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Abstract

Structural Health Monitoring (SHM) is the monitoring of any type of structure for

the express purpose of determining its condition and future lifespan and if, when

and where any reparative action is needed. A focus of the work in this thesis is SHM

for long-span bridges and particularly the effects of environmental and operational

conditions on a monitoring campaign. There is currently a trend for heavily instru-

menting civil structures with large sensor networks that continually collect terabytes

of data. However, these large data sets are often redundantly stored and not used

for anything. One of the principal aims in the thesis is to exploit such monitoring

data for the development of diagnostic tools for structural condition assessment.

The first part of the thesis concerns formulating a baseline for the Tamar Bridge

that represents the normal undamaged condition of the structure. To do this a large

amount of analysis was needed in order to understand how different structural mea-

surements are interrelated and how the bridge responds to normal environmental and

operational conditions. Particular attention was paid to measurements that can be

sensitive to structural degradation (such as modal properties). Often simple causal

relationships were found between monitored variables, and response surface mod-

els were formulated that could predict selected variables with good accuracy given

measurement of operational and environmental conditions, such as air temperature,

traffic loading and wind profile. The predictive models developed are intended to

be used as diagnostic tools, for example, a departure from the normal condition of

the bridge will bring about a significant increase in prediction error, which may be

monitored as a system alarm.

The second part of the thesis directly concerns how the influence of environmental

and operational variation on features sensitive to damage can be lessened or removed
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without measurement of these conditions themselves. This is a very important issue

in SHM, as often the effects of fluctuating environmental and operational conditions

can mask any indication of damage to a structure that may be evident in structural

response. In the thesis a solution to the problem based on the econometric theory of

cointegration is introduced. Application of this theory is found to be ideally suited to

remove unwanted environmental and operational trends from SHM data, and forms

an exceedingly promising contribution to the development of SHM technology.
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Chapter 1

An Introduction to Structural

Health Monitoring

Structural Health Monitoring (SHM) is, in short, any automated monitoring practice

that seeks to assess the condition or health of a structure. Its beginnings as an area

of interest to engineers can be traced back as far as the time when tap-testing for

fault detection became common, although the field didn’t really become established

in research communities until the 1980s, when much interest was generated in the

structural condition of oil rigs, and later in aerospace structures and their health

[1]. Nowadays, SHM is a popular and still growing research field, which is more and

more becoming a focus of the civil infrastructure community.

This chapter aims to provide a general overview of SHM. The potential benefits of a

comprehensive SHM campaign will be outlined, before discussing the common issues

arising when attempting to create/implement such a system.

1.1 The aims of SHM

The ideal that SHM strives towards is to be able to monitor a structure in such a

way that any damage introduced, or any growth of inherent faults, would be imme-

diately detectable. Further to this, the aim is that, after detection, any fault could

be located and its severity inferred so that decisions can be easily made as to ac-

tions necessary (e.g. immediate halt to use of the structure, immediate repair, etc.).

1



1.1. THE AIMS OF SHM 2

These global objectives for SHM have been well formalised in Rytter’s hierarchy [2],

which classifies these aims into ‘levels’ of increasing difficulty. These levels can be

summarised as follows:

• Level One - Detection: automatic detection of damage to the system/structure

• Level Two - Localisation: automatic determination of where damage has oc-

curred in the system/structure

• Level Three - Quantification: automatic assessment of damage type and sever-

ity

• Level Four - Prognosis: prediction of the remaining useful life in the structure

or specific component.

Although a number of changes and additions to this hierarchy have been suggested

in the literature [3], these levels continue to provide a good basic summary of the

fundamental aims of any SHM system, although, of course, without reference to how

one might go about them.

1.1.1 Potential benefits of SHM

With regards to the advantages of any system able to fulfil the global objectives

of SHM, the first and most obvious benefit is increased human safety, indeed, un-

surprisingly much of the research in this field has been motivated by disasters such

as bridge collapses and aeroplane crashes, where many lives have been lost (see [4],

for example, for more details). Even at the lowest level of SHM - a detection of

damage or degradation of structural condition could be hugely beneficial if used to

provide an early warning that a structure may be unsafe. Additionally, with an

automated detection system using non-visual assessment, any areas of a structure

that are difficult or impossible to access, that otherwise may have been neglected in

a visual inspection, can be assessed.

Other arising benefits will come from the regime change that comprehensive SHM

could bring about. Currently civil and aerospace structures undergo routine inspec-

tion and maintenance at specific time intervals, for example bridge inspections in the

USA are scheduled every two years [4], and commercial aircraft undergo a thorough

inspection after a given number of flight hours/cycles. A time based approach to
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management of structural assets such as this, firstly, has the implication that any

unexpected faults occurring in between scheduled inspections may go un-noted and

cause danger to life, or cause unnecessary stress on other structural components. In-

versely, the set time scales for inspections may be overly conservative; if a structure

continues to be in good health, the costs of thorough inspections could essentially

have been saved. In the case of routine maintenance, where structural components

may be replaced even if they are in excellent condition, the economic impact may be

even greater. SHM has the ability to address both sides of this issue, as monitoring

has the potential to become continual, and maintenance and repair could become

condition-based. A switch to condition-based maintenance could also reduce the

downtime a structure may undergo for routine and emergency maintenance, which,

in turn, would be of economic and environmental benefit.

1.1.2 Disambiguation; SHM and similar areas of research

There are a number of research fields very closely related to SHM, which can be

seen, depending on one’s point of view, as either overlapping with, or perhaps even

encompassed within SHM. For disambiguation, it seems sensible to discuss them

shortly here, a more detailed discussion can be found in [3]. Although tap-testing

was mentioned above as marking the beginnings of SHM, the example really be-

longs to the field of Non-Destructive Testing (NDT) or Non-Destructive Evaluation

(NDE). NDE or NDT concerns the assessment of a structure or component’s health

through (offline) non-damaging procedures. Examples of tools commonly used for

NDE are X-ray, electron microscopy, measurement of acoustic emissions and full

scale vibration tests. Although all of these techniques may be used for SHM pur-

poses, NDEs currently most commonly occur as one-off planned events, often applied

to a small area of a structure where damage is suspected to have occurred. This is

a different approach to SHM where monitoring aims to be continuous and global.

In the future, it is likely that NDE inspection will form the basis for distinguishing

between health and performance anomalies for civil infrastructure where this can-

not be accomplished automatically. It is therefore true to say that NDE may be

incorporated as part of an SHM system, but not vice-versa.

Another field related to SHM is Condition Monitoring. Condition monitoring largely

concerns the health of rotating machinery; it has seen many successes and has been,

in some areas, accepted as part of every day practice by industry [5]. Its commercial
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success relative to SHM can be attributed to a number of factors that simplify the

monitoring process: the machinery operate in a controlled environment, it is usually

easy to access and is typically on a small scale. Importantly, rotating machinery have

been found to exhibit well defined dynamic responses for particular fault categories,

which makes fault detection and identification a more easily attainable goal than it

perhaps is for SHM [6].

It should be noted here that one thing SHM is not is monitoring. Simple collection

of data does not constitute SHM, however complex and comprehensive the sensor

network is. It is true to say that the current trend for civil infrastructure is to

configure as many sensors as possible on a single structure, indeed state of the

art monitoring campaigns nowadays plan to employ in the number of thousands of

sensors [7]. If such sensor networks stream data continuously, the amount of data

stored is huge; however, this is of no value unless performance or health knowledge

is extracted, and this is, unfortunately, far from the norm.

1.2 SHM in practice

The many benefits of SHM come hand in hand with many challenges that must be

overcome. The fundamental problem at the heart of SHM is that of how a measure

of structural condition can be gained from an automated process. No sensor can

measure damage directly [8] and so this fundamental problem breaks down into a

number of separate issues; what can be measured that correlates to damage, how to

measure it and, importantly, how to use the raw measurements to make inferences

and decisions about structural condition. Finally, before an SHM system can be

relied upon, it must be proven to work, and issues such as how to cope with sensor

failures, for example, must be addressed. In the following, each of these issues is

addressed separately. As an introduction to SHM, this chapter certainly does not

aim be exhaustive, instead for a comprehensive review of practices in SHM readers

are referred to [1, 9, 10].

1.2.1 Instrumentation for SHM

The first questions asked of any planned implementation of SHM, as alluded to in

the paragraph above, are what is the most useful thing that can be measured for
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structural assessment purposes, and how can one best measure it? This is part of

the operational evaluation stage in the four-stage implementation of SHM discussed

in [8].

The most common measurements sought by far in SHM are of the dynamic response

of a structure. Dynamic responses contain information about the mass, stiffness

and damping of a structure, all of which could feasibly change with the onset or

progression of damage, hence the interest in these measurements. Measurement

of acceleration is perhaps the most common in SHM and is used for structures

and components of all sizes. Measurements of strain are also very common, but

are currently most regularly used for small scale structures/components and for

composite materials. Strain measurements also find good employment in usage

monitoring, where load cycles are counted [11, 12].

A dominating issue when considering the dynamic response of a structure is that

many common practices developed for SHM, such as modal analysis, for example,

rely on knowledge of the excitation source. Structures in the real world experience

excitation from operational conditions which, in practice, cannot be measured, such

as the excitation experienced by a bridge from traffic passing over it. In these

circumstances, an assumption as to the properties of an excitation source must be

made [13, 14]. In other circumstances, artificial excitation that can be measured

is introduced, with a hammer, a shaker or an electrical pulse, for example [15].

As knowledge of an excitation source is desirable, much research effort is currently

focused on sensor systems that can provide their own measurable excitation source

[16]. One particular area of interest where this is relevant is the use of higher

frequency guided waves for damage assessment [17]. Guided waves have mainly been

used for the detection of damage in plates and pipes, and are therefore arguably of

most interest to the aerospace and process industries, although recently a growing

interest in SHM for wind turbines has led research into guided waves in that direction

as well [18].

Some other measurements that have been found useful for SHM are measurement of

acoustic emissions which occur with damage initiation and progression (for example,

this has been investigated for monitoring individual cable snapping in the main

cables of suspension bridges [19]), and measurement of electrical impedance, which

has been found to correspond to the mass, stiffness and damping properties of a

structure [20].
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One of the largest concerns in SHM is how to obtain the measurements that will be

most useful; research into suitable instrumentation for SHM probably attracts more

interest in the community than any other single topic. A complete SHM monitoring

system will more than likely require a large number of sensors of differing types in

order to monitor all components and be able to identify different damage scenarios.

If suitable sensors are available, a number of important questions must be addressed

for a useful (or ideally optimal) monitoring system, these include; where sensors are

best placed, how many are needed, how they can be powered, where an excitation

source will come from and how data will be transmitted.

Most monitoring systems in place now, especially on civil infrastructure, use wired

sensors, both for a power source and for data transferral. For numerous reasons,

however, using wired sensors for monitoring structures outside the laboratory proves

to be difficult; the amount of wiring necessary to instrument whole structures quickly

becomes infeasible for large scale structures, further to this, the addition of a large

amount of wires is often very unappealing to operators (due to, for example, the

extra weight or the increased lightning conductivity that a network of wires may in-

troduce). For these reasons, wireless sensing has become a popular topic of research

over the last few years, and is seen by some within the community as the future for

SHM [4].

Sensing wirelessly naturally introduces a new set of problems to address, the most

pressing of which are how to power the sensor and data telemetry. To overcome some

of the powering and telemetry issues, it is thought that some on-board processing of

data at the sensor before transmission would be of great benefit [21]. Self-powering

sensors (energy harvesting) are also an emerging field of interest [22], as well as

other novel techniques for power and data transferral, such as the use of remotely

controlled vehicles [23].

An additional monitoring issue that has more recently arisen, concerns the manage-

ment of large amounts of data collected by a monitoring system. Nowadays, many

monitoring campaigns, especially for civil infrastructure, involve dense sensor arrays

from which terabytes of data are collected [7, 24]. Consequently the development of

systems for storage of, and importantly, access to large amounts of data has become

important. Aside from all the necessary signal processing inherent in monitoring

campaigns, efficient management of data is essential for a successful SHM system.
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1.2.2 Assessment of structural condition from measurements

The question of how to infer structural condition from different measurements is

at the heart of SHM. Once measurements with some correlation with damage have

been obtained, the process for arriving at a judgement on structural condition can

be divided between two major tasks. The manipulation of measurements from a

structure in order to create a usable variable that can give an indication of structural

condition is often named feature extraction, this forms the first major task. The use

of extracted features to make decisions (such as damaged or not damaged) is the

second major challenge that must be faced, and one which has been identified by

many as a problem in statistical pattern recognition [25].

Feature Extraction

As previously stated, no sensor is available that can measure any type of damage

directly, instead measurements can at best be correlated with the damage type one

is interested in. A raw measurement is also unlikely to be directly useful for damage

detection and assessment; on a practical level this is simply often because a raw

measurement provides too much data/information than is feasible to work with

(high dimensionality), and can also often be difficult to interpret. Often the pattern

recognition techniques that are used to infer structural condition from data can only

work well in a low dimension. For these reasons, feature extraction is used to create

useful metrics from raw measurements which are often of a lower dimension than the

raw data. Simple features that can be extracted from raw measurements include,

for example, statistics from a signal such as the mean and variance. Where the aim

of feature extraction is purely to reduce the dimension of measurements, approaches

such as principal component analysis can be used, which acts to transform data in

such a way that redundancy is simple to identify and remove. Many other feature

extraction methods rely on working in the frequency domain of a signal provided

through use of a Fourier transform [26]. In the frequency domain, the spectrum

of a signal is particularly useful as it is often of low dimension and can be easily

interpreted.

Damage sensitive features in the form of modal properties extracted from accel-

eration measurements are probably the most frequently occurring features used in

SHM. These include, but are not limited to, natural frequencies, mode shapes, and
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mode shape curvatures. The modal approach is attractive due to the interpretability

of the features and additionally the fact that typically only a low number of sensors

is required in order to extract these features. An important point to consider, how-

ever, is that modal features are global indicators for structural condition, meaning

that any inference on condition applies to the whole structure. Because of this fact,

and the fact that modal analysis can be carried out with a small number of sensors

and therefore with relatively little trouble, these approaches have been found useful

for the provision of a good one-off general assessment of a structure [27]. The well

known disadvantage, however, associated with modal properties is that they have

been found to be insensitive to structural degradation on a local scale [1].

Other approaches to feature extraction seek to fit measurements to mathematical

models or functions (other than the Fourier transform) and use parameters from

these models as features. A common example of this is fitting an ARMA type model

to measurement data and using the model coefficients as features [28]. Another way

in which fitting models to raw data can be used as a feature extraction methodology,

is to use the residual error of a predictive model as a feature [28]. For more details

on feature extraction and selection see [26].

It is useful to note that where any measurement data are fitted to a model in this

way, (including for modal analysis), this may be referred to as system identification,

a topic on which a wealth of research has been conducted (see for example [29]).

Where output-only modal analysis is concerned, a growing area of interest is in the

use of stochastic subspace identification [30]. System identification for nonstationary

random vibration is also a growing area of interest (see [31, 32]).

Pattern Recognition for inference on structural condition from features

Once a particular feature has been extracted from raw measurements, a decision

process is needed to infer structural condition from this feature. As previously

mentioned, this is essentially a problem in pattern recognition, where a feature

will be classified according to whether it has arisen from a damaged or undamaged

structure. At higher levels of SHM, a feature will be classified as to the location,

type and severity of the damage, if present. Pattern recognition in this form relies

on one of two different approaches, the first is a supervised learning approach, the

second relies on novelty detection [3].
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Supervised learning for SHM is any procedure for the classification of a feature which

is informed with data from all states of interest. In terms of the lowest level of Ryt-

ter’s hierarchy this simply means that data must be available from the damaged and

undamaged state of a structure. Techniques that use supervised learning can include

all algorithms capable of classification, such as neural networks, support vector ma-

chines and Gaussian processes [26]. A supervised learning approach is considered to

be necessary where identification of different damage types and locations is required

[8]. Unfortunately, data collected from the damaged state of a structure is rarely

available (let alone data from multiple damage scenarios), as, naturally, introduc-

ing damage to a structure to inform an SHM decision process is not an acceptable

option. In cases where supervised learning is necessary, future advancements in the

field may rely on physics based, or high fidelity models that can accurately simulate

the response of a structure in a damaged state. It is possible that physical proxies

for damage can also be found [33].

Indeed, research into the use of high fidelity models (i.e. finite element) for SHM

is popular. Model updating is used as a tool for inference on structural condition

which, in simple terms, is the use of measurements from a real structure to update

a physics based model, which can then be used, via an inverse problem, to predict

the current state of the structure. Research into model updating approaches is

reviewed comprehensively in [34]. Such approaches are philosophically different to

the data-based approaches that will be employed in this thesis.

Novelty detection algorithms are required when data from the damaged condition of

a structure are not available (which is most often the case). A decision process reliant

on novelty detection will aim to define a baseline, with data from the undamaged

condition of a structure, that represents the normal response of the structure in its

undamaged condition. An abnormal response is then detected by any significant

departure from this baseline. Common examples of techniques for novelty detection

include outlier analysis and the use of statistical process control charts, both of which

rely on the selection of a threshold which, if crossed, signifies that a structure is not

responding in a normal way [35]. A disadvantage of novelty detection approaches

is the unavoidable fact that an indication that a structure has departed from its

normal condition is uninformative as to what may have caused this departure. In

this case, further investigation after a novel response has been detected will be

necessary in order to eliminate the possibility that change has occurred for a benign

reason e.g. because of a temperature change. However, in the author’s opinion,
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novelty detection must be considered for successful SHM, at least at the lowest level

of SHM, simply due to the fact that a supervised learning approach is limited to

scenarios that can be anticipated, or have occurred before and for which data are

available. Novelty detection must be incorporated into any comprehensive SHM

system to safe guard against unforeseen circumstances (Black Swan events [36]), an

indication that a structure is responding in a abnormal way can then be investigated

further.

The pattern recognition problem as a whole is further complicated by the fact that

many features undergo variability caused by operational and environmental con-

ditions (as alluded to above), which must also be accounted for by the inference

procedure [37]. The influence of environmental and operational variation can make

classification problems in supervised learning very complex, as the data may become

separable in a large number of ways according to different operating conditions. Nov-

elty detection is also compromised if external conditions produce a novel structural

response from an undamaged structure. How this problem may be overcome is the

focus of the remainder of this thesis, and will be introduced more comprehensively

in the next chapter.

1.3 Conclusions

The ideals and aims of SHM have been discussed in this introductory chapter along

with some of the common practice of those attempting to implement it. Although

SHM as a field of research could now be considered mature, the fact that the de-

veloped technology has seen little success to date for real world applications, is

indicative of the huge challenges that are faced. Of these challenges, the largest ap-

pear to be the development of sensing technology capable of detecting critical fault

types and how technology developed in the laboratory can be applicable to struc-

tures in operation. This thesis generally concerns the latter, and undertakes what

is considered to be a major problem when attempting to apply SHM technology

outside of laboratory conditions, which is how to deal with the often confounding

influence of changing environmental and operational conditions.



Chapter 2

SHM in changing environmental

and operational conditions

This chapter introduces how the influence of changing environmental and operational

conditions can be problematic when attempting to infer structural condition from

monitoring data. Firstly, the motivation for this research is set out, the chapter

also gives an outline of others’ approaches for dealing with the effects of a changing

environment on SHM features. Finally, the layout of this thesis is summarised.

2.1 Motivation

Over the last few years, there has been an increasing trend in the civil and struc-

tural engineering community of instrumenting dense sensor networks on structures

for SHM purposes. Such sensor networks commonly stream measurement data con-

tinuously, collecting and storing a huge amount of information on a daily basis [7].

Although this is an encouraging trend for SHM, very often it seems that little is

done with the data collected. In some ways, this is indicative of the early stage that

research into comprehensive monitoring for SHM is at. For many monitoring cam-

paigns the means to carry out reliable system identification are still being sought, as

an example, GPS technology is being trialled in many bridge monitoring campaigns

(see [38] for a good example of typical investigations currently under way).

The work covered in this thesis is funded by EPSRC, and a principal aim of the

11
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funded project was to make the first steps towards utilising data from comprehensive

monitoring campaigns of bridges, specifically cable-stayed bridges, for SHM. The

research detailed in this thesis was carried out in collaboration with the Vibration

Engineering Section (VES) in the Department of Civil and Structural Engineering

at the University of Sheffield, who currently monitor a wide range of structures

including three cable-stayed bridges. The overall aim of the collaborative research

was to develop sensible ways to access the large amounts of data measured in these

campaigns and discover the most helpful ways this data could be used. Within

the remit of this project, the aim of the author’s work is to address the effects of

changing environmental and operational conditions on the measured responses of

these structures.

One of the most comprehensive of the VES monitoring campaigns to date is un-

doubtedly that of the Tamar Bridge in Southwest England [39]. A milestone of

this research will be to gain a greater understanding of the effects of changing op-

erational and environmental conditions on the measured response of this structure.

The second challenge is then to develop ways to account for the effects of the vary-

ing environment so that reliable information on structural condition can be inferred

from the measured response variables. In the following, a short overview of the issue

of environmental and operational variations in SHM will be given, before an outline

of the remainder of this thesis is made.

2.2 The problem of changing environmental and

operational conditions for SHM

As previously alluded to, the effect of changing environmental and operational con-

ditions on a structure is an important issue in SHM, and has been identified a key

concern to the research community [40]. This interest arises from the inconvenient

fact that measured responses from a structure that demonstrate sensitivity to dam-

age or structural degredation, will, in general, also exhibit sensitivity to any change

in operational and environmental conditions [8]. This is especially relevant in the

context of civil monitoring campaigns, where typically, for a structure in opera-

tion, all measured structural responses are subject to daily and seasonal variations

induced by (amongst others) temperature, wind loading and operational loading

(such as traffic loading for bridges). Such structures will often exhibit inherently
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nonstationary dynamic and quasi-static responses which can mask any changes in

structural response that would be indicative of the occurrence or progression of

damage, or of a change that could signify a performance anomaly. In these cases

the effects of the environmental and operational variation must be accounted for in

some way before a reliable measure of structural condition can be inferred. This

confounding influence of environmental and operational conditions is, in fact, con-

sidered as one of the main inhibiting factors slowing the uptake of SHM by industry.

The problem is often referred to as the data normalisation problem [37].

In the SHM literature, undoubtedly the most commonly occurring discussion of

the confounding influence of environmental and operational conditions on damage

sensitive features arises from the sensitivity of structural response to temperature.

For bridges, temperature is generally considered to be a dominant environmental

factor affecting the normal dynamic response, due to its effect on the stiffness of

structural components, and also its potential effect on the boundary conditions of

a structure (for instance from the freezing of foundations etc.). Historically, many

previous studies have found fluctuations in modal frequency to be correlated with

ambient temperature, although different mechanisms have been used to explain this,

see for example [15, 41–43]. Cornwell et al. [42] suggested that the thermal gradient

across the deck of the Alamosa canyon bridge drives the observed fluctuations in

modal frequency. In colder climates significant shifts in frequency between above

and below freezing temperatures have been attributed to an increase in stiffness

explained by the Young’s modulus of the asphalt on the deck at colder temperatures

[15]. In this case, the modal frequencies of a bridge deck were observed to have a

bi-linear relationship with temperature. A similar behaviour has also been observed

in a steel truss foot bridge in the US [44].

Besides temperature, the importance of other operational conditions have also been

considered for bridge structures. A dominating topic of research that must be men-

tioned here is on unstable bridge response to wind conditions, which has been a

major concern for long span bridges since the collapse of the Tacoma Narrows bridge

in 1940. A large body of research has been undertaken to better understand the

interaction between wind and phenomena such as buffeting and flutter of bridge

structures (see for example [45, 46]). Generally the aim of work in this field is to

ensure that new bridge designs are safe and to monitor structures during construc-

tion and in early life to ensure that design criteria to avoid self excited and wind

induced oscillation have been met.
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More in the context of this thesis, where problems with unstable responses of such

structures are not addressed, are the monitorable correlations between damage sensi-

tive features and environmental/operational conditions. In this context the response

of a long span bridge to high and low wind speeds was investigated in [47], where it

was concluded that the modal frequencies of the structure decreased with increased

response amplitude levels directly caused by increased wind speed. The effect of

humidity alongside temperature has also been studied. In [48], the effect of hu-

midity and temperature on the modal parameters of a reinforced concrete slab are

investigated, where it is reported that increased humidity effectively adds mass to

a structure, and has a strong negative correlation with modal frequency. The effect

of traffic loading has also been addressed in [49], where, for long span bridges, the

influence of traffic loading on the structure’s frequency was considered negligible

due to the fact that the mass of a single vehicle is very small in comparison to the

mass of the ‘superstructure’. In a separate study, however, the modal frequencies

of a cable stayed bridge were found to vary up to one percent a day due to traffic

loading [50].

A review of the relevant literature reveals a number of potential options already

explored for dealing with the problem of operational or environmentally induced

variations in structural response. Perhaps the most common approach has been to

attempt to model the monitored parameters or damage sensitive features in ques-

tion with respect to those environmental/operational factors considered to be driving

its/their variation [15, 44, 51–58]. If a model can predict the value of a damage sensi-

tive feature given the conditions affecting it, the error of the model could be suitable

as a robust indicator of structural condition. Often these approaches have employed

a simple regression of the damage sensitive feature (normally natural frequencies)

onto measured structural temperature [15, 44, 52–54, 58]. More complex approaches

for regression have also been explored [55–57], where modal parameters of the Ting

Kau bridge, Hong Kong, have been regressed onto measured temperature using sup-

port vector machines, principal component analysis and neural networks. In a very

similar vein, tracking the correlation between the measured strain of a harbour wall

and temperature has been explored in [51].

With such approaches, the main limiting factor is that the changing environmental

and operational conditions have to be identified and accurately measured. While

this may be feasible where only one or two environmental or operational factors are

important, such as temperature, where multiple factors affect the features of interest



2.2. THE PROBLEM OF CHANGING ENVIRONMENTAL AND
OPERATIONAL CONDITIONS FOR SHM 15

a substantial monitoring campaign will then become necessary.

A very different approach to others in the literature, suggested in [59], is to incor-

porate temperature compensation directly into the structural identification step. In

this case an analytical expression for the effect of temperature on a structure is in-

corporated into an algorithm for the identification of modal parameters. So far, only

the effect of temperature has been considered and the methodology only trialled in

simulation.

On the topic of addressing this problem during a system identification procedure, as

mentioned in the introductory chapter, research into the modelling of nonstationary

random vibration is a growing area of interest. Models with time varying parame-

ters have been employed that can account for signal nonstationarity (although not

necessarily induced by environmental and operational variations) [32, 60]. Where

employed such models could provide a more straightforward means of inference on

the condition of structures in operation.

Other approaches, where perhaps measurements of the environmental/operational

conditions are not available have also been explored. A simple potential solution to

the problem is to use a long span of response data to define the normal condition of

a system, an idea explored in [61], this could be, for example, data collected over a

whole year where all ranges of environmental/operational conditions have occurred.

New measurements may then be compared in some way with the defined normal

condition. Evidently this approach requires storage of a large amount of data, and

a further drawback is that using a large normal condition set may reduce feature

sensitivity to damage [58].

A number of other studies employ what may be described as latent variable models

[62], which, without measurement of the changing environment, attempt to capture

the variation in the feature data caused by it. Principal component analysis (PCA)

has been used in a number of studies to re-express multivariate SHM feature data

with a new set of orthogonal coordinate axes [63, 64]. These axes (called principal

components) are linear combinations of the original coordinate axes ordered accord-

ing to the amount of variance in the data each axis accounts for (see Chapter 4 for

more details). The assumption employed in these studies is that the high variance

signatures of changes induced by environmental and operational conditions in SHM

features will be trapped in the higher principal components. In [63], this assumption

is exploited by discarding the higher variance principal components and projecting
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temperature dependent data onto the minor components which constitute a temper-

ature independent feature set. In [64], only the higher variance principal components

are retained and used as a model to predict/reconstruct the feature data. In a sim-

ilar way as described above for regression, the ‘model’ error is then used to indicate

an abnormal response. This idea of linear projection and trapping of environmental

variation was also independently proposed through the use of Factor Analysis (FA),

which is a very similar algorithm to PCA [65, 66].

Although such approaches appear to be promising solutions to the data normalisa-

tion problem, it has been shown that nonlinearity can hamper the effectiveness of

employing PCA and similar algorithms. In [67], a remedy to problems introduced

by nonlinearity was to cluster feature data into several (linear) regions and then

employ PCA separately to each region. An auto-associative neural network, which

may be said to be equivalent to nonlinear PCA, is used in [68] for data normalisa-

tion of features extracted from an auto-regressive type model. An auto-associative

neural network (nonlinearly) maps its inputs onto themselves. The premise of us-

ing them for data normalisation is that if the network is trained on data from an

undamaged structural condition, it will learn the effect of latent variation on the

features inputted to the network. It is then expected that the network error will

increase if damage occurs. In [69, 70] nonlinear PCA, achieved through a kernel

based algorithm, is used in a different way. The nonlinear principal components are

calculated for a set of data, the individual mapping for each data point is then consid-

ered. Data points with similar mappings (measured by Euclidean distance), which

presumably come from similar environmental/operational conditions, are compared

with each other, abnormal response is then detected if a single measurement can be

considered as an outlier to this cluster.

Along similar lines, a new approach for data normalisation has recently emerged,

where, for multiple sensor arrays, Gaussian process (GP) regression is used to predict

the measurement of each single sensor from the measurements of all other sensors

in the network [62]. Given suitable training data from different environmental and

operational conditions, the GP should be able to accurately predict structural re-

sponse at each sensor if the structure continues to operate in similar way as in the

period where the training data was recorded. In a similar way to the regression tech-

niques, the GP regression model error is used as an indicator of abnormal structural

response.

Singular value decomposition (SVD) has also been explored as a potential way to
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detect damage from structural responses under the influence of these confounding

trends [71, 72]. When using an SVD for this purpose, the general assumption that is

made is that environmental and operational conditions will produce a global change

in the structure (to the stiffness or mass for example) and that damage will only

produce a local change. When studying natural frequencies, this assumption im-

plies that environmental and operationally induced changes in structural response

will be linear in nature, whilst changes induced by damage will be nonlinear [72].

If this assumption holds true, an SVD can be used to determine the effective rank

of a matrix of response measurements from an undamaged structure. When new

measurements are added to this matrix, if the effective rank increases, a nonlinear

change of the damage sensitive feature can be inferred which then implies that dam-

age has occurred. Under a similar assumption, in very recent work [73, 74], a state

space representation of response data is considered. A state space reconstruction is

used for the prediction of the state of a structure in a healthy condition, which as

in other approaches, will fail to predict new states well if an abnormality occurs (in

this case if the structure responds in a nonlinear manner).

Despite the sophistication of some of the solutions to the data normalisation problem

summarised here, this area of research can still be considered as exploratory. The

vast majority of the studies cited here only consider (and attempt to account for)

the effect of temperature on structural response. Furthermore, although the use of

latent variable models seems like a very promising solution, none have been compre-

hensively trialled, and can still be considered as under development. In this thesis,

the effect of multiple environmental and operational conditions will be considered,

and a new approach for data normalisation suggested.

2.3 Scope of this thesis

This thesis will address the data normalisation problem in the context of data col-

lected, mainly, from bridge monitoring campaigns. A large part of the work will be

based on data collected by the Vibration Engineering Section at the University of

Sheffield from the Tamar suspension bridge located in South West England. A major

aim of this work is to begin to develop diagnostic tools that could be used to indicate

the condition or performance of this structure, which is, of course, subject to chang-

ing environmental and operational conditions. In order to achieve this, the first
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task is to understand how the varying environment affects the measured responses

of the bridge, in other words to understand what constitutes the ‘normal condition’

of the structure. With a sound understanding of this gained, ways to account for

environmentally induced trends that may obscure any indication of degradation in

a structure’s conditions can be attempted. The second half of this thesis is devoted

to the development of a new way to remove trends induced by environmental and

operational conditions from damage sensitive data. This new approach is based on

the idea of cointegration which originates in the field of econometrics.

2.3.1 Brief outline of thesis

• Chapter 3 introduces the Tamar bridge and VES monitoring campaign. Details

are given of the data available for analysis in this work.

• Chapter 4 explores how one can define what constitutes the ‘normal condition’

of a structure. The main drivers of the variation in modal frequency of the

Tamar bridge are investigated.

• Chapter 5 builds on the findings of Chapter 4 in order to create features for

monitoring the structural condition of the Tamar bridge. Regression models

are used to predict the modal frequency variation and displacement of the

deck.

• Chapter 6 introduces the concept of cointegration, theory from the field of

econometrics, and how it can be used to remove environmental and operational

trends from damage sensitive features.

• Chapter 7 demonstrates the application of cointegration for the data nor-

malisation problem using data from the Tamar monitoring campaign. The

implications of using econometric theory for engineering applications is also

discussed.

• Chapter 8 applies the developed cointegration theory to a benchmark study

involving Lamb-wave propagation for detecting damage in a composite plate.

A comparison is made with the PCA approach applied in [63].

• Chapter 9 begins investigations into nonlinear cointegration, for problems

where damage sensitive features are nonlinearly related.
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• Chapter 10 concludes the thesis. Future work is discussed.



Chapter 3

The Tamar Bridge

A large part of the work carried out in this thesis will be based on data collected from

the Tamar Suspension Bridge which is located in South West England. The bridge is

monitored by the Vibration Engineering Section (VES), in the Department of Civil

and Structural Engineering at the University of Sheffield. The EPSRC grant that

funds this research brings the author and colleagues together with VES to work with

the data collected from this monitoring campaign. Some background information

about the bridge will be given in this chapter along with details of the monitoring

campaign before any analysis of the available data is attempted. Although the

author has been given access to all data from the Tamar Bridge, it must be noted

that she took no part in the measurement and processing of the available data, all

credit for this must be given to the members of VES.

3.1 The Tamar Bridge and some of its history

The Tamar Bridge (Figure 3.1) has been a vital transport link over the River Tamar

carrying the A38 trunk road from Saltash in Cornwall to the city of Plymouth

in Devon since its construction in 1961. The original bridge was designed as a

conventional suspension bridge with symmetrical geometry, having a main span of

335 metres and side spans of 114 metres. With anchorage and approach spans,

the overall length of the bridge reaches 643 metres. The towers are constructed

from reinforced concrete, and have a height of 73 metres with the deck suspended

20
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Figure 3.1: The Tamar Suspension Bridge

at half this height. The towers sit on caisson foundations founded on rock. The

main suspension cables are 350mm in diameter, each consist of 31 locked-coil wire

ropes and carry vertical locked-coil hangers at 9.1m intervals. The main cables are

splayed at anchorages and anchored some 17 metres into rock. The truss is 5.5

metres deep and composed of welded hollow steel boxes. The original three-lane

deck, spanning between cross trusses, was of composite construction with a 150mm

deep reinforced concrete slab on five longitudinal universal beams and surfaced with

40mm of hand-laid mastic asphalt.

3.1.1 Upgrade

When opened in 1961 Tamar Bridge was, for a short time, the longest suspension

bridge in the UK and was also the first to be built after the end of World War

II. In the late 1990s, after nearly four decades of use, it was found that the bridge

would not be able to meet a new European Union directive that bridges should

be capable of carrying lorries up to 40 tonnes in weight. Since restricting use by

such vehicles would damage the local economy, the bridge was strengthened and

widened. After considering a number of options, the appointed consultant (Hyder)

proposed replacement of the main deck with a lightweight orthotropic steel deck,

with construction of temporary relief lanes cantilevered either side of the bridge

truss. These lanes were originally intended to act as a supplementary diversion

route while the main deck was being replaced but were finally adopted as part of
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(a) Below deck view (b) Birds-eye view

Figure 3.2: Cantilever lanes added in the upgrade to the Tamar Bridge

the permanent solution.

Pairs of prefabricated orthotropic panels, each typically 15m long and 3m wide were

welded longitudinally to form the 6m wide cantilever sections, also surfaced with

hand-laid mastic asphalt. As proposed, a new light-weight orthotropic steel deck

replaced the original three lane composite deck slab. Eighteen new locked-coil cables

were installed and stressed to supplement the original suspension system, primarily

to help carry the additional dead load of the new cantilever lanes and associated

temporary works (Figure 3.2).

In summary, approximately 2,800 tonnes of structural steel was added together with

125 tonnes of cables; however, when offset by the removal of the old main deck, the

final weight of the suspended structure rose by just 25 tonnes to 7,925 tonnes. The

deck replacement process was completed in December 2001 and the bridge now car-

ries about 50,000 vehicles per day. This upgrade gave rise to interest in the bridge

performance, and various sensor systems have been installed to measure parameters

such as tensions on the additional stays, wind velocity and structural temperature.

As the bridge displacement information is essential for assessing performance, sur-

veys of the bridge deflection profile have been carried out periodically and a hydraulic

levelling system has also been installed to monitor vertical deflections of the main

span.
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3.2 Monitoring the Tamar Bridge

Currently three monitoring systems are in place and running at the Tamar Bridge.

The first is a Structural Monitoring System (SMS) installed by Fugro Structural

Monitoring, which is used to monitor cable loads, structural and environmental

temperatures and wind speed and profile. This system was installed during the

upgrade to provide information on the performance and condition of the bridge

during and after the strengthening and widening. The sensors used in the SMS

include:

• anemometers to measure wind speed and profile,

• a fluid pressure-based level sensing system to measure deck vertical displace-

ment,

• temperature sensors for the main cable, deck steelwork and air temperature,

• extensometers and resistance strain gauges to measure loads in additional ca-

bles.

An additional set of sensors was installed by the University of Sheffield (VES) in

2006 to monitor dynamic behaviour of the bridge deck and selected cables. Four

stay cables are instrumented, each with a pair of accelerometers: one oriented hori-

zontally and one in the vertical plane (an example of which is shown in Figure 3.3a).

As well as the eight cable accelerometers, three accelerometers are installed to mea-

sure acceleration of the deck, two of which are shown in Figure 3.3b. The Sheffield

system records 64Hz-sampled time series in files at 10-minute intervals. From the ac-

celerometers an automated system implemented by VES identifies modal parameters

every ten minutes using an output-only modal analysis [14] that relies on stochastic

subspace identification (SSI).

Stochastic subspace identification is commonly used when attempting output-only

modal analysis on structures in operation [75], it is thought to be one of the most

powerful identification techniques currently available for modal parameters [76]. Es-

timates of modal parameters are obtained via the identification of a discrete state-

space model where the (ambient) inputs to the system are assumed to be white noise.

The VES implementation of SSI is classified as a data-driven automated approach,

identification of the state space model is achieved by construction of a block Han-
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(a) Cable accelerometer (b) Vertical and horizontal
deck accelerometers

Figure 3.3: Accelerometers installed on the Tamar Bridge

kel matrix of measurement data and employment of numerical techniques such as

singular value decomposition and QR factorisation. For more details readers should

consult [30, 75–77], particularly [77], where examples of code for the implementation

of SSI routines are available. In this thesis, the natural frequency data extracted by

the SSI routine will be utilised, in particular, only the lowest five frequencies will be

studied. This limitation is due to the fact that the properties of the higher modes

cannot be estimated with as much fidelity.

The newest monitoring system introduced by VES is a total positioning system

(TPS) which uses a robotic total station (RTS) for precise three dimensional dis-

placement monitoring of the deck and towers, accurate to within 2 or 3mm. The

RTS, shown in Figure 3.4, was installed in September 2009 on the roof of the Tamar

Bridge office which sits close to the bridge on the Plymouth side bank of the river.

Fifteen reflectors (see Figure 3.5) have been installed around the bridge including

on the deck, main towers and side towers. Single static displacement measurements

from each of the 15 reflectors are repeated every 30 minutes, with each measurement

cycle taking about 10 minutes to cover all 15 reflectors.

A traffic count is also available from the toll gates that monitor the flow of traffic

in one direction (east-bound) across the bridge. The information available is the

number of vehicles passing the toll every hour, automatically classified into ten

different categories (from motorcycles up to 4-axle heavy goods vehicles with trailers,
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Figure 3.4: Robotic Total Station installed on the roof of the Tamar
Bridge office

Figure 3.5: Robotic Total Station reflectors installed on the bridge deck
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as listed in Table 3.1). For the work in this thesis, an estimate of the traffic loading

on the bridge at any one time is calculated from this traffic count in the following

way. Firstly, the average weight of vehicles in each of ten categories has been roughly

estimated, as recorded in Table 3.1 (informed by a government transport statistics

report [78]). Each vehicle count is multiplied by its respective estimated weight and

summed, this is then is multiplied by two to account for the fact that the traffic is

only monitored in one direction. Finally, to obtain an estimate of the instantaneous

load on the bridge, the summed load is divided by 45 which reflects the estimated

time it takes for a vehicle to cross the bridge.

Vehicle Category Estimated average mass (Kg)
Vehicles not picked up by Automatic Ve-
hicle Classification

0

Motorcycles 150
Cars, Trikes and PLG1 under 3.5 tonnes
(gross vehicle weight)

1500

2 axle HGVs 18000
3 axle HGVs 26000
4+ axle HGVs 32000
Cars with trailers 8250
2 axle HGVs with trailer 21000
3 axle HGVs with trailer 30000
4+ axle HGVs with trailer 36000

Table 3.1: Estimated vehicle weights used in this thesis.

3.2.1 Data Reliability

As described above the Tamar monitoring campaign provides a large amount of

data in various forms. The data made available for analysis in this thesis spans over

three years from 2007 to 2011 and provides ample opportunity for in-depth analysis.

Before measurements from any monitoring campaign can be analysed, however, it

is inevitable that some action will be needed to obtain a consistent and reliable

data set with which to work. Firstly, in any bank of historic data there will likely

be periods (short and long) where the monitoring system has failed, this may be

relating to power supply, telemetry or memory issues, amongst others. Further to

gaps in data caused by failure of the monitoring systems, missing individual data

points are also common for campaigns of this nature. Two examples of monitored

response that are prone to missing data points in the Tamar monitoring campaign



3.2. MONITORING THE TAMAR BRIDGE 27

are the extracted modal frequencies of the bridge deck and the deflections of the

bridge deck and towers as measured by the TPS. Occasional missing data points in

the modal frequency time histories originate from a mode misclassification by the

SSI routine. Missing data points in the TPS system are often caused by weather

conditions (cloud or fog) that obscure the reflectors that are used to make the

displacement measure. Aside from missing data, faulty sensors are also a common

problem that must be tackled.

The first task at hand when provided with a large data set is to assess the reliability

of each individual data channel, and to identify any long or short gaps. In this

work, all suspect data channels (those with anomalous drifts, dubious scale, etc.)

were excluded from the analysis that follows in this thesis. Any gaps in the data set

have also been identified, occasional missing data points have been replaced through

linear interpolation. Again it must be pointed out that the majority of the necessary

data/signal processing had been carried out by VES before the author accessed it.

3.2.2 Summary of data available from the Tamar Bridge

Table 3.2 provides a summary of the data available for analysis from the Tamar

monitoring campaign. The sampling rates and intervals vary for different measure-

ments, however, synchronised half hourly measurements made available by VES will

be used in any analysis in this thesis. Figure 3.6 also shows a schematic of the

bridge, provided by VES, with the location of each sensor marked.

As an example of some of the data available from this monitoring campaign, samples

of the measured cable tensions (of the stay cables added in the upgrade at six

locations) and structural temperature are plotted in Figures 3.7 and 3.8. Each cable

tension plotted is an average of the measured tension in the stay cables on either side

of the bridge at the locations listed in the legend (which correspond to the sensor

labels in Figure 3.6). Figure 3.9, then shows the correlation between cable tension

and structural temperature. From this figure, it is evident that cable tension is

correlated with temperature, as is to be expected. However, it is interesting to note

that most of the cable tensions are negatively correlated with temperature apart

from at two locations where the correlation is positive. These positive correlations

are with the stay cables attached at the Plymouth tower towards the centre of

the bridge. A simple explanation for these observations is that as the bridge deck
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expands with increased temperature, the expansion joint at the Saltash tower allows

the deck to move in westerly direction (towards Saltash), this increases the tension

in the stay cables attached to the Plymouth tower, and slackens the others.
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Measurement
description

Sensor
description

Number of
measurements
available

Units Sampling
Frequency
(Hz)

Cable tensions Extensometer &
resistive strain
gauges (Fugro)

34 kN 1

Deck level Fluid manome-
ter system (Fu-
gro)

20 mm 1

Displacement of
deck and towers

Total posi-
tioning system
(Leica)

45 m Half-hourly
(static)

Cable and deck
acceleration

Accelerometers
(Honeywell
QA750)

7 g 64

Traffic count Toll count 10 - Hourly cumula-
tive

Temperature
(ambient and
structural)

Resistance
thermometers
(Fugro)

22 ◦C 1

Humidity Hygrometer (Fu-
gro)

4 % 1

Wind speed and
direction

Anemometer
and vane (Vec-
tor Instruments)

7 mph 1

Table 3.2: Summary of available measurements from the Tamar Bridge.
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3.3 Conclusions

This chapter has introduced the comprehensive monitoring campaign of the Tamar

Bridge, which is led by the Vibration Engineering Section (VES) at the University

of Sheffield. The monitoring campaign provides a wealth of data that can now

be used to make the first steps towards using real monitoring data for SHM. This

bridge forms the main case study in this thesis. In the next chapter the data from

this campaign will be investigated in more depth and attempts will be made to

understand what constitutes a normal structural response in the face of changing

operational and environmental conditions.
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Figure 3.7: Average cable tensions at different locations
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Figure 3.9: Correlation between stay-cable tension and structural tem-
perature



Chapter 4

Defining the normal condition

for the Tamar Bridge

The current trend of collecting large amounts of data in the name of SHM from

civil structures cannot be constructive unless this data is utilised. As one of the

first projects where a concerted effort is being made to use monitoring data from a

large scale in-service structure for the development of helpful SHM strategies, the

first priority in this work is to understand a structure’s response in the context of

changing environmental and operational conditions.

At least three years of reliable monitoring data is now available from the Tamar

monitoring system, which provides a most unique opportunity for development of

a reliable SHM system. From this large database, the first task on the way to

developing an SHM system is to understand the structure’s normal condition, which

is to say, how the structure responds to normal variations in environmental and

operational conditions. For a successful SHM routine a sound understanding of all

mechanisms affecting a structure’s response is extremely beneficial.

This chapter specifically aims to study the effect of multiple environmental and

operational conditions on the dynamic response of the Tamar Bridge. If the dynamic

response of a structure is used for structural condition assessment, all variations

due to anything other than changes in the structure itself must be understood and

accounted for. If the environmental and loading effects can be accounted for and

filtered out to normalise response data, any changes in dynamic characteristics must

33
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signal some structural change, which could be a slow degradation (e.g. loss of cable

tension or reduction in member stiffness through corrosion) or some sudden change

such as a seized bearing or failure of a structural member. In the literature of

SHM, particularly for aerospace applications, these gradual or sudden changes are

collectively called ‘damage’, and the technology used to identify them from response

data is termed ‘damage detection’. Since proposing ‘damage detection’ technology

to a bridge operator or a structural engineering research proposal review is not a

winning approach, the term ‘structural performance anomaly’ is more appropriate

than ‘damage’ in this context.

For the purposes of data normalisation, the effects of temperature, traffic loading,

wind loading (and consequently deck acceleration) will be considered in the following

analysis. The study of traffic loading here is especially rare due to the fact that many

previous bridge monitoring campaigns have had to be conducted while the structure

was out of action.

Despite the fact that data spanning three years from the Tamar monitoring system

are available, there are, understandably, periods within these three years when the

monitoring system failed. In the following analysis data collected in 2007 and 2008

will be considered; this is principally because of a suspicion that the casings around

one of the sensors may have become waterlogged early in 2009, which may have

affected the response recording.

4.1 Dynamic response

As previously described, dynamic data for the Tamar Bridge is extracted from ac-

celerometer data using a data-driven SSI technique [30]. In this section the variation

of the first five modal frequencies of the deck with respect to temperature, wind speed

and traffic loading are investigated. Discussion of the potentially complex effects of

deck acceleration will follow in its own subsection, as it can itself be affected by

traffic and wind speed.

The simplest approach in determining an environmental or operational variable’s

impact or importance on the fluctuations of the modal frequencies of the bridge is

to plot each frequency with respect to those variables. Figure 4.1 shows the first

five modal frequencies of the deck plotted with respect to temperature, wind speed,
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and traffic loading, along with linear best fit lines which have been added as a

visualisation aid. In Figure 4.1 the lowest frequency trend corresponds to the first

vertical symmetric mode (denoted VS1), the second lowest corresponds to the first

lateral symmetric mode (LS1), the next to the first vertical anti-symmetric mode

(VA1), the second highest to the first lateral anti-symmetric mode and finally the

highest corresponds to the first anti-symmetric torsional mode (TA1).

For further visual clarification of the influence of each variable, a principal com-

ponent analysis (PCA) of the frequency data is carried out. Principal component

analysis takes a multivariate data set and projects it on to a new set of variables, or

‘principal components’, which are linear combinations of the old variables. Of these

new variables, the first principal component will account for the biggest proportion

of the variance in the data set that can be described by a single axis, the second

principal component will account for the second biggest proportion of the variance

in the data set independent of the first, and so on. If the original number of variables

is some number p, up to p new variables may be formed. Now, if the first n of these

principal components represent a significant amount of the variance, it is fair to say

that the data can be suitably represented solely by these n principal components

without loss of any real information. Principal component analysis, therefore, works

to reduce the dimensionality of the dataset, which can considerably ease analysis of

datasets of high dimensionality. PCA is commonly used for a wide variety of tasks,

here, the reduction of dimensionality of the data greatly aids visualisation of any

possible structure within the data. In this work, the data are transformed to have

a zero mean and unit standard deviation prior to analysis, throughout the thesis

this action will be referred to as normalisation. Specifically, for the uses of this

work the first two principal components of the frequency data are plotted, for the

data set considered (which spans the period of 16 months), the first two principal

components account for 78.6% of the variance in the data. Figure 4.2 shows the

first two principal components of the data plotted against each other with each of

the data points coloured according to whether they occurred at high, medium or

low temperatures, wind speeds and traffic loadings. For further information on PCA

readers are referred to any text book on multivariate analysis (a good example being

reference [79]).

Figure 4.1 demonstrates that each of the first five modal frequencies of the deck

have a tendency to decrease with increased temperature and increased traffic load-

ing. For the frequency that appears most sensitive to temperature (the second,
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Figure 4.1: Deck Modal Frequencies plotted with respect to traffic load-
ing, wind speed and temperature
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which corresponds to the first lateral symmetric mode), the frequency decreases by

approximately 4.5% over a 20◦C change in temperature. Similarly, the frequency

for the second mode changes by around 3.5% between periods of low and high traf-

fic. Figure 4.2 shows that the frequency data are uniquely distinguishable by both

temperature and traffic loading. This indicates that both temperature and traffic

loading have a separate but significant influence on how the frequencies vary.

The dependency of any modal frequency on wind speed is unclear from Figure 4.1.

Although it appears that generally frequencies are lower at very high wind speeds, no

clear conclusion can be drawn as the majority of the data occurs at low to moderate

wind speeds. Figure 4.2, however, demonstrates that the frequency data can be

sorted according to wind speed. High wind speeds have previously been found to

have an influence on the stable dynamic characteristics of long span bridges [47],

which is supported by the pattern shown in Figure 4.2. The effect of wind loading

on the bridge will be considered later on in the analysis in more detail, when the

effect of the deck acceleration is addressed.

In summary, Figures 4.1 and 4.2 indicate that temperature and traffic loading are

the dominant environmental and operational factors affecting the modal frequencies

of the deck, the PCA plots in Figure 4.2 also suggest that wind speeds may have

some influence. Despite the obvious mass increase that must arise from heavy traffic,

previously, little attention has been given to the effect of traffic loading on modal

parameters in this context. From toll counts and web cam images, the instantaneous

traffic loading on the bridge is estimated to increase by between 100 to 200 tonnes

during very busy periods, which occur around 8am on weekdays. For a fixed stiffness,

this change in mass would account for a 1.5-3% reduction of the modal frequencies,

which is consistent with the variation encountered in Figure 4.1. This is in direct

contrast to the conclusions drawn by Kim et al. [49], where traffic loads were not

found to influence the modal frequencies of a long-span bridge. It should, however,

be noted that the Tamar Bridge has to endure much larger traffic loads than those

considered in [49].

Having determined that traffic loading should indeed be important it remains to

separate out the effect of temperature from that of traffic loading. Figure 4.31

shows how a simple linear model with estimated traffic loading as its only input can

predict the frequency change of the first mode (VS1).

1‘Normalised’ here indicates that the time series has been standardised to have a zero mean
and unit standard deviation.
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Figure 4.3: Linear model of first deck modal frequency with traffic load-
ing input only

The model takes the form

ω1 = 0.099− 0.79× (traffic load) . (4.1)

This type of model is called a response surface model [80], the idea being originally

developed by Box and Wilson [81] for modelling chemical processes. Such models

are learned from data rather than established by using the underlying physics or

chemistry; they are essentially regression models of varying degrees of sophistication.

Response surface models are often used to learn the input-output relations from

large computer models in order to produce fast-running approximations for Monte

Carlo analysis; in this context they are called meta-models, surrogate models, fast-

running models or emulators. Response surface models will be utilised in this work

as a tool to better understand the interaction between normal structural response

and the varying environmental and operational conditions. Where employed, they

will all be low-order polynomials with the parameters established using simple least-

squares analysis. The usefulness of response surface models in this context arises

from their simplicity; in a simple regression model one can easily infer the importance

of an independent variable on a feature of interest. To aid the interpretation of the
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response surface models used in this thesis a measurement of model error will be

utilised, as well as classic t- and F - tests, which will be employed to clarify the

statistical significance of multiple parameters in the models. A short description of

these statistical tests will be given below, however, as they are common statistical

constructs, the descriptions will be brief. For more detail see [82] or any other good

text book on applied statistics.

A normalised mean squared error (MSE) is introduced here as a measure of model

fitness. Specifically, the normalised MSE used here is defined as:

MSE =
100

∑
(model errors)2

n (σ[predictions])2
(4.2)

where n is the number of data points predicted and σ denotes standard deviation.

This MSE has the property that, if the mean of the data is used as the model,

the MSE will be 100%. With this normalisation, values of MSE below 100% are

indicative of captured correlation. Some readers may be more familiar with the R2

correlation coefficient as a means of studying model fitness; the MSE is related to

the R2 coefficient as follows:

R2 = 1− n.MSE

100
(4.3)

so R2 increases as the MSE decreases.

A common t-test for regression can be used to assess the significance of individual

parameters in a response surface model. To infer the significance of any parameter in

a model, a test statistic is calculated that is dependent on the estimated parameter

for each variable.

To conduct a t-test, the test statistic t for an estimated parameter/coefficient β̂ that

describes the contribution of an independent variable, X say, should be calculated

and compared with the tabulated t-value t(α/2,n−p−1), where α is the significance

level required, n the number of observations used to establish the model and p the

number of parameters in the model. The test statistic t to be calculated is:

t =
β̂

se(β̂)
(4.4)
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where se(β̂) is the standard error of the coefficient β̂.

To test the significance of the estimated parameter/coefficient, β̂, a null hypothesis

of β = 0 is adopted; in other words the null hypothesis states that parameter X

with estimated coefficient β̂ is not important to the model under consideration. This

hypothesis can be rejected at a significance level α if the calculated test statistic t is

larger in magnitude than the tabulated t-value for that significance with the relevant

degrees of freedom.

An F -test can be used to gauge the significance of a complete regression model by

assessing the amount of variance in the dependent variable, y, say, that is accounted

for by the model. Of interest here is the partial F -test, which assesses the signifi-

cance of adding a single, or group of variables, to an established regression model and

addresses the question of ‘is the model significantly improved by adding certain input

variables?.’ Suppose the established model has inputs Xj, {j = 1, 2, · · · , p} and cor-

responding coefficients βj, {j = 1, 2, · · · , p}. The usefulness of adding extra model

terms X∗
k , {k = 1, 2, · · · q}, with corresponding coefficients β∗

k , {j = 1, 2, · · · , q}, to
the established model is assessed by calculating the F statistic, which is a ratio

of the amount of variance added to the model prediction when including the extra

parameters, to a measure of the mean squared error of the augmented model. More

formally:

F =
SSRaugmented − SSRestablished∑n

1 (yi − ŷ(augmented)i)
2/(n− p− q − 1)

(4.5)

where SSRmodel refers to sum of squares of each regression (either of the already

established model or the new augmented one); SSRmodel =
∑n

1 (ŷ(model)i − ȳ)2, yi

are the observed targets of the model, ȳ their mean, and finally ŷ(model)i are the

model predictions.

The null hypothesis of the partial F -test is that the new variables X∗
k do not sig-

nificantly improve the prediction capabilities of the model, given that the variables

Xj are already included in it. This hypothesis is rejected at a significance level α if

the F test statistic is larger than the tabulated F value, F(q,n−p−q−1,α) (from the F

distribution with q and n− p− q − 1 degrees of freedom).

Returning now to the analysis, the very simple (linear, univariate) model (4.1) does

a surprisingly good job of modelling the fluctuation of the lowest modal frequency of
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the bridge deck and suggests that the traffic loading is a major driving force at work

for this mode. In this case, the model was trained with 2500 samples, which were

half-hourly measurements from 27th October to 18th December 2007, and tested on

2500 samples of measurements from 14th May to 5th July 2008. The MSE values

were 32.52 and 29.42 for the training and testing set respectively.

Interestingly, the model’s prediction capability is seemingly not improved by adding

a temperature dependent variable; for the same training and testing period adding a

temperature dependent variable reduces the training set MSE very slightly to 29.84,

the test MSE is, however, slightly higher at 30.83. Furthermore, if data over a longer

period of time are considered in the training set, where one might expect to encounter

seasonal effects, temperature still appears to be unimportant to the regression; for

a training data set that spans a whole year the MSE of the model only decreases

from 31.07 to 30.06 when a temperature dependent parameter is added, suggesting

that temperature is not a dominant driving factor. Despite this, when conducting a

t-test as described above for the model where a temperature dependent variable is

included, the null hypothesis that temperature is an insignificant parameter in the

model is rejected at a 99.9% confidence level, suggesting that although temperature

may not have a dominant effect on the lowest modal frequency, it still plays some

part.

Similarly for the next two frequencies (LS1 and VA1), a linear model of the form

(4.1) can predict the main trend of frequency change reasonably (and again perhaps

surprisingly) well (see Figures 4.4 and 4.5).

As before, it is interesting to consider how the inclusion of temperature may affect

the prediction capability of the models. Unlike the first mode, adding a temperature

dependent variable to the model does seem to improve the prediction capability over

a longer time period for the second and third modal frequencies. For example, for

a training data set spanning several seasons, the model MSE of the third frequency

reduces from 60.58 to 50.93 with the addition of a temperature dependent variable

to the model. Figures 4.6 and 4.7 demonstrate the difference in model prediction

when including an additional temperature dependent variable in the model of the

third modal frequency; Figure 4.6 reveals the model prediction of the frequency

change when only a traffic load dependent variable is included in the model, Figure

4.7 shows how this prediction changes when a temperature dependent parameter is

added. When studying the model predictions it seems that over short time periods

the addition of a temperature dependent variable has no visible effect, however,
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Figure 4.4: Linear model of second deck modal frequency with traffic
loading input only
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Figure 4.5: Linear model of third deck modal frequency with traffic
loading input only
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the general fit to longer periods of data appears to be improved, as one can see in

Figure 4.7. This suggests that the temperature has more of a seasonal influence

than daily, for this mode at least. For both the models of the second and third

natural frequency, when including temperature parameters, a t-test can reject a null

hypothesis that temperature is unimportant to the regression model with 99.9%

confidence.

It should be noted that although a simple model form including temperature and

traffic loading inputs can recreate the general trend of the second mode (LS1),

there are large daily drops recorded in the second modal frequency which cannot be

recreated. These large drops generally occur at times of high traffic, and are rare

at weekends. The current hypothesis is that these large drops are caused by short

term large traffic loadings, such as would result from a traffic jam. Unfortunately

the traffic loading estimates have to be interpolated from hourly traffic counts,

and as such cannot predict short term traffic loads. It is expected that a more

sophisticated traffic loading estimate would improve model fidelity for the second

mode considerably.

Similar model fits can predict the general trends in the fluctuations of the fourth

and fifth frequencies (LA1 and TA1), however, the prediction errors are comparably

large. A more complex model structure will be needed to accurately predict and

therefore better understand the changes in the fourth and fifth modal frequencies.

4.1.1 Deck Acceleration

Closely linked to the wind profile, and also to the dynamics of traffic loading is the

acceleration of the deck. Figure 4.8 shows plots of the first five modal frequencies

with respect to the root-mean-squared (RMS) values of vertical and horizontal deck

acceleration, linear best line fits have, again, been added purely to aid visualisation

of the trends. These plots show a clear tendency for decreased frequencies at higher

amplitudes of deck acceleration, for both horizontal and vertical accelerations. This

amplitude dependency indicates that the system is nonlinear, which is not unex-

pected for such a complex structure. Indeed, Zhang et al. report that the dynamic

behaviour of all cable-supported bridges is amplitude dependent [50].

This discovered nonlinearity does not in fact overly increase the complexity of the

response surface analysis carried out here, it rather just increases the number of pa-
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Figure 4.6: Linear model of the third deck modal frequency with traffic
loading input only

Dec 2007 June 2008 Dec 2008
−6

−5

−4

−3

−2

−1

0

1

2

3

measurement date

N
o

rm
a

lis
e

d
 F

re
q

u
e

n
c
y

Linear meta model of 3rd natural frequency − traffic loading and temperature inputs

 

 

SSI frequency

model estimate

Figure 4.7: Linear model of third deck modal frequency with traffic
loading and temperature inputs
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Figure 4.8: Modal frequency plotted according to RMS of vertical deck
accelerations (above) and horizontal deck accelerations (below)

rameters that must be considered when attempting to understand, or even predict,

the fluctuations in the modal frequencies. This having been said, on close inspection

of Figure 4.8, the correlations between modal frequency and deck acceleration ap-

pear non-trivial, especially for the second modal frequency; this will require further

investigation if the relationship between the two is to be well understood.

Figure 4.8 demonstrated that increases in the horizontal and vertical accelerations

of the deck correspond to a decrease in the modal frequencies of the first five modes.

Returning to the simple response surface models for predicting frequency change,

the effect of adding a variable dependent on the vertical RMS deck acceleration is

now investigated. Figure 4.9 demonstrates the improvement of the model prediction

when adding an acceleration dependent variable for the first frequency over a time

when high wind speeds were recorded. To understand the role of the wind speed,

and therefore hopefully better understand the relationship between deck acceleration
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and modal frequencies, the first sensible step is to study the deck accelerations

themselves.

Figure 4.10 is composed of plots of wind speed against vertical and horizontal deck

acceleration (RMS), the plot points are also sorted according to the direction of the

wind at the time. From this figure, two clear response mechanisms can be seen; when

the wind is from the east or west, there is no increase in response with increased

wind speed, conversely when the wind is from the north or south, i.e. normal to the

bridge span, above 25 mph the deck acceleration response increases (from inspection

- nonlinearly) with increased wind speed. As the bridge is orientated east-west, the

increasing response with increased wind speed occurs, not surprisingly, when the

wind hits the bridge side on. This bi-functional relationship must be considered

with any attempt to model the bridge’s behaviour with respect to deck acceleration.

The effect of traffic on the deck acceleration should also be considered (see Figure

4.11); here, the RMS of vertical and horizontal deck acceleration increases linearly

with increased traffic load.

Having now a better understanding of the deck acceleration, one can return to the

relationship between deck acceleration and modal frequency. Although the accelera-

tion response of the deck acts in two different regimes according to wind direction, it

does not necessarily follow that this should be reflected in the relationship between

deck acceleration and modal frequency; it is possible that one regime could define

the acceleration-frequency relation. Figures 4.12 and 4.13, however, show a closer

view of selected plots from Figure 4.8, sorted according to wind speed (and coloured

according to wind direction), which clearly demonstrate a more complex relation

between the two variables than perhaps expected. On inspection of Figures 4.12

and 4.13, there generally appears to be two different trends roughly separable by

wind speed and direction, namely, the frequencies appear to act under a different

regime when high wind speeds from a southerly direction are recorded.

4.2 Mathematical Models of Modal Frequencies

Based on the above analysis, more complex models to predict modal frequency

change can now be contrived. The primary reason for the development of such

models here is for a better understanding of the mechanisms at work as the struc-

ture responds to normal environmental and operational conditions. However, a
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Figure 4.9: Above: linear model of the third deck modal frequency with
traffic loading input. Below: linear model of third deck modal frequency
with traffic loading and temperature inputs.
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Figure 4.10: Vertical and horizontal deck acceleration plotted with re-
spect to wind speed and sorted by wind direction
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Figure 4.11: RMS of vertical deck acceleration plotted according to
estimated traffic loading

secondary motive, which is also an important one, is that any reliable predictive

models will, understandably, be of great use as a condition indicator. From the

knowledge gained in the previous sections, useful inputs to any model of the deck

modal frequencies would include parameters dependent on traffic loading, temper-

ature and also horizontal and vertical deck acceleration. Indeed, inputs based on

deck acceleration should take into account the two possible response regimes dis-

covered, which occur most likely because of differing wind patterns. Furthermore,

more complex additional parameters may be considered to reflect any nonlinearity

in the response. Time-lagged parameters may also be added to account for any

dynamic relations between variables, which, for example, would come into play if

the modal frequency at any one time depended, say, on the temperature at that

same time and also the time(s) preceding it. Response surface models (see (4.1),

for example) will be used here again. One of the main advantages of polynomial

response surface models is their simplicity; they are easily fitted using least-squares

methods, and they are very easy to interpret, as coefficient values can indicate the

significance of a parameter (as long as input variables are normalised prior to use).

Alternative predictive modelling approaches such as neural networks and support-

vector machines have previously been explored in the literature for monitoring data

from other long-span bridges, [55, 57], although in a slightly different context. In

these papers, sophisticated modelling techniques have been used with the aim of
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Figure 4.12: Variations of first modal frequency plotted according to
RMS of deck acceleration
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Figure 4.13: Variations of the second modal frequency plotted according
to RMS of deck acceleration
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developing diagnostics that can separate changes in modal parameters caused by

environmental variations from those caused by damage. These methods are known

to have powerful prediction capabilities, however, no knowledge of the physical sys-

tem can be gained directly from these non-parametric approaches. As the primary

focus of this work is to better understand the interaction between environmental

and operational conditions and measured structural response, the simpler, more in-

terpretable response surface models are used here. Furthermore these more complex

techniques will often require much larger quantities of training data and are much

more computationally expensive.

Here, to begin, response surface models will be fitted for the first and second modal

frequencies of the deck, which correspond to a symmetrical vertical mode and a

symmetrical lateral mode respectively. As previously, the normalised mean squared

error will be used as a performance indicator for the goodness of fit of the response

surface models and a t-test will be used to assess the significance of each parameter

coefficient. In the following, the response surface models are trained on 5922 data

points (data collected over the period of a year) and tested on an independent data

set of 3735 data points. Initially six input parameters for the response surface

models will be considered. Reflecting the above analysis, these will include variables

dependent on:

• T: temperature

• TR: traffic loading

• VAW : vertical deck acceleration occurring at times when high wind speeds

hitting the deck side on (i.e. from the north or the south) are recorded (zero

at all other times)

• HAW : horizontal deck acceleration occurring at times when high wind speeds

hitting the deck side on (i.e. from the north or the south) are recorded (zero

at all other times)

• VAN : vertical deck acceleration in all other wind conditions

• HAN : horizontal deck acceleration in all other wind conditions.

Before attempting to assess the importance of each of these parameters to a model

of modal frequency, however, it is important to see how these input variables interre-

late. If any are highly correlated then inference on their importance in a regression
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model may be misleading, this is referred to as the problem of multicollinearity

(again see any good book on applied statistics or regression for more details). To

investigate correlations in the input parameters listed above their correlation matrix

is calculated for data in the training period and shown in Table 4.1.

T TR VAW HAW VAN HAN

T 1.0 0.24 0.12 0.10 0.17 0.20
TR 0.24 1.0 -0.05 0.01 0.31 0.82
VAW 0.12 -0.05 1.0 0.91 0.03 0.02
HAW 0.10 0.01 0.91 1.0 0.03 0.02
VAN 0.17 0.31 0.03 0.03 1.0 0.35
HAN 0.20 0.82 0.02 0.02 0.35 1.0

Table 4.1: Correlation matrix of potential six input variables for response
surface models

Studying this table, it is evident that horizontal and vertical deck acceleration at

times of high wind speeds are highly correlated. Interestingly, traffic loading and

horizontal deck acceleration under normal wind conditions are also highly correlated.

To avoid issues with multicollinearity, horizontal deck accelerations will not be in-

cluded as input parameters to the response surface models. Any variation due to

horizontal deck acceleration will be equally well accounted for by the traffic loading

and vertical deck acceleration parameters in the implemented models.

When fitting a response surface model with the remaining four inputs, the MSE of

the model for the first mode was 22.6 for the training data set, and 24.8 for the test

set. When conducting a t-test to check the significance of each of the parameters

included in the basic model, all parameter coefficients were found to be statistically

significant at a 0.05 significance level. A model with these input parameters of the

second modal frequency could not perform as well and had a training MSE of 49.7

and a MSE of 51.1 on the test data. This was due, as explained previously, to the

fact that large drops occur in the time history of the second modal frequency that

the model cannot recreate, which are thought to be caused by traffic patterns. For

the second frequency, when using a t-test, again all four parameters considered were

found to be statistically significant at a 0.05 significance level.

As previously mentioned, the addition of dynamic and nonlinear elements to these

models may prove beneficial. It may be, for example that a past temperature mea-

surement has an influence on the current frequency. When studying Figure 4.12, one

can see that a quadratic function may be pertinent for accounting for the frequency
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change at times when high winds hit the side of the bridge.

To investigate the incorporation of dynamic parameters into the response surface

models, time lagged versions of the four basic parameters identified above were con-

sidered. However, it was found that, understandably, the four baseline parameters

are highly correlated with the lagged versions of themselves. In order to avoid issues

with multicollinearity a first difference of each parameter is considered instead.

Quadratic terms for each of the variables are also considered. The baseline variable

that describes vertical deck acceleration when strong winds hit the bridge side on is

again highly correlated with the quadratic version of itself (most likely due to the

fact that it is zero the majority of the time). For this reason a quadratic form of

this variable will be considered separately.

A response surface model will therefore be fitted with the following input variables

considered:

• T: temperature

• TR: traffic loading

• VAW : vertical deck acceleration occurring at times when high wind speeds

hitting the deck side on (i.e. from the north or the south) are recorded (zero

at all other times)

• VAN : vertical deck acceleration in all other wind conditions

• ∆T: first difference of temperature

• ∆TR: first difference of traffic loading (value at time t - value at time t− 1)

• ∆VAW : first difference of vertical deck acceleration during strong winds hit-

ting the deck side on

• ∆VAN : first difference of vertical deck acceleration in all other wind conditions

• T2: temperature squared

• TR2: traffic loading squared

• VA2
N : vertical deck acceleration in normal wind conditions squared

Each of the additional variables was added onto the basic four parameter model
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Independent/Input Variables
Parameter
Mode 1

Parameter
Mode 2

T Temperature -0.03 -0.17

TR Traffic Loading -0.84 -0.59

VAW
Vertical Acceleration (strong winds from
North/South)

-0.39 -0.31

VAN
Vertical Acceleration (normal wind condi-
tions)

-0.15 -0.21

∆T First difference temperature - 0.21

∆TR First difference traffic loading 0.25 0.13

∆VAW
First difference of vertical acceleration
(strong winds from North/South)

0.10 -

∆VAN
First difference of vertical acceleration
(normal wind conditons)

0.04 0.06

T2 Squared Temperature 0.02 -

TR2 Traffic Loading Squared 0.07 0.08

VA2
N

Vertical Acceleration (normal wind condi-
tions) squared

0.02 0.02

Table 4.2: Parameter coefficients for models predicting the first and
second modal frequencies

separately and its individual contribution assessed using a partial F -test. When

considering the first modal frequency, each of these additional parameters was found

to make a statistically significant contribution to the response surface model when

applying a partial F -test with the exception of the first difference of temperature

(∆T). For the model of the second modal frequency, of these additional parameters

the first difference of the vertical deck acceleration at times of strong winds (∆VAW )

and the variable describing temperature squared (T2) were both found by a partial

F -test not to provide a statistically significant contribution to the model.

The coefficients of the final models for the first and second modal frequencies which

include all parameters judged to make a statistically significant contribution are

presented in Table 4.2. As each input variable is normalised (actually standardised

to zero mean and unit variance), the model parameters can be (roughly) interpreted

as an importance value, the higher the value, the more influence that the term has

on the modal frequency change.

Table 4.2 suggests that the traffic loading parameter is most influential to both the

first and second modal frequencies, with vertical deck acceleration at times of strong

northerly and southerly winds second most important. As expected from the anal-
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ysis above (see Figure 4.7), temperature plays a much more dominant role in the

prediction of the second modal frequency than the first. Interestingly, for the first

mode the first difference of the traffic loading variable shows some significance, indi-

cating that the change in mass helps to predict the frequency. For the second mode

it is the first difference of the temperature variable that shows some significance,

indicating that thermal gradients may influence the frequency change. Once again

this confirms the increased dependence on temperature of the second mode.

It is also interesting to note which variables are not influential to the modal fre-

quency. Quadratic parameters do not have large coefficient values and can, therefore,

be considered not important. This is most likely because most input variables have

a linear effect, but may also be because any true nonlinearity cannot be represented

suitably by a quadratic form.

From the above analysis it seems most likely that the vertical acceleration of the

deck at times of strong winds is nonlinearly related to modal frequency, however

a quadratic term for this variable was not added to the response surface model to

avoid issues with high correlation between the linear and nonlinear term. Instead,

using a squared term of the acceleration is investigated separately here. When re-

placing VAW with its square in the model fitted above (whose parameter coefficients

are described in Table 4.2), the MSE of the model fit increases from 23.57 to 26.16.

When the squared parameter is used its coefficient is -0.06 which is much lower than

the coefficient attributed to the original variable (-0.39 from Table 4.2). Interest-

ingly, when the squared variable is used ∆VAW , the parameter describing the first

difference of the vertical acceleration in strong northerly/southerly winds becomes

statistically insignificant at a 0.05 significance level.

To study the different model fits at times of strong northerly/southerly winds, the

model predictions are plotted in Figure 4.14, along with the prediction of a response

surface model with just temperature and traffic input parameters, as plotted in

Figure 4.9, for comparison. Studying this figure one can see that the model with the

squared acceleration values can predict the trough of the frequency more accurately,

but performs worse than the model with the linear variable before the large trough.

It seems that overall replacing the deck acceleration variable, VAW , with its square

is not beneficial. In light of the relations highlighted in Figure 4.12, this is perhaps

surprising. However, it is likely that model fit would improve with a more complex

form to model the interaction between the deck acceleration and modal frequency

at high wind speeds. It must also be noted that training data at times of higher
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Figure 4.14: Model predictions of the first modal frequency when includ-
ing a squared parameter of vertical deck acceleration at times of strong
northerly/southerly winds

wind speeds are rare, it is anticipated that the model fit would improve with a larger

training set incorporating more data occurring in these wind conditions.

4.3 Conclusions

The current chapter has introduced data from the Tamar monitoring campaign. The

work covered has addressed which environmental/operational conditions drive the

fluctuations observed in the modal frequencies of the deck obtained from acceleration

data by a data-driven SSI routine. Traffic loading was found to be a dominant

driver of daily frequency fluctuation, whilst temperature was found to have more of

a seasonal effect than daily. Lastly, the acceleration of the deck was found to have a

significant effect on the modal frequencies at times when the wind speed was higher
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than 25mph and hitting the bridge side-on.

Finally, response surface models have been fitted in attempt to predict the modal

frequency changes of the bridge deck given the measured environmental/operational

conditions. It was found that a simple response surface model with input variables

based on the estimated traffic loading, temperature and deck acceleration (in turn

dependent on the wind speed and direction) can predict the change in the first modal

frequency to a good degree of accuracy. The higher modal frequencies can also be

predicted with similar models, although with less accuracy. In the next chapter,

how these models may be utilised for SHM will be explored further.



Chapter 5

Towards SHM for Tamar

In the previous chapter simple regression models were employed in an attempt to

better understand the normal condition of the Tamar Bridge. An important aim

of the research project funded by EPSRC that this thesis forms part of is to be

able to identify anomalies in the response data that may relate to performance or

structural condition. This chapter addresses how this might be possible for the

Tamar monitoring campaign and considers the natural frequency and displacement

measurements of the deck.

5.1 Novelty detection for Tamar

As discussed in the introductory chapter, a major pitfall for practical SHM imple-

mentation, from a machine learning perspective, is the lack of data available from

the ‘damaged state’ of structures, which often necessitates an unsupervised learning

approach. Due to this, the wish to identify anomalous responses lends itself directly

to the idea of novelty detection, where baseline data is used to define a ‘normal’

response, and new measurements are compared to this baseline in order to assess

whether a structure continues to respond within this normal condition.

The use of novelty detection for performance and structural health monitoring is

complicated by the fact that most measurements or structural responses of interest

are influenced by changing environmental and operational conditions, as evidenced

in the previous chapter. Practical application of novelty detection often works on

60
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the premise that some monitored damage sensitive feature will remain stationary,

or within some limits, all the time a structure continues to respond in its normal

condition. The occurrence of damage is then inferred by any significant change

occurring in the feature. If responses driven by, for example, a temperature differ-

ential, are not defined within the normal condition, then a novelty detection process

will wrongly assign these responses as anomalies.

When undertaking any task that requires judgement as to whether a structural

response is typical or anomalous, knowledge as to what constitutes a normal response

will always be of benefit. In the previous chapter, the author investigated how

the modal frequencies of the deck are influenced by environmental and operational

conditions. The findings were that the modal frequencies of the deck are most

influenced by the traffic loading and acceleration of the deck. Temperature and wind

profile also influence frequency change, in particular, the wind has a strong effect

when hitting the side of the bridge at high speeds. Along with modal frequencies,

this chapter also considers deflection measurements of the deck and tower from the

TPS system described previously.

The TPS system installed at the Tamar Bridge is the newest system in the moni-

toring campaign, the available data therefore spans a much shorter time than the

data analysed in the previous chapter. The data available for analysis here are half

hourly readings of displacements in a northerly, easterly and vertical direction from

17th September 2009 -17th January 2010. To aid visualisation of the available data,

plots of the normalised northerly, easterly and vertical displacement measurements

at hanger 44 (see Figure 3.6) over the four month period are shown in Figure 5.1.

Studying Figure 5.1, one can firstly notice a large gap in the data, also visible is an

increasing trend for the easterly and vertical displacements as time progresses. The

northerly displacement also appear to have greater variability in the winter months.

From similar analysis to that carried out in the previous chapter, it has been found

that the measured easterly and vertical deflections correlate most highly with tem-

perature (as shown in Figure 5.2, where displacements measured at hanger 44 are

plotted against temperature). Vertical and easterly deck displacements also show

some correlation with the estimated traffic loading, although with large variance.
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Figure 5.1: Normalised displacements at hanger 44 over the four month
monitoring period, (a) in a northerly direction, (b) in an easterly direc-
tion and (c) in a vertical direction
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Figure 5.2: Northerly (a), easterly (b) and vertical (c) deck displacement
plotted against temperature
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Figure 5.3: (a) Lowest deck natural frequency over a five day period (b)
Lowest deck natural frequency captured over a 28 month period

5.2 Detecting novelty with extracted natural fre-

quencies

Figure 5.3 shows two plots of the lower modal frequencies of the Tamar Bridge over

two different time scales. In Figure 5.3(a) the plot shows the variation of the lowest

frequency over five days, plot (b) shows the lowest five frequencies captured over a

period of 28 months. From plot (a), the daily variation of the frequencies is obvious.

However, although the presence of seasonal trends were demonstrated for the second

mode in the previous chapter, it can be noted from (b), that, visually, none of

the frequencies show obvious seasonal trends over the 28 month period. When

considering long time periods (more than a year), these frequencies are stationary.

Because of this long term stationarity, novelty detection can be directly applicable

without prior manipulation of the frequency data to account for the environmental/

operational trends. To demonstrate this, an outlier analysis using the Mahalanobis

squared distance is carried out on the five lowest natural frequencies of the bridge

deck.

Outlier analysis calculates a measure of how similar or dissimilar a sample of feature

data is to other samples, this measure is called discordancy. An outlier is a (uni- or

multi-variate) sample which has a large discordancy measure in comparison to the

majority of the other samples in a given data set. The magnitude of the discordancy

over which a sample is classified as an outlier is determined by some threshold. In this

work, where multivariate features are under consideration the Mahalanobis squared
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distance, shown in equation (5.1), will be used to provide a measure of discordancy

Di for each sample of data xi.

Di = ({xi} − {x̄})T [S]−1({xi} − {x̄}) (5.1)

In the above, x̄ is the sample mean of some training set of observations, and S the

corresponding covariance matrix. In order to label an observation as an outlier or

an inlier there needs to be some threshold value against which the discordancy value

can be compared. This value is dependent on both the number of observations and

the number of dimensions of the problem being studied. The value also depends

upon whether an inclusive or exclusive threshold is required. In this work, the

threshold value is computed using a Monte Carlo method. Briefly, a matrix the same

size as the data set under consideration is generated and populated with elements

randomly drawn from a zero mean, unit standard deviation Gaussian distribution,

for all elements the Mahalanobis squared distance is then calculated and the largest

value stored. This is repeated a large number of times (10,000 times in the case

of this work), each time storing the largest Mahalanobis squared distance, which

are then sorted in order of magnitude. The critical values for 5% and 1% tests of

discordancy can then be found from this array above which 5% and 1% of the trials

occur.

In the following, the five lowest natural frequencies of the bridge deck at a given

time will be considered as a single multivariate feature. The sample mean and

covariance in equation (5.1), as well as the threshold are calculated from a training

set of data of 1000 time samples corresponding to the first 1000 samples visible in

Figure 5.3(b), this is approximately one month’s worth of data. By choosing this

training set, one is essentially defining with it what constitutes a normal response,

against which all other measurements will be compared. The discordancy of the

five natural frequencies will be calculated for the same 28 month period as shown

in Figure 5.3.

Figure 5.4 shows the results of the outlier analysis described, with the (95% confi-

dence) threshold plotted as a black (dash and dot) line. Studying Figure 5.4, one can

see that the majority of discordancy measurements remain under the threshold for

the 28 month period, indicating a normal response for the duration. Some outliers

are visible in the earlier part of the record which may be further investigated as po-

tential performance anomalies, the most obvious anomalous event, however, occurs
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Figure 5.4: Outlier analysis on the five lowest natural frequencies of deck

in the latter third of the time period where a large number of outliers are visible.

This excursion corresponds to a visible ‘blip’ in the lowest mode in Figure 5.3(b).

On further investigation, it was found that at this time, one of the accelerometers

on the deck had become waterlogged and was giving a corrupted response, which

accounts for the large number of outliers.

The outlier analysis performed above illustrates the fact that novelty detection is

feasible without prior manipulation of data to remove the influence of environmental

and operational conditions. In this case, the daily variations in frequency caused

by environmental and operational conditions, illustrated in Figure 5.3(a), have been

incorporated into the definition of the normal condition of the structural response.

However, although this analysis is able to detect anomalies, as evidenced by the

fact that a corrupted signal is detectable, the incorporation of the daily variations

into the normal condition may render some potential performance anomalies unde-

tectable; a performance anomaly or change in structural condition that produces

a variation in frequency smaller than that of the daily variation caused by envi-

ronmental/operational conditions will certainly not be detected using the above

approach. If one is interested in such anomalies, steps must be taken to account

for environmental and operationally induced variation before novelty detection is

attempted.
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One idea to overcome this problem, that is very relevant to the analysis carried

out in the previous chapter, is the suggestion of using model prediction errors as

an anomaly detector, where the model is trained on data from the structure in its

normal condition [83]. As long as the model can predict the monitored variable(s) in

question with a good degree of accuracy, any large increase in model prediction error

can be taken to mean that the structure has deviated from its normal condition. If

the simple models used in the previous chapter in an attempt to better understand

the bridge’s normal condition are capable of predicting the modal frequency change

to a good and most importantly consistent degree, their prediction errors would

be a good candidate for an indicator of structural condition that is not affected

by environmental and operational conditions. Alternatively, if the simple models

produced in the previous chapter are not consistent predictors, the different and

more complex modelling techniques discussed earlier [55, 57] could be utilised in a

similar way. For comparison with the simply constructed models of the previous

chapter, Gaussian process regression will be used in this chapter to model the

natural frequency change with respect to measured environmental and operational

conditions. Specifically in the chapter both model types will be used to attempt to

predict the change in the lowest natural frequency of the deck. The use of Gaussian

processes for regression is a growing area of interest in many disciplines, some brief

discussion of them will be included here, but for more details readers are referred to

Appendix A and [84]. Most recently in SHM, Gaussian process regression has been

used for prediction of crack growth in aluminium specimens [85].

The use of Gaussian processes (GPs) is a sophisticated nonparametric Bayesian ap-

proach to regression and classification problems. Gaussian process regression, unlike

classical maximum likelihood approaches, considers all possible functions that fit to

a training data set and provides a predictive distribution as opposed to a single

crisp prediction for a given input. From this predictive distribution a mean pre-

diction and confidence intervals on this prediction can be obtained. Nonparametric

approaches for regression have the benefit that their complexity is not limited by

a set functional form. An additional benefit of using GPs lies in their compact-

ness, the computations necessary for GP regression are simplified by the fact that a

distribution directly over candidate functions can be defined, rather than over the

parameters of a predefined function (as would be necessary for a Bayesian neural

network for example).

In this work, the interest is in how best to model features of interest, natural fre-
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quencies in this case, with respect to the environmental and operational conditions

that drive their variation in the normal condition of a structure. To use Gaussian

process regression, a mean and covariance function (m(x) and k(xp,xq)
1 respec-

tively), along with any hyperparameters that govern these functions, must first be

specified (here p and q refer to different samples). The specification of the mean

and covariance functions defines all possible candidate functions to be considered

in the inference procedure. Here, a zero mean function and a squared exponential

covariance function are used. The squared exponential function has the form:

k(xp,xq) = σ2
y exp (−

1

2l2
|xp − xq|2) + σ2

nδpq, (5.2)

where σ2
y, l and σ2

n are hyperparameters to be determined. σ2
y is the signal variance

(limits the vertical scale of the process), l is the length scale of the process, which

defines the smoothness (determines the length between inputs before function values

can change significantly), and σ2
n is the variance from the noise on the measurements.

Once defined, the mean and covariance functions are then conditioned on some

training data. Conditioning acts to effectively discount any functions described by

the original mean and covariance functions that do not match the training data.

From these conditioned functions a distribution over predictions can be directly

obtained.

Given a set of training data, with inputs arranged in a design matrix X and target

values y, a set of testing data with inputs arranged in a design matrix X∗ and

unknown target values y∗, conditioning gives the mean (m∗) and variance (k∗) for

the prediction of y∗ as:

m∗ = K(X∗, X)K(X,X)−1y (5.3)

k∗ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗) (5.4)

where K(X∗, X) is the calculated covariance matrix of the design matrices X∗ and

1Note that structural dynamics notation is not used here to describe Gaussian process theory,
as it would prove too cumbersome, instead the notation adopted uses bold font for vectors and
upper-case letters for matrices.
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X. The hyperparameters are determined by minimising the negative log marginal

likelihood (again see Appendix A or [84] for more details).

For prediction of the lowest natural frequency, measurements of the temperature,

traffic loading, wind speed and direction and the root-mean-squared acceleration of

the deck were used as inputs to the model, which were all the original parameters

considered when constructing the less complex models of the last chapter.

For comparison of the response surface models and GP regression, a training set

of 3000 data points (two months’ worth) will be used, which specifically is data

collected from the end of October to the end of December 2007. A testing set of

9568 data points will be used to gauge model performance, which is comprised of

data collected over a period of two years. After training both model types to predict

the change in the lowest natural frequency both models were found to be similarly

successful; the training MSE for the response surface model was 18.49, the training

MSE for the GP regression was 18.39. For the testing set, the MSE of the response

surface model was 21.17, while the testing MSE of the GP was 21.23. An example of

the prediction of both of these models is plotted in Figure 5.5. Both models are able

to predict the change in the natural frequency very well, it is interesting, also, to

note that the performance of these separate models is very similar and neither can be

said to outperform the other, which leads to the question of which method should be

applied in such situations. Where one wishes to better understand the interactions

between input and target parameters, parametric response surface models are the

sensible choice as they are interpretable as shown in the previous chapter. However,

where the sole aim of such modelling is for accurate prediction, the use of GPs seems

a more sensible choice as the effort required by the programmer is much less as no

prior manipulation of the input parameters is necessary.

As both models can predict the frequency change to a good degree of accuracy,

either of the model errors should be suitable candidates for a novelty indicator. To

explore the use of model errors for novelty detection, each of the models’ errors are

plotted in Figure 5.6, with confidence limits added at plus and minus three standard

deviations (which is the 99.7% confidence interval for a null result) of the errors

from the training period. Note that only the confidence limits for the GP errors are

visible in Figure 5.6, as these overlay the confidence limits of the response surface

model. Apart from very few anomalies, the model errors stay within the confidence

interval, which demonstrates that both models could be used as a potential indicator

of structural condition.
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Figure 5.5: Comparison of response surface model and GP predictions
for the first deck natural frequency

As always the problem lies in the fact that no data are available for validation of

this statement, as the bridge has not undergone any documented structural changes.

However, in this case, more data than those used for model training and validation

are available from the period of time when there was a suspected sensor fault as

mentioned previously. Extending the model predictions beyond the training and

testing period, Figure 5.7 plots both models’ prediction errors for period of time

after the training and testing period. Studying Figure 5.7, the errors clearly depart

significantly from the confidence interval during the time of the suspected sensor

fault. Although this is somewhat a synthetic example, it does show that the model

error plot is able to clearly detect (with a large number of outliers) a departure from

the normal response condition.

It was previously suggested in this text that using the errors of predictive models

would produce more sensitive anomaly detectors than an outlier analysis carried

out on the raw measurements. At the beginning of this section, a multivariate

outlier analysis including the lowest five natural frequencies of the deck was carried

out. Here, to further investigate this argument, a univariate analysis is carried out

to compare the number of outliers of each of the models’ errors with the number

of outliers of the ‘raw’ measured lowest natural frequency. Figure 5.8 shows the

calculated discordancy of the response surface model errors, the GP model errors

and the measured natural frequency for the 9568 point testing period described
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Figure 5.6: Control chart of model errors of response surface and GP
models
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Figure 5.7: Control chart of model errors of response surface and GP
models for period of time of suspected sensor fault
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Figure 5.8: Univariate outlier analysis of measured natural frequency,
GP model errors and response surface model errors

above. Studying Figure 5.8 one can see that when using model predictions, the

number of outlying data points is much increased, demonstrating that, as previously

suggested, the sensitivity to outliers is much increased when modelling is used to

take into account operational and environmental variation.

One issue that must be discussed here is that the success of a novelty detector using

model errors is reliant on an accurate predictive model. If a model is not accurate,

the Gaussian error assumption that the novelty detection here is based on will likely

not be valid. Although the use of Gaussian processes goes a long way to ensure that

the best prediction feasible is obtained, an accurate prediction may not be possible if

the latent variables driving the variation of the target are not well represented in the

inputs to the model. It is the belief of the author, that although the response surface

model and the GP provide a good prediction of frequency change, more accurate

predictions could be obtained with a higher fidelity estimation of the traffic loading

(for which only hourly counts of vehicle classes crossing the bridge are available). An

improvement in model fidelity would render the novelty detection less susceptible to

false-positive detections of ‘anomalous’ events.



5.3. DETECTING NOVELTY WITH MEASURED DECK DEFLECTIONS 73

29/09 30/09 01/10 02/10 03/10

200.46

200.47

200.48

200.49

200.5

200.51

Date

E
as

te
rly

 d
ec

k 
di

sp
la

ce
m

en
t a

t h
an

ge
r 

44
 (

m
)

(a)

01/10 01/11 01/12 01/01

200.46

200.48

200.5

200.52

200.54

200.56

Date

E
as

te
rly

 d
ec

k 
di

sp
la

ce
m

en
t a

t h
an

ge
r 

44
 (

m
)

(b)

Figure 5.9: Easterly deck deflections at hanger 44: (a) over 5 days, (b)
over four months

5.3 Detecting novelty with measured deck deflec-

tions

How novelty detection for SHM and performance monitoring could be applied to

the measured deck deflections will now be explored. As previously described, the

TPS data available for this study spans a four month period from September 2009

to January 2010. Figure 5.9, similarly to Figure 5.3, shows plots of the measured

bridge deck deflections, in (a), the easterly (longitudinal) deflections of the deck at

hanger 44 are plotted over a period of five days, in (b), the same over a four month

period.

Studying Figure 5.9, it is obvious that the measured deck deflections have daily and

seasonal trends, which reflects the correlation of the deck movement with tempera-

ture. The consequence of this seasonality is that the signals over the available time

window are nonstationary and that novelty detection is not directly applicable to

this data set, as it was with the natural frequency data. To demonstrate this, a

multivariate outlier analysis is carried out on easterly displacement measurements

at six locations (at hangers 44, 62, 80, 98, 112 and 123). A training period of 500

data points corresponding to the first half a month of data points of the data set

shown in Figure 5.9(b) was used. The results are plotted in Figure 5.10 where the

dashed line is the outlier (95% confidence) threshold. As one can see, despite in-

cluding a large number of data points in the training set, the number of ‘outliers’
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Figure 5.10: Multivariate outlier analysis of 6 measured easterly deck
deflections

increases as the mean deck deflection also increases (caused by colder weather). In

other words, deflection measurements from colder weather are wrongly classified as

outliers.

For a successful novelty detection process without prior manipulation of the data to

remove the environmental trends, most likely the training data would need to span

a period of a year in order account for the seasonal trends. This would, however,

significantly lower the sensitivity of the novelty detector, and may render it useless.

Instead, additional steps are necessary to account for the environmentally induced

trends before novelty detection is attempted.

As with the natural frequency data discussed previously, a sensible choice for en-

hancement of novelty detection is to consider the use of data modelling. Gaussian

process regression may once again be considered along with many other data mod-

elling approaches (see for example [55, 57]). Unfortunately, the seasonality of the

data introduces an additional complication to the modelling process, which is that

training data may be needed from a period spanning a whole year for an effective

predictive model. To demonstrate this, Gaussian process regression is used to at-

tempt to model the easterly deck deflection measurement at hanger 44 plotted in

Figure 5.9, using the available deflection data from the four month period. Before
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implementing the model, the data gap visible in Figure 5.9 was first removed. Once

again a zero mean function and a squared exponential covariance function were used.

The training data set was chosen as every fifth point of the first half of the data set

(1500 points) after the data gap had been removed, and inputs to the model were

temperature, traffic loading, wind speed and RMS of deck acceleration. The GP

prediction is shown in Figure 5.11, where the top plot (a) shows the GP predictions

from the training period, and the lower plot (b) shows the GP predictions for the

remainder of the data which corresponds to the last two months worth of data in

Figure 5.9(b).

Studying Figure 5.11, one can see that the majority of the GP prediction is accurate.

However, as the mean displacement starts to increase in the testing set, the predic-

tions become less accurate, and towards the end, the confidence intervals increase

as new environmental conditions not in the training set are encountered. The MSE

for the training and testing period together is 39.97. The GP prediction carried

out here would undoubtedly improve with an extended training period, which is

currently not available for this study.

To investigate how the GP prediction may aid novelty detection here, a univariate

outlier analysis of the model errors was carried out, with results shown in Figure

5.12 (training was on the first 1500 points, which corresponds to the GP training

period). Another possibility for a novelty indicator, available when using Bayesian

techniques, could be to use the confidence intervals that are available when applying

GP regression as a statistical process control chart [86]. The intervals plotted in Fig-

ure 5.11 are plus and minus three standard deviations of the predictive distribution.

Presuming an accurate model, if a measurement is outside these confidence intervals

it may be counted as an outlier. This approach has the further advantage that if

environmental/operational conditions occur that are very different from those in the

training set, the confidence intervals will increase (as one can see in Figure 5.11(b)),

meaning that a performance anomaly will not be falsely detected if new environ-

mental/operational conditions occur. For comparison with the usual outlier analysis

(Figure 5.12) the model errors are also plotted with the GP prediction confidence

intervals as a control chart in Figure 5.13.

In Figure 5.12, as the model prediction ability decreases with colder temperatures

a large number of erroneous outliers occur. A broader training data set is required

to overcome this problem. In Figure 5.13 one can see that the GP confidence inter-

vals expand when the prediction encounters a new area of the input space (in this
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Figure 5.11: GP predictions of easterly deck deflections: (a) training
period, (b) testing period
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Figure 5.12: Univariate outlier analysis of GP prediction for easterly
deck displacements at hanger 44

case lower temperatures than were present in the training period), which has the

consequence that anomalies are not falsely identified as readily. When conservatism

on identification of potential performance anomalies is necessary, this idea of using

confidence intervals may prove to be very useful.

5.4 Conclusions

Novelty detection in the face of environmental and operational variations has been

discussed in the context of data gathered from the Tamar Bridge monitoring cam-

paign. Natural frequency and deck deflection measurements have been used to

demonstrate two different approaches to novelty detection for features that expe-

rience variability caused by environmental and operational conditions. The first

approach is to incorporate responses caused by such variable conditions into the

definition of the normal condition. This is most feasible for features that do not ex-

hibit nonstationary behaviour over long time periods, such as the natural frequencies

of the bridge deck. The advantage to this approach lies in the ease of its application,

a potential disadvantage is that sensitivity to performance anomalies may be lower.

An alternative approach is to account for environmental/operational variation be-
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Figure 5.13: Outlier analysis of GP prediction for easterly deck displace-
ments at hanger 44 using GP confidence intervals

fore novelty detection is attempted. In this chapter, Gaussian process regression

and response surface modelling were used to model natural frequency and deck de-

flection with respect to the external conditions. If an accurate predictive model is

available, model errors may be used as a good candidate for novelty indicators. Both

parametric response surface models and Gaussian process regression were found to

be a good candidates for generating accurate predictive models.

A further advantage of Gaussian processes for enhancement of novelty detection

has also been highlighted, which is that the prediction confidence intervals available

when using GP regression can be used to directly detect novelty in a conservative

manner. The use of such confidence intervals would reduce the risk of a false-positive

indication of novelty, as confidence decreases if new environmental/operational con-

ditions are encountered.

As the chapter title suggests, this is a tentative step towards the development of a

system capable of detecting changes in structural condition. The models for the first

modal frequency are a success in that they can detect a departure from the normal

condition. However, there is still a long way to go as far as practical SHM is con-

cerned. One condition indicator based on one modal frequency, for example, would

evidently not be sufficient to reliably assess the state of such a structure, especially



5.4. CONCLUSIONS 79

as modal frequencies can be insensitive to localised damage scenarios. Any credible

system put in place for real anomaly detection would need a number of such pre-

dictive models taking into account different response measurements, not just global

modal parameters. Furthermore, although the detection of a possible sensor fault

with the frequency prediction model was a useful exercise to show how a departure

from the normal condition could be detected, it illustrates perfectly another chal-

lenge that must be met with before any SHM system can be relied upon, which is

that it must be able, not only to distinguish between response fluctuations caused by

environmental and operational conditions but to distinguish between sensor faults

and real structural degradation. If model prediction errors are to be used as an

indicator of structural condition, sensor faults must be detected before any data is

fed into the model. For further reading on detecting sensor faults see, for example

[87].



Chapter 6

Cointegration for the data

normalisation problem

This chapter introduces the concept of cointegration, a tool for the analysis of non-

stationary time series, as a promising new approach for dealing with the problem of

environmental variation in monitored features. If two or more monitored variables

from an SHM system are cointegrated, then some linear combination of them will be

a stationary residual purged of the common trends in the original data set. The sta-

tionary residual created from the cointegration procedure can be used as a damage

sensitive feature that is independent of the normal environmental and operational

conditions.

6.1 Introduction to cointegration

As discussed in the previous chapters, before SHM technologies can be reliably

implemented on structures outside laboratory conditions, the problem of environ-

mental variability in monitored features must first be addressed. In the previous two

chapters data modelling and novelty detection techniques have been applied in an

attempt to address this issue, in this chapter a new approach for data normalisation

is discussed. As summarised in Chapter 2 of this thesis, several different ways to

deal with the problem of environmental and operational variations in features have

already been suggested, perhaps the most promising of which involve the projection

80
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of the feature data onto new axes (using PCA [63] or factor analysis [65]). It tran-

spires, however, that the projection approach had actually been anticipated, but in

the literature of econometrics; as described by [88, 89]. In fact, the PCA approach

in econometrics actually belongs to a larger class of algorithms being developed in

the literature; these algorithms are associated with the concept of cointegration.

In the current work, cointegration is suggested as a suitable methodology for remov-

ing environmental trends from SHM data. Recently the idea has been applied to

statistical process control in [90].

Cointegration is a property of some nonstationary time series; briefly, two or more

nonstationary variables are cointegrated if some linear combination of them is sta-

tionary. Econometricians traditionally test for cointegration between two or more

economic variables as a means of establishing whether there is a statistically signifi-

cant relation between them. Although engineers may well be interested in problems

of a similar nature, they may find the stationary linear combination created during

the cointegration process of more practical interest. If a number of variables from

some process under investigation are cointegrated, the stationary linear combination

of them found during the cointegration process will be purged of all common trends

in the original data sets, leaving a residual equivalent to the long run dynamic equi-

librium of the process [90]. In terms of SHM data, the common trends removed by

the cointegration process will be those caused by the latent variables driving the

response of the structure, i.e. the environmental and operational conditions.

In theory then, the cointegration process is ideally suited to remove environmental

and operational trends from SHM data. This idea is explored using a simulated

scenario in the next section. Subsequently the, sometimes complex, mathematics

behind the cointegration process will be introduced.

6.2 Illustrative Example

The current section is intended as an illustrative and intuitive example of the ap-

proach taken towards removing environmental trends from damage sensitive moni-

tored variables in this work. In essence, the following section describes how cointe-

gration can be utilised for SHM; any formal reference to the cointegration procedure

is, however, left to later sections. To begin, the dynamic response of a ten degree of
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Figure 6.1: Simulated 10 degree of freedom lumped mass model
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Figure 6.2: Extracted natural frequencies of the simulated system

freedom system, shown in Figure 6.1, to a random excitation is simulated.

To imitate a dependency on environmental conditions and introduce nonstationar-

ity to the dynamic response of the system, the spring stiffnesses were allowed to

vary with time. A simulated temperature field was then added with the highest

temperature at the first mass and affecting the subsequent masses successively less.

Each stiffness was set as a linearly decreasing function of temperature, and over

the duration of the simulation this temperature was steadily decreased. To serve

as damage sensitive features, the natural frequencies of the system were extracted

by solving the eigenvalue problem at each time instant in the simulation as shown

in Figure 6.2, a small amount of Gaussian noise has also been added to simulate

instrument noise.

In their current state, each natural frequency is dependent on temperature and there-

fore less than ideal as a choice for a damage sensitive feature to monitor. However,

as each frequency here is driven by the same temperature field, the correct param-

eter choice for a simple linear combination of a number of the frequencies would

result in a stationary residual, purged of any dependence on that temperature field.
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In this example, the first two natural frequencies are combined as follows;

αω1 + βω2 = ε, (6.1)

where ωi denotes the ith natural frequency, ε the residual sequence and α, β are

constants to be determined. On the correct choice of the parameters α, β the residual

sequence will become stationary, as shown in Figure 6.3 for this example. Now,

regardless of the temperature, this residual will continue to be stationary all the time

the system is operating in its normal condition. Upon the occurrence of an event

that changes the relationship between the variables included in the combination

the residual will become nonstationary. In other words, the residual sequence will

become nonstationary if the system begins to operate outside of its normal condition.

For structural health monitoring, then, the residual sequence seems a sensible choice

for a damage sensitive feature.

For the current example, it remains to test the created stationary residual’s sen-

sitivity to damage. In order to do this, the system was re-simulated, again with

temperature variation but with a different excitation sample; in this case, the sec-

ond spring stiffness was abruptly reduced to 50% of the healthy value mid-way

through the simulation. Figure 6.4 illustrates the projection of the newly simulated

features onto the established combination (6.1). Clearly the residual becomes non-

stationary at the midway point, corresponding to the introduction of damage to the

system. The upper and lower limits are computed from the undamaged residual

and represent the mean plus or minus three standard deviations. This plot is es-

sentially a Statistical Process Control (SPC) ‘X-chart’ [86], which clearly indicates

that damage has occurred shortly after the mid-point of the time record.

As mentioned previously, the point of this example has been to illustrate the sug-

gested approach in this work to removing unwanted environmental trends from

damage sensitive features. The problem has been reduced to finding the correct

parameters with which to combine the nonstationary variables into one stationary

residual sequence. This approach, however, is evidently only valid for variables that

share common trends that can be removed by a linear combination of the original

variables. From econometrics, this is in fact the definition of cointegrated variables;

one can therefore draw on the considerable and sophisticated research carried out in

that field to discover the best way to approach the problem of finding the parameters

that will create the most stationary residual sequence.
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Figure 6.3: Stationary residual created from equation (6.1)
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Figure 6.4: Residual sequence of the natural frequencies in the ‘damaged’
case



6.3. THE THEORY OF COINTEGRATION 85

6.3 The theory of cointegration

6.3.1 Overview

The current section aims to introduce the concept of cointegration in a more rig-

orous manner than attempted in the previous two sections of this chapter. All of

the following theory is known from the econometrics literature; however, it is con-

sidered useful here to present it in a form tailored to structural dynamicists and

in appropriate notation. In the following some familiarity with auto-regressive and

vector auto-regressive models is assumed, however, Appendix B provides a short

introduction to the points considered important. As noted above, this section draws

from a number of key texts from the econometrics literature [91–94], which may be

referred to for a more mathematically rigorous treatment of the material. Here, to

begin, a simple definition of cointegration is introduced.

Definition 1. Two or more nonstationary time series are cointegrated if a linear

combination of them is stationary.

In the following equation, where the nonstationary time series are modelled as a

vector-autoregressive process (VAR) {yi}, the series are cointegrated if a vector

{β} exists such that zi is stationary, where

zi = {β}T{yi}. (6.2)

If this is the case, {β}T is called a cointegrating vector. If {yi} includes a total of n

variables, there may be as many as n−1 linearly independent cointegrating vectors.

Clearly for the time series to be cointegrated they must have shared/common trends

to begin with. There is one further restriction, which is that all times series must

be integrated of the same order.

Definition 2. If a nonstationary process variable y becomes stationary after differ-

encing d times, it is said to be integrated of order d, which is denoted y ∼ I(d).

In other words, the time series must have the same ‘degree of nonstationarity’ if

they are cointegrated.

For the purposes of structural health monitoring the intent would be to use mon-
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itored variables that are cointegrated and find the cointegrating vector to create a

stationary residual sequence for damage detection. From an engineering point of

view, monitored variables from the same process or system are more than likely to

share common trends on account that each process variable will be driven by the

same latent influences. This cannot be said, however, of the order of integration of

each monitored variable, this must be ascertained before any attempt is made to

find the cointegrating vector.

The order of integration of a time series is ascertained in econometrics by employing

a stationarity test, which is often analogous to testing for a unit root in a time series

model. The stationarity test employed here is called the Augmented Dickey-Fuller

test and will be described later in this section.

Once it has been ascertained to what order all process variables of interest are

integrated to, it remains to find the cointegrating vector that will result in the

most stationary combination of the variables. There are two common approaches

to this problem in econometrics; the first is the Engle-Granger two step estimation

procedure [95] often employed when there are only two process variables included in

the analysis, the second is the Johansen procedure [96], a more complex maximum

likelihood multivariate estimation procedure. Due to its increased sophistication the

Johansen procedure will be employed here, its sometimes complex mathematics will

be described, but a summary of the process will also be provided for quick reference.

6.3.2 The Augmented Dickey Fuller Test

The first step is to test that all variables under consideration are integrated of the

same order, this is achieved by the Augmented Dickey Fuller test [97, 98]. Like many

econometric stationarity tests, the Augmented Dickey Fuller (ADF) test is based on

a unit root test for a time series model. If a time series model has a characteristic

root on the unit circle it will be inherently nonstationary. In this work only real

valued roots will be considered (see Figure 6.5). The idea is perhaps best illustrated

by looking at a first-order auto-regressive model AR(1), which takes the form

yi = a1yi−1 + εi (6.3)

where εi can be considered to be a Gaussian white noise process. In this case, the
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Figure 6.5: The unit circle, with real unit roots highlighted

value of a1 defines the root of the characteristic equation of the process (see Appendix

B for more details). The roots of the characteristic equation of any process determine

its stability and therefore its stationarity. In this example, the process yi will be

stationary if a1 is less than one in magnitude and nonstationary if it is larger or

equal to one in magnitude. In the case that a1 is equal to one, the process will have

a unit-root, and equation (6.3) becomes

yi = yi−1 + εi =⇒ △yi = εi (6.4)

The process will be nonstationary but its first difference will be stationary, in econo-

metrics terminology it will be integrated order one, denoted yi ∼ I(1).

When fitting a process to an AR(1) model then, information on the stationarity of

the process is obtained from the parameters defining the characteristic root. This is

normally achieved by testing a null hypothesis of a1 = 1. The most obvious way of

going about this would be to carry out a t-test on the parameter a1, however, under

the assumption of nonstationarity, the least-squares estimate of the parameter will

not be distributed around unity. Rather than carrying out a traditional t-test, the

t-test statistic will normally be compared with critical values constructed by Dickey

and Fuller, found in [97].

The Augmented Dickey Fuller test follows the same premise as described above but

involves fitting the data to a more complex time series model as described by the

following equation:
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△yi = ρyi−1 +

p−1∑
j=1

bj△yi−j + εi (6.5)

Here the difference operator △ is defined as △yi−j = yi−j − yi−j−1. A suitable

number of lags p should be included to insure that εi becomes a white noise process

[99]. To convert from the more traditional AR(p) model to the model form (6.5),

the following substitutions should be made; let a1 = 1+ ρ+ b1, an = −bn−1+ bn, for

n = 2 . . . p− 1, and ap = −bp−1, where aj are the AR model coefficients.

Using these substitutions the characteristic equation of (6.5) can readily be obtained

from the characteristic equation of an AR(p) process as

1− λ−1 − ρλ−1 −
p−1∑
j=1

bj(1− λ−1)λ−j = 0, (6.6)

where the λ are the roots of the characteristic equation. With this more complex

form of time series model there could be as many as p independent roots. As an

explosive process would be obvious to the analyst from the outset, the scenarios

that remain of interest here are those where all roots are smaller than or equal to

unity. If at least one root of the characteristic equation is unity, it follows from (6.6)

that ρ must equal zero. Assume for the moment that there is a single unit root and

consider the remaining (p − 1) roots of the characteristic equation. With ρ = 0,

equation (6.6) becomes

(
1− λ−1

)(
1−

p−1∑
j=1

bjλ
−j

)
= 0

⇒ 1−
p−1∑
j=1

bjλ
−j = 0

(6.7)

It is clear that if yi has a one unit root, all remaining roots are smaller in magnitude

than one. Furthermore, on closer inspection, (6.7) is the characteristic equation of

the AR process of the differenced time series:
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△yi =

p−1∑
j=1

bj△yi−j + εi (6.8)

As equation (6.7) must have all roots smaller than one in magnitude, the first

difference ∆yi must be stationary. If yi is nonstationary, but its first difference

is stationary, as in the case above, the process is integrated order one.

To summarise, for yi to be integrated of order one it is necessary that ρ = 0 in

equation (6.5). The ADF test procedure is therefore to estimate the parameters in

(6.5) by least-squares methods and then test the null hypothesis ρ = 0. The test

statistic

tρ =
ρ̂

σρ

(6.9)

where ρ̂ is the least squares estimate of ρ, and σρ the variance of the parameter

should be compared with the critical values from the Dickey-Fuller (DF) tables

(which are available in [92]). The hypothesis is rejected at level α if tρ < tα. If the

hypothesis is accepted, the time series has a unit root and is I(1). If the hypothesis

is rejected, the test is repeated for △yi, if the hypothesis is then accepted yi is an

I(2) nonstationary sequence. This can be continued until the integrated order of the

time series is ascertained.

Additional hypotheses and test statistics are needed if the model form used is ex-

tended to include shifts or deterministic trends (or both). For the extended time

series model form

△yi = ρyi−1 +

p−1∑
j=1

bj△yi−j + µ+ νt+ εi, (6.10)

the null hypothesis for the time series to be integrated order one should be extended

to include µ, ν = 0. More details for these specific cases can be found in [92, 98].

Having ascertained the degree of nonstationarity of each process variable of interest,

an attempt to create a stationary residual through combination of those variables

integrated to the same order can be made. The Johansen procedure is outlined

below for this purpose.
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6.3.3 The Johansen Procedure

The Johansen procedure is traditionally used to test if a number of I(1) economic

variables are cointegrated, and if they are, to establish the number of independent

cointegrating vectors and also determine which of the cointegrating vectors will

create the most stationary linear combination of the variables in question. For

completeness, the majority of the theory behind the procedure will be laid out here,

although the real interest to SHM practitioners will most likely be in how to find

the best cointegrating vector for a given set of monitored variables.

The premise of the Johansen procedure is to use a maximum likelihood approach

to estimate the parameters of a Vector Error-Correction Model (VECM) of the

variables under consideration. A VECM takes the form

{△yi} = [Π] {yi−1}+
p−1∑
j=1

[Bj] {△yi−j}+ [ϕ] {D(t)}+ {εi}, (6.11)

where {yi} denotes an n-vector including all n variables to be analysed, with the

subscript i relating to time, i = 1, . . . N , p represents the model order, or the number

of lags to be included in the model, and {εi} is a normally distributed noise process;

{εi} ∼ N(0, [Σ]). A term to describe a deterministic trend {D (t)} has also been

included. Equation (6.11) is the multivariate analogue of equation (6.5).

Error-correction models are common in econometrics and are closely linked with the

idea of cointegration. In fact, the existence of an error-correction model implies that

the included variables are cointegrated and vice-versa, this is called the Granger

Representation Theorem [95]. If a true error correction model exists (i.e. where

{εi} ∼ N(0, [Σ])), the parameters in [Π] would describe the long-run equilibrium

between variables, and the parameters [Bj] would account for short run adjustments

needed to return the process to equilibrium after any drifts.

The Johansen procedure uses the maximum likelihood of observing the correct {εi}
to estimate the parameters [Π] , [Bj] , [ϕ]. A summary of the necessary points for

calculation of the best cointegrating vector will be provided at the end of this section.

The derivations of these points are provided below.

Under the assumption that (6.11) is a true error correction model and that the
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variables under consideration are I(1) (which implies that {△yi} and {△yi−j} are

stationary) the parameter matrix [Π] must be rank-deficient, say of rank r (r < n),

and can therefore be decomposed into two matrices;

[Π] = [α] [β]T (6.12)

where [α] and [β] are both n × r matrices. From basic linear algebra theory, the r

rows of [β]T will span the row space of [Π]. Now as the original matrix [Π] described

the long-run equilibrium relations between the variables, [β] can be taken as the

desired cointegrating vector to be found.

As previously indicated, parameter estimation is achieved by maximising the like-

lihood of observing the correct {εi}. If {εi} ∼ N (0, [Σ]), its probability density

function will be

p ({εi}) =
1√

(2πn) |Σ|
exp

(
−1

2
{εi}T [Σ]−1{εi}

)
(6.13)

where |Σ| is the determinant of the estimated covariance of {εi}. It follows that the
likelihood of observing the entire correct sequence of {εi} will equal

∏N
i=1 p({εi}).

On closer inspection of (6.13), each individual term is bounded above by the frac-

tional term preceding the exponent, therefore the likelihood function is bounded

above by ((2π)n |Σ|)−
N
2 , and so

LMAX = ((2π)n |Σ|)−
N
2 (6.14)

In other words, the maximum likelihood parameter estimates will correspond to the

parameters that maximise |Σ|. This point will be returned to later, however, for

now, the effort will be focused on manipulating the maximised likelihood function

in order to express all parameter estimates in terms of [β]. Before going any further

however, following [91], some new notation will be introduced to simplify the VECM

expression (6.11).

Let

• {z0i} = {∆yi},
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• {z1i} = {yi−1}

• {z2i} = {{∆yi−1}
T , {∆yi−2}

T , . . . , {∆yi−p}
T , {D}T},T and

• [Ψ] = [[B1] , [B2] , . . . , [Bp−1] , [ϕ]],

then (6.11) will take on the simplified form:

{z0i} = [Π] {z1i}+ [Ψ] {z2i}+ {εi} (6.15)

Referring to this simplified form the log likelihood function L, where L (−) =

lnL(−), is first used to estimate [Ψ] by calculating

∂L

∂[Ψ]
= 0 (6.16)

After the necessary matrix calculus and some careful rearrangement, the estimate

for [Ψ] can expressed as

[
Ψ̂
]
= [M02] [M22]

−1 − [α] [β]T [M12] [M22]
−1 (6.17)

where [Mnm] are product moment matrices defined by

[Mmn] =
1

N

N∑
i=1

{zmi} {zni}T m,n = 0, 1, 2. (6.18)

Substituting (6.17) back into equation (6.15), {εi} may now be expressed as

{εi} = {z0i}−[α][β]T{z1i}−[M02] [M22]
−1 {z2i}+[α] [β]T [M12] [M22]

−1 {z2i} . (6.19)

This expression can be further simplified by defining the residuals {R0i} and {R1i}
from the following regressions;
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{z0i} = [C1] {z2i}+ {R0i}

{z1i} = [C2] {z2i}+ {R1i}
(6.20)

where the coefficient matrices are found by ordinary least-squares; [C1] = [M02] [M22]
−1,

[C2] = [M12] [M22]
−1. Finally, equation 6.19 becomes

{εi} = {R0i} − [α] [β]T {R1i} (6.21)

{εi} has now been expressed in terms of the residuals of regressions of {z0i} and {z1i}
on {z2i}, and [α] , [β], which are still to be found. To use econometrics terminology,

the term
[
Ψ̂
]
{z2i} has been ‘concentrated out’.

It now remains to find the maximum likelihood estimates of [α] and [Σ] in terms of

[β]. Assuming a fixed [β], these are found to be

[α̂] = [S01] [β]
(
[β]T [S11] [β]

)−1

(6.22)

[
Σ̂
]
= [S00]− [S01] [β]

(
[β]T [S11] [β]

)−1

[β]T [S10] (6.23)

where similarly to equation (6.18), [Snm] are product moment matrices defined by

[Smn] =
1

N

N∑
i=1

{Rmi} {Rni}T m,n = 0, 1. (6.24)

All free parameters of {εi} have now been expressed in terms of [β], which is still to

be estimated. The estimation of [β] is achieved using the previously ascertained fact

that the maximum likelihood parameter estimates will correspond to the parameters

that maximise |Σ| (equation (6.14)). From equation (6.23) then, the maximum

likelihood estimate of [β] corresponds to the [β] which maximises

|Σ| =
∣∣∣∣[S00]− [S01] [β]

(
[β]T [S11] [β]

)−1

[β]T [S10]

∣∣∣∣ . (6.25)
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Using a matrix lemma from [91], this can be re-expressed as

|Σ|=
|[S00]| .

∣∣∣[β]T ([S11]− [S10] [S00]
−1 [S01]

)
[β]
∣∣∣∣∣∣[β]T [S11] [β]

∣∣∣ (6.26)

Now, since [S00] is fixed, |Σ| is maximised by maximising

∣∣∣[β]T [M ] [β]
∣∣∣∣∣∣[β]T [N ] [β]
∣∣∣ (6.27)

where [M ] = [S11] − [S10] [S00]
−1 [S01], [N ] = [S11]. Utilising a second lemma from

[91] (Lemma A.8), for [M ], [N ] symmetric and positive definite, the ratio (6.27)

is maximised by [β̂] = ({v1} , {v2} , . . . , {vr}), with the maximal value equal to∏r
i=1 λi, where {vi} and λi are the solutions of the generalised eigenvalue problem

(λ [N ]− [M ]) {v} = 0. (6.28)

From the same lemma, any [NS][β̂]
T
can be chosen as the maximising argument of

(6.28), where [NS] is any non-singular r × r matrix. This allows normalisation of

the cointegrating vectors found.

By substituting the relevant [M ] and [N ] into (6.28) the final generalised eigenvalue

problem to be solved is

(
λi

′ [S11]− [S10][S00]
−1[S01]

)
{vi} = 0 (6.29)

where λi = 1−λi
′. It is also interesting to note that with appropriate normalisation

{vi} [S11] {vj} = δij. With this appropriate normalisation for [β̂] the following hold

true;

[β̂]
T
[S11] [β̂] = [I] (6.30)

and
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[β]T [S10] [S00]
−1 [S01] [β] = diag(λ1, . . . , λr). (6.31)

Upon solving equation (6.29), the relevant cointegrating vectors are found. It turns

out that the choice for the ‘best’ cointegrating vector corresponds to the largest

eigenvalue of (6.29). The eigenvalues λi measure how strongly the cointegrated

relation correlates with the stationary part of the process. The larger the eigenvalue,

the ‘more stationary’ the cointegrated relation.

6.3.4 The Johansen test statistic

Upon solving the eigenvalue problem (6.29) the required cointegrating vector has

been found. The final step, however, is Johansen’s test for cointegration. For econo-

metricians, this test is the key point to the procedure, as it is that which verifies

whether the variables under consideration are in fact cointegrated or not. From

an engineering perspective, the relationships between a set of monitored variables

are often much better understood, which means that the question of whether they

are cointegrated or not is less important than the one of, ‘will the residual created

stay within a set of limits whilst in normal condition’ or not, which can more often

than not be verified visually. Having said that it is always useful to have a way to

quantify and clarify any analysis carried out.

Johansen’s test for cointegration, then, depends upon the rank of the matrix [Π] in

equation (6.11). Recall that, for I(1) variables, the matrix [Π] in (6.11) is required

to be rank deficient if the error correction model is to hold true. If [Π] has full

rank the I(1) variables cannot be cointegrated. Therefore, a test for cointegration

can be based on the rank of [Π]. Johansen’s approach to this is to use a likelihood

ratio test where the hypothesis H(r), of [Π] having rank r is tested against the

hypothesis H(n), of [Π] having full rank. Recall from (6.14) that the maximised

likelihood depends on the estimated covariance matrix of the error residual in the

error correction model. Using relations (6.30) and (6.31), and the lemma (A8) from

[91], (6.14) can be re-expressed as
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(2π)−nL− 2
N

MAX = |Σ|MAX

= |[S00]|
r∏

i=1

(1− λi)
′

(6.32)

The likelihood ratio test, Q, then takes the form

Q(H(r)|H(n)) =
|Σ(βrank=r)|
|Σ(βrank=n)|

=
L− 2

N

MAX(rank=r)

L− 2
N

MAX(rank=n)

=

∏r
i=1(λ

′
i + 1)∏n

i=1(λ
′
i + 1)

(6.33)

This leads directly to the ‘trace statistic’, λtrace, used to test the hypothesis that

there are at most r cointegrating vectors.

λtrace = 2 logQ(H(r)|H(n)) = −N

n∑
i=r+1

log(1− λ′
i) (6.34)

The asymptotic distribution of this test statistic depends on the type of deterministic

trend in the model (6.11). The relevant table with critical values can be found in

[91].

Juselius [94] recommends using the trace test statistic in the following way; to begin

the hypothesis of r = 0 is tested against one of [Π] having full rank. If the test

statistic is smaller than the relevant critical value accept the hypothesis of r = 0,

i.e. no cointegration. If it is larger, reject the hypothesis and move on to test r = 1.

In general, if the test statistic is larger than the relevant critical value, one should

reject that there are as few as r cointegrating vectors, and move on to test the next

largest possible rank r. In this way, the hypothesis of r=0 up to r=n (i.e. full rank)

is tested.

This concludes the cointegration theory section. The next section provides a sum-

mary of this theory which omits any derivation, and only includes the steps needed
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if one were to implement the cointegration test procedure for SHM purposes.

6.4 Summary of the cointegration process for SHM

The previous sections have outlined the sometimes complex mathematics around the

theory of cointegration. For the purposes of this work, the Johansen procedure is

used to find the most stationary linear combination of a set of monitored variables.

Although many steps are necessary in the derivation of the Johansen procedure, as

outlined in the preceding section, its application to the kinds of problem in question

can be achieved in just a small number of steps. The procedure and application of

cointegration for the creation of damage sensitive features independent of the effects

of the environmental and operational conditions is summarised below.

1. The suitability of the monitored variables to application of the cointegration

process should first be assessed. To be included in the analysis each monitored

variables should be integrated of the same order, in other words they should

have the same ‘degree’ of nonstationarity. Furthermore, for application of the

Johansen procedure, each monitored variable should be integrated order one ∼
I(1), i.e. a nonstationary variable with first difference stationary. Information

of this kind is obtained by an ADF test on each variable. To carry out an

ADF test:

(a) Fit each variable in question to the following time series model using a

least-squares approach.

△yi = ρyi−1 +

p−1∑
j=1

bj△yi−j + εi (6.35)

where the difference operator △ is defined as △yi−j = yi−j − yi−j−1. A

suitable number of lags p should be included to insure that εi becomes a

white noise process ([99]).

(b) The least-squares estimate of the parameter ρ is used to infer the degree of

nonstationarity of the variable. If ρ is statistically close to zero the process

will be nonstationary and integrated order one. The null hypothesis of

ρ = 0 is tested by comparing the value of the test statistic;
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tρ =
ρ̂

σρ

(6.36)

where ρ̂ is the least squares estimate of ρ, and σρ the variance of the

parameter, with the critical values from the Dickey-Fuller (DF) tables (see

[92]). The hypothesis is rejected at level α if tρ < tα. If the hypothesis

is accepted, the time series has a unit root and is I(1). If the hypothesis

is rejected, the test should be repeated for △yi, if the hypothesis is then

accepted yi is an I(2) nonstationary sequence. This can be continued

until the integrated order of the time series is ascertained. Additional

hypotheses and test statistics are needed if the model form needs to be

extended to include shifts or deterministic trends (or both).

2. The Johansen procedure can now be applied to monitored variables found to be

integrated order one. If the variables are cointegrated the Johansen procedure

will find the linear combinations of them that will result in a stationary residual

sequence purged of the common trends shared in the variable set.

(a) Fit the variables in question to a vector auto-regressive model:

{yi} = [A1] {yi−1}+ [A2] {yi−2}+ · · ·+ [Ap] {yi−p}+ {εi} (6.37)

and determine for those variables the most suitable model order p using

the AIC criterion or similar (See for example [100]).

(b) The best linear combination of the variables, or cointegrating vectors, is

found as the parameter [β] in the vector error correction model (VECM)

of the variable set which takes the form:

{z0i} = [α][β]T{z1i}+ [Ψ]{z2i}+ {εi} (6.38)

Where {z0i} = {∆yi}, {z1i} = {yi−1},
{z2i} = {{∆yi−1}

T , {∆yi−2}
T , . . . , {∆yi−p}

T , {D}T}T , p is model order

ascertained previously in (a) and {D (t)} is a deterministic trend.

To find [β], the cointegrating vector, first establish the residuals {R0i}
and {R1i} of the following regressions:
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{z0i} = [C1] {z2i}+ {R0i}

{z1i} = [C2] {z2i}+ {R1i}
(6.39)

(c) Next, define the product moment matrices:

[Smn] =
1

N

N∑
i=1

{Rmi} {Rni}T m,n = 0, 1. (6.40)

Now, the required cointegrating vectors are found as the eigenvectors of

the generalised eigenvalue problem:

(
λi

′ [S11]− [S10][S00]
−1[S01]

)
{vi} = 0 (6.41)

The cointegrating vector that will result in the most stationary combina-

tion of the original variables will be the eigenvector with the correspond-

ing largest eigenvalue.

3. Once a suitable cointegrating vector has been found, new data from the mon-

itored variables should be projected onto it. If the cointegrating vector was

established on data from the normal condition of the structure, the residual

sequence from the linear combination will continue to be stationary all the

time the structure continues to operate in its normal condition. The resid-

ual sequence should therefore be continually monitored and deviations from

stationarity taken to indicate a deviation from the normal condition of the

structure.

4. Finally a trace test can be carried out to indicate the number of cointegrating

vectors possible for a set of variables. To test the hypothesis that there are at

most r cointegrating vectors, the trace test statistic is used;

λtrace = 2logQ (H (r) | H (n)) = −N
n∑

i=r+1

log(1− λ′
i) (6.42)

Normal procedure is to first test the hypothesis of r=0 (no cointegration). If
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the test statistic is smaller than the relevant critical value accept the hypothesis

of r=0. If it is larger, reject the hypothesis and move on to test r=1. In general,

if the test statistic is larger than the relevant critical value, one should reject

that there are as few as r cointegrating vectors, and move on to test the next

largest possible rank r. In this way, the hypothesis of r=0 up to r=n (i.e. full

rank) is tested.

When employing the steps described above in coded form the choices made by an

operator are very small in number. A range of model orders (number of lags in

(6.37)) under investigation should be specified, although proper use of model fitness

measures such as the AIC criterion will allow one to check that a suitable model order

has been found. Another choice that arises concerns the selection of the significance

level employed when using the ADF test statistic. The final and most important

choice available to one wishing to implement the above steps is the selection of the

training period on which the cointegrating vectors will be established. The training

data should come from a period where confidence is high that the structural response

is normal.

6.5 Conclusions

In this chapter the, sometimes complex, theory of cointegration from the field of

econometrics has been introduced. The concept for its use for SHM is to exploit

the cointegrated property of nonstationary damage sensitive features in order to

find a stationary linear combination of them. A stationary linear combination of

cointegrated variables can be found using the Johansen procedure and if this is

achievable using feature data from a structure operating in its normal condition, the

stationarity of the linear combination can then be used as an indicator of structural

condition. If the way feature variables interrelate change, as might be expected if

damage had been introduced to the structure, the cointegrated linear combination

will become nonstationary. In the next chapter this theory is applied to data from

the Tamar monitoring campaign. Chapter 7 also includes a discussion of why some

of the econometric theory described in this chapter is applicable to engineering data.



Chapter 7

Applying cointegration for the

data normalisation problem

The previous chapter introduced how the concept of cointegration could be used

to remove environmental and operational trends from data. This chapter begins

with some general discussion about why cointegration is applicable to engineering

data, the chapter then concludes with the application of the theory to data from

the Tamar monitoring campaign.

In the following discussion the author will argue that measured responses from

healthy structures exhibit nonstationary behaviour over relatively short time peri-

ods, but should generally be stationary in the long term. As one would wish to detect

any occurrence of structural degradation swiftly, these shorter time periods are of

great interest to SHM. The discussion below will argue that such nonstationarity

exhibited by structural response variables may be well represented by econometric

theory, which models nonstationarity with unit root processes or with a determin-

istic time trend (or both). While under the time periods of interest such models of

nonstationarity are valid, and therefore, too, the applied theory of cointegration in

the previous chapter, the acceptance of a unit root generating process for a struc-

tural response is not a comfortable one. The author will argue that so long as the

econometric models fit the data well, the philosophical question of whether a unit

root assumption is valid is not really of interest. Indeed, to the engineer, so long as

the combination of variables found via the Johansen procedure, or any other coin-

tegrating method, does the job of removing confounding influences, the underlying

101
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assumptions of the process used to arrive at this combination may not be of any

interest. None the less, a good understanding of such assumptions may help to avoid

any suboptimal use of the sophisticated theory introduced in the previous chapter.

7.1 The assumptions behind cointegration applied

to engineering data

In this thesis the idea of cointegration has been adopted from econometrics for the

purposes of removing environmental and operational trends in damage sensitive fea-

tures. The theory presented in the previous chapter assumed that the variables of

interest were nonstationary and, for the Johansen procedure, integrated of order

one (i.e. a unit root process). This section aims to discuss whether the unit root as-

sumption is valid in the context of an engineering application and whether structural

response can be nonstationary in the long term.

A nonstationary time series is defined as one whose statistics change with time. A

weakly stationary process has constant mean and variance, and an autocovariance

that depends only on the lag length considered. In the presence of nonstationarity

standard regression techniques and inferences made on such regressions have been

found to be unreliable, and since Yule’s seminal paper [101], much research has been

carried out on nonstationary processes.

Of the variables of interest to SHM, many of them appear to exhibit nonstationarity,

some examples of which have already been introduced in the thesis. The most

relevant example to this chapter is the easterly displacement of the deck at hangar

44 of the Tamar bridge, plotted in Figure 7.1. Studying Figure 7.1, the time series

certainly appears nonstationary over the time of available measurements.

To an engineer, when considering a dynamic response the usual modelling approach

would be to employ the classic second order differential equation of motion. The

nonstationarity of a response is then explained by the changing physical parameters

such as mass and stiffness, or a change in the nature of the excitation. In the con-

text of applying cointegration theory, the interest is in modelling the entire process

(response) with fixed parameters that cannot change. For this task, the most com-

fortable way of thinking about a structural response is probably as a function of a

number of external conditions which are themselves fluctuating. One might expect
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Figure 7.1: Change of easterly deck deflection over a number of months

that if all external conditions could be accounted for, a structural response would

be stationary around the trends introduced by these external conditions (indeed,

this assumption is implicit to the regression applied in Chapter 4). Unfortunately,

it may be very infeasible to account for all external conditions driving the response

of a structure, as it certainly is in the field of econometrics where relations between

variables of interest are uncertain. This is where an AR type model can be useful

and why they are regularly applied to econometric time series, as one no longer needs

information about each driving factor to be able to describe a dynamic process. The

cointegration theory in the previous chapter was developed in the context of such

models, and so to utilise this theory one must adopt them too.

In the theory described in the previous chapter, an error correction model was used

to model a process variable, yi of interest:

△yi = ρyi−1 +

p−1∑
j=1

bj△yi−j + µ+ νt+ εi, (7.1)

When considering such models, nonstationarity of a time series can be prescribed to

two different mechanisms; either a deterministic trend νt or a unit root. Where a
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deterministic trend is the cause of nonstationarity, econometricians refer to the time

series as a trend stationary process; fluctuations around this deterministic trend are

stationary in nature. Where a unit root is the cause of nonstationarity, the time

series is referred to as difference stationary processes, due to the fact that difference

operations will render the series stationary.

Now considering structural response variables that exhibit nonstationarity, any term

in a descriptive model that continually increases or decreases in time is unlikely to

mimic the behaviour of a stable structural response. This implies that to continue

using an autoregressive type model, the nonstationarity of the variable must be

described by a unit root process.

Many debates surround the idea of unit root modelling and its suitability to real life

applications, within and outside economics (for example, there is currently much

debate around using unit root processes to model the Earth’s temperature change

(see for example [102–104])). The idea of a variance that increases with time, which

is inherent to a unit root process, certainly sits uncomfortably when considering a

structural response over time. However, while it may be that unit root processes do

not ideally suit the dynamics of a structural response, the framework in which the

cointegration theory has been borrowed from has been established on these types of

models, and for the present it seems sensible to utilise what developed theory one

can. If the ECM model structure can describe the variables of interest in SHM well

enough, then the philosophical question on unit roots becomes unimportant, and

the theory in the previous section can be applied without further ado. As, for the

present, the interest is not in accurate forecasting of a structural response variable

a potential model misspecification is less important.

For the purposes of utilising the cointegration theory, the author suggests that so

long as the variables of interest to an engineer follow a similar behaviour to a unit

root process over a given time interval, then the theory described in the previous

chapter is applicable. In this case, the theory can happily be applied to process

variables which are nonstationary with first difference stationary, which at the very

least may be roughly checked visually with ease.

Returning to the previous example, the first difference of the easterly deck displace-

ments are plotted in Figure 7.2. Studying this figure it is clear that the first differ-

ence is a stationary process. As the variable is nonstationary with first difference

stationary, the Johansen procedure is applicable.
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Figure 7.2: First difference of easterly deck displacements as plotted in
Figure 7.1

The author believes that, although SHM variables may exhibit nonstationary be-

haviour over observable windows, in the nature of engineering, these response vari-

ables should be stationary when considering long periods of time. By design, en-

gineering variables from stable healthy structures should be describable by a long

run mean and a variance. In the long term one can therefore describe them as sta-

tionary, which enables one to use the regression techniques applied in Chapter 4,

for example. The interests of SHM, however, are focused on response variables over

shorter time periods, as any useful detection of structural degradation should be

swift. One must therefore rely upon nonstationary theory and, in this work, cointe-

gration. In the circumstance where a set of variables of interest include stationary

and nonstationary measurements, the inclusion of the stationary variables doesn’t

invalidate the Johansen Procedure.
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7.2 Application of cointegration to data from the

Tamar bridge

As described in previous chapters, the Vibration Engineering Section (VES) at the

University of Sheffield have, over the last few years, developed various monitoring

systems for the Tamar Suspension Bridge in Southwest England. Modal parame-

ters are automatically identified by data-driven stochastic subspace identification

(SSI); environmental and operational conditions are monitored by a large network

of sensors, and most recently, a total positioning system (TPS) has been installed to

measure reliably the movement of the bridge deck and towers. Up to three years of

dynamic, static and environmental data are now available for analysis. In the follow-

ing, areas where cointegration could be of use for the Tamar monitoring campaign

are highlighted.

One of the newest additions to the Tamar monitoring campaign is a TPS, which

uses a robotic total station (RTS) for precise monitoring of the displacement of the

bridge deck and towers (accurate to within 2 or 3mm). Figure 7.3 displays a plot of a

number of longitudinal deflections of the deck and tower measured over a time span

of just over three days (77 and half hours). From this plot the daily fluctuations in

deck and tower displacements caused by operational and environmental conditions

are obvious, but without further investigation the plot is somewhat unenlightening

and uninformative for making any judgement about the structure’s performance or

condition. However, if the variables in Figure 7.3 are cointegrated, the stationary

linear combination of the variables that can be found (via the Johansen procedure)

could be used as a measure of normality of structural response. As described in the

previous chapter, the procedure would be to find the best cointegrating vector of a

training set of data from a period where one has high confidence that the structure’s

responses are normal and representative. All new data would then be projected onto

the established linear combination, which should remain stationary all the time the

structure operates in its normal condition. In the event that the cointegrated residual

becomes nonstationary (which could be monitored with a statistical process control

(SPC) chart, see [86]) one has an indication that the way the variables interrelate

has changed, and further investigation into the cause can be carried out.

As perhaps expected from the plot, the variables in Figure 7.3 admit to a stationary

linear combination, which is shown in Figure 7.4, along with error bars at plus and
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Figure 7.3: TPS measurements of bridge displacements (Eastings) over
three days
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Figure 7.4: Cointegrated residual of variables in Figure 7.3
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minus three standard deviations of the residual added to act as an SPC control

chart. From 7.4 it is clear that the environmental or operationally induced trends

have been purged. As the data in Figure 7.3 is considered to have come from normal

operating conditions, the stationarity of the linear combination can be considered

to represent a normal operating condition.

This can be tested by looking at a longer period of displacement data; Figure 7.5

shows the same easterly displacements plotted in Figure 7.3 over a two month period

(with any gaps in the record removed), a seasonal trend is clearly visible resulting

from colder temperatures. Figure 7.6 is a plot of this data projected onto the linear

combination established on the data shown in Figure 7.3, the same error bars as

in Figure 7.4 have been added to continue to act as an SPC control chart. The

residual continues to remain stationary for the duration of the two months, which

indicates that the relationships between the considered variables remain the same.

Importantly one can clearly see that the seasonal trend visible in Figure 7.5 has

been purged, which happily demonstrates how useful cointegration may be to the

SHM community.

While the above example has demonstrated that cointegration can be used to re-

move environmental and operational variation from displacement monitoring data,

the aim is to use the residual as a condition or performance indicator, and so in

order to test this a known performance anomaly is needed. In fact, despite its age

the bridge performs so well that neither VES nor the bridge operators have found

such an anomaly during the monitoring, and so the only alternative is to fabri-

cate one. For illustrative purposes, one could manipulate the data in an attempt

to mimic/simulate a potential abnormal change in structural response and see the

effect on the trained cointegrated residual. Here, in a crude attempt to simulate

the possible effect of a loss in tension in one of the stay cables (specifically the stay

cable labelled P2 in Figure 3.6 in Chapter 3), additions are made to some of the

displacement channels of the data shown in Figure 7.5. After an arbitrary number

of data points (500 in this case), an additional 5mm was added to the longitudinal

displacements of the deck 44m away from the Saltash end of the bridge (the reflector

placed between the stay cables labelled S2 and S4 in Figure 3.6), 4mm was added to

each reading of the deflections at 62m away from the Saltash end of the bridge (the

centre of the bridge), and 3mm was added to each reading of longitudinal displace-

ment 80m away from the Saltash end of the bridge (between the stay cables labelled

P4 and P2 in Figure 3.6). The corrupted data when plotted on the same scale as



7.2. APPLICATION OF COINTEGRATION TO DATA FROM THE TAMAR
BRIDGE 109

0 500 1000 1500 2000 2500 3000
−14

−12

−10

−8

−6

−4

−2

0

2

4

6
N

or
m

al
is

ed
 e

as
te

rly
 d

is
pl

ac
em

en
ts

data point reference

 

 

Hanger 44
Hanger 62
Hanger 80
Hanger 98
Hanger 112
Hanger 123
Top of Plymouth side tower
Top of south Plymouth tower
Top of north Plymouth tower

Figure 7.5: TPS measurements of bridge displacements (Eastings) over
a two month period
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Figure 7.6: Data collected over two months projected on cointegrated
residual established in on data in Figure 7.3
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Figure 7.7: Cointegrated residual with manipulated data

in Figure 7.5 is indistinguishable from Figure 7.5, as so is not included here. The

projection of this corrupted data onto the stationary linear combination established

with the (un-tampered with) data from Figure 7.4 is shown in Figure 7.7. After 500

data points there is a clear shift in the residual, which could clearly be taken as an

indication that the bridge is no longer operating in its normal condition.

As a further example of the application of cointegration to this monitoring campaign

the natural frequencies of the deck are considered. Figure 7.8 shows a plot of the

lowest five natural frequencies recorded over the duration of one month, again op-

erational and environmentally induced trends are clearly visible. Interestingly, one

can see the long term stationarity of the natural frequencies along with the (daily)

environmental and operational trends. The aim here when applying the Johansen

procedure is to create a useful variable free of the trends visible in Figure 7.8. The

linear combination of these variables found by the Johansen procedure is plotted in

the higher plot in Figure 7.9. In this instance the Johansen procedure was trained

on the first 500 data points of the set plotted in Figure 7.8. Over the month long
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Figure 7.8: First five deck natural frequencies recorded over a one month
period

period, the linear combination is stationary, as would be expected, the daily varia-

tions are now no longer clear. As before, this stationary linear combination can be

used as a measure of normality; one would expect the linear combination to remain

stationary all the time the bridge responds in a normal condition. The lower plot in

Figure 7.9 is of new data projected onto the established cointegrating vector with

error bars at plus and minus three standard deviations of the residual during the

500 point training period. This data was collected over a period of six months al-

most a year and a half later than the data used to choose the cointegrating vector.

From observation, the residual remains fairly stationary over the 6 month period in-

dicating that relationships between the frequencies have remained constant. There

is, however, one large anomalous area in the plot, where, around data point 4000,

the deviation of the residual becomes much larger, and the error bars are exceeded

many times consecutively. This large anomaly indicates that something untoward

happened during this period of the monitoring campaign. On further investigation,

this is the anomaly encountered earlier in the thesis (see Chapter 5), which occurs

at a time when one of the accelerometers became waterlogged and was therefore

providing a corrupted signal. This event temporarily destroyed the equilibrium of

the linear combination, which in itself is testament to the method’s ability to detect

anomalous events.
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Figure 7.9: Above. Cointegrated residual of first five natural frequen-
cies plotted in Figure 7.8 (cointegrating vector established on first five
hundred points only). Below. Data from later on in the year projected
onto the same cointegrating vector.
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7.3 Conclusions

Econometricians understand nonstationarity in terms of trend stationary and differ-

ence stationary processes. This chapter has argued that although neither approach

may be philosophically suited for SHM feature variables, these feature variables do

mimic the behaviour of difference stationary processes, for which the Johansen pro-

cedure was developed for. With this in mind, no problems should arise with applying

the theory presented in the previous chapter to SHM data.

The second half of the chapter applied cointegration theory to data from the Tamar

monitoring campaign, where it was able to remove environmental and operational

trends for deck displacement and natural frequency data. The environmentally

insensitive features created were able to detect a simulated damage scenario as well

as a sensor malfunction.



Chapter 8

A comparison of cointegration

and PCA

Previously in the literature the idea of using projection of data onto the minor

components obtained in a PCA to remove unwanted environmental and operational

trends has been investigated [63]. This chapter explores the similarities and dif-

ferences between PCA and cointegration, which on the surface seem to be similar

ideas. Both approaches are investigated here in the context of data from the Brite-

Euram project DAMASCOS (BE97 4213), which was collected from a Lamb-wave

inspection of a composite panel subject to temperature variations in an environmen-

tal chamber. Original results for the application of PCA to this benchmark were

presented in [63]. This chapter is intended to build on the work covered in [63],

discussion of the results presented in this paper will be significantly expanded here,

the results gained using PCA and outlier analysis will be compared with new results

gained using cointegration.

This chapter will apply both cointegration and PCA to the Damascos data set

with the aim of removing a temperature dependent trend from damage sensitive

features. As previously described in Chapter 4, PCA projects data onto a new

set of orthogonal axes (or principal components) which are linear combinations of

the originals but ordered according to the proportion of the variance of the data

each accounts for. In the case of an undamaged structure subject to changing

environmental conditions, information on the response of a set of monitored variables

to the environmental variation will be contained within the principal components

114
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that account for significant amounts of variance in the data set [63]. The idea

explored here is to project a data set onto its minor components, i.e. those which

account for less variance in the data, and therefore discard the dimensions of the

data that carry any dependence on environmental factors. In theory, so long as

damage does not manifest as variance along an axis in the same direction as any of

the major components disregarded, the feature created using the minor components

will be insensitive to environmentally induced structural responses but still sensitive

to damage.

As in the previous chapter, when applying cointegration, the Johansen procedure is

used to find the most stationary linear combination of variables possible, which can

then be used as a univariate damage sensitive feature.

8.1 Experimental Data

The methods outlined in the previous section will be explored in this chapter in the

context of data collected from the Brite-Euram project DAMASCOS (BE97 4213),

which studied the damage detection capabilities of Lamb-wave propagation within

composite structures. The data used here comes from a Lamb-wave inspection of a

composite panel subject to temperature variations in an environmental chamber, of

which the test set up is illustrated in Figure 8.1.

Identical piezoceramic discs were bonded at the plate edges to minimise reflections

from these edges and at the mid-point of these edges to allow for greater discrimi-

nation between the direct propagating mode and its reflections from the side edges.

The plate material was Carbon Fibre Reinforced Plastic (CFRP) with a 0◦/90◦

lay-up. Fundamental symmetric (S0) and anti-symmetric (A0) Lamb-waves were

launched by driving the transmitter with a 5 cycle toneburst from a signal gener-

ator at 300kHz and 80kHz respectively. The signals resulting at the sensor were

monitored by digital storage oscilloscope then transferred to PC. Figure 8.2 shows

a typical signal in the time and frequency domains.

For this particular test, Lamb-wave signals were recorded every minute. For the first

1355 signals (a period of approximately 22 1
2
hours) the chamber temperature was

held at a constant 25◦C. The temperature within the chamber was then decreased

to 10◦C before being ramped to 30◦C over a three hour period then back to 10◦C,
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Figure 8.1: 3mm thick composite plate instrumented with piezoceramic
transmitter

again over a period of three hours. This cycling was repeated for more than three

further cycles. After approximately 41 hours (signal number 2483), the chamber

was opened, a 10mm hole was drilled in the plate between the two sensors then the

chamber was closed. This essentially means that there were three different phases

to the test: signals 1 - 1355 are from the undamaged panel held at a constant 25◦C,

signals 1356 - 2482 are from the undamaged panel with temperature cycling and

signals 2483 - 2944 are from the damaged panel with temperature cycling.

For the purposes of this work it was necessary to sub-sample the data collected from

the test described above. 50 spectral lines from the area around the peak of the

frequency spectrum, an example of which is plotted in Figure 8.2, are selected here

as an area of interest (these are lines 46-95). The feature that will be studied here,

then, is the amplitude of each of these 50 spectral lines for each of the 2944 signals

recorded in the test. A time history of these spectral line amplitudes is plotted in

Figure 8.3.

In order to understand the feature data better, preliminary outlier and principal

component analyses were carried out (see Chapter 4 for more details on PCA and

Chapter 5 for outlier analysis). For both of these a training data set was chosen

as every second data point recorded when the temperature of the plate was held

constant, in other words, taking the plate under constant temperature as the normal
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Figure 8.2: Typical Lamb-wave signal in time and frequency domains
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Figure 8.3: Time history of 50 dimensional feature

condition. For the outlier analysis the mean, x̄, and covariance matrix, S, were

calculated for the 678 training set samples. All feature samples were then in turn

designated xi and values for Di, the novelty index, were calculated using equation

(5.1). Figure 8.4 shows the results of this analysis with novelty index being plotted

on a log scale (note that novelty index of the samples in the training set are also

plotted). The horizontal dotted line represents the threshold value which is the

critical value for a 1% test of discordancy (calculated using the training data),

whilst the vertical lines separate the three regimes.

Not surprisingly, almost all of the novelty indices from samples in the constant

temperature regime are below the threshold. Meanwhile, the features from the tem-

perature cycling period and the damage set are all substantially over the threshold,

indicating an abnormal response from the plate for the majority of the testing period.

This is clearly an undesirable situation; if the outlier analysis was to be intended as

a damage detector, responses from the plate under a changing temperature would

be wrongly classified as such.

Principal component analysis is also carried out here to better understand the un-

derlying structure of the response data from the three different regimes. A plot of
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Figure 8.4: Results of outlier analysis using basic feature

the first two principal component scores is shown in Figure 8.5, where one can see

that data from the three different regimes cluster separately, with very little overlap.

The most important thing to note is that data from the undamaged response at a

constant temperature does not overlie the ‘undamaged’ data from the temperature

cycling period. The consequence of this, as for the outlier analysis carried out pre-

viously, is that a reliable damage indicator may not fabricated from the constant

temperature measurements alone.

Having now a clear view of the data, the next section will explore how the effects of

temperature can be dealt with to create a working novelty detector.

8.2 Results

Studying Figures 8.4 and 8.5 gives one insight into how badly a novelty detector

would work if the constant temperature data were considered to define the normal

condition; the temperature fluctuations lead to a false-positive detection of damage

which is very undesirable. An obvious improvement should come from including data

from the undamaged plate when the temperature was fluctuating in the training

set. Figure 8.6 shows the results of the same outlier analysis carried out in the

previous section, this time with the training data extended to include data from the

fluctuating temperature regime (training data was specifically every second data
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Figure 8.5: Plot of first two principal component scores, trained on
constant temperature data

point up to data point 2000, this includes data from just under two full cycles

of temperature fluctuation). On inspection of Figure 8.6, redefining the normal

condition to include data points from the temperature fluctuating regime of the

test has certainly decreased the discordancy of the data points from this regime,

however, some structure still remains visible in the fluctuating temperature period

and many points cross the threshold (indicated by the dashed line). In terms of

damage detection this outlier analysis would still be very inappropriate.

8.2.1 Minor principal components for removing environmen-

tal sensitivity

The projection of damage sensitive features onto their minor components is explored

here in attempt to remove temperature dependency. The method for doing this is

simply to perform a PCA on the training data and the first two sets of testing

data (from the uniform temperature period and the cycling temperature period)

and discard the higher principal components which will account for the maximum

variance in the data, which is expected to be due to the temperature variations. If

and when these three sets of data from the unfaulted plate cluster together, the data
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Figure 8.6: Results of outlier analysis using basic feature with extended
training period

from the damage testing set may then be projected into the same minor component

space.

For the basic features considered here, it was found that, by examining plots of

principal component n versus principal component n + 1, the vast majority of the

variance due to temperature change was contained in about the first 10 components.

However, in order to make sure that all three sets were overlapping, the last 10

principal components were used to form a new feature. The damage testing set

was projected into the same space and an outlier analysis was performed using this

new 10-point feature. The results shown in this section of the paper follow [63],

where the principal components are calculated using every second sample of data

recorded while the plate remained undamaged (both under stationary and cycling

temperature), the outlier analysis uses a training data set, as described previously,

of every second sample from the stationary temperature testing period. The results

are shown in Figure 8.7, where it is obvious that this is an even more effective result

than from the previous method. All of the temperature cycled, unfaulted data has

been classified as unfaulted and there does not appear to be any cyclic behaviour

to the novelty indices from this set. Also, all of the damage data is very clearly

classified as such. This is a very encouraging result considering the complex nature

of the data and also the temperature range considered. It should be noted, however,

that the data has not been standardised prior to implementing the PCA, a fact that

will be discussed further in the next section.
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Figure 8.7: Results of outlier analysis using advanced feature calculated
using minor principal components

8.2.2 Cointegration for the removal of environmental trends

The last method for creating environmentally insensitive damage detectors investi-

gated here uses cointegration. As discussed in the previous chapter, cointegration

has been developed in the context of nonstationary signals that can be described with

a unit root process. In this study, the signals are clearly of a deterministic nature as

they are driven by a temperature trend. As previously reasoned, the cointegration

theory is applicable here as the signals of interest exhibit similar behaviour to a

unit root process (i.e. stationarity of the original signals may be achieved through

differencing).

Similarly to the previous methods, cointegration requires a training set of data from

the normal condition of the undamaged structure. The Johansen procedure was

used here to linearly combine the 50 features in question with the aim of creating

a stationary residual. If a linear combination of the training data is stationary, the

common trends shared by the 50 features (i.e. the temperature induced trends) will

have been purged, any other abnormal change (such as the introduction of damage

may cause) should then cause the combination residual to become nonstationary

as long as each feature in question is not affected by the damage in a similar way.

Figure 8.8 shows the linear combination of all 50 features for the training period

chosen (data points 1000-2000, which includes 355 data points from the steady
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Figure 8.8: Cointegrated Signal over training period (linear combination
of 50 spectral lines)

temperature regime and data from almost two temperature cycles). The dashed

horizontal lines indicate plus and minus three standard deviations of the training

data and are added to act essentially as a Statistical Process Control (SPC) X-chart

([86]), if a data point is outside of this threshold it can be considered as abnormal.

Studying Figure 8.8, one can see that the Johansen procedure has successfully found

a linear combination of the 50 features in question that is stationary over the training

period, with the exception of a few points occurring around the time when the plate

began to undergo its temperature cycles. This anomaly indicates that at the time

of switching between the two test phases some more complex relationship between

the environmental conditions and the recorded signals existed; happily after the

transition period the features returned to an equilibrium quickly and are still valid

as an anomaly detector.

As the Johansen procedure has successfully created a stationary combination of

the variables from a training set it remains to project all of the rest of the data

onto this combination and study what happens when damage is introduced. The

results are shown in Figure 8.9, where the vertical lines indicate the beginning of

the temperature cycling period and the point of the introduction of damage. A

clear indication of damage is apparent when the residual becomes nonstationary

and deviates significantly outside the control chart boundaries (at plus and minus

three standard deviations of the training residual). Cointegration looks to be a very

promising approach for the data normalisation problem.



8.3. A COMPARISON OF COINTEGRATION AND PRINCIPAL
COMPONENT ANALYSIS 124

0 500 1000 1500 2000 2500 3000
−250

−200

−150

−100

−50

0

Sample Point Number

Figure 8.9: Cointegrated Signal over the whole duration of the test

Further to this result, it is interesting to note that the large anomaly visible in the

combination of the training data (see Figure 8.8) is not present in the cointegrating

combination when a subset of the 50 spectral lines is used. In this case the first

twenty spectral lines from the feature set used previously was investigated. Using

the same training period as before, the whole 20 feature data set projected on to

the linear combination found by the Johansen procedure is shown in Figure 8.10, as

before, the dotted horizontal lines indicate plus and minus three standard deviations

of the training residual, and the two vertical lines indicate the introduction of the

temperature gradient and the introduction of damage respectively. It seems that

analysing a smaller sub-set of variables has eliminated the anomaly that previously

occurred after the introduction of the temperature gradient, while the indication of

damage is still very clear. Further discussion on this anomaly will follow in the next

section.

8.3 A comparison of cointegration and principal

component analysis

Cointegration and PCA have both been shown to be successful tools for the data

normalisation problem in the previous section. As already alluded to in the intro-

duction, they are in fact regarded in the field of econometrics as being from the

same class of algorithms; both linearly combine multivariate data but by different
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Figure 8.10: Cointegrated Signal (linear combination of 20 spectral lines)

means and for different objectives. PCA, using singular-value decomposition, cre-

ates and orders new variables according to amounts of variance each accounts for in

the data, the Johansen procedure uses a maximum likelihood approach to evaluate

the stationarity of a linear combination of variables and orders variables from the

most stationary to the least (although only one cointegrating vector was used in the

analysis above, the Johansen procedure will produce as many new variables, less

one, as original variables included in the analysis). If one considers that the most

stationary variable created by the Johansen procedure will most likely account for

the least amount of variance in the data, loosely speaking, these two methods are

doing roughly the same thing, only ordering the variables differently. In this way of

thinking, the first n cointegrating vectors should be similar to the last n principal

components for some multivariate data set.

To answer the question of how similar PCA and cointegration actually are in a

mathematical way, a comparison between the set of principal components and the

set of cointegrating vectors themselves should be made. The principal components

in a PCA are (usually) computed using a singular value decomposition of the data

matrix, and as such the principal components form an orthogonal set. To understand

the properties of the cointegrating vectors produced by the Johansen procedure,

one needs to dig a little deeper into how the theory works. Recall from Chapter 6

that the Johansen procedure calculates the cointegrating vectors through solving a

generalised eigenvalue problem of the form;
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(λi[N ]− [M ]){vi} = 0 (8.1)

where {vi} is an eigenvector with corresponding eigenvalue λi, and [N ] and [M ] are

symmetric positive definite matrices. When applying the Johansen procedure, [N ]

and [M ] are generated from the input data and the desired cointegrating vectors

correspond to the eigenvectors {vi}. The properties of a generalised eigenvalue

problem dictate that, upon solving (8.1), the resulting eigenvectors (and therefore

cointegrating vectors) have an orthogonality property dictated by [N ], which is that

{vj ′}[N ]{vi} = 1 if i = j and 0 otherwise [91].

In short, the orthogonality properties of principal components and the cointegrating

vectors differ (unless the matrix [N ] is an identity matrix). This means that one

can expect to see different results from each methodology, even though the goals of

each could be viewed as being similar. To examine this, the current section provides

a short comparison between results from PCA and cointegration analysis on the

DAMASCOS data. How similar results from the two methodologies actually are,

and which is more appropriate for the application will be explored.

Within this comparison, the issue of standardising data prior to the application of

algorithms such as PCA and cointegration must be discussed. In the previous sec-

tion, following [63], principal component analysis carried out for the projection of

data onto the minor components was applied without first standardising the data.

Although very good results have been produced, it is nowadays common practice to

standardise data before attempting PCA, so as to not form principal components

biased by the size of the variables under consideration. For a complete compari-

son, in the following, PCA on both non-standardised and standardised data will be

investigated alongside the results from applying cointegration. Using cointegration

on non-standardised data is not attempted as the Johansen procedure can easily

become ill conditioned if variables of very different amplitudes are used.

In the following comparison of results, the same training period is utilised through-

out which consists of the first 2000 sample points, this training set, therefore, covers

the whole period of stationary temperature and just under two cycles of tempera-

ture fluctuation. While in the preceding sections of this work it has been common

to utilise a training set made up of every other sample from the data when apply-

ing PCA and outlier analysis, this approach is less suitable where cointegration is

concerned. In the Johansen procedure, the choice of the cointegrating vectors is in-
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formed by the fitting of a vector error correction model, which is of similar construct

to an AR model. It has been found that suboptimal cointegrating vectors are chosen

by the Johansen procedure when non-consecutive samples are used for training.

The first comparison that will be made for the DAMASCOS data is between the

50th principal component score (with and without standardisation of data) and the

cointegrated residual from the first cointegrating vector (most stationary). For the

training period described above, the 50th PC score, without prior standardisation

of data is plotted in Figure 8.11, the 50th PC score with prior standardisation of

data is plotted in Figure 8.12, finally, the cointegrated residual is shown in Figure

8.13. One could expect that the 50th principal component score, which accounts for

the smallest proportion of variance in the data would be similar to the cointegrated

residual which is created using the ‘most stationary’ cointegrating vector.

Further comparison can be made by looking at an expanded number of principal

components and cointegrating vectors. Below, multivariate outlier analyses on the

first ten cointegrated residuals and the last ten principal component scores, trained

on the same training data, will be plotted. Figure 8.14 shows the results of a

multivariate outlier analysis on the last ten principal components from the PCA

carried out on the non-standardised data, Figure 8.15 shows the same with the

PCA applied to standardised data, lastly, Figure 8.16 shows the results of an outlier

analysis on the residuals created from the first ten cointegrating vectors.

From Figures 8.11, 8.12 and 8.13, one can see immediately that all three approaches

have produced different results. Notably, standardising data prior to applying PCA

has produced significantly different results to those where standardising has not

been used. Where data has not been standardised, Figure 8.11, the score appears

to be Gaussian before the introduction of damage, upon which the error bars of

the control chart are exceeded. The 50th principal component score from the stan-

dardised data, Figure 8.12, also clearly indicates the introduction of damage, on

close inspection, however, the score exceeds the control chart limits during the tem-

perature fluctuation period before damage is introduced. Lastly, the cointegrated

residual in Figure 8.13 remains within the control chart limits for the duration of the

test until the introduction of damage (with one exception), where it clearly becomes

nonstationary. As found previously, the cointegrated residual spikes at a time when

the temperature regime was changed from stationary to cyclic.

Studying Figures 8.14, 8.15 and 8.16, one can see again that the three approaches
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Figure 8.11: 50th Principal Component Score, PCA applied to non-
standardised data
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Figure 8.12: 50th Principal Component Score, PCA applied to stan-
dardised data
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Figure 8.13: Cointegrated residual (corresponding to first cointegrating
vector)
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Figure 8.14: Multivariate outlier analyses of the last ten principal com-
ponent scores, PCA applied to non-standardised data
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Figure 8.15: Multivariate outlier analyses of the last ten principal com-
ponent scores, PCA applied to standardised data
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Figure 8.16: Multivariate outlier analyses of the first ten cointegrating
vectors
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have produced different results. All three plots show a clear detection of the damage

introduced to the plate. The results from the PCA on standardised data, Figure

8.15, appear to be the least successful, as remaining structure from the temperature

cycling period is still visible and the control chart limits are exceeded a number of

times.

From the comparisons made above three direct observations are; firstly, that the

methodologies are producing differing results, secondly that it is clear that the cre-

ation of features through projection onto minor components is more successful when

the data is not standardised before PCA is applied, and, lastly, that a spike occur-

ring at the time that the temperature cycling begins is visible in the cointegrated

residuals but not in the non-standardised PCA results.

To firstly address the occurrence of the spike visible in Figure 8.13 (and indeed in

Figure 8.8); it is interesting to note that upon inspection of the individual residuals

created from the first ten cointegrating vectors in the above analysis, a number of

them are free from the spike in question, and indeed may be more suitable for as

damage sensitive features than the residual created by the first cointegrating vector.

As an example the residual created from the second cointegrated vector is plotted

in Figure 8.17. In this case, it seems that the ‘most stationary’ residual chosen by

the Johansen procedure is not the most suitable for our cause. One should also

recall that it was mentioned earlier that considering only the first 20 spectral lines

of this 50 line set also produces a cointegrated residual from the first cointegrating

vector that is free from the spike in question (Figure 8.10). It seems likely that the

spike is an anomaly caused by one of the variables from around the peak area of the

spectrum.

From the mathematical reasoning at the beginning of this section it is not unex-

pected that the results compared above are different for the two algorithms applied.

Further insight into the applied algorithms can be gained by studying the specific

linear combinations created by the two different approaches used to generate the

results above, in doing this, light can also be shed on how standardising the data

before applying PCA has an effect on the results. In Figure 8.18 the coefficients of

the linear combinations that create the last ten principal components of PCA on

the non-standardised data are plotted in a bar chart, those of the PCA applied to

standardised data are plotted in Figure 8.19, similarly Figure 8.20 shows the coef-

ficients of each of the linear combinations that make up the first ten cointegrating

vectors.
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Figure 8.17: Cointegrated residual created from second cointegrating
vector

Studying Figures 8.18, 8.19 and 8.20, one can see immediately that the constitution

of the last ten principal components and the first ten cointegrating vectors are very

different. The last ten principal components from the non-standardised data are

dominated by contributions from those spectral lines away from the peak. This is

easily explained; by not standardising the data when calculating the principal com-

ponents, precedence has been given to the spectral lines displaying a larger response

magnitude than others. Consequently the higher principal component scores will

be dominated by the spectral lines from around the peak, and the lower ones the

converse. If the data is standardised prior to the application of PCA, the higher

principal component scores have equal contributions from each of the variables used,

meaning that the contributions to the lower components are not dictated by the orig-

inal amplitude of the spectral lines. Unlike the non-standardised PCA, looking at

Figure 8.20, one can see that the higher cointegrating vectors have stronger con-

tributions from around the peak of the spectrum than from anywhere else. An

explanation for this could be that the spectral lines away from the peak, that vary

less, contribute less to the nonstationarity of the linear combination and as such are

assigned less dominant coefficients.

From these observations, the reason that the PCA on the standardised data does not

perform as well as for non-standardised data becomes clearer. By not standardising

the data the minor component scores are dominated by spectral lines not in the

peak area, these variables show lower sensitivity to temperature, and as such the

temperature trend has been more easily dispersed. Where standardisation has been
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Figure 8.18: Coefficients of last ten principal components, nonstandard-
ised data
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Figure 8.19: Coefficients of last ten principal components, standardised
data
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used this is not the case, instead each of the principal components is dictated by

the direction of the most variance in the data set which is not longer biased by the

amplitude of the spectral lines around the peak. This has, in fact, been detrimental

to the performance of the minor components for the purposes of this work. That

having been said, it could also be argued that the minor components of the non-

standardised data are less satisfactory candidates for damage sensitive features due

to the fact that the spectral lines around the peak, that are likely to display the

greatest sensitivity to damage, have been assigned very low importance in the linear

combinations. Here one can see an advantage to cointegration, where importance is

assigned to the peak spectral lines.

8.4 Conclusions

This chapter has applied the theory of cointegration introduced in this thesis to a

benchmark study that used Lamb-wave propagation to detect damage in a composite

plate. The results when using cointegration have been compared with Manson’s

approach to using PCA for the same task [63]. This chapter also has expanded

Manson’s work as presented in [63].

Both PCA and cointegration have produced very encouraging results when applied

to the benchmark study. Both methods were able to create features that remained

unchanged by temperature fluctuations but still were able to very clearly detect

damage.

In the final section above, some comparisons were made between PCA and coin-

tegration, which on the surface of things are similar methods, both creating linear

combinations of original variables. It was found that cointegrating vectors and prin-

cipal components are not necessarily similar, they are chosen on different criteria and

have different orthogonality properties. On application to the DAMASCOS data in-

vestigated in this work, both approaches were successful for removing a temperature

induced trend. Interestingly, however, it was found that the linear combinations of

the minor principal components relied on variables (spectral lines) from different

areas of the spectrum than those in the cointegrating linear combinations.

While in this work both methods performed well, the author believes that cointe-

gration may prove more useful for the data normalisation problem. As principal
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components are always orthogonal, after the first PC is chosen to account for the

most variance in a data set, the directions of the remaining principal components

are then constrained by this orthogonality condition. As such, the minor compo-

nents may not provide optimal results for removing environmental trends. It is here

that cointegration may have the advantage due to the fact that the first cointegrat-

ing vector is chosen to be the most stationary, and is not dictated by any other

constraints.



Chapter 9

An exploration of nonlinear

cointegration for Structural

Health Monitoring

9.1 Introduction

The idea of using cointegration for SHM works well where responses are linearly

related, however when nonlinearities are involved the cointegration theory applied

in the previous chapters is no longer suitable. Instead a nonlinear approach to coin-

tegration is needed, where a nonlinear combination of response variables is used to

remove unwanted environmental and operational trends. In cases where the classical

linear cointegration theory is applicable, SHM practitioners are able to draw on the

large body of research on cointegration carried out in the field of econometrics (see

for example [88, 89, 91, 94, 95, 99]), however, this is not the case as far as nonlinear

cointegration is concerned. The idea of nonlinear cointegration has received con-

siderably less attention from econometricians in the past than the equivalent linear

theory, most probably due to the fact that an extension to include nonlinearities is

often deemed unnecessary due to the nature of the economic variables under consid-

eration. Interest, however, is currently growing and progress from an econometric

point of view is well summarised in [105]. For monitored variables in SHM, it is not

at all unlikely that a nonlinear approach to cointegration will be necessary, in fact,

the motivation of this work comes from the analysis of data from the Z24 bridge

135
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monitoring campaign [83] where nonlinear cointegration could prove very useful.

After introducing the Z24 example as motivation, this chapter makes a start into

exploration of nonlinear cointegration.

9.2 Nonlinear cointegration

Recall that cointegration is a property of nonstationary time series integrated of the

same order that share common trends; more precisely, a number of nonstationary

variables (integrated of the same order) are cointegrated if a linear combination of

them can be found that is integrated to a lower order than the original variables.

Intuitively, nonlinear cointegration relates to a set of nonstationary variables that

require a nonlinear combination to reduce the nonstationarity of the resultant. In

the following, a set of nonstationary variables yi are nonlinearly cointegrated if zi

is integrated to a lower order than yi (or ideally stationary), where f represents a

nonlinear function.

zi = f({yi}) (9.1)

In this case f(−) will be referred to as the cointegrating function.

When reviewing progress of research into nonlinear cointegration, it is useful to bear

in mind that for SHM applications, the aims in using nonlinear cointegration are

probably very different to those of the econometrician. The approach in this the-

sis seeks to exploit the cointegration property of variables and create a stationary

combination of them purged of environmentally or operationally induced (nonlin-

ear) trends, and then use this stationary residual as a diagnostic tool to determine

whether a structure continues to respond in a normal way. In the field of econo-

metrics, the behaviour and influences to a process/variable are more uncertain, and

in general the aim of studying cointegration is to establish if potentially spuriously

related variables are truly related, and to predict how they will move together in

the long run even after shocks and unforeseen events. Really the concern is to

very accurately model the structure of these stochastic variables in relation to each

other. For these reasons, a lot of attention is given to the nature of the variables

under consideration, and statistical tests are needed to determine whether a vari-

able should be modelled as linear and stationary, linear and nonstationary, nonlinear
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and stationary, or finally nonlinear and nonstationary [105]. Nonlinear cointegration

analysis is necessary for the nonlinear and nonstationary variables (although non-

linear and stationary variables could also be included in this remit, these variables

are normally addressed through nonlinear cotrending analysis, which is a subset of

nonlinear cointegration [106]).

In econometrics, the property of nonlinear cointegration is often discussed and ex-

pressed through the ideas of stability, attractors and mixing; the property of coin-

tegration generalises to whether or not variables have attractors with similar topo-

logical properties (these include entropies, Lyapunov exponents and topological di-

mension), or to whether the nonlinear combination of variables is mixing or not.

The concept of mixing is quite an abstract one, but for the purposes of SHM, it can

simply be regarded as a somewhat stronger condition than stationarity i.e. mixing

in a time series implies ergodicity of that series, which in turn implies stationarity

(see [105] for more details). For the purposes of this work a definition of nonlinear

cointegration that will suffice applies to nonstationary variables that become sta-

tionary after some form of nonlinear combination, and it is finding this nonlinear

combination that is most likely of interest to SHM practitioners more than anything

else. The majority of this chapter will address the author’s suggested methods for

finding the most stationary nonlinear combination of a set of nonstationary nonlin-

ear variables. It should be noted that very little attention is given to this issue in

the econometrics literature, often the form of nonlinear function needed is presumed

to be already known, or in other circumstances a neural network has been used as a

nonparametric estimation approach [105]. In the next section, the well known Z24

highway bridge monitoring campaign is introduced as a motivation for the need of

nonlinear cointegration.

9.3 Motivational example from the Z24 Bridge

The Z24, a pre-stressed concrete highway bridge in Switzerland, was subject to a

comprehensive monitoring campaign under the ’SIMCES project’ [107], prior to its

demolishment in the late 1990s. It has since become a landmark benchmark study

in SHM. The monitoring campaign, which spanned a whole year, tracked modal

parameters and included extensive measurement of the environmental factors af-

fecting the structure, such as air temperature, soil temperature, humidity etc. The
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Figure 9.1: Time Histories of the extracted natural frequencies of the
Z24 Bridge, monitored over one year including a period when damage
was introduced

Z24 monitoring exercise was an important study in the history of SHM develop-

ments because towards the end of the monitoring campaign researchers were able to

introduce a number of realistic damage scenarios to the structure. The progressive

damaging scenarios initiated during this campaign, were, in order, [64]:

• Pier settlement

• Tilt of foundation followed by settlement removal

• Concrete spalling

• Landsliding

• Concrete hinge failure

• Anchor head failure

• Tendon rupture

Of interest here are the natural frequencies of the bridge which were tracked over the

period of a year including the time where structural damage was introduced. Modal
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properties of the bridge were extracted from acceleration data [83]. Figure 9.1 shows

a time history of the four natural frequencies between 0-12Hz of the bridge. The solid

vertical line marks the beginning of the period where the different damage scenarios

were applied. Gaps where the monitoring system failed have been removed.

On inspection of Figure 9.1, the natural frequencies of the bridge are by no means

stationary. There are some large fluctuations in the first half of the time history

before the introduction of any damage. These fluctuations occurred during periods of

very cold temperatures and have been associated with an increase in stiffness caused

by freezing of the asphalt layer on the bridge deck. The natural frequency time

histories are, therefore, a good illustrative example of damage sensitive parameters

also sensitive to environmental variations, in this case temperature.

As the natural frequencies in their current form would not be suitable to monitor

as a damage sensitive feature some action must be taken to remove the variable

set’s sensitivity to temperature. If each variable (natural frequency) is linearly

related to temperature, cointegration would appear to be an ideal tool to remove

the temperature induced trends. In this case, however, the modal properties of the

bridge are nonlinearly dependent on temperature (as an example, Figure 9.2 plots

how the first natural frequency changes with temperature), which means that the

Z24 provides an excellent example with which to explore the ideas of cointegration

in the presence of nonlinearity.

The first sensible step when exploring the ideas of cointegration in this nonlinear

context is to look at the results of using the linear Johansen procedure. Figure 9.3

shows the four natural frequencies of the Z24 bridge projected onto the ‘best’ cointe-

grating vector found by the Johansen procedure, when trained on data points 1-500

visible in Figure 9.1. In Figure 9.3, the dotted horizontal lines indicate confidence

intervals at 3σ of the residual from the training period, while the vertical solid line

indicates the beginning of the period where damaging scenarios were introduced.

Studying Figure 9.3, the cointegrating vector has successfully de-trended the data

set and furthermore some indication of damage is visible towards the end of the

data. It is perhaps unexpected that the linear Johansen procedure is able to remove

nonlinear trends; looking at the relationships between the natural frequencies and

how the Johansen procedure has combined them, however, sheds light on how this

has been achieved. Although each frequency is related nonlinearly to temperature,

which drives the frequency fluctuations, some of the frequencies (although not all)

are linearly related to each other, which means that the Johansen procedure can
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Figure 9.3: Linear combination of the Z24 data set; data projected onto
the first cointegrating vector found by the Johansen procedure

successfully combine them to remove their common trends. The way in which the

natural frequencies from the Z24 relate to each other is noted in Table 9.1. On study-

ing the cointegrating vector in question, the residual in Figure 9.3 predominantly

results from a combination of the first and third frequencies, which effectively re-

moves the temperature dependent trends, the combination only contains very small

contributions from the second and fourth frequencies. Although this is a successful

removal of the temperature dependent trends, two of the variables have effectively

not been included in the analysis. This is not an ideal situation as the loss of two

variables reduces the chances of being able to successfully detect damage.

This point is well illustrated by studying the residual when the data are projected

onto the second best cointegrating vector from the Johansen procedure, as illus-

trated in Figure 9.4. This combination does not penalise any of the variables and

cannot therefore remove the large blip occurring when very low temperatures were

recorded that induced the nonlinearity. However, the second cointegrating vector

does show a much clearer indication of damage. To have the best of both worlds, it

seems necessary to find a combination purged of temperature dependency that has

a meaningful contribution from each frequency. For this, nonlinear cointegration is

necessary.
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Frequency 1 2 3 4
1 - Nonlinear Linear Linear
2 Nonlinear - Nonlinear Nonlinear
3 Linear Nonlinear - Linear
4 Linear Nonlinear Linear -

Table 9.1: Relationships between modal frequencies of the Z24 Bridge
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Figure 9.4: Linear combination of the Z24 data set; data projected onto
the second cointegrating vector found by the Johansen procedure
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This having been said, without using nonlinear cointegration, one solution in this

circumstance could be to use ‘locally linear models’. Recall that for the data from

the Z24, when temperatures are above zero degrees, each variable is linearly related

to temperature. By only looking at data from the locality of the linear regime,

cointegration principles once again become valid. To illustrate this, the Johansen

procedure was re-implemented using the four variables, this time with all data points

removed if they occurred at temperatures below 1◦C. Figure 9.5 shows the residuals

of the first two cointegrating vectors, the first of which, similarly to before, has lost

much of its sensitivity to damage. The second cointegrating vector has been much

more successful, however, in that the effects of temperature have been removed and

yet the residual still becomes clearly nonstationary after the introduction of damage.

This would now be a good candidate feature for damage detection. Of course, this

damage indicator could only ever be used to infer structural condition at times above

freezing temperatures. Once again, nonlinear cointegration would provide a more

ideal solution.

9.4 A simple approach to nonlinear cointegration

From the above it is clear that in some circumstances cointegration is limited by its

linear nature. In this chapter a simple approach to how nonlinear cointegration may

be achieved is explored through use of a simple synthetic scenario. One situation that

may commonly arise is where two (or more) different variables from the same system

exhibit nonlinear dependencies on some external disturbance, such as temperature

fluctuation, for example. To demonstrate this idea theoretically, suppose there are

two different variables xi, yi from the same system, one which reacts linearly with

respect to some external disturbance, t, and one which reacts nonlinearly, in a

quadratic way, say, to that same external disturbance. Suppose these variables take

the form

xi = αti + εi (9.2)

yi = βti
2 + ϵi (9.3)
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where α, β are constants, ti is some deterministic trend caused by the external

disturbance and εi and ϵi are random normally-distributed processes. It is clear

that a linear combination of x and y could not result in a stationary sequence.

However, some combination of y and the square of x should produce a comparatively

stationary signal:

zi = a1xi
2 + a2yi (9.4)

If the parameters a1 and a2 can be found so that zi is stationary, the vector [a1a2]

will be analogous to the linear cointegrating vector, and x and y will be nonlinearly

cointegrated. It is then a matter of finding the parameters a1 and a2.

One way to do this would be to compute xi
2 and to include it as variable in its own

right in the Johansen procedure, i.e. the input to the Johansen procedure would be

{xi
2, yi}. In this way, the only difference in the approach to the Johansen procedure

is a manipulation of the form of the variables that are linearly combined.

A different approach again is to treat (9.4) in terms of an optimisation problem,

where the aim is to choose parameters [a1a2] such that zi is as stationary as possible.

For this purpose, a nonlinear optimisation routine based on differential evolution will

be utilised here. The following subsection will briefly describe differential evolution

but, as these are not new constructs, readers are referred to [108] and [109] for more

details. A section will follow with results using the techniques on data simulated to

represent the theoretical situation above.

9.4.1 Differential Evolution

Differential evolution, first introduced by Storn and Price in 1997 [109], is an evo-

lutionary algorithm that begins with an initial population of trial solutions to some

problem and reaches an optimal set of solutions through successive cycles of mu-

tation, crossover and selection. The suitability of trial solutions are determined by

some objective function, set according to the individual problem in hand. For this

application, the trial solutions take the form of a vector of parameter guesses [a1a2]

that satisfy (9.4) with zi stationary.

The optimisation routine is summarised in Figure 9.6. To begin with an initial
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Figure 9.6: A schematic of differential evolution

population of parameter vectors are randomly generated. To each parameter vector

in the initial population, a cost value is specified according to the objective function

chosen. A new generation of solutions is created from this initial population as

follows. Firstly, a target vector is chosen from the initial population. Next, a trial

vector is created by ‘mutation’; from the initial population, two parameter vectors

are randomly chosen (A and B in Figure 9.6), their difference (A-B) is multiplied

by some scaling factor, to which finally a third randomly chosen parameter vector

(C) from the initial population is added. The resultant is called the mutated trial

vector.

A new parameter vector is now created through ‘crossover’ of the mutated trial

vector and the target vector. Crossover creates a new vector by choosing individual

elements from the mutated trial vector and the target vector by a series of binomial
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experiments (see [109] for details). This newly created vector will then be selected

for the next generation if its cost value is lower than that of the target vector.

If it is higher, the target vector will be placed in the next generation population.

The process is repeated for each vector in the initial population. As the process

evolves through the generations the population will eventually become full of suitable

parameter vectors with low cost values.

For the purposes of nonlinear cointegration, a suitable objective function must be

chosen on the basis of the stationarity of the cointegrated signal (such as (9.4)).

Several options are available, the simplest being to choose the objective function to

minimise the variance of the cointegrated signal. Another suitable option would be

to use the ADF statistic from econometrics, introduced earlier in the thesis, which

has a larger negative value the more stationary the time series is. Both cost functions

will be trialled for the theoretical example above, and the results will be compared

in the next section along with the results of using an altered basis for the Johansen

procedure.

9.4.2 Results using Differential Evolution for synthetic ex-

ample

The nonlinear cointegration procedures suggested here are trialled for combining

time series of type (9.2) and (9.3). Namely, differential evolution using the two

different cost functions discussed and a slightly modified version of the Johansen

procedure are used to choose the parameters in (9.4) that produce the most sta-

tionary combination of (9.2) and (9.3). For simplicity and for ease of visualising the

results, when simulating these two time series the driving trend t is, for the present,

set to be linearly increasing with time. For engineering applications, this is highly

unrealistic, as any driving trend, such as temperature will fluctuate, it also has the

consequence that the simulated time series are trend stationary, rather than differ-

ence stationary for which the Johansen procedure has been developed for. At this

initial stage, however, where the interest is in testing the concept and visualising

the nonlinearity of the time series easily, it seems sensible to stick with a simplistic

deterministic trend.

For the simulated time series, the results are shown in Figure 9.7. Figure 9.7(a)

and 9.7(b) show the results using differential evolution with the variance-based cost



9.4. A SIMPLE APPROACH TO NONLINEAR COINTEGRATION 148

function and the ADF statistic-based cost function respectively. For this particular

trial a scaling factor of 0.9 and a crossover ratio of 0.5 were used in the differential

evolution step, for more details on the choice of such parameters readers, are referred

to [108] and [109]. Figure 9.7(c) shows the results when using {xi
2, yi} as a basis for

the Johansen procedure.

On inspection of Figure 9.7, all three methods have found coefficients for the com-

bination (9.4) that successfully remove the nonlinear trend; the three residuals are

mean-stationary. In all cases as the nonstationarity of the residual is less that the

original time series, the methods are providing successful nonlinear cointegrating

vectors for the times series.

An interesting property and a possible drawback, however, of the kinds of combi-

nations used to cointegrate these nonlinear trends 9.4, is that on closer inspection,

the variance of each of the combined signals is increasing with time, although each

cointegrated signal is mean-stationary. This growing variance is small in Figure

9.7(a) where variance was used a cost function, it grows at a faster rate, however,

in Figures 9.7(b) and (c) where the ADF statistic and the Johansen procedure were

used. To understand this one expands (9.4):

zi = a1xi
2 + a2yi

= a1(α
2ti

2 + tiεi + ε2i ) + a2(βt
2
i + εi)

(9.5)

The differential evolution, and indeed the Johansen procedure, have chosen the

parameters a1 and a2 so that the quadratic deterministic trends cancel each other

out. The residual from the nonlinear combination in (9.5) will then take the form,

zi = a1tiεi + a2ϵi + a1ε
2
i (9.6)

The remaining terms will include randomly distributed noise but also a term de-

pending on tiεi. This term is responsible for the increasing variance, as the driving

trend of the simulated time series in this case was chosen to linearly increase with

time. Although the residuals created shown in Figure 9.7 are ‘more stationary’ in

comparison to the original signals (and, therefore, nonlinear cointegration holds),

with the initial trends removed, they are not truly stationary on closer inspection.
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Figure 9.7: Combination of signals with linear and quadratic determin-
istic trends, combination found using (a) differential evolution with a
variance based cost function, (b) differential evolution with an ADF
statistic-based cost function, (c) the Johansen procedure with modified
basis.
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Regardless of the nature of the driving trend t, a combination of the type (9.4),

will always result in a residual that has variance dependent on that trend. If one’s

aim in applying the ideas of nonlinear cointegration is to remove a nonlinear trend,

then the approach under discussion is fit for purpose. However, if stationarity of the

residual is required (in the variance as well as the mean), then further steps must be

taken after applying a combination such as (9.4). One potential means of arriving at

a stationary residual could be to split the group of feature variables of interest into

smaller subsets and find a suitable nonlinear combination for each. The residuals,

with trend dependent variances, could then be linearly combined with each other

using the Johansen procedure, in order to create a stationary residual independent

of the driving trends of the original time series.

9.5 Nonlinear cointegration as combinatorial op-

timisation problem

In the previous section, a simple approach to nonlinear cointegration was discussed

with use of a simulated data set. Inherent to this approach was knowledge of the

correct structure of the nonlinear combination of variables that would reduce the

nonstationarity of the residual. For real data, the underlying structure of each

variable with respect to its driving trends will be unknown, and therefore too, the

optimal form of combination such as (9.4).

To extend the simple example in the previous section of how nonlinear cointegration

may be achieved to something that might work for real data, a sum of the form

(9.4) could be extended, with all possible multinomials of the variates considered

for inclusion. However, in situations with many features, such an approach is likely

to run into difficulties due to the fact that the number of candidate terms grows

explosively with the number of features and the allowed order of nonlinearity. An

alternative approach is proposed herein whereby another optimisation procedure

(Genetic Algorithm) is used to select an optimal subset of the candidate terms, with

the parameters for combination then determined by exploiting linear cointegration

theory. The assumption made is that, once the multinomial candidate terms for the

combination are established, the Johansen procedure will be used in the same way

as in the previous section to ascertain the correct coefficients. The application of

the method will be again be demonstrated via simulated data.
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9.5.1 Genetic Algorithms for candidate term selection

The Genetic Algorithm (GA) is the most fundamental of the evolutionary optimi-

sation schemes based on the Darwinian principal of natural selection or ‘survival

of the fittest’ [110]. In its simplest form, the algorithm uses a binary encoding to

express possible solutions as individuals in a population which evolves in a manner

analogous to natural selection. The GA is the algorithm of choice for the current

work as it has proved extremely powerful for combinatorial optimisation problems

and the subset selection problem posed here is one of this type. The main difference

between the simple GA and the one adopted here is that the individuals for the

problem are encoded as integer vectors rather than bit strings and this means that

slightly modified versions of the genetic operators are needed. Extensions of the GA

of this type are often called Evolutionary Programs [111].

The implementation of the GA/EP used here is conducted as follows:

• All variables to be included are standardised. This step is necessary as the

nonlinear combinations of variables can differ considerably from each other in

terms of scale and this can result in severe ill-conditioning for the coefficient

estimation step.

• The initial population for the GA is generated. The user specifies the number

of terms to be used in each sum N , and the highest nonlinear order allowed, n.

A candidate term is generated by creating a random string of integers of the

same length as the number of variables included in the analysis. This string

is then used in the following way, suppose three variables are included in an

analysis xi, yi, zi, a random string (abc), where each bit is an integer from 0 to

n, would be generated, and the candidate term chosen as xaybzc. This action

is repeated N times and a candidate linear combination arises which is a single

individual of the population. The whole process is repeated until the initial

population is established.

• Evolution begins. In order to drive the process towards an optimum, the

algorithm requires a cost or fitness function in order to evaluate how good a

solution to the problem each individual represents. As the objective of the

current problem is to generate the ‘most stationary’ combination of variables,

the fitness function adopted here needs to be a measure of stationarity. For

each individual in the population, coefficients for a linear combination are
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calculated by the Johansen procedure and the (hopefully stationary) residual

is computed. The cost or fitness of the individual is then expressed as either

the variance of the residual, or its ADF statistic (user defined); both of these

quantities are measures of stationarity.

• The operation of selection is performed whereby two parent individuals are

selected from the population for mating. Roulette wheel selection is used

in the implementation here. The individuals are more likely to be selected

the fitter they are. Once two parents are established, two child individuals

are generated by a crossover operation which mixes their genetic material.

One-point crossover is used in the implementation here. The two children are

carried forward into the next generation and the selection operation is repeated

until a full population is established. The crossover operation applied here is

carried out carefully to avoid introducing two identical candidate terms into

the same sum.

• The mutation operation is applied to the child individuals. Each individual is

mutated with probability pm (user specified). If an individual is to be mutated,

one of the integers which forms the genetic material is randomly picked and

randomly regenerated. This operation encourages diversity and can prevent

stagnation of the population; however, it should be used sparingly as too

much mutation converts the algorithm into random search. Again mutation is

monitored to prevent the generation of duplicate terms.

• To further reduce the chances of stagnation a ‘new blood’ stage is included at

this time, where a defined number of ‘un-fit’ candidates are replaced new with

randomly generated candidates for the next generation.

• In order to prevent the loss of the fittest solutions, an elite was used here

whereby the Ne fittest individuals were written directly into the next genera-

tion (necessarily overwriting some of the children of the selection process).

• The whole process is iterated until a stopping criterion is met. The usual

stopping criteria are that one reaches a pre-established number of generations

or that the fitness function attains some desired value; in this case a pre-

established number of generations was used.



9.5. NONLINEAR COINTEGRATION AS COMBINATORIAL
OPTIMISATION PROBLEM 153

Results using a genetic algorithm

The functionality of the genetic algorithm created for this work will be explored here

using a simulated test case. Specifically data simulated to reproduce the theoretical

example used above to explain the approach taken in the previous section is utilised.

The input time series generated are 1000 data points long and the deterministic trend

value t in (9.2) and (9.3) has a maximum value of 10.

The GA implementation is used to select the candidate terms for a linear combina-

tion that should result in the most stationary combination possible. The GA may

choose candidate terms from any multinomial of the original variables x and y up to

a given order. For the first trials, the mulitnomial order was limited to three, hence

the GA could choose any candidate terms from the set {xayb, a, b = 0, 1, ...3}, the
number of candidate terms to be chosen for the final combination was set to two.

The ADF test statistic was used as a cost function for the GA in this case.

Given these inputs, the genetic algorithm successfully chose the combination of form

(9.4) from an initial randomly generated population of 30 possibilities. The GA was

run ten times with a different initial population each time and the maximum number

of generations was also set to ten. Figure 9.8 is a plot of the nonlinear combination

chosen by the GA along with the original time series that make up the combination.

As one can see the results are analogous to those in Figure 9.7(c).

During various trials of the GA, it was noted that on occasion the GA made unex-

pected choices for the nonlinear combination. One example of this is given below.

The same structure of inputs as above were trialled but with the maximum value of

t in (9.2) and (9.3) set to four. With this input the GA chose a combination, shown

in Figure 9.9, of the form,

zi = a1xiyi + a2xi
3 (9.7)

This is not the expected choice of nonlinear combination and the reason for it appears

to be concerned with the cost function used in the algorithm. The cost of the chosen

combination (i.e. the value of the ADF statistic) was -22.5174 (more stationary

signals are indicated by larger negative values of the ADF statistic), the cost of the

correct expected function as expressed by equation (9.4) was -22.1052, hence the

combination of form (9.7) was chosen by the GA. If one expands (9.7) and assumes
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that the Johansen procedure eliminates the leading order trends, the residual will

take the form,

zi = (a1β + 3a2α
2)t2i εi + (a1ϵi + 3a2εi)αti + (a1ϵi + a2ε

2
i )εi. (9.8)

Now, although this residual appears more complicated, it would appear that the

combination in equation (9.7), in this instance, with these data, allows the Jo-

hansen procedure to select coefficients which make the residual in (9.8) a little more

stationary that the one in (9.4). This is undesirable as the residual in (9.8) now

retains a quadratic trend (visible in Figure 9.9) which will eventually dominate at

later times even if the combination (9.7) appears fortuitous on the training set.

A possible means of circumnavigating this problem is to introduce a penalty term

in the optimisation which weights against higher order residual trends. The ADF

statistic, for this type of simulation trial at least, will bear further investigation.

An alternative to the ADF statistic is, as discussed above, to use a cost function that

is dictated by the variance of the candidate nonlinear combination, or potentially one

which factors in both the variance and the ADF statistic. Unfortunately neither of

these options are immediately viable due to the fact that the variance also introduces

subtleties in the combination choice. This is due to the fact that the Johansen

procedure, which is used to determine the coefficients of the nonlinear combination,

often chooses large coefficients for the combination that would normally be the most

successful, which drives the variance of the residual up. It is likely that the solution

to this issue will involve a combination of adding penalty terms and regularisers.

The genetic algorithm discussed here is, perhaps, a cumbersome way to go about

finding a suitable form of nonlinear combination for a set of variables. The imple-

mentation relies on using the Johansen procedure within the evolution, and even

on simulated data, problems arise with its application, as evidenced by the example

above. It is the opinion of the author that more suitable ways of finding useful

nonlinear combinations of variables could be found.

Neural networks or Gaussian process regression could be suitable candidates for

finding useful nonlinear combinations of variables. Indeed, some research has al-

ready been carried out on using GPs for such a task [62], although the concept of

cointegration is not directly mentioned. Such methods are well worth looking into,

and will be the topic of further work by the author. One potential drawback of
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applying such methods, however, could be the fact that one variable out of a set

would have to be chosen as a target to regress all other variables on; this is how

tests for cointegration are achieved in the Engle-Granger two step method [95]. If a

single variable must be chosen as a target, the damage detecting capabilities of the

residual may be determined by which variable is chosen.

9.6 Conclusions

The ideas of nonlinear cointegration have been explored in this chapter. Nonlin-

ear cointegration is necessary where feature variables are nonlinearly related. This

chapter has begun to explore how one might attempt to nonlinearly combine feature

variables in order to create useful diagnostic tools in the face of changing environ-

mental and operational conditions. The ideas followed are based on multinomial

combinations of feature variables, and optimal combinations are attempted using

genetic algorithms. At this early stage of research the developed approaches are

only applicable to data in simulation where the generating function is known. Other

suggestions of using neural networks or Gaussian processes to form suitable nonlin-

ear combinations have been made but not yet attempted. This will be the focus of

future work.



Chapter 10

Summary and Conclusions

This thesis has focused on the issue of the confounding influence of changing envi-

ronmental and operational conditions on technology developed for SHM. This issue,

often referred to as the data normalisation problem, is widely considered as one of

the largest stumbling blocks preventing the practical application of SHM to real

world structures. The main case study of the thesis is the monitoring campaign of

the Tamar Suspension Bridge in the UK, which is led by the Vibration Engineering

Section at the University of Sheffield. Data collected from this structure has demon-

strated that features that may be of interest for inference on structural condition or

performance are highly influenced by the changing environment.

Chapter 3 introduced and described the substantial monitoring campaign being car-

ried out on the Tamar Suspension Bridge. Three comprehensive monitoring systems

currently in place have provided a wealth of data detailing the static and dynamic

behaviour of the bridge deck and cables, as well as the operational and environmen-

tal factors affecting them. In Chapter 4 this monitoring data was analysed in order

to understand the normal response of the bridge under the influence of the changing

environmental and operational conditions. Various analysis techniques were used

to better understand which environmental/operational conditions drive the fluctua-

tions observed in the modal frequencies of the bridge deck. Traffic loading was found

to be a dominant driver of daily frequency fluctuation, whilst temperature was found

to have more of a seasonal effect than daily. The acceleration of the deck was also

found to have a significant effect on the modal frequencies at times when the wind

speed was higher than 25mph and hitting the bridge side-on. As an investigative
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tool, simple response surface models were fitted in an attempt to predict the change

in the lower modal frequencies of the bridge deck. The models including input pa-

rameters reliant on traffic loading, temperature and deck acceleration were able to

predict the lower modal frequencies to a good degree of accuracy. A suggestion was

made that the errors of the successful models could be incorporated into an SHM

system for the bridge as an indicator of structural condition, this idea was further

investigated in Chapter 5.

Chapter 5 aimed to build on the knowledge gained in Chapter 4 in order to make

tentative steps towards the development of diagnostic tools for the Tamar bridge

that would function in varying environmental and operational conditions. The use of

novelty detection in such circumstances was investigated. Two different approaches

for the implementation of a novelty detection scheme were discussed. The first ap-

proach, more readily applicable for features that do not exhibit seasonal behaviour,

was to incorporate responses varying under a changing environment into the defi-

nition of the ‘normal condition’. Specifically a novelty detector is trained on data

including the fluctuating behaviour. Although this approach is very easy to imple-

ment given a reasonably large bank of historic data from an undamaged structure, it

was concluded that the method may create features with low sensitivity to potential

anomalies or structural change. The alternative approach suggested involved using

the error of predictive models as a novelty indicator. The predictive models im-

plemented in this chapter were the parametric response surface models used earlier

when attempting to understand the normal condition of the bridge and models cre-

ated using Gaussian process (GP) regression. Both the parametric response surface

models and GP regression were found to be provide good candidates for generat-

ing accurate predictive models for deck displacement and the lower deck natural

frequencies. A new suggestion was made that the prediction confidence intervals

available when using GP regression can be used to directly detect novelty, in the

place of a more classical control chart. GP regression naturally provides confidence

intervals on predictions which widen if new circumstances not present in the training

set occur, this enables the construction of a more conservative novelty detector than

a traditional control chart may provide.

In Chapter 6, the idea of cointegration has been put forward as a new way to

attempt to deal with the problem of environmentally-induced variation in measured

structural response. The idea, which originates from econometrics, is to linearly

combine response variables that are cointegrated to create a stationary residual
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whose stationarity represents the structure’s normal condition. When monitoring

this residual, a departure from stationarity will indicate that the structure is no

longer operating under its normal condition. Chapter 6 introduced the, sometimes

complex, mathematics of the Johansen procedure which finds the most stationary

linear combination of a set of variables under scrutiny. The ADF test has also

been introduced as a stationarity test. Although not used for its intended purpose,

cointegration has provided a useful tool for inclusion in an SHM analysis/system.

Its advantages lay in the simplicity of the idea, the huge background of sophisticated

research already carried out in the field of econometrics available for use, and the

fact that in essence no information is being lost as features are created through

combination of monitored variables. The suggested cointegration procedure can also

be implemented where no measurement of the environment/operational conditions

are available, the only stipulation being that the residual should be trained on data

coming from the normal condition of a structure.

The implications of applying cointegration theory developed for econometric time

series to SHM data are discussed in Chapter 7. The Johansen procedure used in this

work to establish stationary linear combinations of feature variables assumes that

each variable is a difference stationary process - in other words that the generating

process of the time series has a unit root. It was argued in this chapter that,

although the idea of a unit root generating process does not fit exactly with the

time series of interest to SHM, in general these variables will behave similarly to

unit root processes. This assertion allows one to apply the cointegration theory

without further worry that the processes may not be valid for SHM time series.

In the latter half of Chapter 7, the cointegration process is applied to data from

the Tamar monitoring campaign. The process was able to successfully remove the

temperature dependent trend from deck displacement measurements. This case

study has highlighted a further advantage to using cointegration, which is the fact

that the training data needed to establish the stationary linear combination does

not necessarily have to span a long period of time in order to be able to remove the

trends in the data. Other data normalisation approaches rely on having training

data available from a whole year for example, or from every operational condition

[62]. The stationary linear combination of the deck displacement measurements

was further tested in this chapter through use of a simulated damage scenario.

The displacement data was doctored to simulate what might happen if one of the

bridge stay cables suffered a loss of tension. When projecting this doctored data
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onto the established cointegrating relation the linear combination became clearly

nonstationary at the time that the artificial damage was introduced to the data set.

These were very encouraging results.

Chapter 8 compared the application of cointegration and principal component analy-

sis (PCA) for the data normalisation problem. Results of the two approaches applied

to data from a benchmark study are compared. The benchmark study focused on

in this chapter was carried out as part of the EU DAMASCOS consortium and used

Lamb-wave propagation to attempt to detect damage introduced to a composite

plate under fluctuating temperature conditions. Both methods were able to success-

fully create features that remained unchanged by the temperature fluctuations but

still were able to very clearly detect damage. Some comparisons were made between

PCA and cointegration, which on the surface of things are similar methods, both

creating linear combinations of original variables. It was found that cointegrating

vectors and principal components are not necessarily similar, they are chosen on dif-

ferent criteria and have different orthogonality properties. Although both methods

could successfully remove the temperature induced trend, interestingly, it was found

that the linear combinations of the minor principal components relied on variables

(spectral lines) from different areas of the spectrum than those in the cointegrating

linear combinations. Finally an argument was made that cointegration provides a

more suitable means of trend removal than using PCA, this is because the focus

of the PCA algorithm is not exactly suited to the needs of a data normalisation

procedure.

Chapter 9 explores how nonlinear cointegration may be useful for SHM. The bench-

mark Z24 monitoring campaign is used as a motivational example for why an exten-

sion to the cointegration theory used in this thesis would be of benefit. For nonlinear

cointegration, a nonlinear combination of variables is required for stationarity. This

chapter makes some initial headway into how such a nonlinear combination may

be achieved. The ideas explored include using a genetic algorithm for selection of

multinomial candidate terms in a nonlinear combination. The use of differential

evolution has also been explored for parameter estimation in a fixed form combina-

tion. Although the methods applied have been largely successful on synthetic data

sets, much more work is needed in order to be able to apply nonlinear cointegration

in this form to real data.



10.1. LIMITATIONS AND FURTHER WORK 161

10.1 Limitations and further work

SHM for the Tamar Bridge

This is one of the first works to use multiple data from a comprehensive monitoring

campaign of an in use bridge for SHM. A main aim, as far as data from the Tamar

bridge is concerned, was to simply learn how the structure typically responds to

the changing environmental and operational conditions. The drivers of lower modal

frequencies are now known and understood well enough to be able to predict their

fluctuation to a reasonable degree of accuracy. Conceivably these models could be

used in an SHM system in the way described in Chapter 5, in that model error could

be used to flag anomalous behaviour. In a similar way cointegration of the modal

frequencies and deck displacements could be used to detect anomalous response. At

this initial stage of development the signs are encouraging that the construction of

an SHM system that works in the face of environmental and operational variations

is possible. At this point in time it would be feasible to implement online nov-

elty detectors for deck displacement and the lower deck modal frequencies. Several

novelty detectors for each measurement type could be applied, for example using

response surface model errors and classic control charts, using GP regression with

confidence interval type controls charts and finally using classic control charts with

cointegrated residuals. Multiple novelty detectors on the same measurements would

enhance confidence in any anomaly detection and may help to avoid issues with false

positive identifications of anomalous behaviour.

Although the detection of anomalous behaviour is a positive step in the right direc-

tion, it is only an initial step as far as the aims of SHM or performance monitoring

are concerned. A detection of novelty alone is uninformative, novelty may occur

due to a sensor failure, an extreme weather condition, a performance anomaly or

because damage has been introduced into the system. The next stage in the devel-

opment of an SHM system for the Tamar bridge is to be able to identify the causes

of anomaly, or to be able to detect specific changes in structural condition. Gen-

erally such challenges require a supervised learning approach and a step away from

novelty detection. As discussed in the introductory chapter, this is a challenge in

the face of a lack of data available for supervised learning for the kind of events one

may be interested in identifying. The author envisages that the ability to identify

the causes of anomalous behaviour or structural response, or the ability to identify
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particular structural behaviour, will take considerable effort and time to develop.

One way to progress to the next step could be to use a high fidelity model of the

bridge to simulate specific damage or performance related scenarios and provide

data for supervised learning. Such a model is currently under creation [112]. An-

other possibility that may prove useful is to develop specific novelty detectors whose

construction ensures that a positive detection is informative. For example, if the

strain measurements of two stay cables were cointegrated and at some stage their

stationary residual became nonstationary, the detection of novelty from a control

chart would imply that a change had occurred in one of the two stay cables. It is

anticipated that of most use would be to implement many such detectors for one

structure. If each of the eight stay cables of the Tamar Bridge were to be cointe-

grated with each other and each residual saved, a loss of tension, for example in one

stay cable could be pinpointed by studying which of the residuals become nonsta-

tionary. Needless to say, the scope for further work on the development of a working

SHM system for the Tamar Bridge is large.

It must also be noted that as far as damage detection is concerned, an obvious

limitation when employing the modal data available here, arises from the fact that

natural frequencies are well known to be insensitive to localised damage scenarios.

This situation is further limited by the fact that only estimates of the five lowest

natural frequencies are available, as greater sensitivity to damage scenarios may be

gained from higher modes.

Novelty detection with model errors and cointegrated residuals

All of the novelty detection approaches in this work have required a control chart in

some form or another. In Chapter 5 it was suggested that GP confidence intervals

may be used as a control chart in order to provide a more conservative novelty detec-

tor that may be less susceptible to false positive identifications if new environmental

and operational conditions were to occur. This idea requires further investigation.

Control charts have also been used as a visual aid to assess the stationarity of

cointegrated residuals. A control chart seems a natural way to detect a mean change

of a residual and has been successful for use in this thesis, however this is only one

constraint on the stationarity of a residual. It is likely that additional and different

control chart types may be necessary, for example, one which tracks the variance of

a residual. This issue will also bear further investigation.
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Cointegration for SHM

This thesis has introduced econometric theory on cointegration for the use of SHM.

As discussed in Chapters 6 and 7 the application of cointegration has relied upon a

large background of econometric developments. The Johansen procedure has been

used to find the cointegrating vectors for feature variables. This procedure was de-

veloped for unit root processes which are commonly occurring in econometrics. As

discussed in Chapter 7, one is able to apply this to engineering data because the

variables of interest display similar features to unit root (difference stationary) pro-

cesses. Future work that may prove insightful and useful would be the development

of an analogue to the Johansen procedure that acts on SHM features when modelled

in a more classical way (i.e. as a physics based model), or is applicable when using,

for example, a time-dependent autoregressive moving average (TARMA) model [32].

Further investigation into the presence of complex roots and seasonal dummies in

AR type models is also planned. Other avenues of research into the application

of cointegration for SHM could also include further investigation into tests for sta-

tionarity. Although stationarity tests have been studied in this thesis, none of the

analysis carried out for the linear application has relied upon them. For the pur-

poses of SHM the author believes that stationarity tests may be exploited and used

in place of control charts. This requires further attention, however, there is some

suggestion that the ADF test may be low powered in some circumstances [94], which

would also require some investigation.

Chapter 9 provided motivation for how nonlinear cointegration may be useful to

SHM. Currently, investigation into nonlinear cointegration for SHM is in the be-

ginning stages, and the ideas explored only applied to simulated data. A number

of avenues for further research are immediately evident following on from Chapter

9. Firstly, further work is needed to address the noise-variance dependency of the

cointegrated residuals that originate from multiplying signals. The suggestion made

was that two nonlinearly cointegrated residuals displaying growing or changing vari-

ance could then be linear cointegrated to remove this behaviour. This idea needs

further investigation and trial. Secondly, a convenient means of finding a suitable

nonlinear combination for feature variables is desirable. A suggestion was made

that neural networks or Gaussian processes may be of use here. The development of

an analogue to the Johansen procedure for nonlinear cointegration would be a very

desirable progression. This shall be the focus of further work.
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10.2 Continuing Challenges in SHM

10.2.1 Civil infrastructure and SHM

As this thesis has focused for the large part on applications of SHM to civil in-

frastructure it seems appropriate in this concluding chapter to discuss some of the

challenges facing SHM in this context. It is often thought that aerospace appli-

cations monopolise, or are the most common concerns of, research carried out in

SHM. Looking back through the SHM literature, however, shows that many studies

are based on civil infrastructure, or have used it as a base for development and

validation of algorithms [9]. This view, therefore, perhaps originates from the fact

that many of the considered SHM successes have come from aerospace applications.

Some technologies developed for aerospace have, in fact, made the jump from a re-

search interest to applied technology in industry, the most notable example of which

is the Health and Usage Monitoring System (HUMS) [113] that has been accepted

into the rotorcraft industry as a matter of legislation (in some countries at least).

There are a number of clear reasons why this success has, so far, not been mirrored

in civil applications.

One potential reason may be attributed to a lack of general consensus within the

civil community on how SHM should be approached, which can in turn be attributed

to the fact that civil infrastructure is often privately owned, where owners answer

to no single regulatory body. In comparison, in the aerospace industry a concerted

effort is currently being made by industry and regulatory partners to coordinate

and shape the development of SHM for aircraft. An Aerospace Industry Steering

Committee (AISC) has been formed for this express purpose [114], where the aim

is to develop guidelines and certification requirements and to encourage the use of

SHM. Without a parallel effort for civil infrastructure dissemination of good SHM

practice is difficult.

A separate issue that will also play a large role in the uptake of SHM for civil

infrastructure, is the fact that most civil structures are one-offs, and as such are

completely unique [24]. Consequently, an SHM system developed for one structure

will not be directly applicable to another, as may be possible with fleets in aerospace.

Finally, an additional complication comes from the challenge that the sheer size

and complexity of some civil infrastructure provides. Detecting damage in a single
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component of a long-span bridge, for example, becomes a very difficult task, on top

of the complications that arise from instrumenting a structure of that size.

Due to these challenges, a slightly different outlook on SHM seems to be emerging

within the civil community. For some the belief seems to be, that for now certainly,

automated condition assessment on a local level, e.g. detection of cracks on struc-

tural elements, is unobtainable. The focus, has therefore become, for some, more

on monitoring practices, studying global response, and monitoring for performance.

Many papers which are published in the name of SHM, solely focus on the moni-

toring effort of civil infrastructure, which is, of course, not inconsiderable. This is

reflected by the fact that the state of the art in civil infrastructure SHM is commonly

thought to be the large monitoring campaigns occurring in the East [115], where

long-span bridges are instrumented with thousands of sensors. The author would

argue that, despite the sophistication, until processes are developed to analyse the

measurements obtained in order to make inferences on structural condition, so far

only structural monitoring has occurred. The danger in this current trend lies, not

in the development of instrumentation, which will always be useful, but in the loss

of sight of the fundamental aims of SHM, a monitoring campaign cannot be useful

without a process in place that utilises the information obtained. This thesis has

gone some way to address this issue, being one of the first works to utilise data from

a comprehensive monitoring campaign to begin to develop an understanding of how

a healthy structure responds and start on the development of diagnostic tools.

This having been said, the idea of what constitutes SHM for civil applications is

perhaps more blurred than in other areas due to the fact that monitoring is often

undertaken for slightly different purposes than for other SHM applications. For large

scale civil infrastructure, for example, monitoring is often carried out at the start

of a structure’s life and during construction to ensure that the structure responds

in an expected manner to its environmental and operational conditions (especially

to wind conditions). This is motivated by the problems (and disasters no less)

caused by the phenomena of self-excited oscillations, the most famous example of

which being the collapse of the Tacoma Narrows bridge [116]. Although many of

these examples motivated the beginnings of research into SHM, the current practice

used to safeguard against these events doesn’t align exactly with the view of SHM

presented in this thesis, as the monitoring is generally not intended to extend into

the general assessment of the structure’s health throughout its life.
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10.2.2 Challenges for SHM in general

Reflecting the difficulty of the challenge, it is an unavoidable fact that, despite the

maturity of the research field, little of the SHM practice developed has made it into

application in the real world. There are a number of diverse reasons why this might

be (some touched on previously in this thesis), and a number of challenges still to

face before SHM can become a reality.

On a practical level, some challenges still remain for the instrumentation of a com-

prehensive monitoring system, such as how to maintain continual data collection

on a large scale (this includes consideration of power sources, data transferral and

storage, sensor failures, etc.). In practice, it is a considerable challenge to keep an

in-place monitoring system working continuously. Other questions arising concern

the capability of any sensors now available to detect smaller scale damage on large

structures.

One general reason why SHM uptake has been slow could be put down to the fact

that aerospace and civil operators have yet to be convinced by any technology devel-

oped so far. The most obvious explanation for this is that the developed technology

is not yet up to the challenge and must be developed further. This explanation, is

perhaps, however not the only contributing factor to why SHM uptake has not been

fast. Other explanations concern general negative attitudes towards SHM; while

some believe that SHM is an unobtainable vision, others may believe that change

is unnecessary. Understandably, operators will be reluctant to accept an automated

unproven system that may be expensive and unreliable (issues which must be ad-

dressed within the SHM community), but a general negativity towards SHM can be

very unhelpful as this attitude will make it difficult in fact to even put test systems

in place on commercial structures. Thankfully, however, this attitude is becoming

less common; sceptics who where critical of the HUMS system mentioned earlier for

rotorcraft, now find that they are reliant on it, and the aerospace industry are now

making a concerted effort to shape the future of SHM.

Closely related to attitudes towards SHM is the issue of validation for developed

systems. Before any of the benefits of SHM outlined in the first chapter of this

thesis can be realised, a proposed system for inference on structural condition must

be rigorously proven or validated. A system that fails to detect serious or dangerous

faults (referred to as a false negative detection of damage), or conversely detects
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faults where there are none (false positive detection of damage), would have serious

life-safety or negative economic consequences respectively, which would completely

undermine the reasons for embarking on SHM in the first place.

This question of validation is, however, one of the hardest faced by those working in

the field of SHM, especially due to the fact that data from the damaged condition of a

structure are hard to come by, which would be one natural way to validate a decision

making tool. The problem of validation in the civil infrastructure context is one of

the reasons why benchmark structures such as the Z24 and I-40 highway bridges

assume such importance. It seems to the author that the question of validation is

not commonly addressed in current research in the field, perhaps because it is a

premature one in relation to current progress towards the aims of SHM. Research

that does address the issue of validation tends to focus on, for example, how scenarios

arising from sensor failures can be dealt with. The lack of a real solution to the issue

of validation has the consequence that, currently, an SHM system will not be able to

completely replace timed visual inspections or routine maintenance of safety critical

components, which is perhaps disappointing in view of the fundamental aims of

SHM.



Appendix A

Gaussian Process Regression

Gaussian process regression is a powerful Bayesian machine learning tool where

predictions and their distributions can be obtained without having to specify a

particular parametric model/functional form. Instead, all possible functions that

fit the training data (within reason) are considered. This is achieved by defining a

distribution that describes the whole set of feasible functions that may fit the data

as a Gaussian process. From Rasmussen and Williams [84] a Gaussian process is

defined as “a collection of random variables, any finite number of which have a joint

Gaussian distribution.”

If one considers the values of each function of interest at a specific input or time

to be a random variable, then the values of the functions at any number of input

points or times can be described by a multivariate Gaussian distribution under the

Gaussian process assumption. In any practical application, only sampled values of

functions over a finite time or set of inputs will be of interest, and so the Gaussian

process assumption provides a way to describe all possible functions in that time

(or input) frame.

A Gaussian process is completely defined by a mean m(x) and covariance function

k(x, x′), this means that any finite subset of function values will be distributed

according to this mean and covariance function.

Gaussian process regression works by choosing a mean and covariance function that

defines the distribution of a suitable set of candidate functions (this is the same

as choosing a prior in other Bayesian approaches). This distribution is then con-
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ditioned on training data, to give an updated mean and covariance consistent with

the training data (conditioning effectively discounts all functions that do not match

the training data). This process is outlined in more detail below.

A.1 Gaussian Process Regression

As mentioned above, the starting point of Gaussian process regression is to choose

a prior mean and covariance function for the process. In doing this, all possible

functions that, over any finite area, have a multivariate Gaussian distribution with

this mean and this covariance are considered. As with other Bayesian approaches

one must choose the prior carefully as it limits the functions that are considered,

for example, specification of a particular covariance function (including hyperpa-

rameters) can define the smoothness of all functions considered. To define them

more formally, for a real process f , dependent on inputs x, the mean and covariance

functions are

m(x) = E[f(x)] (A.1)

k(x,x′) = cov(f(x), f(x′)) = E[(f(x)−m(x))(f(x′)−m(x′))] (A.2)

respectively, where E represents expectation.

Commonly, because little is known about the data at the beginning stage, and

for simplification purposes, the prior mean function is set to zero. Choice of the

covariance function is therefore critical.

Some notes on the covariance function: The covariance function is always set as

a function of the inputs x, hence the notation k(x,x′), which helps simplify the

process later on. A valid covariance function k(xi,xj) defines a covariance matrix

Kij, whose elements are defined by the covariance function evaluated at the points

xi and xj, because of this a complete covariance matrix will always be symmetrical

about the main diagonal. If a number of points arranged in a design matrix X is

considered the covariance matrix is denoted K(X,X). Additionally, if one considers

the covariance of function values corresponding to the design matrix X, and another
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set of inputs X∗, the covariance matrix will have the following structure:

[
K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

]
(A.3)

The fact that a complete covariance matrix must be symmetrical about the main

diagonal constrains the possible choices available for covariance functions - only a

small number of functions will be valid covariance functions. A common choice of

covariance function when using Gaussian processes is the squared exponential, which

has a general form [84];

cov(f(xp), f(xq)) = k(xp,xq) = exp (−1/2|xp − xq|2) (A.4)

This implies that function values at similar inputs will be highly correlated.

Once the prior has been specified with a mean and covariance function any number

of functions could be generated from it, should it be desired. However, the real

interest lies only in the functions that fit the training data. One way to obtain

these functions could be to generate candidate functions from the prior and reject

any that don’t agree with the training data. As this approach could be very time

consuming, an equivalent probabilistic approach which is to condition the prior on

the training data (targets) is used instead.

In using a GP, it has been specified that the distribution of the targets in the training

data will have a multivariate Gaussian distribution, it has also been specified that

any new output data, such as any predictions to be made, will have a multivariate

Gaussian distribution. When conditioning the prior on the training data, what is

being calculated is the probability of the new targets given the training data. As all

targets are multivariate Gaussian, this conditional probability has a known form as

follows: for a set of training target values y, and a set of unknown function values

y∗ to be predicted with a distribution as follows,

[
y

y∗

]
∼ N

(
0,

[
A C

CT B

])
(A.5)

the conditional distribution y∗|y will be
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y∗|y ∼ N (CTA−1y,B − CTA−1C). (A.6)

This is non-trivial and requires proof, for more details on this see [117] or Rasmussen

and Williams Appendix A.2 [84].

Given a set of training data, with inputs arranged in a design matrix X and target

values y, a set of testing data with inputs arranged in a design matrix X∗ and

unknown target values y∗, under the Gaussian process assumption (with a zero

mean function), according to the prior, the targets for the training and test set will

have a joint Gaussian distribution as follows

[
y

y∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
(A.7)

The unknown targets, conditioned on the training data, according to (A.6) will then

be distributed as follows;

y∗|X,y, X∗ ∼ N (K(X∗, X)K(X,X)−1y, K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗))

(A.8)

From which the mean predicted value m∗ and the variance of that prediction k∗ can

be directly lifted as follows:

m∗ = K(X∗, X)K(X,X)−1y (A.9)

k∗ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗) (A.10)

Hyperparameters Equation (A.4) specified the general form of a squared expo-

nential covariance function, in practice additional parameters are added to this form

to gain a greater control over the types of functions that are considered for the in-

ference. The squared exponential function that will be used in this work will have

the form
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k(xp,xq) = σ2
y exp (−

1

2l2
|xp − xq|2) + σ2

nδpq (A.11)

where σ2
y is the signal variance (limits the vertical scale of the process), l is the length

scale of the process, which defines the smoothness (determines the length between

inputs before function values can change significantly), and σ2
n is the variance from

the noise on the measurements.

As with all Bayesian approaches, the choice of these hyperparameters is very im-

portant. The Bayesian way to deal with the uncertainty that comes from choosing

specific hyperparameters is to remove their influence from any of the calculations

through marginalisation (integrating the hyperparameters out). Through marginali-

sation one can avoid the problem of choosing specific hyperparameters by specifying

a probability distribution for the hyperparameters (using Bayes’ rule) and using a

double integral. Unfortunately, this integral is usually intractable given any reason-

able choice of prior for the hyperparameters. Alternatively, the problem of selecting

hyperparameters can be viewed as an optimisation problem.

Within the machine learning community, the most common approach to the prob-

lem of hyperparameter choice for practical applications is to use a maximum likeli-

hood approach to optimise the hyperparameters, which avoids the difficulty of direct

marginalisation. To do this, the optimal hyperparameters are chosen by maximising

the marginal likelihood of the predictions p(y|X,θ) with respect to the hyperpa-

rameters θ. In log form this can be expressed as:

log p(y|X,θ) = −1

2
yTK−1

y y − 1

2
log |Ky| −

n

2
log 2π (A.12)

with Ky the covariance matrix. The likelihood p(y|X,θ) describes the probability

of observing the targets (in the training data set) y given the input data X and the

hyperparameters θ in the squared exponential covariance function.

Following Rasmussen and Williams [84], when maximising this likelihood one seeks

its partial derivative with respect to the hyperparameters:

∂

∂θj
log (p(y|X,θ) = −1

2
yT ∂K

∂θj
K−1

y y − 1

2
tr

(
K−1∂K

∂θj

)
(A.13)



Appendix B

Stationarity of AR and VAR

models

This appendix serves as a short introduction to auto-regressive and vector auto-

regressive models and their properties relating to stationarity.

B.1 Auto-regressive (AR) Models

The first step of the cointegration procedure involves the generation of an autore-

gressive model for each nonstationary variable. An auto-regressive model is one that

describes the evolution of a time series by a combination of its previous values. Once

each variable is represented in AR form it should be determined if that AR model is

stationary or nonstationary. Consider the auto-regressive model of order p (AR(p));

yi = a1yi−1 + a2yi−2 + · · ·+ apyi−p + εi (B.1)

where εi can be considered to be a Gaussian white noise process driving the model.

εi ∼ N(0, 1). Equation (B.1) can be considered to be a randomly forced difference

equation. With this is mind, the general solution of (B.1) can be considered in the

normal way one would a difference equation:
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yi = yci + ypi (B.2)

where ypi is the ‘particular integral’ and is a solution of (B.1), and yci is the ‘comple-

mentary function’ and is a solution of the equation

yi = a1yi−1 + a2yi−2 + · · ·+ apyi−p (B.3)

Assuming a solution to (B.3) of the form yi = Aλi , (B.3) becomes

Aλi
(
1− a1λ

−1 − · · · − apλ
−p
)
= 0 ⇒ 1− a1z − a2z

2 − · · · − apz
p = 0 (B.4)

where z = 1
λ
. This form is called the characteristic equation of the process, there

are p possible λ satisfying (B.4), which in turn leads to a general solution of

yi = A1λ
i
1 + A2λ

i
2 + · · ·+ Apλ

i
p (B.5)

where A1, . . . , Ap are fixed by p initial conditions. The general solution (B.5) can

be used to indicate the stability/stationarity of the time series. Looking at (B.5),

this solution will remain stable as long as |λi| < 1 for all i, or alternatively as long

as |zi| > 1. If any |zi| < 1 the process will behave explosively. Now if any λi = 1,

which is called a unit root, then yci → A1 + · · · + An and the process has marginal

stability. In terms of statistics then, the following properties hold true

1. If |zi| > 1 the time series will be stationary

2. If |zi| = 1 (unit root) the time series will be nonstationary

3. If |zi| < 1 the time series will be nonstationary and explosive



B.2. VECTOR AUTO-REGRESSIVE (VAR) MODELS 175

B.2 Vector Auto-regressive (VAR) Models

Vector auto-regressive models are an extension of auto-regressive models to include

multiple time series. Now, the evolution of two or more time series is described by

combinations of past outputs from each series. As before the stability conditions for

a VAR model are of interest. A general VAR process of order p takes the form

{yi} = [A1]{yi−1}+ [A2]{yi−2}+ · · ·+ [Ap]{yi−p}+{εi} (B.6)

where each εi can be considered to be a Gaussian white noise process driving the

model; εi ∼ N(0, 1). Here, the [Ai] are n×n matrices and {yi} are n-vectors. Again

the complementary function {yci} is studied, which is a solution of

{yi} − [A1] {yi−1} − [A2] {yi−2} − · · · − [Ap] {yi−p}= 0 (B.7)

Considering a trial solution of {yi} = {α}λi, then as before the characteristic equa-

tion of the process can be obtained as

(1− [A1]z − [A2]z
2 − · · · − [Ap]z

p){α} = 0 (B.8)

with z = 1
λ
. From this form, it is clear that the stability conditions of the process

are the same as for the general AR process described previously.
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