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Abstract

This thesis presents research focused on the problem of geometry inference for both convex- and

non-convex-shaped rooms, through the analysis of spatial room impulse responses. Current ge-

ometry inference methods are only applicable to convex-shaped rooms, requiring between 6–78

discretely spaced measurement positions, and are only accurate under certain conditions, such

as a first-order reflection for each boundary being identifiable across all, or some subset of, these

measurements. This thesis proposes that by using compact microphone arrays capable of cap-

turing spatiotemporal information, boundary locations, and hence room shape for both convex

and non-convex cases, can be inferred, using only a sufficient number of measurement positions

to ensure each boundary has a first-order reflection attributable to, and identifiable in, at least

one measurement. To support this, three research areas are explored. Firstly, the accuracy of

direction-of-arrival estimation for reflections in binaural room impulse responses is explored,

using a state-of-the-art methodology based on binaural model fronted neural networks. This

establishes whether a two-microphone array can produce accurate enough direction-of-arrival

estimates for geometry inference. Secondly, a spherical microphone array based spatiotempo-

ral decomposition workflow for analysing reflections in room impulse responses is explored.

This establishes that simultaneously arriving reflections can be individually detected, relaxing

constraints on measurement positions. Finally, a geometry inference method applicable to both

convex and more complex non-convex shaped rooms is proposed. Therefore, this research ex-

pands the possible scenarios in which geometry inference can be successfully applied at a level

of accuracy comparable to existing work, through the use of commonly used compact micro-

phone arrays. Based on these results, future improvements to this approach are presented and

discussed in detail.
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Chapter 1

Introduction

As sound propagates through an enclosed space, inevitably it will be incident upon, and interact

with, any reflective boundaries or surfaces present. These interactions result in some proportion

of the energy contained within the propagating sound being reflected back into the space. This

process repeats until all the acoustic energy of the signal has been lost, and the room returns

to its original steady state. These reflections are characteristic of a given room, and convey

information to the listener about size, shape, and ultimately the sound of the environment. In

acoustics it is common to measure this characteristic response of the room using an impulse-like

broadband excitation signal, producing what is referred to as the room impulse response.

The room impulse response typically refers to a monophonic recording of the acoustic response

of a room when using an omnidirectional source and receiver, and it is a superposition of the

direct source-to-receiver sound component, early reflections produced through limited interac-

tions with the most significant boundaries or surfaces in the space, and a densely-distributed

and exponentially decaying reverberant field. The resulting measured room impulse response

is defined by the location, shape and acoustic properties of the reflective boundaries or sur-

faces, together with the source and receiver positions. Therefore, the measured room impulse

response for a given room not only conveys information about the acoustic properties of the

given room, but also, the location of any boundaries in the room, as the time-of-arrival of any

reflections is directly related to the propagation distance of the sound. Therefore, from one or

more Room Impulse Responses (RIRs), attempts can be made to infer the size and position of

reflective boundaries and consequently the shape of a given room, and this process is referred to

as geometry inference..
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Geometry inference has potential applications in various aspects of acoustics and signal pro-

cessing research, where normally a priori knowledge of a room’s boundary locations would be

required, which is not possible when implemented within consumer technology. In acoustics

consultancy, geometry inference can be used as a means of deriving key reflection in a given

environment, providing data that can be used when acoustically treating the room. The geo-

metric model of a room can be used to simulate the acoustic conditions, and consequently the

Spatial Room Impulse Responses (SRIRs), for different source and receiver positions within

the environment. Geometry inference in this context can be used to generate a room model,

which subsequently can be used to generate additional SRIRs throughout the environment. This

has potential applications in interactive media such as video games where SRIRs can be used

to produce a more realistic rendering of an acoustic scene, producing an immersive experience

for the player. In smart home-devices, knowledge of the surrounding environment, and therefore

geometry inference, can be used as a means of enhancing speech recognition through source sep-

aration and dereverberation as seen in [1–3]. Furthermore, geometry inference can be applied

to robotics as a means of providing real-time information about a robot’s surrounding environ-

ment and its current and previous position [4]. Finally, in the context of virtual and augmented

reality, geometry inference can be used to track a user’s position within an environment or pro-

duce more robust methods for spatial audio rendering by evaluating a user’s loudspeaker setup

and listening environment, which subsequently can be accounted for when rendering a virtual

auditory environment [5], so producing an ideally more immersive user experience. From these

applications, it is evident that removing a priori knowledge of an environment, it is of paramount

importance to arrive at a method for geometry inference that is universally robust to rooms of

different shape, size, complexity, and measurement conditions.

At present, geometry inference methods are only accurate for simple convex rooms where all

interior angles are less than 180◦, such as cuboid-shaped rooms, which limits the application of

these methods. Rooms come in different shapes, sizes, and levels of complexity, and as such,

geometry inference methods need to be accurate at estimating the geometry for these differ-

ent room conditions. The focus of this thesis is to develop and establish a geometry inference

method applicable to both convex- and non-convex-shaped rooms. Contrary to existing work,

which generally considers the problem of boundary localisation for cuboid-shaped rooms, the

proposed research will present an end-to-end method for boundary localisation, boundary vali-

dation, and room shape estimation, that is tested using different convex- and non-convex-shaped

rooms. This will be achieved through the use of a spatiotemporal decomposition-based reflection

detection method for compact microphone arrays; an image-source based boundary detection
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method; a geometry validation process, and a room shape inference method.

The research presented in this thesis will expand on existing work into direction-of-arrival es-

timation for reflections in binaural room impulse responses, reflection detection, and geometry

inference.

1.1 Hypothesis

The hypothesis that informs and guides the work in this thesis is as follows:

Given a compact microphone array and a sufficient number of spatial room impulse responses

to ensure a first-order reflection is detectable for each boundary, accurate boundary estimation,

and consequently, room shape estimation, can be achieved for both convex- and non-convex-

shaped rooms.

1.1.1 Description of Hypothesis

Geometry Inference

Geometry inference is the problem of determining the location of reflective boundaries within a

given enclosed space based on reflections detected within a room impulse response. There are

two aspects to this area of research, determining the location and positioning of the reflective

boundaries, which is the focus of the majority of prior work, and the subsequent inference of

the shape of the room from these identified boundaries. The key challenges with geometry

inference are to develop a robust end-to-end system which does not require strict assumptions

about a room’s shape or the number of reflections, can attempt inference of reflection paths

for higher-order reflections, and can reduce the impact of false-positive detections or incorrectly

inferred reflection paths. In the context of this thesis, a successful result is defined as comparable

accuracy to that previously achieved for cuboid-shaped rooms in the literature, that is an average

difference in the position of the estimated boundaries with respect to the ground-truth position

of the boundaries of between 1.7 cm – 24.5 cm [6–9].

Compact Microphone Arrays

A compact microphone in the context of this thesis is used to refer to a microphone array with a

diameter less than or equal to 18 cm, that can be used to estimate the direction-of-arrival of audi-

tory events within the surrounding sound field. The work presented in this thesis will use the KE-
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MAR 45BC [10] and KU100 [11] binaural dummy head microphones, and the EigenMike EM32

32-channel spherical microphone array, as previously used for direction-of-arrival analysis of re-

flections in [12]. For a microphone arrays to be considered viable for geometry inference, an

ideally low error in direction-of-arrival estimation is desirable, as any error in direction-of-arrival

results in an equivalent angular error in boundary position relative to the desired boundary.

First-order reflections

A first-order reflection is one that is produced by a propagating sound wave interacting with a

single reflective boundary. In the context of geometry inference, first-order reflections are used to

determine the location of a reflective boundary based on the reflection’s time-of-arrival or time-

and direction-of-arrival. Therefore, it is imperative that each boundary within a given enclosed

space has a first-order reflection detectable in at least one spatial room impulse response. This

constraint defines the number of measurement positions needed to infer the shape of the room,

with more measurement positions needed for more complex, non-convex-shaped rooms.

1.2 Novel Contributions

The research presented in this thesis has resulted in the following novel contributions to the field:

• The application of a binaural model fronted neural network for direction-of-arrival estima-

tion of reflections in binaural room impulse responses, as opposed to a continuous speech

signal, considering a cascade-forward neural network topology.

• A method for spatiotemporal decomposition based reflection detection and analysis using

spherical microphone arrays, capable of detecting simultaneously arriving reflections at

the microphone array as discrete events.

• A method for geometry inference, room shape estimation, and boundary validation , ap-

plicable to both convex- and non-convex-shaped rooms.

• Validation of the proposed methods considering an objective analysis of results from

rooms of different shape, size, and complexity, expanding the range of current state-of-

the-art geometry inference test scenarios.
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1.3 Thesis Layout

Chapter 2 introduces the fundamental acoustic and audio signal processing principles upon

which the rest of this thesis is founded. This includes acoustic propagation, acoustic reflec-

tion, the room impulse response, the image-source method, binaural signals, neural networks,

acoustic beamforming, and spherical harmonics.

Chapter 3 introduces the concept of time- and direction-of-arrival estimation for reflections

present in (spatial) room impulse responses, and discusses the current state-of-the-art methodol-

ogy. These methods are often a prerequisite to geometry inference, as the information extracted

for each reflection is directly relatable to the boundaries present in a given measurement envi-

ronment. This chapter also discusses the drawbacks of these methods that this thesis aims to

address.

Chapter 4 introduces geometry inference, and discusses prior work in geometry inference

methodology. Key limitations are discussed, particularly the assumption of convexity made

by these methods, which is one of the main contribution of this thesis.

Chapter 5 discusses the development of a method for estimating the direction-of-arrival for re-

flections in binaural room impulse responses. This method is tested using both the direct sound

and reflections measured using two different binaural dummy head microphones and two dif-

ferent loudspeakers, testing the generalisability of the method to different measurement setups.

This establishes whether a compact microphone array consisting of two-channels, that is capable

of capturing three-dimensional spatial information, can be used to produce sufficiently accurate

estimates of direction-of-arrival for use in geometry inference.

Chapter 6 presents a spatiotemporal decomposition based reflection detection method for use

with spherical microphone arrays. The method is validated using four sets of measurements,

two simulated and two real-world. To assess the accuracy of the method, an implementation

of the image-source method is used to compute the expected time-of-arrival for candidate re-

flections within the spatial room impulse response. The accuracy of the proposed method is

then compared to implementations of two state-of-the-art reflection detection methods, based on

circular-variance local maxima [14] and dynamic time warping matching pursuit [15].

Chapter 7 introduces the novel image-source reversion, room shape estimation, and boundary

validation method. This chapter presents objective analysis of the performance across three
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scenarios. Scenario One presents test cases for seven sets of CATT-Acoustic [16] simulated

spatial room impulse response for six rooms, of different size, shape, and complexity, including

two non-convex cases. Scenario Two tests the variability of the proposed method across 33

sets of measurement position combinations for two different non-convex L-shaped rooms, again

simulated using CATT-Acoustic. Finally, Scenario Three tests the robustness of the method to

real-world conditions, using measurements obtained from a cuboid-shaped room.

Chapter 8 summarises the results of the thesis, reconsiders the hypothesis that has been stated

in this chapter, and looks to future research based on the results presented in this thesis, and

some of the further questions that have emerged as a consequence.
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Chapter 2

Conceptual Foundations

2.1 Introduction

In this chapter the fundamental concepts that underpin the work discussed later in this thesis

will be introduced. Starting by defining the properties of sound propagation, interactions with

reflective boundaries, and the room impulse response in Section 2.2. In Section 2.3 the image-

source model as proposed by Allen and Berkley [17] is defined, which is the conceptual basis of

the geometry inference method proposed later in this thesis. Section 2.4 outlines the basics of

binaural audio Finally, Section 2.5 introduces spatial room impulse responses in the context of

spherical microphone arrays, and defines spherical harmonics, which forms the basis by which

spatiotemporal decomposition of spatial room impulse responses is performed.

2.2 Fundamentals of Acoustics

2.2.1 Sound Propagation

Sound waves are represented as the displacement of particles within a medium from their mean

position [18], and these fluctuations in pressure, when transmitted through and amplified by the

human auditory auditory system, represent what is referred to as sound. Sound waves propagate

outwards from a point-of-origin by locally displacing molecules present within a medium (solid,

liquid, or gas), producing points of compression (high pressure) and rarefaction (low pressure)

[18–21]. The distances between points of compression and rarefaction, the wavelength λ of the

sound, define the frequency f of the sound, with shorter wavelengths defining higher frequencies

and longer wavelengths resulting in low-frequencies as [20],
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f =
c

λ
(2.1)

where c is the speed of sound. The amplitude of the sound wave at a given point in space (x, y, z)

is directly proportional to the change in pressure p(x, y, z) from the mediums resting pressure

ρ0(x, y, z) as [19, p. 9],

p(x, y, z) = ρ(x, y, z)− ρ0(x, y, z) (2.2)

where ρ(x, y, z) is the instantaneous pressure at a given point in space. Given the acoustic pres-

sure, the amplitude of the sound wave can be quantified as sound pressure level (SPL) in deci-

bels (dB), a logarithmic scale using the ratio between the acoustic pressure p and the threshold

of hearing pref (20 µPa at 1 kHz [19]), as,

SPL = 20log10

p

pref
(dB) (2.3)

The propagation of a sound wave through a medium can be described using a differential equa-

tion, relating the time (t) and spatially varying pressure p to the speed of sound in the medium

c, referred to as the wave equation, which for one-dimension is expressed as [19, p. 10-13],

δ2p

δt2
= c2 δ

2p

δx2
(2.4)

The general solution to this differential equation, as proposed by d’Alambert, can be expressed

using two twice-differentiable arbitrary functions defining the right pr and left pl going compo-

nents of the wave in the x direction with velocity c as [18],

p(x, t) = pr(ct− x) + pl(ct+ x) (2.5)

Furthermore, the time-dependant displacement of the particles within the medium, particle ve-
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locity v, can be defined from (2.5) as [18],

v(x, t) =
1

Z0
[pr(ct− x) + pl(ct+ x)] (2.6)

where Z0 is the acoustic impedance of the medium, which quantifies the medium’s resistance

to the flow of acoustic energy [18]. Given the periodic nature of sound waves, it is common to

adopt a complex harmonic function representing pr(ct−x), with pl(ct+x) set to zero [18, 19],

as

p(x, t) = p̂ei(ωt−kx) (2.7)

where p̂ is the pressure amplitude, k is the wave number, ω is the angular frequency, i =
√
−1,

and e(.) denotes the exponential (full derivation of these equations available in [18, 19]).

As a sound propagates in the free-field the acoustic pressure will be attenuated based on the

inverse-square law. The inverse-square law states that, within a free-field, as sound propagates

outwards from the point-of-origin, the intensity of the sound will be attenuated by the square of

the distance [20] .

Furthermore, the speed at which sound travels, c, within a medium is not constant, and varies

with respect to both temperature and humidity calculated as,

c =

√
κ
pair
ξ

+ 0.6 ∗ T (2.8)

where pair is the air pressure, ξ is the air density which will vary with humidity as a result of the

increasing/decreasing number of water molecules present in the air, κ is the adiabatic exponent

(the ratio of heat capacity at constant pressure to heat capacity at constant volume) which for air

is 1.4, and T is the temperature in centigrade [18]. The speed of sound at 20◦c and 0% humidity

is 343.36 m/s, increasing the humidity to 50% yields a speed of sound of 343.99 m/s.
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2.2.2 Acoustic Reflection

If sound propagates through an enclosed space rather than the free-field it will be incident upon

and interact with a boundary. Upon this interaction part of the sound wave’s energy will be

absorbed into the boundary, and either converted to heat or transmitted through the boundary,

while the rest is reflected back into the space [18] as seen in Figure 2.1. The amount of en-

ergy absorbed upon incidence with a boundary is dependant upon the material the boundary is

made of, and is defined as a boundary’s absorption coefficient α. These acoustic properties are

frequency dependant, and hence for different materials the quantity of the sound wave’s energy

being absorbed will vary with frequency.

Assuming a surface is perfectly rigid the sound energy will be reflected specularly according

to Snell’s law, where the angle of incidence θi relative to the normal of the plane or surface

equals the angle of reflection θr relative to this plane’s normal as seen in Figure 2.2 [20]. The

magnitude and phase changes introduced as a result of interactions with a boundary can therefore

be expressed, in two-dimensions, using the reflection factor for a boundary Rf by expressing

(2.6) and (2.7), from [19], as,

pi(x, y, t) = p̂ei(ωt−kx cos(θi)−ky sin(θi)) (2.9)

vi(x, y, t) =
p̂

Z0
ei(ωt−kx cos(θi)−ky sin(θi)) (2.10)

pr(x, y, t) = p̂Rfe
i(ωt−kx cos(θr)−ky sin(θr)) (2.11)

vr(x, y, t) =
−Rf p̂
Z0

ei(ωt−kx cos(θr)−ky sin(θr)) (2.12)

(2.13)

where pi(x, y, t) and vi(x, y, t) are the incident pressure and particle velocity respectively,

pr(x, y, t) and vr(x, y, t) are the reflected pressure and particle velocity respectively, and the

reflection factor Rf is related to the acoustic impedance of the wall Z as [19],

Rf =
Z cos(θr)− Z0

Z cos(θr) + Z0
(2.14)
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Therefore, the reflection factor for the boundary is directly linked to the absorption coefficient

for the boundary such that [18, 19],

α = 1− |Rf |2 (2.15)

Sound Emitter

Reflected Energy

Transmitted Energy

Energy Converted to Heat

Figure 2.1: Collision of propagating sound wave with room boundary, showing reflected
sound energy and absorbed sound energy.

The boundary material and shape will also have an impact on the direction in which the reflected

energy travels. If the boundary surface is parabolic in shape, the reflected sound will be focused

to a point dependant upon the angle of incidence. Similarly to parabolic surfaces, concave sur-

faces focus the reflected sound to a point, however, the precision of this point varies depending

on the shape of the surface [20]. A convex shaped boundary will cause the reflected energy from

the sound wavefront to be scattered across numerous different directions [20]. An example of

reflections of these types of surfaces can be seen in Figure 2.3.

θi

θr

Source

Reflection

Angle of Incidence

Angle of Reflection

Figure 2.2: Specular reflection from a flat surface, where angle of incidence is equal to
the angle of reflection

While specular reflections are key to the work detailed in this thesis, other reflection types exist.

Reflection scattering occurs in the case of a boundary with a non-smooth surface and results in

the reflected sound energy being scattered outwards from the boundary across all directions rel-

ative to the point of incidence and the boundary. Scattering is also frequency-dependent, and the
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Concave Surface

Convex Surface.

Parabolic Reflector

Figure 2.3: Example reflection patterns for parabolic, concave, and convex surfaces

quantity of reflected energy that is scattered for each frequency band is defined as the scattering

coefficient for the surface in question [20]. Diffraction occurs when a propagating sound wave

passes around the edge of a boundary of finite length, resulting in the propagation path bending

around the object [20] as seen in Figure 2.4. As with absorption and scattering, diffraction is

frequency-dependent, and relative to the size of the diffracting object [20]. As obstacle size

increases, so does the wavelength at which diffraction occurs, and therefore diffraction is more

commonly observed at lower frequencies [20].

Figure 2.4: Example of sound diffracting around the corner of an object, with the sound
radiating into the area cast by the object referred to as the ‘shadow zone’.

By considering the properties of sound propagation and reflection, it is evident that from a lis-

teners perspective, the arrival time and amplitude of direct source-to-listener and reflected sound

is linked to: the relative positioning of the source and listener; the presence and acoustic prop-

erties of any boundaries and objects; and the temperature and humidity of the air within space.

A common method of representing these combined acoustic properties for an environment is

through the use of a RIR.
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2.2.3 The Room Impulse Response

A RIR is the measured or simulated characteristic response of any enclosed space to an in-

put excitation from a known impulse-like broadband test signal. It is a superposition of the

direct source-to-receiver sound component, early reflections produced through limited interac-

tions with the most significant boundaries or surfaces in the space, and a densely-distributed and

exponentially decaying reverberant field, as shown in Figure 2.5. A RIR is therefore defined by

the location, shape and acoustic properties of the reflective boundaries or surfaces, together with

the source and receiver positions. A frequency independent representation of RIR h(t) can be

mathematically defined in discrete-time as a superposition of sinc functions(sinc()) with peaks

located at the time-of-arrival (ToA) τ , individual signal amplitude defined as a, and the addition

of a residual time-variant ambient noise component r(t)

h(t) =
∞∑
i=1

aisinc(t− τi) + r(t) (2.16)

where i refers to the ith arrival at the receiver.

Direct Sound

Amplitude

Time

Early Reflections

Diffuse Field

Figure 2.5: Generalised depiction of an impulse response, split into direct sound, early
reflections and diffuse field.

The first sound to arrive at the receiver upon excitation of the space is the direct sound, having

the shortest propagation distance from the source [21]. The direct sound, in the majority of

cases, is the loudest signal arriving at the receiver, with the direct signals amplitude and the

direct-to-reverberant sound energy providing auditory cues pertaining to the distance between

the sound source and the receiver.
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The early reflections are discrete reflections arriving at the receiver from different directions and

points in time. As the source and/or receiver locations change in relation to the environment,

the time and amplitude of the early reflections will change as a result of differences in the

propagation path between reflective boundary and receiver [21]. The time and amplitude of

arrival of these early reflections provides the listener with information about the size and shape

of the environment [21]. When referring to reflections present within a RIR it is common to refer

to them based on the number of interactions they have had with different boundaries or surfaces

- i.e. their reflection order. For example, if a reflection has interacted with two boundaries when

it arrives at the receiver, it is referred to as a second-order reflection.

The diffuse field, sometimes referred to as the reverberant sound or late reverberation, is made

up of densely-distributed reflections from multiple combinations of boundaries and surfaces

arriving from multiple directions [21]. Therefore, the diffuse field does not contain arrivals that

are individually identifiable as discrete acoustic events. This leads to the generalisation that

the diffuse field for a given enclosed space does not vary significantly as either source and/or

receiver change position [21].

2.3 Image-Source Method

While numerous geometric acoustic modelling techniques exist, for geometry inference it is

common to adopt an approach based on an inverse-model of the image-source method, as a

result of the direct relationship that can be drawn between the ToA of a reflection, the location

of an image-source, and the location of a reflective boundary. Therefore, in this section the

image-source method, as originally proposed by Allen and Berkley in [17] will be introduced.

The image-source model is a geometric acoustic modelling technique, where the solution is a

RIR derived as a summation of specular reflections produced by rigid walls. As introduced

in Section 2.2.2 a specular reflection is defined such that the angle of reflection relative to the

normal of the plane in question is equal to the angle of incidence. Therefore, the reflective

conditions of a rigid boundary is equivalent to defining a secondary source, an image-source s̃,

that is produced by mirroring the source s (or other image-sources for higher-order reflections)

perpendicularly across the reflective boundary (see Figure 2.6). This can be summarised as [6],

s̃ = s + 2 < b− s,n > n (2.17)
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Figure 2.6: Example of an image-source produced by mirroring the source perpendicu-
larly across the boundary. As can be seen the reflection path produced is specular with
the angle of reflection relative to the normal of the plane equal to the angle of incidence.

where b is the [x, y, z] coordinates that define a point on the boundary, n is the unit normal for

the boundary, and < ., . > denotes the dot product. These image-sources s̃ are computed for the

source s, all previously computed image-sources, and allL boundaries up to a reflection orderN ,

producing LN image-sources. An example of the image-sources produced for a cuboid-shaped

room, with a reflection order of N = 2 can be seen in Figure 2.7.

Figure 2.7: Example image-sources computed for a cuboid shaped room. Asterisks
denote image-sources, the square denotes the source location, and the circle denotes the
receiver location.
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The RIR h(t) representing the arrival of signals up-to a reflection order N , for a convex room

with L boundaries, can be, from [17], expressed as,

h(t) =

sinc
(
t− ||s−m||

c

)
4π||s−m||

+
i=LN∑
i=1

sinc
(
t− ||̃si−m||

c

)
4π||̃si −m||

(2.18)

where m is the microphone location and 4π||̂si − m|| defines energy loss as defined by the

inverse-square law. An example RIR produced from the scenario presented in Figure 2.7 can be

seen in Figure 2.8.

Figure 2.8: Room impulse response computed from the image-sources in Figure 2.7 using
(2.18).

When considering the relationship between the image-source and its previous-source (either the

source or another image-source) (as seen in Figure 2.6), the distance from previous-source-to-

boundary and boundary-to-image-source are equal, and the line between the previous-source

and image-source is parallel to the boundary’s normal. Therefore, the normal of the boundary,

ñ, and a point on the boundary, b̃, can be inferred from these two points, from [6], as,

b̃ =
s̃ + s

2
(2.19)

ñ =
s̃− s

||̃s− s||
(2.20)
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This relationship is what makes the image-source model appealing for geometry inference, as

the location of the image-sources can be extracted from a set of candidate ToA estimates for

reflections in a RIR measurements. Therefore, the aim of image-source-based geometry infer-

ence is to find the most likely previous-source in the reflection path, either from the candidate

image-sources extracted from the RIR or the source position.

2.4 Binaural Room Impulse Responses

A Binaural Room Impulse Response (BRIR) is a RIR measured with a receiver that is charac-

terised by having the properties of a typical human head, that is two channels of information

separated appropriately, and subject to spatially-dependant spectral and temporal variations im-

parted by the pinnae and head. The spatial information contained within a BRIR is encoded

as time-of-arrival and level differences between the signals arriving at each ear, referred to as

Interaural Time Difference (ITD) and Interaural Level Difference (ILD) respectively [22]. Both

of these cues are a function of frequency and source position relative to the head, and therefore

provide the listener with cues that pertain to a sound source’s location [22]. The ITD is due to

differences in propagation paths from the source to each ear, and diffraction of the propagating

sound wave around the head [21]. The ILD is due to the shadowing of the head, which results in

the sound arriving at the far ear at a lower amplitude. Furthermore, there will be spectral differ-

ences between the signals arriving at each ear due to sound reflecting off the pinnae, which as a

result of the short delay-time for these reflections, produces a comb-filtering effect [21]. These

cues will vary between people and dummy heads as a result of differences in ear and head mor-

phology. Therefore, when recording binaural audio it is desirable to have a microphone array

which represents an average human head with microphones situated inside the ears, referred to

as a binaural dummy head microphone, ideally producing a recording that will produce adequate

spatialisation for different listeners.

These interaural cues form the basis by which computer models attempt to replicate a human’s

ability to localise sound. However, it should be noted that in the context of human sound local-

isation, visual cues are often used to relay additional information about sound source’s location

to the listener [21], which will not be considered further for the rest of this thesis. These in-

teraural cues can be measured for a given head by measuring the response, in each ear, to an

input excitation from a known impulse-like broadband test signal produced at a distance from

the head, the resulting signal is referred to as the Head Related Impulse Response (HRIR).
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2.5 Spatial Room Impulse Responses - Spherical Micro-

phone Arrays

Spatial Room Impulse Response (SRIR) are RIR that have been measured with a microphone

array, or simulated, such that they contain spatial information about the acoustic environment.

Considering a spherical microphone array, as used in this thesis, the recorded sound field can

be represented in the spherical harmonic domain through the use of spherical harmonics [27–

29].Therefore, the time-domain RIR from 2.16 can be expressed as the SRIR H(t) by using the

real-valued spherical harmonic vector y(θ, φ) to steer the sinc function towards a given azimuth

and elevation DoA [27–29],

H(t) =

∞∑
i=1

y(θi, φi)aisinc(t− τi) + R(t) (2.21)

where R(t) is the time-variant residual noise component, y(θ, φ) is defined as,

y(Ψ) = [Y 0
0 (θ, φ), Y −1

1 (θ, φ), Y 0
1 (θ, φ), Y 1

1 (θ, φ), ..., YM
N (θ, φ)]T (2.22)

where the real-valued spherical harmonics of order n and degree m are from [30, 31] expressed

as,

Y m
n =



√
2n+1

4π
(n−m)!
(n+m)!P

m
n (cos(φ))

√
2cos(mθ), if m > 0√

2n+1
4π

(n−m)!
(n+m)!P

m
n (cos(φ)), if m = 0√

2n+1
4π

(n−m)!
(n+m)!P

m
n (cos(φ))

√
2sin(mθ) if m < 0

(2.23)

where Pmn is the associated Legendre polynomial of order n and degree m. The spherical har-

monics can also be expressed as a complex-valued function for frequency domain processing,

from [26, 30], as,

Y m
n =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pmn (cos(φ))eimθ (2.24)
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Spherical harmonics will be further used in Chapter 6 to define a spherical harmonic domain spa-

tiotemporal decomposition method for detecting reflections in SRIR measured with a spherical

microphone array.

2.6 Summary

In this chapter the fundamental concepts that underpin work presented in this thesis have been

presented, including, sound propagation, acoustic reflection, the image-source method, room

impulse responses, binaural room impulse responses, spatial room impulse responses, and spher-

ical harmonics. As sound waves propagate through an enclosed space inevitably it will incidence

upon and interact with a boundary or surface, at which point the sound will either be specularly

reflected, scattered, or, in the case of incidence upon the corner of a boundary of finite-length,

diffracted. While scattering and diffraction are important in defining the acoustics of a room,

they are hard, if not impossible, to use as a means of geometry inference, as the estimation of

possible reflection paths is not possible without a priori knowledge of reflection order and room

shape to calculate possible points of reflections. Therefore, in geometry inference methods it

is useful to ignore these acoustic properties, and assume that all detectable reflections contain

a dominant specular component. The Room Impulse Response is the measured or simulated

characteristic response of any enclosed space to an input excitation from a known impulse-like

broadband test signal and is representative of the reflective boundaries of the room, and the

source and receiver location. This principle defines the underlying mechanics by which nu-

merous acoustic signal processing techniques are developed, in particular geometry inference.

To this extent, one of the common approaches to geometry inference considers the use of an

inverse image-source model, using the relationship between a reflection’s time-of-arrival, the

consequent location of an image-source, and the reflective boundary’s location. This relation-

ship allows boundary locations to be estimated without requiring a priori knowledge of any

boundary parameters.
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Chapter 3

Reflection Detection and

Direction-of-Arrival Estimation:

Relevant Previous Work

3.1 Introduction

In the previous chapter the fundamentals of sound propagation, acoustic reflection, the image-

source model, neural networks, beamformers, and spherical harmonics were presented, which

underpins the future work presented in this thesis. The Room Impulse Response (RIR) repre-

sents the acoustics of a room for a given source and receiver location, and therefore, contains

a superposition of the direct source-to-receiver sound and reflections, produced by interactions

with the boundaries and surfaces present in the space, arriving at the receiver. It can be desirable

in some cases to be able to identify the location of specific reflections within the RIR, and when

using a microphone array, the incident direction-of-arrival (DoA) for each reflection.

A microphone array samples the sound field, or in this case RIRs, at different points in space.

The resulting multi-channel signals will, therefore, contain spatial information about the arriving

sounds, and so a RIR captured in this way is commonly referred to as a Spatial Room Impulse

Response (SRIR). Assuming such an array is capable of representing the arrival of sound across

three-dimensions, these SRIRs can be expressed in a general form through the use of the steer-

ing vector ∆(θ, φ), which defines the directionally-dependant temporal and level differences

between each channel, for azimuth θ and elevation φ DoA. Adapting (2.16) the SRIR can be
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expressed as,

H(t) =
I∑
i=1

∆(θi, φi)sinc(t− τi)αi + R(t) (3.1)

where R(t) is spatially-white and time-varying residual noise component. The array response

matrix ∆(θ, φ) will vary for different microphone arrays. For example, in the case of a BRIR

measured with a binaural system, the steering vector is representative of the spectral and tempo-

ral differences between signals arriving at each ear as a result of differences in propagation path,

pinnae shape, and acoustic occlusion as a result of the head.

This chapter will outline methods presented in the literature for DoA estimation (Section 3.2)

and reflection detection (Section 3.3), which are either applicable to the microphone arrays used

in this thesis, or are used by relevant geometry inference methods. As some of the reflection

detection methods use DoA to detect candidate reflections, DoA estimation will be discussed

first.

3.2 Direction-of-Arrival Estimation

DoA refers to the direction from which a propagating sound wave arrives at a microphone array.

As such, DoA estimators attempts to determine the direction from which a sound arrived at a

microphone array, based on differences between the signals arriving at each channel. The means

by which this DoA estimation is performed will vary for different microphone array geometries,

as a consequence of how the spatial information for the sound field is sampled. In this section

DoA estimation methods relevant to the arrays used in this thesis - spherical microphone arrays

and binaural dummy heads - will be explored.

3.2.1 Spherical Microphone Arrays

3.2.1.1 Intensity Vector Analysis

Intensity vector analysis is a DoA estimator which represents the magnitude and direction of

acoustic energy using intensity vectors. The intensity vectors I is computed from the sound

pressure p and particle velocity vector v =
[
vx vy vz

]
, where vx, vy, and vz is the particle

velocity, with dipole directivity, in the x,y, and z direction respectively, from [26], as,
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I =
1

2
<(p∗v) (3.2)

In practice particle velocity is difficult to measure [26], and specialist equipment such as the

Microflown is required [33].

An implementation of intensity vector analysis as DoA estimator was applied to first-order am-

bisonic signals (B-Format microphone) in [34, 35]. This method derives the instantaneous in-

tensity values of the zero- and first-order spherical harmonic domain signals, commonly referred

to as the W (omnidirectional - Y 0
0 spherical harmonic); X (x-axis - Y 1

1 spherical harmonic); Y

(y-axis - Y −1
1 spherical harmonic); and Z (z-axis - Y 0

1 spherical harmonic) channels [35], to

estimate DoA. These intensity vectors are calculated from the Short Time Fourier Transform

(STFT)1 of the channels and calculated for each frequency bin and time-frame as,

IX(ω, tf ) =

√
2

Z0
<(W∗(ω, tf )X(ω, tf )) (3.3a)

IY (ω, tf ) =

√
2

Z0
<(W∗(ω, tf )Y(ω, tf )) (3.3b)

IZ(ω, tf ) =

√
2

Z0
<(W∗(ω)Z(ω, tf )) (3.3c)

where IX(ω, tf ), IY (ω, tf ), and IZ(ω, tf ) is the instantaneous intensity at angular frequency ω

and time-frame tf for the X, Y, and Z channels respectively, Z0 is the acoustic impedance of

air, and W∗ is the complex conjugate of the W channel at angular frequency ω and time-frame

tf [34–36].

The DoA of time-frame tf at each angular frequency is then calculated, from [34], as,

θ(ω, tf ) = tan−1

[
−IY (ω, tf )

−IX(ω, tf )

]
(3.4.1)

φ(ω, tf ) = tan−1

[
−IZ(ω, tf )√

I2
X(ω, tf ) + I2

Y (ω, tf )

]
(3.4.2)

1The STFT is the Fast Fourier Transform (FFT) computed over short time-frames, representing the
change in frequency and phase content of a signal over time.
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where IX , IY and IZ are the instantaneous intensity vectors for the X, Y and Z channels respec-

tively.

Merimaa and Pulkki’s used this B-Format implementation of intensity vector analysis in their

research into Spatial Impulse Response Rendering (SIRR) [34], which used this directional in-

formation to render measured RIRs over arbitrary speaker arrays. Results presented show that

the directional quality of the rendered audio over such loudspeaker arrays was improved when

using SIRR over microphone arrays such as coincident pairs and ambisonics [34]. This method

was also used in Directional Audio Coding (DIRAC) [37] for analysing spatial audio for repro-

duction over arbitrary loudspeaker arrays, building on the work presented in [34]. Furthermore,

this method was used in [14] to estimate the DoA of six reflections, and the estimated DoA were

used to retrace the reflection paths using ray-tracing.

Pseudo-intensity vector

Pseudo-intensity vector analysis is conceptually similar to intensity vector analysis [26], and

treats the zero- and first-order eigenbeams as being proportional to sound pressure and particle

velocity. Prior to computation of the intensity vectors, the raw microphone output is transformed

into the spherical Fourier domain using a weighted spherical harmonic transform gq,n,m [26] as,

Xm
n (ω) ≈

M∑
q=1

gq,n,mX̂(ω, θq, φq, rq) (3.5)

where X̂(ω, θq, φq, rq) is the Fourier transformed raw microphone signal at angular frequency

ω for the microphone at polar coordinates azimuth (θq), elevation (φq), and radius (rq), n is

the order of the spherical harmonics, m is the degree of the spherical harmonics, and M is the

total number of microphones in the array. The weighted spherical harmonic transform gq,n,m is

expressed as,

gq,n,m =
4π

M
Y m∗
n (θq, φq) (3.6)

where Y m∗
n is the complex conjugate of the spherical harmonic of order n and degree m, evalu-

ated in the direction of the microphone at azimuth θ and elevation φ, and calculated using using

the complex spherical harmonic equation from [26] as (2.24).
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Using the zero- and first-order spherical Fourier domain signals the pseudo-intensity vector [26]

is expressed as,

I(ω) =
1

2
<

{(
x0

0(ω)

b0(ω)

)∗ 
xx(ω)

xy(ω)

xz(ω)


}

(3.7)

where <(.) denotes the real part, I(ω) is the intensity vector at angular frequency ω, xx(ω),

xy(ω) are dipoles steered in the opposite direction to the x, y, and z axes ((3.8)), and b0 are the

mode coefficients of order n = 0 for a rigid sphere, calculated using (3.10) [26].

xa(ω) =
1

b1(ω)

1∑
m=−1

αma xm1 (ω), a = x, y, z (3.8)

where [26],

αmx = Y m
1 (π/2, π) (3.9.1)

αmy = Y m
1 (π/2,−π/2) (3.9.2)

αmz = Y m
1 (π, 0) (3.9.3)

bn(ωr, ωra) = 4πil
[
Jn(ωra)−

J′n(ωra)

H
(2)′
n (ωra)

H(2)
n (ωra)

]
(3.10)

where Jn(ω, ra) is the spherical Bessel function of order n, H(2)
n (ω, ra) is a second kind spheri-

cal Hankel function of order n, (.)′ is the first derivative, ra is the array radius, and k is the wave

number for the frequency band [26].

Once the pseudo-intensity vector has been calculated, an average of the intensity vector is taken

across(ω) [26], giving:
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I =
∑
ω

w(ω)I(ω) (3.11)

where w(ω) is a weighting function, allowing certain frequencies to be ignored, such as low

frequency noise. The DoA can then be estimated as a unit vector pointing in the direction of the

sound source as given in [26]:

û = − I
||I||

(3.12)

where ||.|| is the `2 norm of the intensity vector. While this is similar in principle to variation

of intensity vector analysis presented in [34], the x, y, and z axis signal intensity is computed

as a weighted average of the spherical harmonic channels of a higher-order spherical harmonic

domain signal steered in the opposite direction to the x, y, and z axes with dipole directivity, as

opposed to directly using the zero- and first-order spherical harmonic domain signals.

In [26], DoA estimation based on pseudo-intensity vector analysis was tested using an EigenMike

em32 [13], to capture a sound source positioned at azimuth 0◦ and elevation −90◦, in a 2.9 ×

2.7× 3.3 m room with a reverberation time of approximately 300 ms. The results showed that

the method was capable of producing accurate results with, in typical environments, a mean

error of less than 0.5◦. The results presented were, however, only for a single source position.

Furthermore, the results showed that the accuracy with which the DoA was estimated decreased

as reverb time increased. Results in [38] showed that across static DoA tests with three active

sound sources and one with three actively moving in 5◦ steps with a SNR of 40 dB, an average

angular error between 5.71◦ and 9.28◦ was achieved, this varied depending on the length of the

test signal and whether the source was moving or static [38]. Additional results presented in

[39] show that the accuracy of pseudo-intensity vector decreased with respect to reverb time and

signal-to-noise ratio (SNR) for the case of single and multiple sound source localisation, with

at most a 2.5◦ error when localising a single source with a SNR of 10 dB and reverb time of

700 ms.

3.2.1.2 Multiple Signal Classification (MUSIC)

The Multiple Signal Classification (MUSIC) algorithm is a subspace-method for estimating pa-

rameters for signals arriving at arbitrarily shaped sensor arrays. This is achieved by decomposing
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the covariance matrix of a time-frame into two subspaces relating to the signal and noise com-

ponent. The method proposed in [40], calculates the MUSIC spectrum for the signal subspace,

and uses the largest d̃ peaks in the spectrum to estimate signal parameters, where d̃ is the number

of predicted signals in a time-frame. The MUSIC algorithm can be used to estimate the DoA,

strength and cross-correlation of the signals, polarizations, and strength of the noise component.

To compute the MUSIC spectrum for a signal, the [M ×M ] covariance matrix, RXX , of the

[N ×M ] (M is number of sensors and N is the length of the signal being analysed) signal, X ,

is first computed as [40, 41],

RXX = E{X∗X} (3.13a)

RXX =
1

N − 1
((X − µX)T (X − µX)) (3.13b)

where E{.} denotes statistical expectation, T denotes matrix transposition, and µX is the mean

of the signal matrix X . From the covariance matrix the eigensystem can thus be solved for the

matrix of generalised eigenvectors, Ωn, [42] using the relationship,

RXXĒ = ΩnĒΛ (3.14)

where Λ is a diagonal matrix of the eigenvalues of the covariance matrix and Ē is a matrix

containing the eigenvectors (e) corresponding to the eigenvalues (λ̄) of the covariance matrix

[42].

An estimate of the number of sound sources d̃ present in the signal is then required, which can

be calculated using, for example, the Akaike (AIC) approach as defined in [43].

The MUSIC spectrum, pMUSIC, is then calculated from the estimated noise subspace EN =

Ωn[e
d̃+1
|...|em] [40] as,

pMUSIC(θ) =
w∗(θ)w(θ)

w∗(θ)EnE∗nw(θ)
(3.15)

where w(θ) is the simulated or measured array response for a plane wave arriving at the array
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from DoA θ, containing both gain and temporal information [42]. The θ values of the d̃ largest

peaks in the MUSIC spectrum correspond to the estimated DoA for the signals arriving at the

microphone array [40].

Results presented in [42] showed that the MUSIC had at most an error of 0.9◦ as average over

5000 trials with two active sources. However, in 37% of the trials using MUSIC one or both

of the sources DoAs were not estimated [42]. Results presented in [45] showed that, when

localising two active sources, only small errors [45] were introduced as reverb time increased,

with tests performed at 0, 150, and 300 ms reverb times with a SNR of 20 dB. The accuracy

of the MUSIC algorithm has made it a popular area of further research [42], with it having

applications in a wide array of fields that make use of sensor arrays, particularly with relation to

radars.

3.2.1.3 Eigenbeam-Multiple Signal Classification (EB-MUSIC)

Eigenbeam-Multiple Signal Classification (EB-MUSIC) is an implementation of the MUSIC

algorithm designed for use with spherical microphone arrays. EB-MUSIC uses spherical beam-

patterns, or eigenbeams, in place of the steering vector in (3.15) [46]. The steering vector is

therefore expressed using the spherical harmonic transform vector y as defined in (2.22).

As with pseudo-intensity vector analysis (see Section 3.2.1.1), the raw microphone output is

transformed into the spherical Fourier domain using (3.5). Then using (3.13a) the noise sub-

space for the time-frame is computed. The MUSIC spectrum is then computed by replacing the

steering vector, w(θ), in (3.15) with the spherical harmonic transform vector.

Results presented in [12], which analysed DoA for early reflections measured with a spherical

microphone array, presented azimuth error values up to 10◦ and elevation error values up to 9◦,

with frequency smoothing2 applied. Additionally, their results showed that the accuracy with

which DoA was estimated decreased with SNR [12]. While it can be beneficial to represent

the steering vector analytically, as opposed to through physical measurements, beamforming

techniques performance can degrade as a result of differences between the analytical and mea-

sured sensor gain, phase, position, and mutual coupling [47–49]. Furthermore, while the results

appear less accurate than that of MUSIC, it is important to consider that the types of signals

being analysed, in this case reflections, differ from the continuous signals used to test MUSIC.

2Frequency smoothing techniques make use of focusing matrices that map all frequency bins into a
single reference frequency, effectively focusing the spectral content [12]. Derivation of this process can
be found in [12].
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Where reflections are short signals that last a fraction of a second, providing less data to esti-

mate DoA from. Additional results presented in [50], looked at the application of frequency

smoothing (see [50] for more details) when analysing the DoA of reflections recorded in a 444

seat auditorium (2268 m3) using a dual sphere scanning microphone with 882 positions per

sphere (20th order spherical harmonic signal). When performing the frequency smoothing over

the 1.91 kHz–2.73 kHz band, they reported an enhanced spatial spectrum, with smaller regions

of higher power exhibited in the spatial spectrum, which should allow for more accurate esti-

mates of DoA. Furthermore, results presented in [51], which used time-domain smoothing (see

[51]) to analyse the DoA of the direct sound and first seven reflections in a SRIR measured in a

162 m3 seminar room using an EigenMike, reported azimuth angular errors between 1◦–4◦ and

elevation between 0◦–9.5◦.

3.2.1.4 Estimation of Signal Parameters by Rotational Invariance Tech-

niques (ESPRIT)

The Estimation of Signal parameters by Rotational Invariance Techniques (ESPRIT) algorithm

was developed for estimating various signal parameters from signals captured using microphone

arrays. This method imposes constraints on the sensor array geometry to improve the computa-

tional efficiency of the signal parameter estimation [42]. As such, the microphone array is set

up in matched pairs, as in Figure 3.1, so as to display a displacement invariance [42].

Figure 3.1: An example sensor array geometry for the ESPRIT algorithm, showing three
sets of microphone set up in matched pairs. The ∆ represents the displacement between
the matched pairs. Image from [42]

As with MUSIC, eigendecomposition is performed on the covariance matrix RXX from (3.13a)
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to estimate Ωn as (3.14). The signal subspace Es of the covariance matrix is then estimated

as the d̃ eigenvectors corresponding to the d̃ largest eigenvalues in Ωn. As with the MUSIC

algorithm, d̃ is defined as the number of sources present, computed using for example the Akaike

(AIC) approach as defined in [43].

The d̃ eigenvectors are partitioned into a d̃ x d̃ sub-matrix [42] as,

E ,

[
Es1,1 Es1,2

Es2,1 Es2,2

]
(3.16)

where Es1,1 are the first d̃ x d̃ entries of the matrix Es. The final step before estimating the DoA

is to calculate the eigenvalues φ̂k [42].

φ̂k = λk(−E12E
−1
22 ) ∀k = 1, ....., d̃ (3.17)

where λk are the d̃ eigenvalues of Ψ = (−E12E
−1
22 ). The azimuth DoA can then be estimated

as,

θ̂k = sin−1(c arg(φ̂k)/(ωo∆̃)) (3.18)

where ωo is the centre frequency of the narrow band signal, ∆̃ is the array displacement vector

and c is the speed of sound [42]. Full derivations of this method can be found in [42].

Comparisons made in [42] showed that the ESPRIT algorithm produced larger variance in angle

predictions,±1.43◦ reported, when compared to the MUSIC algorithm (±0.9◦), when localising

two active source under simulated conditions. The larger variance is a product of the reduced

knowledge of the array geometry required for the algorithm to work. This, however, comes with

the benefit of improved computational efficiency as only computations of order d̂3 are required

compared to the MUSIC algorithm that performs a search over all steering vectors. This is as

a result of the array constraints, which removes the requirement that the whole parameter space

be searched.

In [52] an extension to the ESPRIT algorithm was presented for use with uniform linear arrays.
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The results presented for this variation of the ESPRIT algorithm produced azimuth estimations

within ±0.56◦ of the known source positions, offering an improvement over the original imple-

mentation, but still not giving results as accurate as those obtained using MUSIC.

3.2.1.5 Eigenbeam - Estimation of Signal Parameters via Rotational Invari-

ance Techniques (EB-ESPRIT)

In [53] an extensions of ESPRIT, referred to as Eigenbeam - Estimation of Signal Parameters via

Rotational Invariance Techniques (EB-ESPRIT) was proposed for use with spherical harmonic

domain signals (see [53, 54] for derivations). Results presented in [55] showed that the EB-

ESPRIT method performs best with higher SNRs, demonstrating that the performance of the

method decreases as interfering noise increases. Results are presented as an average root mean

squared error across angles from 0◦ ≤ θ ≤ 90◦ and −10 dB ≤ SNR ≤ 30 dB which for the

case of uncorrelated signal and noise produced an root mean squared error angular error of 11.6◦

and for the correlated case 20.9◦, and therefore, would be less accurate for analysing reflections.

While these errors are generally greater than MUSIC or ESPRIT, for the case of a SNR of 30 dB

the angular error was close to zero, although an exact value is not possible to extract from the

presented heat maps. Furthermore, findings presented in [12] showed that EB-ESPRIT was only

able to localise the direct sound and one reflection within a SRIR, and as such is not suitable for

cases when multiple reflections are present.

3.2.1.6 Delay-and-Sum Beamformer

The delay-and-sum beamformer is a classic beamforming technique, which steers the array to-

wards a specific DoA by delaying and summing the received signal [25]. This method uses a

priori knowledge of the time-difference-of-arrival, τm(Ψ), between each microphone m in the

array to a signal from a known DoA Ψ = [θ, φ]. The microphone array can therefore be steered

in the direction of a specific DoA by delaying the recorded signal at each microphone by τm(Ψ),

which from [25], is expressed as,

x̃(Ψ) =
M∑
m=1

wmXm(t− τm(Ψ)) (3.19)

where M is the total number of microphones, wm is a vector of weights for each microphone,

X is the matrix containing the recorded arrays response at each microphone, and x̃(Ψ) is the

resulting beamformer output [25]. For the case of a spherical microphone array the delay-and-
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sum beamformer can be, from [56], expressed as,

x̃(Ψ, k) =
∞∑
n=0

n∑
m=−n

Xm
n (k)wm

n (k) (3.20)

where Xm
n (k) the spherical Fourier domain version of signal X̂ (3.5) of order n, degree m, and

wave number k, and the beamforming weights wm
n (k) are computed as [56],

wm
n (k)∗ = b∗nY

m
n (Ψ) (3.21)

where (.)∗ denotes complex conjugate and bn for a rigid-sphere is, from [27], computed as

(3.10).

In [12], the spherical harmonic domain delay-and-sum beamformer was used to estimate the

DoA of the first five reflections in a SRIR measured with the EigenMike EM32 [13]. Results

show that the delay-and-sum beamformer produced DoA estimation errors up to 5◦ for azimuth

and up to 11◦ for elevation - when using frequency smoothing, as applied in [12]. While the

azimuth DoA estimation accuracy was comparable to the results they presented for the MVDR

beamformer, 6◦, the delay-and-sum beamformer is less accurate at estimating elevation DoA.

This was suggested to be as a result of lower resolution in the acoustic map produced by the

delay-and-sum beamforming technique, which resulted in wider regions of higher intensity [12].

3.2.1.7 Plane-Wave Decomposition

A Plane-Wave Decomposition (PWD) beamformer decomposes the sound-field into its compo-

nent plane-waves based on the measured sound pressure at a microphone array [57]. The beam-

former weights wm
n (Ψ) = [M × 1], where M is the number of spherical harmonic channels,

can be computed, from [58], as

wm
n (Ψ) =

Y m
n (Ψ)

bn(k)
(3.22)

where bn(k) for the case of a rigid sphere is, from [27], computed as (3.10). As the array order

n approach∞ the output of the beamformer tends towards a delta function in the DoA [57, 58].
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Additional variations on this formulation can be found in: [12, 26, 30, 57, 59, 60]. From these

weights, the power in a given steered direction (Ψ) can be estimated, from [30], as,

ζ(Ψ) = wm
n (Ψ)∗RH(tf )wm

n (Ψ) (3.23)

Jarrett et al. [26] presented a comparison of results between the plane-wave decomposition

technique using 16384 beams (steering directions, the distribution of which was not specified),

and the pseudo-intensity vector analysis method. The results presented considered the case of

a single source present in a reverberant environment with reverb times between 300-600 ms.

Results showed a DoA estimation error of 0.6◦ and was consistent across reverb times. While

the accuracy of pseudo-intensity vector analysis decreased as reverb time increased, it still out-

performed the plane-wave decomposition beamformer in the tests presented. Furthermore, in

[12] the plane-wave decomposition beamformer was used to estimate the DoA of reflections in

a SRIR, only one estimation exactly matched the expected DoA, there was a minimum angular

error value of 2◦ and a maximum of 16◦ - greater than the results presented for EB-MUSIC and

the MVDR beamformer. This implies that the plane-wave decomposition beamformer is not

necessarily the best tool for DoA estimation for SRIR.

3.2.1.8 Minimum Variance Distortionless Response (MVDR) Beamformer

The Minimum-Variance Distortionless Response (MVDR) beamformer, sometimes referred to

as the Capon Beamformer, is a high-resolution beamforming technique that aims to improve the

robustness of DoA estimation to noise interference [61]. The MVDR is an adaptive beamformer

where the beamformer weights are adjusted based on a signal’s covariance matrix, with the

aim of minimising the impact of the residual noise component, by minimising the total array

output and setting the gain in the steered direction to unity [62]. The beamforming weights are

computed as,

ŵ(Ψ) =
R−1
XXw(Ψ)

wH(Ψ)R−1
XXw(Ψ)

(3.24)

where RXX is the signal covariance matrix, w(Ψ) is the steering vector in direction Ψ =[
θ φ

]
, (.)−1 denotes the inverse of the matrix, and ŵ is the adapted beamforming weights

[63]. The directional intensity map, ζ(Ψ), is computed from the beamformer output, from [63],
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across a grid of azimuth and elevation angles as,

ζ(Ψ) = ŵH(Ψ)RXXŵ(Ψ) (3.25)

where (.)H denotes Hermitian transpose. The steering vector weights can be swapped with the

spherical harmonic vector y(Ψk) for application with spherical microphone arrays.

In [12] a spherical array-based MVDR beamformer was compared with EB-MUSIC. The re-

sults showed that the MVDR beamformer produced DoA estimation errors up to 6◦ for azimuth

and up to 4◦ for elevation - when using frequency smoothing, as applied in [12]. These val-

ues are slightly improved over the EB-MUSIC algorithm for the same conditions, which had

a maximum azimuth error of 10◦ and maximum elevation error of 9◦ [12]. Additional results

presented in [50], looked at the application of frequency smoothing (see [50] for more details)

when analysing the DoA of reflections recorded in a 444 seat auditorium (2268 m3) using a

dual sphere scanning microphone with 882 positions per sphere (20th order spherical harmonic

signal). When performing the frequency smoothing over the 1.91 kHz–2.73 kHz band, they

reported an enhanced spatial spectrum, with smaller regions of higher power exhibited in the

spatial spectrum, which should allow for more accurate estimates of DoA.

3.2.2 Binaural Dummy Heads

3.2.2.1 Interaural Level and Interaural Time Difference Lookup Direction-

of-Arrival analysis

In [64] Vesa and Lokki suggested a method for DoA estimation for reflections in BRIRs using

measured ILD and ITD from a set of known Head Related Impulse Responses (HRIRs). This

method used the continuous wavelet transform to produce a high-resolution frequency domain

representations of the BRIR, as,

Wxl(n, s) =
1√
s

N−1∑
n′=0

xl(n
′)ψ∗0

(
n′ − n
s

)
(3.26)

where Wxl(n, s) is the transformed signal xl (for the left channel) at discrete time index n′ and

scale s, n is the translation, and ψ0(n
′−n
s ) is the translated wavelet function at frequency scale

s. This equation can be expressed more compactly and efficiently using the FFT as,
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Wx(s) = IFFT(FFT(xl)
T . ∗ ψ0(s)) (3.27)

In [64] the Morlet wavelet is used as the complex weighted wavelet function ψ0(s), which, from

[65], in the frequency domain is expressed as,

ψ0(s) = π−0.25H(ω)e
−(sω−ω0)

2

2 (3.28)

where H(ω) is the Heaviside step function which equals 1 if ω > 0, ω0 is the dimensionless os-

cillating period of the wavelet that determines the frequency resolution of the continuous wavelet

transform, and s is the scale factor calculated as [64]:

s = s02jδj j = 0, 1, ..., J (3.29)

where s0 is the smallest resolvable scale, δj is the step size of the scale function, and J is the

maximum value of the scale calculated as,

J =
1

δj
∗ log2

(
smax
s0

)
(3.30)

where smax is the maximum scale value [64]. The scaling of the wavelet functions can be

expressed in Hz, from [65], by calculating the relationship between the scale and the Fourier

period fλ as,

fλ =
4πs

ω0 +
√

2 + ω2
0

(3.31)

the frequency in Hz can then be expressed as,

f =
fs

λ
(3.32)
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In [64] the following parameters were used when formulating the wavelets: δj = 1
32 , J = 288,

s0 = 2 and smax = 1024.

Before estimating the DoA, the ILD at each frequency scale (f) is computed as the ratio of total

signal energy between the right Wxr and left Wxl transformed signals as,

ILD(f) = 20× log10

(∑N
n=1|<{Wxr(f, n)}|∑N
n=1|<{Wxl(f, n)}|

)
(3.33)

where < denotes the real part of the complex transformed audio vector. The ITD is computed

from the cross-correlation function, which is defined as,

c(f, t) =

∫ 1 ms

−1 ms
Wxl(f, τ)Wxr(f, t− τ)dτ (3.34)

where the maximum peak within the cross-correlation function relates to the ITD between the

left and right channel. To produce a more accurate estimate of ITD the method proposed in [66]

is used in [64], which upsamples the area around the maximum peak within the cross-correlation

function by a factor of ten, which ideally will improve the precision with which the ITD can be

estimated.

As a result of the diameter and shape of the human head, these interaural cues are frequency

dependent. This results in ITD values being more prominent at lower frequencies, while ILD

values are greater at higher frequencies [21, 64]. To this extent, Vesa et al. proposed the use

of a crossover frequency at fc = 1.5 kHz [64]. The azimuth and elevation angles can then be

calculated by comparing the measured ITD and ILD values of the test signal with the ITD and

ILD values of the reference HRIRs. The reference HRIRs used in [64] are the MIT KEMAR

database [67] and CIPIC database [68] - using an average ILD and ITD across all participants of

the CIPIC dataset. The ILD and ITD comparisons are calculated as,

(θ, φ) = argmax
(θ,φ)

{
−

∑fmax
fmin

(ITDref (f,θ,φ)−ITD(f))2 ,f≤fc
−

∑fmax
fmin

(ILDref (f,θ,φ)−ILD(f))2 ,f≥fc
(3.35)

where the reference ILD and ITD values are denoted as ILDref , and ITDref respectively and
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the ILD and ITD values measured from the signal being tested are denoted as ILD and ITD

respectively.

This method was found to be inaccurate for estimating the DoA of reflections in a BRIR, with

errors greater than 80◦ estimated for some reflections, particularly as reflection density, and

consequently the number of overlapping reflections, increases [64]. Furthermore, the figures

presented in [64] show very few reflections with angular errors less than 10◦. While the angular

errors are significant this is, to the author’s knowledge, the first paper to consider the problem of

DoA estimation of reflections within a BRIR. It is possible that through the use of sophisticated

pattern recognition algorithms, such as machine learning, these results could be improved on.

3.2.2.2 Machine Learning for Direction-of-Arrival Estimation of Binaural

Signals

Machine-learning refers to a category of computer programs that can adapt and learn through

trained experience, as opposed to being explicitly programmed to act in a specific way when

provided with a given data input [23]. When considering neural networks, as used in this thesis,

learning is performed using a training dataset with known solutions. During each iteration of the

training process, the neural networks adjustable parameters, referred to as weights and biases,

are tuned to minimise the difference between the expected and estimated solutions to the training

data [23, 24, 69]. Once trained, the neural network can then be used to find solutions to unknown

data of the same type as it was trained with.

While numerous methods for machine-learning exist, the most common approach to binaural

DoA estimation involves the use of neural networks [70–78]. Neural Networks (NNs) are pow-

erful machine-learning tools, which can be used to solve complex problems with relative ease,

and have been an active area of research in binaural DoA estimation over the past 30 years

[70–77].

A NN a is a highly interconnected structure of simple non-linear processing units called neurons

and in their simplest form have three main layers: the input layer; the hidden layer; and the

output layer (see Figure 3.2) [24]. The input layer is a passive layer that takes the input pattern

of size I and passes each element of the pattern to each neuron of the first hidden layer, where

most of the processing occurs. The hidden layer is formed of neurons that have weighted con-

nections to each feature within the input pattern, typically each neuron will have an additional

tunable bias value, which is added to the weighted sum of its connections. The sum of these
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weighted connections produce the neuron’s degree of activation (or a Boolean on/off if a thresh-

olding function is being used), which is formulated using a mathematical function referred to

as the activation function (for example sigmoid, linear, etc.). Unlike the input and output layer,

multiple hidden layers can be defined of different sizes. The output layer defines the solution

that the NN has arrived at based on the hidden layer’s processing of the input feature vector,

and contains neurons equal to the number of possible predefined solutions that exist for a single

input pattern. The output is defined by mapping the weighted sum of the hidden layers’ neurons

to an activation function [24], and therefore defines the probability that an input vector belongs

to a specific output value. A basic neuron model can be seen in Figure 3.3.

Input Pattern

1

I

Hidden Layer (1) Output Layer

Input Layer
w1,k

b1,k
Size = I

K Neurons J Neurons

Output Pattern

1

J

wo,j

bo,j

+ +Fx Fx

Figure 3.2: Example simple feed-forward neural network topology with an input layer,
hidden layer, and output layer. I symbolises the number of elements in a single input
pattern, K is the number of neurons in the hidden layer, and J is the number of neurons
in the output layer, which corresponds to the number of expected outputs for one input
pattern. In this example w1,k and wo,k are a vector of weights representing the weighted
connections to neuron k in the input and j in output layer respectively, b1,j and bo,j is
the bias values for neuron k in the input and j output layer respectively, and Fx is a
mathematical function which defines the degree of activation of the neuron. Based on
[79]
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wx1 = x1w1
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2
1+e−2n − 1
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Figure 3.3: Example neuron model for the kth neuron (Neuronk) in the hidden layer of
the network. x1 : xI are the I input elements of the input pattern x, w1 : wI are the
I weights associated with Neuronk, bk is the bias value associated with Neuronk, and
n is the summed processed input. In this case a sigmoid activation function is used to
express the degree of activation of the neuron, which will vary from −1 to 1, alternative
functions can also be used.

There are two main ways of training a NN: supervised, where the NN is given the solution to the
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training data; and unsupervised, where the NN is not provided with the desired solution to the

training data. In the supervised case, a NN learns by adjusting the weights and biases of each

neuron, in an attempt to minimise the error between the predicted and desired output solutions

[24]. In the case of unsupervised learning, the NN is looking within the dataset for patterns,

and each output layer neuron represents a specific pattern. When a neuron is presented with

input data that best matches its prescribed pattern it should have the highest degree of activation

in the competitive learning sense. In both cases the training process is iterative until the best

solution or maximum number of iterations is reached [24, 69, 80]. The exact procedure of the

training process will vary between different network types (feed-forward, feedback, etc.) and

different training functions (Bayesian Regularisation [81], Levenberg-Marquardt [82], Scaled

Conjugate Gradient [83], etc.). Each network type and training function will lend itself to finding

solutions to different problems. Once the NN has been trained, and the weights and biases of

the connections fixed, it can be used to predict the probability of an unknown feature vector

belonging to one of the predefined solutions.

Direction-of-Arrival Estimation

Considering the sound localisation capabilities of the human auditory system it should be possi-

ble to develop a computational approach to binaural sound localisation, by attempting to mimic

the neural processing performed by the auditory system. Therefore, machine learning has played

a significant role in binaural sound localisation over the past thirty years, as a result of the par-

allels that can be drawn between machine learning techniques and that of the biological neural

system. In the literature for machine learning based binaural DoA estimation, the most common

approach is to use a feature space comprised of the ITD and/or ILD as computed through the

use of a binaural model [32, 70, 71, 76, 84–86].

When calculating the ILD and ITD, the binaural signals are first filtered into separate frequency

bands using either Gammatone filters3 [32, 76, 84–86], Bark scale filters4 [89], or logarithmi-

cally spaced non-linear filters5 [70, 71]. A conceptual design for this process can be seen in

Figure 3.4.

3Gammatone filters are commonly used in computational models of the auditory system, and are
designed such that they mimic the frequency separation and resolution of the auditory system [87].
Gammatone filter banks are spaced using equivalent rectangular bandwidths, which distributes the
filters across frequency based on their bandwidths [87].

4Bark scale filters refer to bandpass filters corresponding to the first 24 critical bands of hearing [88].
5Bandpass filters spaced logarithmically along the frequency range, with increasing bandwidths at

higher frequencies [71]
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One of the key measures of the success of a trained machine-learning algorithm is its ability

to produce comparably accurate results for unknown data, which are measured under different

conditions (for example: reverb time, noise, source signal, etc.) than that of the training data.

This will detail the applicability of these method to real-world situations where the measurement

conditions are not controlled. Therefore, when testing these methods, the estimation accuracy

can be more realistically defined when the test data is measured under different conditions than

that of the training.

Neural Network
Calculate
Binaural

Cues

F1

FI

F1

FI

Filtering

Filtering

Training Function

Measured HRIRs

Target Data –
Known direction
of arrival for
each HRIR

Feature 1
Feature 2

Feature I

Figure 3.4: Conceptual design of an interaural level and time difference model for neural
network based direction-of-arrival estimation, where I is the number of features within
the input feature vector.

Neti et al. [70] used an ILD based feature space for DoA estimation using 128 logarithmically

spaced frequency bands, however, the model was focused on using transfer functions of a cat’s

external ear. The paper evaluated the importance of different frequency bands for source local-

isation within the context of NNs trained with a cat’s transfer functions. They discovered that

the localisation accuracy was better when only using the spectral region 5 kHz to 18 kHz, where

prominent notches were found in the transfer functions. The results for a three layer (Input, Hid-

den, Output) NN, showed an average error of ±6.30◦. It is important to note that the test data

used here corresponded to measurements from the training data that were not used as part of the

training procedure. Therefore, the results do not evidence whether the model is generalisable to

different sound source material or measurement conditions than those of the training data. In

addition to using ILD Neti et al. [74] explored monoaural DoA estimation using just the spectra

from one channel. Their findings showed that the NNs used were still capable of reasonable

DoA estimation, with the best average error for monoaural testing being ±9.6◦ [74].

Yuhas et al. [71] tested two binaural models (the Jeffress model [90] and the Shamma model [91,

92]) to compute the ITD and ILD for azimuthal DoA estimation. Furthermore, they considered

69



feeding the NN with the raw output of the cochlea model used in the Shamma model [91].

The NN was trained over 1500 epochs for ITD and ILD data, and over 500,000 epochs for the

raw cochlea output. The type of NN was not specified, nor the number of hidden layers. The

results presented showed high output accuracy within the training data, but only a maximum of

66% of the test data being accurately predicted (see Table 3.1), as with [70] the test data were

measurements from the training data set that was not used in the training procedure. However, it

is hard to tell to what degree of precision the NN was capable of providing a DoA estimate. The

paper suggests an output layer consisting of seven neurons with the neuron with the maximum

activation level defining the DoA, which would imply that each neuron represents a possible

DoA range of 51◦ unless further, unknown, processing is considered.

Percent Correct
Model Training Set Test Set

Match Close Match Close

Jeffress Model 79% 84% 46% 64%
Shamma Model

cross-section 82% 86% 27% 49%
summation 47% 66% 35% 57%

Raw Input
by sample 29% 71% 18% 54%

12.5ms average 81% 88% 57% 66%
31.3ms average 86% 91% 66% 75%

Table 3.1: Comparative performance of the Jeffres model, Shamma model and Raw
input data presented in [71]. ‘Match’ denotes an exact matching DoA prediction and
‘Close’ denotes when the DoA was predicted as being on either side of the correct DoA.

Juha et al. [89] used downsampled HRIRs (sampled at 22.05 kHz as they were only interested in

frequencies≤ 10 kHz) to generate the ITD, represented as the cross-correlation function (limited

to ±1 ms) between the left and right channels, and the ILD computed over 24 Bark filters. The

proposed NN had a single hidden layer comprising of either two, four, or eight neurons. The

NN output was represented as four neurons with an activation range of ±1, each representing

either the sine or cosine of either the azimuth or elevation DoA. They tested their NN using data

excluded from the training data set, and two different acoustic conditions, which was referred to

as anechoic and reverberant. It is stated that, based on their own analysis of the results, the NN

was unable to generalise to new data. However, angular error values are not reported and cannot

be estimated from the NN output graphs provided.

In [76] two different NNs were explored for binaural DoA estimation, the Multilayer Perceptron

(MLP) (supervised learning) and the Self-Organising Map (SOM) (unsupervised learning), with

the training data generated using the MIT KEMAR HRIR database [67]. The HRIRs are first
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filtered using a bank of 32 gammatone filters with Equivalent Rectangular Bandwidth (ERB)

spacing [93], using the ITD values up to 2.5 Hz and ILD from 1.9 kHz to 20 kHz to train the NN.

However, it was found that ITD and ILD alone were insufficient for accurate estimation using

the SOM. To this extent, a second set of features is generated corresponding to a ±15◦ rotation

of the head, and the SOM is presented with both sets of features. The NNs were tested using

pink noise and spoken vowel sounds across different azimuth and elevation positions. In [76] it

was found that training the MLP for more than 2000 epochs caused the network to be overtrained

and unable to generalise for unknown data. Results presented showed that the relative error of

the NNs output for real-world data consisting of spoken Finnish vowels that were not included

as part of the training data was 24%, and was said to be generalisable due to a similar relative

error presented for the training data (20.7%). The key issue in this work related to elevation

prediction in the median plane, where the ILD and ITD values are zero [76]. It is speculated that

using the cross-correlation summed across the 32 filter bands, and also the composite loudness

level spectra of the 32-filter bands may improve localisation along the median plane [76].

May et al. [84] approached the problem from the perspective of using Gaussian Mixture Models

(GMMs) to analyse the ITD and ILD data to produce an estimate of DoA. The data is analysed

over 32-gammatone filters and half-wave rectified to approximate the inner hair cells within the

human ear. The ITD is then computed as the maximum value within the cross-correlation func-

tion between the left and right ears for each filter band, and the ILD as the ratio (in dB) between

the energy of the signal at the left and right ear summed over a time frame. The parameters are

computed over 20 ms time-frames and at a sampling frequency of 5 kHz. A GMM is defined

for each gammatone filter band, and the DoA is computed as the maximum value within the

summed log-likelihood of each possible DoA across frequency bands. The GMM was trained

using a multi-conditional training set, which produced mixtures of training signals with differ-

ent reverb times and signal-to-noise ratios. This attempts to improve the generalisability of the

prediction model to different measurement conditions. As the GMM presented by May et al.

has a stepped DoA estimation of 5◦, a correct prediction is defined as a prediction within ±5◦

of the expected DoA. Results are therefore presented in terms of the number of predictions with

an angular error greater than 5◦, referred to as anomalies. The results presented showed that the

accuracy of the GMM varied as a function of both reverb time and source-receiver distance, with

anechoic conditions having less than 5% anomalies, and with a reverb time of 0.6 s, a maximum

of 40-45%.

Woodruff et al. [85] also applied GMMs to the binaural DoA problem. The binaural feature
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space was computed in 10 ms time-frames over 64 gammatone filters spaced from 80 Hz–5 kHz,

with the ITD computed from the maximum peak in the cross-correlation function and ILD as

the energy ratio in dB. The input vector is defined using all ITD and ILD values, and fed to a

single GMM. The output of the GMM is then integrated over all 10 ms time-frames that define

the binaural signal, and the DoA estimated from the resulting probability vector. The results

showed that the localisation performance degraded as signal length decreased, signal-to-noise

ratio, and source-receiver distance. The accuracy with respect to signal length, when two-talkers

were present, was approximately 70% at 100 ms and between 89-95% for 500 ms, 1 s, and

2 s. The accuracy with respect to source distance, again with two-speakers, was approximately

99% at 1 m, 97% at 2 m, and 86% at 4 m. Finally, the accuracy with respect to SNR, for the

two-speaker scenario, was approximately 96% at infinite SNR, 95% at 6 dB SNR, and 93% at

0 dBSNR.

In [32] an extension to [84] was presented using a Deep Neural Network (DNN) for each fre-

quency band, as opposed to a GMM. The DNNs consisted of 8 hidden layers, each with 128

neurons, and a sigmoid activation function. The output layer was split into 72 neurons each

representing a 5◦ step in DoA. To resolve front-back confusions in source localisation, a random

head rotation was introduced between ±30◦, triggered through use of a motorised dummy head.

Results presented for one one–three active sources show an average accuracy of 96% when using

a DNN with head rotation and 95% when head rotation was not used. Furthermore, comparing

the performance between DNNs and GMM showed that on average the DNN outperformed

GMM, which had an average accuracy of 94.2% with head rotation.

May et al. [86] presented an extension to their previous work in [84] using head-rotation, as

implemented in [86] to further improve the accuracy of the model. Their results showed that

the use of head-rotation, multi-conditional training, and integrating the GMM output over fre-

quency produced the most accurate results. The mean accuracy of their model, for one–three

active sources, was 91.3% across four measurement environments: anechoic data measured with

a KEMAR, and three measurement environments using a Cortex MK.2 head and torso simulator

[86]. The accuracy of these results show that their proposed system is not just generalisable

to different measurement conditions, but also to alternative head shapes - where differences in

binaural cues would be observed. This can prove useful when distributing a trained model de-

signed for general purpose use, where different end users will likely have different measurement

equipment.
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3.2.3 Discussion

Direction-of-arrival (DoA) estimators refer to the set of methods that aim to determine the di-

rection from which a signal arrived at a microphone array. In this section DoA estimators that

are applicable to spherical and binaural microphone arrays have been explored.

Considering the results presented for binaural based localisation first (see Table 3.2), it is clear

that NN based DoA estimators are capable of producing comparable accuracy, in some cases,

to results presented for larger microphone arrays when considering continuous signals such as

speech. Furthermore, while [64] ILD and ITD lookup scheme considered localisation of reflec-

tions as opposed to continuous signals, the significant improvement in DoA estimation achieved

when using NN presents an area of further research in reflection DoA estimation in BRIR. While

these estimators have been studied extensively for estimating the DoA of continuous sound

sources, they have not as yet been applied to the analysis of reflections within a BRIR. Work

presented in this thesis will, therefore, consider the application of NN based DoA estimators to

reflection-based data.

DoA estimation for reflections using spherical microphone arrays (see Table 3.3), however,

presents a different set of problems. While results suggest that pseudo-intensity vector analysis

has the potential to produce accurate estimates of DoA to within ±0.5◦ (as tested with continu-

ous signals), it is not necessarily optimal when considering SRIRs, as in such multiple reflections

will arrive at the receiver array, some of which will overlap or arrive at the same time. In these

cases it would be expected that the DoA estimation accuracy for the pseudo-intensity vector

analysis would decrease similarly to how performance degrades with increasing levels of in-

terfering noise. Furthermore, in the case of simultaneous reflections, pseudo-intensity vector

analysis method may not be able to resolve between and so estimate DoA for each of the simul-

taneously arriving reflections, as previous methods for multiple source localisation have relied

on estimating the DoA of multiple signals over time-frames of a continuous signal as opposed

to a short time signal such as a reflection, and so in such circumstances, a beamforming based

approach is more appealing. Discussion and results presented in [12] showed that, generally, the

MVDR beamformer produces comparable accuracy to that of EB-MUSIC when estimating the

DoA of reflections measured with a spherical microphone array, without the need to estimate

the number of signals that are present in a time-frame. Furthermore, the maximum angular er-

rors, 6◦ for azimuth and 4◦ for elevation, are lower than those reported for the other spherical

microphone-based multi-signal DoA estimators. Based on these findings for DoA estimation
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of reflections [12], the MVDR beamformer will form the basis by which the DoA of reflection

based data are estimated when using spherical microphone arrays in this thesis.

Method Test Condition Angular Error Reference

Binaural

ILD ITD Lookup Reflections in BRIR 10◦ – 90◦ [64]

NN Spectral
Information

Data excluded from
training set

6.30◦ [70, 74]

NN Raw Cochlea
Output

Data excluded from
training set

66% within ±5◦ [71]

NN ITD and ILD
(downsampled)

Data excluded from
training set

Reported as not
generalisable

[89]

MLP ITD and ILD
pink-noise and

Finnish vowel sounds
Relative error of 24% [76]

GMM ILD and ITD

Continuous speech,
0–600 ms reverb time,

different
source-to-receiver

distance

95% within 5◦ at 0 ms
55%–60% within 5◦ at

600 ms
[84]

GMM ILD and ITD Two active speakers
minimum of 70% and

maximum of 99%
within 5◦

[85]

NN for each frequency
band IACC, ILD, and

head rotation

One–three active
speakers Anechoic and

320–890 ms reverb
time

96% within 5◦ [32]

GMM ITD and ILD
One–three active

speakers Anechoic and
‘strong reverberation’

91.3% within 5◦ [86]

Table 3.2: Comparison of direction-of-arrival estimators presented in Section 3.2, pre-
senting method, test conditions, and results.

3.3 Reflection Detection

An RIR, in the perfectly ideal cases, consists of a superposition of the direct source-to-receiver

sound followed by reflected copies of the direct sound produced by interactions with boundaries

present in an environment, with the density of the reflections arriving increasing with reflection

order. However, for real-world measurements interfering noise components can mask desired

reflections. Furthermore, reflections are not represented by a single peak within the RIR and

as such can temporally overlap, and interactions with the boundaries can temporally warp the

reflected sound [94]. These factors can present problems when trying to systematically detect

these reflections. Therefore, reflection detection refers to the set of methods aiming to detect

individual reflections in a RIR as discrete arrivals, while ideally rejecting interfering noise as a

possible reflection. Generally such approaches can be split into one of two categories:
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• Microphone Array Based - Making use of particular properties for a specific microphone

array.

• System Agnostic - Not requiring any specific setup and usable with any number of micro-

phones.

In this section reflection detection techniques proposed in the literature that are either, relevant

to the microphone arrays used in this thesis, or have been used in previous work for geometry

inference, will be explored.

3.3.1 Microphone Array Based

3.3.1.1 Circular Variance Local Maxima Technique

The circular variance local maxima technique was developed by Tervo et al. in [14], where

they used the first-order components of spherical harmonic domain signals and microphone

arrays consisting of two microphones per axes. This method uses a discrete-time implementation

of intensity vector analysis (See section: 3.2.1.1), where the frequency-domain representation

of a time-frame is computed using the FFT, to calculate the DoA across frequency bins for

a windowed time-frame of the RIR. The DoA variation (circular variance) between frequency

bins is then used as one of the parameters defining whether a discrete reflection is present in the

time-frame. The circular variance, vtf , is calculated as,

vtf = 1− (s2
tf

+ c2
tf

)
1
2 (3.36.1)

where

stf =
1

(k2 − k1)

k2∑
k=k1

cos(θtf ,k) (3.36.2)

ctf =
1

(k2 − k1)

k2∑
k=k1

sin(θtf ,k) (3.36.3)

where stf is the average cosine azimuth DoA (θ in radians), from the first frequency bin (k1) to

the last frequency bin (k2) at the time-frame tf , and ctf is the average sine value for θ at time-

frame tf . Ideally if the most prominent signal in a time-frame is a singular discrete reflection,

then the variation in DoA should be near zero, and the circular variance will be larger in the

presence of noise or multiple arrivals. The use of circular variance alone is insufficient for
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accurate reflection detection due to potentially unwanted, quieter, directional signals. To this

extent, the circular variance value is used in conjunction with local maxima detection [14]. Local

maxima detection compares the average energy across the array contained within the current

time-frame, against the previous and next time-frame. A discrete reflection is then defined as

being present if the current time-frame is a local maximum and the circular variance is below a

defined threshold close to zero, defined as a circular-variance less than 0.1 in [14].

Results presented in [14] show that the circular variance local maxima technique was able to de-

tect more reflections when a RIR (in this cases measured in an auditorium) was measured using a

highly-directional loudspeaker (54 potential reflections detected), than when an omnidirectional

loudspeaker was used (16 potential reflections detected). In the majority of cases the peaks in

the RIR are detected, however, there are additional detections around these peaks, which could

be as a result of the same reflection being detected as multiple discrete arrivals due to the win-

dowing process [14]. Furthermore, the results present in [14] do not consider the number of

false-positive detections that are made.

3.3.1.2 Cross-Wavelet Transforms

In [64], a method for detecting reflections from the Cross Wavelet Transform (XWT) of a BRIR,

measured using a binaural dummy head, was proposed. In order to calculate the XWT, the

continuous wavelet transforms of the left and right BRIR channels must first be calculated using

(3.27-3.32). The cross-wavelet transform is computed from the continuous wavelet transform as

[64],

|Wxl,r(n, s)| = |Wxl
(n, s)W∗

xr
(n, s)| (3.37)

where Wxl
(n, s) is the continuous wavelet transform of the left channel of the BRIR, and

W ∗xr
(n, s) is the complex conjugate of the continuous wavelet transform of the right channel

(3.26) [64]. The cross-wavelet transform in this case measures the similarity between the sig-

nals arriving at the left and right ear, with peaks in the spectrum generally indicating a high

correlation between the left and right signals or a significant peak in one of the channels. In

the proposed implementation a threshold is applied to the XWT, discarding any parts of the

spectrum that are over 14 dB lower than the maximum value, effectively removing any areas of

low correlation in the XWT [64]. The discarded parts of the spectrum are set to −∞, and the

thresholded transform is normalised so all values above −∞ are scaled between 0 and 1 [64].
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Searching for maxima within the thresholded XWT (Figure 3.5 (b)) is not sufficient for de-

tecting reflections, as any temporally overlapping reflections will form a single region of high

correlation, and therefore not be detectable as individual arrivals [64]. To this extent Vesa et

al. proposed that the watershed [95] algorithm6 could be applied to a grey-scale image of the

XWT to separate these regions of high-intensity [64]. The segmented regions of high-correlation

(Figure 3.5 (c)) are then defined as being the temporal regions in which discrete reflections are

present.

Figure 3.5: Example of the cross-wavelet transform of a binaural impulse response. (a)
The cross-wavelet transform between the two channels of the binaural room impulse
response. (b) The regions of high correlation present within the binaural room impulse
response once the cross-wavelet transform has been thresholded. (c) the segmented
regions of high-correlation produced by the watershed algorithm, which are separated
by a white outline. Image from [64]

Results presented in [64] show that the reflections detected using this algorithm are all within

2 ms of the expected ToA. The method, however, is unable to disambiguate between reflections

that partially overlap, detecting them as a single arrival [64], and therefore, as reflection density

increases, the accuracy with which reflections can be detected as individual discrete events de-

creases. In addition to this drawback, the direct sound is sometimes split into smaller segments

by the watershed algorithm and may require manual temporal localisation [64]. However, these

results do not present the number of reflections that the method fails to detect or the number of
6The watershed [95] algorithm is an image processing technique that is used to separate overlapping

objects within grey-scale images.
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false-positive detections.

3.3.1.3 Linear Radon Transform

Baba et al. [96] presented a reflection detection method designed for use with RIRs measured

with a uniform linear array of loudspeakers positioned along a line with uniform element spac-

ing, and a single receiver position. They exploited the linear temporal displacement property

of the array to detect reflections that are common across the RIRs obtained. When considering

a uniform linear array of loudspeakers, reflections arriving at the receiver for each loudspeaker

will be displaced in time linearly as a product of the distance from the loudspeakers to the walls

and receiver. Therefore, the arrival of a reflection from a wall will be linearly displaced across

the RIRs, such that the location of the reflection’s peaks across the RIRs represent points on a

line (see Figure 3.6). Based on this principle the authors proposed the use of the linear Radon

transform [97] to detect these lines defined by temporally displaced signals common across the

RIRs. These detected lines are then defined as the arrival of a discrete reflection produced by a

common wall. The sample index of the point on the line that corresponds to each RIR defines

the ToA for a discrete reflection.

Figure 3.6: Example of a stack of 80 room impulse responses, the white dotted rectangle
represents the loudspeaker array used in [9], and the green, yellow, and red lines show
the arrival of the reflections linear displaced along the room impulse responses. Image
from [9]

To produce the stacked response of the array, the individual RIRs are interpolated such that

one pixel on the horizontal axis (time axis) is equal to a time shift of 1
Fs , and a pixel on the

vertical axis (representing microphone spacing) is equal to a distance of 1
750 m [96]. The Radon

transformed image T is then computed from the interpolated image R as,
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T[j, n] =

M∑
m=1

R[m,n+ (m−M/2)× tan(θj)] (3.38)

where m is the loudspeaker index, M is the number of loudspeakers, n is the time index, and

θj is the jth angle - defined as −15◦ ≤ θ ≤ 15◦ in 0.5◦ increments. The transformed image is

filtered to isolate the highest peaks in the transform, and peak detection is used to detect the time

index of the detected reflection in the image.

Results are presented for seven simulated and one real-world case, and consider the detection

rates and RMS error of the ToA estimates. Across all eight cases the direct sound is detected

with an average error of 104.8 µs for the simulated cases, and 116.1 µs for the real-world case.

On average 92.6% of the first-order reflections are detected in the simulated case with an average

ToA error of 66.5 µs, and 83.3% of first-order reflections for the real-world case with an average

ToA error of 138.7 µs. They report that in the real-world measurements one of the boundaries

was near-anechoic, and thus missed first-order reflections could be attributed to these reflections

not having been captured. Finally, for the case of second-order reflections there was a large drop

in performance, with, on average, only 37.7% of second-order reflections being detected for the

simulated case with an average ToA error of 59.9 µs, and 32.0% of second-order reflections

detected for the real-world data with an average ToA error of 166.3 µs. From these results it

can be seen that as reflection order increases the performance of the algorithm decreases. While

this method does not relate to the microphone arrays used in this thesis, this method is used to

detect reflections in other work presented by Baba et al. on geometry inference in [9], which is

discussed in the next chapter.

3.3.1.4 Clustered - Dynamic Phase-Slope Algorithm

The Clustered - Dynamic Phase-Slope Algorithm (C-DYPSA) was proposed in [8] for detecting

reflections present across an array of microphones. The proposed C-DYPSA is an extension of

DYPSA, which was originally proposed in [98] for the detection of glottal closure instances, in

speech research [98]. The phase-slope is computed as the ‘centre-of-gravity’ g(n) of the signal

energy from a slidingM -length windowed time-frame of the residual signal produced by a linear

prediction filter [98] as,

g(n) =

∑M
m=1mx2

n(m)∑M
m=1 x2

n(m)
(3.39)
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where xn is the nth windowed time-frame of the residual signal. The vector g(n) is then centred

on sample n as,

d(n) = g

(
n− M − 1

2

)
− M − 1

2
(3.40)

Naylor et al. defined the presence of glottal closure instances as indexes where zero-crossings in

the phase-slope d(n) occur [98]. To adapt the algorithm for processing RIRs, any peaks within

the phase-slope and RIR that fall below a defined threshold are ignored [8]. Furthermore, the

kth reflection in a RIR is defined as a false positive if the median ToA of the kth reflection across

all RIRs is closer to the k+ 1th than the kth reflection [8]. The remaining zero-crossings within

the phase-slope are then defined as the ToA of discrete reflections.

Results presented in [99], however, only present the ToA estimation error for the first reflection

that arrives at the microphone array. The results are presented in terms of distance error, rep-

resenting the error in the estimated distance travelled by the sound wave versus the simulated

distance travelled. The average distance error across the four scenarios presented is 109.51 mm,

with a maximum error of 192 mm and a minimum of 48 mm. Results considering the detection

rates or the number of false-positive detections are not presented, other than stating that it fails

for higher-order reflections. This method is not directly relatable to later work presented in this

thesis, however, it is used as the reflection detection algorithm in the geometry inference work

of Remaggi et al. presented in the next chapter of this thesis.

3.3.2 System Agnostic

3.3.2.1 Adaptive Thresholding

Adaptive thresholding is a method originally used for image processing, but was adapted to

allow for the detection of individual reflections in a single RIR [100]. Adaptive thresholding

compares the average magnitude in a time-frame against neighbouring samples. It is assumed

that the magnitude of a specular reflection is a factor of ε greater than its neighbouring samples

[100]. The mean magnitude value for time (t) can be calculated as,

µlocal(t) =
1

Tµlocal

∫ t+Tµ+local

t−Tµlocal
|h(τ)|dτ (3.41)
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where µlocal is the average magnitude, Tµlocal is the averaging time (2 ms in this study), and

h(τ) is the RIR at time interval τ [100]. Individual reflections can then be detected through

analysis of the mean magnitude values using the following,

hpeaks(t) =

{0, ∀|h(t)|<εµlocal(t)

1, ∀|h(t)|≥εµlocal(t)
(3.42)

where ε is the thresholding parameter which Kuster defined as being two [100]. Therefore, a

discrete reflection is defined as being present at points where the sample magnitude is greater

than or equal to two times the mean magnitude value of the time-frame.

In [100] the adaptive thresholding method is only able to detect 50% of reflections present in

the first 30 ms of a RIR measured in a lecture hall. Furthermore, they present two cases for

measurements in a concert hall, both of which had large numbers of false-positive detections in

the first 120 ms, although, they do not state how many. Extracting an estimate of false-positive

detections from the figures presented in [100], it would seem that approximately 56 detections

have been made for the first concert hall measurement, where they suggest there should only be

nine reflections. They concluded that this method is not accurate enough for systematic detection

of reflections, and at most only one to five reflections can be identifiable with confidence.

3.3.2.2 Matching Pursuit

Defrance et al. [101] developed a reflection detection method based on the principal that re-

flections are filtered occurrences of the direct sound. Therefore, the direct sound will be highly

correlated with any reflections present within the RIR, and as such the sample index of the

reflection, idx, within the RIR h can be detected as,

idx = argmax(〈|rh,ds|〉) (3.43)

where rh is the residual signal, ds is the direct sound, and 〈., .〉 denotes the dot product. This

process is then repeated over a finite number of iterations based on a defined stopping criteria,

where the residual signal is updated after each iteration by zeroing the time-frame of the previ-

ously detected reflection. In [101] it was proposed that this iterative process is stopped once the

energy-ratio fell below 20 dB, where the energy ratio is defined as the RIR over the residual rh in
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dB. The results showed that the choice of value for the stopping criterion is incredibly important

when detecting reflections in RIRs, and in this case the higher the allowed energy-ratio the more

signals are detected, which can lead to an increased number of false positive detections.

The reliability of this method, however, directly relates to accuracy the with which the direct

sound can be windowed out of the RIR by human observation. Furthermore, the process by

which reflections are systematically detected, and then removed from the residual RIR, will

inevitably result in overlapping reflections being removed, and therefore, not detected as an

individual arrival.

3.3.2.3 Dynamic Time Warping Reflection Detection

Kelly and Boland [15] proposed an extension to the work presented by Defrance et al [101],

by considering the problem of detecting overlapping reflections as individual arrivals. Through

the use of DTW they define a likelihood metric which defines the number of reflections present,

while also considering the impact of temporal smearing of reflections as a result of sound inter-

acting with the measurement environment. DTW is an operation which computes the minimum

warping path required to align the features of one vector with another [102, 103].

To estimate the ToA of the reflections, two cross-correlation functions are computed: one for

the cross-correlation between the remaining RIR and the direct sound, and one for the cross-

correlation between the remaining RIR and a phase inverted version of the direct sound. The

maximum point of correlation is then detected in each vector, with the largest value of correlation

between vectors being defined as the most prominent reflection. To detect whether overlapping

reflections are present, five new vectors are generated, one for just the direct sound7, and four

with concatenated versions of the direct sound [15] expressed as,

dsk = [0τk ,ds,0length(rh)−τk−length(ds)] (3.44.1)

d̂s
+

k = [0τk ,ds,ds,0length(rh)−τk−(2∗length(ds))] (3.44.2)

d̂s
−
k = [0τk ,ds,−ds,0length(rh)−τk−(2∗length(ds))] (3.44.3)

d̃s
+

k = [0τk−length(ds), ds,ds,0length(rh)−τk−length(ds)] (3.44.4)

d̃s
−
k = [0τk−length(ds),−ds,−ds,0length(rh)−τk−length(ds)] (3.44.5)

7for notation ds refers to either the phase inverted or original version of the direct sound depending
on which produced the largest point of correlation
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where 0τk is a zero vector of length τk, τk is the location of the peak in the cross-correlation

vector, ds denotes the original direct sound, and rk is the residual of the RIR being analysed. In

the above example dsk is just the direct sound, d̂s
+

k is with an unchanged direct sound succeed-

ing ds, d̂s
−
k is with a phase inverted direct sounding succeeding ds, d̃s

+

k is with an unchanged

direct sounding preceding ds, and d̃s
−
k is with a phase inverted direct sounding preceding ds.

The main direct sound ds in these vectors will now be approximately temporally aligned with a

possible reflection [15]. DTW is then used to align the features of each variation of dsk with the

candidate reflection present in residual rh of the RIR at τk, and the resulting warped versions

of dsk are scaled to roughly match those of this candidate reflection. The warped and scaled

version of dsk that best represents the reflections at τk is defined using the error value ε from

[15] as,

υ = ||γdskŵ
†
hŵadsk||l2 (3.45)

where ŵh is the warp vector for the reflection, and ŵa is the warp vector of the direct sound, and

γdsk is the scaling value. The variation of ds with the smallest υ is assumed to best represent

the reflections present in the time-frame [15].

Results presented by Kelly and Boland in [15] show that the proposed method outperformed the

matching pursuit method. Their results show that the proposed method detected 75 reflections,

where an estimated 70 reflections should be present based on the image-source method. Unlike

the matching pursuit method, the dynamic time warping approach detected individual reflections

as a singular arrival as opposed to multiple arrivals [15]. The proposed method also detected far

fewer definite false-positive detections, when comparing the number of detections to the number

of expected. However, exact numbers of false-positives are not presented so while there are five

definite false-positives (based on the number of detections), more could still exist within the 70

other detections.

3.3.3 Discussion

Reflection detection refers to the set of methods designed to find the temporal locations of re-

flections present in a RIR. In general these methods can be split into one of two categories, mi-

crophone array based and system agnostic. Considering the system specific methods that relate

to the arrays used in this thesis, which are the circular-variance local maxima (first-order com-

ponents of a spherical harmonic signal) and cross-wavelet transform (binaural dummy head),
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it is evident that neither would be capable of providing accurate enough reflection detection to

be considered viable for geometry inference - with large numbers of missed reflections and/or

false-positives. Furthermore, even the best system agnostic technique, the DTW based matching

pursuit, has drawbacks. While this method can detect overlapping reflections, it would still be

unable to detect simultaneous reflections, which can commonly occur in real-world RIRs, as

individual reflections. Furthermore, this approach would not fully exploit the spatial informa-

tion contained within a SRIR measured with a spherical microphone array, which can provide

more information about the arrivals of reflections. Therefore, a spatiotemporal decomposition

based reflection detection algorithm will be presented in this thesis, and the results compared an

implementation of the DTW and circular variance local-maxima approaches.

3.4 Summary

In this chapter, literature relating to reflection analysis, which is a prerequisite step for geometry

inference, has been discussed. In the context of this thesis, reflection analysis refers to the

temporal and spatial localisation of reflections present in a SRIR, and as such refers to reflection

detection and direction-of-arrival estimation.

Reflection detection has been an active area of research in the field of acoustics, with numerous

methods proposed. These techniques can be categorised as either being microphone array based

or system agnostics - not requiring a specific setup or number of microphones. While some of

these techniques have been shown to produce accurate results, the fundamental problem they do

not consider is the case where simultaneously arriving, or overlapping, reflections are present.

With a view of dealing with this problem, Chapter 6 presents a spatiotemporal decomposition

based reflection detection method and will be compared to the DTW based matching pursuit and

circular variance local maxima techniques.

As with reflection detection, DoA estimation has been an active area of research, particularly

as it is applicable to multiple aspects of audio engineering. From the perspective of reflection

analysis, however, very little research has been focused on DoA estimation for reflections in

binaural room impulse responses, and none have considered the current state-of-the-art binaural

DoA estimators. Hence, a binaural model fronted NN based approach to reflection DoA analysis

will be presented in Chapter 5. By way of contrast, DoA estimation of reflections in SRIR

captured with spherical microphone arrays has been rigorously studied, and beamforming based

techniques have been found to produce at most an angular error 6◦. As a consequence, the

spherical harmonic domain MVDR beamformer will be used in Chapter 6 for reflection DoA
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estimation.
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Method Test Condition Angular Error Reference

Spherical Microphone Array

Pseudo-Intensity
Vectors

‘Typical
Environments’

0.5◦ [26]

Pseudo-Intensity
Vectors

Three static sound
sources with 40 dB

SNR
5.71◦ [38]

Pseudo-Intensity
Vectors

Three moving sound
sources with 40 dB

SNR
9.28◦ [38]

Pseudo-Intensity
Vectors

Single and multiple
sources 10 dB SNR
and 700 ms reverb

time

2.5◦ [39]

MUSIC
Two active sources

(Simulated)
0.9◦ [42]

EB-MUSIC
Early Reflections
measured with

EigenMike EM32
θ = 10◦ and φ = 9◦ [12]

EB-MUSIC and
MVDR

Frequency smoothing,
reflections in a SRIR
measured with a dual

sphere scanning
microphone

Reported enhanced
spatial spectrum

[50]

EB-MUSIC

Time-domain
smoothing, direct

sound and reflections
in a SRIR measured
using an EigenMike

θ = 1◦–4◦ φ = 0◦–9.5◦ [51]

ESPRIT
Two active sources

(Simulated)
1.43◦ [42]

EB-ESPRIT
-10 dB ≤ SNR ≤ 30

dB Uncorrelated
signal and noise

11.6◦ [55]

EB-ESPRIT
-10 dB ≤ SNR ≤ 30
dB Correlated signal

and noise
20.9◦ [55]

Eigenbeam-Delay-
and-Sum

Early Reflections
measured with

EigenMike EM32
θ = 5◦ and φ = 11◦ [12]

Plane-wave
decomposition

Single sound source
300-600 ms reverb

time
16◦ [26]

Plane-wave
decomposition

Early Reflections
measured with

EigenMike EM32
16◦ [12]

MVDR
Early Reflections
measured with

EigenMike EM32
θ = 6◦ and φ = 4◦ [12]

Table 3.3: Comparison of direction-of-arrival estimators presented in Section 3.2, pre-
senting method, test conditions, and results.
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Chapter 4

Geometry Inference: Related

Work

4.1 Introduction

In the previous chapter, relevant methods presented in the literature for estimating the time-of-

arrival (ToA) and direction-of-arrival (DoA) of reflections in (Spatial) Room Impulse Responses

were discussed. These reflection analysis stages are generally a prerequisite for geometry in-

ference, as the information extracted for each reflection is directly relatable to the boundaries

present in the measurement environment. This chapter will now consider such geometry infer-

ence methods, and discuss the limitations of these techniques.

Geometry inference focusses on the inverse problem of localising reflective boundaries based on

temporal or spatiotemporal reflection information from a number of RIRs, exploiting the inher-

ent relationship between reflections arriving at a microphone array, and the location of reflective

boundaries present within the environment [6]. Methods for geometry inference generally fall

into one of two categories, image-source reversion and direct localisation [8], and both will be

discussed in this chapter.

4.2 Image-Source Reversion

Image-source reversion refers to the set of methods that exploit the properties of the image-

source model, as discussed in Chapter 2, to estimate the location of dominant reflective bound-
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aries in an enclosed space. Typically these methods use the time-of-arrival of first-order reflec-

tions extracted from a set of RIRs, measured at different points in an environment, to estimate

the location of image-sources, which are then used to estimate boundary locations. Most of these

methods exploit the relationship between the source s and image-source location s̃ to define a

point on the boundary b̃ and the boundary’s normal ñ (see Figure 4.1) as,

b̃ =
s̃ + s

2
(4.1)

ñ =
s̃− s

||̃s− s||
(4.2)

Figure 4.1: Simple example showing the inverse image-source process used to estimate
a point on a boundary and the boundary’s normal vector.

4.2.1 Euclidean Distance Matrix: Echo Sorting and Geometry Infer-

ence

The method proposed by Dokmanic et al. [6] assumes that the geometry of a room is a con-

vex polyhedron, and that five RIRs, each measured at one of five different receiver positions,

is sufficient for geometry inference of a three-dimensional space. To estimate the location of

image-sources, the ToA of the first-order reflections for each boundary needs to be grouped

across the five RIRs. It is proposed that these reflections can be grouped by exploiting the rank

property of an Euclidian Distance Matrix (EDM) - the N ×N matrices containing the squared

distances between a set of N points in space [104]. That is, if the rank of the EDM D̃ is greater
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than or equal to the number of microphones M , then the reflections are all produced by the

same boundary, and consequently the same image-source. The EDM matrix D̃ is, therefore,

defined from the squared distances between microphones and the squared distance travelled by

a reflection as,

D̃ =



||m1 −m1||2 ||m1 −m2||2 · · · ||m1 −mM ||2 (τm1 ∗ c)2

||m2 −m1||2 ||m2 −m2||2 · · · ||m2 −mM ||2 (τm2 ∗ c)2

...
...

...
...

...

||m5 −m1||2 ||m5 −m2||2 · · · ||mM −mM ||2 (τmM ∗ c)2

(τm1 ∗ c)2 (τm2 ∗ c)2 · · · (τmM ∗ c)2 0


(4.3)

where τm1 is the ToA of the reflection at microphone m1 and c is the speed of sound. To

account for noise interference on the ToA estimation multidimensional scaling [105] is used,

this process finds the closest EDM with a rank of M , and therefore, defines the likelihood of a

set of reflections belonging to the same image-source.

Once the reflections have been grouped the location of the image-source that produced those

reflections are computed by finding the common point of intersection for a set of spheres, centred

around each receiver, with the radius defined by the ToA of the reflections in the group. The

candidate boundary locations are then defined by estimating each boundary’s normal ñ and a

point on each boundary b, which, for the ith image-source s̃i and the source position s [6] as

(4.1).

Results show that, for the three convex cases presented, first-order reflections can be used to

define the geometry of the room uniquely, with a maximum distance error between parallel

boundaries of 7 cm. However, it is important to note that the reflections used in this case were

manually detected. Therefore, the impact that noise or false-positive detections, as discussed in

Chapter 3, has on the accuracy of the geometry inference process cannot be determined. This

could have implications when considering real-world applications of this method, where reflec-

tions’ ToA are systematically extracted from the RIR. Another key drawback to this method, is

the limitation imposed by the microphone array used, that is, each microphone must be care-

fully positioned such that it clearly receives a first-order reflection from each boundary. This

requirement limits it applications to that of convex cases where all receivers are inherently in

line-of-sight of every boundary.
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4.2.2 Room of Best Fit

Arteaga et al. [106] approached the problem of geometry inference for a cuboid-shaped room

by attempting to find a ‘room of best fit’. This method uses the reverb time and source-receiver

distance, as estimated from a single RIR, to define a series of possible cuboid shaped rooms

[106]. The candidate rooms are constrained such that,

lz ≤ ly ≤ lx (4.4)

0 ≤ s[x,y,z] ≤ l[x,y,z]/2 (4.5)

s[x,y,z] ≤m[x,y,z] ≤ l[x,y,z] − s[x,y,z] (4.6)

where s is the possible source location, m is the possible receiver location, and l are the dimen-

sions on x, y and z axes. The reverb time, T60, is then used to find combinations of possible

room parameters that satisfy Sabine’s equation [18, 106], as,

T60 =
24V ln 10

cSln(1− α)
(4.7)

were V is the volume of the room, α is the absorption coefficient, c is the speed of sound, and S

the summed surface area of all walls.

To generate a set of candidate rooms that satisfy the above constraints, stochastic search algo-

rithms such as, simulated annealing [107] or genetic algorithms [108] are used. These search

algorithms are performed over a defined period of time, producing a set of possible candidate

rooms [106]. For each candidate cuboid-shaped room, the image-source model is used to gen-

erate a test RIR. The candidate room that maximises a utility function, defined using the corre-

lation between the simulated and measured RIR, is assumed to be the one that best matches the

geometry of the target room.

Results show that some dimensions were correctly estimated, but other dimensions had relative

error values of up to 30%, however, the dimensions of the test rooms are not defined, and as such

the error values that the 30% relate to cannot be derived. As this approach does not require any

form of reflection detection or associated boundary localisation, additional boundaries are not
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produced as a result of false-positive detections or misidentification of higher-order reflections

as being first-order, which is important when considering geometry inference. Furthermore,

expanding this algorithm to consider more complex environments (convex or not) would likely

result in highly inaccurate results, as without constraining the room’s shape based on a priori

knowledge or assumptions about the room’s shape, it would be impossible to estimate the shape

of a given room using this method.

4.2.3 Synthetic Reflection Fitting

The technique proposed by Ribeiro et al. [109] uses SRIRs captured using a conference call

device consisting of a uniform circular array of microphones, positioned on-top of a table. Sim-

ilarly to the work of Arteaga et al. [106] the image-source model is used to find the most likely

candidate boundary locations, however, here the image-source model is used to generate a set

of synthetic reflections with known DoA. The boundary locations are then inferred by fitting

these synthetic reflections to the measured SRIR, using least-squares optimisation [106]. The

synthetic reflections that best match the reflections present in the measured SRIR then define

the distance and angular position of the boundary relative to the receiver. The geometry infer-

ence process is constrained such that the resulting room must be cuboid, i.e. all non-parallel

boundaries must be at a 90◦ angle to each other. To further validate candidate boundaries, and

remove false-positive detections, each candidate boundary must have at least least one second-

or third-order reflection attributable to it.

Results presented for real-world testing showed that out of the five boundaries considered, being

the four walls and the ceiling, only three were detectable. Results for boundary location are

given in terms of azimuth, elevation, and distance of the centre of the boundary relative to the

receiver. For the three detected boundaries, a maximum distance error of ±2 cm and azimuth

position error of ±2◦ was reported. While two boundaries are not detected, and the floor was

not considered, the boundaries that are inferred have comparable localisation error to the other

techniques presented in this chapter. However, the constraints imposed limit this method’s ap-

plication to cuboid-shaped rooms only. Furthermore, the reflection fitting process used would

require a relatively large number of synthetic reflections to account for all possible boundary

locations.

4.2.4 Maximum Likelihood Image-Source Estimation

Tervo et al. [110] proposed a geometry inference method using maximum-likelihood to esti-

mate image-source locations from RIRs measured at six microphone positions. The RIRs were
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measured using a single loudspeaker over multiple orientations rotated in 10◦ steps from 0◦ to

360◦. The generated RIRs are windowed into short 1.5 ms frames with a 95% overlap, and

the loudspeaker direction with the largest absolute pressure on average in the microphone array

represents the RIR for each time-frame [14], ideally producing a sparser RIR with less densely

distributed reflections. From a set of candidate reflections detected in this new RIR, the location

of image-sources s̃ are estimated using maximum-likelihood as,

s̃(xk |̂t,Σk) =
exp(−1

2 [̂tk − tk(x)]TΣ−1
k [̂tk − tk(x)])

(2π)N/2
√

det(Σk)
(4.8)

where N is the number of microphones, t̂k is a vector of the ToAs for the kth reflection in

each measured RIR, tk are the true ToAs, and Σk = diag(σ2
k,1, σ

2
k,2, · · · , σ2

k,N ) is the ToA error

covariance matrix[110]. The solution to (4.8) is found through an optimisation process using

the Levenberg-Marquardt-algorithm [111]. The geometry is then inferred from the estimated

image-sources, using (4.1) as in [6]. This method assumed that all reflections are first-order,

unless a valid reflection path can be found between existing boundary locations. To validate

non-first-order reflection paths the Mahalanobis distance [112] is used. Any reflection path

with a large Mahalanobis distance (threshold not defined in [110]) is considered invalid. The

Mahalanobis distance between two points, x and y, is, from [110], computed as,

D2 = (x− y)T (Σx + Σy)
−1(x− y) (4.9)

where Σx and Σy are the covariances for the boundary at point x and y respectively [110].

The proposed method was tested for four different source-receiver pairs in a cuboid shaped

room. Using the expected and estimated boundary parameters provides an estimate of dis-

tance error and dihedral angle between the expected and estimated boundaries can be made,

showing any errors in boundary position. The dihedral angle represent the angle between two

boundaries, and is computed from the boundaries normal vectors n1 and n2 as cos(θ) =

(n1xn2x + n1yn2y + n1zn2z)/(
√

n12
x + n12

y + n12
z

√
n22

x + n22
y + n22

z) [113]. The max-

imum distance error is 67 cm across the four tests, with an RMS distance error of 20.46 cm,

and the maximum dihedral angle is 1◦, with a RMS dihedral angle of 0.98◦. While the dihe-

dral angle, and therefore inferred shape of the room, is comparable or better than other works
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presented in this section, the distance error is generally larger. Furthermore, for one of the test

cases presented an additional angled boundary is inferred, as a result of an incorrectly inferred

boundary from a ceiling reflection. This method is, however, only applicable to convex-shaped

rooms as the process used to define possible reflection paths assumes a convex-shaped room,

bounded by a limited number of dominant boundaries, as a starting point.

4.2.5 Image-Source Direction and Ranging-Loudspeaker-Image Bisec-

tion

The Image-Source Direction and Ranging-Loudspeaker-Image Bisection (ISDAR-LIB) method

was proposed by Remaggi et al. [8] as an extension of work from [6] and [110]. A forty-eight

bi-circular microphone array is used to obtain the SRIRs measured from multiple loudspeaker

positions. For the test cases presented, four, nine, twelve, and twenty-two loudspeaker positions

are used. Using ToA computed using the C-DYPSA (Section 3.3.1.4) and the DoA computed

using the MUSIC algorithm, the location of image-sources can be defined as,

s̃i = di


cos(θi) cos(φi)

sin(θi) cos(φi)

sin(φi)


T

(4.10)

where di is the distance travelled by the ith reflection and θi and φi are the azimuth and elevation

DoA respectively. The boundary locations are then inferred from the image-source locations

using (4.1), and the boundary normal and point are averaged across these RIR measurements.

Results presented show good localisation of reflectors within an enclosed space with a minimum

averaged RMS distance error of 20.8 cm and a maximum of 35.2 cm across four test scenarios.

Comparisons between [6, 110] and ISDAR-LIB are presented in [8], which showed that on

average ISDAR-LIB outperformed the other two methods, with ISDAR-LIB having an average

distance error 24.5± 0.4 cm, the method in [110] 33.4± 0.6 cm, and the method in [6] 26.7±

1 cm. While it is stated that no assumption of room shape is made, the results presented only

consider cuboid-shaped rooms, and as such it is not possible to tell if the methodology employed

is applicable to complex-shaped rooms.
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4.3 Direct Localisation

Unlike image-source reversion techniques, direct localisation techniques use the ToA of reflec-

tions to estimate boundary locations without resorting to reflection path calculations using the

image-source model [8]. There are three approaches to direct localisation discussed in this sec-

tion, ellipsoid based [8, 9, 114–117], inverse wave field extrapolation [118], and resonant fre-

quency distance estimation [119]. All of these methods use some direct mathematical expression

that relates the features or reflections of a RIR to the room’s boundaries.

4.3.1 Elliptical Constraint Method

The elliptical constraint method for geometry inference, proposed by Antonacci et al. in [114,

115], was developed to estimate the locations of boundaries in two-dimensions, requiring a

priori knowledge of the number of boundaries present, and was the first method to use ellipsoids

for geometry inference. A peak detection algorithm is used to estimate the ToA of theN+1 most

prominent reflections within a RIR where N is the number of boundaries in the measurement

environment.

The proposed method uses ToA for individual reflections to create ellipses with the source and

receiver positions as their foci. Under the assumption that all reflections are specular, each

ellipse represents all the possible reflection paths that could define a given reflection. Therefore,

the inferred boundary must be tangential to all ellipses defined by a reflection common across

multiple RIRs (a minimum of three is suggested in [115]), as seen in Figure 4.2, [115]. The

source and receiver positions used have to be carefully considered to ensure that each boundary

has a detectable reflection in each of the measured RIR.

Figure 4.2: Common tangent (rp1, rp2 and rp3) for the ellipses traced for 3 different
receiver positions (r1, r2 and r3) with the source at position rs, from [115]

Results are presented for four scenarios using 4, 8, 12, and 16 different source positions for
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the same room. Across the four scenarios, the boundary estimation error values are between

0.5–2.95 cm, with more measurement positions producing smaller boundary estimation errors.

However, this method is only applicable to geometry inference in two-dimensional space, and

as a result of requiring multiple reflections from the same boundary being uniquely detectable

across an array of microphones, it is only applicable to simple convex-shaped rooms. Further-

more, the constraint of using only the N + 1 most prominent reflections in the RIR implies

a priori knowledge of the room’s shape, and may not hold when considering larger or more

complex rooms..

4.3.2 3D Elliptical Constraint Method

Nastasia et al. [116] proposed an extension to the work presented in [114, 115] for 3D room

geometry estimation. In the proposed method the ToA of only the first prominent peak after

the direct sound is considered. Therefore, a set of RIR measurements is required for each wall

with four receiver locations per set (24 RIRs in total for a cuboid room). In this study ellipsoid

parameters are defined as a quadric matrix,

O =


an,m nn,m dn,m gn,m

bn,m/2 cn,m en,m/2 hn,m/2

dn,m/2 en,m/2 fn,m in,m/2

gn,m/2 hn,m/2 in,m/2 ln,m

 (4.11)

where the quadric parameters are computed as,

an,m = 4[(xm − xn)2 − d2] (4.12a)

bn,m = 8[(xm − xn)(ym − yn)] (4.12b)

cn,m = 4[(ym − yn)2 − d2] (4.12c)

dn,m = 8[(xm − xn)(zm − zn)] (4.12d)

en,m = 8[(ym − yn)(zm − zn)] (4.12e)

fn,m = 4[(zm − zn)2 − d2] (4.12f)

gn,m = 4[T 2(xn + xm)− (xm − xn)(x2
m − x2

n + y2
m + z2

m − y2
n − z2

n)] (4.12g)
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hn,m = 4[T 2(yn + ym)− (xm − xn)(x2
m − x2

n + x2
n + z2

n − x2
n − x2

n)] (4.12h)

in,m = 4[(zn + zm)− (xm − xn)(z2
m − z2

n + y2
m + x2

m − x2
n − y2

n)] (4.12i)

ln,m = [(x2
m + y2

m + z2
m) + (x2

n + y2
n + z2

n− d2)]2− 4(x2
m + y2

m + z2
m)(x2

n + y2
n + z2

n) (4.12j)

where d is the distance travelled by the reflection, xm, ym, and zm are the Cartesian coordi-

nates for the source, and xn, yn, and zn are the Cartesian coordinates for the receiver [116]. A

boundary is then defined as being tangential to the ellipsoid if,

BTOn,mB = 0 (4.13)

where B =
[
Bx By Bz 1

]
are the boundary parameters and On,m is the ellipsoid quadric

matrix for microphones 1 ≤ n ≤ N and sources 1 ≤ m ≤M . The boundary location is inferred

as the boundary that is tangential to all ellipsoids defined by the first reflection within the four

RIR that were measured specifically for the desired boundary. A cost function, as defined in

[116], is used to find the inferred boundary B̃ that minimises (4.13) as,

B̃ = arg min
B

( M∑
m=1

N∑
n=1

||BTOn,mB||2
)

(4.14)

To remove erroneously detected boundaries, the room dimensions are constrained such that there

is a minimum and maximum coordinate on the x, y, and z axes, which in this study was a

minimum of 0 m and a maximum of 5.5 m [116]. Results presented show good localisation of

boundaries with the maximum error between inferred and measured boundaries being 7 cm, and

a maximum angle between boundaries of 4.5◦ [116] - which is larger than the other methods

presented in this chapter where the angular error is reported. It is important to note that this

method required a priori knowledge of the largest dimension of the room, and as with the work

presented in [115] the proposed method is only applicable to simple convex-shaped rooms as a

result of requiring multiple reflections from the same boundary being uniquely detectable across

an array of microphones, which is not necessarily achievable for non-convex rooms.
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4.3.3 Ellipsoid based 3D Geometry Inference using a Combination of

Linear Estimates

Filos et al. [117] proposed an alternative approach to ellipsoid based 3D geometry inference, by

splitting the problem into three 2D estimates. A seven-microphone array is used, which can be

divided into three sub-arrays consisting of five of the seven microphones. These sub-arrays are

located such that they lie on the xy-plane, xz-plane, and yz-plane, and, therefore, are used to

estimate the 2D boundary locations on their defined plane. As with [116], only the first reflection

in a RIR is used, and so, six loudspeaker positions are required producing a total of 30 RIRs. As

with [116] the ellipsoids are defined using a quadric matrix as,

O =


a b d

b c e

d e f

 = T̂−T R̂−T Ŝ−T


1 0 0

0 1 0

0 0 −1

 T̂−1R̂−1Ŝ−1 (4.15)

where T̂, R̂, Ŝ are translation, rotation, and scaling matrices as defined in [120], The location

of the boundary in two-dimensions, as defined by the microphone sub-array, is inferred as the

line that is tangential to the set of N ellipses O by finding the least-squares solution to the cost

function,

J(l, {O∗n,m}) =

N∑
n=1

||lTO∗n,ml||2 (4.16)

where l defines the line parameters and O∗n,m = det(On,m)O−1
n,m is the adjoint of the conic

matrix [117]. This results in six reflector lines, one for each boundary, which theoretically should

all intersect. However, in practice ToA estimation errors will likely result in non-intersecting

lines, therefore in [117] it is proposed that the most likely boundary be found using a cost

function solved in the least-square sense as,

B̃ = [ñ, d̃]T = argmin
n,d

||G[n, d]T ||2 (4.17)

where n is the boundary normal, d is the distance from the coordinate origin, B̂ is the estimated

boundary, and G[n, d] is defined using two points on two non-parallel and non-intersecting lines
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l11, l12,l21, and l22 as,

G[n, d] =


l11 1

l12 1

l21 1

l22 1

 (4.18)

From the estimated set of possible boundaries, the room shape is then inferred from the inter-

section points between adjacent boundaries [117].

Results are presented for a single real-world test case in a cuboid shaped room. Across the

six boundaries estimated a minimum boundary distance error of 0.063 cm and a maximum of

7.95 cm is reported, with a minimum boundary angular error of 0.718◦ and a maximum of

1.601◦ [117]. However, as with the other ellipse based methods the constraints imposed as

a result of the required measurement positions limits it application to that of convex-shaped

rooms. Furthermore, as only one set of tests are presented the accuracy with respect to different

room sizes or measurement conditions are not considered.

4.3.4 Ellipsoid Tangent Sample Consensus

The Ellipsoid Tangent Sample Consensus (ETSAC) method was proposed by Remaggi et al. [8]

and as with [115–117], considered the geometry inference problem through the use of ellipsoids,

using the C-DYPSA method to estimate the ToA of reflections. As with [116, 117] ellipsoids

are defined using a quadric matrix defined as,

O =


a d f g

d b e h

f e c i

g h i j

 (4.19)

To define the ellipsoid parameters the quadric matrix is initialised to define a unit sphere with

a = b = c = 1, j = −1, and all remaining parameters initialised as 0. The desired ellipsoids

On,m can then be produced through translation Tn,m, rotation R and scaling S of the unit sphere

matrix O as
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On,m = T̂−Tn,mR̂−Tn,mŜ−Tn,mOŜ−1
n,mR̂−1

n,mT̂−1
n,m (4.20)

The boundary tangential to all ellipsoids is then searched for by randomly selecting sets of points

on the ellipsoid with parameters i = j = 1, using the relationship from (4.13).

Results presented show that the proposed method outperforms image-source reversion tech-

niques presented in [6–8], with an average error of 22.0±0.8 cm across the four rooms used. As

this method uses information across multiple receiver and source locations to generate each wall,

it is likely that the higher accuracy of this method is attributable, in part, to the larger numbers of

measurement locations, which in [115] was shown to produce higher boundary estimation accu-

racy. For the four cuboid-shaped rooms tested a 48-microphone bi-circular array was used with,

4 loudspeaker positions for the 1623 m3 room, 9 for the 43 m3 room, 12 for the 189 m3 room,

and 22 for the 23 m3 room. While the results show good accuracy for boundary localisation, the

requirement that a first-order reflection from each boundary be present in every source-receiver

pair limits its application to that of simple convex-shaped rooms where fewer boundaries are

present, in turn resulting in fewer, more sparsely distributed first-order reflections that are easily

detectable.

4.3.5 Image-Microphone Reflector Localisation

In [9], four uniform-linear arrays of loudspeakers, one per wall, with a maximum of 78 loud-

speaker (minimum of 64) positions were used to produce stacked plot of RIRs (a vertical con-

catenation of RIRs in an image). Common reflections within the stacked RIRs for one loud-

speaker sub-array are detected and grouped using the linear radon transform technique outlined

in Section: 3.3.1.3. From the grouped reflections a set of spheres centred on each source loca-

tion, with radius defined by the corresponding ToA of the reflection, are defined. From these

spheres a set of possible points that define an image-microphone (the mirror of the microphone

in the boundary) can be detected as the common points of intersection across each sphere, which

fall on a circle. Once the possible image-microphone positions have been defined for all reflec-

tions across every sub-array, the location of the image-microphone needs to be refined to a single

point. This is achieved by searching for common reflections across every sub-array by finding

any image-microphone circles that intersect [9].

After defining the most likely groups of common reflections across each sub-array, spheres are

generated centred around every source in the array with radius equal to the ToA for the reflection
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detected in the RIR corresponding to that source position. Across all these spheres there will

now be a single point of intersection, the location of which defines the image-microphone. The

boundary position is then estimated from the point of intersection of a line going from image-

microphone to source and an ellipse defined with foci on the source and receiver position, with

major and minor axes defined by the ToA of the reflections [121].

Results presented show good localisation of the reflective boundaries, with a maximum boundary

location error, averaged over all boundaries in a test case, of 9.05 cm and a maximum average

angle between desired and inferred boundaries of 3.5◦ across seven simulated and one real-world

measurement case [9]. Furthermore, the simulated data always results in more accurate inference

of the room geometry with a maximum difference of 4.84 cm and a minimum of 0.85 cm. While

the results show good accuracy, it is at the expense of requiring a large number of measurement

positions, and only considers the case of a cuboid-shaped room. Expanding this to consider

non-convex rooms would require the use of multiple microphone positions and more complex

shaped loudspeaker arrays, which are not always feasible.

4.3.6 Acoustic Imaging

Kuster et al. [118] approached the problem of geometry inference through inverse wave field

extrapolation using the Kirchhoff-Helmholtz integral, requiring a priori knowledge of the gen-

eral shape of the room. Inverse wave field extrapolation solves the Kirchhoff-Helmholtz integral

by searching for a point I away from the receiver array that satisfies the ray direction and ToA

for the reflections as,

〈pIm(ri)〉 =

∫ ∫
drRxdrRz [w1I(rI ,m, t)vn(m, t) + w2I(rI ,m, t)p(m, t)]t=τ(s,rI ,m)

(4.21)

where p(m, t) and vn(m, t) are the measured pressure and normal component of the particle ve-

locity extracted from the measured RIR, pIm(rI) is the calculated reflected pressure at point I , τ

is the time of arrival given the source s, receiver m, and reflection location rI , andw1I(rI , rR, t)

and w2I(rI , rR, t) are computed as,

w1I(rI ,m, t) = p0
1

4π||rI −m||
δ

δt
(4.22a)
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w2I(rI ,m, t) =
cos(φ)

4π||rI −m||

(
1

||rI −m||
− 1

c

δ

δt

)
(4.22b)

where c is the speed of sound and φ is the angle between the microphone array normal vector

and a ray with end points at the point of reflection and the centre of the receiver array.

The key limitation with this approach is the assumption that all reflections are first-order. To this

extent, Kuster et al. proposed that through knowledge of the original shape of the room, higher-

order reflections that are assumed to be first-order can be manually removed - as the boundary

they produce will fall outside of the desired room’s geometry.

Results presented for 2D room geometry inference for a simulated shoebox room with 400 re-

ceiver locations showed that the four boundaries were located approximately where they should

be, with artefacts appearing as a result of reflections from the floor and ceiling, which are still

present as the RIRs are measured in a real-world environment. Additional results are presented

for the detailed inference of a single wall in 3D. This was achieved through the use of multiple

uniform-linear arrays positioned at different heights from the floor. The acoustic image of the

wall is produced through concatenation of the 2D wall slices produced by each sub array. While

they do not state the number of microphones required, it is likely that a very large number of

microphones are used, considering the 400 needed for 2D geometry inference [118]. The results

presented for the 3D acoustic image of the wall show that objects such as cabinets within the

room were also inferred. However, for both the 2D and 3D test presented, error metrics are

not reported. Furthermore, given the large number of measurement needed this method would

not be practical for real-world 3D geometry inference, as such large number of measurements

require signifficant time-overhead for measurement and analysis.

4.3.7 Reflector Localisation using Room Transfer Functions.

Zamaninezhad et al. [119] considered the problem of locating the distance between two reflec-

tive boundaries through use of a single room transfer function. To achieve this they initially

defined that there is a reflector present at x = 0 on the x-axis and that the source is closer to this

boundary than the receiver. The distance between two boundaries, l̃, is defined using the main

resonant frequency within the room transfer function, which from [119] are found by optimising
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the cost function,

f(λ) =

∫
ω

∣∣∣∣gm(ω) ·
(
ω

c

)
sin

(
ω

c
λ

)∣∣∣∣dω (4.23a)

l̃ = arg min
λ
f(λ) (4.23b)

where gm(ω) is the measured room transfer function at angular frequency ω, λ is the wave

length, c is the speed of sound.

The results show the distance between the two boundaries could be estimated with good ac-

curacy, with a distance error of 0.6 cm. While the results are comparable or better that others

presented in this chapter, it is at the cost of simplifying the problem to estimating the location of

one boundary relative to another parallel one. This approach would become significantly diffi-

cult when analysing more complex enclosed spaces, requiring multiple measurement positions,

and a priori knowledge of the locations of half the boundaries that define the enclosed space.

4.4 Summary

In this chapter geometry inference methods previously presented in the literature have been

discussed. These methods make use of temporal/spatiotemporal information from RIRs mea-

sured at multiple measurement positions, to locate reflective boundaries within the environment

- walls, floor, and ceiling. These methods have been assigned to one of two sub-categories [8],

image-source reversion and direct localisation. Image-source reversion uses an inversion of the

image-source model, to estimate the boundary locations from image-sources inferred from arriv-

ing reflections. Direct localisation techniques locate boundaries without requiring inference of

possible reflection paths for each reflection. Generally the methods proposed for each category

perform comparably when inferring the geometry of a cuboid shaped room. However, the types

of microphone/loudspeaker arrays that these methods are designed for, assumptions on the num-

ber of boundaries, assumptions made when retracing reflection paths, and/or the requirement

that a first-order reflection from every boundary is attributable to and identifiable at every mea-

surement location, constrains these methods to simple convex-shaped rooms only - especially in

the case of ellipsoid based methods.

This thesis will define a geometry inference method for convex and more complex non-convex

rooms, using a compact spherical microphone array, with a sufficient number of measurement
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positions to ensure each boundary has a first-order reflection attributable to and identifiable in at

least one measurement. The proposed method will relax constraints on room shape and reduce

the number of measurement positions needed, while relaxing constraints on source and receiver

positioning, through the use of a commonly used microphone array. While these relaxed con-

straints will increase the number of room shapes that geometry inference is applicable too, the

proposed method will not accurately infer room geometry for the case of rooms with vertically

angled walls or ceilings; such as churches. These constraints have been imposed to improve the

method’s robustness to false-positive detections, which could lead to inaccurate estimates of the

room’s shape. From the previous work outlined in this chapter the following constraints, similar

to those previously presented, will be implemented as part of the proposed geometry inference

algorithm:

• The relative position of all source and receivers are known.

• It is assumed that the source-to-receiver distance is known a priori to account for any

measurement system latency.

• Knowledge or room temperature to allow estimation of the speed-of-sound.

• It is assumed that the walls are perpendicular to the floor and ceiling, and the floor and

ceiling are parallel to each other.

• That all reflections have a dominant specular component allowing their reflection paths to

be traced.

• Each boundary has at least one first-order reflection assignable to and detectable in at least

one SRIR.

• In this study an empirically defined minimum source/receiver-boundary distance of 50 cm

is used (half that of the minimum recommended distance of 1 m in [122] to allow for

analysis of smaller/complex rooms). This constraint is imposed to ideally improve the

robustness of the method to to false-positive detections, where boundaries inaccurately

inferred close to the source or receiver can lead to desired boundaries being invalidated by

the proposed boundary validation process.

• The inferred boundaries define a closed geometry.
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Chapter 5

Direction of Arrival Analysis for

Reflections in Binaural Room

Impulse Responses

5.1 Introduction

In the previous chapter, relevant methods presented in the literature for geometry inference were

discussed. These previous methods considered the case of convex-shaped rooms only, and were

often restricted further to, and only tested with, cuboid-shaped rooms. This is as a consequence

of every boundary in the room requiring a first-order reflection attributable to said boundary and

identifiable across all, or some subset of, Room Impulse Response (RIR) measurements obtained

from different points in the space, and assumptions made about the number of boundaries that

define the room. The work in this thesis, therefore, proposes that by using a compact-microphone

array capable of representing both time- and direction-of-arrival, a geometry inference method

applicable to both convex and non-convex cases might be developed. Therefore, this chapter

will explore whether direction-of-arrival (DoA) can be accurately estimated for reflections in

a Spatial Room Impulse Response (SRIR) measured with a two-microphone binaural dummy

head - the microphone array with the fewest microphones that can encode three-dimensional

spatial information - referred to as a Binaural Room Impulse Response (BRIR).

Binaural localisation has been investigated throughout the literature from the perspective of con-

tinuous signals (mainly speech), however, only one paper to this author’s knowledge [64] has
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considered the problem of localisation using reflection information only. The current state-of-

the-art approach to binaural DoA estimation is through the use of a binaural model fronted

Neural Network (NN). Therefore, this chapter will explore an implementation of this approach

for the DoA estimation of reflections in a BRIR. The aim of this chapter is to establish whether

a two channel binaural approach can provide accurate enough estimation of DoA for the pur-

pose of geometry inference - where any inaccuracies in the estimated reflection parameters will

consequently result in inaccurate estimations of boundary locations.

This chapter is presented as follows: Section 5.2 will discuss the problem domain for binaural

DoA estimation, Section 5.3 will describe the binaural model and NN architecture used, Sec-

tion 5.4 will explain the testing procedure to assess the generalisability of the NN, Section 5.6

will present the results, Section 5.7 will discuss the results in the context of the literature, and

Section 5.8 will conclude the chapter.

5.2 Consideration of the Problem Domain

A binaural signal is characterised by the receiver having the properties of a typical human head,

that is, two channels of information separated appropriately, and subject to spatially-dependant

spectral and temporal variations imparted by the pinnae and head. The spatial information con-

tained within a binaural signal is encoded as the level and time-of-arrival differences (ILD and

ITD respectively) between the signals arriving at each ear, which are a function of both fre-

quency and source position relative to the head [22]. Furthermore, both of these cues will vary

between different people/dummy heads as a result of differences in ear and head morphology,

as such, the binaural DoA estimator ideally needs to be generalisable to different measurement

setups. This is to ensure that the resulting trained NN can be implemented outside of the work

presented in this study, where different measurement equipment, and conditions, may be in use.

The aim of this research is, therefore, to produce a system inspired by the human auditory

system, that can estimate the DoA of sound arriving at the receiver using these cues. The problem

of binaural DoA estimation is therefore twofold: first the interaural cues must be extracted from

the measured signals, and then from the interaural cues estimate the DoA.

5.3 Method

As with the previous studies discussed in Chapter 3, the method developed here uses a binaural

model to produce representations of the frequency-dependent ITD and ILD from the signals
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arriving at each ear of a binaural dummy head microphone. These cues alone have been shown

to be insufficient [32, 76, 86] to provide accurate localisation of a sound source, due to interaural

cue similarities observed at mirrored source positions in the front/rear hemispheres. Therefore,

an additional set of binaural cues is generated for the corresponding direct sound and reflected

components of a BRIR with the dummy head having been rotated. The use of head rotation

has a biological precedence, in that humans use head rotation to focus on the source location.

Therefore, the head rotation provides the NN with a second set of features that the NN can use to

estimate the DoA of the arriving direct sound or reflection. These sets of interaural cues are then

interpreted by a cascade-forward NN, producing a prediction of the DoA for the direct sound

and each detected reflection in the BRIR.

To train the NN, a feature matrix is generated using the un-compensated ‘raw’ SADIE KEMAR

dataset [123]. This dataset contains an HRIR grid of 1550 points: 5◦ increments across the

azimuth in steps of 10◦ elevation, with additional measurement positions based on loudspeaker

positions used in ambisonics. To train the NN, only the HRIRs relating to 0◦ elevation are

used, to initially test the accuracy of the approach on a simpler problem domain, providing a

dataset of 104 HRIRs. The HRIR dataset alone has been shown to not be sufficient to produce

a generalisable NN that produces comparable results across different measurement scenarios

[32, 84, 85]. Therefore, a dataset of HRIRs with different simulated measurement conditions,

a multi-conditional training (MCT) dataset, is produced by generating additional versions of

each HRIRs with simulated uncorrelated diffues noise added to produce SNRs mixtures of 0 dB,

10 dB, and 20 dB as used in [32]. The simulated uncorrelated diffuse noise is generated by con-

volving Gaussian white noise with all 1550 HRIRs in the SADIE KEMAR dataset and averaging

this localised noise across the 1550 positions; producing a simulated uncorrelated diffuse noise

matrix [32]. The MCT dataset is then generated from the feature vectors of the original HRIRs

and the HRIRs with added diffuse noise. It is important to note that the NNs used are only ever

trained with these HRIRs variations, no reflections are incorporated as part of the training data.

5.3.1 Binaural Model

The binaural model used here is inspired by the work presented in [124, 125], representing

frequency-dependent temporal information as an Interaural Cross-Correlation (IACC) function,

and frequency-dependent level difference as the ratio of the signal energy between the ears across

frequency bands. Both the temporal and spectral feature spaces used provide directionally-

dependent cues, produced by the path differences between ears and acoustic shadowing formed

by the presence of the head, which allow the human auditory system to localise a sound source
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in an environment [21, 126]. These directionally-dependent feature spaces are used in this study

to produce a feature vector that can be analysed by a NN to estimate DoA. The aim of this

binaural model is to process the binaural signals in a manner that is similar to that of the human

auditory system, and as such is split into three processing stages, filtering of the audio into

frequency bands, processing of the filtered binaural signals to produce a representation of the

human auditory system’s nerve firing rates, and then computation of the interaural cues. An

overview of this process, as will be described in this section, can be seen in Figure 5.1.

Figure 5.1: Processing diagram for the binaural model starting with the binaural audio,
which is zero padded, and filtered using a bank of 64 gammatone filters, the filtered audio
is then used to compute the interaural cross correlation and interaural level difference .

Prior to filtering the binaural signals, in this case the direct source or a reflection from a BRIR,

the vectors containing the left and right audio channels are zero-padded by 2000 samples to

prevent any loss of signal as a result of delay introduced by the gammatone filters used. This

ensures that no part of the desired signal is shifted outside of the sample-range represented by

the signal vector as a result of this filter delay. The zero-padded signals are then passed through

a bank of 64 gammatone filters spaced from 80 Hz to 22 kHz using the equivalent rectangular

bandwidth scale. Gammatone filters are chosen as they are designed to mimic the frequency

separation and resolution of the human auditory system [87], and are the filters most commonly

used in recent work [32, 86]. The gammatone filter implementation in Malcolm Slaney’s ‘Audi-

tory Toolbox’ [127] is used in this study. The output of the cochlea is then approximated using

the cochleagram function in [128] with a window size of six samples and an overlap of one sam-

ple; this produces an F×S map of auditory nerve firing rates across time-frequency units (based

on findings in [71]), where S is the number of time-frames and F is the number of gammatone

filters. The cochleagram is calculated, using [128], as,

X̃l(f, tf ) = X̂l(f, tf )X̂l(f, tf )T (5.1)

where X̃l(f, tf ) is the cochleagram output for the left channel for gammatone filter f at time-
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frame tf , X̂l(f, tf ), which is six samples in length [128]. An example cochleagram output

for the left channel of a HRIR, measured with the Knowles’ Electronic Manakin for Acoustic

Research (KEMAR) dummy head microphone, at azimuth = 90◦ and elevation = 0◦, from the

SADIE database [123], can be seen in Figure 5.2, the top image shows the filtered left channel

of the HRIR and the bottom image the output of the cochleagram. As can be seen the output

of the cochleagram produces a more focussed representation of the HRIR with fewer additional

peaks in the signal.

Figure 5.2: Top image shows the left channel of a HRIR after being filtered by the bank
of 64 gammatone filters. The bottom image is an example cochleagram output for the
left channel of a HRIR measured at azimuth = 90◦ and elevation = 0◦. Each of the solid
black lines represents a different frequency band.

The IACC function is used to represent the temporal difference between the two channels of

audio over time, where the maximum point of correlation between the two channels represents

the ITD. It has been shown that the IACC function is directly influenced by the acoustic effect

of the head [129], and therefore, features within the IACC function, such as the relationship

between the main peak and any side bands, will vary with azimuthal DoA [32]. The IACC

function will therefore convey more information about the sound-field arriving at the binaural

dummy head than using just the ITD estimate in isolation. The IACC function is computed for

each gammatone filter band as the cross-correlation, C(f), between the approximated cochlea

output X̃l and X̃r for the left and right channel, respectively, with a maximum lag of ±1.1 ms

as [130],
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c(f, tf ) =

∫ τ=1.1 ms

τ=−1.1 ms
X̃l(f, tf )X̃r(f, tf − τ)dτ (5.2)

where τ represents the time-delay. The maximum lag of ±1.1 ms is chosen based on the maxi-

mum observed time delays between signals arriving from different DoA as suggested by Pulkki

et al. in [124]. To produce a more accurate estimate of the IACC function, the cross-correlation

function c(f, tf ) is then normalised, from [124], as,

IACC(f, tf ) =
c(f, tf )√

X̃l(f, tf )X̃l(f, tf )T X̃r(f, tf )X̃r(f, tf )T
(5.3)

The IACC is then averaged across the 64 gammatone filters, producing the temporal feature

space for the analysed signal.

The ILD is calculated from the cochleagram output in decibels as the loudness ratio between the

two ears for each gammatone filter f as,

ILD(f) = 10 ∗ log10

(∑N
tf=1 X̃l(f, tf )∑N
tf=1 X̃r(f, tf )

)
dB (5.4)

where X̃l(f, tf ) and X̃r(f, tf ) are the approximated cochlea output of gammatone filter f , for

the left (l) and right (r) ear for the time-frame tf , and N is the total number of time-frames. An

example of the IACC and ILD feature vector for a HRIR measured with a KEMAR dummy head

at azimuth = 90◦ and elevation = 0◦, from the SADIE database [123], can be seen in Figure 5.3.

When analysing a binaural room impulse response with a sampling rate of 44.1 kHz, the output

of this binaural model is a [1 × 99] IACC function and a [1 × 64] ILD vector, producing a 163

point feature space for a time-frame. An example MATLAB implementation of the binaural

model can be seen in Algorithm 1

5.3.2 Neural Network Data Model

The IACC and ILD computed using the binaural model presented in the previous section defines

the feature space for a single HRIR. This defined feature space is, however, still not sufficient

for accurately disambiguating between signals arriving from mirrored positions at the front and
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Figure 5.3: Example of the interaural cross-correlation function (top) and interaural level
difference (bottom) for a HRIR measured with a KEMAR dummy head microphone with
a source positioned at azimuth = 90◦ and elevation = 0◦, from the SADIE database.

back of the head; where the interaural cues will be similar [32]. Therefore, an additional feature

space is added to the training data - the interaural cues produced by a HRIR corresponding to

either a +θrotation or −θrotation rotation of KEMAR with the same signal-to-noise ratio.

The use of ‘head rotation’ has a biological precedence, in that humans use head rotation to

focus on the location of a sound source, disambiguating front-back confusions that occur due

to interaural cue similarities between signals arriving from opposing locations in the front and

back hemispheres (the hemisphere regions can be see in Figure 5.4) of the head [21, 126]. In this

study, the equivalent effect of implementing a head rotation of θrotation is realised by taking the

BRIR measurements at two additional fixed measurement orientations. The use of fixed rotations

reduces the number of additional signals needed to train the NN and reduces the number of

additional measurements that need to be recorded.

Two versions of the training matrices are produced, one for the interaural cues of the HRIRs

with additional cues at +θrotation, and the other for the HRIRs with additional cues at −θrotation,

producing two 416 × 326 feature matrices. These training matrices are used to train two NNs,

one for each rotation. The NN trained with the −θrotation rotation dataset is used to predict the

DoA for signals that originate on the left hemisphere, while the +θrotation NN is used to predict

the DoA for signals on the right hemisphere. Each of these NNs are trained with the full azimuth
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Algorithm 1: MATLAB implementation of the binaural model. MATLAB functions

are indicated in bold, and // indicates a comment.

// zero pad the BRIR

1 BRIR = [BRIR; zeros(2000,2)]

// Apply the F Gammatone Filters the each channel of the BRIR

// Compute the cochleagram output for each channel of the BRIR

2 maxLag = round(0.0011*Fs);

3 for f = 1 : F do

// Compute the normalsiation factor for the IACC

4 xAutoCorrelation = sqrt(X̃l(f) * X̃l(f)′ * X̃r(f) * X̃r(f)′);

// Compute the IACC

5 [xCorr,lags] = xcorr(X̃l(f), X̃r(f), maxLag);

6 IACC(f,:) = xCorr ./ xAutoCorrelation;

7 end

// Average the IACC function over frequency.

8 IACC = mean(IACC, 1);

// Compute the interaural level difference

9 ILD = 10 * log10(abs(sum(X̃l)) ./ abs(sum(X̃r)));

Front
Hemisphere

Rear
Hemisphere

Left

Hemisphere

Right

Hemisphere

Figure 5.4: Figure showing the regions relating to the front-back hemispheres and the
left-right hemispheres.

range to allow the NNs to predict the DoA for signals with ambiguous feature vectors that would

otherwise be classified as originating from the opposite hemisphere. As the DoA of the signals

is not known a priori for test data, the rotation used is chosen based on the location of the

maximum peak in the IACC feature vector - if the time index of the peak in the IACC is less

than 0 ms (a signal originated in the left hemisphere), a receiver rotation of −θrotation is applied;

otherwise, a receiver rotation of +θrotation is used as,
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θrotation =

{+θrotation, if argmax(IACC)>0 ms

−θrotation, if argmax(IACC)<0 ms

(5.5)

The final step required to generate the training data is to normalise the numeric values of each

of the 326 features. This is achieved by z-normalisation[131] each of the training data matrices,

ensuring each feature has zero mean and unit variance as,

x̃0 =

[
IACC ILD IACCθrotation ILDθrotation

]
− µ

σ
(5.6)

where x̃0 is the resulting feature vector, µ is the [1 × 326] vector of mean values for each

feature point from the training dataset, σ is the [1 × 326] vector of standard-deviation values

for each feature point from the training dataset, and
[
IACC ILD IACCθrotation ILDθrotation

]
is

the concatenation of the IACC and ILD feature vectors for the original signal and the signal

recorded after head rotation. The mean and standard-deviation used to normalise the training

data will then be used to normalise the test data, relating them to each other. An overview of this

process can be seen in Figure 5.5.

Left recorded
HRIR

Right recorded
HRIR

Add spatially
white noise

Add spatially
white noise

Processing

Binaural

Model

Feature Vector
Neural

Network
normalise
features

Head
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Training
Only

normalise
features

Neural
Network

-θ

+θ

Figure 5.5: Signal processing chain used used to train the neural network. Starting with
the HRIRs, in the training phase only simulated diffuse noise is added to create SNR
mixtures producing a multi-conditional dataset, the feature vector is then produced for
all HRIRs, and the corresponding feature vector for the head rotation is added to the
feature vector, these features and then Gaussian normalised and used to train the NN.

5.3.3 Neural Network

To develop, train, and test the NN, the commonly-used, and freely-available, Google python

machine learning library TensorFlow [132] is used. The decision to use NNs as opposed to

other commonly used machine-learning algorithms for binaural localisation, such as Gaussian

Mixture Models (GMMs) or Self-Organising Maps (SOMs), was based on findings in [32, 76] -
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which showed that a NN produced more accurate estimates of DoA that GMM [32] and the SOM

[76]. Furthermore, instead of the commonly used Multilayer Perceptron (MLP) NN topology, a

cascade-forward NN, based on the implementation in [133], approach is taken.

The cascade-forward NN is a highly connected NN architecture that connects both the input

feature vector and all previous layers’ outputs to the input of each layer [133, 134], an example

of which for a one hidden layer cascade-forward NN can be seen in Figure 5.6. As with other

NN topologies, the model consists of an input layer which feeds the feature vector into the NN,

a number of hidden layers all containing a defined number of neurons that process the input

feature vector, and an output layer which defines the output value of the NN based on the output

of the hidden layers.

Input
Vector

Hidden
Layer 1

Output
Layer

Key

= Weighted
Connection

= Data
Flow

Figure 5.6: Cascade-forward neural network topology used, where squares represent the
weighted connections between the hidden layers and the incoming data.

Using the cascade-forward NN topology, each data point, whether it be a feature in the input fea-

ture vector or the output of a previous layer, is connected to a neuron via a weighted connection.

The summed response of all the weighted connections linked to a neuron defines that neuron’s

level of activation when presented with a specific data configuration. As with other NNs a bias

value is applied to each neuron within the hidden layer. These weights and biases for each layer

of the NN are initialised with random values, with the weights distributed such that they are zero

mean and have a standard-deviation, σ, defined in [135] as,

σi = q−1/2 (5.7)

where q is the number of inputs to the ith hidden layer [135]. The output of the Ith layer within

the cascade-forward NN can therefore be expressed as,
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x̃I = tanh

((
I−1∑
i=0

x̃iWI,i

)
+ bI

)
(5.8)

where tanh is the hyperbolic tangent function used to define the activation level for each neuron,

x̃0 is the [1×Number of features] input feature vector, x̃1 to x̃I−1 are the [1×Number of Neurons in layers i =

1...I−1] output of the previous I−1 layers, WI,i are the [number of inputs×number of neurons]

weights connecting the ith hidden layer to hidden layer I , and bI are the neurons’ biases for layer

I .

When considering DoA estimation in 1◦ steps, the output layer of the NN will contain 360

neurons, one for each azimuth direction from 0◦ to 359◦. Using 360 output neurons as opposed

to 104 defined within the training data will allow the NN to attempt estimation of the DoA for

both known and unknown source positions. A softmax activation function is then applied to the

output layer of the NN, which turns the activation levels of the neurons into a probability vector

that sums to one, defining the likelihood of the analysed signal having arrived from each of the

360 possible DoAs. The DoA is therefore the output neuron with the largest probability value

given the feature vector x̃0,

θDoA = argmax
θ

P(θ|x̃0) (5.9)

where P(θ|x) represents the probability of azimuth angle θ given the feature vector x̃0, which

for a cascade-forward NN is expressed as,

P(θ|x̃0) = softmax

((
I−1∑
i=0

x̃iWI,i

)
+ bout

)
(5.10)

An implementation of the cascade-forward NN using TensorFlow [132] can be seen in Algo-

rithm 2

5.3.4 Training the Neural Network

The training of the cascade-forward NN is performed in stages based on the number of hidden

layers being used. Initially only a single hidden layer, and an output layer, is defined, and the NN

is trained with the weights and biases of these layers selected using an optimisation algorithm.
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Algorithm 2: Pseudocode implementation of the cascade-forward neural

network. x0 is the [1 × number of features] feature vector, x̃k is the

[1 × number of neurons in layer k] output of hidden layer k, Wi,k is the

[number of neurons in layer k × number of neurons in i] weigths connecting layer k

to layer i, and bi are the bias values for hidden layer i.

1 i = 1 // Initialise while loop variable

2 while i <= (noLayers) do

3 if i == 1 then

4 x̃i = tanh((x0 * Wi,0) + bi)

5 else

6 x̃i = x0 * Wi,0

7 k = 1 // Initialise while loop variable

8 while k <= i-1 do

// Add previous layers outputs to the input of this layer.

9 x̃i += (x̃k ∗Wi,k)

10 k += 1 // Increment while loop variable

11 end

// add the biases to the weighted sum of the previous layers.

12 x̃i = tanh(x̃i + bi)

13 end

14 i+=1 // increment the while loop variable

15 end
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The training optimiser used to refine the weights and biases was the Adaptive Moment (ADAM)

optimiser [136], which is a computationally efficient first-order gradient optimisation process.

The ADAM optimiser computes individual adaptive learning rates for NN parameters based on

the estimated gradient of the training cost-function, in this case the cross-entropy cost-function

from [137]. The ADAM optimiser parameters are initialised with a learning rate of 0.001, a

β1 value of 0.9, a β2 value of 0.99 and an ε value of 1−8, as used in [136]. The β values

define the decay rate of the moving-average of the mean and uncentered variance of the cost-

function’s gradient and affect the stepsize by which the weights and bias values are adjusted,

and ε is the numerical stability constant [136]. The ADAM optimiser was chosen over other

similar optimisation approaches as it has been shown to be a robust and computational efficient

optimisation algorithm that converges on a solution as quick if not quicker than other state-of-

the-art optimisation procedures [136].

Once a user defined number of epochs is reached, the accuracy reaches user defined level, or

improvement saturates, the weights and biases for this layer are frozen. A new hidden layer is

then added and trained, with the aim of minimising the error of the previous layer. This process

is repeated until the defined number of hidden layers have been added and trained. In this study a

single hidden layer consisting of 128 neurons is used as the defined topology, using more layers

resulted in a less accurate NN as a result of over-fitting. The number of neurons is chosen to be

the same as the work presented by Ma et al. in [32].

The NN is allowed to train for a maximum of 600 epochs, heuristically defined, with the training

terminating if the NN reaches 100% accuracy within the training data, or improvement saturates,

defined as no improvement over a training period equal to 5% of the total number of epochs. To

reduce the likelihood of over-fitting and improve learning efficiency, each epoch is split into four

training passes where the NN is given only 25% of the training data in each pass [32]. After each

epoch the order of the training data is randomised, so the NN never receives the same batch of

data twice.

To define the weight and biases used in testing, fifty NNs, for both the +θrotation and −θrotation

NN, are trained until prediction accuracy saturated, which took 122 epochs, achieving generally

an accuracy of 95% and a maximum angular error of ±5◦ within the training data. The weights

and biases for the NN that produced the most predictions within ±5◦ of the expected DoA for

the KEMAR reflections, for +θrotation and −θrotation NN, are used to define the NN that is used

to test the performance of the proposed method.
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5.4 Testing

A key measure of the success of a NN is its ability to generalise to new data, where ideally it

would produce comparable estimation accuracy for data gathered under different measurement

conditions. Therefore, a test dataset of BRIRs are obtained from measurements in an anechoic

chamber using both KEMAR 45BC [10] and Neumann KU100 [11] binaural dummy heads.

Furthermore, two different loudspeakers were used to measure the BRIRs, the Equator D5 coax-

ial loudspeaker [138] (the exact loudspeaker used to measure the HRIRs in the SADIE database

[123]) and a Genelec 8030 loudspeaker [139]. These provide test cases for the same loudspeaker

and dummy head as used in the SADIE KEMAR HRIRs [123], and measurements that use dif-

ferent loudspeakers or dummy heads to the SADIE HRIR used. The source and receiver were

positioned 1.5 m off the floor, and the distance between the source and receiver was 1 m. To

test the NN’s performance at predicting the DoA of reflections, a flat wooden reflective surface

mounted on a stand 1.5 m from the receiver at 71◦ to the front facing dummy head was also

placed in the anechoic chamber, such that a reflection with a known DoA would be produced

(Figure 5.7). This allows for the accuracy of the NN at predicting the DoA for reflections - with-

out the presence of overlapping reflections that would occur in real-world non-anechoic spaces

- to be tested. The speaker stand, reflective boundary stand, and turntable used to rotate the

dummy head, were also covered in acoustic foam to minimise any further reflections that might

be produced.

To generate the BRIRs the exponential sine sweep method [140] is used with a swept frequency

range of 20 Hz to 22 kHz over ten seconds. When performing RIR measurements in real-world

environments it is often desirable to have an omnidirectional source [122], to ensure approx-

imately equal acoustic excitation throughout the room. Therefore, to approximate an omnidi-

rectional sound source, the BRIRs are averaged over four speaker rotations (0◦, 90◦, 180◦, and

270◦) [141]. The extent to which this averaged loudspeaker response will be omnidirectional

will vary across different loudspeakers, particularly at higher frequencies where loudspeakers

tend to be more directional. Work presented in [141] showed similar frequency dependent reverb

time estimates between a single measurement orientation and multi-orientation, and showed that

a greater number of distinct reflections were present in the multi-orientation loudspeaker mea-

surements.

To calculate the required location of the reflective surface such that a known DoA would be

produced, a simple MATLAB image-source model based on [17] is used to calculate a point
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Figure 5.7: Measurement setup showing the reflective surface (A), KEMAR 45BC (B)
and Equator D5 Coaxial Loudspeaker (C).

of incidence on a wall that would produce a first order reflection in a 3 m × 3 m × 3 m room

with the receiver positioned at the centre of the room. The reflective surface is then placed

in the anechoic chamber based on the angle of arrival and distance between the receiver and

calculated point of incidence. Although care was taken to ensure distances between loudspeaker

and receiver, and the position of the boundary relative to the receiver was correct, it is prone to

misalignments due to the floating floor in the anechoic chamber, which can lead to possible error

in the source, receiver, and boundary placement.

In theory these BRIRs will only have two distinct components, comprising of the direct sound

and reflection from the surface, therefore a simple method for separating these signals is em-

ployed. Firstly, the maximum absolute peak within binaural signal (whether in the left or right

channel) is detected and assumed to belong to the direct sound. A 170 sample (3.9 ms) frame

around this peak location, based on observations of the signals, is used to separate the direct

sound from both channels of the BRIR. It is also ensured that all segmented audio samples only

contained audio pertaining to the direct sound, through observation of the windowed regions

of audio. The process is run again to detect the location of the reflected component, and each
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segment is again checked to ensure only audio pertaining to the reflected component is present

(see Figure 5.8 for an example BRIR with window locations).

Each of the four test scenarios, KEMAR with Equator D5, KEMAR with Genelec 8030, KU100

with Equator D5, and KU100 with Genelec, consisted of 144 BRIRs, with direct sound DoA

from 0◦ ≤ θ ≤ 357.5◦ and reflection DoA from 1◦ ≤ θ ≤ 358.5◦ using a turntable to rotate

the binaural dummy head in steps of 2.5◦. This provides 288 angles with which to test the NN:

144 direct sound components and 144 reflected components. Therefore, the combined dataset

consists of 576 direct sound components and 576 reflected components across all loudspeaker

and dummy head microphone combinations.

The separated signals are analysed using the binaural model and the feature matrix is generated

by combining the IACC and ILD for the segmented direct or reflected component with the

cues for the corresponding component measured at ±90◦ based on the peak location in the

IACC function. The positively and negatively rotated test feature vectors are stored in separate

matrices, and standardised across each feature in the feature vector, using the mean and standard

deviations calculated from the training data. The corresponding test rotation data is fed into the

NN trained with the corresponing rotations dataset (as described in Section 5.3.2).

Figure 5.8: Example binaural room impulse response generated with source at azimuth
= 0◦ and reflector at azimuth = 71◦; the solid line is the left channel of the impulse
response; the dotted line is the right channel of the impulse response; and the windowed
area denotes the segmented regions using the technique discussed in Section 5.4.
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Rotation Within ±5◦ Front-Back Confusions Max Error

KEMAR Reflections

no head rotation 17.36% 28.47% 179◦

±15◦ 29.86% 15.28% 173◦

±30◦ 34.03% 6.25% 54◦

±60◦ 29.17% 9.72% 50◦

±90◦ 32.64% 9.03% 30◦

Table 5.1: Direction of arrival accuracy comparison for the reflected component measured
with the KEMAR 45BC for different fixed receiver rotation angles.

5.5 Neural Network Parameter Comparisons

To present justification for design choices made in this chapter, this section will present com-

parisons between: different fixed head rotations, the use of the cochleagram, different feature

spaces, the cascade-forward NN and MLP, and number of layers. Fifty versions of the NN are

trained using the KEMAR HRIR measurements for elevation = 0◦ from the SADIE database

[123], using the procedures outlined in Section 5.3.3. The NN that produces the most accurate

DoA estimations is then used for testing. Test results are presented for the KEMAR reflected

components measured with the Equator D5. To define the accuracy of the model the percentage

of exact DoA estimations and the percentage of estimates within ±5◦ of the expected DoA will

be reported. These metrics are based on those previously used in the similar studies presented in

Chapter 3.

5.5.1 Head rotation

In Table 5.1 results comparing between fixed receiver rotations of±15◦,±30◦,±60◦, and±90◦

are presented. These results show that, as the angle of rotation increases the maximum error of

the DoA estimation decreases. In the context of geometry inference, a lower angular error is

desirable, as it would result in angled boundaries being inferred. Furthermore, the results show

that the NN produces more accurate results when using head-rotation, with larger maximum

errors, larger percentage of front/back confusions, and fewer DoA estimates within ±5◦ of the

desired DoA when head rotation is not used. Therefore, in this study a θrotation of ±90◦ degrees

is used.

5.5.2 Neural Network Comparisons

Comparisons between the cascade-forward NN and the MLP approach used in the previous

work are presented in Table 5.2. Both of these NN have the same number of hidden layers,

neurons, and are trained using the same procedure. The results show that the cascade-forward
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NN converges on a solution 12 s faster than the MLP and has a larger percentage of predictions

within ±5◦. These findings form the basis by which the decision to use a cascade-forward NN

was made.

Neural Network Within ±5◦ Run time

KEMAR Reflections (Test Data)

multi-layer perceptron 26.39% 390 Epochs 40 s
cascade-forward 32.64% 244 Epochs 28 s

Table 5.2: Comparison of prediction accuracy for the reflected component measured
with the KEMAR 45BC using additional measurements at receiver rotations of ±90◦

using a multi-layer perceptron and cascade-forward neural network. Both the multi-
layer perceptron and the cascade-forward neural network had one hidden layer with 128
neurons and an output layer with 360 neurons and were trained using the procedure
discussed in Section 5.3.3

Further analysis of the cascade-forward NN performance when using one hidden layer with 128

neurons and a two hidden layer with 64 neurons per layer (same number of total neurons), can

be seen in Table 5.3. These results show that, when using the training process outlined in this

chapter, the use of a single hidden layer is more optimal and results in a more accurate estimation

of DoA. The decreased performance for the two hidden layer NN is likely as a result of the NN

becoming over fitted to the training data, and as such is less accurate at estimating the DoA for

signals that are dissimilar to those used in training.

5.5.3 Binaural Model Comparisons

From the comparisons between different feature spaces presented in Table 5.4, it is clear that

using a combination of the IACC and ILD produces the best results, with lower angular error,

and a larger number of exact and within ±5◦ estimations of DoA. Feature spaces containing

the ITD, which was extracted from the maximum peaks in the IACC function across frequency,

tend to produce less accurate estimates of DoA. Furthermore, the ILD feature space produces the

Topology Exact Within ±5◦ Max Error Training Accuracy

KEMAR Reflections

One Layer 128 Neurons 11.11% 32.64% 30◦ 98.1%
Two Layer 64 Neurons 4.86% 18.05% 53◦ 99%
Two Layer 128 Neurons 5.55% 22.22% 63◦ 99.5%

Table 5.3: Direction of arrival accuracy comparison for the reflected component measured
with the KEMAR 45BC for one hidden layer with 128 neurons and two hidden layers
with 64 neurons in each. These tests are performed using the ±90◦ head rotations with
the IACC and ILD feature spaces. The results are presented as the number of exact
estimates of DoA, the number of predictions within ±5◦, and the maximum error.
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Feature Space Exact Within ±5◦ Max Angular Error

KEMAR Reflections

ITD 0.69% 6.944% 162◦

ILD 0% 29.86% 47◦

IACC 0% 13.89% 103◦

ITD and ILD 0% 9.03% 73◦

IACC and ILD 2.08% 32.64% 30◦

IACC and ITD 1.39% 11.81% 151◦

IACC, ITD and ILD 0.69% 15.97% 50◦

Table 5.4: Comparison of NN performance when using different feature spaces: ITD,
ILD, IACC, ITD and ILD, IACC and ILD, IACC and ITD, and IACC, ITD, and ILD.
The number of exact, within ±5◦, and maximum angular error are presented for the
measured test reflection captured using the KEMAR 45BC

Pre-processing Exact Within ±5◦

KEMAR Reflections

Raw Signal 0.69% 25%
Cochleagram 2.08% 32.64%

Table 5.5: Comparison of NN performance between the raw gammatone signals and
cochleagram based interaural cues. The number of exact and within ±5◦ predictions are
presented for the measured test reflection captured using the KEMAR 45BC. These tests
are performed using the ±90◦ head rotations with the IACC and ILD feature spaces.

largest impact on estimation accuracy, with the more within ±5◦ and lower maximum angular

error when compared to the ITD and IACC. These findings suggest that the combined IACC and

ILD produces the best representation of the recorded signal for binaural DoA estimation.

From the results in Table 5.5, it is clear that using the cochleagram as a preprocessing step when

generating the interaural cues results in more accurate DoA estimates. These results show that

the trained NN produces more exact estimates of DoA when using the cochlea pre-processing.

These findings form the basis by which the decision to use the cochleagram pre-processing stage

was made.

5.6 Results

To test the accuracy and generalisability of the NN the angular error of the NN’s predictions

is computed as the angular difference between NN estimated and expected DoA. Five error

metrics are used to asses the performance of the NNs: the percentage of the data where the

NN exactly predicts DoA; the percentage of the data where the NN predicted the DoA within

±1◦ of the expected value; the percentage of the data where the NN predicts the DoA within

±5◦ of the expected value; the percentage of the data where front-back confusions occurred
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Head Loudspeaker Exact ±1◦ ±5◦
Front-Back RMS
Confusions Error

Direct Component

KEMAR Equator 19.44% 21.53% 64.58% 1.39% 5.18◦

KEMAR Genelec 12.50% 13.19% 79.86% 0.69% 4.63◦

KU100 Equator 13.19% 17.36% 68.05% 0% 6.86◦

KU100 Genelec 22.22% 27.08% 81.25% 0% 5.56◦

Reflected Component

KEMAR Equator 2.08% 11.11% 32.64% 9.03% 13.59◦

KEMAR Genelec 0% 9.03% 27.78% 2.78% 9.74◦

KU100 Equator 0% 9.03% 37.5% 2.78% 8.85◦

KU100 Genelec 1.39% 14.58% 40.97% 1.39% 10.30◦

Table 5.6: Direction of arrival accuracy comparison showing the, percentage of exact
estimates of DoA; percentage of estimates within ±1◦ of the expected DoA; percent-
age of estimates within ±5◦ of the expected DoA; percentage of front-back hemisphere
confusions; and RMS error in degrees, for the direct sound and reflected components
measured with the KEMAR and KU100 binaural dummy heads, for the cascade-forward
neural network

defined as DoA being estimated in the opposite front/back hemisphere; and the root mean square

(RMS) error of the angular error. As the DoA estimation errors have non-parametric distribution,

statistical analysis of this data is performed using the non-parametric Kruskal-Wallis test which

in MATLAB is the function kruskalwallis [142], and reported as (χ2 = , p = , degrees of freedom

= ).

In Table 5.6, the neural network accuracy across the test data is presented. The results show that

the NN performs best when it is presented with the direct component, and there is a substantial

reduction in performance when used to estimate the DoA of the reflected component. It is inter-

esting to note that, with the exception of the KEMAR reflected data, the number of predictions

within ±5◦ is greater when using the Genelec 8030 loudspeaker than the Equator D5, poten-

tially as a result of differences in system alignment. Furthermore, for both the direct sound and

reflected components using the KU100, the NN has a larger percentage of predictions within

±5◦ of the target value. It is possible that some of these differences are as a result of differences

in the morpho-acoustic properties of each head and their ears, which could lead to differences

in the observed interaural cues, particularly those dependent on spectral information. However,

as the NN was trained with data for KEMAR, it would be expected to give better results, with

data obtained from a KEMAR, as opposed to the KU100. It is therefore more likely that these

differences are as a result of measurement system misalignment, or as the NN was trained with

azimuth data in stepped in 5◦ intervals, it could be as a result prediction quantisation error.
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In Figure 5.9, comparisons between the direct sound and reflected components for BRIRs cap-

tured with the KEMAR 45BC are presented. The boxplots show that for the direct sound, a

maximum error of 12◦ and median error of 5◦ (mean error of 4.20◦) were observed when using

the Equator, and a median error of 4.5◦ (mean error of 3.87◦) when using the Genelec. The

reflected component on the other hand has a maximum error of 30◦ and median of 8.5◦ (mean

error of 10.87◦) for the Equator, and a max error of 25◦ and a median of 8◦ (mean error of 8.27◦)

when using the Genelec. There is a statistically significant difference between the DoA estima-

tion errors for the direct sound and reflected components when using both the Equator D5 and

Genelec 8030 loudspeakers, (χ2 = 50.34, p = <0.0001, degrees of freedom = 287) and (χ2 = 63,

p = <0.0001, degrees of freedom = 287) respectively. The observed difference between direct

sound component and reflected component could be due to differences in signal path distance,

which was found to reduce prediction accuracy in [84, 85]. Additional sources of error could

be attributable to small system misalignments at point of measurement, or lower SNR occurring

due to signal absorption at the reflector or longer propagation path (source-reflector-receiver);

an average SNR of approximately 22.40 dB and 13.14 dB was observed across the direct and re-

flected component respectively when comparing the amplitude of the residual signal after BRIR

measurement to the desired signal.. Furthermore, the difference in performance between direct

sound and reflections could also be as a result of multiple points of reflection and edge diffrac-

tion from the finite-length boundary producing additional signal paths from boundary to each

ear, which could confuse interaural cues. An example of two reflection paths from the boundary

to the left and right ear can be seen in Figure 5.10

In Figure 5.11, the comparison between direct sound and reflected components for BRIRs cap-

tured using the KU100 are presented. The boxplots show that for the direct sound, a maximum

error of 23◦ is observed and a median error of 5◦ (mean error of 5.15◦) when using the Equator,

and a max error of 23◦ and a median error of 3◦ (mean error of 3.79◦) when using the Genelec.

The reflected component has a maximum error of 19◦ and median of 7◦ (mean error of 7.51◦)

for the Equator, and a max error of 35◦ and a median error of 6◦ (mean error of 7.87◦) for the

Genelec. As with the KEMAR measurements there is a significant difference in performance

between the direct and reflected components for both loudspeakers, (χ2 = 20.84, p = <0.0001,

degrees of freedom = 287) and (χ2 = 40.18, p = <0.0001, degrees of freedom = 287) respec-

tively, with the reflected components producing significantly worse estimates of DoA.

In Figure 5.12, the comparison between the two binaural dummy heads is presented for both the

direct sound and reflected components of the BRIRs. The boxplots show that the interquartile
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Figure 5.9: Comparison of angular errors for the neural network direction-of-arrival
predictions for measurements with the KEMAR 45BC. The top image is a boxplot
comparison of the angular error in the neural network predictions for the direct sound
and reflected components. The bottom left two are the histograms showing the error
distribution for the direction-of-arrival predictions of the direct sound and reflected com-
ponent using the Equator D5 (denoted as Eq on figure), and the bottom right two are
the error distribution for the direction-of-arrival predictions of the direct sound reflected
component using the Genelec 8030 (denoted as Gen on the figure). The black line on
the histograms depicts the median angular error.

ranges (region between the high- and low-notch for a box on the boxplot) for the direct sound

measurements, with the exception of the KU100 Genelec direct sound measurements, overlap.

Furthermore, there are not significant differences in the estimation errors, when considering

absolute angular errors, between binaural dummy heads for three out of the four scenarios, (χ2

= 1.08, p = 0.29, degrees of freedom = 287) (Direct Sound Component Equator D5), (χ2 = 3.4, p

= 0.07, degrees of freedom = 287) (Direct Sound Component Genelec 8030), and (χ2 = 2.5, p =

0.11, degrees of freedom = 287) (Reflected Components Genelec 8030). This would suggest that

generally, while RMS errors vary, the NN’s performs comparably between the two dummy heads

and loudspeakers set ups, therefore, the NN can be considered to be generalisable to different

measurement scenarios. Comparing the angular errors observed in the output of the NN for

the reflected component when using the Equator D5 shows that the KU100 has a significantly

lower median angular error and produces more accurate estimates of DoA. However, this is not

the case when using the Genelec loudspeaker where the boxplots show very little difference

between the interquartile ranges. Given that the NN was trained with HRIRs captured using

a KEMAR, the NN should perform best when analysing test binaural signals measured with a
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Boundary

Loudspeaker

Head

Figure 5.10: Figure showing the different in signal paths between a direct sound and
a reflection, where two reflection paths exist from boundary to receiver, which could
confuse interaural cues.

similar KEMAR. This suggests that, for the case of the Equator measurements, there could be

some external influence, such as misalignment of the reflector or additional noise.

By investigating the neural networks’ signed angular error over DoA, insight can be gained into

any patterns occurring in the NN output predictions. Additionally, it will show how capable

the NN is at predicting the DoA for signals with a DoA not represented within the training

data. In Figure 5.13, the predicted DoA by the neural network (red and blue line) is compared

against the expected DoA (black line), and the plot shows the comparison for the KEMAR

direct sound measurement predictions (top left), KEMAR reflection measurement predictions

(bottom left), KU100 direct sound measurement predictions (top right) and KU100 reflection

measurement predictions (bottom right). Generally, the direct sound measurement predictions

are mapped to the closest matching DoA represented in the training database, suggesting that

the NN is incapable of making predictions for untrained directions of arrival. In the case of the

reflections, the NN predictions tend to plateau over a larger range of expected azimuth DoA.

This observation further shows the impact of the blurring of the interaural cues (Figures 5.16

and 5.17) producing regions of ambiguous cues in the reflection measurements, causing the NN

to produces regions of the same DoA prediction.
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Figure 5.11: Comparison of angular errors for the neural network direction-of-arrival
predictions for measurements with the KU100. The top image is a boxplot comparison
of the angular error in the neural network predictions for the direct sound and reflected
components;The bottom left two are the histograms showing the error distribution for
the direction-of-arrival predictions of the direct sound and reflected component using the
Equator D5 (denoted as Eq on figure), and the bottom right two are the error distribution
for the direction-of-arrival predictions of the direct sound reflected component using the
Genelec 8030 (denoted as Gen on the figure). The black line on the histograms depicts
the median angular error.

Figure 5.12: Boxplot comparison of angular errors for the neural network direction-of-
arrival predictions between the KEMAR and KU100 dummy heads for direct sound (top)
and reflected (bottom) components.
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Figure 5.13: Plots of signed angular error over direction-of-arrival. The red line is the
estimated DoA using the Equator D5 loudspeaker, the blue line is the estimated DoA
using the Genelec 8030 and expected direction-of-arrival is the black line. The top left
plot is for the KEMAR direct sound; the top right plot is for the KU100 direct sound;
the bottom left is for the KEMAR reflection; and the bottom right is for the KU100
reflections.

5.6.1 Bias Correction

From the distribution of the angular errors in Figures 5.9, 5.11 and 5.13, it can be seen that,

when comparing between test cases, the neural network is biased towards underpredicting the

DoA when analysing the reflection data. This bias may be a result of a misalignment in the

measurement system, specifically the reflector location, and therefore, can be accounted for by

adjusting the angular error data such that it is zero-mean. As can be seen in Table 5.7, the

number of predictions within 1◦ and 5◦ of the expected DoA has increased compared to the

results in Table 5.6, with at most 83.33% of the data within 1◦ and 97.91% within 5◦, both of

which are for the KEMAR binaural dummy head and Genelec loudspeaker when analysing the

direct sound. Furthermore, from the signed errors in Figures 5.14 and 5.15, it can be seen that,

for the same comparisons previously presented, there are no statistically significant differences

between the different test cases, p > 0.39, suggesting that the distribution of the errors are

comparable across the test cases. However, when considering the absolute angular errors there

are statistically significant differences across all test cases, p < 0.01, suggesting that the variance

in the magnitude of these angular errors is significantly different. Furthermore, the results still

show that the reflection data is less accurately estimated compared to the direct sound, with

maximum angular errors between 17◦ and 28◦, suggesting that the larger errors observed are a

product of more than just system misalignments.
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Head Loudspeaker Exact ±1◦ ±5◦
RMS

Bias
Error

Direct Component

KEMAR Equator 0.69% 66.67% 92.36% 3.98◦ −3.70◦

KEMAR Genelec 1.39% 83.33% 97.91% 2.72◦ −3.99◦

KU100 Equator 15.28% 61.80% 86.11% 6.32◦ 2.32◦

KU100 Genelec 0.69% 68.75% 86.11% 5.45◦ 0.85◦

Reflected Component

KEMAR Equator 1.38% 49.31% 66.67% 9.32◦ −10.15◦

KEMAR Genelec 3.47% 58.33% 81.94% 6.07◦ 7.85◦

KU100 Equator 0% 54.17% 66.67% 8.80◦ 0.47◦

KU100 Genelec 1.39% 54.17% 70.83% 8.14◦ −6.56◦

Table 5.7: Direction of arrival accuracy comparison for the bias corrected data showing
the percentage of exact estimates of DoA; percentage of estimates within ±1◦ of the
expected DoA; percentage of estimates within ±5◦ of the expected DoA; and RMS error
in degrees, for the direct sound and reflected components measured with the KEMAR
and KU100 binaural dummy heads, for the cascade-forward neural network.

Figure 5.14: Comparison of angular errors after bias correction for the neural network
direction-of-arrival predictions for measurements with the KEMAR 45BC. The top im-
age is a boxplot comparison of the angular error in the neural network predictions for
the direct sound and reflected components. The bottom left two histograms show the
error distribution for the direction-of-arrival predictions of the direct sound and reflected
component using the Equator D5 (denoted as Eq on figure). The bottom right two are
the error distribution for the direction-of-arrival predictions of the direct sound reflected
component using the Genelec 8030 (denoted as Gen on the figure). The black line on
the histograms depicts the median angular error.
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Figure 5.15: Comparison of bias corrected angular errors for the neural network
direction-of-arrival predictions for measurements with the KU100. The top image is
a boxplot comparison of the angular error in the neural network predictions for the
direct sound and reflected components. The bottom left two histograms showing the er-
ror distribution for the direction-of-arrival predictions of the direct sound and reflected
component using the Equator D5 (denoted as Eq on figure). The bottom right two are
the error distribution for the direction-of-arrival predictions of the direct sound reflected
component using the Genelec 8030 (denoted as Gen on the figure). The black line on
the histograms depicts the median angular error.

5.6.2 Data Comparison

Comparing the IACC and ILD (Figures 5.16 and 5.17) between the direct sound and reflected

components of the BRIR for the KEMAR and KU100 measurements shows a more distinct

blurring for the reflected components measured with the KEMAR when compared to those mea-

sured with the KU100. This is particularly pronounced when comparing the ILD where the high

frequency ILD values are smudged, and ripples in the ILD values across DoA start to appear at

low frequencies. This again could suggest that a source of interference is present in the KEMAR

measurements that is producing ambiguity in the measured signals’ interaural cues. This could

be due to noise present within the system and environment, or additional reflection paths from

the reflective boundary being captured in the case of the reflected component.

5.7 Discussion

The results presented in Section 5.6 show that there is minimal difference in the accuracy of

the NN when analysing the direct sound of BRIRs captured with both the KEMAR 45BC and
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Figure 5.16: Comparison of interaural cross correlation across the direction-of-arrival
for the KEMAR measured direct sound (top left), KEMAR measured reflection (bottom
left), KU100 measured direct sound (top right) and KU100 measured reflection (bottom
right) measured with the Equator D5.

Figure 5.17: Comparison of interaural level difference across the direction-of-arrival for
the KEMAR measured direct sound (top left), KEMAR measured reflection (bottom
left), KU100 measured direct sound (top right) and KU100 measured reflection (bottom
right) measured with the Equator D5.

the KU100, with all combinations not displaying a significant difference in estimation accuracy.

However, the accuracy of the NN is significantly reduced when analysing the reflected compo-

nent of the BRIRs, with a maximum RMS error of 13.59◦ and a minimum of 8.85◦, compared
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Figure 5.18: Comparison of interaural cross correlation across the direction-of-arrival
for the KEMAR measured direct sound (top left), KEMAR measured reflection (bottom
left), KU100 measured direct sound (top right) and KU100 measured reflection (bottom
right) measured with the Genelec 8030.

Figure 5.19: Comparison of interaural level difference across the direction-of-arrival for
the KEMAR measured direct sound (top left), KEMAR measured reflection (bottom
left), KU100 measured direct sound (top right) and KU100 measured reflection (bottom
right) measured with the Genelec 8030.

to a maximum of 6.86◦ and a minimum of 4.63◦ for the direct sound. As with the direct sound

the interquartile ranges overlap between measurement configurations, suggesting that there is

minimal difference in the median values for these tests. This reduction in performance would
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be expected between the direct and reflected component, due to the lower SNR ratio that would

be observed for the reflected component, differences in the signal pathways between direct and

reflected components, as a result of multiple points of reflection on the boundary , which could

produce multiple closely-arriving reflections at the receiver. It is of interest that, while the max-

imum errors are greater, a larger number of reflected components measured with the KU100 are

estimated within ±5◦ of the expected DoA. This difference could be as a result in misalignment

of the source, receiver or boundary as a result of the floating floor in the anechoic chamber.

Slight differences in the position/orientation of these parts of the measurement system can result

in small differences in the direction that the signals arrive at the receiver, given that the NN has

been shown to only estimate directions-of-arrival that existed in the training dataset these mis-

alignments can result in larger deviations from the expected DoA. To account for these errors,

a bias-corrected version of the angular errors was produced, which showed an improvement in

the prediction accuracy of the NN, with a statistically similar distribution of signed angular error

across all test cases. However, there were statistically significant differences in the magnitude

of the angular error across all test cases. This would suggest that, while some of the DoA esti-

mation errors can be attributed to system misalignment, it is not the sole cause for the increased

inaccuracy of the DoA estimation error observed for reflections.

Analysis over different rotations (Table 5.1) shows that while the number of predictions within

±5◦ varies little between extent of rotation, the maximum error in the neural network’s predic-

tion decreases as the angle of rotation increases. The use of additional measurement orientations

decreases the number of front-back confusions, with generally larger degrees of receiver ro-

tations producing fewer front-back hemisphere errors, except when using ±30◦. Using larger

rotations has the additional benefit of reducing the maximum prediction errors made by the neu-

ral network. This could be due to the larger angle of rotation resulting in a source to the rear

of the listener being focused towards in the frontal hemisphere, producing a more accurate DoA

prediction. It is interesting that there is a greater percentage of front-back confusions for the

KEMAR 45BC compared to the KU100, given the low maximum error, this is likely caused by

signals arriving near 90◦ and 270◦ (source facing the left or right ear) being estimated in the op-

posite hemisphere, which again could be as a result of small misalignment in the measurement

system altering the direction that the signal arrived at the receiver.

The lack of significant differences between the direct sounds measured with the two binaural

dummy heads agrees with the findings of May et al. [86], who found that a GMM trained with

an MCT dataset was able to localise sounds captured with two different binaural dummy heads.
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Notable differences between the KEMAR 45BC and KU100 include: morphological differences

of the head and ears between binaural dummy head microphones; the KEMAR 45BC has a torso;

the KU100’s microphones have a flat diffuse-field frequency response; and the material used for

the dummy head microphones.

The overall accuracy of the method presented in this chapter is, however, lower than that found in

[86]. This could be a result of the type of signals being analysed, which, in this study, are 3.8 ms-

long impulsive signals as opposed to longer speech samples. Comparing the work presented in

this chapter to the NN-based implementations in [32], the method proposed in this chapter under-

performs compared to reported findings of 83.8–100% accuracy across different test scenarios,

with a 2.55% difference between the best case in this study compared to the worst in [32].

However, the work in [32] only considers signals in the frontal hemisphere around the head and

again considered longer audio samples for the localisation problem.

The method here out-performs that presented in [76] with lower error values across all mea-

surement sets, when compared to the relative-errors of 24.0% reported in [76] for real-world

continuous pink noise using a multi-layered perceptron NN.

The average errors reported in this chapter are lower than that presented in [64], which reported

average errors in the range of 28.7◦ and 54.4◦ when analysing the components of measured

BRIRs. However, the results presented in [64] considered higher reflection orders, and therefore,

further analyses of the performance of the NN with full BRIRs is required for a more direct

comparison to be made.

More importantly in the context of this thesis, even when considering the bias-corrected results,

the results highlight that the accuracy with which DoA is estimated in the case of reflected com-

ponents is not accurate enough to be considered as a viable method for spatiotemporal based

geometry inference. The larger angular errors for the reflections would lead to inaccurate esti-

mation of corresponding image-source locations, which in turn would result in an estimate of

the boundary’s location with an angular error equal to that of the DoA estimate. Furthermore,

considering that BRIRs consist of multiple overlapping reflections it is likely that the DoA esti-

mation would be even less accurate. Therefore, alternative measurement methods that result in

more accurate DoA estimates need to be used when considering geometry inference based on

limited receiver location data points.
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5.8 Conclusions

The aim of the study presented was to investigate the application of neural networks in the spa-

tial analysis of binaural room impulse responses, and whether it is possible to obtain sufficiently

accurate DoA for reflected components to allow for accurate geometry inference. The neural

network was tested using binaural room impulse responses captured using two different binau-

ral dummy heads with two different loudspeaker sources. The neural network was shown to

demonstrate minimal difference in accuracy when analysing the direct sound of the binaural

room impulse response across the two binaural dummy heads, with 64.58% (KEMAR Equator),

79.86% (KEMAR Genelec), 68.06% (KU100 Equator), and 81.25% (KU100 Genelec) of the

predictions being within ±5◦ of expected values. However, upon presenting the NN with re-

flected components for analysis, the accuracy of the predictions was significantly reduced. The

NN also generally produced lower average errors for reflected components of the binaural room

impulse response captured with the KU100 than those with the KEMAR. Comparisons of the

interaural cues for the direct sound and reflected components show a distinct blurring in the cues

for the reflected components measured with KEMAR, which is present to a lesser extent for the

KU100. This blurring could be a product of lower signal-to-noise ratios or multiple reflection

paths from the boundary arriving at the receiver, leading to greater ambiguity in the measure-

ments. Furthermore, difference in performance between direct and reflected components in all

cases could be as a result of difference in signal pathways arriving at the ear as a result of mul-

tiple reflection points of origin on the boundary. This would suggest that training the NN with

additional data relating to large numbers of reflections could lead to an improvement in DoA

estimation accuracy for reflected components. However, in its current state the accuracy of the

DoA estimation for all components of a binaural room impulse response is not sufficient to make

it viable for geometry inference, where ideally all DoA estimation errors need to be as small as

possible to allow for accurate boundary estimation. Further development of this approach, with

the intent of use in geometry inference, would need to work on improving the accuracy of DoA

estimation while including estimation of elevation DoA. Geometry inference within this the-

sis will therefore focus on alternative compact microphone arrays receivers with larger channel

count than the two that are used in a binaural dummy head, and where more accurate estimates

of DoA are therefore easily obtainable.
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Chapter 6

Spatiotemporal Decomposition

Based Reflection Detection

6.1 Introduction

In the previous chapter a binaural model fronted Neural Network (NN) was used to analyse the

direction-of-arrival (DoA) of reflections in a Binaural Room Impulse Response (BRIR). The

results showed that, while the direct sound was in the majority of cases predicted within ±5◦ of

the expected DoA, there was a significant reduction in performance when estimating the DoA

of subsequent reflections, with a maximum angular error of ±35◦. While this method produces

more accurate results than the work presented in [64], it is not as accurate as the spherical

microphone based approaches in [12]. Furthermore, the inaccuracies observed for the binaural

model fronted NN estimates of DoA for reflections are too large for a BRIR based geometry

inference method to be viable. Hence, this chapter will propose a method for estimating time-

of-arrival (ToA) and DoA of reflections in Spatial Room Impulse Response (SRIR) measured

with a spherical microphone array. This specific microphone array has been chosen based on the

accuracy that was achieved for reflection DoA estimation in [12], which also used the EigenMike

EM32.

Previous work investigating the analysis of reflection information measured with a spherical mi-

crophone array [12, 50, 51], considered the problem as detecting the DoA of the main reflections

through spatial decomposition of the SRIR using beamformers. It is proposed that by expanding

on these methods to analyse the SRIR over short time-frames, performing spatial and temporal
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decomposition, both ToA and DoA can be estimated. The method works as follows. Firstly,

beamforming is performed on a time-frame to measure the signal power incident from each di-

rection. Image-processing techniques are then used to extract peak locations in the resulting

spatial map representing the DoA of arriving reflections. Finally, the ToA of the reflection is

then estimated by steering a beam in the direction of the DoA for that time-frame. By solving

the reflection detection problem through such spatiotemporal decomposition, overlapping and

simultaneously arriving reflections can be detected as individual arrivals, therefore, addressing

a key issue with existing reflection detection techniques as discussed in Chapter 3. The pro-

posed method, processing, and subsequent analysis of results form the main contributions of

this chapter.

This chapter will be organised as follows: Section 6.2 will define the problem formulation,

Section 6.3 will present the proposed method, Section 6.4 will present the testing methodology,

Section 6.5 will present the results, Section 6.6 will discuss the results, and Section 6.7 will

conclude the chapter.

6.2 Problem Formulation

A spherical microphone array measures the sound pressure on the surface of a sphere, spatially

sampled at the microphone positions distributed on the surface. Therefore, as discussed in Chap-

ter 2, the array’s response to a plane wave arriving from a specific DoA can be expressed using

spherical harmonics. This property makes spherical microphone arrays ideal for beamforming,

as the steering vector can be expressed mathematically and not through physical measurements.

As described in Chapter 2 the SRIR H(t) can be described in the spherical harmonic domain as,

H(t) =
∞∑
i=1

y(θi, φi)aisinc(t− τi) + R(t) (6.1)

where ai, is the amplitude of the arriving signal, sinc(t−τi) is a sinc function with time of arrival

τi, and R(t) is the time-variant residual noise component, y(θ, φ) is the real-valued spherical

harmonic vector as described in Chapter 2.

From this representation of the SRIR it is evident that each reflection arrives at the spherical array

at a specific time- and direction-of-arrival. The problem of reflection detection is therefore, to

detect all of these reflections as individual arrivals.
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6.3 Method

The problem of reflection detection, in this case, can be implemented through spatial decom-

position of short time-frames, where the aim is to detect the arrival of directional signals at the

microphone array. Contrary to the circular variance local maxima method discussed in Chap-

ter 3, which also uses spatial information (the DoA variance in a time-frame), the proposed

approach can disambiguate between multiple arrivals in a single time-frame as a result of the

beamforming process used. The problem of reflection detection can, therefore, be split into a

four-stage sequential process; (i) windowing of the RIR at the current time-frame; (ii) spatial

decomposition of the time-frame using a beamformer; (iii) detection of directional signals in

the time-frame; and (iv) estimation of the time- and direction-of-arrival for each reflection. A

flowchart of the proposed method can be seen in Figure 6.1.

The approach proposed here, named as the Eigenbeam Detection and Evaluation of Simulta-

neously Arriving Reflections (EDESAR) method, performs spatiotemporal decomposition on a

normalised SRIR, to detect directional impulses arriving at a spherical microphone array. The

analysis is performed sequentially over 0.45 ms windowed time-frames (the length of the direct

sound in the real-world measurements used in this chapter) with a 50% frame overlap, chosen

empirically to reduce the number of false-positive detections. The use of short-time frames allow

for reflections arriving from close DoAs but different ToA to be detected separately.

One of the main problems with reflection detection algorithms is false-positive or inaccurate

detections which, in the case of geometry inference problems, produces errors in boundary po-

sition estimations. To try and reduce the likelihood of inaccuracies and false-positive detections

occurring, two assumptions are made. The first assumption is that there is a maximum sample

magnitude threshold εα, below which the time-frame is more likely to be noise or part of the

diffuse field. Secondly, it is assumed that there is a diffuseness threshold εd, above which the

number of arriving signals or residual noise present in the time-frame will negatively impact the

estimation of both ToA and DoA for any reflections present in that time-frame.

To improve the accuracy with which diffuseness is estimated for a time-frame, filtering is used

to remove diffuse spectral components of the SRIR. The cut-off frequency at which the number

of microphones positioned on the sphere is inadequate to accurately capture spatial information

[143], is referred to as the spatial Nyquist frequency, which for the EigenMike EM32 is at 8 kHz

[144]. To account for this the audio is low-pass filtered at 5 kHz, and also high-pass filtered
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Figure 6.1: Flowchart detailing the sequential processing stages used to compute the
time- and direction-of-arrival for reflections detected within a spatial room impulse re-
sponse.

at 100 Hz to remove any low-frequency rumble. In order to maintain the temporal information

contained within the time-frame, filter phase is accounted for by circular-shifting the resulting

time-frame to align with the original time-frame.

To compute the diffuseness profile for each time-frame the Covariance Matrix Eigenvalue Dif-
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fuseness Estimation (COMEDIE) algorithm [145] is used. The COMEDIE algorithm has been

shown to produce a more robust estimate of diffuseness, compared to DirAC[37] and Thiele–Gover

Diffuseness Measure [146] in [145], as a result of being able to disambiguate between multiple

uncorrelated sound sources and spatially diffuse noise [145]. Furthermore, this diffuseness esti-

mator is shown to produce comparable measurements of diffuseness when presented with mul-

tiple correlated sound sources as well [145], making it ideal for analysing SRIRs. The COME-

DIE algorithm is based on the observation that in the presence of predominantly diffuse noise

the eigenvalues computed from the covariance matrix of a signal will be similar. Therefore, the

eigenvalues of the covariance matrix will have the largest variation when only a single plane

wave is present. This diffuseness estimation can be computed for each spherical harmonic order

as the ratio between the deviation of the measured eigenvalues γ to that of an ideal, completely

non-diffuse case γ0, which from [145], is,

d = 1− γ

γ0
(6.2)

where γ is computed as,

γ =
1

〈u〉

(N+1)2∑
n=1

|un − 〈u〉| (6.3a)

〈u〉 =
1

(N + 1)2

(N+1)2∑
n=1

un (6.3b)

where un is the nth eigenvalue computed for the covariance matrix and N is the spherical har-

monic order [145]. The ideal single plane wave eigenvalue deviation is defined in [145] as,

γ0 = 2[(N + 1)2 − 1] (6.4)

If a time-frame meets both the sample magnitude and diffuseness conditions, a spherical beam-

former is used to perform spatial decompositions of the time-frame to extract any directional sig-

nals. In this case the MVDR beamformer, originally proposed by Capon in [61] and adapted for

spherical microphone arrays in [30, 63], is used. As discussed in Chapter 3 the key benefit of the

MVDR beamformer is its ability to adapt the steering vector weighting based on the variance of
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the recorded signal, and an implementation of the MVDR used in [12] was shown to outperform

Eigenbeam-Multiple Signal Classification (EB-MUSIC), Eigenbeam - Estimation of Signal Pa-

rameters via Rotational Invariance Techniques (EB-ESPRIT), the delay-and-sum beamformer,

and the plane wave decomposition beamformer. These adaptive weights improve the robustness

of the algorithm to the residual noise component, which in turn should improve the accuracy

with which DoA can be estimated. As with the diffuseness estimator, the time-frame is first

filtered to remove frequencies above the spatial Nyquist frequency. Before computing the beam-

former output, the spherical harmonics vector is weighted to ideally minimise residual noise, by

minimising the total array output,based on the signals’ covariance matrix, while setting the gain

in the desired direction to unity, these MVDR beamformer weights are computed as [62, 63],

ŵ(Ψ) =
RHH

−1(tf )y(Ψ)

yT (Ψ)RHH
−1(tf )y(Ψ)

(6.5)

where (.)−1 denotes matrix inversion, y(Ψ) is the [16× 1] spherical harmonic vector computed

using the getSH function in the Spherical Harmonic Transform Library [147], and RHH(tf ) is

the [15× 15] covariance matrix of time-frame tf in RIR H(t) with dimensions [2000× 16] after

filtering is computed using the formulation in [30] as,

RHH(tf ) = H(tf )TH(tf ) +
I(N+1)2

4π
(6.6)

where I(N+1)2 is the [(N + 1)2 × (N + 1)2] identity matrix, and
I(N+1)2

4π represents the covari-

ance matrix of a diffuse sound [30, 145], which is used to improve robustness to rank deficient

covariance matrices as a result of transient signals (such as reflections) as described in [61]. The

MVDR beamformer output is then computed as,

ζ(Ψ) = ŵ(Ψ)TRHH(tf )ŵ(Ψ) (6.7)

where ζ(Ψ) is the power of the signal in the direction Ψ using the [15× 1] real-valued weighted

spherical harmonic vector ŵ(Ψ). To improve the accuracy of the DoA estimation, it is pro-

posed that the omnidirectional-channel (first-channel) should be removed, as it will be equally

weighted across all DoA, adding a residual bias value to ζ(Ψ).
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Using beamforming, a heat map of the signal power across DoA, which will referred to as the

directional spectrum, can be extracted for each time-frame. This is computed as the directional

power of the signal steered across a grid of azimuth and elevation positions from 0◦ ≤ θ ≤ 359◦

and 0◦ ≤ φ ≤ 180◦ in one degree increments, and is expressed as,

Λ =


ζ(Ψ = [0, 0]) ζ(Ψ = [1, 0]) · · · ζ(Ψ = [359, 0])

ζ(Ψ = [0, 1]) ζ(Ψ = [1, 1]) · · · ζ(Ψ = [359, 1])
...

...
...

...

ζ(Ψ = [0, 180]) ζ(Ψ = [1, 180]) · · · ζ(Ψ = [359, 180])

 (6.8)

An example of a directional spectrum, derived from a typical time-frame of a third-order spher-

ical harmonic signal representation of a SRIR containing two distinct simultaneously arriving

reflection, can be seen in Figure 6.2.

Figure 6.2: Top: A typical time-frame of a third-order spherical harmonic signal rep-
resentation of a spatial room impulse response containing two distinct simultaneously
arriving reflections, where each line represents a different channel in the third-order
spherical harmonic signal. Bottom: The directional spectrum computed for the time-
frame, where the darker regions indicate the arrival of strong directional components in
the signal.

As discussed in the problem formulation, a reflection can be described as a directional signal

arriving at the microphone array, and therefore should appear as, and be detected by searching

for, regions of higher power in the directional spectrum. When using region detection methods

on the directional spectrum, further processing is required to ensure reflections with overlapping

spatial regions (Figure 6.2) are detected as individual arrivals. Given that the directional spec-
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trum can be represented as a heat map, the segmentation and detection of these regions can be

approached as an image-processing problem, as follows.

The directional spectrum is first converted to a greyscale image, by remapping the power matrix

to values between 0 (black) and 1 (white), where in this case black represents regions of higher-

power. To try and reduce the likelihood of false-positive detections, the dynamic range of the

power matrix is compressed, such that min(−Λ) ÷ 2 = 0 is black, and max(−Λ) = 1 is

white. This process in turn increases the dynamic range of the greyscale image, as a smaller

range of values are mapped between black and white, which ideally will reduce the likelihood

of unwanted detections. The greyscale image Λ̂, which from [148] is computed as,

Λ̂ = −Λ
1

max(−Λ)− min(−Λ)
2

+

(
min(−Λ)

2

1

max(−Λ)− min(−Λ)
2

)
(6.9a)

Λ̂ =

{1, ∀Λ̂>1

Λ̂ ∀Λ̂≤1

(6.9b)

To segment any overlapping regions within the greyscale image, which can be accomplished

using the watershed algorithm as implemented in MATLAB [149]. To improve the segmentation

accuracy, additional processing of the directional spectrum is required [150]. The greyscale

image is first converted into a binary mask using the threshold Λ̃ = Λ̂ ≤ εmsk. This extracts only

the regions with high directional power (darkest regions), and ideally removes any unwanted

background noise from the directional spectrum, as seen in Figure 6.3. To produce more distinct

regions within the remaining directional spectrum an extended-minima mask is applied to the

binary mask. The extended-minima transform is a masking technique that uses the distance

transform computed for a binary image to focus the regional minima on a central point. The

distance transform is a matrix where each index [i, j] represents the Euclidean distance between

the pixel at [i, j] in the binary image and the the nearest zero valued index. Using the distance

transform the extended-minima mask is computed and then imposed onto the binary image, and

an example of this can be seen in Figure 6.4. The watershed, as used in [64], algorithm is then

applied to the transformed binary mask, producing a label matrix where positive valued integers

are assigned to each separate region, with the regions separated by zero valued indices. This

label matrix is applied to the binary image, by setting the indices in the binary image where the

watershed algorithm outputs a 0 to 0, as shown in Figure 6.5, a MATLAB implementation of

this whole process is presented in Algorithm 3.

144



Figure 6.3: Example of the binary mask produced for the directional spectrum of the
signal presented in Figure 6.2.

Figure 6.4: An example of the mask of the directional spectrum (as presented in Fig-
ure 6.2) after having an extended minima mask applied.

From the segmented image, reflections present in a time-frame can be detected by searching

for regions of connected 1s within the masked binary image - which represent the arrival of a

signal in the directional spectrum. In image-processing, this region detection process is com-

monly achieved using a nested loop, iterating over both rows and columns in the binary image,

searching for indices where a 1 is present. A grid search is then performed to find all connected

1s, and a unique numeric label is assigned to the detected region [151]. A MATLAB example of
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Algorithm 3: Computation and processing of directional spectrum to segment out

overlapping regions. MATLAB functions are indicated in bold, and developed func-

tions are denoted in bold and italics.

// Step 1: Compute the directional spectrum using the MVDR

beamformer.

1 directionalSpectrum = MVDR(filteredTimeFrame);

// Step 2: Convert directional spectrum into a grayscale image

2 beta = 1 / (max(-directionalSpectrum(:)) - (min(-directionalSpectrum(:))*0.5));

3 greyScaleImage =

(-directionalSpectrum*beta)+((min(directionalSpectrum(:))*0.5)*beta);

4 greyScaleImage = max(grayScaleImage, min(grayScaleImage,1));

// Step 3: Compute the binary mask of the grayscale image

5 binaryMask = greyScaleImage <= 0.1;

// Step 4: Compute the watershed transform for the binary mask

6 D = -bwdist(∼binaryImage) ; // Compute the distance transform of the

binary image

7 mask = imextendedmin(D,2) ; // Compute the extended minima transform

8 D = imimposemin(D,mask) ; // Apply the extended minima transform

9 maskedImage = watershed(D) ; // Compute the watershed transform

10 binaryMask(maskedImage ==0) = 0 ; // Apply watershed transform

Figure 6.5: An example of the resulting directional regions after the watershed mask has
been applied. The overlapping regions as presented in Figure 6.2 are now separated by
a white line.

this process, based on [151] can be seen in Algorithm 4. Each unique label (except zero) within

this labelled matrix in this case represents the arrival of a different reflection in this time-frame.

The spatial region occupied by each reflection can be simply represented as the convex hull of

the labelled area. An example of the detected spatial regions within the directional spectrum
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can be seen in Figure 6.6. It is important to note that this two-dimensional representation of

the directional spectrum represents an unwrapped sphere. The implication of this being that if

a reflection arrives at the microphone close to θ = 0◦, the spatial region it occupies will exist

around both θ ≈ 0◦ and θ ≈ 359◦, as seen in Figure 6.7. This will result in the reflection being

detected as two arrivals, one for each spatial region. Therefore, if a region that falls close to

θ ≈ 0◦ or θ ≈ 359◦ is detected, the corresponding region on the opposing side of the image is

searched for within the detected regions, and the regions combined if found.

Figure 6.6: An example of the detected regions (black contours) within the directional
spectrum as originally presented in Figure 6.2.

As this is an overlapping sequential process, and each reflection occupies a range of samples in

the SRIR, the same reflection can be present across multiple subsequent time-frames. There-

fore, each detection is either a reflection that was detected in the previous time-frame, or a new

reflection. To resolve this ambiguity, the spatial region, as defined using the matrix indices rep-

resenting the detected region in Λ̂, for each detection within the current time-frame is compared

to any detections in the previous time-frame, and if any spatial region in the current time-frame

had an overlap of at least 80% with any in the previous time-frame, they are considered to have

been produced by the same reflection. The value of 80% is empirically chosen to try and pre-

vent individual reflections, arriving from close DoA, being detected as the same reflection. All

reflections are therefore considered unresolved until their spatial region is no longer present in a

subsequent time frame, a time-frame is skipped, or the sequential process ends. Once a detected

reflection has been resolved using this process, the spatial and temporal region for the reflection

is known and can be used to estimate the ToA and DoA.
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Algorithm 4: Image processing object labelling for detecting connected regions of

ones within a binary image. MATLAB functions are indicated in bold.

1 label = 1 ; // Initialise the label

// Loop over the number of rows

2 for row = 1 : noRows do

// Loop over the number of columns

3 for col = 1 : noCols do

4 if binaryImage(row,col) == 0 then

5 continue

6 else if already checked binaryImage(row,col) then

7 continue

8 else

// Find the connected neightbours for binaryImage(row, col)

9 testIndices = [row, col] ; // Store the row and column index

10 while ∼isempty(testIndices) do

11 testLocation = testIndices(1,:) ; // Store test indices for

analysing connected regions

12 if already checked binaryImage(testLocation(1),testLocation(2)) then

13 continue

14 end

15 labelledImage(testLocation(1),testLocation(2)) = label; ; // Store

the label identifier in the labelled image

16 [gridIndicesY, gridIndicesX] =

meshgrid(testLocation(2)-1:testLocation(2)+1,

testLocation(1)-1:testLocation(1)+1) ; // Define a 3× 3 grid

17 Remove locations in the grid that are out of bounds of the

binaryImage

18 Remove locations in the grid that are equal to zero in the

binaryImage

19 testIndices = [testIndices; [gridIndicesX gridIndicesY]] ; // Store

indices connected to testLocation

20 end

21 end

22 label = label + 1 ; // Increment the label.

23 end

24 end
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Figure 6.7: Example directional spectrum where two spatial regions (A and B) exist
which belong to the same reflection. Image on the left shows the unwrapped directional
spectra, and image on the right shows the directional spectra mapped to a sphere showing
the overlapping region.

The DoA can be estimated from the spatial region within each time-frame for which a reflection

is present. The DoA is computed by adding the directional spectrum across the reflection’s time-

frames, and taking the steered direction, within the reflection’s spatial region, with the largest

power as corresponding to the DoA of the reflection:

ΨDoA = argmax
Ψ

( i=I∑
i=1

Λi(Ψr)

)
(6.10)

where Λi is the directional spectrum matrix for the ith time-frame that the reflection is present,

r defines the sub-array indices in Ψ that define the spatial region, I is the total number of time-

frames over which the reflection is present, and argmax(...) outputs the steered direction with

highest power value.

6.3.1 Time-of-Arrival Estimation

As is the case with previous work [8, 14, 15, 64, 96, 100, 101] it is assumed that the arrival of

a reflection at the receiver array is represented by a peak within the SRIR. However, searching

for the maximum peak within the temporal region of the reflection does not account for the

case when multiple reflections are present, as the maximum peak does not necessarily relate
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to the desired reflection. Therefore, the ToA of the desired reflection is estimated by steering

the response of the microphone array to the direction of the DoA of the arriving reflection, and

searching for the maximum peak index in the resulting signal. This is expressed as:

τ = argmax
τ∈{τst,··· ,τed}

(|
(N+1)2∑
n=1

Hn(τst : τed)yn(ΨDoA)|) (6.11)

where τref is the sample range occupied by the reflection, τ is the ToA for the given reflection,

ΨDoA is the azimuth and elevation steering direction defined by the DoA of the reflection, and

argmax(...) returns the peak index τ ∈ {τst, · · · , τed}. Where τst defines the start of the time-

frame where the reflection is first detected, and τed defines the first sample of the time-frame

where the reflection is no longer present. An overview of the EDESAR method for reflection

detection is presented in Algorithm 5.

While this method is theoretically capable of detecting multiple reflections within a single time-

frame, there is a special case when this is not true. This special case is when the method is

being used to analyse SRIRs generated using geometric modelling. When considering geomet-

ric acoustic modelling, a reflection is added to the SRIR using a filtered Dirac delta, and the

consequence of this is that the reflections are all highly-correlated. This results in a covariance

matrix for each time-frame that is rank-deficient [50, 51], the implication of this being that the

MVDR beamformer will be less able to disambiguate between multiple arrivals [61]. An ex-

ample of this can be seen in Figure 6.8 where multiple regions of higher power exist that are

close to the residual signal power spread throughout the directional spectrum. The thresholding

applied to the directional spectrum in this case would result in no reflections being detected, and

removing the thresholding would result in multiple false positive detections.

To remove the rank requirement of the covariance matrix, an alternative beamforming technique

can be used for simulated data. DoA estimation analysis for reflections in SRIR measured with a

spherical microphone array in [12], shows that EB-MUSIC was the next best beamformer when

compared with a delay-and-sum, plane wave decomposition, and MVDR beamformer. However,

EB-MUSIC also requires a full-rank matrix to work effectively [50, 51], and therefore the next

best beamformer, the plane wave decomposition beamformer (as implemented in [30]), will be

used instead, expressed as,
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Algorithm 5: Overview of the EDESAR algorithm. MATLAB functions are indi-

cated in bold.
Input: SRIR The spatial room impulse response.

Output: reflections structure containing information about each detected

reflection.

1 // Initialisation

2 frameLength = 20 ; // Define the length of the analysis window

3 stepSize = frameLength / 2 ; // Define the step size between sucessive

time frame

4 noFrames = floor(length(SRIR) / stepSize) - (floor(frameLength/stepSize)-1) ;

// Define the the total number of time-frames

5 for ii = 1 : noFrames do

6 Window out the iith time-frame in the SRIR using a Hann window.

7 Filter the windowed time-frame and adjust peak location to account for filter

latency.

8 if all(max(abs(unnormalisedAnalysisFrame)) < 0.01) ——

any(diffusenessProfile > 0.3) then

9 Store all unresolved reflections with τed = frame start and compute the ToA

10 Increment frame start and end indices and continue to next iteration of the

for loop.
11 else

12 Compute and process the directional spectrum. Algorithm 3.

13 Detect any spatial regions in the directional spectrum. Algorithm 4.

14 If there is more than one spatial region detected, check if they are artefacts

of analysing the unwrapped sphere. If so combine their convex hulls.

15 Compute DoA for each region Equation 6.10.

16 if Any detected spatial regions existed in the last time-frame then

17 Store region information with corresponding previous time-frame

18 else

19 Define new reflection.

20 end

21 if Any regions in previous time-frame were not in the current time-frame

then

22 Store all unresolved reflections and compute the ToA

23 end

24 end

25 end

26 Store all unresolved reflections with τed = frame end and compute the ToA
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Figure 6.8: Example of the MVDR beamformer’s output when given a rank-deficient
covariance matrix for a time-frame of a spatial room impulse response, simulated using
CATT-Acoustic, where two reflections are present, with DoA at θ = 69◦ φ = 90◦ and
θ = 310◦ φ = 90◦. As can be seen there is minimal difference between the residual
directional power and the desired reflections. Furthermore, it can be seen that there are
at least four distinct regions.

ζ(Ψ) =

(
4π

M
y(Ψ)

)
RH(tf )

(
4π

M
y(Ψ)

)
(6.12)

where RH(tf ) is the covariance matrix of the SRIR at time-frame tf and M is the number of

microphones in the array. The resulting directional spectrum for the analysis frame in Figure 6.8

when using the steered-response power map can be seen in Figure 6.9.

Figure 6.9: Example of the steered-response power map output when given a rank-
deficient covariance matrix for a time-frame of a spatial room impulse response, simulated
using CATT-Acoustic, where two signals are present. As can be seen there is a larger
difference between the residual directional power and the desired reflection compared to
Figure 6.8. Furthermore, it can be seen that there are are now only two distinct regions.
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6.4 Testing

The threshold values used have been defined empirically by considering the method as applied

to different signal types, by observing the resulting detected reflections and adjusting the thresh-

olds to minimise the number of false-positive detections and inaccurately estimated reflection

parameters. The sample magnitude threshold εα = 0.01, is defined as the sample magnitude of

the SRIR where no distinct reflections could be visually observed (within the diffuse field). The

diffuseness threshold εd = 30% was defined to be at a point where the residual noise compo-

nent starts to be detected as a reflection producing false-positives, while still ensuring the main

discrete reflections are detected. Finally the mask threshold εmsk = 0.1 was chosen through

observation of the directional spectrum’s darkest regions and their power value relative to the

residual power value present in the remainder of the spectrum.

To test the accuracy of the proposed method three scenarios using simulated and real-world

SRIRs are considered. Scenario 1 will use a simple impulse train where the ToA of every

reflection is exactly known. Scenario 2 will use a SRIR simulated using CATT-Acoustic [16] to

test the performance of the method for an example where no noise is present. Finally Scenario 3

will use real-world SRIR measurements in a cuboid-shaped room. As the DoA of the reflections

is only known for Scenario 1, and results in [12] have already shown that the DoA of reflection

can be accurately estimated using these beamformers, the results presented will focus on the use

of this method for reflection detection, and will be compared to implementations of the Dynamic

Time Warping (DTW) based matching pursuit method [15] and the Circular-Variance Local-

Maxima (CVLM) method [14]. As the original implementation for these baseline methods could

not be obtained, the author has developed implementations based on the original papers. As with

[96] a candidate detection is considered valid if it is within 0.5 ms of the expected ToA, and for

each ToA only one detection is validated, that being the one closest to the expected ToA.

Scenario One: Randomly Generated Train of Pulses

Generally initial testing of a reflection detection algorithm will use a train of impulses with

known ToA [15], providing a highly controlled test scenario. Each impulse represents the arrival

of a reflection with a randomly generated ToA, DoA and amplitude.

In this particular case the direct sound component from an omnidirectional (0th order spheri-

cal harmonic) channel of a real-world SRIR measurement, captured using an EigenMike [13],
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Genelec 8030 [139], and the exponential sine sweep method [140], is used to generate the

5.89 ms pulse used , as shown in Figure 6.10. As discussed in Chapter 3 one of the main

issues with existing techniques is whether overlapping reflections can be individually detected

and to test this, the ToA of each impulse is defined, using the peak location of each impulse

within the train, such that there is a minimum time-difference-of-arrival beyween subsequent

reflections of 3.17 ms and a maximum of 8.61 ms – with at most a 4.53 ms overlap between sub-

sequent pulses. The azimuth DoA of each reflection is randomly generated, with the constraint

that adjacent reflections can not have a DoA within 10◦ of each other.

Figure 6.10: The direct sound extracted the zeroth-order component of a real-world
spatial room impulse response measurement. This is used to generate a train of pulses
to test the proposed reflection detection method.

Scenario Two: Simulated Spatial Room Impulse Responses

The second test scenario uses a simulated SRIR generated for a simple cuboid-shaped room

using CATT-Acoustic v.9.1a. The dimensions of this test room are 4 m × 4 m × 3.5 m, and

the simulation parameters can be seen in Table 6.1. A plot of the geometry of the room and the

source and receiver locations can be found in Figure 6.11.

To generate a related set of candidate ToAs, reflections within the SRIR are estimated and iden-

tified using an implementation of the image-source method, as defined in [17]. This allows for

the number of false-positive detections to be estimated, as well as errors in the ToA estimation.

Scenario Three: Real-World Spatial Room Impulse Responses
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Figure 6.11: Geometry for the cuboid-shaped room used to render the CATT-Acoustic
SRIR. Square marker denotes the receiver position and the circle markers denote the
source positions.

Parameter Value

Diffuse Reflections Off
Number of Rays 10,000,000

Boundary Material WOOD30
Source Directivity Omnidirectional

Receiver Directivity Omnidirectional
Rendering Third-Order Ambisonic

Table 6.1: Simulation Parameters used to render the the CATT-Acoustic SRIR used to
test the EDESAR Reflection Detection Method.

In the final scenario two real-world SRIRs measured using an EigenMike EM32 [13] and Genelec

8030 [139] loudspeaker both positioned at a height of 1.5 m from the floor to the centre of the

microphone array and loudspeaker. To generate the SRIR the exponential sine sweep method

from [140] is used, using a 20 s exponential sine sweep from 20 Hz to 20 kHz. As with the mea-

surements in Chapter 5, an omnidirectional sound source is approximated by averaging the SRIR

measurements over four loudspeaker orientations at 0◦, 90◦, 190◦, and 270◦ as used in [141].

While this will not necessarily produce equal excitation across all angles and for all frequencies,

and in particular for high frequencies where loudspeakers tend to be more directional, it has been
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shown to produce a more uniform excitation of a space in similar circumstances [141]. The final

SRIRs are then normalised to have a maximum sample value of±1, and converted to third-order

spherical harmonic domain signals using MH Acoustics’ EigenStudio [13].

The measurement room is cuboid-shaped with dimensions 10.35 m×13.29 m×4.19 m, and has

a number of non-removable, adjustable, floor length curtains. As it was not possible to remove

these curtains, they were positioned, as much as is possible, to limit their impact on the obtained

SRIRs. Hence they were arranged in corners of the room, across windows, and, where possible,

to cover features on the walls such as electrical outputs, as well as the computer and interface

used for the measurements. While it is accepted that this is non-ideal, and could have some

impact on the results, every effort has been made to minimize their potential influence on the

measurements obtained, and ensure that the main reflective boundaries are exposed and clear

from other possibly confounding features. Furthermore, the ceiling was covered in large metal

piping connected to extractor fans and a layer of metal railing approximately 1 m from the

ceiling. The noise floor in the room is measured as 60.2 dBA using an SPL meter and the room’s

temperature was 24.4◦C. An image of the measurement set-up and environment can be seen in

Figure 6.12, and the source and receiver positions can be seen in Figure 6.13.

As with Scenario 2 the image-source method [17] is used to generate a set of candidate ToAs.

From these simulated arrival times, an approximation of where reflections could be present in

the measured SRIR is obtained. It is, however, important to note that these candidate ToAs

do not account for diffuse reflections that may be present, and so, detections made by the pro-

posed method that do not align with an arrival computed using the image-source method are not

necessarily false-positive detections.

6.5 Results

6.5.1 Scenario One: Randomly Generated Train of Pulses

In Figure 6.14 the results for the simulated train of impulses can be seen for EDESAR, CVLM,

and DTW based matching pursuit methods. The results show that both the proposed method

and the DTW based maximum likelihood method have no false-positive detections, and both

only miss one reflection (one of the overlapping cases after the 400th sample). Given that these

overlapping reflections have a maximum spacing of seven samples and DoA of θ = 30◦ and

θ = 80◦ respectively, it is possible that during the summation process these reflections interact

with each other as a result of phase differences introduced by the spherical harmonic vector for
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Figure 6.12: Image of the room setup used in Scenario Three, showing the Genelec 8030
and EigenMike. As can be seen there is curtain coverage across the right wall which
occludes the windows, and curtains positioned in the corners of the room hiding large
electrical outlets. On the ceiling there are light fixtures, railing, extractor fans, and a
series of large rectangular pipes.

each impulse, therefore, making them harder to detect individually.

From Table 6.2, it can be seen that the EDESAR and DTW approaches have comparable max-

imum and minimum ToA error, however, based on the RMS error, the EDESAR approach is

generally more accurate. This result suggests that in this case the EDESAR methods is gener-

ally more accurate by 45.71 µs. The results also show that the CVLM method is least accurate

with 18 false-positive detections, a maximum ToA error of 476.19 µs (249.43 µs more than

EDESAR) and an RMS ToA error of 184.89 µs (137.39 µs more than EDESAR).

Method
Max ToA
Error (µs)

Min ToA
Error (µs)

RMS ToA
Error (µs)

False-
Positives

EDESAR ±226.76 µs 0 µs ±47.50 µs 0
CVLM ±476.19 µs 0 µs ±184.89 µs 18
DTW ±226.76 µs 0 µs ±93.21 µs 0

Table 6.2: Reflection detection results for the proposed EDESAR method, CVLM, and
DTW based maximum likelihood for the randomly generated train of pulses. Results
show the maximum time-of-arrival error, minimum time-of-arrival error, RMS time-of-
arrival error, and number of false-positive detections.
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Figure 6.13: Geometry for the cuboid-shaped room used in the real-world measurements.
Square marker denotes the receiver position and the circle markers denote the source
positions.

Figure 6.14: Comparison between proposed method (top), CVLM technique (middle),
and DTW reflection detection technique (bottom), using the first randomly generated
SRIR. The circles indicate the correct time-of-arrival for a reflection, and the red asterisks
denote the estimated time-of-arrival.
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6.5.2 Scenario Two: Simulated Spatial Room Impulse Responses

In Figure 6.15, the results for the CATT-Acoustic simulated SRIR can be seen for the EDESAR,

CVLM, and DTW based matching pursuit methods. The results show that both the EDESAR

and DTW approaches have detected the main reflections within the SRIR, while the CVLM

approach has detected fewer reflections. It is interesting to note that while the detections at

samples 563, 736, and 809, do not align with an expected ToA these regions in the SRIR have

signals that look like previous reflections in the SRIR. CATT-Acoustic computes the SRIR using

a combination of the image-source method and ray-tracing, with in this case 10,000,000 rays

used to compute paths through an environment. Reflection paths that pass through a sphere

around the receiver (dimensions of which are not known) define the arrival of a reflection [152],

resulting in reflection paths that cannot be defined exactly using the image-source method alone.

From the results in Table 6.3, it can be seen that while the EDESAR method has the most

correctly detected reflections, it has a larger RMS ToA error of 168.89 µs. Furthermore, the

EDESAR method has detected all first order reflections with at most a 22.68 µs ToA error com-

pared to 181.41 µs for the CVLM method, and 45.35 µs for the DTW approach. Across all

of these methods the ToA estimates become more inaccurate as reflection order increases. The

main benefit of the EDESAR method here is that it can disambiguate between simultaneous ar-

rivals. Out of the 71 correct detections only 52 unique ToA values are present and this means

that 28 of these detections belong to a reflection that arrive at the same time as at least one

other reflection, as validated with the image-source method’s predicted reflections. These si-

multaneously arriving reflections are detected as a single arrival with both the CVLM and DTW

methods.

Method
Max ToA
Error (µs)

Min ToA
Error (µs)

RMS ToA
Error (µs)

Correct
Detections

False-
Positives

EDESAR ±430.83 µs 0 µs ±168.89 µs 71 14
CVLM ±430.83 µs 0 µs ±144.58 µs 29 4
DTW ±362.81 µs 0 µs ±98.71 µs 60 66

Table 6.3: Reflection detection results for the proposed EDESAR method, CVLM, and
DTW based maximum likelihood for the CATT-Acoustic simulation of a cuboid-shaped
room. Results show the maximum time-of-arrival error, minimum time-of-arrival error,
RMS time-of-arrival error, number of correct detections, and number of false-positive
detections.
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Figure 6.15: Comparison between proposed method (top), CVLM technique (middle),
and DTW reflection detection technique (bottom), using a simulated SRIR. The black
solid line is the omnidirectional zeroth order spherical harmonic domain channel of the
SRIR, red asterisks denote a detection made by the methods, and the black circles denote
the correctly detected reflections.

6.5.3 Scenario Three: Real-World Spatial Room Impulse Responses

For real-world measurements it becomes harder to compare between algorithms, is as a result of

the reflected arrivals in the signal not being explicitly known. While acoustic modelling can be

used to approximate the arrival of specular reflections, there is no guarantee that each modelled

reflection arrives at the microphone array, and it does not account for diffuse reflections. The

implication here being that false-positive detection could also be a diffuse reflection, as these

reflection in the measured SRIR will not necessarily align with a candidate ToA.

In Figure 6.16 the results for the first real-world SRIR can be seen for the EDESAR, CVLM, and

DTW based matching pursuit methods. It can be seen that both the proposed EDESAR method

and the DTW approach have detected the main peaks in the SRIR. The EDESAR algorithm has

false positive detections at samples 971, 984, 985, 986, 999, 1001, and 1044, which are as a

result of the same reflection being detected multiple times. This is as a result of differences in

the spatial-width of this reflection over time-frames, which produces a detected spatial region

across time-frames that do not overlap by 80%. An example of this can be seen in Figure 6.17,

for the third and fourth detection in the example SRIR where the fourth detection only has a

42.95% overlap in detected spatial region with the third detection. Each of the seven detections

mentioned above have DoA estimates produced by EDESAR, and are result of two points of
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reflection: the floor and possibly the pipes, extractor fans, or railing on the ceiling. The estimated

DoA for these detections are [θ = 203◦φ = 116◦], [θ = 202◦φ = 111◦], [θ = 204◦φ = 114◦],

[θ = 208◦φ = 45◦], [θ = 204◦φ = 109◦], [θ = 203◦φ = 56◦], and [θ = 210◦φ = 36◦].

From the results in Table 6.4, it can be seen that the CVLM method has detected the most

correct reflections, however, this method was unable to detect the direct sound and the first

two first-order reflections, as a result of a large circular variance for these time-frames. Both the

EDESAR and DTW methods have detected all first order reflections, with a maximum ToA error

of 90.70 µs for EDESAR and 340.13 µs for the DTW approach. Out of the 48 detections made

by the EDESAR method there are 45 unique ToAs, and therefore six of these detected reflections

arrive at the same time as another reflection, which the other two methods have detected as a

single arrival.

Figure 6.16: Comparison between proposed method (top), CVLM technique (middle),
and dynamic time warping reflection detection technique (bottom), using the first real-
world SRIR. The black solid line is the omnidirectional zeroth order spherical harmonic
domain channel of the SRIR, red asterisks denote a detection made by the methods, and
the black circles denote the correctly detected reflections

In Figure 6.18 the results for the second real-world SRIR can be seen for the EDESAR, CVLM,

and DTW based matching pursuit methods. It can be seen that in this case the EDESAR method

has detected the least correct reflections, with multiple detections of the same reflection as was

seen in the previous case. The additional detections made by the CVLM and DTW methods

are after the 1500 sample index, where the EDESAR method does not detect any reflections,

as the normalised sample magnitude drops below the threshold of 0.01. Considering only the
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Figure 6.17: Comparison between (a) spatial region produced by the MVDR beamformer
for the third detection made by the EDESAR method for the first real-world SRIR, and
(b) the spatial region for the fourth detection. It can be seen that the detected spatial
region, outlined in red, extracted for the fourth detection is larger than that of the third
with only 42.95% overlap, causing these to be detected as two separate reflections.

Method
Max ToA
Error (µs)

Min ToA
Error (µs)

RMS ToA
Error (µs)

Correct
Detections

False-
Positives

EDESAR ±476.19 µs 0 µs ±198.20 µs 48 43
CVLM ±476.19 µs 0 µs ±200.14 µs 61 8
DTW ±453.51 µs 0 µs ±206.17 µs 36 14

Table 6.4: Reflection detection results for the proposed EDESAR method, CVLM, and
DTW based maximum likelihood for the first real-world measurement. Results show
the maximum time-of-arrival error, minimum time-of-arrival error, RMS time-of-arrival
error, number of correct detections, and number of false-positive detections.

detections within the first 1500 samples, the CVLM method has 17 correct detections, but does

not detect the direct sound, and the DTW approach made 12 correct detections, which are fewer

than the number of correct detections made by the proposed EDESAR method. All three ap-

proaches have detected all first-order reflections, however, the EDESAR method in this case has

the largest ToA error for first-order reflections 340.13 µs, compared to 45.35 µs and 90.70 µs

for the CVLM and DTW methods respectively. Out of the 21 detections made by the EDESAR

method in this case, four detections belong to simultaneously arriving reflections that have been

individually detected, and validated using the image-source method.
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Figure 6.18: Comparison between EDESAR (top), CVLM technique (middle), and dy-
namic time warping reflection detection technique (bottom), using a second real-world
SRIR. The black solid line is the omnidirectional zeroth order spherical harmonic domain
channel of the SRIR, red asterisks denote a detection made by the method in question,
and the black circles denote correctly detected reflections.

Method
Max ToA
Error (µs)

Min ToA
Error (µs)

RMS ToA
Error (µs)

Correct
Detections

False-
Positives

EDESAR ±362.81 µs 0 µs ±184.73 µs 21 57
CVLM ±476.19 µs 0 µs ±176.16 µs 56 56
DTW ±476.19 µs 0 µs ±218.25 µs 42 28

Table 6.5: Reflection detection results for the proposed EDESAR method, CVLM, and
DTW based maximum likelihood for the second real-world measurement. Results show
the maximum time-of-arrival error, minimum time-of-arrival error, RMS time-of-arrival
error, number of correct detections, and number of false-positive detections.

6.6 Discussion

The results presented in this chapter have shown that the proposed EDESAR method outper-

forms both the DTW based matching pursuit and CVLM when analysing simulated SRIRs,

with a larger number of correctly detected reflections, and the lowest error in ToA estimates for

first-order reflections. Both the proposed EDESAR method, the CVLM, and DTW based reflec-

tion detection methods decrease in accuracy when analysing real-world data. While the CVLM

method detected the most correct reflections for both real-world scenarios, it was unable to de-

tect the direct sound in both examples and two first-order reflections in the first test SRIR. For

both real-world SRIRs the EDESAR method produced better or comparable estimates of ToA

than the other two approaches with only an 8.57 µs difference in RMS ToA error for the second
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real-world SRIR. The main benefit of the EDESAR method is the ability to detect simultane-

ously arriving reflections, as discussed for Scenario 2 and 3 where 28, 6, and 4 simultaneously

arriving reflections were detected as individual discrete arrivals. These simultaneously arriving

reflections were always detected as a single arrival by both the CVLM and DTW methods.

The key issue with the EDESAR method is that, for real-world measurements, reflections are

sometimes detected multiple times. As such these detections will have the same DoA, and so as-

signed to the same boundary when performing geometry inference, and is not therefore so much

of a concern when applied in this way. Furthermore, as a result of the generally improved or

comparable ToA estimation accuracy, fewer detrimental false-positive detections, and the abil-

ity to detect simultaneously arriving reflections, which as a consequence relaxes constraints on

source and receiver positioning, the EDESAR method is a more appealing option for geometry

inference.

6.7 Conclusions

In this chapter the Eigenbeam Detection and Evaluation of Simultaneously Arriving Reflections

(EDESAR) method for reflection detection was presented. This method performs spatiotem-

poral decomposition by applying a spherical beamformer to short time-frames of a SRIR. This

generates a heat map of directional intensity - the directional spectrum. Any reflections present

in a time-frame are then detected as regions of high-intensity within this directional spectrum.

Comparisons between the proposed method and implementations of two state-of-the-art tech-

niques, the circular variance local maxima and dynamic time warping based matching pursuit

methods, showed that generally the proposed method produced more accurate estimations of

ToA with a maximum RMS error of 198.20 µs across the two real-world measurements com-

pared to 200.14 µs for the circular variance local maxima method and 206.17 µs for the dynamic

time warping based approach. One key issue with the EDESAR method when analysing real-

world measurements was the detection of the same reflection multiple times. As these detections

belonged to the same reflection, the estimated direction-of-arrival are all similar, and therefore

these detections will all be assigned to the same boundary when performing geometry inference,

and as such do not present a problem. The main benefit of this approach, compared to existing

reflection detection methods, is its ability to detect reflections that arrive simultaneously at the

microphone array as individual reflections. This maximises the number of reflections that are

extractable from a single SRIR, and therefore, relaxes constraints imposed on the source and

receiver positioning needed to ensure a first-order reflection from each boundary is detectable.
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The EDESAR method will be used in the next chapter of this thesis to detect reflections for use

in geometry inference problems.
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Chapter 7

Geometry Inference of Convex

and Non-Convex Rooms using

Compact Microphone Arrays

7.1 Introduction

In the previous chapter a spatiotemporal decomposition based reflection detection method was

outlined. This performs beamforming on short time-frames of a SRIR, to detect the arrival of

directional signals, reflections, at a microphone array receiver. The results presented showed

that the proposed method generally produces more accurate estimates of ToA for reflections

when compared to implementations of the circular variance local maxima [14] and the dynamic

time warping based maximum likelihood [15] reflection detection methods. However, when

analysing real-world measurements the proposed method occasionally detected the same reflec-

tion multiple times as a result of change in the area of the spatial region that the reflection

occupied over subsequent time-frames. It was argued that in context of the geometry inference

this does not pose an issue, as these detections will be assigned to the same boundary.

Geometry inference refers to the inverse problem of estimating the locations of reflective bound-

aries within an environment from the reflections captured across a number RIRs. This analysis

technique exploits the temporal, and sometimes spatial, information contained within these

(spatial) room impulse response to estimate reflection paths, and therefore boundary locations.

Current-state of the art methods constrain the problem to that of a convex-shaped room, simpli-
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fying the problem, as a result of requiring a reflection from each boundary being detectable in

all or a subset of Spatial Room Impulse Responses (SRIRs) measured at different source and re-

ceiver positions. The consequence of this is that these methods are not applicable to non-convex

rooms, as in some cases it is not possible to position source/receiver combinations to detect mul-

tiple reflections from a boundary. The problem of geometry inference for non-convex-shaped

rooms is therefore more complex, as no assumptions can be made about the number of bound-

aries or shape of the room. Therefore, to infer the geometry of non-convex-shaped rooms only

a single source and receiver position should be used to infer a boundary’s location. This can

be achieved through the use of a compact microphone array capable of capturing both ToA and

DoA for a reflection, which can be used to estimate the location of a candidate image-source.

Furthermore, by relaxing assumptions on the shape of the room and required positioning of mea-

surement locations, no constraints can be imposed on the number of reflections extracted from a

single SRIR, as commonly done within the literature.

This chapter will be presented as follows: Section: 7.2 will present the problem domain, Sec-

tion: 7.3 will present the Acoustic Reflection Cartographer (ARC) method, Section: 7.4 will

describe the testing procedures, Section: 7.5 will present the findings, Section: 7.6 will discuss

the results in the context of the literature, and Section: 7.7 will conclude the paper.

7.2 Problem Formulation

As discussed in Chapter 2, the image-source method computes the ToA of reflections in a RIR

by computing the locations of an image-source by mirroring the source, and subsequent image-

sources, perpendicularly across each boundary within the room. The distance between the

image-source and the receiver then defines the ToA. These image-sources s̃ can be computed

using the location of the source/image-source s, a point on the boundary, b and the boundary’s

unit normal n as in [6],

s̃ = s + 2 < b− s,n > n (7.1)

where < ., . > denotes dot product. Image-reversion techniques exploit this relationship by

estimating the image-source s̃ from the measured RIR. The boundary location can then be es-

timated from the image-source, and the previous-source that was mirrored in the boundary to

produce the image-source, by exploiting the properties of the image-source method. That is, as
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an image-source is produced by mirroring the previous-source perpendicularly across a bound-

ary, the distance from previous-source-to-boundary and boundary-to-image-source are equal,

and the line between the previous-source and image-source is parallel to the boundary’s normal,

as seen in Figure 7.1. A point on the boundary b̃ and the boundary’s normal ñ can therefore,

from [6], be estimated as,

Figure 7.1: Example of an image-source produced by mirroring the source perpendicu-
larly across the boundary. As can be seen the reflection path produced is specular with
the angle of reflection relative to the normal of the plane equal to the angle of incidence.

b̃ =
s̃ + s

2
(7.2)

ñ =
s̃− s

||̃s− s||
(7.3)

In practice not every image-source is defined using the location of the source s, as such, one

of the stages in the image-source reversion process is to find the most likely previous-source,

which is substituted for s in (7.2). This process produces a set of candidate boundaries for the

room, which either define the geometry of the room or require refining to a subset of candidate

boundaries that define the room.

As discussed in Chapter 4 geometry inference methods impose certain constraints to simplify

the problem and based on the work discussed in Chapter 4 the following assumptions are made

with the geometry inference method presented in this chapter.
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• The relative position of all source and receivers are known.

• It is assumed that the source-to-receiver distance is known a priori to account for any

measurement system latency.

• Knowledge or room temperature is known to allow speed-of-sound to be estimated.

• It is assumed that the walls are perpendicular to the floor and ceiling, and the floor and

ceiling are parallel to each other.

• That all reflections have a dominant specular component allowing their reflection paths to

be traced.

• Each boundary has at least one first-order reflection assignable to and detectable in at least

one SRIR.

• In this study an empirically defined minimum source/receiver-boundary distance of 50 cm

is used (half that of the minimum recommended distance of 1 m in [122] to allow for

analysis of smaller/complex rooms). This constraint is imposed to ideally improve the

methods robustness to false-positive detections, where boundaries inaccurately inferred

close to the source or receiver can lead to desired boundaries being invalidated by the

proposed boundary validation process.

• The inferred boundaries define a closed geometry.

In this chapter it is assumed that a method such as the Eigenbeam Detection and Evaluation of

Simultaneously Arriving Reflections (EDESAR) method for reflection detection as (see Chap-

ter 6) has been used to analyse reflections present in the SRIR. Therefore, the presentation of

the proposed method assumes that a set of candidate reflections with estimated ToA and DoA

have already been detected. These candidate detections are first organised in descending ToA,

and in the case of multiple measurement positions all candidate detections across the SRIRs are

grouped together and sorted - making sure that each reflection’s receiver location is stored.

7.3 Method

The proposed Acoustic Reflection Cartographer (ARC) method is an image-source reversion

method, consisting of two processing steps, image-source reversion and geometry validation.
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The ToA and DoA for each candidate reflection is used to compute the location of the image-

source that produces a given reflection. It is important to note that any error in the ToA and DoA

estimates will result in a less accurate estimate of the boundary location, the proposed method

assumes that these estimated values are accurate and does not attempt to account for estimation

error. This is an iterative process that is performed in reverse order, prioritising the first arrivals

at the receiver, and making it easier to remove false-positive detections without disrupting the

loop iterator. From these estimated image-source locations, the most-likely previous-sources

are searched for, and a set of candidate boundaries defined using these image-source/previous-

source pairs. The geometry validation process is then used to refine the candidate boundaries

to ideally retain only those that pertain to the given measurement environment. An overview of

this whole process can be seen in Figure 7.2

7.3.1 Image-source Reversion

For each candidate detection an estimated ToA and DoA value will be extracted from the SRIR.

Assuming that the first arrival at the microphone array belongs to the direct sound and all sub-

sequent detections are reflections, the source location (if not known a priori) and image-source

locations can be defined using directional cosines, from [153] as,

s̃i = m + di


sin(φi)cos(θi)

sin(φi)sin(θi)

cos(φi)

 (7.4)

where m is the [x, y, z] coordinate for the receiver and di is the distance travelled by the ith

detection, computed as ToA ∗ c, where c is the speed of sound. To define the parameters for the

candidate boundaries (7.2), the most-likely previous source for each image-source needs to be

found.

When searching for the most-likely previous sources it is important to consider that each image-

source is either produced by a first-order reflection from a new or existing boundary, a higher-

order reflection from an existing boundary, or a false-positive detection. Following the definition

of the SRIR in Chapter 2, it can be assumed that the first two detections that produce a valid

boundary based on the above assumptions, can be defined as first-order reflections, this caveat

is used to bootstrap the process. Furthermore, it is assumed that the first detection that can

produce either the floor or ceiling for each source/receiver pair is first-order and that the mean
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Figure 7.2: Flowchart presenting an overview of the proposed geometry inference process.

boundary position, across SRIR measurements, for these is assumed to be the floor and ceiling

location. For subsequent reflections, the assumption of first-order does not hold, as the first

arriving second-order reflection will likely arrive before the last first-order [6]. Therefore, for
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subsequent detections in the SRIR the previous-source can either be the loudspeaker or an image-

source – which is produced by a detection with a ToA less than that of the detection being

analysed – and therefore needs to be searched for. The aforementioned assumptions are used

to limit the image-source reversion process, by only considering previous-sources that produce

boundaries that adhere to the proposed assumptions.

The first consideration in the process is to ascertain whether the image-source is as a result of a

reflection from a known boundary. This is tested for the source and all image-sources (̃sk) with

a ToA less than that of s̃i as,

previousSource = s̃k, if ||(s̃k + 2 〈b̃l − s̃k, n̂l〉n̂l)− s̃i|| ≤ εs̃ (7.5)

where s̃k is the image-source for the kth reflection, l = 1 : L is the number of inferred bound-

aries defined by first-order reflections, 〈., .〉 denotes dot product, and εs̃ is an empirically defined

threshold value chosen to allow for inaccuracies in ToA and DoA estimation. If any of these

image-sources tested produce an image-source location close to the actual image-source (̃si) it

is assumed to be the most-likely previous-source.

If no existing boundaries defined by a first-order reflection are attributable to s̃i, then a new

boundary is defined. As with the previous work in the literature [6, 8, 110] an image-source

that cannot be defined using existing boundaries is assumed to be first-order. However, contrary

to these works a set of constraints are imposed to remove image-sources that are as a result of

false-positive detections, these constraints are,

• The difference in propagation distance ∆l between the image-source-to-receiver path and

source-to-boundary to receiver path should be within a defined threshold such that ∆l ≤

εl, where εl is the threshold

• The inferred boundary is perpendicular to the floor, defined using the z-axis coefficient for

the boundary’s normal ∆ñ, which should be 0 for a boundary perpendicular to the floor

and ceiling, constrained as ∆ñ ≤ εñ, where εñ is the threshold value.

• The inferred boundary is at least 50 cm away from the source and receiver, as defined by

imposed minimum source-to-boundary and receiver-to-boundary distances.
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• The specular reflection produced by the path from source-to-boundary should have x

and y directional cosines close to that of the actual reflection path from image-source-

to-receiver, such that ∆∠ ≤ ε∠ where ε∠ is the threshold value used and ∆∠ is calculated

as ||[α̃, β̃]− [α, β]|| and α̃, β̃ are calculated, from [153], as,

α̃ = α̃prev − 2cos(υ)µ (7.6)

β̃ = β̃prev − 2cos(υ)η (7.7)

where α̃ and β̃ are the directional cosines along the x and y axes respectively, αprev and βprev

are the directional cosines computed for a line going from the previous-source to the point where

the line from image-source-to-receiver intersects the boundary, υ is the angle of incidence, and

µ and η are the directional cosines of the normal vector of the plane along the x and y axes, re-

spectively. The implication of defining a reflection that is not attributable to an existing inferred

boundary as being first-order is that any higher-order reflections defined as a first-order reflection

will produce a boundary distant from the desired boundary location, and therefore, a geometry

validation process is required to refine the inferred boundaries. Furthermore, second-order re-

flections that are produced by interactions between perpendicular boundaries will produce an

angled boundary that will impact the inferred shape of the room. Therefore, attempts are made

to find the correct previous-source for image-sources produced by these perpendicular reflec-

tions.

To attempt to find the correct previous-source for an image-source defined by a reflection pro-

duced by interactions between perpendicular boundaries, the properties of the image-source

method are once again exploited. Given that an image-source is generated by mirroring its

previous-source perpendicularly across a boundary, for the case of a reflection between per-

pendicular boundaries, the relationship between the image-source, previous-source, and the

previous-source of the previous-source, can be expressed as a rotation of these image-sources

around a point in space. An example of this can be seen in Figure 7.3 for both a second- and

third-order reflection. From this relationship, this point of rotation must be equidistant from both

the image-source, the previous-source, and the previous-source for the previous source. Using

the point on boundary equation in (7.2), the point of rotation pr can be expressed as,
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Figure 7.3: Diagram showing the rotational relationship between the image-source and
its previous source, in this case Image-Source2 with Image-Source1 and Image-Source3
with Image-Source2. Image-Source1 is produced by mirroring the source in the bound-
ary on the right side of this simple, square, 2D geometry, Image-Source2 is produced
by mirroring Image-Source1 in the lower boundary, and Image-Source3 is produced by
mirroring Image-Source2 in the left boundary. Point of Rotation 1 is the mid-point be-
tween Image-Source2 and the Source location, and Point of Rotation 2 is the mid-point
between Image-Source3 and Image-Source1.

pr =
s̃i + s̃j

2
(7.8)

where s̃i is the image-source being analysed and s̃j is the previous-source of the previous-source.

The image-source produced for a reflection between perpendicular boundaries can therefore be

detected if the image-source and previous-source are equidistant from this point of rotation as,

previousSoure = s̃k, if | ||s̃i − pr|| − ||s̃k − pr|| | ≤ εo (7.9)

If more than one previous-source can be defined using this relationship then the previous-source

with the smallest error in reflection path is used as,

min(∆l + ∆∠ + ∆ñ) (7.10)

In the case that none of these steps produce a valid candidate previous-source, the image-source
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in question is assumed to be as a result of a false-positive detection made by the reflection

detection method. An overview of this process can be seen in Algorithm 6–7.

For each detected image-source and previous-source combination the boundary, B̃, between

them can be defined as the four corners of a quralateral patch using the point-on-boundary and

boundary normal (7.2), from [154], as,

B̃x = b̃x + W̄1,1

[
1 −1 −1 1

]T
+ W̄1,2 ∗

[
−1 −1 1 1

]T
(7.11)

B̃y = b̃y + W̄2,1

[
1 −1 −1 1

]T
+ W̄2,2 ∗

[
−1 −1 1 1

]T
(7.12)

B̃z = b̃z + W̄3,1

[
1 −1 −1 1

]T
+ W̄3,2 ∗

[
−1 −1 1 1

]T
(7.13)

where b̃x, b̃y, and b̃z are the x, y, and z coordinates for the point on the boundary, W̄ is

the [3 × 2] matrix containing two points that are orthogonal to the boundary normal computed

from the orthonormal null space of the plane normal, and the two vectors
[
−1 −1 1 1

]
and

[
1 −1 −1 1

]
are used to define a plane that is 2 m in length. The initial length of the

boundary is arbitrary, as it has no bearing on the final inferred geometry.

While these proposed steps aim to reduce the impact of incorrectly inferred boundaries, it is not

infallible as in some cases the correct previous-source was not observed. Furthermore, errors in

the estimated ToA and DoA for higher-order reflections can result in an image-source that cannot

be attributable to a corresponding boundary, and this produces additional boundaries outside of

the desired room’s geometry. Therefore, to accurately infer the shape of a given room, further

steps are required to remove any erroneously inferred boundaries.
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Algorithm 6: Pseudocode for image-source reversion process considering a single

source and receiver (part 1)

1 Generate image-sources

2 number of detections = 0

3 for ii = number of reflection : -1 : 1

4 if imageSource(ii,:) within 1 meter of source or receiver then

5 remove imageSource(ii,:) as it cannot produce a valid boundary

6 continue to next loop iteration

7 end

8 if number of detections < 2 then

9 if norm(((imageSource(ii,:) + source)/2) - source) > 0.5 and

norm(((imageSource(ii,:) + source)/2) - receiver) > 0.5 then

10 previousSource(ii,:) = source

11 number of detections++;

12 continue to next loop iteration

13 end

14 end

15 for ll = 1 : number of first-order boundaries do

16 for kk = ii + 1 : number of reflections do

17 if norm((imageSource(kk,:) + 2 * dot(pointOnBoundary(ll,:) -

imageSource(kk,:), boundaryNormal(ll,:))-imageSource(ii,:)) < εs then

18 previousSource(ii,:) = imageSource(kk,:)

19 number of detections++

20 continue

21 end

22 end

23 end

7.3.2 Geometry Validation

From Figure 7.4, it can be seen that there are three types of potentially erroneous boundary

detections:

• Boundaries positioned on the corners of the desired geometry as a result of not detecting

the correct previous-source for a second-order reflection between perpendicular bound-

aries or additional inferred angled boundaries, as seen in examples b, c and e.

• Boundaries positioned immediately after another boundary, which are likely to be a prod-

uct of either noise, or a single reflection being detected as multiple separate arrivals, as

seen in examples a and f.

• Boundaries positioned far outside of the desired geometry, which are as a result of higher-
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Algorithm 7: Pseudocode for image-source reversion process considering a single

source and receiver (part 2)

// Continuation of for loop from Algorithm 6

1

2 Define new boundary using source as previous-source

3 if ∆l < εl and ∆∠ < ε∠ and ∆ñ < εñ then

4 possiblePreviousSource = source;

5 if bounday is the first that can define the floor or ceiling then

6 previousSource(ii,:) = source

7 number of detections = number of detections + 1

8 continue to next loop iteration

9 end

10 end

11 store = 1

12 for kk = ii + 1 : number of reflections do

13 if imageSource(kk,:) and (imageSource(ii,:) have a difference in distance <

εo to the point of rotation then

14 possiblePreviousSource(store, :) = imageSource(kk,:)

15 store = store + 1

16 end

17 end

18 if length(possiblePreviousSource) == 0 then

19 remove imageSource(ii,:)

20 continue

21 end

22 if length(possiblePreviousSource) > 1 then

23 [ , minIndex] = min(∆l + ∆∠ + ∆ñ)

24 previousSource(ii,:) = possiblePreviousSource(minIndex, :)

25 number of detections = number of detections + 1

26 else

27 previousSource(ii,:) = possiblePreviousSource

28 number of detections = number of detections + 1

29 end

30 end

order reflections being defined as first-order, as seen across all six examples.

The latter two of these potentially erroneous boundary conditions will be considered here, as

they will have the largest impact on the accuracy of the geometry inference process.

Ahead of the next step, boundaries that are coincident are removed until only one remains,

reducing the number of boundaries to be tested and improve computational efficiency of this

approach. Two boundaries are defined as being coincident if the boundary normals ñ1 and ñ2
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Figure 7.4: Example inferred boundaries (dashed lines) and the desired geometry (solid
lines) for six different test cases, (a) Real-world measurements of a cuboid-shaped room,
(b) CATT-Acoustic simulated measurements for a cuboid-shaped room, (c) CATT-
Acoustic simulated measurements for a second cuboid-shaped room, (d) CATT-Acoustic
simulated measurements for an octagonal-shaped room, (e) CATT-Acoustic simulated
measurements for a L-shaped room, and (f) CATT-Acoustic simulated measurements for
a T-shaped room. Each figure shows outlier boundaries outside of the desired geometry
produced by incorrect assignment of previous-source.

are parallel and the inferred point on the boundaries b̃1 and b̃2, where 1 and 2 denotes different

boundaries, exists on both boundaries [155], such that,

||ñ1 × ñ2|| ≤ εpar (7.14)

and | < ñ1, b̃1 − b̃2 > | ≤ εpoint (7.15)

where εpar and εpoint are empirically defined threshold values to account for small variations in

boundary position as a result of ToA and DoA errors. An additional constraint is required to

account for non-convex-shaped rooms, as multiple distinct boundaries can be co-planar, as seen

for boundaries 1 and 2 in Figure 7.5. Therefore, the distance between the points on plane b̃1 and

b̃2 must be less that the minimum parallel plane distance of 1 m (as defined by the minimum

source/receiver to boundary distance).

To perform the boundary validation process, an approximate estimation of the room’s inferred

geometry, based on the nearest intersection points between non-parallel inferred boundaries, is
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Figure 7.5: Example non-convex T-shaped room where boundaries 1 and 2 are mathe-
matically coincident, but belong to two separate boundaries.

generated. Under the assumption that all walls are perpendicular to the floor and ceiling, the

boundary-to-boundary intersection of interest are non-parallel boundaries that intersect along

the x and y axes, i.e. walls, which from [156] are,

x =
dkn̂i,y − din̂k,y

uz
(7.16)

y =
din̂k,x − dkn̂i,x

uz
(7.17)

z = 0 (7.18)

where subscript x, y, and z denote the Cartesian coordinates, and the coefficient d and the

intersection direction vector u are, from [156], computed as,

di = − < n̂i,pi > (7.19)

dk = − < n̂k,pk > (7.20)

u = n̂i × n̂k (7.21)
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where <,> denotes dot product and × denotes cross product. If any intersection is further

than 100 m from the receiver locations, it is assumed to be the intersection point between two

nearly-parallel boundaries and is ignored. The resulting inferred boundary Bi is computed from

the nearest intersecting non-parallel boundaries, on either side of the boundary B̃i, for notation

purposes these are referred to as B̃k and B̃j . The boundary, B̃i, can then be constrained based

on these points of intersection as,

Bi =



[
x(B̃i, B̃j) y(B̃i, B̃j) z(B̃i, B̃j)

]
+
[
uj,x uj,y

min(z)
uj,z

]
[
x(B̃i, B̃k) y(B̃i, B̃k) z(B̃i, B̃k)

]
+
[
uk,x uk,y

min(z)
uk,z

]
[
x(B̃i, B̃k) y(B̃i, B̃k) z(B̃i, B̃k)

]
+
[
uk,x uk,y

min(z)
uk,z

]
[
x(B̃i, B̃j) y(B̃i, B̃j) z(B̃i, B̃j)

]
+
[
uj,x uj,y

min(z)
uj,z

]


(7.22)

where
[
x(B̃i, B̃j) y(B̃i, B̃j) z(B̃i, B̃j)

]
are the intersection points between boundaries B̃i

and B̃j ,
[
x(B̃i, B̃k) y(B̃i, B̃k) z(B̃i, B̃k)

]
are the intersection points between boundaries

B̃i and B̃k, and min(z) and max(z) are the z coordinate for the floor and ceiling respectively,

computed during the image-source reversion process, which scales the intersection direction

vector u to produce the correct z coordinates. An example of the constrained boundaries from

Figure 7.4 can be seen in Figure 7.6, where it can be seen that for examples (a)-(e) the boundaries

that define the room have been constrained to the right shape, but there exist inferred boundaries

that are not part of the desired geometry as a result of incorrectly assigned previous-source

candidate for higher-order reflections. To then remove the aforementioned inferred boundaries

that are positioned outside of the desired geometry of the room, a three step geometry validation

process is proposed. These three steps are as follows, reflection path validation, line-of-sight

boundary validation, and closed geometry validation.

Step 1: Reflection Path Validation

The first step is to check if the reflection path from the image-source-to-receiver is obstructed

by additional boundaries that are closer to the receiver than the boundary inferred by this image-

source. This process will remove the majority of the additional boundaries seen in Figure 7.6,

and is performed by defining a line from the image-source that produced the boundary being

tested to the receiver, and computing the intersection
[
x y z

]
between the line and every

other boundary B from [157] as,
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Figure 7.6: Example inferred room shape (dashed lines) and the desired geometry (solid
lines) for six different test cases as considered previously in Figure 7.4. The approximate
shape of the room exists in all cases, but as a result of outlier boundaries there are
incorrect boundaries.

Ξ =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

B1,x B2,x B3,x mx

B1,y B2,y B3,y my

B1,z B2,z B3,z mz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0

B1,x B2,x B3,x s̃i,x −mx

B1,y B2,y B3,y B̃i,y −my

B1,z B2,z B3,z s̃i,z −mz

∣∣∣∣∣∣∣∣∣∣∣∣

(7.23)

x = x4 + (x5 − x4)Ξ (7.24)

y = y4 + (y5 − y4)Ξ (7.25)

z = z4 + (z5 − z4)Ξ (7.26)

where s̃i,x, s̃i,y, and s̃i,z are the Cartesian coordinates for the image-source that produces the ith

wall, mx, my, and mz are the Cartesian coordinates for the receiver position, B1,x refers to the

x axis coordinate of the first corner of the boundary, and
∣∣∣.∣∣∣ is the determinant of the matrix. As

this equation assumes a boundary of infinite length the resulting point of intersection is checked

to ensure that it lies on the defined boundary. If any other boundary has an intersection closer
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Figure 7.7: Example inferred room shape (dashed lines) and the desired geometry (solid)
lines) for the six different test cases presented previously in Figure 7.4 after the reflection
path validation process.

to the receiver than the ith boundary being tested, the ith boundary is removed. It is important

to note that as a result of the inferred shape, the line between image-source and receiver may

not intersect with the boundary it produces. In this case the ith boundary cannot be invalidated

and is kept. Once all boundaries have been tested, the shape of the room is inferred from the

remaining boundaries and the process is repeated until no further boundaries are removed. An

example of the resulting inferred geometry after this step can be seen in Figure 7.7, which shows

that the majority of additional boundaries presented in Figure 7.6 have been removed.

Step 2: Line-of-Sight Boundary Validation

While the majority of incorrect boundaries have now been removed, there are still non-valid

boundaries that remain as a result of the line between image-source and receiver not intersecting

with the boundary. To remove these remaining unwanted boundaries, a line-of-sight test is

performed to see if each inferred boundary is visible to at least one receiver position. Any

boundaries that are not in line-of-sight of the receiver could not have produced a reflection that

arrives at the receiver. To test line-of-sight a set of rays are defined with 0 ≤ θ ≤ 359 and

φ = 90 using (7.4) with di = 1. The value of di (the length of ray) is arbitrary as the line-plane

intersection equations assume a line of infinite length. The line-plane intersections are then

computed using (7.23), substituting s̃i with the point on the ray defined using (7.4). The first

boundary that intersects with each of these rays is considered valid. An example of the resulting

inferred boundaries after this step has been performed can be seen in Figure 7.8. As can be seen
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Figure 7.8: Example inferred room shape (dashed lines) and the desired geometry (solid
lines) the six different test cases presented previously in Figure 7.4 after removing any
boundaries that are not in line-of-sight of the receiver. The results show that all of the
remaining external boundaries have now been removed.

all remaining additional boundaries from Figure 7.7 have been removed.

Step 3: Closed Geometry Test

These first two steps will have refined candidate boundaries to that of the desired room for the

majority of cases. The final step is to ensure that the inferred geometry of the room produces a

closed shape. As with the previous two stages the geometry of the room is first inferred, then

any constrained boundaries that do not intersect with two adjacent boundaries, one on each side,

are removed.

An overview of this whole geometry validation process can be seen in Algorithm 8–9. The

remaining boundaries are then considered valid, and the shape of the room can be inferred from

them.
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Algorithm 8: Pseudocode for the three step geometry validation process. Step 1

checks to see if the reflection paths is obstructed by additional boundaries, Step 2

checks that each boundary is in line-of-sight of at least one receiver position, and

Step 3 checks that the inferred room’s shape produces a closed geometry. (Part 1)

1 while changesMade ∼= 0 do

2 Infer geometry using plane-plane intersections.

3 changeHappened = 0

4 Step 1: Check reflection path for multiple boundary intersections

5 for ii = 1 : numberOfPlanes do

6 for kk = 1 : numberOfPlanes do

7 if boundary kk intersects line between point of incidence on boundary ii

and the receiver then

8 remove boundary ii

9 changeHappened = 1;

10 end

11 end

12 end

13 if changeHappened == 0 then

14 changesMade = 0

15 end

16 end

17 Step 2: line-of-sight test

18 Infer geometry - image-source-to-receiver path must intersect boundary

19 for ii = 1 : noReceivers do

20 for θ = 1 : 359 do

21 Define ray in azimuth direction θ from receiver ii

22 for kk = 1 : numberOfPlanes do

23 if ray intersects boundary kk && intersection is not on the boundary edge

then

24 boundaryIsValid(ii) = 1

25 end

26 end

27 end

28 end

7.4 Testing

Three sets of tests are used to test the proposed method under different measurement conditions.

The first test case will test the proposed method with seven CATT-Acoustic [16] simulated en-

closed spaces of different sizes, shapes, and complexity, detailing the accuracy of the model

under highly controlled measurement conditions. The second scenario consists of 33 source/re-

ceiver combinations across two different L-shaped rooms, testing the performance of the method

across different measurement set-ups. The final scenario consists of two sets of real-world mea-
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Algorithm 9: Pseudocode for the three step geometry validation process. Step 1

checks to see if the reflection paths is obstructed by additional boundaries, Step 2

checks that each boundary is in line-of-sight of at least one receiver position, and

Step 3 checks that the inferred room’s shape produces a closed geometry. (Part 2)

1 Remove boundaries where boundaryIsValid == 0

2 Infer geometry using plane-plane intersections.

3 Step 3: Closed Geometry test

4 for ii = 1 : numberOfPlanes do

5 Compute the distance between boundary ii and adjacent boundaries

6 if boundaries do not connect and distance between boundaries is < 0.1 then

7 remove boundary ii

8 end

9 end

10 Infer geometry.

surements for a cuboid-shaped room, testing the robustness of the method to real-world imple-

mentation.

Preliminary Testing: Ground-Truth

This scenario assesses the accuracy of the geometry inference method when presented with

ground-truth data, that is an exact measurement of the time- and direction-of-arrival for each re-

flection and an exact simulation of the SRIR where each reflection is represented as a single peak

within the SRIR and no additional processing, such as filtering, is applied). The ground-truth

data is generated for a cuboid-shaped room with dimensions [4 m × 4 m × 3.5 m], boundary

absorption coefficient of 0.02, speed-of-sound defined as 344 m/s, and using simulated reflection

information for two different source positions. The data is simulated using an adapted version of

the image-source code [158], which outputs a third-order spherical harmonic domain SRIR and

ground-truth time- and direction-of-arrival values for each reflection. Five different test scenar-

ios are presented considering: I) Ground-truth ToA and DoA for all reflections; II) Ground-truth

ToA and DoA with randomly generated and normally distributed errors added to the ToA values

for 21 different magnitudes 22.67 µs – 476.19µs (from one sample at 44.1 kHz up to maximum

error reported for the EDESAR method); III) Ground-truth ToA and DoA with randomly gen-

erated and normally distributed errors added to the azimuth DoA for 10 different magnitudes

0◦–10◦; IV) Ground-truth ToA and DoA with randomly generated and normally distributed er-

rors added to the elevation DoA for 10 different magnitudes 0◦–10◦; and V) Ground-truth SRIR

sampled at 44.1 kHz with additive noise at signal-to-noise ratios (SNRs) of no noise and from
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60 dB to 0 dB in steps of 5 dB. The additive noise used in the SNR tests is generated by adding

randomly generated Gaussian white noise to each channel of the SRIR. These tests will as-

sess the accuracy of the method when presented with exact data, assess the robustness of the

method to time- and direction-of-arrival estimation errors, and assess the method’s robustness

to inteferring noise. The geometry of the room and source and receiver locations can be seen in

Figure 7.9.

Test Case One

The first example in this scenario consist of five different simulated environments, two cuboid-

shaped rooms (126 m3 and 56 m3), one octagonal-shaped room (42 m3), one L-shaped room

(240 m3), and one T-shaped room (137 m3). All but the T-shaped room consist of two mea-

surement positions, which used three. All of these rooms are simulated using CATT-Acoustic

v.9.1a [152]. To ensure that the resulting SRIRs consist of more than a sparse set of reflections

10,000,000 rays are used producing sufficient coverage throughout the environment, and for

testing purposes diffuse reflections are turned off. Furthermore, for all scenarios the boundaries

are defined as being made of wood, using CATT-Acoustic’s WOOD30 material [16]. Across

all tests the source is defined as being 1.5 m off the floor.The resulting SRIRs are rendered out

as third-order spherical harmonic domain signals. The dimensions, source and receiver posi-

tions, room shapes, and impulse-responses can be seen in Figure 7.9-7.13, and the SRIR and the

detected reflection locations can be seen in Appendix A Figures A.1–A.5

An additional two sets of simulated SRIRs for different source and receiver locations for a third

cuboid-shaped room (∼504.63 m3) with small recessed windows is also used. This example

tests the performance of the method when there are features of the room present that cannot be

inferred using the proposed method. As before 10,000,000 rays are used producing sufficient

coverage throughout the environment, with diffuse reflections turned off. The floor is linoleum

(LINOLEUM30), ceiling is defined as perforated metal (METAL PERF), and the walls are brick

(BRICK WALL1). The dimensions, source and receiver positions, room shape, and impulse-

responses can be seen in Figures 7.14-7.15, and the SRIR and the detected reflection locations

can be seen in Appendix A Figures A.6–A.7.

Test Case Two

This test consists two L-shaped rooms, with volumes 320 m3 and 360 m3, simulated in CATT-

Acoustic using the same parameters as the L-Shaped room in Scenario One. These rooms are

simulated using a single receiver positioned in line-of-sight of every boundary, and 14 and 15
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Figure 7.9: Geometry for Ground Truth testing and Scenario One First Cuboid-Shaped
Room. Square marker denotes the receiver position and the circle markers denote the
source positions.

randomly selected source positions for room one and two across the two segments of the room.

From these two sets of 15 source positions for each L-shaped room, a selection of 33 source

combinations that ensure a first-order reflection from each boundary, are used to test the pro-

posed method. This example tests the variability of the performance of the method, quantifying

any difference in estimation accuracy between the two rooms. The source positions and room

shape can be seen in Figures 7.16-7.17 and the combinations of sources used can be seen in

Tables 7.1-7.2.

Test Case Three

This test consists of two sets of SRIRs measured in a real world space, with a volume of

360.11 m3, with each measurement set using different source and receiver locations. The re-

ceiver used is the EigenMike EM32 [159], a spherical microphone array with 32- spatially dis-

tributed channels across the sphere, and the source used is a Genelec 8030 [139] loudspeaker.

The test signal used to capture the response of the room is an exponential sine-sweep [140],

20 s in length with a frequency range of 100 Hz-20 kHz, using the inverse-filter of the original

sine-sweep to produce the SRIR. To better approximate an omnidirectional source, the mean
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Figure 7.10: Geometry for Scenario One Second Cuboid-Shaped Room. Square marker
denotes the receiver position and the circle markers denote the source positions.

of the SRIRs measured at four speaker orientations (0◦, 90◦, 180◦, and 270◦) is taken, as used

in [141]. The final SRIRs are then normalised to have a maximum sample value of ±1, and

converted to third-order spherical harmonic domain signals using MH Acoustics’ EigenStudio

[13]. The measurement room is cuboid-shaped with dimensions 10.35 m×13.29 m×4.19 m,

and has a number of non-removable, adjustable, floor length curtains. As it was not possible to

remove these curtains, they were positioned, as much as is possible, to limit their impact on the

obtained SRIRs. Hence they were arranged in corners of the room, across windows, and, where

possible, to cover features on the walls such as electrical outputs, as well as the computer and

interface used for the measurements. While it is accepted that this is non-ideal, and could have

some impact on the results, every effort has been made to minimize their potential influence

on the measurements obtained, and ensure that the main reflective boundaries are exposed and

clear from other possibly confounding features. Furthermore, the ceiling was covered in large

metal piping connected to extractor fans and a layer of metal railing approximately 1 m from

the ceiling. The noise floor in the room is measured as 60.2 dBA using an SPL meter and the

room’s temperature was 24.4◦C, and hence the speed of sound is estimated as 346.97 m/s [160].

The room’s geometry, loudspeaker and receiver positions, and impulse-responses can be seen in
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Figure 7.11: Geometry for Scenario One Octagonal-Shaped Room. Square marker de-
notes the receiver position and the circle markers denote the source positions.

Figure 7.18 - 7.19, a picture of the measurement environment can be seen in Figure 7.20, and

the SRIR and the detected reflection locations can be seen in Appendix A Figures A.8–A.9.

The number of measurements used for each test case is equal to that required to ensure a first-

order reflection for each boundary is captured. In practice any number of SRIRs can be used,

for different source and receiver positions, but fewer is more computationally efficient, as fewer

SRIR need to be analysed, resulting in fewer candidate image-sources, and consequently fewer

boundaries that need to be validated. The SRIRs being analysed are truncated to 1500 samples

for the first two cuboid- and the octagonal-shaped rooms in Scenario One, 2000 samples for the

L- and T-shaped rooms in Scenario One and all cases in Scenario Two, and 3000 for the third

cuboid-shaped room in Scenario One and all sets in Scenario Three. The truncation lengths are

chosen to allow candidate reflection up to fourth-order [161] to be detected, which from [18, 36],

is defined as,

Tro =
4V

cS
(ro + 1) (7.27)
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Figure 7.12: Geometry for Scenario One L-Shaped Room. Square marker denotes the
receiver position and the circle markers denote the source positions.

where Tro is the estimtaed arrival time of the first arriving fourth-order reflection, V is the

volume of the room, S is the surface area of the room, c is the speed of sound, and ro is the

reflection order (in this case four). The resulting values is then rounded up to the nearest multiple

of 500. For all scenarios every detection made by the EDESAR reflection detection method is

used, and no candidate detections have been manually removed.

The threshold values, εs̃, εo, εl, ε∠, εñ, εpar, and εpoint, discussed in Section 7.3 have been

derived empirically through examination of results obtained for the different Scenarios used for

testing, and chosen so all first-order reflections are assigned to the correct boundaries, while

reducing the number of inaccurately inferred boundaries due to false-positive detections, the

same values for these are used across all test cases. These are shown in Table 7.3.

To present the accuracy of the proposed method, four error metrics are used to analyse resulting

inferred boundaries:

• ∆Position - the RMS of the distance between desired and inferred boundaries [6, 8, 9]

measured at 10 cm intervals along the length of the target boundary at z = 0.
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Figure 7.13: Geometry for Scenario One T-Shaped Room. Square marker denotes the
receiver position and the circle markers denote the source positions.

• Dihedral Angle [9, 117] - the angle between desired and inferred boundaries, if there is

more than one inferred boundary then the average and weighted average (weighted based

on the length of each boundary compared to the summed length of the inferred boundaries)

is taken over the inferred boundaries .

• ∆Length [6] - the difference in length between desired and inferred boundary.

• δLength - the relative error of the inferred boundary’s length to that of the desired bound-

ary, computed as, ∆Length
desired length ∗ 100

7.5 Results

As in Chapter 6, the following steps have been performed on the SRIRs prior to inferring bound-

ary locations. Firstly, the SRIRs are temporally adjusted to ensure that the ToA of the direct

sound is the same as would be expected given the speed of sound and source-to-receiver dis-

tance, removing latency introduced by the measurement or simulation system. The estimated

azimuth θ DoA for each reflection is then shifted by the difference between the estimated and

expected DoA for the direct sound, ensuring that θ = 0◦ is aligned with the positive going x-
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Figure 7.14: First source/receiver positions for Scenario One Third Cuboid-Shaped
Room. Square marker denotes the receiver position and the circle markers denote the
source positions.

axis. As discussed in Chapter 6 the steered response power map version of the EDESAR method

is used to analyse the reflections in the simulated SRIR and the MVDR beamformer version is

used for the real-world measurements.

7.5.1 Preliminary Testing: Ground-Truth

From the results in Table 7.4, it can be seen that when the geometry inference method is pre-

sented with ground truth values of ToA and DoA, it produces an exact estimate of the room’s

geometry – even when using all reflections within the first 32.01 ms (311 reflections in total).

This result would suggest that any errors within the estimated geometry are more likely as a

consequence of inaccuracies within the reflection detection and evaluation step. Furthermore, it

would be expected that errors as a result of time- and direction-of-arrival estimation inaccuracies

will vary as a result of where these inferred boundaries intersect with neighbouring boundaries.

The resulting inferred geometry when using all reflections can be seen in Figure 7.21.

In Table 7.5, the results for exact DoA and ToA with normally distributed randomised error is
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Figure 7.15: Second source/receiver positions for Scenario One Third Cuboid-Shaped
Room. Square marker denotes the receiver position and the circle markers denote the
source positions.

presented. Errors in ToA estimation will result in an under or overestimation of the distance

between the receiver and the estimated image-source location. This consequently will result in

a boundary parallel to the desired boundary being inferred, leading to increased ∆Position and

∆Length errors. From the results presented in Table 7.5 and Figure 7.22, it can be seen that as

ToA error increases so too does the positional error of the boundary. It can be seen that the result-

ing estimation error does not linearly increase as ToA error increases. This is as a consequence of

using all reflections, irrelevant of reflection order, to estimate the shape of the room, resulting in

multiple boundaries being inferred for a given boundary, and, as a consequence of the geometry

validation process, generally only the closest boundary to the receiver being used. Furthermore,

when a larger ToA error is observed for higher-order reflections the proposed method typically

defines the previous-source position as being the source, which results in an inferred boundary

positioned outside of the desired geometry and is generally invalidated during the boundary val-

idation process. However, when this is not the case, typically as a result of a reflection between

perpendicular boundaries, an increased Dihedral Angle or larger ∆Length is observed due to

angled boundaries inferred at the corners of the room, such as with ±362.81 µs, ±408.16 µs,

193



Figure 7.16: Geometry for Scenario Two L-Shaped Room One, image shows the 14
different source positions (Circle marker) and the receiver position (Square Marker)
used when testing the proposed geometry inference method.

Figure 7.17: Geometry for Scenario Two L-Shaped Room Two, image shows the 15
different source (Circle marker) positions and the receiver (Square Marker) location
used when testing the proposed geometry inference method.

±430.84 µs, and ±476.19 µs. The best case, and cases with the worst ∆Position, Dihedral

Angle, and ∆Length, can be seen in Figure 7.23.
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Measurement Set Source Positions 1 Source Position 2

1 1 9
2 1 8
3 2 12
4 2 13
5 3 9
6 3 10
7 3 11
8 3 8
9 4 9
10 4 10
11 4 11
12 4 12
13 4 13
14 4 14
15 4 8
16 5 9
17 5 11
18 5 12
19 5 13
20 5 14
21 5 8
22 6 9
23 6 10
24 6 11
25 6 12
26 6 13
27 6 14
28 6 8
29 7 10
30 7 11
31 7 12
32 7 13
33 7 8

Table 7.1: Combinations of source positions used for each measurement set used in
Scenario Two, L-Shaped Room One.

In Table 7.6, the results for exact ToA and elevation DoA, and azimuth DoA with normally

distributed randomised errors can be seen. Any errors in azimuth DoA will result in a horizontal

rotation of the inferred image-source’s position around the receiver. In this case, the inferred

boundary will be horizontally angled when compared to the desired boundary, resulting in a

∆Position, Dihedral Angle, and ∆Length error. As with the ToA error, the severity of the room

estimation error introduced as a result of under or overestimation of azimuth DoA ultimately

depends on how all inferred boundaries intersect. From the results in Table 7.6 and Figure 7.24,

it can be seen that, as with the ToA tests, there is not a linear relationship between azimuth

DoA error and the proposed error metrics, again as a consequence of using all reflections for
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Measurement Set Source Positions 1 Source Position 2

1 1 10
2 1 13
3 2 10
4 2 13
5 4 10
6 4 13
7 5 13
8 5 15
9 6 13
10 7 15
11 7 13
12 7 15
13 5 12
14 6 12
15 7 12
16 1 11
17 1 14
18 2 9
19 2 11
20 2 14
21 4 8
22 4 9
23 4 11
24 5 11
25 5 14
26 6 9
27 6 11
28 6 14
29 7 9
30 7 11
31 7 14
32 3 9
33 3 11

Table 7.2: Combinations of source positions used for each measurement set used in
Scenario Two L-Shaped Room Two.

which a previous-source has been found. This is particularly noticable for the ±9◦ angular

error case, where a more accurate estimate of the room’s geometry, and consequently lower

∆Position, Dihedral Angle, and ∆Length, is observed compared to cases with lower angular

errors, such as the ±8◦, 6◦, 5◦, 2◦, and 1◦. In addition to this, it is important to note that

the cases where larger errors in ∆Length are observed, typically are as a result of multiple

boundaries being inferred for a given desired boundary. The best case and cases with the worst

∆Position, Dihedral Angle, and ∆Length can be seen in Figure 7.25. For the case of the largest

error in ∆Position and Dihedral Angle, while the correct boundaries have been inferred, six

boundaries have been inferred at the corners between boundaries one and four, four between
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Figure 7.18: Geometry for the Scenario Three cuboid-shaped, room measurement set
one. Square marker denotes the receiver position and the circle markers denote the
source positions.

Threshold Value

εs̃ 30 cm
εo 15 cm
εl 10 cm
ε∠ 0.05
εñ 0.05
εpar 0.1
εpoint 0.1

Table 7.3: The empirically defined values of εs̃, εo, εl, ε∠, εñ, εpar, and εpoint, used
when testing the proposed geometry inference method. These are defined to reduce the
number of inaccurately inferred boundaries while ensured all first-order reflections are
assigned to the correct boundaries.

Test Case ∆Position
Weighted
Dihedral

angle
∆Length

First-Order 0.00 cm 0.00◦ 0.00 cm
All Reflections 0.00 cm 0.00◦ 0.00 cm

Table 7.4: Analysis of geometry inference method when presented with exact time- and
direction-of-arrival values for 311 reflections. Results presented as the RMS ∆Position,
weighted dihedral angle, and ∆Length.
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Figure 7.19: Geometry for the Scenario Three cuboid-shaped, room measurement set
two. Square marker denotes the receiver position and the circle markers denote the
source positions.

four and three, and three between three and two, as a result of being unable to find the correct

previous source for higher-order reflections. These erroneously inferred corner boundaries have

consequently resulted in inaccurate estimation of the boundaries location as a result of defining

the room’s shape based on intersections between the available boundaries.

In Table 7.7, the results for exact ToA and azimuth DoA, and elevation DoA with normally dis-

tributed randomised errors can be seen. Any errors in elevation will result in a vertical rotation

of a given image-source around the receiver. The consequence of this being that any inferred

boundaries will be vertically angled, and potentially invalidated by the image-reversion process.

Therefore, elevation errors can potentially result in boundaries produced by first-order reflec-

tions being ignored as a result of the assumption that all walls are perpendicular to the floor and

ceiling. It would, therefore, be expected that larger errors in the ∆Position and Dihedral Angle

will be observed when an elevation error has resulted in the first-order reflection for a given

boundary across all measurement positions being ignored. From the results in Table 7.7 and

Figure 7.26, it can be seen that the estimation error of the geometry inference method is gener-

ally lower than that observed for azimuth DoA errors. The two cases when a ∆Position error
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Figure 7.20: Image of the room setup for Scenario Three, showing the Genelec 8030 and
EigenMike. As can be seen there is curtain coverage across the right wall which occludes
the windows, and curtains positioned in the corners of the room hiding large electrical
outlets. On the ceiling there are light fixtures, railing, extractor fans, and a series of
large rectangular pipes.

Figure 7.21: Inferred geometry (dashed red line) and desired geometry (solid line) for
Ground-Truth test.

greater than 10 cm is observed, ∆φ = 7◦ and 8◦, correspond to cases when an elevation error

of ∆φ ≥ ±5◦ is observed for a boundary’s first-order reflections in both measurement positions

(see Table 7.8), and a higher-order reflection between perpendicular boundaries is not accurately
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ToA Error ∆Position
Weighted
Dihedral

angle
∆Length

±0 µs 0.00 cm 0.00◦ 0.00 cm
±22.68 µs 0.00 cm 0.00◦ 0.00 cm
±45.35 µs 0.58 cm 0.00◦ 1.41 cm
±68.03 µs 0.91 cm 0.00◦ 1.58 cm
±90.70 µs 1.41 cm 0.00◦ 3.16 cm
±113.38 µs 1.53 cm 0.00◦ 3.00 cm
±136.05 µs 1.78 cm 0.00◦ 4.30 cm
±158.73 µs 1.58 cm 0.00◦ 3.54 cm
±181.41 µs 2.12 cm 0.00◦ 5.15 cm
±204.08 µs 0.75 cm 0.40◦ 3.21 cm
±226.76 µs 1.35 cm 0.00◦ 2.55 cm
±249.43 µs 1.00 cm 0.00◦ 2.24 cm
±272.11 µs 2.89 cm 0.00◦ 6.71 cm
±294.78 µs 2.61 cm 0.00◦ 6.04 cm
±317.46 µs 3.92 cm 0.00◦ 9.06 cm
±340.14 µs 5.00 cm 0.00◦ 10.78 cm
±362.81 µs 3.98 cm 3.27◦ 7.84 cm
±385.49 µs 3.19 cm 0.00◦ 5.52 cm
±408.16 µs 1.97 cm 0.24◦ 5.51 cm
±430.84 µs 5.52 cm 0.32◦ 12.34 cm
±453.51 µs 1.96 cm 0.00◦ 4.61 cm
±476.19 µs 4.20 cm 0.00◦ 358.56 cm

Table 7.5: Analysis of geometry inference method when presented with time- and
direction-of-arrival values for 311 reflections with randomly generated and normally dis-
tributed errors introduced to the time-of-arrival values. Results presented as the RMS
∆Position, weighted dihedral angle, and ∆Length.

assigned a previous-source. However, in the case of ∆φ = 6◦, while both first-order reflections

for boundary two are ignored, a second-order reflection between perpendicular boundaries re-

sults in the boundary being more accurately inferred. As with the azimuth DoA error, cases with

larger ∆Lengths (±5◦,±7◦−−10◦) correspond to cases when the proposed geometry inference

method has inferred additional boundaries outside of the desired room’s geometry for a given

boundary. These results would suggest that the method is more robust to elevation estimation

inaccuracies than azimuth, as long as ∆φ < ±5◦ for at least one of a given boundary’s first-order

reflections. The best case, and cases with the worst ∆Position, Dihedral Angle, and ∆Length,

can be seen in Figure 7.27.

In Table 7.9 and Figure 7.28, analysis of the proposed geometry inference method and reflection

detection method is presented for decreasing SNR (increases in the level of inteferring noise).

In this scenario, the geometry inference process is performed using reflections detected within

the simulated SRIR. These results show that comparable accuracy is achieved for ∆Position
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Figure 7.22: Comparison of the ∆Position, Weighted Dihedral Angle, and ∆Length
compared to the magnitude of the introduced time-of-arrival errors.

Azimuth
DoA
Error

∆θ

∆Position
Weighted
Dihedral

angle
∆Length

±0 0.00 cm 0.00◦ 0.00 cm
±1 29.27 cm 6.83◦ 920.05 cm
±2 11.05 cm 2.42◦ 6653.42 cm
±3 3.28 cm 2.39◦ 8.75 cm
±4 4.20 cm 1.89◦ 9.02 cm
±5 9.33 cm 3.65◦ 24.70 cm
±6 12.65 cm 4.63◦ 34.26 cm
±7 8.15 cm 5.20◦ 51.24 cm
±8 54.76 cm 26.16◦ 96.05 cm
±9 5.80 cm 3.50◦ 19.98 cm
±10 26.01 cm 11.11◦ 98.50 cm

Table 7.6: Analysis of geometry inference method when presented with time- and
direction-of-arrival values for 311 reflections with randomly generated and normally dis-
tributed errors introduced to the azimuth direction-of-arrival values. Results presented
as the RMS ∆Position, weighted dihedral angle, and ∆Length.

and Dihedral Angle while SNR is greater than or equal to 20 dB. For these cases a maximum

differece of 0.88 cm is observed for ∆Position and a maximum difference of 1.04◦ for Dihedral

Angle. Furthermore, except for the 30 dB and 25 dB cases, a comparable ∆Length is observed,

in both outlier cases an additional boundary has been inferred for Boundary two, which ex-

ceeds the desired boundary length. Once the SNR drops below 20 dB, the proposed reflection

detection method produces false-positive detections within the noise floor of the SRIR. These
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Figure 7.23: Inferred geometry (dashed red line) and desired geometry (solid line) for
Ground-Truth test with randomly generated and normally distributed errors added to
the ToA values. The best case is 0 µs, largest ∆Position error is 430.84 µs, largest
Dihedral Angle error is 362.81 µs, and largest ∆ length is 476.19 µs.

false-positive detections result in an underestimation of the floor locations by 21 cm for all cases

when SNR ≤ 15 dB, Boundary three is incorrectly inferred for SNRs of 15, 5, and 0 dB, and

Boundaries two and four are incorrectly inferred for the case when SNR was 10 dB. In practice,

as the SNR decreases below 20 dB, and consequently the number of false-positive detections in-

creases, the proposed geometry inference method is more likely to produce erroneous estimates

of the room’s geometry. However, the severity of this error depends on the location of any in-

ferred boundaries produced by false-positive detections, and how they intersect with neighboring

boundaries. The best case, and cases with the worst ∆Position, Dihedral Angle, and ∆Length,

can be seen in Figure 7.29.

When analysing the accuracy of the reflection detection process, the DoA for all first-order

reflections are estimated to within 2◦ of the expected value up to a SNR of 10dB, and except

for the ceiling, the ToA error is less than one sample, and therefore, is more likely a product of
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Figure 7.24: Comparison of the ∆Position, Weighted Dihedral Angle, and ∆Length
compared to the magnitude of the introduced azimuth direction-of-arrival errors.

Figure 7.25: Inferred geometry (dashed red line) and desired geometry (solid line) for
Ground-Truth test with randomly generated and normally distributed errors added to
the Azimuth DoA values. The best case is 0◦, the case with the largest ∆Position error
and Dihedral Angle error is 8◦, and the case with the largest ∆ length is 2◦.
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Elevation
DoA
Error

∆φ

∆Position
Weighted
Dihedral

angle
∆Length

±0 0.00 cm 0.00◦ 0.00 cm
±1 1.38 cm 0.28◦ 3.20 cm
±2 2.74 cm 0.23◦ 4.24 cm
±3 8.39 cm 0.86◦ 18.87 cm
±4 5.48 cm 0.00◦ 9.49 cm
±5 2.06 cm 1.97◦ 392.07 cm
±6 2.89 cm 0.00◦ 5.00 cm
±7 34.25 cm 14.12◦ 33.23 cm
±8 48.33 cm 14.71◦ 60.79 cm
±9 5.31 cm 0.04◦ 125.36 cm
±10 0.91 cm 0.12◦ 815.03 cm

Table 7.7: Analysis of geometry inference method when presented with time- and
direction-of-arrival values for 311 reflections with randomly generated and normally dis-
tributed errors introduced to the elevation direction-of-arrival values. Results presented
as the RMS ∆Position, weighted dihedral angle, and ∆Length.

Figure 7.26: Comparison of the ∆Position, Weighted Dihedral Angle, and ∆Length
compared to the magnitude of the introduced elevation direction-of-arrival errors.

the discrete sampling of a continuous-time signal. Furthermore, it is important to note that the

larger ToA and DoA estimates are generally observed when analysing simultaneously arriving

reflections and as reflection density increases.

7.5.2 Test Case One

The result for the first cuboid room, as presented in Figure 7.30 and Table 7.10, show that the the

general shape of the room has been inferred, with all but the ceiling having a boundary ∆Position

204



Figure 7.27: Inferred geometry (dashed red line) and desired geometry (solid line) for
Ground-Truth test with randomly generated and normally distributed errors added to
the Elevation DoA values. The best case is 0◦, the case with the largest ∆Position error
and Dihedral Angle error is 8◦, and the case with the largest ∆ length is 5◦.

One Two Three Four Ceiling Floor

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

±1◦ 0.75◦ 0.03◦ 0.20◦ 0.52◦ 0.17◦ 0.02◦ 0.81◦ 0.02◦ 0.52◦ 0.17◦ 0.90◦ 0.89◦

±2◦ 1.09◦ 0.96◦ 0.99◦ 0.77◦ 0.04◦ 1.63◦ 0.29◦ 1.31◦ 0.73◦ 0.04◦ 1.09◦ 1.82◦

±3◦ 2.99◦ 1.64◦ 1.10◦ 1.49◦ 1.18◦ 2.30◦ 1.52◦ 0.12◦ 2.59◦ 1.18◦ 2.43◦ 2.61◦

±4◦ 3.41◦ 1.72◦ 2.60◦ 2.91◦ 0.39◦ 2.05◦ 2.63◦ 1.64◦ 3.60◦ 0.39◦ 3.92◦ 3.27◦

±5◦ 2.82◦ 2.95◦ 2.62◦ 4.21◦ 2.98◦ 3.23◦ 1.88◦ 2.51◦ 0.84◦ 2.98◦ 3.73◦ 4.11◦

±6◦ 0.51◦ 5.86◦ 5.59◦ 5.75◦ 2.51◦ 0.89◦ 3.35◦ 4.59◦ 2.11◦ 2.51◦ 4.55◦ 1.27◦

±7◦ 5.00◦ 5.10◦ 1.53◦ 2.35◦ 4.99◦ 1.11◦ 2.14◦ 6.21◦ 4.24◦ 4.99◦ 3.74◦ 2.21◦

±8◦ 4.66◦ 2.60◦ 6.54◦ 3.14◦ 6.41◦ 3.00◦ 6.34◦ 6.45◦ 4.51◦ 6.41◦ 1.91◦ 4.78◦

±9◦ 8.17◦ 4.53◦ 7.38◦ 0.73◦ 5.72◦ 1.59◦ 4.19◦ 8.50◦ 5.07◦ 5.72◦ 4.98◦ 3.20◦

±10◦ 1.82◦ 0.56◦ 9.32◦ 8.64◦ 9.04◦ 1.18◦ 0.83◦ 5.81◦ 5.63◦ 9.04◦ 2.75◦ 6.62◦

Table 7.8: Absolute value of elevation direction-of-arrival error introduced to the first-
order reflections from each boundary for each source (S1 and S2). Values in red indicate
a first-order reflection that is ignored and the boundary is not inferred correctly, and
the values in blue indicate a first-order reflection that is ignored, but the boundary is
defined using a higher-order reflection.
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SNR ∆Position
Weighted
Dihedral

angle
∆Length ∆ToA ∆θ ∆φ False

∞ 3.79 cm 0.96◦ 9.57 cm 171.13 µs 32.01◦ 25.45◦ 1
60 dB 3.79 cm 0.96◦ 9.57 cm 156.26 µs 37.17◦ 26.48◦ 1
55 dB 3.79 cm 0.96◦ 9.57 cm 156.26 µs 37.17◦ 26.48◦ 1
50 dB 3.79 cm 0.96◦ 9.57 cm 156.26 µs 37.17◦ 26.48◦ 1
45 dB 3.79 cm 0.96◦ 9.57 cm 156.26 µs 37.17◦ 26.49◦ 1
40 dB 3.46 cm 1.01◦ 7.82 cm 156.26 µs 37.19◦ 26.49◦ 1
35 dB 3.46 cm 1.01◦ 7.82 cm 157.16 µs 35.72◦ 26.71◦ 1
30 dB 3.90 cm 1.44◦ 99.91 cm 151.49 µs 33.22◦ 25.76◦ 1
25 dB 4.18 cm 1.97◦ 100.02 cm 151.36 µs 34.47◦ 26.85◦ 2
20 dB 4.34 cm 2.00◦ 11.05 cm 155.11 µs 29.24◦ 24.30◦ 1
15 dB 118.28 cm 25.84◦ 1149.79 cm 174.85 µs 41.26◦ 27.29◦ 17
10 dB 114.43 cm 6.86◦ 3386.19 cm 198.52 µs 49.41◦ 30.58◦ 30
5 dB 118.27 cm 24.58◦ 969.02 cm 204.73 µs 44.00◦ 26.96◦ 28
0 dB 50.61 cm 24.07◦ 637.80 cm 222.79 µs 46.49◦ 26.52◦ 26

Table 7.9: Analysis of geometry inference method when presented with the ground-
truth SRIR with noise added as SNR of no noise and 60 dB to 0 dB in 5 dB steps.
Results presented as the RMS ∆Position, weighted dihedral angle, ∆Length, the RMS
time-of-arrival error across all detections ∆ToA, RMS azimuth direction-of-arrival error
across all detections (∆θ), RMS elevation direction-of-arrival error across all detections
(∆φ), and number false-positives (False).

Figure 7.28: Comparison of the ∆Position, Weighted Dihedral Angle, and ∆Length over
different signal-to-noise ratios.

≤ 2 cm. The higher ∆Position for the ceiling is likely as a result of underestimation of the

ToA for the corresponding reflection (1.4 ms and 0.57 ms for source one and two respectively).

Furthermore, boundaries Two and Three have additional boundaries inferred on their corners

as a result of incorrectly assigned previous-source candidates for their second-order reflections.
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Figure 7.29: Inferred geometry (dashed red line) and desired geometry (solid line) for
SNR tests. The best case is 60 dB, the case with the largest ∆Position error and Dihedral
Angle error is 15 dB, and the case with the largest ∆ length is 10 dB.

This results in a slightly larger dihedral angle for these boundaries, and impacts the ∆Length

error for surrounding boundaries. However, the weighted dihedral angles are still close to that

of the other inferred boundaries.

Boundary ∆Position Dihedral Angle
Weighted
Dihedral

Angle
∆Length δLength

One 1.18 cm 0.57◦ 0.57◦ 0.02 cm 0.00%
Two 0.00 cm 22.50◦ 0.95◦ 1.49 cm 0.37%

Three 1.52 cm 13.58◦ 0.90◦ 11.51 cm 2.88%
Four 0.90 cm 7.63◦ 0.87◦ 1.80 cm 0.45%
Floor 2.00 cm N/A N/A N/A N/A

Ceiling 8 cm N/A N/A N/A N/A
Mean 2.27 cm 19.00◦ 0.82◦ 3.71 cm N/A

Table 7.10: Results for Scenario One: Cuboid Room One, presenting the four error
metrics: difference in position (∆Position), dihedral angle, weighted dihedral angle,
difference in boundary length (∆length), and relative error of the inferred boundaries
length (δLength).

The results for the larger second cuboid room, as presented in Figure 7.31 and Table 7.11, again
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Figure 7.30: Inferred geometry (dashed red line) and desired geometry (solid line) for
Scenario One - Cuboid One.

show that the general shape of the room has been inferred. However, there is a marginally larger

boundary positional error for the walls when compared to the smaller cuboid room, with a max-

imum difference of 6.00 cm. As with the smaller cuboid room, there are additional, angled,

inferred boundaries in the corners of the room, in this case at the point of intersection between

boundaries Three and Four, producing a slightly larger dihedral angle for Boundary Four. How-

ever, the weighted dihedral angles are still close to that of the other inferred boundaries.

As with the previous two cases the general shape of the Octagonal Prism has been inferred, as

presented in Figure 7.32 and Table 7.12, with a maximum ∆Position of only 4.88 cm. In this

example both boundaries Five and Seven are slightly angled, with a dihedral angle of 3.98◦ and

3.43◦ respectively, and this is as a result of a DoA estimation error of 3.92◦ and 3.65◦ for the

first-order reflections from boundary Five and Seven. The consequence of this being that the

length of boundary Six has been underestimated with a ∆Length error of 22.59 cm.

In Figure 7.33 and Table 7.13 the results for the first non-convex example, the L-shaped Room,

can be seen. These again show that the shape of the room has been correctly inferred, however,

there is an increase in the boundary positional error with a maximum error of 7.62 cm, although

208



Figure 7.31: Inferred geometry (dashed red line) and desired geometry (solid line) for
Scenario One - Cuboid Two.

Boundary ∆Position Dihedral Angle
Weighted
Dihedral

Angle
∆Length δLength

One 1.73 cm 0.57◦ 0.57◦ 0.97 cm 0.16%
Two 3.63 cm 1.15◦ 1.15◦ 2.88 cm 0.48%

Three 6.00 cm 0.00◦ 0.00◦ 9.00 cm 1.50%
Four 5.26 cm 17.14◦ 0.79◦ 8.36 cm 1.39%
Floor 2.00 cm N/A N/A N/A N/A

Ceiling 2.00 cm N/A N/A N/A N/A
Mean 3.44 cm 4.72◦ 0.63◦ 5.30 cm N/A

Table 7.11: Results for Scenario One: Cuboid Room Two, presenting the four error
metrics: difference in position (∆Position), dihedral angle, weighted dihedral angle,
difference in boundary length (∆length), and relative error of the inferred boundaries
length (δLength).

the overall performance is still comparable. As with the two cuboid rooms, the L-shaped Room

has additional, angled, inferred boundaries at the corners, in this case at the points of inter-

section between boundaries One and Six and boundaries Five and Six. This produces a larger

averaged dihedral angle for boundaries One and Five, and as a result boundary Six has a larger

∆Length error. However, the weighted dihedral angles are still close to that of the other inferred

boundaries.

The T-shaped Room has the largest error values observed for the examples in Scenario One,

as seen Figure 7.34 and Table 7.14, with a maximum boundary position error of 31.02 cm.
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Figure 7.32: Inferred geometry (dashed red line) and desired geometry (solid line) for
Scenario One - Octagonal Room.

Boundary ∆Position Dihedral Angle
Weighted
Dihedral

Angle
∆Length δLength

One 1.15 cm 0.57◦ 0.57◦ 1.01 cm 0.50%
Two 1.08 cm 0.29◦ 0.29◦ 0.71 cm 0.50%

Three 0.61 cm 0.57◦ 0.57◦ 0.01 cm 0%
Four 1.41 cm 1.34◦ 1.34◦ 9.23 cm 6.53%
Five 4.88 cm 3.98◦ 3.98◦ 1.49 cm 0.74%
Six 1.11 cm 1.36◦ 1.36◦ 22.59 cm 15.98%

Seven 3.65 cm 3.43◦ 3.43◦ 0.36 cm 0.18%
Eight 0.39 cm 0.55◦ 0.55◦ 7.08 cm 5.00%
Floor 1.00 cm N/A N/A N/A N/A

Ceiling 1.00 cm N/A N/A N/A N/A
Mean 1.63 cm 1.51◦ 1.51◦ 5.31 cm N/A

Table 7.12: Results for Scenario One: Octagonal Room presenting the four error met-
rics: difference in position (∆Position), dihedral angle, weighted dihedral angle, differ-
ence in boundary length (∆length), and relative error of the inferred boundaries length
(δLength).

The shape of the room has been inferred to some extent, however, only four boundaries have a

∆position under 10 cm and the larger dihedral angles, in this case, are a result of the inferred

boundaries produced by first-order reflections being angled. This could be due to either the

complexity of the room being considered or the requirement for more measurement positions

to ensure all first-order reflections are captured, increasing the chance of erroneous boundaries
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Figure 7.33: Inferred geometry (dashed red line) and desired geometry (solid line) for
Scenario One - L-Shaped Room.

Boundary ∆Position Dihedral Angle
Weighted
Dihedral

Angle
∆Length δLength

One 2.27 cm 23.78◦ 2.46◦ 7.54 cm 1.51%
Two 3.80 cm 1.13◦ 1.13◦ 5.08 cm 1.27%

Three 3.52 cm 1.12◦ 1.12◦ 11.10 cm 2.22%
Four 3.07 cm 0.58◦ 0.58◦ 14.95 cm 1.49%
Five 7.62 cm 24.72◦ 3.51◦ 15.41 cm 1.54%
Six 0.00 cm 0.00◦ 0.00◦ 58.00 cm 9.67%

Floor 1.00 cm N/A N/A N/A N/A
Ceiling 0.00 cm N/A N/A N/A N/A
Mean 2.66 cm 8.56◦ 1.47◦ 18.68 cm N/A

Table 7.13: Results for Scenario One: L-Shaped Room presenting the four error met-
rics: difference in position (∆Position), dihedral angle, weighted dihedral angle, differ-
ence in boundary length (∆length), and relative error of the inferred boundaries length
(δLength).

being estimated. Furthermore, it is possible that these angled boundaries could be as a result

of interactions between near-simultaneously arriving reflections, resulting in a less accurate es-

timate of DoA for these reflections, as seen for the simultaneously arriving reflections from

boundaries two and four – where a DoA estimation error of 8◦ for each reflection was observed.

This observation agrees with similar findings when analysing the ground-truth SRIRs, where

typically larger errors in DoA estimation are observed when analysing simultaneously arriving

reflections.
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Figure 7.34: Inferred geometry (dashed red line) and desired geometry (solid line) for
Scenario One - T-Shaped Room.

Boundary ∆Position Dihedral Angle
Weighted
Dihedral

Angle
∆Length δLength

One 17.97 cm 6.40◦ 6.40◦ 7.07 cm 2.17%
Two 10.56 cm 7.41◦ 7.41◦ 2.77 cm 1.85%

Three 0.00 cm 0.00◦ 0.00◦ 36 cm 24.00%
Four 10.56 cm 7.41◦ 7.41◦ 2.77 cm 1.85%
Five 17.07 cm 6.32◦ 6.32◦ 7.07 cm 2.17%
Six 16.75 cm 10.05◦ 6.45◦ 43.16 cm 10.79%

Seven 1.26 cm 12.66◦ 2.76◦ 89.09 cm 11.14%
Eight 31.02 cm 8.04◦ 8.04◦ 56.63 cm 14.16%
Floor 0.00 cm N/A N/A N/A N/A

Ceiling 3.00 cm N/A N/A N/A N/A
Mean 10.81 cm 7.29◦ 5.60◦ 30.57 cm N/A

Table 7.14: Results for Scenario One: T-Shaped Room presenting the four error met-
rics: difference in position (∆Position), dihedral angle, weighted dihedral angle, differ-
ence in boundary length (∆length), and relative error of the inferred boundaries length
(δLength).

For the final two experiments for the third cuboid-shaped room, it is important to note that the

recessed windows will not be detected, as they are only recessed by 48 cm from the wall. This is

less than the minimum source-to-receiver distance, which means that a source and receiver pair

cannot be suitably positioned such that a first-order reflection from the boundaries connected
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to the windows can be detected. The consequence of this being that the first-order reflection

for that boundary could originate from either the wall or the window, and as such the inferred

boundary location will depend upon which of these reflections arrive at the receiver. In this test

the wall will be considered as being the ground truth for the boundary, as it occupies the largest

portion of Boundary One.

In Figure 7.35 and Table 7.15 the results for the first measurement set for the Third Cuboid

Room can be seen. The results show that the main boundaries of the room have been correctly

estimated with a maximum ∆Position of 4 cm, and with boundary One being inferred at the wall,

as opposed to at the window. As expected the recessed windows have not been individually

inferred, and this result shows that for this example these additional features have not had a

negative impact on the accuracy of the geometry inference method.

Figure 7.35: Inferred geometry (dashed red line) and desired geometry (solid line) for
Scenario One Cuboid Room Three, measurement set one.

Boundary ∆Position Dihedral Angle
Weighted
Dihedral

Angle
∆Length δLength

One 0.83 cm 0.19◦ 0.04◦ 1.00 cm 0.07%
Two 0.00 cm 0◦ 0◦ 2.00 cm 0.21%

Three 1.00 cm 0◦ 0◦ 1.00 cm 0.07%
Four 1.00 cm 0◦ 0◦ 1.00 cm 0.11%
Floor 1.00 cm N/A N/A N/A N/A

Ceiling 4.00 cm N/A N/A N/A N/A
Mean 1.31 cm 0.05◦ 0.01◦ 1.25 cm N/A

Table 7.15: Results for Scenario One Cuboid Room Three, measurement set one,
presenting the four error metrics: difference in position (∆Position), dihedral angle,
weighted dihedral angle, difference in boundary length (∆length), and relative error of
the inferred boundaries length (δLength).
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The results for measurement set two are presented in Figure 7.36 and Table 7.16, and show

an increase in the error values for boundary Three, as a result of an additional angled boundary

being inferred at the intersection point between boundaries Three and Four. In this case boundary

One has been inferred at the window location which results in a 37 cm ∆Position error, if the

window position is assumed to be the correct boundary location there is a ∆Position error of

11 cm. With the exception of the angled boundary, it can be seen that the general geometry of

the room has been correctly estimated, and errors in the inferred lengths of the planes are as

a result of the additional angled boundary and the estimation of Boundary One at the window

location.

Figure 7.36: Inferred geometry (dashed red line) and desired geometry (solid line) for
Scenario One Cuboid Room Three, measurement set two.

Boundary ∆Position Dihedral Angle
Weighted
Dihedral

Angle
∆Length δLength

One 37.00 cm 0◦ 0◦ 9.00 cm 0.67%
Two 3.54 cm 0.75◦ 0.81◦ 36.14 cm 3.82%

Three 36.38 cm 9.31◦ 5.14◦ 15.52 cm 1.16%
Four 5.31 cm 0.60◦ 0.60◦ 82.95 cm 8.78%
Floor 2.00 cm N/A N/A N/A N/A

Ceiling 3.00 cm N/A N/A N/A N/A
Mean 14.53 cm 2.67◦ 1.64◦ 35.90 cm N/A

Table 7.16: Results for Scenario One Cuboid Room Three, measurement set two,
presenting the four error metrics: difference in position (∆Position), dihedral angle,
weighted dihedral angle, difference in boundary length (∆length), and relative error of
the inferred boundaries length (δLength).
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7.5.3 Test Case Two

As this scenario consists of two sets of 33 different measurement cases, the results are presented

as the average boundary estimation errors across the two L-shaped rooms. The boundary posi-

tional error data produced has a non-parametric distribution, and as such statistical analysis of

this data is performed using the non-parametric Kruskal-Wallis test which in MATLAB is the

function kruskalwallis [142], and reported as (χ2 = , p = , degrees of freedom = ). Furthermore,

the bootstrap process as defined in [162] is used to compute the 95% confidence interval for the

mean values using the MATLAB implementation bootstrapci [163].

In Table 7.17 the results for the two sets of 33 measurement cases can be seen. There is a

7.41 cm difference between the mean boundary positional error across the two L-shaped rooms,

with the second, larger, L-Shaped room having larger boundary positional errors. This increase

in boundary position error is as a consequence of 11 cases for the second L-shaped room having

an additional angled boundary being inferred, compared to five for the first. The first L-Shaped

room has a larger number of angled boundaries inferred in the corners of the room, which results

in a larger average dihedral angle and ∆Length. Furthermore, out of the 33 measurements for

the first L-shaped room, three cases have additional inferred boundaries located outside of the

inferred shape of the room, while only one case was observed for the second L-Shaped room,

and as these do not align with an expected boundary location they do not directly impact the

estimation errors for each boundary. These results highlight the variability in performance of the

method with respect to differences in the SRIR, most likely as a result of overlapping reflections

leading to less accurate estimates of DoA as was observed for the T-shaped room in scenario one.

The minimum and maximum mean error for the measurement sets in L-shaped Room One are

∆Position = [3.95 cm, 35.58 cm], Dihedral Angle = [2.24◦, 11.22◦], Weighted Dihedral Angle

= [0.79◦, 5.64◦], and ∆Length = [6.48 cm, 110.98 cm], and for the second L-Shaped Room,

∆Position = [4.22 cm, 32.81 cm], Dihedral Angle = [1.05◦, 10.30◦], Weighted Dihedral Angle

= [1.06◦, 4.21◦], and ∆Length = [8.40 cm, 85.95 cm]. Comparing the variance in measurement

accuracy between the two L-shaped rooms it can be seen that there is no significant difference

for the ∆Position (χ2 = 0.0005, p = 0.98, degrees of freedom = 395), weighted dihedral angle

(χ2 = 2.59, p = 0.11, degrees of freedom = 395), and ∆Length (χ2 = 0.35, p = 0.55, degrees

of freedom = 395). However, there is a significant difference for the averaged dihedral angle

(χ2 = 10.25, p = 0.0014, degrees of freedom = 395), as a result of the additional boundaries

inferred in the corners of the room for L-Shaped Room One. This suggests that while there

are differences in the mean values between these two examples, the variability in performance
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between the two sets are comparable. The best and worst case for these two L-Shaped room can

be seen in Figures 7.37–7.38.

L-Shaped
room

∆Position Dihedral Angle
Weighted
Dihedral

Angle
∆Length

One 11.52±0.09 cm 7.28◦±0.05◦ 2.53◦±0.01◦ 36.84±0.31 cm
Two 18.98±0.10 cm 3.69◦±0.03◦ 2.59◦±0.01◦ 5.63±0.36 cm

Table 7.17: Results for Scenario Two L-Shaped Rooms One and Two the results are
presented as the mean of the four error metrics: difference in position (∆Position),
dihedral angle, weighted dihedral angle, and difference in boundary length (∆length).

Figure 7.37: The best and worst cases for Scenario Two L-Shaped Room One. Inferred
geometry (dashed red line) and desired geometry (solid line).

Figure 7.38: The best and worst cases for Scenario Two L-Shaped Room Two. Inferred
geometry (dashed red line) and desired geometry (solid line).

7.5.4 Test Case Three

As can be seen in Figure 7.39 and the results in Table 7.18, the general shape of the room has

been inferred with small dihedral angle values between the original and inferred boundaries, and

only Boundary Two being inferred as two boundaries. However, there is a slight decrease in
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accuracy for the boundary position estimation, and therefore the lengths of surrounding bound-

aries, when compared to the simulated cuboid-shaped rooms from Scenario One. These inac-

curacies are likely due to either diffuse reflections, under- or over-estimation of the ToA for

reflections in the measured impulse responses, or any inaccuracy in the estimated DoA for the

reflections. These lead to incorrect estimation of the desired position for the image-source,

which affects both the positioning of the boundary it infers, and any subsequent boundaries that

are defined using this image-source. However, while there are larger positional errors for the

boundaries, the mean accuracy for this measurement set, 14.5 cm, is comparable to the worst

cases in Scenario One, which was 15.1 cm.

Figure 7.39: Inferred geometry (dashed red line) and desired geometry (solid line) for
Scenario Three, measurement set one.

Boundary ∆Position Dihedral Angle
Weighted
Dihedral

Angle
∆Length δLength

One 11.43 cm 0.54◦ 0.54◦ 18.65 cm 1.80%
Two 4.02 cm 2.28◦ 1.52◦ 34.63 cm 4.16%

Three 18.00 cm 0.00◦ 0.00◦ 1.40 cm 0.14%
Four 17.75 cm 0.60◦ 0.60◦ 24.05 cm 2.89%
Floor 13.00 cm N/A N/A N/A N/A

Ceiling 10.60 cm N/A N/A N/A N/A
Mean 12.47 cm 0.85◦ 0.66◦ 19.68 cm N/A

Table 7.18: Results for Scenario Three, measurement set one, presenting the four error
metrics: difference in position (∆Position), dihedral angle, weighted dihedral angle,
difference in boundary length (∆length), and relative error of the inferred boundaries
length (δLength).

Measurement set two highlights the problems of having non-ideal SRIR measurements. The
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first-order reflection for boundary Two in both SRIRs is not detected, as a result of the time-

frame they are present in having a diffuseness estimation greater than 30% (the threshold used

by the EDESAR method). The first-order reflection from boundary One has a 7◦ error in es-

timated elevation, producing a vertically angled plane that exceeds the defined threshold εñ.

Furthermore, the first-order reflection from the ceiling, while correctly detected, is not used to

define the ceiling location. This is as a result of a false-positive detection within the noise com-

ponent of the early part of the SRIR (see Figure 7.41), which has been inferred as a first-order

reflection from the ceiling, producing a significant underestimation of position of the ceiling

by 1.26 m. It is possible that this false-positive detection is as a result of noise produced by

the extractor fans present in the room, which were directly above the receiver position in this

measurement setup, as similar detections are present throughout the SRIRs.

Figure 7.40: Inferred geometry (dashed red line) and desired geometry (solid line) for
Scenario Three, measurement set two.

Boundary ∆Position Dihedral Angle
Weighted
Dihedral

Angle
∆Length δLength

One 430.84 cm 59.32◦ 59.32◦ 299.12 cm 28.93%
Two 467.57 cm 43.76◦ 43.76◦ 1419.25 cm 170.58%

Three 25.57 cm 2.86◦ 2.86◦ 950.47 cm 91.92%
Four 25.57 cm 6.85◦ 3.20◦ 67.11 cm 8.07%
Floor 4.00 cm N/A N/A N/A N/A

Ceiling 1256.00 cm N/A N/A N/A N/A
Mean 367.76 cm 28.19◦ 27.28◦ 683.99 cm N/A

Table 7.19: Results for Scenario Three, measurement set two, presenting the four error
metrics: difference in position (∆Position), dihedral angle, weighted dihedral angle,
difference in boundary length (∆length), and relative error of the inferred boundaries
length (δLength).
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Figure 7.41: Spatial Room Impulse Response One used for Scenario Three, measure-
ment set 2, where the red asterisks denote the detected reflection locations, and the red
circle denoted the detection that has resulted in a 1.26 m underestimation of the ceiling
position.

7.6 Discussion

Preliminary testing of the proposed method shows that when presented with ground-truth val-

ues of time- and direction-of-arrival for 311 reflections across two measurement positions for a

cuboid-shaped room, the proposed geometry inference method is capable of producing an ex-

act estimate of the room’s shape. This result suggests that errors in estimation accuracy of the

proposed method are more likely as a result of inaccuracies in the estimated time- and direction-

of-arrival values, missed reflections, and false-positive detections. The results showed that when

introducing normally distributed errors into the ToA an increase in the ∆Positional error was

observed. Therefore, it would be expected that if the ToA values were biased, the inferred

geometry would exhibit bias in boundary position. When considering errors in the DoA estima-

tion process, typically larger errors were observed across all metrics when azimuth DoA errors

existed, while elevation errors typically produced larger errors when a ∆φ ≥ 5◦ for a bound-

ary’s first-order reflection across all measurement positions were observed, which resulted in

the reflection being ignored by the proposed method. It is important to note that for one case

when an elevation error resulted in both first-order reflections for a boundary being rejected, a

more accurate estimate of the desired boundary’s location was produced as a result of a second-

order reflection. However, while this shows that it is possible to infer a boundary without a

first-order reflection, the proposed method will more reliably produce an accurate estimate of
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a boundary when first-order reflections are present. Finally, the results show that comparable

estimates of the geometry were achievable for SNRs greater than or equal to 20 dB. However,

for SNRs lower than 20 dB false-positive detections made by the EDESAR method within the

noise floor resulted in additional unwanted boundaries being inferred. These results detail the

importance of having accurate data and show the potential impact of erroneous estimates of ToA,

DoA, missed/rejected first-order reflections, and false positives. However, it is important to note

that in all cases the severity of these observed errors will depend on how the resulting inferred

boundaries intersect with their neighbouring boundaries.

These results show that with the exception of Scenario Three Measurement Set Two, all con-

vex rooms have mean boundary positional errors with a comparable level of accuracy to prior

work in [6–9], which presented distance errors of between 4–7 cm (image-source reversion) [6],

4.21–9.05 cm (direct localisation) [9], 1.7–22.0 cm (direct localisation) [8], 4.9–24.5 cm (image-

source reversion) [8], and 20.46 cm (image-source reversion) [7]. Comparing the accuracy of

the proposed method when analysing non-convex room to the performance of the current state-

of-the-art methods for convex rooms as presented in [7–9], shows that comparable accuracy is

achieved for the L-shaped room in Scenario One and 44 of the cases in Scenario Two. Further-

more, the T-shaped room from Scenario One and mean performance for the L-Shaped rooms

from Scenario Two are comparable to [7], and within 6.21 cm of the maximum average error

in [8]. This decrease in performance compared to the convex cases presented in this chapter

are likely as a result of the increased complexity of the room being inferred and consequently

the reflection density of the resulting SRIR. The proposed method achieved a comparable level

of accuracy to previous work, with a difference in mean positional error for a room of between

12.35–25.81 cm when comparing the maximum boundary positional error values to those pre-

sented in previous studies, using at most three measurement positions (48 spherical harmonic

domain channels), compared to the 6–78 (maximum of 1056 channels) used in these previous

studies.

From the results in Scenario Two it is evident that the performance of the proposed method varies

between different measurement set-ups within the same room. These differences are mainly as

a result of higher-order reflections that have not been assigned to their corresponding already

inferred boundaries, resulting in angled boundaries, generally in the corners of the room, that

impact the inferred shape. This suggests that future work on the proposed method should focus

on finding a more robust means of retracing reflection paths through existing inferred bound-

aries, ways of validating inferred boundaries, or ways of invalidating them. To validate a bound-
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ary additional constraints could be imposed, such as requiring a higher-order reflection to be

assignable to each boundary as in [109]. However, in the case of non-convex rooms this would

require the use of multiple receiver positions for each source to ensure that these higher-order re-

flections are detected. Conversely, different approaches to invalidating inferred boundary, other

than the geometry validation process suggested in Section 7.3.2, could be considered, such as

image-processing methods used for image analyses and segmentation, or manual deletion of any

remaining incorrect boundaries as they are generally obvious even without a priori knowledge

of the room’s shape.

7.7 Conclusions

The proposed method for geometry inference removes the need for using between 6–78 mea-

surement locations (up-to 1056 channels of audio) and the assumption of convexity for the mea-

surement environment as made in previous studies. The proposed method is therefore more

widely applicable in practice, where rooms come in different shapes, sizes, complexity, and it

is often impracticable to use such large numbers of measurement positions. This is achieved

by exploiting spatiotemporal information contained within SRIRs measured using a spherical

microphone array, to define the location of image-sources that are used to infer the location of

reflective boundaries. A geometry validation process is then performed to refine the number of

inferred boundaries to ideally only those that define the original enclosed space.

Preliminary results showed that when presented with exact data for 311 reflections across two

measurement positions, the proposed method produces an exact estimate of the room’s shape,

suggesting that estimation inaccuracies are more likely as a result of inaccuracies in the esti-

mated time- and direction-of-arrival. Additionally, these results showed that errors in the es-

timated geometry were as a result of inaccurate estimates of ToA, DoA, missed/rejected first-

order reflections, or false-positive detections. This shows that the accuracy of the method does

depend on how accurately the reflection data is extracted from the SRIRs, however, the severity

of these errors also depends upon how the resulting inferred boundaries intersect. The proposed

method was then tested across three scenarios using both simulated and measured data. Sce-

nario One tested the method’s performance across different room shapes with randomly defined

source and receiver positions which satisfied the requirement that a first-order refection should

be assignable to each boundary and detectable in at least one SRIR measurement. This showed

that the proposed method was able to infer the geometry for rooms of different shapes, sizes,

and complexity. The second scenario compared the variability in performance between two sets
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of 33 source/receiver combinations measured in two different L-shaped rooms. This evidences

the extent to which the method varied dependant on source/receiver position and different sized

rooms of the same shape. The final scenario considered two real-world measurements, one of

which did not contain all of the required first-order reflections. This showed the impact that

real-world conditions, such as noise and acoustic phenomena that cannot be modelled using ge-

ometric acoustic modelling methods as used in Scenarios One and Two, had on the geometry

inference accuracy. Furthermore, this scenario showed the consequence of not having a first-

order reflection attributable to each boundary. The results showed that, with the exception of

measurement set two in Scenario Three, all convex-shaped rooms were estimated with accu-

racy comparable to the methods presented in [6–9], which reported average distance errors of

4–7 cm (image-source reversion) [6], 4.21–9.05 cm (direct localisation) [9], 1.7–22.0 cm (di-

rect localisation) [8], 4.9–24.5 cm (image-source reversion) [8], and 20.46 cm [7] (image-source

reversion). For the case of the non-convex shaped rooms the results were comparable to the

image-source reversion techniques presented in [7, 8], with a difference in mean positional error

for a room of between 12.35–25.81 cm when comparing the maximum boundary positional error

values to those presented in previous studies. This shows that the proposed method is compara-

ble to the performance of the current-state-of-the-art methods, using, in these scenarios, at most

three measurement positions (48 spherical harmonic domain channels) compared to the 6–78

measurement positions (maximum of 1056 channels) used in these previous studies. The results

in Scenario Two highlighted how varied the performance of this method can be, with a 31.63 cm

difference between the best and worst performing measurement set. This result highlights the

areas future work should be focused, considering ways of optimising the retracing of reflections

through existing boundaries to better deal with higher-order reflections, approaches to validating

inferred boundaries, or means of invalidating incorrectly assigned ones.
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Chapter 8

Conclusions and Future Work

8.1 Thesis Summary

This thesis has presented novel approaches to direction-of-arrival estimation for reflections in

binaural room impulse responses, a spatiotemporal decomposition based method for reflection

detection, and a geometry inference method for both convex- and non-convex-shaped rooms. In

this section, a summary of this thesis and its contributions are presented.

In Chapter 2, the fundamentals of sound propagation, acoustic reflection, room impulse re-

sponses, the image-source method, neural networks, beamformers, and spherical harmonics

were introduced. Room impulse responses are the characteristic response of a room to an exci-

tation from an impulse-like broadband signal. These room impulse responses consist of a super-

position of the direct source-to-receiver sound and reflections, produced by interactions with the

boundaries and surfaces present in the space. Therefore, these room impulse responses convey

information about the acoustics of a given room and the locations of any reflective boundaries

and surfaces within the room. The theory introduced in this chapter underpinned the concepts

of work presented in subsequent chapters of this thesis.

Chapter 3 introduced the concept of time- and direction-of-arrival estimation for reflections

present in a room impulse response, and presented and reviewed current state-of-the-art meth-

ods. These reflection analysis stages are generally a prerequisite for geometry inference, as the

information extracted for each reflection is directly relatable to the boundaries present in the

measurement environment. Various approaches for estimating the time-of-arrival for reflections
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in impulse responses have been presented across the literature, and generally these methods are

capable of producing accurate estimates of time-of-arrival for discrete early reflections, but de-

grade in performance as reflection density, and consequently, number of overlapping reflections,

increases. Furthermore, as these methods are founded on a temporal decomposition of a room

impulse response, they cannot disambiguate between reflections arriving simultaneously from

different directions, and will detect them as a single arrival. It is therefore intuitive to consider

the spatiotemporal decomposition of spatial room impulse responses to enable detection of over-

lapping and simultaneously arriving reflections. This concept forms the basis by which the novel

reflection detection and analysis approach was developed in Chapter 6.

In Chapter 4, the concept of geometry inference was introduced, and a review of the current

state-of-the-art methods presented. Geometry inference focuses on the problem of estimating

the locations of reflective boundaries within an environment from reflections captured across

a number RIRs. There are two main approaches to this in the literature, image-source rever-

sion and direct localisation. Image-source reversion techniques exploit the properties of the

image-source method to infer the locations of boundaries from a set of candidate image-sources

defined by the time-of-arrival, or time- and direction-of-arrival, of reflections. Direct localisation

techniques use some mathematical approach to directly relate the time-of-arrival to a boundary,

using ellipses with axes defined by the time-of-arrival. Boundaries are then inferred by finding

a line that is tangential to a set of ellipses defined by the same reflection across multiple receiver

positions. Current state-of-the-art methods use between 6–78 ( a maximum of 1056 channels)

measurement positions spaced throughout a given environment, and require a first-order reflec-

tion for each boundary attributable to and detectable in all, or a subset, of these measurement

positions. To this extent, these methods are only accurate when an assumption of convexity is

valid, where this requirement of a first-order reflection from each boundary being detectable

across measurement positions is easily met. It was therefore proposed that by using a com-

pact microphone array capable of capturing both the time- and direction-of-arrival, boundary

locations, and consequently the room’s shape, can be inferred for both convex- and non-convex-

shaped rooms, using only a sufficient number of measurement positions to ensure each boundary

has a first-order reflection is detectable, in at least one measurement.

In Chapter 5, a method for direction-of-arrival estimation of reflections in binaural room impulse

responses was presented using current state-of-the-art methodology based on binaural model

fronted neural networks. This chapter aimed to establish whether a two-channel microphone ar-

ray, capable of capturing three-dimensional spatial information, can produce direction-of-arrival
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estimates that are accurate enough for use in geometry inference. The proposed method uses

a binaural model to compute the interaural cross-correlation and interaural level difference be-

tween the signals measured at the left and right ear. These interaural cues were used to create a

feature space for a segment of a binaural room impulse response that contains either the direct

sound or a reflection. To disambiguate between front and rear hemispheres, where similarities

in interaural cues exist, a second set of interaural cues, calculated from the same time-frame in

a second binaural room impulse response measured with the head having been rotated ±90◦,

was used. The combined feature spaces for these two measurements are analysed by a cascade-

forward neural network and an estimate of the direction-of-arrival is produced. The results pre-

sented in this chapter showed that the proposed method performed comparably for binaural room

impulse responses measured with two different binaural dummy heads and two different loud-

speakers. However, there was a large reduction in accuracy when analysing reflections, with in

the best case only 40.97% of the estimates being within±5◦ of the expected direction-of-arrival,

compared to 81.25% for the direct sound. This reduction in accuracy is likely as a result of mul-

tiple points of reflection on the boundary producing multiple, closely arriving, reflections at each

ear, resulting in a blurring of the interaural cues due to these interfering signals, or as a result

of lower signal-to-noise ratios observed for the reflections. Furthermore, even when accounting

for measurement bias the direction-of-arrival for reflections was less accurately estimated, sug-

gesting that the errors observed are more than just a product of system misalignments. It was

suggested that this approach would not yield accurate enough estimates of direction-of-arrival

for geometry inference, particularly as the results suggest that performance would likely further

degrade in the presence of overlapping reflections, and so an alternative microphone array was

proposed for the remainder of this thesis.

In Chapter 6, a spatiotemporal decomposition based reflection detection method applicable to

spherical microphone arrays was proposed. This method performed spherical harmonic domain

beamforming on short time-frames from a spatial room impulse response, generating a heat map

of signal intensity over a grid of directions-of-arrival. Reflections are then detected by searching

for regions of high-intensity within this heat map. To define the temporal region of the reflection,

subsequent time-frames are then analysed to find the time-frame when the reflection is no longer

present. Beamforming is once again performed on this temporal region, steered in the direction

of the arriving signal, to detect the time-of-arrival for the reflections. Results presented in this

chapter compared the accuracy of this method to implementations of two state-of-the-art reflec-

tion detection methods, the circular-variance local maxima, and dynamic time warping based

matching pursuit methods. The results showed that the proposed method generally produced
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more accurate estimates of time-of-arrival, with a minimum difference of 1.99 µs and a maxi-

mum of 33.52 µs. The main benefit of this approach is that simultaneously arriving reflections

can be detected as individual discrete reflections, where existing methods would detect this as

one arrival. The results, however, also showed that when analysing real-world spatial room im-

pulse responses, the proposed method occasionally detected the same reflection multiple times.

This was as a result of differences in the spatial width of a reflection within the heat map across

multiple time-frames. While this presents a problem for general use, as these multiple detections

have the same direction-of-arrival they will be assigned to the same boundary, and as such is of

little consequence for geometry inference.

Chapter 7 presented an image-source reversion method, which was tested with both convex- and

non-convex-shaped rooms. This method uses the time- and direction-of-arrival for reflections

estimated using the method presented in Chapter 6 to compute the location of the image-sources

that produce each reflection when specularity is assumed. From these image-source locations

a set of candidate boundaries are produced by searching for the most-likely previous-sources

that can define the reflection path. To validate candidate boundary locations, and remove in-

correctly inferred boundaries, a three step geometric acoustic validation process was proposed.

Preliminary testing showed that, when presented with ground-truth values of ToA and DoA an

exact estimate of the room’s geometry was achieved, and that errors in the estimated geome-

try were typically a result of inaccurate estimates of ToA and DoA, missed/rejected reflections,

and false-positive detections within the noise floor. Furthermore, the severity of the estima-

tion error depends upon how the resulting inferred boundaries intersect with their neighbouring

boundaries. The results presented showed that the proposed method performed comparably to

state-of-the-art methods when analysing cuboid-shaped rooms. The proposed method also per-

formed comparably to these existing methods when analysing convex-shaped rooms that are not

cuboidal and non-convex-shaped rooms. A difference in mean positional error, of the bound-

aries in a room, of between 12.35–25.81 cm when comparing the maximum boundary positional

error values to those presented in previous studies, using at most three measurement positions

(48 spherical harmonic domain channels), compared to the 6–78 (maximum of 1056 channels)

used in these previous studies.

8.2 Restatement of Hypothesis

The hypothesis for this thesis, as introduced in Chapter 1 is as follows:

Given a compact microphone array and a sufficient number of spatial room impulse responses
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to ensure a first-order reflection is detectable for each boundary, accurate boundary estimation,

and consequently room shape estimation, can be achieved for both convex- and non-convex-

shaped rooms.

The results presented in Chapter 7 clearly support this hypothesis, with a 2.94 cm difference

in mean positional error between the best convex and non-convex case. However, the results

showed that the accuracy of the method varied between measurement positions within the same

room, mainly as a result of errors in time- and direction-of-arrival estimation, which resulted

in angled boundaries being generated. While the variability was shown to be statistically sim-

ilar between two differently sized rooms of the same shape, the results indicated that further

development of the overall process is still required.

Comparing the results to those presented for current state-of-the-art methods shows that the

proposed method for non-convex rooms performs comparably to convex cases presented in the

literature, with for the best cases 2.61 cm difference in the mean boundary positional error for

a room, and a difference between 12.35–25.81 cm for the worst cases. Furthermore, this com-

parable level of accuracy was achieved using at most three measurement positions (48 spherical

harmonic domain channels), compared to the 6–78 (maximum of 1056 channels) used in these

previous studies.

While the work in this thesis supports the hypothesis, further work is still required to reduce

the variability in performance between different measurement positions within the same room.

These improvements will produce more robust geometry inference methods, that are applicable

in numerous fields, such as, speech recognition, sound source separation, dereverberation, audio

forensics, and simultaneous localisation and mapping problems. In order to achieve this, the

overall process needs to be refined and further validated using additional real-world non-convex

environments. Based on these findings, areas of future development are outlined in what follows.

8.3 Novel Contributions

In addressing the hypothesis the following novel contributions to the field have been identified:

Application of a binaural model fronted neural network for direction-of-arrival estimation

of reflections in binaural room impulse responses

The binaural model fronted neural network direction-of-arrival estimator presented in Chapter 5,

is novel in its application, and, to the author’s knowledge, is the first study to consider neural
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networks for the estimation of direction-of-arrival for short time-frame of binaural room im-

pulse responses, such as the reflections in binaural room impulse responses. Furthermore, to

the author’s knowledge, this is only the second ever study to consider the problem of direction-

of-arrival estimation of reflections in binaural room impulse responses. The results showed the

potential of using such a method, and through analysis of these results future research areas have

been suggested.

A novel spatiotemporal decomposition reflection detection method, capable of detecting

simultaneously arriving reflections, from different directions, as individual discrete events

The spatiotemporal decomposition method presented in Chapter 6 is a novel approach to re-

flection detection. The tests presented showed that the proposed method produces more accu-

rate estimates of time-of-arrival for reflections compared to two state-of-the-art methods, the

circular-variance local maxima, and dynamic time warping based matching pursuit methods.

Furthermore, to the authors knowledge, the proposed method is the first to consider the detec-

tion of simultaneously arriving reflections.

A novel boundary estimation, room shape inference, and boundary validation method, ap-

plicable to both convex- and non-convex shaped rooms

The novel geometry inference method presented in Chapter 7, is, to the author’s knowledge, the

first geometry inference method to consider non-cuboid-shaped rooms, and in particular non-

convex-shaped rooms. This is validated by presenting tests across rooms of various shapes,

size, and complexity, showing comparable performance to existing methods that only consider

cuboid-shaped rooms. This method also presented a novel room shape inference and boundary

validation process, addressing the problem of incorrectly inferred additional boundaries, which

have been commonly ignored in previous studies. Furthermore, a study of performance variabil-

ity over different source and receiver positions is presented.

Model Validation

Objective analysis of the results are presented, to validate the model across different shaped

rooms. This expands on the cases that geometry inference is applicable to, and suggests areas of

further research in the field.

8.4 Future Work

Binaural Direction-of-Arrival Estimation for Reflections in Binaural Room Impulse Re-

sponses
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From the results presented in Chapter 5, it is evident that further work is required to improve

the robustness of this method when analysing reflections. The results suggest that the reduction

in accuracy for the direction-of-arrival estimation of reflections could be due to multiple reflec-

tion points on the boundary producing closely arriving reflections in the binaural room impulse

response which blur the interaural cues. Therefore, given that the direct sound’s direction-of-

arrival is estimated accurately, it is possible that the accuracy of this model could be improved

further by training the neural network with a dataset of reflections in addition to the head related

impulse responses. Furthermore, it is likely that the performance of this method will degrade

as a result of overlapping reflections. Therefore, future work could also look to expand the

multi-conditional training set to also include cases with overlapping reflections, as opposed to

just varying signal-to-noise ratios. Future work should also expand on the model to include

estimation of elevation direction-of-arrival as well.

Spatiotemporal Decomposition Reflection Detection Methods

The key issues presented in Chapter 6 and 7 for the proposed spatiotemporal decomposition

reflection detection method were, the identification and detection of interfering noise as reflec-

tion information, and detecting the same reflection multiple times in real-world measurement

cases. Future work in this area could consider the use of subspace based beamformers, which

decompose the recorded signal into a desired signal and noise subspace, to remove the noise

component of the spatial room impulse response. Furthermore, the process by which the same

reflection is detected across adjacent time-frames needs to be refined to account for changes in

the spatial width of the reflection. This could be achieved by comparing the estimated direction-

of-arrival between detections across time-frames, as opposed to the spatial region occupied by

the reflection.

Geometry Inference Methods for Convex- and Non-Convex-Shaped Rooms

From the results presented in Chapter 7, it is evident that the main drawback of the proposed

geometry inference is the variability in performance between measurement positions. The main

cause of this variability is due to additional angled boundaries being inferred in addition to the

actual boundary position. This is as a result of an incorrectly assigned previous-source for a

higher-order reflection from a given boundary. There are several approaches that could be ex-

plored to solve this problem. Firstly, as these angled boundaries are usually adjacent to the

correctly inferred boundary, these incorrect boundaries could be manually removed. A compu-

tational solution could consider different means of retracing reflections through the environment.

This could be achieved by using the image-source method to backtrace an image-source through
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already inferred boundaries that intersect the path from image-source-to-receiver, repeating the

process until the reflection is retraced back to the source location or a maximum reflection or-

der is reached - at which point a new boundary is defined. This can allow reflection paths to

be traced for cases when the correct previous-source belongs to a reflection that was not de-

tected within the spatial room impulse response, and could also improve robustness to time- and

direction-of-arrival estimation errors. Alternatively, image-processing techniques could poten-

tially be explored to define a way of invalidating outlier inferred boundary locations.

Additional Real-World Validation

The geometry inference method presented in this thesis has predominantly been validated using

CATT-Acoustic simulated spatial room impulse responses, with only one real-world example

presented. Future work should further validate the method in real-world scenarios, particularly

for measurements taken in more complex convex- and non-convex-shaped rooms. In addition

to this, to the author’s knowledge, no existing methods for geometry inference have considered

the implications that additional reflective surfaces of finite length (chairs, tables, etc.) have on

the ability to infer the shape of the room from a set of candidate boundaries. Therefore, future

studies should explore the implications on geometry inference of such surfaces, as they can po-

tentially produce additional candidate inferred boundaries, which would increase the complexity

of the room shape inference process. Furthermore, testing with different compact microphone

arrays could be considered, as the methods presented in this thesis can be applied to other com-

pact arrays for which beamforming is applicable.

8.5 Closing Remarks

This thesis has presented work which expands the applications of geometry inference methods

to consider convex- and non-convex-shaped rooms. Geometry inference has potential applica-

tions in various aspects of acoustics and signal processing research, where normally a priori

knowledge of a room’s boundary locations would be required, which is not possible when im-

plemented within consumer technology. In acoustics consultancy, geometry inference can be

used as a means of deriving key reflection in a given environment, providing data that can be

used when acoustically treating the room. The geometric model of a room can be used to sim-

ulate the acoustic conditions, and consequently the SRIRs, for different source and receiver

positions within the environment. Geometry inference in this context can be used to generate

a room model, which subsequently can be used to generate additional SRIRs throughout the

environment. This has potential applications in interactive media such as video games where
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Spatial Room Impulse Responses (SRIRs) can be used to produce a more realistic rendering of

an acoustic scene, producing an immersive experience for the player. In smart home-devices,

knowledge of the surrounding environment, and therefore geometry inference, can be used as a

means of enhancing speech recognition through source separation and dereverberation as seen

in [1–3]. Furthermore, geometry inference can be applied to robotics as a means of providing

real-time information about a robot’s surrounding environment and its current and previous po-

sition [4]. Finally, in the context of virtual and augmented reality, geometry inference can be

used to track a user’s position within an environment or produce more robust methods for spatial

audio rendering by evaluating a user’s loudspeaker setup and listening environment, which sub-

sequently can be accounted for when rendering a virtual auditory environment [5], so producing

an ideally more immersive user experience. From these applications, it is evident that removing

a priori knowledge of an environment, it is of paramount importance to arrive at a method for

geometry inference that is universally robust to rooms of different shape, size, complexity, and

measurement conditions.

It is important to note that while a spherical microphone arrays was adopted in this thesis, any

compact microphone array, for which beamforming can produce sufficiently accurate estimates

of DoA, can be used. However, further work is still required to decrease variance in accuracy as

a result of different source and receiver positions within the same room. As such the challenge of

producing a universally robust geometry inference method has yet to be met, and further testing

in more complex convex and non-convex real-world rooms is still required.
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Appendices
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Appendix A

Spatial Room Impulse Responses

This appendix contains the Spatial Room Impulse Response (SRIR) produced for each example

case used in Chapter 7, the red asterisk on the plots indicate the locations of a detected candidate

reflection.

Scenario One

In Figure A.1 the SRIR and detected reflections for Scenario One Cuboid Room One can be

seen. From the results it can be seen that the main reflections in the SRIRs have been detected,

however, there are a few obvious false-positive detections in both SRIRs in areas where the

signal magnitude approaches zero.

In Figures A.2 the SRIR and detected reflections for Scenario One Cuboid Room Two can be

seen. From the results it can be seen that the main reflections in the SRIRs have been detected,

however, as with the first cuboid room, there are a obvious false-positive detections in both

SRIRs.

In Figures A.3 the SRIR and detected reflections for Scenario One Octagonal Room can be

seen. From the results it can be seen that the main reflections in the SRIRs have been detected,

however, as with the two cuboid rooms, there are a obvious false-positive detections in both

SRIRs.

In Figures A.4 the SRIR and detected reflections for Scenario One L-Shaped Room can be
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Figure A.1: The omnidirectional channel for the CATT-Acoustics simulated SRIRs for
Scenario One Cuboid-Shaped Room One - the red asterisks indicate the locations where
the EDESAR method has detected a reflection.

Figure A.2: The omnidirectional channel for the CATT-Acoustics simulated SRIRs for
Scenario One Cuboid-Shaped Room Two - the red asterisks indicate the locations where
the EDESAR method has detected a reflection.

seen. From the results it can be seen that the main reflections in the SRIRs have been detected,

however, as with the previous cases, there are a obvious false-positive detections in both SRIRs,

with more present in the first SRIR.
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Figure A.3: The omnidirectional channel for the CATT-Acoustics simulated SRIRs for
Scenario One Octagonal-Shaped Room - the red asterisks indicate the locations where
the EDESAR method has detected a reflection.

Figure A.4: The omnidirectional channel for the CATT-Acoustics simulated SRIRs
for Scenario One L-Shaped Room - the red asterisks indicate the locations where the
EDESAR method has detected a reflection.

In Figures A.5 the SRIR and detected reflections for Scenario One T-Shaped Room can be

seen. From the results it can be seen that the main reflections in the SRIRs have been detected,

however, as with the previous cases, there are a obvious false-positive detections in both SRIRs,

with more present in the first and second SRIR. Furthermore, it can be seen that for the third
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SRIR, which was positioned in the alcove of the T-Shaped Room, there are fewer more sparsely

distributed reflections.

Figure A.5: The omnidirectional channel for the CATT-Acoustics simulated SRIRs
for Scenario One T-Shaped Room - the red asterisks indicate the locations where the
EDESAR method has detected a reflection.

In Figures A.6 the SRIR and detected reflections for Scenario One Cuboid Room Three, mea-

surement set one, can be seen. From the results it can be seen that the main reflections in the

SRIRs have been detected, however, there are fewer obvious false-positive detections in both

SRIRs, when compared with the previous cases.

In Figures A.7 the SRIR and detected reflections for Scenario One Cuboid Room Three, mea-

surement set one, can be seen. From the results it can be seen that the main reflections in the

SRIRs have been detected, however, there are again fewer obvious false-positive detections in

both SRIRs, when compared with the previous cases.
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Figure A.6: The omnidirectional channel for the CATT-Acoustics simulated SRIRs for
Scenario One Cuboid Room Three Measurement Set One - the red asterisks indicate the
locations where the EDESAR method has detected a reflection.

Figure A.7: The omnidirectional channel for the CATT-Acoustics simulated SRIRs for
Scenario One Cuboid Room Three Measurement Set Two - the red asterisks indicate
the locations where the EDESAR method has detected a reflection.

Scenario Three

In Figure A.8 the SRIR and detected reflections for Scenario Three, measurement set one, can
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be seen. These results have been discussed in detail in Chapter 6.

Figure A.8: The omnidirectional channel for the real-world measured SRIRs for Sce-
nario Three, Measurement Set One - the red asterisks indicate the locations where
the EDESAR method has detected a reflection. These SRIR were measured using an
EigenMike EM32 spherical microphone array, Genelec 8030 loudspeaker, and the expo-
nential sine-sweep method.

In Figure A.9 the SRIR and detected reflections for Scenario Three, measurement set one, can

be seen. From the results it is evident that there are fewer correct detections, mainly as a result

of a noisier signal. As was discussed in Chapter 6, it can be seen that there have been numerous

cases of false-positive detections after the arrival of a reflection at the microphone array.
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Figure A.9: The omnidirectional channel for the real-world measured SRIRs for Sce-
nario Three, Measurement Set Two - the red asterisks indicate the locations where
the EDESAR method has detected a reflection. These SRIR were measured using an
EigenMike EM32 spherical microphone array, Genelec 8030 loudspeaker, and the expo-
nential sine-sweep method.
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Appendix B

List of Acronyms

ADAM Adaptive Moment

ARC Acoustic Reflection Cartographer

BRIR Binaural Room Impulse Response

C-DYPSA Clustered - Dynamic Phase-Slope Algorithm

COMEDIE Covariance Matrix Eigenvalue Diffuseness Estimation

CVLM Circular-Variance Local-Maxima

DNN Deep Neural Network

DoA direction-of-arrival

DTW Dynamic Time Warping

EB-ESPRIT Eigenbeam - Estimation of Signal Parameters via Rotational Invariance Tech-

niques

EB-MUSIC Eigenbeam-Multiple Signal Classification
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EDESAR Eigenbeam Detection and Evaluation of Simultaneously Arriving Reflections

EDM Euclidian Distance Matrix

ERB Equivalent Rectangular Bandwidth

ESPRIT Estimation of Signal parameters by Rotational Invariance Techniques

ETSAC Ellipsoid Tangent Sample Consensus

FFT Fast Fourier Transform

GMM Gaussian Mixture Model

HRIR Head Related Impulse Response

IACC Interaural Cross-Correlation

ILD Interaural Level Difference

ISDAR-LIB Image-Source Direction and Ranging-Loudspeaker-Image Bisection

ITD Interaural Time Difference

KEMAR Knowles’ Electronic Manakin for Acoustic Research

MCT multi-conditional training

MLP Multilayer Perceptron

MUSIC Multiple Signal Classification

MVDR Minimum-Variance Distortionless Response

NN Neural Network

PWD Plane-Wave Decomposition
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RIR Room Impulse Response

RMS root mean square

SIRR Spatial Impulse Response Rendering

SNR signal-to-noise ratio

SOM Self-Organising Map

SRIR Spatial Room Impulse Response

STFT Short Time Fourier Transform

ToA time-of-arrival

XWT Cross Wavelet Transform
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Appendix C

List of Symbols

f - Frequency in Hz

c - Speed of sound

λ - wave length

p - change in pressure

ρ - instantaneous pressure

ρ0 - Mediums resting pressure

pref - Reference pressure

x, y, z - Cartesian coordinate for x- y-, and z-axes

pr - Right going wave pressure component

pl - Left going wave pressure component

c - Speed of Sound

v - Particle Velocity
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Z0 - Acoustic impedance of a medium

ω - Angular frequency

k - wave number

i -
√
−1

p̂ - Pressure amplitude

pair - Air pressure

ξ - Air density

T - Temperature centigrade

κ - Adiabatic Exponent

θi - Angle of Incidence

θr - Angle of Reflection

pi - Incident Pressure

vi - Incident Particle Velocity

pr - Reflected Pressure

vR - Reflected Particle Velocity

Rf - Reflection factor

Z - Acoustic impedance of a boundary

α - Absorption coefficient or x-axis directional cosine

h(t) - A single channel room impulse response
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t - Time

δ - Dirac delta

τ - Time-of-arrival or time delay

a - Amplitude of an arriving reflection

r(t) - Time varying residual noise component

b - Point on a boundary

n - Unit normal for a boundary

s - Cartesian coordinates for the source position

s̃ - Cartesian coordinates for image-source locations

m - Cartesian coordinates for the microphone

b̃ - Estimated point on a boundary

ñ - Estimated unit normal for a boundary

X - Output from a microphone array

U - Matrix containing the X-, Y-, and Z-channel of a B-Format signal

I - Instantaneous intensity or Identity matrix

gq,n,m - Weighted spherical harmonic transform vector

X̂ - Fourier transformed output of a microphone array

w - vector of weights or the omnidirectional channel of a b-format recording

x̃ - Steered output of a microphone array
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θ - Azimuth direction-of-arrival

φ - Elevation direction-of-arrival

Ψ - Concatenation of azimuth and elevation direction-of-arrival

y - Vector of spherical harmonics

Y - Spherical harmonic function

H(t) - Multi-channel spatial room impulse response

R(t) - Spatially-white time-variant residual noise matrix

Pmn - Associated Legendre polynomial of order n and degree m.

∆(θ, φ) - Generalised array response (spatial filter) matrix

J - Spherical Bessel function

H - Spherical Hankel function

x - Signal vector

< - Real-component

û - Unit vector pointing in the direction of the sound source

d̃ - Estimated number of sources

E - Statistical expectation

Ω - Generalised eigenvectors

Λ - Diagonal matrix of eigenvalues

RXX - Covariance matrix for signal X
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e - Eigenvectors

λ̄ - Eigenvalues

pMUSIC - MUSIC spectrum.

En - Noise subspace

Es - Signal subspace

∆̃ - Array displacement vector

Λs and Λn - The signal and noise diagonal subspace eigenvalues

D0 - EB-ESPRIT auxiliary matrix.

ζ - Directional intensity map

Wx - Continuous wavelet transform of signal x

xl - Left channel of a binaural signal

xr - Right channel of a binaural signal

ψ0(n
′−n
s ) - Translated wavelet transform

ψ0 - Wavelet function

FFT - Fast-Fourier Transform

IFFT - Inverse Fast-Fourier Transform

H - Heaviside step function

ω0 - The dimensionless oscillating period of the wavelet

s0 - Smallest resolvable scale
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fλ - Fourier Period

c - Cross-correlation function

tf - Time-frame

vtf - Circular Variance

stf - Average cosine of azimuth direction-of-arrival

ctf - Average sine of azimuth direction-of-arrival

Wxl,r
- Cross-wavelet transform of signal xl and xr

T - Radon transformed image

R - Interpolated image

g(n) - Centre of gravity of a signal

d(n) - Phase-slope of the signal

µlocal - Average magnitude of a signal

Tµlocal - The averaging time

ε - A threshold parameter (subscript denotes which variable it is a threshold for)

rh - Residual room impulse response (matching pursuit)

ds - The direct sound

0 - A vector of zeros

idx - Index

ŵh - Warp vector for a reflection
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ŵa - Warp vector for the direct sound

γdsk - Scaling value

υ - Error metric representing the difference between the warped direct sound and a candidate

reflection

D̃ - Euclidean distance matrix

l - Vector containing the dimensions of a cuboid room

T60 - Reverb time

V - Volume of a room

S - Surface Area of a room

t̂ - Vector containing the time-of-arrival for a reflection at each microphone in an array

t - Vector containing the true time-of-arrival for a reflection at each microphone in an array

Σk - Time-of-arrival error covariance matrix.

D2 - Mahalanobis distance between two points

Σx and Σy - Covariance matrix for x or y boundary

n1 - Boundary normal vector for boundary 1

d - Distance in meters

O - Ellipsoid parameter matrix

B - Matrix containing the four corners of a boundary

B̃ - Matrix containing the four corners of an inferred boundary

widehatT - Translation matrix
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R̂ - Rotation matrix

Ŝ - Scaling matrix

rI - Point of reflection on a boundary

l̃ - Estimated distance between two boundaries

gm - Room transfer function

X̂ - Matrix containing the Gammatone filtered version of signal x

X̃ - Cochleagram output for filtered signal X̂

θrotation - Azimuth rotation of the binaural dummy head microphone

x̃0 - Feature vector fed to the NN

µ - Mean of a vector

σ - Standard deviation of a vector.

b - Vector containing the bias values for each neuron in a layer of a NN

x̃i - Output activation level for each neuron in hidden layer i.

P(x|y) - The probability of solution x given data y

ŵ - MVDR beamforming weights

Λ - The directional spectrum

Λ̂ - The greyscale image of the directional spectrum

∆l - The difference in propagation distance

∆ñ - Deviation from a zero z-axis coefficient for a boundary normal vector
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∆∠ - Difference in x and y directional cosines for the reflection produced from the possible

previous-source to boundary and the image-source to receiver

β - y-axis directional cosine

α̃ - x-axis directional cosine for a ray reflecting from the point of incidence on the boundary for

a line going from previous-source-to-boundary

β̃ - y-axis directional cosine for a ray reflecting from the point of incidence on the boundary for

a line going from previous-source-to-boundary

pr - Point of rotation

W̄ - [3× 2] matrix containing two points that are orthogonal to the boundary normal

x(B1,B2), y(B1,B2), and z(B1,B2) - The x, y, and z points of intersection between bound-

aries B1 and B2

Tro - Time of arrival for a defined reflection order

ro - Reflection order
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Appendix D

Accompanying Material

Chapter 5:

These python scripts require the following Python libraries to be installed: Numpy V.1.17.0

[165], SciPy V.0.18.1 [166], and Tensorflow V.0.12.1 [132].

The python code was tested using Python 3.2.5, using an Anaconda Python environment.

The MATLAB code requires the freely available Malcolm Slaney’s Auditory Toolbox [127] to

be downloaded and placed in same folder (as these files are copyrighted, and not licenced for

distribution, they are not included as part of the accompanying material).

The MATLAB code was tested using MATLAB R2018a.

The contents of folder titled Supporting Material Chapter 5 is as follows:

Binaural Model

Cochleagram - This folder contains the cochleagram function [128], and corresponding licence

file.

runAnalysis.m - This MATLAB script analyses the provided dataset and produces the feature

vector used in testing. Users can change the variables head (’KEMAR’ or ’KU100’), signalType

(’directSound’ or ’reflection’), and speaker (’EquatorD5’ or ’Genelec8030’). Run this script to

generate the resulting normalised feature vector
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BinauralModelCochlea.m - This MATLAB function analyses a given binaural signal and outputs

the interaural cross-correlation, interaural level difference, interaural time difference, the cochlea

output for the left and right channel and the centre frequencies of the gammatone filter band. This

function requires the following toolboxes to work: Malcolm Slaney’s Auditory Toolbox [127].

This function is called by generateFeatureVector.m.

generateFeatureVector.m - This MATLAB function generates a feature vector from an input

binaural signal x, and a version of the signal captured after the binaural dummy head has been

rotated by either +90◦ or -90◦ degree (variables xPos90 and xNeg90 respectively). This function

is called by the generateTestData.m.

generateTestData.m - This MATLAB function analyses the included binaural dataset, it takes the

input variables: head - the binaural dummy head used for the measurements either ’KEMAR’ or

’KU100’, speaker - the speaker used for the measurements either ’EquatorD5’ or ’Genelec8030’,

and signalType - the type of signal being analysed either ’directSound’ or ’reflection’. This

function is called by the runAnalysis.m script.

Audio Files

• 144 direct sound components captured with the KEMAR 45BC binaural dummy head

microphone and the Equator D5 speaker.

• 144 reflected components captured with the KEMAR 45BC binaural dummy head micro-

phone and the Equator D5 speaker.

• 144 direct sound components captured with the KU100 binaural dummy head microphone

and the Equator D5 speaker.

• 144 reflected components captured with the KU100 binaural dummy head microphone

and the Equator D5 speaker.

• 144 direct sound components captured with the KEMAR 45BC binaural dummy head

microphone and the Genelec 8030 speaker.

• 144 reflected components captured with the KEMAR 45BC binaural dummy head micro-
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phone and the Genelec 8030 speaker.

• 144 direct sound components captured with the KU100 binaural dummy head microphone

and the Genelec 8030 speaker.

• 144 reflected components captured with the KU100 binaural dummy head microphone

and the Genelec 8030 speaker.

Generate Training Data

Cochleagram - This folder contains the cochleagram function [128], and corresponding licence

file.

BinauralModelRun.m - This MATLAB script is used to run the binaural model and generate the

feature spaces for the KEMAR SADIE Database [123] - Requires the HRIR from the SADIE

database to run. Run this script to generate compute the binaural model output for each

HRIR in the SADIE dataset.

GenerateHeadRotation SWN.m - MATLAB Script used to generate the training data matrix.

binaryClassifierAzOnly - MATLAB function that generate a binary classifier for a set of azimuth

directions-of-arrival.

KEMARSADIETarget.mat - List of all the directions-of-arrival contained within the KEMAR

SADIE database [123]

spatialWhiteNoise.wav - The spatially white noise generated by convolving white Gaussian

noise with all HRIRs in the KEMAR SADIE database, and taking the mean.

KEMARSADIE BinauralModelOut CochleaModel 1sOverlap.mat - Interaural-cross correlation,

interaural level difference, and interaural time difference for the HRIRs within the KEMAR

SADIE database.

NN Training Scripts

NNTrainRun.py - Python script used to run the training procedure for the NN. Run this script

in a python command line environment, such as Anaconda, to train the NN.
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CFFNNRunTrained.py - Python script used to test the neural network once trained. This script

is called by NNTrainRun.py.

CFFNNRunTraining.py - Python script used to test the neural network during training. This

script is called by NNTrainRun.py.

CFFNNRunTrain.py - Python script that performs a single training iteration. This script is called

by NNTrainRun.py.

initCFFNN 2.py - This Python Script is used to initialises the cascade-forward neural network.

Test Data - This folder contains the test data for the KEMAR Equator Dataset.

Training Data - This folder contains the training data used to train the neural network.

Trained NN Scripts

AnalyseDoA.py - Python script which can be run to test the pre-trained neural network using the

pre-generated test data. Upon running the script the user will be prompted to select different

test data options. The variable DoA contains the estimated directions-of-arrival made by the

neural network, and the variable yDiff contains the difference between the estimated and ex-

pected directions-of-arrival. Run this script in a python command line environment, such as

Anaconda, to produce estimates of DoA for an input feature matrix.

DirectionAnalysis.py - Python script containing a set of functions used to define and run the

pre-trained neural network. Called by AnalyseDoA.py.

noLayers.txt - A text file containing the number of layers used when training the neural network

- one in this case.

neg90 - This folder contains the Gaussian normalisation parameters stored as text files and the

weights and biases for the trained neural network - these are all for the -90◦ rotation neural

network.

pos90 - This folder contains the Gaussian normalisation parameters stored as text files and the

weights and biases for the trained neural network - these are all for the +90◦ rotation neural

network.
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testData - This folder contains pre-generated test data for the different binaural dummy head

microphones, speaker, and signal type combinations.

Thesis Data Analyses

runAnalysisOfData.m - This MATLAB script is used to analyse the direction-of-arrival estimates

produced by the neural networks as used in this thesis. Generates a table where column one is

the number of exact estimations, column two is the number of estimations within ±1◦, column

three is the number of estimations within ±5◦, column four is the percentage of front/back

confusions, column five is the mean relative error, and column six is the RMS error. Run this

script to generate the results presented in Section 5.6 of this thesis.

frontBackCheck.m - MATLAB function used to find front/back confusions within the estimated

directions-of-arrival. This function is called by runAnalysisOfData.m.

The ’.mat’ files containing: the estimated directions-of-arrival for each test case, the difference

between the estimated and expected direction-of-arrival, and the expected direction-of-arrival.

Chapter 6:

The contents of folder titled Supporting Material Chapter 6 is as follows:

Folder - Scenario One

CVLM - Folder containing the code for the implementation of the circular variance local max-

ima method. ReflectionDetection.m is the main function.

DTW - Folder containing the code for the implementation of the dynamic time warping match-

ing pursuit method. DTWReflectionDetection.m is the main function (currently set up to work

with the random pulse only as the DS is hard coded)

EDESAR - Contains the function EDESAR.m which is used to detect reflections using the pro-

posed Eigenbeam Detection and Evaluation of Simultaneously Arriving Reflections (EDESAR)

method, and the MVDR and Steered response power map functions.

External Code - This folder contains the MATLAB functions and licences for external coded

needed to run the EDESAR method.
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createDummySRIR.m - This function generates a train of random pulses.

EDESAR Test PhD Random.m - MATLAB script that generates a random train of pulses and

analyses them using the EDESAR method. Run this script to randomly generate a train of

pulses and analyse it using the proposed EDESAR method.

plotComparisonResults Random.m - Script used to generate the results presented in Chapter Six

- Scenario One. Run this script to generate the figures and results presented in Section 6.5.1

pulse.wav - Audio file containing the pulse used to generate the random train of pulses.

Workspace RandomIR1.mat - .mat filed containing the EDESAR results for the random train of

pulses.

Workspace RandomIR1 CV.mat - .mat filed containing the CVLM results for the random train

of pulses.

Workspace RandomIR1 DTW.mat - .mat filed containing the DTW results for the random train

of pulses.

reflectionDetectionCVLM.m - MATLAB script that runs the CVLM reflection detection method

on the random train of pulses.

reflectionDetectionDTW.m - MATLAB script that runs the DTW reflection detection method on

the random train of pulses.

Folder - Scenario Two

CVLM - Folder containing the code for the implementation of the circular variance local max-

ima method. ReflectionDetection.m is the main function.

DTW - Folder containing the code for the implementation of the dynamic time warping match-

ing pursuit method. DTWReflectionDetection.m is the main function.

EDESAR - Contains the function EDESAR.m which is used to detect reflections using the pro-

posed Eigenbeam Detection and Evaluation of Simultaneously Arriving Reflections (EDESAR)

method, and the MVDR and Steered response power map functions.
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External Code - This folder contains the MATLAB functions and licences for external coded

needed to run the EDESAR method.

SRIR - Folder containing the simulated SRIR

EDESAR Test PhD Simulated.m - MATLAB script that analyses the simulated SRIR using the

EDESAR method. Run this script to estimate the ToA for reflections present in the simu-

lated SRIR using the proposed EDESAR method.

plotComparisonResults Simulated.m - Script used to generate the results presented in Chapter

Six - Scenario Two. Run this script to generate the figures and results presented in Sec-

tion 6.5.2

Workspace Simulated EDESAR.mat - .mat filed containing the EDESAR results for the simu-

lated SRIR.

Workspace Simulated CV.mat - .mat filed containing the CVLM results for the simulated SRIR.

Workspace Simulated DTW.mat - .mat filed containing the DTW results for the simulated SRIR.

reflectionDetection Simulated CVLM.m - MATLAB script that runs the CVLM reflection de-

tection method on the simulated SRIR. Run this script to estimate the ToA for reflections

present in the simulated SRIR using the CVLM method.

reflectionDetection Simulated DTW.m - MATLAB script that runs the DTW reflection detection

method on the simulated SRIR. Run this script to estimate the ToA for reflections present in

the simulated SRIR using the DTW Matching Pursuit method.

Folder - Scenario Three

CVLM - Folder containing the code for the implementation of the circular variance local max-

ima method. ReflectionDetection.m is the main function.

DTW - Folder containing the code for the implementation of the dynamic time warping match-

ing pursuit method. DTWReflectionDetection.m is the main function.

EDESAR - Contains the function EDESAR.m which is used to detect reflections using the pro-
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posed Eigenbeam Detection and Evaluation of Simultaneously Arriving Reflections (EDESAR)

method, and the MVDR and Steered response power map functions.

External Code - This folder contains the MATLAB functions and licences for external coded

needed to run the EDESAR method.

SRIR - Folder containing the simulated SRIR

EDESAR Test PhD Real.m - MATLAB script that analyses the simulated SRIR using the EDESAR

method. Run this script to estimate the ToA for reflections present in the real-world SRIR

using the EDESAR method.

plotComparisonResults Real.m - Script used to generate the results presented in Chapter Six -

Scenario Three.

Workspace Simulated EDESAR.mat - .mat filed containing the EDESAR results for the real-

world SRIR.

Workspace Real CV.mat - .mat filed containing the CVLM results for the real-world SRIR.

Workspace Real DTW.mat - .mat filed containing the DTW results for the real-world SRIR.

reflectionDetection Real CVLM.m - MATLAB script that runs the CVLM reflection detection

method on the real-world SRIR. Run this script to estimate the ToA for reflections present

in the real-world SRIR using the CVLM method.

reflectionDetection Real DTW.m - MATLAB script that runs the DTW reflection detection method

on the real-world SRIR. Run this script to estimate the ToA for reflections present in the

real-world SRIR using the DTW Matching Pursuit method.

Chapter 7:

The contents of folder titled Supporting Material Chapter 7 is as follows:

Folder - Scenario One

Additional Functions - Folder containing MATLAB functions used to plot the data.
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Geometry Inference - MATLAB folder containing all the functions used to infer the geometry

of the room, contents are as follows:

• computeDirectionalCosines.m - Computes the direction cosines for a vector defining a

ray.

• constrainPlane.m - Constrain the boundary based on the points of intersection with neigh-

bouring non-parallel boundaries.

• constrainPlane2.m - Constrain the boundary based on the points of intersection with

neighbouring non-parallel boundaries (path from image-source-to-receiver must intersect

with boundary).

• constrainRoomFromPlanes.m - Function used to refine the candidate boundaries to ideally

those of the desired. Calls the functions: generateInferredPlanes.m, generateInferred-

Planes2.m, removePlanes InteriorPathwayInvalidation.m, removePlanes lineOfSight.m,

removePlanes notConnected.m, and removePlanes source2ReceiverPathInvalidation.m.

• findPreviousSoruce.m - Function used to find the most likely candidate previous-source

for each image-source.

• generateFloorCeiling.m - Function that generates the inferred boundaries for the floor and

ceiling based on the corners of all of the inferred boundaries.

• generateInferredPlanes.m - Computes the points of intersections between boundaries us-

ing planePlaneIntersection.m, and then constrains each boundary using constrainPlane.m.

• generateInferredPlanes2.m - Computes the points of intersections between boundaries us-

ing planePlaneIntersection.m, and then constrains each boundary using constrainPlane2.m.

• generatePlane.m - Generate a candidate boundary using a point-on-the-boundary and the

boundary’s normal vector.

• generateUnconstrainedPlane.m - Generate a boundary for each image-source and previous-

source pair, removing cases when the same boundary is inferred multiple times and cases

when the boundary is inferred too close to the source/receiver.
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• inferGeometry.m - Function that calls the boundary refinement and removePlanes Coincident.m

functions. This function also plots all inferred unconstrained boundaries on figure(100)

• inferImageSource.m - Infer the Cartesian coordinates for each image-source based on the

time- and direction-of-arrival for each reflection.

• linePlaneIntersection.m - Find the point of intersection between a line and a boundary,

where an infinite boundary and finite length line are assumed.

• linePlaneIntersection Constrained.m - Find the point of intersection between a line and a

boundary, where a finite length boundary and finite length line are assumed.

• linePlaneIntersection Constrained rayNotBound.m - Find the point of intersection be-

tween a line and a boundary, where a finite length boundary and infinite length line are

assumed.

• newDirCos.m - Generate a set of directional cosines for a ray being reflected off a bound-

ary, as defined in [153].

• planePlaneIntersection.m - Compute the point of intersection between two boundaries.

• receiverIntersection.m - Compute the point of intersection between a line and the receiver

location.

• removePlanes Coincident.m - Remove boundaries that are coincident - leaving one re-

maining.

• removePlanes InteriorPathwayInvalidation.m - Check reflection paths between image-

source-to-receiver searching for reflection paths from boundary-to-receiver that are oc-

cluded by another boundary.

• removePlanes lineOfSight.m - Check that each boundary is in line-of-sight with the cor-

responding receiver, removing any that are not.

• removePlanes notConnected.m - Check that all boundaries are connected to at least two

other boundaries, removing any that are not.
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• removePlanes source2ReceiverPathInvalidation.m - Check that the path between the source-

to-receiver is not occluded by any boundaries.

• runGeometryInference.m - This is the main function that calls the entire geometry infer-

ence process.

EDESAR - Contains the function EDESAR.m which is used to detect reflections using the pro-

posed Eigenbeam Detection and Evaluation of Simultaneously Arriving Reflections (EDESAR)

method, and the MVDR and Steered response power map functions.

External Code - This folder contains the MATLAB functions and licences for external coded

needed to run the EDESAR method.

SRIR - Folder congaing all the simulated SRIR used for Scenario One.

HigherOrderAmbi testCase.m - MATLAB scripts used to run the test cases used in this thesis

(replace testCase with Cuboid/LShaped/etc.) Run these scripts to infer the geometry of the

room for each test case presented in 7.5.1.

Folder - Scenario Two

Additional Functions - Folder containing MATLAB functions used to plot the data.

Geometry Inference - MATLAB folder containing all the functions used to infer the geometry

of the room, contents are as previously discussed.

EDESAR - Contains the function EDESAR.m which is used to detect reflections using the pro-

posed Eigenbeam Detection and Evaluation of Simultaneously Arriving Reflections (EDESAR)

method.

External Code - This folder contains the MATLAB functions and licences for external coded

needed to run the EDESAR method.

Analysed Reflection Data(2) - Folders containing all the results from the EDESAR method for

the SRIRs used for Scenario Two.

L Shaped Multiple SR Combinations.m - Runs the geometry inference process for all 33 source
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combinations for L-Shaped Room One Scenario Two as used in this thesis - these combinations

are chosen as they ensure the first-order reflection constrain is met, alternate combinations will

not necessarily produce valid geometry inference as a result of this requirement not being met.

Run this scripts to infer the geometry of the room for the first L-Shaped Room presented

in 7.5.2.

L Shaped Multiple SR Combinations2.m - Runs the geometry inference process for all 33 source

combinations for L-Shaped Room Two Scenario Two as used in this thesis - these combinations

are chosen as they ensure the first-order reflection constrain is met, alternate combinations will

not necessarily produce valid geometry inference as a result of this requirement not being met.

Run this scripts to infer the geometry of the room for the second L-Shaped Room presented

in 7.5.2.

boundaryCombinationsLShaped.mat - .mat file containing the inferred boundaries belong to

each desired boundary for the first L-Shaped room.

boundaryCombinationsLShaped2.mat - .mat file containing the inferred boundaries belong to

each desired boundary for the second L-Shaped room.

Folder - Scenario Three

Additional Functions - Folder containing MATLAB functions used to plot the data.

Geometry Inference - MATLAB folder containing all the functions used to infer the geometry

of the room, contents are as previously discussed.

EDESAR - Contains the function EDESAR.m which is used to detect reflections using the pro-

posed Eigenbeam Detection and Evaluation of Simultaneously Arriving Reflections (EDESAR)

method.

External Code - This folder contains the MATLAB functions and licences for external coded

needed to run the EDESAR method.

SRIR - Folder congaing all the simulated SRIR used for Scenario Three.

RealWorld GeometryInference Set1.m - This script runs the geometry inference process for Sce-

nario Three, measurement set one. Run this scripts to infer the geometry of the first real-
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world cuboid-shaped room presented in 7.5.3.

RealWorld GeometryInference Set2.m - This script runs the geometry inference process for Sce-

nario Three, measurement set two. Run this scripts to infer the geometry of the second real-

world cuboid-shaped room presented in 7.5.3.

264



Bibliography

[1] T. Yoshioka, A. Sehr, M. Delcroix, K. Kinoshita, R. Maas, T. Nakatani,

and W. Kellermann, “Making machines understand us in reverberant rooms:

Robustness against reverberation for automatic speech recognition,” IEEE Signal

Processing Magazine, vol. 29, no. 6, pp. 114–126, 2012. [Online]. Available:

https://ieeexplore.ieee.org/document/6296524. [Accessed: Sept. 10, 2019]

[2] A. Asaei, M. Golbabaee, H. Bourlard, and V. Cevher, “Structured sparsity models

for reverberant speech separation,” IEEE Transactions on Audio, Speech and

Language Processing, vol. 22, no. 3, pp. 620–633, 2014. [Online]. Available:

https://ieeexplore.ieee.org/document/6698345. [Accessed: Sept. 10, 2019]

[3] E. A. Habets and J. Benesty, “A two-stage beamforming approach for noise

reduction and dereverberation,” IEEE Transactions on Audio, Speech and Language

Processing, vol. 21, no. 5, pp. 945–958, 2013. [Online]. Available: https:

//ieeexplore.ieee.org/document/6409417. [Accessed: Sept. 10, 2019]

[4] I. Dokmanic, L. Daudet, and M. Vetterli, “From acoustic room reconstruction to

slam,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal

Processing – Proceedings, vol. 2016-May, pp. 6345–6349, 2016. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/7472898. [Accessed: Sept. 10, 2019]
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[109] F. Ribeiro, D. Florêncio, D. Ba, and C. Zhang, “Geometrically constrained room modeling

with compact microphone arrays,” IEEE Transactions on Audio, Speech and Language

Processing, vol. 20, no. 5, pp. 1421–1432, 2012, [Accessed: May. 31, 2019].

[110] S. Tervo and T. Tossavainen, “3D Room Geometry Estimation from Measured

Impulse Responses,” in IEEE International Conference on Acoustics Speech and

Signal Processing 2012, pp. 513–516. [Online]. Available: https://ieeexplore.ieee.org/

document/6287929 [Accessed: May. 31, 2019].

[111] K. Levenberg, “A Method for the Solution of Certain Non-Linear Problems

in Least Squares,” Quarterly of Applied Mathematics, vol. 1944, no. 2, pp.

164–168, 1944. [Online]. Available: https://www.ams.org/journals/qam/1944-02-02/

S0033-569X-1944-10666-0/. [Accessed: Aug. 7, 2019]

[112] P. C. Mahalanobis, “On the generalized distance in statistics,” Proceedings of the National

Institute of Sciences of India, vol. 2, pp. 49–55, 1936.

[113] E. Weisstein, (2019), “Dihedral Angle.” [Online]. Available: http://mathworld.wolfram.

com/DihedralAngle.html [Accessed: May. 31, 2019].

[114] F. Antonacci, A. Sarti, and S. Tubaro, “Geometric reconstruction of the environment

from its response to multiple acoustic emissions,” Acoustics Speech and Signal . . . ,

no. d, pp. 2822–2825, 2010. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.

jsp?arnumber=5496186. [Accessed: Aug. 7, 2019]

[115] F. Antonacci, J. Filos, M. R. P. Thomas, E. a. P. Habets, A. Sarti, P. a. Naylor,

and S. Tubaro, “Inference of room geometry from acoustic impulse responses,”

IEEE Transactions on Audio, Speech and Language Processing, vol. 20, no. 10, pp.

277

http://www.aes.org/e-lib/browse.cfm?elib=16794
https://pdfs.semanticscholar.org/e893/4a942f06ee91940ab57732953ec6a24b3f00.pdf
https://pdfs.semanticscholar.org/e893/4a942f06ee91940ab57732953ec6a24b3f00.pdf
https://ieeexplore.ieee.org/document/6287929
https://ieeexplore.ieee.org/document/6287929
https://www.ams.org/journals/qam/1944-02-02/S0033-569X-1944-10666-0/
https://www.ams.org/journals/qam/1944-02-02/S0033-569X-1944-10666-0/
http://mathworld.wolfram.com/DihedralAngle.html
http://mathworld.wolfram.com/DihedralAngle.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5496186
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5496186


2683–2695, 2012. [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=6255766. [Accessed: May. 31, 2019]

[116] E. Nastasia, F. Antonacci, A. Sarti, and S. Tubaro, “Localization of planar acoustic

reflectors through emission of controlled stimuli,” European Signal Processing

Conference, no. Eusipco, pp. 156–160, 2011. [Online]. Available: https://ieeexplore.ieee.

org/document/7074175. [Accessed: May. 31, 2019]

[117] J. Filos, A. Canclini, F. Antonacci, A. Sarti, and P. A. Naylor, “Localization of Planar

Acoustic Reflectors from the Combination of Linear Estimates,” 2012 Proceedings of the

20th European Signal Processing Conference (EUSIPCO), no. Eusipco, pp. 1019–1023,

2012. [Online]. Available: https://ieeexplore.ieee.org/document/6334299. [Accessed:

May. 31, 2019]

[118] M. Kuster, D. de Vries, E. M. Hulsebos, and A. Gisolf, “Acoustic imaging

in enclosed spaces: Analysis of room geometry modifications on the impulse

response,” The Journal of the Acoustical Society of America, vol. 116, no. 4, p.

2126, 2004. [Online]. Available: http://scitation.aip.org/content/asa/journal/jasa/116/4/

10.1121/1.1785591. [Accessed: Oct. 17, 2016]

[119] L. Zamaninezhad, P. Annibale, and R. Rabenstein, “Localization of environmental

reflectors from a single measured transfer function,” ISCCSP 6th International

Symposium on Communications, Control and Signal Processing, Proceedings, pp.

157–160, 2014. [Online]. Available: https://ieeexplore.ieee.org/document/6877839.

[Accessed: May. 31, 2019]

[120] J. Filos, A. P. Habets, and P. A. Naylor, “A Two-Step Approach to Blindly Infer Room

Geometries,” Proc. Int. Workshop on Acoustic Echo and Noise Control (IWAENC), 2010.

[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.707.7889.

[Accessed: Aug. 7, 2019]

[121] Y. El Baba, A. Walther, and E. A. Habets, “Reflector localization based on multiple reflec-

tion points,” European Signal Processing Conference, vol. 2016-Novem, pp. 1458–1462,

2016, [Accessed: May. 31, 2019].

[122] Acoustics – Measurements of room acoustic parameters Part 1: Performance Spaces (ISO

3382-1:2009), British Standards Institute Std., 2009.

[123] G. Kearney, (2016), “SADIE Binaural Measurements,” Spatial Audio for Domestic

278

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6255766
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6255766
https://ieeexplore.ieee.org/document/7074175
https://ieeexplore.ieee.org/document/7074175
https://ieeexplore.ieee.org/document/6334299
http://scitation.aip.org/content/asa/journal/jasa/116/4/10.1121/1.1785591
http://scitation.aip.org/content/asa/journal/jasa/116/4/10.1121/1.1785591
https://ieeexplore.ieee.org/document/6877839
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.707.7889


Interactive Entertainment. [Online]. Available: https://www.york.ac.uk/sadie-project/

database old.html [Accessed: May. 31, 2019].

[124] V. Pulkki, M. Karjalainen, and J. Huopaniemi, “Analyzing Virtual Sound Source

Attributes Using Binaural Auditory Model,” J. Audio Eng. Soc, vol. 47, no. 4, pp. 203 –

217, 1999. [Online]. Available: http://lib.tkk.fi/Diss/2001/isbn9512255324/article5.pdf.

[Accessed: Oct. 11, 2016]

[125] J. Woodruff and D. Wang, “Sequential organization of speech in reverberant environments

by integrating monaural grouping and binaural localization,” IEEE Transactions on Au-

dio, Speech and Language Processing, vol. 18, no. 7, pp. 1856–1866, 2010, [Accessed:

May. 31, 2019].

[126] J. C. Middlebrooks and D. M. Green, “Sound Localization By Human Listeners,” Annual

Review of Pyschology, vol. 42, no. February 1991, pp. 135–159, 1991. [Online]. Avail-

able: http://www.annualreviews.org/doi/abs/10.1146/annurev.ps.42.020191.001031. [Ac-

cessed: May. 31, 2019]

[127] M. Slaney, (1998), “Auditory Toolbox,” Palo Alto, CA. [Online]. Available:

https://engineering.purdue.edu/∼malcolm/interval/1998-010/ [Accessed: May. 31, 2019].

[128] B. Gao, (2014), “Cochleagram and IS-NMF2D for Blind Source Separa-

tion.” [Online]. Available: http://uk.mathworks.com/matlabcentral/fileexchange/

48622-cochleagram-and-is-nmf2d-for-blind-source-separation?focused=3855900&tab=

function [Accessed: May. 31, 2019].

[129] B. Rafaely and A. Avni, “Interaural cross correlation in a sound field represented by

spherical harmonics,” The Journal of the Acoustical Society of America, vol. 127, no. 2,

p. 823, 2010. [Online]. Available: http://scitation.aip.org/content/asa/journal/jasa/127/2/

10.1121/1.3278605. [Accessed: July. 04, 2019]

[130] E. Weisstein, (2019), “Cross-Correlation.” [Online]. Available: http://mathworld.

wolfram.com/Cross-Correlation.html [Accessed: July. 04, 2019].

[131] M. S. Shanker, M. Y. Hu, and M. S. Hung, “Effect of data standardization on neural

network training,” Omega, vol. 24, no. 4, pp. 385–397, 1996, [Accessed: Jan. 15, 2020].

[132] Google, 2019, “TensorFlow,” Google, https://www.tensorflow.org/. [Online]. Available:

https://www.tensorflow.org/ [Accessed: Oct. 26, 2016].

279

https://www.york.ac.uk/sadie-project/database_old.html
https://www.york.ac.uk/sadie-project/database_old.html
http://lib.tkk.fi/Diss/2001/isbn9512255324/article5.pdf
http://www.annualreviews.org/doi/abs/10.1146/annurev.ps.42.020191.001031
https://engineering.purdue.edu/~malcolm/interval/1998-010/
http://uk.mathworks.com/matlabcentral/fileexchange/48622-cochleagram-and-is-nmf2d-for-blind-source-separation?focused=3855900&tab=function
http://uk.mathworks.com/matlabcentral/fileexchange/48622-cochleagram-and-is-nmf2d-for-blind-source-separation?focused=3855900&tab=function
http://uk.mathworks.com/matlabcentral/fileexchange/48622-cochleagram-and-is-nmf2d-for-blind-source-separation?focused=3855900&tab=function
http://scitation.aip.org/content/asa/journal/jasa/127/2/10.1121/1.3278605
http://scitation.aip.org/content/asa/journal/jasa/127/2/10.1121/1.3278605
http://mathworld.wolfram.com/Cross-Correlation.html
http://mathworld.wolfram.com/Cross-Correlation.html
https://www.tensorflow.org/


[133] MathWorks, (2019), “cascadeforwardnet.” [Online]. Available: https://uk.mathworks.

com/help/deeplearning/ref/cascadeforwardnet.html

[134] S. E. Fahlman and C. Lebiere, “The Cascade-Correlation Learning Architecture,” Ad-

vances in neural information processing systems 2, pp. 524–532, 1990, [Accessed: May.

31, 2019].

[135] Y. A. LeCun, L. Bottou, G. B. Orr, and K. R. Müller, “Efficient BackProp,” in Neural

Networks: Tricks of the Trade. Springer Berlin Heidelberg, 1998, vol. Lecture Notes,

ch. 1, pp. 9–50, [Accessed: May. 31, 2019].

[136] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proceedings

of the International Conference on Learning Representations 2015, pp. 1–15. [Online].

Available: http://arxiv.org/abs/1412.6980 [Accessed: May. 31, 2019].

[137] Google, (2019), “tf.nn.softmax cross entropy with logits.” [Online]. Avail-

able: https://www.tensorflow.org/api docs/python/tf/nn/softmax cross entropy with

logits [Accessed: July. 05, 2019].

[138] Equator Audio, 2016, “Equator D5 Coaxial Loudpseakers,” Equator Audio,

http://www.equatoraudio.com. [Online]. Available: http://www.equatoraudio.com/

New-Improved-D5-Studio-Monitors-Pair-p/d5.htm [Accessed: Oct. 25, 2016].

[139] Genelec, (n.d.).

[140] A. Farina, “Simultaneous measurement of impulse response and distortion with a

swept-sine technique,” Proc. AES 108th conv, Paris, France, 2000. [Online]. Available:

http://www.aes.org/e-lib/browse.cfm?elib=10211. [Accessed: May. 31, 2019]

[141] F. Stevens and D. Murphy, “Spatial impulse response measurement in an urban

environment,” in Presented at the 55th AES International Conference on Spatial Audio

2014, Helsinki, Finland, pp. 1–8. [Online]. Available: http://www.aes.org/e-lib/browse.

cfm?elib=17355 [Accessed: June. 18, 2019].

[142] MathWorks, 2006, “kurkalwallis.” [Online]. Available: https://uk.mathworks.com/help/

stats/kruskalwallis.html [Accessed: Aug. 28, 2019].

[143] B. Rafaely, B. Weiss, and E. Bachmat, “Spatial aliasing in spherical microphone arrays,”

IEEE Transactions on Signal Processing, vol. 55, no. 3, pp. 1003–1010, 2007, [Accessed:

May. 31, 2019].

[144] M. Acoustics, (n.d.), “Eigenmike Microphone,” MH Acoustics,

280

https://uk.mathworks.com/help/deeplearning/ref/cascadeforwardnet.html
https://uk.mathworks.com/help/deeplearning/ref/cascadeforwardnet.html
http://arxiv.org/abs/1412.6980
https://www.tensorflow.org/api_docs/python/tf/nn/softmax_cross_entropy_with_logits
https://www.tensorflow.org/api_docs/python/tf/nn/softmax_cross_entropy_with_logits
http://www.equatoraudio.com/New-Improved-D5-Studio-Monitors-Pair-p/d5.htm
http://www.equatoraudio.com/New-Improved-D5-Studio-Monitors-Pair-p/d5.htm
http://www.aes.org/e-lib/browse.cfm?elib=10211
http://www.aes.org/e-lib/browse.cfm?elib=17355
http://www.aes.org/e-lib/browse.cfm?elib=17355
https://uk.mathworks.com/help/stats/kruskalwallis.html
https://uk.mathworks.com/help/stats/kruskalwallis.html


http://www.mhacoustics.com/. [Online]. Available: http://www.mhacoustics.com/

products [Accessed: Sept. 21, 2016].

[145] N. Epain and C. T. Jin, “Spherical Harmonic Signal Covariance and Sound

Field Diffuseness,” IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 24, no. 10, pp. 1796–1807, 2016. [Online]. Available: https:

//ieeexplore.ieee.org/document/7501622. [Accessed: May. 31, 2019]

[146] B. N. Gover, J. G. Ryan, and M. R. Stinson, “Microphone array measurement system

for analysis of directional and spatial variations of sound fields,” The Journal of the

Acoustical Society of America, vol. 112, no. 5, pp. 1980–1991, 2002. [Online]. Available:

https://asa.scitation.org/doi/10.1121/1.1508782. [Accessed: Jan. 15, 2020]

[147] A. Politis, (2015), “getSH,” Espoo, Finland. [Online]. Available: https://github.

com/polarch/Spherical-Harmonic-Transform/blob/master/getSH.m [Accessed: May. 31,

2019].

[148] MathWorks, “mat2gray.m.” [Online]. Available: https://uk.mathworks.com/help/images/

ref/mat2gray.html [Accessed: Sept. 11 2019].

[149] MathWorks, (2017), “Watershed.” [Online]. Available: https://uk.mathworks.com/help/

images/ref/watershed.html [Accessed: May. 31, 2019].

[150] S. Eddins, 2002, “The Watershed Transform: Strategies for Image Segmen-

tation.” [Online]. Available: https://uk.mathworks.com/company/newsletters/articles/

the-watershed-transform-strategies-for-image-segmentation.html [Accessed: May. 31,

2019].

[151] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.

Berlin, Heidelberg: MIT Press, 2009, pp. 603–611.

[152] CATT-Acoustics, CATT-A V9.1 User’s Manual. Gothenburg Sweden: CATT-Acoustics,

2016.

[153] A. Krokstad, S. Strøm, and S. Sørsdal, “Calculating the Acoustical Room Response by

The Use of Ray Tracing Technique,” Journal of Sound and Vibration, vol. 8, pp. 118–125,

1968, [Accessed: May. 31, 2019].

[154] R. Stafford, 2016, “How can I plot a 3D plane knowing its center point coordinates

and its Normal.” [Online]. Available: https://uk.mathworks.com/matlabcentral/answers/

281

http://www.mhacoustics.com/products
http://www.mhacoustics.com/products
https://ieeexplore.ieee.org/document/7501622
https://ieeexplore.ieee.org/document/7501622
https://asa.scitation.org/doi/10.1121/1.1508782
https://github.com/polarch/Spherical-Harmonic-Transform/blob/master/getSH.m
https://github.com/polarch/Spherical-Harmonic-Transform/blob/master/getSH.m
https://uk.mathworks.com/help/images/ref/mat2gray.html
https://uk.mathworks.com/help/images/ref/mat2gray.html
https://uk.mathworks.com/help/images/ref/watershed.html
https://uk.mathworks.com/help/images/ref/watershed.html
https://uk.mathworks.com/company/newsletters/articles/the-watershed-transform-strategies-for-image-segmentation.html
https://uk.mathworks.com/company/newsletters/articles/the-watershed-transform-strategies-for-image-segmentation.html
https://uk.mathworks.com/matlabcentral/answers/291485-how-can-i-plot-a-3d-plane-knowing-its-center-point-coordinates-and-its-normal
https://uk.mathworks.com/matlabcentral/answers/291485-how-can-i-plot-a-3d-plane-knowing-its-center-point-coordinates-and-its-normal


291485-how-can-i-plot-a-3d-plane-knowing-its-center-point-coordinates-and-its-normal

[Accessed: Aug. 28, 2019].

[155] E. Weisstein, (2019), “Plane-Plane Intersection.” [Online]. Available: http://mathworld.

wolfram.com/Plane-PlaneIntersection.html [Accessed: July. 02, 2019].

[156] N. Khaeld, 2011, “plane intersect.” [Online]. Available: https://uk.mathworks.com/

matlabcentral/fileexchange/17618-plane-intersection [Accessed: June. 18, 2019].

[157] E. Weisstein, (2019), “Line-Plane Intersection.” [Online]. Available: http://mathworld.

wolfram.com/Line-PlaneIntersection.html [Accessed: July. 01, 2019].

[158] A. Southern, “shoebox response.m,” Espoo, Finland.

[159] MH Acoustics, (2016), “Eigenbeam Datasheet,” p. 12. [Online]. Available: https:

//mhacoustics.com/sites/default/files/EigenbeamDatasheet R01A.pdf [Accessed: May.

31, 2019].

[160] E. Sengpiel, (2014), “Speed of sound in Humid Air.” [Online]. Available:

http://www.sengpielaudio.com/calculator-airpressure.htm [Accessed: Jan. 20, 2020].

[161] G. Naylor and J. H. Rindel, “Predicting room acoustical behaviour with the ODEON

computer model,” The Journal of the Acoustical Society of America, vol. 92, no. 4,

p. 2346, 1992. [Online]. Available: https://asa.scitation.org/doi/10.1121/1.404931.

[Accessed: May. 31, 2019]

[162] B. Efron, “Bootstrap Methods: Another Look at the Jackknife,” The Annals of Statistics,

vol. 7, no. 1, 1979. [Online]. Available: https://projecteuclid.org/euclid.aos/1176344552.

[Accessed: Aug. 28, 2019]

[163] MathWorks, (2006), “bootstrapci.” [Online]. Available: https://uk.mathworks.com/help/

stats/bootci.html [Accessed: Aug. 28, 2019].

[164] H. Malik, “Acoustic environment identification and its applications to audio forensics,”

IEEE Transactions on Information Forensics and Security, vol. 8, no. 11, pp. 1827–1837,

2013. [Online]. Available: https://ieeexplore.ieee.org/document/6595031. [Accessed:

Sept. 10, 2019]

[165] NumFocus, (2019), “NumPy.” [Online]. Available: http://www.numpy.org/ [Accessed:

Sept. 10, 2019].

282

https://uk.mathworks.com/matlabcentral/answers/291485-how-can-i-plot-a-3d-plane-knowing-its-center-point-coordinates-and-its-normal
https://uk.mathworks.com/matlabcentral/answers/291485-how-can-i-plot-a-3d-plane-knowing-its-center-point-coordinates-and-its-normal
http://mathworld.wolfram.com/Plane-PlaneIntersection.html
http://mathworld.wolfram.com/Plane-PlaneIntersection.html
https://uk.mathworks.com/matlabcentral/fileexchange/17618-plane-intersection
https://uk.mathworks.com/matlabcentral/fileexchange/17618-plane-intersection
http://mathworld.wolfram.com/Line-PlaneIntersection.html
http://mathworld.wolfram.com/Line-PlaneIntersection.html
https://mhacoustics.com/sites/default/files/Eigenbeam Datasheet_R01A.pdf
https://mhacoustics.com/sites/default/files/Eigenbeam Datasheet_R01A.pdf
http://www.sengpielaudio.com/calculator-airpressure.htm
https://asa.scitation.org/doi/10.1121/1.404931
https://projecteuclid.org/euclid.aos/1176344552
https://uk.mathworks.com/help/stats/bootci.html
https://uk.mathworks.com/help/stats/bootci.html
https://ieeexplore.ieee.org/document/6595031
http://www.numpy.org/


[166] SciPy, (2019), “SciPy.” [Online]. Available: https://www.scipy.org/ [Accessed: Sept. 10,

2019].

283

https://www.scipy.org/

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Author Deceleration
	I Introduction
	Introduction
	Hypothesis
	Description of Hypothesis

	Novel Contributions
	Thesis Layout


	II Literature Review
	Conceptual Foundations
	Introduction
	Fundamentals of Acoustics
	Sound Propagation
	Acoustic Reflection
	The Room Impulse Response

	Image-Source Method
	Binaural Room Impulse Responses
	Spatial Room Impulse Responses - Spherical Microphone Arrays
	Summary

	Reflection Detection and Direction-of-Arrival Estimation: Relevant Previous Work
	Introduction
	Direction-of-Arrival Estimation
	Spherical Microphone Arrays
	Intensity Vector Analysis
	Multiple Signal Classification (MUSIC)
	Eigenbeam-Multiple Signal Classification (EB-MUSIC)
	Estimation of Signal Parameters by Rotational Invariance Techniques (ESPRIT)
	Eigenbeam - Estimation of Signal Parameters via Rotational Invariance Techniques (EB-ESPRIT)
	Delay-and-Sum Beamformer
	Plane-Wave Decomposition
	Minimum Variance Distortionless Response (MVDR) Beamformer

	Binaural Dummy Heads
	Interaural Level and Interaural Time Difference Lookup Direction-of-Arrival analysis
	Machine Learning for Direction-of-Arrival Estimation of Binaural Signals

	Discussion

	Reflection Detection
	Microphone Array Based
	Circular Variance Local Maxima Technique
	Cross-Wavelet Transforms
	Linear Radon Transform
	Clustered - Dynamic Phase-Slope Algorithm

	System Agnostic
	Adaptive Thresholding
	Matching Pursuit
	Dynamic Time Warping Reflection Detection

	Discussion

	Summary

	Geometry Inference: Related Work
	Introduction
	Image-Source Reversion
	Euclidean Distance Matrix: Echo Sorting and Geometry Inference
	Room of Best Fit
	Synthetic Reflection Fitting
	Maximum Likelihood Image-Source Estimation
	Image-Source Direction and Ranging-Loudspeaker-Image Bisection

	Direct Localisation
	Elliptical Constraint Method
	3D Elliptical Constraint Method
	Ellipsoid based 3D Geometry Inference using a Combination of Linear Estimates
	Ellipsoid Tangent Sample Consensus
	Image-Microphone Reflector Localisation
	Acoustic Imaging
	Reflector Localisation using Room Transfer Functions.

	Summary


	III Original Research
	Direction of Arrival Analysis for Reflections in Binaural Room Impulse Responses
	Introduction
	Consideration of the Problem Domain
	Method
	Binaural Model
	Neural Network Data Model
	Neural Network
	Training the Neural Network

	Testing
	Neural Network Parameter Comparisons
	Head rotation
	Neural Network Comparisons
	Binaural Model Comparisons

	Results
	Bias Correction
	Data Comparison

	Discussion
	Conclusions

	Spatiotemporal Decomposition Based Reflection Detection
	Introduction
	Problem Formulation
	Method
	Time-of-Arrival Estimation

	Testing
	Results
	Scenario One: Randomly Generated Train of Pulses
	Scenario Two: Simulated Spatial Room Impulse Responses
	Scenario Three: Real-World Spatial Room Impulse Responses

	Discussion
	Conclusions

	Geometry Inference of Convex and Non-Convex Rooms using Compact Microphone Arrays
	Introduction
	Problem Formulation
	Method
	Image-source Reversion
	Geometry Validation

	Testing
	Results
	Preliminary Testing: Ground-Truth
	Test Case One
	Test Case Two
	Test Case Three

	Discussion
	Conclusions

	Conclusions and Future Work
	Thesis Summary
	Restatement of Hypothesis
	Novel Contributions
	Future Work
	Closing Remarks


	IV Appendices
	Appendix Spatial Room Impulse Responses
	Appendix List of Acronyms
	Appendix List of Symbols
	Appendix Accompanying Material
	Bibliography


