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Abstract

The key objectives of this thesis are to understand how to efficiently couple a high power

laser to a target and produce bright X-ray and energetic ion sources. The approaches taken

are to use plasma mirrors to improve the laser contrast, structure the target surface to

increase the laser absorption and the use of ultra thin targets for ion acceleration. The

experimental work is combined with computational calculations to further develop an un-

derstanding of the laser-target physics.

The suppression of the early interaction is investigated using a double plasma mirror

setup. This is studied by developing a model using geometric optics and ionisation thresholds

of plasma mirrors. By using these calculations in Helios simulations it is inferred that the

laser interaction with the target is delayed closer to the peak of the pulse. As a result, the

target expansion is reduced to sub-micron lengths by the time the main laser peak interacts

with the target.

On an experiment using silicon targets with micro-structured surfaces we observe an

enhancement in the X-ray emission. A conical crystal spectrometer is used for recording the

emission centralised on Kα. The enhancement is interpreted from comparing the emission

between micro-structured and flat surfaced targets. By combining the micro-structured

targets with a double plasma mirror setup, a method for engineering plasma density scale

length is achieved.

By laser irradiating graphene we observe the generation of protons and carbon ions

using radiochromic film and CR-39. The measurements are linked to EPOCH particle-in-

cell simulations. From simulations it is inferred that the onset of relativistically induced

transparency is important for producing energetic ions. The ion motion is determined by

the emerging electric fields in experiment and simulations.
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Chapter 1

Introduction

The 2018 Nobel Prize in Physics celebrates the technology called the chirped pulse ampli-

fier (CPA) by Strickland and Mourou 13 that since 1985 has revolutionized the development

of high power laser (HPL) systems. A number of exciting areas emerged using the CPA

such as the generation of laser-driven radiation and particle sources. When a high inten-

sity laser pulse interacts with a micron-thin solid material the strong electromagnetic fields

due to the laser produce bright X-rays,14,15 relativistic electrons16 and many-MeV ions.17,18

These sources are of particular interest for applications in astrophysics,19,20 diagnostic de-

velopment,21,22 material studies,23 oncology24–26 and fusion energy.27–29 To realise these

potentials it is important to optimize and control the properties of the laser-driven radiation

and particle sources. In order to do this, extensive research and development using HPL

technology and advanced engineering capabilities focus on understanding the physics that

underpins the generation of these sources.

1.1 X-ray radiation sources

The interaction of a high-intensity laser with a solid surface drives the generation of an

energetic, high-flux electron beam. Electrons propagate into the solid material and produce

X-rays via bremsstrahlung14,30 and electron collisions with atoms.31 The latter leads to

the generation of spectral line emission. The laser interaction with a material, such as

aluminium and silicon, which drives the electrons bombardment produces a characteristic

X-ray spectrum. The spectral lines are characteristic of K-shell line emission from many

ionisation states of the atoms in the target.15,32 K-shell emission is of great importance

for understanding the relativistic electron interaction and transport in matter. This also

provides an insight to the behaviour of astronomical phenomena emitting spectral high energy

radiation, such as solar flares.19

The K-shell spectrum includes a characteristic Kα line emission. Kα is the most probable

emission to occur in matter33,34 for most experimental studies and applications. This results

20
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in Kα being the brightest emission line in the K-shell spectrum and, hence, most studied line

emission. The emitted energy is well-known for the majority of all elements.35 For materials,

such as aluminium and silicon, the emission also has a high monochromaticity. High intensity

and monochromatic emission is advantageous to a number of applications such as spectral

calibration21 and X-ray photoelectron spectroscopy.23

If optimised, HPL can generate short duration Kα pulses with intensities about four

orders of magnitude brighter than conventional sources.36 This could provide measurements

with high temporal resolution and details of the fundamental physics of matter.

1.2 Compact ion accelerators

In the mid-1980s Gitomer et al. 37 observed the first MeV ions by irradiating a high-intensity

laser on a solid foil, which was before the use of the CPA technology. Once high power laser

facilities were developed using this technology, multi-MeV ions were produced through a

strong electrostatic field in 2000.17 This was later described by Wilks et al. 38 with the laser

driving electrons ponderomotively to high energies. The ion acceleration mechanism became

known as target normal sheath acceleration (TNSA). Since these early studies, experimental

investigations linked to theory and simulations have advanced laser-driven ion acceleration

concepts to generate hundreds of MeV ions. Recently, Higginson et al. 18 reported proton en-

ergies close to 100 MeV using nano-thin foils. These studies, amongst other works, motivated

researchers on developing laser-driven high energy ion sources for future applications.

1.2.1 Fast ion ignition approach to inertial confinement fusion

One application for energetic ions is in fusion research. Fusion research focuses on developing

ways for producing energy as an alternative to fossil fuels addressing the rising global energy

consumption and climate crisis. The two main approaches are magnetic39 and inertial con-

finement fusion40 (MCF and ICF respectively). Both use deuterium and tritium as the fuel

because of their high reaction probability at conditions achievable in MCF and ICF. The

fusion reaction is

D + T→ 4He [3.5 MeV] + n [14.1 MeV] (1.1)

Fast ignition is an advanced scheme to accomplish ICF. The approach separates the

processes that compress the fuel and thereafter heat a fraction of the fuel to thermonuclear

temperatures using a fast pulse of charged particles. The capsule containing the fuel is

compressed for longer than a nanosecond to an areal density of ρr ≈ 0.3 g/cm2 in the hot

spot region while the fuel reaches ρr ≈ 3 g/cm2. The latter ρr is required for achieving a fuel

burn fraction of at least 30%. ρr ≈ 0.3 g/cm2 is necessary in order to heat the surrounding

cool and dense fuel via α capture.40
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In the original fast ignition approach the fast pulse for heating the compressed fuel

are electrons. The relativistic electrons of energies exceeding 0.5 MeV propagate rapidly

through the capsule. These electrons generate a return current that opposes the current

that the relativistic electrons induce. This return current consists of thermal electrons with

a high density that heats the compressed fuel (see sub-section 2.2.7 for details on the return

current). The main challenge using electrons is the beam divergence to achieve a high

coupling efficiency of electrons to the fuel.41

An alternative to circumvent the electron divergence is by using a pulse of fast ions. In

this approach a high flux of ions are deposited in the volume of the compressed fuel. In

order to achieve this a specific ion energy and energy spread is necessary for depositing the

ions after propagating a certain depth into the capsule. Studies suggest that a a high flux

proton beam between 15 and 23 MeV can be used for heating the fuel to thermonuclear

temperatures.27,28

Figure 1.1: Illustration of ion fast ignition in ICF.

1.2.2 Hadron therapy

Another promising application of high energy ion sources is hadron therapy. Inside matter

ions have a linear energy transfer (LET), which is the amount of energy deposited by the

ions. For ions of a specific energy there is a depth, called the stopping range, the ion moves

into matter where most of the ion energy is absorbed. The impact of the deposited ions

in human tissues is measured by the relative biological effectiveness. If this effectiveness is
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high, the ions damage the DNA molecule such the biological system cannot repair the induced

damage. For carbon ions the LET and relative biological effectively spatially coincide closely,

resulting in an efficient approach for killing cancer cells. Hence, carbon ions are preferably

used for deep-seated tumour therapy.25,42 Carbon ions of energies up to 4.8 GeV are used

for an ion stopping range beneficial to tumour treatment.25,43

The most powerful conventional accelerator used for hadron therapy is the Heavy-Ion

Medical Accelerator in Chiba (HIMAC, Japan) commissioned in 1994. The 120 × 65 m2

accelerator uses electric fields of the order of 107 V/m to drive carbon ions of 4.8 GeV (400

MeV/n) nominal energy.42,43 In comparison, when a high intensity laser pulse interacts with

solid matter the electric fields generated exceed 1013 V/m within a space of tens of microns.

Therefore, high power laser technologies and microengineering capabilities have the potential

of generating ion sources comparable to large-scale conventional accelerators. The compact

size may even reduce the complexity of running the accelerator and, as a result, reduce

operation and maintenance costs.

1.3 Outline

The focus of this thesis is understanding how to efficiently couple an ultra-intense laser pulse

to a solid target and, in turn, generate bright X-ray and energetic ion sources. The thesis is

structured in the following way:

A theoretical overview of the relevant physics is provided to aid the understanding of

the presented work. This will specifically describe the details of the laser interaction with a

overdense plasma, including the generation of Kα line emission and ion acceleration mecha-

nisms.

After introducing the theory, an overview of the key diagnostics used in this work is

provided. Spectrally-resolved X-ray spectroscopy is described for recording and analysing

Kα emission in Chapter 5. A ion energy spectrometer that spatially resolves a laser-driven

ion beam is described for the measurements in Chapter 6.

The results are split into three chapters. Chapter 4 presents the use of a double plasma

mirror (DPM) for improving the laser contrast. A basic model using geometric optics and

ionization thresholds is developed. The model calculations are used in Helios simulations for

the suppression of early laser interaction with a solid target. Simulation results also show

that the interaction delays the target expansion closer to the main peak of the laser, reducing

the plasma scale length as a result. Work on implementing the DPM on two different high

power laser facilities will be presented. The DPM enables high intensity laser experiments

with high density targets studied in Chapters 5 and 6.

Chapter 5 presents results of using silicon targets with microstructured surfaces. Mea-

surements taken with a conical crystal spectrometer show that these targets increase the
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brightness of Kα emission significantly. Spectral analysis of the Kα using the PrismSPECT

code provide a basic insight to the physical conditions during the laser-target interaction.

In addition, the DPM setup used on the experiments with the targets show an improvement

in shot-to-shot reproducibility. By combining the DPM and targets with microstructured

surfaces, a method for controlling the plasma density scale length is achieved.

Chapter 6 describes the initial observations of energetic proton and carbon ions by laser

irradiating large-area suspended graphene (LSG) targets. The measurements are linked to

EPOCH particle-in-cell simulations. From the simulation results it is inferred that the onset

of relativistic induced transparency is important for producing highly energetic ions. The ion

acceleration mechanisms generating these ions are inferred from comparing the simulations

to theory. In addition, the simulations show similarities and differences in the divergence of

the ions seen in experiment, which are discussed.

Finally, a summary of the key results is given in the conclusion of this thesis. From

this, the current challenges unanswered in the presented work with recommendations on

how prospective investigations may continue will be discussed.



Chapter 2

High intensity laser interaction

physics with overdense matter

This Chapter introduces the state of matter called a plasma and the conditions that define

a plasma. A high intensity laser irradiating a solid target creates a plasma of high density,

where the interaction can lead to the generation of relativistic electrons, which drive the

generation of K-shell line and energetic ion emission. This includes the Kα emission studied

in Chapter 5 and a number of mechanisms that can drive ions to high energy in relation to

the results in Chapter 6.

The equations are written in Système International (SI) units. Where needed, the equa-

tions are rewritten in units conventional to laser-plasma physics and relevant to this thesis.

2.1 A basic plasma

A simple plasma is a quasineutral gas consisting of charged (and neutral) particles. The

particles exhibit collective behaviour when subject to an electric or magnetic field39.

2.1.1 Debye length

There are three conditions that define a plasma. The physical dimensions of a plasma must

be much larger than the distance that charged particles screen out the effect of a nearby

electric field. This distance is the Debye length, λD,

λD =

√
kBε0

e2

(
1

ne/TE + Z2ni/Ti

)
(2.1)

λD[nm] ≈ 7.43× 109

√
1

ne[cm−3]/Te[eV] + Z2ni[cm−3]/Ti[eV]
(2.2)
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ε0 is the permittivity of free space, e is the elementary charge, kB is the Boltzmann constant,

Te and ne are the electron temperature and density, and Z, Ti and ni are the ion charge

number, temperature and density. Eqn. 2.2 is a simplified form to Eqn. 2.1, where the units

of λD, Te, ne, Ti and ni are specified in the squared brackets.39,40,44

The second condition emerges from the plasma screening external fields. This phe-

nomenon is only possible if the number of particles within a “Debye sphere”, ND − a

spherical volume of radius λD − is much greater than one. ND is defined as39,40,44

ND =
4

3
πneλ

3
D (2.3)

ND ≈ 1.72× 109

√
T 3
e [eV]

ne[cm−3]
(2.4)

2.1.2 Plasma frequency

The third condition that defines a plasma is that the electrostatic interaction between the

particles dominates over collisions with a collision rate, ν. The plasma frequency, ωpe,

characterises the electrostatic interaction, which is greater than ν to satisfy the condition.

ωpe is defined as30,39,45

ωpe =

√
nee2

ε0me
(2.5)

ωpe[Hz] ≈ 5.64× 104
√
ne[cm−3] (2.6)

where me is the mass of an electron.

Eqns. 2.1-2.6 are given in terms of the electrons. The equations can be rewritten to

include the positively charged ions. However, me is a factor of ∼1840 smaller than the mass

of a proton, mp. This implies that electrons move faster than ions. Therefore, the response

of a plasma to electromagnetic fields is mainly determined by the electrons.

2.2 Laser interaction with overdense matter

Throughout this thesis the focus is on understanding the interaction of a short-duration,

high-intensity laser pulse with overdense matter, which is described in this section.

2.2.1 Lorentz force

In the single particle picture a charged particle moves according to the external electric and

magnetic fields, E and B, acting on it. The change of motion is described by the Lorentz

force, F, as30,46

F = q(E + v ×B) (2.7)
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where q and v are the particle charge and velocity. For an electron, q = −e and v = ve, and

for an ion of charge Z, q = Ze and v = vi.

A laser exerts fields E0 and B0 on electrons. The fields are perpendicular to the direction

the laser propagates and to each other. As the laser moves E0 oscillates the electrons back

and forth with time. If assuming that the laser was a simple plane wave, B0 does not exert

a significant force unless the electrons are moving close to speed of light, c, which are then

called relativistic electrons. Otherwise the particle motion can be characterized by E0 alone.

2.2.2 Critical density

In the following explanation it is assumed that the laser is a plane wave and approaches a

plasma density ramp. The laser oscillates the electrons at the start of the density ramp, which

results in the electrons re-radiating the laser as dipole radiation. As the density increases,

more electrons are driven. The dipole radiation results in a constructive interference that

refracts the laser. This refraction continues up to the turning point that the laser propagation

into the plasma reverses. This is shown in Figure 2.1. The density at the turning point is

determined by the laser incidence angle relative to the density gradient, θ0, and the critical

density, ncr, as ncr cos2 θ0. ncr is determined by the laser angular frequency, ω0, which by

substitution into Eqn. 2.5 gives ncr as30

ncr =
ε0meω

2
0

e2
(2.8)

ncr[cm−3] ≈ 1.1× 1021

λ2
0[µm]

(2.9)

If ne < ncr then the laser propagates through an underdense plasma. On the other hand,

if ne > ncr then the plasma is overdense and the laser cannot propagate past the turning

point.

Part of the laser propagates as an evanescent wave past the turning point along the

density ramp until the density reaches ncr. The depth that this wave moves between the

turning point and ncr is the skin depth,30

δs =
c

ωpe

√
1− (ω2

0/ω
2
pe) cos2 θ0

(2.10)

Consider the following example: An infrared laser of wavelength λ0 = 1.054 µm and

frequency ω0 = 2πc/λ0 results in ncr ≈ 1×1021 cm−3. The laser irradiates a silicon target of

density ne = ZNAρ/A. NA is Avogadro’s number, ρ is the mass density and A is the mass

number of the material. Assuming the target is fully ionised and at solid density (ρ = 2.33 g

cm−3 and A = 28.09), ne ≈ 7× 1023 cm−3. Hence, ne > ncr. This results in the possibility

of a high contrast infrared laser interacting with overdense matter.
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Figure 2.1: Laser propagation at an incidence angle, θ0, into a overdense plasma. At the surface of
position xcr the laser reflects when the plasma density reaches ncr cos2 θ0. The evanescent laser field
moves a skin depth, δs, from the surface.

2.2.3 Ionisation

Matter is ionised by a laser to form a plasma. One way this occurs is via photoelectron

ionisation.30 A laser photon of energy E0 encounters an electron bound to an atom. The

electron is confined in an energy level. The electron absorbs a photon and is liberated

from the atom if E0 exceeds the ionisation energy, En. The free electron has an energy of

Ee = E0 − En.

The photon energy is determined by the laser by E0 = hc/λ0, where h is Planck’s constant.

Most lasers do not operate at wavelengths satisfying E0 > En for photoelectron ionisation.

An alternative photoionisation process is possible with increasing laser intensity, I0. A high-

intensity laser releases a bound electron when the number of absorbed photons, N0, provide

an energy N0hc/λ0 exceeding En. The electron is released with an energy of

Ee = N0hc/λ0 − En (2.11)

This process is called multiphoton ionisation, which starts to occur when I0 > 1010 W/cm2.30

A high-intensity laser also photoionises atoms via tunneling or barrier-suppression ion-

isation.30 In both cases the electric field of the laser suppresses the electrostatic potential

that binds the electron to the atom. For tunneling ionisation the potential is suppressed

to an energy comparable but greater than En. The electron has a probability of tunneling

through the potential barrier and escape the atom. As for barrier suppression ionisation, the
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potential is decreased below En such that the electron spontaneously escape the atom. For

barrier-suppression to become important to ionisation,

I0 >
cE4
n

128πZ2e6
(2.12)

I0[W/cm2] ' 4× 109E4
n[eV]

Z2
(2.13)

2.2.4 Collisional absorption

The initial photoionisation by the laser on solid matter forms a overdense plasma. At the

surface of this plasma the free electrons are driven directly by the laser and gain energy.

Thereafter the electrons transfer the energy to ions (and atoms) via inverse bremsstrahlung.

This is a collisional absorption process. Electron-ion collisions dampen the electron motion

with a collision rate, νei, which is

νei =
4
√

2π

3

Znee
4

m2
ev

3
e

ln(Λ) (2.14)

νei[Hz] = 2.91× 10−6Zne[cm−3](Te[eV])−3/2 ln(Λ) (2.15)

ln(Λ) is the Coulomb logarithm accounting for the largest and smallest electron-ion separa-

tion that an electron scatters off an ion. Eqn. 2.15 shows that collisions are important in

dense and cold matter and, in turn, influence the laser-to-matter absorption efficiency.30,45

2.2.5 Resonance absorption

As laser intensity and wavelength increase such that I0λ
2
0 ≥ 1015 W µm2/cm2, collisional ab-

sorption becomes inefficient. This occurs once the electron-ion collision rate, νei, is less than

the laser frequency, ω0 = 2πc/λ0. A high I0 increases the electron temperature, which in turn

reduces νei. As a result, collisionless absorption processes, such as resonance absorption,30,45

may dominate over collisions.

At the surface ncr cos2 θ0 that the laser reflects, the evanescent laser field propagates a

skin depth into the overdense plasma. The laser couples to a Langmuir wave at the critical

density surface, defined at ncr. The wave in turn drives the electrons to high energies through

resonance absorption. Electrons are resonantly driven with a frequency of ωpe = ω0. This

relation is rewritten using Eqns. 2.5 and 2.8 to ne = ncr. Therefore, resonance absorption

is most effective at the critical density of the overdense plasma. Resonance absorption is

a collisionless absorption process because the energy coupling occurs between the laser and

Langmuir waves.29,30,45

If the evanescent laser penetrating a skin depth into the plasma has an electric field

component along surface normal, the laser couples to the Langmuir wave at ncr. Otherwise,

to a linear approximation, there is no such coupling. Therefore, a p-polarised laser pulse is
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needed for resonance absorption. This polarity has an electric field component parallel to

surface normal, whereas the field from an s-polarised laser is always perpendicular. Assuming

that the field is perfectly transverse, the s-polarised laser does not generate a resonance

wave.30,40

A key parameter that determines the absorption efficiency is the plasma density scale

length, L. L is a length derived from to the plasma density, ne, and density gradient, |∇ne|,
as30,45

L =
ne
|∇ne|

(2.16)

|∇ne| ≈ dne/dx when assuming that the laser-plasma interaction is along the normal of the

plasma surface. Resonance absorption occurs where ne = ncr and, therefore, L is rewritten

to Lcr = ncr/|∇ncr| for specifying the density scale length at the density ncr in this thesis.

The absorption efficiency due to resonance absorption depends on the laser polarity,

plasma density scale length, Lcr, and laser incidence angle, θ0. A p-polarised laser has a

component of E0 parallel to the normal of the plasma surface normal, and an s-polarised

laser is purely perpendicular to the normal. Assuming that the surface is assumed to be

flat, absorption by an s-polarised laser is purely via collisions, whereas the p-polarised laser

include resonance absorption (see Gibbon 30 for details). Resonance absorption results in an

optimum absorption efficiency for certain values of Lcr and θ0. The larger Lcr is in relation to

the laser wavelength, λ0, the smaller θ0 is for maximum absorption. This is a key motivation

for irradiating a p-polarised laser at an oblique incidence angle on solid targets. At θ0 = 0◦

the polarisations have the same absorption efficiency because both are perpendicular to the

plasma surface normal.30,45

On high power laser experiments λ0 and θ0 are determined by the setup. Lcr is difficult

to define because it depends on the laser interaction with the overdense target. Experiments

can benefit from a method for controlling the interaction in order to optimise and reproduce

Lcr. In turn this can improve the laser-to-plasma absorption efficiency. Further details and

corresponding results are discussed in Chapters 4 and 5.

2.2.6 Ponderomotive force

A tightly-focused, short pulse duration laser exhibits high intensities and steep intensity

gradients in its electric component. This causes the electrons to oscillate to relativistic

velocities in the direction of the electric field component with a frequency of 2ω0. The

driving force is called the ponderomotive force, which is derived by time-averaging I0 over a

laser period as16,30,47

fp = − γee
2

4meω2
0

∇E2
0 (2.17)

= −∇(γe − 1)mec
2 (2.18)
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∇E2
0 denotes the intensity gradient, and γe is the Lorentz factor of the electrons. The

ponderomotive force acts in the direction of high intensity fluctuation. As electrons attain

relativistic velocities the magnetic component of the laser becomes important and, as a

result, accelerates the relativistic electrons in the propagation direction of the laser. This

acceleration is often referred to as J × B heating.16,30,47,48

At I0λ
2
0 ' 1018 W µm2/cm2, the ponderomotive force is important for generating rela-

tivistic electrons. If assuming that ponderomotive heating is the main driving process, the

electron temperature, Trel, can be estimated using Wilks’ scaling,16

Trel = mec
2(γe − 1) (2.19)

Trel[eV] ≈ 5.11× 105

((
1 +

I0[W/cm2]λ2
0[µm]

1.37× 1018

)1/2

− 1

)
(2.20)

2.2.7 Relativistic electrons

Relativistic electrons are mostly generated by the laser approaching I0λ
2
0 ' 1018 W µm2/cm2.

One role of these electrons is for transporting energy into the overdense plasma. Typically

the laser only penetrates a depth δs into the plasma. This restricts the volumetric heating

to near the critical density surface. The electrons carry the energy from the laser into the

region of the overdense plasma and solid matter otherwise inaccessible by the laser.30,40

Relativistic electrons with density nf and velocity vf transport through the plasma with

a forward current density

Jf = −enfvf (2.21)

The electrons induce a current that produces magnetic fields unless a self-generating current

inside the plasma opposes the electron motion. This is known as the return current density,

Jr = −enrvr. In the limit that magnetic field formation is very small, Jr balances with the

forward-moving relativistic electron current density, Jf , as49,50

Jf + Jr ≈ 0 (2.22)

The relativistic electrons have a high velocity and low density. For a overdense plasma, nr is

larger than nf . As the current densities are balanced, this implies that vr is small. Therefore,

the relativistic electrons generate thermal electrons inside the plasma. The thermal electrons

are important for producing spectral line emission described in Section 2.3.

Relativistic electrons that propagate out of the target rear side generate strong electric

fields. The fields accelerate the ions from the target and on target surface above MeV

energies. The different mechanisms that accelerate ions to these energies are described in

Section 2.4.
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2.2.8 Relativistically induced transparency

Laser propagation depends on the refractive index, n, of the plasma. n is equal to the square

root of the dielectric constant, n =
√
ε. Assuming collision rates are much smaller than ω0

the non-relativistic refractive index is30

n =

√
1−

ω2
pe

ω2
0

(2.23)

=

√
1− ne

ncr
(2.24)

Eqn. 2.24 is derived from Eqn. 2.23 by substituting for the frequencies with Eqns. 2.5 and

2.8. If ne > ncr, the refractive index is imaginary. As a result, the laser reflects at the surface

and is stopped from moving into the overdense plasma. On the other hand, in a underdense

plasma where ne ≤ ncr the refractive index is real and, therefore, the plasma is transparent.

The laser propagation inside the plasma depends on n.

A overdense plasma is subject to hydrodynamic processes and laser heating. Hydrody-

namics expands the overdense plasma which decreases the electron density, ne. Laser heating

leads to relativistic motion of the electrons, increasing the electron Lorentz factor, γe. Both

processes change the refractive index of the plasma, n. Accounting for the relativistic cor-

rection to the refractive index, n, in Eqn. 2.24 gives

n =

√
1− ne

γencr
(2.25)

n is imaginary as long as ne > γencr and the plasma reflects the laser at the surface.

However, as ne decreases and γe increases, the imaginary value of n reduces. n becomes real

once ne ≤ γencr. This means that the laser propagates through the plasma which behaves

like a underdense plasma. The phenomenon is known as relativistically induced transparency

(RIT)29. This is important for understanding the ion acceleration results in Chapter 6.

2.2.9 Hydrodynamics

The laser interaction forms and heats a plasma which then expands. The expansion is collec-

tive plasma motion, which is characterised by hydrodynamics. Hydrodynamic processes are

important when intense laser interaction occurs over durations of picoseconds and nanosec-

onds. The interaction determines the plasma density scale length, Lcr.
30,45 This affects

the laser-to-target coupling efficiency and is important for understanding any laser-target

interaction.

The collective motion exhibited by the electrons and ions in a plasma are described as

two separate fluids for these particles. Each fluid is characterised by a set of conservation
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equations:30,45,51

∂ρ

∂t
+∇ · (ρu) = 0 (2.26)

ρ
∂u

∂t
+ ρ(u · ∇)u =

ρ

m
Fnet (2.27)

∂

∂t

(
ρε+

ρu2

2

)
+∇ ·

(
ρu

(
ε+

u2

2

)
+ Pu

)
=

ρ

m
Enet (2.28)

Eqn. 2.26 is mass continuity, which ensures that mass is conserved for a fluid of mass

density, ρ, and velocity, u.

Conservation of momentum is defined by Eqn. 2.27 for the fluid of mass m. The right-

hand side of the equation gives the forces changing the fluid momentum. This includes terms

such as the Lorentz force due to the laser, pressure gradient moving the fluid between regions

of pressure imbalance, and collisions.

Eqn. 2.28 is the conservation of energy. The internal energy of the fluid is given by

the specific energy, ε. Energy transfer into and out of the fluid is described by the net

energy source and loss term, Enet. Processes transferring energy include thermal conduction,

collisions and volumetric heating due to the laser.

Eqns. 2.26-2.28 are solved using an equation of state (EOS). An EOS describes the

relation between the fluid parameters according to an assumed hydrodynamic model.45,51

2.3 K-shell line radiation

In this section the atomic physics associated with characteristic Kα emission will be de-

scribed. Throughout this section silicon will be used because the results in Chapter 5 used

silicon as the laser-irradiated target.

2.3.1 Inner-shell ionisation

Laser-driven relativistic electrons propagate into the plasma region partially or not ionised

by the laser-target interaction. If the electron energy exceeds the ionisation energy of a

silicon atom in its ground state, En = 2.438 keV,52 then an electron in the K-shell can be

liberated. This creates a K-shell vacancy in the ionised atom as shown in Figures 2.2 (a)

and (b). K-shell ionisation can also occur when a photon of energy exceeding 2.438 keV

is absorbed.45,53,54 Whether collisional or radiative ionisation dominates is complicated to

determine. Studies have shown that X-rays have a higher probability of producing K-shell

vacancies over relativistic electrons in thin Al targets.15,55 In buried Al targets, where the

target density is higher, K-shell vacancies from collisional ionisation becomes important.55,56

Afterwards, an electron from an excited state de-excites to fill the vacancy via sponta-

neous or stimulated emission. If the electron transitions from the L-shell to the K-shell then
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the this processes is known as a KL-transition. Upon de-excitation one of two processes can

happen. The energy released during the de-excitation is absorbed by another bound elec-

tron, resulting in a non-radiative KLL Auger emission53 (see Figure 2.2 (c)). The alternative

process is the emission of a Kα photon, which is depicted in Figure 2.2 (d). For silicon the

emitted photon energy is 1.739 keV.15,53,55

Figure 2.2: (a) Ground state silicon is ionised by a hot electron whose energy exceeds the ground state
ionisation energy. The K-, L-, M - and N -shells are labeled. (b) After collision a K-shell electron is
ejected from the atom. An electron from the excited L-shell de-excites to fill the K-shell vacancy. The
energy from the KL-transition leads to either (c) electron emission via Auger decay or (d) emitting
a Kα photon.

The time-integrated Kα emission depends on the number of K-shell vacancies generated

and the branching ratio between Auger decay and photoemission. The rate of formingK-shell

vacancies depends on the exciting flux of electrons (and photons) producing these vacancies

and decay rate of inner-shell vacancies. The decay rate is a few femtoseconds.33,55 If the

exciting flux is sufficiently high then K-shell vacancies are continuously formed producing

bright Kα signals. Recombination rates for de-exciting electrons scales roughly with the

density product of ions and free electrons, nine.
57 Hence, for KL-transition in overdense

matter, such as a solid target, the time-dependent recombination rate of the Kα emission is
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highest. In turn, the time-integrated intensity of the emission is optimised.

The photon produced from the transitions illustrated in Figures 2.2 (a)-(d) is referred to

as Kα line emission of photon energy Ex = 1.739 keV.35. The energy of the KL-transition

changes upon sequential ionisation of the outer shells. Thermal free electrons of a few eV

in a plasma ionise the M -shell in Figures 2.2 (a)-(d). Removing bound electrons reduces

the shielding of the electrostatic potential from the nucleus due to the electrons, which

leads to a larger separation between energy states. Therefore, the Kα line emission shifts

to higher photon energies following successive ionisation.15,55,57 The lines are labeled using

numerical notation for identifying ionisation state.54 For Si I (Ex = 1.739 keV) the M -shell

is not ionised, Si II (1.742 keV) one electron is removed, Si III (1.743 keV) two electrons

removed, and Si IV (1.745 keV) has three electrons removed. Ex are taken from the spectral

calculations presented in Chapter 5. The notation does not account for inner-shell vacancies,

which becomes complicated after removing all M -shell electrons. Thermal electrons open

and ionise the L-shell as energies reach tens of eV. Consequently, the ionisation state of

the initial and final states are different. For identifying line emission with an open L-shell,

isoelectronic notation54 is used, which is based on the total number of bound electrons.

These include emission from F-like to Li-like states of silicon. If the electron temperature

starts approaching 100 eV and leave only one L-shell electron, the KL-transitions produces

K-shell emission, which is conventionally referred to He-like and Ly-like ion with emission

following described as Heα and Lyα lines.15,54,55 The Si I-IV, Li-like and Heα line emission

that result from successive outer-shell ionisation are depicted in Figure 2.3. In this thesis

the lines of interest are from Si I-IV states where the L-shell is closed. The relative spectral

intensities between these states depends on the thermal electron energies shown in Chapter

5.

Figure 2.3: Illustration of silicon Kα line emission from different ionisation states from Si I to Heα.
The lines are labeled using conventional notations. Relative spectral intensities are arbitrary in the
drawing.



CHAPTER 2. HIGH INTENSITY LASER INTERACTION PHYSICS 36

2.3.2 Atomic rate equation

Atomic rates determine the time-scales that an energy state j is populated and depopulated

with electrons from state k. The number of electrons occupying states j and k are defined

by the population densities, nj and nk. The rate equation for populating and depopulating

state j is

dnj
dt

=
N∑
k 6=j

nkWkj −
N∑
k 6=j

njWjk (2.29)

The number of participating states, N , are accounted in the summation. Wkj and Wjk are

the rates of the processes populating and depopulating state j.58,59

The number of Kα photons produced are determined by the collisional ionisation, de-

excitation and photoabsorption rates.15,36,45,53–55 Collisional ionisation is determined by the

thermal electron energy distributions and corresponding ionisation cross section. Thermal

electrons are generated by the laser interaction and from the return current balancing the

relativistic electrons moving through the plasma (see Subsection 2.2.7). Thermal electrons

ionise outer shells as well as inner shells, for example for the K-shell in silicon when the

energies exceed ionisation energy En = 2.438 keV.52 The ionisation rates also depend on the

densities of thermal electrons and energy states available.36

The de-excitation rate determines how rapid an L-shell electron de-excites to the K-shell

vacancy. For silicon this rate can be as high as 1015 Hz.55

The intensity of a radiation source, such as Kα emission, is reduced by the absorption

and scattering of photons in the plasma. The optical depth, τ , determines the intensity lost.

There are two limits to τ , which are optically thick (with a high optical depth, τ >> 1)

and optically thin (with a low optical depth, τ << 1). τ = κρs where κ is the opacity,

which is a specific cross section, and s is the length the radiation propagates in to the

plasma.45,51 Reabsorption of a Kα photon via photoabsorption is possible only if a vacancy

in the L-shell exists. This is unlikely in cold matter and, therefore, the opacity is determined

by scattering. The optical depth for scattering is low if the material is sufficiently thin.

The scenario changes, and becomes complex, in hot plasmas where the atomic system have

L-shell vacancies. For clarity, a hypothetical zero-width plasma, which has no opacity, is

considered in this work because this removes the photoabsorption term in the rate equation.

Experiments use materials of finite thickness, which reintroduces additional challenges on

assuming a zero-width plasma.

When the processes populating and depopulating state j are balanced, the population

in state j does not change with time. Hence, the rate equation in Eqn. 2.29 becomes zero,

as in, dnj/dt = 0. This scenario is known as steady-state balance. An excited state in a

overdense plasma can achieve steady-state balance as the lifetime of electrons in the state

can be comparable to the time scales populating the state.58
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2.3.3 Local thermodynamic equilibrium

Thermodynamic equilibrium describes the rate equation of a closed atomic system at a

fixed temperature. The closed system means that the rates for populating and depopulating

atomic states are in steady-state balance. The ratio of population between states is deter-

mined by a Boltzmann distribution. Thermodynamic equilibrium is satisfied when the time

for achieving steady-state balance is faster than the changes in the plasma dynamics. This

condition is satisfied for large plasma such as the core of stars.51,58

A plasma generated in the laboratory cannot achieve complete thermodynamic equilib-

rium because the exterior of the plasma is not in balance with excitation processes. This

is because the mean free path for collisional and photoabsorption are larger than the scale

length of the temperature gradient. However, the laboratory plasma can achieve local ther-

modynamic equilibrium (LTE). This requires the mean free path of the absorption processes

to be smaller than the plasma scale lengths in a small region of the plasma. A localised

volume of overdense plasma can satisfy LTE. The population distribution of the states is

given by the Boltzmann relation and Saha equation.51,58

Energetic electrons and photons drive the generation of inner-shell vacancies, which is an

inherently non-LTE process. The cross section for inner-shell ionisation is significantly higher

for photons than by electrons.15,55 Modelling a plasma in non-LTE involves solving a set of

rate equations with all absorption and emission processes included. The calculations may

be time consuming depending on the atomic system and complexity of the atomic physics

model used. Non-LTE is necessary for producing Kα emission from a overdense plasma and

is used for the spectral calculations provided in Chapter 5.

2.3.4 Kα line broadening

Kα line emission is hypothetically a single energy at 1.739 keV with a line shape and width

determined by natural broadening. When spectrally resolving Kα line from a dense plasma,

the observed emission is typically a broad asymmetric peak rather than a single line. There

are a number of processes that broaden Kα line emission. Line emission naturally broadens

because of the lifetime of an electron in the excited state before de-exciting to the K-shell

vacancy. The uncertainty in measuring the lifetime, ∆t, is related to the de-excitation rate.

Therefore, the natural width, ∆E , is determined by the Heisenberg uncertainty principle,

∆E =
h

2π∆t
(2.30)

This broadens the line to a Lorentzian peak with a full-width-half-maximum (FWHM) of

∆E .53,57,58

Kα line emission is split in two components, Kα1 and Kα2, due to spin-orbit coupling.

Relativistic effects couple electron orbital angular momentum and spin, which splits the
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energy levels according to the total angular momentum from the coupling. The total angular

momentum quantum number, j, takes a list of values for an orbital state of quantum number,

l, and spin s,54

|l − s| ≤ j ≤ l + s (2.31)

In the case of a K-shell vacancy in silicon, the electron moves from the L-shell to the vacant

K-shell state. The orbital state is 1s for the K-shell. Hence, by allowed transitions rules, the

electron is initially in the 2p orbital state. The p-orbital state has l = 1 and s = 1/2, which

give j = 1/2, 3/2. As a result, the energy level splits into the P1/2 and P3/2 levels (using

spectroscopic notation, Lj , where L is the orbital angular momentum), which have an energy

separation of ∼0.7 eV. Electrons transition from both levels to the K-shell. Therefore, Kα

emission is seen as two distinct lines close to each other.

Kα emission is spectrally asymmetric when observed. The line is broader towards lower

energies than towards higher energies. Asymmetric broadening occurs in the presence of

external electric fields. This Stark broadening includes the Coulomb interaction between

charged particles and electric component of a laser. The fields couple to the electric moment

of electrons to separate the energy levels within each shell. This widens the emission, where

the broadening is greater towards the lower energies of the Kα line.57,58

In experiments the diagnostic has a limited resolution for resolving spectral emission.

This results in instrumental broadening, which is discussed in detail in Chapter 3.

As explained in Subsection 2.3.1, the Kα line emission shifts towards higher photon

energies as thermal electrons ionise the outer-shells. In this thesis the lines studied are from

the ionisation states Si I (1.740 keV), Si II (1.742 keV), Si III (1.743 keV) and Si IV (1.745

keV). These span a spectral range of 5 eV. The lines are subject to the same line broadening

given above. If the broadening is of a few eV, the lines superpose and form a wide peak.

Individual lines are indistinguishable and require spectral calculations given in Chapter 5 for

identification.

2.4 Laser driven ion acceleration using solid targets

As described in Subsection 2.2.7, the laser drives relativistic electrons at the surface of the

irradiated solid target. The electrons can propagate out of the target rear side and generate

strong electric fields. The fields accelerate the ions from the target and the target surface to

energies well above MeV. The ion energies achieved depend on the acceleration mechanism

driving the ions. This section describes the mechanisms that produce energetic ions, which

includes an explanation on how the onset of RIT can aid the acceleration.
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2.4.1 Target normal sheath acceleration

Relativistic electrons from the laser irradiated front surface of the target can move to the

rear target side. As they eject from the target a charge imbalance forms. This creates an

electrostatic sheath field, ETNSA, normal to the rear surface, as shown in Figure 2.4. The

field causes electrons whose energies are insufficient to overcome the field to reflux back into

the target. Assuming the mean energy of refluxing electrons is Trel and the sheath field to

be continuous over a length Lsh, ETNSA is estimated from Poisson’s equation as29

ETNSA ≈ Trel[eV]/Lsh (2.32)

Eqn. 2.32 suggests that electrons of energies less than Trel reflux back to the target. This

leads to ionisation of atoms at the target rear surface. The ions produced are accelerated

by the sheath field to energy Ei. This acceleration mechanism is called target normal sheath

acceleration (TNSA).29,60 Assuming that the ions are initially at rest and driven normal to

the surface then by energy conservation,

Ei ≈ ZeETNSALsh (2.33)

Ei ≈ ZTrel (2.34)

Using Wilks’ scaling (Eqn. 2.20) for TH in Eqn. 2.34 when I0λ
2
0 ' 1020 W µm2/cm2, a

calculation suggests that Ei ' 4Z MeV. This estimate assumes that electrons are driven

by the ponderomotive force. The calculation is a crude estimate suggesting that MeV ions

can be generated via TNSA. Experimental studies have shown that ions can achieve higher

energies than predicted by the given calculations (see for examples Ref.17,18,37,61,62).

Figure 2.4: Illustration depicting target normal sheath acceleration.

In experiments the laser-irradiated target has surface contamination containing hydrogen.

The refluxing electrons ionise hydrogen to produce protons at the rear surface. The protons

are within the sheath field and, hence, preferentially driven to high energies via TNSA.

Consequently, protons screen the sheath field for heavy ion acceleration reducing the coupling
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of the sheath field to the heavy ions.29 Hence, removing the hydrogen contamination will

increase Ei for heavy ions, as reported in other studies.61

2.4.2 Enhanced target normal sheath acceleration

Enhanced TNSA (ETNSA) is where the sheath field for TNSA is amplified. In turn ions

driven by TNSA gain energy by a laser field penetrating through the target to the rear

surface. This results in the laser driving electrons to high energies across the irradiated

target volume and differs from the case for TNSA where the laser drives electron from the

front surface up to a skin depth into the target. For ETNSA the target thickness must be

comparable to the skin depth, and as a result, all electrons in the target are accelerated.

Hence, more electrons move out of target rear, amplifying the sheath field.63

2.4.3 Radiation pressure acceleration

At the irradiated target surface the steady component of the ponderomotive force due the

laser exerts high radiation pressures. This drives an overdense region of relativistic electrons

into the target. In turn a strong charge separation field forms between the electrons and

ions. This drags the ions alongside the dense hot electrons. This process is referred to as

radiation pressure acceleration (RPA).29 This differs from TNSA and ETNSA in that the ion

acceleration occurs at the irradiated front surface rather than the rear. In order to maximise

the acceleration due to RPA it is important to preserve the overdense plasma by minimising

the electron heating due to the oscillating component of the ponderomotive force.

There are two regimes for RPA: hole-boring16 and light-sail.29 The impact of the regimes

to ion acceleration is determined by the target thickness. Hole-boring pushes a dense electron

surface into a target much thicker than the plasma skin depth. This bores a hole into

the target. Hole-boring transitions to light-sail when the dense electron surface moves out

through the target rear side. This displaces the whole irradiated target by radiation pressure.

Figure 2.5 illustrates light-sail RPA. For light-sail to occur the target thickness must be

comparable to or slightly thicker than the skin depth.

Figure 2.5: Illustration depicting radiation pressure acceleration in the light-sail regime.
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In Chapter 6 the targets used are of a few nanometers thin and comparable to the skin

depth. Therefore, ion acceleration due the radiation pressure will be discussed in terms of

light-sail RPA. The ion energies, Ei, are estimated from the dimensionless laser fluence, F ,29

Ei = mic
2 F
2(F + 1)

(2.35)

F =
2

ρix0c2

∫ tret

0
I0(t)dt (2.36)

ρi is the mass density of the ions and x0 is the initial target thickness. The time integral de-

termines the time over which the laser of intensity, I0, pushes the target. Here the interaction

extends up to the time tf that the target remains of overdense. Once the target is transpar-

ent to the laser, RPA is no longer driving the ions. The retarded time is tret = tf − xf/c,
where xf is the final target position before the target turns transparent.

2.4.4 Coulomb explosion

Another laser-driven acceleration mechanism studied using nano-thin targets is Coulomb

explosion (CE). The laser volumetrically ionises the target and heats the electrons. Electrons

vacate the plasma rapidly, leaving a positively charged region in the target. If the ion density

within the plasma remains high, a strong Coulomb field is produced. This field explodes the

ion density and accelerates ions to high energies. In order to achieve many-MeV ions the

Coulomb field needs to grow over a time faster than the target requires to disintegrate.

Hence, maximizing the Coulomb field strength requires target thicknesses comparable to or

thinner than the skin depth, which is a few nanometers for solid-density plasma.64–66

The Coulomb field, ECE , depends on the net charge density, ρq, enclosed by the overdense

plasma of thickness ∆x. Assuming for a laser-irradiated flat foil of solid-density that CE is

a planar explosion, ECE is derived from Gauss’s Flux Law,67

ECE =
1

ε0

∫ ∆x

0
ρq(x)dx (2.37)

where ε0 is the permittivity of free space. Dielectric effects in the nano-thin plasma attenu-

ating the electric fields is assumed negligible.

2.4.5 Relativistically induced transparency for ion acceleration

Laser irradiating solid targets restricts the ion acceleration near the overdense plasma. This

means that ions gain energy from the electrostatic fields near the target. After the ions are

driven away from the plasma, the main acceleration process providing the highest ion energies

ceases because the strongest electric fields are confined to the target. This limits the highest

ion energies achievable. On the other hand, if the solid targets are of thicknesses comparable
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to the skin depth, it is possible for the laser to heat the electrons in the overdense plasma

to relativistic energies. This leads to the onset of RIT as the plasma become relativistically

transparent to electric fields. The relativistic electrons propagate forward, which causes

the acceleration fields to move with the electrons. As a result the fields catch up with the

energetic ions ahead continuing the acceleration. The ions gain more energy during their

co-motion with the acceleration fields. This suggests that the onset of RIT can boost the

ion energies to higher energies achievable in the case without the overdense plasma turning

relativistically transparent. Previous work inferred the onset of RIT to be important for

justifying the high ion energies.18,64,68

2.4.6 Breakout afterburner

Initially the electrons are subject to faster changes in motion than ions when driven by

electric fields. This can result in a drift velocity between electrons and ions for nano-thick

targets. During laser-solid interaction the plasma becomes relativistically transparent to

the laser. This results in plasma behaviour akin to a underdense system. Consequently,

the relative velocity drift and onset of RIT lead to the formation of a two-stream electron-

ion instability known as a Buneman instability. The instability grows an electric field that

rapidly accelerates the ions. This process is called the breakout afterburner (BOA).69

Studies infer BOA from linking the dispersion relation of the instability to particle-in-

cell simulations.63,69,70 In simulations, the impact of BOA is inferred from a steep energy

gradient in the ion phase-space immediately after the onset of RIT.71 The gradient spatially

coincides with a strong electric field that increases in amplitude due to BOA. By inferring the

energy gradient in ion space-phase and co-motion of a growing and strong electric field with

the ions, it can be interpreted if ion acceleration through the BOA mechanism is plausible

in high power laser experiments.

In contrast to studies on the above acceleration mechanisms there are limited experi-

ments suggesting that BOA drives the ions to high energies.61,68 Data analysis is linked with

simulations predicting the emergence of the Buneman instability in order to explain how

BOA accelerates the ions to the observed energies.



Chapter 3

Diagnostic methods for studying

laser-driven radiation and ion

sources

This chapter focuses on the two key diagnostics used in experiments. These are a conical

crystal spectrometer for X-ray emission spectroscopy and spatially-resolved ion energy detec-

tor for recording the spatial distribution and energy of a laser-driven ion beam. The sections

for each diagnostic describe how the instruments work, which includes details on the main

components, practical concerns addressed in setup and limitations. The data processing and

analysis approach are discussed in relation to achieving the experimental results presented

in Chapters 5 and 6.

3.1 X-ray emission spectroscopy

Spectroscopy is a method for dispersing electromagnetic radiation to a continuum of wave-

lengths. The spectrum can provide information about the radiative and atomic processes

of the source. In this work a conical crystal spectrometer is used for spectrally-resolving

X-ray emission from the laser interaction with a solid silicon target. Measurements centred

on Kα emission are the focus for the setup and results in Chapter 5. Advantages of the

spectrometer over other designs are the high spectral brightness and spectral resolution.72

3.1.1 Conical crystal spectrometer

A conical crystal spectrometer has two planes: a spectral dispersion plane and a focusing

plane. These are illustrated in Figure 3.1. In the spectral dispersion plane the source at

vertical and horizontal positions s and h emits X-rays of energy Ex onto the crystal surface

from the origin. The origin is located at the apex of the conical crystal geometry with a

43



CHAPTER 3. DIAGNOSTIC METHODS 44

cone angle, θc. Subscripts 1, 2 and 3 indicate the lowest, central and highest Ex dispersed

in Figure 3.1. The crystal diffracts the X-rays at Bragg angle θB onto the image plane at

position g. The focusing plane of the spectrometer (not shown) ensures that the crystal

focuses the X-rays to a narrow spectral image along the image plane. For this image to be

at best focus, α+ β = 90◦.72

Figure 3.1: Illustration to the spectral dispersion plane of a conical crystal spectrometer. The crystal
disperses X-rays from the source at position (h,s) by a crystal at angle β to the image plane at angle
α and position g. The origin coincides with the apex of the conical crystal. For the conical geometry
α+ β = 90◦.

The crystal acts as a multi-layer diffraction grating, where the uniform separation between

the crystal planes is d. Hence, X-rays incident at angle θB diffract by the crystal as a wave

with wavelength λx = hc/Ex, where h is Planck’s constant and c is the speed of light. The

diffraction obeys Bragg’s law,73,74

2d sin(θB) = nλx =
nhc

Ex
(3.1)

For the conical crystal spectrometer used in Chapter 5 the diffraction order, n, is unity.

The spectral dispersion of the conical crystal spectrometer is an adaptation from the Von

Hamos spectrometer.72 In the Von Hamos geometry the crystal plane (along the horizontal

axis, x, in Figure 3.1) and image plane are tilted by angles β and α relative to the horizontal

axis. The spectral dispersion for image position, g, for the Von Hamos geometry is74

g =
h sin(θB − β) + s cos(θB − β)

sin(θB + α+ β)
(3.2)
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θB is calculated from Ex using Eqn. 3.1. For the special case of a conical crystal spectrometer,

α+ β = 90◦ and α = 90◦ and β = 0◦, Eqn. 3.2 simplifies to

g = h tan(θB) + s (3.3)

The cone angle of the crystal determines the optimum X-ray wavelength for which the

spectrometer is designed. For this the Bragg angle of the optimum wavelength is equal to

the cone angle. This corresponds to the X-ray diffracting a distance h/2 from the origin −
apex of the conical crystal − on the crystal surface. This results in the spectral image to

be at best focus in the image plane. In order to optimise the setup such that the optimum

wavelength is centred in the spectrum, the centre of the crystal surface must be at h/2.

For the experimental results in Chapter 5 a potassium acid phthalate (KAP) crystal

with a plane spacing of d = 13.317 Å (often noted as 2d = 26.634 Å) and cone angle of

15.234◦ is used. Because of the position of the origin, the setup is optimised for a source

at position s = −41.8 mm and h = 306.8 mm. The spectrum is centred to a wavelength of

6.984 Å, which corresponds to a 1.775 keV photon. Hence, Kα emission (1.739 keV) from

laser-irradiated silicon is close to the centre of the spectral image. The crystal length is 48

mm, which set the spectral range between 8.0 and 6.0 Å, or 1.55 and 2.07 keV in terms

of photon energy. In the experimental setup the source position is s = −60 and h = 405

mm because of limited diagnostic space. This results in a smaller solid angle projected from

the source on the crystal surface. Hence, the spectral range is reduced to 7.5 and 6.7 Å, or

1.65 and 1.85 keV. This is confirmed by measurement. The setup ensured a highly focused

spectral image centred on Si Kα and the spectral range prevents measuring higher K-shell

emission such as Si Heα at 1.864 keV.

Figure 3.2 shows the spectral dispersion curve for the conical crystal spectrometer. The

curve is calculated using Eqns. 3.1 and 3.3 with s = −60 and h = 405. Si Kα at photon

energy Ex = 1.739 keV is marked by the green dashed line, which by the curve corresponds

to the image plane position g = 52.5 mm. As shown by the fitted straight line (red dashed

line) the curve is almost linear within the spectral range from 1.65 to 1.85 keV. The gradient

of this line gives the spectral dispersion relation,

dEx
dg

= −(1.45± 0.01)× 10−2 [keV/mm] (3.4)

The error in Eqn. 3.4 is based on linear regression analysis.

The spectral dispersion of the spectrometer setup used is mainly sensitive to the crystal

angle relative to the horizontal axis, β. This is shown in Figures 3.3 (a)-(d) for β, image plane

angle, α and source positions s and h. The blue profile corresponds to using s = −60 and

h = 405 mm in Eqn. 3.3. The dashed red and green profiles show the change in the spectral

dispersion when increasing or decreasing β, α, s or h to the values given in the legends.
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Modifying α, s or h leads to insignificant changes to the spectral dispersion. On the other

hand, a small change in β results in a large change. For β 6= 0◦ the conical spectrometer

is out of focus as α + β 6= 90◦. Focusing the spectrometer with an alignment laser helps

ensuring that β = 0◦ and α+β = 90◦. Therefore, the spectral dispersion can be determined

by purely knowing s and h.

Figure 3.2: Spectral dispersion curve (blue) for the conical crystal spectrometer, where s = −60 and
h = 405. Spectral dispersion relation, which is the absolute gradient of the red dashed line fitted to
the curve, is −(1.45± 0.01)× 10−2 keV/mm. The vertical green dashed line corresponds to Si Kα at
1.739 keV.

3.1.2 Crystal reflectivity

In the kinematical approximation diffraction occurs as photons scatter off the atoms in

crystal planes. The crystal is a multi-layer system of static crystal planes, which ideally

are assumed to be parallel and equally spaced by a distance d. The direction of scattered

photons depends on the wavelength for constructive interference (as implied by Eqn. 3.1)

and polarity of the photon relative to the crystal plane. For a flux of X-rays incident at

angle θB the optimum scattering is a ‘reflected’ projection of the X-rays at the plane surface

with a scattering angle φ = 2θB. Scattering of s-polarised X-rays is independent of the

incident angle whereas p-polarised X-rays increases in scattering as the angle reduces to

θB = 45◦. Therefore, the ratio of diffracted over incident intensity, otherwise called the

crystal integrated reflectivity, Rc, is lower for p-polarised radiation. For incoherent X-rays

the reflectivity is the root-mean-squared summation of the s- and p-polarised X-rays.9
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Figure 3.3: Spectral dispersion curves for photons of energies Ex using eqns. 3.1 and 3.2. The
parameters are changed between (a) ±10◦ for α, (b) ±1◦ for β, (c) ±100 mm for h and (d) ±20 mm
for s.

The intensity broadens by a full-width-half-maximum (FWHM) width of ∆θ in the scat-

tering direction defined by the angle ∆φ = φ− 2θB. ∆φ = 0◦ is in the direction of optimum

scattering. Rc is related to the broadened diffracted intensity, I(∆φ), and the incident

intensity, Io, by9

Rc(∆φ) =
π∆θ

2

I(∆φ)

Io
(3.5)

The curve described by I(∆φ)/Io as a function of ∆φ is known as the rocking curve. Note

that Rc < 1 because the crystal absorbs a small fraction of the radiation.

Broadening depends on the number of crystal planes diffracting radiation, imperfections

in the uniformity and periodicity of the crystal structure, sometimes referred to as mosaic

structure, and other diagnostic components, such as a slit and pixelation of a detector.

Hence, the broadening width, ∆θ, varies by width due to diffraction, ∆θd, imperfection,

∆θm, and instrumental broadening, ∆θi. Assuming that all broadening widths are described

by a Lorentzian function, ∆θ = ∆θd + ∆θm + ∆θi. These reduce the spectral resolution of

the instrument and as a result diffracted peak intensity. ∆θ is usually small.9

Henke et al. 9 determined the peak and integrated ratios of diffracted intensity at peak

over incident intensity, I(0)/Io, as a function of photon energy, Ex, and polarity for different
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crystals. These ratios for s- and p-polarised photons are squared and then averaged to obtain

I(0)/Io for unpolarised radiation. The ratios preclude the crystal broadening that reduces

the intensity at peak. Therefore, in this work it is assumed that Rc ≈ I(0)/Io and directly

obtained from Henke et al. 9 .

3.1.3 Imaging plate

In the experiments the spectral X-ray emission is recorded using image plates (IPs). An

IP is a multi-layer film composed of a protective, phosphor, support and magnetic layer

from front to back. Layouts of IPs by Fujifilm c© with atomic composition, densities and

thicknesses are shown in Figure 3.4. The information is taken from Bonnet et al. 1 . The

plastic protective layer on SR- and MS-type IPs attenuates radiation below 20 keV according

to X-ray attenuation data from the NIST database.2 Therefore, Fujifilm c© BAS-TR 2040,

which has the same structure as BAS2500 TR in Figure 3.4, without the protective layer is

used as IP.

Figure 3.4: Structural layout of TR, MS and SR IPs by Fujifilm c©. Details taken from Bonnet et al. 1 .

The phosphor layer is the photo-absorbing layer for detecting X-rays. It is composed of

alkaline earth metals and halogens, such as BaFBr or BaFBrI, with Eu2+ dopants. When

an ionizing particle, either a photon or charged particle, of energy ≥24.8 eV52 falls on the

IP an Eu2+ dopant is ionized to Eu3+. The electron excited to the conduction band of the

film is captured by the halogens, forming a metastable state in the halogens. By irradiating

the halogens with a photon of at least 2 eV (620 nm) the captured electron is liberated and
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recombines with the Eu3+ to Eu2+. The recombination produces a characteristic photon of

∼3 eV (about 400 nm). This process is called photo-stimulated luminescence (PSL).1,75

PSL is commonly used by laser-based scanners for digitising IP data.75 The experimental

data is digitised with a Fujifilm c© FLA-5000 scanner. An s-polarized, 635 nm red laser scans

the IP and records the stimulated emission with a photomultiplier tube. The data is saved

as a 16-bit TIFF image file. The PSL is converted to quantum level, QL, which is the signal

in the TIFF file as base-ten values. The scanning settings are for the resolution Res = 25

µm, sensitivity S = 2000, latitude L = 5 and 16-bit gradation G = 216 - 1 = 65535. The

conversion from QL to PSL, where PSL corresponds to the measured spectral intensity, Im,

is10,76

Im =

(
Res

100

)2 4000

S
10L
(

QL
G
−0.5

)
(3.6)

Scanning is conducted in a dark room to minimize background light during scanning. There-

after the IP is irradiated by a bright white light source to recombine all electrons back to

the Eu2+ dopants. This erases the data so the IP can be reused.

The IP response to X-rays of different energies, Ex, depends linearly on Ex. This suggests

that Eu2+ dopants are more sensitive to photons of increasing energy. In addition, according

to Iwabuchi et al. 75 the measured intensity, Im, from PSL during scanning is directly pro-

portional to the concentration of Eu3+ dopants produced. This assumption is appropriate

for X-rays below 6 keV.77 Hence, it is assumed that the X-ray intensity irradiated on the IP

is derived from Im by dividing Im by the IP response function, Rr = aEx. The constant of

proportionality is assumed to be a = 4.85× 10−4 PSL/keV.1

IPs have advantages and disadvantages over electronic imaging detectors. An IP is simple

to use and enables installing the diagnostic in the vicinity of the target without the electro-

magnetic pulse from the laser-target interaction causing the diagnostic to fail on shot.1,77,78

This is important because the conical crystal spectrometer is designed to be placed near the

target. The main drawbacks of using IPs are that measurements are time-integrated and

have relatively poor spatial resolution.

3.1.4 X-ray filtering

Filtering electromagnetic radiation is important for the conical crystal spectrometer. In the

laser-solid interaction high fluxes of photons and electrons emit from the target. The IP

is directly shielded from this radiation by a thick lead sheet. On the other hand, photons

and electrons irradiate and scatter inside the crystal, producing a high radiation fluorescence.

This directly irradiates the IP and is observed as background emission. Further fluorescence is

also produced from the spectrometer casing made of metallic materials. Filters attenuate the

radiation, ensuring the spectrally-unresolved background signal is suppressed and spectrally-

resolved measurements are reduced below saturation. In addition, filters are used before
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the crystal because they are important for avoiding the crystal to overheat from absorbing

radiation.9

A filter of mass density ρ and thickness l attenuates the incident radiation of intensity

Io to a transmission intensity of I. The attenuation ratio, Ra = I/Io, is described by the

Beer-Lambert Law,35

Ra =
I

Io
= exp(−µmρl) (3.7)

µm is the total attenuation coefficient in units of cm2/g. This is a specific cross section

accounting for absorption, scattering and reflection of radiation in the filter. µm is a function

of photon energy, Ex, and varies between different types of materials.

In the experiment the filters are composed of aluminium (Al), beryllium (Be), mylar and

polyethylene terephthalate (PET). Mass densities are ρ = 2.70, 1.85, 1.38 and 1.38 g/cm3

respectively. Aluminium is coated to about 40 nm on 5 µm thick mylar, and PET is 6 µm

thick. These filters are placed between the X-ray source and crystal. 25 µm thick beryllium

is placed between the crystal and IP.

Figure 3.5: (a) Total attenuation coefficients with photon energy of aluminium (red), beryllium
(green), mylar (blue) and PET (magenta) obtained from the NIST database.2 (b) Attenuation ratio
calculated with Eqn. 3.7 and the data shown in (a), where the black line shows the total attenuated
signal from the individual coloured profiles.

The total mass attenuation, µm, for photon energies between Ex = 1.65 and 1.85 keV is
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shown in Figure 3.5 (a) for the filters used in experiment. The data is obtained from the

NIST database.2 Figure 3.5 (a) shows that aluminium has the highest µm, which means that

aluminium attenuates radiation more than the other filters. Therefore, only a small amount

of aluminium is used for filtering. Using Eqn. 3.7 with the plotted µm, mass densities and

thicknesses used, the attenuation ratios, Ra = I/Io, are calculated and shown in Figure 3.5

(b). The black line shows the total attenuation ratio, which is a product of the individual

ratios. Between Ex = 1.65 and 1.85 keV the spectral signal is attenuated almost linearly

between 20 and 30%.

3.1.5 Spectral data processing and reduction

Figure 3.6 (a) shows a digitised spectral image recorded on the experiment. The spectral

and spatial axes, g and w, are indicated on the image. The minimum and maximum spectral

range and position of Si Kα are shown. Regions used to estimate the background in the

spectral data are highlighted. The image widens slightly towards lower g (higher photon

energies) compared to Kα. Figure 3.6 (b) shows an average spatial profile of Kα along the

w-axis on the image. The vertical axis is quantum level, QL, with the average taken from a

number of data shots with similar target and shot parameters. By taking the lineout along

the spectrum in the g-axis, the blue spectral profile shown in Figure 3.6 (c) is obtained.

The central peak corresponds to Kα. The g-axis is reversed to avoid confusion about the

orientation of the spectrum in terms of photon energy later. The corresponding average

background spectrum in magenta is extracted from the regions next to the spectral image.

As indicated by Figure 3.6 (b), the spectrum has a spatial width over which radiation

spreads. The width determines the spatial resolution of the spectrometer. As inferred from

Figure 3.6 (b) the width is (0.101 ± 0.005) mm, which corresponds to roughly 4 pixels on

the image. In ImageJ the lineout tool is used to extract the profiles shown in Figure 3.6 (c)

(blue). The lineout width over which pixels adjacent to the line are averaged over is set to

9 pixels. This corresponds closely to the width at fifth maximum is (0.208 ± 0.005), which

is 8 pixels. The reason for this choice is to include more detail of the spectral signal in the

data extrapolation.

Three spectra are extracted from the digitised spectral image: the raw and two back-

ground spectra. The raw spectrum is taken with the lineout along the spectral image, giving

the spectrum shown in Figure 3.6 (c). The lineout is translated to the two adjacent regions

next to the spectrum. These regions correspond to the background spectra consisting of

scanning noise and spectrally unresolved emission. The background spectra are averaged to

obtain the average background signal recorded over the raw spectrum.

The QL signal of the raw and background spectra are converted to PSL using Eqn.

3.6. The background signal is then subtracted from the raw spectrum. This provides the

corrected spectrum with measured intensity, Im.
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Figure 3.6: (a) Spectral image acquired on-shot with the conical crystal spectrometer. Position
of spectral range (orange), Si Kα (green), spectrum (blue) and background (magenta) regions are
indicated. (b) Spatial profiles extracted along w-axis over similar shots at Kα (gray) are averaged
(red), providing a spectral FWHM of (0.101±0.005) mm. (c) Spectral profiles extracted along g-axis
of spectrum and background region.

The corrected spectrum is calibrated by translating the image position, g, to the expected

position of the Kα peak. The Kα position is calculated using the spectral dispersion profile

shown in Figure 3.2 for the experimental setup. For a Kα photon of 1.739 keV, g = 52.5

mm. Ideally, two well-known spectral peaks are needed to accurately calibrate the spectrum.

Using only one spectral peak for calibration results in some uncertainty in the dispersion.

After spectral calibration the spectral dispersion is applied to the spectrum to convert the

image position g to photon energy, Ex.

The measured spectral intensity, Im, is converted to the actual intensity irradiated from

the X-ray source, Is, by using three correction terms. These corrections are the crystal

reflectivity, Rc, IP response function, Rr, and total attenuation ratio of the filters, Ra. All

correction terms are functions of Ex. The conversion relation is

Is =
Im

RcRrRa
(3.8)

After this correction, the final spectrum with spectral intensity against Ex is obtained for
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analysis. Data for Rc is taken from Henke et al. 9 and Rr from Haugh et al. 10 Ra is calculated

using Eqn. 3.7 and using data for total mass attenuation from the NIST database.2

There are limitations to this data processing approach. There is no absolute intensity

calibration performed for the spectrometer. Therefore, the spectral intensity is in arbitrary

units and only provide qualitative measurements. Secondly, it is seen in Figure 3.6 (a) that

the spectral image is wider towards higher photon energies. The resolution is measured at

the Kα peak and, therefore, the accuracy of the analysis is limited to Kα. When applying the

spectral dispersion to the spectrum, it is assumed that the photon energies are determined

by the dispersion. It is shown in Chapter 5 that this assumption breaks down for identifying

the spectral peaks at higher energies.

3.2 Spatially-resolved ion energy detector

The laser-target interaction produces radiation, electrons and ions with spatial and energy

distributions determined by the electromagnetic fields driving them. When incident on a solid

material the radiation and particles induce a change in the material structure, which depends

on the radiative source fluxes and energy. As a result the material records information on

the spatial and energy distributions of the radiation and particle sources. In this section

the use of a detector stack composed of radiochromic film (RCF) and CR-39 is described for

detecting protons and carbon ions. RCF and CR-39 are described separately to explain how

they work and are used in connection to the measurements presented in Chapter 6.

3.2.1 Stopping power of materials

When an ion of energy Ei moves through matter with a depth x it deposits a fraction of its

energy via Coulomb interaction with the electrons. The energy loss rate is determined by

the stopping power, S = −dEi/dx, which is commonly assumed to be linear and describe

a continuous energy loss.25,26,79,80 Once the ion energy has decreased sufficiently energy

straggling exhibited by the electrons becomes important, which results in the ion depositing

its energy rapidly and stoping at a depth of x ≈ R. R is known as the stopping range and

it is rewritten to the penetration depth, ρR, by multiplying R by the density of matter, ρ.

For a near monoenergetic ion beam irradiated on a detector plate, the ions deposit a

proportion of their energy at depth x < R. As the ions reach a depth R the majority of ions

are stopped and deposit nearly all of their energy. This results in the Bragg response curve

depicted in Figure 3.7 (a). This curve features a low energy deposition continuum called the

sub-peak region and a peak at R known as the Bragg peak. The peak has a finite width

because of the stochastic nature of the ion-matter interaction in the detector plate.26,42
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Figure 3.7: (a) Bragg response curve with the peak at ion stopping range R. (b) Energy deposition
curve with the peak at ion energy ER and minimum threshold energy for absorption Emin.

The Bragg peak results in the deposition energy profile as a function of ion energy, Ei,
illustrated in Figure 3.7 (b). Ions of energy ER deposit nearly all their energy and stop in

the detector plate, which spatially coincides with the Bragg peak at R. The high deposition

continuum at energies Ei > ER corresponds to ions that penetrate the detector and, hence,

deposit a fraction of their energy. The value of ER is shifted to higher ion energies by placing

another material before the detector that stops ions whose energy is below the threshold

energy, Emin, from reaching the detector. This provides a method for designing a stack of

detector plates and attenuating materials to record a selected range of ion energies.79,80

The response function of the detector plate is assumed to be directly proportional to

the energy deposition curve (see Figure 3.7 (b)). The constant of proportionality, a, is

the sensitivity of the detector plate. This relation assumes that the energy deposition is

independent of the detector thickness and depth the ion propagates into the material1.

A similar assumption is used for the response function of the detector plate to X-rays in

Subsection 3.1.3.

The higher the ion stopping power, S, the shorter the stopping range, R. S depends on

the mass density, ρ, and atomic charge, Z, of the detector plate and incident ion charge, Zi,

energy, Ei and mass, mi, by the Bethe-Bloch equation,26

S ∝ ρZZ2
i

(
1

β2
i

ln

(
β2
i

1− β2
i

)
− 1

)
(3.9)

β2
i = 1−

(
1 +

Ei
mic2

)−2

(3.10)

Eqn. 3.9 indicates that the stopping power rises as ρ, Z and Zi increase. This suggests that

a material with a high density, high ion charge and incident ions with a high positive charge

are stopped over a short stopping range. Furthermore, the bracket term in Eqn. 3.9 is a

function of Ei and mi (see Eqn. 3.10). This term increases S when the ion energy is low and

using heavy ions.
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3.2.2 Radiochromic film

A radiochromic film (RCF) is a detector plate containing a colourless radiation-sensitive

material within a multi-layer plastic structure. This sensitive layer turns blue upon absorp-

tion of energetic radiation, such as photons and particles, when used at room temperature.

For experiments using high power lasers RCF are commonly used for spatially- and energy-

resolving the laser-driven ion beam18,81,82 and perturbing the ion beam with laser-produced

electromagnetic fields.83,84

There are a number of RCFs available for radiation measurements. For this work the

two types of RCF used are HDV23 and EBT2.4 Differences in their layout are shown in

Figure 3.8. HDV2 has a 8 µm sensitive layer supported on a 97 µm polyester base. EBT2

is a five-layer RCF with a 30 µm sensitive layer, which is thicker than the layer in HDV2.

Hence, EBT2 is more sensitive for absorbing radiation than HDV2.80

After absorbing radiation the discoloured RCF is digitised by scanning the film with a

Nikon photographic scanner. Images are stored as 8-bit RGB-scale values in a TIFF file.

RGB values per pixel determine the absorbed radiation dose and, hence, provide information

about the spatial ion beam distribution.

Figure 3.8: Structure and compositions of the layers in RCF-type HDV23 (top) and EBT24 (bottom).
The thickness and composition of the sensitive layers define the low and high sensitivities respectively.

3.2.3 Columbia Resin #39 (CR-39)

RCF absorb all types of radiation − photons, electrons and ions. Placing 13 µm Al be-

fore the RCF reduces the signal of photons below 1 keV to less than 1% via attenuation

(see Subsection 3.1.4). This optimises the detected radiation mainly to electrons and ions.

Distinguishing between electrons and ions requires a method to separate the particles. In

this work the spatially-resolved ion energy detector containing RCF is placed 5 cm from the
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target. This makes it challenging to install a magnet before the detector for deflecting elec-

trons away without perturbing the laser-target interaction or ion measurements. To separate

electrons and ions the simple approach taken is to place CR-39 plates in the detector. CR-39

is insensitive to photons and electrons, which restricts the detection to ions. In addition,

CR-39 are used to identify protons and carbon ions in the ion beam.85

CR-39 (Columbia Resin #39 or allyl diglycol carbonate) is a plastic polymer of density

1.31 g/cm3 and monomer formula C12H18O7. Initial motivation for using CR-39 dates back

to manufacturing optics for the bombers in World War II, and today it is used as light-

weight eyeglass lenses.86 CR-39 is highly insensitive to photons and electrons. Therefore

it is suitable to use as a secondary diagnostic to spatially-resolved ion energy spectrometry

measurements.87

There are various types of CR-39 used for identifying ions. For the experimental mea-

surements TASTRAK88 from Track Analysis Systems Ltd (UK) is used. TASTRAK is 1 mm

thick and records protons with an energy range of 3 MeV. Other types of CR-39 available

include BARYOTRAK89 and HARZLAS TD-185 from Japan Fukuvi Chemical Industry Co.

Ltd, which are suitable for protons with a 20 MeV and 3 MeV energy range respectively.

BARYOTRAK has a smoother surface structure compared to HARZLAS TD-1 and TAS-

TRAK, which reduces the formation of granules when etching the CR-39. Furthermore,

polyethylene terephthalate (PET) and polycarbonate (PC) are plastics that are insensitive

to protons. These can be used as a method for separating heavier ions from protons.90 Due

to availability during experiment, TASTRAK is used for the results presented in Chapter 6.

BARYOTRAK and HARZLAS TD-1 are used in the chemical etching analysis described in

the next subsection.

3.2.3.1 Multi-step chemical etching method

Ions moving through CR-39 undergo Coulomb interaction and nuclear reaction (see Subsec-

tion 3.2.1). The Coulomb interaction break the molecular bonds, which weakens the material

structure. Nuclear reaction stops the ion at a stopping range, R. R provides an estimate for

the ion energy. By chemically etching the CR-39, R can be measured.

The following description on processing and analysing CR-39 is based on research training

conducted at Kansai Photon Science Institute and Kobe University. BARYOTRAK and

HARZLAS TD-1 samples of size 40 × 20 × 1 mm3 are laser imprinted with 7× 7 mm2 area,

which are marked by numbers 1 to 5 and Cf. The marked squares 1 − 5 are irradiated by

the radioactive decay products from 241Am, and the Cf square is irradiated by the products

from 252Cf. Both radioactive nuclei decay with a high probability via alpha emission,

241
95 Am → 237

93 Np+ 4
2He [5.486 MeV] + γ (3.11)

252
98 Cf → 248

96 Cm+ 4
2He [6.217 MeV] + γ (3.12)
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A smaller number of nuclei decay via spontaneous fission, which produces ion fragments

heavier than helium. For regions 1− 4 collimator tubes of 50, 20, 10 and 1 mm length place

the 241Am source at different distances from the CR-39 (see Figure 3.9 (a) for the setup). A

3× 3 hole array is used at the source entrance and placed 1 mm from the CR-39 over region

5. The areas are irradiated by the decay and fission products for 10 minutes in ambient air.

Over the Cf region the products from 252Cf irradiate the CR-39 at a 1 mm separation for 15

minutes in vacuum because of the short travel range of the decay nuclei.

Figure 3.9: Basic method for detecting ions with CR-39. (a) A radioactive source emits alpha particles
through a collimator of length d to the CR-39. (b) By chemically etching the CR-39 in a hot KOH and
water solution etch pits emerge at the ion-irradiated regions shown in (c). The two types of CR-39
− BARYOTRAK and HARZLAS TD-1 − show individual and merged etch pits after 12 hours of
etching time.

Figure 3.9 (b) illustrates the chemical etching method on CR-39. In a large glass beaker

1.2 kg of potassium hydroxide (KOH) is dissolved in 2 l of water. The solution is heated to

70 ◦C by a hot plate. An automated revolving stirrer distributes the heat across the solution.

A plastic lid is placed on the beaker to trap the evaporating water because a decrease in the

relative water-to-KOH concentration slightly increases the etching rate. The concentration

also changes as etched CR-39 molecules contaminate the solution and modifies the etching
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rate. Therefore the solution needs replacement every six hours of total etching time for a

consistent etching rate and analysis.

After etching, the CR-39 samples are cleaned with running tap water and then air dried.

Shaded areas corresponding to the etch pits on the samples are observable. The samples

are imaged using a HSP-1000 fully automated optical microscope (FAOM).91 The FAOM

uses a monochrome line sensor to digitize the CR-39 to a 8-bit JPEG image with a spatial

resolution of 7 µm per pixel. Using a magnification up to 200× the etch pits are resolved

with a 0.35 × 0.35 µm2 resolution. The autofocus system identifies the clearest features on

the CR-39 to record sharp images with the integrated CCD camera. To ensure the autofocus

focuses on the front surface of the CR-39 during data recording rather than the backside, the

sample is displaced 3 µm away from the FAOM and out of focus beforehand. The FAOM

scans across the surface and digitises 350 × 350 µm2 images of the sample surface. The

images are automatically constructed to larger image sizes with the largest image recorded

being 40 × 20 mm2. Images of the scanned BARYOTRAK and HARZLAS TD-1 are shown

in Figure 3.9 (c). Etch pits are clearly seen in region Cf, whereas the number of etch pits

from region 5 to 1 decreases as the 241Am distance from the CR-39 increases. The small

inserted images show etch pits in regions 3 and Cf. FAOM can distinguish individual etch

pits from merged pits if the irradiated ion flux is below 105 cm−2. Otherwise an atomic force

microscope can be used to separate etch pits from ion fluxes exceeding 109 cm−2.87

The HspFit analysis software accompanying the FAOM provides rapid data acquisition of

etch pit positions, circular to elliptical shape and algorithm for separating etch pits from dust

and granules. Ellipses are drawn over the etch pits automatically identified. The ellipses

are adjusted in size and aspect ratio between major and minor diameters. A threshold

determining the permitted spacing between etch pits is used to separate single etch pits

from merged pits and dust. These parameters are used to record the number and radii of

etch pits.

The above procedure is for etching the CR-39 samples for one hour in the solution. After

analysing the scanned images, the samples are again etched for one hour, cleaned, digitised

and analysed. This approach is repeated in succession to record the etch pit radii with

etching time. The method is referred to as multi-step chemical etching.

3.2.3.2 Etch pit analysis

The evaluation of the CR-39 damage is determined from the shape and depth of the etch

pits using the multi-step chemical etching method illustrated in Figures 3.10 (a)-(c). The

black dashed line indicate etched surfaces and the solid line shows the surface etched to. The

etched surface position, G, extends from the initial surface before etching, which grows with

an etch rate, vet. The depth and radius of the etch pit are L and rs. The stopping range

is R. The energy and size of ions interacting with the material determine the shape of the
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etch pits. Figures 3.10 (a)-(c) are recreated from Kanasaki et al. 85,87

As shown in Figure 3.10 (a), a high energy ion propagates through the material without

stopping because the stopping range is greater than the material thickness, R > l. Etching

the CR-39 shows a trumpet-shaped etch pit emerge on the front surface and a bell-shaped

pit on the back surface. The shapes form because of the narrow volume damaged in the

material and the etching geometry. This type of etch pit provides a measure of the ion

energy exceeded.87

A low-energy heavy ion damages a large volume of material. Etching the material pro-

duces a cylindrically-shaped etch pit (see Figure 3.10 (b)). Pit shape is approximately

unchanging. The pit radius, rs, grows with the same etch rate, vet, removing a thickness

G at the surface. As a result, rs ≈ G. This fixes vet and, in turn, gives a measure for G.

Irradiating an unused CR-39 sample from the experiment with low energy, heavy ions and

etching the sample with those used in experiment simultaneously gives an estimate of G.

This also provides a calibration method for the etching rate.87

A light ion of low energy moves a distance R < l into the material. The ion continuously

damages the material nearly uniformly along the ion trajectory. When etching with an etch

rate, vet, the etch pit forms with a conical geometry of radius, rs. This geometry is preserved

as long as the depth of material removed along the etch pit is less than R, as in, G−L ≤ R.

L is the depth of the etch pit, which increases with etch time while the pit shape is conical.

As G− L > R with continuous etching, a phase transition in the etch pit geometry occurs.

At this point L does not change with etch time. The transition changes the geometry to a

spherical shape after etching a depth G − (R − L)) from the end of the conical phase. At

the point the spherical phase starts, rs is related to G, R and L by85,87

r2
s = 2LG− 2LR+ L2 (3.13)

From Eqn. 3.13, the etching gradient is dr2
s/dG = 2L. rs and G are estimated from the

growing etch pit radii of the light and heavy ions. The spherical phase at which Eqn. 3.13

applies occurs when r2
s increases linearly with G. Hence, dr2

s/dG is interpolated at this

phase. Hence, R is determined from rs and G by rewriting Eqn. 3.13 as85,87

R = G+
1

4

(
dr2
s

dG

)
− r2

s

/(
dr2
s

dG

)
(3.14)
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Figure 3.10: Etch pit phases for different types and energies of ions. Dashed lines indicate etched
surfaces and solid lines is the current surface after etching. (a) A high-energy ion penetrates the CR-
39 without stopping. A trumpet- and bell-shaped etch pit form at the front and back surface. (b) A
low-energy, heavy ion damages a wide region, forming a cylindrical etch pit whose radius is related to
the etch rate. (c) A low-energy, light ion creates a conical etch pit of depth L up to removing R− L
from the surface. Further etching changes the pit geometry to a spherical shape. Measuring the etch
pit radius rs at the spherical phase provides a measure of R.

Sample measurements of etch pit radii due to alpha, rs, and heavy fission fragments,
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G, from 252Cf growing with time are shown in Figure 3.11 (a). The error bars indicate

the standard error in rs and G. Notice that G is growing at a slightly decreasing rate

towards later etching time. This is because the etching rate slows down with a change in the

potassium hydroxide concentration. For accuracy, the solution should be replaced every six

hours of etching time.

The measurements are plotted in Figure 3.11 (b) as r2
s against G. During the conical

phase of the etch pit geometry, r2
s is continuously growing with G. The spherical phase starts

as r2
s changes linearly with G, which begins when G = (51.1±0.3) and rs = (38.9±0.1) µm.

A straight line is fitted to the data to interpolate the gradient as dr2
s/dG = (127 ± 3) µm.

Hence, using Eqn. 3.14 at G = (51.1± 0.3) and rs = (38.9± 0.1) µm results in the stopping

range of the alpha particle to be R = (71± 1) µm.

The estimated stopping range, R, is compared to expected stopping power calculated us-

ing the Stopping and Range of Ions in Matter (SRIM) code.12 In the setup the ion projectiles

are alpha particles and the irradiated material is given as CR-39. The calculations provide

stopping powers and ranges for different ion energies, Ei, used. For the estimated R above,

Ei = (8.83± 0.01) MeV. This is greater than the expected 6.217 MeV. The discrepancy may

arise from the potassium hydroxide concentration changing with time.

Figure 3.11: Example measurements of etch pit radii produced by the 4He and fission fragments, rs
and G, from 252Cf with (a) etch time and (b) comparing r2s and G.
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Furthermore, the sensitivity of CR-39 to interact with incident ions is estimated from

the etch pit radius, rs, and etched material thickness, G,87

S =
1 +

(
rs/G

)2
1−

(
rs/G

)2 (3.15)

If rs is large then S will be large. The sensitivity depends on the concentration of dioxide (O2)

molecules in the CR-39. O2 oxidises to hydroxide (OH) when reacting with an energetic ion.

The reaction enhances the damaged region, which in turn results in a larger rs when etching.

As a result, the accuracy of measuring the stopping range depends on the concentration of

O2 before the CR-39 is irradiated by energetic ions. Minimizing the outgassing of O2 requires

storing CR-39 in a freezer under atmospheric pressure. Therefore, CR-39 should not be kept

under vacuum. Kanasaki et al. 87 shows that the expected rs reduces to 90% after 1 hour

and 25% after 10 hours in vacuum.

Care must be taken when handling CR-39. If the material is subject to external pressure,

the surface is damaged. This changes the etch rate uniformity across the surface, leading to

the formation of artefacts when etching which affects the accuracy of measuring rs. Therefore

it is best practice to handle CR-39 on the frame and minimize handling time.

3.2.4 Diagnostic description

For the results in Chapter 6 the spatially-resolved ion energy detector is used. This detector

is a stack composed of attenuating plates, RCFs and CR-39. The detector used RCF for

spatially resolving the ion (and electron) beam distributions. Plates made of aluminium,

mylar and iron are placed between RCFs to attenuate the ions. This results in measuring

increasing ion energies on the RCFs into the detector stack. The identification of protons

and carbon ions is achieved by including CR-39 inside the stack. The stack designs used

in this work are described in the experimental setup in Chapter 6. For calculating the ion

energies detected by each RCF and CR-39, the stopping powers of all materials used in the

stack designs are obtained from the SRIM code.12 These are imported to a MATLAB R©

code for calculating energy deposition curves. The peak deposition is assumed to be the ion

energy detected.



Chapter 4

Double plasma mirror systems for

enhancing the contrast of high

power laser pulses

Much research using high power laser facilities focus on optimising the laser-to-target cou-

pling for generating particle and radiation sources efficiently. This motivates the development

of advanced and sophisticated target technology. These include the fabrication of targets

with micro-structured surfaces7 and down to one atom thickness.11 The main challenge of

using such targets is ensuring that the near-solid density target integrity is preserved during

the early interaction with the laser pulse. If significantly intense, the pedestal and prepulses

ahead of the main peak cause hydrodynamic processes that expand the target to a large

plasma with densities lower than near-solid. In addition, these temporal intensity struc-

tures, such as amplified spontaneous emission (ASE) seeded from noise, fluctuate in time

and intensity. These can change the plasma scale length shot-by-shot. A solution for a high

intensity laser interaction on solid targets is to suppress the pedestal and prepulses using a

double plasma mirror (DPM).

This chapter outlines the use and performance of a DPM assembly. These assemblies

are designed to the requirements of high power laser experiments. Discussions on physical

and mechanical constraints are addressed for two designs: a four-shot cycle DPM system on

the Vulcan petawatt laser, and a compact 3D-printed DPM holder on the LFEX laser. This

work supports the development of methods for mitigating the interaction early in the laser

by using the DPM as a tool for controlling this interaction.92

4.1 Temporal intensity structure of a high power laser

The Vulcan petawatt laser based at the Central Laser Facility, Rutherford Appleton Labo-

ratory, UK, uses the optical parametric chirped pulse amplification (OPCPA) technology93

63



CHAPTER 4. DOUBLE PLASMA MIRROR SYSTEMS 64

for a high-contrast, high-intensity laser pulse. This approach is common to high power laser

facilities worldwide.92,94–96 The key stages in an OPCPA are shown in Figure 4.1 - for de-

tails see Danson et al. 93 In summary, the main Nd:glass oscillator (stage 1 in Figure 4.1)

injects a low-energy laser pulse through the optical parametric amplifier (OPA)97 to pre-

amplify the pulse by at least three orders of magnitude (stage 2). Next, the laser is amplified

to high energies and compressed to short pulse duration using the chirped pulse amplifier

(CPA).13 This was the subject of the 2018 Nobel Prize in Physics awarded to Strickland 98

and Mourou 99 . The CPA first stretches the laser pulse using an optical system consisting

of two large telescopes and a pair of reflective gratings (stage 3). This ensures that the

optical components will not be damaged during and after the amplification stage that fol-

lows the stretching.30 The amplifier boosts the laser energy by more than four orders of

magnitude (stage 4). Thereafter, a pair of large reflection gratings removes the optical chirp

to re-compress the pulse to picosecond duration and shorter (stage 5). Finally, an off-axis

parabolic mirror focuses the laser to a micron-sized spot (stage 6), delivering a highly intense

laser pulse on target (stage 7).

Figure 4.1: Flow diagram showing the key stages of delivering a high power laser pulse on target
using the Vulcan petawatt laser. A drawing of the delivered on-target laser pulse shows five features
in the temporal intensity profile: (i) pedestal, (ii) prepulses, (iii) rising edge, (iv) main peak and (v)
postpulses.

Ideally, the highly intense laser pulse should be a single sharp peak. In reality, as depicted

in Figure 4.1, the laser has a temporal intensity structure comprising of: (i) a pedestal

arising from ASE that can occur many nanoseconds before the main peak; (ii) prepulses

from microscopic imperfections in the optics of the laser system; (iii) rising edge which
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may arise from, for example, the amplification of parametric fluorescence in the OPA and

scattering in the gratings; (iv) main peak; and (v) postpulses. Features (i)-(iii) will interact

with the target ahead of the main peak. If the laser irradiates a overdense target, these early

interactions heat30,40 and, when sufficiently intense, ionize5,100 the target. In turn, the target

expands hydrodynamically. In addition, these temporal features fluctuate in intensity and

time between shots. This is undesired for experiments that require a reliable intense laser

pulse and targets with high densities. Therefore it is desired, and in many cases necessary,

to suppress any early interaction in the laser. Before discussing a method for achieving this,

the origin of the features in the laser pulse due to the OPCPA and the concept of “laser

contrast” will be described to understand the challenge of controlling the temporal shape of

the laser pulse.

4.1.1 The pedestal and rising edge

The CPA is the key component generating the high energy and intense laser pulse. The

drawback of this technology is that it produces two inherent temporal intensity structures

in the pulse: the pedestal and rising edge. These are indicated in Figure 4.1 as (i) and (iii).

The pedestal is a result of amplified spontaneous emission (ASE) occurring in the CPA

amplifier.5 The amplifier consists of disks operating at a high gain over a few milliseconds

before injecting the main laser pulse into the system.101 The high gain nature leads to

the disks losing energy by spontaneously emitting photons. Consequently, both the main

laser pulse and this spontaneous emission will be amplified during operation. The ASE is

incoherent and has a bandwidth, which results in the compressor smearing the signal instead

of compressing. This in turn produces an intensity continuum spanning at least a nanosecond

ahead of the main peak, as depicted by (i) in Figure 4.1.

The rising edge is a region of increasing laser intensity a few picoseconds ahead of the main

peak. The large reflection gratings in the stretcher of the CPA extend the pulse duration

by spectrally chirping the laser pulse. The laser has a bandwidth, which is a spectral range

typically in orders of nanometers for a pico- to sub-picosecond laser pulse.93,102 The broader

the bandwidth, the shorter the compressed pulse duration. The stretched laser is then

amplified. Thereafter, the reflection gratings in the compressor spectrally de-chirps the laser

in order to re-compress the pulse duration to a sharp intensity peak. The interaction of the

laser with the gratings results in spectral phase modulation that broadens the pulse duration.

This phase error in the stretcher is also amplified by the amplifier. The interaction produce

the rising edge depicted by (iii) in Figure 4.1.

4.1.2 Prepulses

Illustrated by feature (ii) in Figure 4.1, prepulses are rapid sharp intensity bursts that interact

with the target hundreds of picoseconds before the main peak. Prepulses can be created
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from microscopic defects in the optics.97 On the Vulcan petawatt laser system, the multi-

pass amplifiers and unwanted reflections from the optics between these amplifiers generate

prepulses, which are challenging to correct. The high-gain amplifier increases the prepulse

intensities, which can fluctuate between shots. To minimise amplifying the prepulses the

OPA is included to pre-amplify the main peak97,103 (see stage 2 in Figure 4.1).

The prepulses are of greater concern as they can cause short and rapid hydrodynamic

disruptions at the target surface early in the laser-target interaction. Without probing the

laser pulse on-shot or predicting their occurrence the details of the laser-matter interaction

are difficult to study.

The postpulses emerging hundreds of picoseconds after the main peak in the laser (see

feature (v) in Figure 4.1) are produced by the same process as the prepulses. Postpulses cause

disruptions to the laser-target interaction after the main peak. This can result in changes to

the radiation and particle generation in the target, which influences time-integrated diagnos-

tic measurements (see Chapter 3). In this work it is assumed that the target is disintegrated

before the postpulses reach the target. This implies that the impact of postpulses to diag-

nostics measurements are ignored.

4.1.3 Laser contrast

In practice5,97,103,104 the laser contrast is defined as the fraction of pedestal, prepulses and

rising edge to the peak intensity of the main peak. The contrast provides a measure to

assess the impact of the features ahead of the main peak on the laser-target interaction.

Ideally, the peak intensity of any feature should be below the ionisation threshold of the

target material. Targets made of aluminium have a threshold of 3×1010 W/cm2. For silicon

and carbon-based materials studied in this thesis, the thresholds are around 9 × 1010 and

2 × 1012 W/cm2. These are calculated using the NIST database for ionisation energies52

and Eqn. 2.13, which assumes ionisation to occur due to barrier-suppression (see Subsection

2.2.3). The ionisation threshold for silicon coincides with results by Pronko et al. 100 .

For measuring the contrast the shape of the temporal laser profile must be known. On

the Vulcan petawatt laser the shape is evaluated over a number of measurements taken with

a Sequoia, which is a single-shot third-order cross-correlator.102 Two such diagnostics are

used: one before the CPA, in the so-called ‘front end’, and after recompressing the pulse.

In the method an intensity cross correlation is measured on one shot between both Sequoia.

This measurement is a convolution of the temporal pulse shape and a reference pulse used by

the diagnostic. The reference is initially a guessed pulse shape with a pulse duration shorter

than the actual laser pulse. Using a Fourier transform the measurement is deconvolved by

the reference shape to obtain a new reference pulse. Another intensity cross-correlation is

measured and deconvolved for the next reference pulse. The measurement and deconvolution

are repeated over a sequence of shots until the deconvolved pulse shape resembles the previous
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measurements. This is referred to as a contrast scan, and the last deconvolved pulse shape

is defined as the temporal laser profile. Robust measurements require a high shot rate.102

A 2 Hz shot rate is used. Consequently, the amplifiers are not in operation for the cross-

correlation because of the 20-minute cooling time.105 Thermal stabilisation is important to

reduce shot-to-shot fluctuations in the pulse shape of the laser. Ideally, a contrast scan

should be taken when operating the amplifiers and a full energy shot. This would provide

more accurate details of the true temporal intensity profile and understanding the laser

interaction on target.

Figure 4.2: Temporal laser profile of the Vulcan petawatt laser from a contrast scan using a Sequoia
at optimum performance (courtesy of I. Musgrave). The peak intensity is set to I0 = 3.3 × 1020

W/cm2. Ionisation thresholds, Ith, for carbon, silicon and aluminium are compared to the profile.

Figure 4.2 shows the temporal intensity profile of the Vulcan petawatt laser using the Se-

quoia after the recompressing stage. In the contrast scan the laser is at optimum performance

with a pulse duration of 1 ps at full-width-half-maximum (FWHM). The main peak is set to

0 ns. Pedestal, prepulses and rising edge are shown at < 0 ns pulse time, and postpulses at

> 0 ns. As taken from Figure 4.2, the laser contrast is 10−10 at 1 ns for the pedestal, 10−8 for

the first prepulse at ∼170 ps and 10−5 at 10 ps inside the rising edge. Typically a contrast

scan is shown with the temporal profile normalised to the maximum intensity of the laser.

The profile in Figure 4.2 is multiplied by a peak intensity of I0 = 3.3× 1020 W/cm2, which

is the laser intensity used on experiments. This allows comparing the ionisation thresholds,

Ith, for aluminium, silicon and carbon based targets, which correspond to the dashed lines in

Figure 4.2. As seen in Figure 4.2, the pedestal will ionise aluminium, whereas the prepulses
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ionise all three materials. The early interaction pose a challenge in preserving the near-solid

target integrity before the main peak.

4.2 Contrast cleaning using plasma mirrors

One method for suppressing the intensity structure early in the laser pulse and resulting

pre-plasma expansion on a solid target is the use of a contrast cleaning technique, such as

using plasma mirrors. The design of these mirrors can vary between anti-reflective coated

glass,5 iron oxide doped polymer tape106 and suspended, ultra-thin liquid crystal film.107

Specific to this work, the plasma mirror is a plano-plano fused silica transparent plate with

an anti-reflective coating on both front and back surfaces. The anti-reflective coating, which

is a material that reduces the reflectivity, is deposited on the surface of the fused silica plates.

This coating can reduce the reflectivity by more than one order of magnitude depending on

the laser wavelength, λ0.8,104

For high power laser experiments the plasma mirror is used to transmit the low intensity

signal before the main peak of the pulse through the mirror. As the induced intensity

increases and exceeds the ionisation threshold of the mirror (around 1012 W/cm2), the mirror

absorbs laser energy mainly via multiphoton ionisation.5,108 A plasma forms on the surface

that rapidly increases the electron density, ne, towards critical density, ncr. For λ0 = 1.054

µm, ncr = 1.1× 1021 cm−3. At this point the laser pulse is reflected by the plasma surface.

The reflectivity increases as more of the mirror surface ablates with increasing laser intensity.

As the intensity approaches ∼ 1015 W/cm2 the ionisation begins to saturate and the whole

irradiated plasma surface exceeds ncr. Part of the rising edge and remainder of the laser pulse

are reflected with an efficiency that may exceed 80 %, resulting in an enhanced contrast on

target.5,6 As the interaction continues the plasma mirror will switch off once hydrodynamic

motion of the plasma at the front surface occurs. This can occur within 15 ps.109 Note that

this description assumes that the laser pulse has a good contrast to begin with. A laser

with poor contrast may ionise the plasma mirrors early in the pulse, which switches off the

mirror due to hydrodynamic motion and can occur before the main peak arrives. Therefore

an excellent laser design is necessary to ensure that the early interaction ahead of the main

peak is minimised before the plasma mirror.

The laser contrast can be further enhanced by simply combining two or more plasma

mirrors. This has the advantage of further suppressing the temporal intensity structure and,

as a result, delay pre-plasma formation on a solid-density target front surface with the ad-

ditional plasma mirror. The design constraints for this double plasma mirror (DPM) are

to ensure sufficient intensity on each mirror surface such that the main peak is delivered

to the target before the mirror surfaces move. The irradiated target density and topogra-

phy determines the details of the laser energy coupling. Hence, using a DPM provides a
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method of controlling the shot-to-shot variation in the laser-solid interactions. According

to previous use of DPM the contrast is expected to improve by more than three orders of

magnitude.109,110

Plasma mirrors have been previously used on high power laser systems for improving

the laser contrast. A single planar plasma mirror has been reported to make the use of

sub-micron thin targets possible and increase the proton energies.111 An increase in pro-

ton energies18,82,112 as well as improvement in X-ray spectroscopy measurements32,113 was

achieved on the Vulcan petawatt laser using a plasma mirror. Proton energies further in-

creased by almost double the energy using an elliptically-shaped concave plasma mirror over

a planar mirror surface.114 A DPM has been used previously for higher order harmonic

generation,109 including the Vulcan petawatt laser.110 Such studies required control of the

plasma density scale length through plasma mirrors, which in turn can provide a method for

improving the generation of Kα yield as much as a factor of eight.115

4.2.1 Basic double plasma mirror model

The effect of plasma mirrors on the Vulcan petawatt laser is analysed by using the reflectivity

model developed by Bagnoud and Wagner 5 . Their work measured the reflectivity RPM at

laser intensities on the mirror surface, IPM , between 1012 and 1015 W/cm2 shown by the

error bars in Figure 4.3. These measurements may be compared to a hyperbolic function of

the form

RPM (%) = 35 arctan(1.8 log10(IPM )− 24) + 42 (4.1)

This is shown as the blue curve in Figure 4.3, which provides a good description of the plasma

mirror reflectivity with laser intensity. Above 1015 W/cm2, RPM is assumed to saturate at

∼85 %.

Below the ionisation threshold of the plasma mirror (< 1012 W/cm2), RPM depends on

λ0 and laser incidence angle on the mirror surface relative to surface normal, θPM . Mea-

surements provided by Thorlabs Ltd. Technical Support show these dependencies in Figures

4.4 (a) and (b). The measurements correspond to the Thorlabs N-BK7 Broadband-B anti-

reflective coated standard design suitable for reducing RPM when λ0 = 1.054 µm. An

uncoated N-BK7 (NC (not coated), black dashed line) is compared to the coated mirrors (C

(coated), solid lines) in Figure 4.4 (a), whose reflectivity is three times higher than plotted.

The reflectivity profiles of the coated mirrors correspond to θPM = 0, 10, 20, 30 and 45◦.

At these values of θPM and λ0 = 1.054 µm, RPM is approximated with an exponential in

Figure 4.4 (b).

For optimum suppression of the pedestal and prepulses a small θPM is desired. The

anti-reflective coating may improve the contrast by an order of magnitude, inline with mea-

surements by Doumy et al. 104
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Figure 4.3: Reflectivity, RPM , with laser intensity on a plasma mirror, IPM , following Eqn. 4.1
(blue curve), as interpolated from the measurements (red error bars) from Bagnoud and Wagner 5 .
Horizontal dashed lines at RPM = 0.47 and 85% indicate the lower and upper limits to RPM .

Figure 4.4: (a) Reflectivity, RPM , with respect to wavelength λ0 for a Thorlabs N-BK7 B-coated
plasma mirror at different angles of laser incidence, θPM . The dashed profile is RPM without anti-
reflective coating and scaled down by a factor of three for comparison. (b) RPM at λ0 = 1.054µm as
an exponential function of θPM . Courtesy of Thorlabs Ltd. Technical Support.

To determine the expected intensity on target after the laser reflects off one or two plasma

mirrors, a simple geometric model for the DPM is constructed. A schematic of the model

is depicted in Figure 4.5. The first and second mirror are placed a distance s1 and s2 from
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the target at best focus. The laser has a focal number f# and spot diameter at best focus

d0. The laser intensity on target is I0F (t), where I0 is the peak intensity and F (t) describes

the normalised to the peak of the temporal laser profile (see Figure 4.2). The dashed red

regions indicate the transmission of the laser through the plasma mirrors before ionising the

surface. When the mirrors switch on the laser is incident at angles θ1 and θ2 relative to

surface normal. The major diameters of the laser spot on the mirrors are d1 and d2, and

the corresponding laser intensities are I1 and I2. Reflectivities R1 and R2 both describe the

reflectivity curve shown in Figure 4.3, which is a function of laser intensity, wavelength, λ0,

and incidence angle on the mirror surface. Using this geometric model, the final intensity on

target, If , is derived using the following sets of equations:

Figure 4.5: Schematic illustration of the DPM geometry. The subscripts identify the first and second
plasma mirror (1 and 2) assuming the intensity is spatially constant like a top-hat function.
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If (t) = I0F (t)R1(I1)R2(I2) (4.2)

I1 = I0F (t)

(
d0

d1

)2

(4.3)

I2 = I0F (t)R1(I1)

(
d0

d2

)2

(4.4)
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(
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(
1
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)
+ d0

)
(4.5)

d2 =
1

cos θ2

(
2s2 tan

(
1

2f#

)
+ d0

)
(4.6)

The DPM model is used on the Vulcan petawatt laser using Eqns. 4.2-4.6 to calculate

the contrast improvement. In this work the angle of incidence is θ1 = θ2 = 20◦ for both

plasma mirrors. The reflectivities R1 and R2 follow Eqn. 4.1 as represented in Figure 4.3.

The lower limit for the reflectivity is 0.47% at intensities below 1012 W/cm2, as taken from

Figure 4.4 (b). Upper limit is 85% at 1015 W/cm2. The distances of the first and second

mirror from target are s1 = 4.7 cm and s2 = 3 cm. The temporal laser profile at best focus

with a peak intensity of I0 = 3.3×1020 W/cm2 between −0.45 and 0.15 ns is shown in Figure

4.2. The laser is focused on target using the f/3.1 off-axis parabolic mirror for f# = 3.1 and

d0 = 6 µm.

For calculating the contrast improvement of a single plasma mirror using Eqns. 4.2-4.6,

R2 = 1 and all terms corresponding to the second plasma mirror are removed.

Using Eqns. 4.2-4.6 with the above setups the calculations for one and two plasma

mirrors produce the temporal laser profiles shown in green and red in Figure 4.6. The

blue profile represents the Vulcan petawatt laser with no plasma mirrors. The calculations

predict a suppression for the pedestal and prepulses by a factor of 5× 10−3 using one mirror

and 2 × 10−5 with two mirrors. One mirror delays the early interaction to the prepulses

for aluminium and silicon, as inferred from comparing the ionisation thresholds, Ith, to the

green profile in Figure 4.6. By using two mirrors the ionisation occurs tens of picoseconds

before the main peak for all target materials given. This suggests that the impact of the

pedestal and prepulses in the laser-target interaction is all but eliminated when using a DPM.

Furthermore, the upper reflectivity limit of 85 % for intensities exceeding 1015 W/cm2 reduces

the peak intensity on target from 3.3×1020 to 1.9×1020 W/cm2 using one mirror. With two

mirrors the peak intensity drops to 1.2× 1020 W/cm2. In addition, the integrated intensity

from −0.45 to 0.15 ns in the temporal laser profile decreases to 44% using one mirror and

24% using two mirrors.
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Figure 4.6: Enhancing the contrast of the temporal intensity profile of Vulcan petawatt laser (blue)
using one (green) and two (red) plasma mirrors. Ionisation thresholds, Ith, for carbon, silicon and
aluminium are compared to the profile.

In addition, the calculations also indicate that the onset of hydrodynamic motion on the

mirror surfaces start close to the peak. Hydrodynamic motion is assumed to start when the

laser exceeds 1012 W/cm2. Using Eqns. 4.3-4.6 the peak intensities on the first and second

plasma mirrors are I1 = 4.9 × 1013 and I2 = 6.9 × 1013 W/cm2. Multiplying these on the

normalised temporal laser profile, F (t), predicts the onset of hydrodynamic motion at −2

and −1 ps before the main peak. Therefore, the setup for the DPM is chosen appropriately

for ensuring a high-contrast and ultra-intense laser pulse interacts with the target.

4.2.2 Radiative-hydrodynamic modelling on contrast cleaning using He-

lios

With the basic DPM model predicting the suppression of the pedestal and prepulses, it

is important to understand when hydrodynamic processes occur. Ideally, the DPM needs

to switch on the plasma mirrors less than 10 ps before the main peak of the laser pulse.

This ensures that ultra-intense laser interaction with the target is optimised. In turn, the

DPM will also define the plasma density scale length, Lcr. Recall from Figures ?? that the

combination of Lcr and laser incidence angle determine the laser-to-target energy coupling.

Therefore, interpreting the length of Lcr close to the peak of the laser pulse is important.

To determine the onset of hydrodynamic processes and Lcr at the target surface one-

dimensional (1D) Lagrangian radiation-hydrodynamic calculations were studied using the
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Helios code by Prism Computational Sciences Inc.116.

4.2.2.1 Helios setup

Figure 4.7 illustrates the setup of the 1D Helios calculations. The Vulcan petawatt laser

of wavelength λ0 = 1.054 µm irradiates the target from −504 to −4 ps before the peak of

the pulse. The intensity of the laser pulse starts at 1010 W/cm2. The intensity is reduced

by two and four orders of magnitude in subsequent runs inline with the single and double

plasma mirrors modelled in Subsection 4.2.1 (see Figure 4.6). The laser irradiates at an

incidence angle of θ0 = 20◦ a 15 µm thick planar silicon slab. The initial density is 2.33

g/cm3. Electrons and ions in the slab are set to follow a two-temperature Maxwellian model

starting at room temperature (25 meV). The slab is divided into two regions. The irradiated

front side is 0.5 µm containing 200 zones. The rear side is 14.5 µm with 300 zones. Zones

are volume elements that conserve mass and show the motion of the plasma as a fluid. Zones

are depicted in Figure 4.7 as the sections enclosed by the orange lines. The origin of the

simulation space is at the initial position of the slab front surface. The fluid motion driven

by the laser conserves momentum and energy across the simulation space. Hence, the fluid

motion is calculated using conservation equations (see Eqns. 2.26-2.28 in Subsection 2.2.9).

Hydrodynamics processes are calculated in Helios by a set of equation of states and opacities

based on the PROPACEOS database.116 The hydrodynamics assumes a free expansion when

the fluid temperature due to the laser exceeds 30 meV (above room temperature).

Figure 4.7: Illustration of the setup in the Helios code for modelling the early interaction of the laser
pulse with a 15 µm silicon slab.

In Helios the zones are feathered, which means that within a defined fluid region the

thinnest zones are close to the outer boundaries. This results in a mass difference between

adjacent zones and, in turn, affect numeric consistency. For reliable calculations in the 0.5

µm front side slab, 400 zones/µm are used. This ensures the mass difference between the

zones remains close to unity and does not exceed 1.5. The 14.5 µm rear side slab is least
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perturbed by the early laser interaction and is assumed not to affect the accuracy of the

calculations significantly. Hence, ∼21 zones/µm are used for the rear side. The thickness

of the front side is based on test calculations on Helios looking for the amount of target

material involved in the early interaction with a laser pedestal at 1010 W/cm2.

Helios models laser absorption using inverse bremsstrahlung (see Subsection 2.2.4). The

corresponding absorption efficiency depends on the product I0λ
2
0. As I0λ

2
0 the absorption

efficiency rises because the plasma density increases. As a result the plasma becomes hotter,

reducing the electron-ion collision rates. Consequently, laser absorption couples directly into

the plasma, which is most efficient at the critical density surface of the plasma. Here the

laser frequency is comparable to the plasma frequency, ω0 ≈ ωpe. The evanescent laser field

reaching this point should drive resonance absorption (see Subsection 2.2.5), which is not

modelled in Helios. Resonance absorption becomes more important and eventually dominates

over inverse bremsstrahlung when I0λ
2
2 ≥ 1015 W µm2/cm2. Therefore, calculations stop

when I0 > 1015 W/cm2.

4.2.2.2 Onset of target hydrodynamics

Figures 4.8 (a)-(c) show the longitudinal position, x, of the critical density surface where

ne = ncr cos2(θ0) using pedestal intensities of 1010, 108 and 106 W/cm2 (marked by the

dashed blue, green and red horizontal lines respectively). The dotted lines show the used

temporal intensity profiles relative to x with simulation time, tsim. x is normalised to the

laser wavelength λ0 = 1.054 µm, where x/λ0 = 0 is the initial position of the critical

surface. The density at the surface is ne ≈ 8.8 × 1020 cm−3 at laser incidence angle θ0 =

20◦. The corresponding plasma density scale length at this surface is Lcr = ne/(dne/dx),

which is shown for different pedestal intensities in Figures 4.8 (d)-(f). Lcr is normalised to

λ0 because the laser absorption depends on how laser wavelength compares to the plasma

wave30. Figures 4.8 (a)-(f) show qualitative differences. For a qualitative comparison it is

necessary to notice the changes in the vertical and horizontal axes between figures.

In the case without using plasma mirrors (see Figure 4.8 (a) and (d)) the onset of hy-

drodynamic motion at time, tHD, occurs at the start of the calculations. This is inferred

from x/λ0 and Lcr/λ0 increasing. Hence, tHD = −504 ps. Note that the pedestal inten-

sity at Ip = 1010 W/cm2 is less than the ionisation threshold of silicon at Ith = 9 × 1010

W/cm2. Ith is calculated for barrier suppression ionisation. Processes such as multiphoton

ionisation30,100 occur at intensities lower than Ith and comparable to Ip, and in turn trigger

hydrodynamic motion. The early onset and high laser intensities in the pulse lead to changes

in x and Lcr of a few laser wavelengths. The calculation finishes at time tend = −16 fs where

the laser intensity reaches 1015 W/cm2.

The calculations clearly show that the critical density surface remains close to the initial

position and plasma density scale length becomes smaller when using one (see Figures 4.8
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(b) and (e)) two plasma mirrors (see Figures 4.8 (c) and (f)). Using one mirror the surface

position and density scale length at the end of the calculations decrease from x/λ0 = (7.4±
0.3) to (2.0± 0.1) and Lcr/λ0 = (7.4± 0.5) to (1.5± 0.2). Error in x is the zone size and Lcr

is from interpolating dncr/dx at the critical density surface. With two mirrors the values

are reduced further to x/λ0 = (0.6 ± 0.1) and Lcr/λ0 = (0.54 ± 0.05). These results are

summarised in Table 4.1. The reduced surface displacements are smaller than the 6 µm

spot size of the Vulcan petawatt laser at best focus, which indicates that the hydrodynamic

expansion is nearly one dimensional. This provides support for using Helios for preplasma

calculations. Furthermore, the reduced density scale length implies a steepening of the

density gradient at the surface. This indicates that the main peak may interact with a

near-solid target. This is important for nano-thin solid targets like graphene (see Chapter

6). On the other hand, the coupling efficiency may drop with a reduced density scale length.

Improving the coupling efficiency is studied in Chapter 5 using microstructured targets.

Figure 4.8: Helios calculations of the normalised plasma surface position, x/λ0, with time tsim using
(a) Ip = 1010, (b) 108 and (c) 106 W/cm2. (d)-(f) show the corresponding normalised plasma density
scale lengths, Lcr/λ0.
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Table 4.1: Summary of Helios calculations for the used starting intensities, I0, inferred onset of
hydrodynamic motion, tHD, simulation end time, tend and plasma density scale lengths, Lcr, at tend.

Number of plasma mirrors 0 1 2

I0 (W/cm2) 1010 108 106

tHD (ps) −504 −170 −36

tend (ps) −16 −6 −4

x/λ0[tsim = tend] (7.4± 0.4) (2.0± 0.1) (0.6± 0.1)

Lcr/λ0[tsim = tend] (7.4± 0.5) (1.5± 0.2) (0.54± 0.05)

The timing for hydrodynamic motion to start, tHD, is delayed when using plasma mirrors

as summarised in Table 4.1. With one mirror (see Figures 4.8 (b) and (e)) the onset changes

from tHD = −504 to −170 ps, which coincides with the timing of the first prepulse. This

suggests that the interaction of the prepulses with the target triggers hydrodynamic motion.

By using two mirrors the calculations predict that the prepulses do not cause hydrodynamic

motion, as seen in Figures 4.8 (c) and (f). The onset is delayed to tHD = −36 ps, which

corresponds to a time within the rising edge and is much closer to the main peak. Therefore,

using DPMs provides a solution for suppressing the interaction of the pedestal and prepulses

with a solid target. This also suggests uncertainties in the plasma expansion from shot to

shot can become small.

4.3 Designs of double plasma mirror assemblies for high power

laser experiments

The DPM model and Helios calculations lend support that a DPM ensures high-contrast,

ultra-intense laser-solid interaction. The use of a DPM has been previously been achieved.109,110

The design outlined in this thesis differ by how they are used by two approaches: increas-

ing the rate of data acquisition on the Vulcan petawatt laser with a four-shot cycle DPM

assembly; and installing a compact 3D-printed DPM holder on the LFEX laser.

4.3.1 Four-shot cycle double plasma mirror system

The DPM assembly used successfully on the Vulcan petawatt laser is shown in Figure 4.9.

The assembly uses custom-designed plasma mirrors manufactured by Manx Precision Optics.

The mirrors are a pair of 12 × 2 cm2 N-BK7 glass slabs with anti-reflective coating on

both front and rear surfaces. The reflectivity is assumed to follow the model described in

Subsection 4.2.1. On the front surface the top and bottom of the mirrors are coated with

a highly reflective silver coating. The coating covers 2 × 2 cm2 and 1 × 2 cm2 at top and

bottom. In Figure 4.9 (a) the DPM assembly sits close to target chamber centre (TCC)

after the large mirror and off-axis parabola. Figures 4.9 (b) and (c) show close-up views at
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different angles of the assembly. The separation of the first and second mirror from target are

4.7 and 3 cm. Both mirror surface normals are inclined 20◦ to the incident laser. Using these

parameters in the DPM model and Helios calculations predict a high-contrast, ultra-intense

laser interaction with a near-solid target.

The mechanical counterpart of the DPM assembly was designed at Techinsche Universität

Darmstadt and developed at Central Laser Facility (CLF, UK). The stage drivers translate

the DPM in x, y, z, polar and azimuthal axes. The mirrors slot into the stage and are

secured by tightening the grub screws. Over-tightening is avoided to prevent bending the

mirrors. The component holding the mirrors detaches from the assembly using a kinematic

base, which removes and inserts the DPM quickly. The mirror design provides an approach

for using the DPM for four shots in one pump down of the chamber to vacuum. Ensuring

four shots with one DPM requires installing metallic plates before the mirrors for on-shot

debris protection (not shown in Figure 4.9).

The highly reflective silver coating on the mirrors is useful for target alignment. Two

beams are used for alignment to target chamber centre (TCC): An 1.054 µm beam transmit-

ted through the compressor, and a 0.532 µm laser in the target area. The DPM assembly is

installed with the desired parameters from the model calculations. Both alignment beams

reflect off the silver coating at the mirror top to the new position of TCC at which a reference

target is placed. The mirrors are translated up to reflect the beams off the bottom coating.

Any offset from the new TCC position is corrected by adjusting the mirror position and

angle as needed. This is repeated until both top and bottom coatings direct the beams to

TCC.
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Figure 4.9: 3D CAD diagrams of the DPM assembly (a) inside the Vulcan petawatt target chamber.
(b) and (c) are close-up views of the assembly from above and at an angle. Courtesy of N. W.
Neumann.

After defining the new TCC, the DPM is taken outside the chamber for constructing a

pre-alignment system. Two parallel 0.532 µm laser beams reflect a beam on the top and

another on the bottom silver coated surfaces. The beams project onto a wall several metres

away from the DPM, which are marked for alignment references. The second mirror is then

removed and the references from reflecting the beams off only the first mirror is marked as

well. Another pair of references for the beams without any mirrors is taken to fix the position

of the pre-alignment beams. The pre-alignment system is used for preparing a new DPM

for the next four-shot cycle. New pairs of mirrors are placed and positioned such that the

pre-alignment beams irradiate the references. This provides a reproducible DPM alignment

to the target.

The total reflectivity of the DPM, which is a measure of the laser energy across the

time-integrated pulse, is measured using a calorimeter. The laser defocuses over 80 cm past

TCC and then irradiates the 25 cm diameter detector plate. On shots without DPM 90 J

of laser energy irradiate the calorimeter. With the DPM assembly 90 and 500 J of laser

energy are used. The calorimeter absorbs the energy and transmits the measured signal to

an oscilloscope outside the target area. The signal results in a voltage increase up to a peak.

Converting this voltage increase to energy provides a measure of the laser energy. By taking

the ratio of the recorded energy with and without DPM gives a total reflectivity of (27±5)%.

This is in agreement with the reduced laser energy calculated with the DPM model. The

result suggests that the DPM is working as expected. Therefore, it is assumed that the DPM
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suppresses the pedestal and prepulses ahead of the main peak of the laser and improved the

contrast as predicted by the model.

4.3.2 Compact 3D-printed, single-shot double plasma mirror units

For prospective experiments the DPM used on the Vulcan petawatt laser needs to be adapt-

able. With the four-shot cycle design this is impossible because the assembly is heavy and

large. A high power laser facility, such as the GEKKO-XII chamber of LFEX (Laser for

Fast Ignition Experiments) based at the Institute of Laser Engineering (Japan),95 uses a

mechanical ‘arm’ that holds the target stage on one end. The arm supports a stage up to

13 kg in mass and moves the stage through a tube with a 12.5 cm diameter clearance from

above the chamber. This approach for inserting the target remotely is necessary as the target

chamber is otherwise inaccessible during experiments. The spherical chamber has a 4.4 m

outer diameter and the wall thickness is 0.2 m. The weight and clearance restrictions as well

as chamber size prevent the installation of the four-shot cycle DPM assembly. Therefore, a

compact, 3D-printed DPM holder is designed for a contrast cleaning solution on LFEX.

LFEX is an OPCPA high power laser system developed for fast ignition experiments

and includes the capability for studying laser-driven ion acceleration.95 In the GEKKO-XII

chamber the system delivers four laser pulses on target. Each laser pulse is s-polarised with a

1.5 ps pulse duration, 1.054 µm central wavelength and 400 J nominal laser energy contained

within a square-shaped laser spot. The four lasers are separately and spatially configured to

a 2 × 2 square array spanning 80 × 80 cm in spot size (40 × 40 cm per beam) when incident

on the f/10 off-axis parabola. The parabola focuses the beams to a spot size of 60 µm at

best focus. The beams intersect at the best focus and can be temporally synchronised to

irradiate the target simultaneously. This delivers a total laser energy of 1.6 kJ on target with

a peak intensity reaching 2× 1019 W/cm2. Contrast scans on LFEX use a third-order cross-

correlator102 after the pre-amplifier and a photodiode after the compressor. At optimum

performance the contrast is ∼ 10−10 at 3 ns before the main peak for the pedestal.6,117

4.3.2.1 Design of the double plasma mirror holder

The compact DPM holder is designed using Autodesk Inventor 2018. A 2D engineering

drawing with all physical dimensions is shown in Figure 4.10 (a). The laser enters and exits

the holder through the front and rear sides shown. Engraved circles mark the locations for

placing the 12.7 mm diameter and 3 mm thick plasma mirrors. The mirrors attach to the

holder with 5-minute epoxy adhesive inserted in the 0.2 mm deep recesses on the circles.

Two M4 clearance holes on the ‘wings’ secure the holder to the target stage with a metallic

adaptor plate. A 3D illustration of the holder itself and a photograph of a printed holder

with mirrors attached are shown in Figures 4.10 (b) and (c). The holder bolts on the adaptor

plate attached to the target stage. A custom-made 20 mm high metallic block secures on the
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target stage to adjust the DPM height to TCC, as illustrated in Figure 4.10 (d). A fiducial

reference for target alignment (explained below) is placed behind the first mirror. An image

of the target stage is seen in Figure 4.10 (e). The DPM holder is 3D printed on a nonporous

plastic that is vacuum compatible and light weight. Another and important benefit of the

compact design is that the holder causes minimum obstruction to diagnostic access to the

target.

The DPM holder is tailored for an f/10 OPCPA system such as LFEX with two laser

pulses − one on top of the other − moving through the holder. On the experiment two

of the four LFEX beams are used, which deliver a laser energy and peak intensity of 800

J and 1019 W/cm2 on target. For the DPM to work with an f/10 system, the first and

second plasma mirrors have a separation of s1 = 46 and s2 = 24 mm from the target placed

at best focus. The corresponding peak intensities of each beam on the mirror surfaces are

I1 = 7.8× 1014 and I2 = 2.3× 1015 W/cm2. The mirrors are Thorlabs N-BK7 Broadband-B

anti-reflective coated windows with a 12.7 mm diameter and 3 mm thickness. The model

in Subsection 4.2.1 is assumed to describe the mirror reflectivity. The laser irradiates both

mirror surfaces with an incidence angle of θ1 = θ2 = 20◦. The temporal profile of the beams

is given as the blue plot in Figure 4.11, which is adapted from Morace et al. 6 Using Eqns.

4.2-4.6 (see Subsection 4.2.1), the DPM model is used to calculate the temporal profile shown

in red in Figure 4.11. From the figure it is inferred that the DPM suppresses the pedestal

and prepulses well below the ionisation thresholds, Ith, of carbon, silicon and aluminium

and delay the onset of hydrodynamic motion of the target to ∼10 ps before the peak of

the pulse. The model predicts a contrast improvement of 2 × 10−5. With the two beams

spatially coinciding on TCC the peak intensity on target is reduced to 7.2 × 1018 W/cm2

(3.6 × 1018 W/cm2 per beam). The total reflectivity of the DPM is 52%, which is greater

than the 24% reflectivity calculated for the Vulcan petawatt laser. This is because in the

LFEX setup the first and second plasma mirror switch on −10 and −3 ps before the main

peak. In comparison in the Vulcan setup the mirrors switch on at −2 and −1 ps. Hence,

more laser energy is delivered to target in an LFEX laser.

An important consideration for the DPM design is the target alignment. The plasma

mirrors are highly transparent and, hence, may not transmit a detectable signal from the

alignment laser inside the chamber to the target. Therefore, a fiducial reference is installed

∼43 mm behind the first plasma mirror along the incident laser axis. The alignment laser is

focused to this reference inside the chamber.

The DPM is prepared using a pre-alignment system based outside the target chamber.

A 632.8 nm (red) laser is modified to form an f/10 focusing beam by using a combination

of three lenses and irises. The laser is sufficiently bright that it reaches target position after

reflecting off both anti-reflection coated plasma mirrors. Note that there are no reflecting

silver surfaces to aid alignment of the 3D-printed compact DPM in comparison to the design
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used on the Vulcan petawatt laser. Therefore, the laser moves through the DPM holder

to the fiducial and target, which prepares the target stage assembly before shot. Inside

the chamber it must be assumed that the target is positioned correctly when the fiducial is

aligned to the laser.

The accuracy of target alignment depends strongly on the laser incidence angle on the

plasma mirror surface, θPM , and mirror size. Table 4.2 summarises the angular tolerance for

the laser incidence angle, ∆θPM , when θPM = 20◦, 30◦ and 45◦. A holder with θPM = 10◦

requires in a large mirror separation, which would make the holder large and result in a

poor DPM performance on LFEX. The angular tolerance improves slightly the smaller θPM

is. Furthermore, a thin plasma mirror provides small tolerances. Therefore, the mirror

thicknesses are 3 mm, which are the thinnest commercially available. The mirror diameter

is also small to ensure an optimum DPM performance and mechanical robustness. The

angular tolerance indicates how reliable the fiducial reference is for target alignment. All

other parameters for the DPM setup result in a very small and, hence, negligible impact on

the tolerance.
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Figure 4.10: (a) 2D drawings of the DPM holder. All dimensions are in mm. (b) A 3D design and
(c) picture with plasma mirrors on the holder are shown. The LFEX target stage assembly including
the DPM holder is illustrated in (d) and photographed in (e).
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Figure 4.11: Temporal profile of one LFEX laser pulse as given in Morace et al. 6 (blue). The peak
intensity is set to I0 = 5.0× 1018 W/cm2. Contrast improvement using the DPM model produce the
temporal profile in red with I0 = 3.6× 1018 W/cm2 per beam. Ionisation thresholds, Ith, for carbon,
silicon and aluminium are compared to the profiles.

Table 4.2: Angular tolerances, ∆θPM , using the setup described in the modelling for LFEX at selected
laser incidence angles on the plasma mirror, θPM .

θPM 20◦ 30◦ 45◦

∆θPM ±0.17◦ ±0.16◦ ±0.15◦

An important observation made using pre-alignment is the three laser spots incident on

target. These are seen exiting the DPM holder by placing masking tape over the rear side as

shown in Figure 4.12 (a). Without the tape, the reference camera monitoring target position

along laser axis observes these three spots (see Figure 4.12 (b)). The spots are equally spaced

horizontally across ∼3 mm. This observation occurs because the laser reflects partially on

the outer and inner mirror surfaces. This is illustrated in Figure 4.12 (c). The far right and

dim spot at the DPM exit (1) is the true laser spot on target because the laser reflects on the

outer mirror surfaces. Therefore, a target must be aligned to this spot. The central, bright

spot (2) consists of two spots that separate upon defocusing the reference camera. These are

from one outer and one inner reflection on each mirror. The far left spot (3) comes from two

inner reflections. This spot is brighter than the actual laser spot (1), which suggests that

the reflectivity inside the mirrors is greater than on the outer surface. This is because of the

anti-reflective coating.
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Figure 4.12: (a) Three horizontally displaced laser spots seen at the DPM holder exit using masking
tape during pre-alignment. (b) On the reference camera the spots are (1) the actual laser from outer
reflections, (2) outer and inner reflections and (3) inner reflections off the mirrors. (c) An illustration
showing the formation of the three spots from outer and inner reflections.

4.3.2.2 Test experiment for the double plasma mirror holder

A two-week experiment on the LFEX GEKKO-XII laser system was conducted to test the

DPM holder. The results focus on the near field of the laser when using the DPM holder.

Shots on targets were in most part unsuccessful because the main laser was vertically mis-

aligned during those shots. This is apparent from the holders breaking. For comparison, a

DPM holder before and after a misaligned shot are shown in Figure 4.13. Nevertheless, it

was viable to install the 3D-printed DPM holder and gain an insight on using a DPM on

LFEX.

Figure 4.14 illustrates the experimental setup on LFEX. The two vertically-displaced

lasers project through the DPM onto a polymer plastic plate of polytetrafluoroethylene

(PTFE), (C2F4)n. The PTFE is 2.4 m from laser focus to spread the laser spots across a
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20 × 10 cm2 area on the plate and, therefore, irradiate the near field on the PTFE. The

top and bottom beams on the PTFE have a vertical cut-off along the middle of the near

field from the two segmented gratings in the compressor.117 Shots are taken without DPM

using 150 J of laser energy with both beams, and then with DPM using 170 and 630 J. The

corresponding laser energy fluences incident on the PTFE are tabulated in Table 4.3.

Figure 4.13: DPM holder (a) before and (b) after a vertically misaligned full energy laser shot on
LFEX.

Figure 4.14: Illustration of the LFEX setup using the DPM holder. Two lasers project through the
DPM on the PTFE plate. The near field of the two lasers irradiate the PTFE in the configuration
shown in the top-right insert featuring a vertical cut-off along the middle.

In the original setup an infrared camera was used to record the near field of the LFEX

lasers on the PTFE. Unfortunately, the diagnostic failed on every shot due to electromag-

netic pulse (EMP). This may be solved in the future with additional EMP shielding and

appropriate target design.78 Therefore, the data is limited to the near field imprinted on the
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PTFE on shot.

Table 4.3: Summary of delivered laser energies, E0, and energy fluences on the PTFE, E/A. Energy
fluences on shots with DPM are reduced by the total reflectivity of 52% predicted by the model.

E0 (J) DPM used E/A (J/cm2)

150 No 0.8

170 Yes 0.4

630 Yes 1.6

The near field imprinted on the PTFE after each shot are shown in Figures 4.15 (a)-(c).

The images are photographed with a Canon D3300 digital single lens reflex camera. Room

lights reflect off the PTFE and cause the images to appear artificially brighter at top and

bottom and therefore should not be confused with any laser fluence. For the shot without

DPM unit (see Figure 4.15 (a)) a dim grid-like pattern is seen. Bright regions in the pattern

have high laser fluence. When using the DPM with a lower fluence (see Figure 4.15 (b)),

localised ‘hot spots’ are seen in the near field on the PTFE. On a high energy shot similar

features in the near field are seen imprinted across a larger surface area on the PTFE, as

seen in Figure 4.15 (c).

Figure 4.15: Imprinted near field of two LFEX laser beams on shots (a) without the DPM unit at
low laser energy, (b) with DPM at low energy and (c) high energy. The estimated energy fluence on
the PTFE is indicated above. The compressor grating splits the square-shaped beams vertically.

The pattern on the PTFE forms using the DPM because of the grid-like spatial distri-

bution of the near field without using the DPM (see Figure 4.15 (a)). The laser imprints on
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the PTFE when the induced energy fluence exceeds 1.4 J/cm2.118 This threshold is greater

than the laser energy fluence on both low-energy shots, which suggests that the energy across

the near field is not uniformly distributed. Consequently, the inhomogeneity of the energy

fluence causes early hydrodynamic motion on the plasma mirror surfaces at localised regions

irradiated by the laser. This is evident in Figures 4.16 (a) and (b) which shows the near

field imprinted on the mirrors with 170 J of laser energy. On the first mirror the spot looks

uniform by first inspection. The spot on the second mirror is slightly deformed. Therefore,

it can be expected that the near field forms these ‘hot spot’ features after the laser moves

through the DPM. This is seen in Figure 4.15 (b) as well as for the near field seen in Figure

4.15 (c) with the high 630 J energy on shot.

Figure 4.16: Imprinted laser spots (yellow) of the two LFEX beams after the low-energy shot on the
DPM. Part of the beams are clipped at the DPM entrance (orange).

Note that the near field in Figures 4.15 (b) and (c) appears thinner on the left side of

the vertical central cut-off. This is seen because the DPM holder clips the laser beams at

the entrance, which is highlighted in Figure 4.16 (b). The alignment in chamber may have

not been fully reproducible. In future, a DPM holder with silver mirrors may be needed to

verify target alignment in order to avoid clipping of the beams.

On the high laser energy shots, those exceeding 600 J, the plasma mirrors detach from the

holder and shatter. This is because the laser fluence exceeds 30 J/cm2 on the mirrors.117 The

fragments were not recoverable because the chamber was inaccessible during the experiment.

Prospective experiments using this DPM holder need a solution for catching the fragments

and keep the chamber clean.

4.4 Summary and future work

Installing a double plasma mirror (DPM) on high power laser experiments is important for

suppressing the intense pedestal and prepulses ahead of the main peak, which delays the

onset of hydrodynamic motion. Helios calculations show that near solid density interaction

with the Vulcan petawatt and LFEX lasers are possible. This method readily extends to

other petawatt-class high power laser facilities. These predictions also suggests a method

for controlling the plasma expansion with the DPM. The DPM was successfully installed on
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experiments using the Vulcan petawatt laser with a four-shot cycle design. The additional

advantage with the enhanced laser contrast is that the measurements can be effectively

coupled to computational simulations that use an idealised laser pulse without prepulses.

The impact of the DPM for ensuring high-contrast, laser pulses interacting with solid targets

will be discussed in the results presented in Chapters 5 and 6.

Laser contrast improvements are possible on any system, and a method for achieving

this is by using a 3D-printed compact DPM assembly. This was tested preliminarily on

LFEX. The experiment was limited to results showing the near field imprinted on PTFE.

The near field of LFEX was seen to have a grid-like spatial distribution, which after the

laser moves through the DPM resulted in a non-uniform near field with localised regions

of high laser fluence. This may not be ideal for methods that laser accelerate ions, but it

may provide a solution for mitigating the early interactions on the target. Further work

on testing the holder with the laser irradiating targets are needed. This may provide more

ideas on advancing and adapting this work for using DPM on other high power laser systems.

The DPM holder is a sophisticated design as it is tailored to the laser system, accounts for

mechanical compatibility for easy installation and the compactness provides large diagnostic

access to the target.



Chapter 5

Engineered microstructured targets

for producing a bright Kα source

In this chapter the use of targets with microstructured surfaces for improving the laser-to-

target coupling will be discussed. This will include a brief outline of the target properties,

followed by the experiment on the Vulcan petawatt laser. The setup includes a double

plasma mirror (DPM), and the results of using the DPM will also be discussed as these are

of importance to using microstructured targets. The experimental measurements show that

using the targets with microstructured surfaces and DPM together produces a bright and

reliable Kα source. Finally, spectral analysis using PrismSPECT will provide an insight to

the plasma conditions required to produce the Kα emission.

5.1 Targets with microstructured surfaces

The reason for investigating the use of targets with microstructured surfaces is to increase

the coupling of the laser to the target. Studies show that using structured targets, such as

nanospheres,119 nanowires,120 microwires121,122 and foam123 generate energetic particle and

radiation sources as a result of the improved coupling. In this work the focus was on using

silicon microstructured surfaces for improving the generation of X-ray radiation sources. This

relates to early studies15 linked to this thesis on creating radiation fields during ultra-intense

laser-solid interaction.

Silicon with needle-like microstructured surfaces have high light absorption because of

their topography. For 1.053 µm infrared light the absorption may reach more than 90%

efficiency compared to using plane silicon surface with 60%.124 These microstructured tar-

gets were tested on the Vulcan petawatt laser for understanding how the higher absorption

efficiency improves the spectrally-resolved X-ray emission.

90
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5.1.1 Target fabrication

Targets with microstructured surfaces are developed at the Technische Universität Darm-

stadt using a rapid laser ablation technique. This method is described in detail by Ebert

et al. 7 and illustrated in Figure 5.1. A 25 µm thick silicon foil is placed on a target holder

inside the processing chamber. The foil surface is irradiated by a laser with a spot size ad-

justed between d0 = 65 and 75 µm after the laser focus and in turn provides laser intensities

between I0 = 4.4× 107 and 6× 107 W/cm2. The laser operates at λ0 = 0.8 µm wavelength,

t0 = 100 fs pulse duration and Rrep = 5 kHz shot rate. The laser scans across the surface

with a speed of vscan = 0.5−2.0 mm/s using a galvanometric two-mirror optics system. This

allows imprinting microstructures across a 1 × 1 mm2 surface on the foil. The processing

chamber is in ambient air to produce 15 µm high needle-like structures. Shorter structures

are made by filling the chamber with an electrically-conducting liquid.

Figure 5.1: Method for fabricating silicon targets with microstructured surfaces. Figure reproduced
from Ebert et al. 7 .

5.1.2 Scanning electron microscopy imaging

Using a scanning electron microscope a sample silicon target with microstructured surface

was imaged as shown in Figure 5.2 (a). The needle-like structures are non-uniformly dis-

tributed across the surface. A schematic illustration of the microstructures is depicted in

Figure 5.2 (b). The imaged microstructures have a needle height of roughly 15 µm and a

spacing of about 5 µm on average. The structures are supported by the silicon base, which

is not irradiated by the laser during fabrication.

5.2 Vulcan petawatt experiment

The targets with microstructured surfaces were used on an experiment using the Vulcan

petawatt laser based at the Rutherford Appleton Laboratory (UK).93 The aim was to deter-

mine how the laser-to-target coupling improved when switching from conventional flat foils

to microstructured targets. This required using a double plasma mirror (DPM) to suppress

the early interaction in the laser pulse with the target. This ensured that the microstruc-
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tures were preserved close to the peak of the laser. A diagnostic suite for a detailed study on

the laser-to-target coupling was used in the experiment. This included measuring the laser

reflection from the target surface,122 ion generation along laser axis and target normal , and

spectral X-rays emitted from the front surface. This thesis focuses on the DPM and spectral

X-ray measurements.

Figure 5.2: (a) Scanning electron microscope image (courtesy of N. W. Neumann.) and (b) schematic
design of a target with the microstructured surface.

5.2.1 Double plasma mirror setup

The experimental setup is illustrated in Figure 5.3 (a). This shows the DPM, target and

conical crystal spectrometer used. The DPM setup and temporal laser profile of the laser

(see blue plot in Figure 5.3 (b)) are used in the basic DPM model described in Chapter 4.

This model calculated the suppressed temporal profile shown in Figure 5.3 (b) in red and

predicts that the laser energy after the DPM is 24% of the initial laser energy.

For the DPM the first and second plasma mirror were placed 45 and 30 cm from the

target. Both mirrors were irradiated by the focusing laser pulse at 40◦ to their surface

normal. Using a calorimeter and transmitting the main laser through the DPM, the total

reflectivity of the laser was (27 ± 5) %, which is in agreement with model calculations

described in Chapter 4. Hence, it was assumed that the DPM reduced the laser energy to E0

= (160 ± 30) J. 30 % of that energy was contained within the FWHM of a ∼6 µm spot size

at best focus. By using a FWHM pulse duration of t0 = (1.0 ± 0.1) ps, the peak intensity

on target was I0 = (1.6 ± 0.3) × 1020 W/cm2.

For testing the performance of the DPM, the plasma mirrors were substituted with

silver-coated mirrors. The silver mirrors reflect the whole laser pulse without suppressing

the pedestal and prepulses. Silver has an ionisation energy of 7.58 eV,52 which by using Eqn.

2.13 provides an ionisation threshold of 6×109 W/cm2. The threshold assumes that the laser

ionises via barrier-suppression ionisation (see Subsection 2.2.3). The peak intensity on the

first mirror was around 4.9 × 1013 W/cm2. The DPM model (in Subsection 4.2.1) predicts

that hydrodynamic motion starts ∼9 ps before the main peak. This start time ensures that

the main peak reaches the target. It is important to note that hydrodynamic motion on
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plasma mirrors make the mirrors useless after about 15 ps.109 After this time, scattering and

absorption in the plasma formed at the mirror surface is significant. This means that plasma

mirrors, both silver and anti-reflection coated, should only be used with high contrast laser

pulses. Hence, a laser pulse without improving the laser contrast was irradiated on target

while preserving the experimental setup using this approach.

Figure 5.3: (a) Schematic setup of the Vulcan petawatt laser experiment using the microstructured
targets, featuring the DPM and conical crystal spectrometer. (b) The temporal intensity profile of
the Vulcan petawatt laser (blue) is suppressed by the DPM using the model described in Chapter 4.
(c) The total reflected signal by the DPM at the main laser peak is shown.

In addition to the setup, the pulse duration was extended from t0 = (1.0 ± 0.1) to ∼5

ps for a number of shots on target. This reduced the laser intensity by a factor of five.

Changing the intensity by increasing pulse duration provided details on the performance of

the microstructured target surface. The pulse duration remains short enough such that the

plasma mirrors are effective in reflecting the main peak of the laser.

5.2.2 Target setup

The target was changed between flat and microstructured surfaces. The flat-surfaced foils

used were 25 µm thick. These corresponded to the combined base thickness with structure

height of the microstructured targets, which were 15 µm high needles on a 10 µm base.

The needle separation was about 5 µm. These were the main parameters used for the

microstructured targets. In addition, 10 µm high microstructures with a ∼4 µm separation
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on a 15 µm base were used to compare the impact of short and long microstructures.

After the DPM the laser irradiated the target with a 20◦ incidence angle relative to target

normal. This angle was used to reflect the laser from the target surface to a diagnostic

measuring the reflected light signal (see Jarrett et al. 122). It was also assumed that the laser

coupling efficiency to the target was at optimum using this angle of incidence.124,125

The targets were irradiated at best focus (spot size of 6 µm) and when defocused to a

spot size of ∼50 µm by moving the best focus roughly 80 µm before the target front surface.

Defocusing reduced the laser intensity irradiated on the target from I0 = (1.6± 0.3)× 1020

to (2.3± 0.4)× 1018 W/cm2, where the changes at the plasma mirror surfaces are relatively

small. The purpose for these shots was to investigate the effect of irradiating more of the

structured surface with a larger spot size and the same laser energy.

5.2.3 Conical crystal spectrometer

In the experimental setup shown in Figure 5.3 (a), a conical crystal spectrometer recorded

the spectral X-ray emission from the target front surface at 75◦ to target normal on shot.

The horizontal distance between the X-ray source and image plate (IP), h, and vertical

source to crystal distance, s, were h = 405 mm and s = −60 mm. A magnet of 0.5 T

was installed in front of the spectrometer to deflect electrons irradiated from target away

from the crystal and IP. The front of the spectrometer was covered by 6 µm polyethylene

terephthalate (PET) and 5 µm mylar with a nm-thin aluminium coating on one side. The

filtering attenuated the X-ray irradiated on the crystal, which reduced radiative overheating

and fluorescence of the crystal. Thereafter, the X-ray emission was spectrally dispersed by a

potassium acid phthalate (KAP) crystal with a spacing between crystal planes of d = 13.317

Å (or typically given as 2d = 26.634 Å). The dispersed X-rays propagated through a 25

µm beryllium filter for further filtering. Lastly, the X-rays were captured on Fujifilm BAS

SR-TP 2040 IP. Details to the spectrometer components were provided in Chapter 3.

On the back of the spectrometer a rotating drum contained IPs, which could be moved

into position for shot by driving the drum remotely. This allowed recording four spectra in

the four-shot cycle setup used on the experiment.

The spectrometer was designed to disperse an X-ray spectrum from 1.65 to 1.84 keV on

to an IP, which centralises on Si Kα emission at 1.739 keV. Spectral resolving power was

Ex/∆Ex = (1200±100) and was estimated from the width of the spectrum at Ex = 1.739 keV

along the spatial axis perpendicular to the spectral image. This was estimated from the full

width at half maximum, which was (0.101± 0.005) mm with standard error. By multiplying

the width with the spectral dispersion relation, dEx/dg = (−1.45 ± 0.01) × 10−2 keV/mm

(see Section 3.1).

Spectral measurements are a composite of emission over space and time. The plasma

conditions vary with space and time, where the spectra is usually dominated by the hottest
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and densest plasma. The emission from this plasma is from the irradiated laser spot region,

which typically includes Heα and Lyα lines. Kα emission, on the other hand, provides

information about the relativistic electrons interacting with cold matter in the target.

For alignment a micro-balloon was placed at the target position. Irradiating a 532 nm

laser on the balloon, the light scattered towards the spectrometer. Without filters on the

spectrometer the light was reflected by the conical crystal to the IP. By relying on the human

eye, the whole spectrometer was translated towards or away from the balloon until the image

cast on the IP was in focus. The image was further focused by adjusting the crystal height

with the attached micrometer. After completing the setup the filters and a magnet were

installed.

After alignment the spectral image recorded on the IP on the first shot cycle was not

fully focused. This was corrected by adjusting the micrometer displacing the crystal in

the spectrometer. By looking at the images in the subsequent shots, further changes to

the crystal position were made until the spectrum was focused. This was determined from

narrowing the image as much as possible.

5.3 Data reduction

The IPs from the spectrometer, after a four-shot cycle, were digitized using a Fujifilm FLA-

5000 IP scanner. The data is reduced from digitised images to analysable spectra using the

procedure described in Chapter 3. The raw and background spectra were extracted along

the image using ImageJ (see Figure 3.6 (a)). The data was converted from quantum level

(QL) to photostimulated luminescent (PSL) emission using Eqn. 3.6. The background was

then subtracted from the data. Spectra were spectrally calibrated to the position of Kα at

g = 52.5 mm by using the spectral dispersion profile shown in Figure 3.2. Thereafter, the

spectral intensity is corrected from the crystal reflectivity, IP response function and filter

attenuation using Eqn. 3.8.

5.4 Results from microstructured targets

The results focus on the performance of the 15 µm long microstructured targets. This is

compared to four changes in the experiment: target topography, laser contrast, spot size and

pulse duration.

5.4.1 Data reproducibility

Figure 5.4 shows seven individual (grey profiles) and averaged (red profile) X-ray spectra

recorded from irradiating the laser on 15 µm microstructured targets. It is noticeable that

the data is reproducible with the standard deviation of the average indicated by the red
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shaded region. The laser energy on target and pulse duration used are E0 = (160 ± 10)

J and t0 = (1.8 ± 0.1) ps for the data shown in the figure. All spectra are normalised to

the maximum of the average spectrum. Kα emission is seen as the asymmetric peak with

its maximum at 1.743 keV and a ∼4 eV full-width at half-maximum (FWHM). The energy

corresponds to the Si III state, and the FWHM suggest that the Kα peak is composed of Si

I-IV emission (from 1.739 to 1.745 keV). Peaks from B-, Be- and Li-like ionisation states of

silicon are seen at energies above 1.8 keV.

Figure 5.4: X-ray spectra from laser irradiating 15 µm microstructured targets over many shots
(grey). The statistical average of the spectra is shown in red with the shaded area showing the
standard error. The position of Si Kα and B-, Be- and Li-like ionisation states are annotated on the
figure.

An important observation is the high level of shot-to-shot data reproducibility. The

deviation of the whole spectral intensity is about 6%. The accuracy of this deviation is mainly

affected by the background subtraction and spectral calibration during data reduction. This

high data reproducibility was consistent when using the DPM. The observation was not

investigated in detail as this was not an objective of the experiment. Therefore, there are

not enough data shots without DPM available to justify the result. On the other hand, the

Helios simulations shown in Section 4.2.2.2 suggest that suppressing the early interactions

in the laser pulse reduces the plasma density scale length and, in turn, may reduce the

variability in the laser interaction with the target. It is possible that the DPM is needed for

producing the high level of shot-to-shot data reproducibility.

For the following subsections the average spectra are compared instead of evaluating

individual shots. The spectra are normalised to the maximum spectral intensity of the data

due to the 15 µm long microstructured targets. This provided concise and qualitative data
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evaluation.

5.4.2 Target topography

X-ray spectra from flat, 10 and 15 µm microstructured targets were averaged and shown

Figure 5.5. Switching the target topography from flat to 10 µm microstructures increases

the signal of Kα. The signal further increases when using 15 µm microstructures. In addition,

the longer microstructures raise the signal of B-, Be- and Li-like ionisation states seen above

1.8 keV.

Figure 5.5: X-ray spectra recorded when laser irradiating the 15 µm (red) and 10 µm (green) long
microstructured targets and flat surfaced foils (blue).

The Kα integrated intensity is calculated between 1.74 and 1.75 keV for the three target

topographies. The results are normalised to the 15 µm microstructures and summarised

in Table 5.1. The errors are derived from the standard error shown as the shaded area

on the spectra within the integrated range. As deduced from the table and Figure 5.5 by

changing from a flat to 10 µm long microstructured targets increases the Kα signal by a

factor of (6.9 ± 0.7). Using the 15 µm microstructures over the 10 µm microstructures

further increases the signal by a factor of (2.6± 0.3) and provides a Kα peak that is (18± 2)

brighter than from using the flat foils.
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Table 5.1: Kα integrated intensities from changing the target topography. The values are normalised
to the integrated intensity from using the 15 µm microstructures.

Target topography Kα integrated intensity (normalised)

15 µm microstructures (1.00± 0.09)

10 µm microstructures (0.38± 0.03)

Flat surface target (0.055± 0.003)

5.4.3 Impact of double plasma mirrors

Results from high- and low-contrast shots, using the DPM and silver mirrors respectively,

are shown in Figure 5.6. The spectrum in red is due to the high contrast and blue is from

using the low contrast. Both spectra are from irradiating the 15 µm microstructured targets.

Relatively few shots with low contrasts were measured because of poor data reproducibility

and focusing on collecting more data using DPM in the experiment. As seen in the figure,

a high contrast results in large spectral intensities. The Kα integrated intensity rises by

a factor of (5.7 ± 0.6). Higher ionisation states are more significant in the high contrast

shots. This indicates that the plasma is hotter, suggesting the generation of more relativistic

electrons. This result shows that the DPM increases the spectral intensity.

Figure 5.6: X-ray spectra recorded when laser irradiating the 15 µm microstructured targets when
using the DPM for a laser with high-contrast (red) and silver mirrors for a low-contrast (blue).

When switching the target topography to a flat-surfaced foil the measurements show

a similar result to the microstructured targets. This is shown in Figure 5.7, where the

spectra are normalised in spectral intensity to the maximum of the spectrum due to using

the microstructured targets and DPM (see the red spectrum in Figure 5.6). Using the DPM
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over the silver mirrors for irradiating a high-contrast laser pulse on the target results in a

large spectral intensity. The Kα integrated intensity rises by a factor of (6.4 ± 0.4). As

explained in this sub-section, relatively few shots without using the DPM were recorded on

the experiment.

Figure 5.7: X-ray spectra recorded when laser irradiating the flat-surfaced foils when using the DPM
for a laser with high-contrast (green) and silver mirrors for a low-contrast (indigo). Note that the
spectral intensity is normalised to the spectrum produced by using the 15 µm microstructured targets
and DPM.

5.4.4 Laser defocusing

The laser was defocused by moving the parabola away from the target such that the best

focus was infront of the target front surface. This results in expanding the spot diameter from

d0 = 6 µm at best focus to 50 µm, which reduces the laser intensity from I0 = (2.3±0.4)×1020

to (1.6 ± 0.3) × 1018 W/cm2. Figure 5.8 shows the red and blue spectra produced when

irradiating with d0 = 6 µm and 50 µm respectively. The result shows that defocusing the

laser results in a decrease of spectral intensity. The integrated intensity of Kα drops by a

factor of (3.0± 0.4). The higher ionisation states are present, yet likewise lower in intensity

and these transitions are centred at slightly lower energy.
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Figure 5.8: X-ray spectra recorded when laser irradiating a 6 µm (red) and 50 µm spot (blue) on 15
µm microstructured targets.

5.4.5 Pulse duration

Figure 5.9 shows the impact of extending the pulse duration, t0. The red spectrum is

produced using t0 = (1.0 ± 0.1) ps, which was the shortest and typical pulse duration used

in the experiment. Extending the duration to t0 ≈ 5 ps results in the blue spectrum seen

in the figure and, in turn, leads to a drop in laser intensity from I0 = (2.3 ± 0.4) × 1020

to (4.6 ± 0.8) × 1019 W/cm2. The outcome is shown as the blue profile in Figure 5.9. The

longer pulse duration decreases the Kα integrated intensity by a factor of (1.3± 0.1). Signal

from higher ionisation states decrease in signal and remain resolvable. Both defocusing and

extending the pulse duration of the laser reduce the peak intensity. The main difference

between these two approaches is that the pedestal and prepulses drop in intensity when

defocusing. A longer pulse duration might not change the pedestal irradiated on target.
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Figure 5.9: X-ray spectra recorded when laser irradiating a laser with a (1.0± 0.1) ps (red) and 5 ps
(blue) pulse duration on 15 µm microstructured targets.

5.4.6 Summary and discussion of experimental results

The changes in Kα intensity with respect to the 15 µm long microstructured targets are

summarised in Table 5.2. Changes in the experiment include changing the target surface to

a flat surface and shorter microstructures, laser contrast, spot size and pulse duration. The

largest change in Kα occurs when switching the target surface, and the smallest transition

happens upon extending the pulse duration.

Table 5.2: Change in Kα integrated intensity by changes in the experimental setup. These are
compared to a 15 µm microstructured targets irradiated by a high-contrast, 6 µm spot and (1.0±0.2)
ps laser pulse.

Change in experiment Kα factor change

Flat surface target (18± 2)

10 µm long microstructures (2.6± 0.3)

Low-contrast (5.7± 0.6)

Enlarge spot to 50 µm (3.0± 0.4)

Extend pulse to 5 ps (1.3± 0.1)

The interpretation results in two key observations. The inclusion of the DPM is for

suppressing the early interactions closer to the main peak of the laser. This leads to a delay

in hydrodynamic expansion on the target and, in turn, decreases the plasma density scale

length (see Chapter 4). The suppression of the pedestal and any prepulses is a possible

reason for the high level of shot-to-shot data reproducibility. As the suppressed pedestal
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and prepulses leads to a shorter density scale length the microstructured surface integrity

is preserved. This improves the laser-to-target coupling as the microstructures are designed

to engineer a specific plasma length scale and increase the laser absorption. Note that

relatively few data shots without using the DPM were acquired in the experiment. To justify

the improved shot-to-shot data reproducibility further measurements are needed. Secondly,

the Kα integrated intensity produced using the 15 µm long microstructures is significantly

higher than that produced from the flat surfaced targets. Therefore, the combination of the

DPM and microstructured targets provides a method for producing a bright and reliable Kα

source.

A number of studies have observed changes in the Kα integrated intensity using a variety

of target designs and approaches. Using the Vulcan petawatt laser, Evans et al. 56 recorded

Al Kα emission line when irradiating a 0.2 µm aluminium foil coated with 12 µm and 17

µm CH at laser-irradiated front surface and 4 µm on the back surface. Other thicknesses

for the front surface coating produced no significant Kα emission. In another study using a

table-top Ti:sapphire laser Purvis et al. 120 irradiated a 60 fs laser pulse of 5× 1018 W/cm2

intensity on 55 nm wide and 5 µm long nano-wire nickel targets. The laser contrast was

improved by frequency-doubling the laser pulse. Their results showed almost a 50 times

increase in the spectral intensity, which is larger than the 18-fold rise in Si Kα signal in this

work. On the other hand, the spectrally-resolved background signal does not increase by a

comparable factor, and hence the measurements in this thesis shows a better signal-to-noise

ratio improvement. Furthermore, Sumeruk et al. 126 used the THOR laser at the University

of Texas (USA)127 for investigating the use of laser-irradiated targets with silicon micro-

spheres on a solid foil. Using spheres of 0.25 µm in diameter resulted in the largest rise in

Si Kα yield by a factor of 8 from using a flat-surfaced foil. This is less than half of the rise

in Kα signal measured in this work, suggesting that needle-like microstructures are more

efficient in coupling laser energy to hot electrons compared to micro-spheres.

The use of laser contrast enhancement has been studied in relation to the generation of

Kα emission. Fourmaux and Kieffer 128 installed saturable absorber plates in the Advanced

Laser Light Source system (see Fourmaux et al. 129 for setup) for improving the contrast.

By irradiating molybdenum targets with the contrast-enhanced laser pulse with intensities

around 1×1018 W/cm2 resulted in an optimised conversion efficiency from laser energy to Kα

yield. The contrast improvement was important for achieving this result. Furthermore, in

experiments DPMs have produced reduce plasma density scale-length from suppressing the

pedestal,130 which in turn generated a larger hard X-ray intensity through higher harmonic

generation.110 To the best of our knowledge, there have been no publications reporting a

reduction in the shot-to-shot variability using microstructured targets in combination with

a DPM.

Defocusing laser spot reduces the Kα integrated intensity by a factor of 3 when defocusing



CHAPTER 5. ENGINEERED MICROSTRUCTURED TARGETS 103

from 6 µm to 50 µm. Previous work131 studied the effect of defocusing the laser pulse

irradiating a 2 mm thick copper foil using the ASTRA laser based at the Rutherford Appleton

Laboratory (UK).132 The results showed that defocusing the spot size to 50 µm did not

change the signal noticeably. By enlarging the spot size to 1.6 mm with the f/2 focusing

laser on target reduced the signal by a factor of 2. Using the silicon microstructured target

in this work show a larger reduction in Kα integrated intensity. The reason for the drop

in the signal may be due to a transition in the laser absorption mechanism to relativistic

electrons.

5.5 Kα spectral analysis using PrismSPECT

The Kα peak observed in the experiment emerge from atomic processes driven by the laser-

target interaction. To gain an insight on the conditions needed to observe this emission, the

measurements are compared to spectral calculations using PrismSPECT.133 PrismSPECT

is a collisional-radiative spectral analysis code. In this thesis the code is used to understand

the physics generating the Kα emission from the parameters characterising the plasma.

5.5.1 Calculation setup

The PrismSPECT133 calculations were configured for studying Kα emission from a plasma.

For the atomic model the ATBASE134 6.1 data table of silicon was used. The table contains

a list of ionisation states, energy level configurations that the bound electrons can have

and the corresponding transition probabilities and rates. By selecting the model with the

label ‘Backlighter K-shell spectroscopy’, 12001 number of configurations (out of 14030) were

imported. These included ionisation states with 1 to 14 electrons and K-shell vacancies for

Kα emission.32,133,135 The corresponding atomic rate equations were solved using a steady-

state plasma in non-local thermodynamic equilibrium (see Subsection 2.3.3).

Four parameters were used in the calculations. The relativistic electron temperature, Trel,

was varied between 0 eV and 5 MeV. Trel = 0 eV is identical to removing the relativistic

electrons from the calculations. The Wilks’ (Eqn. 2.20) and Beg’s (Eqn. ??) scalings for a

laser of intensity I0 = 1.6× 1020 W/cm2 and wavelength λ0 = 1.054 µm respectively predict

that the Trel = 5 and 1 MeV and, hence, the upper range includes these temperatures in

the calculations. The fraction of relativistic electrons from the bulk plasma, frel, was set

to values between 0 and 20%, where the lower limit removed the relativistic electrons in

the calculations. Trel and frel were studied to determine the impact of relativistic electrons

on producing Kα emission. As for the bulk plasma the temperature, Te, was set to values

between 0.03 and 3000 eV. The lower limit accounts for matter at room temperature and

higher limit exceeds the ionisation energy of the K-shell, which is sufficient for the plasma

to be fully ionised. The high Te was used to verify that a hot plasma produces Lyα, Heα and
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Li-like emission and no Kα line at 1.740 keV. Changing Te provides information about the

degree of outer-shell ionisation (see Subsection 2.3.1). The spectral resolving power, Ex/∆Ex,

was also studied to infer the impact of instrumental broadening. Ex/∆Ex was varied between

400 and 1200 for low and high resolving powers. These were used as the values in a normal

distribution, N , that convolves the spectrum calculated in PrismSPECT, Si, to determine

the broadened spectrum, Sb,

Sb = Si ∗N (5.1)

N =
1√

2π∆E2
x

exp

(
−
(
Ex

∆Ex

)2
)

(5.2)

The spectral calculations were configured to interpret the basic physics. Therefore, the

calculations use a zero-width plasma, which is a system with no opacity. The spectrometer

in the experiment recorded x-ray emission from an angle 75◦ relative to target surface normal

at the front side. If assuming that most of the Kα emission is produced near the front surface

rather than deep inside the target, the emission is produced from optically thin matter (see

Subsection 2.3.2). Therefore, the zero-width approximation in the calculations is assumed

reasonable.

The plasma mass density, ρe, was set to 1 g/cm3. This is less than half the solid density

of silicon (2.328 g/cm3).

Recall from Subsection 5.2.3 that the conical crystal spectrometer integrated the emission

over space and time. The measurements were a composite of many plasma conditions.

PrismSPECT provides spectra using single values of electron temperature, mass density and

non-thermal electron fraction and temperature. The calculations are run as steady state. To

gain an insight to the possible plasma conditions in the experiment, the measurement from

15 µm microstructured targets was compared to multiple spectra using different values for

Te, ρe, frel and Trel.

5.5.2 Comparison between calculation and experiment

The experimental measurement is compared to the calculated spectrum in Figure 5.10. The

measurement is shown as the grey spectrum with the shaded area. For the calculated spec-

trum plotted in black, Trel = 1 MeV, frel = 5%, Te = 7 eV, Ex/∆Ex = 800 and ρe = 1

g/cm3 are used in PrismSPECT. The contributions of silicon ionisation states from I to III

are given by the coloured plots in Figure 5.10. The photon energies of these states and Si IV

are annotated on the figure. The bumps of emission towards higher photon energies relative

to the peaks correspond to satellite emission of each ionisation state.
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Figure 5.10: Calculated spectrum of Kα using the PrismSPECT code with input parameters Trel = 1
MeV, frel = 5%, Te = 7 eV and Ex/∆Ex = 800 and ρe = 1 g/cm3. Spectral emission from Si I-IV
ionisation states is shown by the coloured plots, where the peak energies are annotated in the figure.
Experimental measurement from using 15 µm microstructured targets is shown in grey.

As seen in Figure 5.10 the shape of the Kα manifold is determined by the ionisation

states Si I (1.740 keV), II (1.742 keV), III (1.743 keV) and IV (1.745 keV). The overall peak

width at half-maximum for the calculated peak is 6 eV, coinciding closely with the estimated

width from experimental measurements. In addition, from comparing multiple spectra to

the experimental result suggests that the brightest signal is produced from the Si III state.

5.5.2.1 Relativistic electrons

When the relativistic electron temperature, Trel, and fraction, frel, are set to zero inde-

pendent of each other, there is no Kα emission predicted by the calculations. Without

relativistic electrons there is no collisional ionisation or excitation that generated K-shell

vacancies. The relativistic electrons are important for explaining the experimental observa-

tion. Furthermore, the shape of the Kα manifold is nearly independent of Trel and frel. This

is inferred from the calculated spectra upon changing Trel and frel.

5.5.2.2 Plasma temperature

Calculations varying the plasma temperature, Te, between 0.03 and 60 eV are shown in

Figures 5.11. Kα line emission at different selected values of Te are seen in Figure 5.11 (a).

The relative spectral intensities of the Si I, II, III and IV states changes with rising Te such

that the degree of ionisation increases. Figure 5.11 (b) gives the spectral intensity at the
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peak of the Si I-IV states that make up the Kα manifold as a function of Te. The vertical

solid lines correspond to the spectra in Figure 5.11 (a). As seen from the figure the line

emission is optimised from the Si I state at Te = 4 eV. From the Si II state, Te = 6 eV, and

for Si III and IV state, Te = 9 eV. The brightest signal is produced from the Si III state.

The experimental measurement is a composite of different values for Te, which makes the

interpretation more complex.

Figure 5.11: (a) Calculated spectra using PrismSPECT by changing the electron temperature between
Te = 0.1 (red), 2 (green), 6 (black), 10 (blue) and 20 eV (orange). (b) Spectral intensities from
emission due to the Si I (blue dashed), Si II (red dashed), Si III (green dashed) and Si IV (orange
dashed) at different Te. The dots correspond to selected Te used in the calculations. Solid vertical
lines correspond to the spectra and Te shown in (a)

As seen in Figure 5.11, the Kα signal reduces as Te increases above 10 eV. When Te rises

higher than 60 eV, the Kα disappears from the spectrum. Instead, Heα and Li-like emission

become the prominent signals towards 100 eV and higher. This result is expected because the

increase in electron temperature increases the likelihood for outer-shell ionisation to become

important.
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5.5.2.3 Spectral resolving power

Figure 5.12 shows the change in the calculated spectrum when modifying the spectral re-

solving power between Ex/∆Ex = ∞, 400, 800 and 1200. Ex/∆Ex = ∞ corresponds to

the theoretical case without broadening and represents the spectrum produced in Prism-

SPECT. The resolving powers are used in the broadening function given by Eqn. 5.2, which

convolves the spectrum in red to the broadened spectra using Eqn. 5.1. The higher the

resolving power, the narrower and more resolved the peaks. The other parameters were

Trel = 1 MeV, frel = 5%, Te = 7 eV and ρe = 1 g/cm3.

The black spectrum corresponding to Ex/∆Ex = 800 in Figure 5.12 produced the closest

comparison to the experimental measurement. This is smaller than the resolving power of

the spectrometer, Ex/∆Ex = (1200 ± 100). A plausible reason for this discrepancy may be

that the experimental spectrum is a composite spectrum of many plasma conditions, which

are influenced by Te and opacity. Therefore, the calculated spectral resolving power may

underestimate the performance of the spectrometer. In addition, due the resolving power

and spectral broadening the individual ionisation states in the Kα peak are inseparable.

Figure 5.12: Calculated spectra using PrismSPECT using spectral resolving powers of Ex/∆Ex =∞
(red, no broadening), 1200 (green), 800 (black) and 400 (blue). A normal broadening function is used
to broaden the spectra.

5.6 Summary and future work

Irradiating targets with microstructured surfaces with a high-contrast Vulcan petawatt laser

pulse shows the production of a very bright Kα signal. The spectral analysis indicates that

switching the target topography to long microstructures amplifies the spectral emission by
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a factor of 18. Microstructures increase the irradiated surface area, which in turn results in

an increase of relativistic electron yield that propagate into the solid target. PrismSPECT

calculations complement this observation. Relativistic electron yield determines the spectral

intensity, and without relativistic electrons, there is no Kα emission generated. Furthermore,

the spectral measurements are of high-quality and show little fluctuation shot-by-shot. The

double plasma mirror is key in achieving these measurements. Double plasma mirror sup-

presses the early interactions in the laser pulse close to the main peak. In turn the solid

microstructured surfaces are unperturbed by the pedestal and prepulses, which ensures that

high-intensity laser interaction with a overdense microstructured surface is achieved. There-

fore, combining the double plasma mirror and targets with microstructured surfaces provides

a method for generating a bright and reliable X-ray source.

The spectral measurement and PrismSPECT calculations provide an insight to the laser

interaction with the microstructured targets. The details are limited to a region in the plasma

below 10 eV temperatures, which surrounds the laser irradiated volume. In order to achieve

a broader understanding about the interaction physics a spectral range including higher

ionisation states, such as Heα and Lyα, are needed. This would in turn allow inferring the

relativistic electron yield and temperatures required to generate the spectrum by collisional

processes. In addition, a broader spectral range may show how important radiative processes

are during the laser interaction with the microstructured targets. Prospective work using

high-contrast laser pulses and microstructured targets should focus on understanding the

nature of the interaction physics and how this changes from conventional approaches using

flat-surfaced foils.



Chapter 6

High energy carbon ions using

large-area suspended graphene

This chapter focuses on irradiating a high-contrast laser pulse on to a large-area suspended

graphene (LSG) target. A brief description of the target and fabrication is followed by

measurements on radiochromic film (RCF) and CR-39 showing energetic protons and carbon

ions. These results are interpreted with the support of 1D and 2D EPOCH particle-in-cell

simulations. In the analysis the onset of relativistic induced transparency (RIT) is seen

to be important to explain the high ion energies. From these simulations it is inferred

that Coulomb explosion is the most plausible mechanism driving the ions to high energy.

Furthermore, 2D simulations are discussed to explain the ion beam pattern observed in the

experiment.

6.1 Large-area suspended graphene

The idea for using graphene as a target for laser-driven ion acceleration was initiated at

National Central University (Taiwan). The University owns a small 100 TW laser system for

high power laser experiments. The system is installed in the fourth floor of the Department

of Physics. The floor restricts the weight the building can withstand, which is approaching

its limit. As a result, the facility is not well shielded against high energy radiation, which

emerge as a consequence of the laser-target interaction. One solution for reducing the high

energy radiation is to laser irradiate ultra-thin targets. Hence, graphene is used as the

target.11 From a visit testing the target at the University the motivation of using graphene

on a “look-see” experiment on the Vulcan petawatt laser emerged.

Graphene is a peculiar material. Pristine graphene does not have a band gap, which

means that electrons flow freely between the valence and conduction band. On the other

hand, a high band gap forms when doping the material,136, when exerting an external electric

potential136,137 or inducing 100-kbar laser shocks.138 This binds the electrons strongly to

109
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the valence band. Graphene also has a high thermal conductivity along the plane because

electrons move at the Fermi velocity between atoms.137,139 Out of the plane the conductivity

is poor. This may lead to spreading the energy along the plane when irradiating within the

laser spot across the target plane. Combining the induced band gap and high conductivity

can make graphene highly transparent to optical radiation, which potentially ensures that

the material survives the early interaction in the laser. This work is the first time graphene

interacts with a high contrast laser approaching intensities of 1020 W/cm2, providing an

insight into the use of this material in extreme fields.

6.1.1 Target fabrication

Graphene is fabricated at the National Central University using a rapid thermal chemical

vapor deposition method. A flow chart of the fabrication method is shown in Figure 6.1,

as described by Khasanah et al. 11 A copper sample, which has the same hexagonal surface

structure as graphene,11,140 is cleaned from contaminants and placed inside a H2 gas furnace.

The furnace is radiatively heated to 980◦C, which is below the breakdown of H2 bonds.

Methane gas is then injected and broken down for depositing carbon on the copper surface

to grow the graphene. After roughly 28 minutes the furnace is quickly cooled to room

temperature to remove the sample with graphene on its surface (see step 1 in Figure 6.1).

A polymethyl methacrylate (PMMA) is coated on the graphene (step 2). This supports

the target as the copper sample is detached from the graphene using electrolysis (step 3).

Afterwards the graphene is suspended over holes on a silicon or metal substrate (step 4). The

holes are hundreds of microns in diameter, which are five orders of magnitudes larger than

the ∼1 nm thickness of a single graphene sheet. The thickness is measured using an atomic

force microscope.11 This is the largest area-to-thickness dimensions ever used for such a thin

target on high power laser experiment. Hence, the target is called large-area suspended

graphene (LSG). Finally, the PMMA is annealed from the graphene for an ultra-thin and

pure-carbon target (step 5).

Following the fabrication method in Figure 6.1 a single graphene sheet is made. Multi-

layer LSG targets are produced by repeating the procedure. The only change to the method

is to transfer the graphene on a prepared LSG in step 4 (see Figure 6.1). Using this approach

multiple layers of graphene can be stacked together. This provides nanometer precision of

the target thickness.
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Figure 6.1: Flow chart of the rapid thermal chemical vapor deposition method for making large-area
suspended graphene (LSG).

6.1.2 Scanning electron microscopy imaging

Figures 6.2 (a)-(d) show images of the LSG targets taken with a scanning electron microscope.

The magnification is changed to look at different details of the targets (see inserted box

indicating the image dimensions). The orange circles inserted in (b)-(d) indicate the spot

size of the Vulcan petawatt laser at best focus for comparison to the features on the LSG.

Figure 6.2 (a) shows a two-layer LSG attached on the back of a substrate with 50, 100 and

200 µm diameter holes. By magnifying into image (a) a hole with a broken LSG is seen in

Figure 6.2 (b). The damaged LSG area is larger than the laser spot (see yellow circle in the

figures). This occurred during transportation from Taiwan to the UK. Figure 6.2 (c) shows

a magnified region on a four-layer LSG target. Debris of plastic and damage on the LSG

smaller than the laser spot are seen. When imaging the central region of the four-layer LSG,

the surface and interfacing graphene show wrinkles137 (see Figure 6.2 (d)). The wrinkles are

comparable to the laser spot. In summary, the images show microscopic imperfections on

the LSG targets comparable to the laser spot size. These may have an impact on driving

the carbon ions from the targets with a high power laser pulse.
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Figure 6.2: Scanning electron microscopic images of a (a) two-layer LSG on the back of the multi-hole
substrate. (b) A damaged target on the two-layer LSG is identified. (c) A four-layer LSG on the front
of a substrate with plastic debris, damages and (d) wrinkles as shown. Images (b)-(d) are compared
to the Vulcan petawatt laser spot at best focus at 6 µm (orange circle). (Courtesy of B. Kuerbanjiang
and V. Lazarov).

6.2 Vulcan petawatt laser experiment

The LSG targets were used on an experiment using the Vulcan petawatt laser based at the

Rutherford Appleton Laboratory (UK).93 The objective was to test the targets on laser-

driven carbon ion acceleration using a high-contrast, ultra-intense laser pulse for the first

time. The experimental platform was adapted from another experiment running in parallel.

Therefore, the setup was limited to a double plasma mirror (DPM), an LSG target, spatially-

resolved ion energy detector and optical transmission radiation diagnostic. Figure 6.3 shows

this setup, which will be explained in the next subsections. The setup was not tailored for

a comprehensive ion acceleration experiment. Nonetheless, the observations made were of

great interest and demonstrate a potential new use for graphene as a target for laser-driven

ion acceleration.

6.2.1 Double plasma mirror setup

In the experiment the DPM was installed to suppress the pedestal and prepulses. This

ensured that the laser interaction with the target was delayed close to the peak of the pulse.

In the setup the laser was incident at 40◦ to the normal of both mirrors. The mirrors were

15 mm apart and the second mirror was 30 mm from the target (see Figure 6.3). Using these
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parameters resulted in a DPM reflectivity of (27 ± 5) %, which was in agreement with model

calculations described in Chapter 4. Therefore it was assumed that the DPM reduced the

laser energy to E0 = (160 ± 30) J. 30 % of that energy was contained within the FWHM of

a ∼6 µm spot size at best focus. By using a FWHM pulse duration of t0 = (0.7 ± 0.1) ps,

the peak intensity on target was I0 = (1.6 ± 0.3) × 1020 W/cm2.

Figure 6.3: Schematic setup of the Vulcan petawatt laser experiment for ion acceleration using LSG
targets.

6.2.2 Target setup

After the DPM the laser irradiates the LSG target at normal incidence. This suggests that

laser absorption into the target may be dominated by J × B heating16,29,30 (see Chapter

2). Secondly, irradiating a solid target with a high intensity laser at normal incidence poses

a risk for laser back-reflection. This can damage the optics of the high power laser. By

including the DPM this risk was circumvented. Laser moves 45 mm from the first plasma

mirror to the target taking ∼150 ps. By this time the plasma mirrors will absorb and scatter

any back reflected light.

For the target designs a single to two-, four- and eight-layered LSG targets were used.

With a single layer as thin as 1 nm, target thicknesses were 1, 2, 4 and 8 nm. The thicknesses

are measured using an atomic force microscope.11 For this experiment all LSG targets were

suspended over multi-hole silicon substrates with 50, 100 and 200 µm diameter holes. This

was done for ensuring that over a number of holes the LSG remained intact after transporta-

tion from Taiwan to the UK (see Figure 6.2 (b) for an example of broken LSG).

Another advantage of suspending the LSG targets over the multi-hole substrates was for

target alignment to the main laser pulse. For alignment a 1.053 µm laser beam was used.

The beam was transmitted before the compressor of the laser system along the path of the

main pulse. A focal spot camera looked at the target from the rear side on which the LSG
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was attached. The camera was set to monitor the alignment beam at best focus of the main

pulse. The concern was the potential of breaking the LSG with a focused alignment beam.

To avoid this during alignment a hole with broken LSG was placed at target position. The

target position was adjusted until the broken LSG was resolvable with the alignment beam

by the camera. Afterwards, the alignment beam was switched off, and then the substrate

was translated to a hole with unbroken LSG. On the camera monitor LSG was confirmed to

exist over the hole by scattering a dim HeNe laser on the target. After finishing alignment

the camera was moved out to position the on-shot diagnostics.

6.2.3 Spatially-resolved ion energy detector

On shot the laser-produced ions were recorded by a spatially-resolved ion energy detector.

The detector was placed 50 mm from the rear of the target along target normal. Size of the

detector was 50× 25 mm2. The detector was positioned such that the top of the diagnostic

covered half of the laser beam.

The detector was a stack composed of radiochromic film (RCF), TASTRAK CR-39 and

attenuator plates. The three stack design used are shown in Figure 6.4 (a)-(c). The RCFs

were HDV2 and EBT2. The former had a lower detection sensitivity to particles and therefore

was placed in the first few layers of the stacks. EBT2 was placed as the last RCFs for

detecting the low flux and high energy ions. The detected proton energies, Ep, are labelled on

each RCF in Figure 6.4. The used filter thicknesses, X, are annotated above the attenuator

plates. All stacks used a 13 µm aluminium (Al) attenuator to protect the stack from direct

laser irradiance. For stack designs 1 and 2, mylar attenuators were placed between interlaying

HDV2 for detecting Ep up to 27.5 MeV with an energy resolution of ∼ 3 MeV. For energies

above 27.5 MeV iron (Fe) was used for attenuation. Stack designs 1 and 2 detected protons

between Ep = 1.7-51.5 and 1.7-73.3 MeV. In case LSG produced protons up to 99.4 MeV stack

design 3 was used. Here only Fe was used for attenuation, reducing the energy resolution

early in the stack to around 5 MeV. In addition to stack designs 2 and 3, two CR-39 plates

were included for distinguishing ions from electrons. For stack design 2 the recorded proton

and carbon ion energies ranged between Ep = 32.4-34.7 and Ecb = 714-770 MeV for the first

CR-39 and Ep = 34.7-36.9 and Ecb = 770-815 MeV for the second. For stack design 3, first

CR-39 had Ep = 31.3-33.7 and Ecb = 697-755 MeV, and for the second Ep = 33.7-36.0 and

Ecb = 755-802 MeV.

The proton energies given for each RCF corresponded to the peaks at the energy depo-

sition curves. These are shown for the three stack designs in Figure 6.5. Green and blue

curves correspond to HDV2 and EBT2 in the stack. The differences in the peak deposition

energy, ∆Ep, were associated with the sensitivities of the RCFs. The deposition curves were

calculated by using the ion stopping ranges of the RCF and filters from the SRIM code12 in

the RCF Stack Builder Matlab R© code (see Chapter 3).
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Figure 6.4: Stack designs 1-3 (a)-(c) used for the ion energy detector. The colors identify the RCFs,
CR-39 and attenuator plates used with given proton energies, Ep, and attenuator thicknesses, X.

The proton and carbon ion energy ranges detected by the CR-39 were calculated using

the SRIM code12 and measured using the Heavy Ion Medical Accelerator in Chiba (HIMAC,

Japan).42,43 On HIMAC protons of energies between 0.5 and 5 MeV as well as carbon and

oxygen ions of 3 and 5 MeV/n directly irradiate unused CR-39 samples. By using the etch pit

method and analysis described in Subsection 3.2.3 the detected ion energies are extracted.
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Figure 6.5: Proton energy deposition curves of HDV2 (green) and EBT2 (blue) for stack designs 1-3
(a)-(c) HDV2 (green).

6.2.4 Optical transition radiation

By aligning the top of the ion energy detector to target normal rear provided a line of sight

for the optical transition radiation (OTR) diagnostic.141 The OTR diagnostic recorded the

transmitted near- and far-field laser emission from above the ion detector, as shown in Figure

6.3. For this experiment the OTR was used for ensuring that the laser hit the target during

a shot. Any shots showing the laser clipping on the edge of the hole on the substrate were

discarded from the data set.

6.3 Ion acceleration results

6.3.1 Maximum ion energies

Figure 6.6 (a) and (b) shows the recorded ion beam on the RCFs after a high energy laser

shot using, respectively, 1 and 8 nm LSG targets shot. Proton energies, Ep, are indicated on

the images. Errors in Ep correspond to the FWHM of the energy deposition curves. Both

measurements used stack design 3 (see Figure 6.4 (c)), which include CR-39 before the RCF

recording (36.4 ± 0.2) MeV protons. Notice that the first RCF is fully saturated by absorbed

radiation, including ions, whereas the second RCF shows structured features that are close

but not fully saturated. The difference between Figure 6.6 (a) and (b) is that the 1 nm LSG

produced a randomly shaped beam pattern. The 8 nm LSG generated a structured pattern

with a central spot and a ring structure. From the CR-39 data analysis (see Sub-section
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6.3.2) protons are identified using the 8 nm LSG. Hence, the highest proton energy recorded

is (44.5 ± 0.3) MeV. Protons are not detected on the CR-39 in the case of using the 1 nm

LSG. Therefore, it is not possible to confirm what signal corresponds to ions. In the case

of Figure 6.6 (a), the highest proton energy from using the 1 nm LSG may be (11.2 ± 0.2)

MeV.

Figure 6.6: RCF images of the captured laser-driven ion beam pattern from LSG targets of thicknesses
(a) 1 and (b) 8 nm. The corresponding proton energies are given on the bottom-right corner of every
image. Stack design 3 was used for both sets of images shown.

The maximum proton energies, Ep,max, for each target thickness, x0, used are summarised

in Figure 6.7. Ep,max is taken from the last RCF showing a distinct structure (see Figure

6.6). Red, blue and green points in the figure identify stack designs 1, 2 and 3 used on shot.



CHAPTER 6. HIGH ENERGY CARBON IONS 118

Measurements for each thickness are statistical averaged (white points with standard error)

for comparison. The standard error is larger for the 2 nm LSG as this is an average of two

shots, whereas three shots are achieved for all other LSGs, as confirmed by the OTR. The

8 nm LSG target produced the most energetic protons, reaching Ep,max = (26 ± 9) MeV

on average and (44.5 ± 0.3) MeV as the highest energy observed. The highest energy is

comparable to the proton energies measured by Higginson et al. 18 using a 10 nm plastic

where one plasma mirror is used in the setup. The results may have a correlation to these

previous measurements.

Figure 6.7: Maximum proton energy, Ep,max, with respect to target thickness, x0, where the coloured
points identify the stack design and white points are the statistical averages.

On the shot with the highest proton energy the CR-39 was analysed to verify the existence

of ions. Chemically etching and data processing of CR-39 is described in Chapter 3. In the

analysis a large number of small etch pits and a few large pits due to ions were seen. It was

assumed that the small pits corresponded to protons. This observation suggests that the

proton energies exceeded 36.0 MeV. These were the maximum energies detected on the back

of the second CR-39 in stack design 3. As for the large etch pits, if assuming these are carbon

ions, the carbon ion energies surpassed 802 MeV. Further discussions on the identification

of ions on the CR-39 will be addressed in Subsection 6.3.2.

With the measurements producing high ion energies, the RCF and CR-39 were analysed

further to determine how the LSG targets performed.
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6.3.1.1 Ion beam directionality

Figures 6.8 (a)-(d) show the ion beam pattern on specific pieces of the 5×2.5 cm2 RCF. These

results are from laser irradiating the 1, 2, 4 and 8 nm LSG targets repeatedly. Assuming

both protons and carbon ions are captured the energies on the RCF are from 4.5 to 7.5

MeV for protons and 100 to 170 MeV for carbon ions. Note that the highly dark features

on the RCF show signs of film saturation. This is interpreted from comparing the counts

across the scanned film of the shown RCFs and the first RCF in the stack design, which are

fully saturated. Using 1 nm LSG the beam pattern shows filament-like structures randomly

distributed across the RCF (see Figure 6.8 (a)). Switching to 2 nm LSG in Figure 6.8 (b) a

dim ring-like structure extending ∼2 cm across the image is observed. With the 4 nm LSG

(see Figure 6.8 (c)) this ring becomes enlarged to ∼3.5 cm to its outer diameter, as well as

sharper and distinct. When using the thick 8 nm LSG the ring structure encloses a dark

and distinct central spot in the ion beam. This is shown in Figure 6.8 (d). The ion beam

patterns are repeatable for the given target thicknesses. Therefore these observations were

thought of being characteristic to the LSG targets used.

Figure 6.8: Ion beam pattern captured on RCF between 4.5-7.5 MeV protons and 100-170 MeV
carbon ions using (a) 1, (b) 2, (c) 4 and (d) 8 nm LSG targets.

The filaments in the ion beam patterns observed may be linked to the wrinkles on the LSG

targets. The wrinkles can be considered similar to targets with rough surfaces. Studies60,142

suggest that the surface roughness, particularly on the rear side of the target, determines

how collimated the ion beam is. A rough surface produces filaments in the ion beam, and a

smooth surface results in a smooth beam pattern. As the target thickness was increased the

beam filamentation was more concentrated in to a ring and a central spot seen on the RCF

in Figure 6.8 (d).

The ring structure has been previously studied (see Ref.62,143). The low energy ions

driven out of target rear via target normal sheath acceleration (TNSA) are subject to a
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transverse deflection. This transverse field deflects the ions. Furthermore, those studies62,143

suggested that a central spot of high energy ions is produced because of the combined

acceleration along target normal and onset of relativistically induced transparency. A central

spot is observed on the RCF measurements using the 8 nm LSG target (see Figure 6.6 (b)).

Later in this chapter it is shown that particle-in-cell simulations reproduce most of the ion

beam pattern seen in experiment and predicted in studies.62,143

6.3.2 CR-39 results

6.3.2.1 Ion identification

Key reasons for using CR-39 were to include an additional diagnostic to the RCF measure-

ments and, more importantly, separate ions from electrons. Hence, the CR-39 verified the

existence of ions on the RCF. Figure 6.9 (a) shows (from top to bottom) the ion beam pattern

on the RCF HDV2 before the CR-39, on the first CR-39 in the stack after etching, and RCF

EBT2 after the CR-39. Stack design 3 and the 8 nm LSG target are used. Proton energies

are indicated on the images. Magnified images of regions A-F on the CR-39 are shown in

Figure 6.9 (b). These images are trimmed and enlarged to show the details of the CR-39

surface. Regions A-B are on the front surface of the first CR-39 and C-F are on the back

of the second CR-39. Their positions on the CR-39 and RCF are annotated and matched

on Figure 6.9 (a). Positions A and B are shown on the RCF immediately before the first

CR-39, and C-F are indicated on the RCF immediately after the second CR-39. Small and

large etch pits are seen on the CR-39. All CR-39 images are taken using a fully automated

optical microscope with a 0.7× 0.7 µm2 image resolution (see Subsection 3.2.3).

From the energy calibration measurements performed using the HIMAC (see Subsection

6.2.3) small etch pits are comparable to irradiating a beam of protons between 0.5 and 5

MeV directly on an unused CR-39 sample. Hence, it is assumed that the small etch pits

correspond to protons. Irradiating both carbon and oxygen ions between 3 and 5 MeV/n

on CR-39 produced identical and large etch pits. Therefore it is unclear what fraction of

large etch pits seen on the CR-39 from the experiment are due to carbon ions from the

LSG targets. Measurements on carbon and oxygen flux are referred in the next subsection

collectively as heavy-ion flux, and the contribution to this flux due to carbon ions is discussed

towards the end of this section.

The etched CR-39 shows the same beam structure as on the RCF in front of and behind

the CR-39 (see Figure 6.9 (a)). The sharp and distinct features were due to ions. Hence, this

validates the assumption that the beam pattern on the RCF was due to laser-driven ions.
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6.3.2.2 Ion beam directionality on CR-39

In Figure 6.9 (b), regions A and C show the ion etch pits within the central spot of the ion

beam on the front of the first CR-39 and back of the second CR-39. The central spot (white

region in Figure 6.9 (a) (middle)) corresponds to the region with the highest number of etch

pits and, in turn, ion flux. The number of small etch pits due to protons seen at those regions

is uncountable as the pits are merged to clusters (see Figure 6.9 (b) A and C). Therefore it

was assumed that the proton flux exceeds the ion flux resolvable by the optical microscope,

which is 105 ions/cm2. The large black pits were assumed to be carbon ions. As for the large

etch pits, (5± 3) and (20± 10) pits are counted across an image size of 0.7× 0.7 mm2. The

errors are one standard deviation of the mean pit count, which is 68%. A standard deviation

is used for all large pits counted. Hence, the heavy-ion fluxes are around (1.0 ± 0.7) × 103

and (4 ± 3) × 103 ions/cm2. Comparing these to the proton flux of 105 protons/cm2 the

heavy-ion-to-proton flux ratios are (0.010 ± 0.007) and (0.04 ± 0.03) on regions A and C.

Note that these and following ratios are overestimates because of the saturated proton flux.

These results show that the number of heavy ions stopped by the first CR-39 is a third of

those stopped in the second CR-39 within the centre of the ion beam.

Figure 6.9: (a) Image of the RCF before the CR-39, first CR-39, and RCF after the CR-39. (b)
Scanned images at the marked positions A-B on the front surface of the first CR-39 and C-F on the
back of the second CR-39. The images were cropped from the original image size to show the small
and large etch pits.

Regions B and F in Figure 6.9 (b) are taken from regions outside the ion beam. These

regions are used to assess the contribution of background noise from cosmic rays and other

sources. Etch pits are distinct and resolvable on the images in regions B and F. Tiny etch
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pits of ∼10 nm in size are seen. These pits are not circularly symmetric as inferred from

Figure 6.9 (b) B and F. These pits are formed by ions incident at an oblique angle on the

CR-39 and not aligned to target normal as in the experimental setup. Therefore, these tiny

pits are assumed to be background noise and excluded from the count of laser-driven ions.

As the background noise is low at regions B and F it is assumed that the majority of etch

pits in regions A, C, D, and E are due to laser accelerated ions.

Regions D is taken from within a filament seen on the back surface of the second CR-39

and the RCF. Only 3 large etch pits are counted. This corresponds to a heavy-ion flux of

(600±400) ions/cm2 and, in turn, a heavy-ion-to-proton flux ratio of (0.006±0.004). Hence,

the filamental structures outward from the centre of the beam is assumed to be mainly due

to protons. Electric field emerging during the laser-target interaction on target rear surface

may deflect protons depending on the surface roughness.60,142 In addition, the protons can

also be deflected more easily by fields because of their high charge-to-mass ratio. Both fields

and charge-to-mass ratio may explain why protons form filaments in the RCF.

On the back of the second CR-39 region E shows the etch pits along the edge of the

observed ion beam. Tiny, small and large etch pits are resolved. Ignoring all tiny and

asymmetric pits due to background noise, the number of large pits counted result in a

heavy-ion flux of (2±1)×103 ion/cm2 and a heavy-ion-to-proton ratio of (0.02±0.01). This

ratio is similar to the ratio in the centre of the beam at region C.

Table 6.1 summarises the estimated heavy-ion-to-proton flux ratios from regions A, C,

D and E. As stated previously, these results are overestimates due to the proton flux being

saturated for the diagnostic technique used. The errors are one standard deviation of the

mean. The estimates suggest that most heavy ions are driven along the centre and edge of

the ion beam. The ions along the edge may be influenced by a transverse electric field during

the acceleration, and the central beam is possibly driven before a transverse field forms.

Table 6.1: Heavy-ion-to-proton flux ratios, Γi/Γp, estimated at regions A, C, D and E in Figure 6.9
(b). All values are overestimates due to the saturated proton flux.

Region A C D E

Γi/Γp (0.010± 0.007) (0.04± 0.03) (0.006± 0.004) (0.02± 0.01)

The heavy-ion-to-proton flux ratios in Table 6.1 indicate that the abundance of protons

on the LSG is larger than carbon and oxygen ions. Therefore the LSG targets are not solely

graphene. Plastic residuals from target fabrication11 and hydrocarbons from the air29,61

may have contaminated the graphene surfaces. Using an atomic force microscope a single

LSG layer has a measured thickness of ∼1 nm.11 Theoretically, pure graphene is one carbon

atom thick, which is 0.3 nm thin.137,139 This suggests that about 70 % of the individual LSG

layers may be proton contaminants.

From the ion energy measurements using the HIMAC, it is not possible to distinguish
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large etch pits due to carbon and oxygen ions with the stack designs used. Therefore

it is expected that the carbon-to-proton flux ratio is much smaller than the values sum-

marised in Table 6.1. By comparing the results to other studies measuring ion energies and

fluxes18,80,119,144 the carbon ion flux may be at least one order of magnitude below the typical

detection threshold of a Thomson parabola and RCF. Furthermore, the protons, carbon and

oxygen ions can cause knock-on interactions with atoms in the CR-39. These atoms creates

additional etch pits that may not be distinguishable from other etch pits if the interaction

pushes the atom in the same direction as the laser driven ions. These are not separated in

the analysis.

6.4 Theoretical interpretation of experiment

The experimental results on ion energies and beam patterns observed by using the LSG tar-

gets are interesting results. To understand these observation requires knowledge of the laser

interaction physics and acceleration mechanisms producing these ions. Both depend on how

electrons absorb energy from the laser.16,145 Here the five acceleration mechanisms described

in Section 2.4 will be discussed in the experimental setup. This provides a theoretical insight

to the nature of the laser-driven ions from the LSG targets.

6.4.1 Target normal sheath acceleration (TNSA)

Target normal sheath acceleration (TNSA) is the most studied mechanism of laser-driven

ion acceleration. TNSA depends on the most energetic component of the relativistic electron

flux driven by the laser exiting the target rear surface. The higher the flux, the stronger the

electrostatic field accelerating the ions.29 For the highest electron flux there is an optimum

target thickness around tens of micron when not using plasma mirrors111 and less than a

micron with plasma mirrors.111,146 Thicker targets lead to a low flux as electrons deposit or

radiate energy in matter.29,30,146 On the other hand, the thinner the target, a lower number

of electrons may be driven by the laser.29,111,146 As nano-thin LSG are much thinner than

sub-micron thick targets, TNSA is likely to be inefficient. This is due to the low number of

available electrons.

6.4.2 Enhanced target normal sheath acceleration (ETNSA)

Enhanced target normal sheath acceleration (ETNSA) is a special case of TNSA where all

electrons across the thickness of the target are directly heated by the laser. This results

in driving these electrons to high energies, which in turn strengthens the electrostatic field.

ETNSA is possible with LSG targets because of their thicknesses being comparable to the

skin depth, δs, at solid target density.29,61,63 Assuming that the density of graphene is the

same as for graphite at 2.25 g/cm3 and using Eqns. 2.6 and 2.10, δs ≈ 6 nm. Target
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thicknesses are 1 to 8 nm and are comparable to δs. This suggests that the LSG targets are

penetrated by the laser, leading to the laser heating the whole target. In turn all electrons

couple to the laser and accelerate to relativistic energies. This may contribute to the ion

acceleration.

6.4.3 Radiation pressure acceleration in the light-sail regime (RPA-LS)

As the laser intensity peaks at I0 = 1.6 × 1020 W/cm2, the laser reaches pressures up to

P0 = 2I0/c ≈ 500 Gbar.16,145 This high pressure suggests that radiation pressure acceleration

(RPA) may be important in driving the ions.

The hole-boring speed, vhb, determines how rapid the front surface is pushed through the

target.29,147 Its formula is

vhb/c =
a0

√
ncrme/ρi

1 + a0

√
ncrme/ρi

(6.1)

where a0 = 0.85
√
I0[W/cm2](λ0[µm])2/1018 is the normalized laser amplitude, c is the speed

of light, ncr is the critical density, me is the electron mass and ρi is the target ion density.

The brackets in a0 denote the units for I0 and λ0. Assuming ρi = 2.25 g/cm3, vhb ≈ 0.013c.

By dividing the 1 and 8 nm thicknesses by vhb suggests that the target front surface may

reach the rear side in 2 and 0.3 fs respectively. This suggests that the laser may directly

drive the ions from LSG targets via RPA in the light-sail regime (RPA-LS).

On the other hand, the LSG target thicknesses are comparable to the initial skin depth

is δs ≈ 6 nm. Part of the laser is transmitted through the target rather than absorbed.29,61

This in turn may reduce the coupling of the laser to the target via RPA-LS. In addition,

studies on RPA-LS147 suggest that if the target is thinner than ct0/2, relativistic electrons

reflux and deform the target. Deformation decreases the target densities, which in turn

reduces laser to target coupling. For the Vulcan petawatt laser with a pulse duration of

t0 = 0.7 ps, ct0/2 ≈ 0.1 mm. The target thickness is comparable to δs and smaller than

ct0/2, suggesting that RPA-LS is unlikely for ion acceleration.

6.4.4 Breakout afterburner (BOA)

The breakout afterburner (BOA) mechanism may accelerate ions because of the LSG thick-

nesses being comparable to the skin depth, δs ≈ 6 nm. All electrons are driven to relativistic

energies within the laser spot. Maximising the electron energies depends on the laser energy,

E0, pulse duration, t0, and the time that the plasma becomes transparent to the laser driver.

The latter is the onset of relativistically induced transparency (RIT), which is described

in Chapter 2. A E0 = 160 J and t0 = 0.7 ps pulse may couple most of its energy to the

electrons close to the peak of the laser. Ideally then, the onset of RIT should occur near

the peak for the highest electron energies. Assuming that the ions move significantly slower
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than the relativistic electrons, a large drift between the electrons and ions may form. The

drift may result in a two-stream electron-ion instability, also called a Buneman instability,

that amplifies the electrostatic field at the onset of RIT.63,69–71

For ion acceleration via BOA, the onset of RIT depends on the initial target thickness

and density used. For this onset to coincide closely with the peak of the laser, the target

thickness and density need to match. Studies on RIT suggest that a sub-micron to micron

thick target of near-critical density64,70 or, alternatively, tens of nanometer thin targets at

solid density63,69 may be suitable for driving ions via BOA. Whether BOA is important

using LSG targets needs to be inferred from computational simulations (as shown in the

next section).

6.4.5 Coulomb explosion (CE)

For Coulomb explosion (CE) to drive the ions requires the target thickness to be comparable

but smaller than the skin depth, δs. This condition implies that piling up the electrons inside

the target with the laser is avoided. This is different from RPA-LS where this pile up forms

an electron bunch in the target that the laser pushes forward. Preventing the electron pile

up ensures that a positive charge can form within the target. This in turn blows out and

accelerates the ions.64,65,148

The larger the positive charge inside the target, the higher the ion energies. One way

this may be achieved with the LSG targets is with the laser driving all electrons out from

the irradiated spot. Since the target thicknesses used are comparable to the skin depth at

δs ≈ 6 nm, the laser can penetrate the target and, as a result, heat the whole target.64,148

This may result in a rapid removal of electrons from the target faster than the ions can move.

Hence, it is possible that a large positive charge may form that subsequently blows out the

ions from the target.

6.4.6 Summarised overview on ion acceleration mechanisms

In summary, ETNSA and CE are probably the acceleration mechanisms that drive the

ions to high energies because of the 1-8 nm thicknesses of the LSG targets. For the same

reason, TNSA and RPA-LS are not expected to be significant in driving the most energetic

ions. As for BOA it is not clear how important this mechanism may be because, to the

best of knowledge, computational studies have not investigated thicknesses as thin as a few

nanometers.

It may be that the ions were driven in the experiment under a hybrid acceleration.18 As

in, each mechanism contributes to the electrostatic field, Ex, driving the ions to high energies.

Therefore, the acceleration field is considered being the superposition of the fields from each

mechanism. Determining and understanding the contribution of the mechanisms to Ex re-

quired linking the experimental observations and theoretical interpretation to computational



CHAPTER 6. HIGH ENERGY CARBON IONS 126

simulations.

6.5 Simulations of ion acceleration using EPOCH

For the computational simulation study in this work, the Extendable Particle-in-cell Open

Collaboration (EPOCH) code149 was used. Particle-in-cell (PIC) codes were extensively

used to understand the laser-driven ion acceleration mechanisms described in the previous

section.18,61,63,64,68,70,147,149,150 Hence, it was appropriate to use EPOCH.

6.5.1 One-dimensional simulation setup

All one-dimensional (1D)-EPOCH simulations were attained using the computing resources

provided by STFC Scientific Computing Department’s Scientific Computing Application

Resource for Facilities (SCARF) cluster.151 Up to 120 cores and 128 GB memory were used

for the simulations. With the 1D setup, the simulations took up to one day to complete

without crashing. If a crash occurred, the restart input in EPOCH was used to continue the

simulations from the last output file produced.

Figure 6.10 shows the setup of the 1D-EPOCH simulations. The simulation box was 135

µm long containing 36864 cells. The cells size was ∆x = 3.7 nm. An s-polarized laser pulse

entered the simulation box from the left boundary at −3 µm. The laser was a Gaussian-

shaped pulse with a FWHM pulse duration of t0 = 0.7 ps and a peak intensity of I0 = 3×1020

W/cm2. The peak entered the simulation at 700 fs, which meant that the laser started with

an intensity of ∼ 2×1019 W/cm2 at the left boundary. The laser wavelength was λ0 = 1.054

µm. The laser irradiated the target front surface positioned at 0 µm, which was 3 µm from

the left boundary of the simulation box. The target was composed of a fully ionized plasma

slab with a total of Ne = 9.6 × 106 electrons, Np = 1.6 × 105 protons and Ncb = 1.6 × 106

carbon ions for all thicknesses used. Slab thicknesses between 1 and 100 nm were used, where

the focus was on the 8 nm target as it produced the highest ion energies in the experiment.

The density was assumed uniform and to correspond to graphite at 2.25 g/cm3. Therefore

the electron density used was ne = 690ncr, where ncr = 1× 1021 cm−3. Exponential density

ramps extended 5 and 1 nm from the front and rear sides of the target. The initial plasma

temperature used was Te = 100 eV, which corresponded to a Debye length of λD ≈ 90 nm.

The Vulcan petawatt laser was modelled as a Gaussian pulse. The temporal Gaussian

profile started −0.7 ps before the peak. The simulation start time is chosen from a parameter

scan performed using a 80 fs duration Gaussian pulse. The shorter pulse was chosen for

computational speed and easy analysis. These simulations used start times at half, one

and four times the pulse duration from the peak, which correspond to −40, −80 and −360

fs respectively. It was found that the final ion energies produced were the same for the

simulations between −80 and −360 fs, and dropped when using −40 fs. Therefore, the start



CHAPTER 6. HIGH ENERGY CARBON IONS 127

time for the main simulations with the 0.7 ps pulse duration was set at one times the pulse

duration, as in −0.7 ps before the peak.

Figure 6.10: Schematic of the 1D-EPOCH simulation setup.

The density ramps at the front and rear target surfaces were included to improve the

numerical stability. In PIC simulations, the electromagnetic fields are calculated on com-

putational cell boundaries from interpolation of the particle charge within the neighbouring

cells. Density ramps help limit the charge difference between these cells and limit the mag-

nitude of these fields. Large fields on cell boundaries are unphysical and produce noise in

the simulations.149,152 The 5 and 1 nm long density ramps at the front and rear of the target

respectively were found to be adequate

Te = 100 eV was used for λD ≈ 90 nm. With a cell size of ∆x = 3.7 nm, this satisfied

the condition πλD/∆x ≥ 1.152 The choice of Te = 100 and ∆x are based on running reliable

simulations, which is discussed in the next subsection.

6.5.1.1 Convergence testing

PIC simulations generate noise through numeric self-heating and electrostatic instability.

Managing and reducing sources of noise is a complex task that requires convergence testing.

Numeric self-heating occurs when high frequency interactions are not sufficiently resolved.

To reduce self-heating it is necessary that the condition πλD ≥ ∆x is satisfied.152 Notice

that the condition is similar to the number of particles in a Debye sphere exceeding unity,

ND > 1, where ND ∝ neλD in 1D (see Eqn. 2.3 in Section 2.1). Consequently, if there

are not enough number of particles there will be a miscalculation in the electrostatic field.

Achieving convergence requires decreasing ∆x and increase the number of particles per cell,

but this demands more computational resources. Therefore, an optimum choice for a small

∆x and large number of particles per cell is chosen for robust and feasible simulations.

A simple approach for convergence testing is to compare the electron densities, ne, be-
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tween successive runs that either reduce the cell size, ∆x, (below πλD) or increase the number

of particles per cell. Electrons are the particles with the highest charge-to-mass ratio and,

therefore, can probe for small changes due to numeric noise. ne is used as it is linked to the

number of particles per cell and has been previously used for robust convergence testing.153

An example of a convergence test in 1D simulations is illustrated in Figures 6.11 (a) and

(b). Here the number of electrons Ne,j in run j was increased to the values given in the

legend. In this test 24 cores on SCARF are used. The electron density, ne, is taken at the

end of the simulation where the numeric noise is highest. The differences between electron

densities across the x-axis in the simulation box are taken between the current (j + 1) and

previous (j) run. This provides the regression, Rj , with x shown in Figure 6.11 (a). Rj is

normalised to the largest absolute value (see violet plot). Rj and the number of grid points,

Gj , for run j are used to obtain the convergence term, Cj ,

Rj = ne,j+1 − ne,j (6.2)

Cj =

√∑Gj

k Rj(xk)2

Gj
(6.3)

The root-mean-square summation adds the regression at each grid point, xk, as ne is assigned

to these points in EPOCH. As seen in Figures 6.11 (a) and (b), Rj and Cj decrease with

increasing Ne,j in every successive run. This indicates that the numeric noise is suppressed.

With every run improving the robustness, the time for finishing the simulations increases.

The last run in Figures 6.11 (a) and (b) (j = 7) took nearly 48 hours using 24 cores, which

is the runtime limit on the SCARF cluster. With the simulations showing little change

at that run and approaching computational constraints, the simulations can be considered

converged.

The simulation setup for the key results used a cell size of ∆x = 3.7 nm and 9.6 × 106

electrons. These parameters provided robust simulations using 120 cores up to 72 hours

of computation time. Running simulations beyond 48 hours on SCARF required using the

restart function in EPOCH to finish the simulations. In principle, larger number of particles

and smaller cell sizes could be used. On the other hand, the data size becomes large and

unfeasible to store and analyse. The setup parameters of ∆x = 3.7 nm and 9.6×106 electrons

provided simulations that are converged and computationally manageable.
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Figure 6.11: (a) Normalised residual, Rj , were taken of ne between consecutive runs. Each successive
run, j, increased the number of particles per cell (given in the legend). (b) The convergence term, Cj ,
from the root-mean-square averaged Rj show an increasing improvement in the simulation consistency
from the variation in ne.

6.5.1.2 Onset of relativistically induced transparency

The time evolution of the 1D EPOCH simulations using the 8 nm thick is shown for the

transverse electric field, Ey, of the laser against the plasma density defined by ne and rela-

tivistic critical density, γencr, in Figure 6.12 (a)-(c). Simulation times, tsim, at −665, −420

and −385 fs are shown, where 0 fs corresponds to the laser peak entering the particle grid

at position x = −3 µm. The horizontal dashed line is ncr = 1 × 1021 cm−3. The vertical

dashed line marks the peak of ne. The origin is at the initial position of the target front

surface (see Figure 6.10).

During the early simulation time (−700 ≤ tsim < −385 fs) the laser interacts with an

overdense plasma where ne > γencr. The laser encounters the solid target with an initial

intensity of 1.9 × 1019 W/cm2. The interaction drives electrons out of the target rear by

radiation pressure as inferred from γencr in spatial region between 0 and 5 µm in Figure 6.12

(a). As the simulation evolves with time the target is heated by the laser. This is inferred

from the periodic peaks in ne and γencr at both target front and rear sides seen in Figure

6.12 (b) at time tsim = −420 fs. At this time the laser intensity is 1.2 × 1020 W/cm2 on

target. Laser heating occurs at the rear side because the laser penetrates the plasma. This

occurs due to the skin depth being comparable to the plasma thickness. At tsim = −420 fs,

δs
√
γe ≈ 0.4 µm. This is calculated at position x ≈ 0.5 µm where ne and γencr intersect (see

Figure 6.12 (b)). The plasma thickness, which is inferred from the two points where ne and
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γencr intersect (∼0.5 and ∼1.1 µm), is ∼0.6 µm.

As tsim approaches −385 fs the overdense plasma decreases in density below the relativis-

tic critical density where ne < γencr (see Figure 6.12 (c)). At this time the density is greater

than the critical density ne > ncr between −0.7 and 2.5 µm. Hence, relativistic electron

motion causes the plasma to become transparent to the laser. This observation suggests

that the laser interaction physics changes from the overdense plasma to where the system is

characterised by the relativistically induced transparency (RIT) regime.

Figure 6.12: 1D EPOCH simulations of ne and γencr evolving with simulation times (a) tsim = −665,
(b) −420 and (c) −385 fs relative to the laser field given by Ey.

The onset of RIT is important for determining how ions are accelerated. TNSA, ETNSA,

RPA-LS and CE are mechanisms that depend on the laser interaction with the overdense

target. This interaction determines the longitudinal electrostatic field that drives the ions



CHAPTER 6. HIGH ENERGY CARBON IONS 131

forward. The magnitude of the field depends on the main mechanisms emerging during

the laser-plasma interaction. At the onset of RIT the mechanisms switch off and no longer

strengthen the electrostatic field. Therefore it was assumed that the acceleration mechanisms

may be identified at the time just before the onset of RIT.

In contrast to the other acceleration mechanisms, BOA emerges at the onset of RIT. If

BOA is important, the electrostatic field may be amplified due to the Buneman instability.

This rapidly drives to high energies. It was assumed that by looking at the electrostatic field

and ion motion immediately after the onset of RIT that any effect of BOA may be identified.

6.5.1.3 Ion energies

The ion motion relative to the longitudinal electric field, Ex, determines the proton and

carbon ion energies, Ep and Ecb. This is shown in Figure 6.13 (a) from the 1D-EPOCH

simulations. The mean position of protons (circles) and carbon ions (crosses) with energies

between 80% and 100% of their maximum energy are plotted at each dump time (35 fs per

dump) from tsim = −700 to 0 fs. Ex is shown in the background of Figure 6.13 (a) for spatial

comparison to the ions. The dark red region in Ex accelerates ions forward in the positive x

direction. The horizontal dashed line marks the start of RIT. Figures 6.13 (b) and (c) show

the maximum Ep (green line) and Ecb (indigo line) between tsim = −700 and 700 fs. Values of

Ex that spatially coincide with the protons and carbon ions are taken and then averaged to

shown Ex,ave (red lines) in Figures 6.13 (b) and (c). For reference, the Gaussian transverse

laser field, Ey, is shown as the dotted blue line. The vertical dashed lines indicate the time

that RIT starts.

Before the onset of RIT the energetic ions are moving ahead of the acceleration field

(see red region in Figure 6.13 (a)). The acceleration field is confined close to the target

rear surface and drives the ions forward. The field strength determines the ion energies. As

the ions are accelerated away from the field, the ions do not gain more energy. Hence, the

highest ion energies are limited to the ion acceleration close to the target before tsim = −420

fs. At this time the field reached its largest amplitude of about 6.7 MV/µm.

After the onset of RIT at tRIT = −420 fs, the acceleration field in Ex (see red region

in Figure 6.13 (a)) detaches from the relativistically transparent plasma and moves rapidly

forward. This field catches up with the energetic ions pre-driven by this field before the onset

of RIT. This results in continuing acceleration of the ions to higher energies. This is shown

by Figures 6.13 (b) and (c). Because of the onset of RIT, the highest energies achieved in

the simulations are Ep ≈ 290 MeV and Ecb ≈ 1.8 GeV. How this strong field is generated

depends on the emerging acceleration mechanisms.
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Figure 6.13: (a) Electrostatic field, Ex, at simulation times tsim and mean position x relative to the
most energetic protons (circles) and carbon ions (crosses). The average Ex (red line) acting on these
ions is compared to the maximum proton and carbon ion energies, Ep,max and Ecb,max (green and
indigo lines), in (b) and (c) with tsim. The laser pulse (dotted blue line) is plotted in the background.

Complementing the 1D simulations, Figure 6.14 (a) and (b) shows the proton and carbon

ion energy distributions accelerated from target rear side (x > 0 µm) at selected simulation

times, tsim = −210, −140, 0 and 560 fs. tsim are times after the onset of RIT. From this onset

onward, the protons are initially accelerated as a bunch of two quasimonoenergetic regions.

By 0 fs the energy distribution starts to broaden because of the gradual decrease in the

peak amplitude of the acceleration field. This also results in protons behind the acceleration

field gaining less energy than the protons co-moving with the peak. As a result, the energy

distribution broadens, resulting in the distribution seen at 560 fs (red). As for the carbon

ions, the energy distribution has two continuous regions. For times tsim = −210, −140 and

0 fs the low-energy region is at energies Ecb < 260, 350 and 1100 MeV, and the high-energy

region is between 260 and 360 MeV, 640 and 820 MeV and 1250 and 1750 MeV.
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Figure 6.14: Energy distributions of (a) protons and (b) carbon ions in the 1D-EPOCH simulations
at tsim = −210 (violet), −140 (blue), 0 (green) and 560 fs (red).

6.5.1.4 Inferring for target normal sheath acceleration (TNSA)

The contribution of TNSA to the acceleration field, ETNSA, known as the sheath field, was

calculated using the relation ETNSA = Trel/Lsh.16,29 Lsh ≈ 0.7 µm is taken as the length of

the acceleration field estimated across the red region in Figure 6.13 (a) at tsim = −455 fs. The

relativistic electron temperature, Trel, was inferred from the average electron kinetic energy

within the same region, which was Trel ≈ 1 MeV. This temperature is nearly equivalent to

the mean energy calculated using Beg’s scaling (see Eqn. ??) at 1020 W/cm2 laser intensity.

Using Lsh ≈ 0.7 µm and Trel ≈ 1 MeV from the simulations, ETNSA ≈ 1.4 MV/µm.

Assuming that the ion energy is related to Trel and atomic number, Z, by Ei ≈ ZTrel,
29

the corresponding proton and carbon ion energies are respectively Ep ≈ 1 and Ecb ≈ 6 MeV.

These estimates are well below the energies of the energy distributions simulated (see Figure
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6.14 (a) and (b)) and, hence, TNSA is expected to have no strong contribution to the ion

acceleration.

ETNSA was calculated assuming the electrons in the overdense plasma were cold. The

assumption is not valid as volumetric coupling of the laser to all electrons occurs across the

target.

6.5.1.5 Inferring for enhanced target normal sheath acceleration (ETNSA)

For ETNSA to accelerate ions the target needs to be volumetrically heated by the laser,

which is inferred from Figure 6.12. As discussed in Section 6.4.2 this is possible because

the 8 nm target thicknesses is comparable to the δs ≈ 6 nm skin depth. This suggests that

TNSA was dominated by ETNSA as all electrons interact with the laser. Hence, both theory

and EPOCH simulations suggest that ETNSA may contribute to the ion acceleration. This

contribution may be small because of the thinness of the target.

6.5.1.6 Inferring for radiation pressure acceleration in light-sail regime (RPA-

LS)

For RPA-LS it was assumed that Eqns. (2.29) and (2.30) may be used directly to determine

the ion energy, Ei. Solving the definite integral in Eqn. (2.30) for a Gaussian laser pulse of

peak intensity, I0, and pulse duration, t0, these equations are rewritten as

Ei =
mic

2

2

F
F + 1

(6.4)

F =
2
√
πln2I0t0

minix0c2
erf

(
tRIT − ts
2
√

ln2t0

)
(6.5)

The dimensionless laser fluence is F . ni and mi are the ion density and mass, x0 is the initial

thickness, ts is the simulation start time, tRIT is the time for the onset of RIT. Integrating

a Gaussian function results in the error function, erf(), in Eqn. 6.5. Between ts and tRIT

the laser interacts with the overdense plasma. Key assumptions for Eqns. 6.4-6.5 are that

the target is perfectly reflecting the laser, no laser absorption occurs and the target remains

overdense up to the onset of RIT.29 The first two conditions are not satisfied because of the

target thickness is comparable to the skin depth.29,61

Using Eqns. 6.4-6.5 for the carbon ions for the x0 = 8 nm thick target gives Ecb =

(2.0 ± 0.3) GeV. From the 1D-EPOCH setup the carbon ions used ncb = 1.15 × 1023 cm−3

and mcb = 12u for carbon ions (u = 1.66 × 10−24 g is the atomic mass unit). As for the

Gaussian laser pulse, I0 = 3×1020 W/cm2, t0 = 700 fs and ts = −700 fs. tRIT = (−410±35)

fs from the EPOCH simulations. The standard error in Ecb is calculated from tRIT . Repeating

the calculation for the simulated protons where mp = u and np = 1.15× 1022 cm−3 gives Ep
= (460± 10) MeV. The calculated energies are larger than simulations predict.
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The key assumptions that perfect reflection and no absorption of the laser occurred are

not valid. In the EPOCH simulations at tsim = −420 fs before the onset of RIT it was

shown that the laser penetrated the target (see Figure 6.12 (b)). A quarter of the laser

transmits through the target, which is estimated from comparing the peaks in Ey in Figure

6.12 (b). Furthermore, about 11% of the incident laser energy is absorbed by the target

in the simulations. Multiplying the fraction of penetrated and absorbed laser energy on Ep
and Ecb reduces the calculated energies to Ep = (12.1± 0.3) and Ecb = (53± 8) MeV. These

energies are significantly lower than the simulated ion energies shown in Figure 6.14 (a) and

(b). Hence, the result suggests that RPA-LS may not be efficient in driving the ions from

LSG targets.

6.5.1.7 Inferring breakout afterburner (BOA) acceleration

According to Stark et al. 70 one approach for determining the impact of BOA to the ion

acceleration is to infer a rapid growth in ion energies at the onset of RIT. This growth in

energy coincides spatially with a longitudinal electric field that rapidly increases within a

sub-micron range at target rear. This is inferred in PIC simulations by comparing the ion

phase-space to this co-moving electric field.

Figures 6.15 (a)-(b) show the longitudinal and transverse electric fields, Ex and Ey (blue

and red profiles), before and after the onset of RIT (tsim = −420 and −350 fs). The peak

in Ex above 4 MV/µm is defined as the acceleration field. The corresponding energy phase-

space of the protons and carbon ions are shown in Figures 6.15 (c)-(d) and (e)-(f). The

initial target thicknesses used is 8 nm. The colorbars provide the ion densities np and ncb.

By comparing Figures 6.15 (a)-(b) and (c)-(d), the densest proton bunch are inferred to

move ahead of the acceleration field. A low density of protons are driven to high energy by

this field. At tsim = −350 fs, the bunched protons achieve energies of 12 MeV, and the most

energetic protons reach up to 17 MeV (see Figure 6.15 (d)).

Comparing Ex to the carbon ion phase-space in Figure 6.15 (e)-(f) the densest carbon

ions are spatially coinciding with the acceleration field. At tsim = −350 fs a carbon bunch

at ∼3 µm (see Figure 6.15 (f)) is in co-motion with the field, leading to an increase in their

energy from about 30 up to 90 MeV.

A rapid increase in neither Ex nor the ion energies is inferred from the EPOCH simula-

tions using an 8 nm thick plasma. Similar results were achieved for thicknesses down to 1

nm. According to Stark et al. 70 the carbon ion energy phase-space (see Figures 6.15 (e)-(f))

suggests that ETNSA may result in the most energetic ions and may be important.

As explained in Subsection 6.4.4, optimising BOA required the onset of RIT, tRIT , to

coincide closely with the peak of the laser pulse interacting with the target. The laser peak

is at 0 fs when it enters the simulation box and close to the target. For the 8 nm target,

tRIT = (−410± 35) fs. Hence, the onset of RIT occurs too early for BOA to drive the ions.
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To determine the target thickness where tRIT is closest to 0 fs a number of 1D-EPOCH

simulations for different target thicknesses were computed.

Figure 6.15: 1D-EPOCH simulations using 8 nm target at times before the onset of RIT (−420 fs,
left column) and after (−350 fs, right column). The longitudinal and transverse electric fields, Ex
and Ey (blue and red), are shown in (a) and (b). The energy phase-spaces of the protons and carbon
ions are compared to the fields in (c)-(d) and (e)-(f).

Table 6.2 summarises the times for the onset of RIT, tRIT , for the tabulated target

thicknesses, x0, used in the 1D-EPOCH simulations. For x0 = 100 nm no onset of RIT is

inferred throughout the simulation. The uncertainty in tRIT was ±35 fs for the 8 nm target.

For all other targets the uncertainty is ±70 fs. The uncertainty are taking from the time

step used between output dumps in the simulations. The focus is on the 8 nm LSG target

used in experiment, which used 35 fs time steps for detailed information.
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Table 6.2: Onset of RIT, tRIT , inferred in 1D-EPOCH simulations using different initial target
thicknesses, x0. Uncertainty in tRIT is the time step between output data. *Uncertainty for x0 = 8
nm is ±35 fs.

x0 (nm) 1 4 8 10 20 40 60 100

tRIT ± 70 (fs) −490 −420 −385* −350 −280 −140 0 -

As implied by the information in Table 6.2, the onset of RIT occurs near the main laser

peak when the target thickness is 60 nm. Using this thickness produced the electric field and

ion energy phase space plots in Figure 6.16. This figure is the same as Figure 6.15 for the

8 nm target. (a)-(b) show the electric fields, Ex and Ey, before and after the onset of RIT

(tsim = −140 and 0 fs). The proton and carbon ion energy phase-spaces at these simulation

times are shown in (c)-(d) and (e)-(f). The colorbars refer to the proton and carbon ion

densities.

As seen in Figure 6.16 before the onset of RIT (left column), the protons are ahead of the

peak in Ex, whereas a dense carbon bunch is spatially correlated to the acceleration field.

This is also observed for the 8 nm target (see Figure 6.15). The amplitude is 2.5 greater

when using the 60 nm thick target compared to the 8 nm target. The 1D-EPOCH simulation

suggests that the main coupling of the acceleration field is to the carbon ions rather than the

protons. It will be shown later that this result is not observed when including the transverse

ion motion present in two-dimensional (2D)-EPOCH simulations. The co-motion of carbon

ions with the acceleration field may therefore be a special case in one dimension.

After the onset of RIT a sharp increase in the acceleration field at 8.8 µm is seen in

Figure 6.16 (b). Simultaneously, the carbon ions accelerate rapidly as inferred from the broad

energies from 150 to 600 MeV between 8.5 and 11 µm (see Figure 6.16 (f)). Within this

region there is a dense carbon bunch at an energy of ∼570 MeV. The carbon ion phase-space

shows similar results by Stark et al. 70 . In their work they suggest that the sharp increase

in the acceleration field and in turn carbon ion energies is a result of BOA driving the ions.

Therefore, the 1D-EPOCH simulations indicate that BOA might becomes important if the

target thickness is 60 nm.
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Figure 6.16: 1D-EPOCH simulations using 60 nm target at times before the onset of RIT (−140 fs,
left column) and after (0 fs, right column). The longitudinal and transverse electric fields, Ex and
Ey (blue and red), are shown in (a) and (b). The energy phase-spaces of the protons and carbon ions
are compared to the fields in (c)-(d) and (e)-(f).

6.5.1.8 Inferring for Coulomb explosion (CE)

CE requires the target thickness to be comparable to the relativistic skin depth, δs
√
γe.

64

The 8 nm target is comparable to the skin depth as well as in the relativistic case until

the onset of RIT at −420 fs. At this time the target expands to a thickness of ∼0.6 µm

(see Figure 6.12) and δs
√
γe ≈ 0.4 µm. This comparison is important because the laser

volumetrically heats the target and, hence, decreases ne.

With the electrons leaving the target, a positively charged dense plasma forms. This is

shown in Figure 6.17 (a) with the charge difference, ∆(qn) = e(np + 6ncb − ne), within the

dense plasma between 0.2 and 0.7 µm. The electron density, ne, is plotted in the background

for reference. The simulation time is tsim = −455 fs, which is the time that the positive charge

within the overdense plasma is maximised and before the onset of RIT. The longitudinal and

transverse electric fields, Ex and Ey, for the same time are shown in Figure 6.17 (b).
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Figure 6.17: 1D EPOCH simulations of the 8 nm thin target comparing the (top) electric fields Ey
and Ex against (bottom) the charge difference, ∆(qn), in the plasma. Enclosed vertical dashed lines
mark the region of the overdense plasma. The purple dotted line is the corresponding relative plasma
density ne for reference.

The longitudinal electric field strength ECE inside the overdense plasma was assumed to

be due to CE. ECE was derived using Gauss’s Flux Law,30,39,154

ECE =
1

ε0

∫ xrear

xfront

∆(qn)dx (6.6)

where xfront = 0.2 and xrear = 0.7 µm are the front and rear surface positions of the

overdense plasma. By integrating ∆(qn) in Figure 6.17 within this range, ECE ≈ 10 MV/µm.

ECE was 70% of the total Ex enclosed between 0.2 and 0.7 µm in Figure 6.17 (b), which was

14 MV/µm. This result suggests that CE contributed significantly to the ion acceleration in

the EPOCH simulations.
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6.5.1.9 Summary on 1D EPOCH simulations

To summarise the 1D-EPOCH simulations, CE is the most plausible mechanisms driving

the ions to high energy. Volumetric heating results in TNSA being overtaken by ETNSA

and reduce the impact of RPA-LS. These occur as a result of the target thicknesses being

comparable to the skin depth. The contribution of ETNSA to the ion acceleration is unclear

as it may be dominated by CE. At the onset of RIT, BOA is inferred to be insignificant in

accelerating ions from 8 nm thick targets and thinner. Instead, a 60 nm thick target may be

needed. The onset of RIT is important in order for the acceleration field to continue driving

the ions to the high energies simulated.

In the 1D simulations the proton and carbon ion energies reach as high as Ep ≈ 290 MeV

and Ecb ≈ 1.8 GeV. These results are greater than Ep = (44.5 ± 0.3) and Ecb = 802 MeV

measured in the experiment, which is unsurprising because the simulations are constrained

to 1D.

6.5.2 2-dimensional simulation setup

To understand the limitations of the 1D simulations, and to interpret the ion beam pattern

in the experiment, two-dimensional (2D)-EPOCH simulations were conducted. The setup

was adapted from the 1D simulations described in Subsection 6.5.1.

The 2D-EPOCH simulations were computationally demanding and therefore larger com-

putational resources were required. These simulations were run using the York Super Ad-

vanced Research Computing Cluster called Viking.155 1000 CPU cores were used with a

RAM limited to 192 GB. To limit the amount of data and storage problems, the time step

was increased to 140 fs. This was four times larger than in the 1D case. One simulation took

approximately 48 hours.

The simulation box was 80× 50 µm2 containing 10928× 6832 square cells. The cell size

was ∆x = ∆y = 7.3 nm. The p-polarised laser pulse entered the simulation box from the left

boundary at −3 µm. The laser was Gaussian with a t0 = 0.7 ps FWHM pulse duration and

peak intensity of I0 = 3×1020 W/cm2. The transverse spatial laser profile was also Gaussian

with a FWHM spot diameter of w0 = 6 µm. The peak entered the simulation box at −700

fs from the left hand side boundary. The laser wavelength was λ0 = 1.054 µm. The laser

irradiated the target front surface at normal incidence and 0 µm, which was 3 µm from the

left boundary. The target was a fully ionised plasma slab with 480 electrons, 8 protons and

80 carbon ions per cell. Target thickness was 8 nm with a uniform density of ne = 690ncr

(ncr = 1× 1021 cm−3). Exponential density ramps extending 5 and 1 nm from the front and

rear sides of the target were used. Initial plasma temperature used was Te = 1 keV for a

Debye length of λD ≈ 280 nm.

The 80 µm longitudinal length of the simulation box was chosen because of computational

runtime and it is smaller than the Rayleigh length, Rx = πw2
0/λ0. Therefore it is assumed
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in the 2D simulations that focusing and defocusing effects are unimportant.

Even though Viking is a larger computing cluster, compromises between the resources

and numeric stability were taken. This ensured that it was feasible to do the 2D simulations.

The cell size is 7.3 nm cell size and double from that used in 1D-EPOCH simulations, and

the number of particles were reduced to 3.0× 106 electrons, 5.1× 104 protons and 5.1× 105

carbon ions in the simulation box. These were selected accordingly from 1D convergence

testing assuming the test is transferrable to the 2D platform.

6.5.2.1 Onset of relativistically induced transparency

Figure 6.18 (a) shows the electron density, ne, normalised to the critical density, ncr, against

the transverse electric field, Ey, at simulation time tsim = −560 fs. The colorbars indicate

the order of magnitude for ne and field strength and sign of Ey. This is one time step into the

2D-EPOCH simulation. In the region enclosed by the horizontal dashed lines, ne, relativistic

critical density, γencr, and Ey are averaged along the transverse axis. These averages are

shown in Figure 6.18 (b) as the red, blue and grey profiles respectively.

As inferred from Figure 6.18 the onset of RIT occurs at (−560±140) fs in the 2D-EPOCH

simulations. The uncertainty is the time step used. This time occurs earlier in the laser pulse

compared to the 1D simulation at (−420±35) fs. This is the result of the plasma expanding

in both the longitudinal the transverse axes. ne decreases rapidly when accounting for the

transverse expansion in 2D. Consequently, due to the early onset of RIT, the amplitude of

the acceleration field reaches 1.7 MV/µm, which is nearly four times lower than in the 1D

simulations. Hence, in the 2D case the proton and carbon ion energies drop from Ep = 290

to 50 MeV and Ecb = 1.8 to 0.4 GeV.

6.5.2.2 Simulated ion beam directionality

An insight to the ion beam pattern is obtained from the ion motion inferred in the 2D-

EPOCH simulations. In Figure 6.19 (a) the divergence angle of the protons and carbon ions

from target rear, θ, is compared to the corresponding ion energies, Ep and Ecb. Note that

the energy units are in MeV/n instead of MeV to compare the ions. Both target normal

and laser direction are at θ = 0◦. The simulation time is tsim = 560 fs, which is after the

main peak interacts with the target and before the protons leave the simulation box. The

‘fire’ and ‘jet’ colorbars give, respectively, the densities of protons and carbon ions, np and

ncb, normalised to their maximum. 10% of the ions are protons. Another simulation without

protons (see Figure 6.19 (b)) produces carbon ions with the same divergence seen in Figure

6.19 (a) and ∼2 MeV/n more energy.
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Figure 6.18: (a) 2D EPOCH simulations of electron density ne and transverse electric field, Ey, at
simulation time tsim = −560 fs. The dashed region is averaged along transverse position for ne, γencr
and Ey shown in (b).

Protons produce the divergence-to-energy distribution shown with the ‘fire’ colormap,

and the carbon ions describe the distribution with the ‘jet’ colormap in Figures 6.19 (a) and

(b). These ions produce different distributions. As seen in Figure 6.19 (a), the carbon ions

preferentially propagate away from target normal and between θ ≈ 8◦ and 20◦. The carbon

ion energies span from Ecb ≈ 15 MeV/n (∼ 180 MeV) at highest density to ∼ 22 MeV/n

(∼ 260 MeV) where ncb is 0.4 of the maximum density. The most energetic carbon ions

reach nearly 25 MeV/n (300 MeV) with a tenth of the maximum ncb between θ ≈ −10◦ and

10◦. The protons propagate with a high density between θ = 15 and 25◦ and energies from

Ecb = 15 to 24 MeV, which are close to the directionality and energies of the carbon ions.

In Figure 6.19 (a) a second dense bunch of protons is seen between θ = 4 and 16◦ and

Ep = 36 and 45 MeV, which is similarly inferred in another study using a PIC code.156
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Figure 6.19: 2D EPOCH simulations of ion beam directionality with energies Ep and Ecb against
divergence angle, θ, at target rear side. Colorbars indicate the normalised densities. Simulations (a)
with and (b) without protons are shown.

Another important observation inferred from Figure 6.19 (a) is the generation of monoen-

ergetic protons. Within a divergence of θ = −5 and 5◦ the protons span in energies between

42 and 49 MeV. The proton density in this region reaches up to 20% of the maximum. This

is not seen for the carbon ions. Instead, carbon ions are more absent within the central

region near θ = 0◦ as inferred in Figure 6.19 (a).

When omitting the protons in the 2D-EPOCH simulations (see Figure 6.19 (b)), the

carbon ion directionality remains qualitatively unchanged. The maximum energy of carbon

ions propagating between θ = 8 and 20◦ increases from 22 to 24 MeV/n (260 to 290 MeV).

The most energetic carbon ions in the centre of the beam at θ = 0◦ also increases from 25

to 27 MeV/n (300 to 320 MeV). The energy rise is due to the absence of protons in the

simulations, as seen previously by Jung et al. 68 .

The proton and carbon ion directionality shown in Figure 6.19 depends on the longitu-

dinal and transverse electric fields, Ex and Ey. This is shown in Figure 6.20 (a) and (b)

respectively. 〈Ex〉 and 〈Ey〉 are Ex and Ey time-averaged over the laser period. The averaged

fields are squared to show the regions in the fields that influence the average ion motion. 〈Ex〉
features an arc-shaped field between x = 35 and 55 µm. 〈Ey〉 shows two distinct channels in

the region between x = 0 and 35 µm and |y| = 5 and 20 µm. The quiver points correspond

to the protons (see Figure 6.20 (a)) and carbon ions (see Figure 6.20 (b)) and indicate their

direction of motion and energy. The number of closely packed quiver points correlates to

the normalised densities in Figure 6.19. Protons are compared to 〈Ex〉 and carbon ions to

〈Ey〉. The colorbars indicate the field strengths and ion energies. The simulation time is
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tsim = 420 fs.

Figure 6.20: 2D EPOCH simulations of the (a) longitudinal and (b) transverse electric fields, 〈Ex〉
and 〈Ey〉, time-averaged over the laser period. The quiver points show the direction of the (a) proton
and (b) carbon ion motion relative to these fields. The quiver colors indicate the relative Ep and Ecb
values.

The ions are plotted to the compared fields because their motion depends strongly on

those field. Protons at x = 60 µm are the monoenergetic proton bunch, which move ahead

of the acceleration field centred around x = 48 µm (see Figure 6.20 (a)). The protons are

closest to the field around x = 50 and |y| > 10 µm, which have energies between 36 and 45

MeV. These protons correspond to the high-energy bunches seen in Figure 6.19 (a).

The acceleration of carbon ions is different to the protons. A sparse number of the carbon

ions propagate close to the acceleration field between x = 30 and 50 µm. This is interpreted

from comparing 〈Ex〉 in Figure 6.20 (a) to the quiver points in Figure 6.20 (b). These carbon

ions are of low density and have energies between 100 and 250 MeV (about 8 and 20 MeV/n),

which correspond to the ions seen in Figure 6.19 between θ = −10 and 10◦. The energies are

much lower per nucleon than protons, which suggests that the carbon ions are not strongly
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driven by the acceleration field. Figure 6.20 (b) shows that carbon ions are mainly moving

along the channels in 〈Ey〉 at an angle of ∼ 13◦ relative to the laser axis, which correlates

to the dense low-energy carbon ions inferred from Figures 6.19. This result suggests that

carbon ions may be strongly driven by the transverse electric field.

By comparing Figures 6.19 (a) and (b), a number of low-energy protons are inferred to

propagate along the transverse field at x < 35 and |y| > 10 µm. These are not driven by

the acceleration field to high energy. Low-energy protons move along the channel in the

transverse field, which also drives the carbon ions.

From the 2D simulation results it may be suggested that the acceleration field in the

longitudinal direction drives the ions to high energies. The transverse electric field is mainly

important in determining the divergence of the ion beam and beam shape. What may have

led to the difference in the ion motion between the protons and carbon ions is their charge-

to-mass ratio.157 Protons have a high charge-to-mass ratio, enabling them to react more

readily to the growth in the longitudinal field. The carbon ions with a low charge-to-mass

ratio cannot keep up with the strong acceleration field and, in turn, are not driven to high

energies. The transverse field diverges the carbon ions away, which prevents the ions from

gaining energy from the acceleration field, as inferred from the 1D-EPOCH simulations. This

in turn may have led to the reduction in carbon ion energies in the 2D simulations compared

to 1D.

6.5.2.3 Ion acceleration in 2-dimensional simulations

As described in Subsection 6.5.2.1, the onset of RIT occurs rapidly because the transverse

component of the laser drives electrons out of the initially overdense plasma. This occurs

within a plasma region twice the size of the FWHM of the Gaussian laser pulse and 140 fs

into the simulations, which is −560 fs before the main peak. Because of this early onset of

RIT, and referring to the 1D simulation results in Subsection 6.5.1.7, BOA is expected to

have no significant contribution to the ion acceleration. A much thicker target thickness may

be needed for BOA to be important. A plausible mechanism generating the acceleration field

driving the protons is CE because the laser rapidly vacates the electrons from the irradiated

plasma region.

The channels between 14◦ and 24◦ from laser incidence along which protons and carbon

ions move (see Figure 6.20 (b)) were previously shown to be generated by a combination

of TNSA, RPA and the formation of the transverse electric field.62,143 The impact of CE

for those ions may be unimportant due to the electrons moving slower outside the FWHM

width of the laser pulse.
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6.5.2.4 Summary on 2D-EPOCH simulations

Comparing the 1D to 2D simulations, the onset of RIT occurs changes from −385 fs to −560

fs. This results in a lower amplitude in the acceleration field reducing the maximum proton

and carbon ion energies from Ep = 290 to 50 MeV and Ecb = 1.8 to 0.4 GeV. Ep is closer to

the experimental measurements, which is Ep = (44.5± 0.3) MeV. Ecb is underestimated by a

factor of two.

The proton and carbon ion directionality inferred in simulations show features comparable

to the experimental observations. In the experiment a ring-like structure is seen at the lower

ion energies on the RCF when using the 8 layer LSG target. The ring diameter is ∼ 3.5 cm,

which at a 5 cm distance from the target corresponds to a ∼ 19◦ divergence angle from laser

axis. This angle is comparable to the channels in the transverse electric field that the low

energy protons and carbon ions move along. This suggests that these ions may be driven

by TNSA, RPA and the transverse field. Furthermore, high energy protons and carbon ions

along laser axis are seen on the CR-39 measurements. From the simulations, these ions are

driven by the acceleration field, which may be generated via CE.

6.6 Summary and future work

The first measurements using graphene are robust and fascinating even though the ion flux is

low. The analysis suggests that the most prominent mechanism driving the ions is Coulomb

explosion (CE). This is supported by EPOCH particle-in-cell simulations indicating that

the targets are comparable to the skin depth. The results are achieved due to the unusual

experimental setup using the double plasma mirror and normal laser incidence with ultra-thin

graphene targets. Close to the peak the target is heated completely by the laser. This heating

rapidly vacates electrons out of the target, resulting in turn to a strong Coulomb explosion.

Furthermore, EPOCH simulations show that the most energetic protons are contained within

a central beam within a ∼10◦ divergence angle. Carbon ions from low to high energies are

concentrated in a cone of around 30◦ divergence. This matches our RCF and CR-39 analysis.

EPOCH simulations indicate that the ion beam divergence emerges due to the high charge-

to-mass ratio protons closely co-moving with the longitudinal electrostatic field, screening

carbon ions from this field, whereas the carbon ions are strongly influenced by a transverse

electric field. Interestingly, this has not been observed before possibly because of the ion

flux being at least one order of magnitude below the detection threshold of commonly used

diagnostics such as a Thomson parabola and RCF.

This work is new to the area of laser-driven ion acceleration. The observations using

graphene as a target of thickness never used before on a “look-and-see” experiment are of

great interest primarily due to the measurement of highly energetic protons and heavy ions.

The heavy ions are a mix of carbon and oxygen ions that need separation in future exper-
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imental studies on laser-driven ion acceleration. Secondly, the unusual material properties

that graphene exhibits in combination with the experimental setup may enable the target to

survive the prepulses. The material interaction with highly intense laser pulses needs to be

studied to demonstrate this and understand how. Thirdly, the experimental measurements

and EPOCH simulations indicate that carbon ions are not driven efficiently to high energies

and in a central beam. To realise the potential of carbon ions for applications such as cancer

treatment, a clearer understanding of the material properties and target design integrating

graphene is needed. EPOCH simulations show that by increasing the target thickness to a

point that the material turns relativistically transparent near the peak of the laser can in-

crease the ion energies and coupling efficiency. Further studies should investigate the use of

tens of femtosecond pulse duration with the nano-thin targets. This work may open further

interesting investigations exploring the feasibility of using graphene as a target for compact

carbon ion accelerators.



Chapter 7

Conclusion

In this thesis I present research on understanding and advancing the coupling of a high

intensity laser with engineered targets. This required the use of a double plasma mirror

(DPM) to further improve the contrast of the high-contrast Vulcan petawatt laser. Improving

the contrast with the DPM ensured that reliable and reproducible measurements of X-

rays from microstructured surface silicon and high energy ions from ultra-thin large-area

suspended graphene (LSG) targets. The results suggest that the DPM provided an approach

for preserving the target structural integrity to times closer to the peak of the laser pulse.

Detailed measurements of the pulse structure after the DPM are not available. Therefore, a

model was developed for determining how the pulse structure changes due to the DPM. Using

this model on existing high fidelity Vulcan petawatt pulse shape measurements predicts that

the DPM significantly improves the laser contrast. This contrast improvement was sufficient

to reduce the pedestal and prepulses in the laser to intensities below the material ionisation

thresholds. This is important as the energy in the pedestal and prepulses can fluctuate shot-

to-shot due to small gain variations in the laser amplifiers. Suppressing these fluctuations

in the pulse provides smaller variations in the laser-target interaction, resulting in more

reproducible and reliable data.

The impact of the Vulcan petawatt pedestal and prepulses, as well as the DPM sup-

pressing these features in the laser pulse, was assessed using the one-dimensional radiation-

hydrodynamic calculations. These show that hydrodynamic motion of the target due to the

laser is delayed closer to the main peak of the pulse when reducing the pedestal and prepulse

signals. As a result the plasma density scale length becomes very small and, hence, reduce

uncertainties in its size. From these calculations it is predicted that the DPM ‘cleans up’

the pulse shape, suggesting that the high intensity laser peak interacts with an overdense,

possibly close to solid density, target with steep density gradients.

Highly reproducible and bright spectral X-rays were observed by irradiating the Vulcan

petawatt laser through a DPM on to a surface microstructured silicon target. The DPM

‘cleans’ the pulse and ensures the target integrity is preserved, which reduces the density
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scale length. By using the microstructures the scale length is enlarged to a controllable size,

which optimises the laser-to-target coupling. This is evident from the measurements showing

a significant rise in Kα brightness. The combined setup using the DPM and microstructured

surface targets provides a method for engineering density scale lengths that generate a reliable

and reproducible Kα source. Experiments and applications requiring reliable measurements

can benefit from using this setup.

The DPM is key to enabling the use of ultra-thin large-area suspended graphene (LSG) as

targets. Irradiating the Vulcan petawatt laser, after improving the contrast with the DPM,

at near-normal incidence on single- and multi-layer LSGs. Using an octuple-layer LSG target

produced (44.5± 0.3) MeV protons and ∼800 MeV carbon ions. It is noted that the flux of

carbon ions is very low. The observations are intriguing as this is the first time that targets

as thin as a few 1 nm are used for laser-driven ion acceleration. Linking these observations

to EPOCH particle-in-cell simulations suggest that the most prominent mechanism driving

the ions to high energies is Coulomb explosion (CE). The LSG targets are comparable to the

skin depth, which is key for CE to generate strong electric fields across the thickness of the

target. In addition, the onset of relativistically induced transparency, which is inferred from

simulations, is found to be important as this results in the electric fields that co-move with

the ions. The co-moving fields accelerate the ions for a longer time enabling them to gain

high energies. 2D-EPOCH simulations predicted protons reaching 50 MeV and 400 MeV

for carbon ions, where the former is comparable to the experimental measurements. This

work provides new insight in to the interaction of a laser pulse approaching intensities of

1020 W/cm2 with an ultra-thin target using a material, made of carbon, that is of interest

for the treatment of certain cancers. These are the first ion acceleration measurements using

graphene as a target, which are not fully understood yet. Future studies should focus on

investigating the material properties of graphene in very strong electromagnetic fields to

provide a deeper understanding to this material as ion acceleration targets.

For prospective experiments to benefit from the DPM, the setup used on the Vulcan

petawatt laser needs to be transferrable to other high intensity laser facilities. These was

tested by installing a compact 3D-printed DPM unit on the LFEX laser. Preliminary results

showed that this DPM is easy to use and may raise the laser fluence. The measurements

were limited yet suggest that similar experimental setups on the Vulcan petawatt laser can

be accomplished on laser facilities worldwide.



Appendix A

Appendix

A.1 Contribution to this and other research

Over the period of the PhD the author has contributed to a number of collaborations and

publications, including projects that are not mentioned in this thesis. These are the following:

1. E. Oks, E. Dalimier, A. Faenov, P. Angelo, S. Pikuz, T. Pikuz, I. Skobelev, S. Ryazanzev,

P. Durey, L. Doehl, D. Farley, C. Baird, K. Lancaster, C. Murphy, N. Booth, C.

Spindloe, P. McKenna, N. Neumann, M. Roth, R. Kodama and N. Woolsey, In-depth

study of intra-Stark spectroscopy in the x-ray range in relativistic laser-plasma interac-

tions, Journal of Physics B: Atomic, Molecular and Optical Physics 50, 245006 (2017).

2. M. T. Oliver, T. G. White, P. Mabey, M. Kühn-Kauffeldt, L. Döhl, R. Bingham, R.
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[22] A Mančić, J Fuchs, P Antici, S A Gaillard, and P Audebert. Absolute calibration of photostimu-

lable image plate detectors used as (0.5–20 mev) high-energy proton detectors. Review of Scientific

Instruments, 79(7):073301, 2008.
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J Proška, I W Choi, S K Lee, J H Sung, T J Yu, and G Korn. Laser-driven proton acceleration

enhancement by nanostructured foils. Physical review letters, 109(23):234801, 2012.



LIST OF REFERENCES 162

[120] Michael A Purvis, Vyacheslav N Shlyaptsev, Reed Hollinger, Clayton Bargsten, Alexander Pukhov,

Amy Prieto, Yong Wang, Bradley M Luther, Liang Yin, Shoujun Wang, and Jorge J Rocca. Relativistic

plasma nanophotonics for ultrahigh energy density physics. Nature Photonics, 7(10):796, 2013.

[121] S Jiang, L L Ji, H Audesirk, K M George, J Snyder, A Krygier, P Poole, C Willis, R Daskalova,

E Chowdhury, N S Lewis, D W Schumacher, A Pukhov, R R Freeman, and K U Akli. Microengineering

laser plasma interactions at relativistic intensities. Physical review letters, 116(8):085002, 2016.

[122] J Jarrett, M King, R J Gray, N Neumann, L Döhl, C D Baird, T Ebert, M Hesse, A Tebartz, D R Rusby,

N C Woolsey, D Neely, M Roth, and P McKenna. Reflection of intense laser light from microstructured

targets as a potential diagnostic of laser focus and plasma temperature. High Power Laser Science and

Engineering, 7, 2019.

[123] Irene Prencipe, A Sgattoni, David Dellasega, Luca Fedeli, Lorenzo Cialfi, Il Woo Choi, I Jong Kim,

Karol Adam Janulewicz, KF Kakolee, Hwang Woon Lee, Jae Hee Sung, Seong Ku Lee, Chang Hee

Nam, and M Passoni. Development of foam-based layered targets for laser-driven ion beam production.

Plasma Physics and Controlled Fusion, 58(3):034019, 2016.

[124] Xiaogang Liu, Paul R Coxon, Marius Peters, Bram Hoex, Jacqueline M Cole, and Derek J Fray. Black

silicon: fabrication methods, properties and solar energy applications. Energy & Environmental Science,

7(10):3223–3263, 2014.
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