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Abstract

In kinetic plasma physics, BGK modes are ubiquitous solutions to the Vlasov equation,

with particles travelling along orbits where the single particle energy is conserved. Ap-

proximate extensions of these exact solutions have been successfully used in the past to

understand the formation and evolution of ‘holes’ and ‘clumps’, coherent structures on the

particle distribution function which under certain conditions form in the nonlinear phase

of the evolution of kinetic plasmas. In this thesis, analytical results are shown which con-

sider perturbations and deformations to BGK orbits, allowing one to robustly construct

more exotic orbits that allow for mode growth and frequency chirping. Computational

results produced using the DARK code are presented, examining stochastic and deter-

ministic populations in a 1D electrostatic plasma, and how they affect electrostatic waves

exhibiting Landau resonance, based on Berk-Breizman models. A model is presented for

parametric mode-mode destabilisation via holes and clumps interacting via the background

distribution. Finally, work using the machine learning framework ERICSON is presented,

analysing frequency spectrograms of magnetic perturbations in Alfvénic and sub-Alfvénic

frequency ranges.
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C. Smiet, and many others.

Penultimately, I would like thank a few people who have proven instrumental in the

path I have taken in life today:

• Graham Tavener, who inspired me to become a physicist

• Harriet Smith, who advised me not to study physics at university

• Sharon Strawbridge, who is the most inspiring academic I have had the pleasure of

knowing

• Joe Dockrey, a fantastic scientist who motivated me to study for a doctorate

• Sergei Lebedev, who encouraged me to pursue plasma physics

• Joe Hanson, who introduced me to machine learning

xxi



Finally and most importantly, I would like to thank my parents Cynthia and Finlay. I

am forever humbled by your strength of character, your tireless support, and the sacrifices

and experiences you have faced. This work is, and always has been, for you.

xxii



Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, University. All

sources are acknowledged as References.

The work was primarily carried out at the York Plasma Institute, Department of

Physics, University of York. Direct collaboration occurred at the Princeton Plasma Physics

Laboratory (PPPL) with V. N. Duarte, E. Fredrickson, N. N. Gorelenkov, and M. Podestà.
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Chapter 1

Introduction

1.1 Overview

This thesis began life as a study examining 1D electrostatic plasmas for the purpose of

furthering understanding of tokamak plasmas. While some work was carried out to this

end (see Chapter 5 and Chapter 6), this thesis is largely a mathematical work examining

the origin of emergent phenomena in kinetic plasmas. These emergent phenomena are

investigated analytically via generating functions and collective orbit effects (see Chap-

ter 3), computationally through stochastic and deterministic means (see Chapter 4 and

Chapter 5), and with machine learning (ML) techniques (see Chapter 6).

While this appears to make for quite a broad thesis, it is my belief that all of the

approaches are merely manifestations of a few fundamental principles: composite map-

pings, nonlinear physics, and spectral analysis. Throughout this thesis, I reinforce these

three concepts by treating almost all problems through the same rigorous mathematical

notation.

However, this is not entirely an academic study, and the work was carried out for

the express purpose of producing verifiable, real physics. To this end, this introductory

chapter begins in Section 1.2 by covering motivation from a fundamental plasma physics

perspective, with some additional motivation for tokamak plasmas; further motivation for

the kinetic work and tokamak plasma work is included separately at the beginning of

Chapter 2 to Chapter 6. Later in Section 1.3, I outline definitions, notation and shorthand

which is used throughout the thesis. In Section 1.4, I derive the Boltzmann-Maxwell system

from the background theory of kinetic plasmas. Finally, in Section 1.6, I discuss action-

angle variables and how they are used with Noether’s theorem1 to analyse plasmas in a

Hamiltonian framework.

1
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1.2 Motivation

1.2.1 Nonlinear kinetic theory

The phenomenon of solitons is widely documented,2–4 where nonlinear structures form

due to spatial coupling between waves in a given system. In kinetic plasmas, nonlinear

coupling in momentum space allows for structures to form on the particle distribution

function (PDF) known as holes and clumps (H&Cs), referring to a local decrease or increase

respectively on the spatially averaged PDF.5 These structures propagate in a non-dispersive

manner similar to solitons. However, as they move through momentum space they draw

free energy from the system even when at constant amplitude. Understanding how these

structures are formed may prove crucial for mitigating fast ion loss in tokamaks, as well as

other types of kinetic instability (see Chapter 5).

The Vlasov equation6 has been solved in previous work for the case where the particles

follow orbits on which their energy is conserved.7 These types of plasma wave, known as

Bernstein-Green-Kruskal (BGK) modes, create phase space ‘islands’ where trapped parti-

cles resonate with the wave. Further work by Berk, Breizman and others5,8,9 has explored

the movement of H&Cs through phase space by assuming that the H&C evolve via a tem-

poral continuum of BGK modes. While this work has proven very successful for predicting

the frequency chirp associated with these structures, the work does not fully explain how

these structures form, and assumes a constant slope on the PDF during structure forma-

tion. In addition, this theory is limited to systems near marginal stability; rapidly growing

waves and rapidly chirping waves break the required adiabaticity conditions.

1.2.2 Nuclear fusion

Nuclear fusion is a process where two or more nuclei with binding energies per nucleon less

than that of iron-56 combine to form a nucleus and daughter products which overall have

less rest mass than the parent matter.

The process releases an amount of energy corresponding to the mass defect. The

typical energy released per fusion event is on the order of MeV,10 making it potentially

a very large source of energy. However, overcoming the electromagnetic forces at play is

tricky, requiring a great deal of finesse, and a large amount of energy. Unfortunately, due

to this and other issues, nuclear fusion is not yet a viable source of commercial power. At

the time of this thesis, many interesting experiments exist around the world examining

a variety of devices for the purpose of eventually achieving commercial fusion, some of

2
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which are currently under upgrade (MAST-U, NSTX-U), and some of which are currently

operational (JET, DIII-D, W7-X).

Broadly speaking, the current primary roadblocks to fusion can be described as the

following:

• Suitable materials

Fusion neutrons are highly energetic (on the order of MeV) and can deal a large

amount of damage to fusion devices. This includes ballistic damage as well as dam-

age arising from nuclear reactions. Neutrons are ballistically devastating: the kinetic

energy per unit cross sectional area of a single fusion neutron is on the order of 1017

J m−2, while for comparison the value for a bullet is about 8 orders of magnitude

lower. In addition, neutron capture can lead to transmutation, rendering inert ma-

terials radioactive. As a result, finding suitable materials is a non-trivial endeavour.

• Plasma confinement

Keeping plasma well confined is difficult: as highly ionised fluids, the constituent

charged particles experience long range electromagnetic forces which make them

susceptible to particle drifts (classical, neoclassical)11 as well as nonlinear effects

(wave-particle resonance) which can lead to confinement degradation.

• Plasma stability

Emergent, transient phenomena in tokamaks and other fusion devices are highly

problematic. Transients such as edge localised modes (ELMs), abrupt large events

(ALEs), and runaway electrons can lead to large amounts of energy loss from the

core, reducing plasma performance and causing large spikes in particle flux on the

first wall of tokamaks.

This thesis focuses on the last two points: plasma confinement and stability. Obtaining

a better understanding of the origin of transient phenomena such as nonlinear kinetic

instabilities may allow one to mitigate them better in future, and potentially extinguish

instabilities before they become problematic. While these transient phenomena occur on

very rapid timescales which may be too hard to control by humans (< 10 ms), new work

over the past few years using ML and neural networks is making strong strides towards real

time feedback loops and system control.12–14 With regards to confinement, understanding

the mechanisms that drive wave-particle resonance better may allow one to control phase

space islands and artificially move these using external influences.15
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1.3 Definitions

1.3.1 Notation and shorthand

I will use the following shorthand here, and throughout the thesis:

• Definition. A quantity A is defined as B if written as:

A := B.

Alternatively, B =: A also has the same meaning.

• Fourier series. The Fourier coefficients under spatial decomposition of a quantity

Q(x) in a periodic system of length L are given by:

Q(x) =:
1

2

∑
j

Qje
ikjx, (1.1)

noting that for real Q(x), Q−j ≡ Q∗j . The coefficients are given by the following:

Qj ≡
1

L

L∮
0

Q(x)e−ikjx dx. (1.2)

• Laplace transforms. The forward and backward Laplace transforms under tempo-

ral decomposition of a quantity Q(t) are given respectively by:

L̂[Q] ≡ Q̃(p) :=

∫
R

Q(t)e−pt dt, (1.3a)

L̂−1[Q] ≡ Q(t) ≡ 1

2πi

∫
R+iσ

Q̃(p)ept dp. (1.3b)

• Wave frame. The component of quantity Q corresponding to the lth wave frame

(with phase velocity u[l]) is denoted as Q[l].

• Species. The subscript [l] is used to denote that a quantity Q[l] is of species l.

1.3.2 The δ-operator

Via Taylor expansion, one expects that if a functional Q[κ] is differentiable:

Q[κ] = Q[κ(0)] + δQ[κ(0);κ] + δ2Q[κ(0);κ] + . . . , (1.4)

4
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where κ(0) is a reference function. The δ-operator is defined here as returning the first

variation of a functional with respect to a function κ and the reference function κ(0), such

that:16

δQ[κ(0);κ] :=

∫
Ω

d~µ∆κ
δ

δκ(0)(~µ)
Q[κ(0)],

where ∆κ := κ − κ(0), Ω ⊂ RD is a closed volume in which d~µ is shorthand for the

infinitesimal volume element, ~µ ∈ Ω, and δQ[κ]/δκ(~µ) is the functional derivative with

respect to κ, given by:

∫
Ω

d~µ ξ(~µ)
δ

δκ(~µ)
Q[κ] := lim

ε→0

f [κ(~µ)− εξ(~µ)]− f(κ)

ε
,

where for δQ, by definition the test function ξ(µ) := ∆κ(µ)/ε. In general, higher order

variations are therefore given by nonlocal functionals, arising from multiple iterations of

the δ-operator:

δlQ[κ(0);κ] :=
1

l!

∫
⋃l
m=1 Ωm

(
l∏

m=1

d~µ{m}∆κ{m}
δ

δκ(0)(~µ{m})

)
Q[κ(0)], (1.5)

where the subscript {m} does not denote a component of a vector, but rather is short-

hand for a distinct space, such that each d~µ{m} allows for multiple iterations of integration.

In other words, the axioms of equivalence17 hold for all spaces {Ωm} with µ{m} ∈ Ωm ∀µ{m}
where ~µ{m} 7→ ~µ{n} is an identical transformation:

κ(~µ{m}) ≡ κ(~µ{n}) ∀ ~µ{m} ≡ ~µ{n}. (1.6)

The δ-operator therefore produces differentials which are not infinitesimal, and the

gradient is not a true derivative. For completeness, the total change ∆Q is given by:

∆Q[κ(0);κ] := Q[κ]−Q[κ(0)] ≡
∑
l

δlQ[κ(0);κ],

whence the total infinitesimal is given by:

dQ[κ(0)] := lim
κ→κ(0)

∆Q[κ(0);κ].

In this sense, ∆κ is simply the total change of κ under this representation, provided

that one introduces the following shorthand:

Q(0) := Q[κ]−∆Q[κ(0);κ]. (1.7)

5
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To allow for an approximate calculus to exist, one requires in linearised models that:

linearisation : |δ2Q|, |δQ|2 � |δQ|. (1.8)

This ordering means that one only keeps terms which are linear in δQ. In plasma

systems, δQ is typically a time-dependent quantity. Therefore, for scenarios where δQ is not

monotonic in time (i.e. oscillating electromagnetic fields), it is sometimes useful to instead

consider ordering of the variation to the wave amplitude A, such that |δ2A| � |δA|. For

cases where δQ is affected by nonlinear processes such as frequency chirping, it sometimes

becomes useful to look at temporal ordering instead, such that (δt)2 � (δt).

This final condition means that even for highly nonlinear plasma scenarios, if one uses

very small timesteps, one could iteratively produce the nonlinear dynamics for the system

by using a linearised eigensolver; this is an Eulerian decomposition of the problem in time.

However, construction of this form of solver is not trivial.

1.4 Theoretical models

1.4.1 Classical action

The 4-position of the ith particle in a plasma is given by:

Xi =
(
xi(ti), yi(ti), zi(ti), ti(t)

)
,

where xi, yi, zi denote the Cartesian 3-position of the particle, and ti is the time coor-

dinate for the particle. The set of 4-positions of all of the Np particles in the system is

given by X = {Xi}
Np
i=1. The state of a plasma is given by the 4-position and 4-velocity of

all of the Np particles in the system, such that the state of the system is given by the set:

SC = {Xi, Ẋi}
Np
i=1.

One can define a functional Jc that maps SC onto a real number:

JC [SC ] : SC 7→ R.

I refer to this functional as the action. One can formally represent the dynamics of the

particle as being given by the trajectory which minimizes JC . That is to say:

Yi : δJC [SC ] = 0,

6



CHAPTER 1. INTRODUCTION B.J.Q. Woods

where Yi ∈ R3 × R[0,∞] is the 4-trajectory for the particle. The action is given from

classical mechanics with respect to the system Lagrangian L:

JC [SC ] :=

t2∫
t1

L(SC , t) dt,

and as is given from elementary classical mechanics,18 one arrives at the corresponding

Euler-Lagrange equations:

d

dt

(
∂L

∂Xi

)
−
(
∂L

∂Xi

)
= 0.

In plasma, there are few constraints to particle motion, and many degrees of freedom.

Therefore, one expects that the Euler-Lagrange equations above are likely to be of similar

complexity to simply solving the problem as a Newtonian many-body problem.

For the Newtonian problem, the forces here in the absence of external fields can be

determined by the Lorentz force, Coulomb potential and the Biot-Savart law. However,

solving this directly is incredibly laborious and largely unnecessary. However, for the case

that there are external fields, one must produce self consistent equations which couple the

particle motion and the evolution of the total electromagnetic field.

1.4.2 Field action

Still in the absence of external fields, it is possible for one to represent the self-consistent

electromagnetic field via the Lorentz force and the Liénard-Weichert potentials. In this

sense, one could construct a Lagrangian but it is simpler to move towards classical field

theory. If one examines the 4-potential {Aµ}:

{Aµ} : (X, Ẋ,X0) 7→ R3 × R[0,∞],

where X0 = (x, t) is the reference 4-position, and each element of the 4-potential is

a scalar field. The 4-potential depends on the relative location between the observer at

X0 and all of the particles; accordingly Aµ = Aµ(X, Ẋ,X0). Now, all the information

is encoded in the positions of the particles, and the 4-potential. Therefore, our state is

defined by the set:

S = {Aµ(SC , X0)}4µ=1 ∪ SC .

Then, one can define a functional J that maps S onto a real number:

7
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Jf [S] : S 7→ R.

I refer to this as the field action. This is given in the context of classical field theory

by:19

Jf [S] :=

∫
R3

t2∫
t1

Lf (S, t) dtdx,

where X = X(x, t), and where one integrates the Lagrangian density Lf over all space.

Occasionally, one may find it appropriate to construct a model from as low-level a formalism

as this; Berk et al. construct the base theory used for so-called Berk-Breizman models from

a Lagrangian formalism.8 Using a Lagrangian field theory or otherwise, one obtains the

Lorentz-Maxwell dynamical system of equations:

ẍ(i) =
q(i)

m(i)
(EK + ẋ(i) ×BK), (1.9a)

∇ ·EK =
1

ε0

∑
particles

q(i)∫
R3

dx
, (1.9b)

∇×EK = −∂B
K

∂t
, (1.9c)

∇ ·BK = 0, (1.9d)

∇×BK = µ0ε0
∂EK

∂t
+ µ0

∑
particles

q(i)ẋ(i), (1.9e)

where EK(X, Ẋ,X0) is the electric field, BK(X, Ẋ,X0) is the magnetic flux density, q(i)

is the charge of the ith particle, m(i) is the mass of the ith particle, ε0 is the permittivity

of free space and µ0 is the permeability of free space. The equations form a system of

3(4 +Np) differential equations to be solved. 4 vector equations (Maxwell’s equations) are

1st order partial differential equations (PDEs), while Np vector equations (Lorentz force)

are 2nd order ordinary differential equations (ODEs). The entire system is nonlinear, and

very challenging to solve computationally.

1.4.3 Klimontovich equation

Plasmas contain a very large amount of particles, and therefore it becomes favourable in

many scenarios to use statistical physics. In 1967, Klimontovich showed that it is possible

to represent the Lorentz-Maxwell system by replacing the particle positions and velocities

with the particle phase space densities instead.20 Each particle in the plasma occupies a

8



CHAPTER 1. INTRODUCTION B.J.Q. Woods

point in phase space, providing a coarse single PDF fK[l] known as the Klimontovich density

for a given species l:

fK[l] (x,v, t) :=

N[l]∑
m=1

δ[x− x
(m)
[l] (t)] δ[v − v

(m)
[l] (t)], (1.10)

where one sums over N[l] particles for the species, x ∈ R3 is the position, v ∈ R3 is

the velocity, t ∈ R[0,∞] is the time, x(m)
[l] (t) is the particle position, v(m)

[l] (t) is the particle

velocity, and δ[·] is the Dirac delta function. As such, the the number density is given by:

nK[l] ≡
∫
R3

fK[l] dv ≡
N∑
m=1

δ[x− x
(m)
[l] (t)].

Using the Klimontovich density allows one to combine the three 2nd order ODEs given

by Newton-Lorentz dynamics for each particle into a single 1st order PDE for each species.

Taking the total time derivative of fK yields the Klimontovich equation:

∂fK[l]

∂t
+ v · ∇fK[l] +

q[l]

m[l]
[EK + v ×BK ] · ∇vf

K
[l] = 0,

where one obtains an equation for each of the Ns species, EK = EK(x, t), and BK =

BK(x, t). Therefore, the Klimontovich-Maxwell dynamical system of equations is as fol-

lows:

ẍ
(i)
[l] =

q[l]

m[l]
(EK + ẋ

(i)
[l] ×BK), (1.11a)

0 =
∂fK[l]

∂t
+ v · ∇fK[l] +

q[l]

m[l]
[EK + v ×BK ] · ∇vf

K
[l] , (1.11b)

∇ ·EK =
1

ε0

∑
species

∫
R3

q[l]f
K
[l] dv, (1.11c)

∇×EK = −∂B
K

∂t
, (1.11d)

∇ ·BK = 0, (1.11e)

∇×BK = µ0ε0
∂EK

∂t
+ µ0

∑
species

∫
R3

q[l]vf
K
[l] dv. (1.11f)

In practice the Klimontovich-Maxwell system is still difficult to solve; it is equivalent

to the Lorentz-Maxwell system except for the parametrisation of the particle positions and

velocities.

9
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1.4.4 Boltzmann equation

Pre-dating the Klimontovich equation is the Boltzmann equation.11 This equation requires

one to examine a statistical ensemble of particles, and examines the full time derivative of

the PDF, f[l]:

∂f[l]

∂t
+ v · ∇f[l] +

Fext.,[l]

m
· ∇vf[l] = Ĉf[l], (1.12)

where Fext.,[l] is some external force, and Ĉ is an operator such that Ĉf[l] produces

sources and sinks of the PDF. The Boltzmann equation is similar to the Klimontovich

equation except for the fact that the Boltzmann equation uses a smooth function f[l] as

opposed to fK[l] , and that the Boltzmann equation allows for sources and sinks. One can

split the Klimontovich density (1.10) into an average f[l] and a fluctuating part δfK[l] :

fK[l] (x,v, t) ≡ f[l](x,v, t) + δfK[l] (x,v, t), (1.13)

and similarly for the electric field and magnetic field:

EK[l](x, t) ≡ E[l](x, t) + δEK[l](x, t), (1.14a)

BK
[l](x, t) ≡ B[l](x, t) + δBK

[l](x, t). (1.14b)

Accordingly, one can identify that the sources and sinks in the Boltzmann equation

may represented by the fluctuating terms in the Klimontovich equation. These small scale

effects are important, and as such, defining ‘small scale’ is key. To use smooth distributions

one must assume that the dynamics of the system can be adequately described by ensemble

averages. To do this, one must divide the phase space into small grid cells which are not so

small as to contain too few particles, but not too big as to allow for infinitesimal calculus

to make poor approximations. Then:

f[l](x,v, t) ≡ 〈fK[l] 〉 :=
1

∆Γ

∫
∆Γ

fK[l] dΓ, (1.15)

where 〈·〉 denotes ensemble averaging, and ∆Γ is a small closed 6D phase space vol-

ume defining a neighbourhood centred at x,v. Then, under ensemble averaging of the

Klimontovich equation:

∂f[l]

∂t
+ v · ∇f[l] +

q[l]

m[l]
[E + v ×B] · ∇vf[l]︸ ︷︷ ︸

mean field

= −
q[l]

m[l]

fluctuations︷ ︸︸ ︷
〈[δEK + v × δBK ] · ∇vδf

K
[l] 〉 . (1.16)

10



CHAPTER 1. INTRODUCTION B.J.Q. Woods

As such, small scale fluctuations in the electromagnetic field and Klimontovich density

allow for the Ĉ operator to exist in the mean-field case, where {f[l]}, E and B have been

ensemble averaged. The external force in the Boltzmann equation by identification is

therefore given as the mean-field Lorentz force, q[l][E + v ×B]. The Boltzmann-Maxwell

dynamical system of equations is therefore given in the rest of the thesis by:

Ĉf = V̂ f, (1.17a)

∇ ·E =
1

ε0

∑
species

q

∫
R3

f dv, (1.17b)

∇×E = −∂B
∂t
, (1.17c)

∇ ·B = 0, (1.17d)

∇×B = µ0ε0
∂E

∂t
+ µ0

∑
species

q

∫
R3

vf dv, (1.17e)

where (1.17a) is the Boltzmann equation, (1.17b) to (1.17e) are Maxwell’s equations,

V̂ is the ‘Vlasov operator’:

V̂ =

[
∂

∂t
+ v · ∇+

q

m
(E + v ×B) · ∇v

]
, (1.18)

and other quantities are summarised as follows:

Quantity Definition

q particle charge for given species

m particle mass for given species

ε0 permittivity of free space

µ0 permeability of free space

x position ∈ R3

v velocity ∈ R3

t time ∈ R≥0

f(x,v, t) PDF for given species

E(x,v, t) mean-field electric field

B(x,v, t) mean-field magnetic flux density

Ĉ phase space sources and sinks

where I use PDF to mean the ensemble averaged PDF for the remainder of the thesis.

In Appendix C.1, I briefly outline how variants of the Boltzmann-Maxwell system can be

derived from classical field theory. The Ĉ operator includes both collisions as well as other
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phase space sources and sinks. These sources and sinks can arise from processes such as

particle flux across the system boundary (for open systems), particle recombination, and

particle excitation. For the scenarios examined in this thesis, particle number for each

species can be considered to be conserved in all models. For this reason, Ĉ is simply the

collision operator.

I have dropped the species superscript, noting that the collision operator will encapsu-

late interspecies collisions which may require reintroducing the superscript at a later point.

I will herein refer to E and B as the electric field and magnetic field respectively. The

(E + v × B) · ∇v leads to nonlinear coupling between the electromagnetic field and the

PDF. As a result of this nonlinearity, it is difficult to solve systems with kinetic plasmas

analytically.

From the Boltzmann equation, one can further reduce complexity by taking moments

in velocity. Whichever moment of the Boltzmann equation is taken, the resultant equation

features terms with the moment of order one greater. This leads to a problem with closure

of the system. For this reason, so called ‘fluid’ models feature two key assumptions: all

behaviour in velocity space is homogenised; the given closure for the system is valid.

Different forms of closure lead to ideal magnetohydrodynamics (MHD), resistive MHD,

and other models. This thesis is restricted to kinetic description of plasma, and therefore

discussion of MHD is omitted.

1.5 Equilibrium distribution functions

There are infinitely many equilibrium PDFs that are solutions of the Boltzmann-Maxwell

system, all of which form a subset of the general set of solutions. Here, I examine two

equilibrium PDFs of physical significance which are later used in this thesis: the bump-on-

tail (BOT) distribution, and the slowing-down distribution.

1.5.1 Bump-on-tail distribution

In this thesis, the 1D BOT distribution has the following form:

FBOT(x,v, t) =
1√
2π

{
η exp

[
−v

2

2

]
+

1− η
vT

exp

[
−1

2

(
v − vB
vT

)2
]}

, (1.19)

where vT is the beam thermal velocity, vB is the beam velocity, η is the fraction of

particles in the bulk, velocity has been normalised to the bulk thermal velocity, and the

number of particles has been normalised to 1. In the absence of electromagnetic fields and

12
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wave-particle resonance, one expects that a Maxwellian represents the thermal equilibrium

of the system. Therefore, a BOT distribution represents an equilibrium where two processes

occur: particles of the given species are injected into the system with velocity vB at the

same rate that they thermalise with the bulk, and particles are removed from the bulk at

that same rate.

However, this system is often kinetically unstable as the part of the PDF in the region

0 < v < vB with positive slope allows for linear Landau instability.

1.5.2 Slowing-down distribution

In this thesis, the slowing-down distribution has the following form:21,22

FS,[i](v) =
3

4π ln(1 + v3
c/v

3
inj.)

n[i],(0)

v3
c + v3

H(vinj. − v), (1.20)

where FS,[i] is the slowing-down distribution for the ith fast ion species, H is the Heav-

iside step function, n̄[i],(0) is the equilibrium number density of the ith fast ion species, and

vc is the so-called critical speed:

vc ≡ vte

(
3
√
π

4

∑
i

n[i],(0)me

ne,(0)m[i]
Z2

[i]

)1/3

, (1.21)

where vte is the electron thermal speed, ne,(0) is the equilibrium electron number density,

m[i] is the mass of the ith fast ion species, me is the electron rest mass, and Z[i] is the

atomic number of the ith fast ion species. In tokamaks, neutral beam injection (NBI) and

radio frequency (RF) heating can lead the ions to exhibit a quasi-steady slowing-down

distribution. Here, quasi-steady refers to the approximation that the distribution evolves

smoothly as a function of Pinj.; fundamentally, this assumes that the rate of increase of

injected power is much less than the reciprocal of the Spitzer slowing down time.

1.6 Action-angle variables

Action-angle variables are a useful tool that allow one to deduce the form of the Hamilto-

nian in systems where the Hamiltonian is slowly evolving, commonly utilised in tokamak

physics.23,24 To illustrate this, I will examine the following canonical transformation of the

Hamiltonian which is enabled by a type-2 generating function Q2(q,J, t):18

wk =
∂Q2

∂Jk
; pk =

∂Q2

∂qk
; K(w,J, t) = H(q,p, t) +

∂Q2

∂t
,

13
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where J = {Jk} are the action variables in the system, and w = {wk} are the angle

variables. The new Hamilton’s equations are given by:

d

dt
g(w,J, t) = {g,K}+

∂g

∂t
,

where {g,K} denotes the Poisson bracket in the new canonical phase space:

{g,K} :=
∂g

∂wk

∂K

∂Jk
− ∂K

∂wk

∂g

∂Jk
.

I define the following new generalized momenta {Jk}:

Jk := δJk(q, t) +

∮
H(qk,pk,t)=const.

pk dqk,

where the integral is performed over a closed phase space orbit at time t (such that it

is the unperturbed orbit), and the new generalized momenta are constants of motion. The

last term on the right hand side represents an adiabatic invariant, while the first term on

the right hand side represents deviation from adiabaticity. One can further demand that

the new Hamiltonian is not explicitly a function of time. To achieve this, one must use a

generating function such that:

∂

∂t

(
∂Q2

∂t
+H

)
= 0. (1.22)

Then, from the new Hamilton’s equations:

0 = − ∂K
∂wk

; wk =

t∫
0

∂

∂Jk
K(J) dt+ const.,

where one should note that K cannot be a function of w. The canonical transforma-

tion is therefore such that the new Hamiltonian is solely a function of the constants of

motion. Each one is representable by a quantity which resembles classical action, plus a

perturbation. If one integrates over a full period τ(0)(J) of the orbit at time t:

∆wk =
∂

∂Jk
K(J)τ(0)(J, t).

But one can also represent the variation of the angle variable wk by:

∆wk = δwk(J, t) +

∮
H(qk,pk,t)=const.

∂wk
∂qk

dqk,

14
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such that ∆wk is constructed from the unperturbed orbit contribution, plus the varia-

tion arising from the orbit changing as a function of time. Then:

∆wk = 1 + δwk,

and accordingly:

∂

∂Jk
K(J) =

1 + δwk(J, t)

τ(0)(J, t)
,

such that the left hand side is equal to the bounce frequency plus a contribution arising

from temporal perturbations to the particle orbits. The angle variables are therefore given

by:

wk =
1 + δwk(J, t)

τ(0)(J, t)
t+ const.

Altogether, this is simply a representation of Noether’s theorem1. The continuous

symmetries here are that K is invariant under a temporal transformation or a translation

in wk. The former leads to conservation of energy, and the latter manifests with Jk as

constants of motion. One finds that the Hamiltonian can be represented in the form:

H(q,p, t) = K(J) + δH(q,J, t),

such that δH := −∂Q2/∂t represents a explicitly time-varying perturbation to the

Hamiltonian. Later, in Section 3.2.1, I examine similar scenarios to this by considering

how the period of an orbit changes as the kinetic energy of a particle changes in time.

Here, I formally define adiabatic invariants as:

adiabatic :
∂

∂t
ln (Jk − δJk)�

∂

∂t
lnH, (1.23)

such that the logarithmic rate of change of (Jk − δJk) is small compared to the Hamil-

tonian. Under such an approximation, the orbits are approximately temporally static. In

such a case, the Hamiltonian is approximately time-independent. Then, by virtue of (1.22),

∂Q2/∂t must be time-invariant as well. The Hamiltonian then would take the approximate

form:

H(q,p, t) ≈ H0(J) + const.
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allowing for H to be representable solely as a function of the constants of motion. For

example, in tokamaks the equilbrium Hamiltonian (which can be identified as K(J)) is

commonly taken to be the form:

H0 = H0(W,pϕ, µ),

where W is the particle energy, pϕ is the toroidal angular momentum, and µ is the

particle magnetic moment. The corresponding conjugate quantities for which continuous

symmetries approximately exist are time, azimuthal angle, and the gyroangle.

1.7 Thesis outline

In this chapter, I have given a brief outline of the underlying theories one can use to

represent kinetic plasmas.

In Chapter 2, I cover ‘conservative orbit’ theories, where the single particle energy is

conserved on a particle orbit. I take a small detour via linearised kinetic plasma theory,

obtaining a closed equation for the linear complex dispersion relation for general kinetic

plasmas, with a later simplification to electrostatic plasmas. I close the chapter by defining

theories which are safely approximated by conservative orbits: the approximations at hand

are defined directly with respect to wave dynamics rather than adiabatic invariants.

In Chapter 3, I cover ‘non-conservative orbit’ theories, where the single particle energy

is not conserved on a particle orbit. I discuss how such theories can allow for a fuller

analytical description of frequency chirping, mode growth and wave-particle resonance than

‘conservative orbit’ theories. Furthermore, these theories allow for further explanation

of the origin of phase space islands in a nonlinear plasma. I detail two approaches: a

nonlinear basis expansion, and a generating function formulation. Both theories allow for

solutions which extend beyond that which is given in the literature by ‘near-conservative

orbit’ theories (BGK modes, H&C theory). Work from this chapter has been previously

published.25

In Chapter 4, I detail the workings of the D-dimensional Augmented Resonance Kinetic

solver (DARK) code written by myself over the course of 2015 - 2018 based on previous

work by Arber, Vann and de Gol.26,27 DARK is a sophisticated, new, modular code that

was used to run the simulations shown in Chapter 5.

In Chapter 5, I cover computational simulations of 1D electrostatic kinetic plasmas.

The chapter makes use of the Berk-Breizman augmentation commonly examined in the
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literature,todo2018introduction, 8,26,28–30 extending previous work in the literature by in-

cluding stochastic electric fields and PDFs. I show that a stochastic subpopulation of

particles can prevent phase space island formation and diminish frequency sweeping, and

that the lifetime of H&Cs is stochastic, implying that the structures are not fully coherent

and deterministic. I later show that one can predict behaviour surrounding hole-and-clump

destabilisation to high accuracy, where a hole or clump destabilises nearby modes by locally

deforming the PDF and increasing the Landau linear growth rate. These systems share

heuristic similarities to Alfvén waves, and consequent predictions are further discussed in

Chapter 7. This work was carried out with collaborators from Princeton Plasma Physics

Laboratory (PPPL), and has been previously published.31

In Chapter 6, I cover ML methods employed to analyse datasets related to nuclear

fusion. Here, I examine spectrograms of magnetic field perturbations, obtaining similar

data to that observed in computational simulations in Chapter 5. I use the new ML

framework Experimental Resonant Instability Correlation Studies on NSTX (ERICSON)

to characterise the frequency behaviour of modes, allowing one to investigate subsequent

correlations using traditional analysis. This work was carried out with collaborators from

PPPL, and has been previously published.32

Finally in Chapter 7, I give more detailed conclusions drawn from the chapters, before

going on to outline possible future work that could arise from the work.
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Chapter 2

Conservative orbits and linear

kinetic theory

2.1 Overview

Kinetic plasmas can be described by a Boltzmann equation10 that describes the evolution

of the particle distribution function (PDF), f , and Maxwell’s equations which describe

the evolution of the mean-field electromagnetic field. The force exerted on each of the

particles in the system manifests as a term acting as Fext. · ∇v on the PDF, where ∇v

denotes a velocity space gradient, and Fext. is typically taken to be the Lorentz force. The

method of linearisation allows one to derive damping or inverse damping of electrostatic

plasma waves in the system under the assumption that the nonlinear coupling is sufficiently

small.33 However, this coupling leads to wave-wave instabilities which affect the nonlinear

stability of the system. This can lead to destabilisation34,35 as well as stabilisation.36,37

These nonlinear scenarios have been partially investigated analytically, however they are

typically examined using computational means.29,38,39

I begin in Section 2.2 by discussing conservative orbits, and how a large amount of the

existing theory of phase space structures is described using conservative orbit theories, or

small variants thereof. In Section 2.2.1, I discuss previous work by Bernstein, Greene and

Kruskal. In Section 2.2.2, I present my own work, rigorously proving certain properties of

so-called Bernstein-Green-Kruskal (BGK) modes, and related phase space structures.

Then in Section 2.3, I explore a linearised theory of kinetic plasmas, developing from

typical treatments in the literature10,11,33 to produce extended solutions for collisional

electrostatic plasmas (see (2.17) in Section 2.3.1, (2.23) in Section 2.3.5, and all of Sec-

tion 2.3.6).
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Figure 2.1: Landau damping and inverse Landau damping. Sketch of the spatially

averaged PDF f0(v) for a 1D bump-on-tail (BOT) distribution with bulk temperature

T , and a beam travelling at velocity vB with respect to the bulk rest frame. Linear

wave-particle resonance occurs at v ≈ ω/k, where ω/k is the phase velocity of the wave.

Electrostatic waves with phase velocity coinciding with negative v · ∇vf0 give energy to

the PDF and undergo damping (Landau damping). Conversely, electrostatic waves with

phase velocity coinciding with positive v · ∇vf0 extract energy from the PDF and grow

(inverse Landau damping).

2.2 Conservative orbits

Suppose that f = f [ε(0)], such that (x, v, t) 7→ ε(0), and ε(0) 7→ R. Via Liouville’s theorem18,

one expects that phase space is incompressible.18 Therefore, particle continuity is required

along contours of constant f . These contours exist in locations of constant ε(0), and

therefore these contours correspond to particle orbits. If ε(0) has the form:

ε(0) = qφ+
1

2
m(v − u)2, (2.1)

where φ(x, t) is the electric potential and u is a constant velocity, the orbit can be said

to be conservative as the particle energy is conserved along the orbit.

A seminal 1957 work by Bernstein, Greene and Kruskal gives a family of exact nonlinear

solutions to the 1D electrostatic Vlasov equation (BGK waves), where the particles take

conservative orbits.40 This theory successfully gives exact solutions for the PDF and electric

potential provided that the wave is of constant amplitude and has a group velocity equal

to the phase velocity. As only one frequency exists in the system, any wave-wave coupling
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must be negligible in the system; the solution is nonlinear, but inherently assumes that

waves only couple to affect the spatially averaged PDF.

This assumption is fairly useful for Alfvén waves in tokamak plasmas. Gap toroidal

Alfvén eigenmodes (TAEs) exist in a very narrow bandwidth (∆ω � ω), and therefore

wave-wave coupling typically excites modes in the Alfvén continuum or excite other har-

monics of gap Alfvén wave. Continuum modes undergo continuum damping, which is

relatively larger than other damping rates in the system (|γcont.| > |γD|). As a result, con-

tinuum modes can largely be neglected. Furthermore, the probability of exciting another

harmonic of gap Alfvén wave is small as the bandwidth for the other harmonics is also

small; the characteristic time for energy diffusion in k-space can therefore be thought to

be very large with respect to other system timescales.

In Section 2.2.1, I recap the BGK theory, and pose some expected limitations of the

model. In Section 2.2.2, I explicitly prove these aforementioned limitations.

2.2.1 BGK waves

BGK waves are plasma waves which are exact nonlinear solutions of the 1D electrostatic

collisionless Vlasov-Maxwell system:

∂f

∂t
= −v∂f

∂x
+

q

m

∂φ

∂x

∂f

∂v
, (2.2a)

∇2φ = − 1

ε0

∑
species

q

∫
R

f dv. (2.2b)

If f = f [ε(0)], then ε(0) must also satisfy the Vlasov equation:

[
∂

∂t
+ v

∂

∂x
− q

m

∂φ

∂x

∂

∂v

]
ε(0) = 0,

A solution of the above equation is given by ε(0) = qφ + 1
2m(v − u)2. Upon insertion

into the Vlasov equation, we find a differential constraint for φ(x, t).

∂φ

∂t
+ u

∂φ

∂x
= 0.

This advection equation requires the electric potential to take the following form:

φ(x, t) =
1

2

∑
j

{
φje

ikj(x−ut) + c.c.
}
.

Accordingly, BGK theory finds that particles move along conservative orbits where

the energy of each and every particle is conserved. This result is particularly remarkable,
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Figure 2.2: Phase space contours for BGK modes. Shown is a set of BGK islands

with qφ ∝ [cos(kx − ωt) + cos(3kx − 3ωt)], to illustrate BGK modes that can exist with

complicated electric potentials. The first harmonic of the wavevector k corresponds to

the fundamental wavenumber of the system (k = 2π/L). Note that the islands all are co-

located at v = u, where the phase velocity u ≡ ω/k. Energy is normalised to the maximum

potential of the wave (qφmax.), and velocity is normalised with respect to
√

2qφmax./m.

as one would only expect that the global energy of the system is conserved. Bernstein,

Greene and Kruskal showed that the stronger case with the conservation of single particle

energy was in fact an available solution. The resultant structure, as one might expect, is

highly coherent. However, I will later show in Section 3.2.1 that deviation in the periods

of single-particle orbits allows for phase mixing and wave-particle energy transfer.

BGK waves are highly ubiquitous in plasma physics, and a large number of phenomena

can be explained using BGK theory or a small extension of it.7,9,41

However, the theory does fail under some circumstances:

1. It cannot by itself recover solutions with time-varying frequency and growth rate.

BGK theory cannot give solutions with time-varying frequency and growth rate.

However, provided that the change to the shape of the phase space island is small

at a given sampling rate, one can approximate behaviour by assuming a temporal

‘continuum of BGK modes’ to exist in the system as shown by Berk et al.5

This approach has led to a good deal of success, and is extensively used in hole and
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clump (H&C) theory, allowing one to recover an approximate value for the chirping

rate of modes during nonlinear saturation. However, it is only valid for adiabatically

chirping modes.

2. It cannot recover solutions where the topology of the phase space island changes.

In some scenarios, a phase space island may bifurcate, or sidelobes may appear.42

These solutions cannot be explained by the BGK theory which only permits the

existence of one island.

3. It cannot recover stochastic solutions.

The BGK island is a highly coherent structure. As a result, any system with deco-

herence, such as that produced from stochastic effects and turbulence, will not be

adequately described by the theory.

Wave packets feature constituent waves of differing phase velocity. The group velocity

(∇kω) is dependent on the linear complex dispersion relation for the whole wave, and the

temporal envelope of the wave packet is dependent on the group velocity.

2.2.2 BGK modes as dispersionless waves

When considering a wave packet, one must reconsider BGK analysis. First, one can exam-

ine a superposition of energies:

Lemma 2.1. For the energy given by:

ε
[l]
(0) = qφ[l](x, t) +

1

2
m(v − u[l])2.

Any linear superposition over l of these energies only has one global minimum in ve-

locity.

Proof. If one sums over N energies:

∑
l

ε
[l]
(0) =

∑
l

qφ[l] +
1

2
m
∑
l

(v − u[l])2.

The rightmost sum is quadratic in v, and therefore should only produce one global

minimum in velocity. To check, one seeks (∂/∂v)
∑
l

ε
[l]
(0) = 0:

0 = m
∑
l

(v − u[l]) = Nmv −m
∑
l

u[l].

Therefore, one finds:
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vmin. =

∑
l

u[l]

N
≡ ū.

This lemma allows one to examine two important cases, where ε[l](0) is some form of

energy in the lth wave frame:

• Single wave packet: φ(x, t) = φ[l](x, t)

The energy ε[l](0) is as though particles are interacting with the full electric potential;

ε
[l]
(0) is the particle energy in the lth wave frame.

This case only allows for a single phase velocity to exist. From substitution into the

Vlasov equation:

N

[
u[l]∂φ

∂x
+
∂φ

∂t

]
= 0.

This is only satisfied if φ consists of a single phase velocity. Therefore, ū ≡ u[l] ∀ l.

• Multiple wave packets: φ(x, t) =
∑
l

φ[l](x, t)

The energy ε[l](0) is as though particles are interacting with only part of the electric

potential; ε[l](0) is not the particle energy in the lth wave frame.

This case would allow for multiple phase velocities to exist, but is expressly forbidden.

From substitution into the Vlasov equation:

∑
l

[
u[l]∂φ

[l]

∂x
+
∂φ[l]

∂t

]
=
∑
l

∑
l′ 6=l

∂φ[l′]

∂x
(v − u[l]).

By comparing coefficients of v, the only allowed solution is where ∂φ[l′]/∂x = 0∀ l′ 6=

l. Therefore, this solution simply reduces to the ‘full potential’ solution, with only a

single phase velocity.

At this point it becomes useful to prove the following:

Theorem 1. Let x ∈ X, v ∈ V with X ⊂ Rd, and V ⊂ Rd, such that X ×V is a complete

vector space. Let a phase space volume Γ ⊆ X×V be a closed volume, such that it includes

its boundary ∂Γ. Let island separatrices be defined as the largest closed surfaces {∂Γs} such

that ∀∂Γs : f(x, v, t0) = const. at some time t0. Then, it is impossible to represent a set of

island separatrices existing on more than one finite subset of V if f(x, v, t0) is not at least

cubic in v.
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Proof. For a function f(x, v, t0) with x ∈ X and v ∈ V , in a finite subset of X there exists

a finite subset of V where the value of f is constant. These subsets form either open or

closed contours on the manifold.

If one supposes that x0, t0 is such that some points in V lie on an island separatrix

(which in turn is a closed contour), then:

∀v ∈ {v1, v2, . . . } : f(x0, v, t0) = const.,

as shown in Figure 2.3. One can write this in the alternative form:

∀v ∈ {v1, v2, . . . } : F (v′ = v) = C(x = x0, t = t0),

where F : v 7→ R and C : (x, t) 7→ R such that we seek solutions for v where some

function of v is equal to a value dependent on x0 and t0. F and C are surjective functions.

The number of possible values that solves this equation is given by the number of roots.

v F(v)

x

v

x0 x0+δx0

f(x,v,t) = ϵ + δϵ

f(x,v,t) = ϵ

C(x0,t0)

C(x0+δx0,t0)

a) b)

Figure 2.3: Separatrices. 1D sketches illustrating Theorem 1. a:) Sketches of separatrices

of phase space islands with values of f(x, v, t) given as ε for the gold island, and ε+ δε for

the green islands. The line x = x0 intersects all three islands, and x = x0 + δx0 intersects

only one island. b:) Only the gold island satisfies the equation F (v) = C(x0 + δx0, t0),

while both the gold and green islands satisfy the equation F (v) = C(x0, t0). As such, for

separatrices to exist at the same point in x, the PDF must be locally at least cubic in v.

Under a variation from x0 to x0 + δx0, one finds that {v1, . . . } 7→ {v1 + δv1, . . . }.

Contours require a set of continuous points, and therefore one requires that there exists a

root v0 which bifurcates under the variation from x0 to x0 + δx0, as shown in Figure 2.3.

This variation simply changes the value of C, and so the topological requirements are that

for a given island separatrix:

∃ v0, δx0 : v1 = v0 + δv1; v2 = v0 + δv2.
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Therefore, within the domain of C, F (v) satisfies this in the vicinity of a local ex-

tremum. As such one can formally write that for C ∈ [Cmin., Cmax.]:

F (v) ∈ [Cmin., Cmax.] : ∂vF = 0, ∂2
vF 6= 0.

Therefore, for islands to exist on more than one finite subset in V , there must be at

least 2 extrema in v. Therefore, f(x, v, t0) must be at minimum cubic to represent a set

of island separatrices existing on more than one finite subset of V .

One can therefore extend Lemma 2.1 to show the following:

Lemma 2.2. For the energy given by:

ε
[l]
(0) = qφ[l](x, t) +

1

2
m(v − u[l])2,

where φ(x, t) is given by a sum over N phase velocities:

φ(x, t) =
∑
l

φ[l](x, t).

A collisionless 1D electrostatic plasma does not permit a solution of the form f [ε(0)]

where:

ε(0) =
∑
l

ε
[l]
(0),

unless there is only a single wave packet in the system such that ε(0) = ε
[l]
(0). Such a

solution only features a chain of phase space islands in x.

Proof. From Lemma 2.1, ε(0) has only one minimum in velocity at v = ū, where ū =∑
l u

[l]/N . Therefore, ε(0) can be explicitly written in the form:

ε(0) =
∑
l

qφ[l] +
1

2
m
∑
l

(v − u[l])2 =
∑
l

qφ[l] + c1(v − ū)2 + c2,

where c1 and c2 are constants. By inspection:

c1 =
1

2

∑
l

m ; c2 =
1

2
m
∑
l

(ū− u[l])2.

Therefore:

ε(0) =
∑
l

[
qφ[l] +

1

2
m(v − ū)2 +

1

2
m(ū− u[l])2

]
.
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In this form, one can explicitly see that ε(0) is equal to:

ε(0) = qφ′ +
1

2
Nm(v − ū)2,

where φ′ is a gauge shifted potential:

qφ′ ≡
∑
l

qφ[l] +
1

2
m
∑
l

(ū− u[l])2.

If one substitutes ε(0) into the Vlasov equation:

∂φ

∂t
+ [v −N(v − ū)]

∂φ

∂x
= 0.

This is only satisfied for all v if N = 1; therefore there is only a single wave packet in

the system with phase velocity ū. Via Theorem 1, as ε(0) is quadratic in v, as contours of

constant f are also contours of constant ε(0), the solution only features a chain of phase

space islands in x.

If BGK modes can be superposed, then it may be possible to represent two phase space

structures by superposing solutions. As such, it is useful to show the following:

Lemma 2.3. A superposition of BGK islands of the form:

f = f [1][ε
[1]
(0)] + f [2][ε

[2]
(0)],

where ε[1]
(0) 6= ε

[2]
(0), and ε

[l]
(0) is given by:

ε
[l]
(0) = qφ[l](x, t) +

1

2
m(v − u[l])2,

with φ[l] satisfying:

u[l]∂φ
[l]

∂x
+
∂φ[l]

∂t
= 0,

and φ(x, t) = φ[1] + φ[2] only solves the Vlasov equation if the phase space islands exist

on the same subset of v, such that u[1] ≡ u[2].

Proof. By substituting f into the Vlasov equation:

∂ε[1]
(0)

∂t
+ v

∂ε
[1]
(0)

∂x
− q

m

∂φ

∂x

∂ε
[1]
(0)

∂v

 df [1]

dε
[1]
(0)

= −

∂ε[2]
(0)

∂t
+ v

∂ε
[2]
(0)

∂x
− q

m

∂φ

∂x

∂ε
[2]
(0)

∂v

 df [2]

dε
[2]
(0)

.

By substituting ε[l](0):
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(
∂φ[1]

∂t
+ u[1]∂φ

[1]

∂x
− ∂φ[2]

∂x
(v − u[1])

)
df [1]

dε
[1]
(0)

= −

(
∂φ[2]

∂t
+ u[2]∂φ

[2]

∂x
− ∂φ[1]

∂x
(v − u[2])

)
df [2]

dε
[2]
(0)

.

One can evaluate this for v ∈ {u[1], u[2]}. First, at u[1]:

(
∂φ[1]

∂t
+ u[1]∂φ

[1]

∂x

)
df [1]

dε
[1]
(0)

= −

(
∂φ[2]

∂t
+ u[1]∂φ

[2]

∂x

)
df [2]

dε
[2]
(0)

,

and then at u[2]:

(
∂φ[1]

∂t
+ u[2]∂φ

[1]

∂x

)
df [1]

dε
[1]
(0)

= −

(
∂φ[2]

∂t
+ u[2]∂φ

[2]

∂x

)
df [2]

dε
[2]
(0)

.

It is trivial to show that this system of equations only yields non-unique solutions in

(x, t) if u[1] ≡ u[2].

Therefore, via Lemma 2.1, Lemma 2.2, and Lemma 2.3, one can state:

Theorem 2. It is not possible to represent an exact solution via a superposition of dis-

tinct BGK islands with separate phase velocities, nor a BGK island that resonates with a

dispersive wave; therefore, dispersive waves cannot exist in systems with only conservative

orbits.

When one considers multiple phase space islands as BGK modes, they are in fact solving

the problem on discontinuous subsets of phase space, i.e.:

u =


u[1] for v ∈ V1

u[2] for v ∈ V2

...
...

.

This is inherently unphysical; not only would one be assuming that the electric potential

is velocity dependent (which is not true), one would also be assuming that its velocity

derivatives are in fact singular at the edges of the subdomains in v. In Chapter 3, I show

that one can achieve a similar effect by ‘enveloping’ the potential. This is achieved through

the use of a basis expansion (see Section 3.4.3 for an example).

2.3 Linearised kinetic plasmas

In contrast to BGK theory, in this section I examine linear plasmas. The linearised theory

of kinetic plasmas (as notably investigated by Landau33) allows one to recover the growth
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rate and frequency of waves in the system under two caveats: that the perturbation to the

system from an initial condition is small, and that the frequency and growth rate of each

wave is approximately time invariant.

First, I extend the derivation for Landau damping to cover collisional and magnetized

plasmas in Section 2.3.1. In Section 2.3.2 and Section 2.3.3, I discuss how one can recover

the eigenstructure of the system and the linear complex dispersion relation for resonant

kinetic waves. In Section 2.3.4 and Section 2.3.5, I simplify the equations showing that they

reduce to familiar equations which I recap from the literature. Finally in Section 2.3.6, I

discuss the existence of phase space structures via a new method, and motivate the use of

BGK theory as discussed in Section 2.2.

2.3.1 Laplace transform method

I will take the Boltzmann-Maxwell system as given in (1.17), expand using the δ-operator,

and then discards all terms of O(δf)2. The perturbation can be approximated as a linear

functional:

f(x, v, t) ≈ f(0) + δf [κ(0);κ].

I define the function κ(0) such that:

κ(0) : f(0) = f(0)(v),

that is to say, f(0) is considered here to be only a function of v. By approximating the

perturbation as a linear functional, I am stating that:

δf [κ(0);κ] ≈ f − f(0).

Typically in the literature, linearisation is analysed from the point of view of the full

∆-variation of the PDF. Here, I use linear functional theory to later allow for discussion

of the limitations of the PDFs produced in Chapter 3 in finer detail. For cases where the

PDF is analysed using affine parameters along orbits (as was the case in BGK theory), one

must take note that the perturbations garnered from this theory ultimately discard any

nonlocal contributions to ∆f that may arise in nonlinear systems.

If one examines the part of the system with O(δf)0, one yields a set of equations which

defines the initial state of the system. Examining the part of the system with O(δf)):
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Ĉ(δf) =
q

m

{
[δE + v × δB] · ∇vf(0) +

[
E(0) + v ×B(0)

]
· ∇vδf

}
+

[
∂

∂t
+ v · ∇

]
δf,

(2.3a)

∇ · δE =
1

ε0

∑
species

q

∫
R3

δf dv, (2.3b)

∇× δE = − ∂

∂t
δB, (2.3c)

∇ · δB = 0, (2.3d)

∇× δB = µ0ε0
∂

∂t
δE + µ0

∑
species

q

∫
R3

vδf dv. (2.3e)

First, we will examine the Boltzmann equation, (2.3a). By Fourier decomposing the

equation in x, and taking the Laplace transform in t:

L̂[Ĉδf ]j = (pj + ikj · v)δf̃j − δfj(t = 0)

+
q

m

{[
δẼj + v × δB̃j

]
· ∇vf(0) +

[
E(0) + v ×B(0)

]
· ∇vδf̃j

}
,

(2.4)

where pj ≡ γj − iωj , with (γj , ωj0 as the growth rate and frequency of a wave with

wave vector kj . This is a vector differential equation in v for δf̃j . At this point it becomes

useful to separate Ĉ in Fourier space. Next, one can separate the operator into two

parts: the contribution which is a differential operator (denoted with subscript (∇)), and

the contribution which is non-differential (denoted with subscript (∆)). As such, Ĉ is

representable in the form:

[Ĉf ]j ≡ Ĉj,(∆)fj + Ĉj,(∇)fj , (2.5)

with the operator Ĉj,(∆) defined as satisfying the following:

Ĉj,(∆)fj := Pj(v)(f − F )j , (2.6)

where F (x,v, t) is a currently unspecified function. Then, one can recast (2.4) in the

form:

δf̃j =
δfj(t = 0)− PjFj − q

m

[
δẼj + v × δB̃j

]
· ∇vf(0)

pj + ikj · v − Pj
+ Ôjδf̃j , (2.7)

where Ôj is a scalar differential operator given by:

Ôj =
Ĉj,(∇) −

[
E(0) + v ×B(0)

]
· ∇v

pj + ikj · v − Pj
. (2.8)
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I declare the following rules for the operator:

• Identity operator. The identity operator is defined as:

1̂ =: (Ôj)
0, (2.9)

such that 1̂Q = Q.

• Order of operation. I use the following shorthand:

(Ôj)
n+1(δf̃j) := Ôj((Ôj)

n(δf̃j)) ∀n ≥ 0. (2.10)

It is fairly trivial to show that the operator satisfies the following:

lim
n→∞

∣∣∣∣∣∣
∫
R3

vν
(
Ôj

)n
δf̃j d3v

∣∣∣∣∣∣ = 0∀ ν, (2.11)

therefore, the L1-norm of limn→∞ v
ν
(
Ôj

)n
δf̃j on R3 is identically zero for each and

every ν. Therefore, by iteration it is possible to show that:

δf̃j ≡ Ôj,∞

δfj(t = 0)− PjFj − q
m

[
δẼj + v × δB̃j

]
· ∇vf(0)

pj + ikj · v − Pj

 , (2.12)

where Ôj,∞ is defined as:

Ôj,∞ :=
∞∑
n=0

(Ôj)
n, (2.13)

where Ôj,∞δfj is not required to be a convergent series. In this form, it is clear that

Pj serves to shift the location of the Landau resonance. Next, one can take the curl of the

Faraday-Lenz law, and the curl of the Maxwell-Ampère law. Both of these combine all 4

Maxwell’s equations, and allow one to obtain vector Laplacians in the E and B field. By

using an identity for the vector Laplacian43, one finds the equations:

∇2δE = µ0ε0
∂2

∂t2
δE +

∑
species

q

∫
R3

(
µ0v

∂

∂t
+
∇
ε0

)
δf dv, (2.14a)

∇2δB = µ0ε0
∂2

∂t2
δB−

∑
species

q

∫
R3

µ0(∇× vδf) dv. (2.14b)
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Figure 2.4: Shear as nonlinear wave-wave coupling. A 1D phase space structure

undergoing shear strengthens higher order harmonics of the density perturbations in the

system, corresponding to nonlinear coupling between particle density waves and electro-

magnetic waves via the Lorentz force. a): Sketching of a phase space structure with

non-conservative orbits undergoing phase space shear. b): Sketch of the particle density

prior to shear, and the fundamental harmonic under Fourier analysis. c): Sketch of the

particle density after shear, showing that the amplitude of the third harmonic increases.

As expected from elementary electromagnetism, charge density gradients and current

density fluctuations lead to an inhomogeneous wave equation for E, while the vorticity of

the particles leads to an inhomogeneous wave equation for B.

Phase space structures can undergo shear due to nonlinear interactions in the system.

As a structure undergoes shear, the Fourier decomposition of the structure changes. To

illustrate this, as shown in Figure 2.4, a 1D box shaped structure in phase space shears

into a parallelogram. The original Fourier decomposition features a primary wave, and a

range of smaller harmonics. However, after shear, the Fourier decomposition now features

a larger third harmonic. One can consider (2.14) as a set of independently driven simple

harmonic motion (SHM) equations, one for each coupling of ωj and kj . Therefore, if the

Fourier decomposition for δf changes, the amplitude of the drive term given by charge and

density currents changes for a given harmonic.

One can therefore consider the shear of phase space structures as nonlinearly modi-

fying the stability of other waves in the system. Here, I only consider temporally static

frequencies (viz. γj(t) ≈ γj(0), ωj(t) ≈ ωj(0)).

In rectilinear coordinates, one can write δEj and δBj in the form:
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δẼj(pj) = δẼj(pj)e(pj), (2.15a)

δB̃j(pj) = δB̃j(pj)b(pj), (2.15b)

where the vector direction of the field is dependent on pj . Physically this means that

every mode can propagate in its own direction. By performing spectral decomposition and

Laplace transforming (2.14) one finds:

(p2
jµ0ε0 + k2

j )δẼj = −
∑

species

qe ·
∫
R3

(
µ0vpj +

ik

ε0

)
δf̃j dv, (2.16a)

(p2
jµ0ε0 + k2

j )δB̃j =
∑

species

qb ·
∫
R3

µ0i(k× v)δf̃j dv. (2.16b)

Therefore, one can construct a matrix equation of the form:

[(p2
jµ0ε0 + k2

j )I−M]

 δẼj

δB̃j

 =

 β1

β2

 , (2.17)

where I is the identity matrix, β1 and β2 are given by:

β1 = −
∑

species

qe ·
∫
R3

(
µ0vpj +

ik

ε0

)
Ôj,∞

[
δfj(t = 0)− PjFj
pj + ikj · v − Pj

]
dv, (2.18a)

β2 =
∑

species

qb ·
∫
R3

µ0i(k× v)Ôj,∞

[
δfj(t = 0)− PjFj
pj + ikj · v − Pj

]
dv, (2.18b)

and M is given by the outer product:

M =
∑

species

q2

m

∫
R3

dv

 e · (µ0vpj + ik
ε0

)

−iµ0b · (k× v)

 Ôj,∞

(
e · ∇v b · (v ×∇v)

)
f(0). (2.19)

This form allows one to see the order in which different phenomena are mapped onto

each other. First, the row vector considers the initial push of particles subject to the

Lorentz force. Then, the operator Ôj,∞ adds the effect of collisions and the initial electro-

magnetic field. Then, this is mapped onto the current density, charge density gradients,

and vorticity. This then determines the evolution of the E and B field.

The velocity integrands have poles at:

γj = =(v) · kj + <(Pj), (2.20a)

ωj = <(v) · kj −=(Pj). (2.20b)
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This resonance condition is known as the Landau resonance, where the particle velocity

is matched with the plasma wave phase velocity ωj/kj . The location of the resonance affects

the residues which contribute to the integral.

2.3.2 Eigenvalue representation

If one considers no initial perturbation to the system, then the β-vector is zero. This yields:

[(p2
jµ0ε0 + k2

j )I−M]

 δẼj

δB̃j

 = 0,

which is an eigenvalue problem. The eigenvalues are equal to the linear complex dis-

persion relation for the system, and are given by the secular determinant:

det[(p2
jµ0ε0 + k2

j )I−M] = 0.

The corresponding eigenvectors define the allowed couplings between the E-field and

B-field.

2.3.3 Pole representation

If there is an initial perturbation to the system, it becomes useful to consider how Landau’s

method reconstructs modes. Via the residue theorem43, one finds that any closed contour

integral in complex space is equal to the sum of the residues inside the contour. The

forward Laplace transform of a quantity Q(t) is analytic everywhere where <(p) ≥ σ,

where the real number σ is defined as:

lim
t→∞

Q(t) ∝ eσt.

As such, there are singularities in the forward Laplace transform at <(p) < σ. The

backward Laplace transform typically uses the Bromwich contour, which is along constant

<(p), where <(p) > σ. One finds that as <(pj) → 0, the Bromwich contour reproduces

the backward Fourier transform.

Suppose that one chose to allow the forward Laplace transform to be singular. Then,

the poles in the complex plane would appear to the left of the Bromwich contour (see

Figure 2.5). In Landau’s 1946 paper,33 he considered a deformation of the Bromwich

contour by dragging the imaginary part to −∞. Doing so means that one must form

keyhole contours around the singularities to maintain the same value of the backward
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Im(pj)

Re(pj)

∞

‐∞

a)

σj

Im(pj)

Re(pj)

∞

‐∞

b)

σj

‐∞

Figure 2.5: The Landau contour. For the Laplace transform of a quantity Qj to be well

defined, <(pj) ≥ σj where limt→∞Qj(t) ∝ eσjt. As such, the backward Laplace transform

is typically taken over the Bromwich contour. a): Integration over the Bromwich contour

(green dashed line) as utilised for the backward Fourier transform. This is a region where

the Fourier transform is wholly analytic. b:) Integration over the Landau contour (green

dashed line) as utilised for the backward Laplace transform. By dragging the integration

contour to −∞ in <(pj), as the value of the backward transform is independent of the value

of <(pj) used along the contour, the value of the backward Laplace transform is equal to

the sum of the residues at the singularities (see (2.21)).

transform, by virtue of Cauchy’s theorem43. This contour is typically referred to as the

Landau contour.

Inversion of this principle allows one to evaluate the backward transform equivalently

by taking the residues of all the singular integrand values of the forward transform, and via

Jordan’s lemma43 enclosing the contour at infinity.43 Simple poles in the complex plane

manifest as modes in the real space:

∫
ΩLan.

∏
j

Q̃(p)

2πi(p− pj)
ept

dp =
∑
j

(
Q̃(p)ept

)
p=pj

. (2.21)

This elegant solution shows that if one examines {δẼj , δB̃j}, any simple poles infact

define the resonance condition for eigenmodes of the system. In matrix form, this manifests

as scenarios where the matrix equation (2.19) cannot be inverted.

Remarkably for finding the linear complex dispersion relation, this gives exactly the

same requirement given by the eigenvalue representation.

2.3.4 Light waves

In the case that the electromagnetic field is perpendicular to the perturbations to the

current density, charge density gradients, and vorticity, the matrix M is equal to the zero
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operator.

Then, the linear complex dispersion relation is given by:

det[[(p2
jµ0ε0 + k2

j )I] = 0.

This gives the eigenvalues as pj = ±ickj where c is the speed of light. Accordingly,

these are light waves which simply do not couple to the plasma.

2.3.5 Electrostatic waves

For the electrostatic case there is no perturbation to the B-field. The matrix equation

then yields an equation that is the separable sum of the Maxwell-Ampére law and Gauss’

law, with each contribution independently equal to zero:

≡0︷ ︸︸ ︷
pj

pjµ0ε0δẼj +
∑

species

qe ·
∫
R3

µ0vpjδf̃j dv

+ k2
j δẼj

∑
species

qe ·
∫
R3

ik

ε0
δf̃j dv

︸ ︷︷ ︸
≡0

= 0.

As such, I will work directly with the contribution arising from the Maxwell-Ampére

law for ease:

pjδẼj = −
∑

species

q

∫
R3

v
δf̃j
ε0

dv. (2.22)

Substituting (2.12), one finds that under no initial perturbation:

pjδẼj = −
∑

species

q

ε0

∫
R3

vÔj,∞

δfj(t = 0)− PjFj − q
m

[
δẼj

]
· ∇vf(0)

pj + ikj · v − Pj(v)

 dv.

And so, the poles of δẼj are given by:

pj =
∑

species

q2

mε0

∫
R3

(e · v)Ôj,∞

{
e · ∇vf(0)

pj + ikj · v − Pj(v)

}
dv. (2.23)

When involving collisions, this integral equation is best solved numerically. It can be

solved by using the shooting method and a finite term approximation for Ôj,∞. One can

then repeatedly iterate this solver with an increasing number of terms for Ôj,∞, until a

suitable level of convergence has been achieved.
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Quasineutral plasma equilibrium with Krook collisions

If the plasma equilibrium is quasineutral, then the Lorentz force is initially zero. If one

also examines only Krook collisions,44 such that:

Ĉf = νKr.(f − F ),

where νKr. is the Krook collision frequency, then Ôj = 0, and therefore Ôj,∞ = 1̂ by

virtue of (2.9). Therefore, one finds:

pj =
∑

species

q2

mε0

∫
R3

(e · v)

{
e · ∇vf(0)

pj + ikj · v − νKr.)

}
dv.

This can also be numerically solved by using the shooting method. In Appendix A.1,

I show analytically that for waves travelling in rectilinear coordinates, the frequency of

electrostatic waves in the system is given to zeroth order in |γj − νKr.| by:

ωj(kj , γj , νKr.) ≈ ωpl., (2.24)

where ωpl. is the plasma frequency:

ω2
pl. :=

n̄(0)q
2

mε0
, (2.25)

where n̄(0) is the spatially averaged equilibrium number density. The growth rate is

approximately given by:

γj(kj , ωj , νKr.) ≈
νKr.

2
+
∑

species

πω3
j

2k2
j,(p)

∫
R2

∂F

∂v(p)

∣∣∣∣
v(p)=ωj/kj,(p)

dA, (2.26)

where (e · v) =: v(p), and e is normal to dA.

2.3.6 Dawson function representation

Suppose that one attempts to explicitly solve (2.4). If one takes the collisionless electro-

static case, using the definition v ·E(0) ≡ v‖E(0), one finds:

∂

∂v‖
δf̃j +

ikj,‖(v‖ − vLan.)
qE(0)/m

δf̃j = − δẼj
E(0)

· ∇vf(0), (2.27)

where the complex velocity vLan. is given by:

vLan. =
i(pj − νKr.) + kj,‖v‖ − k · v

kj,‖
. (2.28)
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This is a first order partial differential equation (PDE) soluble via integrating factor,

yielding:

δf̃j = δf̃j

∣∣∣
v‖=vLan.

− e

− ikj,‖

2qE(0)
(v‖−vLan.)

2

 v‖−vLan.∫
0

δẼj
E(0)

· ∇vf(0)e

 ikj,‖y2

2qE(0)


dy,

where y = v‖−vLan.. If∇vf(0) is approximately constant, as is commonly approximated

in the literature, this is representable in the form:

δf̃j ≈ δf̃j

∣∣∣
v‖=vLan.

− δẼj
E(0)

· ∇vf(0)D

[
(v‖ − vLan.)

√
imkj,‖

2qE(0)

]
, (2.29)

where D[x] is the Dawson function.45 One expects the solution given in (2.29) to still

obtain singularities which yield the eigenmodes of the system; however if one examines the

case where vLan. ∈ R, the Laplace transforms employed reduce to Fourier transforms, and

therefore one expects no singular behaviour.

In this analytic region of δf̃j , the fact that the solution can be represented in terms of

the Dawson function is particularly interesting for a couple of reasons. Firstly, it is related

to the plasma dispersion function ζ(y) (as defined by Fried and Conte46) as follows:

D[x] =
1

2

[
i
√
π exp(−x2)− ζ(x)

]
.

This implies a strong link between δf and the linear complex dispersion relation, as

one would intuitively expect for the non-analytic region. Secondly, the Dawson function is

very closely related to the Hilbert transform of the Gaussian:

D[x] =

√
π

2

 1

π

∫
R

e−y
2

x− y
dy

 .
This definition is particularly interesting, as recent work by Heninger et al.47 using the

G-transform method (related in turn to the Hilbert transform) has allowed for linearised

solutions for collisional plasmas with operators O(∂2
v). Indeed, the solution given in (2.29)

is consistent with the G-transform theory if:

∂f(0)

∂v
∼ exp

[
−m(v − vLan.)2

2qE(0)

]
,

where σ � 1. This form predicts two behaviours: that the PDF has a sigmoid shape

near resonance, and that the resonance broadens with the strength of the electric field.
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Figure 2.6: Observation of phase space shear. A 1D electrostatic plasma with a

single ion species. The initial ion PDF is given by a 1D BOT distribution and normalised

parameterisation (η, vT , vB) = (0.95, 4, 10). The normalisation employed is the same as

that used in Chapter 5. Phase space shear is observed with the direction of the shear

(positive x) corresponding with the positive growth rate of a wave with k = 2π/L with

phase velocity u ∼ 6.66 and a test value of γ = 0.1.

Suppose that one examines a test plasma with a single species of ions and single species

of electrons. If the electrons are thermal, they cannot drive any Landau instabilities in

the system. If the ions are thermal as well, the linear complex dispersion relation in a 1D

electrostatic system is given by that which is expected in the literature for ion acoustic

waves.11 Accordingly, in a plasma with a small quantity of electron-ion collisions (such

that for all j, the electron-ion collision frequency νei � γj , the linear growth rate of the

jth mode in the system), one can recover most of the dynamics by considering just the

ion population; one can get a qualitative feel for the behaviour of the system by omitting

the electrons and by shifting the frequencies in the system post hoc to account for the

contribution to the wave speed from the electron density. If a population of suprathermal

ions is added, such that the ions are now described by a 1D BOT distribution (1.19),

one expects that the beam allows for inverse damping. Here, I will examine the following

parameterisation:
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(η, vT , vB) = (0.95, 4, 10),

defining a small beam population (5% of the particles) which is warmer and faster

than the bulk (vB, vT � 1, the bulk thermal velocity). Using the normalisation given in

Chapter 5, I briefly examine the linear growth of a single mode in a system defined such

that the fundamental harmonic of the system is driven by the largest possible gradient

on the bump at v ∼ 6.66. One finds that for a system with length L = 2π/0.15, this is

approximately satisfied as the frequency of the electrostatic wave in this ion only system is

given by ωj ≈ 1. By my choice of parameterisation, all higher harmonics resonate with the

bulk ion population and are strongly Landau damped. Here, I will examine linear growth of

this single mode in the system, as predicted by the Landau theory, and the corresponding

phase space perturbations that can be approximated using this Dawson function analysis.

In Figure 2.6, I examine the point where the magnitude of the perturbation to the

electric field |δEj | is equal to 95% of the value at nonlinear saturation given by the lit-

erature5 One can see even from this simple, quick model, the phase space is sheared as

one would expect for a mode undergoing linear growth. Wave-particle resonance between

the electrostatic wave and the PDF yields spatial perturbations in the PDF (δf) for finite

wave amplitude. Then, the phase space structures shear via the advection term in the

Boltzmann equation (v · ∇δf).

2.3.7 Defining conservative theories

To conclude this chapter, I give a set of lemmas which can allow one to produce a conser-

vative orbit theory of phase space island formation and migration in plasmas. While each

one of the lemmas is not novel in itself, the collective use of them to describe ‘conservative

theories’ is new:

Lemma 2.4. (Near conservative orbits) In the linearised theory, structures grow on

either side of the resonance, corresponding to wave-particle energy exchange. Locally (with

respect to a structure located at v = uj), particles approximately move along conservative

orbits with energy qφ[j] + 1
2m|v− uj |2, where φ[j] is the potential energy of the interacting

wave.

Lemma 2.5. (Slowly chirping approximation) In the limit that the chirping rate of the

wave is much less than the bounce frequency of particles trapped in the resonant phase space

islands (∂(lnωj)/∂t� ωb), one can assume a temporal continuum of linearised solutions,

neglecting small perturbations to the particle orbits.
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Lemma 2.6. (Slowly growing approximation) In the limit that the growth rate of the

wave is much less than the bounce frequency of particles trapped in the resonant phase space

islands (γj � ωb), one can assume a temporal continuum of linearised solutions, neglecting

small perturbations to the particle orbits.

Lemma 2.7. (Resonance broadening) Under the slowly chirping approximation, the

two perturbative structures near a given resonance move through phase space as the square

root of the wave amplitude, corresponding to broadening of the resonance at v = vLan..

Lemma 2.4 justifies the use of BGK modes or at least ‘BGK-like’ modes for the case

of distinct phase space structures, where each structure has all particles travelling along

conservative orbits. It is largely supported by the literature,5,8,9 and some of my simulations

which are discussed in Chapter 5. However, these structures inherently assume that all

particles interact with the wave. In Chapter 3, I show that this formally prevents the

existence of two BGK islands in the same system, dispersive waves, and waves with finite

growth rates.

However, one can consider each island separately as approximately given by a BGK

island provided that they are spaced suitably far apart in phase space, and provided that

Lemma 2.6 holds true. This lemma is similar to the adiabatic consideration used in the

literature, however this lemma partially serves to illuminate the following point: the word

‘adiabatic’ here refers to analytical dynamics, not thermodynamics. That is to say, the

consideration of the adiabatic evolution of H&Cs is with respect to an adiabatic invariant

corresponding to the classical action of an unperturbed orbit in phase space, given by:

∮
C
v · dx ≈ const.,

where C is the unperturbed orbit. This can lead to some confusion as it is possible to

have a plasma which is thermodynamically non-adiabatic (such as a tokamak plasma with

radio frequency (RF) heating or neutral beam injection (NBI)) which is still heuristically

described by phase space structures which evolve ‘adiabatically’. The classical action is

an adiabatic invariant if the corresponding angle variable evolves faster in time than the

Hamiltonian of the system. Here, the rate of change of the angle variable here is the bounce

frequency of particles in the orbit, and the rate of change of the Hamiltonian is proportional

to the frequency chirping rate (as described in Section 1.6. As phase space structures

move through phase space, the velocity of all of the resonant particles changes, causing

the Hamiltonian to change. In Chapter 3, I show that the growth rate is intrinsically
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linked to the chirping rate, and therefore one can consider adiabaticity through the use of

appropriate ordering given by Lemma 2.5 and Lemma 2.6.

However, in reality, fewer and fewer particles interact with the wave the further they are

from the resonance. This leads to deformation of the phase space contour, and deviation

from conservative orbit. Lemma 2.7 agrees with the functional form of the chirping rate

given by Berk et al.,5 as the mode amplitude during nonlinear saturation can be shown to

be proportional to the linear growth rate of the mode.

2.4 Brief conclusions

In this chapter, I showed a mixture of original work and background work relating to

conservative orbit theories and linearised plasmas. While the theory of linearised plasmas

is largely explored in the literature, the technique I utilised which allows one to recover

collisions is novel. As such, everything in the chapter is novel except for the method of

linearisation declared at the start of Section 2.3.1, and the Landau contour in Section 2.3.3

which have both been traditionally employed in the literature for some time.

The overall aim was to outline existing theory, with some small extensions: to highlight

the limitations of BGK theory, and to derive the linear complex dispersion relation for

electrostatic waves in collisional regimes.
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Chapter 3

Non-conservative orbits and

nonlinear kinetic theory

3.1 Overview

Work by Lilley et al. has shown computationally how holes and clumps (H&Cs) form via

phase mixing of the wave within a phase space island.41 Work by Wang et al. has recently

examined frequency chirping for the late time evolution of plasma wave using a mixture

of analytical theory and the CHIRP code.48 However, the threshold for H&C formation

and the formation of H&Cs on particle distribution functions (PDFs) with large curvature

are both still relatively unexplored. As a result, understanding of H&C destabilisation is

limited.

This chapter is comprised of original work. I begin in Section 3.2 by discussing ‘non-

conservative orbits’, and how one can develop from conservative orbit theories such as

Bernstein-Green-Kruskal (BGK) theory or extensions thereof.

In Section 3.2, I will compare results to conservative theories by showing that Lemma 2.4,

Lemma 2.5, Lemma 2.6 and Lemma 2.7 are indeed all satisfied.

In Section 3.3, I discuss nonlinear kinetic theory. I show how one can represent the

electromagnetic field in kinetic plasmas using a spectral decomposition where the waves

have time-varying complex frequency. Then, I present a new representation of the Berk-

Breizman energy sink8 as an effective collision operator.

In Section 3.4 and Section 3.5, I show new results for solutions which are permitted

for the orbit affine parameter ε along non-conservative orbit. In the former section, I

prove which sets of basis expansions are permitted, and the corresponding non-holonomic

constraints. In the latter section, I show that a perturbative theory allows one to generate
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much of the desired behaviour using a generating function, ψ.

3.2 Non-conservative orbits

In Chapter 2, I examined particle orbits where the single particle energy is conserved

(conservative orbits). Suppose that instead one considers orbits of the form:

ε = ε0 + qψ, (3.1)

where ε is the orbit affine parameter such that f = f [ε], ε0 is the following sum:

ε0 =
∑
l

[
qφ[l] +

1

2
m|v − u[l]|2

]
, (3.2)

and φ is given by:

φ(x, t) =
∑
l

φ[l](x, t). (3.3)

Such orbits can be said to be non-conservative for ψ 6= const., as the particle energy is

not conserved along the orbit.

While all particles in real kinetic systems feel the electromagnetic field, only particles

with velocity close to the phase velocity of electromagnetic waves in the system are able to

exchange energy with the wave. This requires some form of velocity space ‘shielding’ akin

to a Debye sheath.

I begin by examining the period of orbits in Section 3.2.1. By examining conservative

orbits, one can infer how non-conservative orbits may behave.

The original BGK paper explicitly states that non-zero growth rates are not considered,

however it is important to note that the solution will not work for finite growth rate. As

will be shown in Section 3.2.3, the particle orbits deviate from conservative orbits when

the wave amplitude changes. Furthermore, if the location of the phase space structures

change, this also changes the shape of the particle orbits.

In addition, in Section 3.2.3, I discuss how waves interact directly with particle orbits,

and how wave-orbit coupling allows for time-varying frequency and growth rate of waves.

In Section 3.2.4 and Section 3.2.5, I discuss how non-conservative orbits can be consid-

ered as particles living in an ‘effective potential’ which is velocity dependent. I then discuss

how one can construct the PDF from a functional formulation, allowing one to represent

the perturbation to the system using ε independent of the initial conditions.
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3.2.1 Period of near-conservative orbits

As particles traverse phase space, they see an electric potential which varies in time and

space. If one examines the Lorentz force for the ith particle:

mẍ(i) = q[E + ẋ(i) ×B]x=x(i) .

One can calculate the work done by this force. As one might expect, the work done by

the magnetic field is zero, giving:

1

2
m|ẋ(i)|2 = −qφx=x(i) + U(t), (3.4)

where U(t) is the single particle energy. Traditionally, one may consider orbits where

U(t) is conserved. Instead, I examine orbits with the following construction:

orbits :=

{
x(t) ∈ C

∣∣∣∣U(t) =
1

2
m|ẋ(i)|2 + qφx=x(i) ; U(t)− qψ(t) = const.

}
, (3.5)

such that ψ(t) is a function which enables orbits where U(t) is allowed to vary. For

conservative orbits, ψ(t) = 0, such that the constraint reduces to U(t) = const. as is

standard. I define the functional:

ε[ψ, φ; t] =
1

2
m|ẋ(i)|2 + qφx=x(i) + qψ[x; t], (3.6)

such that particles follow orbits where ε is constant. Note that ε is a functional which

depends on ψ (encapsulating wave-particle energy exchange) and φ, but not the particle

trajectory x(t). This is because the particle trajectory is determined by φ and ψ (viz. by

virtue of (3.5), one uses the conditional trajectory x(t) | φ, ψ). One can find the time

taken to complete a closed orbit by solving the differential equation given by (3.4):

τ [t;ψ, φ | ε] =

∮
C

d|x|√
ε− q(φ(x, t) + ψ[x; t])

,

where C is a given orbit, and τ is the period of orbit. The simplest family of orbits

to consider are ones where ψ(t) is completely in phase with φ(t). Here, I will consider a

monochromatic wave:

 φ

ψ

 =

 |φ|(t)
|ψ|(t)

 cos

(
k · x(t)−

∫ t

0
ω dt′ + θ

)
.

Then, τ takes the form:
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τ [t;ψ, φ | ε] =

∮
C

d|x|√
ε− qA(t) cos

(
k · x(t)−

∫ t
0 ω dt′ + θ

) ,
where A(t) = |φ|(t) + |ψ|(t). By defining χ = k · x(t)−

∫ t
0 ω dt′, one finds that as:

d|x| ∼ 1

k
(dχ+ ω dt).

Therefore, one finds that τ can split into a part in the wave frame, and a part arising

from frequency sweeping:

τ [t;ψ, φ | ε] ∼
∮ χ1

χ0

dχ

k
√
ε− qA(t) cos (χ+ θ)

+

∮ t+τ

t

ω dt

k
√
ε− qA(t) cos (χ+ θ)

.

Inverting x(t) to obtain t(χ) is highly non-trivial, and requires knowledge of the dis-

tribution function. As such, I discard the second the term under the approximation that

ẋ� ω/k. The validity of this approximation breaks down close to the resonance. One can

Taylor expand the integrand about A = A(t0), yielding:

τ [t;ψ, φ | ε] ≈
∮ χ1

χ0

dχ

k
√
ε− qA(t0) cos (χ+ θ)

[
1 +

1

2

(
(A(t)−A(t0)) cos (χ+ θ)

ε− qA(t0) cos (χ+ θ)

)
+ . . .

]
.

τ is largely non-integrable except for the case where A(t) is constant. This corresponds

to the zeroth order contribution, which tells one the ‘instantaneous’ period of the orbit

that the particle is on; if U(t) was to then remain fixed for all time t > t0, the particle

would continue on a conservative orbit with period τ(0). For passing orbits lying outside

the separatrix, ε > |qA(t0)|, and:

τ(0)[t;ψ, φ | ε, t = t0] :=

∮ 2π

0

dχ

k
√
ε− qA(t0) cos (χ)

≡ 2

k

[
1√

ε− qA
K

(
− 2qA

ε− qA

)
+

1√
ε+ qA

K

(
2qA

ε+ qA

)]
t=t0

,

where K(k) is the complete elliptic integral of the first kind.45 Therefore, while the

phase space structure is coherent (the entire structure moves with a single phase velocity),

the single-particle orbits are not coherent. On the separatrix, τ → ∞. For trapped orbits

lying inside the separatrix, χ0 > 0 and χ1 < 2π.

In Figure 3.1, I plot the period of near-conservative orbits as a function of x and ẋ for

particles in a single wavelength 1D potential. As one moves from an orbit outside the island

towards the separatrix (decreasing U), the period of orbits increases. As one moves from
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(a) Case qψ = 0. The conservative or-

bit contours are exactly that which is ex-

pected from the BGK theory; each orbit cor-

responds to a different value of ε. This is

reflected by the fact that the zeroth-order

contribution to the period, τ(0), tends to in-

finity along the separatrix.

(b) Case qψ > 0. The contour where τ(0) →

∞ occurs outside of the separatrix. Accord-

ingly, particles which are outside of the sep-

aratrix but within the infinite τ(0) contour

may exhibit similar behaviour to trapped

particles (which I refer to as ‘quasi-passing

particle’ particles).

Figure 3.1: Period of particle-orbits in a BGK island. Two plots illustrating near-

conservative orbits in a single wavelength 1D potential φ(x, t) = |φ| cos(kx−ωt) with phase

velocity u = ω/k. Filled contours correspond to different values of τ(0). The length of the

1D box is given by L = 2π/k.

an orbit on the separatrix to the centre of the island (decreasing U), the period of orbits

decreases. But in addition, it is possible for the orbits of quasi-passing particles (particles

which are not trapped, but interact somewhat with the wave) to decrease in period as one

approaches the separatrix, provided that qψ > 0.

As such, trapped particles which lose energy embark on orbits which spiral inwards,

giving rise to phase mixing as observed by Lilley et al.41 Contours of constant τ(0) may

be topologically challenging to represent analytically, as there will be finite discontinuities

in the 6-dimensional gradient in the phase space. Conversely, passing particles which lose

energy increase their period of orbit. I posit that as such, the period of the particle orbit

may surpass the growth rate of a wave; in such a case, a passing particle becomes trapped.

3.2.2 Phase space shear

If the electric potential is not wholly periodic, then the orbit is deformed during the course

of an orbit.

One can consider this to be a correction to the particle orbit, required when trans-
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forming from the accelerating wave frame to the lab frame. As the amplitude of the

wave changes, when the particle on a given orbit sees a different amplitude wave to when

it started. This has the effect of elongating the path length of the orbit if the wave is

growing.

3.2.3 Wave-orbit coupling

As the particle orbit changes to account for the finite growth rate, time-varying growth

rate, and time-varying frequency, the generalised momentum for the system changes.

v

x

all orbits

dℓ∥

Figure 3.2: Method of integration for wave-orbit coupling. Integration is performed

along an orbit (denoted as d`‖), followed by integration across all available orbits.

In this subsection, I will derive the rate of energy transfer with the PDF as a function of

orbit-based quantities. This will allow me to describe frequency chirping and wave growth

as arising from properties of wave-orbit coupling, and to therefore discuss situations where

the lemmas given in Section 2.3.7 may be violated. To start with, I will seek to perform a

form of orbit integration:

Ps(t) =
∑

x(i) ∈ orbit s

mẋ(i), (3.7)

where Ps is the contribution of every particle on orbit s to the momentum. By consid-

ering the Klimontovich density (1.10), one can write this as the following integral:

Ps(t) =

∮
orbit s

mv̄s d`‖, (3.8)

where d`‖ is an infinitessimal line element along the orbit, and mv̄s is given by:

mv̄s :=
∑

x(i) ∈ orbit s

mẋ(i)δ[x− x(i)]δ[v − ẋ(i)]. (3.9)
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However, as a δ(a− b) = b δ(b− a), one can freely swap x and x(i) under the sum, and

v and ẋ(i) under the sum.

One can then integrate over all orbits (see Figure 3.2) to give:

P(t) =

∫
all orbits

∮
orbit s

mv̄s|J |d`‖ d5`⊥, (3.10)

where |J |d`‖ d5`⊥ = d3x(i) d3ẋ(i), such that |J | is the determinant of the Jacobian43 of

the transformation from (~̀‖, ~̀⊥)→ (x(i), ẋ(i)). The Jacobian43 is required, as one expects

that:

P(t) :=

∫∫∫
R3

∫∫∫
R3

∑
x(i)

mẋ(i)δ[x− x(i)]δ[v − ẋ(i)]

d3x dv. (3.11)

One finds that by choosing d`‖ = dt:

d3x(i) d3ẋ(i) = |J |dt d5`⊥. (3.12)

I shall now examine the form of the rate of change of momentum, without specifying

the determinant of the Jacobian43. Therefore, (3.10) gives:

P(t) = P(0) +

∫
all orbits

τs(t,... )∮
0

mv̄s|J |dτ d5`⊥,

where τs(t, . . . ) is the period of the sth orbit. The rate of change of kinetic energy in

the system for a given species is given by:

U̇ =
1

m
P · Ṗ. (3.13)

If one takes the time derivative of the total momentum, via the Leibniz integral rule

(see Appendix B.2):

Ṗ(t) =

∫
all orbits

{[
mv̄s|J |

∂τ

∂t

]τs(t,... )
0

+

τs(t,... )∮
0

∂

∂τ
[mv̄s|J |] dτ

}
d5`⊥ .

By evaluating the time integral, one finds:

U̇(t) = P ·
∫

all orbits

[
v̄s|J |

(
1 +

∂τ

∂t

)]τ=τs(t,... )

τ=0

d5`⊥. (3.14)
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For there to be no energy transfer between particles and the wave, the integrand must

be zero. To enable this, the period of each orbit must be constant, the mean momentum

along each orbit must be constant, and the determinant of the Jacobian43 must be constant.

This allows one to identify three mechanisms which allow for energy transfer:

• Perturbations to the period of each orbit. If the period of an orbit is modified,

typically one expects that the electric potential is changing. As one might expect, if

there is a finite growth rate in the system, there is wave-particle resonance. However,

the period (in x) of an orbit can also oscillate if the wave is dispersive. The period

of the oscillation is given by the beating frequency between the waves in the system;

accordingly, waves with very similar frequency lead to oscillations in the period which

occur over long time scales.

• Perturbations to the mean momentum of each orbit. If the orbit is translating

through momentum space, this leads to wave-particle energy transfer. As such,

frequency chirping waves transfer energy with translating phase space structures.

• Perturbations to the Jacobian determinant. This typically occurs when the

shape of the phase space structure has been modified. Therefore, phase space struc-

tures undergoing shear transfer energy with the wave.

v

x
shear

γt > 0

Figure 3.3: Phase space shear induced by finite γ. A passing or quasi-passing particle

(see Section 3.2.1) interacting with a wave undergoing growth or decay can be thought of

as moving across a continuum of conservative orbits. The resultant near-conservative orbit

becomes elongated close to the X points of the orbit, resulting in phase space shear. The

direction of the shear is related to the sign of the product qγ; as the sign of qγ changes,

the sign of the shear is also inverted.

As briefly discussed in Section 3.2.3, as a phase space structure undergoes shear, the
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Fourier decomposition of the structure undergoes changes (see Figures 3.3 and 3.4). As

the shape of phase space structures can be considered as given by contours of constant f ,

deformations to the determinant of the Jacobian43 (and accordingly the shape of the orbit)

allow for nonlinear modification of the stability of other waves in the system. Therefore,

the determinant of the Jacobian43 allows for wave-wave coupling.

This is an important point to note, as the phase space structure undergoes shear in a

system with finite growth rate. Therefore, in all systems with finite growth rate there is

inherently a finite amount of wave-wave coupling.

3.2.4 Effective potential

Intuitively, it is not possible to have a system with conservative orbits where there are

finite growth rates.

φ+ ψ can be thought of as acting together as an ‘effective potential’ manifesting from

the collective effect of the charged particles on the electromagnetic field itself. Just as

particles reorganise themselves to form a Debye sheath, one can consider a phase space

island as a momentum space sphere which prevents all of the particles in the system from

resonating with the wave. It is important to note that this is a collective phenomenon,

and requires a suitably large number of particles; the fact that I consider the system as

plasma already satisfies this condition.

3.2.5 Distribution function construction

In extension of the exposition of the δ-operator given in Section 1.3.2, I will now analyse

how to reconstruct a ‘first-order’ PDF. One can then define κ0 as the initial function used

in the functional at t = 0:

Lemma 3.1. If ∃κ(0) : ∂f(0)/∂t = 0, then the PDF f [κ] can be represented in the form:

f [κ] = f(x,v, t = 0) + ∆f [κ(0);κ].

Proof. If ∂f(0)/∂t = 0, then the functional form of f(0) is solely a function of x and v. One

therefore has freedom of choice to define κ(0) such that:

κ(0) : f(0) = f(x,v, t = 0).

Therefore f [κ] has been shown to have the aforementioned possible representation.
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This is particularly useful, as the perturbation to the PDF ∆f can be represented using

a completely independent functional; one could alternatively write:

f [κ] = f(x,v, t = 0) + g[h],

where g and h are arbitrary functions. It is also possible to construct a ‘first-order’

PDF by using Lemma 3.1. By splitting ∆f into a linear and nonlinear contribution:

∆f =

∫
Ω

{
d~µ∆κ

δ

δκ(0)(~µ)
f(0)

}
+O[∆κ2]. (3.15)

As such, one can approximate the PDF by discarding the terms which nonlinearly

depend on ∆κ. This generalises the technique used by Bernstein, Greene and Kruskal to

obtain ‘first-order’ PDFs for BGK modes.7

3.3 Nonlinear kinetics

In this section, I build on work detailed in Section 3.2, allowing for an outline of the

mathematical framework used for the remainder of this chapter. Nonlinear kinetic theory

allows one to examine systems where nonlinear coupling occurs between the PDF f and

the E and B field. As one expects from the convolution theorem, the product of two

temporally/spatially varying quantities becomes the convolution of the two quantities in

the Laplace/Fourier space.

The spatial and temporal dependence of f , E and B leads to wave-wave coupling.

This wave-wave coupling means that energy can be transferred from one wave to another;

accordingly the growth rates and frequencies for each wave in the system now become

time-dependent.

In Section 3.3.1, I give exact allowed nonlinear solutions for the electric and magnetic

fields under nonlinear theory. I discuss the asymptotic behaviour of the frequency and

growth rate of modes, and give dynamic equations which allow for nonlinear wave-particle

interactions.

In Section 3.3.2, I briefly touch on the expected energy balance for the system, and

how sources and sinks in the Boltzmann equation affect the energy content of the system.

In Section 3.3.3, I derive a collision operator which yields the well known Berk-Breizman

sink employed in the literature,5 while maintain a consistent system of equations; in the

literature, typically the Berk-Breizman sink is employed without a corresponding sink in

the Boltzmann equation.
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ky

kx

f

E·∇v

∂f/∂t

Figure 3.4: Nonlinear wave-wave coupling. Wave-wave coupling between the Lorentz

force and the PDF directly affects the PDF, via (1.17a). Wave-wave coupling modifies the

spatio-temporal structure of the waveform that defines the PDF, illustrated here spatially

in 2D.

In Section 3.3.4, I discuss how the linear complex dispersion relation of waves is modified

in models using the Berk-Breizman sink.

3.3.1 Complex frequency evolution

Similarly to (2.14), the evolution of the E and B fields are given by inhomogeneous wave

equations, as expected from elementary electromagnetism:

∇2E = µ0ε0
∂2

∂t2
E +

∑
species

q

∫
R3

(
µ0v

∂

∂t
+
∇
ε0

)
f dv, (3.16a)

∇2B = µ0ε0
∂2

∂t2
B−

∑
species

q

∫
R3

µ0(∇× vf) dv. (3.16b)

By coupling these to the Boltzmann equation (1.17a), one obtains a system of differ-

ential equations which features strong nonlinearities. One should note that f = f(x, v, t),

and therefore this is only part of a coupled system of equations. I shall solve (3.16) by

representing the E and B field via a set of wavepackets {φl}:

 E

B

 (x, t) :=
∑
l

 E[l]

B[l]

 (x, t). (3.17)

Each wavepacket features waves which at a time t have a phase velocity u[l], such that
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each wavepacket is dispersionless. Then, one can employ the following solution for each

wavepacket:

 E[l]

B[l]

 (x, t) :=
1

2

∑
j


 E

[l]
j

B
[l]
j

 exp

ikj · x +

t∫
0

p
[l]
j (τ) dτ

+ c.c.

 , (3.18)

where {kj} is a set of wavevectors, {φ[l]
j } is a set of wave amplitudes, and {ip[l]

j } is a

set of complex frequencies:

p
[l]
j (t) := γ

[l]
j (t)− iω

[l]
j (t), (3.19)

where {γ[l]
j (t)} is a set of nonlinear growth rates, and {ω[l]

j (t)} is a set of constituent

frequencies. As each wavepacket is dispersionless, the phase velocity of each wavepacket

u[l] is given by:

ω
[l]
j (t) =: u[l](t) · k[l]

j . (3.20)

Using this solution, one can define the following equation:

(Γ
[l]
j )2 :=

dp
[l]
j

dt
+ (p

[l]
j )2, (3.21)

where {Γ[l]
j } is a set of constants, corresponding to rates of change that determine the

dynamics of the system. One can show that by examining (3.16):

(Γ
[l]
j )2 = − 1

µ0ε0

k2
j +

E
[l]
j

|E[l]
j |2
·
∑

species

q

∫
R3

(
µ0vp

[l]
j +

ikj
ε0

)
f

[l]
j dv

 , (3.22a)

= − 1

µ0ε0

k2
j −

B
[l]
j

|B[l]
j |2
·
∑

species

q

∫
R3

µ0(ikj × vf
[l]
j ) dv

 . (3.22b)

As there are multiple frequencies, it is instructive to note that the complex frequency

of the lth mode is made up of contributions from all of the branches.

Theorem 3. There is no solution where limt→∞ γ
[l]
j ≤ 0 except for the case where γ[l]

j is

constant.

Proof. Equation (3.21) yields:

p
[l]
j (t) = Γ

[l]
j tanh

[
ϕ

[l]
j + Γ

[l]
j t
]
, (3.23)
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(a) The growth rate is singular at <(Γ
[l]
j ) = 0 for

t 6= 0. The condition <(Γ
[l]
j ) = −=(Γ

[l]
j ) leads

to γ[l]j = 0. The magnitude of the growth rate

asymptotically approaches <(Γ
[l]
j ).

(b) The frequency is singular at <(Γ
[l]
j ) = 0 for

t 6= 0. The condition <(Γ
[l]
j ) = =(Γ

[l]
j ) leads

to ω
[l]
j = 0. The magnitude of the frequency

asymptotically approaches <(Γ
[l]
j ).

Figure 3.5: Complex frequency evolution. Logarithmic plots of the angular frequency

ω
[l]
j and growth rate γ[l]

j for waves in a single species system with ω(t = 0) = γ(t = 0) =

0. The complex constant Γ
[l]
j is related to the initial system conditions for a wave with

wavevector kj . The x-axis features the real part of Γ
[l]
j , while the y-axis features the

imaginary part of Γ
[l]
j . Evolution of the system can be traced by following a radial path

from the centre of the plots. Where |<(Γ
[l]
j )t| ≤ 1, one observes undulating behaviour in

the frequency and growth rate. The amplitude of the undulation decreases exponentially

with t/|Γ[l]
j |, the length of a radial trajectory from the temporal origin at (0, 0).

where the complex hyperbolic angle ϕ[l]
j ≡ arctanh(p

[l]
j (0)/Γsl). I show plots of p[l]

j in

Figure 3.5. If Γ
[l]
j is equal to the initial complex frequency, then p[l]

j does not change value.

For the case where Γ
[l]
j = 0, and p[l]

j 6= 0, there is no stable solution. For all other cases:

∀Γ
[l]
j 6∈ {0, p

[l]
j } : lim

t→∞
p

[l]
j (t) = |<(Γ

[l]
j )| ± i=(Γ

[l]
j ), (3.24)

where <(Γ
[l]
j ) denotes the real part of Γ

[l]
j , =(Γ

[l]
j ) denotes the imaginary part of Γ

[l]
j , and

± corresponds to the sign of <(Γ
[l]
j ). Therefore, no solution exists where limt→∞ γ

[l]
j ≤ 0

except for the case where γ[l]
j is temporally static.

By integrating equation (3.23), one can rewrite equation (3.18) as the following:

E[l](x, t) =
1

2

∑
j

{
E

[l]
j e

ikj ·x cosh
[
ϕ

[l]
j + Γ

[l]
j t
]

+ c.c.
}
. (3.25)

One should note that for the case where ϕ→∞, p[l]
j (t)→ p

[l]
j (0) and therefore:
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lim
ϕ
[l]
j →∞

cosh
[
ϕ

[l]
j + Γ

[l]
j t
]

=: ep
[l]
j (0)t.

I also impose the following physical limit:

∃ {Γ[l]
j } : lim

t→∞
|E| <∞. (3.26)

However, finding solutions that satisfy this limit is not trivial. One can decompose

equation (3.21) into two real equations:

dγ
[l]
j

dt
= −[(γ

[l]
j )2 − (ω

[l]
j )2] + <[(Γ

[l]
j )2], (3.27a)

dω
[l]
j

dt
= −2γ

[l]
j ω

[l]
j −=[(Γ

[l]
j )2]. (3.27b)

These equations can be linearized from a time t = 0 where dγ
[l]
j / dt = 0. From equation

(3.27a):

(ω
[l]
j )2 ≈ ω2

pl. + const.,

where all terms O[(f − F )2] have been discarded. As such, one can see that at t = 0,

for γ[l]
j � ωpl. the frequency is approximately equal to the plasma frequency.

3.3.2 Energy balance

By taking the second moment of the Boltzmann equation ((1.17a)), the total energy density

T of the system is given by:

T (x, t) =
ε0
2
|E|2 +

1

2

∫
R3

∑
l

f[l]m[l]|v|2 dv. (3.28)

Use of equation (1.17e) allows one to find an energy conservation equation:

(
∂T

∂t

)
C,T

=

∫
R3

[
1

2
m|v|2∂f

∂t

]
dv +

1

2

∂

∂t

[
ε0|E|2 +

1

µ0
|B|2

]
, (3.29)

where the first term on the right hand side denotes the rate of change of energy density

in the PDF, the second term denotes the rate of change of electromagnetic field energy

density, and the third term denotes sources and sinks of energy density. (∂T/∂t)C,T allows

for sources and sinks of energy density:

(
∂T

∂t

)
C,T
≡ 1

2
m

∞∫
−∞

|v|2(Ĉ ′f) dv, (3.30)
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where Ĉ ′ := Ĉ − v · ∇ encapsulates collisions as well as spatial advection.

3.3.3 Berk-Breizman collision operator

Berk and Breizman8 use an energy sink which dissipates plasma waves at a rate γD. This

allows for a region of nonlinear stability for the system in the presence of instabilities. Here,

I instead derive an equivalent formulation of the problem by using a collision operator.

One can represent this sink as the following:

(
∂T

∂t

)
coll.
≡ −γD

1

2

[
ε0|E|2 +

1

µ0
|B|2

]
. (3.31)

Therefore, by using equations (3.29) to (3.31) one finds that for a vanishing integrand

under v:

∂

∂t
(Ĉ ′f) = −γD

[
(Ĉ ′f)− ∂f

∂t

]
. (3.32)

This is an inhomogeneous decay equation of the form y(t)′ = −ay+ b(t). The solution,

given by integrating factor, yields a collision operator that I will herein refer to as the

Berk-Breizman operator:

Ĉ ′f = e−γDt

 ∂f
∂t

∣∣∣∣
t=0

+ γD

t∫
0

eγDτ
∂f

∂τ
dτ

 . (3.33)

If one assumes the contribution from heat diffusion to be negligible in comparison to

the contribution from collisions and other sources and sinks, then a Maclaurin expansion

in γD yields:

Ĉ ′f ≈ ∂f

∂t

∣∣∣∣
t=0

e−γDt +
[
γD(f − F ) +O(γ2

D)
]
. (3.34)

As such, for γDt << 1, the first term in (3.33) dominates. At later times, a Krook-like

collision operator safely approximates the behaviour to first order in γD.

3.3.4 Linear complex dispersion relation

The linear complex dispersion relation of waves can be analysed within a nonlinear frame-

work. Here, I spectrally decompose the PDF and other spatially dependent quantities

as described in Section 3.3.1, and analyse the nonlinear behaviour under pinning Berk-

Breizman collisions in an equivalent linear framework (by approximating the collisions as

Krook collisions).
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Upon linearizing equations (1.17a) and (1.17e), the term proportional to ∂F/∂t pro-

duces a pole at pj = −γD. Elsewhere, one obtains the following linear complex dispersion

relation for a single mode, under the Krook-like approximation given by (3.34) to first

order in γD:

pj |t=0 ≈
∑

species

q2

mε0

∫
R3

(e · v)

{
e · ∇vf(0)

pj + ikj · v − γD

}
dv. (3.35)

Overall, this approximately yields three branches:

ωj |t=0 ≈ {0,±ωpl.} ; γj |t=0 ≈

−γD, γD2 +
∑

species

πω3
j

2k2
j,(p)

∫
R2

∂f

∂v(p)

∣∣∣∣
v(p)=ωj/kj,(p)

dA

 ,

where E is normal to dA. Commonly in the literature, the ‘modified’ version of the

Maxwell-Ampère law is used instead26,29 to generate the same energy balance equation as

equation (3.29):

∂

∂t

∂φalt.
∂x

=
q

ε0

∫
R

vf dv − γD
∂φalt.
∂x

, (3.36)

where φalt. is a modified electric potential. For these models to be consistent, Maxwell’s

equations must retain the same canonical form; previous work shows that transformation

of the system Lagrangian that preserves the system Hamiltonian is indeed possible under

certain conditions. However, for all counterexamples, these models do not form a fully

consistent set of equations (see Appendix C.1). Using this alternative model, one obtains

a very similar linear complex dispersion relation:

pj |t=0 + γD ≈
∑

species

q2

mε0

∫
R3

(e · v)

{
e · ∇vf(0)

pj |t=0 + ikj · v

}
dv. (3.37)

This means that while the model is inconsistent (energy is typically not conserved), it

produces similar dynamics to a model with Krook-like collisions; the primary difference is

that the location of the Landau resonance is shifted from p = γD − ikjv to p = −ikjv.

Overall, this approximately yields the two branches:

ωj |t=0 ≈ ±ωpl. ; γj |t=0 ≈ −
γD
2

+
∑

species

πω3
j

2k2
j,(p)

∫
R2

∂f

∂v(p)

∣∣∣∣
v(p)=ωj/kj,(p)

dA.

In the nonlinear phase of the systems evolution, it is a well known result that the

original resonance undergoes broadening. Therefore, provided that γD/kj is much smaller
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than the resonance width, these models perform well except for energy conservation; as I

have already utilised a small γD approximation to assume Krook-like dissipation, one is

safe to make this assumption.

3.4 Basis decomposition formulation

In this section, I discuss how one can construct nonlinear solutions for the Vlasov-Maxwell

system (1.17) by considering non-conservative orbits, and a basis decomposition of the

orbit affine parameter ε(x,v, t) along particle orbits.

In Section 3.4.1, I show that as a proof of concept, one can easily generate van Kampen

modes by using a basis decomposition.

Then, in Section 3.4.2, I show a general nonlinear basis decomposition which allows for

wave-wave coupling, and discuss how it may not be possible to generate these solutions

from an action-angle formalism.

In Section 3.4.3, I employ a basis of Gaussians, and give approximate solutions for

the evolution of the growth rate and frequency of waves in the system provided that the

corresponding phase space islands are far apart.

3.4.1 van Kampen modes

v

x

qϕ

∞

u

‐∞
infinitely

trapped

infinitely

passing

Figure 3.6: van Kampen modes. The sketch illustrates a single van Kampen mode with

phase velocity 0. In the region where qφ > 0, particles with v = u are accelerated to ±∞

(‘infinitely passing’), depending on the sign of u. In the region where qφ < 0, particles

with v = u are infinitely trapped.

For van Kampen modes, particles with v = u resonate, and particles elsewhere do not
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resonate.

Lemma 3.2. For f = f [ε], van Kampen modes are generated by the generating function

given by:

ψ(x,v, t) = vn
∑
l

φ[l]δ[v − u[l]],

where vn is a constant velocity that preserves dimensionality, and φ(x, t) is given by:

φ(x, t) =
∑
l

φ[l](x, t),

with each wavepacket φ[l] containing a single constant phase velocity, u[l].

Proof. van Kampen modes have fixed amplitude and fixed frequency, and are derived for

collisionless plasmas. Therefore, Ĉ = 0, γ[l]
j = 0∀ j, l and ω[l]

j = const.∀ j, l. Then:

qV̂ ψ = 0.

If one takes the 0th velocity moment of the above equation:

qvn
∑
l

[
∇ · (u[l]φ[l]) +

∂φ[l]

∂t

]
= 0.

This is satisfied if each wavepacket φ[l] contains a single phase velocity, u[l] which is not

a function of x.

While it is mathematically allowed, the singularities makes ε no longer a physical

quantity; it is impossible for a particle to have ‘infinite energy’. Furthermore, f [ε] would

also be singular at these points. One can however view the effective potential φ + ψ as

accelerating a population of particles at v = u[l] to |v| = ±∞ for φ[l] > 0, and infinitely

trapping the particles at v = u[l] for φ[l] < 0 (see Figure 3.6). The particles which are

accelerated to |v| = ±∞ do not diminish the population as the PDF is singular at v = u[l],

and the particles which are moved do not contribute to the electric potential.

The combined effective potential is dispersive, allowing for multiple resonances to exist.

3.4.2 Nonlinear basis decomposition

Suppose now one seeks general waves of varying complex frequency psl(t) := γsl(t)−iωsl(t).

I will now examine expansion using functions g[l](x,v − u[l](t), t) instead of Dirac delta

functions, with the aim of examining some form of ‘broadened’ van Kampen modes. One

finds that the derivation manifests as simply just a basis expansion of the problem.
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I use a basis decomposition in v of ε:

ε(x,v, t) :=
∑
l

c[l](x, t)g[l](x,v, t), (3.38)

where the coefficients c[l] are position and time varying, and the basis functions in

velocity g[l] are also position and time varying. This form of the basis decomposition is

key, and corresponds to a different basis decomposition at every point in x and t. By

allowing each (x, t) to permit a different basis decomposition, one allows for nonlinear

coupling which is typically not allowed using a variables separable method of the form

f = (XT )(x, t)V (v).

I desire that {g[l](x,v, t)} are square-integrable functions on v ∈ R, and to do so one

can make the constraint that {g[l](x,v, t)} vanish at infinity:

lim
v→±∞

g[l](x,v, t) = 0∀ l. (3.39)

Then, if one takes the 0th moment of the Vlasov equation:

∫
R3

[
∇ · (vε) +

∂ε

∂t

]
d3v = 0.

Using the aforementioned basis expansion:

∑
l

[
∇ · (c[l]

l M1[g[l]]) +
∂

∂t
(c

[l]
l M0[g[l]])

]
= 0, (3.40)

where M0[f ] := n(x, t) and M1[f ] ≡ 1

q
J(x, t) are the zeroth and first moments of f .

Next, one can perform a co-moving Galilean transform such that g[l](x,v, t) = g[l](x,v −

u[l](t), t). Then:

∫
R3

vg[l] d3v ≈
∫
R3

vg[l] d3(v − u[l])

= u[l](t)

∫
R3

g[l] d3(v − u[l]) +

∫
R3

(v − u[l])g[l] d3(v − u[l]),

where I have neglected a flux term, under the approximation that:

∫
R3

vg[l] d3u[l] ≡
t∫

0

∫
R2

vg[l] du
[l]

dt
dA(v) dτ �

∫
R3

vg[l] d3v,

where dA is a velocity surface element perpendicular to u[l]. This is justified if the

surface flow of g[l] perpendicular to the phase velocity u[l] is negligible, or if the sweep rate
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∂ω
[l]
j /∂t is small. If g[l] is symmetric about v = u[l](t), then the second integral vanishes

due to antisymmetry. Then:

M1[g[l]] = u[l](t)M0[g[l]]. (3.41)

While it appears that this is a restriction on the solutions that are allowed, in fact any

ε(x,v, t) can be represented via such a decomposition. The form of the basis functions has

been restricted, but the function it represents has not (c.f. Fourier expansion with phase

angles versus Fourier expansion with sines and cosines only).

Therefore from equation (3.40), one finds:

∑
l

[
u[l] · ∇(c

[l]
l M0[g[l]]) +

∂

∂t
(c

[l]
l M0[g[l]])

]
= 0. (3.42)

If satisfied for each l independently, this takes the form of a continuity equation for

each wave frame. It therefore becomes useful to exploit the conserved quantity, and via

Noether’s theorem1 utilise the corresponding continuous symmetry. As such, one can define

an integral mapping (x, t) 7→ χ, where χ is a matrix of coordinates in instaneous co-moving

frames:

χ
[l]
j = kj · x−

t∫
0

ω
[l]
j (τ) dτ, (3.43)

representing co-moving Galilean transforms to the co-moving frame with time-dependent

wave velocity u[l] and growth rate γ[l]
j . In this sense, χ contains all of the transformations

possible with the available frequencies {ω[l]
j } and available wavevectors {kj} in the system.

The basis decomposition is therefore in such a form that the symmetry point in v of

the even functions {g[l]} is the time-dependent wave speed of a wave with frequency ω[l]
j

and wavevector kj . Therefore, one can intuitively posit that such a decomposition yields

phase space structures which move with the frequency of some form of wave in the system.

If these waves are chosen to be electrostatic waves in the system, then one expects that the

migration of phase space structures corresponds to nonlinear frequency chirping moving

the wave-particle resonances.

Then, from equation (3.42):

∑
j,l

[
∂

∂t
· (c[l]M0[g[l]])

]
χ,v

= 0. (3.44)

This forms a non-holonomic constraint on the system. This result is particularly in-

teresting as it implies that it is not possible for one to set up a suitable Lagrangian for
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the system with c[l]M0[g[l]] as generalised fields. It is therefore my belief that these solu-

tions cannot be derived from an action-angle formalism. In such a formulation, Hamilton’s

principle assumes only holonomic constraints on the system. In contrast, the formalism

yields an analog of d’Alembert’s principle, allowing for more exotic scenarios involving

non-conservative forces.

3.4.3 Gaussian expansion

Hermite functions form an orthonormal basis, and have recently been explored in the

literature by J. M. Heninger et al. for G-transform based solutions of the linearized Vlasov-

Poisson system.47 Gaussian functions have a similar form to Hermite functions, but are

easier to work with due to the lack of preceding Hermite polynomials in the function

definition.

In this subsection, I will examine a one dimensional, collisionless system with no B-

field. I will examine solutions of the form f = f(x, v, t) + ∆f [ε], under the following

Gaussian expansion:

ε(x, v, t) =
∑
l

W [l](x, t) exp

−( v − u[l](t)

v
[l]
N (χ, v, t)

)2
 , (3.45)

where v[l]
N (χ, v, t) is a normalising function with units of velocity, and W [l](χ, t) is an

enveloping function with units of energy. By inserting ε into the Vlasov equation, v[l]
N is an

approximate solution of the following differential equation under x, v, t coordinates:

−2W [l] (v − u[l])2

(v
[l]
N )3

[
∂

∂t
+ v

∂

∂x
− q

m

∂φ

∂x

∂

∂v

]
v

[l]
N

≈ 2(v − u[l])
W [l]

(v
[l]
N )2

[
du[l]

dt
+

q

m

∂φ

∂x

]
+

[
∂

∂t
+ v

∂

∂x

]
W [l].

(3.46)

For the case of a single frequency wave in the system, (3.46) is exact. One must take the

approximation that the overlap integral of two non-identical Gaussians is approximately

zero. As such, for resonant structures which are close to each other in phase space, the

validity of (3.46) breaks down.
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It is possible to expand the left hand side of equation (3.46) using a Laurent series:

∞∑
j=−∞

L
[l]
j (x, t)(v − u[l])j

:= −2W [l] (v − u[l])2

(v
[l]
N )3

[
∂

∂t
+ v

∂

∂x
− q

m

∂φ

∂x

∂

∂v

]
v

[l]
N ,

(3.47)

where {L[l]
j } are Laurent coefficients. Accordingly, one finds that for the analytic part

of equation (3.46), in the limit that v → u[l]:

L
[l]
0 (x, t) ≈

[
∂

∂t
+ u[l] ∂

∂x

]
W [l]. (3.48)

From this point onward, I will seek solutions where L[l]
0 is the only term in the Laurent

expansion.

Lemma 3.3. If the Laurent series expansion of the left hand side of equation (3.46) only

has one term, L[l]
0 (v − u[l])0, then, equation (3.46) is approximately solved with:

(v
[l]
N )2 ≈ − 2W [l]

∂xW [l]

[
du[l]

dt
+

q

m

∂φ

∂x

]
.

Proof. Using the expansion given by equation (3.47), equation (3.46) takes the form:

L
(0)
l (x, t) ≈ 2(v − u[l])

W [l]

(v
[l]
N )2

[
du[l]

dt
+

q

m

∂φ

∂x

]
+

[
∂

∂t
+ v

∂

∂x

]
W [l].

By substituting equation (3.48) the lemma is proved if the trivial solution of (v−u[l]) 6= 0

is ignored.

Example solutions

Here, I will examine the possible solution:

Wl(x, t) = −q[φl(x, t) + W̃l(t)], (3.49)

where φ =
∑
l

φl(x, t). If each φl has the form (from equation (3.18)):

φl(x, t) ≡ |φ
[l]
l | exp

 t∫
0

γ
[l]
l dτ

 cos
[
χ

[l]
l + θ[l]

]
, (3.50)
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where θ[l] is some initial phase, then from Lemma 3.3:

(v
[l]
N )2 ≈

2Wl

[
du[l]

dt
+

q

m

∂φ

∂x

]

klqφ
[l]
l exp

[
t∫

0

γ
[l]
l dτ

]
sin
[
χ

[l]
l + θ[l]

] . (3.51)

I desire ∆ε to be smooth, finite, and real-valued everywhere, which in turn requires

0 ≤ vN,l <∞. To enforce |vN,j | <∞ everywhere:

{
Wl

[
dul
dt

+
q

m

∂φ

∂x

]}
χ
[l]
l =−θ[l]+nπ

= 0, (3.52)

where n is an integer. This can be satisfied in two ways. Equation (3.52) can be

satisfied if:

W̃l = −|φ[l]
l | exp

 t∫
0

γ
[l]
l dτ


0 =

du[l]

dt
+

q

m

∂φ

∂x

∣∣∣∣
χ
[l]
l =−θ[l]+nπ


for Wl ≥ 0. (3.53)

However, one cannot guarantee that this is true for each and every n. Therefore, we

use the alternative solution:

W̃l = +|φ[l]
l | exp

 t∫
0

γ
[l]
l dτ



0 =
du[l]

dt
+

q

m

∂φ

∂x

∣∣∣∣
χ
[l]
l =−θ[l]


forWl ≤ 0, (3.54)

such that W̃l is the amplitude of the wave with phase velocity u[l]. Therefore, by

examining the rate of change of u[l], one finds the equations:

dω
[l]
l

dt
≈
∑
j

qkjkl
m

W̃j(t) sin


t∫

0

(
ω

[j]
j −

kj
kl
ω

[l]
l

)
dτ −

(
θ[j] − kj

kl
θ[l]

)
 ∀ l. (3.55)

The system of equations (3.55) must be consistent with the solution for {psl(t)} given

by (3.19) determining the evolution of φ.

To enable positive (v
[l]
N )2 here is not trivial. By considering other terms in the Laurent

series given by equation (3.47), one may be able to generate a form for (v
[l]
N )2 which permits

more solutions.
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Fixed frequency

For the case of a single wave in the system, equation (3.55) yields a fixed-frequency wave.

This exact solution is consistent with equation (3.19) if the growth rate is also static:

dp
[l]
l

dt
= 0.

Therefore, I find:

(v
[l]
N )2 ≈

2q[φ
[l]
l (x, t) + W̃l(t)]

m
.

This solution therefore gives to lowest order in (v − u[l]):

∆ε ≈ 1

2
m(v − u[l])2 − q(φ[l]

l + W̃l).

This gives an estimate for the separatrix width a factor of
√

2 higher, as the particle

acts as though it is trapped in a potential well twice as large as the real potential.

In contrast, if one chose to use Wl ≤ 0 instead, (v
[l]
N )2 would be negative, allowing for

us to recover the BGK solution. In such a case, for the full Gaussian representation ε does

not vanish as v → ∞ (as is also the case for BGK modes), and moments of the ε are not

real valued (as v[l]
N is imaginary).

Figure 3.7: BGK-like nonlinear mode. Contours of constant ε(x, v, t) for a single

electric potential wave with time-invariant frequency and constant amplitude undergoing

a form of resonant interaction in a 1D kinetic system (derived in Section 3.4.3). Particles

are approximately trapped within an island of width of ∼
√

4U/m in velocity (a factor

of
√

2 larger than that which is expected from BGK theory7) where U = |qφmax.| is the

electric potential energy, and m is the particle mass.
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In Figure 3.7, I show the corresponding full solution for ε(x, v, t = 0) under this ap-

proximation, and how it deviates from BGK theory away from resonance. Here, I use

normalised values of |φ[l]
l | = q = m = 1, and k = 2π/L.

Chirping frequency

For the case of two waves in the system with the same wavenumber:

d

dt

 ω+

ω−

 ≈ qk2

m
sin


t∫

0

ω̃ dτ − θ̃


 W̃ [−]

−W̃ [+]

 , (3.56)

where ω± := ω±±, ω̃ := ω+ − ω−, and θ̃ ≡ θ[+] − θ[−]. If one examines the case where:

dω+

dt
≈ −dω−

dt
,

such that the frequency sweep is roughly symmetric, then W̃ [+] ≈ −W̃ [−]. For either

of the waves to be linearly stable, I require ∃ t0 : γ±(t = t0) = 0. However, the waves can

still be nonlinearly unstable. To assess the nonlinear stability, one can combine equations

(3.27a) and (3.27b):

dγ±
dt

= −γ2
± +

(
ω̇ + =(Γ2

±)

2γ±

)2

+ <(Γ2
±), (3.57)

where ω̇ = dω̃/dt. For this to be nonlinearly stable, one requires that dγ±/ dt < 0.

Therefore:

lim
t→∞

[ω̇ + =(Γ2
±)]2 < γ2

±[γ2
± −<(Γ2

±)].

Additionally, for stability I require that limt→∞ ω̇ = 0. Therefore, for nonlinear stability

the following inequality must be satisfied:

γ2
± >

1

2

[
<(Γ2

±) +
√
<(Γ2

±)2 + 4=(Γ2
±)2

]
, (3.58)

where one can identify that Γ2
± ≡ limt→∞ p

2
±. In Figure 3.8, I sketch the regions

defined by (3.58) with the corresponding sign of dγ±/dt. Intersections between the line

γ± and limt→∞ γ± show stable values for the growth rate, corresponding to nonlinearly

stable (metastable limit with γ± < 0) and nonlinearly unstable (stable limit with γ± > 0)

states.

Everywhere else above the line defined by the negative root of (3.58), the wave alter-

nates between increasing and decreasing growth rates. As the choice of initial conditions

67



3

γ±

limt→∞ γ±

ω± = 1.00

ω± = 0.25

ω± = 5.00

γ± = limt→∞ γ±

Figure 3.8: Sketches illustrating boundaries defined by (3.58), for ω± ∈ {0.25, 1, 5}. Yellow

arrows and red arrows denote dγ±/ dt > 0 and dγ±/ dt < 0 respectively for ω± = 5. Points

where the boundaries touch the line γ± = limt→∞ γ± indicate stable or metastable values

of γ± for γ± > 0 and γ± < 0 respectively. The stable value therefore corresponds to

a nonlinearly unstable solution, while the metastable value corresponds to a nonlinearly

stable solution.

influences Γ±, some initial conditions will not have a limit for γ±. This allows for either

repeated chirping as observed in simulations and experiments,29,49 or nonlinear instability

(if
∫ t2
t1
γ± dt > 0 for t2 > t1). This may be a candidate for the rapid frequency chirping

observed during abrupt large events or mode avalanching in tokamaks.50–52

Between γ± = 0 and the line defined by the negative root of (3.58), the growth rate

is negative, but decreasing in amplitude. Waves here are linearly stable, but may become

nonlinearly unstable if they are able to cross the γ± = 0 line with finite amplitude. Below

the line defined by the negative root of (3.58), the growth rate is negative and always

decreasing, corresponding to both linear and nonlinear stability.

As one expects limt→∞ ω± = =(Γ±), one finds that for the system to be nonlinearly

stable, an appropriate temporal ordering is given by limt→∞ |ω̇| / 2γω. If the chirping

rate is faster than this, the linearly stable state of the system can only exist for a finite

amount of time. After this time, the system transitions to a nonlinearly unstable state.

From equation (3.56), one finds that the magnitude of the chirping rate is directly

proportion to Ã. Therefore, if there is a large difference in the wave amplitudes, the

system here is nonlinearly unstable.

It is worth noting that this solution is only approximately valid for structures which

have a very small overlap integral in phase space. As such, one can consider these long-

range, coupled structures in a approximate fashion by evolving a continuum of superposed,
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fixed-frequency solutions.

Separatrix

I define the separatrix as the largest closed contour in phase space. Here, I examine only a

single value of l active in the system, and examine ∆ε(χ, v, t) = c, an unspecified constant.

Points on such a contour only exist for:

0 ≤ c

W [l]
< 1,

as exp(−z) ∈ (0, 1] for positive z. As such, if c < W [l], no point exists on the contour

for the corresponding values of χ, t. Therefore, closed contours exist for c > min(W [l]),

and the separatrix is given by c = 0. At this fixed value of ∆ε(χ, v, t):

vsep. = u[l] ± lim
c→0

√√√√−2W [l]

m
ln

(
W [l]

c

)
.

As a result, all the particles here are ‘trapped’. However in reality, weakly bound

particles would scatter out of the potential via neoclassical transport in a model that

considers collisions.

In light of this, I use the following fit for an effective separatrix to compare to BGK

theory:

vsep. ≈ u[l] ±

√
−2W [l]

m
,

which is given when the structure is at 1/e height. In comparison to BGK theory, the

value ofW [l] has twice the amplitude of φl. Therefore, the width of the separatrix given by

this theory is roughly a factor of
√

2 larger than that which is expected for a BGK island.

3.5 Generating function formulation

In contrast to the previous section which directly examines possible solutions for ε, in this

section I detail solutions in terms of ψ. If one defines f(x, v, t) = f(ε), then, everywhere

except on contours of constant ε:

Ĉε = V̂ ε,

69



3

where ε is defined as in (3.1). If one substitutes ε into the Vlasov equation above:

qV̂ ψ =

coll.︷︸︸︷
Ĉε +

frequency chirp︷ ︸︸ ︷∑
l

[
m(v − u[l]) ·

{
∂u[l]

∂t
+ v · ∇u[l]

}]

− q
∑
l

[
∂φ[l]

∂t
+ u[l] · ∇φ[l]

]
︸ ︷︷ ︸

drive

+
∑
l

[
u[l] · (v × qB)

]
︸ ︷︷ ︸

gyration

.

(3.59)

In this sense, the generating function ψ provides a correction to ε. As contours of

constant f (and therefore constant ε) denote particle orbits, systems with finite {γ[l]
j }, finite

{∂tω[l]
j }, finite curvature of {kj}, or collisions require particles to take non-conservative

orbits in phase space.

The ‘frequency chirp’ term and ‘drive’ term correspond to advection of ε0. Advection

of the kinetic energy of particles and the potential energy of particles perturbs the particle

orbits (as expected from (3.14)).

Using the form of the electric potential given by (3.3), the electric potential is a solution

of the coupled inhomogeneous advection equation:

∑
l

[
∂φ[l]

∂t
+ u[l] · ∇φ[l]

]
=
∑
j,l

{{
γ

[l]
j − u[l] · [∇(kj · x)− kj)]

}
|φ[l]
j |

· exp

[∫ t

0
γ

[l]
j dτ

]
cos

[
kj · x−

∫ t

0
ω

[l]
j dτ + θ

[l]
j

]}
,

(3.60)

where {θ[l]
j } are phase angles. The term proportional to u[l] · [∇(kj · x) − kj ] is a

correction to the drive that is given by the curvature of the wavevector. If the wave is

propagating in a rectilinear fashion, this term is identically zero.

In Section 3.5.1, I discuss an extension of the co-moving Galilean transform given in

(3.43), yielding a velocity transformation matrix.

Then, in Section 3.5.2 and Section 3.5.3, I give functions which generate the ‘frequency

chirp’ and ‘growth’ terms in (3.59).

Later, in Section 3.5.4, I give approximate solutions for the electrostatic Vlasov equa-

tion, under the limit that no wave-wave coupling occurs.

3.5.1 Velocity transformation matrix

Under the co-moving Galilean transform employed for χ (see (3.43)), one expects that the

velocity is also transformed. Logically, one can also define a velocity transformation matrix
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ν with the co-moving Galilean transform form:

ν
[l]
j := kj · v − ω[l]

j . (3.61)

Components of the matrix are zero at the point of Landau resonance, where ω[l]
j = v·kj .

The derivatives transform covariantly under (x,v, t) 7→ (χ, ν, t). One must take special care

as the direction of wave propagation can be curvilinear. Therefore:

∇ =
∑
j,l

{kj − [∇(kj · x)− kj ]}
∂

∂χ
[l]
j

∣∣∣∣∣
ν,t

, (3.62a)

∇v =
∑
j,l

kj
∂

∂ν
[l]
j

∣∣∣∣∣
ν,t

, (3.62b)

∂

∂t

∣∣∣∣
x,v

= −
∑
j,l

ω[l]
j

∂

∂χ
[l]
j

∣∣∣∣∣
ν,t

+
dω

[l]
j

dt

∂

∂ν
[l]
j

∣∣∣∣∣
χ,t

+
∂

∂t

∣∣∣∣
χ,ν

. (3.62c)

Under this transformation, one can split ψ into three parts: ψ∂ encapsulating all of

the curvilinear terms (given by ∼ ∇(kj · x) − kj), ψB encapsulating all of the magnetic

field terms, and ψ0 containing only the rectilinear terms and the electric field parts. Then,

examining just the terms arising from V̂ ψ0:

q

 ∂

∂t

∣∣∣∣
χ,ν

+
∑
j,l

{
ν

[l]
j

∂

∂χ
[l]
j

− q

m

[
m

q

dω
[l]
j

dt
+ |kj |2

∑
l′

∂φ

∂χ
[l′]
j

]
∂

∂ν
[l]
j

}ψ0

= [Ĉε]0 +
∑
j,l

[
mν

[l]
j

dω
[l]
j

dt

]
− q

∑
l

∂φ[l]

∂t

∣∣∣∣∣
χ,ν

.

(3.63)

This equation is very challenging to solve analytically. To enable solutions, I will solve

parts of the equations separately.

3.5.2 Frequency chirp generating function

Here, I aim to solve the equation:

q
∑
j,l

{
ν

[l]
j

∂

∂χ
[l]
j

− q

m
|kj |2

∑
l′

∂φ

∂χ
[l′]
j

∂

∂ν
[l]
j

}
ψsw. =

∑
j,l

[
mν

[l]
j

dω
[l]
j

dt

]
. (3.64)

This allows one to generate the ‘frequency chirp’ term in equation (3.59). As the right

hand side is independent of χ[l]
j , it is fairly straightforward to show that this has a solution
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given by:

ψsw. =
∑
j,l

[
m

q
χ

[l]
j

dω
[l]
j

dt

]
. (3.65)

This solution is not periodic; I will address this later in Section 3.5.4.

3.5.3 Growth rate generating function

Here, I aim to solve the equation:

q
∑
j,l

{
ν

[l]
j

∂

∂χ
[l]
j

− q

m
|kj |2

∑
l′

∂φ

∂χ
[l′]
j

∂

∂ν
[l]
j

}
ψsw. = −q

∑
l

∂φ[l]

∂t

∣∣∣∣∣
χ,ν

. (3.66)

This allows one to generate the ‘drive’ term in equation (3.59). Here, I shall solve

related equations with increasing complexity, until the full solution is found.

Single 1D wavepacket of constant frequency

To start with, one can attempt to solve a simplified version of (3.63):

[
v
∂

∂x
− q

m

∂φ

∂x

∂

∂v

]
ψ = −γφ, (3.67)

where φ = φ(x). This equation is equivalent to (3.63) when there is only a single 1D

wavepacket of constant frequency.

It is worth noting that in reality, any wave with finite γ will have a finite ∂ω/∂t by

virtue of (3.21). Equation (3.67) has a solution (with derivation given in Appendix B.1.1)

given by:

ψ = −sign(v)γ

√
m

2

x∫
x(0)

qφ(x′)√
ε(0)(x, v)− qφ(x′)

dx′,

where ε0 = qφ+ 1
2mv

2, and sign(v) is the signum function. It is important to note that

ψ is real and without singularities in the region:

qφ(x) +
1

2
mv2 > q|φ|,

where |φ| is the amplitude of the wave. For values where qφ(x) + 1
2mv

2 = q|φ|, ψ is

singular. Furthermore, for qφ(x) + 1
2mv

2 < q|φ|, ψ is imaginary. Therefore to enable real

values of ε, one must find another solution for the regions where qφ(x) + 1
2mv

2 ≤ q|φ|.

In addition, the solution for ψ given above is not periodic. I will address this later in

Section 3.5.4.
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Single 3D wavepacket of constant frequency

Next, one can attempt to solve the following equation:

[
v · ∇ − q

m
(∇φ) · ∇v

]
ψ = −γφ,

where φ = φ(x). To do so, one requires an extension of the Leibniz integral rule to

vector differential operators (see Appendix B.2). Using the vectorial form, one finds that

the following integral is useful:

In :=
1

v

x∫
x(0)

φ(x′)nv · dx′,

as it yields the following gradient:

∇In =
v

|v|
φ(x)n.

In Appendix B.1.2, I therefore show that the following solution for ψ is permitted:

ψ = −γ
√
m

2

x∫
x(0)

qφ(x′)√
ε(0)(x,v)− qφ(x′)

v

|v|
· dx′, (3.68)

where ε0 = qφ+ 1
2mv

2. Similarly, this is only valid in the region where qφ(x)+ 1
2mv

2 >

q|φ|.

Multiple non-interacting wavepackets

The full equation is very difficult to solve. Instead, one can examine a simpler scenario by

enforcing no wave-wave coupling here:

∑
j,l

{
ν

[l]
j

∂

∂χ
[l]
j

− q

m
|kj |2

∂φ̃
[l]
j

∂χ
[l]
j

∂

∂ν
[l]
j

}ψγ ≈ −∑
j,l

γ
[l]
j φ̃

[l]
j ,

where φ̃[l]
j = 1

2 exp

[
ikj · x−

t∫
0

p
[l]
j dτ

]
+ c.c., and all terms in the inner sum with l 6= l′

have been discarded. It is trivial to show that by extending (3.68) to an arbitrarily sized

dimensional space and solving for each ψj independently, a solution is given by:

ψγ = ψww −
∑
j,l

γ
[l]
j

ν
[l]
j√∑

j,l

(ν
[l]
j )2

√
m

2

χ
[l]
j∫

χ
[l]
(0),j

qφ(χ
[l]
j
′, . . . )√

ε(0)(χ, ν)− qφ(χ
[l]
j
′, . . . )

dχ
[l]
j
′, (3.69)
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such that one simply sums over all wavevectors and frequencies independently. ψww

encapsulates extra terms that would appear which are highly nonlinear, and feature wave-

wave coupling. These interactions cannot be neglected for wave-wave interactions.

3.5.4 Collisionless system with no wave-wave coupling

For a collisionless system, one finds that:

ψ = ψγ + ψsw. + δψ, (3.70)

where δψ is a highly nonlinear term that is given by all other contributions:

δψ := ψ∂ + ψB + ψww + [ψ0(χ, ν, t)− ψ0(χ, ν, t = 0)]. (3.71)

By operating on ψ, in a system with rectilinearly propagating waves one finds by

inspection:

V̂ δψ :=
∑
j,l

[
m

q
χ

[l]
j

d2ω
[l]
j

dt2

]

−
∑
j,l

γ
[l]
j

√
m

2

χ
[l]
j∫

χ
[l]
(0),j

qφ(χ
[l]
j
′, . . . )

2(ε(0)(χ, ν)− qφ(χ
[l]
j
′, . . . ))3/2

V̂

ε(0)

ν
[l]
j√∑

j,l

(ν
[l]
j )2

dχ
[l]
j
′.

As such, if the frequency chirp rate is static, there is a small B-field and ε0 is approxi-

mately static, then δψ can be considered to be mostly a small perturbation to the system;

therefore:

∃E,B : V̂ δψ � V̂ (ψ − δψ). (3.72)

However as expected from discussion at the end of Section 3.2.2, there is always a finite

amount of wave-wave coupling in the system, as growth rate → modified orbit shape →

shear → wave-wave coupling. Intrinsically, by discarding this term one assumes low shear

of phase space islands, and negligible coupling between islands. One can assume that

islands which are far apart do not interact with each other when considering gap toroidal

Alfvén eigenmodes (TAEs) in tokamaks, however this approximation does not allow one

to accurately examine the formation of H&Cs. For one to do so, one must retain all of the

wave-wave coupling encapsulated by δψ.

With regards to (ψ − δψ), in the limit of δψ → 0, one desires periodicity:
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lim
δψ→0

(ψ − δψ) : ψ(x,v, t) ≡ ψ(x + Lix̂i,v, t) ∀ i,

where Li is the box length in the xi direction. To enforce this, one can demand that

all terms proportional to χ[l]
j must vanish. This requires:

∑
j,l

m

q

dω
[l]
j

dt
≈
∑
j,l

γ
[l]
j

ν
[l]
j√∑

j,l

(ν
[l]
j )2

√
m

2

χ
[l]
(0),j

+2π∫
χ
[l]
(0),j

qφ(χ
[l]
j
′, . . . )√

ε0(χ, ν)− qφ(χ
[l]
j
′, . . . )

dχ
[l]
j
′ ≈ 0.

(3.73)

This can be safely enforced for the case where the chirping rate is small, and where the

wave amplitude is small. In such a scenario, one can approximate:

ψ ≈ ψγ + ψsw..

Figure 3.9: Existence of quasi-passing particles. Contours of constant ε(x, v, t) for

a single 1D electrostatic wave with time-invariant frequency and growing amplitude un-

dergoing a form of resonant interaction in a 1D kinetic system (derived in Section 3.5.4).

Particles outside of the separatrix appear to exist in closed orbits; it is possible that these

are quasi-passing particle particles as proposed in Section 3.5.4.

In Figure 3.9, I show an example case with a single electric potential wave with time-

invariant frequency and growing amplitude. This plot was produced by numerically inte-
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grating (3.68) using the trapezium rule, and plotting ε(0)+qψ for different values of (x, v, t).

x(0) was taken to be 0. Close to the separatrix, some particles appear to be existing in

closed orbits. It is worth noting that the condition as posed in (3.73) is violated here; as

a result, there is a small amount of aperiodicity in the plots. In reality, this aperiodicity

must be cancelled out by δψ, as ψ must be periodic.

In addition, Figure 3.9 shows the existence of phase space shear. There is finite shear

in the system arising from the finite growth rate in the system, as discussed in Chapter 2;

here, I show that this effect occurs on an orbit level, as proposed in Section 3.2.2.

3.6 Brief conclusions

In this chapter, I showed completely original, novel work carried out by myself. In this

chapter, I examined so-called ‘non-conservative orbits’ for a given plasma species, where

the single particle energy is not conserved on a phase space orbit.

The overall aim was to consider the true orbit affine parameter, ε along particle orbits

as the sum of a quantity representing the single particle energy, and a generating function

ψ. As such, in the limit that the single particle energy is conserved on an orbit, ε nat-

urally approaches the single particle energy, allowing the theory to directly extend BGK

theory. This theory should allow one to recover analytic predictions for the form of phase

space structures during events such as frequency bifurcation, mode growth, and frequency

chirping.

Over the course of the chapter, I discussed a range of techniques, finishing with three

solutions for the orbit affine parameter ε and the corresponding waves in the system given

in (3.18). These allow one to describe frequency bifurcation and frequency chirping (shown

in Section 3.4.3, as well as mode growth (shown in Section 3.5.4).

76



Chapter 4

DARK: D-dimensional Augmented

Resonance Kinetic solver

4.1 Overview

In this chapter, I present D-dimensional Augmented Resonance Kinetic solver (DARK) a

new, modular code based on previous work by Arber, Vann and De-Gol.26,27 This code

was written by myself in C99 during 2015 - 2018, and is a single framework which can

incorporate fundamentally different models and approximations by using a Strang split53,54

set of partial flows (simpler differential equations). Each partial flow is solved separately

to yield the full solution across a timestep.

DARK makes use of core code which initialises fields such as the electromagnetic field

and the particle distribution function (PDF), initialisation code which allows one to freely

switch between different initial conditions, and modular code which allows one to freely

switch between very different physical models. The modular code makes use of augmenta-

tion terms which are fields which are not found in the Boltzmann-Maxwell system, allowing

one to explore more exotic models such as those explored in Chapter 5. The code is pow-

erful and capable of running high dimensional simulations, however this thesis only makes

use of a 1D electrostatic model, of which the workings are discussed in Section 4.4.

Spectral decomposition reduces Nx grid points in x to (Nk + 1) equations. DARK

natively works in k−v space, but through the use of augmentation terms can be expanded

within modules to explore different representations of phase space.

In Section 4.2, I will describe the iterative algorithm that DARK uses as default (Strang

splitting), before describing in detail how memory is handled by DARK in Section 4.3.

Then, in Section 4.4 I describe how one of DARK’s modules simulates a family of models

77



4

of which one is explored in Chapter 5.

4.2 Strang splitting

Here, I briefly describe how Strang splitting works, from the viewpoint of dynamical sys-

tems. For a system whose n dynamical equations of motion are defined by a rank-2 tensor

of differential operators Ẑµν , acting in the phase space (x,v) on the rank-1 state tensor Fµ:

∂

∂t
Fµ = Ẑµν F

ν , (4.1)

the flow operator tensor Φµ
ν yields the trajectory of the system:

Fµ(x,v, t+ ∆t) = Φµ
ν (∆t) ◦ F ν(x,v, t), (4.2)

where ∆t is the timestep. Note that the contravariant and covariant indices are with

respect to the vector space defined by the state tensor, not phase space. Next, one can

setup an eigenvalue equation for Ẑµν :

ζ · F := Ẑµν F
ν ,

such that the n × n matrix ζ contains the eigenvalues of the tensor decomposition of

Ẑµν in a given Hilbert space, and F is the vector form of Fµ. Then, (4.1) solves directly to

give:

Fµ(x,v, t+ ∆t) = exp[(ζ)∆t] · F (x,v, t), (4.3)

where I have made use of the matrix exponential:

exp[(ζ)∆t] ≡
∞∑
k=0

∆tk

k!
ζk, (4.4)

where (ζ)0 is the n × n identity matrix, (ζ)1 := ζ, and (ζ)2 := ζ ζ. As such, one can

identify that exp[ζ∆t] is simply an alternative representation of the flow operator.

The Baker-Campbell-Hausdorff formula55 shows that for two matrices A and B:

exp[(A + B)∆t] = exp[A∆t] exp[B∆t] + exp

[
−1

2
[A,B]∆t2

]
+O(∆t3), (4.5)
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where [A,B] := AB−BA is the commutator of matrices A and B. Therefore, if Ẑµν

is representable as a linear sum of m operators such that:

Ẑµν =

m∑
j=1

(Ẑj)
µ
ν , (4.6)

with ζ
j
·F := (Ẑj)

µ
νF ν , and with each operator yielding a corresponding flow operator:

(Ẑj)
µ
ν 7→ (Φj)

µ
ν (∆t)

s.t. Fµ(x,v, t+ ∆t) = (Φj)
µ
ν (∆t) ◦ F (x,v, t),

for m = 2, one expects that the exponential in (4.3) would yield under the Baker-

Campbell-Hausdorff formula:

Fµ(x,v, t+ ∆t) =

{
exp[ζ

0
∆t] exp[ζ

1
∆t] + exp

[
1

2
[ζ

0
, ζ

1
]∆t2

]
+O(∆t3)

}
F (x,v, t).

If one evolves the system by half a timestep (∆t/2) iterating through a set of partial

flows, and then evolves the system by half a timestep iterating in reverse through a set of

partial flows, the term involving the commutator vanishes, as [A,B] = −[B,A].

One finds that that this can be extended to an arbitrary number of partial flows, and

therefore one can decompose the system of equations into a set of partial flows, allowing

one to iterate via the symmetric Strang splitting method:53,54

Fµ(x,v, t+ ∆t) =

[
m∏
j=1

(Φj)
µ
β(∆t/2)◦

]
[
m∏
j=1

(Φm−j)
β
ν (∆t/2)◦

]
F ν(x,v, t) +O(∆t3),

(4.7)

which is correct to O(∆t2). To summarize the symmetric Strang splitting method in

less mathematical terms:

1. Split the system of equations into a set of partial flows, and define an order for Strang

iteration.

2. Solve each partial flow independently in that order for half a timestep.

3. Solve each partial flow independently in reverse order for half a timestep.

4. Repeat steps 2 and 3 until the simulation is complete.

When solving each partial flow, the only the element of the state tensor whose time

derivative is being calculated is temporally evolved; every other element is fixed.
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4.3 Memory handling

4.3.1 Parallelisation

DARK utilises a rich, flexible parallelisation setup. Parallelisation is natively performed

in discrete k-space, and in v-space.

The data is split onto a process grid which is also temporally fixed and homogeneous

across phase space. DARK is a D-dimensional code (D being the total number of posi-

tion and velocity dimensions), and as such each process is designed to belong to 2 + D

communicators: MPI_COMM_WORLD, cart_comm, x_comms[], and v_comms[].

(1,1) (1,2) (1,3) (1,4)(1,0)

(2,1) (2,2) (2,3) (2,4)(2,0)

(0,1) (0,2) (0,3) (0,4)(0,0)

e0

e1

w0

w1

P0

P1

Figure 4.1: Gridding in DARK. A field on e0 × e1 is defined over P0w0 data points in

the e0 direction, and P1w1 points in the e1 direction. Employing a parallelisation scheme

of (P0, P1) leaves w0 × w1 points on each process.

cart_comm is a Cartesian communicator containing all of the processes on a P1 ×P2 ×

. . . grid, where Pj is the parallelisation along the jth dimension, as shown in Figure 4.1

Binary flags allow one to turn periodicity on/off for each dimension. For example in a 2D

simulation, the array {1, 0, 0, 0} would set the first position coordinate to have periodic

boundaries, the second position coordinate to have aperiodic boundaries, and the velocity

coordinates to have aperiodic boundaries. Each jth dimension is illustrated here by its unit

vector in phase space, ej .

The MPI group corresponding to cart_comm is dissected such that x_comms[] and

v_comms[] are subsets of cart_comm. Unlike cart_comm, the processes which belong to

the communicators x_comms[] and v_comms[] are not the same on every process. Rather,

each communicator is defined such that is the dimensional index for position or velocity.

For example:
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• x_comms[0] : all processes sharing the same x1, . . . and v0, v1, . . .

• v_comms[0] : all processes sharing the same x0, x1, . . . and v1, . . .

This allows for easy collective communications for velocity/spatial reduction operations.

Suppose that one had a complex quantity quant which was defined with respect to 4

variables (x0, x1, v0, v1), and one desired the sum over the e3 direction (v1). Performing a

collective communication across MPI_COMM_WORLD or equivalently cart_comm could prove

to be computationally expensive. Instead, to sum over all of them one would could simply

use:

MPI_Allreduce (MPI_IN_PLACE, &quant , 1 , MPI_C_DOUBLE_COMPLEX,MPI_SUM,v_comms [ 1 ] ) ;

Master processes are defined as ones where a subset of the coordinates are all 0. For

example, in a 2D simulation, (0, 0, c, d) are master processes for all c, d. These processes

perform calculations that are done after collective communications, and are required for

safe file I/O. The deposit is defined as the process at (0, . . . ), and is typically used to write

to stdout and stderr.

4.3.2 Data allocation

All of the position and velocity dependent quantities are stored in jagged arrays to enable

non-square gridding. Each process holds w0×w1× . . . data points in a given array, where

wj are datasizes:

wj :=
Nj

Pj
,

where Nj is the number of grid points in the ej direction, and Pj is the number of

processes in the ej direction. On each process, the quantity arr can be described by

coordinates:

arr[i][j]... : relative coordinate on the process given by (i, j, . . . ).

The jagged arrays are defined dynamically via big-endian representation of the relative

Cartesian coordinate on the process itself. For example, if the gridding is setup such that

arr defined in x0, x1, v0 has corresponding datasizes on a process given by (w0, w1, w2) =

(2, 3, 4), all of (0,0,0) to (0,0,3) exists in one contiguous block of memory, while (0,1,0) to

(0,1,3) exists in another contiguous block of memory. DARK uses pointer arrays to access

the data in memory.
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On input and output, the ‘mixed-base’ value given by the Cartesian communicator

coordinates are converted to decimal for file naming. For example, for parallelisation

setup such that x0, x1, v0 are parallelised with (P0, P1, P2) = (2, 2, 2), the full grid contains

4× 6× 8 points. The decimal value is given by:

(a, b, · · · )→ a(P1w1)(P2w2)(. . . ) + b(P2w2)(. . . ) + . . .

Therefore, for a process at (0, 1, 1):

Comm. Proc. Full grid Decimal
...

...
...

...

(0, 1, 1) (0, 0, 0) (0, 3, 4) → 28

(0, 1, 1) (0, 0, 1) (0, 3, 5) → 29
...

...
...

...

(0, 1, 1) (0, 1, 0) (0, 4, 4) → 36

(0, 1, 1) (0, 1, 1) (0, 4, 5) → 37
...

...
...

...

(0, 1, 1) (1, 0, 0) (1, 3, 4) → 76

(0, 1, 1) (1, 0, 1) (1, 3, 4) → 77
...

...
...

...

where the left hand side of the map is the relative Cartesian coordinate on the process,

and the right hand side of the map is the decimal representation. Therefore, for each

variable, there are P0w0×P1w0× · · · files. As an example, arr_00036.csv would contain

data at (0, 4, 4) on the full grid. As such, plotting software requires conversion from the

decimal representation in the file name to the coordinate on the full grid.

During the simulation, data is written to temporary files in a local temporary folder,

which can be defined as different for each process. This temporary directory can be supplied

within a job script given to a queue managed by SGE or Slurm, which is then given as an

argument upon executation of the DARK binary. These temporary files are held as binary

data in .DARKdat format.
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4.4 Dissipative 1D electrostatic models

4.4.1 Dynamical equations

Here, I introduce a family of ‘Berk-Breizman’ type models (strictly speaking these are

dissipative 1D electrostatic models) of the form:

∂f[l]

∂t
= Ĉ[l]f[l] − v

∂f[l]

∂x
−

q[l]

m[l]
E
∂f[l]

∂v
, ∀ l det. (4.8a)

f[l] = f[l](x, v, t), ∀ l sto. (4.8b)

∂E

∂t
= − 1

ε0

∫
R

v
∑
l

(q[l]f[l]) dv − α ∗ E, (4.8c)

where det. denotes deterministic populations. Later, in Chapter 5, I describe how

such a model is constructed from physical considerations; here I simply cover how this is

analysed computationally. One can construct the following state vector for these models:

(Fµ) = ({f[l]}, E).

The PDFs are given by the following:

f[l](x, v, t) = f[l],(0)(x, v) + ∆f[l](x, v, t),

such that {∆f[l]} denotes the perturbation to the PDFs. The species {l} are separated

into deterministic (det.) and stochastic (sto.) populations. Each deterministic population

satisfies the Boltzmann equation, while each stochastic population is defined ad hoc. I

prescribe the stochastic PDFs using the following form:

Fv[f[l],j ](s, t) =
1√
2π
εf,j sinc

(
sLv
2

)
+ Fv[Nf,j ],

where sinc(s) ≡ sin(s)/s is the sinc function, Nf (x, v, t) is a noise term generated by a

pseudorandom number generator. The electric field is split into three parts:

E := δE + EN + ES ,

where δE defines a perturbation, ES is a seeded deterministic field, and EN is a seeded

stochastic field. As velocity space is infinite here, it serves one best to use Fourier trans-
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forms than a discrete decomposition. I will use the following symmetric definitions:

Fv[f[l],j ] :=
1√
2π

∫
R

f[l],j(v, t)e
−isv dv, (4.9a)

F−1
v [f[l],j ] :=

1√
2π

∫
R
Fv[f[l],j ](s, t)e

isv ds. (4.9b)

As is later discussed in further detail in Chapter 5, equation (4.8c) now takes the form:

∂tδEj = −
∫
R

W
∑
l

q[l](Fv
[
f[l],j

]
) ds− 1

2
αjδEj +Dj ,

where Dj is given by:

Dj ≡ −
(
∂

∂t
+
αj
2

)
(ES,j + EN ,j),

and W (s) ∈ I is the complex formally divergent integral (which acts a removable

singularity in the current):

W (s) :=
1√
2π

∫
R

veisv dv.

The terms ES,j and EN ,j are defined ad hoc, as is shown later in Chapter 5. Linear

collisions are implemented, such that the Ĉf[l] features no terms O(f2
[l]):

Ĉf[l] =
∑
m

νm

(
∂

∂v

)m
(f[l] − F[l],0),

where F[l],0(v) is a spatially and temporally homogeneous function. I approximate that

the Lorentz force is given by:

[
E
∂f

∂v

]
j

=


Ej
∂f0

∂v
+ E0

∂fj
∂v

∀ j 6= 0,

E0
∂f0

∂v
+

1

4

∑
j

[
Ej
∂fj∗
∂v

+ c.c.
]

j = 0.

In this sense, the discrete convolution that should arise under spectral decomposition

of E∂vf is simplified for j 6= 0. In this sense, waves only couple to their own wavelength

and the spatial background, such that:

∃kα + kβ = kδ : kδ ∈ 0 ∪ {kα} ∪ {2kα}.

Finally, I solve the entire problem in velocity Fourier space, and under spatial spectral

decomposition. By using s-space, the code computes collisions and velocity advection at
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the same time, giving a factor 2 increase in speed, and only requires backward transforms

via Fastest Fourier Transform in the West (FFTW)56 on PDF output, providing a potential

O(Nv lnNv) decrease in computational time on each timestep. Listed together, all of the

(6Nk + 2) partial flows are as follows:

∂

∂t
Fv
[
∆f[l],j

]
= Fv

[∑
l

νl

(
∂

∂v

)l
f[l],j

]
, ∀ l det., j 6= 0

∂

∂t
Fv
[
∆f[l],0

]
= Fv

[∑
l

νl

(
∂

∂v

)l
(f[l],0 − F[l],0)

]
, ∀ l det.

∂

∂t
Fv
[
∆f[l],j

]
= kj

∂

∂s
Fv
[
f[l]j

]
, ∀ l det., j 6= 0

∂

∂t
Fv
[
∆f[l],j

]
=

isq[l]

m[l]

{
E0Fv

[
f[l],j

]
+ EjFv

[
f[l],0

]}
, ∀ l det., j 6= 0

∂

∂t
Fv
[
∆f[l],0

]
=

isq[l]

m[l]


E0Fv

[
f[l],0

]
+

1

4

∑
j

(EjFv
[
f[l],j

]∗
+ c.c.)

 , ∀ l det.

− ∂

∂t
δEj =

∫
R

W
∑
l

(Fv
[
f[l],j

]
) ds− αj

2
δEj +Dj , ∀ j 6= 0

Fv
[
f[l],j

]
=

1√
2π
εf,j sinc

(
sLv
2

)
+ Fv[Nf,j ], ∀ l sto.

Dj = −
(
∂

∂t
+
αj
2

)
(D(1− εE,j)eiωst + EN ,j). ∀ j 6= 0

(4.10a)

(4.10b)

(4.10c)

(4.10d)

(4.10e)

(4.10f)

(4.10g)

(4.10h)

where sto. denotes stochastic populations. Here, I will show how DARK performs

simulations for models of this type; equations (4.10g) and (4.10h) are given ad hoc, and

therefore omitted from the following discussion.

4.4.2 Linear collisions

The collisional parts (4.10a) and (4.10b) are given by:

∂

∂t
Fv
[
∆f[l],j

]
= Fv[Ĉf[l],j ],

with the collision operator taking the linear form:

Ĉf[l],j =


∑
m

νm
∂m

∂vm
f[l],j ∀ j 6= 0,∑

m

νm
∂m

∂vm
(f[l],0 − F[l],0(v)) j = 0.

After forward velocity Fourier transforms one obtains:
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Fv
[
Ĉf[l],j

]
=


g(s)Fv[f[l],j ] ∀ j 6= 0,

g(s)Fv[f[l],0 − F[l],0] j = 0,

where g(s) ∈ C is given by:

g(s) :=
∑
m

νm(is)m.

The fact that collisions spread energy gives a typical physical requirement that <(g) <

0; if this is not the case, the collisions cause the PDF to locally spike. Therefore, one

obtains two trivial decoupled differential equations in s-space:

∂

∂t
Fv[f[l],j ] = g(s)Fv[f[l],j ] ∀ j 6= 0,

∂

∂t
Fv[f[l],0 − F[l],0] = g(s)Fv[f[l],0 − F[l],0] j = 0,

where one should note that ∂Fv
[
f[l],j

]
/∂t ≡ ∂Fv

[
∆f[l],j

]
/∂t. One therefore finds the

following solutions in s-space:

Fv[f[l],j ](s, t+ ∆t) = Fv[f[l],j ](s, t)e
g(s)∆t ∀j 6= 0,

Fv[f[l],0](s, t+ ∆t) = Fv[F[l],0](s) +
{
Fv[f[l],0](s, t)−Fv[F[l],0](s)

}
eg(s)∆t j = 0.

By using the fact that Fv[∆f[l],j ] = Fv[f[l],j ]−Fv[f[l],(0),j ], one can evolve Fv[∆f[l],j ].

4.4.3 Spatial advection

The spatial advection term (4.10c) is given by:

∂

∂t
Fv
[
f[l],j

]
= kj

∂

∂s
Fv
[
f[l]j

]
∀ l det., j 6= 0.

This partial flow comes from the v∂f/∂x term in the Boltzmann equation, and therefore

represents spatial advection. On the right hand side, the Fourier transform in velocity

yields −i∂/∂s, while the spectral decomposition in space yields ikj . Altogether, one is now

left with an advection in s-space, which is solved by DARK using the piecewise parabolic

method57 as used in previous work by Arber, Vann and de Gol.26,27 This method is correct

to O(∆t2), making it suitable for this computational setup.
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As this is an advection problem, it is computationally constrained by the Courant-

Friedrich-Lewy (CFL) limit.58 As the advection is performed in s-space, the CFL limit is

not fully intuitive. Simply given:

kj∆t

∆s
< 1.

However the s-space discretization is simply given by the length in v; it is independent

of the number of grid points:

kjLv∆t

2π
< 1,

where Lv is the length of the velocity grid. This leads to a few counterposed require-

ments. In order to allow for one to adequately resolve features in s-space, one requires a

large Lv to make ∆s as small as possible. Naturally, one must also make ∆t small to avoid

violating the CFL limit. However, one also desires a suitable density of points in v-space

to adequately sample the initial PDF. Counterintuitively, this requires one to sample quite

a lot of points outside of the ‘interesting region’ of the initial PDF; one must add a lot of

points quite far from the main part of the population to allow large Lv while preserving a

high density of points in v-space. If one failed to include these points, features would not

adequately be resolved in s-space, and the simulation would be computationally stable but

inaccurate.

4.4.4 Lorentz force

The Lorentz force terms (4.10d) and (4.10e) are given by:

∂

∂t
F
[
∆f[l],j

]
=

isq[l]

m[l]

{
E0F

[
f[l],j

]
+ EjF

[
f[l],0

]}
∀ l det., j 6= 0,

∂

∂t
F
[
∆f[l],0

]
=

isq[l]

m[l]


E0F

[
f[l],0

]
+

1

4

∑
j

(EjF
[
f[l],j

]∗
+ c.c.)

 ∀ l det.

The velocity advection that would occur is now replaced by a simple product in s-

space. Both of the equations above are first-order partial differential equations (PDEs) of

the form ġ(t, . . . ) = ag(t, . . . ) + b. This type of equation trivially solves to give:

g(t+ ∆t, . . . ) =


g(t, . . . ) exp[a∆t] +

b

a
(exp[a∆t]− 1) ∀a 6= 0,

g(t, . . . ) + b∆t j = 0.

(4.11)

Simply replacing g, a and b with the relevant quantities yields the partial flows.
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4.4.5 Dissipation

The evolution of the electric field perturbation (4.10f) is given by:

∂

∂t
δEj = −

∫
R

W
∑
l

(F
[
f[l],j

]
) ds− 1

2
αjδEj +Dj ∀ j 6= 0.

Again, this equation is of the form ġ(t, . . . ) = ag(t, . . . ) + b, and therefore simply

replacing g, a and b in (4.11) with the relevant quantities yields the partial flow.

4.4.6 Energy flow

The total energy density T of the system is given by (3.28):

T (x, t) =
ε0
2
E2 +

1

2

∫
R

∑
l

f[l]m[l]v
2 dv.

If one considers the rate of change of energy within the electromagnetic field:

dU

dt

∣∣∣∣
EM

= ε0

L∫
0

E
∂E

∂t
dx.

By substituting the modified Maxwell-Ampère law (4.8c):

dU

dt

∣∣∣∣
EM

= ε0

L∫
0

E


∫
R

[
vf[l] dv

]
− α ∗ E

dx.

By including the contribution from collisions and the distribution function:

dU

dt
=

dU

dt

∣∣∣∣
dist.

+
dU

dt

∣∣∣∣
EM

+
dU

dt

∣∣∣∣
coll.

,

where dist., EM, and coll. denote contributions from the PDF, electromagnetic field

and collisions. The PDF contribution and the first term in the electromagnetic field con-

tribution can be shown to cancel each other out, leaving:

dU

dt
≈ − 1

4

∑
j

αj |Ej |2︸ ︷︷ ︸
dissipation

+

coll.︷ ︸︸ ︷
L

2

∑
l,m

∫
R

νm
∂m

∂vm
(f[l],0 − F[l],0)v2 dv .
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Stochastic electric field

The stochastic contribution to the electric field can be seen as nothing more than a ran-

domized source of electromagnetic energy in the system. By integrating over the typical

period of pseudorandomization, τN one is able to find noise period averaged quantities.

Suppose that one investigates a simplified model where the noise term’s contribution to

the energy density is of the form:

∂T

∂t
(x, t) ∼ ε0EN .

One can expand N using a Taylor expansion:

N (t′) = N (t) +
∂N
∂t

∣∣∣∣
t′=t

(t′ − t) +O(t′2).

However, if one averages over the period, only the first term remains; there is no

variation of the noise level on average. Therefore:

∆T (x, t+ ∆t) ∼ ε0N (x)avg

∫ t+∆t

t
E(x, t′) dt′ +O

(
∆t

τN

)2

,

where ∆T (x, t + ∆t) is the change in energy density from time t to t + ∆t. If one

examines the total energy instead:

∆U(t+ ∆t) ∼ ε0N (x)avg

∫ L

0

∫ t+∆t

t
E(x, t′) dt′ dx+O

(
∆t

τN

)2

.

In this form one can see that to first order, the noise term performs work on the system

based on the electric field at a given moment in time. As the energy density increases, the

average electric field increases, causing the energy density to increase further in a feedback

loop.

The energy density of the system increases like Navg
√
T , and therefore the growth is

slower than exponential growth.

Even though this is only correct to first order, one can argue that if τN is made large

enough, then it is acceptable to treat the noise level as roughly constant for schemes that

need to be correct to higher order in ∆t. If the value of Navg is zero, then to first order

the noise term performs no net work on the system.

Dissipative sink

The dissipation term acts as a nonlinear sink for the electromagnetic energy density. To

illustrate this, if one examines just the dissipative term’s contribution:
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∂T

∂t
∼ −2αT → T (t+ ∆t) = T (t)e−2α∆t.

Therefore, if α is large enough, the sink will eventually quench any growth from noise.

Accordingly, it is possible to define a system that can be seeded by noise, grow for a while,

and then become dominated by dissipation; this allows for chirping behaviour.

4.5 Brief conclusions

In this chapter, I presented a new, modular code (DARK) which is capable of running

sophisticated simulations for multi-dimensional kinetic systems with augmentation terms.

In Section 4.2, I derived Strang splitting from tensor analysis of the dynamical equations

of motion, showing that this method of iteration is correct to O(∆t2). In Section 4.3, I

covered the extensive parallelisation carried out by DARK, and how memory and data

is handled by the software. In Section 4.4, I showed in depth how an extended family

of 1D electrostatic Berk-Breizman like models can be simulated within DARK, solving a

richer, more sophisticated system of equations than is typically examined in the literature.

I showed how a stochastic population of particles and a drive field is modelled ad hoc,

allowing one to solve the system of equations using a Strang split set of partial flows in

k− s space.

In Chapter 5, DARK is used to run simulations, investigating stochastic and determin-

istic modelling of holes and clumps.
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Stochastic and deterministic

modelling of holes and clumps

5.1 Overview

5.1.1 Frequency modification

In linear systems, a monofrequency wave will have its frequency conserved provided that

the energy of the wave is time-invariant. If the energy of the wave changes, this is typically

due to an increase in wave amplitude, or slow changes to the system background. To

illustrate this, if one examines the dispersion relation of a 1D electron electrostatic wave

in the k → 0 limit:

lim
k→0

ω(k) =

√
n̄eq

2

meε0
,

such that ω is equal to the plasma frequency (see Section 2.3.5), and n̄e is the spatially

averaged electron density. Therefore, if n̄e changes, ω will change. This change typically

occurs over much smaller timescales than the rate of evolution of the perturbations in the

system; at the heart of the linearized theory, we assume that ∆f evolves on a timescale

faster than the background, and therefore we assume that the background is temporally

static.

However, in nonlinear systems, it is possible for the frequency to change on timescales

much quicker than the evolution of the background, allowing one to easily distinguish

between nonlinear and linear modes in tokamak plasmas. While wave-wave coupling does

exist in nonlinear systems, the frequency evolution is dominated by a much more collective

behaviour given by the contribution of all active wavenumbers in the system. If one
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examines the term in the Boltzmann equation that corresponds to the Lorentz force in an

electrostatic plasma:

∂f

∂t
∼ q

m
E · ∇vf.

If |∂(lnE)/∂t| � |∂(ln f)/∂t|, one can approximate that the E field is constant to

lowest order, yielding an advection equation in velocity space. The rate of advection at

each point is approximately determined by E(x, t = 0), leading to shock solutions for phase

space structures as they advect under this term.

As an example involving real data, if one examines shot 139317 from NSTX at various

times (see Figure 6.8, examined for other purposes in Chapter 6), we observe frequency

streaks on spectrograms produced by analysing magnetic fluctuations in the system. The

constituent frequencies of plasmas waves in the system can be shown to be undergoing

both linear and nonlinear behaviour at this time. During 220 - 240 ms, some modes can

be observed between 50 -80 kHz corresponding to toroidal Alfvén eigenmodes (TAEs) in

the system whose rate of change of which the typical rate of change of frequency is quite

small (on the order of 10 GHz s−1); this slow rate of change corresponds with the typical

timescale that the background changes on, and therefore these modes are not undergoing

kinetic resonance. During 100 - 120 ms, the frequency traces beteen 50- 80 kHz correspond

to gap TAEs for which the typical rate of change of frequency is much higher (on the order

of 100 GHz s−1). This fast rate of change implies very strong nonlinear behaviour.

5.1.2 Three-wave coupling

For a perturbation δf in the particle distribution function (PDF), nonlinear terms ∼ (δf)2

allow for interaction between waves of differing frequency. As shown in Section 2.3, the

electric field is related to the PDF by:

(p2
jµ0ε0 + k2

j )δẼj = −
∑

species

q

∫
R3

(
µ0vpj +

ik

ε0

)
δf̃j dv.

Accordingly, the Lorentz force allows for terms to be generated with O(δf2). One can

easily illustrate how three-wave coupling occurs by using the convolution theorem:

(δf)2 = L−1 [L(δf) ∗ L(δf)] ,

where L denotes the forward temporal Laplace transform, L−1 denotes the backward

temporal Laplace transform. Therefore, if one were to examine a system with two discrete
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frequencies ω1 and ω2, one would be able to generate terms with frequency 0, 2ω1, 2ω2,

ω1 + ω2, and |ω1 − ω2|. This is three-wave coupling, and leads to phase locking; non-

linear interactions of this kind require the waves to be in phase with one another. Phase

locking is therefore observable in tokamaks, as one can use bicoherence measurements

and spectrogram analysis to determine whether two frequencies in the system are indeed

locked. Furthermore, the locked nature of the waves means that frequency traces which

have the same rate of change of frequency are strong contenders for phase locking. Phase

locked waves exchange energy with one another, and due to this energy exchange can prove

disruptive.

5.1.3 Frequency chirping

Fluctuations in the constituent frequencies of an oscillation can increase in value (‘up-

chirping’) or decrease in value (‘down-chirping’). It is well known that holes and clumps

(H&Cs)8,28,59 can form in the nonlinear phase of the evolution of an energetic particle

driven mode (EPM), where resonant particles exchange energy with the corresponding

plasma wave. For EPMs undergoing linear growth, as energy is exchanged between the

PDF and the mode, the PDF becomes flattened in the vicinity of the Landau resonance,

decreasing the linear growth rate. After a finite amount of time, the PDF is locally without

gradient, and the mode reaches nonlinear saturation. In this phase, further energy exchange

is allowed between the electromagnetic field and the PDF via H&Cs moving along the PDF;

while the mode is linearly stable, the wave frequency changes as the resonant structures

move, and the wave energy changes with the frequency.

5.1.4 Alfvénic chirping

In tokamaks, the Alfvén speed varies along a field line due to toroidal periodicity in the

magnetic field. This phenomenon (analogous to Bragg reflection in periodic lattices) allows

for gaps in the Alfvénic mode band structure. Due to defects in the magnetic field peri-

odicity in real tokamaks, spatially localised modes can exist in the frequency gap between

bands in the Alfvén continuum. These defects can include asymmetry produced by the

triangularity and ellipticity of the magnetic field.40

TAEs are of particular interest to the fusion community. With frequencies on the order

of 100 kHz,40 they have the ability to become amplified via radio frequency (RF) heating

and energetic particles. Gap TAEs can exist in the gap between TAEs and beta-induced

Alfvén eigenmodes (BAEs), with frequency < 50 kHz, close to geodesic acoustic mode
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|v|
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clump

Figure 5.1: Resonance bifurcation in a tokamak. A sketch of a H&C on a PDF

peaked near the origin for a chirping, resonant mode interacting with a tokamak plasma.

The kinetic resonance ω+(m+lp)ωθ−nωϕ = 0 undergoes pitchfork bifurcation as the H&C

move. Stochastic fluctuations modelled in this chapter heuristically map onto fluctuations

a function of pϕ; these effect the formation and evolution of the H&C.

(GAM) frequency). Unlike continuum Alfvén eigenmodes, gap TAEs exist as coherent

waveforms which are resilient to shear damping.40 This allows gap TAEs to exist for longer

timescales than continuum modes. As shown in Figure 5.1, a hole and clump emerge from

a resonance (a contour in (pφ, |v|) space, where pϕ is the toroidal angular momentum, and

|v| is the magnitude of the particle velocity). Holes move to higher pϕ and lower |v|, while

conversely clumps move to lower pϕ and higher |v|.

Fluctuations in the magnetic field and particle density have been shown in some cases

to undergo frequency chirping in tokamaks.60–64 Energetic particles undergoing Landau

resonance with plasma wave undergo radial diffusion, which can lead to large energetic

particle losses in tokamaks.60,65,66 It is understood that mode chirping is directly correlated

with H&Cs; consequently, chirping modes can allow for greater radial diffusion. As a result,

even in the case of continuum Alfvén eigenmodes, rapid mode chirping can also lead to a

significant channel for fast ion loss; in such a case, the rate of energy loss via chirping is

comparable to the sum of damping rates (e.g. collisional, radiative, continuum damping).

Gap TAEs allow for an even greater particle loss than continuum Alfvén modes, due to
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their resilience to shear dissipation.

These frequency chirping events in tokamaks are therefore directly correlated with fast

ion losses in tokamaks, degrading plasma performance and thermal energy confinement in

the core. Experimentally this has been observed through the use of fast ion loss detectors

(FILD)67 and by examining the neutron birth rate;61 sharp peaks in FILD signal and

sharp decreases in the neutral birth rate occur during frequency chirping events (‘sierpes’

mode chirping, Alfvénic chirping).61,68 In some experimental scenarios, abrupt large events

(ALEs) have been observed, where one frequency chirping event (typically down-chirping)

is rapidly followed by other frequency chirping events.50,51 In these scenarios, large fast ion

losses are observed, even for modes which undergo continuum damping. Fredrickson et al.

have previously proposed that mode-mode destabilisation may be a key mechanism for the

onset of ALEs.60

In Section 5.2, I present the model used in this chapter, as briefly described in Chapter 4.

The model allows for stochastic simulations of 1D electrostatic plasma with Berk-Breizman

augmentation.

In Section 5.3 and Section 5.4, I present published work carried out in collaboration

with Princeton Plasma Physics Laboratory (PPPL). We show that the lifetime of H&Cs is

stochastic, implying that the extinction rate of H&Cs may be determined by a stochastic

process, and examine how stochasticity in the PDF (mimicing turbulence) affects the

coherence of H&Cs.

Finally, in Section 5.5 and Section 5.6 I present other work investigating H&C desta-

bilisation via parametric modification of the background distribution function. I examine

how this can lead to destabilisation that is distinctly different from that which would be

expected from quasilinear diffusion.

5.1.5 Shorthand and notation

In this chapter, I will use the following shorthand:

ω
[l]
j → ωj ,

that is to say, the superscript l and subscript j will be coalesced into one new subscript,

j. The bracketed subscript [l] now denotes species. For example:

∇ ·E =
1

ε0

∑
l

q[l]

∫
R3

f[l] dv.

The PDF is given by:
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f(x, v, t) = f(0)(v) + ∆f,

where f(0) has been defined such that:

f(0)(v) := f(x, v, t = t0).

5.2 Stochastic model

Here, we include stochasticity into 1D kinetic models, allowing us to examine in closer

detail the resultant effects on the evolution of resonant modes.

5.2.1 Resonant damping

In a tokamak, plasma heating and particle confinement lead to local maxima in the ion

PDF fion(W,pϕ, µ) where W is the particle kinetic energy, pϕ is the canonical toroidal

angular momentum, and µ is the magnetic moment. The energy PDF (constant pϕ, µ) is

peaked near energies associated with heating mechanisms such as neutral beam injection

(NBI) and RF heating, and near the energy of ions produced as fusion products (such as

fusion alphas) - this leads to damping of resonant modes.40 The toroidal momentum PDF

(constant W , µ) can be canonically mapped onto flux coordinate Ψ via:

pϕ = MRvϕ − ZeΨ, (5.1)

where M is the ion mass, R is major radius, vϕ is the ion toroidal velocity, and Ze is

the ion charge. We expect that pϕ decreases as Ψ increases, as the particle density peaks

near r = 0. Thus, the spatial gradient of particles leads to drive of resonant modes, in an

analogous manner to inverse Landau damping.

TAEs resonate with a quasi-2D fast ion PDF where the linear stability is determined by

competing df/d|v| and df/dpϕ.40 These correspond to kinetic resonance with the poloidal

and toroidal transit frequencies ωθ and ωϕ respectively,40,69 given by ω+(m+lp)ωθ−nωϕ =

0. Here, m and n are the poloidal and toroidal modenumbers, and lp ∈ Z 6= 0 correspond

to poloidal harmonics of the drift velocity (see Figure 5.1).

In this chapter, we aim to model the same key instability physics by examining H&C

formation on a 1D bump-on-tail (BOT) distribution. This allows us to model energetic

particle drive via the positive slope of the PDF between the bulk and the beam, while

modelling energetic losses as a damping term.5,8,26,28,29 The evolution of the system is
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determined by coupling the Boltzmann equation to Maxwell’s equations; our model is

given here by a multiple species generalisation of kinetic models used by Vann et al.29 and

De-Gol:26

∂f[l]

∂t
= Ĉ[l]f[l] − v

∂f[l]

∂x
−

q[l]

m[l]
E
∂f[l]

∂v
, ∀l (5.2a)

∂E

∂t
= − 1

ε0

∫
R

v
∑
l

(q[l]f[l]) dv − αE, (5.2b)

where {Ĉ[l]} are collision operators, f[l](x, v, t) is the energetic particle PDF for the

lth species, E(x, t) is the electric field, and ε0 is the permittivity of free space. Damping

is effected in the system via α(x, t), and acts as a sink of electromagnetic field energy,

emulating the effect of the Berk-Breizman collision operator (3.33). Formally, one can

show that this augmentated model still preserves momentum and energy globally (see

derivation in Appendix C.1 from classical field theory) for the case of a single active wave

in the system. The corresponding 1D Landau resonance condition is:

ω + (j + ld)2πv/Lx = 0, (5.3)

where j is the modenumber, ld ∈ Z 6= 0 correspond to harmonics of the 1D drift

velocity, v is the particle velocity, and Lx is the length of the 1D box. For the electrons to

be resonant, we require a suprathermal population of electrons. If this population does not

exist, then the electrons can be treated as a fluid; no electron kinetic instabilities occur,

and electrons only serve to weakly damp plasma waves in the system via Landau damping.

Then, if the electrons are also treated as collisionless:

∂f[l]

∂t
= Ĉ[l]f[l] − v

∂f[l]

∂x
−

q[l]

m[l]
E
∂f[l]

∂v
, ∀l 6= el. (5.4a)

∂nel.
∂t

= − 1

qel.

∂Jel.
∂x

, (5.4b)

∂E

∂t
= − 1

ε0

∫
R

v
∑
ions

(q[l]f[l]) dv − Jel.
ε0
− αE, (5.4c)

where ‘el.’ denotes the electrons, nel. is the electron density, and Jel. is the electron

current density. If one examines the linear complex dispersion relation for this system,

it is trivial to show that the electrons only serve to shift the frequency of the ions in the

system. Therefore, we choose to use a model where we treat the electrons approximately as

a neutralising background. This has the benefit of reducing the computational complexity
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of the model, while still retaining the key physics, provided that the electrons are suitably

cold (such that their contribution to the frequency of ion acoustic waves is negligible). We

then assume a single species of fast ions, and apply the following normalisation:

velocity = vth · v ; time =
1

ωpl.
· t

charge = qion · q[l] ; mass = M ·m[l]

dist. func. =
Nionωpl.
v2
th

· f[l],

where vth is a normalising velocity, ωpl. is the ion plasma frequency, qion is the ion

charge, M is the ion mass, and Nion is the number of ions. The quasi-thermal quantity vth

normalises the energy of the system, but the equilibrium is not a thermal equilibrium. We

choose the value to be the root-mean-squared velocity of ions after thermalization of the

initial PDF, in the absence of electromagnetic interaction:

vth ≡

√∫
v2f(x, v, t = 0) dx dv. (5.5)

This leads to the normalisation:

position =

[
vthω

−1
p

]
· x ; electric field =

[
Nion

mvthωp
q

]
· E.

The model then takes the form:

∂f

∂t
= Ĉf − v∂f

∂x
− E∂f

∂v
,

∂E

∂t
= −

∫
R

∑
ions

vf dv − αE,

(5.6a)

(5.6b)

where we have dropped the species subscript, f(x, v, t) is the ion PDF for the lth ion

species, E(x, t) is the electric field.

5.2.2 Linear complex dispersion relation

The growth rate of an EPM is proportional to:40

γ ∝
[
ω
∂f

∂W
+ n

∂f

∂pϕ

]
ω+(m+lp)ωθ−nωϕ=0

. (5.7)

Here, we take the model used in (5.6a) and (5.6b) and show a posteriori that the growth

rate has the same canonical form as (5.7). Assuming constant frequency and growth rate,
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in the collisionless case we find the linear complex dispersion relation (see Section 2.3):

pj(t = t0) +
αj
2

=

∫
ΩLan.

v
∂

∂v
f0(v, t = t0)

pj(t = t0) + ikjv
dv, (5.8)

where ΩLan. is the suitable Landau contour for the problem. One must take care to

note that here we use f0(v, t = t0), not f(0). This is because here (unlike in Section 2.3),

we are performing a more general linearization at a time t = t0, where t0 may not be equal

to 0. The complex frequency pj is given by pj ≡ γj − iωj , where ωj is the frequency of the

jth mode, and γj is the growth rate of the jth mode. A first-order expansion in v for the

integrand gives the growth rate as:

γj ∼ −
αj
2

+
πωj
2k2

j

∂f0

∂v

∣∣∣∣
v=ωj/kj ,t=t0

. (5.9)

By factorization, one finds that:

γj ∝ −ωj
αj
πv2

j

+
∂f0

∂v

∣∣∣∣
v=vj ,t=t0

.

In this form, one can see that the term ∂f/∂W in a real tokamak (5.7) is modelled

here by the analogous term −παj/v2
j . Therefore, our model captures the same damping

as a tokamak under the following constraints:

1. The energy PDF has approximately constant gradient near resonance.

2. No resonance broadening occurs on the energy PDF.

The term n∂f/∂pϕ in a real tokamak is modelled by the analogous term ∂f0/∂v.

Therefore, our model captures the same drive mechanism as a tokamak under the following

constraints:

1. The growth rate is dominated by the spatially averaged PDF f0.

2. The gradient of f in the v⊥ direction yields a negligible contribution to the growth

rate.

We find that from simulations, collisions modify the linear growth rate γj(αj , kj), but

for the case of sufficiently weak collisions, this correction is negligible.
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5.2.3 Two species model for turbulence

Here, we model the plasma by using two separate PDFs of identical particles: a fast ion

PDF fion with a deterministic phase space trajectory in the absence of electric field, and

a turbulent PDF ftur with a stochastic trajectory. By modelling the plasma using two

separate PDFs, one is able to vary with ease the fraction of particles that are turbulent.

Fluctuations in ftur lead to fluctuations in the electric field via (5.6b). Fluctuations in the

electric field interact with fion via (5.6a), heuristically mapping via αE onto the energy

exchange associated with particle resonance along ∂f/∂W . The model is therefore a two

species plasma:

∂fion
∂t

= Ĉionfion − v
∂fion
∂x
− E∂fion

∂v
, (5.10a)

∂ftur
∂t

= Ĉturftur − v
∂ftur
∂x
− E∂ftur

∂v
, (5.10b)

∂E

∂t
= −

∫
R

v(fion + ftur) dv − αE. (5.10c)

Here, we evolve fion, but prescribe ftur using pseudorandom noise. In lieu of an im-

plemented model beyond Fokker-Planck theory, we instead define the trajectory of ftur

ad hoc to investigate the key resultant physics. For Ĉ = O(∂/∂v)3, one can show that

the resultant hyperjerk equation ∂f/∂t = Ĉf at fixed t can be represented in the form

∂g/∂v = F(g) where g ∈ Rn where n ≥ 3, and F(g) is a smooth function.70 Via the

Poincaré-Bendixson theorem,71–73 this meets the minimum requirements for chaotic be-

haviour; a simple reductio ad absurdum shows that replacing n with a value less than 3

prevents the formation of chaotic solutions.

It is instructive to note that as two identical species, both the non-turbulent and

turbulent fast ions experience the same collision operator. However, while for pitch angle

scattering the individual particle trajectories are stochastic, the evolution of the PDF is

deterministic in the absence of electric field; collective diffusion leads to a well defined

trajectory for fion. In contrast, the turbulent population undergoes processes which lead

to a stochastic evolution of ftur.

Formally, we approximate that for fion, one can use C = O(∂/∂v)2. This is justified

mathematically by arguing that the non-turbulent fast ion PDF exists on a subset of phase

space R2
ion ∈ R2 where its evolution is non-chaotic in the absence of electric field. Therefore,

we utilise a Fokker-Planck diffusive collision operator for fion, in alignment with kinetic
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ω

ωs

ωj

bifurcated
resonant mode

launched
seed mode

t

Figure 5.2: Deterministic drive in reduced dimensionality simulations. A resonant

mode (ωj(t = 0) ∼ ωpl.) undergoing does so in a frequency bandwidth much lower than

the frequency of the launched seed mode with mode drive generated via inverse Landau

damping on the positive slope of F0(v) between 0 and vB.

descriptions of mode chirping based on pitch angle scattering in the literature:28,38,64,74

Ĉionfion = ν
∂2

∂v2
(fion − F0), (5.11)

where fion(x, v, t = 0) ≡ F0(v) is the initially homogeneous ion PDF, and the effective

collisional pitch angle scattering diffusion coefficient ν allows H&Cs to have a finite, non-

zero lifetime. However, it is important to note that the operator relaxes to the initial PDF

(F0); energy transfer may occur during relaxation.

Similarly to the non-turbulent ions, we demand that ftur exists on a non-intersecting

subset of phase space R2
tur 6∈ R2

ion; that is to say it does not exist in non-chaotic regions.

It is instructive to note that these spaces change as a function of time; the deterministic

population fion and stochastic population ftur exist on “transparent grids”, such that there

are no collisions between particles in ftur and fion. We find that a second order collision

operator is insufficient to generate ftur as we require terms O(∂/∂v)3.

By defining fion and ftur on separate subsets of phase space, we remove the ability to

have interspecies collisions. Consequentially, we remove all anomalous thermal transport

from fion that may occur via interactions with turbulent particles. As a result:
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∂fion
∂t

= ν
∂2

∂v2
(fion − F0)− v∂fion

∂x
− E∂fion

∂v
, (5.12a)

ftur = ftur(x, v, t), (5.12b)

∂E

∂t
= −

∫
R

v(fion + ftur) dv − αE, (5.12c)

and fion and ftur satisfy:

fion = 0 ∀ {x, v} 6∈ R2
ion,

ftur = 0 ∀ {x, v} 6∈ R2
tur.

(5.13)

5.2.4 Approximations

We make a few assumptions to simplify the model computationally. These rely on a Fourier

series representation of the PDF and other quantities (as given in Section 1.3), and velocity

Fourier transforms (as given in Section 4.4.1).

First, we replace α(x)E(x) with α(x) ∗ E(x); via the convolution theorem, this allows

for a piecewise product of α and E in k-space. We require this to be able to damp each

mode separately. However, as it does not preserve the canonical form of the Hamiltonian

(see C.1), conservation of energy is violated except for the trivial case where α(x) is a

constant. Here, we examine this trivial case, and therefore ∀j : αj = 2α.

Secondly, we ignore three-wave coupling; this means that no modes exist except for

harmonics of the initial set of modes. We allow this as three-wave coupling of gap TAEs

will generate modes which exist in the Alfven continuum, which are quickly dissipated.40

Thirdly, we also ignore all harmonics of the initial set of modes except for the funda-

mental; this is justified by requiring physically that these harmonics are rapidly damped.

If this assumption holds for the electromagnetic field, it also holds true for the PDF, as

harmonics generated via E∂f/∂v will also be rapidly dissipated.

Finally, we force E0 to be evanescent, and set it to 0 via boundary conditions, removing

mean current from the Maxwell-Ampère law. The aforementioned approximations at the

heart of the model lead to the following caveats:

∣∣∣∣α ∗ E − αE∣∣∣∣� ∣∣∣∣ ∫
R

vf dv

∣∣∣∣, (5.14a)

∣∣∣∣α0E0

∣∣∣∣� ∣∣∣∣ ∫
R

vf0 dv

∣∣∣∣, (5.14b)
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fion,0(v,t>0)

clump

hole

v
~ω/kj

(a) A sketch of a typical set of values

for the fast ion PDF fion,0(v, t > 0): in

the vicinity of v ∼ ω/kj , a H&C can

form during resonance.

v

ftur,j(v,t=0)

vmin vmax

(b) A sketch of a typical set of values

for the turbulent PDF ftur,j(v, t = 0).

The blue dotted line denotes a back-

ground top-hat function whose first ve-

locity moment corresponds to the tur-

bulent number density. The red dashed

line denotes noise which does not con-

tribute to the turbulent number density

or the turbulent particle flux.

Figure 5.3: Sketches highlighting features of ftur and fion. Both ftur and fion have a

constant number of particles.

where (5.14a) justifies the discrepancy between using αE and α∗E, and (5.14b) justifies

exclusion of the spatially averaged free current. Condition (5.14a) is remedied by using

a warm beam with low population (vt � 1, (1 − η) � 1) and by examining modes near

marginal stability, while (5.14b) is never satisfied; however, we find that the free current

is dominated by terms ∼ vfj dv, and therefore we deem this discrepancy to be acceptable.

In principle, (5.14b) is violated, but we find that the induced mean current is very small.

However, it is important to note that there are known physical limitations of this model.

Overall, for a single mode simulation after spectral decomposition and velocity Fourier

transforms, our partial flows examined in D-dimensional Augmented Resonance Kinetic
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solver (DARK) are given by:

∂

∂t
Fv[fion,j ] = −νs2Fv[fion,j ] + kj

∂

∂s
Fv[fion,j ]− isEjFv[fion,0],

∂

∂t
Fv[fion,0] = −νs2(Fv[fion,0]−Fv[F0])− is

4

[
E∗jFv[fion,j ] + c.c.

]
,

Fv[ftur,j ] = Fv[ftur,j ](s, t),
∂Ej
∂t

= −
∫
R

[W · (Fv[fion,j ] + Fv[ftur,j ])] ds− 1

2
αjEj ,

E0 = 0,

(5.15a)

(5.15b)

(5.15c)

(5.15d)

(5.15e)

where W (s) ∈ I is the complex formally divergent integral (which acts a removable

singularity in the current):

W (s) :=
1√
2π

∫
R

veisv dv.

5.2.5 Energy content

The total energy density T of the system is given by (3.28). By taking the partial derivative

with respect to t and integrating over all space afterwards, one finds via the Leibniz integral

rule:

dU

dt
≡ −

∫
R

αE2 dx+
L

2

∫
R

ν
∂2

∂v2
(f0 − F0)v2 dv.

Therefore, energy is injected into the system via Fokker-Planck collisions, and lost

via αj . If we examine the contribution over time from the first term, in the absence of

three-wave mixing one finds via (5.15c):

∆U(t) =

t′∫
0

L∫
0

αE(t)2 dx dt ≈ L

4

∑
j

t∫
0

αj |Ej(t′)|2 dt′, (5.16)

where ∆U(t) is herein refered to as the total energy loss (defined here as positive by

convention).

5.2.6 Seed electric field

We define E using three parts: a perturbation δE, a deterministic part ES , and a stochastic

part EN :

E := δE + ES + EN . (5.17)
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One can show that (5.15d) now takes the form:

∂

∂t
δEj = −

∫
R

W · (f̃ion,j + f̃tur,j) ds− 1

2
αjδEj +Dj ,

where the drive term Dj is given by:

Dj ≡ −
(
∂

∂t
+
αj
2

)
(ES,j + EN ,j).

We desire that the seed terms ES and EN exchange no free energy with the system.

Ad hoc definitions which are independent of δE and {fl} achieve this (see Appendix C.2):

ES,j = Dj(1− εE,j)eiωst ; EN ,j = EN ,j(t),

where ωs is the seed mode frequency, and εE,j allows us to define stochastic seeding

of the electric field with wavenumber kj ; εE,j = 1 is fully stochastic seeding, εE,j = 0 is

non-stochastic seeding. Dj is the typical amplitude of (ES,j + EN ,j).

For EN ,j(t), we use Gaussian noise, with a mean value of 0, and a domain of [−∞,∞].

The standard deviation of the values EN ,j(t) takes is σE,j , which we treat as the typical

amplitude. Accordingly, σE,j = εE,jDj .

In order for the seed field (EN + ES) not to directly interact with the plasma (and

attenuate), the constituent frequencies must be much greater than the plasma frequency.

If we utilise pseudorandom noise, it oscillates on a timescale comparable to the timestep.

For ES , we have to enforce ωs � ωpl. (see Figure 5.2). Physically, this corresponds to an

externally launched wave in the plasma.

5.2.7 Turbulent distribution

The fast ions are modelled using a 1D BOT distribution (see Figure 2.1):

F0(v) =
1√
2π

[
η exp

(
−v

2

2

)
+

1− η
vt

exp

(
−(v − vb)2

2v2
t

)]
, (5.18)

such that (1−η) is the fraction of particles in the beam, vt is the beam width, and vb is

the beam velocity. These act as a suitable analogue for the slowing-down distribution one

typically expects to observe in tokamaks. We define the turbulent population as the sum of

a top-hat function and a noise term; the noise term is defined to yield a particle population

of zero (see Figure 5.3b). This allows us to parametrically modify the stochasticity of ftur
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via noise without changing the total number of particles. After Fourier transforms:

Fv[fion](x, s, t) = F̃0(s) + Fv[∆fion](x, s, t),

Fv[ftur,j ](s, t) =
1√
2π
εf,j sinc

(
sLv
2

)
+ Fv[Nf,j ],

Fv[ftur,0](s, t) = 0,

(5.19a)

(5.19b)

(5.19c)

where Fv[Nf ](x, s, t) is a noise term, and Lv is the length of the domain of F0(v).

Accordingly, the fraction of non-turbulent particles is 1/[1 + εf,j ]. We assume that broad-

band noise in v-space will still be broadband noise in s-space, weighted accordingly via

Parseval’s theorem; accordingly we relate amplitudes as:

|Fv[Nf,j ]|
|Nf,j |

≈ Lv√
2π
.

For Nf,j(v, t), we use raised cosine noise, with a mean value of 0. The codomain is

given by:

Nf,j(v, t) ∈

[
−σf,j

√
3π2

π2 − 6
, σf,j

√
3π2

π2 − 6

]
.

The typical amplitude is equal to the standard deviation σf,j , and accordingly to force

positive ftur everywhere:

σf,j ≤ σ
(max)
f,j ; σ

(max)
f,j =

εf,j
Lv

√
π2 − 6

3π2
. (5.20)

We also require for conservation of energy and particle number (at constant εf ) that

the 0th and 2nd moment of ftur vanish. To enable this, we enforce that Fv[Nf ](x, s, t) has

a real part that is odd, and an imaginary part that is even. One finds that the net energy

content of the turbulent PDF is given by:

Utur =
1

24
εf,jL

3
v. (5.21)

5.3 Stochastic lifetime of hole and clump

Here, we explore how small-scale random fluctuations in the mode amplitude can lead to

a stochastic lifetime of the H&C.
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5.3.1 Simulation setup

We use the DARK code (see Chapter 4) to examine this model. Our global parameters

were selected to be:

vb = 10 ; vt = 4 ; η = 0.95

v ∈ [−28, 88] ; Nv = 8192.
(5.22)

For this sub-model, we consider a system with noise only in the electric field; that is

Nf = 0. We consider no particles in the turbulent population ftur, such that the simulations

reduce to single species.

We examine a single resonant mode in the system with kj = 0.15, which we define

as the fundamental eigennumber of the system (the length of the 1D box Lx = 2π/kj).

This not only approximately coincides with where ∂F0/∂v is maximized on the tail of the

BOT distribution, but also all of the higher harmonics resonate with the bulk particles,

where they undergo strong Landau damping. While some studies have shown that strongly

Landau damped modes can be nonlinearly unstable,35,75 here we assume that this is not

possible due to small initial mode amplitude; this allows us to justify the lack of three-wave

coupling in the model.

Noise in the system is provided by using a pseudorandom number generator (PRNG)

with a given seed value; by using such a method of noise generation, the results are repro-

ducible.

The electric field is only seeded by noise; Dj = 10−7 was used, with εE,j = 0. A set of

2500 simulations were employed, allowing for 50 varying values of tNL := (γj,L)2/[(ωj,(0))
2ν],

each tested for 50 different initial seeds of the PRNG. kj and ν were fixed to 0.150 and

10−7 respectively, with 50 values of αj on the interval [0.06, 0.158]. The low value of ν

justifies a relatively large timestep of ∆t = 0.1.

The timestep was picked to be ∆t = 0.1. This is small enough to allow for a reasonable

frequency analysis without becoming too computationally expensive. Using a window

size of 2000 timesteps, we obtain a frequency resolution ∆ωres. = π/100 provided that

∆ω < ∆ωres. across the timeframe of the bin. Furthermore, the Fourier spectrum of EN

should be dominated by structures in the region ω � ωpl..

It is also a requirement for the code to adhere to the Courant-Friedrich-Lewy (CFL)58

limit for spatial advection in s-space via the piecewise parabolic method (PPM)57 routine;

the number of v-points Nv and the domain of v adheres to the CFL limit.
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Figure 5.4: Energy loss (∆U) observed in a simulation from Section 5.3 with

αj = 0.6. Initially energy is approximately conserved, however the total energy in the

system increases linearly in the nonlinear phase due to injective collisions.

5.3.2 Benchmarking

Energy is not conserved in these simulations; the Fokker-Planck collisions heat the fast ion

PDF, always aiming to restore the energy content in the PDF to U0:

U0 ≡
1

2

∫
R

F0v
2 dv =

1

2

[
η + (1− η)(v2

b + v2
T )
]
. (5.23)

For the purpose of benchmarking, we use a very simple model for symmetric mode

flattening with a local population transfer (f0 − F0) ∼ −(v − v0) exp[−(v − v0)2] near

resonance. This yields the corresponding energy flux from collisions in the weakly nonlinear

regime:

U̇coll. ≡
1

2

∫
R

∂2

∂v2
(f0 − F0)v2 dv ∼ −v0

√
π. (5.24)

We test the energy conservation by examining a simulation with the same parameters

employed in Section 5.3, at αj = 0.6. As is shown in Figure 5.4, the total energy content

in the system is roughly constant initially. As we approach the nonlinear phase, the energy

lost from fion increases sharply. One expects this energy loss to be equal to that lost to

the mode Ej , and damping αj ; the total energy injected into the system via ν at this time

is very small.
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ln |Ej|
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Figure 5.5: Bursting mode near marginal stability. Constituent regions tl, tg, tp, and

td are labelled, corresponding to the lag time, growth time, plateau time, and decay time

respectively.

Once the PDF has suitably relaxed, the deficit in the energy content should asymp-

tote to that lost via damping αj , however we observe a small discrepancy in the energy

content (roughly 0.45% of the total energy content). We believe that this discrepancy is

due to approximations made regarding higher harmonics of fion,j and Ej , and deem this

discrepancy to be negligible for the single burst simulations examined here.

5.3.3 Burst characterisation

To characterise the behaviour of a single bursting event, a set of simulations were used

to produce data for the length of four temporal regions: lag, growth, plateau, and decay.

Each of these regions are labelled in Figure 5.5 for a sketch burst.

For an overall burst time tb = tg + tp + td, the constituent times can fluctuate (func-

tional dependences determined from simulation). The theoretical maximum and minimum

amplitudes were used to create a fit routine, allowing one to acquire from the mode am-

plitude |Ej | the constituent times as a function of the parameters kj , αj , and ν. We find

that these times are not deterministic, but instead are stochastic:

lag : tl = tl,(0) + δtl,

growth: tg = tg,(0),

plateau: tp = tp,(0) + δtp,

decay: td = td,(0) + δtd,

(5.25)

where {δtX} denote stochastic terms. The fluctuation of each of the times has a well

defined mean and standard deviation, and are analysed such that the mean is 0; here, we

find that the lag, plateau, and decay times are highly stochastic. We find that at small
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tNL the mean plateau time tp,(0) is roughly constant, while the mean decay time td,(0) is a

linear function of tNL, while the mean lag time tl,(0) is a nonlinear function of tNL.

5.3.4 Linear phase

When a single mode bursts, the electric field grows linearly via inverse Landau damping,

provided that the mode lies on the positive slope of the beam. For ν = ES = EN = 0, the

frequency and growth rate in the linear phase are determined by (5.8). The overall linear

growth rate for the jth mode is given by:

γj(kj , αj) = γj,L(kj , αj)−
αj
2
, (5.26)

where the unperturbed linear growth rate γj,L is equivalent to γj in the absence of

dissipation.

The frequency ωj,(0) = ωj(t = 0) is the initial eigenfrequency of the jth mode. If one

solves (5.15d) for negligible current, on average:

|δEj |min ≈
Dj

αj/2

[
1− e−αj∆t/2

]
+O

(
e−(αj∆t)

2
)
. (5.27)

The simulated noise is static over a timestep, leading to an error which manifests as

the term ∼ exp(−αj∆t/2).

One can interpret this physically as a finite bandwidth for the noise; we expect ITG

(ion temperature gradient) turbulence spectral frequencies to typically be much lower than

the plasma frequency,63 however here we examine noise with a frequency spectrum that

is typically above the plasma frequency, corresponding to high frequency turbulence. For

both ITG and the synthetic turbulence we use, direct wave coupling between the turbulence

and particles does not occur. As such, we believe that heuristically the results should be

the same, as in both cases the Fourier spectrum of the turbulence is broadband, and not

strongly peaked near the plasma frequency. The peak value for the electric field is the

nonlinear saturation point, which can be approximated by the following value:5

|Ej |max ≈ (γj,L)2. (5.28)

Accordingly, as we expect exponential growth in the linear phase, the total time spent

in the linear phase is given by:

(tg,(0))theory ≈
2

γj
ln

[
αjγj,L

2Dj [1− exp(−αj∆t/2)]

]
. (5.29)
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Simulations were found to strongly agree with this value; we find tg,(0) = (−91.0±8.1)+

(1.15±0.01) ·(tg,(0))theory. The quantity tg does not appear to be stochastic; fluctuations in

the value of tg as a function of PRNG seed are typically about 2 or 3 orders of magnitude

lower than the mean value tg,(0). One finds that the accuracy improves at low αj ; we find

that this is in accordance with theory, as our value for (tg,(0))theory assumes slow damping

(small αj∆t).

At high αj , the expected growth time grows logarithmically until γj,L dominates:

lim
αj→∞

(tg,(0))theory =
2

γj

(
ln

[
γj,L
2Dj

]
+ lnαj

)
.

Interestingly, one finds that even if the linear growth rate is non-zero, the seed electric

field can prevent the mode from growing. This can be shown by setting the growth time

to zero and solving for γj,L:

(γj)min ≈
2Dj

αj
− αj

2
.

If the linear growth rate is below this minimum, the seed electric field quenches the

mode before it has a chance to burst; in order to preserve the true meaning of the linear

growth rate, one should impose a limit on Dj when using high αj :

Dj ≤
α2
j

4
.

This hard limit on the noise level allows one to properly investigate simulations close

to the linear stability boundary.

5.3.5 Nonlinear phase

Once the mode reaches the nonlinear saturation point, resonance broadening occurs, flat-

tening the background PDF fion,0 in the close vicinity of the resonant phase velocity

ωj,(0)/kj . If the mode is marginally unstable, to the extent that:5

αj
2
> 0.2γj,L, (5.30)

a phase space bifurcation in the form of a H&C form on fion,0.

For diffusive Fokker-Planck collisions, the time spent in the plateau and decay regions

has previously been shown to be a function of the timescale5 tNL. We take first order
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Figure 5.6: Values for characteristic times associated with mode bursting. Graphs

showing calculated values for tp(tNL) and td(tNL) from simulations in Section 5.3. Observed

values (‘+’) and mean values (‘•’) from fit routines. Blue solid line (‘-’) denotes a linear

best fit to mean values. a): Plateau time tp: approximately constant as a function of

tNL, with a relative stochastic fluctuation σp/tp,(0) ∼ 10−2. b): Decay time td: increases

linearly as a function of tNL, with a relative stochastic fluctuation σd/td,(0) ∼ 10−1.

Taylor expansions in tNL as follows:

tX,(0) = aX + bXtNL +O(t2NL) =
1

50

∑
seed

tX , (5.31)

where we sum over 50 PRNG seeds. From the simulations, tl,(0) appears to be a

nonlinear function of tNL while td,(0) appears to be linear.

The mean plateau time tp,(0) appears to be constant at low tNL; however at high tNL,

large error in the linear fit reduces our ability to determine the mean time.

We find that ad = (2.56 ± 2.01) × 102, bd = (3.62 ± 0.35) × 10−2, and ap = (1.41 ±

0.04)×104. One should note that the errors here are errors in the linear fit to mean values;

they represent confidence in the functional dependence on tNL, not the stochasticity. We

find that O(bp) = 10−3, allowing us to state tp,(0) ≈ ap for tNL � 106.

5.3.6 Burst stochasticity

We once again take first order Taylor expansions in tNL, but now examining the standard

deviations in {tX}:

σX = cX + dXtNL +O(t2NL) =
1

50

∑
seed

δt2X , (5.32)

where we once again sum over 50 PRNG seeds. We find that generally, σX does not

appear to be a function of tNL. The lag time tl is strongly stochastic, with σl/tl,(0) ∼ 100.
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This is in accordance with theory, as at very low amplitude, ∂|Ej |/∂t is strongly dependent

on the noise term, which is stochastic.

The plateau exists while the H&C have a static population of particles, and therefore,

once the phase space structures dissipate, the mode drops significantly in amplitude. The

time spent in this region, tp, is stochastic; as is shown in Figure 5.6a, the relative fluctuation

σp/tp,(0) ∼ 10−2. We conclude that the point at which this occurs is stochastic, leading to

a stochastic lifetime of the H&C.

The growth and decay times tg and td are defined by the minimum and maximum mode

amplitude. Therefore, any stochastic behaviour reflects fluctuation in the growth rate and

decay rate of the mode. We find that σg/tg,(0) is negligible, implying that mode growth is

not stochastic, as one might expect. However, we find that σd/td,(0) ∼ 10−1, implying a

large fluctuation in the decay rate of the mode (see Figure 5.6b).

5.4 Stochastic suppression of hole and clump

The effects of random, small-scale phenomena have been previously examined in the lit-

erature:5,28,59,66 mechanisms such as pitch-angle scattering can destroy H&Cs. However,

the effect of microturbulence on the evolution of a bursting mode in its nonlinear phase is

relatively unexplored. Recent work by Duarte et al.64,74 proposes that enhanced stochas-

ticity in resonant particle dynamics, in the form of fast ion microturbulence, can be a key

mechanism for chirping suppression in several tokamak scenarios. The prediction stimu-

lated dedicated experiments on DIII-D by Van Zeeland et al.49 with negative triangularity,

known for suppressing drift-like instabilities. The experiments have shown a clear correla-

tion between chirping emergence and scenarios with very low turbulent activity.

Here, we consider a case with a wholly non-stochastic electric field (εE = 0), and

examined the effect of a stochastic PDF ftur on mode chirping.

5.4.1 Simulation setup

We use the DARK code (see Chapter 4) to examine this model. Our global parameters

were selected to be:

vb = 10 ; vt = 4 ; η = 0.95

v ∈ [−28, 88] ; Nv = 8192.
(5.33)

Here, we once again examine kj = 0.15 (see Section 5.3.1 for justification). We use a

seed electric field such that the deterministic part oscillates at ωs = 2.0.
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Figure 5.7: Plots of ln |Ej |(t) from linearly unstable simulations in Section 5.4

with low effective collisionality. The mode amplitude |Ej | undergoes a single bursting

event at t ≈ 0, corresponding to mode chirping. Left plot (with deterministic field) shows

ν = 10−6, Rj = 0; right plot (with stochastic field) shows ν = 10−5, Rj = −2.

One finds that in cases of high collisionality, we must enforce ν / ∆v2/∆t to avoid

numerical inaccuracies where collisions dissipate structures much faster than the timestep.

We fix the linear growth rate to γj = αj/2 = 0.0534, to reduce the parameter space while

still allowing H&C formation (see (5.30)). We fix D at 10−7 and 1/(1 + εf,j) = 98% to

investigate a small electric field drive and a small turbulent population. We define the

relative stochasticity as Rj ≡ log10(σf,j/σ
(max)
f,j ).

In theory, ftur can affect δE via (5.15d). As (W · ftur) ∈ I, one can see that real

stochastic noise will produce an imaginary stochastic term in (5.15d), which will lead to

a scrambling of the phase of coherent structures with wavenumber kj . Consequently, the

coherence of H&Cs can be destroyed, allowing them to rapidly dissipate.

In contrast with EN , as ftur exchanges no energy on pseudorandom time average with

E (see Section 4.4.6), it can instantaneously create perturbations in E which cannot be

induced by finite EN .

5.4.2 Stochastic and deterministic simulations

First, we show 3 simulations with varying collisionality log10 ν = {−2,−5,−6}, and no

noise (Rj = 0). A timestep of ∆t = 0.01 to allow us safe exploration of ν ∼ 10−2. As

is shown in Figures 5.7 to 5.9, high collisionality (ν = 10−2) suppresses mode chirping,

medium collisionality (ν = 10−5) allows for repeated bursting, and low collisionality (ν =

10−6) allows for only a single event.

Next, we highlight the effect of σf,j on the asymptotic behaviour of the mode in Figures
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Figure 5.8: Plots of ln |Ej |(t) from linearly unstable simulations in Section 5.4

with medium effective collisionality. |Ej | undergoes repeated bursting events (t ≈

{0, 22000, 24500, . . . }), each corresponding to mode chirping. Left plot (with deterministic

field) shows ν = 10−5, Rj = 0; right plot (with stochastic field) shows ν = 10−5, Rj = −4.

Figure 5.9: Plots of ln |Ej |(t) from linearly unstable simulations in Section 5.4

with high effective collisionality. High effective collisionality: the system does not

undergo mode chirping. Left plot (with deterministic field) shows ν = 10−2, Rj = 0; right

plot (with stochastic field) shows ν = 10−5, Rj = −1.

5.7 to 5.9, and Figures 5.10 to 5.12; we show results from 3 simulations with ν = 10−5 using

a coarser timestep of ∆t = 0.1, and Rj = {−1,−2,−4}. For low stochasticity (Rj = −4),

the effective collisionality increases; we still observe repeated bursting, however the period

between repeated bursts is characteristic of simulations with ν ∼ 10−4. Here, ftur affects

the stability of fion, but does not make the fast ion population stable; as is shown in

Figure 5.10, the initial H&C is undisturbed, and repeated bursts still occur.

For medium stochasticity (Rj = −2), we find that the repeated bursts are suppressed.

We give two equivalent explanations: the electric field produced by ftur approaches the
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Figure 5.10: Suppression of particle distribution functions from simulations in

Section 5.4 with low relative stochasticity. Black dotted lines in the bottom plots

show the existence (or lack of) H&C at t = 1200. Rj = −4; noise in ftur produces an

electric field, but repeated bursting still occurs.

Figure 5.11: Suppression of particle distribution functions from simulations in

Section 5.4 with medium effective collisionality. Black dotted lines in the bottom

plots show the existence (or lack of) H&C at t = 1200. Rj = −2; noise in ftur produces

an electric field which prevents repeated bursts from occuring, but does not prevent the

mode from initially chirping.

maximum amplitude of the repeated bursts, saturating them. As is shown in Figure 5.11,

the initial H&C still exists, but repeated bursts do not occur.

As we increase to high stochasticity (Rj = −1), we find that the initial burst is sup-

pressed. We find that this is when the electric field produced by ftur has an amplitude

close to the nonlinear saturation point; at this point, the mode does not resonate, even

though it is unstable. Alternatively, ftur prevents the mode from bursting by increasing

the effective collisionality; as is shown in Figure 5.12, the electric field produced by ftur
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Figure 5.12: Suppression of particle distribution functions from simulations in

Section 5.4 with high effective collisionality. Black dotted lines in the bottom plots

show the existence (or lack of) H&C at t = 1200. Rj = −1; noise in ftur produces an

electric field which prevents a H&C from forming; the system is nonlinearly stable.

creates features on the spatially averaged PDF f0(v) = fion,0(v, t = 1200) which affect the

H&C.

5.5 Hole and clump destabilisation

In this section, I move away from the stochastic behaviour examined in Section 5.4, and

instead examine wholly deterministic scenarios. H&Cs have been shown to form when a

marginally unstable mode approaches the nonlinear phase of its evolution, leading to an

adiabatic theory of H&C evolution.5 Particles in the H&C regions resonate with an electro-

static field in Berk-Breizman models - under the adiabatic approximation, the resonating

particles move through phase space, allowing for frequency chirping via nonlinear modifi-

cation of the resonant velocity.28,59 As they do so, they modify the local linear stability of

resonant waves in the system by perturbing the local PDF.

Here, I investigate mode-mode destabilisation via phase space H&Cs in a 1D electro-

static system. By analysing the shape of the PDF, I later show that mode-mode destabil-

isation only occurs for modes that are sufficiently close together in k-space. I discuss the

possibility for such a scenario to exist in tokamaks, and whether this is a suitable candidate

for the origin of ALEs In this section, I do not include a stochastic population as such,

here:

f := fion.
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I herein refer to an initially chirping mode as the master mode (km), and a mode

varying from linearly stable to linearly unstable as the slave mode (ksl.). Depending on

the location in parameter space, the slave mode and master mode may be able to destabilise

each other.

5.5.1 Antisymmetric ansatz

In the construction of this theory of H&C destabilisation, I make a few justified assump-

tions.

As the primary ansatz, I assume that the H&C corresponding to the master mode form

as antisymmetric structures of equal size and shape, that is to say:

∆f0(v+
m, t) = −∆f0(v−m, t),

where ∆f0 ≡ f0(x, v, t = t0) − f(x, v, t) is the spatially averaged perturbation to the

PDF, and v±m are the resonant velocities corresponding to the hole (+) and clump (-) prior

to resonance broadening. The corresponding mode frequency of each branch is given by:

ω±m(t) = ωm,(0) ±∆ωm(t).

The initial frequency ωm,(0) is the frequency of the mode prior to H&C formation, given

by solving (5.8) for t0 = 0. The frequency chirp ∆ωm(t) is predicted by Berk et al. for

early times:5

∆ωm(t) =
16

3
√

3π2
γm,L

√
αj(t− tm), (5.34)

where tm is the time at which the H&C form. The term γm,L is equal to the growth

rate of the mode in the absence of αm damping, but is otherwise given by:

γm,L = γm +
αm
2
.

The ansatz is justified by observation of H&Cs in other simulations (see Section 5.4).

However, this model is not valid for large ∂2f0/∂v
2. Particles resonating with the electric

field do so by coupling to a BGK mode, and therefore one finds that individual particles

have an energy ε0 given by (after normalisation):

ε0 = φ(x, t) +
1

2
(v − vm)2, (5.35)
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w(kj,t)
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Figure 5.13: A sketch of orbit affine parameter ε(x, v, t) at two separate times in

a single mode system with an electric potential travelling with wave speed vj(t)

relative to the observer frame. Dotted lines denote contours of constant ε at an earlier

time, while solid lines show contours of constant ε at a later time. The width λ of the phase

space structure is dependent on the wavenumber of the Bernstein-Green-Kruskal (BGK)

mode, and is taken to be the maximum width of the contour where ε = 0 (the separatrix).

where φ(x, t) is the electric potential, and vm is the phase velocity of the resonant mode.

In this sense, I consider only conservative orbits (see Chapter 3 for other forms of the orbit

affine parameter, ε). For the case where only the master mode has a non-zero amplitude,

the electric field has a well-defined zero at a point x0(vm, t) = x0(vm, 0)−ωjt/kj ; via gauge

freedom one can select x0(0) = 0. One finds that particles with ε0 < 0 are bound within

the BGK structure, while particles with ε0 > 0 lie outside of the corresponding separatrix

in x − v phase space. To first-order in the island width in velocity λ, bound particles

resonate with the particle, while free-streaming particles do not (see Figure 5.13).

Here, we initially consider a single mode, and so by solving at the separatrix, one finds

for λ(km, t):

0 = |φm(t)|+ 1

2
(v − vm)2 ; ∴ λ(km, t) = 2

√
2|Em|(t)
km

.

One should note that the electric field amplitude |Em| ≡ km|φm| by virtue of:

φ(x, t) =

x∫
x0

E(x′, t) dx′,

where we have defined φ(x0, t) = 0. During H&C formation, I assume that the energy

in the electric field is conserved, and therefore:
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|Em| = |E(+)
m |+ |E(−)

m |,

where the indices ± refer to the mode amplitudes associated with the H&C branches

ω±j respectively. This is assumption is justified as H&C formation occurs near the nonlinear

saturation limit for a resonant mode, when |Ej | approximately plateaus.

At t = tm, the two branches have the same frequency (ωm,(0)). Next, we consider

the H&C as two superposed BGK modes lying at the same point in phase space; as the

mode undergoes chirping, we see the H&C move apart, resolving as two distinct structures.

Overall, I consider the system to be degenerate in frequency for t ≤ tm, with both distinct

mode branches manifesting with the same frequency and wavenumber.

As a result of the antisymmetry ansatz, I assume that the two structures have the

same width, and therefore contain the same amount of electric field energy. This therefore

assumes that |E±m| ≡ |Em|/2, and so for the H&C:

λ(km, t) ≈ 4

√
|E±m|(t)
km

, (5.36)

where λ corresponds to the H&C width in velocity.

5.5.2 Cosine perturbation model

With regards to the shape of the H&C, I demand Dirichlet boundary conditions that

preserve the continuity of f0 at the edges of the H&Cs:

∆f0(v
(+)
m ± λ/2, t) = 0 ; ∆f0(v

(−)
m ± λ/2, t) = 0.

This allows for a well defined population of particles at each point in phase space. I

also demand that the trough and peak of the H&C respectively are fixed in accordance

with adiabaticity. Then, I note that the energy of trapped particles in BGK modes is

symmetric with respect to the phase velocity vm as given by (5.35):

ε0(φ, v > vm) = ε0(φ, v < vm).

As BGK modes are expressable solely as a function of energy f [ε0],7 I determine that

the structure must also be symmetric about the resonance velocity, i.e.:

f(ε(v > vm)) ≡ f(ε(v < vm)). (5.37)
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Using these two conditions, we choose a cosine model for the H&C, due to the simple

analytic form it generates for ∂f0/∂v. It is important to note that this shape does violate

Neumann boundary conditions at the edge of the structures (∂f0/∂v is not continuous)

however ∂f0/∂v is continuous everywhere inside the structures. For t0 = 0 (such that one

examines the initial PDF):

∆f0(v, t) ≈
[
F0(vm,(0))− F0(vm)

]
· cos

[
π(v − vm)

λ

]
,

where (v−vm) ∈ [−λ/2, λ/2], and ∆f0(v, t) is zero everywhere else. The phase velocity

vm(t) chirps up or down depending on whether we examine the hole or clump respectively,

such that vm,(0) ≡ vm(t = t0).

As a result, one finds that at the edge of the hole or clump, for t > tm the gradient is

given by:

∂

∂v
∆f0

(
vm ±

λ

2
, t

)
=
π

λ

[
F0(vm,(0))− F0(vm)

]
. (5.38)

The linear complex dispersion relation (5.8) considers the initial PDF as well as the

perturbation to it at t = t0. Therefore, the linear stability of a mode is parametrically

affected by the mode amplitude of a chirping mode.

5.6 Two-mode destabilisation

In this section, I utilise computation techniques as well as the semi-analytical model from

the previous chapter to examine two-mode destabilisation of H&Cs.

The perturbation ∆f0 modifies the local gradient of the spatially averaged PDF f0,

allowing a H&C to destabilise a mode that was previously linearly stable by instantaneously

increasing the linear growth rate.

We can now illustrate the approximate form of the growth rate for the slave mode;

using (5.9), (5.36) and (5.38), for a slave mode with a resonant velocity vsl. at the edge of

a hole or clump being destabilised by a chirping mode with initial resonant velocity vm,(0):

γsl. ∼ −
αsl.
2

+
πωsl.
2k2

sl.

∂F0

∂v

∣∣∣∣
v=vsl.,t=t0

+
π2ωsl.
8k2

sl.

√
km

|E±m|
[F0(vm,(0))− F0(vsl.)], (5.39)

where t0 is now the time taken for the chirping mode to reach the second mode. In

reality the resonant velocity is modified by the PDF itself, as the linear complex dispersion

relation is also dependent on the PDF itself. Therefore, in later analysis I substitute (5.38)

into (5.8) and solve directly to give a more accurate result.
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However, this approximate form allows one to predict two behaviours: γsl. should

decrease linearly with αsl., and if the hole or clump dies before reaching the second mode,

the final term is zero, leading to a sharp change in γsl..

5.6.1 Simulation setup

I use the DARK code (see Chapter 4) to examine this model. The global parameters were

selected to be:

vb = 10 ; vt = 4 ; η = 0.95

v ∈ [−28, 88] ; Nv = 8192.
(5.40)

For these simulations, I take EN = 0 and Nf = 0, such that the simulations are fully

deterministic. I use a timestep ∆t = 0.1 (see Section 5.4.1 for justification).

A set of simulations were run for simulation time 40000ω−1
pl. . The evolution of a hole

was examined for a master mode fixed at km = 0.200, αm = 0.034394. This gives a linear

growth rate γm = αm/2, which removes one dimension from the parameter space, and

satisfies the inequality given by Berk et al.:5

0.4γj,L < αj .

One preliminary simulation was computed with only the master mode (Nk = 1) to allow

for measurement of the lifetime of the hole, th. For t > th, the hole is rapidly dissipated,

until the structure cannot affect the slave mode. From (5.34), the maximum frequency

chirp is given when considering this lifetime:

∆ωm(th) =
16

3
√

3π2
αm
√
αmth. (5.41)

The maximum distance travelled in v-space is therefore given by ∆vm(th) = ∆ωm(th)/km.

Let us approximate for now that ωm ∼ ωsl. ∼ 1 (as ωpl. is normalised to 1). Then, if we

take a rough estimate with destabilisation occuring when vm(th) = vs:

∆kest ∼
∆ωm

1 + ∆ωm
km, (5.42)

where ∆k := km − ksl., and ∆kest denotes an estimate of the maximum distance in

k-space where the mode-mode interaction still occurs.

I found that for ν = 10−7, the preliminary simulation had th = 1.2×104, in turn giving

an approximation of ∆kest ∼ 0.036; this mode spacing corresponds to a maximum distance

in v-space that is still on the positive slope of the beam (vh ∼ 6.1).
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This allows one to construct a parameter space scan with the master mode and slave

mode (Nk = 2), taking 100 values of ksl. on the interval [0.100, 0.199] and 80 values of αsl.

on the interval [0.1, 0.9] to form a set of 9000 simulations. This parameter space allows

ones to examine initially linearly stable and unstable modes, and allows one to examine

modes with ∆k < ∆kest, and ∆k > ∆kest; the simulations with ∆k / ∆kest are expected

to demonstrate mode-mode destabilisation.

A timestep of ∆t = 0.1 was used to adhere to the CFL limit on s-space advection.58

The length of the box is set to L = 2π/0.001 to enable high-fidelity scanning in ksl.. A

seed mode amplitude Dj = 10−7 enables mode growth while giving a contribution to E

lower than the typical nonlinear saturation limit (∼ e−6).

5.6.2 Characterisation

For frequency analysis, a short-time Fourier transform (STFT) was used on the electric field

components {Ej(t)} to produce frequency spectra (see Section 6.4.1 for more information

regarding the STFT procedure). I use a Hanning window, with a size of 8000 timesteps;

this allows for a frequency resolution of ∆ω = π/400, as δω1 < ∆ω across the timeframe

of the bin. I found that this window size suitably optimises the balance between frequency

resolution and time resolution.

Here, I have recognised 6 key characterisations for discussion of the behaviour of each

mode (see Figure 5.14): quiescence, fixed-frequency, up- and down-chirping, up-chirping,

down-chirping, and repeated up- and down-chirping. Figure 5.15 contains four plots show-

ing the different mode characterisations assigned to each simulation as a function of damp-

ing parameter αj and mode spacing ∆k.

Repeated and non-repeated characterisations for up-chirping and down-chirping are

very similar; they are distinguished by examining whether a cluster of chirping events

occurs after an initial cluster of events.

Each simulation was manually characterised by viewing ω(t) as given by the STFT

routine, and ln |δEj |(t) as outputted by the DARK code to produce a validation data set,

containing 4450 simulations in the parameter subspace ∆k ∈ [0.0, 0.05], {αsl.} ∈ [0.1, 0.89].

Far from the characterisation boundaries, the simulations produce spectrograms which are

‘typical’ of a given characterisation; manual characterisation from these regions was used

to construct a training data set for a machine learning (ML) algorithm.

As is later extended in Chapter 6 in the form of the ML framework Experimental Res-

onant Instability Correlation Studies on NSTX (ERICSON), the software scikit-learn
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Characterisation E-field Freq. behaviour

• (quiescence) ∂

∂t
ln |δEj | = 0∀ t ωj = 0

� (fixed-frequency) lim
t→0

∂

∂t
(ln |δEj |) ≈ const. ωj ≈ ωj,(0) ∀ t

F (up- and down-chirping) lim
t→0

∂

∂t
(ln |δEj |) ≈ const. ωj = ωj,(0) ±∆ω± ∀ t

N (up-chirping) lim
t→0

∂

∂t
(ln |δEj |) ≈ const. ωj = ωj,(0) + ∆ω+ ∀ t

H (down-chirping) lim
t→0

∂

∂t
(ln |δEj |) ≈ const. ωj = ωj,(0) −∆ω− ∀ t

� (repeated up- and down-chirping) lim
t→0

∂

∂t
(ln |δEj |) ≈ const. ωj = ωj,(0) ±∆ω± ∀ t

Figure 5.14: Table detailing the characterisations of the state evolution explored

in Section 5.6.2. The 6 characterisations examine the evolution of the electric field mode

amplitude |δEj | and the mode frequency ωj .

Master mode Slave mode

Training set accuracy 1.000 0.957

Test set accuracy 1.000 0.910

Validation set accuracy 0.978 0.606

was used to create a random forest classifier (RFC) which utilised fit data sets created from

the manual characterisation data. The master mode training data set included 14.02% of

the data (1248 simulations), while the slave mode training set included 4.14% (331 simu-

lations). By using regions far from characterisation boundaries, the ML algorithm allows

one to reliably determine the location of the characterisation boundaries without the in-

evitable cognitive bias from human classification. Furthermore, the relatively low ratio

between fit data and full data allows one to provide confidence in the characterisation

without overfitting.

As the frequency spectrogram is simply a human-readable representation of the data

for characterisation, the RFC was given the original electric field data in the form of

{<(δEj(t)),=(δEj(t))} as training samples. Out of the fit data, 70% was used to construct

the training set, and 10 estimators were used in the random forest. I obtained the following

fit statistics from the RFC:
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where the accuracy is the fraction of characterisations from the RFC that agree with

the given data set. In simulations with ‘quiescence’ for a given mode, I find that the

only contribution to the mode amplitude is the contribution given by the seed mode with

amplitude Dj . As the seed mode does not exchange energy with the system, it should not

affect the amplitude of δE. However, using a discrete time grid leads to a numerical flaw.

As previously discussed in Section 5.3.4, for negligible current, one finds that an electric

field is generated. In the absence of mode-mode interaction, one expects to always observe

up-chirping and down-chirping for the master mode, and quiescence for the slave mode.

At low αsl., the slave mode is initially linearly unstable (γsl.(t = 0) > 0). For low ∆k

simulations, the master’s hole meets the slave’s clump, creating a region on the PDF which

is close to flat. For this phenomenon to occur, the separate H&C have to exist for long

enough to meet, and therefore the modes have to be close enough in k-space - that is to

say, at high ∆k one simply observes uncorrelated chirping in both modes. The up-chirping

branch from the master mode frequency spectrum is shown to rapidly vanish, coinciding

with a vanishing branch in the slave mode frequency spectrum.

In these scenarios, one may expect to observe fixed-frequency behaviour in both of the

branches; physically, this corresponds to particle transport from the clump into the hole,

filling the population deficit as the structures merge in phase space. However, other H&Cs

in the system saturate the frequency spectrograms and disturb the fixed-frequency regions

(see Figure 5.16a).

As we increase αsl. (0.15 < αsl. < 0.2) the slave mode is initially linearly stable (γsl.(t =

0) < 0). In these simulations, the slave mode has a possibility to become destabilised by

a master hole; depending on ∆k, one observes different characterisations (as shown in

Figure 5.15). At sufficiently low ∆k, the two modes are close enough to interact. The

slave mode undergoes mode flattening, and the corresponding particle transport into the

hole is small - one now observes H&C formation in the master mode at low ∆k where

previously one would have only observed clump formation. As one decreases in ∆k, we

begin to observe mode chirping in the form of down-chirping (corresponding to clumps).

For high αsl. (0.75 < αsl. < 0.9) the slave mode tends to approximately undergo mode

flattening if destabilised (see Figure 5.16b), with any frequency chirping being indistin-

guishable from the bandwidth in frequency of the resonance broadened mode.

As one might expect, I found that repeated chirping clusters in (∆k, αm space for the

master mode only occur when the slave mode produces clumps; in all other simulations,

the master mode only exhibits one cluster of chirping events. Interestingly, we find that
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Figure 5.15: Characterisation of the master mode (left plots) and slave mode

(right plots) as function of (∆k, αm) across the set of simulations. The character-

isation boundary (�-F) for the master mode occurs at similar values to the union of three

boundaries for the slave mode: (H-�) ∪ (F-�) ∪ (F-N). This phenomenon occurs because

(�) simulations require the production of slave clumps, which are missing for simulations

where the outside of the boundary (H-�) ∪ (F-�) ∪ (F-N) for the slave mode.

destabilised slave modes undergo preferential up-chirping or down-chirping depending on

the mode spacing ∆k. It is possible that due to asymmetry in ∂2f/∂v2 in proximity of

the slave’s resonance, the ansatz in Section 5.5.1 is violated (assumption of antisymmetry),

leading to asymmetric chirping.

Unexpectedly, I found that highly stable slave modes (with high αsl.) are less likely to

chirp when destabilised. While this might appear to be in contradiction with the inequality

given by Berk et al.,5 I argue that they simply give an upper bound on the equality.

Including the upper bound, we find that if we consider the maximum αsl. at which the

RFC categorises the slave mode as chirping:

0.4γs,L < αsl. < 0.7. (5.43)

126



CHAPTER 5. STOCH. AND DET. MODELLING OF H&CS B.J.Q. Woods

(a) Master mode and slave mode characterised as � (repeated chirping) and F up- and down-

chirping) respectively. The slave mode is initially linearly unstable, undergoing chirping. The

second chirping event in the master mode is due to destabilisation by a slave clump. The slight

asymmetry is evidence of H&C annihilation; the master mode undergoes more down-chirping (fewer

holes), while the slave mode undergoes more up-chirping (fewer clumps).

(b) Master mode and slave mode characterised as F (up- and down- chirping) and � (fixed-

frequency) respectively. In this scenario, the slave mode is weakly destabilised by a master hole,

allowing the mode to exhibit fixed frequency behaviour.

Figure 5.16: Frequency spectrograms for the master mode, ωm(t) (left plots) and

slave mode, ωsl.(t) (right plots) for ∆k = 0.045. Top plots are for αsl. = 0.150, bottom

plots are for αsl. = 0.750.

5.6.3 Energy loss

Figure 5.17a allows one to easily analyse the total energy lost ∆U as a function of ∆k

and αsl.. The background colour shows a baseline energy loss dictated by bursting of

the master mode in the absence of mode-mode interaction. Therefore, in the absence of

destabilisation, there should be no extra energy lost; the increase in energy loss is a wholly

nonlinear phenomenon. Added lines denote γsl. = 0 for the slave mode under certain

considerations; the white line ignores destabilisation (and is therefore γsl.(t = 0) = 0),
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while the cyan line allows for destabilisation by holes with a finite lifetime.

As one might expect, large energy losses occur for γsl.(t = 0) > 0 (to the left of the

white dotted line). In these scenarios, both modes are unstable, losing a large amount of

energy as expected from (5.16).

For γsl.(t = 0) > 0 (left of the white dotted line), two effects contribute to large energy

loss. Firstly, the slave mode has αsl. � αm, and therefore yields a higher contribution

to ∆U than the master mode. However, as the characterisation plots reveal this is not

the only effect; close to the destabilisation boundary ∆k ∼ ∆kest, the slave mode emits a

backpropagating clump that interacts with the master mode. The lifetime of the combined

burst in master mode amplitude can be up to twice as long in some cases. The overall

combined effect can lead to a substantially greater energy loss than is observed in the single

mode case; as is shown in Figure 5.17a, the energy density loss ∆U/L can be up to two

orders of magnitude greater, increasing from a value of ∼ 0.02 to a value up to ∼ 2.00.

This result is somewhat counterintuitive, as one finds that injecting more stable modes in

k-space (increasing the mode density) allows for a greater energy loss than occurs in the

single mode case.

Furthermore, one can see that for some simulations with γsl.(t = 0) < 0 (right of the

white dotted line in Figure 5.17a), there is an increase in ∆U/L. This is due to mode-

mode destabilisation; the slave mode is destabilised by the master mode, but as is shown

in Figure 5.15, the master mode is destabilised in some scenarios by a clump corresponding

to the slave mode. The combined effect leads to greater energy loss than one would observe

in a single mode case.

5.6.4 Destabilisation boundary

To calculate the maximum distance in k-space where mode-mode interaction still occurs,

I build upon the analysis used in Section 5.6.2. First, we find ωm,(0) (the initial mode

frequency) exactly by using (5.8); the linear complex dispersion relation for the master

mode can represented as two real integral equations with 2 unknowns: ωm and γm.

Next, I use the cosine model given by (5.38), and therefore require the hole width λ. I

assume that only a single master hole exists, with a mode amplitude approximately equal

to the nonlinear saturation limit given by5 |Em|(NL) ≈ α2
m.

Finally, I find vm(th) (the velocity of the hole after maximum chirp) using ωm,(0) and

(5.41). Then, I now substitute this and the hole width λ directly into (5.38), and in turn

we substitute ∂∆f0/∂t into (5.8) and solve directly. The resultant complex equation for
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(a) Energy loss from the system via electric field

damping αm = 0.034394 and αsl. ∈ [0.1, 0.7].

White dashed line denotes γsl.(t = 0) = 0 for the

slave mode; for αsl. less than these values, the

mode is initially linearly stable. Cyan dashed

line denotes the predicted γsl.(t) = 0 after the

H&C have moved for a time th from the cosine

model; the hole produced by the master mode

km is able to destabilise the slave mode ksl..

(b) Energy loss from the system via electric field

damping αm ∈ [0.1, 1.2] and αsl. = 0.3. The

threshold mode spacing at which destabilisation

stops occurring (indicated by a sharp drop in ∆U

with increasing ∆k) initially increases weakly as

a function of αm; as we approach linear stabil-

ity (αm > 1.13), the energy loss drops sharply

again.

Figure 5.17: Destabilisation plots from two-mode simulations in Section 5.6.3

and Section 5.6.4. At suitably small mode spacing ∆k := km − ksl., the slave mode ksl.

can become destabilised.

the slave mode can represented as two real integral equations with 2 unknowns, ωsl. and

ksl.. I have now fixed γsl. = 0, and use αsl. as an input. Unfortunately, this equation is

singular, owing to the pole v = ωj/kj on the real axis of the right hand integrand in (5.8),

and so I instead seek a very small growth rate such that <(p) = 0.001. This small tolerance

allows an integral solver to converge.

I therefore predict that the boundary exists for these simulations at ∆kmax ≈ 0.043 for

0.3 < αsl. < 0.7, in very good agreement with the observed boundary between quiescence

and mode growth for the slave mode (see Figure 5.15). The full boundary ∆kmax(αsl.) as

calculated here is shown in cyan in Figure 5.17a.

If one fixes αs (mode damping for the slave mode) and instead varies αm (mode damping

for the master mode), one would expect from the form of (5.42) that ∆kmax should be

roughly constant at high αm, and linear at low αm. Figure 5.17b shows results from 11100

simulations with 111 values of αm ∈ [0.1, 1.2], and 100 values of ksl. ∈ [0.1, 0.2]. Indeed,

I notice a similar trend; Figure 5.17b shows the energy ∆U as a function of ∆k and αm,
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until the point where the master mode starts to approach linear stability (αm > 1.13),

when the energy loss falls dramatically.

5.7 Brief conclusions

In this chapter, we investigate the role that stochasticity may play in 1D kinetic plasmas.

In Section 5.3, we found that for the case of weak stochasticity, mode chirping is not

wholly deterministic; the shape of the burst in mode amplitude can be determined on

average analytically, but varies depending on the noise seed employed. We also found

that stochasticity can suppress hole and clump formation when the distribution function is

particularly noisy. Later in the chapter, I showed that holes can parametrically destabilise

linearly stable modes in the system by causing strong, local deformation of the background

distribution function.
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Chapter 6

Identifying kinetic instabilities in

tokamaks using ML

6.1 Overview

Tokamaks feature a high-dimensional parameter space (ion temperature, magnetic flux

density, ion number density, etc.) with large operational domains. For certain plasma

parameters, stability transition has been shown to suddenly occur over small regions of

parameter space, as is observed with the L-H mode transition76 and edge localised mode

(ELM) crashes.77 Accordingly, certain regions of parameter space have boundaries between

different states of plasma stability. However, the transition that leads to abrupt large events

(ALEs) is not fully understood. Previous work has shown correlation between fast ion beta

and neutral beam injection (NBI) beam energy,78 but a large area of parameter space still

requires analysis.

A variety of machine learning (ML) algorithms can be used to analyse these data sets.

In general, ML algorithms allow one to produce maps from the plasma parameter space

to an output space which can take many different forms. The majority of work in nuclear

fusion deals with two types of output spaces: characterisation spaces, and prediction spaces.

ML algorithms which map onto a set of characterisations allows one to understand

the behaviour of the plasma in a more ‘human’ fashion. Typical scenarios involve image

recognition and phase identification. Image recognition is an important part of physics, as

humans commonly cast data in a visual format to enable easier interpretation, with ex-

amples including spectrogram analysis of plasma/field perturbations. Phase identification

is also a crucial part of physics, where large changes in the system behaviour occur over

small regions of parameter space (phase boundaries), with small changes occuring in given
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regions (phases). By identifying spectrograms, one can gain further insight into the physics

at play (see Section 6.4), and by mapping out different phases in parameter space, one can

determine possible routes for tokamak operation that may optimise plasma performance.

ML algorithms which predict the time evolution of the plasma parameter space are

also of great interest. Typical scenarios involve simulation emulation, and phase transi-

tion. Codes such as QualiKiZ12 allow one to reproduce the results of simulations without

performing the simulations (after training). This emulation leads to a vast increase in the

computational speed of such a simulation, allowing one to reproduce the results of compu-

tationally expensive codes in a fraction of the time. ML for the purpose of phase transition

has also been explored recently, primarily for disruption prediction.13 By predicting phase

transitions early, it is possible to create ML based ‘smoke alarms’ that may allow for real

time avoidance of disruptions if considered as part of the systems control loop.

Sometimes overlap exists between some of these outcomes; generative topographic map-

ping (GTM) has recently been used to both map out disruptive and non-disruptive phases

of the parameter space in a reduced space, and also to consequently predict the occurance

of disruptions.79

In Section 6.2, I give a brief introduction to ML for the reader. In the remaining sections

of this chapter, I detail work carried out in collaboration with Princeton Plasma Physics

Laboratory (PPPL). In this work, we explored the possibility of using ML to enable rapid

characterisation of frequency spectrograms, allowing us to produce correlations based on

derived data sets with a high parameter space density.

6.2 Introduction to ML

For the benefit of the reader, the recent review paper by Spears et al.80 provides a strong

overview of accomplishments in the field, but also describes a variety of ML techniques at

an overview level.

6.2.1 ML maps

Suppose we consider a map Mj from an input space X to an output space Yj , as shown in

Figure 6.1:

Mj : X → Yj . (6.1)

This process is designed to somewhat mimic human cognitive processes. For example,

a human capable of identifying Arabic numerals by eye (0, . . . , 9) is able to identify (in

132



CHAPTER 6. IDENT. KIN. INST. IN TOKAMAKS USING ML B.J.Q. Woods

y0

y1
...

Mj

?

YjX

x0

x1

...

Figure 6.1: ML maps. An input space X is mapped onto an output space Yj with the

map Mj ∈M , where M = {Mj} is a set of allowed maps.

most scenarios) a number based on visual input. Interestingly, the human can never be

said to be 100% accurate. Nevertheless, most humans tend to be highly accurate at simple

identification tasks such as this. The mapMj allows the human to cognitively analyse this

problem, taking visual inputs and producing a classification.

One can therefore consider how to replicate this map with a ML algorithm. This can

be achieved by considering the ML framework as a set of allowed maps (M = {Mj}),

which after training takes the form of a specific map (MT ) by using some form of opti-

mization. Just as a human may learn in a supervised or unsupervised manner, so too can

a ML algorithm. This map is such that an overall ‘figure-of-merit’ is locally or globally

maximized:

MT := best(M,T ), (6.2)

where best(M,T ) is a function that returns the best map, and T is a set of training

data (a null set for unsupervised methods). As a result, the map which is returned is a

function of both the training data, and the available set of maps.

Delving further into the ‘best map’ function, one can represent this alternatively with

respect to a loss function:

MT = arg min
Mj

L(Mj , T ), (6.3)

where L(Mj , T ) ∈ R[0,∞] is the loss function which is minimized for the best map, viz.

this should be zero if Mj = MT . One has freedom of choice for the functions best(M,T )

and L(Mj , T ); some training algorithms and optimization methods may work better than

others. To conclude, one is left with four fundamental choices:
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X

M0

M1

...

Xj

Y0

Y1

YTMT
...

Figure 6.2: Training. With ML algorithms, one aims to produce a map MT : X → YT ,

where YT minimizes the loss function. Finding this map is called training the algorithm. By

minimizing the loss function, the map MT gives the ‘closest’ data set to the training data

set. loss functions with multiple local minima may require global minimization schemes;

for example, loss functions separable into a slowly varying part with one global minimum

and a noisy/stochastic part may benefit from optimization methods such as Tabu search.81

• The type of ML algorithm. This defines the type of map that is used.

• The optimization routine. By choosing the loss function and the algorithm for

minimizing the loss function, we may achieve differing degrees of success.

• Hyperparameters. These allow us to choose a specific map to use.

• The training data. The better quality the training data, the better the ML algo-

rithm will perform.

6.2.2 Hyperparameters

The map Mj can alternatively be represented via a set of parameters Pj depending on the

type of ML algorithm, A = {Ak}, represented as a space of generalised functions:

Ak : P (Uk)→M, (6.4)

where Uk is an element of the hyperparameter space U (i.e. number of nodes in a

neural network), P (Uk) is a map which produces parameter spaces determined by Uk (i.e.

all possible weights in a neural network, given the number of nodes), and Mj is a map

from input space X to output space Yj . This is easiest illustrated through the use of an
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example. One can examine ML algorithms which give the triangular numbers (one input

x, one output y). To begin, one can consider the following simple algorithm, represented

as a single summation operation:

A
(sum)
k : M =

{
bx∑
n=a

n

∣∣∣∣ (a, b) ∈ P (Uk) ; P (Uk) = R2

}
.

The two parameters (a, b) determine the value given. The set of available maps M is

equivalently represented by the parameter space P = {Pj}. Note thatM is not an element

of a function space, as in general Yj 6= Yi for some (i, j). One wishes to use a training

algorithm which finds the best map MT ; this is achieved by using a training algorithm

which tweaks the parameters to find the optimum set PT . Training algorithms map from

Ak onto a map Mj , as shown in Figure 6.2. To do this, they select parameters which are

an element of the parameter space P (Uk) which minimise the loss function. By inspection,

if a = b = 1, then the map will correctly reproduce the triangular numbers (training set

T ) for T = MT (x).

However, the algorithm used to find the triangular numbers is quite specific. While

this algorithm works in this example, one cannot use it for a wide variety of problems.

In general, the more specific the algorithm is, the better it will perform. However on the

whole, one does not fully understand how the outputs are generated for all ML problems

a priori, and therefore it is advantageous on the whole to use more generally applicable

maps.

A different algorithm which is much more general involves nesting operations of the

form x 7→ ax+ b:

A
(nest)
k : M =

{
N∏
k=1

Ôkx

∣∣∣∣ Ôkx = akx+ bk ; (ak, bk, · · · aN , bN ) ∈ P (N) ; P (N) = R2×N

}
,

where the hyperparameter N determines how many times we nest operations. This is

heuristically quite similar to an N -layer neural network with one node per layer. Again,

one finds that this algorithm can produce the triangular numbers if N = 2, a1 = b1,

b2 = 0, and a1b1 = 0.5. If the hyperparameter is too small (N < 2), the algorithm cannot

reproduce the triangular numbers. However, if the hyperparameter is too large (N � 2),

there are far too many local minima, and it is difficult to find parameters in P (N) which

produce the triangular numbers truly accurately.

The concept of using nested, general functions can be extended to ML algorithms on

the whole. Hyperparameters are typically selected by the trainer, and are in general
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not optimized by the routine. During training, for the given set of hyperparameters, the

map is optimized.

6.2.3 Decision tree classifiers

Decision trees are perhaps the most intuitive ML algorithm, and are widely described in

the literature.82,83 Here, I will briefly cover how they work, what hyperparameters they

take, and their flaws.

A decision tree takes a set of Nf inputs known as features. The features map onto a

real number for output. Decision trees which perform discrete value output are known as

classifiers, and trees that perform continous value output are known as regressors.

The most commonly used algorithm family for training both is the classification and

regression tree (CART) algorithm. At the start of CART algorithms, the training data

set exists on a root node. This data set is made up of a number of samples, each sample

containing Nf features. At each node (starting at the root), the decision tree will examine

different ‘cuts’ made in the input space, called decisions. Formally, this cut is an inequality

(either xn < a or xn > b). During training, the decision that is selected by CART is the

one which minimizes a given loss function. After a decision has been made, the data on

a node is split into two, and passed onto leaf nodes: data that satisfies the inequality is

passed to one leaf, while data that violates the inequality is passed to another leaf. On

each leaf, the process is repeated again, involving further and further splitting of the data.

A connected path of leaf nodes is called a branch. A branch ends at a terminal node,

with the termination condition dependent on a few conditions. For decision tree classifiers

(DTCs), upon termination, the node is assigned a value for classification.

As an example, Figure 6.3 illustrates a possible tree that can be grown for an AND

gate. The maximum depth of the tree (number of nodes in longest branch) is 2, and it

is fairly trivial to obtain perfect accuracy with very little data. Typically, the termina-

tion condition for a decision tree is that the loss function reaches a given threshold, but

other hyperparameters can also be employed. After training, the decision tree acts as a

‘flowchart’, such that a single new sample will be classified on input according to the tree.
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x1 < 1
T F

F
T

x2 < 10

0 1

0 1

1

0

x2

x1

Figure 6.3: Decision tree for an AND gate. An AND gate can be correctly trained by

using 4 data points in the training set T . A CART algorithm using Gini impurity will aim

to minimize the Gini impurity in each leaf node on the tree. The first decision made will

be to check whether x1 < 1. If it is, then all of the training data points predict an output

of 0. Therefore, the corresponding leaf node is a terminal node with a Gini impurity of 0

(all data is of the same classification, 0). If x1 ≥ 1, then the Gini impurity is 0.75 in the

corresponding leaf node. By making a subsequent decision of x2 < 1, the Gini impurity

is minimized in the corresponding leaf node (all data is of the same classification, 0). All

data with x2 ≥ 1 also minimizes the Gini impurity. The decision tree extrapolates beyond

the given input space; it predicts an output of 1 for x1 ≥ 1, x2 ≥ 1 and an output of 0

elsewhere. As a result, generally it is best to restrain classification after training to being

within the bounds of the training data. Otherwise, the accuracy of the algorithm outside

of the neighbourhood of the training data cannot be adequately predicted, and may be

quite low.

Gini impurity

One loss function that is very commonly used for DTCs uses the Gini impurity, IG. This

figure-of-merit is given on a single node by:

IG :=
∑
k

[pk(1− pk)] , (6.5)

such that it is the sum over all classifications of the product of the probability of a

sample being of classification k, and the probability of it not being of classification k. The

Gini impurity is minimized when all samples on a node are of the same classification, and

varies between 0 and 1. By using CART and the Gini impurity, one can construct a loss

function overall for a tree:
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L(Mj , T ) =
∑
nodes

IG({pk}),

where pk = pk(Mj , T ). The probabilities are determined by the training data T ,

and the decision on the node (which thereby creates the map Mj). This loss function is

particularly useful, as one can minimize it by minimizing the Gini impurity in each leaf

node, and then produce subsequent branches with minimized Gini impurity (allowing us

to create a decision tree).

Decision contours

The decisions that the tree is trained to make leads to contours in the input space, splitting

up different characterisations. As each decision is an inequality referring to a single feature,

each cut made in the input space is made in Cartesian coordinates.

One can consider visually that every decision made (the parameters for the algorithm)

lead to the decision contours observed. Therefore, by inverting the problem, it is trivially

found that a non-Cartesian decision contour that exists in the true map between X and

T will require many cuts in the input space. The number of cuts in the input space scales

with the tree depth (maximum number of leaves on a branch), and therefore by increasing

the branch depth, one expects higher accuracy in the decision tree algorithm.

If the tree depth is too small, not enough decisions are made, and the parameter space

is poorly characterised (underfitting). However, if the tree depth is too large, too many

decisions are made, and the parameter space can be poorly characterised (overfitting).

This can occur if the algorithm hones in on anomalies in the input data set, or regions in

the input space where characterisation is noisy/chaotic.

However, the number of cuts required to resolve a decision contour is maximized for

diagonal lines and minimized for Cartesian-aligned lines. The former corresponds to highly

collinear inputs, where as the later corresponds to uncorrelated inputs. One therefore ex-

pects that the accuracy of characterisation oscillates as ∼ sin2(2θ), where θ is the angle

between the line tangent to the contour, and a line aligned with a given Cartesian coor-

dinate in the input space. This leads to an important problem with decision trees, where

overfitting can occur in some regions of the input space, and underfitting in others.

Furthermore, the density of points in the training data plays a crucial role. If certain

areas of the input space are uncharacterised, the predictions made by the algorithm will

be poor in that section. If area of the input space are relatively densely populated in the

training data, one may use a deeper tree, at detriment to the sparsely populated areas.
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(max depth 2)
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x1

(max depth 5)
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x2'

x1'

Figure 6.4: Sketches to illustrate principal component analysis (PCA). principal

component analysis (PCA) performs a Cartesian translation and rotation of the input

space onto a space where the unit vectors are given by the eigenvectors of the covariance

matrix of the input data set. Mathematically, this produces a spatial representation of

the data where the transformed inputs have the lowest possible amount of collinearity. An

idealised case of PCA is shown in the figure, where a collinear 2D input space (nonlinearly

correlated inputs (x1, x2)) is transformed onto a space with no collinearity (uncorrelated

inputs (x′1, x′2)), with two corresponding classifications in the training data (red and green).

Gold dotted lines denote the decisions made by a decision tree. For ease, the background

colour immediately to the top right of a data point denotes the predicted classification.

Datasets with high collinearity carry more information in their spatial representation, and

therefore PCA can be thought of as a lossless form of information compression. This is

advantageous for ML algorithms; the smaller the amount of collinearity, the simpler the

algorithm that can be employed for the same degree of accuracy. In the figure it is shown

that a decision tree with maximum depth of 5 is required to achieve 100% accuracy in the

input space, and is likely to misclassify outside of the training data; the linear correlation

is not preserved outside of the training data. After PCA, a decision tree would only require

a maximum depth of 2 to achieve 100% accuracy in the input space, and is less likely to

misclassify outside of the training data, as it would continue to exhibit the same linear

correlation between x1 and x2 outside of the training data.

As such, decision trees perform best if:

• The density of samples in each terminal node is roughly equal across terminal nodes.

• The collinearity of the input space is small.

Methods such as PCA can improve the accuracy of trees by ‘rotating’ the input space
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x2

x1

(max depth 3)
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x1

(max depth 5)
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correct

Figure 6.5: Training data defects. Here, I examine the same scenario as Figure 6.4,

but include two types of data defects: anomalies/interstitials and vacancies. For ease,

the background colour immediately to the top right of a data point denotes the predicted

classification. Using PCA and a maximum tree depth of 2 would yield higher accuracy

on the training data, but also high accuracy on similar data outside of the training data

set. Right plot : Anomalies can be honed in on if the depth of a decision tree is deep

enough. This means that while the data space requires a maximum tree depth of 5 for

100% accuracy, such a tree depth would cause the algorithm to erroneously learn from the

defects that are present. While this would give 100% accuracy on the training data, the

accuracy would only be 50% where we tested the algorithm with the vacant data points.

Left plot : Reducing the tree depth prevents the algorithm from honing in on the defect,

but yields some undefined classification (white area).

such that a set of correlated values become as close to linearly uncorrelated as possible (see

Figure 6.4). The lack of correlation after PCA means that the Cartesian divisions made

by decision trees are far more accurate, allowing for reduced overfitting.

6.2.4 Random forest classifiers

Random forest classifiers (RFCs) are a stochastic extension to the DTC first described by

Tin Kam Ho and later developed and popularized by Breiman.84 They allow one to smooth

out inaccuracies in characterisation by adding a small amount of statistical noise, and then

ensemble averaging.

Random trees work by selecting random subsets of the training data. Each random

subset is used to train a tree, such that the random forest is an ensemble of decision trees.

Suppose that one uses a single decision tree and a set of training data to be char-

acterised. If the tree characterises only 60% of the data correctly, it could be due to
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imbalances in the data set, high collinearity from the input data, or a range of other rea-

sons. By randomly selecting subsets of the data set and producing an ensemble of trees,

we decrease the accuracy of each tree (the aforementioned statistical noise), however by

averaging we are likely to produce a classifier of higher accuracy. Primarily, RFCs allow

us to reduce noise that might occur from anomalies in the data set, or region of the input

space where the characterisation is noisy/chaotic.

Due to the averaging process, RFCs give classifications as well as associated certainties

for each classification; instead of a binary output (0 or 1) for a given class, a given class

will have an output ranging from 0 to 1. A binary (two classification) RFC will simply

pick the most likely class.

6.2.5 Confusion matrices

The confusion matrix C for a multi-class classifier is defined such that the element Cij is

the number of classifications made belong to class i which are actually of class j. One can

construct some useful metrics from the confusion matrix:

Metrics Definition

Number of classifica-

tions, NC

∑
ij
Cij

Accuracy
tr.(C)

NC

Normalised skew
1

NC

∑
ij

sign(i− j)Cij

RK coefficient
∑

klm(CkkClm − CklCmk)√∑
k(
∑

l Ckl)
(∑

l′,k′=k Ck′l′
)√∑

k(
∑

l Clk)
(∑

l′,k′=k Cl′k′
)

where tr.(C) is the trace of C, and sign(·) is the signum function. If the classes are

ordered, then the skew of the matrix represents the amount of bias in the system. Viz., for

a system which is ordered such that class i + 1 is higher up a heirarchy than class i, and

we have enforced bias such that one is always cautious such that the algorithm only ever

misclassifies by giving a classification that is too high in the heirarchy:
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Cij =


δij if accuracy = 100%

0 if i < j

,

such that the normalised skew of the matrix is 1, and the matrix is upper-triangular.

6.2.6 Cascading bias

Because of the aforementioned issues with density, DTCs and RFCs can perform badly if

the data set is unbalanced. This can lead to a low degree of certainty from a RFC for each

classification. One can correct somewhat for this by using a new hyperparameter in the

form of bias. This is a design decision which was implemented in Experimental Resonant

Instability Correlation Studies on NSTX (ERICSON) (see Section 6.4.2). Alternatively,

one could employ PCA (as briefly shown in Figure 6.4), however this requires one to have

an input space X for which any fields on X have a near constant gradient ∇X. For images,

this is generally not the case, however as discussed at the end of Section 6.5.3, PCA may

indeed be useful after suitable dimensionality reduction has been performed.

Additionally, as shown in Figure 6.5, errors in the output space prevent one from

producing a characterisation method which is 100% accurate, and can potentially lead to

overfitting. By applying bias to the certainty, it is possible for one to enable a binary RFC

to perform at slightly higher accuracy, and allow for either more or less classifications to

be made of a given classification. In essence, one ‘relaxes’ the decision contours produced

by the RFC; these contours are not well defined for RFCs, but instead can be thought of

as possessing some Gaussian blur, from the ensemble averaging.

It is advantageous for one to use another property of this hyperparameter in multi-class

classification problems. A multi-class classifier may näıvely select the class which is most

likely. Such a classifier may be extremely confident in one class which for now we call Q

(ranging from 10 to 90% certainty), but not so confident in another two which one can

call PD and D (ranging from 5 to 50% certainty). Then, the accuracy of the classifier

is influenced by the certainty for class Q; only when the certainty for class Q drops is it

possible for PD and D to be possible classifications. This classifier will perform poorly,

as the accuracy of predicting class PD and D are by Bayesian statistics also determined

by the accuracy of predictions of class Q. This is typically due to ambiguity between

classifications which cannot be resolved, and the consequent overfitting/underfitting of

certain areas of the input space. Conversely, an input space which involves no ambiguity

in the classifications should feature a range of 0 to 100% certainty for each class.
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Suppose that the resultant characterisations have a well defined hierarchy of impor-

tance, such as whether a plasma is quiescent (Q), pre-disruption (PD) or undergoing dis-

ruption (D). It is reasonable to assume that the input data for the pre-disruptive and

disruptive phases may share some similarities. This can lead the aforementioned ‘näıve’

multi-class classifier to perform poorly. However, one desires that if there is ambiguity

between two classes, the class with higher rank is used as the classification instead. It can

then prove advantageous in some cases to perform separate binary classifications, and then

construct a multi-class classifier with bias. By checking whether the sample is a given class

or not a given class, one can apply bias to not only increase the accuracy, but also safely

push the classifier to be ‘cautious’. Each bias can be thought of as ‘cascading’, affecting

the accuracy of not only one class, but also all other lower classes in the hierarchy. This

bias can also serve to remove some of the effects that collinearity is having on multi-class

classification.

It is still worth noting that using high dimensional, highly collinear data will still affect

the individual accuracy of each binary classifier. However, this cascading bias does serve

to improve the overall accuracy of multi-class classification in cases where the output space

is somewhat collinear.

6.3 Fast ion instabilities

In this section, I take an aside from the mathematical discussion established in Section 6.2

to discuss fast ion instabilities in tokamaks. Later, in Section 6.4, I examine fast ion

instabilities using techniques introduced in Section 6.2.

Fast ion instabilities could prove to be a serious limitation to the nominal ITER per-

formance; these wave-particle instabilities transfer free energy between the particle distri-

bution function (PDF) and plasma waves in the system, in certain cases leading to sudden

degradation of plasma performance and energy confinement. ALEs are characterised by

magnetic perturbations in the plasma undergoing very rapid frequency change (‘chirping’)

across a broadband of frequencies, and are directly correlated with large energetic particle

(EP) losses;60,85 understanding the parametric dependencies on these losses is essential

for good plasma performance. These events are sudden and highly distinguishable from

the frequency behaviour at times when ALEs do not occur, and are typically observed in

the upper part of the kink/tearing/fishbone (KTF) frequency band (∼ 1 kHz to 30 kHz)

and the lower part of the toroidal Alfvén eigenmode (TAE) frequency band (∼ 50 kHz to

200 kHz).52
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fishbone-like event

fixed-frequency

sweeping

Figure 6.6: Frequency spectrogram for magnetic fluctuations on NSTX in the

1 kHz to 30 kHz (kink/tearing/fishbone) band, 200 ms to 220 ms after the begin-

ning of shot 139317. 3 types of mode character are observed: fixed-frequency eigen-

modes, sweeping eigenmodes, and a fishbone-like event.

Previous work has highlighted the relationship between microturbulence, stochastic ef-

fects and fast ion loss,74 showing increased suppression of Alfvénic chirping as a function of

microturbulence; theoretically microturbulence is treated as a stochastic term in the pitch

angle scattering rate, while experimentally this can be heuristically inferred via the ion

thermal conductivity χi. However, there are other correlations which may yet be undis-

covered. Unfortunately, as one might expect in high-dimensional spaces, observing and pre-

dicting correlations becomes increasingly more difficult. With traditional computational

analysis, there is no way to circumvent the amount of time required to perform human

categorisation; a simple back-of-the-envelope calculation shows that even with an average

characterisation time of 3 seconds per system state, the time taken to reach O(104) charac-

terisations is over 8 hours. Previous work by Haskey et al. uses data mining techniques to

to extract plasma fluctuations in time-series data, allowing one to identify different events

using unsupervised classification.86,87

Magnetic perturbations in a very broadband range (0 to ∼ 500 MHz) are commonly

measured on tokamaks such as NSTX by using Mirnov coils. Here, 5 characterisations of the

frequency of magnetic perturbations are examined for KTF modes (of which 3 are shown
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in Figure 6.6): quiescence (noise, or no frequency dependent behaviour), approximately

fixed-frequency eigenmodes (herein referred to as simply fixed-frequency), sweeping eigen-

modes (slow frequency variation due to time evolution of the plasma equilibrium), chirping

(rapid frequency variation over a narrow frequency band due to wave-particle interaction),

and fishbone-like (energetic particle mode with rapid frequency variation over a broad fre-

quency band). For TAEs, we also examine 4 characterisations: quiescence, fixed-frequency,

chirping, and ALEs (rapid frequency variation over a broad frequency band). Data from

NSTX experiments in 2010 is utilised, revealing a rich set of correlations between different

mode character and weighted averages of plasma parameters obtained from TRANSP.88

Our results are in agreement with previous work by Fredrickson et al.78 using human char-

acterisation in a reduced parameter space, allowing us to heuristically confirm the validity

of predictions made by ERICSON. We show new, strong correlations between moments

of the spectrograms and mode character, as well as evidence of a TAE stability boundary

along vϕ ≈ 1
4(vinj. − 3vA) where vinj. :=

√
2Uinj./m is the injection velocity, and vA is the

Alfvén speed.

Fast ions carry significantly more energy per mole than the thermal ions; on NSTX

the NBI peak energy (Uinj.) lies at around 90 keV and the thermal peak lies at ∼ 1 keV to

2 keV during typical tokamak operation.89 If fast ions are lost from the plasma, the overall

plasma performance is drastically reduced. Fast ions give a significant contribution to the

plasma pressure and are essential to transfer heat to the thermal population. As described

in Chapter 5, during frequency chirping events, nonlinear structures known as holes and

clumps (H&Cs) can form on the ion PDF, existing respectively as a relative decrease and

increase of the local PDF.

In the presence of background dissipation, kinetic instabilities that lead to H&C forma-

tion are triggered by gradients in the toroidal canonical angular momentum in a manner

akin to inverse Landau damping; slowing-down distributions feature large gradients in the

neighbourhood of vinj., and therefore wave-particle interaction is enabled for waves near

vinj.. As one attempts to increase the core temperature of the plasma, one creates sharper

momentum gradients, leading to greater plasma instability. On NSTX, the NBI beam en-

ergy is super-Alfvénic (vinj. > vA), which allows for increased kinetic instability of Alfvén

waves.

The formation of gap TAEs allow for relatively long lifetime waves; these waves are not

dispersive in radius, and therefore allow for long range frequency chirping in the ∼ 50 kHz

to 200 kHz range;40 the larger the frequency chirp, the further the momentum drift of the
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resonant particles.

Furthermore, experiments and simulations in the literature60,90–92 have shown that

rapid long range frequency chirping across a wide range of frequency chirps (mode ‘avalanch-

ing’) is correlated with high amounts of fast ion loss. Other work has shown that mode-

mode destabilisation may play a role in Alfvénic frequency chirping - activity in the KTF

frequency range (∼ 1 kHz to 30 kHz) may instigate Alfvénic activity, and vice-versa.

Crucially, the conditions which trigger small scale frequency chirping and so-called

mode avalanching are not fully understood. Intuitive knowledge related to momentum

gradients provides insight, but factors such as the q-profile, energy confinement time, and

the fast ion density gradient may also play a role.

6.4 ERICSON

ERICSON utilises four key parts: pre-processing NSTX data, mode characterisation, pa-

rameter space tracking from TRANSP data, and correlation studies. Here, we discuss the

pre-processing, mode characterisation, and the parameter space tracking; later, we show

the confusion matrices after training (see Figure 6.7), and results from some correlation

studies.

Here, we describe the newly developed ML framework ERICSON, examining plasma

wave frequency-chirping observed via Mirnov coils. ERICSON allows us to compare NSTX

data with a wide range of parameters that would be largely unfeasible with human clas-

sification, allowing us to understand which parameters affect EP transport. After initial

training of the algorithm, we find the time taken for a single process to reach O(104) char-

acterisations is under 10 minutes, allowing for one to examine a much higher number of

characterisations, and therefore a much richer set of correlations. While ML is not asymp-

totically convergent to perfect accuracy, it allows for broad, statistical recognition of the

plasma stability boundaries that do exist. One expects any erroneous characterisations to

still allow for asymptotically correct stability boundaries as one tends to an infinite number

of characterisations.

6.4.1 Pre-processing (NSTX data)

The voltage drop was measured across Mirnov coils. Via the Faraday-Lenz law (1.17c):

V ≡
∮
∂A

E · d` = − ∂

∂t

∫
A

B · da, (6.6)
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where V is the voltage drop (positive by definition for a decrease in voltage), ∂A is the

boundary of the area A of the coil, E is the electric field, B is the magnetic flux density,

and â is the unit vector normal to the surface.

We utilise the following asymmetric definitions for the discrete Fourier transform:

F [B](r, f [j]) =

Nt−1∑
l=0

B(r, t[l]) exp (i2πf [j]t[l]) , (6.7)

F−1[B̃](r, t[j]) =
1

Lt

Nt−1∑
l=0

B̃(r, f [l]) exp (−i2πf [l]t[j]) , (6.8)

where r is the position in real space, f = {j ∈ Z : 0 ≤ j < Nt} is a set of Nt frequencies,

Nt is the number of time points in the dataset, and Lt is the temporal length of the dataset.

Then, Fourier transforming the Faraday-Lenz law yields:

Ṽ ∝ −i2πfB̃. (6.9)

One can immediately see that B̃ is singular at f = 0. Because discrete analysis is

used, this singularity becomes broadened and can affect nearby points. For this reason, we

employ a cut off frequency (fmin. := 1 kHz) to avoid the singular value and nearby points

saturating the data set. To minimise pick-up from the error-field correction switching

power amplifiers (SPAs), we take the average time-domain signal from two Mirnov coils in

close proximity of each other.

To enable analysis of time-dependent frequencies, we use a short-time Fourier transform

(STFT) to track the frequency evolution of modes in the system. The frequency resolution

∆f and maximum frequency fmax. obtained via an STFT are given respectively by:

∆f =
1

Lt
; fmax. =

1

2∆t
, (6.10)

where ∆t is the time resolution of the data set, and the data set is now more specifically

defined as the time points within the STFT window. The forward-difference STFT is

calculated as follows:

V̂ (f, t) = F
[{
W (t′)V (t′) : t < t′ < t+ Lt

}]
, (6.11)

where t is the time at which the STFT begins, t′[j] = j∆t is a dummy time used for

the transform, W (t′) is a window function, and V (t) is now the two Mirnov coil average of

the voltage drop. Many window functions are employed in the literature,93 each producing
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spurious sidebanding for a single frequency input. Here we employ a Hanning window due

to its favourable decibel tapering for the erroneous signal produced, and its simple form:

W (t′) = sin2

(
πt′

Nt − 1

)
, (6.12)

where t′[j] = j∆t. Using this method, one obtains the spectrogram signal:

B̂(f, t) ∝ i

2πf
V̂ (f, t). (6.13)

Finally, one can separate the spectrogram into different subdomains of f , allowing

for characterisation of the signal in different frequency bands. A human would typically

examine spectrograms obtained from this pre-processing, and perform characterisation (see

Figure 6.8 and Figure 6.9 for characterisations).

For ML training and analysis, 125 shots from the 2010 NSTX archives were selected

due to the clear observation of KTF and TAE activity. The Mirnov coils produce a signal

at sampling rate fV = 5 MHz (200 ns resolution).

The shots were split into 20 ms slices, allowing for a maximum of ∼ 20 chirping events;

typically chirping in these frequency bands occurs on a ∼ 1 ms timescale.

The STFT time window Lt contained 213 samples (1.6384 ms), allowing for a frequency

resolution of ∼ 0.610 kHz. By sliding the STFT using increments of 29 samples, we were

able to obtain a time resolution τ on the spectrogram of 102.4 µs. It is instructive to note

that by using a sliding increment smaller than the STFT window, to produce overlaid

spectrograms that are plotted here (such as in Figure 6.8) one must add a ‘lag’ of 819.2 ns

as the pixel is actually the pixel at the center of the STFT window.

The 2D data for each slice was then converted into a contiguous 1D array in memory,

made by taking contiguous blocks in frequency of the original spectrogram. That is to say:

ad.[B̂(f2, t)] >> sizeof(B̂) = ad.[B̂(f1, t+ τ)],

∀f < f2 : ad.[B̂(f, t)] >> sizeof(B̂) = ad.[B̂(f + ∆f, t)],

where for a given spectrogram, f1 is the minimum frequency, f2 is the maximum fre-

quency, ad.[B̂(f, t)] is the address in memory of the spectrogram signal at (f, t), and >>

is the incremental bit-shift operator. A bit-shift by the datasize of the signal (sizeof(B̂))

allows us to relate two neighbouring array elements.
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C
(train)
KTF :



140 0 0 0 0

1 54 0 0 0

0 0 12 0 0

0 0 0 10 0

0 0 0 0 18


C

(train)
TAE :


138 0 0 0

0 12 0 0

0 1 22 0

0 0 0 24



C
(test)
KTF :



57 2 1 0 4

1 16 3 1 0

2 0 2 0 2

0 0 0 1 1

2 0 0 0 8


C

(test)
TAE :


59 0 0 1

1 2 1 2

0 2 7 1

0 0 3 6



Metric Training set Test set

Accuracy 99.2% 69.0%

RK 0.996 0.824

Metric Training set Test set

Accuracy 98.9% 72.6%

RK 0.995 0.871

Figure 6.7: Confusion matrices and useful metrics from ERICSON trained to

predict different types of classification for magnetic fluctuations on NSTX in

the 1 kHz to 30 kHz (KTF) band and 50 kHz to 200 kHz (TAE) band. From top-

left to bottom-right, the leading diagonal of the confusion matrix for KTFs corresponds

to correct classification for quiescence, fixed-frequency, frequency sweeping, chirping, and

fishbone-like. From top-left to bottom-right, the leading diagonal of the confusion matrix

for TAEs corresponds to correct classification for quiescence, fixed-frequency, chirping, and

abrupt large events. The confusion matrices have high sparsity in the lower-diagonal part,

owing to the preferential bias incorporated in ERICSON to increase prediction accuracy

and enforce safer predictions.

In total, a database of 4773 slices was generated. It is worth noting that there is a

finite probability of an exact overlap of the plasma parameters between two slices in the

database, although this is quite unlikely.

6.4.2 ML algorithm and training

In this paper, we employ supervised ML to characterise the spectral data. We have used

RFC, an ensemble variation of the well-established DTC. RFCs have been utilised and

are well described in the literature13,84 allowing for a simple, white-box approach of the

problem, something we believe to be important for correlation studies.
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abrupt large event chirping

fixed-frequency

(quiescence)

Figure 6.8: Plots showing the 4 characterisations of TAE magnetic fluctuations

obtained from shot 139317 on NSTX. Top left: ALE, top right: chirping, bottom-left:

fixed-frequency, bottom-right: quiescent.

DTCs act as flowchart-like algorithms which are optimised using a greedy algorithm.

Therefore, while these classifiers are easy to operate, they sometimes only find local minima

in the Gini impurity, leading to erroneous categorisation. Increasing the complexity of the

tree (adding depth to the decision tree) can sometimes ‘kick’ the algorithm from a local

minima into a global minima and improve accuracy, but too much depth leads to overfitting.

For this reason, we use RFCs which initialise an ensemble of decision trees with different

random initial states. Then, the RFC returns the average probability that the data is of a

given classification. This leads to a O(NDTC) increase in accuracy for small NDTC, where

NDTC is the number of trees.

Here, we examine a very high dimensional input space (each spectrogram pixel is a

single dimension) with an extremely high amount of collinearity; mode character is observed

by relating the spectrogram amplitude of local clusters of pixels. RFCs subdivide the
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input space on a Cartesian grid, with hyperparameters determining the available number

of subdivisions (tree depth) and the size of the minimum undivided volume (leaf size).

Unfortunately, highly collinear, high dimensional spaces are hard for RFCs to efficiently

divide. Therefore we expect RFCs to yield a lower accuracy than other ML schemes such

as convolutional neural networks (CNNs). However for correlation studies, we examine

broad, collective behaviour in parameter space; as a result we do not require extremely

high accuracies.

The RFCs here are implemented using the Python library scikit-learn;94 it is feasible

that one could perform similar analysis in tensorflow, or write an RFC from scratch.

a)

KTF character Frequency traces

• (quiescent) Noise

• (fixed-frequency) Constant ω(t)

• (sweeping) Varying ω(t) (>> 1 ms)

• (chirping) Rapidly varying ω(t) (∼ 1 ms)

• (fishbone-like) Rapidly varying ω(t)

(broadband, ∼ 1 ms)

b)

TAE character Frequency traces

• (quiescent) Noise

• (fixed-frequency) Constant ω(t)

• (chirping) Rapidly varying ω(t) (∼ 1 ms)

• (ALEs) Rapidly varying ω(t) (broadband, ∼ 1 ms)

Figure 6.9: Tables detailing the characterisations for each band. The traces here

refer to continuous streaks of slowly changing colour as one progresses in time on B̂(f, t)

spectrograms. a): KTF band. b): TAE band.

Human classification was performed using 10 shots, producing 337 slices for the KTF

band (1 kHz to 30 kHz) and 281 slices for the TAE band (50 kHz to 200 kHz). We utilised

training slices which featured low ambiguity in the frequency behaviour; some of these

slices included multiple characterisations during the same time slice. We desire that char-

acterisation falls under the following hierarchy for the KTF band:

fishbone-like→ chirping→ sweeping→ fixed-freq.→ quie.,

with leftmost as the most important feature. That is to say, we desire a multi-class
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classifier such that any ambiguity leads to a more leftmost characterisation. For the TAE

band, we desire the following hierarchy:

ALEs→ chirping→ fixed-freq.→ quie.,

with leftmost as the most important feature. A set of RFCs were then trained to

perform binary classification separately; each RFC yields a binary output for whether the

system is exhibiting each of the types of character. We employ separate binary classification

to allow us to tweak multi-class classification in a more direct fashion. The RFCs were

trained using 75% of the learning set, and tested on the remaining 25%. The tree depth

and number of trees were manually tweaked to optimise multi-class classification accuracy.

In Figure 6.10, we show a frequency spectrogram for magnetic fluctuations found during

NSTX shot 139317, overlaid with the classification made by ERICSON. As can be seen,

ERICSON categorizes fairly cautiously, and sometimes characterises chirping behaviour as

ALEs. To classify, a näıve approach might simply yield the most likely classification for

this; in pseudocode one can write this as:

f o r ( i = 0 ; i < K; i ++) {

prob [ i ] = RFC( i )

}

re turn max_index ( prob )

whereK is the number of binary classifiers used. This is typically the method employed

by most multi-class classifiers. The classification accuracy from this method is typically

min({pi}) at best where pi is the accuracy of the ith RFC, making it a reasonable approach.

However, due to the desired hierarchy, we impose a heirarchal method:

f o r ( i = 0 ; i < K; i++) {

i f RFC( i ) > RFC( j ) + t o l ( i ) f o r a l l j > i {

re turn i

}

}

Here, tol(i) denotes a tolerance factor. The tolerance factor for each characterisation

is prescribed such that the confusion matrices for the training and test set meet two con-

straints: the confusion matrices are close to upper-triangular, and the confusion matrices

are as close to diagonal as possible. The latter is the most important constraint, as a

diagonal confusion matrix denotes perfect characterisation. By using the tolerance factor,

we can force ERICSON to make better decisions by making it ‘more cautious’ (see Sec-

tion 6.2.6); ERICSON would then preferentially classify TAE activity in a slice as chirping
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when previously classified as quiescent, if the tolerance is set to be higher. For moder-

ate tolerance levels, this reduces overall confusion between different characterisations, but

naturally creates some off-diagonal elements in the above diagonal part of the confusion

matrices. This is deemed to be an acceptable error as we have encoded a preference for

caution; we would rather have ERICSON predict a more ‘dangerous’ behaviour if it does

misclassify.

Figure 6.10: Frequency spectrogram for magnetic fluctuations on NSTX in the

50 kHz to 200 kHz TAE band for the first 500ms of shot 139317, overlaid with

the mode character classified by ERICSON. 4 types of mode character are observed:

quiescence, fixed-frequency eigenmodes, chirping modes, and ALEs

In general, many of the characterised slices will have multiple features. Unfortunately

this means that while the ‘most likely’ method produces the best accuracy out of the multi-

class algorithms we employed, it has a finite ceiling on the accuracy, owed to the fact that it

will not adequately distinguish between two features which appear at the same time during

a slice. While the ML multi-class classifier could be improved, we find the accuracy to still

be acceptable. In kind, a human performing classification could quite easily misinterpret a

slice; what may be recorded as slow frequency sweeping by one human could be recorded as

fixed-frequency by another. For this reason, we include in Figure 6.7 the more conventional

metric of accuracy, as well as the RK coefficient95 (see Section 6.2.5). This coefficient has

an upper limit of 1, and a lower limit which is greater than or equal to -1 depending on
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the dataset:

RK =

∑
klm(CkkClm − CklCmk)√∑

k(
∑

l Ckl)
(∑

l′,k′=k Ck′l′
)√∑

k(
∑

l Clk)
(∑

l′,k′=k Cl′k′
) . (6.14)

The RK coefficient is a generalisation of the Matthews correlation coefficient for multi-

class classification. It is intrinsically related to the Pearson correlation coefficient, as it

is directly expressed as the ratio of the covariance of two K-dimensional data sets corre-

sponding to predicted classifications (X) and actual classifications (Y), and the product

of the standard deviations of those two data sets:

RK =
cov(X,Y)√

cov(X,X) · cov(Y,Y)
, (6.15)

where cov(a, b) is the covariance of a and b. Because an unbalanced data set is used

for training, we incur a reasonable amount of accuracy bias; the real data set is also

unbalanced (for example, ALEs are much less common than periods of quiescence). While

the RK coefficient is not as intuitive as accuracy, this is a better measure of the quality

of the ML classifier, as it weights the metric depending on this accuracy bias, and gives a

metric whose value is resilient under the use of an unbalanced real data set.

6.4.3 Parameter space tracking (TRANSP data)

Each shot had a corresponding TRANSP simulation revealing the plasma parameters at

each point in time. These simulations yield the classical or unperturbed predictions for

the fast ion parameters. This temporal link allows for one to compare the multi-class

classification given by the ML algorithm to plasma parameters.

As one performs more classification, one populates the parameter space with more

points. One expects that for phase transitions occurring over small, finite regions of pa-

rameter space, ERICSON should reveal regions with largely the same classification. In

Section 5.3, we showed that frequency chirps exist for stochastic lifetimes, with other work

showing that stochastic transport mechanisms such as ion microturbulence can effect the

likelihood of chirping and therefore the characterisations observed.74

For these reasons, we look at the overall behaviour of KTF and TAE magnetic activity

in different regions of parameter space; one should not fully trust each individual classifi-

cation, but rather the overall behaviour and the location of characterisation boundaries.

Each pixel shown in the figures in Section 6.5 is binned such that the value of the pixel

is the most frequent characterisation in that bin.
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6.5 Human correlation studies on output data from RFCs

6.5.1 Mode-weighted averaging

Chirping is a nonlinear phenomenon, requiring wave-particle nonlinearity. If one aims to

correlate chirping with plasma parameters, some of these parameters may be spatially

dependent; accordingly the mode structure plays an important role.

Here, we model the spatial distribution of physical quantities dependent on Alfvénic

activity in the system via Bayesian inference, such that physical quantities are conditionally

distributed given the mode structure. As such, by modelling the mode structure by using a

normalized Gaussian (and therefore taking the prior to be Gaussian), quantities dependent

on Alfvénic activity can be determined via a posterior distribution which is also Gaussian.

Accordingly, one can construct conditional expectations of plasma quantities, where

integrals are weighted with a normalised Gaussian, given here by ρ:

〈g〉 ≡
1∫

0

(g · w) dρ, (6.16)

where ρ =
√

Ψ/Ψ0, Ψ0 is the magnetic flux at the last closed flux surface, g is the

quantity to be spatially averaged, and 〈g〉 is the mode-weighted average. Experimentally,

the mode structure can be observed via reflectometry data, however this data cannot

probe hollow density profiles. Unfortunately, for a sizeable number of chirping cases, beam

deposition and other effects can lead to hollow density profiles, preventing inference of the

mode structure via reflectometry.

In lieu of fully reliable values for every shot analysed, we make three assumptions.

First, one expects Alfvén waves to have a fairly narrow mode structure, and as such we

approximate the standard deviation to be ∼ 0.1.

Second, we expect Alfvénic mode structure to peak at around qmin,40,65,96 which we

approximate to be at ρ = 0.5 (see Levinton and Yuh97). Third, we extend this assumption

also to the KTF modes in this analysis, however one would in reality expect the mode

structure to be broader.98 Therefore, we use the trial function for analysis:

w(ρ) ∝ exp

[
−

(
(ρ−

√
0.5)2

2(0.12)

)]
, (6.17)

such that the mode structure is approximated by a Gaussian with peak at ρ = 0.5 and

standard deviation 0.1.
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6.5.2 Injection velocity

Figure 6.11 contains 4 plots showing differing mode character as a function of operational

parameters at NSTX.

(a) Normalized injection velocity versus nor-

malized beam ion beta for KTFs. Fixed-

frequency modes largely confined to super-

Alfvénic injection velocity (vinj. ' 2vA) and low

beam ion beta (βbeam,i / 0.25β).

(b) Normalized injection velocity versus nor-

malized beam ion beta for TAEs. Quiescent

behaviour largely confined to low beam ion beta

(βbeam,i / 0.2β).

(c) Normalized injection velocity versus nor-

malized plasma toroidal velocity for KTFs.

Quiescent behaviour largely confined to sub-

Alfvénic toroidal velocity (vϕ / 0.5vA). Fixed

frequency behaviour dominates for vϕ ' 0.5vA.

(d) Normalized injection velocity versus nor-

malized plasma toroidal velocity for TAEs.

Quiescent behaviour largely confined to rela-

tively low plasma rotation
(
vϕ / 1

4 (vinj.−3vA)
)
.

Figure 6.11: Plots showing differing mode character as a function of operational

parameters at NSTX. Left plots: KTF (1 kHz to 30 kHz modes); quiescent (green),

fixed-frequency (cyan), sweeping (orange), chirping (blue), fishbone-like (magenta). Right

plots: TAEs (50 kHz to 200 kHz modes); quiescent (green), fixed-frequency (cyan), chirp-

ing (blue), ALEs (magenta).
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On the vertical axis for each plot is the normalized injection velocity 〈vinj.〉/〈vA〉, where

the Alfvén speed is given by:

〈vA〉(t) ≈
〈|B|〉√

2µ0〈ne〉mp

, (6.18)

where B is the magnetic flux density, ne is the electron density, and mp is the proton

rest mass. This approximation assumes roughly 2 atomic mass units per electron, which

is suitable for the NSTX plasma in these shots (typically featuring deuterium and carbon

ions). The normalized beam ion beta is defined as 〈βbeam,i〉/〈β〉, where 〈βbeam,i〉 is the

beam ion beta, and 〈βbeam〉 is the total beta.

The left hand plots in Figure 6.11 show KTF mode character (1 kHz to 30 kHz modes);

quiescent (green), fixed-frequency (cyan), sweeping (orange), chirping (blue), fishbone-like

(magenta). The right hand plots in Figure 6.11 show TAE mode character (50 kHz to

200 kHz modes); quiescent (green), fixed-frequency (cyan), chirping (blue), ALEs (ma-

genta).

For modes in the KTF band, fixed-frequency modes are largely confined to regions of

parameter space where the injection velocity is super-Alfvénic, and the beam ion beta is

relatively low. We found fixed-frequency mode behaviour for vinj. ' 2vA, βbeam,i / 0.25β,

vϕ ' 0.5vA. Quiescence is largely observed for sub-Alfvénic toroidal velocity, approxi-

mately given by vϕ / 0.5vA.

For modes in the TAE band, quiescent behaviour is largely confined to regions of

parameter space where the beam ion beta is relatively low. We found quiescence for

βbeam,i / 0.2β, vϕ / 1
4(vinj. − 3vA).

Plasma rotation shear can play a strong role in ideal MHD stabilisation; sub-Alfvénic

plasma rotation serves to stabilise the plasma, leading to increased quiescence in the KTF

frequency band. However, the TAEs are subject to kinetic instabilities for super-Alfvénic

(vinj. > vA) near the Alfvén speed. Our results allow us to further posit that if the injection

velocity is less than the Alfvén speed, one expects that a reversed toroidal plasma velocity

leads to decreased TAE activity.

The beam ion beta plays a strong role in TAE destabilisation. Increased NBI power

increases the kinetic drive for resonant modes; this leads to an increased likelihood for

nonlinear wave-particle interaction and chirping.99 As the gradient of the fast ion PDF

determines the kinetic stability of nearby TAEs in momentum space, one expects theo-

retically that increased ion beam beta leads to increased TAE activity. The results from

ERICSON show increased chirping and ALE activity at high beam ion beta in agreement
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Figure 6.12: Plots showing differing mode character as a function of spectrogram

moments at NSTX. Left plots: KTF (1 kHz to 30 kHz modes); quiescent (green), fixed-

frequency (cyan), sweeping (orange), chirping (blue), fishbone-like (magenta). Spectrogram

average (Amm) is a good indicator of mode character; average frequency spread (Asm) and

temporal intermittency (Ams) are poor indicators. Right plots: TAEs (50 kHz to 200 kHz

modes); quiescent (green), fixed-frequency (cyan), chirping (blue), TAEs (magenta). Spec-

trogram average (Amm) and average frequency spread (Asm) are good indicators of mode

character; temporal intermittency (Ams) is a poor indicator.

with theory and observation.

6.5.3 Spectrogram moments

Figure 6.12 contains 4 plots showing differing mode character as a function of spectrogram

moments at NSTX. The left hand plots show KTF mode character (1 kHz to 30 kHz modes);

quiescent (green), fixed-frequency (cyan), sweeping (orange), chirping (blue), fishbone-like

(magenta). The right hand plots show TAE mode character (50 kHz to 200 kHz modes);

quiescent (green), fixed-frequency (cyan), chirping (blue), ALEs (magenta).

We define three simple metrics based on moments of the spectrogram signal given by
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Figure 6.13: Plots showing differing mode character as a function of normalized

ion temperature gradient (d(lnTi)/d(ln
√

Ψ/Ψ0)) and normalized ion density gra-

dient (d(lnni)/d(ln
√

Ψ/Ψ0)) at NSTX. Left plot: KTFs (1 kHz to 30 kHz modes);

quiescent (green), fixed-frequency (cyan), sweeping (orange), chirping (blue), fishbone-

like (magenta). Largely null result; no strong correlations observed. Right plot: TAEs

(50 kHz to 200 kHz modes); quiescent (green), fixed-frequency (cyan), chirping (blue),

ALEs (magenta). Chirping and ALEs occur at low η = (∇Ti/∇ni).

(6.13), taken both in frequency and time to yield a scalar. First, we define the spectrogram

average Amm as:

Amm :∝
∑
l

∑
j

B̂(f [j], t[l]). (6.19)

Amm is a measure of the amplitude of magnetic fluctuations in a given frequency band.

The average frequency spread Asm is defined as:

Asm :∝
∑
l

√√√√∑
j

(
B̂(f [j], t[l])− µf (t[l])

)2

, (6.20)

where µf (t[l]) ∝
∑

j B̂(f [j], t[l]) is the frequency average of B̂. Asm is a measure of

how broadband the signal is. The intermittency Ams is defined as:

Ams :∝

√√√√√∑
l

(∑
j

B̂(f [j], t[l])

−Amm)2

. (6.21)

Ams is a measure of how intermittent the signal is.

For modes in the KTF band, the spectrogram average heavily dominates over the other

moments; the mode character is largely invariant as a function of the average frequency
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spread and intermittency. For modes in the TAE band, the mode character is largely

invariant as a function of the intermittency.

6.5.4 Ion η

Figure 6.13 contains 2 plots showing differing mode character as a function of ion tem-

perature and pressure gradients at NSTX. The left hand plot shows KTF mode character

(1 kHz to 30 kHz modes); quiescent (green), fixed-frequency (cyan), sweeping (orange),

chirping (blue), fishbone-like (magenta). The right hand plot shows TAE mode charac-

ter (50 kHz to 200 kHz modes); quiescent (green), fixed-frequency (cyan), chirping (blue),

TAEs (magenta).

For modes in the KTF band, we observe a largely null result; no discernible correlation

can be identified. However, for modes in the TAE band, chirping and ALEs occur at low

η = (∇Ti/∇ni). This is consistent with observations in DIII-D,74 reduced nonlinear kinetic

simulations and nonlinear gyrokinetic simulations performed for NSTX experiments.100

Higher η implies more drive for ion temperature gradient (ITG) modes and therefore more

turbulent stochastisation of phase space. This leads to suppression of nonlinear structures,

such as H&Cs, that sustain chirping. We note, however, that each turbulent mode has

its own threshold in η, hence no global threshold in η can be identified as a well-defined

transition for the chirping/fixed-frequency boundary.

6.6 Brief conclusions

In this chapter, I outlined how one can utilise ML algorithms (specifically DTCs and

RFCs) to analyse fusion datasets for the purpose of experimentally identifying regions of

parameter space with increased kinetic instability.

In collaboration with PPPL, I developed an ML framework to expedite the physics

analysis of Alfvén waves at NSTX. We employed RFCs to study correlations between

plasma parameters and the frequency response of Alfvén waves, which indicates the nature

of fast ion losses.

We found correlations between the beam ion beta βbeam,i and the injection velocity

vinj., as shown in Figure 6.11, which are in agreement with previous work by Fredrickson et

al.,78 forming a suitable benchmark test. Further correlations between the plasma toroidal

velocity vϕ and the injection velocity vinj. were found, as also shown in Figure 6.11; we

do not currently have physical explanation for this observation, but simply present the

observed results.
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Particularly interesting correlations were observed between moments of the magnetic

fluctuation spectrograms, as shown in Figure 6.12. These correlations imply that it may

be possible to expedite this analysis by simply using three moments of the spectrograms

rather than the full spectrogram data; I will discuss this later in Chapter 7.
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Chapter 7

Conclusions and summary

7.1 Conclusions

7.1.1 Conservative orbits and linear kinetic theory

Conservative orbits

In Section 2.2, I analysed so-called ‘conservative orbits’ where the single particle energy

is conserved on a particle orbit. This preceded a discussion of Bernstein-Green-Kruskal

(BGK) theory in Section 2.2.1, with some light motivation for its use in qualitatively mod-

elling tokamak plasmas. Later in Chapter 5 and Chapter 6, I used reduced dimensionality

models and BGK-like models for Alfvén waves, motivated by this discussion.

In Section 2.2.1, I qualitatively discussed the limitations of BGK theory. In later chap-

ters, the plasmas described violated some of these limitations, and therefore the BGK

theory does not adequately describe all of the dynamics. In Chapter 3, I examined mod-

els which relaxed these limitations, allowing one to better identify when BGK theory is

a valid approximation; in the literature, BGK-like models are typically used with little

consideration for these limitations.

In Section 2.2.2, I proved that BGK modes are dispersionless, and that it is not possible

to represent a set of phase space structures via simple linear superpositions of BGK modes.

Describing phase space structures as a superposition of BGK modes features widely in the

literature; here, I showed that while this may be a suitable approximation, it is mathemat-

ically impossible for this to be an exact solution in 1D.
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Linearized kinetic plasmas

In Section 2.3, I covered a linearised theory of kinetic plasmas. In Figure 2.4, I discussed

that one can consider evolving shear in plasmas as nonlinear wave-wave coupling. This is

important as while shear occurs in linearised systems, the degree of the shear is constant.

Modification to the shear intrinsically requires nonlinear theory, as was later explored in

Chapter 3.

Then, I derived the dispersion relation for Laplace decomposed 3D electromagnetic

waves in collisional systems. Later in Section 2.3.5, I simplified the model to a 3D electro-

static waves with Krook collisions.

In Section 2.3.6, I directly solved for the perturbations to the particle distribution

function (PDF). One finds that the solution has a similar functional form to the Dawson

function. Interestingly, this foreshadows a key result which appears in Chapter 3: the use

of a Gaussian basis decomposition in Section 3.4.3 with the same functional form of the

normalising velocity in the exponential. In Figure 2.6, I further show that phase space

shear occurs in this linearised model.

7.1.2 Non-conservative orbits and nonlinear kinetic theory

Non-conservative orbits

At the beginning of Section 3.2, I gave the functional form for the orbit affine parameter ε

considered along these phase space orbits. Then, in Section 3.2.1, I examined the period of

single particle orbits, and how to motivate the form of ψ from considering the work done

under the Lorentz force for a single particle. Then, I analysed the periods of single particle

orbits. Particles can be considered to evolve via continuum of conservative orbits if:

∣∣∣∣∂ ln(δU)

∂t

∣∣∣∣� ωB,

such that the bounce frequency of particles is higher than the rate of change of en-

ergy. Accordingly, one finds that this theory is in accordance with the brief discussion in

Section 2.3.7, and the adiabatic theory used in the literature.

I showed how by considering near-conservative orbits, one can define a subpopulation of

particles which I refer to as quasi-passing particle. This expands discussion in the literature

of passing and trapped particles;101,102 the quasi-passing particle particles are in what is

traditionally referred to as the passing region, but in fact interact strongly with the wave.

As they are separated from the rest of the passing population by a singularity in the period
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of orbit, they can be considered to act heuristically similar to trapped particles. Subfigure

a) showed the existence of quasi-passing particle particles, while subfigure b) showed that

these particles lie within an effective separatrix which is defined with respect to qψ. This

was illustrated further in Figure 3.1b, where the contour with τ → ∞ moved outside of

the traditional separatrix for qψ > 0.

Then, in Section 3.2.2, I briefly illustrated that a simple consideration of a single particle

travelling in phase space along a continuum of near-conservative orbits and resonating with

a wave undergoing growth (γt > 0) leads to phase space shear. This showed a posteriori

that the theory is in agreement with the collective behaviour expected for the shear of

phase space structures on the PDFs described in Section 3.3.

In Section 3.2.3, I derived the rate of change of kinetic energy in the PDF by integrating

along each particle orbit and then along all orbits. Using this method, I was able to

show that perturbations to the kinetic energy in this orbit theory is determined by the

perturbation of three orbit scale quantities: the period of orbits, the mean momentum of

an orbit, and the shape of the orbit. This motivated later work in the chapter which treated

ψ as a generating function which links wave-particle energy transfer and the formation and

evolution of phase space islands.

In Section 3.2.4, I briefly discussed that φ + ψ acts as the effective electric potential

for particles in this system. Indeed, as shown in Section 3.2.1, this allows for quasi-passing

particle particles (due to modification of the separatrix). However, it also allows one to

consider phase space structures as forming a momentum space ‘sheath’. One expects that

the characteristic width of this sheath in velocity is given by:

λ ∼ 2

√
2q|Ej |
mkj

.

This corresponds with the width of the separatrix in BGK theory. However, all particles

interact with the wave in the BGK theory. In contrast, for the theory established in

Chapter 3, limv→±∞ δf = 0 such that particles far from the Landau resonance are ‘shielded’

from the resonance.

In Section 3.2.5, I showed that the PDF can be represented in a distributive form. While

this was assumed a priori in Chapter 2, here I showed explicitly that this is possible. I

therefore showed that one can construct a ‘first-order’ PDF, splitting the perturbation to

the PDF into a linear and nonlinear functional. This generalises the technique used by

Bernstein, Greene and Kruskal for BGK modes, allowing one to theoretically recover PDFs

from the more exotic particle orbits explored with ψ 6= 0.
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Nonlinear kinetics

In Section 3.3, I examined the Boltzmann-Maxwell system in a nonlinear framework.

In Section 3.3.1, I showed how the decomposition for the E and B field employed in

(3.18) allows for self-consistent solutions of the Boltzmann-Maxwell system, with the time

evolution of the complex frequencies ipj determined by (3.19). In Figure 3.5, I illustrate

that the complex frequencies asymptotically approach values determined by the initial

conditions via Γ
[l]
j .

In Section 3.3.2, I briefly gave an energy conservation equation which is satisfied in the

fully nonlinear consideration of the Boltzmann-Maxwell system. From this, in Section 3.3.3,

I expanded the discussion in the literature of a Berk-Breizman sink of electromagnetic

energy, deriving the collision operator which produces this energetic sink. This allows one

to discuss the limitations of models with and without this collision operator. Models with

the collision operator are full self-consistent, while models without this collision operator (as

typically examined in the literature) are not self-consistent, and either involve discrepancies

in the energy content of the system, or in the evolution of the PDF.

In Section 3.3.4, I derive the linear complex dispersion relation for electrostatic waves

in models which use the Berk-Breizman sink explicitly via a collision operator (the self-

consistent, fully correct model), and models which instead use an equation that resembles a

modified version of the Maxwell-Ampère law. The models are heuristically similar except

for the fact that the true model should instead produce two branches, with the kj = 0

branch being damped by the Berk-Breizman collision operator, and the kj 6= 0 being

driven by the Berk-Breizman collision operator. Accordingly, for a single resonant mode

in the system, the models are almost the same in the limit of γD → 0. This motivates the

use of the model used in Chapter 5.

Basis decomposition formulation

In Section 3.4, I examined basis decompositions of the orbit affine parameter ε, and the

resultant modes that are allowed to exist in the system.

In Section 3.4.1, I examine a Dirac delta decomposition which recovers van Kampen

modes. This decomposition allows for particles with velocity exactly equal to the phase

velocity of a wave in the system to resonate, and permits now other wave-particle inter-

action. This is in stark contrast to the BGK theory which allows all particles to resonate

with the wave; here, only an infinitesimal ‘sheath’ surrounds the resonance in the phase

space.
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In Section 3.4.2, I decomposed the orbit affine parameter ε using a novel nonlinear basis

decomposition, where the decomposition is different at every point in x and t. By allowing

each (x, t) to permit a different basis decomposition, I allowed for nonlinear coupling which

is typically not allowed using a variables separable method of the form f = XT (x, t)V (v).

I introduced a Galilean transformation matrix χ which contains co-moving coordinates

in each possible wave frame. Remarkably, one finds that under the approximation that

waves are slowly chirping or that the particle flux perpendicular to the wave is small, the

evolution of the zeroth velocity moment of ε has a non-holonomic constraint when using

this coordinate transformation, implying that it is not possible to derive the evolution

of this form of solution via Lagrangian theory or related formalisms such as action-angle

perturbation theory.

Generating function formulation

In Section 3.5, I analyse ε using an alternative method, treating ψ as a generating function

which generates collisions, frequency sweeping, drive, and particle gyration.

In Section 3.5.1, I introduced a velocity Galilean transformation matrix ν, and show

that by using χ and ν, one can significantly decompose the differential equation which

governs the evolution of ψ; under this decomposition, one can represent ψ via a sum of

separate contributions.

In Section 3.5.2, I derive the contribution that generates the frequency sweep, and in

Section 3.5.3, I derive the contribution outside the separatrix that generates mode growth.

I utilise both of these in Section 3.5.4, where I approximate the form of ψ in a collisionless

system with no wave-wave coupling. From this form, I illustrate the approximate form of

phase space contours under this formulation, and note that appearance of quasi-trapped

particles near the separatrix, in agreement with earlier theory in Section 3.2.1.

7.1.3 Stochastic and deterministic modelling of holes and clumps

From Section 5.3, we conclude that the lifetime of a hole and clump (H&C) is stochastic,

and that the decay rate of the mode is also stochastic. We hope that the accuracy of

analysis for tp and td improves with further work; in reality, the plateau region has a slight

negative slope. It is our belief that an upgraded model with a negative gradient for tp

would yield greater accuracy on the nonlinear dependence of tp on tNL.

In Section 5.4, we found that increasing the stochasticity in the system is initially

equivalent to increasing the effective diffusive collisionality. This is as one might expect
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from theory; stochasticity in the turbulent PDF or electric field affects the damping term

αE, which is analogous to the energetic particle drive df/dpϕ. Accordingly, simulations

with increased stochasticity produce similar overall results to theory based on stochas-

tic perturbations to momentum scattering via microturbulence-induced radial diffusion.103

However, an important nuance appears when considering repeated bursting; low ampli-

tude repeated bursts are saturated by the electric field produced by ftur, leading to an

asymptotic behaviour characteristic of a decrease in the effective collisionality.

As a result, we posit that in a given regime, an increase in micro-turbulence leads

to an anomalous decrease in the effective collisionality; it is implied that in this regime,

microturbulence reduces the ability for the PDF to reconstitute via pitch angle scattering.

In Section 5.5, I found that a marginally unstable mode can serve to destabilise a

marginally stable mode, serving to sharply increase energetic loss, leading to losses in

some cases that are up to two orders of magnitude greater. The mode-mode interaction

can be explained using semi-analytic theory detailing H&C destabilisation of the marginally

stable (slave) mode; time-dependent modification of the PDF leads to a modified linear

growth rate for the slave mode. I demonstrated that a simple cosine model for the hole

adequately allows for a prediction of the maximum mode spacing at which destabilisation

occurs. However, one still requires a single simulation to observe the lifetime of the H&C.

I have shown that marginally stable modes can lose much more energy than marginally

unstable modes. The consequences are initially counterintuitive: by implication, an in-

creased ratio of marginally stable to marginally unstable modes in a tokamak plasma can

serve to increase overall energy loss rather than decrease it, provided that the mode spacing

is sufficiently small. This means that in large tokamaks, increasing mode stability of gap

toroidal Alfvén eigenmodes (TAEs) might actually serve to increase overall energy loss,

as opposed to the expected reduction that would be observed in small tokamaks where

destabilisation may be less prevalent.

However, at very small mode separation, the energy loss for two modes rapidly de-

creases. This is likely to be due to both increased mode overlap (slave mode flattening,

no behaviour) and preferential up-chirping. This is a particularly interesting result, as it

implies that tightly packed modes close to the quasilinear limit have a preferred direction

of chirping. I posit that this may explain preferential down-chirping as observed in mode

avalanching in tokamaks: a down-chirping mode close to the poloidal axis Ψ = 0 could

destabilise a mode which preferentially down-chirps when destabilised, triggering other

down-chirps in a cascading fashion, leading to large fast ion losses.
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7.1.4 Identifying kinetic instabilities in tokamaks using machine learning

(ML)

In conclusion, in collaboration with PPPL I have developed an ML framework to expedite

the physics analysis of Alfvén waves at NSTX. We employed random forest classifiers

(RFCs) to study correlations between plasma parameters and the frequency response of

Alfvén waves, which indicates the nature of fast ion losses. Our results are remarkably good,

considering the high dimensionality of the input space. Furthermore, for both the TAE and

KTF bands, very strong correlations are found between mode character and moments of the

spectrograms of magnetic fluctuations in the plasma found in Section 6.5.3. Accordingly,

one could use these moments as features instead; one can expect that reduction to this

three dimensional space yields higher accuracy at quicker computational speeds.

7.2 Summary and future work

In summary, this thesis has covered a range of topics, covering analytical theory, compu-

tational physics, and machine learning driven data analysis. I have presented a breadth of

work, but each of the three ‘parts’ to this thesis have blended together smoothly to make

for some interesting research.

7.2.1 Analytical work

The work carried out in Chapter 3 could easily be developed upon. To start, a logical next

step would be to reconstruct first-order distribution functions from values of ε, rather than

to simply examine particle orbits. Much more work is yet to be done regarding solving

the equations in Section 3.5: aiming to recover the asymmetric terms in δψ to enable

symmetry in ψ would be very interesting, as would be solutions that allow one to peer

into the separatrix. The solutions found for ψ in the generating function sadly did not

allow one to look inside the separatrix. It would be interesting to know whether this has

physical consequence (it is not immediately clear whether the lack of closed orbits inside

the separatrix are problematic for the theory or not).

7.2.2 Computational work

Expanding the theory of burst stochasticisation in Chapter 5 to include the time between

bursts could lead to predictions of the burst frequency between Alfvén mode chirping events

in tokamaks, which would allow for a greater understanding of fast ion loss. Additionally,
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further study building on previous work may allow for empirical values that allow for

prediction of the lifetimes of holes and clumps without simulations. This work enabled

myself to examine hole and clump destabilisation later in the chapter (Section 5.5), and

further work building on this could lead to a richer understand how to create and destroy

holes and clumps in an easier fashion.

As was shown in Section 5.5, hole-and-clump destabilisation preferentially creates holes

and clumps depending on how far apart the modes are, and depending on how fast the

master mode chirps. It is my opinion that this could almost definitely be utilised to create

(at least in theory or in simulations at first) a shock front of holes or clumps. It is again

of my opinion that this mechanism may be a contender for the origin of abrupt large

events and mode avalanching in tokamaks. From simulation carried out outside of this

thesis but in immediate extension appeared to show that holes pass almost unperturbed

through holes, and clumps pass almost unperturbed through clumps, similar to solitons.

However, further work could be carried out in DARK to investigate whether hole and clump

annihilation can be easily enabled in simulations by choosing the correct parameters. This

could then open up the avenue for potential work into ‘anti-avalanches’ where many holes

are launched towards an avalanche of clumps, to attempt to mitigate fast ion loss.

The language that is starting to be employed here (and has been employed in discussions

around this work) seems to push towards treating holes and clumps as macroparticles. As

such, another avenue of further work would involve creating macro-theories of holes and

clumps. Simulations based on simulating a small collection of holes and clumps may offer

the benefit of simpler simulations while retaining much of the key physics. However, more

research into hole and clump interaction would need to be carried out first.

7.2.3 Machine learning work

The work in this chapter could be expanded to examine automatic dataset development

(such as archival searches for shots with given mode behaviour), real-time feedback con-

trol, and real-time modelling. Recent work using ML has investigated real-time capable

modelling of NSTX-U using neural networks;14 by also employing classification data, it

may be possible to further enhance the predictive capabilities of such a framework.

Further work building on this analysis could aim to examine correlations in the full

parameter space. Transitions such as the L-H mode transition have been partially ex-

plained in reduced parameter spaces (such as the 2D parameter space with magnetic shear

ŝ and normalised pressure gradient α).104 This transition is shown by projecting the full
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parameter space onto a plane, similar to the plots we show; in reality, this transition oc-

curs over more exotic surfaces in parameter space which are topologically challenging to

analyse. Furthermore, it is entirely feasible that a coordinate transform in the parameter

space would change the topology of stability boundaries - one cannot predict a priori what

is the most sensible representation of the parameter space for a given stability condition.

One particularly interesting avenue for future work involves investigating the strong

correlations between spectrogram moments observed in Figure 6.12. As discussed in prin-

cipal component analysis (PCA) would be highly advantages for this derived dataset: a

workflow involving reclassification based on the spectrogram moments instead is currently

underway along with some small projects I hope to carry out in my spare time using

ERICSON and DARK.
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Appendix A

Conservative orbits and linear

kinetic theory

A.1 Electrostatic plasma with Krook-type collisions

If there is no initial electric or magnetic field, equation (2.23) simplifies to give for an

electrostatic plasma with Krook collisions:

pj −
∑

species

q2

mε0

∫
R3

v(p)

pj + ikj · v − νKr.

∂F

∂v(p)
d3v = 0,

where P (v) = νKr., and I have stated that v(p) is the component of the velocity parallel

to the E-field:

(e · v) =: v(p).

To avoid confusion with the parallel and perpendicular directions considered in toka-

maks, I choose not to use the parallel symbol ‖. If one examines the integrand, the volume

element is given by:

d3v = |J |dv(p) dA,

where |J | is the determinant of the Jacobian43 of the mapping from Cartesian coordi-

nates to the E-field aligned coordinates. v(p) is the component of v normal to the surface

area differential dA. To generalise the integral for the complex plane, one must define a

complex velocity v + iw, and extend F for complex arguments.

Expressing the contour integral explicitly in terms of its pole with respect to the v(p)

coordinate:
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∫
R3

v(p)

pj + ikj · v − νKr.

∂F

∂v(p)
d3v = − i

kj,(p)

∫
R2

∫
Ω

v(p)|J |
v(p) − vLan.

∂F

∂v(p)
dv(p) dA,

where Ω is an undefined contour, and the complex velocity vLan. is given by:

vLan. =
i(pj − νKr.) + kj,(p)v(p) − k · v

kj,(p)
.

For =(vLan.) > 0, the forward Laplace transform used to produce f̃j and associated

quantities is not expected to be singular. Therefore, the integration contour is simply given

by integration along the v(p) axis. However, as =(vLan.)→ 0, one must keep the pole above

the contour integrated along. If =(vLan.) < 0, one must encircle the pole, and therefore via

Cauchy’s theorem43 one must consider the residue of the pole. If =(vLan.) = 0, one must

add a semicircular part to the contour; this yields a value equal to half that obtained for

=(vLan.) < 0.

Therefore, in conclusion:

∫
Ω

v(p)|J |
pj + ikj · v − νKr.

∂F

∂v(p)
dv(p) =



∫
R

v(p)|J |
v(p) − vLan.

∂F

∂v(p)
dv(p) for =(vLan.) > 0,

iπR+ P
∫
R

v(p)|J |
v(p) − vLan.

∂F

∂v(p)
dv(p) for =(vLan.) = 0,

2iπR+

∫
R

v(p)|J |
v(p) − vLan.

∂F

∂v(p)
dv(p) for =(vLan.) < 0,

where R is the residue in v(p) of the integral at the simple pole v(p) − vLan. = 0, and

where the Cauchy principal value of an integral which is singular at Q(v = v0) is given by

(note the difference between this and Lebesgue integration):43

P
b∫
a

Q(v) dv := lim
ε→0+


v0−ε∫
a

Q(v) dv +

b∫
v0+ε

Q(v) dv

 .

It is possible to estimate the linear stability boundary (where =(vLan.) = 0) by using

lim=(vLan.)=0− ; this is an adequate quick way to estimate the value by setting =(pj) ≈ νKr..

However, one should note that there is a finite discontinuity as =(pj) → νKr., with one

only travelling π radians around the singularity for the =(pj) = νKr. solution. In short,

iterating for smaller (=(pj)− νKr.) does not produce a convergent answer.

By using integration by parts, one finds:

∫
R

v(p)|J |
v(p) − vLan.

∂F

∂v(p)
dv(p) = −

∫
R

F
∂

∂v(p)

[
v(p)|J |

v(p) − vLan.

]
dv(p),
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with use of the product rule yielding:

∫
R

v(p)|J |
v(p) − vLan.

∂F

∂v(p)
dv(p) = −


∫
R

F (W + v(p)∂v(p) |J |)
v(p) − vLan.

dv(p) −
∫
R

Fv(p)|J |
(v(p) − vLan.)2

dv(p)

 .

Now, I shall expand the reciprocals in the integrands on the right hand side; ignoring

high order terms assumes a fundamentally ‘cold plasma’, where F is dominated by values

at low |v|. Each term in the expansion is proportional to increasing moments of the particle

distribution function (PDF). Under a full expansion, if |J | is equal to unity:

∑
species

q2

mε0

∫
R3

v(p)

pj + ikj · v − νKr.

∂F

∂v(p)
d3v

=
i

kj,(p)

∑
species

{
n̄|t=0q

2

mε0vLan.
+
�������������
q(e · kj)e · (J̄|t=0 − J̄|t=0)

mε0v2
Lan.

+ · · ·

}

=
i

kj,(p)vLan.

∑
species

(ω2
pl.) + . . .

The residue R is given by:

R =

∫
R2

vLan.
∂F

∂v(p)

∣∣∣∣
v(p)=vLan.

|J |dA.

One should note that the residue can be safely Taylor expanded around =(vLan.) = 0

to use the solely real PDF:

R =

∫
R2

{
vLan.

∂F

∂v(p)

∣∣∣∣
v(p)=<(vLan.)

+O[=(vLan.)]
2

}
|J |dA.

Therefore, to first order in =(vLan.) (such that |γj − νKr.| is small) and for a suitably

cold plasma (such that higher order moments of the PDF have a negligible contribution),

the linear complex dispersion relation is given by:

pj +
i

kj,(p)vLan.

∑
species

(ω2
pl.) ≈

π

kj,(p)

∑
species

 ω2
pl.

n̄|t=0

∫
R2

vLan.
∂F

∂v(p)

∣∣∣∣
v(p)=<(vLan.)

|J |dA

 ,

where I have used πi times the residue, as the residue was expanded in the vicinity

of =(γj − νKr.) ∼ 0. In rectilinear coordinates, we find that after multiplying through by

(pj − νKr.):

pj(pj − νKr.) +
∑

species

(ω2
pl.) ≈ i(pj − νKr.)

2ρj ,
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where I have defined a part ρj that represents the contribution from wave-particle

resonance:

ρj :=
π

k2
j,(p)

∑
species

 ω2
pl.

n̄|t=0

∫
R2

∂F

∂v(p)

∣∣∣∣
v(p)=ωj/kj,(p)

dA

 .

For γj , νKr. << ωj , one finds that:

pj(pj − νKr.) ≈ −ω2
j − 2ωj(γj − νKr./2)i,

(pj − νKr.)
2 ≈ −ω2

j − 2ωj(γj − νKr.)i.

By examining the real part of the former equation, one finds:

ω2
j + 2(γj − νKr.)ρjωj −

∑
species

(ω2
pl.) ≈ 0.

This yields the following dispersion:

ωj ≈ −(γj − νKr.)ρj ±

√√√√
(γj − νKr.)ρj +

∑
species

(ω2
pl.)

2(γj − νKr.)
.

One can see that in the limit of (γj − νKr.)ρj → 0, the frequency of the wave is equal

to the plasma frequency, as one might expect. However, finite (γj − νKr.)ρj enables a band

gap between the upper and lower branches.

By examining the imaginary part of the latter equation, one finds:

γj ≈
1

2
(ωjρj + νKr.).

For the case of a single species plasma, and with νKr. = 0, one obtains an expression

very similar to collisionless Landau damping:

γj ≈
νKr.

2
+

πω3
j

2k2
j,(p)n̄|t=0

∫
R2

∂F

∂v(p)

∣∣∣∣
v(p)=ωj/kj,(p)

dA.
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Non-conservative orbits and

nonlinear kinetic theory

B.1 Growth rate generating function

B.1.1 Infinite sum solution in 1D

Here I shall solve the following equation given in Section 3.5.3:

[
v
∂

∂x
− q

m

∂φ

∂x

∂

∂v

]
ψ = −γφ.

Lemma B.1. The following equation:

[
v
∂

∂x
− q

m

∂φ

∂x

∂

∂v

]
ψ = −γφ,

permits a solution:

ψ = ψ′(x, v)− γ

v

∞∑
n=0

(
q

1
2mv

2

)n
(−1)n(2n!)

22nn!
Cn,

where ψ′(x, v) is a generating function, Cn are integral polynomials:

Cn :=
n∑
l=0

(−1)l

l(n− l)!
φn−lIl+1,

and In(x) is defined as:

In(x) :=

∫ x

x(0)

φn(x′) dx′. (B.1)
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Proof. Seek a term which when operated on with v∂/∂x returns the right hand side, −γφ.

Then, operate on this with the left hand side operator and see what extra term is generated.

By using γI1/v, one finds:

[
v
∂

∂x
− q

m

∂φ

∂x

∂

∂v

](
ψ + γ

I1

v

)
= γ

q

m

∂φ

∂x

I1

v2
,

where the term on the right hand side is generated by the Lorentz force term (v-

derivative). Iteratively, one can find the series by repeating this technique:

[
v
∂

∂x
− q

m

∂φ

∂x

∂

∂v

](
ψ + γ

[
I1

v
− q

m

φI1 − I2

v3

])
= γ

q2

m2

∂φ

∂x

3(φI1 − I2)

v4
.

At this point the following identity becomes useful:

(a+ 1)φaIb
∂φ

∂x
=

∂

∂x
[φa+1Ib − Ia+b+1].

One finds that on each iteration one produces a term which is q/mv2 times an integral

polynomial. Therefore, after an infinite number of iterations, one finds:

[
v∂x −

q

m
∂xφ∂v

]
ψ′ ≡ lim

n→∞
γ(2n− 1)

(
q

1
2mv

2

)n
(−1)n(2n!)

22nn!
Cn, (B.2)

where ψ′ is given by:

ψ′ = ψ +
γ

v

∞∑
n=0

(
q

1
2mv

2

)n
(−1)n(2n!)

22nn!
Cn.

One finds that via l’Hopital’s rule, the right hand side of (B.2) vanishes everywhere

except at v = 0. Therefore:

ψ = ψ′ − γ

v

∞∑
n=0

(
q

1
2mv

2

)n
(−1)n(2n!)

22nn!
Cn.

Next, I shall show that this has a closed form solution as a single integral function:

Lemma B.2. The following function:

ψ = ψ′ − γ

v

∞∑
n=0

(
q

1
2mv

2

)n
(−1)n(2n!)

22nn!
Cn,

is representable in the form:

ψ = ψ′ − sign(v)γ

√
m

2

x∫
x(0)

qφ(x′)√
ε(0)(x, v)− qφ(x′)

dx′,
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where ε(0) is defined as:

ε(0)(x, v) = qφ(x) +
1

2
mv2.

Proof. First, to switch the order of the summation:

n = 0 ; l ∈ [0, 0] → l = 0 : n ∈ [0,∞]

n = 1 ; l ∈ [0, 1] → l = 1 : n ∈ [1,∞]

n = 2 ; l ∈ [0, 2] → l = 2 : n ∈ [2,∞]
...

...
...

...

Therefore one finds that switching the order of summation requires:

∞∑
n=0

n∑
l=0

→
∞∑
l=0

∞∑
n=l

.

With this information, one can evaluate the n sum first:

ψ = ψ′ − γq

v

∞∑
l=0

∞∑
n=l

(
q

1
2mv

2

)n
(−1)n(2n!)

22nn!

(−1)l

l(n− l)!
φn−lIl+1.

This allows one to find a function of φ which is independent of integration. Noting

that:

φn−l

(n− l)!
=

(n− l + 1)(n− l + 2) . . . (n)

n!
φn−l

=
φn−l

n!

l∏
r=1

(n− l + r)

=
1

n!

(
d

dφ

)l
φn,

it is possible to show that:

ψ = ψ′ − γq

v

∞∑
l=0

(−1)l

l!
Il+1

(
d

dφ

)l ∞∑
n=l

Rn
(−1)n(2n!)

22n(n!)2

= −γq
v

∞∑
l=0

(−1)l

l!
Il+1

(
q

1
2mv

2

d

dR

)l ∞∑
n=0

Rn
(−1)n(2n!)

22n(n!)2
,

where I have used the shorthand:

R :=
qφ

1
2mv

2
.
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This quantity has physical significance; it is the ratio of the potential energy and

kinetic energy of the particle. The sum over n is nothing more than a fractional binomial

expansion:

∞∑
n=0

Rn
(−1)n(2n!)

22n(n!)2
= (1 +R)−0.5,

and therefore one now has:

ψ = ψ′ − γq

v

∞∑
l=0

(−1)l

l!
Il+1

(
q

1
2mv

2

d

dR

)l
(1 +R)0.5.

By induction, one finds:

(
d

dR

)l
(1 +R)0.5 =

(
d

dR

)l−1

(1 +R)−1.5

(
−1

2

)
=

(
d

dR

)l−2

(1 +R)−2.5

(
−1

2

)(
−3

2

)
= (1 +R)−l−0.5 (−1)l(2l)!

22ll!
,

and therefore:

ψ = ψ′ − γq

v

∞∑
l=0

Il+1

(
q

1
2mv

2

)l
(1 +R)−l−0.5 (2l)!

22l(l!)2
.

It is possible to combine terms by noting the following:

(1 +R)−l−0.5

(1
2mv

2)l
=

√
mv2

2ε(0)
(ε(0))

−l.

Therefore, ψ now takes the form:

ψ = ψ′ − sign(v)γq
√

m

2ε(0)

∞∑
l=0

(
q

ε(0)

)l
Il+1

(2l)!

22ll!

= ψ′ − sign(v)γq
√

m

2ε(0)

x∫
x(0)

{
φ(x′)

∞∑
l=0

(
qφ(x′)

ε(0)

)l (2l)!

22ll!

}
dx′,

where I note that v = sign(v)
√
v2, with sign(v) as the signum function. Finally one

finds that:

∞∑
l=0

(
qφ(x′)

ε(0)

)
(2l!)

22l(l!)2
=

(
1− qφ(x′)

ε(0)

)−0.5

.

And therefore one arrives at the closed form solution:

ψ = ψ′ − sign(v)γ

√
m

2

x∫
x(0)

qφ(x′)√
ε(0)(x, v)− qφ(x′)

dx′
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By substitution, one therefore finds the following condition:

ψ′ = const.

Via gauge freedom one can choose ψ′ to be zero. Therefore:

ψ = −sign(v)γ

√
m

2

x∫
x(0)

qφ(x′)√
ε(0)(x, v)− qφ(x′)

dx′.

B.1.2 Infinite sum solution in 3D

Here I shall solve the following equation given in Section 3.5.3:

[
v · ∇ − q

m
(∇φ) · ∇v

]
ψ = −γφ.

Lemma B.3. The following equation:

[
v · ∇ − q

m
∇φ) · ∇v

]
ψ = −γφ,

permits a solution:

ψ = − γ

|v|

√
m

2

x∫
x(0)

qφ(x′)√
ε(0)(x,v)− qφ(x′)

v · dx′,

where ε(0) is defined as:

ε(0)(x,v) = qφ(x) +
1

2
m|v|2,

and where Cn are integral polynomials:

Cn ≡
n∑
l=0

(−1)l

l(n− l)!
φn−lIl+1,

with In(x) is defined as:

In(x) :=
1

v

∫ x

x(0)

φn(x′)v · dx′. (B.3)

Proof. Seek a term which when operated on with v · ∇ returns the right hand side, −γφ,

in a similar manner to Appendix B.1.1. Then, operate on this with the left hand side

operator and see what extra term is generated. By using γI1/|v|, one finds:
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[
v · ∇ − q

m
(∇φ) · ∇v

](
ψ + γ

I1

|v|

)
= γ

q

m

∂φ

∂x

I1

|v|2
,

where the term on the right hand side is generated by the Lorentz force term (∇v).

Iteratively, one can find the series by repeating this technique:

[
v · ∇ − q

m
(∇φ) · ∇v

](
ψ + γ

[
I1

|v|
− q

m

φI1 − I2

|v|3

])
= γ

q2

m2

∂φ

∂x

3(φI1 − I2)

|v|4
.

At this point the following identity becomes useful:

(a+ 1)φaIb∇φ = ∇[φa+1Ib − Ia+b+1].

One therefore ends up with the same closed form solution as in Appendix B.1.1, but

with different integral functions {In}, and with |v| used instead:

ψ = ψ′ − γ

|v|

∞∑
n=0

(
q

1
2m|v|2

)n
(−1)n(2n!)

22nn!
Cn.

The use of sign(v) to fulfill symmetry requirements has now been incorporated in higher

dimensionality by using a more complete form of In. Therefore, by virtue of Lemma B.2,

one finds:

ψ = ψ′ − γ

|v|

√
m

2

x∫
x(0)

qφ(x′)√
ε(0)(x,v)− qφ(x′)

v · dx′.

Again similarly to Appendix B.1.1, ψ′ can be shown to be a constant, and therefore:

ψ = − γ

|v|

√
m

2

x∫
x(0)

qφ(x′)√
ε(0)(x,v)− qφ(x′)

v · dx′.

B.2 Leibniz path integral rule

One can extend the Leibniz integral rule to path integrals. Suppose that one starts with

the following integral:

I :=

b(r)∫
a(r)

f(r, t) · dt ≡
∑
j

bj(r)∫
aj(r)

fj(r, t) dtj .
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This integral is a path integral between two points on the D-dimensional manifold RD

where the position on the manifold is given by r = rie
i. Suppose that one acts on I with

a vector differential operator Ô:

ÔI =
∑
j

Ô(bj(r))fj(r,b)− Ô(aj(r))fj(r,a) +

bj(r)∫
aj(r)

Ôfj(r, t) dtj

 ,
which can be alternatively represented by using dyads:

ÔI = Ôb(r) · f(r,b)− Ôa(r) · f(r,a) +

b(r)∫
a(r)

Ôf(r, t) · dt.
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Appendix C

Stochastic and deterministic

modelling of holes and clumps

C.1 Resonant damping

The classical Lagrangian and Hamiltonian densities of the electromagnetic field are given

by [19]:

L(0) = −
FαβFαβ

4µ0
−AαJα ; H(0) = Πβα∂βAα − L(0), (C.1)

where Fαβ is the electromagnetic force tensor, µ0 is the permeability of free space, Jα

is the 4-current. Aα and Πβα are the 4-potential and conjugate Π-tensor:

Aα = (φ/c,A) ; Πβα =
∂L

∂(∂βAα)
, (C.2)

where φ is the electric scalar potential, and A is the magnetic vector potential.

C.1.1 Augmentation tensor, Gβα

One can define L(Aα, ∂βAα) =: L(0) + δL. Then, H(Aα,Π
βα) is given by the appropriate

Legendre transformation:

H = Πβα∂βAα − L

=

[
∂L0

∂(∂βAα)
∂βAα − L0

]
︸ ︷︷ ︸

H(0)

+

[
∂(δL)

∂(∂βAα)
∂βAα − δL

]
︸ ︷︷ ︸

δH

.
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One seeks the perturbation δH = 0 so as to preserve the canonical form of the Hamil-

tonian (bearing some similarities to setting up Hamilton-Jacobi mechanics). Therefore:

δL =
∂(δL)

∂(∂βAα)
∂βAα.

This trivial partial differential equation solves to give:

δL = Gβα(Aµ) · ∂βAα,

where the augmentation tensor Gβα(Aµ) preserves the Lorentz invariance of the La-

grangian density, but is only a function of the 4-potential.

C.1.2 Canonical form

From L = L(0) + δL, the augmented Maxwell’s equations for the system are given by the

generalized Euler-Lagrange equations:

∂β

[
∂L

∂(∂βAα)

]
− ∂L
∂Aα

= 0. (C.3)

By examining a 1D Cartesian space with no B-field, one seeks an augmentation tensor

that satisfies:

−αE =
1

ε0

[
Aµ

∂G0µ

∂Ax
+ ∂xAµ

∂G1µ

∂Ax
− (G01 +G11)

]
. (C.4)

Doing so allows the augmentation to the Gauss-Ampere law a posteriori to manifest as

a Berk-Breizman sink of energy via a global dissipation channel [5, 29]. This is non-trivially

satisfied, but the simplest case is when ∂Gνµ/∂A = 0, and:

G01 +G11 = −αε0(∂xφ+ Ȧ). (C.5)

One can also show that further constraints on the augmentation tensor allow Gauss’

law to retain the exact same form as before. Therefore, this family of augmentation tensors

produce the modified Maxwell-Ampere law and preserve the canonical form of the energy

density:

∂tE = − J
ε0
− αE ; U =

ε0
2

∫
R

E2 dx. (C.6)
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The Lorentz force on charged particles due to the electromagnetic field is given by the

particle Lagrangian [19]. If we examine a single particle:

Lp =

[
1

2
muµu

µ + quµAµ

]
, (C.7)

where m and q are the particle mass and charge, and uµ is the 4-velocity. One can

show that if one constrains the definition for the 4-potential to be invariant under the

augmentation, then:

m
dvα
dt

= −qµ0Παβ
dxβ

dt
. (C.8)

The augmentation does perturb Παβ , however the force does no work; it is in fact a

fictious force, and therefore can be omitted. Finally, I omit the spatially averaged current

to avoid a build up of loop voltage; one can show that if one take the spatially averaged

part of the Maxwell-Ampere law:

−
∫
R

v(fion,0 + ftur,0) dv = ∂tE0 + α0E0.

We require that the mean current is very small, and is dominated by exponential decay.

In such a case, one finds that the spatially averaged electic field E0(t) must be temporally

evanescent:

E0(t) ≈ E0(t = 0)e−α0t.

This in turn allows one to remove the spatially averaged electric field by setting E0(t =

0) = 0 as a boundary condition.

C.2 Seed electric field

If one chooses the following form for the seed contribution:

Sj := −1

2

∑
s

[
Ajse

−iωst + c.c.
]
,

where {Ajs} ∈ C, one finds the following partial differential equation:

∂tES,j +
1

2
αjES,j =

1

2

∑
s

[
Ajse

−iωst + c.c.
]
.

Under a forward Laplace transformations:
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ẼS,j =
1

p+ αj/2

{
ES,j(t = 0) +

∑
s

[
Ajs

p+ iωs
+

A∗js
p+ iωs

]}
.

Formally, for convergence of the forward transform:

∃σ < Re(p) : lim
t→∞
|f(t)| = eσt.

Therefore, if the traditional Bromwich contour is shifted to examine a line integral

along <(p) < σ, one can examine singularities in ẼS,j ; residues of these singularities allow

us to recover the solution for the electric field via the residue theorem. By examining

<(p) → −∞, one findsthat the only remaining contribution to the backward transform is

given by the residues, as the rest of the integral becomes exponentially small:

ES,j = 2πi ·
∑
r

Res(ẼS,jept, pr),

where pr are the locations of the singularities for <(p) < σ. When calculated, this

yields:

ES(x, t) = E
(ev)
S (x)e−αjt/2 +

1

2

∑
s

[
ES,js(x)e−iωst + c.c.

]
,

where E(ev)
S refers to non-propagating evanescent modes given by the simple pole at

p = −αj/2. One can deny these modes from existing by setting E(ev)
S = 0 as a boundary

condition. ES,js(x) is given by:

ES,js =
Ajs

αj/2− iωs
.

If one selects As ∈ R, we find that this reduces to the form:

ES(x, t) =
∑
s

As
α2
j/4 + ω2

s

cos(ωst).

If one solves the modified Maxwell-Ampere law when there is very little change to the

particle distribution function (PDF) (negligible instability drive) and no noise, one finds

the solution:

δE(t) = −εEES(x, t).

As can be seen, for these modes there is no net electric field overall; the seed mode and

the perturbation are counterpropagating.
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One can then consider the addition of a noise term EN . By similar analysis, one can

show that the noise is representable as a distinct set of frequencies, {ωn}. However, in the

limit that {ωn} form a continuum, one can represent the noise term contribution in the

form:

lim
∆ωn→0

1

2

∑
n

[
Ane−iωnt + c.c.

]
≡ −NE ,

where NE is a pseudorandom noise term that seeds instabilities. One can once again ig-

nore evanescent effects via boundary conditions, leaving only the propagating contribution.

Again, one finds from a similar analysis that the noise term leads to no net perturbation

of E, in accordance with the conservation of energy.

However, one can show that by solving (5.15d) for negligible current:

δEj(t+ ∆t) ≈ Dj
αj/2

[
1− exp

(
−1

2
αj∆t

)]
+O(∆t2).

The numerical flaw associated with timestep size is what gives the initial drive; clearly,

the limit as ∆t→ 0 yields δEj = 0.
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eigenmodes”. PhD thesis. Universidade de São Paulo, 2017.

[25] B. J. Q. Woods. “Analytical solutions for nonlinear plasma waves with time-varying

complex frequency”. In: Plasma Res. Express 1.4 (2019), p. 045003. issn: 2516-1067.

doi: 10.1088/2516-1067/ab5052. arXiv: 1905.03104. url: https://doi.org/

10.1088/2516-1067/ab5052.

[26] A. J. De-Gol. “Nonlinear wave-particle phenomena in a Berk-Breizman Vlasov-

Maxwell system”. PhD thesis. University of York, 2010.

[27] T. D. Arber and R. G. L. Vann. “A Critical Comparison of Eulerian-Grid-Based

Vlasov Solvers”. In: J. Comput. Phys. 180.1 (2002), pp. 339–357. doi: 10.1006/

JCPH.2002.7098.

[28] B. N. Breizman et al. “Critical nonlinear phenomena for kinetic instabilities near

threshold”. In: Phys. Plasmas 4.5 (1997), pp. 1559–1568. doi: 10.1063/1.872286.

[29] R. G. L. Vann et al. “Fully nonlinear phenomenology of the Berk–Breizman aug-

mentation of the Vlasov–Maxwell system”. In: Phys. Plasmas 10.3 (2003), pp. 623–

630. issn: 1070-664X. doi: 10.1063/1.1539854.

[30] M. Lesur, Y. Idomura, and X. Garbet. “Fully nonlinear features of the energetic

beam-driven instability”. In: Phys. Plasmas 16.9 (2009), p. 092305. doi: 10.1063/

1.3234249.

[31] B. J. Q. Woods et al. “Stochastic effects on phase-space holes and clumps in kinetic

systems near marginal stability”. In: Nucl. Fusion 58.8 (2018), p. 082015. issn:

17414326. doi: 10.1088/1741-4326/aaa9fd.

[32] B. J. Q. Woods et al. “Machine Learning Characterization of Alfvénic and Sub-
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der mathematischen Physik”. In:Math. Ann. 100.1 (1928), pp. 32–74. doi: 10.1007/

BF01448839.

199

https://doi.org/10.1063/1.5046194
https://doi.org/10.1088/1741-4326/aab502
https://doi.org/10.1088/1741-4326/ab2488
https://doi.org/10.1088/1741-4326/ab2488
https://doi.org/10.1063/1.1448346
https://doi.org/10.1088/0029-5515/46/10/S11
http://stacks.iop.org/0029-5515/46/i=10/a=S11?key=crossref.33bda8e4535b45517b40e08662c3b345
http://stacks.iop.org/0029-5515/46/i=10/a=S11?key=crossref.33bda8e4535b45517b40e08662c3b345
https://doi.org/10.1063/1.3080724
https://doi.org/10.1137/0705041
https://doi.org/10.1016/0021-9991(76)90053-X
https://doi.org/10.1016/0021-9991(76)90053-X
https://doi.org/10.1007/BF01443876
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/BF01448839


7

[59] H. Wang, Y. Todo, and C. C. Kim. “Hole-Clump Pair Creation in the Evolution

of Energetic-Particle-Driven Geodesic Acoustic Modes”. In: Phys. Rev. Lett. 110.15

(2013), p. 155006. issn: 0031-9007. doi: 10.1103/PhysRevLett.110.155006.

[60] E. D. Fredrickson et al. “Fast ion loss in a ‘sea-of-TAE’”. In: Nucl. Fusion 46.10

(2006), S926–S932. issn: 0029-5515. doi: 10.1088/0029-5515/46/10/S09.

[61] E. D. Fredrickson et al. “Collective fast ion instability-induced losses in National

Spherical Tokamak Experiment”. In: Phys. Plasmas 13.5 (2006), p. 056109. doi:

10.1063/1.2178788.

[62] R. Nazikian et al. “Intense Geodesic Acousticlike Modes Driven by Suprathermal

Ions in a Tokamak Plasma”. In: Phys. Rev. Lett. 101.18 (2008), p. 185001. doi:

10.1103/PhysRevLett.101.185001.

[63] J. Citrin et al. “Comparison between measured and predicted turbulence frequency

spectra in ITG and TEM regimes”. In: Plasma Phys. Control. Fusion 59.6 (2017),

p. 064010. doi: 10.1088/1361-6587/aa6d1d.

[64] V. N. Duarte et al. “Theory and observation of the onset of nonlinear structures

due to eigenmode destabilization by fast ions in tokamaks”. In: Phys. Plasmas 24.12

(2017), p. 122508. doi: 10.1063/1.5007811.

[65] S. D. Pinches et al. “The role of energetic particles in fusion plasmas”. In: Plasma

Phys. Control. Fusion 46.12B (2004), B187–B200. issn: 0741-3335. doi: 10.1088/

0741-3335/46/12B/017.

[66] N. N. Gorelenkov, S. D. Pinches, and K. Toi. “Energetic particle physics in fusion

research in preparation for burning plasma experiments”. In: Nucl. Fusion 54.12

(2014), p. 125001. issn: 0029-5515. doi: 10.1088/0029-5515/54/12/125001.

[67] M. Garćıa-Muñoz et al. “NTM induced fast ion losses in ASDEX Upgrade”. In:

Nucl. Fusion 47.7 (2007), pp. L10–L15. doi: 10.1088/0029-5515/47/7/L03.
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Glossary

Symbols

δ-operator An operator that returns the variation of a functional. See Section 1.3.2.

A

action-angle variables A set of phase-space variables (generalised momentum and gener-

alised coordinates respectively), for which the momenta resemble the classical action.

See Section 1.6.

adiabaticity Of or pertaining to a slow or zero change of the following integral:∮
H=H(x,v,t)

v · dx,

such that one integrates over a contour of constant energy at time t. See Section 2.3.7.

Alfvén waves11 A family of magnetohydrodynamic wave. Dispersion relations are de-

fined with respect to the Alfvén speed:11

vA =
B√∑

i
µ0mini

.

B

Berk-Breizman sink A sink of electromagnetic energy in plasmas popularised by Berk

and Breizman5 and later widely used in the literature. See Section 3.3.3

Bernstein-Green-Kruskal Of or pertaining to structures, waves or theory surrounding

the 1958 paper by Bernstein, Greene and Kruskal. See Section 2.2.1.

Boltzmann equation Kinetic equation which governs the evolution of a particle distri-

bution function (PDF), f , for the lth species. See Section 1.4.4.
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E

Boltzmann-Maxwell Of or pertaining to the coupled system of equations featuring the

Boltzmann equation and Maxwell’s equations. See (1.17).

bounce frequency Also sometimes called the transit frequency. This is the time it takes

for an angle variable to make a full rotation.

Bromwich contour The contour used for the inverse Laplace transform f̃(p) → f(t).

Given by ΩBr. : p ∈ [−∞+ iσ,∞+ iσ]. See Landau’s method.

bump-on-tail distribution A simple particle distribution function featuring suprather-

mal particles. Typically used in reduced dimensionality models. See Section 1.5.1.

bursting A plasma wave is ‘bursting’ if it is undergoing one or more cycles in the mode

amplitude including the following stages: linear growth, nonlinear saturation, relax-

ation. For a sketch of a burst, see Figure 5.5.

C

canonical transformation A phase space transformation which preserves the same form

of Hamilton’s equations.

Cauchy’s theorem43 The line integral on a closed contour C in the complex plane of a

function that is holomorphic in a subset of the complex plane A is equal to zero:∮
C
f(z) dz = 0,

where f is holomophic in A, and C is a closed contour in or on the boundary of A.

co-moving Galilean transform Two tensors describe Galilean transforms in this thesis:

spatial transform (χ, see Section 3.4.2) and velocity transform (ν, see Section 3.5.1).

confusion matrix The confusion matrix C for a multi-class classifier is defined such that

the element Cij is the number of classifications made belong to class i which are

actually of class j. See Section 6.2.5.

conservative orbit A conservative orbit is defined in this thesis as a single particle orbit

upon which the particle energy is conserved. See Chapter 2.

D

decision tree classifier A decision tree setup to perform classification. It takes an input

space (features) and maps those features onto an output space (classification). In

this thesis, I examine multi-class classification. See Chapter 6.
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Dirichlet boundary condition Also known as a ‘first-type’ boundary condition. A con-

dition that a solution to a function which satisfies a differential equation must be

equal to a given value at a given point in its codomain.

E

energetic particle For a given plasma species, energetic particles are a subpopulation

with mean velocity much greater than the bulk thermal velocity, who have not yet

thermalised with the bulk.

ensemble average Averaging process to remove fluctuations from a quantity, leaving only

the average/mean-field contribution. See Section 1.4.4.

F

frequency sweeping A slow change in frequency for a wave (as opposed to frequency

chirping). Typically caused by changes to the background. See Section 5.1.1.

frequency chirping A fast change in frequency for a wave (as opposed to frequency

sweeping). Typically caused by nonlinear kinetic resonance. See Section 5.1.1.

G

Gini impurity A nonlinear function which determines how well sorted the data is in a

decision tree. Value given by:

IG :=
∑
k

[pk(1− pk)] .

See Section 6.2 for more details.

H

hole and clump During kinetic resonance between a plasma species and an electromag-

netic wave, two nonlinear structures can form on the distribution function near the

resonance. These manifest as a relative decrease or increase on the distribution

function (hole and clump). See Chapter 5.

I

input space This can essentially can be thought of as the codomain of a function or map.

Example: R forms the input space for the function f(x) = x2. See Section 6.2.
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J

Jacobian43 A matrix containing all of a vector function’s first-order partial derivatives;

commonly used for area and volume transformations. For a mapping {Xj} → {Yi},

using matrix indices:

Jij =
∂Yi
∂Xj

.

Jordan’s lemma43 If a function f(z) is of the form f(x) = eiazg(z), on a semicircular

contour CR = Reiθ|θ ∈ [0, π], if limR→∞ g(Reiθ) = 0:

lim
R→∞

∫
CR

f(z) dz = 0.

K

Klimontovich density A coarse distribution function constructed from Dirac delta func-

tions. See Section 1.4.3.

L

Landau’s method A method of obtaining the complex linear dispersion relation. See

Section 2.3.3.

leaf node A node on a branch of a decision tree. At each leaf, the tree branches. See

Section 6.2.

Leibniz integral rule Also known as differentiation under the integral sign. See Ap-

pendix B.2.

linear complex dispersion relation The linear complex dispersion relation. See Sec-

tion 2.3.1.

Liouville’s theorem18 The phase space distribution is constant along trajectories of the

system. Alternatively, phase space acts as an incompressible fluid.

Lorentz force The force exerted on a single charged particle by an electromagnetic field;

depending on the context, this may be the full electromagnetic field, or the mean-

field.

loss function A loss function L that maps an event nto a real number to give some notion

of ‘loss’ associated with that event. In the context of machine learning, loss functions

map the output space onto a real number which gives an overall ‘figure-of-merit’ for
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how well the machine thinks it is performing. A machine learning algorithm then try

to decrease the loss function until optimization is achieved.

N

neighbourhood On a manifold, all points which are within a distance of d away from x

are said to be in the neighbourhood of x.

Neumann boundary condition Also known as a ‘second-type’ boundary condition. A

condition that the first derivative of a function which satisfies a differential equation

must be equal to a given value at a given point in its codomain.

Noether’s theorem1 For each and every continuously differentiable symmetry there is

a corresponding conservation law.

non-conservative orbit A non-conservative orbit is defined in this thesis as a single

particle orbit upon which the particle energy is not conserved. See Chapter 3.

O

orbit affine parameter A quantity ε that is conserved along particle orbits. See Sec-

tion 3.2

output space This can essentially can be thought of as the domain of a function or map.

Example: R[0,∞] forms the output space for the function f(x) = x2. See Section 6.2.

Q

quasi-passing particle A passing particle which appears to exhibit some properties of

trapped particles: restricted orbit; wave-particle resonance. See Section 3.2.1

R

random forest classifier A random ensemble of decision trees. See Section 6.2 and .

residue theorem43 The line integral on a closed contour C in the complex plane of a

function that is meromorphic in a subset of the complex plane A is equal to the

product of 2πi and the sum of the residues in the region bounded by C:∮
C
f(z) dz = 2πi

∑
j

Res(f, pj),
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where f is meromorphic in A, C is a closed contour in or on the boundary of A, {pj}

are all of the poles of f in the region bounded by C, and Res(f, pj) gives the residue

of f at pj .

S

separatrix The largest closed phase-space contour/boundary. See Theorem 1

slowing-down distribution A particle distribution function featuring suprathermal ions

which are steadily injected into a system. Typically used with regards to tokamaks.

See Section 1.5.2.

T

training data The set of data used to train and/or test a machine learning algorithm.

See Section 6.2.

U

unperturbed orbit The orbit a particle travels along before some perturbation is added

to the system. Generally superceded: see conservative orbits.

V

van Kampen mode Solutions to the Vlasov equation characterised by singular behaviour.

Vlasov equation Collisionless variant of the Boltzmann equation. See Boltzmann equa-

tion.
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List of Abbreviations

A

ALE abrupt large event

B

BAE beta-induced Alfvén eigenmode

C

CART classification and regression tree

CFL Courant-Friedrich-Lewy

CNN convolutional neural network

D

DARK D-dimensional Augmented Resonance Kinetic solver

E

ELM edge localised mode

EPM energetic particle driven mode

ERICSON Experimental Resonant Instability Correlation Studies on NSTX

F

FFTW Fastest Fourier Transform in the West

FILD fast ion loss detectors

G
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GAM geodesic acoustic mode

GTM generative topographic mapping

K

KTF kink/tearing/fishbone

M

MHD magnetohydrodynamics

ML machine learning

N

NBI neutral beam injection

O

ODE ordinary differential equation

P

PCA principal component analysis

PDE partial differential equation

PDF particle distribution function

PPPL Princeton Plasma Physics Laboratory

PRNG pseudorandom number generator

R

RF radio frequency

S

SHM simple harmonic motion

STFT short-time Fourier transform

T

TAE toroidal Alfvén eigenmode
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Other Equations and Identities

C

complete elliptic integral of the first kind45

K(k) =

∫ π/2

0

dy√
1− k2 sin y

(E.1)

convolution theorem

F [fg] = F [f ] ∗ F [g] (E.2)

D

Dawson function45

D[x] = e−x
2

x∫
0

ey
2

dy (E.3)

F

Fourier transform (velocity)

Fv[f(v)] :=
1√
2π

∫
R

f(v)e−isv dv

F−1
v [g(s)] :=

1√
2π

∫
R
g(s)eisv ds

Fourier series (spatial)

Q(x) =:
1

2

∑
j

Qje
ikjx

Qj ≡
1

L

L∮
0

Q(x)e−ikjx dx

L
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Laplace transform

L̂[Q] ≡ Q̃(p) :=

∫
R

Q(t)e−pt dt

L̂−1[Q] ≡ Q(t) ≡ 1

2πi

∫
R+iσ

Q̃(p)ept dp

Laurent series

f(v) =
∞∑

j=−∞
Lj(v − u)j (E.4)

V

vector Laplacian43

∇2Q = ∇(∇ ·Q)−∇× (∇×Q) (E.5)
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