buffer does not

overflow; and so the task is designed to write more data than necessary

on each invocation. This means that following a period of reduced service

the task is able to progress back to normal operation provided it has time

to recover.

The following assumptions surrounding the task have been defined

193

for this analysis:

• Due to the task’s increased execution time, if given full service the

task is capable of writing data to flash memory at a faster rate than

the reporting tasks can write data to the shared memory buffer.

• The shared memory buffer is sufficiently large to allow the flash

memory task to skip up to four jobs.

• Once the flash memory task skips a burst of up to four jobs, the

task must execute the following four jobs for at least CLO, in order

to ensure no data is lost.

• Data loss is highly undesirable, but does not affect the safety of the

system.

Therefore, the overriding requirement for analysis is that each time

the flash memory task suffers a job skip burst, it should have a clear

period of at least four successful executions before it can skip a job again.

If the task skips a job in less time, the task is said to have suffered an

error. The task period itself is 12.5ms; therefore the basic requirements

for the task can be defined as follows:

Definition 5.1. A flash memory task error is recorded when the task

suffers two separate bursts of job skips within 50ms.

Definition 5.2. A flash memory task error is recorded when the task

suffers more than four consecutive job skips within a job skip burst.

The NVM task is treated as a robust low criticality task. So when

executed using the AMC model, the task will be instantly disabled when

the system moves to the high DAL mode. In the resilient model the task

will skip up to four jobs when in the Resilient Mode. The task is then

194

disabled fully when in the high DAL mode. The static schedulability

for the system, using both models, was confirmed using the processes

discussed in Chapter 4.

5.2.2.2 Evaluation

The case study for the Non-Volatile memory access use case was config-

ured inside the scheduler simulator and tested against both the AMC+

and resilient models. The analysis was applied three times using the low,

medium and high fault rates as introduced in Section 5.1.

Are we confident the requirement will be complied with?

Figure 5.5 shows the range of results obtained during one simulation

of the NVM Case Study executing inside the AMC model with the high

fault rate timing profile set. The main aim of reviewing the figure is to

assess how far from the minimum requirement the majority of the inter-

quartile range lies. In particular, to provide confidence; the majority of

results should lie well above the requirement.

To further understand the extreme values in the simulation a per-

centile test is then applied to the full set of 100 simulation results ob-

tained in Section 5.3. The results provide an assessment of the extreme

minimum values obtained during simulation, as well as a measure of how

close to the minimum requirement the majority of results lie. For ex-

ample, the 0.1% percentile indicates how many results lie in the bottom

0.1% of the simulation results, showing a result expected at a frequency

of 1 in every 1000 results.

The percentile test results for the NVM case study are shown in Table

5.1. The results indicate that, for all task timing profiles, the AMC

scheduling method produced systems that would be expected to fail to

comply with its NVM temporal requirements at a rate of 1 in every 200

195

Figure 5.5: Box Plot Diagrams Showing the Range of Job Skip Interval

Times, With a Zoomed-Plot on the Right Around the Minimum Require-

ment (AMC High Failure Rate).

times (based on the 0.5% outlier). The resilient scheduling model results

however indicate that with the high error profile, the minimum time

between job skips was measured as 150 seconds, well within the 50ms

requirement. For the medium and low error profiles executing within the

resilient scheduling model, no task job skips were observed.

How frequently will we fail to comply with the requirement?

To assess Goal G8 and Goal G9, the results of one simulation (for each

scheduler mode and timing profile) was fitted to an exponential distribu-

tion in order to produce a continuous distribution for analysis. Figure 5.6

shows a histogram summarising results randomly selected from this fitted

distribution, against a set of results randomly selected from the actual

distribution. This figure shows a profile taken from the AMC high fault

rate. This fitted distribution when compared to the original distribution

196

%

Time Between Job Skips

AMC Resilient

High Med Low High Med Low

0.1% 10.2ms 10.9ms 17.5ms 150s - -

0.5% 10.6ms 12.0ms 33.6ms 154s - -

2.5% 11.6ms 24.5ms 124ms 168s - -

Table 5.1: Percentile Outlier Assessment for the NVM Case Study.

provided a significance result of χ2(12, n = 275) = 35.7, p < 0.011. It

therefore indicated that the fitted distribution and actual distribution

are both taken from the same population.

Reviewing the other simulation models and timing profiles; the results

for each simulation were fitted to an exponential distribution, which was

used to assess the probability of a requirement failure. These results are

shown in Table 5.2. Secondly, Table 5.3 indicates the rate of failure for

each distribution. This is based on the number of job skips observed

during 109 second timeframe, as obtained from a fitted distribution of

job skip intervals.

A number of observations can be made from these results. Firstly,

reviewing the analysis technique, the resilient model does not provide a

high job skip rate. This in turn means the fitted distributions are applied

using less data, reducing their validity. Conversely though, the fact the

resilient models observe less failures provides a positive indication that

the initial design provides sufficient service for the NVM task. At this

1χ2 results throughout this thesis are denoted using the following terminology -

χ2([degrees of freedom], n = [number of samples)] = [result]), [statistical significance].

If the statistical significance (or p value) is less than 0.01, then the two compared dis-

tributions can be said to from the same population; that is they are not independent.

197

Figure 5.6: Histogram Illustrating the Difference in Results Randomly

Selected From a Fitted Distribution and an Actual Distribution.

point in the design, as the simulation is based upon generated timing

profiles, continuation of the simulation in an attempt to obtain further

task failures would not necessarily offer further benefit. This question

is explored further in the next section as Confidence surrounding the

simulation search space is assessed. As the Validity of the approach is

explored, and the generated profiles are combined with actual profiles

obtained from a system test campaign, it is expected that the simulation

would be repeated and extended to aim to provide further confidence in

the design.

While the results generated should be considered in the context that

they are based on manually generated timing profiles; it can be observed

198

Skip

Interval

% Results

AMC Resilient

High Med Low High Med Low

50ms 53.4% 7.5% 0.69% 0% 0% 0%

60ms 61.4% 9.3% 0.87% 0% 0% 0%

70ms 68.1% 11% 1.04% 0% 0% 0%

80ms 73.5% 12.7% 1.2% 0% 0% 0%

90ms 78.1% 14.4% 1.4% 0% 0% 0%

100ms 81.9% 16% 1.6% 0% 0% 0%

1s 100% 85.3% 16% 0% 0% 0%

2s 100% 97.9% 29.7% 0% 0% 0%

Table 5.2: Exceedance Probability from a Fitted Distribution of Simula-

tion Results for the NVM Case Study.

High Med Low

AMC 15981 1901 175

Resilient 1.4 0 0

Table 5.3: Failure Rate Assessed from Extended Simulation. Number of

Failures per 109s for the NVM Case Study.

that the use of graceful degradation in the resilient model has a signifi-

cant effect on the rate of requirement failure. During simulation it was

observed that while it is frequently the case that one task may overrun, it

is rarely the case that multiple tasks overrun. This means that the AMC

model, that switches to the high criticality mode after a single task has

overrun, is severely disadvantaged.

199

5.2.2.3 Confidence

Now an evaluation of the simulation results has been performed, the next

step is to confirm whether the simulation has performed a valid search of

the possible result space - in essence; will further testing reveal additional

results?

Has the simulation executed for long enough?

Confidence in the results is assessed by confirming convergence, and

secondly by reviewing multiple executions of each simulation to ensure

the results showed equivalence. Tables 5.4 and 5.5 show the Minimum

and Mean time observed during this assessment, and following conver-

gence, between job skips in each setup. In all cases the results converge

around these values, as is illustrated by Figures 5.7 and 5.8, which shows

the results from one execution of the simulator for the AMC high error

profile. The figure illustrates the variation in the confidence interval,

mean and minimum as the simulation progresses. The results show that

despite a significant amount of variability initially, the confidence interval

(the range within which there is 95% confidence that the mean resides

within) converges to less than 1ms. The mean and minimum converge

to 62.4ms and 9.5ms2 respectively. The key to analysing these plots is

to identify whether the simulation results are changing as the simulation

continues, or in essence do the results indicate that further exploration

does not reveal any new or different results.

Tables 5.4 and 5.5 show how the decreasing task fault rate affects

the AMC protocol, with the mean time between errors increasing signifi-

2This means the minimum time observed between job skips was actually less than

the task’s period. This was found to be due to task release and completion jitter

thanks to the variation in execution time of higher priority tasks, some of which have

longer periods.

200

Figure 5.7: Changes in Mean (top) and Minimum (bottom) of the Time

Between Job Skip Bursts Over Simulation Time.

Figure 5.8: Changes in Confidence Interval of the Time Between Job

Skip Bursts Over Simulation Time.

201

High Med Low

AMC 9.6ms 9.8ms 14.2ms

Resilient 32,012ms X X

Table 5.4: Minimum Time Between Requirement Errors For The Non-

Volatile Memory Access Case Study.

High Med Low

AMC 62.4ms 504.9ms 5,328.2ms

Resilient 250,392ms X X

Table 5.5: Mean Time Between Requirement Errors For The Non-Volatile

Memory Access Case Study.

cantly, reducing the probability of breaches of compliance of the require-

ment. However, even with a low error rate the AMC model still produces

a system where a time between job skip bursts of approximately 14.2ms

can be observed.

The resilient model however, when using the same task timing pro-

files, produces a system where the time between job skips is significantly

higher. In the case of the Medium and Low error profiles, the simula-

tor did not observe a requirement error; while the resilient model with a

high task fault rate observed Minimum and Mean times between require-

ment errors of approximately 4000 times lower than the same failure rate

observed with the AMC model.

Reviewing the technique used for assessing low DAL task service;

in order to identify whether the simulation of the resilient model ever

observes a requirement error, the simulation was repeated for a longer

period of time (equating to approximately 900 minutes of processor time).

Again the simulator did not observe a job skip at all during this time.

202

Indeed, it was confirmed that for both the medium and low timing profiles

executing within the resilient model that the model did not enter the

resilient mode, let alone the high DAL mode.

Does a large scale evaluation reveal different results?

Figure 5.9: Comparison of EMD over 1000 Simulations.

Figure 5.9 shows the EMD result from executing 1000 simulations.

In each case each simulation’s distribution was randomly sampled using

different sample sizes of the set (1%, 5%, 10%, 20%, 40%, 60%, 80%,

100%) of the length of the distribution. This randomly sampled set was

then compared, using an EMD test, to a randomly selected distribution

of the same length taken from the first simulation. As can be seen from

Figure 5.9 the larger the chosen sample, the closer the two randomly

selected distributions. Secondly, the results are shown to converge as

more data is appended to the sample.

203

Furthermore, the distribution of the first simulation was fitted to an

exponential distribution in order to produce an expected distribution to

test against (fitted with χ2(12, n = 275) = 34, p < 0.01). Each of the

other 999 distributions produced by the simulations were then compared

to this fitted distribution using a χ2 distribution equivalence test; which

showed each simulation was produced from the same population (mean

result - χ2(12, n = 275) = 32.5, p < 0.01).

5.2.2.4 Process Review

These results have indicated that the NVM task can be implemented

inside the Rolls-Royce system profiled in this thesis. The analysis con-

ducted allowed the task’s permissible execution time to be expanded by

a factor of 60, with the timing profiles and simulation providing an initial

indication of the failure rate to be expected for the task.

Reviewing the approach in general; one risk is that some of the statis-

tical methods used (for example extreme value theory) assume that the

input statistical profile is independent and identically distributed. It is

necessary to perform further work to assess that this is indeed the case

with the generated timing profiles. In the meantime to reduce the risk of

this approach the preferred option would be to infer results directly from

the generated simulation profile. Following on from Goal G7 (Figure

5.10) the preferred solutions would be S3 and S4, rather than solution

S5.

The next steps in the process for assessing this case study would be to

update the simulation based on results obtained from a real system test

campaign, as well as assessing the service received by the task directly

inside the integrated system. Whether the task receives appropriate ser-

vice would then have to be assessed from a safety, and mission critical

204

Figure 5.10: Assessing the Probability of Failure.

point of view. This would require the probability of failure (the risk)

being played off against the consequence of failure.

5.3 Summary

This chapter has defined a process that may be applied to assess the

service afforded to a low criticality task in an MCS. The process uses a

scheduler simulator to feed a statistical analysis which aims to provide a

rate of failure for each low criticality task. This result can then be used

to assess compliance to requirements, and ultimately provide a level of

confidence that the task’s temporal requirements will be met. Crucially,

the process is designed to be performed early in a design lifecycle to allow

for fast and efficient redesign if necessary. As project maturity builds,

the statistical analysis can be seeded with execution time distributions

obtained from system test results to refine and build confidence in the

205

produced results.

The process has been applied to the system developed in Chapter 4,

and is designed to use the results output from the analysis introduced in

Chapter 3. A use case, provided by the real industrial system discussed

in Chapter 2, was analysed against the approach to attempt to assess

its applicability. The analysis, applied across two different scheduling

models with three different timing profiles, was able to provide a failure

rate where task job skips has been observed. For the systems that ex-

hibited lower task job skip rates, the statistical analysis process provided

less indicative results. However, this in itself is a positive result for the

resilient scheduling system tested.

The next steps for this analysis would be to extend the process with

results obtained from a comprehensive system test programme, the aim

being to build confidence in the failure rates observed.

206

Chapter 6

Conclusions and Future Work

The motivation for this work comes from a desire to reduce software cost

through the introduction of improved tools and processes to increase

software development efficiency. The key focus of this thesis centred on

the development and proof of mixed criticality systems to achieve this

aim.

Mixed criticality systems and mixed criticality scheduling techniques

offer the potential to better utilise processor hardware by capitalising

on WCET pessimism; and allow the use of cost effective appropriately

levelled software development processes. However, a number of open

problems exist which block the adoption of MCS technology. These in-

clude how to effectively analyse the timing performance of tasks within

such a system, how to develop and certify systems and how to prove the

service provided to low DAL tasks. This thesis has aimed to address these

issues. Crucially, the work has been tested on a real full scale industrial

system without simplification. The following sections now discuss the

work completed within this thesis.

207

6.1 Review of Work Completed

Chapter 1 reviewed the issues currently faced by software developers and

set the scene for the improvements assessed in this thesis. In particular

it outlined that safety critical software applications are expensive to de-

velop, in some cases to such a point that innovation and advancement are

impacted. Current development methods rely on systems developed to

the same criticality. This increases development costs as some software

components are developed against stricter standards than necessary. Fur-

thermore, timing analysis processes can be expensive to perform, while

providing pessimistic results too late in the design lifecycle. These pes-

simistic results, while often necessary for safety, are not appropriately

accommodated by current scheduling techniques.

Chapter 2 introduced an example industrial system, used throughout

the following chapters for testing the developed research. This system

was taken from a live industrial project. The application of the real time

system research developed throughout this thesis to this real industrial

example forms one of the contributions of this work. Which represents,

to the best of the author’s knowledge, one of the first examples discussing

the application of this technology to a system of this scale.

Chapter 3 focused on the assessment of the timing properties of tasks

within a system. Reviewing the existing literature reveals that current

processes and practices for measurement, or hybrid based WCET analy-

sis, assume that test data to support analysis is already present. Whereas

existing methods of automatic test case generation, to a certain extent,

assume that the WCET will be stumbled upon. The work in this thesis

suggested that the combination of the two processes would produce a

sound method for analysis.

This led to one of the core contributions of the chapter; the develop-

208

ment of a series of fitness functions based not on previous techniques for

automatic software execution, but on an understanding of the require-

ments for hybrid measurement based WCET analysis. The new fitness

functions focus on confidence (in the form of coverage), and not on ex-

ecution times observed. The algorithms were tested against a series of

industrial examples, as well as a set of academic benchmarks, and were

shown to provide superior results to the previously accepted methods.

The key output of the tooling in this section is a method for generating

timing properties and profiles for each task within a system, that allows

the system proof in later chapters to be performed.

Chapter 4 progresses to review MCS development. A review of the

current work in the field of MCSs reveals that while much work has been

performed on the development of scheduling methodologies, there has

been less work on the side of system configuration to support certification.

The chapter reviews the certification requirements for a MCS, before

presenting the design for an architecture aiming to provide the temporal

and spatial partitioning required to support timing efficient development

of a MCS for a high/low criticality avionics application. This, together

with appropriate processes for handling scheduler overheads, forms one

of the contributions of this chapter.

The chapter then examines how an existing system may be ported

into the new MCS architecture. The process reviews the temporal re-

quirements of the system in question, which includes a complex task set

interlaced with jitter, transactional and periodic requirements. This led

to the development of a legacy system porting process. The porting pro-

cess, which aims to define a schedulable system with minimal overheads,

takes each requirement into account automatically to help define the final

system. This forms the second contribution of the chapter. The process

209

defined is assessed against two industrial examples before being applied

to a large scale randomised assessment.

Finally, Chapter 5 brings together the WCET assessment work in

Chapter 3 with the MCS design effort in Chapter 4 to present an ap-

proach for assessing the service provided to low criticality tasks. The

need for the work is identified from an assessment of the available litera-

ture, which found significant gaps around how to gain an understanding

of the performance of low criticality tasks within an MCS. The approach,

which forms the principal contribution of the chapter, relies on a statis-

tical assessment of the results produced by a scheduler simulator. The

simulator was fed with the analysis results from Chapter 3 and the sched-

uler configuration information obtained from Chapter 4. Ultimately, the

process defined is discussed in the context of a real industrial case study

taken from the system introduced in Chapter 2.

6.2 Future Work

The work discussed in this thesis has been targeted at application on an

industrial project, and has been tested as such. However, there remains

future work required before such a system could be used for certification

on a live project.

The analysis in Chapter 3 has at time of writing been advanced the

furthest towards application on an industrial project, and has provided

timing results to support certification. However, at present this work has

focused on deterministic architectures, using the processor introduced in

Chapter 2. Lesage et al. looked at whether the fitness functions devel-

oped in this thesis could be scaled to a whole system [67]. Lesage found

that the approach was scaleable, however future work on this subject

210

would benefit from looking at more advanced architectures, or fitness

function combinations. In particular whether any advanced processor

features, such as caches, could be used to better target the generation of

measurement based timing analysis profiles.

This requirement to review the approaches applicability to more ad-

vanced architectures can also be extended to the work discussed in Chap-

ters 4 and 5. Focusing on a real industrial processor has allowed an in-

depth analysis of a real system to be conducted. However, this approach

does carry the risk that the work presented in this thesis is targeted, or

focused, on this one processing platform. While this is a real industrial

platform of the type used across industry, it is still important that future

work focuses on identifying whether any assumptions made through this

thesis need to be reexamined.

The system introduced in Chapter 4 has targeted development us-

ing fixed priority schedulers. Such schedulers were chosen based on the

requirement for ease of verification and understanding. The chapter hy-

pothesises that the clustering and partitioning designs introduced would

be applicable to dynamic priority systems, such as those utilising earli-

est deadline first schedulers. However, no work has been undertaken to

support this hypothesis; it is at present left to future work.

Additionally, the assessment of RTOS overheads assumes an easy

to verify RTOS, executing upon a deterministic processor. The first

assumption is perhaps valid given safety critical applications. However,

as software requirements grow, assessment of RTOS overheads on less

deterministic processors may need to be addressed. The work in chapter

4 is clear in its requirement that the overheads are either assessed or

bounded. So purely bounded overheads may help this future requirement;

however it could also be a source of pessimism in the approach.

211

Chapter 5 presented an approach for validating low critically task

service using a system scheduler. One key point of future work identified

by the chapter is that the process of validating the scheduler simulator

itself is currently left to future work. The process requires a full set of

results produced by the work in Chapter 3 and the full set of results

produced by an end to end software test campaign. At time of writing

such results are not available for assessment.

Finally, the statistical assessment presented in Chapter 5 assumes

that task job failures, or overruns, are independent and identically dis-

tributed. In the system explored in this thesis this can be said to be the

case. However, for systems where this may not be the case the statistical

assessment may need to be expanded. This is at present left to future

work.

6.3 Final Remarks

The central proposition of this thesis is:

Automatic test case generation techniques can be extended to reli-

ably target hybrid measurement based timing analysis to produce sound

WCET profiles. These produced WCET profiles can then be used to aid

the development and validation of mixed criticality schedulers, provided

the certification objectives, overheads of the scheduler, and the service

provided to low criticality tasks are not neglected.

This thesis has shown that appropriately targeted search algorithms

can be used to guide measurement based WCET analysis. This assertion

is backed up by the analysis conducted in this thesis, but also by the

work conducted by Lesage [67] which used the approach to analyse a full

aircraft engine control system on a parallel project to the system used in

212

this thesis.

A Mixed Criticality System design has been presented, developed to

comply with certification objectives to support full start to end system

development. An existing system has been ported to this new architec-

ture (without simplification or modification).

This scheduler design has since been ported into the new Rolls-Royce

software architecture. At this time, the scheduler will not be used to allow

development and integration of a mixed criticality system. However,

it will be used to control debug and test functionality to ensure their

operation does not impact the system they are analysing. This will allow

the approach to be further reviewed and refined in practise.

Finally, a process for reviewing the service afforded to low critical-

ity tasks has been presented. The process utilises the WCET profiles

obtained from Chapter 3 and provides a measure on the probability of

requirement failure for a set of low criticality components within the de-

veloped MCS. The approach is developed around a goal structured safety

case, constructed and supported using a series of statistical analyses.

Additionally, while not a key output from this thesis (as the timing

profiles used to support the analysis were derived), the results of applying

the approach discussed in this thesis to a real industrial system allowed

a substantial increase in available processor utilisation. The results in-

dicated that a MCS utilising a robust system architecture was able to

provide full service to a low criticality component, while allowing the

introduction of an extra 40% system utilisation over the original single

criticality system.

With these remarks in mind, it can be considered that the proposition

of this thesis is valid.

213

214

Appendix A

Open Source Control System

Example Taskset

This open source control system example taskset was taken from Bate

[38].

TaskID Jitter Period Deadline WCET

P1 0 25000 25000 300

P2 0 25000 25000 2088

P3 12500 25000 12961 461

P4 0 25000 25000 340

P5 0 25000 25000 7

P6 0 25000 25000 85

P7 0 25000 25000 1910

P8 0 25000 25000 1971

P9 0 25000 25000 640

P10 0 25000 25000 17

P11 12500 25000 13171 671

P12 0 25000 25000 103

P13 0 25000 25000 203

215

TaskID Jitter Period Deadline WCET

P14 0 25000 25000 26

P15 0 25000 12960 14

P16 0 25000 25000 408

P17 0 25000 25000 278

P18 0 25000 25000 190

P19 0 25000 25000 32

P20 0 25000 25000 228

P21 12500 25000 13184 684

P22 0 25000 25000 273

P23 0 25000 25000 1265

P24 0 50000 12668 318

P25 0 100000 12957 1334

P26 0 50000 12669 52

P27 0 200000 12958 796

P28 0 50000 12958 336

P29 0 50000 12958 408

P30 0 50000 12670 798

P31 0 100000 13182 457

P32 0 50000 49999 351

P33 0 50000 12671 390

P34 0 50000 13181 201

P35 12500 50000 12673 173

P36 0 50000 50000 925

P37 0 50000 50000 321

P38 0 50000 12959 1801

P39 0 50000 50000 522

P40 0 50000 50000 256

216

TaskID Jitter Period Deadline WCET

P41 0 100000 12960 196

P42 0 50000 50000 900

P43 0 50000 12959 1945

P44 0 100000 13183 528

P45 0 100000 12672 551

P46 0 100000 100000 272

P47 0 100000 100000 271

P48 0 100000 100000 378

P49 0 100000 100000 107

P50 0 100000 100000 217

P51 0 100000 100000 4698

P52 0 100000 100000 232

P53 0 100000 100000 30

P54 0 100000 100000 763

P55 0 100000 100000 62

P56 0 200000 200000 304

P57 0 200000 200000 336

P58 0 200000 200000 100

P59 0 200000 200000 8

P60 0 200000 200000 378

P61 0 200000 200000 38

P62 0 200000 200000 428

P63 0 200000 200000 2258

P64 0 200000 200000 328

P65 0 1000000 1000000 5040

P66 0 1000000 1000000 5040

P67 0 1000000 1000000 5040

217

TaskID Jitter Period Deadline WCET

P68 0 1000000 1000000 5040

P69 0 1000000 1000000 5040

P70 0 1000000 1000000 5040

P71 0 1000000 1000000 5040

P72 low 0 25000 25000 100

P73 low 15000 50000 15010 10

P74 low 0 50000 50000 3000

P75 low 0 100000 100000 5000

Table A.1: Example Control System Task Set.

218

Bibliography

[1] R. F. Paige, A. Zolotas, D. S. Kolovos, J. A. McDermid, M. Ben-

nett, S. Hutchesson, and A. Hawthorn, “SECT-AIR: Software en-

gineering costs and timescales – aerospace initiative for reduction”,

Software Technologies: Applications and Foundations, M. Seidl and

S. Zschaler, Eds., pp. 403–408, 2018.

[2] P. Feiler, J. Goodenough, A. Gurfinkel, C. Weinstock, and L. Wrage,

“Four pillars for improving the quality of safety-critical software-

reliant systems”, Carnegie-Mellon University, Tech. Rep., 2013.

[3] D. Dvorak, “NASA study on flight software complexity”, in AIAA

Infotech@Aerospace Conference. 2009.

[4] P. Johnston and R. Harris, “The Boeing 737 MAX saga: lessons

for software organizations”, Software Quality Professional, vol. 21,

no. 3, pp. 4–12, 2019.

[5] C Haddon-Cave, “The Nimrod Review–The Loss of RAF Nim-

rod XV230: A Failure of leadership, culture and priorities”, Report

HC1025. London Stationary Office, Crown Copyright, 2009.

[6] RTCA, “DO-178C - Software Considerations in Airborne Systems

and Equipment Certification”, 2011.

[7] SAE International, “ARP4754A - guidelines for development of

civil aircraft and systems”, vol. 12, 2010.

219

[8] B. W. Boehm, “Software engineering economics”, Prentice-hall En-

glewood Cliffs (NJ), vol. 197, 1981.

[9] P Herzlich, “The politics of testing”, Proceedings of the 1st Eu-

ropean International Conference on Software Testing Analysis and

Review, 1993.

[10] R. Kasauli, E. Knauss, B. Kanagwa, A. Nilsson, and G. Calikli,

“Safety-critical systems and agile development: A mapping study”,

Proceedings of the 44th Euromicro Conference on Software Engi-

neering and Advanced Applications (SEAA), pp. 470–477, 2018.

[11] R. Kirner and P. Puschner, “Obstacles in worst-case execution time

analysis”, Proceedings of the 11th International Symposium on Ob-

ject Oriented Real-Time Distributed Computing, pp. 333–339, 2008.

[12] S. Bünte, M. Zolda, and R. Kirner, “Let’s get less optimistic in

measurement based timing analysis”, pp. 204–212, 2011.

[13] S. Law, M. Bennett, I. Ellis, S. Hutchesson, G. Bernat, A. Colin,

and A. Coombes, “Effective worst-case execution time analysis

of DO178C level A software”, Ada User Journal, vol. 36, no. 3,

pp. 182–186, 2015.

[14] N. Tracey, J. Clark, K. Mander, and J. McDermid, “An automated

framework for structural test-data generation”, Proceedings of the

13th International Conference on Automated Software Engineering,

pp. 285–288, 1998.

[15] R. Davis, I. Bate, G. Bernat, I. Broster, A. Burns, A. Colin, S.

Hutchesson, and N. Tracey, “Transferring real-time systems re-

search into industrial practice: Four impact case studies”, Pro-

ceedings of the 30th Euromicro Conference on Real-Time Systems,

2018.

220

[16] G. Bernat, R. Davis, N. Merriam, J. Tuffen, A. Gardner, M. Ben-

nett, and D. Armstrong, “Identifying opportunities for worst-case

execution time reduction in an avionics system”, Ada User Journal,

vol. 28, no. 3, pp. 189–195, 2007.

[17] J.-F. Deverge and I. Puaut, “Safe measurement-based WCET esti-

mation”, Proceedings of the 5th International Workshop on WCET

Analysis, vol. 5, pp. 13–16, 2005.

[18] S. Stattelmann and F. Martin, “On the use of context information

for precise measurement-based execution time estimation”, Pro-

ceedings of the 10th International Workshop on Worst-Case Exe-

cution Time Analysis, pp. 13–16, 2010.

[19] J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres, “Testing

real-time systems using genetic algorithms”, Software Quality Jour-

nal, vol. 6, no. 2, pp. 127–135, 1997.

[20] B. Jones, H. Sthamer, X. Yang, and D. Eyres, “The automatic gen-

eration of software test data sets using adaptive search techniques”,

Proceedings of the 3rd International Conference on Software Qual-

ity Management, pp. 435–444, 1995.

[21] P. Graydon and I. Bate, “Safety assurance driven problem formu-

lation for mixed-criticality scheduling”, pp. 19–24, 2013.

[22] Aeronautical Radio Incorporated, “Avionics application software

standard interface part 1 - required services”, ARINC Specification

653 Part 1-3, Aeronautical Radio, Inc., 2010.

[23] N. Audsley and A. Wellings, “Analysing APEX applications”, 17th

IEEE International Real-Time Systems Symposium, (RTSS), pp. 39–

44, 1996.

221

[24] S. Vestal, “Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance”, Proceedings of the

28th IEEE International Real-Time Systems Symposium, (RTSS),

pp. 239–243, 2007.

[25] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for

mixed criticality systems”, Proceedings of the 32nd IEEE Interna-

tional Real-Time Systems Symposium, (RTSS), pp. 34–43, 2011.

[26] S. Baruah and A. Burns, “Implementing mixed criticality systems

in ada”, Proceedings of the International Conference on Reliable

Software Technologies, pp. 174–188, 2011.

[27] I. Bate, A. Burns, and R. Davis, “A bailout protocol for mixed

criticality systems”, Proceedings of the 27th Euromicro Conference

on Real-Time Systems (ECRTS), pp. 259–268, 2015.

[28] M. Jan, L. Zaourar, and M. Pitel, “Maximizing the execution rate

of low criticality tasks in mixed criticality system”, Proceedings

of the 1st Workshop on Mixed Criticality Systems (WMC), RTSS,

pp. 43–48, 2013.

[29] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic schedul-

ing for flexible workload management”, IEEE Transactions on Com-

puters, vol. 51, no. 3, pp. 289–302, Mar. 2002.

[30] D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi,

“EDF-VD scheduling of mixed-criticality systems with degraded

quality guarantees”, Proceedings of the 37th IEEE Real-Time Sys-

tems Symposium (RTSS), pp. 35–46, 2016.

[31] S. Altmeyer, B. Lisper, C. Maiza, J. Reineke, and C. Rochange,

“WCET and mixed-criticality: What does confidence in WCET

estimations depend upon?”, Proceedings of the 15th International

222

Workshop on Worst-Case Execution Time Analysis (WCET), pp. 65–

74, 2015.

[32] H. Su and D. Zhu, “An elastic mixed-criticality task model and

its scheduling algorithm”, Proceedings of the Design, Automation

& Test in Europe Conference & Exhibition (DATE), pp. 147–152,

2013.

[33] C. Gill, J. Orr, and S. Harris, “Supporting graceful degradation

through elasticity in mixed-criticality federated scheduling”, Pro-

ceedings of the 6th Workshop on Mixed Criticality Systems (WMC),

RTSS, pp. 19–24, 2018.

[34] A. Burns, R. Davis, S. Baruah, and I. J. Bate, “Robust mixed-

criticality systems”, IEEE Transactions on Computers, pp. 1478–

1491, 2018.

[35] T. Kelly, “Arguing safety: A systematic approach to managing

safety cases”, PhD thesis, The University of York, 1999.

[36] S. Quinton, “Evaluation and comparison of real-time systems anal-

ysis methods and tools”, Proceedings of the International Work-

shop on Formal Methods for Industrial Critical Systems, pp. 284–

290, 2018.

[37] S. Law and I. Bate, “Achieving appropriate test coverage for reli-

able measurement-based timing analysis”, Proceedings of the 28th

Euromicro Conference on Real-Time Systems (ECRTS), pp. 189–

199, 2016.

[38] I. Bate, “Scheduling and timing analysis for safety critical real-time

systems”, PhD thesis, The University of York, 1999.

223

[39] I. Bate and A. Burns, “An integrated approach to scheduling in

safety-critical embedded control systems”, Real-Time Systems Jour-

nal, vol. 25, no. 1, pp. 5–37, Jul. 2003.

[40] B. Korel, “Automated software test data generation”, IEEE Trans-

actions on software engineering, vol. 16, no. 8, pp. 870–879, 1990.

[41] C Ballabriga, H Cassé, and M De Michiel, “The Mälardalen WCET

benchmarks: Past, present and future”, Proceedings of the 10th

International Workshop on Worst-Case Execution Time Analysis,

pp. 136–146, 2010.

[42] S. Petters, “Bounding the execution time of real-time tasks on

modern processors”, Proceedings the 7th International Conference

on Real-Time Computing Systems and Applications, pp. 498–502,

2000.

[43] Rapitime explained: White paper, Accessed: 2014-06-13. [Online].

Available: http://www.rapitasystems.com/downloads/brochures-

white-papers/rapitime-explained.

[44] A. Betts, G. Bernat, R. Kirner, P. Puschner, and I. Wenzel, “WCET

coverage for pipelines”, Real-Time Systems Research Group - Uni-

versity of York and Institute of Computer Engineering - Vienna

University of Technology, Technical Report, 2006.

[45] S. Edgar and A. Burns, “Statistical analysis of WCET for schedul-

ing”, Proceedings of the 22nd Real-Time Systems Symposium (RTSS),

pp. 215–224, 2001.

[46] J. Hansen, S. Hissam, and G. Moreno, “Statistical-based WCET

estimation and validation”, Proceedings of the 9th International

Workshop on Worst-Case Execution Time Analysis, pp. 1–11, 2009.

224

http://www.rapitasystems.com/downloads/brochures-white-papers/rapitime-explained
http://www.rapitasystems.com/downloads/brochures-white-papers/rapitime-explained

[47] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,

L. Kosmidis, J. Abella, E. Mezzetti, E. Quinones, and F. J. Cazorla,

“Measurement-based probabilistic timing analysis for multi-path

programs”, Proceedings of the 24th Euromicro Conference on Real-

Time Systems (ECRTS), pp. 91–101, 2012.

[48] S. J. Gil, I. Bate, G. Lima, L. Santinelli, A. Gogonel, and L. Cucu-

Grosjean, “Open challenges for probabilistic measurement-based

worst-case execution time”, IEEE Embedded Systems Letters, vol.

9, no. 3, pp. 69–72, 2017.

[49] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,

and B. Becker, “A definition and classification of timing anoma-

lies”, Proceedings of the 6th International Workshop on Worst-Case

Execution Time Analysis, pp. 23–28, 2006.

[50] A. Colin and S. Petters, “Experimental evaluation of code proper-

ties for WCET analysis”, Proceedings of the 24th Real-Time Sys-

tems Symposium, pp. 190–199, 2003.

[51] G. Bernat, A. Colin, and S. Petters, “PWCET: A tool for prob-

abilistic worst-case execution time analysis of real-time systems”,

Proceedings of the Conference on Languages, Compilers, and Tools

for Embedded Systems, 2003.

[52] S. Bünte, M. Zolda, M. Tautschnig, and R. Kirner, “Improving the

confidence in measurement-based timing analysis”, Proceedings of

the 14th IEEE International Symposium on Object/Component/Service-

Oriented Real-Time Distributed Computing (ISORC), pp. 144–151,

2011.

225

[53] I. Bate and U. Khan, “WCET analysis of modern processors using

multi-criteria optimisation”, Empirical Software Engineering, vol.

16, no. 1, pp. 5–28, 2011.

[54] N. Williams, “WCET measurement using modified path testing”,

Proceedings of the 5th International Workshop On Worst-Case Execution-

Time (WCET) Analysis, pp. 17–20, 2005.

[55] N. Williams and M. Roger, “Test generation strategies to measure

worst-case execution time”, Proceedings of the ICSE Workshop on

Automation of Software Test, pp. 88–96, 2009.

[56] I. Wenzel, R. Kirner, B. Rieder, and P. Puschner, “Measurement-

based timing analysis”, Leveraging Applications of Formal Meth-

ods, Verification and Validation, pp. 430–444, 2009.

[57] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith, “FShell:

Systematic Test Case Generation for Dynamic Analysis and Mea-

surement”, pp. 209–213, Jul. 2008.

[58] R. Kirner and M. Zolda, “Compiler support for measurement-based

timing analysis”, Proceedings of the 11th International Workshop

on Worst-Case Execution Time Analysis, pp. 62–71, 2011.

[59] M. Zolda and R. Kirner, “Calculating WCET estimates from timed

traces”, Real-Time Systems, vol. 52, no. 1, pp. 38–87, 2016.

[60] T. J. McCabe, “A complexity measure”, IEEE Transactions on

Software Engineering, no. 4, pp. 308–320, 1976.

[61] S. Kirkpatrick, D. Gelatt, and M. P. Vecchi, “Optimization by sim-

ulated annealing”, Science, vol. 220, no. 4598, pp. 671–680, 1983.

[62] D. Connolly, “General purpose simulated annealing”, Journal of

the Operational Research Society, pp. 495–505, 1992.

226

[63] N. Tracey, “A search-based automated test-data generation frame-

work for safety-critical software”, PhD thesis, The University of

York, 2000.

[64] RTCA, “DO-330 - Software tool Qualification Considerations”, 2011.

[65] S Siegel and N. Castellan, Non parametric statistics for the behav-

ioral sciences. McGraw-Hill International, 1988.

[66] M. Hollander and D. A. Wolfe, Nonparametric statistical methods.

Wiley-Interscience, 1999.

[67] B. Lesage, S. Law, and I. Bate, “TACO: An industrial case study

of test automation for coverage”, Proceedings of the 26th Interna-

tional Conference on Real-Time Networks and Systems, pp. 114–

124, 2018.

[68] J. Rushby, “Partitioning for safety and security: Requirements,

mechanisms, and assurance”, NASA Langley Research Center, NASA

Contractor Report, 1999.

[69] K. Tindell and A. Alonso, “A very simple protocol for mode changes

in priority preemptive systems”, Universidad Politecnica de Madrid,

Tech. Rep., 1996.

[70] I. Bate, A. Burns, J. McDermid, and A. Vickers, “Towards a fixed

priority scheduler for an aircraft application”, Proceedings of the

8th Euromicro Workshop on Real-Time Systems, pp. 34–39, 1996.

[71] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks

with multiple criticality specifications”, Proceedings of the 20th Eu-

romicro Conference on Real-Time Systems, pp. 147–155, 2008.

[72] P. Ekberg and W. Yi, “Bounding and shaping the demand of gener-

alized mixed-criticality sporadic task systems”, Real-time systems,

vol. 50, no. 1, pp. 48–86, 2014.

227

[73] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and effi-

cient scheduling of certifiable mixed-criticality sporadic task sys-

tems”, Proceedings of the 32nd IEEE Real-Time Systems Sympo-

sium, pp. 13–23, 2011.

[74] P. Ekberg and W. Yi, “A note on some open problems in mixed-

criticality scheduling”, Proceedings of the 6th International Real-

Time Scheduling Open Problems Seminar, pp. 1–2, 2015.

[75] P. B. Sousa, K. Bletsas, E. Tovar, P. Souto, and B. Åkesson, “Uni-

fied overhead-aware schedulability analysis for slot-based task-splitting”,

Real-Time Systems, vol. 50, no. 5-6, pp. 680–735, 2014.

[76] J. Freitag, S. Uhrig, and T. Ungerer, “Virtual timing isolation for

mixed-criticality systems”, Proceedings of the 30th Euromicro Con-

ference on Real-Time Systems (ECRTS), 2018.

[77] J. L. Herman, C. J. Kenna, M. S. Mollison, J. H. Anderson, and

D. M. Johnson, “RTOS support for multicore mixed-criticality sys-

tems”, Proceedings of the 18th Real Time and Embedded Technology

and Applications Symposium, pp. 197–208, 2012.

[78] A. Paolillo, P. Rodriguez, V. Svoboda, O. Desenfans, J. Goossens,

B. Rodriguez, S. Girbal, M. Faugere, and P. Bonnot, “Porting a

safety-critical industrial application on a mixed-criticality enabled

real-time operating system”, Proceedings of the 5th Workshop on

Mixed Criticality Systems (WMC), RTSS, pp. 1–6, 2017.

[79] C.-G. Lee, H. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y.

Park, M. Lee, and C. S. Kim, “Analysis of cache-related preemption

delay in fixed-priority preemptive scheduling”, IEEE transactions

on computers, vol. 47, no. 6, pp. 700–713, 1998.

228

[80] R. Davis, S. Altmeyer, and A. Burns, “Mixed criticality systems

with varying context switch costs”, Proceedings of the Real Time

and Embedded Technology and Applications Symposium (RTAS),

pp. 140–151, 2018.

[81] A. Burns and R. I. Davis, “Adaptive mixed criticality scheduling

with deferred preemption”, Proceedings of the 35th IEEE Real-

Time Systems Symposium, pp. 21–30, 2014.

[82] N. C. Audsley, “On priority asignment in fixed priority scheduling”,

Information Processing Letters, vol. 79, no. 1, pp. 39–44, 2001.

[83] A. Bertout, J. Forget, and R. Olejnik, “Automated runnable to

task mapping”, Tech. Rep., May 2013.

[84] E. Oklapi, M. Deubzer, S. Schmidhuber, E. Lalo, and J. Mot-

tok, “Optimization of real-time multicore systems reached by a

genetic algorithm approach for runnable sequencing”, Proceedings

on the International Conference on Applied Electronics, pp. 233–

238, 2014.

[85] H. R. Faragardi, B. Lisper, K. Sandström, and T. Nolte, “An effi-

cient scheduling of autosar runnables to minimize communication

cost in multi-core systems”, Proceedings of the 7th International

Symposium on Telecommunications (IST), pp. 41–48, Sep. 2014.

[86] International Standards Organisation, “26262 - road vehicles-functional

safety”, 2011.

[87] A. Burns, K. Tindell, and A. Wellings, “Effective analysis for engi-

neering real-time fixed priority schedulers”, IEEE Transactions on

Software Engineering, no. 5, pp. 475–480, 1995.

229

[88] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic schedul-

ing algorithm: Exact characterization and average case behaviour”,

Proceedings of the 10th Real Time Systems Symposium, pp. 166–

171, 1989.

[89] E. Bini and G. Buttazzo, “Measuring the performance of schedu-

lability tests”, Real-Time Systems, vol. 30, no. 1-2, pp. 129–154,

2005.

[90] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive

benchmarks for free”, Proceedings of the 6th International Work-

shop on Analysis Tools and Methodologies for Embedded and Real-

time Systems, 2015.

[91] L. Huang, I.-H. Hou, S. S. Sapatnekar, and J. Hu, “Graceful degra-

dation of low-criticality tasks in multiprocessor dual-criticality sys-

tems”, Proceedings of the 26th International Conference on Real-

Time Networks and Systems, pp. 159–169, 2018.

[92] A. Burns and S. Baruah, “Towards a more practical model for

mixed criticality systems”, Proceedings of the 1st Workshop on

Mixed-Criticality Systems, RTSS, pp. 1–6, 2013.

[93] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment

technique for streams with (m, k)-firm deadlines”, IEEE transac-

tions on Computers, vol. 44, no. 12, pp. 1443–1451, 1995.

[94] G. Bernat and A. Burns, “Combining (m/n)-hard deadlines and

dual priority scheduling”, Proceedings of the 18th Real-Time Sys-

tems Symposium, pp. 46–57, 1997.

[95] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time sys-

tems”, IEEE transactions on Computers, vol. 50, no. 4, pp. 308–

321, 2001.

230

[96] O. Gettings, S. Quinton, and R. Davis, “Mixed criticality systems

with weakly-hard constraints”, Proceedings of the 23rd Interna-

tional Conference on Real Time and Networks Systems, pp. 237–

246, 2015.

[97] R. Medina, E. Borde, and L. Pautet, “Availability enhancement

and analysis for mixed-criticality systems on multi-core”, Proceed-

ings of the Design, Automation Test in Europe Conference Exhibi-

tion (DATE), pp. 1271–1276, Mar. 2018.

231

	Abstract
	List of Figures
	List of Tables
	List of Symbols
	Acknowledgements
	Declaration
	1 Introduction
	1.1 Software Development Life-cycle
	1.2 Assessing a Component's Timing Behaviour
	1.3 Process Proportionate to System
	1.4 Coping With WCET Pessimism
	1.5 Difficulties of Applying Academic Research to Industry
	1.6 Thesis Proposition
	1.7 Thesis Structure

	2 The Industrial Context: A Current FADEC System
	2.1 Current Approach to WCET
	2.2 Target Processor
	2.3 Current Scheduling Approach and Architecture
	2.4 System Model
	2.5 Summary

	3 Obtaining Reliable Task Timing Profiles
	3.1 Literature Survey
	3.1.1 Measurement-Based WCET Techniques
	3.1.2 Garbage in, Garbage out
	3.1.3 Producing Measurement Data to Support WCET Analysis
	3.1.4 Summary of the Literature Surrounding WCET Analysis

	3.2 Target Application
	3.3 Optimisation Algorithms
	3.3.1 Solution Generation
	3.3.2 Temperature Control
	3.3.3 Stopping Criteria
	3.3.4 Derivation of a WCET

	3.4 Automatic Software Execution
	3.4.1 System Setup
	3.4.2 Initial Algorithm Design
	3.4.3 Initial Results and Analysis
	3.4.4 Assessing the Importance of System State
	3.4.5 Improving Coverage
	3.4.6 Targeting Hard to Reach Paths
	3.4.7 Increasing Confidence
	3.4.8 Fitness Function Evaluation

	3.5 Summary

	4 Developing Mixed Criticality Systems for Real Platforms
	4.1 Literature Survey
	4.1.1 Scheduling Theory
	4.1.2 Static Schedulability Analysis
	4.1.3 System Definition
	4.1.4 Summary

	4.2 Mixed Criticality System Design
	4.2.1 Certification Requirements
	4.2.2 Partitioning
	4.2.3 Derivation of Task Timing Parameters
	4.2.4 RTOS and Target Hardware Requirements
	4.2.5 Schedulability Analysis Extensions
	4.2.6 Review Against Certification Requirements

	4.3 Current Rolls-Royce Approach to Scheduling
	4.3.1 Open Source Industrial Example

	4.4 Porting Existing System to the MCS Architecture
	4.4.1 Porting Tasks Without Clustering
	4.4.2 Clustering to Support System Design
	4.4.3 Porting Tasks By Period
	4.4.4 Porting Tasks By Transaction
	4.4.5 Porting Tasks By Jitter
	4.4.6 Porting Tasks By Deadline
	4.4.7 Results from Applying the Clustering Techniques to the Rolls-Royce Control System
	4.4.8 Large Scale Evaluation

	4.5 Resilient System Design
	4.5.1 Handling Overruns
	4.5.2 Resilient Schedulability Analysis Updates for Overheads
	4.5.3 Porting an Existing System to the Resilient Model
	4.5.4 Open Source Control System
	4.5.5 Rolls-Royce Control System
	4.5.6 Large Scale Evaluation
	4.5.7 Summary

	5 Assessing Low Criticality Task Service
	5.1 Assessing the Service Afforded to a Low DAL Task
	5.1.1 Goal Structuring Notation
	5.1.2 Specification
	5.1.3 Evaluation
	5.1.4 Confidence
	5.1.5 Validation
	5.1.6 Summary

	5.2 Industrial System Use Case Application
	5.2.1 Simulator Configuration
	5.2.2 Non-Volatile Memory Access

	5.3 Summary

	6 Conclusions and Future Work
	6.1 Review of Work Completed
	6.2 Future Work
	6.3 Final Remarks

	A Open Source Control System Example Taskset

