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Abstract 

Modern phosphorus (P) fertiliser production depends on phosphate rock reserves 

which could be exhausted by 2040. Substituting inorganic P with organic 

fertilisers may reduce farmers’ requirements for rock-derived phosphate while 

encouraging the use of waste products. Research shows that integrating the use 

of organic and inorganic fertilisers increases P phytoavailability compared to the 

application of inorganic P alone. Field studies typically report results of one 

sampling occasion conducted after years of experimentation, with no intermittent 

monitoring. The aim of this thesis was therefore to determine how substitution of 

inorganic P with organic alternatives affects short-term P cycling and wheat 

productivity. Results were obtained from intact soils cores maintained in a 

greenhouse sown with winter wheat and fertilised with different ratios of organic-

to-inorganic P. There was no statistically significant effect of substituting 

inorganic P with pig slurry (PS) or digested cake (DC) on available P 

concentration during stem elongation or anthesis compared to the application of 

inorganic P alone. The results suggest that increases in phytoavailable P reported 

in previous studies following integrated fertiliser management (IFM) may not 

develop immediately but through gradual accumulation of the soil reserve. The 

time it takes for these differences to emerge could depend on the organic 

amendment; repeated measures analysis showed that the PS substitution 

treatment provided a more sustained supply of phytoavailable P than the DC 

substitution treatments. Grain yield and P leaching losses were statistically similar 

between treatments. The thesis therefore shows that in the short term, inorganic 

P use could be reduced through the incorporation of organic amendments to soil 

without compromising yield, P phytoavailability or P leaching losses. P application 

rates should be matched between treatments and respond to changes in P 
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phytoavailability between seasons to better understand the effect of IFM on P 

cycling and yield over time.  
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Chapter 1 Introduction 

1.1 Overview 

Cereals provide 50% of daily calorific intake in developing countries but their 

production is of global importance; wheat alone provides 19% of global dietary 

energy (FAO, 2017a; Ray et al., 2013). Cereal production will need to increase 

by 45.4% between 2005 and 2050 to meet the demands of a growing global 

population with shifting dietary habits (Alexandratos & Bruinsma, 2012; Keyzer et 

al., 2005; Pelletier & Tyedmers, 2010). At the same time, competition for 

agricultural land between food and fuel is increasing and reserves of the finite 

resources used in the modern food production system are declining (FAO, 2017a; 

Smil, 2000).  

Inorganic fertilisers were one of the key components that led to rapid yield 

increases achieved during the Green Revolution (Tilman et al., 2002, 2001). 

However, their use is associated with aquatic, terrestrial and atmospheric 

pollution and their production depends on finite resources (Bobbink et al., 1988; 

Bobbink & Willems, 1987; Correll, 1998; Miyazako et al., 2015; Smil, 2000; 

Tipping et al., 2014; Vitousek et al., 1997). Organic amendments introduce 

nutrients to soil without relying on inorganic fertilisers. When derived from waste 

products such as municipal waste water, the use of organic fertilisers also 

encourages closed-loop nutrient cycling by diverting nutrients away from 

waterbodies and back into agriculture. This is particularly beneficial for 

phosphorus (P) based inorganic fertilisers sourced from rock reserves because it 
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has been predicted that peak P production could occur as early as 2030 (Cordell 

et al., 2009).  

The substitution of inorganic fertilisers with organic alternatives is promoted as a 

means to reduce farmers’ requirements for inorganic fertilisers while minimising 

the environmental impact of agriculture (Defra, 2010; Nemecek et al., 2011; 

Shuqin & Fang, 2018). Long-term studies have shown that the integrated use of 

organic and inorganic fertilisers can maintain or increase yields compared to the 

application of inorganic fertilisers alone (Bedada et al., 2014; Ge et al., 2010; 

Pincus et al., 2016; Xie et al., 2016). This practice also  increases the 

concentration of available P in soil after years of repeated applications, compared 

to the application of inorganic P only (Ahmed et al., 2019; Hu et al., 2018; Xin et 

al., 2017). However, the effect of integrated fertiliser management on short-term 

soil phosphorus dynamics and wheat productivity is not well understood. This 

thesis asks how substitution of inorganic P with organic alternatives affects P 

phytoavailability, P leaching losses and productivity during the life-cycle of wheat, 

compared to the application of inorganic fertilisers alone. Conducting short-term 

studies with matched P application rates between treatments is important 

scientifically, because incubation studies show differences between inorganic 

and combined treatments in the very short-term (Reddy et al., 2005), and in the 

broader agricultural setting because phosphorus is taking over as the limiting 

nutrient for fertiliser application rates across Europe (Sigurnjak et al., 2017). 
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1.2 Phosphorus and its place in agriculture 

1.2.1 Phosphorus fertiliser production and agricultural use 

P use in agriculture has a long and important history. Over time, the dominant 

source of P used for fertiliser has shifted from human and animal waste to 

phosphate rock (Cordell et al., 2009). Consumption of P rock rose dramatically 

during the mid- to late 20th century supporting rapid increases in yield (Cordell et 

al., 2009). Supplies of rock P are declining in terms of size and quality (Smil, 

2000), with some authors predicting that peak phosphorus production will occur 

within 15 years (Cordell et al., 2009). More recent estimates predict that all 

remaining reserves could be exhausted by 2040 (Blackwell et al., 2019). It is 

evident that this resource must be used more efficiently or be re-captured in order 

to prevent the collapse of a farming system that is “addicted” to P (Cordell et al., 

2009). The need for alternative P sources is particularly pertinent for countries, 

such as those in northern Europe, which have no P rock reserves and must rely 

on imports for P fertilisers (Elser & Bennett, 2011). 

1.2.2 Phosphorus cycling in agricultural soils  

1.2.2.1 Inputs 

The soil P cycle can be separated into four major stages: (i) inputs of P; (ii) P in 

temporary soil P pools; (iii) transformation of P between pools; and (iv) losses of 

P from the soil system (Figure 1.1). P enters agricultural soils via the weathering 

of phosphorus minerals such as apatite, applications of mineral and organic 

fertilisers and atmospheric deposition in dust and soil (Chianu et al., 2012; 

Tipping et al., 2014). P inputs to agricultural soils are likely to be dominated by 

fertiliser applications although the contribution of each input varies between 

systems (Kruse et al., 2015). Inorganic P use on winter and spring cereals in 
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Britain decreases in the order potash-phosphate (PK), triple superphosphate 

(TSP), other straight P (Defra, 2018). Approximately 51,000 tonnes of TSP, which 

is derived from rock phosphate, was applied to winter cereals in Britain during 

2017 (Defra, 2018). 

1.2.2.2 Phosphorus in soil 

There is confusion in the scientific literature surrounding phosphorus 

nomenclature given the various phosphorus forms that exist in soil and the 

numerous methods that are used to extract P from soil. For clarity, it would be 

simplest to discuss P chemically, by referring to specific molecules such as 

apatite, inositol phosphate or dicalcium phosphate. While this is perhaps the most 

conclusive way to discuss P, authors are often more interested in P availability to 

plants and microbes and vulnerability to leaching than molecular definitions. For 

this reason, phosphorus is often discussed in terms of pools or fractions (Figure 

1.1).  



 
 

 

  

 5
 

  

 

Figure 1.1: The soil phosphorus cycle. Inputs, losses and plant uptake are represented by yellow, green and orange arrows, respectively. As phosphorus (P) forms 

are dissolved, desorbed or mineralised they become available to plants and vulnerable to leaching. P can be chemically defined, existing in molecules such as dicalcium 

phosphate (precipitated P) or inositol phosphate (organic P). P forms can also be defined based on their availability to plants rather than chemical properties. For 

example, labile P doesn’t relate to one P molecule but to forms that are directly exchangeable with soil solution. Adapted from Shen et al., (2011)



6 
 

 

  

Soil P can be divided into five major pools (Figure 1.1): (i) primary P minerals; (ii) 

secondary P minerals; (iii) sorbed P; (iv) organic P; and (v) solution P (Shen et 

al., 2011).  P in primary minerals such as apatite, strengite and veriscite is 

considered unavailable to plants as the physical breakdown and chemical 

weathering of these sources lags behind crop demand (Shen et al., 2011). 

Estimates for P release from weathering of primary minerals are in the range of 

0.05 – 5 kg P ha-1 year-1 (Parfitt et al., 2008).  

Once in solution, P from the weathering of primary minerals can be precipitated 

into secondary P minerals such as calcium (Ca), iron (Fe) and aluminium (Al) 

phosphates. The form of secondary mineral formed by precipitation is pH 

dependent, as pH dictates the concentration of Ca, Al and Fe cations in soil 

(Hinsinger, 2001). Ca phosphates are more common in neutral to alkaline soils, 

while Fe and Al phosphates are more common in acidic soils (Hinsinger, 2001). 

The phytoavailability of secondary minerals present also changes with pH. As pH 

increases, calcium phosphates with lower phytoavailability such as 

hydroxyapatite dominate. On the contrary, iron and aluminium phosphates 

become more phytoavailable with increasing pH (Hinsinger, 2001). Secondary P 

minerals become phytoavailable through dissolution, the rate of which is affected 

by the distribution of the mineral particle being dissolved and soil pH (Kirk & Nye, 

1986; Nye & Kirk, 1987; Shen et al., 2011).  

P can also be adsorbed onto the surface of clay minerals and aluminium and iron 

oxides which have a large specific surface area for sorption (Gérard, 2016; Shen 

et al., 2011). Over time, P can become occluded in nanopores of Al and Fe 

oxides, where it is plant unavailable (Shen et al., 2011).  
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Unlike occluded P, organic P is an important source of potentially-phytoavailable 

P particularly in soils with low phosphorus solubility but with a large organic P 

pool (Tiessen et al., 1984). However, organic phosphorus exists in many forms 

which differ in their phytoavailability (Quiquampoix & Mousain, 2004). For 

example, inositol phosphates are resistant to mineralisation, form insoluble salts 

in acid soil and precipitate with calcium in alkaline soils (Quiquampoix & Mousain, 

2004). Consequently, inositol phosphates are less phytoavailable than 

phospholipids which make up a smaller proportion of the organic P pool but have 

a faster turnover in soil (Quiquampoix & Mousain, 2004). Therefore, while organic 

P can account for up to 80% of the P in soil the phytoavailability of this pool 

depends on the forms that are present as well as soil chemical and physical 

properties (Shen et al., 2011).  

The previous discussion of pools frequently mentions phytoavailable phosphorus, 

or the phosphorus in soil that is directly available for plant uptake. The most 

common methods used to quantify phytoavailable P are Mehlich’s P, Bray’s P 

and Olsen’s P which are used for analysis of acid, alkaline-to-neutral and neutral 

soils, respectively. Olsen’s P is the main extraction technique used to determine 

phytoavailable P in England, Wales and Northern Ireland and is used to 

categorise soils for fertiliser recommendations (Agriculture and Horticulture 

Development Board, 2017). Water-soluble phosphorus is another example of a 

commonly quantified P pool, because the concentration of Pwater in soil is 

correlated with P leaching losses (Pote et al., 1996). Phytoavailable P and Pwater 

is often referred to as ‘labile P’, which is P that rapidly equilibrates with the soil 

solution (Pierzynski et al., 2005). In Figure 1.1, Olsen’s P and Pwater would be 

located within the dashed circle indicating that they are labile forms of P. Soil P 

that is slow to equilibrate with soil solution is termed ‘nonlabile’. 
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There are well-established extraction techniques used to estimate the proportion 

of P in soil that is labile and nonlabile. The most commonly used technique was 

developed by Hedley et al., (1982) and involves the sequential use of increasingly 

strong reagents to extract decreasingly labile forms of P. In this instance, the P 

fraction may be discussed in terms of the extractant used or the anticipated lability 

of the fraction. The true molecular composition of the P forms present in pools 

can only be hypothesised (Pierzynski et al., 2005) unless there is further analysis 

using techniques such as X-ray absorption near-edge structure (XANES) 

spectroscopy which provides information about the chemical nature of P in each 

fraction (Takamoto & Hashimoto, 2014). 

1.2.2.3 State-of-the-art methods in soil phosphorus analysis 

The number of state-of-the-art methods in soil phosphorus dynamics has 

increased considerable in recent years. Innovative methods have been reviewed 

extensively by (Kruse et al., 2015) and thus will be discussed briefly here. 

Techniques can broadly be divided into approaches that: (1) identify and quantify 

given P species; and (2) assess soil P reactions. Methods including 31P NMR 

spectroscopy and direct infusion nanospray quadrupole time-of-flight mass 

spectroscopy allow quantification of specific P species and microbial 

communities in soil, respectively (Kruse et al., 2015). Both techniques provide 

considerable benefits over more traditional approaches, including simplified 

sample preparation and more accurate outputs (Kruse et al., 2015). A different 

suite of techniques is adopted for the study of soil P transformations. This 

includes, but is not limited to, P sorption isotherms (Jiao et al., 2007; Kang et al., 

2011; Wei et al., 2019), estimation of phosphatase activity using artificial P 

substrates (Spohn, Carminati, et al., 2013; Tabatabai, 1994) and the use of the 

radioactive 33P isotope to trace the flow of P through microorganisms, soil and 
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plants (Noack et al., 2014; Spohn, Ermak, et al., 2013). The technique adopted 

will depend on the research question, and certain studies may adopt multiple 

techniques to achieve their objectives (Negassa et al., 2010). A multi-method 

approach, combining both state-of-the-art and traditional wet chemistry 

approaches, is encouraged by Kruse et al. (2015) to gain a holistic understanding 

of soil P pools and dynamics.  

1.2.2.4 Losses 

Phosphorus can be lost from soil through leaching, runoff, erosion or as a result 

of plant uptake (Figure 1.1). Leaching, surface runoff and atmospheric deposition 

of P contribute to elevated levels of nutrients in waterbodies, known as 

eutrophication (Correll, 1998; Miyazako et al., 2015; Tipping et al., 2014; Troost 

et al., 2013). Eutrophic waterbodies are starved of dissolved oxygen (DO) due to 

increased oxygen (O2) demand from a growing autotrophic community. Aquatic 

life that would thrive in oligotrophic streams, lakes and oceans is no longer 

supported in these anoxic or hypoxic environments. Eutrophication incurs 

economic costs (Dodds et al., 2009; Pretty et al., 2003) and threatens human 

health (Chorus et al., 2000; Preece et al., 2017). Agriculture is the major source 

of P causing eutrophication (Heckrath et al., 1995; Smil, 2000; Svanbäck et al., 

2013), responsible for 25-75% of P loads in European waterbodies (European 

Environment Agency, 2005). It is crucial to minimise the flow of P from agriculture 

to waterbodies, especially as global warming is expected to aggravate 

eutrophication (Lürling et al., 2017).  

1.2.2.5 Plant uptake  

Plant uptake of P as H2PO4
- and HPO4

2- is an important flow in the P cycle. P 

uptake occurs by active transport across the root plasma membrane via 
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symporters including the PHosphate Transporter 1 (PHT1) family of membrane 

proteins (Ceasar et al., 2016; Nussaume et al., 2011).  

Plants demonstrate numerous architectural and cellular adaptations to P 

deficiency. Architecturally, plants experiencing P deficiency have a higher root-

to-shoot ratio, increased root branching, longer roots and more root hairs than 

plants in P-sufficient soils (Shen et al., 2011). Plants in a number of families 

including Proteaceae, Fabaceae and Myricaceae can also produce cluster roots 

under P deficiency (Shane & Lambers, 2005). Cluster roots are identified by 

sections of dense lateral root with high numbers of root hairs that release 

“exudative bursts” of carboxylate into the rhizosphere to mobilise P (Shane & 

Lambers, 2005). Plants can also increase P acquisition by forming symbioses 

with arbuscular mycorrhizal fungi (AMF). 80% of terrestrial plant species form 

associations with AMF, which provides plants with P in return for 

photosynthetically-derived carbon (Berruti et al., 2016). AMF increase the area of 

soil that can be exploited by the plant through the production of extraradical 

hyphae and can also mobilise P from forms that would otherwise be unavailable 

to the plant.  

Plants can also alter internal cycling of P when they are experiencing P 

deficiency. Adaptations include the use of non-P lipids in the cell membrane to 

limit P consumption, acquiring P from organic forms including 

phosphomonoesters, acquiring P from old cellular tissue and alteration in cellular 

respiration pathways to avoid processes requiring inorganic P (Shen et al., 2011). 

1.3 Nitrogen and its place in agriculture 
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Consideration is given to nitrogen because it is the most common limiting nutrient 

in agricultural soils (Rütting et al., 2018), the combined use of organic and 

inorganic fertilisers has been shown to affect N dynamics in soil (Frimpong & 

Baggs, 2010) and N fertilisation has been shown to affect P uptake by crops 

(Coblentz et al., 2004). Therefore, while phosphorus is the focus of this thesis an 

understanding of N dynamics and quantification of N availability is required to 

gain a comprehensive view of the effect of combined fertiliser applications on 

productivity and P phytoavailability. 

1.3.1 Emissions from nitrogen production and agricultural use 

The seven-fold increase in inorganic nitrogen (N) inputs to agricultural land 

between 1960 and 1995 is considered central to the doubling of global cereal 

production that occurred during the Green Revolution  (Tilman et al., 2002, 2001; 

Vitousek et al., 1997). Agriculture remains dependent on inorganic N for yield 

maintenance with inputs expected to increase almost three-fold by 2050 

compared to 2000 levels (Tilman et al., 2001).  

There are significant sustainability and environmental concerns associated with 

the production and use of inorganic N fertilisers. Ammonia (NH3) is the chemical 

feedstock required to produce ammonium nitrate (NH4NO3), urea (CH4N2O) and 

urea ammonium nitrate (UAN) which are the nitrogenous fertilisers most 

commonly used on cereal crops in Great Britain (Defra, 2018). More than 90% of 

the world’s NH3 is produced via the Haber-Bosch (HB) process (Gálvez et al., 

2007). During the reaction hydrogen is combined with nitrogen in the presence of 

an iron (Fe) catalyst under high pressure and temperature (United States 

Environmental Protection Agency, 2017). Hydrogen is typically derived from 

steam reformation of light hydrocarbons such as natural gas and nitrogen is 



12 
 

 

  

pooled from the air (Chen et al., 2018). The HB process requires non-renewable 

resources for energy production and results in the formation of carbon dioxide 

(CO2) (Bicer et al., 2016; Rafiqul et al., 2005); it is estimated that NH3 production 

consumes 1.2% of global primary energy demand  (Chen et al., 2018) and emits 

1.9 - 16.7 tonnes of CO2 per tonne of NH3
 produced depending on the production 

facility and the fuel used (Rafiqul et al., 2005). Research into more efficient and 

sustainable alternatives to the HB process is ongoing (Chen et al., 2018; 

Cherkasov et al., 2015; Manabe et al., 2017). Meanwhile, agriculture remains 

dependent on an energy intensive, fossil-fuel based process to provide adequate 

N nutrition to crops.  

Following their production, the misapplication of N fertilisers is associated with 

the degradation of aquatic and terrestrial ecosystems. The negative effect of N 

fertilisers on the environment can be reduced, for example, by making 

applications at the correct time and rate (de Boer et al., 2016; Ju et al., 2009; 

Trindade et al., 2009). However, agriculture remains the largest contributor of 

anthropogenic nitrous oxide (N2O) emissions (European Environment Agency, 

2018), a greenhouse gas (GHG) with a global warming potential (GWP) almost 

300 times that of CO2 over 100 years (Myhre & Shindell, 2013). N fertilisers 

contribute to aquatic eutrophication directly via leaching and surface runoff, and 

indirectly through deposition of nitrogen oxides (NOx). NOx deposition also 

fertilises terrestrial ecosystems, reducing biodiversity (Bobbink et al., 1988; 

Bobbink & Willems, 1987) and increasing N leaching which itself leads to 

eutrophication (Vitousek et al., 1997). Therefore while N fertilisers remain a 

critical cog in the modern agricultural system, their use must be carefully 

managed in order to minimise environmental degradation.  

1.3.2 Nitrogen cycling in agricultural soils  
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The N cycle involves the transformation of N through soil, living organisms and 

the atmosphere (Figure 1.2). The processes of nitrification and denitrification are 

particularly important as they result in the formation of nitrate (NO3
-) and N2O, 

both significant pollutants (Figure 1.2).  

Nitrification is a microbially-mediated reaction which takes place in two steps 

under aerobic conditions (Figure 1.2). First, oxidising bacteria catabolise 

ammonium (NH4
+) into nitrite (NO2

-) (Norton, 2008; Snyder et al., 2009). At this 

stage, NO2
- is oxidised to NO3

- by one of four genera of bacteria: Nitrobacter sp., 

Nitrospira sp., Nitrococcus sp., and Nitrospina sp. (Voroney & Derry, 2008). 

Nitrification represents the transformation of an immobile cation, NH4
+, into a 

mobile anion, NO3
-  (Snyder et al., 2009). In the NO3

- form, N is available for plant 

uptake but is also readily leached through the soil profile (Subbarao et al., 2006). 

NO3
- is therefore important to study from a crop productivity and environmental 

perspective.  
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Figure 1.2: The Nitrogen Cycle.  Nitrogen fixation converts dinitrogen gas in the atmosphere (N2) in to ammonium (NH4

+). NH4
+ is transformed into nitrate (NO3

-) via 

nitrite (NO2
-) by the process of nitrification. NO3

- is returned to the atmosphere via denitrification. Incomplete denitrification results in the production of nitrous oxide 

(N2O), a potent greenhouse gas. NH4
+ and NO3

- can both become immobilised in organic forms, although this process is reversible via mineralisation. Blue boxes show 

links between the nitrogen and the phosphorus cycle 
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Further N can be lost when NO3
- is reduced, by bacteria, to dinitrogen gas (N2) 

via denitrification in anaerobic soils (Figure 1.2) (Coyne, 2008). During 

denitrification oxidised inorganic N compounds are returned to the atmosphere. 

Incomplete denitrification leads to the production of N2O. Small losses of N2O are 

environmentally important given the high GWP of this gas (Coyne, 2008; Kramer 

et al., 2006; Myhre & Shindell, 2013)  

Mineralisation and immobilisation represent the conversion of N between organic 

and mineral forms (Figure 1.2). During mineralisation, enzymes produced by 

microorganisms convert organic-N to inorganic-N. As such, mineralisation 

represents an important process that contributes to N losses later in the  cycle 

(Follett, 2008; Myrold & Bottomley, 2008; Snyder et al., 2009). Microorganisms 

assimilate inorganic N and in doing so convert inorganic-N to organic-N. This is 

the process of immobilisation, also referred to as microbial assimilation, which 

results in the production of plant-unavailable N. 

The nitrogen and phosphorus cycle are intrinsically linked, through the 

stochiometric dependence of plants and microbes on N and P and the role of P 

in N cycling processes, and vice versa (Bouwman et al., 2009; Chen et al., 2016; 

He & Dijkstra, 2015; Marklein & Houlton, 2012). Figure 1.2 demonstrates some 

of these dependencies. P inputs affect N availability through several 

mechanisms. First, N-fixing plants and bacteria have greater demand for P than 

non-N-fixing counterparts. P inputs can stimulate N fixation by these species, 

increasing N availability through the production of ammonium and nitrate 

(Bouwman et al., 2009; Houlton et al., 2008). In P-deficient soils, P inputs can 

reduce N availability through enhanced microbial activity and N immobilisation 

(He & Dijkstra, 2015). Furthermore, P inputs reduce the effect of P limitation on 

nitrifiers and denitrifiers, stimulating N losses as nitrate and nitrous oxide (Chen 
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et al., 2016; He & Dijkstra, 2015). N inputs also affect P phytoavailability through 

their role in the production of phosphatase enzymes. Phosphatases catalyse the 

hydrolysis of phosphomonoester bonds in organic P forms, increasing levels of 

phytoavailable P in soil. Phosphatase enzymes are rich in N, so their activity is 

responsive to N fertilisation (Marklein & Houlton, 2012; Widdig et al., 2019). 

These interdependencies further demonstrate the importance of studying and 

considering N and P reactions simultaneously.   

1.4 Fertiliser effects on phosphorus and nitrogen cycling in 

agricultural soils 

Fertiliser type influences the phytoavailability of N and P as well as the quantity 

of each nutrient leaving agricultural soils and entering the natural environment.  

1.4.1 Use of phosphorus fertilisers in Great Britain 

Farmers in the United Kingdom follow guidance in the Fertiliser Manual (RB209) 

published by the Agriculture and Horticulture Development Board (AHDB) when 

making decisions about fertiliser applications (AHDB, 2020). Following guidance 

in RB209 helps farmers to comply with regulatory restrictions related to the 

quantity and timing of fertiliser applications, save money and protect the 

environment (AHDB, 2020). The guide introduces seven key principles of fertiliser 

good practice: (i) obtaining relevant information related to soil type, historic 

agronomic practices, soil nutrient and physiochemical properties and local 

climate; (ii) assessing crop yield potential, economics and markets; (iii) 

assessment of available nutrients from organic manure; (iv) decisions on the rate, 

method and timing of fertiliser applications; (v) careful selection of fertiliser 
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material; (vi) accurate application of fertilisers and manures; and (vii) record 

keeping (AHDB, 2020).  

The results of soil testing inform farmers’ decisions regarding suitable fertiliser 

application rates. RB209 recommends analysis of phosphorus every three to five 

years while sampling for soil mineral nitrogen (NO3-N and NH4-N) is advised 

annually (AHDB, 2020). The results of laboratory analysis are used to classify 

soils into indices. The soil index determines the rate at which farmers apply 

nutrients, including zero input when the soil is above a certain indices. The 

classification of soil P and K analysis into indices and their respective fertiliser 

application rates for a winter wheat crop are presented in Table 1.1. The rate 

applied will depend on the crop, the target yield and straw management.  

Table 1.1: Phosphorus and potassium soil indices with their respective fertiliser 
application rates for winter wheat with straw incorporated and a target yield of 8 
t ha-1 (AHDB, 2020). Recommended phosphorus applications rates have 
decreased since the previous edition of RB209 (Defra, 2010).  

 Phosphorus Potassium 

Index Soil (mg P/L) Application rate 
(P2O5, kg ha-1) 

Soil (mg K/L) Application rate 
(K2O, kg ha-1) 

0 0-9 100 0-60 105 

1 10-15 80 61-120 75 

2 16-25 50 
121-180 (2-)  45 

180-240 (2+) 20 

3 26-45 0 241-400 0 

4 46-70 0 401-600 0 

5 71-100 0 601-900 0 

6 101-140 0 901-1500 0 

7 141-200 0 1501-2400 0 

8 201-280 0 2401-3600 0 

9 Over 280 0 Over 3600 0 
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Measures to ensure safe and efficient use of organic manures are also included 

in RB209. The manual includes instructions to help maximise the nutrient value 

of organic fertilisers. Steps include calculating the quantity of phytoavailable 

nutrients supplied by the organic material and determining the application rate in 

line with regulations, guidance and crop requirements. Typical nutrient values 

including total amounts and the estimated phytoavailable amount are given for a 

range of organic materials. Values for pig slurry and biosolids, used in this thesis, 

are presented in Table 1.2. Although the availability of nutrients is discussed in 

the guide it is the total value, rather than the phytoavailable amount of phosphate 

and potash, that is used in fertiliser rate calculations. This is demonstrated in 

several example calculations provided in Section 2: Organic materials (AHDB, 

2020). 

Table 1.2: Typical dry matter, total nitrogen, total phosphate, phosphate 
availability, total potash, potash availability, total sulphur and total magnesium 
content or pig slurry and digested cake on a fresh-weight basis (AHDB, 2020).  

Nutrient content  Pig slurry Digested cake 

Dry matter (%) 4 25 

Total nitrogen (kg N/m3) 3.6 11 

Total phosphate (kg 
P2O5 m-3) 

1.5 11 

Phosphate availability 
(%) 

50 50 

Total potash (kg K2O m-

3) 
2.2 0.6 

Potash availability (%) 90 90 

Total sulphur 0.7 8.2 

Total magnesium 0.7 1.6 

 

1.4.2 Phosphorus fertilisers: organic vs. inorganic 
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Inorganic and organic fertiliser additions differentially affect P cycling in 

soils. Modelling and experimental work have shown that while organic fertilisers 

generally increase the amount of P available for plant uptake their use may also 

contribute to elevated P leaching from agricultural soils compared to inorganic P 

(Allen et al., 2006; Esteller et al., 2009; Jiao et al., 2007; McDowell & Sharpley, 

2004; Vanden Nest et al., 2016, 2014). The interactions that occur 

between organic materials, native soil phosphorus and plants are thought to be 

driven by (Guppy et al., 2005a): (i) competitive sorption for anionic binding sites 

between organic matter (OM) decomposition products and P; (ii) displacement of 

native soil P through metal complexation and dissolution; (iii) increased negative 

charge on the colloidal surface through binding of low molecular weight organic 

acids (LOAs); (iv) improved soil physical properties; (v) mineralisation of P in OM; 

(vi) alterations in pH; (vii) the formation of metal bridges between metals bound 

to LOAs on the colloidal surface and P; and (viii) microbial immobilisation of P 

(Figure 1.1).
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Figure 1.3: Hypotheses for the effect of organic matter (OM) additions on P phytoavailability in soils, adapted from Guppy et al., (2005a).  Screen one: (a) low molecular 

weight organic acids (LOAs), fulvic acids (FA) and humic acids (HA) inhibit P sorption; (b) LOAs, HAs and FAs increase the negative charge of the colloid surface, 

repelling the negatively charged phosphate ion; (c) metal bridges form between P and metals bound to LAOs, HAs and FAs on the colloid surface; (d) metals chelate 

to LAOs, HAs and FAs, displacing P; and (e) P in OM is mineralised and becomes phytoavailable. Screen two: (a) aggregation results in a smaller surface area for P 

to bind; and (b) soil moisture regime is improved, both enhancing plant P uptake. Screen three: mineralisable carbon (C) acts as an energy source for soil 

microorganisms, enhancing their activity, P requirements and P uptake, reducing the amount of P available for plant uptake.   
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There have been two main approaches to studying P transformations in soils after 

fertiliser applications: incubation design laboratory experiments and field studies. 

In laboratory experiments, soils or soil components are amended with organic 

fertilisers (Audette et al., 2016; Jiao et al., 2007; Kang et al., 2011; Vanden Nest 

et al., 2016, 2014) or organic fertiliser derivatives, such as humic and fulvic acids 

(Hunt et al., 2007; Sibanda & Young, 1986; Ström et al., 2002). Both laboratory 

approaches remove many of the factors that affect soil P cycling and are therefore 

theoretical. The most obvious omission is the plant, which could influence P 

cycling through root secretions (Ström et al., 2002), their association with 

symbiotic fungi (Tawaraya et al., 2006) and general P uptake. However, 

incubation experiments are highly controlled with the opportunity for reduced 

variation between replicates. As such, they provide important information about 

the potential effect of fertiliser treatments on soil P chemistry. 

While the majority of incubation experiments show increased P phytoavailability 

or leaching following the addition of organic matter or organic matter derivatives 

to soil (Audette et al., 2016; Hunt et al., 2007; Jiao et al., 2007; Kang et al., 2011; 

Sibanda & Young, 1986; Ström et al., 2002; Vanden Nest et al., 2016, 2014), they 

also reveal that differences in the organic matter source or derivative, stage of 

OM decomposition and soil properties can effect P phytoavailability. Hunt et al., 

(2007) incorporated dissolved organic matter (DOM) from fresh and decomposed 

plant and animal residues as well as Aldrich humic acid, oxalic and salicylic acid 

with three soil constituents: gibbsite, geothite and kaolin. In general, DOM from 

decomposed OM inhibited P sorption to a greater extent than DOM from fresh 

material. Not only was the increase in P phytoavailability dependent on the stage 

of decomposition, the response differed between soil constituents. In a leaching 

experiment, Vanden Nest et al., (2014) reported that out of five organic 
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amendments, only farmyard manure significantly increased the concentration of 

total P and total dissolved P in leachate above the control. Therefore, the effect 

of organic inputs on P phytoavailability and leaching in the field may differ based 

on soil properties and the type of organic amendment. There may also be no 

response to organic amendments in terms of P sorption; studies have found no 

statistically significant effect (Borggaard et al., 2005) or only transient effects of 

organic matter addition on P dynamics (Guppy et al., 2005b). 

Field conditions introduce a layer of complexity which cannot be achieved in the 

laboratory. As with laboratory incubations, organic amendments typically 

increase P phytoavailability compared with mineral P (Ali et al., 2019; Pizzeghello 

et al., 2011; Song et al., 2017). However the magnitude of the response can be 

influenced by the type of organic input (Vanden Nest et al., 2016, 2014). In a long-

term field trial, Vanden Nest et al. (2016, 2014) reported increased P leaching 

and P phytoavailability, measured as calcium chloride extractable P (CaCl2-P) 

and hot water extractable P (HWP), in soils treated with dairy farmyard manure 

compared to farm or municipal waste compost. The authors suggest the Ca:P 

ratio of the organic amendment is important in determining soil P phytoavailability 

and leaching (Vanden Nest et al., 2016). The response to organic fertilisers in 

terms of P phytoavailability is also affected by soil properties (Liu et al., 2012; 

Pizzeghello et al., 2011; Vanden Nest et al., 2016). Liu et al. (2012) applied pig 

slurry and inorganic P to a clay loam and a loamy sand soil with different initial P 

contents (65 and 142 mg kg-1, respectively, as ammonium lactate-extractable P) 

but similar degrees of P saturation. The concentration and load of dissolved 

reactive P (DRP) in leachate from soil receiving pig slurry increased significantly 

compared to the zero-input control for the clay loam but not the loamy sand soil 

(Liu et al., 2012). The leaching response was attributed to abundant macropores 
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in the clay loam. The same study demonstrates the benefits of incorporating pig 

slurry into the soil compared to surface application; in the clay-loam soil the 

concentration of DRP in leachate was reduced by over 50% by incorporation, 

possibly due to the destruction of macropores for water transport during the 

mixing process. Soil texture also affects the degree of P saturation after the 

application of farmyard manure (Pizzeghello et al., 2011) with greater 

accumulation in a peat and a clay soil compared to a sandy soil. Therefore while 

more complex, field studies support greenhouse and incubation work by 

demonstrating that factors other than high-level fertiliser type should be 

considered when predicting soil P phytoavailability after nutrient additions.  

While field studies largely support conclusions of laboratory work, interpretation 

can be confused by experimental design. For example, differences in 

phytoavailable P or exports via leaching may simply be due to unequal P 

application rates between treatments (Allen et al., 2006; Esteller et al., 2009; Krey 

et al., 2013). These differences are exaggerated when fertiliser applications are 

made based on the N content of the amendment (Allen et al., 2006), especially 

when inputs differ in their N:P ratio. The failure of studies to recognise the 

importance of the P content of organic fertilisers was criticised in a review by 

Guppy et al., (2005a) who argued that increased P phytoavailability in organically-

treated soils is not due to decreased P sorption but mineralisation of P in the 

organic fertiliser. Matching treatments for P inputs is becoming increasingly 

important as P replaces N as the limiting nutrient for fertiliser application rates 

across Europe (Sigurnjak et al., 2017) and the U.S. (Allen et al., 2006; Hao et al., 

2015). When fertilisers are applied on an equal P basis, the concentration of soil 

phytoavailable and water soluble P can be higher in soils fertilised with mineral 

compared with organic P (Vaneeckhaute et al., 2016) indicating the importance 
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of matching treatments for P when studying the effect of organic vs. inorganic 

fertilisation on soil P chemistry. 

1.4.3 Nitrogen fertilisers: organic vs. inorganic 

The effect of different fertiliser types on N transformations has been investigated 

with the majority of studies demonstrating lower N losses from organic compared 

to conventional systems (Aguilera et al., 2015; Dambreville et al., 2006; Doltra et 

al., 2015; Drinkwater et al., 1998; Flessa et al., 2002; Kramer et al., 2006; 

Küstermann et al., 2010, 2008; Marie et al., 2015; Mathieu et al., 2006; Petersen 

et al., 2006; Stalenga & Kawalec, 2008) although the opposite has also been 

reported (Bos et al., 2014; Miaomiao He et al., 2017; McGee, 2015). While N2O 

emissions are often lower from soils receiving organic inputs when expressed on 

a per area basis, the differences can be less pronounced or reversed when 

reported on a per production unit basis (Marie et al., 2015) although this depends 

on the crop (Aguilera et al., 2015). Furthermore, while studies conducted at a 

small scale find significant differences in N2O emissions between organic and 

conventionally managed soils, a multi-site study found the effect of fertilisation 

strategy is small compared to soil abiotic factors such as pH, texture and carbon 

content (Doltra et al., 2015). This suggests meta-analysis may be a useful 

approach for determining how organic and conventional management compare 

in terms of N2O emissions at a larger scale. Although the sample size of current 

meta-analyses is small, with typically fewer than 20 papers being included, results 

are conclusive between studies; while N2O emissions are lower on a per area 

basis, lower yields mean that N2O emissions are either similar (Mondelaers et al., 

2009) or higher (Skinner et al., 2014; Tuomisto et al., 2012) in soils amended with 

organic compared to conventional fertilisers on a per production basis. Similar 

patterns are reported for nitrate leaching; losses are lower from organic than 
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conventionally managed soils on a per area basis (Drinkwater et al., 1998; 

Kramer et al., 2006; Küstermann et al., 2010; Marie et al., 2015; Mondelaers et 

al., 2009; Tuomisto et al., 2012), but can be similar or higher when reported on a 

per product unit basis (Mondelaers et al., 2009; Tuomisto et al., 2012). The yield 

gap between organic and conventional systems must be closed to achieve 

comparable total N2O emissions and NO3 leaching on a per production basis 

(Tuomisto et al., 2012). 

1.5 Combined fertiliser applications and soil nutrient cycling 

1.5.1 Background 

Farmers combine organic and inorganic fertilisers for reasons which differ based 

on the local farming system and national policy. In sub-Saharan Africa (SSA) 

farmers are encouraged to co-apply organic and inorganic fertilisers (Gentile et 

al., 2009) because: (i) neither mineral nor organic fertilisers are available in 

sufficient quantities for farmers to achieve optimum yields; (ii) there is often a 

positive interactive effect on yield when inputs are combined (Chivenge et al., 

2011; Gentile et al., 2008, 2009); and (iii) both fertiliser types are an important 

component of long-term soil fertility management (Vanlauwe et al., 2010). In other 

regions, such as the United Kingdom (UK) (Defra, 2010) and China (Shuqin & 

Fang, 2018), the integration of organic and inorganic fertilisers is promoted for 

environmental reasons. In these systems combined fertiliser applications could 

reduce farmers’ requirements for mineral fertilisers, minimising costs and 

relieving pressure on the non-renewable inputs required for the production of 

inorganic N and P (Nemecek et al., 2011). P and N cycling are affected by 

different mechanisms in combined fertiliser systems so the two nutrients will be 

discussed separately.  
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1.5.2 Phosphorus 

Substituting crop P requirements with organic amendments is a viable approach 

to lessen farmers' requirements for fertilisers derived from rock P and encourage 

closed loop nutrient cycling while maintaining productivity. P leaching losses and 

phytoavailability are generally higher from organic compared to inorganic 

systems, due to processes outlined in section 1.4.1. While it is possible that 

combined applications will respond somewhere between organic and inorganic 

fertilisers, we may also expect to see interactive effects on the size of the labile 

P pool due to processes including competitive reactions between organic matter 

decomposition products and added P for anionic binding sites, increased 

negative charge on the soil surface and reduced surface area for P binding 

(Figure 1.1). 

Incubation and greenhouse studies highlight the mechanisms driving soil P 

dynamics after integrated applications of organic and inorganic fertilisers. Reddy 

et al., (2005) reported an increase in labile P fractions when wheat or soybean 

residues were applied to an Alfisol, alone or in combination with inorganic P. Use 

of inorganic P in combination with wheat residue overcame an apparent 

immobilisation of P following the application of wheat residue alone. In contrast, 

the addition of inorganic P alone increased the amount of P in stable, less 

available fractions. The authors concluded that the integrated use of plant 

residues and inorganic P decreased the P sorption capacity of soil, increasing the 

amount of P that is phytoavailable. The results of this study suggest that the 

combined use of organic and inorganic fertilisers could improve P 

phytoavailability in the field while reducing requirements for inorganic P. 

However, it is important to synchronise the increase in available P with plant 

demand to minimise P leaching losses. Synchronising soil phytoavailability and 
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plant demand may prove challenging as Reddy et al., (2005) showed that inputs 

differed in terms of the timing of peak P phytoavailability. Other incubation and 

greenhouse studies have shown similar increases in P phytoavailability following 

combined fertiliser applications but with unequal applications of P between 

treatments (Bolan et al., 1994; Delgado et al., 2002; Mokolobate & Haynes, 2003; 

Othieno, 1973). 

Studies conducted in the field over years or decades provide insights into the 

long-term impact of fertilisation strategies on phosphorus levels in soil. Results 

collected after repeated applications of inorganic and/or organic amendments 

conclusively show that integrated fertiliser applications increase soil available P 

compared to inorganic fertilisers applied alone (Ahmed et al., 2019; Chen et al., 

2017; Hu et al., 2018; Liu et al., 2010; Mao et al., 2015; Sun et al., 2015; Xin et 

al., 2017; Zhao et al., 2010). P application rates are unequal in many cases (Chen 

et al., 2017; Liu et al., 2010; Mao et al., 2015; Sun et al., 2015; Zhao et al., 2010) 

with one study applying over 125 kg more P ha-1 in the combined treatment than 

the inorganic NPK treatment (R. Sun et al., 2015). However, the phenomenon of 

increased P availability following repeated integrated fertiliser management is still 

observed when organic inputs act as substitutes rather than complements for 

inorganic P (Ahmed et al., 2019; Hu et al., 2018; Xin et al., 2017).  

Field studies show that substitution of inorganic P with organic alternatives 

decreases the proportion of P in the residual-P, or unavailable, pool while 

increasing the proportion of P in the labile, or available, pool (Ahmed et al., 2019). 

While the results of long-term studies can largely be explained by alterations in P 

sorption/desorption because of the organic input, they also suggest alternative 

hypotheses that have not previously been considered. Recently Hu et al., (2018) 

observed an increase in Olsen’s P concentration after co-application of NPK with 
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manure or straw and attributed this to higher levels of exchangeable calcium (Ca-

ex) after the application of organic fertilisers. They suggested that organic 

amendments increased soil microbial activity and therefore CO2 production in soil 

(Hu et al., 2018). CO2 aids in the dissolution of limestone and therefore the 

production of exchangeable calcium. Interactions between Ca and P produce Ca-

P forms which are available for plant uptake. The results of field studies therefore 

indicate that mechanisms other than P sorption/desorption are important in 

increasing P availability following the combined application of organic and 

inorganic fertilisers.     

Work that focuses on P sorption/desorption reactions and soil chemistry may also 

overlook the role of soil microorganisms and their associated enzymes in 

determining P phytoavailability. Several field studies have investigated the role of 

phosphatases in P mineralisation in soils receiving combined fertiliser 

applications. Inositol hexaphosphate (IP6), a phosphomonoester, is the most 

abundant form of organic P in soils (Ahlgren et al., 2013). Phosphatases are 

enzymes which catalyse the hydrolysis of inositol-phosphate bonds in 

phosphomonoesters, releasing orthophosphate for uptake by plants and 

microorganisms. Phosphatases are released by plants (acid phosphatase, ACP) 

(Dinkelaker & Marschner, 1992; Krämer & Green, 2000) and soil microorganisms, 

especially bacteria (alkaline phosphatase, ALP) (Nannipieri et al., 2011; 

Romanyà et al., 2017). Activity of ALP and ACP can be measured quantitatively 

using soil assays. Many studies have investigated the genetic control of ALP 

production by monitoring the expression of the ALP coding genes phoA, phoX 

and phoD (Sakurai et al., 2008; Tan et al., 2013). The co-application of inorganic 

and organic fertilisers has been shown to increase ALP activity and available P 

levels in soil (Chen et al., 2017; Hu et al., 2018; Liu et al., 2010), suggesting 
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combined fertiliser applications can affect the concentration of available P in soil 

through microbial processes as well as sorption/desorption reactions. This is true 

whether P application rates are matched (Hu et al., 2018) or unequal (Chen et 

al., 2017; Liu et al., 2010) between treatments. Therefore, the increases in 

available P observed in long-term integrated fertiliser (For example Ahmed et al., 

2019; Mao et al., 2015; Xin et al., 2017) experiments may be partially explained 

by alterations in soil microbial activity and their enzymatic capacity. Improved 

microbial functioning is an important factor in increasing crop yields in organic 

farming systems (Luo et al., 2018). The processes described here may therefore 

contribute to yield maintenance or improvement that has been reported under 

integrated nutrient management (Bedada et al., 2014; Ge et al., 2010; Pincus et 

al., 2016; Xie et al., 2016; Xin et al., 2017; Yadav et al., 2000; Zhao et al., 2016).    

Many field experiments report the results of a single soil sampling occasion that 

occurs decades after the initiation of integrated fertiliser management. The 

sampling event often occurs after harvest, months after fertilisers have been 

applied and once crop P uptake is complete (for example Ahmed et al., 2019; 

Mao et al., 2015; Xin et al., 2017). Given that greenhouse experiments have 

shown effects of fertilisation within weeks of the first combined application of 

organic and inorganic fertilisers (Mokolobate & Haynes, 2003; Reddy et al., 2005) 

long-term studies may miss periods when P is most vulnerable to leaching or has 

the highest phytoavailability. The design of long-term field studies not only makes 

it difficult to determine when differences in P phytoavailability emerge within a 

season, but also between seasons. One field study conducted over a relatively 

short timescale shows effects of fertilisation strategy occurring within two years 

of the first application (Zhao et al., 2016), but the differences between P fertilised 

treatments are less pronounced than in long-term studies. These results suggest 
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statistically and agronomically significant increases in P phytoavailability may 

take years to develop. It would be beneficial to monitor short-term P dynamics in 

field soils treated with agronomically-relevant P application rates to determine the 

effect of combined fertiliser applications on nutrient losses, phytoavailability and 

yield as farmers transition to integrated fertiliser management. This information 

could have further use if farmers are forced to reduce inorganic P consumption 

in response to a price spike similar to events occurring in 2008 (Khabarov & 

Obersteiner, 2017). In these situations, the use of an integrated fertiliser strategy 

may be transient but have important implications for food provisioning in that year 

(Khabarov & Obersteiner, 2017).  

1.5.3 Nitrogen 

There are two major hypotheses which explain how N cycling could be affected 

by combined fertiliser applications, termed the direct and indirect hypothesis 

(Vanlauwe et al., 2001). According to the direct hypothesis, the addition of 

material rich in carbon (C) will stimulate the soil decomposing microbial 

community, increasing their demand for N. As a result added fertiliser-N will be 

immobilised (Sall et al., 2003), reducing losses. Immobilised N can become plant-

available later in the season via mineralisation. Immobilisation/mineralisation 

patterns under the direct hypothesis could reduce N losses through improved 

synchrony between plant demand for N and its availability in soil. The indirect 

hypothesis focuses on changes in soil structure as a result of increased organic 

inputs; improved soil properties may increase plant productivity and therefore 

demand for nutrients from added fertiliser-N. N transformations in systems 

receiving combined applications of organic and inorganic fertilisers have been 

shown to be more complex than these hypotheses suggest, and depend on 

chemical composition of the organic input (Frimpong & Baggs, 2010; García-Ruiz 
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& Baggs, 2007; Gentile et al., 2008, 2009), soil physical properties (Gentile et al., 

2008) and local climatic conditions (Gentile et al., 2009).  

Studies which investigate nutrient dynamics in soils receiving combined fertiliser 

applications raise concerns over the suitability of integrated soil fertility 

management in countries where legislation focuses on environmental protection. 

Frimpong & Baggs, (2010) reported higher N2O emissions when three tropical 

plant residues were combined with ammonium nitrate (NH4NO3), compared to 

when NH4NO3 was applied alone. In the majority of treatments, integrating the 

plant residues with NH4NO3 also increased N2O emissions relative to the organic 

controls, although the magnitude of the response was mediated by the chemical 

composition of the plant residue (Frimpong & Baggs, 2010). Gentile et al., (2008) 

found a positive interactive effect on N2O emissions when urea was combined 

with maize, Tithonia or Calliandra residues in fine soils although the opposite was 

true in coarse soils. Carbon acts as the electron donor during denitrification and 

the availability of labile C has been shown to be an important factor in the rate of 

N2O-genesis (Giles et al., 2017; Weier et al., 2010). It follows that increased N2O 

emissions from integrated treatments have also been reported by Baggs et al., 

(2003), Garcia-Ruiz & Baggs, (2007), García-Ruiz et al., (2012) and Sarkodie-

Addo et al., (2003).  

However combining organic and inorganic fertilisers does not always stimulate N 

losses.  Gentile et al., (2009) reported strong immobilisation of fertiliser-N and 

reduced NO3 leaching losses when maize residues were combined with calcium 

ammonium nitrate, compared with the sole synthetic-N treatment, although 

losses were lowest from soils receiving only the organic amendment. Similarly, 

an increase of fertiliser-N retained in soil aggregates resulted in net N 

immobilisation when maize was combined with urea (Gentile et al., 2013). In an 
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orchard system, Kramer et al., (2006) found that the denitrifying community was 

more active and more efficient in soils where composted chicken manure and 

calcium nitrate (Ca(NO3)2) were combined, compared to when Ca(NO3)2 was 

applied alone, although the organic treatment performed the best in terms of 

NO3 leaching losses and N2O emissions. These studies suggest that combining 

fertiliser types may present a way to manage N losses in agricultural systems 

while reducing inputs of non-renewable resources.   

Farmers in the UK are encouraged to integrate the use of organic and inorganic 

fertilisers “to achieve an efficient and profitable production system with minimum 

adverse environmental impact” (Defra, 2010). Overall, the evidence to support 

this statement is limited and, in some cases, suggests that combining fertiliser 

types can enhance N losses to the environment. The farmer will require 

knowledge of soil type, chemical composition of the organic input, the correct 

ratio of organic-to-inorganic N and local climatic conditions in order to achieve the 

desired reduction in N2O emissions or NO3
- leaching. Given the potential for 

combined applications of organic and inorganic fertilisers to do environmental 

harm, it may be advisable for policy makers to avoid promoting this management 

technique to reduce N losses unless it is a short-term recommendation that aids 

in the transition towards a fully organic system.   

1.6 Combined fertiliser applications and the wider soil system 

1.6.1 Yields 

The principal aim of fertilisation is to add nutrients to soil that improve or maintain 

crop productivity. Fertilisers can achieve this directly, by supplying nutrients in a 

form that is plant-available or will become plant-available over the life cycle of the 
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crop, and indirectly by improving soil physiochemical properties which support 

plant growth. It is important for farmers and our growing population that any 

fertilisation strategy achieves this aim.  

Support for the ability of integrated nutrient management to maintain or increase 

yields compared to the sole application of inorganic fertilisers is mixed. Results 

from single studies show lower (Dawe et al., 2003; Gong et al., 2009; Xie et al., 

2016; Xin et al., 2017; Yadav et al., 2000), stabilised (Bedada et al., 2014; Xie et 

al., 2016; Xin et al., 2017; Yadav et al., 2000; Zhao et al., 2016) and higher yields 

(Bedada et al., 2014; Ge et al., 2010; Pincus et al., 2016; Zhao et al., 2016) under 

combined fertilisers applications, compared to inorganic management. Within 

studies, the magnitude and direction of the response can vary depending on the 

crop (Bedada et al., 2014; Xin et al., 2017; Yadav et al., 2000; Zhao et al., 2016), 

the year or season (Bedada et al., 2014; Xie et al., 2016; Yadav et al., 2000), the 

location (Yadav et al., 2000), the farmer (Bedada et al., 2014; Pincus et al., 2016), 

the size of the substitution (Liu et al., 2009; Xie et al., 2016) and the organic input 

(Liu et al., 2009; Zhao et al., 2016). Meta-analyses generally support the use of 

integrated nutrient management for yield (Chivenge et al., 2011; Vanlauwe et al., 

2011; W. Wei et al., 2016) although an analysis of studies conducted across Asia 

concluded than organic amendments are not a suitable substitute for mineral N 

(Dawe et al., 2003). The results of meta-analyses supporting the combined use 

of organic and inorganic fertilisers may be compromised by higher rates of N 

application in integrated treatments (Chivenge et al., 2011; W. Wei et al., 2016) 

which is common in studies comparing inorganic and inorganic plus organic 

treatments (for example, Chivenge et al., 2009; Kanchikerimath & Singh, 2001; 

Martínez et al., 2017;  Zhao et al., 2009). More research is required to elucidate 

the major factors determining the success of combined nutrient management in 
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terms of yield, particularly in Europe as most research has been conducted in 

Asia and sub-Saharan Africa.   

1.6.2 Soil organic matter, soil organic carbon and soil physical 

properties 

Soil quality is “the capacity of a soil to function within ecosystem and land-use 

boundaries to sustain biological productivity, maintain environmental quality, and 

promote plant and animal health”, where animal health includes human health 

(Doran & Parkin, 1994). A range of indices is used to quantify soil quality, 

including but not limited to soil depth, aggregation, structure, nutrient availability 

and microbial biomass C and N (Arshad & Martin, 2002; Doran & Parkin, 1994; 

Kibblewhite et al., 2008). By definition, soil quality is integral to the ability of a soil 

to perform its function, whether that be productivity, environmental quality or plant 

and animal health; therefore good soil quality is frequently cited as central to 

achieving sustainable land use (Arshad & Martin, 2002; E. K. Bünemann et al., 

2018; Doran & Parkin, 1994; Vasu et al., 2020).  

Soil organic matter (SOM), defined as “the organic fraction of the soil exclusive 

of undecayed plant and animal residues” (SSSA, 2008), is another well-

recognised  component of soil quality (Arshad & Martin, 2002; Bünemann et al., 

2018; Reeves, 1997). The SOM content of soil is inextricably linked with nutrient 

cycling, soil structure, soil erosion, microbial activity, water relations and carbon 

sequestration. Combined fertiliser applications have been shown to increase the 

SOM and/or the soil organic carbon (SOC) content of soils compared to 

fertilisation with inorganic inputs only (Bedada et al., 2014; Gentile et al., 2013; 

Gong et al., 2009; Guo et al., 2016; Kanchikerimath & Singh, 2001; Li et al., 2017; 

Mao et al., 2015; Wei et al., 2016; Zhao et al., 2009), although the increase can 
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be less than if the organic amendment is applied alone (Gong et al., 2009; Guo 

et al., 2016). The integrated use of organic and inorganic amendments may raise 

SOC levels by increasing the amount of stable C in soil compared to the use of 

inorganic fertilisers (Gong et al., 2009) and through the promotion of aggregation 

(Gentile et al., 2013) which physically protects SOM (Lützow et al., 2006; Six et 

al., 2002). Overall, evidence suggests integrated fertiliser management is a viable 

method to harness the benefits of organic amendments in terms of SOC 

accumulation although levels may not be as high as the use of organic fertiliser 

alone.   

Organic carbon has been shown to stabilise aggregates as well as being 

physically protected inside them (Chaney & Swift, 1984; Erktan et al., 2016; Guo 

et al., 2019). The aforementioned effect of integrated fertiliser applications on 

SOC levels may promote favourable soil structure as the combined use of organic 

and inorganic fertilisers has been shown to increase aggregate mean weight 

diameter (MWD) (Bandyopadhyay et al., 2010; Gentile et al., 2013). However, 

the magnitude of the response has been shown to vary with soil texture and time 

and in some cases is negligible (Gentile et al., 2013) or negative; Mthimkhulu et 

al., (2016) reported significantly lower aggregate MWD in soils that were mulched 

and received inorganic fertilisers, compared to those only being mulched. More 

work is required to determine how the combined use of organic and inorganic 

fertilisers affects soil physical properties over time.  

1.6.3 Soil microorganisms 

Along with SOM, measures of the soil microbial community are often referred to 

as indicators of soil quality (Anderson, 2003; Bünemann et al., 2018). Shifts in 

microbial diversity, richness and activity could be expected in response to 
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integrated fertiliser applications because soil microbial community structure, 

dynamics and function are linked with the availability of carbon sources. At a 

broad scale, combined applications of organic and inorganic fertilisers have been 

shown to increase microbial biomass carbon (Ge et al., 2010; Kanchikerimath & 

Singh, 2001; Lan et al., 2012; Zhao et al., 2016) and culturable counts of soil 

fungi and bacteria (Gong et al., 2009; Zhao et al., 2016) compared to the 

application of inorganic fertilisers. Integrated fertiliser applications have also been 

shown to increase microbial activity measured as respiration (Ge et al., 2010; 

Zhang et al., 2012). The diversity and richness of these larger, more active 

microbial communities is also affected by integrated fertiliser applications 

(Lazcano et al., 2013; Li et al., 2017; Sun et al., 2015; Zhang et al., 2012; Zhao 

et al., 2016), with both measures increasing in response to organic inputs (Sun 

et al., 2015; Zhang et al., 2012; Zhao et al., 2016) and correlated with soil nutrient 

status and pH (Li et al., 2017; Sun et al., 2015; Zhao et al., 2016). Importantly, 

the taxa whose relative abundance increases are involved in nutrient cycling, 

SOM decomposition, soil enzyme production and plant health (Li et al., 2017; 

Zhao et al., 2016). At the level of the gene, substitution of inorganic fertilisers with 

organic alternatives has been shown to increase the expression of N and P 

cycling genes compared to soils receiving no or only inorganic fertilisers (Chen 

et al., 2017; Hu et al., 2018; Zhao et al., 2016). Functionally, these alterations in 

the soil microbial community increase the production of enzymes involved with 

nutrient cycling compared with soils only receiving inorganic fertilisers (Ge et al., 

2010; Kanchikerimath & Singh, 2001; Lazcano et al., 2013; Zhao et al., 2016). 

These studies demonstrate that substitution of inorganic fertilisers with organic 

alternatives affects microbial community size, composition and function in a way 

that improves soil quality.   
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1.6.4 Soil fauna 

Earthworms have been shown to improve soil infiltration rates (Fischer et al., 

2014), aid in carbon sequestration (Sánchez-de León et al., 2014; Zhang et al., 

2013) and increase soil aggregation (Al-Maliki & Scullion, 2013; Coq et al., 2007; 

Sánchez-de León et al., 2014). Earthworms have also been shown to affect soil 

nutrient cycling through the production of casts rich in N, P, potassium (K) and 

Ca (Bhadauria & Ramakrishnan, 1989). Encouraging earthworm populations is 

therefore an important component of sustainable soil management. Earthworm 

numbers and biomass are commonly reported to increase in soils amended with 

organic fertilisers (Birkhofer et al., 2008; D’Hose et al., 2018; Leroy et al., 2008; 

van Eekeren et al., 2009). In contrast, mineral fertilisation can eradicate 

earthworm populations ( Guo et al., 2016; Marinissen, 1992) or reduce numbers 

and/or biomass compared to unfertilised controls ( Guo et al., 2016; van Eekeren 

et al., 2009) or soils receiving organic fertilisers (Birkhofer et al., 2008; Guo et al., 

2016). The effect of integrated fertiliser management on earthworm populations 

has been little studied, but current publications suggest earthworm numbers 

increase with the proportion of nutrients supplied by organic fertilisers (Guo et al., 

2016; Marinissen, 1992). Substitution of 50% of the nutrient budget with cattle 

manure compost (CMC) was shown to statistically significantly increase total 

earthworm numbers above the level of soils receiving no fertilisation without 

significantly reducing numbers compared to soils receiving only CMC (Guo et al., 

2016). Integrated fertiliser management could therefore help to maintain 

earthworm numbers and protect the ecosystem services they provide.  

1.7 Concluding remarks 
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The aim of fertilisation is to increase yield through the addition of nutrients in a 

form that is immediately available for plant uptake or will become available during 

the crop growing cycle. However, the effects of fertilisation extend beyond the 

crop because: (i) microorganisms, macrofauna and soil forming processes 

respond to fertiliser type and application rate (Gentile et al., 2013; Guo et al., 

2016; Li et al., 2017); (ii) fertilisation affects the quantity of nutrients leaving 

agricultural soils in leachate, runoff and gas (Aguilera et al., 2015; Kramer et al., 

2006; Vanden Nest et al., 2014); and (iii) the production of NH3 and mining of 

rock P contribute to environmental degradation (Bicer et al., 2016; Kuo & Muñoz-

Carpena, 2009; Rafiqul et al., 2005) and rely on finite resources (Chen et al., 

2018; Smil, 2000). The combined use of organic and inorganic fertilisers has been 

shown to increase crop yields (Bedada et al., 2014; Pincus et al., 2016), 

earthworm numbers (Guo et al., 2016), nutrient availability (Ahmed et al., 2019; 

Hu et al., 2018; Reddy et al., 2005) and promote favourable microbial community 

function (Ge et al., 2010; Zhao et al., 2016) compared to the application of 

inorganic fertilisers alone. However the effect of integrated fertiliser management 

on short-term P dynamics is poorly understood due to (Figure 1.4): (i) infrequent 

or ill-timed soil sampling, often missing the major period of phosphorus uptake by 

the crop; (ii) re-current applications of P at the same rate over multiple seasons, 

despite possible changes in soil P index; and (iii) unequal P application rates in 

incubation, greenhouse and field studies.
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Figure 1.4: Identified knowledge gaps. Phosphorus (P) mined from rock reserves (1) in P-rich countries such as Morocco is transported (2) to P-poor countries such 

as the United Kingdom where it is processed into feed for livestock (3) or fertiliser for crops (4). Livestock excrete P in waste (5). Waste from outdoor animals supplies 

P to soil directly (6). Waste from indoor animals can be spread as P-fertiliser to crops (7). Livestock consume P when they are fed plant diets (8) and when diets are 

supplemented with inorganic P (3). Human consumption of plant and animal products also represents intake of P (9). Human excretion of P (10) results in P-rich waste 

water that enters waterbodies where it causes eutrophication (11). P recovery technologies at waste water treatment plants (WWTPs) (12) including (a) struvite 

crystallisation and (b) anaerobic digestion (AD) produce biofertilisers suitable for agricultural use (13). Complete P removal may not be achieved or attempted, so 

WWTPs can also act as a source of P to waterbodies (14). Inorganic P fertilisers can be substituted with organic alternatives including AD products (13) and animal 

waste (7) to reduce requirements for inorganic P inputs from rock-P, supplies of which are declining. Integrated fertiliser applications have been shown to affect the 

amount of available P in soil compared to organic and inorganic management, with the size of the available P pool decreasing in the order integrated (orange circle), 

organic (yellow circle), inorganic (red circle) (15). The short-term effects of this practice on the concentration of available P in soil (16), crop P uptake (17) and leaching 

losses (18) are unknown, represented by dashed lines. Red arrows represent movement of inorganic P, or P losses and crop uptake from soils treated with inorganic 

P. Yellow arrows represent movement of organic P, or P losses and crop uptake from soils treated with inorganic P. Orange arrows represent P losses and crop uptake 

from soils treated with organic and inorganic P. Black arrows represent time passing. The diagram assumes P application rates are equal between treatments.  
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1.8 Aims and approach 

The aim of this thesis is to determine how substitution of inorganic P with organic 

fertilisers affects short-term P phytoavailability and wheat productivity. “Short 

term” refers to the study of recently-applied fertiliser, rather than the assessment 

of soil nutrient status after repeated fertiliser applications. This approach is 

designed to increase knowledge of how combined fertiliser applications improve 

the sustainability of phosphorus use over two time-scales. First, the thesis asks 

if reducing inorganic P inputs through substitution with organic alternatives affects 

P phytoavailability to a growing crop. Could farmers’ dependence on P derived 

from depleted rock reserves be reduced without affecting yield and while 

maintaining or increasing levels of plant-available P in soil? Secondly, P 

phytoavailability is quantified after the major period of crop P uptake, providing 

an indication of P requirements for the proceeding crop. Does substitution of 

inorganic P with organic alternatives increase the soil P index compared to the 

application of inorganic P alone? If so, could the total amount of P from 

manufactured or organic sources be reduced in the next season? A short-term 

approach therefore demonstrates how combined fertiliser applications affect P 

supply to crops within a season and P demand from external sources between 

seasons.  

The results presented in this thesis are derived from two studies spread across 

three chapters with objectives designed to meet the project aim and fill the 

knowledge gaps identified in Figure 1.4. A brief overview of the design, aims, 

objectives, hypotheses and predictions of each chapter is provided in Table 1.3. 

Data was collected from studies using intact soil cores extracted from an arable 

field and transferred to a temperature and light-controlled greenhouse. This 
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approach allows nutrient availability to be monitored during the growing period, 

and for any differences to be related to changes in plant productivity, nutrient 

uptake and leaching losses. The results of these studies provide information 

about productivity, nutrient cycling and P losses as farmers transition to an 

integrated fertiliser approach through choice, changes in policy or in response to 

global shortages of inorganic fertilisers.
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Table 1.3: Experimental design, aims, objectives, hypotheses and predictions for each experimental chapter. Abbreviations: PS, pig slurry; DC, digested cake. 

Chapter Context Aim and objectives Hypotheses and predictions 

Three A study using intact soil cores fertilised 
with one of four treatments: (i) N only 
control, inorganic N; (ii) inorganic P and 
inorganic N; (iii) 50% P and N from pig 
slurry (PS), 50% P and N from inorganic 
sources; (iv) 100% P and N from pig 
slurry. Cores were maintained in a 
greenhouse and sown with winter wheat. 
Soils were analysed for nutrient 
availability four and eight weeks after 
fertilisation. 

To determine how combining organic and 
inorganic fertilisers affects P 
phytoavailability and wheat productivity in 
the short term. The main questions were:  

1. How does substituting inorganic 
fertilisers with PS affect P 
phytoavailability during the major 
period of P uptake in wheat?  

2. Do shifts in P phytoavailability 
affect wheat productivity? 

3. Does the ratio of organic to 
inorganic P affect potential P 
leaching losses?  

Substituting inorganic P with PS will affect 
P phytoavailability compared to the 
application of inorganic fertilisers applied 
alone. P phytoavailability, potential 
leaching losses and uptake will be higher 
in the treatment receiving PS and 
inorganic P than the treatment receiving 
only inorganic P. 

Four A study using intact soil cores sown with 
winter wheat and fertilised with one of nine 
treatments. Main treatments included a 
treatment receiving all N and P from 
inorganic sources, a PS substitution 
treatment and a digested cake (DC) 
substitution treatment. DC was sourced 
from a municipal waste water treatment 
plant. A series of controls was included to 
allow the role of individual nutrients in 
productivity and nutrient cycling to be 
determined. Cores were sampled before 
fertiliser applications, during stem 
elongation and during anthesis. Plants 
were harvested at growth stage 93 
(ripening, caryopsis loosening in the 
daytime) (Tottman & Broad, 1987). Cores 

To determine how substituting inorganic P 
with organic alternatives affects P 
phytoavailability in the short term. The 
main questions were: 

1. How does substituting inorganic 
fertilisers with organic alternatives 
affect P phytoavailability during 
and after the major period of P 
uptake in wheat? 

2. How does substitution of inorganic 
fertilisers with organic inputs affect 
P leaching losses compared to the 
application of inorganic P alone?  

3. How important is the organic 
amendment being incorporated in 
determining the magnitude and 

Substituting inorganic P with PS and DC 
will affect P dynamics compared to the 
application of inorganic fertilisers alone. P 
phytoavailability and losses will be higher 
in both substitution treatments compared 
to the inorganic treatment, but the effect 
will be greater for PS than DC.  
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were flooded at harvest for the collection 
of leachate. 

direction of the response in terms 
of P dynamics?  

Five Data for chapter five were obtained from 
the same experiment analysed in chapter 
four. Wheat was dried and biomass 
determined. Grains were then ground and 
analysed for total N and P content.  

To determine how shifts in nutrient 
phytoavailability caused by substitution of 
inorganic P with DC and PS affect wheat 
productivity and nutrient uptake, 
compared to the application of inorganic P 
alone. The main questions were: 

1. How does grain yield respond to 
substitution of inorganic P with DC 
and PS? 

2. Is the nutrient content of grain 
affected by substitution of 
inorganic P with DC and PS? 

3. Can changes in soil nutrient 
availability during stem elongation 
or anthesis explain yield trends? 

Phosphorus phytoavailability will be 
increased when inorganic P is substituted 
with DC or PS, increasing P uptake and 
grain yield compared to the application of 
inorganic P alone.   
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Chapter 2 General methods 

2.1 Summary 

2.1.1 Project background and aims 

Inorganic fertilisers increase crop yields but their production and use is 

associated with environmental degradation and sustainability concerns (Kuo & 

Muñoz-Carpena, 2009; Rafiqul et al., 2005; Smil, 2000). Substitution of inorganic 

fertilisers with organic alternatives, referred to here as integrated fertiliser 

management (IFM), could reduce farmers’ requirement for rock-derived 

phosphorus (P) while recapturing P that would otherwise be lost from the system 

(Nemecek et al., 2011). Current studies show that after years of repeated 

applications, the concentration of crop available P is higher in soils receiving 

integrated fertiliser management compared to inorganic fertilisers alone (Ahmed 

et al., 2019; Chen et al., 2017; Hu et al., 2018; Liu et al., 2010; Mao et al., 2015; 

Sun et al., 2015; Xin et al., 2017; Zhao et al., 2010). Our understanding of the 

short-term effects of IFM on P phytoavailability and crop productivity is limited 

because studies typically report the results of one sampling point decades after 

the initiation of different fertiliser treatments or apply unequal rates of P between 

treatments. The aim of this thesis was to determine how substitution of inorganic 

fertilisers with organic alternatives affects short-term soil phosphorus dynamics 

and wheat productivity in an arable soil.  

2.1.2 Experimental approach 

The data reported in this thesis was derived from controlled greenhouse 

experiments using intact soil cores collected from arable fields at Leeds 
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University Farm (Figure 2.1). Cores were collected to 25 cm depth in 10.4 cm 

internal diameter PVC drainpipes cut to 28.0 cm in length. Once collected, cores 

were amended to 23 cm by removing up to 2 cm soil from the bottom of the core. 

Cores were transferred to a greenhouse (20oC) where they were sown with pre-

germinated winter wheat seedlings and maintained at a water-filled pore space 

(WFPS) that prevented leaching. Fertilisers were applied to the soil surface 

during tillering. Main treatments were matched for total phosphorus and readily 

available nitrogen (N), the sum of nitrate-N and ammonium-N. In chapter three, 

cores were destructively harvested four and eight weeks post-fertilisation and 

plant and soil material analysed for nutrient content and phytoavailability, 

respectively. Chapter three captured stem elongation. Stem elongation is the 

major period of nutrient uptake in wheat (Rose et al., 2007) and is characterised 

by successive extension of internodes giving plants a more upright appearance 

(Tottman & Broad, 1987). Cores used in the experiment analysed in chapters four 

and five were sampled before the application of fertilisers, during stem elongation 

and during anthesis. Anthesis is easily observable due to the production of small 

flowers on the ears, starting from the middle of the ear and extending to the ear 

tip and base (Tottman & Broad, 1987). Soil collected during the growing period 

was analysed for nutrient phytoavailability. Plants were harvested during ripening 

when grains were starting to loosen (Tottman & Broad, 1987). Grains were dried, 

weighed and analysed for nutrient content. Leachate was collected after harvest 

and the concentration and load of soluble reactive phosphorus (SRP) and nitrate-

N (NO3-N) and ammonium-N (NH4-N) determined.      
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Figure 2.1: Intact soil cores in greenhouse. Cores were collected from an arable field and 

transferred to a light (16-hour photoperiod) and temperature (20oC) controlled greenhouse where 

they were sown with winter wheat. Cores in this image are those used in chapters four and five, 

but chapter three adopted a similar design. Treatments from left to right: zero input control; 

inorganic P only; N only control; inorganic N plus inorganic P.   

The use of intact soil cores was initially pursued because the project had aimed 

to monitor nitrous oxide (N2O) emissions and the drainpipes used to collect cores 

can be fitted with accessories that allow for the collection of gasses. A chamber 

was developed for this purpose. However, results of a pilot study attempting to 

collect N2O from cores were imprecise and so it was decided this avenue would 

not be pursued. Although labour intensive in their collection and maintenance, 

later work showed that using intact soil cores is a reliable method to monitor 

nutrient dynamics and crop productivity in fertilisation studies. It allows for a high 

number of replicates, careful monitoring and a high level of control which would 
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be hard to achieve in the field. The following sections provide detailed protocols 

used across the thesis to avoid repetition in later chapters.  

2.2  Leeds University Farm 

Cores were collected from Leeds University Farm, Spen Common Lane, 

Tadcaster, LS24 9NS, United Kingdom. The farm is a commercial mixed arable 

and pasture farm (Holden et al., 2019). Mean annual precipitation and 

temperature are 674 mm (431 mm to 925 mm, min. to max. since 1961) and 9.2oC 

(7.7oC to 10.6oC, min. to max. since 1961), respectively, as recorded by an on-

site Met office weather station. The soil is a well-drained, loamy, calcareous 

brown earth from the Aberford series of Calcaric Endoleptic Cambisols (Cranfield 

University, 2018) underlain by dolomitic limestone of the Cadeby formation 

(British Geological Survey, 2018). Arable fields received 150 kg N ha-1 and 84 kg 

potassium oxide (K2O) ha-1 in spring 2016, 58 kg phosphorus pentoxide (P2O5) 

ha-1 in autumn 2016, 140 kg N ha-1 and 104 kg K2O ha-1 in spring 2017, and 8 t 

ha-1 of pig manure in autumn 2017. The field sampled in October 2018 (for 

chapter four and chapter five) received 230 kg N ha-1 and 36 kg K2O ha-1 in spring 

2018 and 53 kg P2O5 ha-1 in autumn 2017.  

2.3 Core collection and preparation 

2.3.1 Collection 

Before core collection, an area of field was selected that was flat, free from debris 

and with good road access for practical reasons. A grid was laid out, composed 

of 1 m x 1 m grid squares. One core was collected from the centre of each square 
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unless the surface was covered in debris or uneven until enough cores had been 

collected.  

Cores were collected by inserting pre-weighed 10.4 x 28.0 cm (internal diameter 

x height) pieces of polyvinyl chloride (PVC) drainpipe with bevelled bottoms, 

referred to as sleeves, 25 cm into the ground. Sleeves were placed between rows 

of plants and topped with a small piece of timber, which acted to absorb the hit of 

a mallet. Cores were extracted using a spade, labelled with their location, cleaned 

externally and immediately weighed to determine fresh weight.  

2.3.2 Preparation 

Once collected, cores were returned to the laboratory where they were prepared 

for transfer to the greenhouse. Each core was first watered gravimetrically to field 

moisture content. After watering, soil was removed from the bottom of each core, 

so the final height of the soil was 23 cm. The bottom 2 cm of each sleeve was 

repacked with 250 g of sand to aid with drainage and sealed with polyester 

sheeting. The polyester at the bottom of cores used in chapters four and five was 

also covered with polythene sheeting to prevent contamination from the 

greenhouse bench. Every core was weighed at each step of the process (before 

watering, after watering, after removing soil, after adding sand and after adding 

polyester or polyester and polythene). Cores were maintained at 4oC during the 

repacking process.  

2.3.3 Moisture content determination of field moist soil 

Additional cores were collected for moisture content determination. These cores 

were amended to 23 cm, as above, before being removed from their sleeve and 

dried at 105oC until constant mass was achieved. The volume of water in these 
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cores was used to estimate bulk density and WFPS of the experimental cores 

following Equation 2.1 to Equation 2.6. 

Actual mean water content values (g H2O g-1 oven-dry soil) of cores in chapter 

three are presented in Table 2.1. The mean water content of cores used in 

chapter four and five is presented in Table 2.2.
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Table 2.1: Moisture content of cores used in chapter three. Value are mean ± one standard error of the mean and minimum and maximum water content (g H2O g-1 

oven-dry soil). Treatments are described in detail in individual chapters. N = 7.  

Treatment Harvest Mean (g H2O g-1 

oven-dry soil) 

One standard error of 

the mean 

Minimum (g H2O g-1 

oven-dry soil) 

Maximum (g H2O g-1 

oven-dry soil) 

N only control 
One 0.152 0.005 0.134 0.173 

Two 0.157 0.011 0.134 0.219 

Inorganic 
One 0.149 0.004 0.138 0.172 

Two 0.159 0.010 0.136 0.208 

Combined 
One 0.164 0.006 0.141 0.186 

Two 0.160 0.008 0.133 0.189 

Organic 
One 0.145 0.009 0.110 0.176 

Two 0.154 0.010 0.124 0.184 
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Table 2.2: Moisture content of cores used in chapter four and chapter five. Values are mean ± one standard error of the mean and minimum and maximum (g H2O g-

1 oven-dry soil) water content of cores. Abbreviations: PS, pig slurry; DC, digested cake; Pi, inorganic phosphorus; Ni, inorganic nitrogen. n = 9. 

Treatment Harvest Mean (g H2O g-1 

oven-dry soil) 

One standard error of 

the mean 

Minimum (g H2O g-1 

oven-dry soil) 

Maximum (g H2O g-1 

oven-dry soil) 

 Baseline 0.179 0.005 0.159 0.199 

Zero Stem elongation 0.181 0.005 0.161 0.199 

 Anthesis 0.181 0.005 0.161 0.198 

 Baseline 0.189 0.007 0.172 0.232 

Half rate Pi Stem elongation 0.176 0.008 0.125 0.204 

 Anthesis 0.183 0.003 0.171 0.201 

 Baseline 0.183 0.003 0.165 0.196 

Full rate Pi Stem elongation 0.182 0.006 0.161 0.217 

 Anthesis 0.180 0.004 0.578 0.203 

 Baseline 0.181 0.005 0.163 0.209 

Full rate Ni Stem elongation 0.167 0.004 0.150 0.185 

 Anthesis 0.168 0.004 0.153 0.179 

 Baseline 0.182 0.008 0.155 0.241 
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Inorganic Stem elongation 0.164 0.004 0.151 0.184 

 Anthesis 0.168 0.005 0.150 0.183 

 Baseline 0.169 0.009 0.102 0.201 

PS substitution Stem elongation 0.153 0.005 0.119 0.169 

 Anthesis 0.165 0.006 0.144 0.195 

 Baseline 0.178 0.006 0.158 0.203 

PS only Stem elongation 0.175 0.007 0.155 0.221 

 Anthesis 0.165 0.009 0.136 0.221 

 Baseline 0.183 0.004 0.168 0.199 

DC substitution Stem elongation 0.173 0.017 0.088 0.288 

 Anthesis 0.166 0.003 0.155 0.183 

 Baseline 0.181 0.006 0.160 0.213 

DC only Stem elongation 0.168 0.005 0.147 0.197 

 Anthesis 0.163 0.006 0.140 0.184 

 

 



54 
 

 

  

2.3.3.1 Calculation of water-filled pore space 

Water-filled pore space (WFPS) was calculated following the steps outlined in 

Equation 2.1 to Equation 2.6. Each sleeve was given an ID and weighed empty 

before collecting cores.  

The volume of soil in each core was calculated using Equation 2.1. 

Equation 2.1: Volume of soil per core. 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙 (𝑐𝑚3)  =  23 ×  𝜋 ×  5.22  

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙 (𝑐𝑚3)  =  1954 

Oven dry weight of soil could be calculated by subtracting the mass of the sleeve 

and the volume of water from the mass of cores amended to 23 cm following 

Equation 2.2. The volume of water in a core was estimated using the mean 

volume of water held in cores collected on the same day as the core being 

determined for WFPS.  

Equation 2.2: Determination of mass of oven dry soil per core.  

𝑀𝑎𝑠𝑠 𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 =  𝑓𝑟𝑒𝑠ℎ 𝑚𝑎𝑠𝑠 –  𝑠𝑙𝑒𝑒𝑣𝑒 𝑚𝑎𝑠𝑠 –  𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 

Bulk density could be calculated having determined oven dry mass of soil, 

following Equation 2.3. 

Equation 2.3: Determination of bulk density based using results of Equation 2.2. 

𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔 𝑐𝑚−3) =  
𝑀𝑎𝑠𝑠 𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙
 

Total porosity could be estimated using bulk density and an assumed particle 

density of 2.60 g cm-3 (Rowell, 1994b), following Equation 2.4. 
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Equation 2.4: Calculation of total porosity using results of Equation 2.3. 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (%) = 100 − ((
𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

2.60
) × 100)  

The volume of water (cm3) at 𝑥% WFPS can be calculated following Equation 2.5. 

Equation 2.5: Determination of volume of water required to achieve a given water-filled pore 

space, using the results of Equation 2.4.  

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 (𝑐𝑚3) 𝑎𝑡 𝑥% 𝑊𝐹𝑃𝑆

= 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙 × (
𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦

100
) ×

𝑥

100
 

The target mass could therefore be calculated following Equation 2.6, where 

mass of water equals the value obtained in Equation 2.5 in grams. 

Equation 2.6: Final calculation for the total mass of an individual core at a given water-filled pore 

space.  

𝑇𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑠𝑠 (𝑔)

= 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑙𝑒𝑒𝑣𝑒 + (𝑚𝑎𝑠𝑠 𝑠𝑎𝑛𝑑 + 𝑚𝑎𝑠𝑠 𝑝𝑜𝑙𝑦𝑒𝑠𝑡𝑒𝑟

+ 𝑚𝑎𝑠𝑠 𝑝𝑙𝑎𝑠𝑡𝑖𝑐) + 𝑚𝑎𝑠𝑠 𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 + 𝑚𝑎𝑠𝑠 𝑤𝑎𝑡𝑒𝑟  

2.3.3.1.1 WFPS worked example 

A 23 cm deep soil core is collected in a 10.4 cm diameter sleeve weighing 474 g. 

The mass of the core, including sleeve, on a fresh basis is 4047g. Cores collected 

on the same day contained 588 ml water on average. The volume of the core is 

1879 cm3 and particle density is assumed at 2.60 g cm-3. The total mass of sand, 

polyester and plastic added was equal to 261 g. 

𝑀𝑎𝑠𝑠 𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 (𝑔) = 4047 − 474 − 588 = 2985  

𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔 𝑐𝑚−3) =  
2985

1954
= 1.53 
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𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (%) = 100 − ((
1.53

2.6
) × 100) = 41.2 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑤𝑎𝑡𝑒𝑟 𝑎𝑡 60% 𝑊𝐹𝑃𝑆 (𝑐𝑚3) = 1954 ×
38.9

100
×

60

100
= 456 

𝑇𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑠𝑠 (𝑔) = 474 + 261 + 2985 + 456 = 4176 

2.4 Germination of seedlings 

Winter wheat seeds (Triticum aestivum L., “Skyfall”) were sterilised in 5% sodium 

hypochlorite (NaClO), rinsed 10 times with deionised water and placed on damp 

filter paper in 90 mm petri dishes to germinate. Dishes were sealed with parafilm 

and wrapped in aluminium foil to prevent light penetration. Seeds were 

maintained at room temperature for one week before being moved to a 4oC fridge 

for one week to vernalise. Seeds were ready to sow at this point.  

2.5 Power analysis 

A pilot study was run from February 2017 to July 2017 to determine the effect of 

substituting inorganic P with organic fertilisers on P leaching and winter wheat 

productivity. The study had nine treatments and nine replicates per treatment, 

including inorganic, organic and combined fertiliser applications. The pilot failed 

due to an outbreak of powdery mildew in the greenhouse which reduced the 

number of replicates in certain treatments to two. However, enough data could 

be collected to perform power analysis for subsequent studies.  

The power analysis was run using the pwr package in R Studio and was used to 

determine the number of replicates per treatment required to achieve power equal 

to 0.80, which is the generally accepted level for power (Jones et al., 2003).   
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2.6 Allocation of cores to treatments for balanced design 

A randomised approach was adopted to ensure treatments had a similar bulk 

density (mean ± standard error). Cores were ordered from least to most dense, 

calculated according to Equation 2.3. Using chapters four and five with nine 

treatments as an example, numbers between one and nine were randomly 

generated and allocated to the first nine cores in the list, until each core had a 

unique number. Each number referred to a treatment. This process was repeated 

in blocks of nine until all cores in the list had been allocated to a treatment.  

Cores were then randomly allocated to blocks using a random number generator, 

until each block contained one replicate of each treatment. Blocks were rotated 

and the position of cores in the block rearranged weekly in order to minimise the 

effect of variation in the greenhouse of plant growth.  

2.7 Soil sampling in chapters four and five 

The cores used in chapter four and five were sampled on three occasions during 

the growing period: one week before the application of fertilisers, during stem 

elongation (four weeks after fertilisation) and during anthesis (10 weeks after 

fertilisation). 

Cores were sampled by inserting a minigouge (13 mm internal diameter, Van 

Walt, Haslemer, U.K.) 20 cm into the soil. Samples were immediately placed on 

ice after collection. The hole left by the auger was filled with sand and topped with 

the cap of a 15 ml falcon tube to prevent preferential flow of water through sand. 

After collection, samples were homogenised and portioned for freezing at -20oC 

or drying at 40oC.  
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2.8 Soil analysis 

2.8.1 pH 

pH was analysed following the method in Rowell, (1994a). 10 ± 0.1 g air-dried, 

sieved (< 2 mm) soil was weighed into a 50 ml flat-bottomed centrifuge tube with 

screw cap. 25 ml of distilled water was added to each sample before shaking by 

hand for 15 minutes. pH was determined using a pH electrode inserted into the 

solution. The reading was taken after one minute. The pH meter was regularly 

calibrated by two-point calibration (pH 4.01 and 7.01).  

The protocol was modified for chapter four due to the large number of samples 

that needed to be analysed. Soils were shaken at 150 rpm for 15 minutes and 

filtered, as per the standard United States Environmental Protection Agency 

method (2004). pH was determined using a regularly calibrated (as above) pH 

electrode. The reading was taken after one minute. 10% duplicate samples 

(Table 2.3) and a certified reference material sample (AgroMAT Ag-1, SCP 

Science) were included in each batch. Precision values, measured as relative 

percentage difference (RPD) (Equation 2.7), are reported in Table 2.3. 

Equation 2.7: Calculation of relative percentage difference between duplicate samples. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (%, 𝑅𝑃𝐷)

=
(𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑟𝑒𝑠𝑢𝑙𝑡) × 100

(𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 + 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑟𝑒𝑠𝑢𝑙𝑡) ÷ 2
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Table 2.3: Relative percentage difference (RPD) of duplicate samples used in the analysis of soil, leachate and plant material (Equation 2.7).Values are mean RPD ± 

one standard error of the mean (SEM). Abbreviations: P, phosphorus; Pwater, water-soluble P; Porganic, organic P, POlsen’s, Olsen’s P; N, nitrogen; RAN, readily available 

N; NH4-N, ammonium-N; NO3-N, nitrate-N; SRP, soluble reactive P. RAN is the sum of nitrate-, ammonium- and nitrite-N. 

 Mean relative percentage difference ± one SEM 

Chapter pH Pwater Porganic POlsen’s RAN Plant N Plant P Leachate 

NH4-N 

Leachate 

NO3-N 

Leachate 

SRP 

Three 5.38 ± 

1.07 

4.60 ± 

3.62 

/ 1.62 ± 

0.483 

6.24 ± 

2.09 

4.19 ± 

0.569 

1.83 ± 

1.12 

/ / / 

Four, 

baseline 

3.93 ± 

1.00 

5.74 ± 

3.13 

8.82 ± 

2.28 

4.34 ± 

1.15 

7.05 ± 

1.62 

/ / / / / 

Four, stem 

elongation 

0.917 ± 

0.153 

7.65 ± 

2.25 

17.4 ± 

6.63 

3.55 ± 

1.12 

7.83 ± 

2.15 

/ / / / / 

Four, 

anthesis 

1.47 ± 

0.405 

9.76 ± 

3.77 

6.56 ± 

3.14 

10.9 ± 

1.74 

8.72 ± 

1.61 

/ / / / / 

Four, 

harvest 

/ / / / / / / 5.85 ± 

3.67 

12.4 ± 

4.04 

1.28 ± 

0.35 

Five, 

harvest 

/ / / / / 13.9 ± 

6.06 

16.2 ± 

4.74 

/ / / 
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2.8.2 Water-soluble phosphorus  

2.8.2.1 Principle 

This method estimates the amount of P in equilibrium between the solid soil 

surface and the soil solution (Kuo, 1996). Following extraction, P concentration 

is determined by the modified ascorbic acid method, developed by Murphy & 

Riley, (1962). Phosphomolybdic acid formed from orthophosphate and 

molybdenum is reduced by ascorbic acid to produce a phosphomolybdenum 

complex with an intense blue colour (ISO, 2018; Murphy & Riley, 1962). Antimony 

potassium tartrate catalyses colour development (Wu & Ruzicka, 2001). The 

intensity of the blue colour reflects the amount of orthophosphate in the 

phosphomolybdenum complex, allowing the concentration of orthophosphate to 

be quantified spectrophotometrically. The concentration of P in solution is 

calculated from a standard curve produced with solutions of known P 

concentration.  

2.8.2.2 Reagents 

Water-soluble phosphorus (Pwater) was determined following the method of Olsen 

& Sommers, (1982). A colour developing solution was prepared by diluting the 

following reagents in 250, 100 and 1000 ml deionised water (diH2O): 12.0 g 

ammonium paramolybdate [(NH4)6Mo7O24•4H2O], 0.2908 g potassium antimony 

tartrate (KsbO•C4H4O6) and 141 ml concentrated sulphuric acid (H2SO4, 5N), 

respectively. Dissolved ammonium paramolybdate and potassium antimony 

tartrate were added to the 5N H2SO4 solution and mixed thoroughly before being 

diluted to 2 litres. The final reagent was labelled Reagent A.  

Colour developing solution was made by dissolving 1.056 g ascorbic acid in 200 

ml Reagent A. Colour developing solution was prepared every 24 hours or with 
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each new batch of reagents, whichever occurred first. Enough solution was made 

to determine the Pwater content off all samples extracted that day, including blanks 

and standards.  

2.8.2.3 Preparation of standards 

A 5 mg L-1 phosphorus standard was prepared by diluting 250 µl of a phosphorus 

stock standard (1000 mg P L-1) in deionised water to 50 ml. Solutions containing 

0, 0.1, 0.2, 0.3, 0.4 and 0.8 mg L-1 were prepared by diluting 0, 1, 2, 3, 4 and 8 

ml of the 5 mg P L-1 solution to 25 ml. A new standard curve was produced each 

day or with each new batch of reagents, whichever came first.  

2.8.2.4 Extraction of water-soluble phosphorus from soil 

2.5 ± 0.05 g of air-dried, sieved (< 2 mm) soil was weighed into a 50 ml centrifuge 

tube and shaken with 25 ml deionised water for 5 minutes at 150 rpm (Fuhrman 

et al., 2005; Kuo, 1996). Samples were centrifuged for 20 minutes at 3000 g, until 

the solution was free of soil mineral particles. Samples were filtered through 

Whatman no. 42 filter paper, with the first few millilitres of filtrate being discarded. 

5 ml of filtrate was pipetted into a 25 ml volumetric flask followed by 4 ml of colour 

developing solution. Samples were diluted to volume in deionised water. 300 µl 

of sample was transferred to a 96 well plate. The maximum intensity develops 

after 10 minutes and is stable for 24 hours (Olsen & Sommers, 1982). 

Absorbance was measured after 35 minutes at 850 nm using a plate reader, to 

allow enough time for colour development in every sample. Each sample was 

measured in triplicate. 10% duplicate samples and one blank were included in 

each batch. Precision values, measured as relative percentage difference (RPD) 

(Equation 2.7), are reported in Table 2.3. A suitable certified reference material 

could not be found for this procedure.  
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2.8.3 Organic phosphorus 

2.8.3.1 Principle 

Organic P (Porganic) was determined by measuring the difference in the 

concentration of P between ignited and air-dried samples, following the method 

of Kuo, (1996). In this protocol, aliquots of a sample are ignited and shaken in 

sulphuric acid. A separate aliquot is not ignited before shaking in sulphuric acid. 

The concentration of P in filtered extracts is determined by the ascorbic acid 

method. The intensity of the phosphomolybdenum blue complex produced by the 

ascorbic acid method can be measured spectrophotometrically and the 

concentration of P in solution derived from results of a standard curve. Ignition at 

550oC converts organic P into inorganic P by high temperature oxidation (Kuo, 

1996). The concentration of Porganic in soil can therefore be calculated as the 

difference in P concentration between the ignited and unignited sample. Possible 

limitations of this method include increased extractability of inorganic P at 

temperatures above 160oC, P volatilisation during ignition, incomplete oxidation 

of organic P and the hydrolysis of metal bridges binding P to soil organic matter 

by acid which could all affect the final Porganic value (Kuo, 1996; Oniani et al., 1973; 

Williams et al., 1969).  

2.8.3.2 Reagents 

The extraction reagent (0.5M H2SO4) was prepared by diluting 27.8 mL of 

concentrated H2SO4 in 1 L diH2O. 5M sodium hydroxide (NaOH) was prepared 

by diluting 200 g NaOH in 1 L diH2O. p-nitrophenol was used as a pH indicator 

and was prepared by dissolving 0.25 g p-nitrophenol in 100 ml diH2O.  

Colour developing solution was prepared following the protocol of Kuo, (1996) 

which uses the method published by Murphy & Riley in 1962. To prepare the 
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colour developing solution, the following reagents were diluted to 500 ml, 500ml, 

100ml and 100ml diH2O: 70 ml concentrated H2SO4, 20 g ammonium molybdate, 

0.2728 g antimony potassium tartrate and 1.76 g ascorbic acid, respectively. 50 

ml H2SO4, 15 ml ammonium molybdate solution, 30 ml ascorbic acid solution and 

5 ml antimony potassium tartrate were mixed thoroughly to prepare the colour 

developing solution. Enough fresh colour developing solution was prepared to 

determine the concentration of organic P in all samples to be extracted that day, 

including blanks and standards.  

2.8.3.3 Extraction of organic phosphorus from soil 

For each core, 1.00 g of air-dried and sieved (< 2 mm) soil was ignited by heating 

at 550oC for 1 hour in glass tubes. Samples were transferred to 50 ml flat-

bottomed falcon tubes with 25 ml 0.5M H2SO4. The procedure was repeated with 

1.00 g of air-dried and sieved (< 2 mm) soil which was not ignited for each core. 

Air-dried and ignited samples were shaken at 150 rpm for 16 hours. After shaking, 

samples were filtered through Whatman no. 40 filter papers to obtain a clear 

solution. The first few millilitres of filtrate were discarded. A 1.00 ml aliquot of 

filtrate from each sample was transferred into a 30 ml sterilin tube. 5 drops 0.25% 

p-nitrophenol indicator solution were added to each tube. 5M NaOH was then 

added to each tube drop by drop until the solution changed from colourless to 

yellow. 4 ml of colour developing solution was added to each tube and the final 

volume adjusted to 25 ml using deionised water. 300 µl of sample was transferred 

to a 96 well plate. Maximum absorbance develops after 10 minutes and is stable 

for 24 hours (Kuo, 1996; Murphy & Riley, 1962). Absorbance was measured after 

35 minutes at 850 nm using a plate reader, to allow enough time for colour 

development in every sample. Each sample was measured in triplicate. 10% 

duplicate samples and one blank were included in each batch. Precision values, 
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measured as RPD (Equation 2.7), are reported in Table 2.3. A suitable certified 

reference material was not available for this procedure. 

2.8.3.4 Preparation of standards 

To prepare the standard curve, 5 ml 0.5M H2SO4 was added to six 30 ml sterilin 

tubes. 0, 1, 2, 3, 4 or 8 ml of a 5 mg P L-1 standard stock solution (prepared 

following the protocol in 2.8.2.3) was added to each tube. The final P 

concentration of standards was 0, 0.1, 0.2, 0.3, 0.4 and 0.8 mg P L-1. pH was 

adjusted using p-nitrophenol and 5M NaOH, as above, before the addition of 

colour developing solution and dilution to 25 ml with diH2O. Absorbance was read 

with experimental samples. A new standard curve was produced each day or with 

each new batch of reagents, whichever came first.  

The concentration of Porganic in a single core was calculated following Equation 

2.8. 

Equation 2.8: Calculation of organic phosphorus in soil following the method of Kuo, (1996). 

𝑃𝑂𝑟𝑔𝑎𝑛𝑖𝑐 = 𝑡𝑜𝑡𝑎𝑙 𝑃𝑖𝑔𝑛𝑖𝑡𝑒𝑑 − 𝑡𝑜𝑡𝑎𝑙 𝑃𝑢𝑛𝑖𝑔𝑛𝑖𝑡𝑒𝑑 

 

2.8.4 Olsen’s phosphorus 

2.8.4.1 Principle 

Olsen’s phosphorus (POlsen’s) is a measure of crop available P (Olsen et al., 1954). 

Bicarbonate (HCO3
-) and hydroxide (OH-) released from the alkaline (pH 8.5) 

sodium hydrogen carbonate (NaHCO3) extractant during the reaction promote P 

desorption and thus increase the concentration of orthophosphate in solution 

(Kuo, 1996). Ca2+ activity is also reduced by NaHCO3, minimising calcium 
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phosphate precipitation reactions (Olsen et al., 1954). The concentration of P in 

filtered extracts is determined by the ascorbic acid method. 

2.8.4.2 Reagents 

0.5 g sodium hydroxide (NaOH) is dissolved in 1 L of 0.5M NaHCO3, made by 

diluting 42 g NaHCO3 in 1 L deionised water (diH2O). Polyacrylamide solution 

(0.25 g polyacrylamide dissolved in 500 ml diH2O) was used as a decolourising 

and flocculating agent to prevent colouration caused by organic matter 

dissolution and dispersion of silt and clay (Banderis et al., 1976).  

2.8.4.3 Extraction of Olsen’s phosphorus  

2.5 ± 0.05 g of air-dry < 2 mm sieved soil was weighed into a 125 ml shaking 

flask. 50 ml of NaHCO3 was added to each sample. 250 µl of polyacrylamide was 

added to each flask before shaking at 150 rpm for 60 minutes. Shaking time was 

increased compared to the standard method to achieve values within the 

accepted range of the certified reference material. Samples were filtered through 

Whatman no. 40 filter paper into 50 ml falcon tubes. The first few millilitres of 

filtrate were discarded. Filtered samples were diluted 10x with deionised water 

before transferring to autoanalyzer tubes. Orthophosphate-P was determined by 

Skalar San++ continuous flow analyser, using the method in Table 2.4. Three 

blanks, 10% duplicate samples and one certified reference material sample 

(ArgroMAT Ag-1, SCP Science) were included in each batch. Precision values, 

measured as RPD (Equation 2.7), are reported in Table 2.3. 
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Table 2.4: Methods for determination of nutrient concentration is soil and plant extracts by Skalar 

San++ continuous flow autoanalyzer. Abbreviations: NO2-N, nitrite-N; NO3-N, nitrate-N; NH4-N, 

ammonium-N; PO4-P, orthophosphate-P.  

Compound Method 

NO2-N The diazonium compounds formed by diazotizing of sulphanilamide by 

nitrite in water under acid conditions is coupled with alpha-naphthyl 

ethylenediamine dihydrochloride to produce a reddish-purple colour 

which is measured at 540 nm (United States Environmental Protection 

Agency, 1974).  

NO3-N + 

NO2-N 

Nitrate is reduced to nitrite by hydrazinium sulphate and the nitrite 

(originally present plus reduced nitrate)  is determined by diazotizing 

with sulphanilamide and coupling with alpha-naphthyl-ethylenediamine 

dihydrochloride to form a highly-coloured azo dye which is measured at 

540 nm (Kamphake et al., 1967). 

NH4-N Ammonia is chlorinated to monochloramine which reacts with salicylate 

to from 5-aminosalicylate.  After oxidation and oxidative coupling, a 

green-coloured complex is formed.  The absorption of the formed 

complex is measured at 660 nm (Krom, 1909). 

PO4-P Ammonium molybdate and potassium antimony tartrate react in an 

acidic medium with diluted solutions of phosphate to form an antimony-

phospho-molybdate complex.  This complex is reduced to an intensely 

blue-coloured complex by ascorbic acid.  The complex is measured at 

880nm (Boltz & Mellon, 1948). 
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2.8.5 Available nitrogen  

2.8.5.1 Principle 

Available nitrogen (NO3-N, NH4-N and NO2-N) concentration in soil was 

determined following a protocol provided by the School of Geography, University 

of Leeds which resembles that of Maynard et al., (2008). 1M potassium chloride 

(KCl) displaces ammonium and nitrate from ion exchange sites into solution 

where their concentration can be quantified. Potassium displaces exchangeable 

ammonium (Tucker, 1974) while chloride displaces nitrate (Pare et al., 1995). The 

concentration of ammonium-N and nitrate-N was determined by continuous flow 

autoanalyzer (Table 2.4). 

2.8.5.2 Reagents 

1 M KCl was prepared by diluting 74.54 g KCl in 1 L diH2O. 

2.8.5.3 Extraction of available nitrogen 

Samples were removed from the freezer on the day they were required and 

allowed to defrost on ice before weighing approximately 10 g field moist soil into 

a 125 ml shaking bottle. The next day, 50 ml 1M KCl was added to each unsieved 

sample, 10% duplicate samples, blanks and the certified reference material 

sample (AgroMAT Ag-1, SCP Science). Samples were shaken at 150 rpm for 60 

minutes before filtering through Whatman 42 papers into 50 ml falcon tubes. The 

first few millilitres of filtrate were discarded. Samples were analysed for NO3-N, 

NH4-N and NO2-N using the methods in Table 2.4. Results were expressed on 

an oven-dried basis after moisture content determination (section 2.8.6). 

Precision values, measured as RPD (Equation 2.7), are reported in Table 2.3. 

2.8.6 Moisture content and loss on ignition  
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Approximately 5.0 g fresh soil was weighed into a pre-weighed crucible. To 

determine air-dried moisture content, soil was dried at 40oC for 48 hours before 

re-weighing. To determine oven-dried (OD) moisture content, air-dried samples 

were dried at 105oC for 48 hours before reweighing. To determine loss on ignition, 

oven-dried samples were heated at 550oC for 16 hours in a muffle furnace and 

the difference between the unignited and ignited sample used to quantify percent 

soil organic matter.   

Moisture content expressed relative to oven-dried weight (g H2O g-1 soil) was 

calculated following Equation 2.9. 

Equation 2.9: Calculation of moisture content expressed relative to fresh weight. Abbreviations; 

OD, oven-dried soil.  

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝑔 𝐻2𝑂 𝑔−1 OD 𝑠𝑜𝑖𝑙)

=  
(𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 + 𝑓𝑟𝑒𝑠ℎ 𝑠𝑜𝑖𝑙 (𝑔)) − (𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 + 𝑂𝐷 𝑠𝑜𝑖𝑙 (𝑔))

𝑂𝐷 𝑠𝑜𝑖𝑙 (𝑔)
 

 

Organic matter (%) was calculated following Equation 2.10. 

Equation 2.10: Calculation of soil organic matter. Abbreviations: OD, oven-dried soil.  

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 (%)

= (
(𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 + 𝑂𝐷 𝑠𝑜𝑖𝑙 (𝑔)) − (𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 + 𝑖𝑔𝑛𝑖𝑡𝑒𝑑 𝑠𝑜𝑖𝑙 (𝑔)

(𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 + 𝑂𝐷 𝑠𝑜𝑖𝑙 (𝑔)) − 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 (𝑔)
) × 100 

2.9 Plant analysis 

2.9.1.1 Principle 

Total N and P uptake in plant tissue were determined using the one-step method 

(Allen et al., 1974). Organic matter is broken down by the oxidising agents 

sulphuric acid and hydrogen peroxide. Sulphuric acid also prevents the flask from 
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drying out which is a safety risk. Selenium acts as a catalyst for the conversion 

of organic N to ammonium sulphate and lithium increases the temperature of the 

reaction. The concentration of N and P in solution can be determine 

spectrophotometrically using the methods in Table 2.4. 

2.9.1.2 Reagents 

Mixed digestion reagent was prepared by mixing 175 ml 30% hydrogen peroxide 

(H2O2), 0.21 g selenium and 7 g lithium sulphate in a one-litre bottle before adding 

210 ml concentrated sulphuric acid while heating and cooling.  

2.9.1.3 Total digestion of plant nitrogen and phosphorus 

Plant tissue was prepared for analysis by drying at 40oC for 48 hours before 

grinding to a fine powder in an electric coffee grinder. Approximately 0.30 g 

sample was weighed directly into a 100 ml glass tube suitable for hotblock 

digestion. Three reagent blanks, one certified reference material sample (SRM 

1573a, tomato leaves) and 10% duplicate samples (Table 2.3) were included per 

batch. 4.4 ml of mixed digestion reagent was added to each tube. Tubes were 

loaded into the Velp hotblock and heated slowly to 300oC. The temperature was 

held at 300oC until the solution had cleared. Once cooled, samples were 

transferred with washings into 50 ml falcon tubes and diluted to 25 ml with 

deionised water. Samples could then be transferred to autoanalyser tubes for 

determination of total N and P concentration by Skalar San++ continuous flow 

autoanalyser (Table 2.4). This method gives concentrations. The total uptake of 

N or P in a specific tissue was calculated by multiplying mass of that tissue by 

the concentration of the desired nutrient in that tissue.  

2.10 Leachate analysis 
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Leachate samples were filtered through pre-rinsed 0.45 µm nylon syringe filters 

into 30 ml sterilin tubes before analysis for NO3-N, NH4-N, NO2-N and SRP by 

Skalar San++ Continuous Flow Analyser. NO3-N was calculated by subtracting 

absorbance of NO2-N from (NO3-N + NO2-N). Methods for determination of each 

nutrient can be found in Table 2.4. The concentration of each nutrient was 

multiplied by the volume of leachate collected to determine nutrient load. 10% 

duplicate samples were included (Table 2.3). Precision values, measured as 

RPD (Equation 2.7), are reported in Table 2.3. 

2.11 Organics analysis 

Organic fertilisers were analysed by Natural Resources Management 

Laboratories. Only method outlines could be provided and are copied below.   

2.11.1 Determination of oven-dry matter 

As-received samples are homogenised and a representative sub-sample taken 

in a suitable tray. The weight is accurately recorded before and after drying in an 

oven at 105 oC ± 5oC to determine the oven-dry matter as a % weight loss. The 

drying time is at least 12 hours and samples are checked to ensure they are 

completely dry.  

2.11.2 Determination of aqua-regia soluble (‘total’) elements  

Digested cake is dried (105oC) and ground to pass a 1 mm screen. Pig slurry is 

analysed on an ‘as-received’ basis. A representative portion of the prepared 

sample is digested in an open vessel with concentrated hydrochloric and nitric 

acid (aqua-regia) using a temperature-controlled digestion block. The formation 

of strong oxidising agents will destroy organic matter and break down the mineral 
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matric of the sample. The elements dissolved in the acid are analysed by ICP-

OES/ICP-MS.  

2.11.3 Determination of total carbon and nitrogen 

The sample is oven-dried and ground. Samples are totally combusted in an 

oxygen enriched atmosphere in a reaction tube. Nitrogen and carbon products 

are carried by a constant flow of carrier gas (helium) through an oxidation 

catalyst, and then through reduced copper wires, where excess oxygen is 

removed and nitrogen oxides are reduced to elemental nitrogen.  

The nitrogen and carbon products are separated through a chromatographic 

column. As the products are eluted from this column they pass through a T.C.D. 

detector, which generates an electrical signal proportional to the amount of 

nitrogen and carbon present. Various products can be eliminated if required using 

various traps, such as a magnesium perchlorate trap to eliminate hydrogen. Peak 

elimination reduces the risk of overlapping peaks and shortens run times. This 

procedure is known as the Dumas Technique. 

2.11.4 Determination of organic matter content 

The sample is dried and ground to pass a 2 mm screen. The test portion is dried 

at 103oC, then ashed at 430oC. The ash is determined as the residue on ignition. 

The organic matter is taken to be the loss of mass on ignition. Both are expressed 

as a percentage by mass of the dried sample. 

2.11.5 Determination of pH 

For slurries, samples are analysed on an as-received basis. For solid sludges, a 

suitable aqueous solution will be prepared. pH measurements are made at room 

temperature potentiometrically. The ratio of the slurry/manure to water is 1:6.  
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2.11.6 Determination of ammonium nitrogen, nitrate nitrogen and 

nitrite nitrogen 

Ammonium-N and nitrate-N were extracted using 1 M KCl at an extraction ratio 

of 1:10 (10 g sample: 100 ml 1 M KCl). The determination of nitrate-N and nitrite-

N is based on the formation of a diazo compound between nitrite and 

sulphanilamide. This compound is then coupled with N-1-napthylethylenediamine 

dihydrochloride to give a red azo dye. The colour is measured at 540 nm using 

an Alpkem RFA segmented flow analyser (Astoria Pacific).  

In channel one, nitrate is reduced quantitatively to nitrite by cadmium metal in the 

form of an open tubular cadmium reactor (OTCR). The nitrite and reduced nitrate 

are therefore both measured as total oxidised nitrogen (TON).  

In channel two, nitrite is measured. Nitrate-N is therefore determined by 

deducting the nitrite figure from the TON. 

In channel three, ammonium reacts with alkaline hypochlorite and phenol to form 

indophenol blue. Sodium nitroprusside acts as a catalyst in formation of 

indophenol blue which is measured at 640 nm. Precipitation of calcium and 

magnesium hydroxides is eliminated by the addition of a combined potassium 

sodium tartrate/sodium citrate complexing reagent.  

2.11.7 Determination of uric acid nitrogen  

Samples are dried and ground to pass a 1 mm screen. The sample is extracted 

using a warm alkaline buffer solution. The uric acid content of the extract is 

determined using reverse phase HPLC with UV detection. The results are 

reported as % w/w uric acid nitrogen to 2 decimal places. The results can be 

converted from uric acid to uric acid-N by multiplying the value of uric acid by 

0.333. 
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2.11.8 Determination of total nitrogen 

Total nitrogen and ammonium-nitrogen are determined on fresh samples using 

the Kjeldahl method. The method is based on oxidising organic substances by 

heating with sulphuric acid to reduce the nitrogen present to ammonium sulphate. 

When this is distilled with sodium hydroxide gaseous ammonium is produced. 

This is then dissolved in a boric acid solution where the ammonia reacts with the 

acid. The excess acid is then titrated to determine the concentration of nitrogen.  

Samples for total nitrogen determination are heated with sulphuric acid on a 

digestion block. The solution is then analysed on an automated Kjeltec analyser 

as per the above protocol. Ammonium-N is first extracted from the sample in 

potassium chloride and the filtered solution then analysed for N in the same way.  

The catalyst used to accelerate the decomposition process is copper based and 

not the traditional mercuric compound as this causes environmental and health 

concerns. 

2.12 Data entry and management  

Data collected during soil, plant or leachate analysis was recorded in a lab book. 

Sample ID, sample treatment and sampling occasion (for example baseline, stem 

elongation, anthesis in chapter four) were recorded with each parameter 

measured. Any unusual observations were recorded. Data was transferred to 

Microsoft Excel (2016) when all samples had been analysed for a parameter. 

Data collected in the greenhouse was recorded on individual recording sheets. A 

new recording sheet was used weekly and data transferred to Microsoft Excel 

(2016) at the end of each week. Every time data was entered, it was checked for 

the correct number of samples in each treatment and the correct allocation of 
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samples to treatments in order to pick up both labelling and data entry errors. 

Data was saved to OneDrive under a password protected account.   

A filing system was developed to ensure data could be easily and correctly 

accessed. A data folder was produced for each experiment. Data produced from 

the experiment analysed in chapter three was subdivided into folders based on 

the material being analysed. Files were named based on the parameter being 

analysed. Data produced from the experiment analysed in chapter four was 

subdivided into folders based on sampling occasion. Files were named according 

to the sampling point and the parameter being measured, for example Olsen’s P 

data from the baseline sampling point was labelled “BLGH_Olsen’s phosphorus”. 

For analysis, files from individual sampling points were collated in a new master 

document, so as not to lose original information. This was another opportunity to 

check for data entry and recording errors, which took place before collating files 

to ensure that the correct number of samples and the correct samples were 

allocated to each treatment. Master documents were saved in an Analysis folder, 

so it was clear that these documents were the ones to be used for analysis.  

2.13 Quality assurance 

Quality was integrated into the project through planning, proper implementation 

of procedures and methods and documentation and recording. Individual steps 

taken towards quality assurance are outlined in Table 2.5. 
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Table 2.5: Steps taken towards quality assurance at each stage of the project.  

Stage Implementation 

Project planning Planning ensured: 

- Equipment, people and facilities were ready when required. 
- The workload was manageable, particularly in terms of 

sample collection and preparation for storage and analysis. 
- Quality, informative data could be collected in the event of 

unplanned challenges such as plant disease.  

Procedures and 

methods  

- Proper training was received before the use of new 
equipment.   

- Certified reference materials were used where available to 
ensure accuracy. 

- 10% duplicate samples were included in all runs to ensure 
precision.  

- When analytical work was outsourced, it was to a laboratory 
with UKAS accreditation to the international standard of 
competence ISO/IEC 17025. 

- Glassware was washed in the laboratory glass wash, 
soaked in 10% hydrochloric acid (HCl) for at least 24 hours 
and rinsed 3 times in deionised water before use. Acid-
washed glassware was stored in sealed plastic bags or 
covered with cling film to prevent contamination from 
deposition and dust.  

- Samples were prepared and stored appropriately for 
analysis. For most soil analytes, this involved storage at 4oC 
before drying at 40oC, transfer to air-tight bags and storage 
in the dark at room temperature. Samples for soil available 
nitrogen concentration were homogenised before storage 
at -20oC in air-tight plastic bags with transfer to the freezer 
occurring within three days of collection.  

- Leachate samples were stored in polystyrene tube at 4oC 
overnight, filtered in the order they were collected into fresh 
polystyrene tubes before re-storing at 4oC and analysing 
the next day (within 2 days of collection). Help was recruited 
for filtering as this is a labour-intensive but time-sensitive 
process. Samples were filtered in the order they were 
collected to avoid confounding effects of storage time on 
soluble reactive phosphorus concentration.    

- When analytical work was conducted in batches, an even 
number of samples from each treatment was included in the 
batch.   

- In the greenhouse, cores were randomly allocated to blocks 
so that each block contained one sample from each 
treatment. Blocks were rotated in the greenhouse and cores 
re-randomised in their blocks weekly to avoid the effect of 
variation in greenhouse conditions on productivity and soil 
processes.  
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Documentation 

and 

repeatability  

- Data has been stored in a well-organised, password 
protected filing system.  

- Protocols are saved with data files for future reference.  
- Detailed records were kept in the field, greenhouse and lab 

in lab books or in recording sheets which were not removed 
from University premises.  

- Most laboratory protocols follow those in published 
literature and are cited for future reference and 
repeatability.    

- Other steps taken towards data management and entry are 
covered in section 2.12. 
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Chapter 3 Short-term effects of combined fertiliser applications 

on wheat productivity and phosphorus and nitrogen availability 

in soil 

3.1 Introduction 

Phosphorus (P) is a critical element that supports all life (Deevey, 1970). The 

importance of P is well recognised in arable and livestock farming (Cordell et al., 

2009, 2015; Metson et al., 2012) which consumes 90% of the world’s P supply 

(Schröder et al., 2010). Over time, the dominant source of P used for fertiliser has 

shifted from human and animal waste to phosphate rock (Cordell et al., 2009). 

Global demand for P for fertiliser is increasing and is forecast to reach 46 million 

tonnes by 2020 (FAO, 2017b). However, supplies of P rock used in the production 

of fertilisers are declining with peak P production predicted to occur as soon as 

2030 (Cordell et al., 2009). 

The shift from organic to inorganic fertiliser sources may have affected P 

phytoavailability in agricultural soils because organic fertilisers increase P 

phytoavailability compared to the application of inorganic fertilisers (Gong et al., 

2009; Jiao et al., 2007; Pizzeghello et al., 2011; Song et al., 2017; Yan et al., 

2018). Several mechanisms leading to enhanced P phytoavailability in 

organically treated soils have been suggested, including competition between 

native soil P and decomposition products of the organic amendment, improved 

soil physiochemical properties and increased negative charge on soil surface 

particles (Guppy et al., 2005a).  

The mechanisms which lead to increased P phytoavailability in soil receiving 

organic fertilisers also contribute to elevated levels of P in leachate and surface 
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runoff compared to inorganic fertilisers (Esteller et al., 2009; Kang et al., 2011; 

Kleinman et al., 2010; McDowell & Sharpley, 2004; Svanbäck et al., 2013; 

Vanden Nest et al., 2016, 2014). These differences are apparent from days (Kang 

et al., 2011; Kleinman et al., 2010) to years (Esteller et al., 2009; McDowell & 

Sharpley, 2004; Svanbäck et al., 2013; Vanden Nest et al., 2016, 2014) after the 

onset of fertilisation. Agriculture is the dominant source of P causing aquatic 

eutrophication (Heckrath et al., 1995; Smil, 2000; Svanbäck et al., 2013; 

Weihrauch & Opp, 2017) with negative environmental, financial and human 

health impacts (Chorus et al., 2000; Dodds et al., 2009; Lürling et al., 2017; 

Preece et al., 2017; Pretty et al., 2003). Warming has been shown to increase 

the biomass and production of toxins by microorganisms that cause 

eutrophication (Lürling et al., 2017). Developing fertilisation strategies that 

minimise the flow of P from agriculture is therefore crucial in minimising the 

environmental impact of the food production system.  

Governments and multinational organisations have implemented policies to 

extend the life of remaining P reserves and to minimise the environmental impact 

of P. The Urban Waste Water Treatment Directive sets maximum levels of P in 

effluent from water treatment works (Council of the European Union, 1991), the 

use of inorganic phosphates in detergents is banned in the European Union 

(European Commission, 2012) and P concentration is included in the health 

classification of a waterbody (European Commission, 2000). Farmers in the UK 

are encouraged to integrate the use of organic manures and mineral fertilisers “to 

achieve an efficient and profitable production system with minimal adverse 

environmental impact” (Defra, 2010). This approach could also help to lessen 

farmers’ requirements for inorganic fertilisers which have been shown to reduce 

soil fertility and health in the long term through depletion of soil organic matter, 
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structure and biological activity (Ge et al., 2010; Munkholm et al., 2002; Ram et 

al., 2016; Smil, 2000; Zhong & Cai, 2007).  

Evidence from greenhouse and incubation studies suggests that combining 

organic and inorganic fertilisers can increase  phytoavailable P concentration 

(Garg & Bahl, 2008; Halajnia et al., 2009; Reddy et al., 2005; Toor & Bahl, 1997) 

plant P uptake (Halajnia et al., 2009) and P leaching (Leinweber et al., 1999) 

compared to when either fertiliser type is applied alone. However, it is difficult to 

put knowledge derived from these studies into practice because it is common for: 

(i) a single component of the system to be studied, such as the soil (Halajnia et 

al., 2009; Reddy et al., 2005; Toor & Bahl, 1997) (ii) only constituent parts of 

organic matter, for example low and heavy molecular weight organic acids (Bolan 

et al., 1994; Delgado et al., 2002) (Bolan et al 1994; Delgado et al 2002), to be 

applied to soil and incubated; and (iii) P application rates to be unequal between 

treatments (Garg & Bahl, 2008; Halajnia et al., 2009; Leinweber et al., 1999; 

Mokolobate & Haynes, 2003; Toor & Bahl, 1997). Therefore our understanding 

of short-term P dynamics under combined fertiliser regimes is limited by 

experimental designs which are inappropriate for the system being studied. 

Field studies provide insight into the long-term effects of integrated fertiliser 

treatments on yield and P phytoavailability (Ahmed et al., 2019; Mao et al., 2015; 

R. Sun et al., 2015). In the field, integrating the use of organic and inorganic 

fertilisers has been shown to increase the concentration of crop available P 

compared to the application of inorganic P alone (Ahmed et al., 2019; Chen et 

al., 2017; Hu et al., 2018; Mao et al., 2015; Sun et al., 2015; Xin et al., 2017; Zhao 

et al., 2010). P applications rates are often higher in the treatment receiving 

organic and inorganic fertilisers together (Chen et al., 2017; Mao et al., 2015; Sun 

et al., 2015), but increases in P phytoavailability are also reported when 
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treatments receive equal amounts of P (Ahmed et al., 2019; Hu et al., 2018; Xin 

et al., 2017). Results from field studies are typically derived from a single soil 

sampling event conducted years to decades after the initiation of fertilisation and 

after harvest (Ahmed et al., 2019; Mao et al., 2015; Xin et al., 2017). The 

timescale over which increases in crop available P occur and whether increased 

P phytoavailability coincide with crop demand is therefore unclear given the 

duration and infrequent sampling of field studies.   

Available data shows that integrating the use of organic and inorganic fertilisers 

is a promising approach that can enhance (Bedada et al., 2014; Pincus et al., 

2016; Zhao et al., 2016) or maintain crop yields (Bedada et al., 2014; Dawe et 

al., 2003; Xie et al., 2016; Xin et al., 2017; Zhao et al., 2016). However, the 

response is highly variable within and between studies and has been shown to 

depend on factors including the crop (Yadav et al., 2000), the year (Bedada et 

al., 2014) and the farmer (Pincus et al., 2016). Moreover, increases in yield may 

simply be explained by higher nutrient application rates in combined compared 

to sole treatments (Chivenge et al., 2009; Kanchikerimath & Singh, 2001; 

Martínez et al., 2017; Zhao et al., 2009) which has been identified as an issue in 

meta-analyses (Chivenge et al., 2011; W. Wei et al., 2016). In countries where 

fertiliser sources are combined in order to overcome issues associated with 

pollution and supply, ensuring nutrient application rates are balanced across 

treatments is critical to determine the true effect of integrated nutrient 

management on yield. A number of long-term field studies have been conducted 

with a substitution design and show that combined fertiliser applications can 

decrease (Dawe et al., 2003; Gong et al., 2009; Xie et al., 2016; Xin et al., 2017; 

Yadav et al., 2000), increase and maintain yields, compared to the application of 

inorganic fertilisers alone.   
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The aim of this study was to determine how combining organic and inorganic 

fertilisers affects P phytoavailability and wheat productivity in a soil with a high P 

status (soil P index four). Farmers would be recommended against applying 

phosphorus under this scenario as the concentration of soil available P is above 

the target index of two (AHDB, 2020). However, the high P status ensures that 

substitution is unlikely to affect wheat productivity, and therefore the 

phytoavailability of other nutrients, due to treatment-induced differences in P 

phytoavailability.  

The main objectives were to determine how partial substitution of inorganic 

fertilisers with organic alternatives affects: (i) the concentration of plant-available 

P in soil, measured as Olsen’s P; (ii) N availability in soil, measured as 

ammonium-N and nitrate-N concentration; (iii) wheat productivity; and (iv) P 

leaching risk, using soil water-soluble phosphorus concentration as an indicator 

(Pote et al., 1996). This study tested the hypothesis that the ratio of organic to 

inorganic P applied with fertilisers affects P phytoavailability in soils, and that 

combining fertiliser sources increases P phytoavailability compared to the 

application of inorganic P alone. The hypothesis was tested in a greenhouse 

experiment using intact soil cores. Pig slurry, a readily available source of 

nutrients in the United Kingdom (UK) (ADAS, 2008), was used to supply organic 

P to the most popular variety of winter wheat on the UK market (Triticum aestivum 

L., cv “Skyfall”) (RAGT, 2017).  

3.2 Materials and Methods 

3.2.1 Summary 
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Soil cores collected from an arable field were sown with winter wheat and 

fertilised with one of four different fertiliser treatments: (i) N only control; (ii) 

inorganic N and P; (iii) combined application of pig slurry and inorganic N and P; 

and (iv) pig slurry only. Two winter wheat plants were grown in each pot. At the 

end of tillering each treatment received fertilisers at a rate equivalent to 140 kg 

P2O5 ha-1 and 170 kg readily available nitrogen (RAN, the sum of ammonium-N 

and nitrate-N) ha-1 (Table 3.1). Cores were destructively harvested 28 and 56 

days after fertilisation. Soil was analysed for pH and Olsen’s P, water-soluble P, 

and RAN concentration. Plant material was analysed for biomass and total N and 

P uptake. 

Table 3.1: Fertiliser application rates. Phosphorus pentoxide (P2O5) and readily available nitrogen 

(RAN) were supplied by monocalcium phosphate [Ca(H2PO4)2], ammonium nitrate (NH4NO3) and 

pig slurry. Treatments were matched for P2O5 and RAN at application rates of 140 and 170 kg ha-

1, respectively. The exception was the N only control treatment which did not receive P from any 

source.

  P2O5 (kg ha-1) RAN (kg ha-1) 

Treatment Ca(H2PO4)2 Pig slurry NH4NO3 Pig slurry 

N only control 0 0 170 0 

Inorganic 140 0 170 0 

Combined 70 70 85 85 

Organic 0 140 0 170 

 

3.2.2 Core collection and preparation 

On 18 January, 62 cores were collected from a commercially managed arable 

field  at Leeds University Farm (Spen Common Lane, Tadcaster, United 

Kingdom, LS24 9NT) that has been fertilised with organic and inorganic fertilisers 

historically. Details on the core collection and preparation method are described 

in the general methods (2.3). Six of the cores collected on 18 January were 

randomly selected for moisture content determination (general methods 2.3.3). 
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Experimental cores were moved to a temperature and light controlled (20oC, 16-

hour photoperiod) greenhouse and arranged in seven blocks, with each block 

containing one randomly allocated replicate from each treatment. Cores were 

dried to and then maintained at 50% water-filled pore space (WFPS) for the 

remainder of the experiment by watering with deionised water every day. Once 

dried to the set level, each core was sown with three pre-germinated winter wheat 

seedlings (T. aestivum L. cv “Skyfall”) (general methods 2.4). The third seedling 

to emerge was removed immediately, leaving two plants per pot. 

3.2.3 Fertilisers and their application 

Pig slurry was used to supply an organic source of P. A bulk sample of 10 L of 

pig slurry was collected from an indoor pig unit at Leeds University Farm and 

thoroughly mixed before being portioned into 1 L samples and frozen at -20oC. 

The pigs were weaner/growers under commercial indoor management, including 

veterinary treatment and diet. Duplicate samples of fresh material were sent to 

Natural Resource Management (Berkshire, England) for analysis. Total P, 

potassium (K), magnesium (Mg), sulphur (S), copper (Cu), zinc (Zn), sodium (Na) 

and calcium (Ca) were extracted with aqua-regia solution and dissolved elements 

analysed by ICP-OES/ICP-MS. Total carbon (C) and N were determined following 

the Dumas technique. pH was measured potentiometrically in a slurry-to-water 

ratio of 1:6. Organic matter was determined by loss on ignition (LOI). Further 

details on pig slurry analysis can be found in the general methods (0). 

Monocalcium phosphate [Ca(H2PO4)2] was used to supply inorganic P and 

ammonium nitrate (NH4NO3) was used to supply inorganic N.  

Cores were fertilised according to one of four treatments (Table 3.1): (i) N only 

control; (ii) all nutrients from inorganic P and inorganic N (inorganic) (iii) half N 
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and P from inorganic sources, half N and P from pig slurry (combined); and (iv) 

all N and P from pig slurry (organic). Treatments provided 170 kg ha-1 and 140 

kg ha-1 of RAN and total phosphorus pentoxide (P2O5), respectively, with the 

exception of the N only control which only supplied inorganic N.  

Fertiliser treatments were applied 33 days after sowing (DAS) which coincided 

with the final stages of tillering. The surface of each core was disturbed to 2 cm 

with a palette knife before applying fertilisers to the surface. Organic and/or 

inorganic fertilisers allocated to each core were combined in a 100 ml pot with a 

lid. Deionised water was added to each pot so that the volume of water supplied 

with fertilisers was equal between treatments. Fertilisers were poured evenly 

across the soil surface, before rinsing each pot three times with deionised water 

to ensure all product was added. On the same day, six randomly selected cores 

were destructively harvested for baseline soil analysis (Table 3.2). 

Table 3.2: Baseline soil analysis.  Six soil cores destructively harvested on the day of fertilisation. 

Sum available N is the sum of nitrate-N (NO3-N), ammonium-N (NH4-N) and nitrite-N (NO2-N). 

Olsen’s phosphorus and potassium are followed by their soil index (Agriculture and Horticulture 

Development Board, 2017). n=6 for all parameters except potassium, where n=3. 

 Parameter Mean ± one standard deviation (mg kg-1) 

pH 7.19 ± 0.126 

Sum available N 5.63 ± 1.61 

NO3-N 4.64 ± 1.55 

NH4-N 0.893 ± 0.279 

Olsen’s phosphorus 55.0 ± 7.41 (4) 

Water-soluble phosphorus 2.58 ± 0.727 

Potassium 163 ± 15.3 (2-) 

 

3.2.4 Harvest 

Seven cores per treatment were destructively harvested 28 and 56 days after the 

application of fertilisers (harvest one and harvest two, respectively). Aboveground 
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tissue was cut at the surface and weighed before drying at 40oC for biomass 

measurements. Soil cores were removed from sleeves and cut in four pieces; in 

half lengthways, and each resulting half divided widthways (Figure 3.1). One top 

quarter was immediately homogenised and frozen at -20oC. Roots were removed 

from the other top quarter before drying at 40oC and grinding to < 2mm. Soil from 

the bottom half of the core was not analysed but was either dried at 40oC or frozen 

at -20oC. Roots were rinsed in tap water and dried at 40oC for 48 hours.  

 

 

 

 

 

Figure 3.1: Preparation of soil cores for analysis. Cores were divided into four equal segments 

and each quarter prepared for storage based on analysis requirements. Only the top half of soil 

cores were eventually analysed.  

Soil collected was analysed for water-soluble P, Olsen’s P, potassium chloride 

(KCl)-extractable N and pH. Plant tissue collected 28 days after fertilisation 

(harvest one) was analysed for aboveground biomass. Plant tissue harvested 56 

days after fertilisation (harvest two) was analysed for aboveground dry weight, 

total N and total P uptake. Only the top half of each core was analysed for soil 

chemical properties. Details of soil and plant analysis can be found in the general 

methods (2.8 and 2.9, respectively).  

3.2.5 Statistical analysis 

Statistical analyses were run in IBM SPSS Statistics 24. Five cores that leached 

during the experiment were removed from the analysis (three from the combined 

Homogenise and 

freeze (-20oC) 

Roots removed, air 

dry and grind <2mm 

Homogenise and 

freeze (-20oC) 

Root removed, air 

dry and grind <2mm 
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treatment, two from the organic treatment). The effect of harvest, treatment and 

their interaction on each dependent variable was assessed by one- or two-way 

analysis of variance (ANOVA). Assumptions were tested by residual analysis. 

Homogeneity of variances, normality and outliers were assessed by Levene’s 

test, Shapiro-Wilk’s test and inspection of boxplots, respectively. Data received a 

log10 or square root transformation when test assumptions were violated. Non-

parametric tests or a Generalised Linear Modelling approach (GLM) were 

adopted when transformations were unsuccessful. Details for individual tests are 

available in the results section. 

3.3 Results 

3.3.1 Summary  

A summary of the main findings is presented in Figure 3.2. Data are expressed 

as percentage change from the N only control, based on mean values. 
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Figure 3.2: Summary of main findings. Results are expressed as percent change compared to 

the N only control. Olsen’s P, water-soluble P, NO3-N and NH4-N are measures of available 

nutrients in soil and were reported as mg per kg oven-dried soil. Aboveground dry weight is 

reported in grams. A summary of treatments is presented in Table 3.1. Abbreviations: H1, harvest 

one, 28 days after fertilisation; H2, harvest two, 56 days after fertilisation. n = 7. 
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3.3.2 Organic analysis 

The results of slurry analysis are presented in Table 3.3 as concentrations and 

the total amount of nutrients added to each core in the organic treatment. 

Table 3.3: Chemical composition of pig slurry. Values are the mean of duplicate samples. The 

concentration of each component is presented based on fresh weight and the total quantity 

applied per core in the organic treatment. Phosphorus pentoxide (P2O5), potassium oxide (K2O), 

magnesium oxide (MgO), sulphur dioxide (SO2) and sodium oxide (Na2O) were derived by 

multiplying phosphorus, potassium, magnesium, sulphur and sodium by 2.29, 1.205, 1.66, 2.5 

and 1.35, respectively. n = 2. 

Determinand  mg/g fresh weight Total (mg) supplied in 

organic treatment 

pH 6.33 - 

Oven dry solids (%) 2.16 - 

Total nitrogen 2.60 180 

NH4-N 2.11 148 

NO3-N <0.01 - 

Total phosphorus 0.75 51.9 

Total P2O5 1.72 119 

Total potassium 1.57 109 

Total K2O 1.89 131 

Total magnesium 0.545 37.8 

Total MgO 0.90 62.5 

Total sulphur 0.196 13.5 

Total SO2 0.490 33.9 

Total copper 0.0020 0.138 

Total zinc 0.01 0.691 

Total sodium 0.46 31.8 

Total Na2O 0.62 42.8 

Total calcium 0.52 18.6 

Total carbon 16.55 1140 

Organic matter LOI 14.50 1000 
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3.3.3 Aboveground dry weight 

A two-way ANVOA was conducted to examine the effect of fertiliser treatment 

and harvest on wheat aboveground dry weight. Residuals were normally 

distributed (p > 0.05) and there was homogeneity of variances (p = 0.186). There 

was one outlier 1.5 to 3 box-lengths from the edge of a box-plot which was 

included in the analysis as there was no evidence of a measurement or data entry 

error.  

There was a statistically significant interaction between harvest and treatment on 

aboveground dry weight, F(3,43) = 4.80, p = 0.006, partial η2 = 0.251 (Figure 3.3). 

Simple main effect of treatment were tested with statistical significance receiving 

a Bonferroni adjustment. Values are means ± one standard error of the mean 

(SEM). There was a statistically significant effect of treatment on mean above 

ground dry weight at harvest one (F(3,43) = 3, p < 0.05, partial η2 = 0.173) and 

harvest two (F(3,43) = 3, p < 0.001, partial η2 = 0.560). At harvest one mean 

aboveground dry weight of the organic treatment (2.096 g ± 0.406) was 

statistically significantly lower than the N only control (3.733 g ± 0.376). By 

harvest two, the N only control and inorganic treatment (8.273 g ± 0.376 and 

8.647 g ± 0.376, respectively) had statistically significantly higher above ground 

dry weight than the combined (6.013 g ± 0.376) and organic (5.292 g ± 0.406) 

treatment (Table 3.4). 

An analysis of simple main effects for harvest was conducted with statistical 

significance receiving a Bonferroni adjustment. There was a statistically 

significant effect of harvest on mean above ground dry weight for all treatments 

(Table 3.5) but the effect size was greater for the N only control and inorganic 

treatment than the combined or organic treatment.  
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Figure 3.3: Mean aboveground dry weight of plants harvested 28 (grey bars) and 56 (white bars) 

days after fertilisation. Error bars are ± one standard error of the mean. Treatments are described 

in Table 3.1. Pairwise comparisons were run for treatment at each harvest. The mean value of 

bars sharing the same letter are not statistically significantly different (p > 0.05). Pairwise 

comparisons for harvest are presented in Table 3.5, respectively. n = 7. 
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Table 3.4: Pairwise comparisons between treatments for aboveground dry weight at each harvest. Comparisons were run to determine statistically significant 

differences in aboveground dry weight (g) between wheat plants receiving different fertiliser treatments 28 days (harvest one) and 56 days (harvest two) after 

fertilisation. p-values received a Bonferroni adjustment. Statistically significant differences between treatments are highlighted in bold. Treatments are described in 

Table 3.1 and mean values are presented in Figure 3.4. n = 7. 

Harvest Treatment Mean difference Standard error p-value 

One 

Zero  Inorganic 0.58 0.53 1.000 

 Combined 0.51 0.62 1.000 

 Organic 1.6 0.55 0.030 

Inorganic Combined - 0.066 0.62 1.000 

 Organic 1.1 0.55 0.370 

Combined Organic 1.1 0.62 0.520 

Two 

Zero  Inorganic - 0.34 0.53 1.000 

 Combined 2.3 0.52 0.0010 

 Organic 3.0 0.55 <0.001 

Inorganic Combined 2.6 0.53 <0.001 

 Organic 3.4 0.55 <0.001 

Combined Organic 0.72 0.55 1.000 
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Table 3.5: The effect of harvest on dry weight for each fertiliser treatment. Results were obtained from a test of simple main effects with Bonferroni adjustment. 

Statistically significant effects are highlighted in bold. Treatments are described in Table 3.1. n = 7. 

 Treatment  Degrees freedom F p Partial η2 

N only control 1,43 72.9 < 0.001 0.629 

Inorganic 1,43 107 < 0.001 0.713 

Combined 1,43 20.0 < 0.001 0.318 

Organic 1,43 31.0 < 0.001 0.419 
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3.3.4 Root biomass 

A two-way ANOVA was conducted to determine the effect of treatment, harvest 

and their interaction on root biomass. There was homogeneity of variances 

(Levene’s test, p = 0.166), residuals were normally distributed in each cell of the 

design (Shapiro-Wilk’s test, p > 0.05) and there were no outliers as assessed by 

visual inspection of a boxplot. The interaction effect between harvest and 

treatment was not statistically significant, F(3,43) = 0.157, p = 0.925, ɳ2 = 0.0110 

(Table 3.6). Values are marginal means ± one standard error of the mean. 

Analysis of main effects showed there was a statistically significant increase in 

root biomass between harvest one (1.58 ± 0.143) and harvest two (2.52 ± 0.132), 

F(1,43) = 23.9, p < 0.001, ɳ2 = 0.357). There was no statistically significant effect 

of treatment on root biomass F(3,43) = 1.16, p = 0.337, ɳ2 = 0.0750, although at 

harvest two root biomass decreased as the proportion of nutrients supplied pig 

slurry increased.   

Table 3.6: Mean root biomass and root-to-shoot ratio of plants 28 and 56 days after the 

application of fertilisers. Treatments are described in Table 3.1. Values are mean ± one standard 

error of the mean (SEM). n = 7. 

 Treatment 

Mean root dry weight ± SEM (g) Root:shoot ratio 

Harvest one Harvest two Harvest one Harvest two 

N only control 1.83 ± 0.270 2.78 ± 0.222 4.77 ± 0.834 6.07 ± 0.372 

Inorganic 1.44 ± 0.233 2.59 ± 0.272 5.34 ± 1.07 7.19 ± 1.04 

Combined 1.63 ± 0.187 2.51 ± 0.359 4.18 ± 0.700 5.41 ± 0.874 

Organic 1.41 ± 0.262 2.22 ± 0.229 3.31 ± 0.565 4.93 ± 0.475 

 

Root:shoot ratio was calculated by dividing the mass of shoots by the mass of 

roots, i.e. for the N only control at harvest one the root:shoot ratio is 1:4.77, versus 

1:3.31 for the organic treatment. Therefore a high value in Table 3.6 represents 

a plant with a greater mass of shoot per unit of root. A two-way ANOVA was run 
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to determine the effect of treatment and harvest on root:shoot biomass. There 

was no statistically significant interaction, F(3,43) = 0.063, p = 0.979, partial η2 = 

0.004. The effect of treatment on root:shoot ratio was not statistically significant, 

F(3,43) = 2.53, p = 0.070, partial η2 = 0.150. Root:shoot ratio increased significantly 

between harvest one (4.40 ± 0.432) and harvest two (5.90 ± 0.398), F(1,43) = 6.57, 

p = 0.014, partial η2 = 0.132. 

3.3.5 Plant nutrient status 

Plant nutrient status was assessed at the end of the experiment, 56 days after 

the application of fertilisers. Assumptions of one-way ANOVA were tested for total 

N uptake (TN), total P uptake (TP), P concentration ([P]) and N concentration 

([N])). The outcome of assumption testing is presented in Table 3.7 along with a 

description of the final test conducted. p-values for multiple comparisons received 

a Bonferroni adjustment. 
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Table 3.7: Test assumptions for analysis of plant nutrient content. Data for plant nutrient content were assessed for assumptions of one-way ANOVA. Homogeneity 

of variances was assessed using Levene’s test and was accepted when p > 0.05. Normal distribution was assessed using Shapiro-Wilk’s test and was accepted when 

p > 0.05. Outliers were assessed by inspection of a boxplot. The final test adopted was based on the outcome of these tests and is explained in the “Decision” column.

 Parameter Homogeneity 

of variances 

Normally 

distributed 

No outliers Decision  

[N] (mg/g)       
Continue with Welch’s robust-test of equality of mean and Games-

Howell post-hoc. 

Total N uptake 

(mg) 
      

There was one outlier 1.5 box-lengths from the edge of a boxplot. 

Continue with Kruskal-Wallis and Dunn’s post-hoc. 

[P] (mg/g)       

There was one outlier 1.5 box-lengths from the edge of a boxplot. 

Data was not normally distributed. Assumptions could not be met by 

data transformation. Continue with Kruskal-Wallis and Dunn’s post-

hoc on non-transformed data. 

Total P uptake 

(mg) 
      

There were two outliers 1.5 box-lengths from the edge of a boxplot 

and homogeneity of variances was violated. Assumptions could not be 

met by data transformation. Continue with Kruskal-Wallis and Dunn’s 

post-hoc on non-transformed data.  
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Table 3.8: Nutrient status of wheat plants 56 days after the application of fertilisers. Differences in mean nitrogen concentration ([N]) between treatments were assessed 

following Welch’s robust test of equality of means with a Games-Howell post-hoc test. Total N uptake (TN), total P uptake (TP) and phosphorus concentration ([P]) 

were analysed using the non-parametric Kruskal-Wallis test with Dunn’s procedure for multiple comparisons (Dunn, 1964). P-values for multiple comparisons received 

a Bonferroni adjustment. Values are means ± one standard error of the mean for [N] and medians and 95% confidence intervals of the median for TN, TP and [P] 

where the level of replication is one soil core containing two plants. In a column, means/medians followed by the same letter are not statistically significantly different 

(p > 0.05). Treatments are described in Table 3.1. n = 7. 

 Treatment  Mean [N] (mg/g) Median total N uptake (mg) Median [P] (mg/g) Median total P uptake (mg) 

N only control 12.5 ± 0.422 104 (92.8, 112)ab 2.43 (2.24, 2.91)b 21.2 (19.7, 22.3)ab 

Inorganic 12.2 ± 0.236 113 (89.6, 121)a 3.03 (2.68, 3.19)ab 27.0 (22.0, 28.3)a 

Combined 11.9 ± 0.630 70.4 (57.8, 84.3)bc 3.15 (2.83, 3.81)a 19.2 (17.2, 21.8)b 

Organic 12.2 ± 1.14 65.7 (56.5, 69.0)c 3.55 (2.97, 4.44)a 19.1 (18.0, 20.2)b 
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3.3.5.1 Phosphorus 

A Kruskal-Wallis H test was run to determine if there were differences in the 

concentration of P in plant tissue between fertiliser treatment groups. Median [P] 

values decreased in the order organic, combined, inorganic, N only control (Table 

3.8). Distributions of P concentration in plant tissue were not similar for all groups, 

as assessed by visual inspection of a boxplot. Pairwise comparisons were tested 

using Dunn’s procedure (Dunn, 1964) with a Bonferroni correction for multiple 

comparisons (Table 3.8). There were statistically significant differences in the 

distribution of [P] between groups, χ2
(3) = 12.6, p = 0.006. Post-hoc analysis 

showed that the [P] was statistically significantly higher in the organic treatment 

(mean rank = 20.7) and the combined treatment (mean rank = 17.46) compared 

to the zero-P treatment (mean rank = 6.14) (p = 0.006 and p = 0.47, respectively). 

There was no statistically significant difference between the inorganic treatment 

(mean rank = 12.7) and the zero-P treatment (p = 0.278), combined treatment (p 

= 1.000) or the organic treatment (p = 0.430).  

Another Kruskal-Wallis H test was run to determine if there were an effect of 

fertiliser treatment on the TP content of plant tissue. Median TP content 

decreased in the order inorganic, N only control, combined, organic (Table 3.8). 

Distributions of TP in plant tissue were not similar for all groups, as assessed by 

visual inspection of a boxplot. There were statistically significant differences in 

the distribution of [P] between groups, χ2
(3) = 12.2, p = 0.007. Pairwise 

comparisons were tested using Dunn’s procedure (Dunn, 1964) with a Bonferroni 

correction for multiple comparisons (Table 3.8).  The total P uptake by plants in 

the inorganic treatment (mean rank = 21.9) was statistically significantly higher 

than that of the combined treatment (mean rank = 10.00) (p = 0.031) and the 

organic treatment (mean rank = 8) (p = 0.010) but not statistically significantly 
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higher than the N only control (mean rank = 15.3) (p = 0.728). The total P uptake 

by plants in the N only control was not statistically significantly higher than the 

combined fertiliser treatment (p = 1.00) or the organic treatment (p = 0.594). 

3.3.5.2 Nitrogen 

There was no statistically significant difference in the concentration of N in plant 

tissue between fertiliser treatment groups, Welch’s F(3, 11.2) = 0.186, p = 0.904 

(Table 3.8). A Kruskal-Wallis H test was run to determine if there were differences 

in total N uptake (mg) of wheat plants between fertiliser treatments (Table 3.8). 

Distributions of TN content were similar for all groups, as assessed by visual 

inspection of a boxplot. Median TN content decreased in the order inorganic, N 

only control, combined, organic. Median TN values were statistically significantly 

different between fertiliser treatments, χ2
(3) = 18.3, p < 0.001. Median TN content 

of the inorganic and N only control was statistically significantly higher than the 

median TN content of the organic treatment (p = 0.004 and p = 0.012, 

respectively). The median TN content of the inorganic treatment was also 

statistically significantly higher than the median TN content of the combined 

treatment (p = 0.020). There was no statistically significant difference in median 

TN content between the combined and organic treatment (p = 1.00). 

3.3.6 Olsen’s phosphorus  

A two-way ANVOA was conducted to examine the effect of fertiliser treatment 

and harvest on the concentration of phytoavailable P in soil, measured as Olsen’s 

P (mg kg-1) (Figure 3.4). There was homogeneity of variances (Levene’s test, p 

= 0.780) and normality was achieved in each cell of the design (Shapiro-Wilk’s, p 

> 0.05). Outliers were detected by inspection of a boxplot. There were 3 outliers 

1.5 to 3 box-lengths from the edge of the box but there was no evidence of data 
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or measurement error so these were included in the analysis. Means are 

presented as marginal means ± one standard error of the mean.   

The interaction effect between treatment and harvest was not statistically 

significant, F(3,43) = 1.86, p = 0.151, ɳ2 = 0.115. Therefore analysis of main effects 

was tested for treatment and harvest. The concentration of Olsen’s P was similar 

at harvest one (55.1 ± 1.92) and harvest two (50.5 ± 1.77), F(1,43), p = 0.083, ɳ2 = 

0.068. There was a statistically significant effect of treatment on the concentration 

of Olsen’s P in soil F(3,43) = 7.32, p < 0.001, ɳ2 = 0.338. p-values for multiple 

comparisons were Bonferroni adjusted (Table 3.9). The marginal means ± one 

SEM for the N only control, inorganic, combined and organic treatment were 43.9 

± 2.45, 55.6 ± 2.45, 60.6 ± 2.88 and 51.2 ± 2.65, respectively. There was no 

statistically significant difference in the concentration of Olsen’s P between P-

fertilised treatments. Only the inorganic and combined treatment increased the 

concentration of Olsen’s P above the level of the N only control (p = 0.010 and p 

<0.001, respectively).  
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Figure 3.4: Mean Olsen’s phosphorus concentration (mg kg-1) of soil harvested 28 (grey bars) 

and 56 (white bars) days after fertilisation. Error bars are ± one standard error of the mean. 

Treatments are described in Table 3.1. The mean value of bars sharing the same letter are not 

statistically significantly different (p > 0.05). Absolute values for pairwise comparisons between 

treatments are presented in Table 3.9. n = 7.  
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Table 3.9: Pairwise comparisons between treatments for Olsen’s phosphorus concentration (mg kg-1) in soil. p-values received a Bonferroni adjustment. Statistically 

significant differences between treatments are highlighted in bold. Treatments are described in Table 3.1 and mean values are presented in Figure 3.4. n = 7. 

 Treatment  Mean difference Standard error of the mean p-value 

N only control   Inorganic - 11.7 3.47 0.010 

 Combined - 16.7 3.78 <0.001 

 Organic - 7.35 3.61 0.288 

Inorganic Combined - 5.02 3.78 1.000 

 Organic 4.32 3.61 1.000 

Combined Organic 9.34 3.91 0.129 



102 
 

 

  

3.3.7 Water-soluble phosphorus  

A two-way ANOVA was run to assess the effect of treatment and harvest on 

water-soluble phosphorus concentration (Pwater, mg kg-1) in soil (Figure 3.5). The 

assumption of homogeneity of variances was met (Levene’s test, p = 0.629) and 

normality was achieved in each cell of the design (Shapiro-Wilk’s test, p > 0.05). 

Outliers were assessed by inspection of a boxplot. There were several outliers 

1.5 to 3 box-lengths from the edge of the box which were included in the analysis 

as there was no evidence of data entry or measurement error. Means are 

presented as marginal means ± one standard error of the mean.   

The interaction effect between treatment and harvest was not statistically 

significant, F(3,43) = 0.716, p = 0.548, ɳ2 = 0.048. Therefore the main effect of 

treatment and harvest was tested. The concentration of water-soluble P in soil 

was statistically significantly lower at harvest two (2.99 ± 0.225) than harvest one 

(3.84 ± 0.245), F(1,43) =  6.48, p = 0.015, ɳ2 = 0.131. There was a statistically 

significant effect of treatment on the concentration of water-soluble P in soil, F(3,43) 

= 6.67, p = 0.001, ɳ2 = 0.318. Pwater concentration was statistically significantly 

higher in the inorganic and combined treatment compared to the N only control 

(p = 0.047 and p = 0.001, respectively) (Table 3.10). There was no statistically 

significant difference in the WSP concentration between the N only control and 

the organic treatment (p = 0.051) or the organic treatment and either of the other 

P-fertilised treatments. The marginal means for the N only control, inorganic, 

combined and organic treatment were 2.27 ± 0.312, 3.50 ± 0.312, 4.35 ± 0.366 

and 3.53 ± 0.337, respectively.  
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Figure 3.5: Mean water-soluble phosphorus concentration (mg kg-1) of soil harvested 28 (grey 

bars) and 56 (white bars) days after fertilisation. Treatments are described in Table 3.1. The mean 

value of bars sharing the same letter are not statistically significantly different (p > 0.05). Absolute 

values for pairwise comparisons are presented in Table 3.10. n = 7. 
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Table 3.10: Pairwise comparisons between treatments for water-soluble phosphorus 

concentration (mg kg-1) in soil. p-values received a Bonferroni adjustment. Statistically significant 

differences between treatments are highlighted in bold. Treatments are described in Table 3.1. 

Treatment  Mean 

difference 

Standard error 

of the mean 

p-value 

N only control  Inorganic - 1.23 0.441 0.047 

 Combined - 2.08 0.481 0.001 

 Organic - 1.27 0.459 0.051 

Inorganic Combined - 0.852 0.500 0.500 

 Organic - 0.034 0.459 1.000 

Combined Organic 0.818 0.498 0.644 

  

3.3.8 Available N 

The effect of harvest and treatment on the concentration of ammonium-N (NH4-

N), nitrate-N (NO3-N) and total available N (NH4-N + NO3-N + nitrite-N (NO2-N)) 

was determined by two-way ANOVA (Table 3.11). In order to meet the 

assumptions of the two-way ANOVA, a square root transformation was applied 

to NO3-N and total available N data. Based on the inspection of a boxplot there 

was one outlier in the NH4-N data (studentised residual, 6.14) and another in the 

NO3-N data (studentised residual, 3.93) which were removed from the analysis. 

The interaction effect was not statistically significant for NH4-N, NO3-N or total 

available N (Table 3.11). Therefore analysis of main effects for treatment and 

harvest was conducted with pairwise comparisons receiving a Bonferroni 

correction. Means are presented as marginal means ± one standard error of the 

mean.  

There was a statistically significant effect of treatment on the concentration of 

NO3-N, NH4-N and total available N in soil (Table 3.11). However, the results of 

pairwise comparisons show that only NH4-N concentration is statistically 

significantly different between treatments (Table 3.12). The concentration of NH4-



105 
 

 

  

N in soil decreased in the order organic, inorganic, combined, N only control 

(Table 3.12). There was no statistically significant difference in the concentration 

of NH4-N between treatments fertilised with P. However the concentration of NH4-

N was statistically significantly lower in the N only control than the inorganic and 

organic treatment (p = 0.035 and p = 0.028, respectively).  

The concentration of NO3-N and total available N was statistically significantly 

higher at harvest one (1.92 ± 0.0690 and 2.14 ± 0.070, respectively) than harvest 

two (1.68 ± 0.0650 and 1.92 ± 0.0660, respectively) (p = 0.014 and p = 0.029, 

respectively). There was no statistically significant difference in NH4-N 

concentration between harvest one (0.802 ± 0.028) and harvest two (0.727 ± 

0.026) (p = 0.058).
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Table 3.11: The effect of treatment, harvest and their interaction on available nitrogen (N) concentration in soil. Data was analysed by two-way ANOVA. Abbreviations: 

NO3-N, nitrate-N; NH4-N, ammonium-N. Total available N is the sum of nitrate-N, ammonium-N and nitrite-N. Statistically significant effects (p < 0.05) are highlighted 

in bold. Treatments are described in Table 3.1. Pairwise comparisons are presented in Table 3.12. n = 7. 

N compound  Effect Degrees freedom F p-value ɳ2 

 Interaction 3,42 1.03 0.390 0.068 

NO3-N Harvest 1,42 6.58 0.014 0.135 

 Treatment 3,42 3.45 0.025 0.197 

 Interaction 3,42 1.31 0.284 0.085 

NH4-N Harvest 1,42 3.81 0.058 0.083 

 Treatment 3,42 3.92 0.015 0.219 

 Interaction 3,42 1.32 0.281 0.086 

Total available N Harvest 1,42 5.12 0.029 0.109 

 Treatment 3,42 3.47 0.024 0.198 

 

  



 

 

  

 1
0

7
 

 

Table 3.12: Pairwise comparisons between treatments for nitrate-N (NO3-N), ammonium-N (NH4-N) and total available N (the sum of NO3-N, NH4-N and nitrite-N 

concentration) concentration (mg kg-1) in soil. Means are non-transformed values for harvest one and two, which took place 28 and 56 days after fertilisation, 

respectively. Marginal means are presented for the purpose of multiple comparisons. The values for NO3-N and total available N are marginal means ± one standard 

error of the mean for square root transformed data. The values presented for NH4-N are marginal means ± one SEM for untransformed data. p-values for multiple 

comparisons received a Bonferroni adjustment. Treatments are described in Table 3.1. n = 7. 

Treatment Harvest NO3-Nc NH4-N Total available Nc 

 One 3.47 ± 0.379 0.730 ± 0.040 4.25 ± 0.415 

N only control Two 1.99 ± 0.075 0.607 ± 0.020 2.64 ± 0.080 

 Marginal mean 1.63 ± 0.092 0.662 ± 0.035a 1.83 ± 0.093 

 One 3.45 ± 0.486 0.885 ± 0.045 4.40 ± 0.501 

Inorganic Two 2.46 ± 0.563 0.732 ± 0.046 3.25 ±  0.598 

 Marginal mean 1.67 ± 0.088 0.808 ± 0.035b 1.92 ± 0.089 

 One 3.90 ± 0.576 0.745 ± 0.070 4.69 ± 0.550 

Combined Two 4.14 ± 0.622 1.14 ± 0.357 5.36 ± 0.916 

 Marginal mean 1.98 ± 0.103 0.769 ± 0.043ab 2.21 ± 0.104 

 One 4.28 ± 0.377 0.847 ± 0.086 5.19 ± 0.422 

Organic Two 4.23 ± 0.563 0.790 ± 0.042 4.23 ± 0.598 

 Marginal mean 1.93 ± 0.095 0.818 ± 0.038b  2.15 ± 0.096 

c Results of pairwise comparisons showed no statistically significant difference in the concentration of NO3-N and total available N in soil   between treatments, despite 

the overall effect of treatment being statistically significant (NO3-N, p = 0.025; total available N, p = 0.024).
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3.3.9 Soil pH 

A two-way ANVOA was conducted to determine the effect of fertiliser treatment 

and harvest on soil pH (Figure 3.6). There was homogeneity of variances (p > 

0.05) but the assumption of normality was violated in two groups (p < 0.05, right-

skewed). Inspection of a boxplot showed one outlier each in two cells of the 

design. Outliers were included in the analysis as there was no evidence to 

suggest they were caused by data entry or measurement error; their inclusion 

had no effect on the main conclusions that could be drawn from the test. Test 

assumptions could not be met by a log10 transformation of the data. A GLM with 

gamma probability distribution and log link function was generated. Pairwise 

comparisons were Bonferroni corrected.  
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Figure 3.6: Mean pH of soil harvested 28 (grey bars) and 56 (white bars) days after fertilisation. 

Treatments are described in Table 3.1. Error bars are ± one standard error of the mean. The 

mean value of bars sharing the same letter are not statistically significantly different (p > 0.05). 

Absolute values for pairwise comparisons are presented in Table 3.13. n = 7. 

There was a statistically significant association between treatment and pH of the 

upper soil profile, χ2
(3) = 22.7, p < 0.001. There was no statistically significant 

association between harvest and pH of the upper soil profile, χ2
(1) = 2.48, p = 

0.115 and no statistically significant interaction between treatment and harvest, 

χ2
(3) = 6.01, p = 0.111. Soil in the organic treatment was statistically significantly 

more alkaline than the N only control, inorganic and combined treatments (Table 

3.13). There was no statistically significant difference between the pH of other 

treatments. 
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Table 3.13: Pairwise comparisons between treatments for soil pH. p-values were Bonferroni-

adjusted within each simple main effect. Results were obtained from a test of simple main effects 

with Bonferroni adjustment. Statistically significant differences between treatments are 

highlighted in bold. Treatments are described in Table 3.1. n = 7. 

 Treatment  Mean difference Standard error of 

mean 

p-value 

N only 

control  

Inorganic 0.0859 0.0531 0.592 

Combined - 0.0147 0.0568 1.000 

 Organic - 0.172 0.0550 0.010 

Inorganic Combined - 0.101 0.0568 0.458 

 Organic - 0.258 0.0549 <0.001 

Combined Organic - 0.157 0.0594 0.049 

3.4 Discussion 

Contrary to this study’s hypothesis the concentration of Olsen’s P was similar 

between P-fertilised treatments. This finding challenges the results of other 

studies (Garg & Bahl, 2008; Halajnia et al., 2009; Mao et al., 2015; Reddy et al., 

2005; Toor & Bahl, 1997) which report higher concentrations of soil labile P when 

fertiliser sources are combined, compared to the application of inorganic P only. 

However, in many of these studies the amount of P added in combined 

treatments far exceeds that applied in the inorganic comparison (Garg & Bahl, 

2008; Halajnia et al., 2009; Mao et al., 2015; Toor & Bahl, 1997). When P 

application rates are matched, both higher (Ahmed et al., 2019; Reddy et al., 

2005; Xin et al., 2017) and similar concentrations of available P have been 

reported in combined compared to inorganic treatments (Zhao et al., 2016). The 

results suggest that in this system P sorption/desorption reactions are not 

affected by the combination of organic and inorganic fertilisers, providing support 

for the argument made by Guppy et al., (2005a) that increases in labile P reported 

in previous studies are due to unaccounted P in organic amendments.  
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The concentration of Olsen’s P and water-soluble P in soil have been shown to 

be correlated with P losses in leachate and runoff (Leinweber et al., 1999; Pote 

et al., 1996; Schoumans & Groenendijk, 2000). No evidence is presented for 

reduced leaching losses when the inorganic nutrient supply is substituted with pig 

slurry. Indeed the highest concentration of Olsen’s P was recorded in the 

combined treatment at harvest one when the value exceeded 60 mg P kg-1
,
 a 

“turning point” above which total dissolved phosphorus levels in leachate 

increase considerably (Glæsner et al., 2013; Heckrath et al., 1995). P fertilisation 

also increased the concentration of water-soluble P in soil, with the highest 

concentration reported in the combined treatment. The data suggests that 

combining organic and inorganic fertilisers could increase the risk of phosphorus 

leaching, but this needs to be verified in a soil with a low P status and through 

quantification in leachate rather than soil.  

In the present study, substituting 100% of the N and P budget with pig slurry 

resulted in statistically significantly lower wheat aboveground dry weight 28 days 

after fertilisation compared to the N only control. At the same time point, there 

was no statistically significant difference in aboveground dry weight between the 

combined, inorganic or N only control. By harvest two (56 days after fertilisation) 

mean aboveground dry weight of plants from treatments receiving pig slurry, 

alone or in combination with inorganic fertiliser, was significantly lower than the 

inorganic and N only control. This agrees with long-term studies which report 

lower maize yields compared to inorganic controls in treatments where PS is 

included as a substitute for chemical fertilisers (Gong et al., 2009) or provides all 

of the crop’s N (Gong et al., 2009; Li, 2013; Martínez et al., 2017). The results 

also support long-term field studies using a range of organic amendments, that 

show lower yields in crops fertilised with organic and inorganic fertilisers, 
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compared to those receiving only inorganic fertilisers (Dawe et al., 2003; Gong et 

al., 2009; Xie et al., 2016; Xin et al., 2017; Yadav et al., 2000). 

The reduced yields reported here are unlikely to be due to differences in P 

phytoavailability as the baseline concentration of soil available P was high and 

was slightly increased in the combined compared to the inorganic treatment. 

Trends may instead be explained by differences in N availability and form. 

Previous studies investigating the effect of pig slurry on yield have reported N 

availability as a limiting factor (Li, 2013; Martínez et al., 2017). The results show 

no statistically significant difference in the concentration of soil-available N 

between treatments, suggesting that N availability is not affecting aboveground 

dry weight.  

Although differences in N availability are not evident in the soil, plants in the 

combined and organic treatment displayed some symptoms which suggest N 

limitation or toxicity. High root-to-shoot ratio is a sign of low N in soil (Bahrman et 

al., 2005; Grechi et al., 2007) and increased with the proportion of N supplied by 

pig slurry. The form of N added may also have been affecting productivity 

especially in the organic treatment. The majority of nitrogen added with pig slurry 

is in the form of NH4-N which is toxic to wheat (Cox & Reisenauer, 1973; Setién 

et al., 2013; Wang et al., 2016). Symptoms of NH4-N toxicity include reduced 

shoot and root biomass (Guo et al., 2019; Setién et al., 2013; Wang et al., 2016) 

and high P concentrations in plant tissue (Britto & Kronzucker, 2002; Cox & 

Reisenauer, 1973; Kirkby & Mengel, 2008; Van Beusichem et al., 2008). By the 

end of the experiment, root biomass was on average 14.4% lower in the organic 

compared to the inorganic treatment and 20.3% lower in the organic compared 

to the N only control. High levels of NH4-N at harvest two could explain the slightly 

suppressed root growth recorded in the combined treatment, although 
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suppression was less severe than in the organic treatment. The concentration of 

P in wheat tissue was also higher in treatments receiving pig slurry, compared to 

the inorganic treatment. Although inconclusive, the results suggest a possible 

role of NH4-N in determining dry weight when pig slurry is used as an organic 

amendment.  

Symptoms of NH4-N toxicity were less severe for the combined treatment, in 

terms of root and shoot biomass and PO4-P accumulation in tissue. While soil 

NO3-N and NH4-N concentration decreased between harvests in the inorganic 

and organic treatment, the opposite pattern was observed in the combined 

treatment. This suggests N may have been immobilised in the combined 

treatment before being re-mineralised later in the growing cycle. It is possible that 

asynchrony between plant uptake and soil demand reduced aboveground dry 

weight in the combined treatment. Such immobilisation/remineralisation patterns 

have been reported in other studies investigating the effect of combined fertiliser 

applications on productivity and N cycling (Gentile et al., 2013, 2009). Although 

the experiment was terminated before grain development it is possible that higher 

levels of N, especially NO3-N, during anthesis could improve grain protein content 

(Bogard et al., 2010; Taulemesse et al., 2016) and therefore quality (Branlard et 

al., 2001; Shewry, 2007). This mechanism could counteract the cost of reduced 

aboveground dry weight at the end of stem elongation in the combined treatment.  

A limitation of this study is unequal potassium (K) application rates between 

treatments. The soil used here has a potassium index of 2-, which is the target 

index for arable rotations (AHDB, 2020). At this level, potassium should be added 

to maintain the target index only (AHDB, 2020). For winter wheat, the 

recommended application rate is 45 kg K2O ha-1 and this addition can be made 

at any time of year (AHDB, 2020). It is unlikely that productivity was suppressed 
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by potassium limitation in the organic and combined treatment which received 

potassium at a rate of 160 and 80 kg K2O ha-1 respectively. Conversely, it is 

possible that productivity of plants in the inorganic treatment could have been 

enhanced by the incorporation of K. The effect of this would be an increased 

performance gap between treatments. Overall this is unlikely because yield 

responses are only expected below the soil target index (AHDB, 2020). 

3.5 Conclusions 

In this study, there was no statistically significant difference in Olsen’s or water-

soluble P concentration between treatments receiving inorganic or combined 

fertiliser applications. The data provides no support for the integration of organic 

and inorganic fertilisers as a strategy to reduce P leaching losses from soil and 

suggests that this practice could compromise wheat yields in the short term. More 

work is required to determine the effect of organic substitution on grain yield and 

P dynamics on soils with low starting P status and with different organic 

amendments.   
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Chapter 4 Nutrient cycling and leaching losses following 

integrated organic-inorganic fertilisation on a soil with a low P 

status 

4.1 Introduction 

There is growing interest in the use of organic fertilisers to support yields. In 

China, partial substitution of the total nutrient budget with organic fertilisers has 

been promoted as a method to reduce extreme levels of aquatic and atmospheric 

pollution experienced in the country (Shuqin & Fang, 2018). On the other hand, 

farmers in sub-Saharan Africa (SSA) are encouraged to combine the use of 

organic and inorganic fertilisers to overcome the limited supply of both resources 

in the region and enhance yield (Gentile et al., 2009). Combining or substituting 

organic and inorganic fertilisers has clear benefits in terms of reducing farmers’ 

reliance on fertilisers derived from non-renewable resources and overcoming 

supply issues. 

The use of organic fertilisers provides additional benefits when the amendment 

is derived from human waste. A number of technologies have been developed 

that recover nutrients from human waste water in a form which can be used as 

fertiliser (Desmidt et al., 2015) including anaerobic digestion (AD). AD is the 

microbial breakdown of organic waste into methane and digestate, a biofertiliser 

permitted for use in UK agriculture. Introducing digestate derived from waste 

water management into farm nutrient budgets represents a step towards closed-

loop nutrient cycling and diverts nutrients away from waterbodies where they 

contribute to eutrophication.  
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Digestate can be divided into two fractions: the liquid fraction and the solid 

fraction which is referred to as digested cake (DC). DC can be applied directly as 

fertiliser (Drosg et al., 2015) but presents issues for farmers because of the 

typically low nitrogen-to-phosphorus ratio of these products (Vanden Nest et al., 

2015). Given the high concentrations of phosphorus (P) in DC, farmers may over 

apply P when calculating fertiliser application rates based on nitrogen (N) content. 

Excessive P application rates are an issue in experiments comparing the fertiliser 

value of digestate with other organic amendments, where higher concentrations 

of soil available P may be explained by unequal P application rates between 

treatments applied according to N concentration (Elliott et al., 2005; Esteller et 

al., 2009; Galvez et al., 2012; Haraldsen et al., 2011).  

Studies comparing the ability of different fertiliser sources to increase soil 

available P concentration have been conducted with treatments providing equal 

P application rates. Results show that digestate can increase P phytoavailability 

compared to alternative biofertilisers (Vanden Nest et al., 2015). Other studies 

report statistically insignificant differences in P phytoavailability between soils 

amended with AD products compared with a range of organic inputs  (Möller & 

Stinner, 2010; Vaneeckhaute et al., 2016). Studies applying bio- and inorganic 

fertilisers at equal P rates have reported lower (Loria & Sawyer, 2005; 

Vaneeckhaute et al., 2016), higher (Alburquerque et al., 2012) and similar 

(Bachmann et al., 2011; Losak et al., 2014; Sigurnjak et al., 2016; Vanden Nest 

et al., 2015; Vaneeckhaute et al., 2016) concentrations of available P in soil 

fertilised with digestate compared to soils fertilised with chemical P, although the 

degree of difference changes over time (Alburquerque et al., 2012; 

Vaneeckhaute et al., 2016) and with P application rate (Loria & Sawyer, 2005). 

Higher concentrations of P in leachate or soil solution have been reported when 
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soils have been amended with digestate compared to triple superphosphate 

(TSP) (Vanden Nest et al., 2015; Vaneeckhaute et al., 2016). In contrast, Elliott 

et al. (2002) reported lower leaching losses, P phytoavailability and P uptake into 

Bahiagrass when soils were fertilised with a range of AD products compared with 

inorganic P, although the decrease in P phytoavailability and uptake did not result 

in lower yields (O’Connor et al., 2004). Low P phytoavailability and leaching 

losses from AD products compared to inorganic P fertilisers has been reported 

elsewhere and may be explained by the use of Fe and Al in the waste water 

treatment process (Alleoni et al., 2008; Brandt et al., 2004; Elliott et al., 2005). 

Yang et al. (2008) showed that the effect of iron (Fe) and aluminium (Al) on P 

binding can be strong enough to reduce P leaching losses from soils amended 

with AD plus inorganic P compared to inorganic P only, even though the total P 

application rate was higher in the combined treatment (Yang et al., 2008).  

Incorporating raw animal waste into nutrient budgets is a viable fertilisation 

strategy for farms without waste treatment facilities or access to AD products. As 

well as providing nutrients to crop, spreading manure or slurry onto land can save 

farmers money in disposal costs and help to close farm nutrient cycles. In the 

United Kingdom (UK), pigs are estimated to produce 12, 3 and 7 Kt of N, P and 

potassium (K) annually in slurry, making pig slurry a valuable source of nutrients 

for UK agriculture (ADAS, 2008). Pig slurry has been shown to successfully 

increase total and phytoavailable P compared to soils not receiving fertiliser, with 

greater effects at higher application rates (Chikuvire et al., 2019; Hountin et al., 

1997). As with digested cake, repeated applications of pig slurry based on N 

content can lead to significant increases in soil test P while applications made 

based on P can have no effect (Karimi et al., 2018). Application of pig slurry can 

increase the concentration of soluble reactive phosphorus (SRP) in leachate 
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although the response has been shown to vary depending on soil fertiliser history 

(Liu et al., 2012). Studies comparing leachate and runoff P losses in mineral- and 

pig slurry-amended soils suggest similar losses between treatments in terms of 

concentration and load (Aronsson et al., 2014; Kleinman et al., 2010; 

Kumaragamage et al., 2012). 

Non-P nutrients in organic amendments can have a significant effect on the 

phytoavailability of phosphorus in soil. It has been suggested that high levels of 

exchangeable calcium in fresh manures and sewage sludge result in the 

formation of calcium phosphate precipitates with low phytoavailability (Bachmann 

et al., 2016; de Conti et al., 2015; Siddique & Robinson, 2003). As previously 

mentioned, high levels of iron and aluminium in biosolids have been shown to 

“stabilise” phosphorus and reduce estimated P leaching risk due to an increase 

in P sorption capacity (Withers et al., 2016). Similarly, adding aluminium chloride 

to pig slurry can reduce the concentration of soluble reactive phosphorus in slurry 

by 73% and in leachate by 53%, compared to untreated slurry (Smith et al., 2004). 

The addition of liquid ferric chloride (FeCl3) can also reduce P losses from soils 

amended with pig slurry (O’ Flynn et al., 2013). As well as intentional manipulation 

through the addition of P binding minerals, the composition of pig slurry can be 

affected by the animal’s diet as minerals can pass through the animal undigested. 

For example, pig diets may be supplemented with iron to enhance growth and 

performance (Li et al., 2018) which could act to stabilise P in waste materials 

(Moreno-Caselles et al., 2005). This demonstrates that factors other than organic 

matter derivatives, especially iron, aluminium and calcium, can affect phosphorus 

phytoavailability after the addition of both pig slurry and digested cake. 

Although digestate and pig slurry have both been shown to increase soil available 

P concentration, it is unlikely that either input will provide balanced nutrition when 
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applied alone. In conventional cropping systems, farmers may need to supply 

inorganic fertilisers with the organic amendment to provide the full complement 

of plant nutrients without exceeding permissible levels of N. When applied alone, 

organic fertilisers have been shown to increase P phytoavailability (Gong et al., 

2009; Jiao et al., 2007; Pizzeghello et al., 2011; Song et al., 2017; Yan et al., 

2018) and leaching losses (Esteller et al., 2009; Kang et al., 2011; Kleinman et 

al., 2010; Laboski & Lamb, 2004; McDowell & Sharpley, 2004; Svanbäck et al., 

2013; Vanden Nest et al., 2016, 2014) compared to the application of inorganic 

P fertilisers. Data suggests that combining the use of inorganic inputs with organic 

alternatives can increase phytoavailable P, crop P uptake and P leaching 

compared to the sole application of either fertiliser type (Ahmed et al., 2019; Garg 

& Bahl, 2008; Halajnia et al., 2009; Leinweber et al., 1999; Mao et al., 2015; 

Reddy et al., 2005; Toor & Bahl, 1997; Xin et al., 2017). However, our 

understanding of the mechanisms and timings of increases in P phytoavailability 

and losses is limited by unbalanced fertiliser application rates between 

treatments (Garg & Bahl, 2008; Halajnia et al., 2009; Leinweber et al., 1999; Mao 

et al., 2015; Mokolobate & Haynes, 2003; Toor & Bahl, 1997; Zhang et al., 2011), 

incubation style experiments which omit important components of the soil-plant-

fertiliser system (Bolan et al., 1994; Delgado et al., 2002; Halajnia et al., 2009; 

Reddy et al., 2005; Toor & Bahl, 1997) and long-term studies which report results 

at a single time point after years to decades of manipulation (Ahmed et al., 2019; 

Hu et al., 2018; Xin et al., 2017). Studies on the short-term effects of combined 

fertiliser applications are required: (i) to elucidate the time-scale over which 

increases in P phytoavailability occur; (ii) to determine whether any increases that 

do occur coincide with crop demand; and (iii) to better understand the 
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environmental consequences of transitioning to systems which incorporate bio-

based fertilisers.   

The aim of this study was to determine how partial substitution of inorganic 

fertilisers with digested cake or pig slurry affects the concentration of Olsen’s P 

(POlsen’s), water-soluble P (Pwater), organic P (Porganic), ammonium-N (NH4-N) and 

nitrate-N (NO3-N) in soil and SRP, NH4-N and NO3-N in leachate, compared to 

the sole application of inorganic fertilisers on a soil with a low starting P status 

over one crop cycle. This study tested the hypothesis that the concentration of 

available P in soil is affected by substitution of inorganic fertilisers with organic 

alternatives. It was predicted that the combination of organic and inorganic 

fertilisers would result in the greatest increase in POlsen’s and Pwater, but that this 

effect would be greater for pig slurry than for digested cake. Accordingly, the 

concentration of SRP in leachate would decline in the order pig slurry substitution, 

digested cake substitution, inorganic only. The hypotheses were tested in a 

greenhouse study using intact soil cores sown with the most popular variety of 

winter wheat (Triticum aestivum L., cv ‘Skyfall’) amongst farmers in the UK 

(RAGT, 2017).   
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4.2 Materials and Methods 

4.2.1 Core collection and preparation 

Cores were collected from an arable field at Leeds University Farm, Spen 

Common Lane, Tadcaster, LS24 9NS, UK in October 2018. The soil is a well-

drained, loamy, calcareous brown earth from the Aberford series of Calcric 

Endoleptic Cambisols (Cranfield University, 2018). A 10 m x 12 m grid was 

established for collection of cores, as described in the general methods chapter 

(2.3.1). Baseline sampling was conducted one week prior to the collection of 

experimental cores to determine soil nutrient status. Cores were extracted from 

ten randomly selected locations within the sampling area using a soil auger. At 

each location, one sample was collected from 5 - 10 cm and 15 - 20 cm depth. 

Samples from both depths were pooled to give one sample per location before 

being dried at 40oC and ground to 2 mm using a mechanical grinder (Humbolt H-

4199). These samples were analysed for POlsen’s concentration (general methods, 

2.8.4) to calculate fertiliser application rates based on British Fertiliser 

Regulations (Defra, 2010).  

Cores for experimental manipulation were collected on 22 and 24 October 2018 

from the same grid used for baseline sampling. Cores were collected to 25 cm 

depth in 10.4 x 28.0 cm (internal diameter x height) polyvinyl chloride (PVC) 

pipes. Three cores from each sampling day were sacrificed to estimate the 

volume of water in cores. Water-filled pore space (WFPS) of each core was 

calculated with this information (general methods, 2.3.3.1)  

4.2.2 Setup of greenhouse experiment 

Cores were stored at 4oC until 7 November when they were amended to 23.0 cm 

depth (general methods, 2.3.2).  Cores were moved to a temperature and light 
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controlled (20oC, 16-hour photoperiod) greenhouse on 14 November and allowed 

to dry to 60% WFPS which took up to one week. Cores were maintained at 60% 

WFPS by watering daily with deionised water until after stem elongation when 

cores were watered every other day. Each core was sown with two pre-

germinated seedlings of winter wheat Triticum aestivum L., ‘Skyfall’ (RAGT, 

2017). The second seedling to emerge in each pot was removed, leaving one 

plant per pot for experimental manipulation.  

The experiment adopted a completely randomised block design with nine 

treatments and nine replicates per treatment (Table 4.1). Main treatments were 

matched for readily available nitrogen (RAN, the sum of ammonium-N and nitrate-

N) and total phosphorus pentoxide (P2O5) with application rates of 200 kg ha-1 

and 60 kg ha-1, respectively. Treatments were designed to test the individual and 

combined effect of adding P from different sources on P dynamics and leaching 

losses and consisted of: (i) a zero input control (zero); (ii) a half rate inorganic 

P2O5 treatment (half rate Pi); (ii) a full-rate inorganic P2O5 treatment (full rate Pi); 

(iv) a treatment receiving only inorganic N at the full rate (full rate Ni); (v) an 

inorganic control receiving inorganic P and inorganic N at the full rate (inorganic); 

(vi) a pig slurry substitution treatment, receiving pig slurry (PS) and inorganic P 

so that the total P application rate was 60 kg P2O5 ha-1 and the RAN application 

rate was 200 kg ha-1 (PS substitution); (vii)  a treatment receiving only pig slurry 

at a rate of 30 kg P2O5 ha-1 and 200 kg RAN ha-1 (PS only); (vii) a digested cake 

(DC) substitution treatment, receiving digested cake and inorganic P so that total 

P application rate was 60 kg P2O5 ha-1 and inorganic N so that the total RAN 

application rate was 200 kg ha-1 (DC substitution); and (ix) a treatment receiving 

only digested cake at a rate of 30 kg P2O5 ha-1 and inorganic N at a rate of 198 

kg RAN ha-1, so that the final RAN application rate was 200 kg ha-1 (DC only) 
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(Table 4.1).  Ammonium nitrate (NH4NO3) and monocalcium phosphate 

[Ca(H2PO4)2] supplied inorganic N and P, respectively. 
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Table 4.1: Fertiliser application rates for each treatment. Pig slurry (PS) and digested cake (DC) supplied organic nitrogen (N) and phosphorus (P). Inorganic 

phosphorus (Pi) and inorganic nitrogen (Ni) were supplied by monocalcium phosphate (Ca(H2PO4)2) and ammonium nitrate (NH4NO3), respectively. Totals are the 

sum of nutrients from all sources in a treatment. Values presented before a comma are mg pot-1. Values presented after a comma are kg ha-1. Readily available 

nitrogen (RAN) and phosphorus pentoxide (P2O5) supplied by organic and inorganic sources are termed organic RAN, inorganic RAN, organic P2O5 and inorganic 

P2O5, respectively.   

  Organic 

RAN 

Organic 

total N 

Inorganic 

RAN 

Total RAN Total N Organic 

P2O5 

Inorganic 

P2O5 

Total P2O5 

Treatment  Organic 

source 

mg pot-1, kg ha-1 

Zero input  - 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

Half rate Pi  - 0,0 0,0 0,0 0,0 0,0 0,0 25.5, 30.0 25.5, 30.0 

Full rate Pi - 0,0 0,0 0,0 0,0 0,0 0,0 51.0, 60.0 51.0, 60.0 

Full rate Ni - 0,0 0,0 170, 200 170, 200 170, 200 0,0 0,0 0,0 

Inorganic - 0,0 0,0 170, 200 170, 200 170, 200 0,0 51.0, 60.0 51.0, 60.0 

PS substitution PS 170, 200 213, 250 0,0 170, 200 212, 250 25.5, 30.0 25.5, 30.0 51.0, 60.0 

PS only PS 170, 200 213, 250 0,0 170, 200 212, 250 25.5, 30.0 0,0 25.5, 30.0 

DC substitution DC 1.88, 2.22  18.1, 21.2 168, 198 170, 200 186, 212 25.5, 30.0 25.5, 30.0 51.0, 60.0 

DC only DC 1.88, 2.22  18.1, 21.2 168, 198 170, 200 186, 212 25.5, 30.0 0,0 25.5, 30 
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4.2.3 Organic fertiliser collection and characterisation 

Pig slurry was collected from the slurry pit adjacent to a weaner-grower building 

housing 240 pigs at Leeds University Farm. The pigs were under commercial 

indoor management, including veterinary treatment and diet. Slurry was stirred 

with a large stick before collecting 10 L of slurry in a bucket. This sample was 

thoroughly stirred before being subdivided into 1 L portions. Subsamples were 

stored at four degrees Celsius for six months. The storage period was designed 

to imitate the closed period for fertiliser applications in the UK, when farmers must 

store their slurry over winter before the application window opens in late 

winter/Spring. After the storage period samples were frozen at -20oC until use.  

Digested cake was collected from Naburn Sewage Treatment Works, York, UK 

(Yorkshire Water). The digesters at Naburn receive municipal sewage sludge and 

treat it under mesophilic conditions (35oC) in single-step reactors (Sapp et al, 

2015; Barnes, 2018). 5 kg collected by an operative was thoroughly mixed and 

subdivided into 250 g portions. These samples were frozen at -20oC until use.   

Two subsamples of each product were removed from the freezer and analysed 

for chemical composition by NRM laboratories, Bracknell, Berkshire, RG42 6NS, 

UK (general methods, 2.11). The mean value of these two samples was used to 

calculate fertiliser application rates for each organic input (Table 4.2). 
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4.2.4 Fertiliser applications 

Fertiliser treatments were applied five weeks after sowing which coincided with 

the final stages of tillering. The surface of each core was disturbed to 2 cm with 

a palette knife before applying fertilisers to the surface. Organic and/or inorganic 

fertilisers allocated to each core were combined in a 100 ml pot with a lid. 

Deionised water was added to each pot so that the volume of water supplied with 

fertilisers was equal between treatments. Fertilisers were poured evenly across 

the soil surface, before rinsing each pot three times with deionised water to 

ensure all product was added.  

4.2.5 Soil sampling 

Cores were sampled at three points during the experiment: (i) one week before 

fertilisation, for baseline analysis; (ii) during stem elongation, four weeks after 

fertilisation; and (iii) during anthesis, 10 weeks after fertilisation. These time 

points are equal to four, nine and 15 weeks after sowing, respectively. Cores 

were sampled once to 20 cm depth at each sampling occasion using a mini-

auger. The hole left after removing the sample was filled with sand and capped 

to reduce movement of water through sand during watering. Samples were 

placed on ice after collection before being homogenised and portioned for drying 

at 40oC or freezing at -20oC.  

4.2.6 Soil analysis 

Soils were analysed for POlsen’s, Porganic, Pwater, and available N concentration 

(general methods, 2.8). 10% duplicate samples were included for each 

parameter. Briefly, POlsen’s concentration was extracted by shaking 2.5 g air-dried 

soil in 50 ml 0.5 M sodium hydrogen carbonate (NaHCO3) for one hour at 150 

rpm. Porganic was determined by shaking ignited (550oC) and air-dried samples in 
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0.5 M H2SO4 for 16 hours at 150 rpm (Kuo, 1996). Porganic was calculated as the 

difference between the concentration of P in ignited and air-dried samples. Pwater 

was extracted by shaking 2.5 g air-dried soil in 25 ml deionised water for five 

minutes, followed by centrifuging for 20 minutes at 3000 g (Olsen & Sommers, 

1982). Loss on ignition was calculated based on the difference in weight between 

air-dried and ignited (550oC, 12 hours) samples.  Available N (NO3-N and NH4-

N) was extracted by shaking 10 g field moist soil with 50 ml 1M KCl for 1 hour at 

150 rpm. Absorbance was measured spectrophotometrically using a Skalar San 

++ Autoanalyser (POlsen’s, available N) or plate reader (Pwater, organic P). pH was 

measured in a 1:2.5 soil:water solution after shaking at 150 rpm for 15 minutes 

(Rowell, 1994a; United States Environmental Protection Agency, 2004). 

4.2.7 Harvest and leachate collection 

Plants were harvested 24 weeks after sowing, equivalent to 19 weeks after 

fertilisation. Aboveground biomass was removed at the surface. Plants were 

separated into shoots and ears. Chaff was removed from grain by hand, and 

grains were counted and weighed before and after drying at 40oC for two days. 

Shoots were also weighed before and after drying at 40oC for two days. After 

drying, grain was processed into powder using a coffee grinder before analysis 

of total N and P concentration using the one-step method (general methods, 

2.9.1.3). 

Nutrient losses in leachate were determined by flooding cores to 100% WFPS 

and collecting leachate for one hour. Leachate was filtered (syringe filter, 0.45 

µm) before analysis of soluble reactive P and available N concentration by Skalar 

San++ continuous flow analyser (general methods, Table 2.4).  

4.2.8 Statistical analysis 
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Data was analysed by one-way and mixed two-way ANOVA using IBM SPSS 

Statistics 21. All assumptions were checked prior to analysis. Extreme outliers, 

deemed as points having studentised residuals of more than 3.00 or less than 

minus 3.00, were removed from the analysis. Tests for multiple comparisons 

received Bonferroni corrections. Generalised linear modelling via the GLMER 

function in the lme4 package in R studio was used where assumptions of the 

mixed two-way ANOVA were violated and could not be met by data 

transformation (Bates et al., 2015; R Core Team, 2018).  
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4.3 Results 

4.3.1 Summary 

  

Figure 4.1: Summary of main findings. Results are reported as percentage change between the 

mean baseline level and the mean concentration during stem elongation (SE) or anthesis (AN) 

sampling point. The exception is phosphorus (P) leaching which is reported as percentage change 

compared to the zero-input control. Only treatments receiving their full allocation of nitrogen and 

P plus the zero-input control are included here for ease of interpretation. n = 9.   

 

Main results are summarised in Figure 4.1. During stem elongation the effect of 

treatment on the concentration of Pwater (p = 0.025) and NO3-N (p < 0.001) in soil 

was statistically significant. During anthesis, there was a statistically significant 

effect of treatment on the concentration of Pwater (p = 0.022), POlsen’s (p < 0.001), 

NO3-N (p = 0.002) and NH4-N (p = 0.008) in soil. There was a statistically 
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significant effect of treatment on the concentration of soluble reactive P (p < 

0.001) and NH4-N (p < 0.001) in leachate, but not NO3-N concentration  (p = 

0.729) in leachate. The effect of sampling point was determined for each 

treatment by repeated measures analysis. For main treatments (inorganic, PS 

substitution, DC substitution), there was a statistically significant effect of time on 

the concentration of POlsen’s, NO3-N, and NH4-N in soil (p < 0.001 for all treatments 

and all nutrients). There was no statistically significant increase in Pwater 

concentration compared to the baseline for the DC substitution treatment (p = 

0.535), but the concentration of Pwater increased over time in the inorganic (p = 

0.043) and PS substitution (p = 0.002) treatments.  

4.3.2 Organics analysis 

Results of the analysis of organic fertilisers are presented in Table 4.2 as 

concentration and total amount of each nutrient applied. 
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Table 4.2: Chemical composition of organic fertilisers applied to winter wheat. Results are 

expressed as concentrations (mg g-1) on a fresh weight basis and as the total amount of each 

nutrient added (mg). The concentration of nitrate was below the level of detection for pig slurry 

and digested cake and was therefore assumed to be zero for the purpose of fertiliser calculations. 

Abbreviations: N, nitrogen; NH4-N, ammonium-N; NO3-N, nitrate-N; P, phosphorus; K, potassium; 

Mg, magnesium; S, sulphur; Cu, copper; Zn, zinc; Na, sodium; Ca, calcium; B, boron; C, carbon; 

LOI, loss on ignition. n = 2.   

 Pig slurry Digested cake 

Determinand Concentration ± 

s.d. (mg g-1) 

Total 

applied (mg) 

Concentration ± 

s.d. (mg g-1) 

Total 

applied (mg) 

pH 7.62 ± 0.0566  7.30 ± 0.0141  

Total N 3.00 ± 0.00 213 11.7 ± 0.251 18.1 

NH4-N 2.40 ± 0.0357 170 1.22 ± 0.00707 1.88 

NO3-N <0.01 / <0.1 / 

Total P                  

(P2O5) 

0.157 ± 0.00283           

(0.396 ± 0.00648) 

11.1                                       

(25.5) 

7.21 ± 0.228                    

(16.5 ± 0.523) 

11.1                        

(25.5) 

Total K                       

(K2O) 

1.98 ± 0.0141                 

(2.39 ± 0.0170) 

141                                 

(169) 

0.274 ± 0.0117             

(0.330 ± 0.0141) 

0.423                     

(0.510) 

Total Mg                   

(MgO) 

0.196 ± 0.000707         

(0.325 ± 0.00117) 

13.9                               

(23.1) 

0.825 ± 0.00852             

(1.37 ± 0.0141) 

1.28                             

(2.12) 

Total S                   

(SO3) 

0.196 ± 0.00106            

(0.489 ± 0.00265) 

13.9                                   

(34.6) 

2.73 ± 0.0707                 

(6.83 ± 0.177) 

4.22                         

(10.5) 

Total Cu 0.00161 ± 0.00 0.114 0.0600 ± 0.00 0.0927 

Total Zn 0.00548 ± 0.00 0.388 0.185 ± 0.00353 0.286 

Total Na                 

(Na2O) 

0.482 ± 0.00460             

(0.650 ± 0.00620) 

34.1                        

(46.1) 

0.152 ± 0.00262           

(0.205 ± 0.00354) 

0.235                    

(0.317) 

Total Ca 0.461 ± 0.00141 32.7 8.74 ± 0.156 13.5 

Total B 0.00113 ± 0.00 0.08 0.0233 ± 

0.000672 

0.0360 

Total C 11.9 ± 0.0707 844 325.5 ± 0.354 503 

Organic matter 

LOI 

11.3 ± 0.0354 797 604 ± 0.707 933 
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4.3.3 Olsen’s phosphorus 

There were four outliers with studentised residual values greater than ± 3.00 

which were removed from the analysis. Residuals were not normally distributed, 

as assessed by Normal Q-Q plot. This observation was supported by results of a 

Shapiro-Wilk’s test which showed the assumption of normality was violated in 

three cells of the design. Data were log10 transformed. Following the 

transformation there was one outlier with a studentised residual value of 3.00.  

Removing this outlier had no effect on the conclusions that could be drawn from 

the results of a two-way mixed ANOVA so it was included in the analysis. The 

assumption of sphericity was violated for the two-way interaction (Mauchly’s Test 

of Sphericity, χ2
(2) = 14.4, p = 0.001). The Greenhouse-Geisser correction (ε) was 

applied to overcome the violation of sphericity.  

There was a statistically significant interaction between fertiliser treatment and 

sampling point, F(13.3, 104) = 2.86, p = 0.001, ε = 0.266. Therefore, the effect of 

treatment at each time point was tested by one-way ANOVA (Table 4.3). The 

effect of time for each treatment was determined by one-way repeated measures 

ANOVA (Table 4.3). There was no statistically significant difference in the 

concentration of Olsen’s P (mg kg-1) between treatments before the application 

of fertilisers (F(8,63) = 0.653, p = 0.730, ɳ2 = 0.077) or during stem elongation (F(8,63) 

= 1.40, p = 0.217, ɳ2 = 0.150). By anthesis, there was a statistically significant 

effect of treatment on the concentration of Olsen’s P in soil (F(8,63) = 8.50, 

p<0.001, η2 = 0.519). Adding Pi alone led to an increase in Olsen’s P 

concentration at anthesis compared to the zero treatment, but the difference was 

only statistically significant for the full rate Pi treatment (p = 0.001) and not for the 

half rate Pi treatment (p = 0.784) (Table 4.3). Mean Olsen’s P concentration was 

lowest in the full rate Ni treatment. Adding Pi led to a statistically significant 
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increase in Olsen’s P concentration compared to the application of Ni only 

(inorganic treatment compared to full rate Ni treatment, p = 0.001). There was no 

statistically significant difference in the concentration of Olsen’s P between the 

inorganic treatment and substitution treatments (DC substitution, p = 1.00; PS 

substitution, p = 1.00). 

There was a statistically significant effect of time on POlsen’s for all treatments 

except the full rate Ni and DC only treatments (Table 4.3). Olsen’s P increased 

successively from the baseline condition to stem elongation to anthesis for the 

half rate Pi and PS substitution treatments. For the full rate Pi, inorganic, PS only 

and DC substitution treatments the greatest increase in POlsen’s was between the 

baseline and stem elongation sampling point and there was no statistically 

significant difference in POlsen’s between stem elongation and anthesis. 
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Table 4.3: Olsen’s phosphorus (POlsen’s) concentration (mg kg-1) and P index at anthesis in soils receiving different fertiliser treatments. Soils were sampled before 

fertiliser applications (baseline), during stem elongation and during anthesis. A Greenhouse-Geisser correction was applied when the assumption of sphericity was 

violated (p < 0.05). Values are untransformed means ± one standard error of the mean (SEM). Statistics at the end of rows are for the effect of time for each treatment 

(one-way repeated measures ANOVA). In a row, values followed by the same lowercase letter are not statistically significantly different (p > 0.05). Statistics at the 

bottom of columns are for the effect of treatment at each time point (one-way ANVOA). In a column, values sharing the same uppercase letter are not statistically 

significantly different (p > 0.05). Statistically significant values and differences are highlighted in bold. n = 9. Treatments are described in Table 4.1.

  Mean POlsen’s ± 1 SEM (mg kg-1) 

P index, 
anthesis 

     

Treatment Baseline Stem elongation Anthesis Sphericity 
assumed 

Degrees 
freedom 

F p ɳ2 

Zeroe 11.4 ± 1.16 14.9 ± 1.34 13.4 ± 0.931AB  1  2,10 4.88 0.033 0.494 

Half rate Pi 10.4 ± 0.836a 14.7 ± 0.722b 16.5 ± 0.494cBC 2  2,14 26.1 0.001 0.789 

Full rate Pi 11.2 ± 0.856a 17.4 ± 1.66b 20.3 ± 0.883bD
  2  2,16 32.3 <0.001 0.802 

Full rate Ni 11.1 ± 1.26 13.7 ± 0.984 12.1 ± 1.00A
  1  2,14 3.34 0.065 0.323 

Inorganic 12.9 ± 1.16a 17.5 ± 1.13b 17.8 ± 1.51bBCD  2  2,14 15.9 <0.001 0.694 

PS substitution 11.2 ± 0.764a 16.2 ± 0.990b 19.0 ± 0.947cCD  2  2,14 30.0 <0.001 0.810 

PS only 10.3 ± 0.750a 15.8 ± 1.63b 14.8 ± 1.03bABC  1  2,16 32.5 <0.001 0.802 

DC substitution  10.3 ± 0.817a 14.4 ± 1.13b 14.7 ± 0.824bABC  1  2,16 17.6 <0.001 0.687 

DC only 11.8 ± 1.25 14.6 ± 0.567 13.5 ± 0.653AB 1  2,12 4.96 0.059 0.453 

Degrees freedom 8,63 8,63 8,63      

F 0.653 1.39 8.50      

p 0.730 0.217 <0.001      

ɳ2 0.077 0.150 0.519      

e Pairwise comparisons showed no statistically significant difference in POlsen’s over time, despite the overall effect of time being statistically significant.
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4.3.4 Water-soluble phosphorus 

A mixed two-way ANOVA was conducted to determine the effect of treatment, 

harvest and their interaction on Pwater concentration (mg kg-1) in soil. There were 

five cases with studentised residuals greater than ± 3.00, which were removed 

from the analysis. Residuals were approximately normally distributed, determined 

by visual inspection of a Q-Q plot. There was homogeneity of variances (Levene’s 

test, p > 0.05), homogeneity of covariances (Box’s test, p > 0.05) and the 

assumption of sphericity was met for the two-way interaction (Mauchly’s test, χ2
(2) 

= 3.83, p = 0.147). 

The interaction effect between treatment and sampling point was statistically 

significant, F(16,126) = 2.43, p = 0.003, ɳ2 = 0.236. Therefore simple main effects 

were tested. The simple main effect of treatment at each time point was 

determined by one-way ANVOA. There was no statistically significant difference 

in Pwater concentration between treatments before the application of fertilisers, 

F(8,63) = 1.79, p = 0.096, ɳ2 = 0.185 (Table 4.4). By stem elongation, there was a 

statistically significant effect of treatment on Pwater concentration, F(8,63) = 2.40, p 

= 0.025, ɳ2 = 0.234, but pairwise comparisons showed no statistically significant 

difference between treatments (Table 4.4). The same pattern was observed at 

anthesis, F(8,63) = 2.47, p = 0.022, ɳ2 = 0.239. The simple main effect of time for 

each treatment was determined by one-way repeated measures ANOVA. The 

effect of time was statistically significant for each treatment except for the half 

rate Pi, full rate Ni, DC substitution and DC only treatment (Table 4.4). In 

treatments where the effect of sampling point was statistically significant, Pwater 

generally increased between the baseline and stem elongation sampling point 

with little change after stem elongation. The exception was the PS only treatment; 
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Pwater concentration increased between the baseline and stem elongation 

sampling point before returning to the baseline level during anthesis.  
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Table 4.4: Water-soluble phosphorus (Pwater) concentration (mg kg-1) in soils receiving different fertiliser treatments. Soils were sampled before fertiliser applications 

(baseline), during stem elongation and during anthesis. Repeated measures analysis was conducted by two-way mixed ANOVA on raw data. A Greenhouse-Geisser 

correction was applied when the assumption of sphericity was violated (p < 0.05). Values are means ± one standard error of the mean (SEM). Statistics at the end of 

rows are for the effect of time for each treatment. In a row, values followed by the same lowercase letter are not statistically significantly different (p > 0.05). Statistically 

significant values are highlighted in bold. Treatment details can be found in Table 4.1. n = 9. 

 Mean Pwater ± 1 SEM (mg kg-1)      

Treatment Baseline Stem elongation Anthesis Sphericity 

assumed? 

Degrees 

freedom 

F p ɳ2 

Zero 0.306 ± 0.054a 0.496 ± 0.064b 0.548 ± 0.033ab 
 2,8 7.52 0.015 0.653 

Half rate Pi 0.422 ± 0.044 0.568 ± 0.036 0.515 ± 0.037  2,14 2.06 0.164 0.227 

Full rate Pi 0.397 ± 0.027a 0.688 ± 0.070b 0.564 ± 0.035b 
 2,16 11.3 0.007 0.586 

Full rate Ni 0.466 ± 0.042 0.518 ± 0.030 0.498 ± 0.033  2,16 0.546 0.590 0.064 

Inorganic 0.498 ± 0.026a 0.640 ± 0.045b 0.584 ± 0.024b  2,14 5.60 0.043 0.444 

PS substitution 0.372 ± 0.059a 0.692 ± 0.069b 0.590 ± 0.024ab 
 2,16 9.83 0.002 0.551 

PS only 0.434 ± 0.026a 0.579 ± 0.039b 0.454 ± 0.032a 
 2,14 19.7 <0.001 0.738 

DC substitution  0.460 ± 0.050 0.522 ± 0.049 0.480 ± 0.026  2,16 0.650 0.535 0.075 

DC only 0.499 ± 0.036 0.499 ± 0.032 0.515 ± 0.028  2,12 0.093 0.911 0.015 

Degrees freedom 8,63 8,63 8,63      

F 1.79 2.40 2.47      

P 0.096 0.025c 0.022c      

ɳ2 0.236 0.234 0.239      

c Pairwise comparisons showed no statistically significant differences in Pwater between treatments despite the overall effect of treatment being statistically significant. 
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4.3.5 Organic phosphorus 

Data followed a gamma distribution, as determined by inspection of a histogram 

and the gamma_test function on R (p = 0.050). Data transformation was 

unsuccessful in achieving a normal distribution (Shapiro-Wilk’s, p < 0.05). A 

mixed effects model with a gamma distribution and log link function was 

generated to determine the effect of treatment, harvest and their interaction on 

organic P concentration in soil (mg kg-1), using the GLMER function in the lme4 

package of RStudio. Core ID was included as a random effect to account for 

repeated measures while treatment, harvest and their interaction were included 

as factors. There was no statistically significant interaction between treatment 

and harvest, χ2
(16)=25.5, p = 0.0613 (Table 4.5). There was no statistically 

significant effect of treatment on the concentration of organic P in soil, χ2
(8)=8.68, 

p = 0.370, but there was a statistically significant effect of time, χ2
(8)=26.1, p < 

0.001 (Table 4.5). p-values for multiple comparisons received a Bonferroni 

adjustment. Values are marginal means ± one standard error of the mean. The 

difference in organic P concentration between baseline sampling (156 ± 1.30 mg 

kg-1) and stem elongation (166 ± 3.03 mg kg-1, p = 0.845) was not statistically 

significant but the concentration of organic P in soil was statistically significantly 

higher during anthesis (171 ± 2.66 mg kg-1) compared to the baseline condition 

(p = 0.008). There were no other statistically significant comparisons.  
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Table 4.5: Organic P concentration (mg kg-1) in soils receiving different fertiliser treatments. Soils 

were sampled before fertiliser applications (baseline), during stem elongation and during 

anthesis. Repeated measures analysis was conducted in RStudio using the GLMER function in 

the lme4 package, with ID as a random factor and sampling time, treatment and their interaction 

as factors. The interaction effect between treatment and time was not statistically significant (p = 

0.0613) and the effect of treatment on organic P was not statistically significant (p = 0.370).The 

concentration of organic P was statistically significantly higher during anthesis than at the baseline 

sampling point (p = 0.008). There were no other statistically significant comparisons.  Data are 

mean ± one standard error of the mean (SEM). Treatment details can be found in Table 4.1. n = 

9. 

 Mean Porganic ± SEM (mg kg-1) 

Treatment Baseline Stem elongation Anthesis 

Zero 154 ± 1.85 178 ± 3.50 167 ± 6.08 

Half rate Pi 169 ± 5.33 166 ± 7.03 185 ± 11.2 

Full rate Pi 153 ± 3.93 178 ± 3.67 175 ± 6.93 

Full rate Ni 154 ± 2.89 152 ± 8.31 164 ± 6.64 

Inorganic 152 ± 2.75 161 ± 16.8 165 ± 7.50 

PS substitution 152 ± 4.27 161 ± 4.96 178 ± 6.39 

PS only 159 ± 3.52 175 ± 2.14 178 ± 3.90 

DC substitution  156 ± 1.46 154 ± 11.3 172 ± 5.71 

DC only 151 ± 4.61 173 ± 6.53 151 ± 13.3 

  

4.3.6 Soil available nitrogen  

A generalised linear mixed-effects model was run to test for the effect of treatment 

and harvest on NO3-N concentration in soil, using the glmer function in the R 

package lme4 (Bates et al., 2015), as assumptions of the two-way mixed ANOVA 

were violated and could not be met by data transformation. The model was run 

with a Gaussian distribution and log link function. Treatment, harvest and their 

interaction were included as factors. Core ID was included as a random factor. 

The two-way interaction effect between treatment and harvest was statistically 

significant, χ2
(16) = 447, p < 0.001. Simple main effects were tested for the effect 

of treatment at each sampling point using the glm function in the stats package 

in R (R Core Team, 2018) (Table 4.6). There was no statistically significant 
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difference in NO3-N concentration between treatments before the application of 

fertilisers (Χ2
(8) = 13.2, p = 0.105). There was a statistically significant effect of 

treatment on NO3-N concentration during stem elongation (Χ2
(8) = 58.0, p < 0.001) 

and anthesis (Χ2
(8) = 24.7, p = 0.002). Adding nitrogen fertilisers, regardless of 

form, increased NO3-N concentration during stem elongation compared to the 

zero input control, but this was only significant for the PS only, full rate Ni, DC 

substitution and DC only treatments (Table 4.6). By anthesis, NO3-N 

concentration was statistically significantly lower in the inorganic treatment than 

the zero-input control (p = 0.0114). There were no other statistically significant 

differences between treatments during anthesis. The simple main effect of 

sampling point for each treatment was tested using the glmer function in R but 

treatment was removed as a factor (Table 4.6). There was an increase in NO3-N 

concentration over time for all treatments except the full rate Pi treatment. In 

treatments receiving N from organic or inorganic sources, NO3-N concentration 

generally peaked at stem elongation before returning to baseline levels. For the 

zero input and half rate Pi treatment, NO3-N concentration peaked during 

anthesis.  

A mixed two-way ANOVA was run to determine the effect of treatment, harvest 

and their interaction on NH4-N concentration in soil. Data received a square root 

transformation in order to conform to test assumptions. Following transformation, 

data was normally distributed in every cell of the design (Shapiro-Wilk’s, p > 0.05), 

there was homogeneity of variances at each harvest (Levene’s test, p > 0.05) and 

homogeneity of covariances (Box’s test, p = 0.407). The assumption of sphericity 

was met for the two-way interaction (Mauchly’s test, χ2
(2) = 1.80, p = 0.407). The 

interaction effect was statistically significant, F(16,138) = 1.94, p = 0.021, ɳ2 = 0.184. 

A test of simple main effects showed the effect of treatment was only statistically 
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significant during anthesis (Table 4.7). The concentration of NH4-N was 

statistically significantly higher in the zero-input treatment than the inorganic (p = 

0.017) and PS substitution (p = 0.004) treatment. There were no other statistically 

significant comparisons.  The simple main effect of sampling point for each 

treatment was determined by one-way repeated measures ANOVA (Table 4.7). 

Except for the zero input and DC only treatment, NH4-N concentration was 

statistically significantly lower during anthesis compared to the baseline. The 

difference in NH4-N concentration between the baseline and stem elongation 

sampling point was not statistically significant for any treatment except the DC 

substitution treatment where NH4-N concentration at stem elongation increased 

significantly compared to the baseline.



 
 

 

  

 1
4

2
 

 

Table 4.6: Nitrate-N (NO3-N) concentration (mg kg-1) in soils receiving different fertiliser treatments. Soils were sampled before fertiliser applications (baseline), during 

stem elongation and during anthesis. Repeated measures analysis was run on RStudio using the GLMER function in the lme4 package. Values are means ± one 

standard error of the mean (SEM). Statistics at the end of rows are for the effect of time for each treatment. In a row, values followed by the same lowercase letter are 

not statistically significantly different (p > 0.05). Statistics at the bottom of columns are for the effect of treatment at each time point. In a column, values sharing the 

same uppercase letter are not statistically significantly different (p > 0.05). Statistically significant values are highlighted bold. Treatments are described in Table 4.1. 

n = 9. 

 Mean NO3-N ± 1 SEM (mg kg-1)    

Treatment Baseline Stem elongation Anthesis Χ2 Degrees 

freedom 

p 

Zero 2.12 ± 0.255a 2.91 ± 0.289abAB 3.49 ± 0.408bB 13.5 2 0.001 

Half rate Pi 2.02 ± 0.162a 2.19 ± 0.156aA 2.68 ± 0.331bAB 11.6 2 0.003 

Full rate Pi 2.43 ± 0.177 2.59 ± 0.300A 2.70 ± 0.384AB 1.40 2 0.497 

Full rate Ni 2.05 ± 0.228a 10.4 ± 2.20bC 1.82 ± 0.210aAB 73.1 2 <0.001 

Inorganic 2.31 ± 0.349a 5.29 ± 1.33bABC 1.47 ± 0.177cA 35.2 2 <0.001 

PS substitution 1.87 ± 0.227a 3.82 ± 0.447bABC 1.84 ± 0.234aAB 41.1 2 <0.001 

PS only 1.41 ± 0.181a 8.92 ± 1.61bC 2.35 ± 0.407aAB 48.9 2 <0.001 

DC substitution  1.99 ± 0.210a 8.27 ± 2.26bC 2.12 ± 0.350aAB 74.5 2 <0.001 

DC only 2.19 ± 0.403a 7.96 ± 3.07bBC 2.17 ± 0.266aAB 47.3 2 <0.001 

Χ2 13.2 58.0 24.7    

Degrees freedom 8 8 8    

p  0.105 <0.001 0.002    
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Table 4.7: Ammonium-N (NH4-N) concentration (mg kg-1) in soils receiving different fertiliser treatments. Soils were sampled before fertiliser applications (baseline), 

during stem elongation and during anthesis. Repeated measures analysis was run by mixed two-way ANOVA on square root transformed data. A Greenhouse-Geisser 

correction was applied when the assumption of sphericity was violated (p < 0.05). Statistics at the end of rows are for the effect of time for each treatment. In a row, 

values followed by the same lowercase letter are not statistically significantly different (p > 0.05). Statistics at the bottom of columns are for the effect of treatment at 

each time point. In a column, values followed by the same uppercase letter are not statistically significantly different (p > 0.05). Values are untransformed means ± 

one standard error of the mean (SEM). Statistically significant values are highlighted bold. Treatments are described in Table 4.1. n = 9. 

 Mean NH4-N ± 1 SEM (mg kg-1)      

Treatment Baseline Stem elongation Anthesis Sphericity 

assumed? 

F Degrees 

freedom 

p ɳ2 

Zero 0.722 ± 0.078 0.714 ± 0.060 0.611 ± 0.086B  0.906 2,16 0.424 0.102 

Half rate Pi 0.810 ± 0.075a 0.664 ± 0.040a 0.442 ± 0.039bAB  11.9 2,16 0.001 0.598 

Full rate Pi 0.591 ± 0.041a 0.766 ± 0.075ab 0.438 ± 0.041bAB  9.12 2,16 0.002 0.533 

Full rate Ni 0.759 ± 0.099a 0.887 ± 0.070a 0.404 ± 0.045bAB  12.2 2,16 0.001 0.604 

Inorganic 0.750 ± 0.079a 0.835 ± 0.062a 0.320 ± 0.031bA  22.7 2,14 <0.001 0.764 

PS substitution 0.640 ± 0.053a 0.780 ± 0.065a 0.314 ± 0.051bA  20.7 2,16 <0.001 0.721 

PS only 0.714 ± 0.081a 0.888 ± 0.074a 0.422 ± 0.069bAB  15.2 2,16 <0.001 0.655 

DC substitution  0.716 ± 0.059a 0.820 ± 0.042b 0.362 ± 0.035bAB  33.2 2,16 <0.001 0.806 

DC only 0.673 ± 0.117ab 0.869 ± 0.068b 0.353 ± 0.033aAB  11.1 2,12 0.002 0.650 

F 0.805 1.68 2.88      

Degrees freedom 8,69 8,69 8,69      

p  0.600 0.120 0.008      

ɳ2 0.085 0.163 0.250      
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4.3.7 Soil pH 

The effect of treatment, time and their interaction on soil pH was determined by 

mixed two-way ANOVA. There was one outlier with a studentised residual of 

minus 7.10 which was removed from the analysis. Residuals were normally 

distributed in each cell of the design (Shapiro-Wilk’s, p > 0.05), there was 

homogeneity of variances at each sampling point (Levene’s test, p > 0.05) and 

homogeneity of covariances (Box’s test, p = 0.970). The assumption of sphericity 

was met for the interaction between treatment and sampling point (Mauchly’s test 

of sphericity, Χ2
(2) = 0.053, p = 0.762). There was no statistically significant 

interaction between treatment and time on pH, F(16,118) = 0.980, p = 0.483, η2 = 

0.117. Marginal means are presented in Table 4.8. The main effect of time 

showed no statistically significant difference in mean pH at different time points 

F(2,118) = 2.87, p = 0.061, η2 = 0.046. The main effect of treatment showed that 

there was no statistically significant difference in pH between fertiliser treatments, 

F(1,59) = 1.05, p = 0.411, η2 = 0.124.  
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Table 4.8: pH in soils receiving different fertiliser treatment. Soils were sampled before fertiliser 

applications (baseline), during stem elongation and during anthesis. Repeated measures analysis 

was conducted by two-way mixed ANOVA on raw data. The interaction effect and main effect of 

treatment and time were not statistically significant (p = 0.482, p = 0.411 and p = 0.061, 

respectively). Values are means ± one standard error of the mean (SEM) or marginal means ± 

one SEM. Treatment details can be found in Table 4.1. n = 9. 

 Mean pH ± SEM  

Treatment Baseline Stem 

elongation 

Anthesis Marginal 

mean 

Zero 7.31 ± 0.0541 7.14 ± 0.0547 7.25 ± 0.0455 7.32 ± 0.038 

Half rate Pi 7.35 ± 0.0556 7.26 ± 0.0376 7.18 ± 0.0607 7.27 ± 0.038 

Full rate Pi 7.28 ± 0.788 7.19 ± 0.0580 7.27 ± 0.0718 7.23 ± 0.040 

Full rate Ni 7.09 ± 0.694 7.13 ± 0.0582 7.35 ± 0.0561 7.19 ± 0.035 

Inorganic 7.24 ± 0.111 7.23 ± 0.0499 7.32 ± 0.0396 7.25 ± 0.040 

PS substitution 7.39 ± 0.0811 7.20 ± 0.0793 7.34 ± 0.0458 7.32 ± 0.038 

PS only 7.26 ± 0.0473 7.24 ± 0.0731 7.35 ± 0.0688 7.28 ± 0.038 

DC substitution  7.29 ± 0.0589 7.19 ± 0.0582 7.30 ± 0.0507 7.26 ± 0.040 

DC only 7.16 ± 0.109 7.13 ± 0.0932 7.29 ± 0.0900 7.22 ± 0.043 

Marginal mean 7.26 ± 0.027 7.21 ± 0.023 7.29 ± 0.022  

 

4.3.8 Nutrient leaching losses 

Results of the leaching study conducted after harvest were analysed by one-way 

ANOVA or non-parametric alternatives. There was no statistically significant 

difference in the mean volume of leachate collected from each treatment, F(8,69) 

= 1.02, p = 0.429, η2 = 0.106, which was used to calculate nutrient loading. 

4.3.8.1 Soluble reactive phosphorus leaching losses 

The effect of treatment on the concentration of SRP in leachate (mg L-1) was 

determined by one-way ANOVA. One outlier with a studentised residual of 3.10 

was removed from the analysis. Data were square root transformed to achieve 

normality in each cell of the design (Shapiro-Wilk’s, p > 0.05). There was 
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homogeneity of variances following the transformation (Levene’s test, p = 0.282). 

There was a statistically significant effect of treatment on the concentration of 

SRP in leachate, F(8, 78) = 8.86, p < 0.001, ɳ2 = 0.507. p-values for multiple 

comparisons were Bonferroni-adjusted (Table 4.9). The mean SRP concentration 

in leachate was statistically significantly higher in the full rate Pi treatment 

compared to the inorganic treatment receiving inorganic P and inorganic N. 

Although the mean SRP concentration was higher in leachate from the inorganic 

treatment than the PS or DC substitution treatments, this difference was not 

statistically significant (p = 1.00 for both treatments) (Table 4.9).  

The effect of treatment on the total SRP load (mg) in leachate was determined 

by multiplying the concentration of SRP in leachate by the volume of leachate 

collected (Table 4.9). Residuals were positively skewed in two cells of the design 

(Shapiro-Wilk’s, p < 0.05) but the assumption of normality was met following 

square root transformation of the data. There was homogeneity of variances 

(Levene’s test, p = 0.566) and there were no cases with studentised residuals 

greater than 3.00. The effect of treatment on SRP load in leachate was 

statistically significant, F(8,79) = 4.87, p < 0.001, ɳ2 = 0.358. There was no 

statistically significant difference in SRP load between the zero-input control and 

the inorganic (p = 1.00), PS substitution (p = 0.555) or DC substitution (p = 1.00) 

treatment. Substituting inorganic P with PS or DC had no statistically significant 

effect on the total amount of SRP in leachate (inorganic compared to PS or DC 

substitution, p = 1.00 in both cases).  
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Table 4.9: Nutrient leaching losses from cores receiving different fertiliser treatments (Table 4.1).  

Statistically significant differences between treatments were tested on square root transformed 

data by Welch’s one-way ANOVA with Games-Howell post-hoc for ammonium-nitrogen (NH4-N) 

and soluble reactive phosphorus (SRP) concentration and load. The effect of treatment on nitrate-

N (NO3-N) concentration and load was determined by one-way ANOVA on log-transformed data. 

Untransformed means and standard errors are presented for NH4-N and SRP. Pairwise 

comparisons received a Bonferroni adjustment. In a column values followed by the same letter 

are not statistically significantly different (p > 0.05). n = 9. 

Treatment Volume     

(ml) 

NH4-N              

(mg L-1) 

NH4-N             

(mg) 

NO3-N                  

(mg L-1) 

NO3-N            

(mg) 

SRP           

(mg L-1) 

SRP          

(mg) 

Zero 76.5 ± 

11.1 

1.92 ± 

0.345c 

119 ± 

21.8c 

17.1 ± 

3.80ab 

1320 ± 

398 

0.170 ± 

0.016bcd 

12.6 ± 

1.62ab 

Half rate Pi 79.1 ± 

12.4 

0.510 ± 

0.103ab 

36.3 ± 

7.15ab 

16.4 ± 

2.82b 

1644 ± 

406 

0.238 ± 

0.035cd 

17.0 ± 

2.99ab 

Full rate Pi 81.9 ± 

7.42 

1.16 ± 

0.282b 

94.6 ± 

24.8bcd 

19.8 ± 

5.36b 

1280 ± 

397 

0.310 ± 

0.041d 

26.2 ± 

4.21b 

Full rate Ni 81.9 ± 

7.42 

0.447 ± 

0.107ab 

38.6 ± 

10.4ab 

5.80 ± 

2.27ab 

557 ± 

235 

0.112 ± 

0.019ab 

9.981 ± 

2.28a 

Inorganic 100 ± 

6.30 

0.386 ± 

0.073ab 

37.8 ± 

7.25abd 

4.54 ± 

2.13ab 

460 ± 

223 

0.144 ± 

0.024abc 

14.4 ± 

2.54ab 

PS 

substitution 

85.1 ± 

6.67 

0.205 ± 

0.034a 

16.6 ± 

2.52a 

14.3 ± 

4.37ab 

1110 ± 

313 

0.102 ± 

0.026ab 

9.39 ± 

3.01a 

PS only 82.8 ± 

7.42 

0.355 ± 

0.057ab 

29.7 ± 

5.97ab 

11.2 ± 

4.95ab 

935 ± 

434 

0.088 ± 

0.013a 

7.10 ± 

0.975a 

DC 

substitution  

102 ± 

7.90 

0.898 ± 

0.295ab 

64.2 ± 

14.0bcd 

4.40 ± 

1.64a 

434 ± 

167 

0.140 ± 

0.028abc 

13.3 ± 

1.97ab 

DC only 95.6 ± 

12.1 

0.305 ± 

0.099ab 

27.7 ± 

7.75ab 

6.80 ± 

2.13ab 

 

708 ± 

284 

0.067 ± 

0.018a 

7.91 ± 

1.85a 
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4.3.8.2 Ammonium-N leaching losses 

A one-way ANOVA was run to determine the effect of treatment on the 

concentration of NH4-N in leachate (mg L-1). There was one outlier with a 

studentised residual of 6.49 which was removed from the analysis. Residuals 

were not normality distributed in one cell of the design (Shapiro-Wilk’s, p = 0.002), 

so a square root transformation was applied. Following the transformation, the 

assumption of normality was met for every cell of the design (Shapiro-Wilk’s, p > 

0.05) but the assumption of homogeneity of variances was violated (Levene’s 

test, p = 0.007). Therefore, a Welch’s test with Games-Howell post-hoc test was 

conducted on square root transformed data to determine the effect of treatment 

on the concentration of NH4-N in leachate.  

There was a statistically significant effect of treatment on the concentration of 

NH4-N in leachate (Welch’s F(8, 27.1) = 7.76, p < 0.001). The concentration of NH4-

N in leachate was highest in the zero-input control and lowest from the PS 

substitution treatment (Table 4.9). The concentration of NH4-N in leachate was 

significantly lower in the PS substitution treatment than the full rate Pi (Games-

Howell, p = 0.024) and zero input (Games-Howell, p = 0.001) treatments. There 

were no statistically significant comparisons between other treatments.  

The concentration of NH4-N in leachate was multiplied by the volume of leachate 

collected to obtain the total amount of NH4-N lost from each core (mg). There 

were three outliers with studentised residuals greater than 3.00 which were 

removed from the analysis. The assumption of normality was violated in one cell 

of the design (Shapiro-Wilk’s, p = 0.043) but was met following square root 

transformation of the data. However homogeneity of variance’s was violated 

(Levene’s test, p = 0.031) so a Welch’s test with Games-Howell post-hoc test was 

conducted on square root transformed data. There was a statistically significant 
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effect of treatment on the total amount of NH4-N lost in leachate (Welch’s F(8, 26.1) 

= 6.80, p < 0.001). Total leaching losses of NH4-N (mg) were highest from the 

zero-input control (Table 4.9). Compared to treatments receiving their full 

allocation of available N and total P, NH4 (mg) leaching losses were significantly 

higher from the zero input control compared to the PS substitution (Games-

Howell, p = 0.005) and inorganic (Games-Howell, p = 0.047) treatments but there 

was no statistically significant difference between the zero and the DC 

substitution (Games-Howell, p = 0.506) treatment. Total NH4-N losses were 

statistically significantly higher from the DC substitution treatment compared to 

the PS substitution treatment (Games-Howell, p =0.048). 

4.3.8.3 Nitrate-N leaching losses 

The effect of treatment on the concentration of NO3-N (mg L-1) and load (mg) in 

leachate was determined by one-way ANOVA on log-transformed data. There 

were two outliers with studentised residuals greater than 3.00 which were 

removed from the analysis for each parameter. There was a statistically 

significant effect of treatment on the concentration of NO3-N in leachate (mg L-1), 

F(8,76) = 4.04, p = 0.001, ɳ2 = 0.325. The concentration of NO3-N was lowest in 

treatments that received inorganic N (Table 4.9) and highest in treatments that 

only received N from pig slurry or no N. The only statistically significant 

differences in NO3-N leachate concentration occurred between the DC 

substitution treatment and the half rate (p = 0.027) and full rate Pi treatments (p 

= 0.047). 

There was a statistically significant effect of treatment on the load of NO3-N in 

leachate (mg), F(8, 76) = 2.49, p = 0.020, ɳ2 = 0.229. As with NO3-N concentration, 

adding N as NH4NO3 reduced the amount of nitrate-N in leachate, but pairwise 
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comparisons showed no statistically significant difference between any 

combinations of treatments (p > 0.005).  

4.4 Discussion  

The primary aim of this study was to determine how substituting inorganic 

phosphorus fertilisers with two organic alternatives, pig slurry and digested cake, 

affects short-term soil P cycling in soil. The study tested the prediction that 

integrating fertiliser sources would result in a higher concentration of labile P in 

soil, measured as Olsen’s and water-soluble P, compared to application of 

inorganic fertilisers alone. Contrary to the study’s predictions, there was no 

statistically significant difference in Olsen’s P concentration between the 

inorganic treatment and either substitution treatment during stem elongation or 

during anthesis. These findings corroborate those of chapter three but are in 

disagreement with results of field trials sampled decades after initiation of 

fertilisation (Ahmed et al., 2019; Hu et al., 2018; Xin et al., 2017) which show 

increases in soil available P following combined fertiliser applications.  

Short-term studies suggest that the increase in Olsen’s P reported after combined 

fertiliser applications may not emerge immediately.  Zhao et al. (2016) reported 

a trend towards increasing available P concentration in a combined compared to 

an inorganic treatment after two years of application, but the difference between 

treatments was not statistically significant. Results of repeated measures 

analysis reported here suggest a similar trend to Zhao et al., (2016); although the 

difference in Olsen’s P concentration between treatments receiving their full 

allocation of N and P was not statistically significantly different, treatments 

differed in their ability to increase P phytoavailability over time. Olsen’s P 

concentration statistically significantly increased between each sampling point for 
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the pig slurry substitution treatment. By contrast, the only statistically significant 

increase in Olsen’s P concentration occurred between the baseline and stem 

elongation sampling for the digested cake substitution and inorganic treatment. 

These results suggest that the mechanisms leading to increased P 

phytoavailability under combined fertilisation may occur slowly through gradual 

accumulation of soil available P.  

The ability of treatments to increase Olsen’s P concentration in a season may 

influence the amount of P added with the next fertiliser application (Agriculture 

and Horticulture Development Board, 2017). It is therefore important to consider 

absolute values of Olsen’s P after the major period of P uptake. During anthesis, 

Olsen’s P concentration decreased in the order PS substitution, inorganic, DC 

substitution. Based on British fertiliser recommendations (RB209, AHDB, 2020) 

and assuming negligible losses between anthesis and soil sampling for the 

following season, the P application rate for the inorganic and PS substitution 

treatment would be lower than for the DC substitution treatment (AHDB, 2020). 

This is despite there being no statistically significant difference in Olsen’s P 

concentration between these treatments during anthesis. The results therefore 

suggest that it may be beneficial to sample soils receiving combined fertiliser 

applications more frequently than the three to five years suggested in RB209.  

More frequent sampling would ensure P is not over-applied to soils fertilised with 

treatments which are more effective at increasing Olsen’s P concentration.  

Differences in P cycling were expected between soils fertilised with pig slurry and 

digested cake, based on our current understanding of the effect of these 

amendments on the size of the labile P pool. The most noticeable difference 

between the pig slurry and digested cake treatments was the effect of adding 

inorganic P. Pig slurry increased the concentration of available P, whether it was 
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applied alone or in combination with inorganic P. In contrast, digested cake only 

increased Olsen’s P concentration when applied with inorganic P. This finding 

supports previous research which shows AD products are less effective at 

increasing soil available P than inorganic alternatives applied at the same rate 

(Alleoni et al., 2008; Brandt et al., 2004; Elliott et al., 2005, 2002) but suggests 

low P phytoavailability after the application of digested cake can be alleviated by 

the addition of inorganic P. This is unlikely to be due to interactive effects of co-

applying organic and inorganic fertilisers, as the concentration of Olsen’s P in the 

DC substitution treatment was still below the level of the inorganic treatment. The 

results suggest digested cake could be used on soils where the starting P status 

is already high to provide other nutrients, such as N, without increasing P to levels 

that increase P leaching losses.  

Pwater was analysed throughout the growing cycle to estimate the effect of 

integrated fertiliser applications on P leaching risk (Leinweber et al., 1999; Pote 

et al., 1996; Schoumans & Groenendijk, 2000). Although there was no statistically 

significant difference in the concentration of Pwater between treatments at any time 

point, of treatments receiving their full allocation of N and P only the inorganic 

and PS substitution treatments increased the concentration of Pwater compared to 

the baseline level. Unlike the inorganic and pig slurry substitution treatment, 

digested cake did not increase the concentration of Pwater compared to the 

baseline when applied alone or in combination with monocalcium phosphate. The 

results of Pwater analysis therefore indicate that the inorganic and PS substitution 

treatments increased P leaching risk during the growing cycle compared to the 

baseline level while fertilisation with DC alone or in combination with inorganic P 

did not result in the same level of P leaching risk. Pwater results corroborate 
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Olsen’s P data, which shows that the inorganic and PS substitution treatment 

were more effective at increasing P phytoavailability than digested cake.  

P leaching losses were determined after harvest. The most noticeable difference 

in the concentration of SRP in leachate was caused by the addition of N, which 

decreased the concentration of SRP in leachate compared to the application of 

inorganic P alone. This was likely due to the positive effects of N on plant 

productivity described in chapter five leading to increased uptake of P from the 

soil reserve. As expected from Pwater and Olsen’s P data, there was no statistically 

significant difference in the concentration or load of P in leachate between the 

inorganic, PS substitution and DC substitution treatments. The concentration and 

load of soluble reactive P was higher than expected from soils amended with the 

DC substitution, given the lower concentration of Pwater and Olsen’s P in soil 

during anthesis compared to the inorganic and pig slurry substitution treatment. 

It is possible that inorganic P was immobilised due to the addition of high levels 

of carbon in the digested cake and re-mineralised at a period in the crop’s growing 

cycle when P uptake was low (Guppy et al., 2005a; Rose et al., 2007). This 

asynchrony between crop demand and soil supply could explain why 

concentrations and loads of P in leachate are disproportionately high from the 

digested cake substitution treatment, compared to the levels of Pwater and Olsen’s 

P recorded during anthesis. P immobilisation may also explain why soil Pwater 

concentration did not increase under the DC substitution treatment. The results 

suggest that in the short term, fertiliser sources could be combined without 

increasing the risk of P leaching losses from agricultural soils. 

This study also reported the effect of organic fertiliser substitution on the 

concentration of NO3-N and NH4-N in soil, to gain a comprehensive view of the 

effect of combined fertiliser applications on phytoavailability of key nutrients in 
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soil. In the zero-input treatment, the concentration of NO3-N increased over time 

and peaked during anthesis, suggesting mineralisation of organic N exceeded 

crop uptake. The concentration of NO3-N in N fertilised treatments typically 

peaked during stem elongation, before returning to the baseline level. During 

stem elongation the concentration of NO3-N in soil decreased in the order DC 

substitution, inorganic, PS substitution. These differences were not statistically 

significant. However, of treatments receiving their full allocation of N and P only 

the DC substitution treatment statistically significantly increased NO3-N 

concentration compared to the zero-input control during stem elongation. It is 

possible that inorganic N added with DC was immobilised after its addition before 

being mineralised later in the crop growing cycle. Immobilisation of fertiliser-N 

prior to the stem elongation sampling point could reduce the potential for N uptake 

by the crop during this rapid period of growth and result in higher levels of NO3-

N in soil. Fertiliser-N immobilisation has been reported in soils receiving 

integrated nutrient management (Gentile et al., 2008, 2013, 2009) due to 

activation of the soil microbial community following carbon inputs. N 

immobilisation would also be consistent with trends in P phytoavailability 

recorded in the same treatment. Similar phenomenon could be expected here, 

given high inputs of total carbon and organic matter with the digested cake 

amendment.  By anthesis, there was no statistically significant difference in the 

concentration of NO3-N between the zero-input control and both organic 

substitution treatments but the concentration of NO3-N in the zero-input control 

was statistically significantly higher than that of the inorganic treatment, likely due 

to differences in plant N uptake described in chapter five. 

While N is a critical plant nutrient, the mis- and overapplication of nitrogenous 

fertilisers is a major cause of aquatic eutrophication (Bobbink et al., 1988; 
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Bobbink & Willems, 1987; Vitousek et al., 1997). Agriculture is responsible for 50-

80% of the total N load reaching aquatic environments (European Environment 

Agency, 2005). In this study, substitution of inorganic fertilisers with organic 

alternatives had no statistically significant effect on NO3-N leaching losses when 

measured as concentration or load, compared to treatments receiving only 

inorganic fertilisers. However, adding fertilisers regardless of form or nutrient 

effectively reduced the concentration of NH4-N in leachate compared to the zero-

input control. NH4-N load in leachate was significantly lower from soils receiving 

the PS substitution than the DC substitution, suggesting sustained release of 

NH4-N in the latter treatment after the major period of N uptake in wheat.  

4.5 Conclusions 

In this study, partial substitution of a crop’s P requirement with pig slurry or 

digested cake led to no statistically significant difference in P phytoavailability or 

leaching losses compared to the application of inorganic fertilisers. The data 

presented here therefore suggests that inorganic P can be substituted with 

organic alternatives without significantly impacting the availability of plant 

nutrients or the environmental risks associated with fertiliser applications in the 

short term. More frequent sampling within seasons would provide greater insight 

into P dynamics over the crop cycle. Over multiple seasons, responding to 

changes in crop available P caused by previous fertiliser management may show 

when farmers could expect to reduce or eliminate their requirement for 

phosphorus. The data suggests that the PS substitution treatment could be the 

most effective at increasing crop available P over multiple growing seasons and 

reducing farmers’ requirements for rock-derived phosphate.  
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Chapter 5 Wheat productivity and phosphorus uptake following 

integrated fertiliser management on a Cambisol with a low 

starting P status  

5.1 Introduction 

During the Green Revolution, agricultural productivity was increased through the 

use of inorganic fertilisers, new crop varieties, better pest control and 

technological advancements (Tilman et al., 2002, 2001). Production of grains 

including wheat, barley, maize, rice and oats increased almost three-fold between 

1960 and 2009 (Charles et al., 2010), largely as a result of agricultural 

intensification. Forecasts predict that by 2050 global food production will need to 

increase by 48.6% compared to 2013 levels (FAO, 2017a) to meet the food and 

energy demands of a growing population with shifting dietary habits (Keyzer et 

al., 2005; Pelletier & Tyedmers, 2010).  

Cereals provide an important source of calories and protein, especially in low- 

and middle-income countries where this food group supplies 50% of daily calorific 

intake (FAO, 2017a). Global cereal production will need to increase from 2.07 

billion tonnes in 2005-2007 to 3.01 billion tonnes in 2050 in order to match 

demand, an increase of 45.4% (Alexandratos & Bruinsma, 2012). The majority of 

this increase will need to be achieved through higher yields rather than land 

expansion (FAO, 2017a) but the potential for growth using methods that were 

successful during the Green Revolution is lowered because both nitrogen (N) and 

phosphorus (P) fertiliser production depend on finite resources in the form of 

natural gas (Chen et al., 2018) and phosphate rock (Cordell et al., 2009), 
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respectively. Understanding how alternative fertiliser practices affect wheat yields 

is therefore crucial from a human health perspective.  

Integrating organic inputs into farm nutrient cycles could help to reduce farmers’ 

requirements for chemical fertilisers derived from finite resources while 

maintaining yield. Numerous studies have asked how supplementing inorganic 

fertiliser sources with organic inputs affects productivity. Yields are typically 

higher when the organic amendment represents an additional nutrients source, 

compared to when inorganic fertilisers are applied alone (Bandyopadhyay et al., 

2010; Chivenge et al., 2009; Kanchikerimath & Singh, 2001; Martínez et al., 2017;  

Zhao et al., 2009). Meta-analyses have shown that the combined use of organic 

residues and inorganic N fertilisers leads to higher yields than the application of 

organic residues or inorganic N fertilisers alone (Chivenge et al., 2011; Wei et al., 

2016) but conclude that the increase in yield is due to higher N inputs in combined 

treatments rather than interactive effects (Chivenge et al., 2011). 

The results of substitution design studies, where at least N application rates are 

matched between inorganic and combined treatments, are more varied and have 

found that integrated nutrient management can stabilise (Liu et al., 2009; Xie et 

al., 2016; Zhao et al., 2016), decrease (Gong et al., 2009; Xie et al., 2016; Xin et 

al., 2017) and increase (Ge et al., 2010; M. Liu et al., 2009; Pincus et al., 2016; 

Vanlauwe et al., 2011) yields compared to the use of inorganic fertilisers alone. 

The yield response varies depending on the organic input (Liu et al., 2009; 

Vanlauwe et al., 2011; Zhao et al., 2016), the year (Zhao et al., 2016), farmer 

participation (Pincus et al., 2016), percent substitution (Pincus et al., 2016; Xie et 

al., 2016) and N input rate (Pincus et al., 2016). Therefore, while it appears that 

the integrated use of organic and inorganic fertilisers has the potential to achieve 

similar or higher yields than the application of chemical fertilisers alone, farmers 
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may require additional knowledge of their organic input and system to ensure the 

success of this management strategy.  

Incubation and greenhouse experiments have shown that integrating the use of 

organic and inorganic fertilisers can increase P phytoavailability compared to 

their application separately (Ahmed et al., 2019; Garg & Bahl, 2008; Halajnia et 

al., 2009; Leinweber et al., 1999; Mao et al., 2015; Reddy et al., 2005; Toor & 

Bahl, 1997; Xin et al., 2017). The effect of integrated nutrient management on 

soil nutrient cycling and the concomitant effect on crop P uptake has been 

investigated by several authors. In a greenhouse study, the percentage of P 

applied that was taken up by crops three weeks after fertilisation was greater 

when soil was mulched than when it was unmulched (Othieno, 1973). Bolan et 

al., (1994) reported greater P uptake by ryegrass maintained in a greenhouse 

when soils were amended with organic acids and inorganic P compared to when 

inorganic P was applied alone, although the differences were marginal and in 

some cases P uptake decreased in the presence of organic acids (OAs). In a field 

study where the rate of P application was higher in integrated than organic and 

inorganic treatments the percentage of applied P recovered in wheat and rice 

biomass was comparable between the integrated and inorganic treatment, 

although total P uptake was higher in the integrated treatment (Mao et al., 2015). 

Xin et al., (2017) also reported higher total P uptake and concentration in plants 

receiving organic and inorganic P, compared to plants only receiving inorganic P, 

when P application rates were equal. P uptake and concentration matched the 

trends in soil available P concentration, suggesting increased P phytoavailability 

under integrated nutrient management directly increased plant P uptake (Xin et 

al., 2017).  
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The aim of this study was to determine how substitution of inorganic P with 

organic alternatives affects wheat productivity and nutrient uptake, compared to 

the application of inorganic P alone. Digested cake (DC), a product of the waste 

water treatment process, and pig slurry (PS) were applied in combination with 

inorganic P. DC has been shown to produce yields comparable to mineral 

fertilisers (Alburquerque et al., 2012; Losak et al., 2014; Vanden Nest et al., 2015; 

Vaneeckhaute et al., 2016) while application of pig slurry typically results in lower 

yields than mineral fertilisers (Gong et al., 2009; Li, 2013; Martínez et al., 2017). 

This study tested the hypothesis that integrating the use of organic and inorganic 

fertilisers affects P dynamics in soil, leading to increases in P phytoavailability 

and uptake and yield compared to the sole application of inorganic fertilisers. The 

hypothesis was tested in a greenhouse study using intact soil cores over one 

growth cycle of winter wheat, Triticum aestivum L. ‘Skyfall’.  

5.2 Methods 

5.2.1 Greenhouse experiment 

Wheat plants were maintained following the experimental procedure outlined in 

chapter four. Briefly, intact soil cores were collected from an arable field at Leeds 

University Farm. The soil is a well-drained, loamy, calcareous brown earth from 

the Aberford series of Calcric Endoleptic Cambisols (Cranfield University, 2018) 

underlain by dolomitic limestone of the Cadeby formation (British Geological 

Survey, 2018). 25 cm deep cores were collected in 10.4 x 28.0 cm 

polyvinylchloride (PVC) pipes (internal diameter x height). After collection, cores 

were amended to 23 cm depth by removing soil from the bottom of the core before 

being transferred to a greenhouse (20oC, 16-hour photoperiod). Cores were 

arranged in a randomised block design with nine treatments and nine replicates 
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per treatment. Cores were sown with two pre-germinated winter wheat seeds, T. 

aestivum L., ‘Skyfall’. Skyfall is a group one milling wheat and the most popular 

winter wheat variety in the United Kingdom (UK) (RAGT, 2017). The second 

seedling to emerge in each pot was removed immediately, leaving one plant per 

pot.  

Fertiliser treatments (Table 4.1) were applied five weeks after sowing which 

coincided with the final stages of tillering. Treatments are described in detail in 

chapter four. Two organic fertilisers, digested cake from waste water treatment 

and pig slurry from a commercial pig unit, were used to substitute inorganic P and 

N. Inorganic P and N were supplied with monocalcium phosphate (Ca(H2PO4)2) 

and ammonium nitrate (NH4NO3), respectively. The digested cake treatment had 

to be supplemented with NH4NO3, as the amount of available N supplied by the 

amendment was very low. Several controls were also included to determine the 

effect of individual nutrients on productivity.  

Cores were maintained at 60% water-filled pore space by watering with deionised 

water every day until after stem elongation when they were watered every other 

day. The mass of each core was recorded before each watering event. The mass 

of water added at each watering event was calculated by subtracting the mass of 

the core before watering (g) from the target mass of the core at 60% water-filled 

pore space. This gave and estimation of evapotranspiration since the previous 

watering (Allen et al., 1998; Hartmann, 2016; Verstraeten et al., 2008). The mass 

of water added at each watering event was summed to give an estimation of 

cumulative evapotranspiration (g), or the total amount of water provided to the 

plant, to each core at set timepoints. Cumulative evapotranspiration (g) was 

calculated one week after fertilisation and at stem elongation, anthesis and 

harvest. Each calculation is for all watering events until that time point meaning 
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that the values are nested. Cumulative evapotranspiration was used as a proxy 

for biomass accumulation during the growing cycle as evapotranspiration has 

been shown to be correlated with biomass (Djaman et al., 2013; Payero et al., 

2009; Payero et al., 2008). This measurement could be affected by growth of the 

plant. Average fresh weight at the end of the experiment was 9.46 ± 0.497 g 

(mean ± standard error of the mean, S.E.M.) and the average mass of fresh soil 

in each core was 3030 ± 93.3 g (mean ± S.E.M.). The plant therefore accounted 

for less than 0.5% of total biomass of the plant and soil combined, suggesting the 

any effect on watering weight was negligible.  

Cores were harvested 24 weeks after sowing, equivalent to 19 weeks after 

fertilisation. Aboveground parts were removed with scissors and separated into 

shoot plus leaves and grains. Number of ears per plant was counted. Chaff was 

removed from grain by hand. Parts were weighed before and after drying at 40oC 

for 48 hours. Dried grains were counted by hand before being ground into a 

powder for analysis of total N and P uptake by the one-step method (general 

methods, 2.9). Protein content was estimated by multiplying N concentration (mg 

g-1) by 5.7 (De Silva et al., 2018; RAGT, 2017; Tkachuk, 1996). 

5.2.2 Data analysis 

IBM SPSS Statistics 21 and RStudio were used for data analysis. Tests were 

conducted to confirm that assumptions were met before analysis. Non-parametric 

tests or generalised linear models (GLM) were used when assumptions were 

violated and could not be met by data transformation. 

5.3 Results 

5.3.1 Summary 
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Main results are summarised in Figure 5.1 as percentage difference compared to 

the zero-input control. The overall effect of treatment on grain dry weight was 

statistically significant (p < 0.001). Although there was no statistically significant 

difference in grain dry weight between the inorganic treatment and either 

substitution treatment (p = 1.00 for both treatments), only the inorganic treatment 

increased grain dry weight compared to the zero-input control (p = 0.002). There 

was no statistically significant effect of treatment on the concentration of nitrogen 

(p = 0.307) or phosphorus (p = 0.089) in grain. The total amount of P and N in 

grain was affected by treatment (p < 0.001 for both nutrients). The total amount 

of N in grain was statistically significantly higher in the inorganic treatment than 

the DC substitution (p = 0.008) and PS substitution treatments (p = 0.006). There 

was no statistically significant difference in total P uptake by plants between the 

inorganic, DC substitution and PS substitution treatment. 
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Figure 5.1: Summary of main findings. Results are expressed as percent change compared to 

the zero-input control. Only the inorganic and substitution treatments are included for ease of 

interpretation. n = 9. 

5.3.2 Biomass accumulation over the growing cycle 

Biomass was estimated through cumulative evapotranspiration (CET) 

measurements. The effect of treatment on CET was analysed at four time points: 

1, 4 (stem elongation sampling), 10 (anthesis sampling) and 19 (harvest) weeks 

after fertilisation (Table 5.1). Analysis was conducted using the Kruskal-Wallis H 

test given violations of normality (Shapiro-Wilk’s, p > 0.05) and homogeneity of 

variances (Levene’s test, p < 0.05) which could not be met by data transformation. 

Post-hoc analysis was run using Dunn’s procedure and p-values for multiple 

comparisons received a Bonferroni adjustment. Distributions were similar 

between groups for all time points, as assessed by inspection of a boxplot. 
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There was no statistically significant difference in median CET between 

treatments one week after fertilisation, Χ2
(8) = 5.61, p = 0.691. There was a 

statistically significant difference in median CET between treatments 4 weeks 

after fertilisation which corresponds with the stem elongation sampling point, Χ2
(8) 

= 18.0, p = 0.021; however pairwise comparisons based on Bonferroni-adjusted 

p-values showed no statistically significant difference in CET between treatments 

(Table 5.1). The effect of treatment on median CET was also statistically 

significant during anthesis, Χ2
(8) = 53.6, p < 0.001, and at harvest, Χ2

(8) = 54.0, p< 

0.001. During anthesis, CET of treatments receiving their full allocation of P and 

N decreased in the order inorganic, pig slurry substitution, digested cake 

substitution but these differences were not statistically significant (Table 5.1). The 

same pattern in terms of significance was recorded at harvest, although CET now 

decreased in the order inorganic, DC substitution, PS substitution. During 

anthesis and at harvest, CET was statistically significantly lower in the zero input 

control compared to the inorganic, PS substitution and DC substitution treatments 

(Table 5.1). 

Linear regression showed that CET during stem elongation, anthesis and at 

harvest statistically significantly predicted plant total dry weight at harvest 

although more of the variation in total dry weight was explained by CET during 

harvest than during anthesis or stem elongation (Table 5.2). 



 
 

 

  

 1
6

5
 

 

Table 5.1: Cumulative evapotranspiration (grams) of wheat plants according to fertiliser treatment at different time points during the crop cycle. Values are medians 

and 95% confidence intervals of the median, reported to three significant figures. The overall effect of treatment on cumulative evapotranspiration was determined by 

Kruskal-Wallis H Test. Pairwise comparisons were analysed using Dunn’s procedure with a Bonferroni adjustment. In a column, values followed by the same letter are 

not statistically significantly different (p > 0.05). Results are reported to three significant figures. Treatments are described in Table 4.1. n = 9. 

Treatment 1 week after fertilisation Stem elongatione Anthesis Harvest 

Zero  208 (94, 245) 815 (650, 938) 2880 (2430, 3190)a 4320 (3430, 4580)a 

Half rate Pi 173 (106, 191) 732 (676, 956 3090 (2320, 3300)ab 4290 (3580, 4620)ab 

Full rate Pi 123 (78, 356) 822 (705, 1050) 2300 (1720, 2670)abc 4560 (3380, 5760)abc 

Full rate Ni 206 (106, 242) 999 (870, 1650) 3410 (3210, 5000)d 7120 (6300, 8890)d 

Inorganic 205 (137, 358) 1230 (862, 1600) 5250 (4430, 6120)d 7520 (6750, 9090)d 

PS substitution 184 (107, 273) 1060 (788, 1360) 4740 (4000, 5200)d 6640 (5380, 7460)bcd 

PS only 125 (107, 273) 784 (690, 1330) 3880 (3580, 4430)abcd 5610 (4960, 6430)abcd 

DC substitution 162 (107, 182) 993 (785, 1200) 4260 (4070, 5160)d 6480 (5830, 7560)cd 

DC only 146 (30, 334) 847 (373, 1530) 4500 (3330, 6250)abcd 6640 (4390, 8500)bcd 

e Pairwise comparisons showed no statistically significant difference in cumulative evapotranspiration between treatments during stem elongation despite the overall 

effect of treatment being statistically significant (p = 0.021)
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Table 5.2: Linear regression outcomes and equations for the prediction of wheat total dry weight at harvest from cumulative evapotranspiration at four points during 

the growing cycle. Abbreviations: TDW, total dry weight; CET, cumulative evapotranspiration; F statistic, effect size. n = 9. 

Time point Degrees freedom F statistic p-value Adjusted R2 Regression equation 

One week after 

fertilisation 

1,75 1.96 0.166 0.012 TDW = 7.79 + (0.008 x 

CET) 

Stem elongation 1, 75 29.0 <0.001 0.269 TDW = 2.15 + (0.007 x 

CET) 

Anthesis 1, 75 231 <0.001 0.752 TDW = -2.76 + (0.004 

x CET) 

Harvest 1,75 204 <0.001 0.801 TDW = -4.37 + (0.002 

x CET) 
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5.3.3 Aboveground dry weight 

5.3.3.1 Grain weight 

The effect of treatment on grain dry weight was assessed by Kruskal-Wallis H 

test, as residuals were not normally distributed in two cells of the design (Shapiro-

Wilk’s, p < 0.05) and this test assumption could not be met by data transformation. 

There were no outliers with studentised residuals greater than ± 3.00. Visual 

inspection of a boxplot showed distributions of grain dry weight were similar 

between treatments. There was a statistically significant effect of treatment on 

grain dry weight, (χ2
(8) = 40.0, p < 0.001) (Table 5.3). Highest median grain dry 

weight was achieved in the inorganic and the full rate Ni treatments. Median grain 

dry weight was statistically significantly lower in the zero input, half rate Pi and 

full rate Pi treatments than the inorganic and full rate Ni treatments (Table 5.3). 

Adding Pi to Ni led to a small but statistically insignificant increase in median grain 

dry weight (full rate Ni compared to inorganic, p = 1.00). Median grain dry weight 

for treatments receiving their full allocation of N and P decreased in the order 

inorganic, PS substitution, DC substitution, although the differences between 

treatments were not statistically significant. 

5.3.3.2 Shoot and total aboveground dry weight 

A one-way ANOVA was run to determine the effect of treatment on shoot dry 

weight. A square root transformation was applied to ensure data met the 

assumption of homogeneity of variances (Levene’s test, p = 0.108). Residuals 

were normally distributed (Shapiro-Wilk’s, p > 0.05) and there were no cases with 

studentised residuals greater than ± 3.00. There was a statistically significant 

effect of treatment on shoot dry weight, F(1,8) = 79.6, p < 0.001, ɳ2 = 0.902. Tests 

for multiple comparisons were Bonferroni corrected (Table 5.3). Shoot dry weight 
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was only increased compared to the zero-input control when N was added, 

regardless of form. There was no statistically significant effect of adding inorganic 

P when all the N budget came from NH4NO3 (inorganic compared to full rate Ni, 

p = 1.000). The digested cake and pig slurry substitutions performed similarly to 

each other (p = 1.000). Adding inorganic P had no statistically significant effect 

on shoot dry weight when digested cake was the organic amendment (p = 1.000), 

but significantly increased shoot dry weight when added with pig slurry (p = 

0.034). Although shoot dry weight was numerically lower in the DC substitution 

treatment compared to the inorganic treatment, this difference was not 

statistically significant (p = 0.374). However, mean shoot dry weight of the PS 

substitution treatment was significantly lower than the inorganic treatment (p = 

0.017).  

A square root transformation was also applied to achieve homogeneity of 

variances for total aboveground dry weight (Levene’s, p = 0.50). Residuals were 

normally distributed and there were no cases with studentised residuals greater 

than ± 3.00. Results of one-way ANOVA on square root transformed data showed 

that there was a statistically significant effect of treatment on total aboveground 

dry weight, F(1,8) = 45.6, p < 0.001, ɳ2 = 0.845. Tests for multiple comparisons 

were Bonferroni corrected (Table 5.3). Compared to the zero-input control, 

adding P alone (full rate Pi) had no statistically significant effect on aboveground 

dry weight (p = 1.00) while adding N alone (full rate Ni) led to a statistically 

significant increase in total aboveground dry weight (p < 0.001). Total 

aboveground dry weight was statistically significantly lower in both the DC 

substitution (p = 0.012) and the PS substitution (p = 0.003) treatments, compared 

to the inorganic treatment.
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Table 5.3: Dry weight of wheat plants at harvest, separated into grain, shoot and total aboveground dry weight. The effect of treatment on grain dry weight was 

assessed by Kruskal-Wallis H test and Dunn’s procedure for post-hoc testing. Pairwise comparisons received a Bonferonni adjustment. The effect of treatment on 

shoot and total aboveground dry weight was assessed by one-way ANOVA on square root transformed data. Values are medians and 95% confidence intervals (CI) 

of the median or untransformed means ± one standard error of the mean (SEM), depending on the analysis conducted. In a column, values followed by the same letter 

are not statistically significantly different (p > 0.05). Treatments are described in Table 4.1. n = 9. 

Treatment Median grain dry weight (95% CI) 

(g) 

Mean shoot dry weight ± one 

SEM (g) 

Mean total aboveground dry 

weight ± one SEM (g) 

Zero  1.69 (0.619, 2.37)a 3.02 ± 0.247ab 4.39 ± 0.344a 

Half rate Pi 1.22 (0.429, 2.64)a 2.96 ± 0.093a 4.36 ± 0.316a 

Full rate Pi 1.92 (1.23, 2.72)a 3.25 ± 0.198ab 5.15 ± 0.369a 

Full rate Ni 4.60 (3.45, 7.58)b 7.86 ± 0.335ef 13.2 ± 0.899cd 

Inorganic 5.59 (1.27, 8.11)b 8.85 ± 0.277f 15.1 ± 0.486d 

PS substitution 3.69 (1.17, 5.34)ab 7.23 ± 0.214de 10.7 ± 0.677bc 

PS only 2.71 (0.770, 3.66)ab 5.91 ± 0.266c 8.28 ± 0.662b 

DC substitution 3.29 (1.99, 6.02)ab 7.68 ± 0.318ef 11.3 ± 0.931cd 

DC only 3.55 (2.71, 6.30)ab 7.64 ± 0.374ef 11.7 ± 0.504c 
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5.3.4 Grain characteristics 

The effect of treatment on the number of grains per plant, equivalent to number 

of grains per pot, was assessed by Kruskal-Wallis H test. There were two outliers 

with studentised residuals greater than ± 3.00 which were removed from the 

analysis. Data was not normally distributed in two cells of the design (Shapiro-

Wilk’s, p > 0.05) and normality could not be achieved by transformation. Medians 

and confidence intervals are presented in Table 5.4. Pairwise comparisons were 

run with Dunn’s procedure and p-values for multiple comparisons received a 

Bonferroni adjustment. Distributions were not similar between groups as 

assessed by visual inspection of a boxplot. Mean rank values are therefore 

presented in the text. There was a statistically significant effect of treatment on 

the number of grains per plant, Χ2
(8) = 36.9, p < 0.001. Only the inorganic (mean 

rank = 59.3, p = 0.008) and full rate Ni (mean rank = 58.9, p = 0.012) treatments 

increased the number of grains above the level of the zero-input control (mean 

rank = 20.4). There was no statistically significant difference in the number of 

grains between the inorganic treatment, the PS substitution treatment (mean rank 

= 43.9) and the DC substitution treatment (mean rank = 43.3).  

The effect of treatment on number of ears per plant was assessed by a Kruskal-

Wallis H Test as the assumptions of normality and homogeneity of variances 

were violated (Shapiro-Wilk’s, p < 0.05 and Levene’s test, p = 0.024, 

respectively). Assumptions could not be met by data transformation. There were 

no outliers with studentised residuals greater than ± 3.00. Medians and 

confidence intervals are presented in Table 5.4. Pairwise comparisons were run 

using Dunn’s procedure with a Bonferroni adjustment. Distributions were not 

similar between groups as assessed by visual inspection of a boxplot. Therefore 

mean rank values are presented in the text. There was a statistically significant 
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effect of treatment on median number of ears per plant, Χ2
(8) = 35.1, p < 0.001. 

Plants receiving the half and full rate Pi treatments had statistically significantly 

lower number of ears per plant (mean rank = 12.2 and 22.8, respectively) than 

treatments receiving the full rate Ni treatment (mean rank = 57.5) (p = 0.001 and 

p = 0.042, respectively) and the inorganic treatment (mean rank = 59.1) (p < 0.001 

and p = 0.015, respectively) (Table 5.4). There were no other statistically 

significant comparisons between treatments.  

Mean weight per grain was assessed by one-way ANOVA. There were two 

outliers with studentised residuals greater than ± 3.00 which were removed from 

the analysis. The assumption of homogeneity of variances was met (Levene’s 

test, p = 0.267) and normality was achieved in each cell of the design (Shapiro-

Wilk’s test, p > 0.05). There was no statistically significant effect of treatment on 

mean weight per grain, F(8,63) = 1.95, p = 0.068, ɳ2 = 0.198.
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Table 5.4:  Effect of treatment on wheat grain characteristics. The effect of treatment on number of grains and ears was assessed by Kruskal-Wallis H test with Dunn’s 

procedure post-hoc analysis. Pairwise comparisons received a Bonferonni adjustement. Values are medians and 95% confidence intervals (CI) of the median. The 

effect of treatment on mean weight per grain was determined by one-way ANOVA. Pairwise comparisons received a Bonferonni adjustment. Values are means ± one 

standard error of the mean (SEM). In a column, values followed by the same letter are not statistically significantly different (p > 0.05). Treatments are described in 

Table 4.1. n = 9. 

Treatment Number of grains                  

(Median, 95% CI) 

Number of ears           (Median, 

95% CI) 

Weight per grain (mg)       (Mean 

± one SEM) 

Zero  55.0 (43.0, 86.0)a 3.00 (3.00, 6.00)ab 30.6 ± 2.25 

Half rate Pi 44.0 (0.00, 71.1)a 2.50 (0.00, 4.00)a 33.4 ± 1.80 

Full rate Pi 52.0 (43.0, 86.0)a 3.00 (3.00, 4.00)a 30.9 ± 1.32 

Full rate Ni 127 (98.0, 207)b 7.00 (5.00, 8.00)b 37.2 ± 11.9 

Inorganic 172 (42.0, 209)b 7.00 (3.00, 9.00)b 33.9 ± 1.29 

PS substitution 121 (43.0, 167)ab 6.00 (3.00, 8.00)ab 30.6 ± 2.25 

PS only 90.0 (31.0, 115)ab 5.00 (3.00, 5.00)ab 29.6 ± 1.43 

DC substitution 104 (62.0, 172)ab 5.00 (2.00, 8.00)ab 31.3 ± 2.26 

DC only 105 (83.0, 193)ab 6.00 (4.00, 6.00)ab 34.0 ± 1.83 
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Figure 5.2: Relationship between number of ears per plant and number of grains, and number of 

ears per plant and total grain dry weight (g).  The relationship between number of ears and 

number of grains (p < 0.001, adjusted R2 = 82.1), and number of ears and grain dry weight was 

statistically significant (p < 0.001, adjusted R2 = 72.8). n = 9. 

A scatterplot suggested a strong, positive linear relationship between number of 

ears and total grain weight and number of ears and number of grains (Figure 5.2). 

The significance of the relationship was tested by linear regression. Number of 

ears accounted for 82.1% of the variation in number of grains. Number of ears 

per plant statistically significantly predicted grain weight, F(1,73) = 341, p < 0.001 

(Equation 5.1). The regression equation predicts that number of grains increases 

by 25 with each extra ear. Number of ears accounted for 72.8% of the variation 

in total grain weight. Number of ears per plant statistically significantly predicted 

grain weight, F(1,73) = 199, p < 0.001. The regression equation predicts that total 

grain weight increases by 0.856 g for each extra ear (Equation 5.2).
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Equation 5.1: Regression equation for prediction of number of grains from number of ears. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑎𝑖𝑛𝑠 =  −22.0 + (24.9 ×  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑎𝑟𝑠) 

Equation 5.2: Regression equation for prediction of grain weight from number of ears. 

𝐺𝑟𝑎𝑖𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 =  −0.871 + (0.856 ×  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑎𝑟𝑠) 

5.3.5 Grain nutrient content 

The effect of treatment on grain nutrient content and concentration was assessed 

by one-way ANOVA. Where test assumptions could not be met by data 

transformation, robust or non-parametric methods were employed. The   

assumption of homogeneity of variances was violated for P concentration 

(Levene’s test, p < 0.001) so data was analysed by Welch’s robust ANOVA. The 

assumption of normality was violated for total P uptake in one cell of the design 

(Shapiro-Wilk’s, p = 0.028) so a Kruskal-Wallis H test was run. For total N uptake, 

the assumption of homogeneity of variances was only met following a square root 

transformation (Shapiro-Wilk’s, p > 0.05) so analysis was run on this data. 

Untransformed means and standard errors are presented in Table 5.5. Tests for 

multiple comparisons received a Bonferroni adjustment. 

There was no statistically significant effect of treatment on the concentration of N 

or P in grain; F(8.65) = 1.21, p = 0.307, ɳ2 = 0.130 and Welch’s F(8,65) =  2.73, p = 

0.089, respectively. There was a statistically significant effect of treatment of the 

total N uptake in grain, F(8,64) = 11.0, p < 0.001, ɳ2 = 0.579. Total N uptake (mg) 

in grain was statistically significantly higher in the inorganic treatment than the 

DC substitution (p = 0.008) and PS substitution treatments (p = 0.006). The effect 

of treatment on total grain P content was statistically significant (Χ2
(8) = 36.8, p < 

0.001) but there was no statistically significant difference in total P uptake 

between the inorganic, DC substitution or PS substitution treatment. 
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Protein concentration was comparable to the mass fraction expected by industry 

(11.9%) (RAGT, 2017). There was no statistically significant effect of treatment 

on protein concentration (F(8,65) = 1.21, p = 0.307, ɳ2 = 0.130) although there was 

a trend towards increased protein content with the addition of organic fertilisers. 
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Table 5.5: Wheat grain nitrogen (N) and phosphorus (P) uptake and concentration and protein content (%) after the application of different fertiliser treatments. N 

concentration ([N]), total N uptake, protein content and P concentration ([P)] were analysed using one-way ANOVA. Values are means ± one standard error of the 

mean (SEM). Total P uptake was analysed by Kruskal-Wallis H test. Values are medians and 95% confidence intervals (CI) of the median. Pairwise comparisons 

received a Bonferroni adjustment in all cases. In a column, values followed by the same letter are not statistically significantly different (p > 0.05). Treatments are 

described in Table 4.1. n = 9. 

 

 

 

  

 

Treatment Mean [N] ± one 

SEM (mg g-1) 

Mean total N uptake 

± one SEM (mg) 

Mean protein content ± 

one SEM (%)  

Mean [P] ± one SEM 

(mg g-1) 

Median total P uptake 

(95% CI) (mg) 

Zero input 20.0 ± 1.64 26.4 ± 5.17a  11.4 ± 0.936 4.50 ± 0.165 5.04 (2.96, 10.5)a 

Half rate Pi 17.1 ± 0.84 25.7 ± 5.55a 9.76 ± 0.479 3.95 ± 0.232 5.72 (1.91, 8.97)a 

Full rate Pi 17.0 ± 1.26 30.7 ± 1.91ab 9.70 ± 0.716 4.30 ± 0.146 7.35 (4.90, 10.4)a 

Full rate Ni 16.6 ± 1.95 78.1 ± 12.9cd 9.44 ± 1.11 3.18 ± 0.381 17.1 (10.5, 26.2)ab 

Inorganic 18.4 ± 1.15 113 ± 6.48d 10.5 ± 0.654 3.62 ± 0.287 22.3 (13.3, 30.6)b 

PS substitution 19.5 ± 1.07 64.8 ± 11.4bc 11.1 ± 0.609 4.27 ± 0.120 15.0 (5.42, 23.6)ab 

PS only 20.9 ± 1.58 53.7 ± 8.09abc 11.9 ± 0.898 4.25 ± 0.252 12.8 (3.16, 14.6)ab 

DC substitution 19.6 ± 1.42 67.3 ± 9.92bc 11.2 ± 0.812 4.22 ± 0.367 14.8 (8.46, 17.8)ab 

DC only 20.6 ± 1.81 83.3 ± 10.1cd 11.7 ± 1.03 3.89 ± 0.211 14.5 (9.95, 23.4)ab 
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5.3.6 Nutrient availability, uptake and plant productivity  

The effect of nutrient availability during stem elongation and anthesis on plant 

nutrient content and productivity was determined using data presented in chapter 

four. Soil nutrient concentrations that were statistically significantly affected by 

treatment were entered into regression models, to determine if treatment-driven 

effects on soil nutrient status affected total dry weight. Factors affected by 

treatment and therefore included in models were the concentration of nitrate-N 

(NO3-N) during stem elongation and the concentration of NO3-N, ammonium N 

(NH4-N) and Olsen’s P during anthesis. A hierarchical multiple regression (HMR) 

approach was adopted, to understand the contribution of each nutrient to final 

biomass. Concentrations at stem elongation and during anthesis were 

considered in separate models as independence of errors is an assumption of 

HMR.  

5.3.6.1 Soil nutrient status and plant productivity 

Linear models were fitted to test for the relationship between NO3-N 

concentration during stem elongation and total dry weight using the lm function 

in the R package lme4 (Bates et al., 2015). Residuals were not normally 

distributed (Shapiro-Wilk’s test, p < 0.001) and this assumption could not be met 

by data transformation. Therefore, a generalised linear model (GLM) with gamma 

distribution and log link function was run on square root transformed NO3-N data, 

using the glm function in the stats package of RStudio (R Core Team, 2018). 

There was independence of errors (Durbin Watson statistic = 2.06, p = 0.884) 

and residuals were normally distributed (Shapiro-Wilk’s, p = 0.08). There was a 

weak but statistically significant positive relationship between the concentration 
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of NO3-N in soil during stem elongation and total aboveground dry weight at 

harvest, Χ2
(1) = 1.67, Cragg & Uhler’s R2 = 0.10, p = 0.01 (Equation 5.3).  

Equation 5.3: Regression equation for the prediction of total dry weight from NO3-N concentration 

during stem elongation. Note that NO3-N concentration was square root transformed to improve 

model fit.  

𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 = (1.72 × √𝑁𝑂3 − 𝑁) + 5.31  

A HMR was run to determine the contribution of NO3-N, NH4-N and Olsen’s P 

concentration during anthesis to total dry weight. The function run_model in the 

package AutoModel in RStudio was used to run HMR (Lishinkski, 2015). Factors 

were added sequentially, resulting in three models which included the following 

predictors: (i) model one, Olsen’ P; (ii) model two, Olsen’s P and NH4-N; and (iii) 

model three, Olsen’s P, NH4-N and NO3-N. There was independence of errors 

(Durbin Watson statistic = 1.93, p = 0.391), the variance inflation factor was less 

than 10 for each predictor, there was no evidence of multicollinearity, there were 

no standardised residuals greater than three and no Cook’s distance values 

greater than 0.2. The addition of NH4-N and NO3-N to the prediction of total dry 

weight statistically significantly increased the F value, but there was no 

statistically significant increase in the F value when only Olsen’s P was included 

in the model (Table 5.6).  
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Table 5.6: Results of hierarchical multiple regression analyses to determine the relationship 

between nutrient availability during anthesis and total dry weight at harvest. Three models were 

run. Model one included Olsen’s P concentration, model two included Olsen’s P and ammonium-

N (NH4-N) concentrations and model three included Olsen’s P, NH4-N and nitrate-N (NO3-N). n = 

9. 

Model Predictor Coefficient Adjusted 

R2 

F value 

change 

p-value for 

F change  

Overall p-

value 

One Olsen’s P -0.104 0.0205 2.55 0.114 1.00 

Two 
Olsen’s P -0.102 

0.1658 13.7 <0.001 <0.001 
NH4-N -9.62 

Three 

Olsen’s P -0.0382 

0.4129 31.3 <0.001 <0.001 NH4-N -0.924 

NO3-N -2.29 

 

Similar analysis was run to determine the effect of nutrient concentrations at 

different time points on grain dry weight. However, there were issues with 

autocorrelation which limited interpretation of results so this analysis was not 

included. There was a statistically significant relationship between total dry weight 

and grain dry weight, rSpearman’s(75) = 0.925, p< 0.001, which suggests that the 

factors determining total dry weight could also be important for determining grain 

weight.  Because grain nutrient concentrations were statistically significantly 

similar between treatments and differences only emerged as a function of grain 

dry weight (Table 5.5), it was decided that running regression analysis on grain 

nutrient content would only reflect differences in grain dry weight and would 

therefore be inappropriate.  

5.4 Discussion 
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The aim of this study was to determine how the substitution of inorganic P with 

pig slurry or digested cake affects wheat productivity and P uptake compared to 

the use of inorganic fertilisers only. Cumulative evapotranspiration (CET) 

measurements were used to estimate biomass during plant growth and showed 

trends in biomass accumulation emerging early in development. During stem 

elongation and anthesis, CET was higher from the inorganic treatment compared 

to either substitution treatment although the difference was not statistically 

significant. The same trend was reported in grain yield at harvest; wheat grain 

yield decreased in the order inorganic, pig slurry substitution, digested cake 

substitution. However, there was no statistically significant difference in grain dry 

weight between treatments receiving their full allocation of N and P. This is 

contrary to the hypothesis that integrating the use of organic and inorganic 

fertilisers would increase yield compared to the sole application of inorganic N 

and P but supports findings of previous research which show that substituting 

inorganic inputs with organic alternatives maintains maize (Bedada et al., 2014), 

wheat (Zhao et al., 2016) and rice (Xie et al., 2016) yields in the first season of 

experimentation. These findings suggest that inorganic P requirements could be 

reduced without negatively affecting wheat grain yield in the short term.  

The study was designed to allow the role of different nutrients in determining grain 

dry weight to be assessed. Adding inorganic P resulted in marginal increases in 

grain dry weight, while adding inorganic N alone or in combination with inorganic 

P statistically significantly increased grain dry weight compared to the zero-input 

control. These results suggest that N was the most important limiting nutrient in 

the soil used here. Adding N increased the number of ears per plant and there 

was a statistically significant, positive relationship between number of ears and 

number of grains. The weight of individual grains was similar between treatments. 
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Therefore, the data indicates that adding N, regardless of form, increased grain 

dry weight by promoting ear formation and therefore grain number.  

Further support for the importance of N in biomass determination was provided 

from results of linear and hierarchical multiple regression. These methods were 

used to determine how the concentration of nutrients at different growth stages 

affected total dry weight at harvest. Only nutrients shown to be affected by 

treatment were included in the analysis: NO3-N during stem elongation and NO3-

N, NH4-N and Olsen’s P during anthesis. There was a weak but statistically 

significant positive relationship between the concentration of NO3-N in soil during 

stem elongation and total aboveground dry weight. At anthesis, NH4-N and NO3-

N both statistically significantly increased the F value of the HMR model and were 

negatively related to total aboveground dry weight. Results of HMR therefore 

indicate that plants with the greatest total aboveground dry weight come from 

soils with the lowest concentration of NH4-N and NO3-N during anthesis. 

Together, this suggests high NO3-N availability during stem elongation promoted 

the growth of bigger plants with greater demand for N, resulting in a lower 

concentration of available N in soil during anthesis. Adding Olsen’s P 

concentration during anthesis to the model led to no statistically significant 

change in the F value, supporting the conclusion that P is not significantly 

affecting wheat productivity in this soil.  

Despite giving some indication of the effect of nutrient concentration on final 

biomass, there are limitations of using a mid-season measurement of available 

N and P as a predictor of final biomass. Unlike in incubation studies where 

nutrient cycles are driven by inherent soil biological and chemical properties, the 

inclusion of a plant will have a large influence on nutrient concentrations at the 

time of sampling due to uptake. The value at a given sampling point will therefore 
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reflect what has already been consumed by the plant, as well as what is available 

for future uptake and growth. Consequently, the concentration of available 

nutrients may be low in a treatment that promotes plant growth and vice versa. 

Sampling time should therefore be carefully considered when planning studies 

and interpreting results. Studies may be complemented by incubation 

experiments that show changes in nutrient concentration over time without plant 

uptake or enhanced by more frequent sampling to highlight peaks in N and P 

availability.  

Although yields were comparable between treatments receiving their full 

allocation of N and P, the DC and PS substitution treatments resulted in a 41.1 

and 33.4% decrease, respectively, in grain dry weight compared to the inorganic 

control. Results of HMR and available nutrient concentrations at each sampling 

point can be used to suggest reasons for lower yields following integration of 

inorganic fertilisers with pig slurry or digested cake. Despite receiving an equal 

quantity of readily available N in fertilisers, NO3-N concentration was lower in the 

PS substitution treatment during stem elongation than the inorganic or DC 

substitution treatments. The loss of N as NH3 following the application of pig slurry 

has been raised as an issue in previous studies (Martínez et al., 2017) and could 

explain the lower concentration of NO3-N in soils fertilised with PS reported here 

(chapter four, 4.3.6). HMR results suggest the lower concentration of NO3-N 

during stem elongation may have limited biomass accumulation. Total N applied 

in the PS substitution treatment was 250 kg ha-1, which is the organic manure N 

field limit in nitrate vulnerable zones (NVZ) (Defra, 2013). Supplying a higher 

proportion of N as inorganic fertiliser has been shown to maintain yields at a level 

that is closer to the inorganic control (Li, 2013; Xie et al., 2016). It may be 

beneficial to reduce the size of the P substitution for organic inputs with a low 



183 
 

 

  

phosphorus-to-nitrogen ratio. As a result, the organic amendment would supply 

less N allowing for more N to be applied from inorganic sources such as NH4NO3.  

However, applying a greater proportion of nitrogen from inorganic sources may 

not always be effective at increasing yield. Grain yield in the DC substitution 

treatment was low, despite 99% of readily available nitrogen being supplied by 

NH4NO3. The possibility of N immobilisation in the DC substitution treatment 

between fertilisation and the stem elongation sampling point was discussed in 

chapter four (4.4). N deficiency has been shown to limit the number of tiller buds 

and tiller growth (Birch & Long, 1990; Longnecker et al., 1993; Power & Alessi, 

1978), which itself is positively correlated with number of ears and yield (Bulman 

& Hunt, 1988; Power & Alessi, 1978). N deficiency has also been shown to 

decrease grain number, especially if the deficiency is large and/or lasts for a long 

time (Jeuffroy & Bouchard, 1999). The median number of ears and grains was 

lower in the DC substitution treatment than the inorganic and PS substitution 

treatment, which matches symptoms of N deficiency outlined above. More 

frequent sampling between fertilisation and stem elongation would provide further 

information about the intensity and duration of the deficiency and therefore the 

role of N immobilisation in determining dry weight in the DC substitution 

treatment.  

Previous studies have shown that integrating the use of organic and inorganic 

fertilisers increases P phytoavailability (Ahmed et al., 2019; Garg & Bahl, 2008; 

Halajnia et al., 2009; Leinweber et al., 1999; Mao et al., 2015; Reddy et al., 2005; 

Toor & Bahl, 1997; Xin et al., 2017) and the concentration and uptake of P into 

plant tissue, compared to the application of inorganic fertilisers alone (Bolan et 

al., 1994; Mao et al., 2015; Othieno, 1973; Xin et al., 2017). In this study, there 

was no statistically significant effect of treatment on the concentration of Olsen’s 
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P in soil during the major period of nutrient uptake in wheat (chapter four). As 

expected based on soil analysis, the concentration of P in grain was similar 

between treatments. Total P uptake into grain was highest in the inorganic 

treatment, followed by the pig slurry substitution and the digested cake 

substitution but this can be attributed to differences in grain weight rather than P 

phytoavailability. Protein content was similar between treatments and close to the 

industry expected value of 11.9% (RAGT, 2017). Under British fertiliser guidance 

(RB209, AHDB, 2020), organic amendments should be applied based on their 

total rather than available nutrient content. The results show that nutrient content 

of plants was not compromised in either substitution treatment despite estimated 

phosphorus phytoavailability of 50% for both pig slurry and digested cake in 

RB209. Equally, grain P concentration was similar between plants receiving only 

30 kg ha-1 P2O5 from monocalcium phosphate, digested cake or pig slurry 

suggesting phosphorus phytoavailability was similar in the inorganic and organic 

amendments. This suggests that applications based on nutrient phytoavailability 

would be unnecessary from a plant perspective and could result in the 

overapplication of nutrients, with increased risk of environmental pollution. 

5.5 Conclusions  

Substituting 50% of the P budget with pig slurry or digested cake had no 

statistically significant effect on wheat grain yield or P uptake into grain compared 

to when monocalcium phosphate supplied all P. The data presented here 

suggests that inorganic P requirements could be reduced with small effects on 

yield in the short term, but that N nutrition should be carefully managed in order 

to maximise phosphorus use efficiency.  
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Chapter 6 Discussion 

6.1 Background and aims 

Inorganic fertilisers increase crop yields, but their production depends on finite 

resources and is associated with environmental degradation. Inorganic nitrogen 

(N) production consumes fossil fuels (Chen et al., 2018) and emits carbon dioxide  

(Rafiqul et al., 2005) while inorganic phosphorus (P) fertilisers are derived from 

finite rock reserves (Smil, 2000) whose extraction leads to nonpoint-source P 

pollution (Kuo & Muñoz-Carpena, 2009). There is concern surrounding the size 

of P rock reserves with some authors predicting peak P production will occur 

within 15 years of this thesis (Cordell et al., 2009) and more recent estimates 

predicting P reserves could be exhausted by 2040 (Blackwell et al., 2019). 

Concerns over P scarcity are heightened due to the uneven distribution of P 

reserves across the globe; 85 % of P rock is found in three countries which could 

be a source of geopolitical tension (Elser & Bennett, 2011). Currently, global P 

flows can be considered linear (Elser & Bennett, 2011), with mined rock being 

applied as fertiliser and lost directly from soil or indirectly from human or animal 

waste following the consumption of products fed or fertilised with inorganic P. 

Integrating animal and human waste into farm nutrient budgets re-circulates P 

that would otherwise be lost from the system and could reduce farmers’ 

requirements for rock-derived P.   

Organic and inorganic inputs differ in their composition and therefore have 

contrasting effects on soil nutrient cycling. While the chemical composition of 

inorganic fertilisers is clearly defined, organic inputs contain a wide range of 

macronutrients, micronutrients, heavy metals and pharmaceuticals which can 

affect crop productivity and nutrient cycling. The integration of waste products 
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into agriculture could therefore affect the phytoavailability of nutrients to plants 

and microorganisms as well as the environmental impact of fertilisation. It has 

been shown that organic inputs increase the risk of P losses in leachate and 

runoff compared to inorganic alternatives (Audette et al., 2016; Vanden Nest et 

al., 2015; Yan et al., 2018) while N losses in leachate and gas are typically higher 

from inorganically treated soils (Kramer et al., 2006; Küstermann et al., 2010; 

Marie et al., 2015; Tuomisto et al., 2012). However, nutrient losses caused by 

organic fertilisers can be similar or exceed nutrient losses caused by inorganic 

fertilisers when results are reported on a per product basis (Mondelaers et al., 

2009; Skinner et al., 2014; Tuomisto et al., 2012). This suggests that the yield 

gap between organic and inorganic farming systems must be closed in order for 

the environmental benefits of organic amendments to be realised (Tuomisto et 

al., 2012).  

This thesis focuses on the integrated use of organic and inorganic fertilisers in 

cereal production. In countries where the use of fertilisers is limited by supply, 

quality or financial constraints, this practice is advocated as a means to provide 

the full complement of essential plant nutrients (Gentile et al., 2009). Farmers are 

encouraged to combine the use of organic and inorganic fertilisers in countries 

such as the United Kingdom and China to minimise the environmental costs 

associated with agriculture (Defra, 2010; Shuqin & Fang, 2018). The latter 

approach could encourage farmers to reduce their use of fertilisers produced 

using techniques which consume finite resources and emit pollutants (Nemecek 

et al., 2011).  

Current studies suggest that substituting inorganic fertilisers with organic 

alternatives can increase P phytoavailability (Ahmed et al., 2019; Hu et al., 2018; 

Reddy et al., 2005), crop P uptake (Mao et al., 2015; Othieno, 1973; ten Hoeve 
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et al., 2018) and P leaching (Leinweber et al., 1999) compared to the sole 

application of inorganic P. A number of mechanisms leading to increased P 

phytoavailability under integrated fertiliser management have been suggested 

including: (i) decreased P sorption/increased P desorption (Jiao et al., 2007; 

Reddy et al., 2005); (ii) increased production of alkaline phosphatase by soil 

microorganisms (Chen et al., 2017; Hu et al., 2018; Liu et al., 2010); and (iii) 

higher concentrations of soil exchangeable calcium (Ca-ex) leading to the 

production of phytoavailable calcium phosphate minerals (Hu et al., 2018). In 

certain cases, higher concentrations of available P may be explained by larger 

inputs of total P in combined compared to inorganic treatments (Chen et al., 2017; 

Liu et al., 2010) although the same trends have also been reported when P 

application rates are equal (Hu et al., 2018; Reddy et al., 2005).  

Many previously published studies report findings of a single soil sampling 

occasion that takes place after harvest, decades after the initiation of integrated 

fertilisation or from experiments with unmatched P application rates (Bolan et al., 

1994; Li et al., 2017; Mokolobate & Haynes, 2003; Sun et al., 2015). The aim of 

this thesis was to determine the short-term effect of integrated fertiliser 

applications on P phytoavailability, crop yields and P leaching when P application 

rates are equal between treatments. The approach taken provides results with 

useful applications because: (i) P is taking over as the nutrient limiting fertiliser 

application rates across Europe (Sigurnjak et al., 2017); and (ii) understanding 

the immediate effects of integrated nutrient management provides insight into the 

possible consequences of the transition period as farmers become less reliant on 

inorganic P. 

6.2 Main findings 



188 
 

 

  

A summary of main findings and their relation to the project’s initial aims and 

objectives is provided in Table 6.1. 
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Table 6.1: Project aims, objectives, hypotheses and predictions are compared with project findings. Abbreviations: PS, pig slurry; DC, digested cake. 

 Chapter Aim and objectives Hypotheses and predictions Main findings 

Three To determine how combining organic and 
inorganic fertilisers affects P phytoavailability 
and wheat productivity in the short term. The 
main questions were:  

1. How does substituting inorganic 
fertilisers with PS affect P 
phytoavailability during the major 
period of P uptake in wheat?  

2. Do shifts in P phytoavailability affect 
wheat productivity? 

3. Does the ratio of organic to inorganic P 
affect P potential P leaching losses?  

Substituting inorganic P with 
PS will affect P 
phytoavailability compared to 
the application of inorganic 
fertilisers applied alone. P 
phytoavailability, potential 
leaching losses and uptake will 
be higher in the treatment 
receiving PS and inorganic P 
than the treatment receiving 
only inorganic P. 

1. Substituting inorganic P with pig slurry 
had no statistically significant effect on P 
phytoavailability or potential P leaching 
losses compared to the application of 
inorganic P alone.  

2. Wheat aboveground dry weight was 
statistically significantly lower in both 
treatments receiving pig slurry after eight 
weeks growth.  

Four To determine how substituting inorganic P with 
organic alternatives affects P phytoavailability 
in the short term. The main questions were: 

1. How does substituting inorganic 
fertilisers with organic alternatives 
affect P phytoavailability during and 
after the major period of P uptake in 
wheat? 

2. How important is the organic 
amendment being incorporated in 
determining the magnitude and 
direction of the response in terms of P 
dynamics?  

3. How does substitution of inorganic 
fertilisers with organic inputs affect P 
leaching losses compared to the 
application of inorganic P alone? Is the 

Substituting inorganic P with 
PS or DC will affect P 
dynamics compared to the 
application of inorganic 
fertilisers applied alone. P 
phytoavailability and losses will 
be higher in both substitution 
treatments compared to the 
inorganic treatment, but the 
effect will be greater for PS 
than DC.  

1. There was no statistically significant 
difference in P phytoavailability between 
the inorganic or either substitution 
treatments during stem elongation or 
anthesis.  

2. Out of the inorganic and both substitution 
treatments, only the PS substitution 
treatment significantly increased the 
concentration of Olsen’s P above the 
level of the zero-input control during 
anthesis. 

3. PS increased Olsen’s P concentration 
compared to the baseline when applied 
alone. DC only increased Olsen’s P 
concentration compared to the baseline 
when applied with inorganic P.  

4. The concentration of available P in soil 
increased between stem elongation and 
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response the same for both organic 
amendments? 

 

anthesis for the PS substitution 
treatment, while POlsen’s peaked during 
stem elongation and then plateaued for 
the inorganic and DC substitution 
treatments. 

5. There was no statistically significant 
difference in P leaching losses between 
the inorganic treatment and either 
substitution treatment.   

Five To determine how shifts in nutrient availability 
caused by substitution of inorganic P with DC 
and PS affect wheat productivity and nutrient 
uptake, compared to the application of 
inorganic P alone. The main questions were: 

1. How does grain yield respond to 
substitution of inorganic P with DC and 
PS? 

2. Is the nutrient content of grain affected 
by substitution of inorganic P with DC 
and PS? 

3. Can changes in soil nutrient availability 
during stem elongation or anthesis 
explain yield trends? 

Phosphorus phytoavailability 
will be increased when 
inorganic P is substituted with 
DC or PS, increasing P uptake 
and grain yield compared to 
the application of inorganic P 
alone.   

1. Grain yield decreased in the order 
inorganic, PS substitution, DC 
substitution, but there was no statistically 
significant difference between 
treatments.  

2. There was no statistically significant 
difference in grain N or P concentration 
between treatments.  

3. N was the key nutrient in determining 
productivity. There was a small, 
statistically insignificant effect of adding 
P on grain yield.  

4. It was not possible to determine the 
effect of nutrient availability on grain dry 
weight due to data failing to meet test 
assumptions.  
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6.2.1 Empirical chapters 

The aim of chapter three, the first empirical chapter, was to determine how partial 

substitution of inorganic P with pig slurry (PS) affects soil P phytoavailability, 

uptake and leaching risk during the major period of nutrient uptake in wheat. P 

phytoavailability, measured as Olsen’s P (POlsen’s) concentration, was similar 

between treatments. Adding P increased P leaching risk, regardless of the ratio 

of organic:inorganic P, although leaching was estimated from measures of water-

soluble phosphorus (Pwater) rather than being directly quantified. The most 

noticeable effect of substitution was on biomass; adding pig slurry alone or in 

combination with inorganic fertilisers significantly (p < 0.001) decreased yield 

compared to the application of inorganic fertilisers alone. However this was 

unlikely to be due to differences in P phytoavailability, as Olsen’s P concentration 

was similar between treatments. These findings oppose those of previous studies 

which show increased P phytoavailability, leaching risk (Leinweber et al., 1999), 

P uptake (Bolan et al., 1994; Mao et al., 2015; Othieno, 1973; Xin et al., 2017) 

and yield (Bedada et al., 2014; Ge et al., 2010; Pincus et al., 2016; Zhao et al., 

2016) when fertiliser sources are combined compared to the sole application of 

inorganic P. The data suggests that the form of N added and 

immobilisation/remineralisation reactions, which have been described in previous 

studies (Gentile et al., 2013, 2009), may be responsible for the decrease in yield 

reported in this study. The results of chapter three led to four main questions for 

future research:  

1. Do the same patterns in available P concentration occur on a soil with a 

low starting P status? 

2. How do changes in the concentration of available P and N over time affect 

wheat productivity and nutrient uptake? 
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3. How do different organic amendments behave in combination with 

inorganic fertilisers? 

4. Do observed decreases in total aboveground dry weight at the end of stem 

elongation affect grain yield in substitution treatments? 

To answer the questions presented by the results of chapter three, a study was 

undertaken in which inorganic fertilisers were substituted with digested cake (DC) 

or pig slurry. Results are reported in chapter four, the second empirical chapter. 

Plants were grown to harvest and cores were repeatedly sampled during the 

study which allowed soil nutrient dynamics to be monitored at major periods of 

wheat development. The inputs were chosen because results of current studies 

suggest that the amendments differ in their ability to increase soil available P 

concentration and because of the low N:P ratio of DC compared with PS; DC had 

to be supplemented with ammonium nitrate (NH4NO3) while PS provided all the 

plant’s readily available N.  

Results of chapter four largely corroborate those of chapter three in terms of the 

effect of integrated fertiliser management on soil available P concentration. 

During stem elongation, the concentration of Olsen’s P decreased in the order 

inorganic, pig slurry substitution, digested cake substitution but the difference 

between treatments was not statistically significant. This study extends upon 

chapter three by analysing soil available P concentrations during anthesis. At this 

time point, Olsen’s P concentration decreased in the order PS substitution, 

inorganic, DC substitution although there was no statistically significant difference 

between these treatments. The results of this study therefore suggest that 

substituting inorganic P with PS and DC does not affect the concentration of 

phytoavailable P in soil compared to the sole application of inorganic P. This 

study challenges previous greenhouse and incubation studies which have shown 
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the combined use of organic and inorganic fertilisers leads to short-term 

increases in available P concentrations compared to the sole application of 

inorganic fertilisers, but these studies often fail to account for the P contained in 

organic fertilisers (Bolan et al., 1994; Delgado et al., 2002; Mokolobate & Haynes, 

2003; Othieno, 1973). The results presented here provide further support for the 

importance of ensuring treatments are matched for P application rate (Guppy et 

al., 2005a) when comparing available P concentrations in soil.  

The analysis of between-subjects effects described above was less revealing 

than the effect of each treatment on Olsen’s P concentration over time. There 

were two main findings of repeated measures analysis. Firstly, Olsen’s P 

concentration only increased significantly compared to the baseline level when 

DC was applied in combination with inorganic P (DC substitution) and not when 

DC was applied alone (DC only), while PS applied alone (PS only) led to a 

statistically significant increase in Olsen’s P concentration between the baseline 

and stem elongation sampling point. This finding supports research which has 

shown DC is less effective than inorganic fertilisers at increasing P 

phytoavailability (Alleoni et al., 2008; Brandt et al., 2004; Elliott et al., 2005, 2002), 

but also suggests this limitation could be overcome by the addition of inorganic 

P, a practice which may be critical in P-limited soils.  Secondly, while Olsen’s P 

concentration peaked during stem elongation for the inorganic and DC 

substitution treatment, the concentration increased significantly between stem 

elongation and anthesis for the PS substitution treatment. Considered together, 

these results suggest increases in available P concentration following integrated 

fertiliser management reported in long-term studies (Ahmed et al., 2019; Hu et 

al., 2018; Xin et al., 2017) may not develop immediately but come to fruition 

through gradual accumulation of the soil reserve.  



194 
 

 

  

The findings of chapter four show that treatments differed in their ability to 

increase P phytoavailability over time. Over one crop cycle, the PS substitution 

treatment increased mean Olsen’s P concentration 69.6% compared to the 

baseline level, while the DC substitution and inorganic treatments increased 

mean Olsen’s P concentration by 42.7% and 38.0%, respectively. In the United 

Kingdom, P inputs should not be made when the concentration of Olsen’s P 

exceeds 26 mg kg-1 (Agriculture and Horticulture Development Board, 2017). 

Assuming the percentage increase in the second year of application matched that 

reported in the first and that P application rates stayed the same, cores treated 

with the PS substitution, DC substitution and inorganic fertilisers could be 

expected to have a mean Olsen’s P concentration of 32.2, 21.0 and 24.6 mg/kg, 

respectively, at the end of the second year (Figure 6.1). In a “real-world” situation 

the farmer would only apply P in the DC substitution and inorganic treatments in 

the third year, while soils treated with the PS substitution would not receive any 

P. This suggests that repeated integrated fertiliser applications could increase the 

concentration of Olsen’s P in soil faster than the application of inorganic P alone, 

reducing the need for P fertilisation in later seasons. British fertiliser 

recommendations suggest sampling soils once every three to five years to ensure 

that the soil P index is maintained. The results presented here suggest that it may 

be beneficial to sample soils amended with organic and inorganic fertilisers more 

regularly than stated in the current recommendations to avoid over-applying P 

and increasing P leaching risk.  
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Figure 6.1: Summary of the effect of sole inorganic and integrated organic-inorganic fertiliser management in the first and second season of application. In season 

one, the concentration of available P during stem elongation compared to the baseline level (2) was increased by all treatments. There was no statistically significant 

effect of integrated fertiliser management (1b and 1c) on the concentration of soil available phosphorus (P), grain P content (5a – 5c) and P leaching (4a – 4c) compared 

to sole inorganic fertilisation (1a). The concentration of available P increased significantly between stem elongation and anthesis (3) for the pig slurry substitution only. 

Results in season two are predicted from trends in season one. Circles represent percentage increase in available P pools, rather than absolute P values, and are to 

scale. Total and grain biomass are represented by the size of plants.     
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In this study P leaching losses were measured directly following integrated 

nutrient management; previous studies have estimated P leaching by calculating 

unaccounted P but have not made direct measurements (Mao et al., 2015; Xin et 

al., 2017). As expected from Olsen’s P and Pwater results, there was no statistically 

significant effect of treatment on the concentration of soluble reactive phosphorus 

(SRP) in leachate collected at harvest. Cores were leached once at the end of 

the experiment to avoid confounding effects on the concentration of nutrients in 

soil. Pwater was therefore measured throughout the growing period as a proxy for 

SRP leaching (Leinweber et al., 1999; Pote et al., 1996; Schoumans & 

Groenendijk, 2000). Although there was no statistically significant difference in 

Pwater concentration between treatments at any time point, of treatments receiving 

their full allocation of N and P only the PS substitution and inorganic treatments 

increased the concentration of Pwater compared to the baseline level. Therefore 

the results suggest that DC was less effective than pig slurry at increasing the 

concentration of both Olsen’s P and Pwater in soil. They also show that partial 

substitution of inorganic P with organic alternatives does not increase the risk of 

P leaching in the short term compared to the sole application of inorganic P.   

The aim of chapter five was to determine how substitution of inorganic P with DC 

or PS affected wheat grain yield. In chapter three, results showed a 30% 

decrease in mean total aboveground dry weight when inorganic P was substituted 

with pig slurry. However, the conclusions that could be drawn from chapter three 

are limited because the experiment was terminated eight weeks after fertilisation, 

before the production of grain. The results of chapter five showed similar 

decreases in total aboveground dry weight at harvest; mean total aboveground 

dry weight was reduced by 29% and 25% for the pig slurry and digested cake 

substitution treatments, respectively, compared to the inorganic treatment. 
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Median grain dry weight decreased in the order inorganic, PS substitution, DC 

substitution but the difference between treatments was not statistically significant. 

However, only the inorganic and full rate Ni treatment statistically significantly 

increased grain dry weight compared to the zero-input control. The data suggests 

that N increased the number of ears and therefore the number of grains per plant, 

resulting in a higher median grain dry weight than if N was not applied. 

Regression analysis showed a weak but statistically significant positive 

relationship between the concentration of nitrate-N (NO3-N) in soil during stem 

elongation and total dry weight at harvest.  Using hierarchical multiple regression 

(HMR), it was shown that the concentration of ammonium-N (NH4-N) and NO3-N 

statistically significantly added to the F value of the model, with negative 

coefficients. The data therefore suggests that plants with greater demand or 

capacity for N uptake accumulated the most biomass.  

Compared to N, the role of P in determining total aboveground dry weight was 

negligible. Median grain dry weight was 13.6% higher in the full rate Pi treatment 

compared to the zero-input treatment and 8.75% higher in inorganic treatment, 

which received inorganic N and P, than the treatment receiving the full rate of Ni 

only. However, these differences were not statistically significant suggesting P 

only had a small effect on yield. There was no statistically significant difference 

in the concentration or total amount of P in grain between the inorganic, PS 

substitution and DC substitution treatment which was expected given the 

similarity in Olsen’s P concentration between treatments during stem elongation. 

The findings presented here challenge the few previously published papers 

investigating P uptake and content following combined fertiliser application which 

show that the integration of organic and inorganic fertilisers increases P uptake 

and concentration compared to the application of inorganic fertilisers alone 
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(Bolan et al., 1994; Mao et al., 2015; Othieno, 1973; Xin et al., 2017). It is possible 

that these patterns only develop after years of repeated applications (Xin et al., 

2017) or when the total amount of P applied in the combined treatment exceeds 

that in the inorganic treatment (Mao et al., 2015; Othieno, 1973). The data 

therefore suggests that trends of higher P uptake under integrated fertiliser 

management may not emerge if P fertiliser application rates respond to changes 

in soil available P over time. The findings also show that grain protein content 

was unaffected by substitution of inorganic fertilisers with organic alternatives. 

Overall the findings indicate that grain nutrient content and quality could be 

unaffected by integrated fertiliser management in the  short term. 

The findings of this thesis provide strong support for the inclusion of plants in 

greenhouse studies investigating the effect of fertiliser management on soil 

nutrient status and leaching losses, particularly when studying nitrogen. 

Fertilisation strategies that increased productivity decreased the concentration of 

NO3-N and NH4-N in soil during anthesis and reduced the concentration and load 

of NH4-N in leachate at harvest. For crops like winter wheat that are harvested in 

late summer (Agriculture and Horticulture Development Board, 2018), strategies 

that reduce the level of available nutrients in soil after crop removal are beneficial 

because most leaching takes place over winter (David et al., 1997; Greer & 

Pittelkow, 2018; Shepherd & Lord, 1996). If plants had not been included in the 

experimental design, it is possible N would have accumulated over the course of 

the experiment without being consumed by the plant and therefore N leaching 

would be expected to be higher from soils amended with N. The feedback 

between soil and plant is therefore crucial when determining the environmental 

impact of a fertiliser treatment.  

6.2.2 Contribution to identified knowledge gaps 
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The introduction chapter found a lack of agronomically-relevant short-term 

studies investigating the effect of integrated fertiliser management on soil 

available P concentrations, crop P uptake, P leaching losses and yield. The data 

presented here shows that substituting 50% of the P budget with pig slurry or 

digested cake has no statistically significant effect on the soil available P 

concentration, P leaching losses, crop P uptake and grain yield in the first season 

compared to the sole application of inorganic fertilisers (Figure 6.1). Although 

available P concentrations were similar between treatments, trends in available 

P concentration over time differed; Olsen’s P concentration was statistically 

significantly higher during anthesis compared to stem elongation for the pig slurry 

substitution treatment but there was no statistically significant difference between 

stem elongation and anthesis for the digested cake substitution and inorganic 

treatment. The results therefore show that the choice of organic fertiliser could 

have important consequences for P accumulation in the short term and affect the 

amount of fertiliser that needs to be applied in following seasons.    

6.2.3 Implications and limitations of findings 

This thesis focuses on the concentration of phytoavailable phosphorus in soil, a 

very small component of the wider global P cycle. Concerns over P largely focus 

on supply and leakiness, but these flows are intimately linked with soil available 

P. P phytoavailability concentration dictates P application rates (Agriculture and 

Horticulture Development Board, 2017) and is positively correlated with P 

leaching losses (Leinweber et al., 1999; Pote et al., 1996; Schoumans & 

Groenendijk, 2000). The data presented here suggests that integrating organic 

and inorganic P could reduce farmers’ requirements for rock P while maintaining 

soil available P levels and P leaching losses, compared to the sole application of 

inorganic P. At a broad scale, adopting integrated fertiliser management could 
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extend the lifetime of remaining P reserves and sustain yields without increasing 

the environmental cost of agriculture compared with inorganic fertilisation.  

There are several limitations to the research presented in this thesis. 

Firstly, the conclusions that can be drawn from this work are limited because 

experiments were conducted in a greenhouse. It is not possible to state that 

results obtained in a temperature and light-controlled environment are 

reproducible in the field. Temperature and drying-rewetting cycles have both 

been shown to affect phosphorus phytoavailability in soil (D. Sun et al., 2017). 

Higher average temperatures and regular watering in the greenhouse are 

therefore potential sources of difference between results obtained in controlled 

environments and the field.  

Secondly, while this thesis focuses on and addresses the effect of recently-

applied fertilisers on P phytoavailability it would benefit from the studies being 

repeated on the same soils over multiple seasons. This would allow the effect of 

both recent and repeated applications on phosphorus phytoavailability to be 

assessed. This information could be used to inform fertiliser guidance, especially 

related to the frequency of sampling in soils that have received integrated fertiliser 

applications.  

Thirdly, the conclusions that can be drawn from this research are somewhat 

complicated by the inclusion of a plant. It is not possible to separate soil 

concentrations of N and P from plant uptake; is the concentration of available 

nitrogen lower because productivity is higher, or because the fertiliser added is 

less effective at increasing available nitrogen concentration? It would be possible 

to address this with radioactive labelling techniques, or with complimentary 

incubation studies in equal conditions but in the absence of a plant. 
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Fourthly, this study focuses on labile P concentration in the form of Olsen’s P and 

water-soluble P. As a result, there is no information presented related to non-

labile P forms. To elucidate the distribution of P across multiple pools a sequential 

extraction technique could be adopted. This would start to develop a mechanistic 

understanding of the effect of recently-applied fertilisers on P phytoavailability. 

Further mechanistic insights could be gained using P sorption isotherm 

techniques.  

Finally, the research would benefit from inclusion of potassium in nutrient 

budgets. This would overcome doubts related to potassium limitation and 

productivity.  

6.3 Future research questions 

The results of this thesis generate several questions for future research.  

1. Could the size of the substitution be optimised for yield and does this differ 

between organic inputs? 

2. How do results from the greenhouse apply to the field?  

3. Does integrated fertiliser management affect the amount of P fertiliser 

required in future seasons? After how many seasons is P no longer 

required? Do the increases in available P reported in long-term studies 

occur when P application rates respond to changes in concentration of 

available P in soil that result from fertilisation in the previous season? 

These questions could be addressed in two studies. First, a greenhouse study 

following a similar design to the ones reported in this thesis could be used to 

determine the ratio of organic- to inorganic-P required to maximise yield under 

integrated fertiliser management. With this knowledge, a field study could be 
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designed to answer questions two and three. Sampling during the growing 

season would allow for a more detailed understanding of how the integrated use 

of organic and inorganic fertilisers affects P cycling during the crop season. 

Quantitative PCR of microbial genes involved in inositol phosphate hydrolysis 

(phoA, phoD, phoX) and nitrification (amoA, amoB, amoC, hao, nor), analysis of 

soil calcium phosphates and monitoring of soil structure would provide more 

information on the mechanisms that lead to increased P phytoavailability reported 

in long-term studies and the time they take to develop. The results presented 

here suggest a field study of three to five years would be required to answer these 

questions.  
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