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Abstract

Temperature measurement in opaque laser-shocked solids is a long-standing research

problem. The diagnosis of temperature using x-ray diffraction, in particular the

Debye-Waller effect, has long been proposed as a potential solution, though no

experimental measurement has ever been published. This thesis investigates the

obstacles present in such a temperature measurement scheme.

A code was developed to efficiently analyse simulated x-ray diffraction patterns

from molecular dynamics simulations so as to observe the Debye-Waller effect. This

code was used to critically assess previous work performed in this area of research.

It was found that material strength has a distinct impact on the behaviour of the

Debye-Waller effect, though the impact on temperature measurement is minimal. It

was also found that dislocations cause a significant error in temperature measurement,

in conflict with the long-standingWilkens theory of dislocations and x-ray diffraction.

An experiment was performed at the Orion laser facility to assess the experimental

limits of Debye-Waller temperature measurement. The diffuse nature of the x-ray

diffraction signal from shocked samples inhibited efforts to remove background while

leaving signal intact. Brighter x-ray sources with narrower energy spectra are

recommended to treat this problem.
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Chapter 1

Introduction

1.1 Matter under extreme conditions

The Earth’s surface is composed of atomic material existing in a narrow range of

pressure and temperature. The average human occupies a 1-atmospheric-pressure

world. A climber on the summit of Mount Everest, usually aided by substantial

breathing apparatus, survives in pressures of 0.33 atmospheres [1]. The scuba diving

world record depth stands at 332 m [2], corresponding to a pressure of approximately

30 atmospheres. The climber and the diver represent the extreme boundaries of

human pressure experience, a mere two orders of magnitude apart. The story is much

the same regarding temperature; the highest and lowest temperatures experienced

by most people are the products of their oven and fridge-freezer.

In stark contrast, the vast majority of matter in the universe exists in conditions

totally alien to the human experience. Jupiter is thought to harbour diamond

synthesising oceans of liquid methane [3] and the Sun’s core temperature is in the
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tens of millions of degrees [4]. These extreme conditions produce a dense plasma

formed from the separation of nuclei from their electrons, constantly undergoing

nuclear fusion.

The boundaries of human experience have shaped our civilisation. With a sliver

of accessible materials, tools have been invented to extend and enrich life. In the

modern era, materials science has expanded the breadth and depth of technologically

relevant materials. The invention of semiconductors has brought with it an explosion

of innovation, including electricity-generating photovoltaics and the ubiquitous home

computer. Additionally, harnessed plasmas are an essential ingredient in the mass

manufacture of computer chips. The microprocessor would not exist without plasmas

and semiconductors, and so materials science is the vanguard of technology.

Before exotic states of matter can be of any use, they must first be understood.

Since the conditions that generate these states are so far removed from the conditions

at Earth’s surface, their study demands considerable effort. This thesis concerns

itself with solid materials created under high-pressures. The generation of these

states in the lab will now be discussed.

1.2 Methods in high pressure solid state physics

The latter half of the twentieth century has seen much ground gained in the pursuit of

lab-based high-pressure experiments. All methodologies can be grouped into either

static or dynamic compression.

Static compression has the advantage of indefinite containment, allowing long

timescale observations to be made. The premier tool for static compression is
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Figure 1.1: The Diamond Anvil Cell (DAC). This image was created by Wikipedian
Tobias1984 and is reproduced with permission under the GNU Free Documentation License.

the diamond anvil cell (DAC). Two carefully cut slabs of diamond are assembled

with a subject material clasped between, as in figure 1.1. A compressive force is

delivered via a screw mechanism, causing the tapered ends of the diamonds to press

into the sample. By inserting a small ruby alongside the material of interest, the

pressure-sensitive ruby fluorescence can be probed and therefore used as a pressure

sensor [5].

The DAC method has its drawbacks. The high pressures achieved can initiate

undesirable diffusion between the diamond atoms and the sample. This can be

counteracted somewhat by carefully coating the surface of the diamond with a

diffusion-resistant layer [6]. Additionally, the whole system is very delicately balanced;

temperature perturbations can destabilise the whole system, causing catastrophic

failure. As a result DAC experiments are typically cooled to near-zero temperatures

in order to reach high pressures. It is this method that resulted in the controversial
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first observation of solid metallic hydrogen, at pressures over 500 GPa [7]. If the

observation of higher pressures and temperatures is desired, a dynamic compression

technique must be used.

The earliest dynamic compression techniques involved the detonation of explosives

mounted on the side of materials. Through the use of an explosive lens, a planar

compression wave is imparted to the sample. This setup was the primary method

of generating high-pressure solids when the field was still in its infancy [8]. Perhaps

the most spectacular variation of this technique uses nuclear explosives as the shock

driving mechanism [9].

Later, gas gun experiments were fielded, launching high-speed projectiles into

the sides of solid objects [10]. In this method, the projectile is loaded into a launch

tube. Just behind the launch tube, a chamber of light gas is compressed by a piston.

When the desired gas pressure is reached, the chamber is opened into the launch tube,

accelerating the projectile into the sample. Due to an increase in deliverable energy

density, this development allowed experimentalists to achieve pressures previously

inaccessible with conventional explosives.

Non-impact compression schemes have been more recently developed. Pulsed

power machines such as the Z accelerator were developed to compress materials

radially by passing a large current through a metal cylinder [11]. The cylinder

becomes ionised and the resulting Lorentz forces drive the cylinder inwards, crushing

any material contained within. The cylindrical compression front results in higher

peak pressures than can be achieved with planar shocks. This high degree of

compression can be used to generate bright x-ray sources used for driving nuclear

fusion experiments in the lab [12].
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The final method of compression discussed here is laser shock compression [13].

The advent of high power lasers has opened up higher pressure ranges in the tens of

TPa [14]. High power lasers impart their energy into a thin layer of material on a

short timescale, typically of the order of nanoseconds. The surface of the irradiated

material is ablated, driving a shock wave that traverses the sample. By arranging

the lasers spherically, extremely high pressures can be generated; the pressures are

such that heavy hydrogen fuel can be compressed to conditions necessary for nuclear

fusion [15]. Due to their high energy densities, high power laser systems have been

used to create states otherwise observed only in energetic astrophysical systems [16].

The subject of this thesis is concerned with the development of diagnostics

capable of investigating solids under laser-shock compression. The following section

discusses some current diagnostics commonly implemented on large laser systems.

1.3 Temperature measurement in laser shocked

solids

High power laser investigations have exposed new phases of solid material otherwise

inaccessible, though the timescale of the experiments is such that actually observing

the material becomes challenging. The compressed state is only maintained for a

short period of time of the order of a few nanoseconds, after which the high-pressure

material rarefies [17, 18]. Specialised diagnostics are therefore required with the

capability of making measurements in this small timing window.

Of particular interest are the thermodynamic state variables such as specific

volume, pressure, and temperature. Measurements of these quantities leads to an
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understanding of the material equation of state, revealing the relationships between

the state variables. The equation of state can then be used to infer material

characteristics [19]. While techniques indirectly measuring pressure and volume [20]

are routine, methods of temperature measurement have largely been under-developed,

especially in relation to opaque solids. The lack of a reliable temperature measurement

has frustrated investigations into material equation of state [21].

The existing thermometry schemes are either limited by scope, practicality, or

result in large measurement uncertainties. A selection of these thermometry techniques

are discussed here, and their limitations discussed.

Extended X-ray Absorption Fine Structure (EXAFS)

When a photon is incident on a material it may be absorbed by a bound electron,

which is then excited to a higher energy state. Whether the photon is absorbed

is dependent on the energy of the photon and the difference in energy between

electronic states. Once a photon has the required energy to promote an electron,

the tendency of the material to absorb the photon increases dramatically. This

sudden increase in absorption gives rise to an absorption edge. When a photon

liberates a core electron from an atom, the photoelectron will go on to interact

with neighbouring atoms. These neighbouring atoms act as scatterers, and so

the backscattered photoelectron can interact with its own wavefunction. This self

interaction gives rise to energy dependent oscillations, known as fine structure [22].

Since temperature causes atoms to move from their lattice sites, the character of

this self-interaction is altered and observed as changes in fine structure. This is the

basis of the EXAFS thermometry technique used in laser-shock experiments, though
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uncertainty in the measurement often exceeds 50% [23].

Streaked Optical Pyrometry (SOP)

SOP is a mature temperature measurement technique, though its scope is limited to

strongly radiating materials at high temperatures [24]. When a shock wave passes

through a sample, the shocked material self-emits [25]. The spectrum of emitted

radiation is compared to a Plankian spectrum to infer temperature [26].

This method has been used successfully on materials with high transmission [27],

but for materials that are largely opaque, such as metals, the optical skin-depth

is typically much less than 100 nm [28]. This restricts use of the technique to

transparent materials (such as quartz or NaCl), or to backscatter measurements from

material surfaces. The accuracy of the technique is dependent upon knowledge of the

emissivity of the material, which is often unknown. Additionally, many transparent

media undergo phase transitions to opaque states at high pressures, further limiting

the technique [5].

Raman Scattering

Raman scattering can be used to measure the temperature of shocked materials

by analysing the vibrational properties of the sample [29]. A laser, typically in

the visible spectrum, is shone on the target and the spectrum of transmitted or

backscattered light is analysed; here, backscattered refers to photons that are reflected

from the sample and detected on the same side of the sample as the incident beam.

The spectrum will show one large central peak called the Rayleigh line, produced by

elastically scattered radiation, and many more peaks offset from the Rayleigh line.

15



These offset peaks, known as Stokes and anti-Stokes lines, are caused by interactions

between the incident photons and the vibrational energy states of the material.

When a photon is incident upon the material, it may be absorbed by a phonon

and subsequently re-emitted when the phonon de-excites. If the phonon is in its

ground state when it absorbs a photon, it may de-excite to an energy level above

ground state, resulting in the emission of a photon at a lower frequency than the

incident radiation. This radiation manifests as a Stokes line in the Raman spectrum.

Similarly, the phonon may initially be in an excited state, and after excitation may

decay to the ground state, emitting a photon of higher energy. Emissions of this

type present as anti-Stokes lines in the Raman spectrum.

For temperature measurement, the most commonly used technique simply looks

at the intensity ratio of the anti-Stokes lines to Stokes lines. This ratio contains

information about the temperature-dependent occupation of vibrational states within

the material [30], although more sophisticated methodologies are also in use [31].

The accuracy of the technique is dependent on knowledge of the emissivity of

the material being probed. What’s more, bulk temperatures can only be obtained

from transparent materials. In the case of opaque solids, only the edge temperature

is measured; since the edge temperature of a material is not reliably linked to bulk

temperature on laser shock timescales, this technique is incompatible with high

power laser experiments involving opaque solids.

Neutron Resonance Spectroscopy (NRS)

NRS uses temperature sensitive nuclear transitions of heavy elements to measure

temperature [32, 33]. It involves the bombardment of a material with neutrons of
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energies 1 - 100 eV. At these energies, many nuclei exhibit resonant states. The

incident neutron is absorbed by the nucleus, forming a compound nucleus, which

then re-emits the neutron with an altered energy. The neutron resonance peaks

will be Doppler shifted by a certain amount, providing a velocity distribution which

is then linked to temperature. NRS has been used to successfully measure the

temperature of W-doped Mo which has been shock compressed with an explosively

driven flyer plate; the temperature was measured with an error of approximately 4%

[34].

Neutron beams are typically inconvenient to work with, requiring infrastructure

that is not usually available at a large laser facility. Laser generated neutron

beams exist [35], and intentions have been stated to use such beams on laser shock

experiments [36], but no results are published demonstrating the implementation

of NRS on a high power laser experiment. In addition, the technique is mostly

applicable to heavier metals with high proton number, ruling out the majority of

materials of interest; materials of interest are typically lower mass metals such as

Cu and Fe. The use of NRS on doped materials has been performed [34], but the

effect of such doping may significantly alter the behaviour of the shocked material.

1.4 X-ray diffraction as a temperature diagnostic

None of the above techniques are currently suitable for the routine measurement

of temperature in opaque laser-shocked solids. In this thesis, it is proposed that a

technique involving x-ray diffraction may be suitable. The intensities of diffracted

x-rays are dependent on temperature via the Debye-Waller effect, as will be discussed
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in section 2.3.2. The exploitation of the Debye-Waller effect as a temperature

measurement tool on laser-shock experiments has previously been proposed [37],

though no experiment has ever been published showing its implementation.

The success of such a technique would mark a critical improvement in capability.

Still outstanding are major questions surrounding the suitability of the technique

to laser-shock experiments; these questions will be discussed in chapter 3. An

experiment especially designed to test this technique is also required; this is the

subject of chapter 4. The overall purpose of this thesis is to explore the limitations of

the Debye-Waller effect and investigate its applicability to temperature measurement

on high power laser facilities. The strengths and weaknesses of the technique will be

highlighted and its suitability for laser-driven experiments adjudicated.

1.5 Thesis structure and the role of the author

The thesis is structured as follows, with acknowledgement given to contributors and

collaborators where appropriate.

Chapter 2: Background Theory and Previous Work

This chapter lays the theoretical groundwork necessary for an understanding of the

work undertaken in this thesis. All theory written in this section is drawn from

previous work by others. Many images in this section were created by others and

are reproduced with permission. Whenever an image is reproduced or altered, credit

is appropriately given to the creator.
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Chapter 3: Molecular Dynamics Simulations of Temperature Measurement

using the Debye-Waller Effect

This chapter presents computational work undertaken by the author. A code written

by Andrew Higginbotham was used to generate x-ray diffraction patterns. An

analysis code was written by the author to reliably and efficiently analyse the

Debye-Waller effect.

Chapter 4: Experimental Investigation of Temperature Measurement

using the Debye-Waller Effect

An experiment was designed and led by the author, with substantial assistance from

many other scientists. The main collaborators were Andrew Higginbotham, John

Foster, David McGonegle, Andrew Comley, Steve Rothman, Emma Floyd, Anthony

Meadowcroft, Caroline Lumsdon, and Justin Wark. The x-ray spectrum used in

section 4.3.1 was made by Anthony Meadowcroft. The HYADES simulations in

section 4.4 were performed by David McGonegle. The analysis of the experimental

diffraction data was undertaken solely by the author, with the exception of section

4.6.2, which made use of a code written by Andrew Higginbotham, and section 4.6.7,

which was heavily informed by the work of John Foster.

Chapter 5: Conclusions and Future Work

A summary of the main results of the full thesis are given here. Recommendations

are given regarding the applicability of the Debye-Waller thermometry technique

and suggestions are made for future implementations.
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Chapter 2

Background Theory and Previous

Work

The subject of this thesis is the use of x-ray diffraction to measure temperature in

crystalline solids undergoing laser-shock compression. As with any work of science,

this thesis benefits from the efforts of individuals that went before. The underlying

theory, developed largely throughout the twentieth century, is laid out here so as to

set the stage for the new work undertaken by the author. The relevant fields are

solid state physics, shock-wave physics, x-ray crystallography, and computational

molecular dynamics.

2.1 The crystalline structure of elemental solids

Solids typically come in two forms: amorphous, and crystalline. Amorphous solids

are ordered in the short range by maintaining energetically favourable inter-atomic
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(or molecular) distances, but they do not show any long range order. This is in

contrast to crystalline solids which are composed of atoms and molecules arranged

in a regular periodic fashion. This thesis is concerned with crystalline solids and so

amorphous solids will not be discussed further.

A lattice is a set of points periodically arranged in space [38], as shown in fig

2.1. The origin may be defined at any point in the lattice. Positions within the

lattice are described using a set of lattice vectors. A set of lattice vectors are said to

be primitive if any integer combination of the lattice vectors, starting at the origin,

will reproduce the whole lattice. Alternatively, the volume enclosed by the primitive

lattice vectors, called the primitive unit cell, will contain exactly 1 lattice point. It

is often more useful to define the lattice by a non-primitive set of vectors, called

conventional lattice vectors. On the right hand side of figure 2.1, the conventional

lattice vectors a1, a2, and a3 all conveniently coincide with the edges of the cube,

but the number of lattice points enclosed within this conventional unit cell is 2. A

potential primitive basis of vectors for this lattice might be a1, a2, and p3.

For any set of primitive lattice vectors a1, a2, and a3, the position of all lattice

points relative to the origin can be written

r = ua1 + va2 + wa3 (2.1)

where u, v, w are integers. Once the lattice is defined, the lattice points can be

substituted with a set of atoms called a basis. By replacing every lattice point with

the basis, the full crystal is generated.

A large number of crystalline structures are possible. The structure a particular

material occupies is the result of a minimisation of free energy of the lattice, although
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Figure 2.1: A 2-dimensional lattice is shown on the left with lattice vectors a1 and a2.
On the right is a 3-dimensional lattice. By the application of a basis to each lattice site, a
full crystal structure is generated.

a generally applicable prediction method is surprisingly elusive [39]. A number

of structures are possible at the same pressure-temperature conditions due to the

presence of multiple energy minima in the thermodynamic landscape. The stable

existence of a structure at a local minima, but not the global minimum, is called

metastability. The ability of a material to occupy different solid phases under

identical conditions is called structural polymorphism. A famous example of this

is elemental carbon, which can exist both as graphite and diamond under ambient

conditions. Under the right conditions of temperature and pressure, crystals will

undergo solid-solid phase transitions, swapping the previous structure for a new

energetically favourable structure [40, 41, 42]. In the case of elemental crystalline

solids, the number of possible structures is greatly simplified by the presence of a

single type of atom.

In this section a selection of purely elemental cubic structures are described

alongside their significant geometric characteristics. Only cubic structures are treated

since other types of structure are not relevant to the present work, though much of
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the following discussion is also applicable to non-cubic structures. The crystalline

nature of solids results in vibrational properties that are central to the temperature

measurement technique employed in this thesis. Finally, the change of the vibrational

properties of a solid under compression are considered.

2.1.1 Cubic crystal structures

Many structures are said to be cubic; that is, they are easily conceptualised as a set

of atoms arranged about a single cube. The cube can then be tessellated along x, y,

and z to create an infinite periodic structure, or a crystal. The lattice constant a of

a cubic solid is defined as the side length of the cube used to visualise the structure.

The simple cubic (SC) structure is depicted in figure 2.2. The SC structure is

rare amongst elemental solids at standard temperature (0 ◦C) and pressure (1 Atm),

though polonium takes this form [43]. In cubic structures the conventional lattice

vectors are defined along the edges of the cube for convenience:

a1 = [a, 0, 0] (2.2)

a2 = [0, a, 0] (2.3)

a3 = [0, 0, a] (2.4)

By translating the unit cell by all possible integer sums of the lattice vectors, the

full infinite crystal can be constructed. The lattice vectors can be normalised by

dividing each vector by a to give
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a1′ = [1, 0, 0] (2.5)

a2′ = [0, 1, 0] (2.6)

a3′ = [0, 0, 1] (2.7)

This convention is useful for discussing positions within the unit cell in general terms.

A vector is now assigned to each of the atoms constituting the structure; in the case

of a SC material, there is only one atom to define, which is found at [0, 0, 0].

Note how the atoms in the other corners are not specified; it is intended that by

tessellating the basis along every integer combination of the lattice vectors the entire

crystal can be generated. If the other corner atoms were specified, every atom would

be generated multiple times at each location upon tessellation.

A more commonly observed structure is the body-centred cubic (BCC) structure.

It is similar to the simple cubic structure, except now an additional atom is placed

at the centre of the the cube, as depicted in fig 2.2. The atoms are found at [0, 0, 0]

and [1
2
, 1

2
, 1

2
]. Examples of elements inhabiting this structure are iron, tantalum,

and niobium.

Another commonly observed cubic structure is the face-centred cubic (FCC)

structure. It can again be thought of as an augmented simple cubic structure, but

this time the additional atoms are located in the centre of each face of the cube. The

structure is also depicted in figure 2.2. The FCC structure is a close-packed structure;

close-packed structures exhibit the most volume efficient packing of spheres. Spheres

are efficiently packed when they are arranged in hexagonal layers, as in figure 2.3.

There are multiple ways of stacking these layers. The base layer is referred to as
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Figure 2.2: The unit cells of three cubic crystalline structures, from left to right: simple
cubic; body-centred cubic; face-centred cubic. These images were created by the Wikipedians
Daniel Mayer and DrBob. They are reproduced here with permission under the Creative
Commons Public License.

layer A; a second layer B can be placed above A with atoms positioned between

the atoms of A. The third layer can either be placed exactly overlapping layer A

(creating an ABA structure, known as hexagonal close packed) or it can be placed

such that the atoms do not overlap with either A or B; in this case the layering is

ABC, and the structure produced is FCC. Common examples of elements with the

FCC structure are copper, gold, and silver.

The structures discussed above are all examples of single crystals. Most natural

materials do not take this form and are instead polycrystalline. Polycrystalline

materials simply contain many small single crystal regions, called grains. These

grains are packed together in a single sample, typically resulting in a patchwork

composition of many different crystalline orientations.
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Figure 2.3: Close-packed spheres consist of hexagonal layers. Two methods of stacking
the hexagonal layers are shown; on the left is the hexagonal close packed (HCP) structure,
and on the right is the FCC structure. This image was created by the Wikipedian Twisp.
The image exists in the public domain and is reproduced here with permission.

2.1.2 Crystal imperfections

Crystalline solids are rarely perfect in form. The lattice is often disrupted by

imperfections known collectively as defects [44]. Defects come in many forms and

each type has a different effect on the resulting material properties. Defects can be

grouped by dimensionality into point defects, line defects, and plane defects. The

lattice is distorted to the largest degree in the immediate vicinity of the defect; atoms

that are far away from a defect are therefore screened from the distortions.

An example of a point defect is a vacancy, where an atom is simply missing from

its usual structural position. The atoms around the vacancy relax into the space left

by the missing atom, which causes a distortion of the structure in the vicinity of the

void. Alternatively, an interstitial defect is formed when one or more atoms occupy

additional non-structural positions. These interstitial atoms stiffen the crystal in

the vicinity.
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Line defects almost always take the form of dislocations [45]. Dislocations come

in two flavours: edge dislocations and screw dislocations. Illustrations are presented

in figure 2.4. An edge dislocation can be visualised by imagining a stack of paper;

if a half of a piece of paper is now inserted into the stack, the stack of paper will be

most noticeably disrupted at the centre of the stack. In an edge dislocation, the edge

of the half-sheet of paper corresponds to the dislocation core. The crystal lattice is

maximally distorted near the dislocation core.

A screw dislocation can be visualised with a stack of paper that is cut vertically,

from the centre of the stack to the edge, resulting in two “legs” for each sheet. One

of the stacks of legs is moved upwards by one sheet, so that each leg is now in line

with the opposing leg of the next sheet. The result is a helical structure in the centre

of the stack, propagating from top to bottom. In the case of a screw dislocation, the

core runs vertically through the crystal. Again, the lattice is most distorted near

the dislocation core.

The line vector l is oriented along the axis of the dislocation core. On its own,

this is an incomplete description. A dislocation can be more fully described by

including some measure of the lattice mismatch produced by the dislocation. In

figure 2.4 a closed path MNOP is drawn on the initial crystal; this closed path

consists of a series of translations. When the dislocation is present, the same series

of translations no longer produces a closed circuit. In order to close the circuit, an

additional translation must be introduced. This translation is called the Burgers

vector b, and it represents the lattice mismatch introduced by a dislocation. For

an edge dislocation, b is perpendicular to l, whereas for a screw dislocation, b is

parallel to l. In reality most dislocations manifest as a mixture of these two types
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Figure 2.4: An edge dislocation (upper) and a screw dislocation (lower). On both images
a comparison is drawn between the perfect crystal and the dislocated crystal. The burgers
vector of each dislocation is shown, as well as an example line vector. In the case of
the edge dislocation, the line vector is shown entering the page. This image was created
by Javier Bartolom Vlchez and is reproduced here with permission under the GNU Free
Documentation License.

of dislocation. They are said to have edge character and screw character, and the

orientation between b and l is somewhere between perpendicular and parallel.

Dislocations can form in a number of ways. The spontaneous formation of

dislocations in a perfect crystal is called homogeneous nucleation. This pathway

is incredibly energetic, since a whole line of atomic bonds has to be broken and

as a result this formation pathway is unlikely under normal conditions. Under

shock conditions, however, homogeneous nucleation occurs at the boundary between

shocked and unshocked material [46]. This occurs as a result of the large uniaxial

pressures caused by the passage of a shock wave, as well as the lattice mismatch
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Figure 2.5: Two types of planar defect are shown. On the left is a stacking fault, where
the order of atomic layers is disrupted. On the right is a 2-dimensional representation of
a grain boundary. These images were created by Gerolf Ziegenhain and Edward Pleshakov;
they are reproduced here with permission under the GNU Free Documentation License.

between compressed and uncompressed material. Another dislocation source is at

the boundary between crystallites in a polycrsytalline material. The lattice mismatch

of the surfaces between crystallites often result in the formation of a dislocation that

propagates through the crystal. A similar effect is present at the edge of a material,

though this is less relevant to polycrystalline materials.

An example of a plane defect is a stacking fault. These are formed when the order

in which planes of atoms are stacked is altered. An example situation might involve

an FCC metal, with stacking order ABCABCABC. A stacking fault has occurred

if the plane order is now ABCABABC; the lattice now contains a component of

hexagonal close packed structure. Another planar defect is caused by the mismatch

of crystallite grains within a polycrystalline material. These boundaries between

grains typically do not match up perfectly; the lattice mismatch therefore causes a

distortion of the crystal structure in the vicinity of the grain boundary.
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Defects play an important role in the properties displayed by a material. For

example, the movement of dislocations when a crystal is exposed to high pressures is

the medium of plasticity in a material [47]. Without dislocation movement, metals

are not malleable. If dislocations were not there to alleviate applied pressures, a

material would elastically compress until sudden catastrophic failure.

2.1.3 Crystalline directions, planes, and their significance

The arrangement of atoms has consequences for the overall properties of a material.

Certain directions within a crystal will be associated with interesting phenomena,

such as the onset of a structural phase transformation, or the stimulation of certain

defect formation mechanisms. In cubic materials, directions are defined using the

same Cartesian vector convention used in equations 2.5, 2.6, 2.7.

The a1′ = [1 0 0] direction in an SC, FCC, or BCC structure is symmetrically

related to the a2′ direction. The interatomic distance is exactly the same along

both a1′ and a2′; in fact the two atomic chains are indistinguishable from one

another. This symmetry is important since the resultant behaviour of the atoms

along both of these directions will be the same, given the same stimulus. Note that

in crystallography, the type of bracket used has a precise meaning; a square bracket

is used to represent a direction. Directions can be grouped into families according to

their symmetry; in the case of the a1′ direction, the family of directions is denoted

by < 1 0 0 >. Note that this is equivalent to < 0 1 0 > and < 0 0 1 >. In addition,

a line over a number indicates a negative value, so the family < 1̄ 0 0 > is written

instead of < −1 0 0 >.

Another useful geometrical concept for crystalline solids is that of crystal planes.
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A plane is described by the intersection it makes with the unit cell as shown in fig

2.6. The plane intersects the lattice vectors at the points a1

h
, a2

k
, and a3

l
, where h, k,

and l are known as the Miller indices. If the plane runs parallel to a lattice vector

the intersection occurs at infinity, and so the Miller index for that lattice vector is 0.

Once the intersections are established, the plane is then labelled (h k l). Notice that

this does not define a single plane; in fact the Miller indices define a set of parallel

planes. These planes are all separated a set distance d apart. In cubic crystals, the

interplanar distance is calculated as

d =
a√

h2 + k2 + l2
(2.8)

In the same way that families of directions can be defined, so too can families of

planes. Take for example the (0 0 1) and (1 0 0) planes. When observed in isolation

these planes look identical. They can therefore be grouped together; in this case the

family of planes is written {1 0 0}. The number of symmetrical planes in a plane

family is known as multiplicity, and it differs between plane families. To construct

a list of multiplicities for a family of planes {h k l}, one must find every unique

3-component permutation of h, k, l, h̄, k̄, l̄. For example, {1 0 0} contains the

planes (1 0 0), (0 1 0), (0 0 1), (1̄ 0 0), (0 1̄ 0), (0 0 1̄), and so the multiplicity is

6. The maximum possible multiplicity occurs when h 6= k 6= l 6= 0; in this case the

multiplicity is 48. An example of a plane family that meets this condition is {1 2 3}.

Curated lists of multiplicities in BCC and FCC structures are given in appendices

A and B respectively.
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Figure 2.6: A selection of commonly occurring planes in cubic structures. This image
was created by Christophe Dang Ngoc Chan and is reproduced with permission under the
GNU Free Documentation License.
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2.1.4 The reciprocal lattice

The Miller indices have a greater significance. The crystal lattices described in

section 2.1.1 are given in terms of the three lattice vectors a1, a2, a3. These vectors

can be manipulated to produce a new set of vectors, called the reciprocal lattice

vectors [48].

b1 =
a2 × a3

a1 • a2 × a3

(2.9)

b2 =
a3 × a1

a1 • a2 × a3

(2.10)

b3 =
a1 × a2

a1 • a2 × a3

(2.11)

As with the real space lattice vectors, the reciprocal lattice vectors can be translated

over every integer combination to produce an infinite lattice.

The vector that goes from the origin to any of the integer transformations is

given the symbol G.

Ghkl = hb1 + kb2 + lb3 (2.12)

Here, h k and l are the same Miller indices used when defining planes in section

2.1.3. This is because the reciprocal lattice of a crystal structure is a representation

of crystal planes.

The reciprocal lattice vectors presented above are valid for a single crystal. In

the case of a polycrystal, the reciprocal lattice is an overlapping of all the reciprocal

lattices of the constituent grains. For a sufficient number of grains, the reciprocal

space representation is no longer a set of discrete points, but is instead complex

object.
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2.1.5 Crystallographic texture

As previously stated, most materials are not single crystal in nature. Instead they

tend to be polycrystalline. The simplest polycrystal may be thought of as a powder

consisting of grains oriented in a uniformly random manner. In such a powder, there

is no preferential orientation of grains.

Most polycrystalline solids are not ideal powders. Instead the materials exhibit

some preference to certain orientations. This preference arises from the mechanical

pathway that produced the material. For example, if a sample is grown on a

crystalline surface the orientation of crystals in the surface will seed the orientation of

the growing crystal. This new crystal will similarly seed another preferred orientation

on any subsequent crystals. A material that exhibits such orientational preferences

is said to be textured.

The texture of materials, particularly industry relevant metals such as iron,

has been well studied. The relative orientations of grains within a material are

described using an orientation distribution function (ODF) [49]. The ODF is a

four-dimensional mathematical object that describes fully the orientations present

within a material; three dimensions define the orientation, and the fourth dimension

describes the prevalence of that orientation.

To generate an ODF each crystal orientation is prescribed a set of relative Euler

angles. The Euler angles, shown in figure 2.7, are defined as follows. A vector is first

rotated about the z-axis by an angle α. The whole Cartesian system is also rotated

with the vector such that the x-axis now lies along N . The z-axis does not move.

Now, the vector and the co-ordinate system are rotated about the N -axis by an

angle β, which moves the z-axis to Z. Finally the vector is rotated about the Z axis
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Figure 2.7: The Euler angle definitions. This image was created by Lionel Brits and is
reproduced with permission under the GNU Free Documentation License.

by an angle γ. Every vector can now be described in terms of (α, β, γ), rather than

using Cartesian co-ordinates. This has the benefit of defining the orientations with

three components; a Cartesian system would require three components to define the

direction and an additional component to define the rotation of the crystallite about

the orientation axis.

Note that the ODF is typically not presented as a probability density function;

probability density functions are normalised such that the sum of the probabilities

of every orientation is 1.

Representing a four-dimensional object on a piece of paper is difficult to do in a

useful way. A popular method is to drop one dimension by taking a cross-sectional

slice through the ODF. For example one may take the cross-section described by

the plane z = 0. By rotating the plane by several degrees at a time one may take

cross-sections through the ODF at regular intervals creating an assay of cross-sections.
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Figure 2.8: A fibre (red) in Euler space. The axes shown are the Euler angles α, β, and
γ. A fibre is any single curve that is drawn in this space.

An alternative strategy is to stereographically project a single family of planes onto

a flat surface, called a pole figure. This is similar to the way in which the globe is

projected onto a flat map.

Some textures are characteristic of certain crystalline structures and material

processes. One such example is the rolling process of BCC metals. Rolling involves

the pressing of sheets of metal into thin foils with thickness of a few µm. When a

BCC material is rolled in this way, a fibre texture is produced. A fibre texture is

said to occur when the orientations populated in a sample map out a single curve

in Euler space, as shown in figure 2.8. When a BCC material is subjected to the

rolling technique described above, the material responds so as to form a fibre texture

known as an α-fibre [50]. The form of the α-fibre will be explained more fully in

section 4.6.7.
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2.1.6 Crystal vibrations and the Debye temperature

Beyond the static structure of solids, there is dynamics. The temperature of a

classical material with harmonic atomic potentials can be derived by starting with

the energy relation

E =
3

2
kBT =

1

2N

N∑
n=1

mnv
2
n (2.13)

where E is the average kinetic energy of atoms in the system, kB is the Boltzmann

constant, T is temperature, N is the number of atoms in the system, mn is the mass

of atom n and vn is the velocity of atom n. The expression can be rearranged for

temperature such that

T =
1

3NkB

N∑
n=1

mnv
2
n (2.14)

Thus, for a system containing atoms all of the same element, a temperature is

defined by the average atomic speed v̄ = 1
N

∑N
n=1 |vn|. From classical theory, the

atom speeds must obey a Maxwell-Boltzmann distribution. Only when this condition

is satisfied can one use the temperature to make further inferences via equilibrium

thermodynamic equations.

When a set of atoms on a crystal lattice exist at a non-zero temperature, they

oscillate such that at any moment they may be instantaneously displaced from

their central lattice positions. When considering a large population of atoms, the

displacements from the lattice sites forms a distribution which is a function of

temperature. This distribution can be calculated by considering models of vibrations

in a solid.
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The Einstein model of solids decouples the vibration of each individual atom,

such that the instantaneous position of each atom has no effect on the surrounding

atoms. In contrast, the Debye model of solids couples the atoms together. From the

Debye model emerge phonons, the quasiparticle of lattice vibrations. This model

yields the Debye temperature ΘD which is defined as [38]

ΘD =
hcs
2kB

3

√
6N

πV
(2.15)

where h is the Planck constant, cs is the sound speed of the solid, kB is the

Boltzmann constant, N is the number of atoms and V is the volume occupied by

the atoms. The Debye temperature is the temperature at which the phonons of

highest allowed frequency are excited; more than this, ΘD indicates the temperature

at which low-T quantum behaviour converges with high-T classical behaviour. Since

ΘD is proportional to cs, it is also proportional to the stiffness of the inter-atomic

potential.

The Debye model continues by giving the following expression for the heat

capacity at constant volume CV

CV

NkB
= 9

(
T

ΘD

)3 ∫ ΘD/T

0

x4ex

(ex − 1)2
dx (2.16)

This equation shows the close entanglement of ΘD and T ; this relationship will be

explored more fully in the work of section 3.8. In a compressed crystal ΘD will

change due to a “stiffening” of the interatomic potential. The Gruneisen parameter,

Γ, can be used to describe the change in ΘD as a function of V .

The Gruneisen parameter itself is a widely used thermodynamic quantity with
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many interpretations. The Gruneisen parameter can be defined as

Γ = V

(
∂P

∂E

)
V

(2.17)

where V is volume, P is pressure, and E is energy. In other words, the Gruneisen

parameter details the pressure increase expected in a system when energy is added

while maintaining a certain volume.

The characteristics of the system are important. Consider, for example, an ideal

gas. Any extra energy input to the system would be used entirely as translational

kinetic energy. The ideal gas equation of state is

PV = NkBT (2.18)

and the total energy of the system is

E =
3

2
NkBT (2.19)

whereN is the number of gas particles and kB is The Boltzmann constant. Combining

these equations we get

PV =
2

3
E (2.20)

thus the Gruneisen parameter is 2
3
. For a diatomic molecule

E =
5

2
NkBT (2.21)

and so in this case Γ = 2
5
. This reduction in the increase of pressure with added
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energy is simply explained by the fact that some of the energy has now been deposited

in the vibrational motion of the molecules, thereby reducing the energy used for

translational motion. It is evident, then, that one can work backwards to understand

something of the vibrational properties of a material from its Gruneisen parameter.

Alternative but equivalent forms of the Gruneisen parameter are used in the

field of shock compression. In the Mie-Gruneisen equation of state the Gruneisen

parameter Γ is defined as

Γ(V ) = −∂lnΘD

∂lnV
(2.22)

By rearranging this equation to the following form

ΘD = Θ0exp

(
−
∫ V

V0

Γ(V )

V
dV

)
(2.23)

it can be used to give an estimate of ΘD, given a value for Γ, and an initial

uncompressed Debye temperature Θ0.

2.2 Shock waves

In the ideal case, a shock wave is a travelling discontinuity in pressure. Figure 2.9

shows the formation of a shock front. A shock is formed when a pressure wave travels

through a solid, causing compression of the material. The compressed material has

an increased sound speed, causing subsequent pressure waves to propagate at a higher

velocity. This next pressure wave catches up with the first, further compressing the

material, and the cycle continues. The pressure profile steepens rapidly until there
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Figure 2.9: An illustration of shock formation. A pressure wave is imparted into the
solid. The increase in pressure leads to an increase in sound speed, resulting in subsequent
pressure waves travelling faster than the initial pressure wave. Finally the latter pressure
waves catch up to the initial disturbance, steepening the pressure front into a discontinuity
in pressure a.k.a a shock wave.

is a discontinuity in pressure, separating the material into shocked and unshocked

regions. In the shocked region the pressure is very high, while in the unshocked region

the pressure remains undisturbed from its initial value. Shock waves are transient,

and so any solid exposed to a shock will necessarily decompress afterwards. For a

short amount of time though, between shock arrival and material decompression,

the sample will exist in a high pressure-temperature state, potentially long enough

to reconstitute itself into an interesting, novel structure.

2.2.1 The Rankine-Hugoniot relations

The final state of a shocked material is given by the Rankine-Hugoniot relations,

which themselves are derived from conservation of mass, momentum, and energy.

The equations for an adiabatic shock are given below.

(us − up)ρ1 = usρ0 (2.24)
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(P1 − P0) = usupρ0 (2.25)

P1up = usρ0

(
e1 − e0 +

u2p
2

)
(2.26)

Here us is the velocity of the shock wave, ρ0, P0, and e0 are the density, pressure, and

specific internal energy of the material before the shock wave has passed through

the material, and ρ1, P1, and e1 are the density, pressure, and internal energy of

the material after the shock wave has passed through. up is the particle velocity;

the particle velocity accounts for the translation of the bulk material upon being

struck. This can also be thought of as a piston velocity, where a hypothetical piston

pushes the material, generating a shock in the sample. Four of the quantities in

the above equations are generally unknown: P1, ρ1, us, and up. Note that e1 is not

considered an unknown variable here. This is because e1 can be expressed in terms

of the other variables; in this adiabatic system, the increase in internal energy is

produced entirely by the work done by the piston Wp. The work done is the force,

P1A, multiplied by the distance travelled, upδt, where A is the cross-sectional area

of the sample and δt is the time elapsed. Therefore e1 = e0 +Wp = e0 + P1Aupδt.

A material equation of state is required to close the Rankine-Hugoniot equations.

By manipulating the equations and using the ideal gas approximation, the Hugoniot

equation for an ideal gas is generated.

ρ1
ρ0

=
(γ + 1)P1

P0
+ (γ − 1)

(γ + 1) + (γ − 1)P1

P0

(2.27)

Here γ is the ratio of the heat capacity at constant pressure CP to the heat capacity at
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constant volume CV . The Hugoniot equation defines the locus of all states resulting

from any strength shock, given a unique starting state. Many experiments are often

constrained to the states described by this equation, eliminating the need to measure

all of the material properties. Until recently, the temperature of a shocked state has

been inferred from these equations rather than measured; such an inference requires

a heat capacity to be assumed, which is not necessarily well known in the shock

regime.

In order to reach even higher pressure states, a sequence of shocks may be

imparted to a target in a procedure known as multi-shock compression. In such

experiments, the final state can be predicted by applying the Hugoniot relations

repeatedly such that the initial state of the next shock wave is the final state of

the previous shock. There are also efforts to produce off-Hugoniot states, especially

lower temperature states; these states are closer to the isentrope and so more closely

resemble planetary core conditions. These off-Hugoniot states can be achieved via

ramp compression, where the energy deposition rate is too low to seed a mature shock

wave. In such experiments the final state is no longer constrained to the Hugoniot

as described above and so knowledge of temperature is no longer produced from the

Hugoniot equations. In such a situation it is necessary to measure temperature so

as to close the equation of state.

2.2.2 Laser-generated shock waves in crystalline materials

High power lasers are routinely employed to generate shocks in crystalline solids.

A large amount of energy, often thousands of joules, is deposited into the material

of interest in the space of a few nanoseconds. This energy deposition results in
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the rapid ablation of material from the surface of the sample. Due to conservation

of momentum, a shock wave is driven into the sample. The shock wave generates

enormous pressures in the sample; a stress is said to be applied to the material.

Each material has a unique capacity to withstand stress. When a sufficiently high

stress is applied to a crystal, the atoms will rearrange in some way; this is known as

plastic deformation. If a relatively small stress is applied the crystal will maintain

its structure while being compressed. This is called elastic deformation. The stress

at which the deformation changes from elastic to plastic is called the elastic limit.

The strength of a material is the ability of the material to withstand stresses without

plastic deformation; a high strength material will thus have a high elastic limit.

2.3 X-ray diffraction

X-ray diffraction is a diagnostic technique that has been used for over a hundred

years. It exploits the wave character of x-rays to probe the atomic structure of

materials. It has enjoyed great success and has been employed in the discovery of

many structures including the double-helix structure of DNA [51]. Nowadays it is

routinely used to characterise the structure of proteins [52], pharmaceuticals [53], and

alloy properties [54]. It is also employed on laser shock experiments to interrogate

the transient structures present on nanosecond timescales [55, 56, 57, 58, 59].

2.3.1 Elementary theory of x-ray diffraction

When an x-ray interacts with an electron, the electron will oscillate exactly out of

phase with the electric field of the x-ray. This oscillating charge then re-emits in
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every direction. If the initial x-ray beam is unpolarised, with electric fields oriented

uniformly about the x-ray beam, the electron will emit an electric field with intensity

Ie = I0
e4

m2
ec

4R2

(
1 + cos2(2θ)

2

)
(2.28)

where I0 is the intensity of the incident beam, e is the charge on an electron, c

is the speed of light in a vacuum, R is the distance between the electron and the

point of observation, and θ is half the angle between the incident beam and the

scattered beam [48]. Recall that intensity is power per unit area; when detecting

x-rays it is intensity that is measured, thus intensity is made the subject of all

relevant equations.

Scattering from an atom is slightly more complicated. The electron cloud around

an atom will not simply scatter as if from multiple isolated electrons. Instead each

element has a unique x-ray diffraction fingerprint in the form of the atomic scattering

factor f . The intensity of scattering from a single atom is

Ia = f 2Ie (2.29)

Now consider a crystal, where regularly spaced atoms are all scattering x-rays at

the same time. Since x-rays have wave character, the scattered x-rays will interfere

with each other. If a detector is placed some distance away from the crystal, it will

detect bright spots of intensity where the x-rays constructively interfere, and large

dim regions where this does not occur. The exact location of the bright spots is

determined by the structure of the crystal. This is called the Laue picture.

The Bragg formulation is an alternative way of conceptualising diffraction, and
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Figure 2.10: The Bragg picture of diffraction.

is depicted in figure 2.10. Instead of considering x-rays to be scattered by individual

atoms, x-rays are specularly reflected by entire sets of atomic planes. At certain

angles the reflected radiation from subsequent planes will be exactly in phase. The

angle θB is the angle between the incident/reflected x-ray beam and the reflection

plane, and is referred to as the Bragg angle. If a crystal undergoes diffraction, the

Bragg condition is said to have been met. The Bragg condition is met when

λ = 2dhklsinθB (2.30)

where λ is the wavelength of the incident x-rays, and dhkl is the interplanar spacing

for the plane hkl.

For some structures there are planes for which a reflection is not “allowed”, and

so not every plane produces a viable reflection; this is due to destructive interference
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specific to the structure. These missing reflections are dealt with more completely

in the Laue picture, through the use of the structure factor F

F =
N∑
j=1

fje
−2πi(ha1′+ka2′+la3′) (2.31)

where f is the scattering factor of the jth atom, N is the number of scattering

atoms, h k l are the Miller indices of the current reflection, and a1′ a2′ a3′ are

the normalised lattice vectors of the crystal. Qualitatively, the structure factor and

the reciprocal lattice are the same. Recall that the reciprocal lattice represents the

planes present in a crystal. The reciprocal lattice already accounts for the disallowed

reflections and so it is a useful construct when predicting the direction of diffraction

from a crystal, as will now be shown.

The wavevector of an x-ray beam is given by

k =
2π

λ
(2.32)

If the tip of the incident beam wavevector k0 is placed on the origin of the reciprocal

lattice as shown in figure 2.11, the reflected wavevector kr may be placed at the

same starting point as k0. By scanning kr through every possible position it is found

that kr intersects the reciprocal lattice at specific orientations. These orientations

represent the satisfaction of the Bragg condition and so indicate an orientation at

which diffraction will be observed. The angle between k0 and kr will be 2θB. The

scattering vector is given by

G = kr − k0 = ∆k (2.33)
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Figure 2.11: The Ewald construction, showing the intersection of the Ewald “sphere”
with the reciprocal lattice. This image is an altered version of the image created by the
Wikipedian Wiso and is reproduced here with permission under the Creative Commons
license.

and diffraction occurs when

G = hb1 + kb2 + lb3 (2.34)

Diffraction from a single crystal will produce single beams of reflected x-rays.

When these beams are intercepted by a detector they show up as bright spots.

In contrast, diffraction from a polycrystal produces cones of diffraction. This is

because the Bragg condition can be met by rotating a grain about the axis of the

incident x-ray beam; in a polycrystal, it is possible for many grains to meet the Bragg

condition in this way, resulting in a cone of diffraction. When a planar detector

intercepts these cones, conic sections are observed, often termed “diffraction rings”.

If the polycrystal is an ideal powder, consisting of a perfectly uniform distribution

of grains, the rings will be smooth and will have no variation in intensity arising

from preferential crystallographic orientation. Note that there will still be variations
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in intensity around the ring due to other geometrical effects to be discussed in

section 2.3.3. Diffraction from a polycrystalline solid is often referred to as “powder

diffraction”, even when there is no powder but instead a single block of material

containing many crystallites.

The multiplicity of crystal planes plays an important role in x-ray diffraction. In

a typical powder x-ray diffraction experiment a family of planes will all reflect to

the same positions on an x-ray detector, but each individual plane will contribute

an equal amount to the overall intensity of the signal. The result is that some rings

will be much brighter than others due to the larger number of planes contributing

to the reflection.

In laser-shock experiments, the crystal structure is compressed. This results in

a shortening of the lattice constant, and therefore an increase in the Bragg angle.

By measuring the change in Bragg angle one also measures the compression of the

sample. If the x-rays from the compressed material are not reflected in a perfect

cone, one can conclude that the material is experiencing a non-uniform compression.

This is evidence that the material is resisting plastic deformation; i.e. it is evidence

of strength in the material. This fact has been exploited to make measurements of

material strength under extreme loads [60] [61].

2.3.2 The effect of temperature on x-ray diffraction profiles

A crystal with some temperature T will consist of vibrating atoms. At any one

instant the atoms will be displaced from their equilibrium lattice sites. When

diffraction takes place the atoms are scattered from in their displaced positions.

These small displacements cause a loss of coherence in the diffraction pattern, and
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the result is a loss in diffraction peak intensity. This is called the Debye-Waller

effect. If the phonons obey a Bose-Einstein distribution, the intensity of diffraction

will be altered in the following way [48]:

I(T ) = I0exp(−2M) (2.35)

2M =
12h2Nasin

2(θ)

mλ2kBΘD

[
T 2

Θ2
D

∫ ΘD/T

0

x

ex − 1
dx+

1

4

]
(2.36)

where I0 is the intensity of diffraction at 0 K, Na is Avogadro’s number, and m is

the molar mass of the material being probed. By substituting for |G| = 4πsinθ/λ,

the following equation is formulated

2M =
3h2Na|G|2

mkBΘD

[
T 2

Θ2
D

∫ ΘD/T

0

x

ex − 1
dx+

1

4

]
(2.37)

where G is the reciprocal lattice vector associated with the reflection currently being

considered. If the atoms instead follow a Boltzmann distribution, as in the case of

a classical solid, the equation instead becomes

2M =
3h2Na|G|2

mkBΘD

[
T

ΘD

]
(2.38)

A comparison of the classical model (equation 2.38) and the quantum model

(2.37) is presented in figure 2.12. Since the equations share the same pre-factors,

the functional form of the classical equation is given by c, and the functional form

of the quantum equation is given by q, where
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c =
T

ΘD

(2.39)

q =
T 2

Θ2
D

∫ ΘD/T

0

x

ex − 1
dx+

1

4
(2.40)

For T above ΘD, the ratio of the two models converges to 1. This reflects the

fact that, at high temperatures, the occupation of states in a Bose-Einstein solid

resembles the occupation of states in a Boltzmann solid. The two models only

meaningfully disagree at temperatures below the ΘD. It is therefore suitable to

apply the simpler classical model to a quantum system at temperatures far above

ΘD. At temperatures near to or far below ΘD, the more cumbersome quantum

model should be used.

(a) (b)

Figure 2.12: (a) The ratio of the quantum model for Debye-Waller factor to the classical
model as a function of ΘD. The temperature is kept at 300 K. (b) The ratio of the
classical model for Debye-Waller factor to the quantum model as a function of T. The
Debye temperature ΘD is kept at 320 K.

The vibrational properties of a solid are important in determining the mean
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square distance of atoms from their equilibrium positions, hence the appearance of

ΘD here in the Debye-Waller equation. If a material has a high ΘD, the atoms will

be tightly bound and will have a relatively small amplitude of oscillation. The result

will be a modest decrease in diffraction intensity due to temperature. Conversely,

a low Debye temperature allows atoms to move further from the equilibrium lattice

positions, and therefore the Debye-Waller effect will be more noticeable.

2.3.3 The Lorentz-polarisation intensity correction

When a beam of x-rays scatter from an atom, the light will become polarised as

shown in figure 2.13. The electric field E from the incident x-ray beam originating

at P0 causes the electrons of atom A0 to oscillate in the plane of the incident beam.

If the atom is viewed from P1, a direction perpendicular to the oscillating plane, all

of the electron electric field oscillations are “visible”. Since the detected intensity

I ∝ E2, the detected intensity at P1 receives contributions from every component

of the electric field. If the oscillating electrons are observed from a direction within

the plane of oscillation, such as P3, only electric field components out of the line

|A0P3| contribute to the intensity, and so the intensity is reduced. In the case of

an intermediate observation point such as P2, the intensity will be reduced when

compared to P1, but will not be reduced as much as in P3.

The effect is a reduction in the intensity of the form

ID = I0
1 + cos22θB

2
(2.41)

where I0 is the corrected intensity, and ID is the detected intensity [48]. Note that
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Figure 2.13: Polarisation due to scattering from an atom. The incident beam approaches
the atom from the left.

the polarisation factor is already apparent in equation 2.28.

The Lorentz factor originates from a number of geometrical considerations which

will now be discussed [62]. The first part of the correction arises from the fact that

the reciprocal lattice for a real crystal is not a set of discrete delta functions. Instead,

the reciprocal lattice has a finite width. Similarly, the probing x-ray beam is not

perfectly monochromatic. Thus the intersection between the Ewald sphere and the

reciprocal lattice will enclose a volume rather than intersect at a point. When the

intersection angles are near-perpendicular, the enclosed volume will be smaller than

when the intersection angles are near-parallel. These geometric features give rise to

the first portion of the Lorentz factor.

L1 ∝
cosθB
sin2θB

(2.42)

Another fragment of the Lorentz factor arises from instrumental considerations,
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where a detector of constant width is used to detect reflections. This correction

applies when an intensity per unit length is measured; the correction does not apply

to measurements of intensity per φ. The fraction of the intercepted diffraction cone

varies with θB according to the following relationship.

L2 =
1

sin2θB
(2.43)

The two Lorentz corrections are often given together with the polarisation correction

in the form of the Lorentz-polarisation correction. Since relative diffraction intensities

are often the goal, a proportional relationship showing the dependence of intensity

on angle is sufficient.

LP ∝ cos(θB)(1 + cos2(2θB))

sin(2θB)
(2.44)

2.3.4 Dislocations and x-ray diffraction

The effect of dislocations on x-ray diffraction profiles is described by the theory of

Wilkens [63, 64, 65, 66]. To characterise the dislocations a cylinder is considered of

area F0 containing N0 dislocations running parallel to the cylinder axis. The cylinder

area is divided equally into p2 sub-areas such that each area now contains Np =
N0

p2

dislocations. The dislocation density is given by

ρ =
N0

F0

= NpFp (2.45)

and the radius of each of the sub-areas is
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Rp =

√
Fp

π
=

1

p

√
F0

π
. (2.46)

In this model, the dislocations are allowed to be randomly distributed within

these sub-areas, but they are not allowed to interact with dislocations in other

sub-areas. This setup is called “a restrictedly random distribution” of dislocations.

The angle ψ is the angle between the line vector l and the plane G from which

the reflection is taking place. This angle determines the degree to which the lattice

distortion from the dislocations affects the profile. This phenomenon enters the

analysis in the form of the contrast factor. The contrast factor for a screw dislocation

Cs is given by

Cs = sin2(ψ)cos2(ψ) (2.47)

The intensity profile for a screw dislocation is given by

I(s) = 2

∫ ∞

0

exp

[
− π

2
g2b2Csρn

2f(η)

]
cos(2πnS)dn (2.48)

where b is the burgers vector of the dislocation, n integrated variable, and S =

2
λ
sin(θB), with λ being the wavelength of the incident x-rays. The function f(η) is

typically called the Wilkens function [67], where

η =
nsin(ψ)

2Rp

(2.49)

and f(η), when η < 1, takes the form:
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f(η) = −log(η) + (
7

4
− log(2))

+
512

90πη
+

2

π

[
1− 1

4η2

] ∫ η

0

arcsin(V )

V
dV

− 1

π

[
769

180η
+

41η

90
+

2

90
η3
]√

1− η2

− 1

π

[
11

12η2
+

7

2
+
η2

3

]
arcsin(η) +

η2

6

(2.50)

and when η > 1:

f(η) =
512

90πη
−

[
11

24
+
log(2η)

4

]
1

η2
(2.51)

If one wishes to consider edge dislocations a different value for contrast factor Ce is

used:

Ce = sin4(ψ)
1

8(1− ν2)
[(1− 4ν + 8ν2) + 4(1− 2ν)cos2(Φ)] (2.52)

where ν is the Poisson ratio, and the angle Φ is defined by g×l·b = |g||l||b|sin(ψ)sin(Φ).

Finally, if the desired dislocation has mixed character, an interaction term Ci is

necessary:

Ci = sin3(ψ)cos(ψ)cos(Φ)
3− 7ν + 4ν2

2(1− ν)2
(2.53)

The three terms can be mixed so as to be applicable to any mixed-character dislocation:

Cγ = cos2(γCs) + sin2(γCe) + sin(γ)cos(γ)Ci (2.54)
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where γ is the angle between l and b. Equation 2.48 can be used for any type of

dislocation by replacing Cs with an appropriate contrast factor given by equation

2.54.

2.4 Molecular dynamics simulations

While direct experimentation forms the bedrock of all scientific knowledge, computer

simulations have arisen as important tools in the support of research. Simulations

are often cheap and convenient counterparts to experiment.

In addition, simulations offer insight inaccessible to the experimentalist. In the

case of molecular dynamics, a system of atoms is simulated undergoing a wide range

of possible processes. Since every atom is accounted for in these simulations, an

extreme level of detail is available for investigation.

Classical molecular dynamics simulations often involve the numerical evaluation

of Newton’s equations of motion for a many body system. These equations take the

form

M
δ2x(t)

δt2
= −∇V (x(t)) (2.55)

HereM is a matrix containing the masses of all atoms in the system, x(t) contains all

the positions of atoms, and V is the potential that describes the system. In order to

dynamically simulate the system, a numerical integrator such as the Verlet algorithm

is implemented in order to iterate the system over a discrete number of timesteps

[68]. A velocity Verlet is used to update velocities as a result of the surrounding

atomic potentials. The following equation is then evaluated
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x1 = x0 + v0∆t+
1

2
a0∆t2 (2.56)

where xo, v0, and a0 are the initial position, velocity, and acceleration of an atom,

x1 is the new position, and ∆t is the length of the time step. The acceleration a0

is calculated from the potential V (x(t)). The forces are then updated according to

the new atom positions.

The method of simulating material systems computationally has many unique

advantages over traditional experimentation including microstructural knowledge

and access to material parameters otherwise difficult to extract, such as temperature.

The root of these advantages lies in the complete knowledge of atoms and their

positions, allowing a bottom-up approach to measuring quantities in the system.

It is important, however, to ensure any results from MD match what we observe

in reality. Fundamentally, classical molecular dynamics misrepresents reality as we

know it; no quantum effects are modelled in a classical MD simulation, and so

material properties such as discretised phonon dispersions are overlooked. While it

is interesting to use MD to probe regimes that are not currently accessible [69] the

results without experimental verification are, at best, an indication of potentially

interesting physics.

2.4.1 Simulated solids

The MD software used in this project is the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS), a popular software package that has been used widely

to simulate shock-waves [70, 71]. LAMMPS creates a list of nearest neighbours for
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each atom by using a cut-off radius around the atom in order to save computational

time. Atoms that are outside this radius are deemed to have a negligible effect on

the atom for which the neighbour list is constructed. The neighbour lists will be

updated for each time step, as atoms will move in and out of the cut-off radius over

the course of the simulation.

A simulation box is defined and the properties of the boundaries that hold the

atoms in the simulation can be changed. A periodic boundary conditions allows

atoms on opposite sides of the simulation box to interact with each other through

the faces of the box, as if the atoms were next to each other. The purpose of this

is to better approximate the behaviour of bulk material and eliminate edge effects.

The situation is a little more complicated for a planar shock, since periodic boundary

conditions are only desirable in two dimensions. In the case of a shock simulations,

it is typical to simulate a piece of material in the shape of an elongated cuboid [72].

The extra length is given to the direction of travel of the shock wave with periodic

boundary conditions enforced in the perpendicular directions.

2.4.2 The role of atomic potentials

Of utmost importance to MD is the careful selection of a potential, since it is the

potential that determines the physics of simulated interactions. When MD was

first used to study shocks, simple models such as the Lennard-Jones potential were

used [73]. As research has progressed and emphasis placed on accurate large-scale

modelling, more sophisticated potentials have been developed. There are numerous

methods used to develop a potential, such as the embedded atom method (EAM).

EAM potentials are derived from a combination of density-functional theory and
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semi-empirical methods. This thesis is concerned with simulating metals, and EAM

potentials have been shown to reasonably simulate metallic behaviour [74].

2.4.3 Thermostats

Suppose a lattice has already been defined and atoms placed at all of the designated

atom locations, such that the atoms now all sit exactly on their lattice sites. To

impose a temperature on the system, the atoms must be given a certain amount of

energy at the beginning of the simulation.

Energy is distributed by assigning each atom a velocity. The velocities themselves

are created in the manner of a user-defined distribution; in the case of this project

a Gaussian velocity distribution has been used. Each velocity in the distribution

is then assigned to a random atom. When the simulation begins to iterate, the

atoms will move away from their lattice sites and some of the kinetic energy that

was originally imparted to the atoms is converted to potential energy, resulting in

a net loss of kinetic energy of the atoms in the system. As further iterations are

computed, approximately half of the energy will be tied up in potential energy (via

the equipartition theorem), and so the kinetic energy will also be halved, resulting

in a halving of temperature.

To counteract this drop in temperature, a thermostat may be applied to the

simulation. The thermostat will periodically review the kinetic energy of the system

and determine if there is a change in temperature. If the system temperature has

deviated from the desired temperature, kinetic energy will be added or removed so

as to correct for the discrepancy.

Perhaps the most obvious way of doing this is to rescale the velocities of the
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atoms according to the discrepancy between the current state and the desired state.

This method is often avoided since it is a non-physical way of adding energy. Instead,

a Nosé-Hoover thermostat can be implemented [75]. This works by introducing a

new degree of freedom to the system which acts as a heat bath. Two commonly used

thermostats are referred to as nvt and npt. An nvt thermostat keeps the number

of particles (n), the volume (v), and the temperature (t) approximately constant.

Similarly, an npt thermostat keeps the number of particles (n), the pressure (p), and

the temperature (t) approximately constant

A specialised thermostat called the Hugoniostat is a popular tool for investigating

shocked materials [76]. The Hugoniostat requires an input pressure from the user.

The Hugoniostat then reshapes the simulation box to achieve the desired pressure

conditions. The Rankine-Hugoniot equations from section 2.2.1 are solved to give

the expected temperature along the Hugoniot; using this temperature, a thermostat

is applied to the simulation box. The Hugoniostat is therefore a convenient tool for

creating shocked simulated solids.

2.4.4 Simulating x-ray diffraction from molecular dynamics

The output of LAMMPS is a list of atom positions. With these atom positions we

can simulate an x-ray diffraction pattern by performing a Fourier transform (FT) of

the atom positions [72]. The discrete Fourier transform is

I(q) ∝ |F (q)|2 ∝ Z2|
N∑
j=1

exp(iq · rj)|2 (2.57)

where I is the intensity at the reciprocal space point q, F is the structure factor
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of the crystal, and rj is the real space position of atom j. By summing over the

positions of every atom, a single reciprocal space intensity can be generated. By

calculating the reciprocal space intensities in the vicinity of a reciprocal lattice site,

the x-ray diffraction profile of the crystal can be simulated. This procedure is used

in the following chapter to generate x-ray diffraction profiles of a variety of atomic

systems.
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Chapter 3

Molecular Dynamics Simulations

of Temperature Measurement

using the Debye-Waller Effect

In this chapter, molecular dynamics (MD) simulations are used to investigate the

feasibility of using the Debye-Waller effect to measure temperature in solids under

shock compression. These investigations were first attempted by Murphy et al [37].

Murphy et al simulated a 60x60x60 box of FCC Cu under static conditions and were

able to accurately measure the Debye-Waller factor. The work of Murphy et al also

investigated the Debye-Waller response to compression due to a shock. The Cu was

compressed along [1 0 0]; compression of an FCC lattice along this direction results

in a phase transformation to BCC. The derived Debye-Waller factors were used

to predict Debye temperatures of Cu under compression and compared to Debye

temperatures predicted by a variety of Gruneisen parameter models. It was shown
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that the phase transformation led to a departure in predicted Debye temperature,

relative to a selection of Gruneisen parameter models.

While the work of Murphy et al was an important first step in the study of the

Debye-Waller effect in shock compressed MD, the work stopped short of assessing

the impact of different Gruneisen parameter models on the accuracy of a potential

temperature measurement. What’s more, the observed phase transformation added

unnecessary complexity to the analysis of Debye temperature undergoing uniaxial

compression. The impact of crystal imperfections were also left largely unconsidered.

This chapter sets out to establish more concretely the feasibility of using the

Debye-Waller effect as a temperature measurement tool on laser-shock experiments,

and to reveal the potential challenges an experimentalist might face. A number of

confounding situations are investigated in such a way that their effect is isolated and

measured, allowing a hierarchy of impact to be constructed.

3.1 Thermalisation times for a set of atoms

The MD software used in this chapter is LAMMPS [77]. This software has been used

to produce a vast amount of high-quality work performed by a huge community of

users, and so LAMMPS is considered to be a high-quality, robust code. However,

when using computational techniques such as MD it is important to understand

the limitations of the software, and its relevance to the problem at hand, so as to

give valuable context when interpreting any results. This is especially important

when using third party software such as LAMMPS, which can often be used as a

black-box. It is therefore prudent to independently examine LAMMPS and ensure
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sensible atomic systems are being produced.

It is practical to establish the minimum time necessary for a box of atoms to

thermalise. This knowledge is useful when setting up further simulations, ensuring

that simulations are evolved over an appropriate timescale. If the simulation finishes

too soon, the derived results may be misleading since the system is not in equilibrium.

Conversely, too long a timescale is wasteful, especially when considering larger

simulations.

A classical atomic system is said to be in thermal equilibrium when there is no net

flow of matter and the atom speeds obey a Maxwell-Boltzmann distribution. Since

the simulations considered here do not exchange matter with any other system,

the latter part of this definition is the relevant qualification for thermodynamic

equilibrium. The Maxwell-Boltzmann probability density function is given by the

equation

PDF (x) =

√
2

π

x2e−x2/(2a2)

a3
(3.1)

where x is the independent variable and a is the fitting parameter.

A LAMMPS simulation box of FCC Cu was setup using the Cu Mishin EAM1

potential developed by Mishin et al [78]. This potential was used by Murphy et.

al. and so is used here for the sake of comparison. This potential has been shown

to produce shock characteristics commensurate with experiment [70]. The box has

periodic boundaries i.e. atoms on the edge of the box will interact with atoms on

the opposite side of the box to remove anomalous behaviours associated with sample

edges. The atoms were first assigned a velocity distribution consistent with 300 K;

this is achieved by assigning Gaussian distributions to the velocities in x y z. As
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the atoms are allowed to evolve, one observes that the temperature of this system

rapidly drops to 150 K. This is because, initially, all of the energy in the system is

kinetic, with no energy taking the form of potential. The result is that over time

the energy will become evenly distributed between kinetic and potential, and so the

velocity distribution of the atoms will now correspond to a system at 150 K. In order

to restore the system to the desired temperature of 300 K, the system is coupled to

a Nosé-Hoover thermostat.

Different box sizes were selected to investigate the effect of an increase of atoms

on the thermalisation time. A cube of lattice points were set up with side length N

of 5, 20, 60, and 100, where N is the number of conventional lattice sites along each

cube dimension. For an FCC material like Cu, the number of atoms per conventional

unit cell is 4, thus the number of atoms in each simulation is 4N3. The simulation

is allowed to run for 10000 timesteps, with each timestep corresponding to 1 fs.

N = 5 N = 20 N = 60 N = 100
10.81 K 1.55 K 0.64 K 0.52 K

Table 3.1: The standard deviation in temperature, in the last 5000 timesteps, for boxes
with side length N = 5, 20, 60, 100.

The temperature of each simulation every 100 timesteps is shown in figure 3.1.

The thermalisation time increases as N increases. The scatter about the desired

temperature also improves with increasing N ; this is to be expected given the more

favourable statistics associated with larger systems. The standard deviations in

temperature for each box size are shown in table 3.1; these figures are calculated

from the final 5000 timesteps of the simulation.

Figure 3.2 shows the atomic speed distributions of simulations with N = 20 and
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Figure 3.1: The temperature over time of simulated copper is shown for different box
sizes.

N = 100 at timestep 104. A normalised form of equation 3.1 is applied in each case.

Again, the increased number of atoms in the N = 100 simulation reduces scatter

about the fit.

Based on the results shown in figures 3.1 and 3.2, thermal equilibrium is sufficiently

achieved by timestep 10000 on large simulation boxes. When performing simulations

starting from an equilibrated material, these conditions should first be met.

3.2 The lattice parameter of simulated copper and

niobium

Cu has a lattice parameter of 3.615 Å at s.t.p. [79]. The Cu potential used in

simulation may differ from these values and so an appropriate lattice parameter

67



(a) N = 20 (b) N = 100

Figure 3.2: Speed distributions of simulated Cu at 300 K. A Maxwell-Boltzmann
distribution function is fit to the data.

should be found.

A 100x100x100 cube of Cu was simulated using the Cu Mishin EAM1 potential,

with an initial lattice parameter of 3.615 Å. The Cu was first thermalised to 300 K

for 5000 timesteps of 1 fs, using an nvt Nosé-Hoover thermostat. Once the material

was thermalised, the thermostat was changed from an nvt to an npt; the volume is

now allowed to change, and so the material should relax to a pressure of 0 bar. This

npt was performed for a further 5000 timesteps of 1 fs. Figure 3.3 shows the lattice

parameter a and the corresponding material pressure P every 100 timesteps during

the npt phase of the simulation. The conventional lattice parameter was calculated

from the volume V by the equation a = 3
√
V /N , where N = 100 in this instance.

The line fit has the equation a =-8.77009516x10−07P + 3.63185453. The standard

deviation of points about the trend line is 3.183x10−05. Therefore at P = 0 bar and

T = 300 K , the equilibrium lattice parameter of Cu Mishin EAM1 is reported as

3.63186 ± 3 ×10−5 Å.
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Figure 3.3: The lattice parameter of the Cu Mishin EAM1 potential as a function of
pressure.

The same procedure was applied to the Nb Fellinger EAM potential [80]. At

s.t.p. niobium is a BCC material with lattice parameter of 3.3004 Å[81]. Figure

3.4 shows the lattice parameter of the Nb EAM potential as a function of pressure.

By fitting a line to this data and taking the y-intercept as the lattice parameter,

the lattice parameter of the Nb Fellinger EAM potential is reported here as a =

3.33069± 2× 10−5 Å, where the error is one standard deviation.

3.3 The Debye-Waller effect in molecular dynamics

In the case of MD, an x-ray diffraction pattern can be simulated by performing

a discrete Fourier transform of the atomic positions. In this work, the discrete
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Figure 3.4: The lattice parameter of the Nb Fellinger EAM potential as a function of
pressure.

Fourier transform was performed using the SonOfHoward code written by Andrew

Higginbotham.

Each Fourier transform calculation yields a single intensity point in reciprocal

space. For a crystal, the majority of the reciprocal space intensity is contained in

the volume around the reciprocal lattice points. It is therefore most computationally

efficient to calculate the Fourier transform at points nearest to the reciprocal lattice

points. In the kinematic approximation, the intensity of an ideal Bragg reflection in

one direction takes the form

y =
sin2(Nx)

sin2(x)
(3.2)
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where y ∝ I, x is the reciprocal distance from the centre of the diffraction peak, and

N is the number of unit cells in the x direction,[82]. An image of this function

is shown in figure 3.5. The width of the central peak is 2π
N
, where the width

is twice the x value between the highest peak and the first minimum. Since the

majority of the intensity is contained within this central region it is most efficient to

calculate the intensity in this area only, discounting the “wings” of the function.

This is especially true in three dimensions; a doubling of the width considered

results in an eight-fold increase in volume considered, and thus an eight-fold increase

in computation required to calculate a discrete Fourier transform with the same

resolution.

Figure 3.5: Equation 3.2 with N =20.

In order to measure diffraction peak intensities fromMD efficiently, the peakfinder
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code was written. The basic work flow of this code is shown in figure 3.6. The code

begins by estimating the reciprocal space positions of the diffraction peaks using

the user-defined structure and lattice parameter i.e. peakfinder will not search for

forbidden reflections. The code will predict as many reflections as instructed by the

user. The user may toggle the presence of negative values for h k l. The user may

also toggle the presence of the non-physical (0 0 0) reflection.

Since the simulated crystals considered here are typically under compression, the

code then searches for the location of a single peak along each of the reciprocal space

directions kx ky and kz. This is done by performing a 1-dimensional discrete Fourier

transform (1D-DFT) from (cx0h cy0k cz0l) to (cx1h cy1k cz1l), where c0 is the

user-defined undershoot factor of the peak position, c1 is the user-defined overshoot

factor of the peak position, and x y z correspond the the kx ky kz co-ordinates,

respectively. The user also defines the number of reciprocal space points calculated

between these two points. By allowing the user to define these parameters, the user

is given fine control over the size of the computation and can thus leverage their

pre-existing knowledge of the MD system to efficiently manoeuvre the code.

Once these first compression-finding 1D-DFT’s have been completed, the maxima

are used to estimate the overall compression in the sample along kx ky kz. The

compression factor S = pmax/pinit is calculated along each direction, where pmax is

the point of maximum intensity in the 1D-DFT line out, and pinit is the initial guess

of the position of the diffraction peak. These compression factors are then applied

to the full list of initial guesses of peak positions so that each initial (h k l) becomes

(Sxh Syk Szl).

A further set of 1D-DFT’s is performed, this time over each individual peak.
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The aim is to find each peak centre individually. A 1D-DFT is performed over each

kx ky kz direction; the maxima of each 1D-DFT is used as the peak-centre reciprocal

space position in each corresponding dimension. The step size in each dimension is

dkx, dky and dkz.

A 3-dimensional discrete Fourier transform is then performed in the immediate

vicinity of the nominal peak-centre determined from the previous three 1D-DFT’s.

The idea is to investigate the space between the maxima and the next nearest point

in the previous 1D-DFT’s. A 3-dimensional cuboid is defined in reciprocal space

centred on the nominal peak centre. The cuboid has side lengths of 2dkx, 2dky

and 2dkz, using the values from the previous three 1D-DFT’s. The maxima of this

3D-DFT is used as the final peak-centre value.

Now that the centre of the peak has been found to a high degree of accuracy, the

final 3D-DFT is performed over the full peak. The width of the peak is defined by the

user; this is because more complicated MD systems have poorly resolved peak edges.

Instead, the user defines the peak edge such that the full peak is enclosed within

the 3D-DFT cuboid. The resolution of the 3D-DFT is also set by the user so that

a lattice of points is defined with cell volumes of dV = dkxdkydkz. The intensities

of the DFT at each point on the lattice is summed and then multiplied by dV to

give an approximate value of the integrated intensity I. The higher the resolution of

the lattice (i.e. the smaller dV ) the closer the approximation approaches the actual

integrated intensity of the peak.

The integrated intensities are now ready to be used to calculate temperature,

using the Debye-Waller effect discussed in section 2.3.2. Since the atoms in an MD

system obey a Boltzmann distribution, the classical form of the equation for the
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Figure 3.6: The peakfinder code work flow, showing the major operational stages.

Debye-Waller effect is used.

I(T ) = I0exp(−2M) (3.3)

2M =
3h2NA|G|2

mkBΘD

[
T

ΘD

]
(3.4)

By taking the natural log of integrated intensities, the following linear equation is

produced.

ln

(
I(T )

I0

)
1

|G|2
= − 3h2NA

mkBΘ2
D

T (3.5)
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Thus, a line fitted to ln
(

I(T )
I0

)
vs. |G|2 has a slope equal to the right hand side of

equation 3.5. The only remaining unknown quantities are ΘD and T . By substituting

in for a value of ΘD, a measurement of T can be inferred. Alternatively, one can

input a value of T to infer ΘD.

Note that I0 here is the intensity from the simulated (0 0 0) “reflection”; this

reflection is an artefact of the Fourier transform and is not physical. It is used here

to normalise the intensities of diffraction. Alternatively, the diffraction intensity

at 0 K can be used for I0. Furthermore, the normalisation of the intensities has

no impact on the temperature measurement technique at hand, since the effect of

intensity normalisation on the plot of ln(I(T )) vs. |G|2 is to simply subtract the

constant ln(I0) from each value of ln(I(T )) ; the slope remains unchanged, and thus

the temperature measurement is also unchanged.

Figure 3.7 shows the diffraction intensities from simulated Cu using the Cu

Mishin EAM1 potential [78]. A cube with side length of N = 60 conventional

unit cells was thermalised for 104 timesteps, with each timestep corresponding to 1

fs. The thermalisation was performed using a Nosé-Hoover thermostat set for 300,

600, 900, and 1200 K. This is in line with the work of Murphy et. al. [37], whose

results are independently verified here. By using the final temperature of the 300 K

simulation, as reported by LAMMPS itself, equation 3.5 was used to determine the

Debye temperature of the simulation ΘD = 315 K.
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Figure 3.7: The simulated diffraction intensities for a cube of Cu with N = 60
conventional unit cells in each dimension, at temperatures of 300, 600, 900, and 1200 K.
The Cu Mishin EAM1 potential is used [78]. The x-axis shows the square of the reciprocal
space position for each peak. As temperature increases, the diffraction intensity diminishes
quicker due to the Debye-Waller effect.

3.4 Debye temperature as a function of the number

of atoms

The number of phonon modes available in an atomic system is dependent on the

number of atoms. Therefore it is expected that there is a minimum requirement for

the number of atoms in a simulated solid in order to adequately approximate the

phonon distribution of a large sample.

A simulation was performed on a sample of copper with conventional cell dimensions
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NxNxN in order to investigate this, where N was varied between 10 and 100 in steps

of 10. Figure 3.8 shows the x-ray diffraction Debye temperatures for simulations of

various N. At each N, three simulations were performed using different initial velocity

distributions; this illustrates the variance in results caused by slightly different

starting conditions. An additional simulation was performed for N = 200 to verify

Debye temperature convergence.

Figure 3.8: The Debye temperature of a box of 4N3 atoms at 300 K using the Cu Mishin
EAM1 potential as a function of N, where N is the number of lattice sites in each simulated
Cartesian dimension.

It can be seen that the Debye temperature asymptotically approaches a value

of 311 K at large N. It can also be seen that the standard deviation of the results

between temperature seeds decreases with N; this result is explained by recalling

that the measure of Debye temperature here depends on the atomic displacement

from the lattice sites. If there are more atoms to sample, the atomic displacement

distribution is more likely to accurately resemble the expected atomic displacement

distribution for an infinite sample, and thus the scatter between Debye temperature
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results will be reduced. These results suggest that simulations should employ N ≥

80 to produce a sufficiently sampled phonon distribution.

An physical explanation of this result is produced by considering a classical 1-

D chain of atoms performing simple harmonic motion. The phonon frequencies

available to this system are related to wavenumber k by the relation

ω(k) =
kBΘD

~
sin

(
ka

2

)
(3.6)

where a is the atomic spacing [38]. If there is only one atom in the system there

will only be one phonon mode available at k = 0. When two atoms are present, an

additional mode is available at k = π
a
. In general, for a 1-D chain of N > 2 atoms,

there are N oscillation modes available with wavevcetors kn such that

kn =
n− 1

N − 1

π

a
(3.7)

where n is an integer number between 1 and N .

Each phonon mode will be occupied according to the Boltzmann distribution

f = e−~ω(k)/(kBT ) (3.8)

Note that the k = 0 phonon is unoccupied in this analysis; this phonon mode

corresponds to a translation of the 1D-chain and therefore is not meaningful with

respective to the average frequency of oscillation within the system. The Boltzmann

occupation is calculated for each mode using equation 3.8 and then normalised by

the sum of all occupations according to
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Z(k) =
f(k)∑N
n f(kn)

(3.9)

This normalisation ensures that the sum of all probabilities of occupation is 1. The

mean frequency of oscillation can now be calculated by

ω̄ =
N∑

n=1

ω(kn)Z(kn) (3.10)

The average frequency is proportional to the Debye temperature. Figure 3.9 shows

the convergence of Debye temperature as the number of atoms N increases.

Figure 3.9: A classical model showing the relationship between Debye temperature ΘD

and the number of atoms in a 1-D chain.

It has therefore been shown that a small number of atoms results in an over

prediction of the Debye temperature of the solid. The average frequency of oscillation

of a small system will be such that the material potential looks “stiffer”. This
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stiffer-looking potential is the cause of the higher predicted Debye temperature. If

more atoms are added to the chain the average frequency is lowered, causing the

Debye temperature to converge. From this analysis, a simulated sample requires

N > 100 atoms to produce an appropriately populated phonon distribution. This

result will be carried forward into future investigations.

3.5 Hydrostatic compression of Cu and Nb

A box of 100x100x100 Cu atoms with periodic boundary conditions was simulated

with varying lattice parameters. By intentionally using a shorter lattice parameter,

the system is subjected to a hydrostatic compression. The lattice parameter is

selected such that al = cal0, where c is the factor by which the lattice constant is

shortened and al0 is the original lattice parameter of Cu at P = 0 bar, as calculated

in section 3.2. The final volume of the sample, V as a fraction of the uncompressed

volume V0, is given by

V

V0
= (1− c)3 (3.11)

The value of V/V0, referred to here as the compression fraction, was selected at

values between 0.80 and 1.00.

The Cu Mishin EAM1 potential was used yet again, and the box was thermalised

for 104 timesteps of 1 fs each. The analysis described in section 3.3 was performed

on these simulations, using the MD temperature as an input to determine the Debye

temperature. The Debye temperature for each compression fraction is shown in

figure 3.10. A third degree polynomial is fit to the data of the form
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ΘD = A

(
V

V0

)3

+B

(
V

V0

)2

+ C

(
V

V0

)
+D (3.12)

whereA = −940.77, B = 4409.42, C = −6459.18, andD = 3300.72. The polynomial

was fitted using the “polyfit” function of the Python module NumPy. This model for

Debye temperature as a function of compression is compared to several other models

found in the literature; these models were compiled by Murphy et. al. [37], though

the implementation of these models appears to be incorrect. The simplest model

approximates that Γ/V is constant, where Γ is the Gruneisen parameter [83]. The

model of Pandya et. al. is derived from perturbation theory [84]. The models from

Ramakrishnan et. al [85] and Walsh et. al. [86] are derived from fits to experimental

data.

The MD model predicts a Debye temperature at s.t.p. of ΘD = 309.9 K. This is

slightly lower than the literature value of 320 K [87]. In order to best compare the

behaviour of ΘD as a function of V/V0 given by the different literature models, the

uncompressed Debye temperature for the literature models is set to 309.9 K in figure

3.10. The difference between the MD Debye temperature model presented here and

other models found in the literature highlights the fact that MD is not a perfect

representation of real-life materials. In later sections in this chapter, the MD model

for Debye temperature will be used to infer temperature. This is useful since the

results will give a strong indication of the accuracy of the temperature-measurement

technique. The literature Debye temperature models will also be used so as to give

an indication of error associated with using different Debye temperature models.

The same procedure was carried out for BCC Nb using the Nb Fellinger EAM

potential, though this time a fifth order polynomial was fitted to the data with the
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Figure 3.10: The Debye temperature of simulated Cu as a function of hydrostatic
compression. A third order polynomial is fit to the data.

following equation

ΘD = A

(
V

V0

)5

+B

(
V

V0

)4

+ C

(
V

V0

)3

+D

(
V

V0

)2

+ E

(
V

V0

)
+ F (3.13)

where A = −769547.13, B = 3387086.89, C = −5920835.77, D = 5134767.61, E =

−2208100.45, and F = 376887.89. The results are shown in figure 3.11. The MD

model predicts the Debye temperature of uncompressed Nb to be 259 K, compared

to the experimentally determined value of 276.6 K [88]. Other models from literature

are also shown, including the approximation that Γ/V is constant [83]. The model

from Walsh et. al. is fitted from experimental data.
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Figure 3.11: The Debye temperature of simulated Nb as a function of hydrostatic
compression. A fifth order polynomial is fit to the data.

At large compressions the MD model predicts that the Debye temperature will

inflect and begin to decrease. A similar phenomenon, observed instead in FCC

Cu uniaxially compressed along [1 1 1], has been attributed to phase transitions

by Murphy et. al. [37]. There are no predicted phase transitions in Nb under

the hydrostatic conditions present in figure 3.11 [89] and so this argument is not

satisfactory in this case. This behaviour indicates that this potential may make poor

predictions of real-life behaviour at high compressions. The MD Debye temperature

model also departs from the literature models, though the literature models also

disagree with each other, much more so than is seen above for Cu.
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3.6 Static uniaxial compression

Upon uniaxial shock compression, material strength results in a resistance to stress

relief along non-shocked directions. High strength materials will thus compress

non-hydrostatically, resulting in different lattice parameters along x, y and z. The

impact of material strength on Debye-Waller thermometry is not immediately obvious,

and requires investigation.

A box of 100x100x100 conventional unit cells of Cu atoms was simulated using

the Mishin EAM1 potential, as before. The lattice was compressed along the [1 1 1]

direction up to V/V0 = 0.86. This direction was chosen to avoid a known phase

transition, which causes FCC materials to transition to a BCC phase [90]. The

Debye-Waller analysis of section 3.3 was carried out on the compressed samples. A

plot of ln(I(T )) vs. |G|2 is shown in figure 3.12.

The intensities no longer lie on a line. This is caused by an anisotropic Debye

temperature. Along the compression direction, the inter-atomic bond has stiffened,

resulting in a heightened ΘD. This is accompanied by a softening of the inter-atomic

bond along the directions perpendicular to the compression direction. The result is

a directionally dependent ΘD, evidenced by the divergence in Debye-Waller response

seen in figure 3.12.

An effective value for ΘD can still be calculated from the slope of the line of

best fit. The Debye temperature calculated for uniaxial compressions is shown in

figure 3.13. Below V/V0 = 0.86, stacking faults were generated in the sample. This

plasticity is the likely cause of the divergence between measured hydrostatic and

uniaxial Debye temperatures at V/V0 < 0.92; stacking faults have the effect of
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Figure 3.12: Debye-Waller plot for simulated Cu uniaxially compressed along [1 1 1] to
V/V0 = 0.9.

splitting intensity away from a diffraction peak [91], which, according to these results,

causes a difference in Debye-Waller behaviour compared to a non-defective sample.

When V/V0 > 0.92, the measured Debye temperature is slightly lower for uniaxial

compression compared to hydrostatic compression, though the difference is very

small. Figure 3.14 shows the temperature measured using the hydrostatic model

of ΘD derived from MD in section 3.5. At V/V 0 = 0.9, before the apparent onset

of plasticity, the difference between the measured T and the true value of T is

2.5%. This is evidence that the anisotropy in ΘD has a minor effect on temperature

measurement. What’s more, the uniaxial compressions considered here are rather

extreme compared to what is observed experimentally; a typical strength observed
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on a laser shock experiment corresponds to V/V0 > 0.98 [60]. Material strength,

therefore, will have little impact on the Debye-Waller thermometer.

Figure 3.13: A comparison between the Debye temperature of hydrostatically compressed
Cu vs. Cu compressed uniaxially along [1 1 1].

3.7 Elastic shock compression

The passage of a shock-wave through a material is a disruptive occurrence. An elastic

shock with relatively low particle velocity up will cause a uniaxial compression of the

material. At higher values of up, plasticity will be activated, relieving the uniaxial

pressure into a more hydrostatic compression. Elastic shocks are investigated in this

section and compared to the static uniaxial compressions of section 3.5. The effects

of plasticity will be discussed later in section 3.9.
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Figure 3.14: Temperature measured from the simulated intensities of diffraction using a
variety of Debye temperature models. The sample is simulated Cu at 300 K compressed
along [1 1 1].

A 100x100x210 box of Cu was simulated using the Cu Mishin EAM1 potential,

with the [1 1 1] direction oriented along z. Periodic boundaries are enforced in the x

and y directions; a non-periodic boundary is enforced along z. One 100x100x5 face

at the base of the simulation was designated as a piston; this is used to drive the

shock-wave through the sample. At the top of the simulation another 100x100x5

face was designated as the back wall; this back wall prevents the ejection of atoms

from the rear of the simulation. The atoms in both the piston and back wall are

frozen in place. They may interact with other atoms, but their positions are not

updated. All other atoms in the simulation are designated as the bulk.

At first the bulk atoms were thermalised to 300 K over a period of 104 timesteps
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of 1 fs. The piston atoms were then given a constant velocity up along the z

direction. As a result of the “freezing” of these atoms, their velocity remains constant

throughout the simulation. The atoms in the remaining bulk are compressed by the

resulting shock wave. Values of up between 0.3 and 0.9 km s−1 were used. At

up = 0.2 km s−1, a clear shock wave does not form. At up = 1.0 km s−1, plasticity

is clearly activated in the form of stacking faults; the plasticity was identified using

the Common Neighbour Analysis [92] routine implemented in the Ovito visualisation

package [93].

A central chunk of 100x100x100 unit cells was extracted from the bulk for

Debye-Waller analysis as described in section 3.3. Figure 3.15 shows the Debye-Waller

plot for up = 0.6 km s−1. The measured values of T according to all of the ΘD models

used in section 3.5 is shown in figure 3.16. The difference between measured T and

the real T at this up, using the MD hydrostatic model, is +6.1%. This result will

now be compared with the static uniaxial compression of the previous section.

3.8 Simulated temperature measurement overview

Temperatures have been calculated for simulated Cu undergoing static uniaxial

compression and elastic shock compression. Figure 3.2 shows the error associated

with representative temperature measurements. The percentage error e here is

e =
|TDW − TMD|
100× TMD

(3.14)

where TDW is the temperature according to the Debye-Waller measurement, and TMD

is the temperature as calculated from atom velocities in the simulation. Each row
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Figure 3.15: The Debye-Waller plot for Cu elastically shocked along [1 1 1].

shows the error in calculated temperature using each model of Debye temperature.

Uniaxial
V/V0 = 0.9

% Error in T

Elastic shock
up = 0.6 km s−1
% Error in T

Γ/V = constant + 5.0 + 8.7
Pandya + 3.8 + 7.5
Walsh + 4.9 + 8.6
Ramakrishnan + 5.4 + 9.1
Hydrostatic MD + 2.5 + 6.1

Table 3.2: The error in measured temperature associated with different Debye temperature
models. Two simulation types are considered: static uniaxially compressed, and elastically
shock compressed.

The Hydrostatic MD model was produced in section 3.5 and represents the

“true” behaviour of the Cu Mishin EAM1 potential. The other models are based
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Figure 3.16: Temperature measured from the simulated intensities of diffraction using a
variety of Debye temperature models. The sample is simulated Cu at 300 K compressed
along [1 1 1].

on real Cu. Therefore the MD model shows the best indication of the actual

impact of the applied process. Uniaxial compression consistently resulted in a

slight over-prediction in temperature. Elastic shock compression, while producing

seemingly similar Debye-Waller behaviour as that observed under static uniaxial

compression, gave noticeably larger errors. The centrosymmetry parameter [94]

associated with atoms in the system indicate higher structural disorder in the case

of shock compression compared to uniaxial compression. This higher disorder will

cause decoherence in scattered x-rays, resulting in lower observed intensities. This

is proposed as the cause of the slight difference observed between the measured

temperatures.

90



By comparing the results of the Debye temperature models of real Cu, some

insight can be gained about the error introduced by an inaccurate model of Debye

temperature. Interestingly, the difference in error for each model introduces a

relatively small scatter in TDW . In the uniaxial case, the difference in error has

a maximum value of 1.6% of the material temperature. In the shock case the

maximum difference is also 1.6%. This suggests that the thermometry technique

is robust with respect to choice of Debye temperature model; however, Cu is a

well-studied material. A less popular material may not enjoy such a convergence of

models, as seen in section 3.2 with respect to Nb.

3.9 Dislocations and the Debye-Waller effect

Shock compression beyond the elastic limit of a material produces a high density of

dislocations. It is known that the presence of dislocations broadens diffraction peaks;

however, the impact of dislocations on the Debye-Waller effect is not obvious. This

section investigates the impact, if any, that dislocations have on the Debye-Waller

thermometer.

3.9.1 Theoretical predictions

The work of Wilkens described in section 2.3.4 was used to build model intensity

profiles from crystal with varying dislocation populations. The theory of Wilkens

was initially developed for dislocation densities in ambient material. Under shock

conditions, the dislocation densities present are expected to be much higher due to

the viability of homogeneous nucleation and the onset of plasticity.
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The Wilkens equation for diffraction intensity cannot be solved analytically. A

numerical code was therefore written to solve the equation. At high dislocation

densities the equation becomes very computationally inefficient, and convergence

becomes difficult. Figure 3.17 shows the predicted (3 2 1) reflection intensity profiles

for crystals containing only screw dislocations. The contrast factor Cs is set to 0.25,

which is the maximum value for screw dislocations; recall from 2.3.4 that Cs takes

the form sin2x cos2x. This means that the screws are oriented such that they have

the maximum possible impact on the diffraction intensity.

The area under each of the curves in figure 3.17 is similar. This result indicates

a minimal impact of screw dislocation density on the Debye-Waller effect since the

integrated intensity of a single reflection seems largely unaffected by dislocation

density; however, the Wilkens model is dependent on both dislocation character and

the reciprocal space position of the peak. Therefore, to analyse the predicted effect

of dislocations on the Debye-Waller effect, the Wilkens equation should be solved

for a variety of peaks with varying contrast factors; this should reveal the full extent

of the difference in peak intensities brought about by screw dislocations.

Figure 3.18 shows the relative intensities of various diffraction peaks for different

Cs. The ratio of the highest intensity to lowest intensity is 0.976, though it should

be noted that these solutions are not fully converged; however, the ratio of highest

intensity to lowest intensity was observed to approach 1 with convergence. Each

point in this plot represents hours of computation, and so further convergence was

not sought due to computational requirements.

Since the diffraction intensities are largely the same across both dislocation

density and Cs, the Wilkens model predicts that screw dislocations do not compromise
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Figure 3.17: The (3 2 1) reflection for a crystal containing screw dislocations. Each
peak corresponds to a different dislocation density.

the Debye-Waller effect as a means of measuring temperature. This prediction will

now be assessed with molecular dynamics.

3.9.2 Simulations of x-ray diffraction from dislocations

Dislocations were generated in MD by shocking a sample of 100x100x100 conventional

unit cells of BCC Nb along (1 1 1), using the Nb Fellinger EAM potential. The

shocked sample was produced using the Hugoniostat described in section 2.4.3.

Similar atomistic simulations of BCC materials have generated dislocations when

shocking along (1 1 1) [95]. The dislocation densities were calculated using the DXA
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Figure 3.18: The intensity of a variety of diffraction peaks as a function of Cs.

module in Ovito [96].

The sample was subjected to 1 Mbar along (1 1 1). Once the sample had reached

the desired pressure, the sample was cooled to 20.9 K to “freeze-in” the dislocations

and to isolate their effect. If the dislocations have no effect on the Debye-Waller

thermometer, as predicted by the theoretical models of the previous section, the

temperature measured by the Debye-Waller analysis will be close to 20.9 K. Note

that any temperature measurement here will require a Debye temperature model for

the Nb Fellinger EAM potential. The model developed in section 3.5 is used here.

The Debye-Waller plot of the cooled, dislocated sample is shown in figure 3.19.

The diffraction profiles were found to be much broader than in a non-dislocated

sample. The slope from the Debye-Waller plot gives a temperature of 218 K.

Contrast this with figure 3.20, where a sample of pure BCC Nb with no dislocations,
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also at 1 Mbar, is also analysed. The slope from this Debye-Waller plot gives an

accurate temperature measurement of 21.5 K. Thus the dislocations are decreasing

the intensity of diffraction; more than that, the behaviour resembles the effect of

temperature on the diffraction intensities such that a “dislocation temperature” is

observed.

Figure 3.19: The Debye-Waller plot for a dislocated sample of Nb at 1 Mbar. The sample
temperature is 20.9 K, but the temperature calculated from the slope is 218 K.

Attempts were made to characterise the additional temperature recorded as a

function of the dislocation density. To generate different dislocation densities, a

simulated sample of Nb was shocked along (1 1 1) as before, though this time to 800

kbar. This is an attempt to produce as low a number of dislocations as possible, and

800 kbar is the lowest pressure investigated at which dislocations form. To try to
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Figure 3.20: The Debye-Waller plot for non-dislocated Nb at 1 Mbar. The sample
temperature is 20.12 K, and the temperature calculated from the slope is 21.5 K.

Figure 3.21: The measured temperature of 800 kbar dislocated Nb at 10.8 K, and 1Mbar
dislocated Nb at 20.9 K, as a function of dislocation density.
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decrease the dislocation density further, the compressed simulated sample was heated

to T = 1600 K and left to anneal for 0 to 50 ps. While this did produce a variety of

dislocation densities in the sample, no clear relationship between dislocation density

and annealing time were observed. The Debye-Waller analysis was then performed

on these samples.

Figure 3.21 shows both the 1 Mbar and 800 kbar data. The general trend

indicates that the additional measured temperature increases with dislocation density.

The form of this dependency is not expected to be simple. As Wilkens points out,

the orientation of dislocations with respect to the diffracting plane will play a role

in the appearance of the diffraction profile, as will the edge-screw character of the

dislocations.

The dislocation densities present in these simulations are very high when compared

to those envisioned by the theory of Wilkens. The Wilkens model makes the implicit

assumption that the dislocation density is low enough that the dislocation cores do

not interact with one another, which may no longer be a safe assumption upon shock

compression.

These results indicate that the Wilkens theory breaks down at high dislocation

densities. Dislocations on laser shock experiments will therefore cause a substantial

over-measurement of temperature by the Debye-Waller thermometer.

3.10 Conclusions

The efficacy of using the Debye-Waller effect to measure temperature has been

analysed using molecular dynamics simulations and simulated diffraction patterns.
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The complexity of the systems analysed increased gradually, starting with a simple

perfect crystal and finishing with dislocated shocked crystals at high pressures. The

purpose of these investigations was to study the confounding potential of a variety

of phenomena and measure their impact on the Debye-Waller thermometer.

The chapter began with a critical assessment of previous work undertaken by

Murphy et al [37]. It was found that the simulation conditions used by Murphy et

al resulted in an under sampled phonon distribution in the simulated sample; as a

result, the Debye temperature of 315 K reported by Murphy et al for the Cu Mishin

EAM1 potential was incorrect. It has been shown that a box size of at least 80

conventional unit cells is required to adequately populate the phonon distribution.

At 100 conventional unit cells, the Debye temperature of uncompressed Cu using the

Cu Mishin EAM1 potential is 311 K. This is slightly lower than the experimental

value for Cu of 320 K. The more general observations by Murphy et al of the decrease

in diffraction intensity due to temperature and compression were verified.

The impact of material strength on the Debye-Waller effect was investigated

by uniaxially compressing simulated Cu along the [1 1 1] direction to V/V0 =

0.86. An anisotropic Debye temperature was observed. The Debye temperature

was observed to increase along the compression direction [1 1 1] and decrease in

directions perpendicular to [1 1 1]. This resulted in a change of Debye-Waller

behaviour. At V/V0 = 0.9, the error in temperature measurement introduced by

strength was +2.5%. Uniaxial compression can also be expressed as the ratio of

a⊥ (the lattice parameter perpendicular to the compression direction) to a‖ (the

lattice parameter along the compression axis). This is a useful measure when

comparing with experiment. In these uniaxial simulations, the lattice parameter
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ratio is equivalent to V/V0, and therefore when a⊥/a‖ = V/V0 = 0.9, the error in

temperature measurement is still +2.5%. Experimentally, lattice parameter ratios

are typically observed to be a⊥/a‖ > 0.98 [60]. Strength is therefore not thought to

be a major source of error for the present temperature measurement scheme.

Simulated Cu was elastically shocked along [1 1 1]. The impact on the Debye-Waller

effect was similar to the effects observed by uniaxial compression, though the error of

temperature measurement was larger at +6.1%. This is attributed to the structural

disorder added to the system upon the passage of the shock front.

To measure temperature effectively using the Debye-Waller effect, a model of

Debye temperature under compression is necessary. Four distinct models for Cu

were compared. The variance in predicted temperature was less than 2%, indicating

that well-developed Debye temperature models are sufficient for x-ray diffraction

temperature measurement. Not all materials benefit from the popularity experienced

by Cu and so their Debye temperature models may be more poorly constrained.

Dislocated simulations of Nb were investigated. It was found that at dislocation

densities greater than 4×1012 cm−2, dislocations cause a similar decrease in intensity

as that observed by the Debye-Waller effect. This is a confounding factor for the

thermometry technique, as the effect of dislocations is indistinguishable from the

effect of temperature. This result is in conflict with the theory of Wilkens [63] which

predicts no impact of dislocations on the Debye-Waller effect. Wilkens’ model makes

the assumption that dislocations are sufficiently separated such that the strain fields

from each dislocation do not interact; it is suggested here that this may not be valid

at high dislocation densities such as those observed on a laser shock experiment,

though this conclusion requires further substantive evidence. In any case, the results
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of these simulations indicate that the Wilkens model is not valid at high dislocation

densities.

Out of all the confounding phenomena investigated, the presence of dislocations

will have the highest impact on the Debye-Waller thermometer. Both material

strength and choice of Debye model are predicted to have only a slight impact on

the efficacy of the tool.

100



Chapter 4

Experimental Investigation of

Temperature Measurement using

the Debye-Waller Effect

In the previous chapter, high pressure states of matter were simulated using molecular

dynamics, and the confounding phenomena affecting Debye-Waller thermometry

investigated. While such analysis gives valuable insight at low cost, the development

of an experimental diagnostic is the ultimate aim. A complementary investigation

should therefore be performed with the aim of revealing additional challenges of an

experimental nature.
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4.1 Design Considerations

No laser shock experiment has previously been published dedicated to the exploration

of the Debye-Waller thermometer. The principles of an appropriate experimental

design are thus yet to be defined. The necessary considerations are discussed here.

Lattice structure of the probed material

A large number of reflections are desired to populate the final Debye-Waller plots,

similar to the plots found throughout chapter 3. Diffraction will occur according to

the Bragg condition, but for diffraction of a sufficiently high order, the angle θB will

approach 90◦ and the diffraction will be indistinguishable.

From the Bragg condition, θB ∝ sin−1(a). By increasing the lattice parameter,

θB is decreased for all reflections, allowing more reflections to be observed. Therefore

the lattice parameter of the sample should be large such that θB is small and thus

more reflections are recorded on the detectors. A BCC material is also desirable

since it possesses the highest number of allowed reflections in a given range of θB.

Low Debye temperature of the probed material

The intensity of diffraction is related to Debye temperature by ln(I) ∝ Θ−3; see

equation 2.35. A material with a low Debye temperature should therefore be selected.

This ensures that the difference in diffraction intensity between two reflections is

large, and therefore more easily detected. What’s more, the difference in diffraction

intensity at different temperatures will be more easily observed, and so the instrument

will be more sensitive to temperature.
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Avoidance of material phase transitions

Phase transitions within the sample add unnecessary complexity to the experiment.

It is not anticipated that phase transitions will severely impact the technique, though

lack of knowledge of material Debye temperature under such conditions may be

problematic. Given the prototypical nature of this technique, any known phase

transitions should be avoided.

Transparency of sample to x-rays

The chosen material must be transparent enough to x-rays to allow a significant

portion of the sample to be probed by the x-ray beam. The x-ray beam must

travel into the sample, and diffracted beams must be able to re-emerge with as

little attenuation as possible. Unfortunately diffraction intensity increases with the

number of electrons Z, whereas transparency decreases with Z. The higher Z chosen,

the stronger the diffracted signal, but the diffraction is from a smaller region of the

sample.

Diffraction geometry

When a high power laser is incident on a material, as is the case in this experiment,

x-rays are produced. The more powerful the initial laser pulse, the more photons

are produced, and the more energetic are the x-rays. This effect is exploited when

producing a laser x-ray source; however, this effect is also in play when seeding a

shock wave in the sample. The x-rays produced from the target are a nuisance in

this experiment since they will appear on any x-ray detectors as “drive noise”. Some

careful geometric positioning can be implemented to reduce the impact of drive noise.
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The surface at which the laser-sample interaction occurs is usually referred to as the

front surface; the opposing surface of the sample is termed the rear surface.

When diffracting from the sample, diffraction can be detected in transmission,

or in reflection. In a transmission geometry, the diffracted x-rays are detected on

the opposite side of the sample relative to the initial x-ray beam. The diffracted

x-rays must traverse the full width of the sample, causing attenuation of the final

detected intensity. In a reflection geometry, the diffraction is detected from the same

surface at which the initial x-ray beam is incident. A reflection geometry from the

rear surface has the advantage of using the sample itself to filter out the majority

of the drive noise. This method, however, requires more careful timing of the x-ray

pulse to ensure coincidence of the x-rays with the passage of the shock wave. The

x-ray diffraction pattern will inevitably contain diffraction from both the shocked

material, and the unshocked material.

A reflection geometry from the rear surface of the sample was selected for this

experiment since the preservation of diffraction intensity is of utmost importance.

X-ray source selection

Recall from the Bragg condition G ∝ sin(θB)
λ

. A short x-ray wavelength results in the

presence of higher order reflections at lower Bragg angles. similar to the argument

made for a large lattice parameter, a short wavelength has the effect of increasing

the amount of reciprocal space accessed; the total number of diffraction rings that

are observed will increase. The more rings are accessed, the more data points can

be used to measure temperature.
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4.2 Niobium: the sample of choice

Niobium was chosen as a good candidate material, as it possesses a favourable

combination of the qualities described in section 4.1. Nb is a BCC material with a

lattice parameter of 3.3004 Å[81]. Nb also has a low Debye temperature of 260 K at

room temperature.

The experimental Hugoniot of niobium up to 200 GPa (2 Mbar) is shown in figure

4.1. Phase transitions are typically evidenced by a sudden change of relationship

between pressure and particle velocity; this is due to the volume collapse associated

with plastic phase transitions. The absence of such a change in figure 4.1 indicates

the absence of a phase transition in Nb under shock loading.

Figure 4.1: Some experimental Hugoniot data for niobium is shown [97] [98]. The lack
of “kinks” in the Hugoniot indicates an absence of phase transitions.
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4.3 Experimental Setup

The Orion Laser Facility was chosen to platform this experiment. Orion has a

track record of delivering high quality diffraction data on similar shock experiments

[60, 99].

The laser facility itself consists of ten long pulse beams nominally capable of

delivering 500 J per beam to a target for a duration of 0.1 - 10 ns [100, 101]. The

light is generated from a commercial laser source at 1053.0 nm, shaped to user

specification, amplified to high energy, frequency tripled to 351 nm, and finally

focused onto target. For this experiment, facility restrictions meant that the laser

was capable of delivering approximately 260 J per beam with a pulse duration of 0.5

- 5 ns. Five backlighter beams were used to generate x-rays, while one drive beam

was used to shock the sample. Both the drive beams and backlighter beams were

fitted with phase plates; phase plates introduce decoherence to the optical front of

the laser, producing a more spatially uniform drive spot [102].

For x-ray generation, the shortest possible pulse length is desirable to give a

diffraction pattern from a single point in time. X-rays for this experiment were

generated by striking a 10 µm metal foil with a 0.5 ps pulse, with a spot size of

250 µm. The heating of the target produces a population of He-like ions [103]. The

de-excitation of core shell electrons results in the emission of high energy x-rays;

such emission is termed He-α. The energies of the resulting x-rays are material

dependent. The primary backlighter material used on this experiment was Zn, with

peak x-ray energy at 8.997 keV [103], though Fe and Cu were also used.

The laser generated He-α x-ray sources used on this experiment are not perfectly
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monochromatic, and the additional wavelengths also diffract from the sample, showing

up as noise on the image plates. On Orion, the shortest laser pulse available was

0.5 ns. The pulse-length of the x-ray beam is typically commensurate with the laser

pulse [104], and so the pulse-length of the x-ray source is also assumed to be 0.5 ns.

The drive beam should use as long a pulse length as possible, since premature

extinction of the drive beam will result in a release wave travelling inwards from the

drive surface; the release wave will rapidly catch up with the shocked material and

may disrupt the shocked state that is being investigated, potentially destroying any

attempts at sensible temperature measurement. Since the pressure in the sample is

related to laser intensity approximately by P ∝ I2/3 [105], the laser intensity can be

used to control pressure. To alter intensity one may alter the energy, duration, or

spot size of the beam.

The Orion facility is fitted with many optical diagnostics [106]. The primary

diagnostic in this experiment is the BBXRD (broad band x-ray diffraction) detector,

which is ideally suited for this experiment; it has been fielded previously on similar

experiments requiring large area coverage of diffraction [60, 99]. The BBXRD acts as

an x-ray cage, surrounding the material with four image plates in a pyramid fashion.

A cross-section schematic of the BBXRD is shown in figure 4.2. The image plates

used are Fuji BAS-SR, a popular choice of detector on laser-shock experiments [107].

The image plates are shielded using two filter materials. The first filter material is

Al with thickness of 10 µm. This filter is opaque to low energy x-rays, as indicated

by figure 4.3. This is desirable as it has the effect of attenuating low-energy photons

that contribute to noise, while leaving high-energy signal largely unchanged. Al is

also very cheap and malleable; this allowed complete wrapping of the image-plate
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with the Al filter, preventing low energy x-rays from interacting with the detector

through the edges. This advantage was not available on the second high-energy filter

materials.

The second filter material is selected so that an absorption edge in the filter

occurs at an energy slightly above the energy of the main diffraction signal. The

absorption edges for Fe, Cu, and Zn are shown in figure 4.3. These edges have the

effect of filtering out high-energy noise at energies above the signal energy, while still

allowing the signal itself to get through to the detector largely unhindered. In the

case of an Fe x-ray source, a filter of Fe with thickness 10 µm was used. In the case

of a Cu x-ray source, a filter of Cu with thickness 10 µm was used; occasionally a

20 µm Cu foil was used in an attempt to reduce noise further. In the case of a Zn

x-ray source, a filter of Zn with thickness 10 µm was used.

The BBXRD is the primary diagnostic for this experiment. There are three

secondary diagnostics: VISAR (velocity interferometry system for any reflector),

GXD (gated x-ray detector), and HEX-ID (high-energy x-ray spectrometer).

VISAR uses interferometry to measure the rear surface velocity of the sample as

the shock reaches the rear of the sample [20]. In figure 4.2, a low power continuous

wave laser is incident on the rear surface of the sample via a mirror. After reflection

from the sample, light travels back through the BBXRD, through the mirror, and

back into the VISAR diagnostic. The returning beam is split in two; one half of

the beam is time-delayed using an optical cavity, while the other half is unhindered.

The two beams are recombined and their interference pattern is recorded over a time

window coinciding with the arrival of the shock wave at the rear surface. The rear

surface accelerates, causing the interference fringes to “shift”. By measuring the
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Figure 4.2: A schematic cross-section of the BBXRD (broad band x-ray diffraction)
detector, not to scale. The sample (target foil) to be probed sits at the largest surface of
the detector. The drive beam is incident upon the surface of the sample on the exterior
of BBXRD. Simultaneously, the backlighter foil is illuminated with the backlighter beams.
This creates a bright x-ray source. A sliver of these x-rays are allowed into the BBXRD
via the collimator where they interact with the target rear surface. The rays are diffracted
away from the sample and onto the image plates, which sit on all four sides of the the
interior of BBXRD. X-ray filters are placed in front of the image plates to attenuate the
signal from low-energy background x-rays. After each shot is completed, BBXRD is taken
apart and the image plates scanned.

shift of fringes before and after the shock, the velocity of the sample rear surface is

measured. The measured free surface velocity is often assumed to be related to the

particle velocity by vfs = 2vp , and so the Hugoniot relations can be used to link

rear-surface velocity to pressure within the sample. In this experiment, however,

the main use of VISAR was to time the shock wave, since the fringe shift coincides

with the arrival of the shock wave at the rear surface; this requires a reference

109



Figure 4.3: The absorption spectrum of Al, Fe, Cu, and Zn as a function of photon
energy. The presented data was generated using the online CXRO tool [108], using
semi-empirical atomic scattering factors developed by Henke et. al. [109].

VISAR measurement to be taken with a very thin sample so that the start time can

be recorded. Using this timing method, x-ray diffraction could be timed to occur

just before the shock front reached the rear surface. VISAR also provides spatial

information about the planarity of the shock front; if the shock front is planar, the

fringe shift will occur at the same time across the spatial dimension of the VISAR

output.

GXD is used to image time-resolved x-ray intensities at extremely high frame-rates

[110]. In this experiment the GXD is trained on the target front surface. When the

drive beam strikes the target, x-rays are emitted. The image left on the GXD by

the x-ray emission gives insight into the quality of the drive beam profile. Ideally

the emission spot is supergaussian in form, with a clear central uniform region.
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If the emission spot is irregular in shape, with multiple hot and cold regions, the

implication is that the laser intensity differs across the surface of the sample. Since

differing intensities result in differing material pressures, the seeded shock wave

will be non-uniform, and the final state of the shocked material difficult to assess.

Unfortunately, the GXD was not functional during the main portion of the experiment

and no images were taken.

HEX-ID measures a time-integrated spectrum of x-ray emission [111]. The energy

spectrum is generated by diffraction from crystals onto image plates. Since the

diffraction angle is a function of x-ray energy, the position of diffraction lines on the

image plate will correspond to energy. HEX-ID has four channels with a different

crystal in each channel; this allows for a broad range of x-ray energies to be collected.

The HEX-ID is pointed at the backlighter foil so that the x-ray emission spectrum

from the backlighter can be observed. It is common on laser-shock experiments

involving x-ray diffraction to have uncertainty related to the performance of the

x-ray backlighter. By fielding HEX-ID, any speculation on x-ray performance can

be substantiated or dismissed.

4.3.1 X-ray source configuration

Typically, He-α x-rays are generated by striking the foil with a single laser pulse.

Other x-ray generating procedures have been explored [112]. By striking the metal

foil with two pulses separated by a few ns, it has been observed that the x-ray yield

of the second pulse increases above that observed by a single pulse x-ray source [113].

The idea is conceived by the observation that gaseous x-ray sources convert laser

energy to x-rays more efficiently than thin metallic foils. This is due to the formation
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of an underdense plasma in the case of a gaseous target. In the case of a metallic

foil, the metal is pre-exploded with the intention of forming an underdense plasma

region around the laser spot. The subsequent heating of the underdense plasma has

been shown to produce yields 2-4 times that observed for a single pulse, though this

was observed on the OMEGA laser, where the metallic foil is irradiated on both

sides [113]; the available intensities are also higher at OMEGA than at Orion.

With a Zn x-ray source it should be possible to see up to the (3 3 2) diffraction

ring in Nb, though the maximum driven diffraction visible will be from the (4 2 0)

ring. Figure 4.4 shows an example Zn x-ray spectrum collected on the experiment.

As previously mentioned, the HEX-ID spectrometer used has 4 channels, with each

channel coloured separately in the figure. Each channel contains a crystal of differing

reflectivity. The reflectivities of these crystals were not well known at the time

of writing, which results in some error in the intensities. This error results in a

mis-match between the intensities of each channel; this error is in the region of 30 -

50% [114]. The low energy x-rays are thought to be due to drive noise on the front

surface of the Nb sample, though this is difficult to confirm.

A high x-ray yield is desirable for this experiment. A double pulse configuration

was therefore implemented, with an idealised pulse shape given in figure 4.5. A

side-effect of this configuration is that the image plates will be exposed to two

diffraction images from different moments in time. The first x-ray pulse will interact

with the sample before the shock has travelled very far into the sample. The second

pulse is timed such that the shock wave has traversed most of the sample width. The

resulting x-ray diffraction pattern on the detectors will have a very strong signal from

the static material, overlayed with signal from the driven material.
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Figure 4.4: A sample Zn x-ray source used on this experiment. The He-α signal is clearly
discernible between 8.9 - 9 keV. The large volume of low energy x-rays are thought to be
the result of drive noise from the Nb front surface.

For a Zn x-ray source (8.997 keV) the linear attenuation depth of niobium is

11.2 µm. This is just enough to allow the sampling of a substantial region of the

driven sample; however, it means that the timing of the experiment will have to be

somewhat exact. If the timing is too early, no diffraction from the driven portion

of the sample will be observed since the x-rays are unable to penetrate far enough

into the sample. If the timing is too late the material will be driven, but the shock

will have broken out through the rear surface, disrupting the Hugoniot state that

is being probed. For Cu x-rays (8.9 keV), the attenuation length of Nb is 10.9 µm,

and for Fe x-rays (6.7 keV) the attenuation length of Nb is 5 µm.
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Figure 4.5: An ideal version of the double laser pulse used on Orion. The first pulse is
followed by a second pulse with a 3 ns peak to peak delay. The ratio of pulse energy is 1:2,
and the width of each pulse is 0.5 ns.

4.4 Simulated sample conditions

To understand the conditions present in the sample, some simulations were carried

out by David McGonegle using the HYADES plasma hydrodynamics code [115].

This code is a widely used tool for simulating the sample conditions present in a

sample under laser shock compression.

The input parameters required to simulate Nb were not readily available, however

the input parameters for Cu were available. As can be seen in figure 4.6, Cu responds

to shock compression in a way that is very similar to Nb; similar pressures and shock

velocities are achieved for the relevant particle velocities. Therefore, Cu is used here

as an approximation of Nb; note that while this difference in material precludes an

exact comparison with experiment, there are some qualitative insights that can be

drawn from such an exercise.
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Figure 4.6: A comparison of the pressure and shock velocity of Nb and Cu for a range
of particle velocities relevant to the present experiment [98]. The two materials exhibit
similar behaviour under the shock conditions considered here. These figures were created
by David McGonegle and are reproduced here with permission.

Figures 4.7 and 4.8 show two HYADES simulations performed on Cu. The

two simulations reach a sample pressure of approximately 20 GPa and 110 GPa

respectively. The y-axis shows the depth of the sample, and the x-axis shows the

elapsed time in ns. The simulated target is composed of 15 µm of parylene (at the

bottom of the image), and 10 µm of Cu (at the top of the image). The two layers of

material are separated visually by a bright line at 15 µm. As the shock progresses,

more material is compressed. The colour shows the pressure at each point in the 1D

sample at every moment in time. When the shock reaches the material at 25 µm,

the shock has travelled through the full length of the sample.

In both the 20 GPa sample and the 110 GPa there is a slight variation of pressure

in the bulk of the Cu. If this were present on experiment, one might expect some

broadening in the detected x-ray diffraction signal.
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Figure 4.7: A HYADES simulation of Cu at ≈ 20 GPa (0.2 Mbar). This simulation was
produced by David McGonegle and is reproduced here with permission.

4.5 Overview of results

More than 50 shots were completed over the course of the experiment. Appendix C

summarises the 42 shots that produced high quality diffraction data. The remaining

shots were discounted due to equipment malfunction or improper diagnostic operation.

The pressures were calculated by measuring the shift in diffraction peak positions,

assuming that the compression is hydrostatic, and then using the Nb Hugoniot

shown in figure 4.1 to link compression to pressure. This assumption of hydrostatic

compression is supported by the apparent lack of strength in the diffraction images;

if this assumption were not valid, one would expect to see a variation in θB around

the diffraction ring [60, 61, 116].
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Figure 4.8: A HYADES simulation of Cu at ≈ 110 GPa (1.1 Mbar). This simulation
was produced by David McGonegle and is reproduced here with permission.

4.6 Diffraction Image Analysis

To illustrate the image analysis, diffraction data captured using BBXRD on shot

10268 will be used. Shot 10268 performed diffraction on a static sample of niobium;

the drive beam was delayed so that the x-ray diffraction would image the static

crystal only. The x-rays are no longer incident on the sample when the drive-beam

strikes the target. The drive noise is therefore captured on the image plates alongside

the static signal. The backlighter used here was Zn with the double pulse shape of

figure 4.5. This is an important shot as it will serve as a temperature reference at

T = 300 K. Because of the lack of shocked material signal, it is also one of the easiest

shots to analyse.
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4.6.1 Converting raw image grayscale to PSL

The raw images are in the form of .img files. This is a file format created by the

Fujifilm FLA 7000 flatbed image plate scanner used in this experiment. This file

format saves the intensity in a logarithmic grayscale format. To convert to the linear

PSL units (photostimulated luminescence) one must use the equation

PSL =

(
R

100

)2
4000

S
10L[G/(2b−1)−0.5] (4.1)

where R is the resolution of the scanner in µm, S is the scanner sensitivity setting,

L is the latitude (the order of magnitude of the dynamic range) , b is the number

of bits used to store a data point, and G is the raw image pixel intensity [117]. All

images were scanned using values of R = 50 µm, S = 4000, L = 5, and b = 16 bits.

PSL is proportional to x-ray intensity until saturation [118], and so it is sufficient to

use PSL as a proxy for intensity for the purposes of this analysis.

Images of the four BBXRD image plates are shown in figure 4.9, converted to

PSL. Structure within the x-ray source spectrum is clearly visible in the diffraction

images.

There are some bright features on the edges of these image plates due to slight

misalignment between the filters and image plates. These features must be masked

from further analysis. This is done by simply setting pixels in these regions to zero

intensity.
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(a) Plate 1 (b) Plate 2

(c) Plate 3 (d) Plate 4

Figure 4.9: The four image plates from shot 10268, showing only diffraction from the
unshocked niobium.

4.6.2 Beginning the image transformation

Now that the images are in appropriate units, the images are transformed so that

the intensity of a full diffraction ring can be calculated. This is done by replotting

each pixel from each image plate onto a 2D histogram where one dimension is |G2|

(or equivalently θB) and the other dimension is the angle around the diffraction ring,

φ.
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To begin, the images are aligned using the LP-Diffract code developed by Andrew

Higginbotham. This code simulates the positions of diffraction cones for any given

experimental geometry. Using LP-Diffract, the diffraction lines on the image plates

are aligned with the ideal diffraction positions, and so the exact geometric position

of the image plates relative to the sample is recovered.

A code, theta.py, was written to calculate |G2| at every pixel using the Bragg

equation, and φ at every pixel by defining an arbitrary plane where φ = 0. Maps

showing the values of |G2| at each pixel for each image plate are shown in figure

4.10. Maps showing the values of φ at each pixel for each image plate are shown in

figure 4.11.

Once |G2| and φ are defined for every pixel, the pixels are binned to produce an

intensity histogram, showing intensity vs. |G2|. The histogram is then used to make

an image. Before the transformed image is created, however, the pixel intensities

are corrected.
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(a) Plate 1 (b) Plate 2

(c) Plate 3 (d) Plate 4

Figure 4.10: Maps of the |G2| values calculated for every pixel in every image plate of
shot 10268. The x and y axes correspond to pixel number. The colourbar to the right of
each image indicates the |G2| for each colour in the image.
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(a) Plate 1 (b) Plate 2

(c) Plate 3 (d) Plate 4

Figure 4.11: Maps of the φ values calculated for every pixel in every image plate of shot
10268. The x and y axes correspond to pixel number. The colourbar to the right of each
image indicates the φ for each colour in the image.
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4.6.3 Intensity corrections

This analysis does not require absolute intensities to be calculated; however, there

is a need to establish relative intensities accurately. A number of corrections require

application to the images. These are: the Lorentz-polarisation correction; the

correction due to attenuation by the sample; the correction due to the x-ray filters;

the correction due to the atomic form factor. Each of these corrections are discussed

below.

The Lorentz-polarisation correction

The Lorentz-polarisation correction was discussed in section 2.3.3. The geometrical

part of the Lorentz-polarisation factor, shown in equation 2.43 arising from the

intersection of the finite-width Ewald sphere with the finite-width reciprocal lattice is

accounted for later in the analysis in section 4.6.7 when correcting for crystallographic

texture. Therefore the Lorentz-polarisation correction, now reduced simply to a

polarisation correction, is applied to each pixel.

CLP =
2

1 + cos2(2θB)
(4.2)

The corrections applied to each image plate is shown in figure 4.12.
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(a) Plate 1 (b) Plate 2

(c) Plate 3 (d) Plate 4

Figure 4.12: The correction factors due to Lorentz-polarisation for application to the
four image plates from shot 10268. The x and y axes correspond to pixel number. The
colourbar to the right of each image indicates the correction factor for each colour in the
image.
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Attenuation by the sample

When x-rays diffract from a sample the incident beam must enter the sample, scatter

from the material, and then exit the sample. Since there is some absorption of the

beam as it travels through the sample, the intensity is decreased. Furthermore,

the path length of the x-ray beam is different for each corresponding point on the

detector surface. A schematic of the situation is shown in figure 4.13. The image

shows two beams being diffracted from within a sample onto a pixel at point D.

The total distance travelled within the sample is x+y, and this distance differs from

one diffracted beam to the next. As each beam is attenuated as a function of path

length, the correction to the intensity detected at D is a non-trivial calculation.

Figure 4.13: The path of a diffracted x-ray from source to the pixel at position D. The
path travelled by beams diffracting from different points is attenuated by a different amount,
depending on the amount of sample traversed by each beam.

125



The attenuation due to absorption by the sample follows the Beer-Lambert law.

Thus the intensity at the point of detection ID due to a given point in the sample is

given by

ID = ISe
−µxαe−µy (4.3)

where IS is the intensity of the x-ray source, µ is the attenuation coefficient of the

sample, x is the path length of the incident beam into the sample, α is the scattering

probability at each point in the sample, and y is the path length of the diffracted

beam out of the sample.

It is prudent to substitute for the perpendicular penetration into the sample p.

This substitution takes the form

x =
p

sinθI
(4.4)

y =
p

sinθD
(4.5)

where θI is the angle of incidence and θD is the angle of diffraction. Both angles are

defined visually in figure 4.13. Thus

ID = ISe
−µ p

sinθI αe
−µ p

sinθD (4.6)

Combining the exponents gives

ID = ISαe
−µp( 1

sinθI
+ 1

sinθD
)

(4.7)
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The equation is plotted in figure 4.14, showing ID vs. p for different values of θI ,

holding θD constant. The total intensity detected at D is given by the area under

each curve. Integrating between 0 and infinity gives

Figure 4.14: The intensity of diffraction as a function of penetration depth p, for a
given point of detection with diffraction angle θD = 45◦, and a sample with attenuation
coefficient µ = 0.0862 µm. The different colour curves represent different values of θI .
The area under each curve represents the total intensity detected at point D.

ID = ISα

∫ ∞

0

e
−µp( 1

sinθI
+ 1

sinθD
)
dp (4.8)

Using the identity
∫∞
0
e−axdx = 1

a
the result is
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ID = ISα
1

µ( 1
sinθI

+ 1
sinθD

)
(4.9)

This equation tells us the total intensity of diffraction at the point of detection D

due to all possible scattering sites in the probed medium.

The correction factor to be applied to each pixel intensity is

CS =

(
1

sinθI
+

1

sinθD

)
(4.10)

The values of Cs applied to each image are shown in 4.15.

Note that this treatment assumes that the incident beam is not attenuated by the

diffraction of x-rays. While this is technically incorrect, the fraction of the incident

beam that is scattered is often considered to be negligible given the fact that about

0.1% of the total incident beam is diffracted.

In this experiment the diffraction will often be coming from both shocked material

as well as static material, and so in this case there will be two separate attenuation

lengths in play. This effect has been neglected given the small difference in attenuation

lengths between shocked and unshocked material of the same element.

It is also assumed in this analysis that, for every pixel at detection point D, the

angle of diffraction θD is constant at every point within the sample. This is justified

since the distance from sample to image plate is several mm, whereas the probed

sample thickness is of the order of 10 µm, and so the beams are very close to parallel

when arriving at any point D.
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(a) Plate 1 (b) Plate 2

(c) Plate 3 (d) Plate 4

Figure 4.15: The correction factors due to sample attenuation for application to the four
image plates from shot 10268. The x and y axes correspond to pixel number. The colourbar
to the right of each image indicates the correction factor for each colour in the image.
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Attenuation by filters

As previously mentioned, thin sheets of metal are placed in front of the image plates

to filter out low energy background x-rays. The signal x-rays also must travel through

these filters. Since the diffracted rays pass through the filters at different angles, the

effective path-length through the filters is different at every point on the image plate.

The effective filter thickness te for a filter of thickness t is

te =
t

cos(α)
(4.11)

where α is the acute angle between the normal of the filter and the diffracted beam.

Using the Beer-Lambert law, the attenuation of the beam intensity is given by

ID = ISe
−te
ξ (4.12)

where ξ is the attenuation length of x-rays travelling through the filter.

The correction factor for filter attenuation, then, is

CF =
1

e−te/ξ
(4.13)

The correction factors applied to each image plate from shot 10268 are shown in

figure 4.16.
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(a) Plate 1 (b) Plate 2

(c) Plate 3 (d) Plate 4

Figure 4.16: The correction factors due to filter attenuation for application to the four
image plates from shot 10268. The x and y axes correspond to pixel number. The colourbar
to the right of each image indicates the correction factor for each colour in the image.
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Atomic form factor correction

The atomic form factor accounts for the dependence of scattering intensity due

to differences in atomic structure. Each element has its own atomic form factor;

Niobium’s atomic form factor is shown in figure 4.17, where |G| = sin(θ)
λ

.

Figure 4.17: The atomic form factor of Nb [48]. The form factor is linearly interpolated
between experimental data points to create a continuous function such that correction
factors can be calculated for every θ.

The correction factor CA is therefore the inverse of the atomic form factor. The

correction factors applied to each image plate from shot 10268 are shown in figure

4.18.
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(a) Plate 1 (b) Plate 2

(c) Plate 3 (d) Plate 4

Figure 4.18: The correction factors due to atomic form factor for application to the four
image plates from shot 10268. The x and y axes correspond to pixel number. The colourbar
to the right of each image indicates the correction factor for each colour in the image.
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Total intensity correction

The total correction factor C needed to account for each of these effects is

C = CLPCSCFCA (4.14)

When applied to the original image intensity (in PSL units) IR, a new corrected

intensity is calculated IC = CIR. Note that IC is not actually the original absolute

intensity. To arrive at the original intensity would require quantitative knowledge of

the x-ray source intensity and the probability of diffraction from the sample. This

knowledge is unnecessary as the present analysis only requires knowledge of the

relative intensity of diffraction from one diffraction ring to another. What matters

is that IC is proportional to the original scattered intensity.

The total correction applied to each image plate from shot 10268 are shown in

figure 4.19. These images look very similar to the plots of CS shown in fig 4.15, and

so the attenuation due to the sample is the most important effect when correcting

for intensity.
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(a) Plate 1 (b) Plate 2

(c) Plate 3 (d) Plate 4

Figure 4.19: The total correction factors for application to the four image plates from
shot 10268. The x and y axes correspond to pixel number. The colourbar to the right of
each image indicates the correction factor for each colour in the image.
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4.6.4 Finishing the image transformation

Now that the intensity of every pixel in each image has been corrected, the 2D

histogram can be formed, shown in fig 4.20. The diffraction lines line up along |G2|

as expected. Since Nb is a BCC material, diffraction rings are expected at all even

values of |G2|.

Figure 4.20: The completed image transformation of plates 1 - 4 of shot 10268, showing
static x-ray diffraction from Nb using a Zn x-ray source. The raw pixel intensities have
been corrected for Lorentz-polarisation, attenuation through the Nb sample, attenuation
through image-plate filters, and atomic form factor. This is a log-scale image as indicated
by the colourbar to the right of the image.

The diffraction rings are generally not uniform along φ. Instead, spotty diffraction
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is observed this is the result of crystallographic texture in the Nb rolled foil. There

is also a “smearing” of the diffraction peaks along |G2|. It is thought that this arises

from diffraction of other wavelengths from the crystal; since the x-ray source is not a

perfect delta function, and instead the x-ray source has a width, these surrounding

wavelengths may diffract resulting in this low intensity smearing. This smear is

removed during background subtraction.

Now that the image transformation is complete, the intensity values of each

pixel can be summed across all values of φ, producing a graph of intensity vs. |G2|.

This summed intensity is then divided by the number of φ bins contributing to the

intensity, resulting in an integrated intensity per φ. A plot of the intensity per φ vs.

|G2| is shown in figure 4.21.

Figure 4.21: The integrated intensity per φ vs. |G2| of shot 10268.
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4.6.5 Background subtraction

Background is produced on this experiment from several sources. The first source of

background is drive noise as previously discussed. As the energy of the drive laser

increases, more high energy photons are produced as part of the drive noise, and so

it is expected that noise is higher in images of higher pressure diffraction.

Another origin of background is the x-ray source. Since the facility uses a

laser-driven x-ray source, the radiation generated is not monochromatic. Most of

the excess x-rays are low in energy, and are broad in spectrum.

A final suspected source of background is secondary fluorescence. This is the

absorption of high energy x-rays by other equipment in the chamber (namely, the

VISAR payload) and subsequent re-emission. The evidence for this background

source is a shadowing effect often observed on the image plates. This effect was

only seen when the VISAR payload was inserted; the shadowing is caused by the

blockage of some external x-ray source by the mirror of the BBXRD, indicating that

the VISAR payload is the x-ray source responsible for this noise.

As previously stated filters were placed over the front surface of the image

plates to absorb the lower energy x-ray noise, while still allowing high energy x-rays

through. Nevertheless, some background gets through, and this is clearly seen on

the image plate scans. Some post-processing must now be completed to subtract the

background from the signal.

To approximate the background, the diffraction signal is masked (set to zero)

and linearly interpolated as shown in figure 4.22. This interpolated image is then

subtracted from the original image in an attempt to isolate the signal. Nearest

neighbour interpolation was also pursued though it was found to generate a very
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similar background image.

Figure 4.22: The background image of shot 10268 where the diffraction signal is masked,
and then linearly interpolated over the masked regions.

Now that the background has been subtracted the integrated intensity is calculated

again, as shown in 4.23. The background subtraction leaves some artefacts at the

pedestal regions of the peaks.

4.6.6 Estimation of diffraction ring intensity

Now that background has been removed, the peak intensities are estimated by fitting

a Gaussian to each peak as shown in fig 4.23. The fits were achieved by eye since a

good fit using a fitting routine was difficult, given the pedestal artefacts observed on

each peak. The area of these Gaussian is the integrated intensities of each reflection.
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Figure 4.23: Gaussian fits to the integrated intensities of shot 10268. The green line
show the fitted Gaussians and the blue line shows the background subtracted signal.

4.6.7 Texture correction

The work in this section is generously informed by John Foster, who originally

simulated the texture of the Nb BCC foils used on this experiment. This work is

reproduced by the author of this thesis so that the results may be applied to the

present analysis.

The overall aim of the intensity corrections is to recover the intensity contributed

to each reflection by each individual plane, since the Debye-Waller theory applies to

this case. If the sample were an ideal powder there would be a uniform distribution

of crystal grains within the sample. In the case of a powder, then, each reflection

will be observed with contributions from planes according to the multiplicity. In

the case of foil targets, this uniform distribution of grains is not present. Since a
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non-uniform distribution of grains is present, a correction is required to compensate.

The texture present in a cold-rolled BCC foil is well studied [119]. The texture

that is formed in this case is called an α-fibre texture. The symmetrical element of

this fibre texture is characterised by three Euler angles α = 0◦, β = 0 − 55◦, and

γ = 45◦. These Euler angles describe the crystal orientations present in a foil; β

occupies a uniformly random angle between 0◦ and 55◦. These orientations arise

from the rolling of the foil between rollers at high pressures. This process arranges

the grains symmetrically about the rolling direction. The grain distribution is also

top-bottom symmetric. Therefore to generate the full texture of the foil, the fibre

element described above must be mirrored through the plane of the rolling direction,

and through the plane of the sample.

(a) (b)

Figure 4.24: (a) A stereographic projection of the < 2 2 2 > family of directions (b) The
ring shows the intersection of the Ewald sphere with the unit sphere, projected onto the
plane. The intersection of this yellow ring with the projected vectors represents the grains
that meet the Bragg condition and thus produce diffraction.
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For each reflection |G2|, a set of vectors corresponding to the contributing planes

is generated. For example, the set of vectors for the plane |G2| = 12 will contain

all unique members of the family of vectors < 2 2 2 >. These vectors are then

normalised so that they all start at the origin and terminate on the unit sphere.

These vectors are then rotated through the Euler angles stated above. In the case of

β, a random angle is selected between 0◦ and 55◦ using a uniformly random number

generator. Each of these Euler angles is summed with a random angle dα, dβ, and

dγ selected from a Gaussian distribution of random numbers with full-width half

maximum of 2.0◦ and centred on 0 so that negative values might arise. These slight

variations are introduced to account for random variations in the sample texture.

The final Euler angles used to rotate the quiver of vectors is (α+dα, β+dβ, γ+dγ).

After the rotation is applied the set of unit vectors is projected stereographically

onto the z = −1 plane. This projection is a convenient way of representing the

positions of vectors in the unit sphere.

This process of rotation and projection is repeated 3.6×106 times. This repetition

allows the plane to be populated sufficiently such that the distribution of grains is

well represented. The projection is then super-imposed with symmetrical images

corresponding to the symmetry through the rolling direction and the top-bottom

symmetry. The result is a projection representing all plane orientations Figure

4.24(a) shows an example of such a figure. Only the vectors in the upper half of the

unit sphere are shown here, since these vectors project inside a unit circle. Vectors in

the lower hemisphere of the unit sphere are always projected outside this unit circle.

Vectors projected outside the unit circle present a difficulty since these vectors can

appear anywhere outside of the unit circle up to infinity. Since these values are
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Figure 4.25: The predicted intensity profile of the reflecting {2 2 2} planes arising from
texture.

conveniently unnecessary for the present analysis, they are neglected completely.

The Ewald sphere may also be constructed, representing all possible directions

of elastic scattering. Where the Ewald sphere intersects with a reciprocal lattice

direction (equivalently, the plane normal vectors) diffraction will occur. In figure

4.24(b) the intersection of the Ewald sphere with the unit sphere is projected onto

the plane as a yellow circle. Where the circle intersects with the projected grain

orientations, the Bragg condition is met. A larger number of grains meeting the

Bragg condition results in a higher predicted intensity at that Bragg angle. The

initial predicted intensity as a function of φ for the < 2 2 2 > family of directions is

shown in figure 4.25.
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(a) (b)

Figure 4.26: (a) A stereographic projection of the planes in a powder. The ring shows
the intersection of the Ewald sphere with the unit sphere, projected onto the plane. The
intersection of this yellow ring with the projected vectors represents the grains that meet
the Bragg condition and thus produce diffraction. (b) The intensity of diffraction as a
function of φ.

This projection method used does not preserve intensity. To demonstrate this, a

powder pattern is generated by uniformly distributing vectors about the unit sphere.

These vectors undergo the same stereographic projection discussed previously; the

result is shown in figure 4.26(a). As is seen in figure 4.26(b), the intensity is not

uniform about the ring, despite the uniform distribution of vectors about the unit

sphere. By dividing the textured pattern in figure 4.25 by the powder profile of

figure 4.26(b), a corrected prediction for profile intensity in the textured sample is

extracted. Note that the projected powder image of figure 4.26(a) is identical for

each reflection, however the profile will look different due to a differing intersection

with the Ewald sphere for each reflection. Therefore this correction leaves the effect

of multiplicity on intensity intact.
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Texture projection of {2 2 0} Predicted intensity from {2 2 0}

Texture projection of {3 1 0} Predicted intensity from {3 1 0}

Texture projection of {2 2 2} Predicted intensity from {2 2 2}

Figure 4.27

This process was undertaken for every reflection present in the diffraction images

from shot 10268. The projected image for each reflection along with the corresponding
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Texture projection of {4 0 0} Predicted intensity from {4 0 0}

Texture projection of {4 1 1} Predicted intensity from {4 1 1}

Texture projection of {3 3 0} Predicted intensity from {3 3 0}

Figure 4.28

intensity profile are shown in figures 4.27 - 4.29. The diffraction ring is seen to

graze the texture spots in a number of cases. The texture profiles in these cases
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Texture projection of {4 2 0} Predicted intensity from {4 2 0}

Texture projection of {3 3 2} Predicted intensity from {3 3 2}

Figure 4.29

are therefore poorly constrained, and it it likely to result in a poor prediction of

intensity where this is the case.

The whole φ range of each ring was not accessed on this experiment, and so

texture profiles should be restricted to account for this. The intensity observed on

experiment should be divided by the total predicted intensity in the restricted φ

region. This will retrieve the relative intensity reflected by each individual plane.

Note that this will automatically correct for multiplicity. This will also correct for

the geometrical part of the Lorentz-polarisation factor arising from the intersection
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of the finite-width Ewald sphere with the finite-width reciprocal lattice.

4.7 Results

Having transformed and corrected the diffraction images, the integrated intensities

may now be used to attempt a temperature measurement.

The Debye-Waller plot for shot 10268 before the texture correction is shown in

4.30. The line of best fit has a positive slope; the Debye-Waller effect predicts a

negative slope. Upon application of the texture correction, as shown in figure 4.31,

the situation is improved such that a general trend of decreasing intensity with G2

is observed. Using the literature Debye temperature value of ΘD = 260 K, the

temperature of the static sample is measured here to be 1142 K. The substantial

scatter about the line of best fit indicates that the simple model of texture used

to generate the texture correction is not sufficient. A reference sample texture is

therefore necessary.

Since the temperature of the static material is known to be 300 K, an additional

correction can be applied to each intensity so that the appropriate relative intensities

are recovered. Figure 4.32 shows the static intensity data from shot 10268 corrected

to give a T = 300 K. The corrections applied here are in essence a reference texture

correction. The validity of the reference correction can be verified by applying

them to static diffraction intensities on another shot. Note that there is an implicit

assumption that texture is the same in both samples.

To test the texture reference gained from shot 10268, another shot was selected

for analysis; the chosen shot was 10257 which was shocked to P = 20 GPa. The
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Figure 4.30: The Debye-Waller plot for shot 10268 with no texture correction.

Figure 4.31: The Debye-Waller plot for shot 10268 measuring temperature from a static
diffraction image. From the line of best fit, T = 1142 K. The ideal line shows the slope
required for a measurement of T = 300 K.

transformed and corrected diffraction image shown in figure 4.33 displays diffraction

from both the static material and the shocked material. The change of diffraction

position when assuming hydrostatic compression indicates a volumetric compression
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Figure 4.32: The Debye-Waller plot for shot 10268, corrected such that all points now
lie on the line corresponding to T = 300 K.

of V/V0 = 0.90.

Figure 4.33: The transformed and corrected diffraction image from shot 10257.

The static signal was isolated using the same background subtraction method

mentioned previously. As part of the background subtraction procedure, the driven
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signal is also removed. Since the driven signal is broad, it is difficult to separate the

static and driven signals, so the background subtraction is of a lower quality when

compared to the subtraction performed on shot 10268. The integrated intensity of

shot 10257 after background subtraction is shown in figure 4.34. Gaussians are fit

once more by eye. This time the Gaussians are fit to both the static signal and the

driven signal. The large breadth and small amplitude of the driven peaks make for

a loosely constrained fit. This is especially true of the driven peaks at higher Bragg

angles due to their apparent overlap with the static peaks. The driven intensities

corresponding to G2 = 16, 20, and 21 are omitted, since no clear peak is apparent.

Figure 4.34: The integrated intensity of shot 10257 after background subtraction. The
green curve shows the sum of Gaussians fitted to both the static and driven signal.

The reference correction collected from shot 10268 can now be tested on the

static signal of 10257. Plot 4.35 shows the static signal of shot 10257, with the

reference corrections from 10268 applied. The temperature measurement is much

improved to T = 260 K. The scatter is generally low except for the peaks G2 = 12
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and 16. Note that both of these peaks have a relatively low intensity in figure 4.34;

the difficult background subtraction procedure is likely to have the largest impact

on these peaks.

Figure 4.35: The Debye-Waller plot of the static signal from shot 10257, with the
reference correction factors from shot 10268 applied. From the line of best fit, T = 260 K.
The ideal line shows the slope required for a measurement of T = 300 K.

A temperature measurement will now be attempted for the driven diffraction.

Instead of using the reference correction from shot 10268, a reference correction

will be derived from the static diffraction in the same image. Figure 4.36 shows

the obtained Debye-Waller plot. The scatter is noticeably improved by using the

static signal from the same shot to make the reference correction. By using the

approximation Γ/V = constant, as in section 3.5, a value of ΘD can be calculated

as 310 K. With this Debye temperature, the temperature is measured to be 2396 K.

At this pressure, the temperature is expected to be 450 K.

The negative effect of background subtraction will be even more pronounced for

driven diffraction given the small amplitude and large breadth of driven peaks. This,
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combined with the loosely constrained Gaussian fits, results in a very challenging

temperature measurement.

Figure 4.36: The Debye-Waller plot of the driven signal from shot 10257. Using ΘD =
310 K and from the line of best fit, T = 2396 K. The ideal line shows the slope required
for a measurement of T = 300 K.

4.8 Conclusions and future work

The work performed in this chapter highlighted substantial complications that could

only be identified with experiment. These challenges are summarised here. Their

remedies are recommended below.

The main confounding factor for the Debye-Waller thermometer was the difficulty

in extracting accurate peak intensities from driven signal. A poor model of the

background resulted in a background subtraction method that significantly altered

the driven signal intensities due to their large widths and low amplitudes. These

same properties also made the accurate fitting of Gaussians to these peaks very
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challenging. Any future work will require extra care when considering background

subtraction.

Other useful insights were also gained on this experiment. Uncorrected texture

has the potential to drastically alter the apparent Debye-Waller behaviour of the

material. A simple texture model was found to qualitatively predict the positions of

diffraction, but it was insufficient with regards to correcting diffraction intensities for

the effect of crystallographic texture. A direct reference to the investigated material

is much preferred. The double pulsed backlighter used on this experiment was a

convenient tool for acquiring this reference correction. Note that the application of

a reference correction derived from static signal in this way assumes that texture will

not evolve upon compression. Also note that the effect of crystallographic texture on

diffraction is dependent on the orientation of the sample with respect to the incident

x-ray beam; an on-shot reference with a double pulsed backlighter removes the need

for careful orientation of the sample.

When considering future experimental designs, the quality of diffraction signal

from driven material should be the primary concern. A brighter, narrower x-ray

source will increase the signal to noise ratio. An x-ray free electron laser (XFEL)

is the ideal candidate for such an experiment, given the bright, high-quality x-rays

produced by such an instrument. More sophisticated methods of modelling the

background may also be beneficial.

With regards to the sample, a material with a uniform distribution of grains such

as a powder would eliminate the need for texture correction entirely. It would also

eliminate the assumption that texture does not evolve on compression; instead, the

evolution of texture might be reliably observed.
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Chapter 5

Conclusions and Future Work

5.1 Summary

The applicability and limitations of the Debye-Waller effect for the measurement of

temperature have been investigated both through simulation and experiment.

The simulation work of chapter 3 began with a critical assessment of previous

work undertaken by Murphy et al [37]. Material strength has been shown to be of

little consequence to the technique. The impact of the choice of Debye temperature

model was also assessed and, in the case of Cu, found to introduce < 2 % error in

the measurement of temperature. Such an error is acceptable given the large errors

associated with competing thermometry schemes [23].

The impact of dislocations on the Debye-Waller effect was investigated. An

analysis of the theory by Wilkens [63] predicted no impact of dislocations on the

Debye-Waller effect. Molecular dynamics simulations show that this is not true;

at high enough densities, the presence of dislocations causes an over-prediction of
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temperature. The over-prediction tends to increase with dislocation density. The

Wilkens model makes the assumption that dislocations are sufficiently separated

such that the strain fields from each dislocation do not interact. It is proposed that

this may not be valid at the dislocation densities observed in laser shock experiments,

though more work is required to confirm this. At such high dislocation densities,

this result indicates that the Wilkens model is no longer valid.

The results of chapter 3 indicate the fundamental viability of the technique,

though crystal imperfections are a confounding factor that increase the apparent

temperature. Knowledge of the dislocation density may not be sufficient to correct

for this effect, since a simple relationship is not expected between temperature error

and dislocation density due to differences in dislocation character. An experimentalist

must therefore also have knowledge of the quantity of edge- and screw-like dislocations

and their orientations with respect to the diffracting beam. Such knowledge is not

yet currently available on laser shock experiments; this result reveals a substantial

hurdle to temperature measurement using the Debye-Waller effect.

The experiment of chapter 4 described the first known laser shock experiment

tailor-made for the investigation of the Debye-Waller thermometer. A number of

challenges were exposed in the course of this investigation.

Crystallographic texture dramatically alters the reflected intensities from a sample.

A simple model of crystallographic texture was implemented to correct for this.

Qualitatively, this model predicts the positions of diffraction, and the resulting

texture correction significantly improved the temperature measurement; however, it

was shown that, instead of using a simple model of texture to correct the intensities,

the temperature measurement is much better improved using a reference texture
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from the sample itself. In particular, a double-pulse backlighter was useful so that

misalignment of the sample with with respect to the reference was not possible.

The process of subtracting background from intensity profiles causes substantial

damage to the measurements of diffraction signal from shocked material. Removing

background without removing valuable diffraction signal is a significant challenge.

Additionally, the low amplitude and large width of the driven reflections makes for a

poorly resolved peak. The overall result is a temperature measurement much higher

than expected, with large uncertainty.

While the results of both simulations and experiment have exposed a number of

challenges regarding this technique, solutions may now be sought. Recommendations

of future avenues of work are provided in the next section.

5.2 Suggestions for future work

With regards to simulations, a predictive model of the impact of dislocations on the

Debye-Waller thermometer should be constructed. This will require the generation

of lower dislocation densities to investigate the minimum density required for this

effect to be triggered; such low densities were not analysed in this thesis due to a

lack of control over the number of dislocations present in a sample. In addition, the

dependence of the Debye-Waller effect on dislocation type should be assessed. Other

defect types such as stacking faults should also be investigated.

The impact of dislocations on experiment also needs to be well characterised. It

is likely that a strong understanding of the dislocation density and type is required

to make a temperature measurement. The compression of single crystals may be a
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good candidate for such an experiment given their predictable plasticity modes.

Extremely low background is a necessity for this technique. Laser-plasma x-ray

sources may produce too much background for practical application. It is therefore

recommended that future investigations are performed using an X-ray Free Electron

Laser (XFEL) such as the European XFEL, or LCLS, due to their exceptional signal

to noise ratios and narrow beam energies. The high repetition rates of these facilities

means that a reference diffraction pattern and a driven diffraction pattern can be

obtained separately. A combination of the low background and narrow energy profile

should make for well resolved diffraction from the shocked state.

5.3 In closing

In the production of this thesis, the understanding of the Debye-Waller thermometer

has been progressed. It is hoped that future investigators may take the lessons

learned here and judiciously apply them to their studies.

In broader terms, it is hoped that robust temperature diagnostics are developed

to aid in the discovery of useful materials and technologies. High pressure states

have the potential to change our understanding of the physical world. The fruits of

this work are eagerly anticipated.
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Appendix A

Multiplicities in BCC Structures

The multiplicity factors for a BCC structure are given below in table A.1. Note

that the G2 = 18 reflection receives contributions from both the (3 3 0) and (4 1 1)

families of planes.

G2 Multiplicity G2 Multiplicity
2 12 14 48
4 6 16 6
6 24 18 36
8 12 20 24
10 24 22 24
12 8 24 24

Table A.1: Multiplicities in BCC polycrystals.
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Appendix B

Multiplicities in FCC Structures

The multiplicity factors for a FCC structure are given below in table B.1. Note

that the G2 = 27 reflection receives contributions from both the (3 3 3) and (5 1 1)

families of planes.

G2 Multiplicity G2 Multiplicity
3 8 19 24
4 6 20 24
8 12 24 24
11 24 27 32
12 8 32 12
16 6 36 6

Table B.1: Multiplicities in FCC polycrystals.
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Appendix C

Overview of shots taken at Orion

A summary of useful data shots taken on the Orion experiment described in chapter

4. Two sample types are included: foil and slurry. Foil refers to cold-rolled Nb

foils. Slurry refers to attempts at making targets with no texture. Attempts were

made to drive the Nb slurry samples, but analysis of these images did not provide

a conclusive pressure. It is proposed that the slurry target does not support a

well-formed single shock front, and so the diffraction images obtained from driven

slurry samples contain many different pressures simultaneously. The pressures for

these samples are therefore reported as NA. The pressure in some entries is marked

with a “-”. The inferred pressure from diffraction was not calculated for these shots.

Shots 10268 and 10289 were carried out with an “early” backlighter. This means

that the sample was driven, but the x-rays were intentionally timed such that the

diffraction pattern is generated before the shock has traversed the sample. This

allows the drive noise to be captured at the same time as the static diffraction.
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Shot ID Target Type Pressure (GPa) Backlighter

10048 Nb rolled foil 0 Fe

10049 Nb rolled foil 0 Fe

10050 Nb rolled foil - Fe

10054 Nb slurry 0 Fe

10055 Nb rolled foil - Fe

10056 Nb rolled foil - Fe

10057 Nb rolled foil - Fe

10241 Nb rolled foil - Cu

10243 Nb rolled foil 0 Zn

10244 Nb rolled foil ∼100 Cu

10246 Nb rolled foil ∼70 Zn

10247 Nb rolled foil ∼70 Zn

10249 Nb rolled foil ∼40 Zn

10251 Nb rolled foil ∼40 Zn

10254 Nb rolled foil ∼40 Zn

10256 Nb rolled foil ∼20 Zn

10257 Nb rolled foil 19 Zn

10258 Nb rolled foil ∼45 Zn

10259 Nb rolled foil ∼45 Zn

10260 Nb rolled foil ∼40 Zn

10262 Nb rolled foil 72 Zn

10263 Nb rolled foil ∼60 Zn
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Table C.1 continued from previous page

Shot ID Target Type Pressure (GPa) Backlighter

10268 Nb rolled foil ∼70 Zn - early

10270 Nb rolled foil ∼80 Fe

10271 Nb rolled foil ∼80 Zn

10272 Nb rolled foil ∼80 Fe

10274 Nb rolled foil ∼80 Fe

10277 Nb slurry 0 Fe

10279 Nb slurry NA Cu

10280 Nb slurry NA Cu

10281 Nb slurry NA Cu

10282 Nb rolled foil - Cu

10283 Nb rolled foil ∼60 Fe

10284 Nb rolled foil ∼40 Fe

10285 Nb slurry NA Zn

10286 Nb rolled foil ∼20 Fe

10287 Nb rolled foil ∼70 Zn

10288 Nb rolled foil ∼40 Fe

10289 Nb rolled foil 0 Fe - early

10290
Nb rolled foil -

alternative texture
∼60 Zn

10291 Nb slurry NA Zn

Table C.1: A summary table of data taken from the Orion experiment.
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