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ABSTRACT 

The approach to diagnosing the myelodysplastic syndromes (MDS) and 

myelodysplastic/myeloproliferative neoplasms (MDS/MPN)  is primarily based on a 

subjective morphological assessment that is neither sensitive nor specific. 

Objective measures such as a cytogenetic assessment yield results in only a 

proportion of patients.  Over the past 2 decades a range of new technologies have 

been developed which have the potential to revolutionise the diagnosis of these 

conditions by providing an objective measure of disease. 

This research aimed to investigate the utility of novel technologies in the diagnosis 

of MDS and MDS/MPN overlap syndromes, in particular chronic myelomonocytic 

leukaemia (CMML).  The technologies utilized throughout the research included 

flow cytometry, single nucleotide polymorphism (SNP) arrays and high throughput 

sequencing (HTS).  With the latter, a novel HTS panel was designed to target genes 

commonly mutated in myeloid malignancies.  This was initially used to investigate a 

cohort of patients in whom a diagnosis could not be reached on initial analysis but 

subsequently developed a myeloid malignancy.  Somatic mutations were detected 

at a very high frequency in the pre-diagnostic sample suggesting that targeted 

sequencing, in particular, could confirm clonality.  This technology was further 

investigated on large cohorts of patients presenting with a monocytosis or 

cytopenia in whom mutations correlated strongly with survival and blood count 

trajectories as well as being predictive of a subsequent diagnosis.  

The detection of somatic mutations in those with persistent monocytosis or 

cytopenia, particularly with a clone size >20% and co-occuring mutations, is 

clinically important and patients should be managed as per those with confirmed 

disease.  HTS is therefore essential in the diagnosis of these patients.  This does 

however raise concerns regarding funding and change management and will likely 

necessitate rationalization of the diagnostic service.  Overall, there is significant 

potential to transform the diagnostic approach to this group of disorders. 
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CHAPTER 1: INTRODUCTION 

The chronic myeloid malignancies are stem cell derived clonal disorders and include 

three broad categories – myelodysplastic syndromes (MDS), myeloproliferative 

neoplasms (MPN) and the “overlap” category of myelodysplastic/myeloproliferative 

neoplasms (MDS/MPN).  The gold standard diagnostic criteria for these cancers are 

those recommended in the World Health Organisation’s (WHO) most recent 

classification and are primarily based on peripheral blood counts and subjective 

morphological assessment of both peripheral blood and bone marrow smears 

(Swerdlow et al., 2017).  While the diagnosis of MPNs now centre on the detection 

of key molecular abnormalities, the diagnosis of MDS and MDS/MPNs are 

somewhat dated in the fast-moving area of diagnostic haematology.  More recently 

a number of new technologies have been reported in the literature including array-

based approaches and a new generation of high throughput sequencers.  To date 

these have been most commonly utilized in the research setting however as 

experience and knowledge grows and costs fall, they are now reaching the clinical 

interface.   

 

1.1 Disease context and research aims 

The myelodysplastic syndromes are malignant haemopoietic disorders 

characterised by cytopenias, ineffective haematopoiesis and a propensity to evolve 

to acute myeloid leukaemia (AML).  Apart from a small subset with low risk disease 

the majority of patients have a poor prognosis with a 5-year overall survival (OS) of 

only 21.2% (95% CI 18.7-23.8%) (Roman et al., 2016).  Confirming a diagnosis of 

MDS in a cytopenic patient has been notoriously difficult particularly in early 

disease, not only due to the extensive differential diagnoses in these patients but 

also the morphological challenges when assessing a bone marrow for dysplasia.  

There is reported poor inter-observer concordance when recognising dysplasia and 

numerous non-neoplastic conditions  which can mimic MDS (Parmentier et al., 

2012; Steensma, 2012; Bejar, 2015).  In addition, dysplasia is also reported in a 

significant proportion of healthy marrows (Parmentier et al., 2012).  As a result, 
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patients can be erroneously diagnosed with MDS or a diagnosis of MDS could be 

missed.    

Similarly, in a patient presenting with a monocytosis, a diagnosis of CMML can be 

equally as challenging.  The MDS/MPNs are a group of disorders with both 

dysplastic and proliferative features, with CMML being by far the most common of 

these disorders.  In CMML, the presence of a monocytosis is the hallmark of disease 

however patients can present at any point on the dysplastic/proliferative spectrum 

with presenting features ranging from an MDS-like phenotype with a monocytosis 

to a marked proliferative phenotype with raised white cell count, constitutional 

symptoms and splenomegaly (Itzykson et al., 2018).  Similarly to MDS, the overall 

prognosis is poor with a 5 year OS of 13.3% (95% CI 9.1-18.4%) (Roman et al., 2016).  

Again diagnosis remains largely centred on morphology though worryingly a 

diagnosis of CMML can be made even in the absence of definitive morphological 

findings providing the monocytosis is persistent and alternative causes have been 

excluded (Swerdlow et al., 2017).   

 

To date, cytogenetics has provided the only clonal markers of disease for both of 

these disease sub-groups though abnormalities are identified in only 30% and 50% 

of confirmed cases of CMML and MDS respectively (Schanz et al., 2012; Palomo, 

Garcia, et al., 2016).  An objective measure of disease is therefore a much-needed 

core-criterion for diagnosis, particularly when the disease in question confers such 

a poor prognosis.   

 

This research aims to address the issues surrounding the current approach to 

diagnosing chronic myeloid malignancies in adults, as well as investigating how new 

technologies can refine the diagnostic approach to those patients presenting with 

cytopenias and/or a monocytosis.  This introductory chapter provides an overview 

of the current diagnostic and classification systems, discusses the history and 

evidence base behind them and describes the latest technologies and their impact 

to date.  
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1.2 Classification of Myeloid Malignancies 

1.2.1 The FAB Classification – A Morphology Based Approach 

In 1976, the French-American-British (FAB) co-operative group, while proposing a 

classification for acute leukaemias, described a distinct group of less acute 

disorders typically occurring in the over 50s with a propensity to evolve to AML. 

(Bennett et al., 1976). These were collectively termed dysmyelopoietic syndromes 

and were divided into two broad subgroups, refractory anaemia with excess of 

blasts (RAEB) and chronic myelomonocytic leukaemia (CMML), the former defined 

as having a blast plus promyelocyte count of 10-30% (Bennett et al., 1976).  The 

diagnostic criteria for CMML included the presence of a monocytosis (>1x109/l at 

some stage during the disease), myeloblasts and promyelocytes up to 30% and a 

raised serum lysozyme (Bennett et al., 1976). 

 

Following reports of the heterogeneous nature of this group of disorders, the FAB 

group reconvened in 1982 to determine if specific morphological features could 

further subdivide MDS (Bennett et al., 1982).  Based on the review of 80 cases, five 

new subtypes of MDS were defined based on morphological features in both the 

peripheral blood and bone marrow (Table 1.1).  In contrast to the 1976 FAB 

classification normal promyelocytes were excluded from the blast count and a 

detailed description of morphological blast and dysplastic features was provided 

(Bennett et al., 1982).  CMML remained within the MDS classification despite a 

number of cases demonstrating proliferative features with minimal dysplastic 

changes (Bennett et al., 1982).   

 

The FAB classification was internationally accepted as the standard method for 

classifying MDS and became widely used as a diagnostic guideline.  Concerns were 

raised, however, regarding the specificity of the morphological features proposed 

by the FAB group.  Abnormal megakaryocytes were shown to be present in both 

normal and pathologic control marrows (Kuriyama et al., 1986; Wong and Chan, 

1991).    Studies of normal bone marrows (21-56yrs) showed mild dyserythropoiesis 

(dysplastic features ≤10% of erythroblasts) in 78% (n=50) while 38% of subjects had  
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Table 1.1. FAB Classification of the myelodysplastic syndromes (adapted from Bennett et 

al, 1982) 

 

 

 

occasional dysplastic megakaryocytes (Bain, 1996).  In contrast those older than 50 

demonstrated dyserythropoiesis and dysgranulopoiesis in up to 15% and 27% of 

Category Peripheral Blood   Bone Marrow 

        

Refractory anaemia (RA) 
or  

Anaemia* and Blasts < 5%, ringed   

refractory cytopenia Blasts ≤ 1%   sideroblasts ≤15%  

  Monocytes ≤ 1 x 109/l   of erythroblasts 

        

Refractory anaemia with  Anaemia and Blasts < 5%, ringed   

ringed sideroblasts (RARS) Blasts ≤ 1%   sideroblasts >15%  

  Monocytes ≤ 1 x 109/l   of erythroblasts 

        

Refractory anaemia with  Cytopenias and Blasts ≥ 5% but ≤ 20% 

excess blasts (RAEB) Blasts < 5%     

  Monocytes ≤ 1 x 109/l     

        

Chronic myelomonocytic  Blasts < 5 % and Blasts up to 20%   

leukaemia (CMML) Monocytes > 1 x 109/l   promonocytes often  

  Granulocytes often increased   increase 

        

Refractory anaemia with 
excess of blasts in 
transformation (RAEB-T) 

Blasts ≥ 5% or Auer rods in 
blasts 

or Blast > 20% but < 30% or 
Auer rods in blasts 

* Or in the case of refractory cytopenia, either neutropenia or thrombocytopenia 
    

Dyserythropoiesis Dysmegakaryocytopoiesis   Dysgranulopoiesis 

        

Ringed sideroblasts ≥ 15% Micromegakaryocytes   Nuclear abnormalities 

Multinuclearity Large mononuclear forms   Hypogranular cells 

Nuclear fragments Multiple small nuclei     

Other nuclear 
abnormalities 

Reduced numbers     

Cytoplasmic abnormalities       

Erythroblasts < 5%, > 60%       
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respective cell elements (Ramos et al., 1999).  This is particularly relevant as the 

median age of the MDS group is 75.7yrs (Roman et al., 2016).   

 

The most specific morphological markers of MDS were reported as pseudo-Pelger-

Huet anomalies, micromegakaryocytes, hypogranular megakaryocytes and 

internuclear bridging in erythroid precursors (Kuriyama et al., 1986; Head et al., 

1989; Wong and Chan, 1991).  However these abnormalities were not disease 

specific and pseudo-Pelger-Huet forms have since been reported as an iatrogenic 

phenomenon in a proportion of patients (Wang et al., 2011). 

 

This initial attempt to define and classify this group of disorders was imperfect and 

limited to an approach which is neither sensitive nor specific.  This was, however, 

restricted by the tools available at that time.   

 

1.2.2 Advances in Technology Provide New Tools for Diagnosis  

1.2.2.1 CYTOGENETIC ANALYSIS 

With the advent of G-banding (Drets and Shaw, 1971; Seabright, 1971) the ability to 

detect small structural abnormalities in chromosomes enabled researchers to 

identify underlying clonal karyotypes in a variety of malignancies.  Recurrent 

abnormalities were identified in the MDS patient group providing both an 

additional diagnostic marker and prognostic information.  A report from the Second 

International Workshop on Chromosomes in Leukaemia identified chromosomal 

aberrations in approximately 50% of patients with the most common abnormalities 

being +8, -7, 7q-, -5 and 5q- (‘Second International Workshop on Chromosomes in 

Leukemia’, 1980).  The mortality rate was noted to be substantially higher in the 

abnormal karyotype group (‘Second International Workshop on Chromosomes in 

Leukemia’, 1980).  Specific abnormalities were noted to have characteristic 

morphological features including hypolobated nuclei in the megakaryocytes of 

those patients with del(5q), and pseudo-Pelger-Huet anomaly and small vacuolated 

neutrophils in those with loss of 17p (Mahmood et al., 1979; Lai et al., 1995).  An 

international prognostic scoring system (IPSS) was subsequently developed 
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incorporating cytogenetics results along with percentage of BM myeloblasts and 

number of cytopenias (Table 1.2).  With the combination of these features, this 

system separated patients into 4 distinct subgroups based on median survival and 

risk of transformation to AML (Greenberg et al., 1997). 

 

Table 1.2:  International Prognostic Scoring System (adapted from Greenberg et al, 1997)    

           

Score 0 0.5 1 1.5 2 

Prognostic variables         
 % bone marrow blasts <5% 5-10%   11-19% 20-30% 

Karyotype* Good Intermediate Poor   
 Cytopenias** 0-1 2-3     
 

      *Karyotype: Good = normal, -Y, del(5q), del (20q); 
  

 

Poor = complex (≥3 abnormalities) or chromosome 7 
anomalies; 

 

 

Intermediate = other abnormalities 
  

      

**Cytopenias: 
Hgb 
<10g/dL 

    

 

Neutrophils <1.8x109/L 
   

 

Platelets <100x109/L 
    

1.2.2.2 IMMUNOHISTOCHEMISTRY 

The additional information provided by the bone marrow trephine biopsy was also 

highlighted particularly in the assessment of patients with hypocellular MDS and 

those with MDS associated with fibrosis (Lambertenghi-Deliliers et al., 1991; 

Tuzuner et al., 1995).  The addition of immunohistochemical markers such as CD61 

allowed a reproducible method to study megakaryocyte size, shape and position 

(Fox et al., 1990) and increased numbers of CD34 positive blasts by 

immunohistochemistry was also shown to have an impact on prognosis (Verburgh 

et al., 2003).   
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1.2.3 The WHO Classification - a Combined Approach to Diagnosis 

Following the publication of the Revised European-American Lymphoma (REAL) 

classification in 1994, the European Association of Haematopathologists and the 

Society for Hematopathology developed a new WHO classification based on the 

principle that disease entities were defined by a combination of morphology, 

immunophenotype, genetic and clinical features (Harris et al., 1999).   This 

classification divided myeloid malignancies into four major groups – MPN, 

MDS/MPN, MDS and AML.  

 

1.2.3.1 MYELODYSPLASTIC SYNDROMES 

The AML blast threshold was lowered based on a number of studies which 

demonstrated that the prognosis in patients with 20-30% was similar blasts to 

those with >30% blasts (Bernstein et al., 1996; Chan et al., 1997; Estey et al., 1997).  

Recommendations were also made to divide RAEB into 2 subcategories (Table 1.3) 

based on evidence that those patients with >10% blasts had a worse prognosis 

(Greenberg et al., 1997).  The presence of Auer rods alone to place patients into the 

RAEB-T subgroup was also disputed following a study which illustrated a higher 

probability of survival in those patients defined as RAEB-T solely on this basis 

(Seymour and Estey, 1993).   

 

The need for minimal criteria to define MDS was highlighted particularly in the 

advent of the new category of Refractory Cytopenia with Multilineage Dysplasia 

(RCMD) (Greenberg et al., 2000).  The introduction of this category followed reports 

that dysplasia in 2 or more cell lines was associated with similar cytopenias to RAEB 

and a prognosis intermediate between RARS and RAEB (Rosati et al., 1996; Balduini 

et al., 1998).  In particular, one study showed the presence of pseudo-Pelger-Huet 

neutrophils and micromegakaryocytes in the FAB-RA patients correlated with a 

poorer overall survival (OS) and leukaemia free survival (LFS) (Matsuda et al., 1998, 

1999).  These studies used strict morphological criteria for trilineage dysplasia 

requiring dysplastic features in ≥3% of granulocytic and erythroid lineages and 

≥10% in the megakaryocyte lineage (Rosati et al., 1996).   
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Table 1.3. WHO Classification of Myelodysplastic Syndromes 2002 (adapted from 

Vardiman et al, 2002) 

 

 

 

 

 

With these findings and recommendations from Kouides and Bennett, the WHO 

therefore opted for a minimal quantitative threshold of 10% to define dysplasia 

Disease Blood findings Bone marrow findings
Refractory anemia (RA) Anemia Erythroid dysplasia only

No or rare blasts <5% blasts

<15% ringed sideroblasts

Anemia Erythroid dysplasia only

No blasts ≥15% ringed sideroblasts

<5% blasts

Refractory cytopenia with multilineage 

dysplasia (RCMD)

Cytopenias (bicytopenia or 

pancytopenia)

Dysplasia in ≥10% of cells in 2 or more 

myeloid cell lines

No or rare blasts <5% blasts in marrow

No Auer rods No Auer rods

<1x109/L monocytes <15% ringed sideroblasts

Cytopenias (bicytopenia or 

pancytopenia)

Dysplasia in ≥10% of cells in 2 or more 

myeloid cell lines

No or rare blasts ≥15% ringed sideroblasts

No Auer rods <5% blasts

<1x10
9
/L monocytes No Auer rods

Cytopenias Unilineage or multilineage dysplasia

<5% blasts 5%-19% blasts

No Auer rods No Auer rods

<1x10
9
/L monocytes

Cytopenias Unilineage or multilineage dysplasia

5%-19% blasts 10%-19% blasts

Auer rods ± Auer rods ±

<1x10
9
/L monocytes

Cytopenias                                        

No or rare blasts

Unilineage dysplasia in granulocytes or 

megakaryocytes

No Auer rods <5% blasts

No Auer rods

MDS associated with isolated del(5q) Anemia                                             

<5% blasts

Normal to increased megakaryocytes with 

hypolobated nuclei

Platelets normal or increased <5% blasts

No Auer rods

Isolated del(5q)

Refractory anemia with ringed 

sideroblasts (RARS)

Refractory cytopenia with multilineage 

dysplasia and ringed sideroblasts 

(RCMD-RS)

Refractory anemia with excess blasts-

1 (RAEB-1)

Refractory anemia with excess blasts-

2 (RAEB-2)

Myelodysplastic syndrome, 

unclassified (MDS-U)
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with the aim of providing consistency in diagnosis (Kouides and Bennett, 1996; 

Vardiman, Harris and Brunning, 2002). 

 

Validation studies in large numbers of patients (n=1600) confirmed that the new 

subgroups were more homogeneous with respect to prognosis (Germing et al., 

2000).  Others however failed to demonstrate a significant difference in survival or 

progression to AML in those patients re-categorized to RCMD (Nösslinger et al., 

2001).  The latter study did not however use the WHO criteria of 10% for dysplasia. 

 

1.2.3.2 THE WHO RECOGNISE MIXED MYELODYSPLASTIC/MYELOPROLIFERATIVE 

NEOPLASMS 

The WHO classification introduced a new subgroup primarily to accommodate 

CMML which had been difficult to classify due to both its dysplastic and 

proliferative phenotypes.  This group also included atypical chronic myeloid 

leukaemia (aCML), juvenile myelomonocytic leukaemia (JMML) and 

myelodysplastic/myeloproliferative neoplasms-unclassifiable (MDS/MPD-u) (Table 

1.4) (Vardiman, Harris and Brunning, 2002).  This thesis focuses on disorders in 

adulthood and therefore JMML will not be included in this review. 

 

Following publication of the FAB classification, reports surfaced of distinct 

prognostic factors in the CMML patient group.  Blast percentage was shown to have 

a prognostic impact similar to that of RAEB, while the initial leucocyte count was 

also shown to impact on survival (Fenaux et al., 1988).  The spectrum of patients 

presenting with a monocytosis was vast ranging from those with severe cytopenias 

to those with largely proliferative features or in some cases arising secondary to 

other MPD or MDS (Michaux and Martiat, 1993). Similarities were noted between 

these patients and the group of patients with BCR-ABL1 negative chronic myeloid  

 

 

 

25



Table 1.4. WHO Classification of CMML and atypical CML 2002 (adapted from Vardiman 

et al, 2002) 

 

CMML 

Persistent peripheral blood monocytosis greater than 1x109L 

No Philadelphia chromosome or BCR/ABL fusion gene 

Fewer than 20% blasts* in the blood or bone marrow 

Dysplasia in one or more myeloid lineages. If myelodysplasia is absent or minimal, the 
diagnosis of CMML may still be made if the other requirements are present and: an 
acquired, clonal cytogenetic abnormality is present in the marrow cells, or the monocytosis 
has been persistent for at least 3 months and all other causes of monocytosis have been 
excluded 

Diagnose CMML-1 when blasts fewer than 5% in blood and fewer than 10% in bone marrow 

Diagnose CMML-2 when blasts are 5% to 19% in blood, or 10% to 19% in marrow, or if Auer 
rods are present and blasts are fewer than 20% in blood or marrow 

Diagnose CMML-1 or CMML-2 with eosinophilia when the criteria above are present and 
when the eosinophil count in the peripheral blood is greater than 1.5x109/L 

*In this classification of CMML, blasts include myeloblasts, monoblasts, and promonocytes 

 Atypical CML 
Peripheral blood leucocytosis (WBC ≥ 13x109/L) due to increased numbers of neutrophils 
and their precursors with prominent dysgranulopoiesis 

No Ph chromosome of BCR-ABL1 fusion gene 

Neutrophil precursors (promyelocytes, myelocytes, metamyelocytes) ≥ 10% of leukocytes 

Minimal absolute basophilia; basophils usually <2% of leukocytes 

No or minimal absolute monocytosis: monocytes <10% of leukocytes 

Hypercellular bone marrow with granulocytic proliferation and granulocytic dysplasia, with 
or without dysplasia in the erythroid and megakaryocytic lineages  

Less than 20% blasts in the blood and in the bone marrow 

 

 

leukaemia (CML), termed atypical CML (Galton, 1992).  Initial reports suggested 

that these cases represented part of the spectrum of CMML (Martiat, Michaux and 

Rodhain, 1991) and some authors recommended a combined subgroup for these 

entities (Michaux and Martiat, 1993).    

 

As a result of these reports, the FAB group published recommendations on 

diagnosing the chronic myeloid malignancies with particular reference to CML, 

aCML and CMML (Bennett et al., 1994).  They described distinct features which 

could be used to diagnose these conditions (Table 1.5) (Bennett et al., 1994).  With 
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respect to aCML, it was stated that these patients had significantly greater dysplasia 

in the granulocytic lineage when compared with both CML and CMML.  They also 

felt it was appropriate to distinguish between the myelodysplastic and 

myeloproliferative forms of CMML using a white cell count of 13x109/l as a cut-off.  

This was considered to represent a significant degree of leucocytosis (Bennett et al., 

1994).   

 

Table 1.5: FAB Classification of chronic myeloid malignancies (adapted from Bennett et al, 

1994) 

 

  CGL aCML CMML 
Basophils ≥2% <2% <2% 

Monocytes <3% ≥3-10% ≥3-10% 

Granulocytic dysplasia - ++ + 

Immature granulocytes >20% 10-20% ≤10% 

Blasts ≤2% >2% <2% 

 

 

The clinical impact of such an arbitrary cut-off was assessed in a number of studies 

and while distinct clinical features were identified between the dysplastic and 

proliferative variants there was minimal impact on either OS or acute leukaemic 

transformation (Germing et al., 1998; Voglová et al., 2001).   

 

The arbitrary cut-off proposed by the FAB group was removed with the introduction 

of the new WHO MDS/MPN subcategory.  This enabled clinicians to determine if 

dysplastic features or proliferative features predominated and treat accordingly 

(Vardiman, Harris and Brunning, 2002).  In addition, 2 prognostic categories (CMML-

1 and -2) were defined based on the blast count following evidence that the 

percentage correlated with prognosis (Tefferi et al., 1989).  In this classification the 

blast count included myeloblasts, monoblasts and promonocytes (Vardiman, Harris 

and Brunning, 2002).   

 

The prognostic relevance of the CMML subgroups was confirmed in an analysis of 

339 patients, the CMML-2 group having a significantly reduced median survival and 
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an increased risk of leukaemic transformation (Germing et al., 2007).  Regarding 

aCML, one report showed ongoing heterogeneity within this patient group with 

respect to both clinical and haematological findings despite the revised diagnostic 

criteria (Breccia et al., 2006) 

 

The category of MDS/MPN, unclassifiable was first introduced in the 2001 WHO 

classification.  This category includes patients with clinical, morphological and 

laboratory features that overlap with both MDS and MPN that do not meet the 

criteria for other WHO classifications.  Within this category a new subgroup of 

‘refractory anaemia with ringed sideroblasts associated with marked 

thrombocytosis (RARS-T)’ was introduced as a provisional entity.  This entity was to 

include patients who fulfilled the criteria for RARS but also had a platelet count over 

600x109/L (WHO, 2001).  This phenomenon was first recognized as a favourable 

prognostic factor in 1977 and subsequent studies confirmed the presence of 

thrombocytosis in up to 20% of patients with this MDS subtype (Streeter, Presant 

and Reinhard, 1977; Juneja et al., 1983; Gupta, Abdalla and Bain, 1999).   The 

evidence that this was a separate entity, however, was based on case reports and 

small series leading some researchers to question its’ validity (Schmitt-Graeff et al., 

2002).   Patients in this subgroup have, however, been shown to have a better 

prognosis compared to others with MDS/MPN, with survival comparable to that of 

RARS but less favourable than patients with essential thrombocythaemia (Shaw, 

2005; Atallah et al., 2008).   The presence of the JAK2 V617F mutation has also been 

found in a high percentage of these patients and appears to confer a better 

prognosis (Atallah et al., 2008).  These studies supported the classification of RARS-

T as a separate entity.    

 

Despite the overall improvement on the FAB classification, by incorporating 

objective measures such as cytogenetics, subjective morphological assessment 

remained central to the diagnosis of the chronic myeloid malignancies.   
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1.2.4 The WHO Classification (2008) - Refinement of a Morphological Classification 

In 2008 a 4th edition of the WHO classification was published (Swerdlow et al., 

2008).   Minimal changes were noted in the MDS/MPN group; however, a number 

of changes were made in the MDS group (Table 1.6).  Unfortunately, these primarily 

involved refining the morphological diagnosis. 

 

The minimal amount of dysplasia required for a diagnosis of MDS remained uniform 

at 10% for each lineage, though proposals had been made to raise the threshold in 

the megakaryocyte lineage to 40% following a report that this was associated with 

an adverse prognosis on a multivariate analysis (Matsuda et al., 2007).  Guidance 

was provided in the literature on identifying blast cells, ring sideroblasts and the 

stages of monocytic maturation in an attempt to standardize the morphological 

assessment (Mufti et al., 2008; Goasguen et al., 2009).  However, the 

reproducibility of these descriptions, as tested by a panel of experts, suggested a 

less than optimal agreement further highlighting the limitations of this technique 

(Mufti et al., 2008; Goasguen et al., 2009). 

 
 

For those patients who failed to meet these criteria a presumptive diagnosis of 

MDS was permitted if one of the ‘specific clonal chromosomal abnormalities’ (Table 

1.7) was detected (Vardiman et al., 2009).  To address the issue of patients who 

lacked either morphological or cytogenetic evidence of MDS, the newly coined term 

“idiopathic cytopenia of undetermined significance” (ICUS) was suggested as a 

descriptive phrase (Wimazal et al., 2007).   
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Table 1.6: WHO classification of Myelodysplastic Syndromes 2008 (adapted from Swerdlow et al. 2008)  

 

Disease Blood Findings Bone Marrow Findings 

      
Refractory cytopenias with unilineage dysplasia (RCUD)  Unicytopenia or bicytopenia Unilineage dysplasia: ≥10% of the cells in one myeloid lineage 
      Refractory anaemia; Refractory neutropenia;         No rare of blasts (<1%) <5% blasts 
      Refractory thrombocytopenia    <15% of erythroid precursors are ring sideroblasts 
      
Refractory anaemia with ring sideroblasts (RARS) Anaemia ≥15% of erythroid precursors are ring sideroblasts 
  No blasts Erythroid dysplasia only 
    <5% blasts 
      
Refractory cytopenia with multilineage dysplasia (RCMD) Cytopenia(s) Dysplasia in ≥10% of the cells in ≥ two myeloid lineages 
  No or rare blasts (<1%) (neutrophil and/or erythroid precursors and/or megakaryocytes) 
  No Auer rods <5% blasts in marrow 

  <1x109/L monocytes No Auer rods 
    ±15% ring sideroblasts 
      
Refractory anaemia with excess blasts-1 (RAEB-1) Cytopenia(s) Unilineage or multilineage dysplasia 
  <5% blasts 5-9% blasts 
  No Auer rods No Auer rods 

  <1x109/L monocytes   
      
Refractory anaemia with excess blasts-2 (RAEB-2) Cytopenia(s) Unilineage or multilineage dysplasia 
  <5-19% blasts 10-19% blasts 
  Auer rods ± Auer rods ± 

  <1x109/L monocytes   
      
Myelodysplastic syndrome - unclassified (MDS-U) Cytopenias Unequivocal dysplasia in <10% of cells in one or more  
  ≤1% blasts  myeloid cell lines when accompanied by a cytogenetic abnormality  
    considered as presumptive evidence for a diagnosis of MDS 
    <5% blasts 
      
MDS associated with isolated del(5q) Anaemia Normal to increased megakaryocytes with hypolobated nuclei 
  Usually normal or increased platelet count <5% blasts 
  No or rare blasts (<1%) Isolated del(5q) cytogenetic abnormality 
    No Auer rods 
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Table 1.7: Recurring chromosomal abnormalities considered as presumptive evidence of 

MDS (adapted from Vardiman et al, 2009) 

 

Unbalanced Balanced 

-7 or del(7q) t(11;16)(q23;13.3) 

-5 or del(5q) t(3;21)(q26.2;q22.1) 

i(17q) or t(17p) t(1;3)(p36.3;21.2) 

-13 or del (13q) t(2:11)(p21;q23) 

del(11q) inv(3)(q21q26.2) 

del(12p) or t(12p) t(6;9)(p23;q34) 

del(9q) 
 

idic(X)(q13) 
  

 

In addition, to improve the classification of those in the MDS-unclassified subgroup, 

a new category was recommended for patients with unilineage dysplasia in the 

presence of either uni- or bi-cytopenia (RCUD) (Vardiman et al., 2009).   

 

 

1.2.5 The Integrated Approach to Diagnosing Myeloproliferative Neoplasms 

The MPNs in the most recent WHO classification are highlighted in Table 1.8. 

 

Table 1.8: WHO Classification of Myeloproliferative Neoplasms 2017 (adapted from 

Swerdlow et al, 2017) 

 

Myeloproliferative neoplasms 

Chronic myelogenous leukaemia, BCR-ABL1 positive 

Chronic neutrophilic leukaemia 

Polycythaemia vera 

Primary myelofibrosis 

Essential thrombocythaemia 

Chronic eosinophilic leukaemia, not otherwise specified 

Myeloproliferative neoplasm, unclassifiable 
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This group is described separately as it has seen the greatest advancements over 

the past 4 decades.  This has led to a greater understanding of pathogenesis, 

specific diagnostic markers and disease specific treatments with dramatic success. 

 

The term myeloproliferative disorder was first used in 1951 by William Dameshek, 

who described a collection of disorders with variable proliferative activity.  This 

included chronic myeloid leukaemia, polycythaemia vera (PV), primary 

myelofibrosis (PMF), essential thrombocythaemia (ET) and Di Guglielmo syndrome, 

now recognized as erythroleukaemia (Dameshek, 1951).   The latter has since been 

placed in the subgroup of acute leukaemia, though the others have remained as 

myeloproliferative disorders. 

 

The discovery of the Philadelphia chromosome has revolutionized the diagnosis and 

treatment of chronic myeloid leukaemia (Nowell and Hungerford, 1960; Rowley, 

1973).  The mechanism of disease became firmly established and the concept of 

targeted therapy was realized with the development of a tyrosine kinase inhibitor in 

the form of STI571, now known as imatinib (O’Dwyer and Druker, 2000).  The 

presence of the Philadelphia chromosome or BCR/ABL fusion gene is a pre-requisite 

for the diagnosis of CML according to the most recent WHO classification 

(Swerdlow et al., 2017).   

 

The progress in molecular and genetic diagnostics led to the discovery of a number 

of frequently occurring and disease specific abnormalities in the myeloproliferative 

disease group. 

 

The discovery of the JAK2 V617F mutation (G to T at nucleotide 1849 resulting in 

the substitution of valine to phenylalanine at position 617) in myeloproliferative 

disorders marked the beginning of a series of developments within this area (Baxter 

et al., 2005; James et al., 2005; Levine et al., 2005; R Kralovics et al., 2005).  This 

gain of function mutation occurs in almost all patients with PV (approximately 95%) 

though with 50% of patients with either ET or PMF also harbouring the mutation as 
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well as a number of other myeloid neoplasms, it is not specific (Tefferi et al., 2005, 

2006; Wolanskyj et al., 2005).  In patients without the V617F mutation, an exon 12 

mutation has been identified which is functionally similar and therefore JAK2 

aberrations are found in virtually all PV patients (Scott et al., 2007).  In addition, a 

small percentage of patients with PMF (5%) or ET (1%) were shown to have a 

functionally similar gain of function mutation of MPL, either MPLW515L or 

MPLW515K (A. Pardanani et al., 2006; Pikman et al., 2006).  The presence of either 

of these mutations confirms the clonality of these disorders and is now one of the 

major criteria in the WHO classification.  . 

 

With respect to other recurrent abnormalities, somatic point mutations of the KIT 

protooncogene are found to be recurring abnormalities in mastocytosis the most 

common being D816V (Nagata et al., 1995).  This mutation has been identified in 

more than 95% of patients with systemic mastocytosis with other activating point 

mutations including D816V found in cutaneous mastocytosis (Swerdlow et al., 

2008).  Due to it’s unique clinical and pathologic features, mastocytosis is now 

considered in a separate disease category in the most recent WHO classification 

(Swerdlow et al., 2017).  

 

A separate category was also introduced in the 2008 WHO classification termed 

‘Myeloid and Lymphoid neoplasms with Eosinophilia and Abnormalities of PDGFRA, 

PDGFRB and FGFR1’ (Swerdlow et al., 2008).  These are 3 rare specific disease 

groups all resulting from formation of a fusion gene encoding an aberrant tyrosine 

kinase (Swerdlow et al., 2008).  The PDGFRA related disorders most commonly 

present as chronic eosinophilic leukaemia with a prominent mast cell population 

and have been shown to be responsive to tyrosine kinase inhibitors, in particular 

imatinib (Cools et al., 2003).  Those with PDGFRB related disorders most commonly 

present as CMML with eosinophilia and again show responses to imatinib (Golub et 

al., 1994; David et al., 2007).  The final group of patients with FGFR1 related disease 

commonly present with lymphomatous disease though specific therapy has yet to 

be developed (Xiao et al., 1998). 
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While morphological assessment remains important in distinguishing these 

disorders the progress made in identifying the underlying molecular abnormalities 

has provided an objective diagnostic tool to aid in diagnosis and classification.   

 

The remainder of this thesis will therefore focus on the diagnosis of those chronic 

myeloid diseases which remain dependent on subjective morphological assessment 

namely MDS and MDS/MPN.  Reference to the MPDs will be minimal. 

 

1.2.6 The WHO Classification (2017) – an opportunity to integrate objective 

parameters 

 

The WHO classification underwent a further revision in 2016/2017.  The major 

changes within MDS however were to the terminology rather than the core criteria 

for diagnosis, with the expanding literature on somatic mutations also being 

addressed (see section 1.4).  To move the emphasis away from cytopenia or the 

specific type of cytopenia, all subtypes have been renamed with MDS rather than 

“refractory anaemia/cytopenia” (see Table 1.9).  This was on the basis that 

diagnosis and classification are focused on the degree of dysplasia and blast 

percentages while cytopenias have little impact (Arber et al., 2016).   

The minimal threshold of 10% to define dysplasia was again retained within this 

revision, and the same 2008 cytogenetic abnormalities remained disease defining 

(Swerdlow et al., 2017).   

 

Despite the explosion of data gathered from mutation analysis (see section 1.4), 

del(5q) remains the only cytogenetic or molecular genetic abnormality that defines 

a specific MDS subtype.  Following data published from cohort 1 (Chapter 4) of this 

research along with other studies (Cargo et al., 2015; Kwok et al., 2015; Steensma 

et al., 2015), the WHO do acknowledge, in the most recent classification, that 

mutations are frequent in confirmed disease and also in patients who fail to meet 

minimal diagnostic criteria though at present these cannot be considered diagnostic 

(Arber et al., 2016).  This is due to reports of the same mutations detected in aging 

healthy individuals – see Chapters 4 & 6  (Genovese et al., 2014; Jaiswal et al., 
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2014).  The only gene mutation that is incorporated into the most recent 

classification involves SF3B1, a spliceosome gene in which mutations correlate 

strongly with the presence of ring sideroblasts (Papaemmanuil et al., 2011).  In the 

presence of this mutation, MDS with ring sideroblasts can be diagnosed with as few 

as 5% ring sideroblasts, in contrast to 15% in previous iterations (Swerdlow et al., 

2017).  This follows previous studies which confirm that the proportion of ring 

sideroblasts was irrelevant with regard to prognosis in those without excess blasts 

(Mrinal M Patnaik, Hanson, et al., 2012).  

 

With respect to MDS/MPN overlaps, RARS-T has been accepted as a full entity and 

is now termed MDS/MPN with ring sideroblasts and thrombocytosis to align with 

the updated MDS terminology (Swerdlow et al., 2017).  In this subtype the 15% cut-

off for ring sideroblasts has been retained.  The high frequency of recurrent somatic 

mutations across the MDS/MPN group was also acknowledged though for the same 

reasons as in MDS it has been stated that the presence of these should not be used 

alone as proof of neoplasia (Arber et al., 2016).  The strong correlations between 

mutations in SRSF2, TET2, ASXL1 and CMML as well as mutations in SETBP1, ETNK1 

and atypical CML have however been highlighted (Swerdlow et al., 2017). 

 

In CMML, the morphological criteria have been refined to reflect the importance of 

blast percentage on prognosis with 3 blast-based groups now included (see Table 

1.10)  These are reported to show significant differences in outcome in both 

dysplastic and proliferative disease (Schuler et al., 2014).    

 
 
 
 
 
 
 
 
 
 
 
 
 

35



Table 1.9: WHO classification of Myelodysplastic Syndromes 2017 (adapted from 
Swerdlow et al. 2017) 

 

Disease Entity Dysplastic 
Lineages 

No. of 
cytopenias 

Ring 
sideroblasts 

BM and PB 
blasts 

Cytogenetics 

MDS-SLD 1 1-2 <15%/<5% BM<5%  
PB<1% 

  

            
MDS-MLD 2-3 1-3 <15%/<5% BM<5%  

PB<1% 
  

            
MDS-RS           
MDS-RS-SLD 1 1-2 ≥15%/≥5% BM<5%  

PB<1% 
  

MDS-RS-MLD 2-3 1-3 ≥15%/≥5% BM<5%  
PB<1% 

  

            
MDS with 
isolated del(5q) 

1-3 1-2 None or any BM<5%  
PB<1% 

del (5q) alone or 
with 1 additional 
abnormality 

            
MDS-EB           
MDS-EB-1 1-3 1-3 None or any BM 5-9%    

PB 2-4% 
  

MDS-EB-2 1-3 1-3 None or any BM 10-
19%  PB 5-
19% or 
Auer rods 

  

            
MDS-U           
with 1% PB 
blasts 

1-3 1-3 None or any BM<5%  
PB=1% 

  

with SLD and 
pancytopenia 

1 3 None or any BM<5%  
PB<1% 

  

defining 
cytogenetics 

0 1-3 <15% BM<5%  
PB<1% 

MDS-defining 
abnormality 

 

Abbreviations: MDS-SLD, myelodysplastic syndrome with single lineage dysplasia; MDS-MLD, 
myelodysplastic syndrome with multi-lineage dysplasia; RS, ring sideroblasts; EB, excess blasts; MDS-
U, myelodysplastic syndrome unclassifiable 
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Table 1.10: Morphological criteria for CMML 2017 (adapted from Swerdlow et al. 2017) 

 

Classification PB Blasts BM Blasts 

CMML-0 <2% <5%, no Auer rods 

CMML-1 2-4% 5-9%, no Auer rods 

CMML-2 5-19% 10-19%, or Auer rods present 

 

 

While this revision of the WHO classification had the potential to incorporate 

objective criteria for diagnosis, this has been hindered by the lack of data and 

ongoing uncertainty, particularly in those without definitive morphological disease. 

       

1.3 The Promise of New Diagnostic Technologies 

It is apparent that a subjective morphological assessment is not an ideal approach 

to diagnosing these diseases.  Extensive research is ongoing into objective measures 

using both routine techniques and a spectrum of new diagnostic technologies.  The 

most extensive work has involved the role of multiparameter flow cytometry (MFC) 

as a potential diagnostic tool for MDS (Loken and Wells, 2008).  This can be used to 

support a diagnosis of MDS in the most recent WHO classification, but is yet to form 

a definitive component of the diagnostic criteria (Swerdlow et al., 2017).   

 

More recently however advances in molecular technology have also seen the 

introduction of array based techniques to assess gene expression, microRNA 

expression and to perform whole genome scanning for cytogenetic abnormalities 

(Steensma and List, 2005; Maciejewski, Tiu and O’Keefe, 2009).  The advent of next 

generation sequencers has also enabled researchers to unearth multiple mutations 

with both diagnostic and prognostic potential (Mardis, 2008).   

The following sections will provide a review of the published literature available 

surrounding the technologies described and will discuss their potential role in the 

diagnosis of chronic myeloid malignancies.  
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1.4 The New Era of DNA Sequencing 

The advent of high throughput sequencing has revolutionized the process of DNA 

sequencing.  This was traditionally performed using the method described by 

Sanger et al. in 1977.  More recently however a new generation of sequencers has 

provided a high throughput method with a significantly greater resolution to this 

traditional technique.   

 

1.4.1 Sanger Sequencing 

The seminal paper by Sanger et al. described a method of sequencing based on the 

synthesis of complementary DNA using DNA polymerase in the presence of natural 

deoxynucleotides (dNTPs) and dideoxynucleotides (ddNTPs) which act as chain 

terminating inhibitors (Sanger, Nicklen and Coulson, 1977).  The randomly 

terminated oligonucleotide chains were then separated on a polyacrylamide gel 

electrophoresis with the ddNTPs determining the DNA sequence. 

 

This method remains relatively unchanged today, though chain terminators are 

now labelled with fluorescent dyes and separation occurs using capillary gel 

electrophoresis (Morozova and Marra, 2008).  Despite these technical 

improvements this method is limited particularly in large genome projects as this 

requires in vivo amplification of DNA fragments which is both labour intensive and 

expensive (Morozova and Marra, 2008). 

 

1.4.2 High throughput Sequencing  

The development of high throughput sequencers was driven by the high demand 

for low cost sequencing.  Initially there were 3 platforms in widespread use – the 

Roche 454, Illumina Genome Analyser and the Applied Biosystems SOLiD system.  

More recently Illumina have monopolized the market with the powerful HiSeq 

platforms and the benchtop MiSeq option. The research described in this thesis has 

been performed using both the Roche and Illumina platforms and these are 

described below.   
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The Roche 454 was the first next generation sequencer to become commercially 

available in 2004 (Mardis, 2008).  It uses bead amplification by emulsion PCR 

followed by sequencing using an alternative technology called pyrosequencing (Fig. 

1.1).  During pyrosequencing, each incorporation of a nucleotide by DNA 

polymerase naturally releases pyrophosphate.  This initiates a series of downstream 

reactions which result in the production of light by the firefly enzyme luciferase 

(Mardis, 2008).   

 

In contrast, the Illumina sequencers use bridge amplification of DNA fragments 

followed by sequencing by synthesis using labelled reversible terminators (Fig. 1.2).  

In this sequencing method all 4 nucleotides are labelled with a unique fluorescent 

dye and are then added simultaneously along with DNA polymerase to the DNA 

cluster fragments.  Once incorporated further DNA synthesis is blocked and an 

imaging step allows for identification of the nucleotides (Mardis, 2008).   

 

 

 

Figure 1.1. The Roche 454 sequencing approach (Mardis, 2008) 
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Figure 1.2. The Illumina sequencing by synthesis approach (Courtesy of Illumina, Inc.) 

 

These technologies enable the acquisition of large amounts of sequenced data in 

much shorter periods of time.  This has allowed researchers to sequence both 

whole genomes and also target large panels of recurrently mutated genes across 

the spectrum of cancer including myeloid malignancies.   This technology has also 

been utilized for analysing gene expression, sequence variation (e.g. SNPs) and 

identifying small noncoding RNAs (Morozova and Marra, 2008).      
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1.4.3 Somatic Mutations are common in Myeloid Malignancies  

Using both techniques described above, somatic mutations have been identified in 

a large number of patients with chronic myeloid malignancies.   

 

Initial studies, using Sanger sequencing, either targeted known tumour suppressor 

genes or those involved in other haematological malignancies.  The first mutations 

identified were in in TP53, a critical cell-cycle checkpoint regulator (Jonveaux et al., 

1991; Sugimoto et al., 1993), which were shown to be present in up to 15% of MDS 

patients and reported to be associated with a worse prognosis (Kita-Sasai et al., 

2001a).  Subsequent studies identified mutations in the RAS proto-oncogene family 

which encodes guanosine triphosphate hydrolases (GTPase), which are regulators 

of cellular growth related signals (Steensma and List, 2005).  In myeloid 

malignancies NRAS mutations predominate, though overall these mutations are 

more common in CMML (40-60%) (Steensma and List, 2005).  RUNX1 (previously 

AML1), the transcription factor essential for normal haematopoiesis is the target of 

a number of translocations in acute leukaemia.  Mutations were identified initially 

in a small number of patients with MDS (Imai et al., 2000), however subsequent 

studies reported mutations in up to 25% of patients with RAEB and RAEBt and also 

more common in those with therapy related disease (Christiansen, Andersen and 

Pedersen-Bjergaard, 2004; Harada et al., 2004).  The presence of recurrent 

mutations of FLT3 and nucleophosmin (NPM1) in AML led researchers to assess the 

presence of these mutations in MDS.  Mutations were identified in only a small 

number of patients (Horiike et al., 1997; Zhang et al., 2007) though FLT3 mutations 

were associated with a poorer prognosis and progression to AML (L. Shih et al., 

2004). 

 

The introduction of high throughput sequencing allowed an unbiased approach to 

identifying mutations by sequencing the whole genome.  Two novel mutations were 

identified using this method on 2 separate patients with AML (Mardis et al., 2009; 

Ley et al., 2010).  The first mutation was isocitrate dehydrogenase 1 (IDH1), a 

tumour suppressor gene which had been previously reported in malignant gliomas 

and the other was DNA methyltransferase gene (DNMT3A) which encodes DNA 
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methyltranferases involved in methylation (Mardis et al., 2009; Ley et al., 2010).  

Both of these mutations were shown to have a negative prognostic impact in AML, 

and a small number of reports have identified these mutations in MDS.  While they 

are present in only a small number of patients (IDH1 3.6%, DNMT3A 2.6-8%), both 

have been shown to be associated with a poorer prognosis and higher rate of 

transformation to AML (F Thol et al., 2010; F Thol, Winschel, et al., 2011; Walter et 

al., 2011).   

 

There has since been an explosion of research in this area and mutations have now 

been identified in a number of key pathways implicated in myeloid disease 

pathogenesis.   

 

1.4.4 High throughput sequencing identifies key pathways in disease pathogenesis  

High throughput sequencing has provided researchers with the ability to explore 

the genomes of large numbers of cancer patients.  This has led to the discovery of 

multiple recurrently mutated genes and the functional pathways involved in disease 

pathogenesis.  With respect to myeloid malignancies, and in particular MDS and 

MDS/MPN, the key pathways and genes involved are described below and include 

RNA splicing, epigenetic regulators, cell signalling, transcription factors, the cohesin 

complex, and tumour suppressor genes.  

 

1.4.4.1 RNA SPLICING 

Genes involved in RNA splicing, most commonly SF3B1, SRSF2, U2AF1 and ZRSR2, 

are the most frequently mutated genes in MDS.  Splicing is critical for successful 

transcription and is the process by which introns are excised from pre-mRNA, 

enabling exon ligation and the formation of mature messenger RNA (Shukla and 

Singh, 2017).  This process is essential for protein diversity as a number of alternate 

isoforms can be generated from a single pre-RNA transcript (Shukla and Singh, 

2017).  The splicing factors involved in myeloid malignancies form part of the E/A 

complex which coordinates 3’ splice site recognition.  Mutations have been shown 

to cause aberrant 3’ splice site recognition and the generation of aberrantly spliced 
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mRNA transcripts (Armstrong et al., 2018).  Initial sequencing studies of MDS 

patients identified these mutations at high frequency and showed mutations to be 

both mutually exclusive and associated with disease phenotype (Kenichi Yoshida et 

al., 2011; Papaemmanuil et al., 2011).  SF3B1 mutations, in particular, correlated 

strongly with the presence of ring sideroblasts (Kenichi Yoshida et al., 2011; 

Papaemmanuil et al., 2011) while SRSF2 or ZRSR2 in combination with TET2 is highly 

specific for a myelomonocytic phenotype (Malcovati et al., 2014).  Importantly, 

mutations also correlated with the presence of dysplasia, being infrequent in both 

de novo AML and myeloproliferative neoplasms (Kenichi Yoshida et al., 2011).  

Research is ongoing to understand the link between mutations and disease 

pathogenesis though aberrant splicing of ABCB7, a mitochondrial iron exporter, by 

mutant SF3B1 is thought to lead to the accumulation of mitochondrial iron seen in 

MDS with ring sideroblasts (Dolatshad et al., 2016).  Furthermore, mutations in 

SRSF2 alter this genes preference for specific exonic splicing enhancer motifs 

leading to mis-splicing of key haemopoietic regulators (Kim et al., 2015).  

 

SF3B1 is one of the few mutations in MDS associated with a good prognosis.  A 

study using unsupervised hierarchical clustering incorporating somatic mutations, 

identified MDS with SF3B1 mutation as a distinct entity in patients with <5% blasts 

irrespective of WHO morphological classification (Malcovati et al., 2014).  These 

patients had a favourable prognosis which held true whether the mutation was 

clonal or subclonal (Malcovati et al., 2014).  A subsequent study of MDS patients 

with >1% ring sideroblasts, confirmed these findings with the presence of an SF3B1 

mutation associated with a significantly improved overall survival and lower risk of 

disease progression (Malcovati et al., 2015).  This was again restricted to those 

patients without an excess of blasts.  SF3B1 has a limited pattern of co-occurring 

mutations, mainly involving epigenetic regulators and RUNX1, however only the 

latter has a negative impact on prognosis within this group (Malcovati et al., 2014). 

In contrast, mutations in other spliceosome mutations have all been reported to be 

associated with a shorter overall survival and increased risk of progression to AML 

(Damm, Kosmider, Gelsi-Boyer, Renneville, Carbuccia, Hidalgo-Curtis, Della Valle, et 
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al., 2012; Graubert et al., 2012; Makishima et al., 2012a; Thol et al., 2012; Wu et al., 

2012). 

 

1.4.4.2 EPIGENETIC REGULATORS 

Mutations in genes involved in DNA methylation were the first genes implicated in 

myeloid pathogenesis in the era of novel sequencing techniques.  TET2 mutations 

were first reported in 2009 by studies focused on identifying the underlying 

mutation associated with uniparental disomy (UPD) of chromosome 4q 

(Delhommeau et al., 2009; Mohamedali et al., 2009).  TET2 catalyzes the conversion 

of 5-methylcytosine to 5-hydroxymethylcytosine and depletion leads to skewing 

towards monocyte/granulocytic lineages and myeloid tumourigenesis (Ko et al., 

2010; Z. Li et al., 2011).  Soon after, mutations in 2 further genes in this pathway 

were identified by whole genome sequencing of de-novo AML cases (Mardis et al., 

2009; Ley et al., 2010).  This included DNMT3A, a DNA methyltransferase involved 

in de novo methylation (Ley et al., 2010), and IDH1, which along with IDH2 catalyses 

the conversion of isocitrate to α-ketoglutarate which itself regulates TET2 (Figueroa 

et al., 2010).  Subsequent studies confirmed the presence of these mutations in 

MDS patients, albeit at a lower frequency (F Thol et al., 2010; Kosmider et al., 2010; 

Walter et al., 2011).   

 

Abnormal histone modification is also thought to contribute to epigenetic 

deregulation in MDS. Mutations in the histone modifiers ASXL1, a histone-binding 

protein and EZH2, a histone methyltransferase, are both reported with varying 

frequency (Gelsi-Boyer et al., 2009; Nikoloski et al., 2010a). 

 

While TET2 is one of the most commonly mutated genes in MDS, it appears to have 

no specific prognostic relevance.  Initial studies suggested it may confer a 

favourable prognosis however this has not been confirmed in subsequent studies 

and a large meta-analysis showed no significant prognostic value (Kosmider et al., 

2009; Smith et al., 2010; Lin et al., 2017).  Mutations in other epigenetic regulators 

do however appear to have prognostic relevance.  DNMT3A has been shown to be 
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associated with worse overall survival and rapid progression to AML (F Thol, 

Winschel, et al., 2011; Walter et al., 2011).  However, this gene fails to hold 

prognostic significance in MDS with ring sideroblasts and an SF3B1 mutation, 

meaning the clinical context in which it occurs is important (Malcovati et al., 2015).  

 

By far, the genes that have the most clinical relevance in this group are the 

chromatin modifiers.  ASXL1 has been shown to be a poor prognostic feature across 

all myeloid malignancies including MDS (Gelsi-Boyer et al., 2012).  ASXL1 mutations, 

in particular frameshift mutations, were independent prognostic markers with 

respect to survival and AML transformation (Felicitas Thol, Friesen, et al., 2011).  

This was confirmed in patients with low risk MDS and was found to be one of the 5 

poor prognostic mutations in initial large sequencing studies (Bejar et al., 2011, 

2012).  Similarly, EZH2 was also been shown to be associated with poor prognosis in 

these studies.  Importantly mutations in this gene were the only one to retain 

prognostic significance in a multivariate model in low risk MDS (Bejar et al., 2011, 

2012).           

 

1.4.4.3 CELL SIGNALLING AND TRANSCRIPTION FACTORS 

Mutations in the RAS proto-oncogene family have long been reported in myeloid 

malignancies.  RAS genes encode guanosine triphosphate hydrolases (GTPase) 

which are regulators of cellular growth related signals (Steensma and List, 2005).  In 

myeloid malignancies NRAS mutations predominate, though overall these 

mutations are more common in CMML rather than MDS (Al-Kali et al., 2013). 

CBL gives rise to cbl protein which targets a variety of tyrosine kinases for 

ubiquitination.  Again, firstly reported in AML, mutations in this gene are most 

commonly reported in CMML but also in MDS (Bacher et al., 2010). 

 

Mutations in tyrosine kinase genes are more common in myeloproliferative 

mutations and AML, however they do occur at low frequencies in MDS.  This 

includes JAK2 mutations which, while are more common in MDS/MPN overlaps, 

also rarely occur in MDS (Ceesay et al., 2006).   
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RUNX1 (previously AML1), the transcription factor essential for normal 

haematopoiesis is the target of a number of translocations in acute leukaemia 

(Harada et al., 2004).  Point mutations are also somatically acquired in MDS (Harada 

et al., 2004) as well as being associated with familial myeloid neoplasms when 

inherited in the germline (Galera, Dulau-Florea and Calvo, 2019).  BCOR (BCL6 

corepressor) is a key transcriptional regulator of haemopoiesis and was first 

reported to be mutated in cytogenetically normal AML (Vera Grossmann et al., 

2011).  Subsequent analysis of MDS showed mutations occur at a similar frequency 

in this patient group (Damm et al., 2013). 

 

Mutations in TP53, a critical cell-cycle checkpoint regulator are reported across the 

spectrum of haematological and non-haematological cancers (Wang and Sun, 

2017).  With respect to MDS they are associated with complex karyotype and worse 

prognosis (Kita-Sasai et al., 2001a). 

 

Transcription factors and TP53 have been associated with poor outcome in MDS.  

RUNX1 mutations have long been associated with a poor prognosis, particularly in 

high risk MDS and AML (Harada et al., 2004).  When looking at larger numbers of 

genes, this mutation was again shown to be a predictor of poor survival even in low 

risk MDS (Bejar et al., 2011, 2012).  Similarly BCOR has also been associated with a 

significantly inferior overall survival (Damm et al., 2013).  

 

1.4.4.4 COHESIN COMPLEX 

One of the most recent pathways implicated in myeloid pathogenesis is the cohesin 

complex.  This is involved in the cohesion of sister chromatids, regulating 

transcription and is involved in post-transcriptional DNA repair (Kon et al., 2013).  

STAG2 is by far the most frequently mutated gene within this complex, other genes 

include RAD21, SMC3, SMC1A.  Mutations within this pathway are found most 

frequently in high-risk MDS and secondary AML (Thota et al., 2014) and recent 
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studies have shown that mutant cohesin proteins block differentiation of 

haematopoietic stem and progenitor cells (Mazumdar et al., 2015). 

 

Mutations in this pathway, are most prevalent in high-risk MDS and secondary AML 

and are associated with poor overall survival (Thota et al., 2014).  

 

1.5 Array Based Whole Genome Scanning 

Karyotyping is an important tool for both the diagnosis and identification of 

prognostic markers across the spectrum of myeloid malignancies.  With relatively 

low sensitivity and variable resolution, the detection of abnormalities using time 

consuming labour intensive conventional cytogenetics (CC) is limited (Maciejewski, 

Tiu and O’Keefe, 2009).  Array based technologies have been developed which have 

many advantages over this traditional technique.  One particular benefit is the 

ability to screen for new lesions without the prerequisite of cells in metaphase 

(Maciejewski, Tiu and O’Keefe, 2009).  Initially this was performed using 

comparative genomic hybridization arrays (CGH-A), however the development of 

SNP-A heralded a turning point in the use of array based techniques; this method 

having the advantage of being able to detect copy number neutral loss of 

heterozygosity or somatic uniparental disomy (UPD) (Maciejewski, Tiu and O’Keefe, 

2009).  Further studies in myeloid malignancy focused on this technique with only a 

handful using CGH-A for analysis.  

 

1.5.1 Single Nucleotide Polymorphism Arrays  

SNP-A are based on oligonucleotide probes which correspond to allelic variants of 

SNPs (Maciejewski, Tiu and O’Keefe, 2009).  Hybridisation of DNA to the probes 

results in either signals for both alleles consistent with heterozygosity or only one 

signal in the case of hemi/homozygosity.  The strength of the fluorescent signal also 

allows for determination of copy number (Maciejewski, Tiu and O’Keefe, 2009) (Fig. 

1.3).   
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Figure 1.3. The Principle of SNP-A (Maciejewski et al, 2009) 

 

A number of platforms are commercially available allowing the analysis of over 

900,000 loci simultaneously enabling increased precision (Heinrichs, Li and Look, 

2010). 

 

The major advantage of this approach is the ability to detect diploid stretches of 

homozygosity.  These can be due to acquired somatic UPD, autozygosity or early 

embryonic UPD (Maciejewski, Tiu and O’Keefe, 2009).  With respect to malignancy, 

UPD results from errors during mitosis resulting in both copies of a chromosome or 

part of a chromosome being derived from one parent (Maciejewski, Tiu and 

O’Keefe, 2009).  The loss of heterozygosity in UPD can be distinguished from 

deletions as the former occurs in the presence of a diploid chromosome while the 

latter results in loss of DNA copy number (Gondek, Dunbar, et al., 2007).  This 

important mechanism leading to point mutations or microlesions can be identified 

by this method (Heinrichs, Li and Look, 2010).  One such example of this is the JAK2 

V617F gain of function mutation in myeloproliferative disorders.  Initial genome 

wide analysis identified UPD at chromosome 9p as a recurring abnormality in this 

patient group (Kralovics, Guan and Prchal, 2002).  This group went on to confirm 
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that UPD9p leads to homozygosity of the V617F mutation in one of the first papers 

to report on this mutation (R Kralovics et al., 2005).  Subsequent studies in AML 

identified homozygous mutations associated with UPD in genes known to be 

mutational targets – WT1, FLT3, CEBPA and RUNX1 (Fitzgibbon et al., 2005). 

 

1.5.2.1 SNP-A HAS INCREASED RESOLUTION WITH CLINICAL IMPACT  

SNP-A are much more precise than CC, though have a comparable sensitivity with 

the minimal detectable clone size being 25-50% of total cells (Gondek et al., 2008).   

 

An early report by Gondek et al. using 50K SNP-A analysis confirmed the presence 

of the majority of abnormalities identified by CC in MDS patients, and discovered 

new defects including UPD (Gondek, Tiu, et al., 2007).  Abnormalities by SNP-A 

were present in 69% of patients with normal cytogenetics and only 12/66 (18%) 

patients had a normal karyotype by this technique (vs. 39% by cytogenetics, 

p<0.001).  In addition, a higher proportion of patients had multiple defects which 

could place a significantly greater percentage of patients in the complex 

cytogenetic category (44 vs 6%, p<0.001).  UPD was detected in 33% of patients and 

frequently involved areas affected by traditional cytogenetic deletions including 7q 

and 11q (Gondek, Tiu, et al., 2007).  Subsequent clinical correlation showed that 

patients with chromosome 7 lesions by SNP-A had worse survival than those with 

normal karyotype (p=0.047), and the survival of patients with SNP detected lesions 

was similar to 7/7q lesions by CC.  In addition those patients with multiple lesions 

had more advanced disease, though comment on survival in this group was not 

made (Gondek, Haddad, et al., 2007).   

 

Mohamedali et al. showed that a higher resolution array, 250K, added additional 

information to that identified on the 50K array and used this to analyse a group of 

low-risk MDS patients (Mohamedali et al., 2007).  UPD was identified in 46% of 

MDS patients overall and copy number changes not detected by CC were identified 

in 18% of patients.    UPD on chromosome 4q was identified in 9 patients, and GEP 

showed up-regulation of erythroid specific genes in these patients, though no 
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overtly downregulated genes in this region.  Clinical follow-up of this patient group 

showed no correlation between UPD or copy number change and disease 

progression, though copy number change was correlated with a higher IPSS score 

and overall survival (Mohamedali et al., 2007). 

 

The Cleveland Clinic group proceeded to use the 250K array to analyse a larger 

group of patients with a spectrum of myeloid malignancies (Gondek et al., 2008).  

Again, a higher percentage of chromosomal abnormalities were detected by SNP-A 

than by CC (78% vs. 59% MDS, 75% vs. 37% MDS/MPN, 77% vs. 53% AML).  UPD 

was detected in 20%, 35% and 23% of MDS, MDS/MPN and AML patients 

respectively.  When analyzing the clinical impact of these findings, those with 

normal karyotype by both CC and SNP-A had an improved OS compared with those 

with normal CC in whom additional lesions were identified by SNP-A (39 vs. 16 

months, p=0.02).  This survival impact was maintained within both the MDS/MPN 

and AML subgroups, but was not significantly affected in the MDS group; which 

may reflect a shorter follow-up.  In addition, specific lesions also conferred a worse 

survival; patients with a new cryptic lesion on chromosome 7 had poorer prognosis 

than those with known deletions of 7/7q, and significantly worse outcomes than 

those with normal SNP-A (Gondek et al., 2008).   

 

The MD Anderson group prospectively analysed 51 newly diagnosed MDS patients, 

with the added benefit of matched normal DNA in all patients (Heinrichs et al., 

2009).  In those patients with a normal karyotype 12% (4/33) had clonal regions of 

acquired UPD involving 3q, 4q, 7q and 17p.    Unfortunately, follow-up was short, 

and clinical validation of these findings was not possible.   

 

In a larger study by Tiu et al the combination of CC and SNP-A increased the 

detection of abnormalities from 44% to 74% (Tiu et al., 2011).  Of those with normal 

cytogenetics 130 out of 241 patients (54%) had cryptic abnormalities, and 

additional aberrations were identified in 117 out of 189 (62%) with an abnormal 

karyotype by CC.  Overall survival was shown to be worse in those with either CC or 

SNP-A defects compared to those without (16 vs. 43 months, p<0.001).  Regardless 

50



of the karyotype by CC, the addition of abnormalities by SNP-A showed a 

significantly reduced OS, PFS and EFS, with both new and increased lesions by SNP-

A being independent predictors of OS and EFS in a multivariate analysis.  Deletions 

and UPD of chromosomes 7, 11 and 17 were associated with poor OS, similar to 

that if detected by CC; and the authors suggested that these abnormalities should 

be included in higher risk cytogenetic groups (Tiu et al., 2011). 

 

Similarly, in patients with CMML, a high frequency of abnormalities have been 

reported in patients with low risk cytogenetic features (normal karyotype or 

isolated -Y) or no metaphases at diagnosis (Palomo, Xicoy, et al., 2016).  Out of 128 

patients, 86 (67%) had an abnormality reported, with a size >11Mb being 

associated with a shorter overall survival on univariate analysis.  This was not, 

however, maintained on a multivariate analysis; SNP-A having no overall impact on 

outcome (Palomo, Xicoy, et al., 2016). 

 

1.5.2.2 SNP-A CAN REVEAL MECHANISMS OF DISEASE PATHOGENESIS 

SNP-A have also identified important mechanisms in disease pathogenesis, 

including the origin of MDS clones.  By performing SNP-A analysis on fractionated 

cells one group determined that MDS clones were selected during differentiation 

and suggested some clones may arise from lineage committed progenitors (Huang 

et al., 2009).   

 

Investigation of regions of UPD and cryptic deletions has revealed potential 

candidates for disease pathogenesis including adenosine deaminase (ADA) and 

calreticulin (CALR) in MDS which showed significant differential gene expression by 

GEP (Nowak et al., 2009).  A further group discovered a mutation in TET2 located at 

4q24 following investigation of recurrent UPD and microdeletion of this region 

(Langemeijer et al., 2009).  Subsequent analysis confirmed this mutation was 

present in 26% (27/102) of MDS patients in their cohort.  TET2 has a proposed role 

in myeloid differentiation (Langemeijer et al., 2009).   
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In a study by Dunbar et al, UPD was shown to occur more frequently in those with 

CMML (48%, 21/44) and MDS/MPN-u (38%, 14/37) (Dunbar et al., 2008).  One of 

the most common chromosome arms affected was 11q, which was involved in 

12/301 patients.  Further analysis of this region identified c-CBL, a gene which 

encodes a ubiquitin ligase involved in ubiquitylation and degradation of active 

protein tyrosine kinase receptors, mutations of which have been found in AML 

(Dunbar et al., 2008).  Direct sequencing identified 3 unique missense mutations in 

7 out of 12 patients within this gene, including 2 new mutations not previously 

reported (Dunbar et al., 2008). 

 

Ernst et al. analysed a cohort of patients with MDS/MPN (n=148) and identified 13 

who had UPD7q (T Ernst et al., 2010).  A homozygous mutation of one of these 

genes, EZH2, was shown to be present in 9 of those patients with UPD7q.  Analysis 

of a larger cohort identified 49 variants of inactivating mutations including missense 

and frameshift mutations.    EZH2 forms part of the polycomb repressive complex 2, 

which is a highly conserved histone H3 lysine 27 (H3K27) methyltransferase which 

influences stem cell renewal (V Grossmann, Kohlmann, Eder, Haferlach, Kern, N. 

Cross, et al., 2011).  These findings suggest this gene is a tumour suppressor for 

myelopoiesis.  Correlation with clinical outcome showed that mutations were 

associated with a poorer outcome in the MDS/MPN subgroup (T Ernst et al., 2010).  

These findings were corroborated by subsequent studies (Makishima, Jankowska, et 

al., 2010; Nikoloski et al., 2010b) 

 

Analysis of a small group of patients with RARS-T also revealed that UPD1p was 

associated with MPL W515L in a proportion of cases analogous with UPD9p and the 

JAK2 V617F mutation (Szpurka et al., 2009).  This cohort was further studied and 

cryptic abnormalities were identified in 13/22 patients including deletions of 2p and 

5q and UPD of 1p, 2p, 3q, 6p, 8p and 10p (Szpurka et al., 2010). 
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1.5.2.3 REGIONS OF UPD ARE ACQUIRED DURING TRANSFORMATION TO AML 

Paired analysis of a small number of patients who transformed from MDS to AML 

identified acquisition UPD during disease progression (Flach et al., 2011).  Thirty 

two percent of patients (11/34) had UPD during the MDS phase, however, one 

acquired a UPD(21q) and another acquired both UPD(17q) and UPD(19q) at the 

time of transformation.  The acquisition of UPD(21q) was accompanied by a 

homozygous RUNX1 mutation.  Unfortunately this group did not determine if any of 

the original UPD were germline (Flach et al., 2011). 

 

1.5.2.4 PITFALLS OF SNP-A 

The major disadvantage of SNP-A is the inability to detect balanced translocations 

and inversions.  In addition this technique has a lower sensitivity for smaller clones 

(Gondek, Tiu, et al., 2007).  As a result, not all abnormalities identified by CC are 

also detected with SNP-A (Gondek, Tiu, et al., 2007; Gondek et al., 2008).  

Makishima et al analysed the combination of CC, fluorescence in situ hybridization 

(FISH) and SNP-A to detect specific cytogenetic lesions, namely del(5q), monosomy 

7, del(7q), trisomy 8, and del(20q) (Makishima, Rataul, et al., 2010).  Interestingly 

no single method identified all defects, with a combination of all 3 methods 

detecting the highest rates (5% increase in diagnostic yield).  Disparity was noted 

between samples used for each technique, and it was reiterated that the sensitivity 

of SNP-A remains low.  The authors stated however that this may not be a clinical 

issue, as smaller clones may not be clinically relevant (Makishima, Rataul, et al., 

2010). 

 

A further disadvantage is the need to consider germline abnormalities.  

Mohamedali et al demonstrated a high incidence of constitutional UPD in their 

group of patients (12 out of the 13 patients tested) while most of the copy number 

changes were present at low frequency in the general population (Mohamedali et 

al., 2007).  Most early studies, including this one, failed to perform germline 

confirmation of all their findings.  Heinrichs et al performed germline conformation 

in all samples, and found that only 3/31 copy number changes were true 
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microdeletions, and only 4/110 areas of LOH were true UPD (Heinrichs et al., 2009).  

The absence of matched DNA can therefore lead to a vast overestimation of 

abnormalities, and it is essential to correlate findings with germline databases. 

 

1.6 Flow Cytometry 

MFC is an essential tool in the diagnosis of most haematological malignancies, 

particularly mature lymphoid malignancies and acute leukaemias.  Extensive 

research has been performed to assess its utility in the diagnosis of chronic myeloid 

malignancies, most specifically MDS.  While a number of laboratories currently 

employ this method in the diagnosis of MDS, it is yet to be a core criterion in the 

internationally recognized diagnostic criteria.  This chapter will outline the history 

of this technique in the chronic myeloid malignancies and the evidence to date for 

its use in diagnosis. 

 

1.6.1 What is MFC? 

MFC is the process by which multiple objective measurements of single cells occur 

as they pass through the measuring apparatus in a fluid stream (Shapiro, 1988).  

The origins of this technique date back to the 1930s when primitive versions of a 

flow cytometer were used to count aerosol particles for analysis of mine dust, and 

used for the detection of bacteria and spores during World War II (Shapiro, 1988).   

 

The principle of the technique relies on the measurement of scattered light and 

fluorescence from individual cells in the population (Watson, 1991).  Fluorescently 

labelled antibodies are applied to specific markers on the cell population of 

interest.  The stained cells are then passed, in single file in fluid suspension, through 

a high intensity light source (Watson, 1991).  Light detectors are present in line 

with, and perpendicular to, the light beam allowing detection of both forward and 

side scatter.  These determine both the size and complexity of the cell.  Each 

fluorochrome has a characteristic peak excitation and emission wavelength 

allowing distinction of these labels by fluorescence detectors.  The light flash is 
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converted to an electronic signal which is digitalized by an analogue-to-digital 

converter.  The signal is then stored electronically (Watson, 1991).   

 

1.6.2 Flow cytometry in MDS 

1.6.2.1 EARLY STUDIES IDENTIFY ABERRANT PHENOTYPES IN MDS  

Initial studies demonstrated the increased and reduced expression of antigens 

normally identified on myeloid cells.  This included increased expression of CD34, 

HLA-DR, CD13 and CD33 on myeloid precursors (Baumann et al., 1986; Hokland et 

al., 1986; Kristensen and Hokland, 1990; Mittelman et al., 1993; Fuchigami et al., 

2000; Karmon, Manaster and Chezar, 2002) and reduced CD11b, CD43 and CD10 

expression on neutrophils (Mittelman et al., 1993; Chang and Cleveland, 2000; 

Kyriakou et al., 2001).   The increased CD34 expression was later shown to directly 

correlate with the morphological blast percentage, and the blast phenotype in MDS 

was confirmed to be a committed myeloid precursor in the majority of cases 

(Maynadié et al., 2002; Ogata et al., 2002; Del Cañizo et al., 2003). 

 

Aberrant phenotypes have been widely reported in the literature, including 

asynchronous expression of immature and maturing markers and inappropriate 

expression of lymphoid markers such as CD3, CD7 and CD56 (Schlesinger et al., 

1996; Hansen, Meyer and Hokland, 1998; Ogata et al., 2002; Del Cañizo et al., 

2003).  Certain abnormal phenotypes were also shown to have prognostic 

significance, with high HLA-DR/low CD11b and CD7 expression being associated 

with a poor prognosis (Mittelman et al., 1993; Ogata et al., 2002). 

 

1.6.2.2 MULTIPLE METHODS ARE PROPOSED FOR DIAGNOSING MDS   

In light of the above findings, the use of MFC as a diagnostic tool was considered.  A 

number of different methods have been reported in the literature though are all 

based on the concept of analysing the expression of several antigens 

simultaneously.  These include pattern recognition methods (Stetler-Stevenson et 

al., 2001; Kussick et al., 2005; Stachurski et al., 2008; Truong et al., 2009; Kern et al., 
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2010), flow cytometric scoring systems (Wells et al., 2003; Ogata et al., 2006, 2009; 

Matarraz et al., 2008; Satoh et al., 2008; van de Loosdrecht et al., 2008; Goardon et 

al., 2009; Chu et al., 2011; Cutler et al., 2011) and classification functions (Malcovati 

et al., 2005; Della Porta et al., 2006), all of which show varying degrees of sensitivity 

and specificity for detecting MDS.                               

 

1.6.2.3 STANDARDIZATION AND WORKING GROUP GUIDELINES 

With the expanding evidence of the diagnostic utility of MFC this technology was 

introduced as a co-criterion for the diagnosis of MDS following a working 

conference on MDS in 2006 (Valent et al., 2007).  The 2008 WHO classification of 

MDS also included MFC as an adjunct to diagnosis, with 3 or more aberrant features 

being highly suggestive of MDS (Swerdlow et al., 2008).  The 2017 WHO 

classification makes a similar statement, highlighting that flow cytometry findings 

alone are not sufficient to establish a diagnosis, pointing the reader to the 

consensus guidelines produced by the European LeukaemiaNet (ELN) MDS working 

group (Swerdlow et al., 2017).   

 

In 2008 a European LeukemiaNet workshop was held, with representatives from 18 

European institutes, in an attempt to develop a much needed standardized 

approach (van de Loosdrecht et al., 2009).  Guidance was provided on sample type, 

red cell lysis techniques and antibody staining, and a list of recommended markers 

was provided.  The group also listed those aberrancies regarded as most relevant to 

diagnosis (Table 1.11) (van de Loosdrecht et al., 2009).  This group however failed 

to determine the optimum approach to utilising this technique to diagnose MDS. 

 

Further reports from this working group proposed a minimum consensus panel to 

analyse dysplasia, with the recommended core markers being sufficient to 

categorise cytopenic patients into normal, suggestive, or diagnostic of MDS 

(Westers et al., 2012).  This group went on to propose guidelines for the integration 

of MFC into the WHO classification (Porwit et al., 2014) suggesting a mini-panel 

which can be used for screening purposes based on the ‘Ogata score’.  This had 
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previously been validated in a large multicentre study with moderate sensitivity 

(70%) and high specificity (93%) for diagnosing MDS (Della Porta et al., 2012).  A 

comprehensive panel was then suggested using the markers stated in Table 1.12.   

 

Table 1.11. Relevant aberrancies in the blast, maturing myeloid, monocytic and erythroid 

lineages as recommended by the European LeukaemiaNet working conference (adapted 

from van de Loosdrecht, 2009) 

 

Blasts Maturing Myeloid  Monocytic Erythroid 

Increased 
percentage 

Abnormal SSC Decreased or 
increased 
proportion 

Abnormal 
CD71/CD235a 
pattern 

Abnormal 
granularity 

Increased or 
decreased 
expression of 
CD45, CD13, CD33, 
CD11b, CD16, 
CD64 

Abnormal 
expression of CD13 
and CD33 

 Abnormal intensity 
of CD45, CD34 and 
CD117 

Lack of CD10 Abnormal CD116/ 
HLA-DR pattern 

 

Expression of 
CD11b or CD15 

Expression of CD34 
and CD14 

Abnormal intensity 
of CD14, CD36, 
CD64 

 

Abnormal intensity 
of HLA-DR 

Expression of 
lineage infidelity 
markers 

Overexpression of 
CD56 (>1 log) 

 

Expression of 
lineage infidelity 
markers 

 

Expression of 
lineage infidelity 
markers 

  

 

 

Table 1.12: Recommended panel of markers for the diagnostic work-up in MDS 

 

CD45 CD117 CD34 HLA-DR CD11b CD16 

CD13 CD33 CD14 CD15 CD10 CD19 

CD36 CD5 CD56 CD7 CD71 CD235 
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Aberrant findings in at least 3 tested features comprising at least 2 cell 

compartments was the recommended definition to determine aberrant results 

(Porwit et al., 2014).  This statement has since been adopted in the most recent 

WHO classification, though flow cytometry does not form part of the core criteria 

for diagnosis (Swerdlow et al., 2017). 

   

1.6.3 Flow cytometry in MDS/MPN  

The use of MFC within this group of disorders has been limited to CMML.  

Occasional studies have included MDS/MPN within the MDS subgroup, though 

extrapolation of data specific for subtypes other than CMML is difficult. 

 

1.6.3.1 MFC CAN FACILITATE THE DIAGNOSIS OF CMML  

In the early studies of its use in MDS, CMML was categorized by the FAB 

classification as a myelodysplastic disorder and encompassed within this group.  

More recently, a small number of groups have identified aberrant phenotypes 

within the monocyte component which can aid in the distinction between reactive 

monocytosis, CMML, and acute monocytic leukaemia. 

 

Studies have identified recurrent aberrancies in the monocytic component of 

CMML, including partial loss of CD13, CD14, CD15, HLA-DR and CD36 along with 

variable expression of CD56 and dim expression of CD2 (Dunphy, Orton and 

Mantell, 2004; Xu et al., 2005; Lacronique-Gazaille et al., 2007; Subirá et al., 2008).  

 

Comparison with reactive monocytosis and normal bone marrows showed that the 

combination of CD56 expression and reduced expression of myeloid antigens was 

specific for CMML, however it only had a sensitivity of 40%.  Sensitivity was 

improved by including the presence of 20% or more immature monocytes, which in 

the presence of 2 additional aberrancies had 100% specificity and 67% sensitivity 

for CMML (Xu et al., 2005).  The use of CD56 alone has been suggested as a simple 
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method to detect CMML, though overexpression of this marker in reactive 

conditions limits this method (Lacronique-Gazaille et al., 2007). 

 

Most recently screening of peripheral blood monocyte subsets has been proposed 

as a screening tool to distinguish CMML from reactive monocytosis (Selimoglu-Buet 

et al., 2015).  By analyzing peripheral blood on patients with CMML, reactive 

monocytosis, other haematological malignancies and healthy donors it was 

confirmed that CMML patients have a characteristic increase in classical monocytes 

(CD14+/CD16-) with a cut-off value of 94%.  This was both highly sensitive and 

specific (90.6% and 95.1%) for CMML (Selimoglu-Buet et al., 2015)   Subsequent 

studies have validated this method, and also confirmed the ability to distinguish 

CMML from MDS, as well as MPN presenting with a peripheral blood monocytosis 

(Patnaik et al., 2017; Talati et al., 2017).   

 

Traditionally, it has also been difficult to distinguish CMML from acute 

myelomonocytic leukaemia due to the challenging morphology in these cases 

(Goasguen et al., 2009). The use of 2 different anti-CD14 antibodies, which 

recognize the epitopes MO2 and MY4, has been reported to distinguish 

monoblasts, promonocytes and mature monocytes by their expression at different 

stages of maturation, providing a possible adjunct to the morphological assessment 

of this lineage (Yang et al., 2005).  A study from a German group compared 27 cases 

of acute monocytic/monoblastic leukaemia with 138 cases of CMML (Kern et al., 

2011).  They identified CD56 aberrant expression in both diseases, however 

additional aberrancies were noted in CMML patients including CD2 co-expression 

and lack of both CD13 and HLA-DR.  There was also a significantly greater 

percentage of granulocytic cells in the CMML cohort (Kern et al., 2011).  

 

The addition of MFC to the diagnostic armoury for CMML has great potential, 

particularly in a disease which is notoriously difficult to diagnose morphologically.  

In addition, if this method can be confidently applied to peripheral blood samples 

the impact would be favourable.  Large prospective studies are required with 

clinical follow-up to fully assess this method. 
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1.7 Summary 

The diagnosis of chronic myeloid malignancies remains centred on morphological 

assessment which is limited by subjectivity and poor interobserver concordance.  

There is, therefore, a real need for objective techniques in the diagnostic work-up 

of patients with suspected disease and the techniques described in this chapter 

offer great potential.   

 

By using high throughput sequencing, somatic mutations can be identified in a 

significant majority of patients with both MDS and MDS/MPN meaning this 

technique could provide a potential objective marker of disease.  This would 

improve the diagnostic capabilities dramatically for these diseases.  Furthermore, 

targeted sequencing panels can provide a high-throughput and cost-effective 

option for analyzing multiple genes in parallel in the routine clinical setting.      

 

The use of SNP-A also has the potential to dramatically improve the resolution of 

current cytogenetic techniques, allowing the identification of clonal abnormalities 

in a greater number of patients.  It is possible that this approach could replace the 

current cytogenetic method, though the inability to detect balanced translocations 

and inversions raises concerns regarding its utility.  Hence, combination would be 

required with other techniques that could perform this task.   

 

MFC also has a place in the diagnosis of chronic myeloid malignancies though this 

remains difficult to implement in large busy laboratories, particularly in the setting 

of comprehensive panels for MDS.  Concern also remains regarding the subjectivity 

of this method, particularly when an objective approach is required.  A screening 

panel on peripheral blood samples, as described in CMML, is particularly appealing 

and has the potential to identify patients who require additional investigations.   

 

Ultimately, further studies incorporating these techniques are required to refine 

the diagnostic process and identify the method of choice.  This PhD aimed to 
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investigate the use of these technologies in the diagnosis of chronic myeloid 

malignancies, assessing whether they can refine current diagnostic criteria. 
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CHAPTER 2: METHODS 

 

2.1 Haematological Malignancy Diagnostic Service 

The research was undertaken within the HMDS (www.hmds.info), a large integrated 

diagnostic laboratory within the north of England.  The laboratory is the sole 

provider of haematopathology for a population of ~6 million and utilizes 

morphology, flow cytometry, histology, and molecular techniques to analyse all 

peripheral blood, bone marrow and tissue biopsies from patients with a suspected 

haematological malignancy.  The laboratory houses relevant expertise in all aspects 

of haematopathology including 7 principal and consultant grade clinical scientists 

across the laboratory sections and 6 consultant haematopathologists, of which I am 

one.  The sample tracking, testing and reporting are all managed through the HMDS 

Integrated Laboratory Information System (HILIS).  This system underpins all the 

laboratory processes, providing a searchable database of samples and test results.   

The laboratory also provides the diagnostic information for patients included in the 

Haematological Malignancy Research Network (HMRN)(Smith et al., 2018).  HMRN 

is a population-based patient cohort encompassing just over half of the patient 

population served by the laboratory.  HMRN collects detailed clinical data on 

patients diagnosed with a haematological malignancy including treatments, 

responses and outcomes.   

 

2.1.2 Patient Samples 

The samples included in the study comprised surplus material from patient samples 

referred to HMDS for investigation of a suspected myeloid malignancy.  Ethical 

approval for use of surplus material in research and development of new 

techniques has been in place in the department since 2004.  This ethical approval 

was however restricted to samples originating in the HMRN study location and so a 

further ethical application was completed and submitted by myself to expand the 

cohort to include samples referred from outside the Yorkshire and Humber 

network.  This ethics application was granted in 2016 and further information, 

including the approval letter is available in Appendix 8.1.    
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2.2 Patient cohorts 

To investigate the potential of new technologies in the diagnosis of myeloid 

malignancies, 3 patient cohorts (Figure 2.1) were investigated as described below.    

Cohort 1 was used as a proof of principle, to determine the frequency of clonal 

abnormalities in those cytopenic patients with the most clinically significant disease 

who failed to reach current minimum diagnostic criteria.  These patients were 

identified by capturing all patients with a diagnosis of AML or MDS who had a 

previous non-diagnostic bone marrow over an 8-year period.  For this cohort, both 

high throughput sequencing and SNP arrays were performed on matched pre-

diagnostic and diagnostic samples.  The 2 subsequent cohorts comprised all 

unselected patient samples sent for investigation of cytopenia or monocytosis over 

a 2-year period; these were used to determine the frequency of abnormalities and 

their clinical significance.  For these cohorts, high throughput sequencing was 

utilized for both while flow cytometry was applied in patients with a monocytosis.  

Full details of criteria for sample selection can be found in each results chapter, and 

a general overview of this process is detailed below. 

 

 

Figure 2.1. Summary of patient cohorts investigated as part of this research 
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2.2.1 Cohort 1 

Samples were identified by performing an SQL search on HILIS.  Searches were 

constructed to identify all patients with a confirmed diagnosis of MDS or AML 

during the time period (2004-2012) who had undergone a previous bone marrow 

biopsy without a confirmed diagnosis.  These samples were then manually curated 

by me to ensure the study criteria were met.  

  

2.2.2 Cohorts 2 and 3 

Samples were identified in real time to apply additional novel tests to run in parallel 

with traditional testing.  Samples were identified by the screening term given on 

receipt of the sample in the lab.  ‘Screening’ is performed by a Consultant Clinical 

Scientist following review of the clinical details and morphology.  The screening 

category is selected on HILIS and several linked investigations are triggered as a 

result.  A weekly search was set-up through HILIS using the criteria below which I 

reviewed for the purposes of sample selection.  

The selection criteria for these cohorts were –  

 

Inclusion Criteria 

 Age ≥18yrs 

 Referred with a suspected chronic myeloid malignancy and screened 

within the following categories 

o ‘Cytopenia’, ‘Suspected MDS’, ‘Suspected CMML’ 

 

Exclusion Criteria 

 Prior diagnosis of a myeloid malignancy 

 Sample of insufficient quality for molecular analysis. 

 

 

2.3 Peripheral Blood Counts 

Blood count parameters were obtained on all peripheral blood samples received as 

per routine laboratory protocol.  This analysis was performed on a Sysmex K-1000 
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haematology analyser which produced a haemoglobin, white cell count (with 3-part 

differential) and platelet count. 

 

2.4 Morphological Assessment 

2.4.1 Staining 

All peripheral bloods and bone marrow samples were prepared for morphological 

assessment by light microscopy.  This was performed as part of the routine 

diagnostic work-up.  Air dried slides of peripheral blood or bone marrow aspirate 

were stained using the May-Grunwald-Giemsa stain on the MIRA II staining 

machine.  This involves fixing the sample using absolute methanol and then staining 

with the May-Grunwald’s stain followed by the Giemsa stain.  The slide is then 

rinsed in buffered water and dried.  Buffered water is made by adding 3.955g 

Na2HPO4 and 3.79g KH2PO4 to 5L distilled water, ensuring the resultant pH is 6.8. 

 

Trephine samples were fixed in formalin and embedded in resin.  Samples were 

stained with both Haemotoxylin & Eosin and Giemsa.  Immunohistochemistry 

analysis was performed at the discretion of the reporting haematopathologist. 

  

2.4.2 Morphological Review 

All samples were independently reviewed by 2 experienced haematopathologists as 

per laboratory protocol and the cases were reported as part of the routine case 

load in real time.  As a consultant haematopathologist within HMDS, I was part of 

this reporting team.  Each case was reported and then authorized only if there was 

agreement between haematopathologists.  For cases in which there was 

disagreement, a 3rd haematopathologist was consulted for the casting vote.   

 

2.5 Flow Cytometry 

Flow cytometry allows for the assessment of single cells using fluorescently labelled 

antibodies to target specific antigens on the cell surface.  This technique was 

specifically utilized in this research for the assessment of patients referred with a 

monocytosis, more detailed methodology is provided in Chapter 5.   
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In brief, all samples for immunophenotypic analysis were processed within 24 hours 

of receipt in the laboratory. Numerical studies and basic assessment of aberrant 

antigen expression were performed on BM or PB samples following a stain-lyse-

wash procedure.  This lysis technique retains nucleated red cells therefore 

providing a more accurate total cell percentage.   

In addition, more extensive immunophenotyping was performed on PB samples 

following NH4Cl lysis of erythrocytes using a lyse-stain-wash procedure. A minimum 

of 105 leucocytes were acquired on a single cytometer for all cases. 

 

2.6 High throughput Sequencing 

2.6.1 DNA extraction 

DNA was extracted from fresh peripheral blood and bone marrow samples on 

receipt at the laboratory.  This was performed on all cases screened with the above 

screening terms as part of routine laboratory processes.  The samples were firstly 

treated with a lysis solution (12mls 0.86% ammonium chloride), to lyse the red 

blood cells.  Following 2 washes in phosphate buffered saline (PBS, Gibco, product 

no. 70011-051)) the remaining white cell pellet was incubated with 200µl buffer AL 

(lysis buffer Qiagen, product no. 51306) and 20µl proteinase K (along with 200µl of 

PBS) and incubated in a waterbath at 37°C. 

 

For cohort 1, a proportion of samples did not have DNA extracted from fresh liquid 

samples and so DNA was extracted from air dried bed side smears.  For these 

samples, cells were scraped from the slide into a micro tube and incubated at 37˚C 

with 200µl buffer AL and 20µl proteinase K.   

 

DNA extraction was then performed using the Qiagen QIAamp DNA mini kit on the 

automated QIAcube platform as per manufacturer’s instructions. 

 

2.6.2 DNA quantification 

It is essential that DNA concentrations are normalized before proceeding to library 

preparation and all DNA samples were therefore quantified using the GloMax 
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Detection System, which is a fluorescence-based method for determining DNA 

concentration.  To quantify the sample, 1µl of each DNA sample was diluted in 99µl 

of 1xTE (Tris EDTA) buffer (Promega, product no. 2021-03-20).  To this 100µl of 

QuantiFluor dsDNA dye was added and mixed thoroughly.  DNA was quantified on 

Glomax system after being standardized using a negative control and a control 

sample prepared to a known DNA concentration (50ng/ml).   

 

Samples were then normalized to an ideal concentration of 50ng/µl.  For those with 

a higher concentration, samples were diluted with an appropriate amount of 

laboratory grade water.  For those with a concentration below 50ng/µl, samples 

were added neat.  Those with a concentration below 5ng/µl were excluded from 

further analysis. 

 

2.6.3 Preparation of Sample Plate 

In a 96-well plate, 30µl of 48 individual patient DNA samples were pipetted into 

columns 1-6, rows A-H with a concentration normalized to 50ng/µl as described 

above.  Position and specific dilution of each sample was documented on a DNA 

quantity worksheet, an excel spreadsheet summarizing individual sample 

information, and the plate was prepared and checked by 2 individuals (Table 2.1). 

 

Table 2.1. Example of DNA Quantity Worksheet 

Sample 
Last 

name 
ng/ul dilution 

ul of 
sample 

ul 
water 

Screening 
sample 

well 

XXXX Jones 42.15 0.843 29.7 -4.7 Suspected CMML F5 
XXXX Jones 60.44 1.2087 20.7 4.3 Cytopenia G5 
XXXX Jones 137.71 2.7543 9.1 15.9 Cytopenia H5 

 

2.6.4 Fluidigm library preparation 

Library preparation was performed using the Fluidigm access array, an amplicon-

based system for target enrichment.  The amplicon tagging strategy combines 

tagged target specific (TS) primer pairs with sample-specific barcodes and the 

adapter sequences used by the specified high throughput sequencer (Fig. 1.2; using 
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Illumina adapters as an example).  This is all combined using integrated fluidics 

circuits (IFC) on the Fluidigm 48.48 Access Array. 

The primer pairs incorporate universal forward (common sequence 1 (CS1)) and 

reverse (common sequence 2 (CS2)) tags which act as the sequencing primer 

binding sites.  The adapter sequences that are also incorporated allow library 

fragments to attach to the flow cell.  

              

Figure 2.2. Fluidigm Amplicon Structure.  

 

Targeted sequencing primers were designed for both the Roche 454 and Illumina 

MiSeq using the Fluidigm D3 design system; panel development and validation is 

discussed in Chapter 3.   
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The process for library preparation for both the Roche 454 (using 48 individual 

primer pairs) and the Illumina MiSeq (Multiplexed primer pairs) was performed 

according to manufacturer’s instructions and is described in Appendix 8.2.  This 

document also describes the process for sequencing on the Illumina MiSeq and 

together these form the basis of the HMDS standard operating procedure (SOP) for 

both techniques.   

In brief, Fluidigm library preparation is a 2-step approach.  In the first step, target 

regions are amplified with target specific primer pairs which have been tagged with 

common sequence tags.  The amplification is carried out on the FC1 cycler.  After 

harvesting the products from the 48.48 Access Array IFC, the second step is 

performed on a 96-well plate.  During this PCR step a sample specific barcode and 

sequencer specific adapter are introduced.    

 

Once the libraries were prepared, these were sequenced using either the Roche GS 

Junior or Illumina MiSeq.  Both techniques are described below. 

 

2.6.5 Sequencing on the Roche 454 

The Roche GS Junior system uses an emulsion PCR based approach for target 

amplification followed by a pyrosequencing reaction.  DNA fragments are annealed 

to DNA capture beads and then emulsified within a water-in-oil mixture.  Each bead 

is captured within its own water droplet and amplification occurs within this 

microreactor.  Following amplification, the beads are loaded onto a PicoTitrePlate 

along with sequencing enzymes.  Sequencing is performed by a sequencing-by-

synthesis method during which individual nucleotides flow across the PicoTitrePlate 

in a fixed order.  If the nucleotide is complementary to the template DNA the 

polymerase extends the DNA by 1 or more nucleotides.  This results in a reaction 

that generates a chemiluminescent signal which is recorded by the camera.  

 

This process was performed according to manufacturer’s instructions and these are 

included in Appendix 8.3.   
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2.6.5.1 SEQUENCING ANALYSIS ON THE GS JUNIOR 

Analysis was performed using the GS Amplicon Variant Analyzer with paired end 

reads aligned to the reference amplicon sequence.  Variants identified by this 

analysis software were then analysed using the Ensembl Variant Effect Predictor 

(VEP) software (McLaren et al., 2010).  Variant annotation was performed by 

myself.  All synonymous, non-coding variants and germline polymorphisms were 

excluded.  The latter polymorphisms were retained if previously confirmed somatic 

and recurrently reported in COSMIC database (Forbes et al., 2011).   

 

2.6.6 Sequencing on the Illumina MiSeq 

The Illumina MiSeq using Illumina’s sequencing by synthesis (SBS) technology.  The 

prepared library is loaded onto a flow cell which contains a lawn of surface bound 

oligonucleotides which are complementary to the library adapters.  The captured 

fragments then undergo bridge amplification to generate clonal clusters large 

enough to be visualized during sequencing.  During sequencing all 4 reversible 

terminator bound dNTPs flow over the clusters and complementary bases are 

incorporated.  This is followed by an imaging step before the cycle is repeated. 

  

In preparation for sequencing on the MiSeq the harvested products, from library 

preparation, are pooled, purified, using Ampure beads, and then quantified using 

the QuantiFluor Fluorometer as described in section 2.6.2.  Once the concentration 

is known, the library is diluted with hybridization buffer (Illumina, product no. 

20015892) to a concentration of 7pM and added to the MiSeq reagent cartridge to 

be loaded onto the sequencer. 

This process is performed according to manufacturer’s instructions which is 

outlined in Appendix 8.2. 

 

2.6.6.5 SEQUENCING ANALYSIS FOR THE ILLUMINA MISEQ 

Initially sequencing analysis was performed using Illumina commercial software 

(MiSeq reporter).  The VCF (variant call file) was then annotated using same process 

as the output from the GS Amplicon Variant Analyzer as described in section 
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2.6.5.1. More recently this was performed using a bespoke analysis pipeline which 

was developed in-house for the targeted panel on the Illumina MiSeq.  This pipeline 

runs automatically at the end of the sequencing run, producing VCF files for further 

variant annotation and interpretation.  The pipeline is discussed further in Chapter 

3. 

  

2.6.7 Variant selection 

Due to the nature of this study, matched germline samples were not received for 

analysis.  It was therefore essential that extensive filtering was performed to 

exclude artefacts and previously documented single nucleotide polymorphisms 

(SNPs).  All variant annotation was performed by myself using the following 

resources and criteria. 

 

The following resources were used for variant filtering and annotation to identify 

drivers and exclude technical artefacts. 

 Alamut 

o Data sources include – 

o COSMIC, Clinvar, DbSNP, gNomad, 1000 genomes, CentoMD, HGMD, 

DMuDB, SwissVar 

 Correlation with an in-house database of >3000 myeloid malignancy 

samples referred to HMDS 

 Online search tools – PubMed, Google 

 

 

The following criteria were applied to ensure only high confidence variants were 

included- 

 

Inclusion Criteria 

 Variants previously reported in the literature, confirmed in haematopoietic 

tissue (as reported in COSMIC) 
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o Well documented hotspot variants were retained irrespective of 

coverage however in those with low coverage these were only 

included in the analysis if reproducible across 2 separate runs.  

 Truncating variants (nonsense, frameshift indels and essential splice site 

variants) in genes implicated in myeloid pathogenesis by loss-of-function – 

ASXL1, BCOR, DNMT3A, EZH2, RUNX1, STAG2, TET2, TP53, WT1. 

 Previously unreported variants that cluster (±3aa) with a hotspot variant or 

at a recurrently mutated amino acid position, providing the variant is not 

reported in population databases. 

 

Exclusion Criteria 

 All non-coding variants 

 All synonymous variants  

 All known polymorphisms, as reported on germline databases 

o These were retained if previously confirmed somatic and recurrently 

reported in COSMIC and reported in population databases at 

<0.0014. 

 Highly recurrent variants consistent with artefact 

o A database of recurrent PCR/sequencing artefacts was developed 

following analysis of multiple sequencing runs.   

o Each individual run was also analysed for run specific, highly 

recurrent variants likely to be artefact.  These were also excluded.   

 

2.6.8 Validation of detected variants 

2.6.8.1 SANGER SEQUENCING 

To ensure the variants detected were genuine, particularly on the initial sequencing 

runs, extensive validation was performed by Sanger sequencing.  This technique is 

still considered the gold standard for detecting sequence changes, though it is 

limited by sensitivity when looking for variants present at low allele fraction.  The 

same CS tagged Fluidigm primers that are used in high throughput sequencing were 

also used to Sanger sequence the PCR products. 
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Initially PCR of the region of interest was performed using CS1 and CS2 tagged 

primers, Amplitaq Gold in standard 20µl PCR mix and Biomed2 PCR program.  This 

produces a CS1/2 tagged fragment of interest which is then cleaned up with 

Ampure beads allowing removal of excess primers and dNTPs.  The DNA is eluted in 

26µL of H2O and 5.7µL of this is added to 4.3µL of BIG DYE reaction mix containing 

CS1 or CS2 primers.  This then undergoes PCR using the BIG-DYE sequencing 

program.  This produces labelled fragments of interest which can be analysed.  The 

product is cleaned up using Agencourt clean-seq beads and eluted in 20µL of water.  

For sequencing 10µL of each eluted DNA is resuspended in 20µL of HiDi Formamide 

reaction mix and loaded onto the ABI 3500 Genetic Analyser.  

Electropherograms were reviewed manually on proprietary software and new or 

previously identified variants were confirmed.      

 

2.6.8.2 FRAGMENT ANALYSIS FOR DETECTION OF FLT3-ITDS AND VALIDATION OF LOW 

LEVEL JAK2 V617F MUTATIONS 

Following extensive assessment of the sequencing panel (see Chapter 3 – Panel 

Development), it was clear that FLT3-ITDs were not detectable using this technique.  

These abnormalities were therefore detected using current laboratory procedures.  

Internal Tandem Duplications of the FLT3 receptor gene can be detected in ~30% of 

AML cases and typically involve exon 11 and sometimes adjacent intron sequences 

(Kottaridis et al., 2001).  The duplicated DNA length varies between samples though 

is always in-frame and occurs in the juxtamembrane region.  The current technique 

in HMDS detects both FLT3-ITDs and NPM1 mutations, which are to date the most 

clinically relevant mutations detected in AML (Noguera et al., 2005).  The technique 

uses fragment analysis i.e. analyzing the length of an amplified targeted region of 

DNA.  For FLT3, amplification is carried out across the boundary of exons 11 and 12 

on genomic DNA.  The reverse primer is labelled with FAM (6-carboxyfluorescein), a 

fluorescent dye, and combined with HiDi formamide and ROX500 size standard 

prior to electrophoresis on the Life Technologies 3130 platform.  Amplification 

results in a wildtype peak of 329bp while a FLT3-ITD peak is larger, usually between 
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332-437bp in length.  For NPM1, amplification occurs across the last exon of NPM1, 

with the reverse primer labelled with an alternative fluorescent dye, HEX.  The 

NPM1 wildtype product is 195bp while the mutant fragment is 199bp in length.  

Both these methods have a limit of detection of 5%. 

A fragment analysis approach is also applied for the detection of the common JAK2 

variant V617F which is frequently detected in cases of MPN.  This technique will 

detect variants down to 1% clone size and was therefore used to validate low level 

JAK2 mutations detected in the study cohort.  The technique has been developed to 

detect both JAK2 V617F and CALR frameshift mutations.  For JAK2, primers 

targeting exon 14 of JAK2 are used to amplify this region in genomic DNA.  A 

fluorescent reverse primer (labelled with FAM) is used in combination with an 

unlabelled mutant specific ASO (allele specific oligonucleotide) and a consensus 

JAK2 normal forward primer.  Amplification of the JAK2 wildtype produces a 

product of 362bp, while JAK2 V617F produces a band of 202bp.  For CALR, 

amplification of exon 9 is performed using a fluorescently labelled (HEX fluorescent 

dye) forward primer and unlabelled reverse primer.  The wildtype fragment 

measures 292bp while insertion/deletion mutations produce a variety of fragment 

sizes. 

 

2.7. SNP-array analysis 

Array based whole genome scanning was performed using the Illumina Infinium HD 

Assay Ultra technique and hybridized to the CytoSNP12 beadarray.  This assay 

genotypes a locus using 2 colour read outs – one for each allele.  This beadchip is 

coded with multiple copies of oligonucleotide probes with target specific loci across 

the genome.  As DNA fragments pass over the BeadChip, each probe binds to its 

complementary sequence in the sample DNA.  Single base extension then occurs 

which extends the probe using the sample DNA as a template and incorporates 

detectable labels.  The BeadChip is then scanned using the Illumina BeadArray 

reader which uses a laser to excite the fluorophore of the nucleotide label causing it 

to emit a signal.  The intensity values for each colour convey information about the 

alleleic ratio.  This process was performed according to manufacturer’s instructions 
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(http://emea.support.illumina.com/downloads/infinium_hd_ultra_assay_manual_e

uc_(11328095_b).html) and an outline of the protocol is included in the appendix 

(see Appendix 8.4). 

 

2.7.1 Analysis of SNP array data 

BeadChips were scanned using the BeadArray™ Reader.  Data was visualised using 

Karyostudio™ software which applies the CNV Partition 2.4 algorithm to identify 

abnormalities.  The LogR ratio and B-allele frequency plots were further scrutinised 

‘by eye’, due to the mis-calling of some mosaic CNVs/CN-LOH.     

  

Only regions of CN-LOH>10Mb were included in the analysis as per reported 

guidelines unless these regions included a gene sequenced on the targeted panel 

(Simons et al., 2012).   All copy number variants were compared with online 

databases of constitutional variants - Database Genomic Variants 

(http://dgv.tcag.ca/dgv/app/home) and db-Var 

(http://www.ncbi.nlm.nih.gov/dbvar/) with reported variants excluded from further 

analysis.   
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Figure 2.3. Overview of Illumina SNP array methodology (courtesy of Illumina, Inc) 
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2.8 Statistical Analysis 

All statistical analyses were performed using standard tests and R (R Core Team, 

2019); the specific methods are provided in each chapter of this thesis. 

 

In general, comparison of features between groups was performed using parallel χ2, 

univariate logistic regression or Mann-Whitney U tests.  Sensitivity, specificity, 

positive and negative predictive values (PPV and NPV) were calculated using 2x2 

contingency tables.  Any pairwise associations were tested with the Fisher exact 

test corrected for multiple testing using the Benjamini–Hochberg procedure. 

The impact of abnormalities on overall survival and risk of progression were 

estimated using Cox regression.  Simple differences in survival were assessed using 

the log rank test.   
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CHAPTER 3: TARGETED MYELOID SEQUENCING PANEL 

DEVELOPMENT 

 

3.1  Introduction 

With the advent of high throughput sequencing, it became increasingly feasible to 

perform whole genome and targeted sequencing for gene discovery across all 

malignancies.  Due to the relative ease of access to fresh DNA in haematological 

malignancies, in particular myeloid malignancies, these diseases have led the way in 

research in this area, and a number of novel genes have been implicated across the 

disease spectrum.  Initial use of this technology focused on basic laboratory 

research, however the development of benchtop sequencers meant that it could be 

incorporated into routine clinical laboratories for translational research and 

ultimately for implementation into routine clinical practice.  This technology has 

both diagnostic and prognostic potential, and could be cost effective due to the 

ability to sequence multiple genes across multiple samples in one sequencing run.  

  

HMDS is well positioned to fully investigate the potential of new technologies in 

routine diagnostics.  The laboratory is a fully integrated service, providing the 

benchmark for haematopathology in the UK.  It provides diagnostic services for a 

well-defined geographical area with a population of ~6 million.  All diagnostic and 

follow-up samples for patients within this region are referred to HMDS.  The 

laboratory also has strong clinical links through both working relationships with 

clinical colleagues across the region as well as a collaborative relationship with 

HMRN.  This provides the necessary framework to definitively assess the diagnostic 

potential of new technologies in the ‘real-world’ setting.    

 

A benchtop sequencer (Roche GS Junior) was acquired by HMDS in 2010; this 

technology provided the basis for this research and high throughput sequencing 

was used across all 3 cohorts.  This chapter outlines the development and validation 

of the myeloid panel within HMDS.   
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3.2  Rationale for the development of a myeloid gene panel  

3.2.1 High throughput sequencing can identify multiple mutations in parallel 

As discussed in the introductory chapter, high throughput sequencing has provided 

a platform to investigate the genes and functional pathways implicated in myeloid 

disease pathogenesis and these are now well established.   Subsequent research 

has tended to focus on identifying mutations in parallel, not only looking at 

relationships between mutations but also assessing the prognostic relevance using 

a multivariate analysis.   

 

3.2.1.1 MDS PATIENTS 

An initial study by Bejar et al, investigated 111 cancer associated genes by mass 

spectrometry as well as high throughput sequencing, and demonstrated mutations 

across 18 genes (Bejar et al., 2011).  Mutations were detected in a total of 51% of 

patients.  Of these 18, mutations in 5 genes were associated with a poor prognosis 

including TP53, EZH2, ASXL1, RUNX1 and ETV6 by multivariate analysis (Bejar et al., 

2011) though importantly key genes such as the spliceosome genes were not 

targeted in this analysis.  The same group analysed 22 genes in patients with low 

risk MDS to both validate the MD Anderson Lower risk Prognostic Scoring system 

(LRPSS) and to determine if any genes added additional prognostic information 

(Bejar et al., 2012).  Interestingly TP53, RUNX1, EZH2 and ASXL1 were all associated 

with shorter overall survival but only EZH2 retained significance when the LRPSS 

was incorporated (Bejar et al., 2012). 

 

The following year, 2 seminal papers from England and Germany used more 

relevant panels to determine the genetic landscape in larger MDS cohorts 

(Haferlach et al., 2013; Papaemmanuil et al., 2013).  By performing targeted 

sequencing of over 100 genes both groups reported a high frequency of driver 

mutations (up to 90% of cases), however only 4-6 genes were found in >10% of 

patients, with a long tail of low frequency mutations.  Importantly however the 16 

most frequently mutated genes were identical across both studies, albeit found in a 
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slightly different order (Fig. 3.1)   Not only did these studies confirm the high 

frequency of mutations, but  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Genes most frequently mutated in MDS.  Adapted from Papaemmanuil et al, 

2013 and Haferlach et al, 2013. 

 

also demonstrated important relationships between the mutation profile and 

disease phenotype, as well as identifying genes commonly co-mutated and those 

which are mutually exclusive (Papaemmanuil et al., 2013). 

  

With regards to prognosis, Haferlach et al proposed a prognostic model integrating 

both clinical and genetic information.  This model incorporated 14 genes, as well as 

age, gender, IPSS-R, blood count parameters, bone marrow blasts and cytogenetics 

which could classify patients into 4 distinct groups which had significantly different 

(p<0.001) 3-year survivals of 95.2 vs 69.3 vs 32.8 vs 5.3% (Haferlach et al., 2013).  

Importantly the 5 genes reported by Bejar et al were all included in this prognostic 

model, as well as other commonly mutated genes including STAG2, NRAS, KRAS and 

CBL (Haferlach et al., 2013).  This prognostic model has yet to be validated. 

 

Interestingly in the other sequencing study published at this time, the addition of 

point mutation data to the IPSS and standard clinical variables had only a marginal 

non-significant increase in prognostic potential (Papaemmanuil et al., 2013).  
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Mutations were however able to predict prognostically significant variables 

including haemoglobin, ring sideroblasts and bone marrow blast percentage, as well 

as confirming the strong association between number of driver mutations and 

outcome; the median leukaemia free survival being 49 months for patients with 1 

mutation, dropping to only 4 months in those with ≥6 mutations (Papaemmanuil et 

al., 2013). 

 

A large international collaborative study by the IWG-PM (International Working 

Group for Prognosis in MDS) is currently underway to develop an ‘IPSS-molecular’ 

which will incorporate clinical, haematological and molecular parameters (Cazzola, 

Della Porta and Malcovati, 2013).  This study will combine data from the largest 

MDS cohort to date and should provide a definitive prognostic model using this 

novel information.    

 

3.2.1.2 CMML PATIENTS 

The majority of early studies using HTS to analyse MDS mutations in parallel, have 

been performed in the CMML subtype. 

 

An initial study using the Roche 454 sequenced 7 candidate genes (CBL, JAK2, MPL, 

NRAS, KRAS, RUNX1 and TET2) in 81 CMML patients (Kohlmann et al., 2010).  

Mutations were found in a surprisingly high number of samples despite the small 

panel, with 59 out of 81 patients (72.8%) habouring at least 1 mutation. The mean 

number of mutations was 1.6 (range 1-6) and TET2 was the most frequently 

mutated gene (Fig. 9) (Kohlmann et al., 2010).  Interestingly, a TET2 mutation was 

shown to have an impact on survival, with a better outcome in those with a 

mutation (median OS 130.4 vs. 53.6 months P=0.013) (Kohlmann et al., 2010).   

 

This same group extended their findings by studying an additional 5 genes – IDH1, 

IDH2, NPM1, ASXL1 and EZH2 (V Grossmann, Kohlmann, Eder, Haferlach, Kern, N. 

Cross, et al., 2011).  When combined with the previous study this brought the 

number of patients with at least one mutation to 81.5%.  No specific pattern was 
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noted between these mutations, however a poor outcome was noted in patients 

that harboured an EZH2 mutation compared to EZH2 wildtype (3-year survival 33.3 

vs 69.9%, P=0.001) (V Grossmann, Kohlmann, Eder, Haferlach, Kern, N. Cross, et al., 

2011). 

 

A further study of both CMML and CMML-derived AML, while using the less 

sensitive method of Sanger sequencing, identified at least one mutation in 86% of 

patients in their cohort by analysing a range of mutations including CBL, KRAS, 

NRAS, IDH1, IDH2, DNMT3A, TET2, EZH2 and a previously unrecognized gene UTX 

(Jankowska et al., 2011).  UTX encodes for a demethylase specific for H3K27, a 

histone mark thought to contribute to the pathogenesis of malignant evolution, and 

this study was the first report of mutations in CMML patients (4/52) and secondary 

AML (2/20).    EZH2 was mutated in 5.5% of patients while DNMT3A mutations were 

noted in 10%.  While there was little impact on patient outcome, the findings 

highlight the molecular heterogeneity of this disease and the importance of 

molecular analysis (Jankowska et al., 2011). 

 

More recently a number of studies have utilized larger targeted panels to 

investigate CMML and fully elucidate the prognostic significance of somatic 

mutations.  Mutations are now consistently identified in >90% of CMML patients 

(Itzykson et al., 2013; Elena et al., 2016; Mason et al., 2016; Palomo, Garcia, et al., 

2016).  While the genes mutated occur across the spectrum of haematological 

malignancies, SRSF2, TET2 and ASXL1 are by far the most commonly mutated, and 

the combination of TET2 with either SRSF2 or ZRSR2 has been shown to be highly 

specific for a myelomonocytic phenotype (Malcovati et al., 2014).   

 

A prognostic score was proposed following a study of 312 CMML patients in whom 

ASXL1 was sequenced and up to 18 other genes (Itzykson et al., 2013).  Of the 173 

in whom all genes were sequenced ≥1 mutation was detected in 95%.  ASXL1 

mutations were confirmed to be a poor prognostic feature, which retained 

significance on multivariate analysis, and this was subsequently incorporated into a 

prognostic score along with age and blood count parameters (Itzykson et al., 2013).   
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An alternative scoring system was subsequently proposed which was based on the 

established CMML prognostic scoring system (CPSS) developed in 2013 (Such et al., 

2013).  Out of the 214 patients included in this study 93% harboured ≥1 mutation.  

The updated scoring system again incorporated ASXL1 but also RUNX1, NRAS and 

SETBP1, which were all shown to be independently associated with a worse overall 

survival (Elena et al., 2016).  The scoring system combined these genetic factors 

with red cell transfusion dependency, white cell count and bone marrow blasts 

producing a CPSS-Molecular model which significantly improved risk stratification 

(Elena et al., 2016).    Mutations were also shown to be significant in patients with 

low risk or uninformative cytogenetics with ASXL1, NRAS, EZH2 and SRSF2 

mutations being identified as adverse risk on multivariate analysis along with the 

CPSS score (Palomo, Garcia, et al., 2016).   

 

From the literature it is therefore clear that high throughput sequencing can 

facilitate the sequencing of large numbers of genes in parallel on multiple patients.  

This could not only provide important prognostic information but due to the high 

frequency of mutations had the potential to become a diagnostic tool particularly in 

difficult cases of suspected MDS and CMML.  Hence, the design and 

implementation of a myeloid panel is a central feature of this PhD research, 

allowing for the investigation of its diagnostic potential. 

  

3.2.2 Rationale for gene selection 

At the outset, it was apparent that there is significant overlap clinically and 

morphologically between the different sub-classes of myeloid malignancy, and this 

is also apparent at the genomic level with certain genes mutated across multiple 

disease groups.  A myeloid panel was designed with the ultimate goal of 

implementing this test into routine clinical practice.  It was therefore essential that 

this panel was clinically relevant, evidence based, and applicable to a large number 

of patients to ensure cost effectiveness.  A targeted sequencing panel was 

therefore designed to include the most commonly mutated genes across all 

myeloid malignancies.   
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This would – 

 Allow patients across the spectrum of myeloid malignancies to be 

sequenced together 

 Provide an all-encompassing panel for the investigation of patients with a 

suspected myeloid malignancy 

 Ensure a high throughput of cases providing a more cost-effective approach  

 Allow for a more meaningful analysis of results by standardizing the genes 

sequenced 

 

3.2.3  Selection of genes for the panel 

Prior to commencing this research, a small myeloid panel had been designed within 

HMDS for potential use in myeloid malignancies.  However, this did not include 

many of the newly reported genes, and so I undertook a review of the literature to 

identify which genes should ideally be added.  This review was to identify and 

record the frequency of the most commonly mutated genes across the spectrum of 

myeloid malignancies.  A PubMed search was performed using the search term 

‘mutation’ AND each of the following list of disease specific search terms – 

 

 AML; acute myeloid leukaemia 

 MDS; myelodysplas* 

 CMML; chronic myelomonocytic leukaemia 

 PV; polycythaemia vera 

 ET; essential thrombocythaemia 

 PMF; primary myelofibrosis 

 

The gene implicated, the frequency reported and the number of samples analysed 

for each disease sub-group were recorded for each published study.  The results are 

presented in Appendix 8.5 and summarized in the graphs below (Fig. 3a&b). 
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Figure 3.2a. Frequency of gene mutations across the spectrum of myeloid malignancies 
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Figure 3.2b. Frequency of gene mutations across the spectrum of myeloid malignancies 

 

86



The genes reported to be mutated in >5% of patients across the disease groups 

were captured from the literature review and prioritized for inclusion in the panel.  

These were NPM1, FLT3, DNMT3A, RUNX1, TET2, ASXL1, WT1, TP53, NRAS, CEBPA, 

IDH1, IDH2, BCOR, KRAS, SF3B1, U2AF1, SRSF2, ZRSR2, EZH2, JAK2, MPL.  The rarer 

myeloid malignancies were then considered, and KIT was identified as an additional 

target for the panel due to the high frequency of mutations in systemic 

mastocytosis and its inclusion as a diagnostic criterion in this disease (Swerdlow et 

al., 2017).  This gene also has prognostic relevance for core binding factor 

leukaemias in which it infers a poor prognosis (Kim et al., 2013). 

It was also clear from the literature review that some genes contained hotspot 

regions in which mutations invariably occurred, while others could be mutated 

across the whole coding region.  The targeted regions for each gene are listed in 

Table 3.1.  

 

 

    *Due to capacity issues, these genes were not included on the Roche 454 panel 

Table 3.1.  Genes and targeted regions for inclusion in myeloid panel 

   

Gene Targeted Region 
TET2 exon 3-11 
DNMT3A exon 11-23 
IDH1 exon 4 
IDH2 exon 4 & 5 
ASXL1 exon 12 
EZH2* exon 2-20 
SRSF2 exon 1 & 2 
U2AF1 exon 2 & 6 
ZRSR2 exon 2-11 
SF3B1 exon 12-16 
NPM1 exon 12 
RUNX1 exon 4-8 
BCOR* exon 2-15 
TP53 exon 5-9 
FLT3 exon 20 
NRAS exon 2 & 3 
KRAS exon 2 & 3 
CBL exon 8 & 9 
JAK2 exon 12 & 14 
WT1 exon 7 & 9 
KIT exon 8 & 17 
MPL exon 10 
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3.3 Roche GS Junior panel development 

3.3.1 Amplicon design 

Due to sequencing capacity (Table 3.2), and to ensure adequate coverage depth on 

the GS Junior, a maximum of 48 amplicons could be sequenced on each sequencing 

run.   

 

 GS Junior 

Total output per run 35Mb 

Run time 10 hours 

Read length 300b 

Reads per run 100 000 

 

Table 3.2.  GS junior sequencing run parameters 

 

To encompass as many of the desired genes as possible, 2 complementary panels 

were designed for use on the GS Junior.   These panels included 20 genes in total.  

EZH2 and BCOR were not included due to capacity issues.   

 

Primers for the panels were designed using the D3™ Assay Design service 

(Fluidigm®, San Francisco, CA, USA).  The list of genes and targeted regions were 

uploaded to the online system using the genomic coordinates and the desired 

genome build GRCh37/hg19. 

Access array target specific primers were then designed by this service using 

proprietary design software which ensures optimal primer specificity and avoids 

placing primers over SNPs, which may impact on specificity, and avoids placing 

primers in GC-rich regions or repeats.  The final list of primer pairs provided by the 

D3™ Assay Design service is provided in Appendix 8.6.  The final layout of the 

primer plates is presented in Table 3.3 (a)&(b) below. 
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(a) 

 

(b) 

     

Table 3.3 (a) & (b).  Layout of 2 primer plates for sequencing on the GS Junior 

 

3.3.2 Initial sample selection 

A cohort of 69 paired samples was identified for initial sequencing using the 2 

myeloid panels on the GS Junior.  These samples formed cohort 1, the analysis of 

which is described in greater detail in Chapter 4.  By using paired samples, 

increased confidence could be placed on those variants identified across 2 samples 

at 2 distinct timepoints.  

  

A proportion of samples had DNA stored at the time of receipt in the laboratory and 

this sample was used for further analysis.  On the remaining samples, DNA was 

extracted from unstained slides using the method described in Chapter 2.  These 

samples were quantified and then checked for amplification quality using control 

gene PCR and run on 2% agarose gel.  All samples amplified despite varying 

concentrations of DNA.  These samples were then used for initial analysis of the 

targeted panels.  

 

3.3.3 Pipeline development 

Initial read trimming, alignment and variant calling were performed using 

commercial software – GS Amplicon Variant Analyzer (AVA; Roche).  Reads were 

Column 1 2 3 4 5 6

A ASXL1 exon 12.1 ASXL1 exon 12.9 KRAS exon 2.1 RUNX exon 5.1 JAK2 exon 12.1 p53 exon 9.5
B ASXL1 exon 12.2 ASXL1 exon 12.10 KRAS exon 3.1 RUNX exon 6.1 JAK2 exon 14.1 DNMT3A exon 16
C ASXL1 exon 12.3 ASXL1 exon 12.11 DNMT3A exon 11 RUNX exon 7b.1 WT exon7.2 DNMT3A exon 17
D ASXL1 exon 12.4 ASXL1 exon 12.12 DNMT3A exon 12/13 RUNX exon 8a.1 WT exon 9.1 DNMT3A exon 18/19
E ASXL1 exon 12.5 CBL exon 8.1 NRAS exon 2.1 RUNX exon 8b.1 p53 exon 5.1 DNMT3A exon 20
F ASXL1 exon 12.6 CBL exon 9.1 NRAS exon 3.1 DNMT3A exon 14 p53 exon 6.2 DNMT3A exon 21
G ASXL1 exon 12.7 cKit exon 17.1 RUNX exon 3.1 DNMT3A exon 15 P53 exon 7.3 DNMT3A exon 22
H ASXL1 exon 12.8 cKit exon 8.1 RUNX exon 4.1 FLT3TKD.1 p53 exon 8.4 DNMT3A exon 23

Column 1 2 3 4 5 6

A SRSF2 exon 1 ZRSR2 exon 2 ZRSR2 exon 10 TET2 exon 4.7 TET2 exon 5 TET2 exon 11.2
B SRSF2 exon 2.1 ZRSR2 exon 3 ZRSR2 exon 11 TET2 exon 4.8 TET2 exon 6 TET2 exon 11.3
C SRSF2 exon 2.2 ZRSR2 exon 4 TET2 exon 4.1 TET2 exon 4.9 TET2 exon 7 TET2 exon 11.4
D SF3B1 exon 14 ZRSR2 exon 5 TET2 exon 4.2 TET2 exon 4.10 TET2 exon 8 TET2 exon 11.5
E SF3B1 exon 15 ZRSR2 exon 6 TET2 exon 4.3 TET2 exon 4.11 TET2 exon 9 TET2 exon 11.6
F SF3B1 exon 16 ZRSR2 exon 7 TET2 exon 4.4 TET2 exon 4.12 TET2 exon 10.1 IDH1 exon 1
G U2AF1 exon 2 ZRSR2 exon 8 TET2 exon 4.5 TET2 exon 4.13 TET2 exon 10.2 IDH1 exon 2
H U2AF1 exon 6 ZRSR2 exon 9 TET2 exon 4.6 TET2 exon 4.14 TET2 exon 11.1 IDH2 exon 1
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aligned to the reference amplicon sequence which was uploaded to the software 

for each amplicon.  The consequence of each variant was then analysed using 

Ensembl Variant Effect Predictor (VEP) software (McLaren et al., 2010).  This is an 

open access software which uses a number of annotation sources to predict the 

effect of individual variants.  These sources include -  

 COSMIC 

 dbSNP, HGMD-PUBLIC, ClinVar, 1000 Genomes, NHLBI-ESP, gnomAD 

 SIFT and PolyPhen 

 

An application was developed within HMDS for the automation of this process.  This 

enabled data to be retrieved from AVA, automatically converted into the correct 

format and uploaded to a local VEP database for effect prediction.  This application 

was linked to the HMDS web-based laboratory system HILIS.   

 

3.3.4 Variant Validation 

All variants detected on the GS Junior were validated using Sanger sequencing.  This 

was performed using the same primers as those designed for the sequencing panel 

(see Chapter 2, section 2.6.7.1).  Using the sequencing analysis software, the 

electropherograms were visualized manually and the presence or absence of the 

variant recorded.  The limitations of this validation technique were recognized, with 

variants only detected down to a variant allele fraction (VAF) of ~15%.   

 

3.4 Illumina MiSeq myeloid panel development  

3.4.1 Rationale for Development of Illumina MiSeq panel 

It was clear from initial sequencing runs that the capacity of the GS Junior was not 

compatible with a high throughput laboratory and the process was both labour 

intensive and costly.  Hence, alternative sequencing options were investigated, and 

an Illumina MiSeq was subsequently acquired for the department.  While this 

sequencer offered shorter read lengths, the total output and reads per run were far 

superior to the GS Junior (Table 3.4); enabling a larger panel to be performed on an 
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individual sequencing run by multiplexing multiple targets during Fluidigm library 

preparation. 

  

 Roche GS Junior Illumina MiSeq 

Total output per run 35Mb 4.5-5.1Gb 

Run time 10 hours 24hrs 

Read length 300b 150b 

Reads per run 100 000 24-30 million 

 

Table 3.4.  Comparison of sequencing run parameters between Roche GS Junior and 
Illumina MiSeq 

 

The 2 complementary myeloid panels were therefore reviewed and updated and 

consolidated into one myeloid panel. 

 

3.4.2 New gene selection 

Due to the increased capacity on the MiSeq, a larger panel was designed to 

incorporate all the desired genes from the previous literature review.  Accordingly, 

an updated literature search was performed to identify any newly reported genes 

implicated across the myeloid malignancies.  A number of important targets were 

identified for incorporation into the new panel, and these are discussed below. 

3.4.2.1 CALR 

In 2013, two seminal papers reported on the presence of recurrent somatic 

mutations in the Calreticulin gene in myeloproliferative neoplasms (Klampfl et al., 

2013; Nangalia et al., 2013).  Calreticulin is a highly conserved protein which is 

involved in calcium haemostasis, proliferation, apoptosis and immunogenic cell 

death.  All mutations are frameshift and result in a novel C-terminal with loss of the 

KDEL motif.  These mutations are frequent in both ET and PMF being identified in 

25-32% and 14-35% of patients respectively (Klampfl et al., 2013; Nangalia et al., 

2013). 
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3.4.2.2 SETBP1 

Mutations in SETBP1 were first reported in 2012 and were found to be enriched in 

atypical CML, and also reported in CMML and MDS/MPN-unclassifiable (Piazza et 

al., 2012).  SETBP1 has recognized interactions with SET, through the SET-binding 

domain and mutations in this gene lead to SET stabilization resulting in PP2A 

inhibition, a phosphatase also inhibited in CML (Piazza et al., 2012).  Cells 

transduced with these mutations also demonstrate a higher proliferative capacity.  

Mutations in this gene were reported in 24% of atypical CML patients, and also in 

17% of secondary AMLs and 15% of CMMLs (Makishima et al., 2013). 

 

3.4.2.3 CSF3R 

CSF3R is the receptor for colony stimulating factor 3 and is implicated in 

granulocytic differentiation.  Mutations in this gene had previously been reported in 

congenital neutropenia; and reports emerged in 2013 of a high frequency of 

recurrent somatic CSF3R mutations in chronic neutrophilic leukaemia and atypical 

CML (59%) (Maxson et al., 2013).  Two distinct classes of mutations were identified; 

truncation and membrane proximal mutations which respectively result in 

dysregulation of SRC family-TNK kinases and JAK family kinases and show 

contrasting responses to dasatinib and JAK kinase inhibitors (Maxson et al., 2013).  

Subsequent studies confirmed that these mutations were highly specific for CNL 

when strict WHO criteria were applied (Pardanani et al., 2013).  This gene has since 

been incorporated into the WHO classification for chronic neutrophilic leukaemia 

(Swerdlow et al., 2017).    

 

3.4.2.4 STAG2 

STAG2 is a key component of the cohesin complex and was reported to be mutated 

across the spectrum of myeloid malignancies, most commonly AML and MDS (Kon 

et al., 2013) (see introduction).  As the most commonly mutated component of this 

protein complex, this gene was identified for inclusion in the final panel. 
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Due to the significant overlap between mutations detected in myeloid malignancies 

and T-cell lymphomas(Palomero et al., 2014), it was concluded that this panel could 

also be utilized in those with suspected T-cell lymphoma.  As a result 2 genes were 

added to the sequencing panel – STAT3 (Jerez et al., 2012) and RHOA (Palomero et 

al., 2014; Sakata-Yanagimoto et al., 2014, p. ) which are both frequently mutated in 

sub-types of T-lymphoproliferative disorders.  

 

The final panel and list of targeted regions is reported below  

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.5. Final Panel of genes and targeted regions for Illumina MiSeq  

 

Gene Targeted Region 
TET2 exon 3-11 
DNMT3A exon 2-23 
IDH1 exon 4 
IDH2 exon 4 & 5 
ASXL1 exon 12 
EZH2 exon 2-20 
SRSF2 exon 1 
U2AF1 exon 2 & 6 
ZRSR2 exon 2-11 
SF3B1 exon 12-16 
NPM1 exon 12 
RUNX1 exon 4-8 
BCOR exon 2-15 
TP53 exon 5-9 
FLT3 exon 20 
NRAS exon 2 & 3 
KRAS exon 2 & 3 
CBL exon 8 & 9 
JAK2 exon 12 & 14 
CSF3R exon 14 & 17 
STAG2 exon 3-35 
WT1 exon 7 & 9 
c-KIT exon 8 & 17 
MPL exon 10 
SETBP1 exon 4 
CALR exon 9 
STAT3 exon 21 & 22 
RHOA exon 2 
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Primers were again designed for the panel using the D3™ Assay Design service 

(Fluidigm®, San Francisco, CA, USA).  A large number of amplicons were required to 

cover the updated list of genes and primers were multiplexed with up to 10 primer 

pairs per well.  The design layout for multiplexing was provided by Fluidigm along 

with the individual primer stock plates.  The primers were then multiplexed in-

house.   

 

 3.4.3 Validation cohort 

A validation cohort of 48 samples was identified from those samples previously 

sequenced on the GS Junior.  These samples were of good DNA quality and 

concentration and contained mutations across the spectrum of genes in the panel 

(see Appendix 8.7).  The mutations identified on the GS Junior had been confirmed 

and validated by Sanger sequencing.   

This validation group was used both to assess the performance of the panel and 

look for run to run variation.  Initial assessment of the primer performance on initial 

runs identified poorly performing primers (coverage <10x).  These were 

predominantly in GC rich regions and due to persistent poor performance CEBPA 

was removed from the panel.  Other primers were re-designed in an attempt to 

improve coverage.  These included SRSF2, IDH1, IDH2 and SF3B1.  

 

To ensure there was no run to run variation, the validation cohort was re-run using 

the following strategy 

 Run 1 - Validation cohort with barcodes 1-48 

 Run 2 - Library from Run 1 re-sequenced 

 Run 3 -  Validation cohort with barcodes 49-96 

 Run 4 - Validation cohort with barcodes 1-48 – total process 

repeated 

 Run 5 - Library from Run 4 re-sequenced 
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Comparison of the output from these sequencing runs confirmed that results were 

consistent irrespective of barcodes applied.  The validation group also enabled 

comparison between the 2 sequencing platforms along with comparison of the 

commercial MiSeq analysis software with the new in-house pipeline (see section 

3.4.6 and Appendix 8.7).   

  

Once the final panel design was confirmed and initial validation of the processes 

was complete, proof of principle analysis was performed to confirm reproducibility 

and the limit of detection. 

 

3.4.4 Dilution studies 

Dilution studies were performed on 8 samples with 15 well characterised variants 

to determine the limit of detection of the panel.  These included substitutions, 

small insertions and deletions ensuring all common variant types were analysed.  

The mean coverage for this study was 2615x (range 626x-5386x).  Libraries were 

prepared on neat samples as well as 1:2, 1:4, 1:8, 1:16, 1:32 and 1:64 dilutions.  The 

libraries were sequenced and analysed as detailed above.  The minimum detectable 

VAF, detected by sequencing, for each variant was consistent across samples – 

mean 3% (range 2-7%).  All variants were detected below 5%, except for 1 

substitution with a lowest VAF of 7%.  Furthermore, the predicted and actual VAF 

for the dilutions were comparable (Fig 3.3). 
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Figure 3.3.  Examples of dilution study results.  Each line graph shows the predicted VAF for 
each variant dilution (blue line) and the actual VAF result (red line) from the MiSeq analysis. 

  

3.4.5 Repeat analysis 

To assess the reproducibility of the sequencing panel, 144 samples were run in 

duplicate.  All VCFs were processed and analysed using the filtering protocol below.    

Samples that had no variants after filtering were excluded from the analysis. 

 

  VAF >5% 

100-500x 

VAF >5% 

>500x 

VAF >20% 

>500x 

Run 1 Positive 

predictive 

value  

0.22 0.82 1.0 

Run 2 0.47 0.83 1.0 

Run 3 0.21 0.70 0.98 

 

Table 3.6. Duplicate analysis of 144 samples 

 

Variants detected with a VAF >20% and coverage >500x were invariably true, 

however the PPV of the test reduces in areas of low coverage and with VAF 5-20%.   

Using both the dilution studies and duplicate run analysis, minimum coverage for 

variant detection was set at 500x and minimum VAF at 5%.  Variants with a VAF 
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between 5-20% or variants in areas of poor coverage are validated by repeat 

sequencing.    

  

3.4.6 New Analysis pipeline 

Initial analysis was performed using the Illumina commercial software (MiSeq 

reporter) however there was concern that variants were being missed with this 

pipeline and there were limited options to improve this process. 

Accordingly, a bespoke in-house pipeline was developed within HMDS.  This 

pipeline included initial trimming, read alignment and variant calling and consists of 

the following steps - 

• pre-alignment QC using fastQC (v0.11.5, 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

• alignment to GRCh37 (hg19) using BWA-mem (v0.7.12, http://bio-

bwa.sourceforge.net/) 

• aligned QC metrics using picard tools (v2.9.4, 

https://broadinstitute.github.io/picard/index.html) 

• coverage analysis using samtools mpileup (v1.5, http://www.htslib.org/ ) 

and bespoke python scripts 

• variant calling using VarScan2 (v2.4.3 http://dkoboldt.github.io/varscan/) 

• annotation using Alamut Batch (v1.8), COSMIC, VEP 

 

The various components are linked via a python script. The pipeline is hosted on an 

8 x 2GHz Intel Xeon E5-2683 v3, 16GB RAM virtual server running Ubuntu 16.01 

(LTS), hosted on a Windows enterprise server farm.  

 

The pipeline was validated as part of the validation process described below.  

Initially the output from the pipeline was also compared to the Illumina commercial 

analysis tool (MiSeq reporter) on a run by run basis to ensure variants were not 

being missed. 
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3.4.7 Variant selection 

Due to the nature of the samples received throughout this study, matched germline 

samples were not available for analysis.  It was therefore essential that extensive 

filtering was performed to exclude artefacts and previously documented single 

nucleotide polymorphisms (SNPs). 

 

3.4.7.1 INITIAL VARIANT FILTERING 

It is well recognized that sequencing errors commonly occur in high throughput 

sequencing particularly when using PCR based library preparations (Schirmer et al., 

2015).  A significant number of these however are not random, occurring 

consistently at the same position across each run and it is essential to exclude these 

variants from further analysis.  To assist with this process a list of highly recurrent 

variants, consistent with artefact, was developed which would be excluded as part 

of the analysis pipeline.  These variants were identified initially using the on-

instrument Illumina software ‘Sequencing Analysis Viewer’ through which each 

gene could be manually reviewed across each sequencing run.  Subsequent run 

specific variants were identified on a run by run basis by reporting the frequency of 

each variant across the run in the analysis output.  Those variants occurring in >5 

samples were reviewed and added to the exclusion list if appropriate (providing 

these were not hotspot variants). 

 

A complementary list of hot spot variants was compiled which included highly 

recurrent variants both from the literature and online databases (see Appendix 

8.8).  Due to the well documented somatic nature of these variants, these were 

retained by the analysis pipeline irrespective of coverage and VAF. 

 

In addition to the coverage and VAF filters described above the following variants 

were also excluded – 

 All non-coding variants, except essential splice site variants. 

 All synonymous variants  

 All known polymorphisms, as reported on germline databases 
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o These were retained if previously confirmed somatic and recurrently 

reported in COSMIC and reported in population databases at 

<0.0014. 

 Highly recurrent variants consistent with artefact 

o As described above   

 Each individual run was also analysed for run specific, highly recurrent 

variants likely to be artefact.  These were also excluded.   

 

3.4.7.2 CONFIRMATION OF PATHOGENIC VARIANTS 

To determine whether the remaining variants were likely pathogenic or variants of 

unknown significance, a number of resources were utilized and strict criteria were 

applied.  The latter were based on previously applied criteria in one of the large 

sequencing studies in MDS (Papaemmanuil et al., 2013).   

 

The following resources were used for variant filtering and annotation 

 Alamut 

o Data sources include – COSMIC1, Clinvar, DbSNP, gNomad, 1000 

genomes, CentoMD, HGMD, DMuDB, SwissVar 

 Correlation with an ever-expanding in-house database of >3000 myeloid 

malignancy samples referred to HMDS 

 Online search tools – PubMed, Google 

 

Alamut is a comprehensive variant annotation tool which provides information on 

the effects of variants on human genes, known variants and mutations and 

missense and splicing variant predictions. 

 

The following criteria were applied to ensure only high confidence variants were 

included (Papaemmanuil et al., 2013). 
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Inclusion Criteria 

 Variants previously reported in the literature, confirmed in haematopoietic 

tissue (as reported in COSMIC) 

o Well documented hotspot variants were retained irrespective of 

coverage however in those with low coverage these were only 

included in the analysis if reproducible across 2 separate runs.  

 Truncating variants (nonsense, frameshift indels and essential splice site 

variants) in genes implicated in myeloid pathogenesis by loss-of-function – 

ASXL1, BCOR, DNMT3A, EZH2, RUNX1, STAG2, TET2, TP53, WT1. 

 Previously unreported variants that cluster (±3aa) with a hotspot variant or 

occur at a recurrently mutated amino acid position, providing the variant is 

not reported in population databases. 

 

 

3.4.8 Validation of Myeloid panel 

Once all these processes were in place, internal and external validation was 

performed specifically looking at variant detection.  

 

3.4.8.1 INTERNAL VALIDATION – COMPARISON TO ROCHE 454 JUNIOR AND SANGER 

SEQUENCING  

The sequencing panel was validated internally on a cohort of 48 samples with 139 

well characterised variants across all genes included in the panel.  These variants 

had been validated on 2 different sequencing platforms including the Illumina 

MiSeq, Roche 454 Junior and Sanger sequencing.    The samples were used both to 

establish the wet laboratory procedures and to compare the in-house 

Bioinformatics Pipeline to Illumina commercial software.  

 

Of the total 139 variants, 128 were detected using the Illumina MiSeq and in-house 

pipeline.  Of the 11 variants not identified, 7 were SRSF2 hotspot variants with very 

low coverage on the MiSeq.  SRSF2 is a GC rich gene and is notoriously difficult to 

amplify using an amplicon-based library preparation.  In light of this, all samples 
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with SRSF2 coverage <20x undergo Sanger sequencing for this hotspot location.   

The remaining 4 variants included 3 in TET2 at areas of low coverage and a large 

52bp deletion in CALR.  The panel was therefore judged to perform well on internal 

validation with a sensitivity of 97% (when SRSF2 is excluded).  Variants can 

however, be undetectable in areas of low coverage, and the panel fails to detect 

large deletions.        

 

3.4.8.2 EXTERNAL VALIDATION – COMPARISON TO A COMMERCIAL SEQUENCING PLATFORM 

AND PIPELINE 

To evaluate the robustness of the myeloid sequencing and analysis pipeline, 

concordance with an external sequencing facility was assessed.  37 samples from 

patients with a confirmed myeloid malignancy were sent to a commercial 

sequencing facility as part of a collaborative project. Although the commercial 

company used a larger targeted panel, the HMDS panel formed a subset of the 

genes included.  The commercial partner also used a different library capture 

protocol (Agilent SureSelect), sequencing platform and bioinformatics pipeline. 

Both BAM and VCF files were made available to compare the independent variant 

calls. 

 

A total of 96 variants were detected across the 33 samples in the regions covered 

by both panels.  There was 80% concordance (77/96 variants) between the 2 panels 

with 11 variants detected only by the in-house HMDS panel and 4 variants only by 

the commercial panel.  Data was unavailable for 4 variants.  Of the discordant 

results, 12/15 were due either to low coverage at the respective position or a VAF 

below the threshold for reporting. The remaining 3 were filtered by the respective 

bioinformatic pipeline.  It was therefore concluded that the in-house sequencing 

panel performed well when compared with an external partner.  A small number of 

variants may be missed at the limit of detection and caution is required in the 

setting of low coverage.      
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3.4.9 Run Quality Control 

To determine the quality of each run and identify poor quality samples, a run level 

and sample level quality control (QC) strategy was developed.   

 

To gather QC metrics for sequencing runs, Picard an open source toolkit was used 

(https://broadinstitute.github.io/picard/index.html).  Picard is a set of Java 

command line tools for manipulating high-throughput sequencing data (HTS) data 

and formats. 

Picard version 1.129 tools CollectAlignmentSummaryMetrics and 

CalculateHsMetrics were used to analyse the sorted bam files, along with the panel 

manifest target locations. 

The metrics for 64 runs (3072 samples) were analysed to find consistent parameters 

which distinguish between known failed runs (n=1) and known failed samples (n=9). 

 

3.4.9.1 RUN LEVEL METRICS  

Initially, metrics were identified at a run level which could distinguish the known 

failed run from the successful runs. The failed run had clustered poorly when 

analysed on the MiSeq.   

 

 PF_READS (The number of reads that pass the vendor's filter) 

Threshold: 500,000. Runs with a mean PF_READS of below 500,000 should 

be flagged as a failed run. 

 PCT_TARGET_BASES_100X (The percentage of ALL target bases achieving 

100X or greater coverage) 

Threshold: Runs with a mean PCT_TARGET_BASES_100X below 0.9 will be 

flagged as a failed run. 
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3.4.9.2. SAMPLE LEVEL METRICS.  

Metrics were then identified that could distinguish known failed samples from good 

quality samples within a machine run. The failed samples were identified based on 

DNA quantity, number of low-level non-recurring variants and coverage. 

 

 ZERO_CVG_TARGETS_PCT (The number of targets that did not reach 

coverage=2 over any base) 

Threshold: mean + 2sd - if the sample value is greater than 2 x standard 

deviation above the mean for the run, the sample is flagged as an outlier. 

 FOLD_80_BASE_PENALTY (The fold over-coverage necessary to raise 80% of 

bases in "non-zero-cvg" targets to the mean coverage level in those targets) 

Threshold: mean + 2sd - if the sample value is greater than 2 x standard 

deviation above the mean for the run, the sample is flagged as an outlier. 

 PCT_TARGET_BASES_100X (The percentage of ALL target bases achieving 

100X or greater coverage) 

Threshold: mean - 2sd - if the sample value is less than 2 x standard 

deviation below the mean for the run, the sample is flagged as an outlier. 

 GC_DROPOUT (A measure of how undercovered >= 50% GC regions are 

relative to the mean. For each GC bin [50..100] we calculate a = % of target 

territory, and b = % of aligned reads aligned to these targets. GC DROPOUT 

is then abs(sum(a-b when a-b < 0)). E.g. if the value is 5% this implies that 

5% of total reads that should have mapped to GC>=50% regions mapped 

elsewhere) 

Threshold: mean + 2sd - if the sample value is greater than 2 x standard 

deviation above the mean for the run, the sample is flagged as an outlier. 

 

On review, no single metric was sufficient to flag a sample as a failure for a 

sequencing run.  However, >2 metrics captured all failed samples.   

 

In addition to the sequencing metrics, input DNA concentration is recorded, along 

with the number of annotated variants, in the VCF files.  DNA concentration 
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correlates strongly with sequencing quality and samples with <5ng/µl consistently 

fail. The input DNA concentration was therefore included in the sample QC metrics.  

This was recorded, along with a flag, to show three levels. GREEN is above 15 ng/μl, 

AMBER is between 5 and 15 ng/μl, and RED is below 5 ng/μl.   

 

For QC purposes it is also important to have an overview of coverage for each 

sample across the panel.  This is particularly relevant with Fluidigm library 

preparation when single amplicons can fail due to issues within the microfluidics at 

the point of sample and primer loading.  It is therefore necessary to know which 

amplicons have failed for each sample, and the number of failed amplicons and 

their labels are added to the QC record.  Due to the importance of identifying well-

characterized common ‘hotspot’ mutations, it is essential to know if these areas 

were well covered during the sequencing run.  For each sample, the % of the 

hotspot locations which have over 100 reads are reported.  The list of the genes 

where hotspot coverage fails to meet reporting criteria are included in the QC 

report. 

 

3.4.9.3 QC REPORT 

For each run, the QC parameters described are recorded in a tab-separated text file 

which can be imported easily into Microsoft Excel.  In the report if a sample falls 

outside of the threshold for an individual sequencing metric, a ‘1’ is recorded, 

otherwise ‘0’.  The sequencing QC parameters are collated with the other metrics 

described to for the QC report. 

 

 

Fig. 3.3. Example of QC report 

 

Sample ng.ul dna.flag num.var zeroCVG fold80 targets100x gcDropout QC_pass

hotspots

.percent

hotspots.

below.100

targets

Failed

XX 32.3 GREEN 6 0 0 0 0 PASS 1 4
XX 104.08 GREEN 6 0 0 0 0 PASS 1 4
XX 11.442 AMBER 9 1 0 1 1 FAIL 0.93 MPL 7
XX 90.52 GREEN 4 0 0 0 0 PASS 1 1
XX 108.84 GREEN 1 0 0 0 0 PASS 1 2
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3.5 Discussion 

It is clear from the literature that many of the genes recurrently mutated in myeloid 

malignancies have prognostic relevance in those with confirmed disease.  Targeted 

sequencing could also provide confirmatory evidence of disease in the diagnostic 

setting due to the high frequency of mutations across the chronic myeloid 

malignancies.  The panel was designed to include the most commonly mutated 

genes across all myeloid malignancies, providing a platform to investigate the 

diagnostic potential.  This would also capture important prognostic information, 

and importantly be applicable in a large number of patients.  The latter is 

particularly relevant in the setting of a routine clinical laboratory, where high 

throughput and low costs are essential to ensure results are available in real time 

and the test is cost efficient.   

 

The panel does not however include all genes reported across these malignancies.  

As demonstrated in the large MDS sequencing studies, and similarly across other 

disease types, only a small number of genes are mutated in >10% of cases and 

there is a long tail of genes mutated at low frequency (Haferlach et al., 2013; 

Papaemmanuil et al., 2013).  At the time when this panel was in development it was 

not logistically or economically viable to include all the relevant genes in a single 

panel, particularly for the application into routine practice.  The core genes which 

were included are, however, those which provide the most clinically relevant 

information both throughout this research and still to this day.   

 

The panel performed well on both internal and external validation, though the 

limitations of a PCR based library preparation are recognized.  The need for 

validation of low-level variants does add to the workload and turn-around times, 

but importantly ensures that the variants detected can be reported with 

confidence.  The additional validation steps performed as part of this research 

provided the extensive information needed to move this platform into routine 

practice. 
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The most challenging aspect of the sequencing process remains that of variant 

annotation.  As described above, there are many tools available which provide 

evidence for each variant, but there is still a subjective element to this process, 

particularly in the absence of a matched germline sample.  Furthermore, online 

somatic databases including COSMIC are contaminated with germline variants while 

confirmed somatic variants are also reported in germline databases.  It is also likely 

that variants are being under-reported in the literature due to the reliance on 

somatic databases for pathogenic confirmation.  Historically, guidance on this area 

has been focused on constitutional variants, but more recently guidelines have 

been produced for the interpretation and reporting of variants in cancer samples (Li 

et al., 2017).  For this research, variant annotation was aligned with that performed 

in one of the largest MDS sequencing studies ensuring the data can be compared 

with the reported literature.  

 

The following chapters will detail the studies performed to assess the clinical utility 

of this sequencing panel, particularly with respect to diagnosis in cytopenic patients 

and those presenting with a monocytosis.        
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CHAPTER 4: COHORT 1 – DETERMINING THE FREQUENCY OF 

CLONAL ABNORMALITIES IN PATIENTS WITH PRE-CLINICAL MDS  

These data have been published as a plenary paper in Blood with an associated 

commentary (see Appendix 8.9) 

 

4.1 Introduction 

As previously described, the diagnosis of MDS, particularly in those without 

increased blasts, remains problematic due to the reliance on morphological 

assessment for diagnosis (Swerdlow et al., 2017).  There is reported poor inter-

observer concordance when recognising dysplasia (Parmentier et al., 2012), and 

numerous non-neoplastic conditions which can mimic MDS (Steensma, 2012) 

therefore impairing the sensitivity and specificity of this technique.  To date the 

only objective marker of neoplastic haematopoiesis has been provided by 

conventional cytogenetics and/or fluorescence in situ hybridisation (FISH) (Schanz 

et al., 2011, 2012) though these techniques are uninformative in a large proportion 

of cases.    

 

With the advent of high throughput sequencing and array-based cytogenetics, 

pathogenic abnormalities can now be detected in a significant majority of MDS 

patients diagnosed by the currently established diagnostic criteria (Malcovati et al., 

2013).  Large sequencing panels targeting recurrently mutated genes have 

identified driver mutations in up to 90% of patients (Haferlach et al., 2013) and the 

addition of single nucleotide polymorphism arrays (SNP-A) to conventional 

cytogenetics has increased the diagnostic yield by identifying small copy number 

variants (CNV) and areas of copy neutral loss of heterozygosity (CN-LOH)(Tiu et al., 

2011). To date these techniques have been used to explore disease pathogenesis 

and identify prognostic markers. However, with the high frequency of abnormalities 

reported it may be feasible to use the presence of a pathogenic genetic abnormality 

as a core criterion for the diagnosis of MDS. This could substantially increase the 
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reproducibility of diagnosis and the sensitivity of detecting patients at an early 

stage of disease. 

 

The diagnostic utility of mutational analysis has however been questioned due to 

reports of somatic mutations in healthy individuals (Genovese et al., 2014; Jaiswal 

et al., 2014; Xie et al., 2014; McKerrell et al., 2015).  These mutations involve genes 

commonly mutated in myeloid malignancies, and it is estimated that they occur in 

~4% of the population, though increase significantly with age, being found in over 

10% of people over 70 (Jaiswal et al., 2014).   These individuals do have an 

increased risk of progression to a haematological malignancy, though only at a rate 

of ~1% per year, analogous to the transformation levels seen for MGUS 

(monoclonal gammopathy of undetermined significance) to myeloma (Jaiswal et al., 

2014).  Distinction between those with age related clonal haematopoiesis and those 

with a disease defining mutation in the absence of definitive morphological disease 

would, therefore, be difficult. 

 

The aim of this initial analysis was to molecularly characterise patients with the 

most clinically significant disease who fail to meet diagnostic criteria using 

conventional techniques.  To achieve this, a cohort of cytopenic patients was 

identified who, despite having an initial bone marrow with non-diagnostic features, 

went on to develop progressive dysplasia or AML.  In this setting it was postulated 

that the initial sample represented early or pre-clinical MDS.  The paired samples 

were then studied using targeted sequencing and SNP-A analysis to determine if 

pathogenic abnormalities could be detected even in the absence of diagnostic 

features using current methods.  It was hypothesised that characterising these 

patients would provide potential criteria to distinguish pre-clinical MDS from 

healthy individuals and importantly detect those patients at high risk of disease 

progression.      
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4.2 Methods 

 

4.2.1 Patient Samples 

A search was performed for all new diagnoses of MDS (with multilineage dysplasia) 

or AML made at HMDS, between 2004 and 2012 who had undergone previous non-

diagnostic bone marrow analysis for investigation of cytopenia.  The paired 

samples, termed pre-diagnostic and diagnostic, were dual reported by the same 

team of experienced haematopathologists.   All diagnostic samples were classified 

according to the relevant WHO classification system at the time of diagnosis. 

 

A total of 82 patients were identified.  This represented 1.7% of patients referred 

for investigation of cytopenia with a non-diagnostic marrow during this time period 

(n=4835).  Sixty-nine patients had adequate DNA from both samples for molecular 

analysis.  The demographics of these 69 individuals are presented in Table 4.1.  Of 

note, the initial presentation samples include both those with insufficient 

morphological features for diagnosis and those in whom morphological assessment 

was limited by poor sample quality. Blood count parameters contemporaneous 

with both bone marrow biopsies were available on 47 patients.   

 

4.2.2 DNA extraction and targeted amplicon sequencing 

DNA was extracted from fresh peripheral blood or bone marrow total nucleated 

cells, or retrieved from unstained smears as described in Chapter 2. 

Targeted gene sequencing was performed initially on the GS Junior using the panel 

targeting 20 genes and was subsequently repeated using the more comprehensive 

26 gene panel designed for the MiSeq.  Twelve and forty-eight barcoded patient 

samples were pooled for the GS Junior and MiSeq and subjected to 300bp and 

150bp paired-end sequencing respectively.  Both library preparation and 

sequencing were performed as per the manufacturer’s instructions.  The mean 

coverage on GS Junior was 97x (range 30-354x) and 1297x (range 578-1816x) on 

MiSeq.   
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Table 4.1. Characteristics of patients included in cohort 1. 

                         

        

 
ITP, immune thrombocytopenia; RCMD, refractory cytopenia with multilineage dysplasia; RAEB, refractory 
anaemia with excess blasts 
†  Includes patients with insufficient morphological features (n=10) and those with suboptimal sample quality 
(n=7) 
* Also includes MDS with 5q- patient                

 

 

No. Of patients

Male:Female

Median age (range)

Initial Presentation

Diagnosis

Initial Presentation

Anaemia of chronic disease

Iron deficiency anaemia

ITP

No evidence of disease

Reactive changes only

Suspicious of malignancy†

Inadequate sample

Final Diagnosis

MDS with 5q-

RCMD

RAEB-1

RAEB-2

AML

RCMD*(n=30)                  RAEB (n=18) AML (n=21)

606 (19-2305) 439 (27-2037) 403 (26-2484)

Blood Count Parameters; median (range)

Initial presentation

Hb (g/dL) 10.0 (6.1-15.1) 9.9 (7.2-13.2) 11.3 (7.5-13.5)

WCC (10^9/L) 4.5 (1.9-18.2) 6.1 (1.7-15.2) 3.9 (2.6-10.1)

Plt (10^9/L) 113 (15-409) 133 (10-226) 97 (46-364)

At diagnosis

Hb (g/dL) 9.1 (5.9-12.9) 7.9 (6.6-11.4) 9.1 (6.5-12.0)

WCC (10^9/L) 3.6 (1.5-23.5) 3.8 (1.1-72.3) 8.1 (1.9-144.2)

Plt (10^9/L) 91 (11-427) 94.5 (13-188) 72.5 (16-402)

No. of days between samples;              

median (range)

21

27

17

1

29

74 (18-87)

5

2

3

12

Patient Demographics

9

9

69

46:23

75 (18-88)

3
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4.2.2.1 VARIANT CALLING AND ANALYSIS 

Initial trimming, read alignment and variant calling were performed using 

respective commercial software – GS Amplicon Variant Analyzer (Roche) and MiSeq 

reporter (Illumina) with paired end reads aligned to the reference amplicon 

sequence.  Variants were analysed using the Ensembl Variant Effect Predictor (VEP) 

software (McLaren et al., 2010).  All synonymous, non-coding variants and germline 

polymorphisms were excluded.  The latter were retained if previously confirmed 

somatic and recurrently reported in COSMIC database (Forbes et al., 2011).   

 

4.2.2.2 VALIDATION 

Variants were accepted if identified by at least 2 methods – MiSeq, GS Junior - or by 

conventional Sanger sequencing.  Sanger sequencing was performed for SRSF2 

across areas of poor coverage as previously described.  JAK2 Val617Phe mutations 

were confirmed using an ASO based approach as discussed in Chapter 2.  

All patients were screened for NPM1 mutations and FLT3 internal tandem 

duplications (ITD) using conventional fragment analysis. 

 

4.2.3 Single Nucleotide Polymorphism array analysis 

Array based whole genome scanning was performed on all diagnostic samples using 

the Human CytoSNP-12 BeadChip according to manufacturer instructions.  

BeadChips were scanned using the BeadArray™ Reader.  Data was visualised using 

Karyostudio™ software and reported as per published guidelines (See Chapter 2).   

In those patients with a confirmed abnormality in the diagnostic sample, SNP-A 

analysis was performed on the corresponding previous non-diagnostic sample.  

Poor quality samples precluded detailed analysis on 7 diagnostic samples. 

 

4.2.4 Statistical Analysis 

Comparison of mutations between disease subgroups was performed on genes 

sorted into functional pathways and analysed using a parallel χ2 test and univariate 

logistic regression. Survival curves were produced using the Kaplan Meier method 

(censored 01/06/2015) and the impact of abnormalities on overall survival and risk 
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of progression were estimated using Cox regression.  Pairwise associations were 

tested with the Fisher exact test corrected for multiple testing using the Benjamini–

Hochberg procedure, with false discovery rate (FDR) set at 5%.  Associations 

between genetic mutations and progression were investigated with Fisher's exact 

test and by Cox regression within diagnostic groups.  

 

4.3 Results 

4.3.1 Mutational analysis demonstrates abnormalities in the majority of pre-

diagnostic samples with a paucity of structural variants 

A driver mutation and/or structural abnormality was identified in 91% (n=63/69) of 

pre-diagnostic samples, with all but one (62/63) harbouring a somatic mutation.  

The remaining patient had an isolated cryptic MLL rearrangement, which was 

retrospectively identified by FISH following progression to MLL-rearranged AML.  

 

A total of 133 mutations (Fig. 4.1) were identified across 62 patients with a median 

of 2 mutations per sample (range 1-5; Fig. 4.4A).  Mutations in epigenetic regulators 

and spliceosome genes were most commonly identified in the pre-diagnostic 

samples, with all but 3 patients (59/62) harbouring a mutation in one of these 

pathways.  TET2, SRSF2 and ASXL1 were most frequently mutated being identified 

in 39%, 26% and 20% of patients respectively.  While mutations in these pathways 

were common, they rarely occurred in isolation, with 75% patients harbouring >1 

mutation.  The spectrum of mutations at this time-point mirrored that reported in 

large MDS populations (Haferlach et al., 2013; Papaemmanuil et al., 2013) with the 

exception of SF3B1 (n=3), though these mutations are strongly associated with ring 

sideroblasts which are easily identified morphologically (Papaemmanuil et al., 

2011).  To determine if certain gene mutations commonly co-occurred or were 

mutually exclusive we performed pairwise association on both pre-diagnostic and 

diagnostic samples, though failed to identify any significant relationships, possibly 

due to small sample size.   
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Figure 4.1.  Mutations and structural variants identified per patient, grouped by final disease category and ordered by time between samples from shortest to longest 
(days).  Purple depicts mutations identified in the non-diagnostic sample with red depicting those acquired at diagnosis.  Similarly blue represents structural variants 
identified by SNP array in the non-diagnostic sample and green those acquired at diagnosis. *Includes the single patient with MDS with 5q- (time between samples 2305 
days)
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Structural abnormalities were much less frequent being identified in only 23% 

(16/69) of pre-diagnostic samples.  Most (14/16) possessed a single abnormality 

(range 1-7) with 9 regions of LOH and 13 copy number variants (CNV), most 

commonly deletions, identified.  Recurrent abnormalities included trisomy 8, 

del20q, del5q, LOH4q and LOH11q.  The majority of LOH regions were co-existent 

with a mutation in the alternate allele including TET2 with LOH4q, CBL with 

LOH11q, TP53 with LOH17p and EZH2 with LOH7q.   

 

Conventional cytogenetics had been performed in only 10 patients at this 

timepoint, all of which demonstrated a normal karyotype. 

 

4.3.2 Mutational profile in pre-diagnostic samples differs from healthy individuals 

When comparing the mutational profile in this patient cohort with that in healthy 

individuals distinct differences were noted.  DNMT3A was by far the most 

frequently mutated gene in the healthy population (Genovese et al., 2014; Jaiswal 

et al., 2014; Xie et al., 2014; McKerrell et al., 2015), however this was only seen in 

10% (n=7) of our patient cohort.  There was a median of 2 mutations detected per 

patient (range 1-5) and the frequency of multiple mutations was significantly 

greater here than reported in healthy individuals (≥2 mutations; 64%vs.8% (Jaiswal 

et al., 2014)).  The median variant allele fraction (VAF), and inferred clone size in 

our series was also notably greater at 40% (range 2.31-100%) than the reported 

median of 9-10% in healthy individuals(Jaiswal et al., 2014).  Importantly, only 1 

patient harboured an isolated mutation with a VAF less than 20%.  These 

differences suggest that the clone must expand to an appropriate level and/or 

acquire cooperating mutations to cause cytopenias and subsequent disease.  This is 

supported by the greater mean VAF (25.2%) observed in healthy individuals who 

subsequently developed a haematological malignancy(Jaiswal et al., 2014).  A driver 

gene mutation with a high allele fraction (>20%) and/or co-occurring mutations 

may therefore be disease defining but in the very least identifies clinically 

significant clonality requiring close follow-up as a minimum.   
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4.3.3 Progression to RAEB/AML is associated with acquisition of 

mutations/structural abnormalities  

In 30 patients, new mutations were identified in the diagnostic samples that had 

not been detected in the pre-diagnostic samples.  This included 2 of the patients 

who were mutation negative at initial investigation, increasing the final mutation 

frequency to 94% (65/69).  This correlated strongly with progression to RAEB (n=11) 

and AML (n=15) with only 4 patients with a final diagnosis of RCMD having acquired 

a mutation.  Mutations of transcription factors and cell signalling genes were most 

commonly acquired with NRAS, FLT3 and RUNX1 accounting for 18%, 15% and 10% 

of total acquired mutations respectively (Fig. 4.2).  Importantly FLT3 ITD was only 

identified at the point of diagnosis and only in those with RAEB or AML.   

 

Structural abnormalities were acquired in 21 patients resulting in an overall 

frequency of 46% (32/69) at the point of diagnosis.  These were again acquired 

most frequently in those patients progressing to AML (n=11; RAEB n=5; RCMD n=5).  

A median of 2 abnormalities were acquired (range 1-5) between samples though in 

contrast to the pre-diagnostic sample there was a striking predominance of CNVs 

(31 vs 7; CNV vs LOH).   

 

4.3.4 Mutations in the pre-diagnostic sample predict disease progression and OS 

To determine whether parameters in the pre-diagnostic sample could predict 

disease progression both blood count data and mutational spectrum were 

examined  at this time point.  Overall, the rate of progression to AML/RAEB was 

faster than to a diagnosis of RCMD (median 403 vs. 606 days respectively; HR, 3.7; 

95% CI 2.1-6.6; p < 0.001).  In those with blood count data available there was no 

significant difference in parameters between those that progressed to the 3 final 

disease subgroups; RCMD, RAEB and AML.   
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Figure 4.2.  Frequency of driver mutations across all 69 patients in the (A) pre-diagnostic and (B) diagnostic samples coloured according to functional pathway.  (C) 
Spectrum of mutations acquired between samples again coloured by functional pathway.  
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To assess any difference in the spectrum of mutations between these groups we 

performed parallel χ2 tests and univariate logistic regression on genes sorted into 

functional pathways.  Mutations in chromatin modifiers (ASXL1, EZH2) were found 

to be significantly less frequent in those patients who progressed to AML (p=0.032).  

There was no statistically significant difference in the frequency of mutations in 

other pathways.  The presence of a structural abnormality at this time point did not 

impact on overall survival or the rate of disease progression. 

 

The most frequently mutated genes (present in >5% of individuals; TET2, SRSF2, 

ASXL1, U2AF1, DNMT3A, IDH1, ZRSR2, IDH2, TP53, RUNX1, EZH2) were analysed to 

determine whether certain mutations were associated with progression to high risk 

MDS (RAEB) or AML as opposed to RCMD and also whether the rate of progression 

to either diagnostic group was affected by such mutations.  

 

All four patients with IDH2 mutations progressed to AML/RAEB providing weak 

evidence of a possible association (p=0.052). While NPM1, CBL and NRAS mutations 

were not included in this analysis due to low frequency, all patients carrying these 

mutations progressed to AML or RAEB.  Specific mutations were found to be 

associated with a more rapid time from the pre-diagnostic analysis to 

diagnosis/progression.  In those that progressed to AML/RAEB, this was true for 

both IDH2 mutations (HR, 4.2; 95% CI 1.3-13.8; p = 0.017) and TP53 mutations (HR, 

5.5; 95% CI 1.1-27.7; p = 0.038).  Similarly, there was evidence that both TP53 and 

IDH1 mutations were associated with a more rapid time to diagnosis of RCMD 

(TP53; HR, 28.5; 95% CI 1.8-455.6; p = 0.018.  IDH1; HR, 11.6; 95% CI 2.1-64.2; p = 

0.0049). These associations with time to progression were adjusted linearly and 

non-linearly for age; all associations remained except for that between TP53 and 

time to diagnosis of RCMD.  Caution should be observed in interpreting these 

results as the number of patients with such mutations is small. 

 

Survival data were available on 59 patients, of which only 10 were alive at the cut-

off time point for data analysis.  Median survival from the non-diagnostic sample 

was 43.6 months (95% CI 33.8-55.8) and from diagnosis, 13 months (95% CI 9.9-
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24.6).  Patients diagnosed with AML had a median survival of only 1.28 months 

(95% CI - 0.789-12.625) which was significantly shorter than those diagnosed with 

either RCMD (29.2 months, p<0.001; Fig 4.3) or RAEB (12.48 months, p=0.042).  

Interestingly the survival of the AML group was comparable to the RAEB group if 

determined from the time of the pre-diagnostic sample (29.1mths vs 35.3mths, 

p=0.442) (see Fig. 4.3).  While this can clearly not be viewed as a survival advantage 

of early diagnosis it does highlight a potential period for earlier intervention in a 

group of patients with a poor prognosis.   

 

Cox regression univariate analysis from the pre-diagnostic sample showed that, 

TP53 (HR, 21.68; 95% CI 4.72-99.64, p<0.001), U2AF1 (HR, 2.63; 95% CI 1.0-6.4, 

p=0.049) mutations, and the number of mutations identified (HR, 1.447; 95% CI 

1.12-1.88; p=0.006) were all associated with a significantly poorer overall survival; 

with the latter most significant in those with >3 mutations (Fig. 4.4C). 

 

4.3.5 Patterns of progression can be revealed by assessing changes in the variant 

allele fraction between samples  

By assessing changes in the variant allele fraction (VAF) between samples, differing 

patterns of progression could be identified in patients with a demonstrable 

mutation pre-diagnosis.  Examples of these are presented in Fig. 4.5.  The majority 

of patients progressing to AML/RAEB showed acquisition of new mutations which in 

some cases drove expansion of the dominant clone (Fig. 4.5A), in others the pre-

diagnostic mutation remained stable (Fig. 4.5B) while in further patients there was 

a decrease in the VAF of co-existing mutations (Fig. 4.5C).  The latter likely 

represents competition between clonal populations and in the example in Fig. 4.5C 

the SRSF2 mutation remains stable however the RUNX1 mutation identified in the 

pre-diagnostic sample disappears with the acquisition of an NRAS mutation.  While 

a proportion of RAEB/AML patients did not acquire mutations, there was evidence 

of progression demonstrated by growth of the dominant clone or acquisition of a 

structural  
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Figure 4.3.  Overall survival in patients grouped by final disease category.  This was determined from time of (A) pre-diagnostic sample and (B) 
diagnostic sample.  The survival of the AML group is comparable to the RAEB group if determined from the pre-diagnostic sample (p=0.442) though 
significantly worse if determined from the diagnostic sample (p<0.001).  This highlights a potential period for earlier intervention.    

                 

   Diagnostic 
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Figure 4.4.  Distribution of mutations and correlation with overall survival. (A) Distribution of no. of mutations according to final disease 
subgroups and across both non-diagnostic and diagnostic samples.  (B) Overall survival in all patients according to no. of mutations identified in 
non-diagnostic sample and (C) when grouped into those with <3 and >3 mutations. 
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abnormality.  One patient showed only a decrease in the VAF of both mutations 

identified in the pre-diagnostic sample suggesting the emergence of a subclone 

containing a mutation not targeted in our panel.   

 

In contrast, those with a final diagnosis of RCMD rarely acquired mutations and 

while a significant number showed no change in mutation VAF between samples a 

proportion showed clonal expansion at the point of diagnosis (Fig. 4.5D).  

Copy number analysis provides additional information when interpreting changes in 

VAFs.  Patient HMDS55 showed an increase in the VAF of a TP53 mutation from 

42.3% to 93.9% (Fig. 4.5E) though this occurred  in the context of a del17p which 

was acquired as part of a complex karyotype between samples.     

  

4.4 Discussion 

Using a combination of sequencing and array-based cytogenetics this retrospective 

study has confirmed that a high frequency of abnormalities, predominantly driver 

mutations, can be detected in samples with indeterminate morphology from 

patients who were subsequently diagnosed with a myeloid malignancy. Importantly 

these techniques appear somewhat less affected by sample quality with results 

being obtained even in inadequate/suboptimal bone marrow samples.  

 

This analysis used strict criteria along with multi-platform validation to ensure the 

abnormalities reported were genuine. However, it is likely that some abnormalities 

were excluded during this process, particularly those from small clones.  It is also 

likely that a proportion of patients harbour mutations in genes not targeted with 

the panel.   
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Figure 4.5.  Changes in variant allele fraction between samples.  (A) Patient HMDS63 (AML) who 
showed expansion of the dominant TET2 clone following acquisition of an NRAS mutation.  The 
ZRSR2 appears to be subclonal within this TET2 clone.  The additional TET2 mutation remains stable 
suggesting this is non-ancestral.  (B) Patient HMDS43 (RAEB) who acquired a CSF3R mutation at 
diagnosis though the pre-diagnostic IDH1 mutation remained constant.  (C) Patient HMDS68 (AML) 
who showed likely competing subclones with loss of a RUNX1 mutation and acquisition of an NRAS 
mutation at diagnosis.  (D) Patient HMDS22 (RCMD) showed expansion of both TET2 and ZRSR2 
mutations between samples with a decrease in the VAF of the 2nd TET2 mutation again suggesting 
this is non-ancestral.  (E) Patient HMDS55 (RCMD) showed an increase in the VAF of a TP53 mutation 
in the setting of del17p. 
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The high mutation frequency in this cohort contrasts to previous reports in early 

MDS in which driver mutations were detected in ~70% of refractory anaemia (RA) 

and RCMD cases(Bejar et al., 2012; Haferlach et al., 2013).  In light of the subjective 

nature of current diagnostic approaches it is possible that these cohorts are 

contaminated with non-MDS cases, which could explain a proportion of these 

negative results.  Alternatively, mutation frequency may be significantly higher in 

those more likely to show disease progression.  The results from this study suggest 

however that driver mutations are frequently identified even in early disease, and 

particularly in those with the most clinically significant disease.   

The spectrum of mutations identified in the pre-diagnostic sample mirrors that 

reported in MDS populations with a predominance of DNA methylation and RNA 

splicing gene mutations.  With the benefit of sampling early in the natural history of 

the disease the findings are consistent with these being early events in disease 

pathogenesis as previously speculated (Haferlach et al., 2013; Papaemmanuil et al., 

2013).  The high frequency of additional abnormalities also supports the hypothesis 

that a 2nd hit is required for the onset of disease(Busque et al., 2012).  Notably 

SF3B1 mutations were rarely detected in this patient cohort (n=3) in contrast to 

much larger studies (Haferlach et al., 2013; Papaemmanuil et al., 2013).  These 

mutations are however strongly associated with ring sideroblasts (Papaemmanuil et 

al., 2011) which are easily identified morphologically.   

 

In contrast there was a paucity of structural variants in the pre-diagnostic sample 

and this, in conjunction with increasing abnormalities between samples, is 

consistent with these being secondary events in MDS disease pathogenesis(Cazzola, 

Della Porta and Malcovati, 2013) possibly as a result of an underlying pathogenic 

mutation.  Mutations in functional pathways are thought to lead to chromosomal 

instability arising either as a single cataclysmic event, such as in the context of TP53 

mutations(Rausch et al., 2012) or as a more gradual degeneration(Lindsley and 

Ebert, 2013).  Transcription factor and signalling pathway gene mutations were a 

more commonly acquired event in this cohort, and correlated strongly with 

progression to RAEB and AML.  This is again consistent with previous reports of an 

increased frequency of mutations in NPM1, FLT3, RUNX1 and NRAS genes in 
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secondary AML compared to MDS (L. Shih et al., 2004; Bacher et al., 2007a; C.-Y. 

Chen et al., 2007; Dicker et al., 2010; Schnittger et al., 2011).  Importantly specific 

mutations in the pre-diagnostic sample were associated with rapid disease 

progression and worse overall survival; identifying these patients early provides a 

window of opportunity for intervention.  In the setting of a non-diagnostic marrow, 

mutational analysis can therefore identify high risk patients who require close 

clinical follow up as a minimum.         

 

The high frequency of driver mutations in this cohort suggests that mutational 

analysis in the setting of appropriate peripheral blood count parameters could be 

confirmatory evidence of MDS.  This has been successfully implemented in MPNs 

for which a JAK2 mutation in conjunction with proliferative blood parameters is 

sufficient for diagnosis (McMullin et al., 2007; Harrison et al., 2010).  Recent 

reports, however, of frequent somatic mutations(Genovese et al., 2014; Jaiswal et 

al., 2014; Xie et al., 2014; McKerrell et al., 2015) as well as large chromosomal 

abnormalities(Jacobs et al., 2012; Laurie et al., 2012) in the aging healthy 

population question the validity of this approach, particularly in the absence of 

definitive morphological disease.  Importantly when compared with the pre-

diagnostic patients in this cohort the reported median allele fraction of mutations 

in the healthy population was much smaller (9-10%(Jaiswal et al., 2014) vs. 40%, 

see supplementary Fig.1), and the number of individuals with multiple mutations 

was also lower (≥2 mutations, 8%(Jaiswal et al., 2014) vs. 64%).  This would suggest 

that while somatic mutations are frequent in the aging population the clone size 

must expand to an appropriate level to be disease defining, a model somewhat 

analogous to monoclonal gammopathy of uncertain significance (MGUS) and 

myeloma.  This is supported by the fact that in the healthy population, those who 

developed a haematological malignancy had a significantly greater mean allele 

fraction (25.2%)(Jaiswal et al., 2014).      

   

The implementation of mutational analysis in the diagnosis of MDS will however be 

more complicated than in diseases such as MPNs.  There are more genes implicated 

and the majority are not specific for this disease subtype.  Integration with clinical 
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factors is, therefore, critical.  Defining the somatic nature of certain mutations is 

also paramount as it is unlikely that a germline sample would be available for 

comparison in the routine clinical setting.  Extensive analysis of cytopenic 

individuals should help determine both the frequency and likely pathogenic 

potential of certain mutations/structural variants and the allele fraction required to 

confirm disease.  

  

In conclusion this initial analysis has confirmed that targeted sequencing is more 

sensitive than morphological assessment in identifying early MDS, including those 

with high risk disease, and is more tolerant of sample quality than current methods.  

With the ever-reducing costs of these techniques, application into the routine 

setting is becoming increasingly feasible. However, analysis of a large unselected 

cytopenic population will be required to refine patient selection and clarify those 

mutations with pathogenic potential.  In a group of patients in whom survival can 

be very short, early detection can provide an opportunity for intervention and 

improved outcomes.  
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CHAPTER 5: COHORT 2 – INVESTIGATING THE UTILITY OF 

TARGETED SEQUENCING AND FLOW CYTOMETRY IN PATIENTS 

REFERRED WITH A MONOCYTOSIS   

These data have been published as a regular article in Blood with an associated 

commentary (See appendix 8.10) 

 

5.1 Introduction 

Distinguishing a reactive monocytosis from CMML is challenging for the 

haematopathologist.  Using current WHO diagnostic criteria, a persistent 

monocytosis is the hallmark of disease and demonstrating clonality is not a 

definitive requirement (Swerdlow et al., 2017). This leads to a greater risk of mis-

diagnoses or mis-classification, particularly in patients with prolonged reactive 

changes.   

As discussed in Chapter 1, alternative techniques, such as flow cytometry and HTS, 

have provided a potential objective tool to identify patients with disease.  Recent 

studies have demonstrated a skewing of monocyte subsets in the peripheral blood 

of patients with CMML which appears to be both sensitive and specific for this 

disease (Selimoglu-Buet et al., 2015).  In addition, interest in molecular genetics has 

increased since the development of high throughput sequencing techniques.  Large 

studies using extensive targeted sequencing panels have identified recurrent 

somatic mutations in >90% of patients with CMML (Elena et al., 2016), providing a 

further potential tool for diagnosis.  The presence of a TET2 mutation along with a 

mutation in SRSF2 (or ZRSR2) has been shown to be highly specific for a 

myelomonocytic phenotype (Malcovati et al., 2014) and these, along with ASXL1, 

are the most frequently mutated genes within this disease group (Elena et al., 

2016).  While the WHO, in the most recent update, have stated the presence of 

these mutations can support a diagnosis of CMML, there have been no studies 

directly assessing the use of this technology in diagnosis (Arber et al., 2016).  The 

aim of this study was to determine whether mutational analysis can provide 
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confirmatory evidence of disease and predict disease outcome in patients 

presenting with a monocytosis. 

 

5.2 Methods 

5.2.1 Patients and Samples 

All consecutive samples (peripheral blood (PB) or bone marrow (BM)) received 

between July 2014 and July 2016 from patients ≥18yrs for the investigation of 

monocytosis were included; local ethical approval (REC ref-16/NE/0105).  Patients 

with a confirmed myeloid diagnosis prior to July 2014 were excluded.  The decision 

to investigate was at the discretion of the referring clinician, and the study cohort 

therefore reflects the variety of samples received in a routine laboratory for the 

investigation of a monocytosis.  An absolute monocyte count was determined on all 

PB samples when received in HMDS (see Table 5.1) using flow cytometry (see Flow 

cytometry methods).  Interestingly this was calculated to be <1x109/L on a 

proportion of samples (11%), however the vast majority of these were very close to 

this threshold and review of local blood count parameters and clinical details 

confirmed the presence of a PB monocytosis at some point and clinical suspicion of 

CMML.  This highlights the recognised variation in monocyte counts between 

laboratories, and the difficulty when applying arbitrary cut-offs.   

A total of 283 patients were referred during this time period (Table 5.1) of which 

121 and 162 had an initial PB and BM sample respectively (Fig. 5.1).  A confirmed 

diagnosis was only made on those patients who ultimately underwent a BM biopsy 

(n=207).  All samples were processed according to gold standard techniques and 

dual reported by a team of experienced haematopathologists.  Those with a 

confirmed diagnosis were classified in accordance with the WHO 2008 

classification.  Those failing to fulfil the morphological and genetic WHO 2008 

criteria, as agreed by 2 haematopathologists were classified as ‘non-diagnostic 

(ND)’.  This term encompassed samples in which a diagnosis could not be reached 

due either to poor sample quality or insufficient/no abnormal morphological 

features.  All samples were taken with full-informed patient consent for 

investigation of a suspected haematological disorder.  
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Table 5.1.  Characteristics of patients included in the cohort 2 

 

                  

Abbreviations:  PB, peripheral blood;  CMML, chronic myelomonocytic leukaemia;  AML, acute 
myeloid leukaemia;  MPN, myeloproliferative neoplasm;  MDS, myelodysplastic syndrome 
† Monocyte count determined by flow cytometry                
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*Decision to investigate was at the discretion of the referring clinician 
†Focal area of Diffuse Large B-cell Lymphoma noted in bone marrow, likely co-occurring with CMML 

 

Figure 5.1. Summary of samples included in study. Flowchart of cases referred for 

investigation of a monocytosis to HMDS. 
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5.2.2 Flow Cytometry 

All samples for immunophenotypic analysis were processed within 24 hours. 

Numerical studies and assessment of monocytic CD56 expression were performed 

on BM or PB samples following a stain-lyse-wash procedure (FACSLyse, Becton 

Dickinson) using an antibody cocktail containing CD14, CD64, CD34, CD56, CD45 

and CD2.  There was strong correlation between monocyte CD56 expression in the 

PB and BM (Fig 5.2) enabling analysis to include samples from either source.   

PB CD14/CD16 “classical” monocytic subset studies were performed on samples 

following NH4Cl lysis of erythrocytes using a lyse-stain-wash procedure.  The 

antibody cocktail for this tube contained CD16, CD45, CD64, CD14, CD56, IREM2 

(CD300e) and HLA-DR.A minimum of 105 leucocytes were acquired on a single 

cytometer (FACSCanto II, Becton Dickinson) for all cases. Monocytes were identified 

using a combination of CD64, CD45, and scatter characteristics and analysed by a 

single operator (Dr Matt Cullen) for all analyses (see Appendix 8.11). 

 

 

 

 

Figure 5.2.  Correlation between CD56 expression on monocytes in peripheral blood and 
matched bone marrow samples. 
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5.2.3 DNA Extraction and Targeted Amplicon Sequencing 

In parallel to the above analyses, samples were subjected to targeted high 

throughput sequencing using the previously described myeloid panel.  Referring 

clinicians and haematopathologists were blinded to the results of this analysis to 

exclude reporting or treatment bias.   

DNA was extracted from fresh blood or BM mononuclear cells and validation of 

low-level variants was performed as described in Chapters 2 and 3.   

The mean coverage of identified variants was 1514x (range 52-5605x). 

 

5.2.4 Clinical Follow-up 

All follow-up BM assessments were performed as clinically indicated by the 

referring clinician. These samples were also processed according to gold standard 

techniques and underwent targeted sequencing in parallel, as described above.  

Any subsequent new diagnoses were recorded. 

Survival data was available for all patients and censored on the date of extraction 

(08/08/2017).  Additional clinical information, including serial full blood count data, 

was collected on a sub-cohort of patients (n=182) either directly from the referring 

hospital or through the HMRN (n=85).  

 

5.2.5 Statistical Analysis 

Survival curves were produced using the Kaplan Meier method and differences 

were assessed with the log rank test. The impact of abnormalities on overall 

survival (OS) and risk of progression were estimated using Cox regression; where 

variable selection was required to arrive at a multivariable regression, the lasso was 

used for variable selection and results were reported for the corresponding relaxed 

lasso model.   

Sensitivity, specificity, positive and negative predictive values were calculated from 

2x2 contingency tables. 

Comparison between flow cytometric parameters in the main cohort was 

performed using Mann-Whitney U tests.  Correlation between CD56 expression, M1 
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monocytes and mutational analysis was performed using both logistic and Poisson 

regression. 

The effect of mutations on longitudinal blood counts was assessed using random 

effects models. Four different models were fitted using a full-factorial interaction 

between time and mutation status: (i) a random intercept model; (ii) a random 

intercept and slope model with uncorrelated random effects; (iii) a random 

intercept and slope model with correlated random effects; and (iv) a random 

intercept and slope model with correlated random effects, additionally adjusted for 

age and sex. For each mutation/blood count relationship the best-fitting model was 

chosen according to a likelihood ratio test.  To limit any potential effect from 

periods of acute illness or intensive treatment, blood count trajectory analysis was 

restricted to those with <40 measurements over >100 days.    

 

5.3 Results 

5.3.1 Somatic mutations are detected at high frequency in patients with a 

monocytosis irrespective of diagnosis 

To define the mutation spectrum in patients referred with a monocytosis, targeted 

sequencing results were analysed for the total cohort and correlated with the final 

diagnosis in those who underwent BM sampling.  Of the total 283 patients, ≥1 

mutation was detected in 78% of samples, the spectrum of which is presented in 

Fig. 5.3A.  Of these patients, 207 underwent BM assessment for a definitive 

diagnosis.   

A total of 142 patients had a confirmed diagnosis of a myeloid malignancy with ≥1 

mutation detected in all but 2 cases (99%).  Importantly 1 of the mutation negative 

cases had a complex karyotype detected by conventional cytogenetics including 

inversion 3 (with MECOM gene rearrangement), leaving only 1 case without a 

demonstrable clonal abnormality.  The vast majority of cases were confirmed as 

CMML (n=114), however small numbers of patients had an alternative diagnosis 

including acute myeloid leukaemia (AML) (n=11) and myeloproliferative neoplasm 

(MPN) (n=9), highlighting the importance of a bone marrow assessment for disease 

classification in this patient group. 
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Figure 5.3. Characteristics of mutations detected in patient samples. (A) Spectrum of 
mutations detected across all patients in study (n=283).  (B) Comparison of mutations 
detected in those with a diagnostic bone marrow sample vs a non-diagnostic bone marrow 
sample (diagnostic (n=142) vs non-diagnostic (n=65)).  (C) Distribution of no. of mutations 
according to final diagnostic category.  ‘Other’ denotes those patients with an alternative 
haematological malignancy. 
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Of note, somatic mutations were also detected at a high frequency in those 

patients without a confirmed diagnosis.  At least 1 mutation was detected in 37/65 

patients (57%) with indeterminate or reactive features.  The spectrum of mutations 

in this group mirrored that detected in the diagnostic group (see Figure 5.3) with 

TET2, SRSF2 and ASXL1 being the most frequently mutated.  The most notable 

differences in the non-diagnostic group were the absence of mutations associated 

with high risk disease, including TP53 and NPM1, as well as those associated with 

specific morphological abnormalities i.e. SF3B1 (associated with ring sideroblasts) 

and JAK2 (associated with myeloproliferative features). 

 

The median and mean number of mutations was higher in those with a confirmed 

diagnosis (median-3, range 0-8; mean-3) versus those without (median-1, range 0-

6; mean-2) (Fig.5.3C).  However, in patients with a confirmed mutation, the number 

of mutations did not differ significantly between diagnostic and non-diagnostic 

groups (p=0.62).   

 

The median variant allele fraction (VAF) for all variants was 39% (range 5.2-100%) 

and there was no difference between the VAF in diagnostic and non-diagnostic 

cases (p=0.33).  In those with an isolated mutation the median VAF was also noted 

to be high at 38.2% (range 6.3-97.1%) with only 2 variants having a VAF of <10%.      

 

Mutations are therefore found at a very high frequency with a high clonal burden in 

patients with a monocytosis, and involve a similar spectrum of genes, irrespective 

of diagnosis. 

 

5.3.2 Immunophenotypic features correlate strongly with the presence of a 

mutation and a subsequent diagnosis   

To determine whether immunophenotyping can predict for the presence of a 

mutation or a BM diagnosis, flow cytometric analysis was performed alongside 

sequencing.  
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Firstly, comparison was made between the immunophenotypic features in the BM 

of patients with a confirmed diagnosis of CMML versus those with non-diagnostic 

samples.  Key phenotypic abnormalities were demonstrated in samples with a 

confirmed diagnosis.  These included increased CD64+ monocytes, reduced CD14 

expression as well as aberrant CD56 expression on monocytes.  These abnormalities 

were also noted in cases without a confirmed diagnosis, but importantly correlated 

strongly with the presence of a mutation.  There was a significant difference in the 

proportion of CD64+ monocytes, CD14 expression and CD56 expression between 

those patients with a demonstrable mutation and those without (Fig. 5.4).  This was 

most pronounced with CD56 expression which was significantly associated with the 

presence of a mutation (OR 12.2; 95% CI 4.8-41.3; p<0.0001) and the number of 

mutations (OR 1.4; 95% CI 1.2-1.6; p<0.0001).  With respect to individual mutations, 

aberrant expression of CD56 was strongly associated with TET2 mutations (OR 4.0; 

95%CI 2.4-6.8; p<0.0001). The relationship between CD56 expression and a somatic 

mutation has not previously been described however bears similarities to the 

phenotypic aberrancies described by Seglimolu et al which were predictive of a 

CMML diagnosis. 

 

5.3.2.1 PERIPHERAL BLOOD MONOCYTE SUBSETS AND CD56 EXPRESSION ARE PREDICTIVE 

OF A SOMATIC MUTATION 

To further analyse the relationship between peripheral blood monocyte subsets, 

CD56 expression and mutation profile a separate cohort was investigated for all 3 

parameters (see methods).  A total of 135 patients were analysed with 95 

undergoing a bone marrow for definitive diagnosis (CMML=28, MDS=23, MPN=9, 

non-diagnostic=27, other=8). The presence of aberrant CD56 was again strongly 

associated with the presence of a mutation (OR 43.9; 95%CI 8.9-793.9; p=0.0003).  

This was also noted, to a lesser extent, with having greater than 94% M1 monocytes 

(OR 3.9; 95% CI 1.8-8.7; p=0.0007).  There was some correlation between the 

presence of CD56 expression and >94% M1 monocytes (r=0.17, p=0.039) and 

combining both produced a stronger effect than >94% M1 monocytes alone (OR 

8.5; 95%CI 3.9-19.5; p<0.00001). Importantly, combining these phenotypic 
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aberrancies did not capture all patients with a mutation.  Whilst CD56 was highly 

specific for the presence of a mutation (98%), sensitivity was only 48%.  Similarly, 

the presence of >94% M1 monocytes had a sensitivity of 56% and specificity of 75% 

for detecting a mutation.  

 

The presence of either CD56 expression or >94% M1 monocytes was strongly 

associated with the presence of ASXL1, TET2, and SRSF2 mutations.  Interestingly all 

patients with SRSF2 mutations had either CD56 expression or >94% monocytes or 

both.  There was a weaker association with NRAS mutations for both aberrant 

features and EZH2 mutations were only statistically associated with CD56 

expression. 

With respect to a confirmed diagnosis, both CD56 expression (OR 4.9; 95%CI 1.9-13; 

p=0.001) and >94% M1 monocytes (OR 4.2; 95%CI 1.7-11.5; p=0.003) were 

associated with a final diagnosis of CMML with a stronger effect again noted when 

combining both (OR 5.2; 95%CI 1.8-19; p=0.0056).  It is interesting to note that four 

patients with CMML (with confirmed mutations) had neither of these phenotypic 

aberrancies. 

 

5.3.3 Peripheral Blood mutation profiling is predictive of a bone marrow diagnosis 

As well as providing key immunophenotypic information, mutation profiling on 

peripheral blood was also highly predictive of a bone marrow diagnosis.  A total of 

121 PB samples were received as the initial sample and somatic mutations were 

detected in 66% (80/121).  Forty-five patients (37%) had a subsequent bone 

marrow performed for diagnosis, further samples have yet to be received on the 

remaining patients.  There was high concordance between mutations detected in 

PB and subsequent BM with only 5 discordant results (119/124 variants 

concordant; 96%).  Importantly these were low level variants at the limit of 

detection for the test or variants detected at areas of poor coverage (SRSF2/ASXL1).  

All 9 mutation negative cases were fully concordant.     
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Figure 5.4.  Relationship between immunophenotype and mutations. Box and whisker plots comparing immunophenotypic features of CMML, 
non-diagnostic mutated (NDmut) and non-diagnostic unmutated (NDunmut) cases.  The p-values refer to Mann-Whitney U tests comparing CMML 
with either non-diagnostic category. 
(A) % CD56 expression on monocytes.  (B) % CD64+ monocytes of leucocytes.  (C) % CD14 expressing monocytes. 
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The presence of a mutation in the peripheral blood was highly predictive of 

diagnosing a myeloid malignancy in bone marrow (PPV 0.96, NPV 1.0).  Of note, 

none of the mutation negative cases (n=11) had a subsequent confirmed diagnosis. 

 

5.3.4 Overall survival correlates strongly with mutation profile irrespective of 

diagnosis 

Survival data were available on all patients.  The median survival from the time of 

the first sample was 35.2 months and correlated strongly with the number of 

mutations; those with no mutations had a significantly better overall survival while 

those with >5 mutations had by far the worst (see Fig. 5.5).  The difference between 

the presence or absence of a mutation was highly significant (p<0.001).    On 

univariate analysis, age was strongly associated with survival.   For mutations 

occurring in >5% of subjects, ASXL1, CBL, DNMT3A, NRAS & RUNX1 were all strongly 

associated with survival, as were EZH2 & STAG2 amongst the less frequently 

mutated genes (Table 5.2). In order to investigate multivariate significance, all 

genes mutated in >5% subjects were entered into a lasso survival regression. Taking 

the 1SE shrinkage parameter, age, ASXL1, CBL, DNMT3A, NRAS & RUNX1 were 

selected by the lasso and retained significance in a relaxed lasso regression.   

 
 

5.3.5 Patients without a confirmed diagnosis have similar outcome to CMML 

patients and have significantly worse blood counts 

In patients who proceeded to a bone marrow biopsy, survival correlated with the 

final morphological diagnosis.  Those without a confirmed diagnosis had a 

significantly better overall survival than those with CMML or another myeloid 

malignancy.  However, on further investigation only patients without a 

demonstrable mutation retained a significantly improved survival (p=0.0002).  

Survival in non-diagnostic patients with a demonstrable mutation was similar to 

those with CMML (p=0.118) (Fig. 5.6). 
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Figure 5.5. Overall survival according to mutation number. (A) Overall survival in total 
cohort from time of initial sample.  (B) Overall survival in total cohort by no. of mutations 
detected at time of initial sample.  The p-value represents a log rank test comparing those 
without a mutation to those with a single mutation.  (C) Overall survival in total cohort by 
the presence or absence of a mutation 
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Table 5.2. Univariate and multivariate overall survival analyses for total cohort. For 
multivariable regression, the lasso was used for variable selection and results reported for 
the corresponding relaxed lasso model. 

 

 

Variable Univariate Analysis Multivariate Analysis 

 HR, 95% CI HR, 95% CI 

Age 1.04(1.02-1.06) 1.04(1.02-1.06) 

ASXL1 2.10(1.45-3.05) 1.59(1.07-2.38) 

CBL 2.12(1.30-3.47) 2.24(1.35-3.73) 

DNMT3A 2.87(1.73-4.76) 2.82(1.68-4.73) 

KRAS 1.69(0.85-3.33)  

NRAS 2.11(1.32-3.36) 1.85(1.13-3.01) 

RUNX1 2.75(1.74-4.37) 2.20(1.37-3.54) 

SRSF2 1.18(0.80-1.72)  

TET2 0.82(0.57-1.19)  

EZH2 4.88(2.52-9.44)  

STAG2 22.39(7.48-67.01)  

           HR – Hazard ratio; CI – Confidence Intervals 
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Figure 5.6. Overall survival according to final diagnosis. (A) Overall survival by diagnosis on bone marrow sample (n=207) 
(B) Overall survival by diagnosis with non-diagnostic samples separated by the presence or absence of a mutation.  The p-values refer to log-rank 
tests comparing CMML and non-diagnostic unmutated patients (p=0.0002) and comparing CMML with non-diagnostic mutated patients (p=0.118) 
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To further assess the impact of mutations on outcome, longitudinal blood count 

data were analysed in conjunction with mutation profile.  Blood count data were 

available for 182 patients.  Subsequent analysis was restricted to those with <40 

measurements over >100 days (n=133), to exclude periods of acute hospital 

admissions (due to periods of acute illness/infection) or intensive chemotherapy 

(median follow-up 465 days; range 119-996 days).  Patients with a demonstrable 

mutation had a significantly lower haemoglobin and platelet count as well as a 

higher monocyte count than those without a mutation (Fig. 5.7).  This effect 

persisted over the time period measured and followed a divergent trajectory.  With 

respect to individual mutations, certain mutations were associated with increasing 

or declining blood count parameters over time (Table 5.3).  Monocyte counts were 

found to increase over time in TET2, SRSF2, ASXL1, NRAS or RUNX1 mutated 

subjects relative to non-mutated; similarly, white blood counts increased in ASXL1, 

NRAS & DNMT3A mutated subjects; and platelet levels decreased in ASXL1, CBL and 

RUNX1 mutated subjects relative to non-mutated. 

 

In those without a confirmed diagnosis, follow-up BM biopsies were received on 11 

patients.  Importantly, of those with a subsequent diagnosis of CMML, all had a 

confirmed mutation on the original sample.  In total 7/37 (19%) non-diagnostic 

mutated patients had a confirmed diagnosis (6 CMML, 1 MDS).  Furthermore, none 

of the mutation negative cases went on to develop CMML, however 2 patients had 

confirmed alternative haematological diagnoses - DLBCL and Rosai Dorfman 

disease.   

 

These findings confirm that the presence of a mutation has a significant impact on 

outcome with respect to both survival and blood count parameters.  
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Figure 5.7.  Longitudinal blood count trajectories in relation to mutation status. Plots of 
all blood count trajectories averaged between mutated (red) and unmutated (black) groups 
with overlaid linear regression line. 
(A) Haemoglobin (g/L) in patients with or without a detectable mutation.  (B) Platelet count 
(log transformed) in patients with or without a detectable mutation.  (C) Monocyte count 
(log transformed) in patients with or without a detectable mutation.    
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Table 5.3. Effect of mutations on longitudinal blood counts, assessed using random 
effects models 

 

 

+ + Y statistically significant positive difference with diverging trajectories that persist over 

the time of observation. 

─ ─ Y statistically significant negative difference with diverging trajectories that persist 

over the time of observation 

─ + Y statistically significant negative difference with converging trajectories that persist 

over the time of observation. 

+ ─ Y statistically significant positive difference with converging trajectories that persist 

over the time of observation. 

0 ─ Y  no overall difference but a statistically significant decrease in the mutated relative to 

the non-mutated 

0 + Y no overall difference but a statistically significant increase in the mutated relative to 

the non-mutated 

 

 

 Haemoglobin WCC Platelets Monocytes 

Any mutation ─ ─ Y No effect ─ ─ Y + + Y 

TET2 No effect No effect ─ + Y + + Y 

SRSF2 No effect No effect ─ + Y + + Y 

ASXL1 ─ + Y + + Y ─ ─ Y + + Y 

NRAS 0 ─ Y + + Y No effect + + Y 

CBL ─ ─ Y No effect ─ ─ Y + ─ Y 

DNMT3A No effect 0 + Y No effect No effect 

JAK2 No effect No effect + ─ Y No effect 

RUNX1 No effect No effect ─ ─ Y 0 + Y 
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5.4 Discussion 

Using the myeloid panel on this cohort of patients, mutations are identified in 

virtually all patients with a morphological diagnosis of CMML, and in a significant 

proportion of patients with a monocytosis and non-diagnostic features.  

Importantly the latter group had a mutation spectrum, immunophenotype and 

outcome indistinguishable from CMML.  Mutational analysis can therefore provide 

key diagnostic and prognostic information in the investigation of patients with a 

persistent monocytosis. 

 

By analysing sequential samples referred to HMDS the cohort has included the 

typical patient population encountered in routine haematology practice.  It is 

possible that the proportion of non-diagnostic samples with detectable mutations 

was inflated due to referral bias and a high pre-test probability of disease in those 

undergoing testing, however the use of objective outcome measures (longitudinal 

blood counts and OS) and an unselected patient population have otherwise 

minimised bias and ensured the results are applicable in the ‘real-world’ setting.   

 

As described in Chapter 1, many studies have investigated the genetic profile in 

established CMML and its clinical significance, confirming that the profile is 

relatively homogenous involving a restricted number of genes.  Looking at only 7 

genes, initial studies identified mutations in >70% of patients, with TET2 mutations 

being most frequent (Kohlmann et al., 2010).  Subsequent studies, with varying 

panel sizes (19-276 genes), have consistently reported mutations in >90% of 

patients (Itzykson et al., 2013; Elena et al., 2016; Mason et al., 2016).  While these 

mutations are identified in genes implicated across the spectrum of haematological 

malignancies, SRSF2, TET2 and ASXL1 are by far the most commonly mutated, with 

a combination of TET2 and either SRSF2 or ZRSR2 being shown to be highly specific 

for a myelomonocytic phenotype (Malcovati et al., 2014).  The mutation profile in 

this cohort reflects these findings even in the absence of a confirmed diagnosis.   

 

ASXL1 has also been shown to be consistently associated with a poorer 

prognosis(Itzykson et al., 2013; Patnaik et al., 2013, 2014, 2015, 2016; Elena et al., 
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2016), a feature also replicated across this dataset.  Despite a restricted panel, the 

mutation frequency was high and the presence of even an isolated mutation 

impacted significantly on outcome.  Therefore, in the investigation of a 

monocytosis, even modest sized panels can provide key clinical information and be 

cost effective in a clinical laboratory setting.  It is however likely that a proportion 

of these patients will have additional mutations in genes not sequenced in this 

study, though, to investigate this further would require a much larger patient 

population.    

 

The findings of this study will be key to refining future diagnostic algorithms in the 

investigation of patients referred with a monocytosis.  Mutational analysis has been 

incorporated into the recent amendment of the WHO diagnostic criteria, which 

now state that the presence of a mutation can support a diagnosis of CMML.  

Similar to the diagnosis of MDS, concerns have also been raised regarding the use 

of mutational analysis in this setting, due to reports of frequent somatic mutations 

in aging healthy individuals (Genovese et al., 2014; Jaiswal et al., 2014; Xie et al., 

2014; McKerrell et al., 2015).  As a result the WHO have stated that the presence of 

a mutation in CMML should not be used alone as proof of disease (Swerdlow et al., 

2017).  Results from this cohort have however shown that even in the absence of 

morphological features, those patients with a mutation had a clinical phenotype 

and genotype indistinguishable from CMML, and comparably poor outcomes.  

Distinguishing features were also noted between the variants reported in healthy 

individuals and the mutations detected this cohort.  The VAF or clone size of the 

mutations in our study were significantly higher than in healthy individuals (median 

39.2% vs 9-10%), and this was demonstrated across both diagnostic and non-

diagnostic samples.  This finding was also described in those patients investigated in 

cohort 1 (see Chapter 4), in which  a VAF >20% and the presence of co-occurring 

mutations could distinguish patients with clinically significant cytopenias from 

healthy individuals.  While the higher VAF is replicated in this cohort, importantly 

our study has shown that even isolated mutations have a significant impact on 

survival in patients with a monocytosis.  These findings provide strong evidence 

that in those without diagnostic morphological features the presence of a mutation, 
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irrespective of mutation number, could be disease defining.  At the very minimum, 

it is imperative that these patients are identified and monitored closely.     

 

Flow cytometry has also been proposed as a screening tool on PB samples to 

identify patients with CMML.  Most recently, >94% M1 monocytes in the PB has 

been reported to be highly sensitive and specific for CMML (Selimoglu-Buet et al., 

2015).  Subsequent studies have validated this method and also confirmed the 

ability to distinguish CMML from MDS as well as MPN presenting with a PB 

monocytosis (Patnaik et al., 2017; Talati et al., 2017).  These studies however are 

centred on morphological diagnosis and they have not consistently performed 

mutation analysis on the patient cohorts.  While investigation of cohort 2 has 

shown a strong correlation between skewed monocyte subsets and a diagnosis of 

CMML this did not capture all patients and was neither sensitive nor specific for the 

presence of a mutation.  In contrast aberrant CD56 expression was highly specific 

for the presence of a mutation (98%), particularly involving TET2.  Similar sensitivity 

and specificity for CMML diagnosis has been reported (100% and 67% respectively) 

previously when combining immunophenotypic features including CD56 expression, 

reduced expression of myeloid antigens and ≥20% immature monocytes(Xu et al., 

2005). Though concern was raised regarding the overexpression of CD56 in reactive 

conditions(Lacronique-Gazaille et al., 2007).  Analysis on this cohort has shown that 

CD56 expression at diagnosis is invariably associated with the presence of a somatic 

mutation, though again will not capture all patients (sensitivity 48%).  Flow 

cytometry could, therefore, provide a screening tool for the investigation of PB 

monocytes but, ultimately, mutation analysis will be required to identify patients 

who require clinical follow-up.  

 

Importantly there was high concordance between PB and BM mutational analyses, 

and the presence of a PB mutation was highly predictive of a subsequent BM 

diagnosis. This suggests that PB screening may be suitable for identifying or 

excluding significant mutations, however this could lead to a rise in inappropriate 

referrals and a significant burden on laboratory workload.  Furthermore, the small 

proportion of mutated patients in this cohort with other haematological 
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malignancies in the BM, including AML, highlights the importance of a baseline BM 

assessment to definitively classify the disease.  In contrast, the negative predictive 

value of PB screening was 100%, suggesting that those without a mutation should 

not undergo BM assessment.  In the first instance, PB screening would be a 

practical option in those patients unfit for BM assessment or potentially to monitor 

for treatment response or disease evolution.  The latter would require further 

investigation in a prospective study.  

  

In conclusion, these analyses have confirmed that mutations are commonly 

detected in patients referred with a persistent monocytosis.  The presence of a 

mutation impacts significantly on outcome irrespective of diagnosis, and patients 

with a mutation who fail to meet WHO criteria have CMML disease characteristics.  

These findings validate the inclusion of somatic mutations in the diagnostic criteria 

for CMML and, at the very minimum, suggest that those without a confirmed 

diagnosis require close clinical follow-up.  While PB can be confidently used to 

detect mutations, a baseline BM biopsy is required for definitive disease 

classification in patients fit for treatment.  Immunophenotypic assessment of 

monocytes may provide a potential screening tool to detect those with a mutation 

however it will miss a proportion of mutated patients.  Ultimately, early 

identification of patients could provide an opportunity for intervention in this 

patient group, and this requires further investigation.   
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CHAPTER 6: COHORT 3: INVESTIGATING THE DIAGNOSTIC 

POTENTIAL OF HIGH THROUGHPUT SEQUENCING IN AN 

UNSELECTED CYTOPENIC PATIENT GROUP 

 

6.1 Introduction 

The high frequency of driver mutations in MDS cases has generated considerable 

interest in the utility of mutational analysis as a diagnostic tool.  As previously 

discussed in Chapters 1 and 4, the current diagnostic criteria for MDS rely heavily 

on the morphological assessment of the bone marrow (Swerdlow et al., 2017) and 

this is hampered by poor interobserver concordance (Parmentier et al., 2012).  To 

date cytogenetics has provided the only objective marker of disease though an 

abnormal karyotype is only found in around half of patients with a confirmed 

diagnosis (Schanz et al., 2011).  Nonetheless, concern has been raised regarding the 

diagnostic utility of mutational analysis due to reports of somatic mutations in 

healthy individuals (Genovese et al., 2014; Jaiswal et al., 2014; Xie et al., 2014; 

McKerrell et al., 2015).  Hence, distinction between those with age related clonal 

haematopoiesis and those with a disease defining mutation in the absence of 

definitive morphological disease remains challenging.   

 

The study performed on cohort 1 and discussed in Chapter 4 provided proof of 

principle that mutations were present in a very high percentage of patients who 

initially failed to meet diagnostic criteria but subsequently progressed to MDS or 

AML.   Importantly these patients had a higher frequency of co-occurring mutations 

and a greater allele fraction or clone size than that reported in healthy individuals 

(39.9% vs 9-10%) (Jaiswal et al., 2014; Cargo et al., 2015) suggesting that mutation 

number and allele fraction could, perhaps, form part of the diagnostic 

requirements.  Subsequent studies have confirmed a high frequency of mutations 

in cytopenic patients, even in the absence of a confirmed haematological 

malignancy with mutations reported in ~30% of ICUS patients (~30%) (Kwok et al., 

2015).  Such an approach was further investigated by looking at the predictive value 
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of mutation analysis when performed on peripheral blood taken simultaneously 

with the bone marrow at the time of diagnosis (Malcovati et al., 2017).  This 

showed that certain mutations, particularly those involving spliceosome genes, 

were highly predictive of MDS, even in isolation.  In contrast, mutations in 

epigenetic regulators had a much lower positive predictive value if identified in 

isolation, though this increased significantly when additional mutations were 

demonstrable.  Importantly the latter paper also highlighted the negative predictive 

value of mutation analysis;  reported to be 0.84 increasing to 0.92 when a negative 

cytogenetic analysis was also included (Malcovati et al., 2017).   

 

Interestingly all MDS studies to date, even those with large sequencing panels, have 

identified a proportion of patients (10-20%) who lacked a demonstrable somatic 

mutation (Haferlach et al., 2013; Papaemmanuil et al., 2013).  In the absence of 

increased blasts, these patients have subsequently been shown to have a much 

better overall survival than other MDS patients, with none transforming to AML 

over the long follow-up period (Malcovati et al., 2014, 2017).  Furthermore, X-

chromosome inactivation pattern analysis in a subset of these patients has 

confirmed polyclonal haematopoiesis (Malcovati et al., 2017).  A similar group was 

also identified by gene expression analysis during the MILE (Microarray Innovations 

in Leukaemia) study.  In this study, a proportion of MDS cases had an expression 

profile which was classified as a non-leukemic condition, and these patients again 

showed no evidence of AML transformation over the 5 year follow-up (Mills et al., 

2009).  The evidence suggests that these patients may not actually have MDS, 

despite the WHO criteria being fulfilled, though clearly further investigation of this 

group is required.   Hence, while the diagnosis is unclear in these patients, the 

absence of a mutation or cytogenetic abnormality should certainly be viewed as a 

good prognostic feature. 

 

It is therefore clear that mutations can be detected at a high frequency but the 

clinical significance of these in the absence of morphological disease remains 

uncertain.  To further investigate the significance of somatic mutations in cytopenic 

patients, analysis was performed on this final cohort of unselected cytopenic 
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patients.  The aim of the analysis was to both determine the frequency of 

mutations in cytopenic individuals, and investigate the clinical significance of 

detecting a somatic mutation.  As with cohort 2, this was achieved by assessing 

objective outcome measures including longitudinal blood counts and overall 

survival as well as correlating with subsequent diagnoses.     

 

6.2 Methods 

6.2.1 Patients and Samples 

The study cohort included all sequential bone marrow samples referred for 

investigation of cytopenia between July 2014 and July 2016.  Only adult patients 

were included (≥18yrs) and patients with a confirmed diagnosis of a myeloid 

malignancy before July 2014 were excluded.  Similar to cohort 2, the decision to 

investigate was at the discretion of the referring clinician, and the study cohort 

therefore reflects the variety of samples received in a routine laboratory for the 

investigation of a cytopenia.   

 

A total of 2130 samples were received during this time period (see Fig.6.1).   All 

samples were processed according to gold standard techniques and HMDS 

laboratory processes, with morphology being dual reported by a team of 

experienced haematopathologists.  Those with a confirmed diagnosis were 

classified in accordance with the WHO 2008 classification.  Due to recognized 

challenges when confirming a diagnosis of MDS, particularly in cases with 

unilineage dysplasia, these cases were captured as unilineage dysplasia but not 

given a formal diagnosis of MDS on the initial sample.  This is in accordance with 

recommendations from the European LeukaemiaNet (Malcovati et al., 2013).  

Those otherwise failing to fulfil the morphological and genetic WHO 2008 criteria, 

as agreed by 2 haematopathologists were classified as ‘non-diagnostic’ (ND) as 

described in Chapter 5 (section 5.2.1) 

All samples were taken with full-informed patient consent for investigation of a 

suspected haematological disorder. This study had local ethical committee approval 

(REC ref-16/NE/0105).  
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6.2.2 DNA Extraction and Targeted Amplicon Sequencing 

In parallel to the standard laboratory processes, samples were subjected to 

targeted high throughput sequencing using the previously described methods (see 

Chapters 2 and 3).  Referring clinicians and haematopathologists were blinded to 

the results of this analysis to exclude reporting or treatment bias.   

DNA was extracted from fresh blood or BM mononuclear cells using the methods 

described in Chapter 2.  A total of 41 samples (1.9%) failed to meet DNA QC 

thresholds either to proceed to sequencing or for interpretation of results (see 

Chapter 3); most commonly due to low DNA quantity.  These patients were 

excluded from further analysis, leaving a cohort of 2089 patients.  Clinical 

information was not available for 1 patient, leaving a final cohort of 2088 patients.  

Characteristics of this patient group can be found in Table 6.1.         

 

The mean coverage of identified variants was 1594x (range 51-5666x). 

 

6.2.3 Clinical Follow-up 

Follow-up BM assessments were performed as clinically indicated by the referring 

clinician and these samples were also processed according to gold standard 

techniques with subsequent new diagnoses recorded.  Targeted sequencing was 

performed in parallel. 

Survival data were available for all patients and censored on the date of retrieval 

(04/06/2018).  Serial full blood count data was collected on 1272 patients directly 

from the referring hospital.  This included all full blood counts performed from the 

beginning of 2014 until the time of data collection. 
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* Sample taken at the discretion of the referring clinician 

 

Figure 6.1: Flowchart of cases referred for investigation of cytopenia 
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6.2.4 Statistical Analysis 

As previously described in Chapter 5, the impact of abnormalities on OS and risk of 

progression were estimated using Cox regression, and the lasso method was used 

for variable selection when performing multivariate analysis with results reported 

for the corresponding relaxed lasso model.  For the progression analysis, death was 

analysed as a competing risk using a simple 3-state markov multistate model (R 

library “msm”). 

  

The effect of mutations on longitudinal blood counts was again assessed using 

random effects models as described in Chapter 5 (section 5.2.5).  In contrast to the 

previous analysis, no restrictions were placed on the frequency of blood count 

measurements. 

 

6.3 Results 

 

6.3.1 Primary bone marrow diagnosis is made in only a minority of cases 

A total of 2088 patients were included in the final analysis and of these only 538 

had a confirmed diagnosis (26%; see Table 6.1 and Fig. 6.1).  The vast majority were 

diagnosed with a myeloid malignancy (449/538; 83%) with MDS being by far the 

most common diagnosis (370/449; 82%).  Of the remaining cases, an alternative 

malignant diagnosis was made on the bone marrow sample in 55 patients, which 

included mostly lymphoproliferative disorders or metastatic carcinoma.  Immune 

mediated causes for cytopenia were identified in 36 patients, including both 

aplastic anaemia and red cell aplasia.   
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Table 6.1: Characteristics of patients included in cohort 3 

Patient Characteristics  
No. of patients 2088 
Male:Female 1232:856 
Median Age (range) 72 (18-99) 
  
Final Diagnosis  
MDS 370 
Other Myeloid 79 
 AML  31 
 MDS/MPN 31 
 MPN 10 
 Other† 7 
Non-myeloid malignancy 54 
 Lymphoma/LPD 36 
 Non-haemopoietic 18 
Immune mediated 35 
Non-diagnostic 1550 
  
 MDS 

 
n=370 

Other Myeloid 
Malignancy 

n=79 
Non-Myeloid 
Malignancy 

n=54 
Immune 

Mediated 
n=35 

Non-
diagnostic 

n=1550 
      
Blood count parameters: Median (Range) 
Haemoglobin (g/L) 96 (49-152) 93 (70-128) 102 (48-161) 96.5(55-108) 113 (33.9-

174) 
White cell count (x10

9
/L) 3.8 (0.9-13.9) 6.00 (0.7-64.6) 4.55 (1-19.2) 3.1 (0.6-7.6) 4.9 (0-24.2) 

Platelets (x10
9
/L) 109 (0-484) 88 (12-894) 106.5 (8-401) 42.5 (0-425) 114 (0-764) 

Neutrophils (x10
9
/L) 1.89 (0.30-

9.19) 4.56 (0.33-
19.58) 2.53 (0.67-

10.02) 1.65 (0.50-
5.87) 2.89 (0.18-

19) 
      
Mutation Frequency: no. of patients (%) 
SF3B1 93 (25.1%) 11 (13.9%) 1 (1.9%) - 24 (1.5%) 
TET2 90 (24.3%) 22 (27.8%) 7 (13%) - 209 (13.5%) 
ASXL1 88 (23.8%) 24 (30.4%) 3 (5.6%) - 58 (3.7%) 
SRSF2 52 (14.1%) 12 (15.2%) 1 (1.9%) - 101 (6.5%) 
RUNX1 46 (12.4%) 6 (7.6%) - 1 (2.9%) 19 (1.2%) 
TP53 43 (11.6%) 8 (10.1%) 1 (1.9%) 1 (2.9%) 20 (1.3%) 
U2AF1 41 (11.1%) 8 (10.1%) 2 (3.7%) 1 (2.9%) 36 (2.3%) 
STAG2 39 (10.5% 9 (11.4%) - - 9 (0.6%) 
DNMT3A 36 (9.7%) 12 (15.2%) - 4 (11.4%) 83 (5.4%) 
IDH2 24 (6.5%) 6 (7.6%) - - 17 (1.1%) 
EZH2 22 (5.9%) 9 (11.4%) 1 (1.9%) - 11 (0.7%) 
ZRSR2 22 (5.9%) 2 (2.5%) - - 25 (1.6%) 
IDH1 12 (3.2%) 2 (2.5%) - - 12 (0.8%) 
CBL 9 (2.43%) 5 (6.33%) - - 10 (0.6%) 
SETBP1 8 (2.16%) 4 (5.1%) - - 4 (0.3%) 
BCOR 8 (2.2%) 5 (6.33%) 1 (1.9%)  14 (0.9%) 
NRAS 8 (2.2%) 6 (7.6%) - - 7 (0.4%) 
JAK2 4 (1.1%) 12 (15.2%) - - 6 (0.4%) 
STAT3 - - 7 (13%) - 12 (0.8%) 
 Abbreviations:  AML, acute myeloid leukaemia; MPN, myeloproliferative neoplasm; MDS, myelodysplastic syndrome; LPD, 

lymphoproliferative disorder 
† Myeloid malignancy, not further classifiable 
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6.3.2 The frequency of mutations correlates with the morphological diagnosis 

A somatic mutation was detected in 41% (865/2088) of samples referred for 

investigation of a cytopenia.  The presence of a mutation correlated strongly with 

the morphological diagnosis with ≥1 mutation being detected in 87% of those with 

a confirmed myeloid malignancy.  This increased to 91% when karyotypic 

abnormalities were included.  In those with a confirmed diagnosis of MDS, the 

spectrum of mutations mirrored that reported in the literature with SF3B1, TET2 

and ASXL1 being most frequently mutated (25%, 24%, 24% respectively; see Fig 

6.2A).  At 69% (38/55), those with unilineage dysplasia had a lower but still 

significant mutation frequency.  

Mutations were detected at a much lower frequency in patients with an alternative 

diagnosis.  In the 55 cases with a non-myeloid malignancy (see Table 6.1), 

mutations were detected in 35% of samples.  The majority of these were STAT3 

mutations associated with T-large granular lymphocytic leukaemia.  In contrast, a 

mutation was detected in only 7/35 patients with an immune mediated cause for 

the cytopenia and these were all isolated mutations, most commonly involving 

DNMT3A. 

 

Importantly, ≥1 mutation was detected in 28% of non-diagnostic cases (412/1496).  

Of those that harboured a mutation, the median number detected was 1 (range 1-

6), significantly lower than that detected in those diagnosed with MDS (median 2; 

range 1-6; p<0.0001).   Of note, the mutation spectrum differed from that seen in 

the MDS cohort, with TET2 being by far the most frequently mutated gene (47% of 

mutated cases), followed by SRSF2 (22%) and DNMT3A (19%).  Similar to cohort 2 

(see Chapter 5), SF3B1 was infrequently mutated in these cases, likely due to the 

strong correlation with ring sideroblasts (Papaemmanuil et al., 2011).  There were 

also significantly fewer high-risk mutations including RUNX1, STAG2 and TP53.  The 

median VAF for the mutations detected in the non-diagnostic group was 17.7% 

(range 5.1-94.7%) and this was also significantly lower than that identified in the 

MDS group (35.1%; range 5.1-100%; p<0.0001) (see Fig. 6.2C). 
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Figure 6.2. Characteristics of mutations detected in patient samples. (A) Comparison of 
mutations detected in those with MDS vs a non-diagnostic bone marrow sample vs 
unilineage dysplasia.  (B) Distribution of no. of mutations according to final diagnostic 
category.  (C) VAF distribution in MDS samples (red) vs those with a non-diagnostic bone 
marrow sample (blue).   
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6.3.3 The presence of somatic mutations correlates with overall survival     

To determine the clinical impact of somatic mutations, the presence of these was 

correlated with objective outcome measures including overall survival and blood 

count trajectories. 

 

The median overall survival for the total cohort was not reached with a median 

follow-up of 35 months (range 1-46 months).  There was, however, a distinctive 

decline in survival for these patients which correlated strongly with the final 

morphological diagnosis (see Fig 6.3).  This was by far the most pronounced in 

those with a confirmed myeloid malignancy; those without a malignant diagnosis 

having the best OS.   

 

There was also a strong correlation between OS and the mutation profile for the 

total cohort.  Survival was significantly reduced in those with a confirmed mutation 

(p<0.0001; Fig.6.4A).  This was shown to be progressively worse with each 

additional mutation, with 5 or more mutations impacting most on survival 

(Fig.6.4B).  The genes that impacted most on survival were assessed on both 

univariate and multivariate analysis, again using a relaxed lasso regression.  As 

expected, age had a significant impact on survival, and of those genes mutated in 

>1% of cases, ASXL1, BCOR, EZH2, IDH1/2, NRAS, RUNX1, SRSF2, STAG2, TP53, 

U2AF1 and ZRSR2 were all significantly associated with a worse overall survival on 

univariate analysis.  

 

Multivariate analysis was performed on all genes as well as restricted to those 

mutated in >1% of cases.  With each analysis the selected genes were entered into 

a lasso survival regression.  Taking the 1SE shrinkage parameter, age, ASXL1, BCOR, 

IDH2, RUNX1 and TP53 were consistently selected by the lasso and retained 

significance in a relaxed lasso regression (Table 6.2).   
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Table 6.2. Univariate and multivariate overall survival analyses for total cohort.  For 
multivariable regression, the lasso was used for variable selection and results reported for 
the corresponding relaxed lasso model. 

 

Variable Univariate Analysis Multivariate Analysis 

 HR, 95% CI HR, 95% CI 

Age 1.04(1.036-1.050) 1.04(1.03-1.05) 

ASXL1 2.82(2.32-3.43) 1.97(1.58-2.45) 

BCOR 3.48(2.28-5.33) 2.04(1.31-3.18) 

CBL 1.65(0.95-2.85) - 

DNMT3A 1.30(1.00-1.68) - 

EZH2 3.17(2.25-4.48) - 

IDH1 2.27(1.40-3.67) - 

IDH2 2.58(1.83-3.64) 1.87(1.32-2.66) 

JAK2 1.40(0.77-2.53) - 

KRAS 1.19(0.49-2.86) - 

NPM1 3.65(2.01-6.63) - 

NRAS 3.50(2.13-5.75) - 

RUNX1 3.28(2.49-4.32) 1.86(1.35-2.55) 

SETBP1 4.17(2.40-7.22) - 

SF3B1 1.05(0.79-1.40) - 

SRSF2 1.77(1.42-2.20) - 

STAG2 2.66(1.93-3.68) - 

STAT3 0.36(0.12-1.14) - 

TET2 1.20(1.00-1.44) - 

TP53 3.97(3.03-5.19) 3.92(2.99-5.14) 

U2AF1 1.83(1.36-2.46) - 

ZRSR2 1.52(1.02-2.26) - 

         HR – Hazard ratio; CI – Confidence Intervals 

 

          

 

159



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Overall survival according to final diagnosis. (A) Overall survival for total cohort from time of initial sample.  (B) Overall survival by final 
diagnosis on initial bone marrow sample. 
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Figure 6.4. Overall survival according to mutation number. (A) Overall survival in total cohort by the presence or absence of a mutation.   
(B) Overall survival in total cohort by no. of mutations detected at time of initial sample.    
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6.3.4 Somatic mutations impact on outcome even in the absence of a diagnosis 

To determine if somatic mutations also impact on survival in those without a 

confirmed diagnosis, this group was analysed separately.    As highlighted in section 

6.2.1, patients whose samples had unilineage dysplasia were not given a formal 

MDS diagnosis but are included in the analysis presented here.  In the first instance, 

overall survival was assessed with respect to morphological diagnosis.  Low risk 

MDS cases (<5% blasts) were used as a comparator arm as it is this group where 

diagnosis is particularly difficult and where the potential for overlap with the non-

diagnostic and unilineage dysplasia group is highest.   

 

Interestingly, cases with unilineage dysplasia had an outcome indistinguishable 

from non-diagnostic cases (p=0.914), both groups faring significantly better than 

those with MDS (p=0.0004) (Fig. 6.5).  For this reason, these cases were combined 

with the ND group for further analysis.     

 

 

                               

Figure 6.5. Overall survival by diagnosis comparing MDS vs a ND marrow vs unilineage 
dysplasia                
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Figure 6.6. Overall survival according to final diagnosis and mutation status. (A) Overall survival by diagnosis comparing low risk MDS vs. a non-
diagnostic bone marrow.  (B) Overall survival by diagnosis with non-diagnostic samples separated by the presence or absence of a mutation.   

p<0.0001 

p<0.0001 

p<0.0001 
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When combined, the ND patients had a significantly better OS than patients with 

MDS (p<0.0001) with the median survival not reached for ND cases and 968 days 

for those with MDS (95% CI; 783-1147).  However, this survival advantage changed 

significantly when mutational analysis was incorporated.  Those with a mutation 

(non-diagnostic mutated; NDmut) still had a significantly better OS than MDS 

patients (p<0.0001), though the survival was now significantly worse compared to 

those without a mutation (non-diagnostic unmutated; NDunmut) (p<0.0001) (Fig. 

6.6). 

 

With respect to individual mutations in ND samples, on a univariate analysis, ASXL1, 

BCOR, EZH2, IDH2, RUNX1, SRSF2 and TP53 mutations significantly impacted on 

survival amongst genes mutated in >10 cases.  Age had an overwhelming effect on 

the multivariate analysis, largely due to the lower mutation frequency in this group.  

To overcome this issue, multivariate analysis was performed initially without age as 

a variable.  By again using a lasso survival regression on both the complete 

spectrum of genes and those mutated in >1% of cases, similar results were 

obtained.  Mutations in ASXL1, BCOR, IDH2 and TP53 significantly impacted on 

survival with EZH2 having a borderline effect.  Once age was re-introduced, only 

ASXL1, BCOR and TP53 retained significance.  

 

Importantly, with the exception of EZH2, those mutations impacting on survival 

within the non-diagnostic group mirror those with prognostic relevance in the total 

cohort.  

 

This analysis confirms that even in the absence of a morphological diagnosis, 

somatic mutations confer an adverse outcome.    
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Table 6.3. Univariate and multivariate overall survival analyses for non-diagnostic 
samples.  For multivariable regression, the lasso was used for variable selection and results 
reported for the corresponding relaxed lasso model. 

 
 

Variable Univariate Analysis Multivariate Analysis 

 HR, 95% CI HR, 95% CI 

Age 1.04(1.03-1.05) - 

Mutation detected 1.59(1.32-1.93) - 

ASXL1 2.46(1.71-3.54) 2.15(1.46-3.16)* 

BCOR 3.78(2.02-7.08) 3.05(1.59-5.82)* 

CBL 0.65(0.16-2.60) - 

DNMT3A 1.24(0.86-1.80) - 

EZH2 2.77(1.31-5.85) 2.17(1.00-4.67) 

IDH1 1.80(0.81-4.04) - 

IDH2 1.95(1.01-3.76) 2.10(1.08-4.06) 

RUNX1 2.53(1.39-4.60) - 

SF3B1 1.29(0.67-2.50) - 

SRSF2 1.47(1.06-2.03) - 

STAT3 0.80(0.26-2.50) - 

TET2 1.15(0.88-1.49) - 

TP53 2.32(1.27-4.22) 2.49(1.37-4.53)* 

U2AF1 1.28(0.72-2.28) - 

ZRSR2 1.63(0.90-2.97) - 

          * Retained significance when age was re-introduced; HR – Hazard ratio; CI – Confidence 
Intervals 
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6.3.4 The presence of a mutation predicts for a subsequent diagnosis 

To determine whether mutational analysis on ND bone marrows can predict a 

subsequent myeloid diagnosis, follow-up samples were captured for all patients 

and any confirmed diagnoses recorded.  Out of the 1550 non-diagnostic patients, 

205 (13%) had a subsequent follow-up bone marrow biopsy, on the basis of which 

81 had a confirmed diagnosis.  The follow-up diagnosis was most commonly a 

myeloid malignancy (61/81; 75%), however a small number had a confirmed 

diagnosis of aplastic anaemia/red cell aplasia (12/81; 15%), lymphoma (5/81), 

metastatic carcinoma (2/81) and plasma cell myeloma (1/81).  Two patients had a 

subsequent diagnosis of AML made on a PB sample and 2 an MPN; all 4 were 

included in the myeloid malignancy group.  In addition, 8 patients had a diagnosis of 

lymphoma and 2 a non-haemopoietic malignancy made on a subsequent lymph 

node biopsy while 12 patients had a PNH clone detected in PB. 

 

Of those with a subsequent myeloid malignancy (in either PB or BM; n=65), 91% 

harboured a mutation at the time of the initial bone marrow biopsy.  The presence 

of a mutation was strongly predictive of a myeloid diagnosis with only 0.5% 

(6/1101) of NDunmut patients having a subsequent diagnosis versus 13% of NDmut 

patients (59/449; p<0.0001).  To determine whether certain mutations could 

predict a subsequent diagnosis, analysis was performed on those cases with a 

confirmed mutation (n=449).  The presence of a mutation at baseline was found to 

be strongly associated with a subsequent diagnosis, though this was rarely seen in 

those with an isolated mutation (1 vs >1 mutation; p<0.0001).  The clone size of the 

mutations detected in those that progressed also had a VAF that was comparable to 

MDS (median 31.2% vs 35.1%; p=0.14), again suggesting that increased clone size 

and acquisition of additional mutations is a requirement for overt dysplasia over 

time.  Using Cox regression, multivariate analysis confirmed that BCOR, EZH2, 

RUNX1 and SRSF2 mutations were most predictive for a subsequent confirmed 

diagnosis (see Table 6.4).  This appears to contrast with those mutations most 

strongly associated with overall survival.   
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Table 6.4. Univariate and multivariate progression analyses for non-diagnostic samples.  
For multivariable regression, the lasso was used for variable selection and results reported 
for the corresponding relaxed lasso model.   

 

 

HR – Hazard ratio; CI – Confidence Intervals; M - Male 

 

 

 

 

 

Variable Univariate Analysis Multivariate Analysis 

  Non-competing risk 
analysis 

With death as a 
competing risk 

 HR, 95% CI HR, 95% CI HR, 95% CI 

Age 0.99(0.97-1.02) - - 

Gender (M) 2.57(1.33-4.95) 3.83(0.99-3.80) 3.76(1.47-9.62) 

ASXL1 2.24(1.19-4.24) - - 

BCOR 5.62(3.43-22.03) 5.12(2.12-12.38) 6.17(2.34-16.3) 

CBL 0.67(0.09-4.84) - - 

DNMT3A 0.45(0.19-1.04) - - 

EZH2 4.63(1.85-11.58) 6.13(2.30-16.34) 5.84(1.94-17.6) 

IDH1 2.72(0.99-7.52) - - 

IDH2 0.42(0.06-3.06) - - 

RUNX1 5.26(2.57-10.7) 2.69(1.27-5.69) 3.19(1.48-6.85) 

SF3B1 0.94(0.30-3.02) - - 

SRSF2 3.26(1.96-5.45) 3.32(1.94-5.69) 3.69(2.07-6.59) 

STAT3 0.56(0.08-4.02) - - 

TET2 1.24(0.74-2.07) - - 

TP53 1.31(0.41-4.17) - - 

U2AF1 1.64(0.75-3.62) - - 

ZRSR2 0.95(0.30-3.02) - - 
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6.3.5 Somatic mutations correlate with blood count parameters and trajectories 

To further assess the clinical impact of somatic mutations in those with ND bone 

marrows, longitudinal blood counts were analysed on a subgroup of patients 

(n=878).  Similar to cohort 2 (see Chapter 5), this analysis was performed using 

random effects models and the results are summarised in Table 6.5.    

 

Patients with a confirmed mutation had a significantly lower WCC and platelet 

count, with platelets showing a divergent trajectory over time when compared to 

those without a mutation.  While there was no significant difference in Hb levels at 

baseline between those with and without a mutation, Hb levels in NDmut patients 

decreased significantly over time.  Of note, the red cell distribution width was also 

significantly higher in those with a confirmed mutation, a phenomenon also 

reported in age related clonal haematopoiesis.  This effect persisted over the time 

period measured and followed a divergent trajectory.  

 

With respect to individual mutations, analysis was restricted to those genes 

mutated in greater than 10 individuals.  ASXL1 and DNMT3A were associated with 

an increasing WCC over time while a falling platelet count was noted in those with a 

U2AF1 mutation relative to wild type patients.  Haemoglobin was also noted to 

decrease significantly in those with either ASXL1 or TET2 mutations versus non-

mutated cases.  Patients with TET2, TP53 or U2AF1 had a significantly lower WCC 

versus non-mutated cases.  Regarding RDW, only ASXL1 mutations were associated 

with an increasing level over time. 

 

This analysis provides further objective evidence of the clinical impact of somatic 

mutations in those without a confirmed haematological malignancy. 
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Table 6.5. Effect of mutations on longitudinal blood counts, assessed using random effects models 

Abbreviations:  Hb, haemoglobin;  WCC, white cell count;  Plts, platelets,  Neut, neutrophils;  Mon, monocytes;  Eos, eosinophils;  Bas, basophils;  MCV, mean cell volume;  MCH, mean cell haemoglobin;  RBC, red 
blood cell count;  RDW, red cell distribution width 

 
+ + Y statistically significant positive difference with diverging trajectories that persist over the time of observation. 

─ ─ Y statistically significant negative difference with diverging trajectories that persist over the time of observation 

─ + Y statistically significant negative difference with converging trajectories that persist over the time of observation. 

+ ─ Y statistically significant positive difference with converging trajectories that persist over the time of observation. 

0 ─ Y no overall difference but a statistically significant decrease in the mutated relative to the non-mutated 

0 + Y no overall difference but a statistically significant increase in the mutated relative to the non-mutated 

+ 0 Y    statistically significant positive difference with no convergence/divergence of trajectories. 

─ 0 Y     statistically significant negative difference with no convergence/divergence of trajectories. 

 Hb WCC Plts Neut Mon Eos Bas MCV MCH RBC RDW 

Any 
mutation 

0 ─ Y ─ 0 Y ─ ─ Y ─ 0 Y + 0 Y ─ ─ Y ─ 0 Y + ─ Y + ─ Y ─ 0 Y + + Y 

ASXL1 0 ─ Y + + Y No effect 0 + Y 0 + Y ─ ─ Y No effect No effect No effect 0 ─ Y 0 + Y 

DNMT3A + 0 Y + + Y + ─ Y + 0 Y + 0 Y No effect 0 + Y No effect 0 + Y + ─ Y ─ 0 Y 

IDH2 + 0 Y No effect + ─ Y No effect No effect + + Y ─ 0 Y No effect No effect + ─ Y 0 ─ Y 

SF3B1 0 + Y No effect + 0 Y No effect No effect No effect No effect + + Y + + Y No effect ─ 0 Y 

SRSF2 ─ + Y No effect ─ + Y + 0 Y + 0 Y No effect No effect No effect 0 ─ Y ─ + Y ─ 0 Y 

TET2 0 ─ Y ─ 0 Y + ─ Y No effect No effect No effect No effect 0 ─ Y 0 ─ Y No effect No effect 

TP53 0 + Y ─ 0 Y No effect ─ + Y ─ 0 Y ─ + Y No effect ─ + Y ─ + Y 0 + Y No effect 

U2AF1 No effect ─ 0 Y ─ ─ Y No effect + 0 Y No effect No effect No effect No effect + 0 Y No effect 

ZRSR2 No effect No effect + ─ Y No effect No effect No effect No effect ─ 0 Y ─ 0 Y No effect ─ 0 Y 
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6.4 Discussion 

Analysis of cohort 6 has confirmed that somatic mutations are identified at high 

frequency in patients referred for investigation of cytopenia.  This includes almost a 

third of cases without a confirmed morphological diagnosis.  Importantly, mutations 

in the latter group of patients show some overlap with diagnostic samples, however 

distinct differences were also noted.  The median number of mutations was lower 

in the non-diagnostic group and the clone size of these mutations was also 

significantly lower, particularly in those without a recorded diagnosis in HMDS on 

follow-up.  In the non-diagnostic group, it was very rare for a patient with an 

isolated mutation at baseline to have a subsequent diagnosis.  However, the 

likelihood of progression increased with each additional mutation and those that 

did progress had a median VAF comparable to MDS patients.  This is consistent with 

the findings from cohort 1, when it was postulated that >1 mutation and >20% VAF 

were a requirement for a confirmed diagnosis of MDS.  This is also similar to that 

reported in aging healthy individuals in whom a mean VAF of 25.2% was noted in 

those that developed a haematological malignancy (Jaiswal et al., 2014).  Similarly, 

a study by Malcovati et al showed that >1 mutation had a very high positive 

predictive value for a myeloid diagnosis, while a VAF of 8.7% had the highest 

discriminatory ability (Malcovati et al., 2017).  It should be noted however, that the 

latter study, which predominantly analysed the predictive value of peripheral blood 

taken alongside the bone marrow specimen, was not longitudinal, and only 

included a small number of non-diagnostic bone marrow samples (n=154). 

 

On further analysis, certain mutations were shown to be associated with a 

subsequent confirmed diagnosis including BCOR, EZH2, RUNX1 and SRSF2.  It is 

noted however, that follow-up bone marrow biopsies in the present study were at 

the discretion of the referring clinician, and hence the impact of selection bias is 

difficult to judge.  It is possible that other cases would have been diagnosed had 

they undergone further sampling and it is possible these mutations are associated 

with more profound cytopenias leading clinicians to re-investigate at an earlier 

timepoint.  Unfortunately, there were insufficient numbers to investigate this on 
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the longitudinal blood count analysis.  It is also possible that these mutations are 

more strongly associated with morphological dysplasia over time, hence leading to 

a confirmed diagnosis, though this would be challenging to investigate.  Of note, a 

similar spectrum of genes was found to be predictive of a myeloid diagnosis by 

Malcovati and colleagues, who identified a highly specific mutation pattern which 

included spliceosome mutations, and co-mutation patterns involving TET2, ASXL1 

and DNMT3A with any of RUNX1, EZH2, CBL, BCOR, CUX1, TP53 or IDH1/IDH2 

(Malcovati et al., 2017).  ICUS patients with these mutations had a significantly 

higher risk of developing a myeloid malignancy.  When applied to cohort 3, this 

reported mutation pattern was also highly predictive of a subsequent diagnosis 

(p<0.0001), although there is significant overlap between the predictive mutations 

reported by Malcovati et al and those identified in cohort 6.  

 

While these mutations predicted for a subsequent diagnosis, a relatively distinct set 

of mutations were associated with poor overall survival.  Of note, the presence of a 

mutation had a significant impact on survival in the ND group, though these 

patients still had a significantly better survival than those with a confirmed MDS 

diagnosis.  On multivariate analysis mutations in ASXL1, BCOR, IDH2 and TP53 had 

the greatest impact on survival; but it is unclear how these mutations may have 

contributed to patient mortality, particularly in the absence of cause of death 

information.  Irrespective of the cause of death, analysis from this cohort suggests 

there is a detrimental effect of somatic mutations even in the absence of a 

diagnosis.   

 

On analysis of longitudinal blood counts, the presence of a mutation impacted 

significantly on individual parameters, in the absence of a confirmed 

haematological malignancy, with progressive cytopenias over time.  It is therefore 

essential that these patients are identified and monitored for the potential risks 

associated with progressive changes in blood counts.    

Of interest, in aging healthy individuals, patients with mutations were found to 

have a higher red cell distribution width (RDW) and those with an RDW above the 

normal range along with a mutation had a markedly increased risk of death (Jaiswal 
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et al., 2014).  The authors postulated that the increased RDW could be a marker of 

disturbed haematopoiesis, which could be related to the increased cumulative 

incidence of coronary heart disease and ischaemic stroke.  Furthermore, increased 

RDW has been shown to correlate with AML risk in healthy individuals and 

increased levels can be present several years before an AML diagnosis (Abelson et 

al., 2018).  Indeed, this parameter has been incorporated into an AML prediction 

model (Abelson et al., 2018).    

 

Analysis of cohort 6 also showed an association between mutations and an 

increasing RDW which persisted over time with a divergent trajectory.  On further 

analysis of individual genes, only ASXL1 was associated with an increasing level.  

Data from this analysis would therefore support the theory that RDW may be a 

marker of disturbed haematopoiesis resulting from the underlying clone.  This may 

also have contributed to the increased mortality in this patient group, similar to 

that reported in healthy individuals. 

 

In summary, this analysis has provided key information regarding the mutational 

landscape in patients with unexplained cytopenia.  Mutations have been shown to 

impact significantly on both blood count parameters and overall survival even in the 

absence of a confirmed diagnosis and these patients require close clinical follow-up 

at a minimum.  While a proportion will be ultimately diagnosed with a myeloid 

malignancy, many succumb without a diagnosis and early detection and monitoring 

may provide an opportunity for intervention.  To focus genetic testing, it may be 

possible to triage samples using parameters such as RDW plus other baseline blood 

counts.  It may also be possible to use alternative techniques, including flow 

cytometry as used in those with a monocytosis; further analysis of this cohort using 

such techniques is underway.   
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CHAPTER 7: GENERAL DISCUSSION AND CONCLUSIONS 

The diagnosis of MDS and CMML remains heavily reliant on the morphological 

assessment of the bone marrow and this subjective approach has well recognized 

limitations.  The overall aim of this research was to investigate whether novel 

technologies could improve the diagnosis of these conditions, particularly in those 

with early disease who can be missed using current techniques.  Over the past 15-

20 years there have been significant advances in the field of molecular diagnostics 

with the introduction of array-based technologies and high throughput sequencing.  

This has led to an explosion of research into the underlying pathological 

mechanisms of all malignancies and the identification of numerous genetic 

abnormalities which are responsible for disease.  Due to the high frequency of 

somatic mutations in chronic myeloid malignancies, this research focused on the 

use of high throughput sequencing with the addition of array-based cytogenetics 

and flow cytometry for certain aspects of the work.  At the time this research 

commenced there was no published literature in this area, the findings from this 

thesis producing some of the earliest publications investigating these diagnostic 

approaches.  

 

To achieve the main aim of this research, a targeted high throughput sequencing 

panel was developed for use in the investigation of patients with suspected or 

confirmed myeloid malignancies.  This was ultimately developed for the Illumina 

MiSeq with the goal of implementing the procedures into routine clinical practice.  

As such, it was essential that the processes were not labour intensive, could be 

delivered in real time and were cost effective.  The panel, which was designed by 

myself in collaboration with Dr Paul Evans, targeted the 26 most commonly 

mutated genes across the myeloid malignancies.  This included MDS, MPN, 

MDS/MPN and AML.  By encompassing genes implicated across the spectrum of 

diseases, the panel could be used on a much larger patient cohort allowing for a 

high throughput of cases.    Since the initial design of this panel, further genes have 

been implicated in disease pathogenesis and there are now 40-50 genes reported 

to be recurrently mutated in MDS.  However, only a small number are mutated in 
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greater than 10% of patients, and the myeloid panel presented here focuses on the 

most commonly mutated; importantly including the 16 most frequently mutated 

seen genes in MDS.   By limiting the panel to these 26 genes, it is not only 

economically viable for routine use but has also identified mutations at a frequency 

comparable to much larger studies. 

 

This research also provided the framework for implementation of this panel into 

routine clinical practice in 2015, and HMDS was one of the first laboratories in the 

UK to offer this as a UKAS (UK accreditation scheme) accredited test.  To date, over 

12,000 samples have been sequenced for both routine use and research using this 

panel.   

 

7.1 Myeloid panel as a diagnostic tool 

The main aim of this research was to determine if new technologies could improve 

the diagnosis of chronic myeloid malignancies.  The initial analysis of cohort 1 

confirmed that mutations could be detected at a very high frequency in cytopenic 

patients who failed to meet diagnostic criteria but subsequently progressed to 

confirmed MDS/AML.  The mutation profile and clone size were similar to those of 

MDS and differed from that reported in healthy individuals.  In contrast, structural 

abnormalities, identified by SNP-array, were comparatively rare and more 

commonly acquired at the point of diagnosis.   This suggested that mutation 

analysis was the optimal tool to identify patients with clinically significant disease in 

the absence of morphological findings.   

 

This was further supported by the analyses of patients being investigated for either 

persistent monocytosis or cytopenia.  These studies confirmed a high frequency of 

mutations in patients without a confirmed diagnosis (57% in patients with a 

monocytosis, 28% in cytopenic patients); the presence of a mutation having clinical 

significance in these patients.  In those presenting with a monocytosis, patients had 

a similar mutation profile, immunophenotype, and outcome irrespective of 

whether a morphological diagnosis was made.  Importantly the presence of a 
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mutation had a significant impact on overall survival, with outcome being 

indistinguishable from those with CMML.  This suggests that patients who do not 

fulfil current diagnostic criteria but harbour a somatic mutation, should be 

managed similarly to those with a confirmed diagnosis.   

The findings were not however as clear cut in the cytopenic patient group.  While 

mutations impacted significantly on both blood count parameters and overall 

survival the mutation spectrum, number of mutations and VAF of those mutations 

differed between the ND patients and those with confirmed MDS.  The negative 

survival impact in the NDmut patients was also not as profound as that seen for MDS.  

This may simply reflect earlier stage disease, however further follow-up of this 

patient group is needed to determine the ultimate impact of mutation detection in 

the absence of morphological disease.   

 

Concern also remains regarding the detection of similar mutations in healthy aging 

individuals.  The data from this research would suggest that there are distinct 

differences between healthy individuals and those with clinically significant disease.  

The latter are far more likely to harbour more than 1 mutation, and the VAF or 

clone size of these mutations is invariably greater than 20%.  Caution must 

therefore be applied in patients with isolated low-level mutations in the absence of 

definitive morphological disease.  

 

To ensure that mutation analysis is applicable in the routine diagnostic service, it 

will be essential to triage samples and restrict testing to those with a high pre-test 

probability of detecting an abnormality.  With regards to patients presenting with a 

monocytosis, flow cytometry has shown potential as a screening tool while blood 

count parameters could be utilised in those with cytopenias.  Further work is 

needed to develop predictive tools and optimize patient testing.      

 

7.2 Myeloid panel as a prognostic tool 

The panel utilized in this research can also provide important prognostic 

information even in those without a confirmed WHO diagnosis.  In the analysis of 
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cohort 1, IDH2 and TP53 mutations were associated with a more rapid time to 

progression to AML/RAEB from the pre-diagnostic sample, while TP53 and the 

number of mutations were associated with a worse OS. 

 

Importantly mutations in both TP53 and IDH2 also had the greatest impact on 

survival in the ND patients in cohort 3, along with ASXL1, BCOR and EZH2.   In 

patients with unexplained cytopenia, the presence of a mutation resulted in a 

significantly worse survival compared to those without a demonstrable mutation.  

In patients investigated for a monocytosis, survival was also significantly worse 

even in the presence of an isolated mutation and those mutated patients without a 

confirmed diagnosis had an outcome comparable to CMML patients.   

This further validates the use of mutation analysis in the investigation of patients 

with either a monocytosis or cytopenias and has the potential to identify high risk 

patients much earlier in the natural history of their disease.  This may provide an 

increased window of opportunity which, in the future, could be used for early 

intervention to possibly change the disease course.       

 

7.3 Implications for routine practice 

This work has several potentially significant implications for routine practice.  With 

regards to the laboratory, this could significantly increase the number of samples 

referred for investigation of both cytopenias and monocytosis.  To date, only those 

with a high pre-test probability of disease are referred for investigation; however, 

this is likely to increase as knowledge of the clinical impact of mutation detection 

grows.   

As such testing becomes increasingly feasible in routine laboratories, it is essential 

that procedures are standardized, not only with respect to panel design but also in 

respect to variant filtering and annotation.  The latter is particularly relevant in the 

absence of morphological disease, when the presence of a mutation is the only 

measure of disease.   

To date researchers have applied their own criteria for variant annotation and as a 

result both somatic and germline databases have become extensively contaminated 
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with misplaced variants.  Hence, in recognition of the fact that a high level of 

experience is needed to both analyse and interpret such data a concerted effort 

both nationally and internationally to optimize databases and standardize reporting 

processes is now underway. 

 

In the UK, NHS England have recently reconfigured genomics services across 

England with the goal of making standardized genomic testing available to 

everyone.  This strategy will hopefully provide a national platform to standardize all 

elements of laboratory practice and provide guidance on analysis and 

interpretation of high throughput sequencing data. 

 

With respect to clinical work, the ability to detect increasing numbers of patients 

with mutations will significantly increase the numbers of patients requiring follow-

up in haematology clinics.  While it is essential that these patients are monitored, 

there is still uncertainty as to what these mutations mean in certain clinical 

situations.  CHIP/CCUS clinics have already been established in large centres in the 

US and this is also being considered in the UK as patient numbers increase.  These 

clinics will require expertise in the area of genomics and will need to be suitably 

resourced.  This will become increasingly important as early intervention is 

considered in this patient group.   

 

It will also be essential that all practicing clinicians and doctors in training are 

educated regarding genomic testing and the interpretation of the results.  This 

information will be increasingly fed back to local haematologists and it is essential 

that this information is consistently and reliably fed back to patients.   

     

7.4 Future Work 

While this research has provided extensive insight into the genetic landscape of 

patients with both monocytosis and cytopenia, further work is needed.  In the first 

instance, further analysis will be performed on cohort 3 in preparation for 
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publication.  This will include the incorporation of flow cytometry data, and the 

development of predictive tools for triaging samples and predicting outcomes. 

The follow-up of patients in both cohort 2 and 3 is relatively short, and future 

reanalysis should provide additional information on the long-term clinical impact of 

somatic mutations.  This follow-up analysis, which is planned for both 5 years and 

10 years from the date of the last sample, will include updated survival and any 

subsequent diagnoses.    

   

The current myeloid panel is small and this has its limitations.  A larger panel 

encompassing less frequently mutated genes would expand on the research to date 

and potentially provide additional key diagnostic and prognostic information.  To 

investigate these less frequently mutated genes would however require much 

larger patient cohorts with long clinical follow-up.  In HMDS, a large pan-haemonc 

panel has been developed encompassing 238 genes implicated across the spectrum 

of haematological malignancies.  This panel also includes a copy number back bone 

which will allow copy number changes to be detected alongside somatic mutations.  

This panel will provide a more extensive platform to further investigate cytopenic 

patients.  Providing funding can be acquired, samples included in this research will 

be considered for resequencing alongside the analysis of new samples referred for 

investigation.  It is likely that our definitions of myeloid malignancy will change as 

knowledge of underlying disease pathogenesis increases.  Further research using 

large unselected patient cohorts such as those utilized in this research should aid in 

the re-classification of these disorders. 

 

It is also likely, as part of NHS England’s genomic strategy, that whole genome 

sequencing will become increasingly available.  This will provide an even greater 

wealth of knowledge for this patient group.  It will, however, also lead to increasing 

numbers of patients in whom CHIP mutations are detected, not only in those with 

suspected haematological malignancies but also in the solid tumour group and this 

needs to be considered when targeting future populations.    
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7.5 Final Conclusions 

In conclusion, this research has provided valuable information regarding the 

diagnostic potential of high throughput sequencing in patients with suspected MDS 

and CMML.  This will help refine the diagnostic criteria for these diseases, 

potentially providing an opportunity for early intervention in high risk patients.  This 

will, however, impact significantly on laboratory and clinical work requiring 

standardization and extensive resourcing.  Further large studies will be needed to 

allow molecular classification of these diseases.    
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A Research Ethics Committee established by the Health Research Authority

North East - York Research Ethics Committee 
Jarrow Business Centre 

Viking Business Park 
Rolling Mill Road 

Jarrow, Tyne & Wear 
NE32 3DT 

Telephone: 0207 104 8085 
24 March 2016 

Dr Catherine Cargo 
Consultant Haematologist 
Leeds Teaching Hospitals NHS Trust 
Haematological Malignancy Diagnostic Service 
St James's Institute of Oncology 
Beckett Street, Leeds 
LS9 7TF 

Dear Dr Cargo 

Study title: Development of laboratory techniques to improve the 
diagnosis of patients with myeloid malignancies 

REC reference: 16/NE/0105 

IRAS project ID: 190526 

The Proportionate Review Sub-committee of the North East - York Research Ethics Committee 
reviewed the above application in correspondence. 

We plan to publish your research summary wording for the above study on the HRA website, 
together with your contact details. Publication will be no earlier than three months from the date of 
this favourable opinion letter.  The expectation is that this information will be published for all 
studies that receive an ethical opinion but should you wish to provide a substitute contact point, 
wish to make a request to defer, or require further information, please contact the REC Manager 
Miss Kathryn Murray, nrescommittee.northeast-york@nhs.net. Under very limited circumstances 
(e.g. for student research which has received an unfavourable opinion), it may be possible to 
grant an exemption to the publication of the study.  

Ethical opinion 

On behalf of the Committee, the sub-committee gave a favourable ethical opinion of the above 
research on the basis described in the application form, protocol and supporting documentation, 
subject to the conditions specified below. 

Conditions of the favourable opinion 

The REC favourable opinion is subject to the following conditions being met prior to the start of the 
study. 
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A Research Ethics Committee established by the Health Research Authority 
 

Management permission must be obtained from each host organisation prior to the start of the 
study at the site concerned. 

 

Management permission should be sought from all NHS organisations involved in the study in 
accordance with NHS research governance arrangements. Each NHS organisation must confirm 
through the signing of agreements and/or other documents that it has given permission for the 
research to proceed (except where explicitly specified otherwise). 
 

Guidance on applying for HRA Approval (England)/ NHS permission for research is available in 
the Integrated Research Application System, www.hra.nhs.uk or at http://www.rdforum.nhs.uk.  
 

Where a NHS organisation’s role in the study is limited to identifying and referring potential 
participants to research sites (“participant identification centre”), guidance should be sought from 
the R&D office on the information it requires to give permission for this activity. 
 
For non-NHS sites, site management permission should be obtained in accordance with the 
procedures of the relevant host organisation. 
 
Sponsors are not required to notify the Committee of management permissions from host 
organisations. 

 

Registration of Clinical Trials 
 
All clinical trials (defined as the first four categories on the IRAS filter page) must be registered on 
a publicly accessible database. This should be before the first participant is recruited but no later 
than 6 weeks after recruitment of the first participant. 
  
There is no requirement to separately notify the REC but you should do so at the earliest 
opportunity e.g. when submitting an amendment.  We will audit the registration details as part of 
the annual progress reporting process. 
  
To ensure transparency in research, we strongly recommend that all research is registered but for 
non-clinical trials this is not currently mandatory. 
  
If a sponsor wishes to request a deferral for study registration within the required timeframe, they 
should contact hra.studyregistration@nhs.net. The expectation is that all clinical trials will be 
registered, however, in exceptional circumstances non registration may be permissible with prior 
agreement from the HRA. Guidance on where to register is provided on the HRA website.  
 
It is the responsibility of the sponsor to ensure that all the conditions are complied with 
before the start of the study or its initiation at a particular site (as applicable). 
 

 

Ethical review of research sites 
 
The favourable opinion applies to all NHS sites taking part in the study, subject to management 
permission being obtained from the NHS/HSC R&D office prior to the start of the study (see 
“Conditions of the favourable opinion”). 
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Approved documents 

 

The documents reviewed and approved were: 
 
Document   Version   Date   
REC Application Form [REC_Form_11032016]    11 March 2016  
Research protocol or project proposal [Study Protocol ]  v1.3  09 March 2016  
Research protocol or project proposal [Study Protocol ]  v1.3  09 March 2016  
Summary CV for Chief Investigator (CI) [CV for Chief Investigator]    07 March 2016  
Summary CV for supervisor (student research) [Supervisor CV]    07 March 2016  
 
Membership of the Proportionate Review Sub-Committee 

 

The members of the Sub-Committee who took part in the review are listed on the attached sheet. 
 

Statement of compliance  
 

The Committee is constituted in accordance with the Governance Arrangements for Research 
Ethics Committees and complies fully with the Standard Operating Procedures for Research 
Ethics Committees in the UK. 
 

After ethical review 
 

Reporting requirements 
 

The attached document “After ethical review – guidance for researchers” gives detailed guidance 
on reporting requirements for studies with a favourable opinion, including: 
 

 Notifying substantial amendments 
 Adding new sites and investigators 
 Notification of serious breaches of the protocol 
 Progress and safety reports 
 Notifying the end of the study 

 

The HRA website also provides guidance on these topics, which is updated in the light of changes 
in reporting requirements or procedures. 
 
User Feedback 
 
The Health Research Authority is continually striving to provide a high quality service to all 
applicants and sponsors. You are invited to give your view of the service you have received and 
the application procedure. If you wish to make your views known please use the feedback form  
available on the HRA website: 
http://www.hra.nhs.uk/about-the-hra/governance/quality-assurance/    
 
 
 
 
HRA Training 
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We are pleased to welcome researchers and R&D staff at our training days – see details at 
http://www.hra.nhs.uk/hra-training/   
 
With the Committee’s best wishes for the success of this project. 
 
16/NE/0105 Please quote this number on all correspondence 

 
Yours sincerely 
 

pp.  
Mr Chris Turnock 
Chair 
 

Email: nrescommittee.northeast-york@nhs.net 
 

 

Enclosures: List of names and professions of members who took part in the review  
 

“After ethical review – guidance for researchers” [SL-AR2] 
 

Copy to: Ms Anne Gowing, Leeds Teaching Hospitals NHS Trust 
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North East - York Research Ethics Committee 

 

Attendance at PRS Sub-Committee of the REC meeting in Correspondence  
 

  
Committee Members:  
 
Name   Profession   Present    Notes   
Dr Mary Connor  Coaching & Mentoring Consultant  Yes     
Mr Chris Turnock (Chair) Head of Technology Enhanced Learning   Yes     
Ms Lorraine Wright  Senior Research Nurse  Yes     

  
Also in attendance:  
 
Name   Position (or reason for attending)   
Miss Kathryn Murray  REC Manager  
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Appendix 8.2 Fluidigm and MiSeq Laboratory Protocol 
 
IN THE PCR LABORATORY 
Priming the Access array 

a. Inject control line fluid in both accumulators of 
the IFC.  

b. Use one syringe for each accumulator. Add 500 
µl of 1X Access Array Harvest Solution to the 
H1, H2, and H3 wells on the IFC.  

c. Add 500 µl of 1X Access Array Hydration 
Reagent v2 to the H4 well on the IFC.  

d. Remove the blue protective film from the bottom 
of the IFC.  

e. Turn on the IFC Controller AX in the Pre-PCR 
using the on/off switch on the back of the 
machine. 

f. Click on Eject to move the tray out of the IFC Controller AX. 
g. Place the IFC onto the tray by aligning the notched corner of the IFC to the A1 mark.  
h. Press Load Chip to register the barcode of the IFC and activate the script selection. 
i. Select Prime (151x) and login as a User. 
j. Click on Run Script to prime the IFC Access Array (Run time = 6 minutes). 
k. Once the script is complete, press Eject to remove the IFC. 
 

Sample preparation 
a. Reaction mix required for 48 samples.        Volume 

 10X FastStart High Fidelity Reaction Buffer without MgCl2 45µl 
 MgCl2         81 µl 

DMSO         22.5µl 
10 mM PCR Grade Nucleotide Mix     9µl 
5 U/µL FastStart High Fidelity Enzyme Blend   4.5µl 
20X Access Array Loading Reagent     22.5µl 
PCR Certified Water       176 µl 
 

b. Vortex sample Pre-Mix for 20 seconds. 
c. Add 40 µl of sample Pre-Mix into column 7 

(A7 – H7) of a 96-well PCR plate. 
d. Transfer 5 µl of sample Pre-Mix from 

column 7 into columns 1-6 using a multi-
channel pipette.  

e. Save remaining Pre-Mix. 
f. Add 1.25 µl of DNA sample from the 

created DNA plate into columns 1-6 of the 
same 96-well PCR plate.  

g. Cover the plate with an adhesive seal. 
h. Briefly vortex and centrifuge the sample mix 

plate. 
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Sample loading onto the 48:48 access array 
a. All the 48 primer solutions are in a 96-well PCR plate (columns 1-6). Different

primers plates are used for lymphoid and myeloid runs. Briefly vortex and centrifuge
the primer plate. Add 4.3 µl primer solution into each of the primer inlets. The
primers from column 1 of the primer plates should be added to the primer inlets (right
side of the IFC) shown at step 1. Primers from column 2 into the inlets of step 2, etc.
While pipetting, do not go past the first stop on the pipette. Doing so may introduce
air bubbles into the inlets.

b. Add 4.3 µl of each sample mix into the Sample Inlets (left side of the IFC) using the
same pipetting scheme as shown in the previous step. While pipetting, do not go past
the first stop on the pipette. Doing so may introduce air bubbles into the inlets.

c. Use a magnifying glass to make sure there are no air bubbles near the middle dot in
both the Sample and Primer Inlets.

d. Press Eject to move the tray out of the IFC Controller AX.
e. Place the IFC onto the tray by aligning the notched corner of the IFC to the A1 mark.
f. Press Load Chip to register the barcode of the IFC and activate the script selection.
g. Select Load Mix (151x) and login as a User. Click on Run Script (run time = 1

hour).
h. Once the script is complete, press Eject to remove the IFC.

Click on the Logout symbol at the bottom right of the screen followed by Log off and turn 
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off the IFC Controller AX. 
 
Thermal cycling on the FC1™ Cycler 

a. Turn on the FC1™ Cycler in the Pre-PCR using the on/off switch on the back of the 
machine. 

b. Click on Start > Login > User > Start. 
c. Open the lid and transfer the IFC access array onto the FC1™ Cycler. Close the lid. 
d. Click on Continue and choose protocol AA 48x48 Standard v1 (run time = 2 hours) 

and click on Run. 
e. Once the script is complete, Press OK remove the IFC out of the FC1™ Cycler. 

 
Click on the Logout symbol at the bottom right of the screen followed by Log off and turn 
off the FC1™ Cycler. 
 
 
 
 

48:48 standard Thermal Cycling Programme  
STEP 1 TEMP TIME STEP2 TEMP TIME STEP3 TEMP TIME STEP4 TEMP TIME 
FIRST 
CYCLE 

50 120sec 2nd 
CYCLE 

70 20 min 3rd cycle 95° 10min 1st PCR 
CYCLES 

95 
60 
72 

15 secs 
30 secs 
60 secs 

    
    

1x 
 

  1x   1x   10x   

STEP 5 TEMP TIME STEP 6 TEMP TIME STEP 7 TEMP TIME STEP 8 TEMP TIME 
1st C0t 
cycle 

50 15sec 2nd PCR 
CYCLE 

95 15secs 2nd C0t 
cycle 

50 
80 
60 

15sec 
30sec 
30sec 

3rd PCR 
CYCLE 

95 
60  
72 

15secs 
30 secs 
60secs 

80 30sec 60  30 secs 
60 30sec 72 60secs 

2x 
 

72 60sec 8x   2x 
 

72 60sec 8x   

STEP 9 TEMP TIME STEP 10 TEMP TIME STEP 11 TEMP TIME    
3rd C0t 
cycle 

50 15sec Ext 72 3 min Hold 4° Hold    
80 30sec   
60 30sec   

5x 
 

72 60sec          

 
IN THE POST PCR LABORATORY 
Harvesting the sample libraries 

a. Move Access Array IFC into the Post-PCR laboratory. 
b. Remove remaining fluids from the H1-H4 wells. 
c. Add 600 µl of 1X Access Array Harvest Solution into wells H1-H4. 
d. Add 3 µl of 1X Access Array Harvest Solution into each of the Sample Inlets on the 

IFC. 
e. Turn on the IFC Controller AX in the Post-PCR using the on/off switch on the back of 

the machine. 
f. Click on Eject to move the tray out of the IFC Controller AX. 
g. Place the IFC onto the tray by aligning the notched corner of the IFC to the A1 mark. 
h. Press Load Chip to register the barcode of the IFC and activate the script selection. 
i. Select Harvest v5 (151x) > User > Run Script (Run time = 1 hour). 
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Sample barcoding 
a. In the Pre-PCR laboratory, prepare a new Sample Pre-Mix using the table below.

Vortex the Pre-Mix.
b. Barcoding reaction mix required for 48 samples.   Volume 

10X FastStart High Fidelity Reaction Buffer without MgCl2 120µl 
  25mM MgCl2         216µl 
DMSO  60µl 
10 mM PCR Grade Nucleotide Mix  24µl 
5 U/µL FastStart High Fidelity Enzyme Blend 12µl 

PCR Certified Water   468µl 

c. Add 102 µl of sample Pre-Mix into column 8 (A8 – H8) of a clean labelled 96-well
PCR plate.

d. Transfer 15 µl of sample Pre-Mix from column 8 into columns 2-7 using a multi-
channel pipette. Leave column 1 empty to try to prevent evaporation.

e. There are 8 different sets of barcodes available in four 96-well PCR plates (as shown
below). Each set of barcodes should be used before starting with the first set of
barcodes again, i.e. if the previous run used barcodes 97-144 then barcodes 145-192
should be used next.

Plate Columns (1-6) Columns (7-12) 
A1 1-48 49-96
A2 97-144 145-192
A3 193-240 241-288
A4 289-336 337-384

f. Add 4 µl of all 48 barcode libraries to the wells with 15 µl of sample Pre-Mix. When
the barcodes in columns 1-6 are used, the seal should only be partial removed and
then re-used. The seal should be completely removed when using barcodes in
columns 7-12 and a new clear plate seal should be applied.

This is a sample transfer step and the tube/plate alignment must be checked and signed 
by a second person if it is a complex transfer. If it is tube to tube, tube to plate, or plate to 
plate, in the same position, then no 2nd check is needed providing the following safe transfer 
practices are adhered to. 
Safe transfer 
1. Split samples into small groups when transferring tube to tube.
2. Split tube samples into blocks of 8 to transfer into plates.
3. Put marker pen on plates where sample is added
4. Use a multichannel pipette where possible
5. Cap off rows once sample is added.

g. Seal the 96-well PCR plate with Pre-Mix and barcodes with a sticky clear plate seal
and transfer to the Post-PCR laboratory.
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h. In the Post-PCR, once the Harvest v5 script is complete, press Eject on the IFC 
Controller AX to remove the IFC.  

i. Click on the Logout symbol at the bottom right of the screen followed by Log off and 
turn off the IFC Controller AX. 

j. Use a clean labelled 96-well PCR plate and carefully transfer the harvested samples 
(10 µl) from the sample inlets into columns 1-6 using the same pipetting scheme as on 
page 3. Briefly centrifuge the plate. 
 
  
  
 
 
 
 
 
 
 
 
 
 

k. In the same PCR plate, add 99 µl of distilled water into all the wells of columns 7-12. 
Transfer 1 µl of the harvested PCR products to the wells with water, i.e. column 1 to 
7, column 2 to 8 etc. 

l. Carefully mix the diluted PCR products wells by pipetting. 
m. Add 1 µl of diluted harvested PCR products to the 96-well plate containing Sample 

Pre-Mix and the barcodes. 

This is a sample transfer step and the tube/plate alignment must be checked and signed 
by a second person if it is a complex transfer. If it is tube to tube, tube to plate, or plate to 
plate, in the same position, then no 2nd check is needed providing the following safe transfer 
practices are adhered to. 
Safe transfer 
1. Split samples into small groups when transferring tube to tube. 
2. Split tube samples into blocks of 8 to transfer into plates.  
3. Put marker pen on plates where sample is added  
4. Use a multichannel pipette where possible 
5. Cap off rows once sample is added.  
 

 
n. Seal the 96-well plate ready for PCR with a new clear plate seal. Briefly vortex and 

centrifuge. 
o. Seal the plate with harvested PCR products and diluted PCR products and store in the 

freezer. 
p. Transfer the 96-well PCR plate to the FISH Post-PCR laboratory. 
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q. Turn on the G-Storm thermal cycler by the on/off switch on the back in the top right 
corner. Open the thermal cycler by using the pressure dial on the lid.  

r. Place the 96-well PCR plate into the thermal cycler and close the lid. 
s. Click on Run Program > Fluidigm barcodes > Run selected. 
t. Enter the volume as 20 µl and click on OK (run time = 50 minutes). 
u. Whilst the thermal cycling. in the Post-PCR remove the Quantifluor dye and Ampure 

beads from the fridge and leave at room temperature for the duration of the PCR run. 
Ensure that the reagents are brought to room temperature in the dark. 

v. Remove a single reagent cartridge (part 1 of 2 of the 300v2 sequencing kit) from the 
freezer in the store room and place in a water bath in the post-PCR laboratory for 1 
hour with the volume of water just below the line on the reagent cartridge. 

 
Pooling of sample libraries 

a. Once the thermal cycler run has finished, remove the PCR plate and transfer back to 
the Post-PCR laboratory. 

b. Add 1 µl of each library (columns 1-6) into column 12 of the same PCR plate using a 
multi-channel pipette. 

c. Add 96 µl of 1x TE into well A12 and carefully mix by pipetting. 
d. Transfer solution from well A12 to B12 and carefully mix by pipetting. Transfer the 

solution from B12 to C12 and mix by pipetting. Repeat this step until all the libraries 
are mixed together in well H12. 

e. Transfer the mixed libraries from well H12 into a labelled 1.5ml Eppendorf tube 
called “Pool” (144 µl). 

 
Library purification. 

a. Add an equal volume of Ampure beads (144 µl) to the pooled library. 
b. Briefly vortex and incubate at room temperature for 10 minutes. 

While waiting, make up some of the following solutions: 
 
• 70% ethanol:           700 µl of 100% ethanol and 300 µl of distilled water 
• Sodium hydroxide:         490 µl of distilled water and 10 µl of 10M sodium 

hydroxide 
• Primers:            695 µl of hybridization buffer and 3.5 µl of each primer 

                       FL1 (2x): primers CS1 + CS2 
                       FL2 (1x): primers CS1 RC + CS2 RC 
 

c. Place the 1.5ml Eppendorf tube with Ampure beads and pooled library on a magnet 
for a few minutes. 

d. Discard the supernatant and add 180 µl of freshly made 70% ethanol. Vortex 
thoroughly and place the Eppendorf tube back on the magnet. Move the tube in 10-20 
degrees in either direction while on the magnet to create a nicely shaped pellet. 
Discard the supernatant and again add 180 µl of freshly made 70% ethanol. Vortex 
thoroughly and place the Eppendorf tube back on the magnet. Move the tube in 10-20 
degrees in either direction while on the magnet to create a nicely shaped pellet. 

e. Discard supernatant and centrifuge the Eppendorf tube for 15 seconds at 2990 RPM. 
Remove the remaining supernatant. 
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f. Open the Eppendorf tube while placed in the magnet and incubate at room
temperature for 10-15 minutes.

g. Meanwhile, make up Quantifluor dye by 995 µl of 1x TE and 5 µl of Quantifluor dye.
Keep in the dark.

Add 80 µl of 1x TE to the air dried Ampure beads and vortex thoroughly. Place the tube back 
on the magnet and transfer the supernatant to a clean 1.5ml Eppendorf tube labelled: 
“Myeloid or Lymphoid + #run + neat”. 

Library quantification 
a. Label six 0.5ml tubes with blank, 50 (2x), 1x, 2x and 5x.
b. Prepare the following tubes:

• (1x)  Blank: 100 µl of 1x TE 
• (2x)  50 standard: 95 µl of 1x TE and 5 µl of 2 ug/ml standard 
• (1x)  Library 1x: 99 µl of 1x TE and 1 µl of neat library 
• (1x)  Library 2x: 98 µl of 1x TE and 2 µl of neat library 
• (1x)  Library 5x: 95 µl of 1x TE and 5 µl of neat library 

c. Add 100 µl of Quantifluor dye to all tubes and vortex thoroughly.
d. Use HMDS SOP MH61 how to use the QuantiFluor Fluorometer.
e. Calculate the concentrations of each of the libraries. The values from each of the three

library samples will slightly differ from each other. Use the middle value as the actual
concentration of the library.

Library ng/µl ng/ml 
1x divide by 5 divide by 5 * 1000 
2x divide by 10 divide by 10 * 1000 
5x divide by 25 divide by 25 * 1000 

f. Open the EXCEL spreadsheet “MiSeq library - Multiplex protocol - conc calculator”
in location i:\molecular documents\papers & presentations\Fluidigm access array
information.

g. In the “Calculation” tab add the concentration of the library in ng/µl.
Note: The “2nM library” tab shows the required volumes to create a 2nM library. The
spreadsheet will always show a fixed volume of 5 µl for the library but for the actual
dilution use only 4.5 µl of library.

h. Label a 1.5ml Eppendorf tube with “Myeloid or Lymphoid + #run + 2mM”. Make the
2nM library using EB/Tween buffer and the EXCEL spreadsheet. After making the
library vortex thoroughly.

Note: To make the EB/Tween buffer, 1mL of EB buffer and 10µl 10% Tween

193

https://eqmssjio.leedsth.nhs.uk/eqms/Administrator/LoadDocADM.asp?ID=16783&Ext=True&CCID=1


i. Add 10 µl of the 2nM library and 10 µl of sodium hydroxide into a clean 1.5ml
Eppendorf tube labelled “20pM library”. Briefly vortex and incubate at room
temperature for 5 minutes.

j. Add 980 µl of hybridization buffer to the 20pM library and vortex thoroughly. The
library will now have a concentration of 20pM.

k. Add 350 µl of the 20pM library and 650 µl of hybridization buffer into a clean 1.5ml
Eppendorf tube labelled “7pM library”. Vortex thoroughly.

Running the MiSeq sequence platform 
Pre and post washes  

a. Prior to every sequence run a maintenance wash should be performed as per the
manufactures instructions

b. Following all sequence runs a post sequence wash should always be performed as per
the manufactures instructions.

Creating a sample plate and sheet on the MiSeq. 
a. Open the fluidigm spreadsheet in location i:\MiSeq\Myeloid\Fluidigm.
a. Open the DNA quantity worksheet that was made at the beginning of the procedure

and paste the HMDS numbers into the fluidigm spreadsheet. Save the file on a
portable USB hard drive.

b. Open IEM (Illumina Experiment Manager) on the MiSeq.
c. Click on Create New Sample Plate.
d. In the new screen add the following information followed by Next:

Sample Prep Kit Selection: Select the correct Fluidigm barcodes 
Unique plate name: MiSeq_Myeloid or Lymphoid_year_#run 
Index read:  1 

e. Click on the Plate tab and paste the sample sheet from the Fluidigm EXCEL sheet
(stored on the portable USB harddrive) into the plate view of the IEM software.

f. Click on Table (tab) > Apply default index layout > Finish > Save.
g. In the Illumina Experiment Manager, click on Create New Sample Sheet.
h. Click on MiSeq > Targeted resequencing > PCR amplicon > Next.
i. In the Workflow Parameters Screen fill in the following information followed by

Next:

Reagent Cartridge Barcode: On the reagent cartridge starting with “MS”. 
Sample Prep-Kit: Select correct Fluidigm barcodes 
Index reads:  1 
Experiment Name:  MiSeq_Myeloid or Lymphoid_year_#run 
Read type:  Paired End 
Cycle Read 1+2: 151 

Box 1: Tick 
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Box 2: Tick 
Box 3: Tick 
Box 4: Tick 

j. Unselect the Maximize button in the top right corner. 
k. Click Select Plate > Plate corresponding to your run (that was just created) > Open > 

Select All > Add Selected samples. 
l. On the right side of the screen, go to the “Nextera Manifest” column and click on the 

first empty row to select the manifest: Myeloid Panel Manifest NEW or 29.03.2016 
Lymphoid Panel. 

m. Click on the “Nextera Manifest” column and all rows will be selected. Right click on 
any of the rows and select Fill Down. Sample sheet status should now be valid. 

n. Click on Finish > Save > No and shut down the Illummina Experiment Manager. 
 

Perform a restart of the system by using Restart in the Windows Start menu. This will re-
establish the computer links between the software and the platform. 

Starting a MiSeq sequence run 
a. Open MCS (MiSeq Control Software) on the MiSeq instrument and click on 

Sequence > Next. The program will take you through the required steps to start the 
run. 

b. Take the MiSeq v2 reagent kit from the cold room and take out the flow-cell. 
c. Clean the flow-cell with distilled water and lint-free tissue. The imaging glass on the 

flow-cell should be completely clear. 
d. Place flow-cell in the MiSeq and a green tick will be visible on the screen. Click 

Next. 
e. Open the MiSeq door and push the white handle up (to remove the sipper) and take 

out the wash bottle.  Place the Incorporation buffer bottle (PR2), provided in the 
MiSeq v2 kit, in the correct position and push the white handle down. Another green 
tick should be visible on the screen and click Next. 

f. Mix the reagent cartridge by hand by turning it upside down 10 times. Pearce the seals 
of wells 17-20 with a 1000ml pipette tip. 

g. Transfer 600 µl of 7pM library into well 17. Transfer 680 µl of FL1 primers into well 
18 and 20. Transfer 600 µl of FL2 primers into well 19. 

h. Open the small white door on the MiSeq next to the PR2 bottle and take out the 
washing cartridge. Place the loaded reagent cartridge in the MiSeq and close both the 
white and black door. After the green tick click Next. 

i. The machine will now load the sample sheet and this may take a few minutes. Once 
the information is loaded on the screen click Next.  

j. On the new screen, green ticks will start to appear in front of the different parameters. 
The last green tick will take a few minutes to appear. Meanwhile, make notes of the 
reagent ID, PR2 bottle ID and Flow cell ID on your worksheet. Click Start run when 
all parameters are green. 
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Appendix 8.3 

GS Junior Emulsion PCR and Sequencing protocol 
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1 WORKFLOW 

The emulsion-based clonal amplification (emPCR amplification) of a DNA library sample 

involves 7 major steps, described in Figure 1. The method described in this manual is for the GS 

Junior Titanium Series of PCR products with bi-directional fusion primers (Lib-A). 

Approx. 
Time

1 - 2 h

3 – 4 h

Preparation of the Reagents and of the Emulsion Oil (Section 3.1)

Preparation of the Reagents

Preparation of the Mock Mix and Pre-Emulsion

Preparation of the Live Amplification Mix

DNA Library Capture (Section 3.2)

Emulsification (Section 3.3)

6 h

Amplification (Section 3.4)

Dispensing the Emulsions

Amplification Reaction

Bead Recovery (Section 3.5)

Vacuum-Assisted Emulsion Breaking Set Up

Emulsion Collection and Initial Washes

Bead Washes and Recovery

DNA Library Bead Enrichment (Section 3.6)

Preparation for Enrichment

Preparation of the Enrichment Beads

Enrichment of the DNA-Carrying Beads

Collection of the Enriched DNA Beads

Seq Primer Annealing (Section 3.7)

Figure 1: Workflow of the emPCR Amplification method for the GS Junior System 

2 BEFORE YOU BEGIN 

 Room temperature is +15 to +25°C. 

 When processing multiple emulsions, it is cost effective to use

the GS FLX Titanium MV emPCR Lib-A Kit, as it contains eight

emulsions. Refer to the emPCR Method Manual Lib-A, MV - GS 

Junior Titanium Series and to the TCB 010-002.01 to use this kit. 

In this case, the option to perform an enrichment titration is

available and the emulsification takes place in a TissueLyser,

which requires the GS FLX Titanium emPCR Shaker Adapter

MV. 

 To access the US power adaptor for the IKA Turrax, lift the part

insert from the Turrax box and look at the reverse side. The

adaptor is located in the reverse side of the part insert. 

The GS Junior Titanium emPCR Kit (Lib-A) is intended for a single emulsion, either of a single 

sample processed with the Amplicon library protocol or of multiple samples processed with the 

Amplicon library protocol using MIDs. The present manual describes the method to process 

one sample. 

2.1 Determining the Amount of Library to Use in emPCR Amplification 

For most Amplicon library samples, an input of 2 molecules of library DNA per Capture Bead 

will yield a bead enrichment between 5% and 20%, and will generate satisfactory sequencing 

results. 

When the % bead enrichment is above 20%, reduce the library input molecules 3-fold. 

When the % bead enrichment is below 5%, increase the library input molecules 3-fold. 

If the library yield can be predicted from past experience, one can use a pre-determined number 

of DNA molecules per bead. 
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3 PROCEDURE 

3.1 Preparation of the Reagents and of the Emulsion Oil 

3.1.1 Preparation of the Reagents 
 

1. Open the emPCR Reagents box and thaw the kit components at room temperature, 
except the Enzyme Mix and the PPiase tubes, which should be kept at -15°C to -25°C. 
Once thawed, vortex for 5 seconds. 

2. Vortex and heat the tube of Additive at 55ºC for 5 minutes to aid dissolving. If a 
precipitate persists, centrifuge the tube and use the supernatant. 

3. Spin all the kit components (including enzymes) in a bench top mini centrifuge for 10 
seconds. 

4. Return the enzymes to -15 to -25°C. Leave the other reagents at room temperature. 

 

3.1.2 Preparation of the Mock Mix and Pre-Emulsion 
 

1. Vortex vigorously the tube of emulsion oil for 10 seconds at maximum vortex speed, 
and pour the entire content (4 ml) into the Turrax stirring tube. 

2. Prepare 1x Mock Mix by adding 430 µl of Mock Mix to 1.72 ml of Molecular Biology 
Grade Water. Vortex to mix. 

3. Add 2.0 ml of 1x Mock Mix to the Turrax stirring tube containing the emulsion oil. 

4. Set the Ultra Turrax Tube Drive (UTTD) to 4000 rpm for 5 minutes. 
 

 

Lock the UTTD settings: Because the setting knob is sensitive, it is 

critical that the UTTD settings be locked before use. Refer to the 

manufacturer’s instructions to set and lock the settings of the UTTD. 

 
 

5. Place the stirring tube in the UTTD and start the UTTD to mix the emulsion. 

6. When finished, remove the stirring tube from the UTTD. 

 

3.1.3 Preparation of the Live Amp Mixes A and B 
 

1. Prepare the Live Amp Mix A and the Live Amp Mix B in two separate tubes, according 
to Table 1. Add the reagents in the order they are listed in the table. 

2. Vortex the Live Amp Mixes A and B for 5 seconds, and store them on ice. 
 

A: Live Amp Mix A 
 

Reagent Volume (μl) 

Mol. Bio. Grade Water 205 

Additive 260 

Amp Mix 135 

Amp Primer A 40 

Enzyme Mix 35 

PPiase 1 

Total 676 

 

B: Live Amp Mix B 
 

Reagent Volume (μl) 

Mol. Bio. Grade Water 205 

Additive 260 

Amp Mix 135 

Amp Primer B 40 

Enzyme Mix 35 

PPiase 1 

Total 676 

Table 1: Preparation of the Live Amp Mixes A and B 
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3.2 DNA Library Capture 

Capture Beads: 

 Do NOT mix Capture Beads A and B. 

 Only mix Capture Beads A with Live Amp Mix A and Capture

Beads B with Live Amp Mix B. 

1. Prepare 1x Wash Buffer by mixing 0.5 ml of Wash Buffer with 4.5 ml of Molecular
Biology Grade Water.

2. Add 1 ml of 1x Wash Buffer to both tubes of Capture Beads and vortex.

3. Pellet the Capture Beads in a bench top minifuge, by spinning for 10 seconds, rotating
the tube 180°, and spinning again for 10 seconds (spin-rotate-spin).

4. Carefully remove and discard the supernatants without disturbing the bead pellets.

5. Wash the Capture Beads once more with 1 ml of 1x Wash Buffer. Vortex to resuspend
the beads, spin-rotate-spin, and discard the supernatant.

6. Thaw an aliquot of the Amplicon DNA library to be amplified.

7. Calculate the volume of DNA library needed by using the following equation:

µl of DNA library per tube =
Desired molecules per bead x 5 million beads
Library concentration (in molecules/µl)

For example: 

5 µl of library =
2 molecules per bead x 5 million beads

2 million molecules/µl

If necessary, prepare a dilution of the library such that the volume to be added is between 
5  µl and 30 µl. 

8. Add the calculated volume of the Amplicon DNA library to the tube of washed Capture
Beads A.

9. Add the same calculated volume of Amplicon DNA library to the tube of Capture
Beads B.

10. Vortex the tubes for 5 seconds to mix.

3.3 Emulsification 

1. Add 600 µl of Live Amp Mix B to the tube of captured library B. Vortex, and transfer
the entire content into the Turrax stirring tube (from Section 3.1.2).

2. Set the UTTD to 2000 rpm for 5 minutes.

Lock the UTTD settings: Because the setting knob is sensitive, it is 

critical that the UTTD settings be locked before use. Refer to the 

manufacturer’s instructions to set and lock the settings of the UTTD. 

3. Place the stirring tube in the UTTD and start the UTTD to mix the emulsion.

Time constraints for the emulsification: Immediately start the UTTD 

once the Live Amp Mix and the Capture Beads are added to the Turrax 

stirring tube. Do not allow the Live Amp Mix and the Capture Beads to 

sit in the Turrax tube for more than five minutes before stirring the 

tube. 

4. Add 600 µl of Live Amp Mix A to the tube of captured library A. Vortex, and transfer
the entire content into the same Turrax stirring tube as in Step 1.

5. Place the stirring tube in the UTTD and start the UTTD to make the final emulsion.

6. When finished, remove the stirring tube from the UTTD.
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3.4 Amplification 

3.4.1 Dispensing the Emulsions 
 

1. Using a Combitip, aliquot 100 µl of emulsion into nine 8-strip cap tubes or one 96-well 
plate (~70 wells), by slowly aspirating, taking care not to draw air. 

2. Cap the wells and make sure that all the wells are properly sealed. 

3. Clean up the area of any spilled reaction mix. 

 

3.4.2 Amplification Reaction 
 

1. Place the tube strip/plate in a thermocycler and start the amplification program with 
the heated lid turned on. The program takes ~6 h to complete. 

 
 1x  4 minutes  at 94°C 
 50x  30 seconds  at 94°C, 
  4.5 minutes  at 58°C,  
  30 seconds  at 68°C 
 End   at 10°C on hold 

 

 

 

 

 Do not freeze the DNA beads: You can leave the amplification 

reactions at 10°C for up to 16 hours before further processing 

the samples. 

 Emulsion breakage: Check all wells for emulsion breakage (i.e a 

clear middle layer). If the emulsion in any well appears broken, 

discard the entire well and do not recover the beads from it. See 

Section 4.1 for pictures of intact and broken emulsions. 

 

 

3.5 Bead Recovery 

3.5.1 Vacuum-Assisted Emulsion Breaking Set Up 
 

1. Bring the GS Junior Titanium emPCR Oil and Breaking Kit to the externally ventilated 
hood. 

 

 

Externally ventilated hood: The procedures from this point until 

Section 3.5.2, Step 4 are performed in the externally ventilated hood. 

 

 

 

2. Attach a 50 ml conical tube to the lid from the GS Junior Titanium Oil and Breaking Kit. 
Save the cap of the 50 ml tube. 

3. Insert the blue connector into the top opening of the transpette. 

4. Connect the other end of the tubing to a vacuum source (with liquid trap to capture 
the isopropanol waste). See Figure 2 for a representation of the set-up. 

 
Figure 2: Schematic view of an assembled set up for vacuum-assisted emulsion breaking and 
bead recovery 
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3.5.2 Emulsion Collection and Initial Washes 
 

1. Turn on the vacuum and aspirate the emulsions (A and B) from all the wells and 
collect them in the 50 ml tube, using a slow circular motion of the transpette tips at 
the bottom of the wells.  

 After aspirating all the emulsions, turn the transpette upside-down to help 
drain as much material as possible into the collection tube. 

2. Rinse the wells twice with 100 µl of isopropanol per well (using a reservoir and a 
multichannel pipet, if available). Aspirate the rinse and turn the transpette upside-
down to retrieve as much material as possible. 

3. SLOWLY aspirate an additional (approximate) 5 ml of isopropanol to collect any 
beads that may remain in the tubing. 

4. Turn off the vacuum, and remove and cap the 50 ml tube containing the amplified 
DNA beads. Take the 50 ml tube out of the hood. 

 

3.5.3 Bead Washes and Recovery 
 

 

Tube requirement: Use the 1.7 ml siliconized tubes provided in the GS 

Junior Titanium emPCR Oil and Breaking Kit. 

 

 

 
 

1. Vortex the 50 ml tube of collected emulsions. 

2. Add isopropanol to a final volume of 35 ml and vortex to resuspend the pellet. 

3. Pellet the beads in a centrifuge at 930 x g for 5 min (2813 RPM for the Eppendorf 
5430 centrifuge, rotor F-35-6-30) and carefully pour out the supernatant. 

4. Add 10 ml of Enhancing Buffer and thoroughly vortex to resuspend the pellet (it is 
important to properly rinse the beads. Use glass rod or a spatula to break the 
aggregates, if necessary). 

5. Add isopropanol to a final volume of 40 ml and vortex well. 

6. Pellet the beads in a centrifuge at 930 x g for 5 min and carefully remove the 
supernatant. 

7. Add isopropanol to a final volume of 35 ml of and vortex well. 

8. Pellet the beads in a centrifuge at 930 x g for 5 min and carefully remove the 
supernatant. 

9. Add ethanol to a final volume of 35 ml of and vortex well. 

10. Pellet the beads in a centrifuge at 930 x g for 5 min and carefully remove the 
supernatant. 

11. Add Enhancing Buffer to a final volume of 35 ml of and vortex well. 

12. Pellet the beads in a centrifuge at 930 x g for 5 min and carefully remove the 
supernatant, leaving approximately 2 ml of Enhancing Buffer. 

13. Transfer the DNA bead suspension using a 1000 µl pipette into a provided 1.7 ml 
micro-centrifuge tube. 

14. Spin-rotate-spin and discard the supernatant. 

15. Rinse the 50 ml tube with 1 ml of Enhancing Buffer, and add this rinse to the 1.7 ml 
tube. Spin-rotate-spin and discard the supernatant. 

16. Thoroughly rinse the bead pellet twice with 1 ml of Enhancing Buffer. Spin-rotate-
spin and discard the supernatant. 
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3.6 DNA Library Bead Enrichment 

3.6.1 Preparation for Enrichment 

Hazardous Chemical – Sodium Hydroxide Solution: Sodium 

hydroxide (present in the Melt Solution) is a highly corrosive chemical 

that may cause burns if it contacts eyes or skin. Read the Material Safety 

Data Sheet for handling precautions. 

1. Turn on the heating dry-block and set it to 65°C.

2. Prepare the Melt Solution by mixing 125 µl of NaOH (10 N) in 9.875 ml of Molecular
Biology Grade Water.

3. Add 1 ml of Melt Solution to the 1.7 ml tube of beads and vortex. Incubate for 2
minutes at room temperature. Spin-rotate-spin and discard the supernatant.

4. Repeat Step 3 once.

5. Add 1 ml of Annealing Buffer to the 1.7 ml tube of beads and vortex. Spin-rotate-spin
and discard the supernatant.

6. Repeat Step 5 twice.

7. Add 45 µl of Annealing Buffer, 15 µl of Enrich Primer A and 15 µl of Enrich Primer B
to the 1.7 ml tube of beads, and vortex.

8. Place the tube in a heat block at 65°C for 5 minutes, and then promptly cool on ice
for 2 minutes.

9. Add 1 ml of Enhancing Buffer to the 1.7 ml tube of beads and vortex. Spin-rotate-spin
and discard the supernatant.

10. Repeat Step 9 two more times.

11. Add 1 ml of Enhancing Buffer to the 1.7 ml tube of beads and vortex.

12. Set the tube aside at room temperature until Section 3.6.3.

3.6.2 Preparation of the Enrichment Beads 

1. Vortex the tube of brown Enrichment Beads for 1 minute to resuspend its contents
completely.

2. Place the tube in a Magnetic Particle Concentrator (MPC) and wait ~3 minutes to
pellet the Enrichment Beads.

3. Discard the supernatant, taking care not to draw off any Enrichment Beads.

4. Add 500 µl of Enhancing Buffer and vortex.

5. Pellet the Enrichment Beads using an MPC.

6. Discard the supernatant, taking care not to draw off any Enrichment Beads.

7. Repeat Steps 4 to 6 once.

8. After discarding the supernatant, remove the tube from the MPC.

9. Add 80 µl of Enhancing Buffer and vortex.
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3.6.3 Enrichment of the DNA-Carrying Beads 

1. Add 80 µl of washed Enrichment Beads to the 1.7 ml tube of beads (from Section 3.6.1)
and vortex to mix completely.

2. Rotate the tube on the LabQuake, at room temperature for 5 minutes.

3. Place the tube in the MPC, and wait 3-5 minutes to pellet the Enrichment Beads.

4. Invert the MPC several times and wait for the beads to pellet.

5. Carefully discard the supernatant using a 1000 µl pipette, taking care not to draw off
any brown Enrichment Beads.

6. Wash the beads with Enhancing Buffer until there are no visible white beads
remaining in the supernatant, as follows:

a. Add 1 ml of Enhancing Buffer to the tube.

b. Remove the tube from the MPC and vortex well.

c. Place the tube back into the MPC to pellet the beads on the wall of the tube
with the magnet. Invert the MPC and wait for the beads to pellet.

d. Carefully discard the supernatant with a 1000 µl pipette, taking care not to
draw off any Enrichment Beads.

e. Repeat 6 to 10 times until white DNA beads are no longer being aspirated.

 Optionally, collect the supernatant and spin to monitor when washes are
complete.

3.6.4 Collection of the Enriched DNA Beads 

1. Remove the tube of enriched beads (enrichment tube) from the MPC and resuspend
the bead pellet in 700 µl of Melt Solution.

2. Vortex for 5 seconds, and place the enrichment tube in the MPC until the Enrichment
Beads have pelleted.

3. Transfer the supernatant containing the enriched DNA beads to a new 1.7 ml
microcentrifuge tube.

4. Add once again 700 µl of Melt Solution to the enrichment tube.

5. Vortex for 5 seconds, and place the enrichment tube in the MPC until the Enrichment
Beads have pelleted.

6. Transfer the supernatant containing enriched DNA beads into the same 1.7 ml tube,
from Step 3.

7. Discard the enrichment tube.

8. Spin-rotate-spin the 1.7 ml tube and discard the supernatant.

9. Add 1 ml of Annealing Buffer and vortex for 5 seconds.

10. Spin-rotate-spin and discard the supernatant.

11. Repeat Steps 9 and 10 two times.

12. Add 100 µl of Annealing Buffer and vortex to resuspend the beads.
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3.7 Seq Primer Annealing 
 

1. Add 15 µl of Seq Primer A and 15 µl of Seq Primer B, and vortex. 

2. Place the 1.7 ml tube in a heat block at 65°C for 5 min, and then promptly cool on ice 
for 2 min. 

3. Add 1 ml of Annealing Buffer and vortex for 5 seconds. Spin-rotate-spin, and discard 
the supernatant. 

4. Repeat Step3 two times. 

5. Add 1 ml of Annealing Buffer to the bead pellet and vortex. 

6. Spin-rotate-spin to pellet the beads. 

7. A GS Junior sequencing Run requires an input of 500 000 enriched beads. Evaluate 
the amount of enriched beads using the GS Junior Bead Counter, as described in 
Section 4.1. 

8. Store the beads at +2 to +8°C and sequence them within two weeks. 
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4 APPENDIX 

4.1 The GS Junior Bead Counter 

The recommended input bead number for a GS Junior sequencing Run is 500,000 enriched 

beads. To evaluate the amount of enriched beads, use the GS Junior Bead Counter v2, which is 

an accessory to the GS Junior Instrument. 
 

1. Insert the 1.7 ml tube from Section 3.7, Step 7 in the GS Junior Bead Counter v2, such 
that the bottom of the tube touches the floor of the hole. 

2. Hold the Bead Counter at eye level with the side reading Single Prep facing you. Look 
in the window to evaluate the amount of enriched beads. The top of the bead pellet 
should be within the window. 

a. If the top of the bead pellet is within the window and above the bottom edge 
of the window (500,000 beads) (Figure 3A), remove the excess beads and 
store them into a clean 1.7 ml microcentrifuge tube for later use, as they are 
valuable. Load the remaining 500,000 beads on the GS Junior Instrument. 

b. If the top of the bead pellet is below the bottom edge of the Bead Counter 
window (i.e. not visible), the preparation contains less than 500,000 beads. 
However, the beads are valuable and the amount could be sufficient for the 
experimental design. 

c. If the top of the bead pellet is above the top edge of the Bead Counter 
window, the preparation has failed. Discard the beads and repeat the 
emulsion process with 3 times less library sample. 

 

 

 

 

 The lower edge of the window defines 500,000 beads while the 

upper edge defines 2 million beads. 

 A front view of the bead counter may be helpful to visualize the 

bead pellet. Use the indentations on the side reading Single Prep 

to estimate the bead number (Figure 3B). 

 

 
A 

  

B 

 

Figure 3: (A) The Single Prep side view of the GS Junior Bead Counter v2, (B) a front view of 
the GS Junior Bead Counter v2, with the Single Prep side on the left and the Multiple Prep 
side on the right 

 

 

Customers can also use the original, unmarked GS Junior Bead Counter. 

It is equivalent to using the GS Junior Bead Counter v2 SINGLE PREP 

side. 
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4.2 Pictures of Emulsions 
 

A 

  

B 

 
C 

   

Figure 4: A and B show intact emulsions appearing as an homogenous suspension (A), at 
times layered by a clearer phase (B). The multiple bands in C are a sign of a broken 
emulsion. 
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1 WORKFLOW 

The overall workflow of a GS Junior sequencing Run is shown in Figure 1. The tasks performed 

on the GS Junior Instrument are highlighted in green. 

Figure 1: Workflow of a sequencing Run performed on the GS Junior Instrument 
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2 BEFORE YOU BEGIN 
 

 

 

 Room temperature is +15 to +25°C. 

 All 1.7 ml tubes must be siliconized. 

 The BDD centrifuge speed noted in RPM is for the Eppendorf 

5430 centrifuge. 

 

 

2.1 What You Should Have Before Starting 

2.1.1 Sample 

The sample library being sequenced must have been prepared using GS FLX Titanium or GS 

Junior Titanium series methods and kits. The library will then have been amplified using one of 

the GS FLX Titanium or GS Junior Titanium series emPCR Kits. 

2.1.2 Required GS Junior System Equipment and Reagents 

Visit our customer-restricted web site at www.454.com/my454 for the lists of material required 

but not provided. 

2.1.3 GS Junior Titanium Sequencing Kit and PicoTiterPlate Kit 

The GS Junior Titanium Sequencing Kit is used in combination with the matching GS Junior 

Titanium PicoTiterPlate Kit. These kits provide reagents and components necessary for a single 

sequencing Run. Visit www.454.com/my454 for a complete list of kits and reagents. 

The GS Junior Instrument holds a one-region PTP device. 

 

Region per 
PTP Device 

Bases per 
Region (Mbp) 

Reads per 
Region 

1 35 100,000 

2.1.4 Reagents and Buffer 

The GS Junior Titanium Sequencing Kit comes in three parts: 

 The Sequencing Kit Reagents and Enzymes (stored at -15 to -25°C) 

 The Sequencing Kit Buffers (stored at +15 to +25°C) 

 The Sequencing Kit Packing Beads and Supplement CB (stored at +2 to 

+8°C) 

Before beginning a sequencing Run, do the following: 
 

1. Thaw the components of the Reagents and Enzymes box: 

2. Peel open the seal of the Reagents and Enzymes container. 

3. Take out the 2.0 ml tubes and the 50 ml conical tube. Place the 2.0 ml tubes on ice to 
thaw. 

4. Lift the tray and fill the container that holds the 10-tubes Reagents cassette with room 
temperature tap water. Do not submerge the cassette, keep it upright and protected 
from direct sunlight. 

5. Put the tray back in the container and place the 50 ml tube in the tray for thawing. 

6. Periodically, invert the cassette and the 50 ml tube three times to mix their contents. 

7. When the contents have thawed, transfer the Reagents cassette and the 50 ml tube to 
+2 to +8ºC until use. 

8. Retrieve the Packing Beads and Supplement CB box from the refrigerator and keep on 
ice until needed. 

9. From the Buffers box, retrieve the bottles of Buffer CB and Pre-wash Buffer, as well as 
the Buffer Sipper Tube, the Reagent Sipper Tubes, and the Pre-wash cassette. Keep at 
room temperature. 
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3 PROCEDURE 
 

 

Prior to beginning a sequencing Run, the instrument should be empty of 

used Sipper Tubes, Reagent cassette and Reagent bottle. If not, please see 

Section 3.5. Only an empty waste bottle should be in place on the right. 

 

 

The GS Junior Sequencing procedure is a four step process that involves: 

 Washing the instrument’s fluidics with Pre-wash Buffer 

 Preparing and depositing the beads in the Bead Deposition Device (BDD) 

 Priming the instrument with reagents and buffers 

 Performing a sequencing Run 

3.1 The Pre-Wash 
 

 

Under normal conditions of continuous operation, the instrument is 

kept on standby after a Run has completed. Therefore, the PTP device 

from the previous Run should still be in place in the instrument’s PTP 

cartridge. If there is no PTP device in the cartridge, you must install a 

used but intact one (and a cartridge seal) before proceeding with the 

Pre-wash. 

 

 

3.1.1 Preparing for the Pre-Wash 
 

1. Close the previous run by clicking  OK  on the sequencing Run complete window. 

2. If required, log in as follows: 

 Click on Operator in the Status area of the GS Junior Sequencer application 
window (Figure 2). 

 
Figure 2: The sign in window of the GS Junior Sequencer application 
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 Sign in by selecting your user name and click Sign In. The main window of 
the GS Junior Sequencer application will open (Figure 3). 

 
Figure 3: The GS Junior Sequencer application window after an Operator signs in 

3. Begin by clicking the Start button on the right of the GS Junior Sequencer application 
window (Figure 3). This will open the Instrument Procedure wizard first window: 
Choose a procedure (Figure 4). 

 
Figure 4: The Instrument Procedure wizard first window: Choose a procedure, Sequencing 
option selected 
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4. If the Sequencing option is not selected, select it, and click Next. This will open the 
Instrument Procedure second window Start Sequencing (Figure 5). 

 
Figure 5: The Instrument Procedure second window: Start Sequencing 

5. Click Proceed. The GS Junior Sequencer application window will open, in the 
Instrument tab. An abbreviated version of the instructions that are detailed below will 
appear on the screen (Figure 6). 

 
Figure 6: The GS Junior Sequencer application window before launching the Pre-wash 

6. Lift the instrument cover and raise the sipper manifold completely. 
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7. Affix the large filter on the Buffer Sipper Tube (Figure 7A), and the small filters on the
ten Reagents Sipper Tubes (Figure 7B).

A B 

Figure 7: Assembly of (A) the Buffer Sipper Tube onto its filter and (B) a Reagent Sipper Tube 
onto its filter 

8. Holding the assembled tubes by the top the sipper tubes like in Figure 8A, screw them
in the manifold, finger tight.

A B 

Figure 8: (A) Correct and (B) incorrect screwing in of the Reagent Sipper Tube 

9. Change gloves to avoid contaminating other components.

10. From the GS Junior Titanium Sequencing Kit Buffers box, open the bag containing the
Pre-wash cassette (Figure 9).

Figure 9: The Pre-wash cassette 

11. Rinse the ten tubes in the Pre-wash cassette twice with nanopure water.

12. Fill the ten tubes with Pre-wash Buffer till to ~ 1 cm from the top of the tubes (Figure
10).

Figure 10: Filling the Pre-wash cassette 
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13. Mount the Pre-wash cassette in the instrument, with the vacant position in the back, 
as shown in Figure 11A. There should be no sipper tube in the vacant position. 

14. Place the bottle of Pre-wash Buffer on the left. 

15. Lower the sipper manifold and close the instrument cover (Figure 11B). 
 

A 

  

B 

 
Figure 11: The Pre-wash cassette: (A) mounting the Pre-wash cassette and (B) lowering the 
sipper manifold 

 

 

If necessary, replace any bent Sipper Tubes, as described in the GS 

Junior Instrument Owner’s Manual. 

 

 

 

16. If there isn’t a PTP device in the instrument, install a used but intact PTP device (with a 
used but intact cartridge seal) following the instructions in Section 3.4.2. 

 

3.1.2 Launching the Pre-Wash 
 

1. Return to the Attendant PC and click Proceed in the GS Junior Sequencer application 
(Figure 6). 

2. As the Pre-wash is progressing, the steps being performed will appear on the screen.  
A countdown will also show. The Pre-wash lasts approximately 30 minutes (Figure 12). 

 
Figure 12: The GS Junior Sequencer application window while the Pre-wash is in progress 
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3. Once the Pre-wash is complete, the GS Junior Sequencer application window will read: 
Prepare instrument for Reagent prime (Figure 13). Before priming the instrument, a 
number of steps detailed in Section 3.2 to Section 3.3.3 need to be performed. 

 
Figure 13: The GS Junior Sequencer application window before launching the instrument 
prime 

 

 

 

Monitor the instrument until the Status LED on the instrument is 

blinking green. If the instrument encounters any problems during the 

initiation of the Pre-wash, a message describing the issue will appear 

over the Status area of the GS Junior Sequencer window. 

 

 

 

PicoTiterPlate device preparation: Start the preparation of the 

components of a sequencing Run (Section 3.2) as soon as the Pre-wash 

is safely ongoing. The Pre-wash will proceed to completion without any 

further user intervention (approximately 30 minutes). 

 

 

 

There is an Abort button available in the GS Junior Sequencer main 

window, which can be clicked if a problem occurs. Aborting a Pre-wash, 

Prime or sequencing Run will void the steps performed prior to 

aborting. 

 

 

3.2 Preparing the PicoTiterPlate Device 

3.2.1 Prepare Bead Buffer 2 (BB2) 
 

1. Add 6.6 ml of Supplement CB to the Buffer CB bottle. Thoroughly mix the contents by 
inverting the bottle 10 times. 

2. With a 50 ml serological pipette, transfer 40 ml of the Buffer CB into a clean 50 ml 
conical tube and place on ice. 

3. Spin the Apyrase tube in a microcentrifuge for 5 seconds at 9,300 RCF (10,000 RPM). 
Add 6.5 µl of Apyrase to the 50 ml tube. Label the tube BB2, for Bead Buffer 2. Gently 
invert the tube 10 times to mix the contents and place on ice. 
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3.2.2 Prepare the PicoTiterPlate and Bead Deposition Devices 

1. Retrieve the PTP device tray from the GS Junior Titanium PicoTiterPlate Kit. Peel open
the seal on top of the tray.

2. Write down the PTP device ID to enter the 6-digit number in the Instrument Procedure
third window, Enter IDs and barcodes (Figure 21).

3. Remove the bead loading gasket and cartridge seal from the tray. Wash them by a
gentle shaking for 30 seconds in a Sparkleen solution. Rinse thoroughly with nanopure
water and let air dry on a paper towel.

4. Wash the Bead Deposition Device (BDD) using a soft bristle brush and a Sparkleen
solution. Rinse thoroughly with nanopure water and let the device air dry on a paper
towel.

5. Assemble the BDD with the washed gasket and a PTP device, as follows:

6. Wearing gloves, orient the tray in front of you. Hold the tray with one hand and with
the index of the other pry up the PTP device without touching either flat surface. Once
the PTP device out, always hold it by its edges.

7. Place the PTP device onto the BDD base (Figure 14A), aligning the notched corner of
the PTP device and the BDD base.

8. Secure the washed and dried bead loading gasket to the BDD base by laying it on top
of the PTP device (Figure 14B). Align the notched corner of the bead loading gasket
and the BDD base, as shown in the Figure.

9. Carefully place the BDD top over the assembled BDD base/PTP device/gasket (Figure
14C). Align the dowels on the BDD base so they slide into the holes in the BDD top
and the BDD top is sitting flat across the PTP device.

10. Press down on the top of the BDD, and rotate the two latches from the BDD base into
the grooves in the BDD top to firmly secure the assembly (Figure 14D). When you hear
a ‘click’, the latches should be firmly seated in the grooves, providing the correct
amount of pressure to maintain a liquid-tight seal.

11. There are two holes on the top of the BDD; the larger is a loading port and the smaller,
an air vent.

A B 

C D 

Figure 14: Assembly of the Bead Deposition Device 
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12. Slowly pipet 350 µl of BB2 onto the PTP device through the loading port (the larger of 
the two holes, opposite of the notch, Figure 15) and spin the BDD in a centrifuge for 
5 minutes at 1,620 RCF (4,013 RPM for the Eppendorf 5430). 

 

 
Figure 15: Loading the PTP device 

 

 

 

 There are two GS Junior Bead Deposition Device (BDD) 

adapters. Adapter A is used with the Beckman centrifuges, and 

Adapter B is used with the Eppendorf 5430 centrifuge. Both 

adapters are supplied with the GS Junior Installation Kit, the GS 

Junior PM Kit, and the GS Junior BDD Counterweight. Use the 

one matching your microplate centrifuge brand. 

 Balance the rotor with the BDD counterweight. These are 

supplied with the GS Junior Installation Kit and the GS Junior 

BDD Counterweight. 

 Place adapters A or B in the swinging buckets such that the 

arrow on the adapter top points to the rotor axle. See Section 4.2 

for pictures of the adapters in the centrifuges. 

 

 

13. Remove the BDD from the centrifuge and leave it on the bench. 

 

3.2.3 Prepare the Beads 

The GS Junior System contains 4 kinds of microparticles (beads), as listed in the Research 

Applications Guide – GS Junior Titanium Series. Each type of bead must undergo a specific 

preparation procedure. 

These beads will be loaded onto the PTP device in layers, in the order specified in Table 1, with 

layer 1 loaded first and layer 4 last. 

 

Bead Layer Bead Type 

Layer 1 Enzyme Beads Pre-layer 

Layer 2 DNA and Packing Beads 

Layer 3 Enzyme Beads Post-layer 

Layer 4 PPiase Beads 

Table 1: Bead layers 

3.2.3.1 Prepare the DNA Beads – Adding the Control Beads XLTF 
 

1. Obtain an aliquot of enriched DNA beads in a proper amount for a sequencing Run on 
the GS Junior Instrument. 

2. Spin the Control Beads XLTF in a microcentrifuge for 5 seconds at 9,300 RCF (10,000 
RPM) to collect the beads. Pipet up and down 5 times to resuspend the beads. 

3. Add 6 μl of Control Beads XLTF to the enriched DNA beads. 

4. If the volume of sample DNA beads is greater than 100 µl, spin the DNA beads in a 
microcentrifuge for 10 seconds at 9,300 RCF (10,000 RPM) to pellet the beads. 
Remove enough supernatant to leave 100 µl in the tube. 

5. Add 500 μl of BB2 to the DNA Beads, vortex gently, and incubate for 20 minutes at 
room temperature on a lab rotator. 
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During this 20 minute incubation, prepare the Packing Beads, Enzyme 

Beads, and PPiase Beads. 

3.2.3.2 Prepare the Packing Beads 

1. Add 1 ml of BB2 to the tube of Packing Beads and vortex at high speed.

2. Wash the Packing Beads three times with 1 ml of BB2 and centrifuge at 9,300 RCF
(10,000 RPM) for 5 minutes for each wash. Wash the beads thoroughly, by vortexing
to break up aggregates, until a uniform suspension is achieved. After spinning,
carefully remove the supernatant without disturbing the bead pellet.

3. After the third wash, add 200 µl of BB2, resuspend the beads by vortexing at high
speed, and keep the tube on ice.

3.2.3.3 Prepare the Enzyme and PPiase Beads (Bead Layers 1, 3 & 4) 

These two types of beads can be washed in parallel. Make sure to change pipette tip to avoid 

contaminating the Enzyme and PPiase Beads with one another. 

1. Add 1 ml of BB2 to each tube and mix by vortexing at medium speed. Pellet the
Enzyme Beads and the PPiase Beads using a Magnetic Particle Concentrator (MPC),
waiting 30 seconds for the beads to pellet. Invert the MPC several times and wait 30
seconds again. Carefully remove the supernatants and remove the tubes from the
MPC.

2. Wash both bead types three times with 1 ml of BB2. Vortex and collect the beads
using the MPC, as above.

3. After the third wash, add 400 µl of BB2 to the Enzyme Beads and 410 µl of BB2 to the
PPiase Beads, and vortex at medium speed to resuspend the beads. Keep the tubes on
ice.

4. Prepare two new 1.7 ml tubes, labeled Enzyme Pre-layer and Enzyme Post-layer,
following Table 2. Vortex at medium speed and place the tubes on ice.

Reagents BB2 Enzyme Beads Total volume 

Enzyme Pre-layer 300 μl 110 μl 410 μl 

Enzyme Post-layer 180 μl 230 μl 410 μl 

Table 2: Preparation of the Enzyme Beads for the pre and post-layers 

3.2.3.4 Prepare the DNA and Packing Beads Mix 

1. Retrieve the tube of DNA Beads from the lab rotator.

2. Spin the DNA Beads in a microcentrifuge for 10 seconds at 9,300 RCF (10,000 RPM)
to pellet the beads.

3. Remove enough BB2 to leave 50 µl in the tube (calculate the volume of supernatant to
remove from the known volume of enriched DNA beads, plus 6 µl of Control Beads
XLTF, plus 500 µl of BB2).

4. Spin the Polymerase and Polymerase Cofactor tubes in a microcentrifuge for 5
seconds at 9,300 RCF (10,000 RPM).

5. Add the following reagents to the DNA Beads:

 40 µl Polymerase

 20 µl Polymerase Cofactor

 65 µl BB2

6. Vortex the mixture at low speed for 5 seconds and incubate on the lab rotator at room
temperature for 10 minutes.

7. Once the incubation is complete, vortex the tube of Packing Beads at high speed.

8. Add 175 µl of Packing Beads to the DNA mixture, vortex at low speed, and incubate
on the lab rotator at room temperature for 5 minutes.
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3.3 Loading the Bead Layers and Priming the Instrument 

The beads are deposited onto the PTP device by injecting the bead suspension through the 

loading port (the larger of the two holes, see Figure 15) of the assembled Bead Deposition 

Device (BDD), and then by using centrifugal sedimentation to settle the beads at the bottom of 

the PicoTiterPlate wells. This process is repeated for each of four layers: 

 Bead layer 1: Enzyme Beads Pre-layer 

 Bead layer 2: DNA and Packing Beads 

 Bead layer 3: Enzyme Beads Post-layer 

 Bead layer 4: PPiase Beads 

 

 

During the centrifugation of the bead layers, prepare the Buffer CB (see 

Section 3.3.2), prime the GS Junior Instrument with the reagents (see 

Section 3.3.4), and clean the instrument (see Section 3.3.6). 

 

 

 

 

 Pipette tips: Use 1000 µl pipette tips to load beads. 

 Time between centrifugations: Minimize the time interval 

between loading the beads and starting the centrifugation. 

 

 

 

 

 Air bubbles: Avoid injecting air into the BDD. 

 Bead delivery: Use a single, even injection to fill the BDD. 

 Loading fill: Fill the BDD completely but do not overflow. 

Discard any excess bead mix. 

 

 

3.3.1 Deposit Bead Layer 1: the Enzyme Beads Pre-Layer 
 

1. Retrieve the BDD from Section 3.2.2 and carefully pipet out and discard as much BB2 
as possible through the port hole on the BDD. 

2. Vortex the tube of Enzyme Beads Pre-layer (layer 1) at low speed for 5 seconds to 
obtain a homogeneous suspension. 

3. Promptly load 350 µl of the bead suspension onto the PTP device, through the port 
hole on the BDD top (see Figure 15). Make sure to use a single, smooth dispensing 
action to ensure even distribution of the beads over the entire PTP device. 

4. Centrifuge the BDD for 5 minutes at 1,620 RCF (4,013 RPM). 

 

3.3.2 Prepare Buffer CB 
 

1. Retrieve the bottle of Buffer CB. 

2. Vortex the tube of DTT tube at high speed for 5 seconds. Add 1 ml of DTT to the bottle 
of Buffer CB. 

3. Invert the tube of Substrate TW 10 times to mix. 

4. Using a serological pipette, transfer 44 ml of Substrate TW to the Buffer CB. 

5. Invert the bottle 10 times to mix thoroughly. 

 

3.3.3 Deposit Bead Layer 2: the DNA and Packing Beads 
 

1. Remove the BDD from the centrifuge. 

2. With a pipettor, gently remove as much of the supernatant as possible through the 
port hole on the BDD top. 

3. Remove the tube of the DNA and Packing Beads mix suspension from the rotator. 

4. Spin the tube in a microcentrifuge for 5 seconds at 9,300 RCF (10,000 RPM). 

5. Pipet up and down 5 times to mix. 

6. Promptly load 350 µl of this suspension onto the PTP device. 

7. Centrifuge the BDD for 10 minutes at 1,620 RCF (4,013 RPM). 
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3.3.4 Prime the GS Junior Instrument 

 An abbreviated version of the following instructions appear on

the screen of the Attendant PC (Figure 13). 

 If the caps of tubes in the Reagent Cassette are tight and do not

unscrew easily, use the GS Junior Reagent Decapping Tool to

unscrew them. 

1. Lift the instrument cover and raise the sipper manifold.

2. Remove and discard the Pre-wash cassette and Pre-wash bottle.

3. Empty the waste bottle on the right.

4. Change gloves.

5. Invert the Reagents cassette 20 times to mix.

6. Carefully remove all the tube caps, making sure that the caps do not pass over the
tubes to reduce the risk of contamination.

7. Mount the Reagents cassette in the instrument.

8. Place the bottle of Buffer CB on the left.

9. Slowly lower the sipper manifold, checking that sippers plunge in the reagent tubes
and Buffer CB bottle.

10. Close the instrument cover.

11. Click Proceed to begin priming the instrument. The Prime will last approximately 5
minutes (Figure 16).

12. Once the Prime is complete, the Instrument Procedure third window, Enter IDs and
barcodes, will open automatically (Figure 21, Section 3.4).

Figure 16: The GS Junior Sequencer application window when priming is in progress 
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3.3.5 Deposit Bead Layer 3: the Enzyme Beads Post-Layer 

1. Change gloves after loading the Reagents cassette into the instrument.

2. Remove the BDD from the centrifuge.

3. With a pipettor, gently draw out all the supernatant from bead layer 2 through the port
hole on the BDD top.

4. Vortex the Enzyme Beads Post-layer for 5 seconds at medium speed to obtain a
uniform suspension.

5. Promptly load 350 µl of the bead suspension onto the PTP device, through the loading
port hole on the BDD top.

6. Centrifuge the BDD for 10 minutes at 1,620 RCF (4,013 RPM).

3.3.6 Prepare the GS Junior Instrument PTP Cartridge 

1. Once the instrument priming is complete, the GS Junior application Sequencer
window will read Prime Complete.

2. Lift the instrument cover and open the camera door by pressing on the two side
latches and pulling the door in a downward motion (Figure 17).

Figure 17: Opening the camera door 

3. Remove the PTP device of the previous sequencing Run from the cartridge by first
pressing the PTP frame spring latch to lift the frame from the cartridge (Figure 18A)
and then lifting out the used PTP device (Figure 18B).

A B 

Figure 18: Removing the used PTP device 

4. Carefully remove the cartridge seal with a clean pipet tip and discard it (Figure 19A).

5. Change gloves.

6. Wet a Kimwipe with 50% ethanol and wipe the surface of the cartridge to remove any
bead and reagent residue (Figure 19B). Allow the cartridge to air dry completely.

A B 

Figure 19 (A) Removing the PTP cartridge seal and (B) wiping the PTP cartridge 
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7. Insert the washed cartridge seal from Section 3.2.2 in its groove in the cartridge
(Figure 20, A and B).

A B 

Figure 20: (A) The cartridge seal and (B) its placement in the groove in the cartridge 

8. Moisten a Kimwipe with a user-prepared 10% solution of Tween-20 and wipe the
surface of the PTP cartridge.

Sensitive camera faceplate: Always be extremely careful when handling 

or working near the camera faceplate. Never touch the camera faceplate 

with anything other than Zeiss moistened cleaning tissue or Lens paper 

from Thorlabs. 

9. Use a new Zeiss pre-moistened cleaning tissue to gently wipe the camera faceplate.

10. Allow the camera faceplate to air dry completely.

3.3.7 Deposit Bead Layer 4: the PPiase Beads 

1. Remove the BDD from the centrifuge.

2. With a pipettor, gently draw out and discard all the supernatant from the centrifuged
bead layer 3, through the port hole on the BDD top.

3. Vortex the PPiase Beads tube for 5 seconds at medium speed to obtain a uniform
suspension.

4. Promptly load 350 µl of the bead suspension onto the PTP device, through the port
hole on the BDD top (see Figure 15).

5. Centrifuge the loaded PTP device in the BDD for 5 minutes at 1,620 RCF (4,013
RPM).
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3.4 The Sequencing Run 

This Section describes how to manually set up and launch a sequencing 

Run. However, if the GS Junior Instrument is connected to a Laboratory 

Information Management System (LIMS), the PTP Lookup feature of 

the Instrument Procedure wizard will seek the information that 

describes the Run from your LIMS after you enter the PTP device ID. 

3.4.1 Set the Run Script and Other Run Parameters (without LIMS) 

1. The GS Junior Instrument Procedure third window, Enter IDs and barcodes, opens
automatically at the end of instrument priming (Figure 21).

Figure 21: The Instrument Procedure third window: Enter IDs and barcodes 

2. Enter the 6-digit ID of the PicoTiterPlate device to be used in this Run. You may also
enter the product IDs or barcodes of other materials associated with this sequencing
Run (e.g. Library Prep, emPCR Amplification, and Sequencing Kits); you will be asked
for this information if you call Roche Customer Support for help if you encounter any
difficulties with your Run. When you have entered all the information, click Next.

 This opens the Instrument Procedure fourth window: Enter Run name and
Run Group (Figure 22).

Figure 22: The Instrument Procedure fourth window: Enter Run name and Run Group 
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3. Enter a specific, unique name for this Run. Then find and select your Run Group in the 
Run group list. Click Next. 

 This opens the Instrument Procedure fifth window: Choose number of cycles 
(Figure 23). 

 
Figure 23: The Instrument Procedure fifth window: Choose number of cycles 

 

4. Select the number of nucleotide cycles appropriate for this Run, and click Next. 

5. With the GS Junior Titanium chemistry,  

 42 cycles will produce reads of approximately 100 bases (~ 3 hours) 

 100 cycles, approximately 250 bases (~ 5 hours and 30 minutes) 

 200 cycles, approximately 500 bases (~ 9 hours and 20 minutes) 

 This opens the Instrument Procedure sixth window: Choose Run Processing 
type (Figure 24). 

 
Figure 24: The Instrument Procedure sixth window: Choose Run Processing type 
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6. Select the data processing scheme appropriate for this Run, and click Next. 

7. Three data processing schemes are available on the GS Junior System (see the 454 
Sequencing System Software Manual for a complete description of the GS Junior 
System’s data processing and analysis processes, including a description of when to 
use each of these options): 

 None 

 Full processing for Rapid, Paired End or cDNA Rapid libraries 

 Full processing for Amplicon libraries 

8. This opens the Instrument Procedure seventh window: Request data backup (Figure 
25). 

 
Figure 25: The Instrument Procedure seventh window: Request data backup 

 

9. The Backup Run and Processor data upon completion checkbox is selected by default. 
Click Next. 

 With this checkbox selected, the data from the Run will be automatically 
backed up at the end of the Run (to a storage location pre-determined by an 
Administrator, see Appendix 4.1). 

 This opens the Instrument Procedure eighth window: Run comments (Figure 
26). 

 
Figure 26: The Instrument Procedure eighth window: Run comments 
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10. Enter any comments about the Run, and click Next. 

 This opens the ninth and last window: Run Parameters Review (Figure 27). 

 
Figure 27: The Instrument Procedure ninth window: Run Parameters Review 

 If the Proceed button is still grayed out, check for “x” in red circle icons in 
the Instrument Procedure window, and address any problem that may be 
listed. 

11. Click Proceed in the Instrument Procedure Run Parameters Review window. This will 
navigate back to the Instrument tab on the GS Junior Sequencer application window 
(Figure 28). 

 
Figure 28: The GS Junior Sequencer application window before a sequencing Run is started 
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3.4.2 Load the PTP Device in the GS Junior Instrument 
 

1. Remove the BDD from the centrifuge. 

2. With a pipettor, gently draw out and discard all the supernatant from the centrifuged 
bead layer 4, through the port hole on the BDD top. 

3. Remove the PTP device from the BDD, as follows: 

4. Rotate down the latches of the BDD to unfasten them. 

5. Carefully remove the BDD top. 

6. Gently lift off and discard the bead loading gasket. 

7. Remove the PTP device, being careful to handle it only by the edges. 

8. Gently place the PTP device into the cartridge frame on top of the cartridge seal 
(Figure 29A), flipping it upside down so that the wells face downwards. Make sure 
that the PTP device notch is on the far right hand corner, matching the notch in the 
cartridge. 

9. Close the PTP frame, making sure it is properly secured by the latch (Figure 29B). 

10. Carefully wipe the back of the PTP device with a Kimwipe. 

11. Close the camera door and lower the instrument cover (Figure 29C). 
 

A B 

  
C  

 

 

Figure 29: Loading the PTP device into the cartridge 
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12. In the GS Junior Sequencer application window, click Proceed to begin the
sequencing Run. The Operator can monitor the progress of a sequencing Run by
viewing the instrument status and the data images as they are being captured by the
camera: Thumbnail images will appear on the Instrument tab during the Run (Figure
30).

Figure 30: The GS Junior Sequencer application window with a sequencing Run in progress 

 Monitor the instrument until the sequencing Run is under way

and the Status LED is blinking green (also shown at the upper-

left corner of the GS Junior Sequencer window). If the

instrument encounters any problems during the initiation of the

Run, a message describing the issue will appear in the Status

area of the GS Junior Sequencer window, and user intervention

will be required. 

 In most cases, the software will offer to Abort or Proceed with

the Run. If you are certain that the warning is unwarranted then

you can decide to proceed. 

 In a few special cases, however, you will not be offered the

possibility to proceed. If this happens, you must restart the

software, as follows: 

 Close the GS Junior Sequencer application. 

 Re-launch the GS Junior Sequencer application by double-

clicking the GS Junior Sequencer icon on the desktop, and

set up your Run again. 

 There is an Abort button available in the Global Action area of

the GS Junior Sequencer application main window (Figure 30) 

which can be clicked if a problem occurs during the Run. The

Abort Run dialog box will ask you to verify that you want to

stop the Run; if you confirm, the Run will be immediately

terminated. There is no procedure for pausing and resuming a

Run. If a Run is aborted, follow the abort with a Pre-wash before

proceeding with another sequencing Run. 

13. When the sequencing Run is complete, the GS Junior application window will show
the message Run complete and an OK button (Figure 31). Clicking the OK button will
navigate to the GS Junior application window at the beginning of a new sequencing
Run (Figure 3).

230



Figure 31: The Sequencing Run window once the sequencing Run is complete 

3.5 After the Sequencing Run 

Once the sequencing Run has ended, at your earliest convenience, remove Sipper Tubes and 

filters, as well as the Reagent bottle and Reagent cassette. Performed within three days, this will 

minimize the risk of biofilm buildup. 

1. Lift the instrument cover and raise the sipper manifold completely (Figure 32A).

2. Remove and discard the used Reagents cassette (Figure 32B).

A B 

Figure 32: (A) Raising the sipper manifold and (B) Removing the Reagents cassette from the 
previous Run 

3. Discard the waste bottle on the right.

4. Empty the bottle of Buffer CB on the left and place it on the right, to be used as the
waste bottle for the next sequencing Run.

5. Unscrew all the used sippers for the reagent and the buffer and discard (Figure 33A
and B).
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For an instrument not in continual use, follow the instructions below: 

 As soon as possible within three days of a sequencing Run, the instrument 

should be emptied of consumables, as described in Step 4 above. The 

instrument can stay in this configuration for up to 30 days after a 

sequencing Run. 

 If the instrument is to stay idle between 30 and 60 days, perform a 

maintenance wash immediately prior the next sequencing Run. 

 If the instrument is to stay idle for more than 60 days, prepare it for storage. 

Performing a maintenance wash and preparing the instrument for storage are described in the 

GS Junior Instrument Owner’s Manual. 

 

A 

  

B 

 
Figure 33: (A) Removing the Buffer Sipper Tube and (B) the Reagents Sipper Tubes 
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4 APPENDIX 

4.1 Network Setup for Sequencing Data Backup 

A network data backup mechanism to archive sequencing Run data is important because the 

Attendant PC and the instrument are not meant for the long-term storage of datasets. This is 

usually setup by, or in coordination with, your IT personnel. Refer to the GS Junior System 

SysAdmin Guide for a detailed description of recommended data backup setup. 

Table 3 shows the approximate size of the data sets created during a sequencing Run for each 

data processing option (assuming the largest bead loading regions available on the PTP device). 

 

Sequencing 
Kit 

Number of 
Cycles 

Raw Images 
Only 

Raw Images 
Plus Image 
Processing 

Raw Images 
Plus Full 

Processing 

XLR70 200 10 GB 10-11 GB 11-12 GB 

Table 3: Approximate amount of data generated by the XLR70 sequencing kit for the 200 
cycle Run script and for each data processing option 

4.2 BDD Centrifuge Adapters 

In your swinging bucket centrifuge, place the BDD in the appropriate adaptor, with a 

counterweight when need. Make sure to use adapters A with the Beckman centrifuges (Figure 

34A) and adapters B with the Eppendorf 5430 centrifuge (Figure 34B). In all cases, the arrows 

on the adapters should point toward the rotor axle. For information on centrifuges usable in 

this setting, refer to the GS Junior System Laboratory Setup Guide. 

 

A 

  

B 

 
Figure 34: (A) Adapters A in a Beckman centrifuge and (B) Adapters B in the Eppendorf 
5430, holding a BDD and a BDD counterweight 
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Infinium® HD Assay Ultra, Manual

Experienced User Card

Catalog # WG-901-4005 Page 1 of 32
Part # 11328095 Rev. B

Day 1 Day 2 Day 3

Incubate MSA3
Incubation: 20–24 hours

Output
MSA3 Plate

Make MSA3
Hands-on: ~60 min/  

96 samples

Reagents
0.1N NaOH

MA1
MA2
MSM

Output
MSA3 Plate

Wash BeadChip
Hands-on: ~30 min/ 
Up to 8 BeadChips

Reagents
PB1

Output
BeadChip

Fragment MSA3
Hands-on: ~30 min/ 

96 samples
Incubation: 1 hour

Reagents
FMS

Output
MSA3 Plate

Pre-Amp

Optional

Post-Amp

Cold Storage
Option

Overnight
Incubation

Fill in the lab tracking
form and the sample
sheet as you perform
the assay

Image BeadChip

Scan times vary depending
on Bead Pool complexity.
See the Image BeadChip
section for specific scan

times.

Output
Image and Data Files

Quantitate DNA

Hands-on: 30 min/plate
Fluorometer: 5 min/plate

Reagents
Lambda DNA

PicoGreen dsDNA
1X TE

Output
Sample QDNA Plate

with Quantitated DNA

Precip MSA3
Hands-on: ~30 min/ 

96 samples
Incubation/Dry Time:  

2 hours

Reagents
2-propanol

PM1

Output
MSA3 Plate

Resuspend MSA3
Hands-on: ~30 min/  

96 samples
Incubation: 1 hour

Reagents
RA1

Output
MSA3 Plate

Hyb Multi BeadChip

Incubation: 16–24 hours

Reagents
PB2

Output
BeadChip

Hands-on: ~1 hour/ 
Up to 8 BeadChips

XStain HD
BeadChip

Hands-on: ~3 hours/ 
8 BeadChips

Dry Time: 1 hour

Reagents
RA1

95% Formamide /
1 mM EDTA

PB1
XC1
XC2
XC3
XC4
TEM
STM
ATM

Output
BeadChip
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Appendix 8.5 – Mutation frequencies across myeloid malignancies 

Mutation AML MDS MDS/MPN MPN 
NRAS AML 9.8% (n=2128) 

14% (n=201) 
11% (n=1106) 
10.3%  (n=2502) 

NK-AML 13% (n=872) 
s/tAML 5.9% (n=591) 

MDS 6% (n=252) 
12% (n=50) 
9% (n=70) 
7% (n=70) 
3.6% (n=439) 

low/int 3% (n=288) 
+CMML 5.7%  (n=176)

CMML   15.4%  (n=266) 
16%  (n=273) 

aCML  0-55% 

PMF  0% (n=40) 

KRAS AML 5% (n=739) MDS 1.5% (n=65) 
0.9% (n=439) 

CMML 10.8% (260)
11% (266) 

TET2 AML 12% (n=91) 
19% (n=32) 
13.2%  (n=486) 

NK-AML 23% (n=427) 
Young 7.6% (n=783) 

MDS 19% (n=81) 
23% (n=96) 
26% (n=102) 
18.5% (n=65) 
20.5% (n=439) 

low/int 23% (n=288) 

CMML 61.1% (n=157) 
44.4% (n=81) 
44% (n=52) 
34% (n=38) 
61% (n=160) 

RARS-T  9% (n=22) 

MPN 12% (n=198) 
13% (n=239) 
8% (n=354) 

MF 15% (n=46) 
14% (n=21) 
17% (n=60) 
18% (n=55) 

PV 16% (n=89) 
13% (n=71) 

ET 5% (n=57) 
2% (n=43) 

SRSF2 AML 0.7%  (n=151) MDS 12.4% (n=193) 
14.6% (n=233) 
6.8%  (n=88) 
11.1% (n=221) 

low/int 13%  (n=288) 
MDS-RS 5.5%  (n=73) 
w/o RS 11.6% (n=155) 

CMML  47.8%  (n=268) 
47%  (n=275) 
28.4%  (n=88) 

PMF 17% (n=187) 
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ASXL1 AML 17.5%  (n=63) 
 10.8%   (n=501) 
<60yrs  3.2%   (n=189) 
>60yrs 16.2%   (n=234) 
  5.3%   (n=882) 
  17.2%   (n=740) 

MDS 18.5%   (n=65) 
 15.3%   (n=182) 
 20.7%   (n=193) 
 14.4%   (n=439) 
low/int 15%    (n=288)  

CMML  44.7%  (n=255) 
 34.2%  (n=79) 
 46%  (n=52) 
 50%  (n=38) 
 44%  (n=261) 
 33%  (n=51) 
RARS-T  10%  (n=20) 

PV  0 (n=10) 
 2%  (n=42) 
ET  2.8%  (n=35) 
 0 (n=41) 
MF  13%  (n=46) 
 30%  (n=10) 
 32% (n=47) 
 55%  (n=42) 
 18%  (n=22) 
 43%  (n=30) 
 22%  (n=23) 

RUNX1 AML  25.9%  (n=814) 
  13.2%  (n=470) 
  5.6%  (n=945) 
NK-AML  32.7%  (n=449) 

MDS 4.7%   (n=85) 
 6.2%   (n=65) 
 8.7%   (n=439) 
low/int 9%   (n=288)  
MDS+CMML 12%   (n=132) 
HR+CMML 13.8%  (n=188) 
HR+AML   23.6%  (n=110) 

CMML  22.8%  (n=267) 
 8.7%  (n=81) 
 26%  (n=38) 
 22%  (n=274) 
MDS/MPN  14%  (n=187) 

MPN  0 (n=14)  

CBL AML 0.6%  (n=319) 
 0.7%  (n=150) 
 1.1%  (n=279) 
t(8;21) 5%  (n=40) 
Inv 16  16%  (n=37) 

MDS 2.3%   (n=439) 
low/int 2%   (n=288)  
HR 7.7%   (n=65)  

CMML  19.1%  (n=267) 
 22.2%  (n=81) 
 13%  (n=52) 
 5%  (n=38) 
 10%  (n=78) 
 17.3%  (n=278) 
 19%  (n=274) 
aCML  8%  (n=152) 
MDS/MPN  2.3% (n=222) 
 8.1%   (n=301) 

PV  0 (n=74)  
 0 (n=32) 
 1.1%  (n=89) 
ET  0 (n=24) 
 0 (n=48) 
 0.8%  (n=245) 
PMF  6%  (n=53) 
 2%  (n=49)  
 0 (n=19) 
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EZH2 AML -7/7q  0 (n=54) MDS 6.4%  (n=439) 
 6%  (n=148) 
low/int 8%  (n=288)  

CMML  9.3%   (n=205) 
 11.1%  (n=81) 
 6%   (n=52) 
 10%   (n=208) 
 13%   (n=118) 
aCML  13%   (n=70) 
MDS/MPN  12%    (n=219) 

MF  7%  (n=46) 
 5.9%  (n=370) 
 1.2%  (n=84)  
 9.4%  (n=64) 

JAK2 
V617F 

AML  2.7%  (n=113) 
 1%  (n=959) 
 3.2%  (n=339) 

MDS 5%  (n=101) 
 1.5%  (n=65) 
 3%  (n=439) 
low/int 3%  (n=288)  
5q- 6.4%  (n=78)  

CMML  6.7%  (n=268) 
 9.9%  (n=81) 
 3%  (n=38) 
 7%  (n=275) 
RARS-T  49.5%  (n=111) 

PV  97%  (n=73) 
 74%  (n=164) 
 89%  (n=45) 
 65%  (n=128) 
 81%  (n=72) 
 80%  (n=84) 
 74%  (n=57) 
ET  57%  (n=51) 
 32%  (n=115) 
 43%  (n=21) 
 23%  (n=93) 
 41%  (n=59) 
 48.7%  (n=73) 
 62%  (n=243) 
 58.8%  (n=68) 
PMF  50%  (n=16) 
 35%  (n=46) 
 43%  (n=7) 
 57%  (n=23) 
 43%  (n=35) 
 45.3%  (n=117) 
 68%  (n=22) 
 54.6%  (n=152) 
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66.7% (n=12) 
63.5% (n=304) 
58% (n=603) 

JAK2 exon 
12 

(V617F 
neg) 

PV 20% (n=20) 
10.5% (n=19) 
58% (n=26) 
14% (n=58) 

ET  0 (n=75) 
PMF  0 (n=35) 

U2AF1 AML 2.5%  (n=275) 
1.3%  (n=151) 

MDS 6.3% (n=96) 
5.4% (n=221) 
6.8% (n=88) 
8.7% (n=150) 
7.3% (n=193) 

low/int 16% (n=288) 
w/o RS 11.6% (n=155) 
MDS-RS 0 (n=73) 

CMML 5.2%  (n=268) 
8%  (n=88) 

MPN  1.9% (n=53) 

SF3B1 AML 5% (n=57) 
5% (n=38) 
2.6%  (n=151) 

MDS 20% (n=354) 
17% (n=88) 
28% (n=533) 
14.5% (n=193) 
16.4% (n=221) 

low/int 22% (n=288) 
MDS-RS 50% (n=107) 
MDS-RS 53% (n=104) 
MDS-RS 75.3% (n=73) 
w/o RS 6.5% (n=155) 

CMML 5% (n=240) 
5% (n=106) 
4.5% (n=88) 

MDS/MPN 19.3% (n=83) 
RARS-T 86.5% (n=111) 

PMF 4% (n=136) 
6.5% (n=155) 

ET 3% (n=189) 
MPN 0 (n=53) 

KIT AML 1.8%  (n=2136) 
5%  (n=500) 

s/tAML 1.4%  (n=513) 

MDS 0.7% (n=269) 
0 (n=28) 

CMML 4.2%  (n=263) MPN  0 (n=115) 
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TP53 AML 11.5% (n=1000) 
14% (n=235) 

elderly 9%  (n=140) 
complex  60% (n=234) 

MDS 12% (n=57) 
14% (n=70) 
11% (n=47) 
14% (n=118) 
7.5% (n=439) 

low/int 2% (n=288) 
5q- 18% (n=55) 

PMF  4% (n=107) 

PTPN11 AML 1.7% (n=173) 
3.5% (n=167) 
5.1% (n=272) 
3% (n=64) 

MDS 0.7% (n=439) 
HR 7% (n=28) 
MDS+CMML 0 (n=107) 
MDS+AML  0 (n=96) 
t-MDS/AML 2.9%  (n=140)

MDS/MPN 10%  (n=30) 
1%  (n=87) 

MPN 0 (n=14) 

MPL AML 0 (n=126) 
M7 25% (n=12) 

MDS 5q- 3.8% (n=78) CMML 0  (n=81) 
0 (n=118) 

RARS-T 13%  (n=23) 

PV 0 (n=32) 
0 (n=57) 
0 (n=242) 

ET 1% (n=100) 
11% (n=143) 
3.5% (n=199) 
1.3% (n=318) 
7% (n=417) 
4.1% (n=776) 

PMF  9%  (n=11) 
12.5% (n=24) 
9% (n=32) 

JAK2 WT 9% (n=45) 
6% (n=96) 
5.5% (n=290) 
8% (n=100) 
8.1% (n=603) 
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IDH1 AML 8% (n=187) 
2%  (n=198) 
6%  (n=199) 
5.5% (n=493) 
7.6% (n=805) 
9.6% (n=520) 
6%  (n=893) 
8%  (n=1333) 
6.6% (n=1414) 
6.1% (n=446) 

NK 14% (n=358) 

MDS 3%  (n=65) 
4%  (n=71) 
2.4% (n=82) 
3.6% (n=193) 
1.4% (n=439) 
2.9% (n=277) 
7.4% (n=108) 

low/int 2%  (n=288) 

CMML 1.2%  (n=81) 
IDH1/2 4%  (n=52) 

PMF 1.7% (n=301) 
2.9% (n=35) 

IDH1/2 6% (n=46) 
IDH1/2 3.9% (n=77) 
IDH1/2 4.2% (n=312) 
MPN 0 (n=263) 
PV 0 (n=38) 

0 (n=33_ 
IDH1/2 1.9% (n=421) 
ET 0 (n=47) 

2.7% (n=73) 
IDH1/2 0.8% (n=594) 

IDH2 AML 8.7% (n=805) 
2% (n=196) 
5% (n=198) 
3% (n=520) 
11% (n=893) 
12.1% (n=446) 
10% (n=1473) 

NK 19% (n=358) 
NK 12.1% (n=272) 

MDS 4.6% (n=65) 
3.6% (n=82) 
2.1% (n=439) 
9.4% (n=277) 
3.7% (n=108) 
0 (n=193) 

CMML 3.7%  (n=81) MPN 0 (n=263) 
PV 0 (n=38) 
ET 0 (n=47) 
PMF 2.3% (n=301) 

NPM1 AML 35% (n=591) 
24.9% (n=257) 
27.5% (n=1485) 

NK 48% (n=300) 
NK 52.9% (n=401) 
NK 53% (n=872) 
s/tAML 7% (n=140) 
sAML 12.5% (n=350) 

MDS 4.4% (n=160) 
low/int 2% (n=288) 
MDS+MDS/MPN 

1.8% (n=493) 
MDS+CMML 1.5% (n=66) 

CMML  1.2%  (n=81) 
4% (n=50) 

MDS/MPN  3% (n=187) 
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DNMT3A AML 22.1%  (n=281) 
 17.8%  (n=489) 
 14%  (n=500) 

MDS 7.8%  (n=51) 
 8%  (n=150) 
 2.6%  (n=193) 
low/int 13%  (n=288)  
HR 6%  (n=100)  
 

CMML  4%  (n=52) MPN 0 (n=57) 
PV  3%  (n=33) 
 7%  (n=30) 
ET  0 (n=56) 
 0 (n=30) 
PMF  4%  (n=25) 
 7%  (n=46) 
 6%  (n=16) 

UTX   CMML 8%  (n=52)  
FLT3-ITD AML 22.4%  (n=2813) 

 23%  (n=201) 
 13.2%  (n=106) 
  
 27%  (n=854) 
 20.4%  (n=979) 
 23.5%  (n=1003) 
 19.2%  (n=956) 
 24%  (n=250) 
 28.3%  (n=60) 
elderly 34%  (n=140) 
NK 31%  (n=872) 
s/tAML 11.7%  (n=605) 

MDS 0  (n=32) 
 4%  (n=70) 
 3%  (n=97) 
MDS+MDS/MPN  
 1.5%    (n=1316) 
MDS+CMML 0.6%  (n=182)  
HR+CMML 2.5%  (n=198)  
HR 2.3%  (n=338)  
MDS+AML 8%  (n=92) 
  

CMML  8%  (n=38) MPN  0 (n=115) 
PMF  0 (n=40) 
 

FLT3-TKD AML 5.5%  (n=2357) 
 7.7%  (n=979) 
 11%  (n=1107) 
 4.8%  (n=3082) 
 7%  (n=429) 
 3.3%  (n=60) 
NK 11% (n=872) 
s/tAML 1.8%  (n=489) 

MDS 0.4%  (n=237) 
 3.4%  (n=29) 
MDS+MDS/MPN 
 0.5%      (n=1316) 
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CEBPA AML 11%  (n=135) 
 4.3%  (n=277) 
 15%  (n=236) 
 15%  (n=104) 
 6.9%  (n=598) 
 7%  (n=1427) 
NK 12.8%  (n=1182) 
NK 13%  (n=872) 
 

MDS 1.5%  (n=68)  
 4.5%  (n=382) 

MDS/MPN  4%  (n=187) MPN 0 (n=14)  

WT1 AML 14%  (n=34) 
 10%  (n=70) 
NK 10.7%  (n=196) 
NK 10%  (n=470) 
NK 12.6%  (n-617) 

MDS 0 (n=27) MDS/MPN  1% (n=187)  

MLL-PTD AML 6%  (n=2735) 
 5%  (n=956) 
 4%  (n=250) 
NK 7%  (n=872) 
s/tAML 5.9%  (n=591) 

MDS 2.6%  (n=338) 
 4.4%  (n=180) 

  

ETV6 AML 1.7%  (n=300) MDS 2.7%  (n=439) 
low/int 2%  (n=288)  

  

BCOR1 AML 6%  (n=173) 
NK 3.8%  (n=262) 

   

GATA1    ET  0 (n=46) 
GATA2 AML  0 (n=270) 

CEBPAmut 39%  (n=33)   
CEBPA WT 0 (n=89)  

MDS 0 (n=30)  MPN 0 (n=286) 

FMS  MDS+AML+CMML 
 12.7%  (n=110) 

 PMF  5%  (n=40) 

GNAS  MDS 0.7%  (n=439)   
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BRAF MDS 0.5% (n=439) 
PTEN MDS 0.2% (n=439) 

CDKN2A MDS 0.2% (n=439) 
ZRSR2 AML 0 (n=151) MDS 3.1% (n=193) 

11.1% (n=221) 
MDS-RS  1.4% (n=73) 
w/o RS  7.7% (n=155) 

MDS/MPN 8%  (n=88) MPN  1.9%  (n=53) 

Abbreviations; NK, normal karyotype; int, intermediate; HR, high risk; RS, ring sideroblasts; sAML, secondary acute myeloid leukaemia; tAML, therapy 
related acute myeloid leukaemia 

(Abdel-Wahab et al., 2011a; Bacher et al., 2010, 2007; Braun et al., 2011; Ernst et al., 2010a, 2010b; Gelsi-Boyer et al., 2008; Grossmann et al., 
2011a; Jankowska et al., 2011; Kohlmann et al., 2010; Makishima et al., 2010; Malcovati et al., 2009; Muramatsu et al., 2012; Szpurka et al., 
2010)(King-Underwood et al., 1996)(Kiyoi et al., 1999)(Abu-Duhier et al., 2000)(Stirewalt et al., 2001)(Thiede et al., 2002)(Kottaridis et al., 
2001)(Schnittger et al., 2002)(Preudhomme et al., 2002)(Barjesteh van Waalwijk van Doorn-Khosrovani et al., 2003)(Fröhling et al., 2004)(Falini 
et al., 2005)(Lin et al., 2005)(Nomdedéu et al., 2005)(Hugues et al., 2005)(Barjesteh van Waalwijk van Doorn-Khosrovani et al., 2005)(Olesen et 
al., 2005)(Bowen et al., 2005)(Suzuki et al., 2005) (Döhner et al., 2005) (Schnittger et al., 2005)(Lee et al., 2006) (Bacher et al., 2006)(Thiede et 
al., 2006)(Illmer et al., 2007)(Summers et al., 2007)(Mead et al., 2007)(Vicente et al., 2007)(Bacher et al., 2008)(Andersen et al., 2008)(Hou et 
al., 2008)(Schlenk et al., 2008)(Haferlach et al., 2008)(Abbas et al., 2008)(Paschka et al., 2008)(Virappane et al., 2008)(Wouters et al., 
2009)(Hussein et al., 2009)(Gaidzik et al., 2009)(Mardis et al., 2009)(Tang et al., 2009)(Carbuccia et al., 2010)(Chou et al., 2010a)(Marcucci et 
al., 2010)(Green et al., 2010b)(Thol et al., 2010a)(Paschka et al., 2010)(Boissel et al., 2010)(Abbas et al., 2010)(Green et al., 2010a)(Chou et al., 
2010b)(Ley et al., 2010)(Schnittger et al., 2010)(Patel et al., 2011)(Chou et al., 2011b)(Taskesen et al., 2011)(Gaidzik et al., 2011)(Metzeler et 
al., 2011b)(Green et al., 2011)(Thol et al., 2011a)(Chou et al., 2011a)(Li et al., 2011)(Grossmann et al., 2011b)(Metzeler et al., 2011a)(Qian et 
al., 2012)(Hou et al., 2012)(Pratcorona et al., 2012)(Rücker et al., 2012)(Gaidzik et al., 2012)(Greif et al., 2012)(Schnittger et al., 2012b)(Ridge et 
al., 1990)(Kaneko et al., 1995; Misawa and Horiike, 1996)(Misawa et al., 1997)(Horiike et al., 1997)(Hosoya et al., 1998)(Tang et al., 1998)(Xu et 
al., 1999)(Yamamoto et al., 2001)(Fritsche-Polanz et al., 2001)(Kita-Sasai et al., 2001)(Kaeferstein et al., 2003)(Johan et al., 2004; Shih et al., 
2004)(Nakao et al., 2004)(Watkins et al., 2004)(Christiansen et al., 2007)(Steensma et al., 2005)(Chen et al., 2007a)(Fuchs et al., 2009)(Patnaik 
et al., 2010; Rocquain et al., 2010)(Andrulis et al., 2010a)(Thol et al., 2010b)(Hussein et al., 2010b)(Lin et al., 2011)(Bains et al., 2011)(Ewalt et 
al., 2011)(Schnittger et al., 2011)(Jädersten et al., 2011)(Thol et al., 2011b)(Walter et al., 2011)(Bejar et al., 2011)(Papaemmanuil et al., 
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2011)(Thol et al., 2011c)(Malcovati et al., 2011)(Graubert et al., 2012)(Patnaik et al., 2012a)(Patnaik et al., 2012b)(Lin et al., 2012)(Wu et al., 
2012)(Thol et al., 2012)(Cui et al., 2012)(Abu-Duhier et al., 2002)(Abu-Duhier et al., 2003)(Pardanani et al., 2003)(Gandini et al., 2004)(Baxter et 
al., 2005)(Levine et al., 2005)(James et al., 2005)(Kralovics et al., 2005)(Jones et al., 2005)(Wolanskyj et al., 2005)(Tefferi et al., 2005)(Vizmanos 
et al., 2006)(Campbell et al., 2006)(Pikman et al., 2006)(Oki et al., 2006)(Fontalba et al., 2006)(Pardanani et al., 2006)(Chen et al., 
2007b)(Martínez-Avilés et al., 2007)(Percy et al., 2007)(Barosi et al., 2007)(Pietra et al., 2008)(Beer et al., 2008)(Chaligné et al., 
2008)(Ormazábal et al., 2008)(Tefferi et al., 2009)(Delhommeau et al., 2009)(Grand et al., 2009)(Zhang et al., 2009)(Carbuccia et al., 2009)(Ding 
et al., 2009)(Hussein et al., 2010a)(Ruan et al., 2010)(Boyd et al., 2010)(Glembotsky et al., 2010)(Pardanani et al., 2010)(Tefferi et al., 
2010)(Andrulis et al., 2010b)(Ma et al., 2011)(Pietra et al., 2011)(Brecqueville et al., 2011)(Abdel-Wahab et al., 2011b)(Stegelmann et al., 
2011)(Stein et al., 2011)(Raza et al., 2011)(Guglielmelli et al., 2011)(Pardanani et al., 2011)(Ricci et al., 2012)(Tefferi et al., 2012)(Lasho et al., 
2012a)(Schnittger et al., 2012a)(Aranaz et al., 2012)(Meggendorfer et al., 2012)(Lasho et al., 2012b)(Wang and Chen, 1998)(Au et al., 
2004)(Yoshida et al., 2011)(Boultwood et al., 2010; Dicker et al., 2010)(Bejar et al., 2012)(Makishima et al., 2012)(Damm et al., 2012)(Ernst et 
al., 2010a) 
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Appendix 8.6 

Primer Pairs for GS Junior and MiSeq 
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Appendix 8.6 - Primer pairs for GS Junior Panel 

Gene Chr Forward Primer Reverse Primer 
ASXL1 20 ACTCACACAGTCCCACCAGAA GAGCACGGGCTTTAATGTCTGC 
ASXL1 20 ACCAGATATGCCCCCGGAT TCTCTCCTAGCTCTGGACATGG 
ASXL1 20 AACTACTGCCGCCTTATCCTCTA TCCTTTCTCTAATGTATCATCTCCCA 
ASXL1 20 AATGTGAGTCTGGCACCACTTC ATTCTGGTTTGGGCTGTTTCACT 
ASXL1 20 AGGCTCTCGTTTCTAACAGTTCT GCTGTCCTCCGTGAGGTG 
ASXL1 20 TCAACAGGTGGACATTGAAAAGC GACCCAGGCATGGACAGG 
ASXL1 20 TACTGAGTACCAGCCAAGAGCC GAGTCAAAACTTGGGACTGCCTT 
ASXL1 20 CACTGGTCTTGCCAGGATTGA CACATTCCCAGAGCCAAAAAGC 
ASXL1 20 GGTGATCAGAGCAATGTTACAGG TCTCGGGGTAATTTCCAGAAGG 
ASXL1 20 AAATGCCGAGAACAGGAAAGCTA GTGCTGCTGTCAGTGAACATTTG 
ASXL1 20 CTTCTGGAAATTACCCCGAGAGC GCTTTGAGGGTCCAATACAGTCA 
ASXL1 20 AGTGCATCACTTTCCTTGCAAAT GGCAGCCCAATGGGTTATAC 
CBL 11 CCCTGGAGCTTAAAATAGGACCC CACCCCTTGTATCAGTAAAGGCTA 
CBL 11 CCTGGCTTTTGGGGTTAGGTTTA TGTTTTACGGCTTTAGAAGACAAC 
DNMT3A 2 CAGAGTTCCCAGGCAACAA AGGTGGGAACAAGTTGGAGA 
DNMT3A 2 CTCTCCTGGGTGGGTGTG CCCTCCTGAGTAACCTGGAA 
DNMT3A 2 CCCAGCTAAGGAGACCACTG GCTGCTCTTTGGTTCTGTCC 
DNMT3A 2 GCACAACAGGTCAGATGCAG TCTGCTCACTGGGTCTCCTT 
DNMT3A 2 TCTGCTCACTGGGTCTCCTT TTCGCTAATAACCACGACCA 
DNMT3A 2 GTGCAGGGAGGGGAAGAC CTCTCCGGTCAGTTTTCTGC 
DNMT3A 2 ATTAGTGAGCTGGCCAAACC GCCTTTATCCTCCCAGATCC 
DNMT3A 2 TCATCCCACCTGCAGTCC CAGCTTGTGGAATGTGGCTA 
DNMT3A 2 CCCAGCAGAGGTTCTAGACG TAACGCTTGGTGGATTTGTG 
DNMT3A 2 AGCAAGCACAGCAATCAGAA GCTCACTCAGAGCCATACCC 
DNMT3A 2 TTTGTGTCGCTACCTCAGTTTG CTGAGTGCCGGGTTGTTTAT 
FLT3TKD 13 CTGCTGTGAGGGTTTTTTGATGT GGCACAGCCCAGTAAAGATAAGA 
IDH1 2 AAATCACATTATTGCCAACATGAC AGAATCGTGATGCCACCAAC 
IDH2 15 GTGCCCAGGTCAGTGGAT GACTCCAGAGCCCACACATT 
JAK2 9 TTACTCCTCTTTGGAGCAATTCA AACATCTAACACAAGGTTGGCAT 
JAK2 9 GGACCAAAGCACATTGTATCCTCA TCACAAGATATAACTGAATAGTCCTACAG 
KIT 4 AGTGAAGTGAATGTTGCTGAGGT TCAGCAAACAAAATTAATGTCTACCA 
KIT 4 ATGTGAACATCATTCAAGGCGTA TGAAACTAAAAATCCTTTGCAGGAC 
KRAS 12 AGGAAAGTAAAGTTCCCATATTAATGGTT TTGTATTAAAAGGTACTGGTGGAGT 
KRAS 12 ACAGGGATATTACCTACCTCATAAACA TTTTGAAGTAAAAGGTGCACTGTAAT 
MPL 1 GGGGCCCTGACCTTGC GAAGTGGCGAAGCCGTAGG 
NPM1 5 ACTCTCTGGTGGTAGAATGAAAAA AAACAGGCATTTTGGACAACACA 
NRAS 1 TGGGTAAAGATGATCCGACAAGTG GAGGCCGATATTAATCCGGTGTT 
NRAS 1 ACAACCTAAAACCAACTCTTCCCA AAAATTGAACTTCCCTCCCTCCC 
TP53 17 AACCAGCCCTGTCGTCTCT GTTTCTTTGCTGCCGTCTTC 
TP53 17 GCCACTGACAACCACCCTTA CATGAGCGCTGCTCAGATAG 
TP53 17 GGGTCAGAGGCAAGCAGA GAGCTTGCAGTGAGCTGAGA 
TP53 17 TGCTAGGAAAGAGGCAAGGA CAAGGGTGGTTGGGAGTAGA 
TP53 17 CCACTTGATAAGAGGTCCCAAG CTTTGAGGTGCGTGTTTGTG 
RUNX1  21 GGGCCCCTTTCCAGAATCC GTGATGCGTATCCCCGTAGATG 
RUNX1  21 GGGATTCCATCACAGAAATCACT TCATTGCTATTCCTCTGCAACCTAA 
RUNX1  21 CAATGCAACTTTTTGGCTTTACGG AACTGGTAACTTGTGCTGAAGGG 
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RUNX1  21 CAGTTGGTCTGGGAAGGTGTG AAGCCCCAGTTTTAGGAAATCCA 
RUNX1  21 TCAATAATGTTCTGCCAACTCCTTC TGAACAAGGGCCACTCATTTCTT 
RUNX1  21 CGGTGGAGGCGTTGGTG CTCACTTCCGCTCCGTTCTCTT 
RUNX1  21 GCGCGGGCCTGACCTA CGGCTCCTACCAGTTCTCCAT 
SF3B1 2 ACAAAGTTACATTACAACTTACCATGTTC CCAACTCATGACTGTCCTTTCTT 
SF3B1 2 GATAAATCAAAAGGTAATTGGTGGA TGCTGACAGGCTATGGTTCA 
SF3B1 2 TGTTAGAACCATGAAACATATCCAG TATCCGCCAACACAGAGGA 
SRSF2 17 TTAGGGTTATGTGTCTCGGATTC CGCTGCCTGGAATTAACC 
SRSF2 17 CCTCAGCCCCGTTTACCT CAAGGTGGACAACCTGACCT 
SRSF2 17 ATGGCATCCATAGCGTCCT CAAGGCCTTTCCCAGTGTC 
U2AF1 21 GAACACACTTATGAACACAAATGGA GAGGTGCTTAATACCACGGAAA 
U2AF1 21 CTCGTGTGCATTCTCTGTGG ATTAAAGCGTGGATGGCAAG 
WT1 11 AGCAGTGCTTACTTTCCATCCTG CCCTCAAGACCTACGTGAATGTT 
WT1 11 TTCCACCCTCCCCTTCTTTA TGCAGGCATGGCAGGAAA 
ZRSR2  X TCCTTTCATTGGGCACAGA TTTGACTTCCTTCTGACACTGG 
ZRSR2  X AAGGTTGATCAGAGACCTTTTTG GACTGGTACTGGTTAGTAAAGGTTGA 
ZRSR2  X TTTGCTCTCGTGTGTGTGTG CCTCCCAAGATAGGCAACTCT 
ZRSR2  X TGTGCGCTGTATGTGAAATG GACCCGAAGAAGAGCATCAG 
ZRSR2  X AACTTGTGTGCGTGTGTGTG TGAGTCCAGATATCCAAACATGA 
ZRSR2 X TGAAACATTTCGTCTTTCATGG GCAGCAGATGTCTGATGACG 
ZRSR2  X TTTCAACTATTGGCCTAGTGAATTT CAGGGTGAAGCAAACCAGTC 
ZRSR2  X GGGAATGTTAGCCTGGACAA TCCCAGACATCAACAGAAACA 
ZRSR2 X CGGGGTTAATTAATAGTAGAGCTAATC AAGCTATGCCTCACCACTTGA 
ZRSR2 X AAGTGCTGTTTCATCACTGTGC CCTCTCCCGACTCTTTGATG 
ZRSR2  X CATCAAAGAGTCGGGAGAGG AACCCATCTGCGTTCATAGC 
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Appendix 8.6 - Primer pairs for MiSeq panel 

Gene Chr Forward Primer Reverse Primer 
ASXL1 20 CCCTAGGTCAGATCACCCAGTC GGCTTTAATGTCTGCGAGGGTC 
ASXL1 20 GTGGTTAAAGGTCAGCCCACTT CCCCCTCCGATGGCAGT 
ASXL1 20 CGAGGGGCGAGAGGTCA GATCTGACGTACACTTTCCAGGG 
ASXL1 20 CCACCGATGAGGGAGGTGG CTCTCTCCTAGCTCTGGACATGG 
ASXL1 20 TACGTCAGATCTACAGCGAACAC TTGGGAGGCATCTCCTAGCC 
ASXL1 20 AGGAGGAAAGCTGCCTACTACA GCCAGACTCACATTCAGTTCTAA 
ASXL1 20 CCACTGGGGACCAGCCAT TCCCACTAGAGACAGAATGGGAC 
ASXL1 20 TTCCTGGGAAAGTGATGATGAGG CTCTGTTCTGCAGGCAATCAGTC 
ASXL1 20 GAGAAAGGAACTGGCCAAGC AGAGCCTTGGTTTTCAAGTTTTC 
ASXL1 20 CCTGAATCCTCACCGACTGATTG ATTCTGGTTTGGGCTGTTTCACT 
ASXL1 20 AGGCTCTCGTTTCTAACAGTTCT TAGACCCTCCTCAGCTGTCAAAT 
ASXL1 20 GATGAGGTAGTGAAACAGCCCAA CTCCTCGAGATGGCACAGTC 
ASXL1 20 ATTTGACAGCTGAGGAGGGTCTA TTCAAAGTCAGAGGCTGTATCCG 
ASXL1 20 AATCAACGGAGACTCTGAAGCAC ATGTCACCATTCACCTTGGACAG 
ASXL1 20 CACTAGAGAAGCTGCAGTGACAA AGCAGTAGGGAATCTGGGATCTT 
ASXL1 20 GTCTGGTTACAAGGACAGATGGG CAGCAACTGCATCACAAGTGG 
ASXL1 20 AAGAGCCGTGTGCCTGTC ACCATGTAAAGATCCCATGCGTA 
ASXL1 20 TAGCTTGCCCCTAGAGAAGGTT AAGAGGCTCCTTCAAAGCCCTTA 
ASXL1 20 GGAAAAAACAGTGGCATGGTTGA ATGGGATTTGTCACTGGATGGAG 
ASXL1 20 CTGTGAAACAGGCACTGGTCTTG ACGGACTTCCTTCTGATCTTCAC 
ASXL1 20 CCTCTAGGAAACTGGAAGAAATGGA GCTCTGGACCAAAGGAGATCACA 
ASXL1 20 AGATCAGAAGGAAGTCCGTGCTA TTCTTCCCTTGGCCTGTAACATT 
ASXL1 20 CTTTGGTCCAGAGCAGACAGG CACCAGACATGGAGTTTGTGCTT 
ASXL1 20 CCCTTCAGCGCCCCAG CTTAAGAGGACCCCCCACAAAAG 
ASXL1 20 GGGGTACAGACTCCAAGGGAAG AATTTCCAGAAGGGCAAGTCCAT 
ASXL1 20 ATAGTCCCCTGGAACTGGTGG TGGTGGAACTCAGTTGGAGTTTA 
ASXL1 20 TTCTTCTCTCCCCTCCCAACTCA GAACATTTGCAAGGAAAGTGATGC 
ASXL1 20 CTTGCTGGAAGTGTGGTGCAG GCTTTGAGGGTCCAATACAGTCA 
ASXL1 20 GCTGCGGTGCGTTCTGTC AGAGTGCTCCTGCCTAAAGAGTA 
BCOR X TGACACATATGCACAAGGATTAACA GGAAGCCTTCAACCCTGAAAGTA 
BCOR X CCACTCTACAGAGGAGCCCAG ATTTCGCTGCAATTTTCCAAACG 
BCOR X GAACAAGAGACTTGCAGAAACCT GGGCGCACTTTTCATTTTACTGG 
BCOR X CTAACTCCTGTCACCTCAAGAGC GATGTTTTAGCCAACCCCCCAG 
BCOR X CTGAGCCACAGATACTTGGATGT CCTTCCTCTCTTATTTGCCCTCC 
BCOR X AGACAGAAATGGACTTGAACTTGT CCATCATTTTGTTCTCAGCAGTAG 
BCOR X AGCCTTTGTGATTTCTGCCTAGT CTTCTCTCTTATGGTGCTGACCC 
BCOR X TGTCATACCTGTTAAGAACTTTTCCA AAGTGTGGCTTGCATGAGCATAA 
BCOR X ACAGATAGGGAAGCTTGGTCTCA TAAATCATCGGGACAACGCAGGT 
BCOR X AGTTGACATCAGCGCCATATTCA AGTGATCTGATGGCATTCTTCCC 
BCOR X CCTCGCCCACCACAGTC CCATGCTCAAGTTCCCCTCA 
BCOR X GGTCTCCTGAGGGGAACTTGAG GTGTGCGCTGCTTGGTTTTATG 
BCOR X GGGGATGTGTTCGCACAGG CTGCAGAAATACACCGACAACAG 
BCOR X TCTCGCTGTTGTCGGTGTATTTC AAGAGTCTTTCATCCACCAGTGC 
BCOR X GCAATCCTCTTCTTCGTCTGCAC CCGTCACCCCCTCCGTA 
BCOR X GATCTCCTCAAAAGCCCTTTCCT TTCCTCAGGGGACTAACATCACT 
BCOR X GATGTTAGTCCCCTGAGGAATGG TATAGTGAGCTGACCAACCTGAA 
BCOR X CAGCAAGTGGCGTTGTTTTTT ATGCGTAAGACAGTTTGTTCCC 
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BCOR X CCGCACATCCACATCTCCTG GTGGACAGGAAACGCAAAGTC 
BCOR X TTGCGTTTCCTGTCCACCC TAATGCCCTCTTGTCTCCCCTC 
BCOR X CCATTTCTCCAAGCAGATGCCAA CAGCAACCAAAGACTCCGAGATG 
BCOR X GACCGACTTTGGCTTTTTGTCC AGCTTTTATGGTAAGGTGTTGTTTT 
BCOR X ATGGCCCACAAACTTCCCTTT ATGATCCATTGAGTGCCCATTTT 
BCOR X TACCATACTCCCCCAATCCTGTT GCTGGCAAAGAGAATCGCCAA 
BCOR X GCCATCATTTGATTCAGCCTCAT AAGAGAACCTAGGGTTGCCAGTC 
BCOR X CTCTTTGTTGGTACCTGCCAGAA CTTTGCAGCAGAGAGTGTTGG 
BCOR X CTCCTCTCTCAGGGCGATGAAAT GACTGTTGTCAAAAGCGACAAGC 
BCOR X GTCTTCCCTTGATTCCAGTTGGG CACACACGCCCATAGAGATTACT 
BCOR X CTCGTAACGGGCTCTCTCATGG GTCTGTTTCCTGGGCACCTT 
BCOR X TGGTATCAACATGGGATGCAC TTGCTGTAAGTCCCCTCTCCTTA 
BCOR X AAACAGACTGCCATTGGGTAACA GGCCTTCCACCAAGCTCTATATT 
BCOR X CCGTTCTCGTTTGCTTTGAAACT CATCACCCGCCCCCAAT 
BCOR X GATGGTGTGGTTTCTACAGAGC GAAAAACAAGGCATTGGACTGGG 
BCOR X AGTCCAATGCCTTGTTTTTCAGC CTGGAAGTGGCTTAGTGCTCTC 
BCOR X GAGAGCACTAAGCCACTTCCAG ACAGCGGTTCAAGACAGAAAAGA 
BCOR X TCTTTGGTAACGGTCTGCTTCTC GTTGCCCTGTCAAAGCCATACAT 
BCOR X GAGCCTTGGGATACTTGCCATT TCTCCTGTTGCCCCCCTC 
BCOR X CAACAGGAGAGCTGTGTCCC CGGCCTCCCCAGCCAT 
BCOR X GATAGGCGTGGGAATCAACAGGA CAATGGGGAGCGCTTTCTCTA 
BCOR X ATTGGTGCAGACTGGAGAATACA ACAAACAGAGCCCTCTCAACATC 
BCOR X GCGTGGCACCCTCCAT GAAAACCCCCAAATGGCTTCAG 
BCOR X GCAGATATGGCATCAACAGAAGC TCTGTTCTGGGGAGATCTGTGAA 
BCOR X CGGTGGCTGTGAGAAGTTGAG CTTGAAGCAAAGCTGCCATCC 
CALR 19 GTAACAAAGGTGAGGCCTGGT CCTCCTCCTCTTTGCGTTTCTTG 
CALR 19 AATGAAGGACAAACAGGACGAGG AGGCAGGCCTCTCTACAGC 
CALR 19 ATGAGGAGGACAAGGAGGAAGAT CAAAATCCACCCCAAATCCGAAC 
CBL 11 CCCAGACTAGATGCTTTCTGGTT ATGTGGAGCCCATCTCACAGTAT 
CBL 11 TGAATTATACTGTGAGATGGGCTCC AGGTTATTACATAGCTGAAAAAAGTCG 
CBL 11 TGCATCTGTTACTATCTTTTGCTTCT CTCTGCTCCTTGCCTCAACAG 
CBL 11 CCCATCGTGGTAGATCCGTTTG ACAATGGATTTTGCCAGTCTCCT 
CSF3R 1 CCTCCATCCCATGGACCC CTATCTCCGCTGTGACTCCACT 
CSF3R 1 CTGGAACCAGAGGTTCTCATAGG GGACCCAAGAGCAGTTTCCAC 
CSF3R 1 GACCAGGGGATTCAAAGTCAGTC CCCGCCAGTCTGTATCACATC 
CSF3R 1 CTTACCTGGGGTCAAGGTCATCA GGAGGCAGCTTTACCATCCAG 
CSF3R 1 GCAGTGCAAGGAAATTCCCAATA GGTCTTAAACAACCCTTCTGCCTA 
DNMT3A 2 ATGTTTTGTGTTTTTTGTTTGTTTGTTT CAGTCCACTATACTGACGTCTCC 
DNMT3A 2 CCCCATGTCCCTTACACACAC CTGCCCTCTCTGCCTTTTCTC 
DNMT3A 2 TGGAAAACAAGTCAGGTGGGAAA AACTCCATAAAGCAGGGCAAAGA 
DNMT3A 2 TACCTTTCCATTTCAGTGCACCA GCATATTTGGTAGACGCATGACC 
DNMT3A 2 CTCATCCTGCCCTTCCTTCTC CTTCCCGCTGTTATCCAGGTTTC 
DNMT3A 2 CTCAGGGGCTTCCCCACTAT TCATCTTCAAACCGTCTCCTGTT 
DNMT3A 2 GATGAAGCAGCAGTCCAAGGTA TCTTTGAGTTCTACCGCCTCCT 
DNMT3A 2 AGATGTCCCTCTTGTCACTAACG CACACCACTGTCCTATGCAGAC 
DNMT3A 2 CAGGGCAGAAATATCCAAGGAGG GCCCATCACGTTGCCTTTATC 
DNMT3A 2 AACAAAATGAAAGGAGGCAAGGG CTCGGAGGTGTGTGAGGACT 
DNMT3A 2 TGGACATACATGCTTCTGTGTGA GGAGATGGCTCCAAGTAACGG 
DNMT3A 2 CATTTCGTTTTGCCAGAGTTGCC CATCTGACCTGTTGTGCTCACT 
DNMT3A 2 CTCAGGCCCCACAACCAA ATTAAGGAAGACCCCTGGAACTG 
DNMT3A 2 ATTAGCGAAGAACATCTGGAGCC CTCCTCTGCTCACTGGGTCT 
DNMT3A 2 CCAGCTAAGGAGACCACTGGAG CCTGGTGGTTTCTGACCCTTC 
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DNMT3A 2 GTGGACACAGTCAGCCAGAAG GGTACTCACCCCATCCCCTC 
DNMT3A 2 TGGTCCCATGTCATTCAAACCTT AGGAGGCCTGCATCCGAG 
DNMT3A 2 CTCTGCAAGGGGAGGAGAGC CAGCTGCCTACGCACCAC 
DNMT3A 2 TGTGCGCTCATCAATAATCTCCT CTGTCAGCCTGTAACTGACCTTG 
DNMT3A 2 CCCTAAGCATGGCTTTCCCAG CCACGACAGCGATGAGAGTG 
DNMT3A 2 GTGCCCTCATTTACCTTCTGGTG CCCAACCCTGGCGTGTC 
DNMT3A 2 ACTTCCAGGCCTCCTAGTG GCTTGTCCCCCCAGGT 
DNMT3A 2 GGTGGAACGCACTGCAAAA TATCACTGTATCTGGTCCCCTCC 
DNMT3A 2 GGATCAAGAACCTTCCCCCAC GCTTTGGCATTGGGGAGCTG 
DNMT3A 2 TACCACTGAGAATTTGCCGTCTC GTGTAATGATTTCTGCTCCTTGGG 
DNMT3A 2 ATGGAGAGAGGAGAGCAGGAC GCATCCCCCACTGTGGCTA 
DNMT3A 2 ACCCCACGGGCTCAGG GGAGAGGTCAAGGTGACTTTTTG 
DNMT3A 2 TCTGCCATCCCACCAACAAATTA TGGTTCTCAGAGCTAAGTATCAAGG 
DNMT3A 2 GGGGAGGCATACTTCACTCTTTT AGCTACTTCCAGAGCTTCAGGG 
DNMT3A 2 CCCATCACTTCTGGTTTTCCAGT GTGGCTTGGGCTGGGAG 
DNMT3A 2 GCCTCACCTCCCTTTTCCAG ACCCTAATGCCCTAATGTCTGTC 
DNMT3A 2 CCACAGAGGGATGTGTAAAGAAGG GAACTGGTCCCTTTGTTCTTCCC 
DNMT3A 2 CTTTAGCCACGACCCAGACCAT AAGCCTCAAGAGCAGTGGAAAAT 
DNMT3A 2 TGAGGACTCACCCGCTTCT TATTACCCAATGGGGACTTGGAG 
DNMT3A 2 CAGGGCTCCCCTCCTCTG CCCACTGATCTAACCCTCCTCTT 
DNMT3A 2 CGTGTGTGTTGTGTGTGTGC GCTGGGATCCACCTCTGG 
DNMT3A 2 ACAGGGCTCTCCCTCTCC ATAATTCCTTCCCCAAAGCCCAG 
EZH2 7 CGAGGTTCCTGAAGCTAAGGC AGCAGGCTTTGTTGTGTTAAGTC 
EZH2 7 TCACAATCCAGTAGAAAAAGCCCTTA GCCCGTCTTCATGCTCACT 
EZH2 7 TCCCAGAAGTATTCAAGTCCATCA TGAAATTATTCACTGGGCTGTGC 
EZH2 7 AGAAGGCTGCCACATGCAA TTCTGTCAGGCTTGATCACCTTT 
EZH2 7 CCAATCAAACCCACAGACTTACC ATCTATTGCTGGCACCATCTGAC 
EZH2 7 GGTTATCAGTGCCTTACCTCTCC AGTCTACTTTGTCCCCAGTCCAT 
EZH2 7 AAGGCAATCCTGACATTTGCATC CTACCTGGCTGTCCGAGAGTG 
EZH2 7 GCAGTTCTTGCAGGACACATTTT GGTGATGAGTGAAGAACCTCCAA 
EZH2 7 CGTCAAGTAAACAAGGGAGTGCT CCACGGCAGCCTTGTGA 
EZH2 7 TGCATCAAAGCAACAAATACTTACACT GATTCATTGGCCTGCATGATGTT 
EZH2 7 ACCCAAGCTCTAATCCAGTTACTATTC GTAGCTTCCCGCAGAAATTTGGT 
EZH2 7 CCTTGCCTGCAGTGTCTATCTAT ATAAGACTGTCCTCATGGCTCTG 
EZH2 7 TGTTTGGACAACGAGTACAGTTT GAACCTCCTGAGAATGTGGAGTG 
EZH2 7 ACCTGTCTACATGTTTTGGTCCC TGACCAGTGCTTACATTTGGTTT 
EZH2 7 TGCATTATACATCCTTAATCCTCACAA GCTGGAATCAAAGGATACAGACAG 
EZH2 7 TAGACGTGTCTTACCAGAGGAGC AGAAGAGGACGGCTTCCCAATAA 
EZH2 7 TCCCTATCACTGTCTGTATCCTT ACTTTGCCCTGATGTTGACATTT 
EZH2 7 ACCCTCTGCAATAATTAGGCACT CCAGTGGAACTGGAAGAGTGAAA 
EZH2 7 AAATGATAGCACTCTCCAAGCTG CCCAACATAGATGGACCAAATGC 
EZH2 7 AACATCGCCTACAGAAAAGCGTA TTTCAAAAAAGTGATTTTTGTTTCATGTTT 
EZH2 7 TCCGCTACATTGATTCCATTTGT TTAGATAAAGAAAGCCGCCCACC 
EZH2 7 AGTTCTTCTGCTGTGCCCTTATC TCAGCTTTGTTATAGAGACATAATTGGG 
EZH2 7 AAACTAAGCCCTATTTCTACTCTTTCT TTTTTGTGGAGTTGGTGAATGCC 
EZH2 7 TCTCGGTGATCCTCCAGATCTTT ATTGCTTCTCCTGTGTGTTTCTG 
EZH2 7 TGCTTCATAAACAAAAGTGTCTCTCA TTTCTTTTAGGTGGAAGATGAAACTG 
EZH2 7 AGTTCTTCAATGAAAGTACCATCCTG ATCTGGAGAACTGGGTAAAGACA 
EZH2 7 ACTGTCTTGATTCACCTTGACAATA GGATTTTCCAACACAAGTCATCCC 
EZH2 7 ACCATAAAATTCTGCTGTAGGGGAG ATGGCTACAGCTTAAGGTTGTCCT 
EZH2 7 TGATTTCCTCCCAATAACCAAACA TGGAAAGAACGGAAATCTTAAACCA 
EZH2 7 ATGTTAACCAACCTCCCTAGTCC ACAATTTCTCCTTTCCTCTCCTTCA 
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EZH2 7 AGGAGGGGAAAAAACCTATCCTT ATAATCATGGGCCAGACTGGGAA 
EZH2 7 TGAACCTCTTGAGCTGTCTCAGT CTGATTGTTAGTTTGCTGCGGAT 
FLT3 13 ACCACAGTGAGTGCAGTTGTTTA AGGAACGTGCTTGTCACCC 
FLT3 13 CTCACATTGCCCCTGACAACATA TGCACTCCAGGATAATACACATCA 
IDH1 2 CCTTGCTTAATGGGTGTAGATACCA AGCCATTATCTGCAAAAATATCCC 
IDH1 2 GCCAACATGACTTACTTGATCCC CCTGATGAGAAGAGGGTTGAGGA 
IDH1 2 TGCATTTCTCAATTTCATACCTTGCT GGCTTGTGAGTGGATGGGTAAAA 
IDH1 2 CCTTGCTTAATGGGTGTAGATACCA AAAAATATCCCCCGGCTTGTGAG 
IDH1 2 GCAAAATCACATTATTGCCAACATGAC TGAAACAAATGTGGAAATCACCAA 
IDH2 15 TGAAGAGACAAGCTGGGAGAGG  GCAGTACAAGGCCACAGACTT 
IDH2 15 CCTCACCTCGTCGGTGTTGTA CCTCGCCTAGCCATCCTCTT 
JAK2 9 AAAAGAACAATTAGGAGTTATTAAGCATTTC TAGGCCTCTGTAATGTTGGTGAG 
JAK2 9 TCTAGTCTTCAGAACGAATGGTGT TCACATGAATGTAAATCAAGAAAACAGA 
JAK2 9 TCTGAACTATTTATGGACAACAGTCA AAAACAGATGCTCTGAGAAAGGC 
KIT 4 AGTGAAGTGAATGTTGCTGAGGT CTCTGCTCAGTTCCTGGACAAAA 
KIT 4 GGCCATTTCTGTTTTCCTGTAGC TCAAGTGAATTGCAGTCCTTCCC 
KIT 4 AATGGTTTTCTTTTCTCCTCCAACC CTGTCAAGCAGAGAATGGGTACT 
KRAS 12 AAACTATAATTACTCCTTAATGTCAGCTTATT AAACCTGTCTCTTGGATATTCTCG 
KRAS 12 ATGGTCCTGCACCAGTAATATGC ATTATTTTTATTATAAGGCCTGCTGAAAATG 
KRAS 12 TTAGCTGTATCGTCAAGGCACTC AGGTGAGTTTGTATTAAAAGGTACTGGT 
MPL 1 GGCTGGCTGGATGAGGG GTCCACCGCCAGTCTCCT 
NPM1 5 TGTCTATGAAGTGTTGTGGTTCC AGGGAAAGTTCTCACTCTGCATT 
NRAS 1 AGCTCTATCTTCCCTAGTGTGGT GTACAGTGCCATGAGAGACCAAT 
NRAS 1 GATGGCAAATACACAGAGGAAGC AAAATTGAACTTCCCTCCCTCCC 
NRAS 1 GACAAGTGAGAGACAGGATCAGG AACAGGTTCTTGCTGGTGTGAAA 
NRAS 1 TGGTTCTGGATTAGCTGGATTGT GGAAGGTCACACTAGGGTTTTCA 
RUNX1 21 CTCAGCTGCAAAGAATGTGTTTT CAGATACAAGGCAGATCCAACCA 
RUNX1 21 ATTGGTAGGACTGATCGTAGGAC AACCCTGGTACATAGGCCACATA 
RUNX1 21 GCCTTCCTCATAACGTGCATTCT TTTTCGAACTTTCTCCCTGGTCA 
RUNX1 21 GGCCAGTTGTGGGTGGT CGGCGCACAGCCATGA 
RUNX1 21 GGTTAAAGGCAGTGGAGTGGTTC CCTCCCTGCTCCCCAC 
RUNX1 21  TGTACCAGCCCCAAGTGGAT ACAGATATGTTCAGGCCACCAAC 
RUNX1 21 TTGAAATGTGGGTTTGTTGCCAT CAGATGGCACTCTGGTCACT 
RUNX1 21 TAACGTACCTCTTCCACTTCGAC CTGCATTTGTCCTTTGACTGGTG 
RUNX1 21 CCCTCGCGGATCTCCC CGCAGCATGGTGGAGG 
RUNX1 21 CAGAGGAAGTTGGGGCTGTC CTTCACGCCGCCTTCCA 
RUNX1 21 CCAGCACCTCCACCATGC TTTGCAGGGTCCTAACTCAATCG 
SETBP1 18 GGGTGGGGTCTGGATATTGGTA GTTCCGGGGGCATGAGAAG 
SETBP1 18 CAAGGCATCCCATTCAAAAAGCA GGAAAGAACAGGGAATGACCACA 
SETBP1 18 GGAATAAGAAGGATCCCCGTGTC GATTTCTGGCAGCTTTCTGGATG 
SETBP1 18 TATCCCAGGAGGTGTGTCTAAGC TCAGTTTATCAGAGGTGGCCATA 
SETBP1 18 CCATCCAGAAAGCTGCCAGAAAT ACTGTCTGTGTTGGTGTAGAGAG 
SETBP1 18 GTTTCTAGCCAGCCGGATGTTC GATGGGCTGGAGATTTGGCATAG 
SETBP1 18 AATGGCAACCTGAGCCCTG AGCGTGATTTCCTTTAGGGAGC 
SETBP1 18 AATACACAGTGGAACCTGGAAGC CTTGGTCAGAAGTGCTGTTGTTG 
SETBP1 18 CTAAAGGAAATCACGCTGTCCC CGGTTCTTTGTGCTGGTGTC 
SF3B1 2 AATTCTGTTAGAACCATGAAACATATCC TGCTTTCTTGAAGGCTATTGGGT 
SF3B1 2 AGTAGTTGGCATATTCTGCATCC CGCCAACACAGAGGAAAGGTAAA 
SF3B1 2 CTTCAAGAAAGCAGCCAAACCC AGCAGCAACTCCTTATGGTATCG 
SF3B1 2 TTGGCGGATACCCTTCCATAAAG ACTTAGGTAATGTTGGGGCATAGT 
SF3B1 2 TGTGTGTGTACCTCTAGTCCCAA CTGTGCCATCTTGCCACATCTTA 
SF3B1 2 AAAGACAAAGTTACATTACAACTTACCA  AAAGCTGTGTGCAAAAGCAAGAA 

254



SF3B1 2 AAGATGGCACAGCCCATAAGAAT TGGATGAGTATGTCCGTAACACA 
SF3B1 2 TCTTGCTTTTGCACACAGCTTTT ACCAACTCATGACTGTCCTTTCT 
SF3B1 2 AACCATTTCTTTCCATAATCAATTCCA TGATGTGAAAGTGTAGCTTCTTCT 
SF3B1 2 TGTGCAAAGGAAAAGGTCTAGGA ACTTGAGGATCAAGAGCGTCATT 
SF3B1 2 TGGACGAACTAAGTCATCAAGTTT ACCACACCTATTACTCTGCTCTTTT 
SRSF2 17 CGACTCAAAAAGACCTACCCCAA CAGGTCCCGGTCTCGGT 
SRSF2 17 GATCGCGACCTGGATTTGGATT GCCGCTCGAAGTCTCGG 
SRSF2 17 GAGGACTTGGACTTGGACCTTC GAATTAACCCCGCTGTGCTTG 
SRSF2 17 GCCGCGGACCTTTGTGA GAGCTGCGGGTGCAAATG 
SRSF2 17 CACCGCCCCCGTACCT AAGGAGTCCCGCGGCTT 
SRSF2 17 CATGGCATCCATAGCGTCCTC CTCAAGGTGGACAACCTGACCTA 
SRSF2 17 CGCGGGACTCCTTGGTGTA GGCCGCCACTCAGAGCTA 
SRSF2 17 GTGCGGTAGGTCAGGTTGTC CCTTTCCCAGTGTCCCCAC 
SRSF2 17 CTTCGCCGCGGACCTT GAGCTGCGGGTGCAAATG 
SRSF2 17 GTCCCCTCAGCCCCGTTTA CTGAGGACGCTATGGATGCC 
SRSF2 17 CCCGTTTACCTGCGGCTC CCTTCGTTCGCTTTCACGACAA 
SRSF2 17 CACCGCCCCCGTACCT AAGGAGTCCCGCGGCTT 
STAG2 X GAAAGAAGGCAAGCCACCATTTT TCCCCATTTTGTGGAATAAACAAGT 
STAG2 X TTAGAAAATATGGCAAAAATTAGAAACTCAATA TGAGATCTTAGGAAACAAAATAAAGTCAA 
STAG2 X AGCTGTGTTTTGAACTCTCAAGGA TTTCCACTCCATTCTGTTGGTGA 
STAG2 X TAAAAAAGGCAAAAAGGGCCCAG ACAAATGAACTGGGAAGAACAACA 
STAG2 X TTGATTTTGAGAAAATTAGAAGAAGCTAATG AGTGACTATTTGAGAGCTGCTGATT 
STAG2 X TCACACCATATATTAACTTCTGACATTTGC ACTTTCAAAAATAAGTCAAGATAAACATGC 
STAG2 X ACCTTTTCATGCTTTTGTCTAGGG GCCGTACTAACACGCCAATGAAT 
STAG2 X AATTCATTGGCGTGTTAGTACGG TCATCTCAAATCTAAGACAATATGCAGAA 
STAG2 X GCTCATTTCTGCTTAATATTTCTATTTGATCT TCCAATCATTTTATTCCGTTCTGC 
STAG2 X AGTTGATGACAGCTTTGGTGAATG CCAAGTTGGTCACACAATAGCC 
STAG2 X ACTTGGCATCTCTTGAATAAACCA TCATGCATAGTCCAACCAACATA 
STAG2 X GCTGAAATTCGAGCTATTTGCATT TCATGAATGAGAGGTGCAGACA 
STAG2 X AGCAAGGTGAAGTAAGACTCAAATG AGGAAAGCAAGAGAAAAGTGTTTG 
STAG2 X TTGCAAACACTTTTCTCTTGCTT AATATGCAACAAATACATACTTACTGTAAAAC 
STAG2 X TGTGTCTATGACCCTTGACAAAGAA TCTAGCTGTAAACCTCCATGACG 
STAG2 X AGGACGTTACTAAAAGCACCTGT ACTGTTATGAAAGTATGCCTTAGAAAATG 
STAG2 X AAATTTTTTGTTGTTGTTGTCGTAAAATAAA CGAACCTAAGTATAAAATAAATACTATCAACTAACC 
STAG2 X AGTTTCCATTCTTTTGAGTTAAGGC ACATCCTTACCTTCCTCTCCACT 
STAG2 X ACAAGTGGCATATAGGGAGAAGAA AAAGACATTGATTGGCATACCCT 
STAG2 X GCAAGAGAGTGCTCTGATTGAAA ACAAAATTGTTTCATGGCTAAAATGGAAT 
STAG2 X ACACTTAACAGTGCTAATGGGCTT ACTTTTGCTAATAACTGAGGAAGGG 
STAG2 X AGTCTTTCTGTTCCTTTAGGTGCT ATTCTGTGAGGCATTTAGGGAAA 
STAG2 X TTTTTTCCCTAAATGCCTCACAGAA AATAATCTTACCTTTTCTAATCGTCCAGT 
STAG2 X GACTAACTTGTTGCAGTTGCCTC AGGTTTCCTTTCTTAAAATACGTTCCA 
STAG2 X TGGTCATGTAGTCACTTTATACCTATC TCTACTCTGTTGAAGATTGTGAACT 
STAG2 X TCAACAGAGTAGATATTTCAAGAAGTCA ACTGCTAGGGACTATCACCAAGA 
STAG2 X AGTGACATTTTGATAGCCTAGGAG ATTTCTACAGATTTAAGAAAACAGGAACT 
STAG2 X AGTTTACTGCATTTACTGCATTCTG TCAGGCATGTCTCCATTTTCGAT 
STAG2 X CCATGACCTTTCAAAGTGGGATTT CTGCAGTGCGTGAATAACAATCT 
STAG2 X TTTATCTTTGAAAAGTGAAGTCTTGTGA TCTAATAAAAACACTACTGAACCACCA 
STAG2 X CAGAAGTAGAGTTAATAAAGCTATGAGATAATG AACAGTAGTATTCACGTTGGTCA 
STAG2 X AGGACTTGCTGCGTTTAAAGAAA AAGATATTTCTGCTTTGCTCAATCTT 
STAG2 X GGCAGTTAGTGAGAAACCTTGGA CTGAGCAACTCAGACTGCAATGA 
STAG2 X TCTTCATTGCAGTCTGAGTTGCT ACCTGTGTTTCACGTTTTTAAGGA 
STAG2 X ACAAGATGCTTAATGTTTGGGACT TGCTATCCATTTTTCAACTTTACCTTCA 
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STAG2 X TGTGACGTGTTTACATGACTAACCT TGTTGCAGACTGAGAATAAGGGTC 
STAG2 X TGGAGATATCATCAAAGAAACAATGAGT ATTGCACACTTTGCCCAATTTCA 
STAG2 X TGCCTCATTTATTGAACACCTGTA AGCAAAACGTCGAGCAAGT 
STAG2 X GCTTTTTAATGAAATGATACAAGAAAATGGCTA TTCATGACTAAAAAATATGAGAGCTGAAT 
STAG2 X TGGCAAAGGAAGTAGTGAGTGAA TCACTCAGAATATCAAGAAATGCCAA 
STAG2 X TCCTTTGCAGAGATGGCATAGAA TGCCCTTAAGAATCCCAAAATGAAA 
STAG2 X AATATGCCTATGCTCGCACAACT CACCAGCTAGCAAAGAATTTCGG 
STAG2 X AATTCTTTGCTAGCTGGTGGTGA ACAATTCAGTTGGTAAACATTAGGGA 
STAG2 X AGTGACTAAACCTCGTCGTTAATTTT TGCATTGGATAAACACTCATGAAGC 
STAG2 X AGCTTCATGAGTGTTTATCCAATGC GCTTCCTCTTGTTGTCTTTGAGC 
STAG2 X ACATAGAAAAAGTTAAGTTAAAAGAGGAATAAAAT ACTCAGACAATAAGGCACTCTCAC 
STAG2 X AGCCACATACTGCTGCCTAGATA CCATGGTGTCAAAATCCATTCCC 
STAG2 X AGCCTAATGGAAGATGATGAAGAGC TCAAAAGATCTAAACTGAAAATCTTACAGAA 
STAG2 X TGGATATTTTCAGTTACTATCTGGTTTGT TGATTTTGCAATCCTAGGGTACAT 
STAG2 X AGAGGGGAAGTTTTCAAAGTGGT CTTAGAAAATGACTTCACCACAGATT 
STAT3 17 GGCTTCCAACCTTTGGCAGATTA GCTTACTGAATGCGAAGTCACAG 
STAT3 17 GGCATTTGCCTATCTATCCTCCA TGGTGTCTCCACTGGTCTATCTC 
STAT3 17 TCCTCCTTGGGAATGTCAGGAT CCTAGCTGTAGGTTCCATGATCT 
TET2 4 CACATTTTAATTTTTGTTTCCATGCTCT GGCAGTGGGCTTCCATTCT 
TET2 4 CCATTCCTGATACCATCACCTCC ACTCACACGACTATTCTGGCTTC 
TET2 4 GCTCATCCAGAAGTAAATGGAGACA TTGATCTGAAGGAGCCCAGAGAG 
TET2 4 GTAGAGGGTATTCCAAGTGTTTGC GAGACATTTGGTTGACTGCTTTC 
TET2 4 CCAAAAGGCTAATGGAGAAAGACG CTCTGGATTTTCAGGCCCACT 
TET2 4 AGCCAAGAAAGAAATCCAGGTGA CACTTTTCCCCTCCTGCTCATT 
TET2 4 CAGTGGGCCTGAAAATCCAGAG ACAATCTGGATAATATTGAGACAGTGTTTTT 
TET2 4 TGCTAATGCCTAATGGTGCTACA GGTGAGTGATCTCACAGGACAAC 
TET2 4 AAATGCCATTAACAGTCAGGCTA AGGTATTTAGCATTGCAGCTAGTTT 
TET2 4 ATGCTGATGATGCTGATAATGCC GCTTGCAAATTGCTGCTGGA 
TET2 4 AAAGCTAGCGTCTGGTGAAGAAT AAGAAGCAATTGTGATGGTGGTG 
TET2 4 GCTTACTTCAAGCAAAGCTCAGT AGTGTTGTGTTACTTTGGTTGGG 
TET2 4 CAGGTTCCTCAGCTTCCTTCAG TTTCAGAAAGCATCGGAGAAGGG 
TET2 4 GGAAGTGAAAATAGAGGGTAAACCTGA TGAGGTGTTCTGACATTGGTCTT 
TET2 4 CTACACATGTATGCAGCCCTTCT AGTTGTCCTGTAGCTCTCCACT 
TET2 4 CACCTCAAGCATAACCCACCAAT GATTCCGCTTGGTGAAAACGAG 
TET2 4 GAGACAAGGAGCAAACACGAGAT TCCAGTGTATTGTTTGGAGGTCA 
TET2 4 TGAGGCATCACTGCCATCAATTC TTGGGACTGCCCTTGATTCATTT 
TET2 4 CAAGGCAAGCTTACACCCAGAA ACAGTGACTGCACATGAGCTTTT 
TET2 4 GTACAGTGGACCAACATCTCCAG GCCTGTTGATTCAAGTGCTGTTT 
TET2 4 AGTCACTGTGTGGCACTAGATTT GAGGGAGATGTGAACTCTGGGAT 
TET2 4 TGAGCCATTTTCAAACTCACACC TGATCCTTCTCTTTGCTGATCATT 
TET2 4 AAACCAGCAACAGCAGCAAAAAT CCAGTCCCATTTGGACATTATGAG 
TET2 4 GGCCAGACTAAAGTGGAAGAATGT TCTGAAACTAGGTGTGTATTGTTTGA 
TET2 4 ATCGTAGAAATTCCCCTTATAGTCAG AGATCTTGCTTTGGGATCACATT 
TET2 4 AGACTACACATCCTGAACTTTTTGC CGCAGCTTGTTGACCAGACATA 
TET2 4 GCTTTCAAGAACAGGAGCAGAAG CTTTTGAGTGTCCTTCTGGGGAG 
TET2 4 CCATGCAAATGTTTTTCCTGTGC CACCTTAATTGGCCTGTGCATCT 
TET2 4 CCCAAACTGAGTCTTGCCATAGT TGGTCTCAATGATGCTCTTTTGC 
TET2 4 AATCCACCTGCAAGCTGTGATAA GTTCTGCAGCAGTGGTTTGTCTA 
TET2 4 AAATCACAGAAGCAAGTAAAAGTTGA GGAGTATCTAGTAATTTGGAAGGTGA 
TET2 4 AGAGCAGCAAACAACTTCTTCAG TGTCTCAGTACATTTCTGGCACT 
TET2 4 CACCTTCCAAATTACTAGATACTCCT AATTGCTGCCAGACTCAAGATTT 
TET2 4 CTTGCAGATGTGTAGGTAAGTGC CTTTCACAAGACACAAGCATCGG 
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TET2 4 GGTTAAGCTTTGTGGATGTAGCC GTTAATCTGCCCTGTGCCTTTG 
TET2 4 GTGTGTGTGTTTCTGTGGGTTTC ACCCAATTCTCAGGGTCAGATTTAC 
TET2 4 TTGTTTTGTTTTGGTTGGGGTGG CGAGTAGAGTTTGTCAGCCAGAG 
TET2 4 TGATTGTGATTCTCATCCTGGTGT CCTTTCAACCAAAGATTGGGCTTT 
TET2 4 TCAGCTGCACAGCCTATATAATG ACTTCCTTGGGATCTTGCTTCTG 
TET2 4 AGAAACCTGTGGTGCCTCCT TGTCATATTGTTCACTTCATCTAAGCTA 
TET2 4 TGGGATTCAAAATGTAAGGGGAA ATATGCATCAGGTGCAAGTTTCT 
TET2 4 GTCCACTCTTATGGCACCAACAT TGCAGTGGTTTCAACAATTAAGAGG 
TET2 4 TGTGTCATTCCATTTTGTTTCTGGA CCTTCCTTCAGACCCAGACG 
TET2 4 CATTCACACACACTTTTATTTTTCAGATT GCTGCCATTCTGCATGTTGTG 
TET2 4 AGAGTGCCGTCTGGGTCT TACCCAGTCTTGCATATGTCTTT 
TET2 4 ACACACACACACGTTTTCTTTGG CTTCCACACTCCCAAACTCATCC 
TET2 4 TCGAGAATTTGGAGGAAAACCTG GTCTTGACTGGCTCTGCTAACAT 
TET2 4 TCAGGAGGAGAAAAAACGGAGTG TGGGGCTGACTTTTCCTTTTCAT 
TET2 4 CGACAAAGGAAACTAGAAGCCAA TTTAATATACCACACAACACATTTATCTACA 
TET2 4 CTCACTAGCCTTCATAAAATAATCATCAA CTCTGTCTGAGGGTGATGTG 
TET2 4 AGTCATGCAGCAGTCCCAG CTGAAGTGTGTGAAGAGTTTGGA 
TET2 4 GGATCCACCAATCCATACATGA TCTGATTCAAAAGCCCAGGGTAA 
TET2 4 TATCTATGGAAGCACCAGCCCTA CTGGGGAGAATAGGAACCCAGAT 
TET2 4 CCCTTACCCTGGGCTTTTGAAT ACCTTGGCTGGTAAAGTGTATGG 
TET2 4 ATCTGGGTTCCTATTCTCCCCAG GCTGAAACCATCTCCCTGCATATT 
TET2 4 TCCATACACTTTACCAGCCAAGG TAATCTAGAGGTGGCTCCCATGA 
TET2 4 TCAGCAGTTGTACCATTAGACCAAA GGAGCTGCACTGTAGTTATGGAT 
TET2 4 CACCCAATCTGAGCAATCCAAAC ATCATGGTTAAGAGCTGGAAGCA 
TET2 4 CATGCTTTCCCACACAGCTAATG CTGACCAGACCTCATCGTTGTC 
TET2 4 ATGCTAATGGTCAGGAAAAGCAG TTTAAAGGGGTTGTGGCATGCAG 
TET2 4 GGTGCAGAGGACAACGATGAG TGGTAAAAGACGAGGGAGATCCT 
TET2 4 CTGCATGCCACAACCCCTTTA TGGGATTTCTGAGGCACATAGTC 
TET2 4 AAAATGGCTGAAAAAGCCCGTGA GTCACGGACATGGTCCTTTCG 
TET2 4 TGAGCCACATGAAACTTCAGAGC ACAGGTTGGTTGTGGTCTTTTCA 
TP53 17 AATGCCCCAATTGCAGGTAAAAC TTATCACCTTTCCTTGCCTCTTT 
TP53 17 AAGGAAAGGTGATAAAAGTGAATCTG TGTTTGTGCCTGTCCTGGG 
TP53 17 TTCTTGTCCTGCTTGCTTACCTC CCTTACTGCCTCTTGCTTCTCTT 
TP53 17 GTGTGCAGGGTGGCAAGT CCACAGGTCTCCCCAAGG 
TP53 17 CACTGACAACCACCCTTAACCC CCTCTGATTCCTCACTGATTGCT 
TP53 17 TGGGGACCCTGGGCAA CTGTGCAGCTGTGGGTTGATT 
TP53 17 CCTCACAACCTCCGTCATGTG CTTGTGCCCTGACTTTCAACTCT 
U2AF1 21 GGTGGGTTGGAAGGAGACATTTA GGAAAAGGCTGTGATTGACTTGA 
U2AF1 21 CTCCTCACTCACCCCATCTCAT TGGATGGCAAGCACTTCTGTTTT 
U2AF1UTR 21 ACGAGAGAAAAAATGACTTGCTTAAT CATTTTCCCTTACAGAGTCAACTG 
U2AF1UTR 21 TCGGTTTATTGTGCAACCGAGAG TCTGTGTCATGTTTCTGTGAGGT 
WT1 11 TCCCTCTCATCACAATTTCATTCCA GAGGCTAGACCTTCTCTGTCCA 
WT1 11 TGGAAATAACCTGGGTCCTTAGC GGCATCTGAGACCAGTGAGAAA 
WT1 11 ACACTTACCAGTGTGCTTCCTG AAAGCCTCCCTTCCTCTTACTCT 
ZRSR2 X ACAGAGGAGCGGGGAGC ACAGAGCAATTTCACAACACAGA 
ZRSR2 X CCTGAATTTTTGACCAAGGATTTGC TAGCACTGACCTCTCTCTTTCCA 
ZRSR2 X TTCCCTAGGACTCTCACAGAAGG TTATACAGAAGACTGGTACTGGTTAGT 
ZRSR2 X TCGTGTGTGTGTGTATTTGTGGA ACGTGATTCCTACCATACCTCTT 
ZRSR2 X GTGCGCTGTATGTGAAATGTTTTT CATCACACAGCACATCCCATGA 
ZRSR2 X GATGTGACTTACCTGACTTCTGGG ACCACGAAACTAACATTACTGGA 
ZRSR2 X CTCCACCAGTAAAGTCATGGTTA ATCACTTCATTCTGACATGATAAAACAA 
ZRSR2 X ATGCCTGGTCTAAAGCAGTTGTT  CTTGCGTCAGGGTCATAGTCATC 
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ZRSR2 X AGCATGTTTACGACGTTTGGAAT CAGTCCCCTCCTCCACA 
ZRSR2 X CTTTGGGGAATGTTAGCCTGGAC CAGGAAGACATCCACAAGCAGAA 
ZRSR2 X ATCATTTGATTTTTGGTTTAAAGGGAAG ATAGCAGTGGAACAATTGAGGAA 
ZRSR2 X ACCTTCGGAAAAGGATAAAGTAGCA AGTCCGATCTGGAGACAAGTAGA 
ZRSR2 X GCACTGCAACTTTCTTCATGTGT TTGTAGGAGTGGTCTGGACTAGG 
ZRSR2 X AGGAAAAGTAGTCGTCACAGGG CTTCGGGACCTAGAGGAACTTT 
ZRSR2 X CAAAGTTCCTCTAGGTCCCGAAG CCAGACTTGCGAACCCATCTG 
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Sample no. Gene Variant Chr Start End MiSeq Reporter GS Junior In-house pipeline
Mutation detected?

1 DNMT3A G/A 2 25464484 25464484 Y Y Y
IDH1 G/C 2 209113113 209113113 Y Y Y
DNMT3A G/- 2 25470563 25470563 Y N Y

2 IDH1 G/C 2 209113113 209113113 Y Y Y
NPM1 _/GTCG 5 170837547 170837548 Y N Y

3 IDH1 G/A 2 209113113 209113113 Y Y Y
ASXL1 AC/-- 20 31022430 31022431 Y Y N
SRSF2  G/C 17 74732959 74732959 Y N N

4 RUNX1 G/A 21 36259208 36259208 Y N Y
TET2 C/T 4 106156951 106156951 Y Y Y
EZH2 T/- 7 148526850 148526850 Y Not in panel Y

5 TET2 A/T 4 106196294 106196294 Y Y Y
NRAS C/T 1 115258747 115258747 Y Y Y
TET2 A/- 4 106156706 106156706 Y Y Y
ZRSR2 _/A X 15809096 15809097 Y N Y

6 DNMT3A C/T 2 25457242 25457242 Y Y Y
NRAS C/T 1 115258747 115258747 Y Y Y
NRAS C/A 2 115258747 115258747 Y N N
NRAS C/T 2 115258748 115258748 Y N Y
KIT C/T 9 55599268 55599268 Y N Y

7 TET2 G/T 4 106190804 106190804 Y Y Y
CBL A/C 11 119148892 119148892 N Y N
TET2 _/C 4 106157385 106157386 Y N Y
STAG2 C/T X 123179197 123179197 Y Not in panel Y

8 ASXL1 T/G 20 31024179 31024179 Y Y Y
TET2 C/T 4 106196537 106196537 Y Y Y
TET2 G/T 4 106197143 106197143 Y Y Y
KRAS C/T 12 25398281 25398281 Y N Y
ZRSR2 G/- X 15841165 15841165 Y N N

9 TET2 C/T 4 106164787 106164787 Y Y N
ZRSR2 C/T X 15838370 15838370 Y Y Y
TET2 _/A 4 106164896 106164897 Y N Y

10 TET2 G/T 4 106193739 106193739 Y Y Y
ASXL1 G/- 20 31024081 31024081 Y N Y
ZRSR2 C/T X 15822291 15822291 Y Y Y

11 TET2 C/T 4 106196726 106196726 Y Y N
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TET2 GATTA/----- 4 106196883 106196887 not the same del Y N
TET2 C/A 4 106155620 106155620 Y Y Y

12 DNMT3A C/T 2 25457242 25457242 Y Y Y
TP53 C/G 17 7576853 7576853 Y N Y

13 DNMT3A C/T 2 25457242 25457242 Y Y Y
KRAS C/T 12 25398281 25398281 Y Y Y
TP53 C/G 17 7576853 7576853 Y N Y

14 TET2 C/T 4 106196267 106196267 Y Y Y
SRSF2 24bp del 17 74732942 74732965 N Y Y

15 TET2 C/T 4 106196267 106196267 Y Y Y
TET2 C/T 4 106196213 106196213 Y Y Y
SRSF2 24bp del 17 74732942 74732965 N Y Y

16 IDH1 G/A 2 209113113 209113113 Y Y Y
SF3B1 T/C 2 198266480 198266480 Y Y Y

17 NRAS T/A 1 115256528 115256528 Y Y Y
RUNX C/T 21 36252865 36252865 Y Y Y

18 TET2 T/G 4 106180871 106180871 Y Y Y
TET2 C/- 4 106156479 106156479 Y N Y
RUNX1 T/G 21 36259160 36259160 Y N Y

19 U2AF1 T/C 21 44514777 44514777 Y Y Y
RUNX C/T 21 36231782 36231782 Y Y Y

20 SF3B1 C/A 2 198267359 198267359 Y Y Y
TET2 T/G 4 106196829 106196829 Y Y Y
KIT C/T 4 55599268 55599268 Y N Y

21 SRSF2 G/T 17 74732959 74732959 Y N N
22 IDH1 G/A 2 209113113 209113113 Y Y Y
23 IDH1 G/A 2 209113113 209113113 Y Y Y

CSF3R G/A 1 36932209 36932209 Y Not in panel Y
24 ASXL1 G/T 20 31023821 31023821 Y Y Y

P53 C/T 17 7578406 7578406 Y Y Y
IDH2 C/T 15 90631934 90631934 Y Y Y
DNMT3A G/A 2 25469984 25469984 Y N Y
NPM1 _/TGCA 5 170837546 170837547 Y N Y

25 ASXL1 G/T 20 31023821 31023821 Y Y Y
KIT C/T 4 55599268 55599268 Y N Y

26 NRAS G/T 1 115256530 115256530 Y Y Y
27 TET2 C/T 4 106157527 106157527 Y Y Y

U2AF1 G/A 21 44524456 44524456 Y Y Y
TET2 A/- 4 106157346 106157346 Y N Y
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28 CBL G/A 11 119148991 119148991 Y Y Y
TET2 C/- 4 106180812 106180812 Y N Y
NPM1 _/TCTG 5 170837544 17083755 Y N Y
SRSF2 G/T 17 74732959 74732959 N N N

29 ASXL1 _/T 20 31023329 31023329 Y N Y
30 ASXL1 G/T 20 31023821 31023821 Y Y Y

TET2 G/A 4 106158509 106158509 Y Y Y
TET2 G/A 4 106157961 106157961 Y N Y

31 TP53 C/T 17 7578406 7578406 Y Y Y
DNMT3A C/T 2 25457242 25457242 Y Y Y

32 DNMT3A C/T 2 25463562 25463562 Y Y Y
IDH2 C/T 15 90631934 90631934 Y Y Y
ASXL AGTC/---- 20 31022884 31022887 Y Y Y

33 TET2 G/T 4 106196819 106196819 Y Y Y
KRAS C/G 12 25398285 25398285 Y Y Y
SRSF2 G/T 17 74732959 74732959 Y N N
TET2 _/A 4 106157291 106157292 Y N Y

34 TET2 T/A 4 106164865 106164865 Y Y Y
STAG2 G/A X 123179055 123179055 Y Not in panel Y
SRSF2 G/T 17 74732959 74732959 N N N

35 ASXL1 A/G 20 31023663 31023663 Y Y Y
SRSF2 G/T 17 74732959 74732959 Y N Y

36 NRAS C/T 1 115258747 115258747 Y N Y
ASXL1 A/- 20 31022418 31022418 Y N N
KRAS C/T 12 25398284 25398284 Y N Y
ASXL1 C/T 20 31022425 31022425 Y N N

37 None N N N
38 TET2 C/G 4 106196220 106196220 Y Y Y

TET2 10bp del 4 106196361 106196370 N Y Y
ZRSR2 CA/-- X 15840904 15840905 Y Y Y
TET2 T/C 4 106157698 106157698 Y N Y
TET2 C/T 4 106196834 106196834 Y N Y
NRAS A/C 1 115256521 115256521 Y N Y

39 SRSF2 G/T 17 74732959 74732959 Y N N
40 NRAS C/T 1 115258744 115258744 Y Y Y

KRAS C/T 12 25398284 25398284 Y N Y
SRSF2 G/T 17 74732959 74732959 Y N Y

41 NRAS C/A 1 115258747 115258747 Y Y Y
IDH2 C/T 15 90631934 90631934 Y Y Y
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RUNX T/A 21 36206887 36206887 Y Y Y
SRSF2 G/C 17 74732960 74732960 Y N Y

42 SRSF2 G/T 17 74732959 74732959 Y N Y
CSF3R _/G 1 36932123 36932124 Y Not in panel Y
ASXL1 _/A 20 31022441 31022442 Y N Y

43 MPL G/T 1 43815009 43815009 Y N Y
ASXL1 _/T 20 31022450 31022451 Y N N
ASXL1 C/T 20 31023159 31023159 Y N Y
TET2 TATTC/- 4 106196346 106196350 Y N Y
EZH2 A/G 7 148514438 148514438 Y Not in panel Y

44 KIT A/T 4 55599321 55599321 Y N Y
ASXL1 C/T 20 31024450 31024450 Y N Y
RUNX1 G/T 12 36259260 36259260 Y N N
RUNX1 C/- 12 36259265 36259265 Y N N
RUNX1 G/A 12 36259265 36259265 Y N N
TET2 G/C 4 106156021 106156021 Y N N
TET2 T/G 4 106196829 106196829 Y N N

45 TET2 G/T 4 106190776 106190776 Y N Y
JAK2 C/A 9 5070025 5070025 Y N Y
JAK2 A/T 9 5070026 5070026 Y N Y
JAK2 A/T 9 5070027 5070027 Y N Y

46 CALR _/TTGTC 19 13054628 13054629 Y Not in panel Y
U2AF1 T/G 21 44514777 44514777 Y N Y

47 CALR 52bp del 19 N Not in panel N
48 SRSF2 G/A 17 74732959 74732959 Y N N

ASXL1 C/T 20 31023717 31023717 Y N Y
TET2 A/- 4 106197145 106197145 Y N Y
JAK2 G/T 9 5073770 5073770 Y N Y
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chr pos wt alt gene prot
1 43815009 G T MPL p.W515L
1 115256528 T A NRAS p.Q61H
1 115256529 T A NRAS p.Q61L
1 115256530 G T NRAS p.Q61K
1 115256532 C A NRAS p.G60V
1 115258744 C T NRAS p.G13D
1 115258745 C A NRAS p.G13C
1 115258747 C G NRAS p.G12A
1 115258748 C A NRAS p.G12C
1 36933434 C T CSF3R p.T618I
1 36932248 C T CSF3R p.Q768*
1 36932224 C T CSF3R p.Q776*
2 25457176 G A DNMT3A p.P904L
2 25457209 C G DNMT3A p.W893S
2 25457242 C T DNMT3A p.R882H
2 25457243 G A DNMT3A p.R882C
2 25458627 G A DNMT3A p.P849L
2 25458649 G A DNMT3A p.Q842*
2 25458669 G A DNMT3A p.T835M
2 25463184 G C DNMT3A p.S770W
2 25463248 G T DNMT3A p.R749S
2 25463286 C A DNMT3A p.R736L
2 25463287 G A DNMT3A p.R736C
2 25463541 G C DNMT3A p.S714C
2 25463562 C A DNMT3A p.G707V
2 25464457 C A DNMT3A p.D686Y
2 25467083 G A DNMT3A p.R598*
2 25467134 A T DNMT3A p.W581R
2 25467436 A C DNMT3A p.L547R
2 25467449 C A DNMT3A p.G543C
2 25470498 G A DNMT3A p.R326C
2 25470516 G A DNMT3A p.R320*
2 25470535 C T DNMT3A p.W313*
2 198266834 T C SF3B1 p.K700E
2 198267359 C G SF3B1 p.K666N
2 198267360 T A SF3B1 p.K666M
2 198267361 T G SF3B1 p.K666Q
2 198267371 G C SF3B1 p.H662Q
2 198267373 G C SF3B1 p.H662D
2 198267483 C A SF3B1 p.R625L
2 198267484 G A SF3B1 p.R625C
2 198267491 C G SF3B1 p.E622D
2 209113112 C T IDH1 p.R132H
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2 209113113 A A IDH1 p.R132C
4 55599320 G C KIT p.D816H
4 55599321 A T KIT p.D816V
4 55599340 T G KIT p.N822K
4 106156246 C T TET2 p.Q383*
4 106156348 C T TET2 p.Q417*
4 106156478 C T TET2 p.S460F
4 106156687 C T TET2 p.Q530*
4 106156729 C T TET2 p.R544*
4 106156747 C T TET2 p.R550*
4 106156963 C T TET2 p.Q622*
4 106157002 C T TET2 p.Q635*
4 106157167 C T TET2 p.Q690*
4 106157212 C T TET2 p.Q705*
4 106157240 C A TET2 p.S714*
4 106157404 C T TET2 p.Q769*
4 106157527 C T TET2 p.Q810*
4 106157845 C T TET2 p.Q916*
4 106157971 C T TET2 p.Q958*
4 106157995 C T TET2 p.Q966*
4 106164061 C T TET2 p.Q1191*
4 106164778 C T TET2 p.R1216*
4 106182940 C T TET2 p.Q1327*
4 106193748 C T TET2 p.R1404*
4 106193778 C G TET2 p.Q1414E
4 106193853 A T TET2 p.K1439*
4 106193892 C T TET2 p.R1452*
4 106193931 C T TET2 p.R1465*
4 106196213 C T TET2 p.R1516*
4 106196556 C A TET2 p.S1630*
7 148506443 C T EZH2 p.R690H
9 5073770 G T JAK2 p.V617F

11 32413565 C A WT1 p.R462L
11 32413566 G A WT1 p.R462W
11 119149251 G A CBL p.R420Q
11 119149242 C T CBL p.P417L
11 119148990 T G CBL p.C404G
11 119148991 G A CBL p.C404Y
11 119148966 T C CBL p.C396R
11 119148930 T C CBL p.C384R
11 119148919 T C CBL p.L380P
11 119148891 T C CBL p.Y371H
12 25380275 T G KRAS p.Q61H
12 25398281 C T KRAS p.G13D

266



12 25398284 C G KRAS p.G12A
12 25398285 C A KRAS p.G12C
13 28592622 G T FLT3 p.N841K
13 28592623 T A FLT3 p.N841I
13 28592640 A C FLT3 p.D835E
13 28592641 T G FLT3 p.D835A
13 28592642 C G FLT3 p.D835H
13 28602329 G A FLT3 p.A680V
13 28602340 G T FLT3 p.N676K
13 28609758 C A FLT3 p.V491L
15 90631838 C T IDH2 p.R172K
15 90631934 C T IDH2 p.R140Q
15 90631935 G A IDH2 p.R140W
17 7578190 T C TP53 p.Y220C
17 74732959 G T SFRS2 p.P95H
17 74732960 G C SFRS2 p.P95A
17 74732961 G C SFRS2 p.P95H
18 42531907 G A SETBP1 p.D868N
18 42531913 G A SETBP1 p.G870S
18 42531917 T C SETBP1 p.I871T
20 31021250 C T ASXL1 p.R417*
20 31021472 C T ASXL1 p.Q491*
20 31022277 C T ASXL1 p.Q588*
20 31022288 C A ASXL1 p.Y591*
20 31022592 C T ASXL1 p.R693*
20 31022839 T A ASXL1 p.L775*
20 31022847 C T ASXL1 p.Q778*
20 31022902 G A ASXL1 p.W796*
20 31022988 A T ASXL1 p.K825*
20 31023408 C T ASXL1 p.R965*
21 36231773 C A RUNX1 p.R204L
21 36231782 C T RUNX1 p.R201Q
21 36231783 G A RUNX1 p.R201*
21 36252865 C A RUNX1 p.R166L
21 36252866 G A RUNX1 p.R166*
21 36252877 C T RUNX1 p.R162K
21 36259171 C T RUNX1 p.R107H
21 36259172 G A RUNX1 p.R107C
21 44514777 T G U2AF1 p.Q157P
21 44514780 C T U2AF1 p.R156H
21 44524456 G A U2AF1 p.S34F
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Plenary Paper

MYELOID NEOPLASIA

Targeted sequencing identifies patients with preclinical MDS at high risk
of disease progression
Catherine A. Cargo,1 Nicola Rowbotham,1 Paul A. Evans,1 Sharon L. Barrans,1 David T. Bowen,2 Simon Crouch,3

and Andrew S. Jack1

1Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom; 2St James’s Institute of Oncology, Leeds

Teaching Hospitals, Leeds, United Kingdom; and 3Epidemiology and Cancer Statistics Group, University of York, York, United Kingdom

Key Points

• The mutational profile of
patients with preclinical MDS
is distinct from that reported in
healthy individuals.

• In the absence of morphologic
disease, mutational analysis
can predict those patients at
high risk of disease progression.

The diagnosis of myelodysplastic syndromes (MDS) remains problematic due to the subjec-

tive nature of morphologic assessment. The reported high frequency of somatic mutations

and increasedstructural variants by array-basedcytogenetics haveprovidedpotential objec-

tive markers of disease; however, this has been complicated by reports of similar abnormal-

ities in the healthy population. We aimed to identify distinguishing features between those

with early MDS and reported healthy individuals by characterizing 69 patients who, following

a nondiagnostic marrow, developed progressive dysplasia or acute myeloid leukemia. Tar-

geted sequencing and array-basedcytogenetics identified a drivermutation and/or structural

variant in91%(63/69)ofprediagnostic sampleswith themutational spectrummirroring that in

the MDS population. When compared with the reported healthy population, the mutations

detected had significantly greater median variant allele fraction (40% vs 9% to 10%), and

occurredmore commonlywith additionalmutations (‡2mutations, 64%vs8%). Furthermore,

mutational analysis identified a high-risk group of patients with a shorter time to disease progression and poorer overall survival. The

mutational features in our cohort are distinct from those seen in the healthy population and, even in the absence of definitive disease, can

predict outcome. Early detection may allow consideration of intervention in poor-risk patients. (Blood. 2015;126(21):2362-2365)

Introduction

The morphologic diagnosis of myelodysplastic syndromes (MDS)
is problematic due to poor inter-observer concordance1 and the diffi-
culty in distinguishing MDS from non-neoplastic conditions.2 Cytoge-
netics can provide objective evidence of disease, although reports of
frequent driver mutations3,4 and/or structural variants detected by
single nucleotide polymorphism (SNP) arrays5 have provided poten-
tial core criteria for the diagnosis of MDS. However, this approach has
been complicated by reports of frequent somaticmutations6-8 and large
chromosomal abnormalities9,10 in the aging healthy population. The
term “clonal hematopoiesis of indeterminate potential” has been
proposed for patients with somatic mutations but without evidence of
hematologic malignancy, and “clonal cytopenias of undetermined
significance” to encompass the subset with cytopenias.11 Although
these individuals show an increased risk of developing hematologic
malignancies,6-8 thosewith clinically significant mutations are currently
indistinguishable from those who will not progress.

The aim of this studywas tomolecularly characterize those patients
with the most clinically significant disease, who fail to meet diagnostic
criteria using conventional techniques. We retrospectively identified
patientswho, despite having an initial bonemarrowwith nondiagnostic
features, developed progressive dysplasia or acute myeloid leukemia

(AML). We hypothesized that characterizing these patients would
provide potential criteria to distinguish preclinical MDS from
healthy individuals, and importantly, detect those patients at high
risk of disease progression.

Study design

Patients and samples

A retrospective search was performed for new patients diagnosed with
AML/MDS at the Haematological Malignancy Diagnostic Service between
2004 and 2012, with a previous nondiagnostic bone marrow performed for
investigation of cytopenia (more recently termed “idiopathic cytopenia of
undetermined significance”). The Haematological Malignancy Diagnostic
Service provides a centralized hematopathology service for ;6 million
population with all cases dual-reported by experienced hematopathologists.
Eighty-two patients were identified with both prediagnostic and diagnostic
samples, representing 1.7%of patientswith idiopathic cytopenia of undetermined
significance during this time period (n5 4835). Sixty-nine patients had adequate
molecular material at both time points for analysis (see supplemental Table 1 on
theBloodWebsite) and survival datawere available for 59patients. Sampleswere

Submitted August 7, 2015; accepted September 8, 2015. Prepublished online

as Blood First Edition paper, September 21, 2015; DOI 10.1182/blood-2015-

08-663237.

Presented as an oral presentation at the 56th annual meeting of the American

Society of Hematology, San Francisco, CA, December 4-9, 2014.

The array data reported in this article have been deposited in the Gene Ex-

pression Omnibus database (accession number GSE73074).

The online version of this article contains a data supplement.

There is an Inside Blood Commentary on this article in this issue.

The publication costs of this article were defrayed in part by page charge

payment. Therefore, and solely to indicate this fact, this article is hereby

marked “advertisement” in accordance with 18 USC section 1734.

© 2015 by The American Society of Hematology

2362 BLOOD, 19 NOVEMBER 2015 x VOLUME 126, NUMBER 21

For personal use only. on September 17, 2019. at SEACROFT HOSPITAL www.bloodjournal.orgFrom 

269

http://www.bloodjournal.org/content/126/21/2349
http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


takenwith informed consent, in accordance with theDeclaration of Helsinki,
for investigation of a suspected hematologic disorder. The study had local
Institutional Review Board approval.

DNA extraction, targeted sequencing, and SNP-array analysis

DNAwaseither extracted at thepoint of referral or fromstored, unstainedsmears.
Targeted sequencing of 26 commonly mutated genes in myeloid malignancies
wasperformedonMiSeq (Illumina,Chesterford,UnitedKingdom)usingcustom
Fluidigmpanels (Fluidigm,SanFrancisco,CA) to constructDNA libraries.Read
alignment and variant calling were performed using MiSeq reporter (Illumina)
and variants annotated using Ensembl Variant Effect Predictor software.12 Fol-
lowing exclusion of synonymous, noncoding variants and germline polymor-
phisms (unless recurrently reported in COSMIC database13), variants were
validated by GS Junior (Roche, Burgess Hill, United Kingdom), conventional
Sanger sequencing, or allele-specific oligonucleotide analysis (Janus kinase 2).
All patients were screened for NPM1 and FLT3 mutations using conventional
fragment analysis.

SNP-A analysis was performed on diagnostic samples using a Human-
CytoSNP-12 BeadChip Kit (Illumina) with data visualized using KaryoStudio
software (Illumina). Abnormalities were called using published guidelines.14 In
those with a documented abnormality, SNP-A was performed on the corre-
sponding prediagnostic sample.

See supplemental Methods for details.

Statistical analysis

Overall survival (OS) was estimated using the Kaplan–Meier method (censored
on 01/06/2015). The impact of abnormalities on OS, and associations between
genetic mutations and progression were investigated with Fisher’s exact test and
Cox regression.

Results and discussion

Mutational profile in prediagnostic samples differs from

healthy individuals

A somatic mutation and/or structural abnormality were identified in
91%(n563/69)ofprediagnostic samples.This included133mutations
across 62 patients, most commonly involving epigenetic regulators or
spliceosome genes with TET2, SRSF2, and ASXL1 mutated in 39%,
26%, and 20% of patients, respectively (Figure 1A). The spectrum
of mutations at this time point mirrored that reported in large MDS
populations,3,4 with the exception of SF3B1 (n5 3), though these mu-
tations are strongly associated with ring sideroblasts, which are easily
identified morphologically.15 Although DNMT3A was the most fre-
quentlymutated gene in the healthy population,6-8 this was seen in only

Figure 1. Characteristics of mutations detected in a prediagnostic sample. (A) Frequency of driver mutations across all 69 patients in the prediagnostic sample. (B) VAF

(%) of somatic variants in the prediagnostic sample, including median and mean. (C) Distribution of the number of mutations according to final disease subgroups, and across

both prediagnostic and diagnostic samples. AF, allele fraction.
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10% (n 5 7) of our patient cohort. A median of 2 mutations was
detected per patient (range, 1-5; Figure 1C) and the frequency of
multiple mutations was significantly greater here than reported
in healthy individuals ($2 mutations; 64% vs 8%6). The median
variant allele fraction (VAF) and inferred clone size in our series
was also notably greater at 40% (range, 2.31% to 100%; Figure 1B)
than the reported median of 9% to 10% in healthy individuals.6

Importantly, only 1 patient harbored an isolated mutation with a
VAF,20%. These differences suggest that the clone must expand
to an appropriate level and/or acquire cooperating mutations to
cause cytopenias and subsequent disease. This is supported by
the greater mean VAF (25.2%) observed in healthy individuals
who subsequently developed a hematologic malignancy.6 There-
fore, although driver gene mutations with a high AF (.20%)
and/or co-occurring mutations may not be disease-defining, it
at least identifies clinically significant clonality requiring close
follow-up.

In contrast, structural variants were identified in only 23% (16/69)
of prediagnostic samples with all but one co-occurring with a somatic
mutation (supplemental Table 5).

Mutations predict progression to high-risk disease and OS

Thirty-nine patients progressed to refractory anemia with excess blasts
(RAEB) or AML, in a significantly shorter time than those with
refractory cytopenia with multilineage dysplasia (median, 403 vs
606 days; hazard ratio [HR], 3.7; 95% confidence interval [CI], 2.1-6.6;
P , .001). By analyzing the most frequently mutated genes (sup-
plemental Methods), IDH2 was weakly associated with disease
progression (P 5 .052). NPM1, CBL, and NRAS were mutated at
low frequency, however, all progressed to AML or RAEB. Fur-
thermore, IDH2 (HR, 4.2; 95% CI, 1.3-13.8; P 5 .017) and TP53
mutations (HR, 5.5; 95% CI, 1.1-27.7; P 5 .038) were associated
with a more rapid time to progression. These observations require
confirmation in larger cohorts.

Thirty patients (43%) acquired a mutation between samples, most
commonly involving transcription factors and cell-signaling genes, and
correlated stronglywith progression toRAEBandAML (supplemental
Results and supplemental Figure 2). Mutations across individual sam-
ples (supplemental Figure 1) and changes in VAF between samples
(supplemental Figure 3) are presented in supplemental Results.

Figure 2. OS according to sample time and mutation number. OS in patients grouped by final disease category from time of (A) prediagnostic sample and (B) diagnostic

sample. The survival of the AML group is comparable to the RAEB group if determined from the prediagnostic sample (P 5 .442) and highlights a potential period for earlier

intervention. (C) OS according to the number of mutations detected in a prediagnostic sample grouped into those with #3 and .3 mutations.
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Of thosewith survival data available (n5 59), only 10were alive at
the point of analysis. Median OS from the prediagnostic sample was
43.6 months (95% CI, 33.8-55.8) and, as expected, much shorter from
diagnosis (13 months; 95% CI, 9.9-24.6). This was most significant
in those diagnosed with AML (1.28 months; 95% CI, 0.789-12.625;
Figure 2) and importantly, all but 1of thesepatients harbored amutation
in the prediagnostic sample.

Prediagnostic mutations were also associated with significantly
worse OS, namely TP53 (HR, 21.68; 95% CI, 4.72-99.64; P, .001),
U2AF1 (HR, 2.63; 95% CI, 1.0-6.4; P 5 .049), and the number of
mutations (HR, 1.447; 95% CI, 1.12-1.88; P 5 .006). The latter was
most significant in those with.3 mutations (Figure 2C).

Themutational profile in our cohort differs significantly from that of
the healthy population, and has the potential to identify patients with
clonal hematopoiesis of indeterminate potential/clonal cytopenias of
undetermined significance who are at greater risk of progression, even
in the absence of morphologic disease. Early detection would provide
an increasedwindow for therapeutic intervention in those with very
poor prognosis. The diagnostic utility of these findings is however
limited by the lack of a control group, including patients who did not
progress to AML/MDS. Our study design included only those patients
re-investigated for cytopenia, and both the mutation and disease fre-
quency is likely to be greater. The optimalway to explore this and refine

molecular criteria for diagnosis is to prospectively study an unselected
cytopenic patient cohort, and this is currently in progress.
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l l l MYELOID NEOPLASIA

Comment on Kwok et al, page 2355, and Cargo et al, page 2362

Cytopenias 1 mutations
2 dysplasia 5 what?
-----------------------------------------------------------------------------------------------------

David P. Steensma HARVARD MEDICAL SCHOOL

Increasingly, clinicians are obtaining molecular genetic tests when evaluating
patients with unexplained cytopenias. In this issue of Blood, Kwok et al and Cargo
et al describe results of mutation testing in 2 series of patients with nondiagnostic
marrows. These reports raise an important question: if a clonal mutation is
discovered, yet diagnostic criteria for a hematologic neoplasm are not met, what
is the diagnosis?1,2

Hematologists learn early in training
how to evaluate patients with cytopenias,

and this remains a core task of hematology
clinical practice. But when common
cytopenia-inducing causes (eg, vitamin
or essential mineral deficiency, infection,
immune dysregulation, drug effect, bleeding,
organ dysfunction, neoplasia) have been
systematically excluded, yet cytopenias
persist, clinicians may be puzzled and
patients left feeling unsettled. The term
“idiopathic cytopenias of undetermined
significance” (ICUS), a frank admission
of pathophysiological ignorance, has been
proposed to describe such patients.3

ICUS includes a hodgepodge of conditions.
By definition, patients with ICUS are not
known to have a clonal hematopoietic disorder.
Some people with ICUS will spontaneously
recover normal hematopoiesis, others will
eventually be diagnosed with a nonhematologic
disease, and a few will turn out to have
myelodysplastic syndromes (MDS),
especially older patients.

Because morphologically dysplastic
cells are common in the marrow of healthy
people older than 50 years of age,4 detection
of mild dysplasia is not enough to diagnose

MDS, even in a cytopenic patient. Instead,
in order for MDS to be diagnosed according
to World Health Organization (WHO)
criteria, patients must exhibit either extensive
cellular dysplasia, an increase in marrow blast
proportion, or an MDS-associated karyotypic
abnormality.5 Long-term natural history
studies of large ICUS cohorts are lacking, so
we cannot yet counsel patients with ICUS
about their risk of developing MDS, acute
myeloid leukemia (AML), or another
hematologic neoplasm.

Enter mutation testing. More and more,
academic institutions and commercial
pathology laboratories are offering clinicians
the opportunity to test their cytopenic patients
for gene mutations commonly associated
with hematologic neoplasms. Given the high
frequency of such mutations in patients with
bona fide MDS,6 it would be easy to label
cytopenic patients with mutations but without
other findings as having MDS, or at least
a disease state similar MDS.

But recent data indicate that at least 10%
of patients older than 70 years of age have
clonal mutations detectable at a variant allele
frequency (VAF) of $2%.7,8 We have
termed this state, “clonal hematopoiesis of

indeterminate potential” (CHIP).9 Like the
parallel precursor conditions monoclonal
gammopathy of undetermined significance
(MGUS) andmonoclonal B-cell lymphocytosis,
CHIP confers a risk of subsequent diagnosis of
overt hematologic malignancy of 0.5% to 1%
per year, and CHIP is associated with increased
all-cause mortality. The presence of mutations
in apparently healthy people with normal blood
counts should give the astute clinician pause
before assuming cytopenia plus mutation is
equivalent to MDS.

The articles in this issue help define the
relationship between ICUS, CHIP, and
MDS. Using conventional hematopathology
techniques supplemented by a 22-gene panel,
Kwok and colleagues prospectively analyzed
144 patients with unexplained cytopenias
whose samples were sent to a large commercial
pathology laboratory for diagnostic testing.1

Although 17% of cases met criteria for MDS,
15% had ICUS with mild dysplasia and 69%
had ICUS without dysplasia; thus, ICUS was
fivefold more common than MDS. Mutations
were detected in 71% of MDS, 62% of ICUS
with dysplasia, and 20% of ICUS without
dysplasia; the frequency of mutations in the
latter group is still higher than that for the
general population.

The authors then confirmed these findings
in a comparison of 91 lower-risk MDS (79%
mutation rate) and 249 ICUS (45% mutation
rate in cases with dysplasia, 17% without
dysplasia), and proposed the term “clonal
cytopenias of undetermined significance”
(CCUS) to describe ICUS accompanied
by a clonal mutation (see table). The most
common mutations observed in the CCUS
population included DNMT3A, TET2,
ASXL1, and TP53, similar to CHIP. SF3B1,
in contrast, was overrepresented in MDS
compared with ICUS/CCUS/CHIP,
probably because of the strong association
of SF3B1 mutations with the morphologic
hallmark of ring sideroblasts.10 Unfortunately,
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follow-up data on these ICUS/CCUS patients
is not available.

Cargo and colleagues, from a large regional
hematology service in the United Kingdom,
looked at this diagnostic challenge from
another direction. Using a 26-gene MiSeq
assay, the investigators assessed 69 patients
who developed MDS or AML who had
previously undergone a nondiagnostic
marrow.2 This group represented 1.7% of
4835 patients referred to the service over an
8-year period for evaluation of unexplained
cytopenias. The investigators found that 91%
of these patients had mutations detectable in
the nondiagnostic sample: a higher rate than
in the series by Kwok et al. Unfortunately,
the number of nondiagnostic samples with
mutations among patients who did not
progress to MDS or AML is unknown.
Although most patients with CHIP have
only 1 detectable mutation and VAF is
often ,10%,7 64% of patients in the Cargo
series had 2 or more mutations and the
median VAF was 40%, suggesting they
were at higher risk of subsequent hematologic
neoplasia evolution.

It is clear that some individuals with
clonal mutations, cytopenias, or both develop
MDS,whereasmost others do not. A critical next

step will be to conduct longitudinal studies of
cohorts of ICUS andCCUS. Eventually, wemay
come to understand that patients with certain
mutations or combinations of mutations have
a natural history equivalent to MDS, such that
they should be considered to have MDS despite
the absence of morphologic dysplasia or
a karyotypic abnormality. Other mutations
may turn out to be less consequential, just
as most elderly men with acquired loss of
the Y chromosome do not have MDS or
another disorder, even though clonal cells
fromMDS patients may have a2Y karyotype.11

In addition, mutation testing at the
DNA level does not tell the whole story,
and clinicians will need to learn how to use
results from RNA-Seq and assays of epigenetic
marks or other biomarkers. Eventually, it will
also be possible to abort an emerging clonal
process before it evolves to MDS or AML,
thereby practicing a form of preventive
hematology. Until then, the declaration of
doubt inherent in words such as “uncertain”
and “indeterminate”will remain a fundamental
part of the definitions of ICUS, CHIP,
and CCUS.
Conflict-of-interest disclosure: D.P.S. con-

sulted for Genoptix in 2014 and has unrelated
technology (an erythropoiesis stimulating agent

hemodialysis dosing algorithm) licensed to Mayo
Clinic Ventures, which is affiliated with Mayo
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l l l HEMATOPOIESIS AND STEM CELLS

Comment on Zhao et al, page 2383

ATF4, a new player in fetal HSC expansion
-----------------------------------------------------------------------------------------------------

Michael A. Rieger GOETHE UNIVERSITY FRANKFURT; GERMAN CANCER CONSORTIUM (DKTK); GERMAN CANCER RESEARCH
CENTER (DKFZ)

In this issue of Blood, Zhao et al have identified the basic region-leucine zipper
transcription factor activating transcription factor 4 (ATF4) as a key molecule for
the intrinsic and extrinsic regulation of the extensive expansion of fetal liver (FL)
hematopoietic stem cells (HSCs) (see figure).1

HSCsundertake an exciting journeyduring
embryonic development from their first

emergence to their final destination. The first
definitiveHSCs arise fromhemogenic endothelial
cells in the AGM region and in the placenta at
E10.5 of mouse development.2,3 They migrate
to the FL and also to the spleen at E11.5 and
start to massively renew themselves and
thereby expand their numbers .100-fold
within 4 to 5 days. This wave of HSC
expansion provides the lifelong pool of stem
cells for adulthood. From E15.5 until shortly
after birth, HSCs settle in the bone marrow,
where they largely reside in quiescence during
adult hematopoiesis. In mice, there is a marked
switch in their molecular program and in their
functional behavior 3 to 4weeks after birth. FL
HSCs rapidly divide (1 division every 12-14
hours), while adult HSCs are deeply dormant
and rarely divide (1 division every 145 days).4

The molecular profiling of FL long-term
repopulating HSCs (LT-HSCs) during this
massive expansion phase may provide the clues
as to how we can manipulate adult HSCs
to restart their self-renewal expansion for
regenerative medicine. In adult HSCs, once
they are “awoken” from their dormancy and
enter cell cycle, they must rapidly return to
their quiescent state to prevent exhaustion
and long-term organ failure. Furthermore,
extended replicative stress in adult HSCs holds
the danger of DNA damage, which may occur
once these cells are forced into cell cycle.5What
makes fetal HSCs special enough to facilitate
extensive self-renewal divisions without
suffering from exhaustion, differentiation
induction, or genomic instability? These are
important questions that, once answered, may
show us how to enforce HSC expansion for
medical needs.

The study by Zhao et al introduces an
important new player in the cell-intrinsic
and -extrinsic regulation of FLHSC self-renewal
and expansion. ATF4 is a basic region-leucine
zipper transcription factor belonging to the
ATF family which consists of 7 members in
mice and humans. More than 10 years ago, the
phenotype of the ATF4 homozygous knockout
was reported in mice to result in perinatal
lethality with a severe anemia and a low
hematocrit.6 The authors here revisited the
consequences of ATF4 deletion on the biology
of HSCs in great detail by investigating the
intrinsically and extrinsically controlled cell
fate decisions in the absence of ATF4 (see
figure). They demonstrated that the FLs of

The transcription factor ATF4 is essential for HSC self-renewal in the FL. Although the emergence and migration of definitive

HSCs are largely independent of the presence of ATF4, the transcription factor is required for the intrinsic and extrinsic

regulation of HSC self-renewal during their massive expansion phase between embryonic day 11.5 (E11.5) and E15.5 in the

FL. ATF4 activates the expression and secretion of Angptl3 in the FL microenvironment, particularly in endothelial cells (ECs)

and stroma cells (SCs), which further promotes the self-renewal of HSCs. AGM, aorta-gonad-mesonephros; WT, wild-type.
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MYELOID NEOPLASIA

The use of targeted sequencing and flow cytometry to
identify patients with a clinically significant monocytosis
Catherine Cargo,1 Matthew Cullen,1 Jan Taylor,1 Mike Short,1 Paul Glover,1 Suzan Van Hoppe,1 Alex Smith,2 Paul Evans,1 and Simon Crouch2

1Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom; and 2Epidemiology and Cancer Statistics Group,
University of York, York, United Kingdom

KEY PO INT S

l Somatic mutations are
detected at high
frequency in patients
with a monocytosis
and are associated
with significantly
reduced survival.

l In those without
a WHO-defined
diagnosis, patients
with a mutation have
laboratory and
clinical features
indistinguishable
from CMML.

The diagnosis of chronic myelomonocytic leukemia (CMML) remains centered on mor-
phology, meaning that the distinction from a reactive monocytosis is challenging. Muta-
tional analysis and immunophenotyping have been proposed as potential tools for
diagnosis; however, they have not been formally assessed in combination. We aimed to
investigate the clinical utility of these technologies by performing targeted sequencing, in
parallel with current gold standard techniques, on consecutive samples referred for in-
vestigation of monocytosis over a 2-year period (N 5 283). Results were correlated with
the morphological diagnosis and objective outcome measures, including overall survival
(OS) and longitudinal blood counts. Somatic mutations were detected in 79% of patients,
being invariably identified in those with a confirmed diagnosis (99%) but also in 57% of
patients with nondiagnostic bone marrow features. The OS in nondiagnostic mutated
patients was indistinguishable from those with CMML (P 5 .118) and significantly worse
than in unmutated patients (P 5 .0002). On multivariate analysis, age, ASXL1, CBL,
DNMT3A, NRAS, and RUNX1 mutations retained significance. Furthermore, the presence
of amutationwas associatedwith a progressive decrease in hemoglobin/platelet levels and

increasing monocyte counts compared with mutation-negative patients. Of note, the immunophenotypic features of
nondiagnostic mutated patients were comparable to CMML patients, and the presence of aberrant CD56 was highly
specific for detecting a mutation. Overall, somatic mutations are detected at high frequency in patients referred with
amonocytosis, irrespective of diagnosis. In thosewithout aWorldHealthOrganization–defined diagnosis, themutation
spectrum, immunophenotypic features, and OS are indistinguishable from CMML patients, and these patients should
be managed as such. (Blood. 2019;133(12):1325-1334)

Introduction
Distinguishing a reactive monocytosis from chronic myelomo-
nocytic leukemia (CMML) is challenging for the hematopatholo-
gist. Using current World Health Organization (WHO) diagnostic
criteria, a persistent monocytosis is the hallmark of disease, and
demonstrating clonality is not a definitive requirement.1 This leads
to a greater risk for misdiagnoses or misclassification, particularly
in patients with prolonged reactive changes.

More recently, alternative techniques, in particular flow cytom-
etry, have provided a potential objective tool to identify patients
with disease. Skewing of the distribution of monocyte subsets
in the peripheral blood (PB; .94% M1 monocytes) has been
reported to be sensitive and specific for detecting CMML.2 In
addition, large studies using targeted sequencing panels have
identified recurrent somatic mutations in .90% of patients with
CMML,3 providing a further potential tool for diagnosis. The
presence of a TET2 mutation, in combination with a SRSF2 (or

ZRSR2) mutation, has been shown to be highly specific for
a myelomonocytic phenotype4; these, along with ASXL1, are the
most frequently mutated genes within this disease group.3 Al-
though the 2016 WHO diagnostic criteria have stated that these
mutations can support a diagnosis of CMML, no study has di-
rectly assessed the use of this technology in a diagnostic setting.
The aim of this study was to determine whether mutational
analysis and flow cytometry can provide confirmatory evidence
of disease and predict outcome in patients presenting with
a monocytosis.

Methods
Patients and samples
The research was undertaken within the Haematological Ma-
lignancy Diagnostic Service (HMDS), a fully integrated laboratory
that serves a population of ;6 million and is the benchmark
for hematopathology services within the United Kingdom. All
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consecutive samples (PB or bone marrow [BM]) received be-
tween July 2014 and July 2016 from patients $18 years old for
the investigation of monocytosis were included. Patients with
a confirmedmyeloid diagnosis prior to July 2014 were excluded.
The decision to investigate was at the discretion of the referring
clinician; therefore, the study cohort reflects the variety of
samples received in a routine laboratory for the investigation of
a monocytosis. An absolute monocyte count was determined for
all PB samples when received at HMDS (Table 1) using flow
cytometry (see “Flow cytometry”). Interestingly, the absolute
count was calculated to be ,1 3 109/L in a proportion of
samples (11%); however, the vast majority were very close to this
threshold, and review of local blood count parameters and
clinical details confirmed the presence of a PB monocytosis and
clinical suspicion of CMML. This highlights the recognized
variation in monocyte counts between laboratories and the
difficulty when applying arbitrary cutoffs as diagnostic criteria.

A total of 283 patientswas referredduring this timeperiod (Table 1),
of which 121 and 162 had an initial PB or BM sample, respectively
(Figure 1). A confirmed diagnosis was only made on those cases
with an ultimate BM sample (n5 207). All samples were processed
according to gold standard techniques and were double reported,
meaning the diagnosis was agreed upon by 2 experienced hema-
topathologists. Those with a confirmed diagnosis were classified in
accordance with theWHO2008 classification. Those failing to fulfill
the morphological and genetic WHO 2008 criteria, as agreed
by 2 hematopathologists, were classified as “nondiagnostic.”

All samples were taken with fully informed patient consent for
investigation of a suspected hematological disorder. This study
had local Institutional Review Board approval (REC reference-16/
NE/0105) and was performed in accordance with the Declaration
of Helsinki.

Flow cytometry
All samples for immunophenotypic analysis were processed
within 24 hours. Numerical studies and assessment of monocytic
CD56 expression were performed on BM or PB samples fol-
lowing a stain–lyse–wash procedure (FACS Lyse; Becton Dick-
inson; supplemental Figures 1-2; supplemental Table 1,
available on the BloodWeb site). There was a strong correlation
between monocyte CD56 expression in the PB and BM (sup-
plemental Figure 5), enabling analysis using samples from either
source.

PB CD14/CD16 “classical” monocytic subset studies were per-
formed on samples following NH4Cl lysis of erythrocytes using
a lyse–stain–wash procedure. A minimum of 105 leukocytes was
acquired on a single cytometer (FACSCanto II; Becton Dickinson)
for all cases. Monocytes were identified using a combination of
CD64, CD45, and scatter characteristics, and a single operator
(M.C.) performed all analyses (supplemental Figures 3-4).

DNA extraction and targeted amplicon sequencing
In parallel with the above analyses, samples were subjected to
targeted high-throughput sequencing. Referring clinicians and
hematopathologists were blinded to the results of this analysis to
exclude reporting or treatment bias.

DNA was extracted from fresh blood or BM mononuclear cells
using a QIAamp DNA Mini Kit (QIAGEN, Manchester, UK).

Targeted gene sequencing of 27 genes recurrently mutated in
myeloid malignancies was performed on a MiSeq System (Illu-
mina, Chesterford, UK). Panel design, validation, and variant
filtering criteria are included in supplemental Methods and
supplemental Tables 2 and 3. The mean coverage of identified
variants was 15143 (range, 52-56053).

Clinical follow-up
All follow-up BM assessments were performed as clinically in-
dicated by the referring clinician. These samples were also
processed according to gold standard techniques and un-
derwent targeted sequencing in parallel, as described above.
Any new diagnoses were recorded.

Survival data were available for all patients and censored on the
date of extraction (8 August 2017). Additional clinical in-
formation, including serial full blood count data, was collected
on a subcohort of patients (n 5 182), directly from the referring
hospital or through the HMRN (n 5 85).5

Statistical analysis
Survival curves were produced using the Kaplan-Meier method,
and simple differences in survival were assessed with the log-rank
test. The impact of abnormalities on overall survival (OS) and risk
of progression were estimated using Cox regression; in cases in
which variable selection was required to arrive at a multivariable
regression, the lasso was used for variable selection, and results
were reported for the corresponding relaxed lasso model.

Sensitivity, specificity, and positive and negative predictive
values were calculated using 232 contingency tables.

Comparison between flow cytometric parameters in the main
cohort was performed using the Mann-Whitney U test. Corre-
lation among CD56 expression, M1 monocyte, and mutational
analysis was performed using logistic and Poisson regression.

The effect of mutations on longitudinal blood counts was assessed
using random effects models. Four models were fitted using a full-
factorial interactionbetween time andmutation status: (1) a random
intercept model, (2) a random intercept and slope model with
uncorrelated random effects, (3) a random intercept and slope
model with correlated random effects, and (4) a random intercept
and slope model with correlated random effects, additionally
adjusted for age and sex. For each mutation/blood count re-
lationship, the best-fitting model was chosen according to
a likelihood ratio test. To limit any potential effect from periods of
acute illness or intensive treatment, blood count trajectory analysis
was restricted to patients with,40 measurements over.100 days.

Results
Somatic mutations are detected at high frequency
in patients with a monocytosis, irrespective
of diagnosis
To define the mutation spectrum in patients referred with a
monocytosis, targeted sequencing results were analyzed for the
total cohort and correlated with the final diagnosis in those who
underwent BM sampling. Of the total 283 patients,$1 mutation
was detected in 78% of samples (the spectrum is presented in
Figure 2A; see also supplemental Table 4). Of these patients,
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207 underwent BM assessment for a definitive diagnosis. HMDS
provides a centralized integrated hematopathology service, and
all BMs were reviewed independently by 2 hematopathologists to
ensure consistent and high-quality BM reporting for this purpose.

In those with a confirmed myeloid malignancy (142/207 cases;
69%), a mutation was almost invariably detected (140/142; 99%
of cases). Of the 2 mutation-negative cases, 1 had a complex
karyotype, including inv3 (involving MECOM), leaving only 1
case with no demonstrable clonal abnormality. The significant
majority of diagnostic cases (80%; 114/142) were classified as
CMML. The remaining samples were classified with a spectrum
of myeloid malignancies, although, importantly, 11 patients
were diagnosed with acute myeloid leukemia (AML) (n 5 11),
highlighting the importance of a BM assessment in patients
referred with a monocytosis.

Somatic mutations were also detected at a high frequency in
nondiagnostic samples. At least 1mutation was detected in 37 of

65 patients (57%) with indeterminate features. The spectrum of
mutations in this group mirrored those detected in the diagnostic
group, with TET2, SRSF2, and ASXL1 being the most frequently
mutated (Figure 2B). The most notable differences in the
nondiagnostic group were the absence of high-risk mutations,
including TP53, FLT3, and NPM1, as well as those associated
with specific morphological abnormalities, such as SF3B1, which
correlates strongly with the presence of ring sideroblasts.6 The
median and mean number of mutations were higher in those
with a confirmed diagnosis (median, 3; range, 0-8; mean, 3) vs
those without (median, 1; range, 0-6; mean, 2) (Figure 2C).
However, in patients with a confirmed mutation, the number
of mutations did not differ significantly between diagnostic and
nondiagnostic groups (P 5 .62).

The median variant allele fraction (VAF) for all variants was 39%
(range, 5.2-100%; supplemental Figure 6), and there was no
difference between the VAF in diagnostic and nondiagnostic
cases (P 5 .33). In those patients with an isolated mutation, the

Table 1. Patient characteristics

Characteristic Distribution in cohort

No. of patients 283

Males/females, n 174/109

Age, median (range), y 76 (24-96)

Final diagnosis, n
PB only 76
CMML 114
AML 11
MPN 9
MDS 4
Other 4
Nondiagnostic 65

CMML Other hematologic malignancy Nondiagnostic

Age, median (range), y 76 (24-91) 76 (42-93) 73 (34-93)

Blood count parameters: median (range)
Hemoglobin (g/L) 105.5 (38-161) 108 (53-174) 122 (84-163)
White cell count (3109/L) 13.6 (4-104.9) 10.6 (3.9-83.4) 7.9 (4.2-38.2)
Platelets (3109/L) 90 (1-442) 154 (39-1085) 150 (8-499)
Monocytes (3109/L)* 2.69 (0.47-23.59) 1.71 (0.23-9.57) 1.29 (0.72-4.08)

Mutation frequency: no. of patients (%)
TET2 72 (63) 9 (32) 31 (48)
SRSF2 48 (42) 9 (32) 14 (22)
ASXL1 39 (34) 13 (46) 10 (15)
NRAS 17 (15) 7 (25) 5 (8)
RUNX1 16 (14) 6 (21) 4 (6)
DNMT3A 9 (8) 5 (18) 5 (8)
CBL 18 (16) 1 (4) 4 (6)
KRAS 9 (8) 3 (11) 2 (3)
SETBP1 7 (6) 2 (7) 1 (2)
JAK2 3 (3) 7 (25) 1 (2)
EZH2 8 (7) 2 (7) 1 (2)
SF3B1 6 (5) 2 (7) 0 (0)

AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm.

*Monocyte count was determined by flow cytometry (see “Methods”).
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median VAF was also noted to be high (38.2%; range, 6.3-97.1%),
with only 2 variants having VAF , 10%.

Therefore, mutations are found at a very high frequency with
a high clonal burden in patients with a monocytosis, and they
involve a similar spectrum of genes, irrespective of diagnosis.

OS and blood count trajectory correlate strongly
with mutation profile
To understand the long-term clinical impact of detecting these
mutations, objective outcome measures, including OS and
longitudinal blood count analysis, were assessed in the total
cohort and correlated with the final diagnosis.

The median survival of all patients from the time of first sampling
was 35.2 months (95% confidence interval [CI] 25 months-not

reached; Figure 3A). Survival correlated strongly with the
number of mutations. Those without a mutation had a signifi-
cantly better OS, and even the presence of a single mutation
resulted in a significant reduction in survival (P 5 .004; Figure 3B).
On univariate analysis, agewas strongly associatedwith survival. For
mutations occurring in .5% of subjects, ASXL1, CBL, DNMT3A,
NRAS, andRUNX1were all strongly associatedwith survival, aswere
EZH2 and STAG2 among the less frequently mutated genes. To
investigate multivariate significance, all genes mutated in .5%
subjects were entered into a lasso survival regression. Taking the
1SE shrinkage parameter, age, ASXL1, CBL, DNMT3A, NRAS, and
RUNX1 were selected by the lasso and retained significance in
a relaxed lasso regression (supplemental Table 5).

In those patients who proceeded to a BM biopsy, survival cor-
related with the final morphological diagnosis. Those without
a confirmed diagnosis had a significantly better OS than did

All samples received in HMDS for
investigation of monocytosis

July 2014-July 2016*

Bone
Marrow
n=162

Initial
sample
type

Is the bone marrow biopsy
diagnostic by WHO 2008 criteria?

Diagnostic
n=142

Non-diagnostic
n=65

Follow-up bone
marrow received for

diagnosis?*

Is the bone marrow
diagnostic?

Final Diagnosis

Final Diagnosis

CMML 114

11

9

4

3

1

AML

MPN

MDS

MDS/MPN

Other†

CMML 6

1

2

MDS

Other

No final
diagnosis

No

n=54

Yes n=11

Yes n=9

Peripheral
Blood
n=121

Subsequent bone
marrow received for

diagnosis?*

No final
diagnosis

No

n=76

Yes; n=45

Samples analysed by morphology, flow
cytometry and targeted sequencing

Figure 1. Summary of samples included in the study. Flow-
chart of cases referred to HMDS for investigation of a mono-
cytosis. *Decision to investigate was at the discretion of the
referring clinician. †Focal area of diffuse large B-cell lymphoma
noted in BM, likely co-occurring with CMML.
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those with CMML or another myeloid malignancy. However,
this survival benefit was retained only in those without a de-
monstrable mutation (P 5 .0002), with mutated patients having
a similar survival to CMML patients (P 5 .118; not statistically
significant) (Figure 4).

Longitudinal blood count data were available for 182 patients,
although they were restricted to those with ,40 measurements
over .100 days (n 5 133) to exclude periods of acute hospital
admissions (due to periods of acute illness/infection) or intensive
chemotherapy (median follow-up, 465 days; range, 119-996).
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Figure 2. Characteristics of mutations detected in patient samples. (A) Spectrum of mutations detected across all patients in the study (N 5 283). (B) Comparison of
mutations detected in those with a diagnostic BM sample (n 5 142) vs a nondiagnostic BM sample (n 5 65). (C) Distribution of the number of mutations according to
final diagnostic category. “Other” denotes those patients with an alternative hematological malignancy.

MOLECULAR DIAGNOSIS OF CMML blood® 21 MARCH 2019 | VOLUME 133, NUMBER 12 1329

For personal use only. on September 17, 2019. at UNIVERSITY OF YORK www.bloodjournal.orgFrom 

283

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


The presence of a mutation was associated with a significantly
lower hemoglobin and platelet count and a higher monocyte
count relative to those without a mutation, which persisted over
time and followed a divergent trajectory (Figure 5). With respect
to individual mutations, certain mutations were associated
with increasing or declining blood count parameters over time
(supplemental Table 6). Monocyte counts were found to increase
over time in subjects with TET2, SRSF2, ASXL1,NRAS, or RUNX1
mutations relative to nonmutated subjects; similarly, white blood
counts increased in subjects with ASXL1, NRAS, and DNMT3A
mutations, and platelet levels decreased in subjects with ASXL1,
CBL, and RUNX1 mutations relative to nonmutated subjects.

In those without a confirmed diagnosis, follow-up BM biopsies
were received from 11 patients. Importantly, of those with a
subsequent diagnosis of CMML, all had a confirmedmutation on
the original sample. In total, 7 of 37 (19%) nondiagnostic
mutated patients had a confirmed diagnosis (6 CMML, 1 myelo-
dysplastic syndrome [MDS]). Furthermore, none of the mutation-
negative cases went on to develop CMML; however, 2 patients
had confirmed alternative hematological diagnoses: diffuse
large B-cell lymphoma and Rosai-Dorfman disease.

These findings confirm that the presence of a mutation has a
significant impact on outcome with respect to survival and blood
count parameters.

PB mutation profiling is predictive of
a BM diagnosis
PB mutational analysis has been shown to correlate strongly with
BM analysis in MDS, providing a potential alternative to BM
sampling. To determine whether this is also true in CMML,
matched PB and BM samples were analyzed. A total of 121 PB
samples was received as the initial sample, and somatic mutations
were detected in 66% (80/121). Forty-five of 121 patients (37%) had
a subsequent BM biopsy performed for diagnosis. Sequencing
failed on 2 of the matched BM samples. Of the 124 variants
detected in the remaining 43 patients, there was high concordance
between PB and BM (96%), with only 5 discordant results. Im-
portantly, these were low-level variants at the limit of detection
for the test or variants detected at areas of poor coverage (SRSF2/
ASXL1). All 9 mutation-negative cases were fully concordant.

The presence of a mutation in the PB was highly predictive of
diagnosing a myeloid malignancy in BM, with all but 1 case with
a demonstrable mutation having a subsequent diagnosis
(positive predictive value, 0.97; negative predictive value, 1.0;
supplemental Figure 7). Of note, none of the mutation-negative
(n 5 11) cases had a subsequent confirmed diagnosis.

Immunophenotypic features correlate strongly
with the presence of a mutation and
a subsequent diagnosis
Flow cytometry has been proposed as a potential diagnostic tool
in the investigation of patients with a monocytosis. To determine
whether immunophenotyping can predict for the presence of
a mutation or a BM diagnosis, flow cytometric analysis was per-
formed alongside sequencing.

First, a comparison was made between the immunophenotypic
features in the BM of those patients with a confirmed diagnosis
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Figure 3. OS according to mutation number. (A) OS in total cohort from time of
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initial sample. The P value was determined using the log-rank test to compare
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of CMML vs nondiagnostic samples. Importantly, nondiagnostic
mutated patients had immunophenotypic features indistinguish-
able from CMML with respect to increased CD641 monocytes,
reduced CD14 expression, and aberrant CD56 expression on
monocytes (Figure 6). This was most pronounced with regard to
CD56 expression (in PBor BM), whichwas found almost exclusively
in those with a mutation. With respect to individual mutations,
aberrant expression of CD56 was strongly associated with TET2
mutations (odds ratio [OR], 4.0; 95% CI 2.4-6.8; P , .0001).

PB monocyte subsets and CD56 expression are
predictive of a somatic mutation
The presence of.94% classical (M1)monocytes has been shown
to be highly sensitive and specific for a diagnosis of CMML.2 PB
monocyte subset analysis was not available for every patient in
the main cohort; therefore, to analyze the relationship among
M1 monocytes, CD56 expression, and the mutation profile,
a separate cohort of 135 patients was investigated. Of these 135
patients, 95 underwent a subsequent BM biopsy for definitive di-
agnosis (CMML5 28, MDS5 23, myeloproliferative neoplasm5 9,
nondiagnostic 5 27, other 5 8). The presence of aberrant
CD56 was again strongly associated with the presence of
a mutation (OR, 43.9; 95% CI, 8.9-793.9; P 5 .0003). This was
also noted, to a lesser extent, in association with having .94%
M1 monocytes (OR, 3.9; 95% CI, 1.8-8.7; P 5 .0007) (supple-
mental Table 7). There was some correlation between the
presence of CD56 expression and .94% M1 monocytes
(r5 0.17; P5 .039), and combining both produced a stronger effect
(OR, 8.5; 95% CI, 3.9-19.5; P , .00001). Importantly, combining
these phenotypic aberrancies did not capture all patients with
a mutation. Although CD56 was highly specific for the presence
of a mutation (98%), sensitivity was only 48%. Similarly, the
presence of .94% M1 monocytes had a specificity of 75% for
detecting a mutation, but the sensitivity was only 56%.

With respect to a confirmed diagnosis, CD56 expression (OR,
4.9; 95% CI, 1.9-13; P 5 .001) and .94% M1 monocytes (OR,

4.2; 95% CI, 1.7-11.5; P 5 .003) were associated with a final
diagnosis of CMML; however, of note, 4 patients with CMML did
not have either of these phenotypic aberrancies.

Discussion
This is the first study to formally examine the use of mutational
analysis of patients presenting with a monocytosis. This was
performed in combination with current gold standard tech-
niques, including recently described flow cytometric analyses, in
a large patient cohort. By analyzing sequential samples referred
to a regional diagnostic laboratory, this study has investigated
the typical patient population encountered in routine hema-
tology practice. The use of objective outcome measures (lon-
gitudinal blood counts and OS) and an unselected patient
population have minimized bias and ensured that the results are
applicable in the “real-world” setting. Using a targeted se-
quencing panel of recurrently mutated genes, this study con-
firms that somatic mutations are identified in virtually all patients
with amorphological diagnosis of CMML, aswell as in a significant
proportion of patients with a monocytosis and nondiagnostic
features. It is possible that the proportion of nondiagnostic
samples with detectable mutations was inflated as a result of
referral bias and a high pretest probability of disease in those
undergoing testing; however, these patients had a mutation
spectrum, immunophenotype, and outcome indistinguishable
from CMML. The presence of a mutation significantly impacted
on survival, irrespective of the final diagnosis.

A number of technical limitations of this study should be
highlighted. First, because these were routine samples referred
for investigation, a corresponding germline sample was not
available for analysis. The absence of reference material means
that the distinction between germline variants or private single
nucleotide polymorphisms and somatic variants is challenging;
however, sequencing was limited to well-documented driver
genes, and the landscape of mutations in these genes is well
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established. Strict filtering criteria were applied (see supple-
mental Methods) to ensure that only high-confidence variants
were included. Second, the sequencing analysis used amplicon-
based library preparation, which has recognized limitations with

respect to polymerase chain reaction errors and false-positive
results, particularly at low VAF; however, the panel was validated
internally and externally (see supplemental Methods), and only
reproducible variants were included if detected at low VAF or in
areas of low coverage. Therefore, the results are, to the best of
our ability, accurate. In the future, deeper sequencing should
enable more accurate variant calling at low VAF.

The findings of this study will be key to refining future diagnostic
algorithms in the investigation of patients referred with a mono-
cytosis. Mutational analysis has been incorporated into the re-
cent amendment of the WHO diagnostic criteria, which now
state that the presence of a mutation can support a diagnosis of
CMML. However, concerns have been raised regarding the use
of mutational analysis in this setting because of reports of fre-
quent somatic mutations in aging healthy individuals.7-10 As
a result, the WHO has stated that the presence of a mutation in
CMML or MDS should not be used alone as proof of disease.1

However, our study has shown that, even in the absence of
morphological features, those patients with a mutation had
a clinical phenotype and genotype indistinguishable from
CMML and a comparably poor outcome. Distinguishing features
were also noted between the variants reported in healthy
individuals and the mutations detected in our study group. The
VAF or clone size of the mutations in our study was significantly
higher than in healthy individuals (median 39.2% vs 9%-10%),
and this was demonstrated across diagnostic and nondiagnostic
samples. This finding has also been described in patients with
unexplained cytopenias, and several studies have shown that
VAF . 10% and the presence of co-occurring mutations can
distinguish clinically significant cytopenias from healthy
individuals.11-13 Although the higher VAF is replicated in our
patient group, importantly, our study has shown that even iso-
lated mutations have a significant impact on survival in patients
with a monocytosis. These findings provide strong evidence
that, in those subjects without diagnostic morphological fea-
tures, the presence of a mutation, irrespective of mutation
number, could be disease defining. At the very minimum, it is
imperative that these patients are identified and monitored
closely.

It has become increasingly feasible to perform mutational
analysis in routine clinical practice, and this study has demon-
strated how modest-sized gene panels can provide significant
diagnostic and prognostic information. The panel used in the
study targeted genes implicated in myeloid malignancies and
was incorporated into the routine workload and performed in
“real time” in a cost-effective manner. The genetic profile in
CMML is now well established and is noted to be relatively
homogeneous, involving only a restricted number of genes.
Mutation frequencies in .90% of patients have been consis-
tently reported using varying panel sizes, including as few as 19
genes.3,14-16 The mutation profile in our cohort mirrored that
reported in the literature; despite the restricted panel, the
mutation frequency was high, and a significant impact on out-
come was demonstrated. The recognized poor prognostic im-
pact of ASXL1 mutations3,14,17-20 was also replicated across this
data set. Therefore, mutational analysis is viable in a routine
diagnostic laboratory. It is also likely that a proportion of these
patients will have additional mutations in genes not sequenced
in this study. To further investigate this would require more
extensive sequencing on much larger patient populations.
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Figure 5. Longitudinal blood count trajectories in relation to mutation status.
Plots of all blood count trajectories averaged betweenmutated (red) and unmutated
(black) groups with overlaid linear regression line. Hemoglobin (g/L) (A), platelet
count (log transformed) (B), andmonocyte count (log transformed) (C) in patients with
or without a detectable mutation.
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The potential for PB to be used as a screening tool for mono-
cytosis has also been addressed in this study. This is an attractive
option, particularly in a disease commonly presenting in the
older patient population. Using flow cytometry, the presence of
.94% M1 monocytes in the PB was reported to be highly
sensitive and specific for CMML.2 Subsequent studies have
validated these findings and also confirmed the ability to dis-
tinguish CMML from MDS and myeloproliferative neoplasm
cases presenting with amonocytosis.21,22 However, these studies
are centered on morphological diagnoses, and mutational
analyses have not been performed consistently. Although our
study has shown a strong correlation between skewedmonocyte
subsets and a diagnosis of CMML, this did not capture all
patients and was neither sensitive nor specific for the presence
of a mutation. In contrast, aberrant CD56 expression was highly
specific for the presence of a mutation (98%), particularly in-
volving TET2. CD56 expression has been reported to be highly
sensitive and specific for a diagnosis of CMML (100% and 67%,
respectively) when combined with other immunophenotypic
features, including reduced expression of myeloid antigens
and $20% immature monocytes23; however, subsequent stud-
ies raised concerns regarding the overexpression of CD56 in
reactive conditions.24 Our data show that CD56 expression at
diagnosis is invariably associated with the presence of a so-
matic mutation, although sensitivity was low (48%). Therefore,
flow cytometry could provide a screening tool for the in-
vestigation of PB monocytes; however, ultimately, mutational
analysis will be required to identify patients who require clinical
follow-up.

Importantly, there was high concordance between PB and BM
mutational analysis, and the presence of a PB mutation was
highly predictive of a subsequent BM diagnosis. This suggests
that screening of the PBmay be a suitable method for identifying
or excluding significant mutations; however, this could lead to an
increase in inappropriate referrals and a significant burden on

laboratory personnel. Furthermore, the small proportion of
mutated patients in our cohort with other hematological ma-
lignancies in the BM, including AML, highlights the importance
of a baseline BM assessment to definitively classify the disease.
In contrast, the negative predictive value of PB screening was
100%, suggesting that those without a mutation should not
undergo BM assessment. In the first instance, PB screening
would be a practical option in those patients unfit for BM as-
sessment or potentially to monitor for treatment response or
disease evolution. The latter would require further investigation
in a prospective study.

In conclusion, this study has confirmed that mutations are
commonly detected in patients referred with a persistent
monocytosis. The presence of a mutation impacts significantly
on outcome, irrespective of diagnosis, and patients with a mu-
tation who fail to meet WHO criteria have CMML disease
characteristics. These findings validate the inclusion of somatic
mutations in the diagnostic criteria for CMML, and, at the very
minimum, those without a confirmed diagnosis require close
clinical follow-up. Although PB can be confidently used to
detect mutations, a baseline BM biopsy is required for de-
finitive disease classification in patients fit for treatment.
Immunophenotypic assessment of monocytes may provide
a potential screening tool to detect those with a mutation;
however, it will miss a proportion of mutated patients. Ulti-
mately, early identification of patients could provide an op-
portunity for intervention in this patient group, and this requires
further investigation.
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MYELOID NEOPLASIA

Comment on Cargo et al, page 1325

Clonal monocytosis of
clinical significance
Mario Cazzola | University of Pavia

The World Health Organization (WHO) diagnostic criteria for chronic mye-
lomonocytic leukemia (CMML) include clinical and morphological features;
however, demonstrating clonality is not an absolute requirement for making
the diagnosis.1 In this issue of Blood, Cargo et al show that patients with clonal
monocytosis identified by targeted gene sequencing have a clinical outcome
similar to that of overt WHO-defined CMML.2

In the WHO criteria, CMML is classified
as a myelodysplastic/myeloproliferative
neoplasm (MDS/MPN), a category that also
includes atypical chronic myeloid leuke-
mia, juvenile myelomonocytic leukemia,
and the MDS/MPN with ring sideroblasts
and thrombocytosis.1 These disorders
have bothmyelodysplastic (dysplasia and
cytopenia) and myeloproliferative features
(“cytosis” of 1 or more myeloid lineages)
at the time of diagnosis.

CMML is characterized by the accumula-
tion of monocytes in the peripheral blood,
and therefore, the initial diagnostic ap-
proach involves the differential diagnosis

of monocytosis. Once reactive mono-
cytosis has been excluded, the possibility
of CMML should be considered, espe-
cially if the elevated monocyte count has
persisted for$3months. According to the
WHO criteria, diagnosis of CMML requires
an absolute monocyte count $1 3 109/L
with monocytes accounting for $10% of
circulating leukocytes. These cutoffs are
arbitrary: the natural history of disease is
that the monocyte count increases from
normal to elevated in a continuousmanner.
Monocytosis can be present in other my-
eloid malignancies, such as MPNs, and
therefore, diagnosis of CMML requires the
exclusion of these conditions. To establish

the myelodysplastic nature of the disease,
the presence of dysplasia involving $1
myeloid lineages is required, whereas
blasts must constitute ,20% of the cells
in the peripheral blood and bone marrow.

As CMML lacks a unique disease-defining
genetic lesion, genetic data have so far
played a minor role in the diagnosis.1

About three-quarters of patients have
a normal karyotype, which means that
cytogenetic abnormalities can be used
as clonal markers only in a subset of
patients.3 Somatic gene mutations have
been identified only in the last few years.
A recent study using a panel of 38 re-
currently mutated genes in myeloid ma-
lignancies has detected somatic mutations
in 199 of 214 CMML patients (93%).4 The
most frequently mutated genes were
TET2, SRSF2, ASXL1, NRAS, KRAS, and
SETBP1. A significant association was
found between mutations in TET2 and
spliceosomegenes, andone-fifth of patients
showed cooccurrence of TET2 and SRSF2
mutations, a comutation pattern that can
be considered relatively typical of CMML.
Quantification of monocyte subsets by
flow cytometry has recently provided a
new tool for the diagnosis of CMML.5 An
increase in the fraction of classical mono-
cytes (CD1411/CD162) to .94.0% of to-
tal monocytes has been found to be a
biomarker that helps distinguish CMML
from reactive monocytosis.

Cargo et al conducted a study that gen-
erated from routine hematology practice.
They studied samples of patients referred
to a hematology service for monocytosis.
Through targeted sequencingof 27genes
recurrently mutated in myeloid malignan-
cies, they detected $1 somatic mutation
in 221 of 283 samples (78%). Overall, 207
subjects underwent additional tests, in-
cluding bone marrow assessment, for a
definitive diagnosis. Virtually all patients
with a confirmed myeloid neoplasm car-
ried a somatic mutation (140/142; 99% of
cases), andmost of themhad CMML (114/
142; 80% of cases). Of the 65 subjects
who did not have a definitive diagnosis
but just indeterminate features, 37 (57%of
cases) carried at least 1 somatic mutation,
with TET2, SRSF2, and ASXL1 being the
most frequently mutated genes. In terms
of variant allele frequency (VAF), there was
no significant difference between the di-
agnostic and nondiagnostic/indeterminate
features groups, with average values
;40%. More importantly, the overall sur-
vival of mutated nondiagnostic patients

Oligomonocytic chronic
myelomonocytic leukemia

(CMML without absolute monocytosis)

Clonal monocytosis of
clinical significance

(no or minimal dysplasia)

Overt chronic
myelomonocytic
leukemia with full-
blown myelodysplastic
and myeloproliferative
features

Relationship between clonal monocytosis of clinical significance, oligomonocytic CMML, and overt CMML. The
number of monocytes reflects monocytic proliferation, whereas myelodysplasia is represented by neutrophils
with hypogranulated cytoplasm and bilobed nucleus. Somatic mutations in genes like TET2, SRSF2, ASXL1,
NRAS, KRAS, CBL, or SETBP1 represent the common thread of these chronic myeloid neoplasms, whereas epi-
genetic factors may be responsible for the phenotypic variability. Professional illustration by Patrick Lane,
ScEYEnce Studios.
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was indistinguishable from that of patients
with WHO-defined CMML and worse
than that of subjects with monocytosis
without somatic mutations. Flow cytom-
etry analysis of circulating monocytes
showed overlapping features in mu-
tated nondiagnostic subjects and CMML
patients.

The study by Cargo et al validates the
current WHO diagnostic criteria for
CMML, showing that when myelodys-
plasia is absent or minimal, the diagnosis
of CMML may still be made if a somatic
mutation is present. In fact, many of the
cases that were initially considered non-
diagnostic based on morphological cri-
teria were identified by demonstrating an
acquired clonal genetic abnormality, as
stipulated in the recently revised WHO
criteria.1 The conclusions of the study,
however, go beyond this validation and
suggest that the presence of a somatic
mutation should become an absolute
requirement for diagnosis of CMML,
irrespective of the presence or absence
of dysplasia. The fact that somatic muta-
tions of myeloid genes can be found also
in healthy individuals with age-related clonal
hematopoiesis (ARCH)6 does not represent
a valid reason for not using them as markers
of clonality in myeloid neoplasms. In both
patients with clonal monocytosis and those
with CMML, the VAF of somatic mutations
was much higher (;40% on average) than
that commonly observed in healthy sub-
jects with ARCH (,10%), indicating a much
more advanced clonal disease.

Through their investigations, Cargo et al
have illuminated a condition that can be
defined as “clonal monocytosis of clinical
significance.” The relationship between
this condition and CMML resembles that
between clonal cytopenia of undetermined
significance (CCUS) and MDS.7,8 The overall
survival and the risk of disease progression
of patients with CCUS and highly specific
mutation patterns are indistinguishable
from those of patients with a myeloid
neoplasm with myelodysplasia.9 While
clonal monocytosis of clinical significance lacks
overt myelodysplasia, an oligomonocytic
CMML has also been described that dis-
plays a similar clinicopathologic and mu-
tational profile to classical CMML.10 Somatic
mutations represent the common thread of
all these conditions, which are schemati-
cally represented (see figure).

In conclusion, the available evidence
suggests that demonstrating somatic

mutations and defining their patterns
may provide presumptive evidence of
myeloid malignancies, specifically, of
CMML, even in the absence of definitive
morphological criteria. In addition, inte-
grating clinical features, morphology, im-
munophenotyping, and gene mutations
may also improve risk stratification of these
patients, providing a robust basis for clin-
ical decision making and a reliable tool
for clinical trials.4
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PLATELETS AND THROMBOPOIESIS

Comment on Marconi et al, page 1346

PTPRJ: a novel inherited
thrombocytopenia gene
Renren Wen and Demin Wang | BloodCenter of Wisconsin

In this issue of Blood, Marconi et al use a high-throughput exome-sequencing
approach to identify 2 biallelic loss-of-functionmutations in PTPRJ that caused
autosomal-recessive thrombocytopenia and a bleeding disorder in 2 siblings.1

Inherited thrombocytopenia (IT) is an ex-
tremely heterogeneous group of throm-
bocytopenic conditions. Classification
of IT based on the inheritance pattern or
clinical symptoms other than thrombocy-
topenia is not always reliable due to the
high frequency of sporadic cases with de
novo gene mutations, partial penetrance
of the mutations, and variable modes of
presentation in patients with the same
gene mutations. Classification of IT based
on platelet size can be helpful and rela-
tively reliable.2 However, characterization
of clinical and laboratory findings that

correlate with an identified genetic ab-
normality is essential to define a particular
IT as a specific disease entity.

ITs have various phenotypes and are
caused by mutations in many different
genes. The genetic defects responsible
for an IT were first defined in 2 condi-
tions: Bernard-Soulier syndrome (BSS)
and Wiskott-Aldrich syndrome (WAS).
BSS typically is associated with a severe
bleeding tendency and is caused by
mutations of genes encoding the com-
ponents of glycoprotein (GP) complex
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Appendix 8.12 - Gating strategy for monocyte analysis of Cohort 2  
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Figure S1. Flow cytometry gating strategy used to discriminate monocytes.  
Leucocytes were identified on the basis of CD45 and side scatter (SSC) expression 
(A). Within the leucocyte population, monocytic cells were defined on the basis of 
CD64 expression and side scatter characteristics (B). Confirmation was performed 
using CD45 expression (C). Monocytes were then enumerated as a percentage of 
CD45+ leucocytes . Lymphocytes were used to control for the expression of CD56 
and CD14 on the monocytic cells and these were identified on the basis of CD45 and 
side scatter characteristics (D) 
Lymphocytes (blue) were used to define negative population quadrants for CD14 
and CD56 expression on the monocytes (red) (E). In this example, 73% of 
monocytes express CD14 whilst <20% (4.8%) express CD56 (F). 
In this example, 71% of monocytes express CD14 whilst >20% (78%) express CD56 
(G&H). 
In this example, 72% of monocytes express CD14 whilst <20% (99%) express CD56 
(I&J). 
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Figure S2. Flow cytometry gating strategy used to discriminate CD34+ myeloid 
progenitors.  Leucocytes were identified on the basis of CD45 and side scatter (SSC) 
expression as shown in previous flow schema. Within the leucocyte population, 
CD34+ myeloid progenitors were defined on the basis of CD34 expression and side 
scatter characteristics (A). Confirmation was performed using CD45 expression (B) 
and forward scatter and side scatter characteristics (C). CD34+ myeloid progenitors 
were then enumerated as a percentage of CD45+ leucocytes. 
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Figure S3. For the assessment of CD14 and CD16 expression, monocytes were 
positively identified on the basis of the following gating strategy:  Mononuclear cells 
were identified on the basis of CD45 and side scatter (SSc) expression (A). A CD64 
and HLA-DR inclusive gating strategy (B) included all monocytes before a 
combination of forward and side scatter expression (C) and IREM and CD64 
expression (D) was employed to exclude all non-monocytic cells. 
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Figure S4.  Examples of peripheral blood monocyte subset analysis.  (A) Case of 
CMML with 98.2% M1 monocytes.  (B) Reactive monocytosis with 88% M1 
monocytes. 
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aCML   Atypical chronic myeloid leukaemia 
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FDR   False Discovery Rate 
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HR   Hazard Ratio 
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