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Abstract 

 

Metalloporphyrins are known for interacting with donor molecules via axial coordination 

and this ability to attach additional ligands determines their role in biological processes 

such as oxygen transport or enzyme catalysis.  In addition, the introduction of donor 

groups via ligation is being studied as a strategy for enhancing light-harvesting capacity 

and improving photovoltaic performance.  

In this thesis, axial complexes between neutral metalloporphyrins and halide anions are 

studied in the gas-phase and their complexation energy determined with the aid of 

computational methods.  The electronic properties and photochemistry of isolated 

gaseous zinc tetraphenyl porphyrin (ZnTPP) complexes with fluoride, chloride, bromide, 

and iodide are investigated using a novel custom-adapted laser-interfaced commercial 

mass spectrometer to provide information on how the axial complexation influences their 

intrinsic electronic spectra relative to the position and width of the Soret band.  These 

spectroscopic experiments performed on negatively charged complexes are of interest 

because their low vertical detachment energy (VDE) can be accessed by the UV range of 

the laser and electron transfer processes from halide to porphyrin can be observed.  In 

addition, these results represent the first proof of halide coordination in the gas-phase 

with neutral metalloporphyrin showing the formation of dimers and bridged complexes. 

Further experiments involved the generation of ZnTPP and nickel octaethylporphyrin 

(NiOEP) radical cations and anions with electrospray ionization (ESI) and LDI 

techniques.  This work reports the first gas-phase absorption spectra of metalloporphyrin 

radicals together with their thermal and photo-induced dissociation channels and, a new, 

serendipitous, preparation procedure was found for generating metalloporphyrin radical 

anions in the gas phase via the LDI technique.  

The last set of experiments presented in this thesis focuses on verteporfin (trade name 

Visudyne), a benzoporphyrin derivative photosensitizer used in photodynamic therapy of 

the treatment of the wet form of macular degeneration.  In this work, the first direct study 

of its photoproducts and photofragmentation channels in an organic solvent and in the 

gas-phase are presented together, along with the thermal dissociation products and the 

first gas-phase intrinsic absorption spectrum.  
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Chapter 1: Introduction 

 

1.1 Applications of porphyrins and metalloporphyrins 

 

The initial light absorption in all photosynthetic organisms is due to pigments that are 

subdivided into three major groups: chlorophylls, carotenoids, and phycobilins.  These 

pigments are conjugated π-electron systems and have exceptionally high molar extinction 

coefficients about 1 × 105 M–1 cm–1.1  

Worldwide it is estimated that total energy conversion via photosynthesis is well over 100 

TW, dwarfing the total amount of energy used by humans (about 13 TW in 2005).2   In 

the attempt to create compatible successful systems, porphyrins have raised a lot of 

interest for the development of new light-harvesting materials: synthetic porphyrin are 

now incorporated in prototype dye-sensitized solar cells, and potentially they can match 

the success of the best of dyes.2, 3, 4 

Parallel growing numbers of studies have been done on catalysts for solar chemistry, such 

as water splitting or CO2 reduction5,6 with complexes of meso-tetraphenylporphyrin and 

octaethylporphyrin being a focus in this field. Complexes with Mn, Fe, and Co catalyze 

a variety of reactions of potential interest in organic synthesis.7  

In addition, in recent years, the use of porphyrins and metalloporphyrins in the biomedical 

field has increased substantially: the photochemical, photophysical, and photoredox 

properties of these molecules that are tuneable through structural modifications, and their 

low in vivo toxicity, have been brought into wide application in photodynamic therapy 

(PDT) 8 leading to successful results like in the treatment of macular degeneration using 

verteporfin.9 

PDT is considered a non-invasive cancer treatment, involving the interaction between 

light of a determined frequency, a photosensitizer, and oxygen.  This interaction leads to 

the formation of a highly reactive oxygen species (ROS), usually singlet oxygen, as well 

as superoxide anion, free hydroxyl radical, or hydrogen peroxide.10   These highly reactive 

oxygen species react with cellular organic biomolecules such as lipids, aromatic amino 
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acids, and nucleic acids to produce oxidative radicals that damage the cell, possibly 

inducing apoptosis or even necrosis.10, 11 

PDT has found application also in the treatment of bacterial infections, such as acne12; 

bacteria have been shown to produce porphyrins endogenously13, which are therefore 

susceptible to photoexcitation and subsequently death after light treatment.  

 

 

1.2 Structure and spectroscopic properties of porphyrins 

 

The word porphyrin is derived from the Greek porphura, meaning purple.  They are, in 

fact, a large class of deeply coloured pigment, of natural or synthetic origin.  They consist 

of a macrocyclic aromatic system consisting of four pyrrole units joined by four methine 

groups.  Porphin is the simplest porphyrin, and its chemical structure is the common 

structure motif (Fig. 1.1). This basic macrocycle can be substituted in many ways, and 

the central cavity can bind different metals, forming a metalloporphyrin.  The most 

famous metalloporphyrins in biological systems, are heme (iron porphyrin) and 

chlorophylls (magnesium porphyrins).  

Porphyrins are characterized by high molar extinction coefficients and their characteristic 

absorption profile, which is defined by an intense Soret or B band at around 400 nm, and 

a series of weaker Q bands at around 550 nm.  The origins of these transitions have been 

explained by Gouterman’s four orbitals model in D4h symmetry.14  In this theory, the two 

fundamental concepts are:  

 

Figure 1.1. Basic structure of porphyrins (Porphin molecule). 
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1) The two absorption bands are due to transitions between two HOMO and two 

LUMO orbitals ( π to π* transitions) 

2) The ring substitution and the metal center influence the relative energies of those 

orbitals. 

In this model, the LUMO’s are both eg, and the two HOMO’s are a1u and a2u.   This means 

that there are two possible singlet excited states: a1ueg and a2ueg 
 

Orbital mixing splits these two excited singlet states into two 1Eu states.  The electronic 

transition to the higher energy mixed state (S0 →S2), is strongly allowed, whereas a 

transition to the lower energy mixed state, the (S0 →S1), is only weakly allowed.14 

 

15 

In the case of metalloporphyrins, the nature of the metal determines how the UV-Vis 

spectrum changes; metalloporphyrins are subdivided into two major groups: regular 

metalloporphyrins contain closed-shell metal ions (d0 or d10 ) —for example Zn(II), while 

in hypsoporphyrins metals have a dx, with x = 6 to 9 configuration —for example Ni(II).16 

 

Figure 1.2. a) The HOMO and LUMO orbitals of the porphyrin ring and b) The energy 

levels of the transition showing the (S0 →S2) Soret and the (S0 →S1) Q band transition. 

Image adapted  from Ref.15  
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In regular metalloporphyrin, the metal has very little effect on the porphyrin π to π* 

energy gap because of the low energy of the dπ (dxz, dyz ) metal-based orbitals.  In 

hypsoporphyrins there is a significant metal dπ to porphyrin π* orbital interaction (metal 

to ligand π-backbonding), resulting in an increased porphyrin π to π* energy separation 

causing the electronic absorptions to undergo hypsochromic (blue) shifts (Fig. 1.3).16 

 

Another effect of the metalation of the porphyrin is the reduction of the number of the 

observed Q bands due to the increased degree of symmetry.16  

 

 

1.3 The importance of Gas-phase studies on Metalloporphyrins 

 

Although porphyrins in biological systems or artificial materials occur in condensed 

phase media, gas-phase experiments are more suitable for theoretical and fundamental 

studies because of the lower complexity of the isolated system.  Gas-phase spectra also 

serve to benchmark theoretical models that predict the energies of electronically excited 

states.  However, in gas-phase spectroscopy it is not routinely possible to record the 

  

 

Figure 1.3. Simplified molecular orbital diagram for metalloporphyrins. Interaction 

between metal dπ and π* porphyrin orbitals occurs in hypsoporphyrins.  The dπ metal 

orbital overlap with the π system of the porphyrin ring. Image adapted from Ref.16.16 
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absorption spectra of molecules in the conventional way, measuring the light before and 

after the sample to quantify the loss in intensity, because there is not a large enough 

number of ions to detect any change in light intensity.   Therefore photon absorption is 

identified from ionic fragmentation of the precursor molecule or cluster (action 

spectroscopy).17 

As pointed out by S.B. Nielsen in a conference paper in 2012, 17 another fundamental 

aspect of gas-phase studies is the possibility of revealing the intrinsic electronic 

properties;  the electronic structure of a biochromophore (i.e., light absorber) is strongly 

perturbed by its environment, e.g., water or amino acid residues within protein pockets, 

and it is, therefore, valuable to study isolated molecules in vacuo.  In this paper, S.B. 

Nielson presented the first action spectrum and photodissociation mass spectrum of 

isolated Fe(III)-heme cations showing that the bulky environment around the heme does 

cause a red-shift in the ππ*transition energy.17 

In following studies, S.B. Nielson and co-workers determined the intrinsic absorption 

spectrum of isolated gas-phase chlorophyll pigments revealing the effect of the protein 

microenvironment.18   They determined a large difference in the absorption spectrum of 

Chl a and Chl b forms, which they concluded to be an intrinsic effect and not due to local 

hydrogen-bond interactions with the formyl group of Chl b, for example.  This work 

clearly demonstrated the advantage of looking at isolated molecules. They also 

determined that the absorption in vacuo was blue-shifted by 50 nm compared to natural 

protein complexes.  

In a subsequent gas-phase study with Chl a dimers, they addressed the question of whether 

this 50 nm shift is due to interactions with the protein environment or excitonic coupling 

between chlorophyll pigments.  They found that chlorophyll association alone can 

produce a large portion of the colour shift observed in photosynthetic macromolecular 

assemblies.19  
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1.4 Gas-Phase studies on non-biological Metalloporphyrins 

 

Although in nature, metalloporphyrins are generally iron or magnesium-based, there are 

a few examples of natural different metal choices.   For example, coenzyme F430 is a 

Ni(I) porphyrin involved in methane production by methanobacterium 

thermoautotrophicum.20, 21 Also, a zinc porphyrin photosynthetic system was found in 

addiphilium rubrum bacteria showing the potentiality of using different metals.22 

For human health applications, it’s important to explore properties of different porphyrins 

with a wide variety of metals and side chains substitutions.   Furthermore, this can provide 

insight into fundamental biological questions such as the reasons for the occurrence of 

the magnesium porphyrin in photosynthesis or showing that alternative organic 

substitutions in biological porphyrins could have led to the disruption of their functions.   

In a pioneering study, rhodobacter sphaeroides bacteria were engineered so that 

bacteriochlorophyll (BChl) -binding sites contain Zn-BChl rather than BChl a showing 

an electron transfer efficiency of >95% of the wild-type reaction center.23   More work 

needs to be done in the direction of bioengineering photosynthesis with different 

porphyrins, and this is another future research field that could grow from a fundamental 

knowledge of different porphyrins properties.   

Over recent years, many gas-phase studies have been conducted on non-biological 

porphyrins by M.M.Kappes and co-workers. The Kappes group focuses on gaseous 

anionic metalloporphyrin systems, using photoelectron spectroscopy: one initial system 

studied was meso-tetra(4-sulfonatophenyl)porphyrin (TPPS) multianions (Fig.1.4).2524 

 

Figure 1.4 meso-tetra(4-sulfonatophenyl) porphyrin (TPPS). Adapted  from Ref.24 
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TPPS was first used by Kappes et al. in 2013 where structures and photoelectron spectra 

of Mn(III) and Cu(II) TPPS multianions, as well as of homomolecular dimers and trimers 

(Fig.1.5) were determined.25  The charge-dependent shifts they observed in the 

photoelectron spectra were explained by a simple electrostatic model.26, 27  The key 

assumptions of this model are that the HOMO is largely localized in the central part of 

the metalloporphyrin (either on the metal atom or on the nitrogen atoms surrounding it) 

and that the negatively charged sulfonic acid groups are involved only indirectly, by 

influencing the electrostatic potential experienced by the outgoing electron. 

25 

Subsequently, Kappes and co-workers used the Fe(II) and Mn(II) TPPS 

metalloporphyrins to determine the first experimental binding energies of molecular 

oxygen and carbon monoxide to model metal porphyrin complex ions in vacuo.28  

This gas-phase experiment offers the advantage that the oxidation state of the metal center 

is controlled since the ions are selected using the mass-to-charge ratio. Therefore, 

coupling mass spectrometry when working with species with multiple oxidation states is 

of great advantage. 

Kappes’ group also determined the influence of the oxidation state of the central transition 

metal on the binding energy with oxygen.29   Particular emphasis has been placed on the 

different chemical behavior of the Fe and Mn systems as a function of their +II versus 

+III oxidation states. They proved that only open-shell d-metal porphyrins in their 

oxidation state +II have a sizable O2 binding energy of 40.8 and 67.4 kJ/mol (for Fe(II) 

and Mn(II), respectively), whereas the Cu has a much lower dioxygen affinity (< 22 

 

 

Figure 1.5 TPPS dimers and trimers. Figure taken from Ref.25 



23 
 

kJ/mol).  They experimentally showed that metal-to-oxygen electron transfer plays a 

significant role in O2 binding.  In fact, O2 is much less reactive toward the trivalent species 

[Fe(III)TPPS]3− and [Mn(III)TPPS]3−, for which further metal-to-oxygen electron 

transfer is more difficult.29 

In another study, using photoelectron and action spectroscopies, the response of isolated 

Pd(II) meso-tetra(4-sulfonatophenyl)porphyrin tetraanions ([PdTPPS]4–) to electronic 

excitation was revealed together with their decay channels.30  Primarily, electron 

detachment is observed together with small amounts of SO2
− and SO3

− loss.   Kappes et 

al. found a peak centered at 524 nm corresponding to the Q band transition and another 

peak at or below the low-wavelength range limit of the OPO laser (410 nm) they used, 

corresponding to the Soret band transition.  Compared to the solution-phase (water) 

absorption spectrum this represents a blue shift of the Soret band (412 →<410 nm) and a 

small red shift of the Q band transition (524→ 521 nm). 

More recently in 2018, Kappes’s group has identified the photodissociation pathways of 

gaseous monomeric and dimeric M(II)-meso-tetra-(4-sulfonatophenyl)-porphyrin (with 

M = Pd(II), Cu(II), Zn(II)) multianions.31  In these porphyrins, the position of the Q-band 

(S0 → S1 transitions) was studied as a function of charge state, counterions, 

oligomerization, and dimer structure type.  Both charge-state variation and the type of 

associated counterion have only a minor effect on the Q-band absorption maxima, 

although, for the homodimers, a consistent 10 nm blue-shift of their Q-bands from the 3− 

to the 5− charge state was reported.   
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1.5 ESI technique and CID studies on (metallo)porphyrins  

 

Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions 

using an electrospray in which a high voltage applied to a liquid to create an aerosol.  

The ESI technique necessitates charged species, so to study a neutral molecule, a charged 

group or “tag” can be attached to the molecule of interest while ensuring it is at sufficient 

distance from the chromophore to not affect the absorption.  This charged group allows 

the species to be electrosprayed but maintains the chromophore close to a neutral state.   

If this group is at enough distance, then the spectrum is the same as the hypothetical 

neutral chromophore in gas-phase.   This method was used by S.B. Nielsen et al. to study 

isolated chlorophyll a and b using quaternary ammonium ions as tags.18,32 

A similar approach of using a “tag” was developed using formate anion (HCOO−) 

coordination to neutral metalloporphyrins and -phthalocyanines containing divalent 

metals as a mean to improve their ion formation in electrospray ionization (ESI).  This 

method is particularly useful when the oxidation of the metal coordinated to the porphyrin 

makes it overall neutral. 33 

Collision induced dissociation (CID) is a mass spectrometry technique used to induce 

fragmentation of selected ions in the gas phase.34  The selected ions (typically molecular 

ions or protonated molecules) are usually accelerated by applying an electrical potential 

to increase the ion kinetic energy and then allowed to collide with neutral species (often 

helium, nitrogen, or argon). During the collision, some of the kinetic energy is converted 

into internal energy, which results in bond breakage and the fragmentation of the 

molecular ion into smaller fragments.35 
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The CID technique was applied by D.K. Bohme and co-workers to study the dissociation 

of tetraphenyl iron and manganese porphyrin ions.36  They showed that the dissociation 

channels for both these porphyrins are the same.  The results are summarised in Fig.1.6 

for the iron tetraphenyl porphyrin. 

 

In an article by M.M. Kappes and co-workers, benzylpyridinium-substituted porphyrins 

were studied using CID, and they found a linear correlation between experimental 

fragmentation thresholds and theoretical dissociation energies, suggesting that these 

species can be used as calibrants to gauge the fragmentation energetics of closely related 

systems (Fig.1.7).37 

 

 

 

 

 

 

Figure 1.6 Dissociation channels of FeTPP+ (observed via CID). Figure taken from 

Ref.3636 
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1.6  Metalloporphyrins and molecular beams 

 

A molecular beam is produced by allowing gas to enter a vacuum chamber through a 

small hole in a box. This box contains vapour of the molecules that are to make up the 

beam (Fig.1.8).  At low pressures of vapor in the box, when the free path of the molecules 

is greater than the width of the exit hole, the molecules will effuse through the hole; at 

higher pressures, they will flow through the forming a jet.  The jet rapidly expands in the 

vacuum until the molecules move independently and only those molecules moving in the 

 

 

Figure 1.7 Fragmentation cascade of 1,5,15,20-tetrakis(alpha-pyridinio-

methylphenyl)-(2H)-porphyrin and correlation between experimentally determined 

fragmentation thresholds (E50% values) and dissociation energies calculated at the 

DFT level. Figure taken from Ref.3737 
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proper direction to pass through a second hole become part of the beam while the others 

are pumped away. In addition, a velocity selector can be used to allow only molecules 

within a small range of speeds to pass through.38  This technique provides a source of 

cold “isolated” molecules, characterized by strong rotational and vibrational cooling.39 

 

38 

In 1981, Joshua Jortner and co-workers successfully applied this technique to study the 

excited states of neutral gaseous MgTPP 40 and ZnTPP.41  More recently in 2010, Hudson 

et al.  studied the first infrared spectra of jet-cooled free base and Cu (II) complex of 

protoporphyrin IX, produced in a molecular beam.42  In these experiments, they were able 

to clearly resolve the spectral features associated with the OH and NH vibrational 

transitions.  

 

 

 

 

 

 

Figure 1.8 Schematic diagram of molecular beam apparatus; the sample vapour 

molecules enter a vacuum chamber through a small hole.  If the vapour pressure is 

sufficiently high a jet is formed and only the molecules traveling in the correct direction 

pass through a second hole. An additional velocity selector can be used. Figure taken 

from Ref.38 
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1.7  Porphyrin systems studied in this project 

 

In this thesis, firstly gas-phase experiments of neutral metalloporphyrin (MP) aggregates 

with halides (zinc tetraphenyl porphyrin (ZnTPP), with F-, Br- Cl-, I-) are presented. Those 

neutral MP molecules can not be charged by typical ESI processes (i.e. protonation, 

deprotonation), however, the negatively charged halides allow the use of the ESI 

technique acting similarly to a “tag”, but in this case, perturbing considerably the ZnTPP 

electronic spectrum.  They also offer the possibility of forming bridged complexes where 

the halide sits between the porphyrins (Fig.1.9, and appendix A1.5).  Similar to the case 

of the iodide ion-pyrimidine clusters studied previously in the Dessent group43  choosing 

a halide ion-neutral MP complex allows us to study the near-threshold excitation and to 

explore the free-electron neutral molecule interaction, thus providing a route for studying 

the electron capture properties of metalloporphyrins. 

 

 

Subsequently, the first gas-phase spectra of metalloporphyrins radicals are presented. 

Gas-phase ZnTPP and nickel octaethylporphyrin (NiOEP) positive radicals are obtained 

using the ESI technique and their photodissociation pathways compared with the CID 

results. 

 

 

Figure 1.9. 1:1 and 2:1 (bridged) cluster of ZnTPP and halide anions (X –). 
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This thesis also includes a study on the benzoporphyrin derivative Verteporfin (trade 

name Visudyne, Fig.1.10).  This is used as an injected medicine acting as photosensitizer 

for photodynamic therapy in the wet form of macular degeneration (also called subfoveal 

choroidal neovascularization, CNV ).  In this illness, abnormal blood vessels grow under 

the retina and macula causing bleed and leak of fluid, resulting in distorted or destroyed 

central vision.  After being injected into the patient bloodstream, Verteporfin accumulates 

in these blood vessels and, when stimulated by a nonthermal red light with a wavelength 

of 689 nm in the presence of oxygen, produces highly reactive short-lived singlet oxygen 

and other reactive oxygen radicals, resulting in local damage to the endothelium and 

blockage of the vessels.44,45  

In this thesis, the action spectrum of gas-phase protonated verteporfin were acquired 

together with CID (collision-induced dissociation) studies and laser photodissociation, to 

better characterize the intrinsic properties of the verteporfin system.  In addition, solution-

phase photolysis experiments in the UV and visible range were performed to study its 

photoinduced fragmentation in the condensed phase, possibly showing additional 

mechanisms that enhance the cytotoxicity of the photolyzed verteporfin. 

 

 

 

Figure 1.10 Verteporfin molecules. The verteporfin for injection used in PDT 

(photodynamic theraphy) is a 1:1 mixture of two regioisomers (I and II). 44 
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1.8 Aims of the project 

The project is constituted of three parts; the first part is focused on the neutral 

metalloporphyrin aggregates with halides, the second part on the radicals of neutral 

metalloporphyrins, and the third part on verteporfin gas-phase spectrum and 

fragmentation products. 

Aims of the first part: 

1) Investigation of whether it is possible to form halide metalloporphyrin (MP) 

aggregates in the gas phase using electrospray ionization.  

2) Calculation of the vertical detachment energies (VDEs) of the aggregates to 

establish whether these are in a range that is accessible by our laser.  

3) Investigation of photoexcitation of the complexes across the electron detachment 

threshold region to initiate electron transfer from the halide ion (X–) to the MP, 

and follow any electron-transfer products. 

4)  Measurement of the gas-phase spectra of MP aggregates, to understand how the 

electronic bands (Soret and Q) evolve as a function of porphyrin aggregation.  

5) Perform photodissociation experiments on MP aggregates, to characterize the 

photodegradation pathways. 

 

Aims of the second part: 

1) Obtain gas-phase radicals of neutral metalloporphyrins (ZnTPP, NiOEP)  

2) Obtain the first gas-phase spectra of those radicals and compare the 

photofragmentation products with the collision-induced fragmentation pathways. 

 

Aims of the third part: 

1) Determine the first gas-phase spectra of verteporfin and characterize its 

photodegradation pathways. 

2) Compare the gas phase results with the photolysis experiments in solution. 

 



31 
 

Chapter 2: Experimental techniques  
 

 

 

2.1 Introduction to the experimental techniques 

 

The porphyrins and metalloporphyrin (MP) analyzed in this thesis were characterized by 

different experimental techniques.  

ZnTPP and its aggregates with halide anions were first studied computationally using 

density functional theory (DFT).  Experimentally, these gas-phase aggregates were 

formed using electrospray ionization (ESI).  Then collision-induced dissociation (CID) 

and higher energy collisional dissociation (HCD) were applied to determine the 

fragmentation products and the relative binding energy with the halides.  Lastly, the gas-

phase action spectra of these aggregates were determined using the commercial AmaZon 

Bruker mass spectrometer coupled with an OPO laser source, i.e. Laser Interfaced Mass 

Spectrometer (LIMS). 

NiOEP and ZnTPP gas-phase radicals were formed with ESI and laser desorption 

ionization (LDI).  HCD studies were performed on these radicals using the Orbitrap mass 

spectrometer while the gas-phase action spectrum using the LIMS. 

Lastly, verteporfin fragmentation and photofragmentation channels were studied with 

CID and on the LIMS instrument, respectively. The solution-phase photolysis 

experiments were performed on home-built photolysis cells.   

 

In summary, the techniques applied in this project are: 

1) Computational density functional theory methods (DFT)  

2) Electrospray ionization (ESI) to generate the gas-phase protonated/deprotonated 

ions, radicals, and aggregates/complexes. 

3) Laser Desorption Ionization (LDI) to generating metalloporphyrin gas-phase 

radicals. 

4) Collision induced dissociation (CID) and higher energy collisional dissociation 
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(HCD) to determine the thermal fragmentation products. 

5) Laser interfaced mass spectrometer (LIMS) to obtain the photodepletion and 

photofragmentation spectra. 

6) Photolysis of solutions at different wavelengths to determine the photo-

fragmentation products. 

 

 

2.2 Density Functional Theory (DFT) 

 

Density functional theory (DFT) is a computational quantum mechanical modeling 

method used in chemistry to investigate the electronic structure of atoms and molecules. 

This theory uses functionals (functions of another function) to predict the properties of 

many-electron systems, treating the energy of interacting electrons as a functional of the 

electron density.  This approach is based on the two Hohenberg-Kohn theorems: the 

ground state properties of a many-electron system depend only on the electronic density 

n(x,y,z) and the correct ground state density for a system is the one that minimizes the 

total energy through the functional E[n(x,y,z)].46  This approach speeds up the 

calculations considerably because the electron density is a function of only three 

variables(x, y, z). 

In this thesis, DFT studies were performed to determine and compare the complexation 

energies between different metalloporphyrins (MP) and halides (X) and provide insights 

into their interaction.  These DFT calculations also provided the optimized lowest energy 

structures in the gas phase.     
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2.3 Electrospray Ionisation (ESI) 

 

Electrospray ionization (ESI) is an atmospheric pressure technique used to transfer 

ionized species from a solution to the gas-phase.47,48,49  The transferred charged species 

are characterized by minimal fragmentation, and because of this feature,  ESI is 

considered a soft ionization technique.50,51  ESI is often coupled with mass spectrometry 

to produce gas-phase ions that can be directed into the instrument.52  

53 

Once the solution with the sample is ready, it is injected into the spraying nozzle with the 

aid of a syringe pump that keeps the flow rate constant (Fig.2.1). A potential of around 3-

4 kV is applied between the nozzle and the sampling cone, allowing the formation of 

small, highly charged droplets that at the end of the plume reach a diameter of 2μm.54 If 

the voltage is high enough (but below the corona discharge threshold), the electric field 

exerts a similar magnitude of force in the droplet as the surface tension does, and a cone 

shape begins to form (Taylor cone) emitting a jet of liquid (cone-jet) that is essential to 

the formation of the small droplets (Fig.2.2).55,56 

 

Figure 2.1 Schematic diagram of the electrospray ionisation (ESI). A voltage is 

applied between the spraying nozzle and the sample plate. The solution with the 

analytes flows through the nozzle and forms a Taylor cone due to the high voltage. 

The following Coulomb fission and solvent evaporation leads to droplets with a 

diameter that reches 200nm or less. The charged analyte is eventually released in the 

gas-phase following two possible mechanism (IEM or CRM). Immage taken from 

ref.53 
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57 

Once the droplet is sprayed into the desolvation zone towards the sampling cone, it will 

shrink because of solvent evaporation.  An inert gas (usually nitrogen) is pumped into the 

interface housing to raise the temperature of the air within the ionization chamber to aid 

complete desolvation.  The temperature required is dependent on the solvent properties 

of the sprayed droplet and the eluent flow rate.51,53  

As the droplet shrinks due to solvent evaporation, its radius decreases, but its charge 

remains constant.  This leads to an increase in repulsion between the surface charges until 

the electrostatic repulsive forces become equal to the eluent surface tension (Rayleigh 

Instability Limit).  Further decreasing the radius of the droplet will cause the Rayleigh 

limit to be exceeded, and the droplet will undergo a coulombic fission to reduce the 

coulombic stress between the surface charges. The process is often referred to as 

‘coulombic’ or ‘droplet jet fission’.53,58 

 

The charged analyte is then released from the droplets before entering the sample cone 

with two possible mechanisms (Fig.2.3) named charge residue model and evaporation 

model.51 

Dole et al. proposed the charged residue model, where further droplet fissions are 

hypothesized until very small droplets containing a single ion each are produced.  Solvent 

 

Figure 2.2 Schematic of an ESI source. Adapted from ref. 57 
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evaporation from these droplets will lead to the formation of gas-phase ions.59  The 

evaporation model, on the other hand, was proposed by Iribarne and Thompson, and their 

theory suggests that below a droplet radius of 10 nm an ion can ‘evaporate’ from within 

the droplet.60  Low molecular weight analytes are thought to follow the ion evaporation 

model (IEM), whereas the charged residue model (CRM) applies to large globular 

species.51 An additional third mechanism named chain ejection model (CEM) has recently 

been proposed for disordered polymers.51 

 

 

51 

 

2.4 Matrix Assisted Laser Desorption (MALDI) and LDI 

 

The matrix-assisted laser desorption (MALDI) like the ESI is a soft ionization technique 

that uses laser energy to generate ions.61  The first step in the MALDI technique is the 

mixing of the sample with a suitable matrix material and its application on the metal plate. 

The matrix is a solution of molecules with strong optical absorption in the UV range of 

the laser, and they are often acidic, therefore, act as a proton source to encourage 

ionization of the analyte.62  

In the second step, a pulsed laser irradiates the sample, and this causes ablation and 

 

Fig.2.3 Schematic of the ion evaporation model (IEM) and charged residue 

model(CRM).  In the IEM a charged analyte leaves the droplet (“evaporates”) while 

in the CRM the solvent evaporates completely.  Ref.51 
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desorption of the sample and matrix material, and a hot plume is formed.  Eventually, the 

analyte molecules are ionized in the hot plume of ablated gases (e.g., deprotonation or 

protonation) and then accelerated into the mass spectrometer (Fig.2.4).63  

 

64 

Interestingly, the MALDI experiments presented in this thesis didn’t require the matrix 

because all the porphyrins used strongly absorbs in the UV region. MALDI technique 

without matrix is defined as LDI. 

 

 

 

2.5 Collision Induced Dissociation (CID) and  

      Higher Energy Collisional Dissociation (HCD) 

 

CID and HCD are techniques used to dissociate the gas-phase analyte using collisions 

with inert gases, therefore, probing structure and bond energies in molecular ions.65, 37   

CID is a more general term used to indicate collisional dissociation techniques with 

different mechanisms depending on the type of mass spectrometer. 

 

Fig.2.4 MALDI scheme. The Analyte and the matrix are irradiated by a laser pulse. A 

hot plume is formed, and the analyte is ionised.  Image taken from  Reference 64. 
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In an ion-trap instrument, CID is a resonant excitation technique that occurs inside the 

ion trap.  To reach a certain collision energy, ions are accelerated relatively slowly from 

their starting energy to the final energy, which can be controlled by the user.  During the 

excitation process, the precursor ions collide many times with the inert gas, and each 

collision can activate or cool it down.  The evolution of this equilibrium depends greatly 

on the ion kinetic energy.  If the ions are accelerated slowly compared to the unimolecular 

dissociation rate, the ions will distribute the excitation energy across most of the bonds, 

and the weakest bond breaks first.  Instead, if the ions are accelerated faster than their 

unimolecular dissociating rate, then the ions do not have time to equilibrate resulting in a 

richer fragmentation production where also stronger bonds are broken.66 

 

Compared to CID, HCD usually produces richer spectra with a similar fragmentation 

pattern of typical triple quadrupole spectrum. This technique is performed on Orbitrap 

mass spectrometers and is a non‐resonant activation technique.  HCD mode gives access 

to consecutive dissociation pathways, and ions do not experience a long series of 

equilibrating collisions with gas molecules; the energy is imparted to them very quickly 

with fewer collisions with both weak bonds and stronger bonds having a chance to break, 

depending on which ones are activated.66  

With both HCD and CID, the CE50 (collision energy necessary to obtain 50% overall 

fragmentation) can be derived from plotting the relative intensity of the parent and 

fragments ions versus the offset voltage. The relative intensity is calculated by dividing 

the intensity of the considered molecule by the sum of its intensity and all the fragments 

and parent ion intensities. 
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2.6 Laser Interfaced Mass Spectrometer (LIMS) 

 

All the action spectra presented here are obtained with the commercial Bruker AmaZon 

quadrupole ion-trap mass spectrometer custom modified to allow a laser beam to enter 

the ion trap as described in detail elsewhere.67, 68   A schematic of the instrument is shown 

in Fig.2.5 

  

The photons are produced by an Nd:YAG (Surelite) pumped OPO (Horizon) laser giving 

around 1 mJ of pulse energy across the range 215-345 nm. The laser pulse-width is t = 4-

6 ns, the laser pulse frequency is f = 10 Hz. The accumulation time chosen was 100 ms 

so that each ion cloud interacts with only one laser pulse. The laser beam is focused into 

the ion trap, as shown in Fig.2.6. 

 

Fig.2.5 Schematic of the AmaZon Bruker laser interfaced mass spectrometer. The ESI 

source is used to generate the gas-phase ions. The ions of interest are selected 

according to their m/z, isolated and injected into the quadrupole ion trap. The ion trap 

is modified so that the laser beam coming from an Nd-YAG pumped laser is directed 

into it and therefore can be absorbed by the trapped ions. 
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69 

As mentioned previously, the numbers of ions trapped are not high enough to directly 

measure the absorption spectrum and so an indirect method is used.  Firstly, with the laser 

turned off, the intensity of the isolated parent ion mass spectrum peak is measured, and 

then the intensity of the same ion is measured with the laser turned on.  When the photons 

are absorbed by the parent ion, the intensity of its mass spectrum signal will be lower 

because of its photodissociation.  It is possible to observe also the fragments produced if 

they have the same electrostatic polarity as the parent ion (Fig.2.7).  This procedure is 

repeated with different wavelengths to obtain a full action spectrum, with measurements 

usually taken with a wavelength step of 2-4 nm. 

 

Fig.2.6 Ion cloud interaction with the focused laser beam in the ion trap. The size of 

the cross section is not known and therefore can range from a small portion to the 

whole ion cloud. On the right a fluorescence imaging of an ion cloud (approximate 

dimensions 0.80mm X 1.6mm) taken from Ref.69 

 

Fig.2.7 Nickel octaethylporphyrin(NiOEP) mass spectra. Above with laser turned off 

and below with laser on at 366nm. The parent ion intensity (m/z 590.18) is lower with 

the laser on and many positively charged photofragment products are observed. Note 

the different y-axix scales to compare intensities. 
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The laser data are collected and analyzed as follows: 

1) The gas-phase parent ions (the molecule of interest) are generated using an ESI 

source and are isolated and trapped in the ion trap. 

2) A wavelength is chosen, and many mass spectra are collected both with the laser 

off and on. The averaged mass spectrum with the laser off is compared to the 

averaged mass spectrum collected with the laser on (Fig.2.7 is an example of both 

those averaged spectra). 

3) The procedure is repeated with the next wavelength (usually 2-4 nm step) until all 

the wavelength range of interest is covered. 

4) The data collected are analyzed by a home-built Phyton software developed as 

part of this thesis work (Appendix A2), and the photodepletion (PD), and 

photofragmentation (PF) yields are calculated according to equations 2.1 and 2.2  

and plotted against wavelength (nm) or wave energy (eV). 

 

The photodepletion (PD) and photofragmentation (PF) yields are calculated according to 

the following formulas, where Ioff  and Ion are the intensities of the parent ion signal 

(recorded by the mass spectrometer detector) respectively with the laser off and on, λ is 

the wavelength (nm) and P is the laser pulse energy (mJ). In the PF formula, Ifrag is the 

intensity of the fragment ion. 43, 70 

 

𝑃ℎ𝑜𝑡𝑜𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑦𝑖𝑒𝑙𝑑 =  
ln (

𝐼𝑜𝑓𝑓

𝐼𝑜𝑛
)

𝜆∙𝑃
                                                          Equation 2.1 

 

𝑃ℎ𝑜𝑡𝑜𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑦𝑖𝑒𝑙𝑑 =  

𝐼𝑓𝑟𝑎𝑔

𝐼𝑜𝑓𝑓

𝜆∙𝑃
                                                   Equation 2.2 

 

In both equations, the 𝜆 ∙ 𝑃 term is used to normalize with respect to the number of 

photons per laser pulse (NPh).  In the presented experiments, the laser pulse energy is 
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maintained at a constant value at all the wavelengths; however, this means that for a fixed 

laser pulse energy, laser pulses of longer wavelengths are made of more photons, and 

therefore the probability of interaction with the ions is higher.  The normalization is 

necessary to account for this fact, and it is related to the number of photons per pulse as 

shown by equation 2.3 below: 

 

𝜆 ∙ 𝑃 =   𝜆 ∙ (ℎ ∙  
𝑐

𝜆
∙  𝑁𝑃ℎ) = (ℎ ∙ 𝑐) ∙  𝑁𝑃ℎ                                       Equation 2.3 

 

In equation 2.1 the term “ ln (
𝐼𝑜𝑓𝑓

𝐼𝑜𝑛
) “ can also be substituted by the term “ 

𝐼𝑜𝑓𝑓−𝐼𝑜𝑛 

𝐼𝑜𝑓𝑓
“ 

giving the same profile of the spectrum. In this latter case the denominator 𝐼𝑜𝑓𝑓 is used 

to account for the variations of the signal during the wavelength scan due to the siring 

pump instability (device used to press the siring with the sample, providing a constant 

flow of solution to the ESI source), ESI instability, or unstable compound that loses signal 

over time.  The meaning of those two terms is that they both represent the loss of parent 

ion signal due to photodepletion (fragmentation processes and/or electron loss) caused by 

the absorption of the laser photons.  

In equation 2.2, the intensity of the fragmented product is normalized with the intensity 

of the parent ion with the laser off to account for the changes of its intensity during the 

experimental time frame of the wavelength scan.  

 

 

2.7 Photolysis apparatus 

 

Solutions of Verteporfyrin in pure Acetonitrile (MeCN) were photolyzed with home-built 

photolysis cells. The LED lights had their maximum peak emission at 310 nm and 356 

nm, respectively, in the two apparatus. A scheme of the apparatus is shown in Fig.2.8. 
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Because of the absence of  LED photolysis cells covering the visible range in our lab, the 

solution with the sample was also photolyzed with the OPO laser at the chosen 

wavelength of 689 nm, corresponding to the absorption peak used in PDT.  

 

 

 

 

 

 

 

 

 

Figure 2.8 Photolysis cell. A solution with the sample is inserted in a hole and a cap 

is added to block the light from the outside environment. In the hole there are a series 

of UV LEDs and the sample is kept there for a certain amount of time and then the 

photolysis products analysed using mass spectrometry. 
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Chapter 3: ZnTPP complexes with 

halides 

 

3.1 Introduction 

 

The first part of the project presented in this thesis involves gas-phase experiments of 

neutral metalloporphyrin (MP) aggregates with halides.  The negatively charged halides 

allow the use of the ESI technique, but also offer the possibility of forming 2:1 aggregates 

where the halide sits between the porphyrins (Fig.3.1).   Similarly to the case of the iodide 

ion-pyrimidine clusters studied previously in the Dessent group71 choosing a halide anion-

neutral MP complex allows us to study the near-threshold excitation (near vertical 

electron detachment energy) and to explore the free-electron neutral molecule interaction, 

thus providing a route for studying the electron capture properties of metalloporphyrins.  

In this chapter, the computational studies are presented and compared with the 

experimental results, which include HCD studies, photodepletion (PD), and 

photofragmentation (PF) spectra. 

 

 

Figure 3.1. 1:1 and 2:1 (bridged) complexes of ZnTPP and halide anions (X –). 
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3.2 Experimental methods  

 

Computation: 

Gaussian 0972 was used for all the calculations and frequency calculations were 

performed to test that the optimized structures correspond to a true minimum. 

First, the effect of different metals on the complexation energy with halide anions was 

tested on the simplified MP structure in Fig.2.3 optimized in this work:  all these 

computational calculations were performed using the functional UB3LYP73 and the 6-

31+g(d)74 basis set except with the iodine-containing complexes for witch the basis set 

dgdzvp was chosen according to a DFT comparative analysis done on iodine-containing 

compounds.75  For all the complexation energies determined, counterpoise correction was 

applied.  

The following optimization DFT calculations on ZnP ∙ X–  complexes (ZnP is the 

simplified structure with M=Zn, Fig.2.3, while ZnTPP is the porphyrin used in the 

experiments) were performed using the B3LYP hybrid functional.  Different basis sets 

were used on different sets of atoms: the s6-31g76 basis set was used for Zn, 6-31+g(d) 

for C, N, O, H, Br, Cl, F, and dgdzvp for I.75  This choice is in line with other 

computational studies on metalloporphyrins.77,78,79,80  These same settings were applied 

also with the ZnTPP conformational studies, VDEs calculations and with the (ZnP)2 ∙ X
-  

complexes. With these latter 2:1 complexes, the general Grimm’s dispersion correction 

DFT-D381 was used to account for the Van der Waals (dispersive) interactions between 

the two porphyrin rings.  For the calculation of the complexation energies, counterpoise 

correction was always applied and all the charges presented in this chapter were 

determined with the NBO analysis.82  

Experimental: 

ZnTPP (HPLC >=94%) and the halide containing salts (KBr, NaCl, NH4F, KI) were all 

purchased from Sigma Aldrich and used without further purification to prepare 10-5 M 

equimolar (1:1) solutions in MeCN that were electrosprayed and analyzed by mass 

spectrometry.   

All HCD experiments were performed on the Orbitrap Fusion Tribrid mass spectrometer 

(Thermo Fisher Scientific, Waltham, MA, USA) using the following parameters: ESI 
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negative ion voltage of 2500 V, capillary temperature of 275°C and 250°C  for the 1:1 

and 2:1 complexes respectively (however no significant difference was found in the range 

90-290°C), flow rate of 4μL/min, isolation mode ion trap, detector type Orbitrap. The 

HCD voltage was set to increase every minute and all the spectra acquired within the 

same minute were averaged and their data used to produce the HCD voltage vs. relative 

intensity plots (i.e. Fig.3.4). The voltage difference between the C-trap, trap lens and the 

ion-routing multipole (IRM) was 244 V at 100% HCD collision energy. 

The PD and PF spectra across the UV and visible range were collected using the laser 

interfaced AmaZon Bruker ion trap mass spectrometer with a laser pulse energy chosen 

to achieve a 20-30 %  intensity drop of the parent ion signal at its maximum absorption 

peak to avoid photodissociation caused by absorption of multiple photons; a phenomenon 

described in the power studies of R.A.Jockusch and H.Yao on fluorescein derived 

molecules.83  The parameters used with the AmaZon mass spectrometer were: ESI 

capillary 4400 V, End Plate Offset -600 V, capillary temperature of 120°C and flow rate 

of 4μL/min. The fragmentation time was set at 100 ms so that each ion packet was excited 

only by one laser shot.  Importantly, all the ZnTPP ∙ X-  complexes were isolated with a 

wide isolation window that included many isotopic peaks to stabilize the isolated ion. 

 

3.3 Effect of the metal on the complexation energies   

The first part of the project was to choose a neutral metalloporphyrin (with the metal in 

the +II oxidation state) and try to make its iodide aggregate in the gas-phase with the ESI 

technique.  Initial mass spectrometric investigations revealed that it was worth studying 

the metalloporphyrin clusters with all the halides. 

To guide the purchase of the metalloporphyrin, a series of theoretical calculations were 

done as described in section 3.2 using the simple structure in Fig.3.2 (this basic 

metalloporphyrin structure will be represented in this chapter with the symbol MP). 

 

Figure 3.2 Porphyrin structure used for the computational evaluation of the 

complexation energies of metalloporphyrins with halides. (M=Zn,Mg,Cu,Ni,Fe). 
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Complexation energies of both the MP ∙ Cl-  and MP ∙ I-  aggregates are shown in Tables 

3.1 and 3.2 respectively. 

 

Table 3.1 Complexation energies of the MP ∙ Cl – clusters, using the simplified MP 

structure in Fig.3.2, with M = Mg, Zn, Cu(II), Ni(II), Fe(II). 

MP 

(metalloporphyrin) 

Complexation energy 

(kcal/mol) 

Mg-MP -44.33 

Zn-MP -38.32 

Cu-MP -11.93 

Ni-MP +0.95 

Fe-MP -36.68 

  

Table 3.2 Complexation energies of the MP ∙ I –  cluster, using the simplified MP structure 

in Fig.3.2, with M = Mg, Zn, Cu(II), Ni(II), Fe(II). 

 

 

 

 

 

 

In all the complexes studied the halide anion binds directly with the metal at the center of 

the MP, which shows a partial positive charge in the uncomplexed MPs.  

For both the MP ∙ Cl– and  MP ∙ I–  clusters, the order in the stabilization energy is MgP 

< ZnP < FeP < CuP < NiP.  According to this data, the MgP has the most negative 

complexation energy, and therefore seems the most suitable for the formation of clusters 

with these two halide anions; NiP appears to be the worst choice with positive 

stabilization energy that suggests it is not possible to form NiP ∙ Cl- or NiP ∙ I- clusters. 

MP 

(metalloporphyrin) 

Complexation energy 

(kcal/mol) 

Mg-MP -29.47 

Zn-MP -26.65 

Cu-MP -5.06 

Ni-MP +3.67 

Fe-MP -25.90 
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This was confirmed by the experimental ESI/MS data with the NiOEP for which none of 

its aggregates with any of the halide anions (F-, Cl-, Br-, I-) was observed.  Furthermore, 

for all the MPs the stabilization energy of the MP ∙ Cl– is more negative than the MP ∙ I–, 

indicating a higher preference for ‘hard’ ligands.   

Even though the magnesium porphyrin (MgP) was predicted to bind most strongly with 

halide anions, for the experiments, we chose the zinc meso-tetraphenylporphyrin (ZnTPP) 

because it is considerably less expensive; ZnP was predicted to be the second-best choice 

among the metals studied to form complexes in the gas phase with chloride and iodide, 

and adding four additional phenyl groups in the meso position was predicted to have a 

negligible influence on the partial charge on the Zn (+1.292 in ZnTPP vs. +1.293 in ZnP), 

therefore its binding affinity with the halide was predicted to not be compromised. 

 

3.4 Theoretical complexation energies of ZnP with halides and 

comparison with HCD 

 

Optimization DFT calculations were performed on ZnP ∙ X– complexes with X = I, Br, 

Cl, F, and the complexation energies ware determined following the methods described 

in section 3.2.  The results are summarised in Table 3.3. and shows that these complexes 

have relatively high bonding energies (around 30 to 70% of a C-C single bond). 

Table 3.3 Theoretical complexation energies of ZnP ∙ X – complexes. 

Cluster 
Complexation energy 

(kcal/mol) 

ZnP ∙ I- -25.47 

ZnP ∙ Br- -31.99 

ZnP ∙ Cl- -38.11 

ZnP ∙ F- -61.11 
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The calculated gas-phase complexation energy order follows the condensed phase 

equilibrium constant trend determined in a study by Nappa and Valentine84 on the ZnTPP 

complexes with halides (Table 3.4). The same trend is found with zinc porphyrins 

anchored to nanocrystalline TiO2 by Meyer et.al (Table 3.5, Fig.3.3).85 In this latter case, 

there is no evidence of ZnTPP ∙ I – indicating the Keq is too small for the complex to be 

detected or that in this case the complex is not possible to form. 

 

Table 3.4 Equilibrium constants for the ZnTPP ∙ X – complexes, where X – is the ligand.84 

Ligand Solvent Keq   M
-1

 

F- CH2Cl2 >10,000 

Cl- CH2Cl2 290 ± 30 

Br- CH2Cl2 17 ± 2 

I- CH2Cl2 No evidence of complex formation 

 

 

Table 3.5 Equilibrium constants for the Zinc Porphyrin Sensitizers both in a fluid 

propylene carbonate solution and anchored to Nanocrystalline TIO2.
85 

 Keq   M
-1

 

ZnP-Cl 
Solution  

TiO2 

1670 ± 30 

780 ± 40 

ZnP-Br 
Solution  

TiO2 

96 ± 4 

70 ± 4 

ZnP-I 
Solution  

TiO2 

5.5 ± 0.7 

3.4 ± 0.1 
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This trend in the complexation energies is also confirmed with CID and HCD (Higher 

energy Collisional Dissociation) experiments presented below.  The Zn-halide bond 

strength increases with the increasing of the σ-donor character of the ligand (F – >Cl – >Br 

– >I–).   From the mass spectrometric studies, it was determined that the ZnTPP forms 1:1 

and 2:1 complexes with all the halides considered (F, Cl, Br, I).   These data are shown 

in Appendix A1.2. 

All the ZnTPP ∙ X– complexes were studied with the HCD, allowing a comparison of the 

complexation energies and revealing the fragmentation pathways. 

Fig.3.4 displays the results for the 2:1 complexes and Fig.3.5 for the 1:1 dimers 

complexes. As shown in Table 3.6 these complexes can be easily fragmented except for 

the fluorine 2:1 complex that shows a collision voltage above 102.  The dimer fluorine 

cluster, ZnTPP ∙ F-, is difficult to discuss since F- has a mass below the m/z 50 threshold; 

it is reasonable to predict that its CE50 falls above 11.3% that corresponds to the CE50  of 

(ZnTPP)2 ∙ F- ; this is supported by the fact all the other dimers have a higher CE50 than 

the respective 2:1 complexes.  The result is also in line with Nappa and Valentine’s 

research in which only the dimer ZnTPP ∙ F– was observed.84 

 

 

 

 

 

 

Figure 3.3 Zinc Porphyrin Sensitizers anchored to mesoporous nanocrystalline 

(anatase) TiO2 thin films (TiO2/ZnP).Immage taken from Reference 85. 
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For all these complexes, the fragmentation pathways were also studied.  The 

fragmentation mechanism of the (ZnTPP)2 ∙ X-, with X = I, Cl, Br, F, complexes is as 

follow (with the respective MS spectrum being displayed in appendix A1.3): 

 

(ZnTPP)2 ∙ X-  →   ZnTPP ∙ X-  + ZnTPP       (X = I, Br, Cl, F)                     Equation 3.1 

 

Regarding the dimers, only the ZnTPP ∙ Br– and ZnTPP ∙ I– HCD graphs are shown here 

because the lowest mass threshold of m/z 50 doesn’t allow the detection of the fragments 

chloride and fluoride and no other negatively charged fragments are formed; therefore 

with the ZnTPP ∙ Cl–  and ZnTPP ∙ F– complexes the  relative intensity can not be plotted 

since it is constantly 100%. 

The ZnTPP ∙ Br–  and ZnTPP ∙ I– complexes fragment according to the pathway: 

 

ZnTPP ∙ X-  →  ZnTPP + X-      (X = Br, I)                                                       Equation 3.2 

 

It seems possible that ZnTPP ∙ Cl– also follows this same simple mechanism since on 

increasing the HCD voltage, the precursor ion signal drops to zero and no ionic fragment 

is observed across the entire HCD voltage range. 

The fluorine 1:1 cluster follows more distinctive fragmentation pathways (Appendix 

A1.4); interestingly its negative fragmentation products are possible to see only using the 

HCD technique.  Using the CID technique, the behavior was like the ZnTPP ∙ Cl– 

complex, and it was not possible to see any fragmentation product even though the 

precursor ion signal decreases increasing the collision voltage. This can be explained 

considering that the CID is more an “equilibrating” collision dissociation technique so 

that only the Zn-F bond is broken. 
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Table 3.6 CE50 of for the bridged 2:1 and dimer 1:1 complexes in the gas-phase 

determined using the HCD technique. 

Parent cluster a CE50 % b E50 (Voltage) 

(ZnTPP)2 ∙ I- 0.50% 1.22 V 

(ZnTPP)2 ∙ Br- 2.24% 5.47 V 

(ZnTPP)2 ∙ Cl- 3.00% 7.32 V 

(ZnTPP)2 ∙ F- 11.33% 27.6 V 

ZnTPP ∙ I- 2.49% 6.07 V 

ZnTPP∙ Br- 2.60% 6.34 V 

a  CE50% is the collision energy necessary to obtain 50% overall fragmentation, expressed as a percentage 

with respect to the highest offset available on the Orbitrap Fusion Tribrid mass spectrometer. 
b  E50 is the collision voltage necessary to obtain 50% overall fragmentation. 
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Figure 3.4 HCD plots of the 2:1 complexes: (a) (ZnTPP)2  ∙ I
-, (b) (ZnTPP)2  ∙ Br-, 

(c)(ZnTPP)2  ∙ Cl-, (d) (ZnTPP)2  ∙ F
-.  The relative intensity of the signals of the parent 

ions and fragments are plotted against the percentage of collision voltage relative to 

the highest offset available on the Orbitrap Fusion Tribrid mass spectrometer. Note 

that the x-axes are set with different scales. 
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3.5 Optimised structures of Zn porphyrins and halide complexes  

 

Computationally, the simplified ZnP ∙ X– structures were studied instead of ZnTPP ∙ X– 

because the latter are computationally too demanding.  

From the optimized structure (e.g., in Fig.3.6 and all the structures in Appendix A1.5) 

and Table 3.7, it can be noticed that the bond with the halides pulls the zinc out of the 

plane of the porphyrin ring, and this distortion does not change significantly across 

different halides.  As shown in Table 3.8, the major difference observed with different 

halides is the amount of charge transferred from the halide to the metal centre and to the 

remaining organic part of the porphyrin ring. 
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Figure 3.5 HCD plots of the dimers: (a) ZnTPP  ∙ I
- , (b) ZnTPP  ∙ Br, (c) ZnTPP  ∙ Cl-  
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The optimized sandwich ZnP complexes (2:1) with all the halides (Fig.3.7 and Appendix 

A1.5) reveal a sloped structure, which appears to arise due to the stabilization from the 

marginal π- π stacking interaction; the calculated stabilization energy derived from the 

interaction of two ZnP molecules is  25 kcal/mol, and  its value is high enough to 

contribute significantly to the overall optimized structure.  These 2:1 structures were 

optimized using the split basis sets with a dispersion correction to account for the Van der 

Waals interactions between the two porphyrin rings as described in Section 3.2. The 

structural data of these optimized structures are shown in Table 3.9.  The energy required 

to break the bond between the halide and one of the ZnP molecule was determined, and 

it is shown to be lower than the 1:1 complexes in accordance with the HCD experimental 

results, in which the 2:1 complexes dissociate at lower voltages compared to their 

respective 1:1 complex (Table 3.10).  

 

Finally, the ZnTPP molecule was optimized to determine the ground state conformation 

of the phenyl groups (Fig.3.8).  All the phenyl groups are slightly bent with a dihedral 

angle of 109.2° to minimize the sterical interactions (Fig.3.9), however, two opposite 

phenyls can be in a “parallel” or “cross” position (Fig.3.8.b). These positions were 

determined not to influence the stability of the molecule, therefore all these conformers 

appear to be equally stable. 

 

 

 

 

Figure 3.6 DFT optimised structrures: a) top and b) side view of ZnP∙Cl- complex. 

c)Side view of the only ZnP. The zinc atom is puled out of the porphyrin ring due to 

the bond with chloride. 
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Figure 3.7 DFT optimised structure of the (ZnP)2∙Cl- complex. a)Side view, b) top view. 

 

 

Figure 3.8 DFT optimization with different position of the phenyls groups in ZnTPP. a) 

front view of the conformer with all the opposite phenyls parallels (//). b) lateral view of 

the “parallel”and “cross”position of the phenyls. All the conformers are equally stable. 

 

Figure 3.9 The phenyl group in the slightly bent conformation minimase the sterical 

interactions(c). a) Dihedral angle 0°, b) dihedral angle 90° and c)minimal energy 

structure with dihedral angle of 109.2° where the hydrogens shown are at the 

maximum distance from each other. 
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Table 3.7. Partial charges on Zinc, halides, and nitrogens for the 1:1 ZnP ∙ X –complexes. 

In addition, the zinc-halide and zinc-nitrogen bond length are reported. The last column 

reports the bond angle between the halide, zinc, and nitrogen, which reflects the 

displacement of the zinc from the porphyrin ring plan. 

Complex 
Charge 

on Zn 

Charge on 

the halide 

Charge on 

nitrogens 

Zn-halide 

bond 

length(A) 

Zn-N 

bond 

length(A) 

N-Zn-halide 

bond 

angle(°) 

ZnP ∙ I- 1.057 -0.632 -0.653 2.79 2.13 104.78 

ZnP ∙ Cl- 1.107 -0.678 -0.606 2.52 2.14 105.17 

ZnP ∙ Br- 1.143 -0.709 -0.599 2.35 2.14 105.66 

ZnP ∙ F- 1.308 -0.825 -0.594 1.9 2.15 105.97 

ZnP only 1.293 X -0.653 X 2.06 X 

 

 

 

 

Table 3.8. The amount of charge lost from the halide anion and transferred to the zinc 

atom and the organic part of the porphyrin. The negative sign indicates a decrease in 

electron density while the positive sign an increasing electron density. 

Complex 

Charge change 

on halide 

Charge change 

on zinc 

Charge change 

on the organic 

part 

ZnP ∙ I- -0.370 +0.236 +0.134 

ZnP ∙ Cl- -0.322 +0.186 +0.136 

ZnP ∙ Br- -0.291 +0.150 +0.143 

ZnP ∙ F- -0.175 -0.015 +0.190 
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Table 3.9. Theoretical structural data of the (ZnP)2 ∙ X – complexes, including halide-Zn 

bond length and Zn-halide-Zn bond angle. The last row shows the distance between two 

ZnP molecules planes in a (ZnP)2  dimer. 

Cluster 
Zn-halide bond length 

(Å) 

Zn-halide-Zn angle 

(°) 

(ZnP)2 ∙ I
- 2.84 124.0 

(ZnP)2  ∙ Br- 2.59 127.9 

(ZnP)2  ∙ Cl- 2.43 131.6 

(ZnP)2  ∙ F
- 1.97 148.7 

(ZnP)2  dimer only Interplanar distance = 3.16 Å 

 

 

Table 3.10. Theoretical complexation energies of 2:1 ZnP complexes with halides 

corresponding to the reaction: (ZnP)2 ∙ X −  →  ZnP ∙ X −   + ZnP  . The last row shows the 

stabilisation energy between two ZnP molecules.   

Cluster 
Complexation energy 

(Kcal/mol) 

(ZnP)2 ∙ I
- -21.95 

(ZnP)2  ∙ Br- -23.94 

(ZnP)2  ∙ Cl- -28.44 

(ZnP)2  ∙ F
- -32.73 

(ZnP)2  dimer only -24.97 

 

 

 

3.6 Photodepletion, photofragmentation and VDEs 

 

In the experiments presented in this chapter, a negatively charged complex (ZnTPP  ∙ X- 

) is predicted to lose an electron in the presence of photons of adequate energy 

(photodetachment) and therefore become neutral. The geometry of an ion may be 

different from the corresponding neutral molecule.  If the neutral is in the same geometry 
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as the anion, then a vertical ionization energy (or vertical detachment energy, VDE) can 

be measured. In contrast, in the case of the adiabatic ionization energy, the neutral is in 

its lowest energy, relaxed geometry.  This is illustrated in fig.3.10. 

 

The VDEs of the ZnP complexes with halides were calculated theoretically, and the 

results summarized in table 3.11. To calculate the VDEs, the energy of the gas phase 

ionized neutral molecule is subtracted to the energy of negatively charged complex fixing 

its optimized geometry(single point calculation). The VDE was also calculated for the 

ZnP molecule, and as predicted, the bond with the halide strongly lowers its value 

compared to the uncomplexed ZnP, making it accessible to the UV laser range. The VDE 

was also calculated for the halide anion alone, and its value compared with the electron 

affinity of the halide neutral atom. The calculated VDE of the halide anions was found to 

be in good agreement with the tabulated EA.86  

 

 

 

 

 

 

 

Figure 3.10 Schematic to illustrate the difference between a vertical and adiabatic 

ionzation energy in case of an anion. 
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Table 3.11  VDE of the ZnP ∙ X- complexes compared to the VDE of the respective halide 

anion. The last row shows the uncomplexed ZnP molecule VDE. The third column 

represents the electron affinity of the halide neutral atoms (taken from Ref.83 and found 

to be equal to the computational calculated VDE). 

Complex VDE 

(eV) 

EA halides 

(eV) 

ZnP ∙ I- 3.3 3.1 

ZnP ∙ Br- 3.2 3.4 

ZnP ∙ Cl- 3.3 3.6 

ZnP ∙ F- 3.2 3.3 

ZnP 6.8  

 

After determining that the VDEs of all the ZnP ∙ X– complexes were within the UV range 

accessible to the OPO laser, the PD and PF spectra were measured.  The solutions used 

were all 1:1 of 10-5M ZnTPP and the respective halide salt in pure acetonitrile. 

The experiments were difficult to perform due to the fragmentation of the complexes 

during the isolation process in the instrument.  Isolation was found to cause one order of 

magnitude drop in the precursor ion signal, suggesting that these complexes are “fragile” 

species.87   Therefore, all the isotopic peaks of a given complex were isolated to increase 

the isolation width and therefore stabilize the species and minimize the drop in the signal. 

Even with this wide isolation window, the experiments were challenging due to the low 

precursor ion signal.  The ZnTPP ∙ I– was found to be the complex with the weakest bond 

between the MP and iodide, and experimentally it was also observed to be the most 

unstable. The signal recorded after a wide isolation window was still too low to obtain 

reliable data, and therefore is not presented here. 

From the data collected all of the complexes follow the same two photofragmentation 

mechanisms; in the first mechanism, one electron is transferred from the halide to the 

porphyrin leading to a radical ZnTPP•  with loss of a neutral halide atom (Equation 3.3), 

while in the second mechanism, the neutral ZnTPP and halide anion are released as 

observed in the HCD experiments (Equation 3.4). 
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ZnTPP ∙ X–     →    ZnTPP• – + X                                                                      Equation 3.3 

ZnTPP ∙ X–   →    ZnTPP     + X –                                                                                                       Equation 3.4 

Fig.3.11 shows the solution phase UV-Vis spectrum of ZnTPP in acetonitrile where both 

the Soret and the Q-bands are visible. The gas phase spectra of the ZnTPP ∙ X–  complexes 

have broader peaks, and they are shifted by up to 120 nm compared to their solution phase 

spectrum.84  Importantly, the Q-bands appear to be missing in PD and PF spectra; this can 

be attributed to a lifetime of the excited species that is longer than the experimental 

window or the photofragmentation and photodetachment processes require more laser 

power to be seen (absorption of multiple photons83).88  The fragmentation time in our 

experiment is 100 ms, probably well above the lifetime of excited species: for example 

the isolated ferric heme in the gas-phase was found to have lifetime decays in the order 

of few ms to less than 1 ms89, therefore the first explanation is less likely to account for 

the lack of observed Q-bands.   

 

 

Figure 3.11 UV-Vis spectra of a solution of ZnTPP in acetonitrile. Above spectra in 

the range 380-620 nm and below Q-bands zoomed in. 
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3.7   A study on the effect of  trapping parameters on the PD yield 

 

Quadrupole ion trap operation is concerned with the criteria that govern the stability (and 

instability) of the trajectory of an ion, that is, the experimental conditions that determine 

whether an ion is stored within the device or is ejected from the device.90 

The two dimensionless Mathieus’ parameters, au and qu, are used to define the 

confinement of ions in quadrupole devices and are strongly related to the m/z range 

chosen in the mass spectrometer.91  During these experiments with the ZnTPP ∙ X–   

complexes, it was observed that the amount of photodepletion depends significantly on 

the mass cut off chosen. Because of that, a low cut off of 77m/z and 120m/z was used 

only to determine respectively the Br- and I- photofragmentation spectra and a higher cut 

off (500-600m/z) was used for the remaining photofragments and PD spectra. 

The dependence of PD on the m/z cut off value is reported in Fig.3.12, which shows that 

for the ZnPP∙Br– complex a low 77 m/z cut off leads to a substantially reduced PD yield. 

A possible explanation of this phenomenon is that with a lower cut off, the ion packet is 

more diffuse, and so the overlap with the laser beam is reduced.   

 

 

Figure 3.12 PD yield vs. the cut off value (m/z) determined for the ZnPP∙Br- 

complex at 318 nm . 
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3.8 ZnTPP ∙ Br–  Photodepletion and Photofragmentation spectra 

 

ESI generated ZnTPP ∙ Br–  complexes were isolated and the PD and PF spectra obtained. 

In Fig.3.13 the averaged MS spectra recorded with laser OFF and ON at 318 nm are 

displayed; these clearly show the reduction of the parent ion intensity and the production 

of two photofragments, namely Br– and the radical anion ZnTPP• –. These were the only 

two photofragments observed across the wavelength range used and resulted from the 

photofragmentation channels shown in Equations 3.5 and 3.6. 

ZnTPP ∙ Br– → ZnTPP + Br –                                                                              Equation 3.5 

ZnTPP ∙ Br– → ZnTPP• – + Br                                                                        Equation 3.6 

Equation 3.5 represents the loss of bromide caused by the bond dissociation between Zn 

and Br– and corresponds to the same mechanism observed in the HCD study, while 

Equation 3.6 represents an electron transfer process in which an electron is transferred 

from Br– to ZnTPP producing the radical anion ZnTPP• –. 

 

Figure 3.13 Photofragment laser off and laser on mass spectrum of  ZnTPP ∙ Br– , 

excited at photodepletion maxima of 318 nm. Note different y-axis scales. 
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Fig.3.14 shows the PD and PF spectra; the Soret band of the gas-phase ZnTPP ∙ Br– 

complex is around 320 nm.  This is blue-shifted by around 110 nm with respect to the 

solution absorption spectra in benzene.84   In addition, the Soret band width is > 100 nm, 

well above the typical Soret band widths observed in solution.  A new feature at around 

430 nm can be observed in both PD and PF spectra;  considering the substantial blue-shift 

of the Soret band, this feature may be attributed to a Q band, however, considering its 

proximity to the Soret band this may also be a resolved feature of the latter.  The onset of 

the Soret band is at around 400 nm,  close to the computational calculated VDE.  The PF 

and PD spectra have similar profiles, indicating that the photofragmentation production 

is enhanced at the Soret band; this profile similarity is not always observed with other 

gas-phase molecules, as demonstrated in a previous study by Dessent et al.92    

 

Figure 3.14 a) Gas-phase UV absorption (photodepletion) spectra of ZnTPP ∙ Br–  (b 

and c) Photofragment production spectra of the photofragments, ZnTPP•– and Br–   

respectively. The solid line is a five-point adjacent average of the data points. The 

laser pulse energy was set at 0.2 mJ in the UV region and 0.6 mJ in the visible (400-

600 nm). VDE 3.2 eV corresponding to 387 nm. 
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3.9 ZnTPP ∙ Cl– Photodepletion and Photofragmentation spectra 

 

ESI generated ZnTPP ∙ Cl–  complexes were isolated and the PD and PF spectra obtained. 

In Fig.3.15 the averaged MS spectra recorded with laser OFF and ON at 310 nm are 

displayed; these show the production of only the photofragment radical anion ZnTPP•–. 

Chloride can not be detected because its mass is below the m/z 50 cut-off of the AmaZon 

mass spectrometer.  However, it is very likely that also the loss of the Cl– occurs since 

this reaction can also be observed in both ZnTPP ∙ Br–  and ZnTPP ∙ I–  (Fig.3.13 and 3.19). 

Therefore, because of the low mass of the chloride ion, only the electron transfer reaction 

can be observed (Equation 3.7): 

ZnTPP ∙ Cl– → ZnTPP• – + Cl                                                                          Equation 3.7 

 

Figure 3.15 Photofragment laser off and laser on mass spectrum of  ZnTPP ∙ Cl– , 

excited at photodepletion maxima of 310 nm. Note the different y-axis scales. 
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Fig.3.16 shows the PD and PF spectra; the Soret band of the gas-phase ZnTPP ∙ Cl– 

complex is around 310 nm.  This is blue-shifted by around 120 nm with respect to the 

solution absorption spectra in benzene.84   The Soret band width is around 65 nm and no 

additional features can be observed.  The onset of the Soret band is at around 350 nm, 

which is 0.2 eV more than the calculated VDE, however, this can be considered within 

the computation error typical of the functional B3LYP.93  The PF spectrum is 

characterized by a poor resolution, however, it shows that the photofragmentation 

production is clearly increased around the Soret band.  

 

 

 

 

Figure 3.16 a) Gas-phase UV absorption (photodepletion) spectra of ZnTPP ∙ Cl-  (b 

Photofragment production spectra of the photofragment ZnTPP•–. The solid line is a 

four-point adjacent average of the data points. The laser pulse energy was set at 0.05 

mJ.  
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3.10 ZnTPP ∙ F–  Photodepletion and Photofragmentation spectra 

 

ESI generated ZnTPP ∙ F–  complexes were isolated and the PD and PF spectra obtained. 

In Fig.3.17 the averaged MS spectra recorded with laser OFF and ON at 318 nm are 

displayed; these clearly show the production of two photofragments derived from an 

electron transfer process, namely the radical anion ZnTPP•– and its derived species 

resulted from the loss of a benzene molecule from the porphyrin (ZnTPP – C6H6)•
–.   

These were the only two photofragments observed across the wavelength range used and 

resulted from the photofragmentation channels shown in Equations 3.8 and 3.9: 

ZnTPP ∙ F– → ZnTPP• – + F                                                                            Equation 3.8 

ZnTPP ∙ F– → (ZnTPP – C6H6) •
– + F + C6H6                                                                         Equation 3.9 

The fluorine anion can not be detected because its mass is below the 50m/z cut-off of the 

AmaZon mass spectrometer, but as discussed in Section 3.9 it is likely to occur.  

 

 

 

 

Figure 3.17 Photofragment laser off and laser on mass spectrum of  ZnTPP ∙ F– , 

excitednear photodepletion maxima at 318 nm.  
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Fig.3.18 shows the PD and PF spectra; the Soret band of the gas-phase ZnTPP ∙ F– 

complex is around 316 nm.  This is blue-shifted by around 110 nm with respect to the 

solution absorption spectrum in benzene.84  The laser pulse energy was probably too high, 

in these experiments, leading to multi-photon dissociation; the fact that the baseline line 

is shifted above zero suggests that this is the case.  Although it was possible to reduce the 

laser power, this was difficult for acquiring the spectrum due to low precursor ion 

intensity.  The Soret band width is around 60 nm and resolved features are difficult to 

observe in the PD spectrum, however, both the PF spectra show three distinct defined 

bands in contrast with all the previous spectra.  The onset of the Soret band appears to be 

at around 335 nm, which is 0.5 eV more than the calculated VDE, however because of 

the saturated spectrum, the onset of the Soret band is not well defined and as shown in 

both PF spectra there seems to be an increased absorption at around 350 nm.   

 

Figure 3.18 a) Gas-phase UV absorption (photodepletion) spectra of ZnTPP ∙ F–  (b 

and c) Photofragment production spectra of the photofragment ZnTPP•– and (ZnTPP 

– C6H6) • 
– , respectively.  The solid line is a five-point adjacent average of the data 

points. The laser pulse energy was set at 0.3 mJ.  
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3.11 ZnTPP ∙ I–  Photofragmentation mechanism 

 

ESI generated ZnTPP ∙ I–  complexes were isolated, however because of the too low 

parent ion intensity the PD and PF spectra were too noisy lacking identifiable peaks, 

therefore are not presented here.  In Fig.3.19 the averaged MS spectra recorded with laser 

OFF and ON at 305 nm are displayed;  these clearly show the production of two 

photofragments, namely I– and the radical anion ZnTPP•–.  These were the only two 

photofragments observed across the wavelength range used and resulted from the photo-

fragmentation channels shown in Equations 3.10 and 3.11: 

ZnTPP ∙ I–    →    ZnTPP      +  I–                                                                     Equation 3.10 

ZnTPP ∙ I–     →   ZnTPP• –  +  I                                                                       Equation 3.11 

Equation 3.10 shows that the same mechanism observed in the HCD experiment is in 

common with the photodissociation.  However, according to Equation 3.11 also the 

electron transfer reaction occurs, resulting in the production of a neutral iodine atom and 

the radical anion ZnTPP•–.   

 

Figure 3.19 Photofragment laser off and laser on mass spectrum of  ZnTPP ∙ I– , 

excited at 305 nm.   
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It can be noticed that immediately after isolation of the parent ion ZnTPP ∙ I– a small 

signal at m/z 126.9 can be detected.  This is derived from the loss of iodide during the 

isolation step due to the low stability of this complex.  The intensity of this signal 

increased more than 5 times when the laser was turned on, indicating that this is indeed 

also a photofragmentation product. 

 

 

3.12 Conclusions  

 

In summary, this is the first time clusters of porphyrins or metalloporphyrins have been 

studied as complexes with anions in the gas-phase.  These spectra allow for a clearer view 

of the fundamental absorption properties, away from the effects of the bulk solvent.  

This work has proved that the ZnTPP porphyrin forms not only the 1:1 complex but also 

a 2:1 complex in the gas-phase and provides the complexation energies together with 

collision induced fragmentation mechanism.  

In these complexes, the metal center charge changes remarkably with different halides, 

and with fluorine (the most electronegative), more charge is transferred onto the 

porphyrin ring (table 3.8). This is in contrast with a hypothesis reported by Nappa and 

Valentine stating that the charge on the metal remains relatively constant while increasing 

amounts of negative charge are transferred to porphyrin ring in the order F < Cl < Br < I 

and this was believed to give an explanation to the redshift of the visible absorption 

spectrum upon complexation.84 

The laser experiments with the Amazon were challenging due to the instability upon 

isolation of the complexes, however adopting a wider isolation window and optimizing 

the instrumental parameters, was sufficient to obtain the PD and PF spectra of all the 1:1 

complexes except the iodine one that was the most “fragile”. 

All the mass spectra collected with the laser on show two photofragmentation pathways 

in common (Equations 3.12 and 3.13): 

 

ZnTPP ∙ X– → ZnTPP + X–        (X = I, Br)                                                      Equation 3.12 
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ZnTPP ∙ X– → ZnTPP• – + X     (X = I, Br, Cl, F)                                         Equation 3.13 

 

The photodissociation mechanism in Equation 3.12 can be observed only with the ZnTPP 

∙ I–  and ZnTPP ∙ Br– complexes because I and Br are the only halides with a molecular 

mass higher than the instrument lowest cut-off.  This mechanism is in common with all 

the collision-induced dissociation studies, and it is reasonable to think that also the 

chloride and fluoride complexes follow this same photodissociation mechanism as well.  

The mechanism in Equation 3.13 involves the transfer of one electron from the halide to 

the zinc porphyrin and was observed with all the complexes.  

ZnTPP ∙ F– is the only complex that shows an additional photofragmentation pathway 

that involves an electron transfer to the porphyrin and an additional loss of a benzene ring. 

This is probably due to the striking difference in the nature and strength of the fluorine 

bond.  

A common blue shift of the Soret band is observed. This is largely blue-shifted between 

110 to 120 nm indicating a strong stabilization of the excited state by the solvent 

molecules (in comparison, Fe(III) heme in the gas phase is blue-shifted by only 34 nm 

compared to the solution phase94,95); another possibility is that the absorption spectrum 

of these complexes is strongly solvent dependent with variations in their peak positions 

of around 100 nm between different solvents like in the case of the Nile blue molecule96, 

however, this appears unlikely considering that the Soret band of these complexes was 

shifted of only around 4 nm in CH2Cl2 compared to benzene solutions.84  The gas-phase 

Soret band is shown in table 3.12, where it is compared to the solution phase data obtained 

in benzene.84  In the solution phase the Soret band is at decreasing wavelength from Br 

to F;  this trend is not observed in the gas-phase, because the broad and less resolved 

peaks in the action spectra do not allow sensitivity of few nm, furthermore, it can be 

possible that this trend is strongly influenced by the interaction with the solvent. 
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Table 3.12  Soret peaks in the gas-phase and solution phase of  ZnTPP ∙ X– complexes. 

The solution phase data are obtained in benzene from Nappa and Valentine’s article.84 

The last row shows the Soret peak of the ZnTPP in benzene(b)84 and MeCN. 

Complex Gas-phase Solution phase 

ZnTPP ∙ I– na na 

ZnTPP ∙ Br– 318nm 438nm 

ZnTPP ∙ Cl– 310nm 436nm 

ZnTPP ∙ F– 318nm 431nm 

ZnTPP na 
422nm (b) 

421nm (MeCN) 
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Chapter 4: ZnTPP and NiOEP           

                  radicals 
 

 

4.1 Introduction 

 

Porphyrins and metalloporphyrins are known for their radical-stabilizing abilities due to 

the extended π-system.97  They can easily be oxidised98, 99 producing positive radical 

cations.  In addition, radical porphyrin cations have also been produced by 

photodissociation100, fast atom bombardment101, and ESI.102, 103   

The isolation of stable radical anions is more challenging because porphyrins are usually 

electron-rich so that the radical anions are very easily oxidized.97, 104 

Here we demonstrate that negative radical anions can be successfully produced and 

observed with the LDI technique coupled with mass spectrometry.  The species analyzed 

in this chapter are zinc tetraphenyl porphyrin (Zn(II)TPP), and nickel octaethyl porphyrin 

(Ni(II)OEP) (Fig.4.1), and their action spectra and CID fragmentation and 

photofragmentation pathways are presented.  

 

 

Figure 4.1  Schematic of  the a) ZnTPP and b) NiOEP porphyrins. 
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4.2  Review of previous mass spectrometric studies on gas-phase 

TPP and OEP porphyrins and metalloporphyrins.   

 

TPP type porphyrins 

Gas-phase tetraphenylporphyrins (TPP) were previously studied by other authors using 

mass spectrometry, both as metallated and free bases: gas-phase metallated TPP were 

obtained as positive cations ([M(III)TPP]+) with different techniques such as laser 

desorption and ionization (LDI), electron impact (EI) and electrospray (ESI) and only 

recently their fragmentation products were studied by CID showing similar fragmentation 

patterns via loss of benzene, two benzenes, two phenyl groups, and hydrogen 

molecules.105   Protonated and radical cations of M(II)TPP were formed previously by 

fast atom bombardment (FAB)106 while ESI was shown to produce the protonated species 

of a zinc TPP porphyrin107 and the radical cations of various M(II)TPP species.102  Gas-

phase TPP substituted free bases were obtained as protonated species using ESI and their 

fragmentation pattern studied by CID.107  

In this chapter, ESI generated M(II)TPP radical cations will be studied for the first time 

by CID, and these results will be compared with the HCD fragmentation technique. In 

addition, the PD and PF spectra are presented, constituting the first example of gas-phase 

porphyrin radical absorption spectra. 

 

OEP type porphyrins 

Gas-phase metallated neutral octaethylporphyrins (M(II)OEP) were obtained in previous 

studies as radical cations using ESI, and their oxidation potential correlated to the 

effectiveness of this ionization source.102  In addition, octaethylporphyrin (OEP) and its 

iron(III) complex ([Fe(III)TPP]+) were studied by EID and EI, showing different 

fragmentation pathways.108  The fragmentation products of both protonated species and 

radical cations of ZnOEP, Cu(II)OEP, and free base OEP were studied by both low and 

high energy collision CID.101  
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Here, Ni(II)OEP  is produced with the ESI technique and studied by CID and HCD, and 

its PD and PF spectra presented.  

As shown by this brief literature review, radical porphyrin anions are very rarely observed 

and studied, however, here we show that they can be easily obtained using the MALDI 

technique without matrix (LDI).  Their PD and PF spectra were not obtained because ESI 

was the only source available in our laser interfaced mass spectrometer (AmaZon mass 

spectrometer). 

 

4.3 Methods  

Higher-energy collisional dissociation (HCD) and CID were performed using an 

Orbitrap™ Fusion Tribrid mass spectrometer (Thermo Fisher Scientific, Waltham, MA, 

U.S.A.) as described previously.43, 109  The instrument was operated at 4μL/min with the 

following parameters: spray voltage, 3500 V; ion-transfer tube temperature, 275 °C; 

vaporizer temperature, 20 °C; isolation mode quadrupole and detector Orbitrap; RF lens 

80%.  The HCD and CID collisional energy were varied between 0 and 100%, and the 

intensity of the ion in percentage was calculated. 

The following CID studies were obtained with AmaZon SL dual funnel electrospray 

ionization quadrupole ion-trap (ESI-QIT) mass spectrometer (Bruker Daltonics Inc., 

Billerica, MA, USA). This technique was performed by applying an excitation AC 

voltage to the end caps of the trap to induce collisions of the trapped ions with the He 

buffer gas, as also described in detail previously.92  

Solutions of ZnTPP and NiOEP (1 × 10–5 M) in MeCN were introduced to the mass 

spectrometers.  ZnTPP and NiOEP (HPLC >= 94%) were purchased from Sigma-Aldrich 

and used without purification.  

Gas-phase ZnTPP and NiOEP radical anions and cations were also studied with the 

Bruker SolariX XR 9.4 T (FT‐ICR) using the MALDI source in positive and negative ion 

mode.  The data were acquired using flexcontrol software version 3.0 (Bruker Daltonics).  

Each spot was analyzed in reflector mode using a smartbeam™Nd:YAG laser (355 nm). 

Spectra were acquired using the solariXcontrol software and processed with DataAnalysis 

version 4.2 (Bruker Daltonics).  



74 
 

The ZnTPP•+ and NiOEP•+ radical cations, PD and PF spectra were obtained using the 

laser-interfaced AmaZon mass spectrometer as described in Section 2.6. 

 

4.4 [ZnTPP]∙+ radical cation CID and HCD 

 

An intense singly charged radical cation [ZnTPP]•+ (m/z 676.16) was observed upon 

ESI/MS of ZnTPP.  The major product ion produced by CID arises from losses of a C6H5∙ 

radical (60%) followed by the loss of a C6H6 molecule (30%).  Minor fragments arise 

from the loss of one and two hydrogen atoms.  At higher collision voltages, the loss of 

two C6H5∙ is observed (8%), probably through a rearrangement to a more stable biphenyl 

molecule (Fig.4.2). 

When the fragmentation is studied with higher-energy collisional dissociation (HCD) new 

fragments are observed.  With this technique, the most abundant fragments produced are 

derived from losses of even species (H2, C6H6, and biphenyl) in contrast with the CID 

results.  With the HCD technique, up to 2 hydrogen molecules are lost and species that 

are derived from the loss of a benzene molecule together with hydrogen atoms or 

molecules are also observed (Fig.4.3).  The [ZnTPP] •– radical anion cannot be observed 

with the ESI source. 
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Figure 4.2  [ZnTPP] •+ CID: a) MS spectra at 45% CID voltage  b) relative intensity 

of the precursor molecule and fragments versus collision voltage. 
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4.5 LDI Dissociation of the [ZnTPP] •
+ and [ZnTPP] •

–   

         radicals 

 

Using the MALDI technique without a matrix (LDI) on ZnTPP droplets deposited on 

ground steel target plates, and a laser wavelength of 355 nm, it was possible to observe 

both the parent cation and anion radical together with their fragmentation products.  In 

positive mode, the fragmentation is more effective than in negative mode.  The same 

fragmentation products are observed but with opposite charges, suggesting that similar 
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Figure 4.3  [ZnTPP] •+  HCD: a) MS spectra at 45% HCD voltage  b) relative intensity 

of the precursor molecule and fragments versus collision voltage. 
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fragmentation pathways occur but with a different probability (Fig.4.4).  Many of the 

species observed in the LDI positive mode were also observed in the HCD dissociation. 
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Figure 4.4  ZnTPP MALDI MS spectra: a) positive ion mode  b) negative ion mode. 
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4.6 [ZnTPP] •
+ photodepletion and photodissociation spectra 

 

The gas-phase ZnTPP radical cation was produced using the ESI source and its 

photodepletion and photofragmentation spectra obtained, as described in Chapter 2.6.  

The photofragmentation channels of [ZnTPP] •+ are similar to the HCD products, with 

the major photofragments being derived from the loss of one benzene (598 m/z) and one 

biphenyl molecule (522m/z) as shown in Fig.4.5.  

 

 

In Fig.4.6 the PD is shown together with the photofragmentation yield of the two major 

photo-products.  The PD spectrum features a broad Soret band peaking at 396 nm with 

an additional resolved shoulder peak at 380 nm; this shoulder peak can be attributed to a 

 

Figure 4.5 Photofragment laser off (top) and laser on (bottom) mass spectrum of  

[ZnTPP] •+ , excited near the photodepletion maxima at 396 nm.  
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partially resolved vibronic structure,41 which appears better resolved on the 

photofragmetation spectra. 

The Soret band is blue-shifted by about 25 nm compared to the neutral ZnTPP spectrum 

in MeCN (Fig. 3.11);  it is expected that the Soret band of the radical cation is blue-shifted 

compared to the theoretical gas-phase spectrum of its neutral species due to a higher 

ionization potential, and this together with the solvent contribution may explain the 

observed shift.  The difference between the first and second ionization potential of ZnTPP 

is small (IP1 = 6.97eV and IP2 = 7.05eV)110 and this may account for why the blue-shift 

is relatively small compared to the examples in the previous chapter. 

 

 

Figure 4.6 a) Gas-phase UV absorption (photodepletion) spectra of [ZnTPP]•+ (b and 

c) Photofragment production spectra of the photofragment m/z 598.06 (ZnTPP-C6H6) 

•+ and m/z 522.02 (ZnTPP – C12H10)•
+, respectively.  The solid line is a five-point 

adjacent average of the data points. The laser pulse energy was set at 0.05 mJ. 
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4.7 [NiOEP]•
+ CID and HCD 

 

An intense singly charged radical ion [NiOEP]•+ (m/z 590.27) was observed with the 

ESI/MS of a solution of NiOEP in MeCN.   With the Orbitrap mass spectrometer, the 

major product ion produced by collision-induced dissociation (CID) arises from losses of 

a CH3∙ radical (relative intensity 97%) followed by the loss of two CH3∙ radicals probably 

rearranging to an ethane molecule (2%), and by the loss of an additional CH2∙ radical 

(1%) possibly rearranging to a propane molecule (Fig. 4.7). 

 

Figure 4.7  [NiOEP]•+CID: a) MS spectra at 45% CID voltage  b) relative intensity 

versus collision voltage. Data obtained with the Orbitrap mass spectrometer. 
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The CID was repeated with the laser interfaced Amazon Bruker mass spectrometer and 

skewed Gaussian profiles were observed for the fragment production curves: all the 

fragments start to be produced at 0.7 V, and their peak abundancy is between 8% and 

20% for all of them.  More fragmentation products are observed compared to the previous 

Orbitrap collision experiments and are derived from the loss of a CH3∙ radical (20%) 

followed by species derived from successive losses of methyl (CH3∙) or ethyl (CH3CH2∙) 

radicals (Fig. 4.8).   
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Figure 4.8  [NiOEP]•+CID: a) MS spectra at 0.8V  b) relative intensity versus 

collision voltage. Data obtained with the AmaZon mass spectrometer. 
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By comparison,  the HCD process also results in many more fragments compared to the 

CID experiment executed on the same instrument (Orbitrap mass spectrometer).  All of 

the fragments derived from the loss of methyl (CH3∙) or ethyl (CH3CH2∙) radicals 

probably rearranging to more stable closed-shell species (Fig. 4.8). 

At lower HCD voltages the major fragment arises from the loss of a CH3∙ radical (55%) 

similar to the CID experiment on the Orbitrap, while at higher voltages many products 

are observed at similar peak abundances ranging between 8% and 25%.  

The [NiOEP]• – radical anion cannot be observed with the ESI source. 
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Figure 4.9  [NiOEP]•+ HCD:  plot of the relative fragmentation intensities versus % 

collision voltage. 
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4.8 LDI Dissociation of [NiOEP] •+ and [NiOEP] •
– radicals 

 

Using the MALDI technique without matrix (LDI) on NiOEP droplets deposited on 

ground steel target plates and a laser wavelength of 355 nm it is possible to observe both 

the parent cation and anion radical together with their fragmentation products similarly 

to the ZnTPP case.  

The same fragmentation products are observed but with opposite charges, suggesting that 

similar fragmentation pathways occur in both radicals. 

The most abundant peaks with the LDI ionization technique are derived from subsequent 

losses of methyl (CH3∙) radicals up to eight (Fig.4.10). 
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Figure 4.10  NiOEP MALDI MS spectra: a) positive mode  b) negative mode 
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4.9  [NiOEP] •
+ photodepletion and photodissociation spectra 

 

The gas-phase NiOEP radical cation was produced using the ESI source and its 

photodepletion and photofragmentation spectra obtained, as described in Section 2.6.  In 

Fig.4.11 the UV-Vis absorption spectra of a solution of NiOEP in MeCN is reported to 

allow comparisons with the gas-phase absorption spectra. 

 

 

The photofragmentation channels of [NiOEP] •+ are similar to the HCD pathways;  the 

major photofragment is derived from the loss of one CH3∙ radical (575m/z) as shown in 

Fig.4.12.  Other slightly less abundant photofragments derived from the loss of more CH3∙  

and CH2∙ radicals. 

 

 

 

 

 

 

 

Figure 4.11 UV-Vis spectra of a solution of NiOEP in acetonitrile 
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In Fig. 4.13 the PD is shown together with the photofragmentation yield of the major 

photoproducts.  The PD spectrum features a large Soret band peaking at 368-370 nm; this 

is blue-shifted by about 16-18 nm compared to the NiOEP spectrum in MeCN (Fig.4.11).  

Compared to the solution spectrum a shoulder peak is observed around 380 nm in both 

PD and the majority of the PF spectra.   

The photofragments at m/z 575.16 and m/z 560.16, corresponding to the loss of one and 

two CH3∙ radicals respectively, have a characteristic photofragmentation production 

profile that doesn’t follow the PD pattern.   All the other photofragments have a similar 

profile to the PD spectrum.  

 

Figure 4.12  Photofragment laser off (top) and laser on (bottom) mass spectrum of  

[NiOEP•+ , excited near the photodepletion maxima at 368 nm. Laser pulse 0.1 mJ. 
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Figure 4.13   Gas-phase UV absorption (photodepletion) spectra of [NiOEP] •+  and  

Photofragment production spectra of the major fragments. The solid line is a four-

point adjacent average of the data points. The laser pulse energy was set at 0.05 mJ.  
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4.10 Conclusions 

 

In this chapter tetraphenyl zinc and octaethyl nickel porphyrins (ZnTPP and NiOEP) 

radicals were studied by electrospray ionization tandem mass spectrometry (ESI/MS) 

showing that intense [ZnTPP]•+ and [NiOEP]•+ peaks can be observed using the aprotic 

solvent acetonitrile (MeCN) while the negative radicals [ZnTPP] •– and  [NiOEP] •– are 

observable with the LDI ionization technique. 

The positive radicals [ZnTPP] •+ and [NiOEP]•+ dissociation pathways were probed by 

higher collisional dissociation (HCD) and compared with the collision induced 

dissociation (CID) showing a richer spectrum when HCD was applied. 

[ZnTPP] •+ is proved to lose benzene, biphenyl, and hydrogen concomitantly in both CID 

and HCD while [NiOEP] •+ mainly fragments losing a methyl radical when CID is applied 

on the Orbitrap mass spectrometer. The dissociation pathways are strongly correlated to 

the parameters and instrument used and therefore are difficult to rationalize in terms of 

basic chemical properties.  

The negative radicals [ZnTPP] •– and  [NiOEP] •– are observable only with the MALDI 

technique applied without matrix (LDI) and using a laser wavelength of 355 nm, and in 

this case, a photo-induced dissociation in the source is observed.  Both the positive and 

negative NiOEP radicals dissociate losing methyl (CH3∙) or ethyl (CH3CH2∙) radicals 

through respectively α and β benzyl cleavage. 

 

The photofragmentation products of both [ZnTPP] •+ and [NiOEP] •+ radicals cations are 

in common with the collision experiments.  The PD spectra of both these radicals show a 

blue-shifted Soret band of 25 nm ([ZnTPP] •+) and 18 nm ( [NiOEP] •+) compared to their 

respective neutral specie in a MeCN solution. 
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Chapter 5: Verteporfin 

 
5.1 Introduction 

 

Verteporfin is a free porphyrin base used in PDT as described in the introduction (Section 

1.7). In this chapter, the thermal fragmentation pathways of this porphyrin are studied 

using CID and subsequently compared with the photo-fragmentation channels.  The PD 

and PF spectra are shown and compared to the solution phase absorption spectra.  These 

results provide unique new information on the thermal break-down products and 

photoproducts of this important light-triggered drug.  In addition, solution photolysis 

experiments are used to allow comparison of the solution and gas-phase fragmentation 

pathways. 

 

5.2 Experimental methods 

 

Verteporfin (>=94% HPLC grade) was purchased from Sigma Aldrich and used without 

further purification. Solutions of verteporfin 10-5 M in MeCN were prepared and 

electrosprayed in the laser interfaced AmaZon Brukner mass spectrometer as described 

in the previous chapters.  These solutions and the verteporfin powder were stored at −20°C 

in a dry environment.  For the length of gas-phase experiments (<= 2h), it was verified to 

be stable at room temperature if protected from light; this was verified by observing that 

its mass spectrum remained unchanged. 

All the CID and PD and PF spectra were acquired using the laser interfaced AmaZon 

mass spectrometer.  In these experiments, the first isotopic peak corresponding to the 

protonated verteporfin molecule was isolated (m/z 719.20) and the signal had good 

stability and intensity.  Few droplets of NH3 were added to the verteporfin solution and 

the deprotonated verteporfin signal was observed (m/z 717.23), however, after isolation 



88 
 

the intensity of this signal dropped off one order of magnitude and therefore no 

experiments were performed on this species. 

The AmaZon instrument was operated at 4μL/min with the following parameters: ESI 

capillary -5000 V; End plate offset -700V; ion transfer tube temperature, 120 °C. 

The photolysis experiments were conducted with a home-built photolysis cells, as 

described in Chapter 2.6. Unfortunately, no data on the intensity of the irradiated light is 

available. All the experiments were conducted in solutions of verteporfin at 10-3M in 

MeCN, and the samples were irradiated for 2h; after irradiation, the mass spectra of the 

solutions were taken to identify the fragmentation products. These photolysis cells 

employed LEDs peaking at 365 nm and 310 nm.  

A second experiment was performed using the OPO laser as the photon source; the 

wavelength chosen was 689 nm corresponding to the peak used in PTD, and the sample 

was irradiated for 20 min with a laser pulse of 0.12 mJ. 

 

 

 

5.3 CID on verteporfin 

 

The protonated verteporfin (m/z 719.20) was isolated and its photo-fragmentation 

mechanisms studied using the CID technique.  Fig.5.1 displays the ESI/MS spectrum that 

shows the CID fragmentation products and the CID plot.  At around the same collision 

offset voltage of 0.7 V, all the fragments observed are present, and their relative 

abundances do not change, upon increasing the collision voltage further. 
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These collision-induced fragments are summarised in Table 5.1 and Figure 5.2.  The 

major product arises from a loss of methyl acetate(63%) followed by monomethyl 

succinate (14%), acetic acid (13%), methanol (4.5%), methyl propanoate (3.5%) and 

dimethyl oxalate (1.7%).  
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Figure 5.1  CID of protonated verteporfin: a) MS spectra averaged across the whole 

CID voltage range. b) Plot of relative intensity against CID voltage.  A vertically 

expanded view of the CID results is shown on the bottom right. 
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Table 5.1  Fragments derived from CID on protonated verteporfin (parent ion peak m/z 

719.20). 

Observed m/z 
Fragment 

abundance 

Neutral loss 

645.18 63% methyl acetate 

 

587.17 14% monomethyl succinate 

 

659.19 13% Acetic acid 

 

687.17 4.5% methanol CH3OH 

631.16 3.5% methyl propanoate 

 

601.17 1.7% dimethyl oxalate 

 

 

Figure 5.2  Scheme of the neutral fragments lost when CID is applied to protonated 

verteporfin. The proposed fragments are deduced from the observed peaks; the 

difference between the parent ion and the positive fragments observed is taken and 

assigned to a loss of a smaller neutral molecule. 
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Equation 5.1 

Equation 5.2 

Interestingly, the proposed monomethyl succinate and dimethyl oxalate derived from a 

combination of two radical fragments as shown in Fig.5.2 and their mechanism of 

production are shown in Equations 5.1 and 5.2: 

 

 

 

5.4 Photodepletion and photofragmentation spectra 

 

In Fig.5.3 the absorption spectra of a solution of verteporfin in MeCN is reported to allow 

comparisons with the gas-phase absorption spectra.  Verteporfin is characterized by a 

distinctive strong Q band at 686 nm; this Q band is used in PDT.  In addition, more peaks 

are observed compared to other porphyrins with simpler and symmetrical structures.  

 

 

Figure 5.3 UV-Vis spectra verteporfin in MeCN 
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The MS spectrum obtained at 398nm is shown in Fig. 5.4;  the major photo-fragment is 

methyl acetate similarly to the CID experiment, however many new additional 

fragmentation products from the precursor ion are observed, suggesting that the photo-

induced fragmentation follows additional distinctive pathways.  

 

 

 

 

 

Figure 5.4 Photofragment laser laser on mass spectrum of protonated verteporfin, 

excited at photodepletion maxima at 398 nm. Laser pulse 0.05 mJ.  The bottom spectrum 

is an expansion of the above spectra showing the photofragments. 
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Compared to the UV-Vis spectra in the solution phase (Fig.5.3), the Soret band in the gas 

phase is blue-shifted by 20 nm (Fig. 5.5) and its width is around 150 nm similarly to the 

solution phase spectrum.  The Soret band in the PD spectrum appears to present a shoulder 

band at 430 nm that can be observed also in all the PF spectra.  All the PF spectra have 

similar profiles and except for an additional band observed at 270 nm, their profile 

resembles the PD spectra.  

 

The gas-phase peak that was hypothesized to correspond to the solution-phase peak at 

686 nm, which is used in PDT, can be detected only in the photofragmentation spectra, 

and its intensity is very low, corresponding to 0.2/0.3% of the Soret band signal (Fig. 5.6).  

The photo-fragmentation channels are not always visible on the PD spectrum due to 

multiple overlapping channels contributing to it especially when the signal of interest is 

 

 

Figure 5.5 Photodepletion spectra of protonated verteporfin (black) and 3 

photofragmentation spectra as examples (m/z 687.2, 659.2, 645.2).  Laser pulse 0.05 

mJ (400-260 nm), 0.3 mJ (402 nm to 60 0 nm) and m/z 200 cut-off.  
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particularly low.  This peak is at 752 nm and is red-shifted by 66 nm compared to the 

solution phase.  Similar large shifts were detected in gas-phase absorption spectra of 

protonated TPP, however, in this latter case the Q bands were blue-shifted compared to 

the solution phase.88  
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Figure 5.6 Photodepletion spectra of protonated verteporfin (black) and 3 

photofragmentation spectra as examples. Laser pulse 0.2 mJ (600-800nm).  Really low 

PF peak intensity (less than 0.2/0.3% of the Soret peak signal). 200 m/z cut-off. 
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5.5 Photolysis 

 

The fragmentation products of verteporfin in the solution phase were studied using 

photolysis cells as described in Section 5.2.  These results are summarised in Fig.5.7, 

which shows the ESI/MS spectra obtained from the solutions exposed to light at 310, 365 

and 689 nm. 
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Figure 5.7 Mass spectra: a) after 2h exposure at 310nm. b) after 2h exposure 365nm. 

c) after 20min exposure 689nm(OPO). 
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At both 310 and 365 nm, the major fragmentation product observed (m/z 535.42) derives 

from the loss of the four major side chains and subsequent reaction with the residual water 

and/or oxygen, as illustrated schematically in Fig.5.8.   The other fragment observed was 

the m/z 413.29 fragment, and was relatively more intense using the 365 nm photolysis 

cell compared to the 310 nm one.  

Interestingly, all the samples discolored from pale yellow to transparent after 2h exposure 

to the UV light of the photolysis cells indicating that the photo-fragments produced do 

not absorb in the visible range. 

 

Two fragments were observed with the OPO laser at 689 nm after 20 min exposure.  The 

main fragment was at 550.83 m/z, and this was not observed with the photolysis 

experiments in the UV region.  A second fragment was observed at 413.45 m/z (in 

common with the UV photolysis).   To date it has not been possible to assign the structure 

to these fragments, suggesting that they are formed in multi-step reactive processes. 

 

 

 

 

 

 

 

Figure 5.8 Proposed reaction scheme that leads to the main fragmentation product at 

535.42m/z. 

O2 
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5.6   Conclusions 

 

The first gas-phase absorption spectra of verteporfin is shown here and it is characterized 

by a less resolved fine structure compared to the solution phase.  The Soret band is blue-

shifted by 20 nm suggesting a stabilisation of the excited state by the solvent.  

The CID experiment shows that the major thermal fragments arise from the loss of neutral 

methyl acetate (63%) followed by monomethyl succinate (14%), acetic acid (13%), 

methanol (4.5%), methyl propanoate (3.5%) and dimethyl oxalate (1.7%).  In comparison, 

the solution-phase photolysis experiments result in only two fragmentation products at 

the wavelength studied.  The main product observed in both the solution-phase UV 

photolysis experiments (310 nm and 365 nm) derives from the loss of the same lateral 

groups as in the CID followed by a reaction with residual water present in solution and/or 

oxygen (Fig.5.8). The photolysis experiment at 689nm, corresponding to the peak used 

in PDT, shows two currently unassigned photo-fragments at 413.45 m/z (in common with 

the UV experiments) and 550.83 m/z (Fig.5.7-c). 

Even if the proposed PDT activation mechanism, is considered to be based on the 

generation of highly reactive singlet oxygen (1O2) through interactions of photosensitizer, 

light, and oxygen (3O2, ground state),111 a fraction of the activated photosensitizer may 

react with the surrounding water and solutes leading to other species that may contribute 

to the cytotoxic effect or alternatively the radical photofragmentation products themselves 

may react with the cellular biomolecules.  These reaction products have been identified 

here for the first time following light exposure of solutions of verteporfin, and further 

studies may be motivated by these results to understand the extent of this contribution to 

cytotoxicity and to identify the species produced by simulating the typical light exposure 

used in the clinical setting and using solution of biological origin.  At my best knowledge, 

no studies have been reported so far on the photofragmentation channels of verteporfin 

and few data are available regarding the identification of the photoproducts.  The main 

study in this direction was carried by Gillies et al.112, which reported the photophysical 

properties of a photoproduct generated in vitro from verteporfin (benzoporphyrin 

derivative monoacid ring A, BPD‐MA) in fetal calf serum (FCS) solutions under 694 nm 

light irradiation, in order to provide a dosimeter for verteporfin‐PDT effects.  They 
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suggested that the changes in the absorption and fluorescence spectrum before and after 

irradiation are consistent with the production of a photoproduct, that was proposed to be 

hydroxyaldehyde;  however they could not rule out the formation of other photo-products 

and no photo-production mechanism was determined.  Furthermore, according to Gillies 

et al., no photoproduct formation has been reported for BPD-MA in homogenous organic 

solutions suggesting that photoproduct formation occurred only when BPD-MA is bound 

to fetal calf solutions (FCS) with a high dependence on the presence of oxygen.  However, 

in this thesis, the formation of photoproducts in solutions of verteporfin in MeCN was 

proved to occur;  in addition,  the experimental methodology presented in this thesis can 

be easily applied to determine the photoproducts and mechanisms in “biological” 

solutions.  This methodology can be effectively used in support to the fluorescence 

spectroscopy studies so far performed.113 

In this chapter, also the gas-phase photo-products were studied showing that they are 

substantially different from the solution-phase photolysis results, but, together with the 

CID fragmentation channels, they contribute to understanding the photofragmentation 

steps that occur in solution, for example showing the bonds that are more easily broken. 

In addition, they provide evidence of production of radicals. 
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Chapter 6: Summary and future work 

 
 

6.1 Gas-phase complexes between MP and halide anions 

 

In this thesis, the complexation energies between halide anions and different metal centers 

in MPs were studied, showing that the magnesium porphyrin has the highest affinity 

followed by ZnP, FeP, CuP.  NiP was predicted to be unable to form stable complexes 

with the two halides studied theoretically (chloride and iodide).  

The following computational studies were performed on gas-phase ZnP ∙ X- complexes 

(X = I, Br, Cl, F) revealing the structural and electron density changes that occur upon 

complexation.  The calculations predicted a higher affinity towards hard ligands, and this 

was in line with previous solution-phase studies on zinc porphyrin complexes with halide 

anions.84,85    Experimentally, these trends were confirmed with the HCD technique 

applied to ESI generated gaseous ZnTPP ∙ X- complexes (X=I, Br, Cl, F) and in addition, 

the formation of (ZnTPP)2 ∙ X-  complexes was observed for the first time. 

Finally, the first gas-phase action spectra of  ZnTPP ∙ X-  complexes are presented in this 

work, including their photofragmentation products.  These complexes are characterized 

by a particularly strongly blue-shifted (110-120 nm) Soret band compared to the solution 

phase;  usually, large shifts are attributed to a specific chemical effects of the solvent on 

one or both electronic states of the chromophore interaction114 and to investigate further 

this unusual large shift, theoretical DFT studies that include solvation models could be 

applied.  Additionally, the structure of these complexes could be further characterized 

using IR gas spectroscopy available in a custom-built instrument combined with an ESI 

source, such as the one described by Garand et al.115    
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6.2  ZnTPP and NiOEP radicals 

 

In this thesis, the first thermal fragmentation study on radical cations of ZnTPP and 

NiOEP using CID and HCD is presented, showing similar fragmentation channels to 

other OPE and TPP porphyrins.  Additionally, their gas-phase absorption spectra are here 

reported and their photoproducts compared to the thermal fragmentation ones.  

Additionally, the negative radicals of both ZnTPP and NiOEP were produced using the 

MALDI technique without any matrix applied (LDI); to the best of my knowledge, these 

are the first reported porphyrin radical anions produced with this technique and MALDI 

may therefore be considered in future studies as a method to produce radicals anions of 

porphyrin-like molecules.  Other future studies can include gas-phase spectra of radical 

porphyrin anions and negative ion photoelectron spectroscopy.116 

 

 

 6.3  Verteporfin 

 

In PDT, the photoproducts generated exposing the photosensitizing molecules to light can 

be important in understanding the cytotoxicity effects.  So far, no known study determined 

directly the photoproducts and their production mechanisms in verteporfin molecules.  In 

this thesis, CID thermal fragmentation, gas-phase photofragmentation, and photolysis 

experiments were used to determine the photodegradation channels of verteporfin 

molecules that were shown to involve radical species derived from the loss of carboxyl 

and ester groups.  In addition, the first gas-phase absorption spectrum of protonated 

verteporfin molecules revealed its intrinsic photophysical properties.  

These gas-phase techniques can be used in future studies to determine the 

photoproduction mechanisms of different photosensitizing molecules and photolysis 

experiments coupled with mass spectrometry can be used to determine the photoproducts 

in solution and therefore understanding their contribution to cytotoxicity.  

In addition, these experiments can also be important in assessing the photostability of 

pharmaceuticals over the therapeutic time scale as part of  the product development 

process in the pharmaceutical industry.117 
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Appendix A1 

 
A1.1  Introduction 

 

In this appendix, additional ESI/MS spectra and optimized DFT geometries are presented 

togheter with the PD spectra of iodide and bromide. 

The following appendix A2 presents the computer programs that were developed as part 

of this thesis for the automated analysis of the experimental data in order to generate the 

CID plots, and PD and PF spectra. 

 

 

A1.2  ZnTPP ∙ X– and (ZnTPP)2 ∙ X–  ESI/MS spectra 

 

The mass spectra of the ESI generated ZnTPP ∙ X– and (ZnTPP)2 ∙ X
–  complexes are here 

reported (Fig. A1.1).  All the spectra were recorded with the Bruker solariX mass 

spectrometer except the (ZnTPP)2 ∙ F–  that was recorded with the Orbitrap mass 

spectrometer.   

ZnTPP ∙ F– 

 

ZnTPP ∙ F− 
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ZnTPP ∙ Cl– 

 

(ZnTPP)2 ∙ Cl– 

 

ZnTPP ∙ Br– 

 

(ZnTPP)2 ∙ Br– 

 

ZnTPP ∙ I– 

 

(ZnTPP)2 ∙ I– 

 

 

Fig A1.1  MS spectra of ZnTPP ∙ X – and (ZnTPP)2 ∙ X –  complexes. All the isotopic 

peaks are displayed. 
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A1.3  HCD ZnTPP ∙ X– and (ZnTPP)2 ∙ X–  ESI/MS spectra 

 

In Fig. A1.2  and A1.3 the MS spectra at different HCD voltages of the ZnTPP ∙ X– and 

(ZnTPP)2 ∙ X
–  complexes are displayed.  The 2:1 complexes dissociate producing the 

signal corresponding to the ZnTPP ∙ X– complex. 

 

HCD of ZnTPP ∙ X– complexes 

 

ZnTPP ∙ F–  at HCD 38% 

 

 
ZnTPP ∙ Br–  at HCD 1.5% 
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ZnTPP ∙ I–  at HCD 0.6% 

 

 
 

Fig A1.2  MS spectra of ZnTPP ∙ X –  complexes when HCD is applied. 

 

 

HCD of (ZnTPP)2 ∙ X– complexes 

 
(ZnTPP)2  ∙ F–  at HCD 10.2% 

 



(ZnTPP)2  ∙ Cl–  at HCD 3.0% 

(ZnTPP)2 ∙ Br–  at HCD 1.80 % 

 
(ZnTPP)2 ∙ I–  at HCD 0.5% 

 

 
 

Fig A1.3  MS spectra of (ZnTPP)2 ∙ X –  complexes when HCD is applied. 
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A1.4  HCD of the ZnTPP ∙ F– complex 

 

Since the lowest mass threshold for the HCD is 50 m/z it was not possible to observe the 

fluoride ion as a fragment when HCD is applied on ZnTPP ∙ F–. 

Compared to the other ZnTPP ∙ X– (X = Cl, Br, I) complexes, the fluorine 1:1 complex 

follows more distinctive mechanisms when HCD is applied. 

The fragmentation channels that can be derived from the mass spectrum are: 

ZnTPP ∙ F–  →  (ZnTPP ∙ F − H2) 
–   + H2                                                        Equation A1.1               

ZnTPP ∙ F–  →  (ZnTPP – H+) –    + HF                                                          Equation A1.2                          

ZnTPP ∙ F–  →  (ZnTPP – H+– H∙) ∙ –    + HF + H∙                                         Equation A1.3                      

ZnTPP ∙ F–  →  (ZnTPP – H+– C6H5∙) ∙ –    + C6H5∙  + HF                              Equation A1.4               

These observed species are shown in Fig A1.4 below: 

 

 

Figure A1.4  MS spectra of the ZnTPP ∙ F–  complex at HCD 36%. 
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A1.5 DFT optimised geometries for ZnP ∙ X– , (ZnP)2 ∙ X–  and  

          (ZnP)2 

 

The DFT optimized structures are optimized using the methods described in Section 3.2. 

In Fig. A1.4 the front and side view of the DFT optimized ZnP ∙ X– complexes (1:1) is 

displayed;  all of them are axially ligated and the Zn atom is displaced out of the porphyrin 

plane.  

In Fig. A1.5 the front and side view of the DFT optimized (ZnP)2 ∙ X– complexes (2:1) is 

displayed; the two ZnP molecules are tilted due to the contribution of dispersive 

interaction between the two porphyrins.  

In Fig. A1.6 the aggregate between two ZnP is displayed; the Zinc atom of each porphyrin 

is above the Nitrogen atom of the other porphyrin forming an 86° bond angle. 

 

 

 

 

Front view Side view 

ZnP ∙ F– ZnP ∙ F– 
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ZnP ∙ Cl– 

 

ZnP ∙ Cl– 

 

ZnP ∙ Br– ZnP ∙ Br– 

 

 

 

ZnP ∙ I– ZnP ∙ I– 

 

 

 

Figure A1.5 Front and side view of the DFT optimized structure of ZnP ∙ X – complexes. 
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View 1 View 2 

(ZnP)2 ∙ F– 

 

 

(ZnP)2 ∙ F– 

(ZnP)2 ∙ Cl– 

 

 

(ZnP)2 ∙ Cl– 

 

(ZnP)2 ∙ Br– 

 

(ZnP)2 ∙ Br– 
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(ZnP)2 ∙ I– 

 

(ZnP)2 ∙ I– 

 

 

Figure A1.6 Front and side view of the DFT optimized structure of (ZnP)2 ∙ X – complexes. 

 

 

Front view Side View 

(ZnP)2 

 

 

(ZnP)2 

 

 
 

 

Figure A1.7 Front and side view of the DFT optimized structure of (ZnP)2 aggregates. 

 

 



A1.6 Iodide and bromide photodepletion spectra 

 

The PD spectra of iodide and bromide ions were measured in a laser interfaced mass 

spectrometer (AmaZon mass spectrometer).  The curve that describes the PD spectra in 

case of simple monoatomic anion should show two onsets that begin promptly at the 

threshold energies corresponding to production of a free electron and a halide atom in the 

ground and excited states followed by plateau regions (Fig. A1.8); the shapes of these 

two onsets follow the ‘Wigner’’ threshold law.118  When the energy of the photon is equal 

to the ionization energy of the anion X-  the photodetachment process can occur and one 

electron is ejected from the anion generating the first onset (Equation A1.1): 

 

X −   →  X + e−                                                                                                  Equation A1.1 

 

In the case of the bromide anion, its reported ionization energy is 3.36 eV119 and this is 

in accordance with the onset of the PD curve (Fig. A1. 9-a), however, the plateau is less 

defined and the signal to noise ratio is low; because no fragments can be produced by 

simple halide anions the only contribution to the photodepletion yield is photodetachment 

and together with the small cross-section, make those measurements difficult.  

The iodide absorption profile (Fig. A1.9-b) appears plateauing more gradually and the 

second onset at 4.00 eV (Fig. A1.8) is not clearly identifiable.  In the case of iodide, the 

onset of photodepletion appears to be at around 3.0 eV consistent with the reported iodine 

electron affinity of 3.06 eV.119 

 

 

 

Figure A1.8 Photodetachment spectra of  the bare I– ion. Adapted from Ref.118 
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Figure A1.9 a) and b) Gas-phase UV absorption (photodepletion) spectra of bromide 

and iodide respectively. The solid line is a five-point adjacent average of the data points. 

The laser pulse energy was set at 0.30 ± 0.10 mJ for both the anions. 
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Appendix A2 
 

 

A2.1  Introduction on the software developed to analyze the data 

 

As part of this project, two Phyton computer programs were developed to automatically 

generate a table that can be used to plot directly the PD and PF spectra and a table used 

to generate the CID plots (relative intensity vs. CID voltage), respectively.  Firstly, the 

commercial Bruker Compass DataAnlysis AutomationEngine software was used to 

extract the tables with all the data from the mass spectra that included m/z and intensities 

of the peaks in .ascii files (following a similar approach to a previous similar template).  

Then, the Phyton scripts were developed to analyze these extracted data and generate the 

PD and PF spectra or the CID plots.  

This appendix will start with the PD and PF spectra generation (first Phyton program). 

 

A2.2  Collection of the mass spectra  

All the mass spectra are processed through Bruker Compass DataAnlysis (provided by 

the manufacturer of the mass spectrometer) and each data set was saved automatically 

with a numeric index inside the project folder: 

“\\path\Project_Folder \date_molecule _0000.d” 

“\\path\Project_Folder \date_molecule _0001.d” 

“\\path\Project_Folder \date_molecule _0002.d”  

etc. 

Each of these data sets contains all the mass spectra collected with both the laser turned 

off and turned on at a specific wavelength and with a chosen data collection time of 

usually one minute; for example, “date_molecule _0000.d” contains the spectra collected 

at 402.0 nm, “date_molecule _0001.d” at 406 nm and “date_molecule _0002.d” at 410 
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nm. 

During the experiment, in the same project folder, a text file (“info.txt”) is generated, that 

contains the current wavelength (nm), laser pulse energy (mJ), stability of the laser output 

(%), attenuation value, and the corresponding numeric index of the data set; for example 

if the laser pulse energy chosen is 0.30  ± 15% mJ, then the “info.txt” text file will look 

similar to this: 

nm      mJ      %     at.  index 

402.0 0.286 10.19 19 0 

406.0 0.307  9.72 35  1 

410.0 0.285 10.94 46 2 

etc. 

 

The control of the laser pulse energy, attenuation, and generation of this latter text file is 

a merit of Dr.Jacob Berembein. This text file will be used by the Phyton scripts. 

 

 

A2.3  DataAnlysis AutomationEngine: First step 

 

Once the data acquisition from the laser interfaced mass spectrometer is finished, the 

indexed data sets (“eg. date_molecule _0000.d”) are used by the commercial software 

DataAnalysis AutomationEngine (Visual basic programming language); the script 

presented was written in DataAnalysis AutomationEngine and was adapted and modified 

from a previous template already available in this research group.  Firstly, it starts with 

the data set “date_molecule _0000.d” and it averages all the mass spectra corresponding 

to the laser off and then to the laser on, generating two averaged spectra. Secondly, it 

identifies all the peaks in both the averaged spectra and generates two .ascii files 

(0000OFF.ascii  and 0000ON.ascii) that contain the peaks m/z values together with their 

respective intensity.  The software, then, repeat this same procedure with “date_molecule 

_0001.d”, “date_molecule _0002.d” etc. generating 0001OFF.ascii, 0001ON.ascii, 

0002OFF.ascii, 0002ON.ascii etc.  
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All these .ascii files are automatically stored in a folder that the user chooses.  

 

The script that does all the steps described above was written in the AutomationEngine 

interface and is copied below.  The user has to change only the path where the data sets 

are stored and choose a path for the output folder that will contain the .ascii files (the user 

changes only the green parts of this script). 

 

option explicit 

 

‘Dim to define variables  

Dim Application  

Dim Analysis   

Dim int,count     

Dim a,b,c,f,h,i,j 

Dim pathOUT, pathON, pathOFF 

 

' opens DataAnalysis  

set Application = GetObject("", "BDal.DataAnalysis.Application")    

‘The user has to add the path where all the data sets are stored but removing the index 

as in the example below: 

a = “\\path\Project_Folder \date_molecule _” 

‘The user has to add the path where they want to store the output .ascii files: 

pathOUT = “\\path\output_asciiFiles_molecule\”       

 'create folder called “output_asciiFiles_molecule” using the path defined by the 

user(pathOUT) 

Set f = CreateObject("Scripting.FileSystemObject")  

f.CreateFolder(pathOUT)    

    

b = ".d\Analysis.yep"  

 

' The index used to label the data sets are made of four digits eg.0000, 0001, etc. and the 



116 
 

variable h is used to add the zeros on the left" 

h = "000"  

  

' if you have 10 data sets, this loop is performed 10 times, if you have 30 data sets then it 

will be performed 30 times, etc. up to 110 data sets. If you have more than 110 data sets 

increase this number below: 

For count = 0 To 110  

       i = h & count ' 0 becomes 0000, 2 becomes 0002, 32 become 00032, etc. 

      ‘'keeps only the last four numbers from i, i.e. 0002 is the same, 00028 becomes 0028,  

       etc so that it matches up with the filename 

       j = Right(i, 4) 

      ‘combines a, j and b to provide the full root directory to the file of the data set whose  

       index is defined by variable count. i.e. if we are at the 3rd loop than count is equal to  

      2 and therefore AutomationEngine orders to open the data set with the index 0002. 

       c = a & j & b  

       set Analysis = Application.Analyses.Open(c)  

       “loads the peak finding algorithm, noise cut off, etc. methods defined by the user in        

       MethodEditor(provided by DataAnalysis). The user has to change this adding their  

       path where their method file is stored. Once this method is optimized it is rarely  

      changed, therefore, this section is not changed only if needed. 

       Analysis.LoadMethod "\\path\DataExtractionScript.m"   

       'Analysis.RecalculateLineSpectra 'OPTIONAL, use only if you prefer to use line  

        spectra MS instead of profile spectra 

       ‘DataAnalysisfunctionality to separate the different MRM chromatograms 

       Analysis.FindMSn  

       Analysis.Compounds.DisableAll  'Unchecks all of the produced compound spectra  

       Analysis.Chromatograms(2).AverageMassSpectrum true, false 'Averages the first     

       MRM spectrum - which MUST be Laser ON 

      Analysis.Chromatograms(3).AverageMassSpectrum true, false 'Averages the first      

      MRM spectrum - which MUST be Laser OFF 

      pathON = pathOUT & j & "ON"   

      pathOFF = pathOUT & j & "OFF"   
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    Analysis.Spectra(1).ExportMassList pathON, daASCII 'exports the mass list of the ON  

    spectrum as an ascii file. i.e. 0000on.ascii, 0025on.ascii 

    Analysis.Spectra(2).ExportMassList pathOFF, daASCII 'exports the mass list of the     

    OFF spectrum as an ascii file. i.e. 0000off.ascii, 0025off.ascii 

Next 

 

 Analysis.Save  ' Saves the analysis if you need to look at it later 

 

 

Summary output: 

At end of this AutomationEngine process a new folder will be created that contains these 

files: 

 

0000OFF.ascii 

0000ON.ascii 

0001OFF.ascii 

0001ON.ascii 

0002OFF.ascii 

0002ON.asciii 

Etc. 

 

Each of these .ascii files contains the mass peak list and their corresponding intensity i.e. 

“0002OFF.ascii” will contain all the m/z value and intensities of the peaks found on the 

averaged laser off spectrum (this spectrum is obtained averaging all the laser off spectra 

recorded on the data set with index 0002 (“date_molecule _0002.d”)). Similarly, 

“0002ON.ascii” will contain all the m/z values and intensities of the peaks found on the 

averaged laser on spectrum. 

 

Example of the content of one of these .ascii files (the second and third columns are the 

m/z and respective intensity of the detected peak) 

#    m/z       Intensity 

  1  124.65  2 

  2  125.20  25 
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  3  125.56  29 

  4  125.90  192 

  5  126.20  385 

  6  126.88  1136126 

  7  127.32  6976 

  8  127.57  1514 

  9  127.83  780 

 10  128.15  617 

 11  128.46  243 

 12  128.74  37 

 etc. 

 

 

 

A2.4  Phyton scripts: Second step 

 

Once the output .ascii files are generated and saved by AutomationEngine in the user-

defined output folder, the user can start with the analysis of these collected experimental 

data using the scripts developed in this project. 

 

A folder named “DataAnalysisSoftwares(DA 4.2 Phyton 3.8)” was created and inside this 

folder, the following Phyton scripts are stored: 

ClickME.py 

FindFragments.py 

Info.py 

Input.py 

LaserAllFragments.py 

 

Importantly, the user has to copy and paste the “info.txt” file containing all the 

instrumental parameters (wavelengths, laser pulse energy, etc.) described in Section A2.2 

from their project folder to the “DataAnalysisSoftwares(DA 4.2 Phyton 3.8)” folder. This 

is fundamental because those parameters are needed to calculate the PD and PF spectra. 

The following step is to double click the “ClickMe.py” file and follow the commands on 

the terminal. Another option is to download the Phyton Spyder interface and drag and 

drop all the scripts into it (this has to be done only once) and run the “ClickMe.py” script; 
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this latter approach is recommended because it displays all the errors and the scripts can 

be modified directly on this interface if needed.  

Once ClickMe.py is running, the user has only to follow the instructions from this 

software and the final output table is generated inside the “DataAnalysisSoftwares(DA 

4.2 Phyton 3.8)” folder. The user can copy and paste this to Excel or Origin and directly 

plot the PD or PF spectra. 

 

Below a figured assisted guide of what the user has to do (Spyder interface): 

1) Make sure ClickMe.py is selected and click run 

 

2) The user is asked to write or copy and paste the path where their output .ascii files were 

saved in the first step using AutomationEngine. After pressing enter a new question is 

asked to the user: “do you want everything that differs less than 0.15 m/z the same 

species?”: all the laser on .ascii filed of all the data sets are read by the software and the 

number of peaks with the same m/z value in the whole sets are counted; the peaks relative 

to the same ion species have often  slightly different values (i.e. m/z 139.86, 139.89, 

139.84, 139.91, 139.81, 139.83, etc.) and if the user leaves the default 0.15 m/z, that 

means that if two peaks differ of less than 0.15 m/z then they are considered the same ion 

by the software and counted (i.e. average m/z 139.86 with 6 counts).  

At this step, the user sees all the signals detected with the laser on and the number of 

times they are present in all the data sets. This is displayed in columns as “an index,  

average m/z of the peak relative to the same ion species and counts”: 
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3) The user takes notes of the corresponding index of the ions they are interested i.e. 3 if 

they want the ion at m/z 139.31 in the example above. The user then writes all these 

indexes when asked to do so; the index corresponding to the parent ion must be the first 

one and the following indexes corresponding to the fragments can be written in any order.  

 

 

4) Then the user is asked to change or keep the default 0.15 m/z and follow the previous 

steps but this time for the laser off data; because those data are collected with the laser 

off, no photofragments are produced and only the parent ion index is asked. 

 

5) Now the program finishes (“press any key to exit”) and the output table called 

finalTableIntensity.txt is generated automatically into the “DataAnalysisSoftwares(DA 

4.2, pyton 3.8)\Amazon Software\OUTPUTfiles”  folder (this folder is generated 

automatically as well). 

 

6) The user can use this table to directly plot PD and PF spectra. 
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A2.5  Phyton original scripts used for the PD and PF spectra  

           calculation 

 

In this Section, the Phyton scripts used to do all the analysis of the experimental .ascii 

files, as described in Section A2.4, are reported.  They consist of five module scripts that 

are imported in a chain sequence (command import);  ClickMe.py imports the 

findFragON and findFragOFF functions that are part of the findFragments.py module; 

findFragments.py imports the textTableON function that is part of the 

LaserAllFragments.py module; LaserAllFragments.py imports the module info.py; And 

info.py imports the module Input.py. 

 

The “Input.py” script automatically creates a folder called “OUTPUTfiles” in the current 

directory that contains all the five scripts.  In addition, in this module the function Input 

is defined; this function is responsible for asking the user to type the path that they used 

in Data Analysis where the .ascii files are stored and creating a new text variable called 

pathASCII where this path is stored. 

The “info.py” script imports the module “Input.py” and recalls the function Imput to get 

the current folder path (pathCWD), the path of the “OUTPUTfiles” folder (pathOUT), 

and pathASCII.  It then reads the “info.txt” file stored in the current folder and memorizes 

its data in arrays: the array “waveInfo” stores the wavelengths used for each data set while 

“powerInfo” contains the laser pulse energies.  

The “LaserAllFragments.py” script imports the module “info.py” and recalls the function 

info to get the paths and the number of data sets (variable lengthtInfo).  It then defines the 

functions textTableON and textTableOFF; these functions are used to read the .ascii files 

and generate and save in the “OUTPUTfiles” folder, respectively, a text file called 

allFragmentsON.txt and allFragmentsOFF.txt that contain the data set index, 

corresponding wavelength (nm), photon energy (eV), laser pulse energy (mJ), m/z signal 

and intensity of the mass spectra peak of the laser ON and OFF .ascii files. Below an 

example of an allfragmentsOFF.txt file is shown (in this case 30 data sets corresponding 

to 30 wavelenght probed were used): 
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Index   nm       eV     mJ      #   m/z   inetnsity 

0000    400.0    3.1    0.31   1  72.48  4 

0000    400.0    3.1    0.31   2  72.75  1 

0000    400.0    3.1    0.31   3  74.01  1 

…. 

0001 396.0 3.13 0.293   1  72.58  6 

0001 396.0 3.13 0.293   2  73.05  4 

0001 396.0 3.13 0.293   3  76.01  20 

…. 

…. 

0030 280.0 4.43 0.3   1  74.24  8 

0030 280.0 4.43 0.3   2  75.52  3 

0030 280.0 4.43 0.3   3  76.02  35 

0030 280.0 4.43 0.3   4  77.50  1500 

 

The “findFragments.py” imports the functions textTableON and textTableOFF from the 

module “LaserAllFragments.py".  Calling those functions, this script receives all the 

arrays with the data from the laser ON and OFF respectively and specifically, using the 

array “m” that contains all the m/z signals, it counts the number of ions that have the same 

m/z and produces two outputs lists (laser On and laser Off) on the user interface that saves 

also in the “OUTPUTfile” folder.  The first column of this list is a crescent numerical 

index, the second column the averaged m/z value of the signal relative to the same 

species/noise and the third column represents the counts.  An example of this table is 

below: 

 

      m/z     counts 

0    89.89  42 

1    89.73  20 

2    89.58  10 

3    89.42  2 

… 

16  80.97  45 

17  80.52  16 

18  80.37  29 
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The user then can choose from this list the masses that they are interested in and take note 

of the corresponding indexes (first column).   This “findFragments.py” scripts also is 

responsible for asking the user the indexes of interest and store them. 

 

The final step is done by the “ClickME.py” script.  This script imports the two functions 

findFragON and findFragOFF from the “findFragments.py” module and using the 

indexes chosen by the user and the data in the arrays produces and saves a text table called 

“finalTableIntensity.txt” in the “OUTPUTfiles” folder.  This table contains columns 

representing in order: the wavelength of each set of data (nm), the corresponding photon 

energy (eV), the intensity of the mass spectra signal of parent ion with laser off, the 

intensity of the mass spectra signal of the  parent ion with laser on and the intensity of the 

mass spectra signal of the fragments chosen by the user.  An example of this table is 

below: 

 

 
 

 

In the above output table, parOFF represents the intensity of the mass spectrum signal of 

the parent ion with laser off, 676.04 is the m/z value of the parent ion and this fifth column 

represents the intensity of the parent ion with laser on.  These two intensities together 

with the wavelength (wavel) and laser pulse energy (lasPow) are used to calculate the 

photodepletion (Depl).  The remaining columns represent the intensities of the fragments 

and are labeled with their m/z values (674.05, 673.01, 672.06).  With excel the user uses 

those values to calculate the PF according to Equation 2.2 (Chapter 2).  The PF yield is 

not automatically calculated like the PD one, because DataAnalysis AutomationEngine 

sometimes detects the same peak twice (irregular shape) and the entire row in the 

“finalTableIntensity.txt” is shifted, however the user easily can detect the rows involved 

and manually modify them.  The Phyton software here developed, can be improved to 

recognize this automatically. 
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Below all the scripts described in this section are copied: 

 

 
Input.py 
 
 

# -*- coding: utf-8 -*- 

""" 

Created on Sun Mar 10 13:25:43 2019 

This asks the users about where to find the output .ascii files from 

AutomationEngine and creates a directory called OUTPUTfiles where all 

the generated output from the Phyton scripts will be stored in form of 

text files.  

@author: Chris xhindoli furlan 

""" 

 

#GENERATE “OUTPUTfiles” folder inside current directory  

#finds current working directory and creates folder with all the 

output .txt files that will be generated from this Phyton software. 

import os 

pathCWD = os.getcwd() 

 

pathOUT = pathCWD + "\\OUTPUTfiles\\" 

 

try: 

    # Create target Directory 

    os.mkdir(pathOUT) 

except OSError:   

    print ("Creation of the directory %s failed" % pathOUT) 

else:   

    print ("Successfully created the directory %s " % pathOUT) 

     

 

 

def Input(): 

#the only path we need is the one with all the laser ON and OFF .ascii 

files. Asks the user this path. 

    pathASCIItmp = input("Enter the pathOUT you used in 

DataAnalysis:\n")   

    pathASCII = pathASCIItmp +"//" 

               

    return pathASCII, pathCWD, pathOUT 
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info.py 

 
# -*- coding: utf-8 -*- 

""" 

This recalls Input.py module and imports the useful paths. It reads 

all the data from the “info.txt” file that was generated during the 

experimental data collection and copied and pasted in the current 

software directory. All the experimental settings in the “info.txt” 

are stored in arrays when this “info.py” script runs. 

@author: Chris Xhindoli Furlan 

""" 

import Input 

 

pathASCII, pathCWD, pathOUT = Input.Input() #this import paths 

 

def info(): 

     

    pathTemp = pathCWD + "\\info.txt" #full path with file 

name(info.txt) is in current working directory 

    fileTemp = open(pathTemp, "r")   #only read file 

     

    lines = fileTemp.readlines()     #read all the lines of info.txt 

    waveInfo = []            #stores wavelenght nm used(from info.txt) 

    waveeV = []                     #transform wavelenght in energy eV 

    powerInfo = []                  #stores laser power(from info.txt) 

     

    for i in range(len(lines)): 

        line = lines[i]        #line store the “i” row  

        inp = line.split()     #detect spaces and divide terms in line 

        waveInfo.append(float(inp[0])) 

        energy = round(1239.84193/float(inp[0]),2) 

        waveeV.append(energy) 

        powerInfo.append(float(inp[1])) 

     

     

    return waveInfo, waveeV, powerInfo, len(lines), pathASCII, pathOUT 
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laserAllFragments.py 

 
# -*- coding: utf-8 -*- 

""" 

Created on Sat Mar  9 13:32:13 2019 

Since DataAnalysis AutomationEngine can only export data as ASCII 

format then Phyton has problems interpreting them. Whith this script 

all the data are imported from the ASCII files and written to a 

userfriendly text file. In addition the data are stored in 5 arrays.  

For e.g the data from an hypotetical file named 0001ON.ASCII are 

stored as following:  

x[1]="0001", y[1]=400(wavelenght nm), z[1]=0.32(eV), w[1]=720.12(m/z), 

h[1]=11779(intensity) 

and a txt file called laserONallFragments.txt is genarated with all 

the information. Same procedure repeated with laser off data. 

@author: Chris Xhindoli Furlan 

""" 

 

# define a useful subroutine, global variables 

 

#we need the wavelengh and the laser energy from the “info.txt” so 

recall info.py  

import info 

waveInfo, waveeV, powerInfo, lenghtInfo, pathASCII, pathOUT = 

info.info() #recals info function 

 

 

#this is the name of the function to store all the laser ON data in 

arrays 

def textTableON():  

     

    pathTemp = pathOUT + "allFragmentsON.txt" 

#opens the just created laserONallFragments.txt file to write on it. 

    fileTemp = open(pathTemp, "w+")    

         

    #GENERATE THE NAMES OF THE .ascii FILES GENERATED BY DATAANALYSIS 

AUTOMATIONENGINE SCRIPT 

    #define the name of the files eg 0012ON.ASCII. here we are only 

interested in ON files 

    for i in range(lenghtInfo): 

        if i < 10: 

            a = "000" 

        elif i < 100: 

            a = "00" 

        else:  

            a ="0" 

        bON = a + str(i) + "ON" #this write eg.0003ON, 0016ON, 0128ON 

        pathON = pathASCII + bON +".ASCII" 

        #this open the files with laser ON eg.parh....\\0012ON.ASCII 

         

        #here reads files generated by dataanalysis 

        fileON = open(pathON, 'r')  

        lines = fileON.readlines() 

        del lines[0] #delete first line of the table 

         

        fileON.close() 
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        newLines = [] 

         

         

        #writes the userfrienfly text file 

        for j in range(len(lines)): 

            newLines.append(a + str(i) +" "+ str(waveInfo[i]) + " "+ 

str(waveeV[i])+ " "+ str(powerInfo[i]) + " "+ lines[j]) 

                          

         

        for j in range(len(lines)):  #or you can use len(newLines) 

since it's the same 

            row = newLines[j] 

        #now we can write those data in a temporary txt file to sort 

out the difficulties experienced with the ASCII format  

            fileTemp.write("%s" % row) 

     

 #open the same file but this time reading (r)  

    fileTemp = open(pathTemp, "r")   

    #read line into array  

    lines = fileTemp.readlines() 

     

    x = [] #number file 

    y = [] #energy eV 

    z = [] #wavelengh 

    w = [] #laser power 

    h = [] #m/z 

    k = [] #intensity 

     

    for i in range(len(lines)): 

        splitLines = lines[i].split()   #eg. lines[1]= "23 67 6" --> 

splitLines= "23", "67", "6" 

          

        x.append( str(splitLines[0]) ) #this array has file number 

        y.append( float(splitLines[1]) ) #this array has wavelengh 

        z.append( float(splitLines[2]) ) #energy 

        w.append( float(splitLines[3]) ) #laserpower 

        h.append( float(splitLines[5]) ) #m/z 

        k.append( int(splitLines[6]))  #intensity 

         

    #now that we imported all the data in the arrays we can make the 

text file even more user friendly adding a legend 

     

         

    fileTemp = open(pathTemp, "a") 

    fileTemp.seek(0,0) 

    fileTemp.write("file wavlgh eV laserP  m/z   int  FWHW \n\n") 

     

    fileTemp.close() 

 

             

    return x, y, z, w, h, k, waveInfo, waveeV, powerInfo, pathOUT 
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""" 

the same but with LASER OFF 

""" 

 

 

def textTableOFF(): #this is the name of the function to store all the 

laser OFF data in arrays 

     

    pathTemp = pathOUT + "allFragmentsOFF.txt" 

    fileTemp = open(pathTemp, "w+")   #open the 

laserOFFallFragments.txt file to write on it 

         

    #GENERATE THE NAMES OF THE .ascii FILES GENERATED BY DATAANALYSIS 

AUTOMATION ENGINE SCRIPT 

    #define the name of the files eg 0012OFF.ASCII. here we are only 

interested in OFF files 

    for i in range(lenghtInfo): 

        if i < 10: 

            a = "000" 

        elif i < 100: 

            a = "00" 

        else:  

            a ="0" 

        bOFF = a + str(i) + "OFF" #this write eg.0003OFF, 0016OFF, 

0128OFF 

        pathOFF = pathASCII + bOFF +".ASCII" 

        #this open the files with laser OFF eg.parh....\\0012OFF.ASCII 

         

        fileOFF = open(pathOFF, 'r')   #here reads files generated by 

dataanalysis 

        lines = fileOFF.readlines() 

        del lines[0] #delete first line of the table 

         

        fileOFF.close() 

         

        newLines = [] 

         

         

        #writes the userfrienfly text file 

        for j in range(len(lines)): 

            newLines.append(a + str(i) +" "+ str(waveInfo[i]) + " "+ 

str(waveeV[i])+ " "+ str(powerInfo[i]) + " "+ lines[j]) 

                          

         

        for j in range(len(lines)):  #or len(newLines) since it's the 

same 

            row = newLines[j] 

        #now we can write those data in a temporary txt file sorting 

out the  

        #the difficulties experienced with the ASCII format 

            fileTemp.write("%s" % row) 

     

     

    fileTemp = open(pathTemp, "r")    #open the same file but this 

time reading (r) 

    #read line into array  

    lines = fileTemp.readlines() 

     

    x = [] #number file 
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    y = [] #energy eV 

    z = [] #wavelengh 

    w = [] #laser power 

    h = [] #m/z 

    k = [] #intensity 

     

    for i in range(len(lines)): 

        splitLines = lines[i].split()   #eg. lines[1]= "23 67 6" --> 

splitLines= "23", "67", "6" 

          

        x.append( str(splitLines[0]) ) #this array has file number 

        y.append( float(splitLines[1]) ) #this array has wavelengh 

        z.append( float(splitLines[2]) ) #energy 

        w.append( float(splitLines[3]) ) #laserpower 

        h.append( float(splitLines[5]) ) #m/z 

        k.append( int(splitLines[6]))  #intensity 

         

    #now that we imported all the data in the arrays we can make the 

text file 

    #even more user friendly 

     

    fileTemp = open(pathTemp, "a") 

    fileTemp.seek(0,0) 

    fileTemp.write("file wavlgh eV laserP  m/z   int  FWHW \n\n") 

    fileTemp.close() 

 

     

         

    return x, y, z, w, h, k, waveInfo, waveeV, powerInfo, pathOUT 
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findFragments.py 

 
# -*- coding: utf-8 -*- 

""" 

Created on Sun Mar 10 17:20:07 2019 

This program uses the textTable function defined in 

LaserAllFragments.py to write in the MyFragments.txt file all the 

fragments and their abbundance 

@author: Chris Xhindoli Furlan 

""" 

 

def findFragON(): 

     

    from LaserAllFragments import textTableON #I will use the 

textTableON function later 

     

    IdFile, wav, en, laserP, m, inten, waveInfo, waveeV, powerInfo, 

pathOUT = textTableON() 

     

    fragPath = pathOUT + "FragmentsFoundON.txt"   #where we create an 

output text file with all fragments 

    fileFrag = open(fragPath, 'w+')     #write and creates file(+) 

    fileFrag.write("m/z   counts\n") 

    #now it finds all the fragments and counts them 

     

    frame = 0.15 #by default everything that differs less than 0.5 m/z 

units is considered the same species. 

    exclude = [] 

     

    print("LASER ON")    

    print("\nDo you want to consider everthing that differs less than 

0.15m/z the same specie?") 

    answer1 = int(input("if you want to change this default write 0, 

if not write an other number: ")) 

    if answer1 == 0: 

        frame = float(input("write the new m/z difference to replace 

the default 0.15m/z: ")) 

        print("\nYour fragments with the laser on are:") 

     

    

       

    m1 = sorted(m, reverse = True) 

     

    massUser = [] 

    k_out=0 

     

    for i in range(len(IdFile)): 

        summ = m1[i] 

        same = 1 

        contin = 1 

        #if is the same is excluded 

        

        for k in range(len(exclude)): 

            if i == exclude[k]: 

                contin = 0 #false: we can not continue,this is a new 

fragment 
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        if contin == 1: 

            for j in range(i+1, len(IdFile)): 

                if m1[j] - frame < m1[i] and m1[i] < m1[j] + frame: 

                    summ = summ + m1[j] 

                    same = same + 1 

                    exclude.append(j) 

            mean = round(summ/same,2)   #the mean of the fragment 

found 

            fileFrag.write(str(mean) + " " + str(same) + "\n") 

             

            print(str(k_out)+" "+ str(mean) + " " + str(same)) 

            k_out = k_out + 1 

            massUser.append(mean) #now we have correspondence index 

with mass 

    fileFrag.close()  

 

    #now we have all the data in the txt file. # 

    #I want to ask the user wich fragments wants and store these in a 

new array 

    

    print("\nindex m/z counts\n Now that you know your fragments tell 

me which ones you want\nPS the parent ion must be the first you 

choose")  

    strFragUser = input("write the correspondant numbers(eg.0 4 6 13) 

with a space in between: ") 

     

    

    IndexWanted = [] 

    FragUser = [] #this is integer 

     

    inp=strFragUser.split() 

     

    for i in range(len(inp)): 

        FragUser.append(int(inp[i])) 

         

        

    #now we need a new array with the masses derived from massUser 

    #if user choses eg.3 then they want massUser[3] 

     

    change = [] #where we change fragment 

    count = -1 

    #when we choose numeber it corresponds to m[number] m/z value: 

    for i in range(len(FragUser)): 

         

        for j in range(len(IdFile)): 

            if m[j] - frame < massUser[FragUser[i]] and 

massUser[FragUser[i]] < m[j] + frame: #fragment we want 

                #here it's ok, we may store index j to know wich 

masses are to consider 

                IndexWanted.append(j) 

                #all we want is stored in IndexWanted 

                count = count + 1 

        change.append(count) 

     

    #here we need to store the masses of the fragments for the label 

in analysis 

    label = [] 

    for i in range(len(FragUser)): 

        label.append(massUser[FragUser[i]]) 
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    return wav, inten, IndexWanted, change, waveInfo, waveeV, 

powerInfo, label, pathOUT 

     

     

     

""" 

same with fragment OFF 

""" 

                     

def findFragOFF(): 

     

    from LaserAllFragments import textTableOFF #I will use the 

textTable function later 

     

    IdFile, wav, en, laserP, m, inten, waveInfo, waveeV, powerInfo, 

pathOUT = textTableOFF() 

     

    fragPath = pathOUT + "FragmentsFoundOFF.txt"   #where we create 

file with all fragments 

    fileFrag = open(fragPath, 'w+')              #werite and creates 

file(+) 

    fileFrag.write("m/z   counts\n") 

    #now it finds all the fragments and count them 

     

    frame = 0.15 #by default everything that differs less than 0.5 m/z 

units is considered the same specie 

    exclude = [] 

     

    print("LASER OFF")    

    print("\nDo you want to consider everthing that differs less than 

0.15m/z the same specie?") 

    answer1 = int(input("if you want to change this default write 0, 

if not write an other number: ")) 

    if answer1 == 0: 

        frame = float(input("write the new m/z difference to replace 

the default 0.15m/z: ")) 

        print("\nYour fragments with the laser OFF are:") 

     

    

       

    m1 = sorted(m, reverse = True) 

     

    massUser = [] 

    k_out=0 

     

    for i in range(len(IdFile)): 

        summ = m1[i] 

        same = 1 

        contin = 1 

        #if is the same is excluded 

        

        for k in range(len(exclude)): 

            if i == exclude[k]: 

                contin = 0 #false: we can not continue,this is new 

fragment 

             

        if contin == 1: 

            for j in range(i+1, len(IdFile)): 



133 
 

                if m1[j] - frame < m1[i] and m1[i] < m1[j] + frame: 

                    summ = summ + m1[j] 

                    same = same + 1 

                    exclude.append(j) 

            mean = round(summ/same,2)   #the mean of the fragment 

found 

            fileFrag.write(str(mean) + " " + str(same) + "\n") 

             

            print(str(k_out)+" "+ str(mean) + " " + str(same)) 

            k_out = k_out + 1 

            massUser.append(mean) #now we have correspondence index 

with mass 

    fileFrag.close()  

 

    #now we have all the data in the txt file. # 

    #I want to ask the user wich fragments wants and store these in a 

new array 

    

    print("\nNow that you know your fragments with laser OFF tell me 

which one is your parent ion")  

    strFragUser = input("write the correspondant number of the parent 

ion(eg.3): ") 

     

    

    IndexWanted = [] 

         

    parentIon = int(strFragUser)  #here if parent ion is in 3rd 

fragment shown then parentIon = 3   

      

    #if user choses eg.3 then they want massUser[3] 

     

    

    #when we choose numeber it corresponds to m[number] m/z value: 

         

    for j in range(len(IdFile)): 

        if m[j] - frame < massUser[parentIon] and massUser[parentIon] 

< m[j] + frame: #fragment we want 

            #here it's ok, we may store index j to know wich masses 

are to consider 

            IndexWanted.append(j) 

            #all we want is stored in IndexWanted 

             

     

     

    return wav, inten, IndexWanted 
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ClickME.py 

 
# -*- coding: utf-8 -*- 

""" 

This is the final script. You have to double click this one or press 

run when this one is selected on Spyder. All the other modulese 

previously described are used and loaded by this one. This script 

recalls findFragments wich uses LaserONallFragments 

Author: Chris Xhindoli Furlan 

""" 

 

import math 

 

#this is only laser On 

def Analysis(): 

     

    from findFragments import findFragON 

    from findFragments import findFragOFF 

    wav, inten, IndexWanted, change, waveInfo, waveeV, powerInfo, lab, 

pathOUT = findFragON() 

    wavOFF, intenOFF, IndexWantedOFF = findFragOFF() 

     

         

    #wrrite .txt wavelengh, energy, intensityONparent, 

intensityOFFparent, intesnsityfrag1, frag2 

    outPath =  pathOUT + "finalTableInensity.txt"   

    fileFinal = open(outPath, 'w+') 

    line = [] 

     

    for i in range(len(waveInfo)): 

        line.append(str(waveInfo[i])+" "+str(waveeV[i])+" 

"+str(powerInfo[i])) 

     

    numFrag = len(change) 

     

     

    for i in range(len(line)): 

        parentOFF=0 

        parentON = 0 

        fragON=0 

        for k in range(len(IndexWantedOFF)): 

            if wavOFF[IndexWantedOFF[k]] == waveInfo[i]: 

                line[i] = line[i] + " " + 

str(intenOFF[IndexWantedOFF[k]]) 

                iOFF = k 

                parentOFF = 1 

     

        if parentOFF == 0: 

            line[i] = line[i] +" " + "xxxx"#in this case none of the 

parent ion with laser OFF is present at that wavelengh 

     

    #laser On fragments(number of fragments is numFrag that is the 

lenght of change) 

         

        for k in range(change[0]+1): 

            if wav[IndexWanted[k]] == waveInfo[i]: 

                line[i] = line[i] + " " + str(inten[IndexWanted[k]]) 
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                iON = k 

                parentON = 1 

     

        if parentON == 0: 

            line[i] = line[i] +" " + "xxxx" 

         

        sumFrag = 0 #for relative photodetachment 

        for j in range(1, numFrag): 

            fragON=0 

             

            for k in range(change[j-1]+1, change[j]+1): 

                if wav[IndexWanted[k]] == waveInfo[i]: 

                    line[i] = line[i] + " " + 

str(inten[IndexWanted[k]]) 

                    sumFrag = sumFrag + inten[IndexWanted[k]] 

                    fragON = 1 

                     

                         

            if fragON == 0: 

                line[i] = line[i] +" " + "xxxx" 

           

        #analysis  part 

        if parentON == 1 and parentOFF == 1:  #parent ion visible both 

ON and OFF mode 

            photoDepletion = 

math.log((intenOFF[IndexWantedOFF[iOFF]]/inten[IndexWanted[iON]]))/(wa

veInfo[i]*powerInfo[i]) 

            diffParent=intenOFF[IndexWantedOFF[iOFF]]-

inten[IndexWanted[iON]] 

            relPhotDetachmentPerc = 100*(1-sumFrag/diffParent)  

             

            line[i] = line[i] +" " + str(round(photoDepletion,4)) +" " 

+str(round(relPhotDetachmentPerc,1))  

        else: 

            line[i] = line[i] +" " + " xxxx" + " xxxx" 

         

      

         

        fileFinal.write(line[i]+"\n") 

         

    label = "wavel eV lasPow parOFF " 

    for i in range(len(lab)): 

        label = label + str(lab[i])+" " 

         

    label = label + "Depl"+" %relPhotD"  

    fileFinal.write(label) 

  

    fileFinal.close() 

     

    print("You program is finished!!!Check the 

FinalTableIntensity.txt") 

    k=input("press any key to exit ")  

       

     

     

Analysis() 
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A2.6 CID plots scripts 

 
 

To generate the CID plots the previously described AutomationEngine VB script and the 

Phyton modules were modified;  in the CID experiments, usually, every fixed number of 

minutes the collision voltage increases of a step decided by the user and this defines 

ranges in the TIC of equal time length.  In this case, the AutomationEngine script 

described in Section A2.3 was modified so that a text file was extracted for each range 

i.e. min1.txt, min2.txt…min18.txt. These text files are then used by the Phyton scripts to 

generate an output table where each row represents a range in the TIC and the columns 

represent the mass spectrum peak intensity of the ions with the m/z displayed on the 

legend.  

 

                309.16    400.96           311.48 

1min       85            6539230        36 

2min       93            6016573        52 

3min       41            5665652        83 

4min       382          5674469        62 

5min        51           5531550        xxxx    

 

In the example above, the data from the first TIC range collected at a certain CID collision 

voltage (the user takes notes of collison voltages during the experiment) is displayed in 

the first row (1min) of the table; the second TIC range on the second row (2min) etc. In 

this example, the parent ion is at m/z 400.96 and the other ions (collision-induced 

fragments) selected by the user are at m/z 309.16 and m/z 311.48 (all these m/z values 

are shown on the legend) and their respective mass spectra intensities are displayed for 

each TIC range. 

 

The user can use this table and directly calculate the relative intensities and plot the CID 

graph. 

After running the new modified VB AutomationEngine the user double clicks on the 

“ClickME.py” script or uses Spyder as described in the previous Sections and follows the 

instructions that will be displayed.   

Here only four Phyton modules are used: ClickME.py, findFragments.py, 

allFragments.py, Input.py.  
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AutomationEngine Script 

 

'CHANGE THIS! time = 28 <--- change the second number to the time of 

your CID(the end time of your last segment)  

'NB if you are lazy just put a high number and then delete the extra 

output segments later 

'CHANGE THIS! segmentLenght = 1 <--- change this number to the lenght 

of each segment. In this case it means each segment length is 1min 

time = 2 

segmentLenght = 0.5  

For count = 0 To time Step segmentLenght 

    x = count 

    y = count + segmentLenght 

      

     

    'Analysis.RecalculateLineSpectra 'use line spectra MS istead of 

profile spectra, this is optional' 

    Analysis.Compounds.DisableAll  'Unchecks all of the produced 

compound spectra (which are not useful in our analysis) 

    Analysis.Chromatograms(1).AddRangeSelection x, y, 0, 0  

    Analysis.Chromatograms(1).AverageMassSpectrum true, false  

    Analysis.Chromatograms(1).ClearRangeSelections  

     

    Analysis.Save  ' Saves the analysis if you need to look at it 

later 

    

Next 

 

x= 0  

  

num_seg = time/segmentLenght 

For i = 0 To num_seg Step 1     

  x = x + 1  

  path = pathOUT & "min" & x  

  Analysis.Spectra(x).ExportMassList path, daASCII 'exports the mass 

list  

Next 
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Input.py 

# -*- coding: utf-8 -*- 

""" 

This asks the users about where to find the output .ascii files from 

AutomationEngine and creates a directory called OUTPUTfiles where all 

the generated output from the Phyton scripts will be stored in form of 

text files.  

""" 

 

#ASK USER WHERE TO STORE ALL THE RESULTING TEXT FILES 

#finds current working directory to write folder with all the output 

.txt files 

import os 

pathCWD = os.getcwd() 

 

pathOUT = pathCWD + "\\OUTPUTfiles\\" 

 

try: 

    # Create target Directory 

    os.mkdir(pathOUT) 

except OSError:   

    print ("Creation of the directory %s failed" % pathOUT) 

else:   

    print ("Successfully created the directory %s " % pathOUT) 

     

 

 

def Input(): 

    #the only path we need is the one with all the laser ON and OFF 

files 

    pathASCIItmp = input("Enter the pathOUT you used in Data 

Analysis:\n")   

    pathASCII = pathASCIItmp +"//" 

     

    numIntervals = input("Enter number of intervals you have:\n") 

     

    numIntervalsInt = int(numIntervals) 

               

    return pathASCII, pathCWD, pathOUT, numIntervalsInt 
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allFragments.py 

 

# -*- coding: utf-8 -*- 

""" 

Creates an output file called allFragments.txt where the range and the 

m/z and corresponding intensities are stored 

""" 

# define a useful subroutine, global variables 

 

import Input 

 

pathASCII, pathCWD, pathOUT, numIntervals = Input.Input() #this import 

path where info.txt is stored 

 

def textTable(): #this is the name of the function to store all the 

laser ON data in arrays 

     

    pathTemp = pathOUT + "allFragments.txt" 

    fileTemp = open(pathTemp, "w+")   #open the 

laserONallFragments.txt file to write on it, if not present crates 

file 

     

    #GENERATE THE NAMES OF THE FILES GENERATED BY DATAANALYSIS 

AUTOMATION ENGINE SCRIPT 

    #define the name of the files eg 0012ON.ASCII. here we are only 

interested in ON files 

    for i in range(1, numIntervals+1): 

         

        bON = "min" + str(i)  #this write eg.min1, min2, min3 etc. 

        pathON = pathASCII + bON +".ASCII" 

        #this open the files with laser ON eg.parh....\\0012ON.ASCII 

         

        fileON = open(pathON, 'r')    #here reads files generated by 

dataanalysis 

        lines = fileON.readlines() 

        del lines[0] #delete first line of the table 

         

        fileON.close() 

         

        newLines = [] 

         

         

        #writes the userfrienfly text file 

        for j in range(len(lines)): 

            newLines.append("min" + str(i) + " "+ lines[j]) 

                          

         

        for j in range(len(newLines)):  #or len(newLines) since it's 

the same 

            row = newLines[j] 

        #now we can write those data in a temporary txt file sorting 

out the  

        #the difficulties experienced with the ASCII format 

            fileTemp.write("%s" % row) 

     

     



140 
 

    fileTemp = open(pathTemp, "r")    #open the same file but this 

time reading (r) 

    #read line into array  

    lines = fileTemp.readlines() 

     

    x = [] #number file 

    

    h = [] #m/z 

    k = [] #intensity 

     

    for i in range(len(lines)): 

        splitLines = lines[i].split()   #eg. lines[1]= "23 67 6" --> 

splitLines= "23", "67", "6" 

          

        x.append( str(splitLines[0]) ) #this array has file number 

         

        h.append( float(splitLines[2]) ) #m/z 

        k.append( int(splitLines[3]))  #intensity 

         

    #now that we imported all the data in the arrays we can make the 

text file 

    #even more user friendly 

     

         

    fileTemp = open(pathTemp, "a") 

    fileTemp.seek(0,0) 

    fileTemp.write("min   ?    m/z   int \n\n") 

     

    fileTemp.close() 

 

             

    return x, h, k, pathOUT, numIntervals 
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findFragments.py 

# -*- coding: utf-8 -*- 

""" 

Asks which are the fragments produced after showing the use all the 

mass spectra signals and thir counts. 

""" 

 

def findFrag(): 

     

    from allFragments import textTable #I will use the textTable 

function later 

     

    IdFile, mz, intens, pathOUT, numIntervals = textTable() 

     

    fragPath = pathOUT + "FragmentsFound.txt"   #where we create file 

with all fragments 

    fileFrag = open(fragPath, 'w+')              #werite and creates 

file(+) 

    fileFrag.write("m/z   counts\n") 

    #now it finds all the fragments and count them 

     

    frame = 0.1 #by default everything that differs less than 0.5 m/z 

units is considered the same specie 

    exclude = [] 

     

    print("FIND FRAGMENTS OPTIONS")    

    print("\nDo you want to consider everthing that differs less than 

0.1m/z the same specie?") 

    answer1 = int(input("if you want to change this default write 0, 

if not write an other number: ")) 

    if answer1 == 0: 

        frame = float(input("write the new m/z difference to replace 

the default 0.1m/z: ")) 

        print("\nYour fragments are:") 

     

    

       

    m1 = sorted(mz, reverse = True) 

     

    massUser = [] 

    k_out=0 

     

    for i in range(len(IdFile)): 

        summ = m1[i] 

        same = 1 

        contin = 1 

        #if is the same is excluded 

        

        for k in range(len(exclude)): 

            if i == exclude[k]: 

                contin = 0 #false: we can not continue,this is new 

fragment 

             

        if contin == 1: 

            for j in range(i+1, len(IdFile)): 

                if m1[j] - frame < m1[i] and m1[i] < m1[j] + frame: 

                    summ = summ + m1[j] 
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                    same = same + 1 

                    exclude.append(j) 

            mean = round(summ/same,2)   #the mean of the fragment 

found 

            fileFrag.write(str(mean) + " " + str(same) + "\n") 

             

            print(str(k_out)+" "+ str(mean) + " " + str(same)) 

            k_out = k_out + 1 

            massUser.append(mean) #now we have correspondence index 

with mass 

    fileFrag.close()  

 

    #now we have all the data in the txt file. # 

    #I want to ask the user wich fragments wants and store these in a 

new array 

    

    print("\nNow that you know your fragments tell me which ones you 

want")  

    strFragUser = input("write the correspondant numbers(eg.0 4 6 13) 

with a space in between: ") 

     

    

    IndexWanted = [] 

    FragUser = [] #this is integer 

     

    inp=strFragUser.split() 

     

    for i in range(len(inp)): 

        FragUser.append(int(inp[i])) 

         

        

    #now we need a new array with the masses derived from massUser 

    #if user choses eg.3 then they want massUser[3] 

     

    change = [] #where we change fragment 

    count = -1 

    #when we choose numeber it corresponds to m[number] m/z value: 

    for i in range(len(FragUser)): 

         

        for j in range(len(IdFile)): 

            if mz[j] - frame < massUser[FragUser[i]] and 

massUser[FragUser[i]] < mz[j] + frame: #fragment we want 

                #here it's ok, we may store index j to know wich 

masses are to consider 

                IndexWanted.append(j) 

                #all we want is stored in IndexWanted 

                count = count + 1 

        change.append(count) 

     

    #here we need to store the masses of the fragments for the label 

in analysis 

    label = [] 

    for i in range(len(FragUser)): 

        label.append(massUser[FragUser[i]]) 

     

    return IdFile, intens, IndexWanted, change, label, pathOUT, 

numIntervals 

     

     



143 
 

 

 

ClickME.py 

# -*- coding: utf-8 -*- 

""" 

This is the final script. You have to double click this one. All the 

other scripts 

are used by this one. This script recalls findFragments wich uses 

LaserONallFragments 

wich uses input... 

""" 

 

 

#this is only laser On 

def Analysis(): 

     

    from findFragments import findFrag 

    IdFile, inten, IndexWanted, change, lab, pathOUT, numIntervals = 

findFrag() 

      

         

    #wrrite .txt wavelengh, energy, intensityONparent, 

intensityOFFparent, intesnsityfrag1, frag2 

    outPath =  pathOUT + "finalTableInensity.txt"   

    fileFinal = open(outPath, 'w+') 

    line = [] 

     

    for i in range(numIntervals): 

        line.append(str(i+1)+"min ") 

     

    numFrag = len(change) 

     

     

        

    #laser On fragments(number of fragments is numFrag that is the 

lenght of change) 

    for i in range(len(line)): 

        parentON = 0 

        fragON=0 

           

    #laser On fragments(number of fragments is numFrag that is the 

lenght of change) 

         

        for k in range(change[0]+1): 

             

            if IdFile[IndexWanted[k]] == ("min"+str(i+1)): 

                line[i] = line[i] + " " + str(inten[IndexWanted[k]]) 

                 

                parentON = 1 

     

        if parentON == 0: 

            line[i] = line[i] +" " + "xxxx" 

         

        sumFrag = 0 #for relative photodetachment 

        for j in range(1, numFrag): 

            fragON=0 
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            for k in range(change[j-1]+1, change[j]+1): 

                if IdFile[IndexWanted[k]] == ("min"+str(i+1)): 

                    line[i] = line[i] + " " + 

str(inten[IndexWanted[k]]) 

                    sumFrag = sumFrag + inten[IndexWanted[k]] 

                    fragON = 1 

                     

                         

            if fragON == 0: 

                line[i] = line[i] +" " + "xxxx" 

           

               

      

         

        fileFinal.write(line[i]+"\n") 

         

    label = "min  " 

    for i in range(len(lab)): 

        label = label + str(lab[i])+" " 

         

  

    fileFinal.write(label) 

     

 

    fileFinal.close() 

     

    print("You program is finished!!!Check the 

FinalTableIntensity.txt") 

    k=input("press any key to exit ")  

       

     

     

Analysis() 
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Abbreviations and glossary 

 

CID – Collision Induced Dissociation 

CRM – Charge Residue Model 

DFT – Density Functional Theory 

ESI – Electrospray Ionization 

HCD – Higher Energy Collisional Dissociation 

IEM – Ion Evaporation Model 

TTP – Tetraphenylporphyrin 

LIMS – Laser Interfaced Mass Spectrometer 

LDI – Laser Desorbtion Ionization 

MALDI – Matrix Assisted Laser Desorption 

MP – Metalloporphyrin 

NiOEP – Nickel octaethylporphyrin 

[NiOEP]∙+ and [NiOEP]∙–  – Nickel octaethylporphyrin radical cation and anion 

OEP – Octaethylporphyrin 

PD – Photodepletion 

PF – Photofragmentation 

X – Halide atom (X = F, Cl, I, Br) 

TIC – Total Ion Current 

VDE – Vertical Detachment Energy 

ZnTPP – Zinc tetraphenylporphyrin 

[ZnTPP]∙+ and [ZnTPP]∙–  – Zinc tetraphenylporphyrin radical cation and anion 

ZnTPP ∙ X–  – Cluster between zinc tetraphenyl porphyrin and a halide anion 
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Action spectrum:  Indirect absorption spectrum. 

Action spectroscopy: Indirect spectroscopic technique to obtain an absorption spectrum 

when it is not possible to measure directly the difference between the light in and out. 

Aggregate/cluster: General term used to describe two or more molecules/ions that are 

kept together by electrostatic interactions; in mass spectrometry, the formation of ion 

clusters in the ion source is a common phenomenon. In this thesis, the term 

aggregate/cluster is extended also to describe complexes observed to be produced in the 

ionization source.  

Photodepletion: Depletion of a molecular species mediated by light due to 

photodissociation or electron loss.  It can also be defined with negatively charged atomic 

species since they can deplete by losing electrons. 

Photodepletion spectrum: Plot of the photodepletion yield vs. wavelength or photon 

energy; this is considered an indirect absorption spectrum (action spectra). 

Photodetachment: The absorption of a photon and subsequent elimination of an electron 

from an anion to form a neutral species. 

Photodissociation: dissociation of a chemical compound by the action of light. 

Photofragmentation: Synonimus of photodissociation. 

Photofragmentation spectrum: Plot of the photofragmentation yield vs. wavelength or 

photon energy; this shows the production profile of the photofragment considered. 

Photodissociation mass spectrum: Mass spectrum taken after the ions have absorbed 

photons and have dissociated; the mass spectra peaks of photofragments produces are 

therefore displayed. 

Photoelectron spectroscopy: refers to energy measurement of electrons emitted from 

solids, gases or liquids by the photoelectric effect, in order to determine the binding 

energies of electrons in a substance. 

Photoelectron spectrum: Plot of ionization energy Vs. electron counts derived from a 

photoelectron spectroscopy experiment. 
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