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Abstract 

In the science of tribology, where there is an enormous degree of uncertainty, 

mathematical models that convey state-of-the-art scientific knowledge are 

invaluable tools for unveiling the underlying phenomena. A well-structured 

modelling framework that guarantees a connection between mathematical 

representations and experimental observations, can help in the systematic 

identification of the most realistic hypotheses among a pool of possibilities. 

This thesis is concerned with identifying the most appropriate computational model 

for the prediction of friction and wear in tribological applications, and the 

development of a predictive model and simulation tool based on the identified 

method. Accordingly, a thorough review of the literature has been conducted to find 

the most appropriate approach for predicting friction and wear using computer 

simulations, with the multi-scale approach in mind. It was concluded that the 

Movable Cellular Automata (MCA) method is the most suitable method for multi-

scale modelling of tribological systems.   

It has been established from the state-of-the-art review in Chapter 2 of this thesis, 

that it is essential to be able to model continuous as well as discontinuous behaviour 

of materials on a range of scales from atomistic to micro scales to be able to 

simulate the first-bodies and third body simultaneously (also known as a multi-

body) in a tribological system. This can only be done using a multi-scale particle-

based method because continuum methods such as FEM are none-predictive and are 

not capable of describing the discontinuous nature of materials on the micro scale. 

The most important and well-known particle-based methods are molecular dynamics 

(MD) and the discrete element methods (DEM). Although MD has been widely used 

to simulate elastic and plastic deformation of materials, it is limited to the atomistic 

and nanoscales and cannot be used to simulate materials on the macro-scale. On the 

other hand, DEM is capable of simulating materials on the meso/micro scales and 

has been expanded since the algorithm was first proposed by Cundall and Strack, in 

1979 and adopted by a number of scientific and engineering disciplines. However, it 

is limited to the simulation of granular materials and elastic brittle solid materials 

due to its contact configurations and laws. Even with the use of bond models to 

simulate cohesive and plastic materials, it shows major limitations with parametric 

estimations and validation against experimental results because its contact laws use 

parameters that cannot be directly obtained from the material properties or from 

experiments. 

The MCA method solves these problems using a hybrid technique, combining 

advantages of the classical cellular automata method and molecular dynamics and 
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forming a model for simulating elasticity, plasticity and fracture in ductile 

consolidated materials. It covers both the meso and micro scales, and can even 

“theoretically” be used on the nano scale if the simulation tool is computationally 

powerful enough. A distinguishing feature of the MCA method is the description of 

interaction of forces between automata in terms of stress tensor components. This 

way a direct relationship between the MCA model parameters of particle 

interactions and tensor parameters of material constitutive law is established. This 

makes it possible to directly simulate materials and to implement different models 

and criteria of elasticity, plasticity and fracture, and describe elastic-plastic 

deformation using the theory of plastic flow. Hence, in MCA there is no need for 

parametric fitting because all model parameters can be directly obtained from the 

material mechanical properties. 

To model surfaces in contact and friction behaviour using MCA, the particle size 

can be chosen large enough to consider the contacting surface as a rough plane, 

which is the approach used in all MCA studies of contacting surfaces so far. The 

other approach is to specify a very small particle size so that it can directly simulate 

a real surface, which allows for the direct investigation of material behaviour and 

processes on all three scale levels (atomic, meso and macro) in an explicit form. 

This has still been proven difficult to do because it is too computationally extensive 

and only a small area of the contact can be simulated due to the high numbers of 

particles required to simulate a real solid. Furthermore, until now, no commercial 

software is available for MCA simulations, only a 2D MCA demo-version which 

was developed by the Laboratory of CAD of Materials at the Institute of Strength 

Physics and Materials Science in Tomsk, Russia, in 2005. The developers of the 

MCA method use their own in-house codes. 

This thesis presents the successful development of a 3D MCA open-source software 

for the scientific and tribology communities to use. This was done by implementing 

the MCA method within the framework of the open-source code LIGGGHTS.  It 

follows the formulations of the 3D elastic-plastic model developed by the authors 

including Sergey G. Psakhie, Valentin L. Popov, Evgeny V. Shilko, and the external 

supervisor on this thesis Alexey Yu. Smolin, which has been successfully 

implemented in the open-source code LIGGGHTS. Details of the mathematical 

formulations can be found in [1]–[3], and section 3.5 of this thesis. 

The MCA model has been successfully implemented to simulate ductile 

consolidated materials. Specifically, new interaction laws were implemented, as well 

as features related to particle packing, particle interaction forces, bonding of 

particles, and others. The model has also been successfully verified, validated, and 

used in simulating indentation. The validation against experimental results showed 
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that using the developed model, correct material mechanical response can be 

simulated using direct macroscopic mechanical material properties. 

The implemented code still shows limitations in terms of computational capacity 

because the parallelization of the code has not been completely implemented yet. 

Nevertheless, this thesis extends the capabilities of LIGGGHTS software to provide 

an open-source tool for using the MCA method to simulate solid material 

deformation behaviour. It also significantly increases the potential of using MCA in 

an HPC environment, producing results otherwise difficult to obtain.  
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Chapter 1 

Introduction 

 Motivation 

Tribology is the science that deals with bodies in contact and in relative motion, and 

although it is an important and long studied science, tribological systems, their 

behaviour and phenomena are still poorly understood. It is still considered a difficult 

subject due to its multi-disciplinary, multi-scale and multi-physical nature [4]. 

Initially the science of tribology was based on solid and fluid mechanics theories, 

but the discrete pattern of contacts has recently been considered, due to the nature of 

tribological contacts and their physical complexities [5], [6]. 

When a body is moving tangentially to a surface such as in sliding or rolling motion, 

frictional forces are produced leading to energy loss, wear and deformation of 

surfaces, limiting the lifetime of mechanical systems. The modelling of friction and 

wear phenomena is very complex and non-linear, and despite the vast interest in the 

field and the increasing capabilities of computational modelling, no practical and 

comprehensive friction models exist that can show and predict all the aspects of 

friction dynamics observed experimentally. Models available for friction and wear 

are mostly empirical models that are very limited and only work for specific 

materials and test conditions. 

Modelling efforts of frictional contacts appear to follow two mutually exclusive 

philosophies; phenomenological and physics-based models. The first depends on 

experimental observations and conditions to get the tangential force and the relative 

displacement between two contacts to obtain a general friction behaviour by curve 

fitting an equation to the obtained data [7]. These models do not involve any 

information on the underlying mechanisms, are very hard to generalize, and hence 

lack predictive capabilities for different conditions. On the other hand, physics-

based models consider the various aspects involved such as; the material’s 

mechanics and mechanical properties, and the interface chemistry; to develop an 

understanding of the frictional behaviour from the local physics of the system on 

different scales; from atomic to macro scales, as shown in Figure 0-1. 

The most commonly used phenomenological model of frictional contacts is 

Coulomb’s model for friction. Coulomb’s law states that there is a linear 

relationship between the tangential frictional forces (𝐹𝑓) and normal forces (𝐹𝑛) at a 

contact, where the proportionality constant is the coefficient of friction: 

       µ = 
𝑭𝒇

𝑭𝒏
                                    (1.1) 
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Figure 0-1: Diagram showing the multi-scale complexity of interaction in frictional contacts [8] 

The coefficient of friction has no physical meaning and the need for determining its 

value beforehand, limits the predictive capability of the model immensely.  

These models are also constricted to static and elastic cases, however when 

tangential forces are applied, elastic-plastic deformations occur as well as slip over 

the contact which all greatly affects the frictional behaviour of the system. Hence 

friction should be described in some locally distributed, more fundamental form than 

just the coefficient of friction which is only useful in mechanical design, but not in 

the fundamental understanding of friction and wear [9]. 

To overcome these drawbacks, dynamic friction models were proposed [10]–[12] 

where the surfaces in contact are assumed to have a number of asperities in contact; 

which are surface irregularities as shown in Figure 0-2, and an average deformation 

parameter of these asperities is assumed based on experimental observations, which 

again makes them phenomenological models.  

 

Figure 0-2: Multi-scale aspect of frictional contacts [13] 
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A persisting question in the field of tribology is where does friction come from? 

What is the origin of friction? The answer is not simply the macroscopic result of 

blocks interacting with each other, because friction is independent of the apparent 

contact area.  The actual contact occurs at asperity contacts on the microscopic scale 

as shown in Figure 0-3. The behaviour of contacts at the small scales is 

fundamentally different from that on the macro scale which is mainly due to the 

surface interactions. When the surfaces’ energy reaches the order of magnitude of 

other characteristic energies of the system such as elastic strain for example, or 

kinetic energies, the adhesive effects start to play a major role and the continuum 

representation of the media is no longer valid. Hence, physics-based models use 

constitutive laws to relate local stress and strain fields from the fundamental 

knowledge of the material behaviour. Bowden and Tabor were the first to attempt to 

describe a friction physics-based model in the 1950s [14] at asperity contacts, where 

they defined the coefficient of friction as the ratio between the shear strength of the 

material and its hardness; however they assumed that only elastic deformation 

occurs; they did not consider the difference between normal and tangential loading.  

At the asperity scale, as shown in Figure 0-3, it may be sufficient to study elastic 

behaviour under steady state contact, but the nature of surfaces on the macroscale is 

very different with random distributions of asperities, thus scaling up and extending 

the asperity scale contacts to multi-asperity macro scale contacts becomes very 

challenging. This is mainly done using statistical summation and fractal 

characterization techniques where the height distribution of asperities are acquired 

by measurements of surface roughness and added to the nominal contact area so that 

the contribution of each asperity is taken into consideration. Here it is assumed that 

the surface is isotropic and the asperities do not interact with each other, in addition 

to using empirical superposition of stress-strain relationships under elastic-plastic 

conditions; which is not a physical representation.  

 

Figure 0-3: Two rough surfaces in contact; elastic deformation at regions surrounding the 

contact junctions and plastic deformation occurs at some of the junctions. The expanded 

view shows the contact area at the contact zone between two contacting asperities [15] 
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Furthermore, wear is the amount of material loss that happens during the contact of 

surfaces, and it is the least predictable phenomenon in tribological systems mainly 

due to the incomplete knowledge of the wear rate for the appropriate material pair in 

the system. Modelling of wear has been extensively researched to obtain predictive 

equations [16]. The first and main phenomenological wear model produced is 

Archard’s wear model [17] which assumes that the volume of material which is 

removed (V) for a sliding distance (s) is directly proportional to the applied normal 

load (𝐹𝑛)  and the hardness of the softer material (H), where the proportionality 

constant is the wear coefficient (k): 
𝐕

𝐒
 = 𝒌

𝑭𝒏

𝐇
                                  (2.2) 

When the equation did not apply correctly for a specific case, the model was 

modified to suit it. For example, for highly elastic materials at asperity contacts, a 

model [18] was developed where it related the volume of material removed to the 

coefficient of friction: 
𝐕

𝐒
 = 𝒌

𝑭𝒏

𝐇
√𝟏 + 𝟑µ𝟐                       (3.3) 

Other models use a qualitative approach using experimental data, however these 

models are only suitable for specific materials and conditions and thus, again, lack 

the predictive capabilities [9].  

It is also believed that a different approach is needed to be able to predict friction 

and wear as stated in [9]. They, and many others, suggest to not model wear by 

following the current conventional wear mechanisms known, which are shown in 

Figure 0-4, but to consider alternatives. To develop a full picture of what happens at 

the macroscopic sliding surfaces and how the fragmented particles on the interface 

move and change, should be represented by a more local and fundamental way other 

than the coefficient of friction because friction forces change the stresses and 

temperatures at the interfaces. 

 

Figure 0-4: Tribological solid/solid interactions and wear mechanisms [19] 
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 Scope of Thesis 

This thesis is one of many to attempt to explain and model friction and wear 

phenomenon in dry contact. It works towards the long-term goal of predicting 

friction and wear behaviour on the macroscale contact of surfaces based on the 

material and surface properties, while also considering the underlying microscopic 

mechanisms. The literature review presented in Chapter 2 reveals that the lack of 

predictive models of friction and wear is mainly due to the lack of understanding of 

microscopic and macroscopic fracture and plastic deformation in tribological 

systems. Specifically, the role of plasticity is still poorly investigated and is not 

included in most macroscale friction models, and only included implicitly in some 

wear models. The state-of-the-art-review in Chapter 2 shows that a physical particle-

based model; such as molecular dynamics (MD) or discrete element method (DEM), 

is the best approach to model elastic-plastic deformation on different scales, 

however they are still limited. Hence, an improved particle-based model and 

simulation tool for the simulation of elastic-plastic deformation of materials on 

different scales is needed to better understand and predict friction and wear. 

 

 Aims & Objectives 

In this frame, the immediate goal is to develop a numerical tool that can simulate 

complex material behaviour on different scales; specifically, plastic deformation. 

The long-term vision is to use this model to simulate and predict friction and wear 

behaviour in tribological systems. 

The objectives of this project are as follows: 

1- Review the relevant computational methods at different scales in literature to 

identify a suitable approach for practical predictive modelling of tribological 

systems. 

2- Develop a computational code/tool capable of direct numerical simulation of 

friction and wear (i.e. capturing actual damage to material). 

3- Validate the model by comparing against experimental data. 

4- Test the model and code to study its sensitivity and performance. 

5- Simulate different tribological systems to explore fundamental mechanisms 

of friction and wear on different scales. 
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 Contributions 

The developed simulation tool can be used to simulate elastic-plastic behaviour of 

solid material on different scales. It provides the community with an open-source 3D 

mesoscopic particle-based simulation tool based on the Movable Cellular Automata 

Method (MCA), since currently there only exists a 2D MCA demo version available 

for the public. The following section attempts to breakdown and place the research 

into context. The approach for this completed work is shown in Figure 0-5. 

• Review of the state of the art, and the identification of the most suitable 

approach for our aim of prediction of friction and wear. MCA was identified 

as the most appropriate computational method. This is covered in Chapter 2. 

• Computational and Numerical methodology. Identifying the best platform 

for implementing the MCA model, which was chosen to be LIGGGHTS 

open-source code which is based on the Discrete Elements Method (DEM). 

Presenting the theoretical background of DEM and MCA, and identifying 

their differences to classify the MCA functionalities that need to be added in 

LIGGGHTS. This is covered in Chapter 3. 

• Development and implementation of the 3D MCA elastic-plastic model in 

LIGGGHTS, and verification of the developed model for the simulation of 

fracture and plastic deformation. This is covered in Chapter 4.  

• Validation against experimental data and investigating the convergence, 

sensitivity and computational performance of the model and code. This is 

covered in Chapters 5 and 6 

 

Figure 0-5: Thesis road map 

State of the Art Review

Theortical background of Particle-based Methods: DEM vs MCA

Implementation of MCA Model in LIGGGHTS and 
Verification

Validation, convergence and sensitivity 
analysis
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2 Chapter 2 

State of the Art Review 

 Introduction 

This chapter fulfils the first object of reviewing the literature on the modelling and 

simulation of tribological systems. Here the advantages and disadvantages of each 

method is highlighted with the aim to identify the most suitable method for the 

prediction of friction and wear. This Chapter focuses on the following: 

• An overview of the different modelling techniques for material bulk 

behaviour, with emphasis on multi-scale modelling approaches.  

• An overview of the modelling methods and tools used in the study of 

tribological systems; highlighting the gaps between micro and macro scales. 

• Finally, concluding with identifying the most appropriate approach for 

practical predictive modelling of tribological systems; depending on the most 

appropriate scale levels. 

 Materials Simulation and Multi-Scale Modelling 

All physical phenomena depend mainly on the materials, their structure, behaviour 

and reaction to the environment. To understand the basic behaviour of friction and 

wear in mechanical systems, the ability to properly describe the material behaviour 

is necessary [20]. As far as modern tribology is concerned, understanding the 

elementary friction (energy dissipation) and wear (material loss) processes is one 

aspect of it, and the other is the selection and development of materials using 

modelling and experimental studies for advanced applications. 

In physics-based modelling of materials, there are two main approaches; the 

continuum approach and the particle-based or discrete approach. They are based on 

two fundamentally different theories, where each has its advantages and limitations.  

From the continuum perspective, materials are described without taking into 

consideration the inhomogeneities and internal structure of the material; it is 

assumed that the medium can be infinitely divided without changing its properties 

[20], which is why it is used in modelling macroscopic behaviour but not capable of 

describing microscopic behaviours on the smaller scales. The most well-known and 

widely used continuum modelling method is the finite element method (FEM); 

which was developed in the 1950s by Argyris and Kelsey [21] and Turner et al [22], 

other methods are the finite difference and boundary element methods (BEM). 
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In continuum mechanics, external loads whether forces or displacements, change the 

shape of the bodies causing deformation of the material. As shown in Figure 2-1, a 

material of a body (B) with a surface (𝜕𝐵) can be represented as a continuous 

distribution of an infinite number of continuum particles [23]. This particle or mesh, 

on the macro scale is a point with no mass or volume just like in a geometrical 

shape, which is why is not considered to be a small piece of material. However, this 

continuum particle obtains its properties from a finite-sized region (l) on the 

microscale as shown in Figure 2-1. The properties of these particles can be thought 

of as an average of the atomic behaviours within this domain. Furthermore, here 

constitutive laws; determined experimentally or guessed intuitively, are used to 

describe the material’s response and deformation process. One does not need to 

consider the underlying reasons for these responses. This approach, which is based 

on fitting information based on observed phenomena, cannot be used to understand 

fundamental mechanisms or predict behaviour of materials [23].  

 

Figure 2-1: A schematic of a material with body B and a surface 𝝏B, where P is the continuum 

particle representing the atomic structure (the dots around P) of length scale l [23] 

On the other hand, in the particle-based or discrete approach, the material is 

modelled as an assembly of separate discrete particles or elements. Particle-based 

methods actually originate from the molecular dynamics (MD) method at the atomic 

scale. However, it could be applied on different scales; such as atoms or molecules 

on the atomic scale, and grains or solid particles on the meso /micro scales and even 

on the macro scales. This approach is a direct and straightforward way to model 

mechanical behaviour of materials at different scales, as shown in Figure 2-2, by 

applying particle-particle interaction laws.  

In atomistic modelling, each atom is modelled as an individual particle of the 

material that cannot be divided any further. The discreteness of the material is 

explicitly considered, and the associated questions can hardly ever be solved 

analytically. Thus, numerical simulations used to implement these models are 

implemented by modelling the motion of the atoms over a certain time span. Monte 

Carlo and MD methods are the main atomistic methods used; they are used in all 
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different types of studies that involve the process of diffusion in solids, and the 

interaction of a material with its environment. MD is the most used and the details of 

the approach are thoroughly reviewed in the books written by Allen and Tildesley in 

1987 [24] and Frenkel and Smith in 1996 [25]. The interaction forces (potential 

functions) used in the atomistic methods are usually generated by Quantum 

Mechanics models. 

 

Figure 2-2: Materials across the different scales [26] 

Even though the physical dimension of an atomic scale simulation is very small; a 

few nanometres, the system contains huge numbers of particles; maybe billions of 

atoms. It is impossible to study and predict the behaviour of such systems 

experimentally; however, these computational studies are very expensive in terms of 

computational power. Atomistic models are used to probe and gain a better 

understanding of various fundamental phenomena and mechanisms of materials, 

their causes and effects; which also helps in developing and optimizing the materials 

[20]. Its significance also shows because miniaturization has been gaining an 

increasing interest, and many modern technologies involve the nanometre scale; 

such as thin films, nano-composites, semi-conductors, etc, as shown in Figure 2-3. 

Discrete methods are also used on micro and macro scales involving granular or 

weakly bonded materials. The most well-known method is the discrete element 

method (DEM) originally developed by Peter Cundall in the 1970s [27], [28], and it 

is considered very closely related to MD, however it is not capable of investigating 

phenomena at the atomic or molecular scales. 
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Figure 2-3: The characteristic material scales of technological eras [5] 

DEM uses the equations and laws of motion to manage the interaction between the 

particles in the system. The Equations of motion manage the conservation while the 

laws of interactions play the role of constitutive equations. Despite the variations of 

DEM, all models rely on three main parts: 1- time integration of the mechanics’ 

equations 2- detection of contact between system particles 3- computation of 

interaction forces [5]. 

The disadvantages of these methods are their high computational costs and time, and 

difficulty to validate experimentally in great detail. However, the increasing speed 

of computers and the simplifications possibly made in the models made it much 

more popular. Discrete simulations are also good starting points to model multi-

scale phenomena and could possibly be linked to continuum methods.  

Engineers mostly use tools that are based on the continuum mechanics theories such 

as the finite element method (FEM) [20] as shown in Figure 2-4, and only recently, 

in the 1980s, scientist and engineers started to consider atomistic and discrete 

descriptions in their models. For many applications and phenomena; including 

tribological systems; which will be shown later on, the two approaches are actually 

complementary and if bridged properly it will have a great impact on the 

understanding of material behaviour and complex processes.  

Multi-scale modelling aims to bridge the two viewpoints to be able to bridge the 

materials scales, which is usually done by introducing the intermediate mesoscopic 

methods. Another strong motivation for the use of multi-scale models is saving 

computational cost and time; making it possible to access the different length and 

time scales needed.  
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Figure 2-4: Computational modelling methods across the scales 

There are two main distinguished approaches for multi-scale modelling; the 

hierarchical and the concurrent approaches [29]. In the hierarchical methods, also 

known as the coupling of scales, different methods and tools are used on the 

different scales in sequence, starting from the atomic scale going up to the macro 

scale. Firstly, the quantum mechanics method is used to find the interatomic 

potentials and force fields needed to be fed into an MD simulation. Here MD is used 

to develop an understanding of the microstructure of the material, which will then be 

fed into a finite element simulation to get macroscopic data. In the concurrent multi-

scale methods, the two or more scales are simultaneously simulated, rather than 

using the data from one scale to generate models on a larger scale. These type of 

simulations were first reported in the 1990s [20].This is mostly done by dividing the 

computational domain into different regions where different simulation methods are 

applied but at the same time, where the information at the small scales are taken and 

input on the fly into the larger scales.  

The difficult and critical problem in these methods is the correct coupling of the 

different models. The correct and accurate mechanical, physical and 

thermodynamical transformation between these methods is extremely tricky and 

challenging, however when validated, are very insightful. One of the pioneering 

works in multi-scale modelling is called the MAAD approach (macroscopic, 

atomistic, ab initio dynamics) which was done by Abraham et al. in 1998 [30]. More 

recently, two review papers were written by Curtin and Miller [31] and Lui et al. 

[32] were they comprehensively covered the field of multi-scale modelling. 

The next section covers the main approaches used in the simulation and modelling 

of tribological systems and the best approach for the multi-scale prediction of 

friction and wear is chosen accordingly. 
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 Tribological Triplet Concept 

Tribological behaviours are system dependent, and most tribomechanical systems 

can be divided into several tribological sub-systems. For example, the transmission 

gearbox in a vehicle is very complex and could be divided into eight tribosystems, 

some of which are the roller bearings, spur gears and sealing elements, as mentioned 

in [33].  Each of these tribosystems could be tested or modelled separately, however, 

all systems are defined by a set of fundamental components as shown in Figure 2-5; 

which are the counter body and base body, also known as the first bodies, and the 

interface between them, known as the third body, in addition to their operating 

conditions; type of motion, load, speed and operating environment. The analysis of 

the system is very important to be able to select the most appropriate material of 

each component for the given mechanism, operating conditions and environment.  

 
Figure 2-5: Expanded representation of a tribological system [34] 

The interfacial material called the third body is mainly formed by the degradation of 

the first-bodies, as shown in Figure 2-6. It can also enter into the contact from the 

outside. Many mechanical transformations occur in the third body, such as damage, 

fracture, phase change, plasticity, fatigue, etc., as well as physical phenomena such 

as chemical reactions, heat production, electrostatic interactions, etc. This is why the 

third body is particularly complicated to study, including that its confinement makes 

it hard to study experimentally. However, experimental observations revealed that 

the third body in various contact conditions may be more or less heterogeneous and 

continuous. It also revealed that most of the content of the third body come from the 

degradation of the first-bodies, and that it flows into the contact with an unknown 

rheology and that it has thicknesses varying from a few nanometres to several 

micrometres [35]. It is believed that wear is loss of mass from the whole contact and 

not just from one material. Hence, fatigue, abrasion, adhesion phenomena etc. are 

not wear but particle detachment mechanisms [36].  
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Figure 2-6: A schematic showing wear and degradation of material in the third-body layer [37] 

Godet and Berthier in the 1980s [38], [39] were the first to propose a concept that 

was unconventional, discussing the importance of solving tribological problems by 

considering its components; the bodies in contact (the first bodies consisting of 

counter body and base body), the mechanism that contains them, and the interface 

that separates them (the third body) all simultaneously, and they called it the 

tribological triplet concept [5]. The simultaneous interactions between the three 

elements are what influence the tribometric characteristics of the system. Here in 

this framework, three different scales of a frictional contact are investigated which 

form the tribological triplet which is a multi-scale description of the tribo-system 

[40] as explained in the following sections. 
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 Modelling of Multi-Bodies: The Multi-scale Approach 

In the work done by Peter Blaue in1991 [41], he was interested in answering a 

fundamental question regarding friction, which was “what are the scale effects in 

steady-state friction?” and in doing so, three levels of interactions were 

distinguished as shown in Figure 2-7 below [19]. He mentioned that in modelling 

friction effectively, the proper level of interaction must be determined, and they 

could be divided as follows; 

1. Level I interaction, is the scale that involves the behaviour of the third body; 

composed of molecular layers and interfacial films, which are on the 

molecular/sub-nanometers to tens of nanometers scales. Assuming all the 

friction is induced within the interface between the first bodies, as it would in 

an effectively lubricated system, the bounding solids could be neglected. 

2. Level II interaction, is the scale involving the asperities contacts and surface 

layers. If the shear is transmitted to the first bodies (solids) - which is usually 

the case in dry contacts - they have to be included in the model and their 

properties have to be taken into consideration. 

3. Level III interaction, involves the machine and the surrounding environment. 

This is of concern when the shear forces are transmitted to the machine and 

fixtures because the material could not maintain the friction forces. This 

occurs at the higher micro and macro scales. 

 
Figure 2-7: Schematic showing the hierarchy of interaction in tribological systems  
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Reflecting back on the tribological triplet concept of the previous section, this means 

that in studying tribological systems it is crucial to solve the system as a whole; 

including the three components on their various and different length scales 

simultaneously. This is where multi-scale modelling comes into play in the study of 

tribological systems and phenomena. A correct and reliable model should account 

for these different scales simultaneously as well; a multi-body multi-scale model. 

However, it is evident from the literature – which will be shown in section 2.6 - that 

most studies are conducted on single scales and there is a lack of coupling between 

the different scales within a single simulation. The level of interactions of the first 

bodies are on the micro-scale, and hence it was found that they were usually 

modelled using contact mechanics and continuum mechanics models. As for the 

third body, since the level of interaction is on the molecular and nano-scale, 

atomistic models have usually been used to simulate them. 

Hugh Spikes in his paper published in 2001 [42] about the expected tribology 

research advances in the twenty-first century, mentioned the likelihood of the rise of 

more modelling and simulation studies of multi-body problems due to its importance 

in understanding many tribological systems and phenomena [5], which did happen. 

Multi-scale modelling is not a new approach in investigating materials; however, in 

tribology it is only very recently where tribologists and researchers have tried 

modelling in a single simulation the different scales of the tribological triplet.  

As mentioned in section 2.2, there are two approaches for multi-scale modelling; the 

hierarchal and concurrent approaches. In many applications where a clear separation 

between the scales is present in the system, a hierarchal approach is very efficient 

and possible to use. However, in systems and phenomena where no clear separation 

between the scales is present, such as in friction, wear and plasticity, a concurrent 

multi-scale approach is needed which are far more complex where two or more 

scales are bridged and simultaneously used in a single model [43], [44]. 

In this case, some use the method of reduction of dimensionality [45] to study the 

contact and friction mechanics in tribological systems and link between the micro 

and macro scales, however these are still very abstract concept that are difficult to 

apply on multi-scale models to predict friction and wear. Other pioneering studies 

were done to analyse bearings by coupling the mechanism and the bodies in contact 

by simulating a multi-body model by applying boundary conditions on a FEM 

simulation coupling it with contact mechanics [46].  

Others coupled the smaller scales of the first bodies and the third body to investigate 

the wear and behaviour of the bodies in contact [47]; to model the interaction levels 

at the interface, they coupled the discrete and continuum methods in a single 
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simulation using the movable cellular automata (MCA) method to study dry friction 

in rail-wheel contact. Others did that as well using a contact homogenization 

technique [48] where the effects of the deformation of the contact bodies are directly 

linked to the rheology of the interfaces. Also, a multi-scale study was done using the 

MCA method to simulate surface topography of dry friction contacts [49] and to 

study mixed lubrication regime in mechanical seals [50]. 

Others coupled MD with dislocation dynamics [51], [52] and to model the interface 

and taking into account the surface conditions, FEM and MD coupled models were 

done to study the contact problem [53]–[55].While others used the boundary 

element modelling method where discrete models were coupled to investigate the 

material degradation in a gear system [56]. However, these methods are also based 

on approximations and reductions because direct coupling of MD simulations with 

FEM ones is theoretically impossible due to the 10^8 gap in time and length scales.  

The mescoscale approaches however, are used to model the scales in between those 

atomic and macroscales [57]–[61], and is considered by itself a bridge the micro and 

macro scales. Furthermore, it was shown in literature that friction and wear are also 

considered mesoscopic phenomena, which is explained in more detail in the 

following section. 
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 The Role of the Meso-scale: The Gap between the Scales 

A study was conducted by Psakhie and Popov in 2012 [58] where they discussed the 

mesoscopic nature of friction. The mesoscale is known as the gap between the 

macro and nano scales. The role of the mesoscale on friction and wear was also 

discussed in [60]. As mentioned in the introduction, Coulomb’s law of friction is 

always used when dealing with friction and wear, however, it is a very rough 

approximation and it is concluded that all the scales contribute to friction. It is 

impossible to have a clear separation of macroscopic and microscopic scales in 

frictional systems [45], [58] because in surfaces there is no gap in the wave vector 

space as shown in Figure 2-8. Thus, friction is typically a mesoscopic phenomenon 

which acts similarly to fracture and plastic deformation phenomena, and hence has a 

mesoscopic multi-scale nature, which was also recognized by Panin in 1998 [57].  

Usually, engineers and physicists have very different approaches to study friction, 

and neither account for its mesoscopic nature. The engineering approach chooses the 

wave vector separating the macro and micro scales as shown in Figure 2-8(a). This 

means they only describe the system at the macroscopic scale as a whole by methods 

on single scales such as the FEM method, and the other scales are not explicitly 

taken into consideration and they describe the system dynamics using a “friction 

law” which is highly system independent. On the other hand, many study friction 

using microscopic models, where the most important scale is chosen for the system 

and they calculate the dynamics explicitly in this scale as shown in Figure 2-8(b). 

Although these allow a qualitative understanding of friction at a specific scale, it 

does not have a quantitative predictive power. Finally, molecular physicists study 

frictional forces on the molecular scale totally ignoring the intermediate scales as 

shown in Figure 2-8(c) [45], [58]. 

 

Figure 2-8: Paradigm in the physics of friction, the world of the (a) engineer (b) friction 

physicist and (c) molecular physicist [45], [58] 

This separation was clear to notice when reviewing the literature as shown in the 

following section. The tribology community is either focused on the engineering 

macroscopic continuum approach, or the physical microscopic atomistic approach.  
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 Modelling and Simulation in Tribology 

This section presents a literature review on the numerical and computational 

simulation studies conducted in the field of tribology. This will follow the guidelines 

of the tribological triplet concept, thus it will be divided into methods that modelled 

the first bodies, and the ones that modelled the third body, taking into account the 

type of computational modelling method used; atomistic, continuum, discrete or 

multi-scale. At the scale of the mechanism, semi-analytical models are used [5], but 

it is of no interest in our study since we are only interested in simulating the 

interaction between the first bodies and the third body. 

2.6.1 Modelling of Surfaces and Contacts: The First Bodies 

The science of tribology; friction, wear and lubrication is all about understanding 

how two contacting surfaces behave. Whenever two surfaces are in contact, 

deformation will occur. The deformation may be elastic or partially involve plastic 

deformation and thus a permanent change in shape. These deformations of element 

surfaces may be observed both on the macro (rolling parts of a bearing) and the 

micro (roughness, asperities) level.  

No surface is ideally smooth on the micro level, so actual contact will only occur on 

a certain number of asperities as shown in Figure 2-9, which are deformed by 

loading. The sum of the micro-contact surfaces is known as the real contact surface 

and is relatively small in comparison to the nominal or geometric surface, usually 

only amounting to a couple of percentage points. 

 

Figure 2-9:  A surface consisting of asperities and valleys magnified to a small scale [15] 

There are two main approaches to model contacts of rough bodies. The first is to 

represent the rough surface of the body as a set of simple figures, such as spheres or 

columns, with heights that are normally distributed [62], solved using the analytical 

Hertzian solution of contact problems. These are reliable in the cases when 

investigating contact stiffness but cannot be used in the cases where there are 

arbitrary shaped bodies involved or when the evaluation of stress-strain state of real 
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asperities is needed. The second approach considers the surface to be made up of a 

number of finite elements; i.e. continuum modelling, and the shape of these 

elements are determined by profilometric data taken from experimental data and 

then are solved numerically. 

2.6.1.1 Contact Mechanics 

Reliable contact models can improve the understanding of friction and wear, but one 

of the main difficulties in modelling real rough surfaces is accounting for the effects 

of surface topography. For decades studies have been conducted to try using simple 

models in the field of contact mechanics to describe the behaviour of the relative 

motion between two bodies.  

Hertz, after many decades of attempts was the first to propose a contact model [63]. 

Initially the model comprised the contact between a flat surface and a cylinder but 

was later extended to include contact between two spheres of varied radii [64]. The 

model used the elasticity of the materials in contact in order to represent a simplified 

local body deformation, as well as providing the stress field in the area of contact 

using the normal force, the curvature radius of the two contacting bodies and the 

elastic moduli. The model assumes that the contact is frictionless, the contact area is 

small relative to the size of the bodies, the stresses are localized at the contact zone 

and less than the elastic limit, and finally a continuous and smooth distribution of 

pressure in the contact area. Although many later models used the original 

hypotheses, extensions were proposed to include other geometries [65], [66] and to 

account for friction and inelastic behaviour [67].  

More theories based on the Hertz smooth contact theory were presented taking 

elastic deformation in single-asperities contact into account by Johnson, Kendall and 

Roberts (JKR) [68] and by Derjaguin, Muller and Toporov (DMT) [69]. However, 

in the case of normal contact of inelastic solids, Johnson's core model of elastic-

plastic indentation is used [67]. 

Furthermore, in the 1960s, rough surfaces have been studied using a static contact 

model which was developed by Greenwood and Williamson [64] to describe multi-

asperity contact as shown in Figure 2-10. Statistical distribution of asperities was 

taken into account and deformations are based on Hertzian contact theory.  This 

resulted that for low normal loads the asperities provided a larger effective radius 

and a lower contact pressure than predicted by Hertz. In 1975 Bush et al. upgraded 

the Greenwood and Williamson model and statistical distribution of asperities’ 

heights is still taken into account, but they proposed an elliptical, instead of round, 

shape of asperities. In 2006 Greenwood simplified Bush et al. model and obtained 

similar results. 



- 20 - 

 

The GW model was modified to include elastic-plastic deformation by many 

researchers, however the first model to introduce a statistical contact model which 

realizes both elastic and fully plastic behaviour of asperities was the Chang-Etsion-

Bogy (CEB) model [70]. The Zhao-Maietta Chang (ZMC) model [71] developed the 

CEB model further to include the elastic-plastic deformation regime. They derived 

their expressions by using Hertz theory for the elastic deformation behaviour, and 

the Abbot-Firestone [72] and Tabor [73] models for fully-plastic deformation. 

Persson’s theory [74] was also introduced where the stress probability distribution is 

a function of the surface resolution. Both GW and Persson’s models are used in the 

tribology community to model rough contact. 

 

Figure 2-10: Contact geometry assumed in the Greenwood and Williamson model [15] 

However, all mentioned models for real contact surface are statistical models. Based 

on this we cannot get an exact picture of real contact surfaces, but they can give us a 

good approximation of them. There also exist fractal (Pawlus, McCool, Buchner, 

Sodergerg, etc.) and deterministic models (Whitehouse, Blunt, Tomanik, etc.) which 

are more advanced and complex [75]. None of these models can exactly describe 

real contact surface properties, that is why this field still represents one of the most 

mysterious fields of tribology. This was also mentioned in a recent review paper of 

the modelling and simulation approaches in tribology across scales [43]. 

2.6.1.2 Continuum Mechanics: FEM & BEM 

FEM is the main continuum mechanics method used in modern simulations as 

mentioned previously. Conventionally, tribology has been approached using 

analytical and semi-analytical methods, however during the late 1980’s journals 

were published regarding numerical methods to approach tribological problems [76], 

specifically using FEM [77]. Although at first it was regarded as computationally 

expensive compared to the analytical methods, an increase of interest occurred, 

because though it is complex with many inputs, many complex problems may be 

solved numerically and almost instantly, as opposed to taking hours using 

conventional analytical techniques. For this reason, the complexity of the 

computational methods of analysis may be tolerated, in addition to the fact that 

optimization methods are constantly being developed to reduce its complexity. The 

other distinguished method in continuum mechanics is the Boundary Element 
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Method (BEM) [78]. BEM is less versatile but more efficient than FEM because it 

does not require volume discretization and only the surface degrees of freedom need 

to be solved.  

In tribology, FEM is used to study the behaviour of the first bodies in contact 

because contact problems are generally nonlinear even if the contact is linearly 

elastic with frictionless and non-adhesive properties because the contact area is 

never known a priori; except for the simple rigid flat cases of full contact. FEM 

solves this problem because an explicit relationship between stresses and strains can 

be defined which enables considering the arbitrary constitutive material models; 

whether they are simple linear elastic or complex crystal plasticity models [43]. For 

example, FEM was applied in the modelling of brake systems and the method was 

able to predict the brake dynamic instability through generating and analysing the 

squeal vibrations and local contact stresses, they were reviewed in [79]. 

On the other hand, BEM uses a formulation that assumes that locally the material 

solid is a flat half-space, which makes it more efficient but limits its field of 

application. Although BEM has been used in the study of rough surface contact 

mechanics [80], true contact area evolution, interface permeability, electric and 

thermal contact in the linear material laws, a broad area of systems falls outside its 

field of limitation where FEM then must be used. Large deformations, large sliding 

or contacts which involve large nonlinear behaviour, fracture at the interface, or 

indentation involving strong plastic deformations, are all difficult to represent by the 

BEM framework. However, material nonlinear behaviour can be included in the 

BEM framework; such as elastic-plastic [81], [82] and viscoelastic [83], [84] 

behaviour, as long as the deformations remain small. Severe plasticity behaviour 

however is related to wear which must be included in the model. This is discussed in 

more detail in section 2.3.3. 

Although continuum mechanics models are extremely helpful in understanding the 

mechanism of tribological systems and the reasons behind their behaviour, they are 

unable to act as a predictive tool. This is because they require finding constitutive 

laws which relate the stress and strain fields where predicting the transitions 

between elastic, plastic and viscous behaviour is particularly difficult and require 

explicit experimental data. They are also unable to provide information at the micro 

scales and at the third body level of interaction scales, they are constrained in size 

and need very computational expensive demands for any transient analysis needed 

[43]. Thus, FEM and BEM are useful for understanding the behaviour of the 

tribological interactions but not for predicting them. 
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2.6.1.3 Crystal Plasticity 

Crystal plasticity is a method that has been well-established for the modelling of 

material heterogeneous plastic deformation when metals experience large 

deformations, by assuming that plastic deformation results from the plastic slip of 

specific crystallographic slip systems within a single crystal or individual grains in 

polycrystalline aggregates [85] [86]. It was first formulated in the 1920-1930s by 

Taylor [87], [88] and then it was later developed to include elastic-plastic behaviour 

[86], [89] and finite strain formulations [90] based on modern continuum mechanics 

[91]. However, crystal plasticity is a continuum theory and is not applicable on 

small scales describing the nucleation and propagation of dislocations; molecular 

dynamics and discrete dislocation dynamics are more appropriate for this which is 

explained more in section 2.6.2. It can also not capture important phenomena on the 

larger scales related to plastic deformation such as the formation of dislocation 

structures or grain refinements, even though attempts in that direction have been 

made. Since plastic deformation is an inhomogeneous multi-scale phenomena, many 

of the related phenomena cannot be described using crystal plasticity [43]. 

In tribology, when dealing with rough surface contacts, crystal plasticity is the 

relevant constitutive framework to use. It is important to note, that it is only relevant 

here if the size of contact points is comparable to the grain size in a polycrystalline 

material. The effects of plastic anisotropy, crystal orientation, pile-up, sink-in 

patterns, etc, all influence the real contact area evolution in rough contacts. 

Surprisingly however, only very few studies using crystal plasticity in tribology 

have been found. The studies are limited to the analysis of asperity flattening and 

sliding contact [92]–[95], and indentation hardness [96], [97].  
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2.6.2 Modelling of Interfacial Film: The Third Body 

The concept of the third body was introduced in the 1980’s by Godet [38] to 

describe the discontinuous and heterogeneous interface at the contact between two 

bodies. This thin layer, which ranges from several nanometres to several 

micrometres in thickness with a characteristic thickness of 1-10 µm [40], has its own 

rheology which depends on the material properties, contact conditions and 

sometimes other unknown parameters. Godet aimed to unify the problems of friction 

and wear in dry contacts with the theory of lubrication. 

The third body can generally be defined as the zone of material which its 

composition is different from the bulk material of the first bodies in contact. This 

zone could be fully present, such as in a fully lubricated system, or empty such as in 

dry contacts [19]. These third bodies, whether solid or liquid, are fed tangentially 

and/or normally to the contacts [38]; tangentially by the relative motion of the first 

bodies, and normally by the wear occurring in the first bodies. There are three main 

functions related to the third body; it accommodates speed between the first bodies, 

it supports the normal load applied to the first bodies, and it separated the first 

bodies to limit the degradation due to direct contact between the materials [5], [98], 

[99]. On the macroscopic scale, where two surfaces are sliding separates by a 

lubricant film, the frictional behaviour is characterized by three different lubricating 

regimes described by the Stribeck curve [100] as shown in Figure 2-11.  

 

Figure 2-11: The Stribeck curve and lubrication regimes (a) boundary lubrication (b) 

elastohydrodynamic and mixed lubrication (c) hydrodynamic lubrication [101] 

𝑓𝑠  is the friction coefficient of the contact between asperities, and 𝑓ℎ  is the friction 

coefficient of a full lubricated contact. The hydrodynamic lubrication regime is 

determined by an increase in friction and film thickness with an increase in sliding 
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velocity, a decrease in load and an increase in viscosity [19]. If the system is fully 

lubricated, the elastic deformation effects start to occur, which happens in the 

elastohydrodynamic (EHL) and mixed lubrication regimes. In the mixed lubrication 

boundary, the load is shared between the contact asperities and the lubricant film. 

The behaviour of these regimes is governed by contact mechanics and continuum 

mechanics. 

In the boundary lubrication regime, the first bodies are separated by a very thin film, 

whereby increasing sliding velocity, viscosity or decreasing load, the film thickness 

decreases as well, which is the case of solid/solid interactions. In the solid/solid 

contact cases, the stress interactions are accompanied by materials interactions too. 

Here the smaller atomic and micro scales govern the behaviour. Many mechanical 

components work in the mixed and boundary lubrication regimes and the film 

thickness continues to reduce to micro and nano-meters [102]. 

However, even without a lubricant or interfacial fluid, Godet and Berthier [36], [38], 

[37] showed that in many applications a medium at the interface still exists and it 

consists of detached particles or pollutant elements from outside the contact as 

mentioned earlier and shown in Figure 2-6. To form a fundamental understanding of 

wear, these systems have to be understood and be able to be predicted before 

moving on to the more complex lubricated systems; which is the focus of this thesis. 

Continuum methods, specifically FEM, has been used for the simulation of the third 

body and wear [103]–[105]. Here two solids contact each other only at one point of 

the contact surface. Then, to calculate the mass that should be removed from the 

materials Archard-type law is used, and accordingly the surfaces are modified at 

next time step. This may have been efficient in some applications, however in 

general they are unsatisfactory due the assumptions of Archard's law. It assumes that 

the detached particles are immediately ejected out of the contact and that they have 

no part in any degradation process. However, proof exists that the third body 

particles plays a major role in both friction and wear problems, and the solid third 

body is usually discontinuous, heterogeneous and anisotropic.  

Hence, continuum mechanics are no longer valid in this case and discrete particle-

based methods are much more promising even though there is a need for further 

efforts to define micro-to-macro correlations or bridge the gap between micro and 

macro scales [43]. These methods include individual particle dynamics and 

interactions, and are capable of describing microscopic physical, chemical and 

thermal interactions at the frictional contact, especially for solid lubrication or dry 

contacts, including plastic deformation and wear [99]. 
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2.6.2.1 Molecular Dynamics (MD) 

As previously mentioned, MD are an atomistic physical particle-based model and is 

considered the basis for all the developed discrete or particle-based models. In 

literature a large variety of studies can be found using MD on the atomic and 

molecular scales but also solving larger nano-scale phenomena. MD is used in 

studying atomic scale friction, which is extensively reviewed in [106], [107], and in 

the molecular aspects of boundary lubrication [108], mixed lubrication [109], dry 

contacts [110], [111] and adhesive wear as shown in Figure 2-12 [112] capturing the 

fracture-induced debris formation. It is also used to model tribochemical interactions 

[55], which started in 1994 [113], investigating the formation and breaking of bonds. 

Furthermore, Tomlinson [114] and Frenkel- Kontorvora [115] models were used to 

investigate atomic friction where two crystalline surfaces were in contact. Although 

they are capable of representing a crystalline layer of absorbed atoms, it involves 

many assumptions for simplicity. Also, atomic scale asperities were investigated by 

MD models that are AFM-like [116], [117] using large parallel computing. Nano-

scale simulations were also able to model sliding of intermediate motion with stick-

slip systems [118], [119]. Other studies of indentation also used MD in the 1990s 

[120], [121] where new insight was given into the phenomena that happen when two 

metallic surfaces come into contact, and then the normal force is initially almost not 

present, but then it suddenly becomes highly attractive. 

 

Figure 2-12: Schematic representation of two possible asperity-level adhesive wear mechanisms 

(a) the wear process occurs via either (b) a gradual smoothing mechanism by plastic 

deformation or (c) a fracture-induced debris formation mechanism [112] 

Although MD is a very successful method in studying third body interactions, its 

limitations are that they can only be used on limited length and time scales, they 

cannot model larger micro scale phenomena, are difficult and sometimes impossible 

to validate experimentally, and are computationally expensive. Also, they are very 

sensitive to the potential functions used to define the interactions between the atoms; 

which are based on complex quantum mechanics models.  
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2.6.2.2 Discrete Element Method (DEM) 

DEM is a numerical solution to describe the mechanical behaviour of discontinuous 

bodies and was developed as a tool to simulate mechanical behaviour of granular 

matters and particulate systems, e.g. some kinds of soils, grains, fragmented rocks, 

etc., by Cundall and Strack in 1979 [122]. Unlike continuum mechanics methods, 

DEM is particularly attractive for modelling media that has a great number of 

interfaces such as geomaterials and granular materials due to its ability to construct a 

medium that involves discontinuities. The elements interact with each other at 

contact points, making it possible to model voids, imperfections and heterogeneities. 

DEM was developed as an extension of MD to model macroscopic slightly 

deformable solid grains. The primary difference is that in DEM the analysed discrete 

particles have a shape, size and rotational degrees of freedom, in contrast to MD 

where mass points are usually considered in the calculations. Hence, other 

interactions between particles can be analysed, such as rotation, contact plasticity, 

friction, etc. 

For these reasons, DEM has been widely used to study tribological problems such as 

wear where the material has a continuous part (the first bodies), a continuous part 

with cracks and a discontinuous part which is considered to be a mixture of abrasive 

and wear particles [123]. As explained, these are also called first and third bodies, 

respectively. For example, it was first used to model third-body flow in the 1990’s 

by simulating bearing powder lubrication [124] after ten years from simulating fluid 

lubrication for the first time using DEM [125], where rigid spheres moving between 

two rough inclined planes were used to represent the third body. The first few 

studies after that studied the effect of different numerical [126], geometrical and 

shape related parameters [127] on the mechanical response of the medium, but were 

just exploratory studies. Later on, better representative laws were used involving 

phenomena within the interface using the JKR contact model [128], [129]. 

More recent, Fillot et al [98], [99] studied the flow of third body particles inside a 

dry contact by modelling the degradation of the material, i.e. formation and 

movement of fragmented particles. They used DEM to simulate the behaviour of 

wear with adhesive particles and obtained some interesting results. However, as they 

stated their goal was to understand and not to predict, moreover, the work was not 

experimentally validated. Following that, extensive studies on the wear mechanisms 

with simple shear gave rise to wear laws in the discrete approach [98], [130]. Some 

work also accounted for the particle deformation in simple shear [131], [132], 

however, these models do not represent dense granular flows which are found in 

experimental observations, and also of course in non-granular materials.  
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This is why, although DEM is well adapted to simulate discontinuities, it is not 

suitable to simulate continuous behaviour of materials [123]. DEM has been proven 

to be very efficient in solving processes involving granular materials such as sand, 

grains, powders, particles, etc. However, these are all discontinuous materials. When 

solving problems involving continuous materials such as metals, plastics, etc, DEM 

has often failed because it fails to model a cohesive structure. This is due to the 

contact configurations and laws used in DEM to describe individual interactions 

which are constitutive laws obtained experimentally or using hierarchical multiscale 

approaches [43]. Furthermore, unlike FEM, continuous mechanical behaviour laws 

cannot be directly introduced into the DEM formulation [123]. This will all be 

explained in more detail in Chapter 3. 

 

2.6.2.3 Movable Cellular Automata (MCA) 

The MCA method is another particle-based method used in simulations in tribology.  

MCA was first introduced by Psakhie et al, in 1995 [133], as a simulation tool 

within the framework of mesomechanics. It is a hybrid particle-based method based 

on the classical cellular automata (CA), discrete element (DEM) and molecular 

dynamics (MD) methods; combining their advantages. This method allows the 

modelling of complex materials behaviour and processes on the mesoscopic length 

scale, such as crack generation and growth, mass mixing, friction and wear in real 

systems, phase transformation, etc.  Many developments in MCA have been made 

since 1995, and the latest description of the method can be found in [3]; where MCA 

is presented as a discrete approach to model the behaviour of materials on different 

scales and is used as a multi-scale modelling approach. 

Cellular Automata (CA) is a mathematical concept that was first established in 1940 

by von Neumann [134] and was later more developed by him and his colleagues in 

the 1960s [135]. In CA, initially each cell is either On or Off, and the evolution of 

the systems depends on the general rule. For example, rule 30 as shown in Figure 

2-13, states that if an Off cell has two neighbouring Off cells, then they will produce 

an On cell, and if an Off cell has an Off cell on its left and an On cell on its right, 

then they will produce an On cell as well, and so on [136]. This will lead to the 

development of a complex system, which means the evolution of a complex system 

depends on the initial state of a cell and the state of its neighbours. Afterwards in the 

1980s, Stephen Wolfram [137], [138] noticed this complexity of CA patterns and 

introduced the idea that complex physical systems can also be represented by CA, 

where space, time and physical quantities are discrete. The media is divided into an 

ensemble of elements (automata); where their locations and neighbours are fixed, 

and their state could be passive or excited. An external effect will trigger the 
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evolution of the system, such as an external load or temperature change, and this 

evolution is governed by a general transition rule [137]. However, this method does 

not take into consideration the possible and different interactions between the 

automata, thus is only applicable in the description of continuum media. 

Later on, MCA introduced the concept of state of pair automata (interacting pairs of 

automata) to the classical CA method. In MCA, a material of interest is divided into 

a set of elements (automata) of finite size representing grains or particles of the 

material, where the particles interact with each other based on interaction laws. This 

way, MCA was extended from CA by introducing the principles of particle-based 

modelling; atomistic and discrete modelling, applying the equations of motions on 

all the automata, as well as describing the interaction laws between their neighbours. 

The mobility of the automata made it possible to study material behaviour, fracture, 

mass mixing, crack propagation, phase transformation and damage generation. 

 

Figure 2-13: Rule 30 from Wolfram cellular automata [136] 

MCA has been used in many studies to explore the behaviour of different complex 

and heterogeneous material systems under loading. Initially MCA was mainly used 

in the study of fracture mechanisms for different materials such as composites 

(contrasting media) [139] , ceramics (with and without pores) [140]–[143], coatings 

[144]–[146], alloys [147], etc.  It also allows for the simulation of friction forces as a 

function of material, loading parameters, surface topography and wear. Most studies 

are done by Popov et al. studying wear in combustion engines [148], friction 

coefficient in rail/wheel contact [149], quasi-fluid nano-layers [150] and surface 

topography [151]–[153]. More studies were done by  Österle et al. looking at 

friction of the automotive braking system and formation of tribofilms [154], [155]. 

Furthermore, studies were done using the MCA method to investigate the behaviour 

of the third body [156]. The simulations allow the study of the formation of the third 

body but are still far too simple to show all effects that might occur in a lubricated 

tribo-contact [157].   
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The advantage of MCA over other particle-based methods is that it describes 

material on the mesoscale and one of the difficulties that face discrete simulations of 

the third body is accounting for the mesoscale which is formed of the sub-100nm 

scales. As explained earlier, most fundamental tribological phenomena such as 

friction and wear, occur at the mesoscale [58], [60] and are intensively 

discontinuous due to the damage, formation and accumulation processes that are 

involved. This is solved using the MCA method which is a mesoscale modelling 

method [158] [159]. The other major advantage is that MCA provides a fracture 

mechanics modelling approach entirely compatible with continuous classical theory. 

All MCA parameters can be directly derived from material properties without the 

need for parametric fitting (like in DEM). This is only possible using MCA and will 

also be explained in detail in Chapter 3. 
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 Movable Cellular Automata in Tribology: a Literature Review 

Since the particle-based mesoscopic MCA method seems to be the best approach for 

the predictive modelling of tribological systems, it is thoroughly reviewed in this 

section to establish its applicability to tribological systems and the tribological 

triplet concept.  

One of the main advantages of the MCA method is it being a discrete/particle-based 

method having a many-body particle interaction forces form. This means that the 

relevant size of the automata can be chosen to be as small or as large as needed. To 

model surfaces in contact and friction behaviour using MCA, two approaches are 

used as shown in Figure 2-14 [160]: 1- to specify an automata size that is very small 

so that it can directly simulate a real surface, which allows for the direct 

investigation of material behaviour and processes on all three scale levels (atomic, 

meso and macro) in an explicit form, or 2- to specify larger automata sizes that 

would consider the contacting surface as a rough plane, which depends on the 

micro-parameters of the materials. 

 
Figure 2-14: Two approaches to describe contacting surfaces: (a) direct setting of the surface 

roughness (microlevel) (b) indirect setting based on the segment approximation within 

the framework of the MCA method (mesolevel) [160] 

The first studies that have been conducted of surfaces in contact with the MCA 

method, used the second approach because even with using HPCs, the first approach 

is too computational extensive and only a small area of contact can be simulated due 

to the high numbers of particles required to simulate a real solid. The first approach, 

however, can be used to study mechanisms occurring at surface layers, such as crack 

propagation, damage generation and accumulation, compositions near the surface, 

changes in surface profiles and others. These studies can help understand the 

mechanism and reasons behind those phenomena at the mesolevel, because this 

scale level correspond to these characteristic sizes, but is not sufficient to describe 

the interaction of surfaces at the macro-level. 
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The two main applications of the MCA model found in literature within the 

tribological context, is the simulation of pad-on disk in brake systems and rail-wheel 

contact. There are many brake pad materials available commercially for the braking 

system in the automotive industry and they all have one thing in common; which is 

them having a complex material structure and composition, and they are also very 

environmentally incompatible [161]. In the following studies [155], [162]–[164], 

steel on steel contact has been investigated, at a single asperity scale and the 

tribofilms were investigated too. Experimental observations showed that the friction 

layers differ in properties from the bulk material structure of the pad and disc. They 

revealed that the material at the upper most layers at the interface between the pad 

and disc will change drastically due to tribological processes and will form a thin 

layer (< 1µm) of the order of 100nm thick, with grain sizes of the order of 10nm. 

The formation of these films depends on the friction properties of the surfaces and 

can be thought of as a layer of wear debris due to mechanical mixing of wear 

particle which are all linked to each other within the friction layer.  

 
Figure 2-15: (a) Schematic of pad/disc interface (b) cross-section of friction layer on brake disc 

[163] 

It was also observed experimentally that when a certain amount of soft inclusions 

(graphite here) is introduced to the iron oxide layer, the frictional behaviour changed 

completely due the formation of a mechanically mixed layer (MML) where velocity 

accommodation takes place. Thus due to the high mass mixing occurring between 

the components of the pad and disc materials, this layer is also formed (also of 

thickness < 1µm) with grain size (100nm) which contains sever plastic deformations 

as shown in Figure 2-15. Thus, this study also looked at the effect of the 

concentration of these inclusions on the coefficient of friction (COF). 

The steel-steel contact was simulated at the single asperity scale which is typically 

of about a few micrometers of size. The supporting material in the disc is pearlitic 

steel and that of the pad is ferritic steel, and the friction layer is formed of a matrix 

of iron oxide with and without graphite particles as shown in Figure 2-16. Graphite 

was used here to represent any solid lubricant just because the properties of graphite 
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are well known and were randomly distributed. The mechanical properties of the 

materials at room temperature are in Table 2-1 and their stress-strain characteristics 

are used for simulating the materials; they are an approximation of the experimental 

diagram, so the mechanical properties of the components are the same as the real 

materials. 

 

Figure 2-16: (a) Schematic of pad-disc interface (b) response functions of the materials 

considered [163] 

Table 2-1: Materials parameters for modelling [163]  

 

In the simulated model, the automata size was 10nm, which corresponds to the 

smallest grain size of the tribofilms as typically observed experimentally during 

automotive braking. The disc has a constant sliding velocity of 10m/s before 

braking, and the pad has a constant normal force of 20-100 MPa acting on the top 

layer of automata of the pad. This load corresponds to the contact pressure (P) which 

is higher than the nominal pressure because it is assumed that the real contact area is 

small. The time step of the simulation was 10−13
 s and the automata are assumed to 

be linked initially. The composition of the tribofilm throughout this study was kept 

constant with 13% soft (graphite) inclusions. Periodic boundary conditions were 

applied. 

The switching criteria for the transition from linked to unlinked and vice versa were 

set for the different compositions. In terms of breaking bonds, when two different 

materials are linked, they become unlinked once the stress intensity reached the 

strength of the softer material. For metal-metal pairs, the automata can go from 

unlinked to linked (re-linking) easily, but it is forbidden for the graphite-graphite, 
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oxide-oxide, graphite-oxide, metal-oxide and metal-graphite because they are 

considered as having brittle behaviour. Compression can happen for metal particles 

if plastic deformation occurs under pressure, and for oxides but only if elevated 

pressures and temperatures are involved. These are prerequisites for the formation of 

third-body and the mechanically mixed layer (MML), because it assures that any 

particles released from the third-body film will stay contained within the MML layer 

[155]. 

In each time step, the response of each automata is calculated by getting the stresses 

and strains of each pair-automata assuming plane stress approximations as explained 

before. The Von Mises stress intensity is then calculated which is used to determine 

whether the links break or not, and also whether the transition back to the link state 

occurs. Then new positions and velocities of all the automata are calculated, if 

enough automata become unlinked, larger movements occur. It cannot be assumed 

that the response functions of the materials at bulk behaviour is the same for the 

nanoparticles, this cannot be validated experimentally, however, the simulation 

results show great agreement of velocity accommodations of pad-disc rotating 

contacts.  

The results of pure oxide layers where simulated against the ones with 13% graphite 

inclusions as shown in Figure 2-17. After a running-in period, breaking of bonds 

occur at a narrow zone at the interface due to deformation, fracture and mass 

mixing, but they do not propagate to the bulk material. This shows proper formation 

of the friction layers. The simulations show that although oxide layers prevent 

adhesion and micro-welding, there is no smooth sliding behaviour and no MML is 

formed and they produce high friction fluctuations as shown in Figure 2-18.  

 

Figure 2-17: Bonding states of automata after simulation (a) pure oxide layers; (b) oxide layers 

with 13% graphite nanoinclusions. Automaton size: 10 nm, contact length: 0.5 µm [161] 
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Figure 2-18: Dynamic COF for (a) pure oxide layers (b) oxide layers with 13% graphite [161] 

They also looked into whether dry contacts will produce difference results. Thus 

Figure 2-19 shows the results for oxide-oxide contact and  Figure 2-20 shows the 

results for metal-metal contact. seethe figures show that dry friction produces much 

higher friction because no tribofilms or MML layers are formed. 

 

Figure 2-19: Oxide-Oxide contact (a) simulation model (b) dynamic COF [162] 

 

Figure 2-20: Metal on metal contact (a) simulation (b) dynamic COF [162] 
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They also looked into the effect of temperature on the mechanical properties of 

tribofilm constituents and how they affect modelling results [155]. At elevated 

temperatures, the iron oxides undergo a brittle–ductile transition and graphite 

strength slightly increases. The stress-strain behaviours of both the iron oxides and 

the graphite are shown in  

Figure 2-21, where 𝑇0=room temp up to 𝑇4=800℃.  

 

Figure 2-21: The stress-strain behaviours of (a) iron oxides and (b) graphite at elevated 

temperatures [155] 

The results are shown in Figure 2-22, and it was observed that the MML layer 

increases with increasing temperature (pressure) until a certain point and then the 

tribofilm increases decreasing the MML layer. The corresponding friction 

characteristics can be seen in Figure 2-23. 

 

Figure 2-22: Results at t=0.48 µs at (a) 𝑻𝟎 (b) 𝑻𝟐  (c)  𝑻𝟒 [155] 
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Figure 2-23: The time dependencies of COF for various assumed oxide properties: (a) T0 (b) T2 

and (c) T4. The upper curves (red) always represent mean values determined from 

instantaneous values of the left curve (T0) for comparison [155] 

Another study shown in Figure 2-24 added copper nanoparticles to the graphite 

inclusions, which lead to similar friction behaviour as shown in Figure 2-25. But the 

results show that the inclusions have a great impact on the sliding conditions at room 

temperatures as well as elevated ones. Table 2-2 shows all the different contact 

situations that have been studied using MCA. 

 
Figure 2-24: Schematic of MCA model structure and loading parameters showing the 

boundary conditions [165] 

 

Figure 2-25: (a) Simulated model for structure shown in Figure 2-24 (b) different between COF 

for graphite only and graphite and copper inclusions [165] 

Table 2-2: Results of MCA-modelling with different contact situations [161] 

Description of Contact COF-range COF-evolution 

Steel on steel a >0.75/0.6 Unstable/partly stable 

Hard copper on steel (ambient temp.) >0.5 Unstable 

Soft copper on steel (elevated temp.) >0.5 Partly stable 

Oxide on Oxide >0.5 Unstable 

Oxide on oxide with 5% graphite >0.45 Unstable 

Oxide on oxide with >10% graphite 0.3-0.4 Stable 

Oxide on oxide with >10% soft copper 

(elevated temp.) 

0.3-0.4 Stable 
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Oxide on oxide with soft and hard inclusions 0.45-0.50 Stable 

Steel on graphite 0.2 Stab 

a The matric of cast iron corresponds to pearlitic steel. 

 Summary, Research Gap and Conclusion 

This chapter delivered the first contribution mentioned in section 1.4 of identifying 

the deficiencies in existing numerical/computational models and identifying the 

most suitable approach for our aim. As mentioned in the aims and objectives in 

Chapter 1, what is required for a more fundamental understanding of tribological 

systems is an improved constitutive model that would capture the most important 

scale levels and the physics involved between contacts at those scales.  

In problems of wear or fracture, material is composed of continuous parts and 

discontinuous interfaces, and simulating a multi-body system requires simulating the 

first bodies (which are continuous bulk solids) and the third bodies. By investigating 

the state of the art in the field of modelling in tribology, it has become clear that a 

multi-body model is required which can simulate both the first bodies and the third 

body simultaneously. This has been proven to be difficult because most studies use 

the continuum approach to model the first bodies the macro-scale, and the third body 

is modelled using particle-based or discrete approaches on the micro and nano 

scales. Since the continuum approaches are incapable of describing the 

inhomogeneities of the microscale which are crucial for the simulation of plastic 

deformation and wear, only a particle-based model would be able to provide a tool 

for the simulation of multi-bodies and the prediction of friction and wear. 

It has been established from the previous sections that MD is not applicable on 

simulating materials on larger scales, hence the two most relevant particle-based 

approaches in our case are DEM and MCA. The important point to note here is that 

to simulate the bulk continuum behaviour of a material by a particulate system, it 

depends on the collective interactions of individual particles, and hence a realistic 

representation of a cohesive solid is key to characterizing bulk material and 

understanding their behaviour which is not the case for granular DEM models [166]. 

Furthermore, it is assumed that DEM particles are made of nondeformable and 

unbreakable granular matter which does not work in the case of third body 

simulation were the material is relatively soft and brittle [5], [167]. 

It was also shown that mescoscopic modelling bridges the gap between the atomistic 

and continuum viewpoints; because a clear separation of scales is principally 

impossible for triblological phenomena. Friction and wear mechanisms are 

essentially mesoscopic multi-scale phenomena that act very similar to fracture and 
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plastic deformation phenomena. The only two mesoscopic scale methods that are 

mentioned in the literature review are crystal plasticity and MCA. However, the 

continuum crystal plasticity models for frictional contacts are not applicable on the  

the (sub)micron scale, because they miss a length scale capable of capturing size-

dependence. Hence, the most relevant mesoscopic particle-based method found for 

the simulation of multi-bodies for the prediction of friction and wear is the MCA 

method.  

MCA gives the possibility of choosing the scale of the simulation [168] which helps 

investigate elementary processes in tribological systems. Due to its unique 

capabilities it allows for the simulation of formation and accumulation of damages, 

fracture processes, formation of pores and cracks and most importantly the 

simulation of friction and wear. The results obtained from these simulations in 

literature have been proved to be reliable compared to experimental data. 

Furthermore, MCA is capable of simulating the first bodies and the third body 

simultaneously with direct use of continuum descriptions. It is capable of simulating 

both continuous and discrete behaviour of materials without the limitations of DEM. 

The main limitation of using the MCA method is that it may be insufficient to 

simulate the behaviour of the material at the macro-level because it would be too 

computational expensive to reduce the automata size that much to describe real 

solids. However, this can be solved by coupling MCA with continuum models such 

as FEM models and produce a more multi-scale model that would predict the 

behaviour at the macro. This was done by Gong et al. in 2013 [169] where they 

investigated the sliding contact of sealing rings in the macro and micro scales using 

a multi-scale FEM-MCA coupling method, and were able to visualize and 

investigate several types of frictional behaviours. They could also be coupled with 

atomistic models, as described in [59]. The other possibility is providing a large-

scale parallel computing code which is computationally powerful enough to cover 

more scales and reduce the automata size.  

As mentioned before, there are two ways to model surfaces in contact and friction 

behaviour using MCA; as shown in Figure 2-14. Firstly, to specify an automata size 

that is very small so that it can directly simulate a real surface, which allows for the 

direct investigation of material behaviour and processes on all three scale levels 

(atomic, meso and macro) in an explicit form. The second approach is to specify 

larger automata sizes that would consider the contacting surface as a rough plane, 

which depends on the micro-parameters of the materials and makes it possible to 

cover the meso and macro scales. 

It was found that, all the studies that have been conducted so far of surfaces in 

contact with the MCA method, used the second approach because even with using 
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HPCs, the first approach is too computational extensive and only a small area of 

contact can be simulated due to the high numbers of particles required to simulate a 

real solid. The first approach however, can be used to study mechanisms occurring 

at surface layers, such as crack propagation, damage generation and accumulation, 

compositions near the surface, changes in surface profiles and others. These studies 

can help understand the mechanism and reasons behind those phenomena at the 

mesoscale because this scale level corresponds to these characteristic sizes but is not 

sufficient to describe the interaction of surfaces at the macro-level.  

This problem is solved by implementing MCA in a large parallel computing 

simulation tool called LIGGGHTS (a DEM open-source code) – which is covered in 

Chapter 4. By doing so, the first approach of directly simulating a real surface can 

be achieved. To simulate materials using the MCA method, currently, only a 2D 

MCA demo-version [170] exists for public use, which was developed by the 

Laboratory of CAD of Materials at the Institute of Strength Physics and Materials 

Science in Tomsk, Russia, in 2005. The developers of the MCA method use their 

own in-house codes. Thus, this project provides a 3D MCA simulator for the 

scientific and tribology communities to use because the code is open-source. 

It is also important to mention here that the challenges and difficulties present in the 

modelling and simulation of tribological systems and phenomena were also recently 

discussed at the Lorentz Center workshop held in Leiden at the beginning of 2017 

[171], which included many experts in the field from different backgrounds and 

countries across Europe. This workshop produced a review paper [13] and their 

main conclusion was that the modelling community in tribology have properly 

addressed the elastic problems at various scales however significant efforts are still 

needed for the understanding of plasticity, adhesion, wear, lubrication and surface 

chemistry in tribological models. They also believe that there is still a need to 

address and include processes such as crack nucleation and propagation, chemical 

reactions and fluid-solid interactions which would help with the understanding of 

rough contact under shear but are not taken into account in contact mechanics 

studies.These processes should be modelled and understood on their own before 

including them into multi-scale or multi-physical models. They concluded by saying 

that only by pursuing these two research aspects simultaneously will there be a 

chance of a fundamental understanding of frictional interfaces and have simple but 

comprehensive models which would benefit industrial processes by optimizing and 

controlling these behaviours [13]. In the end they suggested a collaboration platform 

for all tribologists where the different research groups would provide open-source 

software for the community to use, contact problems results and the inputs used for 
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the simulations/experiments and the assumptions made, and also a list of simulation 

and testing facilities with links to their websites and laboratories.  

The work in this thesis contributes to their outcomes. 
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3 Chapter 3 

Particle-Based Numerical & Computational Methodology:  

DEM vs MCA 

 Introduction 

In the previous chapter the concept of physical particle-based models was 

introduced, as well as their importance in the development of a prediction tool for 

friction and wear. We also briefly discussed the differences between the MD, DEM 

and MCA methods, and the reasons behind choosing MCA in our study. Now the 

objective is to develop a 3D MCA model and simulation tool, which requires 

developing code. 

This chapter presents the theoretical, numerical and computational foundations of 

the 3D MCA elastic-plastic model as described by [1], [3], [172]. It was decided – 

for reasons that will be explained in this chapter and chapter 4 – to implement the 

MCA model in an open-source code and simulation tool called LIGGGHTS. 

LIGGGHTS is an open-source code widely used as a DEM simulator and provides a 

strong parallel computation platform required for large scale simulation of particles. 

Due to the similarities between DEM and MCA, LIGGGHTS is a very good 

platform for developing the 3D MCA model. This is done by adding key 

functionalities of MCA to LIGGGHTS, by adding new C++ code in the open-source 

code to develop a 3D computational code/tool capable of direct numerical 

simulation of friction and wear. 

Thus, this chapter will present a detailed theoretical description of the principles of 

particle-based modelling and simulation within the DEM (specifically the soft 

particle approach) and MCA frameworks; highlighting their differences in terms of 

theory and practice. This is crucial to identify which formulations of LIGGGHTS 

code will need to be modified or added in order to fully implement the MCA model 

within LIGGGHTS, and the implementation is covered in Chapter 4.  

Furthermore, to be able to understand the difference between the models and also, to 

implement the code, verify and validate it against experimental results in the 

following chapters, a few key material background information needs to be 

introduced first in the following section. 
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 Material Mechanical Properties and Characterisation 

The mechanical properties of materials govern the material response to various 

loading conditions.  There are several properties that can be measured for a 

particular material each suitable for particular combinations of stresses. For 

example, Young’s or elastic modulus (E) governs the relationship between elastic 

strain and stress in normal loading condition, whereas, the shear modulus governs 

the same relationship in a shear loading state.  Therefore, it is important to 

understand the system, loading conditions, geometry and involved material 

parameters in order to be able to predict the deformation behaviour of the material.  

Standardized testing of materials is used for determining material properties and the 

differences between them. Most commonly, the tensile test shown in Figure 3-1 is 

used to determine the following properties [173]:  

• Young’s modulus (E): is derived from Hooke’s law for elastic springs. It is 

the slope of the elastic region of the tensile test and governs the ratio 

between stress and strain in the elastic region. The elastic deformation of a 

material is recoverable or reversible, meaning when the load is removed the 

material will recover to its original form. The area under the elastic region 

determines the amount of elastic energy that can be stored in the material.  

• Yield Stress (𝜎𝑦): The yield stress of the material, also known as the elastic 

limit, determines the point beyond which deformation becomes plastic, i.e. 

permanent deformation of the material. Even a plastically deformed material 

when unloaded would only recover the elastic portion, which is usually 

negligible depending on the material type.  

• The maximum tensile stress (𝜎𝑢): The ultimate stress that a material can 

carry before failing.  

• Poisson’s ratio (v): In 3D, when an elastic material is stretched in one 

direction, it tends to get thinner in the other two directions. Poisson’s ratio is 

a volume conservation ratio that determines the ratio between lateral and 

vertical deformation for material under uniform unidimensional stress. For 

metals, the value is typically around 0.3. 

• Toughness: measured as the area under the curve of the tensile test and 

typically indicates how much energy can be stored in the material before 

failure. 
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Figure 3-1: A typical metal tensile test showing the elastic and plastic regions and the path 

taken during unloading [173] 

Plasticity in crystalline materials occurs due to dislocation movements. Dislocations 

are crystalline defects that occur during forming of the material and can be described 

as voids in the atomic arrangements inside the crystal. When crystalline materials 

are being loaded beyond the elastic limit, dislocations in the crystal lattice begin to 

slide allowing the grains to change their shape, this results in plastic or permanent 

deformation of the material. When dislocations begin to pile-up, near grain 

boundaries or when they encounter a slip system at a different orientation, the load 

required to further deform the material increases. This phenomenon is known as 

strain or work hardening of the material [173]. Ceramics, polymers and other classes 

of materials experience a similar behaviour; however, the strengthening mechanisms 

differ based on how the material is structured in the atomic scale.  In the tensile test, 

this behaviour is displayed as the increase in force required to deform the material 

beyond the elastic limit. The relationship between stress and strain in the elastic 

region is typically not linear [174]. 

The theory of plasticity makes a few assumptions that attempt to simplify the plastic 

behaviour of materials. These are:  

• The strain-rate does not affect the response of the material 

• The response is independent of the Bauschinger effect  

• The plastic response of the material is assumed incompressible 

• Hydrostatic pressure is ignored and yield stress is independent of it.  

• Material behavior is independent of direction; i.e. material is isotropic. 

By using these assumptions, the material behaviour can be simplified into one or 

combination of the 4 behaviours shown in Figure 3-2. These behaviours are 

described below [173]:  
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a) Linear Elastic-plastic: This behaviour is common in many engineering 

metals that are deforming at room temperature.  

b) Elastic/perfectly- plastic: This behaviour is more common for elevated 

temperatures such as during hot forming processes.  

c) Rigid/Linear hardening: This is typically common for materials that do not 

have an elasticity potential; such as ceramics. 

d) Rigid Perfectly-Plastic: Is a behaviour common for materials that have no 

elasticity or strain hardening potential. 

 

Figure 3-2: Shows the different types of material elastic and plastic behaviours [173] 

One of the major challenges of plasticity is to find the most realistic way to describe 

the strain-hardening potential and include it in material modelling.  The strain-

hardening can be modelled by an increase in the von Mises yield surface of a 

material as the material yields as shown in Figure 3-3 below. In the case of isotropic 

hardening, the tangent modulus is used to determine the increase in yield stress with 

increasing strain [175]–[178].  The tangent modulus shown in Figure 3-4 is 

calculated by measuring the slope of the tangent to the stress-strain curve.  

In the plastic region deformation is both elastic and plastic and can be modelled as 

[179]:  

𝑑𝜀 = 𝑑𝜀𝑒 + 𝑑𝜀𝑝                                         (𝟑. 𝟏) 

The plastic modulus (H) also known as work hardening, defined as the ratio between 

stress (σ) and plastic strain (εp), as follows [179]:  

𝑑𝜎 = H𝑑𝜀𝑝                                                  (𝟑. 𝟐) 

By solving between the equations, the tangent modulus (K) as: 

1

K
=

1

E
+

1

H
                                                   (𝟑. 𝟑) 
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Figure 3-3 The yield surface of a material expanding isotropically as a result of strain 

hardening [179] 

Then the tangent modulus (K) can be defined and calculated from the tensile test as 

the slope of the tangent to the curve as shown in Figure 3-4 below.  

 
Figure 3-4: Determination of tangent modulus by determining the slope in the plastic region  

[176] 

The hardening behaviour of materials differ based on the loading conditions present. 

In general for viscoplastic materials one of these models can be used [176]–[178]:  

− Isotropic hardening: In this case, the yield surface of the material is not 

translated or rotated, but rather expanded uniformly in all directions. This 

model works best for materials that do not change loading mode.  

− Kinematic hardening: If the Bauschinger effect is taken into consideration, 

i.e., when the loading on a material is changed from tension to compression; 

it introduces anisotropy in the material which shifts the yield surface in a 

direction making it weaker in compression.  

The discussion of plasticity and hardening contacts is essential for identifying real 

contact area. In the statistical theoretical models for measurement, Hertzian elastic 

contact theory is the basis of the elastic contact. Defining the elastic limit in contacts 

and how material behaviour may change after that is still a matter of debate between 

researchers. 
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 General Principles of Particle-Based Modelling 

Particle simulation concerns any system that can be modelled as a large collection of 

bodies/nodes/points or simply particles. Here the interactions that occur between 

particles are checked contact by contact, and the motion is calculated particle by 

particle, or particle by wall, unlike continuum-based models, as explained in Ch.2. 

The structure of a particle-based program is generally the same, whether simulating 

a system of atoms on the atomic scale, molecules on the nano- scale (e.g. using 

MD), particles on the meso-scale (e.g. using MCA) or granular particles on the 

macro-scale (e.g. using DEM). Both LAMMPS and LIGGGHTS are such programs 

but from here on further we will only refer to LIGGGHTS because it is the platform 

used to implement the 3D MCA elastic-plastic model. 

As shown in Figure 3-5, a particle-based program consists of a time-loop to 

calculate the forces on the particles and their positions at a certain time-step. This 

time-loop starts with the initial positions and velocities of the particles, the systems 

dimensions, geometry and boundary conditions. Then the forces on the particles are 

calculated due to internal interactions and external forces, and then the positions and 

velocities are updated to simulate the evolution of the system over time by 

integrating the equations of motions. This is repeated by calculating the new forces 

based on the new positions and velocities until the last time-step is reached. 

 

Figure 3-5: Flowchart showing the particle-based simulation loop [180] 

To calculate the forces, here the classical Newtonian laws of mechanics are used as 

an approximation to relativistic mechanics of particles moving with speeds much 

less than the speed of light. The forces depend on the relative distances and 

velocities between the neighbouring pairs, triplets, etc. of particles. The larger the 

number of particles, the more distances and velocities need to be calculated making 

this step the most computational and time-consuming part of the program. It is also 
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the most important step and the accuracy of the force calculations defines the 

accuracy of the model. However, to reduce the computational cost, nearby particles 

are identified using neighbour lists which may be updated at every time-step.  

Every particle-based method and simulation tool involves these main functionalities. 

However, depending on the scale the method describes and the accuracy of the 

model, the details of each method and the material behaviour they are capable of 

modelling may vary enormously. Hence, the numerical/theoretical aspects of DEM 

and MCA methods are described in sections 3.4 and 3.5 respectively. But first the 

basics of particle-based simulations are covered here, and the computational aspects, 

such as the integration, time-stepping, the thermodynamics of the system and the 

boundary conditions, etc. The computational aspects are quite similar for both MCA 

and DEM and used within LIGGGHTS platform, hence these are first described 

before going into detail of the numerical aspects.  

3.3.1 Discretization and Initial Configuration 

When starting a particle-based simulation, the first requirement is that the system at 

hand must be discretized into a series of small elements of finite size. This is done 

by specifying the type, shape and size of the particles, and then a crucial step is to 

choose the particles initial configuration. Initial assumptions are also made to 

simplify the system and design the output. The discretization depends on the method 

of choice and the system at question. As mentioned before, the particles could be 

spherical atoms/molecules in MD simulations, or have different particle shapes in 

DEM simulations, etc. Furthermore, the size of the particles is defined 

corresponding to the characteristic particle size of the phenomena of study. 

In terms of particle configuration, the particles are either put in a lattice structure 

configuration or inserted randomly. When dealing with an atomic crystal structure, 

the particles are placed on the appropriate lattice structure corresponding to the 

minimum energy configuration of the material under the desired thermodynamic 

conditions [180]. The three most common lattice configurations used for spherical 

particles are the simple cubic (sc), body-centred cubic (bcc) and face-centred cubic 

(fcc), as shown in Figure 3-6(a). Even when the system is not a crystal but a liquid 

or dense gas, the crystal lattice structures are often initially used to avoid potential 

problems with overlapping particles.  

 
Figure 3-6: (a) the three main crystal lattice structures (b) random insertion [180] 
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However, if the particles shapes are not spherical, a large amount of time is required 

which causes artificial errors, in which case random insertion of the particles, is a 

better option as shown in Figure 3-6(b), which is the case in most DEM models.  

3.3.2 Particle Interaction Forces 

In particle-based simulations, each particle interacts with its neighbouring particles 

or the boundary walls. The forces applied to it are modelled using some form of 

formulas which differ depending on the scale in question. These interparticle forces 

can be short-range forces which tend to be molecular repulsive forces and are 

negligible when the distance between the particles is greater than a few angstroms. 

They can also be long-range forces that are attractive forces such as van der Waals 

forces,  responsible for physical properties such as friction, surface tension [181].  

In MD, the interatomic forces are calculated using potential functions which 

represent the energy bonding between atoms and have their origins from quantum 

mechanics. The potential functions are expressed as a summation of the interactions 

between the particles. Hence, the force (𝐹 𝑖) in the equation of motion can be 

expressed as the gradient of the potential energy (V).  

𝐹 𝑖 = −∇𝑖𝑉                                                     (𝟑. 𝟒) 

−
𝑑𝑉

𝑑𝑟𝑖
= 𝑚𝑖

𝑑2𝑟𝑖⃗⃗ 

𝑑𝑡2
                                                (𝟑. 𝟓) 

where (𝑉) is the potential energy of the system and the change in position as a 

function of time are derived from Newton’s equation of motion. To calculate the 

trajectories of the particles, the initial positions of the particles and their initial 

distribution of velocities and acceleration are needed. The calculation of total energy 

of the system is very important because it defines all information about the structure, 

properties and thermodynamics of the system. Since the total energy of the system 

depends on the interaction between the particles; which depends on the structure of 

the solid lattice, the accurate calculation of these interactions is very crucial and is 

the main concern in modelling [182].  

A crucial point to mention here is that there are many models available for 

calculating the forces between individual particles in particle-based simulations, but 

in general they take two different forms which determines the accuracy and 

complexity of the model. They either take a pair approximation form or a many-

body form, which goes back to the principles of Schrodinger equation and the Born-

Oppenheimer approximation, but this is beyond our scope. In short, the Born-

Oppenheimer approximation states that to calculate the potential energy of the 

system (V) we can get rid of the electrons and only consider the effective interaction 

of nuclei which is called the potential energy surface V(R). 
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The pair potential approximation assumes that the total potential energy of the 

system V(R) is equivalent to the sum of pair potentials of the surrounding atoms. In 

MD, the most common pair potential is Lennard-Jones potential [183]. The pair-

potential approximation takes the following form: 

𝑉(𝑅) =
1

2
∑ 𝑉(𝑅𝑖𝑗)                                     (𝟑. 𝟔)

𝑖,𝑗(𝑗≠𝑖)

 

Here any one atom at any specific instance, can have only one bond with a single 

neighbour, and the strength of one bond between pairs is independent of any other 

bonds with the surrounding neighbours. This raises a great error because the bonds 

between atoms or particles do depend and affect each other. Furthermore, the 

strength of the bond decreases with increasing density. Pair-potentials are especially 

not capable of correctly describing metallic bonding, there has been a lot of evidence 

throughout the years that metallic bonding are not pair-wise. Pair-potentials also 

have a tendency to form closed packed structures, incorrectly describe the surface 

energies, has no stability against shear and no angular dependency [139], [140]. 

Alternatively, many-body potentials are coordination-dependent; they manifest 

themselves in the fundamental properties of the solid material [186]. Here energy of 

atoms depends non-linearly on the surrounding atoms (number and distance) and 

uses electron density as a measure of the surrounding atoms. One of the main 

reasons why many MD models provide a very well understanding of different 

fundamental solid material behaviours is because they use a many-body potential 

form, however it can only describe material on the atomic scale [69]. 

The most known many-body potential used is the embedded atom model (EAM) 

[186]. Here the potential energy of an atom i is generally expressed as follows: 

𝑉𝑖(R) = ∑φ(𝑟𝑖𝑗)
𝑗≠𝑖

+ ∑𝐹(𝜌𝑖̅
)                        (𝟑.𝟕)

𝑖

 

where it depends on the pair interaction potential (φ) as a function of distance 

between atom i and j, and an electron charge density-dependent function (𝜌𝑖̅) which 

is the sum of contributions of neighbour atom j to the local density of atom i: 

𝜌𝑖̅ = ∑𝜌𝑗
(𝑟𝑖𝑗)                                               (𝟑.𝟖)

𝑗≠𝑖

 

DEM uses an approximated pair-wise interaction form which is one of the reasons 

why DEM fails to model continuous cohesive materials, while MCA solved this by 

developing a many-body interaction form based on the framework of the many-body 

embedded atom model [186] which is why MCA carries the advantages of MD 

models as well. This will all be explained in the following sections. 
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3.3.3 Integration of Equations of Motion 

As mentioned before, in particle-based methods the motion of each particle in a 

system of 𝑁 number of particles is traced to define the behaviour of the system as a 

whole. The translational and rotational motion of each particle is governed by 

Newton’s second law of motion as follows: 

𝐹 𝑖 = 𝑚𝑖𝑎 𝑖 = 𝑚𝑖

𝑑𝑣 𝑖
𝑑𝑡

= 𝑚𝑖

𝑑2𝑟 𝑖
𝑑𝑡2

                          (𝟑. 𝟗) 

𝐼𝑖
𝑑𝜔⃗⃗ 𝑖
𝑑𝑡

= 𝑀𝑖                                                      (𝟑. 𝟏𝟎) 

where (𝐹 𝑖) is the sum of all forces acting on particle i both from the interaction with 

its surrounding neighbours and for external forces, (𝑚𝑖) is the mass of i, (𝑎 𝑖) is the 

acceleration of i,(𝑣 𝑖) is the translational velocity, (𝜔⃗⃗ 𝑖) is the rotational velocity, (𝐼𝑖) 

is the moment of inertia and (𝑀) is the resultant torque acting on the particle. 

The equations of motion are used to model the evolution of the system over time, 

and obtaining the new positions, velocities and accelerations of all the particles due 

to the forces on the system by integrating the equations of motion. The important 

thing to mention here is that, how the forces between the particles are obtained is the 

main factor that distinguishes one method or model from the other, and how 

accurate or realistic the model is.  

The equations of motion lead to a system of differential equations that cannot be 

solved analytically, and a numerical integration method must be used to advance the 

system from time t to time t + ∆t. The Velocity-Verlet algorithm [187] is considered 

the most well-known time integration algorithm used in particle-based simulations 

to calculate the positions and velocities of the particles at every time-step. It is a 

very stable integrator compared to the simple Euler method. It is also time 

reversible, conserves volume in phase space, has good numerical precision, efficient 

and is relatively easy to implement which is why both LAMMPS and LIGGGHTS 

use it to solve the equations of motion. 

According to the Velocity-Verlet integration scheme [187], as shown in Algorithm 1 

below, the first step is to update the velocities by a half-step, then the positions by 

one step. Then calculate the acceleration according to the interaction. Then update 

the velocities by another half-step. Of course, boundary conditions (walls or periodic 

boundaries) are applied. 

The Velocity-Verlet algorithm requires the current forces to be calculated before the 

first time-stepping. These forces are computed according to the particle-interaction 

form as explained in the previous section 3.3.2. 
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Algorithm 1: Velocity-Verlet integration scheme 

1- Calculate 𝑣 (𝑡 +
1

2
∆𝑡) = 𝑣 (𝑡) +

1

2
𝑎 (𝑡)∆𝑡 

2- Calculate 𝑥 (𝑡 + ∆𝑡) = 𝑥 (𝑡) + 𝑣 (𝑡 +
1

2
∆𝑡) ∆𝑡 

3- Derive 𝑎 (𝑡 + ∆𝑡) from the interaction forced using 𝑥 (𝑡 + ∆𝑡) 

4- Calculate 𝑣 (𝑡 + ∆𝑡) = 𝑣 (𝑡 +
1

2
∆𝑡) +

1

2
𝑎 (𝑡 + ∆𝑡)∆𝑡 

 

It is common to not really use the velocities themselves in the Velocity-Verlet 

algorithm to solve Newton’s equations, but instead use the positions of the particles 

in the current time step and the previous ones, combined with the knowledge of the 

forces acting on the particles (F=ma), to predict the position and acceleration at the 

next time step [187]. This is relevant to the code development in Chapter 4. 

In DEM, the calculations alternate between two main calculations. The first is 

Newton’s second law which determines the motion of each particle using the contact 

forces. The second is the force-displacement law which updates the contact forces 

due to the relative motion between two particles. This is not the case in MCA which 

will be explained in section 3.5. 

3.3.4 Time-Step Determination 

Following from the previous section, knowing the particles positions, velocities and 

other dynamic information at time t, the algorithm calculates the new position, 

velocities etc. for a time t + ∆t where the step size ∆t is kept constant for the 

specified total time. Hence, choosing the correct time increment is an essential step 

and one of the most important parameters in particle-based simulations. It influences 

how long a simulation runs and how much computational power it requires. 

Furthermore, small time steps make for a more continuous motion and more realistic 

simulation, but large time steps reduce the computational cost.  

In the end, simulations are said to be valid when the simulation time for the 

properties of interest are greater than the relaxation time of those same properties. 

To avoid discretisation errors, the timestep must be chosen small enough to match 

the kinetics of the natural process and to capture the phenomenon of energy 

transmission by wave propagation. Furthermore, the simulations should be relevant 

to the time scales and be comparable to the natural kinetics. Hence, a few parameters 

should be taken into account to minimise the cost and duration of the simulation to a 

reasonable amount. This includes the time-step, the simulation size and the total 

duration of the simulation. In DEM, Rayleigh time is usually used to determine the 

time-step. Rayleigh time is the time taken by the Rayleigh wave to propagate 

through a solid particle, and it can be approximated as follows [188]: 
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𝑇𝑅 = 𝜋𝑅 (
𝜌

𝐺
)
1/2

(0.1631𝑣 + 0.8766)⁄                    (𝟑. 𝟏𝟏) 

where (𝑅) is the particle’s radius, (𝜌) is the density, (𝐺) is the shear modulus and (𝑣) 

is the Poisson’s ratio. A time-step between the range of 0.1𝑇𝑅 - 0.3𝑇𝑅 is 

recommended.  

For MCA, it is recommended for the time step to be smaller than the time of 

longitudinal sound propagation through the particle, and so we use a maximum 

time-step of:  

∆𝑡 =
𝑑

2𝑐𝑝
       ,    𝑐𝑝 = √

𝐾 + 4
3⁄ 𝐺

𝜌
                          (𝟑. 𝟏𝟐) 

where (𝑐𝑝) is the longitudinal (pressure) wave velocity, (𝐾) is the volume 

compression modulus or bulk modulus, (𝑑) is the diameter of the automaton. In the 

case of various properties of automata, the maximum (𝑐𝑝) is chosen from all the 

sample automata. 

 

3.3.5 Thermodynamics - Ensembles 

The thermodynamic state of a system is defined by three main parameters; 

temperature (T), pressure (P) and number of particles (N). Other properties can be 

derived from the equations of state, however, for particle-based simulations, three 

main ensembles were defined. “An ensemble is a collection of all possible systems 

which have different microscopic states but have identical macroscopic or 

thermodynamic states” [23]. These three ensembles are [23]: 

1- NVE – the microcanonical ensemble – here the Number of atoms, Volume 

and Energy are kept constant. This corresponds to an isolated system where 

energy and entropy are conserved. It is an adiabatic process with no heat 

exchange. The equations of motions are solved without temperature or 

pressure control. However, realistic systems change energy, volume and 

particles with it surrounding which makes it more complicated and which is 

why the next ensemble is most frequently used. 

2- NVT – the canonical ensemble – here the Number of atoms, Volume and 

Temperature are kept constant. Here, the energy of endothermic and 

exothermic processes is exchanged with a thermostat. For example, a very 

popular one is the Nose –Hoover thermostat which controls the temperature 

and includes velocity rescaling. 

3- NPT – the Isobaric-Isothermal ensemble – here the Number of atoms, 

Pressure and Temperature are kept constant. 

https://en.wikipedia.org/wiki/Adiabatic_process
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LAMMPS uses these three ensembles to define the thermodynamic state of a system 

of particles. However, LIGGGHTS only uses the NVE ensemble for granular 

particles, and we will use it in LIGGGHTS-MCA as well. 

 

3.3.6 Boundary Conditions 

Any particle-based simulation occurs within a box or container with a specific size 

and shape. What happens inside a system is determined by the conditions that apply 

at the boundaries of the system. The boundary conditions are what define the 

surroundings containing the system; they set the conditions at the boundaries to 

imitate different mechanical loading systems such as compression, tension, shear, 

vibration, etc. Here we control the velocities, pressures and temperatures set on the 

system, so that the sample is simulated as a whole under real operating conditions. 

If the topic of interest is the bulk properties of a system, then the wall boundaries 

should be as far away as possible from the region of interest because in reality walls 

are present over a much larger length scale and the simulation system is very small 

compared to the actual matter. Also, most atoms will be located on the surface 

which is also unrealistic. This could be solved by a rigid or periodic boundary 

conditions (PBC). The PBC is basically a replication of the box which encloses the 

particles, where the particles are considered to be identical, repeating and infinite as 

shown in Figure 3-7, creating an infinitely large grid of simulation boxes. In other 

words, particles exiting from the boundary on one end will re-enter the boundary on 

the other end, creating periodic movement. Moreover, particles within a cut-off 

distance from the boundary on one end interact with the particles that are the same 

distance from the boundary on the other end [189]. LIGGGHTS applies this while 

calculating the forces and updating the positions and velocities of the particles. 

However, if the boundary conditions are chosen to be rigid; then the particles at the 

microscopic level are affected by the edge and wall of the system. 

 
Figure 3-7: Schematic showing periodic boundary conditions applied on a simulation box with 

a defined cut-off distance [180] 



- 54 - 

 

3.3.7 Generation and Updating Neighbour List 

The calculation of the forces is the most time-consuming part of a simulation code 

because it involves calculating the interactions between neighbouring pairs, triplets, 

etc. of particles (pair-interactions or many-body interactions). The higher the 

number of particles, the relative distances and velocities between the neighbouring 

pairs, the higher the computational time to evaluate the forces between them. Hence, 

an important step of any particle-based simulation is defining which particles are in 

contact; and the forces will only be calculated for these particles, to reduce 

computational cost. This is also called contact detection in DEM and is the second 

most time-consuming part of a simulation. 

In most cases the particles have a certain interaction range beyond which the 

interactions are zero, or so small that they may be neglected. This range is called the 

cut-off distance 𝑟𝑐𝑢𝑡. Moreover, in one time step the particle positions do not change 

much, so a particle will be surrounded by the same set of closest neighbours for a 

considerable amount of time. The computational time is reduced by using this cut-

off distance and creating a neighbour lists to identify the nearby particles and only 

update and calculate the forces on the particles within the neighbour area within a 

given time step. LIGGGHTS uses the neighbour list technique. As shown in Figure 

3-8, considering the red particle, the neighbour list consists of all the particles within 

the cut-off distances which are particles 1 to 4.  

The drawback is that the neighbour list needs to be updated frequently, which is 

undesirable because it is a time-consuming process to generate the list. To avoid 

this, the additional shell of thickness (𝑟𝑠ℎ𝑒𝑙𝑙) is necessary to already include 

neighbours in the neighbourlist that may enter the cut-off radius at a later time as 

they may move towards the central particle. In Figure 3-8 those would be particles 

5-7. The larger the (𝑟𝑠ℎ𝑒𝑙𝑙) the longer the same neighbour list can be reused over 

several time-steps; usually 10 to 50 time-steps. However, a thicker shell also implies 

that the total list range is larger (𝑟𝑙𝑖𝑠𝑡 = 𝑟𝑐𝑢𝑡 + 𝑟𝑠ℎ𝑒𝑙𝑙), and that a larger number of 

pair distances need to be evaluated each time step. 

 

Figure 3-8: Schematic showing how the neighbour list is generated according to the cut-off 

distance and shell thickness [180] 
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3.3.8 Parallelisation and Communication 

The main constraint of particle-based simulations is that they require many 

calculations and a lot of CPU time. The time taken to run the simulation grows 

exponentially as the size of the system increases. To overcome this, most particle-

based simulations are designed to be implemented in parallel. There are several 

ways to do this parallelisation, but LIGGGHTS uses the spatial decomposition (or 

domain decomposition) communication-based approach. 

The spatial decomposition approach allows for the discretization of the simulation 

domain into small regions that are then assigned to different processors as shown in 

Figure 3-9. The regions are then further divided into cells. This means that each 

processor is responsible for the particles in its own region with the exception of 

particles that cross boundaries. In this case, communication happens between 

neighbouring processors providing that information, and hence, the amount of 

information required to be shared is minimal. This vital information is chosen 

carefully. Once the forces are calculated for each particle within their domain, they 

are cross-communicated to their surrounding domains as a resultant force using MPI 

exchange. Hence, communication between the processes is done via MPI routines 

where the communicated data consists of information about so-called “ghost 

particles” which are all the particles that border their subdomain within the range of 

interaction.  

This parallelization method is very efficient, but only when the number of particles 

within each domain is balanced so that the information exchange happens smoothly. 

A large number of domains will cause slower computation because the amount of 

cross communication required will be high; and a very small number of domains 

will also slow down the computation because the load per processor will be too 

high. Thus, the optimisation of the numbers of domains and the number of elements 

in each domain is crucial. The challenge here is to make sure only the needed 

information is cross-communicated to reduce the memory and communication time. 

 

Figure 3-9: Spatial decomposition parallelisation approach [190]  
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 Numerical Aspects of DEM Models 

Here the numerical aspects of DEM are presented emphasizing its limitations which 

are overcome by MCA which will be explained in section 3.5. This is important to 

define the MCA functionalities which will be implemented in LIGGGHTS.  

3.4.1 DEM Particle Discretisation and Initial Configuration 

DEM is concerned with modelling granular materials which is what LIGGGHTS is 

developed for modelling. A granular material is an assembly of many discrete solid 

particles, whose typical size ranges from micrometres to centimetres. These granular 

particles are typically interacting with each other because of dissipative collisions 

and are usually dispersed in a vacuum of interstitial fluid [191]. Granular particles 

are very different from solids, liquids or gases, and can be considered as a fourth 

state of matter. The dynamics of these systems are dominated by gravity and friction 

effects meaning that without further perturbations the particles will quickly come to 

complete rest [180]. For example, if a pile of sand is found on an inclined plane with 

an inclination angle smaller than the response angle, it acts as a solid because of the 

static friction between the plane and the granular particles. However, when the 

inclined plane is greater than the response angle, the granular particles start to flow 

exhibiting a fluid-like behaviour, and this behaviour is called granular flow. Other 

familiar granular particles are present in rock avalanches, emptying hoppers filled 

with grains, pneumatic conveying of particles and powders, and mixing and 

segregation of particles when they are transported and shaken [191].  

The term “granular materials” and “bulk solids” are used interchangeably in the 

literature. Granular bulk solids are materials that exhibit the properties of both solids 

and fluids, such as coal, sand, ore, mineral concentrate, and crushed oil shale [192]. 

Since in our daily lives more than fifty percent of all products are either granular in 

form or involve granular materials in their production, and about forty percent of the 

value added in chemical industry is linked to particle technology [191], DEM is a 

very important modelling method and why LIGGGHTS is directed to simulate 

models involving macroscopic scale processes involving granular materials such as 

the examples below in Figure 3-10. 

However, even though DEM has been successful in modelling granular materials 

and granular flow, it has failed to accurately simulate continuous cohesive materials. 

It is worth noting here the distinction between bulk solids in the context of granular 

materials, as explained above, and bulk continuous cohesive materials such as 

metals. For example, simulating a tensile test of a cohesive continuous material, 

using DEM is still difficult to conduct and the relationship between DEM 

parameters and mechanical parameters are still not defined [123], [166]. 
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Granular materials are characterised by mechanical properties of single particles 

such as density, Young’s Modulus, Poisson’s Ratio, Shear Modulus, and by 

parameters depending on mechanical properties and geometry such as coefficient of 

restitution, static friction coefficient, rolling friction coefficient, etc. They are also 

characterized by bulk properties, such as lateral pressure ratio, angle of repose, bulk 

density, size distribution, wall friction, internal (bulk) friction. All these parameters 

are obtained empirically or analytically and calibrated which is why all DEM studies 

involve extensive parametric and calibration studies which plays a crucial role in the 

accuracy of the results obtained. A unified calibration technique for DEM 

parameters does not exist, even the particle shape, size and distribution has a huge 

effect on the outputs [193]–[195]. The accuracy of densely packed models is even 

more sensitive to initial density, contact orientation, particle size, shape, and 

distribution [196], [197]. 

             

                             (a)                                                                   (b) 

                    

                             (c)                                                                   (d) 

Figure 3-10: Examples of simulations conducted by LIGGGHTS (a) granular particles moving 

on a conveyor belt, (b) particle segregation in a slot geometry, (c) a hopper discharge of 

granular particles, (d) granular particles flowing into a water basin [198] 

Distribution and density of particles are also important because they affect shear and 

consolidation. Densely packed granular material expands as it starts to flow 

depending on the level of consolidation. For example, the volume of under-

consolidated particles like loosely packed powders decreases during shear [199], 

while the volume of over-consolidated particles such as tightly packed powders 

increases, and no volume change occurs in critically consolidates during shear [200]. 

Regarding the discretization of the subject material in DEM and initial 

configuration, random insertion of particles is usually used since the particles 
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usually have different sizes and/or shapes. An example of random insertion in DEM 

is shown in Figure 3-11. However, obtaining an initial configuration is a crucial and 

non-trivial task in DEM, because it is very important that the particle packing 

represents the problem at hand and ensures good assemblies obtaining macroscopic 

isotropy. Particle packing and distribution directly affects the properties of the bulk 

solids at the macroscale and should be taken into account during calibration [190].  

Many particle packing and generations techniques are available in DEM, but they 

can be divided mainly into two groups; dynamic techniques and constructive 

techniques [201]. In dynamic techniques, previous DEM simulations are used to 

produce the initial packing, however, constructive techniques use initial packing 

according to geometrical calculations. Some of the most common dynamic 

techniques are multi-layer compaction, particle growth, isotropic compression and 

gravitational deposition. While the most common constructive techniques include 

sequential inhibition, sedimentation techniques and regular arrangements. 

Depending on the types, shapes, sizes, etc. of the particles, the proper particle 

packing, and generation technique can be chosen. Details of the techniques are 

beyond our scope; however, it is clear to see that this is a complex aspect of DEM. 

 

Figure 3-11: Example of initial configuration in DEM for spherical particles [202]  

For the purpose of this thesis, we are not dealing with granular materials, but we are 

interested in solid continuous cohesive material behaviour, most importantly metals, 

to study fracture and/or plastic deformation of materials. Some DEM studies have 

attempted to do this, but they faced problems involving segregation. The first most 

common problem is segregation by percolation, which means small particles fall 

into the void spaces between large particles, the second is segregation by angle of 

repose, which is the case when the angle of repose for small particles is larger, thus 

the large particles roll down the heap, and the third is segregation by density-push-

away where heavier particles push lighter ones away [200]. 

Others tried for example using a particle radius expansion model to discretize 

continuous material to obtain a homogenous assembly [166]. However, even with 

these many attempts, including parametric studies and calibration methods, DEM 

still struggles to simulate continuous behaviour due their contact laws and force 

descriptions[123], [166]. 
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3.4.2 DEM Contact Models 

In DEM, elements interact through contact forces determined by a contact law 

describing the material’s constitutive behaviour. These laws formulate the material 

model on the microscopic level and are the most important part of the model [191]. 

This actually uses the contact mechanics theory described in section 2.6.1.1. 

3.4.2.1 Contact of Spheres 

The contact models largely depend on the definition of the contact between two 

particles. As shown in Figure 3-12, there are three approaches to define the contact 

between particles in DEM. The hard particle approach [203], [204], and the soft 

particle approach [28] assume that the particles are rigid and do not deform. The 

hard particle approach assumes the particles to be perfectly rigid and follow a 

constant motion until a collision occurs. It is event-driven, meaning that only when 

collision is detected are the forces computed, which is different from the soft 

approach which are time-driven and forces are computed at every time-step. The 

hard approach is much simpler because the details of the contact behaviour are 

ignored, but mainly only used in rapid collisional granular flow [191], [205].  

The soft particle approach assumes the particles are rigid bodies but are allowed to 

slightly deform only at the contact points, and the deformation is described by 

means of a small overlap of the particles. These small deformations are used to 

calculate the forces between the particles [206]. Both approaches have limitations 

due to the assumption of rigidity because most materials involve inelastic 

deformations. The evaluation of the inter-particle forces based on the overlap in the 

soft particle approach is not sufficient to account for the inhomogeneous stress 

distribution inside the particles [205].  Hence, the third approach introduces 

deformability to the particles and is called the finite discrete element method [207], 

where the particles are discretized with finite elements. However, this approach is 

very computationally expensive and cannot be used for a large number of particles. 

The soft particle approach is the most common approach and the one used in 

LIGGGHTS. Pioneering work of DEM, specifically the soft approach started in the 

field of MD of granular materials, and was introduced by Cundall and others [122], 

[208]–[210]. However, it follows the MD pair-wise approximation and hence it 

naturally inherits its limitations and this poses a drawback in the contact law 

calculations using the soft approach [211].  
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Figure 3-12: The three types of DEM approaches [200] 

The dynamics of a particle is governed by Newton’s equation of motion as 

mentioned earlier. The force (𝐹 𝑖) and the torque (𝑀⃗⃗ 𝑖) acting on particle i are given 

by the sum of the pairwise interactions of particle i with its neighbouring particles 

(𝑁𝑖): 

𝐹 𝑖  = 𝑚𝑖

𝑑2𝑟 𝑖
𝑑𝑡2

= ∑ 𝐹 𝑖𝑗

𝑁𝑖

𝑗=1.𝑗≠𝑖

                               (𝟑. 𝟏𝟑) 

𝑀⃗⃗ 𝑖 = 𝐼𝑖
𝑑𝜔⃗⃗ 𝑖
𝑑𝑡

= ∑ 𝑀⃗⃗ 𝑖𝑗                                 (𝟑. 𝟏𝟒)

𝑁𝑖

𝑗=1.𝑗≠𝑖

 

Hence, the total force on a particle is the sum of pair forces with its surrounding 

neighbours. “The limitation to pairwise interaction is an abstraction which is 

justified if the particles deform each other only slightly. For stronger interactions 

one has to take multi-particle interaction into account.” [191], which is done by 

MCA. DEM assumes this problem is solved by choosing a small time-step, smaller 

than a critical value as explained in section 3.3.4., such that during a single time-step 

the disturbance cannot propagate from the particle to other particles farther than its 

immediate neighbours. So at all times the resultant forces on a particle can be 

determined exclusively from its interaction with the contacting particles for coarse 

particles, and for fine-particles some non-contact forces can be included, such as van 

der Waals and electrostatic forces [206]. Assuming that there is a force between two 

neighbouring particles only when they are in contact makes simulations using 

spherical particles very numerically efficient since identifying two particles in 

mechanical contact can be done in a very simple way. Particles are said to be in 

contact and exerting forces on each other only if the distance between two particles 
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of radii (𝑅𝑖) and (𝑅𝑗) is less than their contact distance (𝑅𝑖 + 𝑅𝑗), as shown in Figure 

3-13. Otherwise, there is no force between the particles.  

Hence, particles are in contact if: 

𝛿𝑛 = (𝑅𝑖 + 𝑅𝑗) − ‖𝑥𝑖 − 𝑥𝑗‖  > 0                          (𝟑. 𝟏𝟓) 

where (𝑥𝑖) and (𝑥𝑗) are the centers of the particles and (𝑅𝑖) and (𝑅𝑗) are their 

respective radii. The overlap (𝛿𝑛) is also called the mutual compression of particles i 

and j. If the shape of the particles are not spherical, the detection of contacts is much 

more complicated [212], [213]. 

          

                           (a)                                                                 (b) 

Figure 3-13: A schematic representation of contact (a) before deformation [214] (b) after 

deformation, where the original, undeformed configuration is indicated in red, and the 

final configuration in black [215] 

The force between contacting particles is divided into a total normal force 

component (𝐹 𝑖𝑗
𝑛) which changes of the translational motion and a tangential force 

component (𝐹 𝑖𝑗
𝑡 ) which changes of the rotational motion of the particles, as shown in 

Figure 3-14, and represent the tensile/compressive and shearing directions of 

contact. The resultant torque comprises two components, the torques caused by 

rolling friction (𝑀⃗⃗ 𝑖𝑗
𝑟 ) and torque caused by the tangential force (𝑀⃗⃗ 𝑖𝑗

𝑡 ). 

𝐹 𝑖 = 𝐹 𝑖𝑗
𝑛 + 𝐹 𝑖𝑗

𝑡                                                 (𝟑. 𝟏𝟔) 

𝑀⃗⃗ 𝑖 = 𝑀⃗⃗ 𝑖𝑗
𝑟 + 𝑀⃗⃗ 𝑖𝑗

𝑡                                             (𝟑. 𝟏𝟕) 

According to the linear spring-dashpot model, as shown in Figure 3-14, the normal 

force has a contact force and a damping force, while the tangential force has a shear 

force and a damping force. Once the overlap is detected the contact force is: 

𝐹 = 𝐹𝑛(𝑒𝑙𝑎𝑠) + 𝐹𝑛(𝑑𝑎𝑚𝑝) + 𝐹𝑡(𝑓𝑟𝑖𝑐) + 𝐹𝑡(𝑑𝑎𝑚𝑝)               (𝟑. 𝟏𝟖) 

The contact force is the result of the elastic forces (𝐹𝑛(𝑒𝑙𝑎𝑠)), viscous forces 

(𝐹𝑛,𝑡(𝑑𝑎𝑚𝑝)) and frictional resistance forces (𝐹𝑡(𝑓𝑟𝑖𝑐)) between the moving particles.  
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Figure 3-14: Linear spring-dashpot model [216]  

According to the linear spring-dashpot model [216] which is also what LIGGGHTS 

[189] uses, these force can be described as: 

𝐹 𝑖𝑗 = 𝐹 𝑖𝑗
𝑛 + 𝐹 𝑖𝑗

𝑡 = [𝑘𝑛𝛿𝑛 − 𝛾𝑛(𝑣𝑖𝑗
𝑛 )]𝑛𝑖𝑗 + [𝑘𝑡𝛿𝑡 − 𝛾𝑡(𝑣𝑖𝑗

𝑡 )]𝑡𝑖𝑗            (𝟑. 𝟏𝟗) 

- 𝛿𝑛 is the normal overlap vector, 𝛿𝑛 = (𝑅𝑖 + 𝑅𝑗) − ‖𝑥𝑖 − 𝑥𝑗‖. 

- 𝛿𝑡 is the tangential displacement or tangential overlap vector between i and j, 𝛿𝑡 =

∫ 𝑣𝑡𝑑𝑡
𝑡

𝑡0
, 𝑡0 is the time when the two particles just touch and have no deformation, 𝑡 is 

the time of collision. 

- 𝑛𝑖𝑗 is the unit vector in the normal direction, 𝑛𝑖𝑗 = (𝑥𝑖 − 𝑥𝑗)/‖𝑥𝑖 − 𝑥𝑗‖, and 𝑡𝑖𝑗 is 

the unit vector along the tangential direction, 𝑡̂𝑖𝑗 = (𝑣𝑖𝑗 − 𝑣𝑖𝑗
𝑛 )/‖𝑣𝑖𝑗 − 𝑣𝑖𝑗

𝑛‖, where 

𝑣𝑖𝑗 = 𝑣𝑖 − 𝑣𝑗 . 

- 𝑣𝑖𝑗
𝑛  and 𝑣𝑖𝑗

𝑡   are the normal and tangential components of relative velocity, 𝑣𝑖𝑗
𝑛 =

(𝑣𝑖𝑗 ∙ 𝑛𝑖𝑗) 𝑛𝑖𝑗 and 𝑣𝑖𝑗
𝑡 = 𝑣𝑖𝑗 − 𝑣𝑖𝑗

𝑛 . 

- 𝑘𝑛 and 𝑘𝑡 are the elastic stiffness constants for normal and tangential contacts. 

- 𝛾𝑛 and 𝛾𝑡 are the viscoelastic damping constants for normal and tangential contacts 

Calculating 𝑘𝑛, 𝑘𝑡, 𝛾𝑛, and 𝛾𝑡 depend on the specific contact model. It will be noted 

that “a significant degree of variation exists in the literature for the exact values of 

the contact stiffness coefficients 𝑘𝑛 and 𝑘𝑡. The same is true for the mass 

proportional damping coefficients 𝛾𝑛 and 𝛾𝑡. In fact, the latter are frequently simply 

chosen sufficiently large to eliminate numerical noise in the DEM simulations” 

[217], [218]. The next subsections describe models used in LIGGGHTS for 

modelling normal and tangential forces including calculating the stiffness and 

damping coefficients. Also the torques, cohesive and non-contact forces are covered. 

For a more detailed review on interaction forces refer to [191], [213]. 

 

3.4.2.2 Normal Force 

As shown in equation (3.16) the normal force is calculated as: 

𝐹𝑖𝑗
𝑛 = 𝑘𝑛𝛿𝑛 − 𝛾𝑛(𝑣𝑖𝑗

𝑛 )                                   (𝟑. 𝟐𝟎) 

When two particles interact with each other, they produce repulsive forces because 

of elastic surface deformation. In LIGGGHTS, this is defined by viscoelastic models 

based on Hertzian or Hookean theories. Here it is assumed that the particles are 
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perfectly smooth, the behaviour is elastic and isotropic, the tangential component of 

the force does not affect the normal component, and the contact deflection is smaller 

than the contact zone radius. Also, no tension or friction forces are allowed in the 

contact area [219]. In other words, Hertz and Hookean theories only describe the 

forces caused by physical contact between the particles due to impact, but other 

models could include cohesion for example, which will be explained in further 

sections. 

LIGGGHTS uses the Hertz-Mindlin contact model which is a non-linear contact 

model and an improvement of the simple Hertz Model. It is based on an 

approximation of the Hertz theory proposed by Mindlin and Deresiewicz in 1953 

[220], and described as [189], [206], [216]: 

𝑘𝑛 =
4

3
𝐸𝑖𝑗√𝑅𝑖𝑗𝛿𝑛             ,           𝛾𝑛 = −2√

5

6
𝛽𝑒𝑓𝑓√𝑆𝑛𝑚𝑖𝑗                               (𝟑. 𝟐𝟏) 

According to Hook contact model, 

𝑘𝑛 =
16

15
√𝑅𝑖𝑗𝑌𝑖𝑗 (

15𝑚𝑖𝑗𝑉𝑐ℎ
2

16√𝑅𝑖𝑗𝑌𝑖𝑗

)

1
5

   ,    𝛾𝑛 =
√

4𝑚𝑖𝑗𝑘𝑛

1 + (
𝜋

ln(𝜖)
)
2  ≥ 0                   (𝟑. 𝟐𝟐) 

1

𝐸𝑖𝑗
=

1 − 𝑣1
2

𝐸𝑖
+

1 − 𝑣2
2

𝐸𝑗
      ,        

1

𝑅𝑖𝑗
=  

1

𝑅𝑖
+

1

𝑅𝑗
   ,       

1

𝑚𝑖𝑗
=  

1

𝑚𝑖
+

1

𝑚𝑗
       (𝟑. 𝟐𝟑) 

𝜓 =
ln(𝜖)

√ln2(𝜖) + 𝜋2 
       ,       𝑆𝑛 = 2𝐸𝑖𝑗√𝑅𝑖𝑗𝛿𝑛                                                     (𝟑. 𝟐𝟒) 

where (𝐸𝑖𝑗) is the equivalent Young’s Modulus, (𝑣) is Poisson’s Ratio, (𝑅𝑖𝑗) is the 

equivalent radius which represents the geometric mean diameter of particles i and j, 

(𝑚𝑖𝑗) is the equivalent mass,  and (𝑣𝑐ℎ) is the characteristic impact velocity, (𝜓) is 

the damping ratio coefficient, (𝜀) is the coefficient of restitution defined as 𝜀 =

𝑔′/𝑔, where (𝑔) is the absolute normal relative velocity before the collision and (𝑔′) 

is the corresponding post-collision value, and (𝑆𝑛) is the normal constant stiffness. 

 

3.4.2.3 Tangential Force 

As shown in equation (3.16) the tangential force is calculated as: 

𝐹𝑖𝑗
𝑡 = 𝑘𝑡𝛿𝑡 − 𝛾𝑡(𝑣𝑡. 𝑣𝑖𝑗

𝑡 )                                      (𝟑. 𝟐𝟓) 

Frictional forces which resist the sliding (tangential) motion of particles are 

produced where two particles are in contact. A drawback of this model is that it is 

only valid when the normal force is constant, and no physical meaning can be 

attributed to the parameters (𝑘𝑡) and (𝛾𝑡). 
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The spring part of the tangential force (𝑘𝑡𝛿𝑡) is called the ‘shear history’ which 

accounts for the tangential overlap of the particles in the duration of time they are in 

contact. In LIGGGHTS by default, the tangential history is not accounted for. In this 

case 𝛿𝑡 = 0 and the total tangential force is limited by Coulomb frictional limit: 

𝐹𝑖𝑗
𝑡 = 𝜇𝑠𝐹𝑖𝑗

𝑛                                                         (𝟑. 𝟐𝟔) 

where (𝜇𝑠) is the static friction coefficient. Here (𝐹𝑖𝑗
𝑡 ) only causes a small relative 

movement termed ‘microslip’. If the slip covers a larger area of the contact it is 

called “gross slip” and the tangential force follows Amonton’s law of friction [191]:  

𝐹𝑖𝑗
𝑡 = −𝜇𝑠|𝐹𝑖𝑗

𝑛|𝑡̂𝑖𝑗                                             (𝟑. 𝟐𝟕) 

If 𝛿𝑡 > 0 and the tangential history effects are taken into consideration, in this case 

again Hertz and Hooke’s theories are used to calculate the constant. 

According to Hertz-Mindlin contact model,  

𝑘𝑡 = 8𝐺𝑖𝑗√𝑅𝑖𝑗𝛿𝑛     ,   𝛾𝑡 = −2√
5

6
 Ψ√𝑆𝑡𝑚𝑖𝑗 ≥ 0            (𝟑. 𝟐𝟖) 

where 𝐺𝑖𝑗 is the equivalent Shear Modulus 
1

𝐺𝑖𝑗
=

2−𝑣1
2

𝐺𝑖
+

2−𝑣2
2

𝐺𝑗
 

According to Hook contact model, 𝑘𝑡 = 𝑘𝑛 and  𝛾𝑡 = 𝛾𝑛 . 

 

3.4.2.4 Torque and Rolling Friction 

The torque on i has two components, the torque due to tangential contact force (𝑀𝑖𝑗
𝑡 ) 

and the torque due to rolling friction (normal contact) (𝑀𝑖𝑗
𝑟 ). 

𝑀⃗⃗ 𝑖 = 𝑀⃗⃗ 𝑖𝑗
𝑟 + 𝑀⃗⃗ 𝑖𝑗

𝑡                                                   (𝟑. 𝟐𝟗) 

The determination of the contribution of the normal component (𝐹𝑖𝑗
𝑛) on rolling 

friction has actually been considered very difficult in DEM and is considered to be 

negligible and ignored in most DEM models [206]. However in LIGGGHTS they 

are calculated as [221]: 

𝑀𝑖𝑗
𝑡 = 𝑅⃗ 𝑖 × 𝐹 𝑖𝑗

𝑡                                                     (𝟑. 𝟑𝟎) 

𝑀𝑖𝑗
𝑟 = 𝜇𝑟𝑅𝑖𝑗𝐾𝑛|𝐹𝑖𝑗

𝑛|𝜔̂𝑖                                       (𝟑. 𝟑𝟏) 

where (𝜇𝑟) is the coefficient of rolling friction and (𝜔̂𝑖) is the unit angular velocity 

of the particle i. In LIGGGHT, by default the normal torque is subtracted and does 

not contribute to the resulting torque. Only by setting a keyword, the full relative 

rotation contributes to the rolling friction torque. It is also important to mention here 

that the model in LIGGGHT only track the position and velocity of all the particles 

at each time step, but it does not track orientation.  
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An additional torque contribution which is possible to add in LIGGGHTS is the 

elastic-plastic spring-dashpot model (EPSD) because it dissipates kinetic energy, 

provides stable torques and dense particle packing. To model the rotational inertia 

and energy loss in rotating particles, the EPSD rotational model is applied. It 

consists of two components, a mechanical spring torque (𝑀𝑟
𝑘) and viscous damping 

torque (𝑀𝑟
𝑑) [192], [222]. The spring torque is dependent on the relative rotation 

between the two contacting particles and the total resistance model is described as 

𝑀𝑟 = 𝑀𝑟
𝑘 + 𝑀𝑟

𝑑                                                    (𝟑. 𝟑𝟐) 

∆𝑀𝑟
𝑘 = −𝑘𝑟∆𝜃𝑟                                                    (𝟑. 𝟑𝟑) 

where 𝑘𝑟 = 2.25𝑘𝑛𝜇𝑟
2𝑅𝑖𝑗

2 is the rolling stiffness, (∆𝜃𝑟) is the incremental relative 

rotation between particles, and at the next time-step 

∆𝑀𝑟,𝑡+∆𝑡
𝑘 = 𝑀𝑟,𝑡

𝑘 + ∆𝑀𝑟
𝑘    ,    |∆𝑀𝑟,𝑡+∆𝑡

𝑘 | ≤ |𝑀𝑟
𝑚|     ,    𝑀𝑟

𝑚 = −𝜇𝑟𝑅𝑖𝑗𝐹𝑛     (𝟑. 𝟑𝟒) 

where the next rotational increment is limited by the limiting spring torque (𝑀𝑟
𝑚) 

which is described by the coefficient of rolling resistance (𝜇𝑟), the effective radius 

(𝑅𝑖𝑗), and the normal contact force (𝐹𝑛) as follows 

Furthermore, the viscous damping torque (𝑀𝑟
𝑑) is assumed to be dependent on the 

relative rolling angular velocity (𝜃̇𝑟) and the rolling damping constant (𝐶𝑟) as: 

𝑀𝑟,𝑡+∆𝑡
𝑑 = {

−𝐶𝑟𝜃̇𝑟         𝑖𝑓 |∆𝑀𝑟,𝑡+∆𝑡
𝑘 | < |𝑀𝑟

𝑚|

−𝑓𝐶𝑟𝜃̇𝑟       𝑖𝑓 |∆𝑀𝑟,𝑡+∆𝑡
𝑘 | = |𝑀𝑟

𝑚|
                          (𝟑. 𝟑𝟓) 

 

3.4.2.5 Cohesive Force 

Phenomenologically, cohesion is the ability of particles to transmit shear stress 

without transmitting normal stress.Various non-contact forces are associated with 

cohesive particles, such as capillary forces which are formed due to liquid bridge 

between particles, and/or van der Waals forces and electrostatic forces which are 

associated with fine particles. The packing and the flow of the particles are 

significantly affected by these forces [206], [223]. In DEM, they can be applied as 

external forces in Newton’s second law using Hertzian theory. LIGGGHTS includes 

cohesive models related to capillary forces and liquid bridges which are irrelevant 

here, but the Johnson-Kendall-Roberts (JKR) model [68] takes into account the 

surface energy at the contact as shown in Figure 3-15 and is a modification of Hertz 

theory. JKR is an elastic-adhesive normal contact model which correlates the contact 

area of two particles to the elastic material properties and the interfacial interaction 

strength. The cohesive force can be formed during the unloading cycle of contact as 

a force resisting separation. It calculates the cohesion force as an additional normal 



- 66 - 

 

force which is proportional to the contact area of overlap between the particles [221] 

and  no modification to the tangential force is incorporated. 

𝐹 = 𝐹𝑛(𝑒𝑙𝑎𝑠) + 𝐹𝑛(𝑑𝑎𝑚𝑝) + 𝐹𝑡(𝑓𝑟𝑖𝑐) + 𝐹𝑡(𝑑𝑎𝑚𝑝) + 𝐹𝑛(𝑐𝑜ℎ)       (𝟑. 𝟑𝟔) 

𝐹𝑛(𝑐𝑜ℎ) = 𝐶𝐴𝑖𝑗                                                                                   (𝟑. 𝟑𝟕) 

where C is the particles cohesion energy density, and 𝐴𝑖𝑗 is the contact area between 

particles i and j. LIGGGHTS has an ‘SJKR’ model and a modified ‘SJKR2’ model 

which differ in the calculations of contact area [224]: 

𝐴𝑖𝑗(𝑆𝐽𝐾𝑅)

=
𝜋

4
×

(𝑐𝑖𝑗 − 𝑅𝑖 − 𝑅𝑗)(𝑐𝑖𝑗 + 𝑅𝑖 − 𝑅𝑗)(𝑐𝑖𝑗 − 𝑅𝑖 + 𝑅𝑗)(𝑐𝑖𝑗 + 𝑅𝑖 + 𝑅𝑗)

𝑐𝑖𝑗
2

 (𝟑. 𝟑𝟖) 

𝐴𝑖𝑗(𝑆𝐽𝐾𝑅2) = 2𝜋𝛿𝑛𝑅𝑖𝑗                                                                                               (𝟑. 𝟑𝟗) 

where (𝑐𝑖𝑗) is the central distance and (𝑅𝑖𝑗) is the equivalent distance between i-j. 

 
Figure 3-15: JKR model representing the tensile force between particles in cohesive contact [68] 

The JKR model assumed that the attractive forces are restricted to the area of contact 

and are non-existent outside. This approximation is accurate for large cohesive 

energies and large particles with low Young's modulus and stiffness. However, it 

does not provide resistance in the tangential shearing direction. This limits the effect 

cohesion has on material flow because particles are allowed to slide past each other 

with little resistance. The model is very sensitive to the size of the particle [219].  

 

3.4.2.6 Adhesive Force Including Plasticity 

The assumptions in DEM break down if the overlap becomes too large. The 

Hertzian contact model alongside the modified JKR cannot model stress history 

dependent stiffness and is purely elastic. There is no functionality available in 

LIGGGHTS to simulate deformable particles or plastic deformation. However, in 

general there has been some attempts to model plastic deformation using DEM. 

Although they are not implemented in LIGGGHTS, they are briefly discussed. 

Thornton and Ning [225] were the first to introduce a contact model for elastic-

perfectly plastic spheres with adhesion. Here a small tensile force is assumed to exist 

at the point of contact due to molecular attractions between the two particles. This 
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model proposes that above a certain velocity (the yield point) that a contact becomes 

plastic and the force-displacement relationship becomes linear (the plastic force-

displacement loading curve is tangential to the Hertz curve at the yield point). As a 

result of this plastic deformation energy dissipation takes places leading to a 

different unloading path. The unloading curves is calculated from Hertz theory, but 

the contact radius has been modified to account for the flattening of the contact 

patch (plastic deformation). The adhesive force in the model is calculated based on 

the JKR theory with the inclusion of contact flattening [226], [227]. 

Later in 2008, Luding [228] proposed another elastic-plastic model for adhesive 

contacts which is a hysteretic model including plastic deformation and history 

dependent adhesion where 

𝐹𝑛(𝑎𝑑ℎ) = 𝐹ℎ𝑦𝑠 + 𝛾0𝑣𝑛                                                                            (𝟑. 𝟒𝟎) 

𝐹ℎ𝑦𝑠 = {

𝑘1𝛿                         𝑖𝑓 𝑘2(𝛿 − 𝛿0) ≥ 𝑘1𝛿 

𝑘2(𝛿 − 𝛿0)               𝑖𝑓 𝑘1𝛿 > 𝑘2(𝛿 − 𝛿0) >

−𝑘𝑐𝛿                        𝑖𝑓 − 𝑘𝑐𝛿 ≥ 𝑘2(𝛿 − 𝛿0)
− 𝑘𝑐𝛿        (𝟑. 𝟒𝟏) 

where (𝛾0) is the viscous dissipation constant, (𝑘1) is the loading stiffness, (𝑘2) is 

the reloading stiffness, (𝑘𝑐) is the adhesive stiffness/strength, where the value of 

(𝑘2) is dependent on a maximum overlap value, which depends on a dimensionless 

plasticity depth parameter (𝛷𝑓), defined relative to the contact radius. The model can 

revert to a simple linear spring model if 𝑘1 = 𝑘2. 

However, both Thornton-Ning and Luding models only consider adhesion in the 

normal direction and failed to account for the torsion or bending strength that may 

exist between adhesive particles. Furthermore, “Luding’s model contains a 

shortcoming by which the behaviour of elastic-plastic and adhesive contacts is not 

realistically simulated. Contacts “break” at zero overlap regardless of loading or 

unloading history. This implies that plastic deformation has been ignored, which is 

unrealistic since plastic deformation is permanent and hence detachment must take 

place” [229]. Walton and Johnson model [230] attempted to solve this by 

introducing an extra model parameter for stiffness. Here, as the particles experience 

plastic deformation, there is a flattening of the contact area and there is an increase 

in the force required to separate the particles, and while Thornton and Ning’s model 

captures this, the additional resistance to rolling is not captured which means the 

particles continue rolling until more than one contact has been formed restraining 

the particle. As such Walton has proposed a contact model consisting of 4 inter-

related modes of motion; normal, tangential, twisting and bending. 

The different models presented here, both cohesive and adhesive are sensitive to the 

size of the particles. At the macroscopic scale, these models provide weak 
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interaction forces that can be numerically dominated by the friction properties of dry 

material. They will always yield a result but the they should be compared to the 

physical experiments and operational systems. The physical model parameters need 

to be scaled to simulate the mechanical behaviour of the material observed which 

will be explained in section 3.4.4. 

 

3.4.3 DEM Bond Model 

As mentioned earlier, DEM is capable of modelling and capturing phenomena 

related to granular materials. With the use of the different contact and cohesive 

contact models, DEM has been able to study heterogeneous materials such as 

concrete or rock, and homogeneous materials such as ceramics [192], [231]–[233]. 

However, the main difficulty for DEM remains to be properly simulating continuous 

material [123].  

In order to similarly successfully model solid materials using DEM that show 

inherent elastic anisotropy, local anisotropy has to be considered to be able to 

achieve the correct physics of the damage phenomena [234] including metal, alloys 

and polymers. This involves including bonding of particles at their contact points 

[235]. By applying bond models in DEM the complex phenomena such as cracking 

and fracturing can be represented by the failures of the bonds [166]. 

It is important to mention here that there is a distinction between bonded particle 

contact models and adhesive/cohesive contact models in DEM. First, in bonded 

particles, the particles do not have to be in contact, yet still be connected via a bond 

between them. A bond is a contact between two particles that has a finite strength 

value (this can be a tensile, compressive or bending strength) and once this value is 

exceeded the bond will fail and the particles will no longer be bonded together. 

Contact can exist between the bonded-particles, but this is governed by the 

cohesion-less contact models such as Hertz-Mindlin or Linear spring as previously 

explained. Furthermore, all bonds are formed at an initial timestep but once a bond 

has broken it cannot reform. Adhesive contact models on the other hand can reform 

following breakage [226].  

There are two main approaches to modelling bonded particles in DEM, the first uses 

the dual spring model, and the other uses the cohesive beam model [123]. The 

classical dual spring model has been properly established in literature, but the beam 

cohesive model has not. The bond model in LIGGGHTS follows the first approach 

by using the bond-particle model (BPM) developed by Potyondy and Cundall [233]. 

It was developed as a model for rock where the rock is represented by a dense 

packing of non-uniform-sized spherical particles. Here the asymmetrical contact 
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laws are replaced by cohesive interactions that can support tension to form bond 

between particles. The BPM model as implemented in LIGGGHTS is a combination 

of a normal and tangential spring-damper system that exist even if overlaps are 

smaller than zero and are represented by a pair of elastic springs with a constant 

normal and shear stiffness [236]: 

𝐹 = 𝐹𝑛(𝑒𝑙𝑎𝑠) + 𝐹𝑛(𝑑𝑎𝑚𝑝) + 𝐹𝑡(𝑓𝑟𝑖𝑐) + 𝐹𝑡(𝑑𝑎𝑚𝑝) + 𝐹𝑛(𝑐𝑜ℎ) + 𝐹𝑛(𝑏𝑜𝑛𝑑) + 𝐹𝑡(𝑏𝑜𝑛𝑑) 

The elastic force in normal direction is given as [236] 

𝐹𝑛(𝑏𝑜𝑛𝑑) = 𝑘𝑛𝐴(𝑟0 − 𝑥𝑖𝑗)                                                     (𝟑. 𝟒𝟐) 

where (𝑟0) is the initial particle distance upon bond creation, (𝑥𝑖𝑗) is the distance 

between the particle centres, (𝑘𝑛) the normal bond stiffness parameter and (𝐴) the 

beam area, dependent on the beam radius which is a user defined multiple of the 

minimum particle radius.  The elastic force in tangential direction is incrementally 

defined as 

𝐹𝑡(𝑏𝑜𝑛𝑑) = 𝐹𝑡(𝑏𝑜𝑛𝑑)−1 + 𝑘𝑡𝐴(𝑣𝑖𝑗 − 𝑣𝑖𝑗,𝑛𝑛𝑖𝑗)∆𝑡               (𝟑. 𝟒𝟑) 

where (𝑘𝑡) is the tangential bond stiffness parameter. Instead of using a traditional 

damping mechanism based on the velocity, a dissipative model is used. It reduces 

the elastic force in normal and tangential direction each time-step 

𝐹𝑡(𝑏𝑜𝑛𝑑) = 𝐹𝑡(𝑏𝑜𝑛𝑑) (1 −
∆𝑡

∆𝑡𝑑
)∆𝑡                                      (𝟑. 𝟒𝟒) 

where (∆𝑡𝑑) is the dissipation time scale and it should be noted that (𝑟0) is adapted in 

normal direction, to reflect this dissipation. The dissipative force is then given as 

𝐹𝑡(𝑑𝑎𝑚𝑝) = 𝐹𝑡(𝑏𝑜𝑛𝑑)

∆𝑡

∆𝑡𝑑
                                                     (𝟑. 𝟒𝟓) 

Finally, care must be taken when contacts end, e.g. bonds are broken, as in that case 

the elastic potential is instantaneously converted into dissipated energy [236]. 

However, BMP is still not capable of describing a cohesive continuous material. 

Cohesive beam bond models [123] is a better way of describing them but it only 

describes perfectly elastic materials. Furthermore, many studies have attempted to 

develop new approaches to model continuous materials using DEM. For example, 

Chen et al. [166] performed tensile test simulations of high-carbon steel by DEM by 

introducing a new packing theory and using the particle-particle bond model. 

However, they were still only capable of revealing a relationship between the DEM 

parameters and the mechanical parameters using a parametric study. 
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3.4.4 DEM Micro-Macro Relations and Parametric Estimation 

The predictions of DEM simulations are not only largely dependent on the number 

of particles, particle size, shape, deformation, time-step, etc. but also on many model 

related parameters that cannot be directly obtained, or are difficult to obtain from the 

material properties of the material or from experiments [237]–[239]. The challenge 

does not only involve the proper quantification and prediction of the properties and 

experimental validation, but the micro-macro transition is also a huge challenge 

which is the transition from the micro contact properties to the macro flow 

behaviours. This transition is crucial for understanding the collective flow behaviour 

of particles as a function of their contact properties [228]. The use of correct input 

parameters is crucial in order to ensure the predictivity of the simulations and 

confidently interpret the results. Simulations should also be validated against 

experimental results which was been proven to be a difficult task [214]. The 

developers of LIGGGHTS in [240] also stated that “In Discrete Element Method 

(DEM) simulations, particle–particle contact laws determine the macroscopic 

simulation results. Particle-based contact laws, in turn, commonly rely on semi-

empirical parameters which are difficult to obtain by direct microscopic 

measurements”  

Table 3-1 below lists the main input parameters in DEM models. Because these 

input parameters are difficult to obtain experimentally or are sometimes not 

physically defined, in literature they are often not measured, or values are assumed 

without proper justification since there is also no robust or standard method for their 

determination. Often it is also not mentioned whether their values have been 

measured or calibrated, and the final simulation is also often not validated [194]. 

This process where the required values of the input parameters for the simulation are 

determined is called parameter estimation or parametric fitting. This idea is well 

represented by Potyondy and Cundall who state [233]: 

"For continuum models, the input properties (such as modulus and strength) 

can be derived directly from measurements performed on laboratory 

specimens. For the BPM1 (. . . ) the input properties of the components 

usually are not known. (. . . ) For the general case of arbitrary packing of 

arbitrarily sized particles, the relation is found by means of a calibration 

process (. . . )". 

Estimation of the required input parameters is achieved through a calibration 

process, which are otherwise unknown. In DEM, this calibration process is achieved 

through a comparison between the bulk behaviour from a physical experiment and 

the simulation results. Low levels of parameters independency and high levels of 



- 71 - 

 

calibration accuracy can be achieved by performing at least two types of 

experiments and simulations multiple times. Together, these tests and simulations 

should help select the optimal set of input parameters [219].  

Whilst DEM is increasingly used, the parameter estimation, calibration and 

validation methods are still difficult, inaccurate and not standardized. To give an 

example, the developers of LIGGGHTS in their paper in 2016 [240] attempted to 

develop an Artificial Neural Network for the identification of the DEM simulation 

parameters to link the microscopic numerical parameters to the macroscopic 

experimental results. This was done by developing a database by conducting a series 

of DEM simulations with varying simulation parameters and used them to train a 

feed-forward neural network to predict the macroscopic behaviour based on the 

parameters. They state that “For each set of calibration experiments, the neural 

network needs to be trained only once. After the training, the neural network 

provides a generic link between the macroscopic experimental results and the 

microscopic DEM simulation parameters. Based on these experiments, the DEM 

simulation parameters of any given non-cohesive granular material can be 

identified.” Hence, the computationally expensive DEM simulations to perform 

parametric estimation and calibrations can be avoided.  Even though this, and other 

techniques [193], [196], [241], are important step forward, they are not commonly 

used by the scientific community and are limited to specific cases (for example here 

non-cohesive granular materials). Furthermore, for these reasons, and other reasons, 

it is also very common to use FEM-DEM or CFD-DEM approaches to model the 

stress-strain behaviour of each individual particle. A review for different calibration 

methods in DEM is given here [194].  

In MCA parametric fitting or calibration is not needed and the MCA parameters can 

be directly obtained from the material mechanical properties. This will be explained 

in the following section 3.5 and highlighted in 3.5.3. This is a major difference and 

advantage of MCA over DEM. 

Table 3-1: Input parameters for DEM models and their corresponding symbols 

Property Symbol 

Particle radius r 

Contact radius a 

Elastic stiffness 𝑘𝑛 

Frictional stiffness 𝑘𝑡 

Rolling stiffness 𝑘𝑟 

Adhesion stiffness 𝑘𝑐 

Plastic stiffness 𝑘1,2 
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Plasticity depth 𝛷𝑓 

Normal viscoelastic damping 𝛾𝑛 

Tangential viscoelastic damping 𝛾𝑡 

Rolling damping constant 𝐶𝑟 

Coulomb friction coefficient 𝜇𝑠 

Rolling friction coefficient 𝜇𝑟 

Coefficient of restitution 𝜀 

Angle of repose 𝛼 

 

 Numerical Aspects of MCA  

While DEM is mainly limited to the study of deformation and fracture of granular or 

brittle materials, MCA has been developed to study highly consolidated solids and 

has been proven to be feasible in simulating solid behaviour including viscoelastic 

and plastic deformation that occur in metals, alloys and polymers, as well as 

heterogenous materials such as composites and ceramics. The differences between 

DEM and MCA formulations which makes this possible are explained here.  

The theoretical background of the MCA method is explained in detail in this section. 

As mentioned earlier in section 2.6.2.3, the MCA method was first introduced by 

Psakhie et al. in 1995 [133], as a simulation tool within the framework of 

mesomechanics. However,  many developments of the method have been made ever 

since, and the latest description of the method can be found in [3]; where MCA is 

presented as a discrete approach (i.e. particle-based approach) to model the 

behaviour of materials on different scales and is used as a multi-scale modelling 

approach. 

The MCA formulations presented in this section, are specifically related to the 

formulations for the 3D representation of the elastic-plastic MCA model. These are 

the formulations which will be implemented in LIGGGHTS, as presented later in 

Chapter 4. These formulations are developed by the authors of the MCA method 

including Sergey G. Psakhie, Valentin L. Popov, Evgeny V. Shilko, and the external 

supervisor on this thesis Alexey Smolin and could be found in the following papers 

[1]–[3]. 

It is noted that the terms ‘automata’ and ‘particles’ are interchangeably used hereon 

further. 
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3.5.1 MCA Particle Discretisation and Initial Configuration 

In MCA it is assumed that any material consists of finite-sized elementary objects 

called automata. An automaton is the smallest unit in the simulated object. Each 

automaton is a sphere having a mass (𝑚𝑖) and a size characterized by a diameter 

(𝑑𝑖). Particles are allowed to deform, but initially they all have the same size. 

The initial configuration of the particles follows an appropriate lattice structure, 

similar to MD. The automata could be arranged in a simple cubic (SC) form, or 

hexagonal arrangement (FCC or HCP), however the hexagonal fcc packing is 

usually used, as shown in Figure 3-16, because it has the highest density of particles 

and is the most stable in plastic deformation.  

 

Figure 3-16: Initial ideal hexagonal packing of automata in the linked state  

 

3.5.2 MCA Inter-Automata Interactions Model 

3.5.2.1 Contact of Automata 

Each two neighbouring automata form an automata pair. The state of a pair can be of 

two types; linked (bonded) or unlinked (unbonded). Physically, a linked pair of 

automata must be in contact, while an unlinked pair can be in contact or non-

interacting. Linked pairs can resist both compression and tension, while unlinked 

pairs only have a resistance to compression. If the simulated specimen is a 

consolidated solid, then all pairs are assumed to be initially linked (and in contact) 

which represents the presence of cohesive, adhesive or chemical bonds. The number 

of links each automaton can have with neighbouring automata depends on the 

coordination number; it can have a maximum of six links if it is in a (sc) lattice 

structure, or a maximum of 12 links for (fcc) or (hcp). Defects in the material such 

as pores/cracks can be included in the initial state by considering them unlinked.  
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At any given time, in order to determine the state of an automaton, the state and 

condition of each adjacent pair at the previous time-step are used. Automata also 

have the ability to change their neighbours by switching of a pair of automata from a 

linked state to an unlinked state or vice versa, as shown in Figure 3-17. Fracture, 

wear and damage of material corresponds to the unlinking of automata, while 

agglomeration, crack healing and micro-welding corresponds to linking of automata 

from different materials [242]. 

 

Figure 3-17: Switching of state of i-j from linked (left) to unlinked (right) and vice-versa [3] 

In the initial undeformed state, the initial distance between the centre of automata i 

and the centre of automata j is: 

 𝑟𝑖𝑗
𝑜 =

𝑑𝑖 + 𝑑𝑗

2
                                                          (𝟑. 𝟒𝟔) 

A change in their position or deformation can causes either compression or tension 

between two neighbouring automata; which is determined by an overlapping 

parameter (ℎ𝑖𝑗) as shown in Figure 3-18, where 

ℎ𝑖𝑗 = 𝑟𝑖𝑗 −  𝑟𝑖𝑗
𝑜                                                        (𝟑. 𝟒𝟕) 

where (𝑟𝑖𝑗) is the current distance between the centres of automata i and j. 

A pair of automata i-j are linked and in contact when 𝑟𝑖𝑗 ≤ 𝑟𝑖𝑗
𝑜, and linked pairs i-j 

can resist both tension (ℎ𝑖𝑗 is positive) and compression (ℎ𝑖𝑗 is negative), while 

unlinked automata only resist compression. 

     

                    (a)                                        (b)                                           (c) 

Figure 3-18: Automata pair i-j in: (a) contact (b) compression state (c) tension state 

The overlapping parameter (ℎ𝑖𝑗) describes the relative position between two 

neighbouring automata. However, each of the automata i and j can have different 

material properties, therefore the contribution of each of them to the overlap (ℎ𝑖𝑗) 

may be different depending on their corresponding material properties. 
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(ℎ𝑖𝑗) is presented by the distance between the centre of mass of the automaton and 

the central point of the plane of interaction which are also known as the contact 

points, which are (𝑞𝑖𝑗) and (𝑞𝑗𝑖), as shown in Figure 3-19(a): 

𝑟𝑖𝑗 = 𝑞𝑖𝑗 + 𝑞𝑗𝑖                                                           (𝟑. 𝟒𝟖) 

Of course, the initial values are 𝑞𝑖𝑗 = 𝑑𝑖/2 and 𝑞𝑗𝑖 = 𝑑𝑗/2. However, after 

deformation it is related to the normal strain of the pair i-j (𝜀𝑖𝑗): 

𝜀𝑖𝑗 ≡ 𝑞𝑖𝑗 −
𝑑𝑖

2
/2                                                     (𝟑. 𝟒𝟗) 

where in terms of increments () which corresponds to the parameter during one 

time-step (t), the overlapping parameter is 

∆ℎ𝑖𝑗 = ∆𝑞𝑖𝑗 + ∆𝑞𝑗𝑖 = (∆𝜀𝑖𝑗 + ∆𝜀𝑖𝑗)(𝑑𝑖 + 𝑑𝑗)/2                   (𝟑. 𝟓𝟎) 

How to calculate this is explained in section 3.5.2.2. because it depends on the 

normal forces of interaction (𝐹 𝑖𝑗
𝑛). 

Interaction of pair of automata i-j also cause a shear displacement (𝑙𝑖𝑗) not just a 

normal displacement (ℎ𝑖𝑗), as shown in Figure 3-19(b). The shear displacement (𝑙𝑖𝑗) 

occurs at the point of their contact and is caused by the rotation of automata and 

tangential velocity, of course initially it is zero, however, after deformation it is 

related to the shear deformation (𝛾𝑖𝑗) of the automata. 

∆𝑙𝑖𝑗 = (∆𝛾𝑖𝑗 + ∆𝛾𝑗𝑖)𝑟𝑖𝑗                                                             (𝟑. 𝟓𝟏) 

How to calculate this is explained in section 3.5.2.3. because it depends on the 

tangential forces of interaction due to relative rotation between automata. 

                    

                 (a)                                        (b)                                          (c) 

Figure 3-19: (a) normal and (b) tangential interaction between automata pair i and j [3] (c) 

initial structure of automata in hexagonal structure, showing contact area (𝑨𝒊𝒑) [155] 

Another essential aspect of MCA is that even though initially the particles are 

spheres with a specific radius, no particle is ever a perfect sphere and after 

deformation, the size of the particle cannot be fully described by its radius or 

diameter. The real shape of an automaton is determined by the area of its contact 

with its neighbour (𝐴𝑖𝑗). Interaction between pair automata happens at plane faces 
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(face-face interaction), as shown in Figure 3-19(c), and the size of face is chosen so 

that it fills the voids between polygons. The contact area (𝐴𝑖𝑗) is defined in a way to 

minimize the volume of the voids between the particles in a simulated solid, and it 

changes during elastic and elastic-plastic deformation. This is essential in defining 

the interaction forces between automata and is a modification in MCA compared to 

DEM. 

The initial contact area (𝐴𝑖𝑗
0 ) and volume (Ω𝑖

0
) of automata are defined and computed 

based on the radius and packing. It is assumed that for (sc) the automata have a 

cubic shape hence; 

𝐴𝑖𝑗
0 = 4𝑅2                                                      (𝟑. 𝟓𝟐) 

Ω𝑖
0 = 8𝑅3                                                       (𝟑. 𝟓𝟑) 

While for (fcc) the automata have rhombic dodecahedron shape hence 

𝐴𝑖𝑗
0 = √2𝑅2                                                     (𝟑. 𝟓𝟒) 

Ω𝑖
0 = 4√2𝑅2                                                   (𝟑. 𝟓𝟓) 

The contact area (𝐴𝑖𝑗) also changes during deformation (given in equation 3.55).  

Under external load, automata can change their state, position and orientation of 

their neighbours based on the inter-automata interaction relationships and rules. The 

state of each automaton in the current step is defined by its state in the previous step 

as well as the effect of its neighbours. The movement of the automata depends on 

the interaction forces between the automata and their physical and mechanical 

properties. The switching of state of pair automata also depends on the interparticle 

forces. By studying the relative motion between automata and their behaviours, the 

motion and behaviour of the whole system can be simulated.  

Since MCA is a particle-based method, the equations of motion are used to model 

the evolution of the system over time and calculate the forces acting on all the 

automata in each time step. It also simulates the motion of a group of particles by 

Newton’s second law of motion. However, as mentioned earlier, one of the 

fundamental problems with some particle-based methods, including DEM, is the 

correct representation of the inter-particle interaction forces, which is the most 

sensitive and time consuming part of any particle-based simulation [172]. In DEM, 

an approximated pair-wise form is used which assumes that the total energy of the 

system is just the sum of the pair bonds, which has been proven to fail to describe 

the material on the macroscale and damage generation at scales lower than the size 

of the discrete element; this is also why DEM is often coupled with FEM/CFD. 

Research showed that this problem can be solved by using a many-body interaction 

form which provides an isotropic behaviour of a simulated material to form an 
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accurate description of highly consolidated solids where elastic-plastic deformation 

occurs, rather than a granular medium. Moreover, stress tensor components can be 

computed for an automaton considering all forces in the calculation. This permits 

the realization of different models of the plastic behaviour of materials developed in 

continuum mechanics [1], [3], [172]. Furthermore, using the formalism of CA 

allows explicit description of processes such as damage generation and evolution, 

crack healing, chemical reactions, micro-welding, heat transfer, and phase 

transitions too. The construction of the force of interactions between particles in 

many-body approximation was made possible thanks to the use of the hybrid 

technique combining mathematical formalism of DEM and conventional concept of 

cellular automata and MD [243], [244] [172]. 

The authors of the MCA method applied the many-body interaction concept of the 

embedded atom method (EAM) [186], [245], which widely used in MD and 

previously discussed in section 3.3.2, to the MCA equations of motion. This allowed 

them to connect the average stresses and strains for the volume of each particle with 

the forces of interaction with its neighbouring particles. Meaning each automaton in 

the system follows the applied constitutive laws, leading to an accurate mechanical 

response of the whole system, and the capability of correct simulation of irreversible 

strain accumulation (plasticity) in ductile materials.  

As mentioned earlier, in the EAM model the potential energy of an atom i depends 

on the pair interaction potential (φ) as a function of distance between atom i and j, 

and depends an electron charge density-dependent function (𝜌𝑖̅) which is the sum of 

the contributions of neighbour atom j to the local density of atom i, expressed as 

𝐸𝑖(R) = ∑φ(𝑟𝑖𝑗)

𝑗≠𝑖

+ ∑𝐹(𝜌𝑖̅
)

𝑖

    ,    𝜌𝑖̅ = ∑𝜌𝑗(𝑟𝑖𝑗)
𝑗≠𝑖

         (𝟑. 𝟓𝟔) 

By analogy, the MCA equations of motion are described as follows[158]: 

𝐹 𝑖  = 𝑚𝑖

𝑑2𝑟 𝑖
𝑑𝑡2

= ∑ 𝐹 𝑖𝑗 + 𝐹 𝑖
Ω

𝑁𝑖

𝑗=1,𝑗≠𝑖

                                         (𝟑. 𝟓𝟕) 

𝑀⃗⃗ 𝑖 = 𝐽𝑖
𝑑𝜔⃗⃗ 𝑖
𝑑𝑡

= ∑ 𝑀⃗⃗ 𝑖𝑗

𝑁𝑖

𝑗=1,𝑗≠𝑖

                                                     (𝟑. 𝟓𝟖) 

where 𝐹⃗⃗ 𝑖 is the total force acting on an automaton i from its surrounding neighbours 

𝑁𝑖, and 𝑀⃗⃗⃗ 
𝑖𝑗 is the momentum of the force in pair i-j. It will be noted that this is 

similar to the equations of motion of DEM, but the total force consists of a pair-wise 

component (𝐹 𝑖𝑗) which depends on the displacement of i relative to its neighbour j, 

and the volume-dependent component (𝐹⃗⃗ 𝑖
Ω
) which depends on the combined effects 

of all the nearest surroundings of the automata i which realizes the many-body 
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interaction form. For locally isotropic media, the volume-dependent component (𝐹⃗⃗ 𝑖
Ω
) 

can be expressed as 

𝐹⃗⃗ 𝑖
Ω

= 𝐴𝑖 ∑ 𝜎̅𝑚𝑒𝑎𝑛
𝑗 𝐴𝑖𝑗𝑛⃗⃗ 𝑖𝑗

𝑁𝑖

𝑗=1,𝑗≠𝑖

                                         (𝟑. 𝟓𝟗) 

where (𝐴𝑖) is a material parameter that represent the phase and chemical 

composition of the material, (𝜎̅𝑚𝑒𝑎𝑛
𝑗

) is the mean stress in the volume of automaton 

j, (𝐴𝑖𝑗) is the area of interaction between the automata. 

The pair-wise component (𝐹 𝑖𝑗) could be expressed as the sum of the normal force 

(𝐹 𝑖𝑗
𝑛) and a tangential force (𝐹 𝑖𝑗

𝑡 ) which are characterized by their corresponding 

specific stress values (𝜎𝑖𝑗 and 𝑡𝑖𝑗) and the contact area (𝐴𝑖𝑗), shown in Figure 3-20, 

𝐹 𝑖𝑗 = 𝐹 𝑖𝑗
𝑛 + 𝐹 𝑖𝑗

𝑡 = (𝜎𝑖𝑗𝑛⃗ 𝑖𝑗 + 𝑡𝑖𝑗𝜏 𝑖𝑗)𝐴𝑖𝑗                           (𝟑. 𝟔𝟎) 

where (𝑛⃗ 𝑖𝑗) and (𝜏 𝑖𝑗) are the normal and tangential unit vectors from the centre of i 

to j respectively, as shown in Figure 3-20.  The many-body contribution only affects 

the normal component of the total force and not the tangential component, which is 

taken into consideration in the specific force of normal interaction (𝜎𝑖𝑗) which is 

explained in the next subsection. All formulas for forces are written in increments of 

specific values (𝜎𝑖𝑗 and 𝑡𝑖𝑗) per contact area of automata (traction values). 

                      

Figure 3-20: The automata interaction, where X’,Y’ are the instantaneous coordinate system 
associated with the current spatial orientation of the contacting pair i-j  [155]  

 

3.5.2.2 Normal Force 

As shown in equation (3.50), the normal force of interaction is described as 

𝐹 𝑖𝑗
𝑛 = (𝜎𝑖𝑗𝑛⃗ 𝑖𝑗)𝐴𝑖𝑗                                                           (𝟑. 𝟔𝟏) 

where 𝑛⃗ 𝑖𝑗 is the unit vector in the normal direction, 𝑛⃗⃗ 𝑖𝑗 = (𝑅⃗⃗ 𝑗 − 𝑅⃗⃗ 
𝑖
)/𝑟𝑖𝑗.  

The normal interaction force is directly related to the strain distribution and it is 

assumed that the response of a linearly elastic isotropic material under the stress 

state is described using the formula for the diagonal terms of the stress tensor in 

Hooke’s law. Thus, the increment of the specific force of the normal interaction of 

the automata i and j in a time step is described as 
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∆𝜎𝑖𝑗 = 2𝐺𝑖∆𝜀𝑖𝑗 + (1 −
2𝐺𝑖

𝐾𝑖
) ∆𝜎̅𝑚𝑒𝑎𝑛

𝑖                       (𝟑. 𝟔𝟐) 

where (𝐺𝑖) is the shear modulus, (𝐾𝑖) is the bulk modulus of i, (𝜀𝑖𝑗) is the normal 

strain, and (𝜎̅𝑚𝑒𝑎𝑛
𝑖 ) is the mean stress of i which is the term expressing the many-

body particle contribution to the total force on automaton i.  

At a next time-step, the normal force of interaction is expressed as: 

𝐹 𝑖𝑗
𝑛+1 = (𝜎𝑖𝑗

𝑛+1𝑛⃗ 𝑖𝑗)𝐴𝑖𝑗
𝑛+1                                                                                 (𝟑. 𝟔𝟑) 

𝜎𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗 + ∆𝜎𝑖𝑗 = 𝜎𝑖𝑗 + 2𝐺𝑖∆𝜀𝑖𝑗

𝑛+1 + (1 − 2𝐺𝑖/𝐾𝑖)∆𝜎𝑖
𝑛+1             (𝟑. 𝟔𝟒) 

where (𝐴𝑖𝑗
𝑛+1) is the contact area at the next time-step which could be deformed  

𝐴𝑖𝑗
𝑛+1 = 𝐴𝑖𝑗

0
𝑑

𝑟𝑖𝑗
𝑛+1 [1 +

1

2
(
𝜎̅𝑚𝑒𝑎𝑛

𝑖

𝐾𝑖
+

𝜎̅𝑚𝑒𝑎𝑛
𝑗

𝐾𝑗
)]                                           (𝟑. 𝟔𝟓) 

where 𝑟𝑖𝑗
𝑛+1 is the current distance between i and j. Now to calculate the (𝜎𝑖𝑗) we 

need 𝜀𝑖𝑗 and  𝜎̅𝑚𝑒𝑎𝑛
𝑖 . 

To calculate the value of the central strain in the pair i-j at the next time step n+1, 

the equality of the forces acting on each particle according to Newton's third law is 

considered: 

𝜎𝑖𝑗
𝑛 + 2𝐺𝑖∆𝜀𝑖𝑗

𝑛+1 + (1 −
2𝐺𝑖

3𝐾𝑖
) ∆σ̅𝑖

𝑛+1 = 𝜎𝑗𝑖
𝑛 + 2𝐺𝑗∆𝜀𝑗𝑖

𝑛+1 + (1 −
2𝐺𝑗

3𝐾𝑗
)∆σ̅𝑗

𝑛+1  (𝟑. 𝟔𝟔) 

And since  

∆𝑟𝑖𝑗
𝑛+1 = 𝑅∆𝜀𝑖𝑗

𝑛+1 + 𝑅∆𝜀𝑗𝑖
𝑛+1 = |𝑅⃗ 𝑖

𝑛+1 − 𝑅⃗ 𝑗
𝑛+1| − |𝑅⃗ 𝑖

𝑛 − 𝑅⃗ 𝑗
𝑛|                             (𝟑. 𝟔𝟕) 

Then the central strain can be calculated as 

∆𝜀𝑖𝑗
𝑛+1 =

𝑝𝑗𝑖
𝑛 − 𝑝𝑖𝑗

𝑛 + 2𝐺𝑖

∆𝑟𝑖𝑗
𝑛+1

𝑅 + ∆σ̅𝑗
𝑛+1 (1 −

2𝐺𝑗

3𝐾𝑗
) − ∆σ̅𝑖

𝑛+1 (1 −
2𝐺𝑖

3𝐾𝑖
)

2𝐺𝑖 + 2𝐺𝑗
      (𝟑. 𝟔𝟖) 

Calculating the mean stress (𝜎̅𝑚𝑒𝑎𝑛
𝑖 ) is the most critical step. (𝜎̅𝑚𝑒𝑎𝑛

𝑖 ) is the local 

value of pressure of i and it is the same as the mean stress (𝜎̅𝑚𝑒𝑎𝑛
𝑖 ) in the automaton 

volume. By definition, the mean stress (the same pressure with the opposite sign) is 

the first invariant of the stress tensor divided by three: 

𝜎̅ = −
𝜎̅𝑥𝑥 + 𝜎̅𝑦𝑦 + 𝜎̅𝑧𝑧

3
                                              (𝟑. 𝟔𝟗)  

To calculate the components of the stress tensor in the volume of an automaton, the 

average stress tensors are calculated using homogenization described in [1] :  

𝜎𝑖
𝛼𝛽

= −
1

Ω𝑖
∑𝑞𝑖𝑗

𝛼𝑓𝑖𝑗
𝛽
𝐴𝑖𝑗

𝑁𝑖

𝑗=1

                                        (𝟑. 𝟕𝟎)  
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where 𝛼, 𝛽 = 𝑋, 𝑌, 𝑍 coordinates, (𝑓𝑖𝑗
𝛽

) is the projection of the total (the sum of the 

central and tangential) specific force at the contact site between the automata i and j 

on the axis 𝛽. Thus, for the diagonal terms of the stress tensor we only have a 

contribution from the central forces, hence 

𝜎𝑖
𝛼𝛼 = −

1

Ω𝑖
∑𝑞𝑖𝑗

𝛼𝑓𝑖𝑗
𝛼𝐴𝑖𝑗

𝑁𝑖

𝑗=1

                                     (𝟑. 𝟕𝟏) 

The modelling practice has shown that the components of the stress tensor are better 

calculated in the initial configuration (undeformed state), which is determined by the 

initial packing. As explained before, the number of neighbours is equal to the 

coordination number (𝑁𝑐), and the values of (𝑞𝑖𝑗) and (𝐴𝑖𝑗) are the same for all 

neighbors. The volume of the automata consists of pyramids with the base (𝐴𝑖𝑗) and 

height (𝑞𝑖𝑗), hence 𝑞𝑖𝑗𝐴𝑖𝑗𝑁𝑐 = 3Ω𝑖 and 

𝜎𝑖
𝛼𝛼 =

3

𝑁𝑐
∑𝜎𝑖𝑗

𝑁𝑖

𝑗=1

                                                   (𝟑. 𝟕𝟐) 

Hence, 

∆𝜎̅𝑚𝑒𝑎𝑛
𝑖 =

1

𝑁𝑐
∑𝜎𝑖𝑗

𝑛+1

𝑁𝑖

𝑗=1

                                         (𝟑. 𝟕𝟑) 

However, to calculate the increment of the normal force (𝜎𝑖𝑗
𝑛+1) we need to know 

the increment of the mean stress (∆𝜎𝑖
𝑛+1) as shown above. Hence, it is necessary to 

estimate the increment of the mean stress at the current step (∆𝜎𝑖
𝑛+1) which could be 

done by an iterative procedure or by calculating a predictor estimate value, which 

are used for calculating strain increments and then finally correcting the estimation 

for mean stress. It has been shown that the iterative procedure works well in cases 

with high Poisson’s ratio (~ 0.49), however for usual materials the predictor 

estimation method works much better. 

 

The calculation of the predictor estimation of the mean stress (𝜎̅𝑚𝑒𝑎𝑛
𝑖 ) depends on the 

state of automata pair i-j and their neighbours. We will use the symbol of the mean 

stress as (𝜎̅𝑖) instead of (𝜎̅𝑚𝑒𝑎𝑛
𝑖 ) for convenience of writing the equations. 

In the case of an isolated pair of automata i-j, when other neighbours (N) of both 

automata are absent, according to equation (3.63) 

∆𝜎̅𝑖
1 = ∆𝜎̅𝑗

1 =
∆𝜎𝑖𝑗

1

𝑁𝑐
                                           (𝟑. 𝟕𝟒) 

where the (1) represents the case of an isolated pair of automata i-j. According to 

equation (3.52), the specific force of normal interaction is 
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∆𝜎𝑖𝑗
1 = 2𝐺𝑖∆𝜀𝑖𝑗

𝑛+1 + (1 −
2𝐺𝑖

𝐾𝑖
) ∆𝜎̅𝑖

1                                (𝟑. 𝟕𝟓) 

Then using equation (3.64), the specific force of normal interaction using the 

predictor estimator for the case of isolated pair of automata i-j will be: 

 ∆𝜎𝑖𝑗
1 =

2𝐺𝑖

1 − (1 −
2𝐺𝑖

3𝐾𝑖
)

1
𝑁𝑐

∆𝜀𝑖𝑗
𝑛+1                                      (𝟑. 𝟕𝟔) 

∆𝜎𝑖𝑗
1 =

2𝐺𝑖𝑁𝑐

𝑁𝑐 − (1 −
2𝐺𝑖

3𝐾𝑖
)
∆𝜀𝑖𝑗

𝑛+1                                         (𝟑. 𝟕𝟕) 

∆𝜎𝑖𝑗
1 = 𝐻𝜀

1∆𝜀𝑖𝑗
𝑛+1                                                                 (𝟑. 𝟕𝟖) 

where (𝐻𝜀
1) is the “stiffness” of an automaton with one neighbour where 

𝐻𝜀
1 =

2𝐺𝑖𝑁𝑐

𝑁𝑐 − (1 −
2𝐺𝑖

3𝐾𝑖
)
                                                       (𝟑. 𝟕𝟗) 

The second case takes into consideration the complete environment of each 

automaton pair i-j by considering the neighbours (N) that do not shift relative to the 

automata of the pair i-j. This provides the exact expression for the average 

deformation of the automata of a given pair i-j: 

∆𝜀𝑖̅
𝑐 = ∆𝜀𝑗̅

𝑐 =
∆𝜀𝑖𝑗

𝑛+1

𝑁𝑐
                                                        (𝟑. 𝟖𝟎) 

∆𝜎̅𝑖
𝑐 = 3𝐾𝑖

∆𝜀𝑖𝑗
𝑛+1  

𝑁𝑐
                                                           (𝟑. 𝟖𝟏) 

Then the corresponding value of the specific force of normal interaction will be 

∆𝜎𝑖𝑗
𝑐 =

𝑁𝑐 − (1 −
3𝐾𝑖

2𝐺𝑖
)

𝑁𝑐
2𝐺𝑖∆𝜀𝑖𝑗

𝑛+1                               (𝟑. 𝟖𝟐) 

∆𝜎𝑖𝑗
𝑐 = 𝐻𝜀

𝑐∆𝜀𝑖𝑗
𝑛+1                                                              (𝟑. 𝟖𝟑) 

where (𝐻𝜀
𝑐) is the “deformation stiffness” of an automaton with a complete 

environment of neighbours, where 

𝐻𝜀
𝑐 =

𝑁𝑐 − (1 −
3𝐾𝑖

2𝐺𝑖
)

𝑁𝑐
2𝐺𝑖                                             (𝟑. 𝟖𝟒) 

As a predictor for the new value of the increment of the real specific normal force 

(∆𝜎𝑖𝑗
𝑝

), interpolation to the real number of neighbors N is used:  

∆𝜎𝑖𝑗
𝑝

= [𝐻𝜀
1 + (𝐻𝜀

𝑐 − 𝐻𝜀
1)

𝑁 − 1

𝑁𝑐 − 1
]∆𝜀𝑖𝑗

𝑛+1                   (𝟑. 𝟖𝟓) 
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∆𝜎𝑖𝑗
𝑝

= [𝐻𝜀
1 (1 −

𝑁 − 1

𝑁𝑐 − 1
) + 𝐻𝜀

𝑐
𝑁 − 1

𝑁𝑐 − 1
]                    (𝟑. 𝟖𝟔) 

∆𝜎𝑖𝑗
𝑝

= 𝐻𝜀
𝑁∆𝜀𝑖𝑗

𝑛+1                                                              (𝟑. 𝟖𝟕) 

where N is the number of neighbours and 𝐻𝜀
𝑁  is the “total deformation stiffness”. 

So the predictive normal specific force value is expressed as 

𝜎𝑖𝑗
𝑝

= 𝜎𝑖𝑗
𝑛 + 𝐻𝜀

𝑁∆𝜀𝑖𝑗
𝑛+1                                                      (𝟑. 𝟖𝟗) 

Now using equations (3.69) and (3.58) the estimate for the increment of normal 

strain can be calculated as: 

∆𝜀𝑖𝑗
𝑝

=
𝑝𝑗𝑖

𝑛 − 𝑝𝑖𝑗
𝑛 + 𝐻𝜀

𝑁
∆𝑟𝑖𝑗

𝑛+1

𝑅
𝐻𝜀,𝑖

𝑁 + 𝐻𝜀,𝑗
𝑁                                       (𝟑. 𝟗𝟎) 

Then using equation (3.68), the estimated predictor value of the mean stress is 

∆𝜎̅𝑖
𝑝

= 3𝐾𝑖∆𝜀𝑖𝑗
𝑝

= 3𝐾𝑖

∑∆𝜀𝑖𝑗
𝑝
  

𝑁𝑐
                                     (𝟑. 𝟗𝟏) 

However, to use this equation (3.74), it is also necessary to estimate the change in 

the distance to the free surface of the automaton ( free
iq ) which is the distance to the 

point of contact with the new neighbor, and the corresponding change in the 

deformation (∆𝜀𝑖𝑗
𝑓𝑟𝑒𝑒

). To do this, the usual boundary condition is used on the free 

surface of a solid as the equality of normal stresses to the pressure of the external 

environment (∆𝑃𝑒𝑥𝑡) as follows: 

∆𝑃𝑒𝑥𝑡 = 2𝐺𝑖∆𝜀𝑖𝑗
𝑓𝑟𝑒𝑒

+ (3𝐾𝑖 − 2𝐺𝑖) [
∑∆𝜀𝑖𝑗

𝑛+1

𝑁𝑐
+

𝑁𝑐 − 𝑁

𝑁𝑐
∆𝜀𝑖𝑗

𝑓𝑟𝑒𝑒]                 (𝟑. 𝟗𝟐) 

where  

∆𝜀𝑖𝑗
𝑓𝑟𝑒𝑒

=
(1 −

3𝐾𝑖

2𝐺𝑖
)
∑∆𝜀𝑖𝑗

𝑛+1

𝑁𝑐
+

∆𝑃𝑒𝑥𝑡

2𝐺𝑖

1 − (1 −
3𝐾𝑖

2𝐺𝑖
)
𝑁𝑐 − 𝑁

𝑁𝑐

                                                               (𝟑. 𝟗𝟑) 

Then according to equation (3.67), the total predictor increment of the normal strain 

is 

∆𝜀𝑖̅
𝑝

=
∑ ∆𝜀𝑖𝑗

𝑝𝑁𝑖
𝑗=1

𝑁𝑐 − (𝑁𝑐 − 𝑁) (1 −
3𝐾𝑖

2𝐺𝑖
)
+

(𝑁𝑐 − 𝑁)
3𝐾𝑖

2𝐺𝑖

𝑁 + (𝑁𝑐 − 𝑁)
3𝐾𝑖

2𝐺𝑖

∆𝑃𝑒𝑥𝑡

3𝐾𝑖
                     (𝟑. 𝟗𝟒) 

Then the final predictor increment of the mean stress can be calculated using 

equation (3.74) as 

∆𝜎̅𝑖
𝑝

= 3𝐾𝑖∆𝜀𝑖𝑗
𝑝
                                                           (𝟑. 𝟗𝟓) 

Substituting it into equation (3.58), we obtain the increments of the normal 

deformation, and then calculate the values of the central forces using equation (3.54) 
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𝜎𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗

𝑛 + 2𝐺𝑖∆𝜀𝑖𝑗
𝑛+1 + (1 − 2𝐺𝑖/𝐾𝑖)∆𝜎̅𝑖

𝑝
                 (𝟑. 𝟗𝟔) 

After the first time-step and getting the predictor, the usual formula for calculating 

the mean stress (3.63) 

𝜎̅𝑖 = 𝜎̅𝑚𝑒𝑎𝑛
𝑖 =

1

𝑁𝑐
∑𝜎𝑖𝑗

𝑛+1

𝑁𝑖

𝑗=1

                                                    (𝟑. 𝟗𝟕) 

and then according to equation (3.50) the vector value of the force can be calculated  

𝜎 𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗

𝑛+1 ∙  𝐴𝑖𝑗
𝑛+1 ∙ 𝑛⃗ 𝑖𝑗                                                    (𝟑. 𝟗𝟖) 

 

3.5.2.3 Tangential Force 

As explained in section 3.5.2.1 and shown in equation (3.50), the tangential force of 

interaction, is defined by the shear force (𝑡𝑖𝑗) or the force of shear strain resistance:  

𝐹 𝑖𝑗
𝑡 = (𝑡𝑖𝑗𝜏 𝑖𝑗)𝐴𝑖𝑗                                                           (𝟑. 𝟗𝟗) 

It lies in the plane normal to the axis connecting the centres of the automata pair i-j, 

as shown in Figure 3-20(b). The direction in this plane is determined by the 

direction of shear deformation (𝛾𝑖𝑗). Since the orientation of both the axis of the pair 

i-j and the shear force varies at all times, it is described by the specific value in 

relation to the interaction area (𝐴𝑖𝑗) and the direction of the axis of the pair (𝜏 𝑖𝑗). It 

can also be written as  

𝐹 𝑖𝑗
𝑡 = (𝑛⃗ 𝑖𝑗 × 𝑡 𝑖𝑗)𝐴𝑖𝑗                                                 (𝟑. 𝟏𝟎𝟎) 

where the specific shear force (𝑡 𝑖𝑗) is in a vector form and multiplied by a cross 

product to the normal unit vector (𝑛⃗ 𝑖𝑗). 

Similar to equation (3.52), the specific force of the tangential interaction of the 

automata i and j can be described using the formula for the non-diagonal terms of 

the stress tensor in Hooke’s law: 

∆𝑡 𝑖𝑗 = 2𝐺𝑖∆𝛾 𝑖𝑗                                                           (𝟑. 𝟏𝟎𝟏) 

where (∆𝛾 𝑖𝑗) is the increment of the shear deformation in the pair i-j.  

At the next time-step, 

∆𝑡 𝑖𝑗
𝑛+1 = 𝑡 𝑖𝑗

𝑛 + 2𝐺𝑖∆𝛾 𝑖𝑗
𝑛+1                                         (𝟑. 𝟏𝟎𝟐) 

𝛾 𝑖𝑗
𝑛+1 = 𝛾 𝑖𝑗

𝑛 + ∆𝛾 𝑖𝑗
𝑛+1                                                (𝟑. 𝟏𝟎𝟑) 

Accordingly, the basic equation for calculating the shear force at step n+1, similar to 

equation (3.56), Newton's third law for shear forces in a pair of automata i-j is used 

𝑡 𝑖𝑗
𝑛 + 2𝐺𝑖∆𝛾 𝑖𝑗

𝑛+1 = 𝑡 𝑗𝑖
𝑛 + 2𝐺𝑗∆𝛾 𝑗𝑖

𝑛+1                      (𝟑. 𝟏𝟎𝟒) 
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As shown earlier in equation (3.46) the tangential displacement of automata (∆𝑙 𝑖𝑗
𝑛+1) 

occurs at the point of their contact which causes shear in each automaton where 

∆𝑙 𝑖𝑗
𝑛+1 = 𝑞𝑖𝑗∆𝛾 𝑖𝑗

𝑛+1 + 𝑞𝑗𝑖∆𝛾 𝑗𝑖
𝑛+1                                               (𝟑. 𝟏𝟎𝟓) 

Solving equations (3.85) and (3.86), the increment of shear strain at the current step 

∆𝛾 𝑖𝑗
𝑛+1 =

1

𝑞𝑖𝑗𝐺𝑖 + 𝑞𝑗𝑖𝐺𝑗

[𝐺𝑗∆𝑙 𝑖𝑗
𝑛+1 +

𝑞𝑖𝑗

2
(𝑡 𝑖𝑗

𝑛 − 𝑡 𝑗𝑖
𝑛)]            (𝟑. 𝟏𝟎𝟔) 

To use equation (3.87) it is necessary to calculate the tangential displacement 

(∆𝑙 𝑖𝑗
𝑛+1). Since each automaton rotates with its own angular velocity as shown in 

Figure 3-21, where (𝜔𝑖) and (𝜔𝑗) is the angular velocities of i and j respectively: 

𝑣 𝑗 − 𝑣 𝑖 = 𝜔⃗⃗ 𝑖𝑗 × 𝑟 𝑖𝑗                                               (𝟑. 𝟏𝟎𝟕) 

where 𝑟 𝑖𝑗 = (𝑅⃗ 𝑗 − 𝑅⃗ 𝑖), 𝑣 𝑖 = 𝑑𝑅⃗ 𝑖/𝑑𝑡 , (𝑣𝑖) and (𝑣𝑗) are the translational velocities of 

i and j respectively, and (𝜔𝑖𝑗) is the angular velocity of the pair i-j, where 

𝜔𝑖𝑗 =
𝑛⃗ 𝑖𝑗 × (𝑣𝑗 − 𝑣𝑖)

𝑟𝑖𝑗
                                          (𝟑. 𝟏𝟎𝟖) 

the difference between the rotations is responsible for the shear strain: 

∆𝑙 𝑖𝑗 =
(𝑞𝑖𝑗(𝜔⃗⃗ 𝑖𝑗 − 𝜔⃗⃗ 𝑖) × 𝑛⃗ 𝑖𝑗 + 𝑞𝑗𝑖(𝜔⃗⃗ 𝑖𝑗 − 𝜔⃗⃗ 𝑗) × 𝑛⃗ 𝑖𝑗)∆𝑡

𝑟𝑖𝑗
                   (𝟑. 𝟏𝟎𝟗) 

 

Figure 3-21: Rotation of a pair of automata i-j [246] 

3.5.2.4 Torque and Rolling Friction 

In 3D representation, rotation also leads to bending and torsion (twisting) strains in 

the pair i-j due to the difference in the automata rotation. The resistance to relative 

rotation in the automata pair i-j causes torque (𝐾⃗⃗⃗ 𝑖𝑗). So, the moment of the total force 

as described in equation (3.48) is given as: 

𝑀⃗⃗⃗ 
𝑖𝑗 = 𝑞𝑖𝑗

(𝑛⃗⃗ 𝑖𝑗 × 𝐹⃗⃗ 𝑖𝑗) + 𝐾⃗⃗⃗ 𝑖𝑗                                         (𝟑. 𝟏𝟏𝟎) 

𝐾⃗⃗⃗ 𝑖𝑗 = −(𝐺𝑖 + 𝐺𝑗)( 𝜃⃗⃗ 𝑗 − 𝜃⃗⃗ 𝑖)                                       (𝟑. 𝟏𝟏𝟏) 

where (𝜃⃗⃗ 𝑖) and (𝜃⃗⃗ 𝑗) are the rotation angles of i and j. At the next time-step, 

𝑀⃗⃗⃗ 
𝑖𝑗

𝑛+1
= 𝑀⃗⃗⃗ 

𝑖𝑗 + ∆𝑀⃗⃗⃗ 
𝑖𝑗

𝑛+1
                                                 (𝟑. 𝟏𝟏𝟐) 

Furthermore, a force of dry friction (𝐹𝑖𝑗
𝑑𝑓

) can be described between contacting 

automata. The normal and tangential forces have to be calculated first, but the 
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tangential force is the one that determined whether there will be a dry friction force 

or not. The friction force is determined as 

𝐹𝑖𝑗
𝑑𝑓

= −µ𝑖𝑗

𝜎𝑖𝑗 + 𝜎𝑗𝑖

2
                                           (𝟑. 𝟏𝟏𝟑) 

where µ𝑖𝑗  is the coefficient of dry friction for the automata pair i-j, and (𝜎𝑖𝑗) is the 

specific force of the normal interaction. 

If 𝐹𝑖𝑗
𝑑𝑓

< |𝑡 𝑖𝑗| where (𝑡 𝑖𝑗) is the specific tangential force, then tangential force is 

corrected by including the dry friction as follows 

𝑡 𝑖𝑗
𝑑𝑓

=
𝐹𝑖𝑗

𝑑𝑓

|𝑡 𝑖𝑗|
𝑡 𝑖𝑗                                                      (𝟑. 𝟏𝟏𝟒) 

3.5.2.5 Elastic-Plastic Forces 

All the previous equations describe the mechanical behaviour of linearly elastic 

materials, and for example in [247] it was shown that these models gave the same 

results as those who have used usual continuum mechanics equations by finite-

difference methods. In [246] it is shown that taking into account the rotation of the 

particles helps correctly describing the isotropic response of the material. 

This proposed approach of building many-body forces of interaction has a great 

advantage of realizing various different models of elasticity and plasticity within the 

framework of particle-based methods. Knowing the stress and strain tensor in the 

bulk of an automaton makes it possible to directly apply conventional fracture 

criteria written in the tensor form.  

Different models can be used for describing elastic-plastic behaviour [1], however in 

most MCA studies and in this thesis the theory of plastic flow is described by using 

the von Mises criterion for plasticity and Wilkins algorithm. Von Mises criterion is 

part of plasticity theory that is mostly used for ductile materials, such as metals. It 

assumes that yielding of a ductile material starts when the second deviatoric stress 

invariant reaches a critical value. The von Mises stress or equivalent stress (𝜎̅𝑒𝑞
𝑖 ) is a 

value used to determine if a given material will yield. The von Mises yield criterion 

states that a material under load will start yielding if the von Mises stress is equal or 

greater than the elastic yield limit (yield stress 𝜎𝑦), as shown in Figure 3-22 [248]. 

Prior to that the material response is assumed to be elastic or viscoelastic. 

This equivalent stress (𝜎̅𝑒𝑞
𝑖 ) of a material can be calculated in terms of the stress 

tensor components as [1]–[3]: 

𝜎̅𝑒𝑞
𝑖

=
1

√2
√(𝜎̅𝑥𝑥

𝑖 − 𝜎̅𝑦𝑦
𝑖 )

2
+ (𝜎̅𝑦𝑦

𝑖 − 𝜎̅𝑧𝑧
𝑖 )

2
+ (𝜎̅𝑧𝑧

𝑖 − 𝜎̅𝑥𝑥
𝑖 )

2
+ 6 [(𝜎̅

𝑥𝑦
𝑖 )

2
+ (𝜎̅

𝑦𝑧
𝑖 )

2
+ (𝜎̅

𝑥𝑧
𝑖 )

2
]  
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where the stress tensor components can be calculated from equations (3.59) and 

(3.61). 

To use the von Mises criterion in particle-based methods, the well-known radial 

return algorithm of Wilkins can be used for integrating the plasticity equations for 

isotropic von Mises plasticity [249], [250]. In Wilkins algorithm, first the stress is 

updated assuming that the response is elastic, then if it is outside the yield surface, 

the stress is projected or “dropped” to the closest point of the yield surface (𝜎𝑝𝑙), as 

shown in Figure 3-22. If the material is perfectly plastic, the yield surface is 

constant, but if the yield surface expands during plastic flow, the stress is projected 

on the expanded yield surface. Hence, if the equivalent stress (𝜎̅𝑒𝑞
𝑖 ) exceeds the 

plastic stress (𝜎𝑝𝑙) which is the current radius of von Misses yield circle, then the 

elastic problem is corrected by subsequent “drop” of components of stress deviator 

tensor. More details could be found in [172]. 

The Wilkins algorithm is formulated in terms of stress deviator tensor as  

𝐷′𝛼𝛽 = 𝐷𝛼𝛽𝑀                                                            (𝟑. 𝟏𝟏𝟓) 

where (𝐷𝛼𝛽) is the stress deviator after the elastic solution at the current time step, 

(𝐷′𝛼𝛽) is the corrected stress deviator and 𝑀 = 𝜎𝑝𝑙/𝜎𝑒𝑞 represents the “drop” where 

(𝜎𝑝𝑙) is the current radius of the von Mises yield circle.  

where  

𝜎𝑝𝑙 = 𝜎𝑦 + (𝜀̅𝑒𝑞
𝑖 −

𝜎𝑦

3𝐺
)𝐸

ℎ
                                          (𝟑. 𝟏𝟏𝟔) 

where 𝜎𝑦 is the yield stress of the material, 𝐸ℎ  is the plastic work/strain hardening 

modulus of the material. 

The stress deviator tensor can be written in terms of stress as follows for automata i: 

(𝜎̅𝛼𝛽
𝑖 )

′
= 𝜎̅𝛼𝛽

𝑖 𝑀𝑖                                                        (𝟑. 𝟏𝟏𝟕) 

 (𝜎̅𝛼𝛼
𝑖 )′ = (𝜎̅𝛼𝛼

𝑖 − 𝜎̅𝑚𝑒𝑎𝑛
𝑖 )𝑀𝑖 + 𝜎̅𝑚𝑒𝑎𝑛                      (𝟑.𝟏𝟏𝟖) 

where (𝜎̅𝛼𝛼
𝑖 )′ and (𝜎̅𝛼𝛽

𝑖 )
′
 are the corrected average stress tensors, (𝜎̅𝛼𝛼

𝑖 ) and (𝜎̅𝛼𝛽
𝑖

) are 

the elastic stress tensor components at the current time step. 

Thus, to calculate the plastic forces, the elastic normal and tangential specific forces 

can be corrected with the use of the current value of (𝑀𝑖), such that the corrected 

values of normal and tangential specific forces for plasticity will be: 

{
𝜎′𝑖𝑗 = (𝜎𝑖𝑗 − 𝜎̅𝑚𝑒𝑎𝑛

𝑖 )𝑀𝑖 + 𝜎̅𝑚𝑒𝑎𝑛
𝑖

𝜏′𝑖𝑗 = 𝜏𝑖𝑗𝑀𝑖                                      
                       (𝟑. 𝟏𝟏𝟗)  
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where (𝜎′𝑖𝑗) and (𝜏′𝑖𝑗) are the corrected specific forces for plasticity, and then 

corrected total normal and tangential forces can be calculated according to equations 

(3.50), (3.51), (3.82) and (3.92). 

 

Figure 3-22: Schematic of functioning of radial return algorithm of Wilkins according to the 

von Mises criterion [144] 

When modelling a material using MCA, the rheological properties of the automata 

are defined by assigning a constitutive relation called the mechanical response 

function of the automata which will be explained further in section 3.5.4. The 

constitutive relation can be expressed as 

𝜎̅𝑒𝑞
𝑖 = 𝛷𝜀̅𝑒𝑞

𝑖                                                               (𝟑. 𝟏𝟐𝟎) 

where (𝜀̅𝑒𝑞
𝑖 ) is the equivalent strain and can be calculated similarly to the equivalent stress 

(𝜎̅𝑒𝑞
𝑖 ) as follows: 

𝜀̅𝑒𝑞
𝑖 =

√2

3
√(𝜀̅𝑥𝑥

𝑖 − 𝜀̅𝑦𝑦
𝑖 )

2
+ (𝜀̅𝑦𝑦

𝑖 − 𝜀̅𝑧𝑧
𝑖 )

2
+ (𝜀̅𝑧𝑧

𝑖 − 𝜀̅𝑥𝑥
𝑖 )

2
+ 6 [(𝜀̅𝑥𝑦

𝑖 )
2
+ (𝜀̅𝑦𝑧

𝑖 )
2
+ (𝜀̅𝑥𝑧

𝑖 )
2
]  

                                                                                                                                          (𝟑. 𝟏𝟐𝟏) 

And the stress deviator tensor is calculated based on the stress deviatoric tensor as 

expressed in equations (3.98) and (3.99), where 

𝜀̅𝛼𝛼
𝑖 =

𝜎̅𝛼𝛼
𝑖

2𝐺𝑖
+

2𝐺𝑖 − 𝐾𝑖

2𝐺𝑖𝐾𝑖
∆𝜎̅𝑚𝑒𝑎𝑛 

𝑖                            (𝟑. 𝟏𝟐𝟐) 

𝜀̅𝛼𝛽
𝑖 =

𝜎̅𝛼𝛽
𝑖

2𝐺𝑖
                                                              (𝟑. 𝟏𝟐𝟑) 

𝜀𝛼𝛽
𝑖𝑗 =

𝜀̅𝛼𝛽
𝑖 𝑞𝑗𝑖 + 𝜀̅𝛼𝛽

𝑖 𝑞𝑖𝑗

𝑟𝑖𝑗
                                          (𝟑. 𝟏𝟐𝟒) 

This formulation corresponds to rate-independent plasticity. 

The value of the equivalent strain (𝜀𝑒𝑞) is calculated using the increment of 

equivalent stress (𝜎̅𝑒𝑞
𝑖 ): 
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 (𝜀𝑒̅𝑞
𝑖 )𝑛+1 = (𝜀𝑒̅𝑞

𝑖 )𝑛 +
(𝜎̅𝑒𝑞

𝑖 )𝑛+1 − (𝜎̅𝑒𝑞
𝑖 )𝑛

𝑓𝑖𝑛𝑎𝑙

3𝐺𝑖
              (𝟑. 𝟏𝟐𝟓) 

where (𝜎̅𝑒𝑞
𝑖 )

𝑛+1
 is the stress intensity after solving the elastic problem at time step 

(n+1) and (𝜎̅𝑒𝑞
𝑖 )

𝑛

𝑓𝑖𝑛𝑎𝑙
 is the equivalent stress at the end of the previous time step. 

 

3.5.3 MCA Bond Model and Switching of State of Pair Automata 

As mentioned earlier, a pair of automata i-j can be in a linked (bonded) state or an 

unlinked (unbonded state). For unlinked pairs, the interaction only involves 

resistance to compression at the contact level. Here, the tangential force (𝐹 𝑖𝑗
𝑡 ) is 

limited by the force of dry friction (𝐹𝑖𝑗
𝑑𝑓

) between the unlinked pairs i-j as given in 

equation (3.95). However, on the other hand, for linked pairs, the interaction 

involves the resistance to both compression and tension. Therefore, in this case,  the 

tangential force is limited by the potential strength of the bond between the automata 

pair i-j (i.e. strength or yielding conditions), depending on the strength of the bond 

[1]–[3]. 

An automata pair can switch between the states. Switching of a pair of automata i-j 

from linked to unlinked state and vice versa results in a changeover in the forces 

acting on the elements; in particular, unlinked automata would not resist moving 

away from one another.  

The switching of state of pair automata is controlled by different criteria depending 

on the material type and the physical mechanism of material behaviour. By knowing 

the stress and strain tensor in the bulk of an automaton, it is possible to directly 

apply conventional fracture criteria written in tensor form.  If different types of 

material form pair, they might have different criteria, so the possible combinations 

of criteria that could be used are numerous [242].  

To use these criteria, the local stress tensor at the area of contact between a pair of 

automata i-j must be known (𝜎
𝛼′𝛽′
𝑖𝑗

). To compute the components of this stress tensor 

more accurately the following approach is proposed. As shown in Figure 3-23, the 

local stress tensor components (𝜎
𝑥′𝑦′
𝑖𝑗

) and (𝜎
𝑦′𝑦′
𝑖𝑗

) are equivalent to the specific forces 

of interaction (𝜎𝑖𝑗) and (𝜏𝑖𝑗) which are applied on the contact area (𝐴𝑖𝑗). The other 

components of the local stress tensors at the area of contact (𝜎
𝑥′𝑥′ 
𝑖𝑗

) and (𝜎𝑧𝑧
𝑖𝑗

) are 

calculated using linear interpolation of the corresponding values in the centres of the 

automata: 

{
𝜎

𝑥′𝑥′ 
𝑖𝑗 = (𝜎̅

𝑥′𝑥′
𝑖 𝑞𝑗𝑖 + 𝜎̅

𝑥′𝑥′

𝑗
𝑞𝑖𝑗)/𝑟𝑖𝑗

𝜎𝑧𝑧
𝑖𝑗 = (𝜎̅𝑧𝑧

𝑖 𝑞𝑗𝑖 + 𝜎̅𝑧𝑧
𝑗 𝑞𝑖𝑗)/𝑟𝑖𝑗

                            (𝟑. 𝟏𝟐𝟔) 
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where 𝜎̅
𝛼′𝛽′
𝑖  and 𝜎̅

𝛼′𝛽′

𝑗
 are the components of average stress tensor in the volume of 

particles i and j associated with their centres. 

 
Figure 3-23: (a) Schematic of switching between linked (at the left) and unlinked (at the right) 

states of the pair of automata i–j  and (b) definition of instantaneous coordinate system 

X0Y0 associated with the current spatial orientation of the interacting pair i–j  [3] 

 

3.5.3.1 Bond Breaking: Switching from Linked to Unlinked 

Since MCA has a many-body interaction approach which allows for computing the 

stress tensor components, it is possible to apply well known fracture criteria used in 

continuum mechanics such as von Mises, Huber-Mises-Hencky, Drucker- Prager 

and others [3]. Fracture is modelled by means of transition of a pair of automata 

from a linked state to an unlinked state, with the possibility of further interaction, 

because unlinked automata could be either in contact or non-interacting. 

The switching from linked to unlinked state, also known as bond breaking or 

fracture, can happen either when the equivalent stress (𝜎̅𝑒𝑞
𝑖 ) is reached, or when 

reaching the equivalent strain (𝜀̅𝑒𝑞
𝑖

). Both can be used if the material is elastic and 

brittle, however, if the material is plastically hardened it is better to use the 

equivalent stress criterion. If the material performs perfect plasticity, then the use of 

a deformation criterion should be used. If a pair of linked automata i-j have different 

materials, then according to the von Mises criteria here, the automata will switch 

from linked to unlinked when equivalent stress (𝜎̅𝑒𝑞
𝑖 ) reaches the fracture strength of 

the softer material [1]–[3].  

Using the Drucker-Prager fracture criterion means that the criteria for tension and 

compression are different: 

𝜎𝑒𝑞
𝑖𝑗 0.5(𝑎+ 1) + 𝜎𝑚𝑒𝑎𝑛

𝑖𝑗 1.5(𝑎 − 1) = 𝜎𝑐                       (𝟑. 𝟏𝟐𝟕) 

where 𝑎 = 𝜎𝑐/𝜎𝑡 is the ratio of compressive strength (𝜎𝑐) and the tensile strength 

(𝜎𝑡) of the material. 

After coming into contact with another automaton, the automaton may bond again, 

switching from the unlinked to linked state. 
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3.5.3.2 Bond Formation: Switching from Unlinked to Linked 

The transitioning from unlinked to linked pairs, represent the formation or binding 

of bonds which is a characteristic of healing of cracks, microwelding of particles, 

etc. In consolidated materials it could also represent cohesion and adhesion of 

smooth contacting automata under compression, shear and/or friction [3], [251]. 

Here the switching criteria is controlled by a plastic work produced in the interacted 

pair of automata. This means that an adjustable amount of plastic deformation of the 

softer particle is taken as prerequisite for the binding of automata together, thus 

forming an aggregate of linked particles. Generally speaking different criteria exist 

involving plastic heat [155]. 

For example, for a new link (bond) to form in a pair of unlinked (unbonded) 

automata i-j (i.e. go from unlinked to linked), the criteria could be set based on two 

threshold values. For example, the switch may occur only when the value of the 

central compression strength is equal to the yield strength (i.e. the pair i-j experience 

plastic deformation), and to reach the value of the plastic work (heat) in the 

automata pair i-j, which means that the forces applied to the pair have to perform the 

work equal to the energy of the new chemical bond. 

 

 

3.5.4 MCA Micro-Macro Relations and MCA Parameters 

The constitutive law 𝜎𝑒𝑞 = 𝛷(𝜀𝑒𝑞) defines the material response function. It 

describes the behaviour of the material and its rheological properties. There are 

generally four types of behaviour as shown in Figure 3-24. The simplest case is the 

linear elastic behaviour shown in Figure 3-24(a). Here the inter-automata interaction 

is assumed elastic and linear and follows Hooke’s law [158].  

When some damages occur at a scale lower than the automata size, the effective 

Young’s modulus decreases due to degradation as shown in Figure 3-24(b). This 

degradation which is caused by damage generation corresponds to a load with a 

value higher than (𝜎𝑑), thus there is a linear response in the range 〈0 − 𝜎𝑑〉 and after 

that damages are generated in the range 〈𝜎𝑑 − 𝜎𝑐〉 where the response function is non-

linear. Figure 3-24(a) and (b) could be used for simulating fracture of brittle 

materials, while irreversible behaviour is shown in Figure 3-24(c) as plastic 

deformation and Figure 3-24(d) shows plastic flow and material degradation.  

By selecting the appropriate response function of the material, we can simulate 

elastic-plastic deformation and material degradation. The response function for well-
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known materials could be found commercially, and if not or if more details are 

needed then experiments could be used. However, it is necessary to know the 

specific response function for the materials simulated to be able to simulate the 

appropriate corresponding behaviour correctly. If the simulated specimen is a 

composite material, then the response function for each of its constituents should be 

known. 

It has been shown [3], [158], [172] that MCA simulations produce correct 

macroscopic mechanical response for elastic-plastic models on different length 

scales by using the material’s macroscopic input parameters from the experimental 

stress–stain curve of any material. 

 

 

Figure 3-24: Different types of materials response (a) linear (b) concrete like materials (c) 

plastic deformation (d) plastic flow and degradation [158] 

As mentioned earlier, the main advantage of the MCA laws of interaction forces is 

the ease of establishing a relationship between the forces and the tensor parameters 

of the material constitutive law. MCA particles are characterized by their size (𝑑𝑖), 

mass (𝑚𝑖), and mechanical properties such as; density (𝜌), Young’s modulus (E), 

Poisson’s ratio (v), (or Shear modulus (G), Bulk modulus (K)) and also Yield 

strength (𝜎𝑦) and Work hardening modulus (𝐸ℎ) for plasticity. These are all material 

properties known for any material or can be easily attained experimentally. These 

values are directly used as input in the simulation without the need for any 

parametric studies or calibration techniques like in DEM because there are no bulk 

properties involved such as lateral pressure ratio, angle of repose, size distribution, 

wall friction, coefficient of restitution, etc. 
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 Summary  

This chapter delivered the second contribution mentioned in section 1.4 of choosing 

the best platform to implement the MCA method and studying the mathematical 

background of MCA and DEM to identify their differences and functionalities of 

MCA needs to be added to LIGGGHTS.  

As explained in this chapter, what mainly distinguishes one particle-based method 

from the other, is the manner in which it described and calculated the forces that 

occur between particles when they interact. The information about the contacts and 

the forces created in these contacts are essential for computing the stresses and 

strains of the particles in the system, which in turn we can translate into material 

deformation on the macro-scale. This is also the most time-consuming and 

computationally demanding part of any particle-based simulation. 

Most researchers when talking about DEM limitations (more specifically the soft 

particle approach) only talk about its limitation of computational intensity in terms 

of power and time. However, there is a much bigger limitation which is the lack of 

established methodology to determine the particle properties and contact models to 

accurately model a given physical system. It is true that many advances have been 

made to overcome this problem, but it remains a point of concern. This is why DEM 

is most commonly used only for simulating granular, brittle and weakly bonded 

materials, which is due to the inadequate description of the interaction between the 

elements and its inability to describe a cohesive structure and irreversible processes 

(plasticity). Furthermore, appropriate representation of the macroscopic properties in 

DEM is still a challenge and it is sometimes difficult or impossible to obtain a 

required deformation behaviour [7]. The main challenge is to find constitutive laws 

that relate the stress and strain fields to the contact laws. 

On the other hand, MCA simulates the motion of automata according to a multi-

body inter-automata interactions form much like in MD models for metals [9][10], 

which made it possible to directly and correctly describe plastic deformation [16], 

[27]–[29]. Using the many-body form also allows it to avoid the artificial effects 

related to dependence on particle packing, packing related artificial anisotropy of 

mechanical response, and problems with the correct simulation of irreversible strain 

accumulation in ductile material, which is all extremely important for modelling 

elastic-plastic deformation of materials. The other main advantage of MCA is the 

generalized expression for the forces between particles is establishing a direct 

relationship between the parameters of particle interactions and tensor parameters of 

material constitutive law. This makes it possible and easy to implement different models 

and criteria of elasticity, plasticity and fracture, and describe elastic-plastic 
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deformation using the theory of plastic flow. As mentioned earlier, in MCA there is 

no need for parametric fitting because all the MCA parameters can be directly 

obtained from the material mechanical properties [3], [172].  

Specifically, the limitations of DEM as described in LIGGGHTS can be concluded 

as follows: 

1. Particles interact at contact points. 

2. Particles are only allowed to overlap at contact point but not deform. Contact 

forces are only applied when the distance r between two particles of radii Ri 

and Rj is less than their contact distance dist=Ri+Ri, otherwise there is no 

force.  

3. Only cohesion models allow for forces between particles when the particles 

surfaces do not touch. 

4. The rotations of particles are not tracked. 

5. Input parameters need to be calibrated because they are related to non-

realistic material properties related to granular and granular flow. 

 

The following changes and steps need to be implemented in LIGGGHTS to 

implement MCA: 

1. Add MCA particle and interaction forces parameters 

2. Add MCA contact area, mass and inertia tensor 

3. Add normal (pressure) and tangential (shear) elastic force calculations 

4. Add mean stress predictor 

5. Add rotation, bending and torsion torques  

6. Add parameters and code for plasticity 

7. Add bond breaking and fracture criteria 

8. Add bond formation 

9. Add interaction with walls 

10. Add periodic boundary conditions 

11. Add heat generation and transfer 

12. Implement Open MP for the main loops and MPI exchange of the new 

parameters for parallelization  
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4 Chapter 4 

3D MCA Model Development & Implementation in LIGGGHTS 

 Introduction 

In this thesis the 3D MCA model described in Chapter 3 has been implemented in 

the DEM software LIGGGHTS. This chapter describes how LIGGGHTS works and 

presents the development and implementation steps, followed by verification of the 

model. The theoretical basis for the implementation was covered in Chapter 3 but 

more details are provided when needed.  

Following the nomenclature used in LIGGGHTS, we will hereon further refer to the 

automata as “atoms” or “particles” interchangeably. 

 Software and Simulation Platform: LIGGGHTS 

LIGGGHTS [198] is an open-source code and simulator written in C++ and is an 

acronym for “LAMMPS Improved for General Granular and Granular Heat Transfer 

Simulations”. LIGGGHTS was developed and distributed as an extension to 

LAMMPS by Christoph Kloss in JKU Linz, Austria, in 2011 to describe coarse-

grained granular flow on the micro and macro-scales using DEM [252].  

LAMMPS [253] is an acronym for “Large-scale Atomic/Molecular Massively 

Parallel Simulator”. LAMMPS was first developed by Plimpton and co-workers 

[254] in Sandia National Laboratories, USA, under GNU General Public License 

(GPL) and it is one of the main and highly powerful MD simulators used by the 

scientific and industrial community. Since both MD and DEM are particle-based 

models and have the same basic functionalities, the extension of LAMMPS to 

include DEM formulations (the development of LIGGGHTS) worked really well.  

As stated by Kloss et al [255], “LIGGGHTS operates on macroscopic particles and 

tracks the trajectory of each. It is designed around an integration loop which 

integrates Newton's second law and resolves particle–particle and particle– wall 

collisions using a soft-sphere approach. Spring-dashpot models are used to compute 

forces caused by particle–particle interactions (pair forces) and particle–wall 

interactions. Additionally, volume forces such as gravity are applied.” 

Both LAMMPS and LIGGGHTS have great parallelization capabilities which make 

them very powerful simulators. The parallelisation is implemented using MPI 

exchange. They can run on one processor on a desktop, as well as thousands of 

processors on High Performance Computers, allowing the simulation of very large 
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systems as it is implied by the name. Further information on the capabilities of 

LAMMPS and LIGGGHTS can be found in the LIGGGHTS documentation [189]. 

LIGGGHTS can be seen as an improved version of LAMMPS to move from MD to 

DEM simulations by adding featured from the DEM method that could not be found 

previously such as the contact force formulations using Hertzian and Hookian 

theories, also rolling friction, cohesion forces and heat conduction between particles. 

This thesis does the same, it extends LIGGGHTS to move from DEM to MCA. This 

helps describe solid material behaviour (most importantly elastic-plastic 

deformation) on the meso and micro scales using MCA instead of granular material 

behaviour, the same way LIGGGHTS extended LAMMPS to implement DEM for 

describing granular material behaviour instead of atomic/molecular behaviour, as 

shown in Figure 4-1. The developed code has been named LIGGGHTS-MCA.  

 

Figure 4-1: The development of LAMMPS to LIGGGHTS, and now to LIGGGHTS-MCA 

It is important to mention that there is no commercial software available for MCA 

simulations, only a 2D MCA demo-version [170] which was developed by the 

Laboratory of CAD of Materials at the Institute of Strength Physics and Materials 

Science in Tomsk, Russia, in 2005. The developers of the MCA method use their 

own in-house codes. Thus, this project provides a 3D MCA open-source simulator 

(LIGGGHTS-MCA) for the scientific and tribology communities to use. 
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 Overview of the Implementation of MCA in LIGGGHTS 

Since LIGGGHTS is an open-source code, it can be downloaded from their website 

[198] or from github [256]. To implement our own functionalities, changes have 

been made to their source code (i.e. ‘src’ folder). It is a c++ object-oriented code, so 

the ‘src’ folder includes many files based in specific classes, which will be explained 

in the following sections. All changes have been made to LIGGGHTS Public 

version 3.3.1. released 23/09/2015. 

A LIGGGHTS simulation requires three sets of data which in LIGGGHTS are 

entirely done via an input script: 

1- Particle configuration, and state of contacts and/or bonds. 

2- Inter-particle interaction formulas. 

3- Defining the simulation set-up and problem definition  

When starting the simulation, the input script is first read, which includes commands 

relevant to the chosen simulation attributes. A broad range of LAMMPS and 

LIGGGHTS commands are available for the specification of at least: 

• any parameters related to the particle discretisation and configuration (e.g. 

size, insert on lattice structure or random, mass, density, etc.), material 

parameters (e.g. Young’s modulus, Poisson’s ratio, etc.), solver parameters 

(e.g. time step, total number of steps, etc.) and others. 

• simulation domain, size and wall definition. 

• integrator of choice, particle force interactions (e.g. potential functions in 

MD/LAMMPS), related thermodynamics information, neighbour lists, etc. 

• any additional filters (e.g. temperature control, minimization, etc.) 

• output style and configuration. 

One of the advantages of LIGGGHTS is that if any command is used in a wrong 

way or a property is missing, LIGGGHTS will stop running and report an error, and 

if it is not a critical error it reports a warning message. The error or warning message 

reports which part of the code it is related to, specifically which class and what line 

in the code. For users who only use LIGGGHTS as a software and don’t interact 

with the source code, the meaning of the error or warning messages could be found 

in LIGGGHTS’s manual. This was taken into consideration while implementing our 

own code and our own error and warning messages have been developed as well. 

Figure 4-2 shows the class hierarchy of the source code of LAMMPS, which is the 

same for LIGGGHTS. They are object-oriented codes where the top-level and main 

class for the entire code is ‘liggghts.c’. The classes shaded in blue in the figure are 
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the top-level classes within LIGGGHTS main class and the ones in red are the 

virtual parent classes and are called styles [257].  

 
Figure 4-2: Class Hierarchy in LAMMPS; similar in LIGGGHTS and LIGGGHTS-MCA [257] 

Each command in the input script corresponds to a specific class in the source code 

which defines the specific functionality. Just to mention the main classes used, the 

particle type and configuration is defined by an atom_style in the ‘Atom class’, 

particle-interaction formulas are defined by a pair_style in the ‘Pair class’, bonding 

of particles by a bond_style in the ‘Bond class’, and everything that happens during 

a simulation besides force computation, neighbour list construction and output is 

defined by a fix_style in the ‘Fix class’, including time integration, boundary 

conditions, force constraints, etc. ‘Computes’ calculate at one timestep, but ‘Fixes’ 

can alter something during timestep or maintain info from timestep to timestep. 

The ‘styles’ define the different types of models that one can choose to use in the 

simulation. For example, the Atom class has styles such as sphere, granular, 

molecular, etc. chosen depending on the required type of particles for the type of 

simulation at hand. Similarly, the Pair class includes different pair styles defining 

particle-particle interaction laws, and the Fix class includes different fix styles 

defining the operations applied to the system during simulation (time integration, 

boundary conditions, external forces on atoms, etc.), as well as materials and 

interaction properties. This will all be explained in detail in the following sections. 
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To implement our MCA related functionalities, we introduced our own MCA 

commands. To create new ‘mca’ commands, new mca styles have to be created 

according to the corresponding classes and make corresponding changes to the main 

classes. New mca atom, pair, bond and fix styles have been developed which will be 

explained in detail in the following section 4.4. 

An example input script using the new implemented mca commands can be found in 

sections 5.2.3 and 6.2.3. The following are the new ‘mca’ commands: 

 atom_style mca args 

 pair_style  mca args 

 bond_style  mca 

 fix  ID group-ID nve/mca 

 fix   ID group-ID bond/create/mca args 

 fix  ID group-ID mca/setvelocity x y z 

It is recommended by LIGGGHTS developers that when modifying or extending 

LIGGGHTS, the best way to add a new feature is to find a similar feature in 

LIGGGHTS and look at the corresponding source and header files to figure out what 

it does. Depending on how different your new feature is compared to existing 

features, you can either derive from the base class itself, or from a derived class that 

already exists [189].  

It is worth noting here that LIGGGHTS Short Course was attended on 16 March 

2016 in Linz, Austria, where the possibilities and added features were discussed 

with the developers of LIGGGHTS – specifically Andreas Aigner - to assure the 

proper use of the code and not adding features or attributes that already exist in 

LIGGGHTS, whether Public or their commercial code. They agreed that a lot has to 

be changed in the code to be able to describe plasticity and bonding according to the 

MCA method, and that it is better to write our own classes related to MCA.  

So after careful consideration, the following list shows the new mca classes that 

were created to be able to create the new ‘mca’ commands listed above. It also 

shows the existing classes in LIGGGHTS that they were based on, however, most of 

them have been totally rewritten. Corresponding *.cpp and *.h files were created for 

each new mca class: 

atom_vec_mca.h   → atom_vec_sphere.h 

atom_vec_mca.cpp   → atom_vec_sphere.cpp 

pair_mca.h    → pair_soft.h 

pair_mca.cpp    → pair_soft.cpp 

bond_mca.h    → bond_gran.h 

bond_mca.cpp   → bond_gran.cpp 
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fix_bond_create_mca.h  → bond_create_gran.h 

fix_bond_create_mca.cpp  → bond_create_gran.cpp 

fix_bond_exchange_mca.h  → bond_propagate_gran.h 

fix_bond_exchange_mca.cpp → bond_propagate_gran.cpp 

fix_mca_meanstress.h  → fix_sph_density_summation.h 

fix_mca_meanstress.cpp  → fix_sph_density_summation.cpp 

fix_nve_mca.h   → fix_nve_sphere.h 

fix_nve_mca.cpp   → fix_nve_sphere.cpp 

fix_wall_mca.h   → fix_wall_sph.h 

fix_wall_mca.cpp   → fix_wall_sph.cpp 

fix_mca_setvel.h   → fix_smd_setvel.h 

fix_mca_setvel.cpp   → fix_smd_setvel.cpp 

The reason behind choosing these LIGGGHTS classes as a basis for the 

implementation of the MCA features will be explained in detail in the following 

sections, as well as details of the development of the new code. All the existing 

classes were available in LIGGGHTS-Public, except for the classes related to the 

‘bond_style’, they were taken from a separate project developed by Christian Richer 

called LIGGGHTS-with-bonds [258] because when this project started in February 

2016, LIGGGHTS did not have any features related to bonds between particles. 

Currently, LIGGGHTS-Public has a ‘bond_style’ however bond breaking does not 

depend on forces or stresses between the particles, but just on distance. Also, the 

‘fix_smd_setvel’ style was taken from LAMMPS not LIGGGHTS. 

After defining out new mca styles, they were included in their corresponding main 

base classes as follows:  

#include "atom_vec_mca.h" in style_atom.h  

#include "pair_mca.h" in style_fix.h 

#include "bond_mca.h" in style_bond.h 

#include all fixes in style_fix.h 

Before going into detail about the development of these new styles in the following 

section 4.4, it is first important to understand the structure of the LIGGGHTS source 

code and how the code runs when starting a simulation to be able to properly 

implement the new classes in their relevant parts of the code. 

The flowchart in Figure 4-3 outlines the general structure of the LIGGGHTS 

program: 
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1. Read input file: parameters that specify the conditions of the run (number of 

particles, time step, material, etc) 

2. Initialize: the system by setting initial positions and velocities 

3. Update pair or neighbour list: to reduce cpu time 

4. Compute the forces on all particles: uses the neighbour list 

5. Integrate Newton’s equations of motion 

6. Update positions and velocities 

7. Repeat steps 3 to 6 until time steps finished 

8. Compute and print the averaged quantities 

9. End 

Each step corresponds to a respective function in the source code. LIGGGHTS 

works by calling the main functions in the order shown in the flowchart in Figure 

4-3. After reading the input script, the first step is to execute the init( ) and setup( ) 

methods for initialization and setup before the run and actual calculations begin. 

This includes generating the atoms and initial structure as defined in the input script. 

Generating means that the necessary structures are allocated in the memory and each 

atom is assigned with a position and velocity. In case of bonds existing, the bonds 

between the atoms have to be designated. Also setting boundary conditions, defining 

neighbours, etc. After all necessary initialisation have been done, the actual 

simulation, i.e. the time integration of the atomic trajectories, and time-stepping 

starts following the Velocity-Verlet integration scheme [187], which was earlier 

explained in section 3.3.3, and revised here below in Algorithm 1. 

Algorithm 1: Velocity-Verlet integration scheme 

1- Calculate 𝑣 (𝑡 +
1

2
∆𝑡) = 𝑣 (𝑡) +

1

2
𝑎 (𝑡)∆𝑡 

2- Calculate 𝑥 (𝑡 + ∆𝑡) = 𝑥 (𝑡) + 𝑣 (𝑡 +
1

2
∆𝑡)∆𝑡 

3- Derive 𝑎 (𝑡 + ∆𝑡) from the interaction forced using 𝑥 (𝑡 + ∆𝑡) 

4- Calculate 𝑣 (𝑡 + ∆𝑡) = 𝑣 (𝑡 +
1

2
∆𝑡) +

1

2
𝑎 (𝑡 + ∆𝑡)∆𝑡 

Steps 1 and 2 of Algorithm 1 occur in the initial_integrate( ) function shown in the 

flowchart, where the position and velocities are updated by a half time-step. Then 

step 3 mainly consists of computing the forces which correspond to steps 4-7 on the 

flow chart. Here mainly information between neighbours are exchanged, and pair 

and bond forces are computed as defined. The last step in the integration as shown in 

Algorithm 1, is updating the velocities by another half time-step which corresponds 

to the final_integrate( ) method as shown in the flow chart as step 8. Then the time-

stepping ends in step 9 and output files are generated with the results. 
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In all these steps, the calculation of the inter-particle forces is the most time-

consuming part. The higher the number of particles, the relative distances and 

velocities between neighbouring pairs, the higher the computational time to evaluate 

the forces between them. The computational time is reduced by using cut-off 

distance, neighbour lists and linked cell list algorithms to identify the nearby 

particles and only update and calculate the forces on the particles within the 

neighbour area within a given time step as explained before.  

 

Figure 4-3: Flow chart of program structure and the relevant functions in LIGGGHTS   

Regarding the new ‘mca’ classes, Algorithm 2 below shows the main flow of the 

MCA computation following the order of execution shown in the flowchart in 

Figure 4-3. Each function is executed in a relevant new MCA class added to 

LIGGGHTS.  

 Algorithm 2: Programme structure with relevant new MCA implemented classes 

 1- init( ) / setup( )  [AtomVecMCA] 

 2- initial_integrate( )  [FixNVEMCA] 

 3- post_integrate( )  [FixBondCreateMCA] 

 4- pre_exchange( )              [FixBondExchangeMCA] 

 5- pre_force( )              [FixMeanStressMCA] 

 6- pair_compute( )  [PairMCA] 

 7- bond_compute( )             [BondMCA] 

 8- post_force( )              [FixMCASetvel] 

 9- final_integrate( )             [FixNVEMCA]   
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 Details of the Implementation of MCA in LIGGGHTS 

The implemented codes are developed based on the source code of LIGGGHTS 

Public version 3.3.1. released 23/09/2015. Only the modified and added parts are 

presented here, other parts of the code which were unchanged are skipped. This 

section describes the implementation and development of the new styles in detail, 

following the order of the programme structure described in Algorithm 2. 

 

4.4.1 New Atom_Style for MCA Particle Discretisation 

In LIGGGHTS, the ‘atom_style’ defines what type of atoms to use in a simulation, 

which determines what attributes are associated with the atoms that need to be 

stored and communicated between neighbouring atoms. The ‘atom_style’ sets the 

parameters that need to be defined before atoms are created. The choice of style 

affects what quantities are stored by each atom, what quantities are communicated 

between atoms and processors to enable forces to be computed, and what quantities 

are listed in the data file. All styles store coordinates, velocities, and atom IDs, and 

then extra attributes are stored depending on the choice of style.  

In LIGGGHTS, the main atom_style to simulate granular materials according to 

DEM is the ‘sphere’ atom style which follows the description of section 3.4.1. 

Instead of using the keyword ‘sphere’ in the input script, the keyword 

‘granular’ can be used [189]. Here spherical geometry of interacting objects is 

assumed, and they are defined by diameter, density and angular velocity. 

Throughout the code, the spherical geometry is used to calculate the moment of 

inertia of the particles, and the contact forces in function of the overlap between 

particles, assuming circular contact area. This is very different to how automata are 

described in MCA as described in Chapter 3, section 3.5.1.  

To create a new ‘atom_style’ for initializing the simulation for the calculations of 

mca, to compute and communicate between the processors each particle attributes 

and per-atom arrays, a new mca ‘atom_style’ was added to LIGGGHTS. This ‘mca’ 

is the new ‘atom_style’ and ‘AtomVecMCA’ is the class name defined in the 

‘atom_vec_mca.h’ and ‘atom_vec_mca.cpp’ files. As mentioned, ‘atom_vec_mca’ 

class was first copied by the existing sphere style defined in ‘atom_vec_sphere’ 

class, then it was changed according to the attributes needed for the new atom ‘mca’ 

style. It has actually been totally rewritten except for the main LIGGGHTS 

functions. 
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The MCA ‘atom_style’ command requires four arguments (variables):  

1. radius → all automata have the same radius, so need to change from array to 

single variable. 

2. packing → sc or fcc  

3. n_bondtypes → the number of bond types which is 1 if all automata are 

linked, or all automata are unlinked, and 2 if some automata are linked and 

others are unlinked. 

4. bond_per_atom→ number of bonds per atom is an array size for mca 

neighbours and is defined by coordination number (6 for sc or 12 for fcc). 

The syntax of the mca ‘atom_style’ in the input script is: 

 atom_style mca radius ${rp} packing fcc n_bondtypes ${bt} bonds_per_atom ${bpa} 

 For example: 

 atom_style  mca radius 0.0001 packing fcc n_bondtypes 1 bonds_per_atom 12 

This is defined in the ‘atom_vec_mca.cpp’ file under the ‘void 

AtomVecMCA::settings(int narg, char **arg)’ method which defines how the style 

is written as a command. If they are not correctly defined in the input script, error 

messages will be produced to the user. This is used in all new MCA classes to define 

how the command is written so it will be not be mentioned again. 

A big difference between ‘atom_vec_sphere’ and ‘atom_vec_mca’ is that atoms 

must store information about their bonds and include bond-related forces and 

torques in the equations describing their motion. Also, the bonds themselves must be 

able to store information about atoms they connect and to calculate stresses acting 

between them. In MCA the bonds are obligatory defined between all interacting 

pairs of automata in order to specify if the automata belong to one body 

(linked/bonded pair), or different bodies (unlinked/unbonded pair). This is different 

from DEM and MD where bonds add forces acting on atoms. Also, the number of 

neighbours an atom has depends on the packing and coordination number, 6 for SC 

and 12 for FCC and is defined by the number of bonds per atom. But during 

deformation other atoms can be in contact with it and the total number of interacting 

neighbours may be greater than the coordination number.  

In the example above, the ‘atom_style mca’ defined the particles radius to be 

0.0001m which is 0.1mm, the initial structure has an FCC packing structure, the 

number of bond types is 1 because all particles are initially linked, and each article 

has 12 bonds and neighbours.  
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Here, the bonds cannot be used separately, as it has to be used with the ‘atom_style 

mca’, but the bonds themselves and their breaking/formation are handled by the 

‘bond_style’. 

Other variables related to mca forces calculations need to be stored and 

communicated for each atom, as well as the rotational velocity, angular momentum 

and torques. Some members of the class ‘atom_vec_sphere’ were used, but many 

new members have been introduced. The list below lists the new members that were 

added because they did not exist in ‘atom_vec_sphere’:  

1. packing → sc or fcc 

2. coord_num →  coordination number is 6 for cubic and 12 for fcc/hcp 

3. mca_radius → single variable not array since all automata have same radius 

4. contact_area → initial contact area defined by packing 

5. mca_inertia → moment of inertia is scalar for simplicity 

6. theta → orientation vector to describe rotation as a first approximation 

7. theta_prev → orientation vector at previous time step 

8. mean_stress → used for many-body interaction 

9. mean_stress_prev → mean stress at previous time step 

10. equiv_stress → equivalent (or von Mises, shear) stress, used for plasticity 

11.  equiv_stress_prev → equivalent stress at previous time step 

12.  equiv_strain → equivalent (shear) strain, used for plasticity 

13.  cont_distance → distance to free surface, to determine a new contact 

14. bond_mca → local number of bonded automata 

15. bond_hist → array including indices of values related to the internal state of 

the bond. 

The listed variables are then implemented within the different methods defined in 

‘atom_vec_mca’ to ensure that each atom stores and copies this information from 

one time-step to the next. Some methods are also related to dumping the information 

of each particle to an output file for postprocessing. Other functions are related to 

MPI exchange for parallelization and restating of simulations however these were 

not fully implemented. Care has been taken such that no unnecessary information is 

transferred to ensure computational efficiency and memory considerations. 

Furthermore, corresponding atom arrays are also defined in the parent class 

‘atom.cpp’ and ‘atom.h’ so that they are accessible throughout LIGGGHTS when 

using the mca atom style command. LIGGGHTS made this easy by searching for the 

word “customize” which finds the locations were the new atom arrays need to be 

introduced. 
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Another crucial element, which is also very important for force calculations in the 

following section, is the definition of ‘bond_hist’ (number 15 in the previous list) 

which is actually the contact history, which stores all relevant information about a 

bond (contact) of a particle from the previous time-step. The following are indices of 

values stored in the ‘bond_hist’ array:  

1. MAX_BONDS → maximum number of bonds 

2. STATE  → bonded/unbonded/not interacting 

3. R   → distance to neighbour 

4. R_PREV  → distance to neighbour at previous time step 

5. A   → contact area 

6. E   → normal strain of i 

7. P   → normal force of i 

8. P_PREV  → normal force of i at previous time step 

9. NX, NY, NZ  → unit vector from i to j in X, Y, Z directions respectively 

10. NX_PREV, NY_PREV, NZ_PREV → unit vector from i to j at previous 

time step in X, Y, Z directions respectively 

11. YX, YY, YZ → history of shear force of i in X, Y, Z directions respectively 

12. YX_PREV, YY_PREV, YZ_PREV →  history of shear force of i at previous 

time step in X, Y, Z directions respectively  

13. SHX, SHY, SHZ → shear strain of i in X, Y, Z directions respectively 

14. SHX_PREV, SHY_PREV, SHZ_PREV → shear strain of i at previous time 

step in X, Y, Z directions respectively 

15. MX, MY, MZ → bending-torsion torque of i in X, Y, Z directions 

respectively 

16. SX, SY, SZ → shear force of i in X, Y, Z directions respectively 

Furthermore, in the ‘sphere’ style the radius is the only parameter describing the size 

and shape of the particles. Throughout the code, it is used to calculate the contact 

forces as a function of overlap between particles, to calculate moment of inertia of 

particles and moments and forces related to the elastic bonds between particles 

following the description in section 3.4. However, as mentioned in section 3.5, in 

MCA although the size of an automaton is characterized by a radius, the real shape 

of the automaton is not always a sphere. It is determined by the area of its contact 

with its neighbour. This equivalent shape is characterized by a new radius parameter 

which is calculated from the initial volume of the automata. Hence, in the 

‘atom_vec_mca’ class, the initial volume of automata and the initial contact area are 
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also computed, which are calculated based on the radius and packing. It is, however, 

enough to use the equivalent circular sphere characterized by (𝑑𝑖) and the value of 

contact area (𝐴𝑖𝑗) when calculating the inter-automata interaction forces and torques. 

In 3D it is assumed that for sc the automata have cubic shape hence; 𝐴𝑖𝑗 = 𝑑2
 and 

volume Ω𝑖 = 𝑑3
. While for fcc the automata have rhombic dodecahedron shape 

hence; 𝐴𝑖𝑗 = 𝑑2/(2√2) and Ω𝑖 = 𝑑3/√2. 𝐴𝑖𝑗 also changes during elastic or elastic-

plastic deformation. 

Also, in ‘sphere’ the mass is assigned to individual particles on a per-particle basis, 

while in ‘mca’ the mass is calculated by multiplying initial volume by density of 

each particle, hence again it depends on the packing. Also, to simplify the 

computation of rotation, it is assumed that the automata is a ball and its inertia can 

be described by one parameter (scalar), where the radius of this ball is calculated 

from the initial volume of the particle. Thus, the moment of inertia of a ball of radius 

R and mass m is Ĵ = 0.4 m R
2. For automata we use effective radius corresponding to 

the ball of the same volume 4 3𝜋𝑅𝑖
3 = Ω𝑖

0⁄  hence this radius is 𝑅𝑖 = √3Ω𝑖
0 4𝜋⁄

3
 

Each particle now knows its own attributes which are stored, knows it neighbours 

and its relationship with them, so time-stepping can begin. This is described in the 

following section which describes the new integration scheme. 

 

Related files: atom_vec_mca.h and atom_vec_mca.cpp 

Related commands: atom_style mca 
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4.4.2 New Fix_Style for MCA Integration Scheme  

In LIGGGHTS, the ‘fix nve’ command performs constant NVE integration to update 

the position and velocity for each particle in a group each timestep according to 

Velocity Verlet scheme as described in section 3.3.3. and Algorithm 1. Furthermore, 

as explained in section 3.3.5. the NVE microcanonical ensemble is used to simulate 

an isolated system where energy and entropy are conserved by keeping the number, 

volume and energy of the system constant. Here the equations of motions are solved 

without temperature or pressure control. 

For each ‘atom_style’ there is a relevant ‘fix nve’ style. For granular particles in 

LIGGGHTS, the ‘fix nve/sphere’ is used because ‘fix nve’ is used in molecular 

dynamics where atoms are assumed to be point particles and only their position and 

velocities are updated. However, for granular particles, in addition to their positions 

and velocities, the equations also need to be updated for their angular velocities. 

Hence, ‘fix nve/sphere’ is used with the ‘atom_style sphere’ because it needs, the 

radius, the torque and angular velocity of each particle to be stored at each time-step 

which is done by ‘atom_style sphere’. 

For MCA, in addition to the position, velocity and angular velocity, the rotation (i.e. 

orientation vector theta) of each particle also needs to be updated according to 

equation 3.7. Furthermore, since we introduced our own mca_intertia and theta in 

‘atom_style mca’ as explained in the previous section, the equations need to be 

redefined. Also, the calculation of velocity and angular velocity in ‘fix nve/sphere’ 

considers the mass coefficient and relative fluid density which is irrelevant to MCA 

and has to be removed. Thus, a new ‘fix nve/mca’ style is developed to be used with 

‘atom_style mca’ and is defined in the ‘fix_nve_mca.h’ and ‘fix_nve_mca.cpp’ files. 

The syntax of the ‘fix nve/mca’ command is: 

  fix ID group-ID nve/mca 

 For example: 

  fix  integr nve_group nve/mca 

As shown earlier in Algorithm 2, and the flow chart Figure 4-3, the integration 

occurs in two steps, initial_integrate( ) and final_integrate( ) where the forces are 

updated between the two integration steps. Thus, this command starts the time-

stepping by first executing the initial_integrate( ) method which updates the velocity 

and angular velocities of the particles by a half time-step, and positions and 

orientation vectors by one time-step. Then by executing the other half of the 

integration by final_integrate( ) which updates the velocities and angular velocities 
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by another half step, and the positions and orientation vectors by one step to obtain 

the final location and velocities of the automata. 

 

Related files: fix_nve_mca.h and fix_nve_mca.cpp 

Related commands: fix nve/mca 
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4.4.3 New Fix_Style to Create Bonds Between Particles 

As mentioned in Chapter 3, all particles are initially bonded, that could mean they 

are only in contact, or bonded, or unbonded. After that with time-stepping, 

according to force and bond calculations, the particles can change their positions to 

be in compression/tension state, and/or switch their state to break or form a bond. 

This is different from defining bonds in LIGGGHTS where only pair forces are 

defined between all particles, but bonds are defined between specified pairs of 

particles and remain in force for the duration of the simulation, unless the bond 

breaks which is possible in some bond potentials and defined by the ‘bond_style’.  

In MCA pair forces and bonds are defined for all particles in the system and the set 

of interactions can change over time during the simulation such that new bonds can 

be created during the simulation time even if they were not bonded initially. How 

these interaction forces are computed is defined in sections 4.4.5 and 4.4.7. related 

to the ‘pair_style’ and ‘bond_style’.  But first, at every time-step a check for 

possible new bonds between particles needs to be done and a list of bonds need to be 

stored for each particle, which is done by this ‘fix bond/create/mca’ style. This has 

to be done in the post_integrate( ) phase, which is after the first half of the 

integration initial_integrate( ) and before calculating the forces. 

It is worth noting that when we started this project in February 2016, LIGGGHTS-

Public did not have a ‘bond_style’ and did not include any features related to 

bonding of particles. However, there was a project called LIGGGHTS-WITH-

BONDS developed by Richer [258], where his ‘bond_style gran’ had to be used 

with ‘atom_style bond/gran’ which is again different from MCA particles. They also 

exist in LAMMPS, however, we based all our new mca-bond-related classes on the 

bond classes developed by Richer as mentioned in section 4.3 but made a lot of 

changes. Currently, LIGGGHTS does have a ‘bond_style’ which computes bond 

forces only based on distances between particles. 

After the particles are generated and pairs are defined by the ‘atom_stylce mca’, and 

given an initial position, velocity, angular velocity and orientation vector by the ‘fix 

mca/nve’ style, each particle needs to be checked for bonding conditions. If the 

conditions are fulfilled, bonds will be created and initialized.  

This can be used to define regions of different materials within the same simulation, 

whether within the same block of material, such as a composite or an alloy, or 

blocks of different materials away from each other with a distance between them 

such as for example in indentation where you have a sample and an indenter. 

Thus a new ‘FixBondCreateMCA’ class was created based on the 

‘FixBondCreateGran’ class and defined in ‘fix_bond_create_mca.h’ and 
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‘fix_bond_create_mca.cpp’ files, which is executed after the first half of the 

integration step in the post_integrate( ) to check, create and store a list of possible 

bonds for all particles for which bond forces will be calculated. 

The syntax of the ‘fix bond/create/mca’ command is: 

 fix ID group-ID bond/create/mca Nevery itype jtype cutoff bondtype bonds_per_atom 

 For example: 

 fix bondcr all bond/create/mca 1 1 1 ${cutoff} 1 ${bpa} 

This means that a check for possible new bonds between atom itype and atom jtype 

within a specific cut-off distance is performed every Nevery time-steps. If no bonds 

already exist between atoms i and j, they exist within the same specified group and 

they have not reached their allowed maximum number of bonds, then they are listed 

as a possible bond pair. Of course, more than one particle can fall within the cuttoff 

distance of a particle, so it might have multiple possible bonds. Hence, each particle 

checks its list of possible pairs and chooses the closest particle. 

In the above example, if i and j are in the same group, have the same material, have 

the same bond type, if they fall in the same cut-off distance and have the same 

maximum number of bonds (meaning they are both sc or both fcc), then they are 

listed as a bond pair and the list is checked every time-step. 

To implement this, a few extra new parameters had to be implemented. The most 

important ones are the ‘init_state’ which describes the initial state of the bond, and 

set it is 1 if unbonded and 0 if bonded which is also the default. ‘maxbondsperatom’ 

is also again defined here based on coordination number, and the most important 

parameter ‘cont_distance’.  

‘cont_distance[i]’ is the distance to the free boundary of the automaton. Initially it is 

the radius. Then it is updated based on the mean stress, if the automaton is under 

compression then ‘cont_distance’ increases and vice versa. The strain tensor can 

also be used to compute this distance in the particular direction to the j-th neighbour, 

but here this simplification is used which works well for small plastic distortions.  

So, first we check if the distance is less than the sum of ‘contact_distance[]’. If the 

distance is larger, then the automata do not touch each other, and new bond cannot 

be created. If the type of pair of automata is not listed in the ‘fix bond/create/mca’ 

command then the bond will also not be created, and it will also not be created if the 

particle reaches its maximum number of bonds (the coordination number) 

Related files: fix_bond_create_mca.h and fix_ bond_create_mca.cpp 

Related commands: fix bond/create/mca 
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4.4.4 New Fix_Style for MCA Neighbour List Update 

As mentioned in section 3.3.7, because the calculation of forces is the most time-

consuming part of a simulation code, neighbour lists are produced and /or checked at 

every time step to exclude calculating the interaction forces for any far away 

automata. In LIGGGHTS, the cut-off or skin distance is defined and to create the 

neighbour list for a particle, it is only necessary to evaluate distances to particles 

within this distance. This is done by the ‘neighbour’ command and it is similarly 

used in MCA, so nothing has been added or modified for that.  

However, because new contacts and bonds can be created during the simulation 

time, the bond contact history also needs to be updated and exchanged. This means 

that the bonds that are intact are exchanged to the next time-step and if running in 

parallel also to neighbouring processors, while it removes broken bonds or particles 

that lost contact. This is done in a new class called 'FixExchangeBondMCA' based 

on the ‘FixBondPropagateGran’ class and defined in ‘fix_bond_exchange_mca.h’ 

and ‘fix_bond_exchange_mca.h’ files. However, this ‘fix_style’ is turned on 

automatically when using the ‘atom_style mca’ and works for all particles alike so it 

does not need to be defined in the input script. By default, the neighbour command 

defines the neighbour list and 'FixExchangeBondMCA' uses that. 

Similar to the ‘fix create/bond/mca’, this needs to be done at every time-step before 

force calculation. It is done in the pre-exchange( ) phase, after the list of bonds has 

been created by ‘fix create/bond/mca’. Furthermore, this fix is also added to the 

‘delete_atom.cpp’ and ‘atom_vec_mca.cpp’ files to delete any broken particles from 

the stored information and update their number of bonds. 

 

Related files: fix_bond_exchange_mca.h and fix_ bond_exchange_mca.cpp 

Related commands: - 
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4.4.5 New Pair_Style for MCA Automata Interactions 

The ‘pair_style’ is one of the most important commands in LIGGGHTS because it 

defines the interaction laws between particles within a simulation. It is the most 

time-consuming part and the calculations need to be accurate and efficient.  

LIGGGHTS uses pairwise interactions defined between pairs of particles (granulars) 

which are within a cut-off distance, and the interactions change over time as 

explained in section 3.4.2. [189]. The main ‘pair_style’ used in LIGGGHTS is the 

‘pair_style gran’ which calculates the normal and tangential components of the 

forces between two neighbouring particles according to Hertz-Mindlin or Hookean 

contact laws. For each simulation you can set model values for (hertz/hooke/hertz or 

hooke stiffness), tangential values (history/no history), and cohesion values. For 

more details refer to section 5 of LIGGGHTS manual. The forces are calculated 

based on the properties shown earlier in Table 3-1 and defined in the input script. 

As explained in section 3.5, MCA uses completely different formulations to 

calculate the interaction between forces, so a new ‘PairMCA’ class is added and 

defined in the ‘pair_mca.h’ and ‘pair_mca.cpp’ files and executed by a new 

command called ‘pair_style mca’. The ‘PairSoft’ was chosen to be used as a base 

class for implementing our new ‘PairMCA’ class instead of ‘PairGran’ because of 

its simplicity and because ‘PairGran’ is related to many other commands related to 

granular particles that will not be used in the MCA formulations. Also, ‘pair_soft’ is 

defined in LAMMPS as well, which will make it easier if this project (the new mca 

styles) will later be implemented in LAMMPS. 

‘PairSoft’ class will help to define the pair-wise part (𝐹 𝑖𝑗) of equation 3.47, however 

the many-body interaction part (𝐹⃗⃗ 𝑖
Ω

) is totally new. Also, as explained in section 

3.5.2.2. to calculate the normal forces of interaction a predictor for the mean stress 

(𝜎̅𝑚𝑒𝑎𝑛
𝑖 ) needs to be defined and calculated first, which is done in a separate class 

called ‘FixMeanStressMCA’ and will be explained in the following section 4.4.6. 

The syntax for the mca ‘pair_style mca’ command is: 

  pair_style mca cutoff 

  pair_coeff I J args 

 For example: 

  pair_style mca 2*${d}       

  pair_coeff 1 1 ${COF} ${G} ${K} ${Sy} ${Eh} 

The MCA ‘pair_style mca’ command only requires one argument which is the cut-

off distance. As explained in section 3.3.7., this cut-off distance defines the 

neighbour list for interactions, any atoms outside this distance are not taken into 

https://www.cfdem.com/media/DEM/docu/gran_model_hertz.html
https://www.cfdem.com/media/DEM/docu/gran_model_hooke_stiffness.html
https://www.cfdem.com/media/DEM/docu/gran_model_hooke_stiffness.html
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consideration in the calculation of the forces. The cut-off distance for force 

calculations can be set as separate value, but if not specified, the global cut-off will 

be used by default. 

The command also needs a ‘pair_coeff’ command which is obligatory to define the 

elastic and/or plastic properties for one or more pair of particles in the simulation 

domain. This is all defined in the coeff( ) method in the ‘PairMCA’ class. For 

granular styles there are no additional coefficients to set which is also another reason 

for using the ‘pair_style soft’ as a base for the implementation. The type of pair of 

atoms i and j are defined in ‘pair_coeff’ command, in the example shown, they both 

have the same material type ‘1’. After that, the arguments related to this command 

are the coefficient of friction ${COF}, which is defined for both elastic and plastic 

forces, the shear modulus ${G}, and the bulk modulus ${K} for calculating the 

elastic forces, and yield strength ${Sy}, and plastic work hardening modulus ${Eh} 

for calculating the corrector for plastic forces. 

Algorithm 3 shows the steps for calculating the forces on the particles as defined by 

the new class 'PairMCA'. The elastic specific forces are calculated first, then the 

corrector for plasticity is calculated using the equivalent stress as described before, 

and then the total forces are obtained.  

 

 

 

 

 

  compute_elastic_force(); 

Algorithm 3 is implemented in the code by the following methods in this order: 

➢ void compute_elastic_force(); 

➢ void compute_equiv_stress(); 

➢ void correct_for_plasticity(); 

➢ void compute_total_force(); 

First the elastic forces are calculated in the compute_elastic_force( ) method for 

each particle by calculating the specific normal force (𝜎𝑖𝑗) and normal strain (𝜀𝑖𝑗) for 

each particle according to the equations in sections 3.5.2.1. and 3.5.2.2. Then the 

specific tangential (shear) force (𝑡𝑖𝑗) is calculated for each particle, taking into 

consideration the rotation of particles, using the equations (3.89) to (3.91) in section 

3.5.2.3.  

     Algorithm 3: MCA forces computation algorithm - calculation in every time step 

1- Calculate 𝜎𝑖𝑗, 𝜏 𝑖𝑗 and 𝐾𝑖𝑗  at current time step (n+1). 

2- Calculate corresponding values of 𝜎̅𝑥𝑥
𝑖 , 𝜎̅𝑦𝑦

𝑖 , 𝜎̅𝑥𝑦
𝑖 , 𝜎̅𝑧𝑧

𝑖  , 𝜎̅𝑚𝑒𝑎𝑛
𝑖 , 𝜎̅𝑒𝑞

𝑖  and 𝜀𝑒̅𝑞
𝑖 . 

3- Examine the value of 𝜎̅𝑒𝑞
𝑖  , and correct for plasticity by calculating 𝜎′𝑖𝑗 and 𝜏′𝑖𝑗. 

4- Calculate 𝐹 𝑖𝑗
𝑛 , 𝐹 𝑖𝑗

𝑡  , 𝑀⃗⃗ 𝑖𝑗  and 𝐾⃗⃗ 𝑖𝑗 
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To compute the elastic force the shear ${G} modules and bulk modulus ${K} defined 

in the ‘pair_coeff’ command are used, which are given as input parameters and 

calculated from Young’s modulus (E) and Poisson’s ratio (v) as follows: 

𝐺 =
𝐸

2(1 + 𝑣)
                                                       (𝟒. 𝟏) 

𝐾 =
𝐸

3(1 − 2𝑣)
                                                     (𝟒. 𝟐) 

 

After that the equations are corrected by applying friction between particles, using 

the friction coefficient ${COF} variable in ‘pair_coeff’ command, according to the 

equations in section 3.5.2.4, and also the calculation of the bending and torsion 

torques. Rotation is also taken into consideration and added to the code for 

tangential forces and torques calculation which allows to correctly describe isotropic 

response of material as shown in [246]. The use of vectors for rotation was defined 

in a new file ‘rotations.h’ which is included in the ‘pair_mca.cpp’ file. 

The next step is to compute the equivalent stress (𝜎̅𝑒𝑞
𝑖 ) and equivalent strain (𝜀̅𝑒𝑞

𝑖
) for 

each particle in the compute_equiv_stress( ) method to be able to correct the elastic 

forces for plasticity according to the equations in section 3.5.2.5. To compute the 

equivalent stress, the mean stress is calculated according to equation (3.63). 

However, for the calculation of elastic and plastic normal forces, a predictor for the 

mean stress is defined in ‘FixMeanStressMCA’. 

Then the model of plastic flow with von Mises criterion of plasticity is implemented 

to simulate deformation of locally isotropic elastic-plastic medium using the radial 

return algorithm of Wilkins as described in section 3.5.2.5. The yield stress ${Sy} and 

the plastic work hardening ${Eh} defined in the ‘pair_coeff’ command are used to 

calculate the plastic corrected forces in correct_for_plasticity() method. It is worth 

noting that the plastic work hardening modulus ${Eh} is the dependency of the yield 

limit on plastic strain and is here approximated by linear functions. Multi-linear 

behaviour is not implemented yet. Then the dry friction is re-calculated based on 

corrected values for plasticity.  

Then finally, all total forces and torques are calculated in the compute_total_force( ) 

method using the formulas for contact area as shown in equation 3.55. 

Throughout ‘PairMCA’ the type of forces calculated for bonded and unbonded 

particles differ. For unbonded pairs friction forces are applied and for unbonded 

pairs no torques are applied due to relative rotation. 

The different interaction forces implemented in ‘PairMCA’ depending on the type of 

pair interaction for both elastic and plastic forces are summarized in Table 4-1. 
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Table 4-1: Types of interactions and their corresponding forces in ‘PairMCA’ 

Type of Particle Pair Forces between particle Pairs of the same 

material or different materials 

In Contact & Bonded Central (normal) force 

Tangential (shear) force 

Dry friction force 

Bending Torques 

Torsion Torques 

In Contact & Unbonded Central (normal) force 

Tangential (shear) force 

Dry friction force 

For particle interactions with walls, a new ‘FixWallMCA’ class is created based on 

the ‘FixWallSph’ class, defined in ‘fix_wall_mca.h’ and ‘fix_wall_mca.cpp’ files and 

can be executed by ‘fix wall/mca’ style in the input script. However, currently the 

particle-wall interaction is similar to particle-particle interaction, hence it is not fully 

implemented yet. This should employ rigid boundary conditions. 

 

Related files: pair_mca.h, pair_mca.cpp, rotations.h, fix_wall_mca.h and 

fix_wall_mca.cpp 

Related commands: pair_style mca and pair_coeff * 
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4.4.6 New Fix_Style for Mean Stress Predictor 

Before starting the force calculation on each automaton, the predictor for 𝜎̅𝑚𝑒𝑎𝑛
𝑖  

estimation should be calculated as explained in section 3.5.2.2. because the specific 

forces of interaction between the automata at the current time step is calculated 

using 𝜎̅𝑚𝑒𝑎𝑛
𝑖 . At the first step of integration, an estimation predictor for the mean 

stress is used to calculate the normal force (𝐹𝑖𝑗
𝑛

), and after that current stresses are 

calculated using the previous ones. Here special predictor estimates for mean 

stresses are defined to compute the normal specific interaction force. 

This is done in the pre_force ( ) method and defined in a new ‘FixMeanStressMCA' 

class, following equations 3.64-3.81 in section 3.5.2.2 and described in 

‘fix_meanstress_mca.h’ and ‘fix_meanstress_mca.cpp’ files. ‘FixMeanStressMCA' 

class consists of two main methods, swap_prev( ) for swapping some data from 

previous time-step to the current one related to the bond history list, and 

predict_mean_stress( ) for describing the predictor for mean stress. 

This ‘fix_style’ is turned on automatically when using the ‘atom_style mca’ and 

‘pair_style mca’ and works for all particles alike so it does not need to be defined in 

the input script. It is based on the existing ‘FixSphDensitySummation’ class which 

links the density field and the pressure field, and used to describe the link between 

mean stress and pressure (normal force) in ‘PairMCA’ 

 

Related files: fix_meanstress_mca.h and fix_meanstress_mca.cpp 

Related commands: - 
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4.4.7 New Bond_Style for MCA Bond Model 

The ‘bond_style’ loops through all bonds and calculates bond forces on particles. As 

mentioned, when this project started in February 2016, LIGGGHTS did not have 

any features related to bonds between particles. Currently, LIGGGHTS-Public has a 

elastic ‘bond_style’ however bond breaking does not depend on forces or stresses 

between the particles, but just on distance. 

Thus, a new mca ‘BondMCA’ class was created based on ‘BondGran’ class 

developed by Richer called LIGGGHTS-with-bonds [258] and defined in 

‘bond_mca.h’ and ‘bond_mca.cpp’ files. ‘BondGran’ uses the formulations 

described in section 3.4.3. and the bonded-particle model for rock described by 

Potyondy and Cundall in 2004 in [233]. It uses (𝑘𝑛) the normal bond stiffness 

parameter, (𝑘𝑡) the tangential or shear bond stiffness parameter and (𝑟0) the initial 

particle distance upon bond creation to define the bond between the particles. As 

mentioned, these are parameters that cannot be extracted from experiments and are 

difficult to calibrate.  

In MCA, this is different, as explained in section 3.5.3. and bonds are obligatory 

defined for all pair particles to describe their contact interaction. Again, this class is 

totally rewritten because the mca parameters mentioned in the ‘AtomVecMCA’ class 

are used, as well as the bond history list updated by the ‘BondCreateMCA’ and 

‘BondExchangeMCA’ classes, and also to define our own bond fracture criteria. 

First a check is done to evaluate if the bond has been already broken, by checking if 

the pair are still interacting in compression, if not it will be removed by the 

‘FixBondExchangeMCA’. If they are then the ‘bond_state’ is set as ‘non_interact’, 

if not then computation continues and the bond is broken if the breaking criterion is 

met, which is all done in the compute( ) method. As mentioned in section 3.5.3, the 

equivalent stress (𝜎̅𝑒𝑞
𝑖 ) or equivalent strain (𝜀𝑒̅𝑞

𝑖 ) criterion can be used if the material 

is elastic and brittle, however, if the material is plastically hardened it is better to use 

the equivalent stress criterion. If the material performs perfect plasticity, then the use 

of a deformation criterion should be used such as the Drucker-Prager fracture 

criterion, Huber-Mises-Hencky criterion or others. If a pair of linked automata i-j 

have different materials, then according to the von Mises criteria here, the automata 

will switch from linked to unlinked when equivalent stress (𝜎̅𝑒𝑞
𝑖 ) reaches the fracture 

strength of the softer material [1]–[3]. The syntax for the ‘bond_style mca’ is: 

 bond_style mca  

bond_coeff N bond_type Fract_Criterion Fract_Param Bond_Criterion Bind_Param 

 For example: 

 bond_coeff  1 1 0.2 
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‘bond_style mca’ does not have any arguments, but similar to ‘pair_style mca’, 

‘bond_style mca’ also needs the ‘bond_coeff’ which must be defined for each bond 

type which is implemented in the coeff( ) method in ‘BondMCA’ class.  

N is the number of bond types. Fract_Criterion is an index of the fracture criterion 

used and Fract_Param is a corresponding parameter, and are set as 

0 = no fracture, no parameters 

1 = ultimate equivalent strain, needs one parameter: strain 

2 = ultimate equivalent stress, needs one parameter: stress (Pa) 

3 = Drucker-Prager criterion, needs two parameters: tension stress (Pa) and 

compression stress (Pa). 

Then the Bond_Criterion and Bind_Param are set which are the index and 

parameter for the bond formation criterion as: 

0 = no binding, no parameters 

1 = ultimate pressure, needs one parameter: pressure (Pa) 

2 = ultimate plastic heat, needs one parameter: plastic heat (J/kg) 

3 = combined criterion, needs two parameters: pressure plastic heat 

In the example, N is set as ‘1’ which means this bond_coeff will set parameters for 

bond type ‘1’.  Then Fract_Criterion is set as ‘1’ which means it uses the ultimate 

equivalent strain as fracture criterion and the strain is set as 0.2. Here no 

Bond_Criterion or Bind_Param are set (empty arguments) because they are not 

implemented yet. 

 

Related files: bond_mca.h and bond_mca.cpp 

Related commands: bond_style mca and bond_coeff * 
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4.4.8 New Fix_Style for Setting Velocity Boundary Conditions 

After all the forces are computed for each particle due to their interactions, external 

forces could be applied using boundary conditions, so this is executed by the 

post_force( ) method. In LIGGGHTS there are many ways of applying external 

forces, for example using ‘fix addforce’ command, however, instead of adding 

forces, it is better to add velocities to the particles thus imposing velocity boundary 

conditions. This mainly enables outputting of forces of the particles depending on 

the velocity acting on specific regions of the domain.  

Thus a new ‘FixMCAsetVel’ class was created and defined in fix_mca_stevel.h and 

fix_mca_setvel.cpp files, based on the ‘FixSMDSetvel’ class which is part of the 

USER-SMD package for LAMMPS which is a smooth particle hydrodynamics 

package [259]. Here velocities are added in the x,y and z directions to a group of 

particles regardless of the forces acting on them.  

It is executed in the input script by the following command: 

 fix ID group-ID mca/setvelocity x y z 

 For example: 

 fix  topV_fix top mca/setvelocity 0 0 0.001 

 fix  topB_fix bottom mca/setvelocity NULL NULL -0.001 

The velocity in X,Y and Z directions may be specified for specific groups of atoms. 

For example, the first fix specifies that the particles in the group ‘top’ will have zero 

velocity in x and y directions, and an upwards velocity of 0.001m/s in the z 

direction. The second fix specifies that the particles in group ‘bottom’ will have zero 

velocity in x and y direction, and a downwards velocity of 0.001m/s in the z 

direction. The velocities could also be defined as variables instead of constant 

velocity and evaluated at each time-step and used to calculate the forces of the 

particles. Using ‘NULL’ means that the velocity component in that direction does 

not change, and it allows the sample to shrink at the loading regions due to Poisson’s 

effect.  

This command only works in combination with the ‘fix nve/mca’ command. 

 

Related files: fix_mca_stevel.h and fix_mca_setvel.cpp 

Related commands: fix mca/setvelocity 
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4.4.9 Implementation of Periodic Boundary Conditions 

As mentioned earlier in section 3.3.6., different types of boundary conditions can be 

used on simulations. Currently all the MCA implementations and simulations 

employ non-periodic fixed boundary conditions (defined as ‘boundary fff’ in the 

input script), which means that particles do not interact across the domain of the 

simulation and the position of the domain is fixed. If particles move outside of the 

domain they are lost. Periodic boundary conditions (PBC) can be viewed as 

surrounding a simulation cell with replicates of the system which is particularly 

useful when simulating materials on small scales because realistically the domain is 

much larger than the simulation domain. PBCs are used to avoid boundary effects. 

In a simulation, PBC allows particles near a boundary to interact with particles on 

the other side of the domain as if they were nearby, and particles leaving the domain 

would reappear on the opposite side. This is a common technique for simulating an 

infinite bulk system. 

This is described in LIGGGHTS within the domain decomposition framework using 

the forward communication buffering methods which executes the flow of 

communication between locally ‘owned’ particles on a processor and corresponding 

‘ghost’ particles on a different processor. To implement PBC for the new MCA 

functionalities, a few files needed to be changed. The ‘domain.h’ file which is a 

main class in LIGGGHTS defining the different boundary conditions, is included in 

the ‘AtomVecMCA’,‘PairMCA’, ‘FixMeanStressMCA’ and ‘FixBondCreateMCA’ 

classes. Then the forward communication buffering methods were modified to 

include PBC including pack_comm, pack_comm_vel, pack_border, and 

pack_border_vel. These methods are also used in the MPI exchange which will be 

explained in the following section. 

This feature is still not fully implemented and contains some bugs, but nevertheless 

it provides an invaluable starting point for describing PBC for MCA simulations in 

LIGGGHTS. At least the implemented code allowed the simulation of a simple 

shear loading of cubic samples with PBC in one axis. 
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4.4.10 Implementation of MPI Exchange for Parallelization 

MPI is a programming technique to parallelize code over a distributed system, for 

example a HPC, such that the entire program is parallelized over a network of 

computers, or nodes which cross-communicate information. This means that every 

parallel process is working in its own memory space in isolation from the others. 

OpenMP is also a programming technique for parallelization, but instead of the 

program running in parallel on a distributed system, it runs on shared memory 

devices, for example a multi-core processor. This means that every parallel thread 

has access to all the data and a set of operations could run in parallel over a multi-

core processor where the cores share the same memory. Thus, communication is 

relatively cheap and easy. However, LIGGGHTS does not have an OpenMP 

package which will be explained in the following section. 

The parallelisation in LIGGGHTS has its bases from LAMMPS and is implemented 

fully using MPI exchange as explained in section 3.3.8 [252]. It can run on a single 

processor on a regular PC or thousands of processors on HPCs. The domain is 

decomposed into several MPI processes such that each sub-domain contains its 

‘owned’ particles and ‘ghost’ particles owned by neighbouring processes. Each 

domain calculates the forces for its ‘owned’ particles and based on the cut-off 

distance each process communicates this information to its ‘ghost’ neighbouring 

particles. So at each time-step it is clear which particles belong to which processor 

but they vary over time depending on their new positions [216]. 

This parallelization method is very efficient, but only when well-balanced domains 

are defined such that the number of particles within each domain is balanced so that 

the information exchange happens smoothly. The use of a large number of domains 

will cause slower computation because the amount of cross-communication will be 

high; and a very small number of domains will also slow down the computation 

because the load per processor will be too high. Thus, the optimisation of the 

numbers of domains and the number of particles in each domain is crucial. 

As shown in Figure 4-4, the LIGGGHTS integration loop (simplified) according to 

the Velocity Verlet Scheme begins by inserting particles and transforming meshes. 

Particles are exchanged between MPI processes, load balancing may occur, and 

cross-communication occurs, neighbor lists are built, and forces are computed 

between the two integration steps initial_integrate( ) and final_integrate( ). The 

parts of the loop that can be parallelized are shown in 4 separate squares and the 

color codes indicate the contribution of each section to the total timing breakdown  

[255]. The main time-consuming parts are the calculation of the forces is the main 

one (pair time) this actually also includes bond forces, then cross-communication, 

generating and updating neighbor lists. 
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Regarding our MCA implementation, because of the common code base, some of 

the functions related to MPI exchange has been inherited and consequently many 

positive performance characteristics are inherited from LIGGGHTS. However, 

because most of the main classes which are the most time-consuming have been 

drastically re-written (AtomVecMCA, PairMCA, BondMCA, BondCreateMCA) 

MPI exchange is not fully realised in the code. In each class there are methods 

related to MPI exchange among processors, including pack_comm, 

pack_comm_vel, pack_border, and pack_border_vel. but these have not been fully 

realized yet in LIGGGHTS-MCA. It has also been difficult to amend because 

LIGGGHTS uses meshes to discretize its domain, which is not the case in MCA, 

which is why maybe it is best to try and look into LAMMPS for this. 

The following list summarizes the sequence of important functions during and after 

MPI communication [255]: 

1. Periodically adjust domain boundaries along one or more threads and 

communicate data if necessary (Optional). 

2. Exchange particles and contact history information between MPI processes. 

3. Apply spatial sorting of local particle data to each MPI process. 

4. Update particle neighbor lists. 

5. Exchange mesh triangles and contact history data between MPI processes. 

6. Update mesh triangle–particle neighbor lists. 

 

Figure 4-4: LIGGGHTS integration loop (simplified) according to the Velocity Verlet scheme, 

showing the parts of the loop that can be parallelized (shown as 4 separate squares) and 

the color code indicates the contribution of each the total timing breakdown [255] 
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4.4.11 Implementation of OpenMP for Parallelization 

As explained, OpenMP is a different way of parallelization which should provide 

optimized and multi-threaded versions of many classes of the code. In contrast to 

MPI, OpenMP allows to compute in parallel on one PC with several cores. Most 

modern processors have several cores and so it is really useful feature. However, 

currently there is no OpenMP capability in LIGGGHTS. 

OpenMP is based on sequential implementation, which allows the parallelisation of 

the codes progressively without extensive rewriting of the code. The sequential 

algorithm runs as a master function that can call subfunctions to distribute the 

computations on available resources. The master functions retrieve the data from the 

subfunctions and carries-on. The sequential algorithm is highly efficient for systems 

requiring long processing time such as in MD and DEM codes. 

At the LIGGGHTS short course, Andreas Aigner, one of the developers of 

LIGGGHTS, said that implementing OpenMP for the new classes will be difficult, 

that implementing OpenMP has only been done by Richard Berger [260] for only 

parts of the code implementing a new pair potential and it took him the whole of his 

PhD to do it. However, after careful consideration and because MPI exchange was 

difficult to realise, it was decided to try to implement OpenMP for our new classes 

and it proved to be partially successful. 

Figure 4-5 shows an overview of the hybrid MPI/OpenMP parallelization developed 

by Berger [260]. “The workload of a simulation is first distributed along one or 

more axes using MPI decomposition. MPI load balancing, which adjusts boundaries 

over time, can still be used. Each MPI subdomain then further divides its subdomain 

into partitions of equal workload. All work-intensive algorithms launch multiple 

threads that work only on particles in a partition assigned to them.” 

 

Figure 4-5: Parallelization in LIGGGHTS [255] 



- 124 - 

 

A similar technique is used to implement OpenMP to the newly developed ‘mca’ 

code, and was developed by adding OpenMP related code to the following methods 

because they are the parts that can be parallelized based on Figure 4-4: 

➢ swap_prev( )       → ‘FixMeanStressMCA’ class 

➢ predict_mean_stress( )    → ‘FixMeanStressMCA’ class 

➢ compute_elastic_force( ) →‘PairMCA’ class 

➢ compute_equiv_stress( )  →‘PairMCA’ class 

➢ correct_for_plasticity( )   →‘PairMCA’ class 

➢ compute_total_force( )    →‘PairMCA’ class 

➢ post_integrate( )       → ‘FixBondCreateMCA’ class 

➢ build_bond_index( )       → ‘BondMCA’ class 

Then in the ‘Make’ folder of the source code, a file called ‘Makefile.serial_omp’ 

was added to be able to run the simulations using the OpenMP implemented 

functions. However, the OpenMP feature is not very efficient, and its efficiency 

needs to be further tested and optimized. It also contains some bugs but provides an 

invaluable tool and starting point for running MCA simulations in parallel instead of 

in series in LIGGGHTS without having to make major changes to the code.  
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 Summary 

This chapter so far delivered the third contribution mentioned in section 1.4 of 

developing and implementing the 3D MCA elastic-plastic model in LIGGGHTS. 

The following section 4.6 will test the code and perform verification of the model. 

The developed code implemented the formulation of MCA described in Chapter 3 

section 3.5. New ‘mca’ commands and styles have been added to LIGGGHTS. The 

‘atom_style mca’, ‘pair_style mca’, ‘bond_style mca’ and ‘fix nve/mca’ commands 

all need to be used together in a simulation as one package and defined in the input 

script and ‘fix bond/create/mca’ and ‘fix mca/setvelocity’ are optionally used. ‘fix 

bond/exchange/mca’ and ‘fix meanstress/mca’ are used by default and do not need 

to be defined in the input script.  

The ‘atom_style mca’ defines the particles discretization, generation and attributes 

according to the description in section 3.5.1. The ‘pair_style mca’ defines the 

particle-particle interactions (i.e. inter-automata interactions) calculations according 

to section 3.5.2. The ‘bond_style mca’ defines the MCA bond model according to 

section 3.5.3. The ‘fix nve/mca’ style defines the integration of equations of motion 

according to section 3.3.3 incorporating the mca formulations, and the ‘fix 

mca/setvelocity’ style defines velocity boundary conditions for loading. 

Looking back at the steps that needed to be implemented mentioned in the summary 

section 3.6 of Chapter 3: 

1. Add MCA particle and interaction forces parameters → in mca atom style 

2. Add MCA contact area, mass and inertia tensor →in mca atom style 

3. Add normal (pressure) and tangential (shear) elastic force calculations → in 

mca pair style 

4. Add mean stress predictor →in mca pair style and mca fix mean stress style 

5. Add rotation, bending and torsion torques →in mca pair style 

6. Add parameters and code for plasticity →in mca pair style 

7. Add bond breaking and fracture criteria → in mca bond style 

8. Add periodic boundary conditions → in mca pair style 

9. Implement OpenMP for parallelization 

10. Implement MPI exchange for parallelization  

11. Add interaction with walls → in mca fix wall/mca style 

12. Add bond formation → in mca bond style 

13. Add heat generation and transfer → in mca pair style 
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Steps 1 to 7 have been successfully implemented; which will be verified and 

validated in the rest of this chapter and the following chapters. Steps 8 and 10 are 

implemented but are still not working properly and need further testing. Steps 11 to 

13 are considered future work of the project explained in Chapter 9. 
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 Verification 

At each stage of the development of the code, verification tests were conducted to 

ensure that the implemented code matches the underlying mathematical model and 

its solution, and also to check for any computer coding errors. These errors, if not 

solved, could affect the predictive capability of the tool. To do this, verification is 

usually done using relatively simple cases which are aimed at checking parts of the 

model. Validation against experimental results is only done after the whole code is 

developed, verified and all errors removed, to determine the degree to which the 

model is an accurate and real representation of the real-world problem.  

In [261] verification is defined as: “the procedures in which a model is tested to 

determine whether it can be made consistent with some set of observations.” This 

means that the model is considered verified if the analytical results matches the 

simulation results. If they are too far off, then the input parameters should be 

adjusted by a calibration method and the verification step has to be redone. 

As mentioned before, in our case in MCA, no parametric estimation is needed. The 

macroscopic material properties are used as input parameters and the results 

demonstrate correct macroscopic response and very close agreement with analytical 

(presented in this section) and experimental results as well (presented in chapter 5). 

This is a major advantage of MCA over DEM, and hence the developed code as well 

if proven to be working correctly according to the described theory in Chapters 3-4. 

To verify the developed 3D elastic-plastic MCA model in LIGGGHTS, 3D 

simulations are conducted mimicking physical tests of solid materials under uni-

axial tension and shear using the new implemented ‘mca’ commands. A set of input 

parameters are chosen and the mechanical material response is studied. The effect of 

parameter variations on the material response will then be assessed in the following 

Chapter 5 as well as validation against experimental results. 

 

4.6.1 Computational Environment 

LIGGGHTS-MCA can be downloaded from github [262]. As most open-source 

codes, it is recommended to use a Unix based operative system. You can then 

compile (i.e. install) it the same way LIGGGHTS is compiled using a command 

prompt. LIGGGHTS is then executed by reading the commands from the defined 

input script. After setting up the input script, the simulation can run as a usual 

LIGGGHTS job, either in serial or in parallel using OMP. When using OMP, the 

number of desired threads are chosen, if not then by default it will be set to be equal 

to the number of cores of the computer’s processor. 
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All the simulations presented in this thesis were conducted on a laptop with 8GB 

RAM memory and 2.10 GHz processor using OpenMP with 6threads. The code has 

also been used on a Linux CentOS 7 on a PC with 16GB RAM memory and quad 

core processor at 1.6 GHz and on the Leeds University HPC-ARC3 which has 252 

nodes with 24 cores of 128 GB memory each. 

 

4.6.2 Uniaxial Tensile and Simple Shear Tests 

To test the developed elastic-plastic MCA model, 3D aluminum samples are 

simulated under uniaxial tension and simple shear loading. The results are compared 

to the analytical solution and the macroscopic mechanical response of the material is 

analysed. 

So, the following section describes the simulation setup as defined in the input script 

using the developed MCA commands at relevant parts. In the input script many of 

LIGGGHTS own commands have been used, but the description below focuses only 

on the newly developed commands and related commands. 

 

4.6.2.1 Simulation Setup 

As explained previously, the first step of the input script is defining the initial 

structure. Here, a 3D aluminium sample is simulated with a homogenous initial 

internal structure free of discontinuities (damages or cracks), and all automata are 

assumed to be initially in contact and bonded. Particles are located on an FCC 

packing structure, as shown in Figure 4-6. 

          

                                                (a)                                                                                     (b) 

Figure 4-6: Initial structure of the 3D simulated sample of FCC packing, showing the direction 

of (a) tension and (b) shear loading 
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The initial structure and particle attributes are defined in the ‘atom_style mca’ as: 

 atom_style mca radius 0.254 packing FCC n_bondtypes 1 bonds_per_atom 12 

This means that the radius of the particles is equal to 0.254m. This is an unrealistic 

particle size, however, it is sufficient for the sake of verification against the 

analytical solution, but for validation against experimental results and producing 

true stress/strain values, the particle size must be chosen to be a much smaller size.  

Packing is set as FCC, the number of bond types is 1 meaning all particles are 

linked, and the maximum number of bonds per particle is 12 which is the 

coordination number according to the FCC structure. 

Also, fixed boundary conditions are applied in x, y and z directions so that the 

particles do not interact across the boundaries and the faces have a fixed position.  

Then the simulation domain (specimen size) is defined to be eleven layers of 

particles, in x, y and z directions to form a cuboid as shown in Figure 4-6. This 

produces 4631 particles. It is defined in the input script as 

 variable fcc equal ${d}/0.7071067812 

 variable L equal 11*${fcc}  

 region  box block 0 ${L} 0 ${L} 0 ${L} units box 

The dimensions of the sample are defined in terms of multiples of the FCC lattice 

parameter such that a perfect cuboid is simulated, and also to define the layer on 

which loading conditions will be set. For FCC the lattice parameter (a) is defined as 

𝑎 = 𝑟√8 where (r) is the particle radius. To define it in terms of particle diameter 

𝑎 = 𝑑/(
1

√2
). If SC lattice structure is used it will just be multiple of its diameter (L 

equal 11*${d}). 

The initial structure for the FCC case is shown below in Figure 4-7 

              

                                    (a)                                                         (b) 

Figure 4-7: (a) front and (b) side views of the initial structure of sample in FCC packing   
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After that the ‘pair_style mca’ is set to define the interaction forces laws used in the 

simulation. It is defined as: 

 pair_style  mca 2*${d} 

 pair_coeff 1 1 ${COF} ${G} ${K} ${Sy} ${Eh} 

The cut-off distance is set as twice the particle size (diameter). The domain has only 

one material, so the first two arguments of the ‘pair_coeff’ command are set as 1. 

The coefficient of friction is set as 0.3. The shear ${G} and bulk modulus ${K} are 

calculated from the Young Modulus and Poisson Ratio which are set as 70GPa and 

0.3 respectively. For plastic deformation, the yield stress ${Sy} is set to be 2MPa 

and the plastic work hardening modulus ${Eh} is set as 10GPa.  

Then the ‘bond_style mca’ and ‘fix bond/create/mca’ are defined as: 

 bond_style  mca 

 bond_coeff 1 1 0.0001 

 fix   bondcr all bond/create/mca 1 1 1 2*${d} 1 6 

The first argument in the ‘bond_coeff’ command is the number of bond types, which 

is set as 1 here because all automata are linked, the second argument is the choice of 

fracture criterion which is set as 1 which means it uses the ultimate equivalent strain 

criterion, and the value of the equivalent strain is 0.0001. 

If only elastic deformation is required, ${Sy} and ${Eh} are removed from the 

‘pair_coeff’ command, and only the first argument of the ‘bond_coeff’ command 

needs to be defined to set the number of bond types in the simulation to 1. No 

fracture criterion is then used because only elastic deformation and no fracture is 

simulated.  

Then the ‘fix bond/create/mca’ style is defined where all automata within the cut-off 

distance are checked every 1 time-step, and all automata are of the same group, the 

same material, and have a coordination number 6 for SC and for FCC the last 

argument is set as 12. This is used for elastic and plastic deformation alike. 

After that loading is applied to the specimen, mimicking strain-controlled uni-axial 

tensile and simple shear tests, where the specimen is clamped at the end and 

pulled/pushed at a constant rate. As shown in Figure 4-6(a) for uni-axially tension, a 

vertical constant velocity (Vz) is applied in the positive z direction (upwards) on the 

upper row of particles, and zero velocity in the x and y directions (Vx) and (Vy), 

while applying zero velocity on the lower row of particles in all directions so that 

the lower row of particles remains fixed and the specimen is uni-axially loaded in 

the z direction. Similar velocity boundary conditions are applied for shear, but as 

shown in Figure 4-6(a), the horizontal constant velocity (Vx) is applied in the 
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positive x direction (to the right) on the upper row of particles instead of in the z 

direction. 

Also, a region of top and bottom layer of particles must be defined where the 

velocities will be applied, such that the velocities are only applied on one layer of 

particles (the 10th layer). 

This is defined as: 

 variable       Height equal 10*${fcc}-${rp} 

 region          top block EDGE EDGE EDGE EDGE ${Height} EDGE units box 

 region          bot block EDGE EDGE EDGE EDGE EDGE 0.0 units box 

For SC structure variable Height would just be equal 10*${d}. 

Then the velocity boundary conditions are defined by the ‘fix mca/setvelocity’ 

command, for tension as: 

 fix             topV_fix top mca/setvelocity 0 0 0.01 

 fix             botV_fix bot mca/setvelocity 0 0 0 

and for shear as: 

 fix             topV_fix top mca/setvelocity 0 0.01 0 

 fix             botV_fix bot mca/setvelocity 0 0 0 

This means that the constant pull velocity is 0.01m/s in the z direction for tension, 

and in the x direction for shear. The strain rate can be calculated as cross-head 

velocity divided by initial length which here will approximately be 0.001s-1. 

The last important part to define is the time-step, simulation time and run-step. 

 variable dt equal 1.0E-5 

 variable fulltime equal 0.1  

 variable runstep equal round(${fulltime}/${dt}) 

 timestep ${dt} 

 run   ${runstep} 

The time-step is set to ∆𝑡 = 10−5 seconds, the simulation time to 0.1 seconds, and 

the number of steps is defined as the simulation time divided by the time-step, which 

in this case gives 10,000 steps.  

Also, a recommended time-step message is shown on screen when running the 

simulation, so it can be adjusted depending on the simulation. This follows the 

equation (3.9) presented in section 3.3.4. and can be defined in the input script as: 

variable TimeStep equal ${rp}/(sqrt((${K}+4.*${G}/3.)/${rho})) 

 print 'Recommended time step ${TimeStep}' 
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The simulation parameters are summarized below in Table 4-2. 

Table 4-2: Simulation Parameters 

Parameter Value 

Density (𝜌) 2700 Kg/m3  

Young’s modulus (E) 70 GPa 

Poisson’s ratio (v) 0.3 

Yield stress (𝜎𝑦) 2 MPa 

Work hardening modulus (𝜀ℎ) 10 GPa 

Coefficient of friction (COF) 0.3 

Particle diameter (d) 0.254m 

Number of particles 4631 

Coordination number 12 (FCC) 

Number of bond types 1 (linked) 

Time-step (∆t) 1 × 10−5 s 

Full simulation time 0.1 s 

Boundary conditions FFF 

Pull velocity  0.01 m/s 
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4.6.2.2 Post Processing 

After running the simulation, output files are produced and analysed. These outputs 

files are produced and defined at each time-step and their type, content and location 

are defined in some commands in the input script. The commands are: 

 variable savetime equal 0.001 

 variable filestep equal round(${savetime}/${dt}) 

 dump  dmp all custom ${filestep} post/dump*.liggghts id type x y z vx vy vz  

fx fy fz omegax omegay omegaz tqx tqy tqz 

 fix   outfile all print ${filestep} "${time} ${px} ${py} ${pz} ${pfx} ${pfy} 

${pfz}" file cube.dat screen no title 

The dump command outputs dump*.liggghts text files which are saved in a folder 

called post at every time-step. They contain information about the particles 

positions, velocities, forces, etc. at each time-step. The format of dump*.liggghts 

files can be directly visualized using the visualization tool Ovito. It shows the 

positions, velocities, forces, etc. of the particles at each time-step and then can be 

visualized to view the behaviour from the beginning to the end of the simulation. 

Another valuable visualization tool is Paraview, however the format of 

dump*.liggghts cannot be directly read by it. To use Paraview, the format has to be 

changed to VTK format using a conversation tool called pizza.py. After installing 

this tool the dump files can be read. Instead of outputting these values at every time-

step, here they are output at every ${filestep} which equals 100 steps to save 

computational time and memory. This can be set to a larger number of steps, 

depending on the sensitivity of the simulation phenomena, because you do not want 

to miss any important deformations occurring during the skipped time-steps. 

However, for our purpose 100 steps is sufficient. 

Another, post-processing tool is gnuplot which can plot the stress-strain curves. For 

this the fix command is used, where it saves a text file called cube.dat which 

includes the positions and forces in all directions at each ${filestep}. This is used to 

plot the stress-strain curves. For the tensile test, the strain is calculated by getting the 

difference in distance between two particles on each end of the box along the Z 

(strained) direction (𝑙 − 𝑙0) and dividing by their initial distance by (𝑙0). This can 

then be multiplied by 100 to get strain %. The axial force (load) is calculated by the 

sum of forces on the particles in Z direction, and the axial stress is then calculated 

by dividing the axial force by the specimen cross section (A).  For the Shear test, the 

values along X direction are used instead of the Z direction. 

The post processing described here is used in the analysis of all the simulations 

presented in the thesis so it will not be mentioned again unless necessary. 
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4.6.2.3 Results and Discussion 

The results show the macroscopic response simulated using LIGGGHTS-MCA. As 

mentioned, the stress-strain curves of the simulations were plotted and compared to 

the analytical solutions. Figure 4-8(a) shows the axial stress for the tensile 

simulation performed under constant loading conditions as a function of axial strain, 

and Figure 4-8(b)  shows the shear stress for the simple shear simulation performed 

under constant loading conditions as a function of shear strain. For the uni-axial 

tensile test the analytical solution is considered to be the Young’s Modulus (E), and 

for the uni-axial shear test it is the Shear Modulus (G) and they are presented by the 

red lines, while the simulation results are presented by the blue lines. 

 

                                          (a)                                                                                     (b) 

Figure 4-8: Stress-strain curve of simulated (a) uniaxial tension test and (b) simple shear test 

(blue lines) compared to analytical solution (red lines) 

Both tension and shear tests show linear elastic-plastic material deformation 

behaviour. They show correct macroscopic response in the elastic region and show 

very close agreement with the analytical solution. Young’s modulus and shear 

modulus of the material after deformation is correctly calculated in the elastic 

region. Also, as expected the values of the shear forces are lower than the tensile 

forces. This verifies the implemented normal and tangential elastic interaction forces 

model. 

Figure 4-9 and Figure 4-10 show the elastic and plastic stress and strain fields of the 

samples of the uniaxial tensile tests visualized using Ovito. Figure 4-9(a) shows the 

equivalent stress in the elastic region and Figure 4-9(b) shows its corresponding 

strain field. Figure 4-10(a) shows the equivalent stress in the plastic region and 

Figure 4-10(b) shows its corresponding strain field. Figure 4-10(b) shows 

localization of plastic strain in the lower part of the sample because the upper layer 

of the sample is fixed in XY plane. 
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                                        (a)                                                                                 (b) 

Figure 4-9: (a) stress and (b) strain fields in the elastic region of the uniaxial tensile test 

 

                                              (a)                                                                                 (b) 

Figure 4-10: (a) stress and (b) strain fields in the plastic region of the uniaxial tensile test 

The results show how the implementation of the many-body interaction forces form 

resulted in correct macroscopic response by using direct material mechanical 

properties as input parameters, which is not possible when only pair-wise 

interactions are considered such as in DEM. In DEM, many other parameters would 

have been needed to be defined such as normal and tangential stiffness, coefficient 

of restitution, etc. which all need calibration and parametric estimation methods as 

explained in section 3.4.4. 

After the yield point, irreversible plastic deformation behaviour is shown, which 

verifies the implementation of the normal and tangential corrected plastic interaction 

forces model. It shows the plastic model of the material with piecewise linear 

hardening. After that fracturing occurs which verifies the implemented bond model 

and fracture criterion. 

 

  



- 136 - 

 

4.6.3 Uniaxial Tensile and Shear Loading-Unloading Tests 

The loading-unloading tests shows the possibility of modelling irreversible 

deformation, which is also necessary to model indentation and scratching tests later 

in Chapter 6. Again, the results are compared to the analytical solution and the 

macroscopic mechanical response of the material is analysed. 

4.6.3.1 Simulation Setup 

Here, the exact same materials, properties and simulation parameters are used as in 

the previous uniaxial tensile and shear tests. The only two difference are to turn off 

the ‘bond_style mca’ because there is no fracture in this case, and the application of 

extra loading cycles after the first run of 10,000 steps is done.  

This is done by the following commands: 

 # Reverse loading smoothly 

 variable  vel0 equal 0.01 

 variable vel_revers equal ${vel0}/10 

 unfix  topV_fix 

 fix  topV_fix top mca/setvelocity 0 0 v_vel_revers 

variable unloadstep equal ${runstep}/2. 

 run  5000 

 # Unloading 

 variable vel_unload equal -${vel0} 

 unfix  topV_fix 

 fix  topV_fix top mca/setvelocity 0 0 v_vel_unload 

 variable unloadstep equal ${runstep}/3. 

 run  ${unloadstep} 

Variable vel0 is the pull up velocity as used in the previous case which was 0.01m/s. 

To apply reverse loading smoothly to not cause fracture, this velocity is divided by a 

factor of 10 to produce a much slower velocity. To apply this on the first layer of 

particles, the previous fix for loading has to be removed which is done using the 

unfix command. Then the number of steps for reversing is half that for loading 

producing 5000 steps, compared to 10,000 steps. 

After that unloading is done with the same velocity as the pull velocity but in the 

opposite direction, and the number of steps for unloading is 1/3 of the full runstep 

which here will be 3333 steps. Again, the previous fix needs to be unfixed first. 

Here only one cycle of loading-unloading is done. 

Then the stress-strain curves are produced as described in section 4.6.2.3. evaluate 

the unloading and reloading paths. 
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4.6.3.2 Results and Discussion 

Figure 4-11 shows the stress-strain curve for the uni-axial tensile loading-unloading 

test by plotting axial stress vs strain % and Figure 4-12 shows the stress-strain curve 

for the simple shear loading-unloading test plotting shear stress vs strain %. Again, 

results are compared with the analytical solution which is presented by the linear red 

line as Young’s modulus for tension and shear modulus for shear. 

   

Figure 4-11: Stress-strain curves of uni-axial tensile loading/unloading test (blue line) compared 

to analytical solution (red line) 

 

 

Figure 4-12: Stress-strain curves of simple shear loading/unloading test (blue line) compared to 

analytical solution (red line) 
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In the case of the uniaxial tensile strength the error between theoretical and actual 

value is in the order of 10-2 which can be written as a decimal error or due to the 

inhomogeneity of natural materials leading slightly different value from the 

expected perfectly theoretical material. In the case of the simple shear test, the error 

increases with increasing strain reaching a maximum value of 0.9%. This error can 

be attributed to the complex stress state that shear forces impose on a material. In 

other words, the error is most likely due to the same reason as in the uni-axial tensile 

test, however, due to the complex stress state, the error is slightly magnified.  

The unloading at the end of the test shows the elastic recovery of the material even 

after severe deformation. The slope of the elastic recovery is also equivalent to the 

Young’s modulus of the material. This is the expected unloading path that a material 

with elastic-potential will go through when going through loading and unloading 

tests. Both graphs also show some data scatter at the end of the loading, this is due 

to the oscillation of the loading layer because the velocity of the moving layer at the 

last step is not exactly equal to zero. Also, after plastic deformation occurs the 

structure has some residual stresses inside, which also results in some dynamic 

motion to minimize these residual stresses. 

Both tension and shear tests show very close agreement with the analytical solution 

in the elastic region and show a typical mechanical response for loading-unloading 

tests, which means the fundamental equations of the model are capable of capturing 

the deformation behaviour of materials. The comparison between different plastic 

behaviour of the material is shown and discussed in the following chapter.  

 

4.6.4 Conclusion 

To conclude, section 4.6 presented cases for testing the correct implementation of 

the code in LIGGGHTS by running uni-axial tensile and simple shear simulations on 

an aluminium sample and checking the macroscopic response of the material after 

loading against analytical solutions. The new ‘mca’ commands have been used and 

the verification tests show that the code has been successfully implemented in 

LIGGGHTS. The results show very good agreement with the analytical solution and 

show correct macroscopic response. The simulations results produced by the model 

provided a very close match to analytical solutions. 

The next step is to validate the developed model against experimental results and 

test the convergence and performance of the code. 
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5 Chapter 5 

Validation, Convergence & Parameters Sensitivity Analysis  

 Introduction 

This chapter and the next investigate the predictive capabilities of the developed 3D 

MCA model in producing the mechanical response of solid materials under loading 

with direct use of the mechanical material properties as inputs, which are the 

Young’s modulus, Poisson’s ratio, yields stress and strain work hardening modulus. 

Uni-axial tensile and micro-indentation tests have been simulated mimicking the 

physical laboratory tests presented in a study performed by the US National Institute 

of Standards and Technology (NIST) [263]. In their work, they present the results 

for both uni-axial tensile and micro-hardness tests including micro-indentation of 

Aluminium 6061 samples. Their study is presented in the paper “High throughput 

exploration of process-property linkages in Al-6061 using instrumented spherical 

micro-indentation and microstructurally graded samples” in 2016 [264].  

The goal of the NIST study was to establish a relationship between the macroscopic 

scale standardised tensile tests and the mesoscale spherical micro-indentation stress-

strain measurements, which is generally difficult to do because of the gap in length 

scales, as shown in Figure 5-1. Thus, they conducted both experiments on selected 

samples to explore the correlations between the measured properties in the two 

different types of tests. 

 

Figure 5-1: Schematic for different methods of extracting mechanical response of material at 

different scales as presented by [264]  

The reason for choosing this experimental study to validate our developed MCA 

model against is because the NIST provided a detailed study as well as results on 

their website [263], and produced stress-strain curves for both uni-axial tensile test 

and micro-indentation tests for the same materials. Since the simulation of micro-

indentation is, in part, critically dependent on identification of the appropriate 
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material mechanical properties used as input parameters, the uni-axial tensile tests 

have first been simulated and validated against the experimental results presented by 

the NIST study which will be presented in the following section 5.2, and then the 

material mechanical properties are used in the simulation of micro-indentation to 

validate against their micro-indentation experimental results, which is presented in 

Chapter 6. 

This chapter also used the same data of the uni-axial tensile tests to perform 

parameter sensitivity analysis on some of the implemented features and convergence 

testing of the code. The convergence testing is important to determine some of the 

sources of errors of the simulated results and the steps that can be taken to reduce 

the error to an acceptable level. The reduction of error involves increasing 

simulation time, because of larger number of particles. Hence for applying the 

model to the study of a specific application, it is important to consider the acceptable 

level of error so that simulations can run as efficiently as possible. 
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 Validation of MCA Model Against Experimental Uniaxial 

Tensile Test 

5.2.1 Experimental Data 

In the NIST study [264] uni-axial tensile tests were conducted on Aluminium 6061 

samples with different aging parameters. All the specimens were received in the T6 

condition and then grounded and polished to 0.06-μm colloidal silica with a final 

step of electro-polishing. The uniaxial tensile tests were conducted as per ASTM 

Standard E8-13a with a constant cross head speed to produce a strain-rate of 0.005 s-

1. The specimens had a diameter of 6.35 mm and a gage length of 25.4 mm. 

Their results are shown in Figure 5-2 as stress-strain curves for the samples as 

received (AR) and at different aging temperatures.  

To simulate the tensile test of the aluminium samples presented above for validation, 

first the mechanical material input parameters have to be defined to be included in 

the input script. To test the predictive capability of the model to simulate different 

material deformation behaviour; namely the yielding and the strain hardening, three 

of the different samples at different aging temperatures from the experimental data 

shown in Figure 5-2 are simulated. These are the as received sample (AR), the 

sample at 274°C aging temperature and at 413°C aging temperature. The mechanical 

response of AR shows almost an elastic-perfectly-plastic behaviour, while the 

samples at 274°C and at 413°C aging temperatures show elastic-plastic behaviour 

with linear strain hardening at different slopes. 

 

Figure 5-2: Experimental tensile stress-strain curves for AL-6061-T6 samples as-received (AR) 

and at different aging temperatures as presented by [264] 

As mentioned in Chapter 4, the four material parameters needed are Young’s 

Modulus (E) and Poisson’s Ratio (v) - to calculate the Shear (G) and Bulk properties 

(K) - for the calculation of the elastic interaction forces, and Yield Strength (𝜎𝑦) and 

Strain Work Hardening Modulus (𝐸ℎ) for plastic interaction forces.  These are all 
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commercially known for the material aluminium 6061-T6, but they can also all be 

directly obtained from the experimental stress-strain curves above in Figure 5-2  to 

ensure that the same material is being simulated for the comparison between the 

experimental and simulation mechanical response and material deformation. 

For the AR sample, the yield strength (𝜎𝑦) is set as 315 MPa. Young’s Modulus (E) 

is obtained from the slope of the curve in the elastic region before the yield limit and 

is set as 69 GPa. The strain work hardening modulus (𝐸ℎ) can be estimated as the 

slope of the curve between the yield limit and the strength limit as shown earlier in 

Figure 3-4 in Chapter 3. So, it can be calculated as  

𝐸ℎ =
𝜎𝑢 − 𝜎𝑦

𝜀𝑢 − 𝜀𝑦
 

where (𝜎𝑢) is the ultimate stress, (𝜀𝑢) is the ultimate strain and (𝜀𝑦) is the strain at 

yield (𝜎𝑦 𝐸⁄ ). The ultimate stress and strain can be extracted from the graphs in 

Figure 5-2, and the strain at yield can also be calculated as (𝜎𝑦 𝐸⁄ ) for a more 

accurate estimation. Their values are shown below in Table 5-1, and thus strain 

work hardening modulus (𝐸ℎ) for AR is calculated and set as 225 MPa. 

For the sample aged at 274°C, the yield strength (𝜎𝑦) is set as 189 MPa, the Young’s 

Modulus (E) is set as 40 GPa, and strain work hardening modulus (𝐸ℎ) is set as 

816.95 MPa. For the sample aged at 413°C, the yield strength (𝜎𝑦) is set as 55 MPa, 

Young’s Modulus (E) is set as 66.95 GPa, and strain work hardening modulus (𝐸ℎ) 

is set as 1076.18 MPa. Poisson’s ratio has been set to 0.33 for all three samples and 

the density to 𝜌=2700 kg/𝑚3. 

Table 5-1: Material mechanical properties extracted from experimental stress—strain curves 

 E (GPa) 𝝈𝒚 (MPa) 𝝈𝒖 (MPa) 𝜺𝒚  𝜺𝒖 𝑬𝒉 (MPa) 

AR 69 315 329 0.00456 0.08 225 

274°C 40 189 230.47 0.0101 0.08 816.95 

413°C 66.95 55 138.189 0.0027 0.08 1076.18 
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5.2.2 Simulation Setup 

After the mechanical properties of the materials are estimated, they can be set in the 

input script along with the other simulation parameters as described in section 

4.6.2.1. The input script for the AR material is shown in the following section 5.2.3. 

Cubic samples are simulated with initial FCC structure and homogeneous, free of 

discontinuities, and all automata are assumed to be initially bonded. The particle size 

is 0.5 mm and the sample size is 10 mm × 10 mm × 10 mm.  

The first top layer of particles is pulled upwards in the Z direction (loading 

direction) with a pull velocity 0.01m/s while the bottom layer is kept constant. The 

time step is 4 × 10−6 s, and the simulation time is 0.01s to produce a strain rate of 

about 0.001s-1. The fracture criterion used here is the ultimate equivalent strain and 

is set to 0.2. The simulation parameters are shown in Table 5-2, and in the input 

script in the following section. 

Table 5-2: Input Parameters used in the tensile simulation for validation against exp results 

Parameter Values for 

AR 

Values for 

aged at 274°C 

Values for 

aged at 413°C 

Density (𝜌, kg/m3) 2700  2700  2700  

Young’s Modulus (E, GPa) 69 40 66.95 

Yield Stress (𝜎𝑦, MPa) 315 189 55 

Work Hardening Modulus 

(𝜀ℎ ,𝑀𝑃𝑎) 

225 816.95 1076.18 

Poisson’s Ratio (v) 0.33 0.33 0.33 

Coefficient of friction (COF) 0.3 0.3 0.3 

Sample Size (mm3) 10×10×10 10×10×10 10×10×10 

Particle Diameter (d) 0.5 0.5 0.5 

Coordination Number 12 (FCC) 12 (FCC) 12 (FCC) 

Number of bond types 1 (linked) 1 (linked) 1 (linked) 

Time-step (∆t, s) 4 × 10−6 4 × 10−6 4 × 10−6 

Full simulation time (s) 0.01 0.01 0.01 

Boundary Conditions FFF FFF FFF 

Pull Velocity (mm/s) 0.1  0.1  0.1  
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5.2.3 Input Script 

The input script for this simulation as described in the previous section is shown 

below for the AR material. The MCA related commands are highlighted in bold. It is 

exactly the same for the sample aged at 274°C and 413°C, the only difference is the 

first section where the material parameters are defined. 

 

# Material Parameters (Aluminium 6061-T6 as recieved) 
variable rho equal 2700   
variable Y equal 6.9e10    
variable p equal 0.33    
variable G equal $Y/(2*(1+$p))  
variable K equal $Y/(3*(1-2.0*$p))  
variable COF equal 0.3    
variable Sy equal 315e6    
variable Eh equal 225e6   
 
# Atom Parameters 
variable nat equal 1    
variable rp equal 0.00025   
variable d equal 2*${rp}   
variable bt equal 1    
variable bpa equal 12    
variable fcc equal ${d}/0.7071067812   
 
# ------------------------ INITIALIZATION ---------------------------- 
dimension 3 
units  si 
boundary fff     
atom_style mca radius ${rp} packing fcc n_bondtypes ${bt} bonds_per_atom 
${bpa} 
atom_modify map array  
neigh_modify delay 0  
newton  off 
communicate single vel yes 
 
# ----------------------- Particle DEFINITION ----------------------- 
variable L equal 14.41*${fcc} 
region  box block 0 ${L} 0 ${L} 0 ${L} units box  
create_box ${nat} box  
lattice fcc ${fcc} 
create_atoms 1 region box  
 
 
# Discretization Parameters 
variable skin equal 2*${d}  
neighbor ${skin} bin  
timestep 1.0e-9   
 
# ------------------------ FORCE FIELDS ------------------------------
pair_style  mca ${skin} 
pair_coeff 1 1 ${COF} ${G} ${K} ${Sy} ${Eh} 
bond_style mca 
bond_coeff 1 -1 1 0.2 
 
mass   1 1.0  
 
# ------------------------- SETTINGS --------------------------------- 
# Define Velocity Boundary Conditions 
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variable Height equal 14.41*${fcc}-${d} 
region        top block EDGE EDGE EDGE EDGE ${Height} EDGE units box 
region        bot block EDGE EDGE EDGE EDGE EDGE 0.0 units box 
group         top region top 
group         bot region bot 
 
# Loading Parameters 
variable      vel_up equal 0.01 
variable      vel_down equal 0  
fix           topV_fix top mca/setvelocity NULL NULL v_vel_up 
fix           botV_fix bot mca/setvelocity NULL NULL v_vel_down 
 
# Create Bonds Between Particles 
Variable cutoff equal ${d}*(1.0+0.02) 
fix   bondcr all bond/create/mca 1 1 1 ${cutoff} 1 ${bpa} 
 
# Time Integration 
group  nve_group region box 
fix  integr nve_group nve/mca 
 
# Simulation Time Parameters 
variable TimeStep equal ${rp}/(sqrt((${K}+4.*${G}/3.)/${rho}))  
print   'Recommended time step ${TimeStep}' 
variable dt equal 4.e-6  
if   "${TimeStep} < ${dt}" then & 
  "print 'Recommended time step ${TimeStep} is smaller than dt= ${dt}'" & quit 
variable fulltime equal 0.1  
variable runstep equal round(${fulltime}/${dt}) 
variable savetime equal 0.001  
variable filestep equal round(${savetime}/${dt}) 
timestep ${dt} 
 
# Output Settings 
thermo_style  custom step atoms  
thermo   100 
thermo_modify  lost ignore norm no 
compute_modify thermo_temp dynamic yes 
dump   dmp all custom ${filetime} post/dump*.liggghts id type x 
y z vx vy vz fx fy fz omegax omegay omegaz tqx tqy tqz 
 
# Plot Output Parameters 
variable  mytime equal time   
variable   px equal xcm(top,x)  
variable  py equal xcm(top,y)  
variable   pz equal xcm(top,z)  
variable   pfx equal f_topV_fix[1]  
variable   pfy equal f_topV_fix[2]  
variable   pfz equal f_topV_fix[3]  
fix    outfile all print ${filestep} "${mytime} ${px} ${py} 
${pz} ${pfx} ${pfy} ${pfz}" file cube.dat screen no title 
 
# ------------------------- RUN --------------------------------- 
fix_modify bondcr every 0 
 
run  ${runstep} 
print "All done" 
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5.2.4 Results and Discussion 

For the above described simulation, the stress-strain curves are calculated for all 

three material samples; as received, at 274°C and at 413°C aging temperature, and 

the results are plotted against the experimental results from [264] as shown in Figure 

5-3. 

 

Figure 5-3: Stress-strain curve for all 3 samples: simulation vs experimental results 

The comparison with the experimental result in Figure 5-3 shows that the model as 

currently implemented is capable of accurately reproducing results from physical 

tests such as tensile tests which are commonly used for determining the strength and 

ductility of materials. However, there is a degree of error. 

The experimental result for the AR sample shows elastic-perfectly-plastic behaviour, 

while the simulation result shows larger plastic deformation. For this case, a solution 

could be to simulate a larger sample size to avoid the influence of the boundaries on 

the simulation results, especially from the fixed bottom.  

The experimental results for both samples at 274°C and at 413°C aging temperature 

show elastic-plastic behaviour, however the plastic behaviour is small and linear as 

is expected due to the accepted model for hardening.   

Since the model only describes linear-hardening behaviour which uses the yield 

stress (𝜎𝑦)  and the ultimate stress (𝜎𝑢) to the strain work hardening modulus (𝐸ℎ), 

the ultimate tensile strength of the material cannot be accurately predicted. This is 
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particularly visible in the sample of at 413°C aging temperature since it is the 

material with the highest plastic deformation. In the case of the AR aluminium, 

since the material has a perfectly plastic response, the model is capable of capturing 

the material behaviour extremely accurately, except in the transition phase from 

elastic to plastic deformation. Although, even in this case, the error is negligible and 

is within range of material inhomogeneity.  

For the simulation results here 0.08 is used as the value of the ultimate strain (𝜀𝑢) as 

shown in Table 5-1. A better solution could be achieved by a better fit of the strain 

work hardening modulus (𝐸ℎ) by using ultimate strain (𝜀𝑢) of 0.02 for example. 

Another solution could be implementing a multi-linear hardening behaviour or 

breaking down the plastic deformation region into smaller sections with different 

strain hardening moduli.  

Of course, another source of error could be that the experimental specimens have a 

diameter of 6.35 mm and a gage length of 25.4 mm, while the simulated samples are 

10 mm x 10 mm x10 mm. However, the code presents limitations to simulate the 

actual size of the experimental specimens and keep the particle size small enough 

due to the incomplete parallelization of the code which makes this hard to do.  

As mentioned in section 4.6.1, all the simulations were conducted on a laptop with 

8GB RAM memory and 2.10 GHz processor using OpenMP with 6 numbers of 

threads. A solution is to run the simulations on the HCP. The code has been tested 

and works on the HCP however, it still shows some errors due to the incomplete 

implementation of the MPI exchange. 

In general, the results show that the model is capable of accurately simulating the 

elastic-plastic behaviour of continuous material by directly using macroscopic 

mechanical properties of materials as inputs of the simulation. This is not possible 

using DEM models where input parameters include parameters that cannot be 

obtained experimentally or not easily obtained as shown in Table 3-1 in Chapter 3 

and explained section 3.4.4.  
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 Convergence Analysis 

This section presents a convergence analysis of the model, where the simulation 

results are tested with an increase in particle size and dimensions. If the model has 

been implemented correctly, the different simulations will have similar results. 

5.3.1 Change in Sample Size 

Here the effect of sample size and particle numbers on the mechanical response is 

investigated. Three different simulation sizes were simulated as shown in Figure 5-4 

in their initial state. All the simulation parameters are kept the same except for the 

increase in the size of the sample twice and four times in all directions.  

The sample sizes are 10 mm × 10 mm × 10 mm, 20 mm × 20 mm × 20 mm and 40 

mm × 40 mm × 40 mm which produce 12,195, 92,597 and 740,772 particle sizes 

respectively. 

 

Figure 5-4: Initial structure of samples with three different sizes 

The results of this convergence test are shown in Figure 5-5.  

The main noticeable difference is that with larger sample size the yield stress 

increased for all the samples. This is likely due to the higher strain rate applied on 

the larger specimen. Another, reason could be due to the ratio of time-step to strain 

rate where the increase in strain rate leads to an overshoot of the actual yield stress. 

This however could not be tested due to computational limitations. Again, a solution 

is to run the simulations on the HCP, to apply lower pull velocity on the samples and 

simulate higher strain rates. Beyond yielding, the plastic behaviour is not influenced 

by the effect of particle size which shows very good convergence of result.  
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The strain rate in tensile or compression tests have a great effect on the mechanical 

properties/response of materials, specifically the yield limit. For example, with 

increasing strain rates the yield stress of a material is expected to increase, and it 

also influences strain hardening. Any explicit loading rate effects on the yield limit 

are not explicitly included in the study because the pull velocity is kept the same 

(0.1 m/s) for all the samples. To increase strain a lot more time-steps are required 

which is a limitation of the code due to non-complete implementation of the 

parallelization. 

 

 

Figure 5-5: Stress-strain curve for all 3 samples showing the effect of increase in sample size 

and particle numbers 

To really study the scale effect in crystalline materials, the bevaciour should be 

observed at the nano-scale where the automata will represent different parts of the 

crystal grains or grain boundaries. To simulate materials at this scale correctly it is 

required to introduce the influence of the structure of separate crystals and free/grain 

boundaries on the inter-automata forces. In the case of plastic deformation, it is also 

required to account for slip planes similar to the crystal plasticity technique used in 

FEM. 
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5.3.2 Change in Sample Aspect Ratio 

Here the effect of sample aspect ratio on the mechanical response is investigated. 

Three different samples with different aspect ratios were simulated as shown in 

Figure 5-6 in their initial state. All the simulation parameters are kept the same 

except for the increase in the height of the sample twice and four times.  

The sample sizes are 10 mm × 10 mm × 10 mm, 10 mm × 10 mm × 20 mm and 10 

mm ×10 mm × 40 mm which produce 12,195, 24,389 and 48,778 particle sizes 

respectively. 

The results of this convergence test are shown in Figure 5-7. 

Again, similar to before, the velocity in the simulation has not been changed for the 

different sample sizes, this will influence the applied strain rate on the material. 

Here, the yield stress is also higher in the larger aspect ratios. This could be 

attributed to same reasons of strain-rate and time ratio explained in the previous 

section. At higher loading rate more pronounced effect of elastic waves propagating 

across the sample is also expected. Furthermore, due to reflection and refraction of 

these waves on the free boundaries artificial oscillations near the yielding point can 

be observed. For example, we can see that this effect is much less for the samples 

with less free surface shown in Error! Reference source not found. than in Error! 

Reference source not found.. 

Furthermore, the plastic behaviour, though following the same trend, seems to be 

cyclic. This could be due to the same ratio of time step to strain rate influencing the 

results where the change in length and the change in cross-sectional is offset. This is 

seen as a decrease in the calculated stress and strain followed by an increase when 

the deformation is equivalent again.  
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Figure 5-6: Initial structure of samples with three different aspect ratios 

 

Figure 5-7: Stress-strain curve for all 3 samples showing the effect of increase in sample aspect 

ratio 
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 Performance 

In this section the performance of the model is investigated. Table 5-3 shows the 

simulation time that was taken to run each of the samples mentioned in the previous 

section. The timings are taken from the time the first output file was produced until 

the last one was produced at the last time-step. The results are shown in  Figure 5-8. 

As expected, increasing the number of particles in the simulation drastically 

increases the computational time. The time should linearly increase with the number 

of particles with the same number of time steps, which is what the results show. 

Excessive performance and scalability tests have not been carried out yet and 

considered as future work. However, the results show linear increase of time with 

number of particles that means no unpredictable losing of time for access memory 

for huge samples. 

 

Table 5-3: Simulation time for the different sample sizes 

Sample size (mm) Nr of particles Simulation time (min) 

10×10×10 12,195 4 

10×10×20 24,389 13 

10×10×40 48,778 30 

20×20×20 92,597 73 

40×40×40 740,772 600 

   

 

 

Figure 5-8: Simulation time vs number of particles showing performance of the code 
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 Parameters Sensitivity Analysis 

In this section, a few simulation parameters are investigated which are related to the 

developed code. Here we show the difference between using SC packing defined in 

the ‘atom_style mca’ command and using FCC packing. Also periodic boundary 

conditions are tests. 

 

5.5.1 Simple Cubic vs Face-Centred Lattice Structure 

According to the MCA method, particles can be packed in SC, FCC or HCP lattice 

structure. Only SC and FCC have been implemented in the code. However, MCA is 

not an atomic scale method, and this does not represent the materials atomic 

structure but is considered as a method of particle scattering in space. The use of 

different particle packings in the same simulation is not possible because the 

calculations of forces depend on the packing and all the automata initially have the 

same particle size. 

In most MCA studies in literature it has been recommended to use the FCC packing, 

especially when modelling plastic deformation which is why FCC has been used in 

all the simulations presented in this thesis. However, we would like to investigate 

the accuracy of the SC packing and its effect on the macroscopic material response 

because SC packing have much lower particle numbers and this could be helpful in 

our case because of the computational restriction. It would be much easier to use SC 

instead of FCC, it will save a lot of computational time and large simulations could 

be conducted but as shown in Figure 5-9, SC packing only gives an accurate 

response in the elastic region.  

The results below are shown for all the three different materials with the same 

simulation parameters as described before and shown in Table 5-2. Only difference 

is using the SC packing structure for the initial structure of the sample instead of 

FCC. The SC packing 

The results for SC packing show relatively accurate results in the elastic region but 

not in the plastic region. In general, this could be attributed to reason that SC has 1 

particle per unit cell, with a coordination number 6, which means that there are 6 

number of particles a single atom within a unit cell. So, each particle in the SC 

structure has 6 neighbouring particles. About 52% of the volume of the cube in an 

SC structure consists of the volume of the particles and 48% is empty space. 

FCC structures have 4 particles per unit cell, with a coordination number 12. FCC is 

the most efficient cubic structure because the atoms are arranged in such a way that 

they occupy 74% of the volume of the cube, and only 26% is un-used/empty space. 
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So, the atoms take up pretty much the whole space and maximize the use of the 

volume of the cube. This is why it is also known as the cubic closest packed 

structure, because it is the most efficient use of space when the atoms are arranged. 

Thus, the inaccurate result for SC could be attributed to the smaller number of 

neighbours to interact with and the loosely packed structure. However, in our case, 

the error in the results for SC is even higher than expected. This could be due to an 

error in the implementation of the code for SC packing in the estimation of 

equivalent stress as an “average tangential force” (for sc there are smaller distances 

to neighbours and hence the low accuracy) 

On the other hand, SC requires less simulation time and is about three times faster 

than FCC simulations because of less number of particles for the same simulation 

size and because it produces relatively accurate results for elastic deformation, it 

could be used in simulating elastic or less densely packed materials such as brittle, 

ceramics or porous materials. In this case, the SC simulation has 8,000 particles 

instead of 12,195 particles in the case of FCC structure for the same simulation size 

of 10x10x10mm. 

 

 

 

Figure 5-9: Stress-strain curve for the 3 samples showing particle packing SC vs FCC 
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5.5.2 Fixed vs Periodic Boundary Conditions 

As mentioned, all the simulations so far used non-periodic fixed boundary 

conditions in all direction (f f f). The three materials were simulated using the 

periodic boundary conditions by applying them in the x and y directions but fixed in 

the z directions which is the direction of loading. When applied tension in z 

direction these conditions actually correspond to the loading in a compression wave 

where elastic modulus is 𝐾 + 4 3⁄ 𝐺 that much higher than Young’s modulus, and 

equivalent strain increase much higher than the component 𝜀𝑧𝑧. 

The results are presented below in Figure 5-10. The sensitivity of the simulation to 

the periodic boundary effects is clearly shown which is due to the incomplete 

implementation of this feature in the model as explained in section 4.4.9. 

The PBCs as implemented using LIGGGHTS functions forces the particles positions 

to be inside the cell (within the cut-off distance) by wrapping their positions if they 

move outside the boundary which makes them appear on the other side of the 

domain. This causes abrupt changing in position and causes the velocity of the 

particle to be inconsistent with the change in position within the time-step. 

This is believed to cause the artificial effects shown in Figure 5-10., of course in 

combination with the incomplete implementation. 

 

 

Figure 5-10: Stress-strain curve for all 3 samples showing fff vs ppf boundary conditions 
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 Conclusion  

This chapter delivered the fourth contribution mentioned in section 1.4 of validation 

of the code against experimental data and investigating the sensitivity, convergence 

and performance of the model and code. 

The implementation of the MCA model described in chapter 3 has been validated by 

direct simulation of tensile tests and comparing the results against experimental data. 

The tensile test is a destructive test to determine strength and ductility of a material. 

To successfully model a continuous material in a simulation environment a real 

tensile test is required to assess the performance of the model.  

This chapter showed that the model is capable of accurately predicting the elastic-

plastic behaviour of continuous materials by directly using macroscopic mechanical 

properties of materials as inputs of the simulation. This is not possible using DEM 

models where input parameters include parameters that cannot be obtained 

experimentally or not easily obtained as shown in Table 3-1 in Chapter 3 and 

explained section 3.4.4. A distinguishing feature of the MCA method is calculation 

of forces acting on automata within the framework of many-particle interaction [5], 

which provides for an isotropic behaviour of a simulated material regarded as a 

consolidated body rather than a granular medium. This was shown in the results 

presented in this chapter. 

At the current stage of development of code, the code still faces some limitations 

mainly in simulating smaller length scales and larger simulations. This is due to the 

incomplete parallelization of the code as explained in sections 4.4.10 and 4.4.11 of 

chapter 4. Also, periodic boundary conditions and SC packing do not produce 

accurate results and are in need of further development and testing. 
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6 Chapter 6 

Micro-Indentation Validation & Case Studies 

 Introduction 

One of the uses of indentation and scratching experimental tests is to accurately 

measure friction coefficients and wear topography of contacts in the lab. Thus, here 

we are interested in testing the modelling in the simulation of these contact cases. 

Nanoindentation is a powerful technique to determine various mechanical properties 

of thin layers and also for contact analysis. Unfortunately, with the current limitation 

of computational power of the implemented code, it is not possible to simulate nano-

indentation, instead here micro-indentation is simulated. 

As explained in section 5.1, micro-indentation simulations have been modelled to 

validate against the micro-indentation experimental results conducted by the NIST 

study in [264]. The micro-indentation test is simulated to show the capability of the 

implemented model to predict plastic deformation in contact interaction. 

 Validation of MCA Model Against Micro-Indentation 

The microhardness test is similar to a Vickers indentation hardness measurement but 

on a relatively smaller scale. Micro-indentation method measures loads and 

displacements on the micro-scale allowing the measurement of many material 

properties at the macroscale such as elastic modulus, hardness, creep, viscoelastic 

properties, stress relaxation, fracture toughness, interfacial adhesion etc. [265], 

[266]. 

Typically, a very sharp and hard Berkovich diamond micro-indentor is used [267]. 

The tip is lowered into the material causing elastic deformation at the beginning then 

plastic deformation. The load is then removed. The load and deformation data are 

measured, and presented by the loading curve, as shown in Figure 6-1, provide the 

elastic and plastic properties of the material. The information obtained during the 

loading curve provides information about plastic and elastic deformations; while the 

unloading curve shows the elastic recovery in the surface [268]. To determine the 

micro-hardness maximum indentation load ( 𝑃𝑖𝑛𝑑𝑒𝑛𝑡(max)), maximum penetration 

depth (ℎ𝑚𝑎𝑥) and elastic stiffness at unloading (S) must be measured. The accuracy 

of calculated micro-hardness depends on our capability to experimentally evaluate 

these parameters. Which is why the NIST study and others keep developing new 

protocols for measuring them. 
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Another parameter, relevant for micro-indentation measurements, is (ℎ𝑓), which 

represents the depth of the indent after the unloading [268] shown in Figure 6-1, 

which is the final depth. To calculate the hardness, the contact depth (ℎ𝑐) has to be 

determined first. It presents the depth of the indenter in contact with the sample 

under the applied load. The total penetration depth (ℎ𝑚𝑎𝑥) includes not only (ℎ𝑐) but 

also the deformation of the sample around the indenter (ℎ𝑠).  

The micro-hardness is computed similar to the hardness as:  

𝐻𝑚𝑖𝑐𝑟𝑜 =
𝑃𝑖𝑛𝑑𝑒𝑛𝑡

𝐴𝑖𝑛𝑑𝑒𝑛𝑡
 

where (𝑃𝑖𝑛𝑑𝑒𝑛𝑡) is the maximum indentation loading and (𝐴𝑖𝑛𝑑𝑒𝑛𝑡) is the indentation 

area [269]. 

 

 

Figure 6-1: (a) Load vs penetration depth presented as load and unloading curves for a typical 

micro-indenter test (b) Schematic representation of indenter tip and indentation [269] 

 

6.2.1 Experimental Data 

In the NIST study [264] uni-axial tensile tests were conducted on Aluminium 6061 

samples with different aging parameters as shown before in section 5.2.1. 

They used a spherical tungsten-carbide tip indenter of radius 6.35 mm. The 

indentation was performed with a constant crosshead speed of 0.1 mm/min with 

incremental unloading, which is about 50–30 % of the peak force, and reloading 

cycles until the specified number of cycles was reached. 
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Their results are shown in Figure 6-2 in terms of loading-displacement curve for the 

AR material and at the different aging temperatures as presented before. 

 

Figure 6-2: Experimental micro-indentation load-displacement curves for AL-6061-T6 samples 

as-received (AR) and at different aging temperatures as presented by [264] 

 

6.2.2 Simulation Setup 

To simulate the micro-indentation test of the aluminium samples presented above 

for validation, the mechanical material input parameters from the tensile 

experiments presented before as shown in Table 5-2 are used. The values of these 

material parameters have been validated in section 5.2 and produced quite good 

agreement with the experimental results - especially for the sample as received (AR) 

- which should help reduce the error in simulating the micro-indentation test. The 

aluminium samples are cubes of size 7.5 mm × 7.5 mm × 7.5 mm. 

The use of the exact mechanical properties for the tungsten-carbide indenter as input 

is not as significant as the aluminium because it is a much harder material. The 

material properties of the simulated indenter are assumed to be 𝜌=2800 kg/𝑚3, 

E=9x105 MPa, 𝜈=0.18, 𝜎𝑦=2x1010 MPa and 𝐸ℎ=10 GPa.  

All particles in the simulation have the same radius of 12.7 µm and the simulation 

time-step is 10-8 s. Also, again FCC packing is used here and the initial structures of 

both aluminium samples and indenter are assumed to be homogeneous, free of 

discontinuities, and all automata are assumed to be initially bonded. 

The size of the spherical indenter is 6.35 mm in the experimental study, and the 

penetration depth is about 10 µm, which means that Hertz contact radius is about 

350 µm. 
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The shape of the simulated indenter should be a spherical one of size 6.35 mm, as 

used in the NIST study, which was first simulated as an example shown in Figure 

6-3 but not according to actual size. Simulating the actual size of the indenter and 

sample similar to the experimental study proved to be difficult because to achieve 

the penetration depth of 10 µm with a spherical indenter of indenter 6.35 mm, the 

sample size will have to be relatively large. For example, to indent at least 5 layers 

of particles (which is the minimum for producing a good plot) to a depth of 10 µm 

and achieve similar plastic deformation as with the Hertz contact radius of 350 µm, 

the width of the sample will have to be 𝑁 ≈ 2 ∙ 350 (
10

5
)⁄
3

≈ 42.8 ∙ 106 particles. 

The current computational limitation of the code will not allow to model this. 

To solve this problem, only a part of the spherical indenter is simulated. This is done 

by simulating a lens-shaped indenter (segment of the sphere) of radius about 400 µm 

curved such that it forms a contacting part of the sphere of the real indenter radius of 

6.35 mm. Figure 6-4 shows the initial structure using the disk indenter according to 

the proper simulated size. 

In terms of loading, the aluminium sample is fixed in place with zero velocity in all 

directions. Of course, fixed boundary conditions are used (f f f). For the indenter the 

loading setup of the indenter for simulating micro-indentation resembles the 

behaviour of the loading-unloading tensile test presented in section 4.6.3. but 

loading in the opposite direction. Here the indenter moves with a velocity of 0.5 m/s 

downwards in the z direction while the aluminium sample stays in place for 3000 

steps. Then reverse loading is applied by pulling the indenter upwards in the 

opposite direction for 2500 steps, and then the indenter is moved again upwards by 

600 steps. 

This is done for all three aluminium samples; as received (AR), at 274°C and at 

413°C aging temperatures. The simulation setup is described for the AR sample and 

is shown in the input script in the following section. 

 

 

Figure 6-3: An example of the initial structure of the micro-indentation model with a full 

spherical indenter but not according to actual size        
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Figure 6-4: Initial Structure of the micro-indentation model with a lens-shaped indenter 

mimicking actual contact size and penetration of the experimental study  
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6.2.3 Input Script 

 

# Material Parameters 
# aluminium NIST AR 
variable rho equal 2700   
variable Y   equal 6.9e10   
variable p   equal 0.33    
variable G   equal ${Y}/(2*(1+${p}))  
variable K   equal ${Y}/(3*(1-2.0*${p}))  
variable COF equal 0.3     
variable Sy equal 315e6    
variable Eh equal 225e6    
 
# diamond 
variable rho2 equal 2800   
variable Y2   equal 9e11    
variable p2   equal 0.18    
variable G2   equal ${Y2}/(2*(1+${p2}))    
variable K2   equal ${Y2}/(3*(1-2.0*${p2}))       
variable COF2 equal 0.3     
variable Sy2   equal 2.0e16   
variable Eh2   equal 1e10   
 
# Atom Parameters 
variable nat equal 2   
variable rp equal 0.254*5e-5   
variable d   equal 2*${rp} 
variable bt equal 3   
variable bpa equal 20 
 
# ------------------------ INITIALIZATION ---------------------------- 
dimension 3 
units  si 
boundary f f f  
atom_style mca radius ${rp} packing fcc n_bondtypes ${bt} bonds_per_atom 
${bpa} 
atom_modify map array  
neigh_modify delay 0  
newton  off 
communicate single vel yes 
 
# ----------------------- Particle DEFINITION ----------------------- 
#sample 
variable latparam equal ${d}/0.7071067812 
lattice fcc ${latparam} 
variable L equal 10*${latparam}+${rp} 
variable 2L equal 2*$L 
 
#indenter 
variable Nrings equal 10 
variable X equal 12*${latparam}+${rp} 
variable Y equal ${Nrings}*${latparam}+${rp} 
variable Z equal 1*${latparam}+${rp} 
variable Zhi equal ${L}+1*${latparam}+${rp} 
 
region  box block -${2L} ${2L} -${2L} ${2L} -${2L} ${2L} units box 
create_box ${nat} box bond/types 3  
region  BaseBox cylinder z 0 0 ${X} -${Z} ${L} units box 
create_atoms  1 region BaseBox 
region  indenter cylinder z 0 0 ${Y} ${L} ${Zhi} units box 
create_atoms  2 region indenter 
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group  Ind region indenter 
 
variable Height equal ${Zhi}-${latparam} 
region  top block EDGE EDGE EDGE EDGE ${Height} EDGE units box 
region  bot block EDGE EDGE EDGE EDGE EDGE -${rp} units box 
group  top region indenter #top - this is better for deformed indenter 
group  bot region bot 
 
# -- Moving indenter particles to get the shape of the real ball indenter --- 
variable Rind equal 6.35e-3 
variable Rr0 equal ${Nrings}*${latparam}+${rp} 
variable Hr0 equal ${Rr0}*${Rr0}/(2*${Rind}) 
displace_atoms Ind move 0 0 ${Hr0} units box 
 
variable Rr1 equal (${Nrings}-1)*${latparam}+${rp} 
variable Hr1 equal ${Rr1}*${Rr1}/(2*${Rind}) 
region  ring1 cylinder z 0 0 ${Rr1} ${L} ${2L} units box 
group  Ring1 region ring1 
variable delta equal ${Hr1}-${Hr0} 
displace_atoms Ring1 move 0 0 ${delta} units box 
 
variable Rr2 equal (${Nrings}-2)*${latparam}+${rp} 
variable Hr2 equal ${Rr2}*${Rr2}/(2*${Rind}) 
region  ring2 cylinder z 0 0 ${Rr2} ${L} ${2L} units box 
group  Ring2 region ring2 
variable delta equal ${Hr2}-${Hr1} 
displace_atoms Ring2 move 0 0 ${delta} units box 
 
variable Rr3 equal (${Nrings}-3)*${latparam}+${rp} 
variable Hr3 equal ${Rr3}*${Rr3}/(2*${Rind}) 
region  ring3 cylinder z 0 0 ${Rr3} ${L} ${2L} units box 
group  Ring3 region ring3 
variable delta equal ${Hr3}-${Hr2} 
displace_atoms Ring3 move 0 0 ${delta} units box 
 
variable Rr4 equal (${Nrings}-4)*${latparam}+${rp} 
variable Hr4 equal ${Rr4}*${Rr4}/(2*${Rind}) 
region  ring4 cylinder z 0 0 ${Rr4} ${L} ${2L} units box 
group  Ring4 region ring4 
variable delta equal ${Hr4}-${Hr3} 
displace_atoms Ring4 move 0 0 ${delta} units box 
 
variable Rr5 equal (${Nrings}-5)*${latparam}+${rp} 
variable Hr5 equal ${Rr5}*${Rr5}/(2*${Rind}) 
region  ring5 cylinder z 0 0 ${Rr5} ${L} ${2L} units box 
group  Ring5 region ring5 
variable delta equal ${Hr5}-${Hr4} 
displace_atoms Ring5 move 0 0 ${delta} units box 
 
variable Rr6 equal (${Nrings}-6)*${latparam}+${rp} 
variable Hr6 equal ${Rr6}*${Rr6}/(2*${Rind}) 
region  ring6 cylinder z 0 0 ${Rr6} ${L} ${2L} units box 
group  Ring6 region ring6 
variable delta equal ${Hr6}-${Hr5} 
displace_atoms Ring6 move 0 0 ${delta} units box 
 
variable Rr7 equal (${Nrings}-7)*${latparam}+${rp} 
variable Hr7 equal ${Rr7}*${Rr7}/(2*${Rind}) 
region  ring7 cylinder z 0 0 ${Rr7} ${L} ${2L} units box 
group  Ring7 region ring7 
variable delta equal ${Hr7}-${Hr6} 
displace_atoms Ring7 move 0 0 ${delta} units box 
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variable Rr8 equal (${Nrings}-8)*${latparam}+${rp} 
variable Hr8 equal ${Rr8}*${Rr8}/(2*${Rind}) 
region  ring8 cylinder z 0 0 ${Rr8} ${L} ${2L} units box 
group  Ring8 region ring8 
variable delta equal ${Hr8}-${Hr7} 
displace_atoms Ring8 move 0 0 ${delta} units box 
 
variable Rr9 equal (${Nrings}-9)*${latparam}+${rp} 
variable Hr9 equal ${Rr9}*${Rr9}/(2*${Rind}) 
region  ring9 cylinder z 0 0 ${Rr9} ${L} ${2L} units box 
group  Ring9 region ring9 
variable delta equal ${Hr9}-${Hr8} 
displace_atoms Ring9 move 0 0 ${delta} units box 
 
# Discretization Parameters 
variable skin equal 2*${d} 
neighbor ${skin} bin   
timestep 5.0e-15    
 
# ------------------------ FORCE FIELDS ------------------------------
pair_style  mca ${skin} 
pair_style mca ${skin} 
pair_coeff 1 1 ${COF} ${G} ${K} ${Sy} ${Eh} 
pair_coeff 2 2 ${COF2} ${G2} ${K2} ${Sy2} ${Eh2} 
 
bond_style  mca 
bond_coeff * 
 
mass   1 1.0  
mass   2 1.0  
 
group  Base region BaseBox 
set  group Base mol 1 
set  group Base density ${rho} 
set  group Ind mol 2 
set  group Ind density ${rho2} 
 
# ------------------------- SETTINGS --------------------------------- 
# Loading parameters 
variable v_vel_up equal -0.5 
variable ts equal 10000.0*1.E-4*5e-5  
variable vel_up equal ${vel0}*(1.0-exp(-
(2.4*time/${ts})*(2.4*time/${ts}))) 
variable vel_down equal 0.0  
fix  topV_fix top mca/setvelocity 0 0 v_vel_up 
fix  botV_fix bot mca/setvelocity 0 0 v_vel_down 
 
# Create Bonds Between Particles  
variable cutoff equal ${d}*(1.0+0.02) 
fix   bondcr1_1 all bond/create/mca 1 1 1 ${cutoff} 1 ${bpa} 
fix   bondcr1_2 all bond/create/mca 1 1 2 ${cutoff} 2 ${bpa} state 1 
fix   bondcr2_2 all bond/create/mca 1 2 2 ${cutoff} 3 ${bpa} 
 
# Time Integration 
group  nve_group region box 
fix  integr nve_group nve/mca 
 
# Simulation Time Parameters 
variable dt equal 2.e-4*5e-5 
variable TimeStep equal ${rp}/(sqrt((${K}+4.*${G}/3.)/${rho})) 
print 'Recommended time step for aluminium = ${TimeStep}' 
if "${TimeStep} < ${dt}" then & 
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  "print 'Recommended time step ${TimeStep} is smaller than dt= ${dt}'" & 
  quit 
variable TimeStep2 equal ${rp}/(sqrt((${K2}+4.*${G2}/3.)/${rho2})) 
print 'Recommended time step for diamond = ${TimeStep2}' 
if "${TimeStep2} < ${dt}" then & 
  "print 'Recommended time step for diamond ${TimeStep} is smaller than dt= 
${dt}'" & 
  quit 
variable fulltime equal 3e-5  
variable runstep equal ${fulltime}/${dt} 
variable savetime equal 5e-7 
variable filestep equal ${savetime}/${dt} 
timestep ${dt} 
 
# Output Settings 
thermo_style  custom step atoms 
thermo   100 
thermo_modify  lost ignore norm no 
compute_modify thermo_temp dynamic yes 
 
dump   dmp all custom ${filestep} post/dump*.liggghts id type x 
y z vx vy vz fx fy fz omegax omegay omegaz tqx tqy tqz 
 
# Plot Output Parameters 
variable mytime equal time # step*${dt} 
variable px equal xcm(top,x) #x[${lastone}] 
variable py equal xcm(top,y) #y[${lastone}] 
variable pz equal xcm(top,z) #z[${lastone}] 
variable pfx equal f_topV_fix[1] #fx[${lastone}] 
variable pfy equal f_topV_fix[2] #fy[${lastone}] 
variable pfz equal f_topV_fix[3] #fz[${lastone}] 
fix  outfile all print ${filestep} "${mytime} ${px} ${py} ${pz} 
${pfx} ${pfy} ${pfz}" file cube.dat screen no title “ 
 
 
# ------------------------- RUN --------------------------------- 
run  1  
fix_modify bondcr1_1 every 0   
fix_modify bondcr2_2 every 0  
run  ${runstep} 
 
# Reverse loading smoothly 
variable vel_revers equal ${vel0}*cos((time-${fulltime})*2.0*PI/${ts}) 
unfix  topV_fix 
fix  topV_fix top mca/setvelocity 0 0 v_vel_revers 
variable revstep equal ${ts}/(2.0*${dt}) 
run  ${revstep} 
 
# Unloading 
variable vel_unload equal -${vel0} 
unfix  topV_fix 
fix  topV_fix top mca/setvelocity 0 0 v_vel_unload 
variable unloadstep equal ${runstep}/5.   
run  ${unloadstep} 
 
quit 
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6.2.4 Results and Discussion 

Figure 6-5 shows a cross-section view of the simulated micro-indentation model 

with the disk-shaped indenter after loading to a penetration depth of 10 µm. 

Figure 6-6 shows the loading-displacement curve for all three samples and 

comparing them against the experimental results shown in Figure 6-2. 

 

 

Figure 6-5: Cross-section view of the micro-indentation model after loading to penetration 

depth 10µm 
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Figure 6-6: Loading-Displacement curve for all 3 sample: simulation vs experimental results 

The loading-displacement curve shown in Figure 6-6 shows the results of the micro-

indentation test described. The three curves calculated for the simulation of micro-

indentation of the three different materials show correct behaviour which resembles 

the behviour of the experimental data, however there is a degree of error. 

As explained, due to restrictions in the simulation, the indenter was designed to have 

a disk shape instead of a spherical one. This will have an effect on the simulation 

results because the pressure distribution in the contact during the beginning of the 

test is different and it will affect the behaviour when plastic deformation occurs.  

In the case of the AR sample, the simulation measured a smaller indentation depth 

with a maximum error of 1% at around 160 Newtons. The same error is also present 

in the unloading curve. On the other hand, in the cases of 274°C and 413°C, the 

model overestimated the strain, with a maximum error of 0.8% and 0.5% 

respectively.  

In all 3 cases, the general trend of the deformation is conserved.  

The differences between the experimental and model results can be attributed to the 

following reasons:  

- The shape of the indenter in the beginning of the test influences not only the 

pressure distribution in the contact, but also the onset of plasticity and 

yielding.  
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- The linear strain hardening model used may not perfectly capture the 

material behaviour at this scale of deformation. 

- Since the experimental aluminium samples have been heat treated, the exact 

homogeneity of the microstructure at the indenter tip is unknown.  

- After displacement of some particles, internal forces may produce extra 

forces in the interaction with the main sample. 

Furthermore, as mentioned in section 5.2.4, for the mechanical properties of the 

material here 0.08 is used as the value of the ultimate strain (𝜀𝑢) for all three 

materials, as shown in Table 5-1. A better solution could be achieved by a better fit 

of the strain work hardening modulus (𝐸ℎ) by using ultimate strain (𝜀𝑢) of 0.02 for 

example. 

Another possible reason for the error could be due to the effect of surface roughness. 

All the specimens were experimentally grounded and polished to 0.06-μm colloidal 

silica, however, the particle size in the model is 12.7 µm which is much higher than 

the roughness.  

Despite the above-mentioned issues, the model is generally capable of predicting the 

trend of the loading cycle and the expected elastic recovery to a very good degree of 

agreement.  

Further work can be done to obtain better agreement with experimental results, such 

as: 

− simulating the indentation of bigger samples using a spherical indenter 

bigger sample 

− smaller particle size, hence larger number of particles and simulation size 

− fitting of the strain work hardening modulus by using lower values of the 

ultimate strain (𝜀𝑢), for example 0.02 instead of 0.08 

− implement multi-linear hardening 

− study the inhomogeneity of the samples used in the experimental study and 

incorporate them in the initial structure of the model using the bonding 

features  

− study the effect of slip plane direction 

− study the effect of roughness  

− properly account for surface interactions 
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 Case Studies 

This section presents some further simulations to show the capabilities of developed 

model. Here no validation against experimental results or detailed analysis is 

conducted; only the mechanical response is analysed. The tests shown here are only 

for the purpose of showing the types of simulation and geometries that could be 

simulated with the use of the new MCA commands in LIGGGHTS-MCA. 

 

6.3.1 Case Study I: Indentation using Berkovich Indenter 

In this section similar indentation behaviour as described in the previous section is 

simulated but with a diamond Berkovich Indenter, a much simpler simulation setup 

and much larger particle size. The Berkovich indenter is commonly used in hardness 

testing and indentation, so this section explores the capability of the model to 

describe the behaviour using a pyramid-shaped indenter instead of a spherical one. 

Here aluminium samples are indented with a diamond Berkovich indenter. The 

sample has equal-sized particles of 0.254 mm located in SC and FCC structures. The 

sample size is 30 mm × 30 mm × 30 mm Figure 6-7 shows the initial structure of 

the FCC packed sample. Figure 6-8 shows the simulated model after the sample has 

been indented to its maximum penetration depth which is 5 layers of particles. It 

shows the deformation of the sample in the z direction of loading. Figure 6-9 shows 

the map of residual displacement at the surface of the sample at different time-steps; 

from the initial step to the final step, showing irreversible plastic deformation. 

Figure 6-11 shows the map of residual displacement at the surface for the final time-

step. Figure 6-11 shows the calculated load-displacement curve of the indentation.  

 

Figure 6-7: Initial structure of indentation using Berkovich indenter 
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Figure 6-8: Indentation after loading to maximum penetration depth 

 

Figure 6-9: Map of residual displacement at the surface at different time steps from initial to 

final time-step showing irreversible plastic deformation  

 

Figure 6-10: Map of residual displacement at the surface at final time-step  
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Figure 6-11: Loading-Displacement curve for indentation with Berkovish indenter showing the 

difference between results in SC and FCC structures 

 

The loading-displacement curve of the indentation using the Berkovish indenter is 

shown in Figure 6-11. Even though the results here are not validated or investigated 

in detail, the results show that the model is capable of capturing the expected 

behaviour of material deformation. 

The curve shows a step-like behaviour because of the layers of particles in the 

indenter shape. This is not the case in the simulation with spherical indenter. 

However, even in the case of indentation using Berkovich indenter the curve will be 

smoother if smaller particle sizes and more layers of particles are simulated.  

The plot also shows the difference between the indentation using SC and FCC 

packing structures, and both show good behviour. In the case of SC, step like 

behaviour can be attributed to the compression of the layers of particles due the 

lower packing efficiency. In the case of FCC, the improved packing provides a 

much smoother climb. However, both packing structures show close agreement. 
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6.3.2 Case Study II: Scratch Testing 

Scratch testing is performed by a controlled continuous loading of the material by 

moving the indenter, after it is inserted at a certain penetration depth, along the 

material surface. The material deforms elastically first and then moves into the 

elastic-plastic range to its limiting state and then further fracture occurs.  

Indentation and scratching are essentially similar procedures, only that the latter 

traces the motion of the indenter not only normally to the surface but also 

tangentially. Using this coefficient of friction can be analysed. 

Here the exact same simulation parameters as described in section 6.3.1. are used, 

the only difference is that sliding occurs after indentation of one layer of particles. 

The initial structure of the model is shown in Figure 6-12 but in SC packing 

structure instead of FCC as shown in Figure 6-7. 

Figure 6-13 shows the simulated model after the sample has been indented to its 

maximum penetration depth which is one layer of particles. It shows very slight 

deformation of the sample in the z direction of loading because only one layer of 

atoms is indented, in comparison to larger deformation in the previous case in Figure 

6-8 because 5 layers of atoms were indented. Figure 6-14 shows the map of residual 

displacement of the model with the indenter (on the left) and without the indeter to 

view the scratch (on the right) showing the irreversible plastic deformation of the 

aluminium sample. Figure 6-15 shows the results in terms of normal load-

displacement curve, and Figure 6-16 shows the tangential loading-displacement 

curve. 

 

Figure 6-12: Initial structure of scratch test using Berkovich indenter 
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Figure 6-13: Scratch test after loading to maximum penetration depth 

 

 

Figure 6-14:  Map of residual displacement from initial state (top two images) to the final state 

(bottom two images)  
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Figure 6-15: Loading-Displacement curve for scratch test 

 

Figure 6-16: Loading-displacement curve in the tangential direction 

The loading-displacement curve of the scratch test using the Berkovish indenter is 

shown in Figure 6-15. The results show that model is capable of calculating and 

tracking the position of the indenter and how the depth and force change with 

scratching. Figure 6-16 shows the loading-displacement curve in the tangential 

direction. The coefficient of friction can also be extracted from the plot and 

calculated as 𝐶𝑂𝐹 =
𝐹𝑋

𝐹𝑁
≈ 0.4 which is in very good agreement with the expected 

value for aluminium. Scratch tests are primarily used to test the adhesion between a 

coating and a surface. They can also be used to measure nano-scale friction. Further 

work is required in order to validate the procedure, however, for the purposes of 

testing the model and what it can measure, the model is capable of simulating 

scratch tests.  
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 Conclusion 

This chapter further delivered the fourth contribution mentioned in section 1.4 of 

validation of the code against experimental data. MCA simulations of indentation 

and sliding processes are presented to test this new software for the prediction of 

tribological behaviour 

This was done by simulating micro-indentation tests and comparing them to 

experimental results. The results show correct mechanical response but show a 

degree of variation compared to the experimental results. However, a larger degree 

of agreement with experimental results could be obtained by investigating the points 

mentioned in section 6.2.4. 
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7 Chapter 7 

Summary & Conclusions 

This thesis successfully extended the open-source code LIGGGHTS to move from 

DEM description to MCA, the same way LIGGGHTS is an extended version of 

LAMMPS to move from MD to DEM. The reasons behind choosing MCA has been 

discussed in detail in Chapters 2 and 3. Specifically, this is believed to be a great 

step ahead towards the prediction of friction and wear, by being able to correctly 

simulate elastic-plastic deformation of different scale levels by using direct 

macroscopic material deformation parameters as input parameters. 

Our understanding of friction and wear processes is still very limited. How two 

surfaces come in contact and how they interact is not in any way a simple process. 

When an object moves tangentially to a surface such as in sliding or rolling cases, 

frictional forces are produced leading to energy loss, wear and deformation of 

surfaces, limiting the lifetime of mechanical systems. However, the modelling of 

friction and wear phenomena is very complex and despite of the vast interest in the 

field and the increasing capabilities of computational modelling, no practical and 

comprehensive friction models occur that can show and predict all the aspects of 

friction dynamics observed experimentally.  

Most models available for friction and wear are empirical models that do not involve 

any information on the underlying mechanisms, are very hard to generalize for 

different materials and conditions, and hence lack predictive capabilities. This lack 

of understanding and predictability is due to the multi-scale nature of the 

phenomena; meaning the origin of friction and wear comes from the atomic scale up 

to the macro scale. The behaviour on all the scales should be captured, however, this 

is – until now – not possible. It is a major mathematical challenge and the aim of this 

thesis was to develop a model that will help bridge the gap between the nano and 

macro scales for surfaces in contact to study and predict friction and wear behaviour.  

Many numerical studies were conducted in tribology; however, they were mostly 

performed on a single scale and there is a lack of coupling between the different 

scales within a single simulation. For effective and reliable predictive models of 

friction and wear to occur, tribological systems should be modelled as a whole 

system, the surfaces in contact along with the interactions between them. The 

tribological components and phenomena (friction and wear) exist at many different 

scales, ranging from the atomic scales to the macro scales.  

It was concluded that the multi-scale modelling of tribological systems is crucial for 

understanding and predicting tribological phenomena. All the scales have an effect on 

these phenomena, however the mesoscopic scale was found to be the scale most 
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responsible for their behaviour. Furthermore, the mesoscale could be used as a starting 

point for bridging the gap between the micro and macro scales.  

After extensive research, the movable cellular automata (MCA) method which is a 

mesoscopic discrete method was chosen for bridging the gap between the atomic 

and macro scales. MCA is a particle-based method that is capable of directly 

describing plastic deformation from at different scales from macro mechanical 

material properties as inputs, due to the many-body interaction form. The main 

advantage of the MCA method is the generalized many-body formulas for central 

interaction forces acting between the pair of particles similar to the embedded atom 

force filed used in molecular dynamics. It is based on computing components of the 

average stress and strain tensors in the bulk of automaton according to the 

homogenization procedure described in chapter 3. Use of many-body interaction 

forces allows correct simulating within discrete element approach such important 

features of the mechanical behaviour of solids like Poisson effect and plastic flow. 

Hence, it was chosen to be the best method to attempt multi-scale modelling for the 

prediction of friction and wear because a clear separation of macroscopic and 

microscopic scale is principally impossible for triblological phenomena. 

Mescoscopic modelling bridges the gap between atomistic and continuum 

viewpoints and friction and wear mechanisms are considered mesoscopic multi-

scale phenomena that act very similar to fracture and plastic deformation 

phenomena.  

The MCA method allows for the simulation of friction forces as a function of material, 

loading parameters, surface topography and wear. Most studies are done by V. L. 

Popov, S. G. Psakhie and A. I. Dmitriev studying wear in combusion engines, friction 

coefficient in rail/wheel contact, quasi-fluid nano-layers, surface topography. In the last 

five years more studies were done by A. I. Dmitriev and W. Österle looking at friction 

of the automotive braking system and tribofilms. It also gives the possibility of choosing 

the scale of the simulation which help investigate elementary processes in tribological 

systems. Furthermore, due to its unique capabilities it allows for the simulation of 

formation and accumulation of damages, fracture processes, formation of pores and 

cracks and most importantly the simulation of friction and wear. The results obtained 

from these simulations have been proved to be reliable compared experimental data. 

The MCA method as developed by the authors as listed above and including Sergey 

G. Psakhie, Valentin L. Popov, Evgeny V. Shilko, and the external supervisor on 

this thesis Alexey Yu. Smolin, has been successfully implemented in the open-

source code LIGGGHTS. This follows the 3D elastic-plastic model found in [1]–[3], 

and section 3.5 in this thesis. It is important to mention that before delving into the 

implementation of MCA in LIGGGHTS a good understanding of the use of 
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LIGGGHTS as a software and also the understanding of its source code was a 

crucial step to ensure proper implementation and also not to add things which were 

already available in LIGGGHTS. I believe this was a keystone for the successful 

implementation within the time frame of the PhD. 

The code was successfully implemented within the framework of the open source 

code LIGGGHTS. Different verification, validation and convergence tests have been 

conducted.  

The implementation of the MCA model described in Chapter 3 has been validated 

through a number of material characterization simulations. It is validated against 

experimental tensile test in Chapter 5 and against micro-indentation in Chapter 6. 

The results show that the model is capable of predicting elastic-plastic deformation 

for continuous material by directly using the materials macroscopic material 

parameters. This is only possible due to the MCA formulations described in Chapter 

3. 
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8 Chapter 8 

Future Work 

It is important to note that this thesis is a starting point for many future possible 

developments, implementations and use in running simulations and studying 

material deformation behaviour. I would say 90% of the ground bases have been 

accomplished and only a few future steps are needed for the MCA method to be 

totally implemented within LIGGGHTS for the scientific and tribology communities 

to use. The main limitations of the current code are concerned with the functions 

related to the cross communication between processors. This is required for parallel 

processing and periodic boundary conditions. Once this is correctly implemented, 

smaller particle sizes and larger simulation domains could be simulated which will 

help study more complex systems. The most important functionalities related to the 

correct governing of the physical model have been successfully implemented such 

as particle definition, neighbour list generation and update, force calculations, 

bonding, integration and looping over time-step. Algorithmic optimization for 

parallel computing is thus considered as secondary. 

The following subsections provide a non-exhaustive list of further developments of 

the code, as well as possible further analysis and simulations, however many further 

possibilities may be envisaged, the possibilities listed are in no way limiting. 

 Further Development of Code 

8.1.1 Parallelisation  

The first and main limitation of the developed MCA model in LIGGGHTS, is that it 

is still not running completely in parallel. This has limited the type, number and 

complexity of the simulations that we were able to run. However, with further 

development of the code’s parallelization, different types of materials at different 

scales and complexity could be simulated including friction and wear. 

Ideally, we should have both MPI and OpenMP. As mentioned in section 4.4.10. and 

4.4.11. both have not been fully realized. OpenMP is implemented but is not very 

efficient, and its efficiency needs to be tested and optimized mainly for the 

‘PairMCA’, ‘BondMCA’ and ‘BondCreateMCA’ classes because they are the most 

time-consuming parts of the code. 

Furthermore, currently in some simulation the code produces an error of “Bond 

atoms … missing on proc …” which usually happens when the wrong size of 

simulation box is specified because particles can move out of the simulation box and 

be lost. However, in our case it also sometimes happens when running a simulation 
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in parallel using OpenMP, but it does not occur in serial mode (one thread). 

Additional analysis is needed to fix this error. 

 

8.1.2 Correcting Code for SC Packing 

As explained in section 5.5.1, SC packing only shows good results for the elastic 

region, but not the plastic region, and the implemented code for calculating the 

forces for correction for plastic deformation needs to be revised and corrected. 

 

8.1.3 Correcting Code for Periodic Boundary Conditions 

As explained in section 5.5.2. PBC does not show good results, which is because it 

has not been fully implemented yet as explained in section 4.4.9. the PBC will be 

very useful to implement, it will also help with the MPI exchange, however it not 

fully realised yet. The related function including pack_comm, pack_comm_vel, 

pack_border, and pack_border_vel, need to be fully understood and revised. Since 

the periodic boundary feature comes from LAMMPS and the whole communication 

infrastructure is implemented in the 'basement' of LAMMPS, it might be useful to 

review this feature in LAMMPS first before trying to implement it in LIGGGHTS, 

this is also true for the MPI exchange.  

It will also be good to test PBCs with smaller particle sizes and study its effect on 

the macroscopic response. 

 

8.1.4 Implementation of Multi-Linear Harding 

Currently only linear hardening is implemented for the description of interaction 

forces for plastic deformation. This shows good agreement with experimental results 

to some degree, but multi-linear hardening would show more accurate results.  

 

8.1.5 Implementation of Bond Formation 

Currently, the ‘bond_style mca’ described fracturing or breaking of bonds, meaning 

the switching of state from linked to unlinked, but not vice versa; which is a very 

helpful tool in MCA and also is essential for modelling friction zone. The bond 

formation or binding initial parameters have been defined in ‘BondMCA’ style but 

force calculation and binding criteria have not been implemented yet. 

This can be implemented using the description of section 3.5.3.2. 
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8.1.6 Implementation of Heat Conduction Between Particles 

Another limitation is that the current MCA implemented model does not include 

temperature effects, and therefore cannot adjust parameters due to temperature 

changes. Particles that are in contact may exchange their thermal energy and have 

chemical reactions. The heat transfer between particles still needs to be implemented 

which is also an important step in implementing the bonding formation formulas of 

MCA and studying effects such as phase change. However, this could be done by 

incorporating a linear coefficient of thermal expansion (𝛼𝑖) and temperature change 

(∆𝑇𝑖) of automata i in each time-step in the equations of interactions described in 

section 3.5.2., such that equation (3.54) for calculating the normal force 

𝜎𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗 + ∆𝜎𝑖𝑗 = 𝜎𝑖𝑗 + 2𝐺𝑖∆𝜀𝑖𝑗

𝑛+1 + (1 − 2𝐺𝑖/𝐾𝑖)∆𝜎𝑖
𝑛+1            (𝟑. 𝟓𝟒) 

can be described as follows to include the thermal expansion and temperature 

parameters: 

𝜎𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗 + 2𝐺𝑖(∆𝜀𝑖𝑗

𝑛+1 − 𝛼𝑖∆𝑇𝑖) + (1 − 2𝐺𝑖/𝐾𝑖)(∆𝜎𝑖
𝑛+1 − 3𝐾𝑖𝛼𝑖∆𝑇𝑖) 

This can be implemented in the ‘pair_style mca’ but will also need new integrators 

such as a new ‘fix npt/mca’ according to the isobaric-isothermal NPT ensemble, or a 

new ‘fix nph/mca’ according to the isenthalpic NPH ensemble, because the current 

‘fix nve/mca’ Nose-Hoover thermostat does not have any temperature or pressure 

control. 

 

8.1.7 Enable Restarting of Simulation Runs 

LIGGGHTS provides a ‘restart’ command to restart a simulation after it has 

stopped. This is useful when a simulation is really long or when the simulation is 

expected to stop because of an error, so instead of having to run the simulation from 

the beginning, it is possible to choose at which time-step you want to presume the 

run. This command produces a binary output file every few time-steps with the 

information from that time-step needed to continue running later on. The restart files 

can then be read by a ‘read_restart’ command to restart the simulation from a 

particular time-step. 

This feature currently does not work with the new MCA commands. This could be 

implemented by defining ‘write & read_restart” methods related to this function in 

each of the new classes (atom, pair, bond and fix). The new MCA member classes 

and attributes need to be defined in these methods for each new MCA class. 
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8.1.8 Numerical Damping 

Numerical damping could also be implemented to be able to obtain an equilibrium 

configuration of the system by using fewer integration steps. In the simulation of 

quasi-static phenomena, the dissipation of kinetic energy is desired, however, most 

constitutive laws do not include velocity-based damping, but artificial damping can 

be used. This is also a technique used in DEM [270], however in MCA a different 

technique is used. It is related to the way of calculating the current coordination of 

the automata i and j. Currently, we use the equation (3.57) previously described 

∆𝑟𝑖𝑗
𝑛+1 = |𝑅⃗ 𝑖

𝑛+1 − 𝑅⃗ 𝑗
𝑛+1| − |𝑅⃗ 𝑖

𝑛 − 𝑅⃗ 𝑗
𝑛| 

This takes a lot of computational time, so instead of using actual coordinates of the 

automata, a so-called implicit factor can be used to calculate the deformation based 

on predictor values obtained with the help of velocities multiplied by the order of the 

time step t , where ζ is the coefficient of implicitness of the numerical scheme. This 

means that the current coordinates will be used in a future time-step if the particle 

velocity has not changed. 

The following equation is used to increase the distance between the centers of the 

automata 

∆𝑟𝑖𝑗
𝑛+1 = (𝑟𝑖𝑗

𝑛+1 + 𝜁∆𝑡(𝑉⃗ 𝑖𝑗
𝑛+1. 𝑛⃗ 𝑖𝑗

𝑛+1)) − (𝑟𝑖𝑗
𝑛 + 𝜁∆𝑡(𝑉⃗ 𝑖𝑗

𝑛 . 𝑛⃗ 𝑖𝑗
𝑛 )) 

However, this will probably not be needed if the parallelisation of the code has been 

accomplished. 

 

8.1.9 Test New Code on More Recent Versions of LIGGGHTS 

As mentioned, the current MCA styles and code have been implemented in 

LIGGGHTS-Public version 3.3.1. released 23/09/2015. It would be useful to test it 

on the most recent version of LIGGGHTS-Public version 3.8.0. released 

30/11/2017, in case any users want to use MCA within the more recent versions of 

LIGGGHTS and also for reasons explained in the following section. This should be 

relatively easy and no complication are anticipated. 

 

8.1.10 Documentation or Manual for Using MCA Model in LIGGGHTS 

One of the advantages of both LAMMPS and LIGGGHTS, are that their commands 

are well documented so that users can easily run simulations correctly. Similar 

documentation could be written for the new MCA styles which could also help with 
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possible future submitting of the new features for inclusion in LIGGGHTS-Public as 

a user package, which is something that LIGGGHTS encourages to do. 

According to LIGGGHTS manual [189] “Here is what you need to do to submit a 

user package or single file for our consideration. Following these steps will save 

time for both you and us. See existing package files for examples. 

1. All source files you provide must compile with the most current version of 

LIGGGHTS(R)-PUBLIC. 

2. If you want your file(s) to be added to main LIGGGHTS(R)-PUBLIC or one 

of its standard packages, then it needs to be written in a style compatible 

with other LIGGGHTS(R)-PUBLIC source files. This is so the developers 

can understand it and hopefully maintain it. This basically means that the 

code accesses data structures, performs its operations, and is formatted 

similar to other LIGGGHTS(R)-PUBLIC source files, including the use of 

the error class for error and warning messages. 

3. Your new source files need to have the LIGGGHTS(R)-PUBLIC copyright, 

GPL notice, and your name at the top, like other LIGGGHTS(R)-PUBLIC 

source files. They need to create a class that is inside the LIGGGHTS(R)-

PUBLIC namespace. I.e. they do not need to be in the same stylistic format 

and syntax as other LIGGGHTS(R)-PUBLIC files, though that would be 

nice. 

4. Finally, you must also send a documentation file for each new command or 

style you are adding to LIGGGHTS(R)-PUBLIC. This will be one file for a 

single-file feature. For a package, it might be several files. These are simple 

text files which we will convert to HTML. They must be in the same format 

as other *.txt files in the lammps/doc directory for similar commands and 

styles. The txt2html tool we use to do the conversion can be downloaded 

from this site, so you can perform the HTML conversion yourself to 

proofread your doc page.” 

Steps 2 and 3 are completed, except of course for the future development part of the 

code, as explained in the previous sections, most importantly the parallelisation of 

the code. Steps 1 and 4 should ready to do. 
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 Further Analysis and Simulation Possibilities 

8.2.1 Further Performance Analysis 

Chapter 5 presented some of the performance analysis done on the present state of 

the code. However, further analysis could be done, specifically for analysing the 

computational cost and particle sizes. It is recommended to test the reference case 

with particle sizes 0.05 mm, 0.005 mm and analyse the corresponding simulation 

time and accuracy of material deformation response. 

It is expected that the particle size below 0.5 mm for the uni-axial tension and shear 

tests will not produce a much difference in terms of deformation response. However, 

in the micro-indentation test, and similar further tests it could have a big effect. 

It will also increase the possibilities of simulating more complex material 

deformation phenomena including friction and wear. 

 

8.2.2 Simulation of Different Materials 

The code has been tested on ductile materials with different yield strengths and 

strain hardening, however, it is also recommended to test the code on different 

materials such as ceramics, glass, copper, etc. Since MCA has been proven to be 

really efficient in the simulation of brittle materials, and the code has shown 

accurate results for elastic and fracture behaviour, this should not present any 

difficulties.  

 

8.2.3 Multi-Scale Simulation 

After the testing of smaller particle-sizes, which will be much easier to do once the 

code runs in parallel, the code could be tested to run multi-scale simulations. Again, 

this was already done using the MCA method in other MCA papers including [3], so 

if the method is correctly implemented within LIGGGHTS, then this should be 

possible. 

 

8.2.4 Simulation of Tribological Systems 

In terms of modelling the first bodies, using LIGGGHTS commands, and as shown 

in the case of modelling indentation, it is possible to define two solids in contact. 

The material properties and rheology of these bodies could be defined.   

In terms of modelling the third body, using the current state of the code it is possible 

to simulate a “quasi-liquid” layer by creating a layer with specific properties 
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between two solid bodies in the initial structure of the simulation. High plasticity of 

this layer will produce easier sliding. Models as described in papers [155]–[162] can 

be modelled using the current code in 3D instead of just in 2D. 

Boundary conditions can then be applied to the three different bodies and the 

coefficient of friction can be calculated as described in chapter 2, and shown in 

Figure 2-14, as the vertical components of the force acting on the top layer (block) 

of particles from the lower particles, divided by the horizontal components of the 

force acting on the same particles. This describes a dynamics coefficient of friction 

between the sliding contacts. Wear phenomena could also be studied by analysing 

damaging and fracturing of particles. 
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[81] C. Jacq, D. Nélias, G. Lormand, and D. Girodin, “Development of a Three-

Dimensional Semi-Analytical Elastic-Plastic Contact Code,” J. Tribol., vol. 

124, no. 4, p. 653, 2002. 

[82] F. Sahlin, R. Larsson, A. Almqvist, P. M. Lugt, and P. Marklund, “A mixed 

lubrication model incorporating measured surface topography. Part 1: Theory 

of flow factors,” Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 224, no. 4, 

pp. 335–351, 2010. 

[83] G. Carbone and C. Putignano, “A novel methodology to predict sliding and 

rolling friction of viscoelastic materials: Theory and experiments,” J. Mech. 

Phys. Solids, vol. 61, no. 8, pp. 1822–1834, 2013. 

[84] R. Bugnicourt, P. Sainsot, N. Lesaffre, and A. A. Lubrecht, “Transient 

frictionless contact of a rough rigid surface on a viscoelastic half-space,” 

Tribol. Int., vol. 113, pp. 279–285, 2017. 

[85] P. R. Dawson, “Computational crystal plasticity,” Int. J. Solids Struct., vol. 

37, no. 1–2, pp. 115–130, 2000. 

[86] R. Hill and J. R. Rice, “Constitutive analysis of elastic-plastic crystals at 

arbitrary strain,” J. Mech. Phys. Solids, vol. 20, no. 6, pp. 401–413, 1972. 

[87] G. I. Taylor and C. F. Elam, “Bakerian Lecture. The Distortion of an 

Aluminium Crystal during a Tensile Test,” Proc. R. Soc. A Math. Phys. Eng. 

Sci., vol. 102, no. 719, pp. 643–667, 1923. 

[88] G. I. Taylor, “Plastic strain in metals,” J. Inst. Met., vol. 62, pp. 307–324, 

1938. 

[89] R. Hill, “Generalized constitutive relations for incremental deformation of 

metal crystals by multislip,” J. Mech. Phys. Solids, vol. 14, no. 2, pp. 95–102, 

1966. 

[90] R. J. Asaro, “Crystal Plasticity,” J. Appl. Mech., vol. 50, no. 4b, p. 921, Dec. 

1983. 

[91] F. Roters, P. Eisenlohr, T. R. Bieler, and D. Raabe, Crystal Plasticity Finite 

Element Methods : in Materials Science and Engineering. Wiley, 2011. 

[92] H. Li, Z. Jiang, and D. Wei, “Crystal Plasticity Finite Modelling of 3D 

Surface Asperity Flattening in Uniaxial Planar Compression,” Tribol. Lett., 

vol. 46, no. 2, pp. 101–112, May 2012. 

[93] R. Online, H. Li, Z. Jiang, D. Wei, J. Han, and D. Han, “Crystal plasticity 

finite element modelling of surface roughness and texture of metals 

Publication Details,” 2011. 

[94] L. Nicola, A. F. Bower, K.-S. Kim, A. Needleman, E. Van Der Giessen, and 

L. N. Ab, “Multi-asperity contact: A comparison between discrete dislocation 

and crystal plasticity predictions,” Philos. Mag., vol. 88, pp. 3713–3729. 

[95] B. Barzdajn, A. T. Paxton, D. Stewart, and F. P. E. Dunne, “A Crystal 

Plasticity Assessment of Normally-loaded Sliding Contact in Rough Surfaces 

and Galling,” J. Mech. Phys. Solids, Aug. 2018. 

[96] P. A. Sabnis, S. Forest, N. K. Arakere, and V. A. Yastrebov, “Crystal 



- 191 - 

 

plasticity analysis of cylindrical indentation on a Ni-base single crystal 

superalloy,” Int. J. Plast., vol. 51, pp. 200–217, Dec. 2013. 

[97] E. Renner, Y. Gaillard, F. Richard, F. Amiot, and P. Delobelle, “Sensitivity of 

the residual topography to single crystal plasticity parameters in Berkovich 

nanoindentation on FCC nickel,” Int. J. Plast., vol. 77, pp. 118–140, Feb. 

2016. 

[98] N. Fillot, I. Iordanoff, and Y. Berthier, “A granular dynamic model for the 

degradation of material,” ASME Jounrnal Tribol., vol. 126, no. 3, pp. 606–

614, 2004. 

[99] N. Fillot, I. Iordanoff, and Y. Berthier, “Modelling third body flows with a 

discrete element method-a tool for understanding wear with adhesive 

particles,” Tribol. Int., vol. 40, no. 6, pp. 973–981, 2007. 

[100] S. Hironaka, “Boundary Lubrication and Lubricants ,” Three Bond Technical 

News, Tokyo, 1984. 

[101] E. Ciulli, “Friction in Lubricated Contacts: from Macro- to Microscale 

Effects,” in Fundamentals of Tribology and Bridging the Gap Between the 

Macro- and Micro/Nanoscales, London: NATO Science Series, 2001, pp. 

725–734. 

[102] D. Dowson, History of Tribology. London and Bury St Edmunds, UK: 

Professional Engineering Publishing Limited, 1998. 

[103] M. Öqvist, “Numerical simulations of mild wear using updated geometry with 

different step size approaches,” Wear, vol. 249, no. 1–2, pp. 6–11, 2001. 

[104] P. Podra and S. Andersson, “Simulating sliding wear with finite element 

method.,” Tribol. Int., vol. 32, no. 2, pp. 71–81, 1999. 

[105] A. Eleőd, J. Devecz, and T. Balogh, “Numerical modelling of the mechanical 

process of particle detachment by finite element method,” Period. Polytech. 

Transp. Eng., vol. 28, no. 1–2, pp. 77–90, 2000. 

[106] Y. Dong, Q. Li, and A. Martini, “Molecular dynamics simulation of atomic 

friction: A review and guide,” J. Vac. Sci. Technol. A Vacuum, Surfaces, 

Film., vol. 31, no. 3, p. 030801, 2013. 

[107] E. Q. Lin, L. S. Niu, H. J. Shi, and Z. Duan, “Molecular dynamics simulation 

of nano-scale interfacial friction characteristic for different tribopair 

systems,” Appl. Surf. Sci., vol. 258, no. 6, pp. 2022–2028, 2012. 

[108] D. M. Heyes, “Molecular aspects of boudary lubrication,” Tribol. Int., vol. 29, 

pp. 627–629, 1996. 

[109] X. Zheng, H. Zhu, A. Kiet Tieu, B. Kosasih, A. K. Tieu, and B. Kosasih, “A 

molecular dynamics simulation of 3D rough lubricated contact,” Tribol. Int., 

vol. 67, pp. 217–221, 2013. 

[110] C. Yang, U. Tartaglino, and B. N. J. Persson, “A multiscale molecular 

dynamics approach to contact mechanics,” Eur. Phys. J. E, vol. 19, no. 1, pp. 

47–58, 2006. 

[111] M. Solar, H. Meyer, C. Gauthier, O. Benzerara, and  et al., “Molecular 

dynamics simulations as a way to investigate the local physics of contact 

mechanics: a comparison between experimental data and numerical results,” 

J. Phys. D, vol. 43, 2010. 

[112] R. Aghababaei, D. H. Warner, and J. F. Molinari, “Critical length scale 

controls adhesive wear mechanisms,” Nat. Commun., vol. 7, 2016. 

[113] J. A. Harrison and D. W. Brenner, “Simulated tribochemistry: an atomic scale 

view of the wear of diamond,” J. Am. Chem. Soc., vol. 116, pp. 10399–10402, 

1994. 

[114] G. A. Tomlinson, “A molecular theory of friction,” Philos. Mag., vol. 7, pp. 



- 192 - 

 

905–939, 1929. 

[115] Y. I. Frenkel and T. Kontorova, “On the theory of plastic deformation and 

twinning,” J. Exp. Theor. Phys., vol. 8, p. 1340, 1938. 

[116] M. R. Sorensen, K. W. Jacobsen, and P. Stoltze, “Simulations of atomic-scale 

sliding friction,” Phys. Rev. B, vol. 53, pp. 2101–2013, 1996. 

[117] T. Jacobs, K. Ryan, P. Keating, and  et al., “The Effect of Atomic-Scale 

Roughness on the Adhesion of Nanoscale Asperities: A Combined Simulation 

and Experimental Investigation,” Tribol. Lett., vol. 50, pp. 81–93, 2013. 

[118] E. Rabinowicz, Friction and wear of materials. New York: Wiley, 1965. 

[119] F. P. Bowden and D. Tabor, The friction and lubrication of solids. 2nd 

corrected ed. Oxford: Oxford University Press, Clarendon Press, 1986. 

[120] U. Landman and W. D. Luedtke, “Nanomechanics and dynamics of tip-

substrate interactions,” J. Vac. Sci. Technol. B, vol. 9, pp. 414–423, 1991. 

[121] J. A. Harrison, S. J. Stuart, and D. W. Brenner, “Atomic scale simulation of 

tribological and related phenomena,” in  Handbook of micro/nanotribology,  

CRC Press, 1999, p. 525. 

[122] P. A. Cundall and O. D. L. Strack, “A discrete numerical model for granular 

assemblies,” Géotechnique, vol. 29, no. 1, pp. 47–65, 1979. 
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