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Abstract

In large-scale computer systems and software development, model-driven engineering

is an approach that focuses on the development and management of models. The

models are usually expressed in diagrams, textual notations, or code. Most of these

models persist in state-based formats. While state-based persistence has certain

advantages, it is problematic when it comes to detecting changes in large-scale

models. As an alternative, this work proposes a change-based approach that involves

persisting the full sequence of changes made to models. Persisting a model in a

change-based format has the potential to deliver benefits over state-based persistence,

such as the ability to perform model differencing and conflict detection much faster

and more precisely. This can then yield positive follow-on effects to help developers

compare and merge models in collaborative modelling environments. Nevertheless,

change-based persistence also comes with downsides, including increased model

loading time.

This work investigates two approaches to reduce loading time. The first is to identify

and ignore superseded changes, and the second uses hybrid model persistence. While

the former is still greatly outperformed by loading models from state-based persistence,

the latter experiences only a slight slowdown in most cases.

This work also proposes an approach for faster model differencing and conflict

detection. It works by exploiting the nature of change-based persistence, which

allows finding differences and conflicts between two versions of a model by comparing

only the last set of changes applied to them, without having to compare every

element and feature in both versions as is traditionally done in state-based model

comparison. This work’s evaluation shows that the proposed change-based model

differencing and conflict detection outperform the existing traditional state-based

approach. Nevertheless, models that have been excessively modified could impair the

performance of the proposed model differencing and conflict detection as numerous

change records must be loaded into memory.
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Chapter 1

Introduction

This chapter briefly presents the background of the research presented in this thesis

and the aim of this research. Several research objectives to accomplish the aim of the

research are then defined, followed by a discussion of research outputs and scoping.

Finally, this chapter presents the structure of this thesis and lists the papers that

have been published from this research.

1.1 Background

In large-scale computer systems and software development, model-driven engineering

is an approach that focuses on the development and management of models—usually

expressed in diagrammatic or textual notations. Most of these models persist in

state-based formats. In a state-based format, model files contain snapshots of the

models’ contents, and activities like version control and change detection are left to

external systems such as file-based version-control systems and model differencing

facilities. Activities such as model differencing (identifying parts of two versions of a

model that are different) and conflict detection (finding conflicting changes between

two versions of a model) are computationally expensive for state-based models [1].

The research presented in this thesis is motivated by the need to find a more efficient

approach to model differencing and conflict detection.

As an alternative to state-based persistence, this work proposes that a model can

be persisted in a change-based format, which persists the full sequence of changes

15



Chapter 1. Introduction 16

made to the model. The concept of change-based persistence has been used in

persisting changes to software, object-oriented databases, and hierarchical documents

[2–4]. Change-based approaches facilitate detection of differences between versions,

and they make better semantic identification of the differences. They do this by

providing information with finer granularity (e.g. types of changes, the order of the

changes, elements that were changed, and previous values). Better and more-granular

identification of differences can provide better support for resolution of conflicts, e.g.

where versions of a model have been modified in different ways [5]. The ordered

nature of change-based persistence means that changes made to a model can be

identified sequentially without having to explore and compare all elements of the

model against its previous version. The ability to detect changes faster and with

precision can then have positive follow-on effects to support:

1. Model differencing, conflict detection, and merging in collaborative modelling

environments, and

2. (2) Incremental model management (e.g., incremental query [6] and model-to-

text transformation [7]).

Based on these arguments, this work explores the advantages and shortcomings of

change-based persistence as an alternative approach to state-based persistence for

models conforming to three-layer (instance, model, and meta-model layers) meta-

modelling architectures such as the Eclipse Modelling Framework (EMF) [8] and

Meta-Object Facility (MOF) [9]. There

Nevertheless, change-based persistence also comes with downsides, such as ever-

increasing size of model files [2, 10] and increased model loading time [5], which

increase costs for storage and computation. Every time a model is modified, the file

that records its list of changes increases in size. The increased file size (proportional

to the number of persisted changes), in turn, increases the loading time of the model

since all changes must be replayed to reconstruct the model’s eventual state. These

downsides need to be mitigated to enable the practical adoption of change-based

persistence. Another downside is that change-based persistence requires integration

with existing tools for its adoption [11], since it is still a non-standard approach.

This downside can be addressed by developing a change-based persistence plugin for



Chapter 1. Introduction 17

a specific development environment (e.g. Eclipse).

1.2 Research Aim

The aim of this work is to develop a novel change-based approach to model persistence

and to assess its advantages and shortcomings against existing textual state-based,

database-backed state-based, and database-backed changed-based model persistence

formats. This work is concerned with models that conform to meta-models expressed

in object-oriented meta-modelling languages such as Ecore [12] and MOF. The

advantages and shortcomings considered in this work are in terms of computational

cost and memory usage for 1) model loading, 2) model saving, 3) model differencing,

and 4) conflict detection.

1.3 Research Objectives

This research has defined the following research objectives to accomplish the aim of

the research.

1. Identify and study existing model persistence approaches in the context of the

EMF meta-modelling architecture.

2. Identify and study change-based artefact persistence approaches outside of the

EMF technical space.

3. Design a generic change-based model persistence format for models that conform

to arbitrary EMF (Ecore) meta-models and to implement algorithms for saving

and loading models in that format.

4. Implement algorithms for differencing and conflict detection between two

versions of change-based models.

5. Assess the performance and memory use of loading, saving, differencing, and

conflict detection of change-based models against established model persistence

approaches.
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1.4 Research Outputs

By the end of this research, the following outputs have been produced:

1. Prototypes of change-based model persistence, change-based model differencing,

and change-based conflict detection.

2. Designs and evaluation results of the persistence, novel approaches for loading

and saving time reduction, model differencing, and model conflict detection of

change-based models.

1.5 Research Scope

The scope of this research is as follows:

1. This work is restricted to models that conform to three-level (instance, model,

and meta-model layers) meta-modelling architectures. EMF is used as a

representative of such architectures for the implementation of all solutions and

prototypes. EMF is selected over other frameworks, such as Meta Programming

System (MPS) [13] and Microsoft Modeling SDK for Visual Studio [14], since

it has been a de-facto standard and widely-adopted framework for modelling.

2. This work only covers change-based model persistence, differencing, and conflict

detection. Change-based model merging is beyond the scope of the research

presented in this thesis.

3. Although it is mentioned several times in this report, the use of change-based

persistence to support incremental model management is not part of this work.

1.6 Thesis Structure

This section provides an overview of the remaining chapters of the thesis.

1.6.1 Chapter 2: Literature Review

This chapter summarises work related to change-based persistence and comparison,

critically assesses the advantages and disadvantages of current approaches, and seeks

opportunities to contribute new knowledge to the field.
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1.6.2 Chapter 3: Analysis and Hypothesis

This chapter summarises on the findings of the literature review and presents the

motivation for a new change-based persistence format and a novel approach to

improve the performance of model differencing and conflict detection by exploiting

change-based persistence. Based on the findings in Chapter 2, this chapter presents

the hypothesis and research questions addressed in this study. It also presents an

overview of the research method used to answer the research questions.

1.6.3 Chapter 4: Designing Change-based Persistence for Models

This chapter presents the concept of the change-based model persistence proposed in

this research and its prototype implementation. Its contents have been published in

the FlexMDE 2017 workshop [15].

1.6.4 Chapter 5: Optimised Loading of Change-based Models

Change-based persistence comes with the downside of ever-growing file sizes [2, 10],

which causes increased loading time [5]. Reducing the loading time is essential to

facilitate the practical adoption of change-based persistence. One way to reduce

loading time is by ignoring—not replaying—changes that are cancelled out by

subsequent changes.

To evaluate the efficiency of the proposed approach, an optimised loading algorithm

that ignores superseded change events is compared to a naïve loading of a change-

based representation and loading the same model from a state-based representation.

They are compared on the time required to load the models and their memory

footprints. Evaluation is also performed on the time required for persisting changes

between change-based and state-based persistence. The contents of this chapter are

based largely on a published conference paper presented at the ECMFA 2018 [16].

Compared to the naïve change-based representation, the optimised version shows

considerable savings in terms of loading time and a negligible impact on saving time,

but at the cost of a higher memory footprint. However, in terms of loading time and

memory footprint, XMI outperforms both approaches, but it is much less efficient in

saving changes.
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1.6.5 Chapter 6: Hybrid Model Persistence

While optimised loading is faster than naïve loading, the benefits are moderate, and

optimised loading is still slower than loading from a state-based representation [17].

This finding has motivated the design and development of a hybrid approach to

persistence that augments a change-based representation with a fully derived, state-

based representation.

The hybrid model persistence approach is evaluated by comparing it to state-based

persistence (e.g. XMI, NeoEMF [18]) in terms of time, the memory footprint, and

the storage space required to load models and persist changes. An evaluation is also

performed of the time required to detect changes between hybrid and state-based

persistence. The contents of this chapter are based largely on a workshop paper

presented at the Model Evolution 2018 [17].

Results of the evaluation indicate that the hybrid approach to model persistence

provides benefits on model loading time, since its performance is comparable to

loading a model from a change-based persistence only, with trade-offs on increased

memory footprint and storage space usage.

1.6.6 Chapter 7: Efficient Model Differencing of Change-based Mod-

els

This chapter describes change-based model differencing and its implementation with

an evaluation. Change-based persistence is expected to speed-up model differencing

because the information required to identify changes is already contained in the

models’ persistence.

The proposed model differencing is evaluated by comparing it to state-based model

differencing in terms of the time and memory footprint required to find all differences

between two versions of a model. The contents of this chapter are based largely on a

conference paper presented at the ECMFA 2019 [19].

Based on our experiments, this study argues that the change-based comparison

approach works best for large models that have been modified a moderate number of

times. Our experiments demonstrate savings in the order of 90% for (relatively) small

changes made to large models. However, models that have been excessively modified
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and experience a significant reduction of model size could impair the performance of

change-based model differencing as a high number of change records must be read

and loaded into memory.

1.6.7 Chapter 8: Efficient Conflict Detection of Change-based Mod-

els

This chapter presents change-based model conflict detection. After identifying the

differences between two versions of a change-based model, this work also aims to

detect conflicts between two versions of a model. Model conflict detection is a crucial

step that precedes model merging.

Similar to change-based model comparison, the proposed conflict detection also is

evaluated by comparing it to the conflict detection of existing change- and state-based

persistence in terms of the affected time and memory footprint.

The findings from the conflict detection evaluation indicate that the proposed ap-

proach can substantially reduce conflict detection time (up to more than 90% in

some experiments) compared to existing state-based and change-based conflict detec-

tion approaches. Nevertheless, models that have been excessively modified or that

experience a significant reduction in model size could impair the performance of the

conflict detection, as a great number of change records must be read and loaded into

memory.

1.6.8 Chapter 9: Conclusions and Future Work

This chapter summarises the work that has been carried out and uses the results of

the evaluations to answer the research questions and hypothesis proposed in Section

3.2. It also presents limitations and threats to the validity of this research and

suggests future work to address them.

1.7 Publications

The research in various parts of the thesis has been published in the following papers:

1. A. Yohannis, D. S. Kolovos, and F. Polack, ‘Turning models inside out,’ in

Proceedings of MODELS 2017 Satellite Events co-located with ACM/IEEE 20th
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International Conference on Model Driven Engineering Languages and Systems

(MODELS 2017), Austin, TX, USA, September, 17, 2017., 2017, pp. 430–434.

[Online]. Available: http://ceur-ws.org/Vol-2019/flexmde_8.pdf

(Chapter 4).

2. A. Yohannis, H. H. Rodriguez, F. Polack, and D. S. Kolovos, ‘Towards effi-

cient loading of change-based models,’ in Modelling Foundations and Applica-

tions—14th European Conference, ECMFA 2018, held as Part of STAF 2018,

Toulouse, France, June 26–28, 2018, Proceedings, 2018, pp. 235–250. [On-

line]. Available: https://doi.org/10.1007/978-3-319-92997-2_15

(Chapter 5).

3. A. Yohannis, H. H. Rodriguez, F. Polack, and D. S. Kolovos, ‘Towards hybrid

model persistence,’ in Proceedings of MODELS 2018 Workshops co-located

with ACM/IEEE 21st International Conference on Model Driven Engineering

Languages and Systems (MODELS 2018), Copenhagen, Denmark, October,

14, 2018., 2018, pp. 594–603. [Online]. Available: http://ceur-ws.org/

Vol-2245/me_paper_3.pdf (Chapter 6).

4. A. Yohannis, H. H. Rodriguez, F. Polack, and D. Kolovos, ‘Towards efficient

comparison of change-based models,’ B. Combemale and A. Shaukat, Eds., vol.

18, no. 2, Jul. 2019, pp. 7:1–21, the 15th European Conference on Modelling

Foundations and Applications. [Online]. Available: http://www.jot.fm/

contents/issue_2019_02/article7.html (Chapter 7).
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Chapter 2

Literature Review

This chapter presents the literature review of this study. First, it highlights key

characteristics—unique features, strong points, and downsides—of some existing

implementations of two main types of persistence: state and change-based persistence.

It then introduces desirable characteristics for a new change-based persistence imple-

mentation. This chapter then reviews the related work on identifying differences and

detecting conflicts between versions of models in state and change-based persistence.

It presents the challenges that model differencing and conflict detection are currently

dealing with, as well as the downsides of existing approaches to solving the problems,

which gives motivation to this research to come up with a new solution. Finally, the

conclusions of the literature review are presented.

2.1 Models in This Research

A model is an abstract representation of an entity [20]. It can be used for different

purposes: as a sketch to communicate a system, as a blueprint to define the speci-

fication of a system, or as a modifiable artefact to generate a working system [21].

In model-based software engineering, the latter is the scenario in which models are

mainly used. In that scenario, a model is created using a modelling language, and

the model should conform to its meta-model—an abstraction that describes the

model. Later, the model can be transformed to generate a software artefact through

model transformation/code generation [22]. The software artefact, its model, and

23
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the model’s meta-model create a three-layered abstraction which is known as the

three-layer meta-modelling architecture.

Eclipse Modeling Framework (EMF) [12] is a technical implementation of such an

architecture. It is a framework and code-generating facility that allows developers to

define meta-models, create models, and generate implementations of the models [12].

In this research and literature review, we focus on models and modelling tools that

support the three-layer meta-modelling architecture of EMF.

2.2 Model Persistence

In constructing models, modelling tools should be able to support model persistence

so that models under construction can be saved at any time and reloaded for further

modification. Most tools persist models in a state-based format. That is, they

capture a snapshot of a model at a time and then persist its entire state into storage.

The model state can be persisted in different forms, such as text files, relational

databases, or NoSQL databases.

2.2.1 Text Files

The simplest and most common way to save a model is to persist it into a text file. By

default, modelling tools that support the three-layer meta-modelling architectures of

Eclipse Modeling Framework (EMF) [12] persist a model in a text file with a format

of Metadata Interchange (XMI)—a standard issued by Object Management Group

(OMG) for exchanging metadata information using Extensible Markup Language

(XML) [23].

Since it is the default for persisting EMF models, it is supported by most modelling

tools. To modify a model persisted in an XMI file, such as performing create, read,

update, delete (CRUD) operations, a tool has to de-serialise and load the model from

the file into memory. This can be a problem when we want to make a few changes but

the size of the model is very large—it takes considerable time and memory to load

the model. Also, when it is saved, the model must be persisted in its entirety. This is

not efficient when we made only a few changes. Since it is a text-based file, the model

can be duplicated and shared with minimum effort, e.g. through manual copy or
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version control systems (e.g. Git [24] and SVN [25]). However, for model differencing

(see Section 2.3), text-based differencing [26] cannot be applied accurately to XMI

files since they are essentially tree documents which require different differencing

approaches [27].

2.2.2 Relational Databases

Models can also be persisted into relational databases. EMF Teneo [28] is a solution

that integrates EMF with existing persistency solutions, such as Hibernate [29] and

EclipseLink [30]. Thus, it can persist EMF models into relational database backends.

In this way, EMF Teneo can utilise the power of storage, caching, and querying of the

database backends. It also supports the automatic mapping of models to relational

model schema with flexible mapping customisation. Using relational databases as

its backends enables EMF Teneo to support the lazy loading of models. So, when

performing CRUD operations, it only loads and saves relevant elements and features

– not the entire model – into and from memory. This is efficient in terms of memory

usage.

Similar to EMF Teneo, Connected Data Objects (CDO) [31] also supports persisting

models into various database elements model persistence (e.g. relational and NoSQL

databases). It is a development-time model and meta-model repository as well

as a distribution and runtime persistence framework for EMF-based application

systems. It supports model versioning and can perform model differencing and

conflict detection—it uses EMF Compare [32] to perform the comparison [33]. One

downside of CDO is that it requires the use of a separate version control system (e.g.

a Git repository for code and a CDO repository for models). This can introduce

fragmentation and create challenges to file administration [34].

2.2.3 NoSQL Databases

In the era where data is abundant and models are getting larger, the ability to

handle large models is necessary. Tools, such as Morsa [35] and NeoEMF [18], have

been developed to persist models into non-relational (NoSQL) databases. Morsa

saves models in documents with MongoDB as its backend [36], while NeoEMF

persists models in multiple NoSQL backends: Neo4j [37] for Graphs, MapDB [38]
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for Maps, and Apache HBase [39] for Column datastores. The advantages of using

NoSQL databases are that users are given options to choose which datastores—with

some degree for configuration—that best fit the characteristics of their models and

meta-models. This helps to maximise the features the backends provide, such as

lazy loading and caching. Neither Morsa nor NeoEMF provides built-in support for

versioning, and models are eventually stored in binary files/folders which are known

to be a poor fit for text-oriented version control systems like Git and SVN.

2.2.4 Change-based Representation (EMF Store)

All the solutions previously mentioned persist models in state-based formats. EMF

Store [11] takes a different approach; it persists models in a change-based represen-

tation. EMF Store appears to be the only current implementation of change-based

persistence for EMF models.

EMF Store is a model repository, and it supports collaborative editing and versioning

of models [40]. Instead of using standard text-oriented version controls (e.g., Git,

SVN) for model versioning, EMF Store has its own dedicated, change-based, model-

oriented versioning mechanism. Models are shared through a server and distributed

to client applications. Clients can modify the models in parallel, offline or online, and

synchronise with the server. Conflicts caused by concurrent modification are detected

automatically, and they can be resolved interactively by users. The historical changes

to models are kept on the server, and different versions of a model as well as changes

that produced them can be retrieved from the server.

In EMF Store, to version models, a project must first be created. A project can

contain one or more models. Every project has a version history, and each version

represents a commit of a client. A commit sends a package of changes to the server.

The package itself contains a collection of operations that transforms the project

to a newer version or can be expressed as the differences (the deltas) between the

two versions. An operation can be add, delete, set, unset, or move that modifies an

element or feature, or it can be a composite operation—one that consists of many

operations, e.g. re-factoring which moves a method to a superclass.

To obtain a specific version of an existing project, a client performs a checkout. This
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version is called the base version on the client side. The client can then modify this

version. Every operation applied to the version is recorded by EMF Store. When

the client commits, these operations are put into one package and sent to the server.

If the base version is still the head version of the project on the server, the commit

is accepted, and a new version is created. If the base version is not the head version,

it means that another client has committed its changes to the server. Thus, the

current client has to synchronise it by updating its local project. This is the state

where conflicts can happen between the incoming version and local changes, that

is, when they modify the same element or feature of a model. EMF Store performs

conflict detection to identify conflicts automatically. The mechanism of EMF Store

to identify conflicts is discussed in detail in Section 8.3.

As an illustration to show how EMF Store works, let’s say that Jane has created a

project on the server (Figure 2.1, step 1) setting an initial version, v0, of the model.

She also shared it so that her team members could also work on the same project.

Jane then created an initial model (step 2) and committed it to the server (step

3). As she committed her work on the server, operations o1 and o2 while she was

creating the initial model were also sent to the server producing version v1.

Figure 2.1: An example to show how EMF Store works.

Bob and Alice then checked out Jane’s work from then server creating copies of

version v1 on their local machines (steps 4 and 5). Alice edited Jane’s model by

performing operations o3 and 04 (step 6). She then committed her changes to the
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server, producing version v2 (step 7). Her commit was straightforward since her base

version v1 was the same as on the server — no conflict detection is needed. After the

commit, the server holds three versions of the model, v0, v1, and v2, including with

their packages of operations, p1, containing o1 and o2, and p2, containing o3 and o4.

Bob also modified Jane’s model in parallel. He performed operations o5 and o6 (step

8). However, when he tried to commit his work, he was required to update his work

(step 9) since his base version was different from the one that was on the server due

to the previous commit performed by Alice. His base version was v1, while v2 was

the latest version on the server. When updating, a conflict detection was performed

to detect conflicts between the server’s operations and his local operations. If there

was a conflict, he was required to solve the conflict first before he could commit his

work to the server (step 10).

The primary motivation from EMF Store to a change-based approach is that calculat-

ing the differences between two versions in state-based persistence can be expensive

and less accurate [41] (State-based model differencing identifies differences using

Longest Common Subsequence (LCS) algorithms [26,32], not the real changes). Since

it follows a change-based approach, EMF Store does not store the state of every

version. It saves operations of each version in an ordered manner only so they can

be executed and reversed to obtain the states between versions. Nevertheless, it also

stores the intermediate cached states for selected versions, including the head version,

to speed up the retrieval of specific versions.

The advantages of EMF Store are that it was designed to allow semantic versioning

of models. It can make model differencing and conflict detection more accurate

and efficient when compared to on state-based model persistence [41]. By default,

the packages of operations are persisted in XMI files, but EMF Store can also be

configured to use other backends like MongoDB [42]. The downsides of EMF Store

are that it has its own mechanism for controlling versions. This limits its adopters to

use common text-oriented version controls [43], such as Git and SVN. Its performance

can also degrade as more models/users are added to a repository [44].

The advantages and downsides of the different model persistence solutions presented

in this section can be found in Table 2.1. These advantages and downsides reveal
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Table 2.1: Advantages and downsides of different model persistence solutions.

Product Advantages Downsides

XMI + default standard, widely supported

+ easy to duplicate and share by manual

copy or text-oriented version controls

– requires loading the entire model to

modify

– a model is saved in its entirety

– supports text-oriented version controls,

but applying text-based differencing

might produce inaccurate results

Teneo + supports lazy loading, only load and

save affected elements and features when

performing CRUD operations

+ can be supported by database backends:

rollback, caching, etc.

– does not support model versioning,

comparison, and merging

– multiple concurrent accesses can cause a

bottleneck

– poor fit for text-oriented version controls

since models are persisted in database

CDO + supports lazy loading, only load and

save affected elements and features when

performing CRUD operations

+ supports model versioning, comparison,

and merging

+ can be supported by database backends:

rollback, caching, etc.

– fragmentation and administration

challenges because of separation of

version controls between models and

code

– poor fit for text-oriented version controls

since models are persisted in database

Morsa &

NeoEMF
+ supports lazy loading, only load and

save affected elements and features when

performing CRUD operations

+ can be supported by NoSQL backends:

handling big data, graph data, etc.

– do not support model versioning,

comparison, and merging

– poor fit for text-oriented version controls

since models are persisted in database

EMF

Store
+ supports semantic versioning of models,

which allows model merging and conflict

detection to be more effective

+ faster in detecting conflicts when

numbers of changes are relatively small

– requires loading the entire model to

modify

– a model is saved in its entirety even for

small changes

– persists models in the forms of

files/folders and using its own

mechanism for model versioning; thus, it

is a poor fit for text-oriented version

controls
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points to consider on how to design a change-based model persistence format that is

compatible with version control systems such as Git and SVN. These considerations

are presented in Section 3.1.

2.2.5 Change-based vs. State-based Persistence

This section compares the advantages and drawbacks of change-based and state-based

persistence in general, not limited to EMF models. Change-based persistence works

by persisting the complete change history of an artefact instead of persisting a

snapshot—the entire state—of an artefact at a time. The concept of change-based

persistence is not new; it has been used to persist changes of software, object-oriented

databases, hierarchical documents, and models [2–4,11].

Change-based persistence offers two main advantages. First, it records information

(e.g. types of changes, the order of the changes, elements that were changed, and

previous values) with finer granularity. This can improve the accuracy of change

detection [2–5]. Second, it records changes in an ordered manner, which means that

changes made to an artefact can be identified sequentially without having to explore

and compare all elements of compared versions of an artefact [10]. The advantages

to detect changes more precisely and much faster can then have related benefits: (1)

developers can compare and merge artefacts in collaborative environments [3, 4, 11]

and (2) incremental management [6, 7, 45]. Moreover, changed-based persistence

contains a wealth of information which can be exploited for analytics [2].

Nevertheless, change-based persistence also comes with downsides, such as ever-

growing artefact files [2, 10] and increased artefact loading time [5], which increases

storage and computation costs. An artefact that is frequently modified will increase

considerably in file size since every change is added to the file. The increased file size

(proportional to the number of persisted changes) will, in turn, increase the loading

time of the artefact since all changes must be replayed to reconstruct the artefact’s

eventual state.

Other downsides are that change-based persistence requires integration with existing

tools—since it is still a non-standard approach—for its adoption [11], and it still has

limited support for standard, text-based version controls for collaborative development
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[11]. These downsides can be addressed by developing a change-based persistence

plugin for a specific development environment (e.g. Eclipse) and persisting changes

in text-based format to support text-based version controls (e.g. Git, SVN).

In summary, state-based persistence has several strong points. First, since it is

the default standard persistence approach for most artefacts, it requires minimum

effort to integrate with existing tools [11]. Second, it is faster in loading artefacts

persisted in state-based format since there is no need to replay all changes as with

change-based persistence. Also, some artefacts support lazy loading. For example,

an artefact is not loaded in its entirety upfront. Only parts affected by an operation

are loaded into memory. This enables faster CRUD (create, read, update, delete)

operations [18,35].

Table 2.2: The advantages and downsides of change-based and state-based persistence.

Dimension Advantages Disadvantages

Change-based

Approach

+ More accurate, carries semantic in-

formation [2–5]

+ Faster and more accurate for detect-

ing changes, comparison, and merg-

ing [3, 4, 11]

+ Information carried is useful for an-

alytics [2]

– Increased record size [2, 10]

– Not efficient for replaying (loading)

long records [5]

– Limited support from standard,

text-based version controls (e.g.

GitHub) [11]

– Not a standard, needs integration

with existing tools [11]
State-based

Approach

+ Faster for loading large

artefacts [18,31,35]

+ A default standard, no need to

integrate with existing tools [11]

– Slower for saving changes

(XMIs) [5, 18,35]

– Slower for comparison [10]

– Less accurate, does not carry

semantic information [5, 10]

Compared to change-based persistence, state-based persistence also has downsides.

First, it is slower than change-based persistence in saving changes [5]. For an artefact

persisted in state-based format and does not support lazy loading, the artefact must

be persisted in its entirety even though only a single change has been made. Second,

state-based persistence does not keep records of changes to an artefact. Thus, every

part of the artefact must be checked for differences. This can be less efficient if

the comparison is performed in a change-based format [10]. Third, comparison in

a state-based format requires identifying differences through a diffing process—not

based on actual change records. So, it can be less accurate than a comparison in
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change-based persistence which is provided with more information to detect changes

accurately [5,10]. The advantages and downsides of change-based and state-based

persistence are summarised in Table 2.2.

2.3 Model Differencing and Conflict Detection

The history of model differencing and conflict detection can be traced back to the

presence of the diff program on Unix or Unix-like platforms [46]. Diffing is a function

that compares text files ‘to determine how or whether they differ’ [47]. It is commonly

known as the Longest Common Subsequence (LCS) algorithm [48], and it is equivalent

to the Shortest Edit Script (SES) problem: finding the smallest number of edits

(adds and deletes) to make a sequence equal to another sequence [26]. LCS or SES

algorithms are commonly implemented by Version Control Systems, such as SVN [49]

and Git [50], in their diff programs to identify differences between versions of files.

Using diffing on graph-based artefacts, such as XML [51] and Ecore models [12], is

not straightforward since they are different from text files. For example, XML is a

hierarchical document with a tree structure; one node can contain other nodes. The

unique feature of XML is that its containment is unordered, whereas in text files

differencing order is a necessary feature. This has been addressed by Wang et al. [27]

by exploiting key XML structure characteristics.

For example, in Listings 2.1 and 2.2, we have two XML documents that are seman-

tically equivalent. However, a text-based differencing will identify that ‘<c/>’ is

at different lines in both documents (at line 3 in the left document, at line 2 in

the right document). Moreover, ‘<d/>’ and ‘<d></d>’ at line 4 are identified as

two different lines even though they have the same meaning. This also applies to

‘<e></e>’ that is expressed in two lines (lines 5, 6) in the left XML document but

expressed as one line (line 5) in the right XML document.
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Listing 2.1: Left XML document.

1 <a>

2 <b/>

3 <c/>

4 <d/>

5 <e>

6 </e>

7 <a/>

Listing 2.2: Right XML document.

1 <a>

2 <c/>

3 <b/>

4 <d></d>

5 <e></e>

6 <a/>

Identifying differences between Ecore models is even more complex than XML differ-

encing since those models support multiple characteristics of features, such as at-

tribute/reference, literal/object values, single/multiple values, and containment/non-

containment [12]. There are several existing tools for model differencing.

EMF Compare [32] is a popular tool for comparing and merging EMF models, with

generic support for different meta-models. It is an extensible framework, so it can

be adapted to the specific needs of certain meta-models. EMF Compare works by

matching elements of the models being compared and then executing differencing to

identify the differences between them. Matching and differencing are discussed in

detail in Chapter 7.

EMF DiffMerge (EDM) [52] is similar to EMF Compare except that its abstraction is

at a lower level, and it is designed to prevent data loss and enforce model consistency

[53]. As a consequence, EMF Compare could use the EDM engine when it needs

to enforce a particular consistency policy. Also, it supports scoping, which means

that the comparison does not must be at the model level. It could also be applied to

sets of model elements—subsets of models—that can be defined arbitrarily by using

specific filters [54]. In this study, EMF Compare is used as a baseline for evaluation

because of its maturity and ongoing development activity.

Other tools, such as SiDiff [55] and DSMDiff [56], also provide language-agnostic

graph-based model comparison, with some room for configuration (e.g., assigning

different weights to features of types in the language). Additional expressive power—at

the cost of increased complexity and configuration effort—is offered by dedicated

comparison languages such as the Epsilon Comparison Language, which can be used
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to compare both homogeneous and heterogeneous models [57]. All of these tools

work with state-based persistence to identify differences between models.

Our literature review has not identified any other work that targets comparison of

change-based models persisted in text files. Only EMF Store [11] addresses change-

based model conflict detection, but it persists models in its own dedicated backend

system. Moreover, since it is designed to identify conflicts between changes, it does

not give direct, summarised information about which parts of two versions of a

model are different—not for model differencing. It only gives lists of changes to users.

The summarised information is useful in the scenario where a model is excessively

changed in both versions since users do not have to interpret the long lists to identify

differences between the versions. Moreover, it works only on changes; it does not

consider eventual states of models in detecting conflicts [58]. Thus, if an element has

been changed concurrently, but the changes produce eventual states that are equal

to their original state, EMF Store still treats these changes as if they were in conflict.

Database or dedicated-backend model persistence and version control solutions such

as CDO [31] and EMF Store provide model conflict detection capabilities between

different versions of the same model, but they present integration challenges when

users wish to use text-oriented version control systems (e.g. Git, SVN) which are

typically file-based. Moreover, their performance can degrade as more models/users

are added to a repository [44].

2.3.1 The Challenges of Model Comparison

Identifying differences between versions of models can become crucial for large

evolving models, particularly in the later phases of the development cycle when

many small changes are made to fine-tune the models [59]. This challenge has

been addressed by incremental model management where changes to models are

recorded and used as the basis for effective incremental model processing operations.

Egyed [60] has shown that the property-access recording approach is applicable to

query such changes. More recent work has shown that variants of this approach can

be used to achieve incrementality in a wide range of model processing operations,

including model-to-model transformation [45], model-to-text transformation [7],

model validation, and pattern matching [6]—as long as the changes can be precisely
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identified.

Nonetheless, this approach works best at identifying differences between serial ver-

sions of a model; it is not as straightforward in identifying differences between

parallel—branched—versions. In addition, the solutions in incremental model man-

agement are coupled with their execution engines. This means they work best in

single-developer environments. (This is discussed further in Section 2.3.2). In a

collaborative setting, as the size and complexity of a model grows, it is common

to manage the model in multiple parallel versions. Thus, the ability to identify

differences between parallel versions and to detect conflicts between the differences

is very important.

Model differencing and conflict detection must be executed before two versions of a

model are merged. However, performing model differencing and conflict detection

in the typical state-based approach is computationally expensive and memory-

greedy. (This is discussed further in Section 2.3.2). In traditional, state-based model

comparison, every element of the versions being compared must be loaded into

memory, matched, and then differenced [32]. This is inefficient for large models

that undergo only a few changes. A novel approach is required that can compare

only elements that have been modified – —not all elements—to speed up model

comparison.

2.3.2 Identifying Changes in Models

There are two approaches in the literature for identifying changes in models: using

notification facilities and model differencing. These are reviewed inf the sections that

follow.

Notifications

In this approach, a model change tracking engine must hook into the notification

facilities of the modelling tool used to edit the model, so that the engine can receive

notifications as soon as a change happens (e.g. class Giant has been deleted, class

Character has been renamed to ‘Hero’). This is an approach taken by the IncQuery

incremental pattern matching framework [6] and the ReactiveATL incremental model-

to-model transformation engine [7]. The main advantage of this approach is that
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precise and fine-grained change notifications are provided for free by the modelling

tool. (They do not need to be computed by the execution engine—which as discussed

below can be expensive and inefficient). On the downside, this approach is a poor

fit for collaborative development settings where modelling and automated model

processing activities are performed by different members of the team.

Model Differencing

This approach eliminates the coupling between modelling tools and model change

tracking engines. Instead of depending on live notifications, in this approach the

developer needs to have access to a copy of the last or other version of the model,

so it can be compared against the current version of the model (e.g. using a model-

differencing framework such as EMF Compare [32] or EMF DiffMerge [52]) and the

differences (the delta) can be computed on demand. The main advantage of this

approach is that it works well in a collaborative development environment where

typically developers have distinct roles and responsibilities. On the downside, model

comparison and differencing are computationally expensive and memory-greedy as

both versions of the model must be loaded into memory before they can be compared.

In summary, tracking changes in models using notification facilities currently deliv-

ers significant performance benefits only in a single-developer environment as the

approach is coupled to modelling tools. As a result, in collaborative development en-

vironments, developers must either forgo the notification approach altogether or work

with model differencing, which is computationally expensive and memory-greedy.

2.4 Conclusions

This chapter presented a review of literature in the areas of model persistence and

differencing. It summarised the advantages and drawbacks of state-based and change-

based model persistence, and related work on identifying differences and detecting

conflicts between versions of models.
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Analysis and Hypothesis

This chapter summarises the findings of the literature review and presents the

motivation to develop a new change-based persistence format and a novel approach

to improve model differencing and conflict detection by exploiting change-based

persistence. Based on the findings in Chapter 2, this chapter presents the hypothesis

and research questions addressed in this study. It also presents an overview of the

research method used to answer the research questions.

3.1 Summary of Findings

Performing model differencing and conflict detection in state-based persistence can

be expensive in terms of computation time [10]. This is because state-based model

differencing requires every element of the two versions being compared to be inspected,

matched, and diffed to identify their differences [32]. Even persisting state-based

models using database backends—such as in Teneo [28], CDO [31], Morsa [35], and

NeoEMF [18]—can reduce only the overhead cost of loading models, since all elements

still need to be checked. Imagine if we have made only small changes on a model,

but all of its elements must be examined to identify differences. This approach is not

efficient and can become a bottleneck, especially in collaborative environments where

models are often managed in different concurrent versions. Differencing, conflict

detection, and merging are common in that context.

As an alternative to state-based persistence, change-based persistence has the po-
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tential to deliver high-performance model differencing and conflict detection since

the change history of a model is already contained in the model’s change-based

representation [3, 4, 11]. Therefore, identifying changes through model differencing is

not required as in state-based persistence. Moreover, model differencing and conflict

detection in change-based persistence can also be more accurate than performing

them in state-based persistence since the persistent representation also contains

detailed information, such as the order of changes, types of changes, and elements

affected by changes [2–5].

So far, we have identified EMF Store as the only implementation of change-based

model persistence that conforms to the Eclipse Modeling Framework (EMF). However,

this research did not use and extend EMF Store for several reasons. First, EMF Store

is a full-fledged client-server model repository and versioning system. This means that

it requires a certain degree of administration activities (e.g. server configuration, user

authentication and authorisation), and it creates a dependency on EMF Store. We

favour avoiding such administration activities and dependency and prefer a solution

that can version on shared models through different text-oriented version controls

(e.g. SVN, Git). Second, it does not scale up well. There is performance degradation

as more models/users are added to a repository and models grow in size as discussed

in [44] and as evidenced by our own evaluation in Sections 7.6 and 8.8. Third, EMF

Store detects conflicts between changes that produce different states when merging.

However, it cannot be used directly for model differencing. It is not designed to

identify differences between two versions of a model. Fourth, it works only on changes

and does not consider eventual states of models in detecting conflicts [58]. As a

consequence, if an element has been changed concurrently, but the changes produce

eventual states that are equal to their original state, EMF Store still treats these

changes as though they are in conflict. Last, EMF Store is in maintenance mode.

That is, there is no active feature development going on, and its end-of-life might be

declared in 2022 [40].

Based on these considerations, we aimed for a new change-based persistence for

EMF-based models. Such an implementation should be able to capture and persist

all the changes of models into text-based files, and it should be able to exploit

the persisted changes to produce high-performance model differencing and conflict
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detection.

3.2 Hypothesis and Research Questions

The research in this thesis aims to improve model differencing and conflict detection.

Based on the literature review, change-based model persistence has the potential to

deliver such performance. To assess whether change-based persistence can improve

model differencing and conflict detection, the following hypothesis has been estab-

lished ‘a textual change-based model persistence approach can outperform

existing model persistence formats in terms of model saving, model differ-

encing, and conflict detection time, with an overhead in terms of model

loading time and memory use’.

In this thesis, the word ‘model’ refers to typed object graphs that conform to

three-layer object-oriented meta-modelling architectures such as Eclipse Modeling

Framework (EMF) [8].

Model differencing is used to identify the differences between versions of a model,

such as determining what has been changed from an original version of a model or

comparing versions of a model created by different teams working independently.

The main goal of conflict detection is to ascertain whether independent updates can

be merged, or whether there are conflicts (elements or features that differ in ways

that are incompatible) that must first be resolved.

‘Execution time’ as used in the hypothesis is the time required to perform model

saving, model differencing, or model conflict detection. We are particularly interested

in the benefits and the challenges of using change-based persistence for large models;

these are models having more than a million elements as per [18, 35]. Model loading

time is the time required to load a model from its persistent representation into

memory. Memory use is the size of the memory occupied during model saving,

loading, differencing, and conflict detection.

To assess the validity of the hypothesis, this work aims to answer the following

research questions:
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1. How can models be persisted in a change-based format, and how

does change-based persistence perform, compared to state-based

persistence, in terms of loading and saving models? (RQ1)

The concept of change-based persistence must be translated into an imple-

mentation in a modelling framework context so it can be applied to model

persistence, so that its impact on model loading and saving, and later model

differencing and model conflict detection can be assessed.

2. In a change-based format, how can the differences between models

be identified, and how does change-based model differencing per-

form, in terms of speed and memory footprint, compared to state-

based model differencing? (RQ2)

One of the main motivations for exploring the use of change-based persistence

is to speed up model differencing. Because of the nature of change-based

persistence, the mechanism to perform change-based model differencing will

differ substantially from current state-based model differencing approaches. It

is expected that model differencing in change-based persistence will perform

faster than model differencing in state-based persistence.

3. Following change-based model differencing, how can conflicts be de-

tected between versions of a model, and how does change-based con-

flict detection perform, in terms of speed and memory, compared to

state-based model conflict detection? (RQ3)

The follow-on effects of change-based persistence on model conflict detection

will also be investigated. It is expected that conflict detection of change-based

models will be significantly faster than conflict detection of state-based models.

3.3 Research Method

We referred to the research method proposed by Wohlin et al. [61] to guide the

experimental process of this research. The methodology comprises five activities:

scoping, planning, operation, analysis and interpretation, and presentation and

packaging.
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Scoping. In the scoping activity, the hypothesis, goals, and objectives of an ex-

periment must be defined [61]. Basili et al. [62] provide the following questions

(scoping points) in their framework to help determine the scope of an experiment

in software engineering: (1) what is studied? (object of study), (2) what is the

intention? (purpose), (3) which effect is studied? (quality focus), (4) whose view?

(perspective), and (5) where is the study conducted? (context).

Planning. In the planning activity, these components must be defined: context

selection, hypothesis formulation, selection of variables, selection of subjects, exper-

iment design selection, instrumentation, and validity evaluation [61]. The context

can be offline vs. online, student vs. professional, toy vs. real problems, specific

vs. general. Hypotheses have to be stated, and the data gathered throughout the

experiment should be used – using appropriate statistical tests – to reject or accept

the hypotheses. The independent and dependent variables to be measured must

be determined. The subjects must represent the case being studied so the results

of the experiment can be generalised. The experiment must be designed carefully

to get the desired results, and suitable standard design types should be selected.

Experiment objects, guidelines, and measurement instruments also should be defined

to ensure the experiment is executable. Last, validity threats should be identified

and evaluated.

Operation. The operation activity comprises three steps: preparation, execution,

and validation [61]. In the preparation, all the materials needed for the experiment

are selected and prepared. The experiment can be executed in several ways, such

as once or on multiple occasions, for one year or several years. Execution requires

that the experiment is on the right track, not interrupted, and running correctly.

Validation means that the data produced must be reasonable and collected orderly.

Analysis and interpretation. Descriptive statistics and visualisation can be used

to understand the data. Unnecessary data and variables can be removed to facilitate

analysis and interpretation. Hypothesis testing is used to reject or accept the

experiment’s hypothesis. The analysis and interpretation should explain how the

data gathered contribute to the rejection or acceptance of the hypothesis. The results

might be statistically insignificant, but the lessons might still be worth learning [61].
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Presentation and packaging. In this activity, the experiment’s results should

be documented and published in research papers so they are available to other

researchers. The experiment also should be packaged to support other parties who

wish to replicate it [61].

In implementing the research method, we have defined the scope of this research

in Chapters 1 and 3. The former contains the aim, objectives, and outputs of this

research. The latter presents this study’s hypothesis and research questions (Section

3.2) derived from the literature review in Chapter 2.

Our plan was to address the research questions one-by-one. They could only be

answered if we had a working software artefact, as an implementation of change-based

persistence concept, that could be evaluated. Thus, first, we developed a working

prototype of change-based model persistence. Since change-based persistence is slow

in loading models, we proposed two optimisation approaches for loading change-based

models. We then evaluated their impact on model loading and saving against existing

persistence approaches. With this, we could answer the first research question RQ1.

We then could extend the prototype to perform model differencing and conflict

detection, and we evaluated its performance against existing approaches. Therefore,

we could answer the research questions RQ2 and RQ3.

The detailed technical planning, operation, analysis and interpretation can be found

in each evaluation and discussion sections in Chapters 5, 6, 7, and 8. Section 1.7 lists

the papers published during this research, and Appendix B contains instructions to

reproduce the experiments of this research.

3.4 Conclusions

Chapter 2 presented the advantages, downsides, and challenges of current approaches

to model persistence, differencing, and conflict detection in the scientific literature.

In this chapter, we have pointed out design considerations that any proposed solution

should deliver to achieve high-performance model differencing and conflict detection.

From there, we established the hypothesis and research questions of this study.

Finally, we presented an overview of the research method used in this research.
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Designing Change-based

Persistence for Models

This chapter presents a novel approach to change-based model persistence, including

its format, requirements, design, and implementation. Potential benefits and novel

capabilities as well the challenges of using a change-based format for model persistence

also are highlighted in this chapter using a running example.

4.1 Introduction

The concept of change-based persistence presented in the literature review must be

translated for a modelling framework if it is to be applied for model persistence.

To gain all the benefits of change-based persistence, an implementation that can

save and load a model in change-based persistence must be developed first. The

implementation should be able to capture all relevant changes of a model and persist

them into a file. It must also be able to de-serialise changes from the file and

(re)execute them in order to (re)construct the model. This research has developed a

prototype of such a tool, designed to work with EMF models and meta-models.

Before exploring how change-based persistence is implemented, this chapter introduces

a running example to explain the solutions proposed in this study and how model

differencing and conflict detection are performed in existing tools, such as in EMF

Compare [32] and EMF Store [40].
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The rest of this chapter is structured as follows. Section 4.2 introduces the running

example. Sections 4.3 presents an overview of the proposed approach. Section 4.4

discusses the prototype implementation on top of the Eclipse Modeling Framework.

The challenges of change-based model persistence are presented in Section 4.5. Section

4.6 concludes this chapter.

4.2 Running Example: Part I

Figure 4.2 shows three versions of an incomplete model conforming to a simplified

UML-like meta-model in Figure 4.1. The meta-model is minimalist to facilitate

explaining the running example.

Figure 4.1: An excerpt of the UML-like meta-model of the example in Figure 4.2.

(a) original version (Jane’s version)

(b) left version (Bob’s version) (c) right version (Alice’s version)

Figure 4.2: Three incomplete class diagrams of a Role Playing Game.

In this scenario, Jane has set up an initial model of a Role Playing Game (RPG)

(Figure 4.2a). She then shared the model for development by bob and Alice. Both
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Alice and Bob continued to work on the model and made some modifications, seen in

Figures 4.2b and 4.2c respectively. Persisting these models in the standard XMI [23]

format produces three files as shown in Listings A.1, A.2, and A.3. In this running

example, every element has its globally unique ID. Thus, if Bob and Alice create two

elements independently, they will not be allocated the same ID. For example, the

generalisations that Bob and Alice added in Listings A.2 and A.3 have different IDs,

leftGen and rightGen respectively.

An alternative way to persist these three models would be to persist the sequence of

all changes through which they were constructed, not to persist their state. This

approach was first introduced in [15], and it is illustrated in the next section. This

example is extended in Section 7.2 to facilitate explaining the change-based model

differencing proposed in this research.

4.3 Proposed Approach

To illustrate the proposed approach, Listing A.2 shows a state-based representation

of Bob’s model in Figure 4.2b in (simplified) XMI, and Listing 4.1 shows the proposed

equivalent change-based representation of the same model. Instead of persisting a

snapshot of the model’s state, the representation of Listing 4.1 captures the complete

sequence of change events (create/set/add/move/remove/delete) that were performed

on the model since its creation, organised in editing sessions. There are two editing

session in the case of this model. The session at line 1 marks the editing made by

Jane until line 29. Replaying these changes produces Jane’s model in Figure 4.2a.

The rest of the change events are the modification performed by Bob on Jane’s model.

Replaying all the changes, both Jane’s and Bob’s changes, produces the same state

as the one captured in Listing A.2 or Figure 4.2b. Thus, we can conclude that the

proposed change-based representation carries at least as much information as the

state-based representation.

Such a representation is particularly suitable to identify the changes of the model

since the last version. For example, if we can identify that changes recorded for the

previous version came before editing session Bob-01 (lines 1–29) of the model, we

can readily identify the changes that were made to the model since then (i.e. in
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Listing 4.1: The complete change events of Bob’s model in Figure 4.2b.

1 session "Jane-01"

2 create character type Class

3 set character.name from null to "Character"

4 create attack type Operation

5 set attack.name from null to "attack"

6 add attack to character.operations at 0

7 create gem type Parameter

8 set gem.name from null to "gem"

9 add gem to attack.parameters at 0

10 create target type Parameter

11 set target.name from null to "target"

12 add target to attack.parameters at 1

13 create weapon type Parameter

14 set weapon.name from null to "weapon"

15 add weapon to attack.parameters at 2

16 create troll type Class

17 set troll.name from null to "Troll"

18 create giant type class

19 set giant.name from null to "Giant"

20 create cast type Operation

21 set cast.name from null to "smash"

22 add cast to giant.operations at 0

23 create knight type Class

24 set knight.name from null to "Knight"

25 create smash type Operation

26 set smash.name from null to "smash"

27 add smash to knight.operations at 0

28 create mage type Class

29 set mage.name from null to "Mage"

30 session "Bob-01"

31 create leftGen type Generalization

32 set leftGen.general from null to character

33 set troll.generalization to leftGen

34 set character.name from "Character" to "Hero"

35 unset troll.generalization from leftGen to null composite l1

36 set knight.generalization to leftGen composite l1

37 move target in attack.parameters from 1 to 2

38 unset cast.name from "cast" to null composite l2

39 remove cast from giant.operations at 0 composite l2

40 delete cast composite l2

41 unset giant.name from "Giant" to null composite l2

42 delete giant composite l2

43 set troll.name from "Troll" to "Ogre"
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session Bob-01—lines 30–43) instead of having to rediscover them through expensive

state-based model differencing.

For the sake of readability, the format of change-based persistence presented in

Listing 4.1 is a simplified version. The real format is in XML-like-format (Appendix

A.4). For example, change event session "Jane-01" is persisted as:

<session ID="Jane-01" time="20190923181841687GMT"/>

and set character.name from null to "Character" is persisted as:

<set-eattribute eclass="Class" name="name" target = "character"> <old-value lit-

eral=null/> <value literal = "Character"/> </set-eattribute>.

Change events that have been persisted to a change-based persistence file cannot be

altered or removed. They are immutable. Only new change events can be appended

to the file.

4.4 Prototype Implementation

A prototype [63] of the change-based model persistence format (EMF CBP) has been

implemented using the model-element level change notification facilities provided

by the Eclipse Modeling Framework. In that implementation, the prototype uses

a subclass of EMF’s EContentAdapter (ChangeEventAdapter) to receive and record

Notification events produced by the framework for every model-element-level change.

Figure 4.3: Event classes to represent changes of models.
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Since not all change events are relevant to change-based persistence (e.g. EMF also

produces change notifications when listeners/adapted are added/removed from the

model), we have defined a set of event classes to represent events of interest. The

event classes are depicted in Figure 4.3 as subclasses of the ChangeEvent abstract

class.

EMF has dedicated classes to express the graph structure of a model. For instance,

EStructuralFeature can be EReference or EAttribute, it can have a single value or

multiple values (e.g., Integer, String), the value(s) of EStructuralFeature can be

a EObject or primitive, the EReference can be a containment or non-containment.

These characteristics drive the design of the prototype to have different subclasses of

ChangeEvent, and they also decide which attributes and methods should be defined

in the class.

The ChangeEvent class has a multi-valued values attribute, which can accommodate

both single-valued (e.g. set/add) or multi-valued events (e.g. addAll/removeAll).

ChangeEvent can also accommodate different types of values, such as EObjects for

EReferenceEvents and primitive values (e.g. Integer, String) for EAttributeEvents. The

ChangeEvent class also has a position attribute to hold the index of an EObject or a

literal when they are added to a Resource, EReference, or EAttribute with multiple

values.

Every time an EObject is added to the model, a globally unique ID is assigned to the

EObject, and a CreateEObjectEvent and an AddToResourceEvent are recorded. When

an EObject is deleted, or moved to a containment EReference elsewhere in the model,

a RemoveFromResourceEvent is recorded.

The ChangeEventAdapter receives EMF change notifications in its notifyChanged()

method and filters and transforms them into appropriate change events. As an

example of how notifications are filtered and transformed, Listing 4.2 shows how

the prototype handles Notification.UNSET events, based on the type of the feature

that was changed. That is, an UnsetEAttributeEvent is instantiated if the feature

of the notifier is an EAttribute, or an UnsetEReferenceEvent is created if the notifier

is an EReference. The transformed instances are then stored in a list of events in

ChangeEventAdapter (ChangeEvents) for persistence.
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Listing 4.2: Simplified Java code to handle notification events.

1 public class ChangeEventAdapter extends EContentAdapter {

2 ...

3 @override

4 public void notifyChanged(Notification n) {

5 ...

6 switch (n.getEventType()) {

7 ... // other events

8 case Notification.UNSET: {

9 if (n.getNotifier() instanceof EObject) {

10 EStructuralFeature feature = (EStructuralFeature) n.getFeature();

11 if (feature instanceof EAttribute) {

12 event = new UnsetEAttributeEvent();

13 } else if (feature instanceof EReference) {

14 event = new UnsetEReferenceEvent();

15 }

16 } break;

17 }

18 ... // other events

To integrate seamlessly with the EMF framework and to eventually support multiple

concrete change-based serialisation formats (e.g. XML-formatted representation

for readability and binary for performance/size), the prototype implemented a

CBPResource abstract class that extends EMF’s built-in ResourceImpl class. The

role of the abstract class is to encapsulate all change recording functionality while

the role of its concrete subclasses is to implement serialisation and de-serialisation.

To save a model, CBPXMLResourceImpl persists changes in a line-based format

where every change is serialised as a single-line XML document. In this way, when

a model changes, the prototype can append the new changes to the end of the

model file without needing to serialise the entire model again. To load a model,

CBPXMLResourceImpl de-serialises every line in the document as a change event

and then re-executes it to reconstruct the model. The prototype also includes a

CBPXMLResourceFactory class that extends EMF’s ResourceFactoryImpl as the factory

class for change-based models. Figure 4.4 shows the relationships between these

classes.format

Listing 4.3 shows how to use the prototype in Java code. Lines 1–8 demonstrate how

to initialise and save a model using the prototype. First, the code creates an instance
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Figure 4.4: Factory, resource, and ChangeEventAdapter classes.

of CBPResource, cbpResource, using CBPXMLResourceFactory and specifies its file as

helloworld.cbpxml using a URI. The code then executes method startNewSession of

cbpResource. This method adds a change event to indicate the start of the editing

session as shown at lines 1 and 30 in Listing 4.1. The code then uses UMLFactory to

create an element, model, of UML2’s Model. The code adds model into cbpResource

and sets the name to ‘Hello World’. The code then saves the model in change-based

format and then unloads cbpResource. Lines 9–12 demonstrate how to replay (load)

the model that had been saved and then print the name of the first element in

cbpResource, which is expected to print “Hello World”.

Listing 4.3: An example how to use CBPResource in Java code.

1 /* initialise, save, and unload */

2 CBPResource = (CBPResource) (new CBPXMLResourceFactory()).createResource(URI.

createFileURI("helloworld.cbpxml"));

3 cbpResource.startNewSession("Initial");

4 Model = UMLFactory.eINSTANCE.createModel();

5 cbpResource.getContents().add(model);

6 model.setName("Hello World");

7 cbpResource.save(null);

8 cbpResource.unload();

9

10 /* load and print */

11 cbpResource.load(null);

12 model = (Model) cbpResource.getContents().get(0);

13 System.out.println(model.getName()); // expected output: "Hello World"
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4.5 Challenges

This section highlights the challenges that come from adopting change-based per-

sistence. As was mentioned in the literature review, change-based persistence also

comes with a number of challenges, such as (1) loading overhead and (2) fast-growing

model files, which can hold back the delivery of its potential benefits. Addressing

these challenges surely facilitates its adoption.

For the first challenge, persisting changes to large models is expected to be much

faster and resource-efficient than state-based approaches, since loading models into

memory by naïvely replaying the entire change history is expected to have a significant

overhead. This work has addressed this challenge by proposing two solutions that

reduce the cost of change-based model loading. The first solution is to record and

ignore events that are later overridden or cancelled out by other events. That

solution can be found in Chapter 5. The second solution is a proposed hybrid model

persistence format that uses change-based and state-based persistence together. In

that solution, changes applied to a model are persisted into both change-based and

state-based representations, but the model is loaded from the stated-based persistence.

In that way, it avoids replaying the change events. This solution is discussed in

Chapter 6.

In the second challenge—fast-growing model files—persisting a model in a change-

based format means that the size of its file grows significantly faster during the model’s

evolution than it does in its state-based counterpart. This challenge has not been

addressed in this research, and must be considered in future work. Nevertheless, this

research recommends two solutions. Use sound change-compression operations (e.g.

remove older/unused information) to reduce the size of a model in a controlled way,

or develop a compact textual format that will minimise the space required to record

a change. (A textual line-separated format is desirable to maintain compatibility

with file-based version control systems.)

4.6 Conclusions

Through persisting models’ change history, this research aims to enable high-

performance model differencing and conflict detection in collaborative development
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settings. This study has translated the concept of change-based persistence into an

implementation in a modelling framework, which can be used to persist models.

In this chapter, a running example was introduced. This example is used throughout

this thesis to explain the solutions proposed in this study. A prototype of a change-

based persistence format also was presented, including its requirements and a design

of the implementation that meets the requirements. Some potential benefits and

novel capabilities that a change-based persistence can contribute and the challenges

that might restrain delivering them also have been presented.

This chapter also has partially addressed the first research question of this study,

How can models be persisted in a change-based format, and how does

change-based persistence perform, compared to state-based persistence,

in terms of loading and saving models? (RQ1). To persist models in a change-

based format, a prototype has been developed. It captures relevant notifications

returned by the notification facilities provided by EMF every time a change is applied

to an EMF model. It then transforms the notifications into different classes of

change events representing different types of changes (e.g., set, unset, add, remove,

move, create, and delete) that conform to the model and meta-model infrastructure

of EMF. Every captured change event is then persisted by appending it into an

XML-like-formatted file when the model is saved. The model can be (re)loaded by

de-serialising the file and (re)executing all the persisted change events—replaying

the historical construction of the model. Please refer to Appendix B for instructions

to download the source code of the prototype.



Chapter 5

Optimised Loading of

Change-based Model

Persistence

This chapter introduces and evaluates an efficient approach for loading models stored

in a change-based format. This work builds on the change-based model persistence

format presented in Chapter 4. It also presents an evaluation on the performance of

the proposed loading approach and an assessment of its impact on saving change-

based models. The results show that the proposed approach significantly improves

loading times compared to the baseline change-based persistence loading approach,

and it has a negligible impact on saving.

5.1 Introduction

Saving a model in change-based persistence typically results in a large, ever-increasing

file (see Table 2.2) since every change made to the model (even model element

deletions) is appended to the file. This also applies to the implementation of change-

based model persistence (CBP) in this work, which uses a text file to simplify saving

changes by appending them and reading them into memory. The increasing records

of changes also cause the loading time of the model to increase, as the loading

process has to reconstruct the model’s current state from its history [15]. This

53
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chapter proposes and evaluates an approach that reduces CBP model loading time

by avoiding the replaying of historical changes that have no impact on the final state

of the model.

The rest of this chapter is structured as follows. Section 5.2 introduces a running

example. Section 5.3 presents the proposed approach to speed up model loading

and its supporting data structures. Section 5.4 presents experimental results and

evaluation. Section 5.5 concludes this chapter.

5.2 Running Example

To explain the optimised loading algorithm for change-based models, this chapter

uses the running example model in Figure 4.2. Let’s say that there is another person

named Alex that copied and modified Jane’s model in Figure 4.2a. He decided to

persist and modify the model in change-based persistence. He modified the initial

state of class Hero (Figure 5.1a) by adding a new parameter combo to operation

attack producing the intermediate state in Figure 5.1b, but then he changed his mind

and removed the parameter from the operation resulting to the eventual state in

Figure 5.1c.

(a) the initial state (b) the intermediate state (c) the eventual state

Figure 5.1: Running example of the modification of class Hero in Figure 4.2a.

Figure 5.1 shows the different states of class Hero when they are persisted in state-

based representation. Listings 5.1 and 5.2 show the change-based representation

of the intermediate state and eventual states of class Hero in Figure 5.1. As both

change-based representations show, line 31-32 records the creation and naming of

parameter combo, and lines 33 record the addition of parameter combo as one of

the parameters of operation attack. The change-based representation in Listing 5.2

records two additional rows since it also records the recent changes that produce

the eventual state of the tree model in Figure 5.1c. Lines 34-36 capture the deletion

of combo (the unset command resets the value of parameter combo’s name to null,
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the remove command removes f combo from its container, and the delete command

completely removes combo from its model). Changes in a CBP representation can

be uniquely identified by their line numbers.

Listing 5.1: Change-based representation of the intermediate state of class Hero in

Figure 5.1b after the addition of parameter combo.

30 session "Alex-01"

31 create combo of Parameter

32 set combo.name from null to "combo"

33 add combo to attack.parameters at 3

Listing 5.2: Change-based representation of the eventual state of class Hero in Figure

5.1c after the removal of parameter combo.

30 session "Alex-01"

31 create combo of Parameter

32 set combo.name from null to "combo"

33 add combo to attack.parameters at 3

34 unset combo.name from "combo" to null

35 remove combo from attack.parameters at 3

36 delete combo

This example model history illustrates a case where earlier events (creating combo in

line 31, naming it in line 32, making it a child of hero in line 33, naming it in line 34,

and removing it from the container in line 35) are superseded by a subsequent event

(deletion of combo in line 36). Loading the eventual model would arguably be faster

if the events in lines 31-36 could be ignored.

5.3 Toward Efficient Loading of Change-Based Models

The flowchart in Figure 5.2 provides an overview of the editing lifecycle of a CBP

model [15], with the proposed extensions shown as starred blocks. A model is loaded

(1), edited (2), and saved (3). During editing, the changes made to the model are

recorded in a memory-based data structure, serialised, and, with the latest events,

appended at the end (4). The change events are persisted into a CBP file every

time the model is saved (5). When a model is reloaded, the current model state is

recreated by replaying the events stored in the CBP file (6).
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Figure 5.2: CBP workflow, with optimised loading elements indicated by starred

blocks.

As mentioned in Section 4.3, the editing history recorded in a CBP file is immutable.

As such, superseded events cannot be simply removed from the CBP file. There-

fore, the proposed approach adds two artefacts: an in-memory Model History data

structure, which aggregates change events per model element, and an Ignore List

file, which persists the position (i.e. line numbers) of superseded events so that the

events can be ignored the next time the model is loaded. The Ignore List is saved

alongside the CBP file. The rest of this section presents how the Model History is

used to detect superseded events and generate the Ignore List.

5.3.1 Model History

The Model History data structure stores events and their line numbers in a CBP

representation. The data can be used to reason about the events of a particular

element and to determine which events are superseded. The line number in the

CBP representation is referred as the event number. The proposed data structure is

defined in Figure 5.3 using a class diagram.

A ModelHistory has a URI attribute to identify the model for which it records

changes. A ModelHistory can link to many ElementHistory objects, each identified

by its element field, which is queried from the model. An ElementHistory can link to

many FeatureHistories, representing the editing histories of individual features—either

references or attributes of the element. A FeatureHistory has a type (attribute or

reference) and a name, identifying the feature.

An EventHistory represents a series of events of the same type; it has an attribute
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Figure 5.3: The class model defining Model History.

Figure 5.4: The object diagram of the CBP model history in Listing 5.2.

type to identify the events’ type and can have many Lines. A Line has a number

attribute to record the event number and a value that records the element involved

in the event (Value is only used for events with types add, remove, and move). Each

FeatureHistory can have many EventHistories to represent events that modify the

values of the features. Each ElementHistory can have many EventHistories to represent

events that affect the state of the elements (life-cycle and relations to multi-valued

features). Figure 5.4 shows an object diagram corresponding to the model in Figure

5.3, which captures the model history shown in Listing 5.2. The grey rectangles are

History objects related to the deleted parameter combo. The rectangles with dashed

outlines are Line objects that represent superseded changes. This model history is

implemented using the default list and hash map data structures provided by the

Java programming language.

The following section presents the different strategies used to identify superseded

events that will be added to the Ignore List.
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5.3.2 Set and Unset Events

During the lifecycle of a model, a single-valued feature can have its value set (assigned)

or unset many times. Each event is persisted, but only the last assigned value needs

to be considered. For example, in Listing 5.3, let’s say that Alex create a new element

with type Class and id c1. The feature name of the element is set from null to the

value “A”, unset back to null, and finally set to the value “B”. In the final state of

the model, c1.name = “B”. Thus, only line 4 is significant for the model’s final state

and therefore lines 2 and 3 can be ignored when loading the model. For a set event,

all preceding set and unset events can be ignored, but for an unset event, all set and

unset events can be ignored. Executing it does not have any effect on the final state

of a model if all the preceding events also have been ignored.

Listing 5.3: A CBP representation of

attribute name assignments ended with

SET.

1 create c1 type Class

2 set c1.name from null to "A"

3 unset c1.name from "A" to null

4 set c1.name from null to "B"

Listing 5.4: A CBP representation of at-

tribute name assignments ended with UN-

SET.

1 create c1 type Class

2 set c1.name from null to "A"

3 set c1.name from null to "B"

4 unset c1.name from "B" to null

Based on Listing 5.3, our approach creates an instance of ElementHistory c1, which

contains an instance of FeatureHistory name. The FeatureHistory name consists of

two EventHistory instances, with types set and unset (the instances are named set

and unset respectively for brevity). The set records the Line instances that hold the

event numbers of the set events, and similarly for unset.

From Listing 5.3, we can thus infer that name.set.lines = {2, 4} and name.unset.

lines = {3}. The event numbers in both lists are used to determine that the events

represented by lines 2 and 3 are superseded by the event in line 4, which is a set

event, giving an ignoreList = {2, 3}. By the same process, for Listing 5.4, we can

reason that name.set.lines = {2,3} and name.unset.lines = {4}. However, in this case,

the highest-numbered event is an unset, all so line numbers are put into the Ignore

List (ignoreList = {2, 3, 4}).
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5.3.3 Add, Remove, and Move Events

For a multi-valued feature, add, remove, and move events can be called many times

to modify the feature. If an element is added to the feature, moved multiple times,

and finally removed, then all the element’s preceding events can be ignored, as long

as the order of the feature’s elements is not changed.

Listing 5.5 shows an example without a move event. In this example, parameters p1,

p2, and p3 are added to the parameters feature of operation attack (lines 5–7). In the

latest state of the model, feature parameters only contains p1 and p3. As a result,

the loading process could ignore the events that represent the add and remove events

on p1.

Listing 5.5: A CBP of add and remove operations.

1 create op of Operation // parameters = []

2 create p1 of Parameter // parameters = []

3 create p2 of Parameter // parameters = []

4 create p3 of Parameter // parameters = []

5 add p1 to op.parameters at 0 // parameters = [p1]

6 add p2 to op.parameters at 1 // parameters = [p1, p2]

7 add p3 to op.parameters at 2 // parameters = [p1, p2, p3]

8 remove p2 from op.parameters at 1 // parameters = [p1, p3]

Listing 5.6: A CBP representation of add, move, and remove operations.

1 create op of Operation // parameters = []

2 create p1 of Parameter // parameters = []

3 create p2 of Parameter // parameters = []

4 create p3 of Parameter // parameters = []

5 add p1 to op.parameters at 0 // parameters = [p1]

6 add p2 to op.parameters at 1 // parameters = [p1, p2]

7 add p3 to op.parameters at 2 // parameters = [p1, p2, p3]

8 move p1 in op.parameters from 0 to 1 // parameters = [p2, p1, p3]

9 remove p2 from op.parameters at 0 // parameters = [p1, p3]

To create the Ignore List for Listing 5.5, we can deduce that parameters.add.lines

= {{5, p1}, {6, p2}, {7, p3}} (5 is the line number and p1 is the value) and

parameters.remove.lines = {{8, p1}}. Since p2 is removed from its containing feature

(line 8), then executing its preceding add and remove events is unnecessary. Note that

we retain the create event (line 3) as p2 has not been deleted from the model—only

removed from its containing feature. We can iterate through the add and move
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structures to identify the events on p2 that should be removed, resulting in the

ignoreList = {6, 8}.

Listing 5.6 shows an example with a move event1. Let’s say that a move event is

inserted at line 8 (this insertion shifts the remove event of p2 from line 8 to line 9).

With the introduction of this move event, we now have the parameters.add.lines = {{5,

p1}, {6, p2}, {7, p3}}, parameters.move.lines = {{8, p1}}, and parameters.remove.lines

= {{9, p2}}. In the final state of the model, parameters should have p1 and p3 in

order, parameters = [p1, p3].

However, executing the previous strategy naïvely leads to an erroneous final state.

Using ignoreList = {6, 8} produced by the naïve strategy leads to a different order of

p1 and p3 in the final state of the model where parameters = [p3, p1] as shown by the

naïve optimised CBP in Listing 5.7. To overcome this problem, *IsMoved flags in

Figure 5.3 are used to sign features and elements. If they have been moved—the flags

are set to true. If an element’s *IsMoved flag is true, then all of its line numbers

related to add, move, remove events cannot be put into the ignoreList. The flags are

set to false if the feature is empty.

Listing 5.7: A naïve optimised CBP representation of original CBP representation in

Listing 5.6

1 create op of Operation // parameters = []

2 create p1 of Parameter // parameters = []

3 create p2 of Parameter // parameters = []

4 create p3 of Parameter // parameters = []

5 add p1 to op.parameters at 0 // parameters = [p1]

6 add p3 to op.parameters at 1 // parameters = [p1, p3]

7 move p1 in op.parameters from 0 to 1 // parameters = [p3, p1]

5.3.4 Create and Delete Events

When an element is deleted, it is completely removed from the model. Therefore,

all previous events (create, set, unset, move, add, remove, delete) on features of the

element can be ignored. For example, when parameter combo in Listing 5.2 is deleted,

the events in lines 31-36 are superseded. If Listing 5.2 is optimised – some of its

events are ignored – when loading, then it runs as if the events are never executed.
1The commented parts show the end states of parameters after each event
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Using Listing 5.2, we can construct the structure of histories that are related to

element combo as follows: combo.create.lines = {31}, combo.name.set.lines = {32},

combo.name.unsetset.lines = {34}, attack.parameters.add.lines = {{33, combo}}, at-

tack.parameters.remove.lines = {{35, combo}}, and combo.delete.lines = {36}. Thus,

when parameter combo is deleted, by iterating through all these history structures,

all line numbers associated with combo can be identified and added to ignoreList

producing ignoreList = {31, 32, 33, 34, 35, 36} so they can be ignored in the next

model loading.

5.4 Evaluation

This work has developed the proposed efficient loading approach on top of the

original CBP implementation [15,63] and evaluated the approach’s model loading

performance, its memory footprint, and its impact on the time required to save

changes made to CBP models. The evaluation was performed on Intel R© CoreTM

i7-6500U CPU@2.50 GHz 2.59 GHz, 12 GB RAM, and the JavaTM SE Runtime

Environment (build 1.8.0_162-b12).

Given that CBP is a very recent contribution and we are not aware of any existing

datasets containing real-world models expressed in a change-based format, this work

has used synthetic change-based models for the experiments. The synthetic models

were derived from real-world data sources: the BPMN2 [64,65] and Epsilon [66,67]

software projects and the article on the United States [68] in Wikipedia (the article

is further referred to as Wikipedia). For the first two projects, for each version of

the cases, MoDisco [69] was used to generate a UML2 [70] model that reflects its

source code. For the Wikipedia article, a model that conforms to the Modisco XML

meta-model [71] was generated. Since these cases have many versions—represented

by commits/revisions—different models of the versions can be generated, and to some

degree, they reflect the time-ordered changes of the cases. The synthetic change-based

model for each case was derived by comparing an initially empty running model to

different versions of the case’s models sequentially. All identified differences were

then reconciled by performing a unidirectional merging to the running model. All

changes made to the running model during the merging process were captured and

persisted into a CBP file. EMF Compare was used [72] to perform the comparison
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and merging.

Using the synthetic models, an evaluation was conducted on loading time, saving

time, and memory footprint for both loading and saving. To compare the loading

time, we ran the optimised and original (baseline) CBP algorithms to reconstruct

the current state of each of the three models. (The results are shown in Figure 5.5).

As discussed in Section 5.3, optimised CBP also does extra work when saving the

changes to a model, in order to save time (relative to original CBP) when loading

a model. To analyse the performance of optimisation activities, we compared the

overall time required to save a new version of the models described above after one

change was made. (The results are shown in Figure 5.6.) This work also compared the

memory footprints for both loading and saving, since the optimised CBP approach

also requires the maintenance of an additional in-memory data structure that keeps

track of element and feature editing histories. (See Figures 5.7 and 5.8 for the

results).

For each combination of dimensions (loading time, saving time, loading memory

footprint, saving memory footprint), persistence types (original CBP, optimised CBP,

and XMI), and cases (BPMN2, Epsilon, and Wikipedia), we conducted measurements

22 times. The results of these measurements enabled us to perform the Welch’s t-

test [73] to find the significance of the comparisons for each case. This evaluation used

a significance level of 5%. If t-test’s p-value < 0.05, the null hypothesis (the means

of the compared persistence types are equal (H0)) is rejected and the alternative

hypothesis (the means of the compared persistence types are not equal (H1), is

accepted.

For loading and saving time, this work measured the delta time required for loading

and saving. For memory footprint, this work measured the delta of memory used

before and after loading and saving. The results are presented below. Please refer to

Appendix B for instructions to reproduce the results of this experiment.

5.4.1 Data Description

Table 5.1 summarises events, elements, and saved versions for the Epsilon, BPMN2,

and Wikipedia cases. Total Events is the numbers of events that were produced by
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Table 5.1: Description of change-based models generated for evaluation.

Model Total

Events

Ignored

Events

Elements Total

Ver-

sions

Processed

Versions

BPMN2 1.2 million 1.1 million 62,062 192 192 (100.0%)

Epsilon 2.6 million 1.8 million 79,459 3,037 727 (23.9%)

Wikipedia 11.5 million 7.8 million 12,144 37,996 3,100 (8.2%)

our approach in generating a change-based model for each case. Ignored Events is

the number of superseded events that do not need to be replayed when reloading

the models. Elements is the number of elements contained in each model. Total

V ersions is the number of commits/revisions made to the cases, taken from the Git

repositories or from Wikipedia at the time this evaluation was performed. Processed

V ersions is the number of commits/revisions that were processed to produce change-

based models: since the comparison between versions takes considerable time, not

all versions are processed here.

5.4.2 Model Loading Time

This section presents the results of the loading time measurements of change-based

models for each pair of persistence types and cases and the t-test results of their

comparisons (Table 5.2 and Figure 5.5).
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Figure 5.5: Results for loading a model in original CBP (CBP) and optimised CBP

(OCBP) and for loading a state-based (XMI) representation.
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Table 5.2: The t-test results of loading time by original CBP (CBP), optimised CBP

(OCBP), and XMI.

Group Mean SD Comparison t df p-value

BPMN2 Load Time (s) BPMN2 Load Time

CBP 5.81 0.08 CBP vs. XMI 315.95 21.46 < 0.05

OCBP 3.02 0.13 CBP vs. OCBP 87.67 35.10 < 0.05

XMI 0.47 0.47 OCBP vs. XMI 93.86 21.18 < 0.05

Epsilon Load Time (s) Epsilon Load Time

CBP 16.60 0.23 CBP vs. XMI 324.18 22.78 < 0.05

OCBP 8.28 0.09 CBP vs. OCBP 160.06 27.48 < 0.05

XMI 0.60 0.05 OCBP vs. XMI 354.52 42.06 < 0.05

Wiki Load Time (s) Wikipedia Load Time

CBP 34.23 0.145 CBP vs. XMI 1,110.10 21.00 < 0.05

OCBP 26.14 1.583 CBP vs. OCBP 23.90 21.35 < 0.05

XMI 0.02 0.001 OCBP vs. XMI 77.37 21.00 < 0.05
Mean = average, SD = standard deviation, t = t-test’s t-value, df = degree of freedom, p-value =

significance, s = the unit is seconds

These loading times show a considerable time saving for optimised CBP: BPMN2

was 48.02% faster, Epsilon 50.12% faster, and the Wikipedia page 23.63% faster than

in the original CBP implementation. (All optimised CBP’s means are smaller than

all original CBP’s means.) This has a positive correlation to the number of ignored

events. All the t-test results also show that loading times for all the persistence types

are significantly different (all the p-values < 0.05).

For reference, this work also compared CBP loading with the time to load the equiv-

alent state-based model in XMI. Figure 5.5 shows that, even with the improvements

delivered by the new algorithm, loading change-based models is still significantly

slower than loading a state-based model. (All the XMI’s means are smaller than

other persistence types’ means.)

5.4.3 Model Saving Time

This subsection presents the results of the saving time measurement of change-based

models for each pair of persistence types and casez and the t-test results of their

comparisons (Table 5.3 and Figure 5.6). As discussed in [15], CBP loading time

penalties are balanced against the benefits of CBP in terms of persisting changes
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(saving time).

Table 5.3: The t-test results of saving time by original CBP (CBP), optimised CBP

(OCBP), and XMI.

Group Mean SD Comparison t df p-value

BPMN2 Save Time (s) BPMN2 Save Time

CBP 0.00097 123e-5 CBP vs. XMI -175.58 22.01 < 0.05

OCBP 0.00081 12e-5 CBP vs. OCBP 0.62 21.38 0.54

XMI 0.30122 793e-5 OCBP vs. XMI -177.76 21.01 < 0.05

Epsilon Save Time (s) Epsilon Save Time

CBP 0.00069 3.4e-5 CBP vs. XMI -6.01 21.00 < 0.05

OCBP 0.00080 8.0e-5 CBP vs. OCBP 160.06 28.24 < 0.05

XMI 0.40025 595e-5 OCBP vs. XMI -314.80 21.01 < 0.05

Wiki Save Time (s) Wikipedia Save Time

CBP 0.00071 4.9e-5 CBP vs. XMI -46.19 21.08 < 0.05

OCBP 0.00075 4.1e-5 CBP vs. OCBP -3.48 40.77 < 0.05

XMI 0.01195 114e-5 OCBP vs. XMI -46.01 21.06 < 0.05
Mean = average, SD = standard deviation, t = t-test’s t-value, df = degree of freedom, p-value =

significance, s = the unit is seconds
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Figure 5.6: A comparison of the time required to persist an event between original

CBP (CBP), optimised CBP (OCBP), and XMI.

As shown in Table 5.3 and Figure 5.6, the performance of the two CBP implemen-

tations is not very different. Since the significance level is 5%, only the BPMN2

case fails. However, the difference between the means of its original CBP (0.97 ms)

and optimised CBP (0.81 ms) is small. This indicates that the cost of the extra

work in the optimised CBP algorithm is negligible. On the other hand, both CBP

implementations are significantly faster at saving changes than state-based XMI.
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(The means of both CBP implementations are smaller than XMI’s means, and

both CBP implementations have p-values < 0.05 when compared to XMI.) This is

expected, as the CBP implementations only need to append the last changes to the

existing model file (their performance is thus relative to the number of changes since

the last save), while the XMI implementation needs to reconstruct an XML document

for the entire state of the model, and it must replace the contents of the model file

every time (hence its performance is relative to the size of the entire model).

Table 5.4: The t-test results of the memory footprint after loading a model by original

CBP (CBP), optimised CBP (OCBP), and XMI.

Group Mean SD Comparison t df p-value

BPMN2 Load Memory (M) BPMN2 Load Memory

CBP 9.76 76.0e-4 CBP vs. XMI 4,392.5 21.22 < 0.05

OCBP 22.36 0.015 CBP vs. OCBP -3,695.7 32.28 < 0.05

XMI 2.63 5.5e-4 OCBP vs. XMI 6,572.4 21.06 < 0.05

Epsilon Load Memory (M) Epsilon Load Memory

CBP 15.74 1.248 CBP vs. XMI 28.16 41.99 < 0.05

OCBP 43.15 0.056 CBP vs. OCBP -102.9 21.08 < 0.05

XMI 5.05 1.271 OCBP vs. XMI 140.49 21.08 < 0.05

Wiki Load Memory (M) Wikipedia Load Memory

CBP 2.29 2.4e-4 CBP vs. XMI 4,523.5 25.16 < 0.05

OCBP 126.48 0.29 CBP vs. OCBP -2,009.3 21.00 < 0.05

XMI 1.52 7.6e-4 OCBP vs. XMI 2,021.8 21.00 < 0.05
Mean = average, SD = standard deviation, t = t-test’s t-value, df = degree of freedom, p-value =

significance, M = the unit is megabytes
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Figure 5.7: A comparison of the memory footprint after loading a model by original

CBP (CBP), optimised CBP (OCBP), and XMI.
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5.4.4 Memory Footprint

The memory footprint after loading models from the three cases is presented in

Table 5.4 and Figure 5.7, and the memory footprint after persisting single changes

is displayed in Table 5.5 and Figure 5.8. The results show the significant memory

overhead of the extra data structure when loading models (all the means of optimised

CBP are greater than all the means of original CBP and all comparisons between

both CBPs show p-values < 0.05, Table 5.4). Both CBPs are also outperformed by

XMI in terms of memory footprint when loading models (all the means of XMI are

smaller than all the means of both CBPs and all comparisons against XMIs show all

p-values < 0.05, Table 5.4). In loading, XMI uses significantly less memory than the

optimised CBP representation, and it performs slightly better than the original CBP.

In terms of saving, both CBP implementations use less memory than XMI in persisting

a single change (their means are smaller than the means of XMI, and all the CBPs’

t-tests with XMI show that their differences are significant at p-value < 0.05 (Table

5.5)). The optimised CBP has a larger memory footprint than the original CBP (the

means of the optimised CBP for all cases are greater than the means of the original

CBP). However, their memory footprints are not very different. Even though the

BPMN2 and Epsilon cases have p-values < 0.05, the differences of the means of

their original and optimised CBPs are small, and the Wikipedia case also shows

p-value > 0.05 on its original CBP, compared with the optimised CBP.
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Figure 5.8: A comparison of the memory footprint after persisting an event by CBP,

optimised CBP, and XMI.
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Table 5.5: The t-test results of the memory footprint from saving an event by original

CBP (CBP), optimised CBP (OCBP), and XMI.

Group Mean SD Comparison t df p-value

BPMN2 Save Memory (M) BPMN2 Save Memory

CBP 0.0023 6.3e-5 CBP vs. XMI -489,170 41.49 < 0.05

OCBP 0.0029 80e-5 CBP vs. OCBP -3.22 21.26 < 0.05

XMI 8.84 5.6e-5 OCBP vs. XMI -51,180 21.21 < 0.05

Epsilon Save Memory (M) Epsilon Save Memory

CBP 0.0025 18.8e-6 CBP vs. XMI -4.3e+6 21.00 < 0.05

OCBP 0.0031 279.9e-6 CBP vs. OCBP -10.131 21.19 < 0.05

XMI 17.61 2.4e-6 OCBP vs. XMI -295,090 21.00 < 0.05

Wiki Save Memory (M) Wikipedia Save Memory

CBP 0.0025 1.9e-5 CBP vs. XMI -391,970 40.52 < 0.05

OCBP 0.0028 84.1e-5 CBP vs. OCBP -1.75 21.02 0.094

XMI 2.0194 1.5e-5 OCBP vs. XMI -11,245 21.01 < 0.05
Mean = average, SD = standard deviation, t = t-test’s t-value, df = degree of freedom, p-value =

significance, M = the unit is megabytes

5.4.5 Discussion

For the original CBP loading, the total time required to load a model is TCBP = TE

+ TO, where TE is the total time required to execute all events, and TO is the total

time needed to complete other required routines (e.g. initialisation, reading files).

For the optimised CBP, the total time to load a change-based model is reduced by

the time saved-up by ignoring superseded events TI , that is TOCBP = TE + TO −

TI . Thus, it is expected that optimised CBP can load a model faster than original

CBP. This statement is in accordance with our finding in Section 5.4.2 that the

saved loading time corresponds to the number of ignored events. However, more

investigation is required to determine the degree of their correlation, which will be

addressed in our future work.

5.4.6 Threats to Validity

In this experiment, we have only tested the algorithms on synthesised models which

may not be representative of the complexity and interconnectedness of models in

other domains. Diverse characteristics of models in different domains can affect the

effectiveness of the algorithm and therefore yield different outcomes. So far, CBP



Chapter 5. Optimised Loading of Change-based Model Persistence 69

optimisation only supports ordered and unique features. Support for duplicate values

means that removal of an item does not necessarily result in the item not being

present in the feature value. Additional information must be captured to persist

the number of copies and positions of the feature members to properly generate the

ignore list.

5.5 Conclusions

Change-based persistence can be slow when it comes to loading a model since its

change records must be replayed. This study has optimised the loading of change-

based persistence by replaying only the change events that affect the eventual state

of a model. In other words, the replay ignores change events that are superseded by

later change events.

This chapter has proposed an efficient algorithm and supporting data structures for

the proposed optimisation. Performance is evaluated on synthesised models, with

comparisons to the unoptimised change-based implementation and state-based XMI.

Compared to the naïve change-based representation, the optimised version shows

considerable savings in terms of loading time with a negligible impact on saving time,

but at the cost of a higher memory footprint. However, in terms of loading time and

memory footprint, XMI outperforms both approaches but is much less efficient in

saving changes.

This chapter has partially addressed the first research question of this study, How

can models be persisted in a change-based format, and how does change-

based persistence perform, compared to state-based persistence, in terms

of loading and saving models? (RQ1). Based on the evaluation results, we can

state that the performance of change-based persistence on loading models is poor

compared state-based persistence. Even though it has been optimised by ignoring

replaying change events that are superseded by subsequent change events, it is still

significantly outperformed by loading models from their state-based persistence. It

also suffers greatly on memory footprint because of the dedicated data structure

employed to track change events (Section 5.3.1). In terms of saving, change-based

persistence shows more favourable results than state-based persistence since we need
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to persist only the recent changes applied to a model rather than saving the entire

model. This condition is very favourable when we work with large models in a mature

stage where mostly small changes occur.



Chapter 6

Hybrid Model Persistence

Reconstructing a change-based model by replaying its editing history each time the

model is queried or modified can get increasingly expensive as the model grows in

size. In Chapter 5, we proposed a method to speed up the reconstruction by not

replaying change events that do not have any effect on the eventual state of a model.

However, that method is still substantially outperformed by loading a model directly

from its state-based persistence. In this chapter, we report on a novel approach that

integrates change-based and state-based model persistence mechanisms. This hybrid

model persistence approach delivers the best of both worlds. This chapter presents

the design of the hybrid model persistence approach and reports on its impact on

time and memory footprint for model loading, saving, and storage.

6.1 Introduction

Saving models in change-based persistence (CBP) comes at the cost of ever-larger

files [2,10] since all changes (even deleting model elements) are recorded in an editing

log, which naturally leads to longer loading times [5]. In Chapter 5, we proposed a

method to speed up reconstruction by not replaying change events that do not have

an effect on the eventual state of a model. However, the method is still substantially

out-performed by loading a model directly from its state-based persistence. Thus,

this chapter proposes another solution to address that issue by introducing the

concept of hybrid persistence of models. In hybrid model persistence, change-based

71
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representation is augmented with a state-based representation (which can be fully

derived from the change-based representation) of the latest state of the model. This

is then used to speed up model loading and querying.

This Chapter is structured as follows. Section 6.2 introduces the concept of change-

based model persistence and recent work on state-based model persistence. Sections

6.3 and 6.4 present the proposed approach to hybrid model persistence and its

implementation. Sections 6.5 and 6.6 present and discuss experimental results and

evaluation. Section 6.7 concludes this Chapter.

6.2 Comparing Change- and State-based Model Persis-

tence

Table 6.1 summarises the benefits (+) and drawbacks (-) of change and state-based

model persistence. To load a state-based model, only the elements that exist in

the final state need to be loaded into memory. To load a change-based persistence

model, all the events that lead to the final state must be replayed to load the model

in memory. Loading times for state-based models are proportional to the size of the

model. Loading times for change-based models are proportional to the number of

events. As a result, loading times of change-based models will always increase over

time and are considerably longer than for state-based model persistence [5, 16].

Table 6.1: Comparison of model persistence approaches.

Dimension Change-based State-based

Load Time − +

Save Time + −

Storage − +

To store a state-based model, all the elements that exist in the final state must be

persisted. To save a change-based model, only the change events in the last editing

session need to be persisted. Storing times of state-based models are proportional to

the size of the model. Storing times of change-based models are proportional to the

number of events in a session. As a result, storing times of change-based models can

be considerably shorter than for state-based models [16]. Comparing and finding the

differences between two versions of a state-based model is expensive [1] (O(N2) in the
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Figure 6.1: The mechanism of hybrid model persistence.

general case) which affects the efficiency of change visualisation and comprehension

and has a substantial impact on downstream activities such as incremental model

transformation [7] and validation.

The main downsides of change-based model persistence are its model file sizes [2, 10]

and ever-increasing loading times [5]. Loading times can be reduced by around

50% by processing the changelog, then detecting, memorising, and subsequently

ignoring change events that have no impact on the final state of the model. However,

the loading times are still substantially longer—more than 6.4 times longer and

even longer as the persisted changes increase—than loading times for state-based

approaches [16].

6.3 Hybrid Model Persistence

To achieve the best of both worlds, this work introduces a hybrid model persistence

approach, which combines change-based and state-based model persistence, to work

together. An overview of the proposed approach is illustrated in Figure 6.1. In

the proposed approach a hybrid model is stored in two representations at the

same time: a change-based representation (e.g. using EMF CBP [63]) and a state-

based representation (e.g. using XMI [23] or a database-backed approach such as

NeoEMF [18]). The change-based representation is treated as the main representation

of the model, while the state-based representation can be fully derived from the

change-based representation.

Loading a hybrid model. Models are loaded into in-memory object graphs that

clients (e.g. editors, transformations) can then interact with. Depending on the state

persistence mechanism, the object graph may be loaded in its entirety at startup
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(e.g. XMI) or loaded progressively, in a lazy manner (e.g. NeoEMF/CDO [18,31]).

In the proposed hybrid approach, if the state-based counterpart already exists, the

in-memory object graph is populated from it. Otherwise, it is populated by replaying

the complete editing history recorded in the change-based representation.

Changing a hybrid model. When an element in a loaded model is created,

modified, or deleted, the change is applied to the in-memory object graph, and it

is also recorded in an in-memory list of changes (Editing session changes in Figure

6.1). This work uses the term editing session for the period between loading a model

and saving it back to disk.

Saving a hybrid model. The current version of the in-memory object graph is

stored in the preferred state-based representation. The list of changes recorded in the

current editing session (with optional processing, as described above) is appended to

the change-based representation.

Versioning a hybrid model. Since the state-based representation is fully derived

from the change-based representation, if a model needs to be versioned (e.g. in a

Git repository), only the change-based representation needs to be stored. The first

time it is loaded after being checked out/cloned, the state-based representation is

computed and persisted locally and is used in subsequent model loading steps.

Comparing hybrid models. To compare two hybrid models—discussed in Chap-

ters 7 and 8, their change-based representations are used. This is much more efficient

than state-based comparison.

6.4 Implementation

This work has implemented the proposed hybrid model persistence approach in a

prototype [63] on top of the Eclipse Modeling Framework (EMF) [12]. The prototype

makes use of an existing implementation of change-based model persistence, the

EMF CBP [15], augmented with two state-based model persistence implementations:

NeoEMF [18] and XMI [23].
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Figure 6.2: Class diagram showing the core components of the hybrid model persistence implementation.
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XMI has been selected as a standard state-based model persistence format (natively

supported by EMF), and NeoEMF as a best-of-breed representative of database-

backed state-based model persistence framework. The core components of the

prototype are presented in Figure 6.2.

The EMF CBP provides a ChangeEventAdapter class [15] that extends from EMF’s

EContentAdapter adapter class – a class that receives notifications from multiple EMF

objects and resources [74]. ChangeEventAdapter class collects changes made to the

in-memory object graph of an EMF model in the form of a list of events, ChangeEvents.

Based on this class, this work derived an adapter class, HybridChangeEventAdapter,

for the hybrid model persistence implementation. It is an abstract class, so it can be

further derived to create different implementations of adapter classes for different

types of state-based model persistence. The HybridNeoEMFChangeEventAdapter is

the adapter class for NeoEMF; and the HybridXMIChangeEventAdapter, for XMI.

These classes override notifyChanged(Notification) in the ChangeEventAdapter class,

to handle events that are specific to NeoEMF and XMI, respectively.

This work also created a resource class for hybrid persistence, HybridResource, derived

from the Ecore’s ResourceImpl [75]. (A resource class is a class dedicated to interacting

with a persistence, e.g. save, load, get contents.) This class is also is abstract so that

it can be realised in different resource implementation classes for different state-based

model persistence. The HybridResource class contains the stateBasedResource field,

which is used to refer to the state-based model persistence that is being used, and

the cbpOutputStream field that refers to an OutputStream (e.g. file, in-memory)

as the representation of the change-based model persistence for saving changes.

HybridResource has an association with HybridChangeEventAdapater, so that the

former can access the events collected by the latter, and the latter can also use

facilities provided by the former (e.g. getting the identity of an element in the

resource; saving changes to a change-based model representation).

The resource implementation classes for NeoEMF and XMI are HybridNeoEMF-

ResourceImpl and HybridXMIResourceImpl, respectively. HybridNeoEMFResourceImpl

also implements the NeoEMF’s PersistenceResource interface [76], so that specific

NeoEMF methods can be used (e.g. close() to close a connection with a backend

database).
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6.5 Evaluation

In this section, this work compares hybrid model persistence (EMF CBP with

NeoEMF and with XMI) vs. state-based model persistence (NeoEMF or XMI only)

on storage space usage, loading and saving time, and memory footprint, and it

demonstrates that hybrid model persistence can still perform fast model loading and

saving.

The evaluation was performed on Intel R© CoreTM i7-6500U CPU @ 2.50 GHz 2.59

GHz, 12 GB RAM, and the JavaTM SE Runtime Environment (build 1.8.0 _162-b12).

For the evaluation, this work used models reverse-engineered from the Java source

code of the Epsilon [66,67] and BPMN2 [64] projects. For state-based representation

of the models, this work used the MoDisco tool [69] to generate XMI-based UML2 [70]

models that reflect the classes, fields, and operation signatures of the source code

of the project and then imported the generated models into NeoEMF. This work

also derived MoDiscoXML models [71] from the article on the United States in

Wikipedia [68]. This work then used reverse-engineering to generate a change-based

model persistence for each project, based on the differences between consecutive

versions of the models. Please refer to Appendix B for instructions to reproduce the

results of this evaluation.

6.5.1 Storage Space Usage

For the Epsilon project, this work successfully generated a change-based model

persistence from version 1 up to version 940 and also change-based model persistence

for the BPMN2 project and the Wikipedia article up to version numbers 192 and

10,187 respectively. The details (element count, event count, space size, and average

space size per element or event) of their models, when persisted in XMI, NeoEMF,

and EMF CBP are shown in Table 6.2. The last column of the table derives an

average space usage per element (for state-based model persistence) or event (for

change-based model persistence). Thus, we can estimate the storage space usage for

a hybrid model persistence to be the combined space usage of change-based model

persistence and the appropriate state-based model persistence.
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Table 6.2: Space usage for the Epsilon and BPMN2 projects and the Wikipedia

article on the United States (m = million events, MB = Megabytes, KB = Kilobytes).

Case
Generated

from
Type

Element

Count

Event

Count

Space

Size

Average

Space

Size

Epsilon
940

commits

XMI 88,020 —
9.44

MBs

112 bytes/

element

NeoEMF 88,020 —
188

MBs

2 KBs/

element

Epsilon

CBP
— 4.3 m

406

MBs

98 bytes/

change event

BPMN2
192

commits

XMI 62,062 —
6.55

MBs

110 bytes/

element

NeoEMF 62,062 —
134

MBs

2 KBs/

element

Epsilon

CBP
— 1.2 m

109

MBs

92 bytes/

change event

Wikipedia
10,187

versions

XMI 13,112 —
1.28

MBs

102 bytes/

element

NeoEMF 13,112 —
31.8

MBs

2 KBs/

element

Epsilon

CBP
— 62.3 m

5.85

GB

98 bytes/

change event

6.5.2 Time and Memory Footprint of Loading and Saving Models

This work evaluated the performance of our hybrid persistence prototype against

XMI and NeoEMF regarding time and memory footprint for loading and saving. In

the evaluation, experiments were repeated 22 times for each dimension measured.

Since the data was not normally distributed, this work used the nonparametric

Mann-Whitney U test [77] with 5% significance level.

As seen in Table 6.3, all cases experience a slight slowdown on loading and saving time

(hybrid approach’s mean > state-based approach’s mean). However, for almost all

NeoEMF cases, the slowdown is not significant. This means that the side-effect of the

hybrid approach on loading and saving time is still negligible. The hybrid approach

also produces a higher memory footprint than the state-based-only approach.
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Table 6.3: A comparison of the time and memory footprint for loading and saving

models of the hybrid and state-based-only persistence. Time is in seconds, and the

memory footprint is in MB.

Dimen

sion
Case Backend

Hybrid State-based Significance

mean sd mean sd W p-value

Loading

Time

Epsilon
NeoEMF 0.292 0.061 0.279 0.023 258 0.72

XMI 0.317 0.006 0.270 0.018 26 < 0.05

BPMN2
NeoEMF 0.308 0.071 0.286 0.025 230 0.79

XMI 0.212 0.016 0.179 0.016 37 < 0.05

Wikipedia
NeoEMF 0.262 0.048 0.273 0.062 250 0.86

XMI 0.045 0.001 0.040 0.001 0 < 0.05

Saving

Time

Epsilon
NeoEMF 0.0892 0.0421 0.0829 0.0494 216 0.55

XMI 0.411 0.023 0.397 0.015 78 < 0.05

BPMN2
NeoEMF 0.0777 0.0424 0.0775 0.0452 213 0.51

XMI 0.33 0.007 0.28 008 0 < 0.05

Wikipedia
NeoEMF 0.135 0.048 0.120 0.024 218 0.59

XMI 0.024 0.048 0.020 0.002 42 < 0.05

Loading

Memory

Footprint

Epsilon
NeoEMF 38.601 0.878 10.014 1.088 0 < 0.05

XMI 10.72018 0.00022 10.72009 0.00024 0 < 0.05

BPMN2
NeoEMF 40.78 1.29 27.20 1.05 0 < 0.05

XMI 6.73367 1.29305 6.73367 0.00056 101 < 0.05

Wikipedia
NeoEMF 35.91 1.03 27.25 0.54 27.25 0.54

XMI 8.4079 0.0008 8.0933 0.0009 0 < 0.05

Saving

Memory

Footprint

Epsilon
NeoEMF 2.64 1.29 2.61 0.78 283 0.34

XMI 1.56355 0.0005 1.56326 0.0018 408 < 0.05

BPMN2
NeoEMF 1.86 3.86 1.52 0.77 308 0.12

XMI 0.8378 0.00361 0.8375 0.00362 58 < 0.05

Wikipedia
NeoEMF 1.32 1.51 0.97 0.76 189 0.22

XMI 0.0010 0.00044 0.0005 0.00001 0 < 0.05
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6.5.3 Threats to Validity

Since change-based model persistence is a relatively new concept, there are hardly

any such models available in public repositories that we could reuse for evaluating

our prototype. So far, we have only tested the hybrid model persistence approach

on synthesised models which may not be representative of the characteristics of

manually-created models.

6.6 Discussion

The use of state-based model persistence in hybrid model persistence enables loading

performance that is comparable to the performance of loading only from a state-based

persistence, as shown by the evaluation of loading time in Section 6.5.2. In this way,

model loading does not have to replay all the changes persisted in its change-based

model persistence—the main challenge for the change-based approach [5,16]. Hybrid

model persistence performs slightly more slowly—statistically significant for Hybrid

XMI but insignificant for Hybrid NeoEMF—compared to loading a state-based model.

A slight slowdown also appears on model saving – statistically significant for Hybrid

XMI but insignificant for Hybrid NeoEMF (Section 6.5.2). The slowdown is caused

by persisting changes into two representations.

The main drawback of hybrid model persistence is that it consumes more memory

when loading and saving, and it requires more storage space for persisting models than

state-based representation only (Sections 6.5.2 and 6.5.1). However, considering the

cost of main memory and storage, the trade-off can be acceptable in most real-world

scenarios. The summary of the findings are shown in Table 6.4.

Table 6.4: Hybrid model persistence compared to other persistence approaches.

Dimension Change-based State-based Hybrid

Load Time − + +

Save Time + − +

Storage/Memory − + −
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6.7 Conclusions

Change-based persistence can be slow when it comes to loading a model, since its

change records must be replayed. While Chapter 5 tried to address this by not

replaying change events that do not have any effect on eventual states, its performance

was not at level to outperform persisting in XMI. So, this study implemented a hybrid

model persistence—using change-based and state-based persistence together—where

models are loaded from the state-based persistence but changes are saved in both

persistences.

This chapter has evaluated the impact of hybrid persistence on time and memory

footprint for model loading and saving and for usage of storage space. The evaluation

showed that the hybrid model persistence provides benefits on model loading time,

since its performance is comparable to loading a model from a change-based persis-

tence only, with trade-offs on increased memory footprint and storage space usage.

Hybrid persistence’s slight slowdown on model saving could be further optimised by

parallel processing; a model is persisted into its change and state-based representa-

tion concurrently. So far, our implementation persist the two model representations

sequentially.

This chapter also partially addressed the first research question of this study, How

can models be persisted in a change-based format, and how does change-

based persistence perform, compared to state-based persistence, in terms

of loading and saving models? (RQ1). Based on the evaluation, it is best to

persist models in hybrid model persistence since it experiences only a slight slowdown

on both loading and saving, compared to persisting models in state-based persistence.

In other words, the side-effect of the hybrid approach on loading and saving time is

negligible. However, it comes with trade-offs of a larger memory footprint and more

storage space.



Chapter 7

Efficient Model Differencing of

Change-based Models

In Chapters 5 and 6, this work proposed two approaches to optimise the loading of

change-based model persistence. This chapter presents a method for using change-

based persistence in certain circumstances to identify differences between two versions

of a model more efficiently than by using state-based persistence. A detailed discussion

of the proposed change-based model differencing and its evaluation also is presented

in this chapter.

7.1 Introduction

In modelling and model management, it is common to find that many versions or

variants of a model exist. These versions are commonly persisted as snapshots of the

model at a given point in time in a state-based format such as XMI. Model differencing

activities can be applied to versions of a model to highlight such differences as changes

in properties and values, new/deleted elements, etc. However, comparing versions of

large file-based models in a state-based format can be computationally expensive,

since every element of two versions being compared must be loaded into memory to

be matched and differenced.

Change-based model persistence [15–17] was proposed as an alternative to state-

based model persistence of EMF models [12]. Instead of persisting models as XMI

82
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snapshots, models are persisted as a complete history of changes in the proposed

approach. We demonstrated the substantial performance benefits of change-based

model persistence in terms of saving changes to large models [15], and we proposed

a method to reduce model loading time compared to naïvely replaying all recorded

change events [17] to reconstruct the state of a change-based model. This chapter

demonstrates how a change-based representation also enables much more efficient and

performant model differencing between versions of the same model. Our experiments,

presented in Section 7.6, demonstrate savings in the order of 90% for (relatively)

small changes made to large models.

This chapter is structured as follows. Section 7.2 extends the running example

from Section 4.2 to explaining the differencing approach proposed in this chapter.

Section 7.3 presents the way that state-based model differencing performed in EMF

Compare [32]. Section 7.4 presents our change-based approach to speed up model

differencing and its implementation. Section 7.6 reports the results of experiments

used to evaluate the proposed approach. Section 7.7 concludes this chapter.

7.2 Running Example: Part II

In this section, we extend the running example presented in Section 4.2. Using the

change-based model persistence presented in Chapter 4, instead of persisting the

models in Figure 4.2 only in state-based format, we can also persist the complete

history of changes of the models in change-based format.

Listing 7.1: Change-based representation of the original version in Figure 4.2a.

1 session "Jane-01"

2 create character type Class

3 set character.name from null to "Character"

4 create attack type Operation

5 set attack.name from null to "attack"

6 add attack to character.operations at 0

7 create gem type Parameter

8 set gem.name from null to "gem"

9 add gem to attack.parameters at 0

10 create target type Parameter

11 set target.name from null to "target"

12 add target to attack.parameters at 1

13 create weapon type Parameter
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14 set weapon.name from null to "weapon"

15 add weapon to attack.parameters at 2

16 create troll type Class

17 set troll.name from null to "Troll"

18 create giant type class

19 set giant.name from null to "Giant"

20 create cast type Operation

21 set cast.name from null to "smash"

22 add cast to giant.operations at 0

23 create knight type Class

24 set knight.name from null to "Knight"

25 create smash type Operation

26 set smash.name from null to "smash"

27 add smash to knight.operations at 0

28 create mage type Class

29 set mage.name from null to "Mage"

As an example, the complete history of changes made by Jane to construct the

original version in Figure 4.2a is persisted in a change-based model representation in

Listing 7.1. The change events (Listing 7.2) made by Bob are appended to Jane’s

original change events. Thus, the change events that represent Bob’s version (Figure

4.2b) comprise the original change events and the change events (Listing 7.2) that

he made (only the appended changes are presented on that listing). The change

events that represents Alice’s version (Figure 4.2c) are presented in Listing 7.3. One

clear advantage of change-based model persistence is that, from Listing 7.2, we can

immediately know all the changes made by Bob and Alice (starting from line 30),

and we can identify all the elements that have been modified since Jane’s version.

Listing 7.2: The appended events made by Bob to produce Figure 4.2b.

30 session "Bob-01"

31 create leftGen type Generalization

32 set leftGen.general to character

33 set troll.generalization to leftGen

34 set character.name from "Character" to "Hero"

35 unset troll.generalization from leftGen to null composite l1

36 set knight.generalization to leftGen composite l1

37 move target in attack.parameters from 1 to 2

38 unset cast.name from "cast" to null composite l2

39 remove cast from giant.operations at 0 composite l2

40 delete cast composite l2

41 unset giant.name from "Giant" to null composite l2

42 delete giant composite l2
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43 set troll.name from "Troll" to "Ogre"

Listing 7.3: The appended events made by Alice to produce Figure 4.2c.

30 session "Alice-01"

31 move target in attack.parameters from 1 to 0

32 remove smash from knight.operations at 0 composite r1

33 add smash to giant.operations at 0 composite r1

34 remove cast from giant.operations at 1 composite r2

35 add cast to mage.operations at 0 composite r2

36 create rightGen type Generalization

37 set rightGen.general to character

38 set troll.generalization to rightGen

39 set character.name from "Character" to "Hero"

40 unset troll.generalization from rightGen to null composite r3

41 set mage.generalization to rightGen composite r3

42 set troll.name from "Troll" to "Orc"

Let’s say the complete scenario that produces the models in Figures 4.2a, 4.2b, and

4.2c as well as Listings 7.1, 7.2, and 7.3 occurred according to the following story.

Jane, as the technical leader, set up the initial model. The events of the initial set-up

are recorded in the CBMP in Listing 7.1. She created a class Character that contains

an operation attack with three parameters: gem, target, and weapon (lines 2–15). She

also created four other classes; Troll (lines 16–17), Giant (lines 18–22), Knight (lines

23–27), and Mage (lines 28–29). Finally, she pushed her work to a change-based

version control system. If her work is visualised in state-based format, the model

looks like Figure 4.2a.

Then Jane assigned work to Bob and Alice. Both of them checked out this project

to their own machines. Alice continued the model. She moved parameter target to

the first place in operation attack’s parameters, because she thought it was more

intuitive for programmers to think about the target before the rest of the parameters

(Listing 7.3, line 31). She also moved operation smash from class Knight to class

Giant and operation cast from class Giant to class Mage as it is more reasonable that

they belong to their new classes (lines 32–35). Alice also created a generalisation

relationship with ID rightGen from class Troll to class Character (lines 36–39). Bob

did the same thing except that his generalisation came with ID leftGen (Listing 7.2,

lines 31–33).
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Later on, Jane informed Alice and Bob that she wanted all good characters to be

derived from a general, hero-like class, and the enemy should be Orcs, not Trolls.

She also instructed Bob to focus on developing class Knight and Alice on class Mage.

As a result, Alice changed the name of class Character from “Character” to “Hero”

(the ID of class Hero is still character) (line 39). Again, Bob did the same thing.

He also changed the name of class Character from “Character” to “Hero” (line 34).

Instead of creating a new generalisation relationship, both of them preferred to move

the generalisation relationships that they had created to their assigned classes. Alice

moved generalisation rightGen from class Troll to class Mage (lines 40–41), and Bob

move generalisation leftGen from class Troll to class Knight (lines 35–36). Bob also

moved parameter target in operation attack to the last index, as he thought setting

target as the last parameter was intuitive (line 37). Unfortunately, Bob deleted class

Giant accidentally (lines 38–42). The class diagrams of Bob’s and Alice’s models are

in Figures 4.2b and 4.2c respectively. Finally, Alice changed the name of class Troll

to “Orc” (line 42) while Bob changed it to “Ogre” (line 43).

In Listings 7.2 and 7.3, we also introduce composite events—lines with keyword

composite—that represent composite change events. Composite change events are

events that should be treated as one transaction—identified with the same composite

ID. For example, moving an element from one container to another container is

a composite event since it consists of two change events: removing/unsetting the

element from its source container and adding/setting it to its target container (lines

40–41 in Listing 7.3).

7.3 State-based Model Differencing

Referring to the example in Section 7.2, Bob decides at some point to compare his

model (the left model) to Alice’s model (the right model) because he is interested in

analysing the differences between their models. Bob uses a model differencing tool to

perform state-based model differencing. In state-based model differencing, comparing

models commonly consists of two steps: matching and diffing. The matching process

establishes similarities between the elements of two models, to determine the elements

in the left model that correspond to elements in the right model. Generally, the

matching process iterates through all the elements of the models being compared
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and matches them by their identifiers or through a similarity mechanism [32, 58].

The diffing process then identifies differences between the matched elements [32, 58].

In our example, the matching process in state-based comparison—as performed by

EMF Compare [32]—iterates through all the elements of both models and matches

them using their identifiers. The matching process yields 10 matches: m1 = (character,

character), m2 = (attack, attack), m3 = (gem, gem), m4 = (weapon, weapon), m5

= (target, target), m6 = (troll, troll), m7 = (knight, knight), m8 = (smash, smash),

and m9 = (mage, mage), and 3 unmatched elements, um1 = (-, giant), um2 = (-,

rightGen), m3 = (-, cast), and um4 = (leftGen, -).

The diffing process then iterates through all the matches and uses a Longest Common

Subsequence (LCS) algorithm to identify the differences [32]. During this iteration

of the second match m2, the algorithm determines that, to make the left feature

parameters equal to the right feature parameters, parameter gem must be moved from

index 1 to 0 (difference ds1). It is important to note that the LCS algorithm does

not detect the different position of parameter weapon; it only identifies the minimum

number of differences which, if all are resolved unidirectionally, can make the two

models equal.

In the match m6, the diffing process determines that the classes troll are different

in their name. The left troll’s name is “Ogre” while the other troll’s name is “Orc”

(difference ds2). In the eighth match m8, the diffing process determines that the

containers of operation smash are different. Thus, element smash must be moved

from knight’s operations to giant’s operations (difference ds3). For the other matches,

the diffing process does not identify any differences.

From the unmatched elements (um1, um2, um3, and um4), the diffing process

determines that, to make the left model equal to the right model, class giant must be

added to the left model’s resource at index 2 (difference ds4), generalization rightGen

must be added to class mage’s generalization (difference ds5), operation cast must be

added to class mage’s operations (difference ds6), and generalization leftGen must be

removed from class knight’s generalization (difference ds7).

Differences are commonly expressed as a list of changes that must be applied to a

target model to make it equal to a reference model. This work treats the left model
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as a reference model and the right model as the target model. This means that

differences are expressed as changes applied to the right model to make it equal to the

left model. To express differences, this work uses the following terms: LeftContainer,

RightContainer, LeftFeature, RightFeature, LeftIndex, RightIndex, LeftValue, RightValue,

and Kind. *Container, *Feature, and *Value are the target element, feature, and value

involved in a difference (* symbol can be replaced with Left and Right). *Index is the

index of a value in a feature. Kind is the type of difference. It can be one of these

types: CHANGE, ADD, DELETE, and MOVE. CHANGE means a pair of single-valued

features have different values. ADD indicates that a value does not exist in the right

model, thus it requires the addition of the value. DELETE is the opposite of ADD.

MOVE indicates that matched elements differ in terms of their containers, containing

features, or indexes. A Container is an element that contains a value. A containing

feature is a feature owned by a container in which a value is contained. An index is

the position of a value in a containing feature.

Based on these definitions, this work can express the result of the diffing pro-

cess as: dsn = [LeftContainern, RightContainern, LeftFeaturen, RightFeaturen,

LeftIndexn, RightIndexn, LeftV aluen, RightV aluen, Kindn]. Therefore:

ds1 = [attack, attack, parameters, parameters, 0, 1, gem, gem, MOVE]

ds2 = [troll, troll, name, name, 0, 0, “Ogre”, “Orc”, CHANGE]

ds3 = [knight, giant, operations, operations, 0, 0, smash, smash, MOVE]

ds4 = [resource, resource, null, null, null, null, null, giant, DELETE]

ds5 = [mage, mage, generalization, generalization, null, 0, null, rightGen, DELETE]

ds6 = [mage, mage, operations, operations, null, 0, null, cast, DELETE]

ds7 = [knight, knight, generalization, generalization, 0, null, leftGen, null, ADD]

We use this information to represent the diffs visually in Figure 7.1. We can also

transform these diffs into change events that, if the diffs are executed as changes to

the right model, they transform it into the left model and generate relevant change

events. The change events are presented in Listing 7.4. Difference ds1 produces the

change event at line 1 in Listing 7.4, ds2 produces line 2, ds3 produces lines 3–4,

ds4 produces lines 5–7, ds5 produces lines 8–10, ds6 produces lines 11–13, and ds7

produces lines 14–16.
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Figure 7.1: A comparison of the left and right models in Listings A.2 and A.3.

Listing 7.4: Diffs presented as change events.

1 move gem in attack.parameters from 0 to 1

2 set troll.name from "Orc" to "Ogre"

3 remove smash from giant.operations at 0 composite c1

4 add smash to knight.operations at 0 composite c1

5 unset giant.name from "Giant" to null composite c2

6 remove giant from resource at 2 composite c2

7 delete giant composite c2

8 unset mage.generalization from rightGen to null composite c3

9 unset rightGen.general from character to null composite c3

10 delete rightGen composite c3

11 unset cast.name from "cast" to null composite c4

12 remove cast from mage.operations composite c4

13 delete cast composite c4

14 create leftGen type Generalization composite c5

15 set knight.generalization from null to leftGen composite c5

16 set leftGen.general from null to character composite c5
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Figure 7.2: A class diagram showing the core components of the change-based approach to speed up model differencing and conflict detection.
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7.4 Change-based Model Differencing

Compared to the state-based model conflict detection of EMF Compare, the change-

based model conflict detection proposed in this work consists of three phases: event

loading, element tree construction, and conflict computation. Conflict detection

is not performed over all the elements of the model, as it is in state-based model

differencing. Instead, this approach needs to compare only the last sets of change

events of the two models, starting where the lines of the two models are different. A

simplified class diagram of this approach [63] is depicted in Figure 7.2. The three

phases are described in detail in the following sections.

7.4.1 Event Loading

In the event loading phase, the implementation loads change events recorded in two

change-based model persistence files into memory. The most important aspect of this

phase is the partial loading, as only lines starting where the two files are different are

loaded. Thus, not the whole model needs to be traversed and loaded. In this case,

lines 1–29 in Listing 7.1 are skipped. Only the lines starting with line 30 in Listings

7.2 and 7.3 are loaded. This yields two partial – left and right – change-event models.

7.4.2 Element Tree

An element tree is a representation of the changes of model elements in the source and

reference models. It contains detailed information about elements and their properties.

It contains information similar to that captured in change lists in state-based model

persistence, but it also provides more information about the changes. For example,

the element tree can keep track of a feature’s old value and an element/value’s indexes

inside multi-valued properties. The element tree contains only the partial states of

affected elements of the original, left, and right models as depicted in Figures 7.3

and 7.4.

To better understand the construction of an element tree from change events, we use

the following running example using both change events in Listings 7.2 and 7.3. We

start from the left change events.
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Left Side

The first change event in Listing 7.2 (line 30) is a session event. It indicates that all

the following change events until the final line or next session event were persisted

in one batch when they were saved. At line 31, we can see that Bob created a

Generalization with ID leftGen. Thus, in elementTree, an element with ID leftGen also

is created. To indicate that an element is newly created in the session, we put a ‘+’

sign at the left lower box of the element (Figure 7.3).

Figure 7.3: An element tree constructed from information in CBPs in Listing 7.2

(left change events only).

At line 32, the feature general of leftGen is set to character. From the change event,

we can recognise that character existed in the previous version since it has not been

created in the current editing session. Thus, we create an element with ID character

and the feature general of leftGen and put them in elementTree. We then set the

value of general to character on the left side. We follow the same routine with

troll and generalization at line 33, adding element troll and feature generalization to

elementTree and setting the value of feature generalization to leftGen on the left side

of the elementTree.
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The change event at line 34 changes character’s name from “Character” to “Hero”.

From the change event, we can see that character existed before. Thus, we create

element character and feature name into elementTree. We also set the value of name

to “Hero” on the left side. Since this set change event is the first event for character’s

name, we can infer that the original value of name is “Character”. Thus, we set

name’s value to “Character” on the original side. The value of name on the right

side also is set to “Character”, but it will be modified later when we process the

right change events (Alice’s change events) if there is any change event that affects

it. The same routine is applied when we process the change event at line 43 later.

Lines 35 and 36 are the change events of composite move event l1. Element leftGen

is removed (unset) from troll’s generalization and is assigned (set) to knight’s general-

ization. From these change events, we can see that element knight also existed in the

original version. Thus, we add it into elementTree together with its generalization

feature. Element troll and its generalization feature are not added into elementTree

any more since they were added when processing line 33. In elementTree, we set

troll’s generalization to null since element leftGen is moved to knight’s generalization.

At line 37, target is moved from index 1 to 2 in attack’s parameters. From the change

event, we can see that element target has been contained in attack’s parameters at

index 1 since the original version. Thus, we put element target and element attack

and its parameters feature into elementTree. We also create a map on the left side with

a key ‘2’ and a value that points to element target for feature parameters, indicating

target is at index 2 in the left version. Since it is the first change event that moves

target, we can decide that target is at index 1 in the original version. Thus, we create

another map on the original side a map on the left side with a key ‘1’ and a value

that also points to target. We also perform this routine to the right side of feature

parameters, creating a map with a key ‘1’ and a value that also points to target. It

will be modified later when we process the right change events (Alice’s change events)

if there is any change event that affects the index of target.

Lines 38 to 42 are the change events of composite delete event l2; a deletion of

element giant. A deletion of an element unsets all the features of that element and

its sub-elements, removes the sub-elements from their containers, and deletes the

element and sub-elements from the model. As can be seen, the value of cast’s name
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is unset from “cast” to null at line 38. From the change event, we know that cast has

existed since the original version. Thus, we add element cast and its feature name to

elementTree and set its value null on the left side and “cast” on the origin and right

sides.

At line 39, cast is removed from giant’s operations at index 0. From it, we can see

that giant and its feature operations exist, and cast is contained in giant’s operations

at index 0 in the original version. Thus, we create element giant and its feature

operations in elementTree. Three maps also are created in operations for the three

sides. Each map contains a key ‘0’, indicating index, and a value that points to

element cast—except on the left side the value is null since cast is removed from

giant’s operations. The deletion of cast at line 40 marks cast in elementTree with a ‘-’

sign on the left side to indicate that the element is deleted from the model in the left

version.

Change event at line 41 is similar to change event at line 38, except that it is applied

to giant’s name. Since giant has existed in elementTree, only the feature name is

added. Its value is set to null on the left side and “Giant” on the origin and right

sides. The deletion of giant at line 42 marks giant in elementTree with a ‘-’ sign to

indicate that the element is deleted from the model in the left version.

Figure 7.3 illustrates the state of the elementTree after all left change events have

been processed. As can be seen, the elementTree exhibits the partial states of the

original, left, and right models at once.

Right Side

In Listing 7.3, similar to processing the left change events, the processing of the right

change events (Alice’s version) starts with processing the session event at line 30. At

line 31, target is moved from index 1 to 0 in attack’s parameters. Since the index of

target is already determined when processing the change event, we determine the

index of target only on the right side. We unset the value of key ‘1’ on the right side

to null and create a new key ‘0’ that maps its value to target.

Composite move event r1 at lines 32 and 33 moves smash from knight’s operations

to giant’s operations. From this move event, we can see that smash is no longer in
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Figure 7.4: An element tree constructed from information in CBPs in Listings 7.2

and 7.3 (all left and right change events).

knight’s operations; it is contained in giant’s operations on the right side. Element

smash has never existed in elementTree. So, we create and add smash to knight’s

operations at index 0 on the origin side and to giant’s operations at index 0 on the

right side. Since smash is not modified on the left side and no other change events

applied to knight’s operations, we can determine that smash is at index 0 in giant’s

operations on the left side.

Lines 34 to 35 are change events that constitute composite move event r2. This event

moves cast from giant’s operations to mage’s operations. From this move event, we

can see that cast is no longer in giant’s operations but now exists in mage’s operations

on the right side. Element mage and its feature operations have never existed in

elementTree. So, we create and add them to elementTree and add cast to mage’s

operations on the right side.
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At line 36, we can see that Alice created a Generalization with ID rightGen. Thus, in

elementTree, an element with ID rightGen is created. Since it has just been created in

the active session, the element is marked with a ‘+’ sign in elementTree on the right

side. At line 37, we can also see that feature general should be added to rightGen in

elementTree and the value is set to character on the right side. We also set mage’s

operations to rightGen on the right side of elementTree according to the change event

at line 38.

Change event at line 39 changes character’s name from “Character” to “Hero”. Since

character and its feature name already exist in elementTree, we set name’s value

to “Hero” only on the right side. The original value was already assigned when

processing left change events. We apply the same routine when processing the change

event at line 42 later.

Composite move event r3 at lines 40 and 41 moves rightGen from troll’s generalization

to mage’s generalization. From this move event, on the right side, we can see that

rightGen is no longer in troll’s generalization but exists in mage’s generalization. Since

it is the first time mage’s generalization is modified, we create and add the feature to

mage in elementTree. On the right side of elementTree, we unset troll’s generalization

to null and assign rightGen to mage’s generalization.

Figure 7.4 exhibits the state of the elementTree after both sides’ change events have

been processed.

Construction Procedure

The construction of elementTree follows the steps shown in Figure 7.5. First, the

partial state SL of the left model in the elementTree is constructed based on the

information retrieved from the left change events (step 1). We denote this information

as ILL. We can also construct the partial state SO of the original model using the

information about the original state contained in the left change events IOL (step

2). The information IOL allows us to construct the initial partial state SR of the

right model (step 3). Similarly, using the information from the right change events

IRR, we update the partial right state SR, which was initialised before using the

information IOL (step 4), implying that IOL ∪ IRR → SR. Also, information about
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the original model from the right change events IOR is used to update the original

state (step 5). Thus, we have constructed a partial state of the original model using

information from both left and right sides, IOL ∪ IOR → SO. Finally, we also use the

information IOR to update the partial state of the left model (step 6), implying that

ILL ∪ IOR → SL.

Figure 7.5: Steps in Element Tree construction.

Algorithm 1 describes the steps presented in Figure 7.5 in a generic fashion. It

iterates through all of a model’s change events and uses the information contained in

them to construct the relevant partial state. The choice to begin with left or right

change events depends on the Side enumeration value – left or right—passed through

the parameter side (the second input parameter). In our implementation, we process

the left side first by default. The algorithm also receives an input of the change

events events that are to be iterated and the element tree elementTree that has been

instantiated. Then it returns the elementTree as output after updating it.

For each event in the events, we collect information needed to build up elementTree

(lines 3–9), such as targetElement, feature, value, previousValue, index, and previousIndex.

The targetElement is the element modified by a change event (e.g., character and

giant in Listing 7.2). This targetElement—an instance of class Element in Figure

7.2—is retrieved from the elementTree if it already exists. Otherwise, a new element

is created and added to the elementTree (line 3). In this step we also set the flags

*IsCreated and *IsDeleted of the element in Figure 7.2. For example, if the type of the

event is create then *IsCreated is set to true. The feature—an instance of class Feature

in Figure 7.2—represents the target element’s feature (e.g., name and operations in

Listing 7.3) modified by a change event. It is retrieved from the targetElement’s

feature list, and a new one is created and added to the targetElement’s feature list if
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the feature does exist (line 5).

Algorithm 1: Algorithm to construct an element tree from events.
input : a list of ChangeEvent events

input : an enumeration of Side side

input : an instance of ElementTree elementT ree

output : an instance of ElementTree elementT ree

1 begin

2 foreach event in events do

3 targetElement ← getOrCreateNewTargetElement(event, elementT ree);

4 feature ← getOrCreateNewFeature(event, targetElement);

5 value ← getValue(event);

6 previousV alue ← getPreviousValue(event);

7 index ← getIndex(event);

8 previousIndex ← getPreviousIndex(event);

9 featureEventList ← getFeatureEventList(feature, side);

// put all values to their proper indexes

10 updateTree(targetElement, feature, value, index, side);

11 oldIndexes ← calculateOldIndex(featureEventList, previousIndex, side);

12 if not isCreated(value, side) and not isOldValueSet(feature, previousV alue,

previousIndex, side) then

13 setOldValue(feature, previousV alue, oldIndex, side);

14 oppositeF eatureEventList ← getOppositeFeatureEventList(feature, side);

15 oppositeIndex ← calculateOppositeIndex(oppositeF eatureEventList,

oldIndex, side);

16 if not isDeleted(value, side) and not isOppositeSideValueSet(feature, value,

oppositeIndex, side) then

17 setOppositeSideValue(feature, value, oppositeIndex, side);

18 end

19 end

20 addEventToFeatureEventList(event, featureEventList);

21 end

22 return elementT ree;

23 end

The value is the value assigned to the feature in a change event (line 5, Algorithm

1). The value can be a type of Element (e.g., element leftGen line 36 in Listing 7.2)

or primitive (e.g., the string “Hero” at line 34 in Listing 7.2). The previousValue

represents the previous value of the modified feature (line 6, Algorithm 1). The

previousValue is not defined if no previous value has been assigned. For value and
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previousValue with type Element, the elements they represent are retrieved from

the elementTree, and if they do not exist, new instances are created. If the type is

primitive, the value is treated as it is. Not every change event has a value, particularly

events with type create or delete, which modify only a target element not an element

feature.

The index is the index assigned by a change event to a value in a feature, while

previousIndex is the previous index of the value (lines 7–8, Algorithm 1). In one

change event, we can get both index and previousIndex or only one of them, depending

on the type of the change event. For example, we can determine that the index of

cast is 0 (line 35 in Listing 7.3) because the change event type is add. In a remove

change event, we can get only the previousIndex of cast, which is 1 (line 35 in Listing

7.3), because the element does not exist anymore in the left model. We can obtain

both of them only in a move change event as an element is moved from a previous

index to a new one (line 31 in Listing 7.3). For a single-valued feature, the index and

previousIndex are always 0, because the feature can contain only a single value.

At line 9, we retrieve the featureEventList from the feature to be added later with the

current event (line 19). The featureEventList is a list—a history—of change events

that have been processed that are specific to the feature on the selected side. Using

the obtained targetElement, feature, value, and index, the process then updates the

state of the elementTree on the selected side (line 10). After that, it calculates the

original index of a value, using the featureEventList and previousIndex (line 11). If the

value at oldIndex in the feature has not been set, then the algorithm sets the feature

with the previousValue at the oldIndex in the partial state of the original model (lines

12–13). At lines 14–18, the algorithm does the same thing to the opposite side—if

the current side is left then it is right.

7.4.3 Difference Computation

Using the elementTree presented in Figure 7.4, we can determine the difference

between the left and right models without having to compare all their elements and

features. After the elementTree has been constructed, we iterate through elements

and features of the elementTree and use the flags, containers, containing features,

and indexes on both sides of each element and value to identify differences between
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the left and right models. We follow the steps in Algorithm 2. The algorithm visits

each element and every index of each feature (lines 3–5). At every index, it retrieves

the leftValue and rightValue (lines 5–7), passing these, together with the element,

feature, and index to a function identifyDiffUsingRules (line 8). The function uses a

set of pre-defined rules to identify the differences diffs based on the states of flags

of an element, flags and attributes of the element’s feature, values of the feature,

and indexes of the values. The obtained diffs are then added to the overall list of

differences diffList which is output (line 8–9, 13).

Algorithm 2: Algorithm to determine differences.
input : an instance of ElementTree elementT ree

1 begin

2 diffList ← DiffList();

3 foreach element in elementT ree do

4 foreach feature in getFeatures(element) do

5 foreach index in getIndexes(feature) do

6 leftV alue ← getLeftValue(feature, index);

7 rightV alue ← getRightValue(feature, index);

// rules starts from here

8 diffs ← identifyDiffUsingRules(element, feature, leftV alue,

rightV alue, index);

9 addToDiffList(diffs,diffList);

10 end

11 end

12 end

13 return diffList;

14 end

We illustrate the principles and the use of rules by discussing the rules used to

identify differences in the running example. These can be found in Algorithm 3. The

algorithm is the breakdown of the function identifyDiffUsingRules in Algorithm 2.

As previously stated, it is important to remember that we use the left model as a

reference, which means the differences are presented as changes that transform the

right model to become equal to the left model.

The first rule (Rule 1) in Algorithm 3 is to identify changes in single-valued attributes.

A feature must be of type attribute, both side values must be different, and the

element should have not been created or deleted in both models. The second rule
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Algorithm 3: Some rules to determine differences (part 1).
input : an Element element, a Feature feature, a variable leftV alue, a variable

rightV alue, an Integer index

output : a List of Difference diffs

1 diffs ← createDiffList();

// ...

// Rule 1: a rule to determine a change of a single-valued

attribute

2 if getType(feature) is Attribute and isSingleValued(feature) and leftValue <>

rightValue and not leftIsCreated(element) and not leftIsDeleted(element) and not

rightIsCreated(element) and not rightIsDeleted(element) then

3 diff ← createNewDiff(element, element, feature, feature, index, index, leftV alue,

rightV alue, DifferenceType.CHANGE);

4 addDiffToDiffList(diff , diffs);

5 end

// Rule 2: A rule to determine movement of an element for right

value (the left value has its own rule)

6 if getType(feature) is Containment and not isNull(rightV alue) and not

leftIsCreated(rightV alue) and not leftIsDeleted(rightV alue) and not

rightIsCreated(rightV alue) and not rightIsDeleted(rightV alue) and

(getLeftContainer(rightV alue) <> getRightContainer(rightV alue) or

getLeftFeature(rightV alue) <> getRightFeature(rightV alue) or

getLeftIndex(rightV alue) <> getRightIndex(rightV alue)) then

7 diff ← createNewDiff(getLeftContainer(rightV alue), getRightContainer(rightV alue),

getLeftFeature(rightV alue), getRightFeature(rightV alue), getLeftIndex(rightV alue),

getRightIndex(rightV alue), rightV alue, rightV alue, DifferenceType.MOVE);

8 addDiffToDiffList(diff , diffs);

9 end

// Rule 3: The first of two rules to determine the deletion of an

element

10 if getType(feature) is Containment and not leftIsCreated(rightV alue) and

leftIsDeleted(rightV alue) and not rightIsCreated(rightV alue) and not

rightIsDeleted(rightV alue) then

11 createNewDiff(getLeftContainer(rightV alue), getRightContainer(rightV alue),

getLeftFeature(rightV alue), getRightFeature(rightV alue), null,

getRightIndex(rightV alue), null, rightV alue, DifferenceType.DELETE);

12 addDiffToDiffList(diff , diffs);

13 end

// ...

// continue to part 2
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(Rule 2) identifies whether an element is in a different location in the two models. The

element must not have been deleted, and it must exist from the previous version—the

original model. Also, the containers, containing features, or indexes of the element

must be different on the two sides. The third rule (Rule 3) identifies the deletion of

an element. If an element in the left model is not created but exists in the model, it

means that the element has existed since the previous version—the original model.

This also means that the element also exists in the right model, unless it has been

deleted. Thus, to make the right model equal to the left model, the element must be

deleted in the right model as well.

Algorithm 4: Some rules to determine differences (part 2).

// continuation of part 1

// ...

// Rule 4: The second of two rules to determine deletion of an

element

1 if getType(feature) is Containment and not leftIsCreated(rightV alue) and not

leftIsDeleted(rightV alue) and rightIsCreated(rightV alue) and

rightIsDeleted(rightV alue) then

2 createNewDiff(getLeftContainer(rightV alue), getRightContainer(rightV alue),

getLeftFeature(rightV alue), getRightFeature(rightV alue), null,

getRightIndex(rightValue), null, rightV alue, DifferenceType.DELETE);

3 addDiffToDiffList(diff , diffs);

4 end

// Rule 5: one of rules to determine addition of an element

5 if getType(feature) is Containment and leftIsCreated(leftV alue) and not

leftIsDeleted(leftV alue) and not rightIsCreated(leftV alue) and not

rightIsDeleted(leftV alue) then

6 diff ← createNewDiff(getLeftContainer(leftV alue), getRightContainer(leftV alue),

getLeftFeature(leftV alue), getRightFeature(leftV alue), getLeftIndex(leftV alue),

null, rightV alue, null, DifferenceType.ADD);

7 addDiffToDiffList(diff , diffs);

8 end

// ...

9 return diffs

The fourth rule (Rule 4) in Algorithm 4 also identifies the deletion of an element.

The element never existed in the left model, but it has been created in the right

model. Thus, to make the right model equal to the left model, the element must be
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deleted from the right model. The fifth rule (Rule 5) identifies the need to add an

element. If an element is created in the left model and has not been deleted, it means

that the element should be added to the right model to make the two models equal.

In Figure 7.4, when the iteration of elementTree, from element character down to

feature name of element cast, reaches index 0 in feature parameters of element attack,

we can see that rightValue has the value element target and the value of leftValue is

unknown. The rightValue is not null and value target exists on both sides—all its

*Created and *Deleted flags are false, and it also different indexes (2 in the left state

and 0 in the right state). This meets the condition of the second rule. Thus, we

can conclude that, to make the index of element target in the right model equal its

index in the left model, element target should be moved from index 0 to 2. Thus, the

type of this difference is MOVE. We denote this difference as dc1. The same rule is

applied to element smash when the iteration reach index 0 in knight’s generalization.

Applying the rule to the element produces difference dc3.

When the iteration is at feature name of element troll, we determine that the type of

the feature is a single-valued attribute and the sides of the feature are different in

value. This means that the condition of the first rule is met. Thus, we can conclude

that, to make the left value of the feature equal to the right value, we must override

the value “Orc” with “Ogre”. The type of this difference is CHANGE. We denote this

difference as dc2.

At giant, the element used to exist but it has been deleted from the left model

(flags leftIsCreated = false, leftIsDeleted = true); it still exists in the right state (flags

rightIsCreated = false, rightIsDeleted = false). This condition satisfies the third rule.

Therefore, element giant should be deleted from the right model. The type of this

difference is DELETE. We denote this difference as dc4. The same rule is applied

to element cast when the iteration reaches the element. Applying the rule to the

element produces difference dc6.

We can get only one value when the iteration is at index 0 in the element knight’s

feature generalization; the leftValue is element leftGen, but the rightValue is unidentified.

Thus, we process only the leftValue. Element leftGen is created only in the left model

(flags leftIsCreated = true, leftIsDeleted = false, rightIsCreated = false, rightIsDeleted
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= false). This meets the condition of the fifth rule. Thus, to make element leftGen

exist in the right state, we must add it into element knight’s feature generalization at

index 0. Therefore, the type of this difference is ADD. We denote this difference as

dc7.

When the iteration is at index 0 in the element mage’s feature generalization, we

can get only one value; the leftValue is unidentified and the rightValue is element

rightGen. Therefore, we process only the rightValue. Element rightGen is created only

in the right model (flags leftIsCreated = false, leftIsDeleted = false, rightIsCreated =

true, rightIsDeleted = false). This meets the condition of the fourth rule. Thus, to

make element rightGen cease to exist in the left state, we must delete it from index

0 in element mage’s feature generalization. Therefore, the type of this difference is

DELETE. We denote this difference as dc5.

Similar to the state-based approach in Section 7.3, we express identified differ-

ences as dcn = [LeftContainern, RightContainern, LeftFeaturen, RightFeaturen,

LeftIndexn, RightIndexn, LeftV aluen, RightV aluen, Kindn]. Thus:

dc1 = [attack, attack, parameters, parameters, 2, 0, target, target, MOVE]

dc2 = [troll, troll, name, name, 0, 0, “Ogre”, “Orc”, CHANGE]

dc3 = [knight, giant, operations, operations, 0, 0, smash, smash, MOVE]

dc4 = [resource, resource, null, null, null, 2, null, giant, DELETE]

dc5 = [mage, mage, generalization, generalization, null, 0, null, rightGen, DELETE]

dc6 = [mage, mage, operations, operations, null, 0, null, cast, DELETE]

dc7 = [knight, knight, generalization, generalization, 0, null, leftGen, null, ADD]

This change-based approach might produce differences that are distinct from differ-

ences identified using state-based approaches. This can be seen by comparing ds1

and dc1 (ds1 6= dc1, [attack, attack, parameters, parameters, 0, 1, gem, gem, MOVE] 6=

[attack, attack, parameters, parameters, 2, 0, target, target, MOVE]). The state-based

approach identifies element gem as the element that should be moved to index 0 to re-

solve the differences in attack’s parameters (ds4), while in the change-based approach,

the difference is attributed to element target (dc4). However, in both approaches,

if we resolve their differences by performing all-left-to-right merging—making the

right model equal to the left model, the two approaches produce models that are
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equivalent. In this way, we can check the correctness of the identified differences

produced by the change-based approach.

7.5 Algorithm Complexity

EMF Compare implements the Longest Common Subsequence (LCS)/Shortest Edit-

ing Script (SES) algorithm to identify differences between versions of a model [32].

This algorithm has time and space complexity of O(ND), where N is the sum of the

lengths of two compared sequences and D is the size of the minimum edit script for

both sequences [26]. The algorithm works best when differences are small – sequences

are similar – and worst when the sequences are entirely different.

The change-based model differencing algorithm proposed in this research consists

of three phases: change event loading, element tree construction, and difference

computation. The complexity of time and space of change event loading is determined

by C, which is the sum of change events of the two versions of a change-based model

under comparison. In other words, a C number of changes have to be read from two

change-based model files, loaded into memory, and used for comparison.

The time complexity of element tree construction (Algorithm 1) also depends on

C. To construct the element tree, a number of changes C have to be executed to

construct the partial states of a model. Its space complexity depends on E – the

number of elements, features, and values affected by the changes. The more elements

and features affected by the changes, the more space is required in memory for the

element tree.

The difference computation works by linearly iterating through each affected element,

feature, or value and computing their differences (Algorithm 2). Its time complexity

is also E which is the number of affected elements, features, and values that are

differenced. Its space complexity is D, the number of space allocated to hold the

identified differences in memory.

Overall, the time complexity for the proposed change-based model differencing is

O(C + E) where C is the number of change events that are loaded and executed to

construct an element tree, while E is the number of elements, features, and values
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affected by the changes that are processed in difference computation. Moreover, the

space complexity is O(C + E + D) where C corresponds to the number of space

to hold all the involved change events in memory, E is the space required to store

elements, features, and values of an element tree in memory, and D is the space to

store the identified differences in memory.

Therefore, we can infer that, in terms of time complexity, the proposed differencing

approach works best in a condition where the number of change events and the

number of affected elements, features, and values is small and worst when these

numbers are large – many changes are made, and they affect many parts of a model.

In terms of space complexity, the best case happens when a model undergoes small

changes, limited to certain parts of the model, and the changes produce only a small

number of differences. The worst-case for space complexity happens when a model

undergoes significant changes on both compared versions; a large number of change

events indicates it, a large number of affected elements, features, and values (changes

are distributed evenly throughout the model), and the two versions compared are

entirely different.

7.6 Evaluation

This section presents the method used to evaluate the proposed change-based model

differencing approach as well as the evaluation results.

7.6.1 Method

To assess the performance benefits of the change-based approach in terms of model

differencing, we have evaluated it against a mature and widely used state-based

comparison tool (EMF Compare [32,72]). Since there are no large, manually developed

models persisted in our change-based format yet, the dataset for our experiments

was constructed from a large model reverse-engineered from the Eclipse Epsilon

project [66, 67]. This model conforms to the Java meta-model [78], and it consists of

more than 1.6 million elements with a size of 224 MB when persisted in XMI.

We cloned the original model to produce two new (left and right) models and

performed operations (add, remove, move, set with random elements, features, indexes,
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and values) on both models to create differences. We made 1.1 million artificial

changes to each model, generating over 1.1 million events (one operation can generate

more than one event, e.g., a move between features generates remove and add events).

Events generated by the changes were persisted in our change-based format (to

be used later in change-based model differencing). After every 50,000 changes, we

set a measurement point. We persisted the last state of the models in state-based

format (to be used later in state-based model differencing) and then performed

change-based and state-based model differencing and measured their execution time

and memory footprint. We created 22 measurement points to capture their trends in

one experiment.

We conducted five experiments. In the first experiment, the ratio of occurrence

between add, remove, move, and set changes was set to 1:1:20:40. This reflects an

assumption that in a mature model, modification—move and set events—occurs

more frequently than addition and deletion. So the change of total elements does not

affect our measurement, the number of total elements should be kept constant. For

example, it is difficult to determine if an increase of time in comparison is caused

by an increase in the number of elements or by the number of change events. One

way to do this is to exclude add and remove operations. However, excluding both

operations made measurement less representative. Thus, we included both operations,

but we made their probabilities equal so that the number of total elements remains

largely unchanged. In the rest of the experiments, we performed only homogeneous

operations—isolated from other types—per experiment (e.g., add-only, move-only

operations). In the end, we obtained five results: mixed, add-only, remove-only,

move-only, and set-only measurements. We did this to assess whether operations of

different types have different impacts on model differencing.

For the change-based approach, the comparison time comprises loading change events,

constructing an element tree, and identifying differences. The memory footprint is

the space used to hold the change events, element tree, and differences in memory.

For state-based EMF Compare, the comparison time comprises matching elements

and identifying differences, and the memory footprint is the space required to hold the

matches and differences in memory. All measurements were performed on the same

machine with the following specification: AMD Opteron(tm) Processor 6386 SE @
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2.8 GHz cache size 2 GB (64 processors), 528 GB main memory, Ubuntu 16.04.6 LTS

operating system, and Java(TM) SE Runtime Environment (build 1.8.0_201-b09)

with JVM InitialHeapSize 2 GB and MaxHeapSize 32 GB. Please refer to Appendix B

to reproduce the results of this experiment.

7.6.2 Results and Discussion
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Figure 7.6: total elements, affected ele-

ments, and diffs

This section reports on the results for

comparison time and memory footprint

for the mixed and homogeneous opera-

tion experiments.

Mixed Operations

In the mixed operation measurement, we

modify two identical models differently

by applying random operations. As the

number of change events generated by

the modification grows, the numbers of affected elements and differences also increase

in a logarithmic manner. The patterns are shown in Figure 7.6. The growth

is logarithmic since the probability that the random operations modify the same

elements also increases. Thus, some change events might not add new affected

elements and differences. In other words, more events are required to increase

the number of affected elements or differences. In Figure 7.6, the total number

of elements remains largely unchanged because the probabilities of addition and

deletion were made equal, as noted in Section 7.6. The figure gives us an insight

about the characteristics of the modification caused by the random operations in the

mixed operation measurement; it helps to explain the implications of the changes on

execution time and memory footprints of model differencing.

After applying some random changes on both models, the modification produces

100,000 change events at the first measurement point. Using this amount of events, our

change-based comparison takes only 5 seconds to identify around 90,000 differences, in

contrast to state-based comparison, which takes 66 seconds (see the first measurement

points in Figures 7.6 and 7.7a). If the modification continues, more change events

are generated. This growing number of change events must be loaded into memory
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Figure 7.7: Change-based vs. state-based model differencing as differences increase.

and thus slows down the change-based comparison. Nevertheless, change-based

comparison is still faster than state-based comparison. Even when the number of

change events reaches 2.37 million—more than 1 million differences change-based

comparison outperforms state-based comparison in execution time (Figure 7.7a), and

the growth seems linear. Figure 7.8a presents the comparison time in detail. It shows

that the event loading time is the dominant contributor to the slowdown compared

to the element tree’s construction time and diffing time. One reason to explain this

is that the number of affected elements in the tree construction is less than – only

around two fifths of – the number of change events.

For the state-based comparison in Figure 7.8b, the comparison time experiences

only a slight increase as the number of identified differences also grows. This slight

increase comes mainly from the diffing time, while the matching time tends to be

constant because of the very small increase of total elements (Figures 7.6).

Nevertheless, a change-based comparison generally consumes more memory than a

state-based comparison (see Figure 7.7b). It consumes less memory than its state-

based counterpart only when the number of events is fewer than 0.3 million. (At

that moment there are fewer than 0.25 million identified differences.) Figure 7.8c

separates the memory footprint of the change-based comparison into three factors:

the loaded change events, element tree, and diffs. As modification continues, more

events are generated. These events must be loaded into memory since they contain

the information needed to construct an element tree. The amount of space to keep

these change events in memory grows linearly with their number.
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(d) state-based memory footprint

Figure 7.8: Breakdown view of comparison time and memory footprint in Figure 7.7.

In contrast, the memory used for the element tree grows logarithmically. As the

number of events increases, the probability that events modify already affected

elements also increases. Thus, no additional memory allocation is required for the

element tree. Moreover, the element tree occupies most of the memory footprint

since it mirrors the partial states—elements, features, and values—of the models

that are affected by the changes. In our technical implementation, a feature can

have many instances—one instance for each element. (As a comparison, in the EMF

implementation, there is only one instance for a feature. The feature is used as a key

so that different elements can have the same feature that maps to different values

simultaneously). This contributes to the large memory footprint used by the element

tree. The identified change-based diffs, the third factor, are the smallest factor that

contributes to the memory footprint of the change-based comparison.

For the state-based comparison in Figure 7.8d, the memory footprint grows only

slightly with the increase of differences. A large part of the memory footprint is
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Figure 7.9: Comparison time for homogeneous operations.

used to represent the identified differences, while the memory used for matches tends

to be constant, because the changes of the total elements are very few—fewer new

elements means less memory must be allocated for new matches (Figures 7.6).

Homogeneous Operations

Figures 7.9 and 7.10 show the comparison times and memory footprints of models

modified using homogeneous operations—add, remove, move, or set only. In all

these figures, change-based comparison outperforms its state-based counterpart,

particularly when the number of change events is small relative to the size of the

model. As the number of modifications grows, change-based comparison becomes

slower than state-based comparison. In our experiments, this happens when the

number of events is greater than 4 million (Figure 7.9a). Change-based comparison

also becomes slower when the size of models shrinks (because of a large number of

delete events) as depicted in Figure 7.10b. This is because change-based comparison
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Figure 7.10: Memory footprint for homogeneous operations.

still needs to load these change events and construct its element tree. In contrast,

deletion means less work for state-based comparison. In terms of memory footprint,

change-based comparison performs better than state-based comparison only when

the number of change events is fewer than 0.3 million, as depicted in Figure 7.10.

7.6.3 Threats to Validity

The evaluation of the proposed change-based comparison is limited to the Java meta-

model only. Thus, there is no guarantee it will perform in a consistent manner on

models conforming to different metamodels. Although, we have tried to cover as much

as common changes made in EMF models (e.g., performing add/remove/set/move

operations on single/multi-valued features, attribute/reference features, or contain-

ment/non-containment references), the random modification made in the evaluation

does not largely reflect the evolution of models in the real world. This is challenging

as different domains can have their own patterns of model evolution – different
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problems, metamodels, modellers, etc.

7.7 Conclusions

This chapter proposed an approach to identify differences between two versions of

a model persisted in change-based format. It works by loading into memory the

changes made to both versions since the last shared version, constructing partial

states of the versions based on the information in the latest changes, and using

specific rules to identify differences between the versions’ elements and features.

The evaluation indicates that the change-based comparison approach works best for

large models that have been modified a moderate number of times. Models that have

been modified excessively and experience a significant reduction in size could impair

the performance of change-based model differencing, since a high number of change

records must be read and loaded into memory.

This chapter has addressed the second research question of this study, In a changed-

based format, how can the differences between models be identified, and

how does change-based model differencing perform, in terms of speed and

memory footprint, compared to state-based model differencing? (RQ2).

Change-based persistence can identify differences between two versions of a model.

The change-based representation of the two versions contains all the information

needed to identify elements that have been modified since their last shared version.

In this way, we can localise the model differencing to the elements that were modified

recently. In other words, it is not necessary to inspect, match, and difference all

the elements. We can reconstruct the partial states of the two versions and then

compare their elements and features using specific rules to identify their differences.

The change-based model differencing proposed in this research comprises three phases:

event loading, element tree construction, and difference computation. In the event

loading phase, the implementation loads the change events recorded in two change-

based model persistence files into memory starting from the line their change events

are different. The information that the loaded change events contain is used to

construct an element tree. An element tree contains only the affected elements and

features of the versions being compared, including the shared original version. This
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is possible because change events are designed to contain adequate information to

construct the element tree. A difference computation is then executed to identify

the differences using a set of pre-defined rules (i.e., if an element is created in one

version it means that the element does not exist in the other version or in the original

version).

The evaluation suggests that the proposed change-based model differencing executes

faster than traditional, state-based model differencing. However, change-based model

differencing needs to load change events from a change-based persistence into main

memory. Thus, it may require more memory than is needed for state-based model

differencing. In our evaluation, this occurs when the number of change events exceeds

400,000. However, it is likely that difference and merge operations are performed on

lower numbers of changes (smaller deltas) than were tested in this evaluation.



Chapter 8

Efficient Conflict Detection of

Change-based Models

In Chapter 7, it was demonstrated that change-based model persistence can be

used to speed up model differencing. This chapter explores whether change-based

model persistence can be leveraged to improve conflict detection in model versioning.

Results show that the proposed approach can reduce conflict detection time (up

to 90% in some experiments) compared to existing state-based and change-based

conflict detection approaches.

8.1 Introduction

State-based and change-based model conflict detection are discussed briefly in Sections

8.2 and 8.3. The state-based approach, represented by EMF Compare [32], does have

drawbacks. First, it cannot detect conflicts as accurately as a change-based approach

can. This is because their changes are derived; they are not working with real

historical changes. Second, EMF Compare uses a three-way model comparison [32].

Therefore, its conflict detection should perform somewhat more slowly than the

change-based approach, since it has to perform state-based model differencing twice.

It must derive change events between left and original versions and between right

and original versions.

Change-based model conflict detection [79], represented by EMF Store [40], also has

115
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drawbacks. EMF Store works only on change events, and it detects conflicts based

on pre-defined rules; it does not consider the eventual states of two versions that are

being compared. Thus, two change events that modify a same feature are considered

in conflict even though both change events produce the same eventual states. In

terms of performance, as has been presented in Chapter 7, the change-based approach

is faster than its state-based counterparts in model differencing. Thus, it is expected

that it can also perform better than the state-based approach in detecting conflicts.

This chapter introduces a proposed change-based approach to detect conflicts between

two versions of a model, based not only on recent change events of the two versions

but also by considering the eventual states of the elements affected by the change

events. Thus, the performance and accuracy of model conflict detection can be

improved compared to existing state-based and change-based approaches represented

by EMF Compare and EMF Store respectively.

The rest of this chapter is structured as follows. Sections 8.2 and 8.3 provide

an overview of conflict detection by EMF Compare and EMF Store, respectively.

Sections 8.4 and 8.6 discuss our proposed approach to detect conflicts and review

its accuracy compared to EMF Compare and EMF Store. Section 8.8 reports the

results of experiments used to evaluate the proposed approach. Section 8.9 concludes

this chapter.

8.2 State-based Conflict Detection (EMF Compare)

In this study, we select EMF Compare [32] as an example to explain conflict detection

in state-based model persistence. We also use it as a benchmark in the compar-

ative evaluation of this paper. It is selected because of its maturity and ongoing

development activity—4,682 commits and 103 releases on GitHub [80]. Another

implementation of state-based conflict detection is EMF DiffMerge [52]. However,

its comparison approach is similar to EMF Compare [52], and it is less mature than

EMF Compare—only 442 commits and 20 releases on GitHub [81].

In state-based model comparison, a conflict occurs when the states of an element

or a feature are different in the versions of a model that are being compared. In

other words, the change events that cause the differences are in conflict, since they
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produce two different states. State-based persistence does not record change events

that cause the differences. Thus, the change events must be identified through model

differencing [19,32].

Let’s say that we have three versions of model M , the original shared version mo

and two other modified versions: the left version ml and the right version mr. There

are also two lists of identified change events, left change events CL and right change

events CR. These lists are obtained by differencing ml to mo and mr to mo using

an LCS (Longest Common Subsequence) algorithm [26, 32], where CL = (cl1, cl2,

..., clm), CR = (cr1, cr2, ..., crn), m is the number of left change events in CL or

m = |CL|, and n is the number of change events in CR or n = |CR|. Applying CL to

model mo transforms it into model ml, and applying CR to model mo transforms

it into model mr. These derived change events are used to detect conflicts using

Equations (8.1), (8.2), and (8.3).

If state-based model differencing is used to derive left change events CL from the left

and original versions (Bob’s and Jane’s versions) in Figure 4.2, the following change

events are obtained.

Listing 8.1: The derived, minimal change events to produce the left version (Bob’s

version) in Figure 4.2b from the original version (Jane’s version).

1 move target in attack.parameters from 1 to 2

2 set character.name from "Character" to "Hero"

3 set troll.name from "Troll" to "Ogre"

4 create leftGen type Generalization composite l1

5 set leftGen.general from null to character composite l1

6 set knight.generalization from null to leftGen composite l1

7 unset cast.name from "cast" to null composite l2

8 remove cast from giant.operations at 0 composite l2

9 delete cast composite l2

10 unset giant.name from "Giant" to null composite l3

11 remove giant from resource at 2 composite l3

12 delete giant composite l3

And the following list is the derived change events for CR that are obtained from the

right and original versions (Alice’s and Jane’s versions) in Figure 4.2.

Listing 8.2: The derived, minimal change events to produce the right version (Alice’s

version) in Figure 4.2c from the original version (Jane’s version).
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1 move gem in attack.parameters from 0 to 1

2 set character.name from "Character" to "Hero"

3 set troll.name from "Troll" to "Orc"

4 remove smash from knight.operations at 0 composite r1

5 add smash to giant.operations at 0 composite r1

6 create rightGen type Generalization composite r2

7 set rightGen.general to character composite r2

8 set mage.generalization to rightGen composite r2

9 remove cast from giant.operations at composite r3

10 add cast to mage.operations at 0 composite r3

Both Listings 8.1 and 8.2 are derived change events. They are the minimal sequences

of change events that can produce ml and mr from mo respectively, but not necessarily

the real changes made by Bob and Alice. For example, Bob and Alice might have

created and then deleted a new class in the process, or they might have modified a

feature but later decided to set it back to its initial value.

Real Conflict. In state-based model comparison, two change events, cl and cr, are

in conflict if both are applied to a same element eo but produce two different eventual

states where ! is used as the operator for expressing that two change events are in

conflict (8.1). EMF Compare [32] classifies this conflict as a REAL conflict. For

example, Bob changed the name of troll to “Ogre” (Listing 8.1) while Alice modified

it to “Orc” (Listing 8.2).

eo + cl 6≡ eo + cr ⇒ cl ! cr (8.1)

Non-applicability. A REAL conflict also occurs when applying change event cl to

element eo makes cr inapplicable to element eo. Therefore, change events cl and cr

are in conflict (8.2). For instance, Alice moved operation smash from class Knight to

class Giant (Listing 8.2), but this class was deleted by Bob (Listing 8.1). Deleting

class Giant makes the move inapplicable.

(eo + cr 6≡ eo) ∧ (eo + cl + cr ≡ eo + cl)⇒ cl ! cr (8.2)

Pseudo Conflict. A conflict is classified as PSEUDO if the eventual states produced

are equivalent. PSEUDO means the conflict can be automatically resolved by choosing

any of the conflicting changes, since any of the changes produces the same eventual

state (8.3) [32]. Symbol !p is used as the operator for expressing that two change

events are in PSEUDO conflict. For example, both Bob and Alice changed the name
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of element character from “Character“ to “Hero” (Listings 8.1 and 8.2).

eo + cl ≡ eo + cr ⇒ cl !p cr (8.3)

Table 8.1: Conflicting change events identified by EMF Compare based on the case

in Figure 4.2.

ID Left Change Events (Bob) Right Change Events (Alice) Type

EC1 set character.name from "Character" to

"Hero"

set character.name from "Character" to

"Hero"

pseudo

EC2 set troll.name from "Troll" to "Ogre" set troll.name from "Troll" to "Orc" real

EC3 delete cast remove cast from giant.operations at 0

add cast to mage.operations at 0

real, non-

applicability

EC4 delete giant remove smash from knight.operations

at 0

add smash to giant.operations at 0

real, non-

applicability

Using Equations (8.1), (8.2), and (8.3) and information in Listings 8.1 and 8.2, four

conflicts can be identified. They are presented in Table 8.1 along with their conflicting

change events. Conflict EC1 is a pseudo conflict since both modify the same class

character’s feature name resulting the same end states, “Hero” or “Hero”. Conflict

EC2 is a REAL conflict. Changing troll’s name to “Ogre” and troll’s name to “Orc”

produces two different states—“Ogre” and “Orc”. Conflicts EC3 and EC4 are REAL

non-applicability conflicts since if operation cast is deleted first then it cannot be

moved—removed and added—from class giant’s operations to class mage’s operations,

and if class giant is deleted first, then operation smash cannot be moved—removed

and added—from class knight’s operations to class giant’s operations.

Conflict detection in state-based comparison might not be accurate, since the derived

differences/change events might not reflect the real historical changes of a model.

For example, EMF Compare [32] does not detect that Alice and Bob modified the

same element—parameter target—as indicated by line 29 in List. 7.3 and line 35 in

List. 7.2. Using an LCS algorithm, the derived change events related to the feature

parameters of element attack, which if presented as change events, are expressed

as [move target in attack.parameters from 1 to 2] for Bob’s version and [move gem in

attack.parameters from 1 to 2] for Alice’s version. Using (8.1), the two change events

are not in conflict since these change events modify two different elements, target

and gem. The result is different if a change-based approach is employed to detect
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conflicts using the change event records in Listings 7.2 and 7.3. This is explained in

Section 8.3.

8.3 Change-based Conflict Detection (EMF Store)

EMF Store [11] is an open-source tool that implements change-based model persistence

for EMF models. It is a collaborative repository and versioning system that is

specifically designed for models; rather than using existing versioning systems, such

as Git and SVN, that focus heavily on text-based files [40]. EMF Store uses the

following rules to identify conflicts between change events [79].

Non-commutability. In EMF Store, change events cl and cr are in conflict if

applying them in different order to the same element eo produces two different

eventual states [79]. For example, Alice changed the name of class Troll to “Orc”

(Listing 7.3), while Bob renamed it to “Ogre” (Listing 7.2). Applying Alice’s change

first to Bob’s change makes the class’s name “Ogre”, but applying Bob’s change first

results in “Orc”.

eo + cl + cr 6≡ eo + cr + cl ⇒ cl ! cr (8.4)

However, after examining the implementation [82], even though two different change

events produce equivalent eventual states, both change events are still treated as

conflict by EMF Store (8.5). For example, both Bob and Alice changed the name of

element character from “Character” to “Hero” (Listing 7.2 line 34 and Listing 7.3 line

39). The reason is that, if we apply Bob’s set event first, it changes character’s name

from “Character” to “Hero”. It is important to notice that after applying Bob’s set

event, the eventual value of character’s name is “Hero”. Applying Alice’s set event

with the previous value “Character” is inapplicable since it makes the sequence of

the change events inconsistent. Bob’s set event produces the eventual value “Hero”,

which is not the previous value changed by Alice’s set event, which is “Character”.

The same inconsistency occurs even we apply these set events in a different order.

eo + cl + cr ≡ eo + cr + cl ⇒ cl ! cr (8.5)

Moreover, a conflict occurs even when two different lists of change events, CL and

CR, produce eventual states that are equal to their initial states (8.6). For example,

if both Bob and Alice alter character’s name from “Character” to “Hero” and then
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modify it back to “Character”, both lists of change events are also treated in conflict.

(eo + CL + CR ≡ eo) ∧ (eo + CR + CL ≡ eo)⇒ CL ! CR (8.6)

Co-modification. This leads to a new definition that a conflict occurs when two

different change events modify the same element or feature regardless of the eventual

state that they produce.

(eo + cl ≡ eo + cr) ∨ (eo + cl 6≡ eo + cr)⇒ cl ! cr (8.7)

Non-applicability. This non-applicability rule is the same as the non-applicability

rule in state-based conflict detection. Essentially, a conflict occurs when applying

change event cl to element eo makes cr inapplicable to element eo. For instance,

Alice moved operation smash from class Knight to class Giant (Listing 7.3), but this

class was deleted by Bob (Listing 7.2). Deleting class Giant makes Alice’s move

inapplicable.

(eo + cr 6≡ eo) ∧ (eo + cl + cr ≡ eo + cl)⇒ cl ! cr (8.8)

Composite. If change event cl is in conflict with change event cr where cr is a

member of a composite change event Ccr then change event cl is also in conflict with

each change event cn in composite change event Ccr. For example, deleting class

Giant is part of composite event l2 (Listing 7.2) and adding operation smash to class

Giant is part of composite event r1 (Listing 7.3). Since they are in conflict according

to (8.8), all other change events in their composite events, l2 and r1, also are in

conflict.

cl ! cr ∧ cr ∈ Ccr ⇒ cl ! crn | crn ∈ Ccr (8.9)

In change-based conflict detection, all change events applied to a model are readily

available. Thus, there is no need to derive change events through a diffing process. The

availability of real historical changes can improve the accuracy of change detection,

since elements that have been changed can be identified according to fact—not

derivation. Therefore, change-based conflict detection can detect conflicts that

cannot be detected by state-based conflict detection. For example, in Listing 7.3

line 31, parameter target has been moved from index 1 to 0, while in Listing 7.2 line

37, it was moved from index 1 to 2. Since both change events modified the same

parameter target, both change events can be identified as being in conflict using (8.7).

The same parameter target is modified by two different change events.
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Table 8.2: Conflicting change events identified by EMF Store in Listings 7.3 and 7.2.

ID Left Change Events (Bob) Right Change Events (Alice) Type

ES1 set troll.generalization from null to

left Gen

unset troll.generalization from leftGen

to null

set knight.generalization from null to

leftGen

set troll.generalization from null to

rightGen

unset troll.generalization from

rightGen to null

set mage.generalization from null to

rightGen

co-

modification,

composite

ES2 set character.name from "Character"

to"Hero"

set character.name from "Character" to

"Hero"

co-

modification

ES3 move target in attack.parameters from

1 to 2

move target in attack.parameters from

1 to 0

non-

applicability

ES4 unset cast.name from "cast" to null

remove cast from giant.operations at 0

delete cast type Operation

unset giant.name from "Giant" to null

delete giant

remove cast from giant.operations at 0

add cast to mage.operations at 0

remove smash from knight.operations

at 0

add smash to giant.operations at 1

non-

applicability,

composite

ES5 set troll.name from "Troll" to "Ogre" set troll.name from "Troll" to "Orc" co-

modification

The drawback of EMF Store is that it considers two change events to be in conflict

if they modify the same element but create the same end state of the element [58].

In common sense, two changes should not be in conflict if they are applied to a same

element or feature and produce same eventual states. Moreover, EMF Store does not

classify conflicts as REAL or PSEUDO, in EMF Compare does, to automate conflict

resolution.

Excluding eventual states in detecting conflicts also causes all change events related

to troll’s generalization to be in conflict; all the feature’s left-side events are in conflict

with all its right-side events (Table 8.2, ES1). Using the co-modification (8.7) rule,

we can determine that the setting and unsetting of troll’s generalization to leftGen and

null (Listing 7.2 lines 33, 35) are in conflict with the setting and unsetting of troll’s

generalization to rightGen and null (Listing 7.3 lines 38, 40). Moreover, using the

composite (8.9) rule, we can also determine that the setting of knight’s generalization

to leftGen (Listing 7.2 line 36) and the setting of mage’s generalization to rightGen

(Listing 7.3 line 41) are also part of conflict ES1, since both events are in the same

composite move events, l1 and r3, with the unsetting of troll’s generalization to null

(Listing 7.2 line 35, Listing 7.3 line 38).
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In state-based conflict detection, case ES1 is not a conflict since the values of class

troll’s feature generalization in Jane’s, Bob’s, and Alice’s versions are identical—all

are null. Thus, there are no different derived change events that modify class troll’s

feature generalization in parallel.

Conflict ES4 is a non-applicable, composite conflict. Moving element smash from

class knight to class giant and moving element cast from class giant to class mage

require the deletion of class giant to be executed later in order to be applicable.

Conflict ES5 can be detected with the co-modification (8.7) rule. The states of troll’s

name have been simultaneously modified to “Ogre” or “Orc”.

Table 8.3: The advantages and drawbacks of EMF Compare and EMF Store in

detecting conflicts.

Dimension State-based Conflict Detection (EMF

Compare)

Change-based Conflict Detection

(EMF Store)

Advantages - detect PSEUDO conflict which can be

automatically resolved when merging

- conflicts detected are optimal since

changes are derived thus avoid

oversensitive conflict detection

- more accurate in detecting conflicts

since changes are real history

- in large models with moderate changes,

it should perform faster than the

state-based approach—no need to derive

changes since they are already available

Drawbacks - less accurate in detecting conflicts since

changes are derived—not real changes

- in large models, its performance should

be slower than the change-based

approach since it performs a three-way

comparison, which requires two-times

model differencing to derive changes

- in small models, it should perform faster

than change-based approach

- treats all conflicts as REAL conflicts

which demand user intervention for

resolution

- can be oversensitive in detecting

conflicts since eventual states are not

considered

- in small models with excessive changes,

it should perform more slowly than the

state-based approach because it must

process many change records

8.3.1 Summary

The summary of the advantages and drawbacks of EMF Compare and EMF Store in

detecting conflicts are presented in Table 8.3. The state-based approach, represented

by EMF Compare [32], does have drawbacks. First, it cannot detect conflicts as

accurately as can change-based approaches because it uses derived changes—not real
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historical changes. Second, EMF Compare uses a three-way model comparison [32]

thus hypothetically its conflict detection should perform more slowly than the change-

based approach, since it must perform state-based model differencing twice to derive

change events: change events between the left and original versions, and change

events between the right and original versions.

Change-based model conflict detection [79], represented by EMF Store [40], also

has drawbacks. EMF Store works only on change events, and it detects conflicts

based on pre-defined rules; it does not consider the eventual states of the versions

that are being compared. Thus, two change events that modify the same feature

are considered to be in conflict even though both change events produce the same

eventual state. This can make EMF Store oversensitive in conflict detection.

8.4 EMF CBP Conflict Detection

The model conflict detection procedure proposed in this study performs like the

phases of change-based model differencing discussed in Chapter 7.4 but with some

modification. First, the conflict detection still performs the event loading and element

tree construction phases, but the difference computation phase is replaced by a conflict

computation phase. Second, during element tree construction, the conflict detection

maps change events to the elements, features, and values that the change events

modify. The change event mapping and conflict computation are discussed in the

following Sections.

8.4.1 Change Event Mapping

Using the information in the change-based model representations in Listings 7.2 and

7.3, we can construct an element tree as depicted in Figure 7.4 using the construction

method presented in Section 7.4.2. During that construction, change events in

Listings 7.2 and 7.3 are mapped to the affected elements, features, and values, which

act as the keys of the mapping. The relationships are stored in attributes leftEvents

and rightEvents of class Element and leftEvents, rightEvents, leftValueEvents, and

rightValueEvents of class Feature in Figure 7.2. This registration forms many-to-many

relationships between the keys and change events. In detail, the keys are element for

elements, or a combination of element-feature for single-valued features or element-
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feature-value for multi-valued-features. With this mapping, we can trace all events

that affects certain elements, features, and values. The mapping of the events in

Listings 7.2 and 7.3 is in Table 8.4. The application of this mapping is presented in

Section 8.4.3.

Table 8.4: Mapping the elements, features, and values in Figure 7.4 to the events

that affect them.

Key Left Events Right Events

character cl32, cl34 cr37, cr39

character.name cl34 cr39

attack cl37 cr31

attack.parameters.target cl37 cr31

target cl37 cr31

trcll cl33, cl35 cr38, cr40

trcll.name cl43 cr42

trcll.generalization cl33, cl35 cr38, cr40

giant cl39, cl40, cl41, cl42 cr33, cr34

giant.name cl40

giant.operations.cast cl39 cr34

giant.operations.smash cr33

knight cl36 cr32

knight.generalization cl36

knight.operations.smash cr32

mage cr35, cr41

mage.generalization cr41

mage.operations.cast cr35

leftGen cl31, cl32, cl33, cl35, cl36

leftGen.general cl32

rightGen cr36, cr37, cr38, cr40, cr41

rightGen.general cr37

smash cr32, cr33

cast cl38, cl39, cl40 cr34, cr35

cast.name cl38
c: change event; l: left side; r: right side; n: line number in change-based model persistence

8.4.2 Theoretical Foundation

To improve the accuracy of the proposed conflict detection approach, we take

two strategies from both change and state-based conflict detections. First, we

exploit change events to address real historical changes—not derived ones—of models.

Second, we also take into account the original and eventual states of the models.

Two sequences of change events that produce two eventual states that are equal to
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an original state are not treated as in conflict. The original and eventual states are

already calculated during the construction of the element tree so we do not need to

calculate them again in the conflict computation phase. Since all change events are

also recorded for every element, feature, and value that they affected, we can retrieve

all related change events that produce the eventual state of an element or feature.

Let’s say that we have the original state of an element eo. We also have a list of

change events CL = (cl1, cl2, ..., clg) that we apply to eo to change its state to element

el and g = |CL|.

eo + cl1 + cl2 + ... + clg → el (8.10)

We also have a list of change events CR = (cr1, cr2, ..., crh) that we apply to eo to

produce element er and h = |CR|.

eo + cr1 + cr2 + ... + crh → er (8.11)

Non-conflict. Instead of calculating conflict between change events, we start by

checking the equivalence of the left and right states of an element to its original

state. If the states of both sides are equivalent to the original state, regardless of

how many changes have been applied, we can infer that there is no conflict between

the members of the two change event lists, CL and CR, since there is no change of

the eventual state. We also identify no conflict if an element is modified only on one

side—no change events are applied on the other side.

(eo ≡ el ∧ eo ≡ er) ∨ |CL| = 0 ∨ |CR| = 0⇒

¬(cl ! cr) | cl ∈ CL, cr ∈ CR

(8.12)

Conflict. A conflict occurs when one or both states, el or/and er, are not equivalent

to the original state eo, and there is at least one change event applied on each side

of the element. We can conclude that change event list CL is in conflict with the

change event list CR.

(eo 6≡ el ∨ eo 6≡ er) ∧ (|CL| > 0 ∧ |CR| > 0)⇒

cl ! cr | cl ∈ CL, cr ∈ CR

(8.13)

Pseudo conflict. As in EMF Compare, we also implement pseudo conflict. Pseudo

conflict is a conflict where el and er are equivalent or one of them is equivalent to
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eo. Thus, they can be automatically resolved in conflict resolution without user

intervention.

(eo ≡ el ∨ eo ≡ er ∨ el ≡ er) ∧ (|CL| > 0 ∧ |CR| > 0)

⇒ cl !p cr | cl ∈ CL, cr ∈ CR

(8.14)

Figure 8.1 illustrates how conflict and non-conflict change events are detected in the

proposed approach (dashed arrow = left change event, solid arrow = right change

events, circle = state). Figure 8.1a shows the initial state of an element is ‘a’. In the

figure, the element has not been modified. Thus, no conflict is detected according

to (8.12). In Figure 8.1b, the element is modified on the right side (version) only.

Thus, using (8.12), no conflict is detected. In the figure, the state of the element is

altered from ‘a’ to ‘b’ by change event cr1, and then altered again to ‘c’ by change

event cr2. In Figure 8.1c, even though an element has been modified on both sides,

using (8.12), no conflict is detected, since both left and right states are equal to the

original state after the modification. In the figure, both CL and CR produce eventual

states that are equal to the original state, ‘a’.

(a) non-conflict (b) non-conflict (c) non-conflict

(d) pseudo conflict (e) pseudo conflict (f) conflict

Figure 8.1: Conflicting and non-conflicting change events (dashed arrow = left change

event, solid arrow = right change events, circle = state).

Using (8.14), the condition in Figure 8.1d can be detected as a PSEUDO conflict.

PSEUDO conflict means that a conflict can be automatically resolved. This means

that we can automatically select one of the two conflicting change event lists as the
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applied change events without needing human intervention. Since CR produces the

eventual state that is equal to the original state, that is, ‘a’; it does not have any

effect—the changes are not intended or cancelled. Thus, all its change events can be

automatically negated. In other words, only the change events in CL are accepted

to produce the eventual state, which is ‘e’. Also using (8.14), the condition in 8.1e

can be detected as another PSEUDO conflict. Both change event lists, CL and CR,

produce the same eventual state, ‘e’, that is different from the original state, ‘a’.

This can be automatically resolved since selecting either one of the lists produces the

same outcome. With (8.13), the scenario in Figure 8.1f can be detected as a REAL

conflict, since change event lists, CL and CR, produce two different eventual states.

The conflict cannot be automatically resolved, and it requires user intervention to

choose which one is the desired eventual state, ‘e’ or ‘f’. Then the appropriate change

event list can be selected to produce the eventual state.

8.4.3 Conflict Computation

We perform the procedure in Algorithm 5 and use (8.13) and (8.14) inside it to

identify conflicts between two CBPs. The algorithm iterates through all the elements,

features, and values in the element tree (Figure 7.4), checks the equivalency of their

original and eventual states, and records the numbers of change events applied to

them. The results are then used as inputs to decide whether a conflict has been

detected or not.

The algorithm starts by creating an empty list conflictList to contain identified

conflicts at line 2. The algorithm then iterates through all the elements, features,

and values in the element tree.

Conflict with Deletion

At lines 4 to 11 in Algorithm 5, the algorithm checks if there is a conflict related to

a deletion of an element. If an element is deleted on one or both sides, it means that

all events related to that element on both sides should be in conflict. To get all the

related events, the algorithm uses two functions, getAllRelatedLeftEvents(element)

and getAllRelatedRightEvents(element) (the element acts as a map key to access the

change events). These functions return two lists of related events, leftEvents and
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Table 8.5: Conflicting change events in Listings 7.2 and 7.3 identified by the proposed

change-based conflict detection. The bold identifiers are the keys where conflicts

were detected.

ID Left Change Events (Bob) Right Change Events (Alice) Type

CB1 set troll.name from "Troll" to "Ogre" set troll.name from "Troll" to "Orc" real

CB2 move target in charac-

ter.parameters from 1 to 2

move target in charac-

ter.parameters from 1 to 0

real

CB3 unset cast.name from "cast" to null

remove cast from giant.operations at 0

delete cast type Operation

unset giant.name from "Giant" to null

delete giant type Class

remove smash from knight.operations

at 0

add smash to giant.operations at 1

remove cast from giant.operations at

0

add cast to mage.operations at 0

real, non-

applicability

CB4 unset cast.name from "cast" to null

remove cast from giant.operations at 0

delete cast type Operation

unset giant.name from "Giant" to null

delete giant type Class

remove cast from giant.operations at

0

add cast to mage.operations at 0

real, non-

applicability

CB5 set character.name from "Character"

to "Hero"

set character.name from "Character"

to "Hero"

pseudo

rightEvents respectively. The related events are events applied to the deleted element,

including its sub-elements and features, and events that are part of composite events.

If both lists of events are not empty, then a conflict is created containing both lists of

events. If the element is deleted on both sides, then we set the conflict as PSEUDO.

The identified conflict is then added to conflictList.

As an example, when the iteration reaches element giant in Figure 7.4, the algorithm

determines that the element has been deleted only on the left side. Using the map in

Table 8.4, the algorithm then collects all the change events from both sides related

to the element giant and its sub-elements. For key giant, it collects the change events

at lines 39 to 42 for the left side and change events at lines 33 to 34 for the right

side. For key giant.name, only the left-side change event at line 40 is collected. For

key giant.operations.cast, it collects the left-side change event at line 39 and the

right-side change event at line 34. For key giant.operations.smash, only the right-side

change event at line 33 is collected. For key cast, it collects change events at lines 38

to 40 for the left side and change events at lines 34 and 35 for the right side. For

key giant.name, only the left-side change event at line 38 is collected. The collected
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Algorithm 5: Algorithm for conflict detection using element tree.
input : an instance of ElementTree elementT ree

1 begin

2 conflictList ← ConflictList();

3 foreach element in elementT ree do

// Handle conflicts with deletion -------------------

4 if isLeftDeleted(element) or isRightDeleted(element) then

5 leftEvents ← getAllRelatedLeftEvents(element);

6 rightEvents ← getAllRelatedRightEvents(element);

7 if size(leftEvents) > 0 and size(rightEvents) > 0 then

8 conflict ← createConflict(leftEvents, rightEvents);

9 if isLeftDeleted(element) and isRightDeleted(element) then

10 setPseudo(conflict);

11 end

12 addConflict(conflict, conflictList);

13 continue;

14 end

15 end

// Handle conflicts with cross-container move -----------------

16 if (getOriginalContainer(element) <> getLeftContainer(element) or

getOriginalContainingFeature(element) <> getLeftContainingFeature(element)) or

(getOriginalContainer(element) <> getRightContainer(element) or

getOriginalContainingFeature(element) <> getRightContainingFeature(element))

then

17 leftEvents ← getAllRelatedLeftEvents(element);

18 rightEvents ← getAllRelatedRightEvents(element);

19 if size(leftEvents) > 0 and size(rightEvents) > 0 then

20 conflict ← createConflict(leftEvents, rightEvents);

21 if getLeftContainer(element) = getRightContainer(element) and

getLeftContainingFeature(element) = getRightContainingFeature(element

then

22 setPseudo(conflict);

23 end

24 addConflict(conflict, conflictList);

25 end

26 end

27 foreach feature in getFeatures(element) do

// Handle single-valued feature

28 handleSingleValuedFeature(element, feature, conflictList);

// Handle multi-valued feature

29 handleMultiValuedFeature(element, feature, conflictList);

30 end

31 end

32 return conflictList;

33 end
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change events are merged into one list of change events for each side. So, the left

events are all events that comprise the composite event that deletes the element. The

right events are events that move operation smash from class knight to class giant

and events that move operation cast from class giant to class mage. The algorithm

then creates a conflict that consists of the events producing conflict CB3 in Table 8.5.

When the iteration reaches element cast—the operation of class giant, the same

procedure is repeated. It collects left-side change events at lines 33, 38, 39, 40, 41,

and 42, and right-side change events at lines 34, 35, and 38. The left-side change

events related to element giant also are included since they are in one composite event

that also affects element cast. These change events are collected into one conflict,

CB4.

It should be noted that both conflicts CB3 and CB4 have shared change events. Thus,

these conflicts have a dependency on each other. This means that if a user chooses

to delete giant—chooses the left side as the solution—for conflict CB3, the left side

change events also must be selected as the solution for conflict CB4 for consistency.

To facilitate computing such dependencies, conflicts and change events are designed

to have many-to-many relationships, as depicted in Figure 7.2. Thus, if a change

event is associated with two or more conflicts, it means that they depend on each

other.

It is important to notice that at line 13 in Figure 5 there is a command continue

after the addition of a conflict caused by deletion. The command skips the iter-

ation to the next element which avoids unnecessary conflict computation for the

current element’s features and values. All change events related to the features and

values have been collected by the functions getAllRelatedLeftEvents(element) and

getAllRelatedRightEvents(element) at lines 5 and 6.

Conflict between Cross-container Moves

Lines 15 to 25 in Algorithm 5 are dedicated to identifying conflicts related to cross-

container moves. First, the algorithm checks if an element has been moved from

its original container to another container on one or both sides. If it has been

moved, the algorithm then checks the number of events related to the element.
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First, it obtains change events related to the element on both sides using functions

getAllRelatedLeftEvents(element) and getAllRelatedLeftEvents(element). This yields

two lists of events, leftEvents and rightEvents. If the element has at least one event on

each side, a conflict is created containing leftEvents and rightEvents. If the element

is moved to the same container on both sides or if the element is moved but then

returns to its original container on one of its sides, then the conflict is set to PSEUDO.

Algorithm 6: Algorithm to handle single-valued features in conflict detec-

tion using an element tree—handleSingleValuedFeature (element, feature,

conflictList) at line 27 in Algorithm 5.
input : an element element

input : a feature feature

input : a list to contain conflicts conflictList

1 begin

// Handle single-valued feature -----------------

2 if isSingleValued(feature) then

3 originalV alue ← getOriginalValue(feature);

4 leftV alue ← getLeftValue(feature);

5 rightV alue ← getRightValue(feature);

6 leftEvents ← getAllRelatedLeftEvents(element, feature);

7 rightEvents ← getAllRelatedRightEvents(element, feature);

8 if originalV alue <> leftV alue or originalV alue <> rightV alue and

size(leftEvents) > 0 and size(rightEvents) > 0 then

9 conflict ← createConflict(leftEvents, rightEvents);

10 if leftV alue = rightV alue or leftV alue = originalV alue or rightV alue =

originalV alue then

11 setPseudo(conflict);

12 end

13 addConflict(conflict, conflictList);

14 end

15 end

16 end

Single-valued Feature Conflict

Conflicts that involve single-valued features are handled by the procedure at line 28 in

Algorithm 5, which is elaborated in Algorithm 6. The procedure starts by retrieving

leftValue, rightValue, and originalValue of a single-valued feature. It then checks the

inequality of leftValue and rightValue to originalValue. If either leftValue or rightValue

is not equal to originalValue, it continues to check the number of change events

related to the feature by retrieving them using functions getAllRelatedEvents(element,



Chapter 8. Efficient Conflict Detection of Change-based Models 133

feature) and getAllRelatedRightEvents(element, feature) (element and feature act

as map keys to access the events). This yields two lists of related events, leftEvents

and rightEvents. If leftEvents and rightEvents are not empty, then a conflict that

contains these events is instantiated. The procedure then checks whether leftValue

and rightValue are equal, and it sets the conflict to PSEUDO if leftValue and rightValue

are equal to each other or if one of them is equal to originalValue. Finally, the conflict

is put into conflictList.

For example, when the iteration reaches feature name of class troll, the algorithm

retrieves the left, right, and original values of the feature, yielding “Ogre”, “Orc”,

and “Troll”, respectively. Since “Ogre” and “Orc” are not equal to “Troll’, the

algorithm continues to retrieve two lists of events related to the feature. Only one

event contained exists in each list. On the left side, the event sets the name of class

troll from “Troll” to “Ogre”, while on the right side, the event sets it from “Troll” to

“Orc”. Both event sets are not empty. Thus, a conflict containing them is created.

Since “Ogre” is not equal to “Orc”, the conflict is not set to PSEUDO. This conflict is

the conflict CB1 in Table 8.5. This part of the algorithm also identifies conflict CB5,

except that this conflict is set to PSEUDO since both sides change class character’s

name to the same value, “Hero”.

Ordered Multi-valued Feature Conflict

Conflicts that involve multi-valued features are handled by the procedure at line 29

in Algorithm 5. The procedure is elaborated in Algorithm 7, where ordered multi-

valued features are addressed at lines 3–15. The procedure relies on the function

getUnequalLeftAndRightValues. This function returns all values from left and right

sides that are not equal to their original states in terms of (in)existence and indexes.

For example, in Figure 7.4, parameter target in feature parameters is at index 2 on

the left side but at index 1 in its original state. Thus, the value is included in the

returned list. On the right side, this parameter is also at an index different from its

original index, but it is already included in the returned list.

The algorithm then iterates through the values of the list. For each value, it retrieves

all events related to the value of this feature. (Element, feature, and value act as map

keys to access the events.) The algorithm uses function getAllRelated *Events(element,
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Algorithm 7: Algorithm to handle multi-valued features in conflict detec-

tion using an element tree—handleMultiValuedFeature(element, feature,

conflictList) at line 28 in Algorithm 5.
input : an element element

input : a feature feature

input : a list to contain conflicts conflictList

1 begin

// Handle multi-valued feature -----------------

2 if isMultiValued(feature) then

3 if isOrdered(feature) then

4 values ← getUnequalLeftAndRightValues(feature);

5 foreach value in values do

6 leftEvents ← getAllRelatedLeftEvents(element, feature, value);

7 rightEvents ← getAllRelatedRightEvents(element, feature, value);

8 if size(leftEvents) > 0 and size(rightEvents) > 0 then

9 conflict ← createConflict(leftEvents, rightEvents);

10 if getLeftIndex(value, feature) = getRightIndex(rightV alue, feature) or

getLeftIndex(value, feature) = getOriginalIndex(value, feature) or

getRightIndex(value, feature) = getOriginalIndex(value, feature) then

11 setPseudo(conflict);

12 end

13 addConflict(conflict, conflictList);

14 end

15 end

16 else if not isOrdered(feature) then

17 leftV alues ← getXORLeftAndOriginalValues(feature);

18 rightV alues ← getXORRightAndOriginalValues(feature);

19 values ← leftV alues ∪ rightV alues;

20 foreach value in values do

21 leftEvents ← getAllRelatedLeftEvents(element, feature, value);

22 rightEvents ← getAllRelatedRightEvents(element, feature, value);

23 if size(leftEvents) > 0 and size(rightEvents) > 0 then

24 conflict ← createConflict(leftEvents, rightEvents);

25 if isLeftExisted(value, feature) = isRightExisted(value, feature) or

isLeftExisted(value, feature) = isOriginExisted(value, feature) or

isRightExisted(value, feature) = isOriginExisted(value, feature) then

26 setPseudo(conflict);

27 end

28 addConflict(conflict, conflictList);

29 end

30 end

31 end

32 end

33 end
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feature, value), which yields two lists of events, leftEvents and rightEvents. If both

lists of events are not empty, then a conflict is created. If the value on both sides

is at the same index, then the conflict is PSEUDO. Finally, the conflict is added

to conflictList. The parameter target in feature parameters has been concurrently

modified; it has one event on each side: parameter target is moved to the last index

on the left side and to the first index on the right. Thus, a conflict is detected. This

conflict is presented as conflict CB2 in Table 8.5.

Unordered Multi-valued Feature Conflict

Conflict detection for unordered, multi-valued features is handled at lines 16 to 29

in Algorithm 7. Instead of using function getUnequalLeftAndRightValues, it employs

function getXOR*AndOriginalValues. This functions also returns all values from

left and right sides that are not equal to their original states but only in terms of

(in)existence, since indexing is not important in unordered features. The procedure

to detect a conflict is similar to the procedure for ordered features. The difference is

that, to determine whether a conflict is PSEUDO, it checks the existence of values

using functions is*Existed.

8.5 Algorithm Complexity

The algorithm of state-based model conflict detection consists of two steps. The

first step derives two lists of changes from two compared versions and their common

original version, and the second step determines conflicting changes from the two

lists. In the first step, the time and space complexity is 2ND – where N is the sum of

the lengths of two compared sequences and D is the size of the minimum edit script

for both sequences [26] – since it performs state-based model differencing twice (see

Section 7.5 for a single model differencing); differencing between the left and original

versions and the right and original versions. In the second step, the time complexity

is E which is the number of elements, features, and values that are different in the left

and right models, and the complexity of space is X which is the number of conflicts

detected. So, overall, the time complexity of state-based model conflict detection is

O(2ND + E) and its space complexity is O(2ND + X). Therefore, we can infer that,

for time and space complexity, the algorithm works best when differences are small –
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sequences are similar – and worst when the sequences are entirely different.

Change-based model conflict detection follows similar phases to change-based model

differencing; it also performs event loading (Section 7.4.1) and tree construction

(Section 7.4.2) but replaces the difference computation (Section 7.4.3) with conflict

computation (Section 8.4.3). Therefore, event loading follows the same time and

space complexity as change-based model differencing, which depends on C, the total

number of change events loaded from two compared versions.

In the tree construction, it adds an additional activity that maps change events to

the elements, features, and values that they affect (Section 8.4.1). This activity does

not change the time and space complexity of tree construction since mapping in hash

tables has time complexity of O(1) in average [83], and the average space complexity

is determined by the number of elements O(n) [83]. Therefore, we can infer that the

mapping does not change the overall time complexity in tree construction, which

depends on C, and the space complexity is still defined by E; the number of elements,

features, and values affected by change events.

Similar to difference computation (Section 7.5), the conflict computation runs linearly

by iterating through each affected element, feature, or value and determining their

conflicting states caused by change events (Algorithms 5, 6, and 7). Its time

complexity is E which is the number of affected elements, features, and values that

are in conflict. Its space complexity is X, the number of spaces allocated to hold the

identified conflicts in memory.

The time complexity for the proposed change-based model conflict detection is O(C +

E) where C is the number of change events that are loaded and executed to construct

an element tree, and E is the number of elements, features, and values affected by

the changes. Moreover, the space complexity is O(C + E + X) where C corresponds

to the number of space to hold all the involved change events in memory, E is the

space required to store elements, features, and values of an element tree in memory,

and X is the space to store the identified conflicts in memory.

In terms of time complexity, change-based model conflict detection works best in a

condition where the number of change events and the number of affected elements,

features, and values is small and worst when these numbers are large – many changes
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are made, and they affect many parts of a model.

In terms of space complexity, the best case happens when versions of a model undergo

small changes, limited to certain parts of the model, and the changes produce only

a small number of conflicts. The worst-case for space complexity happens when

a model undergoes significant changes, which is indicated by a large number of

change events – a large number of affected elements, features, and values (changes

are distributed evenly throughout the model) – and the two versions produced are

entirely different.

8.6 Accuracy of Conflict Detection

Conflicts detected by EMF CBP, EMF Compare, and EMF Store can be different

because of the different approaches they use. In this section, we explain in more

detail the differences between EMF CBP and EMF Compare and then between EMF

CBP and EMF Store, concerning the conflicts they can and cannot detect. We use

this classification of detected/undetected conflicts later in the evaluation to compare

the accuracy of these tools.

8.6.1 EMF CBP vs. EMF Compare

EMF Compare uses model differencing to derive changes—not the real changes—between

two versions of a model. This can cause EMF Compare to treat an element or feature

as if it has been modified even though in the real context no change has been applied

to it. This can lead EMF Compare to inaccurate conflict detection. On the other

hand, EMF CBP uses real recorded change events to determine conflicts, so its

conflict detection is accurate. The following are the kinds of conflicts that EMF CBP

detects but EMF Compare fails to detect.

• Real Move Conflict. EMF CBP accurately identifies an element that has been

moved, but EMF Compare picks another element. This case is presented in

the running example where EMF CBP detects that target has been moved on

both sides (Conflict CB2, Table 8.5), while EMF Compare detects that target

and gem have been moved on the left and right sides respectively (Listings 8.1

and 8.2).
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• One-sided Reset Conflict. EMF CBP detects a PSEUDO conflict on an element

or feature that is simultaneously modified but then is set back to its original

state on one side (see Figure 8.1d). The condition is considered PSEUDO

conflict since we have two possibilities, should we change the element or feature

to a new state or should we keep its original state? However, this condition can

be easily resolved by making a consensus which option should be taken when

such condition identified. This condition is not determined to be in conflict by

EMF Compare since the states of the element or feature are the same in both

the original and modified versions – no change is derived.

• Single-valued Containment Conflict. The change of state of a single-valued

containment feature. EMF CBP detects two different changes to be in conflict

if they modify a single-valued containment feature concurrently. For example,

element e1 contained in c1.value, and element e2 contained in c2.value, are

moved into c3.value concurrently, where value is a single-valued containment

feature. Both changes are detected in conflict by EMF CBP but strangely not

detected in conflict by EMF Compare.

The following is the only kind of conflict detected by EMF Compare but not detected

by EMF CBP.

• Derived Move Conflict. This conflict is the opposite of the Real Move conflict.

It occurs because EMF CBP records only real moves, not the derived moves

produced by EMF Compare. Thus, EMF CBP cannot detect conflicts produced

by derived moves.

8.6.2 EMF CBP vs. EMF Store

Even though both EMF CBP and EMF Store use real records of changes to determine

conflicts, EMF Store does not consider the eventual states of elements or features.

This leads them to detect different conflicts. The following is the only kind of conflict

detected by EMF CBP but not detected by EMF Store.

• First-time Move Conflict. EMF Store can identify a conflict between two

different changes that modify an element concurrently in a multi-valued feature

only if both changes are the first changes applied to that multi-valued feature.
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If an earlier change is applied to another element in the same multi-valued

feature, then the following two changes on the same element do cause a conflict.

For example, in the original version, a multi-valued feature c1.children contains

elements e1, e2, and e3. If in the left version, e2 is moved to the first position

and, in the right version, e2 is moved to the last position, then these concurrent

changes are detected in conflict by EMF Store. However, if in the left version,

the feature is modified with another change, let’s say the addition of element

e4 at any position, the two move changes are not detected in conflict by EMF

Store. EMF CBP still detects both move changes in conflict.

The following is the only kind of conflict detected by EMF Store but not detected by

EMF CBP. In other words, this should not be detected as a conflict by EMF Store.

• Two-sided Reset Conflict. This kind of conflict arises when two lists of changes

modify an element or feature but reset its state to the original state on both

sides. For example, in the left version, the value of attribute e1.isEnabled is set

from false to true, but then it is set back again to false. In the right version,

the same changes are also applied to the same attribute. Thus, e1.isEnabled

has eventual value false on both versions, the same as in the original version.

This kind of change is treated as a conflict by EMF Store but not a conflict by

EMF CBP (see Figure 8.1c). The same rule also applies to an element that

has been moved but then is moved back to its initial position.

The number of conflicts detected by EMF CBP and EMF Store can also be different

because of the way that EMF Store groups dependent conflicts. For example, let’s

say that we have a model with initial state element e1 contained in feature c1.value

and two other empty features, c2.value and c3.value. On the left side, e1 is moved

twice; first to c2.value and then to c3.value. The model is also modified on the right

side; a new element e2 is assigned to c2.value, and then another new element e3 is

assigned to c3.value.

In this scenario, EMF CBP identifies two conflicts. The first conflict is a PSEUDO

conflict (see Figure 8.1d). That is, c2.value is concurrently modified on both sides,

but, on one side, the value is set back to its original state. On the right side, e2 is

assigned to c2.value, but, on the left side, c2.value becomes empty when e1 moves
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to c3.value. The second conflict is a REAL conflict, since c3.value is concurrently

modified and has different values on the two sides. On the left side, it contains e1,

but, on the right side, it contains e3. EMF Store also identifies these conflicts, but

they are merged into one conflict. Another example of conflict grouping can be found

in Tables 8.1, 8.2, and 8.5. Conflicts EC3 and EC4 in EMF Compare or conflicts CB3

and CB4 in EMF CBP are grouped into one conflict ES4 in EMF Store since both

are in the same composite event l2.

8.7 Evaluation Method

This section presents the method that was used to evaluate the change-based conflict

detection approach proposed in this study, and it discusses the results. To assess the

performance benefits of the proposed conflict detection approach, this study evaluated

it against a mature and widely used state-based model comparison tool, EMF

Compare [32,72], and another implementation of change-based model persistence,

EMF Store [11].

Since there are no large, manually developed models persisted in the proposed change-

based format yet, the dataset for this experiment was constructed from a large model

reverse-engineered from the Eclipse Epsilon project [66, 67]. This model conforms to

the Java meta-model [78]. It comprises more than 500 thousand elements with a size

of 71.1 MB when persisted in XMI. We aimed for larger sizes of models, but, because

EMF Store was slow when it replayed change events, we used the current sizes as

they are large enough to identify the performance gaps between the approaches.

The original model was cloned to produce two new (left and right) models, and

operations (add, remove, move, set with random elements, features, indexes, and

values) were performed on both models to create differences. In the evaluation, 0.44

million artificial changes were applied to each model, generating almost 0.5 million

events. One operation can generate more than one event, e.g. a move between

features generates remove and add events. Events generated by the changes were

persisted in the proposed change-based format (to be used later in change-based

model comparison). After every 20,000 changes, a measurement point was made.

The modified models were persisted in state-based format (to be used later in state-
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based model comparison), and changes persisted in EMF CBP were also replayed on

EMF Store to produce equivalent changes. After that, conflict detection using EMF

Compare, EMF Store, and EMF CBP were performed, and their execution time and

memory footprints were measured. In one experiment, 22 measurement points were

analysed to capture their trends.

This evaluation conducted five experiments to evaluate the model conflict detection

of the proposed approach. In the first experiment, the ratio of occurrence between

add, remove, move, and set changes is set to 1:1:20:40 reflecting the assumption

that, in a mature model, move and set events occur more frequent than addition

and deletion. To reduce the effect of the change on the number of total elements

to our measurement, the number of total elements should be kept constant. For

example, it is difficult to tell an increase of time in comparison is caused by an

increase in the number of elements or by the number of change events. One way

to do this was to exclude add and remove operations. However, excluding both

operations made measurement less representative. Thus, both operations were still

included but their probabilities were made equal so that the number of total elements

remains largely unchanged. In the rest of the experiments, homogeneous type change

events—isolated from other types—were performed per experiment (e.g. add-only,

move-only change events). In the end, 5 results of the experiments were obtained:

mixed, add-only, remove-only, move-only, and set-only measurement results. They

are useful to assess whether operations of different types have a different impact on

model comparison. Because EMF Store is slow when it replays delete events, for

the delete-only experiment, the size of the models was reduced from 0.54 million to

only 39.5 thousand elements each, and the number of changes was reduced from 0.44

million to 33 thousand in 22 measurement points—1.5 thousand changes for each

measurement point.

For conflict detection in EMF CBP, the conflict detection time comprises loading

change events, constructing an element tree, and computing conflicts. The memory

footprint is the space used to hold the change events, element tree, and conflicts

in memory. For EMF Compare, the comparison time comprises matching elements

and identifying differences, and the memory footprint is the space required to hold

the matches and differences in memory. For EMF Store, the conflict detection time
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comprises loading and mapping change events and computing conflicts. The memory

footprint is the space used to hold the change events and mapping and conflicts in

memory.

To evaluate the accuracy of conflict detection by EMF CBP, EMF Compare, and

EMF Store, we took the change events and states of models produced at the last

measurement point of the mixed-operation experiment, and we used them to analyse

the conflicts detected by the three tools, based on the classification in Section 8.6.

All measurements were performed on the same machine and software with the fol-

lowing specification: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz (56 processors),

528 GB main memory, Ubuntu 16.04.6 LTS operating system, OpenJDK Runtime

Environment (build 1.8.0_222-8u222-b10-1ubuntu2 16.04.york0-b10) with JVM Ini-

tialHeapSize 2 GB and MaxHeapSize 32 GB, EMF Store 1.9.0, EMF Compare 3.3.2,

MoDisco 1.0.1, and EMF 2.12.0. Please refer to Appendix B for instructions on

reproducing the results of this experiment.

8.8 Evaluation Results and Discussion

This section reports and discuss the results obtained from the evaluation in terms of

execution time and memory footprint of EMF CBP, EMF Compare, and EMF Store

in detecting conflicts.

8.8.1 Mixed Operations

In the mixed operation measurement, we modify two identical models differently

by applying random operations. As the number of change events generated by the

modification grows, the numbers of affected elements and differences also increase

in a logarithmic manner. The patterns are shown in Figure 8.2a. The growth

is logarithmic since the probability that the random operations modify the same

elements also increases. Thus, some change events might not contribute to the

addition of new affected elements and differences. In other words, more events are

required to increase the number of affected elements or differences. In Figure 8.2a,

the total elements remains largely unchanged because of the equal probabilities of

addition and deletion as has been set in Section 8.7. The figure gives us an insight
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about the characteristics of the modification caused by the random operations in the

mixed operation measurement; it supports explaining the implication of the changes

on execution time and memory footprints of model comparison.

The growing number of change events in the conflict detection evaluation is followed

by the logarithmic increase of affected elements (Figure 8.2a). The total number

of these elements can also be kept relatively constant because of 1:1 ratio of add

and delete operations’ occurrence. These change events produce different numbers of

conflicts for EMF CBP, EMF Compare, and EMF Store as shown in Figure 8.2b.

The differences are due to their distinct conflict detection approaches. EMF Compare

detects fewer conflicts than EMF CBP and EMF Store since its change events are

derived, not real changes. EMF Store detects fewer conflicts than EMF CBP since

conflicts that depend on each other are grouped into one conflict.
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Figure 8.2: Changes in EMF CBP, EMF Compare, and EMF Store as change events

increase.

Figure 8.2c shows that EMF CBP outperforms EMF Compare and EMF Store in
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Figure 8.3: Detailed view of EMF CBP

on the time required for conflict detection.
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Figure 8.4: Detailed view of EMF CBP

on the memory footprint for conflict de-

tection.
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Figure 8.5: Detailed view of EMF Com-

pare on the time required for conflict de-

tection.
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Figure 8.6: Detailed view of EMF Com-

pare on the memory footprint for conflict

detection.

terms of execution time in detecting conflicts, even when the number of change

events approaches one million. EMF Store is the slowest. It takes more than 35

seconds even though the number of change events has reached only 0.1 million.

Figure 8.2d also shows that EMF CBP outperforms EMF Compare and EMF Store

in terms of memory footprint in conflict detection. At the last measurement point,

a million change events, EMF CBP consumes only 6 GB, which is much less than

EMF Compare and EMF Store. EMF Compare occupies around 16 GB while EMF

Store consumes around 16 GB after only 0.5 million change events.

Figures 8.3, 8.5, and 8.7 show detailed views of EMF CBP, EMF Compare, and EMF

Store on the time required for conflict detection. As shown in Figure 8.3, the time
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Figure 8.7: Detailed view of EMF Store

on the time required for conflict detection.
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Figure 8.8: Detailed view of EMF Store

on the memory footprint for conflict de-

tection.

for EMF CBP to load change events, construct the element tree, and detect conflicts

grows linearly. In detecting conflicts, EMF CBP does not perform differencing since

changes are already available in the form of change events. Thus, differencing is not

included in that diagram.

EMF Compare (Figure 8.5), requires less than 5 seconds for matching, and it uses

around 15 seconds on average to identify differences. Differencing takes a great

portion of the time since it needs to derive differences twice; differences between the

left and the original model and between the right and the original model. The time

for matching and differencing tends to be constant since the sizes of the models are

set to be as constant as possible (Figure 8.2a). In contrast, the time for detecting

conflicts tends to grow due to the increasing number of conflicting changes as the

number of change events increases. In detecting conflicts, EMF Store allocates the

most time to identifying conflicts, and the time increases exponentially. The rest of

the time is used for loading changes and mapping them to their affected elements

and features (Figure 8.7).

In terms of memory footprint, EMF CBP allocates most of the memory space for

element tree construction; the rest is for the loading change events and identifying

conflicts (Figure 8.4). The reason for this is our technical implementation in con-

structing elementTree. A Feature can have many instances even though they refer to

the same feature. This causes the memory to increase. One solution is to construct

a partial meta-model so that a feature can have only one instance and the instance
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is used as a key to access the feature’s values in each element. This is similar to

the implementation of features in EMF Framework. In EMF Compare (Figure 8.6),

the amount of memory used for matching and differencing increases only slightly

because the sizes of the models are set to be as constant as possible (Figure 8.2a). In

contrast, the memory used for detecting conflict increases as the number of detected

conflicts rises (Figure 8.2b). For EMF Store, the amount of memory used for loading

changes and mapping increases slightly while the amount of memory for identifying

conflicts grows exponentially (Figure 8.8).

From the last measure point of the mixed-operation experiment, EMF Compare

detects around 91 thousand conflicts. Around 3 thousand (3.3%) cannot be detected

by EMF CBP. This is because EMF Compare derives move changes, which are

different from the real changes recorded by EMF CBP. For its part, EMF CBP

detects around 107 thousand conflicts, and EMF Compare cannot detect around

19 thousand (18%) of them. These include 6.6 thousand (6.6%) real move conflicts,

8.2 thousand (7.6%) one-sided reset conflicts, and 4.1 thousand (3.8%) single-valued

containment conflicts (see Section 8.6.1 to find the definitions of these kinds of

conflicts). Thus, there are 88 thousand (91 - 3 = 107 - 19 thousand) conflicts that

can be detected by both.

From 107 thousand conflicts detected by EMF CBP, there are 3.7 million (3.5%)

conflicts that cannot be detected by EMF Store because of its difficulty detecting

first-time move conflicts (see Section 8.6.2). By contrast, EMF CBP cannot detect

1.8 thousand (1.8%) of the 96.4 thousand conflicts detected by EMF Store because

of EMF CPB’s difficulty detecting two-sided reset conflicts (see Section 8.6.2).

8.8.2 Homogeneous Operations

Detection Time

Figure 8.9 depicts the results of conflict detection time between EMF CBP, EMF

Compare, and EMF Store in Homogeneous operations. The results show that, for all

types of Homogeneous operations, EMF CBP is faster at detecting conflicts than

EMF Compare and EMF Store. EMF Store has the worst performance in most cases

except for the delete-only experiment. In that case, EMF Compare is the slowest.

EMF Compare also requires calculating dependencies between conflicts. So, when
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Figure 8.9: Conflict detection time for homogeneous operations.

the number of deletions is excessive, EMF Compare performs less efficiently than

EMF Store (Figure 8.9b). In the evaluation, this happens when the number of change

events exceeds 240 thousand.

Memory Footprint

Figure 8.10 illustrates the memory footprint resulting from conflict detection in

EMF CBP, EMF Compare, and EMF Store with homogeneous operations. The

Figure shows that EMF CBP outperforms EMF Compare and EMF Store in terms of

memory footprint. EMF CBP performs worse than EMF Compare only in the delete-

only experiment when the number of change events is more than 80 thousand—model

size is 39.5 thousand elements each (Figure 8.10b). In terms of memory footprint,

EMF Store performs worse than EMF CBP and EMF Compare. It performs better

than EMF Compare only when the number of change events is relatively small—fewer

than 25 thousand change events.



Chapter 8. Efficient Conflict Detection of Change-based Models 148

● ●
● ● ● ●

●
●

● ● ● ●
● ● ● ● ● ● ●

● ● ●

● ● ●
● ●

● ● ●
●

● ● ● ●
● ● ●

● ● ● ● ●
●

●

●

●

●

●

500 1000 1500

0
5

10
15

20

da
ta

$v
al

ue

● ● ●EMF CBP EMF Compare EMF Store

M
em

or
y 

F
oo

tp
rin

t (
G

B
s)

Number of Events (x1K)

(a) add-only

● ●
●

●
●

●

● ●
● ● ● ● ● ● ● ●

● ●

● ● ●

●

●
●

●
●

●
● ● ● ●

●

● ● ● ● ● ●

● ● ● ●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

50 100 150 200 250 300

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

da
ta

$v
al

ue

● ● ●EMF CBP EMF Compare EMF Store

M
em

or
y 

F
oo

tp
rin

t (
G

B
s)

Number of Events (x1K)

(b) delete-only

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

200 400 600 800 1000

0
5

10
15

20

da
ta

$v
al

ue

● ● ●EMF CBP EMF Compare EMF Store

M
em

or
y 

F
oo

tp
rin

t (
G

B
s)

Number of Events (x1K)

(c) move-only

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
●

●
● ●

● ●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

200 400 600 800

0
5

10
15

20

da
ta

$v
al

ue

● ● ●EMF CBP EMF Compare EMF Store

M
em

or
y 

F
oo

tp
rin

t (
G

B
s)

Number of Events (x1K)

(d) change-only

Figure 8.10: Conflict detection memory for homogeneous operations.

In Figure 8.10c, EMF CBP’s memory footprint increases faster than EMF Compare’s

memory footprint. This is possible since the change events of EMF Compare are

actually minimal differences that are derived from model differencing, which are

fewer than real change events recorded in EMF CBP. More random change events

means a higher likelihood that more conflicts will occur.

Conflict Count

Figure 8.11 displays the number of conflicts, both REAL and PSEUDO, detected

by EMF CBP, EMF Compare, and EMF Store in the context of Homogeneous

operations. In the add-only experiment as displayed in Figure 8.11a, all of them

detect the same number of conflicts.

Figure 8.11d shows the results of the change-only experiment. We can see that the

number of conflicts detected by EMF Compare is lower than EMF CBP. This is

mainly because EMF Compare detects no change on an element or feature that has
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Figure 8.11: Conflict detection count for homogeneous operations.

been modified but is changed back to its original state. In EMF CBP, that is counted

as a change with potential to raise a PSEUDO conflict as defined and showed in

(8.14), Section 8.6.1, and Figure 8.1d. At the last measurement point in Figure 8.11d,

there are 17 thousand conflicts of this kind that EMF Compare does not detect.

(This is 13.1% of the 130 thousand conflicts that EMF CBP detects) EMF Compare

itself detects only 113 thousand conflicts.

It should also be noticed that the number of conflicts detected by EMF CBP is

slightly less than those detected by EMF Store. This happens because, as previously

discussed, EMF Store does not consider states in detecting conflicts. Thus two

different change events that are applied to the same element or feature, even though

they yield states that are equal to their original state, are considered to be in conflict.

In Figure 8.11d, at the last measurement point, EMF Store detects 133 thousand

conflicts, but 3.1 thousand (2.3%) cannot be detected by EMF CBP because of the

two-sided reset conflict (see Section 8.6.2).
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In the results for the delete-only experiment in Figure 8.11b, EMF CBP and EMF

Compare detect more conflicts than EMF Store, since they do not put a conflict

that depends on another conflict into one group as EMF Store does (see Section

8.6.2). As the number of change events grows, the number of conflicts that share

the same change events also increases. Thus, these conflicts are grouped into one

conflict, causing the number of conflicts to decrease (see Section 8.6.2). In addition,

EMF CBP detects fewer conflicts than EMF Compare since it does not calculate

conflicts for features and values of an element that have been deleted. Change events

that affect features and values are included when calculating conflicts caused by

deleting an element, as explained in the last paragraph of Section 8.4.3. In contrast,

EMF Compare treats the conflicts at the features and values of a deleted element as

separate conflicts.

Figure 8.11c shows the results of the move-only experiment. EMF CBP detects more

conflicts than EMF Compare. It has more change events than EMF Compare because

of the use of real records of changes. In EMF Compare, change events are derived

and effective, which means a minimum number of change events are produced. Fewer

change events means there is less likelihood of conflicts. EMF Store detects fewer

conflicts than EMF CBP and EMF Compare because of the grouping of conflicts

that depend on each other, as discussed in Section 8.6.2.

Using the data on conflicts from the last measurement point in Figure 8.11c, we see

that, from 91.6 thousand conflicts detected by EMF Compare, 4.7 thousand (5.1%)

are derived move conflicts which cannot be detected by EMF CBP. By contrast,

from 114.8 thousand conflicts detected by EMF CBP, there are 27.9 million (24.3%)

conflicts cannot be detected by EMF Compare. These include 20.3 thousand (17.7%)

real move conflicts and 7.6 thousand (6.6%) single-valued containment conflicts (see

Section 8.6.1). We also see that, of the 115 thousand conflicts detected by EMF

CBP, 17 thousand (14.8%) are undetected by EMF Store because of the first-time

move conflict, explained in Section 8.6.2. On the other hand, of the 29.5 thousand

conflicts detected by EMF Store, only 2.5 thousand (8.5%) cannot be detected by

EMF CBP because of the two-sided reset conflict presented in Section 8.6.2.
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8.8.3 Threats to Validity

The evaluation of the proposed change-based comparison is limited to the Java meta-

model only. Thus, there is no guarantee it will perform in a consistent manner on

models conforming to different metamodels. Although, we have tried to cover as much

as common changes made in EMF models (e.g., performing add/remove/set/move

operations on single/multi-valued features, attribute/reference features, or contain-

ment/non-containment references), the random modification made in the evaluation

does not necessarily reflect the evolution of models in the real world. This is challeng-

ing as different domains can have their own patterns of model evolution – different

problems, metamodels, modellers, etc.

8.9 Conclusions

In this chapter, we have presented an approach to speed up model conflict detection

by exploiting the nature of change-based persistence, which allows us to find conflicts

between versions of a model by comparing only the last lists of changes in the two

versions. Based on the findings in the conflict detection evaluation, this study found

that the proposed change-based model conflict detection approach outperforms the

conflict detection approaches in EMF Compare and EMF Store. Nevertheless, models

that have been excessively modified or that experience a significant reduction in

model size could impair the performance of this conflict detection approach because

a great number of change records must be read and loaded into memory.

This chapter has addressed the third research question of this study, Following

change-based model differencing, how can conflicts be detected between

versions of a model, and how does change-based conflict detection per-

form, in terms of speed and memory, compared to state-based model

conflict detection? (RQ3). Similar to change-based model differencing, this work

also has proposed an approach to model conflict detection by exploiting the nature

of change-based persistence. This allows us to detect conflicts between two versions

of a model by comparing only the eventual states of elements and features of the two

versions, including their shared original version, that are affected by change events.

The phases (change event loading, tree construction, and conflict computation) in
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change-based conflict detection are similar to the phases (event loading, element tree

construction, and difference computation) in change-based model differencing except

that the difference computation is replaced with conflict computation. It also consists

of a set of rules that compare the eventual states of the elements and features in

the element tree as well as the number of change events that affects them in both

versions. As an example, a feature that is modified in only one version cannot have

conflicts. A conflict occurs only if the feature is modified in both versions. Also,

since the element tree also records every change event to the elements of features

that it affects, we can trace change events that cause a conflict.



Chapter 9

Conclusions and Future Work

This chapter summarises the research that we have conducted and the results gained

from the evaluation that has been undertaken. It starts by drawing together answers

for each research question and hypothesis proposed in Section 3.2. It then presents

the limitations and threats to the validity of this research and some topics for future

work. Finally, this chapter presents the big picture of this research’s contribution to

other parts of model-driven engineering, such as model transformation, validation,

and evolution.

9.1 Research Questions Addressed

1. How can models be persisted in a change-based format, and how

does change-based persistence perform, compared to state-based

persistence, in terms of loading and saving models? (RQ1)

This research question is addressed in Chapters 4, 5, and 6. To persist models

in change-based format, a prototype was developed. It captures relevant

notifications produced by the notification facilities provided by EMF every time

a change is applied to an EMF model. It then transforms the notifications into

different classes of change events representing different types of changes (e.g.,

set, unset, add, remove, move, create, and delete) that conform to the model

and meta-model infrastructure of EMF. Every captured change event is then

persisted by appending it to an XML-like-formatted file when the model is

153
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saved. The model can be (re)loaded by de-serialising the file and (re)executing

all the persisted change events—replaying the historical construction of the

model.

Since change-based models come with a drawback that their changes must

be replayed in order to load them, this work investigated two approaches

to improve loading. The first approach optimises loading by not replaying

change events that are superseded by subsequent change events. This approach

employs a tree-based data structure that tracks all changes made to a model

and calculates all superseded events identified by their line numbers. These

line numbers are also persisted into another file when the model is saved. So,

once the change-based model is reloaded, the loading algorithm already knows

which change events—which line numbers—should be skipped. This approach

can significantly reduce the loading time of change-based models compared to

non-optimised loading. However, it is still greatly outperformed by loading

models from their state-based persistence, and it suffers greatly in terms of the

memory footprint because of the dedicated data structure used to track change

events.

In contrast, saving models in change-based persistence shows more favourable

results than saving models in state-based persistence, since we need to persist

only recent changes in a model rather than saving the entire model. This is

very favourable when working with large models at a mature stage where only

small changes occur.

Since the results of the first approach are not satisfying, this work also pro-

posed hybrid model persistence—employing change and state-based persistence

together. In this type of persistence, models are loaded from their state-

based persistence, but changes are persisted into both change and state-based

persistence.

In the evaluation, the effects of hybrid model persistence were compared against

state-based persistence on loading and saving models in terms of time and

memory footprint. The results show that almost all cases experience a slight

slowdown on loading and saving time (hybrid approach’s mean > state-based



Chapter 9. Conclusions and Future Work 155

approach’s mean). However, for almost all hybrid NeoEMF cases, the slowdown

is not significant.

The hybrid approach also produces more memory footprint than the state-

based-only approach. In terms of storage space usage, on average, persisting

one change event consumes only around 100 bytes. This can be used to estimate

the growth of storage space usage. For example, persisting 100 million change

events consumes around 10 GB.

2. In a changed-based format, how can the differences between models

be identified, and how does change-based model differencing per-

form, in terms of speed and memory footprint, compared to state-

based model differencing? (RQ2)

This research question is addressed in Chapter 7. Change-based persistence can

be used to identify differences between two versions of a model. The change-

based representation of the two versions contains all the information needed to

identify elements that have been modified since their last shared version. In

this way, we can localise model differencing to the elements that have been

recently modified. In other words, it is not necessary to inspect, match, and

difference all the elements. We can use the information to reconstruct the

partial states of the two versions and then compare their elements and features

using specific rules to identify their differences.

The change-based model differencing proposed in this research consists of three

phases: event loading, element tree construction, and difference computation.

In the event loading phase, the implementation loads change events recorded

in two change-based model persistence files into memory starting from the line

their change events are different. The information that the loaded change events

contains are used to construct an element tree. An element tree essentially

is the partial states—only the affected elements and features—of the two

versions being compared including the shared original version. It is possible

to construct such a partial representation since change events are designed

to contain adequate information to construct the element tree. A difference

computation is then executed to identify the differences using a set of pre-
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defined rules (i.e., if an element is created in one version it means that the

element does not exist in the other version or in the original version).

The evaluation suggests that the proposed change-based model differencing

executes faster than traditional, state-based model differencing. However,

change-based model differencing needs to load change events from a change-

based persistence into main memory. Thus, it can require more memory than

for state-based model differencing. In our evaluation, this occurs when the

number of change events exceeds 400,000. However, it is likely that difference

and merge operations are performed on lower numbers of changes (smaller

deltas) than were tested in this evaluation.

3. Following change-based model differencing, how can conflicts be de-

tected between versions of a model, and how does change-based con-

flict detection perform, in terms of speed and memory, compared to

state-based model conflict detection? (RQ3)

This research question is addressed in Chapter 8. Similar to change-based

model differencing in the previous research question (RQ2), this work also

proposed an approach to model conflict detection by exploiting the nature

of change-based persistence. This allows us to detect conflicts between two

versions of a model by comparing only the eventual states of elements and

features of the two versions, including their shared original version, that are

affected by change events.

The phases in change-based conflict detection are similar to the phases (event

loading, element tree construction, and difference computation) in change-based

model differencing except that the difference computation is replaced with

conflict computation. It also consists of a set of rules that compare the eventual

states of the elements and features in the element tree as well as the number

of change events that affects them in both versions. As an example, a feature

that is modified in only one version cannot have conflicts. A conflict occurs

only if the feature is modified in both versions. Also, since the element tree

also records every change event to the elements of features that it affects, we

can trace change events that cause a conflict.
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Based on the findings in the conflict detection evaluation, this work found that

the proposed change-based model conflict detection approach outperforms the

conflict detection approaches in EMF Compare and EMF Store. Nevertheless,

models that have been excessively modified or that experience a significant

reduction in model size could impair the performance of the conflict detection

because a great number of change records must be read and loaded into memory.

Based on the answers to the three research questions, this work can finally confirm

the hypothesis that, ‘a textual change-based model persistence approach

can outperform existing model persistence formats in terms of model

saving, model differencing, and conflict detection time, with an overhead

in terms of model loading time and memory use’. However, this research is

not free from limitations and threats to validity. These are presented next.

9.2 Limitations and Validity

This research has tested the proposed algorithms only on synthesised models which

were reverse-engineered from two real-world software projects Epsilon [67] and

BPMN2 [65], and a collaboratively developed artefact with a long development

history, the article on the United States in Wikipedia [68]. The generated models

might not be representative of the complexity and interconnectedness of models in

other domains. Diverse characteristics of models in different domains can affect the

effectiveness of the algorithms and therefore yield different outcomes. Moreover, the

generated models from the reverse engineering are limited to the UML2 [70], Modisco

Java [78], and Modisco XML [71] meta-models only. Thus, there is no guarantee the

algorithms will perform consistently on models that conform to different meta-models.

Specifically in Chapter 5, the proposed loading optimisation of change-based model

persistence supports only ordered and unique features. Support for duplicate values

means that removing an item does not necessarily result in the item not being present

in the feature value. Additional information must be captured to persist the number

of copies and positions of the feature members to generate the ignore list.

For the proposed change-based model differencing and conflict detection in Chapters

7 and 8, this work tried to cover many of the common changes made in EMF models
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(e.g. performing add/remove/set/move operations on single/multi-valued features,

attribute/reference features, or containment/non-containment references). However,

the random modification made in the evaluation might not reflect the evolution of

models in the real world. This is challenging as different domains can have their own

patterns of model evolution, such as different problems, meta-models, and modellers.

So far, the most complex composite changes applied to the random modification

are limited to move and delete changes. A move event consists of remove and add

events, while delete event also removes the sub-elements of the deleted element. More

complex composite changes, such as refactoring, have not been evaluated. Also,

the random modification does not consider the correctness of the changes since it

might validate certain constraints of the models. For example, in Java [78] models,

removing a parameter from a function causes errors in the function’s body, but it is

ignored in the evaluation.

9.3 Future Work

The proposed change-based model persistence also comes with a number of chal-

lenges for future work, such as loading overhead and fast-growing model files. The

loading overhead has been addressed in this work by introducing hybrid model

persistence—using state and change-based persistence together—in which models

are loaded from state-based persistence. Nevertheless, the proposed approach still re-

quires loading change events to construct an elementTree—Section 7.4.2—to perform

model differencing and conflict detection, as discussed in Chapters 7 and 8. The

loading can be further optimised to consume less memory and speed up parsing by

using a binary or a more compact text format.

The challenge of fast-growing model files has not been addressed in this work.

Persisting models in a change-based format means that the size of model files will

grow significantly faster the model’s evolution than their state-based counterparts.

Two approaches can be explored in the future to address the issue: (1) sound change-

compression operations (e.g. remove older/unused information) to reduce the size of

a model in a controlled way, (2) a compact textual format to minimise the amount

of space required to record a change (a textual line-separated format is desirable to

maintain compatibility with file-based version control systems).
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The information contained in change-based model persistence is useful for model

analytics as well. With appropriate tool support, modellers will be able to ‘replay’

(part of) the change history of a model (e.g. to understand design decisions made

by other developers or for training purposes). In state-based approaches, this can

be partly achieved if models are stored in a version control repository (e.g. Git).

However, the granularity would be only at the commit level. By analysing models

serialised in the proposed representation, modelling language and tool vendors will be

able to develop deeper insights into how modellers actually use these languages/tools

in practice and use that information to guide the evolution of the language/tool.

By attaching additional information to each session (e.g. the ID of the developer,

references to external documents/URLs), sequences of changes can be traced back to

the developer that made them or to requirements/bug reports that triggered them.

9.4 The Big Picture

In this section, we position the contribution of this research to model-driven engi-

neering (MDE) domain in general. We also discuss on the generality – the validity –

of the presented results across other domains, outside the 3-tiered MDE approaches.

9.4.1 Contribution to MDE

Model persistence, differencing, and conflict detection are parts of the big picture

of model-driven engineering. Regarding model persistence, one might consider in

what scenarios change-based model persistence is preferable to state-based model

persistence and vice versa.

As our findings suggest, change-based persistence can deliver faster model differencing

and conflict detection than state-based persistence. This benefit is achieved in the

scenario when sizes of models are large and the number of changes is moderate

compared to the size of the model. Thus, it is best to use change-based persistence

in the later stages of model development when models are already large and changes

are mostly for fine-tuning [59]. In this way, storage overhead, because of the growing

size of change-based files, can be minimised.

Change-based persistence can become unacceptable in scenarios where the number of
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changes is excessive relative to the size of the model. The overhead for loading and

processing them to construct partial states of models can make the process slower

than performing state-based model differencing or conflict detection. This happens

in the early stages of model development when models are still small and changes

can be numerous and radical. At these stages, state-based persistence is preferable.

The presence of change-based persistence can benefit incremental model management,

such as incremental model validation and transformation. Recent changes of models

can be efficiently identified without having to perform a state-based comparison to

identify the differences between the current and last version of a model. In this

way, we can localise model validation and transformation to elements and features

that have changed only since the last version. Moreover, the produced change-based

model persistence implementation conforms to the standard EMF interfaces and as

such change-based models are readable/writable by EMF-compliant transformation

and validation languages and engines such as ETL, EVL, OCL and ATL.

While change-based persistence is intended to record changes to models, as a model

grows, its meta-model might also experience modifications. How does change-based

persistence handle changes at the meta-model level? For now, we have not addressed

this challenge. However, one solution that we can suggest to address this challenge is

to introduce a new type of change event to be added to the existing types of change

events (e.g., add, move, set, create, add, etc.). The new type of change event would

indicate an upgrade/downgrade of the meta-model. Another solution is to add the

version ID of the meta-model to every change event. In this way, when loading

(replaying) the change events of a model, we know whether we need to make some

adjustment to handle the model according to the active meta-model.

For composite changes, such as refactoring, the proposed approach also supports

composite change events. This feature allows multiple changes that are part of a

single refactoring activity to be put into one composite change event. Thus, a change

event that conflicts with a member of a composite change event is also in conflict

with the other members of the composite change event.
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9.4.2 Generality and Validity Across Other Domains

In terms of generality, one might ask, ‘can change-based model persistence, differenc-

ing, and conflict detection be applied to any modelling languages?’ As long as the

modelling languages conform to the EMF meta-modelling architecture, then these

operations can be applied. Nevertheless, there is no support for constraints and

composite changes that are specific to a modelling language. That belongs to the

future work of this research. One way to do that is by using custom adapters.

Still related to the generality of the solutions proposed in this research, another

question to answer is ‘can the proposed change-based persistence, model differencing,

and conflict detection be applied to other artefacts besides models (e.g., XML

documents, spreadsheets)?’ The idea of change-based persistence has been applied

in other domains, such as software, object-oriented databases, and hierarchical

documents [2–4]. In this research, we propose change-based persistence that is

specific to 3-tiered MDE. We extended the persistence by proposing our change-based

model differencing and conflict detection that consists of three phases: change event

loading, tree (partial state) construction, and diff/conflict computation. These three

phases can be implemented in other domains outside the 3-tiered MDE domain as

long as we can capture all the necessary changes to reconstruct an artefact. Some

editors/tools already provide dedicated SDK tools to add custom functionalities.

They usually provide access to some event listener, which captures every event

executed in the editor/tool. This functionality can be used to capture changes.

Otherwise, we have to build a tool to capture the changes. Also, the format of

the persisted changes needs to be adapted, so that the persisted changes contain

adequate information to reconstruct the partial states of the artefact. Once the

partial states have been constructed, we can compare the elements of the partial

states of the artefact.

9.5 Methodology for Use of Change-based Model Per-

sistence, Differencing, and Conflict Detection

In order to implement change-based model persistence, a team have to take into

consideration the size of their model. If the size of the model is relatively small, then
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it is best to implement a state-based approach since it works best with small-sized

models, which are common in the early stages of model development.

If a model has a large number of elements and features – large in size, then they

needs to check the number of changes the model usually undergoes. If the number is

relatively small or moderate, then it is best to use the change-based approach since

it is more efficient than the state-based approach for large models. Nevertheless,

if the number of changes is large enough so that the change-based comparison is

less efficient than state-based comparison, in this condition, a comparison using a

state-based approach is preferable.

The proportion of a model’s size and number of changes is relative and it depends also

on the type and context of development. One has to perform measurement similar to

the evaluation performed in Sections 7.6 and 8.8 to decide in what circumstances the

change-based approach still works more efficiently than the state-based approach.
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Appendix A

Representation of Models in

State and Change-based

Persistence

Listing A.1: Simplified XMI file of the original version in Figure 4.2a.

1 <uml:Model>

2 <packagedElement type=Class id="character" name="Character">

3 <operation id="attack" name="attack">

4 <parameter id="gem" name="gem"/>

5 <parameter id="target" name="target"/>

6 <parameter id="weapon" name="weapon"/>

7 </operation>

8 </packagedElement>

9 <packagedElement type=Class id="troll" name="Troll"/>

10 <packagedElement type=Class id="giant" name="Giant">

11 <operation id="cast" name="cast"/>

12 </packagedElement>

13 <packagedElement type=Class id="knight" name="Knight">

14 <operation id="smash" name="smash"/>

15 </packagedElement>

16 <packagedElement type=Class id="mage" name="Mage"/>

17 </uml:Model>

Listing A.2: Simplified XMI file of the left version in Figure 4.2b.

1 <uml:Model>

2 <packagedElement type=Class id="character" name="Hero">

3 <operation id="attack" name="attack">
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4 <parameter id="weapon" name="weapon"/>

5 <parameter id="gem" name="gem"/>

6 <parameter id="target" name="target"/>

7 </operation>

8 </packagedElement>

9 <packagedElement type=Class id="troll" name="Ogre"/>

10 <packagedElement type=Class id="knight" name="Knight">

11 <generalization id="leftGen" general="character"/>

12 <operation id="smash" name="smash"/>

13 </packagedElement>

14 <packagedElement type=Class id="mage" name="Mage"/>

15 </uml:Model>

Listing A.3: Simplified XMI file of the right version of Figure 4.2c.

1 <uml:Model>

2 <packagedElement type=Class id="character" name="Character">

3 <operation id="attack" name="attack">

4 <parameter id="gem" name="gem"/>

5 <parameter id="weapon" name="weapon"/>

6 <parameter id="target" name="target"/>

7 </operation>

8 </packagedElement>

9 <packagedElement type=Class id="troll" name="Orc"/>

10 <packagedElement type=Class id="giant" name="Giant">

11 <operation id="smash" name="smash"/>

12 </packagedElement>

13 <packagedElement type=Class id="knight" name="Knight"/>

14 <packagedElement type=Class id="mage" name="Mage">

15 <generalization id="rightGen" general="character"/>

16 <operation id="cast" name="cast"/>

17 </packagedElement>

18 </uml:Model>

Listing A.4: Change-based representation of the model in Figure 4.2b.

1 <session id="ORIGIN" time="20191230131530917GMT"/>

2 <register epackage="miniuml"/>

3 <create eclass="Model" epackage="miniuml" id="O-0"/>

4 <add-to-resource eclass="Model" position="0"><value eclass="Model" eobject="O

-0"/></add-to-resource>

5 <set-eattribute eclass="Model" name="name" target="O-0"><value literal="ROOT

"/></set-eattribute>

6 <create eclass="Class" epackage="miniuml" id="O-1"/>

7 <add-to-resource eclass="Class" position="1"><value eclass="Class" eobject="O

-1"/></add-to-resource>
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8 <set-eattribute eclass="Class" name="name" target="O-1"><value literal="

Character"/></set-eattribute>

9 <create eclass="Operation" epackage="miniuml" id="O-2"/>

10 <add-to-resource eclass="Operation" position="2"><value eclass="Operation"

eobject="O-2"/></add-to-resource>

11 <set-eattribute eclass="Operation" name="name" target="O-2"><value literal="

attack"/></set-eattribute>

12 <create eclass="Parameter" epackage="miniuml" id="O-3"/>

13 <add-to-resource eclass="Parameter" position="3"><value eclass="Parameter"

eobject="O-3"/></add-to-resource>

14 <set-eattribute eclass="Parameter" name="name" target="O-3"><value literal="

gem"/></set-eattribute>

15 <create eclass="Parameter" epackage="miniuml" id="O-4"/>

16 <add-to-resource eclass="Parameter" position="4"><value eclass="Parameter"

eobject="O-4"/></add-to-resource>

17 <set-eattribute eclass="Parameter" name="name" target="O-4"><value literal="

target"/></set-eattribute>

18 <create eclass="Parameter" epackage="miniuml" id="O-5"/>

19 <add-to-resource eclass="Parameter" position="5"><value eclass="Parameter"

eobject="O-5"/></add-to-resource>

20 <set-eattribute eclass="Parameter" name="name" target="O-5"><value literal="

weapon"/></set-eattribute>

21 <remove-from-resource composite="_EuXu4Cr-EeqlN5gavj_cGQ" eclass="Operation"

position="2"><value eclass="Operation" eobject="O-2"/></remove-from-

resource>

22 <add-to-ereference composite="_EuXu4Cr-EeqlN5gavj_cGQ" eclass="Class" name="

operations" position="0" target="O-1"><value eclass="Operation" eobject="O

-2"/></add-to-ereference>

23 <remove-from-resource composite="_EuXu4Sr-EeqlN5gavj_cGQ" eclass="Parameter"

position="2"><value eclass="Parameter" eobject="O-3"/></remove-from-

resource>

24 <add-to-ereference composite="_EuXu4Sr-EeqlN5gavj_cGQ" eclass="Operation" name

="parameters" position="0" target="O-2"><value eclass="Parameter" eobject

="O-3"/></add-to-ereference>

25 <remove-from-resource composite="_EuXu4ir-EeqlN5gavj_cGQ" eclass="Parameter"

position="2"><value eclass="Parameter" eobject="O-4"/></remove-from-

resource>

26 <add-to-ereference composite="_EuXu4ir-EeqlN5gavj_cGQ" eclass="Operation" name

="parameters" position="1" target="O-2"><value eclass="Parameter" eobject

="O-4"/></add-to-ereference>

27 <remove-from-resource composite="_EuXu4yr-EeqlN5gavj_cGQ" eclass="Parameter"

position="2"><value eclass="Parameter" eobject="O-5"/></remove-from-

resource>

28 <add-to-ereference composite="_EuXu4yr-EeqlN5gavj_cGQ" eclass="Operation" name

="parameters" position="2" target="O-2"><value eclass="Parameter" eobject

="O-5"/></add-to-ereference>

29 <create eclass="Class" epackage="miniuml" id="O-6"/>
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30 <add-to-resource eclass="Class" position="2"><value eclass="Class" eobject="O

-6"/></add-to-resource>

31 <set-eattribute eclass="Class" name="name" target="O-6"><value literal="Troll

"/></set-eattribute>

32 <create eclass="Class" epackage="miniuml" id="O-7"/>

33 <add-to-resource eclass="Class" position="3"><value eclass="Class" eobject="O

-7"/></add-to-resource>

34 <set-eattribute eclass="Class" name="name" target="O-7"><value literal="Giant

"/></set-eattribute>

35 <create eclass="Operation" epackage="miniuml" id="O-8"/>

36 <add-to-resource eclass="Operation" position="4"><value eclass="Operation"

eobject="O-8"/></add-to-resource>

37 <set-eattribute eclass="Operation" name="name" target="O-8"><value literal="

cast"/></set-eattribute>

38 <remove-from-resource composite="_EuXu5Cr-EeqlN5gavj_cGQ" eclass="Operation"

position="4"><value eclass="Operation" eobject="O-8"/></remove-from-

resource>

39 <add-to-ereference composite="_EuXu5Cr-EeqlN5gavj_cGQ" eclass="Class" name="

operations" position="0" target="O-7"><value eclass="Operation" eobject="O

-8"/></add-to-ereference>

40 <create eclass="Class" epackage="miniuml" id="O-9"/>

41 <add-to-resource eclass="Class" position="4"><value eclass="Class" eobject="O

-9"/></add-to-resource>

42 <set-eattribute eclass="Class" name="name" target="O-9"><value literal="Knight

"/></set-eattribute>

43 <create eclass="Operation" epackage="miniuml" id="O-10"/>

44 <add-to-resource eclass="Operation" position="5"><value eclass="Operation"

eobject="O-10"/></add-to-resource>

45 <set-eattribute eclass="Operation" name="name" target="O-10"><value literal="

smash"/></set-eattribute>

46 <remove-from-resource composite="_EuXu5Sr-EeqlN5gavj_cGQ" eclass="Operation"

position="5"><value eclass="Operation" eobject="O-10"/></remove-from-

resource>

47 <add-to-ereference composite="_EuXu5Sr-EeqlN5gavj_cGQ" eclass="Class" name="

operations" position="0" target="O-9"><value eclass="Operation" eobject="O

-10"/></add-to-ereference>

48 <create eclass="Class" epackage="miniuml" id="O-11"/>

49 <add-to-resource eclass="Class" position="5"><value eclass="Class" eobject="O

-11"/></add-to-resource>

50 <set-eattribute eclass="Class" name="name" target="O-11"><value literal="Mage

"/></set-eattribute>

51 <remove-from-resource composite="_EuXu5ir-EeqlN5gavj_cGQ" eclass="Class"

position="1"><value eclass="Class" eobject="O-1"/></remove-from-resource>

52 <add-to-ereference composite="_EuXu5ir-EeqlN5gavj_cGQ" eclass="Model" name="

classes" position="0" target="O-0"><value eclass="Class" eobject="O-1"/></

add-to-ereference>

53 <remove-from-resource composite="_EuXu5yr-EeqlN5gavj_cGQ" eclass="Class"
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position="1"><value eclass="Class" eobject="O-6"/></remove-from-resource>

54 <add-to-ereference composite="_EuXu5yr-EeqlN5gavj_cGQ" eclass="Model" name="

classes" position="1" target="O-0"><value eclass="Class" eobject="O-6"/></

add-to-ereference>

55 <remove-from-resource composite="_EuXu6Cr-EeqlN5gavj_cGQ" eclass="Class"

position="1"><value eclass="Class" eobject="O-7"/></remove-from-resource>

56 <add-to-ereference composite="_EuXu6Cr-EeqlN5gavj_cGQ" eclass="Model" name="

classes" position="2" target="O-0"><value eclass="Class" eobject="O-7"/></

add-to-ereference>

57 <remove-from-resource composite="_EuXu6Sr-EeqlN5gavj_cGQ" eclass="Class"

position="1"><value eclass="Class" eobject="O-9"/></remove-from-resource>

58 <add-to-ereference composite="_EuXu6Sr-EeqlN5gavj_cGQ" eclass="Model" name="

classes" position="3" target="O-0"><value eclass="Class" eobject="O-9"/></

add-to-ereference>

59 <remove-from-resource composite="_EuXu6ir-EeqlN5gavj_cGQ" eclass="Class"

position="1"><value eclass="Class" eobject="O-11"/></remove-from-resource>

60 <add-to-ereference composite="_EuXu6ir-EeqlN5gavj_cGQ" eclass="Model" name="

classes" position="4" target="O-0"><value eclass="Class" eobject="O

-11"/></add-to-ereference>

61 <session id="LEFT" time="20191230131531788GMT"/>

62 <create eclass="Generalization" epackage="miniuml" id="L-0"/>

63 <add-to-resource eclass="Generalization" position="1"><value eclass="

Generalization" eobject="L-0"/></add-to-resource>

64 <set-eattribute eclass="Generalization" name="name" target="L-0"><value

literal="Left Generalisation"/></set-eattribute>

65 <remove-from-resource composite="_ExFrsCr-EeqlN5gavj_cGQ" eclass="

Generalization" position="1"><value eclass="Generalization" eobject="L

-0"/></remove-from-resource>

66 <set-ereference composite="_ExFrsCr-EeqlN5gavj_cGQ" eclass="Class" name="

generalization" target="O-6"><value eclass="Generalization" eobject="L

-0"/></set-ereference>

67 <set-ereference eclass="Generalization" name="general" target="L-0"><value

eclass="Class" eobject="O-1"/></set-ereference>

68 <set-eattribute eclass="Class" name="name" target="O-1"><old-value literal="

Character"/><value literal="Hero"/></set-eattribute>

69 <unset-ereference composite="_ExFrsSr-EeqlN5gavj_cGQ" eclass="Class" name="

generalization" target="O-6"><old-value eclass="Generalization" eobject="L

-0"/></unset-ereference>

70 <set-ereference composite="_ExFrsSr-EeqlN5gavj_cGQ" eclass="Class" name="

generalization" target="O-9"><value eclass="Generalization" eobject="L

-0"/></set-ereference>

71 <move-in-ereference eclass="Operation" from="1" name="parameters" target="O-2"

to="2"><value eclass="Parameter" eobject="O-4"/></move-in-ereference>

72 <unset-eattribute composite="_ExFrsir-EeqlN5gavj_cGQ" eclass="Operation" name

="name" target="O-8"><old-value literal="cast"/></unset-eattribute>

73 <remove-from-ereference composite="_ExFrsir-EeqlN5gavj_cGQ" eclass="Class"

name="operations" position="0" target="O-7"><value eclass="Operation"
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eobject="O-8"/></remove-from-ereference>

74 <delete composite="_ExFrsir-EeqlN5gavj_cGQ" eclass="Operation" epackage="

miniuml" id="O-8"/>

75 <unset-eattribute composite="_ExFrsir-EeqlN5gavj_cGQ" eclass="Class" name="

name" target="O-7"><old-value literal="Giant"/></unset-eattribute>

76 <remove-from-ereference composite="_ExFrsir-EeqlN5gavj_cGQ" eclass="Model"

name="classes" position="2" target="O-0"><value eclass="Class" eobject="O

-7"/></remove-from-ereference>

77 <delete composite="_ExFrsir-EeqlN5gavj_cGQ" eclass="Class" epackage="miniuml"

id="O-7"/>

78 <set-eattribute eclass="Class" name="name" target="O-6"><old-value literal="

Troll"/><value literal="Ogre"/></set-eattribute>
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Reproducing the Experiments

The source code and input models of the evaluation of this research can be downloaded

from https://github.com/epsilonlabs/emf-cbp and https://drive.google.com/open?

id=1W_DTOloflZt6aYvObDCTfcnSMqhiRJY1.

All of the experiments of this research are developed and executed with the following

specification Eclipse 4.6.3 (Neon.3) 32-bit and Java Development Kit 1.8. Some

important libraries that are used in the source are BPMN2 Metamodel 1.3.0, Epsilon

1.4.0, EMF 2.12.0, UML2 Extender SDK 5.2.3, NeoEMF 1.0.2, EMF Store 1.9.0,

EMF Compare 3.3.2, and MoDisco 1.0.1. These libraries can be installed as plugins

on Eclipse. Other jar dependencies are Apache commons-io-2.6.jar for file operation

utility and Java Specification Request jsr305-3.0.1.jar that is required by NeoEMF.

• Chapter 5. The test code to run the evaluation of Chapter 5 is in file ECMFAT-

est3.java. This file is located in package org.eclipse.epsilon.cbp.state2change.test

under project org.eclipse.epsilon.cbp.state2change.

• Chapter 6. HybridXMITest.java, NeoEMFTest.java, HybridNeoEMFTest.java,

and CBPTest.java are the test files for the evaluation of Chapter 6. They are

located in package org.eclipse.epsilon.cbp.hybrid.test in project org.eclipse.epsilon.

cbp.hybrid.test.

• Chapter 7. The test code to run the evaluation of Chapter 7 is in file CBP-

ComparisonTest.java. This file is in package org.eclipse.epsilon.cbp.comparison.
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test under project org.eclipse.epsilon.cbp.comparison.

• Chapter 8. The test code to run the evaluation of Chapter 8 is in file

CBPConflictTest.java under package org.eclipse.epsilon.cbp.conflict.test in project

org.eclipse.epsilon.cbp.comparison and file Application.java under package org.

eclipse.epsilon.cbp.comparison.emfstore.test in project org.eclipse.epsilon.cbp.com-

parison.emfstore.
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Corrections Summary

This Appendix presents a summary of all the corrections that have been added to

the report of this research. They have been included to satisfy the items of revision

requested in the viva and to ease finding the corrections.

1. A small section should be added to the conclusion presenting a methodology

for use of the presented changes based persistence approach, i.e. when should

one use state-based and change-based, and how might this look in practice.

Correction:

Section 9.5 in Chapter 9 has been added to present the methodology on how

and when to implement change-based persistence approach in practice.

2. An example should be added, illustrating why tools such as Git are not suitable,

and the new approach is needed.

Correction:

An example that illustrates why tools such as Git is not suitable, and the new

approach is needed has been added in Section 2.3.

3. The examples in Chapter 5 should be changed to match the working example

from the rest of the thesis.

Correction:

The examples in Chapter 5, from Section 5.2 to 5.3.4, have been replaced with

examples that extend the running example introduced in Chapter 4.
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4. A discussion highlighting how others can reproduce the results should be added

either to the research methodology section or as an appendix. The discussion

should include a link to a downloadable container (or similar) that contains all

models and tests.

Correction:

Appendix B has been added to give instructions on how reproduce the evaluation

results in Chapters 5, 6, 7, and 8. The Appendix contains the links that point

to the source code of this research’s prototype, tests, and models that were

used for evaluation.

5. Comments on the complexity of each of the algorithms should be added

throughout, for example, a few sentences stating what kind of models may

cause poor performance.

Correction:

Sections 7.5 and 8.5 have been added to discuss on the complexity of algorithms

for state and change-based model differencing and conflict detection.

6. A discussion on validity of the presented results across other domains (e.g.

outside 3 tiered MDE approaches) should be added to the conclusion.

Correction:

Section 9.4.2 in Chapter 9 has been added to discuss on the validity of the

presented results across other domains (e.g. outside 3 tiered MDE approaches).

7. The notations used throughout equations in Chapter 8 should be clarified/changed

as discussed in the viva.

Correction:

The notations in Equations 8.4, 8.5, 8.6, 8.9, 8.12, 8.13, and 8.14 in Chapter 8

have been fixed as discussed in the viva.

8. The points highlighted in the attached PDF should be addressed. These

include minor typos (annotated via comment boxes) and points for clarification

(annotated via blue text).

Correction:

All minor typos highlighted in the attached PDF have been fixed. Some points

that need clarification also have been addressed by adding some explanation.
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The explanation is intended to improve the readability and understandability

of the report. The updates can be tracked in the Yohannis_202049635_

CorrectedThesisTracked.pdf companion file.

9. A “Threats to validity section” for each of the conducted experiments.

Correction:

Sections 5.4.6, 6.5.3, 7.6.3, and 8.8.3 are the threats-to-validity sections that

have been added for each of the conducted experiments.
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