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Abstract
Shark skin has fascinated biologists, engineers, and physicists for decades due to its
highly intricate drag-reducing structure, which has motivated a plethora of research into
bio-inspired hydrodynamically efficient surfaces. Throughout this thesis the effect of
shark scales on the boundary layer is investigated, with a particular focus on the role of
riblets in combination with denticles. In addition to examining flows over shark scales
studies are also presented investigating the behaviour of Reynolds Averaged Navier-
Stokes (RANS) models close to solid boundaries, and the scaling and driving mechanisms
of secondary flows over ribletted surfaces.

Extensive numerical and analytical studies are carried out to determine the sensitivity
of eleven turbulence closures to the near-wall grid resolution, and their consistency with
asymptotic solutions. Results inform the choice of turbulence models adopted for simu-
lations of wall bounded flows, particularly where numerical errors must be minimised.

Secondary flows over longitudinal riblets are found to be driven by Reynolds stress
anisotropy, consistent with Prandtl’s second type of secondary flow. The strength of the
vorticity field is heavily dependent on the inner-scaled riblet spacing s+ where two dis-
tinct regimes arise; a viscous regime where vorticity production is balanced by molecular
viscous diffusion, and an inertial regime where an effective turbulent viscosity balances
anisotropic production. The transition between these regimes occurs when riblet tips
protrude into the buffer layer and cause increased turbulent mixing (s+ ≈ 30), such that
vorticity reaches its maximum before reducing as s+ increases further.

Riblets in combination with shark scales do not operate as they do when applied to
smooth walls. Experimental and numerical studies reveal that riblets act to reduce pres-
sure drag acting on roughness elements, rather than the viscous forces typically asso-
ciated with longitudinal riblets. The mechanisms leading to this behaviour are driven
by the ability of riblets to restrict spanwise motion and maintain streamwise-aligned
near-wall flow. By doing so riblets protect downstream denticles from high momen-
tum impinging fluid, and reduce high magnitude swirl generated at the exposed den-
ticle edges, which can otherwise lead to increased turbulent production and enhanced
momentum transfer through the roughness sub-layer. These mechanisms lead to a sig-
nificantly more efficient rough surface than smooth denticles, although do not necessarily
lead to an overall reduced drag compared to a flat plate. These studies conclude that ri-
blets have evolved as a mechanism to reduce or eliminate the skin friction increase due
to the presence of scales. The combination of scales and riblets appears to be relatively
hydrodynamically efficient in terms of skin-friction drag, whilst also acting to maintain
boundary layer attachment and providing the other advantages associated with scales
such as anti-fouling, abrasion resistance, and defence against parasites.
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Chapter 1

Introduction

Sharks were once the dominant vertebrate group in the oceans, with fossils of modern
sharks dating back to the Jurassic period (140 – 170 million years ago), and records of
early ancestors dating back over 300 million years ago (Budker, 1971). The scales of
sharks are among their most characteristic features, with a structure so similar to that
of teeth that they are often termed dermal denticles (i.e ‘skin-teeth’ ), where they erupt
through the epidermis of the skin giving sharks a rough sand-paper like texture when
handled. Dermal denticles vary considerably not only between shark species, but also
depending on the location on the shark body. An example of this is provided by the
Scanning Electron Microscope (SEM) images of Figure 1.1, adapted from Wen, Weaver,
and Lauder (2014). Here the bonnethead shark (Sphyrna tiburo) denticles have a width
of 100 – 200 µm and are reasonably tightly packed, with some regions of scales over-
lapping. Denticle shapes and sizes vary considerably between species; some are tightly
packed and overlap like the bonnethead shark, while others are loosely arranged, some
have sharp spine-like crowns while others appear smooth. A feature often present on
fast-swimming sharks are the riblets observed in Figure 1.1, which typically align with
the flow direction, although even these can vary between species (Bechert, Hoppe, and
Reif, 1985). For example, the riblets on the bonnethead shark samples of Figure 1.1 are

FIGURE 1.1: Scanning Electron Microscope (SEM) images of bonnethead
shark (Sphyrna tiburo) skin at three locations: The head (left), the dorsal fin
(centre), and the anal fin (right). Green scale bar are 200 µm, red scale bars

are 100 µm. Image adapted from Wen, Weaver, and Lauder (2014).



2 Chapter 1. Introduction

different at each sample location, varying from 5 parallel riblets at the shark head, to 3
converging riblets on the pectoral fin, to 3 parallel riblets on the anal fin. Despite the long
evolutionary time scales, fossil denticles have been found to consist of many of the same
features that modern denticles possess. For example, riblets have been observed on some
of the earliest records of fossil scales (Sansom et al., 2012).

There are three theorised functions of shark skin denticles; defence against parasites,
resistance against abrasion, and hydrodynamic efficiency (Reif, 1985). It is this last func-
tion that is the focus of this thesis. In particular seeking to utilise bioinspiration and
biomimicry of these complex rough surfaces for the purpose of improved hydrodynamic
efficiency for engineering applications subject to high fluid drag. There has been ex-
tensive research on the topic of shark skin inspired surfaces for the purpose of reduced
viscous drag, i.e the drag force imposed by the molecular viscosity of a fluid as it passes
over a solid surface. But despite such variability in denticle shape, research has primarily
focused on the riblet features present on the crown of some shark scales. Bioinspired lon-
gitudinal riblets have successfully reduced drag by up to 10% in laboratory experiments
(Bechert et al., 1997), and the fluid dynamic mechanisms that lead to such efficiency are
reasonably well understood. However, literature concerning hydrodynamic experiments
on complex three dimensional shark skin denticles is scarce, and studies vary consider-
ably regarding techniques and flow conditions, making comparisons between data sets
extremely difficult (see e.g. Bechert, Hoppe, and Reif, 1985; Bechert et al., 2000; Zhao et
al., 2012; Wen, Weaver, and Lauder, 2014). Concerning the simplest of flow conditions,
canonical flows over flat plates and through channels, some authors report drag reduc-
tion of a greater magnitude than ribletted plates (e.g. Zhao et al., 2012; Chen et al., 2014;
Domel et al., 2018), while others report significant increases to drag (e.g. Bechert, Hoppe,
and Reif, 1985; Boomsma and Sotiropoulos, 2016). Through a review of these studies in
Chapter 2 this lack of agreement is identified as a poor understanding of the relationship
between denticle geometry and hydrodynamic performance. Only a few have reported
drag measurements of more than one denticle geometry (e.g. Bechert, Hoppe, and Reif,
1985; Fletcher, 2015), or adopted techniques that can obtain flow field data close to the
denticles (e.g. Boomsma and Sotiropoulos, 2016), both of which are key to understanding
the morphological evolution of denticles and identifying potential biomimetic engineer-
ing applications.

These deficiencies necessitate the use and development of techniques that can quan-
tify effects of denticle geometry on the boundary layer, motivating the use of Reynolds
Averaged Navier-Stokes (RANS) closures. While Direct Numerical Simulation (DNS)
has been successfully adopted for modelling shark skin flows it is extremely costly; the
large difference in length scale between the shark skin denticles and the boundary layer
height necessitates considerably finer grids than smooth wall flows (see e.g. Boomsma
and Sotiropoulos, 2016). In contrast RANS closures are significantly cheaper but re-
quire validation, especially given that simpler flows, such as those over ribletted plates,
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have yet to be accurately predicted (e.g. Launder and Li, 1993; Djenidi and Antonia,
1995). This thesis therefore comprises of several RANS studies, aimed at developing
and validating RANS models for smooth and ribletted channel flows before carrying
out numerical simulations of the flow over shark scales. These additional studies also
allow investigation into the limiting behaviour and numerical properties of RANS mod-
els near solid boundaries, and the identification of mechanisms driving and sustaining
secondary flows above streamwise-aligned parallel riblets. Finally RANS closures are
adopted to model the boundary layer flow over shark scales, validated against Laser
Doppler Anemometry (LDA) experiments. These LDA experiments obtain boundary
layer measurements above 3D printed smooth and ribletted denticles, assessing their in-
fluence on the boundary layer and effects on skin friction. Experimental and numerical
data are subsequently employed to identify the role of riblets in combination with denti-
cles.

1.1 Aim and objectives

The aim of this thesis is to develop experimental and numerical techniques capable of
carrying out parametric studies on denticle geometry, and using these to identify the role
of riblets in combination with denticles to establish whether riblets are solely responsible
for drag reduction. This will be realised through the following objectives:

1. Carry out a review of previous work on the hydrodynamics of riblets and shark
scales and identify knowledge gaps and appropriate experimental and numerical
methodologies.

2. Carry out laboratory experiments to obtain flow field measurements of a turbulent
boundary layer flow over smooth and ribletted denticles.

3. Establish the near-wall behaviour and numerical properties of Reynolds Averaged
Navier-Stokes (RANS) closures for a fully developed smooth channel flow, and
identify models appropriate for modelling rough-wall flows.

4. Validate RANS closures by simulating a fully developed channel flow over two-
dimensional sawtooth riblets and comparing solutions to experimental and numer-
ical literature data. Use these results to identify the mechanisms driving and sus-
taining secondary flows at the riblet tips, and how secondary flows scale with the
riblet size.

5. Extend numerical models to shark skin denticles and validate solutions against
experimental data. Use solutions to investigate near-denticle flow structures and
identify the role of riblets in combination with shark skin denticles.
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1.2 Thesis organisation

Each of the five objectives is presented as a separate Chapter in this thesis. Chapter 2
presents an introduction to boundary layer flows and the quantification and effects of
surface roughness. The literature regarding flows over riblets is then detailed in Section
2.3, with a particular focus on the secondary flows that develop near the riblet surface.
Finally the fluid dynamic experiments on shark skin denticles are reviewed in Section
2.4, with a focus on their application to canonical boundary layer flows. Application of
denticles to more complex flow conditions such as boundary layer separation are briefly
reviewed for completeness.

Chapter 3 presents an experimental study on 3D printed smooth and ribletted shark
skin denticles, using 2D Laser Doppler Anemometry (LDA) to measure the turbulent
boundary layer flow. Turbulent statistics and drag coefficients are compared at several
Reynolds numbers in order to identify the role of riblets in combination with denticles.

Chapter 4 presents analytical and numerical solutions for a fully developed turbu-
lent channel flow approximated using RANS closures. The motivation of this work is to
determine appropriateness of turbulence models for the simulation of rough-wall flows,
where near-wall grid resolutions will vary significantly. There is a particular emphasis
on the choice of scale-determining variable used to close RANS models, which is found
to have a significant influence on discretisation error. The RANS models deemed appro-
priate through smooth channel flow simulations are extended to ribletted channels and
validated against experimental and numerical literature data in Chapter 5. Furthermore,
an extensive analysis on the mechanisms driving and sustaining secondary flows is car-
ried out, using both numerical and analytical techniques. Finally, the flow over shark
scales is simulated using RANS models in Chapter 6, and validated against the experi-
mental data of Chapter 3. New insights regarding the influence of riblets on near-denticle
flow are identified, and with the support of experimental data the implications on the hy-
drodynamic function of shark skin are discussed. The thesis is concluded in Chapter 7,
summarising all present work and detailing key areas that require further research.
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Chapter 2

Boundary layers, surface roughness,
and the hydrodynamics of shark skin
denticles

Shark skin is a highly intricate rough surface comprised of tooth-like denticles embedded
into the dermis. Denticles are thought to have evolved to the benefit of hydrodynamic ef-
ficiency, defence against abrasion, and protection against parasites (Reif, 1985). The drag
forces acting on a shark body can be split into several different components (Fletcher et
al., 2014): Form drag due to the displacement of fluid around the shark body, induced
drag due to the lift forces created by the foil-like fins, and skin friction drag arising from
the no-slip condition and subsequent large velocity gradients at the shark surface. Hy-
drodynamically shark skin denticles are extremely small with respect to the length scales
associated with the flow around a shark, and are located within the turbulent boundary
layer, such that their primary influence is on skin friction drag. Before discussing the fluid
dynamics of denticles the turbulent boundary layer is introduced, as is the influence of a
typical rough surface. Longitudinal surface riblets are then discussed, a particular type of
shark-skin inspired surface roughness that has been shown to reduce drag by up to 10 %
(Bechert et al., 1997). Unlike denticles, riblets have seen an extensive amount of research
over the last few decades, and their drag reducing mechanisms are reasonably well un-
derstood (e.g. Luchini, Manzo, and Pozzi, 1991; Bechert et al., 1997; Garcı́a-Mayoral and
Jiménez, 2011a). Finally the hydrodynamics of shark skin denticles are discussed, in the
context of both separating flows and attached turbulent boundary layer flows.

2.1 The turbulent boundary layer

The turbulent boundary layer, arising from the no-slip condition, is governed by two sets
of scales whose influence is stratified in terms of wall distance (Jiménez, 2004). Near
the wall molecular viscosity (ν) is dominant and the appropriate velocity scaling is the
friction velocity, uτ =

√
τw/ρ, where τw is the wall shear stress and ρ is the fluid density.
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The wall shear stress is given by

τw

ρ
= ν

∂U
∂y

∣∣∣∣
y=0

(2.1)

where U is the mean streamwise velocity and y is the wall-normal coordinate. The inner
length scale is consequently given by δν = ν/uτ, which governs the fluid flow in the
boundary layer close to the wall. Variables scaled by uτ and ν are identified with the
superscript +; i.e near the wall the appropriate scaling for the mean streamwise velocity
U is U+ = U/uτ and the wall-normal coordinate y is scaled such that y+ = yuτ/ν. Below
a wall-normal distance of y+ ≈ 5 the mean streamwise fluid velocity scales linearly with
the wall-normal distance: U+ = y+. Further from the wall is the buffer layer, which
exists between 5 . y+ . 30. This is the most active region of the boundary layer where
the production of turbulent kinetic energy reaches its maximum.

As the distance to the wall increases further the dependence on molecular viscosity
vanishes and the governing length and velocity scales are the freestream velocity U∞ and
the boundary layer thickness δ, which are known as outer scales. This leads to a Reynolds
number δ+ = Reτ = δuτ/ν, which quantifies the scale separation between δ and δν. At
high δ+ the situation can arise where neither scaling is appropriate; y+ is too large for
viscosity to play a dominant role, and the outer coordinate η = y/δ is too small for δ

to be relevant. This leads to the well known log-law or overlap region, where the mean
streamwise fluid velocity is governed by a logarithmic profile based on the wall distance:

U+ =
1
κ

ln y+ + B, (2.2)

where the Kármán constant, κ, and B are log-law constants. This law is extremely robust
for wall bounded flows and typically exists for y+ & 30 and η . 0.15, given δ+ is large.
The log-law constants κ and B tend to fixed values at high Reynolds numbers (Nagib and
Chauhan, 2008), their values dependent on the properties of the wall bounded flow. The
parameter κ depends only on the properties of the overlap region.

The full velocity profile can be observed in Figure 2.1. The overlap region exists for a
significant part of the flow and grows with increasing δ+. It can account for upwards of
70 % of the total growth of streamwise mean velocity, and half of the overall production
of turbulent kinetic energy (Jiménez, 2004).

The wake region exists for a significant portion of the boundary layer, η & 0.15, where
the fluid variables tend to their freestream values. The composite profile of Coles (1956)
is often used to describe the velocity profile for a boundary layer:

U+ = U+
inner + U+

outer. (2.3)

Generally U+
inner is quantified by the log-law (2.2), which is valid for y+ & 30 (Pope,

2001), although other forms have been developed that are valid for the full inner region



2.1. The turbulent boundary layer 7

(e.g Musker, 1979). U+
outer typically takes the form

U+
outer =

2Π
κ
W(η) (2.4)

where Π is the wake strength constant (typically order unity) andW(η) is a wake func-
tion that is assumed universal with the normalisation conditionsW(0) = 0 andW(1) =
1. Chauhan, Nagib, and Monkewitz (2007) review several formulations of W(η), suc-
cessfully finding that exponential forms ofW(η) approximate the wake region well.

Π is generally regarded as a constant with a value≈ 0.4, although Nagib and Chauhan
(2008) have shown that this can vary at low Reynolds numbers. In addition to this the
effect of freestream turbulence can also weaken the wake strength, even causing it to
be negative when turbulence levels are high (Thole and Bogard, 1996). Generally the
effects of freestream turbulence are limited to the outer regions of the boundary layer,
although Thole and Bogard (1996) have shown that in the inner region fluctuating root-
mean-square (RMS) velocities can be affected if the freestream turbulence levels exceeds
those of the boundary layer generated turbulent fluctuations.

The presence of a wall is strongly felt by turbulent fluctuations, where the fluid ve-
locity vector is decomposed into a mean component Ui and a fluctuating component u′i.
The influence of turbulent fluctuations on the mean velocity is felt through the Reynolds
stresses, u′iu

′
j where the overbar represents Reynolds ensemble averaging. The tensor

u′iu
′
j is symmetric; diagonal terms are normal stresses and contribute to turbulent ki-

netic energy (k) by k = 1
2 u′iu

′
i, and off-diagonal terms are shear stresses. For a boundary

layer flow with no spanwise spatial dependence the only non-zero off-diagonal Reynolds
stress is u′v′. The non-zero Reynolds stresses for a fully developed channel flow at

FIGURE 2.1: Typical boundary layer profile for three Reynolds numbers.
Image taken from Perlin, Dowling, and Ceccio (2016).
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FIGURE 2.2: Diagonal (left) and shear (right) Reynolds stresses for a fully
developed channel flow at Reτ = 587. Data from DNS of Moser, Kim, and

Mansour (1999).

Reτ = 587 can be observed in Figure 2.2, using data from the Direct Numerical Simula-
tion (DNS) of Moser, Kim, and Mansour (1999). A particularly interesting feature of the
near-wall Reynolds stresses is the distribution of turbulent kinetic energy over the diago-
nal stresses. The streamwise component has a significantly larger peak in the buffer layer
and contributes most to the overall turbulent kinetic energy. The large differences in the
diagonal Reynolds stresses indicate that near-wall turbulence is highly anisotropic, and
only tends to isotropy far from the wall; for the channel flow of Moser, Kim, and Mansour
(1999) one finds that only at the channel centre (y+ = 587) do the Reynolds stresses con-
verge to a near-isotropic state. Very near the wall (y+ . 10) the wall-normal stresses v′v′

+

are near negligible compared to the tangential stresses. This arises from kinematic condi-
tions and leads to a two-component limit near both free-slip and no-slip walls (Yokojima
and Shima, 2010), a phenomenon known as kinematic blocking. As a result of kinematic
blocking turbulent kinetic energy is re-distributed from wall-normal stresses to tangential
components in a thin-layer near the wall (Mansour, Kim, and Moin, 1988). Interestingly
energy is redistributed in an opposing manner further from the wall, such that tangen-
tial components of the Reynolds stresses transfer turbulent kinetic energy back to the
wall-normal component due to the effects of pressure fluctuations (Manceau, Wang, and
Laurence, 2001). Kinematic blocking and pressure-echo effects present complications to
turbulence modellers attempting to parameterise near-wall turbulence (Manceau, 2015).

2.2 Surface roughness

The majority of real engineering problems are subject to surface roughness which gen-
erally increases skin friction. The first quantitative study on the effect of surface rough-
ness was carried out by Nikuradse (1933) who applied different grain sizes of sand to a
pipe flow and measured the resulting friction factor (equivalent to the coefficient of fric-
tion, C f ). Nikuradse (1933) quantified the effect of surface roughness using the scaling
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k+s = ksuτ/ν where ks is the sand-grain roughness height. Three regimes were identified
based on the value of k+s :

k+s < 5 : Hydraulically smooth,

5 ≤ k+s ≤ 70 : Transitionally rough,

70 < k+s : Fully rough.

The hydraulically smooth regime occurs when the roughness elements do not protrude
above the viscous sub-layer; in this case roughness has no effect on the flow. During the
transitional stage roughness elements begin to protrude beyond the viscous sub-layer,
creating additional turbulent mixing and pressure drag on individual elements; both of
these effects increase the friction factor relative to a smooth surface. As the roughness
height increases it protrudes further into the inner region, reducing the near-wall peak of
turbulent kinetic energy and destroying the buffer region of the flow. In the fully-rough
regime the buffer region is completely broken down and the friction factor is no longer a
function of the Reynolds number.

Outside the ‘roughness sub-layer’ turbulent motions are independent of surface con-
ditions (Raupach, Antonia, and Rajagopalan, 1991), although there has been evidence
that roughness can affect the wake strength Π (Flack, Schultz, and Shapiro, 2005). It
has been generally accepted that the roughness sub-layer extends ≈ 3ks − 5ks (Jiménez,
2004). Quantifying the flow in this region is of course dependent on the geometry of the
rough surface. Outside the roughness sub-layer the mean streamwise velocity maintains
its composite form (2.3) with an additive constant to the inner profile:

U+
inner =

1
κ

ln y+ + B− ∆U+, (2.5)

where ∆U+ is usually known as the roughness function, and acts as an offset to the
smooth-wall velocity profile. There is some complication in defining a wall-normal coor-
dinate y over a rough surface. In order to account for the offset of the flow a virtual origin
∆y must be defined, such that y = ỹ−∆y, where ỹ is the original wall-normal coordinate.
Theoretically this virtual origin arises from the momentum loss of the surface, and is
equal to the mean height of momentum absorption of the surface (Thom, 1971; Jackson,
1981). Experimentally this is generally estimated by maximising the best-of-fit of the log-
arithmic velocity profile above the rough surface (Raupach, Antonia, and Rajagopalan,
1991; Jiménez, 2004).

In the fully rough regime (k+s & 70) the roughness function is related to k+s by (Niku-
radse, 1933)

∆U+ =
1
κ

ln k+s − 3.4. (2.6)



10 Chapter 2. The hydrodynamics of shark skin denticles

This provides a particularly useful relationship between the observed offset to the in-
ner velocity profile ∆U+ and the inner scaled effective sand-grain roughness height k+s ,
such that any typical rough surface quantified by a roughness height k0 can be trans-
formed to an equivalent sand-grain roughness height by establishing the offset ∆U+ and
using the relationship (2.6). Dimensional analysis suggests that for k+0 � 1 a rough sur-
face should have a sand-grain roughness height ks proportional to the dimensions of the
roughness elements, where pressure-drag over individual elements dominates over vis-
cous drag (Jiménez, 2004). Roughness that follows this behaviour is known as K− type,
and is the most common form of roughness (Jiménez, 2004). D−type roughness, a term
first established by Perry, Schofield, and Joubert (1969), does not behave in this man-
ner, and instead has a sand-grain roughness height independent of the dimensions of the
roughness elements. This seemingly contradictory behaviour occurs when roughness el-
ements are tightly packed and shield each other from high speed fluid, as depicted in
Figure 2.3. Here it can be observed that D−type roughness is characterised by confined
regions of recirculating flow inbetween roughness elements, leading to a partial-slip sur-
face at the roughness crest. In contrast, fluid penetrates inbetween K−type roughness
elements, leading to large pressure forces acting on individual elements. This behaviour
is well quantified by Leonardi, Orlandi, and Antonia (2007) who simulate the flow over
spanwise-homogeneous square roughness elements of different spacings. They observed
a strong dependence on the contributions of viscous and pressure drag acting on the
roughness elements; when viscous drag is dominant the effective sand-grain roughness
height k+s does not scale with the size of the roughness elements i.e D−type. When
pressure-drag dominates over viscous drag the flow can penetrate inbetween roughness
elements and the K−type roughness regime is recovered.

As discussed, typical K−type roughness obtains a roughness sub-layer typically in
the range 3ks − 5ks; beyond this limit the flow is independent of the surface roughness.
According to the Townsend (1976) hypothesis the effect of roughness on the boundary
layer is limited to the inner region, as long as the ratio δ/k0 is large. Jiménez (2004) and
Flack, Schultz, and Shapiro (2005) provide support for this theory and set the lower limit
at δ/k0 ≥ 40. Below this value it’s possible that the impact of roughness can be felt over
the entire boundary layer, a phenomena known as ‘blocking’. This behaviour arises from
the influence of roughness on the log-layer (Jiménez, 2004). As discussed in Section 2.1

FIGURE 2.3: D− (left) and K− (right) type roughness. Flow from left to
right.
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the log-layer can account for upwards of 70 % of the total growth of streamwise mean
velocity, and half of the overall production of turbulent kinetic energy (Jiménez, 2004).
The blockage ratio δ/k0 is a measure of how much the roughness influences this log-
layer; if the roughness height is too large, or conversely the boundary layer too thin, then
the roughness can break down a large proportion of the inner region leading to a global
effect felt over the full boundary layer height. Examples of flows that operate in the
high blockage ratio regime are flows through heat exchangers (Jiménez, 2004) and flows
over urban canopies (Cheng and Castro, 2002). Crucially it is not enough to quantify
the influence of a rough surface on the turbulent boundary layer by just a roughness
Reynolds number k+0 . Unless the boundary layer is very thick compared to the roughness
height, blockage effects may also affect the flow, making it vital to report the ratio δ/k0.

2.3 Longitudinal riblets

Surface roughness is generally detrimental to skin friction due to contributions of pres-
sure drag on roughness elements (Leonardi, Orlandi, and Antonia, 2007) and large in-
creases in turbulent mixing in the inner layer (Jiménez, 2004), as discussed in Section 2.2.
However, this is not true of all rough surfaces. An extensive amount of work has been
carried out on simplified, sharkskin-inspired, surface riblets which have been successful
in reducing drag for open channel flows, closed channel flows, and when applied to aero-
foils (Bixler and Bhushan, 2013). Surface riblets are generally two-dimensional, with no
variation in cross section in the streamwise direction. The most popular cross sectional
shapes are blade-like, sawtooth, and scalloped, although they are theorised to reduce
drag in the same way. An example of blade-like riblets is presented in Figure 2.4, and
when compared to the denticle samples of Figure 1.1 it is clear that the intricate details
present on real shark scales are lost. Riblets are typically characterised by their spacing in
wall units, s+ = uτ0s/ν (Dean and Bhushan, 2010), where s is the spacing between riblet
tips and uτ0 is a reference flat plate friction velocity, although other characteristic scalings

FIGURE 2.4: An example of blade-like riblets where s is the riblet spacing,
h is the riblet height, and t is the width of the riblet tip.
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have been suggested. For example, Garcı́a-Mayoral and Jiménez (2011b) proposed a scal-
ing based on the cross-sectional groove area, (A+

g )
1/2 where for the blade like riblets in

Figure 2.4 Ag = sh where h is the riblet height. These scalings are clearly analogous to the
sand-grain roughness height k+s , essentially a measure of how large the riblet geometry
is compared to the viscous length scale. The performance of a typical ribletted surface is
presented in Figure 2.5, where the difference in wall shear stress, (τw − τ0)/τ0 = ∆τ/τ0,
is plotted against the dimensionless riblet spacing, s+, where τw is the wall friction for
the riblets, and τ0 is the friction for a reference smooth surface. The viscous regime ex-
ists for riblets with a spacing of s+ . 10− 15 where the drag reduction scales linearly
with spacing, depending on the particular riblet geometry. For s+ → 0 one should obtain
∆τ → 0; i.e for vanishingly small riblets τw should tend to the flat plate shear stress τ0.
The gradient of the linear viscous regime is given by ms and is often used to quantify the
performance of a particular type of riblet (Bechert et al., 1997).

A more robust quantification of the viscous region is provided by Garcı́a-Mayoral
and Jiménez (2011b): (A+

g )
1/2 . 11. For small s+ the riblets are submerged in the viscous

sub-layer. Realising this, Luchini, Manzo, and Pozzi (1991) used the two-dimensional
linear Stokes equations to investigate the flow field. The performance of a particular ri-
blet geometry was found to be related to its virtual origin, whereby the riblet surface can
be represented by a flat plate whose origin lies somewhere below the riblet tips. Luchini,
Manzo, and Pozzi (1991) determined that the virtual origin of spanwise flow lies deeper
in the riblet than for streamwise flow. The difference between these two origins is termed
the protrusion height, ∆h. Luchini, Manzo, and Pozzi (1991) argued that the larger the
protrusion height, the larger the restriction on spanwise flow that could otherwise lead
to turbulent mixing above the riblets. Further to this, Luchini, Manzo, and Pozzi (1991)
calculated theoretical protrusion heights for various riblet geometries, clearly linking the

FIGURE 2.5: General structure of a drag reduction profile for a typical ri-
bletted surface. ms is the slope of the viscous regime. Image taken from
Garcı́a-Mayoral and Jiménez (2011a), originally adapted from Bechert et

al. (1997).
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drag reduction of the viscous region to the riblet cross section. This theory is supported
by the inhibition of near-wall low speed streaks observed by Chu and Karniadakis (1993),
and the study of Yang et al. (2016) who observed a reduced number of sweep and ejec-
tion events over a ribletted surface which are known to be large contributors to turbulent
mixing (Pope, 2001). The Stokes flow approximation is further supported by Garcı́a-
Mayoral and Jiménez (2011b); through Direct Numerical Simulation (DNS) of a channel
flow Garcı́a-Mayoral and Jiménez (2011b) identified a stable spanwise recirculation pat-
tern inside the riblet spacing that mimicked those of a two-dimensional linear Stokes
solution.

An empirical model predicting the drag reduction of a ribletted surface in the viscous
regime was derived by Bechert et al. (1997):

∆τ

τ0
= mss+ = − µ0(∆h/s)

(2C f )−1/2 + (2κ)−1 s+, (2.7)

where ms is the gradient indicated by Figure 2.5, µ0 = 0.785 is an empirical constant, C f =

τw/ 1
2 ρU2

∞ is the friction coefficient, and U∞ is the freestream velocity. The roughness
function of (2.5) is related to the protrusion height by ∆U+ = −µ0∆+

h , such that the mean
velocity profile is shifted upwards, contrary to typical rough surfaces.

The breakdown or optimum regime is obtained when the riblet spacing s+ increases
beyond s+ ≈ 10, where the recirculating flow identified by Garcı́a-Mayoral and Jiménez
(2011b) becomes increasingly unstable and asymmetric. At the breakdown region, Garcı́a-
Mayoral and Jiménez (2011b) identified the formation of large spanwise vortices, above
the riblet tips, due to a Kelvin-Helmholtz type instability. The same vortices were identi-
fied in further simulations at a Reynolds number of Reτ = δ+ ≈ 550 (Garcı́a-Mayoral and
Jiménez, 2012), and drag reduction profiles of a similar magnitude to the Reτ ≈ 180 case
were obtained. While not explicitly discussed, the agreement between these simulations
could be partly due to the blockage ratios. The riblet geometry investigated by Garcı́a-
Mayoral and Jiménez (2012) was blade-like, as per Figure 2.4, with the dimensions s = 2h,
and s = 4t. If it is assumed that the riblet height is an appropriate roughness length scale
then the blockage ratio at s+ = 16 is δ/h = 22.5 at Reτ = 180. However, the blade-like
riblets are only present on 25 % of the wall surface, such that their average height, h,
over the whole plate leads to a blockage ratio of δ/h = 90. The true roughness height
will likely lie between these two values, but it seems reasonable that the blockage ratio is
close to the regime δ/k0 ≈ 40 such that blockage effects are minimal (Jiménez, 2004). Any
increase to Reτ will increase the separation between h and δ, thus increasing the blockage
ratio further. Perhaps this partly explains why solutions at Reτ ≈ 180 are so similar to
Reτ ≈ 550, since even at the lowest Reynolds number blockage effects are weak.

As the dimensionless riblet spacing increases beyond the optimum regime, s+ & 30,
the riblets begin to interact with layers above the viscous sub-layer leading to increased
turbulent mixing. Here the riblets behave like typical K-type roughness. As the riblet
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spacing increases, they lose their ability to constrict spanwise flow and fast moving fluid
can penetrate to the base of the grooves, as observed by Lee and Lee (2001).

The riblet drag reduction profiles obtained by Bechert et al. (1997) and Garcı́a-Mayoral
and Jiménez (2011b) can be observed in Figure 2.6. Here the drag reduction, DR =

−∆τ/τ0 is normalised against the viscous slope ms. Blade-like, scalloped and sawtooth
riblets of varying dimensions are plotted in the experimental ensemble, leading to con-
vergence to a common curve in the viscous region, with deviations occurring for s+ & 15.
The DNS data of Garcı́a-Mayoral and Jiménez (2011b) lies in the centre of the experimen-
tal scatter. Better collapse of the data can be obtained when normalising by (A+

g )
1/2 as per

Garcı́a-Mayoral and Jiménez (2011a) (Figure 2.6. Despite some scatter due to differences
in riblet geometry, Figure 2.6 demonstrates excellent agreement between the different in-
vestigative techniques; the viscous regime predicted by linear stability analysis (Luchini,
Manzo, and Pozzi, 1991) is obtained for small s+, while the experiments and DNS lead to
consistent predictions of the breakdown and K−type roughness regimes.

In contrast, Reynolds Averaged Navier-Stokes (RANS) type methodology has seen
little use for the prediction of these flows. The earliest reports of RANS simulations
over riblets were from Launder and Li (1993) and Djenidi and Antonia (1993), who both
adopted Low Reynolds number k− ε turbulence closures. Launder and Li (1993) inves-
tigated the flow over several riblet configurations; idealised (zero-thickness) L-shaped
(blade-like) riblets, V-grooved (sawtooth) and a U-type riblet. The predicted behaviour
of the zero-thickness riblets were similar to the drag reduction regimes described previ-
ously; a linear region was obtained for small inner scaled riblet heights h+ (an equivalent

FIGURE 2.6: Drag reduction of different riblet geometries as a function of
the inner-scaled riblet spacing s+ (left) and inner-scaled square-root of the
cross-sectional groove area l+g = (A+

g )
1/2 (right). Drag reduction is nor-

malised by respective viscous slopes, ms and ml . Data are (M) experimen-
tal data of Bechert et al. (1997), and (•) DNS data for blade-like riblets from
Garcı́a-Mayoral and Jiménez (2011b). Image taken from Garcı́a-Mayoral

and Jiménez (2011a).
.
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scale to s+), where the drag reduction behaves like equation (2.7), a break-down regime
follows where an inflection point is reached, and then drag slowly increased like K−type
roughness. While the trends are consistent with experiments and DNS the values of the
optimum h+ were four times larger than those observed in experiments, and the drag
reduction was overpredicted by greater than 20 % for a channel bulk Reynolds number
of Reb = Ubδ/ν = 50000 and s/h = 1, where Ub is the channel bulk velocity. When
extending the problem to finite-thickness riblets different behaviour emerged; while lev-
els of drag reduction were similar to those of experiments, the critical values of h+ were
always over predicted. In addition to this the RANS model predicted increased drag for
s+ . 10, rather than a linear decrease as per equation (2.7). This lack of a linear regime
was also predicted by the RANS predictions of Djenidi and Antonia (1993). This is a
particularly concerning solution, given that one would expect to converge to a flat plate
solution, i.e ∆τ/τ0 = 1, for vanishingly small riblets: h+ → 0.

These result are perhaps unsurprising; both Launder and Li (1993) and Djenidi and
Antonia (1993) adopted Low Reynolds number k− ε turbulence closures that could not
account for near-wall anisotropy. They assumed the Reynolds stresses could be ade-
quately represented by a scalar eddy viscosity, νt, which was damped towards its near-
wall asymptotic solution using functions based on the local turbulent Reynolds number,
and in the case of the model of Chien (1982) adopted by Djenidi and Antonia (1993) also
wall distance and friction velocity, which are difficult to calculate for ribletted geometries.

In contrast, the simulations of Benhalilou and Kasagi (1999) were more successful. In
particular, when accounting for anisotropy of νt through the algebraic closure of Myong
and Kasagi (1990) secondary flows near the riblet tips were revealed, which have been
identified through DNS (Choi, Moin, and Kim, 1993) and Particle Image Velocimetry
(PIV) (Suzuki and Kasagi, 1994). This additional algebraic closure led to similar levels of
drag reduction as Walsh (1982) for sawtooth riblets, and good agreement with experimen-
tal data concerning the optimum s+. However, the simulations of Benhalilou and Kasagi
(1999) did not obtain convincing behaviour concerning the viscous regime of the riblets.
For the case where s = h the anisotropic k − ε model obtained no difference in C f until
s+ ≈ 8, after which drag decreased. This is in contrast to the viscous behaviour identified
by Bechert et al. (1997) and later Garcı́a-Mayoral and Jiménez (2011a), where drag reduc-
tion should scale linearly with the protrusion height as per (2.7), asymptotically reducing
to zero as s+ decreases. While Benhalilou and Kasagi (1999) obtained much better pre-
dictions than other attempts using two-equation models there is still some non-physical
behaviour that has yet to be properly predicted by these simple RANS models.

Djenidi and Antonia (1995) took a different approach by adopting the Reynolds stress
closure with Low Reynolds number approximations developed by Launder and Shima
(1989). This model provides a fuller description of the effect of turbulence by solving
transport equations for individual components of the Reynolds stress tensor, rather than
through some algebraic closure. Naturally these models can resolve anisotropic flows,
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FIGURE 2.7: The secondary flow of Choi, Moin, and Kim (1993), obtained
through DNS of the flow over triangular riblets with a 60° ridge angle.
Contours are vorticity Ωxδ/Uc. Contour lines represent increments of 0.04
for s+ = 40 and 0.02 for s+ = 20. Values of Ωxδ/Uc at the vortex centres
are 0.36 for s+ ≈ 40 and 0.19 for s+ ≈ 20. Negative contours are dashed.

with a trade off of increased computing costs and numerical stiffness. Djenidi and Anto-
nia (1995) solved for a developing flow over sawtooth riblets and obtained a maximum
drag reduction of approximately 1 %, as opposed to ≈3.5 % obtained by the experiments
of Bechert et al. (1997) for the same riblets. Unfortunately only four data points were pro-
vided for comparisons against literature drag reduction, and so conclusions concerning
the success of the model are limited. What is clear from the most successful attempts
at modelling riblet flows using RANS methodology is that accounting for anisotropy is
essential if reasonable predictions are to be obtained.

Secondary flows over longitudinal roughness

An interesting feature of the flow over riblets is the generation of a secondary flow close
to the riblet tips, whereby streamwise-aligned vortices are generated with upward flow
at the riblet tips and downward flow at the riblet valley. This can be observed in Fig-
ure 2.7, which shows the streamwise vorticity Ωx scaled by outer variables, δ and the
channel centreline mean velocity Uc (Note that the DNS of Choi, Moin, and Kim (1993)
was carried out on an asymmetric channel flow with riblets on one wall). These sec-
ondary flows have mainly been observed using DNS (e.g. Choi, Moin, and Kim, 1993;
Chu and Karniadakis, 1993; Goldstein and Tuan, 1998), but there have been reports
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of these flows in experiments (e.g. Suzuki and Kasagi, 1994). It should be noted that
these streamwise-aligned secondary flow structures are a time-averaged phenomenon, as
opposed to the instantaneous Kelvin-Helmholtz spanwise vortices observed by Garcı́a-
Mayoral and Jiménez (2011b) that appear in the breakdown regime. The mechanisms that
generate and sustain streamwise secondary flows have seen little investigation. Gold-
stein and Tuan (1998) carried out the first and only study to attempt to quantify how
secondary flows are generated at the riblet tips and how they influence the drag acting
on the wall surface. Goldstein and Tuan (1998) found that secondary flows are near neg-
ligible for closely spaced riblets (small s+) in the drag reducing regime, and only appear
when the riblet spacing is large, i.e in the breakdown and drag-increasing regimes (Figure
2.5). It was hypothesised that the generation of secondary flows was linked to the poor
performance of riblets at large s+, by enhancing turbulent mixing near the wall. Gold-
stein and Tuan (1998) argued that instantaneous spanwise fluctuations were responsible
for the generation of secondary flows, whereby the riblet tips act to deflect spanwise flow
upwards, leading to the formation of vortices shed on the leeward side of the riblet tips
(Goldstein and Tuan, 1998). These vortices lead to a time-averaged vortex pattern with
upward flow at the riblet tips and downward flow at the valleys. It was further hypoth-
esised that when riblets are small with respect to the viscous length scale (small s+) the
spanwise flow is constricted by the riblets and vorticity generation is suppressed. Only
when the riblet spacing increases do the secondary flows emerge, acting to break down
the drag reducing regime. This theory was tested by subjecting an isolated riblet to a
spanwise-oscillating flow, with no streamwise forcing (Goldstein and Tuan, 1998). The
resulting time-averaged flow pattern was indeed similar to the secondary flows observed
in turbulent boundary layer flows over riblets.

However, the secondary flow pattern of Figure 2.7 has also been observed in RANS
predictions (Benhalilou and Kasagi, 1999); it is not entirely obvious how a steady-state
RANS simulation is capable of capturing this secondary flow mechanism if it is reliant on
instantaneous flow deflections. Perhaps an explanation can be provided by investigating
the classifications of secondary flows defined by Prandtl (1953). There are two common
types of secondary flow - skew induced and turbulent-stress induced; these form sec-
ondary flows of the first and second kind, respectively (Prandtl, 1953). Skew induced
vorticity typically requires streamwise curvature. Goldstein and Tuan (1998) provided
strong evidence that skew-induced vorticity is either negligible or identically zero for
fully developed flow over streamwise-aligned riblets. Goldstein and Tuan (1998) also
argued that there was not sufficient evidence that the second kind of secondary flows
were responsible for the observed vorticity, although budgets of the transport of turbu-
lent kinetic energy and streamwise vorticity were not presented, which have often been
instrumental in quantifying this type of secondary flow (e.g. Huser and Biringen, 1993;
Anderson et al., 2015; Hwang and Lee, 2018). Perhaps then a dismissal of the second
type of secondary flow was premature. Goldstein and Tuan (1998) attribute secondary
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flow to spanwise-blocking of the instantaneous velocity fluctuations at the riblet tip, a
mechanism that could be thought of as analogous to the kinematic blocking that occurs
in the presence of no-slip and free-slip surfaces (Yokojima and Shima, 2010), as discussed
in Section 2.1. Local to the riblet surface kinematic blocking will effect both spanwise
and vertical directions, due to the two-dimensionality of the riblet cross section. Perhaps
then this change in distribution of the Reynolds stresses could lead to the stress-induced
vorticity observed by Goldstein and Tuan (1998). It therefore seems plausible that the in-
stantaneous flow mechanism hypothesised by Goldstein and Tuan (1998) may be equiv-
alently explained by the second law of secondary flows (Prandtl, 1953). This may explain
why Benhalilou and Kasagi (1999) observed the same vorticity field using RANS simula-
tions with anisotropic eddy-viscosity closures.

There are still open questions regarding the presence of the vorticity field. Goldstein
and Tuan (1998) suggest that the secondary flow is negligible for small s+, but what quan-
tifies how small s+ must be for vorticity to play no role? And what happens as the riblet
spacing continues to grow? The hypothesis of Goldstein and Tuan (1998) suggests that
vorticity may continue to grow indefinitely since the riblet tips become more exposed to
high speed spanwise flow, but this behaviour has not yet been investigated. In addition,
the vorticity contours of Figure 2.7 indicate that the size of the secondary flow relative to
the riblet tip is near identical for s+ = 20 and s+ = 40, while the strength of the vorticity
is approximately halved for s+ = 20. It seems then that while the strength of the vorticity
field may decrease with s+ as implied by Goldstein and Tuan (1998), the secondary flow
may still be present, even for very small s+.

Some insight could be gained by investigating other types of roughness-induced sec-
ondary flow. Recently, significant research has been carried out in order to quantify the
large-scale secondary flows induced by spanwise-heterogeneous roughness (Willingham
et al., 2014; Anderson et al., 2015; Vanderwel and Ganapathisubramani, 2015; Hwang
and Lee, 2018; Medjnoun, Vanderwel, and Ganapathisubramani, 2018; Vanderwel et al.,
2019). While similar to the riblets discussed so far, the spanwise-heterogeneous rough-
ness discussed here is significantly larger, operating in the fully rough regime (k+0 &
70) and with spacings between roughness elements of the same order as the boundary
layer thickness. An example of the secondary flows introduced by large-scale spanwise-
heterogeneous roughness is presented in Figure 2.8. Here large secondary structures can
be observed that lead to spanwise inhomogeneities in the streamwise velocity field far
from the riblet surface. Vanderwel and Ganapathisubramani (2015) found that the size of
these structures increases as the spacing between elements, S, increases, until S ≈ δ. for
S & δ the secondary flows stop growing and tertiary flows form inbetween roughness
elements. The upper bound for the size of these secondary flows is therefore determined
by the boundary layer height (Vanderwel and Ganapathisubramani, 2015). While the
size of the secondary flow region scales with S, the strength of the secondary flow is
dependent on the aspect ratio of the roughness element (Hwang and Lee, 2018). Wide
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FIGURE 2.8: Secondary flows induced by large scale spanwise-
heterogeneous roughness of different aspect ratios. Contours are mean
streamwise velocity normalised by freestream velocity. Figure adapted

from Hwang and Lee (2018).

roughness elements lead to stronger secondary flows at the element edges with tertiary
flows present above the centre of the roughness element.

The form of the secondary flows induced by large-scale heterogeneous roughness ap-
pears consistent with those that form over riblets (Figure 2.7). Flow is deflected upwards
at the element edges, and downwards at the valley between elements. The main differ-
ence between the two cases is the size of the secondary flow, which is confined to the
roughness sub-layer for riblets.

The δ−scale secondary flows have a substantial effect on the outer flow, whereby
fluid is channelled through high and low momentum pathways; HMP and LMP, respec-
tively (Mejia-Alvarez and Christensen, 2013). These exist at the regions between counter-
rotating vortices, where HMPs occur in regions of downward secondary flow, acting to
transport high momentum fluid towards the wall, and LMPs occur in regions of upward
flow, transporting near-wall low momentum fluid into the outer regions of the bound-
ary layer (Willingham et al., 2014; Anderson et al., 2015; Vanderwel and Ganapathisub-
ramani, 2015; Hwang and Lee, 2018; Medjnoun, Vanderwel, and Ganapathisubramani,
2018; Vanderwel et al., 2019). These have also been observed for complex multi-scale
roughness (Mejia-Alvarez and Christensen, 2013; Barros and Christensen, 2014).

Some recent insight into the mechanisms that drive these secondary flows has been
gained through investigations of the turbulent kinetic energy and streamwise vorticity
budgets (Anderson et al., 2015; Hwang and Lee, 2018). Anderson et al. (2015) adopted
Large Eddy Simulation (LES) to investigate the flow over a strip-type roughness, whereby
the effects of a physical rough surface were inferred through the boundary conditions of
a flat surface. Anderson et al. (2015) recognised that the vertical flow must be driven by
an imbalance in the transport of turbulent kinetic energy, such that vertical and spanwise
velocities are generated to convect k in regions of local imbalance. It was hypothesised
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that the dominant balance required for this to hold was between production and destruc-
tion of turbulent kinetic energy, since viscous and turbulent transport terms are negligi-
ble far from the wall. The regions where production exceeded destruction the greatest,
i.e regions of higher shear stress associated with larger roughness heights, necessitated
negative convective vertical velocities in order for the transport of k to balance. This was
supported by numerical data which showed that the regions where production of k was
greatest corresponded to the spanwise locations of HMPs. Note that these simulations
led to HMPs (downward convective flow) above the regions of high roughness, in contrast
to that in Figure 2.8. Anderson et al. (2015) also investigated budgets of streamwise vor-
ticity, showing that the secondary flows are generated through gradients of the Reynolds
stresses, which were balanced by convection. This suggests the secondary flow is driven
and sustained by turbulence and is therefore of the second kind (Prandtl, 1953). However,
while the analysis provided reasonable explanations as to how secondary flows arise and
how they interact with the HMPs and LMPs, accurate calculation of the budgets of k and
Ωx transport equations were not presented.

In contrast, Hwang and Lee (2018) adopted DNS to simulate the flow over resolved
spanwise-heterogeneous rough surfaces. The resulting secondary flows can be observed
in Figure 2.8, with LMPs (upward flow) above the roughness elements. This is in agree-
ment with riblet-induced secondary flows (e.g. Choi, Moin, and Kim, 1993; Goldstein and
Tuan, 1998) and experiments on δ−scale heterogeneous roughness Vanderwel and Gana-
pathisubramani (2015) and Vanderwel et al. (2019), but not with the LES of Anderson et
al. (2015). Hwang and Lee (2018) calculated all budgets of the transport of turbulent ki-
netic energy and showed that the balance between production and destruction of k could
not explain the mechanisms driving the secondary flow. In order to balance the trans-
port of k, the transport terms neglected by Anderson et al. (2015) were also required,
and found to be large in the vicinity of the roughness, due to high spatial gradients.
Differences between the LES of Anderson et al. (2015) and the DNS of Hwang and Lee
(2018) were attributed to the different techniques of modelling the rough boundary; the
strip-type roughness patches of Anderson et al. (2015), treated through the boundary con-
ditions of a flat surface, could not produce the strong near-wall gradients that emerged
from the sharp corners of the resolved rough surfaces of Hwang and Lee (2018). Not only
did the resolved rough surfaces influence the budgets of k, but it also led to a reversal of
the secondary flow direction, such that upward flow was associated with the location of
the roughness elements. The driving mechanisms that led to the secondary flow were
still hypothesised to be of the second kind (Hwang and Lee, 2018), but the reversal of the
flow direction could not be explained without the theory of Goldstein and Tuan (1998),
where it was thought that blockage of the instantaneous spanwise flow led to the time-
averaged secondary flow structures. Unfortunately budgets of streamwise vorticity were
omitted from the analysis of Hwang and Lee (2018), which may have provided further
insight into the generation of secondary flows.
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Summary

The drag reducing behaviour of riblets has been investigated considerably over the last
few decades. Riblets have been reported to reduce skin friction by up to 10 % (Bechert
et al., 1997), mechanisms of which have been readily explained by linear stability analysis
(Luchini, Manzo, and Pozzi, 1991), experiments (Bechert et al., 1997) and DNS (Garcı́a-
Mayoral and Jiménez, 2011b). However, RANS models have seen little use for these flows
and their predictions for these flows have led to poor agreement with experiments and
DNS. Isotropic eddy-viscosity models lead to especially poor predictions of the viscous
regime where riblets are small, often leading to non-physical solutions (Launder and Li,
1993). Better predictions can be obtained when adopting anisotropic models, such as the
algebraic closure used by Benhalilou and Kasagi (1999), but these have been used little
for the study of boundary layers over ribletted surfaces.

A topic that has seen little investigation is the secondary flow features close to the
riblet tips, where upward flow is found at the riblet tips and downward flow above the
riblet valleys. Goldstein and Tuan (1998) hypothesised that the riblet tips act to block
spanwise instantaneous fluctuations which are subsequently deflected upwards, leading
to the formation of time-averaged secondary flows. However, these features have also
been observed in steady-state RANS predictions (Benhalilou and Kasagi, 1999) which do
not resolve instantaneous flows. It is also unclear how these structures scale with the
riblet dimensions; Goldstein and Tuan (1998) suggested that secondary flows are negli-
gible for small s+ but Choi, Moin, and Kim (1993) showed that they are present and of
the same size for s+ ≈ 20 as for s+ ≈ 40, albeit with a smaller vorticity magnitude. It is
unclear how small must riblets be for vorticity to vanish. It is also unclear how secondary
flows scale at large s+; do they continue to grow in strength as s+ increases?

Further investigation of roughness-induced secondary flows have provided some in-
sight into how they may be generated. Large scale spanwise-heterogeneous roughness
has seen significant interest in recent years, differing from riblets primarily by their dif-
ferences in length scale. While riblets are more similar in size to viscous length scales
δν, large scale spanwise-heterogeneous roughness have spacings similar to that of the
boundary layer thickness. For these large scale roughnesses the secondary flows are
thought to be of the second kind (Prandtl, 1953); i.e generated through gradients of the
Reynolds stresses. This has been shown through calculation of the budgets of turbulent
kinetic energy and streamwise vorticity by Anderson et al. (2015) and Hwang and Lee
(2018). Perhaps then these mechanisms are consistent for riblets, despite the large differ-
ences in length scale. If RANS models can be validated for flows over riblets, they could
prove a useful technique for analysing the generation of secondary flows, and how they
scale with riblet dimensions.
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2.4 The hydrodynamics of shark skin denticles

Shark skin is comprised of small tooth-like dermal denticles which protrude from a flexi-
ble epidermis. There are three theorised functions that denticles provide; hydrodynamic,
resistance to abrasion, and defence against parasites (Reif, 1985; Fletcher et al., 2014). An
extensive range of denticles were documented by Reif (1985), highlighting the differences
between shark species and the location of scales on the fishes. The study also indicates
the complex features of real shark scales such as three dimensionality beneath the ex-
posed scale, overlapping, diverging and converging riblets, variable angles of incidence,
and the aerofoil-like shape of each scale with a smooth leading edge and a sharp trail-
ing edge. These features can be observed in Figure 2.9; even when considering just one
species the scales can vary significantly when moving from the head to the tail. Despite
such variability, all previous studies investigating the drag reduction of shark scales have
used s+ = uτs/ν as an appropriate roughness Reynolds number, if one has been given.
This one parameter is of course not enough to capture variability between different den-
ticles, especially since some denticles do not possess riblets on their crowns. A feature of
denticles not shown in Figure 2.9 is the flexible epidermis in which they are embedded; it
has been shown experimentally that mako shark denticles are capable of bristling under
the influence of local back-flow, whereby their angle of attack is increased and their trail-
ing edge lifts further into the boundary layer enhancing turbulent mixing and providing

FIGURE 2.9: Scanning Electron Microscope (SEM) images of shark skin
denticles taken from the flank along a central line from head to tail (left to

right). Image adapted from Fletcher (2015).
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resistance to flow separation (Lang et al., 2014). The vast range of these features, and
the variability between species, results in little understanding as to why many of these
features exist.

2.4.1 Shark skin subject to the canonical boundary layer

This section investigates the numerical and experimental studies on the fluid dynamics
of shark skin surfaces when subject to flat plate boundary layers and channel flows. As
discussed in Section 2.3 comparable studies on riblets lead to robust results, with drag
reduction profiles agreeing for all typical families of longitudinal riblets (sawtooth, blade-
like, etc.) when scaled by an appropriate roughness Reynolds number (See Figure 2.6).
The same cannot be said for experimental and numerical data on shark skin denticles,
despite the techniques adopted being reasonably similar.

Experimental studies

Alongside work on longitudinal riblets, Bechert, Hoppe, and Reif (1985) also investi-
gated the drag reduction of plastic shark skin denticle replicas, manufactured using a
combined printing/casting technique. Denticles were enlarged by a factor of 5, equating
to a denticle length of 1.3 mm. The drag force acting on a large array of replicated mako
denticles was measured in a wind tunnel using a force balance at two bristling angles; 5 %
and 10 %, along with an array of silky shark denticles. None of the three configurations
reduced drag, despite s+ values falling in the expected drag reducing regime of longi-
tudinal riblets. A significant increase to the drag force was observed when the angle of
attack was increased from 5 % to 10 %. However, the authors noted that their replication
process was unable to capture some of the intricate details that exist on real denticles,
such as features beneath the denticle crowns.

The same group carried out further investigations on shark skin denticle surfaces us-
ing an oil channel (Bechert et al., 2000). In this case the manufacturing technique was
improved and replica hammerhead denticles were fabricated at a length of 19 mm, 100
times larger than those found in nature. The oil viscosity was 100 times larger than that
of water, leading to a similar possible range in s+ as equivalent longitudinal riblet exper-
iments. Denticles were mounted to thin anchors which could control the angle of attack
of the denticles. The stiffness of the anchors could be adjusted; at high stiffness the den-
ticles were essentially fixed in place at a given angle of attack. When soft, the denticles
angles were allowed to adjust depending on local flow conditions. The difference in wall
shear stress obtained by Bechert et al. (2000) using a force balance is presented in Fig-
ure 2.10. When the denticles were flat (scales aligned in Figure 2.10) they were tightly
packed, essentially mimicking a ribletted surface. A modest 3 % reduction in drag was
measured, and the dependence on s+ was similar to that of riblets (Figure 2.5). While
not fully captured the region s+ → 0 seems to reduce to the linear viscous regime as



24 Chapter 2. The hydrodynamics of shark skin denticles

per longitudinal riblets. However, when the denticles were set to a larger angle of attack
using the adjustable-stiffness anchors drag increased significantly, for both soft and hard
spring regimes.

The experiments of Bechert, Hoppe, and Reif (1985) and Bechert et al. (2000) sug-
gest that the three-dimensionality of denticles is detrimental to flat plate drag; drag is
only reduced when denticles are tightly packed and essentially resemble a ribletted plate.
Bechert, Hoppe, and Reif (1985) and Bechert et al. (2000) concluded that hydrodynamic
advantages of denticles are reserved for more complex flow conditions, such as bound-
ary layer separation. However, there have also been experiments with contrary results.
Comparable studies by Wen, Weaver, and Lauder (2014), Wen et al. (2015) and Domel
et al. (2018) were carried out in a water flume, using mako scales 3D printed at a width
of 1.6 mm, 12.4 times the size of the original mako scales. Drag was directly measured
using a force balance and the profiles of Figure 2.11 were obtained. In this case, the dif-
ference in drag was quantified by Ds/Dm rather than ∆τ/τ0, where Ds and Dm are the
drag forces acting on the scales and the reference flat plate respectively. There are signifi-
cant differences between the results of Wen, Weaver, and Lauder (2014) and Bechert et al.
(2000). Firstly, the viscous regime, if present, is difficult to distinguish. If it exists then it
has been shifted to significantly lower values of s+ than the data of Bechert et al. (2000),
in Figure 2.10. In addition to this, the entire drag reduction regime of the denticles has
been shifted to much lower values of s+ than those of Bechert et al. (2000) and compara-
ble longitudinal riblet studies. It should be noted that the 3D printed denticles of Wen,
Weaver, and Lauder (2014) were not closely packed like those of Bechert et al. (2000), and
yet reduced drag more so, which is in contrast to the conclusions of Bechert et al. (2000)
who suggested that shark skin denticles only reduce drag when they resemble a ribletted

FIGURE 2.10: Drag reduction of hammerhead denticles at three bristling
angles. Image taken from Bechert et al. (2000).
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surface.
The original experiments of Wen, Weaver, and Lauder (2014) were extended by Wen

et al. (2015) who investigated the effects of different denticle arrangements. Aligned and
overlapping denticles were compared against staggered and overlapping and aligned
non-overlapping regimes. A drag reduction of approximately 3 % for s+ . 8 was ob-
served for the staggered-overlapping case, while drag was increased for the other two
arrangements, consistent with previous arguments that tightly packed denticles reduce
drag more than loosely packed. More recently Domel et al. (2018) used the same facilities
to investigate the effects of mako shark denticle size; the smallest denticles, printed at a
2.1 mm length (approximately 10 times magnified), reduced drag by up to 30 %, while
the larger denticles printed at lengths of 3.15 mm and 4.2 mm increased drag relative to
the flat plate.

Differences between the experiments of Bechert et al. (2000) and Wen, Weaver, and
Lauder (2014), Wen et al. (2015) and Domel et al. (2018), could be attributed to the choice
of length scale. While s+ is a reasonable choice for quantifying 2D riblets there are many
possible length scales that could better represent an array of sharkskin denticles. s+ can-
not provide information regarding the spacing between individual denticles, their stag-
gered/aligned formation, their width, length, or height. Interestingly there has been
no attempt to determine a more appropriate length scale, and many studies do not even
quantify a roughness Reynolds number (e.g. Zhang et al., 2011b; Chen et al., 2014; Fletcher,
2015; Domel et al., 2018). This makes comparisons between the different data sets diffi-
cult.

3D printing was also adopted by Fletcher (2015) who fabricated arrays of shark skin
denticles from several species of sharks. Unlike any other previous work Fletcher et al.
(2014) included smooth denticles as well as ribletted. The denticle arrays were mounted
to a flat plate and fixed in a water flume. Laser Doppler Anemometry (LDA) was adopted

FIGURE 2.11: The drag reduction of 3D printed mako denticles as a func-
tion of bulk velocity (left) and dimensionless riblet spacing (right). Image

taken from Wen, Weaver, and Lauder (2014).
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to measure the fluid velocity in the developing boundary layer over the denticles, and
compared against a reference flat plate. The method of Clauser (1956) was adopted in
order to determine the coefficient of friction, an indirect technique that estimates the fric-
tion velocity based on a best-of-fit to the log-law (2.5). Variations of this technique have
been successfully adopted by many experimentalists (e.g. Perry and Li, 1990; Schultz and
Flack, 2003; Squire et al., 2016). However, Fletcher (2015) provided little detail on the ac-
curacy of the technique; details such as precision/repeatability errors were not reported,
Reynolds numbers were not calculated (which are vital for assessing the extent of the
log-law region), and the method of estimating the wall-position was based on identify-
ing the LDA measurement volume position at which the mean velocity dropped below
an arbitrarily small value. The wall-position is known to have substantial influence on
the scaling of the boundary layer and therefore the friction velocity if using indirect tech-
niques for its measurement (Örlü, Fransson, and Alfredsson, 2010). Fletcher (2015) ob-
tained substantial drag reduction of over 50 % for an array of replica Lophosteus denticles.
However, no comparisons were made against other literature data, even for the reference
flat plate.

Chen et al. (2014) investigated the effects of ribletted shark skin on skin friction by
creating precise moulds from large samples of a fast-swimming Carcharhinus brachyurous
(copper) shark. Replication errors were less than 2.6 % when comparing the surface of
the replica compared to the original sample, but dimensions were only taken on the ex-
posed shark skin surface. This moulding technique is unlikely to capture geometrical
features below the crown-surface, making it only suitable for tightly packed and over-
lapping denticle arrays, a disadvantage not mentioned by the authors. This fabrication
technique also captures imperfections, asymmetries, and changes in denticle geometry
that exist on real shark scale arrays. Clearly this model is more physical, but isolating
the effects of slight geometric changes between the different denticles is impossible with-
out flow measurements local to individual denticles. With a global force balance Chen
et al. (2014) observed consistently lower drag for their shark skin surface when compared
to longitudinal riblets. At a maximum the longitudinal riblets reduced drag by 8 %, in
agreement with the data of Bechert et al. (1997), while the replica shark skin reduced
drag by a maximum of 12 %, although no attempt was made to quantify dimensionless
parameters such as bulk flow Reynolds numbers or s+. Despite this, the drag reduction
behaviour appears reasonable, whereby the drag reduction increased to a maximum as
the flow velocity increased which then decreased as the flow velocity increased further,
indicative of passing through the breakdown regime that is observed for riblets (Bechert
et al., 1997).

A similar experimental technique was adopted by Zhao et al. (2012), although the
results differed significantly. Their replica shark skin, based on an unspecified shark
species skin sample, reduced drag by a maximum of 18.6 % which occurred at the lowest
flow rate tested. This then decreased to a minimum of 9.7 % at the highest flow rate tested,
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but like Chen et al. (2014) no attempt was made to quantify dimensionless parameters
that could allow comparisons to other literature data.

Zhang et al. (2011b) adopted the same experimental techniques on a Isurus oxyrinchus
(shortfin mako) sample. Drag reduction was compared to a ribletted surface, a shark
skin replica, and a shark skin replica with non-long polymer chains attached to the sur-
face. The polymer surface was introduced as a method to mimic the mucus excretion of
sharks. Small fishes are known to rely on mucus excretion to increase burst swimming
speeds; when added to a fluid this mucus can reduce drag by up to 66 % (Rosen and
Cornford, 1971). However, unlike most fishes, sharks mucus production is restricted to
small areas beneath the denticle crowns. It is therefore often assumed that mucus excre-
tion has a lesser effect for sharks, although the topic is still poorly understood (Bechert,
Hoppe, and Reif, 1985; Fletcher, 2015). Zhang et al. (2011b) measured a maximum drag
reduction of 8 % for the sharkskin replica which increased to 24 % when the polymer was
added. In addition to this, the drag reduction effect increased with increasing flow rate,
contrary to the sharkskin without polymer added to its surface. However, Zhang et al.
(2011b) applied the polymer coating to the whole surface, which was perhaps not a phys-
ical representation of mucus excretion. In addition, no comparisons were made to other
data sets, and flow conditions such as the bulk flow Reynolds numbers and s+ were not
presented.

Zhang et al. (2011a) adopted the same experimental techniques as Zhang et al. (2011b)
and obtained a maximum drag reduction of 12.8 % at the slowest flow rate, which re-
duced to a value of ∼9 % at the highest flow rate. This behaviour is similar to that of the
non-polymer covered sharkskin of Zhang et al. (2011b), although the magnitude of drag
reduction is consistently ∼3 % higher. Like Zhang et al. (2011b) appropriate Reynolds
numbers and s+ are not reported.

A consistent theme of all previous fluid dynamic experiments on shark skin is the
sole use of force balances to quantify global effects of shark scales, with the exception
of Fletcher (2015). Perhaps differences between these experiments could be explained
if flow field data were available, but as of yet the influence of shark scale geometry on
boundary layer dynamics has not been experimentally measured.

Numerical studies

The denticles of Wen, Weaver, and Lauder (2014) have also been used by Boomsma and
Sotiropoulos (2016), who performed Direct Numerical Simulation (DNS) to investigate
the flow near staggered and aligned denticles. The complexities associated with creat-
ing boundary-fitted meshes over the shark skin surface were avoided by adopting an
immersed boundary method, where the effect of the denticle surface was treated as a
body force in the Navier-Stokes equations which were discretised over a uniform back-
ground grid. Periodic boundary conditions were adopted to simulate a fully developed
channel flow at a Reynolds number of Reτ = 180 and a riblet spacing of s+ = 16. A
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longitudinal riblet case was also simulated for comparison. The riblet surface behaved
as expected; a drag reduction of approximately 5 % was obtained, arising from a reduc-
tion of the Reynolds stresses when normalised against the reference flat plate friction
velocity. In contrast, the denticles were found to induce separation and large vortices
near the scale surface, leading to pressure drag and increased turbulent mixing. The re-
sults were validated against those of Bechert, Hoppe, and Reif (1985) but significantly
overpredicted the drag compared to Wen, Weaver, and Lauder (2014), despite the shark
scales being identical. Boomsma and Sotiropoulos (2016) argued that this was due to
the different experimental conditions of Wen, Weaver, and Lauder (2014) and Bechert,
Hoppe, and Reif (1985). The denticles of Wen, Weaver, and Lauder (2014) were exposed
to a developing boundary layer flow rather than a fully developed channel flow, and the
laboratory Reynolds number was much greater than that of the simulations (although
Reτ is not explicitly given by Wen, Weaver, and Lauder (2014), given that the boundary
layer thickness is not measured). However, it was readily admitted that the replication
process of the denticles adopted by Bechert, Hoppe, and Reif (1985) led to a poor capture
of the denticle geometry and subsequently there were no gaps inbetween the denticles
of Bechert, Hoppe, and Reif (1985), unlike the arrays of Wen, Weaver, and Lauder (2014)
and Boomsma and Sotiropoulos (2016).

Perhaps differences can be explained by the blockage ratio δ/k0 of the simulations.
While Garcı́a-Mayoral and Jiménez (2012) concluded that simulations of ribletted chan-
nels at Reτ ≈ 180 were similar to those at Reτ ≈ 550, the blockage ratios were either
close to or greater than the limit δ/k0 = 40 as specified by Jiménez (2004) and discussed
in Section 2.3. However, if it is assumed that the roughness height k0 is similar to the
denticle height then the simulations of Boomsma and Sotiropoulos (2016) lead to a ratio
of δ/Dh ≈ 8.2, assuming δ+ = 180 and the denticle height is D+

h = 1.37s+ as specified
by Boomsma and Sotiropoulos (2016). The roughness height k0 would have to be sig-
nificantly smaller than denticle height to get close to the limit δ/k0 > 40, as required to
ensure blocking effects are negligible (Jiménez, 2004). The large denticle height compared
to the channel half-height could influence the drag force due to blocking, and ultimately
increase drag relative to the flat plate. However, increasing Reτ, and therefore δ/Dh is no
trivial task. The simulations of Boomsma and Sotiropoulos (2016) required over 100 M
computational points in order to adequately resolve the denticle geometry. In order to
increase the Reynolds number the relative size of the denticles would have to reduce sig-
nificantly in order to maintain a width of s+ ≈ 16, subsequently requiring many more
denticles in order to cover the same channel domain size, which would of course require
much finer grids. The advantage of immersed boundary methods is that uniform grids
can be adopted, but these uniform grids are unable to locally refine around small ge-
ometries, perhaps limiting their use to these low Reynolds number flows. It should be
noted that while the low blockage ratio may clearly have an effect on the simulations of
Boomsma and Sotiropoulos (2016) its impact on experimental studies is unknown due



2.4. The hydrodynamics of shark skin denticles 29

to the lack of boundary layer thickness measurements. This is a further limitation of the
sole use of force balances in previous experiments.

RANS methods have also seen little use for the prediction of shark skin flows. Zhang
et al. (2011a) carried out the only study using RANS methodology, alongside experi-
ments on shark skin (discussed in the previous section). Zhang et al. (2011a) adopted a
finite volume method with the Renormalization Group (RNG) k − ε turbulence closure
(Yakhot et al., 1992) with enhanced wall functions at the wall boundary, to solve the fully
developed flow field over an array of approximately 30 shark scales. The shark scales
were micro-CT scans of those that were replicated using the moulding technique. While
the RANS simulations predicted a drag reduction of the same order as the experiments,
they increased from 7 % to 14 % as the flow rate increased; i.e a trend opposite to the
experiments. However, the methodology is poorly documented and parameters such as
bulk flow Reynolds numbers are not presented, and cannot be obtained from the param-
eters that were reported. Assuming the fluid was water the bulk Reynolds number was
Reb ≈ 720, which is small, especially given that a high Reynolds number RNG k− ε tur-
bulence closure is adopted. Even at Reb ≈ 2800, typical of Low Reynolds number DNS,
the log-law is difficult to distinguish, if it is even present (see e.g. Moser, Kim, and Man-
sour, 1999). In addition to this, solution convergence is not achieved and no comments
are made regarding grid independence or the inner-scaled near-wall cell sizes, y+1 , which
are vital for assessing applicability of wall function approximations (Wilcox, 2006). De-
spite these issues the results of Zhang et al. (2011a) have often been used to justify the
drag reduction observed in experiments (Chen et al., 2014; Luo et al., 2015).

Summary

When compared to the wealth of literature on longitudinal riblets it is clear that the be-
haviour of shark skin denticles on the turbulent boundary layer is poorly understood.
The few studies that have been carried out are strongly conflicting, with some claim-
ing that denticles are detrimental to skin friction (e.g. Boomsma and Sotiropoulos, 2016)
and some claiming they can be significantly more efficient than longitudinal riblets (e.g.
Domel et al., 2018). There are two key factors that could explain this poor agreement
between literature data: Differences in the denticle geometry between experiments, and
limitations of the measurement techniques adopted.

The denticle geometry is of course important to control; experiments on longitudinal
riblets have shown that small deviation in riblet geometry can lead to large deviations
in their efficiency to reduce drag (Bechert et al., 1997). Regarding shark skin there are
significant deviations in denticle geometry, not only between different species but also
depending on their location on the shark body. Often the denticle geometry is poorly
reported, and sometimes even the particular species is omitted. In addition to this, com-
parisons between the different data sets are made even more difficult due to the lack of
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adequate scaling of results; drag reduction is often reported as a function of bulk flow ve-
locity, rather than a more useful quantification of the denticle size, such as s+ (although
even s+ is questionable, given how many other length scales could quantify a denticle
surface). Despite such variation only Bechert, Hoppe, and Reif (1985) and Fletcher (2015)
have attempted to quantify differences in drag reducing behaviour of different types of
denticle.

Denticle geometries also differ significantly due to replication processes; recent mould-
ing techniques seem capable of replicating denticle surfaces to a high degree of accuracy,
but are limited to tightly packed denticles and are unlikely to be able to resolve cavities
beneath the crown surface. In addition to this, studies have been carried out on moulds
taken from real shark skin surfaces, which are difficult to control in regard to spatial
variations and imperfections. Another approach is to adopt 3D printing, although this
technique requires scaling of the denticle surface by at least an order of magnitude. How-
ever, this method is able to capture the three-dimensionality of denticles much better than
moulding techniques.

In addition to denticle geometry there are also limitations in the present literature re-
garding experimental and numerical techniques. Most experimental work on shark skin
surfaces subject to canonical boundary layers are limited by their use of force balances,
but as studies on longitudinal riblets have shown, some of the most informative studies
have analysed flow field data in order to understand drag reducing mechanisms (e.g.
Lee and Lee, 2001; Garcı́a-Mayoral and Jiménez, 2011b), and yet these have only been
obtained using numerical techniques for shark skin subject to canonical boundary layer
flows (Boomsma and Sotiropoulos, 2016). In addition to this, many studies do not report
important quantifications of the flow such as the Reynolds numbers and the length scales
of their denticles in inner-units. Numerical methods can also be used to investigate the
flow fields, but only one DNS study has been carried out on these complex surfaces, and
this was performed at a single denticle size of s+ = 16, with a single type of denticle
arranged in two ways: staggered and aligned (Boomsma and Sotiropoulos, 2016). Com-
putational costs make this technique unsuitable for large parameter studies on denticle
geometry. Perhaps a more promising technique is RANS modelling, although at present
only a single case study has been attempted for the flow over sharks, which suffers from
poor documentation. RANS methods are certainly more attractive than DNS if large
parameter studies on denticle geometry are desired, but at present they have yet to be
properly validated.

2.4.2 Shark skin applications to complex flows

This section has so far only discussed the literature associated with shark skin applied to
flat plates and channel flows. These simple flow configurations are commonly adopted
due to their applicability to a wide range of engineering flows, and the repeatability of
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FIGURE 2.12: The distribution of the coefficient of drag over a mako shark.
Image taken from Dı́ez, Soto, and Blanco (2015).

experiments. However, the flow field around a shark is far from these idealised canonical
flows.

The distribution of drag over a shortfin mako shark is presented in Figure 2.12, taken
from the RANS simulation of Dı́ez, Soto, and Blanco (2015). Here the coefficient of drag
CD consists of all drag forces, rather than just skin friction. Dı́ez, Soto, and Blanco (2015)
adopted the realizable k − ε turbulence closure (Shih et al., 1995) with wall functions
which accounted for roughness through a modification to the log-law. Treating rough-
ness through boundary conditions is clearly a large simplification to the shark scale ge-
ometry, but resolving denticles over a full shark would require an infeasible number of el-
ements. Dı́ez, Soto, and Blanco (2015) stated that the shark body had a wetted-area of ap-
proximately 0.58 m2, and with average denticle dimensions of 100 – 200 µm in width and
length the shark has of the order 10 – 100 M individual denticles on its surface. Clearly
fully resolving the flow over such a large separation in length scales is not feasible. The
drag coefficient results of Dı́ez, Soto, and Blanco (2015), presented in Figure 2.12, indicate
an increased coefficient of drag near each of the fins and a slowly decreasing coefficient
of drag along the main body. The authors also investigated scale morphology, where 24
Scanning Electron Microscope (SEM) images were taken at various locations on the shark
body, although little analysis was provided linking the morphology to the flow field. The
authors did note that smooth scales typically exist on the leading edge of the fins and
the nose of the shark. Riblets were found to develop further downstream. One could
postulate that since a boundary layer develops from laminar to turbulent, and knowing
that surface roughness has little effect in laminar flows (Nikuradse, 1933), the transition
from smooth scales to ribletted scales reflects the transition from a laminar to a turbulent
boundary layer. However, the same conclusion cannot be drawn when considering the
morphological study of Fletcher (2015). Figure 2.13 displays the contour maps of two
denticle geometries over the body of a Lamna nasus (porbeagle). Strongly converging
riblets can be observed on the nose and pectoral fin of the fish and slightly converging
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FIGURE 2.13: Distributions of riblet spacing and riblet angle over a Lamna
nasus (porbeagle). Image taken from Fletcher (2015).

scales are found on the dorsal fin. Fletcher (2015) hypothesised that converging riblets
could act as a turbulent trip, similar to those observed on aerofoils. This is further sup-
ported by the conclusions of Bechert, Hoppe, and Reif (1985) who argued that denticles
could increase turbulent mixing and result in a reduced susceptibility to flow separation.
If this is the case then why does the mako shark analysed by Dı́ez, Soto, and Blanco (2015)
possess smooth scales on the nose? Figure 2.13 also indicates a reduced riblet spacing on
the fins. Referring to Section 2.3 small riblet spacings are associated with higher flow
rates; i.e an increase to the friction velocity, uτ will require a reduction in riblet spacing, s,
if the s+ value is to be maintained. The findings of Dı́ez, Soto, and Blanco (2015) reinforce
this by determining increased flow velocities near the fins of the shark.

An aspect of some shark skin that has not yet been discussed is the effect of passive
bristling as a mechanism for maintaining attached boundary layers. This effect can be
observed in Figure 2.14; while shark scales are rigid, they are embedded into a flexible
epidermis which allows the denticle angle of attack to be altered (Lang et al., 2014). The
precise mechanism that leads to this bristling is still unknown. Bechert, Hoppe, and Reif
(1985) suggested that the variation in mechanical tension of the epidermis could con-
trol the bristling mechanism. At high speeds the epidermis is under larger tension than
lower speeds; Bechert, Hoppe, and Reif (1985) argued that perhaps it is this mechanism
that drives scale bristling. However, Lang et al. (2014) concluded that the presence of
recirculating flow could be enough to bristle scales alone. This was determined by imag-
ing the effect of a small pulsating jet which created a backflow over a shark skin sample.
However, the authors noted that since experiments were carried out on a small section
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of shark skin the mechanical tension was unlikely to be matched for a real shark. Lang
et al. (2014) applied these sharkskin sections to a NACA 4412 aerofoil and measured the
resulting flow field using Digital Particle Image Velocimetry (DPIV). They compared the
resulting backflow for a sharkskin surface with bristling scales, and a smooth surface.
They found that at low angles of attack the sharkskin surface produced more backflow
than the smooth surface. However, backflow was substantially reduced for large angles
of attack; at a foil angle of 18° there was a large amount of separation for the smooth
surface but very little for the sharkskin. The authors hypothesised that at low angles of
attack the backflow was too weak to induce bristling, and as a result the performance
of the foil was hindered by its increased thickness. However, DPIV is unable to capture
the bristling behaviour directly since the scales are so small. There are also other issues
with this technique; since sharkskin was directly applied to the foil there is much uncer-
tainty concerning the mechanical properties of the epidermis and the variability between
individual scales. These issues were eliminated by the experimental technique of Wen,
Weaver, and Lauder (2014) and Wen et al. (2015) who 3D printed arrays of mako scales
onto a flexible membrane, mimicking that of a shark epidermis. The membranes were
subsequently applied to the surface of a self-propelling (flapping) foil, where it was hy-
pothesised that the flexibility of the epidermis could have implications on thrust genera-
tion. Both studies concluded that the swimming speed of the flapping foil was increased
when denticles were present, but both the cost of transport (energy required per unit dis-
tance) and power required increased. The authors suggested that this is likely due to the
poor representation of the flexible membrane to real shark skin, where scales are more
flexibly embedded into the dermis. It was suggested that dynamic experiments are more
representative of shark skin and should be further investigated.

Summary

Numerous studies have been carried out in the last decade concerning application of
shark skin to complex flows, which are generally more applicable to the flow over a real

FIGURE 2.14: Bristling scales of a shortfin mako shark. The scales are bris-
tled to an angle of 45°. Image taken from Lang et al. (2014).
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shark skin body than the canonical boundary layers discussed in Section 2.4.1. Discus-
sion has focused on two main categories; morphological studies on the distribution of
denticle geometry in relation to the fluid flow over a shark body (e.g. Dı́ez, Soto, and
Blanco, 2015), and the bristling of mako shark denticles in response to separating flows
(e.g. Lang et al., 2014). There are interesting and open questions regarding both of these
areas. Quantifying the morphology of shark scales in response to the fluid flows over the
shark body is one of the primary motivations for the hydrodynamic study of shark scales,
but there are limitations to present techniques. RANS methods have been successful in
quantifying the global flow around a shark body (Dı́ez, Soto, and Blanco, 2015), but these
can only give approximations for the drag distributions due to the lack of resolution at
the shark skin surface. One cannot hope to resolve the flow around both individual den-
ticles and the full shark body in a single simulation due to the vast separation in length
scales. However, these simulations may be useful in providing information regarding
how denticle geometry is distributed in response to large-scale flow structures, for ex-
ample in regions of high curvature and possible boundary layer separation. Despite this,
only Dı́ez, Soto, and Blanco (2015) have attempted such quantification.

The bristling of mako shark denticles in response to separating flows has been shown
to substantially reduce backflow when applied to aerofoils (Lang et al., 2014). However,
the precise mechanisms that lead to this behaviour are not yet fully understood, in part
due to experimental limitations. Shark scales printed at large length scales suffer from
being unable to replicate the tensile properties of a sharks epidermis (Wen et al., 2015),
while experiments on real bristling shark skin surfaces have not yet obtained flow field
measurements local to individual denticles; PIV has only been adopted to capture the
large scale separating flow, rather than the local flow around moving denticles. It is vital
to obtain these measurements in order to understand the precise mechanisms that lead
to bristling, and the influence of bristling on the local flow field.

2.5 Conclusions

Substantial work has been carried out on understanding the influence of longitudinal
riblets on the canonical boundary layer. The drag reducing behaviour of riblets is well
understood, with significant contributions from experimental, numerical, and theoreti-
cal frameworks. However, there is still a significant lack of support from RANS type
methodology; the few studies published suggest that accounting for anisotropy of the
Reynolds stresses is essential for properly modelling ribletted channels, although it is
still unclear how well RANS methodology can capture these flows. In addition to this the
generation of the secondary flows at the riblet tips have been investigated little. Gold-
stein and Tuan (1998) carried out the only study that has investigated the mechanisms
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that lead to secondary flows, attributing upward flow to the blocking of spanwise instan-
taneous velocity fluctuations at the riblet tips. However, this mechanism seems inconsis-
tent with other roughness-induced secondary flows such as over large-scale spanwise-
heterogeneous roughness, where the recent work of Anderson et al. (2015) attributed
secondary flow generation to the second kind proposed by Prandtl (1953). In addition
to this, the steady-state RANS predictions of Benhalilou and Kasagi (1999) obtained the
same secondary flow features of Goldstein and Tuan (1998), indicating that perhaps in-
stantaneous blocking of fluctuations is not entirely responsible for the generation of sec-
ondary flows. Furthermore, it is unclear how these secondary flows scale with the riblet
size, at either low or high s+. RANS models may prove useful for investigating this
scaling, but require significant validation before parameter studies are carried out, given
that previous studies have not yet obtained consistent predictions with experiments (e.g.
Djenidi and Antonia, 1993; Launder and Li, 1993).

The flow over shark skin surfaces is poorly understood, even for the simplest of
flows. Regarding the canonical boundary layer some authors claim that denticles can
decrease skin friction drag more-so than riblets, while others suggest denticles substan-
tially increases it. Two key factors that could explain this poor agreement have been
identified: Differences in denticle geometry between experiments, and differences in the
measurement techniques adopted. As comparable studies on riblets have shown, small
differences in roughness geometry can have large implications on performance, which
could explain the vast deviations in results for the flows over denticles. Despite this,
only Bechert, Hoppe, and Reif (1985) and Fletcher (2015) have attempted to determine
the effects of different denticle geometry on fluid dynamic performance. Not only is this
vital to understanding why different geometric features exist on individual denticles, it
may also explain why there are such vast differences in previous experimental results.
Due to their small length scales denticle geometry is difficult to control experimentally.
Various techniques have been adopted when fabricating these surfaces, the most promis-
ing of which is 3D printing, as adopted by Wen, Weaver, and Lauder (2014), Wen et al.
(2015), Fletcher (2015), and Domel et al. (2018). This technique has the advantage of a
uniform and controlled surface with the ability of capturing the geometric features be-
neath the denticle crown, although requires scaling of the denticle geometry by at least
an order of magnitude.

Furthermore, previous experiments have been limited by their use of force balances
which cannot obtain flow field data over the shark skin surface. Some of the most infor-
mative studies on the flow over riblets have analysed flow field data in order to under-
stand drag reducing mechanisms (e.g. Lee and Lee, 2001; Garcı́a-Mayoral and Jiménez,
2011b), and yet these have only been obtained using numerical techniques for shark skin
subject to canonical boundary layer flows (Boomsma and Sotiropoulos, 2016).

There are also many investigations carried out on the behaviour of shark skin in com-
plex flows, such as the dynamic flapping of foils covered in replicated denticles, the
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bristling effects of denticles exposed to separating flows, and the influence of mucus-like
polymers applied to the denticle surface. The application of denticles to more complex
flows is certainly an active area of research, but has only been briefly discussed in this re-
view. However, since there is such a lack of agreement in the literature concerning even
the simplest of flows, it is this area that will be the focus of this Thesis.
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Chapter 3

Experiments on shark skin denticles:
The influence of shark skin denticles,
with and without riblets, on the
turbulent boundary layer

3.1 Introduction

Shark skin has fascinated biologists, engineers, and physicists for decades due to its
highly intricate drag-reducing structure. Shark skin is comprised of small tooth-like der-
mal denticles which protrude from a flexible epidermis and are typically 0.1 – 1 mm in
width. Considerable variety in denticle shape can be observed (e.g. Figure 2.9), not
only between different species, but also depending on the location on the body (Reif,
1985; Dı́ez, Soto, and Blanco, 2015; Feld et al., 2019). They are strongly three dimen-
sional, some overlap while others have large gaps, and many are smooth, while some
have small riblet features protruding from their crown. Shark skin denticles are thought
to have evolved for the benefit of hydrodynamic efficiency, resistance against abrasion,
and defence against parasites (Reif, 1985), although hydrodynamic experiments have
been largely limited to the riblets present on the denticle crown of some fast-swimming
sharks. Shark skin-inspired streamwise surface riblets have seen significant development
over the last few decades, and have been shown to reduce skin friction drag by up to
10 % (Bechert et al., 1997), depending on the shape of the riblets and their dimensionless
length scale s+ = uτs/ν, where s is the spacing between riblets, uτ =

√
τw/ρ is the fric-

tion velocity, τw is the wall shear stress, ρ is the fluid density, and ν is the fluid kinematic
viscosity. The drag reducing behaviour of riblets over a flat plate or channel flow bound-
ary layer has been thoroughly investigated using experimental modelling (e.g. Walsh,
1982; Walsh, 1990; Bechert et al., 1997; Lee and Lee, 2001), Direct Numerical Simulation
(DNS) (e.g. Choi, Moin, and Kim, 1993; Garcı́a-Mayoral and Jiménez, 2011b), and linear
stability analysis (e.g. Luchini, Manzo, and Pozzi, 1991). However, there are many sharks
that have not evolved riblet-like features on their denticle crowns (Reif, 1985). It is not
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yet known whether denticles are hydrodynamically beneficial without riblets, or indeed
how riblets may influence the boundary layer in combination with shark skin denticles.

Bechert, Hoppe, and Reif (1985) were the first to quantify the drag force obtained
when the denticles of fast swimming sharks are exposed to a boundary layer flow. Mako
and silky shark skin denticles, both with riblets on the crown, were replicated and fixed to
a plate section in a wind tunnel. Force balance data were recorded and an increased drag
force was obtained for all the flow regimes tested when compared to a smooth surface.
Further investigations were carried out using an oil channel (Bechert et al., 2000). In this
case the reduced viscosity of the fluid allowed ribletted hammerhead denticles to be fab-
ricated at a larger length scale which led to better capture of the three dimensional shapes
while maintaining similar values of s+. A 3 % reduction in drag was observed when the
denticles were tightly packed and resembled a ribletted surface. When the denticle an-
gle of attack was increased, drag increased substantially with respect to the reference flat
plate. This led to similar conclusions as their previous study (Bechert, Hoppe, and Reif,
1985); three dimensionality of shark skin denticles is detrimental to skin friction, and drag
is only reduced when denticles are tightly packed and resemble a ribletted surface. Sim-
ilar conclusions were drawn by Boomsma and Sotiropoulos (2016) who adopted DNS to
simulate a channel flow with mako shark denticles on the wall surface. For a riblet spac-
ing of s+ = 16 Boomsma and Sotiropoulos (2016) obtained a drag increase of over 50 %
compared to the smooth channel.

Shark skin denticle surfaces have also been reported to reduce drag as much as, if
not more-so, than longitudinal riblets (e.g. Chen et al., 2014; Wen, Weaver, and Lauder,
2014; Domel et al., 2018). Wen, Weaver, and Lauder (2014) 3D printed an array of mako
shark skin denticles and directly measured the drag forces when subject to a developing
boundary layer in a water flume. They obtained similar levels of drag reduction as riblet-
ted plates, despite a relatively loosely packed denticle arrangement when compared to
those of Bechert et al. (2000). Drag was reduced by a maximum of 9 % at s+ ≈ 5.6, with
a critical s+ of 14, above which drag increased. This is approximately half the expected
critical s+ for longitudinal riblets (Bechert et al., 1997). More recently Domel et al. (2018)
made use of the same experimental facilities to measure the forces acting on arrays of
3D printed mako denticles at different sizes. They observed significant decreases in drag
in excess of 30 % for their smallest denticles, printed at a length of 2.05 mm. Moulding
techniques have also seen recent success for the fabrication of shark skin surfaces; Tightly
packed and overlapping denticles have been moulded and cast by Zhang et al. (2011a),
Zhang et al. (2011b), and Chen et al. (2014), leading to a maximum drag reduction of
8 – 12 %.

Despite large differences in results, all the highlighted studies have investigated ri-
bletted denticles of fast swimming sharks. An open question is whether the riblets are
solely responsible for the drag reducing effect of shark skin, or whether smooth denticles
may also reduce skin friction. The combined interaction of riblets and denticles is still
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unknown. In addition to this, there have been few reports of flow field measurements for
attached boundary layer flows over shark skin surfaces. Some of the most informative
studies on streamwise aligned riblets have taken flow field measurements or adopted
numerical techniques in order to establish which fluid dynamic mechanisms lead to in-
creased/decreased drag (e.g. Lee and Lee, 2001; Garcı́a-Mayoral and Jiménez, 2011b).

To address these issues this chapter presents the first flow field measurements of a
boundary layer flow over arrays of replica shark skin denticles, using two-component
Laser Doppler Anemometry (LDA). Two types of denticles are fabricated; a smooth Pora-
canthodes sp. (extinct shark relative) scale, and a ribletted denticle similar to the mako den-
ticles of Wen, Weaver, and Lauder (2014) but with comparable proportions to the smooth
denticle. This work is the first to investigate the influence of smooth shark skin denti-
cles on an attached turbulent boundary layer, and quantify differences between the more
typical ribletted denticles that are comparable with those common in previous work.

3.2 Methodology

Two types of sharkskin denticle were created using Blender (2017) CAD software; one
based on Poracanthodes sp. an early fossil ancestor of sharks (Brazeau, 2009), and another
based on the same denticle but with mako-inspired riblets added to its crown. These can
be observed in Figure 3.1. Poracanthodes sp. denticles were chosen due to their similar-
ities with modern fast swimming shark denticles, while maintaining a smooth denticle
crown without riblets. Like modern sharks, the Poracanthodes sp. denticle has an over-
hanging crown, a sharp trailing edge, and a slightly thinner neck region below which
the denticle embeds into the dermis (Reif, 1985). Using Blender (2017) CAD software the
fossil sample was made symmetrical and smoothed along the trailing edge in order to
remove imperfections. The model was also clipped at the base of the neck region such
that only material exposed to water is replicated. The mako-based denticle is built upon
the smooth denticle, but with three riblets added to the denticle crown, consistent with
the denticle of Wen, Weaver, and Lauder (2014). While the riblets have been added to the

FIGURE 3.1: Shark skin denticle CAD models. A Poracanthodes sp. sample
(left), a smoothed and symmetrical Poracanthodes sp. denticle (centre), and

a mako-based ribletted denticle (right).
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top, and cut-outs at the trailing edge, the overall dimensions have been kept consistent
between the two.

Arrays of smooth and ribletted denticles were 3D printed at a 4 mm width and bonded
to a 500 × 120 mm PVC sheet. The 4 mm denticle width equates to an s+ ≈ 8 – 30 over
the range of Reynolds numbers tested. Further details on the denticle dimensions and
fabrication process can be found in Appendix A.

3.2.1 Rig and plate design

Experiments were carried out using a recirculating flume (Figure 3.2). The test section of
the flume has a width of 30 cm, and a length of 8.75 m, measured from downstream of a
20 cm long array of 35 mm diameter flow straightening steel tubes. The total flume depth
is 30 cm, with the water filled to a constant depth of 26 cm. Water was recirculated using
an inverter governed centrifugal pump . The pump frequencies tested corresponded to
freestream velocities (U∞) of 0.11 m s−1, 0.21 m s−1, 0.32 m s−1, and 0.42 m s−1. A remov-
able plate assembly (CNC machined aluminium with a hard anodising coat), detailed
in Figure 3.3, was attached in the centre of the flume, with a width of 140 mm and flat-
section length of 500 mm. Its leading edge was 2.8 m downstream of the flow straight-
eners, and positioned at a height 18 cm from the base of the flume, measured from the
bottom of the plate. The assembly was mounted on a bespoke two-axis gimbal, attached
to aluminium struts which were joined to the top of the flume. Spirit levels (sensitivity
of 0.02 mm m−1) were used to ensure the plate was parallel to the flume base and LDA
traverse. The leading and trailing edges were semi-circular to reduce the influence of
blunt body effects on the boundary layer.

The plate assembly (Figure 3.3) was designed to allow different plates to be inter-
changeable. Experiments were carried out on three plates; a reference flat plate made
of PVC, and the two 3D printed sharkskin surfaces described in Appendix A. The PVC
inserts were held in place using two thin plates on either side, which lay flush with the
plate when secured. The sharkskin protruded from the flat section such that the base of
the sharkskin denticles lay flush with the securing plates. Boundary layer profiles were
taken from beneath the plate, with the positive y− direction taken as the downward
plate-normal direction and the x− direction as streamwise.

FIGURE 3.2: Schematic of the recirculating flume. Dimensions in m. (not
to scale).
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FIGURE 3.3: Plate assembly (left) and plate cross sections (right) for the 3D
printed (upper) and smooth (lower) plates.

For each of the three plates and four flow rates experiments were typically carried out
over 6-8 hours. Temperatures were recorded throughout the experiments with an average
reading typically between 19.5 – 20.0 ◦C. The largest deviation during a set of measure-
ments was 19.0 to 19.8 ◦C; the fluid viscosity was taken as the viscosity corresponding to
average temperature throughout the measurement process on that particular day.

3.2.2 Measurement techniques

The flow was seeded with 10 µm diameter neutrally buoyant silver coated glass spheres.
Particle velocities in the x − y plane were measured by a two-component LDA (Dantec
FibreFlow) with optical access via a glass side panel in the flume. Measurements were
taken in coincident mode to allow calculation of cross-correlations, and a backscatter
configuration was used.

The LDA probe had a diameter of 60 mm, a fixed focal length of 400 mm, a beam
diameter of 1 mm, and a beam spacing of 38 mm. These equate to a measurement volume
diameter of approximately 1 – 5 wall units and a length of 30 – 100 wall units, depending
on the flow Reynolds number. The LDA probe was mounted to a three-axis ISEL system
Traverse with a 410 mm maximum range. The minimum step size and precision of the
motor were 10 µm. The LDA probe head, and subsequently the measurement volume,
was rotated by 45° along the z− axis, and 2.7° in the x− axis. The x− axis rotation allowed
the LDA measurement volume to get close to the wall, while the z− axis rotation was
to reduce noise from reflections off the rough plate surfaces. Preliminary experiments
found that when the LDA probe was aligned such that the streamwise and wall-normal
velocities could be directly measured, the wall-normal velocity was consistently affected
by noise near the wall which could not be easily filtered from the velocity field. This noise
was entirely removed when rotating the probe by 45°, and transposing back to standard
coordinates.
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Profiles were measured at x = 400 mm and z = 0, where x = 0 corresponds to the
leading edge of the plate and z = 0 corresponds to the plate centreline. Sensitivity to the
exact x− and z− locations were checked by also measuring profiles at (x, z) = (400, 1)
and (x, z) = (401, 0), corresponding to different locations on the same sharkskin den-
ticle. No differences in profiles of velocity or Reynolds stresses were observed, within
experimental accuracy.

A grid is created in the y direction with a minimum spacing of 0.0125 mm, which
grows using a geometric scaling until ymax =75 mm. The point y = 0 lies just below
the plate surface; since the plates are replaceable the exact wall position is unknown
and estimated during post-processing. The first grid point y0 corresponds to the closest
position to the plate that could be achieved with the LDA probe, without observing large
scattering in the data, within a tolerance of 0.0125 mm.

The raw data are passed through a moving average filter; a filter window of 16 points
is used and data are removed from both the u and v time series if it falls outside of
three standard deviations from the local mean. This typically removes 0.2 % of the data.
Temporal statistics are calculated using the residence time as a weighting, in order to
account for velocity biasing effects. A sampling time of 300 sec for the lowest flow rate
is adopted, and 200 sec for the other flow rates. The total number of samples recorded
over the sampling time was approximately 6500 for the lowest flow rate and 9000 for the
highest flow rate, in the freestream. These sampling windows were chosen by assessing
the convergence of statistics over a 10 min sampling period at several vertical positions.
The Reynolds stresses converged to a temporal error of approximately 5 % for the sam-
pling times chosen, when compared against the 10 min sampling period. Spatial filtering
is adopted by assessing diagnostic plots, as per Alfredsson and Örlü (2010). While typi-
cally used for identifying wall effects for hot wire anemometry, the technique was found
to be useful by identifying regions of the boundary layer which were affected by near
wall reflections. These points were subsequently removed from the data series.

At x =400 mm boundary layers typically had a height of δ =30 mm. The Reynolds
numbers based on the freestream velocity (U∞) and momentum thickness (θ) varied be-
tween Reθ ≈ 400− 1200.

3.2.3 Parameterisation of the boundary layers

In order to calculate inner and outer length and velocity scales the freestream velocity,
U∞, boundary layer thickness, δ, friction velocity, uτ, and wall-offset, ∆y, must be esti-
mated. For the flat plate the wall offset accounts for the unknown exact position of the
wall in reference to the grid: y = ỹ−∆y, where y is the true vertical coordinate and ỹ cor-
responds to the grid. For the rough surfaces it also accounts for the offset of the virtual
origin due to the presence of roughness. Three methods of determining the unknown
parameters are presented here.
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The first estimate of uτ is calculated via a best-of-fit approach that minimises the root-
mean-square (RMS) error between a composite velocity profile and the LDA data, as
per Rodrı́guez-López, Bruce, and Buxton (2015). Due to the low Reynolds numbers a
more typical Clauser (1956) approach is unsuitable due to the small overlap region. In
contrast, a composite profile is valid for the entire boundary layer. The composite velocity
profile U+

comp is split into an inner U+
inner and outer U+

outer component (Coles, 1956), where
the superscript + denotes normalisation by inner scales uτ and ν, and U is the mean
streamwise velocity:

U+
comp = U+

inner + U+
outer. (3.1)

Typically the inner region is governed by the log-law:

U+
inner =

1
κ

ln y+ + B (3.2)

where κ and B are the log-law constants. However, this is only valid for y+ & 30 (Pope,
2001). In contrast the inner function of Musker (1979) is valid for the full inner region,
dependent on the Von Kármán constant, κ, and the parameter a, which primarily governs
the behaviour of U+

inner in the overlap region:

U+
inner =

1
κ

ln
(

y+ − a
−a

)
+

R2

α(4α− a)

[
(4α + a) ln

(
− a

R

√
(y+ − α)2 + β2

y+ − a

)

+
α

β
(4α + 5a)

(
arctan

(
y+ − α

β

)
+ arctan

(
α

β

))]
, (3.3)

where α = (−1/κ − a)/2, β =
√
−2aα− α2, and R =

√
α2 + β2. This form of U+

inner

reduces to the U+ = y+ for y+ . 5 and the log law (3.2) for y+ & 30. Further details
on this function can be found in Musker (1979) and Chauhan, Nagib, and Monkewitz
(2007). The outer component U+

outer is dependent on κ, a wake strength parameter Π, and
an empirical wake functionW(η) dependent on the outer coordinate η = y/δ:

U+
outer =

2Π
κ
W(η), (3.4)

As per Coles (1956). A quartic wake function is used forW(η), developed by Lewkowicz
(1982):

W(η) = η2(3− 2η)− 1
2Π

η2(1− 3η + 2η2). (3.5)

This wake function was found to be most suitable for this problem, rather than more
complex exponential forms such as that developed by Chauhan, Nagib, and Monkewitz
(2007). This is due to the reasonably high levels of turbulence in the freestream, where
the wake strength Π is either very small, or negative, and the quartic form of the wake
function provides an excellent fit to the data for these values of Π.

The composite velocity profile U+
comp is valid for y ≤ δ, but not for y > δ due to the
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behaviour of the wake function, a problem noted by Chauhan, Nagib, and Monkewitz
(2007). In order to fit all collected data the coordinate transform of Sandham (1991) is
adopted which ensures that for η > 1, Ucomp = U∞. This takes the form

1

(ŷ)1/n =
1

δ1/n +
1

y1/n . (3.6)

where the parameter n = 0.02 (Chauhan, Nagib, and Monkewitz, 2007) governs the
behaviour of the transformed coordinate, ŷ, at the boundary layer edge. In conventional
inner and outer coordinates

η̂ =

[
1 +

1
η1/n

]−n

, (3.7)

and

ŷ+ =

[
1

(δ+)1/n +
1

(y+)1/n

]−n

. (3.8)

From inspection one finds that for y → ∞, η̂ → 1 and ŷ+ → δ+. These transformed
variables ŷ+ and η̂ are substituted directly into the composite velocity profile equations.

In order to fit the composite profile U+
comp to the LDA boundary layer data 6 un-

knowns must be determined: uτ, ∆y, κ, a, Π, and δ. A differential evolution solver is
adopted to minimise the RMS error

Ecomp =

√√√√ N

∑
i=0

(U+
i −U+

comp,i)
2 (3.9)

between a given set of bounds for the unknown variables. These bounds were chosen
as realistic limits for each variable, and it was ensured that the converged solution fell
far from the edges of these bounds. The converged solutions for the unknowns lead to
the first estimate of uτ. However, with 6 unknowns the solution space of Ecomp is very
flat and large deviations in the unknowns can lead to reasonably good fits to the data.
Ideally one would place constraints on the parameters a, κ and Π, but this would be
inappropriate at the low Reynolds numbers herein (Nagib and Chauhan, 2008).

A second estimate is obtained by adopting the method of Hou, Somandepalli, and
Mungal (2006), who obtained uτ by a linear fit to profiles of the weighted total stress
Txy = τxy(1− η) where the total stress τxy is equal to the sum of viscous and Reynolds
stresses:

τxy = ν
dU
dy
− u′v′. (3.10)

The linear fit of Hou, Somandepalli, and Mungal (2006) is given by

T+
fit = mη + 1 for η < ηLim, (3.11)

where m is the gradient of the linear fit and ηLim is the limit of validity for the linear
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region. Hou, Somandepalli, and Mungal (2006) suggested ηLim = 0.5 for their boundary
layers but Mehdi and White (2011) noted that the linear region can be much smaller for
some cases. Therefore a limit of ηLim = 0.3 is specified. This best-fit method is therefore
dependent on the unknowns uτ, ∆y, δ, and m. The RMS error between the data and the
fit is given by

ELin =

√√√√ N

∑
i=0

(T+
xy,i − T+

fit,i)
2. (3.12)

ELin is minimised using a Nelder-Mead SIMPLEX algorithm (Gao and Han, 2012). Pre-
liminary experiments found that the solution space of ELin is very flat due to its linear
behaviour. For this reason the method is coupled with the composite fit and both Ecomp

(3.9) and ELin (3.12) are minimised in a segregated manner where uτ is given by the linear
fit to the weighted total stress and the other unknowns are determined by the composite
profile fit. The two errors are minimised iteratively until the friction velocity converges
to a relative tolerance of 0.001, leading to the second estimate of uτ.

However, there is some dependence on ηLim as noted by Mehdi and White (2011),
and it is unclear whether this linear behaviour holds for all flat plate boundary layers. A
more robust technique is that of Mehdi and White (2011) who derive an integral equation
for the friction coefficient, C f = 2u2

τ/U2
∞. A variation on this method provides the third

estimate of uτ. Assuming the boundary layer is steady and two-dimensional C f can be
calculated by (Mehdi and White, 2011)

C f = 4
1∫

0

(1− η)

U2
∞

τxydη − 2
1∫

0

(1− η)2

U2
∞

∂τxy

∂η
dη. (3.13)

This method of calculating C f (and subsequently uτ) has the advantage of being an ex-
plicit equation for a given data set, and making few assumptions about the form of the
boundary layer. However, calculating the derivative of τxy can lead to large errors due to
the difficulties in achieving adequate convergence of u′v′ in the near wall region. This
problem is overcome by Mehdi and White (2011) by applying a Whittaker smoother
(Whittaker, 1922) to profiles of Txy, justified by noting its linear behaviour close to the
wall and its monotonic and smooth decrease to zero as y → δ. A smoothed τxy is ob-
tained from the smoothed Txy by division of (1− δ) for evaluation of C f . The smooth
profile of τxy can subsequently be used to approximate its derivatives and the integral
equation (3.13).

The integral equation (3.13) of Mehdi and White (2011) can be reformulated to

u2
τ =

1∫

0

Txydη −
1∫

0

(1− η)
dTxy

dη
dη. (3.14)

The integral equation (3.14) is a more convenient formulation than (3.13) as τxy no longer
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appears in the integral, thus avoiding division by (1− η) after smoothing profiles of Txy

which can otherwise lead to floating point precision errors at η ≈ 1. Details on the Whit-
taker smoother can be found in Appendix B. Evaluation of (3.14) requires knowledge of
∆y and δ in order to calculate η. This equation is therefore coupled with the composite
profile method and Ecomp (3.9) is minimised for a given uτ calculated from (3.14). These
equations are solved in a segregated and iterative manner until the friction velocity con-
verges to a relative tolerance of 0.001, leading to the third estimate of uτ.

For the smooth plate the three estimates of uτ are taken as per the methods discussed.
In order to ensure the composite profiles are suitable for the rough plates some small
changes are made. At the three highest Reynolds numbers κ = 0.42 is obtained during
the optimisation process for the smooth plate, which lies in the typical range of accepted
values of κ (Nagib and Chauhan, 2008). For this reason the value of κ is fixed to 0.42
for the three highest Reynolds numbers for the rough plates, given that roughness only
effects the offset of the log-law (treated via the parameter a). The Von Kármán constant,
κ, is treated as a free variable for the lowest flow rates given how few points are in the
overlap region. The same composite profile is adopted for the rough plate surfaces, given
that the dimensionless roughness heights are very small for most of the flows tested.
Subsequently the buffer region (y+ ∼ 30) follows the composite fit very well since it
has not fully broken down over these transitionally rough surfaces (indeed, some of the
cases appear hydraulically smooth). The highest flow rate tested does not follow this
trend, due to the increased dimensionless roughness height. The buffer region is fully
broken down, and therefore a log-law form of U+

inner (3.2) is more appropriate where the
offset parameter B is optimised instead of a. This is more in-line with typical methods
for calculating the wall friction where the log-law is assumed to hold for all data below
y+ . 0.2δ (see e.g. Squire et al. (2016)).

Precision errors are estimated by four repeated experiments, two for the smooth
plates and two for the rough, at the two extreme pump flow rates. Differences in Reθ

were at a maximum of 3.2 % over the four cases when compared to the reference data set.
Differences in the friction velocity estimates are quantified individually. The estimate
based solely on the fit to the composite profile (3.9) leads to differences of up to 45 %,
clearly indicating that the method is unsuitable without placing constraints on some of
the unknowns, or determining them independently. Errors in the Linear-fit to the near-
wall Txy led to differences of up to 3 %. This is improved further by the integral method
(3.14) which leads to differences of a maximum of just 1.4 %. Note that this uncertainty
is smaller than the estimated temporal error for the Reynolds stresses (5 %), a clear result
of the Whittaker smoother.
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TABLE 3.1: Flow conditions for all plates and flow rates. Cases are iden-
tified by a number 1-4 representing the flow rate, and an initial with ‘F’
representing the flat plate, ‘S’ the smooth denticle plate, and ‘R’ the riblet-

ted denticle plate. Marker styles are used for all following figures.

Plate Reθ uτ,int uτ,lin uτ,comp U∞ Iu Iv κ B
(mm/s) (mm/s) (mm/s) (m/s) (%) (%)

• F1 487.8 5.62 5.69 5.54 0.11 5.1 4.2 0.58 8.86
N F2 719.5 10.45 10.67 10.24 0.21 5.8 4.5 0.42 6.3
F F3 853.5 15.61 15.78 23.86 0.32 6.4 4.6 0.42 5.91
� F4 1221.0 20.26 20.4 21.46 0.42 6.6 4.9 0.42 5.76
• R1 409.9 5.83 5.79 5.85 0.11 5.0 4.2 0.55 8.55
N R2 646.6 10.72 10.76 9.71 0.21 5.7 4.3 0.42 5.72
F R3 810.9 17.22 17.13 19.16 0.32 6.4 4.6 0.42 3.78
� R4 1197.7 23.7 23.29 25.2 0.43 6.7 4.7 0.42 2.5
• S1 417.2 5.91 5.9 6.05 0.11 5.0 4.4 0.51 7.23
N S2 693.7 11.22 11.39 9.24 0.21 5.8 4.4 0.42 4.65
F S3 1029.1 18.36 18.46 20.72 0.32 6.4 4.6 0.42 2.14
� S4 1227.3 26.03 26.05 26.51 0.43 6.8 4.7 0.42 0.39

3.3 Results and discussion

The flow conditions can be observed in Table 3.1, with key fitting parameters obtained
through the optimisation process. The different plates and flow regimes are abbreviated
by a letter and a number; The letter refers to the plate type with ‘F’ being the flat refer-
ence plate, ‘R’ the ribletted denticle array, and ‘S’ the smooth denticle array. The num-
bers refer to the imposed flow rates and subsequent Reynolds numbers, with ‘1’ referring
to the lowest Reynolds number cases and ‘4’ the highest. Streamwise and wall-normal
freestream turbulence intensities are also presented: Iu and Iv. As previously noted the
optimised value of κ for all the flat plate flows is 0.42, apart from the lowest Reynolds
number case where the overlap region is small. Three estimates of the friction velocity
have been provided; one from the integral equation, one from the linear fit to the near
wall weighted shear stress, and one from the unconstrained composite profile fit. The
integral method and the linear fit method have good agreement; typical deviations from
one another are less than 1 %, with a maximum of 2.1 % for the F2 case. Unsurprisingly
the composite profile method leads to a large spread in deviations, a result of the under-
determined best-of-fit approach. The other parameters in Table 3.1 are those obtained
when optimising the composite profile and the integral stress method, which is identi-
fied as the best estimate of uτ due to its high repeatability and robustness (although the
following analysis changes very little when adopting the linear-fit method instead).
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FIGURE 3.4: Composite profile fits. Line styles represent Composite profile
( ), linear region ( ), and log-law ( ). Note that profiles have been

offset by 10 in the y− axis.

3.3.1 Validation

Fits to the composite velocity profile can be observed in Figure 3.4 (For clarity when
the y− axis is scaled logarithmically every second data point is plotted for all presented
profiles in this manuscript). Excellent agreement can be observed for all the cases. When
considering the R1 and S1 cases it is clear that the roughness has negligible effect on the
mean velocity. In contrast the R4 and S4 cases clearly indicate that the buffer region has
fully broken down and the log-law holds for the full measured profile. The freestream
turbulence intensities (Iu and Iv for streamwise and vertical intensities) reported in Table
3.1 account for the negative wake strengths that can be observed in the velocity profiles.
The freestream velocity tends to U∞ by dropping below the log-law, which is a property
of the freestream turbulence, reported by Nagata, Sakai, and Komori (2011) and Thole
and Bogard (1996), among others. Despite this, the composite profile captures the data
well, and the inner-region of the boundary layer remains unchanged.

Profiles of the RMS velocity fluctuations for the flat plate cases can be observed in
Figure 3.5, with comparisons against other literature data with similar Reynolds num-
bers and turbulence intensities. The RMS velocities follow the low turbulence intensity
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FIGURE 3.5: Flat plate Reynolds stress comparisons to literature data.

profile of Nagata, Sakai, and Komori (2011) well, until the wake region where the pro-
files do not decay to zero. Instead they tend to the freestream turbulence levels. The high
turbulence intensity (10 %) profiles of Thole and Bogard (1996) show a similar but more

extreme trend, where the turbulence levels in the freestream are greater for
√

v′v′
+

than
in the inner regions of the boundary layer. The turbulence levels herein are clearly more

moderate than this where
√

v′v′
+

reaches its maximum value well within the boundary
layer.

Despite the low Reynolds numbers friction coefficients agree well with the correlation
of Österlund et al. (2000):

C f =
2

[ 1
κ ln Reθ + B0

]2 , (3.15)

where Österlund et al. (2000) specify B0 = 4.08. The agreement between the friction
coefficients obtained using the integrated total shear stress method and the Österlund
et al. (2000) correlation can be observed in Figure 3.6. Aside from case F2 the data agree
well with the correlation, despite it being developed for Reθ > 2500, twice as large as the
highest Reynolds number investigated here. With a small adjustment to B0 to compensate
for the lower Reynolds numbers slightly better agreement is obtained.

Profiles of the weighted shear stress can be observed in Figure 3.7. Firstly it is noted
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FIGURE 3.6: Österlund et al. (2000) correlation (3.15) compared to flat plate
friction coefficients.

that the linear region identified by Hou, Somandepalli, and Mungal (2006) does not ex-
tend as far as η ∼ 0.5. Scatter is also observed in the experimental values close to the wall,
a feature of the difficulties in converging the Reynolds stresses u′v′ associated with low
sample rates very close to the wall. Despite this the Whittaker smoother obtains a robust
and repeatable estimation of Txy. An interesting feature of the F1 case is the small peak
at η ∼ 0.4, likely a result of scatter in u′v′ and the low Reynolds number. However, the
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FIGURE 3.8: Outer scaling of velocity profiles.

integral balance used to calculate uτ is not sensitive to the removal of the points that lead
to that bump, since the largest contributions to the integrals are in the near wall region.

Outer scaling of the velocity profiles can be observed in Figure 3.8. The outer scaling
(U∞−U)/uτ shows similar profiles for all data sets in the outer region η & 0.1 with small
discrepancies for the high Reynolds number rough plate data. Deviations are known to
be a function of the freestream turbulence intensity which alters the wake strength Π
(Sharp, Neuscamman, and Warhaft, 2009). Another potential cause is the blockage ratio
δ/k0 where k0 is the roughness height. When this ratio is small the roughness is large
compared to the boundary layer thickness which has been reported to have an effect on
the outer flow (Tani, 1987). The boundary layers herein lead to δ/k0 ≈ 25 if k0 is taken
as the maximum roughness height. This is a little lower than the typical limit δ/k0 = 40
where roughness should have minimal impact on the outer flow (Jiménez, 2004), which
could explain the slight discrepancies. When scaled by (U∞ − U)/(U∞δ∗/δ), as sug-
gested by Castillo and Walker (2002), all data sets collapse onto a common curve (Figure
3.8).

3.3.2 Comparisons between the plates

Profiles of mean velocity, normalised in wall units, can be observed in Figure 3.9. It is
clear that differences between the three plates are characterised by a downwards offset
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from the flat plate profile, as per any typical roughness. Cases R1 and R2 show negligible
deviation from the flat plate profile, indicating hydraulically smooth behaviour. In con-
trast, the S1 case shows small deviation from the flat plate data, and the S2 case shows
a large downward offset. As the Reynolds number increases the differences between the
three plates gets larger, with the ribletted denticle plate consistently leading to a smaller
downward offset than the smooth denticles, indicative of a lower coefficient of friction.
These velocity profiles suggest that while both types of shark skin denticle behave like
standard roughness, the ribletted denticles have a significantly lower impact on the flow
than the smooth denticles.

Profiles of the RMS velocity fluctuations
√

u′u′
+

and
√

v′v′
+

can be observed in Fig-
ure 3.10. Profiles appear to diverge in the outer region of the flow due to the presence of
freestream turbulence. When scaled in mixed units with the freestream turbulence lev-
els subtracted from the RMS velocities (Figure 3.11) profiles collapse in the outer region.
Differences in RMS velocities in the inner region are clearly a result of the roughness.
Cases R1, S1, and R2 coincide with the flat plate profiles in Figure 3.10, indicative of
hydraulically smooth behaviour. As the Reynolds number increases differences become

more pronounced. The near-wall peak of
√

u′u′
+

is reduced as the Reynolds number

increases. The smooth denticles consistently lead to a smaller peak in
√

u′u′
+

when com-
pared to the ribletted case, ultimately resulting in a larger deviation from the flat plate.

The near-wall peak of
√

v′v′
+

is unaffected by the rough surfaces. As the Reynolds num-
ber increases the near-wall region lifts, indicative of a weaker impermeability condition
at the virtual origin of the rough surface. Consistent with profiles of U+ the smooth den-
ticles lead to larger deviations from the flat plate profiles when compared to the ribletted
denticles.

The principal Reynolds stresses u′v′
+

are plotted in Figure 3.12. Consistent with the
RMS velocity fluctuations differences are negligible between the flat plate and cases R1,
S1, and R2. The remaining rough cases indicate similar behaviour to profiles of v′v′

+
; a

slight lift in the near-wall region is observed, indicative of the weaker impermeability,
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consistent with typical rough wall flows (Schultz and Flack, 2007).
Direct comparisons of the friction coefficients would be inappropriate due to the dif-

ferent Reynolds numbers Reθ , most pronounced at the lowest Reynolds number cases;
F1, S1, and R1 (Table 3.1). The correlation (3.15) of Österlund et al. (2000) is therefore
adopted in order to establish empirical reference friction coefficients for the rough plate
data sets. The constants of (3.15) are specified as B0 = 4.08 as per Österlund et al. (2000)
and κ = 0.42 as per the high Reynolds number data sets.

The relative change in skin friction coefficient for the ribletted denticle plate can be
directly compared to previous studies by plotting its dependence against s+ = suτ0/ν,
where uτ0 is the reference flat plate friction velocity, as per Figure 3.13. Two data sets of
Bechert, Hoppe, and Reif (1985) also specify the denticle Angle of Attack (Θ). Data sets
that do not report s+ or an equivalent Reynolds number have been omitted from Figure
3.13 and subsequent analysis (e.g. Zhang et al. (2011a), Chen et al. (2014), and Domel
et al. (2018)).
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FIGURE 3.11: Reynolds stresses scaled in mixed units. Upper curves are
u′u′ component, lower curves are v′v′ component.
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FIGURE 3.12: Reynolds stresses u′v′ scaled in inner units. Data is offset by
0.5 for clarity.

The ribletted denticle plate leads to a relative change in drag coefficient in reason-
able agreement with Wen, Weaver, and Lauder (2014) (Figure 3.13). A maximum drag
reduction of 2 % is obtained, a little lower than the 3 % obtained by Bechert et al. (2000)
for tightly packed hammerhead denticles. As s+ increases beyond s+ ≈ 20 the ribletted
denticles lead to a larger increase in drag than the denticles of Bechert et al. (2000). Levels
of drag increase at high s+ are in reasonable agreement with the silky shark and mako
(Θ = 5o) data of Bechert, Hoppe, and Reif (1985). The largest deviations from the present
ribletted denticle plate data are the DNS data of Boomsma and Sotiropoulos (2016) and
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FIGURE 3.13: Relative change in drag for the ribletted denticles with
comparisons against literature data. Data are from (/, .) Boomsma and
Sotiropoulos (2016), (�) Bechert et al. (2000), (O, M, ♦) Bechert, Hoppe,

and Reif (1985), (◦) Wen, Weaver, and Lauder (2014).
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FIGURE 3.14: Relative change in drag for the replica shark skin plates.

the mako (Θ = 10o) data of Bechert, Hoppe, and Reif (1985) who both predict a significant
increase in drag.

Differences in C f are also presented as a function of dimensionless denticle width w+

in order to make comparisons between the smooth and ribletted denticle plates (Figure
3.14). The smooth denticles consistently increase drag for the full range of w+ tested,
although only a small drag increase of 2 % is observed at w+ ≈ 25, suggesting that it
is perhaps marginally hydraulically smooth. As w+ increases both denticle plates lead
to significant increases in drag, with the smooth denticle plate consistently leading to
a larger C f than the ribletted denticles. Furthermore, the differences between the two
plates appears to increase as w+ increases; at w+ ≈ 80 the smooth denticles lead to a C f

20 % higher than the ribletted denticles.

3.3.3 Discussion

The dependence of C f on s+ in Figure 3.13 demonstrates that the length scale s is inca-
pable of collapsing all the denticle data sets onto similar profiles. However, discrepancies
between data sets can potentially be explained by considering differences in experimental
procedures and fabrication techniques. The two largest discrepancies between the drag
reduction data (Figure 3.13) reported herein and previous studies are with the DNS data
of Boomsma and Sotiropoulos (2016) and the mako (Θ = 10o) data of Bechert, Hoppe,
and Reif (1985). Disagreements between the present ribletted denticles and DNS data of
Boomsma and Sotiropoulos (2016) can potentially be explained by considering the dif-
ferences in denticle height, Dh. While s+ is very similar between the present ribletted
denticles and those of Boomsma and Sotiropoulos (2016) the denticle heights are vastly
different: Boomsma and Sotiropoulos (2016) state Dh = 1.37s while the present ribletted
denticles have Dh = 1.02s. As a result, the denticles of Boomsma and Sotiropoulos (2016)



56 Chapter 3. Experiments on shark skin denticles

protrude nearly 40 % further into the boundary layer than the present denticles. Further-
more, denticles are more closely packed in the present study. These differences could be
the cause of larger pressure forces acting on the denticles of Boomsma and Sotiropoulos
(2016) which contribute to a larger drag force.

Differences between the ribletted denticles and those of Bechert, Hoppe, and Reif
(1985) could be associated with fabrication techniques. Fabrication methods have sub-
stantially improved since the experiments of Bechert, Hoppe, and Reif (1985) due to 3D
printing capabilities; Bechert, Hoppe, and Reif (1985) readily admit that the regions be-
tween/beneath individual denticles is poorly captured by their fabrication technique. In
contrast, the 3D printed models created in the present study are capable of accurately
capturing the denticle surfaces (Appendix A).

For small s+ the ribletted denticle data agree well with that of Bechert et al. (2000), but
data sets diverge for s+ & 20. This deviation could potentially be explained by consider-
ing the forces subject to denticles as they increase in size. At high values of s+ denticles
are relatively large compared to the viscous region of the boundary layer, and so pressure
forces on individual denticles may become a dominant contributor to skin friction. For
example, 25 % of the friction drag acting on the denticles of Boomsma and Sotiropoulos
(2016) was from pressure forces rather than viscous at s+ = 16. One could hypothesise
that a reduction of this force is directly linked to how well denticles shield each other
from high velocity fluid, and so a loosely packed arrangement of denticles will naturally
be subject to larger pressure forces than a tightly packed and overlapping arrangement.
These pressure forces will become dominant as s+ increases, perhaps explaining the di-
vergence between the present data set and that of Bechert et al. (2000). The hammerhead
denticles of Bechert et al. (2000) are very tightly packed, overlapping, and have 5 riblets
on the denticle crown. In contrast, the ribletted denticles herein are more loosely packed
and have three riblets on the crown. Therefore the denticles fabricated in this study are
more three dimensional than those of Bechert et al. (2000) which more closely resemble
a ribletted plate. At low s+ viscous forces are much larger than pressure, and so the
two types of denticle lead to reasonably similar levels of skin friction. As s+ increases
the present ribletted denticles become more exposed to high speed fluid while those of
Bechert et al. (2000) remain shielded due to the overlapping, thus causing the divergence
between the two data sets.

The turbulent boundary layers measured over the smooth denticles indicate behaviour
typical of sand-grain roughness. At the lowest Reynolds number, corresponding to w+ ≈
25, drag is increased by just 2 % for the smooth denticle array when compared to the flat
plate, suggesting that the flow is close to hydraulically smooth. As w+ increases, drag
increases substantially. In contrast the ribletted denticles reduce drag by a modest 2 %
relative to the flat plate up to w+ ≈ 50. As w+ increases further drag is increased, but
consistently less so than the smooth denticles. At w+ ≈ 80 drag is over 20 % higher for
the smooth denticles when compared to the ribletted denticles. While profiles of C f /C f 0
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as a function of w+ are similar for the smooth and ribletted denticles, they only appear
to collapse as w+ decreases to zero (an unsurprising result for vanishingly small rough-
ness). Differences between the plates appear to increase as w+ increases, suggesting that
perhaps a length scale other than w should be sought. However, when scaled by mean
or average denticle heights the trends observed in Figure 3.14 are consistent, due to the
similarity in length scales between the smooth and ribletted denticles.

It is also important to consider experimental uncertainty when interpreting the rel-
ative changes in drag for the different surfaces (Figure 3.14). While repeatability errors
for uτ are just 1.5 % for the integral-stress method this is of a similar magnitude to the
changes in drag coefficient for both denticle plates at small w+. The drag reduction of
2 % for the ribletted denticles, relative to the flat plate, may therefore be somewhat due to
uncertainty in the friction velocity. However, the differences in friction between the two
denticle plates are substantial, especially at large w+. As a result the ribletted denticles
have a significantly lower impact on the turbulent boundary layer than smooth denticles.

These results suggest that the three-dimensionality of denticles is detrimental to flat
plate skin friction drag, and perhaps denticles have not evolved to the benefit of drag re-
duction for attached boundary layer flows. Of course there could be other hydrodynamic
functions of shark skin denticles. The ability of some denticles to prevent boundary layer
separation via bristling is one such function (Lang et al., 2014). However, when riblets
are present on the denticle crest the adverse effects of denticles are significantly dimin-
ished. Perhaps these riblet features have evolved as a secondary mechanism to control
drag, while the primary purpose of the sharkskin denticles lies in their ability to prevent
flow separation (Fletcher et al., 2014), or perhaps for non-hydrodynamic functions such
as anti-fouling and abrasion resistance (Reif, 1985).

3.4 Conclusions

Through the use of 2D LDA the influence of both smooth and ribletted shark skin denti-
cles on the turbulent boundary layer have been investigated for the first time. This has
enabled the identification of the role of riblets in combination with complex 3D denticles.
Two large arrays of denticles were 3D printed onto a flat plate submerged in a water
flume. One set of denticles was smooth, based on an early shark ancestor Poracanthodes
sp., while the other had mako-based riblets added to the denticle crown, but maintained
similar dimensions to the smooth denticle. Four boundary layer profiles were measured
over each array of denticles, and a flat reference plate, allowing capture of a wide range
of dimensionless riblet spacings: s+ ≈ 8− 30. Profiles of the mean velocity and Reynolds
stresses indicate that smooth denticles behave like a typical rough surface; effects on the
mean streamwise velocity profile are characterised by a downwards shift of the overlap
region, and the near-wall peak of u′u′

+
is reduced as the dimensionless denticle width,

w+, increases. When riblets are added to the denticle crown the adverse effects of the 3D
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roughness are significantly reduced. A modest drag reduction of 2 % is observed for the
ribletted denticles, which was maintained up to w+ ≈ 50 and s+ ≈ 18. In contrast the
smooth denticle array led to an increased drag for all w+ tested. At the highest w+ the
smooth denticles increased drag 20 % more compared to the ribletted.

These results demonstrate, for the first time, the role of riblets on scales. Smooth un-
ribletted scales showed an increase in drag relative to a smooth flat plate, however, the
incorporation of riblets on the scales led to a modest drag reduction of 2 %. The present
study now enables us to conclude that riblets evolved as a mechanism to reduce or elim-
inate the skin friction increase due to the presence of scales (denticles). The combination
of scales and riblets therefore appears to be relatively hydrodynamically efficient in terms
of skin-friction drag, whilst also acting to maintain the attachment of the boundary layer
around the curved body (Fletcher et al., 2014), and providing the other advantages asso-
ciated with scales, anti-fouling, abrasion resistance, and defence against parasites (Reif,
1985).
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Chapter 4

Numerical errors at the wall: On the
sensitivity of RANS models to near
wall cell size

The application of Reynolds Averaged Navier-Stokes (RANS) closures to riblets and shark
skin denticles has been limited to date, with predictions often leading to non-physical so-
lutions or suffering from poor documentation (discussed in Chapter 2). Before attempt-
ing to simulate flows over these complex rough surfaces it is important to consider the
predictive capabilities and numerical properties of turbulence models in order to ensure
changes in solutions can be directly attributed to the roughness geometry. Of particular
importance is the discretisation error associated to near-wall cells. Consider a study of
the flow over a ribletted surface with a dimensionless riblet spacing s+ = suτ0/ν (where
uτ0 is a reference flat plate friction velocity, s is the riblet spacing, and ν the kinematic vis-
cosity) varying between 5 < s+ < 50 at a constant bulk flow Reynolds number. Over this
range of s+ the riblet spacing must vary by an order of magnitude given that the reference
friction velocity uτ0 is constant. For this to be the case the near-riblet cells must grow and
shrink with the riblet size. As a result the near-wall cell sizes will vary significantly over
the full range of s+, especially when normalising these by a local friction velocity. Note
that the drag reduction obtained for riblets in the viscous regime (see e.g. Figure 2.5) is of
the order 1 – 5 % before reaching the optimum regime. For many engineering problems
a discretisation error of 1 % on the friction coefficient would be neglected, but for riblets
this error could significantly pollute drag reduction solutions. It is therefore important
to quantify the sensitivity of RANS closures to the near-wall cell size. This is achieved
through both analytical techniques and numerical simulations.

4.1 Introduction

Several decades have been spent developing turbulence models suitable for efficient inte-
gration through the boundary layer. While there is a vast range of different models, they
generally require the solution to a transport equation for a scale determining variable;
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the rate of turbulent dissipation, ε, or the specific rate of dissipation, ω. It is the choice
and impact of this variable that is the focus of this chapter; in particular, how sensitive
are boundary layer predictions to the dimensionless near wall cell size, y+1 = uτy1/ν

(where uτ is the friction velocity, ν is the fluid kinematic viscosity, and y1 is the distance
between the near-wall cell centre and the wall), and can deficiencies be mitigated against
by solving for different scale determining variables?

Recently, Eça, Pereira, and Vaz (2018) investigated the ‘rule of thumb’, y+1 ' 1, by
performing an extensive grid refinement study on a flat plate boundary layer, the NACA
0012 aerofoil, and the KVLCC2 tanker. Simulations were performed on several sets of
geometrically similar grids, where the sensitivity to the near-wall cell size and the refine-
ment level could be established. Eça, Pereira, and Vaz (2018) found that the k − ω SST
(Menter, Kuntz, and Langtry, 2003) model, widely popular in engineering simulations
(Menter, 2009), is extremely sensitive to the near wall cell sizes. Flat plate boundary layer
results from the three finest sets of grids indicated that in order to achieve the same de-
gree of mesh independence as the one equation model of Spalart and Allmaras (1992)
and the two equation k−

√
kl model of Menter, Egorov, and Rusch (2006), a cell size of

an order of magnitude smaller was required for the ω based model. All of the test cases
studied by Eça, Pereira, and Vaz (2018) led to the conclusions that grid dependency errors
for the friction coefficient could reach at least 5 % for the SST model when (y+1 )avg ≈ 1.

This is a disturbing result given that ω based models have been shown to predict
boundary layers much better than their ε based alternatives (Wilcox, 2006), and have
subsequently seen extensive use for the prediction of such flows (Menter, 2009). Eça,
Pereira, and Vaz (2018) conclude by suggesting that simulations should either be carried
out with y+1 ' 0.1, or a different turbulence model should be used. This conclusion is
somewhat unsatisfying since such a strong limitation on near wall y+1 is not feasible for
most engineering problems.

The significance of a grid dependency error of 5 % on the coefficient of friction is es-
pecially obvious when considering flows where viscous drag is large, for example the
flow over aerofoils (Fischer and Ash, 1974). Small changes to the size of the surface el-
ements could lead to differences in the predicted drag coefficient that are of the same
order as differences observed when the aerofoil geometry is changed. The prediction of
drag reducing surfaces may also be affected by this error. For example, ribletted sur-
faces have been experimentally shown to reduce viscous drag by up to 10 % (Dean and
Bhushan, 2010); any attempt made to predict such a flow using an ω based model will
have solutions significantly polluted by numerical error.

This chapter therefore aims to extend previous work on y+1 sensitivity to several other
turbulence models, selected based on their different approaches to modelling boundary
layer flows and tackling the closure problem at the wall. Analysis will be extended to
boundary layer resolving ε based models which, like ω alternatives, also require analyti-
cal closure at the cells nearest the wall rather than at the domain boundary. It is currently
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unknown whether ε based algebraic closures also exhibit the same numerical errors ob-
served by Eça, Pereira, and Vaz (2018).

In addition to this, the k− τ and k− g models of Kalitzin, Gould, and Benton (1996),
and the k−ω′ model of Tomboulides et al. (2018), are promising alternatives to the k−ω

model by solving for either τ = 1/β∗ω, where β∗ is an empirical constant, g =
√

τ, or
ω′ = ω − ωw, where ωw is the leading order part of ω near the wall. These models are
equivalent to k−ω but reduce to Dirichlet boundary conditions for the scale determining
variables which could remove the near-wall numerical errors associated with ω models.

This chapter will investigate these models using both analytical and numerical tech-
niques. The analytical methods will identify how the different models and variables be-
have in the near wall limit, and how this changes when introducing modifications such
as damping functions or variable limiters. Numerical experiments will also be carried
out in order to establish the influence of y+1 on the boundary layer solutions of a range
of different turbulence models. These will be carried out on a 1D fully developed chan-
nel flow at a moderate bulk flow Reynolds number of Reb = 10 864, equating to a shear
Reynolds number of Reτ ≈ 590. This has several advantages over a flat plate developing
boundary layer: firstly, since the grid is 1D, much smaller cell sizes will be able to be
achieved. In addition to this, values of y+1 vary significantly over a flat plate developing
boundary layer which therefore requires maximum/average values of y+1 to be used for
analysis. A 1D grid will alleviate this issue by having a single value of y+1 at the wall
for each grid. A quantification of the y+1 dependency error will allow engineers to select
appropriate turbulence models based on how large a mesh dependency error they can
accept. By covering a range of different turbulence models conclusions will be applicable
to all models that reduce to the same asymptotic behaviour near the wall.

4.2 Model definitions and near wall behaviour

Several turbulence models are adopted in the present study, selected based on their dif-
ferent approaches to modelling near wall flow. Their limiting behaviour near the wall
is investigated in order to establish differences between them, boundedness, and the
asymptotic behaviour of k and the scale determining variable. This section also inves-
tigates the different methods of ‘forcing’ the correct asymptotic behaviour of k, whether
by introducing time-scale limiters, damping terms in the transport equations, or damping
individual model coefficients.

The models investigated are the k−ω model of Wilcox (1998), the low Reynolds num-
ber k − ε model of Lam and Bremhorst (1981), the k − ω′ model of Tomboulides et al.
(2018), a modified version of the k − τ model of Kalitzin, Gould, and Benton (1996), a
modified k − g model of Kalitzin, Gould, and Benton (1996), and the v2 − f model of
Durbin (1991), with the suggested modifications of Lien and Kalitzin (2001) and David-
son, Nielsen, and Sveningsson (2003). These are chosen due to the different ways in
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which their boundary conditions are treated, although the general form of the equations
in the near wall limit is often consistent between many other models (i.e. ω based models
such as SST and BSL reduce to the same form as that of Wilcox (1998) near the wall).

The models identified above are derived from the turbulent viscosity hypothesis which
is used to close the Reynolds stresses in the Reynolds Averaged Navier-Stokes (RANS)
equations:

DU j

Dt
= − ∂P

∂xj
+ ν∇2U j −

∂u′iu
′
j

∂xi
, (4.1)

and,
∂Ui

∂xi
= 0, (4.2)

where P is the ensemble averaged kinematic pressure, ν the kinematic molecular vis-
cosity, Ui the ensemble averaged fluid velocity, and u′i = ui − Ui is the instantaneous
velocity fluctuation. Density, ρ, is assumed constant and subsequently treated through
the kinematic variables ν and P. The Reynolds stresses, −u′iu

′
j, are closed by

− u′iu
′
j = 2νtSij −

2
3

kδij, (4.3)

where

Sij =
1
2

(
∂Ui

∂xj
+

∂U j

∂xi

)
(4.4)

is the symmetric velocity gradient tensor, k = 1
2 u′iu

′
i is the turbulent kinetic energy, and

νt is the kinematic turbulent viscosity, the form of which is dependent on the adopted
turbulence model. The models investigated in this chapter all solve for the transport of k
and a scale determining variable, such as ε (in the case of v2− f , two additional transport
equations are also solved). The transport of k is consistent between all turbulence models:

Dk
Dt

= P − ε +
∂

∂xj

[(
ν +

νt

σk

)
∂k
∂xj

]
, (4.5)

where the production of turbulent kinetic energy, P = −u′iu
′
j

∂Ui
∂xj

.
Near-wall behaviour is investigated by analysing a statistically steady, fully devel-

oped boundary layer flow with U1(y) = U being the streamwise velocity. It is assumed
that the flow is fully developed (∂/∂x = 0) and steady (∂/∂t = 0), which through con-
tinuity implies that U2 = V = 0. These assumptions will be adopted in the following
sections where each of the selected models is addressed.
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4.2.1 Near wall behaviour of ε based models

In the viscous sub-layer, ε balances viscous diffusion such that the transport of k (4.5)
reduces to

ε ∼ ν∇2k, (4.6)

which can subsequently be used to investigate the near wall behaviour of the scale deter-
mining variable. The no-slip condition leads to the following Taylor Series expansion of
U and k:

U ∼ A1y + A2y2 + . . . ,

k ∼ a1yn + a2yn+1 + . . . , (4.7)

where Ai and ai are unknown coefficients. Note that the theoretical value of n = 2 is not
guaranteed, and is dependent on the near wall solution of the scale determining variable
(Wilcox, 2006). Substituting (4.7) into (4.6) leads to

ε ∼ ν[(n− 1)na1yn−2 + n(n + 1)a2yn−1 + (n + 1)(n + 2)a3yn + . . .]. (4.8)

A special case arises for n < 2 where both ε and the leading order terms in the transport
of k (4.5) are unbounded (i.e. grow with decreasing wall distance). This is precisely the
result of the standard, unmodified, high Reynolds number k− ε model of Launder and
Spalding (1974) of which the transport of ε (See Appendix C.1) reduces to

0 = Cε1
ε

k
νt

(
∂U
∂y

)2

︸ ︷︷ ︸
O(yn)

− Cε2
ε2

k︸ ︷︷ ︸
O(yn−4)

+ ν
∂2ε

∂y2
︸ ︷︷ ︸
O(yn−4)

. (4.9)

Here the destruction of ε balances diffusion as y → 0. Substituting (4.7) and (4.8) into
(4.9) one obtains

Cε2
ν2n2(n− 1)2a2

1y2n−4

a1yn ≈ ν2(n− 3)(n− 2)(n− 1)na1yn−4, (4.10)

to leading order. This reduces to a quadratic equation for n dependent only on Cε2. With
Cε2 = 1.83, typical for the standard k− ε model (Launder and Sharma, 1974), the equation
is satisfied by n = 1.39 (a result also obtained by the perturbation analysis of Wilcox
(1998)). The poor prediction of n is partly why the standard k− ε model is typically used
with a log-law type wall function.

The near wall behaviour of the transport of ε changes significantly when modified
as per the model of Lam and Bremhorst (1981) (Appendix C.1) or the v2 − f model of
Durbin (1991) (Appendix C.7). Lam and Bremhorst (1981) introduce damping functions
into the transport of ε; with some manipulation one finds that the transport of ε can only



64 Chapter 4. Numerical errors at the wall

balance when n = 2:

0 = Cε1 f1
ε

k
νt

(
∂U
∂y

)2

︸ ︷︷ ︸
O(1)

−Cε2 f2
ε2

k︸ ︷︷ ︸
O(y6)

+ ν
∂2ε

∂y2
︸ ︷︷ ︸
O(1)

. (4.11)

In this case the value of n is ensured without dependence on the values of the empirical
coefficients, since no other value of n allows (4.11) to balance. The damping functions also
change the dominant balance in the transport of ε; instead of diffusion balancing destruc-
tion, it balances production, and therefore requires that ∇2ε < 0. Note that damping
functions are not applied to the diffusion term of (4.11) and yet it is O(1) rather than
O
(
yn−4) as per (4.9). This is due to the cancelled terms in the differentiation of (4.8)

when n = 2.
In addition to achieving the correct scaling of k, the Lam and Bremhorst (1981) model

is also bounded near the wall, whereby dominant terms are O(1). To leading order, (4.8)
reduces to

ε ≈ 2νk
y2 +O (y) (4.12)

near the wall when n = 2. Despite tending to a finite value at the wall (since k ∼ y2)
ε cannot be determined at y = 0 and must therefore be closed using either further
modifications (for example the approach of Launder and Sharma (1974) who solve for
ε̃ = ε− 2ν(∇

√
k)2), simplifications, or algebraic closures at the cells nearest the wall. The

algebraic closure approach fixes ε at the cell centre closest to the wall:

ε1 =
2νk1

d2 (4.13)

where d is the distance to the wall. This method ensures correct scaling of k and ε al-
though requires the solution to the transport of k (4.5). The typical approach adopted
when using the model of Lam and Bremhorst (1981) is to specify Neumann boundary
conditions:

ni
∂ε

∂xi
= 0 (4.14)

at the wall, where ni is the wall normal direction. This presents an issue when consid-
ering the balance of (4.11), whereby additional terms in the expansion of ε are required
(i.e∇2ε cannot beO(1) with Neumann boundary conditions). However, Patel, Rodi, and
Scheuerer (1985) have shown that boundary layer predictions are insensitive to these
boundary conditions due to the imposed damping functions; this conclusion will be in-
vestigated numerically in Section 4.3. It should also be noted that the damping functions
adopted by the Lam-Bremhorst k − ε model are a function of the wall-normal distance,
yw, which can be complicated to calculate when considering complex geometries.

The modifications to the transport of ε (4.9) adopted by the v2 − f model place a
lower limit on the timescale k/ε such that it is clipped at the Kolmogorov timescale, τη =
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CT
√

ν/ε where CT is an empirical constant. Assuming v2 takes the form

v2 ∼ b1ym + b2ym+1 + . . . , (4.15)

one finds that near the wall the transport of ε (See Appendix C.7) is balanced when n = 2
by

0 =
C′ε1
T

νt

(
∂U
∂y

)2

︸ ︷︷ ︸
min
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2

)
; O
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2

)]

−Cε2
ε

T︸ ︷︷ ︸
O(1)

+ ν
∂2ε

∂y2
︸ ︷︷ ︸
O(1)

. (4.16)

This behaviour arises since T = max[k/ε; τη ] becomes O(1) near the wall, requiring that
ε must be of the same order as ∇2ε in order for (4.16) to balance. This also leads to
no unbounded terms in the transport equations for k and ε, without requiring damping
functions, or the computation of yw. The authors of this model recommend using the
algebraic closure approach of (4.13), consistent with the correct asymptotic scaling of k.

4.2.2 Near wall behaviour of the k−ω model

The k− ω model of Wilcox (1998) is detailed in Appendix C.2. Limiting behaviour of ω

is derived from (4.6) using the asymptotic expansion of k (4.7):

β∗kω = ε ∼ ν∇2k, (4.17)

which reduces to
ω ∼ (n− 1)nν

β∗y2 +
2na2ν

β∗a1y
+O(1). (4.18)

Substituting this into the transport of ω (Appendix C.2) leads to

0 = γ

(
∂U
∂y

)2

︸ ︷︷ ︸
O(1)

− βω2

︸︷︷︸
O(y−4)

+ ν
∂2ω

∂y2
︸ ︷︷ ︸
O(y−4)

. (4.19)

Note that the dominant terms in this balance are unbounded, growing like O
(
y−4). n

can be determined by considering the balance of leading order terms, reducing to the
quadratic:

β

β∗
(n− 1)n ∼ 6. (4.20)

For the standard k−ω model the coefficients are β∗ = 0.09 and β = 0.072 (Wilcox, 1998)
which leads to n ∼ 3.28. This is clearly quite far from the asymptotic solution for k (de-
spite this reasonable predictions of the velocity profile are still achievable (Wilcox, 1998)).
The low Reynolds number corrections of Wilcox (2006) (Appendix C.2) changes the lim-
iting behaviour such that as y → 0, ReT → 0, and β∗ ≈ β∗∞

100
27 β. When this is substituted
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into the quadratic one obtains n = 2. It should be noted that there is a clear difference be-
tween the damping functions of the k−ω model and those of the Low Reynolds number
k− ε models; the k−ω model simply damps the coefficients of the equation between one
finite value and another, whereas the k − ε models significantly change the limiting be-
haviour of the ε transport equation. In addition to this, the damping functions of Wilcox
(2006) don’t require the calculation of yw, unlike the k− ε model of Lam and Bremhorst
(1981).

Algebraic closures at the near-wall cells are required to evaluate ω near the wall which
are derived from the transport of ω (4.19) in order to eliminate the dependence on n. The
leading order balance of (4.19) can be rearranged to

ω ≈ ν

βω

∂2ω

∂y2 . (4.21)

Substituting (4.18) into this expression yields another asymptotic expansion for ω:

ω ∼ 6ν

βy2 −
8a2ν

βa1(n− 1)y
+O(1). (4.22)

Equating the leading order terms of (4.18) and (4.22) leads to the quadratic equation for n,
(4.20). The near-wall algebraic closure typically adopted for ω (Wilcox, 1998) is derived
from the leading order term of (4.22):

ω1 =
6ν

βd2 . (4.23)

where ω1 is the value of ω at the cell centre closest to the wall. Of particular note is the
singular behaviour of ω, which grows like 1/y2. Wilcox (2006) discusses the issues with
discretising such functions, concluding that without care, the variable in question can
be vastly over-predicted; over-predicting ω near the wall can have noticeable effects in
the outer portions of the boundary layer. Wilcox (2006) suggests that this problem can
be overcome by either using ‘slightly-rough’ wall boundary conditions, or by fixing the
value of ω for all cells below y+ ≈ 2.5 (at which point the asymptotic solution is no longer
valid). For complex geometries this second option is complicated to implement. Not only
this, but enforcing such a condition is solution dependent which could lead to oscillatory
solutions between consecutive iterations (Eça and Hoekstra, 2004). The alternative to
enforcing (4.23) is to adopt slightly-rough wall boundary conditions, where the value of
ω at the wall, ω0, is related to a surface roughness height, ks, by (Wilcox, 2006)

ω0 =
40000ν

k2
s

. (4.24)

This method essentially fixes ω to a constant value on the wall. Wilcox (2006) argues that
as long as k+s is sufficiently small to be hydraulically smooth (k+s . 5) the solution will
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still be valid for a smooth wall, but numerical errors will be significantly reduced as long
as ω1 is lower than that of the asymptotic solution (4.18). In essence, this method fixes
the surface value of ω high enough that its approximation won’t affect the freestream,
but low enough to avoid discretisation errors. However, Eça and Hoekstra (2004) show
that the use of slightly-rough wall boundary conditions does not reproduce the smooth
wall solution, and is actually more sensitive to near wall cell size than its alternative.

4.2.3 Alternatives to the k−ω model

The recent model of Tomboulides et al. (2018) (Appendix C.3) decomposes ω into ω =

ω′ + ωw, where

ωw =
6ν

βy2
w

. (4.25)

The motivation behind this decomposition is to avoid the numerical differentiation of the
singularity, ωw, by treating it algebraically. From inspection of (4.22) the behaviour of ω′

is not entirely obvious, due to its dependency on the unknown coefficients a1 and a2:

ω′ = ω−ωw ∼ −
8a2ν

βa1(n− 1)y
+O(1) (4.26)

Tomboulides et al. (2018) state that ω′ = 0 at the wall, although this requires several
terms in (4.26) to be zero. ω′ can be written more generally:

ω′ = c1yp + c2yp+1 + · · · (4.27)

Near the wall, the transport of ω′ (see Appendix C.3) balances like

0 = γ

(
∂U
∂y

)2

︸ ︷︷ ︸
O(1)

− βω′2

︸︷︷︸
O(y2p)

− βω2
w

︸︷︷︸
O(y−4)

− 2βω′ωw

︸ ︷︷ ︸
O(yp−2)

+ ν
∂2ωw

∂y2
︸ ︷︷ ︸
O(y−4)

+ ν
∂2ω′

∂y2
︸ ︷︷ ︸
O(yp−2)

. (4.28)

Through substitution of ωw = 6ν/βy2
w, and noting that for a boundary layer flow y = yw,

one observes that the leading order terms balance exactly and subsequently cancel from
the balance of (4.28). This leads to

0 = γ

(
∂U
∂y

)2

︸ ︷︷ ︸
O(1)

− βω′2

︸︷︷︸
O(y2p)

− 12νω′

y2
︸ ︷︷ ︸
O(yp−2)

+ ν
∂2ω′

∂y2
︸ ︷︷ ︸
O(yp−2)

. (4.29)

By examining the possible balances of (4.29) one finds that the solution implied by the
expansion of ω (4.22), p = −1, is not valid. Upon further inspection the only consistent
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solution is p = 2, resulting in

γ

(
∂U
∂y

)2

− 12νω′

y2 + ν
∂2ω′

∂y2 ∼ 0. (4.30)

c1 can be determined by noting that U+ = y+ in the near wall region:

c1 =
γu4

τ

10ν3 , (4.31)

which leads to

ω′ ∼ γu4
τ

10ν3 y2 +O
(
y3) . (4.32)

This clearly suggests that several coefficients of (4.22) are zero, and also means that the
Dirichlet boundary conditions adopted by Tomboulides et al. (2018) are valid and consis-
tent with the theoretical scaling of ω′.

However, the model is not only dependent on accurately calculating the wall-normal
distance, yw, but also its first and second derivatives (see Appendix C.3). Tomboulides
et al. (2018) argue that since the terms involving yw and its derivatives are only dominant
near the wall, any discontinuities in derivatives of yw further from the wall will have neg-
ligible influence on solutions. This argument is supported by noting that terms involving
derivatives of yw scale like y−3 or y−4, but the authors fail to note that in the log-law
region of the boundary layer this is not so much smaller than the dominant terms in the
transport of ω′. This can be investigated by taking the log-law solutions noted by Wilcox
(2006), derived from perturbation methods:

U+ =
1
κ

log y+ + B, νt = uτκy, k =
u2

τ√
β∗

, ω =
uτ√
β∗κy

. (4.33)

Substituting these relations into the transport of ω′ one finds that the production and
destruction terms dominate in the log-region. By substituting these relationships into the
transport equation for ω′ (Appendix C.3) one finds that the largest term containing ωw is
(νt/σ)∇2ωw. With some manipulation one can relate this to the production term in the
transport of ω′:

νt

σ
∇2ωw ∼

36κ3

σβγy+

(
γ(ω′ + ωw)

k
P
)

. (4.34)

Substituting typical values for κ, σ, β, and γ, (see Appendix C.2) into (4.34) one obtains

νt

σ
∇2ωw ∼

30
y+

(
γ(ω′ + ωw)

k
P
)

. (4.35)

Clearly, the influence of this diffusive term extends far into the log-layer; it is only re-
duced below 5 % of the production term at y+ = 600. While Tomboulides et al. (2018) are
correct in suggesting that terms dependent on derivatives of yw are negligible far from



4.2. Model definitions and near wall behaviour 69

the wall, they do still have some influence in the log-region of the boundary layer. Ul-
timately this suggests that if there are numerical issues concerning the calculation of yw

and its derivatives, the boundary layer solutions will be affected.
In order to make the equations more tractable, Tomboulides et al. (2018) simplify

the equations by specifying |(∇yw)| = 1 and ∇2yw = 0, an obvious deduction when
considering boundaries normal to x or y, although the validity of specifying ∇2yw = 0
for more complex surfaces is not entirely obvious. Let us consider the wall-distance to a
circle of radius r, with the origin placed at the centre of the circle. At any point outside
this circle, the distance to the circle boundary will be given by

yw =
√

x2 + y2 − r, (4.36)

which leads to
|∇yw| = 1, (4.37)

and
∇2yw =

1√
x2 + y2

=
1

yw + r
. (4.38)

Clearly the Laplacian term is not zero, and at the boundary, yw = 0, takes the value of
1/r. This term appears twice in the transport of ω′, both of which can be written like:

ν∇2ωw =
νωw

y2
w

[
6|∇yw| − 2yw∇2yw

]
, (4.39)

and
νt

σ
∇2ωw =

νtωw

σy2
w

[
6|∇yw| − 2yw∇2yw

]
. (4.40)

Substituting expressions for |∇yw| (4.37) and ∇2yw (4.38) into these terms leads to

[
6|∇yw| − 2yw∇2yw

]
=

2r
yw + r

+ 4. (4.41)

Several conclusions can be drawn from this: Firstly, at yw = 0, (4.41) takes the value of
6, consistent with the solution obtained when setting ∇2yw = 0. However, as yw → ∞,
(4.41) tends to 4. Of course, far from the wall the terms containing ωw are negligible,
however the transition away from the solution of 6 is dependent on both the radius of the
boundary and near wall distance. When yw ∼ r, the term is approximately 5, which is a
significant deviation. Previous arguments have suggested that (νt/σ)∇2ωw is important
in the log-layer, suggesting that if the wall radius is of O(100) wall units then taking
∇2yw = 0 will differ from the true solution. Relating this back to ‘real’ surfaces it is clear
that very few CFD problems will ever consider resolving the flow over surfaces that vary
by O(100) wall units (or smaller), but there are certainly cases which may be influenced
by this approximation, such as rough-wall flows and flows over riblets.

There are other ways to mitigate against the numerical issues of ω based models; as
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noted by Kok and Spekreijse (2000), the unboundedness of the transport equation for ω

(4.19) and its singular asymptotic behaviour, can be mitigated against by adopting the
k− τ model of Kalitzin, Gould, and Benton (1996) (Appendix C.4). Substituting ω = 1/τ

into the transport of k (4.6) leads to

β∗k
τ
≈ ν∇2k. (4.42)

substituting the general expansion of k (4.7) into this balance and rearranging for τ leads
to

τ ∼ β∗y2

(n− 1)nν
− 2β∗a2y3

n(n− 1)2a1ν
+O

(
y4
)

. (4.43)

The transport of τ (Appendix C.4) is derived by substituting ω = 1/τ into the transport
of ω (Appendix C.2), and balances like

0 = − γτ2
(

∂U
∂y

)2

︸ ︷︷ ︸
O(y4)

+ β

︸︷︷︸
O(1)

− 2ν

τ

∂τ

∂y
∂τ

∂y︸ ︷︷ ︸
O(1)

+ ν
∂2τ

∂y2
︸ ︷︷ ︸
O(1)

. (4.44)

Equating O(1) terms leads to

0 = β− 8β∗

(n− 1)n
+

2β∗

(n− 1)n
(4.45)

which reduces to the same quadratic as the k−ω model. This shows that the limiting be-
haviour of k is consistent between the two models, but Dirichlet boundary conditions can
be adopted for τ, and all terms in the transport of τ are bounded as y→ 0. Boundedness
is achieved without requiring significant modifications to the transport equation, such
as damping functions or timescale limiters as previously discussed. This model can also
be extended using the same low Reynolds number corrections as used by Wilcox (2006).
When comparing the k−ω′ model (Appendix C.3) and the k− τ model (Appendix C.4),
both of which are mathematically equivalent, one can see how much simpler the k − τ

formulation is. In comparison to k− ω, k− τ adds only one extra term to the transport
equation of the scale determining variable, and doesn’t require accurate computation of
the wall-normal distance, yw.

Kalitzin, Gould, and Benton (1996) also derive a k − g model (detailed in Appendix
C.6) which solves for g =

√
τ, arguing that since τ decreases quadratically with wall

distance numerical errors may still be present due to discretisation errors near the wall.
The near wall behaviour can be investigated by starting from (4.43):

g ∼
[
b1y2 + b2y3 +O

(
y4
)]1/2

, (4.46)
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where
b1 =

β∗

(n− 1)nν
, b2 = − 2β∗a2

n(n− 1)2a1ν
. (4.47)

A polynomial expansion on g leads to

g ∼ b1/2
1 y +

b2

2b1/2
1

y2 +O
(
y3) , (4.48)

Substituting these expansions into the transport of g (Appendix C.6) leads to the follow-
ing balance:

0 = − γg3

2

(
∂U
∂y

)2

︸ ︷︷ ︸
O(y3)

+
β

2g︸︷︷︸
O(y−1)

− 3ν

g
∂g
∂y

∂g
∂y︸ ︷︷ ︸

O(y−1)

+ ν
∂2g
∂y2
︸ ︷︷ ︸
O(1)

. (4.49)

Unlike the other models the Laplacian term is not dominant near the wall. The behaviour
of k and g can be determined by balancing leading order terms:

β ∼ 6ν∇g∇g, (4.50)

which unsurprisingly returns the same quadratic for n as the ω and τ models:

β ∼ 6β∗

n(n− 1)
. (4.51)

However, unlike the τ equation the dominant terms in the transport of g are unbounded
(although less severely than in the ω case).

4.2.4 Summary

To summarise this section the most popular turbulence models for solving boundary
layer flows require algebraic closure at the near-wall cells in order to ensure correct
asymptotic behaviour. This is due to their dependence on the solution to a transport
equation for either ε or ω, neither of which can be determined at the wall. In addition
to this, without modifications the model transport equation for the scale determining
variable is unbounded, growing like y−4 in the case of ω models. ε based models can
be modified using timescale limiters or damping functions which ensure both bound-
edness, and correct scaling of k and ε near the wall. Both of these methods succeed by
forcing n = 2 near the wall which results in cancelled terms in∇2ε. This cannot be simply
extended to ω based models since terms in the expansion of ω (4.18) cannot be cancelled.
The damping functions introduced by Wilcox (2006) do not ensure boundedness of the
transport of ω or alter its leading order balance, but the asymptotic scaling of k is cor-
rected. Three models have been discussed which do address the singular behaviour of
ω and its transport equation. The recent k−ω′ model of Tomboulides et al. (2018) treats
the singular component of ω algebraically, and reformulates the transport equation for ω



72 Chapter 4. Numerical errors at the wall

into one for ω′ = ω − ωw. This section has shown that k− ω′ is consistent with theory
and avoids discretisation of singular functions. However, it is dependent on the calcula-
tion of the wall-distance yw and its first and second derivatives, which are not trivial to
calculate when considering complex geometries. The singular behaviour of ω can also be
corrected by transforming the transport of ω to either transport of τ or g, as per Kalitzin,
Gould, and Benton (1996). This retains the predictions of the ω model but significantly
alters the numerical properties of the transport equations by ensuring boundedness (re-
garding the τ equation), and allowing Dirichlet boundary conditions at the wall for both
τ and g. If the numerical errors observed by Eça, Pereira, and Vaz (2018) are entirely
due to the singular behaviour of ω then the τ and g formulations may offer attractive
alternatives to ω based models. Despite this, these models have seen little development
or further use (Kok and Spekreijse, 2000; Kalitzin et al., 2005; Xiao et al., 2005) since their
original publication; there is no reason why these could not be extended to include cross
diffusion or SST type closures while maintaining their limiting behaviour near the wall.

4.3 Fully developed channel flow simulations

A 1D fully developed channel flow is simulated at a bulk Reynolds number of Reb =

Ubδ/ν = 10 864, equating to a shear Reynolds number of Reτ = uτδ/ν ≈ 590, where δ is
the channel half height and Ub is the bulk velocity. The flow is assumed steady state and
incompressible. Turbulence models and boundary treatments are specified in Table 4.1
(See Appendices for model details). The k− τ, k− g, and k−ω′ models, unavailable with
the official release, have been implemented in OpenFOAM 4.1 (Weller et al., 1998). Two
k− τ cases are adopted, one with Dirichlet boundary conditions τ0 = 0 and one with an
equivalent algebraic closure approach to k−ω (1), τ1 = βd2/6ν.

Equations are discretised and solved using OpenFOAM 4.1 (Weller et al., 1998); a sec-
ond order upwind scheme is adopted for velocity convective terms, and a second order
accurate Total Variation Diminishing (TVD) scheme is adopted for all other variables.

TABLE 4.1: Turbulence model definitions.

Label Appendix Model definition and treatment at the wall

LB1 C.1 k− ε of Lam and Bremhorst (1981) with ni
∂ε0
∂xi

= 0
LB2 C.1 k− ε of Lam and Bremhorst (1981) with ε1 = 2νk1/d2

k−ω (1) C.2 k−ω with ω1 = 6ν/βd2

k−ω (2) C.2 k−ω with ‘slightly-rough’ BC: ω0 = 40000ν/k2
s , k+s = 1

k−ω (3) C.3 k−ω′ with ω′0 = 0
k− τ (1) C.4 k− τ model with τ0 = 0
k− τ (2) C.4 k− τ model with τ1 = βd2/6ν
k− g C.6 k− g model with g0 = 0
v2 − f C.7 v2 − f with ε1 = 2νk1/d2
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FIGURE 4.1: Mesh grading parameters.

Laplacian terms are discretised using standard Gaussian integration, and face gradients
are calculated using linear interpolation. At the wall, first order approximations are made
for calculating gradients, the importance of which will be discussed in the following sec-
tion. The SIMPLEC scheme of Van Doormaal and Raithby (1984) is adopted to couple
pressure and velocity equations. Convergence is determined by monitoring the friction
velocity, uτ. This converges to a value of approximately 1 (exact values are specific to
each turbulence model) to a relative error of 1× 10−7 for all cases. This corresponds to
normalised residual errors of less than 1× 10−10 for all variables.

Periodic boundary conditions are adopted in the streamwise and cross stream direc-
tions, and a source term is added to the momentum (4.1) equations. This source term
takes an iterative form to ensure a fixed bulk flow rate, as per Murthy and Mathur (1997)
(i.e. Reb is fixed). The computational domain is such that a symmetric boundary condi-
tion is applied at y = δ and no-slip at y = 0.

5 sets of 6 geometrically similar meshes are created using a geometric grading to refine
the near-wall cells. The geometric grading links 6 parameters by

r =
∆i+1

∆i
, R =

∆n

∆1
= rN−1, and L =

N

∑
i=1

∆i, (4.52)

where ∆1 is the cell width at the wall, ∆n is the cell width at y = δ, N is the number
of cells, r is the ratio between consecutive cell sizes, and R is the ratio between the first
and last cell size. These parameters are also defined in Figure 4.1. This study fixes the
domain length, L = δ = 1, N and R. The remaining parameters are calculated from
(4.52). The 5 sets of meshes are distinguished by different stretching ratios, R, which
varies between 1 and 10000, while the 6 meshes contain different numbers of cells, N,

TABLE 4.2: Set and mesh definitions.

Set R Mesh N hr =
N6
N

S1 1.0 M1 250 4.00
S2 10.0 M2 400 2.50
S3 100.0 M3 550 1.82
S4 1000.0 M4 700 1.43
S5 10000.0 M5 850 1.18

M6 1000 1.00
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FIGURE 4.2: Variation of the near wall cell size y+1 for the different sets and
grids (Table 4.2). Presented data are for the k− g model. Colours represent

different sets: •, S1; •, S2; •, S3; •, S4; •, S5.

which varies between 250 and 1000. The grid and set definitions are detailed in table 4.2,
which lead to a total of 30 grids. The 6 meshes cover a grid refinement ratio hr = N6/N
of 4, where N6 is the number of cells in the finest mesh, M6. The maximum cell-cell ratio
r is 1.038, corresponding to S5 M1 in Table 4.2. Figure 4.2 shows the variation of y+1 for
the different grids. All but one of the meshes satisfies y+1 < 1, with a minimum value of
y+1 ≈ 2.5× 10−4.

4.3.1 Solution dependence on hr

In order to analyse solution dependence between the different sets of meshes and turbu-
lence models the convergence of the friction velocity, uτ, is investigated. The discretisa-
tion error can be expressed by (Eça and Hoekstra, 2014)

E = φi − φ0 = αhp
i (4.53)

where φi represents some scalar flow quantity (such as uτ), φ0 is the estimate of the exact
solution, α is a constant to be determined, hi is the typical cell size, and p is the observed
order of convergence (Eça and Hoekstra, 2014). For second-order accurate discretisation
schemes one should obtain p = 2. This can be reformulated in terms of the grid refine-
ment ratio hr to

φi = φ0 + α′hp
r , (4.54)

where α′ is a constant (not equal to α). For each turbulence model (Table 4.1) and set
of meshes (Table 4.2) the rate of convergence p and reference friction velocity uτ0 are
estimated through a best-of-fit procedure to (4.54). These fits can be observed in Figure
4.3, where the friction velocity for each of the 5 sets and turbulence models is plotted
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FIGURE 4.3: Convergence of the friction velocity as a function of the grid
refinement ratio.
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FIGURE 4.3: Convergence of the friction velocity as a function of the grid
refinement ratio (cont.).

against the refinement ratio hr. S5 data for the models LB2 and v2 − f have been omitted
due to inadequate convergence; Oscillatory behaviour in uτ is observed as a result of the
analytical closure of ε1 (Table 4.1) at the cell nearest the wall, likely due to its dependence
on k.

All sets for the models k− g, k− ω (3), k− τ (2), LB1, and LB2 obtain approximately
second order convergence, h2

r . These models all obtain similar trends; all sets converge
to a common uτ0 (to plotting accuracy, with the exception of k − τ (2) S1), differences
between sets are reduced as the set number (stretching ratio, R) increases, and solutions
on sets S3, S4, and S5 are indistinguishable on the presented axis scales. The remaining
cases, k−ω (1), k−ω (2), k− τ (1), and v2− f obtain sub-optimal convergence. k−ω (1)
and (2) behave in a similar fashion; sub-linear convergence is observed for set S1, which
slowly tends towards second-order convergence at S5. k − ω (2) obtains a higher order
of convergence than k − ω (1), achieving second-order convergence at S4 and S5 while
k − ω (1) only obtains h1.7

r for S5. However, k − ω (2) leads to a much larger spread in
solutions of uτ, most noticeable for set S1. The v2− f model obtains approximately linear
convergence for all sets, with a minimum of h0.84

r and a maximum of h1.39
r . However, the

spread in values of uτ is much smaller than for the k−ω (1) and (2) models. The k− τ (1)
model appears to adopt non-trivial convergence for many of the sets. The rate of conver-
gence appears to vary between h2.89

r and h0
r , although this spread in results is a function

of the simple polynomial estimate of the discretisation error (4.54). This behaviour will
be investigated when discussing solution dependence on y+1 .

4.3.2 Solution dependence on y+1

The dependence of uτ on the near-wall cell size y+1 for k − ω and its mathematically
equivalent models can be observed in Figure 4.4, for all sets and meshes. In general
all solutions obtained from all sets collapse onto a common profile for each turbulence
model. Deviations from this trend are most obvious for sets with large stretching ratios
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FIGURE 4.4: Friction velocity dependence on the near-wall cell size for
k− ω and its mathematically equivalent models. (B) shows data from (A)
with a different y− axis scaling. Colours represent different sets, as per

Figure 4.2: •, S1; •, S2; •, S3; •, S4; •, S5.

(S4, S5), where deviations from this curve are a result of global refinement. However, for
S1-S3 all solutions convincingly collapse onto a common curve, where y+1 & 0.01. This
suggests that for these highly refined meshes, solutions of uτ are more sensitive to y+1 than
the global refinement ratio, hr, if y+1 & 0.01. k − ω (1) and (2) lead to a larger spread in
solutions of uτ than any of the other models tested, when y+1 is large. As y+1 decreases all
models except k−ω (2) collapse onto a common friction velocity, an unsurprising result
given their mathematical equivalence and common model coefficients. An exception to
this is the solutions of k − ω (2), which closes ω at the wall by adopting the slightly-
rough boundary condition for ω0. Clearly this has an effect on the converged solution of
uτ, even if the values chosen for ω0 reflect hydraulically smooth roughness conditions.

Profiles of uτ as a function of y+1 (Figure 4.4) coincide for all models that converge at
the expected second-order rate; k− g, k−ω (3), and k− τ (2), again reflecting their math-
ematical equivalence. However, k− τ (1) behaves differently; there is a small undershoot
of uτ at y+1 ≈ 0.3, explaining the peculiar convergence behaviour highlighted in Figure
4.3. This undershoot is removed when adopting the algebraic closure approach of k− τ

(2), suggesting that this behaviour is entirely due to discretisation errors at the cell clos-
est to the wall. First order approximations are made for calculations of gradients near
the boundary due to complexities associated with implementing higher order schemes
at the wall. For this reason, the discretisation of τ ∼ y2, derived in Section 4.2, leads to
a discretisation error that can only be removed by adopting higher order schemes. This
reasoning is the motivation behind the formulation of k− g (Kalitzin, Gould, and Benton,
1996); since g ∼ y, gradients of g can be accurately calculated at the wall using first order
approximations. This problem is eliminated when imposing the algebraic closure on τ1

as per k− τ (2), since the transport of τ is no longer discretised at the cell closest to the
wall. It should be noted that the suggestion of Kok and Spekreijse (2000) to reformulate
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is not enough to entirely remove the discretisation errors associated with the quadratic
behaviour of τ, since gradients of τ are also required in order to calculate ν∇2τ. Inter-
estingly, a result of this first order error is that solutions for S1 obtained using k − τ (1)
are closer to uτ0 than all other models. This error is also present for the k− ω′ case, due
to the quadratic behaviour of ω′, but since ω is dominated by ωw near the wall this error
is negligible. Furthermore k is also non-linear near the wall; clearly there is no avoid-
ing the discretisation of non-linear functions, and so if high order accuracy is required
the discretisation schemes at the boundary-neighbouring cells should be changed before
considering different turbulence models. k− τ (1) appears to converge more quickly than
those that converge at h2

r , but its undershoot of uτ at y+1 ≈ 0.3 slows down convergence.
Despite this, the model is significantly less sensitive to y+1 than the k−ω formulation.

In order to assess discretisation errors as a function of y+1 the error E = |(uτ −
uτ0)/uτ0| is defined, where uτ0 is taken as the reference S5 friction velocity for a given tur-
bulence model, estimated through the best of fit to the polynomial (4.54). All solutions
obtained on M1-M6 for S4 and S5 agree with this reference friction velocity to within
0.069 % for k − ω (1) and (2), and within 0.0066 % for all other k − ω equivalents. E is
plotted against y+1 for k−ω and its mathematically equivalent models in Figure 4.5.

k−ω (1) and (2) lead to significantly larger errors than any of the other models. k−ω

(2) leads to an error of 10.52 % for S1 M1 (y+1 = 1.07) while k − ω (1) leads to an error
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FIGURE 4.5: Relative friction velocity error for k − ω and its mathemati-
cally equivalent models. uτ0 is taken as the estimated exact solution (4.54)
for S5, for respective turbulence models. (B) shows data from (A) with a
different y− axis scaling. Colours represent different sets, as per Figure

4.2: •, S1; •, S2; •, S3; •, S4; •, S5.
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of 4.74 % at S1 M1 (y+1 = 1.14). These relate to errors in the friction coefficient C f =

τw/ 1
2 ρU2

∞ of 22.15 % for k − ω (2) and 9.7 % for k − ω (1). This is in agreement with
the results of Eça, Pereira, and Vaz (2018), who obtained mesh dependency errors in
C f of at least 5 % when y+1,av ' 1, for all their flat plate cases for k − ω SST. All other
models plotted in Figure 4.5 lead to uτ errors of less than 1 % for all sets and meshes,
which quickly drops to less than 0.1 % for S2-S5 (y+1 . 0.3). In order to obtain this low
an error for the k − ω (1) and (2) models y+1 . 0.015 is required, a cell size of over an
order of magnitude smaller than those required by its mathematically equivalent models.
These results clearly show that the y+1 dependency error of the standard k− ω model is
primarily due to the discretisation of the singularity; when reformulating the transport
of ω to ω′, τ, or g, the y+1 dependency error is significantly reduced.

k−ω (2) leads to the largest deviations in uτ, although converges more rapidly to uτ0

than the standard k− ω (1) model, a function of the higher convergence rates presented
in Figure 4.3. This behaviour can be explained by examining ω1 as y+1 decreases for
both models. By specifying ω0 = 40000ν/k2

s as per k− ω (2) the value of ω1 is actually
increased beyond the asymptotic solution ω = 6ν/βy2 when the near-wall cell size y1

is large. The threshold at which ω1 is decreased for k − ω (2) relative to k − ω (1), lies
between y+1 ≈ 0.14− 0.18 or cases S2 M2 - S2 M3, which also coincides with the region
where the relative error in uτ reduces below that of k− ω (1) for k− ω (2). Clearly then,
the slightly-rough wall approach can only provide a lower sensitivity to y+1 if the value
of ω0 is small enough to limit the value of ω1 below that of the asymptotic solution. For
k+s = 1 as per the data herein this actually leads to worse convergence unless y+1 . 0.18.
This supports the claim of Eça and Hoekstra (2004) who find that the slightly-rough wall
boundary condition is more sensitive to y+1 than the algebraic closure on ω1.

The y+1 dependence of the ε based models can be observed in Figure 4.6. uτ0 is taken
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as the reference S5 friction velocity for LB1 and S4 for LB2 and v2 − f . All solutions for
LB1 obtained on M1-M6 for S4 and S5 agree with uτ0 to within 0.03 %. All solutions for
both LB2 and v2− f obtained on M1-M6 for S4 agree with uτ0 to within 0.02 %. Figure 4.6
indicates that the model of Lam and Bremhorst (1981) is insensitive to the treatment of ε

at the wall; both LB1 and LB2 collapse onto very similar profiles regarding both absolute
values of uτ and its rate of convergence. Both LB1 and LB2 lead to relative errors in uτ of
1.50 % and 1.52 % at S1 M1 (y+1 ≈ 1.2) respectively, larger than the . 1 % error obtained
by k − ω (3), k − g, and k − τ (1) and (2) for the same set and mesh. uτ predictions of
LB1 and LB2 converge to within 0.1 % of uτ0 at y+1 ≈ 0.3, as per k − ω (3), k − g, and
k− τ (1) and (2). v2 − f converges at a slower rate due to its linear convergence with hr

(Figure 4.3). At y+1 = 1.11 the relative error in uτ is 1.04 %, lower than LB1 and LB2. As
y+1 decreases the v2− f model slowly converges to uτ0; to achieve a relative error of 0.1 %
y+1 . 0.1 is required. While outperforming k− ω (1) and (2), v2 − f is outperformed by
all other models.

4.3.3 Near wall behaviour

The mesh dependency of these models is clearly linked to the behaviour of these equa-
tions in the near wall limit. The behaviour of k near the wall can be observed in Figure 4.7
for the different turbulence models. Figure 4.7 (A) shows that for the ω, τ, and g based
models the asymptotic solutions for n, obtained in Section 4.2, are in excellent agreement
with the numerical solutions. However, the standard ω based models deviate from the
asymptotic solution of k near the wall. This is unsurprising for k−ω (2), since ω0 is fixed
to a value much lower than the singular solution of the asymptotic behaviour. k− ω (1)
underpredicts k for the first few cells and then collapses onto the asymptotic solution as
y+1 increases. It should also be noted that the k solutions for the k− ω (3), k− τ (1) and
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FIGURE 4.7: Near wall k+ predictions with data from case S3 M5. Legends
correspond to Table 4.1.
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(2), and k − g models do not deviate from the asymptotic solutions, reinforcing the no-
tion that the errors obtained when adopting the k− ω model are entirely numerical and
associated with the singular behaviour of ω.

Figure 4.7 (B) shows the behaviour of the ε based models. Both the v2 − f model and
the LB2 model agree strongly with the asymptotic solution of k, but the LB1 model shows
a large deviation from n = 2: k rapidly decreases to zero below y+ ≈ 1. When adopt-
ing zero-gradient boundary conditions k ≈ 0 for many cells close to the wall due to the
neglected higher order terms in the expansion of ε (discussed in Section 4.2). Interest-
ingly LB1 and LB2 solutions collapse further from the wall, strongly suggesting that the
damping functions play a large role in forcing the correct behaviour of k and ε.

The near wall behaviour of ω = 1/τ = 1/g2 = ω′ + ωw can be observed for the
ω, ω′, τ and g based models in Figure 4.8, normalised by ωw = 6ν/βy2. The k − ω (1)
model overpredicts ω by over 50 % in the second-to-closest cell to the wall (note that the
first cell lies on the asymptotic solution due to the imposed algebraic closure). This is
in strong agreement with the analysis of Wilcox (2006), who shows analytically that the
discretisation of a function that goes like φ ∼ 1/y2 can lead to an over-prediction of ∇2φ

of 78 %. The S4 M5 case shows that eventually ω collapses onto ωw below y+ ≈ 1, but for
the S3 M5 and S2 M5 cases ω never reduces to ωw before reaching the outer portions of
the boundary layer. The mesh dependency error observed in Figures 4.3, 4.4, and 4.5 is
related to this over-prediction; mesh independence is achieved for the k−ω model when
the overprediction of ω is limited to the very near wall region where y+ . 1. When cells
are too large this over prediction extends beyond the viscous sub-layer and affects the
outer portions of the flow. For completeness the k − ω (2) model has been included in
Figure 4.8, although its lack of agreement with ωw is unsurprising due to the specification
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FIGURE 4.9: ω′ numerical data compared to asymptotic solution (A) and
the contribution of ω′ to ω (B). Data are from case S4 M5.

of the slightly-rough wall boundary condition.
The k− ω (3), k− τ (1) and (2), and k− g models provide much better predictions of

ω; the k − ω (3), k − τ (2), and k − g models collapse onto ωw until y+ ≈ 2, while the
k− τ (1) model slightly over-predicts ω for the first few cells close to the wall. This is due
to the first order approximations for the gradients at the boundary discussed in Section
4.3.2, which are mitigated against when adopting the algebraic closure approach k − τ

(2).
Figure 4.9 shows how the analytical solutions of Section 4.2 compare against the nu-

merical solutions of ω′, for the k− ω (3) model. Clearly the fit is excellent, further vali-
dating the scaling arguments of Section 4.2. The contribution of ω′ to ω is also plotted;
the point at which ω′ and ωw are equal is at y+ ≈ 10. ω′ is approximately 80 % of ω at
y+ ≈ 40, supporting previous arguments that terms containing ωw are still influential in
the log-layer. It should be noted that contributions from ωw never vanish entirely for the
presented channel flow; at the channel centre ωw ≈ 0.05ω. It can therefore be concluded
that particularly poor calculation of ∇2yw would have noticeable consequences in the
flow solution.

4.3.4 Extensions to the k− τ model

The model(s) of Kalitzin, Gould, and Benton (1996) have seen little use or development
since their introduction, despite being promising alternatives to k−ω. In contrast the k−
ω model has seen significant improvements and extensions. For this reason a new k− τ

model, based on the k−ω model of Wilcox (2006), has been implemented in OpenFOAM
4.1 (Weller et al., 1998). This is detailed in Appendix C.5.

It should be noted that there are arguments supporting the extensions of both the
k− τ and the k− g models; while the k− g model is less sensitive to near-wall first order
discretisation it is also unbounded, albeit significantly less so than k − ω. In addition
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to this, the algebraic closure approach of k − τ (2) mitigates against any small errors at
the wall and can be easily extended to include log-law type closures. The k − τ model
of Kalitzin, Gould, and Benton (1996) has therefore been extended to include updated
coefficients and a cross diffusion term (See Appendix C.5) which have been shown to
improve the behaviour of k − ω in freestream flows (Wilcox, 2006). The low Reynolds
number corrections of Wilcox (2006) have also been implemented in the model in order
to improve predictions of k near the wall. This is demonstrated in Figure 4.10, where the
updated model with low Reynolds number corrections closely agrees with the asymp-
totic solution n = 2 near the wall, as predicted through the leading order arguments of
Section 4.2.

4.3.5 Comparisons to DNS

Figure 4.11 compares the different turbulence models for the S4 M5 case to the DNS
solution of Moser, Kim, and Mansour (1999). All k − ω and mathematically equivalent
models collapse onto the same solution for both k+ and U+, which shows that there are
negligible numerical errors between the different formulations far from the wall (Note
that for the S4 M5 case the largest mesh dependency error for the friction velocity is for
k−ω (1) at a value of 0.069 %).

Figure 4.11 also shows that the updated k− τ model (Appendix C.5), with the Low Re
corrections of Wilcox (2006), provides much better predictions of k+ compared to the stan-
dard model, although reasonable predictions of U+ are achievable without these correc-
tions. The LB models both collapse further from the wall, suggesting that the treatment
of ε near the boundary has little impact in the freestream, a finding in agreement with
Patel, Rodi, and Scheuerer (1985). The v2 − f model provides excellent predictions of the
near wall gradients of k+ and U+ although it over-predicts the offset of U+ in the log-
layer. This is due to the underprediction of uτ which results in a shear Reynolds number
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FIGURE 4.11: Profiles of U+ and k+ for all turbulence models, compared
to the DNS of Moser, Kim, and Mansour (1999). Data are from case S4 M5.
Note that k − ω (1), (2) and (3), k − τ (1) and (2), and k − g data collapse

onto common profiles, as do data from LB1 and LB2.

of Reτ = 514 rather than the target shear Reynolds number of Reτ = 590. There have
been other modifications to the model which result in better predictions of U+ profiles,
such as the ζ − f model of Hanjalić, Popovac, and Hadžiabdić (2004).

4.3.6 Summary

In summary, this section has investigated the dependence of several turbulence models
on the near-wall cell size y+1 . 5 sets of 6 geometrically similar meshes have been created
in order to investigate a range of y+1 varying between approximately 2.5× 10−4 and 1,
covering a grid refinement ratio of 4. Friction velocity errors of 4.74 % are obtained for
the standard k − ω model at y+1 ≈ 1, increasing to 10.52 % when slightly-rough wall
boundary conditions are adopted. These equate to errors in the friction coefficient of
9.7 % and 22.15 % respectively, which could be significant in a number of industrial flows.
In many engineering applications the y+1 dependency error associated with k−ω may be
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negligible, but Eça, Pereira, and Vaz (2018) have already shown that these errors can
influence predictions of pressure and friction coefficients for aerofoils and ship hulls.

For y+1 ≈ 1 errors of approximately 1.5 % are obtained for the k− ε model of Lam and
Bremhorst (1981), regardless of whether an algebraic expression for ε1 is adopted, or a
Neumann condition on ε0. All other models investigated lead to friction velocity errors
of .1 % for y+1 ≈ 1. In order to achieve friction velocities within a 1 % error, a near-wall
cell size of y+1 ≈ 0.1 is required for the k − ω model, an order of magnitude smaller
than all other models. The present work suggests that this problem could be overcome
by adopting ω′, τ or g based models. These retain the same boundary layer predictions
of ω based models but achieve solutions without numerical error associated with the
singular behaviour of ω. The k− τ (2), k− g, and k−ω (3) models outperform all of the
other tested models. Of these three models the k − τ formulation should be developed
further; the model is fully bounded at the wall and does not require computation of the
wall-normal distance (or its derivatives).

While this study on the behaviour of these models near the wall is extensive, the flow
is free from complexities such as freestream boundary conditions and strong separation.
The numerical improvements of the τ formulation close to the wall do not guarantee
globally better performance than ω models. Therefore, future work should be carried
out in order to validate τ based models in a wider range of flows, and extend them to
more complex closures such as Reynolds stress and SST.

4.4 Reynolds stress closures

So far this chapter has been limited to eddy-viscosity type RANS models of which one of
the main modelling concerns is the closure of the rate of turbulent dissipation, ε. How-
ever, these models make a critical assumption that the Reynolds stresses can be approxi-
mated by a scalar eddy-viscosity,

− u′iu
′
j = 2νtSij −

2
3

kδij, (4.57)

which is unable to correctly predict anisotropy in the Reynolds stresses, particularly near
the wall. A review of literature concerning RANS predictions of the flow over ribletted
plates (Chapter 2) suggested that accounting for anisotropy may be important for obtain-
ing physical solutions, especially when riblets are small. This can be achieved by adopt-
ing a Reynolds Stress Model (RSM), which solves transport equations for each compo-
nent of the Reynolds stress tensor. This can naturally resolve anisotropic flows, but comes
with the expense of additional transport equations, and also additional terms that require
modelling. In this section two Reynolds stress closures are detailed and investigated; a
Stress-τ model, based on the Stress-ω model of Wilcox (2006), and the Elliptic-Blending
SSG (EB-SSG) model of Manceau and Hanjalić (2002), updated by Manceau (2015). Both
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these models are suitable for integration through the full boundary layer, without requir-
ing log-law type wall functions, but vary considerably in complexity. This section will
extend previous analysis on eddy-viscosity models to Reynolds stress models, readily
showing that as long as the underlying transport equations are similar, near-wall cell size
dependency is affected little by the additional complexity.

4.4.1 The Reynolds stress equations

The general transport of u′iu
′
j is given by

Du′iu
′
j

Dt
= Pij + Πij +Dij − ε ij, (4.58)

where Pij represents production, Πij represents the pressure-strain correlation, or redis-
tribution tensor, Dij represents the sum of turbulent transport and molecular diffusion,
and ε ij represents destruction. The production term is in closed form,

Pij = −u′iu
′
k

∂U j

∂xk
− u′ju

′
k

∂Ui

∂xk
, (4.59)

but the remaining terms require modelling.
There are two effects that are vital to consider when modelling near-wall flows with

a Reynolds stress model. Wall-blockage is a phenomenon arising from the tendency of
turbulence to become two-dimensional at the wall, where through continuity the wall-
normal component of the turbulent kinetic energy becomes negligible compared to wall-
parallel components (Manceau, 2015). Asymptotically the Reynolds stresses should be-
have like

u′u′ ∼ a1y2 + a2y3 + · · · ,

u′v′ ∼ b1y3 + b2y4 + · · · ,

u′w′ ∼ c1y2 + c2y3 + · · · ,

v′v′ ∼ d1y4 + d2y5 + · · · ,

v′w′ ∼ e1y3 + e2y4 + · · · ,

w′w′ ∼ f1y2 + f2y3 + · · · ,

arising from the no-slip condition and continuity. This phenomenon is known as 2D tur-
bulence, a purely kinematic effect that is not trivial to account for in near-wall modelling.
Generally it is treated through the balance of ε ij and Πij (see e.g. Jakirlić and Hanjalić,
2002).
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The second effect arises from an increase in pressure fluctuations near the wall, which
appears in the pressure-strain correlation which can be decomposed into (Hanjalić, 1994)

Πij = Π1
ij + Π2

ij + Πw
ij = p′

(
∂u′i
∂xj

+
∂u′j
∂xi

)
. (4.60)

This decomposition follows from the exact Poisson equation for the fluctuating kinematic
pressure p′. Π1

ij represents a slow part, dependent only on velocity fluctuations, while
Π2

ij represents a rapid part, dependent on the mean velocity gradient (Pope, 2001). The
third term is coined the wall-reflection term, accounting for the reflections of the pressure
field at the wall (Hanjalić, 1994). This is only effective in the near-wall region, but Πij is
crucially non-local in nature, arising from the elliptic (for incompressible flow) nature of
the Poisson equation of p′. Πw

ij is responsible for damping wall-normal components of
the Reynolds stresses, and as such is usually implemented as a function of wall distance
or the wall-normal direction, although some closures for Πij do not require models for
Πw

ij to obtain reasonable log-layer solutions (e.g. Speziale, Sarkar, and Gatski, 1991).

The Stress-τ model

Among the simplest Reynolds stress closures appropriate for resolving near-wall flows
(without log-law wall functions) is the Stress-ω model of Wilcox (2006). Πij is modelled
using the linear-pressure-strain correlation model of Launder, Reece, and Rodi (1975)
(without a wall-reflection term, Πw

ij ):

Πij = Π1
ij + Π2

ij, (4.61)

with
Π2

ij = −2C1εbij, (4.62)

and

Π1
ij = +2(α̂ + β̂)k

(
bikSjk + bjkSik −

2
3

bklSklδij

)

+2(α̂− β̂)k(bikΩjk + bjkΩik) +

(
4
3
(α̂ + β̂)− γ̂

)
kSij, (4.63)

and the mean rate of strain tensor Sij is

Sij =
1
2

(
∂Ui

∂xj
+

∂U j

∂xi

)
, (4.64)

and the mean rotation tensor is

Ωij =
1
2

(
∂Ui

∂xj
− ∂U j

∂xi

)
. (4.65)
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The remaining parameters α̂, β̂, and γ̂ are empirical constants. ε ij is assumed isotropic
and modelled by

ε ij =
2
3

β∗kωδij, (4.66)

which requires the solution to an additional transport equation for ω, identical to that of
the two-equation k − ω model of Wilcox (2006) (Appendix C.2). Turbulent transport is
modelled using an isotropic gradient diffusion hypothesis:

Dij =
∂

∂xk

[(
ν +

νt

σ∗

) ∂u′iu
′
j

∂xk

]
. (4.67)

From inspection of the transport of u′iu
′
j one observes that the underlying transport equa-

tions for k and ω are identical to the standard two-equation k−ω model of Wilcox (2006).
Indeed, this was the primary motivation of Wilcox (2006); the construction of a simple
and elegant extension of k− ω to a Reynolds stress closure. Low Reynolds number cor-
rections can be readily applied in the same way as the typical k − ω model (Appendix
C.2) which leads to better near-wall predictions of the turbulent kinetic energy.

There are two main issues with this choice of turbulence model in regard to near-wall
modelling. Firstly, the model is dependent on the solution of a transport equation for ω,
which as investigated in the previous section leads to significant numerical errors at the
wall; a 10 % error was obtained for the coefficient of friction when near-wall cell sizes
were y+1 ≈ 1 for the standard k − ω model of Wilcox (1998). This numerical error is
crucially retained for the Stress-ω model, given that it’s underlying transport equations
are identical to the standard two-equation model.

The second issue is its negligence of wall-reflection terms in Πij. Subsequently the
model cannot account for either wall blockage or wall-reflection effects, i.e there are no
corrections made to ensure turbulence tends to two-dimensionality as the wall distance
decreases. This can be clarified by assessing the leading order balance of the transport of
u′iu
′
j. Near the wall, destruction must balance viscous diffusion and redistribution such

that
ε ij −Π1

ij ∼ ν∇2u′iu
′
j, (4.68)

leading to
2
3
(C1 + 1)β∗kωδij − C1β∗ωu′iu

′
j = ν∇2u′iu

′
j. (4.69)

Assessing the balance of the diagonal components, contributing to k, one observes that
the above equation is only satisfied when all three terms balance, which requires the
diagonal components of u′iu

′
j to be equal. It should also be noted that by taking the trace

of this balance one obtains the same relationship between ω and k as the standard k−ω

model, leading to the balance (4.19).
Despite these shortcomings, Wilcox (2006) has shown that the Stress-ω model obtains
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good agreement with the boundary layer log-law solutions, and with low Reynolds num-
ber corrections (Appendix C.2) predictions of turbulent kinetic energy are reasonable. In
order to reduce model sensitivity to the near wall cell size the original model of Wilcox
(2006) is reformulated, replacing the transport equation for ω with an equivalent one for
τ. While this model removes the numerical issues associated with the singular behaviour
of ω, the simple model for Πij is retained. The full Stress-τ model is detailed in Appendix
C.8.

The Elliptic-Blending-SSG model (EB-SSG)

A significant simplification of the Stress-ω (and subsequently Stress-τ) model is its treat-
ment of the near-wall balance of the Reynolds stresses. Satisfying the asymptotic near-
wall balance of ε ij and Πij is key to reproducing the two-component nature of near-wall
turbulence (Manceau, 2015), which cannot be achieved using the linear isotropic models
of the Stress-ω/Stress-τ models.

The second Reynolds stress closure adopted herein is the Elliptic Blending SSG (EB-
SSG) of Manceau and Hanjalić (2002), updated by Manceau (2015) (Appendix C.9). This
model satisfies the asymptotic balance of the transport of u′iu

′
j by solving for a blending

parameter α calculated from an elliptic equation, representing the kinematic blocking
effect by smoothly transitioning the near-wall asymptotic solutions of ε ij and Πij into
homogeneous freestream formulations. Πij is modelled by

Πij = (1− α2)Πw
ij + α2Πh

ij, (4.70)

where superscript w represents a near-wall model and h represents a homogeneous model.
The SSG model is adopted for Πh

ij. ε ij is modelled in a similar way:

ε ij = (1− α2)
u′iu
′
j

k
ε +

2
3

α2εδij (4.71)

where a near-wall anisotropic form is blended into an isotropic form, both dependent on
the solution to a transport equation for ε. The model equation for the blending parameter
α is

α− L2∇2α = 1, (4.72)

where L is a turbulent length scale. This has the boundary condition α = 0 at the wall.
Subsequently the near-wall balance of u′iu

′
j is satisfied by

u′iu
′
j

k
ε−Πw

ij ∼ ν∇2u′iu
′
j. (4.73)
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Πw
ij is chosen such that the above balance leads to near exact1 asymptotic solutions for

the individual components of u′iu
′
j:

Πw
ij = −

ε

k



− 5

2 v′v′ 5u′v′ 0
5u′v′ 5v′v′ 5v′w′

0 5v′w′ − 5
2 v′v′


 . (4.74)

With ε ∼ 2νk/y2 one readily observes that the two-component limit of turbulence is
obtained in the near-wall region.

The model solves for the scale determining variable ε using its asymptotic solution
as a boundary treatment at the wall (further details are presented in Appendix C.9). If
accurate representation of the near-wall turbulence is a necessity for the prediction of
flows over riblets and shark skin denticles then the EB-SSG model is a more suitable
candidate than the Stress-τ.

4.4.2 Numerical solutions

Here channel flow solutions are compared between the two Reynolds stress closures and
two similar eddy-viscosity models. The most similar eddy viscosity model to EB-SSG
is the v2 − f model; they both solve near identical equations for ε and both require the
solution to an elliptic blending parameter to account for near-wall kinematic blocking.
Similar behaviour between the two models should therefore be expected regarding grid
independence. The Stress-τ model is most similar to the k − τ model, both with Low
Reynolds number corrections; their transport equations for τ are identical, aside from
slight differences between the model coefficients, and the underlying transport equation
for k is identical for both models.

The numerical simulations are identical to those specified in Section 4.3, as are the
techniques adopted for assessing convergence to the reference friction velocity uτ0. Just
like LB2 and v2 − f , the EB-SSG model also obtained oscillatory solutions at very small
cell sizes (Set 5) due to the algebraic closure of ε at the wall, such that those solutions have
been omitted from the analysis. The convergence of uτ for v2 − f , EB-SSG, k − τ, and
Stress-τ, as a function of y+1 can be observed in Figure 4.12, for the two Reynolds stress
closures and their similar eddy-viscosity models. The Stress-τ model obtains similar
behaviour to k− τ, although predicts the undershoot behaviour at a slightly larger value
of y+1 . It seems that the undershoot occurs at y+1 ∼ 1, although present set definitions do
not capture this. However, after this initial undershoot the convergence between the two
models is nearly indistinguishable on the presented axis scales, both of which converge

1Note that this form of Πw
ij actually predicts u′v′ ∼ v′w′ ∼ y4 rather than the asymptotic solution y3.

While a model that obtains y3 scaling is obtainable, Manceau and Hanjalić (2002) found that overall predic-
tions were less satisfactory than when their chosen model was adopted.
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to an error of less than 0.1 % at y+1 ∼ 0.1. The Stress-τ model obtains a maximum error of
less than 0.2 % for all cases (y+ . 1).

Near identical behaviour is observed between the v2 − f model and the EB-SSG (Fig-
ure 4.12), both of which obtain errors of less than 0.7 % for all models (y+ . 1). This
converges to an error of less than 0.2 % at y+1 ∼ 0.1. There is however one data point that
does not agree with the v2 − f model, at y+ ∼ 1. The error does not continue its upward
trend as y+1 increases and instead drops for the last data point. This perhaps suggests
that further work should be carried out in quantifying how the EB-SSG model behaves
for the cases y+1 ∼ 1− 10, since it seems that non-trivial effects are being introduced.

Comparisons to the DNS of Moser, Kim, and Mansour (1999) are presented in Figures
4.13 and 4.14. Similar profiles are obtained regarding U+ and k+ for both k− τ and Stress-
τ models, with Low Reynolds number corrections (Figure 4.13). This is unsurprising
given the underlying equations are so similar. The Stress-τ model does obtain slightly
better predictions of the velocity profile in the buffer layer, and the general shape of k+

is similar to the DNS, although the simple two-equation model actually converges to the
DNS solution at a lower y+ than the Stress-τ model.

Agreement is also good between the v2− f and EB-SSG models for U+ and k+ (Figure
4.13), although this form of the v2− f does lead to a significant underprediction of C f that
leads to the large velocity profile offset. In contrast the EB-SSG follows the DNS solution
closely, only slightly underpredicting U+ in the buffer region. k+ profiles are very similar
for both models.

Profiles of the Reynolds stresses (Figure 4.14) are where key differences between
the two Reynolds stress models appear, given their significantly different approaches
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FIGURE 4.12: Friction velocity dependence on the near-wall cell size for
Reynolds stress models, and similar eddy-viscosity models. uτ0 is taken
as the estimated exact solution (4.54) for S5 (or S4 for EB-SSG and v2 − f ),
for respective turbulence models. Colours represent different sets, as per

Figure 4.2: •, S1; •, S2; •, S3; •, S4; •, S5.
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FIGURE 4.13: Profiles of U+ and k+ for Reynolds stress models and similar
eddy-viscosity models, compared to the DNS of Moser, Kim, and Mansour

(1999). Data are from case S4 M5.

to modelling the pressure-strain Πij and dissipation ε ij tensors. (Note that the eddy-
viscosity model profiles have been omitted due to their isotropic formulations). Differ-
ences are clearly vast when considering the diagonal components of u′iu

′
j
+

. The EB-SSG
model obtains very close agreement with the DNS for all three components, only slightly
overpredicting the peak of w′w′

+
. In contrast the Stress-τ model leads to very poor pre-

dictions; deviations in the three diagonal Reynolds stress components are limited to the
log-layer and are essentially a small perturbation away from an isotropic turbulent ki-
netic energy. This is most obvious near the wall, where all three contributions to k+

converge to a common profile. Clearly the two-component limit of near-wall turbulence
is not obtained for this model. The main differences in the Reynolds stresses is limited
to the log-layer which must have arisen from the LRR closure of Πij. In its present form
the Stress-τ allows for some anisotropy in the flow, but wall-blockage and pressure-echo
effects are not accounted for. Good predictions of the principal Reynolds stresses are
obtained for both EB-SSG and Stress-τ (Figure 4.14).
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4.5 Conclusions

In conclusion this chapter has analytically investigated the near wall behaviour of several
turbulence models, addressing leading order balances, boundedness, and the limiting be-
haviour of k and the scale determining variables. Significant modifications are required
in order to achieve reasonable predictions of the boundary layer with ε based models,
typically in the form of damping functions or timescale limiters, both of which signif-
icantly alter the limiting behaviour of the transport of ε. In contrast, ω based models
can achieve reasonable velocity profiles while retaining a simple form of the ω transport
equation. Low Reynolds number corrections can be applied by damping the model coef-
ficients, but these do not significantly alter the limiting behaviour of the transport equa-
tions. However, ω is singular at the wall, growing like 1/y2, and the leading order terms
of the transport of ω are significantly unbounded. Discretisation errors associated with
this behaviour can be mitigated against by solving transport equations for ω′ = ω−ωw,
τ = 1/ω, or g = 1/

√
ω, which reduce to Dirichlet boundary conditions at the wall while

retaining the excellent boundary layer predictions of the ω based models.
Channel flow simulations are carried out in order to investigate the solution depen-

dence of these models on y+1 , which is varied between approximately 2.5× 10−4 and 1.
Simulations are carried out at a fixed bulk Reynolds number of Reb = 10 864, equating
to a shear Reynolds number of Reτ ≈ 590. Friction velocity, uτ, predictions (and sub-
sequently the friction coefficient, C f ) are particularly sensitive to the near wall cell size.
Most models exhibit an error of approximately 1 % when adopting the ‘rule of thumb’
y+1 ≈ 1. The k − ε model of Lam and Bremhorst (1981) obtains quadratic convergence
of the friction velocity as a function of the refinement ratio, and is insensitive to the two
types of boundary treatments tested. In contrast, the v2 − f model converges approxi-
mately linearly with the refinement ratio. At y+1 ≈ 1 friction velocity errors are approx-
imately 1 % for the v2 − f model, outperforming the 1.5 % error achieved by the model
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of Lam and Bremhorst (1981) despite its linear convergence with refinement ratio. The
standard k−ω model requires a cell size of y+1 ≈ 0.1 to reduce the friction velocity errors
below 1 %, and exhibits an error of ∼ 4.74 % at y+1 ≈ 1 for the friction velocity, equating
to an error for the friction coefficient in excess of 10 %. This error has large implications
in the context of engineering simulations based on the ‘rule of thumb’ y+1 ' 1. This error
is entirely due to the singular behaviour of ω, which is mitigated against when adopting
the k−ω′, k− τ, or k− g model. These models achieve an error for the friction velocity of
less than 1 % at y+1 ≈ 1, and less than 0.1 % at y+1 ≈ 0.3, outperforming all other models.
When adopting highly resolved meshes solutions for k− ω, k− ω′, k− τ, and k− g, all
collapse, suggesting that solutions only differ due to numerical errors. There are two ad-
vantages of the k− τ formulation over k−ω′ and k− g; the equations are fully bounded
at the wall, and there is no dependence on the wall-normal distance. For these reasons,
the original k − τ model is extended to include updated coefficients, a cross-diffusion
term, and Low Reynolds number corrections; good agreement is obtained against chan-
nel flow DNS data. The k− τ closure has also been extended to a Reynolds Stress Model
(RSM) by reformulation of the Stress-ω model of Wilcox (2006). This is a simple RSM
with identical underlying transport equations as the two-equation k − τ model, which
unsurprisingly leads to near identical friction velocity errors. For comparisons a further
RSM was investigated, the EB-SSG model of Manceau (2015). Unlike the simple Stress-
τ model, the EB-SSG accounts for near-wall anisotropy through an additional elliptic
transport equation for a blending parameter. y+1 dependency for EB-SSG is similar to the
v2 − f , obtaining friction velocity errors of less than 1 % for y+1 < 1.

These new τ-based formulations offer a promising alternative to the popular ω mod-
els and could provide excellent boundary layer predictions at a feasible value of y+1 .
However, the numerical improvements of the τ formulation close to the wall do not guar-
antee globally better performance than ω models, and so future work should focus on the
validation of this model in freestream and strongly separating flows.
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Chapter 5

The scaling of secondary flows over
longitudinal riblets

The prediction of flows over ribletted surfaces is a challenge for RANS type modelling
that has yet to be overcome (see Section 2.3). Streamwise-aligned parallel riblets are a
specific type of roughness that are two-dimensional in cross section, typically charac-
terised by their inner-scaled spacing between consecutive peaks, s+ = suτ0/ν, where s is
the riblet spacing, uτ0 is a reference flat plate friction velocity and ν the kinematic viscos-
ity. Despite being considerably less geometrically complicated than shark skin denticles
RANS predictions of the flow over riblets have often led to non-physical predictions of
the viscous regime where s+ . 10 (see e.g. Launder and Li, 1993; Djenidi and Antonia,
1993), and vastly different drag predictions when compared to DNS and experiments.
Predictions improve when accounting for anisotropy by adopting Reynolds stress clo-
sures, but their investigation is limited to one small parameter study (Djenidi and Anto-
nia, 1995). Before one can hope to predict the flow over complex 3D shark skin denticles
it is vital to ensure that reasonable predictions of these simpler flows are attainable, and
identify appropriate turbulence models.

This chapter investigates the predictive capabilities of three turbulence closures for a
fully developed channel flow over sawtooth riblets, a geometry chosen due to its com-
mon occurrence in previous studies (e.g. Choi, Moin, and Kim, 1993; Launder and Li,
1993; Djenidi and Antonia, 1995; Bechert et al., 1997). The effects of riblet spacing and
bulk flow Reynolds number are investigated, and results are validated against experi-
mental and numerical data in order to identify whether adopted turbulence models are
appropriate for the simulation of flows over shark skin denticles. Furthermore the iden-
tification of appropriate turbulence closures allows an investigation of the scaling of sec-
ondary flow that emerges near the riblet tips. Through both numerical and analytical
techniques two distinct regimes which govern how the secondary flow scales with the
riblet dimensions are identified. Firstly, a viscous regime where vorticity is produced
by Reynolds stress anisotropy and dissipated by molecular viscosity, and secondly an
inertial regime where viscous effects are negligible, necessitating the emergence of an
effective turbulent viscosity.
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5.1 Methodology

The geometry investigated is a fully developed channel flow over sawtooth riblets with
a riblet spacing, s, twice that of the riblet height, h: s = 2h. The flow is fully developed
in the streamwise (x) direction and is assumed steady state and incompressible. The
flow domain has the two-dimensional cross section observed in Figure 5.1 and split into
the blocks of Figure 5.2. Symmetry boundary conditions are applied to the z− normal
boundaries (spanwise) and the top boundary (y = δ, where δ is the channel half-height)
with no-slip conditions on the riblet surface. Periodic boundary conditions are applied to
the remaining boundaries. Two Reynolds numbers are simulated: Reb = Ubδ/ν = 2825
and Reb = 10864.85, where Ub is the bulk flow velocity and ν the kinematic viscosity.
These bulk flow Reynolds numbers approximately equate to Reτ = uτδ/ν ≈ 180 and
Reτ ≈ 590 for a smooth wall channel flow, where uτ =

√
τw/ρ is the friction velocity,

τw is the wall shear stress and ρ is the fluid density. This study varies the riblet spacing
s while maintaining a constant ratio s/h = 2. Presented simulations cover an s+ range
of approximately 5 to 50, which fully captures the expected drag reducing regime of
sawtooth riblets (Bechert et al., 1997).

5.1.1 Turbulence closures

Three turbulence closures are adopted herein; the two equation k − τ model with low
Reynolds number corrections, the Stress-τ model with low Reynolds number corrections,
and the EB-SSG model. These are discussed in Chapter 4 and detailed in Appendices C.5,
C.8, and C.9. The two τ based models have been chosen due to their excellent numer-
ical properties near the wall, where solutions can be obtained with minimal numerical

FIGURE 5.1: Fluid 2D domain above sawtooth riblets. Flow direction (x) is
perpendicular to the 2D plane.
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FIGURE 5.2: Fluid domain split into two blocks for the creation of a struc-
tured mesh. The thick line represents the riblet no-slip surface. y− and z−
normal boundaries are treated with symmetry boundary conditions and

x− normal boundaries are periodic.

error associated to discretisation at near-wall cells (see Chapter 4 for details). Both these
models require low Reynolds number damping in order to correct the behaviour of k
and νt near the wall. The Stress-τ model has been introduced as a means to account for
anisotropy in the flow. The model is a simple extension of the k− τ model, but allows for
variation in the distribution of turbulent kinetic energy, which may be vital to achieve
accurate predictions of the flow over riblets and shark scales. However, the Stress-τ
model adopts a linear closure for the pressure-strain correlation (Launder, Reece, and
Rodi, 1975), and does not account for near-wall kinematic blocking or pressure-echo ef-
fects, except through damping of the model coefficients. The EB-SSG model can account
for these effects at the expense of numerical stability and computational costs. If it is im-
portant to correctly model near-wall anisotropy then the EB-SSG should perform better
than Stress-τ.

5.1.2 Numerical techniques

The Reynolds numbers Reb = 2825 and Reb = 10864.85 are enforced by adopting an
iterative source term in the momentum equation that ensures a fixed bulk velocity, Ub,
as per Murthy and Mathur (1997). The channel half height is set to δ = 1 and the fluid
kinematic viscosity set to either ν = 1/180 or 1/590 depending on the Reynolds number.
These correspond to Reτ ≈ 180 and Reτ ≈ 590 for a smooth-walled channel flow, with
uτ ≈ 1.
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TABLE 5.1: Mesh statistics for a riblet height of h+ = 25. Dimensions
correspond to those of Figure 5.2. Inner length scales are approximated by

the smooth wall uτ .

Reτ ≈ 180 Reτ ≈ 590

Block 1 Block 2 Block 1 Block 2

L+ R N L+ R N L+ R N L+ R N

l12 δ+ − 80 2 28 80− h+ 10 82 δ+ − 200 2 54 200− h+ 10 204
l23 h+ 1 25 h+ 1 50 h+ 1 25 h+ 1 50
l34 δ+ − 80 2 28 80 10 82 δ+ − 200 2 54 200 10 204
l14 h+ 1 25

√
2h+ 1 50 h+ 1 25

√
2h+ 1 50

Equations are discretised and solved using OpenFOAM 4.1 (Weller et al., 1998). Con-
vective terms are treated using a second order accurate TVD scheme, except velocity
which adopts a second-order upwind scheme. Laplacian terms are discretised using
standard Gaussian integration, with face gradients calculated using linear-interpolation.
Corrections are made to account for non-orthogonality when calculating face fluxes. The
SIMPLEC scheme of Van Doormaal and Raithby (1984) is adopted to couple pressure and
velocity equations, with the friction velocity used to determine convergence. The friction
velocity converged to a relative error of 1× 10−7 for all cases, typically corresponding to
normalised residual errors of less than 1× 10−10.

5.1.3 Meshing strategy

A blocking strategy, observed in Figure 5.2, is adopted to create a structured mesh. Ver-
tices for each block are numbered and their edges given the notation lab with a and b rep-
resenting a vertex pair. For each edge a geometric stretching function is adopted, where
the edge length specified in approximate wall units, L+ (estimated using the smooth wall
channel flow uτ), global expansion ratio, R = ∆n

∆1
, and number of elements, N, are spec-

ified. Further details on this stretching function can be found in Chapter 4. The lower
block has a height of either 80 wall units or 200 wall units, depending on the Reynolds
number. The grid definitions for h+ = 25 (the largest riblets tested) are presented in Table
5.1 for each Reynolds number. In order to mesh a large h+ range N and R are adjusted
for block 2 edges l12 and l34 to ensure the near-wall cells scale with h+ while maintaining
the same cell size at the upper block edge. In other words, if h+ is halved, the near-wall
cell size is halved and R is doubled. N is subsequently adjusted to ensure ∆n is constant
for all meshes. For h+ = 25 the grid has near-wall cell sizes corresponding to a maximum
of y+1 = 0.12 for Reτ ≈ 180 and y+1 = 0.15 for Reτ ≈ 590. These are naturally reduced
as h+ decreases due to the scaling of the near-wall cell sizes. This range of y+1 should
ensure friction velocity errors associated to the near-wall cell size are less than 0.25 % (see
Chapter 4).
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Grid independence is assessed by globally refining by a factor of 2 in all directions
and comparing solutions of uτ, Ux, and k for the k − τ Low Re turbulence model, for
both Reynolds numbers. Solutions of uτ differ by 0.22 % between the two grids at Reτ ≈
590, and 0.19 % at Reτ ≈ 180. Profiles of inner-scaled mean streamwise velocity, U+

x ,
and turbulent kinetic energy, k+, can be observed in Figure 5.3. Differences between the
two meshes are negligible, justifying the use of the base mesh statistics of Table 5.1 for
parameter studies.

5.2 Results and discussion

The predicted drag reduction of sawtooth riblets is presented in Figure 5.4, where C f =

2u2
τ/U2

b is the friction coefficient, and C f 0 is the friction coefficient for the reference smooth
channel. Drag reduction is achieved if C f /C f 0 is less than 1. A consistent trend observed
for all turbulence models is that the higher Reτ simulations lead to lower drag for the
same value of s+. This trend was also observed by Launder and Li (1993), and can poten-
tially be explained by the differences in blockage ratio δ/h. However, the DNS solutions
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of Garcı́a-Mayoral and Jiménez (2012), also presented in Figure 5.4, suggest that differ-
ences between solutions at Reτ ≈ 180 and Reτ ≈ 550 should be fairly small. The DNS
of Garcı́a-Mayoral and Jiménez (2012) was carried out on blade-like riblets rather than
sawtooth which could explain their insensitivity to Reτ. While the blade-like riblets of
Garcı́a-Mayoral and Jiménez (2012) had the same height and spacing as the presented
sawtooth riblets, their average height was half that of the sawtooth herein. The sawtooth
riblets at s+ = 16 and Reτ = 180 lead to blockage ratios of δ/h = 22.5 and δ/h = 45,
where h is the average riblet height, while the blade-like riblets lead to δ/h = 22.5 and
δ/h = 90 for the same spacing and Reynolds number. If it is assumed that the appropri-
ate roughness height k0 lies somewhere between these values then it seems reasonable
that the blade-like riblets lead to blockage ratios close to or greater than the threshold
δ/k0 ≈ 40 as specified by Jiménez (2004), perhaps explaining why results are insensitive
to further increases to Reτ. In contrast, the sawtooth riblets lead to blockage ratios that
will effect a large proportion of the boundary layer, providing explanation as to why drag
is reduced more when the Reynolds number is increased.

The two-equation k − τ Low Re model predicts a drag increase for all riblet sizes at
Reτ ≈ 180, clearly far from the DNS and experimental data sets. At Reτ ≈ 590 marginal
drag reduction is achieved, but only for the s+ = 15 case. The viscous region is par-
ticularly poorly predicted, where C f /C f 0 does not converge to 1 as s+ decreases. The
same behaviour is obtained for the Low Reynolds number k− ε model adopted by Laun-
der and Li (1993), suggesting that accounting for near-wall anisotropy is critical for the
prediction of riblet flows.
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The Stress-τ model obtains similar solutions to the k − τ. Their agreement can be
explained by the similarity between their damping functions, used to correct the model
behaviour close to the wall. The Stress-τ model leads to marginal drag reduction of
similar levels to the Low Reynolds number Reynolds Stress Model (RSM) of Djenidi and
Antonia (1995) at Reτ ≈ 590, although converges to C f /C f 0 = 1.0 at s+ ≈ 5, as opposed
to s+ → 0. This is inconsistent with the experiments and DNS, and raises the question
- what happens as s+ decreases further? Given that the solutions for the Stress-τ model
are so similar to the k− τ model drag could be expected to increase as s+ reduces to zero,
inconsistent with theory.

In contrast, the behaviour C f /C f 0 → 1 as s+ → 0 is well predicted by the EB-SSG
model, for both Reynolds number cases. Drag reduction profiles for s+ . 20 are reason-
ably well predicted when compared to the DNS and experimental results. At Reτ ≈ 180
and s+ ≈ 15 the EB-SSG model predicts a drag reduction of 2 %, not far from the ex-
perimental values of 3 %. The full drag reducing regime appears of the same form as
experiments and DNS. Of critical importance is the behaviour in the viscous limit as s+

decreases; unlike other models the EB-SSG model obtains the linear regime for small s+.
At Reτ ≈ 590 the EB-SSG model predicts a similar curve but with a larger drag reducing
regime, and achieves a maximum drag reduction of approximately 5 %. While this is a
little larger than experiments it is certainly within the limits of typical riblet behaviour
(See e.g. Figure 2.5 in Section 2.3.). These results suggest that correctly accounting for
near-wall anisotropy is vital for the prediction of flows over riblets.

Despite the large differences in C f predictions, both the EB-SSG and Stress-τ models
lead to near identical viscous stress distributions over the riblet surface, as observed in
Figure 5.5, where the velocity gradient has been normalised by the reference flat plate
friction velocity. By normalising in this way the regions where drag is increased and de-
creased relative to the reference plate can be identified; shear stresses above 1 indicate an
increase in friction while values below 1 indicate regions of low shear stress relative to
the flat plate. Both models predict that ∼80 % of the plate has a lower friction compared
to the flat plate, while the riblet tips lead to larger shear stresses. Figure 5.5 clearly shows
that differences between the two Reynolds stress closures are marginal, and can only be
identified for the larger riblets (s+ = 25) where the EB-SSG model predicts a slightly
lower magnitude of shear stress compared to the Stress-τ model for z/s . 0.1. This may
not seem intuitive given the large differences observed in the friction coefficient (Figure
5.4) but these large differences can be obtained when integrating the shear-stress distri-
butions; the small differences in magnitude add up to create substantial differences in
C f . Given the similarities in the shear stress at the wall, differences in model predictions
must arise further into the flow field.



102 Chapter 5. The scaling of secondary flows over longitudinal riblets

0.0 0.1 0.2 0.3 0.4 0.5
z/s

0

1

2

3∣∣∣∣
dU

+
x

dx+
i

∣∣∣∣

EB-SSG

Stress-τ Low Re

0.0 0.1 0.2 0.3 0.4 0.5
z/s

0

1

2

3∣∣∣∣
dU

+
x

dx+
i

∣∣∣∣

EB-SSG

Stress-τ Low Re

FIGURE 5.5: Viscous stresses at the wall for riblets of size s+ ≈ 5 (left) and
s+ ≈ 25 (right) at Reτ ≈ 180. Viscous stresses are normalised by respective

flat plate friction velocities.

Comparisons between EB-SSG and Stress-τ Low Re

Here the near-riblet flow is investigated in order to establish the differences in predictions
between the two Reynolds stress closures. Further analysis omits data for the k− τ Low
Re model, given its similarities to the Stress-τ model. First, differences in the viscous
stresses are quantified above the riblet surface as a function of the vertical inner-scaled
coordinate y+, observed in Figure 5.6. Several profiles in z− have been plotted in order
to capture the variation of these quantities in the spanwise direction. For comparisons
the reference flat plate solutions have been added and variables have been scaled by the
reference flat plate friction velocity. Profiles over the riblets have been offset in y− by
using the same virtual origin definition as Choi, Moin, and Kim (1993), who suggest
that an appropriate virtual origin can be found by matching the location of maximum
turbulent kinetic energy. Mathematically this leads to

y+ = ỹ+ − (ỹ+k − y+k f ) (5.1)

where ỹ+ is the original coordinate with its origin at the riblet valley, the subscript k
represents the point of maximum turbulent kinetic energy, and the subscript f represents
the reference flat plate coordinate. The profiles of Figure 5.6 indicate that for small s+

the two models provide similar predictions of the viscous stresses, with both collapsing
to the flat plate reference solution for y+ & 40. This behaviour is unsurprising, given
that the effect of roughness on velocity profiles is a simple shift to the log-law region
while maintaining the same velocity gradient (Jiménez, 2004). Differences between the
models are therefore limited to the regions close to the riblets. Dependence on z/s is
also similar between the two models; there is strong dependence on z/s for y+ . 5
which quickly tends to a spanwise-homogeneous solution for y+ & 10, although these
regions are of course strongly dependent on the riblet size. At z/s = 0 (riblet tip) EB-SSG
consistently leads to a greater viscous stress than at z/s = 0.5 (riblet valley) over the full
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FIGURE 5.6: Viscous stress profiles above riblets of size s+ = 15, s+ = 25,
and s+ = 50 from top to bottom, at several z/s positions for EB-SSG (left)
and Stress-τ (right). z/s positions are identified by the colour maps where
the riblet tip lies at z/s = 0 and the valley lies at z/s = 0.5. • represents
respective flat plate solutions for each model. The viscous stress is scaled
by the reference flat plate friction velocity and the inner scaled coordinate

y+ is obtained from (5.1). All data are for Reτ ≈ 180.
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domain, until they eventually collapse into a spanwise-homogeneous state. In contrast,
the Stress-τ model predicts that the viscous stresses at z/s = 0 converge to the flat plate
solution quicker than at z/s = 0.5. This leads to two separate regions: Very close to the
riblets viscous stress is largest above the riblet tip, but further from the riblet surface the
stress above the valley becomes larger than that above the riblet tip. This behaviour is
inconsistent with the DNS solutions of Choi, Moin, and Kim (1993) who report similar
behaviour to that obtained by EB-SSG; there is no region where the viscous stresses are
larger above the riblet valley than the riblet tip.

Similar behaviour is observed for u′v′, the turbulent contribution to the total shear
stress, shown in Figure 5.7. Dependence on z is minor for these Reynolds stresses when
s+ is small. Interestingly the behaviour of the two models only differs for y+ & 20,
where the EB-SSG model consistently leads to a Reynolds stress magnitude lower than
that of the reference plate. In contrast, the Stress-τ model collapses onto the flat plate
solution for large s+. This is a strange result given that the Stress-τ model predicts a
relative change in skin friction greater than that of the EB-SSG model and yet obtains
the same Reynolds stress scaling as the reference flat plate for s+ . 25. Predictions
differ for s+ ≈ 50 where the Stress-τ model predicts a significantly larger Reynolds stress
for the riblets. The behaviour is very different to the EB-SSG; whereby it is the riblet
valley that leads to the largest turbulent stress, rather than the riblet tip. Interestingly the
convergence behaviour of the Reynolds stresses is opposite to that of the viscous stresses.
Here the Stress-τ model obtains a consistently higher Reynolds stress at the riblet valley
than above the riblet tip, for all y+, while the EB-SSG obtains a higher Reynolds stress at
the riblet tip for s+ & 15 but a higher Reynolds stress at the riblet valley for s+ . 15. This
behaviour is consistent with the DNS of Choi, Moin, and Kim (1993), and arises from
the very steep gradient of u′v′ at the riblet tip, which is properly captured by the EB-
SSG model. Effectively the two contributions to the total stress are predicted in opposing
ways by the Stress-τ model; there is a cross-over point that should not exist for the viscous
stresses, and a lack of cross-over point for the turbulent stresses which should be present.
In contrast, EB-SSG is able to correctly reproduce this behaviour.

Profiles of the root-mean-square (RMS) velocities are presented in Figure 5.8. Like the
viscous and Reynolds stresses differences are observed in z− close to the riblet surface
which become homogeneous as y+ increases. The effect of riblets on the distribution of
turbulent kinetic energy is predicted differently by the two models. The Stress-τ model
obtains a collapse of all components onto reference flat plate solutions for s+ & 15, except
at large s+. In contrast the EB-SSG model obtains collapse onto reference flat plate solu-
tions for v′v′ and w′w′ but obtains a slightly lower magnitude for u′u′, suggesting the the
riblets have reduced the turbulent kinetic energy primarily in the streamwise direction.
Differences between the two models are vast for s+ ≈ 50. While EB-SSG predicts transi-
tion to the homogeneous state at y+ ≈ 20 the Stress-τ model obtains significant variation
in z for the full range of y+ values plotted.
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FIGURE 5.7: Reynolds stress profiles above riblets of size s+ = 15, s+ = 25,
and s+ = 50 from top to bottom, at several z/s positions for EB-SSG (left)
and Stress-τ (right). z/s positions are identified by the colour maps where
the riblet tip lies at z/s = 0 and the valley lies at z/s = 0.5. • represents
respective flat plate solutions for each model. The Reynolds stress is scaled
by the reference flat plate friction velocity and the inner scaled coordinate

y+ is obtained from (5.1). All data are for Reτ ≈ 180.
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Further validation of EB-SSG is carried out by comparing profiles of the Reynolds
stresses against the DNS solutions of Choi, Moin, and Kim (1993) at s+ = 20 and s+ = 40,
two additional cases that have been run for the EB-SSG model. urms =

√
u′u′ is compared

between the EB-SSG model and the DNS at the riblet tip (z = 0) and the riblet valley
(z = s/2) at Reτ ∼ 180 in Figure 5.9. urms is normalised against the centreline velocity,
although it should be noted that the simulations of Choi, Moin, and Kim (1993) were
carried out on an asymmetric channel with riblets on one wall, such that the maximum
velocity did not lie on the centreline. The origin for η = y/δ is taken at the point at which
the flow velocity is zero; i.e at the riblet tip the origin is defined as y0 = h, and at the
riblet valley the origin is at y = 0. this definition is consistent with that of Choi, Moin,
and Kim (1993). For s+ = 20 the two data sets obtain very similar trends: In the very
near-wall region, η . 0.1 the two data sets are very similar, and only differ slightly at
their peaks, where the EB-SSG reaches a slightly larger maximum, potentially explained
by the slight overprediction of C f observed in Figure 5.4, and by the differences in Uc

between the RANS simulation herein and the DNS of Choi, Moin, and Kim (1993). As
η increases beyond this the DNS solutions seem to reduce at a slightly steeper gradient
than the EB-SSG predictions, although the differences between the flat plate, riblet tip,
and riblet valley profiles are qualitatively similar. The steeper decrease can be readily
explained by examining the flat plate Reynolds stress profiles of Figure 4.14 in Section 4,
where the EB-SSG model deviates from the DNS in the region after the peak of u′u′ before
collapsing back onto the DNS solution at larger y+. Agreement is also good for s+ = 40,
except at the riblet valley which increases at a steeper gradient for EB-SSG than the DNS
but achieves similar differences between the profiles at the riblet tip and reference flat
plate for η & 0.2.

Further validation is achieved by investigating the secondary flow features near the
riblet tips that were reported by Choi, Moin, and Kim (1993) observed in Figure 5.10.
Symmetrical vortex pairs are observed at the riblet tips, with fluid moving upwards at
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FIGURE 5.10: DNS secondary flow of Choi, Moin, and Kim (1993) over
triangular riblets with a 60° ridge angle. Contours are vorticity Ωxδ/Uc.
Contour lines represent increments of 0.04 for s+ = 40 and 0.02 for s+ =
20. Values of Ωxδ/Uc at the vortex centres are 0.36 for s+ = 40 and 0.19 for

s+ = 20. Negative contours are dashed.

the riblet tips and downwards at the valley. This is realised by the vorticity contours
which show a positive peak just off-centre of the riblet tip. The secondary flow is fully
embedded in half of a riblet section, such that the flow is symmetrical about the riblet tip
and valley. Interestingly this secondary flow is well predicted for the EB-SSG model, but
not for the Stress-τ model (Figure 5.11). The k − τ model obtains no secondary motion
(not shown) while the Stress-τ model obtains a different and much weaker secondary
flow pattern.

As discussed in Section 2.3 the mechanisms that drive and sustain these secondary
flows are not well understood. Goldstein and Tuan (1998) have suggested that this flow
is governed by the blocking of instantaneous spanwise fluctuations at the riblet tips, but
if this were true then a steady-state RANS model should not be capable of obtaining these
predictions. Numerical studies of the secondary flows generated by large scale spanwise-
heterogeneous roughness have been investigated recently by Anderson et al. (2015) and
Hwang and Lee (2018) (see Section 2.3 for details) who both concluded that vorticity is
generated from the second kind of secondary flow (Prandtl, 1953); i.e through gradients
of the Reynolds stresses. If this were the primary mechanism for generating secondary
flows over riblets then this would explain why Reynolds stress models are capable of
obtaining accurate predictions. These mechanisms will be investigated in the following
section, as will the scaling of secondary flows with the riblet dimensions.

These results suggest that the EB-SSG model is highly capable of predicting the flow
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over riblets. Solutions obtained by EB-SSG are the most physical that have been reported
for RANS-based models, leading to well predicted drag reduction profiles, secondary
flows, and Reynolds stress profiles. In contrast, the two-equation k − τ model and the
Stress-τ model lead to poor predictions. At Reτ ≈ 180 both τ based models lead to
increased drag for all s+. This behaviour is associated to the treatment of near-wall
anisotropy; clearly it is vital to capture kinematic blocking and pressure-echo effects if
reasonable predictions of riblet flows are to be obtained, and neither of the τ based clo-
sures incorporate models for these effects.
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FIGURE 5.11: Contours of streamwise vorticity Ωxδ/Uc for s+ = 50 (left)
and s+ = 25 (right) for the Stress-τ Low Re model (upper) and the EB-SSG
model (lower). Data for k− τ Low Re are omitted, due to the streamwise

vorticity being identically zero at all s+.
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5.3 Secondary flows over riblets

In this section the scaling of the vorticity field close to the riblet tips is investigated using
analytical and numerical solutions obtained with EB-SSG. The mean streamwise vorticity
is defined as

Ωx =
∂Uz

∂y
− ∂Uy

∂z
(5.2)

and is identically zero for a fully developed flat plate boundary layer flow. However,
when riblets are introduced a secondary flow develops at the riblet tips. There is clearly
some s+ dependence on the vorticity field when noting the different scale bars in Fig-
ure 5.11. The outer-scaling of the vorticity field, originally adopted by Choi, Moin,
and Kim (1993) (See Figure 5.10) shows that the strength of the vorticity field approxi-
mately doubles when the riblet spacing doubles. This linear scaling with s+ holds over a
large range of s+, as observed in Figure 5.12 where the inner-scaled streamwise vorticity
Ω+

x = νΩx/u2
τ has been normalised by s+. The inner-scaled vorticity seems a more sen-

sible choice than a scaling based on the outer variables Uc and δ, given that this vorticity
field emerges close to the riblets and is present even for small s+, and must therefore
be independent of outer scales when riblets are small. Figure 5.12 clearly indicates that
the Ω+

x /s+ is approximately self-similar for s+ < 40, with the self-similarity breaking
down at the larger riblet spacings. This appears true of both the location of maximum
vorticity relative to the riblet tip, and the strength of the vorticity field. This is perhaps
more obvious when plotting the maximum vorticity against s+ for all simulations, and
both Reynolds numbers, as in Figure 5.13. (Note that several additional cases have been
run at Reτ ≈ 590 in order to capture vorticity scaling at large s+). Two distinct regimes
are present in Figure 5.13; one at small s+ where Ω+

x scales linearly with s+, and one at
large s+ where Ω+

x decreases. While the linear scaling at small s+ is well captured by the
present simulations, the behaviour at larger s+ is difficult to determine. It seems that as
s+ increases beyond s+ ≈ 30 the linear scaling breaks down until the vorticity strength
reaches a maximum. At which point vorticity begins to decrease as s+ increases further,
although at a much slower rate than the initial increase. At larger s+ it seems that the
vorticity could tend to a constant value or it could decrease indefinitely. The breakdown
region at s+ ≈ 30 appears independent of Reynolds number Reτ, although the strength
of the vorticity field does seem weakly Reynolds number dependent. This is likely at-
tributed to the blockage ratios δ/h. Displayed on Figure 5.13 are two vertical lines that
specify the limit δ/h = 40, which is the theoretical limit of Jiménez (2004) who suggested
if blockage ratios are smaller than this then the roughness will affect the outer regions of
the flow, rather than being confined to the inner region. The EB-SSG simulations operate
up to a blockage ratio of δ/h ≈ 15 at the largest s+ values, which could have some effect
on the vorticity field. Maintaining a blockage ratio of less than 40 would require much
larger Reynolds numbers. However, the point at which the vorticity stops scaling linearly
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with s+ is constant for both Reynolds numbers, despite operating in the low blockage ra-
tio region for Reτ ≈ 180, suggesting that the influence of blockage is minor. If blockage
is having an effect then it will likely act to suppress the vorticity field which may be the
cause of the reduced magnitude of Ω+

x,max.
There are several questions that arise from analysis of Figure 5.13: What is the cause of

the two different regimes at small and large s+, and what is the mechanism that leads to
the breakdown at s+ ≈ 30? Furthermore, as s+ increases further, should vorticity vanish,
or tend to a constant value? Some insight can be obtained by assessing the transport of
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mean streamwise vorticity, governed by

Ux
∂Ωx

∂x
+ Uy

∂Ωx

∂y
+ Uz

∂Ωx

∂z
= Ωx

∂Ux

∂x
+ Ωy

∂Ux

∂y
+ Ωz

∂Ux

∂z

+

(
∂2

∂y2 −
∂2

∂z2

)
(−v′w′) +

∂2

∂y∂z
(
v′v′ − w′w′

)
+ ν∇2Ωx, (5.3)

where the first term represents convection of vorticity, the second term is often referred to
as vortex stretching, the third and fourth terms represent inhomogenetic and anisotropic
contributions of the Reynolds stresses to vorticity, and the final term represents viscous
dissipation. The Reynolds averaged vorticity equation (5.3) can be obtained by taking the
curl of the RANS momentum equations (4.1). For the two-dimensional fully developed
flow over riblets (5.3) reduces to just

Uy
∂Ωx

∂y
+ Uz

∂Ωx

∂z︸ ︷︷ ︸
ΩC

x

−
(

∂2

∂y2 −
∂2

∂z2

)
(−v′w′)

︸ ︷︷ ︸
ΩSS

x

− ∂2

∂y∂z
(
v′v′ − w′w′

)

︸ ︷︷ ︸
ΩNS

x

− ν∇2Ωx︸ ︷︷ ︸
ΩV

x

= 0, (5.4)

since the vortex stretching term and derivatives in x are identically zero. Here Ωi
x rep-

resents a term in the balance of vorticity; ΩC
x represents convection, ΩSS

x represents con-
tributions from the gradients of the off-diagonal Reynolds shear-stress v′w′, ΩNS

x rep-
resents contributions from gradients of the diagonal Reynolds normal-stresses, and ΩV

x

represents viscous diffusion. For a flat plate fully developed boundary layer flow it is
obvious why there is no streamwise vorticity; derivatives in z are zero, as are vertical and
spanwise velocities and the Reynolds stresses v′w′.

The balance of the four vorticity budgets (5.4) for various s+ can be observed in Fig-
ures 5.14 and 5.15, which have been normalised to the range ±1. Note that budgets are
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not calculated at the cells closest to the boundaries due to their high order and subse-
quent numerical errors. Some distinct patterns emerge from these budgets which evolve
as the riblet spacing increases. For small s+ there is a dominant balance between vor-
ticity generated by the anisotropy of the diagonal Reynolds stresses (ΩNS

x ) and viscous
diffusion (ΩV

x ). Convection (ΩC
x ) of Ωx is negligible for all s+ except for s+ & 75 where it

begins to contribute to the balance. The term containing derivatives of v′w′ (ΩSS
x ) is of a

lower magnitude for small s+, mainly acting with viscous diffusion to balance ΩNS
x . This

seems a reasonable solution given that anisotropy in the Reynolds stresses exists for a flat
plate case but v′w′ is identically zero; it could therefore be expected that for small s+ the
term containing derivatives in v′w′ will be small, since its existence can only arise due to
the presence of the riblets themselves. It should be noted that the budgets for s+ ≈ 25 are
near identical for both Reτ ≈ 180 and Reτ ≈ 590, indicating that the Reynolds number
scaling is weak.

As s+ grows the viscous diffusion term decreases while the anisotropic diagonal
Reynolds stresses maintain a dominant role. In order to satisfy the streamwise vortic-
ity balance the term containing derivatives of v′w′ (ΩSS

x ) grows to become leading order
for the larger s+ cases. A consistent feature of all numerical solutions is that vorticity is
produced by Reynolds stress anisotropy (ΩNS

x ), strongly suggesting that this secondary
flow is of the second kind (Prandtl, 1953) 1. The dominance of ΩNS

x can potentially be
explained by noting that the v′v′ − w′w′ anisotropy is non-zero and quite large even for
a flat plate boundary layer, due to kinematic blocking. This is demonstrated in Figure
5.16, where the diagonal Reynolds stresses of the reference smooth-walled channel flow
are reported. The reason vorticity is not generated for the flat plate case is due to span-
wise homogeneity. When riblets are small they act as a perturbation from the flat plate
solution, introducing spanwise inhomogeneity and ultimately allowing the pre-existing

1This readily explains why the linear-pressure strain model and simple low Reynolds number damping
of Stress-τ obtains poor predictions of secondary flows.
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anisotropy to generate vorticity at the riblet surface. This suggests that the anisotropy
arising from kinematic blocking is the primary mechanism that drives secondary flows
in-between riblets.

The transition between dominant roles of ΩSS
x and ΩV

x provides a clear description
of the two different regimes of Figure 5.13. At small s+ the anisotropy in the Reynolds
stresses generates vorticity near the riblets that is diffused by viscosity. It therefore seems
appropriate to term the linear dependence on s+ for small s+ as the viscous regime. In
contrast, at large s+ viscous dissipation is negligible and the inhomogeneity of v′w′ must
act as a sink to balance the vorticity generate by the diagonal Reynolds stresses. This
leads to what could be referred to as an inertial regime, a sensible choice given that it
occurs when s+, essentially a roughness Reynolds number, is large. In this regime con-
vection also begins to grow and vorticity budgets begin to localise at the riblet tip.

The balance of the vorticity equation leads to a further description of the role of ΩSS
x .

On noting its role as an effective vorticity sink at high s+ it is not a far reaching conclu-
sion that perhaps it acts as an effective turbulent viscosity when molecular diffusion is
too weak to effectively balance the vorticity production. This analogy is perhaps more ob-
vious from a rearrangement of the RANS vorticity equation; by expanding the Laplacian
operating on Ωx one can obtain

(
∂2

∂y2 −
∂2

∂z2

)
(−v′w′) + ν∇2Ωx =

(
êy

∂

∂y
+ êz

∂

∂z

)
·
[

ν

(
êy

∂

∂y
+ êz

∂

∂z

)
Ωx +

(
êy

∂

∂y
− êz

∂

∂z

)
(−v′w′)

]

(5.5)

which leads to

Uy
∂Ωx

∂y
+ Uz

∂Ωx

∂z
=

∂2

∂y∂z
(
v′v′ − w′w′

)

+

(
êy

∂

∂y
+ êz

∂

∂z

)
·
[

êy
∂

∂y
(
νΩx − v′w′

)
+ êz

∂

∂z
(
νΩx + v′w′

)]
,

(5.6)

where êy and êz are unit vectors in the y and z directions, respectively. In this form it
seems that v′w′ acts to modify the molecular viscosity. At large s+ the effective viscos-
ity is dominated by the Reynolds stress term, and when s+ vanishes molecular diffusion
dominates. However, strictly this analogy is not entirely realised in the budgets of vor-
ticity at smaller s+. For the turbulent viscosity hypothesis to hold in its traditional def-
inition one would expect the term to always act as diffusion to the balance of Ωx. This
does not necessarily require the term to be negative, given that the source of vorticity is
not necessarily positive. However, the term should in principle act to oppose production
of vorticity if the turbulent viscosity hypothesis is to hold. This is not entirely the case
in Figure 5.14 for s+ = 15 in the region y/s & 0.75. Here the two Reynolds stress terms
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ΩSS
x and ΩNS

x both contribute to the transport of vorticity with the same sign, and are
balanced by viscosity. However, the typical behaviour closer to the riblet surface seems
consistent with a turbulent viscosity, acting with molecular viscosity to diffuse away Ωx.

This analogy adds some further insight to the two regimes identified by the vortic-
ity budgets and the s+ dependence of Ωx. For small s+ vorticity production is balanced
by molecular diffusion, and at high s+ it is balanced by turbulent diffusion. An open
question remains: What governs the transition between the two regimes? One possible
cause for this transition is some relation to the profiles of drag reduction, where at these
intermediate values of s+ there is a transition from a drag-reducing regime to a drag-
increasing regime. The maximum streamwise vorticity and the relative drag coefficients
are presented in Figure 5.17. Here the riblets have been characterised by their height (h)
rather than spacing (s) in order to assess how far their tips protrude into the boundary
layer. One observes that the viscous regime for the vorticity field lies within the drag re-
ducing regime of the riblets, for both Reynolds numbers. While Ω+

x,max and C f /C f 0 obtain
linear behaviour for small h+, the viscous regime for the relative drag coefficient appears
to breakdown at a smaller h+ than the maximum streamwise vorticity. In addition, the
drag increasing regime does not seem to correspond directly to the inertial regime of Ω+

x ,
where it decreases with increasing h+. For example, as h+ grows from ≈ 20− 25 both
the maximum streamwise vorticity and the drag coefficient increase. This suggests that
the different regimes for Ω+

x,max and C f /C f 0 may not be directly related, although may
arise from similar mechanisms. The breakdown of the viscous regime of vorticity could
be explained by investigating the Reynolds stresses above a flat plate. The breakdown of
the linear scaling of vorticity occurs at h+ ≈ 10− 20 for both Reynolds numbers. For a
flat plate at y+ = 15 there is a peak in turbulent kinetic energy, in the buffer layer (See
Figure 5.16), and the difference between v′v′

+
and w′w′

+
is near its maximum. Given that
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the vorticity source ΩNS
x is dependent on the difference between v′v′

+
and w′w′

+
it seems

reasonable that the transition from the viscous regime occurs as a result of the riblet tips
protruding into the buffer layer and exposing the flow between riblets to high levels of
turbulence. At this point turbulent diffusion becomes large, and eventually dominates
over viscous diffusion as h+ grows further.

Analytical solutions

The origins of the secondary flow have been identified through the numerical solutions;
streamwise vorticity is produced by anisotropy in the Reynolds stresses, which is cru-
cially inhomogeneous in the spanwise direction when riblets are present. Linear scaling
with the riblet dimensions has also been observed at small s+, although the precise mech-
anisms that lead to this behaviour are unknown. In addition to this it is unclear how
vorticity scales at large s+. Here the governing equations are investigated analytically in
order to identify how the different variables scale in the viscous and inertial regimes. The
governing equations are the continuity equation,

∂Uy

∂y
= −∂Uz

∂z
, (5.7)

and the Reynolds-averaged transport of streamwise vorticity,

Uy
∂Ωx

∂y
+ Uz

∂Ωx

∂z
=

(
∂2

∂y2 −
∂2

∂z2

)
(−v′w′) +

∂2

∂y∂z
(
v′v′ − w′w′

)
+ ν∇2Ωx. (5.8)

There are several unknown variables; Uy, Uz, v′w′, v′v′, w′w′, and Ωx, although several
of these must be strongly related. Vertical and spanwise velocities are related to vorticity
by

Ωx =
∂Uz

∂y
− ∂Uy

∂z
. (5.9)

If it is assumed that secondary flow is confined by the riblet spacing (evident through all
numerical solutions of Section 5.2) then the variables can be scaled by

y = hy∗, z = hz∗, Ωx = ΓΩ∗x (5.10)

Uy = V∞U∗y, Uz = W∞U∗z , (5.11)

where the superscript ∗ denotes a dimensionless variable, h is the riblet height (although
the riblet spacing s = 2h would also be appropriate), Γ represents a characteristic fre-
quency governing the scaling of Ωx, and V∞ and W∞ are characteristic velocity scales for
vertical and spanwise flow, respectively. The continuity equation (5.7) leads to

W∞ ∼ V∞, (5.12)
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which when substituted into the definition of vorticity (5.9) leads to

Ωx ∼
V∞

h

(
∂U∗z
∂y∗
−

∂U∗y
∂z∗

)
. (5.13)

Subsequently the recirculation frequency Γ which governs the secondary flow scales with
the spanwise and vertical velocities by

Γ ∼ V∞/h. (5.14)

With some rearrangement V∞ is found to scale with h+ = uτh/ν by

V∞ ∼ uτ

(
Γν

u2
τ

)
h+. (5.15)

Numerical solutions have shown that Ω+
x = Ωxν/u2

τ ∼ s+ in the viscous regime, and by
extension Ω+

x ∼ h+. This requires

Γ+ =
Γν

u2
τ

∼ h+, (5.16)

suggesting that vertical and spanwise velocities must scale like (h+)2. This is precisely
what is observed for small s+, in Figures 5.18 and 5.19. Both vertical and spanwise
components of velocity scale with (s+)2 in the viscous regime, with the vertical velocity
approximately twice that of the spanwise. The quadratic scaling with s+ breaks down at
the same point at which the linear scaling of Ωx breaks down (s+ . 30), as observed in
Figure 5.20. In the inertial regime the spanwise and vertical velocities scale sub-linearly
with s+. Their growth with s+ to some fractional power is consistent with the scaling
Γ ∼ V∞/h given that Ω+

x slowly decreases with s+ in the inertial regime (Figure 5.13).
A further interesting result is that v′w′ also scales in a near-identical way to Uz, as

shown in Figure 5.21. Deviations between (v′w′
+
)max and (U+

z )max are only clear in the
inertial regime, but differences only lie in a small offset. A critical observation is that
(v′w′

+
) scales more strongly with s+ than Ω+

x does, leading to (v′w′
+
) vanishing in the

viscous regime more quickly than Ω+
x , and leading to a continued growth of (v′w′

+
)

at large s+, while Ω+
x decreases. Knowing that these variables are all intricately linked

and scale with Γ allow some analytical solutions at both small and large s+ (or h+) to be
established.

Solutions for 0 < s+ � 1

For 0 < s+ � 1 riblets should have a negligible influence on the flow, such that the flow is
governed by the flat plate solutions to leading order. Here the method of multiple scales
is adopted, where the riblets act as a small perturbation to the flat plate solutions. There
are three length scales that govern the flow over riblets; the boundary layer thickness, δ,
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the viscous or inner length scale, δν = ν/uτ, and a length scale associated to the riblets.
Here the riblet height is chosen, h = s/2, rather than the spacing, s, although the same
solutions are obtained regardless of this choice. These length scales lead to two inner-
scaled Reynolds numbers: δ+ = Reτ = δ/δν, and h+ = h/δν, which describe the scale
separation. Here it is assumed that δ+ � 1 and 0 < h+ � 1. The near-wall flow
is therefore primarily governed by δν, as per the typical boundary layer solution. Any
influence of the boundary layer thickness is neglected, and the riblet length scale acts as
a small perturbation to the flow. Mathematically the appropriate coordinates are

y = δν f
(
y+, y∗

)
, z = δν f

(
z+, z∗

)
, (5.17)
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riblet spacing for EB-SSG at Reτ ≈ 180.
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where
y+ =

y
δν

, , y∗ = h+
y
δν

, (5.18)

and
z+ =

z
δν

, , z∗ = h+
z
δν

, (5.19)

such that y∗ and z∗ are much smaller than y+ and z+. Through the chain rule derivatives
in y and z become

∂

∂y
=

1
δν

(
∂

∂y+
+ h+

∂

∂y∗

)
,

∂

∂z
=

1
δν

(
∂

∂z+
+ h+

∂

∂z∗

)
, (5.20)
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and second order derivatives become

∂2

∂y2 =
1
δ2

ν

[
∂2

∂ (y+)2 + 2h+
∂2

∂y+∂y∗
+
(
h+
)2 ∂2

∂ (y∗)2

]
, (5.21)
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δ2

ν

[
∂2

∂ (z+)2 + 2h+
∂2

∂z+∂z∗
+
(
h+
)2 ∂2

∂ (z∗)2

]
, (5.22)

∂2

∂y∂z
=

1
δ2

ν

[
∂2

∂y+∂z+
+ h+

(
∂2

∂y+∂z∗
+

∂2

∂y∗∂z+

)
+
(
h+
)2 ∂2

∂y∗∂z∗

]
. (5.23)

One observes that to leading order these derivatives are governed by the viscous length
scale, consistent with flat plate boundary layer solutions. These derivatives are assigned
the operators

∂

∂y
=

1
δν
Dy,

∂

∂z
=

1
δν
Dz, (5.24)

∂2

∂y2 =
1
δ2

ν

Dyy,
∂2

∂z2 =
1
δ2

ν

Dzz,
∂2

∂y∂z
=

1
δ2

ν

Dyz (5.25)

for clarity. Note that each of these operators contains O(1) and O(h+) terms, while sec-
ond derivatives contain a furtherO

(
(h+)2) term. The small perturbation in length scales

will also be felt by the Reynolds stresses v′w′, v′v′, w′w′, the streamwise vorticity Ωx, and
subsequently the spanwise and vertical velocities Uy and Uz. It is assumed these vari-
ables scale with a regular and spatially uniform perturbation series with 0 < h+ � 1 as
the small parameter. The expansion for Ωx is

Ωx ∼ Γ f (h+)Ω∗x, f (h+) = a2h+ + a3(h+)2 + · · · , (5.26)
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where f (h+) is a spatially uniform expansion for small h+. Note that its first coefficient
a1 = 0, which is required to maintain the flat plate boundary solution for vanishing h+,
where vorticity should also vanish.

The variables Uy and Uz are also assumed to scale with f (h+), given their relation to
Ωx through (5.15):

Uy = hΓ f (h+)U∗y, Uz = hΓ f (h+)U∗z . (5.27)

Numerical solutions show that v′w′
+

scales in a near identical way to U+
z leading to the

assumed scaling
v′w′ ∼ uτhΓ f (h+)v′w′

∗
, (5.28)

or alternatively
v′w′ ∼ u2

τh+Γ+ f (h+)v′w′
∗
. (5.29)

The remaining terms are the two diagonal Reynolds stresses, which are assumed to scale
by

v′v′ = u2
τg(h+)v′v′

∗
, w′w′ = u2

τg(h+)w′w′
∗
, (5.30)

where the polynomial expansion g(h+) is defined as

g(h+) ∼ 1 + b2h+ + b3(h+)2 + · · · . (5.31)

Here the leading order coefficient of g(h+) is known, b1 = 1, consistent with the flat plate
boundary layer solution for 0 < h+ � 1. Note that it is assumed these expansions are
spatially uniform, such that respective dimensionless variables denoted with the super-
script ∗ contain spatial dependence.

0 20 40 60 80 100 120 140

s+

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(−
v
′ w
′+

) m
ax
,(
U

+ z
) m

ax

Reτ ≈ 180, (−v′w′+)max

Reτ ≈ 180, (U
+
z )max

Reτ ≈ 590, (−v′w′+)max

Reτ ≈ 590, (U
+
z )max

FIGURE 5.21: Scaling of the maximum off-diagonal Reynolds stress v′w′
and spanwise velocity for EB-SSG.



124 Chapter 5. The scaling of secondary flows over longitudinal riblets

Substituting these expansions into the RANS vorticity equation (5.8) leads to the bal-
ance

h+
(

Γν

u2
τ

f (h+)
)2 [

U∗yDyΩ∗x + U∗zDzΩ∗x
]
= h+

Γν

u2
τ

f (h+)
(
Dyy −Dzz

)
(−v′w′

∗
)

+g(h+)Dyz

(
v′v′

∗ − w′w′
∗)

+
Γν

u2
τ

f (h+)
(
Dyy +Dzz

)
Ω∗x. (5.32)

This equation provides some insight into how the vorticity budgets must balance for
small h+. Firstly it should be noted that this equation has maintained consistency with
the flat plate solution; atO(1) only a single term could be non-zero, namely the anisotropic
production term. However, knowing that derivatives in z+ are zero to leading order a
consistent solution is maintained.

At O(h+) there are two possible contributions from the anisotropic production term,
and one from viscous diffusion. These coefficients must balance like

1 ∼ b2 ∼
Γν

u2
τ

a2, (5.33)

where the b2 contribution arises from the O(1) term in the second order derivatives 5.25,
and the first term arises from theO(h+) term in the second order derivative. This balance
can only be achieved if a2 is non-zero. To leading order, Ωx must therefore scale like

Ωx ∼
u2

τ

ν
h+Ω∗x (5.34)

or alternatively
Ω+

x ∼ h+Ω∗x (5.35)

which is consistent with the numerical solutions in the viscous limit. This analytical
solution arises from the requirement that viscosity must balance the vorticity produced
by the anisotropy in the Reynolds stresses, and the production occurs at O(h+). Even if
all non-leading order coefficients of g(h+) were zero this balance would still hold, given
the O(h+) terms in the second order derivatives.

Despite this perturbation analysis being derived for 0 < h+ � 1 this scaling appears
to hold up to reasonably large values of h+, breaking down only when riblet tips begin to
protrude into the buffer region of the boundary layer. This could be explained by noting
that similar expansions on the viscous region of the flat plate boundary layer leading to
the linear behaviour of streamwise velocity (U+

x ∼ y+) also holds until the buffer region
of the flow (Wilcox, 2006).

The only component of this analysis that is perhaps difficult to explain is the origin
of the scaling of v′w′; why should this be dependent on Γ? However, even if this depen-
dence were removed, the leading order balance would still beO(h+) between production
due to anisotropy and diffusion due to molecular viscosity, as long as v′w′ is smaller than
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Ωx.

Solutions for s+ � 1

In the limit of large s+ numerical solutions suggest that the vorticity field should either
decrease with increasing s+ or tend to a constant solution (see Figure 5.13). Here this is
investigated analytically using a similar technique to the vanishing s+ case. The govern-
ing length scales are as before: the boundary layer thickness δ, the viscous length scale
δν = ν/uτ, and the riblet height h. Here it is assumed that for large h+ solutions should
be independent of the viscous length scale, leading to the dimensionless parameters

δ

h
� 1, h+ =

h
δν
� 1. (5.36)

The boundary layer thickness is assumed large enough to have no influence on the flow
close to the riblets. Here the leading order solution to the vorticity balance is sought, such
that a single length-scale asymptotic approach is appropriate:

y ∼ hy∗, z ∼ hz∗. (5.37)

Variables are scaled as in Section 5.3 but only their leading order behaviour is accounted
for. Continuity and the definition of vorticity require that the relationship between vor-
ticity and spanwise and wall-normal velocities still holds, leading to the scaling

Ωx ∼ ΓΩ∗x, Uy = hΓU∗y, Uz = hΓU∗z . (5.38)

Given the similarities between the numerical scaling of Uz and v′w′ (see Figure 5.21) it is
assumed the off-diagonal Reynolds stress scales like

v′w′ ∼ uτΓhv′w′
∗
, (5.39)

consistent with Section 5.3. Furthermore it is assumed the diagonal Reynolds stresses
still scale with the friction velocity:

v′v′ = u2
τv′v′

+
, w′w′ = u2

τw′w′
+

. (5.40)

Substituting these into the vorticity equation leads to

(
h+
)2
(

νΓ
u2

τ

)2 [
U∗y

∂Ω∗x
∂y∗

+ U∗z
∂Ω∗x
∂z∗

]
= h+

(
νΓ
u2

τ

)(
∂2

∂(y∗)2 −
∂2

∂(z∗)2

)
(−v′w′

∗
)

+
∂2

∂y∗∂z∗
(

v′v′
+ − w′w′

+
)
+

(
νΓ
u2

τ

)(
∂2

∂(y∗)2 +
∂2

∂(z∗)2

)
Ω∗x. (5.41)



126 Chapter 5. The scaling of secondary flows over longitudinal riblets

There is only one possible scaling of Γ that allows this equation to balance:

νΓ
u2

τ

= Γ+ ∼ 1
h+

. (5.42)

With this scaling the only term that does not enter the leading order balance is viscous
diffusion. Vorticity is therefore generated by the diagonal Reynolds stresses, which is
balanced by turbulent diffusion and convection. This seems reasonable when assessing
the numerical budgets of the vorticity equation in Figure 5.15, where convection starts
to grow for the large s+ cases. The numerical solutions are clearly not quite in the limit
where convection is larger than viscous diffusion, but the general trend of the simula-
tions suggests that convection could at some point become large. This would also be
consistent with the LES of Anderson et al. (2015), who simulated the flow over large-scale
heterogeneous roughness (Discussed in Section 2.3). Anderson et al. (2015) reported the
dominant balance described by (5.41), where convective terms were required to advect
vorticity generated by the Reynolds stress terms. This type of flow is analogous to widely
spaced riblets in the limit of very large h+, providing support for the analytical solution
of (5.41).

Regarding the scaling of the variables at h+ � 1 one should obtain

Ω+
x ∼

1
h+

, U+
y ∼ U+

z ∼ v′w′
+ ∼ 1. (5.43)

This suggests that at large h+ all variables governing the transport of vorticity are bounded
and should tend to a constant value, with the exception of vorticity which should vanish
at a rate of 1/h+.

Some of these features were obtained in the numerical solutions; firstly, the variables
U+

y , U+
z , and v′w′

+
do seem to scale at a rate of an order h+ larger than vorticity. Nu-

merical solutions also show vorticity decreasing with h+, albeit sub-linearly. However,
numerical solutions are only obtained up to h+ ≈ 75 (s+ ≈ 150) such that riblet tips
only protrude slightly into the log-layer. The largest numerical h+ data points are also
obtained at a blockage ratio of δ/h ≈ 15, below that of the limit specified by Jiménez
(2004), δ/k0 = 40, which could also influence the secondary flow somewhat. This im-
plies that the condition δ/h � 1 adopted in the analytical solutions for h+ � 1 are not
realised for the numerical solutions. Therefore it is perhaps unsurprising that the scaling
Ω+

x ∼ 1/h+ is not obtained. However, it is certainly reasonable to suggest that profiles
of U+

y , U+
z , and v′w′

+
in Figures 5.20 and 5.21 will tend to a constant value at larger h+,

and that Ωx would eventually scale like 1/h+ if numerical solutions were obtained at a
higher Reynolds number, Reτ.

The analytical solutions of the transport of streamwise vorticity for h+ � 1 are there-
fore governed by the balance between convection, production due to Reynolds stress
anisotropy, and turbulent diffusion, while viscous diffusion is negligible. In order to en-
sure convection is bounded and can be balanced by the remaining terms, the solution
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Ω+
x ∼ 1/h+ is required, which subsequently leads to solutions independent of h+ for

U+
y , U+

z , and v′w′
+

.

5.3.1 Discussion

The numerical and analytical solutions obtained for the flow over riblets have led to
a significant understanding of how secondary flows are generated and sustained, and
how they scale with the riblet dimensions. The near wall secondary flow arises from
anisotropy of the Reynolds stresses, and as such are of the second kind of secondary flow
(Prandtl, 1953). This anisotropy is inherent even for flat plate boundary layers, but riblets
introduce the spanwise inhomogeneities responsible for vorticity production. At small
riblet spacings (s+ . 30) vorticity production is diffused by viscosity, and vorticity scales
linearly with s+. At large riblet spacings (s+ & 75) production is balanced by gradients
of the Reynolds shear stress term v′w′, and viscous diffusion is small. In this regime vor-
ticity decreases with h+ and convection begins to contribute to vorticity transport. These
two distinct regimes are termed viscous and inertial regimes due to their dependence on
the Reynolds number s+, and are defined by how vorticity produced through anisotropy
is balanced, either by molecular viscosity or by a ’turbulent viscosity’ dependent on the
Reynolds shear stresses v′w′. The transition between these two regimes appears to co-
incide with the riblet tips protruding into the buffer layer, exposing the riblets to higher
levels of turbulence.

Analytical solutions supported these results by investigating the vorticity scaling with
riblet dimensions in the inertial and viscous regimes. The viscous regime was analysed
using the method of multiple scales, finding that the linear behaviour Ω+

x ∼ s+ observed
in the numerical solutions are required in order to ensure vorticity vanishes with s+ when
riblets are negligibly small. The analytical solutions are also consistent with the numer-
ical solutions concerning the leading order balance of the transport of vorticity, where
the anisotropic Reynolds stress term is balanced by viscous diffusion at small s+. Iner-
tial regime predictions are also consistent with numerical solutions, finding that vorticity
should scale like 1/h+ and all terms of the transport of vorticity are bounded. While
the vorticity scaling of 1/h+ is not quite obtained from the numerical solutions, it seems
reasonable that these solutions are consistent if Reynolds numbers were increased.

Goldstein and Tuan (1998) attributed the secondary flow over riblets to the block-
ing of instantaneous spanwise flow at the riblet tips, acting to deflect flow upwards.
While this is an instantaneous process it may still be consistent with the present results.
Numerical RANS solutions attribute vorticity production with gradients of the normal
Reynolds stresses, which are crucially spanwise-inhomogeneous near riblets. This could
be thought of as a spanwise-blocking, where riblet tips act to locally block the spanwise
normal Reynolds stress, a kinematic effect similar to the kinematic blocking that leads to
two-dimensional turbulence near walls (discussed in Section 2.1). Given that the present



128 Chapter 5. The scaling of secondary flows over longitudinal riblets

EB-SSG model predictions lead to similar vorticity magnitudes and secondary flow struc-
tures as the DNS of Choi, Moin, and Kim (1993), perhaps the instantaneous blocking de-
scribed by Goldstein and Tuan (1998) could alternatively be explained by the influence
of the riblets on the Reynolds stress tensor.

An open question remains; what is the influence of the riblet-induced secondary flow
on the friction coefficient? Secondary flows are known to have adverse effects on many
flows; in ducts they distort the mean streamwise flow and lead to friction losses, despite
their transverse velocities being only a few % of the streamwise mean flow (Speziale,
1986). Secondary flows also lead to significant drag and momentum loss over large scale
spanwise-heterogeneous roughness (Anderson et al., 2015; Hwang and Lee, 2018). The
large-scale roughness of Hwang and Lee (2018) is order δ in spacing and fully rough,
rather than the order δν spacings and hydraulically-smooth to transitionally rough riblet-
ted surfaces herein, although the mechanisms driving the secondary flows are similar
(Anderson et al., 2015; Hwang and Lee, 2018). However, the influence of the riblet-
induced streamwise vorticity on drag is not well understood; Goldstein and Tuan (1998)
directly attributed their existence to the degradation of drag reduction, although Garcı́a-
Mayoral and Jiménez (2011b) note that near-wall secondary flows can actually reduce
drag by damping larger-scale swirling flow in the buffer layer. The present work sug-
gests that while the friction coefficient and streamwise vorticity seem somewhat corre-
lated they may not be directly related, just driven by similar mechanisms. This is evident
in the contributions to drag and the budgets of streamwise vorticity: The viscous drag
reduction regime breaks down when the turbulent shear stresses u′v′ become large, i.e in-
ertial effects become important above the riblet tips (Garcı́a-Mayoral and Jiménez, 2011b).
The viscous secondary flow regime breaks down when the turbulent shear stresses v′w′

become important, eventually leading to the inertial regime where viscosity is negligible.
While mechanisms leading to the regime changes of drag and vorticity are similar, there
is mixed evidence of their direct correlation in Figure 5.17, in part due to unknown influ-
ence of Reτ and the blockage ratio δ/h. These two processes are clearly similar, but do not
necessitate a relationship between drag and the secondary flow. However, there must be
some relationship between drag and vorticity dependent on the roughness dimensions,
given that when roughness length scales are large the induced secondary flows can have
substantial influence on the mean flow (Anderson et al., 2015). Future work should there-
fore be carried out in order to extend analysis to higher Reynolds numbers and bridge
the gap in roughness length scales between the riblet flows herein and large-scale hetero-
geneous roughness.

5.4 Conclusions

RANS models have been successfully adopted for the prediction of ribletted channel
flows with solutions in good agreement with DNS and experiments. Subsequently the
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secondary flows induced at the riblet tips have been thoroughly investigated regarding
the mechanisms driving and sustaining them, and their scaling with the riblet dimen-
sions. Simulations were carried out for sawtooth riblets, covering riblet spacings of ap-
proximately 5 < s+ < 150 at Reynolds numbers of Reτ ≈ 180 and Reτ ≈ 590. Inves-
tigation of riblet-induced secondary flows was carried out using the EB-SSG model of
Manceau (2015), which correctly predicted the magnitude and extent of the secondary
flow when compared to DNS solutions, unlike the k − τ and Stress-τ models, based on
the ω models of Wilcox (2006). The primary mechanisms that induce streamwise vorticity
have been identified as anisotropy in the near-wall Reynolds stresses, consistent with the
second type of secondary flow (Prandtl, 1953). Two regimes have been identified which
govern how vorticity produced by anisotropy is conserved: A viscous regime for small
s+ where vorticity production is balanced by viscous diffusion, and an inertial regime for
large s+ where vorticity production is balanced by an effective turbulent viscosity deter-
mined by the Reynolds shear stress v′w′. The transition between the two regimes occurs
at s+ ≈ 30, where riblet tips protrude into the buffer layer and cause increased turbu-
lent mixing. Analytical solutions obtained a linear dependence of streamwise vorticity
on the riblet height, h+, in agreement with numerical solutions. This linear scaling arises
as a condition that vorticity must vanish as h+ decreases in order to obtain the flat plate
boundary layer solution for vanishingly small roughness. In the inertial regime analytical
solutions obtained a scaling such that streamwise vorticity should scale like 1/h+. While
this limit is not reached for the numerical simulations there is evidence that this regime
should occur if Reynolds numbers were increased and larger riblets could be simulated.
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Chapter 6

Boundary layer flow over shark skin
denticles: New mechanisms for drag
reduction by riblets revealed by
RANS-based modelling

The hydrodynamics of shark scales is poorly understood, even for the simplest of flows.
Regarding shark scales subject to canonical boundary layer flows previous results vary
considerably, with some authors claiming significant hydrodynamic efficiency (e.g. Domel
et al., 2018) and others claiming a significant increase in drag when denticles are present
(e.g. Boomsma and Sotiropoulos, 2016). Through a review of the literature in Chapter
2 two key reasons for these differences were identified; a lack of control of shark scale
geometry and its influence on fluid dynamics, and a lack of flow field measurements
close to the scales, where previous work has primarily adopted force balances. Of all pre-
vious studies only Bechert, Hoppe, and Reif (1985) and Fletcher (2015) have performed
fluid dynamic experiments on more than one shark scale geometry, and only Boomsma
and Sotiropoulos (2016), using Direct Numerical Simulation (DNS), have quantified the
near-denticle flow field. This chapter presents a study adopting Reynolds Averaged
Navier-Stokes (RANS) closures to model a fully developed boundary layer flow over
shark scales. Three denticle geometries are investigated at different sizes with data val-
idated against the experiments presented in Chapter 3. Unlike DNS, RANS models are
significantly less computationally expensive and have the potential to carry out large
parameter studies on scale geometry, although at present only one previous study us-
ing RANS models exists (Zhang et al., 2011a), which suffers from poor documentation
and validation. Throughout this thesis RANS methodology has been validated for sim-
ilar wall-bounded flows, concluding that the EB-SSG model (Appendix C.9) is capable
of obtaining excellent predictions of flows over riblets. Extending this methodology to
shark scales could prove instrumental in gaining an understanding of the effect of subtle
changes to scale geometry on hydrodynamics, and obtaining flow field details that no
experimental techniques are yet capable of. The focus of this chapter is to validate RANS
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methodology against experimental data, and investigate the role of riblets in combination
with shark scales. Despite the considerable variability of shark scales (see e.g. Figure 2.9)
only Fletcher (2015) has carried out fluid dynamic experiments on smooth shark scales
without riblets, despite many sharks not possessing riblets. An open question is how do
riblets operate when added to denticles? Do they behave as per longitudinal riblets, or
are there other fluid dynamic effects introduced? The pursuit of methodology appropri-
ate for quantifying effects of scale geometry on hydrodynamics could lead to a signifi-
cantly better understanding of how scale morphology has evolved, and biomimicry of
these surfaces could lead to improved fluid dynamic efficiency of engineering structures
subject to high fluid drag.

6.1 Methodology

Alongside denticle models 3D printed in Chapter 3 an additional model has been created
in order to investigate the effects of riblet geometry on the near-wall flow (Figure 6.1).
This model is a cross between the two original models; riblets are present on the denticle
crown but are shorter than those on the ribletted denticle of Chapter 3, and do not possess
the cut-out regions on the trailing edge. Models are given the abbreviations SMO, SMR,
and RIB, defined in the caption of Figure 6.1. Details and dimensions of the denticle
models are presented in Appendix A.

A fully developed channel flow is simulated with shark scales present on the walls.
The flow is assumed steady state and incompressible. Numerical techniques adopted
are as per Section 5.1.2. The geometrical periodicity of shark scale arrays is exploited by
assuming the Reynolds-averaged flow field over one scale is identical to all others. The
domain can therefore be reduced to the small periodic and symmetrical section of Figure
6.2. The fluid domain therefore contains just one denticle, split up into four parts depen-
dent on the array dimensions (defined in Appendix A). For the cases here the domain
size, is Lx × Lz = 1.1w × w where Lx and Lz are domain lengths in the streamwise (x)

FIGURE 6.1: Denticle CAD models. Smooth (left) and ribletted (right)
models are as per 3D printed models of Chapter 3. The central model is a
derivative between the other two. Models are abbreviated SMO (smooth,

left), SMR (smooth-ribletted, centre), and RIB (ribletted, right).
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FIGURE 6.2: Array of smooth denticles. The CFD domain in the centre
is periodic in the streamwise direction and symmetric at the spanwise

boundaries.

and spanwise (z) directions, respectively, and w is the denticle width. Boundary con-
ditions are periodic in the streamwise direction, symmetric in the spanwise direction,
symmetric at the channel half-height y = δ, and no-slip on the denticle surface. Bulk
flow Reynolds numbers of Reb = Ubδ/ν = 2825 and Reb = 10864.85, where Ub is the
bulk flow velocity and ν the kinematic viscosity, are imposed via an iterative forcing
term as per the methodology of Chapters 4 and 5. These Reynolds numbers approxi-
mately equate to Reτ = δuτ/ν ≈ 180 and Reτ ≈ 590 for a smooth wall channel flow,
where uτ =

√
τw/ρ is the friction velocity, τw is the wall shear stress and ρ is the fluid

density. The flow over denticles is simulated at four denticle widths covering the range
10 . w+ . 70, similar to the experimental values of Chapter 3, where the inner scaled
denticle width is w+ = wuτ0/ν, where uτ0 is a reference flat plate friction velocity at
the same bulk flow Reynolds number. Denticle dimensions are as per the experimental
study (Chapter 3) but have been scaled to a specified w+ using the flat plate estimations
of uτ/ν at Reb = 2825 and Reb = 10864.85. The turbulence models adopted are the k− τ

model with low Reynolds number corrections (Appendix C.5), and the EB-SSG model
(Appendix C.9). Given the similarities between Stress-τ and k − τ models for ribletted
channels in Chapter 5 the less expensive two-equation model is adopted here. All other
numerical methodology are as per Chapters 4 and 5. Reference smooth-walled channel
flow simulations are obtained using the methodology described in Chapter 4, with bulk
flow Reynolds numbers consistent with the denticle simulations.

ANSYS FLUENT 19.2 (2019) meshing software is adopted to create the body-fitted
meshes around the shark scales. While a structured hex-mesh may be preferable, they
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are impractical when considering the complex ribletted denticles of Figure 6.1. Fluent
Meshing is capable of creating smooth and high quality polyhedral meshes close to the
scales. The meshes are constructed by creating a sub-domain of dimensions Lx × Ly ×
Lz = 1.1w × w × w, such that the polyhedral unstructured mesh is only present up to
y = Lz = w. The remaining domain (w ≤ y ≤ δ) is meshed using a structured hexahedral
mesh to ensure cells are aligned with the mean flow direction. The hexahedral mesh is
uniform in spacing in x and z, and a geometric stretching function is adopted in the y
direction to blend small near-denticle cells into larger free-stream cells (this stretching
function is detailed in Chapter 4). The near-denticle sub-domain is refined based purely
on curvature; regions of high curvature, identified via a threshold surface-normal angle,
are specified a smaller cell size which is blended into larger cells by a specified growth
rate. Particular values of the threshold angle, minimum cell sizes, and growth rates, are
determined through mesh sensitivity studies. 5 prism layers are grown normal to the
no-slip surfaces to ensure larger near-wall gradients can be captured.

A disadvantage of the Fluent Meshing solver is that periodicity is not maintained be-
tween cell faces on the streamwise boundaries, thus a non-conformal periodic boundary
condition is adopted, where fluxes are interpolated between the mismatched boundaries.
A consequence of this is a much higher refinement requirement, such that numerical
diffusion across the boundary is minimised. In addition, a non-conformal interface is
present between the two sub-domains, such that prism layers and additional refinement
are present at the interface, y = w. This meshing technique is validated by also creat-
ing a fully conformal structured mesh over the smooth denticle using ANSYS ICEM 19.2
(2019) software. The two meshing techniques can be observed in Figure 6.3. Note that
despite adopting non-conformal boundaries, normalised residual errors for all variables
converge to below 1× 10−10, and the friction velocity converges to a relative error of
1× 10−7, due to the high refinement levels at the boundaries. Both meshing strategies
are assessed for mesh independence, and sensitivity to meshing strategy is determined.

Sensitivity to meshing strategy and refinement

Mesh statistics for three unstructured and three structured meshes are presented in Table
6.1, for the flow over smooth denticles at w+ ≈ 45 and Reτ ≈ 180, using the k− τ model
with low Reynolds number corrections. Here F is prescribed as a mesh created using
FLUENT (unstructured) and I represents a mesh created using ICEM CFD. Friction ve-
locities converge to uτ ≈ 1.14 for F3 and uτ ≈ 1.13 for I3, equating to an error of less than
1 % between the two meshing strategies. Mesh sensitivity is also determined through
profiles of inner-scaled turbulent kinetic energy, k+, and the inner-scaled mean velocity,
U+

i , at two arbitrary sample lines at (x, z) = (0.01, 0.01) and (x, z) = (0.04, 0.22), in the
y− direction. These correspond to Line 1 and Line 2 in Figure 6.4. Line 1 is located near
the domain origin (see Figure 6.3), and Line 2 is located at a position between denticles.
Deviations in profiles of U+

i and k are only present for I1 and F1 meshes, most notable
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FIGURE 6.3: Structured (left) and unstructured (right) meshing strategies
for a smooth denticle domain.

at the inflection points of the vertical velocity U+
y . The close agreement between the two

meshing strategies validates the use of the unstructured non-conformal meshes for fur-
ther studies, subsequently mesh F2 is used in the following sections for the smooth denti-
cle (SMO) cases. Mesh independence is also assessed for the other two denticle models of
Figure 6.1 using the unstructured strategy, where ribletted denticles are found to require
significantly more cells in order to capture regions of high curvature. Meshes adopted
for further analysis are detailed in Table 6.2. Note that y+1 < 0.2 for all adopted meshes,
ensuring friction velocity errors associated to the near-wall cell size are approximately
less than 0.25 % (see Chapter 4).

TABLE 6.1: Mesh statistics for three smooth-denticle (SMO) meshes at
Reτ ≈ 180 and w+ ≈ 45. Ncells represents the total number of cells, Nwall
represents the number of elements on the denticle boundary, and ∆+ rep-
resents typical cell sizes in wall units. F represents FLUENT unstructured

meshes, I represents ICEM CFD structured meshes.

Case Ncells Nwall ∆+
avg ∆+

min ∆+
max

F1 108615 6932 1.777 0.007 5.429
F2 294663 17683 1.26 0.006 4.297
F3 431430 28550 1.107 0.005 5.17
I1 25746 1446 2.862 0.264 9.832
I2 150294 4534 1.556 0.081 4.968
I3 682702 16820 0.937 0.104 6.028
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FIGURE 6.4: Mesh sensitivity for the flow over smooth denticles at Reτ ≈
180 and w+ ≈ 45, using the k− τ Low Reynolds number. Legend entries
correspond to meshes defined in Table 6.1. Data are sampled in the y−
direction at (x, z) = (0.01, 0.01) and (x, z) = (0.04, 0.22), corresponding to

Line 1 (left) and Line 2 (right), respectively.

6.2 Results

For each denticle model four w+ values are simulated at Reτ ≈ 180 and Reτ ≈ 590,
covering the range 10 < w+ < 70. Due to computational expense, the EB-SSG model
is only used for three denticle sizes at Reτ ≈ 180 and 20 < w+ < 70. Results are pre-
sented in the following structure: Firstly, solutions are validated against experimental
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TABLE 6.2: Mesh statistics for denticle meshes at Reτ ≈ 180 and w+ ≈ 45.
Ncells represents the total number of cells, Nwall represents the number of
elements on the denticle boundary, and ∆+ represents typical cell sizes in

wall units. Denticle model abbreviations are as per Figure 6.1.

Case Ncells Nwall ∆+
avg ∆+

min ∆+
max

SMO 294663 17683 1.26 0.006 4.297
SMR 767198 48337 0.912 0.004 5.664
RIB 816812 56736 0.888 0.003 5.312

data of Chapter 3 by comparing friction coefficients, velocity profiles, and profiles of the
Reynolds stresses. Secondly, the effect of riblets on the near-denticle flow is analysed in
order to determine the influence of riblets in combination with shark skin denticles. This
is achieved by investigating distributions of viscous and pressure forces on the denticles,
denticle effects on the mean flow structures, and the influence of denticles on near-wall
turbulence.

6.2.1 Validation

The drag force acting on the denticles has two components; viscous drag and pressure
drag. These are defined by

Fi = Fp,i + Fν,i =
∫

S
−Pni∂S +

∫

S
ν

∂Ui

∂xj
nj∂S, (6.1)

where Fi is a force vector, subscript p represents pressure components, subscript ν rep-
resents viscous components, S is the denticle surface, P is the mean kinematic pressure,
and ni is the local surface-normal vector. Note that the flat wall surface beneath the den-
ticles is also included in the definition of S. There are therefore two contributions to the
friction coefficient, which is decomposed by

C f = C f p + C f ν =
Fp,x

1
2U2

∞ A
+

Fν,x
1
2U2

∞ A
(6.2)

where A = LxLz is the reference surface area. The friction velocity is calculated from C f .
The friction coefficient as a function of dimensionless denticle width is compared against
experimental data in Figure 6.5. The k− τ model with low Reynolds number corrections
leads to reasonable predictions of the rough surfaces, where drag increases with w+ and
magnitudes of the drag increase are in good agreement with the experiments. However,
there is little difference between the ribletted and smooth denticles at any value of w+,
contrary to the experiments. The effect of Reτ and subsequently the blockage ratio δ/k0

is to reduce the drag increase, consistently for both types of denticle.
The EB-SSG model leads to better predictions; as w+ increases the difference between

the two plates gets larger, with the ribletted denticles consistently leading to a reduced
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drag relative to the smooth, consistent with experiments. In addition, the magnitudes
of drag increase appear in good agreement for the smooth denticles, although the drag
appears slightly overpredicted for the ribletted denticles at small w+. While experiments
predict a drag decrease of approximately 2 % at w+ ≈ 20, the EB-SSG model predicts a
drag increase of approximately 2 %. As a result, numerical solutions lead to a smaller
difference in C f between the two denticle plates when compared to the experiments, de-
spite predicting the drag curve trends reasonably well. A possible explanation for this
discrepancy is the different experimental conditions; while the present simulations are
fully developed channel flows at a fixed bulk flow Reynolds number, the experimental
flow was a developing boundary layer with a variable bulk flow Reynolds number. In
addition, numerical solutions are somewhat influenced by the upper boundary at y = δ,
the influence of which is quantified by the blockage ratio δ/k0 where k0 is the roughness
height, as discussed in Chapter 2. In particular, numerical solutions of the flow over
sawtooth riblets (Chapter 5) were found to be somewhat dependent on blockage ratio,
where the drag reduction of riblets was underpredicted for Reτ ≈ 180 by 2 – 3 % when
compared to experiments. Perhaps then the slight overprediction of drag for the riblet-
ted denticles in Figure 6.5 is a result of the underprediction of the drag-reducing effects
of riblets. However, the trends and magnitudes of C f appear in good agreement between
the EB-SSG model predictions and experiments. A critical result here is that deviations
between the two plates appear to grow as w+ increases, consistent between both experi-
mental and numerical data.

Profiles of mean streamwise velocity and Reynolds stresses are also compared against
experimental data for EB-SSG in Figures 6.6 to 6.9, for both smooth and ribletted denti-
cles at w+ ≈ 45 and w+ ≈ 67. Direct comparisons between the data sets are not possible
due to differences in experimental conditions, but deviations between rough plates and
respective smooth-wall data can be readily compared. Here, the virtual origin has been
approximated using the technique of Choi, Moin, and Kim (1993), described in Chapter
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flow over smooth denticles at w+ ≈ 45. Numerical data are sampled at all
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FIGURE 6.7: EB-SSG predictions (left) and experimental data (right) for the
flow over smooth denticles at w+ ≈ 67. Numerical data are sampled at all
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FIGURE 6.8: EB-SSG predictions (left) and experimental data (right) for the
flow over ribletted denticles at w+ ≈ 45. Numerical data are sampled at all
mesh cell-centres, and lie in the grey region. Note that direct comparisons
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FIGURE 6.9: EB-SSG predictions (left) and experimental data (right) for the
flow over ribletted denticles at w+ ≈ 67. Numerical data are sampled at all
mesh cell-centres, and lie in the grey region. Note that direct comparisons
between numerical and experimental data sets are not appropriate, given

their different bulk flow properties.
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5 (Section 5.2). Numerical data has been sampled at all coordinates in the domain, which
lie within the grey region between the dotted curves. Results indicate that the influence
of the rough surfaces on the mean velocity and Reynolds stresses is consistent between
experiments and numerical predictions; the mean flow velocity is negatively offset from
the flat surface profile, the maximum value of u′u′

+
is reduced, and differences in v′v′

+

and u′v′
+

are characterised by a lifting of the near-wall region, due to a weaker imper-
meability condition. Regarding both smooth and ribletted denticle data the Reynolds
stresses are in excellent agreement between experimental and numerical data. While the
peak of u′u′

+
is reduced a little more for the numerical solutions, predictions of v′v′

+
and

u′v′
+

agree well. Note that the outer-region of the experimental measurements of u′u′
+

and v′v′
+

for the two plates diverges due to the presence of freestream turbulence, rather
than differences between plates (discussed in Chapter 3). However, numerical solutions
also predict a slightly larger decrease in the peak of −u′v′

+
when compared to experi-

ments. This could be partly due to the fairly large scatter in experimental measurements
of u′v′

+
.

The good agreement between numerical and experimental data sets leads to confi-
dence in the ability of EB-SSG to obtain reasonable predictions of these complex rough
surfaces. In contrast, the two equation k− τ model fails to predict the large differences
between the two denticle plates.

6.2.2 Pressure and viscous contributions to drag

Drag coefficients relative to reference flat plate values are presented in Figure 6.10, for all
three denticle models, computed using the EB-SSG model. Interesting behaviour can be
observed when introducing the denticle with smaller riblets (SMR), where the efficiency
of the smaller riblets changes with respect to the other denticles as a function of w+.
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FIGURE 6.10: Friction coefficients relative to a reference flat plate for arrays
of the three denticle models defined in Figure 6.1.
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when w+ is small the SMR denticles lead to the lowest drag compared to the others. As
w+ increases the RIB denticles become the most efficient. This seems a contradictory
result, given that riblets are known to perform best at small riblet spacings (see data in
Chapter 5), and as such one would expect the denticles with longer riblets (RIB) to out
perform the SMR denticles at small w+. Mechanisms leading to this change in regime
may be identified by investigating the contributions of pressure and viscous components
to the friction coefficient (6.2). These contributions can be observed in Figure 6.11. The
relative contributions of viscous and pressure forces show that viscous forces dominate
over pressure for all denticle models and all w+ values reported. Viscous contributions
account for approximately 80 % of the total drag force, and are largest at small w+. As the
denticle size increases pressure drag becomes more important, although for the range of
w+ investigated here pressure drag does not contribute more than 40 % of the total drag.
Interestingly the denticle model that leads to the largest viscous drag is the denticle with
long riblets (RIB). The effect of the riblets seems to be to reduce the pressure forces at
the expense of viscous drag, contrary to what one may expect given their reduction of
viscous forces for longitudinal ribletted plates and channels (See Chapter 5).

Contributions of pressure and viscous forces for the three denticle plates appears con-
sistent for all w+ values. smooth denticles (SMO) lead to the highest pressure drag but
lowest viscous drag, the denticle with long riblets (RIB) leads to the highest viscous drag
but lowest pressure drag, and the denticle with short riblets (SMR) lies between the other
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two denticles. While not immediately obvious, the regime change observed in Figure
6.10 can be identified by the contributions of pressure and viscous forces in Figure 6.11.
Inspection of the pressure and viscous force coefficients for the three denticle plates at
w+ ≈ 20 shows that while pressure drag is reduced for SMR denticles when compared
to SMO denticles, there is little difference between respective viscous drag coefficients.
In contrast, the RIB case leads to an approximately equal increase to viscous drag as the
decrease to pressure drag, hence the SMR riblet appears overall more efficient.

Further insight can be gained through analysis of the distributions of local friction and
pressure coefficients. While C f is related to global forces calculated through the surface
integrals of (6.1), the local streamwise pressure (cp,x) and friction (c f ,x) coefficients are
given by

cp,x =
P− P∞

1
2U2

∞
nx, c f ,x =

τw,x
1
2U2

∞
, (6.3)

where P∞ is the mean kinematic pressure at y = δ, nx is the x− component of the wall-
normal unit vector, and the streamwise local shear stress τw,x is calculated by

τw,x = ν
∂Ux

∂xj
nj. (6.4)

Distributions of cp,x and c f ,x for the three denticle models at w+ ≈ 22 and w+ ≈ 67
are presented in Figures 6.12 and 6.13. All 3D visualisations presented in this chapter
are generated using PyVista software (Sullivan and Kaszynski, 2019). Surface contours
of the local pressure coefficient (Figure 6.12) indicate regions of high pressure drag at
the leading edge of the crown of each denticle model, just offset from the centreline due
to the shielding of the upstream denticle. The SMO denticles consistently lead to the
largest region of high pressure drag, where the peak of cp,x extends over a large portion
of the denticle crown, and decreases towards the trailing edge. The RIB denticles have a
much smaller region of high pressure, located at the leading edge of the outer riblet. The
SMR denticles lead to pressure distributions somewhere between the other two; while
the maximum pressure is of a similar magnitude to the SMO denticles, the region of high
pressure is much more local to just the leading edge of the outer riblet, and quickly dis-
sipates further downstream. While relatively high pressure is found over approximately
half of the SMO denticles crown, the SMR denticles obtain a much lower pressure. There
are also contributions to the pressure coefficient at the denticle trailing edges, but to a
lesser extent than the leading edge given that they are much thinner.

The relative change in pressure coefficient between SMO and SMR denticles appears
consistent at both w+ ≈ 22 and w+ ≈ 67, whereby the peak values are similar but the
SMR denticles lead to a more local high pressure region, and therefore a lower total pres-
sure drag. However, the relative difference between SMO and RIB denticles appears to
grow as w+ increases; at w+ ≈ 67 the RIB denticles lead to much smaller peak pressure
coefficients than SMO and SMR denticles, and are much more local to the outer riblet
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FIGURE 6.12: Local streamwise pressure coefficients for the three denticle
models, SMO, SMR, and RIB, at w+ ≈ 22 and w+ ≈ 67. Flow direction is

approximately from lower left to upper right for each model.
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leading edges. These observations are consistent with the total pressure coefficients of
Figure 6.11, where the relative change in pressure coefficient is similar between SMO and
SMR denticles for all w+, but grows between SMO and RIB denticles as w+ increases.

Contours of the local streamwise friction coefficients are presented in 6.13. Here the
friction coefficient colour maps have been scaled asymmetrically about c f ,x = 0 in order
to highlight regions of negative friction, i.e regions of backflow. Note that the strength of
the backflow is over an order of magnitude smaller than the maximum positive values of
c f ,x. A smooth change in friction coefficient is observed for the smooth denticles (SMO)
at w+ ≈ 22, which peaks towards the edge of the denticle crown, just downstream of
the widest section. When riblets are added, the peak friction occurs at the riblet tips, at
significantly higher magnitudes than the remaining denticle surface. A slightly lower
friction relative to the SMO denticles is observed in the riblet valleys for both RIB and
SMR denticles, although not low enough to compensate for the increased friction at the
tips. The increased friction at the riblet tips is the cause of the increased viscous friction
coefficient C f ,ν, observed in Figure 6.11. It should be noted that for w+ ≈ 22, s+ ≈ 8 for
both SMR and RIB denticles, which should be in the drag reducing regime if they were
to behave like a typical ribletted surface. While longitudinal riblets do have high viscous
stress at the tips this is compensated by significantly lower stresses between riblets (see
Chapter 5), which is not the case here. Differences between friction coefficients at w+ ≈
67 are consistent with those at w+ ≈ 22; SMO denticles have a smooth and gradual
change in friction over the denticle crown, while the ribletted denticles have much higher
friction at the tips. While it may seem like SMR denticles have larger regions of high stress
than RIB denticles, they have a smaller surface area over which viscous friction can act,
and subsequently lead to slightly lower global friction coefficient, C f ,ν. An interesting
feature of the SMR and SMO denticles at w+ ≈ 67 is that there are regions of positive
friction coefficient on the lower wall, where the outer fluid is able to penetrate more
deeply between denticles than for the RIB denticles. The larger outer riblet prevents this
behaviour for the RIB denticles.

The distribution of c f ,x also highlights regions of backflow, where the local friction
coefficient is negative (Figure 6.13). The SMO denticles lead to the largest regions of
backflow, and the highest magnitude of negative c f ,x. The backflow regions of the SMR
denticles are similar in size as the RIB denticles, although the magnitude appears slightly
lower for the RIB denticles. This suggests that the shape of the outer denticle has a small
influence on flow separation. The backflow region increases in size with increasing w+,
but the differences between the three denticles appears consistent regardless of w+.

The contributions of viscous and pressure drag to the total friction coefficients in Fig-
ure 6.11 can now be explained. Viscous forces appear smallest for the unribletted SMO
denticles. Distributions of c f ,x reveal that this is due to high viscous stress at the riblet
tips for both SMR and RIB denticles. While longitudinal riblets compensate for increased
viscous stress at the tips with considerably lower stress between riblets, this is not the
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FIGURE 6.13: Local streamwise friction coefficients for the three denticle
models, SMO, SMR, and RIB, at w+ ≈ 22 and w+ ≈ 67. Colour maps are
scaled asymmetrically about c f ,x = 0 to highlight regions of backflow. A
linear scaling is adopted for both halves of the colour map. Flow direction

is approximately from lower left to upper right for each model.
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case for the 3D denticles. Viscous stresses are larger for RIB denticles than SMR denticles
due to the additional surface area of the longer riblets.

Pressure drag is largest for the SMO denticles and smallest for the RIB denticles, and
distributions of cp,x illustrate the reasons for this. The SMO denticles lead to a large
region of high pressure on the upstream tip of the denticle crown, towards the side of
the denticle. It seems reasonable that this region is subject to relatively high speed fluid
passing between denticles and impinging on the exposed surface. The SMO denticle
leads to high cp,x over a large portion of the denticle crown. The SMR denticle leads
to a similar peak of cp,x in the same location, coinciding with the leading edge of the
riblet tip. However, cp,x is significantly lower over the remaining denticle, leading to an
overall reduced pressure drag. The RIB denticle leads to the same location of maximum
cp,x but with a much lower magnitude. Here the longer riblet seems to help shield the
downstream denticle somewhat, restricting the ability of high speed fluid to impinge on
the downstream denticle. These simulations therefore suggest that the ability of ribletted
denticles to reduce drag relative to smooth denticles lies in a trade-off between pressure-
drag and viscous-drag, where a reduction of pressure drag seems to be compensated by
an increase to viscous drag. However, at w+ ≈ 22 the SMR denticles obtain near identical
viscous drag solutions as the SMO denticles, while also obtaining a small decrease to
pressure drag. The overall effect of this is a more efficient denticle than when longer
riblets are present (i.e the RIB denticle), when denticle sizes are small (w+ . 30).

6.2.3 Mean flow velocities

A y−normal slice through the domain beneath the denticle crown reveals a high momen-
tum pathway (HMP) passing between denticles, with flow separation behind the denticle
base (Figure 6.14). The streamwise velocity colour maps in Figure 6.14 have been scaled
asymmetrically in order to reveal and compare regions of back flow, the magnitudes of
which are approximately an order of magnitude smaller than the high momentum fluid
passing between denticles. The SMO denticles lead to the HMP of highest mean velocity
magnitude, followed by SMR and then RIB denticles. The RIB denticles lead to a con-
siderably weaker HMP than the other two denticles. At w+ ≈ 67 the HMP curvature is
much tighter, where the higher momentum fluid separates from the denticle base earlier.
It seems here that the backflow is partly due to flow separating from the denticle base,
rather than from separation of fluid above the denticle crown. The region of separating
fluid therefore grows with w+, where higher momentum fluid detaches from the denticle
base earlier. Flow separation is also dependent on the denticle geometry; SMO denticles
lead to the highest magnitude of negative velocity, although the shape of the recirculation
region appears consistent between SMO and SMR denticles. In contrast, the RIB denticles
lead to little flow separation, potentially due to the weaker momentum fluid beneath the
denticle crown.

x−normal slices of mean streamwise velocity are presented in Figure 6.15. SMO and
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FIGURE 6.14: A y−normal slice beneath the denticle crown at w+ ≈ 22
(left) and w+ ≈ 67 (right). Denticle models are SMO (top), SMR (centre),
and RIB (bottom). Contours are mean streamwise velocity, scaled asym-
metrically about U+

x = 0 to highlight regions of flow separation. A linear
scaling is adopted for both halves of the colour map. Flow direction is

approximately from upper left to lower right for each model.
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FIGURE 6.15: x−normal slices of the near-denticle flow at w+ ≈ 22 (left)
and w+ ≈ 67 (right). Denticle models are SMO (top), SMR (centre), and
RIB (bottom). Contours are mean streamwise velocity, scaled asymmet-
rically about U+

x = 0 to highlight regions of flow separation. A linear
scaling is adopted for both halves of the colour map. Flow direction is

approximately from upper left to lower right for each model.
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SMR denticles lead to very similar distributions of mean streamwise flow, main differ-
ences lying above the denticle crown, where the SMO denticles lead to an even distri-
bution of flow and the SMR denticles lead to high gradients at the riblet tips and lower
velocity fluid in the valleys. This occurs over the whole denticle crown, including the
leading edge where pressure drag is reduced for the SMR denticle when compared to
the SMO denticle (Figure 6.12). This suggests that riblet tips are acting to protect the ri-
blet valleys from relatively high velocity impinging fluid, leading to the reduction of local
pressure coefficient in Figure 6.12 at the expense of higher pressure at the riblet tips. Note
that the HMP between denticles has a velocity magnitude of approximately 10 % of the
fluid just above the denticle crown. The RIB denticles lead to similar profiles above the
denticle crown as SMR denticles, but the flow beneath the crown is significantly weaker.

Contours of spanwise and vertical components of velocity can be observed on the
same x−normal planes in Figures 6.16 and 6.17. All three denticles lead to similar and
complex flow patterns. However, it should be noted that these are not indicative of sec-
ondary or tertiary flows, since the mean flow direction is not necessarily aligned with x in
the roughness sub-layer. The vertical velocity contours of Figure 6.16 show large regions
of high magnitude downward velocity between the denticles, peaking at the edges of the
wide section of the crown. It seems then that the HMP is at least partly driven by a ver-
tical flux of fluid from above the roughness, drawing fluid between the denticles. Fluid
beneath the trailing edge of the denticle crown is typically moved upwards, while flow
shedding from the top of the denticle crown’s trailing edge is convected downwards.
Flow travelling over the top of denticles moves upwards, due to the positive angle of
attack of the denticles. Differences between SMO and SMR mainly exist above the den-
ticle crown, where the riblets have a significant influence on the vertical and spanwise
flow. The SMO denticles lead to a large region of high magnitude vertical velocity near
the widest region of the scale. When riblets are added (SMR and RIB denticles), this re-
gion is broken down such that high magnitude vertical velocities occur only at the tip of
the riblet, with an overall reduction in vertical velocity in the riblet valleys. In addition,
the riblets on the SMR denticle also change the region of downward flow at the edge
of the crown, where the riblet appears to constrict the region of downward flow to just
the edges of the denticle. In contrast, the SMO denticle leads to downward flow over a
larger portion of the denticle. The effect of w+ on the flow is consistent for all denticles;
a higher w+ leads to a suppression of vertical flow such that peaks in U+

y occur closer to
the denticle surface. This is unsurprising since at higher w+ the denticles are exposed to
higher momentum fluid which, like the HMPs, will be affected less by small changes in
curvature.

Contours of spanwise flow (Figure 6.17) reveal the motion of the HMP, where the
largest magnitudes of spanwise flow occur between denticles. The positive and negative
values correspond to the local direction of the HMP, observed in Figure 6.14. Above
the denticle crown the spanwise flow appears consistent between the SMO and SMR
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FIGURE 6.16: x−normal slices of the near-denticle flow at w+ ≈ 22 (left)
and w+ ≈ 67 (right). Denticle models are SMO (top), SMR (centre), and
RIB (bottom). Contours are mean vertical velocity. Flow direction is ap-

proximately from upper left to lower right for each model.
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FIGURE 6.17: x−normal slices of the near-denticle flow at w+ ≈ 22 (left)
and w+ ≈ 67 (right). Denticle models are SMO (top), SMR (centre), and
RIB (bottom). Contours are mean spanwise velocity. Flow direction is ap-

proximately from upper left to lower right for each model.
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denticles. The RIB denticles appear to weaken spanwise flow and break up the larger
coherent regions of spanwise and vertical flow. An interesting feature of the spanwise
and vertical flows is that when riblets are introduced the stress-induced secondary flows
that are produced by longitudinal riblets (see Chapter 5) are not present. One would
expect to observe spanwise flow moving towards riblet tips and deflecting upwards, but
this is not always the case when inspecting Figures 6.16 and 6.17. This, along with the
increase to viscous drag, suggests that riblets are not acting as they do when applied to
plates and channels.

The fluid impinging on each denticle originates from the widest section of the up-
stream denticles outer edge, as observed in Figure 6.18. The fluid is drawn beneath the
roughness height between each denticle and is then ejected upwards as it impinges on the
following denticle. The HMP originates from the downward flow at the exposed denticle
edge and is responsible for the impinging flow on each denticle crown. It is interesting
to note that the impinging flow at the denticle crown’s leading edge does not originate

SMO SMR

RIB

FIGURE 6.18: Streamlines indicating the origin of flow impinging on the
denticle crown at w+ ≈ 67. Flow direction is approximately from top to

bottom for each model.
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from the trailing edge of the denticle directly upstream. Flow detaching from above the
denticle trailing edge is convected in the streamwise direction, likely due to its relatively
high momentum.

The influence of riblets is subtle when comparing streamlines above the SMO and
SMR denticle. The main differences exist at the impingement region, where the outer
riblet acts to deflect the flow around it, while the streamlines over the SMO denticle
appear uniform. This deflection leads to a relative increase in pressure at the outer riblet
(Figure 6.12), and shields the valley from high velocity fluid (Figure 6.15). In addition,
the back flow region appears slightly larger for the SMR denticle (although significantly
weaker in strength when considering local friction coefficients of Figure 6.13), consistent
with the lower velocities between riblet tips of Figure 6.15. The origin of impinging flow
is consistent between all three denticles, despite the partial shielding of the RIB denticles
outer riblet, which only act to distort the streamlines that pass around/beneath it.

The vertical and spanwise velocity contours of Figures 6.16 and 6.17, and the stream-
lines of Figure 6.18, indicate regions of swirling flow, particularly at the outer edge of the
denticles. The swirling flow is quantified by computing iso-contours of swirl strength,
λ+

ci , which is a scalar equal to the imaginary part of the complex eigenvalue of the inner-
scaled velocity gradient tensor. Mathematically the inner-scaled velocity gradient tensor
can be decomposed by

∂U+
i

∂x+j
=
[
vr vcr vci

]



λ+
r 0 0
0 λ+

cr λ+
ci

0 −λ+
ci λ+

cr



[
vr vcr vci

]−1
(6.5)

where λ+
r is the real eigenvalue with a corresponding eigenvector vr and λ+

cr ± λ+
ci i are

the conjugate pair of the complex eigenvalues with complex eigenvectors vcr± vcii (Zhou
et al., 1999). Regions of swirling flow are identified by non-zero swirl strengths, λ+

ci . This
has the advantage of eliminating regions having vorticity but no local spiralling motion
(i.e shear layers), and being frame invariant. Iso-contours of λ+

ci are presented in Fig-
ure 6.19. Here, regions of particularly strong swirling have been identified by applying
a transparency filter mapped to the values of λ+

ci . The swirling flows, while complex,
are largely dominated by one region of high swirl strength at the edge of each denticle.
For a given w+, each denticle has similar values of maximum swirl strength, although it
should be noted that this is due to the inner-scaling of the velocity gradient (6.5), where
the resulting dimensional swirl strength has been scaled by ν/u2

τ. If normalised by uτ0

instead the differences in swirl strength would be vast, with the SMO denticle leading
to significantly higher swirling than the other denticles, due to the higher friction coeffi-
cient (Figure 6.10). However, when scaled by respective friction velocities the structure
of swirling flow still varies significantly over the different denticles. Interestingly no cir-
cular flow exists in the region behind the denticle base where flow separation occurs,
and most swirling flow occurs above the denticle crown. The swirling flow beneath the
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FIGURE 6.19: Iso-contours of swirl strength λ+
ci . Contours are partially

transparent to visualise three-dimensionality of swirling structures. Cases
are w+ ≈ 22 (left) and w+ ≈ 67 (right). Denticle models are SMO (top),
SMR (centre), and RIB (bottom). Flow direction is approximately from

right to left for each model.
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denticle crowns is located primarily along the path of the HMP, between denticles and
just downstream of the large patch of high magnitude swirl, which can be most clearly
observed for the SMO and SMR denticles at w+ ≈ 67. However, the strength of this
swirling flow is significantly weaker than those above and along the edge of the denticle
crowns. When compared to Figures 6.12 and 6.13 the regions of high swirl strength are
somewhat correlated to regions of high viscous friction, likely due to the large near-wall
velocity gradients.

The SMO denticle consistently leads to the largest region of high magnitude swirling,
located at approximately the widest point of the denticle crown. This high magnitude
swirling covers a significant proportion of the denticle crown surface, and is only neg-
ligible along the denticle centreline and at the leading edge, where flow separation is
present (see Figure 6.13). A reasonably high magnitude of swirling is present on the full
trailing edge of the denticle, likely due to the formation of a shear layer as high speed
fluid detaches from the denticle crown and mixes with low speed fluid beneath it.

Swirling flow structures over the SMR denticles are similar to those over the SMO
denticles but with more localised thin regions of high swirl strength present on the riblet
tips. There is also reasonably high swirl at the trailing edge, although in a thinner region
when compared to the SMO denticles. The outer riblet tips lead to the highest magnitude
of swirl, peaking at the trailing edge of the riblet, where flow detaches from the denticle
crown. Similarities between SMO and SMR denticles are perhaps unsurprising given
their similar shapes. The introduction of riblets seems to break up the region of high
swirl, perhaps helping align fluid with the streamwise direction. There is also a small
amount of swirl generated at the central riblet tip, although of a lesser magnitude than
the outer riblets, likely due to the lower local friction (see Figure 6.13).

The RIB denticles lead to much weaker swirling with a maximum swirl strength
present at the very downstream tips of the outer riblets. Swirling at the outer edge is
significantly reduced. There is some weak swirl generated at the riblet tips, similar to
that observed on the SMR denticle. In addition, there is little swirling beneath the den-
ticle crown, most obvious when comparing the w+ ≈ 67 cases. Two reasons could lead
to this behaviour: Firstly, the longer riblets lead to slightly more shielding, thus reduc-
ing the flow that can penetrate beneath the denticle crowns. Secondly, the riblets act to
align the flow and restrict the swirling generated at the widest part of the denticle, and
on the denticle crown between riblets. Perhaps this is due to the restricted spanwise-
motion of the riblets, where swirl generated at the outer edge cannot ‘spill’ over onto the
inner-denticle crown surface.

The effect of denticle size seems to be consistent over all three denticle models; at
large w+ the swirl strength is increased but more localised. Low magnitude swirl is
suppressed by the higher momentum fluid close to the denticle surface, such that overall
swirl is reduced over much of the denticle. However, regions of high swirl are actually
enhanced. The relative magnitude of swirling beneath the denticle seems to increase with
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w+, likely due to the higher momentum fluid that is able to penetrate beneath the denticle
crowns.

An immediate question arises from this analysis; what effect does swirling have on
the efficiency of a denticle? Any momentum lost to swirling flow will be detrimental to
overall efficiency, but two further adverse effects of secondary flows are suggested here.
Firstly, the swirling at the outer edge of the denticle crown is responsible for driving the
downward motion observed in Figure 6.16 that draws high momentum fluid above the
denticles downwards and into the gaps between them, leading to the HMP. This will
have adverse effects on both pressure drag and viscous drag, where higher momentum
fluid will impinge on the denticles, and also lead to larger velocity gradients close to
the surface. Secondly, the swirling above the denticle crown will lead to larger velocity
gradients and therefore enhance production of turbulent kinetic energy (TKE). TKE pro-
duction will enhance momentum transfer close to the surface and subsequently increase
both pressure and viscous drag on the denticle surface. The introduction of riblets leads
to a restriction on the swirl strength, and subsequently reduces momentum transfer close
to the surface. While there is sufficient evidence for this first mechanism, through the ve-
locity and swirl strength contours of the present section, the second mechanism requires
support from analysis of the near-denticle turbulence fields.

6.2.4 Turbulence predictions

Contours of inner-scaled turbulent kinetic energy (k+) are presented in Figure 6.20. k+

peaks above the region between denticles, and is strongest for SMO denticles, followed
by SMR and then RIB denticles. Above the SMO denticles k+ is fairly homogeneous, but
when riblets are present there is some spatial dependence, where k+ is low in the riblet
valleys. This occurs more-so for the RIB denticles, which also protect the flow beneath
the denticle crowns from high turbulence. Note that for the denticle sizes presented here
the flow appears fairly laminar beneath the denticle crown, except in the exposed region
between denticles. This is perhaps unsurprising for the w+ ≈ 22 cases, where the maxi-
mum denticle heights here are approximately D+

h ≈ 6 for the SMO denticles and D+
h ≈ 8

for the SMR and RIB denticles, and therefore protrude only slightly into the buffer layer.
However, at w+ ≈ 67 the denticles have heights closer to 23 wall units. While turbulent
kinetic energy is much stronger near the denticles at w+ ≈ 67, the denticle crowns are
still able to maintain a small region of laminar flow.

While not explicitly linked, the turbulence levels close to the wall have a large effect
on drag, by enhancing momentum transfer close to the walls and subsequently increas-
ing both velocity gradients leading to viscous stress, and increasing the momentum loss
due to pressure drag, where higher momentum fluid can impinge on exposed surfaces.
It is therefore important to identify mechanisms that lead to the differences in k+ distri-
butions above the three denticle geometries. This is achieved by investigating differences
in the budgets of k+ transport, which is derived by taking the trace of the Reynolds stress
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FIGURE 6.20: x−normal slices of the near-denticle turbulent kinetic energy
at w+ ≈ 22 (left) and w+ ≈ 67 (right). Denticle models are SMO (top), SMR
(centre), and RIB (bottom). Flow direction is approximately from upper left

to lower right for each model.
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transport equations for the EB-SSG model (Appendix C.9), leading to

(Dtk)
+ =

Dk+

Dt+
= P+ − ε+ +D+

T (6.6)

where convection of k+ is balanced by production, P+ = 1
2Pii, the rate of turbulent

dissipation, ε+, and the sum of turbulent and viscous diffusion,
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]
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and the superscript + represents normalisation in inner units: ν/u4
τ. For further details

of this transport equation see Appendix C.9.
Analysis of turbulent kinetic energy transport budgets is limited to the w+ ≈ 67 case,

since the small denticles lead to reasonably similar but weaker and more homogeneous
budgets, due to the low magnitude of turbulent kinetic energy. Distributions of the four
budgets for the SMO denticle are presented in Figure 6.21. In the immediate vicinity
of the denticle surface the rate of turbulent dissipation (ε+) balances diffusion (D+

T ), a
necessity through asymptotic analysis and imposed through the boundary conditions
of ε (discussed in Chapter 4). Near the wall diffusion is positive, where turbulence is
diffused from the outer regions to the near-wall regions, and subsequently balanced by
the rate of dissipation. Regions of strong viscous shear lead to the peaks in ε and D+

T

at the widest part of the denticles. Typically diffusion of k+ is negative, contributing to
the removal of k+ produced by velocity gradients and convected from other regions of
the flow. This behaviour leads to the sign change observed for D+

T in Figure 6.21, and is
typical of wall-bounded flows (see e.g. Mansour, Kim, and Moin, 1988).

Further from the wall turbulent production (P+) dominates and is particularly strong
at the trailing edges of the denticle crown. At these regions production of turbulent ki-
netic energy is so large it must be balanced by all other terms. Contours of P+ also reveal
small regions of weak negative production, particularly downstream of the denticle trail-
ing edge, and close to the region of high local pressure coefficient (Figure 6.12). This is not
consistent with typical smooth-walled channels but is known to exist for boundary layers
in adverse pressure gradients, flows subject to curvature, and regions of flow separation
(Cimarelli et al., 2019).

The most interesting feature of the budgets of turbulent kinetic energy transport is
the structure of convective and productive terms, which both have a large influence on
turbulence near the denticles. There are regions of both positive and negative convection
of turbulent kinetic energy. At the front of the denticle crown convection is negative in
sign, such that k+ is transported towards these regions and must be balanced by dissi-
pation and diffusion. At the denticle crown’s trailing edge convection is positive, such
that k+ is transported away from this region to be dissipated elsewhere. In this region
production of k+ is so large that convection is required to transport it to regions it can
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be dissipated/diffused. Regions of high negative convection are present at the exposed
regions of the denticles where fluid impinges on the outer edge and the local pressure
coefficient is large (Figure 6.12).

Budgets of the transport of turbulent kinetic energy for the SMR and RIB denticles
can be observed in figures 6.22 and 6.23. The magnitude of the budgets appears consis-
tent between all three denticles, suggesting that the inner-scaling ν/u4

τ is an appropriate
normalisation. the most notable changes are in the vicinity of the riblets, where the peaks
in ε+ andD+

T are local to the riblet tips, due to the higher local viscous shear. Other differ-
ences between the three denticles are smaller, where the general structure of the transport
budgets are similar. However, regions of negative convection at the widest section of the
denticle is lower in magnitude for SMR and RIB denticles than SMO denticles, such that

(Dtk)
+ P+

−ε+ D+
T

−0.5 0.0 0.5

FIGURE 6.21: Budgets of the transport of k+ at w+ ≈ 67 for the SMO
denticle. Terms are as per equation (6.6). Flow direction is approximately

from upper left to lower right for each model.
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FIGURE 6.22: Budgets of the transport of k+ at w+ ≈ 67 for the SMR denti-
cle. Terms are as per equation (6.6). Flow direction is approximately from

upper left to lower right for each model.

there is less turbulent kinetic energy transported to these regions. Positive convection
and peaks in production appear similar for all three denticles, although the structure of
these budgets is difficult to distinguish using 2D slices through the domains. Differences
in the structure of production and convection of turbulent kinetic energy can be better
identified through iso-contours of respective budgets, as per Figures 6.24 and 6.25. Here
regions of particularly strong magnitudes of P+ and (Dtk)

+ are displayed, and high-
lighted using a transparency map. There is a large region of production downstream of
the trailing edges of the denticles, although its precise form is different for each denticle
model. The SMO denticle leads to the largest region of high magnitude production, with
its maximum located downstream of the widest part of the denticle, and high magnitude
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FIGURE 6.23: Budgets of the transport of k+ at w+ ≈ 67 for the RIB denti-
cle. Terms are as per equation (6.6). Flow direction is approximately from

upper left to lower right for each model.

production spans the full length of the trailing edge. When moving from the widest re-
gion of the denticle to its centreline the production of TKE decreases in magnitude and
spreads over a larger region. The SMR denticle leads to similar behaviour, although the
structure of the high production region is somewhat broken down at the riblet valleys,
and regions of high production are local to the riblet tips. The RIB denticle leads to a
very different structure of k+ production, where high magnitudes of P+ are local to the
trailing edge of the riblet tips; little turbulence is produced at the edges of the denticle.
Of the three denticle models only SMO leads to notable production at the outer-crown
edge.

Regions of positive convection correspond to those of high turbulent production, con-
sistent for all three denticles. Clearly the two budgets are strongly related; where P is
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FIGURE 6.24: Local budgets of turbulent kinetic energy convection for the
three denticle models, SMO, SMR, and RIB, at w+ ≈ 67. Positive and
negative regions are identified through different colour maps, and a trans-
parency map is adopted to highlight regions of strong convection. Flow
direction is approximately from upper left to lower right for each model.

large, convection must act to transport turbulence to other regions where it can be dissi-
pated/diffused. regions of negative convection are coherent for SMO and SMR denticles,
and are located at the outer-region of the denticle crown for the SMO denticle, and the
outer riblet for the SMR denticle. These regions are somewhat correlated to the regions
of high local pressure coefficient (see Figure 6.12), which is perhaps unsurprising given
that these are the regions of the denticle most exposed to impinging fluid. The RIB den-
ticles lead to no regions of particularly strong negative convection, perhaps due to the
restriction of swirling fluid (see Figure 6.19) and the shielding effect of the longer riblet
structures.

There is certainly some correlation between the regions of strongly swirling fluid and
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FIGURE 6.25: Local budgets of turbulent kinetic energy production for the
three denticle models, SMO, SMR, and RIB, at w+ ≈ 67. A transparency
map is adopted to highlight regions of strong production. Flow direction

is approximately from upper left to lower right for each model.

the structure of turbulent kinetic energy production and convection, observed when com-
paring Figure 6.19 with Figures 6.24 and 6.25. The SMO denticles lead to large peaks in
swirl strength at the widest part of the denticle, with swirl generated along the full trail-
ing edge of the denticle crown. Turbulence production is at its highest just downstream
of the widest part of the denticle crown, and is large for the full trailing edge of the den-
ticle. SMR denticles lead to similar behaviour as SMO denticles, but regions of high P+

are more local to the region just downstream of the riblets, and lower downstream of
the riblet valleys, as per the regions of high and low swirl strength. This suggests that
by restricting the swirling motion of the fluid, riblets act to break up the region of high
turbulence production at the trailing edge of the denticle. The RIB denticles lead to even
smaller regions of turbulence production, just downstream of the riblet tips. These are
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precisely downstream of the regions of peak swirling, and little turbulence is produced
at the outer edges of the denticle crown.

6.3 Discussion

For the first time, RANS predictions of the flow over smooth and ribletted denticles have
been obtained with good agreement against experimental data. While the two-equation
k − τ model, derived from the two-equation k − ω model of Wilcox (2006) in Chapter
4, obtained little difference between drag forces acting on smooth (SMO) and ribletted
(RIB) denticles, the EB-SSG model of Manceau (2015) obtained good predictions of the
two denticle models, particularly at larger w+ values. However, EB-SSG does appear
to overpredict the drag force acting on the ribletted denticles at low w+, where a 2 %
increase in C f is obtained for the numerical solutions, compared to a 2 % decrease in C f

measured in the laboratory experiments (see Figure 6.5). Differences can be explained
by considering differences in flow conditions; while the present RANS simulations are
for a fully developed channel flow, the experiments were carried out on a developing
boundary layer, on a 3D printed surface. When taking into account precision errors, the
gap between data sets is reasonably small.

Clearly accounting for near-wall anisotropy is necessary for obtaining the key differ-
ences between smooth and ribletted denticles. This is unsurprising given the result of
Chapter 5, where only the EB-SSG model was successful in predicting the drag reducing
effects of longitudinal riblets, a significantly simpler roughness geometry. However, the
general profile of the drag increase obtained for denticles is well predicted for the k− τ

model; the magnitudes are reasonable when compared to experiments, where drag in-
creases with increasing w+. Perhaps then, the ability of the k − τ model breaks down
when introducing the riblets, where only EB-SSG is able to model the flow correctly.

A key result gained from these simulations is that pressure-drag is vital to consider
when investigating the flow over shark skin denticles. While longitudinal riblets are
primarily associated with the reduction of viscous drag, here they operate in a different
manner; rather than decreasing viscous drag they actually increase it, but greatly reduce
pressure-drag relative to smooth denticles, especially at larger values of w+. It seems then
that the drag reduction observed when riblets were added to the smooth denticles in the
experiments of Chapter 3 were primarily due to decreased pressure-drag. These results
are consistent with typical K−type roughness theory, where at large roughness heights
friction is dominated by pressure forces acting on roughness elements; these simulations
and experiments suggest that a reduction of pressure forces by introducing riblets may
lead to significant efficiency gains for a shark skin surface.

The increase in viscous friction coefficient is straightforward to explain. When riblets
are introduced viscous forces (Figure 6.13) are large at the riblet tips, typical of longi-
tudinal riblets when applied to flat plates. However, while longitudinal riblets see this
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increase in viscous forces at the tips compensated for by a significant viscous drag re-
duction in the riblet valleys, this is not the case when applied to the shark skin denticles
modelled herein. The ribletted denticles lead to only slightly lower viscous drag be-
tween riblets when compared to the smooth denticle, which therefore leads to an overall
increase to viscous drag. This may not be typical of all ribletted denticles; Bechert et al.
(1997) have shown that small changes to the riblet geometry, such as tip-rounding, can
have significant effects on drag reduction, but these results do reveal that the reduction
of viscous drag is not always the only role of riblets.

The decrease of pressure-forces are explained by considering differences between the
three denticle models: The smooth and ribletted denticles as per the experiments (SMO
and RIB), and a ribletted denticle with shorter riblets (SMR). Distributions of local pres-
sure coefficients (Figure 6.12) revealed peaks in pressure-drag at the exposed leading-
edge of the SMO denticle, at the widest part of the crown. The SMO denticle led to a
large high pressure-region, which slowly decreased towards the back of the denticle. The
exposed denticle edge has a smaller peak in cp,x for SMR denticles, and smaller still for
RIB denticles. Riblets lead to more localised peaks in cp,x, particularly at the leading edge
of the outer riblets. The longer riblets of the RIB denticle acts to partially shield the down-
stream denticle, therefore reducing the amount of fluid that can impinge on the exposed
surface which therefore reduces pressure drag. However, shielding is not the only mech-
anism that leads to a reduced pressure drag, and cannot explain why the SMR denticle
also leads to reduced pressure drag when compared to the SMO denticle.

Inspection of the mean streamwise velocity reveals a high momentum pathway (HMP),
where relatively high speed fluid passes between denticles, and is responsible for sustain-
ing a back-flow region and increased drag due to impinging fluid on the denticle base.
This HMP is reduced in strength when riblets are added, particularly for the RIB den-
ticle. In addition, streamlines reveal that flow impinging on denticle crowns originates
from the HMP, beneath the denticles. Riblet tips act to protect the riblet valleys from rel-
atively high momentum fluid, therefore reducing local pressure forces at the expense of
increased pressure drag at the riblet tips. Furthermore, swirling flows are generated at
the outer and trailing edges of the denticle. When riblets are present these swirling flows
are broken up and the large region of high swirl strength is reduced and localised to the
riblet tips. These appear different in form to the secondary flows investigated over longi-
tudinal riblets in Chapter 5, and are instead driven by impinging flow at the outer edge of
the denticle crown. Swirling flow is strongest at the widest part of the SMO denticle, and
generates downward flow between denticles. This draws high momentum fluid down-
wards into the HMP and therefore increases the pressure forces at the exposed regions
of the denticles. Riblets act to restrict the swirling flow, making it local to just the riblet
tips and the trailing edges. Riblets act to help maintain streamwise-aligned flow, and
therefore weaken the downward fluid velocities and the HMP. The longer riblets of the
RIB denticle restrict the downward motion more-so than SMR due to the longer riblets.
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Another role of riblets is identified by the RANS solutions, where their presence sig-
nificantly alters the way turbulence is transported near the denticle surface. Turbulence
enhances momentum transfer close to the wall and is therefore detrimental to drag. The
SMO denticles lead to large regions of turbulence production at the denticles trailing
edge. Production is so large here that convection is required to move turbulent kinetic
energy away to regions it can be dissipated. SMO denticles also lead to regions of strong
negative convection at the exposed region of the denticle, where turbulence is trans-
ported and must be balanced by diffusion and dissipation. These large regions of tur-
bulence production appear strongly correlated to the swirling fluid, where the region of
maximum production lies just downstream of the region of maximum swirl strength, at
the widest part of the SMO denticle. When riblets are added to the denticle crown the
region of large swirl strength is broken down and turbulence production becomes more
local to the riblet tips. The RIB denticles lead to the smallest regions of swirl, and there-
fore turbulence production, and convection.

This work has identified several related roles of riblets by investigating differences
between smooth and ribletted denticles. Riblets act to reduce swirling flow by restrict-
ing spanwise motion and maintaining streamwise-aligned flow near the denticle surface.
By doing so riblets reduce the amount of flow that is drawn into the regions between
denticles, leading to the HMP, and also reduce the strong velocity gradients associated
with swirling that can lead to turbulence production. Both these effects contribute to the
reduced pressure drag near the wall by minimising momentum transfer. These effects,
in combination with the shielding of downstream denticles and the protection of riblet
valleys from high momentum fluid, lead to the reduced drag of the ribletted denticles,
relative to the smooth denticles, in the experiments of Chapter 3.

The numerical and experimental results both lead to common conclusions regarding
the role of riblets in combination with shark skin denticles. Smooth denticles appear to in-
crease flat plate skin friction, consistent with K−type roughness theory. However, when
riblets are added to the crown drag is reduced relative to the smooth denticle, more-so at
large w+. The RANS solutions identify several mechanisms that lead to this behaviour;
riblets restrict swirling motion above the denticle crown, reduce the regions of high tur-
bulence production, and longer riblets act to protect the roughness sub-layer from high
speed fluid. These results suggest that the primary function of shark skin denticles is
not for flat plate drag reduction, given that present data shows that smooth denticles
consistently increase drag. The experimental data of Chapter 3 do show that ribletted
denticles may reduce drag relative to flat plates, but this drag reduction is marginal, es-
pecially when compared to longitudinal ribletted plates. Perhaps then the primary role
of denticles is for defence against parasites, prevention of abrasion, or anti-fouling, while
riblets act to minimise hydrodynamic costs. However, there could also be other hydro-
dynamic benefits to denticles; the flow over a shark consists of regions of favourable and
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unfavourable pressure gradients, flow separation, and developing boundary layers. Den-
ticles may have evolved to the benefit of these flow conditions; for example, present data
have shown that denticles lead to peaks in turbulence production at their trailing edges,
which could help maintain flow attachment and help boundary layer transition. The ri-
blets may therefore act to reduce the adverse effects of denticles, by helping maintain
streamwise-aligned flow, reducing turbulence production, and reducing swirl. Present
data suggests that this is primarily achieved through a reduction of pressure-drag, but it
seems plausible that riblets could also act to reduce viscous drag, if the tip shapes were
better optimised. This work has demonstrated that riblets in combination with denticles
do not act as they do when applied to smooth walls, and can be responsible for signif-
icant performance gains through effects that lead to reductions in pressure drag. This
work therefore leads to two key areas that require further research; firstly the extension
of analysis to other denticle geometries, and secondly an extension to more complex flow
conditions, such as adverse and favourable pressure gradients.

6.4 Conclusions

For the first time predictions of boundary layer flows over smooth and ribletted shark
scales have been obtained using RANS closures, with solutions in good agreement with
experimental data. While the two equation eddy-viscosity k− τ model is unable to cap-
ture the large performance differences between smooth and ribletted denticles, the EB-
SSG Reynolds stress model of Manceau (2015) obtains good predictions of drag. Like the
experimental results of Chapter 3, smooth denticles are found to increase drag substan-
tially when compared to a flat plate. When riblets are added performance is improved,
although they do not lead to overall reduction in drag when compared to a flat plate.

Pressure drag is found to be vital to consider, especially when considering the effects
of riblets on the rough-wall flow. While longitudinal riblets are typically associated with
a reduction of viscous drag, when applied to denticles the RANS predictions indicate an
increased viscous drag. The ribletted denticles lead to a large increase in viscous stress
at the riblet tips, without a significant decrease of viscous stresses in the riblet valleys.
Performance gains for ribletted denticles are found to be associated with a reduction of
pressure drag. While results may not be indicative of all riblet geometries, they do show
that the role of riblets is not limited to just a reduction of viscous forces.

The reduced pressure drag associated with riblets is found to be due to two mecha-
nisms: Firstly, riblets act to protect the denticle crowns from high momentum fluid, and
secondly, riblets help maintain streamwise-aligned flow near the rough surface. Without
riblets the flow over denticles is found to impinge strongly on the exposed outer-edge of
the denticle crown, and leads to high magnitudes of swirling over much of the denticle
surface, and regions of enhanced production of turbulent kinetic energy at the trailing
edge. This swirling leads to regions of strong downward vertical velocities which draws
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high momentum fluid from above the denticles to the regions between them. Riblets
are found to reduce swirling substantially, leading to reduced flow velocities between
denticles and smaller regions of high TKE production.

These results lead to new insight into the hydrodynamic functions of shark scales.
Flat plate drag reduction does not appear to be a priority for shark scales, given that
smooth scales substantially increase it, suggesting that denticles may have evolved to
help defend against parasites, prevent abrasion, and for their anti-fouling properties.
There could however be other hydrodynamic functions, given that the flow over a shark
will also consist of regions of adverse and favourable pressure gradients, flow separation,
and developing boundary layers. Riblets may therefore act to reduce the adverse effects
of denticles by helping maintain streamwise-aligned flow near the rough surfaces, and
helping shield exposed regions of the downstream denticles, thus minimising the hydro-
dynamic cost of providing other benefits of scales.

There is still much variability in shark scale geometry that has not been considered in
this study, such as denticle spacings and aspect ratios. These will of course have a large
effect on denticle performance. Two key areas for future research are therefore identified;
extension of RANS models to more denticle geometries, and extension to more complex
flow conditions such as flow separation.
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Chapter 7

Conclusions and outlook

The influence of shark scales and riblets on the turbulent boundary layer has been inves-
tigated throughout this thesis using both experimental and numerical techniques. This
study is motivated by potential biomimetic applications, where an understanding of the
influence of shark scales on the boundary layer could prove invaluable for the design of
engineering structures subject to high fluid drag. Through a review of the literature re-
garding hydrodynamic studies on shark scales several knowledge gaps were identified,
arising from a poor understanding of the influence of denticle geometry on the turbu-
lent boundary layer, and a lack of flow field data. The combination of these issues led
to a large spread in results with some authors claiming denticles are detrimental to skin
friction and others stating that they can be highly efficient. The lack of studies regard-
ing denticle geometry motivated the use of RANS models which are able to carry out
large parameter studies, and an experimental study adopting LDA to measure turbulent
boundary layers over arrays of two different types of shark skin denticles. However,
RANS models require significant validation, especially given that RANS predictions of
flows over simpler geometries such as riblets can often lead to non-physical solutions.
The validation of RANS models motivated two additional chapters, focused on the be-
haviour of RANS models near solid boundaries, and obtaining accurate predictions of
the flow over riblets. These two studies led to a significant understanding of different
RANS formulations regarding near-wall corrections and numerical stability, and how
secondary flows at the tips of riblets are generated and sustained, and how they scale
with riblet dimensions.

7.1 Experiments on shark skin denticles

Chapter 3 investigated the influence of denticles on a turbulent boundary layer flow us-
ing 2D LDA. Turbulent statistics were measured above 3D printed arrays of smooth and
ribletted denticles of widths covering the typical drag reducing regime of longitudinal
riblets. The study was carried out in order to investigate the role of riblets in combina-
tion with denticles. Smooth denticles were found to behave like a typical K−type rough
surface; drag was greater than that of the flat plate, and increased with denticle size. This
was also realised through the mean velocity and Reynolds stress profiles, where the mean



174 Chapter 7. Conclusions and outlook

streamwise velocity profile was offset downwards from the reference flat plate, indicative
of increased skin friction. When riblets were added to the denticle drag was reduced for
all denticle widths compared to the smooth denticles, but only a 2 % reduction in drag
was obtained when compared to a reference flat plate, with a transition to increased drag
at an inner-scaled denticle width of w+ ≈ 40. However, differences between the two
denticle plates grew with increasing w+, reaching a 20 % difference in friction coefficient
C f at w+ ≈ 80. Not only is this difference larger than that obtained for longitudinal
riblets relative to a flat plate, but the efficiency increased over the present range of den-
ticle widths, rather than decreased as per longitudinal riblets. As a result the ribletted
denticles had a significantly lower impact on the turbulent boundary layer than smooth
denticles.

These results suggest that the three-dimensionality of denticles is detrimental to flat
plate skin friction drag, given that smooth unribletted denticles increased drag sub-
stantially relative to a smooth plate. Denticles may have therefore evolved for non-
hydrodynamic functions such as anti-fouling and abrasion resistance, or for their effects
on other flows such as adverse/favourable pressure gradients. However, when riblets
are present on the denticle crown drag is reduced substantially, suggesting that they have
evolved as a mechanism to reduce the adverse effects of denticles and lead to an overall
hydrodynamically efficient surface.

7.2 Numerical errors at the wall

Chapter 4 investigated the near-wall behaviour of RANS models, assessing their limiting
behaviour close to the boundary, and their sensitivity to the near-wall cell size. In par-
ticular, RANS models were assessed based on their scale determining variable, typically
the rate of turbulent dissipation, ε, or the specific rate of turbulent dissipation, ω. The
study was motivated by the recent work of Eça, Pereira, and Vaz (2018), who showed
that numerical errors in excess of 5 % could be obtained for the friction coefficient when
using the k− ω SST model with near-wall cell sizes of y+1 ≈ 1, a typical ‘rule of thumb’
common in the CFD industry. If this model were to be used for the prediction of flows
over riblets or shark skin denticles an error of 5 % would significantly pollute solutions,
given that drag reduction is typically of the same magnitude as this discretisation error.

Chapter 4 therefore extends previous work by investigating nine eddy-viscosity tur-
bulence models/near-wall treatments, and two Reynolds stress models. An extensive
analytical study is carried out determining model boundedness, consistency with asymp-
totic near-wall solutions, and examining alternatives to the popular ω based turbulence
models. Channel flow simulations are presented adopting 5 sets of 6 geometrically sim-
ilar grids with a y+1 range of approximately 2.5× 10−4 to 1. Results show that friction
velocities and coefficients are extremely sensitive to the near-wall cell size. Most models
attain a discretisation error for the friction velocity of approximately 1 % when adopting
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the ‘rule of thumb’ y+1 . 1. However, the k− ω model leads to errors of approximately
5 %, which is made worse when adopting ‘slightly-rough’ wall boundary conditions. A
cell size of y+1 ≈ 0.1 is required to obtain errors of 1 %, due to its sub-linear rate of conver-
gence. In contrast, the mathematically equivalent models k− g, k−ω′, and k− τ, lead to
errors of less than 1 % at y+1 ≈ 1, reducing to less than 0.1 % for y+1 . 0.3. Differences are
due to the near-wall behaviour; ω is singular at the wall while the variables τ, g, and ω′

are zero. These alternative formulations retain the excellent boundary layer predictions
of the k−ω model but without introducing large discretisation errors at the wall associ-
ated with the singularity. There are two advantages of the k− τ formulation over k−ω′

and k− g; the equations are fully bounded at the wall, and there is no dependence on the
wall-normal distance. For these reasons, the original k− τ model is extended to include
updated coefficients, a cross-diffusion term, and Low Reynolds number corrections. The
k− τ closure has also been extended to a Reynolds Stress Model (RSM) by reformulation
of the Stress-ω model of Wilcox (2006). This is a simple RSM with identical underly-
ing transport equations as the two-equation k− τ model, which unsurprisingly leads to
near identical friction velocity errors. For comparisons a further RSM was investigated,
the EB-SSG model of Manceau (2015). Unlike the simple Stress-τ model, the EB-SSG
accounts for near-wall anisotropy through an additional elliptic transport equation for a
blending parameter. y+1 dependency for EB-SSG is similar to the v2− f , obtaining friction
velocity errors of less than 1 % for y+1 < 1.

These new τ-based formulations offer a promising alternative to the popular ω mod-
els and could provide excellent boundary layer predictions at a feasible value of y+1 .
However, the numerical improvements of the τ formulation close to the wall do not guar-
antee globally better performance than ω models, and so future work should focus on the
validation of this model in freestream and strongly separating flows.

7.3 The scaling of secondary flows over longitudinal riblets

Chapter 5 investigated the flow over streamwise-aligned parallel sawtooth riblets using
RANS models, in order to determine the mechanisms driving and sustaining secondary
flow at the riblet tips, and how vorticity scales with the riblet dimensions. Simulations
adopted three turbulence models of varying complexity: The k − τ model, the Stress-τ
model, and the EB-SSG model. Friction coefficient predictions showed that only the EB-
SSG model can obtain good agreement with experiments and DNS. k − τ and Stress-τ
led to poor predictions of the viscous regime, where the friction coefficient should tend
to the reference flat plate solution as the riblet size decreases. In addition, there were large
discrepancies between the secondary flow predictions of the two τ based models and the
DNS of Choi, Moin, and Kim (1993), while the EB-SSG model correctly predicted the size
and magnitude of the vorticity field. Subsequently the EB-SSG model was adopted for
further analysis of the secondary flow.
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Results show that anisotropy of the Reynolds stresses is responsible for vorticity
production, consistent with the second type of secondary flow (Prandtl, 1953). While
anisotropy is inherent in the boundary layer even for flat plates, riblets perturb the flow
leading to the inhomogeneities required for vorticity production. Two regimes have been
identified which govern how vorticity produced by anisotropy is conserved: A viscous
regime for small s+ where vorticity production is balanced by viscous diffusion, and an
inertial regime for large s+ where vorticity production is balanced by an effective turbu-
lent viscosity determined by the Reynolds shear stress v′w′. The viscous regime leads to
a linear dependence of vorticity on the riblet size s+, while vorticity decreases with s+

in the inertial regime. The transition between the two regimes occurs at s+ ≈ 30, where
riblet tips protrude into the buffer layer and cause increased turbulent mixing.

Analytical solutions obtained a linear dependence of streamwise vorticity on the ri-
blet height, h+, in agreement with numerical solutions. This linear scaling arises as a con-
dition that vorticity must vanish as h+ decreases in order to obtain the flat plate boundary
layer solution for vanishingly small roughness. In the inertial regime analytical solutions
obtained a scaling such that streamwise vorticity should scale like 1/h+. While this limit
is not reached for the numerical simulations there is evidence that this regime should
occur if Reynolds numbers were increased and larger riblets could be simulated.

The relationship between the vorticity field and the friction coefficient is difficult to
establish. While there is evidence that the two quantities are related, present solutions
show that the viscous and inertial regimes of the two variables are not entirely correlated,
although this may be due to the limited Reynolds numbers and therefore influence of the
blockage ratio δ/h. However, large-scale roughness of a similar form to riblets can lead
to significant distortion of the mean flow (e.g. Hwang and Lee, 2018) and subsequently
has a large influence on drag. It therefore seems reasonable that there must be some
relationship between the secondary flow and the friction coefficient. Further work should
therefore be carried out in order to bridge the gap in length scales between the riblet type
roughness herein, and the large scale heterogeneous roughness of Hwang and Lee (2018).

7.4 Boundary layer flow over shark skin denticles

RANS predictions of the flow over shark skin denticles are presented in Chapter 6, where
a parameter study on the influence of riblet geometry and denticle size on hydrodynam-
ics is carried out, validated against the experimental data of Chapter 3. For the first time
RANS predictions of boundary layer flows over smooth and ribletted shark scales have
been obtained in good agreement with experiments, leading to the identification of sev-
eral new mechanisms responsible for drag reduction when riblets are present. Simula-
tions of the flow over three denticle models are presented; a smooth unribletted denticle
(SMO), a denticle with short riblets (SMR), and a denticle with long riblets (RIB). While
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denticle plates appear to increase drag relative to smooth plates, ribletted denticles sig-
nificantly reduce drag when compared to smooth denticles due to a reduced pressure
drag acting on roughness elements. Pressure drag becomes important for these rough
surfaces as w+ grows, and is primarily due to a high momentum pathway that passes
between denticles and impinges on the edges of the denticle crowns. Swirling flow is
found to draw high momentum fluid from above the denticles to the regions between
them, which is subsequently ejected back into the boundary layer after impinging on the
downstream denticle.

When riblets are added performance is improved, although they do not lead to overall
reduced drag when compared to a flat plate. Unlike longitudinal riblets viscous drag is
found to increase when riblets are added to the denticle. The ribletted denticles lead to a
large increase in viscous stress at the riblet tips, without a significant decrease of viscous
stresses in the riblet valleys. The performance improvements of riblets is associated with
a reduction in pressure drag, which is realised through several mechanisms. Firstly, the
long riblets of the RIB denticle lead to a better shielding of the downstream denticle, and
therefore partially block high momentum fluid from passing beneath the denticle crowns.
However, this mechanism does not explain why the SMR denticle also reduces pressure
drag, given that its platform area is so similar to the SMO denticle. It is found that riblet
tips also act to protect the riblet valleys from high momentum impinging fluid, at the
expense of increased pressure at the riblet tips. Further reductions of pressure drag occur
due to the ability of riblets to maintain streamwise-aligned flow in their vicinity. This is
realised through analysis of swirl strength, where the SMO denticles lead to large patches
of high magnitude swirl at the outer-trailing edge of the denticle crown. This swirling
leads to regions of strong downward vertical velocities which draw high momentum
fluid from above the denticles to the regions between them. Riblets are found to reduce
swirling substantially, leading to reduced flow velocities between denticles and smaller
regions of high TKE production, ultimately reducing momentum transfer and therefore
drag.

These results lead to new insights regarding the hydrodynamic functions of shark
scales. The drag relative to flat plates does not appear to be a priority for shark scales,
given that smooth denticles substantially increases drag relative to a flat plate. The ex-
perimental data of Chapter 3 do show that ribletted denticles may reduce drag relative to
flat plates, but this drag reduction is marginal, especially when compared to longitudinal
ribletted plates. Small changes to riblet geometry could reduce drag further, but it seems
unlikely that drag would be reduced below that of the longitudinal riblets. Perhaps then
the primary role of denticles is for defence against parasites, prevention of abrasion, or
anti-fouling. There could of course be other hydrodynamic benefits to denticles; the flow
over a shark consists of regions of favourable and unfavourable pressure gradients, flow
separation, and developing boundary layers. The primary function of denticles may be to
improve hydrodynamics of these flow conditions, while riblets have evolved to reduce
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the adverse effects of denticles by helping maintain streamwise-aligned flow, reducing
turbulence production, and reducing swirl.

7.5 Further work

There are many opportunities for further work regarding each of the objectives stated
in Chapter 1. Chapter 4 identified a family of turbulence models that tackle the closure
problem at the wall by reformulating the k−ω transport equations. Channel flow results
showed that numerical errors were significantly reduced when adopting these models
with no sacrifice to model performance, due to their mathematical equivalence to the
popular k − ω model. However, the flows presented in this thesis are free from issues
such as sensitivity to freestream boundary conditions, and adverse pressure gradients
that lead to large scale flow separation. It is unclear how the models identified herein will
behave when extended to these more complex flow conditions, which should certainly
be tested in future work.

Chapter 5 investigated the scaling of the secondary flow above riblets, identifying
driving mechanisms and the dependency of vorticity on the riblet size. The driving
mechanisms were found to be similar to those identified by Hwang and Lee (2018) who
investigated the flow over large scale spanwise-heterogeneous roughness, which differs
from riblets only by their length scales and spacings. An interesting study would bridge
the gap in length scales between these two different rough surfaces. This would also help
identify the influence of the secondary flow on the mean flow.

A large area of further work could be the extension of analysis to more denticle mod-
els in order to investigate the influence of denticle spacings and other geometric proper-
ties. This is applicable to both the experiments in Chapter 3 and the RANS simulations
of Chapter 6. Present results have shown that riblets can act to reduce pressure drag
when applied to denticles, but the underlying denticle geometries have been changed
little. RANS models present an opportunity to carry out a parameter study at fairly little
expense, such that other geometries could be investigated.

However, perhaps the largest conclusion from the present work is that shark scales
do not appear beneficial to hydrodynamics when subject to flat plates and channel flows;
the key hydrodynamic benefits have been observed when riblets have been added, which
have been hypothesised to counter the adverse effects of having the denticle type rough-
ness. While further investigations on denticle geometry subject to flat plate boundary
layers would be insightful, perhaps shark scales have evolved to the benefit of more
complex flow conditions, such as adverse pressure gradients. There is evidence for this,
as identified through the literature review of Chapter 2, although modelling such flows
is not straight forward; the small periodic domain adopted herein is unlikely to be appli-
cable, and due to the large differences in length scales between the separating flow over
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a shark and the small denticles computational domains would be vast. However, exper-
imental and numerical studies of such flows would be beneficial to the field, especially
given the prevalence of boundary layer separation in engineering flows.
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ical flows”. In: Physics of Fluids 20.10, p. 101518.

Nikuradse, J. (1933). “Laws of flow in rough pipes”. In: VDI Forschungsheft, p. 361.
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Appendix A

Denticle fabrication

Three denticle CAD models are presented in Figure A.1, a smooth denticle based on a
Poracanthodes sp. (extinct shark relative) sample, and two ribletted denticles with similar
dimensions as the smooth denticle. The two ribletted denticles differ only by the shape
of their riblets, with one having mako-type cut out regions at the trailing edge, and the
other more closely resembling the smooth denticle. These are given the abbreviations
defined in the caption of Figure A.1. Denticle dimensions are presented in A.3 for all three
models. The denticle array patterns can be found in Figure A.3. The smooth (SMO) and
ribletted (RIB) denticles are 3D printed in the experimental study of Chapter 3, while all
three models are used in the numerical study of Chapter 6. Arrays of smooth (SMO) and
ribletted (RIB) denticles were 3D printed at a 4 mm width, in 5 sections of 98 × 120 mm,
and bonded to a 500 × 120 mm PVC sheet using a medium viscosity epoxy-resin (Opti-
Tec 5013) to ensure the glue thickness was negligible. A thin 10 × 120 mm 3D printed
flat section was added to the end of the denticle arrays to ensure the full 500 mm plate
was covered. A Stratasys Objet Connex printer was used to manufacture the sharkskin,
printing in vero-white resin in 16 µm layers. The array dimensions were changed slightly
at the joint between two plates in order to minimise the impact of any large gaps. This
is illustrated in Figure A.4. A 3D printed ribletted denticle array is presented in Figure
A.5, along with a close up image taken with a scanning Electron Microscope (SEM) of a
single denticle. The denticle is well captured at a width of 4 mm, with small amounts of
roughness on the leading edge.
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FIGURE A.1: Denticle CAD models. Smooth (left) and ribletted (right)
models are as per 3D printed models of Chapter 3. The central model is a
derivative between the other two. Models are abbreviated SMO (smooth,

left), SMR (smooth-ribletted, centre), and RIB (ribletted, right).
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FIGURE A.2: Dimensions of the three denticle CAD models (mm).
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FIGURE A.3: Array dimensions (mm).

FIGURE A.4: Array dimensions at the joint between two plates (mm).

FIGURE A.5: 3D printed array of ribletted shark skin denticles.
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Appendix B

The Whittaker smoother

As per Mehdi and White (2011) a Whittaker smoother is adopted, originally developed
by Whittaker (1922), and later implemented by Eilers (2003). The Whittaker smoother
is a discrete penalised least squares method which balances smoothness of the fit with
conformity to the actual data. This particular smoother is extremely valuable since it is
fast to compute, and it can handle large regions of missing data (or in this case unevenly
distributed data). The principle behind the smoother is the minimisation of the function

Q =
∣∣∣y− z

∣∣∣
2
+ λ

∣∣D z
∣∣2 (B.1)

where y is the data set to be smoothed, z is the smoothed approximation of y, λ is a
smoothing parameter, and D is a differencing matrix such that D z = ∆z (second or-
der differencing is adopted here). λ essentially controls the weighting between smooth-
ness and conformity to the data, its value is dependent on the data set being smoothed.
Through some vector calculus one finds that the smoothed data can be found by solving
the linear algebra (Eilers, 2003)

(
I + λD′D

)
z = y (B.2)

which can be solved using a sparse linear matrix solver. In its current form there are two
disadvantages. Firstly, the equation assumes that the data set y is uniformly distributed,
and secondly it is sensitive to the value of λ.

In order to account for the unevenly distributed data the method detailed by Eilers
(2003) is adopted. A fine grid of spacings 12.5 µm is defined. The corresponding fine
data set, ỹ takes the value of y at the nearest corresponding grid points, and the value
of zero in the gaps between the true data points. This introduces rounding errors to the
original grid, but does not require re-sampling of the data; with this selected grid spacing
these errors are negligible, verified by successive refinement of the grid. A correspond-
ing weighting vector w is created with values of 1 when the ỹ has a data point, and 0
otherwise. A weighted matrix W is then constructed, the diagonal of which is equal to
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w. The linear algebra problem becomes

(
W + λD′D

)
z̃ = W ỹ, (B.3)

leading to
z̃ = W

(
W + λD′D

)−1 ỹ = H ỹ, (B.4)

where z̃ now has the length of ỹ. Given the smoothness of z̃ it is trivial to resample back
to the original grid spacing if required.

In order to account for the sensitivity on λ an optimisation process is adopted de-
tailed by Zuliana and Perperoglou (2017) and Lee, Nelder, and Pawitan (2006). The error
between the smoothed and real data sets is defined as e = ỹ−W z̃, and two variances

σ̂2 =
e′e

n− Tr
(
H W

) , σ̂2
z =

z′D′D z
Tr
(
H W

)
− 2

, (B.5)

where n is the number of original data points. This provides the prediction λ = σ̂2/σ̂2
z .

By recalculating the coefficient matrix H for the new λ and updating z, one can iterate
until a constant value of λ has been found. This typically occurs after just a few iterations,
given reasonable initialisation of λ.
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Appendix C

Turbulence models

C.1 k− ε (Lam and Bremhorst, 1981)

This model is based on the standard k − ε model (Launder and Spalding, 1974) but in-
cludes additional damping functions in order to integrate more efficiently through the
boundary layer. The model of Launder and Spalding (1974) is obtained when the damp-
ing functions fµ = f1 = f2 = 1. The turbulent viscosity is calculated by

νt = µt/ρ = Cµ fµ
k2

ε
, (C.1)

where fµ is a damping function:

fµ =

(
1− exp

[
−0.0165

√
kyw

ν

])(
1 +

20.5
ReT

)
, (C.2)

where

ReT =
k2

εν
, (C.3)

and yw is the normal distance to the wall. The transport of k is identical to the standard
k− ε model:

Dk
Dt

= P − ε +
∂

∂xj

[(
ν +

νt

σk

)
∂k
∂xj

]
, (C.4)

where P = −u′iu
′
j

∂Ui
∂xj

. The transport of ε is

Dε

Dt
= Cε1 f1P

ε

k
− Cε2 f2

ε2

k
+

∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]
, (C.5)

where f1 and f2 are calculated by

f1 = 1 +
(

0.05
fµ

)3

, f2 = 1− exp(−Re2
T). (C.6)
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Suggested values of the empirical constants are

Cµ = 0.09, σk = 1, Cε1 = 1.44, Cε2 = 1.92, σε = 1.3.

The boundary conditions suggested by Patel, Rodi, and Scheuerer (1985) are such that
k = 0, and

ni
∂ε

∂xi
= 0, (C.7)

at the wall, with y+1 . 1.

C.2 k−ω (Wilcox, 1998)

The k−ω model, developed by Wilcox (1998), solves for k and ω, the specific dissipation
rate. These quantities are related to the turbulent viscosity by

µt = ρ
k
ω

. (C.8)

The transport of k is:

Dk
Dt

= P − β∗kω +
∂

∂xj

[(
ν +

νt

σ∗

) ∂k
∂xj

]
, (C.9)

The transport of ω is:

Dω

Dt
= γ

ω

k
P − βω2 +

∂

∂xj

[(
ν +

νt

σ

) ∂ω

∂xj

]
. (C.10)

The empirical constants for this model are

γ = 0.52, σ = 2, σ∗ = 2, β = 0.072, β∗ = 0.09.

Note that the original model includes a ‘Pope correction’ to the coefficient β. This has
no impact on 2D or 1D flows (Wilcox, 1998) and has subsequently been neglected in the
present work. The appropriate boundary conditions are such that k = 0 at the wall and
ω is specified using

ω1 =
6ν

βd2 . (C.11)

where d is the normal distance to the wall, or if using ‘slightly-rough’ wall boundary
conditions,

ω0 =
40000ν

k2
s

, (C.12)

where ks is the roughness height. The Low Reynolds number corrections of Wilcox (2006)
can also be implemented in this model which can improve predictions of transitional
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flows and the prediction of k in the near wall region. The coefficients are damped based
on the local turbulent Reynolds number: ReT = k/νω. The damping takes the form:

νt = α∗k/ω, (C.13)

α∗ =
(

β/3 + ReT/Rk

1 + ReT/Rk

)
, (C.14)

β∗ = β∗∞

(
100β/27 + (ReT/Rβ)

4

1 + (ReT/Rβ)4

)
, (C.15)

γ =
γ∞

α∗

(
α0 + (ReT/Rω)

1 + (ReT/Rω)

)
, (C.16)

where the additional coefficients take the values

β∗∞ = 0.09, α0 = 1/9, Rk = 6, Rβ = 8, Rω = 2.61.

C.3 k−ω′ (Tomboulides et al., 2018)

This model decomposes ω into ω = ω′ + ωw, where ωw is calculated from an analytical
expression:

ωw =
6ν

βy2
w

. (C.17)

where yw is the wall-normal distance. The turbulent viscosity is calculated by

µt = ρ
k

ω′ + ωw
. (C.18)

The transport of k is:

Dk
Dt

= P − β∗k(ω′ + ωw) +
∂

∂xj

[(
ν +

νt

σ∗

) ∂k
∂xj

]
, (C.19)

The transport of ω′ is:

Dω′

Dt
= γ

ω′ + ωw

k
P − β(ω′ + ωw)

2 +
∂

∂xj

[(
ν +

νt

σ

) ∂ω′

∂xj

]
−U j

∂ωw

∂xj

+
∂

∂xj

[(
ν +

νt

σ

) ∂ωw

∂xj

]
. (C.20)

The two last terms of the transport of ω′ are further manipulated by using (C.17):

U j
∂ωw

∂xj
= −2

ωw

yw
U j

∂yw

∂xj
(C.21)
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∂

∂xj

[(
ν +

νt

σ

) ∂ωw

∂xj

]
= ν∇2ωw +

νt

σ
∇2ωw +

1
σ

∂ωw

∂xj

∂νt

∂xj
(C.22)

ν∇2ωw = νωw

[
6
∇yw · ∇yw

y2
w

− 2
∇2yw

yw

]
(C.23)

νt

σ
∇2ωw =

kωw

σ(ω′ + ωw)

[
6
∇yw · ∇yw

y2
w

− 2
∇2yw

yw

]
(C.24)

1
σ

∂ωw

∂xj

∂νt

∂xj
= − 2ωw

σ(ω′ + ωw)

[
1

yw
∇k · ∇yw + 2k

ωw

(ω′ + ωw)y2
w
∇yw · ∇yw

− k
(ω′ + ωw)yw

∇ω′ · ∇yw

]
. (C.25)

This closes the equations, given that the wall-normal coordinate, yw, and its derivatives,
can be accurately calculated. Coefficients are as in Appendix C.2. Boundary conditions
are such that at y = 0 k = 0 and ω′ = 0. ωw is closed analytically using (C.17).

The cases presented in this work adopt the algebraic solution |∇yw| = 1 and∇2yw =

0 for stability.

C.4 k− τ (Kalitzin, Gould, and Benton, 1996)

This model is derived from k− ω by substituting ω = 1/τ into the transport equations.
β∗ has been neglected from this definition, deviating slightly from its original formu-
lation by Kalitzin, Gould, and Benton (1996). In addition to this, Kalitzin, Gould, and
Benton (1996) also include a viscosity limiter in order to reduce sensitivity to freestream
boundary conditions. This has also been neglected due to its lack of importance near the
wall. The kinematic turbulent viscosity is calculated from

νt = kτ, (C.26)

the transport of k is
Dk
Dt

= P − β∗
k
τ
+

∂

∂xj

[(
ν +

νt

σ∗

) ∂k
∂xj

]
, (C.27)

and the transport of τ is

Dτ

Dt
= −γτ

k
P + β− 8

(
ν +

νt

σ

) ∂
√

τ

∂xj

∂
√

τ

∂xj
+

∂

∂xj

[(
ν +

νt

σ

) ∂τ

∂xj

]
. (C.28)

The diffusion term of (C.28) has been reformulated according to the suggestion of Kok
and Spekreijse (2000) to improve numerical accuracy. Boundary conditions are such that
at y = 0, k = 0 and τ = 0. Coefficients are identical to those of the k−ω model, Appendix
C.2.
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C.5 Updated k− τ

This model extends the original formulation of Kalitzin, Gould, and Benton (1996) to
include a cross diffusion term and updated coefficients, as per Wilcox (2006).

The cross-diffusion term is limited to positive values, which ensures that the standard
k − ω model is retained close to the wall. These corrections were first introduced by
Wilcox (2006) to improve predictions of strongly separated and free shear flows.

Equations for νt and k are as in Appendix C.4. The transport of τ is modified to

Dτ

Dt
= −γτ

k
P + β− 8

(
ν +

νt

σ

) ∂
√

τ

∂xj

∂
√

τ

∂xj
+

∂

∂xj

[(
ν +

νt

σ

) ∂τ

∂xj

]
+ σdτ

∂τ

∂xj

∂k
∂xj

, (C.29)

where

σd =





0, for 1
τ2

∂τ
∂xj

∂k
∂xj
≥ 0,

σd0, for 1
τ2

∂τ
∂xj

∂k
∂xj

< 0.
(C.30)

The empirical constants for this model are

γ = 0.52, σ = 2, σ∗ = 5/3, σd0 = 0.125, β = 0.0708, β∗ = 0.09.

Boundary conditions are identical to those specified in Appendix C.4. The low Reynolds
number corrections of Wilcox (2006) (Appendix C.2) can also be applied to this model.

C.6 k− g (Kalitzin, Gould, and Benton, 1996)

This model is derived by substituting ω = 1/g2 into the transport of ω. The turbulent
viscosity is calculated by

νt = kg2, (C.31)

the transport of k is
Dk
Dg

= P − β∗
k
g2 +

∂

∂xj

[(
ν +

νt

σ∗

) ∂k
∂xj

]
, (C.32)

and the transport of τ is

Dg
Dt

= −γg
2k
P +

β

2g
− 3

g

(
ν +

νt

σ

) ∂g
∂xj

∂g
∂xj

+
∂

∂xj

[(
ν +

νt

σ

) ∂g
∂xj

]
. (C.33)

Boundary conditions are such that at y = 0, k = 0 and g = 0. Coefficients are identical to
those of the k−ω model, Appendix C.2.

C.7 v2− f (Durbin, 1991)

This model also includes the modifications of Lien and Kalitzin (2001) and Davidson,
Nielsen, and Sveningsson (2003). Equations are solved for k, ε, v2 = u′2u′2, and f . The
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turbulent viscosity is calculated by

νt = min
(

Cµ1
k2

ε
; Cµ2v2T

)
, (C.34)

where T is a timescale limiter which limits the minimum value of k/ε with the Kol-
mogorov timescale:

T = max
[

k
ε

; CT

√
ν

ε

]
. (C.35)

A transport equation is solved for k:

Dk
Dt

= P − ε +
∂

∂xj

[(
ν +

νt

σk

)
∂k
∂xj

]
, (C.36)

And ε is calculated from

Dε

Dt
= C′ε1

P
T
− Cε2

ε

T
+

∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]
. (C.37)

C′ε1 is calculated by

C′ε1 = Cε1(1 + 0.05
√

k/v2). (C.38)

v2 is calculated from an additional transport equation:

Dv2

Dt
=

∂

∂xj

[(
ν +

νt

σk

)
∂v2

∂xj

]
− Nv2ε

k
+ Sv, (C.39)

where Sv is a source term calculated by

Sv = min
[

k f ;− 1
T

(
(C1 − N)v2 − 2

3
k(C1 − 1)

)
+ C2

P
ρ

]
. (C.40)

f is a source term related to the energy distribution in the equation of v2. It is calculated
via an elliptic relaxation equation:

− L2 ∂2 f
∂xj∂xj

= − f − 1
T

[
(C1 − N)

v2

k
− 2

3
(C1 − 1)

]
− C2

P
k

, (C.41)

where L is a timescale limiter of the same principle as T:

L = CLmax

[
k3/2

ε
; Cη

(
ν3

ε

)1/4
]

. (C.42)
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Model coefficients are

Cµ1 = 0.09, Cµ2 = 0.22, σk = 1.0, σε = 1.3, C1 = 1.4, C2 = 0.3

CT = 6.0, CL = 0.23, Cη = 70, Cε1 = 1.4, Cε2 = 1.9, N = 6.0.

Boundary conditions are such that at y = 0, k = f = v2 = 0. An algebraic closure is used
to evaluate ε at the cell centre closest to the wall: ε1 = 2νk/d2.

C.8 Stress-τ

This model is based on Wilcox (2006) Stress-ω model, but with τ as the scale-determining
variable for better near-wall behaviour. The transport of the Reynolds stresses is given
by

Du′iu
′
j

Dt
= Pij + Πij +Dij − ε ij, (C.43)

where the production of the Reynolds stresses is given by

Pij = −u′iu
′
k

∂U j

∂xk
− u′ju

′
k

∂Ui

∂xk
, (C.44)

andDij represents viscous and turbulent diffusion, ε ij is destruction, and Πij is the pressure-
strain or redistribution tensor. A scalar eddy-diffusion model is adopted forDij such that

Dij =
∂

∂xk

[(
ν +

νt

σ∗

) ∂u′iu
′
j

∂xk

]
, (C.45)

where νt = kτ and ε = k/τ. The pressure-strain correlation is modelled using the LRR
(Launder, Reece, and Rodi, 1975) model:

Πij = −2C1εbij + 2(α̂ + β̂)k
(

bikSjk + bjkSik −
2
3

bklSklδij

)

+2(α̂− β̂)k(bikΩjk + bjkΩik) +

(
4
3
(α̂ + β̂)− γ̂

)
kSij, (C.46)

where bij is the anisotropy tensor given by

bij =
u′iu
′
j

2k
− 1

3
δij, (C.47)

and the mean rate of strain tensor Sij and the mean vorticity tensor Ωij are given by

Sij =
1
2

(
∂Ui

∂xj
+

∂U j

∂xi

)
, Ωij =

1
2

(
∂Ui

∂xj
− ∂U j

∂xi

)
. (C.48)
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The remaining parameters α̂, β̂, and γ̂ are empirical constants. The dissipation tensor is
calculated by

ε ij =
2
3

β∗
k
τ

δij. (C.49)

The transport of τ is

Dτ

Dt
= −γτ

k
P + β− 8
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ν +

νt

σ

) ∂
√

τ

∂xj
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√
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∂xj
+
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[(
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∂xj

]
+ σdτ
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∂k
∂xj

, (C.50)

σd =





0, for 1
τ2

∂τ
∂xj

∂k
∂xj
≥ 0,

σd0, for 1
τ2

∂τ
∂xj

∂k
∂xj

< 0.
(C.51)

The transport of τ and related model coefficients are identical to those specified in Ap-
pendix C.5. Model coefficients are

α̂ = (8 + C2)/11, β̂ = (8C2 − 2)/11, γ̂ = (60C2 − 4)/55,

γ = 0.52, σ = 2, σ∗ = 5/3, σd0 = 0.125, β = 0.0708,

β∗ = 0.09. C1 = 1.8, C2 = 10/19.

Low Reynolds number corrections can be applied in a similar fashion to C.2:

νt = α∗kτ, ReT =
kτ

ν
, (C.52)

and adjust the model coefficients by

α∗ =
β/3 + ReT/Rk

1 + ReT/Rk
, (C.53)

β∗ = β∗∞
100β/27 + (ReT/Rk)

4

1 + (ReT/Rk)4 , (C.54)

γ = γ∞
1/9 + ReT/Rω

1 + ReT/Rω
· 3 + ReT/Reω

β + ReT/Rω
, (C.55)

C1 =
9
5

5/3 + (ReT/Rβ)
4

1 + (ReT/Rβ)4 , (C.56)

α̂ =
1 + α̂∞(ReT/Rβ)

4

1 + (ReT/Rβ)4 , (C.57)

β̂ = β̂∞
(ReT/Rβ)

4

1 + (ReT/Rβ)4 , (C.58)

γ̂ = γ̂∞
γ̂0 + (ReT/Rβ)

4

1 + (ReT/Rβ)4 , (C.59)
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with

α̂∞ = (8 + C2)/11, β̂∞ = (8C2 − 2)/11, γ̂∞ = (60C2 − 4)/55,

γ̂0 = 21/2000, β∗∞ = 0.09, Rβ = 8, Rk = 6, Rω = 22/9.

Boundary conditions are u′iu
′
j = 0 and τ = 0 at the wall.

C.9 Elliptic Blending SSG (Manceau, 2015)

The EB-SSG model of Manceau (2015) solves an additional elliptic equation for a blending
parameter α. The transport of the Reynolds stresses is

Du′iu
′
j

Dt
= Pij + Πij +Dij − ε ij. (C.60)

Diffusion is modelled using an anisotropic gradient diffusion of the form

Dij =
∂

∂xl

[(
Cµ

σk
u′lu
′
mT + νδlm

) ∂u′iu
′
j

∂xm

]
, (C.61)

where Cµ and σk are empirical constants, and T is a turbulent time scale. The remaining
open terms of (C.60) are closed using a near-wall model, blended into a isotropic model.
The pressure-strain correlation is calculated by

Πij = (1− α2)Πw
ij + α2Πh

ij, (C.62)

which blends the SSG model Speziale, Sarkar, and Gatski (1991),

Πh
ij = −(C1ε + C∗1P)bij + (C3 − C∗3

√
blmblm)kSij

+C4k(bikSjk + bjkSik −
2
3

blmSlmδij) + C5k(bikΩjk + bjkΩik), (C.63)

into a near-wall model,

Πw
ij = −5

ε

k

[
u′iu
′
knjnk + u′ju

′
knink −

1
2

u′ku′lnknl(ninj + δij)

]
, (C.64)

based on the value of α. Here ni is the unit wall-normal vector. The blending parameter
α is calculated from an elliptic equation:

α− L2∇2α = 1, (C.65)
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where L is a turbulent length scale. n is calculated by

ni =
∇α

||∇α|| . (C.66)

The time and length scales are calculated by

T = max
(

k
ε

; CT

(ν

ε

)1/2
)

, (C.67)

and

L = CLmax
(

k3/2

ε
; Cη

ν3/4

ε1/4

)
. (C.68)

ε ij is also blended based on α, which varies from an isotropic freestream form and an
anisotropic near-wall form:

ε ij = (1− α2)
u′iu
′
j

k
ε +

2
3

α2εδij, (C.69)

where ε is the specific dissipation of turbulent kinetic energy. It is modelled using the
transport equation

Dε

Dt
=

C′ε1P − Cε2ε

T
+

∂

∂xl

[(
Cµ

σε
u′lu
′
mT + νδlm

)
∂ε

∂xm

]
. (C.70)

The constant C′ε1 is adjusted to enhance dissipation in the buffer region:

C′ε1 = Cε1

[
1 + A1(1− α2)

P
ε

]
. (C.71)

Model coefficients are

C1 = 3.4, C∗1 = 1.8, C3 = 0.8, C∗3 = 1.4, C4 = 1.25, C5 = 0.4,

Cµ = 0.21, σk = 1.0, σε = 1.15, CT = 6, CL = 0.161, Cη = 80,

Cε1 = 1.44, Cε2 = 1.83, A1 = 0.095.

Note that model coefficients are as per the low Reynolds number calibrations of Manceau
(2015); the high Reynolds number formulation modifies coefficients CL and A1, and
adopts blending functions based on α3 rather than α2. Wall boundary conditions are
u′iu
′
j = 0 and α = 0. An algebraic closure is used to evaluate ε at the cell centre closest to

the wall: ε1 = 2νk/d2.
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