
 1 

 
 

Perturbation of Replication Dynamics In Human 
Pluripotent Stem Cells Links Structural and Numerical 

Chromosomal Instability 
 

By: 

 

Jason Alexander Halliwell 
 

A thesis submitted in partial fulfilment for the requirements for the degree of Doctor 

of Philosophy 

 

 

 

 

The University of Sheffield, 

Faculty of Science,  

Department of Biomedical Science. 

 

 

 

 

 

February 2020 



 2 

Acknowledgements 
 

Without the help and support of several people, the work presented in this thesis 

would not have been possible. I would like to start by thanking Peter Andrews. When 

we met during the UKRMP project, I never imagined that I would be completing a 

PhD after 4 thoroughly enjoyable years. Before joining your laboratory, I was 

considering leaving my career in science after several failed attempts to secure a 

PhD position. However, you gave me an opportunity that I will be forever grateful for. 

Your enthusiasm and encouragement over the years has inspired me to reach my 

goals and I am now more passionate than ever. 

 

To Ivana Barbaric, thank you for all the advice, support and mentorship throughout 

this process. I feel incredibly fortunate to have been supervised by you. You always 

encouraged me to discuss my ideas and helped me refine them finding solutions for 

problems that I would never have thought of. I look forward to collaborating with you 

in the future. 

 

To the members of the lab, you all made coming to work worthwhile even during the 

times when every experiment I turned my hand to would fail. I’ve never known such 

an energetic, intelligent and passionate group of people, who I know have such a 

bright future ahead of them. I would especially like to thank Tom Frith, who took me 

under his wing on day one and has been an endless source of encouragement. 

Also, to Paul Gokhale, who has always been open to discussing ideas with me over 

a coffee or a beer. 

 

I would also like to thank my family. To my parents, Anna and Michael Halliwell and 

my brothers and sister-in-law, Chris, Robert, Kimi and Gemma, thank you for always 

supporting me throughout my education. Whilst undertaking a PhD, I have felt your 

love, support and pride more than ever. Without you, I would not have had the 

motivation to continue.  

 

Lastly, to my best friend Kyle Lynd. The term ‘best friend’ is often misused by those 

that have yet to experience true friendship, I however, am one of the fortunate few. 

You sacrificed so much to allow me to move to Sheffield, putting yourself in an 



 3 

uncomfortable position so that I could be happy. This was truly something to behold 

and an act of generosity that I feel undeserving of, yet I am truly grateful for. Thanks 

for all the conversations and the good times we’ve shared, I look forward to our 

countless future endeavours. Thank you, brother.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4 

Abstract 
 

Human pluripotent stem cells acquire genetic changes on prolonged culture which 

pose a safety concern for the translation of human pluripotent stem cell-based 

medicine. The recurrent nature of these genetic changes suggests that first a 

mutation must occur and then selection and enrichment of that variant should it 

provide the variant cell with a growth advantage. It is now understood that the 

mechanism of selection is responsible for the recurrent appearance of these genetic 

changes. However, the origins and the mechanisms through which these mutations 

arise in the first place is poorly understood. To ensure the successful translation of 

human pluripotent stem cell-derived therapies, it will be important to develop culture 

conditions that enable the expansion of these cells whilst minimising mutation. 

Current efforts to achieve this have been impeded by a lack of in-depth knowledge 

of the factors responsible for mutation in these cells. 

 

In this body of work, the breakpoint sequence of a frequent tandem duplication that 

affects chromosome 20 has been elucidated. Following this, it was possible to infer 

that these breakpoint regions are susceptible to lesions from replication stress. In 

contrast to somatic cells, human pluripotent stem cells have an increased 

susceptibility to DNA damage and mitotic errors that are caused by persistent 

replication stress. Importantly, the addition of exogenous nucleosides to cell culture 

medium is sufficient to alleviate replication stress, DNA damage and errors that 

occur during mitosis. Finally, nucleosides also improved survival of human 

pluripotent stem cells, demonstrating that replication stress in these cells was a 

major cause of death during S phase and also responsible for mitotic catastrophe. 

 

Overall, our findings have significant implications, such as allowing the expansion of 

large numbers of human pluripotent stem cells that are required for medical 

applications whilst minimising the occurrence of genetic change. These findings will 

facilitate the safe translation of human pluripotent stem cell-based regenerative 

medicine applications. 
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1 Introduction 
 

1.1 A brief introduction and the objectives of this report 

 

Human pluripotent stem cells (PSC), specifically human embryonic stem (ES) cells 

and human induced pluripotent stem cells (iPSC) are unique in their ability to self-

renew indefinitely in culture and retain the capacity to differentiate into any cell type 

of the human body (Thomson et al., 1998, Takahashi et al., 2007). Unlike human 

iPSC, human ES cells are found in the early embryo. Specifically, human ES cells 

are derived from the inner cell mass of the blastocyst stage embryo, where they 

exist transiently before going on to form all somatic and germ cell lineages 

(Thomson et al 1998). Human iPSC are generated directly from adult cells through a 

process known as reprogramming. Over the last 20 years, human PSC have been 

extensively researched for their application in regenerative medicine, disease 

modelling and developmental biology (Wu and Hochedlinger, 2011, Murry and 

Keller, 2008, Pera and Trounson, 2004). To fully and safely exploit human PSC for 

these applications, it is first necessary to expand these cells into large number whilst 

maintaining their genetic integrity. However, it was not long after human PSC were 

first derived that it was discovered that they are subject to genetic changes in vitro. 

These changes provided the genetically ‘variant’ cells with a selective advantage in 

culture which enables them to outcompete their genetically ‘normal’ counterparts 

(Draper et al., 2004, Olariu et al., 2010). 

 

Through the course of this study, the origins and mechanisms of mutation in human 

PSC will be explored. In human PSC, advantageous mutations are selected for 

during culture and it is this mechanism that is responsible for the recurrent nature of 

these genetic changes. However, very little is known of the origins and mechanisms 

for how these mutations are acquired. To achieve the clinical translation of 

genetically stable human PSC therapeutics, a comprehensive understanding of the 

origins of in vitro mutation will enable the optimisation of culture conditions to reduce 

genomic damage and mutation. 
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1.2 Human Pluripotent Stem Cells 

 

1.2.1 Research leading to the derivation of human embryonic stem cells 

 

 1.2.1.1 Mouse embryonal carcinoma cells and embryonic stem cells  

 

Embryonal carcinoma (EC) cells are the stem cells of teratocarcinomas. These 

tumours exhibit differentiated tissue of the three primary germ layers that are 

otherwise associated with the early embryo. It was discovered that the mouse 129 

strain frequently developed testicular teratocarcinoma and not only did they contain 

differentiated tissue of the three germ layers but also pluripotent EC cells (Stevens 

and Little, 1954). The culture mouse EC cells was first achieved in 1967 by 

maintaining the cells in Dulbecco's modified eagle media (DMEM) supplemented 

with 15% calf serum in Petri dishes that had been coated with a feeder layer of 

irradiated mouse embryo fibroblasts (MEF) (Finch and Ephrussi, 1967). Under these 

conditions, the cells were able to be maintained for long periods in an 

undifferentiated state (Finch and Ephrussi, 1967). 

 

At this point, the similarity of mouse EC cells with the inner cell mass cells of the 

blastocyst stage, early mouse embryo were apparent (Jacob, 1978). The 

development of culture conditions able to support mouse EC cells then led to the 

successful derivation of mouse ES cells. After several unsuccessful attempts to 

derive pluripotent cells from mouse embryos, it was established that previous 

failures had been a result of harvesting the improper stage of the embryo, 

insufficient cell numbers being explanted in vitro and culture conditions that were 

unsupportive of the pluripotent cells (Evans and Kaufman, 1981, Martin, 1981). In 

1981, these failures were overcome by harvesting 2.5-day old blastocysts and 

culturing for 4-6 days. After 2 days it was noted that the trophectoderm had grown 

out and the inner cell mass had developed and begun to represent large egg-like 

structures. These were then picked and re-plated, cells that resembled EC cells 

attached and began to proliferate. They presented pluripotent characteristics, 

forming teratomas when injected into syngeneic mice and formed embryoid bodies 

when removed from the MEF feeder layer and most importantly, generated chimeric 

mice with germline contribution (Evans and Kaufman, 1981). 
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 1.2.1.2 Human embryonal carcinoma and embryonic stem cells  

 

Like with mice, teratocarcinomas can form in humans and commonly affect young 

adults in the form of testicular and ovarian tumours, amongst others (dos Santos 

Silva and Swerdlow, 1991). By adapting the techniques learnt in mouse studies, it 

was found possible to propagate human EC cells in vitro (Hogan et al., 1977, 

Andrews et al., 1980). Upon characterisation of human EC cells, distinct differences 

in cell surface antigen expression were identified, such as SSEA1, SSEA3, SSEA4, 

TRA-1-60 and TRA-1-81, which differed between species (Andrews et al., 1980, 

Andrews et al., 1996). However, both human and mouse EC cells were later found 

to express pluripotency-associated transcription factors NANOG, OCT4 and SOX2 

(Mitsui et al., 2003, Schöler et al., 1989, Gubbay et al., 1990). Further, human and 

mouse EC cells also acquire similar of karyotypic abnormalities that are associated 

with germ cell tumours. Amplifications to chromosome 12 and 17 are frequently 

observed in human EC cells (Skotheim et al., 2002, Atkin and Baker, 1982, 

Rodriguez et al., 1993). In mouse EC cells, chromosome 11 is frequently amplified, 

which is syntenic with human chromosome 17q, suggesting these variants are 

selected for tumour growth (Andrews et al., 2005). 

 

Several years later, Thomson et al published their seminal work describing the 

derivation of human ES cells in vitro. Fresh or frozen IVF cleavage stage embryos 

were cultured to the blastocyst stage before transferring the cells of the inner cell 

mass to a layer of MEF feeder cells (Thomson et al., 1998). These human ES cells 

proliferated in an undifferentiated state for prolonged periods and produced 

teratomas, containing tissue pertaining to the three germ layers (Thomson et al., 

1998). Further, they expressed the same cell surface antigens as human EC cells, 

including SSEA3, SSEA4, TRA-1-81 and Alkaline Phosphatase (Thomson et al., 

1998), again highlighting that EC cells were likely the malignant counterparts of ES 

cells (Andrews et al., 2005). 

 

As the field progressed, much research turned to understanding the signalling 

pathways responsible for lineage specification. Early work in this area resulted in 

protocols which were rarely reproducible often suffering from the undefined 
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combinations of growth factors in different lots of serum. However, with the 

development of serum-free media, the directed differentiation of human ES cells 

began to be optimized (Wiles and Johansson, 1999). With these discoveries, the 

protocols used to generate clinically relevant cell types, such as dopaminergic 

neurones, amongst many others, have become more defined (Perrier et al., 2004). 

Twenty years since the in vitro derivation of human ES cells, the promise of stem 

cells in regenerative medicine has begun to be realised. The first clinical trial to treat 

Parkinson’s disease with human PSC derived dopaminergic neurones is now 

underway in Japan (Barker et al., 2017).  

 

1.2.2 Human induced pluripotent stem cells  

 

The use of human ES cells has been controversial due to ethical and religious 

objections to the manipulation of human embryos. Furthermore, the foreseen issues 

of using non-autologous cells in cell therapy and the lack of available ES cells 

donors has motivated research into generating an alternative source of pluripotent 

stem cells.  

 

In 2006, Shinya Yamanaka and his colleagues presented their work showing the 

ability to reprogram mouse adult cells back to a pluripotent state that they termed 

induced Pluripotent Stem Cells (iPSC) and in 2007 they repeated this using human 

cells (Takahashi and Yamanaka, 2006, Takahashi et al., 2007). Human dermal 

fibroblasts were retrovirally transfected to ectopically express four key pluripotency-

associated genes now known as the Yamanaka factors; OCT3/4, Sox2, Klf4 and c-

MYC. The cells presented a human ES cell-like morphology and when tested 

presented indistinguishable pluripotent characteristics. Like human ES cells, human 

iPSC did not express the surface antigen SSEA1 but did express SSEA3, SSEA4, 

TRA-1-60, TRA-1-81, Alkaline Phosphatase and the transcription factor NANOG. 

They formed embryoid bodies that expressed genes associated with the three germ 

layers and when injected into SCID mice they formed teratomas. Lastly, they 

demonstrated that direct differentiation protocols to midbrain dopaminergic neurones 

and cardiac myocytes, that were previously established in human ES cells, could be 

replicated in human iPSC (Takahashi et al., 2007). This discovery presented a 

breakthrough for the future of autologous cell therapy but has also rapidly expanded 
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the field of disease modelling. Human iPSC technology has allowed researchers to 

generate an unlimited source of pluripotent cells which are capable of being 

differentiated into disease-relevant target cells for their study in vitro (Kumar et al., 

2018). 

 

Despite these advantages, it is important to highlight some of the problems 

associated with using human iPSC for clinical use. Early work relied on retroviral 

integration of the Yamanaka factors which would restrict the use of human iPSC for 

clinical applications as these retroviruses integrate randomly within the genome with 

variable copy numbers (Takahashi et al., 2007). However, it was not long before a 

plethora of transgene-free alternatives were reported and included; lentiviral 

integration (Carey et al., 2009), non-integrating DNA plasmid (Okita et al., 2008), 

Sendai virus (Fusaki et al., 2009), micro-RNA (Judson et al., 2009) and the most 

promising, mRNA based reprogramming, which is clinically relevant, non-viral and 

non-integrating (Warren et al., 2010).  

 

Another issue relates to the ectopic expression OCT3/4, Sox2, Klf4 and c-MYC used 

during the reprogramming process. By comparing the enrichment patterns of gene 

sets associated with pluripotency to the expression profiles of tumours; transcripts of 

OCT4, SOX2 and c-MYC were all highly enriched within poorly differentiated 

tumours (Ben-Porath et al., 2008). Further, when analysing the ability of iPSC to 

generate mouse chimaeras, it was found that approximately 20% of the F1 mice had 

developed tumours caused by the reactivation of c-MYC expression in the iPSC 

derived tissue (Okita et al., 2007). However, it should be noted that the transplant of 

human PSC products will be terminally differentiated so the risk of tumour formation 

from non-proliferative cells is minimised. Despite this, the generation of human iPSC 

has been fundamental in overcoming ethical restrictions, donor availability and 

immunological barriers to using pluripotent cells in regenerative medicine.  

 

1.3 Genetically variant human pluripotent stem cells  

 

The application of human PSC in cell-based regenerative medicine will require the 

generation and expansion of genetically normal undifferentiated cells. However, 

numerous reports of genetically variant human PSC have been made to the 
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literature that raise concerns over human PSC therapeutic application. Genetically 

variant human PSC have been shown to display changes in behavioural 

characteristics which can confuse experimental conclusions or alter the capacity for 

the cells to differentiate (Fazeli et al., 2011, Werbowetski-Ogilvie et al., 2009). These 

findings have raised particular concern for the safe application of human PSC in cell-

based regenerative medicine, particularly as some genetically variant cells show 

signs of abnormal and excessive growth (Werbowetski-Ogilvie et al., 2009).  

 

The origin of these mutations can be broadly classified as source cell mutations or 

acquired genetic variants. Source cell mutations relate to those mutations found in 

the starting cell, put differently these are either mutations present in the early 

embryonic cells or adult cells used to derive ES and iPSC or mutations induced 

during their derivation or reprogramming. Acquired genetic mutations arise during 

the process of prolonged in vitro cell culture of established PSC lines.  

 

Mutations that arise in the early embryo are generally not viable but if tolerated can 

become fixed into the differentiated lineages these cells go on to form. In the same 

way, it is possible to clonally expand variant ES cells from donated IVF embryos. 

However, these mutations will be present in 100% of the population and so can be 

easily detected and excluded from future work if the mutation is deemed to be 

problematic for the intended application. The choice of adult cell used in 

reprogramming to iPSC should be carefully considered. In one study, fibroblasts and 

endothelial progenitor cells were acquired from patients of different ages and 

reprogrammed to iPSC cells to analyse mutations during reprogramming from 

monoclonal or polyclonal cell sources. Overall, the fibroblasts showed a mutational 

profile that was consistent with the mosaic nature of a polyclonal source of cells 

(Rouhani et al., 2016). The monoclonal endothelial progenitor cells had a lower 

frequency of mutation, although some of these mutations had arisen as a result of 

their in vitro expansion, prior to reprogramming (Rouhani et al., 2016). Further, the 

same study showed that the process of reprogramming itself was mutagenic at the 

nucleotide level, which is consistent with reports elsewhere (Rouhani et al., 2016, 

Cheng et al., 2012b). For these reasons, when generating clinical-grade human 

iPSC, haematopoietic stem cells could provide a good source of starting material as 
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they are highly amenable to reprogramming, have a low mutation rate and are also 

not exposed to environmental mutagens such as UV radiation (Wang et al., 2019).  

 

The methodology used to generate human iPSC could cause potentially dangerous 

mutations that result from the delivery of reprogramming factors. It was 

demonstrated, in a dose-dependent manner, that the transfection of reprogramming 

factors induced replication stress and DNA damage in the source cell lines that 

could lead to mutations in the daughter human iPSC (Ruiz et al., 2015). Multiple 

studies have compared the different reprogramming approaches and their relative 

impact on the genetic integrity of human iPSC (Sugiura et al., 2014, Cheng et al., 

2012a, Bhutani et al., 2016, Schlaeger et al., 2014, Ruiz et al., 2015).  

Upon sequencing, the studies reported a high incidence of SNP mutations that were 

not present in the parental source cell line, and so, must have been introduced 

during reprogramming. The mRNA reprogrammed lines were deemed to be the 

safest as they possessed fewer overall SNPs in exonic regions (Sugiura et al., 2014, 

Cheng et al., 2012a, Bhutani et al., 2016, Schlaeger et al., 2014) due to the non-

integrating and short half-life of mRNA transfections (Warren et al., 2010). 

 

Acquired genetic mutations present a much larger problem to the human PSC field. 

These mutations are not present at the stage of derivation but arise during 

subsequent culture. Both single nucleotide polymorphisms and structural and 

numerical chromosomal instabilities afflict human PSC and arise during culture in a 

non-random nature. Assuming that the initial mutations occur randomly across the 

genome, this non-random nature of observed mutants most likely reflects particular 

genetic mutations providing the variant cell with a growth advantage (Olariu et al., 

2010). As these mutations could confer a behavioural change in the pluripotent cell 

or the differentiated derivatives, they pose a potential threat for clinical use. Regular 

screening of PSC cultures is necessary to monitor for the appearance of genetic 

change.  
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1.3.1 Acquired genetic mutations in human pluripotent stem cells 

 

The appearance of large karyotypic changes in cultures of human ES cells was first 

reported in 2004 (Draper et al., 2004, Cowan et al., 2004, Rosler et al., 2004). It is 

not an uncommon observation that dividing cells acquire karyotypic changes. 

However, the non-random retention and enrichment of certain genetic variants over 

prolonged periods of in vitro culture showed that they imparted a growth advantage 

to the genetically variant cell (Baker et al., 2007, Olariu et al., 2010).  

 

With the potential implications of using genetically variant human PSC for medical 

applications, the International Stem Cell Initiative characterised both the prevalence 

and types of mutations in a large cohort of unrelated and ethnically diverse human 

PSC (Amps et al., 2011). Of 122 human ES cell lines analysed by G-banding 

karyology, 34% were found to be variant. When the cohort was divided into early 

and late passaged paired cell lines it was observed that only 14% of the early 

passage lines had acquired changes whereas 33% of the late passage were 

karyotypically variant, indicating that prolonged culture increased the likelihood of 

acquiring karyotypic changes (Amps et al., 2011). This aligned with a previous report 

of a karyotypically diploid cell line that became aneuploid for chromosome 17 in 76% 

of cells after 22 passages. When the same cell line was passaged a further 17 times 

it was present in 95% of the cells (Draper et al., 2004) 

 

When the types of changes were categorised, it was noted that chromosomal 

amplifications were far more prevalent than deletions. Over half of all the karyotypic 

changes noted were amplifications affecting chromosome 1, 12, 17, 20 or X (Figure 

1.1). To a lesser degree, deletions to chromosome 10, 18 and 22 were also 

observed (Figure 1.1). Strikingly, all chromosomes were affected to some degree in 

the profiled lines, other than chromosome 4. As karyology can only sensitively detect 

structural changes above 5 MB, SNP karyotyping was employed to detect structural 

variants down to 1 kb in length. Based on this analysis the frequency of amplification 

to chromosome 20q became apparent (Figure 1.1). Of the karyotypically normal cell 

lines analysed, 25% were found to have acquired an amplification to chromosome 

20 that encapsulated the q11.21 region, making this the most prevalent structural 

variant categorised by this study (Amps et al., 2011).  
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Figure 1.1 | Heat map ideogram of the reported chromosome changes in human PSC. Heat map depicting the frequency of 

amplification (green) or deletions (red) to each chromosome that has been reported to the literature. White coloured regions are rarely 

amplified or deleted regions. 
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Following on from this study, the types of changes have continued to be 

characterised and provided an intriguing insight into the development of more 

complex karyotypes. Through routine cytogenetic analysis of 30 diploid human ES 

cells over a period of 18 months, 16 of these lines acquired karyotypic changes. Of 

these 16 variant lines, 15 were observed to have amplified chromosome 17. Yet, in 

only 4 of these was chromosome 17 seen as the sole change, with the other 11 

variant lines having a combination of chromosome 17 with, on the most part, 

chromosome 12 or X. Chromosome 12 was observed in 9 out of 16 variant lines and 

only once was it observed as the sole karyotypic change (Baker et al., 2007). What 

is striking about this observation is the similarity of these chromosomal changes to 

the karyotypes of human EC cells as the addition of chromosome 12 and 17 are also 

observed in teratocarcinoma (Skotheim et al., 2002, Atkin and Baker, 1982, 

Rodriguez et al., 1993). It has been suggested that genetically variant human PSC 

may fit into a spectrum of transformation where EC cells represent complete 

abnormality at one end and newly derived genetically stable human PSC lies at the 

other (Andrews et al., 2005). 

 

With the advent of next-generation sequencing, the ability to probe the genome with 

greater resolution has been achievable. With this technology, it has been possible to 

detect protein-coding mutations throughout the genome that arise during extended 

culture of human PSC. From whole-exome sequencing of a cohort of 140 human 

PSC, it was discovered that TP53 was the only gene that was subject to more than 

one mutation (Merkle et al., 2017). Out of the 140 human ES cell lines tested, 5 

contained 6 mutations to the DNA binding region of p53 and all presented a 

dominant-negative phenotype that had previously been characterised to cause 

cancer (Merkle et al., 2017). The same group then obtained one of the affected lines 

at an earlier passage and monitored that the frequency p53 variant cells increased 

over subsequent passages (Merkle et al., 2017). This result suggested that, like 

large karyotypic changes, TP53 mutations were providing a selective advantage to 

the variant cells. 

 

A great deal of resources has been dedicated to understanding what drives selection 

so that selective pressures can be minimised in cultures of human PSC and thereby 

suppress the selection of variant cells to maintain stable and safe cultures for 
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downstream applications. Normal human PSC cultures require passaging at a ratio 

of 1:2 to 1:4 every 4-5 days. Considering the cell cycle time of human PSC is less 

than 24 hours this would suggest that approximately 90% of cells are lost between 

passages (Olariu et al., 2010). This huge loss in cells as a result of passaging is an 

example of the restrictive bottlenecks placed on human PSC through in vitro culture. 

Time-lapse microscopy experiments have been used to examine the re-plating 

bottlenecks in more detail. By tracking single cells from paired isogenic lines that 

were either diploid or karyotypically variant, it was found that the variant cells had a 

survival rate of 82% compared to only 50% in the diploid cells following re-plating 

(Barbaric et al., 2014). Likewise, in a separate study, the survival of chromosome 20 

variant cell lines with their diploid counterparts was assessed. It was found that 59% 

of the variant line survived compared to only 30% of diploid counterparts, with the 

diploid line more likely to express cleaved caspase-3, a marker of early apoptosis 

(Avery et al., 2013). Together, these data provided evidence that the survival of 

human PSC, particularly after re-plating was the first selective bottleneck 

encountered (Barbaric et al., 2014). Further analysis showed that of those cells that 

did survive, far fewer diploid cells re-entered the cell cycle and survived following the 

first or second cellular division demonstrating that the second and third restrictive 

bottleneck post-plating was the capacity of these cells to re-enter the cell cycle post-

plating and survive post division (Barbaric et al., 2014).  

 

These studies would suggest that the appearance of anti-apoptotic mutation during 

culture provides a strong selective advantage to genetically variant cells during 

passaging and may provide a mechanism by which the recurrent nature of 

chromosomal changes occurs in human PSC. 

 

 1.3.1.1 Characterised and candidate apoptosis-associated driver genes found 

on recurrently acquired mutations in human pluripotent stem cells 

 

One challenging aspect of research into advantageous karyotypic changes in human 

PSC is the identification of the driver genes in the mutated regions. Often, the size of 

the genomic region effected is so large that identifying a single driver gene or 

combination of genes is difficult. However, in certain cases, the persistent 

amplification or deletion of a common small region has narrowed the window of 
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possible driver genes allowing for its identification. In other cases, candidate driver 

genes have been suggested based on their predicted gain or loss of function. The 

driver genes and chromosome locations are discussed below. 

 

 1.3.1.2 Chromosome 20 

 

One of the most frequently observed and best characterised karyotypic change that 

affects cultures of human PSC is the amplification of a proximal region of the long 

arm of chromosome 20. In the ISCI study, over 20% of the tested lines possessed 

an amplification of part or all of chromosome 20 (Amps et al., 2011). Due to the 

nature of this study, it was possible to identify a common amplicon of 0.55MB in the 

20q11.21 region. This region is also commonly amplified in a number of cancers that 

include breast carcinoma, lung cancer and gastric cancer, to name just a few 

(Tanner et al., 1996, Guan et al., 1996, Tonon et al., 2005, Jin et al., 2015). 

 

Thirteen annotated genes lie within this minimal amplicon but only three of these are 

expressed in human PSCs; HM13, ID1 and BCL2L1 (Amps et al., 2011). Of these 

genes BCL2L1, that is expressed as the BCL-XL anti-apoptotic splice variant in 

human PSC, was the most likely candidate driver gene. By overexpressing BCL2L1 

in wildtype cells and comparing it to their isogenic chromosome 20 variant 

counterparts it was shown that these cells had comparable growth characteristic and 

ability when overtaking diploid cells in culture. Further, by using a small molecule 

inhibitor of BCL2L1 the clonal advantage of the CNV cells was removed (Avery et 

al., 2013). BCL2L1 was shown to provide a survival advantage to the variant cells 

through resistance to apoptosis that was particularly beneficial during re-plating.  

 

 1.3.1.3 Chromosome 17q 

 

Amplifications to chromosome 17 present as a gain of the whole chromosomes or as 

an amplification of the long arm. The human chromosome 17 is highly syntenic with 

mouse chromosome 11, which is commonly amplified in mouse ES and EC cells and 

would suggest a common driver gene across these species. Due to the size of the 

amplified region, it has been difficult to determine which gene or genes are providing 

the variant cells with a growth advantage. It’s been suggested that acquired genetic 
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changes in human PSC help them to adapt to in vitro culture in a similar way to how 

the genetic changes of human EC cells facilitate malignant transformation. However, 

even when normal human PSC are injected into mice they form teratomas, 

consisting of only differentiated tissue whereas teratocarcinomas are malignant and 

contain undifferentiated EC cells (Oosterhuis and Looijenga, 2005). This would 

suggest tumour formation by ES cells was independent of EC cells and the ability of 

ES cells to form tumours was due to an embryonic-like differentiation and expansion 

of primary tissue (Blum et al., 2009). If this is the case, there must be a common 

gene expressed in human ES cells and teratomas but not in differentiated embryoid 

bodies, which unlike the differentiated tissue in teratomas, becomes cystic and 

ceases to divide much sooner (Blum et al., 2009). Blum et al, discovered the 

SURVIVIN gene was expressed in ES and ES-teratomas but downregulated in 

mature embryoid bodies and identified this as the likely candidate (Blum et al., 

2009). Interestingly, SURVIVIN is located on chromosome 17q25 that is within the 

commonly acquired genetic variant seen in human PSC. Inhibition of SURVIVIN 

leads to apoptosis in human PSC and cancer cells, yet it did not affect normal 

somatic cells (Blum et al., 2009, Mesri et al., 2001, Ma et al., 2006, Yang et al., 

2004). Amplification of SURVIVIN would provide a selective advantage by 

minimising apoptosis and potentially enhancing tumorigenicity in these cells (Blum et 

al., 2009). As SURVIVIN is an oncofetal gene, it could be argued that the presence 

of this variant would present little risk to the patient in cell-based therapy as the 

intended cell product in regenerative medicine would be terminally differentiated 

adult tissue that does not express this gene.   

 

1.3.1.4 Chromosome 12p 

 

Amplifications to chromosome 12 always include the short arm. The driver gene or 

genes in this region have yet to be identified, although one particular candidate has 

often been discussed. NANOG is the gene that encodes the homeobox protein 

transcription factor that was identified as a key component in promoting self-renewal 

(Amps et al., 2011). In the inner cell mass, NANOG deficient cells lead to a failure of 

these cells to go on and generate the epiblast and, NANOG deficient human ES 

cells lost pluripotency and differentiated into extraembryonic endoderm defining it as 

a critical factor for maintaining pluripotency (Mitsui et al., 2003). Gene manipulation 
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that results in the amplification of NANOG presents cells with a growth advantage 

through its capacity to remove the dependency on factors present in conditioned 

media or those released from the MEF feeder layer (Darr et al., 2006). However, It 

was also noted that through the amplification of NANOG, LECTIN-1 involved in 

promoting apoptosis, is downregulated and enhanced cell survival (Darr et al., 

2006). 

 

1.3.1.5 Chromosome 1q 

 

Through mapping 74 unique amplifications and 32 translocations involving 

chromosome 1 in human ES cells a common minimal amplicon was observed to 

include the 1q32.1-32.2 region (Unpublished data; McIntire et al. WiCell, Madison, 

WI, USA). Of the expressed genes in this region, interphase FISH identified that the 

MDM4 gene was amplified in all cases tested (Unpublished data; McIntire et al. 

WiCell, Madison, WI, USA).  

 

MDM4 is a p53 regulator and interacts with the p53 transcription factor binding 

domain to suppress its cellular response to stress (Haupt et al., 2019). MDM4 is 

critical for development in the early embryo and its loss results in lethality which can 

be rescued through the elimination of p53 (Parant et al., 2001, Finch et al., 2002, 

Migliorini et al., 2002). It has been previously shown that SNP mutations to p53 act 

to infer a growth advantage in human PSCs (Merkle et al., 2017) and so it could be 

reasoned that dysregulation of other genes that regulate p53 would confer a similar 

growth advantage. In the study of retinoblastomas, CNVs of MDM4 result in a 

distinct growth advantage through increased cell proliferation and survival (Danovi et 

al., 2004, Laurie et al., 2006) making it an obvious candidate gene on chromosome 

1 that warrants future exploration. 

 

1.3.1.6 Chromosome 18 

 

The pro-apoptotic NOXA gene maps to 18q21.32 and is part of the BCL2 family. It 

has been previously shown that the pro-apoptotic family members of the BCL2 

family are expressed in human PSC at levels far greater than seen in primary cells 

and of these, NOXA showed the highest gene expression with a relative ratio of 50:1 
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compared to other primary cell lines (Madden et al., 2011). However, it should be 

noted that the anti-apoptotic gene, BCL-2 is also found within the deleted region on 

chromosome 18 and, although the expression of this gene was also moderately 

amplified, the net gain from a deletion could be to suppress apoptosis (Madden et 

al., 2011).  

 

At this stage, we can only speculate what the driver gene on chromosome 18 may 

be but given the high expression of the pro-apoptotic gene, NOXA, this would be a 

worthy candidate. 

 

 1.3.1.7 Chromosome 10 and 22 

 

Despite deletions to chromosome 10 and 22 being classified as recurrent in human 

PSC culture, their infrequent nature has meant discussion about the mechanisms or 

driver gene function have been neglected.  

 

The appearance of deletions to chromosome 10 in human PSC are particularly rare. 

The literature has shown that recurrent deletions incorporate the distal regions of the 

p arm, 10p15.3 (Baker et al., 2016). In cancer, a loss of heterozygosity has been 

previously reported to include this region, yet very little is known about functions of 

genes in this area or even whether their loss could present a growth advantage to in 

vitro cultured human PSC (DeScipio et al., 2012). In the context of cancer, 

ZMYND11 acts as a tumour suppressor gene by repressing a transcriptional 

program that is essential for tumour growth (Masselink and Bernards, 2000, Velasco 

et al., 2006, Wang et al., 2014). The second gene in this location is DIP2C, which 

has been noted for its role in breast cancer (Jiao et al., 2012). Gene expression 

analysis performed on cell lines with either one or two copy deletions of the DIP2C 

gene showed gene set enrichment that indicated a function in epithelial to 

mesenchymal transition, apoptosis and angiogenesis (Larsson et al., 2017).  

 

Candidate genes on chromosome 22 could also include other regulators of apoptotic 

function. As discussed earlier, the relative gene expression of pro-apoptotic BCL2 

family member, BIK, is much higher in human PSC than in somatic cells and is 

found on Chromosome 22 (Madden et al., 2011). Its deletion would confer a growth 



 36 

advantage through the suppression of apoptosis during re-plating and culture of 

human PSC. Although, at this time further research is required to elucidate the 

mechanisms of selective advantage possessed by these genetic variants. 

 

 1.3.1.8 Single nucleotide polymorphisms to TP53 

 

Upon classifying mutations to the TP53 gene in human PSC, Merkle et al discovered 

that all mutations were missense and mapped to the most frequently disrupted 

residues in human cancer that involve p53 (Merkle et al., 2017). Each mutation acts 

in a dominant-negative fashion and eliminated the p53 function in regulating 

apoptosis, cell cycle progression and genomic instability in human cancers (Willis et 

al., 2004).  

 

In response to DNA damage, human PSC increase p53 expression leading to 

apoptosis or loss of pluripotency-associated transcription factors, NANOG and 

OCT4 resulting in spontaneous differentiation (Qin et al., 2007, Grandela et al., 

2007). Knockdown of TP53 has been shown to impart a growth advantage in human 

PSC through enhanced proliferation by promoting G1 to S cell cycle progression, 

resistance to apoptosis, resistance to differentiation and higher cell survival with 

greater DNA damage (Amir et al., 2017). The loss of p53 function and the resulting 

resistance to DNA damage may be of particular advantage to human PSC as these 

cells are subject to high levels of DNA damage during routine culture (Vallabhaneni 

et al., 2018). 

 

1.3.2 Methods to detect genetic variants in human PSC 

 

It is crucial that cultures of human PSC are monitored for the appearance of genetic 

variants over time to ensure the validity of results attained during research and to 

safeguard from potentially harmful mutations in cell-based therapy. Different 

methods of detection are available, all have their limitations, with some more 

appropriate to certain applications than others. For instance, when screening cell 

lines intended for clinical applications, it is critical that the approach used is highly 

sensitive and can detect variant cells even when they are present in very small sub-

populations.  
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The assays used to detect genetically variant human PSC can be broadly 

categorised as i) indiscriminate, whole-genome probing or ii) probed targeting of 

known loci that are commonly mutated. G-banding analysis of metaphase spread is 

an example of an indiscriminate approach and was employed during the first report 

of genetic variant human PSC (Draper et al., 2004). Colcemid condensed 

chromosomes that have been Giemsa stained present distinct banding patterns. 

These bands represent light and dark patches of highly condensed heterochromatin 

and less condensed euchromatin respectively. Chromosome number and structural 

variations are detected through the differences in the Giemsa staining. The G-

banding approach is labour intensive and often requires the skills of a trained 

cytogeneticist. Its use in the detection of small sub-populations of variant cells in 

mosaic cultures has been called into question. Routinely, a small sample size of 30 

metaphases are chosen as a representative of the whole culture, with so few cells 

sampled variant cells may be missed (Baker et al., 2016). Further, it has been 

shown that three genetically variant human PSC with amplification to chromosome 

12 and/or chromosome 17 presented condensation defects when compared to their 

genetically normal counterparts (Lamm et al., 2016). During analysis, appropriate 

metaphases are chosen partly on the quality of chromosome condensation. 

Condensation defects in variant cells may bias analysis and under-represent the 

variant population. However, through mixing experiment of isogenic variant and 

normal cells, results confirmed sensitivity matched what was expected from random 

sampling (Baker et al., 2016). The sensitivity of G banding for detecting mosaic sub-

populations of variant cells was 18% when 30 metaphases were analysed (Baker et 

al., 2016). When the analysis was expanded to 500 metaphases, the sensitivity of 

detecting down to 1% was possible, although sampling so many metaphases was 

impractical and time-consuming (Baker et al., 2016).  

 

Small CNVs, such as the tandem duplications, frequently occur on chromosome 20. 

These often require alternative methods of detection as G-banding can fail in 

detecting changes below 5Mb in size (Steinemann et al., 2013). The detection of 

small amplifications and deletions typically require techniques such as array 

Comparative Genome Hybridisation (aCGH) and SNP arrays (Amps et al., 2011). 

These approaches present a global screening approach that can detect CNVs down 
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to 1Kb in size. In the case of SNP arrays, the detection CNVs are revealed by an 

increase or decrease in nearby SNP markers or, in aCGH through a comparison of 

copy numbers to a reference (Rassekh et al., 2008). The detection of mosaic 

populations of cells is ultimately limited by the detection of the variant signal above 

the background of the diploid cell signal. The detection limit of these approaches 

when detecting small CNVs was shown to be approximately 10-15% from mixing 

experiments (Cross et al., 2007, Valli et al., 2011).   

 

Interphase FISH allows for the detection of chromosomal variants in interphase cells 

through the hybridisation of fluorescent probes to highly complementary nucleic acid 

sequences. The size of the CNV does not restrict its detection, although when 100 

interphase nuclei were analysed, the presence of false-negative signals limits the 

detection of mosaic sub-populations of variant cells to 5% (Baker et al., 2016). False-

negative signals are infrequently observed when amplifications occur as 

translocations or aneuploidies, because of the good spatial separation of the amplified 

chromosomal region to the wild type regions. However, false-negative signals still 

arise when two signals overlap as a consequence of imaging the nucleus, a 3-D 

object, in 2-D. Comparatively, false-negative signals arise frequently in amplifications 

that present themselves as tandem duplications. In this scenario, the amplification 

occurs in tandem and the distance to the amplification is small, increasing the 

likelihood that the two signals will overlap or that the proximity is unable to be resolved 

by fluorescence microscopy. As such, the presence of false-negatives are more 

frequently observed with small tandem duplications to chromosome 20 in human 

PSCs. However, when detecting aneuploidies involving chromosome 17 a sensitivity 

of 1% can be achieved when 1000 interphase nuclei are analysed (Baker et al., 2016).  

 

Recently, a rapid and affordable qPCR-based approach was developed. It requires 

no specialist cytogenetic skills and can be completed within a day (Baker et al., 

2016, Laing et al., 2019). Primers are designed for specific chromosomal loci known 

to be commonly amplified or deleted. Using gDNA extracted from cultures of human 

PSC relative to a diploid calibrator cell line the copy number can be calculated. The 

approach is particularly useful for rapidly screening cell lines and can detect the 
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presence of variant sub-populations above 10% (Baker et al., 2016). However, this 

approach is limited as it requires prior knowledge of the CNV that is to be detected. 

 

Next-generation sequencing approaches would represent the future of both CNV 

and SNP detection in human PSC. Before the advent of next-generation 

sequencing, Sanger sequencing approaches offered an alternative to conventional 

cytogenetic techniques. Although Sanger sequencing is capable of detecting 

heterogeneous subpopulations, its limit of detection is 20% (Zagordi et al., 2010). 

Next-generation sequencing revolutionised the sensitivity of sequencing approaches 

due to its vastly high throughput nature. However, due to this throughput, NGS has a 

notoriously high error base calling rate of between 0.1-1% (Salk et al., 2018). The 

technical advancements of computational and biochemical approaches have 

enabled the detection of low-level genetic variants present in less than 1% of the 

sequenced DNA (Zagordi et al., 2010, Ley et al., 2008). Although NGS has not yet 

been applied to the detection of genetic mosaicism in human PSC, these studies 

have demonstrated the potential sensitivity, that as yet is unrivalled by other 

approaches.  

 

Single-cell NGS may still further improve the sensitivity of detecting low-level sub-

populations of genetic variants. It could be envisioned that sample sizes of 10,000 

cells or greater, could be sequenced per sample making detection limits as low as 

0.1X10-3%. Despite recent advancements in single-cell omics technology, there are 

still several technical challenges that need to be overcome before it can be utilised in 

detecting genetic heterogeneity of human PSC cultures. One challenge presented 

by single-cell sequencing is the isolation and accurate amplification of DNA from a 

single cell. Each cell contains approximately 6pg of DNA which is insufficient for 

NGS and so requires amplification. MDA amplification uses Phi29 DNA polymerases 

that offer high fidelity and low error rates. It provides the best genome coverage of 

~75% of the current techniques (Dean et al., 2001) but its non-uniform amplification 

distorts genome copy numbers making it unsuitable for copy number variant 

detection (Voet et al., 2013). Alternatively, MALBAC detects copy number variants 

with high efficiency but has a high false-positive rate that makes it impractical for 

single nucleotide variant detection (Lasken, 2013). Possibly the best approach for 

accurate copy number variant detection is DOP-PCR and despite amplification only 
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providing 40% genome coverage it has been applied to the determination of 

rearranged cancer genomes (Navin et al., 2011). 

 

Currently, the expense of performing both whole sample and single-cell NGS for the 

routine detection of genetic variants is too high and computational analysis requires 

a highly trained bioinformatician. Further, the extent of genetic heterogeneity 

between cells in a single culture will make it difficult for the stem cell community to 

understand which mutations present a safety issue and which can be ignored. The 

application of NGS technology is continuing to be explored and with rapid 

advancements in its technology, its future application in the detection of low-level 

genetic mosaicism in human PSC could soon become a reality. 

 

Table 1.1 provides a summary of the various approaches available for the detection 

of genetically variant human PSC and various parameters that should be considered 

when choosing one approach over another. 

 

Table 1.1 Summary table of the common approaches for the detection of genetically 

variant human PSC 

Technique Sensitivity Suitable for 
non-dividing 
cells 

Genome-wide 
/ region-
specific 

CNV / SNP 
detection  

Karyology 
(G-banding) 

10% (30 

metaphases) 

No Genome-wide CNV >5MB in 

size  

Interphase 
FISH 

10-20% (100 

interphases) 

Yes Region-

specific 

CNV 

qPCR 20% Yes Region-

specific 

CNV & SNP 

Array CGH 10-15% Yes Genome-wide CNV >1kb 

SNP array 10-15% Yes Genome-wide CNV >1kb 

NGS 0.1-1% * Yes Genome-wide CNV & SNP 

Single-cell 
NGS 

0.1X10-3% * Yes Genome-wide CNV & SNP 

*Sensitivity not yet tested using human PSC 
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1.4 Origins of mutation in human pluripotent stem cells  
 
Although much is known about the selective pressures inflicted on human PSC, 

relatively little is known about the origins and mechanisms that generate acquired 

mutations during culture. By understanding the mechanisms of selection, it may be 

possible to slow the rate at which variants cells overtake a culture, yet it is unlikely to 

stop mutations from arising in the first place. However, as many of the substrates of 

genetic instability, such as DNA damage, replication stress and mitotic error also 

lead to apoptosis it is conceivable that by reducing these it may lead to a reduction 

in mutation whilst also alleviating the selective pressure brought about through cell 

death. 

 

The slow progress in this field is a consequence of poor sensitivity of detecting 

variant human PSC when they arise. As discussed in 1.3.2, most methods used to 

detect variant human PSC are unable to detect a mosaic population of cells below 

10% (Baker et al., 2016). Monte Carlo simulations have shown that if a culture of 

human PSC contains 0.2% variant cells, it takes on average more than 10 passages 

before the variant population reaches 10%, by which time any conclusions on what 

may have caused the mutation will not be very informative (Olariu et al., 2010). 

Alternatively, the frequency of new mutation or mutation rate could be used to test 

the origins of mutation, although these involve the measurement of single nucleotide 

polymorphisms that arise through a different mechanism than structural and 

numerical instabilities, such as those acquired by human PSC. Further, the ability to 

perform these experiments is confounded by the selection of those genetic variants 

that provide a growth advantage and as such would bias the mutation rate towards 

that sub-populations of cells. Despite this, a recent report has estimated that the 

mutation rate in several human ES cells and human iPSC was between 0.8-1.7X10-9 

mutations per base pair per division (Rouhani et al., 2016). This would suggest the 

mutation rate in human PSC is appreciably lower than in the soma (Milholland et al., 

2017).  

 

To accurately determine the mutation rate in human ES cells, a cloning and whole-

genome sequencing approach has been employed by our group. To look at the 

effect of different growth conditions on the mutation rate, the mShef11 line was 
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cloned and a diploid clone chosen and subsequently re-cloned into either standard 

conditions, standard conditions with the addition of Rho Kinase inhibitor (commonly 

included in human PSC culture to reduce cell loss through passaging) or whilst 

grown in hypoxic conditions (5% O2). The subsequent cells were then re-cloned and 

20 clones from each condition expanded and whole-genome sequenced before 

calculating the number of SNP mutations that had occurred during the expansion. 

From this experiment, the mutation rate of human ES cells grown in standard 

conditions was calculated at 0.28 and 0.37X10-9 single nucleotide polymorphisms 

per day per base pair (Thompson et al., 2020). This value was comparable to 

previous estimations (Rouhani et al., 2016) and importantly it was substantially lower 

than what had been predicted in somatic cell lines (Milholland et al., 2017). 

Interestingly, they found that culturing human ES cells with Rho Kinase inhibitor did 

not affect the mutation rate, but the culture of these cells in hypoxic conditions did 

reduce the number of mutations two-fold. Further, the mutational signature of human 

ES cells showed a high proportion of C to A transversions, a marker of oxidative 

damage and in vitro culture. When the cells were cultured in low oxygen they 

showed a reduction in C to A transversions (Thompson et al., 2020). This would 

suggest that growing human PSC at low oxygen could present a practical approach 

to minimising the appearance of genetic variants. These findings show that, despite 

the frequent reports of karyotypic variants in human PSC, the rate of mutation is 

relatively low.  

 

As demonstrated by Thompson et al, complex experimentation is required to study 

mutation rate independent of the influence of selection and, due to the relative 

infrequency of chromosomal instabilities, it is often impracticable to study directly the 

factors that may affect the origins of mutation (Thompson et al., 2020). However, 

what has been more informative is understanding the similarities between cancer 

and pluripotency which overlap with striking similarity. Cancer stem cells reactivate 

gene networks that are associated to pluripotency and are required for them to 

become immortal, enable limitless self-renewal and acquire the ability to differentiate 

into unrelated tissue (Ben-Porath et al., 2008, Pezzolo et al., 2011). The capacity of 

cancer to endlessly renew and its link to genetic stability has been extensively 

studied through comparisons to somatic cells. However, little is known whether 
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human PSC ability to endlessly self-renew could also be driving genetic instability in 

vitro. 

 

Like human PSC, the ability of cancer cells to endlessly renew likely comes from 

atypical regulation of the cell cycle that leads these cells to rapidly proliferate. The 

entire cell cycle takes between 24 and 32 hours in somatic cells, whereas in certain 

cancers and human PSC it is considerably shorter taking between 15 and 18 hours 

in the latter (Becker et al., 2006, Barbaric et al., 2014, Calder et al., 2013, Sherr, 

1996). Nearly 50% of all cancers show inactivation of the p16INK4a that would 

normally inhibit cyclin D-CDK4/6 phosphorylation of Rb-E2F and is required for 

cellular senescence (Gonzalez and Serrano, 2006). Human PSC are incapable of 

senescence and as such, it is no surprise that silencing of p16INK4a is crucial when 

reprogramming adult cells to iPSC and is responsible for their truncated G1 phase 

and rapid proliferation (Li et al., 2009a, Becker et al., 2006). In cancer, the silencing 

p16INK4a and subsequent relaxation of Rb-E2F checkpoint and S phase entry leads 

to a susceptibility to replication stress, DNA damage and genetic instability 

(Gadhikar et al., 2018). A susceptibility to DNA damage that is associated with 

replication has also been reported in human PSC, although its direct cause has yet 

to be determined (Simara et al., 2017, Vallabhaneni et al., 2018). However, how 

cancer and human PSC respond to replication stress and DNA damage is very 

different. For instance, human PSC do not activate CHK1 in response to DNA 

replication stress and instead opt for apoptosis (Desmarais et al., 2012), whereas 

CHK1 is required by cancer cells to permit their survival in the face of high 

replication stress and inhibition of ATR and CHK1 is a cancer-specific synthetic 

lethal treatment (Sanjiv et al., 2016). 

 

In the following sections the similarities and differences in cell cycle dynamics, 

replication stress and the DNA damage response in somatic, cancer and human 

PSC will be discussed in greater detail. 

 

1.4.1 Cell cycle dynamics 

 

The cell cycle is composed of a series of events that lead to cellular division creating 

two daughter cells (Nurse, 1997). It is divided up into four main compartments that 
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are controlled by the cycling action of proteins. During G1, the cell grows in size and 

begins to prepare for DNA synthesis. The proceeding S phase is characterised by 

the synthesis of DNA where the cell duplicates its genome. Upon completion of DNA 

synthesis, the cell enters the G2 phase where it then prepares to divide into two 

daughter cells and finally enters mitosis to complete cell division. 

 

The sequential passing of cells from one phase to another is controlled by a 

classification of proteins known as the cyclins and their kinase partners, CDK. 

During G1 the cell begins to build the necessary mRNA and proteins that are 

required for the subsequent steps. Importantly, cells also spend G1 phase 

monitoring genomic quality before committing to the synthesis of the DNA. The 

initiation of the G1 phase is led by the expression of cyclin D-CDK4/6 and pushes 

the cell beyond a point known as the restriction point. The restriction point is crucial 

for a cells decision to continue proliferating or to differentiate. Beyond the restriction 

point, the cell enters the late phase of G1 which is marked by the downregulation of 

cyclin D-CDK4/6 and upregulation of cyclin E-CDK2. The activity of cyclin E-CDK2 

phosphorylates the Retinoblastoma protein (Rb) thereby removing its suppression 

on the E2F transcription factor family. E2F can then activate the gene transcription 

of its downstream targets that are required for entry into S phase. DNA synthesis 

proceeds and its end is marked by the downregulation of cyclin E-CDK2 and the 

upregulation of cyclin A-CDK1 in G2 phase to initiate the necessary protein 

synthesis for cell division to occur. During mitosis, cyclin B-CDK1 drives the cells to 

condense, align and separate the chromosomes to opposite poles of the cell before 

division takes place (Nurse, 1997). 

 

In human PSC the cell cycle time is considerably shorter than a typical somatic cell 

and is characterised by a truncated G1 phase (Becker et al., 2006). It was noted that 

although the G1 phase in these cells was significantly shorter, 2.5 to 3 hours, the 

time spent in S and G2/M phase was unchanged in comparison to reports from 

somatic cell lines (Becker et al., 2006). As a consequence of the truncated G1 

phase, a high proportion of cells reside in S phase (Filipczyk et al., 2007). How the 

cells control the progression through the G1 phase is still widely debated with many 

reports presenting conflicting results. Becker et al, were the first to report on the 

pluripotent cell cycle and described high levels of cyclin D2-CDK4/6, yet a low 
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expression of cyclin D1, D3 and cyclin E when observing mRNA expression (Becker 

et al., 2006, Becker et al., 2010). Later, by immunofluorescence, it was shown that 

cyclin E was seen in all cells and implied it was constitutively expressed throughout 

the cell cycle (Filipczyk et al., 2007). The same group found there to be no 

expression of cyclin D in any of the cells analysed (Filipczyk et al., 2007). Later, 

studies presented yet more conflicting results. By differentiating human PSC into 

embryoid bodies, a direct comparison of cell cycle gene expression was made 

between differentiated and undifferentiated isogenic cells. The group found high 

expression of cyclin E1, A2, B1, D1, D3 and high expression of CDK4 and 6 during 

G1 phase (Neganova and Lako, 2008). However, the rapid proliferation of human 

PSC could also be controlled by a lack of expression of CDK inhibitors and not due 

to elevated expression of G1 related cyclins and CDK. The expression of the INK 

and CIP/KIP inhibitors, that includes p16INK4a, suppress CDK4/6 activity, were found 

to be lowly or not expressed at all in human PSC (Zhang et al., 2009). This could 

explain the unrestricted progression through G1 phase, the relaxed Rb-E2F pathway 

and the non-phasic expression of cyclin E that’s been reported elsewhere (Filipczyk 

et al., 2007). Further, p16INK4a silencing was found to be necessary for 

reprogramming and was continued to be silenced in the pluripotent state of ES and 

iPSC (Li et al., 2009a). It is also important to note the p16INK4a is crucial for cells 

entering senescence, a state not observed in human PSC (Noda et al., 1994). 

Although these reports conflict, it seems likely that a combination of these findings is 

most likely true. Silenced p16INK4a would increase the activity of cyclin D-CDK4/6 and 

lead to constitutive mono-phosphorylation of the Rb-E2F checkpoint. Subsequent 

gene targets of the active transcription factor E2F include cyclin E, which may 

explain reports of its non-phasic expression (Filipczyk et al., 2007). 

 

Despite current efforts failing to fully elucidate cell cycle control in pluripotent cells, it 

is understood that the differences between pluripotent and somatic cells must be 

intrinsically linked to the pluripotent state. The pluripotency transcription factor, 

NANOG, is crucial for maintaining pluripotency and suppressing differentiation, with 

these functions thought to be linked to the cell cycle. NANOG overexpressing human 

PSC lines showed a greater proportion of S phase cells due to a shortening of the 

time required to enter S phase (Zhang et al., 2009). When analysis of the 

transcriptional targets of NANOG was performed, cell cycle genes CDK6 and 
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CDC25A were identified and found to be upregulated in the NANOG overexpressing 

lines (Zhang et al., 2009). CDC25A is important in G1 phase progression and acts to 

remove suppression on cyclin E and CDK6 and would support claims that the 

lengthening of G1 phase precedes differentiation of human PSC after the loss of 

NANOG (Stead et al., 2002, Faast et al., 2004, Calder et al., 2013). However, the 

atypical regulation of the cell cycle may also be responsible for genetic instability 

that results from extended culture (Ahuja et al., 2016). 

 

Manipulation of the cell cycle by atypical expression of cell cycle components is 

utilised by cancer to induce replication stress and genetic instability that, within the 

context of the selective pressures put on the cancer cells, selects for mutations that 

promote tumour progression. Replication stress can arise from many different 

sources and so, the exact definition for it can be ambiguous, although it has 

previously been defined as the slowing or stalling of replication fork progression 

(Zeman and Cimprich, 2014). Oncogenes and tumour suppressors, such as c-Myc, 

p16INK4a and cyclin E, can deregulate S phase entry through Rb-E2F and cause 

replication stress through several mechanisms that alter origin usage during S phase 

(Hills and Diffley, 2014).  

 

In somatic cells, the timing of initiation of DNA replication from numerous origin sites 

in the genome is a highly flexible process (Cayrou et al., 2011). The mechanism of 

oncogene-induced replication stress includes origin over usage, origin under usage 

and origin re-usage. The aberrant activation of the Rb-E2F pathway has been shown 

to lead to increased replication initiation and origin firing, the consequences of which 

are depletion of nucleotide pools, replication factors and an increase in collisions 

between replication and transcription complexes (Bester et al., 2011, Jones et al., 

2013, Halazonetis et al., 2008, Toledo et al., 2013). The addition of exogenous 

nucleosides to cancers increases dNTP pools and reduces replication stress, DNA 

damage and genetic instability (Bester et al., 2011). Origin under usage is a 

mechanism of replication stress and occurs in cancer as oncogenic signals can 

compromise the origin checkpoint allowing S phase entry with a reduced number of 

origins (Sherr and McCormick, 2002). The exact mechanism as to how under origin 

usage leads to replication stress is unknown but it may be due to an increased 

likelihood of fork stalling due to the greater distance each fork has to cover. This, in 
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turn, could lead to under-replicated regions which if persist into mitosis may lead to 

chromosome segregation defects (Burrell et al., 2013, Hills and Diffley, 2014). 

Elevated CDK levels can cause origins to fire more than once within a single cell 

cycle. Origin re-usage is a problem unique to cancer cells and is caused by 

deregulation of Cdt1 when other pre-replication complexes components are 

overexpressed (Gonzalez et al., 2005). Origin re-usage is thought to generate 

ssDNA gaps which can become obstacles for the re-replication forks, leading to fork 

collapse or an increase in the number of active origins during S phase which will 

deplete replication metabolites and factors much in the same way as origin over 

usage (Neelsen et al., 2013).  

 

The cell cycle control of cancer cells enables endless proliferation, yet also induces 

replication stress and DNA damage. Therefore, it seems more than a mere 

coincidence that rapid proliferation punctuated by a short G1 phase and a 

susceptibility to DNA damage are unlinked events in human PSC (Simara et al., 

2017, Vallabhaneni et al., 2018). However, what is known is that human PSC and 

cancer cells respond distinctly to replication stress and DNA damage and this likely 

reflects their different characteristics. 

 

1.4.2 Response to Replication stress 

 

Replication stress not only results from atypical cell cycle control but can also be 

influenced by endogenous and exogenous sources that include nicks, gaps, 

stretches of ssDNA, DNA lesions, fragile sites and secondary DNA structures such 

as those caused by Alu elements (Zeman and Cimprich, 2014). As these factors can 

affect any cell type it is important that cells can respond to replication stress to stop 

further detrimental effects on the cell. The cell employs various checkpoints 

throughout the cell cycle that are responsible for monitoring cellular processes and 

restricting the cell's progression should the integrity of these events be lost (Barnum 

and O'Connell, 2014). 

 

Checkpoint regulation in human PSC is different from that observed in somatic cell 

types. In somatic cells, the CHK1 checkpoint is important in the surveillance of DNA 

replication, (Zhang and Hunter, 2014). ATR-CHK1 is activated in response to ssDNA 
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formed at stalled forks and results in proteasomal degradation of CDC25A, leading 

to downregulation of cyclin E-CDK2 and stalling of the cell cycle in S phase (Falck et 

al., 2001, Mailand et al., 2000, Zhao et al., 2002, Sørensen et al., 2003). This, in 

turn, regulates late origin firing and maintains the stability of collapsed replication 

forks (Lopes et al., 2001, Feijoo et al., 2001). Complete loss of CHK1 results in 

apoptosis as a consequence of mitotic catastrophe (Huang et al., 2005), with its 

inhibition leading to increased origin firing (Katsuno et al., 2009). These findings are 

surprising in the context of human PSC as replication stress has been shown not to 

activate CHK1 (Desmarais et al., 2012, Desmarais et al., 2016). When replication 

was blocked by thymidine or cisplatin, human PSC stalled in S phase and showed 

an increased sub-G1 population that was attributed to apoptotic cells. It was found 

that this response to replication stress was due to the inactivation of CHK1 

(Desmarais et al., 2012, Desmarais et al., 2016). Looking upstream it was noted that 

RPA did not organise into foci within the nucleus as the cells failed to generate 

ssDNA when replication was perturbed. The recruitment of RPA to ssDNA is a 

crucial event needed for the activation of ATR and CHK1 (Desmarais et al., 2012, 

Desmarais et al., 2016). Therefore, to overcome the threat of genetic instability in 

the face frequent DNA lesion, human PSC, unlike somatic cells, undergo extensive 

apoptosis as a consequence of them lacking cell cycle checkpoints that would 

normally act in promoting cell cycle stalling and DNA repair. This unique mechanism 

could reflect the demands of the early embryo where genomic damage or mutation 

could be catastrophic for the whole embryo.  

 

In cancer, uncontrolled proliferation can promote unfaithful DNA replication that 

leads to genetic instability and DNA damage (Bartkova et al., 2006, Di Micco et al., 

2006). It is common for cancer cells to lack DNA damage response proteins 

including ATM and p53 (Jiang et al., 2009), this increases the reliance of these cells 

on the ATR-CHK1 activity to mediate survival from replicative stress (Choi et al., 

2011). This point is exemplified by the success of CHK1 inhibitors in cancer therapy. 

In fact, cancer cell-specific lethality can be further improved by inhibiting CHK1 and 

ATR simultaneously (Sanjiv et al., 2016). When CHK1 is inhibited, the cancer cells 

are no longer able to fire from dormant origins and instead rely on ATR to stabilise 

stalled forks until it is possible for them to restart (Toledo et al., 2013). 
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The difference in the way that somatic, pluripotent and cancer cells respond to 

replicative stress is likely due to different needs and characteristics of these cells. In 

somatic cells, the limited number of divisions reduces the risk of mutation from DNA 

replication. A full complement of options are available to address replication stress 

including senescence, replication restart or cell death. Human PSC and cancer cells 

cannot senesce, but human PSC balance the need to expand rapidly whilst 

preserving the genetic integrity of the cells by activating apoptosis instead of a 

replication stress response. Death of cancer cells would limit the capacity for the 

disease to progress and instead they strongly rely on the replication stress response 

to allow rapid proliferation to continue in the face of high replicative stress and DNA 

damage. 

 

1.4.3 Response to DNA damage 

 

Like with replication stress, the cell employs various checkpoints throughout the cell 

cycle to manage cellular processes in response to DNA damage. In human PSC 

during G1 phase, CHK2 activates p53 and p21 to cause cell cycle arrest in response 

to DNA damage to protect the cells from apoptosis (el-Deiry et al., 1993, Dulić et al., 

1994). Despite p53 being recruited to, and mRNA expression of p21 being 

upregulated in response to DNA damage, it was shown that translation of p21 was 

inhibited through the microRNA family, miR302 (Dolezalova et al., 2012). This lack 

of p21 protein could account for the propensity of human PSC to undergo apoptosis 

and it is particularly interesting that p21 knockout MEF lines show a similar inability 

to activate the G1 checkpoint (Deng et al., 1995, Brugarolas et al., 1995). However, 

CHK2 checkpoint was functional in G2/M phase in response to IR and strong doses 

of UV radiation (Momcilović et al., 2009, Momcilovic et al., 2010, Hyka-Nouspikel et 

al., 2012). 

 

CHK2 is a tumour suppressor and in response to DNA damage activates and 

phosphorylates many downstream components that function in checkpoint control, 

DNA repair and apoptosis (Matsuoka et al., 1998, Zhang et al., 2004, Stevens et al., 

2003, Hirao et al., 2000). Mutations in CHK2 that result in loss of function occurs in a 

range of human tumours including breast, colon and prostate (Bartek and Lukas, 

2003). Although CHK2 is thought to be important in tumour initiation in these cancer 
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sub-sets, the actual mechanism of tumorigenesis has not been well defined. 

However, studies in mice have shown that CHK2 deficiency resulted in resistance to 

ionizing radiation and defects in p53 mediated DNA damage-induced apoptosis 

(Takai et al., 2002, Hirao et al., 2000). 

 

The DNA damage response (DDR) pathway is driven by a family of PIKK kinases 

that include DNA-PKc, ATM and ATR (Falck et al., 2005). It is a highly complex 

signalling cascade that orchestrates cellular responses to various DNA lesions. 

Double strand breaks are a highly toxic DNA lesion and can be caused by ionizing 

radiation, free radicals and the collapse of replication forks. If these lesions are not 

repaired or if repaired erroneously, they can lead to gross chromosomal instabilities 

like those observed during the prolonged culture of human PSCs. Further, DSB can 

activate apoptosis providing selective pressure for mutations that abrogate cell death 

and enhance the tumorigenicity of cancers (Bartkova et al., 2005, Gorgoulis et al., 

2005), a mechanism that is not too dissimilar to the selection of genetically variant 

human PSCs.  

 

In defence against double-strand breaks, cells possess two mechanisms of double-

strand break repair, non-homologous end joining (NHEJ) and homologous 

recombination (HR). The choice between mechanisms is dependant primarily on the 

cell cycle stage. NHEJ repair ligates the two ends of a DNA sequence that have 

been broken by a double-strand break. It is primarily active in G1 phase although not 

exclusively so. The presence of double-strand breaks is first detected by a protein 

complex heterodimer Ku70/80 (Smith and Jackson, 1999). This ring-like structure of 

Ku70/80 binds to the end of the break to recruit and stabilise the binding of DNA-

PKc (Walker et al., 2001). If the broken ends are incompatible for ligation then 

Mre11/Rad50/Nbs1 (MRN) complex of proteins detects and tether the two ends 

(Lukas et al., 2003, Lavin, 2007) whilst Artemis nuclease opens the DNA hairpin 

loop and cleaves the protruding 5’ and 3’ ends (de Jager et al., 2001, Williams et al., 

2008, Ma et al., 2002). With each end suitably processed the final step simply 

involves ligating the two ends together. DNA-PKc phosphorylates XRCC4 that is 

recruited to the break and stabilises and activates Ligase IV to complete the ligation 

of the two ends (Calsou et al., 2003, Matsumoto et al., 2000, Leber et al., 1998). 
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A main cause of DSB during S and G2 phase is the collapse of replication forks. As 

a complementary template strand on the sister chromatid is available during S and 

G2 phase repair by HR is favoured. The MRN complex of proteins senses these 

DSBs and activates ATM (Lee and Paull, 2005). ATM then phosphorylates its 

downstream substrates; H2AX, BRCA1, CHK2 and p53 to aid in chromatin 

remodelling, DNA repair, cell cycle arrest and apoptosis respectively (Lavin, 2007). 

CtIp nuclease, activated by the S/G2 CDK activity, initiates the resection of the DSB 

(de Jager et al., 2001) with more extensive end resection performed by EXO1 

exonuclease that forms a section of ssDNA (Mimitou and Symington, 2008). RPA 

protein then binds the length of the ssDNA to inhibit the formation of secondary 

structures and causes a switch from ATM to ATR kinase activity (Shiotani and Zou, 

2009). ATR acts to prevent the collapse of replication forks through its regulation of 

several replication processes (Byun et al., 2005) including the restraint of further 

replication origin firing (Costanzo et al., 2003), avoidance of replication factor pool 

exhaustion (Couch et al., 2013, Ragland et al., 2013), increases dNTP pools for 

DNA synthesis (Pfister et al., 2015, Buisson et al., 2015) and activates CHK1 

checkpoint to slow or stall the cell cycle (Meyer et al., 2000, Guo et al., 2000, Liu et 

al., 2000, Bartek et al., 2004). Meanwhile, BRCA1, previously activated by ATM, 

then displaces RPA and replaces it with Rad51 DNA dependant ATPase (San 

Filippo et al., 2008). Rad51 forms nucleoprotein filaments that search for similar 

DNA sequences on the sister chromatid and once found, the 3' strand invades 

forming a D loop into the dsDNA of a sister chromatid and forms base pairs with the 

complementary strand (Shinohara et al., 1992, Shinohara et al., 1993, Wyman et al., 

2004). Using the invaded strand as a template, DNA polymerases are then recruited 

to extend the 3' end. At this point the DNA cross over is resolved through three 

independent mechanisms; double-strand break repair (DSBR), synthesis dependant 

strand annealing (SDSA) or break-induced replication (BIR). In DSBR the second 3' 

overhang that wasn't involved in HR also form a Holliday junction. This double 

Holliday junction is cleaved with nicking endonuclease to cleave each of the DNA 

double strands, often resulting in cross over between chromosomes (Mimitou and 

Symington, 2009). During mitotic and meiotic dividing cells, SDSA is often performed 

and results in non-crossover products. In a process referred to as branch migration 

the newly extended DNA sequence is released from the invaded strand, leaving the 

resultant ssDNA overhangs to anneal to their complementary strand on the same 
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chromosome (Allers and Lichten, 2001). BIR is important for DNA repair at the site 

of collapsed DNA forks. Fork collapse can be catastrophic and so BIR stimulates 

repair when only one broken end can invade the homologous template. BIR is 

initiated with 5' to 3' resection and then strand invasion and DNA synthesis that can 

copy large portions of the chromosome even up to the telomere. The replication by 

BIR is distinct from that of regular S phase replication as both the leading and 

lagging strand are synthesised separately, leaving long stretches of ssDNA (Saini et 

al., 2013). Multiple rounds of strand invasion and dissociation are performed with 

lagging strand synthesis performed during each round of leading strand 

displacement (Smith et al., 2007). However, BIR can be induced by oncogene 

overexpression or at fragile sites that can be responsible genomic instability similar 

to those leading to cancer (Minocherhomji et al., 2015, Costantino et al., 2014). 

Chromosome aberrations can form when strand invasion occurs incorrectly 

elsewhere on the same chromosome or another chromosome and is often 

associated with homology to repeated sequences at multiple different sites, such as 

Alu retrotransposons, a class of repetitive element that makes up more than 11% of 

the human genome (Umezu et al., 2002) 

 

DNA is also subject to a range of other lesions that are not repaired using NHEJ or 

HR. Insertion/deletions and base mismatches can occur during DNA synthesis and 

are removed by first degrading and then resynthesizing of the DNA strand by a 

process known as mismatch repair (MMR). Oxidation, alkylation and deamination 

are all forms of chemical damage to DNA bases that are removed and replaced 

using base excision repair (BER), whereas lesions caused by UV radiation or 

transcriptional stalling are corrected by removal and re-synthesis of the damaged 

strand through nucleotide excision repair (NER) (Lindahl and Barnes, 2000). 

 

The repair of double-strand breaks in human PSC is thought to be performed in an 

HR dominant fashion. The BRCA1 and Rad51 proteins, integral to the HR repair are 

highly expressed in human PSC (Adams et al., 2010, Vallabhaneni et al., 2018). To 

further explore the reliance of human PSC on HR or NHEJ, individual knockdowns of 

ATR and DNA-PKc was performed. When ATR gene expression was reduced an 

increase in replication stress-induced DNA damage was caused by a loss of HR 

repair (Adams et al., 2010). Contrastingly, when DNA-PKc was knocked down no 
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difference was observed in the resolution of DNA damage marked by gH2AX or 

53BP1 and suggested NHEJ was not required for DSB resolution in human PSC 

(Adams et al., 2010). However, when cells were transfected with an I-SceI-DsRed 

repair cassette, that reports on DNA repair by NHEJ, positive human PSC were 

detected and suggested an alternative non-DNA-PKc, NHEJ repair was in use in 

these cells (Adams et al., 2010). They confirmed this by knocking down XRCC4, 

required for NHEJ, and found that the reporter was no longer activated (Adams et 

al., 2010). This has led to the suggestion that human PSC use a backup NHEJ 

mechanism for when HR fails, although further work is required to substantiate these 

claims (Wu et al., 2008, Windhofer et al., 2007, Audebert et al., 2004).  

 

By challenging human PSC in vitro with radiation or genotoxic agents it’s possible to 

monitor the cellular responses to a range of DNA lesion. In response to g radiation, 

ionizing radiation, UV and other DNA damaging agents the cells triggered extensive 

apoptosis, indicating a high sensitivity to DNA damage (Simara et al., 2017, 

Momcilović et al., 2009, Luo et al., 2012, Maynard et al., 2008, Hyka-Nouspikel et 

al., 2012). Of the cells that survived, the repair of UV induced lesions by NER was 

proficient (Hyka-Nouspikel et al., 2012). It has also been reported that human PSC 

show increased expression of genes related to the pathways of MMR and BER 

although this does not necessarily correlate to increased protein or enzymatic levels 

(Maynard et al., 2008, Momcilovic et al., 2010). 

 

Contrastingly, cancer cells are known to depend on DNA repair mechanisms to 

ensure survival in the face of high replicative stress and DNA damage. Cancer cells 

can become addicted to repair pathways, and as such these pathways can become 

effective targets that can be inhibited by drugs to induce apoptosis as a result of 

stalled replication. There are many different examples of cancer reliance on DNA 

repair but one of the most well-known are the inherited mutations in HR 

components, BRCA1 and BRCA2, in breast and ovarian cancers (Bryant et al., 

2005). As HR is required in the repair and restart of stalled replication forks, these 

cells switch to SSB repair or NHEJ repair of stalled forks to ensure replication can 

continue (Bryant et al., 2005). Further to this, the HR pathway is crucial in the 

resolution of DNA crosslinks via the Fanconi anemia repair pathway (Michl et al., 

2016). Mutation in the Fanconi anemia components, such as FANC2, causes a 
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predisposition to cancer that may result as FANC2 is normally required to activate 

the S phase checkpoint (Taniguchi et al., 2002). There is significant cross-talk 

between HR and NHEJ repair of double-strand breaks. Mutations in the NHEJ 

pathway that include the KRAS mutations are commonplace in acute leukaemia that 

results in enhanced reliance on the NHEJ pathways and genomic instability and 

carcinogenesis (Nussenzweig and Nussenzweig, 2007). Additionally, KRAS 

mutations are classified as an early genetic event in cellular transformation, allowing 

the proto-oncogene RAS to remain in its active state (Schubbert et al., 2007). The 

continual proliferation of cancer cells can lead to the incorporation of oxidized DNA 

bases that can form DNA crosslinks that stall the DNA replication fork. It is not 

uncommon for cancers to overexpress BER pathway components to remove 

oxidized bases from the DNA strand. One component commonly overexpressed in 

human cancer is the rate-limiting BER component, APE-1, that cleaves the 

phosphodiester backbone to allow for further processing by the BER pathway. 

Without this, single-stranded breaks form at the sites of oxidized bases, which stall 

replication forks and lead to double-stranded breaks that cause mitotic catastrophe 

and apoptosis (Dianov et al., 2003). Atypical DNA repair has also been associated 

with a predisposition to cancer. The NER pathway processes DNA lesions that result 

from exogenous sources, such as UV radiation (Nouspikel, 2009). Patients with the 

autosomal recessive inherited disease, xeroderma pigmentosa, are predisposed to 

cancer (Rubin, 1998). These patients are highly sensitive to UV induced mutations 

and chromosomal instability that leads to carcinogenesis (Cleaver, 1968). Cancer is 

an umbrella term for a host of diseases, and as such, it is no surprise that there is a 

diverse way in which DNA repair can be both utilised by cancer to enhance survival 

and, through mutations, may lead to susceptibility to cancer development. 

 

Both human PSC and cancer cells show atypical regulation of DNA repair pathways. 

Current data would suggest that human PSC respond to DNA damage with a 

preference of HR mediated repair or apoptosis. In contrast, cancer cells enhanced 

capacity to repair DNA helps to mediate survival in the face of extensive DNA 

damage that results from extensive proliferation, although mutations in DNA repair 

pathways may also initiate tumorigenesis. However, both cancer and pluripotent 

cells show distinct differences to somatic cells types that reflect the specific needs of 

these cells. As human PSC represent the cells of the inner cell mass, loss of genetic 
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integrity could be catastrophic and so the mechanisms employed by these cells 

could reflect the necessity of remaining genetically stable. 

 

1.5 A reflection on the early embryo 
 

The contrasting control mechanisms discussed here may reflect the early embryonic 

characteristics of pluripotent cells. The cells of the early embryo have to balance the 

need to expand rapidly whilst preserving the genetic integrity of the cells, as failure 

to do so could result in pregnancy failure or developmental defects. Following 

fertilisation of the egg, the cleavage cell divisions divide the cell cytoplasm while 

doubling the nuclear mass with each division so that the cell size can be quickly 

reduced from approximately 120µm of the egg to 10-20µm size of pluripotent cells 

found within the inner cell mass (Kiessling et al., 2003). To achieve this the cell cycle 

has limited gap phases, normally responsible for cell growth, and instead the cells 

cycle through successive rounds of DNA synthesis and cell division. Time-lapse 

imaging of human embryos up to the blastocyst stage have shown how quickly these 

cell divisions occur. The second mitotic division takes 11 hours which is followed by 

two successive synchronised divisions to the 3 and 4 cell stage that last only 1 hour 

(Wong et al., 2010). 

  

Monitoring cells in the human blastocyst stage embryos have shown that, despite 

their rapid proliferation, cell numbers of the inner cell mass plateau and this steady 

state of cells is maintained through apoptosis (Hardy, 1997, Hardy et al., 2003). Why 

cell numbers in the inner cell mass is regulated in this way has not been fully 

substantiated in humans, although it is speculated to be crucial for successful 

development by removing defective or genetically compromised cells and to regulate 

the growth of the inner cell mass so that oxygen and nutrients can still diffuse 

efficiently (Hardy, 1997, Hardy et al., 2003). These observations would match what 

has been observed in vitro. Human pluripotent stem cells have a cell doubling time 

of 30 to 36 hours yet a cell cycle time of approximately 15-18 hours which is 

accounted for by frequent cell death (White and Dalton, 2005, White et al., 2005, 

Becker et al., 2006). The extent of cell death in human PSC has been crudely 

calculated, normal human PSC cultures require passaging at a ratio of 1:2 to 1:4 

every 4-5 days. Considering the cell cycle time of human PSC is between 15-18 
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hours this would suggest that a maximum of 90% of cells are lost between passages 

(Olariu et al., 2010). As human PSC are sensitive to the activation of apoptosis, it is 

striking that most if not all the driver genes affected by recurrent mutations, regulate 

apoptosis. 

 

1.6 Summary and research aims 
 

The study of human PSC has highlighted their capacity to proliferate endlessly and 

differentiate into any tissue of the human body. These unique characteristics have 

made human PSC excellent candidates for the generation of cell-based regenerative 

medicine. However, genetic changes that arise in human PSC as a result prolonged 

culture (Draper et al., 2004, Olariu et al., 2010) threaten to preclude their use in cell-

based therapy and could cast doubt on the reliability of results from human PSC 

research. Illustrating this concern, a PSC-based clinical trial was recently terminated 

in Japan upon the discovery of genetic changes that had arisen during culture 

(Chakradhar, 2016). For these reasons, we must understand the origins of mutation 

in cultures of human PSC and optimise the in vitro conditions to preclude the 

appearance of potentially harmful mutations.  

 

In this study, I planned to address the mechanisms by which mutations arise in 

human PSC. In chapter 3, the routine methods for detecting genetically variant 

human PSC were tested and in addition, a novel assay was developed that 

improves the sensitivity of interphase FISH. In chapter 4, copy number variant lines 

identified in the previous chapter were sequenced to define the breakpoints and infer 

the mechanisms responsible for this mutation. From hypothesis driven by the data 

accumulated so far, in chapter 5 replication stress as investigated as the underlying 

mechanism influencing genetic change. This led to a discovery, presented in chapter 

6, of a way in which replication stress can be moderated, allowing for new culture 

methods that enhance the growth dynamics and genomic stability of human PSC. 
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2 Methods 
 
2.1 Culture of human pluripotent stem cells on MEF, Matrigel and Vitronectin 
coating.  
 
2.1.1 Preparation of Vitronectin, Geltrex and Matrigel coating. Human PSC were 

cultured on Vitronectin (VTN-N) recombinant human protein (ThermoFisher 

Scientific A14700). Culture vessels were coated with 200µL/cm2 of Vitronectin that 

had been diluted to 6µg/ml with PBS and incubated at 37°C for at least 1 hour. 
Alternatively, Geltrex (Gibco 15180617) or Matrigel (Corning 354277) was thawed 

on ice, diluted 1:100. Culture vessels were coated at 100µL/cm2 and set at 37°C for 

1 hour. 

 

2.1.2 Plating of mitotically inactivated mouse embryonic fibroblasts (MEF). Culture 

vessels were coated with 0.1% gelatin in PBS and incubated at 37°C for a minimum 

of 20 minutes. MEF were thawed into DMEM that had been supplemented with 10% 

FBS (HyCLone SV30160.03). MEF were seeded at a density of 10,000 cells/cm2 and 

allowed to attach in an incubator set to 37°C and 5% CO2 overnight. 

 

2.1.3 Knock out serum Replacement medium (KOSR). Human PSC were fed with 

KOSR when grown on MEF. KOSR was prepared using Knockout DMEM medium 

(Thermo Fisher Scientific, 10829018) supplemented with 4ng/mL (Peprotech, 100-

018B), 10µM L-Glutamine (Thermo Fisher Scientific, 25030081), 1X Non-Essential 

Amino Acids (Thermo Fisher Scientific, 11140050), 200nM 2-Mercaptoethanol 

(Thermo Fisher Scientific, 31350010) and 20% KnockOut Serum Replacement 

(Thermo Fisher Scientific, 10828028). 

 
2.1.4 Human pluripotent stem cell culture. Human PSC cultured in MEF free 

conditions were batch fed daily with Essential 8 (in house) (see 2.1.7) or mTeSRä1 

(STEMCELL Technologies, 85850) cell culture media that had been pre-warmed to 

37°C in a water bath.  
 

2.1.5 Passaging of human pluripotent stem cells. 1ml ReLeSR (STEMCELL 

technologies, 05873) was added to hPSC cultures. Excess ReLeSR was aspirated 
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after 1 minute. The flask was agitated until the cells begin to detach. Pre-warmed 

media was added to collect the detached cells. The cell solution was then split 

between flasks pre-coated with Vitronectin (VTN-N) recombinant human protein 

(ThermoFisher Scientific A14700). 

 

2.1.6 Dissociating human pluripotent stem cells to single cells. 1ml of TrypLE 

(Thermo Fisher Scientific, 12504013) cell dissociation enzyme was pre-warmed to 

37°C and added to the culture vessel. The flask was agitated until the cells had 

detached. The cells were washed with DMEM F12 (Sigma, D6421) and centrifuged 

for 3 minutes at 1100RPM.  

 

2.1.7 Essential 8 (E8) media preparation. E8 media was prepared from a recipe 

adapted from a previously published manuscript (Chen et al., 2011) details of the 

components can be found in Table 2.1. A concentrated X50 solution of the E8 

supplement was constituted in large batches and aliquoted into 10mL aliquots before 

being frozen at -20°C. To generate X1 E8, an aliquot was thawed overnight at 4°C 

and added to 490mL DMEM F12 (Sigma, D6421) before filter sterilisation using 

0.22µm filter (Millipore).  

 

Table 2.1. E8 media components. 

Component  50X concentrate Company Catalogue 
number 

DMEM F12 - Sigma D6421 

L-ascorbic acid  3200mg/L Sigma A8960 

Sodium selenium 700µg/L Sigma S5261 

Insulin 970mg/L Thermo Fisher 

Scientific 

A11382IJ 

NaHCO3 27.15g/L Sigma S5761 

Transferrin 535mg/L Sigma T0665 

Glutamax 50X Thermo Fisher 

Scientific 

35050038 

FGF2 5mg/L Peprotech 100-18B 

TGFB1 100µg/L Peprotech 100-21 
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2.1.8 Nucleoside supplementation. Embryomax Nucleosides 100X (Merck, ES-008-

D) were added to mTeSR cell culture media at a final concentration of 0.5X. All 

experiments were performed after 72 hours in culture with the supplementation of 

nucleosides. 

 
2.2 Differentiation of human pluripotent stem cells to mesoderm lineage. 
Human PSC were grown for 5 days in E8 (Chen et al., 2011) without FGF-2 and 

TGF-b but supplemented with 10µM CHIR99021 (Tocris, 4423). Loss of pluripotency 

was confirmed by RT-qPCR panel of self-renewal, mesoderm, endoderm and 

ectoderm genes (Table 2.4) and by immunofluorescence staining and imaging of 

NANOG. 

 

2.3 Fibroblast cell culture. Fibroblasts (ATCC, CRL2429) were grown in Iscove’s 

Modified Dulbecco’s Medium (Thermo Fisher Scientific, 12440053) with 20% FBS 

(HyClone, SV30160.03). Cells were passaged using TrypLE cell dissociation 

enzyme (see 2.1.6) (Thermo Fisher Scientific, 12504013). Cells were maintained at 

37°C and 5% CO2 in a humidified incubator. 

 
2.4 Freezing of cell lines. Cells were harvested with ReLeSR (see 2.1.5) 

(STEMCELL technologies, 05873) and neutralised in DMEM F12 (Sigma, D6421). 

The solution centrifuged for 3 minutes at 1100 RPM. The supernatant was removed 

and the cell pellet resuspended culture media supplemented with 10% DMSO. The 

cell solution was then aliquoted into cryovials and placed into a Mr Frosty (Nalgene) 

in a -80°C freezer overnight. The following day the cryovials were transferred into 

liquid nitrogen for long term storage. 

 

2.5 Thawing of cell lines. Cryovials were removed from liquid nitrogen and placed 

into a 37°C water bath. The cell suspension was diluted with pre-warmed DMEM-

F12 (Sigma, D6421) and centrifuged for 3 minutes at 1100 RPM. The supernatant 

was removed and the cell pellet was resuspended with pre-warmed media and 

added to culture vessels that had been supplemented with 10µM Y-27632. 

 
2.6 Single-cell deposition. hPSC were subcloned using single-cell deposition by 

FACS into MEF coated plates (see 2.1.2). Flasks of cells were dissociated into 
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single cells using TrypLE cell dissociation enzyme (Thermo Fisher Scientific, 

12504013) (see 2.1.6). Single cells were deposited directly into the 96 well plate 

containing KOSR media (see 2.1.3) supplemented with 10µM Y-27632 and 50µg/ml 

Gentamycin (LifeTechnologies) using a BD FACS Jazz. Single cells were 

centrifuged for 3 minutes at 1100RPM and 48 hours the media was exchanged to 

remove the Y-27632 and allowed to form colonies for the next 12 days. The resultant 

colonies were passaged into larger plates until sufficient material was present to 

screen for genetically variant or wildtype colonies confirmed by qPCR (see 2.9). 

 
2.7 Genetic diagnostics.  
 
2.7.1 G-banding. G-banding was performed by the Sheffield Diagnostics Genetic 

Service. Normally, 30 G-banded metaphases were analysed per sample by a clinical 

cytogeneticist. 

 
2.7.2 Fluorescence in situ hybridisation (FISH) for the detection of chromosomal 

variants. FISH detection of chromosomal variants was performed by Sheffield 

Diagnostics Genetic Service. Analysis was performed on 100 interphase nuclei per 

sample that had been probed with BCL2L1 (Chromosome 20q), MDM4 

(Chromosome 1q), MPO (Chromosome 17q) or BCL2 (Chromosome 18q) FISH 

probes. 

 
2.7.3 qPCR for the detection of genetic variants. Full details of the protocol can also 

be found in previous publications (Baker et al., 2016, Laing et al., 2019)  

 

2.7.3.1 gDNA extraction and digestion. gDNA was extracted from cell pellets 

using the DNeasy Blood and Tissue kit (Qiagen, 69504). DNA quantity and quality 

was measured using a NanoDrop spectrophotometer (Thermo Fisher Scientific). 1µg 

of DNA was digested with 1µl FastDigest EcoR1 enzyme and 10µl FastDigest buffer 

(Thermo Fisher Scientific, FD0275), the solution was made up to 100µl with H2O 

and incubated at 37°C for 5 minutes followed by deactivation of the enzyme by 

incubating at 80°C for a further 5 minutes. 
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2.7.3.2 qPCR reaction set up. To perform the qPCR, 10µl reactions were set 

up in triplicate in 384 well plates. Each reaction contained 1X TaqMan Fast 

Universal Master Mix (ThermoFisher, 4352042), 100nM of forward and reverse 

primers (Table 2.2), 100nm of probe from the Universal Probe Library and 10ng of 

genomic DNA. For each experiment a calibrator sample (gDNA harvested from a 

karyotypically normal cell line) and a positive control sample. The plate was 

analysed using the QuantStudio 12K Flex (Life Technologies), cycled as follows; 

50°C (2mins), 95°C (10mins), 95°C (15secs), 60°C (1min) for 40 cycles.  

 

2.7.3.3 Calculation of copy number from Ct values. The average Ct for the 

reference gene (RELL1, 4p) was calculated for the test sample by averaging values 

of the three technical replicates. The dCt was then calculated for the test locus within 

a DNA sample by subtracting the average Ct value of the reference gene (RELL1, 

4p) from the Ct value of the test sample. The dCt was then calculated for the 

calibrator sample as was done with the test sample. The dCt of the test and 

calibrator sample were subtracted giving the ddCT. The relative quantity was then 

calculated by raising 2 to the power of –ddCt. Finally, the relative quantity was 

multiplied by 2 and averaging the values of the 3 replicates. A cell line was 

determined as possessing a variant population when above 3 times the standard 

deviation of the target gene for the calibrator sample. 

 

Table 2.2. qPCR primers for the detection of genetic variants 

Gene  Location Sense  Anti-sense UPL 
Probe 

Amplicon 
size (bp) 

NPHP4 1p36 ccggcctatcgtactttt gccggtgtgtgcagaa

ct 

8 60 

MDM4 1q32.1 gcccccagacctaaat

caat 

tcggtatgacagcaat

gtctctt 

13 76 

RELL1 4p14 tgcttgctcagaagga

gctt 

tgggttcaggaacaga

gaca 

12 64 

DPPA3 12p13.31 cgtagcgtcgttgcatc

a 

tcctttttaccgttcctga

ca 

60 63 

LGR5 12q21.1 gatatgttggggattga

cacg 

tgctcaaagaggaca

accttc 

6 60 
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FLCN 17p11.2 tgcagtccacaatgac

aagtg 

ccatgagagccgaag

actgt 

68 74 

TK1 17q23.2-

q25.3 

ggtgacagctgcttac

agcttag 

actggttgccaccttctc

ag 

60 64 

BCL2L1 20q11.21 tctgcagaaggctacc

ccta 

tgctgtgtctaagacct

ctttcat 

44 75 

BCL2 18q21 tcaagcattgcccttag

ctt 

ccttaaagcatcacttc

catc 

25 88 

 

2.8 Colony FISH (C-FISH).  
 
2.8.1 Cell seeding to produce clonal colonies. 15,000 Single cells (see 2.1.6) were 

passed through a 20µM pluriStrainer (pluriSelect, 43-50020-03) and seeded into pre-

warmed mTeSRä1 (STEMCELL Technologies, 85850) supplemented with 10µM Y-

27632 onto Superfrost Plus Adhesion microscope slides (Thermo Fisher Scientific, 

J1800AMNT) that had pre-coated with 5mL of Vitronectin (Thermo Fisher Scientific 

A14700) (see 2.1.1) in a Nunc 4 well Rectangular Dish (Thermo Fisher Scientific, 

267061). To ensure the clonality of the colonies produced the cells are that 

separates out the single cells. One partial media change was performed after 48 

hours retaining 10µM Y-27632 throughout the expansion.  

 

2.8.2 Fluorescence in situ hybridisation on cell colonies. The slides were fixed with 

Carnoy solution (60% ethanol, 30% chloroform and 10% glacial acetic acid) in a 

Coplin jar for 30 minutes. The slides are dried before immersing the slides twice for 

2 minutes each in PBS. Dehydrated the slides through an ethanol series (70%, 95% 

and 100%) for 2 minutes and air dry. Add 5µL of FISH probe (Table 2.3) in the dark 

and mount with a coverslip (Sigma, C9802). Seal the edges of the coverslip with 

rubber solution (Weld-tite) to ensure they don’t dry out during the hybridisation steps. 

Denature the slides in the dark at 72°C for 2 minutes on a flat metal block on a 

standard thermocycler. Remove immediately and placed in a humidified 

hybridisation oven set to 37°C over-night or for a minimum of 16 hours.  
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2.8.3 Post hybridisation. Heat 50mL of 0.4xSSCT (Sigma, S6639) post hybridisation 

wash solution pre-warmed to 73°C in a Coplin jar suspended in a water-bath. 

Remove the rubber solution and coverslip(s) from the slide and transfer to the 

heated 0.4xSSC (Sigma, S6639) post hybridisation wash solution for 2 minutes. 

Remove the slides and transfer to the 2xSSC for 30 seconds to 2 mins at room 

temperature. Dehydrate the slides through an ethanol series; 70%, 95% and 100% 

ethanol for 2 minutes. Air-dry the slides in the dark and mount with Fluoromount G 

semi-permanent mountant (Thermo Fisher Scientific, 00-4958-02) supplemented 

with Hoechst 33342 (Thermo Fisher Scientific, H3570; diluted 1:1000) beneath a 

coverslip. Images were acquired using an IN Cell Analyzer 2200 (GE Healthcare) 

high content microscope and automated image analysis was performed using 

CellProfiler (Carpenter et al., 2006), further details of which can be found in section 

3.3. 

 

Table 2.3. FISH probes for C-FISH 

FISH Probe Supplier Catalogue number 

BCL2L1/CCp20 FISH BAC probe  Cytotest CT-PAC119 

LSP BCL2 5’ FISH BAC probe  Cytotest CT-PAC206 

LSP MDM4 (1q32)/1cen) BAC probe  Leica Biosystems KI-10736 

 

2.9 Cell cycle time analysis.  
 
2.9.1 Total cell cycle time measured from time-lapse analysis. Cells were seeded at 

500 cells/cm2 onto multi-well plates pre-coated with Vitronectin (VTN-N) recombinant 

human protein (ThermoFisher Scientific A14700) (see 2.1.1). Images were acquired 

every 10 minutes for 48-72 hours using 20X objective using a Nikon Biostation CT. 

Images were compiled in CL Quant (NIKON) and analysed using FIJI (ImageJ). 

 

2.9.2 EdU and pulse-chase analysis for cell cycle phase quantification. The following 

protocol was adapted from a previous publication (Begg et al., 1985). Cells were 

seeded as before into multi-well plates (see 2.1.1). Once at 60% confluency, the 

cells were pulse labelled with 10µM EdU for 45 minutes (Click-iT EdU Alexa Fluor 

647 Flow Cytometry Assay Kit, Thermo Fisher Scientific, C10424). At hourly 

intervals for 24-30 hours a single well was harvested using TrypLE cell dissociation 



 64 

enzyme (see 2.1.6) (Thermo Fisher Scientific, 12504013), pelleted and fixed using 

Click-iT fixative. After washing with 10% FCS and 1% BSA the cells were 

permeabilised with the Click-iT saponin based wash buffer and stained with the 

Click-iT reaction cocktail and counterstaining with Hoechst 33342 (Thermo Fisher 

Scientific, H3570; diluted 1:1000). A minimum of 10,000 dual labelled cells were 

recorded by FACs cytometry, relative movement and mid-S phase movement was 

calculated using FLOWJO single-cell flow cytometry analysis software (Becton 

Dickinson). 

 
2.10 RNA Extraction and reverse transcriptase qPCR. RNA was extracted using 

the Qiagen RNeasy kit. cDNA synthesis was performed using high capacity reverse 

transcription kit (Thermo Fisher Scientific, 4368814). qPCR was performed in 384 

well plates with 10µL reactions consisting of 1X TaqMan Fast Universal Master 

Mix (ThermoFisher, 4352042), 100nM of forward and reverse primers (Table 2.4), 

100nm of probe from the Universal Probe Library (Roche) and 2µL of 5ng/µL cDNA. 

PCR reactions were analysed using QuantStudio 12K Flex Thermocycler (Life 

Technologies 4471087). All reactions were performed in triplicate with comparative 

Ct normalized to GAPDH or B-ACTIN expression. For primer sequences see Table 
2.4; 

 

Table 2.4. Primer sequences for gene expression analysis 

Gene sense anti-sense Probe 

OCT4 agcaaaacccggaggagt  ccacatcggcctgtgtatatc  35 

NANOG agatgcctcacacggagact  tttgcgacactcttctctgc  31 

SOX17 cgccgagttgagcaagat  ggtggtcctgcatgtgct  13 

TFAP2A acatgctcctggctacaaaac aggggagatcggtcctga 62 

TH tcagtgacgccaaggaca  gtacgggtcgaacttcacg  42 

NEUROD1 acctcgaagccatgaacg  cttccaggtcctcatcttcg  55 

SOX7 ttcctcaccagccaggtc  atttgcgggaagttgctcta  30 

AFP tgtactgcagagataagtttagctga
c  

tccttgtaagtggcttcttgaac  61 

FOXA2 cgccctactcgtacatctcg  agcgtcagcatcttgttgg  9 
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GATA6 aatacttcccccacaacacaa ctctcccgcaccagtcat 90 

MIXL1 gacacagatgaggggcagtt  cccgttttcagctaccattc  6 

BRACHYURY aggtacccaaccctgagga gcaggtgagttgtcagaataggt 23 

DESMIN ggagattgccacctaccg  ggtctggatggggagattg  55 

PECAM ggtctggatggggagattg  ttcaagtttcagaatatcccaatg  37 

GAPDH agccacatcgctcagacac gcccaatacgaccaaatcc 60 

B-ACTIN ccaaccgcgagaagatga  ccagaggcgtacagggatag  64 

CCND1 tgtcctactaccgaatcaca cagggcttcgatctgctc 55 

CCND2 agctgctggctaagatcacc acggtctgctgcaggctat 68 

CCND3 ggtcacctgacgaggaggta ggtagcgatccaggtagttca 68 

CCNE1 ggccaaaatcgacaggac catcatcttctttgtcaggtgtg 32 

CCNE2 gaaagaagagaatgtcaagacga

a 

tcttggcctggattatctgg 20 

CDK4 ggccctcaagagtgtgagag ccacctcacgaactgtgct 63 

CDK6 tgatcaactaggaaaaatcttggac ggcaacatctctaggccagt 2 

 

2.11 Western blotting. Protein was isolated from cellular extracts, Laemili buffer 

(4% SDS, 20% Glycerol, 0.125M Tris HCl, 0.004% bromphenol blue) was added to 

cell pellets and sonicated for 10 seconds. The protein lysate was incubated for 10 

minutes at 95°C. Protein concentration was determined by NanoDrop 

spectrophotometer (Thermo Fisher Scientific). Protein was separated on 10% 

ProtoGel (National Diagnostics) run at 120V for 1.5 hours and transferred onto 

PVDF membrane (Millipore, #IPVH00010). Primary antibodies were incubated 

overnight at 4°C; α-Tubulin (Cell Signalling Technology, 2144; diluted 1:1000), 

Cyclin E1 (D7T3U) (Cell Signalling Technology, 20808; diluted 1:500), Cyclin E2 

(Cell Signalling Technology, 4132; diluted 1:500), Cyclin D2 (Cell Signalling 

Technology, 3741; diluted 1:500), RRM2 (Abcam, ab57653; diluted 1:100). The blot 

was washed and incubated with anti-rabbit IgG or anti-mouse IgG secondary 

antibody for 1 hour (Promega, W401 & W402). Immunoreactivity was visualised with 

ECL prime (GE Healthcare, RPN2232) on a CCD-based camera. 
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2.12 Immunofluorescence staining and imaging. Cells were fixed for 10 minutes 

at room temperature in 4% paraformaldehyde and blocked with 10% goat serum 

(Thermo Fisher Scientific, 16210072), 3% BSA (Sigma) and 0.3% Triton-X (Sigma, 

T8787) for 1 hour. Primary antibodies were incubates overnight at 4°C: Anti-

Phospho-Histone H2A.X (Ser139) (Cell Signalling Technologies, 9718; diluted 

1:400), Anti-gamma H2A.X (Phospho S139) (Abcam, ab26350; diluted 1:500), Anti-

Nanog (Cell Signalling, 4903; diluted 1:500), Anti-Nanog (Cell Signalling, 4893; 

diluted 1:500) and Anti-Ki67 (Abcam, ab238020; diluted 1:100). The secondary 

antibodies were incubated for 1 hour at room temperature: Alexa Fluor 488-

conjugated anti-rabbit IgG (Life Technologies, A11034; diluted 1:400), Alexa Fluor 

647 AffiniPure Goat anti-Rabbit IgG (H+L) (Jackson Immuno Research, 111-605-

003; 1:1000) and Alexa Fluor 647 AffiniPure Goat anti-Mouse IgG (H+L) (Jackson 

Immuno Research, 115-605-003; 1:400) and counterstained with Hoechst 33342 

(Thermo Fisher Scientific, H3570; diluted 1:1000). Images were acquired using the 

IN Cell Analyzer 2200 (GE Healthcare) high content microscope taking ≤25 

randomized images per well. 

 

2.13 Immunofluorescence data analysis. CellProfiler (Carpenter et al., 2006) was 

utilised to analyse high content imaging. Expression levels of a protein were 

calculated or counted above a threshold set by a secondary only control. The 

counterstained DAPI nuclei were used to segment individual. Cell cycle stage was 

calculated using CellProfiler Analyst (Carpenter et al., 2006) based on the integrated 

intensity of the DAPI stain.  

 

2.14 DNA fibre assay. DNA fibre assay was performed as previously described 

(Groth et al., 2010). 

 

2.14.1 DNA fibre Labelling. Cells grown for a minimum of 72 hours were sequential 

pulse labelled with a stock of 2.5mM CldU (Sigma, C6891; 1:100) and 2.5mM IdU 

(Sigma, I7125; 1:10) for 20 minutes each. The cells were washed with ice-cold PBS 

and dissociated using TrypLE cell dissociation enzyme (Thermo Fisher Scientific, 

12504013) (see 2.1.6) and diluted to 3.5x105 cells/ml in cold PBS.  
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2.14.2 DNA fibre Spreading. Labelled fibres were spread onto glass slides by adding 

2µL of cell suspension and allowing it to dry for 5-7 minutes before adding 7µL of 

spreading buffer (200mM Tris-HCL PH7.4, 50mM EDTA, 0.5% SDS). The cell 

solution was mixed with a pipette tip and incubating for 2 minutes. Slides were tilted 

at an angle of 10° and timed to ensure the droplet ran to the bottom edge of the slide 

within 3-5 minutes. Slides were air-dried and fixed with 3:1 methanol/acetic acid.  

 

2.14.3 DNA fibre immunofluorescence. The glass slides were first washed twice with 

H2O for 5 minutes each, denatured with 2.5M HCL for 1 hour and then blocked in 1% 

BSA (Sigma) and 0.1% Tween20 (Sigma). Primary antibodies were incubated for 1 

hour at room temperature: Rat anti-BrdU, clone BU1/75 (Novus Biologicals NB500-

169) (AbD Serotec; diluted 1:400) or Anti-BrdU clone BU1/75 (ICR1) (Abcam, 

ab6326; diluted 1:400) and Mouse anti-BrdU (Clone B44) (Becton Dickinson, 

347580; diluted 1:250). The slides were fixed for 10 minutes using 3% 

paraformaldehyde PH8.0. Secondary antibodies were incubated for 2 hours at room 

temperature: Alexa Fluor 555 goat anti-rat IgG (Thermo Fisher Scientific, A21434; 

diluted 1:500) and Alexa Fluor 488 F (ab')2-Goat anti-Mouse IgG (Thermo Fisher 

Scientific, A-11017; diluted 1:500). Slides were mounted with Fluoroshield (Sigma, 

F6182), and images were acquired using an Olympus FV1000 confocal microscope. 

 

2.15 Neutral comet assay.  
 
2.15.1 Comet assay slide preparation. 150µL of 0.6% agarose (Sigma, A9539) was 

set on a fully frosted glass slide, sandwiched beneath a coverslip. Once dried, 

12,000 cells suspended in 75µL ice-cold PBS were mixed with 75µL of 1.2% low 

melting agarose (Sigma, A4018). The coverslip was removed, and the cell/low 

melting agarose mixture was mounted on top of the original agarose layer, beneath 

a new coverslip. The agarose was set for 30 minutes in the fridge. The slides were 

immersed in pre-chilled lysis buffer (2.5M NaCl,10mM Tris-HCL,100mM EDTA 

PH8.0, 0.5% Triton-X, 3% DMSO) for 1.5 hours at 4°C.  

 

2.15.2 Comet assay electrophoresis. The slides were washed in H2O and 

equilibrated in electrophoresis buffer (300mM sodium acetate, 100mM Tris-EDTA 

and 1% DMSO) for 1 hour. Electrophoresis was performed at 25V for 1 hour in a 
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comet assay electrophoresis tank. Slides were stained with SYBR green (Sigma, 

S9430; diluted 1:10,000) and quantified using a fluorescence microscope and Comet 

Assay IV (Instem) live video measurement system. 

 

2.16 Oxford nanopore long-read next-generation sequencing. Cells were 

expanded to high confluency under standard conditions and harvested gently using 

ReLeSR (STEMCELL technologies, 05873) (see 2.1.5). The harvested cells were 

pelleted by centrifugation for 3 minutes at 1100RPM. gDNA from the pelleted cells 

was extracted using the DNeasy Blood and Tissue kit (Qiagen, 69504). 

Sequencing of the samples was performed in collaboration with the Sanger Institute. 

Bioinformatics analysis was performed using adapted previously published pipelines 

(Cretu Stancu et al., 2017) on the Sheffield Iceberg high-performance computing 

system. Further details are described in section 4.2.2.  

 
2.17 Antibody staining for flow cytometry analysis of pluripotency-associated 
surface markers. Cells were dissociated to single cells using TrypLE cell 

dissociation enzyme (see 2.1.6) (Thermo Fisher Scientific, 12504013). Cells were 

counted and resuspended in FACS buffer (PBS, 10% FBS) at a density of 1X107 

cells/ml. After resuspension, 100µL of cell suspension (1X106 cells) was added to a 

FACS tube (Falcon, 352053) and incubated with the primary antibody for 15 minutes 

at 4°C (Table 2.5). Cells were washed once with 2mL of FACS buffer and 

centrifuged for 3 minutes at 1100RPM. The supernatant was aspirated and 

resuspended before adding the secondary antibody in 100µL FACS buffer (Alexa 

Fluor 647 AffiniPure Goat anti-Mouse IgG (H+L), Jackson Immuno Research, 115-

605-003; 1:200). Again, the cells were washed with FACS buffer and centrifuged for 

3 minutes at 1100RPM before the supernatant was aspirated and the cells 

resuspended in 300µL of FACS buffer. Analysis was performed on BD FACS Jazz 

with baseline fluorescence set using the control antibody P3X which does not show 

any expression on human cells. 
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Table 2.5. Primary antibodies for FACS analysis. 

Antibody  Type Dilution  Reference 
P3X Mouse 

monoclonal 

IgG 

1:10 (Köhler and Milstein, 1975) 

TRA-1-85 Mouse 

monoclonal 

IgG 

1:10 (Williams et al., 1988) 

SSEA3 Rat 

monoclonal 

IgM 

1:10 (Shevinsky et al., 1982) 

SSEA4 Mouse 

monoclonal 

IgG3 

1:100 (Kannagi et al., 1983) 

 
2.18 Apoptosis assay. Cell media was not replaced on the day of the experiment 

but was collected prior to the experiment to harvest the cells that have detached as 

a result of apoptosis. The remaining cells were dissociated to single cells using 

TrypLE cell dissociation enzyme (see 2.1.6) (Thermo Fisher Scientific, 12504013) 

and resuspended in cell media collected in the previous step. The entire cell solution 

was added to a FACs tube (Falcon, 352053), before being centrifuged for 5 minutes 

at 1400RPM. The supernatant was aspirated off and the cells were resuspended in 

200µL of 4% PFA for 15 minutes. The fixed cells were then centrifuged at 1400RPM 

for 5 minutes and resuspended in 200µL of permeabilization buffer (PBS, 0.5% 

Triton X) for 5 minutes. The cells were centrifuged again for 5 minutes at 1400RPM 

and resuspended in 200µL of blocking buffer (PBS, 1% BSA, 0.3% Triton X) with 

anti-cleaved caspase-3 antibody (Cell Signalling Technology, 9661; diluted 1:400) 

for 1 hour with periodic, gentle agitation. The samples were washed with 1mL of 

blocking buffer before being centrifuged for 5 minutes at 1400RPM before being 

stained with Alexa Fluor 647 AffiniPure Goat anti-Rabbit IgG (H+L) (Jackson 

Immuno Research, 111-605-003; 1:1000) in blocking buffer for 1 hour in the dark. 

Finally, the cells were washed with 1 ml of blocking buffer before being centrifuged 

again as before. The pelleted cells were resuspended in 400µL of blocking buffer 
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and analysed above the baseline (secondary antibody only stained sample) on a BD 

FACS Jazz system. 

 
2.19 Embryoid body formation. 3.5mL of APEL media was divided amongst the 

inner 60 wells of the 96 well plate (50µL per well) with the outer wells filled with 

100µL PBS. hPSC were cultured to approximately 70-80% confluency and 

dissociated to single cells using TrypLE cell dissociation enzyme (see 2.1.6) 

(Thermo Fisher Scientific, 12504013). The cells were pelleted and resuspended in 

APEL media so that 50µL of cell suspension contains 3000 cells. 50µL of the cell 

suspension was added to each well of the 96 well plate. To aggregate the cells, the 

96 well plates were centrifuged at 1100RPM for 3 minutes and allowed to grow in 

the incubator for 10 days. After 10 days, the EBs were imaged on a standard light 

microscope and harvested with a pipette, pooling each condition into a single 15mL 

conical tube. 

 
2.20 GFP or RFP-tagging construction. Cells were transfected with pCAG-GFP-

PURO or pCAG-H2B-RFP-IRES-PURO vector using electrophoresis. Cells were 

expanded to give 2.5million cells per electroporation, including cells for a no plasmid 

control. In preparation for the electroporation, a 6 well plate was coated with 

Vitronectin (VTN-N) recombinant human protein (ThermoFisher Scientific A14700) 

(see 2.1.1). Transfections were performed using the Neon Transfection system 

(Thermo Fisher Scientific, MPK10025), 3mL of E2 buffer was added to the neon 

tube and placed in the electroporation device. The cells were dissociated to single 

cells using TrypLE cell dissociation enzyme (see 2.1.6) (Thermo Fisher Scientific, 

12504013) and a cell count was taken. The cells were centrifuged for 3 minutes at 

1100RPM and the cell pellet resuspended to a concentration of 2.5 million cells per 

120µL of resuspension buffer. Next, 120µL of cell suspension was mixed with up to 

5µg of plasmid, keeping the volume of the plasmid to less than 5µL. Pre-warmed 

media, either Essential 8 or mTeSRä1 (STEMCELL Technologies, 85850) 

supplemented with 10µM Y-27632 was added to the 6-well plate in preparation of 

cell seeding. To perform the electroporation, 100µL of the plasmid/cell solution was 

taken up using a Neon 100µL tip. The neon tip was placed into the E2 buffer and 

electroporated using the following conditions; 1600V, 20msec, 1 pulse. The cells are 

resuspended in the pre-warmed cell culture media and returned to the incubator. 
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Cells successfully transfected were selected for by its puromycin resistance, 

Puromycin concentration was increased gradually over 5 days to a final 

concentration of 0.375µg/mL before flow sorting for the brightest population of GFP 

or RFP. 

 

2.21 Time-lapse imaging and analysis. 
 
2.21.1 Time-lapse analysis of mitotic errors. MIFF1 transfected with pCAG:H2B-

RFP:PURO plasmid (see 2.25) were passaged from a T12.5 flask 1:10 to a 35mm 

IBIDI µ-dish (ibidi, 81156) pre-coated with Vitronectin (VTN-N) recombinant human 

protein (ThermoFisher Scientific A14700) (see 2.1.1) containing either mTeSRä1 

(STEMCELL Technologies, 85850) or mTeSRä1 supplemented with exogenous 

nucleosides. The plates were transferred to a Nikon dual-camera widefield Live-Cell 

system fitted with 100X oil lens. Time-lapse images were acquired every minute for 

2 hours. Analysis was performed using FIJI. 

 

2.21.2 Time-lapse analysis to generate lineage trees. Plates of cells were set up as 

in 2.21.1 with cells grown in either mTeSRä1 (STEMCELL Technologies, 85850) or 

mTeSRä1 supplemented with exogenous nucleosides. Using FIJI, individual cells 

were traced, recording when the cell divided or died. Using this recorded data, 

lineage trees were generated manually using Adobe Illustrator (Adobe). 

 
2.22 Clonogenic assay. Clonogenic assays were performed on vitronectin coated 

24 well plates. Cells dissociated using TrypLE cell dissociation enzyme (Thermo 

Fisher Scientific, 12504013) (see 2.1.6), counted and resuspended in mTeSRä1 

(STEMCELL Technologies, 85850) or mTeSRä1 supplemented with exogenous 

nucleosides. The cells were plated at a density of 500 cells/cm2. To allow the cells to 

attach they were plated with 10µM Y-27632 for 24 hours before the media was 

replaced to remove Y-27632. After 72 hours the cells were washed and fixed with 

4% PFA and stained for Nanog as previously described. 

 
2.23 Cell growth assay.  
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2.23.1 Cell plating. The inner 60 wells of a 96 well plate (Greiner, 655090) were 

coated with 60µL Vitronectin (VTN-N) (ThermoFisher Scientific A14700) (see 2.1.1). 

The Vitronectin was replaced with 50µL mTeSRä1 (STEMCELL Technologies, 

85850) or mTeSRä1 supplemented with exogenous nucleosides and 20µM Y-

27632. Cells were dissociated to single cells using TrypLE cell dissociation enzyme 

(Thermo Fisher Scientific, 12504013) (see 2.1.6) and resuspended to a density of 

1X106 cells/mL in the respective condition. Cells were seeded at 10,000 cells per 

cm2. After 24 hours the media was replaced to remove the Y-27632 and grown for a 

further 72-96 hours. 

 

2.23.2 Fixation and cell staining. The majority of media was then removed gently 

and the cells were fixed with 100µL of 4% PFA supplemented with Hoescht 33342 

(Thermo Fisher Scientific, H3570; diluted 1:1000) for 15 minutes, shielding the plate 

from light. The wells were gently washed 3 times with PBS for 5 minutes each before 

images were captured on InCell analyser (GE Healthcare) high content imager, 

imaging the entire well. Automatic image analysis using CellProfiler (Carpenter et al., 

2006) was performed, counting the number segmented DAPI or Hoescht 33342 

stained nuclei. 

 
2.29 Statistical analysis. Statistical analysis and graphical representations were 

performed using GraphPad Prism version 8.0.0 (La Jolla California USA, 

www.graphpad.com). Two independent sets data sets, such as differences between 

cells grown in mTeSRä1 or mTeSRä1 supplemented with exogenous nucleosides 

were analysed using an unpaired students t-test to determine the significant 

difference between the means of the two data sets. A significant difference was 

determined when P<0.05. 
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3 Testing and developing routine screening assays for the 
detection of genetically variant human pluripotent stem cells 
 

3.1 Introduction 
 

The spectrum of karyotypic changes that arise during the culture of human PSC can 

be broadly classified as large structural or whole chromosome amplifications, large 

or whole chromosome deletions and small amplifications including tandem 

duplications. The most commonly acquired genetic changes include structural and 

numerical deletions of chromosomes 10,18 and 22 and amplifications of 

chromosomes 1, 12, 17 and 20, with those effecting chromosome 20 appearing 

commonly as small tandem duplications (Amps et al., 2011, Baker et al., 2007, 

Cowan et al., 2004, Draper et al., 2004). It is important for the safe application of 

human PSC in regenerative medicine that we minimise the appearance of these 

variants, yet we will be unable to do so unless we can first sensitively detect them. 

Currently, no single routine approach is capable of detecting all these aberrations 

simultaneously and therefore genetic monitoring of human PSC relies on a set of 

complementary tests that have been optimised for specific types of genetic change.  

 
Karyotyping by G-banding detects chromosomal changes through variation in the 

banding pattern of metaphase spreads, allowing the user to detect structural and 

numerical changes to every chromosome without the need for direct probing of 

specific regions. However, when it was applied to the detection of populations of 

variant human ES cells with large chromosomal amplifications, the sensitivity is in 

the range of 10-14%, when the typical 20-30 metaphases are practicably screened 

(Baker et al., 2016). Further, due to the 400-500 Giemsa stained bands that are 

produced per haploid genome, the resolution of this assay is limited to structural 

changes greater than 5Mb in size (Simons et al., 2013). As such, G-banding is 

unable to detect small amplifications, particularly the tandem duplication that 

frequently afflict chromosome 20. Exemplifying this point, the first reports of 

karyotypic changes, detected by G-banding, did not include amplifications to 

chromosome 20 (Draper et al., 2004, Cowan et al., 2004).  
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Only during the course of SNP array screening of a large cohort of human PSC was 

the frequent amplification of a small amplicon on chromosome 20q11.21 first 

realised (Amps et al., 2011). SNP arrays, comparative array CGH and qPCR based 

analyses utilise DNA taken from cultures of human PSC to detect copy number 

changes relative to other markers along the genome or to a reference DNA sample 

(Rassekh et al., 2008). These techniques are robust and capable of detecting both 

large and small amplifications and deletions down to 1kb in size or lower. Currently, 

only the sensitivity of qPCR has been tested in human ES cells, where it was 

possible to detect copy number changes in greater than 10% of the population 

(Baker et al., 2016). However, the sensitivity of arrays is often limited as they rely on 

being able to detect the signal of variant cells above that of diploid cells and fail in 

providing a count of the absolute numbers of genetically variant cells within a 

culture. 

 

When it is required to discern the absolute numbers of variant cells, interphase FISH 

can be performed. Interphase FISH involves the molecular hybridisation of 

fluorescently labelled DNA probes to complementary DNA sequences. By counting 

the number of signals present in each cell it is possible to detect when a specific 

genomic region has been amplified or deleted (Trask, 2002) (Figure 3.1a). It is a 

rapid approach that only requires two days to complete, can be performed in non-

specialist laboratories and is capable of detecting both large and small amplifications 

and deletions, aneuploidies and is routinely employed to detect small tandem 

duplications, like those commonly found on chromosome 20 (Trask, 2002). The 

versatility of Interphase FISH makes it an attractive assay for screening cultures of 

human PSC. However, in practice, inconsistent results can arise that are a 

consequence of false-negative signals. High false-negative rates result from the co-

localisation of signals that is an inherent problem of visualising a 3-D object, such as 

a cell, in 2-D (Kearney, 2001) (Figure 3.1b). The frequency of false-negative signals 

also depends on the structure of the variant being detected. Translocations and 

aneuploidies infrequently result in false-negative signals because there is usually a 

good spatial separation of the amplified and wild-type chromosomal regions. 

However, a high incidence of false negatives can arise when detecting tandem 

duplications where the distance between the amplification is small, increasing the 

likelihood that the two signals will overlap when viewed by fluorescence microscopy 
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(Gozzetti and Le Beau, 2000) (Figure 3.1c). Therefore, the sensitivity of detecting 

small tandem duplications will likely be compromised but this has not currently been 

tested. When applied to the detection of low-level mosaicism of human ES cell 

cultures it was possible to detect down to 1% variant cell when 1000 interphase 

nuclei were scored, although it is highly labour-intensive to do so and would be 

impractical for regular screening of cell lines (Baker et al., 2016). Consequently, 100 

interphase cells are routinely scored which limits its sensitivity to 10% when 

detecting large amplifications to chromosome 17 (Baker et al., 2016).  

 

In summary, the assays currently employed to routinely screen human PSC cultures 

tend to offer poor sensitivity are unable to detect the presence of low-level genetic 

mosaicism when present in less than 10-15% of a culture. Additionally, current 

reports to the literature have failed to test the sensitivity of array-based approaches 

and have only provided limited results from mixing experiments using human ES 

cells that present large structural and numerical amplifications.  
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Figure 3.1 | Sources of false negative signals from interphase FISH analysis. a, 
Representative image of a chromosome 20q variant human PSC line probed with 

interphase FISH 20q (BCL2L1) probe. Green box indicates a cell displaying a true 

positive result and the dashed red box indicates a false negative cell. b, Schematic 

illustrating the co-localisation of signals in aneuploid cell as a result of viewing the 3-

D nucleus of a cell in 2-D. c, Schematic illustrating the close proximity of signals that 

are unresolvable by fluorescence microscopy resulting in signal overlap and a false 

negative result. Note, the signal intensity on the amplified chromosome is greater 

than that observed on the unaffected chromosome. 

 

 

The results presented in this chapter come from robust testing of the sensitivity of all 

the approaches we have discussed here, expanding on previous studies by 

performing mixing experiments using human iPSC and where necessary testing the 

sensitivity of detection of small tandem amplifications on chromosome 20 and 

chromosomal deletions. Further, we present data on the development of a novel 

interphase FISH approach, which we have termed colony-based interphase FISH 

(C-FISH) to address the poor sensitivity of interphase FISH. In this approach, test 

cells are allowed to form small colonies of about 10 to 15 cells, which we then score 

by averaging the signal from all the cells within a colony and show it is possible to 

discount the impact of false negative signals in assessing the genetic status of the 

parent cell of the colony (Figure 3.2). By also employing a scanning microscope 

technique it was possible to automate the scanning of a large number of colonies. 

Through this development of the C-FISH assay, I was able to improve the sensitivity 

of detecting specific common genetic variants, a necessary step for achieving the 

translational promise of human PSC. 
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Figure 3.2 | Workflow schematic of conventional interphase FISH and C-FISH. 
Conventional interphase FISH (top), cells are harvested before being fixed and 

hybridised with a FISH probe on glass slides. Analysis is performed on single cells 

where confirmation of a positive or negative result is not possible. C-FISH (bottom), 

live single cells are cultured for 72 hours on glass slides allowing the single cells to 

form clonally derived colonies of roughly 10 to 15 cells. The slides are fixed and 

hybridised with a FISH probe corresponding to the genomic region of interest. False 

negative results are reduced by assessing the average number of signals per cell 

per colony. An example of the colony calculation is displayed. 
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3.2 Results  
 
3.2.1 Generating a panel of genetically variant and diploid isogenic human induced 

pluripotent stem cells  

 

The sensitivity of detecting low level mosaicism by G-banding, qPCR and Interphase 

FISH has previously been assessed (Baker et al., 2016). However, the previous 

study focused on the assessment of human ES cells, whereas for the purpose of the 

present study it was important to confirm these results are consistent in cultures of 

human iPSC. Further, in the following chapter, I needed highly sensitive assays to 

identify variant cell lines to explore the breakpoint regions in the chromosome 20 

amplicon, to gain an insight into the mechanism through which it arises. 

 

To test the sensitivity of G banding, qPCR, array CGH and interphase FISH, our 

benchmark panel of assays, isogenic human iPSC lines containing commonly 

observed karyotypic changes and diploid counterparts were generated. These clonal 

lines would provide the tools to investigate the sensitivity of detecting low level 

mosaicism through mixing experiments. Prior to the initiation of this project, the 

human iPSC line MIFF1 had acquired a mosaic population of variant cells that 

possessed an amplification on chromosome 1 and 20. A single cell cloning approach 

was used to isolate the diploid and genetically variant populations, confirmed by G 

banding or Interphase FISH and qPCR (Figure 3.3a,b). The MIFF1 clone Cl33 

would provide the genetic background to test the sensitivity of detecting small 

mosaic populations of human iPSC with large (duplication of chromosome 1) and 

small structural amplifications (duplication of chromosome 20) through mixing 

experiments. However, deletions to chromosome 10, 18 and 22 are also known to 

commonly afflict human PSC (Baker et al., 2007). I sought to identify a cell line with 

a population of cells that contained a deletion to chromosome 10, 18 or 22. Cell lines 

donated from our colleagues on the TechnoBeat consortium were screened by G 

banding. The UCB144 cell lines was identified as having a small population of cells 

with a deletion on chromosome 18. The mosaic UCB144 cells were thawed from a 

cryopreserved bank, expanded and single cells were flow sorted into a 96 well plate 

containing MEF. After 2-3 weeks, cells that had successfully formed colonies were 

harvested with half of the material screened by qPCR for the chromosome 18 
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deletion and the other half re-plated and expanded. Clones with the chromosome 18 

deletion and a selection of the isogenic diploid clones were cryopreserved. To 

confirm the genotype of the selected clones, a sample culture at the point of banking 

was karyotyped by G banding (Figure 3.3c,d). 

 

By fluorescently labelling the diploid MIFF1 cell line it was possible to accurately 

distinguish between the labelled diploid and unlabelled variant cells combined during 

mixing experiments. The MIFF1 diploid line was stably transfected with a 

constitutively active GFP, driven by a pCAG promoter. The pCAG promotor 

simultaneously drives antibiotic resistance to neomycin allowing for the positive 

selection of successfully transfected cells following electroporation. The pCAG 

promotor is not silenced in human PSC, which is important when monitoring 

proportions of cells (Liew et al., 2007). To confirm that no further genetic changes 

had occurred through this process G-banding, interphase FISH and qPCR confirmed 

the diploid genotype of the MIFF1-GFP line (Figure 3.4). A summary of these cell 

lines and their respective karyotypes are listed in Table 3.1. 
 

Additionally, the H7 human ES and the TC113 human iPS cell line clones were 

utilised whilst developing the C-FISH approach. These cell lines were previously 

generated in much the same way as described above and provided additional tools 

to test the detection of large amplifications in the form of a trisomy, in the case of 

H7s6 and small tandem duplications with the H7s14-20q and TC113-E1 and E6 

lines (Table 3.1) 

 

Figure 3.3 | Isogenic panel of human iPSC, genotype confirmed by G banding, 
Interphase FISH and qPCR. a, MIFF1 was confirmed diploid (46, XY) by G banding 

(top), interphase FISH (middle) and qPCR (bottom). b, the MIFF1 isogenic clone 

cl33 derived from single cell FACS sorting was found to have an amplification on 

chromosome 1 and 20 when screened by G banding (top), interphase FISH (middle) 

and qPCR (bottom). c, The diploid UCB144 clone, F6. Karyology result (top) and 

qPCR for the determination of copy number (bottom). d, The D14 clone of cell line 

UCB144 contains a homozygous population with a deletion on chromosome 18 

confirmed by G banding (top) and qPCR (bottom). a-d, qPCR results are the mean 

copy number from three technical replicates ±s.d. 
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Table 3.1. Cell lines used to test the sensitivity of detection of common genetic 

variants in human iPSC. Colour coding shows the cell lines with small amplifications 

such as tandem duplication (yellow), large amplifications including trisomy (green) 

and deletions (red). 

Cell 
Line 

Karyotype/FISH Comment 

MIFF1 46,XY  Normal karyotype. No evidence of a duplication to 
BCL2L1 (chromosome 20q11.21) as detectable by 
interphase FISH and qPCR. 

MIFF1-
GFP 

46,XY Normal karyotype. No evidence of a duplication to 
BCL2L1 (chromosome 20q11.21) as detectable by 
interphase FISH and qPCR. 

MIFF1-
Cl33 

46,XY,dup(1)(q32q
42),inv(9)(q21q34) 

Abnormal karyotype: An amplification to chromosome 
1 between the regions q32 to q42. Chromosome 9 
has displayed an inversion to the q arm between q21 
and 34, an unusual genetic change rarely seen in 
human iPSC. There is also a gain of the chromosome 
20q11.21 amplicon, including BCL2L1, detectable by 
interphase FISH and qPCR, but not G-banding. 

 

UCB14
4-F6 

46,XY Normal karyotype. No evidence of a duplication to 
BCL2L1 (chromosome 20q11.21) as detectable by 
interphase FISH and qPCR. 

UCB14
4-D14 

46,XY,del(18)(q21) Abnormal karyotype. A deletion to chromosome 
18q21. No evidence of a duplication to BCL2L1 
(chromosome 20q11.21) as detectable by interphase 
FISH and qPCR. 

H7s14 46,XX Normal karyotype. No evidence of a duplication to 
BCL2L1 (chromosome 20q11.21) as detectable by 
interphase FISH and qPCR. 

H7s14-
20q 

46,XX Normal karyotype. Evidence of a duplication to 
BCL2L1 (chromosome 20q11.21) as detectable by 
interphase FISH and qPCR but not detectable by G-
banding 

H7s6 47,XX,+del(1)(p22p
22),der(6)t(6;17),(q
27;q1),t(12;20)(q13;
13.3),i(20)(q10) 

Abnormal karyotype. Trisomy of chromosome 1 that 
has an interstitial deletion at 1p22. A gain of 
chromosome 17q via an unbalanced translocation 
with chromosome 6, trisomy of chromosome 12 and 
duplication of the entire chromosome 20q via an 
isochromosome. 

TC113-
G2 

46,XY Normal karyotype. No evidence of a duplication to 
BCL2L1 (chromosome 20q11.21) as detectable by 
interphase FISH and qPCR. 

TC113-
E1 

46,XY Normal karyotype. Evidence of a duplication to 
BCL2L1 (chromosome 20q11.21) as detectable by 
interphase FISH and qPCR but not detectable by G-
banding 

TC113-
E6 

46,XY Normal karyotype. Evidence of a duplication to 
BCL2L1 (chromosome 20q11.21) as detectable by 
interphase FISH and qPCR but not detectable by G-
banding 
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Figure 3.4 | Fluorescently labelled MIFF1 remained diploid following stable 
transfection of constitutively active GFP. a, G banding and interphase FISH 

confirmed the GFP labelled MIFF1 line remained diploid following transfection. b, 
qPCR copy number analysis of the MIFF1-GFP cell line. qPCR results are mean 

copy number from three technical replicates ±s.d. 

 

3.2.2 The sensitivity of G banding in detecting mosaic populations of variant human 

iPS cells 

 

To assess the sensitivity of G banding for the detection of low-level mosaicism in 

cultures of human iPS cells we performed mixing experiments of the diploid MIFF1-

GFP with MIFF1-CL33. The cell lines were mixed at increasing ratios (ranging from 

1% to 28%) with each mix split across two identical cell culture flasks. The first flask 

was sacrificed to accurately determine the proportion of MIFF1-GFP cells in the 

mixing experiment by flow cytometry. The sister flask was treated with colcemid to 

arrest the cells in metaphase and processed for G banding. The prepared 

chromosome spreads were analysed and increasing numbers of unique metaphases 

(between 5 and 100) were sampled, in each case, the presence or absence of the 

chromosome 1 amplification was counted. Each experiment was performed in 

triplicate by two independent cytogeneticists, which was accomplished in 

collaboration with Duncan Baker and the team at the Sheffield Children’s Hospital 

Diagnostic Genetics Service. Each cytogeneticist analysed the same slide of 
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prepared metaphases in each experiment to exclude the potential of analyst bias. A 

second slide was also prepared and analysed by analyst 1 to confirm the results 

from the first slide. Generally, the detected numbers of abnormal cells fell within the 

expected confidence levels (Figure 3.5). At the ratio of 22%, two values fell below 

the statistically predicted lower limit when 100 cells were scored. Overall, the 

number of metaphases scored as positive for an amplification to chromosome 1 

matched what was anticipated from random sampling theory (Baker et al., 2016). 

Detecting low-level mosaicism of 1% was not possible from our assay even when 

100 metaphases were scored but we readily detected the 14% mix even at low 

levels of sampling. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 | Sensitivity of G banding in the detection of the chromosome 1 
duplication in human iPSC. a-d, MIFF1 (diploid-GFP) and MIFF1-Cl33 

(46,XY,dup(1)(q32q42),inv(9)(q21q34)) were mixed at the ratios indicated and these 

numbers were confirmed by fluorescence-activated cells sorting (FACS) based on 

the expression of GFP. The mosaic cultures were analysed by G-banding and 

metaphases were scored for the presence of the chromosome 1 duplication 

(q32q42) y-axis. Increasing numbers of metaphases were scored (5-100) by two 

cytogeneticists, x-axis. The individual data points indicate the blind analysis 

performed as follows: cytogeneticist 1 scoring slide 1 (blue circle), cytogeneticist 1 

scoring slide 2 (red circle) and cytogeneticist 2 scoring slide 2 (green circle). The 

dotted lines represent the statistically determined expected numbers, upper and 

lower limits (CI=95%).  
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3.2.3 Sensitivity assessment of array CGH for the detection of chromosome 1 and 

chromosome 20 amplifications 

 

Previously, the sensitivity of array-based techniques had not been tested for the 

detection of low-level mosaicism in human PSC cultures (Baker et al., 2016). To test 

the lower limits of detection of array CGH, genomic DNA was first prepared from 

cultures of MIFF1 and MIFF1-CL33. The DNA sample concentrations were 

measured and diluted so that the concentrations matched. MIFF1 gDNA was then 

spiked with increasing ratios (0%, 1%, 5%, 10%, 20%, 30%, 50% and 100%) of 

MIFF1-CL33 DNA. The spiked DNA was sent for blind cytogenetic analysis with the 

analyst returning results of a positive or negative array for amplifications on 

chromosome 1 and 20. In both cases, the analyst reported a positive array when the 
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MIFF1 DNA had been spiked with greater than 20% of MIFF1-Cl33 DNA (Figure 
3.6). 

 

 
 
Figure 3.6 | Array CGH can detect a 20-30% mosaic populations of variant 
human PSC. a, A positive chromosome 1 array of MIFF1 DNA that was spiked with 

20% of MIFF1-CL33 DNA. b, A positive chromosome 20 array of MIFF1 DNA that 

was spiked with 20% of MIFF1-CL33 DNA. 

 

3.2.4 Assessment of the sensitivity of qPCR for the detection of low-level mosaicism 

in human iPSC 

 

The qPCR detection method was developed as a complementary alternative to G 

banding to allow routine screening of human PSC cultures (Baker et al., 2016). A 
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target panel of primers located on commonly amplified regions allows for the 

detection of copy number changes based on relative quantification to a reference 

locus on chromosome 4. Chromosome 4 was chosen as it is very rarely afflicted by 

genetic changes and so acts as a diploid internal control locus. The design of the 

primers is critical for the accurate detection of copy number variants. During the 

initial G-banding screen of the clone MIFF1-CL33, we detected an amplification on 

chromosome 1 that spanned the q32q42 region (Figure 3.7a). However, a 

subsequent screen by qPCR analysis did not reveal this duplication (Figure 3.7b). 
The original primer was designed for the gene CHD1L on locus q12 of chromosome 

1 which falls outside of the duplication in the MIFF1-CL33 cell line (Baker et al., 

2016). Before the sensitivity of qPCR could be assessed it was necessary to 

redesign this primer so that it targeted a gene within the common minimal amplicon. 

Recent unpublished data has indicated that MDM4 may be the driver gene found on 

chromosome 1, which lies within the 1q32 band (Unpublished data; McIntire et al. 

WiCell, Madison, WI, USA). Accordingly, a new primer set was designed that 

mapped to the intronic region of MDM4 following the previously described method 

(Laing et al., 2019, Baker et al., 2016). The newly designed primer set successfully 

detected the chromosome 1 amplification that was reported by G-banding (Figure 
3.7c).  
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Figure 3.7 | Development of appropriate primers for the detection of the 
minimal amplicon on chromosome 1. a, A representative karyotype of MIFF1-

CL33 produced by G banding. The red arrow indicates an amplification of the 

q32q42 region. b, qPCR assay that included a primer for the gene CHD1L (1q) was 

unable to detect the duplication on chromosome 1 in the cell line MIFF1-CL33. The 

small tandem duplication on chromosome 20 was readily detected by the assay 

using primers designed for the gene BCL2L1 (20q). c, The newly designed primers 

for gene MDM4 sensitively detect the chromosome 1 amplification in the MIFF1-

CL33 cell line. qPCR results are mean copy number from three technical replicates 

±s.d. 

 

With the re-designed primers now suitable for the detection of minimal amplifications 

on chromosome 1, the sensitivity of qPCR and interphase FISH was tested using the 

same samples of cells. To determine the sensitivity of detecting amplifications to 

chromosome 1 and 20, cultures of the cell lines MIFF1 and MIFF1-CL33 were 

harvested, counted and then mixed with an increasing proportion (0%, 1%, 5%, 

10%, 20%, 30%, 50% and 100%) of MIFF1-CL33. To test the relative sensitivity of 

detecting deletions to chromosome 18, we designed a primer specific to the 

PHLPP1 gene of in the q21.33 region following the protocol previously described 

(Baker et al., 2016, Laing et al., 2019). The primer accurately detected the 

chromosome 18 deletion in the clonal line, UCB144-D14 (Figure. 3.3d). To test the 

sensitivity of the qPCR approach for the detection of chromosome 18 deletions 

UCB144-F6 and UCB144-D14 were mixed with the same increasing proportion of 

the variant line, UCB144-D14. After mixing the cells, each sample was split into two 

tubes with one tube processed for gDNA extraction that was used in the qPCR 

assay and the other fixed and processed for interphase FISH (see section 3.2.5). 

 

Using the previously described calculation (Laing et al., 2019, Baker et al., 2016), 

copy numbers were calculated from the qPCR Ct values. As expected, the control 

samples containing 0% and 100% of the variant MIFF1-CL33 returned a copy 

number of 2 and 3 respectively, whereas, the control sample containing 0% and 

100% of the variant UCB144-D14 cells returned a copy number of 2 and 1 

respectively. Across the three independent experiments, a significant difference was 
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calculable between the 0% control and the 20% mix, confirming a sensitivity of 20% 

(Figure 3.8a-c).  
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Figure 3.8 | qPCR-based assay can detect genetic low-level mosaicism in 
human IPSC. a-c, Mixing experiments of increasing proportions of isogenic variant 

lines (x-axis) in a background of diploid lines. Copy numbers are calculated from 

qPCR Ct values and plotted along the y-axis. Results of three independent 

experiments are displayed from left to right. a, qPCR detection of spiked populations 

of the chromosome 1 variant, MIFF1-CL33 in a background of the diploid MIFF1 cell 

line by qPCR. b, Results from qPCR variant detection of spiked MIFF1-CL33 in 

diploid MIFF1 cells for the amplification on chromosome 20. c, Detecting genetically 

mosaic cell samples with an increasing proportion of the variant chromosome 18 

deletion cell line UCB144-D14 in a background of diploid UCB144-F6. Data in a-c, 

are mean ± s.d., two-tailed t-test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (n = 

3 experiments). 

 

3.2.5 Testing the sensitivity of interphase FISH for the detection of amplifications to 

chromosome 1 and 20 and deletions to chromosome 18 

 

Using the paired fixed samples that we generated in section 3.2.4, FISH probes that 

complement the MDM4 gene on chromosome 1, BCL2L1 on chromosome 20 and 

BCL2 on chromosome 18 were hybridised to each of the relevant samples. One 

hundred interphase nuclei were scored per mixing experiment across three 

independent tests. The lower limit of detection was calculated by performing an 

unpaired t-test comparing the difference between the 0% control sample with the 

mixed spiking experiments. Amplifications on chromosome 1 were reliably detected 

in the MIFF1-CL33 variant cells only when they were present at proportions greater 

than 5% (Figure 3.9a). Unsurprisingly, the sensitivity was diminished when 

interphase FISH was applied to the detection of the small tandem duplication on 

chromosome 20 in the MIFF1/MIFF1-CL33 mixing experiments. The amplification 

was consistently detected when present at greater than 10% of the total population 

(Figure 3.9b). This result is consistent with increased numbers of false-negative 

results that arise when probing small tandem duplications by interphase FISH 

(Gozzetti and Le Beau, 2000). This deduction is further substantiated by the results 

attained from the 100% control samples where the amplification of chromosome 1 

and the deletion of chromosome 18 were detected in 100% and 98% of the scored 

cells (Figure 3.9a,c). In contrast to this, the detection of the chromosome 20 variant 
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only returned an average result of 92% positive cells, possibly due to the difficulty of 

resolving the third signal from tandemly duplicated regions (Figure 3.1a). 

Unexpectedly, the detection of chromosome 18 deletions was also only reliably 

detected above 10% (Figure 3.9c). This could be explained by the acquisition of a 

population of cells with a deletion on chromosome 18 in the diploid UCB144-F6, 

although this would seem unlikely as the cell line was karyotyped at the end of the 

experiment and returned a diploid result. A more likely explanation would be a false-

negative result caused by co-localisation of signals from imaging cells in a 2-D plane 

(Figure 3.1b). Overall, the sensitivity of the current panel of assays cannot reliably 

detect low-level mosaicism when present below 5-20% of a culture (Table 3.2). 

Given the potential consequence of genetically variant human PSC use in 

regenerative medicine, it is vital that sensitive and robust techniques are developed 

to accurately screen human PSC products intended for the clinic. The following 

sections in this chapter will present a novel approach developed to address the 

limited sensitivity of interphase FISH, particularly when detecting small tandem 

duplications. 

 

Figure 3.9 | Sensitivity of interphase FISH for the detection of amplifications to 
chromosome 1 and 20 and deletion to chromosome 18. a-c, Mixing experiments 

were performed to determine the sensitivity of interphase FISH. The proportion of 

variant cells spiked in each experiment is plotted on the x-axis with frequency of 

detection plotted on the y axis. Three independent experiments were performed and 

displayed as individual graphs (left to right). a, Interphase FISH reliably identified 

mosaic populations of chromosome 1 duplications in the MIFF1-CL33 cell line when 

present in greater proportions than 5%. Statistical significance was found between 

0% and 5% (unpaired t-test, P<0.05 for the biological triplicate of 0% versus 5% 

sample). b, Chromosome 20 duplications were detectable when more than 10% of 

variant MIFF1-CL33 were spiked into a background of diploid MIFF1 cells. Statistical 

significance was found between 0% and 10% (unpaired t-test, P<0.05 for the 

biological triplicate of 0% versus 10% sample). c, A mosaic population of the 

UCB144-D14 cell line was detected by interphase FISH with probes specific to the 

chromosome 18 deletion when present in greater proportions than 10%. Statistical 

significance was found between 0% and 10% (unpaired t-test, P<0.01 for the 

biological triplicate of 0% versus 10% sample). 
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Table 3.2 Summary table for the common techniques for detecting genetic variants, 

their sensitivity and assay limitations. 

Technique Sensitivity Suitable for non-
dividing cells? 

Genome 
wide/region 
specific 

Giemsa Banding 10% (scoring 30 
metaphases) 

No Genome wide 

Interphase FISH 10-20% (scoring 
100 interphase 
cells) 

Yes Region specific 

qPCR 20%  Yes Region specific 
Array-CGH 20-30% Yes Genome wide 

 

3.2.6 Development of the colony-based FISH (C-FISH) protocol 

 

The C-FISH assay requires the analysis of individual colonies that originate from 

single cells grown on glass slides. Previous data has shown that 95% of single 

variant cells are capable of migrating a maximum of 43µm over 12 hours post-

plating. When human PSC are plated at a density of 4300 cells/cm2 the average 

distance between cells was 142µm and they failed to make contact with another cell, 

ensuring the colonies were clonal (Barbaric et al., 2014). In addition to this, a range 

of plating densities from 25 to 7500 cells/cm2 were tested to ensure clonal colonies 

could be grown using the C-FISH experimental conditions. At low plating densities, 

there was a linear relationship between the plating density and the number of 

colonies formed after 72 hours (Figure 3.10). At cell densities greater than 5000 

cells/cm2 the number of colonies plateaued or decreased, indicating they had begun 

to merge and were no longer clonal (Figure 3.10). Based on these data, a seeding 

density of 250 cells/cm2 was chosen for further experiments. 
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Figure 3.10 | Low plating densities result in a linear relationship to number of 
colonies. Plot is of number of cells seeded to colonies formed after 72 hours of 

culture. At a seeding density of less than 5000 there is a linear relationship to the 

number of colonies formed. Seeding densities greater than 5000 resulted in colonies 

merging and a loss of clonality.  

 

Interphase FISH requires labour-intensive analysis to score for the presence of 

positive cells. This introduces variability between analysts assigned to score each 

assay. In an effort to reduce this variability and also to increase the throughput of C-

FISH, a high-throughput image analysis protocol was developed using the 

CellProfiler open-source software (Carpenter et al., 2006).  

 

To enable the development of the analysis protocol a test C-FISH experiment was 

performed by plating the chromosome 1 aneuploid H7s6 cell line and the diploid 

H7s14 cell line at 250 cells/cm2. The cells were grown for 72 hours and the resulting 

colonies were fixed and hybridised using a probe for the MDM4 gene on 

chromosomal 1q32 region according to the C-FISH protocol. The resulting colonies 

were imaged using a high content microscopy platform (Figure 3.11a). The 
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remaining cells that were not used in the C-FISH experiment were fixed and 

processed by conventional interphase FISH with analysis performed manually using 

a fluorescent microscope.  

 

The image analysis consisted of a nuclei segmentation step based on the DAPI 

staining (Figure 3.11b). The segmented nuclei were then dilated to merge the 

individual nuclei, allowing them to be segmented as a single object, the colony 

(Figure 3.11c). The segmented nuclei image was also used to mask over the FISH 

probe image, which eliminated any non-nuclear signal from non-specific binding or 

debris and improved the accuracy of analysis (Figure 3.11d). This masked image 

was then segmented to count the number of FISH probe signals (Figure 3.11e) and 

a relationship was formed between the FISH probes, nuclei and colony for which 

they each belonged (Figure 3.11f). The copy number of the MDM4 gene for the 

parent cell of each colony was determined by averaging all of the cells within the 

colony and rounding to the nearest whole number (Figure 3.11g). 

 

 

 

 

 

 

 

 

 

Figure 3.11 | High throughput automated C-FISH image analysis. a, 
Representative high content image acquisition of DAPI stained nuclei. b, 
Segmentation of nuclei from a representative high content DAPI image. c, Pixel 

expansion of the segmented nuclei to generate a pseudo-colony. d, Representative 

high content FISH probe image that is pre-processed to enhance the signal contrast 

and masked with the segmented nuclei to remove non-specific signals or debris. e, 
FISH probe signal segmentation. f, Object relationship formed to attribute the correct 

probe signals back to the nuclei and colony which they belong. g, Copy number of 

the parent cell was determined as an average per cell within the colony rounded to 

the nearest whole number. 
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With the assay developed, its accuracy, sensitivity and specificity on a range of 

different structural and numerical chromosomal variants was tested in comparison to 

conventional interphase FISH using ROC curve analysis. When developing a novel 

diagnostic assay, its accuracy at distinguishing a true positive (TP) result from a true 

negative (TN) result can be compared to other available assays by plotting the 

sensitivity (true positive rate, TP) against the specificity (false positive rate, FP). This 

analysis is known as a receiver operating characteristic (ROC) curve and was first 

developed by radar engineers during World War II to test a radars sensitivity, 

specificity and accuracy when detecting enemies on the battlefield (Zweig and 

Campbell, 1993). The sensitivity can be defined as how good the test is at detecting 

a variant cell and can be calculated from a ROC curve using the following equation 

(an explanation of terms used in these equations can be found in Figure 3.12):  
 

Sensitivity = TP / (TP + FN) 

 
Whereas, the specificity or the likelihood that the test will correctly identify the diploid 

cells can be calculated from the ROC curve using the equation below: 

 

Specificity = TN / (TN + FP) 

 

 

 

 

Figure 3.12 | Receiver operator characteristic curves assess the accuracy of 
diagnostic tests. a, Schematic of a ROC curve where a test that is 100% accurate. 

The test is able to completely distinguish between true negative (TN) and true 

positive (TP) results (left histogram) and produces a ROC curve that passes through 

the upper left-hand corner of the ROC plot (right). The area under the curve is equal 

to 1. b, An example schematic of a ROC curve (right) when the test is mostly able to 

distinguish between true positives and true negative, yet there are some false 

positive (FP) and false negative (FN) results (left). c, An example of a test where the 

results are random and the test is unable to distinguish between true positive and 

true negative results (left). The ROC plot passes from the lower left corner the upper 

right corner with the area under the curve equalling 0.5. 



 99 

 
 



 100 

The numerical values returned from the sensitivity and specificity equations 

represent the probability that the assay tested will identify a cell that is in fact variant 

or diploid respectively. For example, a sensitivity of 95% means, that the test 

performed on a cell that is certainly variant, there is a 95% chance it will be identified 

correctly within the specified confidence interval. Determining the accuracy of a test 

using the ROC is a valuable statistic particularly when making a comparison 

between multiple assays as it factors in both the sensitivity and specificity values. A 

test that is 100% accurate will have a sensitivity (true positive rate, TP) of 1 and a 

specificity (false positive rate, FP) of 0 and will pass through the upper left corner of 

the ROC curve (Figure 3.12a) whereas a test that is returning a random result, will 

have a sensitivity (true positive, TP) of 0.5 and a specificity (false positive, FP) of 0.5 

(Figure 3.12c) and will present a line that passes from the bottom left corner to the 

top right corner of a ROC curve. When results from multiple assays are obtained 

ROC plots can be graphed together with the plot closer to the upper left corner 

indicating an assay with greater accuracy (Zweig and Campbell, 1993). To quantify 

the accuracy of a test the area under the curve can be measured, where a value of 

greater than 0.5 and less than 1 is expected (Figure 3.12a-c). 

 

3.2.7 Sensitivity of C-FISH for the detection of large amplifications to chromosome 1 

 

The accuracy, sensitivity and specificity of C-FISH was tested in comparison to 

interphase FISH using the same samples of cells across both assays. To ensure the 

C-FISH assay was suitable for the detection of the full spectrum of karyotypic 

changes that arise during culture we have tested the assay using cloned cell lines 

with large amplifications in the form of a trisomy, deletions and tandem duplications. 

 

To test whether C-FISH reduced the number of false negatives when detecting a 

trisomy, three independent C-FISH experiments were performed using the trisomic 

chromosome 1 variant line, H7s6. Any remaining cells were sent for conventional 

interphase FISH analysis by a trained cytogeneticist who analysed 100 interphase 

nuclei per sample. As the H7s6 variant cell line was clonally derived it was assumed 

that any cell that was scored as diploid was a false negative. The frequency of true 

positive and false negative signals detected by conventional interphase FISH was 

quantified from the three independent experiments (Figure 3.13a). These results 
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were compared to two independent types of analysis performed on the C-FISH data. 

First, each cell of the colony was scored as variant or diploid independently using 

the image analysis software, this analysis was termed high content FISH (Figure 
3.13b). Second, the same data was analysed, although this time the colony 

calculation was applied to get the average copy number per colony (Figure 3.13c). 

These analyses were chosen to determine the improvement made by performing the 

colony analysis over the analysis of single cells whilst using the same equipment. By 

performing interphase FISH in parallel we compared this conventional assay to the 

C-FISH assay. This revealed that the colony-based approach decreased the 

frequency of false negatives in comparison to the high content FISH approach by 

23%. The frequency of false negatives was 8% over the three experiments which 

was comparable to the 5% seen with conventional interphase FISH.  

 

Next, to determine the accuracy of C-FISH in comparison to interphase FISH, three 

independent C-FISH and interphase FISH experiments were executed on the diploid 

H7s14 line that was the isogenic diploid parent line to H7s6. The true-positive and 

the false-positive rates from both the conventional interphase FISH and C-FISH 

experiments were plotted as a ROC curve (Figure 3.13d). The ROC analysis 

showed that the C-FISH approach was more accurate than conventional interphase 

FISH with an area under the curve (AUC) value of 0.99 versus 0.98 (Figure 3.13d). 

These areas were deemed to be significantly different by an unpaired t-test 

(P<0.05). A summary of the sensitivity and specificity of these assays can be found 

in Table 3.3a. 
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Figure 3.13 | C-FISH improved the accuracy of detecting amplifications to 
chromosome 1. a-c, The frequency of true positive and false positive results 

returned when the same culture of H7s6 1q variant cells was analysed by (a) 

conventional FISH (b) high content FISH or (c) colony-based FISH. Results are the 

mean of three independent experiments, ± s.d. d, ROC curve analysis of the true 

positive and false positive rate of C-FISH (red) and conventional interphase FISH 

(green) for the detection of amplifications to chromosome 1q in the variant H7s6 and 

diploid H7s14 cell lines. Accuracy of detection was determined from the area under 

the curve, 0.99 and 0.98 respectively. 
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Table 3.3 Summary table of sensitivity and specificity values determined from ROC 
analysis 
a 
 Large amplification or trisomy 
 Sensitivity (±95% confidence 

interval) 
Specificity (±95% confidence 
interval) 

Interphase 
FISH 

95% (92% to 97%) 100% (99% to 100%) 

C-FISH 99% (96% to 100%) 97% (95% to 99%) 

b 
 Deletions or monosomy 
 Sensitivity (±95% confidence 

interval) 
Specificity (±95% confidence 
interval) 

Interphase 
FISH 

100% (99% to 100%) 100% (99% to 100%) 

C-FISH 99% (97% to 100%) 99% (97% to 100%) 

c 
 Tandem duplications 
 Sensitivity (±95% confidence 

interval) 
Specificity (±95% confidence 
interval) 

 <350kb 350kb to 
2Mb 

>2Mb <350kb 350kb to 
2Mb 

>2Mb 

Interphase 
FISH 

59% 
(53% to 
64%) 

73% 
(67% to 
78%) 

73% 
(68% to 
78%) 

100% 
(99% to 
100%) 

94% 
(91% to 
97%) 

100% 
(99% to 
100%) 

C-FISH 67% 
(61% to 
72%) 

93% 
(89% to 
95%) 

95% 
(92% to 
97%) 

90% 
(85% to 
93%) 

92% 
(89% to 
94%) 

94% 
(90% to 
978%) 

 

3.2.8 Sensitivity of C-FISH for the detection of deletions to chromosome 18 

 

Next, the C-FISH approach was applied to the detection of deletions to chromosome 

18. For this analysis, the isogenic UCB144 cell lines generated in 3.2.1 was utilised. 

Again, the accuracy of the C-FISH approach was compared with conventional 

interphase FISH using ROC curve analysis (Figure 3.14). Three independent 

experiments were performed and in each experiment, the cells harvested from a 

single flask of chromosome 18 deletion, UCB144-D14 or the diploid UCB144-F6 

were assayed by C-FISH and the remaining cells were fixed and processed by 

conventional interphase FISH. The individual sensitivity and specificity values 

determined from the ROC curve for both C-FISH and interphase FISH when 

detecting deletions are shown in Table 3.3b. By conventional interphase FISH, no 



 104 

false-negative calls were reported, and the assay was deemed perfect returning an 

AUC value of 1.00. For C-FISH we did detect some errors, although far greater 

numbers of colonies were analysed, and the accuracy determined from the AUC 

value to two decimal places was also 1.00. 

 

 

 
 
Figure 3.14 | ROC curve analysis showed comparable accuracy when 
detecting deletions to chromosome 18 by C-FISH and conventional interphase 
FISH. ROC curve analysis of the true positive and false positive rate of C-FISH (red) 

and conventional interphase FISH (green) for the detection of deletion to 

chromosome 18 in the variant UCB144-D14 and diploid UCB144-F6 cell lines.  

 

3.2.9 Applied intensity threshold improves the resolution of overlapping signals in 

cell lines with tandem duplications 

 

Next, C-FISH was tested when detecting tandem duplications to chromosome 20. As 

before, the efficacy of averaging the number of FISH signals per colony, to improve 
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the sensitivity of the assay was tested. To do this, the number of signals per cell of a 

colony was averaged and compared to an analysis of each cell when analysed 

individually. For these analyses, the clonally derived chromosome 20 variant line, 

TC113-E1, was utilised. The number of correctly called true positive cells or colonies 

and incorrectly called false-negative cells or colonies from each approach across 

three independent experiments was determined. The colony based approach 

reduced the frequency of false negatives calls from 55% to 46% when compared to 

the high content FISH analysis of the same cells when analysed individually (Figure 
3.15a,b). However, conventional interphase FISH outperformed the colony-based 

approach, reporting only 31% false negatives (Figure 3.15c). I surmised that this 

was due to high powered objectives that are capable of resolving overlapping 

signals more readily in conventional interphase FISH. 

 

 

 
 
 
Figure 3.15 | C-FISH failed to improve the detection of chromosome 20 tandem 
duplications. a-c, The frequency of true positive and false positive results returned 

when the same culture of chromosome 20 variant, TC113-E1 cell line, was analysed 

by (a) high content FISH, (b) colony-based FISH and (c) conventional interphase 

FISH. Displayed are the mean results from 3 independent experiments, ± s.d. 
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When the average C-FISH copy number of the diploid, TC113-G2 and the 

chromosome 20 variant, TC113-E1 cell lines were compared it was found that the 

results largely overlapped (Figure 3.16a) showing that the C-FISH assay was 

unable to distinguish between the diploid and variant cells due to the prevalence of 

overlapping signals in the variant cell line. It was reasoned that it may be possible to 

detect the presence of overlapping signals in false-negative cells in silico. Whilst 

performing the C-FISH approach on the chromosome 20 variant line TC113-E1, it 

was noted that those cells with two FISH signals, i.e. false negatives, have a 

stronger signal intensity on the chromosome harbouring the 20q duplication (for an 

example see the red box, Figure 3.1a). To test this theory, the C-FISH protocol was 

performed on the diploid cell line TC113-G2 and its 20q CNV clonal variant subline, 

TC113-E1. The ratio between signal intensities was measured in all cells where only 

two probe signals were detected i.e. a false negative (Figure 3.16b). The signal 

intensity ratio in the diploid and variant lines were 0.75 and 0.59 respectively. Using 

this ratio, I applied what I termed an ‘intensity correction threshold’, whereby any cell 

with 2 probes that had an intensity ratio of <0.55 was classified as false negatives 

and corrected in silico. This modification to the C-FISH protocol greatly improved the 

separation of the respective normal and variant populations (Figure 3.16c), a 

necessary step to improve the accuracy of the C-FISH approach. 

 

 

 

Figure 3.16 | Intensity correction threshold greatly improves the separation of 
the chromosome 20 variant and diploid populations. a, Histogram plot of the 

mean number of signals per cell per colony of diploid TC113-G2 (46,XY) (green) and 

the 20q variant line TC113-E1 (46,XY,dup(20)(q11.21)) (red). This plot shows the 

inability of C-FISH to distinguish between variant and diploid cells. b, Signal intensity 

ratio, ratio between the signal intensities of all cells where only two probe signals 

were detected. Data plotted is from TC113-G2 (green) and TC113-E1 (red). An 

intensity ratio between the two signals present within each cell in the diploid and 

variant populations was 0.75 and 0.59, respectively (****P<0.0001; unpaired t-test). 

c, Histogram plot of the data displayed in (a) after the application of the signal 

intensity correction threshold. The signal intensity correction threshold greatly 

improved the separation of the respective normal and variant populations. 
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3.2.10 Sensitivity of C-FISH for the detection of amplifications to chromosome 20, 

including small tandem amplifications 

 

The C-FISH and conventional interphase FISH assays were performed on four 

variant lines that harbour a chromosome 20 duplication and their parent diploid 

counterparts. Three of these variant lines were selected as the duplication in each 

line were of different lengths, as determined by qPCR and G-banding (Figure 3.17). 

The cell line H7s14-20q had the smallest duplication measuring approximately 

350kb (Figure 3.17a), TC113-E1 and TC1130-E6 have a duplication and a 

triplication respectively, measuring 2Mb (Figure 3.17b) and H7s6 has a whole q arm 

duplication present as an isochromosome as detected by qPCR and G-banding 

(Figure 3.17c). For the ROC based analysis, these lines were paired with their 

isogenic diploid lines, H7s14 and TC113-G2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 | Chromosome 20 duplication length in the three selected variant 
cell lines. a-c, Chromosome 20 duplication length, determined by qPCR for the cell 

lines S14-20q (a), TC113-E1 (b) and H7s6 (c (i)). The length of the duplication was 

350kb, 2MB and whole 20q arm duplication respectively. qPCR results are mean 

copy number from three technical replicates ±s.d. c (ii), G-banding result for H7s6 

which presents a duplication of the entire q arm of chromosome 20 in the form of an 

isochromosome. 
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For each of the variant and diploid paired cell lines, the C-FISH experiment was 

performed in triplicate with paired samples analysed using conventional interphase 

FISH by a trained cytogeneticist. The performance of C-FISH was compared to the 

results attained from the paired interphase FISH experiment using ROC curve 

analysis (Figure 3.18). In all cases, C-FISH was able to more accurately detect the 

variant cells than conventional interphase FISH. The AUC values, a measure of 

assay accuracy, for the H7s14-20q/H7s14 pair, C-FISH was 0.89 whereas 

interphase FISH was 0.79 (Figure 3.18a). For the cell pair TC113-E1/TC113-G2, the 

AUC values were 0.966 and 0.835 for C-FISH and interphase FISH respectively 

(Figure 3.18b). The C-FISH approach was also tested on the clonal cell line TC113-

E6 that possesses a triplication of the same 2MB region on chromosome 20q11.21. 

As expected, the accuracy increased to 0.995 (Figure 3.18b) as we found fewer 

false negatives and the signal intensity ratio was greater due to the three 

overlapping signals of the triplication that enabled better in silico resolution. Lastly, 

for the cell pair H7s6/H7s14, the AUC value was 0.985 and 0.865 for C-FISH and 

interphase FISH, respectively (Figure 3.18c). Both sensitivity and specificity values 

of C-FISH and interphase FISH when detecting tandem duplications <350kb, 

between 350kb and 2Mb and greater than 2Mb can be found in Table 3.3c. The 

analysis from these cell lines has shown that the accuracy of both C-FISH and 

interphase FISH increased as the size of the duplication increased. With larger 

duplications the distance between probes increased and the likelihood of 

overlapping signals was reduced, therefore increasing the accuracy of the analysis. 

Figure 3.18 | Comparative ROC curve analysis of Interphase FISH and C-FISH 
assays on 4 independent paired diploid and chromosome 20 variant cell lines. 
a-c, Comparison ROC curve analysis (left) for interphase FISH (green) and C-FISH 

(red) using a range of chromosome 20 variant cell lines that each display a different 

sized duplication. The length of the duplication is depicted in the chromosome 20 

ideogram (right). The cell line pairs assayed were (a) H7s14-20q and H7s14 when 

detected by C-FISH and interphase FISH. (b) The ROC curve analysis for the cell 

line pair TC113-E1 and TC113-G2. The cell line TC113-E6 has a tandem triplication 

and was paired with the diploid TC113-G2 (blue) which was more readily detected 

by C-FISH (c) The largest amplification in the cell line H7s6 presents a whole q arm 

duplication as an isochromosome and was the most accurately detected by C-FISH. 
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3.3 Discussion 
 
Currently, the detection of genetically variant human PSC relies on a battery of 

assays that collectively can detect the full complement of karyotypic variants, 

including large amplifications including trisomy, deletions that include monosomy 

and small amplifications such as tandem duplications. Interphase FISH is routinely 

employed to detect small duplications on chromosome 20, although it is insensitive 

and unable to detect these variants when present in less than 10% of a culture 

(Baker et al., 2016). The sensitivity of interphase FISH is hindered by frequent false-

negative results that are caused by overlapping signals or the inability to separate 

signals from two probes in close proximity to one another (Kearney, 2001). Within 

this study, a novel and high throughput interphase FISH assay was developed that 

was termed C-FISH, for the accurate detection of chromosomal instabilities that 

afflict cultures of human PSC. C-FISH improves on the sensitivity of interphase FISH 

by discounting the impact of false-negative results by averaging the number of FISH 

signals per cell of a clonal colony. The copy number of the colonies parent cell is 

then deduced from this number. 

 

For routine screening of human PSC cultures by interphase FISH, the analysis of 

more than 100 interphase nuclei is impractical. However, it was previously shown 

that it is possible to increase the sensitivity of detecting chromosome 17 variant cells 

by interphase FISH to 1% when the number of interphase cells scored was 

increased from 100 to 1000 (Baker et al., 2016). With this in mind, the throughput of 

C-FISH was increased and also analyst subjectivity was reduced by utilising a high 

content and automatic image acquisition platform, coupled this with our in-house 

developed C-FISH image analysis pipeline. These steps allowed for the scoring of 

hundreds of colonies in only a few hours. Further, the indexed output from our 

analysis pipeline allows the user to review the images from putative results and 

further improves the accuracy of the C-FISH assay. 

 

First, C-FISH and interphase FISH were tested when detecting cell lines with a 

chromosome 1 aneuploidy and a deletion to chromosome 18 and found the assay 

improved or performed comparably with these readily detected chromosomal 

variants. However, with the automation of C-FISH, it can be performed 
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independently of a trained cytogeneticist making it more appropriate for routine 

laborious laboratory screening of cultures of human PSC. The main aim when 

developing this assay was to enhance the accuracy with which small tandem 

duplications are detected. Initially, when the chromosome 20 tandemly duplicated 

line TC113-E1 was screened, C-FISH reported a higher frequency of false negatives 

compared to conventional interphase FISH. This lack of improvement was likely due 

to the 40X microscope objective used in C-FISH compared the 160X objective used 

in the conventional approach. The high powered, 160X objective used in 

conventional interphase FISH was more able to resolve overlapping signals in 

chromosome 20 CNV lines than the 40X objective we used in C-FISH. However, the 

lower power objective was necessary to ensure that C-FISH was higher throughput 

and automated, unlike conventional interphase FISH. Therefore, I chose to resolve 

closely bound signals in silico. False-negative cells often displayed one signal which 

had a much higher signal intensity. This higher intensity was caused by two probe 

signals that have merged due to the proximity on the amplified chromosome. This 

observation was capitalised on to detect false negatives in silico. The in silico 

intensity correction threshold improved the precision of the assay when detecting 

false-negative cells in the variant line and, importantly had a minimal negative effect 

on the precision of the assay for correctly calling diploid cells. This development 

greatly improved the accuracy of C-FISH. 

 

I attempted to directly test the sensitivity of the C-FISH approach using our GFP 

labelled diploid cells in mixing experiment with our chromosome 20 variant lines. It 

was postulated that the sensitivity of C-FISH could be confirmed on a colony by 

colony basis, confirming the genotype of the colony based on the presence or 

absence of the GFP signal. It was discovered that the GFP protein was destroyed 

during the Carnoys fixation, a process required when hybridising cells with FISH 

probes. To get around this, attempts were made to image the slide whilst the cells 

were still alive and before the GFP signal was lost by fixing the cells. This image 

could then be related to the final images of the probed colonies following fixation. 

However, this was technically very difficult to achieve, as I was unable to image 

through both the cell culture flask and the glass slide. However, using ROC curve 

analysis it was possible to circumvent these issues and ascertain the accuracy, 
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sensitivity and specificity of C-FISH in comparison to interphase FISH when both 

assays were performed on the same samples of cells. 

 

Using four chromosome 20 variant lines, that present increasing lengths of the 

duplication and their isogenic diploid counterpart lines, the accuracy of C-FISH and 

interphase FISH were compared using ROC curve analysis. In each case, the C-

FISH assay greatly improved sensitivity, specificity and accuracy. Interestingly, the 

variant lines were more accurately detected when they presented larger 

amplifications. This improvement to sensitivity was due to fewer false-negative 

results from the greater separation of the FISH probe signals present on the same, 

amplified chromosome. Additionally, using C-FISH the TC113-E6 cell line was 

tested, TC113-E6 has a tandem triplication which is the same length as the tandem 

duplication found in the TC113-E1 cell line. The TC113-E6 tandem triplication line 

was detected with greater accuracy than the duplication. This suggests that this 

improvement came from several different sources. First, the triplication presents an 

additional signal to the duplicated line, where this was detected it increased the 

average copy number per colony than the three signals produced from the 

duplicated line. Second, the presence of four signals decreased the likelihood of a 

false negative on a cell by cell basis. Lastly, when we did detect a false negative, the 

signal intensity between the two signals was even greater than in the duplicated line 

and as such was more readily detected by our in silico detection protocol. 

 

Collectively, the novel C-FISH assay developed here provides greatly improved 

assay accuracy than conventional interphase FISH. The protocol requires equipment 

accessible by most laboratories and with the developed automated image analysis 

pipeline, does not require a cytogenetic specialist. Per test, the material required for 

C-FISH cost less than $100 which is considerably cheaper than outsourcing for 

interphase FISH that can cost upward of $850 (Baker et al., 2016). Further, the 

throughput of the assay is not limited by the laborious analysis and can potentially 

be expanded to analyse a limitless number of colonies. Moreover, the development 

of improved assays that can sensitively detect low-level mosaicism in cultures is 

crucial, progressing with genetically compromised cells could have catastrophic 

consequences for patients of cell-based therapy and to a lesser point, compromise 

the integrity of results attained from research on human PSC.  
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The development of C-FISH was imperative for future work in this study. Sensitive 

assays for the detection of chromosome 20 variant lines were crucial in the 

identification of subject lines that we will use in the following chapter, where long-

read next-generation sequencing coupled with bioinformatic analysis was used to 

explore the breakpoint positions involved in this commonly occurring tandem 

duplication. With a better understanding of the breakpoints involved in the 

generation of this tandem duplication, it will be possible to elucidate the mechanisms 

that lead to it arising and target this to stop its appearance, ensuring the safety of 

human PSC based therapies. 
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4 Elucidation of the breakpoints in chromosome 20 variant human 
PSC cell lines 
 
4.1 Introduction 
 

Chromosome 20 is one of two small metacentric chromosomes and in Karyology is 

given the F classification based on its small size. Evolutionarily, the Human 

chromosome 20 shares its organization with the African great apes, both of which 

diverged after a common pericentric inversion event took place involving the entire p 

arm of the chromosome (Misceo et al., 2004). Diseases with chromosomal 

abnormalities affecting chromosome 20 have, comparatively, not drawn much 

attention in the past. Trisomic duplication of chromosome 20 is rarely viable and 

partial duplications of the p and q arms are rare and often only present as part of a 

recognisable syndrome (Simpson, 1988).  

 

During the culture of human PSC, copy number variants are known to arise on 

chromosome 20 and represent one of the more frequently observed karyotypic 

changes (Amps et al., 2011, Seth et al., 2011). The majority of copy number variants 

appear as tandem duplications and always include the selectively advantageous 

driver gene, BCL2L1 (Avery et al., 2013). The proximal end of 20q11.21 duplication 

lies within the unmapped centromeric region, whereas the distal breakpoint has 

been reported to vary in position down the q arm of the chromosome (Amps et al., 

2011). The chromosome 20 variant has been well characterised, with a great deal of 

resources expended on understanding the mechanism through which this variant 

possesses a selective advantage (Avery et al., 2013). However, little is known about 

the mechanism through which these tandem duplications arise. 

 

Genomic architecture plays a role in a region's susceptibility to acquiring a copy 

number change (Lupski, 1998). Through the sequencing of breakpoint regions, it is 

possible to infer the mechanism for the generation of copy number variants. In 

mitotic cells, it’s been observed that breakpoint regions lie in repetitive sequences 

with microhomology (Kidd et al., 2008, Perry et al., 2008). Likewise, the induction of 

replication stress can lead to copy number variations that contain breakpoints in 

regions of microhomology (Arlt et al., 2009). This indicates that replication may be 
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responsible for inducing genome-wide copy number changes. Homologous 

recombination plays a major role in restarting collapsed forks. One ended double-

strand breaks are left in the wake of collapsed forks and are repaired by break-

induced replication (Llorente et al., 2008). However, as break-induced replication 

relies on the accurate alignment of genomic regions, misalignment of repetitive 

sequences can lead to genetic amplification. 

 

One of the most abundant repetitive elements are the Alu retrotransposons that 

make up 11% of the human genome and have a copy number that is greater than 1 

million (Lander et al., 2001). These repetitive elements are approximately 300bp in 

size, derived of a dimer of 7SL RNA genes that are divided by a short A-rich region 

(Deininger et al., 2003). Alu elements have been established as a significant source 

of genomic instability and are responsible for copy number variation in tumours 

(Deininger and Batzer, 1999, Kolomietz et al., 2002, Elliott et al., 2005). In one 

study, a high frequency of translocations was observed when a double-strand break 

was introduced adjacent to the Alu sequence (Elliott et al., 2005), whereas another 

showed that double-strand breaks are likely to form at Alu elements due to their 

secondary structures that causes fork stalling (Voineagu et al., 2008). It is then likely 

that these elements have not only contributed to genetic diversity but are also a 

major player in driving genetic instability. 

 

This chapter will describe the experimental results from long-read next-generation 

sequencing to map the breakpoint of a chromosome 20 tandem duplication detected 

in a human ES cell line. Short read sequencing is often limited when it comes to 

sequencing repetitive regions such as those found in the centromere that remain 

unmapped. Therefore, the long-read strategy chosen here allows for the sequencing 

of breakpoints, even those flanked by repetitive unmapped regions and permits 

sequence alignment analysis to infer the mechanism responsible for this copy 

number variant. 

 

Due to the complex nature of DNA sequencing terminology, a table of terms used in 

the following chapter can be found on the following page (Table 4.1). 

 

 



 118 

Table 4.1 Appendix of terms for Chapter 4 

Term Description 
Microhomology  Short regions of the genome with the 

same (homologous) sequence of bases. 

Next-generation sequencing DNA sequencing method, whereby 

millions of DNA sequencing reactions 

are carried out in parallel. Each 

sequencing reaction generates a single 

read. 

Read   A single uninterrupted series of 

nucleotides that represents a portion of 

the template DNA sequence that is 

being sequenced. 

Split read  One portion of an NGS read maps to 

the to one location and the other portion 

of the sequencing read maps to a 

different location in the genome. 

 

Reference sequence  A sequence file that is used as a 

reference. Generally speaking, these 

are nucleotide sequences relating to the 

genome of the species being 

sequenced and allows for the detection 

of variation. 

hg38   The assembly of the human genome 

that was released in December 2013. 

minimap2  DNA sequence alignment tool that 

aligns DNA sequences produced during 

next-generation sequencing against a 

reference database. 

Sambamba   Bioinformatic toolbox for handling SAM 

and BAM sequencing files. 

Samtools  

 

A suite of bioinformatic programs that 

allow the reading, writing and editing 
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interactions with high-throughput 

sequencing data. 

nanoSV   A bioinformatic program that utilises 

split read mapping as a basis for 

structural variant discovery. 

 

IGV viewer   Visualization tool for the interactive 

exploration of genomic datasets that 

include next-generation sequence data. 

Soft clipping   

 

Allows for the masking of portions of 

sequencing reads that do not align to 

the genome from end to end, desirable 

for structural variant detection. 

BLAT    Sequence alignment tool that finds 

sequence homology between the input 

sequence and a designated reference 

sequence database such as the human 

hg38. 

BLAT score   A statistical score of significance 

applied to an alignment that takes into 

account the region of the query 

sequence that matches the reference, 

size of the query sequence and the 

percentage of the query that matches 

the reference sequence. 

Dfam database  

  

A database containing the DNA 

sequence and genomic positions of 

repetitive elements for five model 

organisms. 

AluSz6   An evolutionary old family member of 

the Alu SINE retrotransposon elements. 
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4.2 Results  

 
4.2.1 Detection of chromosome 20 variant cell lines and qPCR mapping of 

breakpoints 

 

First, to determine the breakpoint sequence of the chromosome 20 tandem 

duplication, several cell lines were screened using the approaches developed and 

tested in the previous chapter. A mosaic population of chromosome 20 variant cells 

was detected in the mShef7 human ES cell line by interphase FISH. This line was 

subsequently cloned to generate a homogenic chromosome 20 clonal variant line 

suitable for sequencing. 

 

Based on these preliminary screens the mShef7 line was chosen for long-read next-

generation sequencing using the Oxford Nanopore technology. Before sequencing, 

the approximate position of the distal breakpoint in the mShef7 line was determined 

using an adapted protocol for the qPCR detection method. Primers were designed 

for genes that spanned the length of the chromosome 20q11.21 region. As with the 

conventional qPCR assay the copy number is attained for each of these genomic 

loci. The approximate breakpoint position was detected when the copy number 

dropped from 3 to 2 in adjacently located primers. The breakpoint for mShef7 was 

detected to lie between TM9SF4 and ASXL1 (Figure 4.1). These data confirm the 

mShef7 clone chosen for sequencing has a typical tandem duplication on 

chromosome 20 that commonly occurs after prolonged culture. 
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Figure 4.1 | The mShef7 chromosome 20 breakpoint was estimated by qPCR. 
qPCR analysis of genes along the q11.21 region, result are the mean of three 

technical replicates ± s.d. (top). Below, a schematic of the chromosome 20 region 

detected above. 
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4.2.2 Protocol development for long read Oxford Nanopore sequencing detection of 

chromosome 20 breakpoints 

 

Whole-genome long-read next-generation sequencing was performed using the 

MinION and GridION (Oxford Nanopore Technologies) sequencing systems. To 

acquire adequate sequencing coverage of chromosome 20, sequencing was 

performed 10 times on genomic DNA extracted from the clonal mShef7 cell line. 

Analysis of reads from one representative sequencing run showed the mean read 

length was 21kb, although some reads were over 100kb in size (Figure 4.2a,b). 

Data exported as FASTQ files were mapped to the chromosome 20 hg38 reference 

sequence using minimap2 sequence aligner (Li, 2018). File management, sorting 

and indexing was performed using Sambamba and Samtools (Li et al., 2009b, 

Tarasov et al., 2015). Finally, structural variants were identified using nanoSV (Cretu 

Stancu et al., 2017) (Figure 4.3).  

 

 
Figure 4.2 | The Oxford Nanopore Sequencing system generated long reads. a, 
Representative mean read length from a single run on the Oxford Nanopore GridION 

system. Displayed is the mean read length ± s.d. b, Histogram of read lengths 

generatyed from one sequencing run on the GridION using gDNA extracted from 

mShef7. Values above each bar correspond to the number of values with that read 

length bin center. 
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Long-read next-generation sequencing can facilitate breakpoint mapping in highly 

repetitive regions. The sequencing of mShef7 provided long reads in excess of 

conventional sequencing approaches. 

 

 

 

 
 

Figure 4.3 | Bioinformatic workflow for the identification of the chromosome 20 
structural variant in mShef7. The schematic shows the bioinformatic stages in the 

analysis of the Oxford Nanopore sequencing data (black text). The bioinformatics 

tool used in each stage is listed with the step (red text). 
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4.2.3 Breakpoint detection in mShef7 human ES cell line  

The distal breakpoint position was identified by scanning for enriched read depth 

between the TM9SF4 and ASXL1 genes using IGV viewer (Robinson et al., 2011). A 

region matching this was identified proximal to the gene KIF3B at locus 

32,273,600kb of the hg38 genome (Figure 4.4a). It was observed that a number of 

the reads covering the breakpoint appeared to be largely soft clipped (Figure 4.4a, 
inset). Soft clipping allows the masking of portions of reads that do not map to the 

genome and are particularly useful in the detection of structural variants (Li et al., 

2009b). A BLAT search of these read sequences showed they had been misaligned 

and matched to sequences elsewhere in the genome. The data in this region was 

corrected, trimmed and realigned using Canu which cleaned up the alignment 

significantly (Koren et al., 2017) (Figure 4.4b). 

 

 

 

 

 

 

 

 

Figure 4.4 | Projected breakpoint region viewed in IGV genome viewer. a, IGV 

screenshot of aligned reads mapping to the chromosome 20q11.21 region between 

the TM9SF4 and ASXL1 genes. Grey reads (black arrow head) are aligned to the 

reference genome with the multi-coloured reads showing soft clipping alignment (red 

arrow head). Red box highlights the drop in sequencing read depth consistent with a 

copy number variant. Inset, a closer view of the soft clipped read sequences show 

homology and other mis-aligned reads. b, Screenshot of sequence alignment 

following canu correction and trimming to remove the mis-aligned reads. Note, all 

soft clipped reads align with the drop in sequencing depth. 
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After the Canu correction, two types of reads remained. The first mapped to the 

reference sequence on both sides of the breakpoint and the second mapped 

proximal to the breakpoint but soft clipped after. The soft clipped portion of this read 

was assumed to be from the duplicated portion of the centromere. To test this 

theory, we copied the read sequence and divided it into two sections, the proximal 

breakpoint sequence and the distal breakpoint sequence. Each section was then 

queried using BLAT to identify its similarity to the genome. The proximal sequence 

matched to chromosome 20 with a high BLAT score of similarity (Figure 4.5a). The 

distal sequence matched with undefined sequence or sequence from other 

chromosomes with a much lower BLAT score of similarity (Figure 4.5b).   
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Figure 4.5 | BLAT sequence alignment of a representative soft-slipped 
sequencing read proximal and distal of the breakpoint. a, The sequencing read 

proximal of the projected breakpoint aligns with high similarity to chromosome 20 

region between the TM9SF4 and ASXL1 genes. b, The sequencing read sequence 

does not align with chromosome 20, the highest match is from an unmapped animal 

genome sequence 



 128 

 

Currently, sequence information of centromeric regions for most chromosome has 

yet to be mapped. However, an unmapped draft sequence has been collated by the 

T2T consortium and contains the centromeric sequence from all chromosomes 

(Miga et al., 2019). The distal sequence mapped closely with the draft unmapped 

sequence (Figure 4.6). 

These data present a candidate breakpoint region responsible for a tandem 

duplication in the mShef7 human ES cell line. Repetitive DNA sequence was 

successfully mapped and aligned to unmapped genomic locations. 
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Figure 4.6 | The soft clipped sequence aligns to unmapped draft sequences provided by the T2T consortium. IGV genome 

viewer showing mapping of a consensus sequence to the draft unmapped T2T consortium sequence that contains centromeric 

sequencing data. 

 

 

 

 

 



 130 

4.2.4 Breakpoint sequence maps to Alu retrotransposon sequence 

 

Transposons are repetitive DNA elements that are known to result in genomic 

duplication (Ivics and Izsvák, 2010). The Alu family, AluSz6 sequence was mapped 

to the human genome and presented as an ideogram heat map (Figure 4.7). 

Strikingly, the chromosome 20q11.21 region was enriched for AluSz6 repetitive 

elements and on the whole, the q11.21 region has one of the highest abundancies of 

AluSz6 sequences in the genome (Figure 4.7).  

 

To identify whether the tandem duplication in the mShef7 line was caused by a 

transposable element, a 1000bp section of the reference sequence, consisting of 

500bp sequence either side of the breakpoint was analysed using the Dfam DNA 

transposable element sequence alignment query tool (Hubley et al., 2015). An E-

value is given to each alignment which is a statistical probability that the sequences 

have aligned by chance. An E-value score of generating a single match of a similar 

score by chance would be 1, the closer the value is to 0 the greater its significance. 

The Dfam database aligned and matched the breakpoint sequence to an AluSz6 

SINE repetitive element with a highly significant E-value of 6.1X10-95 (Figure 4.8).  

 

Alu repetitive transposable elements are responsible for genomic instability. An Alu 

family member, AluSz6 aligned to the breakpoint sequence mapped in these 

experiments with high similarity and provides a mechanism for tandem duplication 

observed on chromosome 20. 
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Figure 4.7 | Ideogram heat map of AluSz6 sequences along the human genome. The chromosome number can be seen below 

each chromosome. The key displays the number of Dfam preferred hits for the AluSz6 sequences and does not include all AluSz6 

sequences. The red box on chromosome 20 highlights the 20q11.21 region. 
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Figure 4.8 | Dfam database alignment of transposable elements aligns with the mShef7 breakpoint. Screenshot of breakpoint 

alignment with the Dfam database. At the top is a schematic showing the different possible alignments with repetitive elements. The 

grey bar is the input sequence and the coloured bars indicate the different repetitive elements explained in the key. Details of the 

mapping and the model reference sequence can be seen below, statistics of mapping quality is also displayed. 
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4.3 Discussion 
 

In this chapter, a next-generation sequencing approach was used to identify the 

breakpoint region of a chromosome 20 tandem duplication that arose as a result of 

prolonged in vitro culture. Using bioinformatic algorithms, the breakpoint sequence 

was aligned, with high certainty, to the AluSz6 retrotransposon family member. The 

observation that the breakpoint lies within an Alu element strongly implies that the 

tandem duplication is associated with replication and potentially caused as a result 

of break-induced replication at the site of stalled forks. Alu elements are inverted 

DNA repeats and are symmetrical in their appearance. This symmetry promotes the 

formation of hairpin secondary DNA structure that are highly susceptible to 

replication fork collapse (Voineagu et al., 2008). The collapse of replication forks 

triggers repair by break-induced replication that is known to lead to amplifications 

when Alu-repeats are inserted into yeast (Narayanan et al., 2006). 

 

To map the breakpoint position, a long-read next-generation sequencing approach 

was chosen. This has distinct advantages over conventional Illumina short-read 

sequencing when mapping breakpoint positions. With short-reads, it is possible to 

indirectly observe a structural variant using paired-end reads. The paired-end 

approach sequences both ends of a DNA fragment and the gap between them is 

then filled in by consensus from other sequencing reads. If these paired-end reads 

map in the wrong orientation or the distance between them is not what was 

expected, then it indicates the detection of a structural variant. However, this can be 

ambiguous and often becomes inaccurate when aligning sequences of repetitive 

regions, particularly when the repeat is longer than the read length (Cretu Stancu et 

al., 2017). Long read sequencing is able to overcome many of these issues as it can 

often directly sequence through breakpoint regions allowing for their direct 

observation and are more likely to span the entirety of a repetitive region (English et 

al., 2015). 

 

The bioinformatics tool, nanoSV was tested on the detection of this breakpoint which 

relies on split read mapping as a basis for variant discovery. However, nanoSV 

failed to detect our variant as it was unable to align the section of the split read that 

mapped to the centromere. This is a technical issue, as there currently isn’t a 



 135 

complete reference sequence for the centromeric region on chromosome 20. The 

Telomere-to-Telomere consortium is currently generating the first complete 

assembly of the human genome. So far, they have successfully assembled 

chromosome X from one telomere to the other (Miga et al., 2019). However, in 

addition to this, they have released all sequence information that they have yet to 

map to their respective chromosomes. By generating a reference sequence of the 

Telomere-2 -Telomere draft sequence, it was possible to align the unmapped soft 

clipped sequence found at the breakpoint, demonstrating this came from a so far 

unmapped chromosomal region. Additionally, the sequence contains a highly 

repetitive (AATGG)n motif that is associated with the centromeres. However, at the 

time of writing this, it is not possible to confirm that this sequence is from the 

centromere of chromosome 20. 

 

As the nanoSV tool was not suitable for the detection of our breakpoint, its position 

was instead inferred manually by combining analysis of the read depth with soft 

clipped read information. The approximate position of the breakpoint was known 

from qPCR analysis, which was explored to identify the projected breakpoint. A 

region of our sequencing was identified between the genes TM9SF4 and ASXL1 that 

had an approximate 0.5X drop in coverage, this was expected as by chance diploid 

regions should be sequenced half as much as duplicated regions. Further, three 

types of read were expected to map to the projected breakpoint. Read type 1 

(Figure 4.9a), had a proportion of the read that mapped to the sequence as well as 

a portion that did not. These reads were soft clipped over the projected breakpoint 

(Figure 4.9b). Read type 2 (Figure 4.9a,b), mapped from end to end of the 

reference genome. However, it was also predicted that there would be a third read 

type. Read type 3 (Figure 4.9a), would result from sequencing directly through the 

breakpoint. I did not detect any read type 3 and would suggest that the size of 

centromere in the duplicated region was large and the reads were too short to 

sequence through this region. 
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Figure 4.9 | Schematic of the read types spanning the projected breakpoint. a, Schematic of the tandem duplication in the 

mShef7 chromosome 20 variant cell line. Gene positions (green/orange boxes) are labelled. Schematic of the three expected read 

types mapping over the tandem duplication can be seen at the top of the schematic. b, Schematic of the reference sequence for 

chromosome 20q11.21, the alignment of read type 1 and 2 is displayed with the expected soft-clipping at the breakpoint region 

indicated. 
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Tandem duplications on chromosome 20 are observed with high frequency in human 

PSC and threaten the safe application of these cells in regenerative medicine. The 

data presented in this chapter identifies the repetitive Alu element as being the 

substrate in this genomic copy number variant. I propose, that collapse of replication 

forks within Alu sequences triggers repair by microhomology BIR. This HR 

mechanism requires strand invasion on a different template with the same 

microhomology. Should the strand invasion slip to a region microhomology 

elsewhere on the same chromosome it can result in the formation of tandem 

duplications (Figure 4.10). Errors in processing and repair of stalled forks that result 

from the replication of Alu elements are known to lead to genetic instability 

(Narayanan et al., 2006). With this novel understanding of the mechanisms leading 

to genetic instability in human PSC, the following chapters will investigate these cells 

susceptibility to replication stress and explore the potential to improve culture 

conditions to minimise its detrimental consequences. 
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Figure 4.10 | Schematic showing the proposed mechanism of chromosome 20 

tandem duplication in human PSC. Fork stalling and collapse in a region of 

microhomology, such as an Alu element occurs distal to the BCL2L1 driver gene 

(top). Repair of the stalled fork by MMBIR proceeds by strand invasion at a region of 

microhomology located in the chromosome (middle). Re-replication results in 

tandem duplication that is selected for due to the BCL2L1 driver gene amplification 

(top). 
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5 Human PSC are susceptible to replication stress and DNA 
damage 
 
5.1 Introduction 

 

The cell cycle of human PSC is considerably shorter than most untransformed 

somatic cell types and has been measured to last between 15 and 18 hours (Becker 

et al., 2006, Barbaric et al., 2014, Calder et al., 2013). The difference in cell cycle 

time is primarily due to a truncated G1 phase with S and G2/M phases comparable 

to somatic cells. The exact mechanism that leads to these cell cycle characteristics 

has yet to be fully elucidated. However, the rapid progression through the G1 phase 

is likely due to the relaxation of the retinoblastoma (Rb) restriction checkpoint. The 

Rb protein is normally found in one of three states, hypophosphorylated, 

monophosphorylated or hyperphosphorylated. The hypophosphorylated form 

suppresses the activity of the E2F transcription factor in G0 cells, whereas the 

monophosphorylated or hyperphosphorylated states release suppression on E2F 

and allows progression through the G1 phase of the cell cycle. The mono and 

hyperphosphorylation of Rb is facilitated by cyclin D/CDK4/6 and cyclin E/CDK2 and 

occurs in early and late G1 phase respectively, initiating the cellular processes 

required for proliferation to continue (Narasimha et al., 2014). Reports have shown 

that the CDK4/6 inhibitors, which include p16INK4a are silenced in human PSC 

(Zhang et al., 2009). Consistent with this loss of inhibition, human PSC have 

elevated activity of cyclin D-CDK4/6 (Becker et al., 2006) which would lead to the 

mono-phosphorylation of Rb. Further, it was also shown that these cells 

constitutively express cyclin E (Filipczyk et al., 2007) which would hyper-

phosphorylate Rb, and shorten G1 phase. Therefore, it seems likely that the short 

G1 and rapid proliferation of human PSC are driven by atypical regulation of G1 and 

G1/S cell cycle cyclins that leads to the relaxation of the Rb restriction point.  

 

Given the clear role of Rb-E2F in cell proliferation, it is not surprising that disruption 

of this pathway is often targeted by oncogenic mutations in a wide range of cancers 

(Sherr, 1996). One of the most prevalent mutations to affect this pathway results in 

the loss of the p16INK4a cyclin kinase inhibitor. Functionally, this leads to the 

activation of Rb through an unchecked high expression of cyclin D/CDK4 activity 
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(Lukas et al., 1995). In non-mutant cells, p16INK4a normally acts to suppress CDK4 

activity to promote cell cycle arrest in G1 phase (Lukas et al., 1995). This 

deregulation ultimately promotes cellular proliferation by allowing E2F activation of 

downstream transcriptional targets, including proteins involved in replication, 

nucleotide biosynthesis, DNA repair, DNA replication origins and cyclin E that further 

acts to inactivate Rb (Leone et al., 1998, Lundberg and Weinberg, 1998, Harbour et 

al., 1999). Deregulation of cell proliferation induces replication stress and the 

formation of under replicated regions and unresolved replication structures that if 

persist into mitosis can cause structural or numerical chromosomal instabilities 

(Lukas et al., 2011). Further, replication stress can induce double-strand breaks, 

which are precursors for genomic instability following erroneous repair (Costantino et 

al., 2014). These randomly formed mutations are then selected for when they 

increase tumour growth and enhance the cancers tumorigenicity. 

 

It is striking then that human PSC share cell cycle characteristics similar to those 

observed in cancer and are susceptible to DNA damage (Simara et al., 2017) that 

has been associated with DNA replication (Vallabhaneni et al., 2018). Such 

perturbed replication in human PSC may explain the high frequency of mitotic errors 

that has been reported elsewhere (Zhang et al., 2019).  

 

The following chapter is a report into an investigation into the dynamics of the cell 

cycle in human pluripotent stem cells. The expression of key regulators involved in 

the progression of the cell cycle are defined. Unlike previous studies, replication 

stress was investigated directly by looking at alterations in replication dynamics 

between pluripotent and somatic cell lines with single-molecule resolution (Simara et 

al., 2017, Vallabhaneni et al., 2018). Further, isogenic somatic and pluripotent cells 

were used to investigate the susceptibility of human PSC to DNA damage as a 

precursor to genetic instability that results from extended in vitro culture. 
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5.2 Results  

 

5.2.1 Establishing a panel of isogenic pluripotent and differentiated cell lines 

 

To investigate the differences between pluripotent and somatic cell states, 

irrespective of the cells genetic background, a panel of isogenic pluripotent and 

somatic cell lines were generated. First, the human iPSC line MIFF1, herein referred 

to as hiPSC1 was utilised (Desmarais et al., 2016). This human iPSC line was 

previously reprogrammed in Sheffield from a human foreskin fibroblast line 

(CRL2429), which was used as one somatic control line and will be referred to as 

fibroblast for simplicity. In addition to hiPSC1, two further cell lines were used in this 

study, a second human iPSC line, TC113 and a human ES cell line, mShef11 that 

will be referred to as hiPSC2 and hESC from here on. Further, all of these lines were 

differentiated by treating each of them with CHIR99021, an inhibitor of GSK3 beta, 

for 5 days.  

 

To confirm that the 5-day treatment with CHIR99021 successfully differentiated the 

pluripotent cells, immunofluorescence staining for NANOG, a transcription factor 

associated with undifferentiated self-renewal and pluripotency was performed 

(Figure 5.1a). As I intended to investigate the cell cycle, DNA replication and 

susceptibility to replication stress and DNA damage, it was crucial that all these lines 

still maintained the ability to proliferate. The ability of the differentiated lines to 

continue proliferating was assessed by immunofluorescence staining for the Ki67 

protein, which is associated with cell proliferation (Figure 5.1b), and by labelling the 

parent fibroblast line with EdU and analysing by flow cytometry (Figure 5.1c). Lastly, 

RT-qPCR analysis was used to confirm that the differentiated cells had acquired the 

expression of genes associated with differentiated lineages (Figure 5.2a-c). In some 

experiments, another human iPSC cell line, NCRM1 was included in the 

undifferentiated state and will be referred to as hiPSC3. The cell lines and their 

isogenic somatic control lines used in this chapter are listed with a description in 

Table 5.1. 
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Figure 5.1 | Differentiation of human PSC lines for somatic isogenic controls. 

a, Representative images of the hiPSC1 (MIFF1) line in the undifferentiated top and 

differentiated states (Diff). Images show nuclear DAPI staining, NANOG and the 

merged image, left to right. b, Representative images taken from the hiPSC1 line 

(MIFF1) and the differentiated derivatives (Diff) obtained from treatment with 

CHIR99021. Differentiated cell were deemed proliferative based on Ki67 staining 

(middle). Nuclear DAPI staining and a merged DAPI/Ki67 can be seen, left and right. 

Scale bars, 50µM. c, The parent fibroblast line to MIFF1 was monitored to ensure 

the line did not senesce by labelling cells with EdU and analysing by flow cytometry. 

The histogram plot shows a representative plot of EdU positive cells, cells were 

deemed 99.9% positive for EdU by this analysis. 
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Table 5.1 Table of pluripotent cell lines and isogenic somatic control lines used over 

the course of this chapter 

Cell line Description 

Fibroblast Parent human foreskin fibroblast cell 

line (CRL2429) that was reprogrammed 

into the MIFF1 human iPSC line. 

hiPSC1 (MIFF1) Daughter human iPSC line derived from 

fibroblast cell line CRL2429 (Desmarais 

et al., 2016) (hPSCreg: UOSi001-A). 

46,XY. 

Diff hiPSC1 differentiated into somatic 

control line (Figure 5.1 and 5.2) 

hiPSC2 (TC113) Second human iPSC line TC113 

(hPSCreg: RUCDRi002-A). 46,XY 

Diff hiPSC2 differentiated cells used as the 

corresponding somatic cell control. 

hESC (mShef11) Human ES cell line mShef11 (hPSCreg: 

UOSe015-A). 46,XY. 

Diff Differentiated derivative of the hESC1 

cell line. 

hiPSC3 (NCRM1) An additional human iPSC that we did 

not differentiate (hPSCreg:CRMi003-A). 

 

 

 

 

 

Figure 5.2 | Gene expression analysis of the panel of pluripotent cells and 

differentiated derivatives. RT-qPCR gene expression data of hiPSC1 (a) hiPSC2 

(b) and hESC (c) compared to their differentiated derivatives. Genes associated with 

pluripotency, endoderm, ectoderm and mesoderm are displayed (left to right). Data 

are mean ±s.d., two-tailed t-test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (n = 3 

experiments). 
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5.2.2 Comparative analysis of cell cycle time between pluripotent and somatic cell 

states 

 

A common feature of cancers is genetic instability that arises from a dysregulation of 

the cell cycle. To investigate the potential of atypical cell cycle characteristic in 

human PSC contributing to mutation, I began by defining the cell cycle dynamics of 

our pluripotent cells in relation to the isogenic somatic control lines. 

 

To accurately define the proportions of cells in each stage of the cell cycle, the 

fibroblast, hiPSC1 and hESC lines were grown to 50% confluency before pulse 

labelling with EdU and stained with DAPI. EdU can be added to cell culture media 

and will incorporate into newly synthesised DNA and therefore enable detection of 

those cells undergoing DNA synthesis in the S phase of the cell cycle. DAPI 

intercalates proportionally with the amount of DNA present in the nucleus allowing 

for separation of cells based on their DNA content. When analysed by flow 

cytometry, cells that only stained for DAPI made two distinct populations of 2N and 

4N cells that represent the G1 and G2/M populations. A further population of co-

positive EdU and DAPI cells marked those cells in the S phase of the cell cycle. 

When the proportions of fibroblast cells in each phase of the cell cycle was 

compared to its daughter hiPSC1 line, it was observed that there was a greater 

proportion of cells in G1 phase, 55% to 14% respectively (Figure 5.3a,b). This 

difference could be explained by a much larger proportion of cells in S phase in the 

pluripotent state, 68% compared to 21% in the fibroblast line (Figure 5.3a,b). 

Compared to G1 and S phase, the proportion of cells in G2/M phase was 

comparable between the cell states, 19% in the fibroblast line to 15% in the daughter 

hiPSC1 line (Figure 5.3a,b). To confirm this cell cycle distribution was not unique to 

human iPSC lines or specific to this cell line, the experiment was repeated using 

hESC. The hESC line also had a smaller proportion of its cells in G1 phase and a 

much larger S phase population when compared with the fibroblast line (Figure 

5.3c). These results indicate that the cell cycle dynamics of pluripotent cells differ 

substantially to somatic cell lines.  
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Figure 5.3 | Pluripotent and somatic cells differ in their cell cycle distributions. 

a-c, Flow cytometry density dot plots of dual labelled EdU and DAPI asynchronous 

cell populations (a) parent fibroblast (b) the daughter hiPSC1 and (c) an 

independent hESC line. Gates for G1, S and G2/M phase are displayed. Proportion 

of cells in each cell cycle phase is shown (right). 
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To measure the length of the cell cycle stages, EdU pulse chase analysis was 

performed, whereby cells plated in multi-well plates were pulse labelled with EdU for 

45 minutes. One well was harvested every hour for approximately 30 hours and 

analysed by flow cytometry detecting both the EdU and DAPI stained cells. 

Representative plots from the pulse chase analysis using the hiPSC1 line can be 

seen in Figure 5.4a. Using the flow cytometry data, analyses of relative movement 

and the ratio of cells in the mid-S phase window were carried out as previously 

described (Begg et al., 1985). The S phase cells were labelled with EdU-488 and 

were identified by their green fluorescence. At the 0 hour time point the EdU labelled 

cells were evenly distributed between the unlabelled G1 and G2/M populations. 

During the subsequent time points the EdU labelled cells moved right in line with the 

G2/M population and later began to align with the G1 population (seen at 4Hr) 

before returning back into S phase (between 8Hr and 20Hr) (Figure 5.4a). A similar 

pattern, albeit slower, was observed in the fibroblast line.  

 

The length of S phase was determined by measuring the movement of the EdU 

labelled cells relative to the G1 and G2/M populations using the following equation: 

 

RM = Mean DAPI fluorescence EdU cells - Mean DAPI fluorescence G1 Cells 
          Mean DAPI fluorescence G2 Cells - Mean DAPI fluorescence G1 Cells 
 

Briefly, at the 0 hour time point the DAPI fluorescence of the EdU labelled cells will 

be approximately half way between the G1 and G2/M cells and as such the RM = 

0.5. Over the subsequent time points the EdU labelled cells will move over to the 

right hand side of the plot and will begin to equalise the DAPI fluorescence of the 

G2/M population. An RM of 1 is reached when all the EdU labelled cells have left S 

phase and entered G2, in hiPSC1 this was 6 hours (Figure 5.4b). The length of a 

cells G2/M phase will affect the shape of the relative movement curve, the degree to 

which it curves can be used to estimate the length of G2/M phase. The point at 

which the RM curve intersects with the line of best fit is proportional to the length of 

G2/M phase, in hiPSC1 this was 6.5 hours (Figure 5.4b). The total cell cycle time 

was deduced using the ratio of mid-S window calculation. Two narrow overlapping 

gates were drawn in the mid-S phase. The first gate spanned the EdU positive 

population only and the second larger gate spans both the EdU labelled and 
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unlabelled cells (Example gates can be seen in, Figure 5.4a). At each time point, 

the ratio of cells in each of these gates was determined and plotted graphically 

(Figure 5.4c). At the 0 hour time point all cells will be in both overlapping gates and 

the ratio will be 1. As time goes on the mid-S ratio decreased as the EdU labelled 

cells leave S phase and move through G2/M and G1 phase. Gradually, the ratio will 

increase again as the EdU labelled cells re-enter S phase. The time point where the 

ratio peaks is equal to the total cell cycle time, which was 18 hours in hiPSC1 cell 

line (Figure 5.4c). Finally, the length of G1 phase was deduced by subtracting the S 

phase time and the G2/M phase time from the total cell cycle time which equalled 

5.5 hours. The same analysis was performed on the somatic parent fibroblast line to 

hiPSC1, where total cell cycle time was found to be considerably longer, lasting 23 

hours. Interestingly, the length of S phase and G2/M phase was comparable, 

although G1 phase was 11 hours, double the length of the hiPSC1 line (Figure 

5.4d). In hESC, a similar result was found with its cell cycle lasting 18 hours of which 

4.5 hours was spent in G1 phase, 7 hours in S phase and 6.5 hours in G2/M phase 

(Figure 5.4d). 
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Figure 5.4 | G1 phase is truncated in human PSC lines. a, Representative flow 

cytometry density plots from pulse chase analysis of hiPSC1 line. hiPSC1 cells were 

pulse labelled with EdU (y axis) for 45 minutes and harvested every hour and dual 

stained with DAPI (x axis). b, Relative movement of the EdU labelled S phase cells 

relative to the G1 and G2/M phase cells. G2/M length determined from the 

intersection with line of best fit and S phase length is equal to a relative movement of 

1. c, Ratio of mid-S phase window of hiPSC1 cells over time. Total cell cycle time 

was determined from the elapsed time between peak ratios of mid S phase cells. d, 

Summary bar chart of cell cycle times as determined by pulse chase analysis. The 

daughter hiPSC1 (pink) line has a truncated G1 phase compared to the parent 

fibroblast (green, black stripe). Comparable cell cycle phase times were also found 

in the hESC line (pink, black stripe). 

 

In addition to pulse chase analysis the cell cycle time of hiPSC1 and the parent 

fibroblast cell lines was measured using time-lapse microscopy. Single cells were 

plated at clonal density and images were acquired of the cells every 10 minutes 

using the Nikon Biostation CT incubated time-lapse microscope. The cell cycle time 

was determined by measuring the time elapsed between the first and second cellular 

divisions (Figure 5.5a). The fibroblast line had a cell cycle time of 23 hours which 

matched exactly the result attained by pulse chase analysis (Figure 5.5b). However, 

when the cell cycle time was measured in hiPSC1 cell line using time-lapse 

microscopy, the time elapsed was 20 hours, some 2 hours longer than the 

measurement made by pulse chase analysis (Figure 5.5b). Additionally, the hESC 

cell cycle time was also lengthened by 2 hours when measured by time-lapse 

microscopy compared to the pulse chase analysis (Figure 5.5b). Using time-lapse 

microscopy, the cell cycle time of an additional pluripotent line, hiPSC3 was 

measured and again the mean cell cycle time was 20 hours. Overall, these results 

indicate that cells in a pluripotent state have a shortened cell cycle time that results 

from a significantly shortened G1 phase.  
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Figure 5.5 | Pluripotent cells proliferate faster than somatic cells. a, 

Representative images from time-lapse microscopy of hiPSC1 cells. Time elapsed in 

minutes is shown at the top of each image. The time point of the first and second 

division is labelled on the respective images. Sale bar, 100µM. b, Summary data of 

cell cycle time in the parent fibroblast (n=44), daughter hiPSC1 (n=76), and two 

independent pluripotent lines, hiPSC3 (n=31) and hESC (n=31). Box plots display 

line at mean and the minimum and maximum values. 
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5.2.3 Expression of components of the cell cycle control system in the pluripotent 

state 

 

To better understand what drives the cell cycle dynamics in the pluripotent state, the 

hiPSC1 line was compared to its parent fibroblast line to identify atypical expression 

of cell cycle components. Using RT-qPCR analysis the major cyclins and CDK 

partners involved specifically in G1 and S phase progression were screened (Figure 

5.6). The gene expression of CDK4 and CDK6 was found to be equivalent between 

hiPSC1 and the parent fibroblast line (Figure 5.6). However, cyclins, the regulatory 

proteins that phosphorylate and activate these CDK partners were atypically 

expressed in hIPSC1 compared to the parent fibroblast. What was particularly 

noteworthy was the relative expression of cyclin D2, E1 and E2 (CCND2, CCNE1 

and CCNE2) which were all highly expressed in the pluripotent state (Figure 5.6). 

The expression of cyclin C (CCNC) was also raised in hiPSC1 compared to its 

parent fibroblast but interestingly, cyclin D1 and D3 expression was found to be 

relatively decreased (Figure 5.6). 
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Figure 5.6 | Pluripotent cells have atypical G1 and S cell cycle component expression. RT-qPCR gene expression analysis for 

genes involved in G1 cell cycle progression. Data is relative gene expression of hiPSC1 line compared to the parent fibroblast line. 

Data are mean ±s.d., two-tailed t-test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (n = 3 experiments).
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Following this initial screen, analysis was focused on cyclin D2, E1 and E2, which 

were identified as the most atypically expressed cyclins. Again, gene expression 

analysis by RT-qPCR showed cyclin D2, E1 and E2 to be all significantly raised in 

hiPSC1 compared to the parent fibroblast line (Figure 5.7a). These findings were 

confirmed in two further pluripotent lines, hiPSC2 and hESC and overall the gene 

expression of these cell cycle components was similarly expressed across all lines 

tested (Figure 5.7a). To ensure this high gene expression was being translated to 

protein, western blot analysis was performed for the cyclin D2, E1 and E2 protein in 

hiPSC1 and the parent fibroblast line. The protein expression of cyclin D2, E1 and 

E2 was also substantially elevated in hiPSC1 relative to its parent somatic fibroblast 

(Figure 5.7b). Consistent with the reduction in the length of G1 phase, cyclin D2, E1 

and E2, which are known to phosphorylate the Rb-E2F restriction checkpoint and 

allow the rapid progression through G1 in cancer cells were also highly expressed in 

the pluripotent state.  
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Figure 5.7 | Cyclin D2 and cyclin E are highly expressed in human PSC. a, RT-

qPCR gene expression of cyclin D2 (CCND2), cyclin E1 (CCNE1) and cyclin E2 

(CCNE2) for the parent fibroblast line and the daughter hiPSC1. Additional 

pluripotent lines hiPSC2 and hESC are also displayed. Data are mean ±s.d., two-

tailed t-test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (n = 3 experiments). b, 
Western blot analysis showing relative protein expression of CCND2 (left), CCNE1 

(middle) and CCNE2 (right) in the parent fibroblast and daughter hiPSC1 line. a-

Tubulin loading control. 
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5.2.4 Cells in the pluripotent state display perturbed replication dynamics 

 

Deregulation of the cell cycle can lead to replication stress during S phase and can 

be diagnosed in cultures of cells through the analysis of cells replication dynamics. 

The fibre assay allows newly synthesised DNA to be visualised by pulse labelling 

cells successively with the thymidine analogues chlorodeoxyuridine (CldU) and 

iododeoxyuridine (IdU) for 20 minutes each (Figure 5.8). The DNA fibres of 

pluripotent and somatic cells were analysed in a number of different ways. First, the 

total length of DNA fibres were measured, with the assumption that longer fibres 

were generated from unhindered replication forks (Figure 5.8). The average DNA 

replication fork rate for the CldU and IdU pulses was estimated using the previously 

defined conversion where 1µM corresponds to 2.59kb (Figure 5.8) (Jackson and 

Pombo, 1998). Finally, the abundance of replication origins was assessed by 

measuring the distance between replication origins. The distance between 

replication origins was assessed only on DNA fibres where it was possible to detect 

two forks on a single DNA fibre that were both moving bidirectionally, a 

representative image of such a DNA fibre can be seen in Figure 5.8. 
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Figure 5.8 | DNA fibre assays monitor DNA replication dynamics. Schematic of 

DNA fibre assay. Sequential labelling of newly synthesised DNA fibres with first, 

chlorodeoxyuridine (CldU) and iododeoxyuridine (IdU) for 20 minutes each. 

Representative image of a single DNA fibre is displayed with multiple origins and 

bidirectional forks (scale bar = 10µM). We converted measurement to lengths in kb 

using the conversion factor 1µM = 2.59kb. Equations used in the determination of 

the replication dynamics are displayed in the box. 

 

The replication dynamics of three pluripotent stem cell lines were compared to their 

differentiated somatic counterparts. A decreased DNA fibre length was observed in 

the undifferentiated hiPSC1 line compared with the parent fibroblast from which it 

was reprogrammed (Figure 5.9a,b). Interestingly, the length of the DNA fibres 

increased after differentiation of the hiPSC1 cells using CHIR99021 (Figure 5.9a,b). 

To confirm the pluripotent state was associated with decreased DNA fibre lengths, 

two further pluripotent lines: hiPSC2, hESC, and their differentiated derivatives were 

assessed (Figure 5.9b). Consistent with a decrease in fibre length, the rate of 

replication fork progression was also diminished in the pluripotent state. The 

pluripotent lines displayed a slower overall distribution of replication fork speeds 

compared to their somatic cellular counterparts (Figure 5.9c). Further, the mean fork 

rate was significantly slower in each of the pluripotent cell lines compared to the 
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differentiated lines (Figure 5.9d). When the progress of replication forks is slowed 

the cell can fire from dormant origins to ensure replication is completed on time 

(Taylor, 1977). By measuring the distance between replication origins, it is possible 

to determine the abundance of replication origins. A consistent decrease in the 

distance between origins of replication was observed in the three pluripotent cell lies 

that is consistent with an increase in origin abundance (Figure 5.9e). These novel 

data show a perturbation to replication dynamics, involving both reduced replication 

speed and increased numbers of replication origins in pluripotent cells compared 

with isogenic somatic counterparts. 
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Figure 5.9 | Replication dynamics are perturbed in human PSC. Data presented 

is from our three pluripotent lines hiPSC1, hiPSC2 and hESC (pink) and their 

differentiated derivatives (green) a, Representative images of labelled DNA fibres 

from the parent fibroblast line (top), hiPSC1 line (middle) and the differentiated 

derivatives of hiPSC1 (bottom). Scale bars, 10µM. b, Combined length of CldU and 

IdU in individual fibres (n > 200 fibres per cell line per experiment, n = 3 

experiments), Media length, 25th and 75th quartile are presented, two-tailed t-test, 

****P<0.0001. c, Distribution of replication fork rates (n > 200 fibres per cell line per 

experiment, n = 3 experiments), data is the mean value from each experiment ± 

s.e.m d, Mean fork rates from (d) ±s.d., *P<0.05, **P<0.01, ****P<0.0001 (n = 3 

experiments). e, Distribution of adjacent origins distance measurements (Ori-ori). 

Median distance, 25th and 75th quartile are presented, two-tailed t-test, ****P<0.0001. 

(n > 30 per cell line, per experiment. n = 3 experiments) 

 

5.2.5 Pluripotent stem cells are susceptible to DNA damage 

 

Replication stress, the slowing, stalling and collapse of replication forks, can lead to 

the formation of DNA lesions in the form of double-strand breaks (Bartkova et al., 

2005). If these breaks are left unrepaired or repaired incorrectly, they can lead to 

genetic instability. To investigate the susceptibility of human PSC to DNA damage, 

two commonly used assays were employed to measure double-strand breaks in 

vitro. The primary assay used was the immunofluorescence staining for gH2AX, the 

findings from this assay were confirmed using the neutral comet assay, a single cell 

gel electrophoresis approach for monitoring double-strand breaks. 

 

As DNA damage is more likely to be inflicted as a result of DNA replication in S 

phase it is important to be able to separate this population from the G1 phase cells 

particularly when comparing different cell states. Further, conventional analysis of 

gH2AX staining involves manually counting the number of foci in each cell which can 

be labour intensive and open to subjective analysis. Therefore, a CellProfiler pipeline 

was developed that is capable of determining a cell cycle phase based on DNA 

content whilst automatically counting the number gH2AX foci within that cell. This 

had the added benefit of reducing labour and substantially improving throughput. 

Briefly, images of nuclei stained with DAPI as well as images of the gH2AX foci were 
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acquired using the high content INCell microscope. The DAPI images were 

segmented by CellProfiler and at the same time, a measurement of the integrated 

intensity of the DAPI stain was made that would later be used to determine the cell 

cycle phase (Figure 5.10a). The integrated intensity is a measurement of pixel 

density per area and can be used to separate cells between 2N and 4N of DNA 

content. The segmented DAPI image was masked over the gH2AX image to 

eliminate any non-nuclear signal from non-specific binding or debris and improved 

the accuracy of analysis (Figure 5.10b). The pipeline then segmented the individual 

gH2AX foci and counted the numbers per cell (Figure 5.10c). The data was exported 

as a spreadsheet which indicated the number of gH2AX foci per cell and the 

integrated intensity of the DAPI stain. The cells in the G1 phase were discarded 

based on DNA content as the focus of this assay was to understand DNA damage 

induced during DNA replication (Figure 5.10d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 | Automated cell profiler analysis of gH2AX immuno-labelled cells. 
a, Nuclei segmentation was performed based on DAPI stained nuclei. The original 

image (left), is segmented by CellProfiler using a global otsu thresholding strategy 

(middle) and accepted objects are then displayed (right). b, Segmented nuclear 

objects from (a) are used as a nuclear mask to remove non-specific binding and 

non-nuclear signals. c, Detection and segmentation of gH2AX signals that are 

related to the nuclei segmented in (a). d, Measurements of integrated intensity from 

segmented nuclei in (a) plotted to separate cells based on cell cycle stage. 
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The gH2AX assay was used to determine the susceptibility of cells in the pluripotent 

state to double-stranded DNA breaks. Overall, greater numbers of gH2AX foci were 

observed in hiPSC1 compared to the parent fibroblast cell line and its differentiated 

derivatives (Figure 5.11a). Next, the frequency of cells in S/G2 phase with greater 

than eight gH2AX foci were measured. This measurement was chosen as it would 

represent the population of cells that have incurred significant numbers of double 

strand-breaks during S phase. In the parent fibroblast line, 19% of the S/G2 

populations had more than eight gH2AX foci which significantly increased to 51% in 

the daughter pluripotent line hiPSC1 (Figure 5.11b). When hiPSC1 was 

differentiated, the frequency of cells with eight foci decreased again to 22% (Figure 
5.11b). In our second pluripotent line, hiPSC2 compared to its differentiated 

derivatives, a similar trend of 52% to 29% respectively was observed (Figure 
5.11b). Lastly, in the hESC line, 39% of the S/G2 phase cells had more than eight 

gH2AX foci which compared to only 22% of the differentiated hESC cells (Figure 
5.11b). 
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Figure 5.11 | Human PSC are susceptible to DNA damage. a, Representative 

merged images of DAPI and gH2AX images for the parent fibroblast line (top), 

hiPSC1 (middle) and the differentiated derivatives to hiPSC1 (bottom). scale bar, 

10µM. b, Frequency of S/G2 cells with ³8 gH2AX foci. The S/G2 phase was 

determined from nuclear DNA content. Data in b are mean values of 3 independent 

experiments ± s.d., for the isogenic somatic (fibroblast and differentiated derivatives 

of hiPSC1, hiPSC2 and hESC) (green) and pluripotent cell lines (hiPSC1, hiPSC2 

and hESC) (pink), two-tailed t-test, **P<0.01, (n > 100 cells per cell line per 

experiment). 

 

These results were confirmed using the neutral comet assay. Visually, the length of 

the tails in the pluripotent cells were longer than those in the somatic differentiated 

control lines (Figure 5.12a). To quantify this observation, tail moments were 
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measured using the Comet Assay IV data analysis software (Instem). The tail 

moment measured for hiPSC1, hiPSC2 and hESC ranged between 3.3 to 4.3 

(Figure 5.12b). Comparatively, the fibroblast and differentiated cell lines had a tail 

moment of between 1.3 and 2.9 and was significantly lower than their pluripotent 

counterparts in each case (Figure 5.12b). 

 

Altogether, the pluripotent cells possess a cell cycle that is consistent with many 

cancer cells that exploit a relaxed Rb-E2F to induce genetic instability and increase 

tumorigenic potential. Our results show that human PSC display perturbed 

replication dynamics and a high susceptibility to DNA damage.  
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Figure 5.12 | Human PSC lines have increased numbers of double strand 
breaks. a, Representative comet images from one panel of isogenic somatic and 

pluripotent cells. Image acquired from the parent fibroblast (top) to the hiPSC1 

(middle) and after the hiPSC1 was differentiated (bottom). b, Average tail moment 

from neutral comet assays on three independent human PSC lines (hiPSC1, hiPSC2 

and hESC) (pink) and their differentiated derivatives (Fibro and Diff) (green). Data 

displayed is from 3 independent experiments ± s.e.m., two-tailed t-test, 

****P<0.0001, (n ³ 300 cells per cell line per experiment). 
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5.3 Discussion  
 

To investigate the mechanisms of mutation in human PSC that may be leading to 

the formation of structural and numerical instabilities, I examined unique features of 

cells in the pluripotent state. To do this it was important to establish isogenic cell 

lines that were both pluripotent and somatic in nature so that any comparisons made 

were irrespective of the cells genetic background. I differentiated each of our human 

PSC lines using CHIR99021, a small molecule inhibitor of the GSK3a enzyme that 

acts to downregulate b-catenin and C-Myc (Ye et al., 2012). GSK3a inhibition leads 

to WNT activation that differentiates cells to mesodermal and endodermal 

progenitors. The human PSC used in this study were robustly differentiated using 

this protocol as determined by immunofluorescence and RT-qPCR gene expression 

analysis. 

 

During DNA replication a cell is subject to stresses that a senescent cell is not. One 

key feature of human PSC is their ability to self-renew endlessly. To ensure our 

differentiated cells had retained the capacity to proliferate, I differentiated the cells 

for a minimum period of 5 days and ensured a sample of the cells used in each 

experiment stained positively for Ki67, a marker of proliferation. Of all the cell lines 

used in this study hiPSC1 and its somatic counterparts provided the most 

comprehensive panel to investigate mechanistic features of pluripotent cells that are 

leading to genetic instability. The hiPSC1 line had been reprogrammed from a 

primary adult fibroblast line in Sheffield. By analysing both of these lines and its 

differentiated derivatives an assessment of the difference that occurs to a cell line 

after it acquires pluripotency and what happens following its differentiation back into 

a somatic state was made. One difference that was identified between these cell 

states is the rapid cell cycle dynamics that has been observed in human PSC. This 

is of particular interest as replication stress caused by rapid cell proliferation has 

been linked to DNA damage and cancer onset in adult stem cells (Tomasetti and 

Vogelstein, 2015, Walter et al., 2015) 

 

Links between pluripotency and cancer have long been discussed. For instance, 

tumour progression has been linked to the reactivation of many genes that are 

required for embryonic development and are thought to provide cancer cells with the 
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ability to endlessly self-renew which is crucial for tumour formation (Bussard et al., 

2010, Pezzolo et al., 2011, Illmensee and Mintz, 1976). One unique and innate 

property of pluripotent cells is their capacity to self-renew through unique cell cycle 

characteristics. Since the discovery of somatic cell reprogramming to human iPSC 

our ability to understand the potential mechanisms cancers use to unlock the 

capacity to endlessly self-renewal have been expanded. Of note, it has been shown 

that the silencing of p16INK4a is a common feature of human iPS cells and ES cells 

and its suppression during reprogramming is capable of increasing the efficiency of 

generating human iPSC lines (Li et al., 2009a). The p16INK4a binds to and inhibits the 

cyclin D dependant CDK4/6 kinases that are important in relieving the inhibitory 

action of the Rb tumour suppressor. Silencing of p16INK4a leads to elevated activity of 

cyclin D/CDK4 (Lukas et al., 1995) and in turn, upregulation of E2F transcription 

factor targets that include cyclin E (Leone et al., 1998). In this study, I have shown 

an elevation in cyclin D2 and cyclin E that is associated with the pluripotent state. 

This is consistent with the cell cycle profiles that I observed using flow cytometry of 

dual EdU and DAPI labelled cells. The pluripotent lines had a far greater proportion 

of cells that resided in the S phase and a smaller population in G1 phase. Further, I 

revealed that pluripotent cells display a truncated G1 phase that can be explained by 

the atypical expression of the cell cycle cyclins. I used two independent assays to 

measure the cell cycle time in both somatic and human PSC lines. Both assays 

determined the cell cycle time in the fibroblast line to be 23 hours. Interestingly, 

when I determined the cell cycle time of three independent human PSC lines by 

time-lapse microscopy, we found it to be consistently longer by 2 hours than when 

its length was determined by pulse-chase analysis. An explanation for this could be 

the difference in experimental conditions, unlike in the pulse-chase analysis, the 

time-lapse assay required measurements taken from single cells so that the cell 

divisions were accurately determined. The dissociation of human PSC into single 

cells has previously been associated with extensive stress leading to cell death 

(Chen et al., 2010, Ohgushi et al., 2010, Watanabe et al., 2007) and it may be that 

cell to cell contact mediates the survival and proliferation of these cells (Fox et al., 

2008, Andrews et al., 1982). Regardless, we observed a faster rate of proliferation in 

human PSC than isogenic somatic counterparts that are consistent with atypical G1 

cyclin expression. 
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With features of some cancer cells thought to emanate from their ability to unlock 

pluripotent characteristics, I explored the association of cancer cells genetic 

instability and cell cycle characteristics further. Genetic instability is a key feature of 

cancer development with many different models suggested as potential causes. 

Current research has focused on oncogene activation that induces DNA replication 

stress and double-strand breaks. Oncogenic activation of the Rb-E2F pathway, a 

master regulator of cell proliferation has been shown to lead to perturbed 

progression of replication forks (Bester et al., 2011) and replication stress through 

the uncoordinated activation of the gene targets for E2F that include, amongst 

others, the nucleotide biosynthesis pathway (Leone et al., 1998, Lundberg and 

Weinberg, 1998, Harbour et al., 1999). This uncoordinated nucleotide synthesis is 

thought to be inadequate for the needs of the now rapidly proliferating cells (Bester 

et al., 2011). Previous studies have identified that depletion of nucleotide pools leads 

to slow DNA replication rates (Anglana et al., 2003), increased DNA replication 

origin abundance (Ge et al., 2007) and the formation of numerous double-strand 

breaks (Saintigny et al., 2001). Attempts to investigate similar symptoms of 

replication stress in human PSC have relied on the expression of proteins 

associated with replication fork stalling and repair (Vallabhaneni et al., 2018). 

However, the differences that they observed with these assays could be explained 

by pluripotent cells atypical DNA damage response and repair pathways, such as 

the reliance on HR over NHEJ. To overcome these limitations, I established several 

techniques to monitor the replication dynamics and DNA damage in human PSC 

relative the isogenic somatic control lines. The fibre assay provides a direct 

approach to understand differences in replication dynamics between cell states 

across the entire genome and at a single-molecule level. Strikingly, the fibre analysis 

revealed perturbed replication dynamics in the pluripotent cells compared to the 

somatic control lines. The speed of replication fork progression was decreased 

across all our lines compared to the somatic counterpart lines and we noted a 

decrease in the distance between origins of replication which suggested that as a 

consequence of slower replication fork speed, the cells were firing from dormant 

origins. To monitor the susceptibility of our pluripotent lines to DNA damage, I used 

two assays routinely employed for the in vitro detection of double-strand breaks. By 

using phopho-specific antibodies for serine 139 residue, it is possible to image the 

phosphorylated form of this protein that appears as foci within the nuclei of cells. 
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H2AX becomes phosphorylated to generate gH2AX in the vicinity local to a double-

strand break (Rogakou et al., 1998). As such, counting the number of foci in a cell 

can be used to sensitively determine the number of double-strand breaks. However, 

gH2AX does not allow the user to monitor the exact fate of a double-strand break 

and may not decay following its resolution (Kinner et al., 2008). For these reasons, 

we performed additional double-strand break analysis using a single cell gel 

electrophoresis approach known as the comet assay. Measurements of a cells DNA 

migration through agarose gel as well as the relative amount of DNA present is 

known as the tail moment and can be used as an index of DNA damage. Consistent 

with previous findings, I found the pluripotent cells to have extensive gH2AX that is 

particularly associated with the S/G2 phase of the cell cycle (Vallabhaneni et al., 

2018, Simara et al., 2017). I confirmed that the extensive gH2AX in these cells was 

associated with numerous double-strand breaks by measuring tail moments by 

neutral comet assays. 

 

Altogether, these data suggest that the pluripotent cells possess cell cycle 

characteristic that are similar to those observed in early-stage cancer development. 

Silencing of p16INK4a, that is observed in all human PSC would account for the high 

expression of Cyclin D2 and Cyclin E and the rapid progression through G1 phase 

that is reported here. Further, I found pluripotent cells possessed perturbed 

replication dynamics and a susceptibility to DNA damage that was strikingly similar 

to cancer cells that display a relaxed Rb-E2F and aberrant activation of the 

nucleotide biosynthesis pathways (Bester et al., 2011). 

 

In summary, the aberrant activation of the Rb-E2F pathway in human PSC provides 

a likely cause of replication stress and DNA damage in human PSC. Using the 

findings uncovered in this chapter the following section will explore the optimisation 

of human PSC cell culture conditions that aim to reduce replication stress and 

minimise genetic instability in human PSC cultures. 
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6 Replication stress in human PSC is rescued with exogenous 
nucleosides 
 
6.1 Introduction 
 

In the previous chapter, the resemblance of cancer cells to human PSC was 

discussed. Silencing of p16INK4a and overexpression Cyclin E and D2 are common 

features of human PSC (Li et al., 2009a), which enforces proliferation through the 

activation of E2F, which is also a common feature of certain cancers (Sekido et al., 

1998). It has been proposed that the oncogenic activation of E2F promoted G1/S 

transition and enforces proliferation (Becker et al., 2006). This improper control of 

the cell cycle can lead to dysregulation of replication initiation, origin firing and 

increased replication/transcription collisions leading to replication stress directly or 

depletion of nucleotide pools that can initiate replication fork stalling and collapse 

(Bester et al., 2011, Jones et al., 2013, Halazonetis et al., 2008, Ekholm-Reed et al., 

2004).  

Localised DNA damage can form from replication stress after DNA forks stall and 

collapse, but evidence has also shown that a consequence of replication stress is 

then formation structural and numerical chromosomal instabilities (Burrell et al., 

2013). Copy number variants may arise due to erroneous repair of breaks that 

emanate from collapsed forks. A form of homologous recombination DNA repair, 

known as break-induced replication is employed to repair DNA damage left by 

collapsed forks when homology is present at only one side of the break. Erroneous 

repair by break-induced replication generates amplifications with microhomology at 

the breakpoint (Costantino et al., 2014). Further, when the analysis of a panel of 

colon adenocarcinoma cell lines was performed, those lines that were 

chromosomally unstable presented replicative stress characteristics, whereas those 

that were stable did not. Replication stress in the unstable lines led to defects in 

chromosome segregation (Burrell et al., 2013) as a result of under-replicated regions 

and unresolved replication structures that proceeded into mitosis (Lukas et al., 

2011).  
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Regardless of the mechanism surrounding replication stress and its consequences, 

it was shown that the addition of exogenous nucleosides in vitro can help to reduce 

it. It was identified that following overexpression of cyclin E, rNTP pools were 

reduced, and replication stress proceeded, although this was rescued with the 

addition of exogenous nucleosides in vitro (Bester et al., 2011). Further, the 

supplementation of exogenous nucleoside in chromosomally unstable colon 

adenocarcinomas decreased both replication stress-induced DNA damage and 

chromosome segregation errors that occurred during mitosis (Burrell et al., 2013). 

However, for the cells to make use of the exogenous nucleosides they must first 

convert them to dNTPs using the nucleotide biosynthesis pathway (Figure 6.1). The 

rate-limiting step in the formation of dNTPs is the reduction of NDPs to dNDPs by 

the enzyme ribonucleotide reductase (RNR). In response to DNA damage and 

replication stress, RNR subunit activity is upregulated through checkpoint controls 

(Zegerman and Diffley, 2009). Under normal conditions, E2F6 begins to accumulate 

through S phase to suppress the activity of E2F gene targets. Cells activate CHK1 

checkpoint in response to DNA damage and replication stress to inhibit E2F6 and 

prolong E2F gene activation of downstream targets. One such target is the RNR 

subunit RRM2 that buffers the detrimental effects that can result from sustained 

replication stress and thereby prevent DNA damage and cell death (Bertoli et al., 

2013, Herlihy and de Bruin, 2017). CHK1 also acts to stall the cell cycle (Sørensen 

et al., 2003, Sørensen and Syljuåsen, 2012) and coordinates the firing from dormant 

origins in the presence of under replicated regions (Ge and Blow, 2010). This is 

crucial to prevent cells progressing into mitosis before the completion of DNA 

synthesis, preventing lagging chromosomes, chromosome breaks, aneuploidy or 

mitotic catastrophe (Ishida et al., 2001, Saavedra et al., 2003, Manning and Dyson, 

2012). The function of CHK1 in this way is essential with its loss leading to cells that 

are highly sensitive to apoptosis in response to DNA replication stress and DNA 

damage (Takai et al., 2000). 

In human PSC, initiation of replication stress by treating cells with thymidine or 

cisplatin resulted in these cells committing to apoptosis whereas somatic cells 

favoured arrest of DNA synthesis, which restarted at a more favourable time 

(Desmarais et al., 2012). In response to replication stress, human PSC did not 

generate ssDNA and did not recruit RPA. Without RPA, human PSC failed to 

activate CHK1 in response to replication stress, although CHK1 was still activated 
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from other forms of DNA damage (Desmarais et al., 2012). Furthermore, markers of 

DNA repair by homologous recombination and fork restart were only present at low 

levels and instead of repair and fork restart, these cells favoured apoptosis to 

eliminate cells with a high degree of replication stress (Desmarais et al., 2012). This 

likely reflects the specific demands of the early embryo where rapid proliferation is 

required, yet genetic instability could be catastrophic for the whole embryo. Despite 

this, mutations appear during in vitro culture that favour anti-apoptosis and provide a 

selective advantage to the mutant cells by overcoming replication stress-induced 

apoptosis. 

Current culture media contain only the basic factors that maintain human PSC in the 

self-renewal state, with little consideration for components that may ensure the cells 

genetic stability. With the observations that human PSC are susceptible to 

replication stress and DNA damage, I explored the potential to improve cell culture 

media to minimise mutations that arise from replication stress whilst also reducing 

apoptosis that, during prolonged culture, encourages the selection of mutant cells 

that evade apoptosis. 

 

 

 

 

 

 

 

Figure 6.1 | Schematic of purine and pyrimidine metabolism. The schematic 

illustrates the nucleotide salvage and de-novo synthesis. The metabolite unit is 

written in black with the enzyme used to catalyse the reaction written in red. The 

schematic is separated into purines (top) and pyrimidines (bottom). In particular the 

schematic illustrates the metabolism of dNTP from nucleosides. 
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6.2 Results 

 

6.2.1 Optimisation of nucleoside concentration for human PSC culture  

 

To determine whether exogenous nucleosides can minimise the effect of replication 

stress on human PSC it was first important to determine the concentration that 

would provide the greatest benefit. A range of nucleoside concentrations were tested 

for the ability to reduce numbers of gH2AX foci. Cytidine, guanosine, uridine and 

adenosine were mixed at equimolar concentrations into the commercially available 

cell culture medium, mTeSR. A low level of thymidine was already included in 

mTeSR formula and so was titered at a lesser amount. Following 72 hours of culture 

in nucleoside (mTeSR + AUCTG) or control (mTeSR) conditions, the cells were fixed 

and the expression of gH2AX was quantified by immunofluorescence using the 

InCell high content microscope and analysis performed using the image analysis 

pipeline that I previously developed (section 5.2.5). The mean number of gH2AX foci 

per hiPSC1 or hiPSC2 cell in S/G2 phase was plotted and compared to the negative 

control (Figure 6.2a,b). A dose-dependent reduction of gH2AX foci was observed 

across multiple experiments in both cell lines. The concentration that produced the 

greatest response of cytidine, guanosine, uridine and adenosine equalled 15µM and 

thymidine was at 6µM (Figure 6.2a,b).  
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Figure 6.2 | Exogenous nucleosides reduced gH2AX expression in a dose 

dependant manner. a, hiPSC1 grown in mTeSR that was titered with exogenous 

nucleosides. Data presented is the average number of gH2AX foci per cell in each 

condition. Each line represents an individual experiment. b, Results from two 

independent experiments using a second cell line, hiPSC2. Dose dependant 

response was observed in both cell lines. Data are mean ±s.d. of three technical 

repeats, two-tailed t-test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 

 

6.2.2 Exogenous nucleosides maintain human PSC in a self-renewal state 

 

Exogenous nucleosides can rescue replication stress of cells in vitro (Bester et al., 

2011, Burrell et al., 2013). To determine if exogenous nucleosides could be included 

in cell culture media and reduce replication stress in human PSC, it was first crucial 

to ensure that cells maintained with the addition of exogenous nucleosides retained 

pluripotency. When hiPSC1 cells were grown in the presence of exogenous 

nucleosides they retained the expression of pluripotency-associated cell surface 

antigens, SSEA3, TRA-160, TRA-185 and TRA-181, over ten passages (Figure 

6.3a-d). Overall, cells grown in mTeSR with the addition of exogenous nucleosides 

(Nuc) presented a greater proportion of cells that were positive for the respective cell 

surface antigen than when grown in mTeSR alone (control) (Figure 6.3a-d). 

 

 

 

 

 

 

Figure 6.3 | Exogenous nucleosides maintain human PSC in a self-renewal 

state. The Human PSC line, hiPSC1 was grown for 10 passages in exogenous 

nucleosides (red) or control conditions (black). A sample of cells were taken every 

second passage and immuno-stained based on the expression of four pluripotency 

associated cell surface antigens, SSEA3 (a), TRA-160 (b), TRA-185 (c) and TRA-

181 (d). P3X was used as a negative control in each case (blue) and the proportion 

of positive cells in each case was gated based on P3X. 
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Following culture for 10 passages in the presence of exogenous nucleosides, a flask 

of cells was taken to assess their capacity to differentiate into the three embryonic 

germ layers. Human PSC grown in the control condition or in the presence of 

exogenous nucleosides were spontaneously differentiated into embryoid bodies 

under neutral conditions that are devoid of small molecule inhibitors that would 

otherwise direct differentiation to one of the three germ layers (Figure 6.4a,b). 

Interestingly, the embryoid bodies formed from the nucleoside condition were 

consistently larger and more irregular in form than those grown in the absence of 

exogenous nucleosides (Figure 6.4a,b). Gene expression analysis was performed 

on the 10-day old embryoid bodies using RT-qPCR for genes associated with 

pluripotency, mesoderm, ectoderm and endoderm genes. Human PSC grown in the 

presence of exogenous nucleosides spontaneously differentiated as observed by a 

loss of the pluripotent transcription factor OCT4 (Figure 6.4c). In comparison to cells 

maintained in self-renewal conditions, the differentiated cells presented an 

upregulation of gene expression associated with the three germ layers (Figure 6.4d-

f). Together, these results show that the addition of exogenous nucleosides to 

human PSC culture media can maintain human PSC in a pluripotent state. 

 

 

 

 

 

 

 

 

Figure 6.4 | Human PSC maintained in exogenous nucleosides spontaneously 

differentiate under neutral embryoid body conditions. Representative images of 

neutral embryoid bodies that were formed from hiPSC1 grown in control conditions 

(a) or in the presence of exogenous nucleosides (b). Gene expression analysis by 

RT-qPCR of the neutral embryoid bodies following 10 days spontaneous 

differentiation under neutral conditions. Gene expression for a panel of genes 

associated with pluripotency (c), endoderm (d), ectoderm (e) and mesoderm (f). 

Data are mean ±s.d., two-tailed t-test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 

(n = 3 experiments). 
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6.2.3 Exogenous nucleosides reduce DNA damage in cultures of human PSC 

 

In the previous chapter, it was shown that the pluripotent state is susceptible to DNA 

damage during S/G2 phase of the cell cycle. With the concentration of nucleosides 

optimised for pluripotent cell culture, the frequency of cells with high levels of 

damage induced during S/G2 phase of the cell cycle was examined. After 72 hours 

in culture with exogenous nucleosides, the frequency of cells with more than 8 

gH2AX foci significantly decreased in hiPSC1, hiPSC2 and hESC lines (Figure 

6.5a,b). To confirm these findings, the neutral comet assay was used to directly 

measure DNA damage of individual cells. The addition of exogenous nucleosides 

reduced the average tail moment as determined by the neutral come assay (Figure 

6.5c,d). These findings show that the addition of exogenous nucleosides to human 

PSC media has the benefit of reducing the susceptibility of human PSC to DNA 

damage. 

 

 

 

 

 

 

Figure 6.5 | Susceptibility to DNA damage is reduced in cultures of human 

PSC with the addition of exogenous nucleosides. a, Representative images of 

gH2AX stained hiPSC1 cells grown in control (top) and nucleoside (bottom) 

conditions for 72 hours. gH2AX (red – 647) and nuclear counterstain (blue – DAPI). 

White arrows indicate each nuclei that contains 8 or more gH2AX nuclei. Data are 

mean ±s.d., two-tailed t-test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (n = 3 

experiments). b, Frequency of cells with greater than or equal to 8 gH2AX foci in 

hiPSC1, hiPSC2 and hESC grown in control (black) or nucleoside conditions (red). 

c, Representative images from comet assays performed on hiPSC1 when grown in 

control (top) or nucleoside (bottom) conditions. d, Quantification of tail moments in 

hiPSC1 grown in control (black) and nucleoside (red). Data from 3 independent 

experiments are displayed. Mean ±s.d., two-tailed t-test, *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001. 
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6.2.4 Exogenous nucleosides alleviate perturbed replication dynamics in human 

PSC 

 

A common source of DNA damage during S phase of the cell cycle is replication 

stress that is caused by the slowing, stalling or collapse of replication forks (Ichijima 

et al., 2010). As exogenous nucleosides reduced the susceptibility of human PSC to 

DNA damage, it was next investigated whether this was a result of decreased 

replication stress by performing fibre assays to monitor replication dynamics. 

 

The DNA fibre assay was performed on the hiPSC1 line in control conditions. The 

majority of fibres observed were small and their length was consistent with what we 

found during our experimentation in section 5.2.4 (Figure 6.6a,b). However, when 

the same cells were grown with the addition of exogenous nucleosides, the length of 

the DNA fibres increased (Figure 6.6a,b). Interestingly, upon the addition of 

exogenous nucleosides, the average fibre length was 47.9kb which was comparable 

to the fibres measured in the isogenic somatic cell lines which measured 45.5 and 

35.5kb for the parent fibroblast and the hiPSC1 differentiated lines respectively (see 

section 5.2.4).  

 

The fibre lengths now matched more closely the lengths measured in the parent 

fibroblast. When cells were grown in cell culture media supplemented with 

exogenous nucleosides the distribution of replication fork rates increased (Figure 

6.6c). Further, the mean speed of replication fork rate was significantly higher in the 

presence of exogenous nucleosides measuring 1.2kb/min. Again, this was now akin 

to the fork rates observed in the isogenic parent fibroblast and hiPSC1 differentiated  

cell lines, which measured 1.2 and 0.9kb/min respectively (Figure 6.6d). 
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Figure 6.6 | Exogenously supplied nucleosides minimise replication stress in 

human PSC. a, Representative images of labelled DNA fibres from the hiPSC1 cell 

line grown in control (top) and nucleoside (bottom) conditions. Scale bar, 10µM. b, 

Quantification of the combined CldU and IdU DNA fibre lengths in hiPSC1 grown in 

control (black) or nucleoside conditions (red) (n > 200 fibres per experiment, n = 3 

experiments). Violin plots of the distribution of fibre lengths, median distance and the 

25th and 75th percentile are presented. c, Distribution of replication fork rates in 

control (black) and nucleoside (red) conditions (n > 200 fibres per experiment, n = 3 

experiments). Data is mean ±s.e.m. d, Average fork rate of data from (c) mean ±s.d. 

(n = 3 experiments). two-tailed t-test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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Dormant replication origins are fired in response to slow replication fork speeds to 

complete replication in under replicated regions (Anglana et al., 2003, Ge et al., 

2007). Consistent with a reduction in replication stress, the distance between 

replication origins increased which is constant with a decrease in the replication 

origin density (Figure 6.7a). In line with this finding, the frequency of the red only 

CldU tracts that arise from stalled or collapsed forks before pulse labelling with the 

green IdU label also decreased (Figure 6.7b).  

 

 
 

Figure 6.7 | Exogenous nucleosides decrease origin density and reduces 

frequency of stalled forks. a, Origin density determined from measurements 

between replication origins (ori-ori) in hiPSC1 cell line. Median distance and the 25th 

and 75th percentile are presented (n > 150 measurements per cell line, n = 3 

experiments). e, Frequency of CldU only tracts in hiPSC1 that denotes stalled forks 

mean ±s.d. (n > 700 per condition per experiment, n = 3 experiments). two-tailed t-

test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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Further, analysis using the hiPSC2 and hESC cell lines substantiated these findings. 

The analysis showed that hiPSC2 and hESC grown with exogenous nucleosides 

had a distribution of replication fork rates with greater speeds and an overall 

increase in the mean replication fork rate (Figure 6.8a-d). In addition, both hiPSC2 

and hESC presented an increased distance between origins of replication in the 

presence of exogenous nucleosides compared to when the same cells were grown 

in control conditions (Figure 6.8e,f). 

 

The addition of exogenous nucleosides to the cell culture media improved the 

replication dynamics of human PSC. The improvements made with exogenous 

nucleosides enhanced replication dynamics to levels that were previously observed 

in the isogenic somatic cell states. 
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Figure 6.8 | Nucleosides effect on replication dynamics was confirmed in two 

further human PSC cell lines. a,c, Distribution of replication fork rates in control 

(black) and nucleoside (red) conditions in the hiPSC2 (a) and hESC (c) cell line (n > 

200 fibres per experiment, n = 3 experiments) Data is mean ±s.e.m. b,d, Average 

fork rate of the data from (a) and (c) respectively. Data from 3 independent 

experiments are displayed. Mean ±s.d. e,f, Origin density determined from 

measurements between replication origins (ori-ori) in hiPSC1 cell line. Median 

distance and the 25th and 75th percentile are presented (n > 160 measurements per 

cell line, n = 3 experiments). two-tailed t-test, *P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001. 

 

6.2.5 Exogenous nucleosides reduce errors during mitosis 

 

The persistence of under replicated regions into mitosis can result in mitotic errors. 

The impairment of chromosome segregation can result in lagging chromosomes and 

chromosome bridges (Ichijima et al., 2010, Gisselsson, 2008). If a chromosome or 

part of a chromosome is not separated efficiently it can become compartmentalised 

into a micronucleus (Ford et al., 1988). 

 

To understand the effect exogenous nucleosides have on mitosis in human PSC, the 

hiPSC1 cell line was stably transfected with H2B-RFP to fluorescently label the cell’s 

chromatin and allows the tracking of chromosome dynamics in live cells. 

Images were acquired every minute for 2 hours using time-lapse microscopy and the 

length of prometaphase, metaphase and anaphase were measured when hiPSC1-

H2B-RFP was grown in exogenous nucleosides or the control condition. An 

extension of the time spent in these phases may indicate mitotic checkpoint 

activation that slows or stalls transition from prometaphase to anaphase. Overall, the 

time spent in each of these phases was similar in both conditions although the time 

in anaphase was significantly shorter in hiPSC1 grown in the presence of exogenous 

nucleosides (Figure 6.9a). 

 

Using the time-lapse analysis, the frequency of lagging chromosomes, chromosome 

bridges and micronuclei were determined (Figure 6.9b-d). Consistent with previous 

findings, a high frequency of mitotic errors in human PSC was observed under 
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standard culture conditions (Zhang et al., 2019) (Figure 6.9e). Strikingly, a 

significant decrease in the frequency of mitotic errors was observed with the addition 

of exogenous nucleosides over four independent experiments (Figure 6.9e). The 

addition of exogenous nucleosides to human PSC not only improves the localised 

impact of replication stress but also minimises its detrimental consequences on 

mitosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 | Exogenous nucleosides reduce the frequency of mitotic errors in 

human PSC. The hiPSC1 cell line was fluorescently labelled with H2B-RFP to 

monitor mitosis. a, Violin plots of the distribution of prometaphase, metaphase and 

anaphase mitotic phase times. hiPSC1 cell line was grown in control (black) and 

nucleoside (red) conditions. b-d, Representative images of mitotic errors observed in 

hiPSC1 line labelled with H2B-RFP. White arrow head shows the mitotic error. Scale 

bar, 10µM. e, Average frequency of mitotic errors observed in control (black) and 

nucleoside (red) conditions. Data are mean ±s.d. two-tailed t-test, *P<0.05, 

**P<0.01, ***P<0.001, ****P<0.0001. 
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6.2.6 Exogenous nucleosides improve the growth dynamics of human PSC cultures 

 

Unlike somatic cells, human PSC do not activate CHK1 in response to replication 

stress (Desmarais et al., 2012). In the absence of this checkpoint, the cells respond 

to replication stress by activating apoptosis instead of repairing stalled and collapsed 

forks.  

 

To understand whether the beneficial effects of exogenous nucleosides on DNA 

damage, replication dynamics and mitosis also improved cell growth, I performed 

experiments to analyse growth rate. Cells were seeded at equal density into multiple 

96 well plates and grown in control or nucleoside conditions for 96 hours. After 24-48 

hours the colonies in the nucleoside condition appeared more condensed and 

rounded when compared to the spread out and spikey morphology of the control 

condition (Figure 6.10a,b). Each day a cell count was performed by fixing one plate 

from each condition and counting cell numbers based on nuclear DAPI stain. 

Nucleosides improved the growth rate of human PSC with a particular advantage 

during initial seeding and survival over the first 24 hours (Figure 6.10c). 
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Figure 6.10 | Exogenous nucleosides improve the growth kinetics of human 

PSC. a,b, Representative brightfield images of hiPSC1 cell line grown in control (a) 

and nucleoside conditions (b). Images taken at 4X magnification. c, Assessment of 

growth rate over 96 hours determined from cell counts based on DAPI stained 

nuclei. Data is mean ±s.d. of three technical replicates. 
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To determine if the initial improvement in seeding was due to a reduction in 

apoptosis, hiPSC1 cells were seeded in a multi-well plate in control or nucleoside 

conditions. The cells were harvested after 3, 6 or 24 hours and immunostained for 

cleaved caspase 3, a measure of early apoptosis. After 3 hours, 27% of the cells 

seeded into the nucleoside condition were positive for cleaved caspase 3, which was 

less than the control condition which had a 39% cleaved caspase 3 positive 

population (Figure 6.11a,d). At the subsequent time points, there was no difference 

in the proportions of cleaved caspase 3 positive cells (Figure 6.11b-d). These data 

indicate that exogenous nucleosides improved human PSC growth, with a particular 

survival advantage achieved through improved survival post-plating. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 | Exogenous nucleosides reduces apoptosis during initial cell 

seeding. a-c, Flow cytometry histograms showing the frequency of cleaved caspase 

3 positive hiPSC1 cells grown in control (black) or nucleoside (red) conditions, 3 (a), 

6 (b) or 24 (c) hours after seeding. d, Summary data of a-d of the percentage of 

cleaved caspase 3 positive cells in each condition. 
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6.2.7 Exogenous nucleosides improved the cloning efficiency of human PSC 

 

Plating human PSC at higher densities improves cell viability. The passaging of 

single cells at low density is associated with poor survival and thought to play a role 

in the selection of genetically variant cells that possess a survival advantage 

(Barbaric et al., 2014).  

 

To investigate the effect of exogenous nucleosides on the survival of human PSC at 

low density, clonogenic assays were performed. To ensure that any colonies that 

arose at the end of the experiment were derived from a single cell, the hiPSC1 line 

was dissociated and plated at 500 cells/cm2, a density at which cell-cell distance is 

larger than the maximum distance human PSC can migrate (Barbaric et al., 2014). 

The cells were grown for 5 days and the resulting colonies were stained for the 

pluripotency transcription factor OCT4. The cloning efficiency was calculated as the 

percentage of OCT4 positive colonies as a proportion of the initial seeding cell 

number. The cloning efficiency improved approximately two-fold across three 

independent experiments in the hiPSC1 cell line grown in the presence of 

exogenous nucleosides (Figure 6.12a). The experiment was repeated using the 

hiPSC2 cell line and again, exogenous nucleosides improved the cloning efficiency 

by approximately two-fold (Figure 6.12b). 

 

 

 

 

 

 

 

 

 

Figure 6.12 | Exogenous nucleosides increase the cloning efficiency of two 

human PSC lines. a,b, hiPSC1 and hiPSC2 respectively show increased cloning 

efficiency when plated in exogenous nucleosides (red) when compared to the control 

conditions (black). Data are mean ±s.d. of three technical replicates, two-tailed t-test, 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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6.2.8 Exogenous nucleosides improved survival is consistent with decreased 

replication stress and mitotic catastrophe  

 

To better understand the mechanism through which exogenous nucleosides 

improves cell survival at low density we performed a time-lapse microscopy 

experiment to track the growth of single cells through successive cell divisions. A 

random selection of 75 hiPSC1 cells from control or nucleosides conditions were 

chosen if they attached and performed a first division. The growth of these single 

cells was then tracked and plotted as lineage trees (Figure 6.13a,b).  
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Figure 6.13 | Exogenous nucleosides improve survival post plating and following successive divisions. a, Lineage trees 

tracing 75 randomly selected cells that reach the first division in control conditions b, Lineage trees of 75 single hiPSC1 cells grown in 

nucleoside conditions that reach the first division. Time in hours is shown down the y-axis, forks in the lineage tree indicate a cell 

division. Green triangles show the surviving cell at the end of the timelapse experiment and the red crosses indicate where a cell has 

died.  
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Of the cells that seeded and attached, 68% survived beyond the first division in the 

control condition. When the cells were grown with exogenous nucleosides, 79% 

attached and entered mitosis post plating (Figure 6.14a). It has been previously 

shown that post plating, the majority of surviving cells that reach the first division are 

those from the G2 fraction of the cell cycle (Barbaric et al., 2014). The time from 

plating to the first division increased from 13 hours to 16 hours when nucleosides 

were added to the cell culture media, indicating improved survival of cells from 

earlier cell cycle phases (Figure 6.14b). This is consistent with previous 

observations that human PSC activate apoptosis in response to replication stress 

(Desmarais et al., 2012). When the time from the first to second division was 

measured, the time decreased from 22 hours to 19 hours when exogenous 

nucleosides were added to the cell culture media (Figure 6.14c). Next, the lineage 

tree analysis was used to examine the capacity of the cells to form colonies. When 

the cells were grown in exogenous nucleosides they were more likely to form a 

colony (Figure 6.13a,b and 6.14d). The overall number of cells in each colony was 

also greater (Figure 6.13a,b and 6.14e). Far fewer of those in the control condition 

consisted of greater than 8 cells and the greatest proportion colonies contained 

between 1 and 4 cells when compared to the nucleoside condition (Figure 6.13a,b 
and 6.14f). Finally, the survival of the daughter cells from each cell division was 

determined. The outcome of each division had three possible scenarios, survival of 

both daughter cells (SS), survival of one daughter cells and the death of other (SD) 

or the death of both daughter cells (DD) (Figure 6.14g). In the absence of 

nucleosides, there was a consistently higher number of cell divisions that resulted in 

the death of both daughter cells, this result was anticipated and indicated that mitotic 

errors caused by DNA replication stress are catastrophic for both daughter cells 

(Figure 6.14h). Together these results indicate that nucleosides reduce replication 

stress in human PSC and this improves the growth dynamics of cells which is 

manifested through a pronounced survival of cells following seeding and cell 

division. 
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Figure 6.14 | Time-lapse microscopy of human PSC cultures supplemented 
with exogenous nucleosides improve survival of cells following plating and 
after successive divisions. a-h, Summary data of the lineage tress analysis shown 

in figure 6.12. a, Percentage of cells that attached and survived to the first division in 

control (black) and nucleoside (red) conditions. The growth dynamics of these 

surviving cells were plotted as lineage trees in figure 6.12. b, Box plot of the 

distribution of time in hours from attachment to first division in control (black) and 

nucleoside (red) condition. Box and whiskers denote the mean and the 5th and 95th 

percentiles. Symbols are those values that fall outside of the 5th and 95th percentile. 

c, Box plot of the distribution of time in hours from the first cellular division to the 

second in control (black) and nucleoside (red) condition. Box and whiskers denote 

the mean and the 5th and 95th percentiles. Symbols are those values that fall outside 

of the 5th and 95th percentile. d, The number of cells that formed a colony out of the 

randomly selected 75 cells traced in the time-lapse analysis. e, Box plot of final 

colony sizes after the 72 hour time-lapse experiment. A colony was classified as 

having 2 more cells. Box and whiskers denote the mean and the 5th and 95th 

percentiles. f, Histogram showing the distribution of colony sizes formed after the 72 

hour time-lapse experiment in control (black) and nucleoside (red) conditions. g, 
Schematic illustrating the scoring method used in (h). Survival of both cells after cell 

division was scored as SS, the death of one daughter cell and the survival of the 

other was denoted as SD and the death of both daughter cells was scored as DD. h, 
The frequency of the first (left), second (middle) and third (right) cell division that 

resulted in the daughter cells SS, SD or DD. two-tailed t-test, *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001. 
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6.3 Discussion  
 
The maintenance of genetic stability in human PSC is imperative for the safe future 

application of these cells in regenerative medicine. However, previous publications 

have observed a high frequency of DNA damage in these cells (Vallabhaneni et al., 

2018, Simara et al., 2017). Errors in DNA repair and the errors caused by DNA 

damage during replication can lead to chromosomal instability, like those reported to 

afflict human PSC during prolonged culture (Amps et al., 2011, Seth et al., 2011). In 

the previous chapter, I confirmed a susceptibility to DNA damage in the pluripotent 

state and characterised replication stress as a probable cause that is likely due to 

uncoordinated entry into S phase. It has previously been shown that an 

uncoordinated entry into S phase can cause depletion of dNTP pools and 

subsequent DNA replication stress, DNA damage and genome instability (Bester et 

al., 2011). Reports elsewhere have shown that DNA replication stress can be 

alleviated with the addition of exogenous nucleosides which can also reduce mitotic 

errors that lead to chromosomal instability (Bester et al., 2011, Burrell et al., 2013).  

 

The addition of exogenous nucleosides to the cell culture media of human PSC 

substantially improved replication dynamics and with this, decreased the detrimental 

consequences of replication stress including DNA damage, mitotic error and 

apoptosis. I found nucleosides decreased DNA damage in human PSC when 

measured by two statistically independent assays. In the previous chapter, distinct 

differences in the replication dynamics of cells in pluripotent and somatic states were 

observed. Using fibre assay measurements, I found exogenous nucleosides 

completely restored DNA fibre lengths, fork speeds and origin density to 

measurements made in the somatic cell lines. Of these results, a decrease in origin 

density was most interesting and has led to a potential mechanism for dNTP pool 

depletion in human PSC. These results would suggest increased origin density in 

human PSC is a response to depleted dNTP pools, with dormant origins fired to 

replicate regions around collapsed and stalled forks (Ge et al., 2007). Instead, I 

propose that replication stress in human PSC fits with the model where 

uncoordinated entry into S phase forces cell proliferation without the adequate dNTP 

pools required for DNA replication (Bester et al., 2011). 
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Supplementing chromosomally unstable cancer cell lines with nucleosides reduced 

both DNA damage and segregation errors during mitosis that supported a role for 

replication stress in driving the formation of structural and numerical chromosome 

instabilities (Burrell et al., 2013). Conventionally, studies have used metaphase 

spread analysis to measure the frequency of chromosomal instabilities that arise 

during in vitro experimentation. As particular genetic variants are selected for and 

enriched during the culture of human PSC, the frequency of chromosome changes 

may not reflect the mutation rate. For this reason, I chose to examine mitosis using 

fluorescently labelled histone H2B-RFP cell line and found exogenous nucleosides 

reduced the frequency of mitotic errors. However, the frequency of error was still 

high and would suggest that replication stress is only a contributing factor in the 

events leading to chromosomal instability. Overall, the frequency of mitotic errors 

under normal conditions was high and confirmed previous reports that human PSC 

are susceptible to mitotic errors (Zhang et al., 2019). By using the same approach, 

Zhang et al found that 30% of mitosis resulted in errors, although their analysis only 

included chromosome bridges and lagging chromosome, whereas I also included 

counts of multipolar divisions and micronuclei (Zhang et al., 2019). When time spent 

in each phase of mitosis was measured, the time to complete anaphase was 

significantly lengthened in the absence of nucleosides. This observation is 

consistent with the activation of the spindle assembly checkpoint mitotic arrest prior 

to cell death and highlighted further the ability of nucleosides to reduces mitotic error 

during human PSC culture (Masamsetti et al., 2019).  

 

Unsurprisingly, the addition of exogenous nucleosides to cell culture media was able 

to maintain human PSC in the pluripotent state. However, when pluripotency-

associated cell surface antigens were analysed, the proportion of positive cells 

increased with the addition of nucleosides, signifying an improvement in the survival 

of human PSC. Further, the embryoid bodies formed from the nucleoside condition 

were much larger and although this is outside of the scope of this project, it would 

suggest that nucleosides benefited differentiation of human PSC by reducing cell 

death. This is critical as regenerative medicine requires huge numbers of 

differentiated cells. Some application such as cardiac regeneration will require one 

billion or more cardiomyocytes to provide effective remuscularization of the heart 

(Chong et al., 2014). 
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Observations of colony morphology and examination of cells grown at low density 

provided context to how nucleosides improved cell survival. In particular, I found that 

the time from cell seeding to the first division increased. In a study by Barbaric et al, 

it was shown that genetically normal cells plated at low density had a greater chance 

of survival if they were in the G2 phase of the cell cycle (Barbaric et al., 2014). An 

extension in the time to the first division like I observed, indicates that human PSC in 

G1 and S phase were now more likely to survive. This is consistent with a reduction 

in replication stress-induced apoptosis, that is the default response of human PSC to 

replication stress as they do not activate CHK1 to stall the cell cycle (Desmarais et 

al., 2012). In cultures devoid of exogenous nucleosides, lineage tree analysis 

showed that cell death soon after cell division was prevalent. This may be explained 

by the high frequency of mitotic errors leading to mitotic catastrophe and cell death 

of both daughter cells in a TP53 dependant manner (Zhang et al., 2019). Overall, 

this led to an increase in colony numbers and greater colony size at the end of the 

experiment.  

 

These data suggest that the susceptibility of human PSC to replication stress and 

DNA damage is entirely due to shortages in dNTP pools which can be rectified with 

the addition of exogenous nucleosides. To test this notion, a collaboration was 

initiated with Professor Baek Kim at (Emory University, Atlanta), who has a system 

by which individual dNTP concentrations from cell extracts can be measured by 

primer extension DNA synthesis using HIV-1 reverse transcriptase (Diamond et al., 

2004). Surprisingly, the initial results showed that the dNTP pools were larger in the 

hiPSC1 cell line compared with the parent fibroblast from which it was 

reprogrammed. A likely explanation for this would be the difference in proportions of 

S phase cells in each of these cell states. In the previous chapter, I found that 68% 

of the hiPSC1 line was in the S phase of the cell cycle compared to only 21% in the 

parent fibroblast (see section 5.22). Cellular dNTP pools are accumulated late in G1 

phase and throughout S phase, controlled by the expression of RRM2, a subunit of 

the rate-limiting RNR enzyme in the nucleotide biosynthesis reaction (Engström et 

al., 1985). Consistent with this hypothesis, I found that RRM2 gene and protein 

expression was higher in the hiPSC1 line than the parent fibroblast.  
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However, a further surprising result was that an increase in dNTP pools was not 

detected in cultures of human PSC grown in the presence of nucleosides. This might 

indicate a more complex relationship between endogenous and exogenous dNTP 

pools than first anticipated. However, unfortunately, because of a lack of time and 

opportunity for further collaboration with the Atlanta group, I was unable to explore 

this further and rule out the possibility that the unexpected result represented a 

technical problem with the assay or the preparation of samples. Considering my 

other results this could highlight an issue with the preparation of samples or the 

assay itself.  

 

Collectively, these data suggest that dNTP pools are depleted from rapid 

proliferation and uncoordinated activation of nucleotide biosynthesis in human PSC. 

It seems likely that this is a feature of in vitro culture as endangering cells of the 

inner cell mass could be catastrophic. There is some evidence to suggest that in 

vivo these cells maintain rapid rates of proliferation by generating dNTPs on the go. 

A study using data from Drosophila, Xenopus and sea urchins showed that 

maternally supplied dNTPs are not sufficient to supply DNA replication up until the 

maternal to zygotic transition, that normally occurs around the mid-blastula transition 

and marks the period where development comes under zygotic control (Song et al., 

2017). Instead, it’s been proposed that leading up to the maternal to zygotic 

transition the depletion of maternal dNTPs allosterically upregulates the activity of 

RNR in the zygote, coinciding with the breakdown of the maternally loaded mRNA 

that provides the metabolites needed for nucleotide biosynthesis (Vastenhouw et al., 

2019).  

 

In summary, the culture of human PSC with exogenous nucleosides may better 

reflect the conditions of the early embryo. The observation presented here show that 

nucleosides reduced DNA replication stress and alleviated the stress-induced 

damage and mitotic errors and will provide a means to reduce the appearance of 

recurrent genetic changes that will otherwise threaten the safe exploitation of human 

PSC in regenerative medicine. 
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7 Discussion 

 

Ever since the discovery that human PSC could be maintained under in vitro 

conditions, their promise in the field of cell-based regenerative medicine has been 

touted. However, human PSC acquire genetic changes upon prolonged culture 

which may preclude their use in regenerative medicine applications based on safety 

(Amps et al., 2011, Seth et al., 2011). The acquisition of genetic changes affects 

chromosomes in a recurrent and non-random nature (Draper et al., 2004, Olariu et 

al., 2010). The recurrence of these genetic changes suggests that acquisition 

requires two steps, first a random mutation and second, selection of that mutation 

should it provide the variant cell with a growth advantage. It is now understood that 

selection provides the mechanism responsible for the recurrent nature of these 

variants, yet the origins and mechanisms that are responsible for these mutations 

remain elusive. The successful translation of human PSC derived therapy will 

require strategies for minimising the appearance of mutations, so far this has been 

hindered by the absence of a comprehensive understanding of the origins of 

mutation in cultures of human PSC. 

 

In this body of work, significant evidence as to the origins of mutation in cultures of 

human PSC has been provided. The data presented here is the first conclusive 

evidence that human PSC are susceptible to replication stress and DNA damage 

during in vitro culture. In addition to the mechanistic insights to the origins of 

mutation, data has also been presented on the development of improved culture 

conditions that better replicates the early embryonic environment and will facilitate 

the culture of genetically stable human PSC for future regenerative medicine 

applications. 

 

7.1 The origins of mutation in human PSC 

 

To determine the origins of mutation in human PSC, it was first necessary to focus 

the study on one of the recurrent karyotypic changes. Of all the recurrent changes, 

the chromosome 20 variant is the best characterised. Additionally, it frequently 

presents as tandem duplication that always includes the 20q11.21 region, which 

suggests a common mechanism of mutation.  
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To elucidate the potential origins of mutation, breakpoint sequencing was performed 

on a chromosome 20 variant cell line which was used to infer the mechanism of 

mutation. However, it was first necessary to accurately detect candidate cell lines for 

sequencing. A battery of assays that are frequently employed during the detection of 

genetically variant human PSC were tested to interpret their limits of detection and in 

addition, the novel C-FISH assay was developed that improved the sensitivity of 

detecting chromosome 20 variant cell lines. Using the approaches that were tested 

and developed here, the mShef7 cell line was identified that had a mosaic 

population of chromosome 20 variant cells. The variant cells were cloned and 

subsequently sequenced using Oxford Nanopore long-read next-generation 

sequencing system. Bioinformatic analysis of this data elucidated the breakpoint 

sequence, which mapped to an AluSz6 retrotransposon element. This discovery 

provided the first evidence that this tandem duplication could be arising as a result of 

problems with replication. 

 

Early replicating fragile site locations are enriched for SINE repetitive elements that 

include the Alu retrotransposons (Barlow et al., 2013). These regions have been 

shown to cause recurrent genetic instability in B cells leading to B lymphoma that is 

potentially a consequence of B cells rapid proliferation upon their activation (Barlow 

et al., 2013). Interestingly, replication stress predisposes early replicating fragile 

sites to DNA double-strand breaks as these regions are vulnerable to fork collapse 

(Barlow et al., 2013). Depletion of dNTP pools, inhibition of ATR and atypical 

regulation of DNA repair by HR, have all been found to increase the fragility of these 

regions (Barlow et al., 2013). The Alu retrotransposons are classified as inverted 

DNA repeats. It's been suggested that that double-strand breaks from collapsed 

replication forks can be repaired by a subclass of HR mediated repair, known as 

break-induced replication. In yeast studies, the repair lesions by break-induced 

replication at sites of Alu elements resulted in a higher frequency of translocations 

and amplifications (Narayanan et al., 2006). Armed with this novel breakpoint data 

and its association with replication, human PSC susceptibility to replication stress 

was investigated as a mechanism for mutation during in vitro culture. 
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Like activated B cells and many cancer cell types, human PSC rapidly divide which 

may be exposing them to high endogenous levels of replicative stress. By 

performing comparative experiments on human PSC and isogenic somatic control 

lines, the cell cycle time in human PSC was found to be significantly shorter as a 

result of a truncated G1 phase. Silencing of the p16INK4a CDK4/6 inhibitor is 

necessary to reprogram cells to human iPSC and also during the maintenance of 

cells in the pluripotent state (Li et al., 2009a). The lack of p16INK4a suppression on 

CDK4/6 would explain the relaxed Rb-E2F pathway that exists in human PSC 

(Filipczyk et al., 2007) and as cyclin E is a transcriptional target of E2F, this would 

explain the elevated cyclin E expression reported in this study. Cyclin E is an 

oncogene and has been studied extensively to understand how it induces replication 

stress. Bester et al have shown that uncoordinated entry into S phase may allow 

replication to begin without the cell first building the necessary dNTP pools (Bester 

et al., 2011). Nucleotide pools are critical for normal DNA replication, depletion of 

dNTP pools has been shown to slow DNA replication, increase origin density and 

cause DNA damage, particularly at common fragile sites (Anglana et al., 2003, 

Saintigny et al., 2001, Ge et al., 2007, Yan et al., 1987). To investigate replication 

stress, DNA fibre assays were performed. It was discovered that the replication rate 

was slower and the density of replication origins increased in the pluripotent state 

compared with isogenic somatic lines. Additionally, these pluripotent cells also 

exhibited a susceptibility to DNA damage that was associated with S phase.  

 

In conclusion, these data have shown that the chromosome 20 variant breakpoint 

mapped to an Alu retrotransposon sequence. Alu elements are highly enriched in 

early replicating fragile sites, which are prone to breakage as a result of replication 

stress and are frequently found at regions of recurrent chromosomal instabilities. 

Replication stress, leading to fork collapse is a common feature of rapidly 

proliferating cells. Human PSC display a rapid cell cycle, punctuated by a truncated 

G1 phase and symptoms of replication stress and DNA damage. These 

observations, I propose are the origin of mutation in human PSC that, in particular, 

lead to the recurrent tandem duplications observed to arise during prolonged culture 

of human PSC. 
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7.2 Alleviating the stress posed by DNA replication 

 

The overlap between pluripotency and cancer cells is startling. Oncogenic activation 

of the Rb-E2F pathway can result in the low nucleotide pools from uncoordinated 

activation of the nucleotide biosynthesis pathway (Bester et al., 2011). The addition 

of nucleosides to cultures of cells overexpressing oncogenes decreased replication 

stress, DNA damage, chromosome segregation errors and tumorigenicity (Bester et 

al., 2011, Burrell et al., 2013). Likewise, in cultures of human PSC, the exogenous 

supply of nucleosides decreased replication stress, DNA damage and reduced the 

number of mitotic errors. In addition to these findings, the behaviour of human PSC 

grown in nucleosides was examined in comparison to standard culture conditions. 

It's been previously shown that the major bottlenecks that exert selective pressure 

on human PSC exist during passaging and restrict the survival of cells post-plating 

(Barbaric et al., 2014). Behavioural analysis showed that human PSC were less 

likely to die following plating as a result of replication stress or mitotic catastrophe 

when grown with the addition of exogenous nucleosides.  

 

It has previously been shown that human PSC uniquely respond to replication 

stress. Unlike somatic cells, human PSC lack the CHK1 checkpoint which leads to 

apoptosis rather than cell cycle stalling and repair that could otherwise risk error and 

potential mutation (Desmarais et al., 2012). This is likely a characteristic of the early 

embryo to minimise the risk of mutations that could be catastrophic and result in 

pregnancy loss or congenital disease and surely explains why human PSC have a 

low mutation rate (Thompson et al., 2019). However, both this study and a previous 

study have shown that human PSC are frequently exposed to errors during mitosis 

(Zhang et al., 2019). Despite this, the actual frequency of chromosomal structural 

and numerical instabilities that arise from these events is surprisingly low (Amps et 

al., 2011, Merkle et al., 2017). These independent sets of data suggest that 

chromosomal instabilities that provide a selective advantage to the variant cell are 

rare and there are distinct mechanisms in play that eliminate cells with mitotic errors 

during mitosis. Interestingly, CHK1 has been demonstrated to play a role in 

unperturbed mitosis. Loss of CHK1 leads to chromosome misalignment and lagging 

chromosomes in human cells (Tang et al., 2006). Loss of CHK1 likely causes errors 

in mitosis due to its role in the localisation of Aurora B to the kinetochore, which is 
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required for accurate chromosome segregation (Peddibhotla et al., 2009, Zachos et 

al., 2007). Therefore, if the loss of CHK1 does not lead to apoptosis during S phase 

it may destabilize segregation during mitosis and lead an increase in mitotic errors. 

How then, would the human PSC selectively die in response to mitotic errors? This 

may be linked to the interplay between CHK1 and the spindle assembly checkpoint. 

It has been demonstrated that CHK1 depletion prevents the recruitment of the 

spindle assembly checkpoint proteins to aneuploid cells but not to diploid cells. As 

aneuploid cells are more likely have abnormal mitoses they are reliant on an intact 

spindle assembly checkpoint, which, if not present, can lead to the activation of p53 

and cell death of the aneuploid cells in a spindle assembly checkpoint dependant 

manner (Vitale et al., 2007). As human PSC during culture acquire anti-apoptotic 

mutations, it may be these that desensitize the cell to both replication and mitotic 

stresses, enabling their survival and selective advantage in cultures (Zhang et al., 

2019). 

 

7.3 Future research direction  

 

The amazing capacity for human PSC to endlessly proliferate and yet, seemingly be 

resistant to mutation has important implications in the study of a diverse number of 

other fields. The strength of using human PSC as a model in cancer biology and 

fertility should be considered. For example, the use of CHK1 inhibitors to selectively 

kill cancer cells has been reported on extensively, and yet, this mechanism is 

inherent to human PSC and likely maintains their stability. Further elucidation of the 

mechanisms that human PSC use to ensure that mutations rarely arise, despite 

being able to endlessly renew, may uncover new drug targets for the treatment of 

cancer.  

 

Although it seems counterintuitive, insight now suggests that chromosome 

segregation errors regulate fertility in women of different ages (Gruhn et al., 2019). 

In women who are of reproductive age, 20-30% of oocytes are aneuploid, whereas 

up to 70% of oocytes are aneuploid in women of advanced maternal age which 

correlates with fertility in these age groups (Wang et al., 2017, Capalbo et al., 2017). 

Following fertilisation of the egg, the early embryo implants and the cells expand 

rapidly to produce the numbers necessary for gastrulation. Studies using mouse 
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embryos have shown that these cells are under extensive replication stress and are 

hypersensitive to DNA damage, undergoing apoptosis without cell cycle stalling 

(Laurent and Blasi, 2015, Heyer et al., 2000). It has been proposed that access to 

nutrients at this stage may regulate the expansion of these cells. Studies using 

Drosophila, Xenopus and sea urchins have shown that the early embryo does not 

have sufficient stockpiles of dNTPs to supply the cells of the early embryo during 

these rapid stages of proliferation (Song et al., 2017). Instead, it has been proposed 

that the embryo overcomes these shortages by benefitting from maternally supplied 

dNTPs and a de-novo capacity to synthesise new dNTPs (Liu et al., 2019). 

However, for the early embryo to synthesise new dNTPs they require the precursors. 

Around the same time, maternally loaded mRNA transcripts are broken down in a 

process known as the maternal to zygotic transition, releasing free nucleotides that 

can be recycled by the embryo (Vastenhouw et al., 2019). The consequences of not 

having adequate dNTPs can be catastrophic. Exhaustion of dNTP pools in the 

embryos of mice, Xenopus, Zebrafish and Drosophila led to severe cell cycle defects 

and arrest in mitosis which was followed by mitotic catastrophe (Liu et al., 2019, 

Song et al., 2017, Vastag et al., 2011, Newport and Dasso, 1989, Scott et al., 1971, 

Zhang et al., 2014, Zhang et al., 2008). These results show a profound overlap with 

the data presented in this study. The findings that culture media containing 

exogenous nucleosides benefited the growth of human PSC may reflect that these 

conditions better replicate the conditions of the early embryo. Future collaborations 

are required between the fields of embryogenesis and stem cell biology to capitalise 

on findings to not only improve the safe expansion of human PSC but also improve 

fertility with reproductive ageing that will better match the increasing human lifespan. 

 

 

 
 
 
 
 
 
 



 217 

8 Conclusion 
 

Recurrent genetic changes in cultures of human PSC may compromise their use in 

research and regenerative medicine. This study aimed to seek the origins of 

mutation in cultures of human PSC. By performing long-read next-generation 

sequencing on the chromosome tandem duplication of a variant human PSC line, 

the breakpoint region was mapped and localised to an Alu repetitive element. This is 

a novel discovery and up until now, breakpoint sequencing of variant human PSC 

has not been published. From this finding, it was possible to infer that these sites are 

particularly susceptible to breaks during replication stress. Early replication fragile 

sites that include repetitive elements such as Alu sequences are particularly 

vulnerable to the double-strand that results from dNTP pool starvation causing 

replication fork collapse (Barlow et al., 2013). From the analysis of replication 

dynamics in human PSC in comparison to somatic cell lines, it was discovered that 

not only was the breakpoint in a region susceptible to replication stress but that 

these cells were exposed to replication stress under routine culture and had 

extensive DNA damage that was associated with the S phase of the cells cycle. 

 

Rapid proliferation in cancer cells can lead to replication stress from uncoordinated 

entry into S phase with inadequate dNTP pools. Like cancer, human PSC display a 

rapid cell cycle that is driven by mechanisms that relax the Rb-E2F pathway. In 

studies involving cancer, the addition of exogenous nucleosides alleviated 

replication stress and genomic instability (Burrell et al., 2013, Bester et al., 2011). 

Exogenous nucleosides reduced replication stress, DNA damage and the frequency 

of mitotic errors in cultures of human PSC. Further, the addition of exogenous 

nucleosides enabled human PSC to better overcome selective bottlenecks 

associated with re-plating. These findings suggest that exogenous nucleosides not 

only reduce the mechanisms that lead to mutation but will also reduce the ability of 

variant cells to overtake a culture by improving the survival of normal human PSC 

and limiting the anti-apoptotic selective advantage of the variant human PSC. 

Finally, the data presented here will greatly improve the efficiency of growing human 

PSC in vitro, whilst reducing the acquisition of genomic damage, a critical finding to 

ensure the safety of human PSC derived therapeutics. 
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