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Abstract 

 

Advancement in Internet-of-Things (IoT), mobile technologies and cloud 

computing services have inspired numerous designs for cloud-based real-

time health monitoring systems. However, the massive transfer of health-

related data to cloud contributes to increase the congestion in the networking 

infrastructure which leads to high latency and increased power consumption. 

Therefore, fog computing is introduced to provide service provisioning close 

to users. Nevertheless, the energy consumption of both transport network and 

processing infrastructures have yet to be probed further. Hence, this study 

proposes a new fog computing architecture under Gigabit Passive Optical 

Network (GPON) access network for health monitoring applications.  

A Mixed integer linear programming (MILP) model is introduced to optimise 

the number and locations of the processing servers at the network edge for 

energy-efficient fog computing. The model is developed for GPON and 

Ethernet access networks used to support fog processing. The impact of 

equipment idle power and the traffic volume have been investigated, and their 

effect on energy efficiency to serve low and high data rate health monitoring 

applications is established. The work also proposes resilient fog processing 

architectures for health monitoring applications. A MILP model for energy-

efficient and resilient fog computing infrastructure considering two types of 

server protections related to geographic locations of primary and secondary 

processing servers are developed to optimise the number and locations of the 

processing servers at the network edge. In addition, a MILP model is 

developed to optimise energy efficiency and resilience of the proposed fog 

processing architectures considering server protection with geographical 
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constraints and network protection with link and node disjoint resilience. The 

impact of increasing the level of resilience on the energy consumption of 

networking and processing is studied in contexts where the goal is to serve 

low and high data rate health monitoring applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- ix - 

Table of Contents 

 

Acknowledgements ..................................................................................... v 

Abstract ...................................................................................................... vii 

Table of Contents ....................................................................................... ix 

List of Abbreviations ................................................................................ xiv 

List of Tables .......................................................................................... xviii 

List of Figures ........................................................................................... xx 

Chapter 1  Introduction ............................................................................... 1 

1.1 Research objectives ........................................................................ 6 

1.2 Original contributions....................................................................... 7 

1.3 Related publications ........................................................................ 8 

1.4 Thesis organisation ......................................................................... 9 

Chapter 2 Review of IoT and cloud-based healthcare ........................... 12 

2.1 Introduction ................................................................................... 12 

2.2 Internet of Things networks ........................................................... 12 

2.3 IoT for healthcare .......................................................................... 15 

2.4 Cloud-based health monitoring applications .................................. 18 

2.5 Roles of fog computing and cloud computing in health 
monitoring applications ............................................................... 23 

2.5.1 Roles of fog computing in health monitoring applications
 ............................................................................................ 23 

2.5.1.1 Switching network ........................................................... 24 

2.5.1.2 Data processing .............................................................. 24 

2.5.1.3 Pushing services ............................................................. 24 

2.5.1.4 Filtering ........................................................................... 25 

2.5.1.5 Aggregation / Data fusion ................................................ 25 

2.5.1.6 Channel management ..................................................... 26 

2.5.1.7 Data compression ........................................................... 26 

2.5.1.8 Data storage .................................................................... 27 

2.5.2 Roles of cloud computing in health monitoring 
applications ......................................................................... 27 

2.6 Fog-assisted health monitoring applications ................................. 29 

2.6.1 Energy efficiency ................................................................ 29 

2.6.2 Latency ............................................................................... 31 

2.6.3 Accuracy ............................................................................ 38 



- x - 

2.6.4 Cost .................................................................................... 40 

2.7 Conclusions ................................................................................... 42 

Chapter 3 A proposed health monitoring system with fog 
computing architecture .................................................................... 43 

3.1 Introduction ................................................................................... 43 

3.2 Health monitoring system with fog computing ............................... 44 

3.3 Fog computing architecture for health monitoring applications 
with Gigabit passive optical network (GPON) access network .... 46 

3.3.1 Link capacity considerations in the network for health 
monitoring applications ....................................................... 48 

3.3.2 Power profile of networking and processing equipment 

for health monitoring applications ........................................ 49 

3.4 System flow of health monitoring applications in the network ....... 52 

3.5 Mathematical model for Energy-efficient fog computing health 
monitoring applications with LTE-M (EEFC)................................ 54 

3.6 Mathematical model for the Energy efficient cloud computing 
health monitoring applications with LTE-M (EECC) .................... 77 

3.7 Summary ..................................................................................... 82 

Chapter 4 Energy efficient fog computing with Long Term Evolution 
for machine (LTE-M) for ECG monitoring applications .................. 84 

4.1 Introduction ................................................................................... 84 

4.2 Parameters consideration ............................................................. 85 

4.2.1 Network layout under GPON network in West Leeds, UK
 ............................................................................................ 85 

4.2.2 Total number of monitored patients in West Leeds, UK ..... 88 

4.2.3 Time measurement for processing and analysis of 
Electrocardiogram (ECG) signal using Pan-Tompkins 
algorithm ............................................................................. 90 

4.2.4 Data rate calculation for traffic transmission in the 
network ............................................................................... 93 

4.3 Performance evaluation for the EEFC Model ................................ 98 

4.4 The Energy optimised fog computing (EOFC) heuristic .............. 104 

4.4.1  EOFC heuristic description............................................... 104 

4.4.2 Performance evaluation of the EOFC heuristic ................ 108 

4.5 Impact of idle power of networking and processing equipment 
on the EEFC model under GPON access network .................... 109 

4.6 Impact of increasing traffic on EEFC ........................................... 112 

4.7 Impact of different access networks on EEFC model .................. 121 



- xi - 

4.7.1 Fog computing architecture for health monitoring 
applications under Ethernet access network ..................... 121 

4.7.2 MILP model and parameters consideration under 
Ethernet access network for health monitoring system ..... 122 

4.7.3 Results and analysis of EEFC model under Ethernet 
access network for health monitoring system.................... 126 

4.8 Conclusions ................................................................................. 129 

Chapter 5 Energy-efficient fog computing with Long Term 
Evolution for machine (LTE-M) for fall monitoring applications
 .......................................................................................................... 131 

5.1 Introduction ................................................................................. 131 

5.2 Parameters consideration ........................................................... 132 

5.2.1 Total number of monitored patients in West Leeds, UK .... 132 

5.2.2 Time measurement for video data processing ................. 134 

5.2.3 Data rate calculation for traffic transmission in the 
network ............................................................................. 134 

5.3 Mathematical model for Energy-efficient fog computing health 
monitoring application (EEFC) .................................................. 139 

5.4 Results and analysis of EEFC model and the EOFC heuristic .... 140 

5.4.1 Limited number of patients per processing server ............ 141 

5.4.2 Limited number of processing servers per candidate 
node .................................................................................. 146 

5.5 Conclusions ................................................................................. 150 

Chapter 6 Resilient infrastructure for health monitoring 
applications ..................................................................................... 153 

6.1 Introduction ............................................................................... 153 

6.2 The proposed resilient fog computing architecture for health 
monitoring applications ............................................................. 155 

6.3 Mathematical model for energy efficiency and resilient 
infrastructure for fog computing considering server protection .. 157 

6.3.1 Protection for servers without geographical constraints ... 157 

6.3.2 Protection for servers with geographical constraints ........ 167 

6.4 Realistic parameter consideration for ECG monitoring 
applications ............................................................................... 168 

6.4.1 Network layout under GPON network and total number 
of monitored heart patients in West Leeds, UK ................. 168 

6.4.2 Data rate calculation for traffic transmission in the 
network ............................................................................. 169 

6.5 Results and analysis of the MILP model for ECG monitoring 
applications considering server protection ................................ 174 



- xii - 

6.5.1 Performance analysis of server protection resilient 
scenario without geographical constraints ........................ 175 

6.5.2 Performance analysis of resilient scenario considering 
geographical constraints ................................................... 183 

6.6 Realistic parameter considerations for fall monitoring 
applications ............................................................................... 191 

6.6.1 Network layout under GPON network and total number 
of monitored elderly patients in West Leeds, United 
Kingdom ............................................................................ 191 

6.6.2 Data rate calculation for traffic transmission in the 
network ............................................................................. 193 

6.7 Results and analysis of the MILP model for fall monitoring 
applications considering server protection ................................ 195 

6.7.1 Performance analysis of server protection resilient 
scenario without geographical constraints ........................ 195 

6.7.2 Performance analysis of resilient scenario with 
geographical constraints ................................................... 202 

6.8 Resilient infrastructure with server and network protection ......... 206 

6.8.1 Mathematical model for energy-efficient fog computing 
considering server and network protection ........................ 208 

6.8.2 Results and analysis of the MILP model for ECG 
monitoring applications considering geographical 
constraint server protection and link and node disjoint ...... 216 

6.8.3 Results and analysis of the MILP model for fall 
monitoring applications considering geographical 
constraint server protection and link and node disjoint ...... 223 

6.9 Energy optimised resilient infrastructure with fog computing 
heuristic ..................................................................................... 229 

6.9.1  Flow of EORIWG heuristic ............................................... 229 

6.9.2 Flow of the EORIG heuristic .............................................. 233 

6.9.3 Flow of the EORIGN heuristic ........................................... 234 

6.10 Results and analysis of the heuristic models ............................. 238 

6.10.1 EORIWG heuristic results .............................................. 239 

6.10.2 EORIG heuristic results .................................................. 243 

6.10.3 EORIGN heuristic results ............................................... 247 

6.11 Conclusions ............................................................................... 251 

Chapter 7 Summary of contributions and future work ........................ 255 

7.1 Summary of contributions ............................................................ 255 

7.2 Future directions ......................................................................... 261 



- xiii - 

References ............................................................................................... 263 

Appendix 1 ............................................................................................... 283 

Appendix 2 ............................................................................................... 294 

Appendix 3 ............................................................................................... 299 

Appendix 4 ............................................................................................... 300 

Appendix 5 ............................................................................................... 301 

Appendix 6 ............................................................................................... 302 

Appendix 7 ............................................................................................... 303 

 

 



- xiv - 

List of Abbreviations 

 

ABAC Attribute-based Access Control 

AF Atrial Fibrillation 

AGS Aggregation Switch 

AHA American Heart Association 

AHMS Autonomic Healthcare Management System 

APIs Application Program Interfaces 

AQI Air Quality Index 

ASW Access Switch 

AZSPM Autonomic Zero-Knowledge Security Provisioning Model 

BBN Bayesian Belief Network 

BS Base Station 

CA Conventional Approach 

CABG Coronary Artery Bypass Surgery 

CAPEX Capital Expenditure 

CAS Centre Aggregation Switch 

CP-ABE Ciphertext-policy Attribute-based Encryption 

CVD Cardiovascular Disease 

DDoS Distributed Denial of Service Attack 



- xv - 

DMBD Decoy Medical Big Data 

ECG Electrocardiogram 

EECC Energy Efficient Cloud Computing 

EEFC Energy-efficient Fog Computing 

E-HAMC Emergency Help Alert Mobile Cloud 

EOFC Energy Optimised Fog Computing 

EORIG Energy Optimised Resilient Fog Computing Infrastructure 

with Geographical Constraints 

EORIGN Energy Optimised Resilient Fog Computing Infrastructure 

with Geographical Constraints and Link and Node Disjoint  

EORIWG Energy Optimised Resilient Fog Computing Infrastructure 

without Geographical Constraints 

FAAL Fog Ambient Assisted Living  

FOA Fog Optimised Approach 

FPGA Field-Programmable Gate Array 

GeSI Global e-Sustainability Initiative 

GPON Gigabit Passive Optical Network 

H3IoT Home Health Hub Internet of Things 

HL7 Health Level Seven 

IAL Internet Application Layer 

ICT  Information and Communications Technology 



- xvi - 

ILP Information Processing Layer 

IoT Internet of Things 

LCL Local Communication Layer 

LTE Long-Term Evaluation 

LTE-M Long-Term Evolution for Machine 

M2M Machine-to-Machine 

MCC Mobile Cloud Computing 

MCIs Micro Computing Instances 

m-health Mobile Health 

MILP Mixed Integer Linear Programming 

MIT Massachusetts Institute of Technology 

NHS National Health Services 

OLT Optical Line Terminal 

OMBD Original Medical Big Data 

ONS Office for National Statistics 

ONU Optical Network Unit 

OPEX Operating Expenses 

OSA Obstructive Sleep Apnea 

PCE Power Conversion Efficiency 

PCIs Percutaneous Coronary Interventions Surgery 



- xvii - 

PFHD Privacy-preserving Fog-assisted Information Sharing 

Scheme for Health Big Data 

PRB Physical Resource Block 

PS Processing Server 

PSL Physical Sensing Layer 

PUE Power Usage Effectiveness 

QoS Quality-of-Service 

QPSK Quadrature Phase Shift Keying 

RB Resource Block 

RE Resource Element 

RFID Radio Frequency Identification 

SF2CA Smart F2C Adaptor 

SoA-Fog Service-Oriented Architecture-Fog 

SSL Secure Sockets Layer 

TTI Transmission Time Interval 

UAL User Application Layer 

UFW Uncomplicated Firewall 

VM Virtual Machine 

WSN Wireless Sensor Network 

  

 

 



- xviii - 

List of Tables 

 

Table 3.1: The sets, parameters and variables used in MILP ..................... 55 

Table 3.2: Additional variables used in EECC model .................................. 78 

Table 4.1: Number of monitored patients in clinics ...................................... 89 

Table 4.2: Parameter inputs for FOA and CA .............................................. 98 

Table 4.3: Input parameters for networking and computing devices ......... 100 

Table 4.4: Energy-saving and Energy-increase in the EEFC model 
compared to the EECC model, with varied percentages of idle power ...... 110 

Table 4.5: Power consumption and capacity of Ethernet switch ............... 113 

Table 4.6: Additional parameters for Ethernet switch ................................ 114 

Table 4.7: Data rate and transmission time for permanent storage with 
varying numbers of patient in the network for the EECC and EEFC model 
under scenario 2 ....................................................................................... 116 

Table 4.8: Energy-Saving and Energy-Increased in EOFC heuristic 
under scenario 1 and scenario 2 compared to the EECC model under 
scenario 2, for varied percentages of increasing traffic. ............................ 117 

Table 4.9: Set and parameters for Ethernet network ................................. 123 

Table 4.10: Parameter inputs for FOA and CA .......................................... 126 

Table 4.11: Input parameters for the Ethernet network ............................. 126 

Table 5.1: Number of monitored elderly patients in clinics expected to 
experience a fall ........................................................................................ 133 

Table 5.2: Parameter inputs for FOA and CA for scenario 1 ..................... 138 

Table 5.3: Parameter inputs for FOA and CA for scenario 2 ..................... 139 

Table 5.4: Additional parameters for EEFC model .................................... 140 

Table 5.5: Power consumption of 2.4-GHz server ..................................... 141 

Table 5.6: Optimisation gap between the EEFC model and the EOFC 
heuristic for different percentages of patients per processing server ........ 143 

Table 5.7: Number of candidate nodes utilised to place the processing 
servers ...................................................................................................... 147 

Table 5.8: Optimisation gaps between the EEFC model and the EOFC 
heuristic for different numbers of processing servers per candidate node
 .................................................................................................................. 148 

Table 6.1: Additional variables used in MILP ............................................ 157 

Table 6.2: Number of monitored patients in clinics .................................... 169 

Table 6.3: Data rate and related time for a different number of processing 
servers per candidate node 𝑵, for ECG monitoring applications ............... 173 

Table 6.4: Number of Monitored Elderly Patients in Clinics ....................... 192 



- xix - 

Table 6.5: Data rate and related time for different numbers of processing 
servers per candidate node 𝑵 for fall monitoring applications ................... 194 

Table 6.6: Additional set and variables in the MILP model ........................ 209 

Table 6.7: Average optimisation gaps between the MILP model and 
EORIWG heuristic for ECG and fall monitoring applications for different 
percentages of patients ............................................................................. 242 

Table 6.8: Average optimisation gaps between the MILP model and 
EORIG heuristic for ECG and fall monitoring applications ........................ 246 

Table 6.9: Optimisation gaps between the MILP model and EORIGN 
heuristic for ECG and fall monitoring applications ..................................... 250 

 

 



- xx - 

List of Figures 

 

Figure 2.1: Multi-layer architecture of health monitoring applications .......... 17 

Figure 2.2: m-Health system architecture considering emergency 
scenarios [50] .............................................................................................. 20 

Figure 2.3: Aspects of platform support for diabetes (a) Data collected 
from the patients (b) System feedback to the patient (c) Caregiver 
feedback to the patient [51] ......................................................................... 21 

Figure 2.4: H3IoT architecture framework for health monitoring for 
elderly [52] ................................................................................................... 22 

Figure 3.1: Architecture of the proposed system ......................................... 45 

Figure 3.2: GPON architecture in the fog network ....................................... 47 

Figure 3.3: Power consumption model for (a) processing servers and 
cloud storage (b) other networking devices ................................................. 50 

Figure 3.4: System flow of (a) conventional approach (CA) (b) proposed 
approach (FOA) .......................................................................................... 53 

Figure 4.1: BS, OLT and clinic locations in West Leeds .............................. 87 

Figure 4.2: Selected BSs and OLT to serve clinics in West Leeds .............. 88 

Figure 4.3: The 30-second and 5-second ECG waveform .......................... 91 

Figure 4.4: Number of patients versus time, based on MATLAB 
simulations .................................................................................................. 92 

Figure 4.5: Transmission times for each task and processing time ............. 94 

Figure 4.6: LTE-M resource grid ................................................................. 95 

Figure 4.7: Energy consumption of networking equipment and 
processing in GPON architecture .............................................................. 101 

Figure 4.8: Flow chart for EOFC heuristic ................................................. 105 

Figure 4.9: Energy consumption of networking equipment and 
processing in the GPON architecture with varying idle power 
percentages .............................................................................................. 109 

Figure 4.10: GPON architecture with fog computing and Ethernet 

switches for scenario 2 .............................................................................. 113 

Figure 4.11: Energy consumption of networking equipment and 
processing in EOFC heuristic under scenario 1 and EECC model and 
EOFC heuristic under scenario 2 with the increasing number of patients
 .................................................................................................................. 117 

Figure 4.12: Ethernet architecture in the fog network ................................ 122 

Figure 4.13: Energy consumption of networking equipment and 
processing in Ethernet architecture ........................................................... 127 

 



- xxi - 

Figure 5.1: Energy consumption of networking equipment and 
processing for EECC model, EEFC model, and EOFC heuristic for 
different percentages of patients per processing server ............................ 142 

Figure 5.2: Percentage energy saving in EEFC model compared to 
EECC model for different percentages of patients per processing server
 .................................................................................................................. 142 

Figure 5.3: Energy consumption of networking equipment and 
processing for EEFC model and EOFC heuristic for different numbers of 
processing servers per candidate node when 20% of patients can be 
served in a single processing server ......................................................... 146 

Figure 5.4: Optimal location of processing servers for EEFC model and 
EOFC heuristic for different numbers of processing servers per 

candidate node when 20% of patients can be served in a single 
processing server ...................................................................................... 147 

Figure 6. 1: The resilient fog computing infrastructure for health 
monitoring applications .............................................................................. 156 

Figure 6.2: Optimal location of processing servers for (a) non-resilient 
scenario and (b) resilient scenario without geographical constraints for 
ECG monitoring applications ..................................................................... 175 

Figure 6.3: Energy consumption of networking equipment for non-
resilient scenario and resilient scenario, without geographical constraints 
for ECG monitoring applications ................................................................ 178 

Figure 6.4: Percentage of energy penalty of networking equipment for 
resilient scenario, without geographical constraints compared to non-
resilient scenario for ECG monitoring applications. ................................... 179 

Figure 6.5: Number of candidate nodes used to place processing servers 
for non-resilient scenario and the resilient scenario, without geographical 
constraints for ECG monitoring applications. ............................................ 180 

Figure 6.6: Number of base stations used to send (a) the raw ECG signal 
for processing and (b) the analysed ECG signal for feedback, for non-
resilient scenario and resilient scenario without geographical constraints 
under different percentages of patients and number of processing 
servers per candidate node, for ECG monitoring applications .................. 180 

Figure 6.7: Energy consumption of processing for non-resilient scenario 
and resilient scenario, without geographical constraints for ECG 
monitoring applications .............................................................................. 182 

Figure 6.8: Optimal location of processing servers for resilient scenario, 
considering geographical constraints for ECG monitoring applications ..... 183 

Figure 6.9: Energy consumption of networking equipment for resilient 
scenario, without geographical constraints and resilient scenario 
considering geographical constraints for ECG monitoring applications ..... 185 

Figure 6.10: Number of candidate nodes used to place processing 
servers for resilient scenario, without geographical constraints and 
resilient scenario considering geographical constraints for ECG 
monitoring applications. ............................................................................. 185 



- xxii - 

Figure 6.11: Number of base stations used to send  (a) the raw ECG 
signal for processing and (b) the analysed ECG signal for feedback, for 
resilient scenario without geographical constraints and resilient scenario, 
with geographical constraints under different percentages of patients 
and number of processing servers per candidate node, for ECG 
monitoring applications .............................................................................. 186 

Figure 6.12: Percentage of energy penalty of networking equipment for 
the resilient scenario, considering geographical constraints, compared 
to the resilient scenario without geographical constraints for ECG 
monitoring applications .............................................................................. 188 

Figure 6.13: Energy consumption of processing for resilient scenario 
without geographical constraints and resilient scenario considering 
geographical constraints for ECG monitoring applications ........................ 190 

Figure 6.14: The resilient fog computing infrastructure for fall monitoring 
applications ............................................................................................... 192 

Figure 6.15: Optimal location of processing servers for (a) non-resilient 
scenario and (b) resilient scenario, without geographical constraints for 
fall monitoring applications ........................................................................ 196 

Figure 6.16: Energy consumption of networking equipment for non-
resilient and resilient scenario, without geographical constraints for fall 
monitoring applications .............................................................................. 197 

Figure 6.17: Total number of candidate nodes used to place the 
processing servers for non-resilient and resilient scenario, without 
geographical constraints for fall monitoring applications ........................... 198 

Figure 6.18: Energy penalty of networking equipment for resilient 
scenario without geographical constraints, compared to the non-resilient 
scenario for fall monitoring applications. ................................................... 199 

Figure 6.19: Number of base stations used to send  (a) the raw video 
signal for processing and (b) analysed video signal for feedback, for the 
non-resilient scenario and resilient scenario, without geographical 
constraints under different number of processing servers per candidate 
node for fall monitoring applications .......................................................... 200 

Figure 6.20: Optimal location of processing servers for the resilient 
scenario with geographical constraints, for fall monitoring applications .... 202 

Figure 6.21: Energy consumption of networking equipment for scenario 
with geographical constraints; and scenario without geographical 
constraints for fall monitoring applications. ................................................ 203 

Figure 6.22: Total number of candidate nodes used to place the 
processing servers for the resilient scenario, with geographical 
constraints and scenario without geographical constraints for fall 
monitoring applications. ............................................................................. 204 

Figure 6.23: The percentage energy penalties of networking equipment 
for the scenario with geographical constraints, compared to the scenario 
without geographical constraints for fall monitoring applications ............... 205 



- xxiii - 

Figure 6.24: Optimal location of processing servers for the resilient 
scenario considering the geographical constraint for server protection 
and link and node disjoint resilience for network protection for ECG 
monitoring applications .............................................................................. 217 

Figure 6.25: Energy consumption of networking equipment for the 
resilient scenario considering the geographical constraints and the 
resilient scenario with geographical constraints and link and node 
disjoint resilience for ECG monitoring applications ................................... 218 

Figure 6.26: Number of base stations used to send the (a) raw ECG 
signal for processing and (b) analysed ECG signal for feedback, for the 
resilient scenario considering the geographical constraints; and the 
resilient scenario considering geographical constraints and link and 
node disjoint resilience under different percentages of patients and 

number of processing servers per candidate node.................................... 219 

Figure 6.27: Number of candidate nodes used to place the processing 
servers for the resilient scenario considering the geographical 
constraints and the resilient scenario with geographical constraints and 
link and node disjoint resilience for ECG monitoring applications ............. 220 

Figure 6.28: Percentage energy penalty of networking equipment for the 
resilient scenario considering the geographical constraints and link and 
node disjoint resilience compared to the resilient scenario considering 
the geographical constraints for ECG monitoring applications .................. 221 

Figure 6.29: Optimal location of processing servers for the resilient 
scenario considering the geographical constraint for server protection 
and link and node disjoint resilience for network protection for fall 
monitoring applications .............................................................................. 224 

Figure 6.30: Energy consumption of networking equipment for the 
resilient scenario considering the geographical constraints; and the 
resilient scenario with geographical constraints and link and node 
disjoint resilience for fall monitoring applications ....................................... 225 

Figure 6.31: Total number of candidate nodes used to place processing 
servers for the resilient scenario considering the geographical 
constraints; and the resilient scenario with geographical constraints and 
link and node disjoint resilience for fall monitoring applications ................ 225 

Figure 6.32: Number of base stations used to send (a) the raw video 
signal for processing and (b) the analysed video signal for feedback, for 

the resilient scenario considering the geographical constraints; and the 
resilient scenario with geographical constraints and link and node 
disjoint resilience for different numbers of processing servers per 
candidate node .......................................................................................... 226 

Figure 6.33: Percentage energy penalty of networking equipment for the 
resilient scenario considering the geographical constraints and link and 
node disjoint resilience compared to the resilient scenario considering 
the geographical constraints for fall monitoring applications ..................... 227 

Figure 6.34: Flow chart for EORIGW heuristic .......................................... 230 

Figure 6.35: Flow chart of EORIGN heuristic ............................................ 235 



- xxiv - 

Figure 6.36: Total energy consumption of both networking equipment 
and processing for the MILP model and the EORIWG heuristic for (a) the 
ECG monitoring application with different percentages of the total 
number of patients (b) fall monitoring application at 100% of the total 
number of patients, for different number of processing servers per 
candidate node .......................................................................................... 241 

Figure 6.37: Number of base stations used to serve the processing and 
feedback tasks for the MILP model and the EORIWG heuristic for (a) the 
ECG monitoring application with different percentages of the total 
number of patients, (b) the fall monitoring application at 100% of the total 
number of patients, for different number of processing servers per 
candidate node .......................................................................................... 243 

Figure 6.38: Total energy consumption of both networking equipment 
and processing for the MILP model and the EORIG heuristic for (a) ECG 
monitoring applications with different percentage of patients (b) fall 
monitoring applications at 100% of patients, for different number of 
processing servers per candidate node..................................................... 245 

Figure 6.39: Number of base stations used to serve the processing and 
feedback tasks for the MILP model and the EORIG heuristic for (a) ECG 
monitoring application with different percentage of patients, (b) fall 
monitoring application at 100% of patients, for different number of 
processing servers per candidate node..................................................... 247 

Figure 6.40: Total energy consumption of networking equipment and 

processing for the MILP model and the EORIGN heuristic (a) ECG 

monitoring application with different percentages of the total number of 

patients (b) fall monitoring application at 100% of the total number of 

patients, for different number of processing servers per candidate node .. 249 

Figure 6.41: Number of base stations used to serve the processing and 
feedback tasks for the MILP model and the EORIGN heuristic for (a) 
ECG monitoring application with different percentages of the total 
number of patients, (b) fall monitoring application at 100% of the total 
number of patients, for different number of processing servers per 
candidate node .......................................................................................... 251 

 

 



- 1 - 

Chapter 1 

 Introduction 

 

Internet power consumption has continued to increase over the past decade 

because of the increased traffic of the Internet [1]. Moreover, as a result of the 

growing popularity of traffic intensive applications, such as Internet Protocol 

TV and high definition TV, the traffic is expected to grow by about 40% 

annually for the foreseeable future [2]. As stated in [1], the power consumption 

of the network is a significant contributor to the total energy demand in many 

developing countries. For example, in 2005, more than 2 TWh that is 

approximately 1% of the energy demand in Italy, was used by the Telecom 

Italia network [1], with similar trends in other developed countries. Meanwhile, 

British Telecom became the most significant single power consumer in the UK 

during the winter of 2007, consuming about 0.7% of the UK’s total power 

consumption [1]. Increasing energy efficiency is becoming one of the main 

priorities for information and communications technology (ICT) organisations, 

given the ecological and economic drivers that are currently high profile. In 

view of this, and with the emission of 228 gm of CO2, whenever the network 

components consume 1 kWh of traditional electrical energy [3], CO2 pollution 

remains high on the agenda. 

Moreover, the Global e-Sustainability Initiative (GeSI) reported the 

expected carbon footprint of networks and related infrastructure at 

approximately 320 Mtons of CO2 emissions in 2020 [4], [5]. Mobile 

communication infrastructure is expected to produce more than 50% of the 
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network CO2 emission, where telco devices and broadband access equipment 

will constitute a non-negligible contribution of 22% and 15%, respectively [4]. 

Because of this, reducing the power consumption while increasing the uptake 

of services, such as Internet of Things (IoT) based services is very 

challenging. 

The recent increase in chronic diseases and the ageing population have 

accelerated the developments in remote health monitoring in developed 

countries [6]. It has been reported that the increasing ageing population over 

60 years old will grow from 841 million in 2013 to more than 2 billion in 2050 

[7]. The shortage in healthcare professionals also increases the need for an 

effective health monitoring system that can provide an accurate diagnosis of 

health data and appropriate treatment. Additionally, the cost of hospitalisation 

is one of the main factors that have driven the importance of remote health 

monitoring applications. Previous studies have shown that the conservative 

estimation of healthcare cost related to Atrial Fibrillation (AF) by the UK’s 

National Health Services (NHS) was between £244 million and £531 million in 

1995 and the amount doubled in 2000 [8]. The additional cost due to the 

admission of patients, where AF was the primary diagnosis, is £221 million 

while hospitalisation due to heart failure or stroke, which is treated as the 

second position, is £228 million [8]. Moreover, the cost for post-discharge 

outpatient visits and the cost of nursing home care related to the AF is £31.7 

million and £110.7 million, respectively [8]. 

Therefore, the implementation of remote health monitoring with patient-

centric healthcare, where the hospital, patient and services are seamlessly 

connected, is an effective way to provide the service to the patient while 
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reducing the operational costs. Also, it has been reported, [9] that the delivery 

model of healthcare from the present hospital-centric system will be 

transformed to hospital-home-balance by 2020 and to a final home-centric 

system by 2030. 

The advancement in wireless body sensors and mobile technologies has 

motivated the progression of the mobile-based health monitoring system (m-

health). The introduction of m-health services can provide real-time feedback 

to the patient about their health condition, as well as alerts on health-

threatening conditions. Also, the rapid growth in cloud computing has enabled 

the development of mobile cloud computing (MCC) applications that offer high 

processing and storage capabilities for health data. In fact, exploiting various 

disciplines within the health arena using machine learning methods to perform 

early-detection and prediction of diseases is indeed an effective strategy 

towards enhancing healthcare systems [10]. 

Nonetheless, the massive transfer of health-related data from patients to 

the cloud contributes towards increasing the congestion in cloud networking 

infrastructure. Hence leading to high latency and potential violations of 

Quality-of-Service (QoS) metrics [11]. These also increase the occurrence of 

errors where the impact of a single error in the analysed data can cause 

inaccurate treatment decisions, especially for emergency cases, which can be 

critical [12]. Furthermore, the large volumes of transferred data can increase 

the energy consumption within the network as the data have to travel over the 

network to reach the cloud for processing [13]. 

One effective way to address this limitation in cloud networks is by bringing 

service provisioning closer to users while maintaining mobility among them 
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[14]. However, as both locations and deployments of data centres are fixed, a 

new paradigm, which is referred to as ‘fog computing’,  has been introduced 

as a new platform by Cisco, to overcome this shortcoming [15]. Fog computing 

is often referred to as edge computing [16]–[21]. However, the Open Fog 

consortium [22] has clearly expressed that fog computing differs from edge 

computing where fog works with the cloud while edge computing is an 

exclusion of cloud [23]. Fog computing extends the cloud-based Internet by 

initiating an intermediate processing layer using fog servers for example, 

between IoT devices and the cloud. The fog servers are a highly virtualised 

computing system equipped with data storage, as well as computing and 

communication facilities, which appear similar to the cloud servers [18]. It is 

also possible to connect the fog servers to the cloud to leverage the rich 

functionality and available application tools. Furthermore, as fog servers are 

disseminated at the network edge, fog computing may have dense 

geographical coverage and mobility support. Therefore, fog computing can 

deliver QoS metrics in healthcare monitoring systems for patients due to 

reduced latency besides reducing the energy consumption in cloud 

networking infrastructures [24]–[32]. Recent studies have applied fog 

computing to develop efficient health monitoring systems. For example, a 

monitoring system [12] employed the concept of fog computing at a smart 

gateway to efficiently process health data, particularly the electrocardiogram 

(ECG) signal. The ECG empirical results for feature extraction using the 

proposed system displayed 90% bandwidth efficiency and low latency, real-

time response. Additionally, the authors of [10] claimed that both continuous 

monitoring and real-time monitoring might be dysfunctional with the present 

IoT-based systems. Therefore, fog computing was embedded in the system 
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and the results exhibited reduced response time and increased system 

reliability in the presence of intermittent Internet connections. A prototype of a 

smart e-health gateway [33] (i.e. a fog computing device) has been 

implemented to reduce the burden at the sensor node and the cloud by 

performing high-level services such as real-time data processing, local 

storage and embedded data mining. The gateway performance is evaluated 

in terms of the energy efficiency of the sensor nodes, scalability, mobility and 

reliability. Meanwhile, a real-time event triggering for health monitoring 

systems in smart homes [27] was proposed by implementing a Bayesian 

Belief Network (BBN) to classify the state of events at the fog layer. 

Despite the effectiveness of fog computing functions in health monitoring 

applications in terms of delivering real-time monitoring with lower latency and 

lower bandwidth utilisation, most studies have dismissed the essential aspect 

of the energy consumption in transport networks. In this study, a new 

framework for an energy-efficient health monitoring system that performs real-

time monitoring and a patient-centred environment are considered leveraging 

the concept of fog computing. Fog computing has been identified as a 

potential paradigm that can contribute to reducing the energy consumption of 

networking infrastructure and processing while providing the same health 

monitoring services as the cloud computing for energy efficiency purposes. 

The West Leeds area was considered as a case study to examine the energy 

efficiency of fog computing for health monitoring applications. Mixed integer 

linear programming (MILP) models and real-time heuristic algorithms have 

been developed to model and solve the problems of optimum network and 

processing resource allocation with the goals of reducing the energy 

consumption of networking equipment and processing for ECG monitoring 
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and video fall monitoring applications. Also, a further MILP model and a further 

real-time heuristic are developed to increase the energy-efficiency of a 

resilient version of the infrastructure used in the proposed health monitoring 

applications. The resilience was improved in this IoT-fog-cloud architecture by 

considering server and network protection under both ECG and video fall 

monitoring applications. 

1.1 Research objectives 

So far, the research reported in the literature has considered the use of fog 

computing for health monitoring applications. It did not consider the energy 

consumption of the network used in transporting the raw health data to the fog 

for processing and transporting the analysed health data from the fog for 

feedback and from the fog to the cloud for permanent storage. Also, the impact 

of the fog locations in the edge network on energy efficiency has not been 

studied. The hypothesis in this study is that optimising the locations of the fog 

at the network edge can improve the energy efficiency of the fog-based 

networking infrastructure and processing for health monitoring applications. In 

this research, therefore, the fundamental objectives are as follows: 

1. Propose a fog computing architecture for health monitoring applications 

using a Gigabit Passive Optical Network (GPON) access network. The 

candidate locations of the fog are intended to be only at the access layer. 

2. Investigate and improve the energy efficiency of fog computing by 

optimising the number and locations of fog servers at the access layer 

to serve low and high data rate health monitoring applications. 
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3. Investigate the energy efficiency of resilient fog computing infrastructure 

for server protection with and without geographical constraints by 

optimising the number and locations of primary and secondary 

processing servers at the access layer to serve ECG and video fall 

monitoring applications, separately. Here the geographic constraints 

improve resilience by preventing the co-existence of the primary and 

secondary servers at the same node. 

4. Investigate the energy efficiency when network protection is added 

under link and node disjoint resilience with resilient fog computing 

infrastructure for server protection with geographical constraints to serve 

ECG and video fall monitoring applications, separately. 

  

1.2 Original contributions 

1. Designed a fog computing architecture using a GPON access network 

and proposed optimum the locations to place the fog at the access layer 

to minimise power consumption. 

2. A novel MILP model was developed to optimise the number and 

locations of the processing servers at the access layer so that the energy 

consumption of both networking equipment and processing are 

minimised. Also, a real-time energy optimised fog computing (EOFC) 

algorithm was developed as a real-time implementation of the proposed 

MILP model.  

3. Developed a second MILP model to optimise the number and locations 

of primary and secondary processing servers at the access layer 

considering server protection without geographical constraints for 
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energy efficiency. Also, a real-time Energy Optimised Resilient Fog 

Computing Infrastructure without Geographical Constraints (EORIWG) 

algorithm was developed as a real-time implementation of the proposed 

MILP model. 

4. Developed a third MILP model to optimise the number and locations of 

primary and secondary processing servers at the access layer 

considering server protection with geographical constraints for energy 

efficiency. Also, a real-time Energy Optimised Resilient Fog Computing 

Infrastructure with Geographical Constraints (EORIG) algorithm was 

developed as a real-time implementation of the proposed MILP model. 

5. Developed a fourth MILP model to optimise network protection with link 

and node disjoint resilience for energy efficiency while also optimising 

the number and locations of primary and secondary processing servers 

at the access layer considering server protection with geographical 

constraints. Furthermore, a real-time Energy Optimised Resilient Fog 

Computing Infrastructure with Link and Node Disjoint Constraints 

(EORIN) algorithm has been developed as a real-time implementation of 

the proposed MILP model. 

 

1.3 Related publications 

The work in this thesis resulted in the following papers: 

1. I. S. M. Isa, M. O. I. Musa, T. E. H. El-Gorashi, A. Q. Lawey and J. M. H. 

Elmirghani, “Energy Efficiency of Fog Computing Health Monitoring 

Applications,” IEEE Conference on Transparent Optical Networks 

(ICTON), Bucharest, Romania, 2018. 
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2. I. S. M. Isa, M. O. I. Musa, T. E. H. El-Gorashi and J. M. H. Elmirghani, 

“Energy Efficient and Resilient Infrastructure for Fog Computing Health 

Monitoring Applications,” IEEE Conference on Transparent Optical 

Networks (ICTON), Angers, France, 2019. 

3. I. S. M. Isa, M. O. I. Musa, T. E. H. El-Gorashi and J. M. H. Elmirghani, 

“Optimized Cloud Fog Energy Efficient Healthcare Monitoring 

Infrastructure,” to be submitted to IEEE Access. 

4. I. S. M. Isa, M. O. I. Musa, T. E. H. El-Gorashi and J. M. H. Elmirghani, 

“Resilient Energy Efficient Healthcare Monitoring Infrastructure with 

Server and Network Protection,” to be submitted to IEEE Access. 

 

1.4 Thesis organisation 

 

Following the introduction in this chapter, this thesis is organised as follows:  

Chapter 2 reviews the concept of the Internet of Things (IoT) and the 

applicability of IoT in remote healthcare applications. An overview of cloud-

driven and fog-driven IoT healthcare applications is presented. Also, various 

approaches to develop IoT remote healthcare systems with fog computing are 

described. 

 

Chapter 3 introduces a novel fog computing architecture under a GPON 

access network for health monitoring applications and introduces the system 

flow of the health monitoring applications under fog and cloud architecture. A 

MILP model is introduced to optimise the number and locations of the 
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processing servers at the access layer for energy-efficient fog computing 

(EEFC). Also, a MILP model for the conventional approach (i.e. energy-

efficient cloud computing, EECC) is developed as a benchmark to evaluate 

the performance of the proposed fog approach in terms of the networking 

equipment and processing energy consumption. 

 

Chapter 4 introduces the methodologies used to determine the model input 

parameters for ECG monitoring applications to evaluate the performance of 

the proposed fog computing (EEFC model) and cloud computing (EECC 

model). The energy-optimised fog computing (EOFC) heuristic algorithm is 

also developed based on the insight from the results in the EEFC model for 

real-time implementation. The EEFC model, EECC model and the EOFC 

heuristic algorithm are tested under two kinds of access network; GPON and 

Ethernet. Also, the effect of the equipment idle power and the traffic volume 

are evaluated for the EEFC model and for the EECC model and are compared.  

 

Chapter 5 introduces the parameters considered for the video fall monitoring 

application to evaluate the performance of the EEFC and the improvements 

over the EECC. The two models developed for EEFC and EECC are tested 

under two scenarios: (i) limited number of patients that can be served in a 

single processing server; and (ii) limited number of processing servers that 

are allowed at each candidate node. In addition, the performance of the EOFC 

heuristic algorithm under both scenarios is presented and compared with the 

EEFC model. 
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Chapter 6 introduces the proposed resilient fog computing architecture for 

health monitoring applications. The performance of fog computing in terms of 

energy consumption of both network and processing is investigated 

considering two types of server protection: with and without geographical 

constraints. A mixed-integer programming model (MILP) optimisation model 

was developed for energy-efficient and resilient fog computing infrastructure 

considering the two types of server protection together with the corresponding 

heuristic model for real-time implementation. The performance of the fog 

computing in terms of energy consumption of both network and processing 

with increasing level of resilience considering server protection with 

geographical constrains and network protection with link and node disjoint 

resilience is also investigated. The constraints related to the network 

protection, in addition to the previous MILP model, are introduced for energy-

efficient and resilient infrastructure for fog computing, considering both server 

protection with geographical constraints and network protection with link and 

node disjoint resilience. Also, the heuristic model is developed for real-time 

implementation. The models are tested separately under two different 

monitoring applications, ECG and fall.  

The thesis is concluded in Chapter 7, where the significant contributions 

of this work are summarised, and future directions are discussed. 
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Chapter 2 

Review of IoT and cloud-based healthcare 

2.1 Introduction 

In this chapter, a review of the Internet of Things (IoT) and the applicability of 

the IoT in remote healthcare applications is reviewed. The IoT is expected to 

make radical changes in a range of industries and in our daily life. The IoT 

offers a seamless platform to connect people and objects, hence enriching 

and making our life more comfortable. As the IoT network can consist of 

billions of sensors, the generation of enormous amounts of data-on-demand 

is increasing significantly. Therefore, an overview of the cloud and fog-driven 

IoT architecture, which are the key enablers of the IoT vision, is presented. 

This chapter also presents an essential review of the proposed architecture of 

the IoT remote healthcare system which has been created to improve 

healthcare services. 

 

2.2 Internet of Things networks  

 

The Internet of Things (IoT) was coined by Kevin Ashton, who co-founded the 

Auto-ID Centre at the Massachusetts Institute of Technology (MIT) in 1999 

[34], [35]. He was one of the first people to see the potential of developing a 

system where the Internet connects to the physical world via ubiquitous 

sensors [34]. Nowadays, the IoT is an ever-growing ecosystem that integrates 

physical devices, animals and people over a network, thus enabling them to 
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interact, communicate, collect and share data anytime and anywhere [36]. 

With the advancement of modern wireless telecommunications, the IoT has 

become a novel paradigm that is rapidly gaining ground. The main concept of 

the IoT includes intelligent communication between connected devices with 

less human intervention [37]. Therefore, a typical IoT system is equipped with 

sensors, communication interfaces, computational and processing units and 

cloud interfaces [36], [38]. The sensor is used to collect data from different 

devices. The purpose of the communication interfaces, such as those used in 

Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) 

technologies, is to provide the means of communication and networking. The 

processing and analysis units are designed to process and analyse the data 

through Application Programme Interfaces (APIs). Moreover, the purpose of 

the cloud interfaces is to provide access between the devices and the cloud 

computing, which can execute more complicated algorithms.  

The emergence of the IoT and the pervasive connectivity between people 

and processes would allow services to be automatically delivered whenever 

and wherever required. The integration of connected smart devices and cloud-

based services aids in addressing the pressing issue of energy efficiency and 

security at home and in the city via remote monitoring [35], [39]. The IoT can 

also improves transportation systems, as most of the vehicles are equipped 

with sensors, actuators and processing power to update the status of the cars 

for safety purposes. Even roads can be fitted with tags (i.e. RFID and sensors) 

to send relevant information to traffic control sites and vehicles to better route 

the traffic. The improvement of the transportation system could lead to the 

development of a smart city. Moreover, the IoT can aid in improving the quality 

of care for patients, as the connected smart devices will help by supporting a 
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range of e-health services. The wide range of e-health services supported by 

intelligent devices enhance access and enable the monitoring of chronic 

diseases and age-related conditions in the home [39].  

However, the IoT also poses several challenges for the network and data 

centres due to the vast number of IoT devices. Cisco predicts that 50 billion 

devices will be connected to the Internet by 2020 [40] - [41]. Meanwhile, as 

forecast by GSMA, the number of globally interconnected devices will 

increase from 9 billion in 2011 to 24 billion in 2020, 50% of which will be mobile 

[42]. The mobile devices and other physical objects equipped with sensors 

are mainly used for computation and data access. Therefore, increasing the 

number of those devices will lead to a rise in the amount of data generated 

[43]. However, the IoT devices have limited memory, storage and processing 

capability, as they are designed to be low-cost and light-weight. Therefore, it 

would be impossible for the data to be fully processed and stored locally. 

Hence, massive processing and computation resources must be available 

ideally on per-use basis or rental basis [44]. 

Cloud computing technologies provide services for computation and storing 

at anytime and anywhere. Therefore, cloud computing infrastructure may 

seem the best choice when it comes to deploying IoT platforms [15]. The data 

which cannot be processed locally can be offloaded to the cloud through the 

Internet for processing. As the cloud is centralised, using cloud computing 

provides opportunities for cost-saving [45]. However, offloading massive 

amounts of data generated by the IoT devices to the cloud for computation 

increases the congestion in the network. The high congestion can lead to a 

rise in the latency, which in turn threatens the performance and usability of 
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applications. Moreover, the considerable distance from the IoT devices to the 

cloud increases the latency, and this is not ideal for certain applications which 

require low latency and short response times. 

Introducing fog computing can provide solutions to the latency problem 

associated with cloud computing. Fog computing is a new concept introduced 

by Cisco that extends the cloud computing paradigm to the edge of the 

networks. Fog provides services in terms of computation and storage, similar 

to the cloud paradigm. The advantage of fog is its proximity to the users, which 

means low latency and fast response time, and this suits most of the IoT 

applications’ requirements [46]. In addition, fog can have dense geographic 

coverage, as fog servers are distributed at the edge of the network, which 

offers fault tolerance, reliability and scalability of the system [15]. Therefore, 

in utilising the fog computing platform, IoT applications and services can be 

operated locally (i.e. edge of network), hence saving bandwidth. 

 

2.3 IoT for healthcare 

 

One of the most attractive application areas for IoT is medical care and 

healthcare, which gives rise to many medical applications, especially remote 

health monitoring [47]. The website MarketResearch.com also predicts that 

the IoT usage for healthcare will reach $117 billion by 2020 [48]. The 

implementation of remote health monitoring requires a transition from hospital-

centric treatment to patient-centric healthcare where the hospital, patient and 

services are seamlessly connected. It has also been reported that the delivery 

model of healthcare from the present hospital-centric treatment will be 
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transformed into hospital-home-balance in 2020 and into home-centric in 2030 

[9]. 

The IoT devices often run on low energy. However, there is a restriction on 

processing and storage capabilities [49]. The limitation of the computation and 

storage capability of the IoT medical devices and wearable devices to process 

the health data requires computation offloading. The rich functionality of cloud 

computing has been widely accredited to support the IoT-enabled healthcare 

solution. This enables the computation offloading of big data from the medical 

and wearable devices to the cloud for processing, analysis and storage 

purposes.  

There are many health applications [19] – [21] which have been developed 

using the central cloud for processing, analysis and storage units. The cloud 

is used as it offers patients and doctors access to the stored data at anytime 

and anywhere. However, the centralised location of these cloud data centres 

requires health data from the medical and wearable devices to travel long 

distances for processing. This increases the latency in the network, which may 

endanger the patients. Besides, the cloud also provides services to other 

applications such as traffic monitoring, surveillance monitoring, etc. This 

increases the amount of traffic to the cloud, hence leading to a rise in the 

latency in the network. As health monitoring is a latency-sensitive application, 

offloading the health data to the cloud for processing is not an effective 

approach. 

Fog computing is a promising solution that offers local processing for health 

data. Fog computing offers an almost similar function as the cloud, but with 

limited processing and storage capability. Although fog resources have a 
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limitation when it comes to computing and storage capability, they are flexible 

enough to be customised according to the application context [53]. In fog 

computing, the fog servers are distributed at the edge of the network, which is 

closer to the user, therefore reducing the latency in the network. Furthermore, 

fog computing minimises the energy consumption in cloud networking 

infrastructures [23] – [31] under increasing applications traffic.  

 

 

Figure 2.1: Multi-layer architecture of health monitoring applications 

 

Figure 2.1 shows a multi-layer architecture of health monitoring 

applications which consists of three main layers, i.e. sensing layer, fog layer 

and cloud layer. The sensing layer consists of health and wearable devices 

that are used to collect data from patients. The fog layer includes small 

computing devices that perform local processing and analysis. The health 

data at the sensing layer is sent to the fog for processing and analysis, through 

various communication protocols supported by fog devices such as Wi-Fi, 

ZigBee etc. The cloud layer includes high performance computing capabilities 

units and is used to perform complex tasks such as long-term data analytics. 

Fog Layer 

Cloud Layer 

Sensing 

Layer 
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The results or data set obtained from this analysis are shared among the fog 

servers, as the fog and the cloud can communicate through an Internet 

connection. 

 

2.4 Cloud-based health monitoring applications 

Telehealth refers to both clinical and remote non-clinical services that involve 

the use of telecommunications and virtual technology in order to deliver 

healthcare outside of the traditional healthcare facilities. The aim of telehealth 

is to improve the quality and efficiency of healthcare while reducing its cost 

through the use of electronic means. The authors in [54] highlighted four 

modes of telehealth activities. The first is store-and-forward-telehealth. In this 

mode, all of the recorded health data, including images, video and audio, is 

transmitted to other locations when needed. The second is real-time telehealth 

data. In this mode, the patients can communicate directly with the doctors 

through videoconferencing. The third is remote patient monitoring, where 

patients send their health data to the cloud, for example, and to the doctor 

who forms a diagnosis based on the data and sends feedback regarding the 

recommended treatment to the patients. The fourth is remote training, which 

focuses on patients with chronic diseases, and also focuses on providing 

sophisticated care to the patients over the network. 

Mobile health (m-health) also plays a significant role in supporting 

healthcare via electronic means. m-health utilises cloud platforms, which 

allows patients to access their health information through their smartphone 

apps or web-based cloud dashboard at anytime and anywhere [36]. However, 
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the main difference between telehealth and m-health is that m-health only 

uses mobile devices or other wireless devices such as mobile phones or 

tablets. In m-health, mobile devices are used to continuously track and 

manage specific health data using apps without the need for the person’s 

healthcare provider. However, m-health also allows the patients to 

communicate with their physicians without meeting face-to-face. 

There exist several works focused on developing the m-health system 

architecture. For example, in [50], an m-health system architecture 

considering emergency scenarios was proposed, where the mobile or 

smartphone of the patient is a powerful tool for service access and delivery. 

The proposed system is based on the smart space paradigm, which adopts 

IoT technologies and Semantic Web. The system consists of patients, medical 

personnel, healthcare services and other participants who operate in the same 

network computing environment, and they interact by sharing the information 

and its semantics. The proposed system is also useful in the case of patient 

mobility. Figure 2.2 shows the m-health system architecture that supports 

personalised assistance services for emergency cases with remote and 

mobile patients [50]. 
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Figure 2.2: m-Health system architecture considering emergency scenarios 

[50] 

 

As reported in [55], there are more than 85 publicly-available Internet sites 

on diabetes self-management. In [51], an IoT-based platform to support self-

management of diabetes was proposed. The work aims to integrate 

multidimensional aspects of treatment and develop a patient-centred 

approach. Therefore, to achieve the aims, the smartphone platform is 

designed to offer remote manageability capabilities and enables care over 

distance, as found in [50]. Figure 2.3 illustrates various aspects of platform 

support for diabetes therapy [51]. First is data collection, where the information 

regarding daily self-management of the disease, measurements from the 

medical sensors and short messages from patients are sent to the health 

portal. Second is feedback from the system to the patients where, based on 

the collected reading, the mobile phone provides the necessary feedback. The 

third is feedback from caregivers to the patients, where the caregivers provide 

treatment plans to their patients. 
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(a) 

 

 

(b) 

 

(c) 

Figure 2.3: Aspects of platform support for diabetes (a) Data collected from 

the patients (b) System feedback to the patient (c) Caregiver feedback to the 

patient [51] 

 

Another architecture framework, namely the Home Health Hub Internet of 

Things (H3IoT) was proposed in [52] to monitor the elderly at home. The 

architectural concept of H3IoT consists of five layers, as shown in Figure 2.4. 

The first is the physical sensing layer (PSL), which includes medical sensor 

devices. The second is the local communication layer (LCL), where the data 

is transferred to the upper layer using wireless technologies such as Zigbee. 
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The third is the information processing layer (IPL), where the health data is 

processed. The fourth is the Internet application layer (IAL), which is the 

backbone of the system. The IAL performs data storage and analysis at a later 

stage. The last layer is the user application layer (UAL), where the doctor or 

hospital receives real-time information about the health status of elderly 

patients. Moreover, the proposed H3IoT framework provides mobility besides 

lower cost and delay tolerance. 

 

 

Figure 2.4: H3IoT architecture framework for health monitoring for elderly [52] 
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2.5 Roles of fog computing and cloud computing in health 

monitoring applications 

The advancement of wireless sensor body network technology is accelerating 

the development of health monitoring applications [54], [56], [57]. However, 

the low computation and storage capabilities of the sensor body network and 

the smart devices have restricted the equipment’s ability to process the health 

data, which requires a sophisticated algorithm. The emergence of cloud 

computing, which offers high processing and storage capabilities, has 

contributed to the advancement of healthcare provision [45]. However, the 

vast amount of health data being transferred to the cloud has resulted in an 

inevitable increase in the burden on the cloud. Due to this, fog computing has 

been introduced to allow some tasks to migrate from the cloud to the network 

edge. With fog computing, health data is processed locally, hence reducing 

the burden on the cloud. The fog servers are distributed over the edge network 

to provide high coverage, thus increasing the cost of installations. Moreover, 

the computation and storage capability of fog servers is far lower compared 

to the cloud. Therefore, both fog and cloud, with their different roles, are 

essential in developing health monitoring applications. 

 

2.5.1 Roles of fog computing in health monitoring applications 

 

In this section, the roles of fog computing in healthcare provision are 

discussed as follows: 
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2.5.1.1 Switching network 

 

The fog devices receive heterogeneous data from various devices [58]. 

Therefore, the fog needs to support many protocols such as ZigBee, 

Bluetooth, Wi-Fi, etc. This is to ensure that the fog devices can read and 

process the data. However, due to certain factors, the fog may need to 

transmit the pre-processed data to the cloud for further analysis. As the cloud 

supports only TCP/IP protocols, the fog needs to activate the network between 

the IoT and the cloud before sending to the cloud. 

 

2.5.1.2 Data processing 

 

The fog devices are equipped with computation and storage capabilities. 

Therefore, the fog should have the capabilities to perform local data 

processing [36] – [39]. This is essential for health applications that require 

real-time processing. However, as the computation in fog devices is limited, 

fog should at least process simple tasks by leveraging the data set provided 

by the cloud. The simple tasks include pre-processing the health data to 

eliminate noise from signals and to extract useful knowledge for further 

analysis [59]. This can help to improve the healthcare services by minimising 

latencies, as the fog servers are located near the users. 

 

2.5.1.3 Pushing services  

 

Fog acts as an intermediate layer between the end devices and the cloud. 

Therefore, fog needs to provide pushing services to ensure reliable and 
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efficient delivery of the other services. The pushing services provided by fog 

include receiving the data from the end devices for processing and uploading 

the processed data to the cloud for further analysis or permanent storage [58]. 

 

2.5.1.4 Filtering 

 

Filtering is one of the essential jobs for fog. Some of the health applications 

require a large amount of health data, such as Electrocardiogram (ECG) 

signal. As this health data may require a sophisticated algorithm for 

processing, cloud computing is needed. Transmitting the large amount of 

health data directly to the cloud will increase the latency. Thus, fog should 

provide filtering services [36], [37], [39] so that only useful information 

extracted from the raw signal is sent to the cloud. Moreover, the filtering at the 

fog servers can eliminate the redundant data, hence reducing the congestion 

and latency in the network. 

 

2.5.1.5 Aggregation / Data fusion 

 

Data fusion in healthcare is a process that integrates various kinds of health 

data from numerous devices to produce more accurate and useful information 

than that provided by an individual data source [37], [39], [61]. Allowing fog to 

offer data fusion can help reduce the bandwidth utilisation, as only one piece 

of data will be sent to the cloud for further action. However, the integration of 

diverse data sources will consume time, thus increasing the processing 

latencies. This is even worse for applications that involve periodic monitoring. 

Therefore, as discussed in [35], extending the task at fog to perform data 
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fusion may not be efficient for specific health applications that require periodic 

monitoring. 

. 

2.5.1.6 Channel management 

 

Channel management is essential [59] in order to avoid channel conflicts due 

to aggregating data from the various sensors, which may cause incorrect data 

to be delivered at the fog receiver. As fog receives heterogeneous data from 

multiple devices, each sensor node or group of sensor nodes is assigned a 

specific channel. Moreover, the channel management services verify the 

incoming data regularly [59]. Therefore, when an abnormality is detected in 

any channels, request messages will be sent to that channel, following which 

the services will wait for an acknowledgement message from the sensor 

nodes. In case of conflict, a push notification is sent to the system 

administrator to flag up the problem. 

 

2.5.1.7 Data compression  

 

Data compression [37], [39] at fog can reduce the communication latency 

while increasing the energy efficiency of the network. Two types of data 

compression which are widely used in the Health-IoT system are lossy and 

lossless compression. Lossless data compression methods require high 

processing speed and large memory size, as they perform complex 

algorithms. Meanwhile, the lossy data compression method requires low 

processing and low memory, thus meaning it is suitable for resource-

constrained sensors. 
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2.5.1.8 Data storage  

 

The fog devices are equipped with storage capability. Therefore, fog devices 

store the incoming data in their local storage banks [36] – [38]. This data is 

stored in a compressed or encrypted way. Moreover, fog is used to temporarily 

store the analysed data before it is sent to the cloud for permanent storage. 

Besides, the fog storage can be used as a cache to implement continuous 

data flows to reduce bandwidth requirements in the metro and core network. 

 

2.5.1.9 Security  

 

Security is one of the main requirements for healthcare applications. 

Therefore, the privacy of patients’ health data should be guaranteed and the 

data should be protected from unauthorised accesses [59]. Due to this, fog 

should apply the security, cryptography and authentication methods at the fog 

layer [59]. 

 

2.5.2 Roles of cloud computing in health monitoring applications 

 

In this section, the roles of cloud computing in healthcare provision are 

discussed. 

 

2.5.2.1 Data mining   

 

Data mining in healthcare is the process of analysing large data sets to extract 

useful information which makes it possible to identify meaningful patterns [35], 
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[58]. Those patterns are used to predict new diseases and assist the doctors 

in making their clinical decision [62]. Therefore, data mining needs high 

processing capability, as it requires a sophisticated algorithm. Due to this, data 

mining is performed in the cloud rather than in fog, as it has limited computing 

capability [58]. Following this, the extracted information is shared with fog to 

ensure that the fog server which processes the health data can give proper 

advice regarding treatment and more so regarding immediate actions to the 

patients. 

 

2.5.2.2 Permanent storage  

 

Cloud computing offers a high storage capacity. Therefore, the cloud is usually 

employed to store [42] – [44] information related to the analysed health data 

for further analysis and history purposes. In addition, the cloud offers data 

access to authorised users such as patients and doctors. 

 

2.5.2.3 Predict risk stratification 

 

Risk stratification is performed to identify and predict the probability of patients 

who suffer from any disease [65]. This is important for preventive purposes to 

avoid the worst outcome, as such an outcome may risk the patient’s life. 

However, to identify the risk stratification of the patient, a sophisticated 

algorithm is used, which requires high processing capabilities. 
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2.6 Fog-assisted health monitoring applications 

There exist many pieces of research focused on developing a health 

monitoring system that leverages fog computing. Each of the studies 

contributes to different goals for health monitoring applications such as 

energy, latency, accuracy, security and cost. In this section, works on fog-

assisted health monitoring applications are reviewed, and the contribution of 

the work which has adopted the networking perspective is highlighted. 

 

2.6.1 Energy efficiency  

 

Energy efficiency is one of the primary concerns when developing a health 

monitoring system to reduce healthcare costs and improve the quality of 

healthcare services [59]. For instance, in pervasive health monitoring, utilising 

energy-efficient medical devices for data collection can reduce the chances of 

system failure, which would risk the patient's life. The energy-inefficient 

devices may need to have their batteries replaced regularly, which impedes 

the use of sensors [66]. 

Energy-efficient and portable sensor nodes for health monitoring 

applications were developed in [59]. The evolved sensor node was tested to 

monitor the ECG signal. The results revealed that the sensor nodes consumed 

less energy in addition to having a long operating time of up to 155 hours. In 

[67], RF and solar energy harvesting were designed for health monitoring 

applications to power up the sensor nodes. These sensor nodes were used to 

collect health data and send it to fog wirelessly via a wireless module. Here, a 

novel antenna which is able to receive RF power from GSM, Wi-Fi, Bluetooth, 
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3G and LTE was designed. Moreover, the authors developed a RF-DC 

rectifier that achieved high power conversion efficiency (PCE) levels at lower 

RF input power levels.  

Meanwhile, the research in [63] investigated the lifetime of the wearable 

devices used to capture the ECG signal based on the number of channels and 

sampling rate. The results indicated that the device lifetime increased when 

low channels and low sampling rate were utilised to record an ECG signal. In 

addition, the results showed that transferring real-time data to the mobile 

device consumed more energy compared to transferring non-real-time data. 

The authors also claimed that applying compression techniques to reduce the 

amount of data would immediately affect the battery life of the devices. 

The type of technology used to design energy-efficient fog devices is very 

important. In [65], Field-Programmable Gate Array (FPGA) technology, was 

chosen to design the fog nodes. The FPGA node is reconfigured to produce 

maximum performance in tasks with low power consumption. Meanwhile, in 

[16], an experiment was conducted to evaluate the performance of two fog 

devices, namely Raspberry Pi and Intel Edison in terms of power 

consumption. The results indicated that the Raspberry Pi consumed less 

power compared to Intel Edison. In [33], the authors claimed that data 

processing at sensor nodes will consume high levels of energy. Therefore, a 

fog gateway, UT-GATE, was proposed to perform data fusion and data 

compression of health data. The results revealed that 55.7% energy saving 

was achieved by processing the data at the gateway compared to the sensor 

node.  
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The integration of cloud-fog services into the healthcare solution was 

explored in [22]. The proposed system was evaluated via simulation using the 

iFogSim simulator. The results revealed that the integration of cloud-fog is 

essential to overcoming the increasing demands for processing that may 

require a huge number of sensors or vast CPU requirements to serve the 

application. Moreover, the results showed that the integration of fog-cloud 

increased the performance of the fog-based solution in terms of service 

distribution, instances cost, energy usage and network delay. The authors in 

[7] studied the relationship between efficient resource management in fog and 

the energy consumption. They proposed a QoS-aware resource allocation 

algorithm to optimise the resource utilisation of fog at the edge network before 

deciding to offload the processing request to the cloud. The results revealed 

that fog contributed to lower the energy consumption compared to the cloud 

under an increasing number of demands. 

 

2.6.2 Latency  

 

Fast-response time is one of the primary requirements in health monitoring 

applications. The delay in detecting abnormal health signals may cause harm 

to the patients. Therefore, to improve the response time, the latency issues 

have to be taken seriously. Many works have been widely performed to 

overcome the latency issues in the health monitoring system. Such works 

include designing the system architecture of the health monitoring 

applications, designing the network architecture of the health applications, and 

optimising the resource utilisation at the fog and cloud. 
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In [68], [69], the eWALL system was integrated into fog computing for real-

time processing. The system aims to reduce the communication overhead by 

processing the health data at the network edge, therefore reducing the latency 

in the network. Meanwhile, in [70], the results revealed that the type of 

classifier used to classify the patient’s health state may also result in high 

response time. Various kinds of classifier algorithms were tested, including 

Bayesian Belief Networks (BBN), neural networks, k-nearest neighbour and 

linear regression. The results showed that the BBN classifier had the highest 

response time when it came to determining the patient’s condition compared 

to other algorithms. 

Moreover, a real time fall detection system, called U-Fall to detect fall among 

stroke patients was proposed in [71]. In this work, the analytic tasks were 

distributed throughout the network; this involved splitting the detection task 

between the edge devices (i.e. smartphone) and the cloud server for fast 

response time. In the above work, the light-weight computation for fall 

detection will be conducted by the edge device. Besides this, the data from 

the sensor will be sent to the cloud for processing to achieve accurate 

detection. The results reveal that the response time of the U-Fall system is 

close to the minimum of the existing two approaches, namely the T-system, 

which is based on a threshold technique, and the P-System, which is based 

on a pattern matching system. 

An architectural approach to the autonomic healthcare management system 

(AHMS) was proposed in [72]. The above work aims to provide fast response 

action to the patient in case of falls. Therefore, a local autonomic manager is 

embedded in fog to collect information from the wearable devices and to check 
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the occurrence of an emergency event. Moreover, integrating AHMS at fog 

provides continuous services to detect falls even during times when the 

Internet connection is interrupted. Furthermore, fog also sends the collected 

information to the AHMS at the cloud for storage and continuous data analysis 

purposes. 

In [21], the Emergency Help Alert Mobile Cloud (E-HAMC) system was 

proposed to reduce the delay in sending an emergency alert to the hospital. 

Therefore, the method used fog to process the health data and a smartphone 

to send a GPS location of the event taking place. An experiment was 

conducted, with the results showing that the delay in sending the emergency 

alert with fog computing was lower compared to sending it directly from the 

cloud. 

In [73], a smart F2C adaptor (SF2CA) was proposed to develop a monitoring 

system for COPD patients that provides real-time response to adjust the 

oxygen dose dynamically. Based on the dynamicity level of the data, the 

SF2CA decides the location for processing and decision making. The location 

can be either at the fog (i.e. high dynamicity) or the cloud (i.e. low dynamicity). 

In the above work, the fog is used to store the environmental data from 

sensors. Meanwhile, the cloud is employed to store the history data of the 

patient and to implement a predictive model known as the quasi-static data 

model. 

In [74], an Obstructive Sleep Apnea (OSA) monitoring system was 

proposed, consisting of three layers, namely the IoT layer, fog computing layer 

and cloud layer. In the above work, fog computing was implemented at the 

Smart IoT Gateway. Fog was incorporated into a complex event processing 
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to pre-process the health-related data so that immediate action can be taken 

in case of abnormal detection. The pre-processed data was made available 

at the cloud to improve the administration of the data. The performance of the 

proposed OSA was evaluated in terms of latency where the Smart IoT 

Gateway operating at the fog computing layer used different Low Power 

Wireless Networks which are Bluetooth, ZigBee and IPv6 over Low Power 

WPAN (6LowPAN) protocol, [75]–[77]. The results showed that processing 

health data at the fog layer and sending the feedback from fog had lower 

latency compared to processing at the cloud layer and sending the feedback 

from the cloud. Moreover, the authors reported that the complexity of protocol 

integration also increased the latency. Their experiment showed that the 

6LowPAN protocol had the highest latency, followed by Bluetooth and Zigbee. 

The authors in [78] claimed that a single edge layer is not enough to serve 

health applications. Therefore, to increase the scalability of fog computing, 

two types of edge layers were proposed, namely fog layer and intermediate 

fog layer. The proposed intermediate fog layer aims to reduce the load 

overhead at the fog layer. In the above work, the fog layer was used to process 

and analyse the health data. Meanwhile, the intermediate fog layer filters the 

processed data to eliminate redundant data before what is left is sent to the 

cloud for permanent storage and analysis of geo health data. 

A resource management technique, namely the QoS-aware Resource 

Allocation Algorithm, was proposed in [40] to reduce the congestion at the 

cloud by offering an efficient utilisation of resources in fog computing. In this 

work, a fog server manager was proposed to monitor the availability of fog 

resources. Moreover, the processing tasks can be divided into several 
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subtasks as per resource availability. The job will be sent to the cloud for 

processing only if the resources at the fog are not available. A simulation using 

iFogSim toolkits was performed, and the results showed that the delay in 

processing the demand decreased when placing the virtual machine at the fog 

servers compared to the processing at the cloud. However, the authors also 

claimed that placing the virtual machines at the optimum locations in the fog 

devices would further decrease the delay. 

In [53], fog was formed into several clusters. The inter-model communication 

latency was given higher priority when creating the cluster. Each fog cluster 

was responsible for a particular healthcare solution while each healthcare 

solution could be run in multiple clusters. The proposed fog-based architecture 

was tested via simulation, and the results showed that the average network 

delay was lower compared to the cloud-based solution. However, the results 

also revealed that the integration of cloud-fog was essential during high 

demands for health services. 

A patient monitoring system for Ambient Assisted Living using fog 

computing (FAAL) was proposed in [79] to observe neurological disorders in 

people with Ambient Assisted Living. The system utilised a k-means clustering 

algorithm to reduce the load on the communication infrastructure. In the above 

work, fog computing was utilised to perform data cleaning, segmenting, 

analysis and to send an alert signal during the emergency event. Meanwhile, 

the cloud was used to perform classification, prediction and education based 

on the data collected by the BANs transmitted via the fog gateway. The results 

showed that the FAAL system had a low response time compared to the 

conventional approach where the cloud is used to perform the analysis and to 

send the alert signal. 
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A hierarchical computing architecture, HiCH, was proposed in [80] to 

overcome the limited computation at the edge node. In the above work, the 

features offered by both fog and cloud computing were combined in HiCH. 

The proposed architecture used the MAPE-K model, which has four different 

components, namely monitor, analyse, plan and execute. Each component 

shared the system knowledge to manage the system resources efficiently. To 

ensure that each component was properly mapped into the HiCH architecture, 

system management was integrated into the system. The system 

management will periodically tune the computing components based on the 

input and the computations requirement of the model. The cloud performs the 

heavy computations, and the output is shared with the fog to perform the plan 

and the execution services. The fog node also reduces the traffic by filtering 

the redundant data from the sensor nodes. Moreover, the plan and execution 

can still be performed during times when Internet connection is interrupted. 

The proposed architecture was demonstrated by performing continuous 

health monitoring to assess cardiovascular patients, and the results showed 

that the proposed HiCH had low response time and high traffic reduction. 

A medical warning system which uses the concept of fog computing was 

proposed in [10]. The work used autonomic computing proposed by IBM 

Corporation, which consists of four components, namely monitor, analyse, 

plan, and execute, to analyse the health data and decision making. Fog can 

be used to process the ECG data and to perform decision making even during 

times when Internet connection is interrupted. This is achieved by shifting the 

plan and executing components from the cloud to the local gateway (fog). An 

experiment using two types of fog devices with different processing 

capabilities, i.e. Raspberry Pi Zero and Jetson-TK1, was demonstrated with 
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the proposed architecture to measure the latency due to transmitting data from 

the sensor node to the gateway, processing at the gateway and sending 

feedback from the gateway to the user. Note that, the Raspberry Pie Zero is 

a small board with 1 GHz processing capability while the Jetson-TK1 is a 

significantly more powerful board with a quad-core 2.32 GHz processing. The 

results were then compared with the traditional approach, where everything is 

processed at the cloud. The results indicated that the latency of using Jetson-

TK1 as the fog gateway was lower than with the traditional approach. 

Meanwhile, the Raspberry Pi Zero had higher latency than the traditional 

approach, mainly due to the limited processing power, which increases the 

computation time. 

The Health Level Seven (HL7) standard [81] has been widely studied to 

enable the interoperability of healthcare information between large health 

institutions. Due to this, a framework that standardises the exchange of health 

information between healthcare entities by using the HL7 standard was 

proposed in [82]. In this work, the data translation from plain and XML data 

formats to the HL7 standard was performed by introducing a new software 

tool. Meanwhile, Iguana/Chameleon tool [83], an application that is used to 

convert data into various formats besides allowing users to receive, transform 

and exchange any wanted data, was used to benchmark the implementation. 

The work evaluated the integration of the HL7 standard into the eHealth 

system for lightweight devices (sensor device) that used Zigbee and Wi-Fi 

communication protocol. The results revealed that converting data from the 

plain and XML formats to the HL7 increased the size of the data. This, in turn, 

increased the transmission time needed to send the data from the lightweight 

devices to the fog for further processing. Due to this, the above-mentioned 
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work suggested that data translation of medical records exchange should be 

performed in the fog infrastructure rather than in a lightweight device. Besides, 

they also indicated that the Wi-Fi protocol is the best option to transmit a high 

number of medical records.  

 

2.6.3 Accuracy 

 

Accuracy is one of the most important parameters in health monitoring 

applications. Data accuracy allows doctors to give proper treatment to the 

patients. In [70], the accuracy of determining the state of event of the patient’s 

condition was tested by integrating the classifier algorithms at the fog layer. 

Several classifier algorithms, including the Bayesian Belief Network (BBN), 

neural network, k-nearest neighbour and linear regression, were tested. The 

results revealed that the BBN had the highest accuracy compared to other 

algorithms. Meanwhile, in [84], the authors claimed that the J48 algorithm 

which generates a classification-decision tree for the given data set by 

recursive partitioning data [85, ][86], had high accuracy. Therefore, the 

algorithm was used at the fog to classify the category of infection of the users 

who have been infected by the Chikungunya virus. The results indicated that 

the system is capable of detecting the risk-prone regions which have been 

infected with the virus. 

In [71], a new fall detection algorithm based on acceleration magnitude 

values and non-linear time series analysis techniques was developed and 

implemented in the authors’ proposed U-Fall system. The system was tested 

and the results showed that the developed algorithm had a lower missing rate 
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and lower false alarm rate than the existing algorithm i.e. threshold-based 

technique, T-system and pattern matching system, and P-system.  

A complex learning algorithm is used in the HiCH architecture to perform 

data analytics in the cloud [80]. In said work, the data set obtained from the 

cloud was shared with the fog to perform the plan and execution. The 

proposed architecture was demonstrated by performing continuous 

monitoring of cardiovascular patients, and the results showed that sharing the 

data set between the cloud and fog provided high accuracy.  

A smart system to monitor patients with OSA was proposed in [74]. In the 

work, the fog layer performed the pre-processing of health data to detect any 

abnormalities in the health condition of patients so that the doctor can be 

notified in real time. Meanwhile, cloud computing was used to perform 

descriptive analysis, and this involved sending a batch of data processing to 

the cloud layer to ascertain the behaviour of said data and perform a predictive 

analysis for the development of services. This data included the pre-

processed data at the fog layer and the open data catalogue which is available 

in smart cities. The aim of having the descriptive and predictive analysis is to 

help the doctor decide if the treatment given to the patient should be changed 

based on the health evolution of the patient for accuracy purposes. The 

proposed system also demonstrated that the prediction of the air quality index 

(AQI) provides 93.3% effectiveness.  
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2.6.4 Cost 

 

Cost is one of the parameters which must be addressed in developing a health 

monitoring system. However, developing a smart health system at low cost is 

very challenging, especially when it comes to meeting the service demands 

from users while providing high-quality services. These challenges include 

operating expenses (OPEX) and capital expenditure (CAPEX). 

The proposed privacy-preserving fog-assisted information sharing scheme 

(PFHD) in [60] achieved lightweight encryption on devices by offloading part 

of the encryption cost from the devices to the fog servers. The aim of this 

offloading was to lighten the burden on sensor devices in terms of computation 

and storage cost to perform efficient encryption for data privacy preservation. 

They compared the performance of PFHD at fog with cipher text-policy 

attribute-based encryption (CP-ABE) [87] and the results indicated that the 

PFHD was more efficient than CP-ABE in terms of computation and storage 

cost. Meanwhile, the type of security design for authentication purposes 

between the sensor and server also plays an important role in reducing the 

computational cost of the system. In [88], the hash function and secret key 

cryptosystem were designed to secure the communication between the 

sensor node and the fog server. The designed security protocol under 

SecHealth showed that the computation cost of the sensors in fog was low 

during the authentication phases compared to the existing protocol in [89]. 

The work in [90] also utilised fog to perform the authenticating and authorising 

protocol to reduce the burden on the sensor node and cloud. 

A fog computing architecture, SmartFog was proposed in [91], which utilised 

low-resource machine learning on the fog node to analyse the pathological 
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speech data from smart watches worn by patients with Parkinson’s Disease. 

In the above work, an acoustic analysis software program, together with Praat 

scripting language [92], was used to extract the features based on the pitch 

(frequency) and intensity of the collected samples, which comprised sound 

files with utterances. The analysis of the features was performed at the fog 

device by using the k-means clustering algorithm, which employs Python 

programming language. The proposed SmartFog architecture was tested 

using Intel Edison and Raspberry Pi, with the results showing that the 

Raspberry Pi outperformed the Intel Edison in terms of runtime and average 

CPU usage. A simulation using iFogSim tools to compare the total instances 

cost with the increasing number of applications request services to be 

performed in cloud and fog was performed in [53]. The results indicated that 

fog offered less service charge compared to the cloud. This is because fog 

uses micro computing instances (MCIs) which can be adjustable according to 

the number of application modules requested. Meanwhile, the cloud-based 

solution uses a virtual machine (VM), where the configuration is predefined. 

Due to this, the service charge for MCIs is based on the context of the module, 

while for VMs, the full-service charge is required, whatever the usage is. 

In [65], the cost of deploying the fog nodes was reduced by using Field-

Programmable Gate Array (FPGA) technology. The authors also claimed that 

this was the first work to employ the FPGAs technology in fog at the 

infrastructure and architecture level. In [72], the authors claimed that the 

medical and healthcare costs can be reduced if the life-threating events are 

detected earlier so that immediate action can be taken to save patients. 

Therefore, they proposed the Automatic Healthcare Management System 
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(AHMS), which continuously monitors and analyses the health data provided 

by the wearable devices and personal health records. 

 

2.7 Conclusions 

 

Recent times have seen the remote health monitoring system gain a great 

deal of attention due to increases in the ageing population and chronic 

diseases. There exists significant research on the fog-cloud based health 

monitoring system and IoT devices to support the development of healthcare 

applications with low energy consumption, low latency, high accuracy, high 

security and low cost. Although most of the parameters have been taken into 

consideration to develop the healthcare system, the energy which the network 

architecture consumes when deploying the health monitoring system has not 

been emphasised. Therefore, in the present study, the performance of fog 

computing for health monitoring applications is investigated in terms of the 

energy consumption of networking equipment and processing.  
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Chapter 3 

A proposed health monitoring system with fog computing 

architecture 

3.1 Introduction 

There are several works that have considered the use of fog computing for 

health monitoring applications. However, the essential aspect of the energy 

consumption in transport networks and the impact of the fog locations in the 

edge network on energy efficiency has not been studied. This chapter 

proposes a new framework for an energy-efficient health monitoring system 

that performs real-time monitoring in a patient-centred environment by 

leveraging the concept of fog computing. We present the proposed health 

monitoring system with fog computing and explain the functions of the 

modules at the fog and cloud layer. Also, we introduce the proposed fog 

computing architecture for health monitoring applications using a Gigabit 

Passive Optical Network (GPON) access network, which is considered in this 

work due to its energy-efficiency. We explain in detail the purposes of each 

layer in the proposed fog architecture and introduce the candidate locations 

of the fog at the access network. A Mixed Integer Linear Programming (MILP) 

model is developed using AMPL software with CPLEX 12.8 solver as a 

platform to optimise the locations of the processing servers at the access layer 

so that the energy consumption of both networking equipment and processing 

are minimised. We also developed a MILP model for the conventional 

approach as a benchmark to evaluate the performance of the proposed fog 

approach in terms of the networking equipment and processing energy 



- 44 - 

consumption. Note that, the MILP approach is chosen as the optimisation 

technique in this work rather than the other optimisation models available as 

in listed in [93] because the linear constraints related to the linear 

programming subproblem result in a convex feasible region, which is 

guaranteed to obtain the global optimum [94]. 

 

3.2 Health monitoring system with fog computing 

This section presents the proposed architecture of the fog-based health 

monitoring system, which is divided into three modules: i) health data analysis 

and decision-making module, ii) fog storage module, and iii) cloud storage 

module, as illustrated in Figure 3.1. The health data analysis and decision-

making module and the fog storage module are embedded in the fog layer, 

whereas the cloud storage module is incorporated in the cloud layer.  
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Figure 3.1: Architecture of the proposed system 

 

Below we explain in detail the function of each module: 

 

1. The health data analysis and decision-making module performs three 

tasks. The first is aggregating health data derived from multiple patients 

via wireless-connected devices, for example, smartphones to monitor 

postoperative atrial fibrillation (AF). The second task processes and 

analyses the health data of each patient and matches it with the disease 

symptom based on the extracted features of the health data. The final task 

is making decisions on the action taken against irregular physical data of 
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the patients, such as informing the emergency medical service resources 

to act fast on patients who seek aid. Nonetheless, in some cases, the 

doctors would re-diagnosis the results before making the final decision. 

2. The fog storage module serves as a temporary storage for health results 

besides providing accessibility for patient and doctors upon pressing 

demands. This module is also used to send the analysed health data to 

the cloud storage and the clinic for permanent storage and feedback 

purposes, respectively. 

3. The cloud storage module permanently stores the analysed results of 

patients for history purposes. This module offers accessibility for both 

patients and doctors, similar to that in the fog storage module. 

 

3.3 Fog computing architecture for health monitoring 

applications with Gigabit passive optical network (GPON) 

access network 

The architecture of using the GPON network is characterised by four 

networking layers, as portrayed in Figure 3.2. It is worth noting that a 

redundant connection is present for each device to increase the resilience of 

the network. 
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Figure 3.2: GPON architecture in the fog network 

  

The first layer (i.e. Layer 1) is the bottom-most layer that is comprised of 

IoT devices, mobile phones, iPads, etc. which supports Machine-to-Machine 

(M2M) communication devices with a connection to wireless body sensors to 

both monitor the health of patients and to send data to the network. The 

second layer (i.e. Layer 2) is the access layer that serves as the fog computing 

layer. This layer aggregates data from layer 1 via gateways such as a LTE-M 

base station (1.4MHz bandwidth for LTE-M), Wi-Fi access point, etc. It also 

consists of fog servers that can process, analyse, and perform temporary 

storage, Optical Network Units (ONUs), and an Optical Line Terminal (OLT). 

Fog computing processing resources serving the health monitoring 

application can be deployed at ONUs and the OLT. Placing the processing 

servers (PSs) at ONUs, which is closer to the users, decreases the energy 

consumption of networking equipment, however, it will increase the required 

number of PSs. Meanwhile, utilising PSs at OLT reduces the number of PSs 

required as it is a shared point between the access points although will 

increase the energy consumption of the networking equipment. In fact, the fog 
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server performs the processing, web server, firewalls, and security functions. 

Next, the gateway and the fog are connected via the ONU, which has an 

internal access switch. The ONUs are connected to the OLT via a passive 

splitter that converts the electrical signal to an optical signal before forwarding 

them to the OLT. The connections between the gateway, fog, and ONU are of 

copper wire, and an optical fibre between the ONU and OLT.  

The third layer (i.e. Layer 3) is the metro layer that consists of a centre 

aggregation switch (CAS) and aggregation router. The CAS aggregates and 

fast-forwards data between the fogs in the access network. The aggregation 

router serves as a gateway to connect the access network to the core network. 

Connections between the devices in this layer are made of optical fibre. The 

fourth layer (i.e. Layer 4) is the upper-most layer in the architecture that has 

IP over WDM core network devices, such as core routers. This layer is 

integrated with the central cloud that consists of cloud routers, cloud switches, 

content servers, and cloud storage. The central cloud is used to permanently 

store the health data of patients, which is significant in health application [95]. 

Note that, for the conventional approach, the processing server is located at 

the cloud switches.  

 

3.3.1 Link capacity considerations in the network for health 

monitoring applications 

 

The total IP traffic of M2M communication from the global IP traffic in 2016 

was 2%, and is expected to be 5% in 2021 [96]. Cisco also reported that the 

total M2M connected devices and the connected health consumers of M2M 
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connection in 2015 were 4.9 billion and 144 million, respectively, and are 

estimated to hike up to 12.2 billion and 729 million, respectively, in 2020 [97]. 

This signifies that the M2M connected devices for healthcare applications 

were approximately responsible for 3% of the traffic in 2015 and will be 

responsible for 6% in 2020. For this work, only 5% had been employed to 

predict M2M traffic from the global traffic, while 6% represented healthcare 

traffic from the total M2M traffic. These calculated percentages are used to 

estimate the link capacities in the network for healthcare applications. 

Furthermore, it is worth noting that the link capacities at all layers (access, 

metro and core layers) are considered to serve traffic for all other applications 

and not only M2M applications. Thus, the link capacities dedicated to 

healthcare application at all layers are 0.3% of the maximum capacities. This 

can be explained by noting that 5% of all IP traffic is M2M traffic, while 6% of 

the M2M allocation is for the healthcare application. Note, all 0.3% of the 

maximum link capacities are considered to be available for our healthcare 

application. 

 

3.3.2 Power profile of networking and processing equipment for 

health monitoring applications 

 

The power consumption for most networking and computing devices reflects 

a linear power profile [98]. Hence, power consumption of all networking 

equipment and PS consists of both an idle and a linear proportional part.  
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(a) 

 

(b) 

Figure 3.3: Power consumption model for (a) processing servers and cloud 

storage (b) other networking devices 

 

Figure 3.3-(a) illustrates the power profile for the PS and cloud storage 

while Figure 3.3-(b) illustrates the power profile for the other networking 

equipment. The aspect of power consumption had been determined based on 

the fixed idle power and the load dependent power. Equation (3-1) calculates 

the linear form power consumption of the PS and the cloud storage, where 

𝑃𝑖𝑑𝑙𝑒 denotes its idle power, while the graph slope, (𝑃𝑥) refers to power per 
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GHz for PS and power per Gbit for cloud storage. 𝐶 refers to the offered load 

found in GHz and Gbit for PS and cloud storage, respectively. 

𝑃(𝐶) =  𝑃𝑖𝑑𝑙𝑒 + 𝐶 
𝑃𝑚𝑎𝑥 − 𝑃𝑖𝑑𝑙𝑒

𝐶𝑚𝑎𝑥
= 𝑃𝑖𝑑𝑙𝑒 + 𝐶 𝑃𝑥 

(3-1) 

Meanwhile, Equation (3-2) calculates the linear form of other networking 

devices power consumption, where 𝑃𝑖𝑑𝑙𝑒 denotes the idle power while the 

slope of the graph (𝐸𝑥) reflects the increased energy per bit. Besides, 𝐶 

denotes the offered load in bit per second. 

𝑃(𝐶) =  𝑃𝑖𝑑𝑙𝑒 + 𝐶 
𝑃𝑚𝑎𝑥 − 𝑃𝑖𝑑𝑙𝑒

𝐶𝑚𝑎𝑥
= 𝑃𝑖𝑑𝑙𝑒 + 𝐶 𝐸𝑥 

(3-2) 

The maximum power consumption of the networking equipment and the PS, 

together with their maximum capacity used to calculate both idle and load 

dependent power, can be retrieved from data sheets and references. As for 

ONU, the maximum capacity, 𝐶𝑂𝑁𝑈, was considered as the summation of the 

maximum uplink capacity, 1.25 Gbps [99], and maximum downlink capacity, 

2.5 Gbps [99],  to obtain 𝐸𝑏. Note that, the networking devices are shared by 

multiple applications while the considered PSs are dedicated to the healthcare 

application. As previously discussed, the healthcare application is thus 

considered to contribute to 0.3% of the idle power of the networking devices. 

Also, we considered our healthcare application to be responsible for 0.3% of 

the idle power of the networking equipment. Moreover, due to cooling and 

other overheads in the network devices, such as uninterruptable power 

system at network sites, a power usage effectiveness (PUE) factor is 

incorporated. PUE is defined as the ratio of the total power used for 

equipment, cooling and other overheads to the power used by the equipment 

(communication or computing equipment). In network infrastructure, a typical 
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telecom office PUE is 1.5 [100], [101]. Therefore, for IP over WDM, metro, and 

access networks, a PUE of 1.5 is considered [102], [103]. Meanwhile, based 

on the United State data center energy usage, data centers PUE varies based 

on the size of data centers as more efficient cooling equipment are used in 

larger data centers [104]. The typical data centers PUE varies between 1.1 for 

the large data center to 3 for small data centers [104], [101]. In this work, we 

adopted a PUE of 2.5 for small distributed clouds [105]. In addition, a PUE of 

2.5 was set for the fog.  

 

3.4 System flow of health monitoring applications in the 

network 

In this work, the health data of each patient was monitored. Two approaches 

were incorporated in this study, which are, the conventional approach (CA) 

and the proposed approach with fog optimisation (FOA). There are three tasks 

to be carried out in each approach; processing and analysis, feedback and 

storage. The processing task extracts health data features, for instance, ECG 

signal heart rate and QRS duration (Q, R and S label the start, peak and end 

of a heart beat pulse), which are essential in detecting AF among patients, are 

determined through the processing task. This is performed by the PS which is 

located at the central cloud in CA, while at fog in FOA.  

Next, the analysis process refers to the diagnosis of health data features 

(i.e. heart rate and QRS duration for ECG signal) so as to monitor the health 

condition among patients, either normal or abnormal, to decide the 

appropriate actions given to the patients. The analysis process is performed 
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at the same PS that performs the processing. Then, the feedback task is 

performed by sending the analysed data to the clinics. The last process 

performs permanent storage of the analysed data of the patients at the cloud. 

However, in FOA, the fog is used first to temporarily store the analysed data 

of the patients before being stored permanently at cloud storage. 

 

 

(a) 

 

(b) 

Figure 3.4: System flow of (a) conventional approach (CA) (b) proposed 

approach (FOA) 

 

Figure 3.4-(a) and Figure 3.4-(b) illustrate the system flow of the CA and 

the proposed approaches (FOA), respectively. In CA, the raw health data are 

sent to the central cloud for processing and analysis, feedback and permanent 
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storage. It is important to note that the PS at the central cloud also stores the 

latest analysed health data of each patient for the next analysis. Meanwhile, 

in FOA, both processing and analysis of raw health data and the feedback 

task are performed at the fog. In fact, fog servers are also used to temporarily 

store the analysed health data, which are later sent to the central cloud for 

permanent storage.  

 

3.5 Mathematical model for Energy-efficient fog computing 

health monitoring applications with LTE-M (EEFC) 

This section presents the Mixed Integer Linear Programming (MILP) model 

that has been developed for fog approach (FOA) to minimise the energy 

consumption in both networking and processing equipment by optimising the 

location of PS at access network. Note, the energy consumption of 

networking equipment includes the energy consumed by all networking 

devices at all layers while the processing energy consumption refers to the 

energy consumed by the processing servers. Before introducing the model, 

we define the sets, parameters and variables used as in Table 3.1 (also can 

be found in Appendix 1). Note that, the nodes refer to the networking devices 

at all layers while the candidate nodes refer specifically to the nodes that can 

be used to host the PS. The mathematical source code of the EEFC model 

can be found in Appendix 2.  
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Table 3.1: The sets, parameters and variables used in MILP 

Sets 

𝐶𝐿 Set of clinics 

𝐵𝑆 Set of BSs 

𝑂𝑁𝑈 Set of ONUs 

𝑂𝐿𝑇 Set of OLTs 

𝐶𝐴𝑆 Set of centre aggregation switches 

𝐴𝑅 Set of aggregation routers 

𝐶𝑅 Set of core routers 

𝐶𝐿𝑅 Set of cloud routers 

𝐶𝐿𝑆 Set of cloud switches 

𝐶𝑆 Set of content servers 

𝐶𝑆𝑇 Cloud storage 

𝑁𝑚 Set of neighbouring nodes of node 𝑚 in the network 

𝑁 Set of nodes (𝑁 ∈ 𝐶𝐿 ∪ 𝐵𝑆 ∪ 𝑂𝑁𝑈 ∪ 𝑂𝐿𝑇 ∪ 𝐶𝐴𝑆 ∪ 𝐴𝑅 ∪ 𝐶𝑅 ∪

𝐶𝐿𝑅 ∪ 𝐶𝐿𝑆 ∪ 𝐶𝑆 ∪ 𝐶𝑆𝑇) 

𝐹𝑁 Set of candidate locations to deploy PS (fog) (𝐹𝑁 ∈ 𝑂𝑁𝑈 ∪ 𝑂𝐿𝑇) 

Parameters  

𝑠 𝑎𝑛𝑑 𝑑 Denote source node 𝑠 and destination node 𝑑 of traffic between 

a node pair 

𝑖 𝑎𝑛𝑑 𝑗 Denote end nodes of a physical link in the network, 𝑖, 𝑗 ∈ 𝑁 

𝑃𝑡𝑠 Number of patients in clinic 𝑠  

𝐼𝐵𝑆 Idle power consumption of a base station (W) 

𝑃𝐵𝑆 Power per physical resource block (PRB) of a base station 

(W/PRB) 
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Ɍ  Maximum number of PRBs in a base station dedicated for 

healthcare applications 

𝑃𝑂𝑁𝑈 Maximum power consumption of an ONU (W) 

𝐼𝑂𝑁𝑈 Idle power consumption of an ONU (W) 

𝐶𝑂𝑁𝑈 Maximum capacity of an ONU (bps) 

𝑃𝑂𝐿𝑇 Maximum power consumption of an OLT (W) 

𝐼𝑂𝐿𝑇 Idle power consumption of an OLT (W) 

𝐶𝑂𝐿𝑇 Maximum capacity of an OLT (bps) 

𝑃𝐶𝐴𝑆 Maximum power consumption of a centre aggregation switch (W) 

𝐼𝐶𝐴𝑆 Idle power consumption of a centre aggregation switch (W) 

𝐶𝐶𝐴𝑆 Maximum capacity of a centre aggregation switch (bps) 

𝑃𝐴𝑅 Maximum power consumption of an aggregation router (W) 

𝐼𝐴𝑅 Idle power consumption of an aggregation router (W) 

𝐶𝐴𝑅 Maximum capacity of an aggregation router (bps) 

𝑃𝐶𝑅 Maximum power consumption of a core router (W) 

𝐼𝐶𝑅 Idle power consumption of a core router (W) 

𝐶𝐶𝑅 Maximum capacity of a core router (W) 

𝑃𝐶𝐿𝑅 Maximum power consumption of a cloud router (W) 

𝐼𝐶𝐿𝑅 Idle power consumption of a cloud router (W) 

𝐶𝐶𝐿𝑅 Maximum capacity of a cloud router (bps) 

𝑃𝐶𝐿𝑆 Maximum power consumption of a cloud switch (W) 

𝐼𝐶𝐿𝑆 Idle power consumption of a cloud switch (W) 

𝐶𝐶𝐿𝑆 Maximum capacity of a cloud switch (bps) 

𝑃𝐶𝑆 Maximum power consumption of a content server (W) 

𝐼𝐶𝑆 Idle power consumption of a content server (W) 

𝐶𝐶𝑆 Maximum capacity of a content server (bps) 
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𝑃𝐶𝑆𝑇 Maximum power consumption of a cloud storage (W) 

𝐼𝐶𝑆𝑇 Idle power consumption of a cloud storage (W) 

𝐶𝐶𝑆𝑇 Maximum capacity of a cloud storage (bit) 

𝑃𝑃𝑆 Maximum power consumption of a processing server (W) 

𝐼𝑃𝑆 Idle power consumption of a processing server (W) 

𝛺𝑚𝑎𝑥 Maximum number of patients per processing server  

𝛬𝑚𝑎𝑥 Maximum storage capacity of processing server (bit) 

𝛿𝑎 Data rate per patient to send raw health data from clinic to 

processing server (bps) 

𝜏𝑎 Transmission time per patient to send raw health data from clinic 

to processing server (s)  

𝑅𝑎 Physical resource block per patient to send raw health data from 

clinic to processing server 

𝛼 Size of analysed health data per patient (bit) 

𝛿𝑏 Data rate per patient to send analysed health data from 

processing server to clinic (bps) 

𝜏𝑏 Transmission time per patient to send analysed health data from 

processing server to clinic (s) 

𝑅𝑏 Physical resource block per patient to send analysed health data 

from processing server to clinic 

𝛿𝑐 Data rate per patient to send analysed health data from 

processing server to cloud storage (bps) 

𝜏𝑐 Transmission time per patient to send analysed health data from 

processing server to cloud storage (s) 

𝛿𝑠𝑑 𝛿𝑠𝑑 = 1 to send the storage traffic from processing servers 

located at candidate node 𝑠, to the cloud storage node 𝑑, 𝑠 ∈

𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇 
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𝑥 Fraction of idle power consumption of networking equipment 

contributed by the healthcare application under consideration 

𝜆𝑖𝑗 The capacity of link 𝑖𝑗 dedicated for the healthcare application 

under consideration (bps) 

𝜂 Power usage effectiveness (PUE) of the access network, metro 

network and IP over WDM network  

𝑐 Power usage effectiveness (PUE) of the fog (processing server) 

and cloud equipment 

𝑀 A large enough number 

Variables  

𝑃𝑠𝑑 Raw health data traffic from source node 𝑠 to destination node 𝑑 

(bps), 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁 

𝑃𝑖𝑗
𝑠𝑑 Raw health data traffic from source node 𝑠 to destination node 

𝑑 that traverses the link between nodes 𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐶𝐿, 𝑑 ∈

𝐹𝑁, 𝑖, 𝑗 ∈ 𝑁  

𝑃𝑖 Total raw health data traffic that traverses node 𝑖 (bps), 𝑖 ∈ 𝑁 

𝐹𝑠𝑑 Analysed health data feedback traffic from source node 𝑠 to 

destination node 𝑑 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿  

𝐹𝑖𝑗
𝑠𝑑 Analysed health data feedback traffic from source node 𝑠 to 

destination node 𝑑 that traverses the link between nodes 𝑖 and 𝑗 

(bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿, 𝑖, 𝑗 ∈ 𝑁 

𝐹𝑖 Total analysed health data feedback traffic that traverses node 𝑖 

(bps), 𝑖 ∈ 𝑁 

𝑆𝑠𝑑 Analysed health data storage traffic from source node 𝑠 to 

destination node 𝑑 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇  

𝑆𝑖𝑗
𝑠𝑑 Analysed health data storage traffic from source node 𝑠 to 

destination node 𝑑 that traverses the link between nodes 𝑖 and 𝑗 

(bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇, 𝑖, 𝑗 ∈ 𝑁  
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𝑆𝑖 Total analysed health data storage traffic that traverses node 𝑖 

(bps), 𝑖 ∈ 𝑁 

⍵𝑠𝑑 Number of patients from clinic 𝑠 served by processing server 

located at candidate node 𝑑  

𝑃𝑎𝑖𝑗 Number of patients in clinic 𝑖 served by BS 𝑗 to send raw health 

data traffic (integer) 

𝑃𝑏𝑖𝑗 Number of patients in clinic 𝑖 served by BS 𝑗 to receive analysed 

health data feedback traffic (integer) 

𝛽𝑎𝑗  Number of PRBs used in BS 𝑗 to serve raw health data traffic 

(integer) 

𝛽𝑏𝑖  Number of PRBs used in BS 𝑖 to serve analysed health data 

feedback traffic (integer) 

𝑌𝑑  𝑌𝑑 = 1, if a processing server is placed at candidate node 𝑑, 

otherwise 𝑌𝑑 = 0, 𝑑 ∈ 𝐹𝑁  

𝜙𝑑 Number of processing servers placed at candidate node 𝑑, 𝑑 ∈

𝐹𝑁  

𝜏𝑝𝑑 Processing and analysis time of processing server (seconds) at 

candidate node 𝑑, 𝑑 ∈ 𝐹𝑁  

𝜁𝑎𝑗 𝜁𝑎𝑗 = 1, if raw health data traffic traverses node 𝑗, otherwise  

𝜁𝑎𝑗 = 0, 𝑗 ∈ 𝑁  

𝜁𝑏𝑖  𝜁𝑏𝑖 = 1, if analysed health data feedback traffic traverses node 𝑖, 

otherwise 𝜁𝑏𝑖 = 0, 𝑖 ∈ 𝑁  

𝜃𝑐𝑖 𝜃𝑐𝑖 = 1, if analysed health data storage traffic traverses node 

𝑖 where node 𝑖 is the source of a link, otherwise  

𝜃𝑐𝑖 = 0, 𝑖 ∈ 𝑁 

𝜗𝑐𝑗 𝜗𝑐𝑗 = 1, if analysed health data storage traffic traverses node 𝑗 

where 𝑗 is the end of a link, otherwise  

𝜗𝑐𝑗 = 0, 𝑗 ∈ 𝑁 
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𝜁𝑐𝑖 𝜁𝑐𝑖 = 1, if the analysed health data storage traffic traverses node 

𝑖 where 𝜁𝑐𝑖 = 𝜃𝑐𝑖  𝑂𝑅 𝜗𝑐𝑖, otherwise 𝜎𝑖 = 0, 𝑖 ∈ 𝑁 

𝜈𝑖 𝜈𝑖 is a dummy variable that takes value of 𝜃𝑐𝑖⊕𝜗𝑐𝑖, where ⊕ is 

an XOR operation, 𝑖 ∈ 𝑁  

𝐸𝐴𝑁 Energy consumption of access network 

𝐸𝑇𝐵𝑆 Total energy consumption of base stations 

𝐸𝐵𝑆𝑃 Energy consumption of base stations required to relay raw health 

data traffic 

𝐸𝐵𝑆𝐹 Energy consumption of base stations required to relay analysed 

health data feedback traffic 

𝐸𝑇𝑂𝑁𝑈 Total energy consumption of ONUs 

𝐸𝑂𝑁𝑈𝑃 Energy consumption of ONUs required to relay raw health data 

traffic 

𝐸𝑂𝑁𝑈𝐹 Energy consumption of ONUs required to relay analysed health 

data feedback traffic 

𝐸𝑂𝑁𝑈𝑆 Energy consumption of ONUs required to relay analysed health 

data storage traffic 

𝐸𝑇𝑂𝐿𝑇 Total energy consumption of OLTs 

𝐸𝑂𝐿𝑇𝑃 Energy consumption of OLTs required to relay raw health data 

traffic  

𝐸𝑂𝐿𝑇𝐹 Energy consumption of OLTs required to relay analysed health 

data feedback traffic 

𝐸𝑂𝐿𝑇𝑆 Energy consumption of OLTs required to relay analysed health 

data storage traffic 

𝐸𝑀𝑁 Energy consumption of metro network 

𝐸𝐶𝐴𝑆𝑆 Energy consumption of centre aggregation switches required to 

relay analysed health data storage traffic 
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𝐸𝐴𝑅𝑆 Energy consumption of aggregation routers required to relay 

analysed health data storage traffic 

𝐸𝐶𝑁 Energy consumption of core network 

𝐸𝐶𝑅𝑆 Energy consumption of core routers required to relay analysed 

health data storage traffic 

𝐸𝐶𝐿 Energy consumption of cloud 

𝐸𝐶𝐿𝑅𝑆 Energy consumption of cloud routers required to relay analysed 

health data storage traffic 

𝐸𝐶𝐿𝑆𝑆 Energy consumption of cloud switches required to relay analysed 

health data storage traffic 

𝐸𝐶𝑆𝑆 Energy consumption of content servers required to relay 

analysed health data storage traffic 

𝐸𝐶𝑆𝑇𝑆 Energy consumption of cloud storage required to store the 

analysed health data storage traffic 

𝐸𝐹𝑁 Energy consumption of fog nodes 

𝐸𝑃𝑆 Energy consumption of processing servers 

 

We start by defining the energy consumption of the network (i.e. access, 

metro and core) and processing servers: 

 

a) Energy consumption of access network, 𝐸𝐴𝑁: 

 

The energy consumption of access network, 𝐸𝐴𝑁, is composed of the LTE 

base stations’, ONUs’ and OLTs’ energy consumption. The energy 

consumption of access network is given in Equation (3-3): 
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𝐸𝐴𝑁 = (𝐸𝑇𝐵𝑆 + 𝐸𝑇𝑂𝑁𝑈 + 𝐸𝑇𝑂𝐿𝑇)  𝜂 (3-3) 

 

where 𝜂 is the network PUE. The energy consumption of access network is 

composed of the energy consumed by three different tasks i.e. processing, 

feedback and storage tasks. In the processing task, raw health data is sent 

from the clinic to the PS at fog. In the feedback task, analysed health data is 

sent from the PS to the clinics. Meanwhile, in the storage task, analysed 

health data is sent from the PS to the cloud storage. Note that the three tasks 

occur at different times. The energy consumption of BS (𝐸𝑇𝐵𝑆) is given as:

  

𝐸𝑇𝐵𝑆 = 𝐸𝐵𝑆𝑃 + 𝐸𝐵𝑆𝐹 (3-4) 

where 

𝐸𝐵𝑆𝑃 = ∑(𝐼𝐵𝑆 𝑥 𝜁𝑎𝑖  + 𝑃𝐵𝑆 𝛽𝑎𝑖) 

𝑖∈𝐵𝑆

𝜏𝑎 (3-5) 

𝐸𝐵𝑆𝐹 = ∑(𝐼𝐵𝑆 𝑥 𝜁𝑏𝑖 + 𝑃𝐵𝑆 𝛽𝑏𝑖) 

𝑖∈𝐵𝑆

𝜏𝑏 (3-6) 

 

The energy consumed by LTE BS, 𝐸𝑇𝐵𝑆, is based on the number of PRBs 

(𝛽𝑎𝑖 and 𝛽𝑏𝑖) and the time the BS (𝜏𝑎 and 𝜏𝑏) is used to relay raw health data 

traffic, 𝐸𝐵𝑆𝑃 and analysed health data feedback traffic, 𝐸𝐵𝑆𝐹, as depicted in 

Equation (3-5) and Equation (3-6), respectively.  

 

The energy consumption of the ONUs is given as: 
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𝐸𝑇𝑂𝑁𝑈 = 𝐸𝑂𝑁𝑈𝑃 + 𝐸𝑂𝑁𝑈𝐹 + 𝐸𝑂𝑁𝑈𝑆 (3-7) 

where 

𝐸𝑂𝑁𝑈𝑃 =  ∑ (𝐼𝑂𝑁𝑈 𝑥 𝜁𝑎𝑖 + 𝑃𝑖  
(𝑃𝑂𝑁𝑈 − 𝐼𝑂𝑁𝑈)

𝐶𝑂𝑁𝑈
)  𝜏𝑎

𝑖∈𝑂𝑁𝑈

 
(3-8) 

𝐸𝑂𝑁𝑈𝐹 = ∑ (𝐼𝑂𝑁𝑈 𝑥 𝜁𝑏𝑖 + 𝐹𝑖  
(𝑃𝑂𝑁𝑈 − 𝐼𝑂𝑁𝑈)

𝐶𝑂𝑁𝑈
)  𝜏𝑏

𝑖∈𝑂𝑁𝑈

 
(3-9) 

𝐸𝑂𝑁𝑈𝑆 = ∑ (𝐼𝑂𝑁𝑈 𝑥 𝜁𝑐𝑖 + 𝑆𝑖  
(𝑃𝑂𝑁𝑈 − 𝐼𝑂𝑁𝑈)

𝐶𝑂𝑁𝑈
)  𝜏𝑐

𝑖∈𝑂𝑁𝑈

 
(3-10) 

 

The energy consumption of ONUs is calculated based on relaying the raw 

health data traffic, analysed health data feedback traffic and analysed health 

data storage traffic, as presented in Equation (3-7). The energy consumed by 

ONUs is proportional to the size of traffic traversing them and the utilisation 

time. Equations (3-8)-(3-10) depict the calculation of energy consumed by the 

ONUs to relay raw health data traffic, 𝐸𝑂𝑁𝑈𝑃, analysed health data feedback 

traffic, 𝐸𝑂𝑁𝑈𝐹 and analysed health data storage traffic, 𝐸𝑂𝑁𝑈𝑆, respectively.  

 

The energy consumption of the OLTs is given as: 

 

𝐸𝑇𝑂𝐿𝑇 = 𝐸𝑂𝐿𝑇𝑃 + 𝐸𝑂𝐿𝑇𝐹 + 𝐸𝑂𝐿𝑇𝑆 (3-11) 

where 

𝐸𝑂𝐿𝑇𝑃 =  ∑ (𝐼𝑂𝐿𝑇 𝑥 𝜁𝑎𝑖 + 𝑃𝑖  
(𝑃𝑂𝐿𝑇 − 𝐼𝑂𝐿𝑇)

𝐶𝑂𝐿𝑇
)  𝜏𝑎

𝑖∈𝑂𝐿𝑇

 
(3-12) 
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𝐸𝑂𝐿𝑇𝐹 = ∑ (𝐼𝑂𝐿𝑇 𝑥 𝜁𝑏𝑖 + 𝐹𝑖  
(𝑃𝑂𝐿𝑇 − 𝐼𝑂𝐿𝑇)

𝐶𝑂𝐿𝑇
)  𝜏𝑏

𝑖∈𝑂𝐿𝑇

 
(3-13) 

𝐸𝑂𝐿𝑇𝑆 = ∑ (𝐼𝑂𝐿𝑇 𝑥 𝜁𝑐𝑖 + 𝑆𝑖  
(𝑃𝑂𝐿𝑇 − 𝐼𝑂𝐿𝑇)

𝐶𝑂𝐿𝑇
)  𝜏𝑐

𝑖∈𝑂𝐿𝑇

 
(3-14) 

 

The energy consumed by the OLTs is based on relaying the three types of 

traffic explained for ONUs as depicted in Equation (3-11). The energy 

consumed by OLT to relay the traffic is proportional to the size of traffic 

traversing them and the utilisation time. Equations (3-12)-(3-14) depict the 

energy consumed by the OLT to relay raw health data traffic, 𝐸𝑂𝐿𝑇𝑃, analysed 

health data feedback traffic, 𝐸𝑂𝐿𝑇𝐹 and analysed health data storage 

traffic, 𝐸𝑂𝐿𝑇𝑆, respectively.  

 

b) Energy consumption of metro network, 𝐸𝑀𝑁  

 

The energy consumption of metro network, 𝐸𝑀𝑁, is composed of the energy 

consumption of centre aggregation switches and aggregation routers. Note 

that these devices are only used to relay the analysed health data storage 

traffic as the candidate locations of PS is at the access layer. Hence the raw 

health data traffic and analysed health data feedback traffic does not traverse 

the metro network. The energy consumption of the metro network is as given 

in Equation (3-15): 

 

𝐸𝑀𝑁 = (𝐸𝐶𝐴𝑆𝑆 + 𝐸𝐴𝑅𝑆) 𝜂 (3-15) 
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where  

𝐸𝐶𝐴𝑆𝑆 = ∑ (𝐼𝐶𝐴𝑆 𝑥 𝜁𝑐
𝑖
+ 𝑆𝑖  

(𝑃𝐶𝐴𝑆 − 𝐼𝐶𝐴𝑆)

𝐶𝐶𝐴𝑆
)  𝜏𝑐

𝑖∈𝐶𝐴𝑆

 
(3-16) 

𝐸𝐴𝑅𝑆 = ∑ (𝐼𝐴𝑅 𝑥 𝜁𝑐
𝑖
+ 𝑆𝑖  

(𝑃𝐴𝑅 − 𝐼𝐴𝑅)

𝐶𝐴𝑅
)  𝜏𝑐

𝑖∈𝐴𝑅

 
(3-17) 

 

The energy consumed by the centre aggregation switches and aggregation 

routers are proportional to the size of traffic traversing them and the utilisation 

time as shown in Equation (3-16) and Equation (3-17), respectively.  

 

c) Energy consumption of core network, 𝐸𝐶𝑁 

 

The energy consumption of core network, 𝐸𝐶𝑁, is composed of the energy 

consumption of core routers as given in Equation (3-18): 

 

𝐸𝐶𝑁 = 𝐸𝐶𝑅𝑆 𝜂 (3-18) 

where 

𝐸𝐶𝑅𝑆 = ∑ (𝐼𝐶𝑅 𝑥 𝜁𝑐
𝑖
+ 𝑆𝑖  

(𝑃𝐶𝑅 − 𝐼𝐶𝑅)

𝐶𝐶𝑅
)  𝜏𝑐

𝑖∈𝐶𝑅

 
(3-19) 

 

The energy consumption of core routers is based on the size of traffic 

traversing them and the utilisation time to relay the analysed health data 

storage traffic as shown in Equation (3-19). 
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d) Energy consumption of cloud, 𝐸𝐶𝐿 

 

The energy consumption of cloud, 𝐸𝐶𝐿, is composed of energy of cloud 

routers, cloud switches, content servers and cloud storage. Note that the cloud 

storage is used to perform the storage task while other devices are only used 

to relay the analysed health data storage traffic. The energy consumption of 

the cloud is given in Equation (3-20): 

 

𝐸𝐶𝐿 = (𝐸𝐶𝐿𝑅𝑆 + 𝐸𝐶𝐿𝑆𝑆 + 𝐸𝐶𝑆𝑆 + 𝐸𝐶𝑆𝑇𝑆) 𝑐 (3-20) 

 

where 𝑐 is the cloud PUE. The energy consumption of cloud routers, 𝐸𝐶𝐿𝑅𝑆, 

cloud switches, 𝐸𝐶𝐿𝑆𝑆, content severs, 𝐸𝐶𝑆𝑆 and cloud storage, 𝐸𝐶𝑆𝑇𝑆, are 

given as: 

 

𝐸𝐶𝐿𝑅𝑆 = ∑ (𝐼𝐶𝐿𝑅 𝑥 𝜁𝑐
𝑖
+ 𝑆𝑖  

(𝑃𝐶𝐿𝑅 − 𝐼𝐶𝐿𝑅)

𝐶𝐶𝐿𝑅
)  𝜏𝑐

𝑖∈𝐶𝐿𝑅

 
(3-21) 

𝐸𝐶𝐿𝑆𝑆 = 2 ∑ (𝐼𝐶𝐿𝑆 𝑥 𝜁𝑐
𝑖
+ 𝑆𝑖  

(𝑃𝐶𝐿𝑆 − 𝐼𝐶𝐿𝑆)

𝐶𝐶𝐿𝑆
)  𝜏𝑐

𝑖∈𝐶𝐿𝑆

 
(3-22) 

𝐸𝐶𝑆𝑆 = ∑ (𝐼𝐶𝑆 𝑥 𝜁𝑐
𝑖
+ 𝑆𝑖  

(𝑃𝐶𝑆 − 𝐼𝐶𝑆)

𝐶𝐶𝑆
)  𝜏𝑐

𝑖∈𝐶𝑆

 
(3-23) 

𝐸𝐶𝑆𝑇𝑆 = 2 ∑ (𝐼𝐶𝑆𝑇 𝑥 𝜁𝑐
𝑖
+ 𝑆𝑖 𝜏𝑐 

(𝑃𝐶𝑆𝑇 − 𝐼𝐶𝑆𝑇)

𝐶𝐶𝑆𝑇
)  𝜏𝑐

𝑖∈𝐶𝑆𝑇

 
(3-24) 

 

The energy consumption of cloud storage is calculated based on the size of 

analysed data stored in the cloud storage and the time the device is utilised, 
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while the energy consumption of the other devices is based on the size of 

traffic traversing those devices and the time the devices are utilised to relay 

the analysed health data storage traffic. Note that the energy consumption of 

the cloud switches and the cloud storage are multiplied by ‘2’ for redundancy 

purposes [105]. 

 

e) Energy consumption of fog nodes, 𝐸𝐹𝑁: 

 

The energy consumed by the fog, 𝐸𝐹𝑁, reflects the energy consumed by 

processing server, 𝐸𝑃𝑆, as given below: 

𝐸𝐹𝑁 =  𝐸𝑃𝑆 𝑐 (3-25) 

where  

𝐸𝑃𝑆 =  ∑ (𝐼𝑃𝑆 𝜙𝑑  (𝜏𝑎 + 𝜏𝑏 + 𝜏𝑐) + 𝑃𝑃𝑆 𝜏𝑝𝑑)

𝑑∈𝐹𝑁

 (3-26) 

 

The energy consumed by the processing servers is determined by considering 

the idle energy consumption and the energy consumed to perform the 

processing. The idle energy consumption is calculated by considering the 

following: the time to receive raw health data from clinic, 𝜏𝑎, the time to 

transmit the analysed health data to clinics, 𝜏𝑏, as well as the time to transmit 

the analysed health data to cloud storage, 𝜏𝑐. Note that the processing server 

always works at full utilisation, hence maximum power is consumed to process 

the raw health data. The energy consumption of processing and analysis for 

the processing server is determined by considering the time to perform the 



- 68 - 

processing and analysis, 𝜏𝑝𝑑. Note that the same processing servers are 

utilised in both fog and cloud. 

 

The model is defined as follows: 

Objective:  

Minimise the total energy consumption of access network, 𝐸𝐴𝑁, metro 

network, 𝐸𝑀𝑁, core network, 𝐸𝐶𝑁, cloud network, 𝐸𝐶𝐿, and processing 

server, 𝐸𝐹𝑁, given as: 

 

𝐸𝐴𝑁 + 𝐸𝑀𝑁 + 𝐸𝐶𝑁 + 𝐸𝐶𝐿 + 𝐸𝐹𝑁 (3-27) 

 

Subject to: 

1) Association of patients to a processing server. 

 

⍵𝑠𝑑 ≤ 𝑃𝑡𝑠 𝑌𝑑     ;   ∀𝑠 ∈ 𝐶𝐿, ∀𝑑 ∈ 𝐹𝑁 (3-28) 

 

Constraint (3-28) is used to allocate a patient from clinic 𝑠, to a servers, 

namely to be served by the processing server located at node 𝑑. Note that, if 

a patient is allocated to a candidate location, this location should have a fog 

node in the fog approach. 
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∑ ⍵𝑠𝑑
𝑑∈𝐹𝑁

= 𝑃𝑡𝑠     ;   ∀𝑠 ∈ 𝐶𝐿 (3-29) 

 

Constraint (3-29) ensures that all patients at clinic 𝑠 are assigned to a 

processing server located at any node 𝑑. 

2) Traffic from clinics to processing server. 

 

𝑃𝑠𝑑 = ⍵𝑠𝑑  𝛿𝑎     ;   𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁 (3-30) 

 

Constraint (3-30) calculates the raw health data traffic from clinic 𝑠 to the 

processing server located at node 𝑑 based on the association of patients from 

clinic to processing server, ⍵𝑠𝑑, as well as the data rate provisioned for each 

patient, 𝛿𝑎, to perform the transmission. 

 

3) Traffic from processing server to clinics. 

 

𝐹𝑠𝑑 = ⍵𝑑𝑠  𝛿𝑏     ;   ∀𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿 (3-31) 

 

Constraint (3-31) calculates the analysed health data feedback traffic from the 

processing server located at node 𝑠, to clinic 𝑑. In fact, this is based on the 

total number of patients in the clinic served by the processing server at 

fog, ⍵𝑑𝑠 and the data rate provisioned for each patient, 𝛿𝑏, to perform the 

transmission. 

 

 



- 70 - 

4) Traffic from processing server to cloud storage. 

 

𝑆𝑠𝑑 = ∑ ⍵𝑖𝑠 𝛿𝑐 𝛿𝑠𝑑
𝑖∈𝐶𝐿

     ;   ∀𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇 (3-32) 

 

Constraint (3-32) calculates the analysed health data storage traffic from 

processing server located at node 𝑠, to cloud storage 𝑑. Note that in this work 

we only utilise one cloud storage, hence, 𝛿𝑠𝑑=1. In fact, this is based on the 

total number of patients from clinic 𝑖 served by the processing server at fog, 

⍵𝑖𝑠, and the data rate provisioned for each patient, 𝛿𝑐, to perform the 

transmission. 

 

5) Flow conservation in the network. 

 

∑ 𝑃𝑖𝑗
𝑠𝑑 − 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

∑ 𝑃𝑗𝑖
𝑠𝑑 =

{
 
 

 
 
𝑃𝑠𝑑 𝑖𝑓 𝑖 = 𝑠

−𝑃𝑠𝑑  𝑖𝑓 𝑖 = 𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

 

(3-33) 

 

𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁, 𝑖 ∈ 𝑁  

∑ 𝐹𝑖𝑗
𝑠𝑑 − 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

∑ 𝐹𝑗𝑖
𝑠𝑑 =

{
 
 

 
 
𝐹𝑠𝑑 𝑖𝑓 𝑖 = 𝑠

−𝐹𝑠𝑑 𝑖𝑓 𝑖 = 𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

 

(3-34) 

 

𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿, 𝑖 ∈ 𝑁  
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∑ 𝑆𝑖𝑗
𝑠𝑑 − 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

∑ 𝑆𝑗𝑖
𝑠𝑑 =

{
 
 

 
 
𝑆𝑠𝑑 𝑖𝑓 𝑖 = 𝑠

−𝑆𝑠𝑑  𝑖𝑓 𝑖 = 𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

 

(3-35) 

 

𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇, 𝑖 ∈ 𝑁  

 

Constraints (3-33)-(3-35) ensure that the total incoming traffic is equivalent to 

the total outgoing traffic for all nodes in the network, except for the source and 

destination nodes for processing, feedback, and storage for tasks, 

respectively. 

 

6) Total traffic traversing node. 

 

𝑃𝑖 = (∑ ∑ ∑ 𝑃𝑗𝑖
𝑠𝑑

𝑗∈𝑁𝑚[𝑖]:i≠j

 

𝑑∈𝐹𝑁:𝑠≠𝑑𝑠∈𝐶𝐿

)     ;   ∀𝑖 ∈ 𝑁 

(3-36) 

 

𝐹𝑖 = (∑ ∑ ∑ 𝐹𝑖𝑗
𝑠𝑑

𝑗∈𝑁𝑚[𝑖]:i≠j𝑑∈𝐶𝐿:𝑠≠𝑑𝑠∈𝐹𝑁

)     ;   ∀𝑖 ∈ 𝑁 

(3-37) 

 

𝑆𝑖 = (∑ ∑ ∑ 𝑆𝑗𝑖
𝑠𝑑

𝑗∈𝑁𝑚[𝑖]:i≠j

+ ∑ 𝑆𝑖𝑑
𝑑∈𝐶𝑆𝑇:𝑖≠𝑑𝑑∈𝐶𝑆𝑇:𝑠≠𝑑𝑠∈𝐹𝑁

)     ;   ∀𝑖 ∈ 𝑁 

(3-38) 

 

Equations (3-36)-(3-38) calculate the total raw health data traffic, analysed 

health data feedback traffic, and analysed health data storage traffic that 

traverse node 𝑖, respectively. 
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7) Link capacity constraint. 

 

∑ ∑ 𝑃𝑖𝑗
𝑠𝑑 ≤ 𝜆𝑖𝑗     ;   ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁𝑚[𝑖]: 𝑖 ≠ 𝑗

𝑑∈𝐹𝑁𝑠∈𝐶𝐿

 (3-39) 

∑ ∑ 𝐹𝑖𝑗
𝑠𝑑 ≤ 𝜆𝑖𝑗

𝑑∈𝐶𝐿𝑠∈𝐹𝑁

     ;   ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁𝑚[𝑖]: 𝑖 ≠ 𝑗 (3-40) 

∑ ∑ 𝑆𝑖𝑗
𝑠𝑑 ≤ 𝜆𝑖𝑗

𝑑∈𝐶𝑆𝑇𝑠∈𝐹𝑁

     ;   ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁𝑚[𝑖]: 𝑖 ≠ 𝑗 (3-41) 

Constraints (3-39)-(3-41) ensure that the capacity of physical links used to 

send the total raw health data from all clinics 𝑠 to processing servers at node 

𝑑 for processing task, the total analysed health data from all processing 

servers at node 𝑠 to the clinic 𝑑 for feedback task, and the total analysed 

health data from all processing servers at node 𝑠 to the cloud storage 𝑑 for 

storage task, respectively, does not exceed the maximum capacity of the links. 

Note that, as mentioned above, the three tasks occur at different times. 

 

8) Node used to transmit the raw health data traffic from clinic to processing 

server. 

 

∑ ∑ ∑ 𝑃𝑖𝑗
𝑠𝑑

𝑖∈𝑁:𝑖≠𝑗

≥ 𝜁𝑎𝑗      ;   ∀𝑗 ∈ 𝑁

𝑑∈𝐹𝑁𝑠∈𝐶𝐿

 (3-42) 

∑ ∑ ∑ 𝑃𝑖𝑗
𝑠𝑑

𝑖∈𝑁:𝑖≠𝑗

≤ 𝑀 𝜁𝑎𝑗
𝑑∈𝐹𝑁𝑠∈𝐶𝐿

     ;   ∀𝑗 ∈ 𝑁 (3-43) 
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Constraints (3-42) and (3-43) ensure that 𝜁𝑎𝑗 = 1 if the raw health data traffic 

traverses at nodes 𝑖 to send the data from clinic 𝑠 to the processing server at 

node 𝑑, otherwise it is zero.  

 

9) Node used to transmit the analysed health data feedback traffic from 

processing server to clinic. 

∑ ∑ ∑ 𝐹𝑖𝑗
𝑠𝑑

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

≥ 𝜁𝑏𝑖      ;   ∀i ∈ 𝑁

𝑑∈𝐶𝐿𝑠∈𝐹𝑁

 (3-44) 

∑ ∑ ∑ 𝐹𝑖𝑗
𝑠𝑑

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

≤ 𝑀 𝜁𝑏𝑖      ;   ∀i ∈ 𝑁

𝑑∈𝐶𝐿𝑠∈𝐹𝑁

 (3-45) 

 

Constraints (3-44) and (3-45) ensure 𝜁𝑏𝑖 = 1 if the analysed health data 

feedback traffic traverses node 𝑖 to send the analysed data from processing 

servers at node 𝑠 to clinics 𝑑, otherwise it is zero.  

 

10)  Node used to transmit the analysed health data storage traffic from 

processing server to cloud storage. 

 

∑ ∑ ∑ 𝑆𝑖𝑗
𝑠𝑑

𝑗∈𝑁𝑚[𝑖[:𝑖≠𝑗

≥ 𝜃𝑐𝑖      ;   ∀𝑖 ∈ 𝑁

𝑑∈𝐶𝑆𝑇𝑠∈𝐹𝑁

 (3-46) 

∑ ∑ ∑ 𝑆𝑖𝑗
𝑠𝑑

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

≤ 𝑀 𝜃𝑐𝑖
𝑑∈𝐶𝑆𝑇𝑠∈𝐹𝑁

     ;   ∀𝑖 ∈ 𝑁 (3-47) 

∑ ∑ ∑ 𝑆𝑖𝑗
𝑠𝑑

𝑖∈𝑁𝑚[𝑗]:𝑖≠𝑗

≥ 𝜗𝑐𝑗      ;   ∀𝑗 ∈ 𝑁

𝑑∈𝐶𝑆𝑇𝑠∈𝐹𝑁

 (3-48) 

∑ ∑ ∑ 𝑆𝑖𝑗
𝑠𝑑

𝑖∈𝑁𝑚[𝑗]:𝑖≠𝑗

≤ 𝑀 𝜗𝑐𝑗 
𝑑∈𝐶𝑆𝑇𝑠∈𝐹𝑁

     ;   ∀𝑗 ∈ 𝑁 (3-49) 
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𝜃𝑐𝑖 + 𝜗𝑐𝑖 = 2 𝜁𝑐𝑖 − 𝜈𝑖      ;   ∀𝑖 ∈ 𝑁 (3-50) 

 

Constraint (3-46)-(3-47) ensure that 𝜃𝑐𝑖 = 1 if the analysed health data 

storage traffic traverses node 𝑖 to send the analysed data from processing 

servers at node 𝑠 to cloud storage 𝑑, otherwise it is zero. However, this does 

not include the last node (i.e. cloud storage) that performs the storage task. 

Hence, constraints (3-48)-(3-49) are to ensure 𝜗𝑐𝑗 = 1 if the traffic traverse 

node 𝑗 (including the last node) while constraint (3-50) is used to determine 

the activation of all nodes to relay and store the analysed health data storage 

traffic by ensuring that the 𝜁𝑐𝑖 = 1 if at least any of 𝜃𝑐𝑖 and 𝜗𝑐𝑖  are equal to 1 

(𝜃𝑐𝑖  OR 𝜗𝑐𝑖 ), otherwise zero. We achieve this by introducing a binary variable 

𝜈𝑖 which is only equal to 1 if 𝜃𝑐𝑖 and 𝜗𝑐𝑖 are exclusively equal to 1 (𝜃𝑐𝑖  XOR 𝜗𝑐𝑖) 

otherwise it is zero.  

 

11)  Number of physical resource blocks used at each BS to send the raw 

health data traffic from clinic to processing server. 

 

𝑃𝑎𝑖𝑗 = ∑ ∑
𝑃𝑖𝑗
𝑠𝑑

𝛿𝑎
𝑑∈𝐹𝑁:𝑠≠𝑑𝑠∈𝐶𝐿

      ;   ∀𝑖 ∈ 𝐶𝐿, ∀𝑗 ∈ 𝐵𝑆: 𝑖 ≠ 𝑗 
(3-51) 

∑ 𝑃𝑎𝑖𝑗 = 𝑃𝑡𝑖      ;   ∀𝑖 ∈ 𝐶𝐿

𝑗∈𝐵𝑆

 (3-52) 

𝛽𝑎𝑗 = ∑ 𝑃𝑎𝑖𝑗  𝑅𝑎     ;   ∀𝑗 ∈ 𝐵𝑆

𝑖∈𝐶𝐿

 (3-53) 

𝛽𝑎𝑗 ≤ Ɍ     ;   ∀𝑗 ∈ 𝐵𝑆 (3-54) 
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Constraint (3-51) is used to ensure that each patient in the clinic is served by 

single BS to perform the processing task based on the traffic traversing the 

BS, 𝑃𝑖𝑗
𝑠𝑑, and the size of raw health data traffic of each patient, 𝛿𝑎, while 

constraint (3-52) is used to ensure that all patients are served by the BSs. 

Constraint (3-53) calculates the total number of PRBs used at each BS. 

Meanwhile, constraint (3-54) is used to ensure that the number of PRBs in 

each BS 𝑗 do not exceed their maximum number of PRBs, Ɍ, that are 

dedicated for healthcare applications to perform the processing task. 

 

12)  Number of physical resource blocks used at each BS to send the analysed 

health data feedback traffic from processing server to clinic. 

 

𝑃𝑏𝑖𝑗 = ∑ ∑
𝐹𝑖𝑗
𝑠𝑑

𝛿𝑏
𝑑∈𝐶𝐿:𝑠≠𝑑𝑠∈𝐹𝑁

      ;   ∀𝑖 ∈ 𝐵𝑆, ∀𝑗 ∈ 𝐶𝐿 
(3-55) 

∑ 𝑃𝑏𝑖𝑗 = 𝑃𝑡𝑗     ;   ∀𝑗 ∈ 𝐶𝐿

𝑖∈𝐵𝑆

 (3-56) 

𝛽𝑏𝑖 = ∑ 𝑃𝑏𝑖𝑗   𝑅𝑏     ;   ∀𝑖 ∈ 𝐵𝑆

𝑗∈𝐶𝐿

 (3-57) 

𝛽𝑏𝑖 ≤ Ɍ     ;   ∀𝑖 ∈ 𝐵𝑆 (3-58) 

 

Constraint (3-55) ensures the analysed health data of each patient transmitted  

to the clinics is relayed by single BS to perform the feedback task based on 

the traffic traversing the BS, 𝐹𝑖𝑗
𝑠𝑑, and the size of analysed health data 

feedback traffic of each patient, 𝛿𝑏, while constraint (3-56) ensures all patients 

are served by the BSs. Constraint (3-57) calculates the total number of PRBs 
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used at each BS. Constraint (3-58) is used to ensure that the number of PRBs 

in each BS 𝑖 does not exceed its maximum number of PRBs, Ɍ, that are 

dedicated for healthcare applications to perform the feedback task.  

 

13)  Maximum number of patients served at each processing server. 

 

∑ ⍵𝑠𝑑
𝑠∈𝐶𝐿

≤ 𝛺𝑚𝑎𝑥 𝜙𝑑      ;   ∀𝑑 ∈ 𝐹𝑁 (3-59) 

 

Constraint (3-59) ensures that the total number of patients served by each 

processing server at node 𝑑, does not exceed its maximum number of users,  

𝛺𝑚𝑎𝑥. However, the model also allows more than one processing server, 𝜙𝑑, 

to be deployed at the same node 𝑑 if the number of users is higher than  

𝛺𝑚𝑎𝑥. 

 

14) Processing and analysis time at each processing server. 

 

𝜏𝑝𝑑 = ∑ 𝑚 ⍵𝑠𝑑
𝑠∈𝐶𝐿

+ ć 𝜙𝑑     ; ∀𝑑 ∈ 𝐹𝑁 (3-60) 

 

Constraint (3-60) calculates the processing and analysis time at each 

processing server at node 𝑑. This is based on the total number of patients 

served by the processing server,  ⍵𝑠𝑑 and the number of processing servers 
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used, 𝜙𝑑 , where 𝑚 is the gradient of the graph while ć is the y-intercept of the 

graph. 

 

15) Storage capacity constraint at each processing server. 

 

∑ ⍵𝑠𝑑  𝛼

𝑠∈𝐶𝐿

≤ 𝛬𝑚𝑎𝑥 𝜙𝑑      ;   ∀𝑑 ∈ 𝐹𝑁 (3-61) 

 

Constraint (3-61) ensures that the storage capacity of each processing server 

at node 𝑑, does not exceed its maximum capacity, 𝛬𝑚𝑎𝑥. However, the model 

also allows more than one processing server, 𝜙𝑑 , to be deployed at the same 

node 𝑑 if the size of the analysed data is higher than 𝛬𝑚𝑎𝑥. Furthermore, this 

work omitted the capacity of cloud storage as a constraint, mainly because 

the storage capacity at the central cloud is large enough to sufficiently 

accommodate substantial amounts of data. 

 

3.6 Mathematical model for the Energy efficient cloud 

computing health monitoring applications with LTE-M 

(EECC) 

This section presents the MILP model that has been developed for the 

conventional approach (CA) to minimise the energy consumption of 

networking and processing without optimising the location of processing 

servers as the location 𝐹𝑁 is fixed at the cloud (i.e. cloud switch). Their 
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performance will be used as a benchmark to evaluate the performance of the 

FOA models in terms of both energy consumption of networking equipment 

and processing. The same parameters, variables and objective function in 

Section 3.5 have been considered. However, as the location of the processing 

servers is at the cloud, therefore, a set of additional variables in Table 3.2 

(also can be found in Appendix 1) are utilised to consider the energy 

consumed by the devices at the metro network, core network and cloud due 

to relaying the raw health data traffic and analysed health data feedback 

traffic.  

Table 3.2: Additional variables used in EECC model 

Set 

𝐹𝑁 Set of candidate locations to deploy PS (𝐹𝑁 ∈ 𝐶𝐿𝑆) 

Variables 

𝐸𝐶𝐴𝑆𝑃 Energy consumption of centre aggregation switches required to 

relay raw health data traffic 

𝐸𝐶𝐴𝑆𝐹 Energy consumption of centre aggregation switches required to 

relay analysed health data feedback traffic 

𝐸𝐴𝑅𝑃 Energy consumption of aggregation routers required to relay raw 

health data traffic 

𝐸𝐴𝑅𝐹 Energy consumption of aggregation routers required to relay 

analysed health data feedback traffic 

𝐸𝐶𝑅𝑃 Energy consumption of core routers required to relay raw health 

data traffic 

𝐸𝐶𝑅𝐹 Energy consumption of core routers required to relay analysed 

health data feedback traffic 

𝐸𝐶𝐿𝑅𝑃 Energy consumption of cloud routers required to relay raw health 

data traffic 
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𝐸𝐶𝐿𝑅𝐹 Energy consumption of cloud routers required to relay analysed 

health data feedback traffic 

𝐸𝐶𝐿𝑆𝑃 Energy consumption of cloud switches required to relay raw 

health data traffic 

𝐸𝐶𝐿𝑆𝐹 Energy consumption of cloud switches required to relay analysed 

health data feedback traffic 

𝐸𝐶𝑆𝑁 Energy consumption of cloud server node 

 

The energy consumption of access network, 𝐸𝐴𝑁, is the same as in 

Equation (3-3). The energy consumption of metro network, 𝐸𝑀𝑁, in Equation 

(3-15) is redefined as below: 

 

𝐸𝑀𝑁 = (𝐸𝐶𝐴𝑆𝑃 + 𝐸𝐶𝐴𝑆𝐹 + 𝐸𝐶𝐴𝑆𝑆 + 𝐸𝐴𝑅𝑃 + 𝐸𝐴𝑅𝐹 + 𝐸𝐴𝑅𝑆) 𝜂 (3-62) 

 

where 𝐸𝐶𝐴𝑆𝑆 and 𝐸𝐴𝑅𝑆 are the same as in Equation (3-16) and Equation (3-

17), respectively, while others are given as: 

 

𝐸𝐶𝐴𝑆𝑃 = ∑ (𝐼𝐶𝐴𝑆 𝑥 𝜁𝑎𝑖 + 𝑃𝑖  
𝑃𝐶𝐴𝑆 − 𝐼𝐶𝐴𝑆

𝐶𝐶𝐴𝑆
)  𝜏𝑎

𝑖∈𝐶𝐴𝑆

 
(3-63) 

𝐸𝐶𝐴𝑆𝐹 = ∑ (𝐼𝐶𝐴𝑆 𝑥 𝜁𝑏𝑖 + 𝐹𝑖  
𝑃𝐶𝐴𝑆 − 𝐼𝐶𝐴𝑆

𝐶𝐶𝐴𝑆
)  𝜏𝑏

𝑖∈𝐶𝐴𝑆

 
(3-64) 

𝐸𝐴𝑅𝑃 = ∑ (𝐼𝐴𝑅 𝑥 𝜁𝑎𝑖 + 𝑃𝑖  
𝑃𝐴𝑅 − 𝐼𝐴𝑅

𝐶𝐴𝑅
)  𝜏𝑎

𝑖∈𝐴𝑅

 
(3-65) 

𝐸𝐴𝑅𝐹 = ∑ (𝐼𝐴𝑅 𝑥 𝜁𝑏𝑖 + 𝐹𝑖  
𝑃𝐴𝑅 − 𝐼𝐴𝑅

𝐶𝐴𝑅
)  𝜏𝑏

𝑖∈𝐴𝑅

 
(3-66) 
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The energy consumption of centre aggregation switches and aggregation 

routers are proportional to the size of traffic traversing them and the utilisation 

time. Equations (3-63) and (3-64) depict the energy consumed by the centre 

aggregation switches to relay raw health data traffic, 𝐸𝐶𝐴𝑆𝑃, and analysed 

health data feedback traffic, 𝐸𝐶𝐴𝑆𝐹, respectively. Meanwhile, Equations (3-

65) and (3-66) depict the energy consumed by the aggregation routers to relay 

raw health data traffic, 𝐸𝐴𝑅𝑃, and analysed health data feedback traffic, 𝐸𝐴𝑅𝐹, 

respectively. 

 

The energy consumption of core network, 𝐸𝐶𝑁, in Equation (3-18) is 

redefined as below: 

 

𝐸𝐶𝑁 = (𝐸𝐶𝑅𝑃 + 𝐸𝐶𝑅𝐹 + 𝐸𝐶𝑅𝑆) 𝜂 (3-67) 

 

where the 𝐸𝐶𝑅𝑆 is the same as in Equation (3-19) while others are given as: 

 

𝐸𝐶𝑅𝑃 = ∑ (𝐼𝐶𝑅 𝑥 𝜁𝑎𝑖 + 𝑃𝑖  
𝑃𝐶𝑅 − 𝐼𝐶𝑅

𝐶𝐶𝑅
)  𝜏𝑎

𝑖∈𝐶𝑅

 
(3-68) 

𝐸𝐶𝑅𝐹 = ∑ (𝐼𝐶𝑅 𝑥 𝜁𝑏𝑖 + 𝐹𝑖  
𝑃𝐶𝑅 − 𝐼𝐶𝑅

𝐶𝐶𝑅
)  𝜏𝑏

𝑖∈𝐶𝑅

 
(3-69) 

 

The energy consumption of core routers is proportional to the size of traffic 

traversing them and the utilisation time. Equations (3-68) and (3-69) depict the 
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energy consumed by the core routers to relay the raw health data traffic, 𝐸𝐶𝑅𝑃, 

and analysed health data feedback traffic, 𝐸𝐶𝑅𝐹, respectively. 

 

The energy consumption of cloud in Equation (3-20) is redefined as below: 

 

𝐸𝐶𝐿 = (𝐸𝐶𝐿𝑅𝑃 + 𝐸𝐶𝐿𝑅𝐹 + 𝐸𝐶𝐿𝑅𝑆 + 𝐸𝐶𝐿𝑆𝑃 + 𝐸𝐶𝐿𝑆𝐹 + 𝐸𝐶𝐿𝑆𝑆

+ 𝐸𝐶𝑆𝑆 + 𝐸𝐶𝑆𝑇𝑆) 𝑐 

(3-70) 

 

where 𝐸𝐶𝐿𝑅𝑆, 𝐸𝐶𝐿𝑆𝑆, 𝐸𝐶𝑆𝑆 and 𝐸𝐶𝑆𝑇𝑆 are the same as in Equation (3-21)-

(3-24), respectively, while others are given as: 

 

𝐸𝐶𝐿𝑅𝑃 = ∑ (𝐼𝐶𝐿𝑅 𝑥 𝜁𝑎𝑖  + 𝑃𝑖  
𝑃𝐶𝐿𝑅 − 𝐼𝐶𝐿𝑅

𝐶𝐶𝐿𝑅
)  𝜏𝑎

𝑖∈𝐶𝐿𝑅

 
(3-71) 

𝐸𝐶𝐿𝑅𝐹 = ∑ (𝐼𝐶𝐿𝑅 𝑥 𝜁𝑏𝑖 + 𝐹𝑖  
𝑃𝐶𝐿𝑅 − 𝐼𝐶𝐿𝑅

𝐶𝐶𝐿𝑅
)  𝜏𝑏

𝑖∈𝐶𝐿𝑅

 
(3-72) 

𝐸𝐶𝐿𝑆𝑃 = 2 ∑ (𝐼𝐶𝐿𝑆 𝑥 𝜁𝑎𝑖 + 𝑃𝑖  
𝑃𝐶𝐿𝑆 − 𝐼𝐶𝐿𝑆

𝐶𝐶𝐿𝑆
)   𝜏𝑎

𝑖∈𝐶𝐿𝑆

 
(3-73) 

𝐸𝐶𝐿𝑆𝐹 = 2 ∑ (𝐼𝐶𝐿𝑆 𝑥 𝜁𝑏𝑖 + 𝐹𝑖  
𝑃𝐶𝐿𝑆 − 𝐼𝐶𝐿𝑆

𝐶𝐶𝐿𝑆
)   𝜏𝑏

𝑖∈𝐶𝐿𝑆

 
(3-74) 

 

The energy consumption of cloud routers and cloud switches are proportional 

to the size of traffic traversing them and the utilisation time. Equations (3-71) 

and (3-72) depict the energy consumed by the cloud routers to relay the raw 

health data traffic, 𝐸𝐶𝐿𝑅𝑃, and analysed health data feedback traffic, 𝐸𝐶𝐿𝑅𝐹, 
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respectively. Meanwhile, Equations (3-73) and (3-74) depict the energy 

consumed by the cloud switches to relay the raw health data traffic, 𝐸𝐶𝐿𝑆𝑃 

and analysed health data feedback traffic, 𝐸𝐶𝐿𝑆𝐹, respectively. Note that, the 

energy consumption of cloud switches to transmit the traffic is multiplied by ‘2’ 

for redundancy purposes [105]. 

 

The energy consumption of processing (i.e. fog node) in Equation (3-25) is 

redefined as below: 

𝐸𝐶𝑆𝑁 =  𝐸𝑃𝑆 𝑐 (3-75) 

where 𝐸𝑃𝑆 is the same as in Equation (3-26).  

 

3.7 Summary 

This chapter proposed a health monitoring system at the fog layer and 

incorporated a GPON architecture in the fog network for health monitoring 

applications. Two layers; fog layer and cloud layer have been proposed for 

the health monitoring system where the processing of the health data, the 

decision on the actions to treat the patients, and the temporary storage are 

performed at the fog layer. Meanwhile, the cloud layer is used to perform 

permanent storage of the processed health data. The proposed architecture 

of the health monitoring application consists of three main layers; the access 

layer where the fog resides, the metro layer to aggregate data from the access 

layer to the upper layer, and the core layer mainly used to permanently store 

the proposed analysed health data. In addition, the power profile for all 

equipment (i.e. network and PS), the idle power of shared networking 
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equipment contributed by the healthcare application, and the link capacities 

dedicated for healthcare applications in the network are also explained in 

detail. Besides, the system flow of the conventional approach (CA) and the 

proposed fog approach (FOA) are also explained in this chapter to 

differentiate between those two approaches. A Mixed Integer Linear 

Programming (MILP) model was also presented in this chapter and used to 

optimise the proposed FOA (EEFC). It was used to optimise the location of 

PS at the access layer and for CA, it was used to optimise the processing 

performed at the central cloud. 
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Chapter 4 

Energy efficient fog computing with Long Term Evolution for 

machine (LTE-M) for ECG monitoring applications 

4.1 Introduction 

In this chapter, we investigate the use of fog computing for health monitoring 

applications considering a sample realistic dataset where we considered, as 

respondents, outpatients at West Leeds, United Kingdom, who suffered from 

cardiovascular disease (CVD) and underwent cardiac surgery. Respondents 

with CVD diseases were selected mainly because CVD has emerged as the 

top cause for mortality worldwide and is expected to reach 23.3 million by 

2030 [106], [107]. Precisely, this study monitored postoperative atrial 

fibrillation (AF), a common cardiac events following cardiac surgery [108]. A 

total of 37 clinics located at West Leeds were selected to monitor patients with 

postoperative AF in cardiac surgery. The total number of patients from each 

clinic was applied to calculate the number of patients who experienced 

postoperative AF, which reflected the traffic demands in this study. As 92% of 

the patients registered to the clinics resided within 2 km [109], this study 

monitored the patients from their homes or outside the clinics.  

Among all the available medical monitoring services, the ECG analysis 

happens to be the most common clinical cardiac test [106], [110]. Thus, fog 

computing was incorporated with the network edge to carry out ECG feature 

extraction and analysis. This work also demonstrates edge fog computing 

effectiveness in terms of energy consumption for both networking equipment 

and processing. In this work, a Mixed Integer Linear Programming (MILP) 
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model introduced in Chapter 3 is used to optimise the number and location of 

processing servers at the network edge so that the energy consumption of 

both networking equipment and processing are minimised. A heuristic model, 

based on the insights from the results obtained from the MILP model, is also 

developed for real-time implementation. 

 

4.2 Parameters consideration 

This section elaborates in detail the methodologies used for determining the 

model input parameters considered in this chapter. The input parameters are 

divided into several parts such as network layout under GPON network, the 

number of monitored patients in West Leeds, UK, the processing time of 

health data (i.e. ECG signal) and the calculation of data rate for traffic 

transmission. 

 

4.2.1 Network layout under GPON network in West Leeds, UK 

 

In this chapter, the West Leeds area was considered as a case study to 

examine the energy efficiency of fog computing for health monitoring 

applications. The patients were considered to be located in the clinics (i.e. 

within LTE-M base station coverage around the clinic) due to the uncertainty 

of their precise locations. A total of 37 clinics were available in West Leeds in 

2014 / 2015, see Figure 4.1, [111]. While all 37 clinics had been considered 

in this work, only those that appeared to be close to BSs, i.e. potential BSs to 

serve patients were selected for further analyses by looking into the distance 
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between the clinics and the BSs. Note that the locations of clinics and BSs 

(i.e. latitude and longitude) refer to the actual locations found in West Leeds, 

which had been obtained from Google Maps based on the names of clinics 

listed by [111] in 2014 / 2015 and OFCOM UK Mobile Site finder published in 

May 2012 [112], respectively. With that, the distances between the clinics and 

BSs were determined based on their latitudes and longitudes. In this work, 

LTE-M was opted to serve the health application with a coverage radius less 

than 11 km [113]. Hence, patients could be served by a BS within 11 km from 

their registered clinics. As for this work, 315 BSs were considered as they 

were located less than 11 km from any clinic. 

The OLT was also deployed in the network based on the location of a local 

exchange provided by BT Wholesale network [114]. The distances between 

the considered BSs and the OLTs were calculated based on latitude and 

longitude. Furthermore, in the GPON network, the BSs are co-located with the 

ONUs and the maximum allowed distance from ONU to OLT is 20 km due to 

optical signal integrity considerations [115], [116]. With that, only 88 OLTs 

were selected as they are located within 20 km from the ONUs co-located with 

the BSs. Figure 4.1 illustrates the locations distribution for the 37 clinics, the 

315 BSs/ONUs and the 88 OLTs, respectively, in West Leeds, UK. This 

particular area had been considered as it covers all 37 clinics.  
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Figure 4.1: BS, OLT and clinic locations in West Leeds 

 

However, due to the limitation of MILP to run the model with vast number 

of nodes, the number of BSs was reduced to evaluate the conventional 

approach (CA) and fog optimised approach (FOA) as explained in Section 3.4. 

Besides, with the shortcoming in M2M device in terms of its limited available 

power and the need to reduce consumption, the devices were connected to 

the nearest BS [117]. As such, only 26 BSs were considered in this study as 

they appeared to be the nearest BSs to the clinics that served patients. A 

reduction in the number of BSs embedded within the network decreased the 

number of OLTs to 75, in which they are within 20 km from the 26 BSs. Then, 

we optimised the network connection at the access layer (i.e. connections 

between ONUs and OLTs) within the GPON network using MATLAB. The link 

between ONU and OLT within the GPON network is only legitimate if the 

distance is equal to or less than 20 km. In GPON networks, an average of 10 

to 30 LTE base stations are connected to a single PON [118]. The present 
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GPON technologies utilise splitters with split ratios of 1:4, 1:8, 1:16, 1:64 and 

1:128. The ratio 1:16 was selected for implementation in the network studied. 

In order to provide resilience, each splitter is connected to 2 PONs in the OLT 

which has 4 PONs, hence each OLT can support up to 32 LTE BSs/ONUs. 

Due to this, we only consider one OLT to be connected to the 26 ONUs (co-

located with the BS) within the network. Note that the location of OLT is 

selected by considering the lowest distances with the 26 BSs/ONUs. Figure 

4.2 presents the network layout of the GPON network after optimisation, 

where the black diamond reflects the optimal OLT selected in the network.  

 

 

Figure 4.2: Selected BSs and OLT to serve clinics in West Leeds 

 

4.2.2 Total number of monitored patients in West Leeds, UK 

 

According to the British Heart Foundation, the total UK population of those 

aged 18 years old and above suffering from Coronary Artery Bypass Surgery 
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(CABG) and Percutaneous Coronary Interventions Surgery (PCIs) that 

include surgeries performed in NHS and selected private hospitals in 2014 are 

17,513 and 96,143, respectively [119]. The Office for National Statistics (ONS) 

has further claimed that the UK population aged 18 years and above in 2014 

is 80% of the total population [120]. Based on the collected and calculated 

figures, the percentage of patients from the UK population that had undergone 

heart surgeries (CABGs and PCIs) in 2014 is 0.22%. To estimate the number 

of monitored patients that may experience postoperative AF in West Leeds, 

UK, 0.176% of the total number of patients registered in 37 clinics in West 

Leeds [111] were selected as an upper limit to reflect the traffic demands in 

the network. Table 4.1 presents the deduced total number of patients 

registered at each clinic who are expected to experience postoperative AF.  

 

Table 4.1: Number of monitored patients in clinics 

Clinic 

Number 

of 

Patients 

Clinic 

Number 

of 

Patients 

Craven Road Medical Practice 20 Leeds Student Practice 68 

Hyde Park Surgery 18 Burton Croft Surgery 20 

Laurel Bank Surgery 13 Kirkstall Lane Medical Centre 15 

Burley Park Medical Centre 23 Thornton Medical Centre 16 

Gildersome Health Centre 6 The Dekeyser Group Practice 30 

Leigh View Medical Practice 29 West Lodge Surgery 32 

Hillfoot Surgery 13 Dr. KW McGechaen & 

Partner 

8 

Pudsey Health Centre 13 Robin Lane Medical Centre 24 

Dr. S M Chen & Partner 8 Beech Tree Medical Centre 4 

Hawthorn Surgery 10 Priory View Medical Centre 16 
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High Field Surgery 14 Abbey Grange Medical 

Centre 

16 

Vesper Road Surgery 11 Fieldhead Surgery 10 

Manor Park Surgery 27 The Highfield Medical Centre 9 

Dr. G Leeds & Partners 25 Dr. F Gupta’s Practice 6 

Guiseley and Yeadon Medical 

Practice 

21 Park Road & Menston 19 

Yeadon Tarn Medical Practice 12 Rawdon Surgery 14 

Dr. KJ Manock & Partners 44 Whitehall Surgery 16 

Dr. JA Browne’s Practice 28 Dr. N Saddiq’s Practice 5 

Dr. JJ McPeakes Practice 6   

 

 

4.2.3 Time measurement for processing and analysis of 

Electrocardiogram (ECG) signal using Pan-Tompkins algorithm 

 

The ECG signals, which are required to monitor postoperative AF among 

cardiac surgical patients, were based on the MIT_BIT Arrhythmia database 

[121], [122]. Although 30 minutes of ECG recording was provided, we only 

consider 30 seconds, as illustrated in Figure 4.3. Note that, the 30-second 

ECG signal offers accurate results for the analysis, as recommended in [108], 

and such 30 seconds of un-processed ECG signals have a volume of 252.8 

kbits. The ECG signals were processed using the Pan-Tompkins algorithm, 

which is a resource-demanding algorithm [106] with 99.3% accuracy [110], to 

extract heart rate and QRS duration [123], [124] for further analysis. The 

calculation of the heart rate from the 30-second ECG signal is based on the 

number of R waves within the 30 seconds and this number was multiplied by 

2 to obtain the heart rate in beats per minute [124], while the QRS duration 
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was obtained based on the time between Q and S waves found in the ECG 

signal [124], [125]. 

 

Figure 4.3: The 30-second and 5-second ECG waveform 

 

The processing server selected in both fog and central cloud is Intel Core 

i5-4460 with 3.2 GHz CPU and 500 GByte hard drive [126]. An experiment 

was conducted using MATLAB with a parallel processing function to 

determine the correlation between time and number of patients for processing 

and analysis of raw ECG data using Pan-Tompkins algorithm. This was 

carried out by performing the processing task on the 30-second ECG signals 

generated by 10k to 50k patients in 10k steps. At each 10k step, the 

processing operation was repeated 5 times to calculate the average time for 

the processing duration. Note that, the 30-second ECG signals are made up 
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of 1 ECG record repeated for all patients. Also, note that the time to perform 

the processing using MATLAB consists of both the time to submit the data for 

parallel processing and the time to run the algorithm. The results were then 

fitted with a linear line (dotted blue line), as illustrated in Figure 4.4. For 

instance, a 10-second duration for processing could cover 2657 patients. We 

also obtained the correlation between the time and number of patients for the 

processing and analysis of raw ECG signal considering 41 ECG records 

retrieved from the MIT_BIT Arrhythmia database [121], [122] with a duration 

of 30-seconds each. Note that the 41 ECG records are repeated to cover all 

patients. For instance, a maximum of 244 patients are represented by the 

same ECG recording when the total patients are 10k. The results are as 

shown as a red line in Figure 4.4. The two experiments with a single ECG 

signal and multiple ECG signals have resulted in similar linear relationships. 

The time to process and analyse the raw ECG signal is determined 

considering the single ECG signal. 

 

Figure 4.4: Number of patients versus time, based on MATLAB simulations 
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In addition, based from the experiment performed for processing and 

analysis of the raw ECG data, the 𝜏𝑝𝑑 in Equation (3-60) is obtained from the 

total number of patients served by processing server at node 𝑑, as given in 

Equation (4-1): 

 

𝜏𝑝𝑑 = ∑ 𝑚 ⍵𝑠𝑑
𝑠∈𝐶𝐿

+ ć 𝜙𝑑     ; ∀𝑑 ∈ 𝐹𝑁 (4-1) 

where, 𝑚 and ć equal 0.002 and 4.6857, respectively. 

 

4.2.4 Data rate calculation for traffic transmission in the network 

 

The American Heart Association (AHA) has recommended that the golden 

time to save a heart patient’s life by sending an alarm message to a 

cardiologist upon detection of a sudden fall or rise in cardiac vital signs is 

between 4 and 6 minutes [57]. As such, 4 minutes, 𝜏𝑡, was selected for this 

work as the maximum duration imposed by AHA to calculate the minimum 

data rate for each patient. Note that this 4-minute duration should include the 

following: i) the time to record the 30-second ECG signal, 𝜏𝑚, ii) the time to 

transmit ECG signals to the processing server for the processing task, 𝜏𝑚𝑎𝑥, 

iii) the time for processing and analysis, 𝜏𝑝 and iv) the time to transmit the 

analysed ECG data for feedback, 𝜏𝑏 as illustrated in Figure 4.5. Therefore, 

latency is not considered in this work as the time to perform the main tasks 

explained above to save the heart patents is limited to 4 minutes. Note that 

Figure 4.5 also includes the time to transmit the analysed ECG data to the 
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cloud for permanent storage, 𝜏𝑐. Also note that any propagation delay in this 

work is dismissed as the time is too short (milliseconds).  

 

Figure 4.5: Transmission times for each task and processing time 

 

In this study, we considered all monitored patients (669 patients) were 

served by the same processing server. Due to this, the time to process 669 

patients using the same processing server, 𝜏𝑝, based on the fitting in Figure 

4.4 is 6.02 seconds. The time to perform the feedback transmission, 𝜏𝑏 is 

based on the provisioned data rate for each user and the size of the analysed 

data. To determine the data rate for feedback in FOA, the minimum shared 

link capacity at the edge network provisioned for healthcare application where 

the processing server is located (i.e. the link between the ONU and OLT) is 

considered. By considering all patients to be served by the same processing 

server, this minimum link capacity was divided equally among the patients, 

hence giving a data rate, 𝛿𝑏, of 350 bps for each patient in FOA. However, the 

minimum link capacity in CA is the downlink capacity between the OLT and 
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the ONU as the processing server is located at the central cloud, therefore, a 

data rate of 700 bps for each patient is considered in CA. 

Without a custom communication system, this particular data rate may not 

be supported. Therefore, the LTE-M that is exclusively designed for M2M 

applications was employed. The LTE-M operates on a 1.4 MHz carrier where 

6 resource blocks (RBs) are equipped for a duration of one time slot (0.5 ms) 

[113], [127]. In LTE, the smallest modulation structure is a resource element 

(RE) which has one subcarrier of 15 kHz by one symbol [127], [128]. The 

resource elements are grouped into a resource block (RB) with 12 subcarriers 

for a duration of one slot (6 or 7 symbols) with a 180 kHz bandwidth as 

illustrated in Figure 4.6. Therefore, in one slot for 1 RB, there are 84 REs (i.e. 

12 subcarriers x 7 symbols).  

 

 

Figure 4.6: LTE-M resource grid 

 

For a 1 second duration, a maximum of 12,000 RBs are available which 

supports a total data rate of 2.016 Mbps with 168 bps per single RB when 



- 96 - 

using Quadrature Phase Shift Keying (QPSK) as the modulation format per 

RE. Meanwhile, the transmission time interval (TTI) in LTE is 1 ms which is 1 

subframe (i.e. 2 slots) [129], hence a minimum of 2 RBs (i.e. 1 physical 

resource block, PRB) with a data rate of 336 bps can be scheduled for each 

M2M device. Due to this, we allocate 1 PRB to each patient which gives a 

data rate (𝛿𝑏) of 336 bps to transmit the analysed ECG data for feedback 

purposes in FOA, while in CA we allocate 2 PRBs for each patient which gives 

a data rate of 672 bps. Note that given a data rate with a value higher than 

336 bps and 672 bps to each patient in FOA and CA, respectively, will exceed 

the link capacity (i.e. between ONU and OLT) that is provisioned for 

healthcare in the network. The size of the processed ECG data using the Pan-

Tompkins algorithm is reduced from 252.8 kbits to 256 bits for each patient. 

Hence, the feedback time, 𝜏𝑏 to transmit the analysed ECG data (256 bits) for 

each patient with the given data rate (𝛿𝑏) in FOA and CA will require 0.76 s 

and 0.38 s, respectively (i.e. 256 bits/𝛿𝑏).  

Note that we choose to limit the feedback data rate by data rate available 

for healthcare applications in the GPON links to increase the feedback data 

rate. Therefore, we use more resources to transmit a feedback signal (256 

bits) to decrease the feedback time which, in turn, gives more time to transmit 

the raw ECG signal (252.8 kbits). This high available time to transmit the raw 

ECG signal uses a lower data rate which will result in activating fewer BSs. 

Note that, activating fewer BSs for a longer time is more efficient than 

activating a large number of BSs for a shorter time as the idle power 

consumption of a BS is 63% of its total power. Therefore, the remaining 

maximum time to send raw ECG signals to the processing server, 𝜏𝑚𝑎𝑥, had 
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been set as 203.2 s and 203.6 s in FOA and CA, respectively (i.e. 𝜏𝑚𝑎𝑥 =

𝜏𝑡 − 𝜏𝑚 − 𝜏𝑝 − 𝜏𝑏). As the size of a 30-second ECG signal is 252.8 kbits, the 

minimum data rate, 𝛿𝑚𝑖𝑛, required for each patient for FOA and CA is 1.244 

kbps and 1.241 kbps (i.e. 𝛿𝑚𝑖𝑛 = 252.8 kbits 𝜏𝑚𝑎𝑥⁄ ), respectively. Note that 

the calculated data rate refers to the minimum data rate that should be 

disseminated to each patient so as to ensure that the system works within the 

4 minutes, as required by AHA. Nevertheless, the data rate provided to each 

patient relies on the type of wireless technology used in this work, which is 

LTE-M. As the TTI to each user/M2M device with LTE-M had been 1 PRBs 

(336bps), the minimum data rate that was offered to each patient, 𝛿𝑎, in this 

work for all approaches was 1.344 kbps, which is equivalent to 4 PRBs per 

patient. As the size of raw ECG data is 252.8 kbits, the transmission time 

required to send the ECG data to the processing server, 𝜏𝑎, for both FOA and 

CA is 188.1s (i.e. 252.8 kbits 𝛿𝑎⁄ ). 

The data rate to send the processed ECG data at the processing server to 

the cloud storage for permanent storage was determined by considering the 

lowest shared link capacity or devices capacity from the processing server to 

the cloud storage, 𝐶𝑚𝑖𝑛, where the provision capacity for health M2M 

application are 234.4 kbps and 5.4 Mbps for FOA and CA, respectively. 

Furthermore, when the worst-case scenario is considered where all 669 

patients shared similar physical link to send their processed ECG data to the 

cloud storage, the lowest link or device capacity was divided equally to each 

patient, hence giving a data rate, 𝛿𝑐, of 350 bps and 8.07 Kbps for each patient 

for FOA and CA, respectively (i.e. 𝛿𝑐 = 𝐶𝑚𝑖𝑛 669⁄ ). As such, the time taken 

to send the analysed data to the cloud storage, 𝜏𝑐, with the given data rate (δc) 



- 98 - 

in FOA and CA is 0.73 s and 0.032 s, respectively (i.e. 𝜏𝑐 = 256 𝛿𝑐) ⁄ . Table 

4.2 shows the input parameter calculated for the FOA and CA as discussed 

above. 

 

Table 4.2: Parameter inputs for FOA and CA 

Parameter FOA CA 

Size of ECG data (kbits) 252.8 252.8 

Size of analysed ECG data (bits) 256 256 

Transmission time to transmit ECG data to processing 
server, 𝜏𝑎 (s)  

188.1 188.1 

Data rate to transmit ECG data to processing server, 𝛿𝑎 
(bps) 

1344 1344 

Transmission time to transmit analysed ECG data to 
clinic, 𝜏𝑏 (s) 

0.76 0.38 

Data rate to transmit analysed ECG data to clinic, 𝛿𝑏 
(bps) 

336 672 

Transmission time to transmit analysed ECG data to 
cloud storage, 𝜏𝑐 (s) 

0.73 0.032 

Data rate to transmit analysed ECG data to cloud 
storage, 𝛿𝑐 (bps) 

350 8070 

 

4.3 Performance evaluation for the EEFC Model 

 

This section presents the results and analysis of the EEFC model for fog 

computing approach (FOA) and the EECC model for the conventional 

approach (CA). AMPL software with CPLEX 12.8 solver running on high-

performance computing (HPC) cluster with a 12 core CPU and 64 GB RAM 

was used as the platform for solving the MILP models. The performance of 

the EECC model was used as a benchmark to evaluate the performance of 
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the EEFC model in terms of energy consumption of both networking 

equipment and processing. The evaluation of the two models is performed 

using the GPON architecture, as shown in Figure 3.2, with 26 BSs and 1 OLT. 

Note that in this work the energy consumption at the IoT layer was neglected 

as we only considered the energy consumed by the shared networking 

equipment. The input parameter calculated as in Table 4.2 and the input 

parameter for the networking and computing devices in Table 4.3 were used 

to obtain the results. Also, we consider a scenario where we only allow one 

processing server at each candidate node (i.e. fog node) as the limited space 

at the fog node can be shared by multiple applications, i.e. 𝜙𝑑  will be a 

parameter 𝜙𝑑 = 1.  

As discussed in Section 3.3.2, the healthcare application is considered to 

contribute to 0.3% of the idle power of the networking devices. However, the 

LTE-M BS shares capacity, antenna, radio and hardware with the legacy LTE 

networks (20MHz) [25]. Due to this, the idle power of the BS contributed by 

healthcare application is calculated based on a 7% allocation of LTE-M 

network from the legacy LTE network (1.4MHz/20MHz) and 6% allocation of 

healthcare applications from the total M2M applications supported by the LTE-

M network. The processing server is the most energy-consuming device in the 

network as the processing servers are dedicated to the healthcare application, 

hence maximum idle power is consumed. 
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Table 4.3: Input parameters for networking and computing devices  

Parameter Value 

Maximum power consumption of core router (CRS-3), 𝑃𝐶𝑅 12300 W 

[130] 

Core router capacity (CRS-3), 𝐶𝐶𝑅 4480 Gbps 

[130] 

Maximum power consumption of cloud switch (Catalyst 

6509), 𝑃𝐶𝐿𝑆 

2020 W [130] 

Cloud switch capacity (Catalyst 6509), 𝐶𝐶𝐿𝑆 320 Gbps 

[130] 

Maximum power consumption of cloud router (7609), 𝑃𝐶𝐿𝑅 4550 W [130] 

Cloud router capacity (7609), 𝐶𝐶𝐿𝑅 560 Gbps 

[130] 

Maximum power consumption of content server, 𝑃𝐶𝑆 380.8 W [131] 

Idle power consumption of content server, 𝐼𝐶𝑆 324.82 W 

[131] 

Content server capacity, 𝐶𝐶𝑆 1.8 Gbps 

[131] 

Maximum power consumption of cloud storage, 𝑃𝐶𝑆𝑇 4900 W [102] 

Cloud storage capacity 𝐶𝐶𝑆𝑇 75.6 TB [102] 

Maximum power consumption of aggregation router 

(7609), 𝑃𝐴𝑅  

4550 W [13], 

[130] 

Aggregation router capacity (7609), 𝐶𝐴𝑅 560 Gbps 

[13], [130] 

Maximum power consumption of centre aggregation 

switch, (Catalyst 6509), 𝑃𝐶𝐴𝑆 

1766 W [130] 

Centre aggregation switch capacity (Catalyst 6509), 𝐶𝐶𝐴𝑆 256 Gbps 

[130] 

Maximum power consumption of OLT, 𝑃𝑂𝐿𝑇 20 W [116] 

OLT capacity, 𝐶𝑂𝐿𝑇 128 Gbps 

[116] 

Maximum power consumption of ONU, 𝑃𝑂𝑁𝑈 8 W [99] 

ONU capacity, 𝐶𝑂𝑁𝑈 3.75 Gbps 

Maximum power consumption of LTE Base Station, 𝑃𝐵𝑆 528 W [132] 
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Idle power consumption of LTE Base Station, 𝐼𝐵𝑆 333 W [132] 

Maximum power consumption of processing server, 𝑃𝑃𝑆 180 W [133] 

Idle power consumption of processing server, 𝐼𝑃𝑆 78 W [133] 

IP over WDM, access and metro network PUE, 𝜂 1.5 [102], 

[103] 

Cloud and fog PUE, c 2.5 [105] 

 

 

Figure 4.7: Energy consumption of networking equipment and processing in 

GPON architecture 

 

Figure 4.7 shows the energy consumption of networking equipment and 

processing in the GPON architecture for EECC model, EEFC model and 

EOFC heuristic. We used the EECC model as our benchmark to evaluate the 

performance of energy consumption in the EEFC model. The energy saving 

of networking equipment in the EEFC model compared to the EECC model is 

83.1%, as illustrated in Figure 4.7. This saving is due to two factors. The first 

is the size of data traversing the network equipment in the metro and core 

layers. The second factor is the duration of utilising the network equipment in 
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the metro and core layers. Note that the bigger the size of the data, and the 

longer the time duration of transmission, the higher the energy consumption. 

Below, we explore in more details the role of the two factors above in 

minimising the energy consumption of networking equipment in the EEFC 

model compared to the EECC model. 

The size of data in the EEFC model traversing from the centre aggregation 

switch (CAS) at the metro network to the central cloud is small compared to 

the un-processed data in the EECC model. This is because in the EEFC 

model, the location of PS is optimised at the access layer. The MILP results 

show that there is only one PS deployed at the OLT as it is the nearest shared 

point to the patients (the OLT is connected to all BSs in the network). Due to 

this, the aggregated ECG signals from patients in the EEFC model are 

processed in the fog located at OLT, which reduces the data size. This 

reduces the energy consumed by the networking equipment in the EEFC 

model when the analysed data traverse from the CAS at the metro network to 

the central cloud for permanent storage as the energy is partly proportional to 

the size of data. Comparing that to EECC model, higher energy is consumed 

by the networking equipment in the metro and core layers in the EECC model 

as the un-processed data are sent to the central cloud to be processed. Note 

that permanent storage is also performed in the EECC model after the data is 

processed. 

In the EECC model, all devices in the three layers are utilised for 188.48 s 

(𝜏𝑎 + 𝜏𝑏) that includes the time to send the un-processed data to PS for 

processing and analysis, (𝜏𝑎), and the time to send the analysed data to the 

clinics (i.e. doctors) for feedback purpose, (𝜏𝑏), except the cloud switches, 
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content servers and cloud storage. The content servers and cloud storage are 

utilised for 32 ms, (𝜏𝑐), to perform the storage task. The cloud switches are 

used three times in the network: first, to send the un-processed data to PS, 

then to send the analysed data to the clinics for feedback, and, finally, to send 

the analysed data to the cloud for permanent storage. Due to this, the cloud 

switches are utilised for 𝜏𝑎 + 𝜏𝑏 + 𝜏𝑐.  

In the EEFC model, the BS and ONU are utilised for 188.86 s (𝜏𝑎 + 𝜏𝑏) that 

include the time to send the un-processed data to PS at the OLT for 

processing and analysis, (𝜏𝑎), and the time to send the analysed data to the 

clinics for feedback purpose, (𝜏𝑏). The OLT is used three times in the network: 

to send the un-processed data to its co-located PS, and to send the analysed 

data to the clinics for feedback and to the central cloud for permanent storage, 

hence the OLT is utilised for 𝜏𝑎 + 𝜏𝑏 + 𝜏𝑐. However, if the PSs are placed at 

the ONUs, therefore, the time of these ONUs are utilised is 𝜏𝑎 + 𝜏𝑏 + 𝜏𝑐. Note 

that the time to send the analysed data to the cloud storage in the EEFC 

model, (𝜏𝑐), is 0.73 s. Meanwhile, the equipment at the metro and core layers 

is only used to send the analysed data to the cloud storage for permanent 

storage. Due to this, the utilisation time of equipment at the metro and core 

layers in EEFC model is, (𝜏𝑐), 0.73s. 

Figure 4.7 illustrates that the energy consumption for processing in the 

EEFC model is slightly higher than the EECC model by 0.53%. This is due to 

the high utilisation time of the processing server in the EEFC model compared 

to the EECC model. Recall that, in the EEFC model, the processing server is 

utilised for 0.76 s and 0.73 s to send the analysed data for feedback and 

permanent storage, respectively, while it is 0.38 s and 32 ms in the EECC 
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model. This is due to the link capacity or devices capacity limitation in the 

access layer where the processing server is located in the EEFC model which 

limits the data rate to send the analysed data to the clinic and cloud storage 

compared to the EECC model. However, the total energy saving that includes 

the networking equipment and processing in the EEFC model compared to 

the EECC model is 35.7%. 

 

4.4 The Energy optimised fog computing (EOFC) heuristic 

The Energy Optimised Fog Computing (EOFC) heuristic was developed as 

a method to validate the MILP operation and to deliver a real-time solution of 

the FOA. Compared to the state-of-the-art of heuristic algorithm developed 

using various techniques to achieve their objectives, the EOFC heuristic is 

developed based on the insights from the results obtained from the MILP 

model to minimise the energy consumption of the networking equipment and 

processing. In this section, we explain the flow of the EOFC heuristic model 

based on the provided flow chart. Then, we discuss the performance of EOFC 

heuristic model compared to the EEFC model in terms of energy consumption 

of both networking equipment and processing. 

 

4.4.1  EOFC heuristic description 

 

The heuristic determines the BSs to serve patients to send raw health data 

and receive feedback data; and the nodes to place processing servers at the 

access network so that the energy consumption of both networking and 
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processing is minimised. Figure 4.8 shows the flow chart of the EOFC 

heuristic. 

 

Figure 4.8: Flow chart for EOFC heuristic 

Sort the clinics based on the number of patients each clinic serves in ascending order 

Select a clinic with the smallest number of clinics served 

Sort the used BSs that have connection to the selected clinic based on the total number of 
clinics they can serve in ascending order followed by unused BSs in descending order in List A 
 

Select the first BS in List A to assign patients 

All patients in the 
selected clinic are 

served? 

All the clinics are 
served? 

Determine the minimum number of candidate nodes to place the processing servers (n) 

Calculate the energy consumption resulting from placing the servers in the minimum number 
of required nodes (n) considering the transmission of raw health data and feedback traffic 

Increase the number of candidate nodes required to host the servers (n=n+1) and calculate 
the energy consumption resulting from this placement 

Assign the patients of the selected clinic to the selected BS and update the available 
resources of the BS  

 N nodes result in 
lower energy 
consumption? 

Start 

yes 

no 

yes 

no 

yes 

no 
Select n-1 nodes to place the servers 
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In this process, the heuristic begins by sorting the clinics based on the 

number of patients the clinic serves in ascending order. The heuristic assigns 

first the clinic with the smallest number of patients to BSs to help in packing 

the BSs (packing is optimum when equipment have high idle power 

consumption). The assignment of clinic patients to a BS is as follows: The 

heuristic sorts the BSs that have a connection to the clinic under consideration 

starting with BSs previously used by the healthcare application that has 

available resources. These BSs are sorted in ascending order based on the 

total number of clinics the BS can serve followed by the unused BSs in 

descending order. Ascending order of activated BSs reduces the number of 

utilised BS while, the descending order of unused BSs ensures that options 

are left open until late in the allocation process. Then, the patients of the clinic 

under consideration are consolidated to the minimum number of BSs to 

reduce the number of BSs used by the healthcare application.  

The heuristic then determines the number of processing servers required 

to serve the patients and the nodes hosting them. The candidate nodes that 

can host the servers are the ONUs connected to the BSs selected to serve 

the patients and the OLTs. Considering the minimum number of candidate 

nodes required to host servers to serve all the patients (which is based on the 

maximum number of servers a node can host), the heuristic finds the 

combination of candidate nodes to host processing servers that result in 

minimum energy consumption. The aim of limiting the number of candidate 

nodes to place the processing servers is to reduce the utilisation of the 

Ethernet switches to serve the processing servers.  
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This energy consumption that results from hosting servers at a combination 

of candidate nodes is calculated by routing the traffic (raw health data traffic) 

from BSs (starting with the BS serving the largest number of patients) to the 

nearest node with available processing capacity out of the combination of 

candidate nodes under consideration based on minimum hop routing. Also, 

BSs to send feedback traffic from the combination of candidate nodes to 

clinics are selected using the same approach used to select BSs to send raw 

health data. Note that BSs different from those used to send raw health data 

are used to send feedback traffic as the size of the analysed health data 

feedback traffic is smaller than the raw health data traffic. Therefore, a small 

number of BSs are utilised to send analysed health data feedback traffic. 

The combination of nodes hosting servers considering the minimum 

number of candidate nodes required to host servers to serve all the patients 

that result in minimum energy consumption is selected. 

The heuristic increases the number of candidate nodes to host servers and 

repeats the above process. The energy consumption resulting from using this 

combination of nodes is calculated and compared to the energy consumption 

resulting from the combination of nodes hosting servers considering the 

minimum number of candidate nodes required to host servers. If the latter is 

lower, the heuristic examines placing servers in more candidate nodes. If the 

former is lower, the minimum number of candidate nodes required to host 

servers is selected to place servers.  
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4.4.2 Performance evaluation of the EOFC heuristic 

 

In this section, the performance of the Energy Optimised Fog Computing 

(EOFC) heuristic compared to the Energy Efficient Fog Computing Health 

Monitoring Applications with LTE-M (EEFC) model is evaluated. As shown in 

Figure 4.7, the EOFC heuristic has the same performance as the EEFC model 

in terms of the network energy consumption which gives the same energy 

saving of 83.1%, in comparison to Energy Efficient Cloud Computing Health 

Monitoring Applications with LTE-M (EECC) model. This is because the 

optimal location to place the processing server in both EOFC heuristic and 

EEFC model is at the OLT, and the same amount of networking equipment is 

utilised to serve the patients. The figure also illustrates that the EOFC heuristic 

has the same performance as the EEFC model in terms of the processing 

energy consumption, which gives equal energy increase, in comparison to the 

EECC model. We also evaluate the computational time to run the EOFC 

heuristic and the EEFC model. The results show that the EOFC heuristic 

running on a normal PC with 3.2 GHz CPU and 16 GB RAM took 11.1 sec to 

finish while the EEFC model running on high-performance computing (HPC) 

cluster with a 12 core CPU and 64 GB RAM was manually stopped after 48 

hours. 
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4.5 Impact of idle power of networking and processing 

equipment on the EEFC model under GPON access 

network 

In this section, the impact of the idle power of networking and processing 

equipment on the energy efficiency of the EEFC model and the EECC model 

under GPON access network is evaluated by reducing the idle power of all 

equipment by 30% and 60% from its maximum power. Note that as the idle 

power of the base station, processing server and content server are obtained 

from data sheets and references in [134], [133], and [131], respectively, and 

not generalised to be 90% of the maximum power, and to obtain an equivalent 

reduction ratio for all equipment, we considered reductions by 33% and 67% 

from their fixed idle power.  

 

 

Figure 4.9: Energy consumption of networking equipment and processing in 

the GPON architecture with varying idle power percentages 
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Table 4.4: Energy-saving and Energy-increase in the EEFC model compared 

to the EECC model, with varied percentages of idle power  

Energy Type  Percentage of Idle Power 

90% 60% 30% 0% 

Network Saving 83.1% 77.1% 63.5% 0.3% 

Processing Increase  0.53% 0.52% 0.47% 0% 

 

Figure 4.9 illustrates the energy consumption of networking equipment and 

processing for the EECC model, EEFC model and EOFC heuristic in the 

GPON network with different percentages of idle power. Figure 4.9 also shows 

that the energy consumption of networking equipment and processing in the 

EOFC heuristic are the same as in the EEFC model. The energy consumption 

of networking equipment and processing for both the EEFC model and the 

EECC model are decreasing with the decreasing percentage of idle power, as 

shown in Figure 4.9. This is because the idle power dominates the energy 

consumption of networking equipment and processing server compared to its 

proportional load power as the size of data used in this work is small.  

Figure 4.9 also shows that the energy consumption of networking 

equipment in the EEFC model is lower than in the EECC model. This is due 

to the same two factors, as discussed previously in Section 4.3, which are the 

size of data traversing the networking equipment at the metro and core layers 

and the utilisation time of that equipment. However, the energy consumption 

of processing in the EEFC model is higher than in the EECC model when the 

idle power is 90%, 60% and 30% as illustrated in Figure 4.9. This is due to the 

high utilisation time of the processing server to transmit the analysed health 

data to the clinics and the cloud storage in the EEFC model compared to the 
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EECC model as discussed in Section 4.3. Meanwhile, the energy 

consumption of processing in the EEFC model and the EECC model are the 

same when the idle power is 0%. This is because the processing server in the 

EEFC model and the EECC model served the same number of patients with 

the same processing and analysis time. 

Table 4.4 summarised the energy saving of networking equipment and the 

energy increase for processing in the EEFC model when compared to the 

EECC model for all percentages of idle power. The results also show that the 

energy saving of networking equipment obtained in the EEFC model 

compared to the EECC model decrease with the decreasing percentage of 

idle power. This is because, in the EECC model, the total utilisation time of 

the networking equipment that includes both the time to send the raw ECG 

signal for processing and analysis and the time to send the analysed health 

data for feedback and storage purposes are higher than in the EEFC model. 

Due to this, the energy consumption of networking equipment in the EECC 

model has a higher energy reduction than the EEFC model with a low 

percentage of idle power. This reduced the energy saving of networking 

equipment in the EEFC model compared to the EECC model. Meanwhile, 

Table 4.4 also shows that the energy increase for processing in the EEFC 

model compared to the EECC model decrease with the decreasing 

percentage of idle power. This is because the utilisation time of the processing 

server (i.e. the time to send the analysed health data for feedback and 

storage) in the EEFC model is higher than the EECC model. Due to this, the 

reduction of energy consumption of processing server in the EEFC model with 

a low percentage of idle power is higher than in the EECC model. Note that 

the decrease of idle power only affected the energy consumed due to 
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receiving the raw ECG signal from patients, to transmit the analysed data for 

feedback and permanent storage purposes as shown in Equation (3-28). 

 

4.6 Impact of increasing traffic on EEFC 

In this section, the impact of increasing the traffic in the network on the energy 

consumption of networking equipment and processing in the EEFC model is 

evaluated by increasing the number of patients from 10% to 90% of the total 

number of patients for each clinic in 2014/2015 in 10% increments. Note that 

increasing number of patients increases the traffic in the network. We maintain 

the processing and analysis time of each processing server at 6.02s where 

the maximum number of patients each processing server can serve is 669. 

Therefore, increasing the number of patients in the network will increase the 

number of utilised processing servers. We consider two scenarios related to 

the number of processing servers that can be served at each candidate node 

(i.e. fog node). In the first scenario, each candidate node can serve only one 

processing server, hence the ɸ𝑑  is parameter i.e. 𝜙𝑑 = 1. The first scenario is 

applicable for the EEFC model only. In the second scenario, each candidate 

node can serve more than one processing server, hence ɸ𝑑  is a variable. The 

second scenario is applicable for both the EECC model and the EEFC model. 

Also, as we allow each candidate node to serve more than one processing 

server, therefore, there is additional networking equipment which are Ethernet 

switches dedicated for healthcare applications to connect the processing 

servers to each candidate node as shown in Figure 4.10. Note that for 

scenario 1, we utilised the same network architecture as shown in Figure 3.2 
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(i.e. without Ethernet switch). Table 4.5 shows the power consumption of the 

considered Ethernet Switch for scenario 2.  

 

 

 

Figure 4.10: GPON architecture with fog computing and Ethernet switches for 

scenario 2 

 

Table 4.5: Power consumption and capacity of Ethernet switch 

Type of device Maximum 

Power (Watts) 

Idle Power 

(Watts) 

Capacity (Gbps) 

Ethernet switch 3.52 0.57 16 

 

The same MILP model in Section 3.5 for FOA and Section 3.6 for CA are 

utilised to evaluate the performance of both approaches under GPON 

network. Table 4.6 shows the additional parameters and variables included in 

the model. For scenario 2, as Ethernet switches are used to connect more 

than one processing server to the ONU and OLT, Equation (4-2) replace 

Equation (3-25) and Equation (4-3) replace Equation (3-75) for FOA and CA 
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to include the energy consumed by the Ethernet switches, respectively. 

Meanwhile, additional Equations (4-4)-(4-7) are used to calculate the energy 

consumed by the Ethernet switch to serve the raw health data traffic, analysed 

health data feedback traffic and analysed health data storage traffic, 

respectively. Note that the energy of the Ethernet switches is consumed if the 

utilised processing servers are connected to it.  

 

Table 4.6: Additional parameters for Ethernet switch 

Parameter 

𝑃𝐸𝑆 Maximum power consumption of an Ethernet switch (W) 

𝐼𝐸𝑆 Idle power consumption of an Ethernet switch (W) 

𝐶𝐸𝑆 Maximum capacity of an Ethernet switch (bps) 

Variables 

𝐸𝑇𝐸𝑆 Total energy consumption of Ethernet switches 

𝐸𝐸𝑆𝑃 Energy consumption of Ethernet switches required to relay raw 

health data traffic 

𝐸𝐸𝑆𝐹 Energy consumption of Ethernet switches required to relay 

analysed health data feedback traffic 

𝐸𝐸𝑆𝑆 Energy consumption of Ethernet switches required to relay 

analysed health data storage traffic 

 

𝐸𝐹𝑁 = 𝐸𝑃𝑆 𝑐 + 𝐸𝑇𝐸𝑆 𝜂     (4-2) 

𝐸𝐶𝑆𝑁 = (𝐸𝑃𝑆 + 𝐸𝑇𝐸𝑆) 𝑐     (4-3) 

𝐸𝑇𝐸𝑆 = 𝐸𝐸𝑆𝑃 + 𝐸𝐸𝑆𝐹 + 𝐸𝐸𝑆𝑆 (4-4) 
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𝐸𝐸𝑆𝑃 = ∑ (𝐼𝐸𝑆 𝑥 𝑌𝑖 + 𝑃𝑖   
(𝑃𝐸𝑆 − 𝐼𝐸𝑆)

𝐶𝐸𝑆
)  𝜏𝑎

𝑖∈𝐹𝑁

 
(4-5) 

𝐸𝐸𝑆𝐹 =  ∑ (𝐼𝐸𝑆 𝑥 𝑌𝑖 + 𝐹𝑖   
(𝑃𝐸𝑆 − 𝐼𝐸𝑆)

𝐶𝐸𝑆
)  𝜏𝑏

𝑖∈𝐹𝑁

 
(4-6) 

𝐸𝐸𝑆𝑆 = ∑ (𝐼𝐸𝑆 𝑥 𝑌𝑖 + 𝑆𝑖   
(𝑃𝐸𝑆 − 𝐼𝐸𝑆)

𝐶𝐸𝑆
)  𝜏𝑐

𝑖∈𝐹𝑁

 
(4-7) 

 

In addition, similar input parameters in Section 4.2.4 under the GPON 

network have been employed for scenario 1 to evaluate the performance of 

the EEFC model in terms of energy consumption of networking equipment and 

processing under increasing traffic. Meanwhile for scenario 2, similar input 

parameters in Section 4.2.4 under GPON network, except for the data rate for 

permanent storage (𝛿𝑐) and its transmission time (𝜏𝑐), are employed for the 

EECC model and EEFC model. This is because, in scenario 2, the data rate 

per patient to send the analysed data to the cloud for permanent storage for 

the EECC model (i.e. CA) and EEFC model (i.e. FOA) decreases with 

increasing number of patients, which, in turn, increases its transmission time. 

Increasing the number of patients in the network also reduced the data rate 

for feedback (𝛿𝑏) and increases its transmission time (𝜏𝑏) for the EECC model 

(i.e. scenario 2) to 336 bps and 0.76 ms, respectively. The values remain the 

same for all increasing percentage of patients as the allocated data rate is the 

minimum rate in the LTE when using the QPSK modulation scheme. Table 

4.7 shows the data rate for permanent storage, 𝛿𝑐, and its transmission time, 

𝜏𝑐, for the EEFC model (i.e. FOA) and EECC model (i.e. CA) for scenario 2 

with the increasing number of patients in the network. 
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Table 4.7: Data rate and transmission time for permanent storage with varying 

numbers of patient in the network for the EECC and EEFC model under 

scenario 2 

Approach CA FOA 

𝛿𝑐 (kbps) 𝜏𝑐 (s) 𝛿𝑐 (kbps) 𝜏𝑐 (s) 

10% 7.317 0.035 0.317 0.81 

20% 6.708 0.038 0.291 0.88 

30% 6.199 0.041 0.269 0.95 

40% 5.775 0.044 0.250 1.02 

50% 5.346 0.048 0.232 1.1 

60% 5.037 0.051 0.218 1.17 

70% 4.741 0.054 0.205 1.25 

80% 4.492 0.057 0.194 1.31 

90% 4.245 0.060 0.184 1.39 

 

Due to the complexity of evaluating the MILP model for a network of large 

size for each increasing percentage of traffic, the EOFC heuristic is used to 

study the performance of the energy consumption of networking equipment 

and processing for the EEFC model compared to the EECC model. 
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Figure 4.11: Energy consumption of networking equipment and processing in 

EOFC heuristic under scenario 1 and EECC model and EOFC heuristic under 

scenario 2 with the increasing number of patients 

 

Table 4.8: Energy-Saving and Energy-Increased in EOFC heuristic under 

scenario 1 and scenario 2 compared to the EECC model under scenario 2, for 

varied percentages of increasing traffic. 

Percentage 

of Increasing 

Traffic (%) 

Scenario 1 Scenario 2  

Network 

Saving (%)  

Processing 

Increase (%)  

Network 

Saving (%)  

Processing 

Increase (%)  

0 83.1 0.53 83.1 0.53 

10 81.7 0.34 81.1 0.38 

20 81.3 0.34 80.6 0.42 

30 79.8 0.34 79.1 0.45 

40 78.4 0.34 77.7 0.48 

50 77.0 0.34 76.3 0.52 

60 76.6 0.33 75.9 0.55 

70 75.3 33.27 74.5 0.59 

80 74.1 33.25 73.2 0.62 

90 72.8 33.23 71.9 0.65 
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Figure 4.11 shows the energy consumption of networking equipment and 

processing for EOFC heuristic for scenario 1 and EECC model and EOFC 

heuristic for scenario 2, when the traffic is based on 2014/2015 (i.e. 0% 

increase) and increased by 10% to 90% from the total number of patients for 

each clinic in 2014/2015 in 10% step units. Table 4.8 shows the percentage 

networking equipment energy saving and energy increase in processing in 

EEOF heuristic of both scenarios compared to the EECC model of scenario 2 

when the increase in percentage of patients is 0% to 90%. 

The results in Figure 4.11 show that the total energy consumption of the 

EECC model (i.e. scenario 2) and EOFC heuristics (i.e. scenario 1 and 

scenario 2) increase with an increasing percentage of patients. The increase 

in energy is a result of increasing the number of patients which, in turn, has 

increased both the total traffic traversing the network and the total number of 

utilised networking and processing equipment. The results in Figure 4.11 

show that the total energy consumption of both networking equipment and 

processing in the EOFC heuristic of scenario 1 is lower than the EECC model 

when the percentage increase in patients is equal to or less than 60%. 

Meanwhile, for the EOFC heuristic under scenario 2, the total energy is lower 

than the EECC model for all percentages of increasing traffic. The low total 

energy consumed in the EOFC heuristic of both scenarios is mainly due to the 

low energy consumed by the networking equipment as a result of the small 

number of utilised networking equipment and its utilisation time in the EOFC 

heuristics compared to the EECC model as explained in Section 4.3. 

The results also show that the total energy consumed by both networking 

equipment and processing in the EOFC heuristic of scenario 1 is higher than 
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the EECC model when the percentage of traffic increase is more than 60%. 

This is because of the increase in the number of processing servers utilised 

in the EOFC heuristic of scenario 1 due to the limited link capacity at the 

access network, hence increasing the energy consumption of processing of 

the EOFC heuristic. Note that, the locations of the processing servers are at 

both OLT and ONUs when the percentage increase in patients is more than 

60%. The percentage energy increase of processing in the EOFC heuristic 

compared to the EECC model are as shown in Table 4.8. 

Figure 4.11 also shows that, the energy consumption of networking 

equipment in the EOFC heuristic under scenario 2 is slightly higher than in 

scenario 1. This is due to the additional energy consumed by the Ethernet 

switches at the access layer and the increasing utilisation time of the 

networking equipment to send the analysed health data storage traffic to the 

cloud storage in scenario 2, hence high energy is obtained for EOFC heuristic 

of scenario 2. 

Table 4.8 also shows that the energy saving of networking equipment in the 

EOFC heuristic of both scenarios compared to the EECC model decreases 

with increasing percentage of traffic. This is because the increase in energy 

consumption of networking equipment in EOFC heuristic of both scenarios is 

higher than the EECC model. For instance, in scenario 1, more networking 

equipment is utilised to place the processing servers (OLT and ONU) 

compared to the EECC model. Meanwhile, for scenario 2, the utilisation time 

of the networking equipment to perform storage tasks in the EOFC heuristic 

is higher than in the EECC model. Besides, this is also due to the increasing 

energy consumption of the BS and ONU in both approaches to serve the raw 
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health data traffic (EOFC heuristic of scenario 1 and EECC model and EOFC 

heuristic of scenario 2) and, hence, reduces the energy saving of networking 

equipment in the EOFC heuristic when compared to the EECC model. 

Figure 4.11 also shows that the energy consumption for processing in the 

EOFC heuristic in scenario 1 and scenario 2 is slightly higher than in the EECC 

model for all percentages of increasing traffic. Table 4.8 shows that the energy 

increase for processing in EOFC heuristic of scenario 1 and scenario 2 

compared to the EECC model with 10% of increasing traffic reduced to 0.34% 

and 0.38%, respectively, compared to traffic in 2014/2015 which is 0.53% (i.e. 

0% of increasing traffic). This is due to the increasing utilisation time of the 

processing server in the EECC model to perform the feedback task since the 

increasing number of patients reduced the data rate allocated to each patient 

for the feedback transmission. However, the percentage energy increase for 

processing in the EOFC heuristic compared to the EECC model under 

scenario 2 increases with increasing traffic from 10% to 90%, as shown in 

Table 4.8. This is because the increasing total utilisation time of the 

processing servers in the EOFC heuristic under scenario 2 is higher than in 

the EECC model for all percentages of increasing traffic. Therefore, this 

increases the percentage energy increase in EOFC heuristic compared to the 

EECC model under scenario 2. Meanwhile, Table 4.8 also shows that the 

energy increase in processing for EOFC heuristic under scenario 1 is the 

same when the percentage increase in patients ranges from 10% to 50%. This 

is mainly due to the same utilisation time of the processing servers to receive 

the raw health data and to transmit the analysed health data for feedback and 

storage in the EOFC heuristic of scenario 1 and the EECC model, regardless 

of the increasing number of patients. 
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4.7 Impact of different access networks on EEFC model 

In this section, the performance of the EEFC model (FOA), compared to the 

EECC model (CA), under the Ethernet network is evaluated in terms of energy 

consumption of both networking equipment and processing. The fog 

architecture and the parameters considered for health monitoring applications 

using the Ethernet access network are also provided. 

 

4.7.1 Fog computing architecture for health monitoring 

applications under Ethernet access network 

 

The Ethernet architecture in the fog network is shown in Figure 4.12. The only 

difference between the Ethernet and GPON network is at the access layer 

where in the Ethernet network, the ONU and OLT are replaced with an access 

switch (ASW) and an aggregation switch (AGS), respectively. The AGS in the 

Ethernet network has 62 ports [135]. To maintain resilience, each ASW will be 

connected to 2 ports at the AGS, hence only 31 ASWs can be connected to 

the AGS.  
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Figure 4.12: Ethernet architecture in the fog network 

 

The network connection at the access layer in the Ethernet network is 

optimised using MALTAB, as in Section 4.2.1, and the optimal location of AGS 

for the Ethernet network is the same as the optimal location of the OLT in 

Figure 4.2, as represented by a black diamond. Note that the optimised 

location of AGS had the lowest total distance from 26 ASWs.  

 

4.7.2 MILP model and parameters consideration under Ethernet 

access network for health monitoring system 

 

In order to optimise the energy consumption of networking equipment and 

processing under the Ethernet Network, an additional set, parameters and 

variables to those in Table 3.1 and Table 3.2 related to the Ethernet 

specification are summarised in Table 4.9 (also can be found in Appendix 1). 

Note we consider that each candidate node can serve only one processing 

server, hence the 𝜙𝑑 parameter value, i.e. 𝜙𝑑 = 1. 
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Table 4.9: Set and parameters for Ethernet network 

Set 

𝐴𝑆𝑊 Set of access switches 

Parameters 

𝑃𝐴𝑆𝑊 Maximum power consumption of an access switch (W) 

𝐼𝐴𝑆𝑊 Idle power consumption of an access switch (W) 

𝐶𝐴𝑆𝑊 Maximum capacity of an access switch (bps) 

𝑃𝐴𝐺𝑆 Maximum power consumption of an aggregation switch (W) 

𝐼𝐴𝐺𝑆 Idle power consumption of an aggregation switch (W) 

𝐶𝐴𝐺𝑅 Maximum capacity of an aggregation switch (bps) 

Variables 

𝐸𝑇𝐴𝑆𝑊 Total energy consumption of access switches 

𝐸𝐴𝑆𝑊𝑃 Energy consumption of access switches required to relay raw 

health data traffic 

𝐸𝐴𝑆𝑊𝐹 Energy consumption of access switches required to relay 

analysed health data feedback traffic 

𝐸𝐴𝑆𝑊𝑆 Energy consumption of access switches required to relay 

analysed health data storage traffic 

𝐸𝑇𝐴𝑆𝐺 Total energy consumption of aggregation switches 

𝐸𝐴𝑆𝐺𝑃 Energy consumption of aggregations switches required to relay 

raw health data traffic 

𝐸𝐴𝐺𝑆𝐹 Energy consumption of aggregation switches required to relay 

analysed health data feedback traffic 

𝐸𝐴𝐺𝑆𝑆 Energy consumption of aggregation switches required to relay 

analysed health data storage traffic 
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We use the MILP model in Section 3.5 with several modifications at the 

access network due to the different types of networking devices at the access 

layer between the GPON and the Ethernet access network. The energy 

consumption of access network in Equation (3-3) is redefined as follows: 

 

𝐸𝐴𝑁 = (𝐸𝑇𝐵𝑆 + 𝐸𝑇𝐴𝑆𝑊 + 𝐸𝑇𝐴𝐺𝑆)  𝜂 (4-8) 

 

where the total energy consumption of base stations, 𝐸𝑇𝐵𝑆, together with the 

energy consumed by the BS to serve the raw health data traffic and analysed 

health data feedback traffic are the same as in Equation (3-4)-(3-6). 

Meanwhile, Equation (3-7)-(3-10) for ONUs are replaced with Equation (4-9)-

(4-12) to consider access switches, respectively, as given below: 

 

𝐸𝑇𝐴𝑆𝑊 = 𝐸𝐴𝑆𝑊𝑃 + 𝐸𝐴𝑆𝑊𝐹 + 𝐸𝐴𝑆𝑊𝑆 (4-9) 

𝐸𝐴𝑆𝑊𝑃 =  ∑ (𝐼𝐴𝑆𝑊 𝑥 𝜁𝑎𝑖 + 𝑃𝑖  
(𝑃𝐴𝑆𝑊 − 𝐼𝐴𝑆𝑊)

𝐶𝐴𝑆𝑊
)  𝜏𝑎

𝑖∈𝐴𝑆𝑊

 
(4-10) 

𝐸𝐴𝑆𝑊𝐹 = ∑ (𝐼𝐴𝑆𝑊 𝑥 𝜁𝑏𝑖 + 𝐹𝑖  
(𝑃𝐴𝑆𝑊 − 𝐼𝐴𝑆𝑊)

𝐶𝐴𝑆𝑊
)  𝜏𝑏

𝑖∈𝐴𝑆𝑊

 
(4-11) 

𝐸𝐴𝑆𝑊𝑆 = ∑ (𝐼𝐴𝑆𝑊 𝑥 𝜁𝑐𝑖 + 𝑆𝑖  
(𝑃𝐴𝑆𝑊 − 𝐼𝐴𝑆𝑊)

𝐶𝐴𝑆𝑊
)  𝜏𝑐

𝑖∈𝐴𝑆𝑊

 
(4-12) 

  

Also, Equation (3-11)-(3-14) for OLTs are replaced with Equation (4-13)-(4-

16) to consider aggregation switches, respectively.  
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𝐸𝑇𝐴𝐺𝑆 = 𝐸𝐴𝐺𝑆𝑃 + 𝐸𝐴𝐺𝑆𝐹 + 𝐸𝐴𝐺𝑆𝑆 (4-13) 

𝐸𝐴𝐺𝑆𝑃 =  ∑ (𝐼𝐴𝐺𝑆 𝑥 𝜁𝑎𝑖 + 𝑃𝑖  
(𝑃𝐴𝐺𝑆 − 𝐼𝐴𝐺𝑆)

𝐶𝐴𝐺𝑆
)  𝜏𝑎

𝑖∈𝐴𝐺𝑆

 
(4-14) 

𝐸𝐴𝐺𝑆𝐹 =  ∑ (𝐼𝐴𝐺𝑆 𝑥 𝜁𝑏𝑖 + 𝐹𝑖  
(𝑃𝐴𝐺𝑆 − 𝐼𝐴𝐺𝑆)

𝐶𝐴𝐺𝑆
)  𝜏𝑏

𝑖∈𝐴𝐺𝑆

 
(4-15) 

𝐸𝐴𝐺𝑆𝑆 = ∑ (𝐼𝐴𝐺𝑆 𝑥 𝜁𝑐𝑖 + 𝑆𝑖  
(𝑃𝐴𝐺𝑆 − 𝐼𝐴𝐺𝑆)

𝐶𝐴𝐺𝑆
)  𝜏𝑐

𝑖∈𝐴𝐺𝑆

 
(4-16) 

 

To determine the data rate and transmission time to transmit the ECG signal 

to the processing server for processing and analysis, and to transmit the 

analysed ECG data to the clinic for feedback, as well as to transmit the 

analysed ECG data to cloud for storage under Ethernet network, we used the 

same methodologies as explained in Section 4.2.4. Note that under the 

Ethernet network, we considered the link between the ASW and CAS to be 

the minimum shared link capacity to determine the data rate for feedback (i.e. 

FOA and CA) and storage (i.e. FOA). This is due to the same reason as 

explained in Section 4.2.4. Table 4.10 shows the related parameter inputs 

calculated for FOA and CA under the Ethernet network. Meanwhile, Table 

4.11 summarised the additional input parameters related to the Ethernet 

specification to those in Table 4.3. 
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Table 4.10: Parameter inputs for FOA and CA 

Parameter FOA CA 

Transmission time to transmit raw ECG data to 

processing server, 𝜏𝑎 (s)  

188.1 188.1 

Data rate to transmit raw ECG data to processing 

server, 𝛿𝑎 (kbps) 

1.344 1.344 

Transmission time to transmit analysed ECG data to 

clinic, 𝜏𝑏 (s) 

0.059 0.059 

Data rate to transmit analysed ECG data to clinic, 𝛿𝑏 

(kbps) 

4.368 4.368 

Transmission time to transmit analysed ECG data to 

cloud storage, 𝜏𝑐 (s) 

0.057 0.032 

Data rate to transmit analysed ECG data to cloud 

storage, 𝛿𝑐 (kbps) 

4.484 8.071 

 

Table 4.11: Input parameters for the Ethernet network 

Parameter Value 

Maximum power consumption of access switch, 𝑃𝐴𝑆𝑊 40 W [136] 

Access switch capacity, 𝐶𝐴𝑆𝑊 20 Gbps [136] 

Maximum power consumption of aggregation router, 𝑃𝐴𝐺𝑆 728 W [137] 

Aggregation switch capacity, 𝐶𝐴𝐺𝑆 120Gbps [135] 

 

4.7.3 Results and analysis of EEFC model under Ethernet access 

network for health monitoring system 

 

In this section, the performance of the EECC model, EEFC model and EOFC 

heuristic are evaluated in term of energy consumption of networking 

equipment and processing under the Ethernet network. 
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Figure 4.13: Energy consumption of networking equipment and processing in 

Ethernet architecture 

 

Figure 4.13 illustrates the energy consumption of networking equipment 

and processing under the Ethernet network for the EECC model, EEFC model 

and EOFC heuristic. We used the EECC model as our benchmark to evaluate 

the performance of energy consumption in both the EEFC model and EOFC 

heuristic. The energy saving of networking equipment in the EEFC model, 

compared to the EECC model under Ethernet network, is 81.5% as illustrated 

in Figure 4.13 where the energy consumption of networking equipment in the 

EEFC model is lower than the EECC model. This saving is due to the same 

two factors, as explained in Section 4.3. The figure also shows that the EOFC 

heuristic has the same performance as the EEFC model in terms of network 

energy consumption. This is due to the fact that the same location, which is 

AGS, is used to place the processing server in both models. Therefore, the 

EOFC heuristic has the same energy saving as in the EEFC model compared 

to the EECC model.  
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However, the energy saving of networking equipment obtained in the EEFC 

model compared to EECC model under the Ethernet network is lower than in 

the GPON network (i.e. 83.1%). Also, the increase in the energy consumption 

of networking equipment for the EECC model and the EEFC model using the 

Ethernet network compared to the GPON network is 2.3% and 11.8%, 

respectively. This is mainly due to the low power consumption of the total ONU 

and OLT in the GPON network which is 96.4% less when compared to the 

total power consumption of ASW and AGS in the Ethernet network under full 

utilisation (maximum power). Note that the power consumption of ONU is 80% 

lower than the ASW while OLT is 97.3% lower than the AGS. It is worth noting 

that the utilisation time of the networking equipment to send the analysed 

health data feedback traffic and analysed health data storage traffic in the 

GPON network is high when compared to the Ethernet network due to the link 

capacity constraint between the ONU and the OLT in the GPON network. The 

high utilisation time increases the energy consumption of the networking 

equipment to perform the feedback and storage tasks in the GPON network. 

However, the energy efficiency of the ONU and OLT dominates the increasing 

energy due to the high utilisation time to perform those tasks. Hence there is 

a high energy saving of networking equipment under the GPON network 

compared to the Ethernet network.  

Figure 4.13 also shows that the energy consumption of processing in the 

EEFC model and EOFC heuristic is slightly higher than the EECC model by 

0.01%, mainly due to the same reason as explained in Section 4.3 for the 

GPON network. However, the increase in energy processing in the Ethernet 

network is low when compared to the GPON network, mainly due to the low 

utilisation time of the processing server to send the analysed data to the clinic 
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and cloud storage in the EEFC model and EOFC heuristic, resulting from the 

high link capacity under Ethernet network compared to the GPON network. 

 

4.8 Conclusions 

This chapter has investigated the impact of integrating fog computing at the 

network edge on the energy consumption of networking equipment and 

processing for health monitoring applications. This is accomplished by 

deploying a processing server at the network edge to perform both processing 

and analysis of health data. Realistic locations for base station, OLT, clinic as 

well as real number of patients are considered. A MILP model (EEFC) and a 

heuristic (EOFC) to optimise the location of the processing server at the 

access layer were developed. The result of the EEFC model and the EOFC 

heuristic reveal that the optimal location for placing the processing server is 

at the OLT as it is the nearest shared point to the patients. As a result, there 

is 83.1% of network energy-saving in the EEFC model when compared to the 

EECC model where the processing is performed at the central cloud. Hence, 

this study has shown that by reducing the traffic and the utilisation time of the 

networking equipment by using fog processing at the network edge the energy 

consumption of the transport network can effectively be reduced. 

Nonetheless, 0.53% of processing energy-increase was observed in the 

EEFC model in comparison to the EECC model. However, the total energy 

consumption of networking equipment and processing in the EEFC model is 

35.7% less when compared to the EECC model. Note that the energy saving 

of networking equipment and the energy increase of processing in EOFC 
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heuristic are equal to those of the EEFC model. We also studied the impacts 

of decreasing idle power of devices and increasing volume of traffic in the 

network upon the performance of the EEFC model and EOFC heuristic. The 

results revealed that the performance of the proposed EEFC model and EOFC 

heuristic are the same and are more energy efficient when compared to the 

EECC model. However, the energy efficiency of the EEFC model is limited by 

the link capacity constraints at the access network where more processing 

servers are required to serve the increasing patients when the number of 

processing servers at each fog node is limited. Also, the results show that the 

integration of fog computing with an Ethernet network also exhibited 81.3% 

network energy-saving, in comparison to the conventional approach.  
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Chapter 5 

Energy-efficient fog computing with Long Term Evolution for 

machine (LTE-M) for fall monitoring applications 

5.1 Introduction 

In this chapter, the use of fog computing for fall monitoring applications is 

investigated considering a realistic sample of elderly patients at West Leeds, 

United Kingdom, who suffer from heart diseases, to be the respondents. The 

respondents among the elderly are selected because falls are the leading 

cause of injuries and deaths among seniors [138], [139]. It has been reported 

that one-third of the elderly people aged 65 years and above fall each year 

[140].  Meanwhile, the REGARDS study found that the presence of a history 

of both heart disease (i.e. atrial fibrillation) and falls is associated with a 

significantly higher risk of mortality [141]. Therefore, immediate treatment is 

necessary to save the patients.  

Among all the available medical monitoring services, video analysis 

happens to be the most common approach to detect a fall [142]. It has been 

reported that falls account for 10% – 25% of the ambulance call-outs for 

elderly people, which cost £115 per call-out [140]. Therefore, to avoid a false 

alarm given to the doctors, two stages of detection are performed as follows: 

At an event of a patient fall, the accompanying IoT device will first detect it on 

the basis of its limited video processing capabilities. Then, it will send a 15-s 

video recording as proposed in [7] to the fog servers to reconfirm the 

occurrence of a patient fall on the basis of considerably higher processing 

capabilities than the IoT devices before triggering a doctor call. Thus, the 15-
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s video recording will be processed and analysed at the processing servers in 

the fog layer to reconfirm the occurrence of a fall.  

Because of the complexity of the model, an extreme scenario is considered 

wherein the events trigger sending a video for each patient at the same time. 

In this work, the placement of the processing servers in the network is 

optimised by using the same mixed integer linear programming (MILP) model 

(Section 4.7) and the heuristic model (Section 4.4) discussed in Chapter 4, so 

that the total energy consumption of fall monitoring is minimised. 

 

5.2 Parameters consideration 

This section elaborates the methodologies of determining the model input 

parameters considered for fall monitoring applications. The input parameters 

are divided into several types such as the number of monitored patients in 

West Leeds, UK, the processing and analysis time of health data (i.e. video 

recording signals), and the calculation of the data rate and the traffic 

transmission. 

 

5.2.1 Total number of monitored patients in West Leeds, UK 

 

In this study, 37 clinics located at West Leeds were considered to monitor the 

elderly patients with heart disease, similar to Chapter 4. The total number of 

patients of all ages who suffered from heart disease was determined on the 

basis of the data from Public Health England [143]. As reported in [140], the 

percentage of elderly people aged 65 years and above was 17.7% and one-
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third of them experienced falls each year. Therefore, 17.7% of the total 

patients with heart disease in each clinic were considered elderly people who 

suffered from heart disease, and only a third of them were monitored, which 

reflected the traffic demands in this study. Table 5.1 presents the deduced 

total number of elderly patients registered at each clinic who were expected 

to experience a fall. 

 

Table 5.1: Number of monitored elderly patients in clinics expected to 

experience a fall 

Clinic 

Number 

of 

Patients 

Clinic 
Number of 

Patients 

Craven Road Medical Practice 3 Leeds Student Practice 0 

Hyde Park Surgery 1 Burton Croft Surgery 4 

Laurel Bank Surgery 1 Kirkstall Lane Medical 

Centre 

1 

Burley Park Medical Centre 4 Thornton Medical Centre 5 

Gildersome Health Centre 2 The Dekeyser Group 

Practice 

8 

Leigh View Medical Practice 6 West Lodge Surgery 13 

Hillfoot Surgery 2 Dr KW McGechaen & 

Partner 

2 

Pudsey Health Centre 4 Robin Lane Medical Centre 6 

Dr S M Chen & Partner 2 Beech Tree Medical Centre 1 

Hawthorn Surgery 3 Priory View Medical Centre 6 

High Field Surgery 3 Abbey Grange Medical 

Centre 

4 

Vesper Road Surgery 2 Fieldhead Surgery 1 

Manor Park Surgery 7 The Highfield Medical 

Centre 

2 

Dr G Leeds & Partners 4 Dr F Gupta’s Practice 1 

Guiseley and Yeadon Medical 

Practice 

6 Park Road & Menston 6 

Yeadon Tarn Medical Practice 4 Rawdon Surgery 4 

Dr KJ Manock & Partners 11 Whitehall Surgery 2 

Dr JA Browne’s Practice 6 Dr N Saddiq’s Practice 1 

Dr JJ McPeakes Practice 2   
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5.2.2 Time measurement for video data processing 

 

In this study, each patient transmitted his/her 15-s video recording having a 

size of 3.36 Mbits to the network by using Kinect’s IR sensor with a 640 × 480 

resolution at 30 frames per second, as proposed in [144]. The time to process 

and analyse the video data with a 2.4-GHz processor was around 0.3 ms – 

0.4 ms per frame [144]. In this work, 0.4 ms was used as the per frame 

processing time. Therefore, the duration to process and analyse one video 

recording per patient was 0.18 s, as calculated below: 

 

𝜏𝑝𝑠 = 15 𝑠 ∙  30 𝑓𝑟𝑎𝑚𝑒𝑠/𝑠 ∙ 0.4 𝑚𝑠/𝑓𝑟𝑎𝑚𝑒 (5-1) 

 

5.2.3 Data rate calculation for traffic transmission in the network 

 

As discussed in Chapter 4, we considered 4 min, 𝜏𝑡, as the maximum duration 

to save elderly patients who had heart disease, as proposed by American 

Heart Association [57] and experienced a fall. This duration, together with the 

data volume to be transmitted, was used to calculate the data rate needed for 

each patient. The 4 min included the 15 s of the video recording (i.e. 3.36 

Mbits of data) for monitoring 𝜏𝑚, the transmission time to send the video 

recording to the processing server 𝜏𝑚𝑎𝑥, the transmission time to send the 

analysed health data feedback traffic to the clinic 𝜏𝑏, and the time to perform 

the processing and the analysis 𝜏𝑝.  

The time for processing and analysis was calculated on the basis of the 

number of patients that each processing server could serve (𝑃𝑎𝑡) and the 
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duration to process a video recording per patient (𝜏𝑝𝑠), which was 0.18 s, as 

calculated in Section 5.2.2; thus,  𝜏𝑝 = 𝜏𝑝𝑠 ∙ 𝑃𝑎𝑡. Two scenarios were 

considered to evaluate the energy consumption of the networking equipment 

and processing as follows: 

 

1) Limited number of patients per processing server (scenario 1) 

In this approach, five scenarios were considered where the 𝑃𝑎𝑡 value was 

20%, 40%, 60%, 80%, and 100% of the total patients considered in this work.  

For each 𝑃𝑎𝑡, the number of processing servers that could be served at each 

candidate node was unlimited. Therefore, the total number of patients that 

could be served at each candidate node 𝑃𝑎𝑡𝑚 was equal to the total number 

of patients considered in the network, as all the processing servers could be 

placed at the same node. 

 

2) Limited number of processing servers per candidate node (scenario 2) 

In this approach, a single processing server was assigned to serve 20% of the 

total patients (𝑃𝑎𝑡), and the number of processing servers that could be 

served at each candidate node 𝑁 was limited. Five scenarios were 

investigated, where the 𝑁 value was 1, 2, 3, 4 and 5, to investigate the 

distribution of the processing servers in the network with a limited number of 

processing servers per candidate node. Therefore, the total number of 

patients that could be served at each candidate node was 𝑃𝑎𝑡𝑚 = 𝑃𝑎𝑡 ∙ 𝑁. 
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In this work, videos were assumed to be processed in series. Therefore, 

the worst-case scenario was considered to be one in which all the videos were 

processed and analysed before the feedback was sent. To determine the time 

required to transmit the analysed data to the clinics for feedback, the 

processing servers at each candidate node assigned to serve 𝑃𝑎𝑡𝑚 were 

considered. Then, the minimum shared link 𝐿𝑚𝑖𝑛 at the edge network 

provisioned for healthcare applications where the processing server was 

located (i.e. the uplink and the downlink between the ONU and the OLT for 

FOA and CA, respectively) was determined. By considering all the patients to 

be served by the processing servers located at the same candidate node, we 

divided this minimum link capacity equally to each patient, hence obtaining a 

data rate of 𝛿𝑓 = 𝐿𝑚𝑖𝑛 𝑃𝑎𝑡𝑚⁄  for each patient. Note that the reason to limit the 

feedback data rate by the data rate available for healthcare applications in the 

network edge (i.e. GPON links) was to reduce the energy consumed by the 

base station, as explained in Section 4.2.4. As described in Chapter 4, an 

LTE-M base station with the QPSK modulation scheme was considered, 

which yielded a minimum of 336 bps per physical resource block (PRB). 

Therefore, the number of PRBs for each patient to send the feedback data 

was 𝑅𝑓 = ⌊𝛿𝑓/336 𝑏𝑖𝑡𝑠⌋, where 𝑅𝑓 was the minimum integer value to ensure 

that the link capacity that was provisioned for healthcare in the network was 

not exceeded. 

The maximum size allowed for a notification payload according to Apple 

Push Notification Services is 256 bytes (i.e. 2.048 kbits) [145]. In this chapter, 

the size of the analysed video recording, which was 2.048 kbits (𝛼), was to be 

sent to the clinics for feedback purposes and to be permanently stored in the 
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cloud storage. Therefore, the data rate to send the feedback data was 𝛿𝑏 =

𝑅𝑓 ∙ 336 𝑏𝑖𝑡𝑠, while the transmission time was 𝜏𝑏 = 𝛼/𝛿𝑏. The remaining 

transmission time to send the video recording to the processing servers 

was 𝜏𝑚𝑎𝑥 = 𝜏𝑡 − 𝜏𝑚 − 𝜏𝑏 − 𝜏𝑝, which yielded a minimum data rate of 𝛿𝑚𝑖𝑛 =

3.36 𝑀𝑏𝑖𝑡𝑠/𝜏𝑚𝑎𝑥 to transmit the video signal to the processing server. 

However, as the data traversed the LTE base station and the minimum 

allocation of resources to each user was one 𝑃𝑅𝐵, the number of PRBs that 

could be assigned to each patient to transmit his/her video recording was 𝑅𝑝 =

⌈𝛿𝑚𝑖𝑛 336 𝑏𝑝𝑠⁄ ⌉, where 𝑅𝑝 was the maximum integer value to ensure that the 

given data rate was equal to or higher than the minimum required data rate so 

that the system could work within 4 min. Hence, the data rate to send a video 

signal to the processing server was 𝛿𝑎 = 𝑅𝑝 ∙ 336 𝑏𝑝𝑠 with a maximum 

transmission time of 𝜏𝑎 = 3.36 𝑀𝑏𝑖𝑡𝑠/𝛿𝑎 per patient. 

The data rate to send the analysed data at each processing server to the 

cloud storage for permanent storage was determined by dividing the lowest 

shared uplink or node capacity provisioned by a health M2M application from 

the processing server to the cloud storage, 𝐶𝑚𝑖𝑛 by 𝑃𝑎𝑡𝑚 (i.e. 𝛿𝑐 =

𝐶𝑚𝑖𝑛/𝑃𝑎𝑡𝑚). Hence, the time required to transmit the analysed video data to 

the cloud storage was 𝜏𝑐 = 𝛼/𝛿𝑎. As discussed in Chapter 4, 0.3% of the 

maximum available shared network device and link capacities were 

considered to be dedicated to our healthcare applications. Table 5.2 shows 

the input parameter calculated for the FOA and CA, as discussed above for 

scenario 1, while Table 5.3 shows the input parameter calculated for the FOA 

for scenario 2. As shown in Table 5.2, the data rate to transmit the video signal 

to the processing server for FOA was higher than that for CA when the 
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percentage of patients that could be served at each processing server was 

80%, while the other parameters were the same. This was because the actual 

data rate to transmit the video signal to the processing servers was 

determined on the basis of the number of PRBs (i.e. each with 336 bps) while 

ensuring that the total data rate given by the total number of PRBs per patient 

was equal to or higher than the minimum data rate required for each approach 

so that the system could work within 4 min. Therefore, the same number of 

PRBs could be given to FOA and CA, although their required minimum data 

rate was different. However, to reduce the number of utilised base stations, 

the minimum number of PRBs would be allocated to each patient. Hence, 

different data rates could also be assigned for each approach. 

 

Table 5.2: Parameter inputs for FOA and CA for scenario 1 

Type of Data Approach 

Percentage of Patients per Processing 

Server  

20% 40% 60% 80% 100% 

Data rate to transmit video to 

processing server, 𝛿𝑎 (kbps) 

FOA 15.456 15.792 16.128 16.800 17.136 

CA 15.456 15.792 16.128 16.464 17.136 

Transmission time to transmit 

video data to processing 

server, 𝜏𝑎 (s) 

FOA 217.39 212.77 208.33 200 196.08 

CA 217.39 212.77 208.33 204.08 196.08 

Data rate to transmit analysed 

video to clinics, 𝛿𝑏 (kbps) 

FOA 1.344 1.344 1.344 1.344 1.344 

CA 3.024 3.024 3.024 3.024 3.024 

Transmission time to transmit 

analysed video to clinics, 𝜏𝑏 (s) 

FOA 1.524 1.524 1.524 1.524 1.524 

CA 0.68 0.68 0.68 0.68 0.68 

Data rate to transmit analysed 

video to cloud storage, 𝛿𝑐 

(kbps) 

FOA 1.674 1.674 1.674 1.674 1.674 

CA 38.571 38.571 38.571 38.571 38.571 

Transmission time to transmit 

analysed video to cloud 

storage, 𝜏𝑐 (s) 

FOA 1.223 1.223 1.223 1.223 1.223 

CA 0.053 0.053 0.053 0.053 0.053 
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Table 5.3: Parameter inputs for FOA and CA for scenario 2 

Type of Data 

Number of Processing Servers per Candidate 

Node 

1 PS 2 PSs 3 PSs 4 PSs 5 PSs 

Data rate to transmit video to processing 

server, 𝛿𝑎 (kbps)  

15.456 15.456 15.456 15.456 15.456 

Transmission time to transmit video to 

processing server, 𝜏𝑎 (s) 

217.39 217.39 217.39 217.39 217.39 

Data rate to transmit analysed video to 

clinics, 𝛿𝑏 (kbps) 

8.064 4.032 2.688 2.016 1.344 

Transmission time to transmit analysed 

video to clinics, 𝜏𝑏 (s) 

0.254 0.508 0.762 1.016 1.524 

Data rate to transmit analysed video to 

cloud storage, 𝛿𝑐 (kbps)  

8.370 4.185 2.79 2.092 1.674 

Transmission time to transmit analysed 

video to cloud storage, 𝜏𝑐 (s)  

0.245 0.489 0.734 0.979 1.223 

 

 

5.3 Mathematical model for Energy-efficient fog computing 

health monitoring application (EEFC) 

In this section, the same objective function and the MILP model used in 

Sections 3.5 and 4.6 are utilised to optimise the location of the processing 

servers at the network edge while minimising the energy consumption of the 

networking equipment and processing. Note that the total time for processing 

and analysis of the raw video data, 𝜏𝑝𝑑 in Equation (3-60), was obtained on 

the basis of the total number of patients served by the processing server at 

node 𝑑, and the time for processing and analysis given per video where 𝑚 and 

ć were equal to 0.18 s and 0, respectively, in both scenario 1 and scenario 2. 

Furthermore, note that for both scenario 1 and scenario 2, 𝜙𝑑  was a variable 

denoting that each candidate node could serve more than one processing 

server; else, 𝜙𝑑  was a parameter where 𝜙𝑑 = 1. For scenario 2, an additional 

constraint, Equation (5-2), was used to ensure that the number of processing 
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servers deployed at each candidate node did not exceed the maximum 

number of processing servers allowed at each candidate node. The additional 

parameters (also can be found in Appendix 1) and Equation (5-2) considered 

in this work are as shown below: 

 

Table 5.4: Additional parameters for EEFC model   

𝑁 Maximum number of processing servers per candidate node 

 

𝜙𝑖  ≤ 𝑁     ;   ∀𝑖 ∈ 𝐹𝑁 (5-2) 

 

5.4 Results and analysis of EEFC model and the EOFC 

heuristic 

This section presents the results and analysis of the EEFC model (i.e. FOA) 

for the fall monitoring application with a limited number of patients per 

processing server (scenario 1) and a limited number of processing servers per 

candidate node (scenario 2). As in the previous chapters, AMPL software with 

CPLEX 12.8 solver running on high-performance computing (HPC) cluster 

with a 12 core CPU and 64 GB RAM was used as the platform for solving the 

EEFC models. Furthermore, the results of the EOFC heuristic running on a 

normal PC with 3.2 GHz CPU and 16 GB RAM are provided for real-time 

implementation of the EEFC model. The same GPON architecture, as that 

shown in Figure 4.10, was used to evaluate the performance of the EEFC 

model and the EOFC heuristic in terms of the energy consumption of both the 

networking equipment and the processing. The processing server used to 
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perform the processing and the analysis of the video recording data was a 

2.4-GHz Intel Core-Duo, and the related power consumption was as shown in 

Table 5.5.  

 

Table 5.5: Power consumption of 2.4-GHz server 

Type of Device Maximum Power (W) Idle Power (W) 

Intel Core Duo (2.4 GHz) [133] 85 10 

 

 

5.4.1 Limited number of patients per processing server  

 

In this section, the evaluation performance of both the EEFC model and the 

EOFC heuristic for an increasing percentage of patients served in each 

processing server is presented. The conventional approach, the EECC model 

(i.e. CA) in Section 4.6, was used as the benchmark to evaluate the 

performance of both the EEFC model and the EOFC heuristic for the fall 

monitoring applications in terms of the energy consumption of both the 

networking equipment and the processing. Moreover, the optimisation gaps 

between the EEFC model and the EOFC heuristic were observed and are 

presented in this section.  
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Figure 5.1: Energy consumption of networking equipment and processing for 

EECC model, EEFC model, and EOFC heuristic for different percentages of 

patients per processing server 

 

 

Figure 5.2: Percentage energy saving in EEFC model compared to EECC 

model for different percentages of patients per processing server 
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Table 5.6: Optimisation gap between the EEFC model and the EOFC heuristic 

for different percentages of patients per processing server 

 Gap % 

Percentage of patients per 

processing server 
20% 40% 60% 80% 100% 

Total energy 0.98% 1.26% 1.47% 1.45% 1.74% 

Network energy 3.19% 3.16% 3.14% 3.09% 3.07% 

Processing energy 0% 0% 0% 0% 0% 

 

Figure 5.1 shows the energy consumption of the networking equipment and 

the processing for the EECC model, EEFC model, and the EOFC heuristic, 

while Figure 5.2 shows the total energy saving, energy saving of the 

networking equipment, and the energy saving of the processing of the EEFC 

model as compared to those of the EECC model. The results are shown for 

an increasing percentage of patients that could be served at each processing 

server. The results presented in Figure 5.1 revealed that the total energy 

consumption of the EEFC model was always smaller than that of the EECC 

model for all percentages of patients per processing server. For instance, the 

total energy saving of the EEFC model compared with that of the EECC model 

was 37.7% when a single processing server could serve 20% of the total 

number of patients in the network, as shown in Figure 5.2. This saving was 

attributed to the fact that the location of the processing servers in the EEFC 

model was the OLT, thereby reducing the amount of networking equipment 

utilised to transmit the raw health data traffic to the processing server. 

Compared with the EECC model, the location of the processing servers was 
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in the cloud. Therefore, considerable energy was consumed in the metro and 

core layers to transmit the raw health data traffic to the processing servers.  

Figure 5.2 also shows that when a single processing server could serve 

80% of the patients, there was 0.7% processing energy saving in the EEFC 

model as compared to the EECC model. This conservation was attributed to 

the low utilisation time of the processing server with the EEFC model to 

transmit the raw health data traffic to the processing servers as compared to 

the EECC model. Note that reducing the utilisation time of the processing 

servers could reduce the energy consumption of the processing. Meanwhile, 

for the other percentages of patients that could be served by a single 

processing server, the amount of energy required for the processing in the 

EEFC model was slightly larger than that in the EECC model, as shown in 

Figure 5.1. The high energy consumption of processing in the EEFC model 

was attributed to the high utilisation time of the processing servers to send the 

analysed health data feedback traffic and the analysed health data storage 

traffic to the clinics and the cloud storage, respectively, compared to the EECC 

model, while the same amount of time was used to transmit the raw health 

data traffic.  

Figure 5.1 also shows that the total energy consumption of the EEFC model 

and the EECC model decreased when more patients could be served by a 

single processing server. This was because allowing more patients to be 

served by a single processing server reduced the number of utilised 

processing servers, thereby reducing the energy consumption required for the 

processing. Meanwhile, Figure 5.2 shows that the total energy saving 

increased with an increase in the percentage of patients served by a single 
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processing server. This was because allowing more patients to be served by 

a single processing server reduced the available time to send the raw video 

recording to the processing servers, which in turn reduced the amount of 

energy consumed by the idle power of the networking equipment and the 

processing server.  

Figure 5.2 also shows that the total energy consumption of the EOFC 

heuristic approached the total energy consumed by the EEFC model. Table 

5.6 shows that the overall optimisation gap between the EEFC model and the 

EOFC heuristic for different percentages of patients per processing server 

was less than 2%. This gap was mainly attributed to the high energy 

consumption of the networking equipment in the EOFC heuristic, where the 

number of utilised base stations with the EOFC heuristic was higher than the 

EEFC model. Meanwhile, the energy consumption of processing in the EEFC 

model and the EOFC heuristic was equal because of the same number of 

utilised processing servers. We also evaluate the computational time needed 

to run the EOFC heuristic and the EEFC model. The running times of the 

EOFC heuristic on a normal computer with 3.2 GHz and 16 GB RAM took 15.4 

sec to finish which is lower than the running time of the MILP on a high-

performance computing (HPC) cluster with a 12 core and 64 GB RAM that 

took 314 sec to finish when 20% of patients can be served in a single 

processing server. 
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5.4.2 Limited number of processing servers per candidate node 

 

In this section, the performance evaluation of the EEFC model and EEFC 

heuristic for an increasing number of processing servers per candidate node 

is presented. Moreover, the optimisation gaps between the EEFC model and 

the EOFC heuristic were observed and are presented in this section. Note that 

when the number of processing servers per candidate node was limited to 1, 

the same GPON architecture as that described in Section 3.2, was considered 

where a single processing server was connected directly to the ONU or the 

OLT. Meanwhile, for the other number of processing servers per candidate 

node, the GPON architecture described in Section 4.6 was considered where 

the Ethernet switch was used to connect the processing servers to the ONU 

or the OLT. 

 

Figure 5.3: Energy consumption of networking equipment and processing for 

EEFC model and EOFC heuristic for different numbers of processing servers 

per candidate node when 20% of patients can be served in a single processing 

server 
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Figure 5.4: Optimal location of processing servers for EEFC model and EOFC 

heuristic for different numbers of processing servers per candidate node when 

20% of patients can be served in a single processing server 

 

Table 5.7: Number of candidate nodes utilised to place the processing servers 

 

Type of Data 

Number of Processing Servers per 

Candidate Node 

1 2 3 4 5 

Number of candidate nodes 

used to place the processing 

servers  

5 4 3 2 1 
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Table 5.8: Optimisation gaps between the EEFC model and the EOFC 

heuristic for different numbers of processing servers per candidate node 

 Gap (%) 

Number of processing 

servers per candidate node 

1 2 3 4 5 

Total energy 0.99% 0.97% 0.97% 0.97% 0.98% 

Network energy 3.28% 3.09% 3.12% 3.15% 3.19% 

Processing energy 0% 0% 0% 0% 0% 

  

Figures 5.3 and 5.4 show the total energy consumption of the networking 

equipment and the processing and the optimal location to place the 

processing servers, respectively, for the EEFC model and the EOFC heuristic. 

Meanwhile, Tables 5.7 and 5.8 show the total number of candidate nodes 

utilised to place the processing servers and the optimisation gaps between 

the EEFC model and the EOFC heuristic, respectively. The results are shown 

for an increasing number of processing servers per candidate node. The 

results presented in Figure 5.3 revealed that the total energy consumption of 

both the networking equipment and the processing increased when the 

number of processing servers per candidate node increased from 1 to 2. The 

increasing energy consumption was attributed to the utilisation of the Ethernet 

switches dedicated to the health applications to connect multiple processing 

servers to the ONU and the OLT.  

Figure 5.3 also shows that the total energy consumption of both the 

networking equipment and the processing slightly decreased when the 

number of processing servers per candidate node increased from 2 to 5. This 

was because limiting the number of processing servers per candidate node 

required the placement of the servers in multiple locations (i.e. OLT and 
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ONUs) as opposed to the optimal location at the OLT when a node could 

accommodate numerous servers. This is shown in Figure 5.4 where more 

processing servers are served by the OLT while reducing the number of 

utilised ONUs to place the processing servers when the number of processing 

servers per candidate node increases. Note that the larger the number of 

candidate nodes used to place the processing server is, the higher is the 

energy consumption because of the increasing amount of networking 

equipment (i.e. Ethernet switches) utilised.  

Further, note that the data rate available per patient to transmit the 

analysed health data feedback traffic and the analysed health data storage 

traffic to the clinics and cloud storage, respectively, increased as fewer 

patients would be served at a node. Hence, more time could be allocated to 

send the video signal to the processing server. However, as the provisioned 

data rate to send the video signal was based on the number of PRBs, the 

same data rate and transmission time were used to send the video signal to 

the processing server (i.e. irrespective of the number of processing servers 

that could be served at each candidate node), as shown in Table 5.3, which 

resulted in utilising the same number of base stations to serve all the patients. 

Note that the increasing energy due to the increasing amount of networking 

equipment used to place the processing servers (i.e. Ethernet switches) with 

a small number of processing servers that could be served at each candidate 

node dominated the reduction in energy because of the low utilisation time of 

the network devices and the processing servers used to transmit the analysed 

health data feedback traffic and the analysed health data storage traffic to the 

clinics and the cloud storage, respectively.  
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Meanwhile, the results shown in Figure 5.3 also revealed that the total 

energy consumption of both the networking equipment and the processing of 

the EOFC heuristic approached those of the EEFC model. The overall 

optimisation gaps between the EOFC heuristic and the EEFC model for all 

numbers of processing servers per candidate node was less than 1%, as 

shown in Table 5.8. This difference was only due to the large amount of 

networking equipment (i.e. base stations) utilised in the EOFC heuristic as 

compared to the EEFC model. However, the increasing energy consumption 

of the networking equipment in the EOFC heuristic as compared to the EEFC 

model for all numbers of processing servers per candidate node was less 

3.3%, as shown in Table 5.8. Also, the running times of the EOFC heuristic 

on a normal computer with 3.2 GHz and 16 GB RAM took 52 minutes to finish 

which is lower than the running time of the MILP on a high-performance 

computing (HPC) cluster with a 12 core and 64 GB RAM that took 8 hours to 

finish, when only one processing server can be served at each candidate 

node. 

 

5.5 Conclusions 

In this chapter, the impact of integrating fog computing at the network edge to 

serve a fall monitoring application that required a high data rate on the energy 

consumption of the networking equipment and the processing were 

investigated. The GPON architectures with fog computing were considered to 

monitor elderly patients who experienced falls and suffered from heart 

disease. Two scenarios related to the number of patients that could be served 
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at each processing server and the number of processing servers allowed at 

each candidate node were considered to evaluate the performance of the fog 

computing in terms of the energy consumption of both the networking 

equipment and the processing. The EEFC model and the EOFC heuristic with 

additional parameters and constraints to meet the scenarios under 

consideration were utilised to optimise the number and the location of the 

processing servers at the network edge. Meanwhile, the EECC model was 

used as a benchmark to evaluate the performance of the EEFC model for the 

first considered scenario in terms of the total energy consumption of the 

networking equipment and the processing. The results revealed that when the 

number of processing servers allowed at each candidate node was not limited, 

there was 37.7% energy saving in the EEFC model as compared to the EECC 

model when 20% of the patients were served by a single processing server. 

The results also revealed that increasing the number of patients to be served 

by a single processing server reduced the total energy consumption of both 

the EEFC model and the EECC model because of the reduction of the number 

of utilised processing servers. The total energy saving in the EEFC model as 

compared to that in the EECC model increased to 52.2% when all the patients 

could be served by a single processing server. Meanwhile, the results also 

revealed that increasing the number of processing servers at each candidate 

node reduced the total energy consumption of the networking equipment and 

the processing. This reduction in energy was attributed to that fact that 

allowing more processing servers at each candidate node reduced the total 

amount of networking equipment (i.e. Ethernet switches) utilised where more 

processing servers were served by the OLT while reducing the number of the 

utilised ONUs to place the remaining processing servers that could not be 
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served by the OLT. Furthermore, the performance of the EOFC heuristic for 

fall monitoring applications was evaluated. The results showed that the 

performance of the EOFC heuristic approached that of the EEFC model for 

the considered scenario 1 and scenario 2 with less than 2% and 1% total 

optimisation gap, respectively. 
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Chapter 6 

Resilient infrastructure for health monitoring applications 

 

 

6.1 Introduction 

There are many approaches that have been introduced to improve service 

resilience at the cloud networking infrastructure as surveyed in [146] which 

range from designing and operating the facilities, servers, networks, to their 

integration and virtualisation. In [147], the utilisation of backup servers has 

been improved by 40% by using virtualisation which allows the sharing of 

backup servers in the geo-distributed data centres. However, the shared 

protection scheme proposed in this work requires high reserved bandwidth 

and can increase the latency of the secondary path between the primary and 

backup servers. Meanwhile, the work in [148] studies the benefits of relocation 

the primary and backup servers in terms of the total cost of both servers and 

network capacity. The study reveals that with the relocation, the cost of both 

servers and links capacity is reduced when considering protection against 

single link failures. Furthermore, the benefits of relocation are more 

pronounced for sparser topologies. The consideration of fog computing to 

perform local processing at the edge network, also improves services 

resilience. This has been studied in [46], whereby based on their simulation, 

fog computing can improve network resilience by offering local processing at 

the network edge and provides better response time compared to a cloud-only 

architecture, especially for an interactive request. However, to the best of our 
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knowledge, no work has focused on reducing the energy consumption of both 

networking equipment and processing while improving the service resilience 

considering the server and network protection at the fog networking 

infrastructure level. Therefore, this chapter proposed a resilient energy 

efficient fog computing infrastructure for health monitoring applications. To 

improve the resilience of health monitoring applications, a 1+1 server 

protection scheme is considered. In this scheme, two servers, a primary and 

a secondary processing server are used to serve the health monitoring 

applications concurrently. The infrastructure is designed to be resilient against 

server failure under two scenarios related to the geographic location of 

primary and secondary servers and resilient against both server and network 

failures. Hence offering three levels of resilience. The first scenario considers 

the protection of servers without geographical constraint. In this scenario, the 

primary and secondary processing servers can be placed at the same node. 

The second scenario considers the protection of servers with geographical 

constraints, where the primary and secondary processing servers are not 

allowed to be placed at the same node. The latter offers higher levels of 

resilience compared to the former. This is because node failures at a given 

location are not improbable. The third scenario considers the protection of 

servers with geographical constraints and the protection of the network with 

disjoint links and nodes, offering a scenario with higher levels of resilience. In 

this scenario, the primary and secondary processing servers are not allowed 

to be placed at the same node, and the links and nodes used to transmit the 

data to and from primary and secondary processing servers are disjoint, as 

node and link failures in the network are not improbable. We consider the 

disjoint links and nodes only at the access layer, as the processing servers 
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can only be placed at the access layer. A Mixed Integer Linear Programming 

(MILP) model, is used to optimise the number and locations of both primary 

and secondary processing servers so that the energy consumption of the 

networking equipment and processing are minimised. Also, a heuristic is 

developed for each scenario considered, for real-time implementation. The 

performance of the proposed resilient architecture is investigated, in terms of 

energy consumption of both networking equipment and processing under 

Electrocardiogram (ECG) and fall monitoring applications separately. For 

each application, the patients will send the necessary data to the primary and 

secondary processing servers for processing, analysis and decision making. 

Also, the energy penalty of increasing the level of resilience in the network is 

analysed. 

6.2 The proposed resilient fog computing architecture for 

health monitoring applications 

The architecture for the resilient fog computing infrastructure for healthcare 

applications over the Gigabit Passive Optical Networks (GPON) network 

consists of four layers, as shown in Figure 6.1. The first layer is the Internet of 

Things (IoT) layer that comprises of IoT devices to monitor the health of the 

patients and to send data to the network. The second layer is the access layer, 

which aggregates the health data from layer 1 using Long Term Evolution for 

Machines (LTE-M) base stations. Each base station is connected to an Optical 

Network Unit (ONU), and all the ONUs are connected to a single Optical Line 

Terminal (OLT). This layer is divided into several clusters, to improve the 

scalability and availability of the IoT system in vast networks [149]. Each 
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cluster has one OLT connected to the ONUs of that cluster, and fog computing 

processing resources that can process and analyse health data, are available 

only at the ONUs and OLTs. Although the fog computing processing servers 

belong to a specific cluster, they can process the health data from any other 

clusters.  

Placing the processing servers (PSs) at the ONU can reduce the energy 

consumption of networking equipment as such processing units are closer to 

the patients than cloud processing, but this can increase the required number 

of processing servers. Meanwhile, utilising the processing servers at the 

OLTs, reduces the required amount of processing servers as the OLT is a 

shared point between the base stations in the cluster, but this choice will 

increase the energy consumption of networking equipment [150]. 

The third layer is the metro layer, which aggregates and forwards data 

between the processing servers in the access network, while the fourth layer 

is the core layer, that is integrated with the central cloud and is used to store 

the analysed health data permanently. 

 

Figure 6.1: The resilient fog computing infrastructure for health monitoring 

applications 
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6.3 Mathematical model for energy efficiency and resilient 

infrastructure for fog computing considering server 

protection 

In this section, the mathematical model for the two resilience scenarios related 

to the geographic location is provided. The MILP model with the objective 

function, to minimise the total energy consumption of both networking 

equipment and processing of the two resilience scenarios is provided. 

 

6.3.1 Protection for servers without geographical constraints 

 

To model the energy consumption minimised approach considering server 

protection without geographical constraints, the same sets, parameters, 

variables and objective function are utilised as in Section 4.6 and Section 5.3. 

We furthermore introduce additional variables as in Table 6.1 (also can be 

found in Appendix 1). Note that, as each candidate node can serve more than 

one processing server, hence 𝜙𝑑  is a variable.  

 

Table 6.1: Additional variables used in MILP 

Variables  

⍵𝑎𝑠𝑑 Number of patients from clinic 𝑠 served by primary processing 

servers located at candidate node 𝑑, 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁  

⍵𝑏𝑠𝑑 Number of patients from clinic 𝑠 served by secondary processing 

servers located at candidate node 𝑑, 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁 

𝑌𝑎𝑑  𝑌𝑎𝑑 = 1, if one or more primary processing servers are located at 

candidate node 𝑑, otherwise 𝑌𝑎𝑑 = 0, 𝑑 ∈ 𝐹𝑁  
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𝑌𝑏𝑑 𝑌𝑏𝑑 = 1, if one or more secondary processing servers are placed 

at candidate node 𝑑, otherwise 𝑌𝑏𝑑 = 0, 𝑑 ∈ 𝐹𝑁  

𝑧𝑑 𝑧𝑑 is a dummy variable that takes a value of  

𝑌𝑎𝑑⊕𝑌𝑏𝑑, where ⊕ is an XOR operation, 𝑑 ∈ 𝐹𝑁 

𝜙𝑎𝑑 Number of primary processing servers placed at candidate node 

𝑑, 𝑑 ∈ 𝐹𝑁  

𝜙𝑏𝑑 Number of secondary processing servers placed at candidate 

node 𝑑, 𝑑 ∈ 𝐹𝑁  

𝜏𝑝𝑎𝑑 Processing and analysis time of primary processing server 

(seconds) at candidate node 𝑑, 𝑑 ∈ 𝐹𝑁  

𝜏𝑝𝑏𝑑 Processing and analysis time of secondary processing server 

(seconds) at candidate node 𝑑, 𝑑 ∈ 𝐹𝑁  

 

The model starts by defining the energy consumption of network (i.e. 

access, metro and core) and processing servers:  

 

a) Energy consumption of access network, 𝐸𝐴𝑁: 

 

The energy consumption of the access network, 𝐸𝐴𝑁 is composed of the 

Long Term Evaluation (LTE) base stations’, ONUs’, and OLTs’ energy 

consumption. The energy consumption of the LTE base stations, ONUs and 

OLTs are as given in Equation (3-4) - (3-14). 

 

b) Energy consumption of metro network, 𝐸𝑀𝑁  

 

The energy consumption of the metro network, 𝐸𝑀𝑁 is composed of energy 

consumption of centre aggregation switches and aggregation routers. Note 
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that the aggregation routers are only used to relay the analysed health data 

storage traffic as the candidate locations of the processing server are at the 

access layer as explained in Section 3.5. Hence, the raw health data traffic 

and analysed health data feedback traffic does not traverse the aggregation 

routers. Meanwhile, the centre aggregation switches are used to relay the raw 

health data traffic and analysed health data feedback traffic, between different 

clusters besides relaying the analysed health data storage traffic. Therefore, 

the energy consumption of metro network is given as: 

 

𝐸𝑀𝑁 = (𝐸𝐶𝐴𝑆𝑃 + 𝐸𝐶𝐴𝑆𝐹 + 𝐸𝐶𝐴𝑆𝑆 + 𝐸𝐴𝑅𝑆) 𝜂 (6-1) 

 

where the energy consumption of centre aggregation switches are needed to 

relay the raw health data, 𝐸𝐶𝐴𝑆𝑃, analysed health data for feedback 

traffic, 𝐸𝐶𝐴𝑆𝐹 and analysed health data for storage traffic, 𝐸𝐶𝐴𝑆𝑆 are as given 

in Equation (3-63), Equation (3-64) and Equation (3-16), respectively. 

Meanwhile, the calculation of the energy consumption of aggregation routers 

needed to relay the analysed health data storage traffic, 𝐸𝐴𝑅𝑆 are as given 

in Equation (3-17).  

 

c) Energy consumption of core network, 𝐸𝐶𝑁 

 

The energy consumption of core network, 𝐸𝐶𝑁 is composed of energy of the 

core routers. The energy consumption of core network and energy 
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consumption of core routers are as given in Equation (3-18) and Equation (3-

19), respectively. 

 

d)  Energy consumption of cloud, 𝐸𝐶𝐿 

 

The energy consumption of cloud, 𝐸𝐶𝐿 is composed of energy consumption 

of cloud routers, cloud switches, content servers and cloud storage. As 

explained in Section 3.5, the cloud storage is used to perform the storage 

task while other devices are only used to relay the analysed health data 

storage traffic. The energy consumption of the cloud is the same as given in 

Equation (3-20) while the energy of cloud routers, cloud switches and content 

servers are as given in Equation (3-21) - (3.23), respectively. Note that, for 

cloud storage, only one analysed health data storage traffic from both primary 

and secondary processing servers are stored. Therefore, the total analysed 

health data storage traffic 𝑆𝑖 is divided by 2. The energy consumption of cloud 

storages is given in Equation (6-2): 

 

𝐸𝐶𝑆𝑇𝑆 = 2 ∑ (𝐼𝐶𝑆𝑇 𝑥 𝜁𝑐𝑖 +
𝑆𝑖
2
 𝜏𝑐 

𝑃𝐶𝑆𝑇 − 𝐼𝐶𝑆𝑇

𝐶𝐶𝑆𝑇
)  𝜏𝑐

𝑖∈𝐶𝑆𝑇

 
(6-2) 

 

The energy consumption of cloud storage is calculated, based on the size of 

analysed health data stored in the cloud storage and the time that the device 

is utilised.  
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e) Energy consumption of fog node, 𝐸𝐹𝑁: 

 

The energy consumed by the fog, 𝐸𝐹𝑁 reflects the energy consumed by 

primary and secondary processing servers and the energy consumed by the 

Ethernet switches. The energy consumption of the fog node is given as in 

Equation (4-2) where:  

 

𝐸𝑃𝑆 =  ∑ (𝐼𝑃𝑆 (𝜙𝑎𝑑 +𝜙𝑏𝑑) (𝜏𝑎 + 𝜏𝑏 + 𝜏𝑐) + 𝑃𝑃𝑆 (𝜏𝑝𝑎𝑑 + 𝜏𝑝𝑏𝑑 )

𝑑∈𝐹𝑁

 (6-3) 

 

while the energy consumption of the Ethernet switches, 𝐸𝑇𝐸𝑆, required to 

relay raw health data traffic, analysed health data feedback traffic and 

analysed health data storage traffic are as given in Equations (4-4) – (4-7). 

The energy consumption of processing servers is determined by considering 

the idle energy consumption of the processing servers (i.e. primary and 

secondary processing servers) and the energy consumed to perform the 

processing as shown in Equation (6-3). The idle energy consumption of the 

primary and secondary processing servers is calculated by considering the 

time to receive raw health data traffic from clinic, 𝜏𝑎, the time to transmit the 

analysed health data feedback traffic to clinics, 𝜏𝑏, as well as the time to 

transmit the analysed health data storage traffic to cloud storage, 𝜏𝑐. Also, as 

explained in Section 3.5, the processing servers always work at its full 

utilisation, hence maximum power is consumed to perform the processing and 

analysis of the health data. Therefore, the energy consumption due to 

processing and analysis of the primary and secondary processing servers, is 
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determined by considering the time to perform the processing and analysis, 

𝜏𝑝𝑎𝑑 and 𝜏𝑝𝑏𝑑, respectively. 

 

The following are the modified and additional constraints used in addition to 

the constraints in Chapter 3 and Chapter 4, to model the energy consumption 

minimised approach, considering server protection without geographical 

constraints: 

 

1) Association of patients from clinics to the processing server. 

 

⍵𝑎𝑠𝑑 ≤ 𝑃𝑡𝑠 𝑌𝑎𝑑     ;   ∀𝑠 ∈ 𝐶𝐿, ∀𝑑 ∈ 𝐹𝑁 (6-4) 

⍵𝑏𝑠𝑑 ≤ 𝑃𝑡𝑠 𝑌𝑏𝑑     ;   ∀𝑠 ∈ 𝐶𝐿, ∀𝑑 ∈ 𝐹𝑁 (6-5) 

 

Constraint (6-4) and constraint (6-5) replaced constraint (3-28) to allocated 

patients from clinic 𝑠, to be served by the primary and secondary processing 

servers at fog located at node 𝑑, respectively. Note that, if a patient is allocated 

to a candidate location, this location should have fog. 

 

∑ ⍵𝑎𝑠𝑑
𝑑∈𝐹𝑁

= 𝑃𝑡𝑠     ;   ∀𝑠 ∈ 𝐶𝐿 (6-6) 

∑ ⍵𝑏𝑠𝑑
𝑑∈𝐹𝑁

= 𝑃𝑡𝑠     ;   ∀𝑠 ∈ 𝐶𝐿 (6-7) 
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Constraint (6-6) and constraint (6-7) replaced constraint (3-29), to ensure that 

all patients at clinic 𝑠, are assigned to the primary and secondary processing 

servers located at any node 𝑑, respectively. 

 

2) Traffic from clinics to processing servers. 

 

𝑃𝑠𝑑 = (⍵𝑎𝑠𝑑 +⍵𝑏𝑠𝑑) 𝛿𝑎     ;   𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁 (6-8) 

 

Constraint (6-8) replaced constraint (3-30), to calculate the raw health data 

traffic from clinic 𝑠, to both primary and secondary processing servers located 

at node 𝑑. This is based on the association of patients from the clinic to the 

primary processing server, ⍵𝑎𝑠𝑑, the association of patients from clinic to 

secondary processing server, ⍵𝑏𝑠𝑑  as well as the data rate provisioned for 

each patient, 𝛿𝑎, to perform the transmission. 

 

3) Traffic from processing server to clinics. 

 

𝐹𝑠𝑑 = (⍵𝑎𝑑𝑠 +⍵𝑏𝑑𝑠) 𝛿𝑏     ;   ∀𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿 (6-9) 

 

Constraint (6-9) replaced Constraint (3-31), to calculate the analysed health 

data feedback traffic from primary and secondary processing servers, located 

at node 𝑠, to clinic 𝑑. This is based on the total number of patients in the clinic, 

served by the primary processing servers, ⍵𝑎𝑑𝑠, the total number of patients 
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in the clinic served by the secondary processing servers, ⍵𝑏𝑑𝑠, and the data 

rate provisioned for each patient, 𝛿𝑏, to perform the transmission.  

 

4) Traffic from processing server to cloud storage. 

 

𝑆𝑠𝑑 = ∑(⍵𝑎𝑖𝑠 +⍵𝑏𝑖𝑠) 𝛿𝑐

𝑖∈𝐶𝐿

 𝛿𝑠𝑑     ;   ∀𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇 (6-10) 

 

Constraint (6-10) replaced constraint (3-32), to calculate the analysed health 

data storage traffic from primary and secondary processing servers located at 

node 𝑠, to cloud storage  𝑑. This is based on the total number of patients in 

the clinic served by primary processing servers, ⍵𝑎𝑖𝑠, the total number of 

patients in the clinic served by secondary processing servers, ⍵𝑏𝑖𝑠, and the 

data rate provisioned for each patient, 𝛿𝑐, to perform the transmission. 

 

5) Nodes used to connect the servers. 

 

𝑌𝑎𝑑 + 𝑌𝑏𝑑 = 2 𝑌𝑑 − 𝑧𝑑      ;  ∀𝑑 ∈ 𝐹𝑁 (6-11) 

𝜙𝑎𝑑 + 𝜙𝑏𝑑  ≤ 𝑁     ;   ∀d ∈ 𝐹𝑁 (6-12) 

 

Constraint (6-11), is to determine the nodes that are used to place the 

processing servers where 𝑌𝑑 = 1 if at least any of 𝑌𝑎𝑑 and 𝑌𝑏𝑑 are equal to 1 

(𝑌𝑎𝑑 + 𝑌𝑏𝑑), otherwise zero. This is achieved  by, introducing a binary variable 
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𝑧𝑑 which is only equal to 1 if 𝑌𝑎𝑑 and 𝑌𝑏𝑑 are exclusively equal to 1 (𝑌𝑎𝑑 ⊕

𝑌𝑏𝑑), otherwise it is zero. Constraint (6-12) replaced constraint (5-2), to ensure 

that the number of processing servers at node 𝑑 does not exceed the 

maximum number of processing servers allowed at each candidate node 𝑁. 

6)  Maximum number of patients served at each processing server. 

 

∑ ⍵a𝑠𝑑
𝑠∈𝐶𝐿

≤ 𝛺𝑚𝑎𝑥 𝜙𝑎𝑑     ;   ∀𝑑 ∈ 𝐹𝑁 (6-13) 

∑ ⍵b𝑠𝑑
𝑠∈𝐶𝐿

≤ 𝛺𝑚𝑎𝑥 𝜙𝑏𝑑      ;   ∀𝑑 ∈ 𝐹𝑁 (6-14) 

 

Constraint (6-13) and constraint (6-14) replaced constraint (3-59), to ensure 

that the number of patients served by each primary and secondary processing 

server at node 𝑑, respectively does not exceed its maximum number of 

users, 𝛺𝑚𝑎𝑥. Note that, the model also allows more than one primary 

processing server, 𝜙𝑎𝑑 and secondary processing servers, 𝜙𝑏𝑑, to be 

deployed at the same fog located at node 𝑑 if the number of users is higher 

than 𝛺𝑚𝑎𝑥. 

 

7) Processing and analysis time at each processing server. 

 

𝜏𝑝𝑎𝑑 = ∑ 𝑚 ⍵a𝑠𝑑
𝑠∈𝐶𝐿

+ ć 𝜙𝑎𝑑     ; ∀𝑑 ∈ 𝐹𝑁 (6-15) 
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𝜏𝑝𝑏𝑑 = ∑ 𝑚 ⍵b𝑠𝑑
𝑠∈𝐶𝐿

+ ć 𝜙𝑏𝑑     ; ∀𝑑 ∈ 𝐹𝑁 (6-16) 

 

Constraint (6-15) and constraint (6-16) replaced constraint (3-60), to calculate 

the processing and analysis time of the primary processing server and 

secondary processing server at node 𝑑, respectively. This is based on the 

total number of patients served by the processing server (i.e.  ⍵a𝑠𝑑 for primary 

processing server and  ⍵b𝑠𝑑 for secondary processing server) and number of 

processing servers used (i.e. 𝜙𝑎𝑑   for primary processing server and 𝜙𝑏𝑑   for 

secondary processing server), where 𝑚 and ć are constant value. 

 

8) Storage capacity constraint at each processing server. 

 

∑ ⍵a𝑠𝑑  𝛼

𝑠∈𝐶𝐿

≤ 𝛬𝑚𝑎𝑥 𝜙𝑎𝑑     ;   ∀𝑑 ∈ 𝐹𝑁 (6-17) 

∑ ⍵b𝑠𝑑  𝛼

𝑠∈𝐶𝐿

≤ 𝛬𝑚𝑎𝑥 𝜙𝑏𝑑      ;   ∀𝑑 ∈ 𝐹𝑁 (6-18) 

 

Constraint (6-17) and constraint (6-18) replaced constraint (3-61), to ensure 

that the storage capacity of a primary processing server and secondary 

processing server at node 𝑑, do not exceed its maximum capacity, 𝛬𝑚𝑎𝑥, 

respectively. Note, that the model also allows more than one primary 

processing servers, 𝜙𝑎𝑑 and secondary processing servers, 𝜙𝑏𝑑 to be 
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deployed at the same fog processing unit located at node 𝑑, if the size of the 

data is higher than 𝛬𝑚𝑎𝑥. 

 

6.3.2 Protection for servers with geographical constraints 

 

This section considered server protection with geographical constraints, where 

the primary and secondary processing servers are not allowed to be placed at 

the same node. Typically, most service providers place their primary and 

secondary services in distant locations, to increase resilience. For example, 

BackupVault, which is a leading provider of online cloud backup for businesses 

in United Kingdom, locate their primary data centre in Slough, UK; while the 

second data centre for redundancy is located in Reading, UK [151]. Therefore, 

this work considered that the nodes serving the primary processing servers are 

not allowed to serve any of the secondary processing servers. The same 

parameters, variables, constraints and objective functions in Section 6.3.1 are 

utilised. However, to ensure that the locations of both primary and secondary 

processing servers are different, constraint (6-11) is replaced with Equation (6-

19), as shown below: 

 

𝑌𝑎𝑑 + 𝑌𝑏𝑑 = 𝑌𝑑  ;  ∀𝑑 ∈ 𝐹𝑁 (6-19) 

 

where constraint (6-19), ensures that either primary or secondary processing 

servers can be placed at one location 𝑑 as the maximum value for 𝑌𝑑 is 1. 
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6.4 Realistic parameter consideration for ECG monitoring 

applications 

This section elaborates in detail on the methodologies for determining the 

considered model input parameters, such as network layout under GPON 

network, the number of monitored patients in West Leeds, UK, and the 

calculation of data rate for traffic transmission for ECG monitoring 

applications. 

  

6.4.1 Network layout under GPON network and total number of 

monitored heart patients in West Leeds, UK 

 

In this section, the number and location of both primary and secondary 

processing servers are optimised in the fog architecture, as described in 

Section 6.2. Also, the same location of clinics and LTE base stations and the 

same number of patients in the clinics as in Chapter 4, are considered. 

However, the complexity of the MILP model grows exponentially with the 

number of nodes in the network. Therefore, a scenario with 16 clinics that 

have a total of 300 patients and 13 LTE base stations, is considered using the 

locations at West Leeds as a case study. The 13 LTE base stations are 

selected, based on the nearest distance between the available base stations 

(BSs) and the clinics. Two clusters are considered as a case study and the 

clinics are connected to up to two of the nearest BSs in each cluster, as shown 

in Figure 6.1. For example, clinic 13, shown in red, is connected to two base 

stations in cluster 1, and also a single base station in cluster 2. Figure 6.1 
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shows the resilient fog computing architecture under the GPON network, while 

Table 6.2 presents the considered total number of patients at each clinic.  

 

Table 6.2: Number of monitored patients in clinics 

Clinic Total Number of Patients 

Craven Road Medical Practice 20 

Leeds Student Practice 68 

Hyde Park Surgery 13 

Burton Croft Surgery 15 

Laurel Bank Surgery 16 

Kirkstall Lane Medical Centre 11 

Burley Park Medical Centre 23 

Thornton Medical Centre 18 

Beech Tree Medical Centre 16 

Hawthorn Surgery 4 

Priory View Medical Centre 20 

Abbey Grange Medical Centre 9 

Vesper Road Surgery 16 

The Highfield Medical Centre 25 

Dr G Lees & Partners 10 

Whitehall Surgery 16 

 

6.4.2 Data rate calculation for traffic transmission in the network 

 

As in Chapter 4, in this section, the same 30 seconds ECG recording signal 

(𝛱) with a size of 252.8 kbits, is utilised. Patients send their ECG signals to 

the network to be processed and analysed at both primary and secondary 

processing servers of the fog layer. The relationship between the processing 
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and analysis time of the signal and the number of patients to perform the 

processing at both processing servers utilising the Pan-Tompkins algorithm, 

are retrieved from the experiment conducted in Section 4.2.3. Based on the 

results, the duration of processing and analysis at a given number of patients 

(𝑃𝑎𝑡) is: 𝜏𝑝 = 0.002 𝑃𝑎𝑡 + 4.6857.  

In this work, the number of patients that can be served in a single 

processing server 𝑃𝑎𝑡 is limited, in order to investigate the distribution of 

primary and secondary processing servers in the network, with increasing 

demands. Therefore, the maximum 𝑃𝑎𝑡 that can be served at a single server 

is considered to be 20% of the total number of patients from the 16 clinics, 

which is the lowest demand evaluated in the network. Based on our 

experimental results, the size of the processed and analysed data 𝛼, was 

found to be 256 bits. This result will be sent from the primary and secondary 

processing servers to the cloud for permanent storage, but only one copy will 

be stored. The same principle applies to the data that is sent to the clinic from 

both servers. 

The energy consumption of networking equipment and processing is 

calculated, based on the timing constraints set by the American Heart 

Association (AHA) [25]. As in Chapter 4, 4 minutes (i.e. 𝜏𝑡 = 4 minutes) is 

considered as the maximum duration to save heart patients. The 4 minutes 

include the time to record the 30-second ECG signal, 𝜏𝑚, the time to transmit  

the raw ECG signals to both servers for processing task, 𝜏𝑚𝑎𝑥, the time for 

processing and analysis, 𝜏𝑝, and the time to transmit the analysed ECG data 

for feedback, 𝜏𝑏. To determine the available time to transmit the raw ECG 

signal to the processing servers, 𝜏𝑚𝑎𝑥, the time of both processing and 
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analysis, 𝜏𝑝 is calculated based on the maximum number of patients that can 

be served by a single processing server (𝑃𝑎𝑡) and the time to send the 

analysed ECG data to the clinics for feedback, 𝜏𝑏 while considering the 30 

seconds of ECG recording, 𝜏𝑚 from the patient for 𝜏𝑡 equal 4 minutes.  

The feedback time is calculated as follows; First determine the maximum 

number of patients (𝑀𝑎𝑥𝑃) that can be served by the processing servers at 

each candidate node. Due to the limited spaces at fog nodes and the 

complexity of the model to have more base stations, the maximum number of 

processing servers, 𝑁 that can be connected at each candidate node is limited 

to 3, 4, 5, 6, 7 and 8 while each processing server can serve a maximum of 

𝑃𝑎𝑡. Therefore, 𝑀𝑎𝑥𝑃 = 𝑁 𝑃𝑎𝑡. Then, the minimum shared capacity between 

the candidate locations of processing servers at the access layer to the Long 

Term Evaluation (LTE) base station (i.e. uplink between ONU and OLT) is 

determined. As the link capacity will be shared by the maximum number of 

patients, the processing servers can serve at a node, the link capacity is 

divided by 𝑀𝑎𝑥𝑃, to obtain the data rate for each patient to transmit the 

analysed data to the clinics (𝛿𝑓). The reason for limiting the feedback data 

rate by the data rate available for healthcare applications in GPON links, is as 

explained in Section 4.2.4. However, in LTE BS, each user is given a minimum 

of one physical resource block (PRB). Therefore, the minimum data rate that 

can be given to each patient is 336 bps per single PRB (𝑟) when using 

Quadrature Phase Shift Keying (QPSK) modulation format as calculated in 

Section 4.2.4. Due to this, a maximum number of PRBs (𝑅𝐸𝐹) are allocated 

for each patient while ensuring that the given data rate does not exceed  𝛿𝑓. 

Hence, the data rate for feedback is 𝛿𝑏 = 𝑟 𝑅𝐸𝐹, while the feedback time is 
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𝜏𝑏 = 𝛼/𝛿𝑏. Also, a maximum number of PRBs are allocated to each patient to 

send their ECG signal to the processing servers, while ensuring that the given 

data rate, 𝛿𝑎 is higher than 𝛱/𝜏𝑚𝑎𝑥 to ensure the system meets the 4 minutes 

deadline. Due to this, the transmission time to send the ECG signal to the 

processing servers for processing and analysis is 𝜏𝑎 = 𝛱/𝛿𝑎. Note that, the 

link capacities are shared by multiple applications. Therefore, as explained in 

Section 3.2.1, 0.3% of the maximum available link capacity is considered for 

healthcare applications. The data rate for storage task (𝛿𝑐), is calculated by 

dividing the minimum shared uplink capacities between the candidate location 

of processing servers and the cloud storage (i.e. the link between the ONU 

and OLT) by 𝑀𝑎𝑥𝑃. Hence, the transmission time to send the analysed ECG 

data to the cloud for permanent storage is 𝜏𝑐 = 𝛼/𝛿𝑐. 

There are five approaches considered with 20%, 40%, 60%, 80% and 

100% of the total number of patients in the 16 clinics, to investigate the impact 

of increasing the number of patients on the energy consumption of networking 

equipment and processing. This was done while considering the two server 

protection scenarios and the different number of allowed processing servers 

at each candidate node. Table 6.3 shows the data rate and transmission time 

to transmit the raw ECG data to the processing server, to transmit the 

analysed ECG data to the clinics and cloud for feedback and permanent 

storage, respectively. This is shown for the different number of processing 

servers per candidate node, 𝑁. Note that, the data rate and the time to transmit 

the raw ECG data to the processing servers for each number of processing 

servers per candidate node are the same for all approaches. This is because 

the data rate given to each patient is based on the number of allocated PRBs 
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while ensuring the total data rate provided by the total number of PRBs per 

patient, is equal to or higher than the minimum data rate required so that the 

system can work within 4-minutes. Therefore, the same amount of PRBs are 

given to each patient under the different number of processing servers per 

candidate node, although their required minimum data rate is different. 

Table 6.3: Data rate and related time for a different number of processing 

servers per candidate node 𝑁, for ECG monitoring applications 

Type of Data 3 PSs 4 PSs 5 PSs 6 PSs 7 PSs 8 PSs 

Data rate to transmit ECG 

signal to processing server, 𝛿𝑎 

(kbps)  

1.344 1.344 1.344 1.344 1.344 1.344 

Transmission time to transmit 

ECG data to processing server, 

𝜏𝑎 (s) 

188.1 188.1 188.1 188.1 188.1 188.1 

Data rate to transmit analysed 

ECG data to clinics, 𝛿𝑏 (kbps) 

1.008 0.672 0.672 0.336 0.336 0.336 

Transmission time to transmit 

analysed ECG data to clinics, 

𝜏𝑏 (s) 

0.254 0.381 0.381 0.762 0.762 0.762 

Data rate to transmit analysed 

ECG data to cloud storage, 𝛿𝑐 

(kbps)  

1.28 0.96 0.768 0.64 0.548 0.48 

Transmission time to transmit 

analysed ECG data to cloud 

storage, 𝜏𝑐 (s)  

0.2 0.267 0.333 0.4 0.467 0.533 
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6.5 Results and analysis of the MILP model for ECG 

monitoring applications considering server protection 

In this section, the impact of increasing the level of resilience for server 

protection to the energy consumption of networking equipment and 

processing, is investigated. The evaluation is divided into two steps. For each 

step, an analysis is carried out to determine (i) the locations of the processing 

servers in each scenario, (ii) the energy consumption of the networking 

equipment, (iii) the energy penalty of networking equipment due to the 

increasing level of resilience. The first step is comparing the non-resilient 

scenario with a resilient scenario, without geographical constraint. Secondly, 

it is comparing the resilient scenario without geographical constraint with the 

more resilient scenario considering geographical constraints. The same 

power profile of equipment and the same networking devices used in Chapter 

4 in Table 4.3 and Table 4.8, are considered to evaluate the energy 

consumption of the networking equipment and processing. Also, as in the 

previous chapters, the networking devices are shared by multiple applications. 

Thus, only 0.3% of the idle power is considered, while the processing server 

and Ethernet switch are dedicated to the healthcare applications. Note that, 

as in the previous chapters, the AMPL software with CPLEX 12.8 solver 

running on high-performance computing (HPC) cluster with a 12 core CPU 

and 64 GB RAM was used as the platform for solving the MILP models. 
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6.5.1 Performance analysis of server protection resilient scenario 

without geographical constraints 

 

In this section, the performance of the non-resilient scenario is used as a 

benchmark to evaluate the resilient scenario without geographical constraints 

in terms of the energy consumption of networking equipment and processing 

for ECG monitoring applications. 

 

                            (a)                                                            (b) 

Figure 6.2: Optimal location of processing servers for (a) non-resilient 

scenario and (b) resilient scenario without geographical constraints for ECG 

monitoring applications 
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The results in Figure 6.2, show that the number of processing servers for 

the resilient scenario are double that of the non-resilient scenario. This is 

because, the non-resilient scenario only has primary processing servers while 

the resilient scenario consists of a secondary processing server for each 

primary processing server, for server protection purposes. The results show 

that increasing the percentage of patients, has resulted in increasing the 

number of processing servers. For the non-resilient scenario, at demand level 

of 20%, 40%, 60%, 80% and 100%, the number of processing servers 

required to serve all patients are one, two, three, four and five, respectively. 

Meanwhile, for the resilient scenario, at demand levels of 20%, 40%, 60%, 

80% and 100%, the total number of required processing servers (i.e. primary 

and secondary processing servers) are two, four, six, eight and ten, 

respectively. 

The results, also show that the OLT is always chosen to place the 

processing servers as it is the nearest shared point to the patients (i.e. the 

OLT is connected to all base stations of the same cluster) which reduces the 

number of required processing servers and the number of hops to transmits 

the ECG signal to the processing servers.  

The processing servers are placed at only one cluster when the percentage 

of patients considered in the network is equal to or less than 60% as shown 

in Figure 6.2-(a) and Figure 6.2-(b). This is because, all patients can be served 

by the base stations in one cluster only. Therefore, for the resilient scenario 

without geographical constraints, to reduce the number of utilised networking 

equipment in the network, the ONU is selected to place the remaining 

processing servers, which cannot be allocated at the OLT at the same cluster, 
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while for the non-resilient scenario the processing servers are only placed at 

the OLT.  

However, increasing the percentage of patients to 80% and 100% has 

resulted in utilising the BSs, ONUs and OLTs in both clusters. For the non-

resilient scenario, the primary processing servers are placed at the OLT and 

ONU of different cluster when the demand increases to 80% and 100%. This 

is because, the OLT does not have enough capacity to support all of the traffic. 

The OLT of cluster 2 is occupied first, and the remaining demands are sent to 

the ONU of the cluster 1, to reduce the total amount of data traversing the 

network as ONUs are directly connected to the patients. For the resilient 

scenario without geographical constraints, at a demand level of 80%, and 

three PSs available at each candidate node, the OLT and ONUs of cluster 1 

are occupied first, and the remaining demands are sent to the ONU of cluster 

2. This is due to the same reason, as explained for the non-resilient scenario. 

However, when the demand level increases to 100%, the OLTs of both 

clusters and only the ONU of one cluster are used. The model did not use 

multiple ONUs to place the processing server to reduce the number of utilised 

Ethernet switches. Also, when five processing servers are allowed at each 

candidate node, the processing servers are placing at both OLTs and one 

ONU. This is mainly to reduce the number of utilised base stations, as the 

base station consumed more energy than the Ethernet switch. 

Figure 6.2 also shows that increasing the number of processing servers 

that are available at each candidate node can also reduce the number of 

candidate nodes to place the processing servers for the resilient scenario 

without geographical constraint. For instance, the number of candidate nodes 
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to place the processing servers reduces when the number of processing 

servers per node increases to four, at demand levels of 40%, 80% and 100% 

and six for the considered demands of 60% and 100%. 

 

 

Figure 6.3: Energy consumption of networking equipment for non-resilient 

scenario and resilient scenario, without geographical constraints for ECG 

monitoring applications 

 

The results in Figure 6.3, show that energy consumption of networking 

equipment increases as the demand increases for both scenarios. However, 

the increasing rate of energy consumption of networking equipment due to the 

increasing demand for the resilient scenario, is higher than the non-resilient 

scenario. The results also show that the energy consumption of networking 

equipment of the resilient scenario without geographical constraints, is always 

higher than the non-resilient scenario for all levels of demand and number of 

processing servers per node. This is because, the total traffic traversing the 

networking equipment for the resilient scenario is double compared to the non-

resilient scenario, hence increasing the total number of utilised networking 
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equipment. This increase in energy consumption is one of the key penalties 

for having resilience.  

Figure 6.3 also shows that at a demand level equal to or more than 40%, 

the energy consumption of networking equipment of the resilient scenario 

reduced significantly when the number of processing servers increased from 

three to eight. This is because, increasing the number of processing servers 

per candidate node has resulted in placing the processing servers at their 

optimal locations besides reducing the number of utilised nodes.  

 

 

Figure 6.4: Percentage of energy penalty of networking equipment for resilient 

scenario, without geographical constraints compared to non-resilient scenario 

for ECG monitoring applications. 
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Figure 6.5: Number of candidate nodes used to place processing servers for 

non-resilient scenario and the resilient scenario, without geographical 

constraints for ECG monitoring applications. 

 

(a) 

 

(b) 

Figure 6.6: Number of base stations used to send (a) the raw ECG signal for 

processing and (b) the analysed ECG signal for feedback, for non-resilient 

scenario and resilient scenario without geographical constraints under 

different percentages of patients and number of processing servers per 

candidate node, for ECG monitoring applications 
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The results in Figure 6.4, show that the energy penalty (defined as the 

difference in energy consumption between the resilient and the non-resilient 

cases) increases when the level of demand increases from 20% to 80%. This 

is because, at demand levels of 20% to 80%, the number of utilised base 

stations to serve all patients to send their ECG signal to the processing servers 

for the non-resilient scenario are the same while for the resilient scenario, the 

number of base stations increases with the increasing demand, as shown in 

Figure 6.6-(a). The increasing number of base stations under the resilient 

scenario is because, each patient will send two ECG signals to both primary 

and secondary processing servers, hence requiring a high number of base 

stations to serve all patients and this number increases as the demand 

increases.  

For the non-resilient scenario, each patient only sends one ECG signal to 

the primary processing servers, and the same number of base stations are 

used, as they can accommodate the increasing demand by up to 80%. 

However, at a demand level of 100%, the energy penalty is lower than 80%. 

This is because, at a demand level of 100%, the number of base stations used 

for the non-resilient scenario increases, hence increasing the energy 

consumption of networking equipment of the non-resilient scenario. Figure 

6.4, also shows that increasing the number of processing servers at each 

candidate node can significantly reduce the energy penalty when the demand 

is equal to or is higher than 40%. This is due to the reduction in the number of 

candidate nodes used to place the processing servers for the resilient 

scenario as shown in Figure 6.5, where more processing servers can be 

placed at the same node when the number of processing servers allowed at 

each candidate node increases. 
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Figure 6.7: Energy consumption of processing for non-resilient scenario and 

resilient scenario, without geographical constraints for ECG monitoring 

applications 

 

The results in Figure 6.7, show that the energy consumption of processing 

for the resilient scenario is higher than the non-resilient scenario. This is 

because the number of processing servers for the resilient scenario, is double 

that of the non-resilient scenario. The results also show that the energy 

consumption of processing increases, as the demands increase for both 

scenarios. This is because increasing the number of patients increases the 

number of processing servers proportionally. 

However, the same total number of servers is used in both scenarios under 

constraints on the number of processing servers per candidate node, as the 

patients were optimally consolidated in the servers. Also, for both scenarios, 

there is a slight increase in energy consumption, when more processing 

servers are allowed per candidate node. The increase is due to the increasing 

utilisation time of the processing servers to send the feedback and storage 

traffic, with the increasing number of processing servers per candidate node, 

as shown in Table 6.3. 
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6.5.2 Performance analysis of resilient scenario considering 

geographical constraints 

 

In this section, the performance of the resilient scenario without geographical 

constraints is used as a benchmark to evaluate the increasing level of 

resilience gained by considering the geographical constraints, in terms of the 

energy consumption of networking equipment and processing. 

 

 

Figure 6.8: Optimal location of processing servers for resilient scenario, 

considering geographical constraints for ECG monitoring applications 
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The results in Figure 6.8, show that the OLT is always used to place the 

processing servers as in the previous scenarios. The results also show that 

the processing servers are placed at only one cluster, when the percentage 

of patients is equal to or less than 60%. This is to reduce the utilisation of the 

networking equipment. However, due to the geographical constraints, at least 

two locations are required to place the primary and secondary processing 

servers. Therefore, both OLT and ONU of the same clusters are selected to 

place the processing servers, separately. 

Figure 6.8 also shows that at a high level of demand (i.e. 80% and 100%), 

the BSs, ONUs and OLTs from both clusters are utilised. The results show 

that at a demand level of 80% for all processing servers per candidate node, 

the OLT and ONUs of cluster 1 are occupied first, and due to the limited 

number of resources of the base stations in cluster 1 to serve the patients, the 

remaining demand is sent to the ONU of cluster 2. This is to reduce the total 

amount of data traversing the network as ONUs are directly connected to the 

patients. The results also show that, at the demand level of 80%, when the 

number of processing servers allowed at each node increases to four, the 

number of utilised nodes to place the processing servers are reduced as more 

processing servers are placed at the OLT. 

However, when the demand level increases to 100%, the OLT and the ONU 

of both clusters are used to accommodate the increasing number of 

processing servers in the network for all processing servers per candidate 

node. The results show that increasing the number of processing servers per 

candidate node does not affect the location of placing the processing servers, 

as optimal locations are selected. 
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Figure 6.9: Energy consumption of networking equipment for resilient 

scenario, without geographical constraints and resilient scenario considering 

geographical constraints for ECG monitoring applications 

 

 

Figure 6.10: Number of candidate nodes used to place processing servers for 

resilient scenario, without geographical constraints and resilient scenario 

considering geographical constraints for ECG monitoring applications. 
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(a) 

 

(b) 

Figure 6.11: Number of base stations used to send  (a) the raw ECG signal 

for processing and (b) the analysed ECG signal for feedback, for resilient 

scenario without geographical constraints and resilient scenario, with 

geographical constraints under different percentages of patients and number 

of processing servers per candidate node, for ECG monitoring applications 

 

The results in Figure 6.9 show that, at demand levels of 40%, 60% and 

100% and when the number of available processing servers is 3, the energy 

consumption of networking equipment for both scenarios is the same. This is 

due to the same number of utilised networking equipment, where the same 

number of base stations are used to serve the patients to send their ECG 

signal to the processing servers, and the same number and location of nodes 
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are used to place the processing servers for both scenarios, as shown in 

Figure 6.11 and Figure 6.10, respectively. 

However, at a demand level of 60% and when four and five processing 

servers are allowed at each candidate node, the energy consumption of 

networking equipment with the more resilient scenario is slightly higher than 

the resilient scenario without geographical constraints, although the same 

number of base stations and nodes are used to place the servers for both 

scenarios. This is due to the different locations of the processing servers in 

the network for both scenarios where for the more resilient scenario, the 

location of processing servers has led to more data traversing the networking 

equipment than the resilient scenario, without geographical constraints.  

Meanwhile, for the other levels of demand and number of processing 

servers per candidate node, the energy consumption of the more resilient 

scenario is higher than the resilient scenario without geographical constraints, 

as shown in Figure 6.9. This is because, considering the geographical 

constraint increases the total number of utilised nodes to place the processing 

servers, as shown in Figure 6.10. Hence, the number of utilised networking 

equipment in the more resilient scenario increases. This increase in energy 

consumption, is the penalty for having a higher level of resilience. 
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Figure 6.12: Percentage of energy penalty of networking equipment for the 

resilient scenario, considering geographical constraints, compared to the 

resilient scenario without geographical constraints for ECG monitoring 

applications 

 

The results in Figure 6.12, show that increasing the level of resilience to 

consider geographical constraints, does not incur any energy penalty at 

demand levels of 40%, 60% and 100%; when three processing servers are 

available at each node. This is due to the same number of utilised networking 

equipment in both scenarios (i.e. nodes to place the processing servers and 

base stations to send the processing traffic). However, at demand levels of 

20% and 80%, increasing the level of resilience to consider geographical 

constraints has resulted in an energy penalty. This is because, at these 

specific demands, a higher number of candidate nodes are used to place the 

processing servers for the more resilient scenario, compared to the resilient 

scenario without geographical constraints, as shown in Figure 6.10.  
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Figure 6.12 also shows that increasing the number of allowed processing 

servers at each candidate node can increase the energy penalty when the 

demand is 40%, 60%, 80% and 100%. The increase in energy penalty is due 

to the decreasing number of candidate nodes available to place the 

processing servers with a resilient scenario without geographical constraints, 

as shown in Figure 6.10. However, at demand levels of 20% and 80%, 

increasing the number of processing servers per candidate node, does not 

result in significant impact on the energy penalty. This is because, at this 

specific demand, the same number of candidate nodes are used to place the 

processing servers and the same number of base stations are used to send 

the ECG signal to the processing servers in both scenarios, as shown in 

Figure 6.10 and Figure 6.11, respectively. 

Figure 6.12 also shows that, when the number of processing servers 

allowed at each node is equal to or higher than 6, the energy penalty 

decreases as the demand increases from 20% to 80%. This is because the 

same number of base stations are used in both scenarios to send the ECG 

signal to the processing servers, as shown in Figure 6.11-(a). However, the 

energy penalty at a demand level of 100% is higher than 40%, as the number 

of candidate nodes used to place the processing servers for the more resilient 

scenario is doubled, in comparison to the resilient scenario without 

geographical constraints, as shown in Figure 6.10.  
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Figure 6.13: Energy consumption of processing for resilient scenario without 

geographical constraints and resilient scenario considering geographical 

constraints for ECG monitoring applications 

 

The results in Figure 6.13 show that, for both scenarios, the energy 

consumption of processing increases as the level of demand increases for all 

number of processing servers per candidate node. This is because increasing 

the demand increases the number of processing servers proportionally. For 

all processing servers allowed at each candidate node, the energy consumed 

is equal for both resilience levels. This is due to fact that the same number of 

servers will be utilised regardless of their location, as the patients are optimally 

consolidated in the servers. Also, there is a slight increase in the energy 

consumption of processing, when the number of processing servers per 

candidate node increases. This is due to increasing the utilisation time of the 

processing servers to send the feedback and storage traffic under increasing 

number of processing servers per candidate node, as explained in Section 

6.5.1. 
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6.6 Realistic parameter considerations for fall monitoring 

applications 

This section elaborates in detail on the methodologies of determining the 

considered model input parameters, such as the network layout under the 

GPON network, the number of monitored patients in West Leeds, and the 

calculation of the data rate for traffic transmission of fall monitoring 

applications. 

 

6.6.1 Network layout under GPON network and total number of 

monitored elderly patients in West Leeds, United Kingdom 

 

In this section, video recording for fall monitoring application is considered. 

The patient connections and traffic routing are optimised so that the patients 

are served at both primary and secondary processing servers in the fog 

architecture, described in Section 6.2. Also, the same location of clinics and 

LTE base stations and the same number of patients in the clinics as described 

in Chapter 5, are considered. As the size of the video recording is high and 

due to the complexity of the MILP model (in the face of increased number of 

base stations), a scenario with only 7 clinics was considered. These have a 

total of 36 patients and 16 Long Term Evaluation (LTE) base stations were 

considered at the access layer, using the locations at West Leeds as case 

studies. The 16 LTE base stations are selected, based on the 12 nearest 

distances between the available base stations (BSs) and the clinics. A case 

study with two clusters is considered and the clinics are connected to up to 
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three BSs in each cluster, as shown in Figure 6.14. For example, clinic 5, 

shown in purple, is connected to three base stations in cluster 1, and is also 

connected to two base stations in cluster 2. 

 

Figure 6.14: The resilient fog computing infrastructure for fall monitoring 

applications 

 

Figure 6.14 shows the resilient fog computing architecture under the GPON 

network for fall monitoring application, while Table 6.4 presents the 

considered total number of elderly patients at each clinic. 

 

Table 6.4: Number of Monitored Elderly Patients in Clinics 

Clinic Total Number of Patients 

West Lodge Surgery 13 

Hillfoot Surgery 2 

Dr. Kw Mcgechaen & Partner 2 

Pudsey Health Centre 4 

Robin Lane Health 6 

Dr. S M Chen & Partner 2 

Manor Park Surgery 7 
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6.6.2 Data rate calculation for traffic transmission in the network 

 

Just like in Chapter 5, in this section, the same 15 seconds video recording 

(𝛱) with a size of 3.36 Mbits is utilised. The patient IoT devices send their 15-

second video recording to the fog servers to reconfirm the occurrence of a 

patient fall, based on much higher processing capabilities, compared to the 

IoT devices before triggering a doctor. This is to avoid a false alarm that can 

potentially be given to the doctors. Also, the same duration of processing and 

analysis for each video and the size of the analysed data (as was done in 

Chapter 5), which is 0.18 seconds [142] and 2.048 kbits [145], respectively 

are considered. The number of patients that can be served in a single 

processing server 𝑃𝑎𝑡, is limited to 20% of the total number of patients from 

the 7 clinics, which is the lowest demand evaluated in the network. It considers 

different number of processing servers per candidate node 𝑁, to evaluate the 

performance of the proposed resilient infrastructure under the fall monitoring 

application.  

The same methodologies in Section 6.4.2, are used to determine the 

related data rates and the transmission time for the five approaches related to 

the percentage of patients. Table 6.5, shows the data rate and transmission 

time to transmit the video data to the processing server and to transmit the 

analysed data to the clinics and cloud for feedback and permanent storage, 

respectively, for the different number of processing servers per candidate 

node, 𝑁. Note that, the data rate and transmission time for each number of 

processing servers per candidate node is the same for all approaches. Table 

6.5, also shows that the data rate and transmission time to transmit the video 
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signal to the processing server, are the same for all the different numbers of 

processing servers per candidate node. This is due to the same reason as 

explained in Section 6.4.2. 

 

Table 6.5: Data rate and related time for different numbers of processing 

servers per candidate node 𝑁 for fall monitoring applications 

Type of Data 3 PSs 4 PSs 5 PSs 6 PSs 7 PSs 8 PSs 

Data rate to transmit 

video data to 

processing server, 

𝛿𝑎 (kbps)  

15.120 15.120 15.120 15.120 15.120 15.120 

Transmission time to 

the processing 

server, 𝜏𝑎 (s) 

222.22 

 

222.22 

 

222.22 222.22 222.22 222.22 

Data rate to transmit 

analysed video data 

to clinics, 𝛿𝑏 (kbps) 

12.768 

 

9.744 7.728 6.384 5.376 

 

4.704 

Transmission time to 

the clinics, 𝜏𝑏 (s) 

0.16 0.21 0.265 0.321 0.381 0.435 

Data rate to transmit 

analysed video data 

to cloud storage, 𝛿𝑐 

(kbps)  

13.020 9.765 7.812 6.510 5.580 4.882 

Transmission time to 

the cloud storage, 𝜏𝑐 

(s)  

0.157 0.21 

 

0.262 0.315 0.367 0.419 
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6.7 Results and analysis of the MILP model for fall monitoring 

applications considering server protection 

In this section, the impact of increasing the level of resilience for server 

protection on the energy consumption of networking equipment and 

processing for fall monitoring applications is evaluated. The evaluations are 

divided into two steps, as seen in Section 6.5. The primary and secondary 

processing servers used to process and analyse the video signal are the same 

as in Section 5.4. Also, the evaluation is only performed for the highest 

demand level (i.e. 100% of patients). 

 

6.7.1 Performance analysis of server protection resilient scenario 

without geographical constraints 

 

In this section, the performance of the non-resilient scenario is used as a 

benchmark to evaluate the resilient model without geographical constraints, 

in terms of the energy consumption of networking equipment and processing 

for fall monitoring applications.  
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                                 (a)                                                      (b) 

Figure 6.15: Optimal location of processing servers for (a) non-resilient 

scenario and (b) resilient scenario, without geographical constraints for fall 

monitoring applications 

 

The results in Figure 6.15-(a) and Figure 6.15-(b), show that the number of 

processing servers for the resilient scenario is doubled, compared to the non-

resilient scenario. This is because the non-resilient scenario does not consider 

secondary processing servers, as explained in Section 6.5.1. The results also 

show that for the non-resilient scenario, a maximum of six primary processing 

servers are used to serve all patients while in the resilient scenario, the total 

number of processing servers (i.e. primary and secondary processing servers) 

is twelve. The total number of processing servers in both scenarios is the 

same for all the different numbers of processing servers per candidate node. 

Figure 6.15-(a), shows that for the non-resilient scenario, the processing 

servers are placed at one cluster only to reduce the total number of networking 

equipment (i.e. OLT) utilised. The processing servers are only placed at the 

OLT, when the number of processing servers allowed at each candidate node 

is equal to or more than the total number of processing servers required, to 

serve all patients. This is because the OLT is the nearest shared point to the 

patients. However, due to the limited capacity of the OLT to support all of the 
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traffic, the ONUs at the same cluster are selected by the MILP to place the 

remaining processing servers. 

Meanwhile, the resilient scenario without geographical constraints for 

server protection has resulted in utilising the BSs, ONUs and OLTs in both 

clusters. This is because, for the resilient scenario, each patient required 

double resources from the base stations to send the video data to both primary 

and secondary processing servers. Therefore, due to the high data rate to 

send the video signal and the restricted number of available resources of the 

base stations in a single cluster, the processing servers are placed at both 

clusters under the resilient scenario. Also, increasing the number of 

processing servers per candidate node, has resulted in placing the processing 

servers at both OLTs. This is because the OLTs are the nearest shared point, 

hence reducing the number of candidate nodes utilised to place the 

processing servers and the total traffic traversing the network. 

 

Figure 6.16: Energy consumption of networking equipment for non-resilient 

and resilient scenario, without geographical constraints for fall monitoring 

applications 
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Figure 6.17: Total number of candidate nodes used to place the processing 

servers for non-resilient and resilient scenario, without geographical 

constraints for fall monitoring applications 

 

The results in Figure 6.16, show that the energy consumed in the resilient 

scenario is always higher than that of the non-resilient scenario. This is due 

to the high traffic traversing the networking equipment in the resilient scenario, 

as explained in Section 6.5.1. Figure 6.16 also shows that when the number 

of processing servers per candidate node increases from three to eight, the 

energy consumption of networking equipment in the resilient scenario and the 

non-resilient scenario reduces significantly. The reduction in the energy 

consumption of the networking equipment, is due to the optimised placement 

of the processing servers and the reduction in the number of candidate nodes 

utilised to place the processing servers, as explained in Section 6.5.1. The 

reduction in the number of candidate nodes utilised to place the processing 

servers in both scenarios is as depicted in Figure 6.17. 
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Figure 6.18: Energy penalty of networking equipment for resilient scenario 

without geographical constraints, compared to the non-resilient scenario for 

fall monitoring applications. 

 

 

(a) 
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(b) 

Figure 6.19: Number of base stations used to send  (a) the raw video signal 

for processing and (b) analysed video signal for feedback, for the non-resilient 

scenario and resilient scenario, without geographical constraints under 

different number of processing servers per candidate node for fall monitoring 

applications 

 

The results in Figure 6.18, show that the energy penalty of the network due 

to considering resilience for server protection is high (i.e. more than 80%). 

This is because the total traffic traversing the network in the resilient scenario 

is doubled that of the non-resilient scenario. Therefore, more networking 

equipment (i.e. base stations, Ethernet switches), are utilised in the resilient 

scenario to serve the high traffic. This is shown in Figure 6.19-(a), Figure 6.19-

(b) and Figure 6.17; where the number of base stations utilised to send the 

raw video signal to the processing servers for processing and analysis, the 

number of the base stations used to send the analysed health data traffic to 

the clinics and the number of candidate nodes used to place the processing 
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servers in the resilient scenario without geographical constraints, respectively 

are higher than that of the non-resilient scenario. However, it is worth noting 

that the energy consumed by the base stations to send the feedback traffic, 

does not give significant increases to the total energy consumption of 

networking equipment, due to its low utilisation time.  

The results also show that increasing the number of processing servers per 

candidate node, can either decrease or increase the energy penalty, due to 

the increasing level of resilience. The increase in energy penalty with the 

increase in the number of processing servers allowed per candidate node, is 

due to the reduction in the number of candidate nodes needed to place the 

processing servers under the non-resilient scenario. On the other hand, the 

energy penalty decreases with the increase in the number of processing 

servers allowed per candidate node. This is due to the reduction in the number 

of candidate nodes needed to place the processing servers under the resilient 

scenario. The reduction in the number of candidate nodes used to place the 

processing servers with the increasing number of processing servers allowed 

per candidate node for both scenarios, is illustrated in Figure 6.17. 

Meanwhile, the energy consumption of processing for the resilient scenario, 

is always higher than that of the non-resilient scenario, and this energy 

increased in both scenarios when the number of processing servers per 

candidate node increased. This is due to the same reason as discussed in 

Section 6.5.1. The results of energy consumption of processing for non-

resilient scenario and resilient scenario without geographical constraints, for 

fall monitoring applications can be found in Appendix 3. 
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6.7.2 Performance analysis of resilient scenario with geographical 

constraints  

 

In this section, the performance of the resilient scenario without geographical 

constraints, is used as a benchmark. The more resilient scenario with 

geographical constraints is then evaluated and compared to the benchmark 

in terms of its energy consumption of networking equipment and processing 

for fall monitoring applications. 

 

 

Figure 6.20: Optimal location of processing servers for the resilient scenario 

with geographical constraints, for fall monitoring applications 

 

As in Section 6.5.2, the results in Figure 6.20 show that the processing 

servers are placed in both clusters, due to the limited resources of the base 

stations in a single cluster to serve all patients. The results show that when 

three processing servers are allowed at each candidate node, the OLT and 
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ONU of both clusters are used to place the increased number of processing 

servers. This is because, the OLTs do not have enough capacity to place all 

the processing servers; therefore, the remaining patients are served by 

servers at the ONUs. 

However, the results show that by increasing the number of processing 

servers per candidate node, this has resulted in placing more processing 

servers at the OLT. The reason for doing this, is to reduce the amount of data 

traversing the OLTs, so that data can be sent to the processing servers at the 

ONUs. Also, increasing the number of processing servers per candidate node 

has resulted in placing the processing servers at optimal locations. This is 

shown in Figure 6.20, where the same numbers and locations are used to 

place the processing servers, when the number processing servers per 

candidate node is equal to or more than six, respectively. 

 

 

Figure 6.21: Energy consumption of networking equipment for scenario with 

geographical constraints; and scenario without geographical constraints for 

fall monitoring applications. 
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Figure 6.22: Total number of candidate nodes used to place the processing 

servers for the resilient scenario, with geographical constraints and scenario 

without geographical constraints for fall monitoring applications. 

 

The results in Figure 6.21, show that increasing the level of resilience can 

either maintain or increase the energy consumption of networking equipment. 

This depends on the number of processing servers that can be connected at 

each candidate node. The same level of energy of networking equipment 

consumed in both scenarios, is due to the same number of candidate nodes 

being utilised to place the processing servers, as shown in Figure 6.22 and 

the same number of base stations used to serve the patients, to send the 

video signal to the processing servers and to send the analysed video signal 

to the clinics, which can be found in Appendix 4. 

On the other hand, the increasing energy consumption of networking 

equipment due to the increasing level of resilience; is because of the high 

number of candidate nodes utilised to place the processing servers in the 

more resilient scenario, as the primary and secondary processing servers are 
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not allowed to be placed at the same location. This is shown in Figure 6.22, 

where the number of candidate nodes used to place the processing servers 

for the more resilient scenario, is always equal to or higher than the resilient 

scenario, without a geographical constraint. The high amount of energy 

consumed for the more resilient scenario, is the penalty for having a higher 

level of resilience. 

 

Figure 6.23: The percentage energy penalties of networking equipment for the 

scenario with geographical constraints, compared to the scenario without 

geographical constraints for fall monitoring applications 

 

The results in Figure 6.23, also show that when three, six and seven 

processing servers are available at each candidate node, increasing the level 

of resilience does not incur an energy penalty. This is mainly due to the same 

number of candidate nodes being utilised to place the processing servers as 

shown in Figure 6.22 and the same number of base stations being utilised to 

send the video signal to the processing server; then to send the analysed 

video to the clinics (the results can be found in Appendix 4). 
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The results also show that increasing the number of processing servers 

allowed at each candidate node, can increase or decrease the energy penalty, 

due to the increasing level of resilience. The increase in the energy penalty 

with the increase in the number of processing servers allowed per candidate 

node, is due to the reduction in the number of candidate nodes needed to 

place the processing servers under the resilient scenario, without 

geographical constraints. This shows that increasing the number of 

processing servers per candidate node, can only profit the scenario without 

geographical constraints. However, the increase in the energy penalty is less 

than 3%, as shown in Figure 6.23. On the other hand, the energy penalty 

decreases with the increase in the number of processing servers per 

candidate node and that is due to the reduced number of candidate nodes 

needed to place the processing servers under the more resilient scenario. 

Meanwhile, the energy consumption of processing in both scenarios is 

equal, and this energy increased as the number of processing servers per 

candidate node increased. This is due to the same reason as explained 

Section 6.5.2. The results of energy consumption of processing for the 

resilient scenario without geographical constraints and the resilient scenario, 

considering geographical constraints for fall monitoring applications can be 

found in Appendix 5. 

 

6.8 Resilient infrastructure with server and network protection 

In this section, we design an energy-efficient fog computing infrastructure 

for health monitoring applications, resilient against server and network 
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failures. We consider the same 1+1 protection scheme as in previous resilient 

scenarios considering server protection, where two servers, a primary server 

and a secondary server, are used to serve the health monitoring application 

concurrently. Since geographic constraints do not add a lot of power, therefore 

in this section only server protection with geographic constraints is 

considered. Two types of network protection are considered in addition to 

server protection offering a scenario with higher levels of resilience. In this 

scenario, the primary and secondary processing servers are not allowed to be 

placed at the same node, and the links and nodes used to transmit the data 

to and from primary and secondary processing servers are disjoint, as node 

and link failures in the network are not improbable. We consider the disjoint 

links and nodes to be only at the access layer, as the processing servers can 

only be placed at the access layer. A Mixed Integer Linear Programming 

(MILP) model is used to optimise the number and placement of the primary 

and secondary processing servers so that the energy consumption of both 

networking equipment and processing are minimised. As in Section 6.5, AMPL 

software with CPLEX 12.8 solver running on high-performance computing 

(HPC) cluster with a 12 core CPU and 64 GB RAM was used as the platform 

for solving the MILP models. We investigate the performance of the proposed 

resilience architecture in terms of energy consumption of both networking 

equipment and processing under (Electrocardiogram) ECG monitoring and 

video fall monitoring applications, separately. For each application, the 

patients will send the required data (i.e. 30 seconds ECG signal for ECG 

monitoring applications and 15 seconds video recording for the fall monitoring 

application) to the primary and secondary processing servers for processing, 

analysis and decision-making. In addition, we observe the energy penalty of 
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increasing the level of resilience in the network. Also, we developed a heuristic 

model for the considered resilience scenario for real-time implementation. 

 

6.8.1 Mathematical model for energy-efficient fog computing 

considering server and network protection 

 

In this section, a mathematical model for the resilient scenario that 

considers geographical constraints for server protection; and link and node 

disjoint resilience for network protection are introduced. The Mixed Integer 

Linear Programming (MILP) model with the objective of minimising the total 

energy consumption of both networking equipment and processing of the 

resilience scenario is developed. Here the primary and secondary processing 

servers are not allowed to be placed at the same node, and the links and nodes 

used to relay the traffic to and from both primary and secondary processing 

servers are disjoint. Beyond the OLT and heading to the cloud, the network is 

not protected, since the server that did the processing has a copy of the data 

to be stored and can retain it until the network beyond the OLT recovers. Note 

that the disjoint links and nodes are considered to be only at the access layer. 

The same parameters, variables, constraints and objective functions in Section 

6.3.2 are utilised and an additional set and variables, as shown in Table 6.6 

(also can be found in Appendix 1), are introduced to optimise the number and 

locations of the primary and secondary processing servers considering the 

geographical constraints and link and node disjoint resilience, so that the 

energy consumption of both networking equipment and processing are 

minimised. 
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Table 6.6: Additional set and variables in the MILP model 

Set 

𝑁𝐷 Set of BSs, ONUs and OLTs (access layer) 

Variables 

𝑃𝑎𝑠𝑑 Raw health data traffic from clinic 𝑠 to primary processing servers 

at destination node 𝑑 (bps), 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁  

𝑃𝑏𝑠𝑑 Raw health data traffic from source node 𝑠 to secondary processing 

servers at destination node 𝑑 (bps), 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁  

𝑃𝑎𝑖𝑗
𝑠𝑑 Raw health data traffic from source node 𝑠 to primary processing 

servers at destination node 𝑑 that traverses the link between nodes 

𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁, 𝑖, 𝑗 ∈ 𝑁 

𝑃𝑏𝑖𝑗
𝑠𝑑 Raw health data traffic from source node 𝑠 to secondary processing 

servers at destination node 𝑑 that traverses the link between nodes 

𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁, 𝑖, 𝑗 ∈ 𝑁 

𝐹𝑎𝑠𝑑 Analysed health data feedback traffic from primary processing 

servers at source node 𝑠 to clinic at node 𝑑 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿  

𝐹𝑏𝑠𝑑 Analysed health data feedback traffic from secondary processing 

servers at source node 𝑠 to clinic at node 𝑑 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿  

𝐹𝑎𝑖𝑗
𝑠𝑑 Analysed health data feedback traffic from primary processing 

servers at source node 𝑠 to clinic at node 𝑑 that traverses the link 

between nodes 𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿, 𝑖, 𝑗 ∈ 𝑁  

𝐹𝑏𝑖𝑗
𝑠𝑑 Analysed health data feedback traffic from secondary processing 

servers at source node 𝑠 to clinic at node 𝑑 that traverses the link 

between nodes 𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿, 𝑖, 𝑗 ∈ 𝑁  
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𝑆𝑎𝑠𝑑 Analysed health data storage traffic from primary processing 

servers at source node 𝑠 to cloud storage at node 𝑑 (bps), 𝑠 ∈

𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇  

𝑆𝑏𝑠𝑑 Analysed health data storage traffic from secondary processing 

servers at source node 𝑠 to cloud storage at node 𝑑 (bps), 𝑠 ∈

𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇  

𝑆𝑎𝑖𝑗
𝑠𝑑 Analysed health data storage traffic from primary processing 

servers at source node 𝑠 to cloud storage at node 𝑑 that traverses 

the link between nodes 𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇, 𝑖, 𝑗 ∈ 𝑁 

𝑆𝑏𝑖𝑗
𝑠𝑑 Analysed health data storage traffic from secondary processing 

servers at source node 𝑠 to cloud storage at node 𝑑 that traverses 

the link between nodes 𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇, 𝑖, 𝑗 ∈ 𝑁 

𝐿𝑎𝑖𝑗 𝐿𝑎𝑖𝑗 = 1, if the incoming and/or outgoing traffic of primary 

processing servers traverses the link between nodes 𝑖 and 𝑗 

otherwise 𝐿𝑎𝑖𝑗 = 0 

𝐿𝑏𝑖𝑗 𝐿𝑏𝑖𝑗 = 1, if the incoming and/or outgoing traffic of secondary 

processing servers traverses the link between nodes 𝑖 and 𝑗 

otherwise 𝐿𝑏𝑖𝑗 = 0 

𝜌𝑎𝑖 𝜌𝑎𝑖 = 1, if the incoming and/or outgoing traffic of primary 

processing servers traverse node 𝑖, otherwise 𝜌𝑎𝑖 = 0 

𝜌𝑏𝑖  𝜌𝑏𝑖 = 1, if the incoming and/or outgoing traffic of secondary 

processing servers traverses node 𝑖, otherwise 𝜌𝑏𝑖 = 0 

In addition to constraints presented in Section 6.3.2, the following new 

constraints are considered: 
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1) Traffic from clinics to fog. 

 

𝑃𝑎𝑠𝑑 = ⍵𝑎𝑠𝑑  𝛿𝑎     ;  𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁 (6-20) 

𝑃𝑏𝑠𝑑 = ⍵𝑏𝑠𝑑  𝛿𝑎     ;  𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁 (6-21) 

 

Constraints (6-20), (6-21) calculate the raw health data traffic from clinic 𝑠 to 

the primary and secondary processing servers located at node 𝑑, respectively. 

This is based on the association of patients from clinic to processing servers 

(i.e. ⍵𝑎𝑠𝑑 and ⍵𝑏𝑠𝑑), as well as the data rate provisioned for each patient, 𝛿𝑎, 

to perform the transmission. 

 

2) Traffic from fog to clinics. 

 

𝐹𝑎𝑠𝑑 = ⍵𝑎𝑠𝑑  𝛿𝑏     ;  𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿 (6-22) 

𝐹𝑏𝑠𝑑 = ⍵𝑏𝑠𝑑  𝛿𝑏     ;  𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿 (6-23) 

 

Constraints (6-22), (6-23) calculate the analysed health data feedback traffic 

from primary and secondary processing servers located at node 𝑠 to the clinic 

𝑑, respectively. This is based on the association of patients from clinic to 

processing servers (i.e. ⍵𝑎𝑠𝑑 and ⍵𝑏𝑠𝑑), as well as the data rate provisioned 

for each patient, 𝛿𝑏, to perform the transmission. 
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3) Traffic from fog to cloud storage. 

 

𝑆𝑎𝑠𝑑 = ∑ ⍵𝑎𝑖𝑠
𝑖∈𝐶𝐿

 𝛿𝑐 𝛿𝑠𝑑     ;  𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇 (6-24) 

𝑆𝑏𝑠𝑑 = ∑ ⍵𝑏𝑖𝑠
𝑖∈𝐶𝐿

 𝛿𝑐 𝛿𝑠𝑑     ;  𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇 (6-25) 

 

Constraints (6-24), (6-25) calculate the analysed health data storage traffic 

from primary and secondary processing servers located at node 𝑠 to cloud 

storage, 𝑑 respectively. This is based on the association of patients from clinic 

to processing servers (i.e. ⍵𝑎𝑖𝑠 and ⍵𝑏𝑖𝑠), as well as the data rate provisioned 

for each patient, 𝛿𝑐, to perform the transmission. Note that, in this work, there 

is only one cloud storage 𝑑, therefore the 𝛿𝑠𝑑 is a parameter equal that is equal 

to 1. 

 

4) Flow conservation in the network. 

 

∑ 𝑃𝑎𝑖𝑗
𝑠𝑑 − 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

∑ 𝑃𝑎𝑗𝑖
𝑠𝑑 =

{
 
 

 
 
𝑃𝑎𝑠𝑑 𝑖𝑓 𝑖 = 𝑠

−𝑃𝑎𝑠𝑑  𝑖𝑓 𝑖 = 𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

  

𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁, 𝑖 ∈ 𝑁  

(6-26) 
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∑ 𝑃𝑏𝑖𝑗
𝑠𝑑 − 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

∑ 𝑃𝑏𝑗𝑖
𝑠𝑑 =

{
 
 

 
 
𝑃𝑏𝑠𝑑 𝑖𝑓 𝑖 = 𝑠

−𝑃𝑏𝑠𝑑 𝑖𝑓 𝑖 = 𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

  

𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁, 𝑖 ∈ 𝑁  

(6-27) 

 

∑ 𝐹𝑎𝑖𝑗
𝑠𝑑 − 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

∑ 𝐹𝑎𝑗𝑖
𝑠𝑑 =

{
 
 

 
 

𝐹𝑎𝑠𝑑 𝑖𝑓 𝑖 = 𝑠

−𝐹𝑎𝑠𝑑 𝑖𝑓 𝑖 = 𝑑  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

 

(6-28) 

 

𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿, 𝑖 ∈ 𝑁  

∑ 𝐹𝑏𝑖𝑗
𝑠𝑑 − 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

∑ 𝐹𝑏𝑗𝑖
𝑠𝑑 =

{
 
 

 
 

𝐹𝑏𝑠𝑑 𝑖𝑓 𝑖 = 𝑠

−𝐹𝑏𝑠𝑑  𝑖𝑓 𝑖 = 𝑑 
 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

 

(6-29) 

 

𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿, 𝑖 ∈ 𝑁  

∑ 𝑆𝑎𝑖𝑗
𝑠𝑑 − 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

∑ 𝑆𝑎𝑗𝑖
𝑠𝑑 =

{
 
 

 
 
𝑆𝑎𝑠𝑑 𝑖𝑓 𝑖 = 𝑠

−𝑆𝑎𝑠𝑑 𝑖𝑓 𝑖 = 𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

 

(6-30) 

 

𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇, 𝑖 ∈ 𝑁  

∑ 𝑆𝑏𝑖𝑗
𝑠𝑑 − 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

∑ 𝑆𝑏𝑗𝑖
𝑠𝑑 =

{
 
 

 
 
𝑆𝑏𝑠𝑑 𝑖𝑓 𝑖 = 𝑠

−𝑆𝑏𝑠𝑑 𝑖𝑓 𝑖 = 𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

 

(6-31) 

 

𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇, 𝑖 ∈ 𝑁  
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Constraints (6-26) – (6-31) ensure that the total incoming traffic is equivalent 

to the total outgoing traffic for all nodes in the network, except for source and 

destination nodes for processing, feedback and storage tasks, respectively. 

 

5) Link used to transmit raw and analysed health data traffic. 

 

∑ ∑ 𝑃𝑎𝑖𝑗
𝑠𝑑 +

𝑑∈𝐹𝑁𝑠∈𝐶𝐿

∑ ∑ 𝐹𝑎𝑖𝑗
𝑠𝑑 +

𝑑∈𝐶𝐿𝑠∈𝐹𝑁

∑ ∑ 𝑆𝑎𝑖𝑗
𝑠𝑑

𝑑∈𝐶𝑆𝑇𝑠∈𝐹𝑁

≥ 𝐿𝑎𝑖𝑗   

𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁𝑚[𝑖] 

(6-32) 

∑ ∑ 𝑃𝑎𝑖𝑗
𝑠𝑑 +

𝑑∈𝐹𝑁𝑠∈𝐶𝐿

∑ ∑ 𝐹𝑎𝑖𝑗
𝑠𝑑 +

𝑑∈𝐶𝐿𝑠∈𝐹𝑁

∑ ∑ 𝑆𝑎𝑖𝑗
𝑠𝑑

𝑑∈𝐶𝑆𝑇𝑠∈𝐹𝑁

≤ 𝑀 𝐿𝑎𝑖𝑗    

 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁𝑚[𝑖] 

(6-33) 

∑ ∑ 𝑃𝑏𝑖𝑗
𝑠𝑑 +

𝑑∈𝐹𝑁𝑠∈𝐶𝐿

∑ ∑ 𝐹𝑏𝑖𝑗
𝑠𝑑 +

𝑑∈𝐶𝐿𝑠∈𝐹𝑁

∑ ∑ 𝑆𝑏𝑖𝑗
𝑠𝑑

𝑑∈𝐶𝑆𝑇𝑠∈𝐹𝑁

≥ 𝐿𝑏𝑖𝑗   

𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁𝑚[𝑖] 

(6-34) 

∑ ∑ 𝑃𝑏𝑖𝑗
𝑠𝑑 +

𝑑∈𝐹𝑁𝑠∈𝐶𝐿

∑ ∑ 𝐹𝑏𝑖𝑗
𝑠𝑑 +

𝑑∈𝐶𝐿𝑠∈𝐹𝑁

∑ ∑ 𝑆𝑏𝑖𝑗
𝑠𝑑

𝑑∈𝐶𝑆𝑇𝑠∈𝐹𝑁

≤ 𝑀 𝐿𝑏𝑖𝑗    

 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁𝑚[𝑖] 

(6-35) 

 

Constraints (6-32), (6-33) ensure that 𝐿𝑎𝑖𝑗 = 1 if the incoming and/or outgoing 

traffic of primary processing servers traverses the link between nodes 𝑖 and 𝑗, 

otherwise the value is zero. Meanwhile, Constraints (6-34), (6-35) ensure that 

the 𝐿𝑏𝑖 = 1, if the incoming and/or outgoing traffic of secondary processing 

servers traverses the link between nodes 𝑖 and 𝑗, otherwise the value is zero. 
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6) Disjoint links constraint. 

 

𝐿𝑎𝑖𝑗 + 𝐿𝑏𝑖𝑗 ≤ 1      

 𝑖 ∈ 𝑁𝐷, 𝑗 ∈ 𝑁𝐷 

(6-36) 

𝐿𝑎𝑖𝑗 + 𝐿𝑏𝑗𝑖 ≤ 1      

 𝑖 ∈ 𝑁𝐷, 𝑗 ∈ 𝑁𝐷 

(6-37) 

𝐿𝑎𝑗𝑖 + 𝐿𝑏𝑖𝑗 ≤ 1      

 𝑖 ∈ 𝑁𝐷, 𝑗 ∈ 𝑁𝐷 

(6-38) 

 

Constraints (6-36) – (6- 38) ensure that the incoming and/or outgoing traffic of 

the primary and secondary processing servers traverse different links. 

 

7) Disjoint nodes constraint. 

∑ 𝐿𝑎𝑖𝑗 ≥ 𝜌𝑎𝑖    

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

   

𝑖 ∈ 𝑁𝐷 

(6-39) 

∑ 𝐿𝑎𝑖𝑗 ≤ 𝑀 𝜌𝑎𝑖     

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

  

 𝑖 ∈ 𝑁𝐷 

(6-40) 

∑ 𝐿𝑏𝑖𝑗 ≥ 𝜌𝑏𝑖    

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

   

𝑖 ∈ 𝑁𝐷 

(6-41) 
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∑ 𝐿𝑏𝑖𝑗 ≤ 𝑀 𝜌𝑏𝑖     

𝑗∈𝑁𝑚[𝑖]:𝑖≠𝑗

  

 𝑖 ∈ 𝑁𝐷 

(6-42) 

𝜌𝑎𝑖 + 𝜌𝑏𝑖  ≤ 1 

𝑖 ∈ 𝑁𝐷 

(6-43) 

 

Constraints (6-39), (6-40) and constraints (6-41), (6-42) determine the nodes 

that are used to relay the incoming and/or outgoing traffic of the primary 

processing server and secondary processing servers, respectively. 

Meanwhile, constraint (6-43) ensures that the nodes used to relay the incoming 

and/or outgoing traffic of primary and secondary processing servers are 

different. 

 

6.8.2 Results and analysis of the MILP model for ECG monitoring 

applications considering geographical constraint server 

protection and link and node disjoint 

 

In this section, we evaluate the impact of increasing the level of resilience 

for server and network protection on the energy consumption of networking 

equipment and processing. The evaluation is performed by comparing the 

resilient scenario with the geographical constraint (i.e. benchmark) with the 

more resilient scenario considering additional link and node disjoint routing for 

ECG monitoring applications. As in Section 6.5, the locations of the 

processing servers of the evaluated scenarios, the energy consumption of the 

networking equipment and processing of the scenarios and the energy penalty 

of networking equipment due to the increasing level of resilience are analysed. 
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The same resilient architecture and the parameter inputs used in Section 6.4 

for the ECG monitoring applications are utilised to evaluate the resilience 

scenario. 

 

 

Figure 6.24: Optimal location of processing servers for the resilient scenario 

considering the geographical constraint for server protection and link and 

node disjoint resilience for network protection for ECG monitoring applications 

 

The results in Figure 6.24 show that the processing servers are only placed 

at the (optical line terminals) OLTs in both clusters when the number of 

processing servers allowed at each candidate node is equal to or greater than 

the total number of primary or secondary processing servers required in the 
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network. This is for two reasons. The first is to reduce the number of candidate 

nodes (i.e. Ethernet switches) used to place the processing servers, as the 

OLTs are the nearest shared point to the patients. The second is because 

each cluster is used to place the same set of processing servers. For instance, 

cluster 1 is used to place only primary processing servers, while cluster 2 is 

used to place only secondary processing servers. Therefore, when the 

number of processing servers allowed at each candidate node is less than the 

number of primary and secondary processing servers required, the (optical 

network units) ONUs in both clusters are utilised to place the remaining 

processing servers under increasing demands. 

 

 

Figure 6.25: Energy consumption of networking equipment for the resilient 

scenario considering the geographical constraints and the resilient scenario 

with geographical constraints and link and node disjoint resilience for ECG 

monitoring applications 
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(a) 

 

(b) 

Figure 6.26: Number of base stations used to send the (a) raw ECG signal for 

processing and (b) analysed ECG signal for feedback, for the resilient 

scenario considering the geographical constraints; and the resilient scenario 

considering geographical constraints and link and node disjoint resilience 

under different percentages of patients and number of processing servers per 

candidate node 
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Figure 6.27: Number of candidate nodes used to place the processing servers 

for the resilient scenario considering the geographical constraints and the 

resilient scenario with geographical constraints and link and node disjoint 

resilience for ECG monitoring applications 

 

The results in Figure 6.25 show that the energy consumption of networking 

equipment for both scenarios increases as the demand increases for all the 

different numbers of processing servers per candidate node considered. This 

is due to the increasing amount of traffic in the network, hence increasing the 

total number of networking equipment utilised in the network.  

The results also show that, for all levels of demands and number of 

processing servers per candidate node, the energy consumption of 

networking equipment for the more resilient scenario is always higher than the 

resilient scenario that only considers geographical constraints. This is due to 

the high number of base stations utilised in the more resilient scenario, as 

shown in Figure 6.26-(a) and Figure 6.26-(b). Note that, each base station is 

connected to only one OLT in the network. Therefore, considering disjoint links 

and nodes for network protection has increased the number of base stations 

without maximising the utilisation of their resources to send the processing 

traffic to both primary and secondary processing servers. 
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It is worth noting that the number of candidate nodes used to place the 

processing servers at demand levels of 80% and 100% in the more resilient 

scenario is lower than the resilient scenario with geographical constraints 

when the number of processing servers per candidate node is equal to or 

more than four and five, respectively, as shown in Figure 6.27. However, as 

the energy consumed by a single base station is approximately 1.5x higher 

than the energy consumed by a single node (i.e. Ethernet switch) to place the 

processing servers, therefore there is an energy penalty with the link and node 

disjoint resilience scenario. 

 

 

Figure 6.28: Percentage energy penalty of networking equipment for the 

resilient scenario considering the geographical constraints and link and node 

disjoint resilience compared to the resilient scenario considering the 

geographical constraints for ECG monitoring applications 
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The results in Figure 6.28 show that the energy penalty with the link and 

node disjoint resilience scenario decreases as the demand level increases 

from 20% to 60% and 80% to 100%. This is because the total number of base 

stations utilised in the resilient scenario, that only consider the geographical 

constraint, increases with the increases in demand in the network, as shown 

in Figure 6.26-(a) and Figure 6.26-(b). This increases the energy consumption 

of networking equipment for the resilient scenario that only considers the 

geographical constraint as the demand levels increase. However, at a 

demand level of 60%, the energy penalty is lower than at a demand level of 

80%. This is because, at a demand level of 80%, the number of base stations 

used for the more resilient scenario start to increase, hence increasing the 

energy consumption of networking equipment of the more resilient scenario. 

Figure 6.28 also shows that, at demand levels of 80% and 100%, increasing 

the number of processing servers per candidate node to 4 and 5, respectively, 

decreases the energy penalty. This is because, the number of candidate 

nodes (i.e. Ethernet switches) used to place the processing servers for the 

more resilient scenario reduces while the same number of candidate nodes 

are used for the resilient scenario that only considers geographical constraints 

as shown in Figure 6.27. 

Meanwhile, increasing the level of resilience does not increase the energy 

consumption of processing, and this energy increased as the number of 

processing servers per candidate node increased. This is due to the same 

reason as explained Section 6.5.2. The results of energy consumption of 

processing for the resilient scenario considering the geographical constraints; 

and the energy consumption of the resilient scenario with geographical 
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constraints and link and node disjoint resilience for ECG monitoring 

applications can be found in Appendix 6. 

 

6.8.3 Results and analysis of the MILP model for fall monitoring 

applications considering geographical constraint server 

protection and link and node disjoint 

 

In this section, the impact of increasing the level of resilience through 

network protection on the energy consumption of networking equipment and 

processing for fall monitoring applications is evaluated. The performance of 

the resilient scenario with geographical constraints is used as a benchmark to 

evaluate the power consumption implications (in terms of the energy 

consumption of networking equipment and processing) of increasing the level 

of resilience. The additional resilience is achieved when additional link and 

node disjoint resilience is considered for fall monitoring applications. The 

evaluations are performed, as in Section 6.8.2. The same resilient architecture 

and the parameter inputs used in Section 6.6 for the fall monitoring 

applications are utilised to evaluate the resilience scenario. As in Section 6.7, 

the evaluation is performed for the highest level of demand (i.e. 100% of 

patients).  
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Figure 6.29: Optimal location of processing servers for the resilient scenario 

considering the geographical constraint for server protection and link and 

node disjoint resilience for network protection for fall monitoring applications 

 

The results in Figure 6.29 show the same patterns as in Section 6.8.2 when 

considering a resilient scenario with geographical constraints and link and 

node disjoint resilience. Here the processing servers are only placed at the 

OLTs when the number of processing servers allowed at each candidate node 

is equal to or greater than the total number of primary or secondary processing 

servers required in the network. This is for the same two reasons as explained 

in Section 6.8.2. Figure 6.29 also shows that, when the number of processing 

servers allowed at each candidate node is equal to or less than five, the OLTs 

of both clusters host the maximum number of processing servers they can 

serve. Therefore, the ONUs in both clusters are used to place the remaining 

processing servers that cannot be allocated at the OLTs due to the limited 

number of processing servers per candidate node. 
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Figure 6.30: Energy consumption of networking equipment for the resilient 

scenario considering the geographical constraints; and the resilient scenario 

with geographical constraints; and link and node disjoint resilience for fall 

monitoring applications 

 

 

Figure 6.31: Total number of candidate nodes used to place processing 

servers for the resilient scenario considering the geographical constraints; and 

the resilient scenario with geographical constraints and link and node disjoint 

resilience for fall monitoring applications 
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(a) 

 

(b) 

Figure 6.32: Number of base stations used to send (a) the raw video signal 

for processing and (b) the analysed video signal for feedback, for the resilient 

scenario considering the geographical constraints; and the resilient scenario 

with geographical constraints and link and node disjoint resilience for different 

numbers of processing servers per candidate node 



- 227 - 

The results in Figure 6.30 show that, for all the different number of 

processing servers per candidate node, the energy consumption of 

networking equipment in the more resilient scenario is always higher than the 

scenario that only considers geographical constraints. This is due to the higher 

total number of utilised base stations in the more resilient scenario to send 

both raw health data traffic and analysed health data feedback traffic, 

compared to the resilient scenario that only considered the geographical 

constraint, as illustrated in Figure 6.32-(a) and Figure 6.32-(b). The reason for 

the increase in the number of the base stations in the more resilient scenario 

is as explained in Section 6.8.2. Also, as shown in Figure 6.30, increasing the 

number of processing servers per candidate node can also reduce the energy 

consumption of networking equipment in both scenarios, when the number of 

candidate nodes utilised to place the processing servers is reduced as 

illustrated in Figure 6.31. 

 

Figure 6.33: Percentage energy penalty of networking equipment for the 

resilient scenario considering the geographical constraints and link and node 

disjoint resilience compared to the resilient scenario considering the 

geographical constraints for fall monitoring applications 
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The results in Figure 6.33 show that increasing the level of resilience to 

consider link and node disjoint resilience for network protection compared to 

the resilient scenario that only considers geographical constraints has resulted 

in an energy penalty. This is mainly due to the high number of base stations 

and the number of candidate nodes required to place the processing servers 

utilised in the more resilient scenario. The results also show that the energy 

penalty can increase and decrease with the increasing number of processing 

servers per candidate node. The increase in energy penalty with the increase 

in the number of processing servers that can be served at each candidate 

node is due to the reduction in the number of candidate nodes needed to place 

the processing servers under the resilient scenario that only considers 

geographical constraints. On the other hand, the energy penalty decreasing 

with the increased number of processing servers that can be served at each 

candidate node is due to the reduction in the number of candidate nodes to 

place the processing servers under the more resilient scenario. The reduction 

in the number of candidate nodes used to place the processing server with 

the increasing number of processing servers allowed per candidate node for 

both scenarios is illustrated in Figure 6.31. 

Meanwhile, the same energy for processing is consumed in both resilient 

scenarios, and this energy increased as the number of processing servers per 

candidate node increased. This is due to the same reasons as explained in 

Section 6.5.2. The results of energy consumption of processing for the 

resilient scenario considering the geographical constraints and the resilient 

scenario considering the geographical constraints and link and node disjoint 

resilience for fall monitoring applications can found in Appendix 7. 
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6.9 Energy optimised resilient infrastructure with fog 

computing heuristic 

The Energy optimised resilient infrastructure fog computing without 

geographical constraints (EORIWG) heuristic, the Energy optimised resilient 

infrastructure fog computing with geographical constraints (EORIG) heuristic 

and Energy optimised resilient infrastructure fog computing with geographical 

constraints and link and node disjoint (EORIGN) heuristic were developed to 

validate the MILP operation and to deliver a real-time solution of the resilient 

scenario without geographical constraints, with geographical constraints, and 

both with geographical constraints and link and node disjoint, respectively. 

The heuristics are developed based on the insights from the results obtained 

from the MILP models. The operations of the EORIWG, EORIG and EORIGN 

heuristics are discussed based on the given flow charts as follows. 

 

6.9.1  Flow of EORIWG heuristic 

 

The heuristic determines the BSs to be used to serve patients to send raw 

health data and receive feedback data and the nodes to place primary and 

secondary processing servers at the access network so that the energy 

consumption of both networking and processing are minimised. Figure 6.34 

shows the flow chart of the EORIGW heuristic. 

 



- 230 - 

 

Figure 6.34: Flow chart for EORIGW heuristic 

 

All patients in the 
selected clinic are 

served? 

All the clinics are 
served? 

Determine the minimum number of candidate nodes to place both primary and secondary 
processing servers (n) 

Calculate the energy consumption resulting from placing the primary and secondary processing 
servers in the minimum number of required nodes (n) considering the transmission of raw health 

data and feedback traffic 

Increase the number of candidate nodes required to host the primary and secondary processing 
servers (n=n+1) and calculate the energy consumption resulting from this placement 

 n nodes result in 
lower energy 
consumption? 

yes 

no 

yes 

no 

yes 

no 
Select n-1 nodes to place the servers 

Group clinics based on the number of connections to BS in cluster 1 and sort in ascending order 

Sort the clinics in each group based on the number of connections to all BSs in ascending order 

Select a clinic with the smallest number of connections to BSs in cluster 1 and the smallest number 

of connections to all BSs 

Sort used BSs that have a connection to the selected clinic based on the total number of clinics each 

BS can serve in ascending order followed by unused BSs in cluster 1 in descending order and the 

unused BSs in cluster 2 in descending order (List A) 

Select the first BS in List A to assign patients 

Assign the patients of the selected clinic to the selected BS and update the available resource of the 

BS 

Start 
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The heuristic begins by grouping the clinics based on the number of BSs in 

cluster 1 it can connect to and sorts the groups in ascending order. For each 

group, the clinics are sorted based on the total number of BSs in both clusters 

the clinic can connect to in ascending order. The heuristic assigns first the 

clinic with the smallest number of connections to the BSs in cluster 1 and the 

smallest number of connections to all BSs in both clusters, to the BSs to help 

in reducing the utilisation of OLTs. Also, it ensures that all clinics are assigned 

to BSs. 

The assignment of clinic patients to a BS is as follows:  The heuristic sorts 

the BSs that have a connection to the clinic under consideration starting with 

BSs previously used by the healthcare application that has available 

resources. These BSs are sorted in ascending order based on the total 

number of clinics the BS can serve followed by the unused BSs in cluster 1 in 

descending order and followed by the unused BSs in cluster 2 also in 

descending order. Sorting the activated BSs in ascending order is used to 

reduce the number of utilised BSs while the descending order of unused BSs 

in cluster 1 followed by the unused BSs in cluster 2 is used to ensure that 

options are left open until late in the allocation process while minimising the 

utilisation of the OLTs. Then, the patients of the clinic under consideration are 

consolidated to the minimum number of BSs to reduce the number of BSs 

used by the healthcare application. Note that, for each patient, the heuristic 

assigned double resources to clinics so that they send their health data to both 

primary and secondary processing servers. 

The heuristic then determines the number of primary and secondary 

processing servers required to serve the patients and the nodes hosting them.  
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The candidate nodes to host the servers are the ONUs connected to the BSs 

selected to serve the patients and the OLTs. Considering the minimum 

number of candidate nodes required to host both primary and secondary 

servers to serve all the patients (which is based on the maximum number of 

servers a node can host), the heuristic finds the combination of candidate 

nodes to host the primary and secondary processing servers that result in 

minimum energy consumption. Limiting the number of candidate nodes to 

place the primary and secondary processing servers reduces the utilisation of 

the Ethernet switches to serve the processing servers.  

The energy consumption that results from hosting both primary and 

secondary processing servers at a combination of candidate nodes is 

calculated by routing the traffic (raw health data traffic) from BSs (starting with 

the BS serving the largest number of patients) to the nearest node with 

available processing capacity of the combination of candidate nodes under 

consideration based on minimum hop routing.  

Also, BSs to send feedback traffic from combination of candidate nodes to 

clinics are selected using the same approach used to select BSs to send raw 

health data. Note that BSs different from those used to send raw health data 

are used to send feedback traffic. The difference is for the same reason as 

explained for the EOFC heuristic in Section 4.4.1.  

The combination of nodes hosting servers considering the minimum 

number of candidate nodes required to host primary and secondary servers 

to serve all the patients that result in minimum energy consumption is 

selected. 
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The heuristic increases the number of candidate nodes to host servers and 

repeats the above process. The decision to select the location to host the 

primary and secondary processing servers with the increasing number of 

candidate node is the same as explained in Section 4.4.1 for EOFC heuristic.  

 

6.9.2 Flow of the EORIG heuristic 

 

The EORIG heuristic determines the BSs to serve patients so as to send raw 

health data and receive feedback data and the nodes to place primary and 

secondary processing servers at the access network so that the energy 

consumption of both networking and processing is minimised and the primary 

and secondary servers are node disjoint (geographical constraints). Below is 

the list of the changes made for the EORIG heuristic compared to EORIGW 

heuristic: 

 

1. The number of candidate nodes to place processing servers is based 

on the total number of candidate nodes to place primary and secondary 

processing servers in disjoint nodes.  

2. Assigning patients from BSs to the primary processing servers is done 

first and the nodes used to place the primary processing servers are 

removed from the combination of nodes before assigning the same 

patients from the BSs to the secondary processing servers. 
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6.9.3 Flow of the EORIGN heuristic 

The heuristic determines the BSs to be used to serve the patients so as to 

send the raw health data and receive feedback data. It also determines the 

nodes to be used to place the primary and the secondary processing servers 

at the access network so that the energy consumption of both networking and 

processing are minimised. Figure 6.35 shows the flow chart of the EORIGN 

heuristic. 
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 Figure 6.35: Flow chart of EORIGN heuristic 

All patients in the 
selected clinic are 

served? 

All the clinics are 
served? 

Determine the minimum number of candidate nodes to place primary processing servers (n) 

Calculate the energy consumption resulting from placing the primary processing servers in the 
minimum number of required nodes (n) considering the transmission of raw health data and 

feedback traffic 

Increase the number of candidate nodes required to host the primary processing servers (n=n+1) 
and calculate the energy consumption resulting from this placement 

 n nodes result in 
lower energy 
consumption? 

yes 

no 

yes 

no 

yes 

no 
Select n-1 nodes to place the servers 

Group clinics based on the number of connections to BS in the selected cluster and sort in 

ascending order 

Sort the clinics in each group based on the number of patients it serves in ascending order 

Select the clinic with the smallest number of connections to BSs in the selected cluster and the 

smallest number of patients served 

Sort used BS in the selected cluster that has a connection to the selected clinic based on the total 

number of clinics it can serve in ascending order followed by unused BSs in that cluster in 

descending order (List A) 

Select the first BS in List A to assign patients 

Assign the patients of the selected clinic to the selected BS and update the available resource of the 

BS 

Start 

Select a cluster to place the primary processing servers  

Remove the used links and nodes and select another cluster to place secondary processing servers 

with minimum energy consumption 
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In the EORIGN heuristic, the selection of the locations to host the primary 

servers and secondary servers are done separately to ensure that the traffic 

to the primary server and the traffic to the secondary servers are routed 

separately (link and node disjoint). In this process, the heuristic begins by 

selecting a cluster to assign the patients in the clinics to the primary 

processing server. Then the heuristic groups the clinics based on the number 

of BSs in the selected cluster it can connect to and sorts the groups in 

ascending order. For each group, the clinics are sorted based on the total 

number of patients it serves in ascending order. The heuristic assigns first the 

clinic with the smallest number of connections to the BSs in the selected 

cluster and the smallest number of patients it serves to the BSs to ensure each 

clinic can be served by at least one BS and to help in packing the BSs (packing 

is optimum when equipment have high idle power consumption).  

The assignment of clinic patients to a BS is as follows: The heuristic sorts 

the BSs in the selected cluster that has a connection to the clinic under 

consideration starting with BSs previously used by the healthcare application 

that has available resources. These BSs are sorted in ascending order based 

on the total number of clinics the BS can serve followed by the unused BSs in 

the selected cluster in descending order. The ascending order of activated 

BSs is used to reduce the number of utilised BS while, the descending order 

of unused BS in the selected cluster is used to ensure that options are left 

open until late in the allocation process. Then, the patients of the clinic under 

consideration are consolidated in the minimum number of BSs to reduce the 

number of BSs used by the healthcare application.  
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The heuristic then determines the number of primary processing servers 

required to serve the patients and the nodes hosting them. The candidate 

nodes to be used to host the servers are the ONUs connected to the BSs 

selected to serve the patients and the OLT of the selected cluster. Considering 

the minimum number of candidate nodes required to host servers to serve all 

the patients (which is based on the maximum number of servers a node can 

host), the heuristic finds the combination of candidate nodes to host the 

primary processing servers that results in minimum energy consumption. 

Limiting the number of candidate nodes used to place the primary processing 

servers is for the same reason as explained in Section 4.4.1 which is to reduce 

the number of Ethernet switches used to serve the processing servers.  

The energy consumption that results from hosting servers at a combination 

of candidate nodes in the selected cluster is calculated as explained for EOFC 

heuristic in Section 4.4.1. The BSs to be used to send feedback traffic from 

combination of candidate nodes to clinics are selected using the same 

approach used to select BSs to send raw health data. Note that different BSs 

are used to send raw health data and to send feedback traffic for the same 

reason as explained in EOFC heuristic in Section 4.4.1.  

The combination of nodes hosting servers considering the minimum 

number of candidate nodes required to host primary processing servers to 

serve all the patients that result in minimum energy consumption is selected. 

As in EOFC heuristic in Section 4.4.1, the heuristic increases the number 

of candidate nodes used to host servers. The energy consumption resulting 

from using this combination of nodes is calculated and compared to the 

energy consumption resulting from the combination of nodes hosting servers 
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considering the minimum number of candidate nodes required to host servers. 

If the latter is lower, the heuristic examines placing servers in more candidate 

nodes. If the former is lower, the minimum number of candidate nodes 

required to host servers is selected to place servers.  

Next, the heuristic removes the links and nodes used to send the traffic to or 

from primary processing servers and selects another cluster to assign patients 

in the clinics to the secondary processing servers. Different clusters are used 

to host the primary and secondary processing servers, which is due to the link 

and node disjoint resilience mandated for network protection. The same 

process is used to allocate patients to the BSs to send raw health data and to 

receive analysed health data feedback. It is also used for the selection of 

locations to host the primary processing servers and to determine the optimal 

location to host the secondary processing server. 

6.10 Results and analysis of the heuristic models 

In this section, we evaluate the performance of the developed heuristics for 

server protection, the EORIWG heuristic and EORIG heuristics, and heuristic 

for server and network protection, EORIGN heuristic, compared to the MILP 

results in term of the energy consumption of networking equipment and 

processing. The evaluations are performed for both ECG monitoring 

applications and fall monitoring applications considering all levels of demand 

and 100% of demand level, respectively. As in the previous chapters, the 

heuristics are running on a normal PC with 3.2 GHz CPU and 16 GB RAM. 
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6.10.1 EORIWG heuristic results 

 

Figure 6.36-(a) for ECG monitoring applications shows that the total energy 

consumption of EORIWG heuristic is equal to that of the MILP model when 

the demand levels are 20% and 40% for all number of processing servers per 

candidate node. This is due to the ability to use the minimum number of 

primary and secondary processing servers and the number of candidate 

nodes to place the processing servers that are built into the EORIWG heuristic 

while assigning the patients from clinics to the processing servers.  

Figure 6.36-(a) also shows that the total energy consumption of the 

EORIWG heuristic is higher than the MILP model with an average of 0.17%, 

0.42% and 0.44%, at demand levels of 60%, 80% and 100%, respectively as 

shown in Table 6.7. The higher energy consumed in the EORIWG heuristic is 

because at demand levels of 60% and 100%, increasing the patients has 

resulted in utilising more base stations to send the raw ECG data to the 

processing servers as shown in Figure 6.37-(a). In the EORIGW heuristic, all 

base stations in cluster 1 are utilised, and due to the different connections of 

each clinic to the base stations, the utilisation of the resources in the selected 

base stations are not maximised. Therefore, the base stations in cluster 2 are 

also used to serve the patients from the remaining clinics. 

Also, at demand levels of 80% and 100%, the number of base stations 

utilised in the EORIGW heuristic to send the feedback traffic is higher than in 

the MILP model, as shown in Figure 6.37-(a), hence more networking 

equipment energy is consumed in the EORIWG heuristic compared to the 

MILP model. Note that, increasing the number of base stations to send the 

processing traffic results in more impact on the energy of networking 
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equipment compared to the growing number of base stations used to send the 

feedback traffic.  Also note that, in EORIWG heuristic, the number of 

candidate nodes used to place the processing servers is equal to the minimum 

required candidate nodes to place both primary and secondary processing 

servers. Therefore, due to the restricted number of candidate nodes to place 

the processing servers, the centre aggregation switch (CAS) is activated in 

the EORIWG heuristic to send the ECG signal to the processing servers 

located at different clusters when the demand levels increase to or more than 

60%. The utilisation of the CAS has increased the energy consumption of 

networking equipment in the EORIWG heuristic. 

Meanwhile, Figure 6.36-(b) for fall monitoring applications, shows that, at a 

demand level of 100%, the total energy consumption in EORIWG heuristic is 

higher than the MILP model for all the different numbers of processing servers 

per candidate node. The average energy increase in the EORIWG heuristic 

compared to MILP model is 2.56% as shown in Table 6.7. The increased 

energy consumed in the EORIWG heuristic is for the same reasons as 

explained for the ECG monitoring application when the demand level is equal 

to or more than 60%. Note that, the high energy consumed in the EORIWG 

heuristic is also due to the increasing number of base stations needed to send 

the analysed health data feedback traffic shown in Figure 6.37-(b). 

We also evaluated the computational time needed to run the EORIGW 

heuristic and the MILP model. The results show that, for 100% of patients and 

three processing servers per candidate node, the EORIGW heuristic running 

on a normal PC with 3.2 GHz CPU and 16 GB RAM took 86 sec and 35.3 sec 

to finish for ECG and fall monitoring applications, respectively. Meanwhile, the 
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MILP model running on high-performance computing (HPC) cluster with a 12 

core CPU and 64 GB RAM took a longer time than the heuristics with 4 hours 

and 42 minutes for ECG monitoring applications and 7 hours and 47 minutes 

for fall monitoring applications. 

 

 

(a) 

 

(b) 

Figure 6.36: Total energy consumption of both networking equipment and 

processing for the MILP model and the EORIWG heuristic for (a) the ECG 

monitoring application with different percentages of the total number of 

patients (b) fall monitoring application at 100% of the total number of patients, 

for different number of processing servers per candidate node 
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Table 6.7: Average optimisation gaps between the MILP model and EORIWG 

heuristic for ECG and fall monitoring applications for different percentages of 

patients 

Percentage of 

Patients 

Type of 

Monitoring 

Percentage of Patients 

20% 40% 60% 80% 100% 

Total Energy ECG 0% 0% 0.17% 0.42% 0.44% 

Fall - - - - 2.56% 

Network Energy ECG 0% 0% 12.25% 32.36% 35.31% 

Fall - - - - 26.58% 

Processing 

Energy 

ECG 0% 0% 0% 0% 0% 

Fall - - - - 0% 

 

 

(a) 
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(b) 

Figure 6.37: Number of base stations used to serve the processing and 

feedback tasks for the MILP model and the EORIWG heuristic for (a) the ECG 

monitoring application with different percentages of the total number of 

patients, (b) the fall monitoring application at 100% of the total number of 

patients, for different number of processing servers per candidate node  

 

6.10.2 EORIG heuristic results 

 

The results in Figure 6.38-(a) for ECG monitoring applications show that the 

total energy consumption of EORIG heuristic is equal to that produced by the 

MILP model at demand levels of 20% and 40% for all the different numbers of 

processing servers per candidate node. This is mainly due to the ability to 

utilise the minimum number of primary and secondary processing servers and 

number of candidate nodes to place the processing servers that are built in 

the EORIG heuristic while assigning the patients to the processing servers. 
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Also, as the size of demand is small, the same number of networking 

equipment is utilised in both EORIG heuristic and MILP model.  

Figure 6.38-(a) also shows that the total energy consumption of the EORIG 

heuristic is higher than that produced by the MILP optimisation model with an 

average increase of 0.17%, 0.39% and 0.39% when the demand levels are 

60%, 80% and 100%, respectively. The high energy consumed in EORIG 

heuristic at demand levels of 60% and 100% is due to the high number of 

utilised base stations to send the processing and feedback traffic as shown in 

Figure 6.39-(a). Note that, the base stations in cluster 1 and cluster 2 are used 

to serve the processing traffic due to the limitation of the connection between 

the clinics and the base stations. Also, at 80% and 100% of the maximum 

demand level, the higher energy consumed in the EORIG heuristic is due to 

the utilisation of the centre aggregation switch (CAS) to relay the processing 

traffic between the clusters to the processing servers. This is due to the same 

reason as explained in Section 6.9.1.  

Meanwhile, Figure 6.38-(b) for fall monitoring applications, shows that the 

total energy consumed in EORIG heuristic is higher than that reported by the 

MILP optimisation model with an average increase of 2.51%. The higher 

energy consumed in the EORIG heuristic is due to the higher number of 

utilised networking equipment, including the base stations as shown in Figure 

6.39-(b) in the EORIG heuristic compared to the MILP model as explained 

above. Also, this is due to the utilisation of the centre aggregation switch in 

the EORIG heuristic to relay the raw health data traffic between the clusters.  

We also evaluate the computational time to run the EORIG heuristic and 

the MILP model for 100% of patients and three processing servers per 
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candidate node. The results show that the EORIGW heuristic running on a 

normal PC with 3.2 GHz CPU and 16 GB RAM took 47 sec and 101 sec to 

finish for ECG and fall monitoring applications, respectively. Meanwhile, the 

MILP model running on a high-performance computing (HPC) cluster with a 

12 core CPU and 64 GB RAM for ECG and fall monitoring applications was 

manually stopped after 47 hours and 24 hours, respectively. 

 

(a) 

 

(b) 

Figure 6.38: Total energy consumption of both networking equipment and 

processing for the MILP model and the EORIG heuristic for (a) ECG 

monitoring applications with different percentage of patients (b) fall monitoring 

applications at 100% of patients, for different number of processing servers 

per candidate node 
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Table 6.8: Average optimisation gaps between the MILP model and EORIG 

heuristic for ECG and fall monitoring applications 

Percentage of 

Patients 

Type of 

Monitoring 

Percentage of Patients 

20% 40% 60% 80% 100% 

Total Energy ECG 0% 0% 0.17% 0.39% 0.39% 

FALL - - - - 2.51% 

Network Energy ECG 0% 0% 11.95% 29.01% 30.11% 

FALL - - - - 25.8% 

Processing 

Energy 

ECG 0% 0% 0% 0% 0% 

FALL - - - - 0% 

 

 

(a) 



- 247 - 

 

(b) 

Figure 6.39: Number of base stations used to serve the processing and 

feedback tasks for the MILP model and the EORIG heuristic for (a) ECG 

monitoring application with different percentage of patients, (b) fall monitoring 

application at 100% of patients, for different number of processing servers per 

candidate node 

 

6.10.3 EORIGN heuristic results 

The results in Figure 6.40-(a) for ECG monitoring applications show that the 

total energy consumption of EORGN heuristic is equal to the energy 

consumption reported by the MILP optimisation model at demand levels of 

20%, 40%, 60%, and 80% for all number of processing servers per candidate 

node. This is due to the same amount of utilised networking equipment and 

processing servers in both models. Figure 6.40-(a) also shows that, at a 

demand level of 100%, the total energy consumption of the EORIGN heuristic 

is slightly higher than the MILP model with an average difference of about 

0.1%. This is due to the limited number of connections between the base 



- 248 - 

stations and the clinics in each cluster. Hence resulting in the utilisation of a 

higher number of base stations in the EORIGN heuristic, as shown in Figure 

6.41-(a) to serve the processing traffic without maximising the utilisation of its 

resources. 

Meanwhile, for fall monitoring applications, Figure 6.40-(b) shows that 

the total energy consumption in the EORIGN heuristic is higher than the MILP 

model with an average energy increase of 1.83% in the EORIGN heuristic 

compared to the MILP. The increase in the energy consumption reported by 

the EORIGN heuristic is due to the higher number of base stations used to 

serve both processing and feedback traffic as shown in Figure 6.41-(b).  

Table 6.9 also shows that, for all the considered demands and number of 

processing servers per candidate node, there are no optimisation gaps 

between the processing energy of the EORIGN heuristic and MILP model for 

the ECG and fall monitoring applications. This is due to the minimal number 

of processing servers utilised in the EORIGL heuristic, hence the same 

processing energy is consumed in both EORIGL heuristic and MILP model. 

We also evaluate the computational time needed to run the EORIGN 

heuristic and the MILP model for 100% of patients and three processing 

servers per candidate node. The results show that, the EORIGN heuristic 

running on a normal PC with 3.2 GHz CPU and 16 GB RAM took 18 sec and 

15 sec to finish for ECG and fall monitoring applications, respectively. 

Meanwhile the MILP model running on a high performance computing (HPC) 

cluster with a 12 core CPU and 64 GB RAM for ECG monitoring applications 

is manually stopped after 24 hours while for fall monitoring applications it took 

192 sec to finish. 
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(a) 

 

(b) 

Figure 6.40: Total energy consumption of networking equipment and 

processing for the MILP model and the EORIGN heuristic (a) ECG monitoring 

application with different percentages of the total number of patients (b) fall 

monitoring application at 100% of the total number of patients, for different 

number of processing servers per candidate node 
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Table 6.9: Optimisation gaps between the MILP model and EORIGN heuristic 

for ECG and fall monitoring applications 

Percentage of 

Patients 

Type of 

Monitoring 

Percentage of Patients 

20% 40% 60% 80% 100% 

Total energy ECG 0% 0% 0% 0% 0.10% 

FALL - - - - 1.83% 

Network energy ECG 0% 0% 0% 0% 7.79% 

FALL - - - - 18.08% 

Processing energy ECG 0% 0% 0% 0% 0% 

FALL 0% 0% 0% 0% 0% 

 

 

(a) 
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(b) 

Figure 6.41: Number of base stations used to serve the processing and 

feedback tasks for the MILP model and the EORIGN heuristic for (a) ECG 

monitoring application with different percentages of the total number of 

patients, (b) fall monitoring application at 100% of the total number of patients, 

for different number of processing servers per candidate node 

 

6.11 Conclusions 

In this chapter, a resilient energy efficient fog computing infrastructure for 

health monitoring applications was proposed. The infrastructure is designed 

to be resilient against server failures under two scenarios; without 

geographical constraints and with geographical constraints and resilient 

against both server and network failures with geographical constraints and link 

and node disjoint resilience, respectively. Two types of health applications are 

considered to evaluate the performance of the proposed resilient 
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infrastructure separately, which are ECG and fall monitoring applications. The 

patients from the clinics will send the required health data, for processing, 

analysis and decision making at both primary and secondary processing 

servers. A Mixed Integer Linear Programming (MILP) model, is used to 

optimise the number and locations of the primary and secondary processing 

servers, so that the energy consumption of both networking equipment and 

processing are minimised.  

The results show that, considering a scenario for server protection without 

geographical constraints compared to the non-resilient scenario, incurs a high 

energy penalty of networking equipment for high demand. However, this 

penalty can be reduced by increasing the number of processing servers 

allowed at each candidate node, as more processing servers can be placed 

at each candidate node, hence reducing the amount of networking equipment 

(i.e. Ethernet switches) utilised. The results also reveal that the energy 

consumption of processing in the resilient scenario without any geographical 

constraints, is higher than that of the non-resilient scenario, as the latter 

scenario does consider secondary processing servers.  

Meanwhile, for ECG monitoring applications, increasing the level of 

resilience to consider geographical constraints at a low level of demand (i.e. 

20%), has resulted in the highest energy penalty, compared to the higher 

levels of demand. This is because more nodes are utilised, to place the 

processing servers under the geographic constraints. However, when the 

demand level increases from 40% to 100%, increasing the level of resilience 

does not incur an energy penalty, and this depends on the number of 

processing servers allowed at each candidate node. Also, increasing the 
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number of processing servers per candidate node at a demand level between 

40% and 100%, can either decrease or increase the energy penalty. The 

increase in the energy penalty, is because of the reduction in the number of 

candidate nodes needed to place the processing servers in the resilient 

scenario, without geographical constraints. On the other hand, the decrease 

in the energy penalty, is because of the reduced number of candidate nodes 

needed to place the processing servers in the resilient scenario, with 

geographical constraints. However, the energy penalty due to considering 

geographical constraints at a demand level equal to or more than 40%, is less 

than 7%. The results also show that the same energy of processing is 

consumed in both resilient scenarios, for all processing servers per candidate 

node. This is because the same number of servers are used in both scenarios, 

as the patients were optimally consolidated in the processing servers. Also, 

the same patterns of energy penalty occur in fall monitoring applications, at a 

demand level of 100%. 

The results also show that increasing the level of resilience to consider the 

geographical constraint for server protection and link and node disjoint 

resilience for network protection compared to only geographic constraints 

gives the same energy consumption of processing, while increasing the 

energy consumption of networking equipment. The increase in energy of 

networking is the penalty for having a higher level of resilience. The results 

indicate that considering disjoint link and node resilience has resulted in a low 

network energy penalty at high demands for both ECG and fall monitoring 

applications due to the activation of a large part of the network in any case 

due to the demands. Also, for both ECG and fall monitoring applications, 
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increasing the number of processing servers at each candidate node can 

reduce the energy penalty of the network at high demand levels.  

Three heuristic models, EORIWG heuristic, EORIG heuristic, and EORIGN 

heuristic were also developed for real-time solution of the resilient scenario 

without geographical constraints, with geographical constraints, and both with 

geographical constraints and link and node disjoint, respectively. The results 

show that the performance of both EORIWG and EORIG heuristic models are 

the same as the MILP models at low demand levels (i.e. 20%) while for the 

EORIGN heuristic, the performance are the same as MILP model at demand 

level of 20% to 80%, under ECG monitoring applications. However, increasing 

the level of demand has resulted in an increase in the energy consumption of 

the networking equipment in EORIWG, EORIG and EORIGN heuristics 

compared to the MILP models. This is mainly due to the high number of 

networking equipment utilised in the networks. However, the total optimisation 

gaps between the heuristics and MILP models for both monitoring applications 

is less than 3%.  
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Chapter 7 

Summary of contributions and future work 

 

This chapter provides a summary of the main contributions that have been 

presented in this thesis. It also suggests possible future research directions in 

the area of energy efficiency of health monitoring applications leveraging the 

use of fog computing. 

7.1 Summary of contributions 

The limited computation and storage capabilities of a wireless body sensor 

have led to the need for cloud computing for health monitoring applications. 

However, the massive data transfer to the cloud contributes to high latency. 

Therefore, fog computing is a potential solution that can overcome the 

limitations at the cloud network. The increasing ageing population and chronic 

diseases have increased the demand for remote health monitoring services. 

With this rising demand for fog-based remote healthcare services, the energy 

consumption in the transport network has become a significant issue. 

To address the energy issues, the first contribution in this thesis was to 

propose a network framework for energy-efficient health monitoring 

applications leveraging fog computing realised in a network architecture 

based on Gigabit Passive Optical Networks (GPON). 

Energy-efficient fog computing (EEFC) was proposed in Chapter 3, and a 

MILP optimisation model was developed to minimise the energy consumption 

of networking equipment and processing. The number and locations of the 
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processing servers (i.e. fog servers) were optimised in the access network. In 

Chapter 4, the performance of the EEFC model (fog approach) was evaluated 

using low data rate ECG monitoring applications. A maximum network saving 

of 83.1% was achieved by the EEFC model when compared to the 

conventional approach (i.e. energy-efficient cloud computing, EECC model), 

where the processing is performed at the cloud. Additionally, the total saving 

of both networking and processing in the EEFC model was 35.7% compared 

to the EECC model. For real-time implementation, the Energy Optimised Fog 

Computing (EOFC) heuristic algorithm was developed. The results show the 

EOFC heuristic works as good as the MILP model. This is due to the ability to 

use the minimum number of processing servers, the minimum number of 

candidate nodes to place the processing servers and the minimum number of 

networking equipment (i.e. base stations) that are built into the EOFC heuristic 

while assigning the patients from clinics to the processing servers. Also, the 

computational time for EOFC heuristic is lower than the MILP model. The 

investigation was taken further to show the energy efficiency of fog computing 

for health monitoring applications, considering a reduction in the idle power of 

the equipment, increasing traffic and different access network (i.e. Ethernet). 

The results show that the EEFC model and EOFC heuristic always has the 

lowest energy consumption compared to the conventional approach. 

However, allowing only one processing server at each candidate node at the 

access layer has resulted in high energy consumption of both networking 

equipment and processing compared to the EECC model. The high energy 

consumed in the EEFC model is due to the limited link capacities at the access 

network to consolidate patients in the processing servers; hence, it increases 
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the total utilised processing servers and networking equipment in the fog 

approach 

The results also reveal that deploying fog computing under a GPON 

network is more energy-efficient than in the Ethernet network. It is worth noting 

that the OLT (i.e. aggregation switch for Ethernet access network) is always 

chosen to place the processing servers. However, due to the increasing 

number of patients and the limited number of processing servers that can be 

served in a single node, this has resulted in placing the remaining processing 

servers at the ONU. 

The energy efficiency of fog computing to serve high data rate for fall 

monitoring applications was also investigated in Chapter 5. Two scenarios 

were considered. The first involved limiting the number of patients that can be 

served in a single processing server. The second limited the number of 

processing servers that are allowed at each candidate node, while a single 

processing server can serve 20% of the maximum patients considered in the 

network. The same MILP model in Chapter 3 was used with additional 

constraints to meet the requirements of the second scenario due to limiting 

the number of processing servers allowed at each candidate node. The results 

reveal that a total energy saving of 37.7% is achieved in the EEFC model 

compared to the EECC model, when 20% of the maximum patients can be 

served in a single processing server. Furthermore, the total energy 

consumption of networking equipment and processing in both fog (EEFC 

model) and cloud (EECC model) reduced significantly when more patients can 

be served in a single processing server as less processing servers are utilised. 

There was a 52.2% total energy saving achieved in the EEFC model 
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compared to the EECC model when all patients can be served by a single 

processing server. Meanwhile, limiting the number of processing servers that 

can be accommodated at each candidate node resulted in high energy 

consumption of networking equipment and processing. This is because more 

networking devices (i.e. Ethernet switches) are utilised to place the processing 

servers. Additionally, the results show that the OLT is always used to place 

the processing servers, as it is the nearest central location to the patients. 

However, due to the limited number of servers that can be accommodated in 

a single node, the ONU is used to place the remaining processing servers that 

cannot be allocated at the OLT. The performance of EOFC heuristic was also 

investigated, and the results show that it works as good as the MILP model in 

both scenarios with less than 3% optimisation gap. The low optimisation gap 

is due to the same reasons as explained above for ECG monitoring 

applications. In addition, the computational time for EOFC heuristic is lower 

than the MILP models.  

A resilient energy-efficient fog computing infrastructure for health 

monitoring applications for server protections was investigated in Chapter 6. 

The MILP model was developed to optimise the number and location of 

primary and secondary processing servers to minimise the total energy 

consumption of networking equipment and processing under ECG and fall 

monitoring applications, separately. The MILP model is tested under two-

levels of resilience without geographical constraints and with geographical 

constraints. The results reveal that considering resilience has resulted in 15% 

- 86% network energy penalty under low data rate for ECG monitoring 

applications, depending on the level of demand, the energy penalty with high 

data rate for fall monitoring applications is approximately 93% at high demand. 
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Moreover, for both applications, the added resilience increased the energy 

consumption associated with processing by 50%. The increase in the energy 

of network and processing is because the resilient scenario without 

geographical constraints has increased the total traffic and the number of 

processing servers. However, the energy penalty can be reduced when more 

processing servers are accommodated at each candidate node, as fewer 

Ethernet switches are used to place the processing servers.  Adding 

geographical constraints for server protection (i.e. primary and secondary 

processing servers have to be node disjoint) does not add any significant 

energy consumption of networking equipment (i.e. less than 10%), while the 

same energy of processing is consumed for both ECG and fall monitoring 

applications. Furthermore, increasing the number of processing servers can 

reduce the energy penalty in the more resilient scenario. 

Since geographical constraints do not significantly increase the energy 

consumption, therefore, Chapter 6 also considered the protection of the 

servers with geographical constraints with additional network protection with 

link and node disjoint resilience. The same MILP model for resilient scenario 

with geographical constraints is used with additional constraints for network 

protection. The results show that considering server protection with 

geographical constraints and network protection with link and node disjoint 

resilience resulted in 17% - 86% network energy penalty under low data rate 

for ECG monitoring applications. This penalty depends on the demand level. 

Meanwhile, the energy penalty is approximately 6.3% when a high data rate 

for fall application is considered at high demand. However, the energy penalty 

of the network can be reduced by increasing the number of processing servers 

that can be served at each candidate node. The reduction in energy penalty 
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occurs because increasing the number processing servers at each candidate 

node can reduce the amount of Ethernet switches to place the processing 

servers. Also, the same energy of processing is consumed regardless of the 

increase in level of resilience. The results also show that, the performance of 

the developed heuristic for all resilient scenarios approaches that of the MILP 

results with less than 3% optimisation gap. This is due to the same reasons 

as explained for the EOFC heuristic. Also, the computational time to run the 

heuristic models are lower than the MILP models. 

As conclusions, this work has shown that optimising the number and 

location of processing servers at fog (i.e. network edge) can reduce the energy 

consumption of networking equipment and processing compared to the 

conventional approach where the processing servers are located at the cloud. 

The low energy consumption of the networking equipment and processing in 

the proposed approach can reduce the cost of operations for services 

providers. The proposed fog computing approach can also be used for other 

applications by changing the parameters related to that application. However, 

this only limited to the applications that have specific time constraints to 

determine the parameter inputs. Also note that different parameters (i.e. time 

constraints, processing and analysis time of the health data) used in the model 

will impact the performance of both fog computing approach and cloud 

computing approach in terms of energy consumption of the networking 

equipment and processing. In addition, this work also studies the impact of 

increasing the level of resilience in the fog computing infrastructure and 

proposed a solution to reduce the energy consumption of networking 

equipment and processing by increasing the number of processing servers 

per candidate node. We also developed a heuristic model for each MILP 
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model to validate the MILP operation and to deliver a real-time solution based 

on the insights from the MILP result. The results show that the performance 

of the heuristics is equal to or approaching the MILP results with less than 3% 

optimisation gaps. In addition, the computational time for all developed 

heuristics is lower than the MILP models. Therefore, the developed heuristics 

can be used for other applications with specific time constraints as explained 

above and are not limited to health monitoring applications. 

7.2 Future directions 

This thesis has investigated the use of fog computing for Internet of Things 

applications (i.e. health monitoring applications) to improve the energy 

efficiency of networking equipment and processing. Various MILP models and 

heuristic-based algorithms have been proposed and shown to improve the 

energy performance of networking equipment and processing significantly. 

Although the energy of networking equipment and processing increase with 

the increasing level of resilience, however, these energies are reduced by 

increasing the number of servers that can be served at each candidate node. 

These investigations have helped identify the following future research 

directions that could be explored: 

 

1. Energy-efficient network slicing for healthcare applications 

 

In this thesis, we investigated two types of health monitoring applications; 

ECG monitoring applications and fall monitoring applications running 

separately. Therefore, it is valuable to study different healthcare applications 
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that require different processing time and have different delay tolerances 

when running at the same time. A model could be developed in this scenario 

to carry out network embedding while minimising the energy consumption of 

networking equipment and processing. 

 

2. Resilient virtualised infrastructure for healthcare 

 

In this thesis, the impact of increasing the level of resilience for server 

protection and network protection on the energy consumption of both 

networking equipment and processing has been investigated. Therefore, in 

addition to the idea of network embedding for multiple healthcare applications, 

it is valuable to explore the potential to reduce the energy consumption of the 

networking equipment and processing by allowing one network slice to share 

the processing and networking infrastructure of the other network slice for 

protection. A model could be developed to carry out network embedding 

considering the proposed resilient scenarios in this thesis, while minimising 

the energy consumption of both networking equipment and processing.  
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Appendix 1 

Sets, parameters and variables used in the thesis 

 Sets 

𝐶𝐿 Set of clinics 

𝐵𝑆 Set of BSs 

𝑂𝑁𝑈 Set of ONUs 

𝑂𝐿𝑇 Set of OLTs 

𝐶𝐴𝑆 Set of centre aggregation switches 

𝐴𝑅 Set of aggregation routers 

𝐶𝑅 Set of core routers 

𝐶𝐿𝑅 Set of cloud routers 

𝐶𝐿𝑆 Set of cloud switches 

𝐶𝑆 Set of content servers 

𝐶𝑆𝑇 Cloud storage 

𝑁𝑚 Set of neighbouring nodes of node 𝑚 in the network 

𝑁 Set of nodes (𝑁 ∈ 𝐶𝐿 ∪ 𝐵𝑆 ∪ 𝑂𝑁𝑈 ∪ 𝑂𝐿𝑇 ∪ 𝐶𝐴𝑆 ∪ 𝐴𝑅 ∪ 𝐶𝑅 ∪

𝐶𝐿𝑅 ∪ 𝐶𝐿𝑆 ∪ 𝐶𝑆 ∪ 𝐶𝑆𝑇) 

𝐹𝑁 Set of candidate locations to deploy PS (𝐹𝑁 ∈ 𝑂𝑁𝑈 ∪ 𝑂𝐿𝑇 for fog 

while 𝐹𝑁 ∈ 𝐶𝐿𝑆 for conventional) 

Set: Additional for Chapter 4 

𝐴𝑆𝑊 Set of access switches 

Set: Additional for Chapter 6 

𝑁𝐷 Set of BSs, ONUs and OLTs (access layer) 

Parameters  

𝑠 𝑎𝑛𝑑 𝑑 Denote source node 𝑠 and destination node 𝑑 of traffic between 

a node pair 
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𝑖 𝑎𝑛𝑑 𝑗 Denote end nodes of a physical link in the network, 𝑖, 𝑗 ∈ 𝑁 

𝑃𝑠 Number of patients in clinic 𝑠  

𝐼𝐵𝑆 Idle power consumption of a base station (W) 

𝑃𝐵𝑆 Power per physical resource block (PRB) of a base station 

(W/PRB) 

Ɍ  Maximum number of PRBs in a base station dedicated for 

healthcare applications 

𝑃𝑂𝑁𝑈 Maximum power consumption of an ONU (W) 

𝐼𝑂𝑁𝑈 Idle power consumption of an ONU (W) 

𝐶𝑂𝑁𝑈 Maximum capacity of an ONU (bps) 

𝑃𝑂𝐿𝑇 Maximum power consumption of an OLT (W) 

𝐼𝑂𝐿𝑇 Idle power consumption of an OLT (W) 

𝐶𝑂𝐿𝑇 Maximum capacity of an OLT (bps) 

𝑃𝐶𝐴𝑆 Maximum power consumption of a centre aggregation switch (W) 

𝐼𝐶𝐴𝑆 Idle power consumption of a centre aggregation switch (W) 

𝐶𝐶𝐴𝑆 Maximum capacity of a centre aggregation switch (bps) 

𝑃𝐴𝑅 Maximum power consumption of an aggregation router (W) 

𝐼𝐴𝑅 Idle power consumption of an aggregation router (W) 

𝐶𝐴𝑅 Maximum capacity of an aggregation router (bps) 

𝑃𝐶𝑅 Maximum power consumption of a core router (W) 

𝐼𝐶𝑅 Idle power consumption of a core router (W) 

𝐶𝐶𝑅 Maximum capacity of a core router (W) 

𝑃𝐶𝐿𝑅 Maximum power consumption of a cloud router (W) 

𝐼𝐶𝐿𝑅 Idle power consumption of a cloud router (W) 

𝐶𝐶𝐿𝑅 Maximum capacity of a cloud router (bps) 

𝑃𝐶𝐿𝑆 Maximum power consumption of a cloud switch (W) 
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𝐼𝐶𝐿𝑆 Idle power consumption of a cloud switch (W) 

𝐶𝐶𝐿𝑆 Maximum capacity of a cloud switch (bps) 

𝑃𝐶𝑆 Maximum power consumption of a content server (W) 

𝐼𝐶𝑆 Idle power consumption of a content server (W) 

𝐶𝐶𝑆 Maximum capacity of a content server (bps) 

𝑃𝐶𝑆𝑇 Maximum power consumption of a cloud storage (W) 

𝐼𝐶𝑆𝑇 Idle power consumption of a cloud storage (W) 

𝐶𝐶𝑆𝑇 Maximum capacity of a cloud storage (bit) 

𝑃𝑃𝑆 Maximum power consumption of a processing server (W) 

𝐼𝑃𝑆 Idle power consumption of a processing server (W) 

𝛺𝑚𝑎𝑥 Maximum number of patients per processing server  

𝛬𝑚𝑎𝑥 Maximum storage capacity of processing server (bit) 

𝛿𝑎 Data rate per patient to send raw health data from clinic to 

processing server (bps) 

𝜏𝑎 Transmission time per patient to send raw health data from clinic 

to processing server (s)  

𝑅𝑎 Physical resource block per patient to send raw health data from 

clinic to processing server 

𝛼 Size of analysed health data per patient (bit) 

𝛿𝑏 Data rate per patient to send analysed health data from 

processing server to clinic (bps) 

𝜏𝑏 Transmission time per patient to send analysed health data from 

processing server to clinic (s) 

𝑅𝑏 Physical resource block per patient to send analysed health data 

from processing server to clinic 

𝛿𝑐 Data rate per patient to send analysed health data from 

processing server to cloud storage (bps) 
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𝜏𝑐 Transmission time per patient to send analysed health data from 

processing server to cloud storage (s) 

𝛿𝑠𝑑 𝛿𝑠𝑑 = 1 to send the storage traffic from processing servers 

located at candidate node 𝑠, to the cloud storage node 𝑑, 𝑠 ∈

𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇 

𝑥 Fraction of idle power consumption of networking equipment 

contributed by the healthcare application under consideration 

𝜆𝑖𝑗 The capacity of link 𝑖𝑗 dedicated for the healthcare application 

under consideration (bps) 

𝜂 Power usage effectiveness (PUE) of the access network, metro 

network and IP over WDM network  

𝑐 Power usage effectiveness (PUE) of the fog (processing server) 

and cloud equipment 

𝑀 A large enough number 

Parameters: Additional for Chapter 4 

𝑃𝐴𝑆𝑊 Maximum power consumption of an access switch (W) 

𝐼𝐴𝑆𝑊 Idle power consumption of an access switch (W) 

𝐶𝐴𝑆𝑊 Maximum capacity of an access switch (bps) 

𝑃𝐴𝐺𝑆 Maximum power consumption of an aggregation switch (W) 

𝐼𝐴𝐺𝑆 Idle power consumption of an aggregation switch (W) 

𝐶𝐴𝐺𝑅 Maximum capacity of an aggregation switch (bps) 

Parameters: Additional for Chapter 5 

𝑁 Maximum number of processing servers per candidate node 

Variables  

𝑃𝑠𝑑 Raw health data traffic from source node 𝑠 to destination node 𝑑 

(bps), 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁 
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𝑃𝑖𝑗
𝑠𝑑 Raw health data traffic from source node 𝑠 to destination node 

𝑑 that traverses the link between nodes 𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐶𝐿, 𝑑 ∈

𝐹𝑁, 𝑖, 𝑗 ∈ 𝑁  

𝑃𝑖 Total raw health data traffic that traverses node 𝑖 (bps), 𝑖 ∈ 𝑁 

𝐹𝑠𝑑 Analysed health data feedback traffic from source node 𝑠 to 

destination node 𝑑 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿  

𝐹𝑖𝑗
𝑠𝑑 Analysed health data feedback traffic from source node 𝑠 to 

destination node 𝑑 that traverses the link between nodes 𝑖 and 𝑗 

(bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿, 𝑖, 𝑗 ∈ 𝑁 

𝐹𝑖 Total analysed health data feedback traffic that traverses node 𝑖 

(bps), 𝑖 ∈ 𝑁 

𝑆𝑠𝑑 Analysed health data storage traffic from source node 𝑠 to 

destination node 𝑑 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇  

𝑆𝑖𝑗
𝑠𝑑 Analysed health data storage traffic from source node 𝑠 to 

destination node 𝑑 that traverses the link between nodes 𝑖 and 𝑗 

(bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇, 𝑖, 𝑗 ∈ 𝑁  

𝑆𝑖 Total analysed health data storage traffic that traverses node 𝑖 

(bps), 𝑖 ∈ 𝑁 

⍵𝑠𝑑 Number of patients from clinic 𝑠 served by processing server 

located at candidate node 𝑑  

𝑃𝑎𝑖𝑗 Number of patients in clinic 𝑖 served by BS 𝑗 to send raw health 

data traffic (integer) 

𝑃𝑏𝑖𝑗 Number of patients in clinic 𝑖 served by BS 𝑗 to receive analysed 

health data feedback traffic (integer) 

𝛽𝑎𝑗  Number of PRBs used in BS 𝑗 to serve raw health data traffic 

(integer) 

𝛽𝑏𝑖  Number of PRBs used in BS 𝑖 to serve analysed health data 

feedback traffic (integer) 
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𝑌𝑑  𝑌𝑑 = 1, if a processing server is placed at candidate node 𝑑, 

otherwise 𝑌𝑑 = 0, 𝑑 ∈ 𝐹𝑁  

𝜙𝑑 Number of processing servers placed at candidate node 𝑑, 𝑑 ∈

𝐹𝑁  

𝜏𝑝𝑑 Processing and analysis time of processing server (seconds) at 

candidate node 𝑑, 𝑑 ∈ 𝐹𝑁  

𝜁𝑎𝑗 𝜁𝑎𝑗 = 1, if raw health data traffic traverses node 𝑗, otherwise  

𝜁𝑎𝑗 = 0, 𝑗 ∈ 𝑁  

𝜁𝑏𝑖  𝜁𝑏𝑖 = 1, if analysed health data feedback traffic traverses node 𝑖, 

otherwise 𝜁𝑏𝑖 = 0, 𝑖 ∈ 𝑁  

𝜃𝑐𝑖 𝜃𝑐𝑖 = 1, if analysed health data storage traffic traverses node 

𝑖 where node 𝑖 is the source of a link, otherwise  

𝜃𝑐𝑖 = 0, 𝑖 ∈ 𝑁 

𝜗𝑐𝑗 𝜗𝑐𝑗 = 1, if analysed health data storage traffic traverses node 𝑗 

where 𝑗 is the end of a link, otherwise  

𝜗𝑐𝑗 = 0, 𝑗 ∈ 𝑁 

𝜁𝑐𝑖 𝜁𝑐𝑖 = 1, if the analysed health data storage traffic traverses node 

𝑖 where 𝜁𝑐𝑖 = 𝜃𝑐𝑖  𝑂𝑅 𝜗𝑐𝑖, otherwise 𝜎𝑖 = 0, 𝑖 ∈ 𝑁 

𝜈𝑖 𝜈𝑖 is a dummy variable that takes value of 𝜃𝑐𝑖⊕𝜗𝑐𝑖, where ⊕ is 

an XOR operation, 𝑖 ∈ 𝑁  

𝐸𝐴𝑁 Energy consumption of access network 

𝐸𝑇𝐵𝑆 Total energy consumption of base stations 

𝐸𝐵𝑆𝑃 Energy consumption of base stations required to relay raw health 

data traffic 

𝐸𝐵𝑆𝐹 Energy consumption of base stations required to relay analysed 

health data feedback traffic 

𝐸𝑇𝑂𝑁𝑈 Total energy consumption of ONUs 
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𝐸𝑂𝑁𝑈𝑃 Energy consumption of ONUs required to relay raw health data 

traffic 

𝐸𝑂𝑁𝑈𝐹 Energy consumption of ONUs required to relay analysed health 

data feedback traffic 

𝐸𝑂𝑁𝑈𝑆 Energy consumption of ONUs required to relay analysed health 

data storage traffic 

𝐸𝑇𝑂𝐿𝑇 Total energy consumption of OLTs 

𝐸𝑂𝐿𝑇𝑃 Energy consumption of OLTs required to relay raw health data 

traffic  

𝐸𝑂𝐿𝑇𝐹 Energy consumption of OLTs required to relay analysed health 

data feedback traffic 

𝐸𝑂𝐿𝑇𝑆 Energy consumption of OLTs required to relay analysed health 

data storage traffic 

𝐸𝑀𝑁 Energy consumption of metro network 

𝐸𝐶𝐴𝑆𝑃 Energy consumption of centre aggregation switches required to 

relay raw health data traffic 

𝐸𝐶𝐴𝑆𝐹 Energy consumption of centre aggregation switches required to 

relay analysed health data feedback traffic 

𝐸𝐶𝐴𝑆𝑆 Energy consumption of centre aggregation switches required to 

relay analysed health data storage traffic 

𝐸𝐴𝑅𝑃 Energy consumption of aggregation routers required to relay raw 

health data traffic 

𝐸𝐴𝑅𝐹 Energy consumption of aggregation routers required to relay 

analysed health data feedback traffic 

𝐸𝐴𝑅𝑆 Energy consumption of aggregation routers required to relay 

analysed health data storage traffic 

𝐸𝐶𝑁 Energy consumption of core network 

𝐸𝐶𝑅𝑃 Energy consumption of core routers required to relay raw health 

data traffic 
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𝐸𝐶𝑅𝐹 Energy consumption of core routers required to relay analysed 

health data feedback traffic 

𝐸𝐶𝑅𝑆 Energy consumption of core routers required to relay analysed 

health data storage traffic 

𝐸𝐶𝐿 Energy consumption of cloud 

𝐸𝐶𝐿𝑅𝑃 Energy consumption of cloud routers required to relay raw health 

data traffic 

𝐸𝐶𝐿𝑅𝐹 Energy consumption of cloud routers required to relay analysed 

health data feedback traffic 

𝐸𝐶𝐿𝑅𝑆 Energy consumption of cloud routers required to relay analysed 

health data storage traffic 

𝐸𝐶𝐿𝑆𝑃 Energy consumption of cloud switches required to relay raw 

health data traffic 

𝐸𝐶𝐿𝑆𝐹 Energy consumption of cloud switches required to relay analysed 

health data feedback traffic 

𝐸𝐶𝐿𝑆𝑆 Energy consumption of cloud switches required to relay analysed 

health data storage traffic 

𝐸𝐶𝑆𝑆 Energy consumption of content servers required to relay 

analysed health data storage traffic 

𝐸𝐶𝑆𝑇𝑆 Energy consumption of cloud storage required to store the 

analysed health data storage traffic 

𝐸𝐹𝑁 Energy consumption of fog nodes 

𝐸𝑃𝑆 Energy consumption of processing servers 

𝐸𝐶𝑆𝑁 Energy consumption of cloud server node 

Variables: Additional for Chapter 4 

𝐸𝑇𝐴𝑆𝑊 Total energy consumption of access switches 

𝐸𝐴𝑆𝑊𝑃 Energy consumption of access switches required to relay raw 

health data traffic 
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𝐸𝐴𝑆𝑊𝐹 Energy consumption of access switches required to relay 

analysed health data feedback traffic 

𝐸𝐴𝑆𝑊𝑆 Energy consumption of access switches required to relay 

analysed health data storage traffic 

𝐸𝑇𝐴𝑆𝐺 Total energy consumption of aggregation switches 

𝐸𝐴𝑆𝐺𝑃 Energy consumption of aggregations switches required to relay 

raw health data traffic 

𝐸𝐴𝐺𝑆𝐹 Energy consumption of aggregation switches required to relay 

analysed health data feedback traffic 

𝐸𝐴𝐺𝑆𝑆 Energy consumption of aggregation switches required to relay 

analysed health data storage traffic 

Variables: Additional for Chapter 6 

⍵𝑎𝑠𝑑 Number of patients from clinic 𝑠 served by primary processing 

servers located at candidate node 𝑑, 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁  

⍵𝑏𝑠𝑑 Number of patients from clinic 𝑠 served by secondary processing 

servers located at candidate node 𝑑, 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁 

𝑌𝑎𝑑 𝑌𝑎𝑑 = 1, if one or more primary processing servers are located 

at candidate node 𝑑, otherwise 𝑌𝑎𝑑 = 0, 𝑑 ∈ 𝐹𝑁  

𝑌𝑏𝑑 𝑌𝑏𝑑 = 1, if one or more secondary processing servers are placed 

at candidate node 𝑑, otherwise 𝑌𝑏𝑑 = 0, 𝑑 ∈ 𝐹𝑁  

𝑧𝑑 𝑧𝑑 is a dummy variable that takes a value of  

𝑌𝑎𝑑⊕𝑌𝑏𝑑, where ⊕ is an XOR operation, 𝑑 ∈ 𝐹𝑁 

𝜙𝑎𝑑 Number of primary processing servers placed at candidate node 

𝑑, 𝑑 ∈ 𝐹𝑁  

𝜙𝑏𝑑 Number of secondary processing servers placed at candidate 

node 𝑑, 𝑑 ∈ 𝐹𝑁  

𝜏𝑝𝑎𝑑 Processing and analysis time of primary processing server 

(seconds) at candidate node 𝑑, 𝑑 ∈ 𝐹𝑁  
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𝜏𝑝𝑏𝑑 Processing and analysis time of secondary processing server 

(seconds) at candidate node 𝑑, 𝑑 ∈ 𝐹𝑁  

𝑃𝑎𝑠𝑑 Raw health data traffic from clinic 𝑠 to primary processing servers 

at destination node 𝑑 (bps), 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁  

𝑃𝑏𝑠𝑑 Raw health data traffic from source node 𝑠 to secondary 

processing servers at destination node 𝑑 (bps), 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁  

𝑃𝑎𝑖𝑗
𝑠𝑑 Raw health data traffic from source node 𝑠 to primary processing 

servers at destination node 𝑑 that traverses the link between 

nodes 𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁, 𝑖, 𝑗 ∈ 𝑁 

𝑃𝑏𝑖𝑗
𝑠𝑑 Raw health data traffic from source node 𝑠 to secondary 

processing servers at destination node 𝑑 that traverses the link 

between nodes 𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐶𝐿, 𝑑 ∈ 𝐹𝑁, 𝑖, 𝑗 ∈ 𝑁 

𝐹𝑎𝑠𝑑 Analysed health data feedback traffic from primary processing 

servers at source node 𝑠 to clinic at node 𝑑 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿  

𝐹𝑏𝑠𝑑 Analysed health data feedback traffic from secondary processing 

servers at source node 𝑠 to clinic at node 𝑑 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿  

𝐹𝑎𝑖𝑗
𝑠𝑑 Analysed health data feedback traffic from primary processing 

servers at source node 𝑠 to clinic at node 𝑑 that traverses the link 

between nodes 𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿, 𝑖, 𝑗 ∈ 𝑁  

𝐹𝑏𝑖𝑗
𝑠𝑑 Analysed health data feedback traffic from secondary processing 

servers at source node 𝑠 to clinic at node 𝑑 that traverses the link 

between nodes 𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝐿, 𝑖, 𝑗 ∈ 𝑁  

𝑆𝑎𝑠𝑑 Analysed health data storage traffic from primary processing 

servers at source node 𝑠 to cloud storage at node 𝑑 (bps), 𝑠 ∈

𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇  

𝑆𝑏𝑠𝑑 Analysed health data storage traffic from secondary processing 

servers at source node 𝑠 to cloud storage at node 𝑑 (bps), 𝑠 ∈

𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇  



- 293 - 

𝑆𝑎𝑖𝑗
𝑠𝑑 Analysed health data storage traffic from primary processing 

servers at source node 𝑠 to cloud storage at node 𝑑 that traverses 

the link between nodes 𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇, 𝑖, 𝑗 ∈ 𝑁 

𝑆𝑏𝑖𝑗
𝑠𝑑 Analysed health data storage traffic from secondary processing 

servers at source node 𝑠 to cloud storage at node 𝑑 that traverses 

the link between nodes 𝑖 and 𝑗 (bps), 𝑠 ∈ 𝐹𝑁, 𝑑 ∈ 𝐶𝑆𝑇, 𝑖, 𝑗 ∈ 𝑁 

𝐿𝑎𝑖𝑗 𝐿𝑎𝑖𝑗 = 1, if the incoming and/or outgoing traffic of primary 

processing servers traverses the link between nodes 𝑖 and 𝑗 

otherwise 𝐿𝑎𝑖𝑗 = 0 

𝐿𝑏𝑖𝑗 𝐿𝑏𝑖𝑗 = 1, if the incoming and/or outgoing traffic of secondary 

processing servers traverses the link between nodes 𝑖 and 𝑗 

otherwise 𝐿𝑏𝑖𝑗 = 0 

𝜌𝑎𝑖 𝜌𝑎𝑖 = 1, if the incoming and/or outgoing traffic of primary 

processing servers traverse node 𝑖, otherwise 𝜌𝑎𝑖 = 0 

𝜌𝑏𝑖 𝜌𝑏𝑖 = 1, if the incoming and/or outgoing traffic of secondary 

processing servers traverses node 𝑖, otherwise 𝜌𝑏𝑖 = 0 
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Appendix 2 

Source code for Energy Efficient Fog Computing (EEFC) model 

 

#SETS 

set N; set CL; set BS; set ONU; set OLT; set CAS; set AR; set CR; 

set CLR; set CLS; set CS; 

set CST; set FN; set Nm{N} within N; 

 

#PARAMETERS 

param Pt{i in CL} >=0; 

param PBS >=0; param IBS >=0; param R >=0; 

param PONU >=0; param IONU >=0; param CONU >=0; 

param POLT >=0; param IOLT >=0; param COLT >=0; 

param PCAS >=0; param ICAS >=0; param CCAS >=0; 

param PAR >=0; param IAR >=0; param CAR >=0; 

param PCR >=0; param ICR >=0; param CCR >=0; 

param PCLR >=0; param ICLR >=0; param CCLR >=0; 

param PCLS >=0; param ICLS >=0; param CCLS >=0; 

param PCS >=0; param ICS >=0; param CCS >=0; 

param PCST >=0; param ICST >=0; param CCST >=0; 

param PPS >=0; param IPS >=0; param Lambda_max >=0; 

param delta_a >=0; param tau_a>=0; param R_a >=0; 

param delta_b >=0; param tau_b >=0; param R_b >=0; 

param delta_c >=0; param tau_c >=0; 

param delta {s in FN, d in CST} >=0; param alpha >=0; 

param lambda_a{i in N, j in N} >=0; 

param lambda_b{i in N, j in N} >=0; 

param lambda_c{i in N, j in N} >=0; 

param eta >=0; param c >=0; param M >=0; 

param x >=0; param Omega_max >=0; param m_ps >= 0; param c_ps >=0; 

 

#VARIABLES 

var Psd{s in CL, d in FN} >=0; 

var Psd_ij{s in CL, d in FN, i in N, j in N} >=0; 

var P{i in N} >=0; 

 

var Fsd{s in FN, d in CL} >=0; 

var Fsd_ij{s in FN, d in CL, i in N, j in N} >=0; 

var F{i in N} >=0; 
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var Ssd{s in N, d in CST} >=0; 

var Ssd_ij{s in FN, d in CST, i in N, j in N} >=0; 

var S{i in N} >=0; 

 

var omega {s in CL, d in FN} integer >= 0; 

var Pa{i in CL, j in BS} integer >=0; var Pb{i in BS, j in CL} 

integer >=0; 

var beta_a{j in BS} integer >=0; var beta_b{i in BS} integer >=0; 

var Y{ i in FN} binary >=0; var phi{i in FN} integer >=0; 

var tau_p{i in FN} >=0; 

var zeta_a{i in N} binary >=0; var zeta_b{i in N} binary >=0; var 

zeta_c{i in N} binary >=0; 

var theta_c{i in N} binary >=0; var vartheta_c{i in N} binary >=0; 

var v{i in N} binary >=0; 

 

#ENERGY OF ACCESS NETWORK 

var EBSP = sum{i in BS}(IBS * x * zeta_a[i] + PBS * beta_a[i]) * 

tau_a; 

var EBSF = sum{i in BS}(IBS * x * zeta_b[i] + PBS * beta_b[i]) * 

tau_b; 

var ETBS = EBSP + EBSF; 

 

var EONUP = sum{i in ONU}(IONU * x * zeta_a[i] + P[i] * ((PONU-

IONU)/CONU) ) * tau_a; 

var EONUF = sum{i in ONU}(IONU * x * zeta_b[i] + F[i] * ((PONU-

IONU)/CONU) ) * tau_b; 

var EONUS = sum{i in ONU}(IONU * x * zeta_c[i] + S[i] * ((PONU-

IONU)/CONU) ) * tau_c; 

var ETONU = EONUP + EONUF + EONUS; 

 

var EOLTP = sum{i in OLT}(IOLT * x * zeta_a[i] + P[i] *((POLT-

IOLT)/COLT) ) * tau_a; 

var EOLTF = sum{i in OLT}(IOLT * x * zeta_b[i] + F[i] *((POLT-

IOLT)/COLT) ) * tau_b; 

var EOLTS = sum{i in OLT}(IOLT * x * zeta_c[i] + S[i] *((POLT-

IOLT)/COLT) ) * tau_c; 

var ETOLT = EOLTP + EOLTF + EOLTS; 

 

var EAN = (ETBS + ETONU + ETOLT) * eta; 

 

#ENERGY OF METRO NETWORK 

var ECASS = sum{i in CAS}(ICAS *x * zeta_c[i] + S[i] * ((PCAS-

ICAS)/CCAS) ) * tau_c; 

var EARS = sum{i in AR}(IAR * x * zeta_c[i] + S[i] * ((PAR-IAR)/CAR) 

) *tau_c; 
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var EMN = (ECASS +EARS) * eta; 

 

#ENERGY OF CORE NETWORK 

var ECRS = sum{i in CR}(ICR * x * zeta_c[i] + S[i] * ((PCR-ICR)/CCR) 

) * tau_c; 

var ECN = ECRS * eta; 

 

#ENERGY OF CLOUD 

var ECLRS = sum{i in CLR}(ICLR * x * zeta_c[i] + S[i] * ((PCLR-

ICLR)/CCLR) ) * tau_c; 

var ECLSS = 2 * sum{i in CLS}(ICLS * x * zeta_c[i] + ((PCLS - 

ICLS)/CCLS) ) * tau_c; 

var ECSS = sum{i in CS}(ICS * x * zeta_c[i] + S[i] * ((PCS-ICS)/CCS) 

) * tau_c; 

var ECSTS = 2 * sum{i in CST}(ICST * x * zeta_c[i] + S[i] * tau_c * 

((PCST - ICST)/CCST) ) * tau_c; 

var ECL = (ECLRS +ECLSS + ECSS + ECSTS) * c; 

 

#ENERGY OF FOG NODE 

var EPS = sum{i in FN}(IPS * phi[i] * (tau_a + tau_b + tau_c) + PPS 

* tau_p[i]); 

var EFN = EPS * c; 

 

#OBJECTIVE 

minimize energy : EAN + EMN + ECN + ECL + EFN; 

 

#CONTRAINS 

#ASSOCIATION PATIENTS TO A PROCESSING SERVER 

s.t. A1 {s in CL, d in FN} : omega[s,d] <= Pt[s] * Y[d]; 

s.t. A2 {s in CL} : sum{d in FN} omega[s,d] = Pt[s]; 

 

#TRAFFIC FROM CLINICS TO PROCESSING SERVER 

s.t. B1 {s in CL, d in FN} : Psd[s,d] = omega[s,d] * delta_a; 

 

#TRAFFIC FROM PROCESSING SERVER TO CLINICS 

s.t. C1 {s in FN, d in CL} : Fsd[s,d] = omega[d,s] * delta_b; 

 

#TRAFFIC FROM PROCESSING SERVER TO CLOUD STORAGE 

s.t. D1 {s in FN, d in CST} : Ssd[s,d] = sum{i in CL} omega[i,s] * 

delta_c * delta[s,d]; 

 

#FLOW CONSERVATION 

s.t. E1 {s in CL, d in FN, i in N} : sum{j in 

Nm[i]:i<>j}Psd_ij[s,d,i,j] - sum{j in Nm[i]:i<>j}Psd_ij[s,d,j,i] = 
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if i=s then Psd[s,d] else if i=d then -Psd[s,d]  else 0; 

 

s.t. E2 {s in FN, d in CL, i in N} : sum{j in 

Nm[i]:i<>j}Fsd_ij[s,d,i,j] - sum{j in Nm[i]:i<>j}Fsd_ij[s,d,j,i] = 

if i=s then Fsd[s,d] else if i=d then -Fsd[s,d]  else 0; 

 

s.t. E3 {s in FN, d in CST, i in N} : sum{j in 

Nm[i]:i<>j}Ssd_ij[s,d,i,j] - sum{j in Nm[i]:i<>j}Ssd_ij[s,d,j,i] = 

if i=s then Ssd[s,d] else if i=d then -Ssd[s,d]  else 0; 

 

#TOTAL TRAFFIC TRAVERSING NODE 

s.t. F1 {i in N} : P[i] = sum{s in CL,d in FN, j in 

Nm[i]:s<>d&&i<>j}Psd_ij[s,d,j,i]; 

s.t. F2 {i in N} : F[i] = sum{s in FN,d in CL, j in 

Nm[i]:s<>d&&i<>j}Fsd_ij[s,d,i,j]; 

s.t. F3 {i in N} : S[i] = sum{s in FN,d in CST, j in 

Nm[i]:s<>d&&i<>j}Ssd_ij[s,d,j,i] + sum{d in CST:i<>d}Ssd[i,d]; 

 

#LINK CAPACITY CONSTRAINT 

s.t. G1 {i in N, j in Nm[i]:i<>j} : sum{s in CL, d in FN} 

Psd_ij[s,d,i,j] <= lambda_a[i,j]; #link from BS to Clinic is 0 

s.t. G2 {i in N, j in Nm[i]:i<>j} : sum{s in FN, d in CL} 

Fsd_ij[s,d,i,j] <= lambda_b[i,j]; #link from Clinic to BS is 0 

s.t. G3 {i in N, j in Nm[i]:i<>j} : sum{s in FN, d in CST} 

Ssd_ij[s,d,i,j] <= lambda_c[i,j]; #link from Clinic to BS is 0 

 

#NODE TO TRANSMIT RAW HEALTH DATA TO PS 

s.t. H1 {j in N} : sum{s in CL, d in FN, i in 

N:i<>j}Psd_ij[s,d,i,j]*100000 >= zeta_a[j]; 

s.t. H2 {j in N} : sum{s in CL, d in FN, i in 

N:i<>j}Psd_ij[s,d,i,j]*100000 <= M * zeta_a[j]; 

 

#NODE TO TRANSMIT ANALYSED HEALTH DATA TO CLINIC 

s.t. I1 {i in N} : sum{s in FN, d in CL, j in 

Nm[i]:i<>j}Fsd_ij[s,d,i,j] *100000 >= zeta_b[i]; 

s.t. I2 {i in N} : sum{s in FN, d in CL, j in 

Nm[i]:i<>j}Fsd_ij[s,d,i,j] *100000 <= M * zeta_b[i]; 

 

#NODE TO TRANSMIT ANALYSED HEALTH DATA TO CLOUD 

s.t. J1 {i in N} : sum{s in FN, d in CST, j in 

Nm[i]:i<>j}Ssd_ij[s,d,i,j] *100000 >= theta_c[i]; 

s.t. J2 {i in N} : sum{s in FN, d in CST, j in 

Nm[i]:i<>j}Ssd_ij[s,d,i,j] *100000 <= M * theta_c[i]; 

s.t. J3 {j in N} : sum{s in FN, d in CST, i in 

N:i<>j}Ssd_ij[s,d,i,j] *100000 >= vartheta_c[j]; 
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s.t. J4 {j in N} : sum{s in FN, d in CST, i in 

N:i<>j}Ssd_ij[s,d,i,j] *100000 <= M * vartheta_c[j]; 

s.t. J5 {i in N} : theta_c[i] + vartheta_c[i] = 2 * zeta_c[i] - 

v[i]; 

 

#NUMBER OF PRB TO SEND RAW HEALTH DATA 

s.t. K1 {i in CL, j in BS:i<>j} : Pa[i,j] = sum{s in CL, d in FN 

:s<>d} (Psd_ij[s,d,i,j]/delta_a); 

s.t. K2 {i in CL} : sum{j in BS} Pa[i,j] = Pt[i]; 

s.t. K3 {j in BS} : beta_a[j] = sum{i in CL} Pa[i,j] * R_a; 

s.t. K4 {j in BS} : beta_a[j] <= R; 

 

#NUMBER OF PRB TO SEND ANALYSED HEALTH DATA 

s.t. L1 {i in BS, j in CL} : Pb[i,j] = sum{s in FN, d in 

CL:s<>d}(Fsd_ij[s,d,i,j]/delta_b); 

s.t. L2 {j in CL} : sum{i in BS}Pb[i,j] = Pt[j]; 

s.t. L3 {i in BS} : beta_b[i] = sum{j in CL}Pb[i,j] * R_b; 

s.t. L4 {i in BS} : beta_b[i] <= R; 

 

#MAX PATIENTS PER PS 

s.t. M1 {d in FN} : sum{s in CL} omega[s,d] <= Omega_max * phi[d]; 

 

#PROCESSING AND ANALYSIS TIME AT EACH PS 

s.t. P1 {d in FN} : tau_p[d] = sum{s in CL}m_ps * omega[s,d] + c_ps 

*phi[d]; 

 

#MAX STORAGE CAPACITY PER PS 

s.t. Q1 {d in FN} : sum{s in CL}omega[s,d] * alpha <= Lambda_max * 

phi[d]; 
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Appendix 3 

 

Energy consumption of processing for non-resilient scenario and 

resilient scenario without geographical constraints, for fall monitoring 

applications 
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Appendix 4 

 Number of base stations used to send (a) the raw video signal for 

processing and (b) the analysed video signal for feedback, for a resilient 

scenario, without geographical constraints and resilient scenario, with 

geographical constraints under different number of processing servers 

per candidate node for fall monitoring applications. 

 

(a)

 
(b) 
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Appendix 5 

 

Energy consumption of processing for the resilient scenario without 

geographical constraints and the resilient scenario, considering 

geographical constraints for fall monitoring applications 
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Appendix 6 

 

Energy consumption of processing for the resilient scenario 

considering the geographical constraints; and the energy consumption 

of the resilient scenario with geographical constraints and link and node 

disjoint resilience for ECG monitoring applications 
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Appendix 7 

 

Energy consumption of processing for the resilient scenario 

considering the geographical constraints and the resilient scenario 

considering the geographical constraints and link and node disjoint 

resilience for fall monitoring applications 

 

 

 


