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Abstract 

The advancements of cloud computing came as a radical transformation in the way 

Information and Communication Technology (ICT) services are deployed, 

maintained and paid for. Cloud computing provides ubiquitous on-demand access to 

an Internet-based pool of processing, storage, and communication resources offered 

to a large set of geographically distributed users. As the cloud computing 

infrastructure grows and demand increases, the need for a new breed of on-demand 

computing that can efficiently and profitably maintain Quality of Service (QoS) 

requirements has increased. Fog computing was proposed to address the limitations 

of cloud computing in terms of delay and high bandwidth requirements by extending 

the on-demand resources of clouds to the edge of the network bringing them closer to 

the users. Cloud computing and fog computing employ Virtual Machines (VMs) for 

efficient resource utilization. To achieve the most of the efficient environment, VMs 

can be optimally placed over geo-distributed physical machines to follow variations 

in the demand, workload of the cloud/fog resources or network condition. 

The massive growth and wide use of cloud-fog services have created serious power 

consumption concerns. In this thesis, we study the energy efficiency and profitability 

of cloud-fog architectures taking into consideration different services and 

applications. Mixed integer linear programming (MILP) optimisation models and 

heuristic algorithms are developed to optimise the cloud-fog architecture. The thesis 

starts by analysing the energy efficiency of VMs placement over distributed clouds. 

The analysis addresses the impact of different factors including VM popularity, the 

traffic between the VM and its users, the VM workload, the workload versus number 

of users profile and power usage effectiveness (PUEs). The total power savings 

achieved are up to 51% and 38%, compared to the power consumption of the 

traditional cloud locations in AT&T and BT core network topologies, respectively. 

Furthermore, the impact of inter-VM traffic (synchronisation and cooperation 

between VMs) on the energy efficiency is investigated in the context of optimal VM 

placement. The existence of inter-VM traffic has resulted on reducing the energy 

efficiency of replicating VMs. Our results showed that ignoring inter-VM traffic when 

placing VMs can increase the total power consumption by a factor of 39 for VMs with 
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an inter-VM traffic data rate of 5 Gbps. Then, the thesis shows how introducing fog 

layers at the edge of the network in addition to the cloud layer in the core network can 

significantly decrease the total power consumption of VMs of certain popularity, 

download rates and workloads. In addition, a pricing scheme is proposed for Internet 

service providers (ISPs) to maximise their profit under net neutrality repeal scenarios 

where ISPs are allowed to treat different traffic strands differently. The results shows 

that the VMs of a linear workload profile with high data rate and minimum CPU 

utilisation of 1% allows offloading VMs with 16% popularity to the access fogs. Other 

VMs are optimally replicated to metro fog nodes. Significant power savings of 48% 

compared to optimised placement in distributed clouds and 64% compared to a 

placement considering traditional cloud locations, have resulted from this offloading.  

A techno-economic MILP model is used to find the optimum prices of different levels 

of service and the resulting power consumption. The proposed pricing scheme proves 

that, in addition to increasing ISPs profit, the repeal of net neutrality will positively 

influence (limit) the end-users’ consumption of data-intensive content which 

consequently decreases the power consumption of the communication networks. The 

results show that the discriminatory pricing scheme can increase the ISPs profit by a 

factor of 8. The results also show that by influencing the way end-users consume data-

intensive content, the core network traffic and consequently power consumption are 

reduced by up to 49% and 55%, respectively, compared to the net neutrality scenario. 
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GPON Gigabit Passive Optical Network 

HD High Definition 

IaaS Infrastructure as a service 

ICT  Information and Communication Technologies 

ILP Integer Linear Programming 

IoT Internet of Things 
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IP  Internet Protocol 

ISP Internet Service Provider  

IT Information Technology 

KM Kilometres 

LAN Local Area Network  

LP Linear Programming 

Mbps  Mega Bits Per Seconds 

Metro Metropolitan 

MILP  Mixed Integer Linear Program 

MPLS  MultiProtocol Label Switching 

Net Neutrality Network Neutrality 

NIST American National Institute of Standards and Technology 

NP Nondeterministic Polynomial  

NSFNET  National Science Foundation Network 

OEO  Optical Electrical Optical 

OLT  Optical Line Terminal 

ONU  Optical Network Unit 

OXC Optical Switch 

PaaS Platform as a service 

PED Price Elasticity of Demand  

PON  Passive Optical Network 

PUE Power Usage Effectiveness 

QoE Quality of Experience 

QoS  Quality Of Service 

RAM Random Access Memory 

SaaS Software as a service 

SD Standard Definition 

SLA Service Level Agreement 

Tbps Tera Bits Per Seconds 

UHD Ultra-High Definition 

US  The United States 

VM Virtual Machine 
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VMM  Virtual Machine monitor  

VNI Visual Network Index  

WAN Wide area Network  

WDM  Wavelength Division Multiplexing 

XGPON 10 Gigabit Passive Optical Network 
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List of Symbols 

𝑁 Set of IP over WDM network nodes. Set of nodes represents nodes 

distributed across different geographic regions in the selected core 

network topology. 

𝑉𝑀 Set of VMs. 

𝑆𝑊(𝐶𝐵) Cloud switch bit rate. 

𝑆𝑊(𝐶𝑃) Cloud switch power consumption. 

𝑆𝑊(𝑅) Cloud switch redundancy. 

𝑅(𝐶𝐵) Cloud router port bit rate. 

𝑅(𝐶𝑃) Cloud router port power consumption. 

𝑆(𝑃) Power consumption of a server. 

𝑆(𝑚𝑎𝑥𝑊) Maximum workload of a server. 

𝑐 Cloud power usage effectiveness. 

𝐶𝑠 𝐶𝑠 = 1 if a cloud is hosted in node 𝑠, otherwise 𝐶𝑠 =  0. 

𝛿𝑣,𝑠
(𝐶)

 𝛿𝑣,𝑠
(𝐶) = 1 if the cloud hosted in node 𝑠 hosts a copy of VM 𝑣, 

otherwise 𝛿𝑣,𝑠
(𝐶) = 0. 

𝑅𝑠
(𝐶)

 Number of router aggregation ports in the cloud hosted in node 𝑠. 

𝑆𝑊𝑠
(𝐶)

 Number of switches in the cloud hosted in node 𝑠. 

𝑆𝑠
(𝐶)

 Number of processing servers in the cloud hosted in node 𝑠. 

𝑠 𝑎𝑛𝑑 𝑑 Indices of source and destination nodes of a traffic flow in the 

distributed cloud architecture. 

𝑉 Number of VMs. 

𝑆𝑣 Number of VM 𝑣 users. 

𝑟𝑣 User download rate of VM 𝑣. 

𝐿 Large enough number. 

𝑥 Maximum number of users served by a single VM replica. 

𝑊𝑣 Maximum workload of VM 𝑣 (workload can be specified in GHz or 

as a ratio of the CPU capacity). 

𝑀 Workload baseline of VM (the minimum CPU utilisation needed in 

the absence of load). To maintain the service level agreement (SLA), 

each VM needs a minimum workload to run an application regardless 

of the number of users served by the VM. 

𝑇𝑣 Traffic resulting from VM replica 𝑣 serving the maximum number of 

users. 

𝑇𝑣 = 𝑥 𝑟𝑣 

𝑊𝑣
(𝑅)

 Workload per traffic unit, 
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𝑊𝑣
(𝑅)  =

𝑊𝑣 −𝑀

𝑇𝑣
 

evaluated for VM replica 𝑣. 

𝑊𝑣,𝑠
(𝐶𝑅)

 Workload of VM replica 𝑣 hosted in cloud in node 𝑠. 

𝑊𝑠
(𝐶)

 Total workload of cloud hosted in node 𝑠. 

𝐷𝑣,𝑠,𝑑
(𝐶)

 Traffic flow from VM replica 𝑣 hosted in cloud of node 𝑠 to users in 

node 𝑑. 

𝐿𝑠,𝑑 Traffic from cloud node 𝑠 to users in node 𝑑. 

  

𝑃 Set of PON networks. 

𝐴𝑝 Average broadband data rate in PON 𝑝. 

𝛷𝑣 ratio of traffic due to VM 𝑣 to the total PON traffic. 

𝑂𝐿𝑇𝑝,𝑑
(𝐵)

 Capacity of OLT serving PON 𝑝 connected to node 𝑑. 

𝑈𝑣,𝑝,𝑑 Number of users in PON 𝑝 connected to core node 𝑑 requesting VM 

𝑣. 

𝑈𝑣,𝑝,𝑑 = (
𝑂𝐿𝑇𝑝,𝑑

(𝐵)

𝐴𝑝
) 𝛷𝑣 

if typical national/regional values of 𝐴𝑝, 𝛷𝑣 and 𝑂𝐿𝑇𝑝,𝑑
(𝐵)

 are used, 

then 𝑈𝑣,𝑝,𝑑 determines the number of users and their VM popularity. 

𝑂𝐿𝑇𝑝,𝑑
(𝑁)

 Number of OLTs in PON network 𝑝 connected to node 𝑑. 

𝑂𝐿𝑇(𝑃) OLT power consumption. 

𝐷𝑣,𝑝,𝑑 Traffic flow from VM 𝑣 to users in PON network 𝑝 connected to 

core node 𝑑 given as: 

𝐷𝑣,𝑝,𝑑 = 𝑈𝑣,𝑝,𝑑  𝑟𝑣 

𝑂𝑁𝑈𝑝,𝑑
(𝑁)

 Number of ONUs in PON network 𝑝 connected to node 𝑑. 

𝑂𝑁𝑈(𝑃) Power consumption of an ONU. 

𝑛 Network power usage effectiveness (PUE). PUE is a metric used to 

determine the energy efficiency of a network by dividing the total 

amount of energy consumed of network facility (including lighting 

and cooling) by the energy consumed by networking equipment. 

𝑅(𝑀𝐵) Metro router bit rate. 

𝑅(𝑀𝑃) Metro router power consumption. 

𝑅(𝑀𝑅) Metro router redundancy. 

𝑆𝑊(𝑀𝐵) Metro Ethernet switch bit rate. 

𝑆𝑊(𝑀𝑃) Metro Ethernet power consumption. 

𝑅𝑠
(𝑀)

 Number of router ports in metro network connected to node 𝑠. 

𝑆𝑊𝑠
(𝑀)

 Number of Ethernet switches in metro network connected to node 𝑠. 

𝑚 𝑎𝑛𝑑 𝑛 Indices of the end nodes of a physical link. 

𝑖 𝑎𝑛𝑑 𝑗 Indices of the end nodes of a virtual link. 
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𝑁𝑚𝑚 Set of neighbouring nodes of node 𝑚. 

𝑅(𝑃) Core router port power consumption. 

𝑡(𝑃) Transponder power consumption. 

𝑒(𝑃) EDFA power consumption. 

𝑆𝑊𝑠
(𝑃)

 Optical switch power consumption in node 𝑠. 

𝐺(𝑃) Regenerator power consumption. 

𝒲 Number of wavelengths per fibre. 

𝒲(𝐵) Wavelength data rate. 

𝑆 Maximum span distance between two EDFAs in kilometres. 

𝐷𝑚,𝑛 Distance in kilometres between node pair (𝑚, 𝑛). 

𝐴𝑚,𝑛 Number of EDFAs between node pair (𝑚, 𝑛). 𝐴𝑚,𝑛= ⌊
𝐷𝑚,𝑛

𝑆
− 1 ⌋ 

where 𝑆 is the reach of the EDFA. 

𝐺𝑚,𝑛 Number of regenerators between node pair (𝑚, 𝑛). Typically 𝐺𝑚,𝑛= 

⌊
𝐷𝑚,𝑛

𝑅
− 1⌋, where 𝑅 is the reach of the regenerator. 

𝐶𝑖,𝑗 Number of wavelengths in virtual link (𝑖, 𝑗). 

𝒲𝑚,𝑛 Number of wavelengths in physical link (𝑚, 𝑛). 

𝑅𝑠
(𝐴𝐶)

 Number of router ports in node 𝑠 that aggregate the traffic from/to 

clouds. 

𝑅𝑑
(𝐴𝐸)

 Number of router ports in node 𝑑 that aggregate the traffic from/to 

metro routers. 

𝐹𝑚,𝑛 Number of fibres on physical link (𝑚, 𝑛). 

𝐿𝑖,𝑗
𝑠,𝑑

 Amount of traffic flow between node pair (𝑠, 𝑑) traversing virtual 

link (𝑖, 𝑗). 

𝒲𝑚,𝑛
𝑖,𝑗

 Number of wavelengths of virtual link (𝑖, 𝑗) traversing physical link 

(𝑚, 𝑛). 

𝑣 𝑎𝑛𝑑 𝑦 Indices of VMs. 

𝐶𝑉𝑣,𝑦 𝐶𝑉𝑣,𝑦 =1, if there is cooperating traffic between VM 𝑣 and VM 𝑦, 

otherwise 𝐶𝑉𝑣,𝑦 =0. 

𝐶𝑉𝑀𝑣,𝑦 Cooperation traffic between VM 𝑣 and VM 𝑦. 

𝑆𝑉𝑀𝑣 Synchronisation traffic between VM 𝑣 replicas. 

Ѱ𝑑 Download traffic of cloud hosted in node 𝑑. 

Ф𝑣,𝑦,𝑠,𝑑 Ф𝑣,𝑦,𝑠,𝑑 = 1, if VM 𝑣 located in node 𝑠 is a candidate to cooperate 

with VM 𝑦 located in node 𝑑, otherwise Ф𝑣,𝑦,𝑠,𝑑 = 0. 

б𝑣,𝑦,𝑑 б𝑣,𝑦,𝑑 = 1, if cooperation traffic exists from VM 𝑣 located at any 

node to VM 𝑦 located in node 𝑑, otherwise б𝑣,𝑦,𝑑 = 0. 

𝜒𝑣,𝑦,𝑠,𝑑  𝜒𝑣,𝑦,𝑠,𝑑 = 1, if cooperation traffic exists from VM 𝑥 located in node 𝑠 

to VM 𝑦 located in node 𝑑, otherwise 𝜒𝑣,𝑦,𝑠,𝑑 = 0. 

𝛽𝑣,𝑦,𝑠,𝑑 

𝜶𝒗,𝒚,𝒔,𝒅 

Binary variables set to 1 only if one or two of the following 

conditions are satisfied; there is a cooperating traffic from VM 𝒗 to 

VM 𝒚, VM 𝒗 is located in node 𝒔 or VM 𝒚 is located in node 𝒅, 

otherwise 𝜷𝒗,𝒚,𝒔,𝒅 and 𝜶𝒗,𝒚,𝒔,𝒅 are set to 0. 
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𝑰𝑪𝒗,𝒚,𝒔,𝒅 Cooperating traffic from VM 𝒗 to VM 𝒚 located in nodes 𝒔 and 𝒅. 

Ѳ𝒗,𝒔,𝒅 Ѳ𝒗,𝒔,𝒅 = 𝟏, if VM 𝒗 replicas are located in nodes 𝒔 and 𝒅, 

respectively, otherwise Ѳ𝒗,𝒔,𝒅 = 𝟎. 

𝝋𝒗,𝒔,𝒅 𝝋𝒗,𝒔,𝒅 = 1, if only one VM 𝒗 replica is located in either node 𝒔 or 

node 𝒅, otherwise 𝝋𝒗,𝒔,𝒅= 0. 

𝑰𝑺𝒗,𝒔,𝒅 Synchronisation traffic between VM 𝒗  replicas located in nodes 

𝒔 𝒂𝒏𝒅 𝒅, respectively. 

𝑹𝒅
(𝑰𝑽)

 Number of router ports in node 𝒅 that aggregate the traffic to clouds. 

𝑺𝑾(𝑴𝑭𝑩) Metro fog switch bit rate. 

𝑺𝑾(𝑴𝑭𝑷) Metro fog switch power consumption. 

𝑺𝑾(𝑨𝑭𝑩) Access fog switch bit rate. 

𝑺𝑾(𝑨𝑭𝑷) Access fog switch power consumption. 

𝑹(𝑴𝑭𝑩) Metro fog router port bit rate. 

𝑹(𝑴𝑭𝑷) Metro fog router port power consumption. 

𝑹(𝑨𝑭𝑩) Access fog router port bit rate. 

𝑹(𝑨𝑭𝑷) Access fog router port power consumption. 

𝒎 Metro fog power usage effectiveness. 

𝒂 Access fog power usage effectiveness. 

𝑭𝒔
(𝑴𝑭)

 𝑭𝒔
(𝑴𝑭)

=  𝟏 if a fog processing node is hosted in the metro network 

connected to core node 𝒔, otherwise 𝑭𝒔
(𝑴𝑭)

 = 𝟎. 

𝜹𝒗,𝒔
(𝑴𝑭)

 𝜹𝒗,𝒔
(𝑴𝑭)

= 𝟏  if the fog processing node hosted in the metro network 

connected to node 𝒔 hosts a replica of VM 𝒗, otherwise 𝜹𝒗,𝒔
(𝑴𝑭)

= 𝟎. 

𝑹𝒔
(𝑴𝑭)

 Number of router ports used in the fog processing node hosted in the 

metro network connected to node 𝒔. 

𝑺𝑾𝒔
(𝑴𝑭)

 Number of switches used in the fog processing node hosted in the 

metro network connected to node 𝒔. 

𝑺𝒔
(𝑴𝑭)

 Number of processing servers in the fog processing node hosted in 

the metro network connected to node 𝒔. 

𝑭𝒑,𝒔
(𝑨𝑭)

 𝑭𝒑,𝒔
(𝑨𝑭)

= 𝟏 if a fog processing node is built in access network 𝒑 

connected to core node 𝒔, otherwise 𝑭𝒑,𝒔
(𝑨𝑭)

= 𝟎. 

𝜹𝒗,𝒑,𝒔
(𝑨𝑭)

 𝜹𝒗,𝒑,𝒔
(𝑨𝑭)

= 𝟏  if the fog processing node in access network 𝒑 connected 

to core node 𝒔, hosts a replica of VM 𝒗, otherwise 𝜹𝒗,𝒑,𝒔
(𝑨𝑭)

= 𝟎. 

𝑹𝒑,𝒔
(𝑨𝑭)

 Number of router ports used in the fog processing node located in the 

access network 𝒑 connected to core node 𝒔. 

𝑺𝑾𝒑,𝒔
(𝑨𝑭)

 Number of switches used in the fog processing node located in access 

network 𝒑 connected to core node 𝒔. 

𝑺𝒑,𝒔
(𝑨𝑭)

 Number of processing servers in the fog processing node located in 

the access network 𝒑 connected to core node 𝒔. 

𝑾𝒗,𝒔
(𝑴𝑭𝑹)

 Workload of the VM replica 𝒗 hosted in the fog processing node 

located in the metro network connected to node 𝒔. 
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𝑾𝒔
(𝑴𝑭)

 Total workload of the metro fog processing node located in core node 

𝒔. 

𝑫𝒗,𝒔
(𝑴𝑭)

 Traffic from the VM replica 𝒗 hosted in the fog processing node of 

the metro network connected to core node 𝒔. 

𝑾𝒗,𝒑,𝒔
(𝑨𝑭𝑹)

 Workload of the VM replica 𝒗 hosted in the fog processing node 

located in the access network 𝒑 connected to core node s. 

𝑾𝒑,𝒔
(𝑨𝑭)

 Total workload of the fog processing node located in the access 

network 𝒑 connected to core node 𝒔. 

𝑫𝒗,𝒑,𝒔
(𝑨𝑭)

 Traffic flow from the VM replica 𝒗 hosted in the fog processing node 

located in the access network 𝒑 connected to core node 𝒔. 

𝜶 Set of service classes. 

𝑪𝑵 Number of clouds hosted in core network. 

𝒖 Total number of users in net neutrality scenario (i.e. before net 

neutrality is repealed). 

𝑳𝑩 Minimum percentage of users served by CP to be maintained by the 

pricing scheme. 

𝙙𝒊 Download rate of class 𝒊. 

Ͼ The cost in US$ of provisioning a Gbps of IP over WDM network 

bandwidth per month. 

Ͽ The cost in US$ of provisioning a Gbps of metro and access network 

bandwidth per month. 

𝑷𝑺 The net neutrality selling price in US$ of a Gbps of network 

bandwidth per month. 

𝑬𝒊 Price elasticity of demand of class 𝒊. 

𝑵𝒅,𝒊 Number of users of class 𝒊 located in node 𝒅 under net neutrality 

scenario. 

𝜹𝒔 𝜹𝒔 = 𝟏, if a cloud datacentre is hosted in node 𝒔, otherwise 𝜹𝒔 = 𝟎. 

𝑭𝒅 𝑭𝒅 = 𝟏, if there is no fog datacentre hosted in node 𝒅, otherwise 

𝑭𝒅 = 𝟎. 

Ϩ Set of all possible solutions. 

𝝆𝒔,𝒊 The price of class 𝒊 under solution 𝒔 and class 𝒊. 

𝒚𝒏𝒔,𝒅,𝒊 The number of users in solution 𝒔 subscribing to class 𝒊 in node 𝒅 as 

a result of its PED, where 

𝑷𝑺

𝝆𝒔,𝒊 − 𝑷𝑺
 𝑬𝒊 = ∑(

𝒚𝒏𝒔,𝒅,𝒊  −  𝑵𝒅,𝒊
𝑵𝒅,𝒊

)

𝒅∈𝑵

 

 

∀  𝒊 ∈ 𝜶 ,   𝒔 ∈ Ϩ. 

𝒓𝒊 ISP’s revenue achieved by delivering traffic of class 𝒊 to CP users. 

𝑹 Total ISP’s revenue in US$ of delivering networking services to CPs 

content. 

𝑪 Total ISP cost in US$ of provisioning core network. 

𝑷𝒊 The price in US$ per Gbps of network bandwidth per month charged 

to the class 𝒊. 
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𝑼𝒅,𝒊 Number of users who subscribe to class 𝒊 located in node 𝒅. 

𝑪𝑫𝒊,𝒅 Cloud flow from users in node 𝒅 subscribed to class 𝒊. 

𝓩𝒔,𝒊 𝓩𝒔,𝒊 = 𝟏, if solution 𝒔 is selected for class 𝒊, otherwise 𝓩𝒔,𝒊 = 𝟎. 

𝒚𝒔𝒔,𝒅,𝒊 The number of users in solution 𝒔 subscribing to class 𝒊 in node 𝒅, 

𝒚𝒔𝒔,𝒅,𝒊 > 𝟎 if solution 𝒔 is selected for class 𝒊, otherwise 𝒚𝒔𝒔,𝒅,𝒊 = 𝟎. 
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Chapter 1: Introduction 

The significant impact of Information and Communications Technologies (ICT) 

services in people daily lives led to an increasing perception that cloud computing is 

the 5th utility after water, electricity, gas, and telephony. Cloud Computing has 

dominated the ICT industry by providing efficient resource sharing solutions where 

an Internet-based pool of network, storage and computational resources is made 

available to simultaneously serve a large number of geographically distributed users. 

Cloud computing provides the bandwidth, memory, and processing power needed to 

serve Big Data, Internet of things (IoT), Artificial Intelligence (AI) applications such 

as image recognition, video analytics, augmented and virtual reality with real-time 

processing of streaming data.  

According to Cisco [1], in 2017, the global cloud computing traffic was 56% of 

the Internet traffic. Further growth is projected within the approaching years as global 

cloud computing traffic is expected to hit 72% of the Internet traffic in 2022. This 

proliferation in data volume and processing requirements increases the need for a new 

breed of on-demand computing placement and administration. Fog computing is 

proposed by academia and industry to bring cloud services closer to users. Fog 

computing complements the clouds by extending processing, networking and storage 

resources to the edge of the network. Offloading tasks to fog nodes is proposed to 

provide low operating cost, low latency, preserve network bandwidth, provide a real-

time analytics and interactions, improve security and improve Quality-of-Service 

(QoS) and Quality-of-Experience (QoE) for different computing services [2]-[3] .  

Cloud and fog processing employs Virtual Machines (VMs) for efficient resource 

utilisation. Virtualisation abstracts the server resources including the Central 

Processing Unit (CPU), Random Access Memory (RAM), hard disk and Input/output 

(I/O) network to create an isolated virtual entity that can run its operating system and 

applications. The existence of such a virtual environment allows the scaling up and 

down of server resources in a dynamic manner based on the variation in user demands 

[4]. Further dynamism can be achieved by migrating or replicating VMs over geo-

distributed servers to achieve different features such as load balancing [5] and energy 
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efficiency [6]. The problem of migration and replication of VMs is referred to as VMs 

placement. VMs placement needs to be optimised to follow variations in the VMs 

demands, workload of the cloud/fog resources or network status [7].  

As a result of the significant growth in demand for ICT services, energy efficiency 

has been recognised in the last few years as one of the core requirements needed to 

develop a sustainable ICT infrastructure. By 2025, the ICT industry is projected to 

consume 20% of the global electricity demand [8]. Virtualisation has been proposed 

in [6], [9]–[16] as an enabler for energy efficient cloud services through the 

consolidation of cloud resources. In this thesis, we present a comprehensive study of 

VMs placement over an end-to-end cloud-fog architecture considering the three 

network layers; access network and metro network layer (each equipped with a fog 

computing layer) and the core network layer (equipped with a cloud computing layer). 

In addition to providing energy efficient cloud-fog services, delivering these 

services needs to be profitable. Therefore, proposing a pricing scheme to maximise 

the profit of Internet service providers (ISPs) is imperative. However, the 

maximisation of profit is challenging for ISPs as it involves the concurrent 

determination of equilibrium prices and the profit achieved. In this thesis, in addition 

to energy efficiency improvement, a profit-driven framework is introduced to increase 

the ISPs profit. Also, the impact of the profit-driven framework on the network power 

consumption and network neutrality is investigated. 

The thesis delves into the energy consumption and the profitability of delivering 

cloud-fog services by raising headline questions related to; how significant the 

problem itself is, how different conditions/scenarios affect the energy consumption 

and the profitability of the architecture, and how to orchestrate the use of the 

architecture in a profitable manner and in an energy-efficient manner. 

1.1 Research Objectives: 

This thesis tackles challenges related to providing energy-efficient and profitable 

cloud-fog architectures. It has the following objectives: 
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1. To propose an energy efficient VMs placement approach over distributed clouds 

in IP over WDM networks with datacentres to minimise the total power 

consumption in the core network and in datacentres.  

2. To investigate the impact of inter-VM traffic, in addition to users download traffic, 

on the energy efficient VM placement considering different VM workloads.  

3. To propose an energy efficient VMs placement approach over cloud-fog 

architectures to minimise the total power consumption considering the impact of 

the proximity of fog nodes to users. 

4. To investigate how the repeal of network (net) neutrality will affect the ICT 

market (pricing, core network power consumption and core network traffic) 

considering different Content Providers (CP) delivery scenarios in cloud-fog 

architectures.  

1.2 Original Contributions: 

The key contributions of this thesis can be outlined as follows: 

• A framework for energy efficient VMs placement over distributed clouds in IP 

over WDM networks has been developed. The framework considers numerous 

core factors including the traffic between the VM and its users, the VM 

workload, the workload versus number of users profile and the cloud power 

usage effectiveness (PUE). With the objective of minimising the total power 

consumption of providing the VM services, a MILP model and a heuristic are 

developed and are shown to minimise the total power consumption of 

providing the VM services. The optimal VMs placement and total power 

consumptions savings are investigated considering American Telephone & 

Telegraph (AT&T) and British Telecom (BT) core network topologies. 

• A MILP model and a heuristic are developed to study the impact of inter-VMs 

traffic on the energy efficient placement of VMs in geo-distributed datacentres. 

The model and heuristic take into consideration cooperation traffic between 

different VMs and synchronisation traffic between replicas of the same VM in 

addition to the download traffic from VM to users. The National Science 
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Foundation Network (NSFNET) is used as a core network topology example 

to investigate the energy efficient placement of VMs here. 

• A comprehensive framework analysis based on MILP mathematical modelling 

and heuristics is developed to study the optimal VMs placement over cloud-

fog architectures taking into consideration the minimisation of the total power 

consumption of the architecture. The placement of VMs is optimised over an 

end-to-end cloud-fog architecture that traverses the core network, metro 

network and access network. The optimal VMs placement and total power 

consumptions savings are investigated considering AT&T and BT network 

topologies. 

• A techno-economic MILP model is developed to optimise the pricing scheme 

in the ISP-CP relationship under the repeal of net neutrality to maximise the 

ISP profit considering could-based and fog-based delivery schemes. The 

impact of the optimised pricing scheme on reducing the network traffic and 

total power consumption of the AT&T core network is studied.  

1.3 Related Publications: 

The following journal and conference papers have been published / are to be 

submitted for publications: 

1. H. A. Alharbi, T. E. H. El-Gorashi, A. Q. Lawey and J. M. H. Elmirghani, 

"Energy Efficient Virtual Machines Placement in IP over WDM networks," 

2017 19th IEEE International Conference on Transparent Optical Networks 

(ICTON), Girona, Spain 2017, pp. 1-4. 

2. H. A. Alharbi, T. E. H. El-Gorashi, A. Q. Lawey and J. M. H. Elmirghani, 

"The Impact of Inter-Virtual Machine Traffic on Energy Efficient Virtual 

Machines Placement," The 2019 IEEE Sustainability through ICT Summit 

(StICT), Montreal, Canada, 2019. 

3. H. A. Alharbi, T. E. H. El-Gorashi and J. M. H. Elmirghani, "Energy Efficient 

Virtual Machine Services Placement in Cloud-Fog Architecture," 2019 21st 

IEEE International Conference on Transparent Optical Networks (ICTON), 

Angers, France, 2019. 
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4. Hatem A. Alharbi, T. E. H. El-Gorashi, and Jaafar M. H. Elmirghani "Energy 

Efficient Cloud-Fog Architectures", submitted to IEEE Communication 

Magazine, 2020. 

5. Hatem A. Alharbi, T. E. H. El-Gorashi, and Jaafar M. H. Elmirghani " Energy 

Efficient Virtual Machines Placement over Cloud-Fog Network Architecture", 

submitted to IEEE Access, 2020. 

6. H. A. Alharbi, T. E. H. Elgorashi and J. M. H. Elmirghani, "Impact of the Net 

Neutrality Repeal on Communication Networks," in IEEE Access. 

7. Hatem A. Alharbi,  M. Musa, T. E. H. El-Gorashi and Jaafar M. H. Elmirghani 

IEEE P1928.1 - Standard for a Mechanism for Energy Efficient Virtual 

Machine Placement to be submitted to IEEE Standard Association; IEEE 

P1928.1 Project Authorisation Request (PAR) accepted and published. 

1.4 Organisation of the Thesis: 

The remainder of this thesis is organised as follows: 

Chapter 2 is a background chapter. It presents a review of the core network, metro 

network, access network and their components. It also presents a review of cloud and 

fog computing as well as the ongoing efforts to optimise the placement of VMs to 

improve the energy efficiency. A brief review of the net neutrality concept and work 

related to it in the literature are presented. 

Chapter 3 presents the MILP optimisation model developed for energy efficient VMs 

placement in distributed clouds, discusses its results, and proposes a real-time 

heuristic.  

Chapter 4 introduces the MILP optimisation model developed to study the impact of 

inter-VM traffic on energy efficient VMs placement in distributed clouds and 

describes the associated real-time heuristic.  

Chapter 5 studies the energy efficiency of VMs placement over a cloud-fog 

architecture using MILP modelling and a real-time heuristic. 
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Chapter 6 studies the impact of the net neutrality repeal on communication networks 

considering different CP delivery scenarios over cloud-fog architectures using a MILP 

model.  

Chapter 7 summarises the thesis main contributions and gives a set of 

recommendation for future directions of work. 
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Chapter 2: Background and Related Work 

2.1 Introduction 

In this chapter, an overview of the topics related to the work in this thesis is 

presented. We briefly review the layers of the communication networks considered 

and their architecture. We follow that by an overview of cloud and fog computing 

architectures and the role of VMs in providing dynamicity to these architectures. 

Related work from the literature on optimising VMs placement in cloud-fog 

architectures is also reviewed. The concept of neutrality is introduced and the impact 

of repealing net neutrality on the ICT market is discussed. Furthermore, MILP 

optimisation is briefly introduced. 

2.2 Communication Networks 

The traditional Internet protocol (IP) network structure [17], [18] as used by ISPs, 

can logically be split into three main layers; the core network, the metro networks and 

the access network. Fig. 2-1 illustrates the three layers architecture. The core network 

represents the backbone infrastructure of any telecom network as it interconnects 

major regions/cities. IP over wavelength division multiplexing (WDM) technology is 

widely deployed in the core network due to its ability to provide high capacity, 

scalability and transfer speed [19]. Based on communication networks hierarchy, each 

core node is connected to a metro network, which covers a metropolitan area. Metro 

Ethernet is the dominant technology used in enterprise metro network. It provides 

direct connectivity between residential users in access networks and core network 

node. The access network represents the last mile of the telecom network by 

connecting telecom offices and end-users. Passive optical network (PON) is the main 

technology deployed broadly in the access network. 
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Figure 2-1: The telecom network architecture three layers: the core network, the 

metropolitan network and the access network. 
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2.2.1 IP over WDM 

The IP over WDM [19] core network is composed of two layers: the IP layer and 

the optical layer. In the IP layer, the main function, which is done by the IP router, is 

to process the IP packet on its route from the access end to its destination nodes. 

Meanwhile, on the optical layer, an optical switch / cross connect (OXC) connects the 

IP and the optical layers. Moreover, there are the transponders, which provide optical-

electronic-optical (OEO) processing and full wavelength conversion in every node. 

Erbium-doped fibre amplifiers (EDFAs) are used in WDM to amplify optical signals 

in the fibre links. Sometimes, regenerators may be used if the link's length exceeds a 

certain distance dictated by the data rate and modulation format used, for example 

2500 km for PSK at 10Gb/s [19], [20]. Multiprotocol Lambda Switching protocol 

(MPLS) over WDM is the routing protocol used in IP over WDM optical core 

networks that route the data packets from source to destination nodes through a 

connection-oriented service [21]. Using MPLS, the IP over WDM routed traffic is 

implemented by either bypass or non-bypass light paths. In the case of bypass, the 

intermediate nodes IP routers do not process the packets. The packets takes a cut 

through path to the destination node. Meanwhile, on a non-bypass path, the packets 

are processed by every intermediate node in the journey from the source to the 

destination. Implementing a bypass lightpath can significantly reduce the power 

consumption of the network as it eliminates the need for intermediate IP router ports 

(the major contributor to IP over WDM networks power consumption) between source 

and destination nodes. However, a non-bypass light path allows for scanning, 

inspecting, and monitoring of packets to check for any security threats and allows 

traffic engineering to be implemented at intermediate nodes [19], [22] and [23]. 

2.2.2 Metro Ethernet Network 

A metro network functions as a gateway for the access networks into the core 

network. Metro Ethernet is the dominant technology used in enterprise metro 

networks. The basic components of metro Ethernet are Ethernet switch and edge 

routers as shown in Fig. 2-1. The Ethernet switch interconnects several access 

networks. It also connects the access networks to edge routers. The best practice in 

ISP metro networks is to use two edge routers to provide reliability and redundancy 

in the network [17] [18]. 



36 
 

2.2.3 PON Network 

The PON [24] has proven its performance in the access network in terms of high 

bandwidth and reliability compared to Ethernet access networks. PON technology is 

used to provide fibre to the end-users. A  unique feature of a PON is that it implements 

a point-to-multipoint architecture, where passive (unpowered) optical fibre splitters 

are used to allow multiple end-points to be served by a single link [25]. In PON 

architectures, there are two main active components deployed; the optical network 

unit (ONU) and the optical line terminal (OLT). The ONU is the end-user interface to 

the PON network and the OLT serves as a central office (CO) node to connect multiple 

ONUs. At present, gigabit PON (GPON) is the architecture and technology widely 

deployed among service providers [26]. GPON is capable of delivering data rates up 

to 2.5 Gbps over a single link. As the demand for high Internet speed continues to 

rise, a faster PON technology is spawned from the existing technology. 10G-PON 

(also known as XGPON) [27] provides extra link capability to telecom providers, 

which can deliver up to 10 Gbps per single fibre link. 

2.3 Cloud Computing 

Cloud computing provides ubiquitous on-demand access to an Internet-based pool 

of computing, storage, and communication resources. These resources can be 

provided to a large set of geographically distributed users. Typically, the cloud 

interface resides within a single window in the users' Internet browser. According to 

American National Institute of Standards and Technology (NIST) [28], the cloud 

computing model is essentially composed of five features; on-demand self-service, 

online availability through any platform (e.g. smartphones, laptops), a pool of 

computing resources available to end-users through a multitenancy architecture, and 

elastic and measurable service. 

Cloud computing service models can be classified into three categories [28]; 

software as a service (SaaS), platform as a service (PaaS) and infrastructure as a 

service (IaaS). SaaS is the process of delivering an application to the end-users 

through cloud datacentre, which can be accessed through users’ web interfaces (e.g. 

websites, Health care systems, Geographic Information Systems (GIS), Microsoft 
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office). PaaS offers end-users the environment needed to create an application on 

cloud infrastructure using a set of online tools (e.g. programming languages) to 

provide facilities for designing, developing, testing and deployment of applications. 

Examples of this model include  Google App Engine [29] and Microsoft Azure [30]. 

Further abstracted computing resources are available to end-users through the IaaS 

model. In addition to the deployed application, the end-user has control over the 

operating system, middleware (for enabling communication between two applications 

[31]), runtime and data, in addition, to directly using networking, storage and compute 

resources, which are usually made available on a subscription basis. Amazon Elastic 

Compute Cloud (Amazon EC2) [32] is a widely known solution based on the IaaS 

service model. Fig. 2-2 illustrates the architecture of the three service models 

compared with a traditional on-premises model, where the user has full control over 

datacentre. The virtualisation concept is employed in the three cloud computing 

models to satisfy the rapid growth/shrinkage in the usage of datacentre physical 

resources by cloud users. Virtualisation [4] simulates hardware functionality by 

creating a virtual version of cloud hardware resources such as CPU, RAM and hard 

disks to increase flexibility and scalability. This allows Cloud organisations to run 

multiple virtual entities on a single server. In Section 2.5, the virtualisation concept is 

reviewed intensively. 

 

Figure 2-2: Cloud computing service models 
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Cloud computing can be mainly deployed as; public cloud, community cloud, 

private cloud, or hybrid cloud. In the public cloud, the cloud sources, which reside in 

the cloud provider premises, are rented over the Internet for public use. In the 

community cloud, the cloud infrastructure is provisioned for the use of organisations 

or end-users that have shared resources and goals. In the private cloud, the cloud 

infrastructure is operated exclusively for a single organisation, whether managed by 

the organisation itself or by a third party. The combination of multiple clouds 

deployment models (e.g. public, community, private) is called a hybrid cloud. 

Cloud datacentres are typically consist of wide range of servers arranged in multiple 

racks and a Local Area Network (LAN) made of two switch layers used to connect 

racks to each other (in order to enable inter rack communication), and an aggregation 

router to connect the datacentre to the outside world, i.e. users and other datacentres 

(inter-datacentres communication). The architecture of cloud datacentre is illustrated 

in Fig. 2-3. 

 

Figure 2-3: Typical cloud datacentre architecture. 

2.4 Migrating to Fog 

 The concept of fog computing was introduced by Cisco in 2014 [33] to bring cloud 

services closer to the users. According to the OpenFog Consortium [34], a group of 

industry and academic organisations advocating the development and standardisation 

of fog computing in various facets, fog computing is an architecture that complements 

the clouds by extending processing, networking and storage resources to the edge of 
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the network. The advent of fog computing together with cloud computing has 

introduced a promising paradigm shift. As illustrated in Fig. 2-4, the fog computing 

general framework consists of three layers organised in a hierarchical architecture 

[35], [36]. In this architecture, the fog computing layer resides in the middle between 

end-users and cloud computing layers. 

 

 

Figure 2-4: Fog computing hierarchical architecture. 

 

The research efforts studying fog computing have mainly focused on illustrating 

its potential advantages over cloud computing. Offloading tasks to fog nodes is 

proposed [2], [3], [42]–[49], [33], [35]–[41] to provide: 

• Realtime analytics: moving processing capabilities closer to users’ premises to 

provide a real time data analytics. 

• Low operating expense: reduce core network bandwidth by processing data 

locally in fog nodes instead of processing in the cloud.  
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• Low latency: processing users requests closer to their devices can significantly 

reduce the latency compared to when the traffic travels longer distances between 

the clouds and users. 

• Privacy: processing sensitive data locally instead of processing at distant clouds 

which may be in a different organisation or country. 

• Improve Qos and QoE for different computing services. QoS is the total 

compatibility of telecommunications service characteristics to the user needs,  

whereas, QoE focuses on the entire users’ service experience of an application or 

service. 

In term of QoS, the authors in [42] studied IoT service placement in fog node 

resources, taking into consideration its QoS requirements. They found that such a fog 

optimisation model maintains QoS and can achieve 35% less execution cost compared 

to cloud computing placement. Also, a mathematical model of fog computing was 

proposed in [47] to investigate the possibility of reducing the latency of IoT 

applications. The results showed that the overall latency associated with processing 

applications in fog computing is 50% lower than the latency associated with 

processing in cloud datacentres. In [37], the authors considered improving websites 

performance by connecting users to the Internet via fog servers. They found that the 

performance of fog-based websites is enhanced beyond what has been achieved by 

cloud servers. 

The energy consumption of the fog computing paradigm has been given limited 

attention in the literature. In [35], the authors built a theoretical model of fog 

computing architecture and compared it with the conventional cloud computing 

model. In addition to the low latency, they found that offloading applications to the 

fogs can significantly reduce power consumption by 41%. However, their 

investigation did not consider a detailed model of the telecom network architecture. 

The work in [46] found that the number of hops between the user and the content has 

little impact on the total energy consumption compared to the type of application 

running on servers and factors such as the number of downloads and the number of 

updates. The authors in [50] studied the interplay and cooperation between the fog 

and the cloud to achieve a trade-off between power consumption and delay in a cloud-

fog computing system by developing a mathematical model to formulate the workload 

allocation problem. They found that by allocating fog computing for processing a 

workload, the total delay reduces while the power consumption rises. 
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2.5 Machine Virtualisation 

Cloud and fog scalability is highly dependent on the efficient provisioning of the 

datacentre physical resources. Virtualisation was introduced to enable efficient use of 

resources in the cloud-fog architecture. The first implementation of the idea of 

virtualisation was done by IBM in the mid-1960s, where numerous users were able to 

create, execute, modify and terminate their tasks on a shared system [51]. In the 1970s 

and 1980s, virtualisation was almost inexistent as the computing hardware purchasing 

price became cheaper. Then, in the 1990s, due to the broad variability in computing 

capabilities, the virtualisation concept was resuscitated [52]. At present, virtualisation 

techniques are swelling due to the cloud computing revolution. 

The principal architectural characteristic of virtualisation is the solid resource 

allocation management approach where the datacentre physical resources are 

abstracted into several logical entities called VMs [4], [53]. Each VM is allocated its 

resources of CPU, memory, network bandwidth and storage to run a logically isolated 

application from other VMs. Using VMs, multiple applications can be consolidated 

into a fewer number of servers by allowing multiple heterogeneous virtual entities, 

each serving a different client, to coexist on a shared physical resource (servers) 

owned and operated by an infrastructure/service provider. Each physical server can 

host up to hundreds of VMs and each VM-hosted application allows multiple tenants 

or users to share a single application as it runs on a dedicated environment [54]. These 

virtual entities are created and tore down on demand to cater for the cloud clients’ 

needs allowing for scalable growth and efficient use of resources through 

consolidating virtual entities in fewer physical resources [55], [16]. Fig. 2-5 illustrates 

the VM consolidation technique. 
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Figure 2-5: VMs consolidation. 

Consider an example, where a CP wants to run an application on a cloud 

architecture. At time 𝒕 = 𝟏, the application is unpopular and a single VM is enough 

to serve all users. At time 𝒕 = 𝟐, the application becomes popular, so, a single machine 

is no longer enough to serve all users. Thus, an estimation can be made to find how 

many VM replicas are required to run the application by taking into consideration the 

server resources and the number of concurrent users accessing the application at that 

time. An elastic cloud and fog architecture should instantly react to the increased load 

and serve all application users responsively. 

Further dynamism in resource management can be achieved by placing or 

relocating VMs within or across distributed datacentres through either replication or 

migration. VMs placement is a central operation in cloud and fog computing 

infrastructure where the most suitable server is found to host the VM based on 

workload balancing, datacentre maintenance, failover recovery or energy efficiency. 

In Section 2.5.2, the VMs placement problem is discussed. 
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In a virtualisation environment, VMs are orchestrated by the VM monitor (VMM) 

or a hypervisor. The hypervisor is the virtualisation software in a system that aims to 

create and run one or multiple VMs (guest machine) over physical hardware (host 

machine), which is typically a server. The hypervisor has the authorisation to control 

all the VM’s operating system and its hosted application as well as server resources.  

2.5.1 VMs Categories 

Based on computation and network bandwidth requirement, cloud applications can 

be classified into three categories [56], [57]; 1) CPU-intensive applications; only 

require computation resources and produce a low data rate over the communication 

network. e.g. high-performance computing applications, 2) data-intensive 

applications; require fewer computation resources and produce high traffic between 

the communicating nodes. e.g. video applications. 3) balanced applications; both 

computation and communication network resources are required. e.g. GISs 

applications. 

From a CPU perspective, studies in the literature have shown that the workload of 

VM versus the number of users served by VM mostly follows one of two profiles; 

constant or linear profiles as seen in Fig. 2-6. In [58], the authors presented a CPU 

performance benchmark study for web application VMs serving a varying number of 

users with constant CPU workload as illustrated in Fig. 2-6 (a).  Also, various 

benchmarking studies in the literature have demonstrated linear workload profiles for 

database applications [59], web-based video conferencing systems [60] and 

multiplayer games [61] with different slope coefficients. To maintain the service level 

agreement (SLA), each VM needs a minimum workload to run an application 

regardless of the number of users served by the VM, resulting in the workload profile 

shown in Fig. 2-6 (b). The minimum workload required to serve a user in a VM varies 

from as low as 1% to 60% [59] - [61]. 
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Figure 2-6: Relationship between VM workload and the number of users; (a) 

constant (b) linear relationship between VM workload and number of users. 

From network bandwidth perspective, cloud service applications based on user 

network bandwidth requirements are classified into three main categories: (i) Mbps 

for light web browsing [62] (emails, Google docs [63] and websites with lower 

definition video content [64]), (ii) 10 Mbps for applications processing high-definition 

video quality [65] and online multiplayer games [66], and (iii) 25 Mbps for 

applications processing ultra-high video quality [67].  

This inter-VM traffic is a major contributor to the east-west traffic (server to 

server traffic) which is expected to be responsible for 85% of the global cloud traffic 

by 2021 as opposed to north-south (traffic between server and client), which accounts 

for the remaining traffic [62]. In a cloud environment, different VMs may need to 

communicate to complete their processing jobs as seen in Fig. 2-7(a) [53]. As well, in 

case of replication, replicas of a VM need to communicate to ensure synchronisation 

(see Fig. 2-7(b)) [68]. Co-located VMs in the same datacentre, can communicate with 
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each other through LAN, whereas, if they are located in geo-distributed datacentres, 

the communication traffic will pass through the core network backbone [69].   

 

Figure 2-7: Illustrative example of inter-VM traffic, (a) VM-VM cooperation traffic 

(b) VM replicas synchronisation. 

Inter-VM traffic has been intensively investigated in the literature. The authors 

in [70] studied the traffic of communicating VMs hosted by a group of servers. The 

trace analysis shows that inter-VM traffic varies significantly between different 

VMs pairs. In [71], the authors developed a system that measures the throughputs 

between data-intensive VM pairs inside Amazon EC2 and Rackspace clouds. They 

found that the throughput varies from as low as 100 Mbps to almost 4.5 Gbps. Also, 

they developed an integer linear programming (ILP) model and an algorithm to 

formulate the problem of intra-datacentre network-aware VM placement.  

Although virtualisation comes with plentiful advantages, resource sharing when 

running multiple virtual entities over a single physical machine may reduce QoS 

and cause unstable performance. To reduce the impact of resource sharing and 

achieve scalable cloud architecture, some techniques have been discussed in the 

literature and are employed by cloud providers. For example, in order to ensure 

QoS, cloud providers either implement traffic shaping techniques [34], to limit the 

traffic bandwidth which is allocated to each VM or enforce a minimum 

configuration of each resource [35] (e.g. bandwidth capacity or CPU usage) in order 

to preserve SLAs established with the end-users by providing a satisfying 

performance. 
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2.5.2 VMs Placement  

The VMs placement is a vital process where the most suitable server is selected to 

host a VM. Selecting an appropriate VM container is critical to improving QoS, 

energy efficiency and optimal usage of physical resources. However, VM placement 

in cloud computing was demonstrated to be a very complex task. The simultaneous 

requests arrival patterns of the VM are usually unpredictable. Also, the datacentre size 

is typically enormous and for a certain load, optimising the VMs placement is 

considered to be a nondeterministic polynomial (NP)-hard problem. For example, if 

𝒗 is the number of VMs and 𝒔 is the number of servers, then the number of possible 

VM placement in different servers is 𝒗𝒔. In case of replicating VMs into multiple 

datacentres (𝑵), exhaustive search of datacentre distributed locations require the 

evaluation of (∑
𝑵!

(𝑵−𝒊)!

𝑵
𝒊=𝟏 ) placement combinations in order to find the optimal 

number and locations of VM copies needed. 

The VM placement schemes are classified as static and dynamic schemes. In the 

static scheme, the placement of the VM is fixed and is not adjusted for a long period 

of time whereas in the dynamic scheme, the VM placement can change periodically 

based on change in the status i.e. server load, change in the network or cloud 

components. Dynamic schemes can be categorised into reactive and proactive VM 

placement. In the reactive scheme, the placement of the VM is only changed if the 

system reaches undesired conditions, so, the placement of VM will only be changed 

for example in case of emergency or when applying maintenance routines, restoring 

QoS or to reduce power consumption. On the other hand, in the proactive scheme, 

VM placement is changed before the system reaches undesired condition [7], [15], 

[53], [72]–[74]. 

In the literature, several papers discussed the VMs placement considering various 

factors. To reduce the server load, improve the QoS and meet the SLAs, the VMs can 

be migrated or replicated to another server/servers within the same datacentre [6], [7] 

or in geographically distributed datacentres [76]. Virtualised cloud architectures are 

also able to provide efficient disaster resilience in case of physical machine failure by 

migrating VMs into different host machines [77] or by replicating VMs content to 

distributed datacentres. From an energy efficiency perspective, under-utilised servers 

can significantly increase the energy consumption, and consequently increase the 

carbon emissions and operating costs of cloud datacentres. VMs consolidation by bin 
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packing them into a fewer number of servers can significantly improve the energy 

efficiency. In general, VM placement algorithms should consider the following: 

• Cloud and fog computing resources (servers, datacentre networks) [41], [52], 

[84]–[86], [55], [72], [78]–[83] . 

• VM-users traffic and VM-VM traffic [11], [14], [92]–[97], [55], [57], [71], 

[87]–[91]. 

• Communication network layers (core, metro and access network) [6], [9], [98]–

[101], [11], [14], [39], [46], [49], [55], [94], [97]. 

• QoS and SLAs [42], [79], [102]–[106]. 

• Cloud and fog computing resources (servers, datacentre networks) [49], [52], 

[55], [68] . 

• VM-users traffic and VM-VM traffic [11], [14], [55], [57], [67]. 

• Communication network layers (core, metro and access network) [6], [9], [11], 

[14], [41], [44], [47], [55]. 

• QoS and SLAs [37], [78]. 

 

2.6 Energy Efficient VMs Placement 

The power consumption of a server involves two parts; the idle and active power 

consumptions. The idle power consumption of a server is consumed when it is 

switched on but not processing any workload whereas the active power consumption 

is the additional power consumed when the server is running a certain workload. The 

total power consumption of the server is equal to the sum of idle and active power 

consumptions. In this thesis, as the difference between idle power consumption and 

full load power consumption is very small in a server [107], we consider an on-off 

power profile for servers, i.e. if a server is activated, it will operate at maximum power 

consumption.  

The power consumption of VM is based on the hosting server. The authors in [108] 

found that the CPU utilisation and power consumption of a server are highly 

correlated. Another work in [80] studied the relationship between the power 

consumption of a server and the CPU utilisation and found that the power 
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consumption and the CPU utilisation are related linearly. Thus, the work introduced 

in this thesis follows the same approach and takes in consideration the CPU utilisation 

only in modelling the power consumption of VMs placement.  

The problem of energy-efficient VMs placement has been investigated thoroughly 

in the literature considering different parameters and pursuing various objectives by 

using several optimisation methods. In [6], the authors compared the energy efficiency 

of three schemes that place VMs over distributed datacentres in the core network; 

migration, replication and slicing. In migration, only one copy of each VM is allowed 

in the network. In replication, more than one copy of each VM can be created and 

located at different locations. In slicing, a single VM can be sliced to smaller copies 

to serve a smaller number of users over multiple clouds. The slicing scheme was found 

to be the most energy-efficient scheme with savings up to 25% of the total power 

consumption. However, the size of the slice in the work proposed in [6] was not 

proportional to the number of users served. The authors in [100] proposed a datacentre 

network topology-aware VM migration algorithm aiming at migrating groups of VMs 

to allow the switching off of physical servers and network resources. In [109], the 

authors designed algorithms to study the impact of datacentre architectures, 

constraints of servers and application dependencies on energy-aware VM placement. 

From an inter-VM communication perspective, the authors in [109]–[113] studied the 

energy-efficient placement of VMs inside a datacentre taking into consideration intra-

VM traffic. 

The majority of studies of VMs placement in the fog have been limited to 

evaluating the reduction of overall network overhead [96], optimising the placement 

of physical resources in the edge network [99] and the scheduling of VMs to share the 

limited fog resources to minimise SLA violations [43].  

Despite the diverse factors affecting the power consumption of cloud-fog 

architectures, the majority of VMs placement research in the literature is limited to 

considering few parameters. Table 2-1 summarises the parameters that have been 

considered in the literature when studying energy efficient VM placement decisions. 

The table classifies the factors into cloud-fog computing layers, cloud/fog datacentres 

networks, the three network architecture layers, users traffic, inter-VM traffic, CPU 

requirement and PUE value. It also identifies the type of model/algorithm used to 

solve the problem.  
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The problem of providing energy-efficient VMs placement over end-to-end cloud-

fog architecture considering the above-mentioned architecture has not received any 

attention. Thus, the objective of this thesis is to develop a novel framework that covers 

all these parameters in optimising the energy efficiency of VMs placement. 

 

Table 2-1: Classification of Energy Efficient VMs placement research in the 

literature 
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Lawey et al. [6] ∎ × ∎ × ∎ ∎ ∎ × × 
∎ MILP and 

Heuristic 

Silva and Fonseca 

[100] 
∎ × ∎ × ∎ ∎ ∎ × × ∎ Heuristic 

Huang et al. [109] ∎ × ∎ ∎ ∎ ∎ × × × × Heuristic 

Yu et al. [114] ∎ × × ∎ ∎ ∎ × × × × Heuristic 

Zheng et al. [82] ∎ × × × ∎ × × × × × Heuristic 

Tsai et al. [115] ∎ × × × ∎ × × × × × Heuristic 

Zhang et al. [89] 
∎ × × ∎ × × × × × × Heuristic 

Tziritas et al. [113] 
∎ × × ∎ ∎ × × × × × Heuristic 

Wang et al. [81] 
∎ × × × ∎ × × × × × 

ILP and 

Heuristic 

Buyya et al. [88] ∎ × × × ∎ × × × × × 

Heuristic 

and 

Simulation  

Gao et al. [103] 
∎ × × × ∎ × × × × × 

LP and 

Heuristic 
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Dong and Herbert 

[105]  
∎ × × × ∎ × × × × × 

Heuristic 

Fang et al. [110] 
∎ × × ∎ × ∎ × × × × Heuristic 

Li et al. [83] 

∎ × × × ∎ × × × × × 

Heuristic 

and 

Simulation 

Arroba et al. [116] 

∎ × × × ∎ × × × × × 

Heuristic 

and 

Optimisation 

Katsaros et al. [102] 

∎ × × × ∎ × × × × ∎ 

Heuristic 

and 

Simulation  

Farahnakian et al. [13] 

∎ × × × ∎ × × × × × 

Heuristic 

and 

Simulation  

Beloglazov and Buyya 

[117] 
∎ × × × ∎ × × × × × 

Heuristic 

Horri et al. [79] 

∎ × × × ∎ × × × × × 

Heuristic 

and 

Simulation 

Wang et al. [90] 

∎ × × × ∎ × × × × × 

Optimisation 

and 

Simulation 

Dabbagh et al. [84] 

∎ × × × ∎ × × × × × 

Optimisation 

and  

Heuristic 

Shen et al. [85] 
∎ × × × ∎ × × × × × Heuristic 

Farahnakian et al. [72] 

∎ × × × ∎ × × × × × 

Heuristic 

and 

Simulation 

Feller et al. [118] 

∎ × × × ∎ × × × × × 

Heuristic 

and 

Simulation 

Van et al. [119] 
∎ × × × ∎ × × × × × 

Simulation 

Mishra et al. [44] 

× ∎ × × ∎ × × × × × 

Heuristic 

and 

Simulation 
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Mishra et al. [78] 
∎ ∎ × × × × × × × × 

LP and 

Heuristic  

This Thesis 
∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ 

MILP and 

Heuristic 
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2.7  Net neutrality in ICT 

Network (net) neutrality regulations prohibit ISPs from applying different treatment 

to IP packets based on their content e.g. prioritising, blocking or throttling certain 

Internet content or allowing quality differentiation. Net neutrality, which was 

scrapped by the US Federal Communications Commission (FCC) in December 2017, 

has been the subject of remarkable debate in recent years ISPs and CPs with each side 

trying to exploit their assets and expand their profit and influence. The debate is 

fuelled by the rapidly escalating demand for CPs services as a result of the 

interconnection between Internet and broadcasting markets. Cisco forecasts [120] that 

by 2021, annual global Internet traffic will hit 2.2 Zettabytes per month and CPs 

datacentres will be the source of 71% of this traffic. Online video services are the 

primary cause of this accelerated growth in Internet traffic. Video streaming is poised 

to consume 78% of the total CPs bandwidth with 75% of Internet video traffic 

originating from higher video services quality (HD and UHD). 

Proponents of preferential treatment of Internet traffic complain that the increasing 

demand for data-intensive content creates a significant burden on the communication 

network. They argue that removing net neutrality will give ISPs further control of 

their infrastructure, which is crucial in order to improve QoS and reduce security 

threats. Another argument is that a significant fraction of the profit of this 

tremendously growing market is seized by CPs whereas ISPs act as a transit or 

transport medium into CPs customers. In the US, the quarterly profit margin of AT&T 

(an ISP) has been almost stable over the last six years whereas Netflix (a CP) profit 

margin has risen up in rapid pace from 0.7% to 9.8% within the same period [121], 

[122]. In contrast, advocates warn that removing net neutrality will slow down the 

innovation in the Internet and its content and will limit the content competition by 

disadvantaging small businesses, and subsequently, diminish online services. 

Deploying traffic discrimination in video delivery services has many challenges, 

e.g. detecting video packets and enforcing a policy on a certain video quality. Traffic 

discrimination in IP communication networks has been surveyed intensively in the 

literature. Several traffic management practices have been surveyed in [123]. The 
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authors highlighted that traffic discrimination taxonomy has four features: (i) 

characteristics or condition of the traffic (e.g. based on content, protocol or 

source/destination); (ii) traffic classification (e.g. based on flow rate, header 

information or routing); (iii) mechanism of discrimination (e.g. modify, delay, drop 

or block); and (iv) perceived discrimination by end-users. Video traffic can be 

analysed using two mechanism; deep packet inspection (DPI) [124], [125] or traffic 

profiling [126], [127]. DPI examines the data packets that is sent over the network and 

traffic profiling detects abnormal network traffic by comparing new traffic against 

previous traffic profile. For example, an alarm can be triggered if the data rate 

transmitted over the network (measured in bps) spikes above the desired data rate, 

which could indicate an increase in data rate. QoS for video services delivery can be 

applied either by reserving network bandwidth for video packets (e.g. using IntServ) 

or labelling video content as high priority e.g. by applying Differentiated Services 

(e.g. using DiffServ) [128].  

The Internet ecosystem is complex with many stakeholders. As illustrated in Fig. 

2.8, the main stakeholders in the Internet ecosystem are; ISPs, CPs, content delivery 

networks (CDNs) and end-users. Users pay ISPs a subscription fee to get Internet 

access and subscribe to CPs (if required) to access their content. CPs subscribe to a 

CDN to access storage and processing capacity and to deliver their content to 

customers. CDNs are responsible for sending CPs content at large scale over ISPs 

network infrastructure, e.g. the CP Netflix collaborates with the CDN Amazon Web 

Services (AWS) to reach their customers [129]. ISPs play as the key intermediary in 

the delivery process as they provide the required connectivity between users and 

content. Most ISPs such as AT&T [130] and Comcast [131] are now providing CDN 

services in additional to networking services. To simplify our analysis, we consider a 

direct relationship between ISP and CPs. 
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Figure 2-8: Main stakeholders in Internet ecosystem. Arrows represent customer-provider 

relationship. 

Due to net neutrality regulations, current pricing policy of ISP networking services 

applies a fixed charge which is not linked with bit rate usage. For example, in the US, 

AT&T uses a fixed pricing model by charging CPs $3,282 per 10 Gbps per month 

[132] regardless of the content type transferred to users (either UHD video content or 

a simple text message). 

Many papers in the literature discussed and analysed various aspects of net 

neutrality. From a legalisation and regulation perspective, net neutrality in the Internet 

ecosystem has been surveyed by the authors in [133] and [134]. They emphasised that 

cloud computing has initiated the net neutrality battle between ISPs and CPs. In [135] 

the authors analysed the Internet video streaming contest, taking into account all of 

ISPs and CPs assets (e.g. content rights, network access, users, …etc). They stated 

that video distribution makes the dilemmas of net neutrality solid and perceptible. 

Their analysis demonstrates that net neutrality correlates highly with video service 

delivery at different points including competition between CPs and ISPs, competition 

between stand-alone CP and CP owned by ISPs in providing video delivery services, 

growth of video traffic …etc.  

A number of papers in the literature focuses on providing mathematical models to 

investigate the influence of the repeal of net neutrality on the communication 

networks. Paid service differentiation where CPs voluntarily pay a monopoly ISP for 

prioritising their traffic under shared network infrastructure was investigated by the 

authors in [136]. The differentiation occurs where ISPs offer service classes for CPs 

to choose from where traffic of a higher-priority class will be processed before those 

of a lower-priority. They studied the optimal pricing based on either maximising the 

CPs’ choices of service classes or minimising system delays. Consequently, they 

highlighted that ISPs optimal pricing strategy can result in an efficient differentiation 

among CPs maximising social welfare. Also, they found that applying paid 
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prioritisation can lead to money flows (profit) from CPs to ISPs. The authors in [128] 

modelled the competition of video services delivery market between an ISP’s own 

integrated CP and stand-alone CP. They studied the impact of applying different QoS 

(marking video traffic as high priority) pricing strategies either by selling QoS to CPs, 

selling QoS to users, or choosing to not provide QoS at all. They investigated the 

impact of QoS pricing on the video service prices and CPs profit. The analysis showed 

that ISPs can sell QoS to CPs at a higher price than when QoS is sold to users, and the 

CPs are able to make more profit when QoS is directly sold to users than the case 

when QoS is sold to CPs. Also, they found that ISP is more likely to use QoS 

exclusively for its own video services when it provides a similar content of CPs. The 

work in [137] considered the impact of maximising profit of CDN providers 

considering users who access CPs content from either cloud or fog server. In the case 

of competitive CPs, the CDN always places the content of the popular CP in fog 

servers, even when a less popular CP pays more, as the CDN tries to reduce core 

network transit cost. 

2.8 Mixed Integer Linear Programming (MILP) 

Mathematical representation is the most concise and accurate representation of a 

problem and can help understand and solve the problem in hand. Linear Programming 

(LP) is a mathematical optimisation technique where a maximum or a minimum of a 

linear function is to be found subject to a set of linear constraints and bounds.  A LP 

model consists of the following four elements;  

• The objective function, which is maximised or minimised to find the optimum 

value of the variables.  

• Parameters, which are values that remain unchanged throughout the 

optimisation process. 

• Variables, which are values that vary are to be identified within upper or lower 

constraints. An important subclass of variables are binary variables, where a 

variable can take a value of either 0 or 1 to model a specific decision.  

• Constraints are a set of mathematical inequality equations, which define the 

solution feasibility region. 
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The variables of LP model are normally continuous, making the problem solvable 

in polynomial time. However, if they are constrained to integer values, the problem 

turns into an NP hard problem where the optimal solution cannot be found in 

polynomial time.  

In MILP, the variables are a mix of integer and non-integer values. The use of 

MILP was shown to be efficient in optimisation problems in numerous applications 

[138] including; economic and transportation. The use MILP optimization has been 

used also used intensively in the literature to solve network design problem such as 

maximizing the profit achieved by infrastructure providers [139] and minimizing the 

power consumption of delivering clouds services [6]. 

To illustrate the MILP principle, the following standard form is presented; 

Objective function;  

Maximise or Minimise: 𝒇 = 𝒙𝟏,𝒚𝟏 + 𝒙𝟐,𝒚𝟐 +⋯+ 𝒙𝒏,𝒚𝒏 

Constraints; 

𝜶𝟏𝟏,𝒚𝟏 + 𝜶𝟏𝟐,𝒚𝟐 +⋯+ 𝜶𝟏𝒏,𝒚𝒏 ≤ 𝒂𝟏 

𝜶𝟐𝟏,𝒚𝟏 + 𝜶𝟐𝟐,𝒚𝟐 +⋯+ 𝜶𝟐𝒏,𝒚𝒏 ≤ 𝒂𝟐 

. 

. 

. 

𝜶𝒏𝟏,𝒚𝟏 + 𝜶𝒏𝟐,𝒚𝟐 +⋯+ 𝜶𝟏𝒏,𝒚𝒏 ≤ 𝒂𝒏 

and non-negativity constraints: 

∀ 𝒚𝟏 ≥ 𝟎, 𝒚𝟐 ≥ 𝟎,… 𝒚𝒏 ≥ 𝟎 

 

To solve any MILP problem, the mathematical model is represented in computer 

systems in several ways. A Mathematical Programming Language (AMPL) [140] is 

one of the most popular ways to make a connection between the MILP model and its 

data file by providing a high-level language for describing optimisation programmes. 

The AMPL formulation is solved by MILP solvers, for example CPLEX [138], and 

lpsolve [141]. The solver most widely used, and the one used in this thesis, is the IBM 

ILOG CPLEX optimisation software. CPLEX provides a high-performance, robust, 

reliable, and flexible mathematical solver to find an optimal solution to the problem. 
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In MILP, the optimal solution uses an NP-hard discrete optimisation. MILP 

optimisation problems are typically non-covex. Non-convex problems may have 

several feasible regions, and within each region, various local optimal points can be 

found. Therefore, a systematic approach is used to find a solution. The most common 

approach used to find the optimum solution is the branch-and-bound (B&B) approach. 

As shown in Fig. 2-9, this approach divides the problem into a rooted tree of nodes 

(stages). Every node has its branches of variables. The complexity of the problem 

equals 2n, where 𝒏 is the number of variables in the problem. B&B solves the problem 

by eliminating the non-worthy nodes within its branches if proven that they will not 

provide a feasible optimal solution. 

 

Figure 2-9: The branch and bound (B&B) approach. 

The branch-and-cut (B&C) approach is also used to solve MILP problems. It works 

by removing the non-feasible branches, according to the information given by MILP. 

It provides a fast solution but with a less reliable result. A genetic approach is also 

used sometimes to find a solution by performing sequence iterations on randomly 

created solutions. The potential solutions are continuously optimised over generations 

by performing a fitness test where only one solution can survive [142]. However, 

although these approaches provide near optimal solutions, there is no guarantee that 

the solution is optimal. 

2.9  Summary 

In this article, we have provided a review of energy efficient cloud-fog architecture, 

especially for . It provided an overview of communication networks focusing on IP 
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over WDM networks, metro Ethernet networks and PON networks. These are the 

essential elements that represent the wired network of interest in this thesis. Attention 

was then given to cloud computing and its recent introduction as an integral element 

of communication networks. The recent migration of processing and storage services 

from the cloud to the fog was outlined. A key enabling technology for the efficient 

utilisation of cloud resources is virtualisation and the creation of virtual machines. 

These concepts were reviewed including VM categories, VM placement and energy 

efficient VM placement. Net neutrality was then introduced as it impacts what 

network operators and service providers can do and can impact the placement of VMs. 

Finally, mixed integer linear programming (MILP), the main optimisation tool used 

in this thesis was introduced and discussed. 
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Chapter 3: Energy Efficient Virtual 

Machines Placement over Distributed 

Clouds 

3.1 Introduction 

In this chapter, a framework for optimising the placement of VMs over distributed 

clouds to minimise the networking and computing resources power consumption is 

introduced. A MILP model is developed for this purpose. The MILP model is used to 

analyse the impact of different factors including VM popularity, the traffic between 

the VM and its users, the VM workload, the workload versus number of users profile, 

the impact of core network topology on VM placement and the power usage 

effectiveness (PUE).  

The results show that high traffic of highly popular VMs and VMs with high user 

data rates make network power consumption more important and consequently 

determine the placement. The results also indicate the tendency to distribute VMs with 

linear workload profile compared to VMs with constant workload. Furthermore, the 

results show that at high PUE, processing power consumption becomes more 

dominant, which makes it play a bigger role in VMs placement. 

Based on the MILP model, a heuristic is developed to mimic the MILP model in a 

real-time environment. 

3.2 MILP model 

In this section, a MILP model is developed to optimise the placement of VMs over 

distributed clouds in IP over WDM core networks so the total power consumption of 

providing the VMs is minimised. The architecture in Fig. 3-1 is considered. Unlike 

[6] where certain placement schemes (migration, replication and slicing) are used to 

place all types of VMs, in this work, the MILP model is developed to decide the 
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optimum placement scheme over the distributed cloud architecture based on the VM 

popularity, the VM workload and users data rate. The model aims to achieve a trade-

off between network power saved by replicating VMs in multiple clouds and the 

power consumed by these replicas. The creation of a VM replica will result in power 

savings if the network power consumption exceeds the VM replication power 

consumption.  

A typical cloud datacentre, as illustrated in Fig. 3.1, consists of servers arranged in 

multiple racks and a LAN network, made of routers and switches, to connect racks to 

each other (inter rack communication) and to users outside the datacentre.  

Before introducing the MILP model, the sets, parameters and variables related to 

different network layers (core, metro and access) and clouds resources are defined. 

Note that, the metro and the access networks are not part of the optimisation problem, 

namely they do not host candidate VM sites. They are considered in the calculation 

of the power consumption in this model to compare its results to the cloud-fog model 

in Chapter 5. 

The sets, parameters and variables representing cloud computing resources are 

defined in Table 3-1, Table 3-2 and Table 3-3: 

Table 3-1:  List of sets used in the MILP model 

Set Description 

𝑵 Set of IP over WDM network nodes. Set of nodes represents nodes 

distributed across different geographic regions in the selected core 

network topology. 

𝑽𝑴 Set of VMs. 

 

Table 3-2:  List of cloud parameters used in the MILP model 

Parameter Description 

𝑺𝑾(𝑪𝑩) Cloud switch bit rate. 

𝑺𝑾(𝑪𝑷) Cloud switch power consumption. 

𝑺𝑾(𝑹) Cloud switch redundancy. 

𝑹(𝑪𝑩) Cloud router port bit rate. 

𝑹(𝑪𝑷) Cloud router port power consumption. 

𝑺(𝑷) Power consumption of a server. 

𝑺(𝒎𝒂𝒙𝑾) Maximum workload of a server. 

𝒄 Cloud power usage effectiveness. 
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Figure 3-1: Network layers supported by clouds. 
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Table 3-3:  List of cloud variables used in the MILP model 

Variable Description 

𝑪𝒔 𝑪𝒔 = 𝟏 if a cloud is hosted in node 𝒔, otherwise 𝑪𝒔 =  𝟎. 

𝜹𝒗,𝒔
(𝑪)

 𝜹𝒗,𝒔
(𝑪) = 𝟏 if the cloud hosted in node 𝒔 hosts a copy of VM 𝒗, otherwise 

𝜹𝒗,𝒔
(𝑪) = 𝟎.   

𝑹𝒔
(𝑪)

 Number of router aggregation ports in the cloud hosted in node 𝒔. 

𝑺𝑾𝒔
(𝑪)

 Number of switches in the cloud hosted in node 𝒔. 

𝑺𝒔
(𝑪)

 Number of processing servers in the cloud hosted in node 𝒔. 

The VMs to be hosted in the cloud and the traffic resulting from them are defined 

by the parameters and variables in Table 3-4 and Table 3-5: 

Table 3-4:  List of VM parameters used in the MILP model 

Parameter Description 

𝒔 𝒂𝒏𝒅 𝒅 Indices of source and destination nodes of a traffic flow in the 

distributed cloud architecture. 

𝑽 Number of VMs. 

𝑺𝒗 Number of VM 𝒗 users. 

𝒓𝒗 User download rate of VM 𝒗. 

𝑳 Large enough number. 

𝒙 Maximum number of users served by a single VM replica. 

𝑾𝒗 Maximum workload of VM 𝒗 (workload can be specified in GHz or 

as a ratio of the CPU capacity). 

𝑴 Workload baseline of VM (the minimum CPU utilisation needed in the 

absence of load). To maintain the service level agreement (SLA), each 

VM needs a minimum workload to run an application regardless of the 

number of users served by the VM. 

𝑻𝒗 Traffic resulting from VM replica 𝒗 serving the maximum number of 

users. 

𝑻𝒗 = 𝒙 𝒓𝒗 

𝑾𝒗
(𝑹)

 Workload per traffic unit, 

𝑾𝒗
(𝑹)  =

𝑾𝒗 −𝑴

𝑻𝒗
 

evaluated for VM replica 𝒗. 

 

Table 3-5:  List of VM variables used in the MILP model 

Variable Description 

𝑾𝒗,𝒔
(𝑪𝑹)

 Workload of VM replica 𝒗 hosted in cloud in node 𝒔. 

𝑾𝒔
(𝑪)

 Total workload of cloud hosted in node 𝒔. 

𝑫𝒗,𝒔,𝒅
(𝑪)

 Traffic flow from VM replica 𝒗 hosted in cloud of node 𝒔 to users in 

node 𝒅. 

𝑳𝒔,𝒅 Traffic from cloud node 𝒔 to users in node 𝒅. 
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The clouds power consumption is composed of:  

• The power consumption of cloud servers: 

𝒄 ∑ 𝑺𝒔
(𝑪) 𝑺(𝑷)

𝒔 ∈𝑵

                                                                 (𝟑. 𝟏) 

Note that, as the difference between the server idle power and full load is very small 

(as shown in Fig. 3-2) , we consider an on-off power profile for servers, i.e. if a server 

is activated, it operates at maximum power consumption, e.g. idle power consumption 

of S814-8286-41A IBM server is 300 Watt and power consumption at the full server 

utilization is 333W [47] Moreover, the parameter 𝒄 represents the PUE of the cloud 

datacentre. PUE is a metric used to determine the energy efficiency of a cloud/fog 

data centre by dividing the total amount of energy consumed of cloud/fog data centre 

facility (including lighting and cooling) by the energy consumed by cloud/fog 

computing and networking equipment. For example, the average power efficiency or 

PUE for Google data centres is 1.11 [143]. 

 

Figure 3-2: Power Consumption of a server versus CPU utlilisation. 

• The power consumption of cloud routers and switches:  

𝒄(∑((𝑺𝑾𝒔
(𝑪) 𝑺𝑾(𝑹) 𝑺𝑾(𝑪𝑷)) +  𝑹𝒔

(𝑪) 𝑹(𝑪𝑷))

𝒔∈𝑵

)                         (𝟑. 𝟐) 
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Note that, as the difference between the server idle power and full load is very 

small [107], we consider an on-off power profile for servers, i.e. if a server is 

activated, it will operate at maximum power consumption. 

The parameters defined in Table 3-6 represent access networks: 

Table 3-6:  List of access network input parameters used in the MILP model 

Parameter Description 

𝑷 Set of PON networks. 

𝑨𝒑 Average broadband data rate in PON 𝒑. 

𝜱𝒗 ratio of traffic due to VM 𝒗 to the total PON traffic. 

𝑶𝑳𝑻𝒑,𝒅
(𝑩)

 Capacity of OLT serving PON 𝒑 connected to node 𝒅. 

𝑼𝒗,𝒑,𝒅 Number of users in PON 𝒑 connected to core node 𝒅 requesting VM 

𝒗. 

𝑼𝒗,𝒑,𝒅 = (
𝑶𝑳𝑻𝒑,𝒅

(𝑩)

𝑨𝒑
) 𝜱𝒗 

if typical national/regional values of 𝑨𝒑, 𝜱𝒗 and 𝑶𝑳𝑻𝒑,𝒅
(𝑩)

 are used, 

then 𝑼𝒗,𝒑,𝒅 determines the number of users and their VM popularity. 

𝑶𝑳𝑻𝒑,𝒅
(𝑵)

 Number of OLTs in PON network 𝒑 connected to node 𝒅. 

𝑶𝑳𝑻(𝑷) OLT power consumption.  

𝑫𝒗,𝒑,𝒅 Traffic flow from VM 𝒗 to users in PON network 𝒑 connected to core 

node 𝒅 given as: 

𝑫𝒗,𝒑,𝒅 = 𝑼𝒗,𝒑,𝒅 𝒓𝒗 

𝑶𝑵𝑼𝒑,𝒅
(𝑵)

 Number of ONUs in PON network 𝒑 connected to node 𝒅. 

𝑶𝑵𝑼(𝑷) Power consumption of an ONU. 

𝒏 Network power usage effectiveness (PUE). PUE is a metric used to 

determine the energy efficiency of a network by dividing the total 

amount of energy consumed of network facility (including lighting and 

cooling) by the energy consumed by networking equipment. 

 

The PON networks power consumption is composed of: 

• Total power consumption of OLTs: 

𝒏(∑∑  (𝑶𝑳𝑻(𝑷) 𝑶𝑳𝑻𝒑,𝒅
(𝑵))

𝒅∈𝑵𝒑∈𝑷

 )                                                 (𝟑. 𝟑) 

 

• Total power consumption of ONUs: 
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𝒏(∑∑  (𝑶𝑵𝑼(𝑷) 𝑶𝑵𝑼𝒑,𝒅
(𝑵))

𝒅∈𝑵𝒑∈𝑷

 )                                               (𝟑. 𝟒) 

The parameters and variables defined in Table 3-7 and Table 3-8 represent the 

metro network. 

Table 3-7:  List of metro network parameters used in the MILP model 

Parameters Description 

𝑹(𝑴𝑩) Metro router bit rate. 

𝑹(𝑴𝑷) Metro router power consumption. 

𝑹(𝑴𝑹) Metro router redundancy. 

𝑺𝑾(𝑴𝑩) Metro Ethernet switch bit rate. 

𝑺𝑾(𝑴𝑷) Metro Ethernet power consumption. 

 

Table 3-8:  List of metro network variables used in the MILP model 

Parameters Description 

𝑹𝒔
(𝑴)

 Number of router ports in metro network connected to node 𝒔. 

𝑺𝑾𝒔
(𝑴)

 Number of Ethernet switches in metro network connected to node 𝒔. 

 

The metro network power consumption is composed of: 

• Total power consumption of metro router ports: 

𝒏  (∑𝑹𝒔
(𝑴) 𝑹(𝑴𝑹)𝑹(𝑴𝑷)

𝒔∈𝑵

)                                                            (𝟑. 𝟓) 

• Total power consumption of metro Ethernet switches: 

𝒏 (∑𝑺𝑾𝒔
(𝑴) 𝑺𝑾(𝑴𝑷)

𝒔∈𝑵

)                                                           (𝟑. 𝟔) 

The parameters and variables defined in Tables 3-9 and 3-10 represents the IP 

over WDM core network:  

 

Where number of metro routers ports and ethernet switches in metro network: 

𝑹𝒔
(𝑴) ≥

∑ ∑ 𝑫𝒗,𝒔,𝒅
(𝑪)

 𝒔∈𝑵𝒗∈𝑽𝑴

𝑹(𝑴𝑩)
     

∀ 𝒔 ∈ 𝑵                                                            (𝟑. 𝟕) 



66 
 

𝑺𝑾𝒔
(𝑴) ≥

∑ ∑ 𝑫𝒗,𝒔,𝒅
(𝑪)

 𝒔∈𝑵𝒗∈𝑽𝑴

𝑺𝑾(𝑴𝑩)
 

∀ 𝒔 ∈ 𝑵                                                        (𝟑. 𝟖) 

Equations (3.7) and (3.8) calculate the number of routers ports and switches, 

respectively, in each metro network. 

 

Table 3-9:  List of IP over WDM parameters used in the MILP model 

Variable Description 

𝒎 𝒂𝒏𝒅 𝒏 Indices of the end nodes of a physical link. 

𝒊 𝒂𝒏𝒅 𝒋 Indices of the end nodes of a virtual link.  

𝑵𝒎𝒎  Set of neighbouring nodes of node 𝒎.  

𝑹(𝑷) Core router port power consumption. 

𝒕(𝑷) Transponder power consumption. 

𝒆(𝑷) EDFA power consumption. 

𝑺𝑾𝒔
(𝑷)

 Optical switch power consumption in node 𝒔.  

𝑮(𝑷) Regenerator power consumption. 

𝓦 Number of wavelengths per fibre. 

𝓦(𝑩) Wavelength data rate. 

𝑺 Maximum span distance between two EDFAs in kilometres. 

𝑫𝒎,𝒏 Distance in kilometres between node pair (𝒎,𝒏). 

𝑨𝒎,𝒏 Number of EDFAs between node pair (𝒎,𝒏). 𝑨𝒎,𝒏= ⌊
𝑫𝒎,𝒏

𝑺
− 𝟏 ⌋ where 

𝑺 is the reach of the EDFA. 

𝑮𝒎,𝒏 Number of regenerators between node pair (𝒎, 𝒏). Typically 𝑮𝒎,𝒏= 

⌊
𝑫𝒎,𝒏

𝑹
− 𝟏⌋, where 𝑹 is the reach of the regenerator. 

 

Table 3-10:  List of IP over WDM variables used in the MILP model 

Variable Description 

𝑪𝒊,𝒋 Number of wavelengths in virtual link (𝒊, 𝒋). 

𝓦𝒎,𝒏 Number of wavelengths in physical link (𝒎, 𝒏). 

𝑹𝒔
(𝑨𝑪)

 Number of router ports in node 𝒔 that aggregate the traffic from/to 

clouds. 

𝑹𝒅
(𝑨𝑬)

 Number of router ports in node 𝒅 that aggregate the traffic from/to 

metro routers. 

𝑭𝒎,𝒏 Number of fibres on physical link (𝒎, 𝒏). 

𝑳𝒊,𝒋
𝒔,𝒅

 Amount of traffic flow between node pair (𝒔, 𝒅) traversing virtual link 
(𝒊, 𝒋). 

𝓦𝒎,𝒏
𝒊,𝒋

 Number of wavelengths of virtual link (𝒊, 𝒋) traversing physical link 

(𝒎,𝒏). 
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Under the non-bypass approach, the IP over WDM network power consumption is 

composed of [19]: 
 

• The power consumption of router ports:  

𝒏(∑𝑹(𝑷) 𝑹𝒔
(𝑨𝑪)

𝒔∈𝑵

+∑𝑹(𝑷)𝑹𝒅
(𝑨𝑬)

𝒅∈𝑵

+ ∑ ∑ 𝑹(𝑷)

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

𝓦𝒎𝒏)         (𝟑. 𝟗) 

Equation (3.9) calculates the power consumption of router ports including the 

power consumption of router ports in each core node that aggregate the traffic from/to 

the clouds (∑ 𝑹(𝑷) 𝑹𝒔
(𝑨𝑪)

𝒔∈𝑵 ), the power consumption of router ports in each core node 

that aggregate the traffic from/to metro routers (∑ 𝑹(𝑷)𝑹𝒅
(𝑨𝑬)

𝒅∈𝑵 ) and the power 

consumption of intermediate router ports that transmit the traffic between the source 

and destination nodes (∑ ∑ 𝑹(𝑷)𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵 𝓦𝒎𝒏). 

Where total number of aggregation ports in a core node: 

𝑹𝒔
(𝑨𝑪) =

𝟏

  𝓦(𝑩)
∑𝑳𝒔,𝒅
𝒅∈𝑵

                

∀ 𝒔 ∈ 𝑵                                                            (𝟑. 𝟏𝟎) 

𝑹𝒅
(𝑨𝑬) = 𝑹(𝑴𝑹) (

𝟏

𝓦(𝑩)
∑  𝑳𝒔,𝒅
𝒔∈𝑵

)                     

∀ 𝒅 ∈ 𝑵                                                         (𝟑. 𝟏𝟏) 

Equation (3.10) calculates the total number of router ports in each core node that 

aggregate the traffic from/to the clouds. Equation (3.11) calculates the total number 

of router ports in each core node that aggregate the traffic from/to metro routers. 

 

 The power consumption of transponders:  

𝒏(∑ ∑ 𝒕(𝑷) 𝓦𝒎𝒏

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

)                                               (𝟑. 𝟏𝟐) 

• The power consumption of EDFAs: 
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𝒏(∑ ∑ 𝒆(𝑷) 𝑭𝒎𝒏 𝑨𝒎𝒏
𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

)                                            (𝟑. 𝟏𝟑) 

• The power consumption of optical switches: 

𝒏(∑𝑺𝑾𝒔
(𝑷)

𝒔∈𝑵

)                                                               (𝟑. 𝟏𝟒) 

Equation (3.14) calculates the power consumption of optical switches located in 

each node 𝒔. Each node IP routers are connected to optical switches which are 

connected by optical fibre links. The optical layer (including optical switches and fibre 

links) provides the large bandwidth required for communication between IP routers. 

• The power consumption of regenerator: 

𝒏(∑ ∑ 𝑮(𝑷) 𝑮𝒎,𝒏 𝓦𝒎,𝒏

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

)                                   (𝟑. 𝟏𝟓) 

 

The model is defined as follows: 

 

Objective: Minimise the total power consumption given as:  

 𝒄 ∑ 𝑺𝒔
(𝑪) 𝑺(𝑷)

𝒔 ∈𝑵

+  𝒄(∑((𝑺𝑾𝒔
(𝑪) 𝑺𝑾(𝑹) 𝑺𝑾(𝑪𝑷)) +  𝑹𝒔

(𝑪) 𝑹(𝑪𝑷))

𝒔∈𝑵

)      

+ 𝒏(∑∑  (𝑶𝑳𝑻(𝑷) 𝑶𝑳𝑻𝒑,𝒅
(𝑵))

𝒅∈𝑵𝒑∈𝑷

 ) +  𝒏(∑∑  (𝑶𝑵𝑼(𝑷) 𝑶𝑵𝑼𝒑,𝒅
(𝑵))

𝒅∈𝑵𝒑∈𝑷

 ) 

+ 𝒏  (∑𝑹𝒔
(𝑴) 𝑹(𝑴𝑹)𝑹(𝑴𝑷)

𝒔∈𝑵

)  +  𝒏 (∑𝑺𝑾𝒔
(𝑴) 𝑺𝑾(𝑴𝑷)

𝒔∈𝑵

)          

+ 𝒏(∑𝑹(𝑷) 𝑹𝒔
(𝑨𝑪)

𝒔∈𝑵

+∑𝑹(𝑷)𝑹𝒅
(𝑨𝑬)

𝒅∈𝑵

+ ∑ ∑ 𝑹(𝑷)

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

𝓦𝒎𝒏) 

+ 𝒏(∑ ∑ 𝒕(𝑷) 𝓦𝒎𝒏

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

) +  𝒏(∑ ∑ 𝒆(𝑷) 𝑭𝒎𝒏 𝑨𝒎𝒏
𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

) 
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+ 𝒏(∑𝑺𝑾𝒔
(𝑷)

𝒔∈𝑵

) +  𝒏(∑ ∑ 𝑮(𝑷) 𝑮𝒎,𝒏 𝓦𝒎,𝒏

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

) 

                         (𝟑. 𝟏𝟔) 

       Equation (3.16) gives the total power consumption as the sum of the power 

consumption of the clouds, the access network, the metro network and IP over WDM 

core network. This Equation is the sum of equations (3.1) to (3.11) which described 

above. 

Subject to: 

Serving VMs demand: 

∑∑𝑫𝒗,𝒑,𝒅
𝒅∈𝑵𝒑∈𝑷

=∑∑𝑫𝒗,𝒔,𝒅
(𝑪)

𝒅∈𝑵𝒔∈𝑵

  

∀  𝒗 ∈ 𝑽𝑴                                                     (𝟑. 𝟏𝟕) 

Constraint (3.17) ensures that the users demand for a VM in all nodes are served 

by VM  placed in the distributing clouds connected to IP over WDM networks. 

 

Placing VMs in clouds constraint: 

𝑳∑𝑫𝒗,𝒔,𝒅
(𝑪)

𝒅∈𝑵

≥ 𝜹𝒗,𝒔
(𝑪)

 

∀ 𝒔 ∈ 𝑵 , 𝒗 ∈ 𝑽𝑴                                          (𝟑. 𝟏𝟖) 

∑𝑫𝒗,𝒔,𝒅
(𝑪)

𝒅∈𝑵

≤ 𝑳 𝜹𝒗,𝒔
(𝑪)

 

∀ 𝒔 ∈ 𝑵 , 𝒗 ∈ 𝑽𝑴                                           (𝟑. 𝟏𝟗) 

Constraints (3.18) and (3.19) relate the binary variable that indicates whether a VM 

is hosted in a cloud or not, (𝜹𝒗,𝒔
(𝑪)

), to the traffic between users of this VM and the cloud 

(∑ 𝑫𝒗,𝒔,𝒅
(𝑪)

𝒅∈𝑵 ) by setting  𝜹𝒗,𝒔
(𝑪) = 𝟏 if  ∑ 𝑫𝒗,𝒔,𝒅

(𝑪)
𝒅∈𝑵 > 𝟎 and 𝜹𝒗,𝒔

(𝑪) = 𝟎 otherwise. The 

constraints replicate VM 𝒗 to cloud 𝒔 if cloud 𝒔 is selected to serve requests for VM 

𝒗.  

 

Clouds workload: 
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𝑾𝒗,𝒔
(𝑪𝑹)

= 𝜹𝒗,𝒔
(𝑪)
  𝑾𝒗      (𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝑾𝒐𝒓𝒌𝒍𝒐𝒂𝒅 𝑷𝒓𝒐𝒇𝒊𝒍𝒆)  

∀  𝒗 ∈ 𝑽𝑴, 𝒔 ∈ 𝑵                                                                   (𝟑. 𝟐𝟎) 

𝑾𝒗,𝒔
(𝑪𝑹) = (

∑ 𝑫𝒗,𝒔,𝒅
(𝑪)

𝒅∈𝑵

𝒓𝒗 𝒙
 𝑴 )

+ (𝑾𝒗
(𝑹)∑𝑫𝒗,𝒔,𝒅

(𝑪)

𝒅∈𝑵

)       (𝑳𝒊𝒏𝒆𝒂𝒓 𝑾𝒐𝒓𝒌𝒍𝒐𝒂𝒅 𝑷𝒓𝒐𝒇𝒊𝒍𝒆)   

∀  𝒗 ∈ 𝑽𝑴, s ∈ 𝑵                                           (𝟑. 𝟐𝟏) 

𝑾𝒔
(𝑪) = ∑ 𝑾𝒗,𝒔

(𝑪𝑹)

𝒗𝝐𝑽𝑴

 

∀ 𝒔 ∈ 𝑵                                                   (𝟑. 𝟐𝟐) 

Constraint (3.20) calculates the workload of a VM replica under a constant 

workload profile. Constraint (3.21) calculates the workload of a VM replica under a 

linear workload profile. It gives the workload of a VM as a linear function of the 

traffic resulting from serving users of the replica (𝑾𝒗
(𝑹)∑ 𝑫𝒗,𝒔,𝒅

(𝑪)
𝒅∈𝑵 ) plus the 

workload baseline (
∑ 𝑫𝒗,𝒔,𝒅

(𝑪)
𝒅∈𝑵

𝒓𝒗 𝒙
 𝑴 ). Constraint (3.22) calculates the total workload of 

a cloud by summing the workload of VMs hosted in it. 

 

Number of servers in clouds: 

𝑺𝒔
(𝑪) ≥

𝑾𝒔
(𝑪)

𝑺(𝒎𝒂𝒙𝑾)
     

∀ 𝒔 ∈ 𝑵                                                     (𝟑. 𝟐𝟑) 

Constraint (3.23) calculates the number of servers in each cloud based on the CPU 

utilisation. 

 

Number of router ports and switches in cloud constraints: 

𝑹𝒔
(𝑪) ≥

∑ ∑ 𝑫𝒗,𝒔,𝒅
(𝑪)

𝒅∈𝑵𝒗∈𝑽𝑴

𝑹(𝑪𝑩)
     

∀ 𝒔 ∈ 𝑵                                                    (𝟑. 𝟐𝟒) 
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𝑺𝑾𝒔
(𝑪) ≥

∑ ∑ 𝑫𝒗,𝒔,𝒅
(𝑪)

𝒅∈𝑵𝒗∈𝑽𝑴

𝑺𝑾(𝑪𝑩)
 

∀ 𝒔 ∈ 𝑵                                                  (𝟑. 𝟐𝟓) 

Constraints (3.24) - (3.25) calculate the number of routers ports and switches in 

each cloud, respectively. 

 

Traffic flow on IP over WDM core network constraint: 

𝑳𝒔,𝒅 = ∑ 𝑫𝒗,𝒔,𝒅
(𝑪)

𝒗∈𝑽𝑴

 

∀ 𝒔, 𝒅 ∈ 𝑵                                                (𝟑. 𝟐𝟔) 

Constraint (3.26) calculates the demand between the IP over WDM nodes by 

summing the demand due to VMs placed in the clouds. 

Flow conservation constraint in the IP layer: 

∑ 𝑳𝒊,𝒋
𝒔,𝒅

𝒋∈𝑵:𝒊≠𝒋

− ∑ 𝑳𝒊,𝒋
𝒔,𝒅

𝒋∈𝑵:𝒊≠𝒋

= {

 𝑳𝒔,𝒅          𝒊 = 𝒔

− 𝑳𝒔,𝒅        𝒊 = 𝒅

           𝟎             𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆   

 

∀ 𝒔, 𝒅 , 𝒊 ∈ 𝑵 ∶ 𝒔 ≠ 𝒅                                                            (𝟑. 𝟐𝟕) 

Constraint (3.27) represents the flow conservation for IP layer on the IP over WDM 

network. It ensures that the total incoming traffic is equal to the total outgoing traffic 

in all nodes; excluding the source and destination nodes. 

 

Virtual link capacity constraint: 

∑ ∑ 𝑳𝒊,𝒋
𝒔,𝒅

𝒅∈𝑵:𝒔≠𝒅

≤ 𝑪𝒊,𝒋 𝓦
(𝑩) 

𝒔∈𝑵

 

∀ 𝒊 , 𝒋 ∈ 𝑵 ∶ 𝒔 ≠ 𝒅                                                       (𝟑. 𝟐𝟖) 

Constraint (3.28) ensures that the traffic transmitted through a virtual link does not 

exceed its maximum capacity. 

 

Flow conservation constraint in the optical layer: 
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∑ 𝓦𝒎,𝒏
𝒊,𝒋

𝒏∈𝑵𝒎𝒎

− ∑ 𝓦𝒎,𝒏
𝒊,𝒋

𝒏∈𝑵𝒎𝒎

= {

𝑪𝒊,𝒋         𝒎 = 𝒊

−𝑪𝒊,𝒋 
      𝒎 = 𝒋

   𝟎             𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

∀ 𝒊, 𝒋 ,𝒎 ∈ 𝑵 ∶ 𝒊 ≠ 𝒋                                                              (𝟑. 𝟐𝟗)          

Constraint (3.29) represents the flow conservation for the optical layer. It ensures 

that the total number of incoming wavelengths in a virtual link is equal to the total 

number of outgoing wavelengths in all nodes excluding the source and destination 

nodes of the virtual link.   

Physical link capacity: 

∑ ∑ 𝓦𝒎,𝒏
𝒊,𝒋

𝒋∈𝑵:𝒊≠𝒋

≤𝓦 𝑭𝒎,𝒏 

𝒊∈𝑵

 

∀ 𝒎, 𝒏 ∈ 𝑵                                                   (𝟑. 𝟑𝟎) 

𝓦𝒎𝒏 =∑ ∑ 𝓦𝒎,𝒏
𝒊,𝒋

𝒋∈𝑵:𝒊≠𝒋𝒊∈𝑵

 

∀ 𝒎, 𝒏 ∈ 𝑵                                                  (𝟑. 𝟑𝟏) 

Constraints (3.30) and (3.31) represent the physical link capacity limit. Constraint 

(3.30) ensures that the number of wavelengths in virtual links traversing a physical 

link does not exceed the maximum capacity of fibres in the physical link. Constraint 

(3.31) calculates the number of wavelengths in a physical link as the sum of 

wavelength channels in virtual links traversing the physical link. 

3.3 Results and Discussions: 

In this section, the optimal VMs placement over distributed clouds in IP over 

WDMs is investigated considering the AT&T network topology of the US and the BT 

network topology of the UK as use cases. 

3.3.1 AT&T Network Use Case: 

In this section, the optimal VMs placement over AT&T distributed cloud 

architecture is investigated. The AT&T core networks topology is illustrated in Fig. 
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3-3 [144]. The AT&T core network consists of 25 nodes and 54 bidirectional links 

[144]. We consider an architecture where each core node is connected to two PON 

networks through a metro network consisting of a single ethernet switch and two 

metro routers (illustrated in Fig 3.1). The PON access network is considered to 

connect 512 different locations. The total capacity of each OLT is 1280 Gbps [145].  

We start by considering optimising a single VM as the simplest representative 

problem. Then we consider optimisation in a realistic scenario with multiple VMs. 

3.3.1.1 Simple Representative Scenario: 

We investigate how the energy efficient placement of a single VM over cloud-fog 

architecture varies based on three factors; the CPU requirements, download traffic and 

PUE values.  

 

Figure 3-3: AT&T core network topology. 

The impact of the VM workload profile on the VM placement is examined by 

considering constant and linear workload profiles. For the linear workload profile, a 

simple linear profile with no baseline is considered. The workload of VM of a constant 

workload profile and the workload of serving the maximum number of users of VM 

of a linear workload are considered to take one of three workloads: 10%, 50% and 

100% of the server CPU capacity. The users are considered to access VM with one of 

following download rates; 0.1 Mbps, 1 Mbps, 10 Mbps, 20 Mbps, 50 Mbps, 100 Mbps 

or 200 Mbps. Each VM is considered to have 800 users. The PUE is a metric used to 
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determine the total energy consumption required by clouds, fogs or networks 

(including IT cooling, lighting, etc.) in relation to IT infrastructure components. Based 

on a recent study [146], PUE of cloud datacentres are 1.3 and 1.7 for best practice and 

2014 values, respectively. 

The MILP model is solved using the CPLEX solver, as discussed in Section 2.8, 

over the University of Leeds high-performance computer (Polaris) using 16 nodes 

(256 cores) with 16 GByte of RAM per core. Each node comprises two eight cores of 

the Intel 2.6 GHz Sandy Bridge E5-2670 processors [147].  

Table 3-11 to Table 3-14 show the IP over WDM core network, metro network, 

access network and cloud input parameters. 

Table 3-11: IP Over WDM core network input parameters used in the model 

40 Gbps router port power consumption (𝑹(𝑷)) 638W [148] 

40 Gbps transponder power consumption (𝒕(𝑷)) 129W [149] 

40 Gbps regenerator power consumption (𝑮(𝑷)) 114W, reach 2000 km [150] 

EDFA power consumption (𝒆(𝑷)) 11W [151] 

Optical switch power consumption (𝑺𝑾(𝑷)) 85W [152] 

Number of wavelengths in a fibre (𝓦) 32 [20] 

Bit rate of each wavelength (𝓦(𝑩)) 40 Gbps [20] 

Span distance between two EDFAs (𝑺) 80 km [151] 

Network power usage effectiveness (𝒏) 1.5 [6] 

 

Table 3-12: Metro network input parameters used in the model 

Metro aggregation router redundancy (𝑹(𝑴𝑹)) 2 

Metro aggregation router port bit rate (𝑹(𝑴𝑩)) 40 Gbps 

Metro aggregation router port power consumption 

(𝑹(𝑴𝑷)) 

30W [153] 

Metro ethernet switch bit rate (𝑺𝑾(𝑴𝑩)) 600 Gbps  [154] 

Metro ethernet switch power consumption 

(𝑺𝑾(𝑴𝑷)) 

470W [154] 
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Table 3-13: Access network input parameters used in the model 

Number of PON networks in a node (𝑷) 2 

Maximum number of single VM users (𝒙) 800 concurrent users 

Number of ONU devices in a PON network 

(𝑶𝑵𝑼𝒑,𝒅
(𝑵)

) 

512  

Power consumption of ONU device (𝑶𝑵𝑼(𝑷)) 5W [155] 

Number of OLTs in a PON network (𝑶𝑳𝑻𝒑,𝒅
(𝑵)

) 1  

OLT Capacity (𝑶𝑳𝑻(𝑩)) 1280 Gbps [145] 

 

Table 3-14: Clouds input parameters used in the model 

Number of VMs (𝑽) 1  

User download rate (𝒓𝒗) {0.1, 1, 10, 20, 50, 100 or 

200 Mbps} 

Maximum workload of VM (𝑾𝒗) 10%, 50% and 100%  

Server power consumption (𝑺(𝑷)) 333W [156] 

Maximum server workload (𝑺(𝒎𝒂𝒙𝑾)) 100% 

Cloud switch bit rate (𝑺𝑾(𝑪𝑩)) 600 Gbps [154] 

Cloud switch power consumption (𝑺𝑾(𝑪𝑷)) 470W [154] 

Cloud switch redundancy (𝑺𝑾(𝑹)) 2 

Cloud router port bit rate (𝑹(𝑪𝑩)) 40 Gbps 

Cloud router port power consumption (𝑹(𝑪𝑷)) 30 W [153] 

Cloud power usage effectiveness (𝒄) 1.3 or 1.7 [146] 

 

Fig. 3-4 (a), (b) and (c) represent the optimal placement of the VM in distributed 

clouds under 10%, 50% and 100% CPU requirements, respectively, considering the 

best practice PUE value. In each figure, the x-axis represents the VM workload 

profile, the y-axis represents the data rates which range from 0.1 Mbps to 200 Mbps. 

These download rates represents current (0.1 Mbps, 1 Mbps, 10 Mbps and 20 Mbps) 
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and futuristic (50 Mbps, 100 Mbps and 200 Mbps) scenarios of VM-hosted 

applications. The z-axis represents the number of cloud locations in the distributed 

cloud architecture. The placement of VM of linear workload profile is not affected by 

the VM workload as serving users will consume the same power whether centralised 

in a single VM or distributed among multiple replicas of smaller workloads.  For data 

rates ≥ 10 Mbps, VMs are fully replicated considering different workloads. For 

constant workload profile, replicas are less energy efficient, therefore, the number of 

replicas decreases as the VM workload increases. While 10% workload VM under 

200 Mbps is fully replicated, the number of replicas is limited to 6 and 5 under 50% 

and 100% workloads, respectively. The results also show that higher data rates justify 

the creation of more VM replicas. For example, under the linear workload profile, 1 

replica, 4 replicas and 25 replicas are created under 0.1 Mbps, 1 Mbps and ≥ 10 Mbps 

users data rates, respectively.  

Placing the VM in a cloud architecture with higher PUE (2014 PUE), as in Fig. 3-

5, increases the replicas power consumption and therefore limits their number. This is 

clear for the constant workload profile, e.g. VM of 10% workload and 20 Mbps data 

rate is fully replicated considering clouds of best practice PUE, but is limited to 2 

replicas with 2014 PUE. Under the linear workload profile, the impact of increasing 

PUE value is very limited. The only decrease in number of VM replicas can be 

observed at 1 Mbps users data rate (3 replicas instead of 4). 
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(a) 
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(b) 

 

(c) 

Figure 3-4: Optimal VM placement (a) constant profile at 10% of CPU and linear 

profile with peak utilisation of 10%, (b) 50% case, (c) 100% case at different data 

rates considering best practice PUE value (𝒄=1.3). 
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(a) 

 

(b) 
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(c) 

Figure 3-5: Optimal VM placement (a) constant profile at 10% of CPU and linear 

profile with peak utilisation of 10%, (b) 50% case, (c) 100% case at different data 

rates considering 2014 PUE value (𝒄=1.7). 

3.3.1.2 Realistic Scenario 

In this scenario, analysis based on realistic number of users and VM popularity is 

studied. According to Cisco Visual Network Index (VNI) [157], in 2016, the average 

broadband data rate in US is 36 Mbps. Therefore, each OLT is assumed to be able to 

serve ~35k connections (or users). Cisco VNI also reports that 76% of all Internet 

traffic had crossed clouds in 2016. SimilarWeb [158], an online tool which provides 

Internet traffic statistics and analytics, shows that the top 300 applications or websites 

have a 50% share of all traffic. Accordingly, 13k users are considered in each PON 

(~50% of clouds traffic, i.e. 38% of the total traffic) to access the VMs hosting the top 

300 applications or websites. The popularity of these VMs is considered to follow a 

Zipf distribution [159]. To simplify the analysis, VMs’ popularity is divided into 6 

groups as follows; 16%, 5%, 2%, 1%, 0.5% and 0.05% of the total users. The number 

of VMs in each popularity group are 1, 3, 5, 16, 65 and 210, respectively.  

Each VM is assumed to require 50% of the CPU’s server capacity in order to serve 

800 users. Based on literature [59] - [61], [160], [161], a VM can serve 800 users with 

low error rate.  
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VMs of a linear workload are considered to have a workload baseline of 1%, 5% 

or 40% of the total server CPU capacity based on the CPU requirements for state of 

the art applications [59], [61], [160] (e.g. 1% workload baseline for database 

applications, 5% for website applications, and 40% for video games and web 

conference applications). The users are considered to access the VMs with one of the 

following data rates; 1 Mbps (low), 10 Mbps (medium) or 25 Mbps (high). Such data 

rates represent the recommended download speed to access the content of the state of 

the art applications, e.g. 1 Mbps for light web browsing [62] (emails, Google docs 

[63] and websites with lower definition video content [64]), 10 Mbps for applications 

processing high-definition video quality [65] and online multiplayer games [66], and 

25 Mbps for applications processing ultra-high video quality [67].  

The PUE value for the cloud is considered to be 1.5 based on the best practice PUE 

value [146]. For network infrastructure, a typical telecom office PUE is 1.5 [75].  

The optimised VMs placement over the distributed clouds, referred to as Optimised 

clouds (OC) approach, is compared to the AT&T clouds (AT&T) where the VMs are 

placed in nodes 1, 3, 5, 6, 8, 11, 13, 17, 19, 20, 22, and 25 according to AT&T topology 

[144].  

The MILP model is solved using the CPLEX solver over the University of Leeds 

high-performance computer (Polaris) using 16 nodes (256 cores) with 16 GByte of 

RAM per core. Each node comprises two eight cores of the Intel 2.6 GHz Sandy 

Bridge E5-2670 processors [147].  

The Cisco Carrier Routing System 1 (CRS-1) [148] is considered as a core IP 

router. CRS-1 provides 160 Gbps routing capacity in 4 ports while consuming 2551W. 

Therefore, the power consumption of each 40 Gbps router port is 638W. In metro 

network and cloud aggregation routers, we considered the 1.92 Tbps Cisco NCS 5502 

router [153], which is designed for global datacentres and service provider Wide area 

Network (WAN) aggregation networks with 1450W power consumption (30W per 40 

Gbps port). Furthermore, the Cisco Nexus 93180YC-EX [154] switch is considered 

as metro, cloud LAN Ethernet switch with upload capacity of 600 Gbps and power 

rating at 470W. 

In addition to the parameters in Table 3-11 to Table 3-14, Table 3-15 shows the 

additional/modified parameters considered for the following results. 
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Table 3-15: Input parameters used in the model 

Number of VM users in each PON based on 

VMs popularity groups (𝑼𝒗,𝒑,𝒅) 

13,000 users in each PON, six 

VM popularity groups; 

16%, 5%, 2%, 1%, 0.5% and 

0.05%. 

Number of VMs (𝑽) 300 

User download rate (𝒓𝒗) {1, 10 or 25 Mbps} 

Maximum workload of VM (𝑾𝒗) 50%  

Cloud power usage effectiveness (𝒄) 1.3 [146] 

 

a) Linear Workload Profile (1% Workload Baseline): 

Fig. 3-6 shows the power consumption resulting from placing VMs of 1% workload 

baseline under 1, 10 and 25 Mbps user data rates. The savings achieved by the OC 

approach compared to the AT&T clouds (where clouds are fixed in the current 

locations found in the AT&T network) are 2%, 9% and 16%, respectively. 

 

Figure 3-6: The power consumption of different VMs placement approaches 

considering VMs of 1% workload baseline. 

 

Fig. 3-7 shows the optimal VMs placement under the OC approach. Note that the 

different colours indicate the creation of a replica of the VM in the cloud, i.e. not the 

number of replicas. The efficiency of VMs has allowed the creation of multiple 

replicas as the workload is proportional to the number of users served by the VM with 

a limited workload baseline. The efficient workload profile of the VMs has justified 
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the replication of VMs of popularity of greater than 0.5% into 10 clouds for 1 Mbps 

data rates and into 25 clouds (full replication) for 10 Mbps data rates. VMs of 0.05% 

popularity are only replicated into 2 clouds. The high traffic of VMs of 25 Mbps data 

rate allows full replication for the different popularity groups across all clouds. 

 

 
(a) 

 
(b) 

 
(b) 

Figure 3-7: Optimal placement of different VMs popularity groups of 1% workload 

baseline under the OC approach with (a) 1 Mbps data rate per user, (b) 10 Mbps data 

rate per user and (c) 25 Mbps data rate per user. 
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Fig. 3-8 (a), (b) and (c) show the number of servers required to host VMs replicas 

considering the OC approach. The number of servers is a function of the number of 

VMs replicas hosted and their workload. 

 
(a) 

 
 (b) 

 
(c) 

Figure 3-8: Number of servers in OC approach required to host VMs of 1% workload 

baseline with (a) 1 Mbps data rate per user (b) 10 Mbps data rate per user (c) 25 Mbps 

data rate per user. 
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b) Linear Workload Profile (5% Workload Baseline): 

Fig. 3-9 shows that the power consumption resulting from the optimum placement 

of VMs of a linear workload profile with 5% workload baseline. It can be observed 

that increasing the workload baseline to 5% reduces the efficiency of creating more 

VMs replicas. The total savings achieved under the OC approach compared to the 

AT&T cloud are 14%, 10% and 15% under the low, medium and high data rates, 

respectively.  

 

Figure 3-9: The power consumption of different VMs placement approaches 

considering VMs of 5% workload baseline. 

 

Fig. 3-10(a) and (b) illustrate the placements of the VMs of 5% workload baseline 

considering the OC approach, under the low and high data rates, respectively. Under 

the low data rate, five cloud locations are created to host VM replicas of popularity 

≥ 𝟏% whereas, VMs of 0.5% popularity are replicated to three locations. The 

potential network power consumption savings obtained by replicating VMs to 

multiple clouds do not compensate for creating any replica of VMs of 0.05% 

popularity. For VMs of 25 Mbps data rate, the high traffic allows full replication for 

different popularity groups across all clouds, except VMs of 0.05% popularity which 

are placed optimally in 4 cloud locations.  

The number of activated servers in each node under the OC approach shown in Fig. 

3-11 reflects the number and workload of the VMs hosted in the nodes. 
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(a) 

 
(b) 

Figure 3-10: Optimal placement of different VMs popularity groups of 5% workload 

baseline under the OC approach with (a) 1 Mbps data rate per user (b) 25 Mbps data 

rate per user. 

 

 
(a) 
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(b) 

Figure 3-11: Number of servers required to host VMs of 5% workload baseline under 

the OC approach with with (a) 1 Mbps data rate per user (b) 25 Mbps data rate per 

user. 

 

c) Linear Workload profile (40% Workload Baseline): 

Fig. 3-12 shows the power consumption achieved by optimally placing VMs of 

40% workload baseline. It can be observed that increasing the workload baseline to 

40% results in higher power consumption compared to the previous scenarios of 1% 

and 5% workload baselines. The total power savings achieved under the OC approach 

compared to the AT&T cloud are 51%, 38% and 24% under the low, medium and 

high user data rates, respectively.  

 

Figure 3-12: The power consumption of different VMs placement approaches 

considering VMs of 40% workload baseline. 

 



88 
 

Fig. 3-13(a) and (b) show the placements of the VMs of 40% workload baseline 

considering the OC approach under the low and high user data rates, respectively. It 

can be observed that increasing the workload baseline to 40% reduces the efficiency 

of creating more VMs replicas compared to 1% and 5% workload baseline scenarios. 

Under the low user data rate, VMs of ≤ 𝟏% popularity are centralised in one cloud, 

the node of the minimum average hop count to all the AT&T network nodes (node 

11) given that VM users are uniformly distributed among 25 nodes. VMs of ≥ 𝟐% 

popularity are replicated into 2 nodes (node 3 to serve users of the west part of the 

network and node 14 to serve users in the east part). For VMs of 25 Mbps, popularity 

greater than 𝟏% justifies full replication, whereas, VMs of 0.5% and 0.05% popularity 

are replicated to four and one clouds, respectively. 

The number of activated servers in each node under the OC approach shown in Fig. 

3-14 reflects the number and workload of the VMs hosted in the nodes. 

 

(a) 

 

(b) 

Figure 3-13: Optimal placement of different VMs popularity groups of 40% workload 

baseline under the OC approach with (a) 1 Mbps data rate per user (b) 25 Mbps data 

rate per user. 
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(a) 

 

 (b) 

Figure 3-14: Number of servers required to host VMs of 40% workload baseline under 

the OC approach with (a) 1 Mbps data rate per user (b) 25 Mbps data rate per user. 

3.3.2 BT Networks Use Case: 

In this section, the impact of the core network topology on the VMs placement 

over the BT network topology [36] (illustrated in Fig. 3-15) is studied. The BT core 

network topology consists of 20 nodes and 68 bidirectional links. The networks and 

cloud architecture are considered to follow the same architecture of the previous 

subsection (illustrated in Fig 3.1). 

According to Cisco VNI [157], in 2017, the average broadband data rate in the UK 

was 33.7 Mbps. Consequently, each OLT is assumed to be able to serve ~38k 

connections (or users). Cisco VNI also reported that in 2017, 75% of all UK Internet 

traffic had crossed clouds. SimilarWeb analytics tools [158] reports that the top 300 

applications/websites have a share of 66% of all traffic. Accordingly, 18.8k users is 

considered in each PON (~66% of clouds traffic, i.e. 49% of the total traffic) to access 
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the VMs hosting the top 300 applications/websites. The popularity of these 

applications / websites VMs is considered to follow a Zipf distribution [40] with the 

same popularity groups discussed  in the previous subsection. The same parameters 

of network and cloud components in previous subsection are considered.   

The Optimised Clouds (OC) approach, is compared to the single clouds (SC) where 

all the VMs are placed in node 6 (City of London). Node 6 is selected to host the cloud 

in SC approach as major cloud operators base their central cloud in the UK in London 

(e.g. Microsoft Azure [45], Amazon AWS [46] and Google Cloud [47]). Similar to 

the previous section, linear VM workloads with 1%, 5% and 40% baseline are studied. 

 

 
Figure 3-15: BT core network topology. 

 

a) Linear Workload Profile (1% Workload Baseline): 

Fig. 3-16 shows the power consumption resulting from placing VMs of 1% 

workload baseline considering the OC and SC approaches under 1, 10 and 25 Mbps 

users data rates. The power savings achieved by the OC approach compared to the SC 

approach are 2%, 26% and 37% under the low, medium and high data rates, 

respectively. 
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Figure 3-16: The power consumption of different VMs placement approaches 

considering VMs of 1% workload baseline. 

 

Fig. 3-17 shows the optimal placement of different VMs popularity groups 

considering the OC approach. The efficient workload profile of VMs has justified the 

creation of 7 cloud locations under 1 Mbps user data rate. However, in these locations, 

VMs of 0.05% popularity have only justified the creation of replica copies only in a 

single node. The medium and high traffic of VMs with 10 and 25 Mbps data rates 

allow full replication for all VMs popularity groups across all cloud locations. 

 

 

(a) 
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 (b)  

Figure 3-17: Optimal placement of different VMs popularity groups of 1% workload 

baseline under the OC approach with (a) 1 Mbps data rate per user (b) 10 and 25 

Mbps data rates per user. 

 

b) Linear Workload profile (5% Workload Baseline): 

Fig. 3-18 shows the power consumption resulting from placing VMs of 5% 

workload baseline considering the two placement approaches under 1, 10 and 25 

Mbps users data rates. The savings achieved by the OC approach compared to the SC 

approach are 5%, 25% and 34% under the low, medium and high data rates, 

respectively. 

 

Figure 3-18: The power consumption of different VMs placement approaches 

considering VMs of 5% workload baseline. 

 

Fig. 3-19 shows the optimal placement of different VM popularity groups of 5% 

workload baseline under the OC approach. VMs of 1 Mbps have justified the creation 

of 4 cloud locations under 1 Mbps user data rate. However, in these locations, VMs 

of 0.05% popularity have only justified the creation of a copy in a single node. The 
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medium and high traffic of VMs with 10 and 25 Mbps data rate allow full distribution 

for different popularity groups across all cloud locations except VMs with 0.05% 

popularity, which has been placed in 2 and 5 cloud locations, respectively. 

 
(a) 

 
(b) 

 
(c) 

Figure 3-19: Optimal placement of different VMs popularity groups of 5% workload 

baseline under the OC approach with (a) 1 Mbps (b) 10 Mbps and (c) 25 Mbps data 

rate per user. 

c) Linear Workload profile (40% workload baseline): 

Fig. 3-20 shows the power consumption resulting from placing VMs of 40% 

workload baseline considering the two placement approaches under 1, 10 and 25 

Mbps users data rates. Increasing the workload baseline to 40% has resulted in 
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increasing the total power consumption compared to 1% and 5% workload baseline 

scenarios. The savings achieved by the OC approach compared to the SC approach 

are 2%, 16% and 26% under the low, medium and high data rates, respectively. 

 
Figure 3-20: The power consumption of different VMs placement approaches 

considering VMs of 40% workload baseline. 

Fig. 3-21 shows the optimal placement of different VM popularity groups of 40% 

workload baseline under the OC approach. VMs of 1 Mbps have justified the creation 

of 4 cloud locations under 1 Mbps user data rate. However, in these locations, VMs 

of 0.05% popularity have only justified the creation of replica copies in a single node. 

The medium and high data rate of VMs with 10 and 25 Mbps data rate allow full 

distribution for VMs with ≥ 𝟐% and ≥ 𝟏%, respectively, whereas, VMs of less 

popularity have been replicated to few locations in distributed clouds over IP over 

WDM networks. 

 

 

(a) 
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(b) 

 
(c) 

Figure 3-21: Optimal placement of different VMs popularity groups of 40% workload 

baseline under the OC approach with (a) 1 Mbps (b) 10 Mbps and (c) 25 Mbps data 

rate per user. 

The VMs placement in the BT networks discussed above highlights the same trends 

observed in the AT&T network. The longer distance between AT&T nodes does not 

result in high power consumption as regenerators and EDFAs consume relatively low 

power.  

3.4 EEVM-C Heuristic 

The VMs placement over distributed clouds is NP-Hard. Therefore, the MILP 

model cannot be used to obtain solutions in real time. A real time heuristic referred to 

as energy-efficient VMs placement heuristic for the distributed clouds (EEVM-C) is 

developed to mimic the MILP model behaviour. The optimal solutions obtained from 

the MILP model can offer a benchmark to evaluate the performance of the heuristics 

developed. The reasons for adopting this implementation are to (i) establish a 

classification criterion for different VMs based on their different communication and 
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processing requirements and (ii) reduce the real-time implementation required to find 

the optimal VM placement in a real-time implementation. 

 

A supervised learning algorithm is adopted in this heuristic. Supervised learning is 

a branch of machine learning where an input is matched with an output based on a 

sample of input-output pairs. VMs are classified into different types based on user 

download rates, VM workloads and VMs popularity. The optimum placement of 

different VM types are found in an offline phase. VMs are matched to their type in 

real time (online phase) and placed according to the placement obtained in the offline.  

The flowchart of the offline phase is shown in Fig. 3-22 (a). The offline phase starts 

by classifying VMs based on their popularity, CPU usage and user data rate. The most 

energy efficient placement for each possible numbers of replicas, i.e. the most energy 

efficient placement for 1 replica, 2 replicas…N replicas (N is the number of nodes in 

the network), are found through an exhaustive search over all the possible placements 

for this number of replicas. These will create a search space, defined as 𝑷, to find the 

optimum placement for different VMs types. Note that the search space is a function 

of the network topology not the VM type.  For each VM type, each placement in P is 

examined. The traffic between users and VMs resulting from this placement are routed 

based on minimum hop routing and the workload of VMs of a linear workload profile 

is calculated based on the number of users each VM serves. The network power 

consumption and the cloud power consumption are calculated and the optimum 

placement of a VM type is the placement that results in the minimum total power 

consumption. 

In the online phase, each VM is matched to a type and placed according to the 

placement obtained in the offline phase. Traffic demands resulting from this 

placement are routed on the core network using multi-hop routing [19] and workload 

of clouds where the VM replicas are placed is updated. After placing all VMs, the 

total power consumption of the distributed clouds is calculated. 
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(a) 
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(b)  

Figure 3-22: Flow chart of (a) offline phase and (b) online phase of EEVM-C 

heuristic algorithm. 

Fig. 3-23 compares the total power consumption resulting from placing VMs using 

the EEVM-C heuristic with the MILP model placement considering the AT&T core 

network use case. Using 2.5 GHz Intel Core i7 PC with 16 GB Memory, the EEVM-

C heuristic took 51 seconds to run the offline phase and 2 seconds to run the online 
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phase. The heuristic is evaluated under 1%, 5% and 40% workload baseline as well 

as 1 Mbps, 10 Mbps and 25 Mbps user data rates. In comparison, the MILP took 1-2   

days to run. 

Clearly, the power consumption of the MILP and the EEVM-CF are comparable. 

The gap between the EEVM-C and the MILP model is less than 2% of the total power 

consumption. This small gap is due to the multi hop non-bypass in the EEVM-C 

heuristic which is less efficient than the MILP model in routing traffic.  

 

Figure 3-23: Total power consumption of MILP model compared with EEVM-C 

heuristic considering VMs linear workload profile with 1%, 5% and 40% CPU 

workload baseline and 1, 10 and 25 Mbps users data rates. 

3.5 Summary 

This chapter has presented a framework to find the optimum placement of VMs 

over distributed cloud datacentres hosted in IP over WDM networks. The optimisation 

is performed using a Mixed Integer Linear Programming (MILP) model considering 

AT&T and BT networks as use case scenarios. The results showed VMs with linear 

workload profile can be optimally replicated to distributed clouds as such VMs can 

be sliced efficiently (CPU load is linear function of number of users) to smaller 

replicas based on the served number of users. In contrast, replicating copies of a VM 

of constant linear workload results in high power consumption and therefore limits 
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the number of replicas. Also, it can be observed that at low users data rate, the VMs 

are optimally placed in one or few clouds, whereas at high data rates, multiple replicas 

of each VM are distributed over the distributed clouds to serve users either locally or 

within a single hop to reduce the network power consumption resulting from high user 

data rates.  

In general, the results show that high traffic of highly popular VMs and VMs with 

high user data rates make network power consumption more important and 

consequently determine the placement. The results also indicate the tendency to 

distribute VMs with linear workload profile compared to VMs with constant 

workload. Furthermore, the results show that at high PUE, processing power 

consumption becomes more dominant, which makes it play a bigger role in VMs 

placement.  

The total power savings achieved are up to 51% and 38%, compared to the power 

consumption of the traditional cloud locations in AT&T and BT core network 

topologies, respectively. Based on the model insights, an energy-efficient VM 

placement heuristic for the distributed cloud (EEVM-C) is developed with 

comparable energy efficiency to the MILP results. 
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Chapter 4: The Impact of Inter-Virtual 

Machines Traffic on Energy Efficient Virtual 

Machines Placement 

4.1 Introduction 

The inter-VM traffic is a major contributor to the east-west traffic (server to 

server traffic) which is expected to be responsible for 85% of the global cloud traffic 

by 2021 [62]. Designing energy efficient cloud datacentres requires the co-

optimisation of both north-south traffic (user-datacentre traffic) and east-west traffic 

(inter datacentre traffic). For example, migrating an application VM, which has an 

inter-traffic with a database VM, to another datacentre in order to satisfy the 

increasing users demand may increase the burden on the networking infrastructure 

connecting datacentres. 

This chapter considers the problem of optimising the placement of VMs in geo-

distributed clouds in IP over WDM core networks, as seen in Fig. 4-1, so that the total 

power consumption is minimised. The investigation takes into consideration the 

cooperation traffic between different VMs and synchronisation traffic between 

replicas of the same VM in addition to the download traffic from VMs to users. The 

problem is formulised as a MILP model. 

For cooperation traffic, in addition to sending traffic to users, each VM has another 

VM to cooperate with (e.g. traffic between an application VM and a database VM). 

The objective is to optimise the placement of VMs on distributed clouds and to create 

an optimum number of replicas that result in minimum power consumption. For 

synchronisation traffic, VM replicas can be created to serve distributed users, 

however, these replicas need to be synchronised to each other to keep the content at 

each location up to date (e.g. social media where a user creates a post/webpage and 

posts it in the nearest VM replica, then, all other replicas need to be synchronised). 

A heuristic is also developed to validate the model results and provide real time 

solutions. 
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Figure 4-1: Geo-distributed clouds over an IP over WDM network with an 

illustration of VM-users traffic and inter-VM traffic 

4.2 MILP Model 

In this section, we extend the model developed in the previous chapter. The model 

in the previous chapter optimises the placement of VMs so the total power 

consumption is minimised considering download traffic between users and VMs 

only. In this chapter, the model is extended to study the impact of inter-VM traffic 

on the energy efficient placement of VMs considering two CPU workload profiles; 

constant profile or linear profile.  
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In addition to the parameters, variables and constraints introduced in Chapter 3, 

the parameters and variables in Tables 4-1 and Table 4-2 are introduced to model 

the inter-VM traffic.  

 

Table 4-1:  List of parameters used in the MILP model to model inter-VM traffic 

Parameter Description 

𝒗 𝒂𝒏𝒅 𝒚 Indices of VMs. 

𝑪𝑽𝒗,𝒚 𝑪𝑽𝒗,𝒚 =1, if there is cooperating traffic between VM 𝒗 and VM 𝒚, 

otherwise 𝑪𝑽𝒗,𝒚 =0. 

𝑪𝑽𝑴𝒗,𝒚 Cooperation traffic between VM 𝒗 and VM 𝒚. 

𝑺𝑽𝑴𝒗 Synchronisation traffic between VM 𝒗 replicas. 

 

Table 4-2:  List of variables used in the MILP model to model inter-VM traffic 

Parameter Description 

Ѱ𝒅 Download traffic of cloud hosted in node 𝒅. 

Ф𝒗,𝒚,𝒔,𝒅 Ф𝒗,𝒚,𝒔,𝒅 = 𝟏, if VM 𝒗 located in node 𝒔 is a candidate to cooperate with 

VM 𝒚 located in node 𝒅, otherwise Ф𝒗,𝒚,𝒔,𝒅 = 𝟎. 

б𝒗,𝒚,𝒅 б𝒗,𝒚,𝒅 = 𝟏, if cooperation traffic exists from VM 𝒗 located at any node 

to VM 𝒚 located in node 𝒅, otherwise б𝒗,𝒚,𝒅 = 𝟎. 

𝝌𝒗,𝒚,𝒔,𝒅 𝝌𝒗,𝒚,𝒔,𝒅 = 𝟏, if cooperation traffic exists from VM 𝒙 located in node 𝒔 

to VM 𝒚 located in node 𝒅, otherwise 𝝌𝒗,𝒚,𝒔,𝒅 = 𝟎. 

𝜷𝒗,𝒚,𝒔,𝒅 

𝜶𝒗,𝒚,𝒔,𝒅 

Binary variables set to 1 only if one or two of the following 

conditions are satisfied; there is a cooperating traffic from VM 𝒗 to 

VM 𝒚, VM 𝒗 is located in node 𝒔 or VM 𝒚 is located in node 𝒅, 

otherwise 𝜷𝒗,𝒚,𝒔,𝒅 and 𝜶𝒗,𝒚,𝒔,𝒅 are set to 0. 

𝑰𝑪𝒗,𝒚,𝒔,𝒅 Cooperating traffic from VM 𝒗 to VM 𝒚 located in nodes 𝒔 and 𝒅. 

Ѳ𝒗,𝒔,𝒅 Ѳ𝒗,𝒔,𝒅 = 𝟏, if VM 𝒗 replicas are located in nodes 𝒔 and 𝒅, respectively, 

otherwise Ѳ𝒗,𝒔,𝒅 = 𝟎. 

𝝋𝒗,𝒔,𝒅 𝝋𝒗,𝒔,𝒅 = 1, if only one VM 𝒗 replica is located in either node 𝒔 or node 

𝒅, otherwise 𝝋𝒗,𝒔,𝒅= 0. 

𝑰𝑺𝒗,𝒔,𝒅 Synchronisation traffic between VM 𝒗  replicas located in nodes 

𝒔 𝒂𝒏𝒅 𝒅, respectively. 

𝑹𝒅
(𝑰𝑽)

 Number of router ports in node 𝒅 that aggregate the traffic to clouds. 

 

Under the non-bypass approach [19], the IP over WDM network power 

consumption is composed of (below we re-introduce some of the equations from our 

model developed in Section 3.2 for completeness): 
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• The power consumption of router ports:  

𝒏(∑𝑹(𝑷) 𝑹𝒔
(𝑨𝑪)

𝒔∈𝑵

+∑𝑹(𝑷)(𝑹𝒅
(𝑨𝑬)

+ 𝑹𝒅
(𝑰𝑽)

)

𝒅∈𝑵

+ ∑ ∑ 𝑹(𝑷)

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

𝓦𝒎𝒏) (𝟒. 𝟏) 

Equation (4.1) calculates the power consumption of router ports including the 

power consumption of router ports in each core node that aggregate the traffic from 

the clouds (∑ 𝑹(𝑷) 𝑹𝒔
(𝑨𝑪)

𝒔∈𝑵 ), the power consumption of router ports in each core 

node that aggregate the traffic from/to metro routers (∑ 𝑹(𝑷)𝑹𝒅
(𝑨𝑬)

𝒅∈𝑵 ), the power 

consumption of router ports in each core node that aggregate the traffic to clouds 

due to inter-VM traffic (∑ 𝑹(𝑷)𝑹𝒅
(𝑰𝑽)

𝒅∈𝑵 )  and the power consumption of 

intermediate router ports that transmit the traffic between the source and destination 

nodes (∑ ∑ 𝑹(𝑷)𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵 𝓦𝒎𝒏). 

Where total number of aggregation ports in a core node due to cloud download 

traffic calculated as: 

𝑹𝒅
(𝑰𝑽)

=
𝟏

𝑩
   Ѱ𝒅                                                                                      

    ∀ 𝒅 ∈ 𝑵                                                                                     (𝟒. 𝟐) 

 

• The power consumption of transponders:  

𝒏(∑ ∑ 𝒕(𝑷) 𝓦𝒎𝒏

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

)                                         (𝟒. 𝟑) 

• The power consumption of EDFAs: 

𝒏(∑ ∑ 𝒆(𝑷) 𝑭𝒎𝒏 𝑨𝒎𝒏
𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

)                                   (𝟒. 𝟒) 

• The power consumption of optical switches: 

𝒏(∑𝑺𝑾𝒔
(𝑷)

𝒔∈𝑵

)                                                        (𝟒. 𝟓) 

Equation (4.5) calculates the power consumption of of optical switches located in 

each node 𝒔. Each node IP routers are connected to optical switches which are 
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connected by optical fibre links. The optical layer (including optical switches and 

fibre links) provides the large bandwidth required for communication between IP 

routers. 

• The power consumption of regenerators: 

𝒏(∑ ∑ 𝑮(𝑷) 𝑮𝒎,𝒏 𝓦𝒎,𝒏

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

)                              (𝟒. 𝟔) 

 

The clouds power consumption is composed of:  

1) Power consumption of cloud servers: 

𝒄 ∑𝑺𝒔
(𝑪) 𝑺(𝑷)

𝒔∈𝑵

                                                             (𝟒. 𝟕) 

 

2) Power consumption of cloud routers and switches:  

𝒄(( 𝑹(𝑪𝑷)
𝟏

𝑹(𝑪𝑩)
(∑∑𝑳𝒔,𝒅 +∑Ѱ𝒅

𝒅∈𝑵𝒅∈𝑵𝒔∈𝑵

))

+ 𝑺𝑾(𝑹) 𝑺𝑾(𝑪𝑷)
𝟏

𝑺𝑾(𝑪𝑩)
(∑ ∑ 𝑳𝒔,𝒅 +∑Ѱ𝒅

𝒅∈𝑵𝒅∈𝑵:𝒔≠𝒅𝒔∈𝑵

)

+ ( 𝑺𝑾(𝑹) 𝑺𝑾(𝑪𝑷)
𝟏

𝑺𝑾(𝑪𝑩)
∑ ∑ ∑ ∑ 𝑰𝑪𝒗,𝒚,𝒔,𝒅

𝒚∈𝑽𝑴𝒗∈𝑽𝑴𝒅∈𝑵:𝒔=𝒅𝒔∈𝑵

))                          (𝟒. 𝟖) 

 

Where the cloud traffic is calculated as: 

 

Cloud upload traffic: 

 𝑳𝒔,𝒅 = ∑ 𝑫𝒗,𝒔,𝒅
(𝑪)

+ ∑ ∑ 𝑰𝑪𝒗,𝒚,𝒔,𝒅
𝒚∈𝑽𝑴𝒗∈𝑽𝑴

+ ∑ 𝑰𝑺𝒗,𝒔,𝒅
𝒗∈𝑽𝑴𝒗∈𝑽𝑴

 

∀ 𝒔, 𝒅 ∈ 𝑵, 𝒔 ≠ 𝒅                                                           (𝟒. 𝟗) 

Cloud download traffic: 
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   Ѱ𝒅 =∑ ∑ ∑ 𝑰𝑪𝒗,𝒚,𝒔,𝒅
𝒚∈𝑽𝑴𝒗∈𝑽𝑴𝒔∈𝑵

+∑ ∑ 𝑰𝑺𝒗,𝒔,𝒅
𝒗∈𝑽𝑴𝒔∈𝑵

      

   ∀ 𝒅 ∈ 𝑵 , 𝒔 ≠ 𝒅                                                   (𝟒. 𝟏𝟎) 

 

The model is defined as follows: 

The objective: Minimise total power consumption given as:  

𝒏(∑𝑹(𝑷) 𝑹𝒔
(𝑨𝑪)

𝒔∈𝑵

+∑𝑹(𝑷)(𝑹𝒅
(𝑨𝑬)

+ 𝑹𝒅
(𝑰𝑽)

)

𝒅∈𝑵

+ ∑ ∑ 𝑹(𝑷)

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

𝓦𝒎𝒏) 

+ 𝒏(∑ ∑ 𝒕(𝑷) 𝓦𝒎𝒏

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

) 

+ 𝒏(∑ ∑ 𝒆(𝑷) 𝑭𝒎𝒏 𝑨𝒎𝒏
𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

)                                    

+ 𝒏(∑𝑺𝑾𝒔
(𝑷)

𝒔∈𝑵

) 

+ 𝒏(∑ ∑ 𝑮(𝑷) 𝑮𝒎,𝒏 𝓦𝒎,𝒏

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

)                               

+ 𝒄 ∑𝑺𝒔
(𝑪) 𝑺(𝑷)

𝒔∈𝑵

     

+ 𝒄(( 𝑹(𝑪𝑷)
𝟏

𝑹(𝑪𝑩)
(∑∑𝑳𝒔,𝒅 +∑Ѱ𝒅

𝒅∈𝑵𝒅∈𝑵𝒔∈𝑵

))

+ 𝑺𝑾(𝑹) 𝑺𝑾(𝑪𝑷)
𝟏

𝑺𝑾(𝑪𝑩)
(∑ ∑ 𝑳𝒔,𝒅 +∑Ѱ𝒅

𝒅∈𝑵𝒅∈𝑵:𝒔≠𝒅𝒔∈𝑵

)

+  ( 𝑺𝑾(𝑹) 𝑺𝑾(𝑪𝑷)
𝟏

𝑺𝑾(𝑪𝑩)
∑ ∑ ∑ ∑ 𝑰𝑪𝒗,𝒚,𝒔,𝒅

𝒚∈𝑽𝑴𝒗∈𝑽𝑴𝒅∈𝑵:𝒔=𝒅𝒔∈𝑵

))                          

                                                             (𝟒. 𝟏𝟏)  
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Equation (4.11) calculates the total power consumption of IP over WDM networks 

and clouds. 

 Subject to: (3-17) – (3-22), (3-22) – (3-29), and the following: 

Traffic flow between cooperating VMs: 

𝟑 Ф𝒗,𝒚,𝒔,𝒅 + 𝜶𝒗,𝒚,𝒔,𝒅 + 𝜷𝒗,𝒚,𝒔,𝒅  = 𝜹𝒗,𝒔
(𝑪)
+ 𝜹𝒚,𝒅

(𝑪)
+ 𝑪𝑽𝒗,𝒚  

∀𝒔, 𝒅 ∈ 𝑵, 𝒗, 𝒚 ∈ 𝑽𝑴: 𝒗 ≠ 𝒚                                  (𝟒. 𝟏𝟐)          

 

∑Ф𝒗,𝒚,𝒔,𝒅

𝒔∈𝑵

≥ б𝒗,𝒚,𝒅     

∀ 𝒅 ∈ 𝑵, 𝒗, 𝒚 ∈ 𝑽𝑴:𝒗 ≠ 𝒚                                       (𝟒. 𝟏𝟑)    

 

     ∑Ф𝒗,𝒚,𝒔,𝒅

𝒔∈𝑵

≤ 𝑳 б𝒗,𝒚,𝒅  

∀ 𝒅 ∈ 𝑵, 𝒗, 𝒚 ∈ 𝑽𝑴:𝒗 ≠ 𝒚                                    (𝟒. 𝟏𝟒)         

 

∑𝝌𝒗,𝒚,𝒔,𝒅
𝒔∈𝑵 

= б𝒗,𝒚,𝒅     

∀ 𝒅 ∈ 𝑵, 𝒗, 𝒚 ∈ 𝑽𝑴:𝒗 ≠ 𝒚                                      (𝟒. 𝟏𝟓)           

 

Ф𝒗,𝒚,𝒔,𝒅  ≥ 𝝌𝒗,𝒚,𝒔,𝒅       

∀ 𝒅 ∈ 𝑵, 𝒗, 𝒚 ∈ 𝑽𝑴:𝒗 ≠ 𝒚                                    (𝟒. 𝟏𝟔) 

 

𝑰𝑪𝒗,𝒚,𝒔,𝒅 = 𝝌𝒗,𝒚,𝒔,𝒅 𝑪𝑽𝑴𝒗,𝒚 

∀𝒔, 𝒅 ∈ 𝑵: 𝒔 ≠ 𝒅, 𝒗, 𝒚 ∈ 𝑽𝑴:𝒗 ≠ 𝒚                                    (𝟒. 𝟏𝟕) 

 

𝑰𝑪𝒗,𝒚,𝒔,𝒅 = 𝝌𝒗,𝒚,𝒔,𝒅 𝑪𝑽𝑴𝒗,𝒚 

∀𝒔, 𝒅 ∈ 𝑵: 𝒔 = 𝒅, 𝒗, 𝒚 ∈ 𝑽𝑴:𝒗 ≠ 𝒚                                  (𝟒. 𝟏𝟖) 

Constraints (4.12) to (4.18) represent the traffic flow between different 
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cooperating VMs (𝒗 ≠ 𝒚). Constraint (4.12) ensures that Ф𝒗,𝒚,𝒔,𝒅 = 𝟏 if VM 𝒗 is 

located in node 𝒔 (i.e. 𝜹𝒗,𝒔
(𝑪)
), VM 𝒚 is located in node 𝒅 (i.e. 𝜹𝒗,𝒅

(𝑪)
) and there is 

cooperation traffic between them (i.e. 𝑪𝑽𝒗,𝒚 = 𝟏), otherwise  Ф𝒗,𝒚,𝒔,𝒅 = 𝟎 . 

Constraints (4.13) and (4.14) ensure that  б𝒗,𝒚,𝒅 = 𝟏 if there is at least one 

cooperation traffic between VMs 𝒗 located at any node and 𝒚 located at node 𝒅 

(∑ Ф𝒗,𝒚,𝒔,𝒅𝒔∈𝑵 = 𝟏), б𝒗,𝒚,𝒅 = 𝟎 otherwise. Constraint (4.15) ensures that only one 

replica of VM 𝒗 is selected to cooperate with VM 𝒚 at node 𝒅. Constraint (4.16) 

ensures that the node selected to provide VM 𝒚 with cooperation traffic from VM 

𝒗 contains a replica of 𝒗 which is indicated by variable Ф𝒗,𝒚,𝒔,𝒅. The aim of 

constraints (4.13) to (4.16) is to ensure that each replica of a VM receives 

cooperation only from a single replica of 𝑽𝑴 𝒗. Constraint (4.17) calculates the 

cooperation traffic between VMs 𝒗 and 𝒚, if they are located in different nodes, 

whereas, Constraint (4.18) calculates the cooperation traffic between VMs, if they 

are located in the same node. 

 

VM replicas synchronisation traffic: 

𝟐 Ѳ𝒗,𝒔,𝒅 +𝝋𝒗,𝒔,𝒅  = 𝜹𝒗,𝒔
(𝑪)
+ 𝜹𝒗,𝒅

(𝑪)
 

       ∀𝒔, 𝒅 ∈ 𝑵: 𝒔 ≠ 𝒅, 𝒗 ∈ 𝑽𝑴                                      (𝟒. 𝟏𝟗)       

 

𝑰𝑺𝒗,𝒔,𝒅 = Ѳ𝒗,𝒔,𝒅 𝑺𝑽𝑴𝒗 

      ∀𝒔, 𝒅 ∈ 𝑵: 𝒔 ≠ 𝒅, 𝒗 ∈ 𝑽𝑴                                    (𝟒. 𝟐𝟎)          

   Constraints (4.19) and (4.20) represent the synchronisation traffic among VM 𝒗 

replicas. Constraint (4.19) ensures that Ѳ𝒗,𝒔,𝒅=1 if VM 𝒗 replicas are located in node 

𝒔 (i.e. 𝜹𝒗,𝒔
(𝑪)

) and node 𝒅 (i.e. 𝜹𝒗,𝒅
(𝑪)
), respectively, otherwise Ѳ𝒗,𝒔,𝒅 = 𝟎. Constraint 

(4.120) calculates the synchronisation traffic sent by VM 𝒗 replica in node 𝒔 to 

another replica in node 𝒅. 

4.3 Results and Discussions 
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The NSFNET network, depicted in Fig. 4-2, is considered as an example of a 

core network topology to optimise the placement of 1500 VMs in clouds located in 

its core nodes. VM users are uniformly distributed over the NSFNET 14 nodes. 

Each VM is considered to have 800 users. The users are considered to access the 

VMs with a download rate uniformly distributed between two data rates; 5 and 25 

Mbps. The workload of VMs of a constant workload profile and the workload of 

serving the maximum number of users of VMs of a linear workload are uniformly 

distributed among three workloads: 10%, 50% and 100% of the server CPU 

capacity. VMs of a linear workload are considered to have a workload baseline of 

1% or 5% of the server CPU capacity.  

Each VM is considered to cooperate with 50% of the other VMs selected 

randomly, whereas, for VM replicas synchronisation, all VM replicas exchange 

traffic. The placement is studied under three inter-VM traffic scenarios: low traffic 

of 100 Mbps, medium traffic of 1 Gbps and high traffic of 5 Gbps [71]. VMs in 

cloud datacentres are hosted in IBM Power System S814 server [165], which has 

eight cores each with 3.72 GHz IBM power8 processor, 128 GB memory, and 1.55 

TB storage while consuming 333W. Note that, the placement of VMs in a server is 

optimised so the I/O traffic rate is not violated. In IP over WDM networks, each 

router port operates at 40 Gbps while consuming 825W [75]. In the cloud datacentre 

network, the Juniper MX204 router [166] is considered as an aggregation router, 

which consumes 0.9W/Gbps (36 watt for each 40 Gbps router port). The Juniper 

EX4550 Ethernet switch [167] is considered as cloud LAN switch with power 

rating of 9W for 10GbE interface. Table 4-3 shows the input data of the evaluation 

scenarios. In the following results, the VMs placement and the power consumption 

associated with optimisation scenarios considering cooperation and 

synchronisation inter-VM traffic are compared with those of optimisations 

scenarios ignoring them.  
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Figure 4-2: NSFNET topology. 

 

Table 4-3: Model input parameters 

40 Gbps router port power consumption (𝑹(𝑷)) 825W [75] 

40 Gbps transponder power consumption (𝒕(𝑷)) 167W [75] 

40 Gbps regenerator power consumption (𝑮(𝑷)) 334W, reach 2500 km 

[75] 

EDFA power consumption (𝒆(𝑷)) 55W [75] 

Optical switch power consumption (𝑺𝑾(𝑷)) 85W [75] 

Number of wavelengths in a fibre (𝓦) 32 [75] 

Bit rate of each wavelength (𝓦(𝑷)) 40 Gbps [75] 

Span distance between two EDFAs (𝑺) 80 km 

Network power usage effectiveness (𝒏) 1.5 [6] 

Number of VM users (𝒙) 800 users per VM 

User Download rate (𝒓𝒗) {5 and 25 Mbps}  

Cooperation traffic from VM 𝒗 to VM 𝒚 (𝑪𝑽𝑴𝒗,𝒚) 100 Mbps, 1 Gbps or 

5 Gbps 

Synchronisation traffic between VM 𝒗 replicas (𝑺𝑽𝑴𝒗) 100 Mbps, 1 Gbps or 

5 Gbps 

Cloud router port bit rate (𝑹(𝑪𝑩)) 40 Gbps [166] 

Cloud router port power consumption (𝑹(𝑪𝑷)) 36W [166] 

Cloud switch bit rate (𝑺𝑾(𝑪𝑩)) 10 Gbps [167] 

Cloud switch power consumption (𝑺𝑾(𝑪𝑷)) 9W [167] 
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Cloud switch redundancy (𝑺𝑾(𝑹)) 2 

Cloud power usage effectiveness (𝒄)  1.7 [143] 

Number of VMs (𝑽) 1500 VMs 

Server power consumption (𝑺(𝑷)) 333W [156] 

Maximum server workload (𝑺(𝒎𝒂𝒙𝑾)) 100% 

VM workload baseline in linear profile (𝑴) 1% or 5% 

Set of VMs workload (𝑾𝒗) {10, 50 and 100} % 

4.3.1 Linear Workload (1% Workload Baseline): 

Fig. 4-3 shows the optimal placement of VMs under 1% linear workload profile 

considering users download traffic only. VMs of 5 Mbps download rate and VMs 

of 25 Mbps download rate are fully replicated in all cloud locations. The optimal 

placement of VMs considering inter-VM traffic of 100 Mbps in addition to the user 

download traffic is shown in Fig. 4-4.  

We separately examine the impact of cooperation traffic (Fig. 4-4 (a)) and 

synchronisation traffic (Fig. 4-4 (b)) and show the placement resulting from 

considering them jointly (Fig. 4-4 (c)). Fig. 4-4 (a) shows that taking cooperation 

traffic of 100 Mbps into consideration while placing VMs has no impact on the 

optimal VMs placement compared to the placement in Fig. 4-3 as full replication 

of VMs in all datacentres will confine the cooperation traffic inside the datacentre. 

Fig 4-4 (b) shows that the existence of synchronisation traffic has limited the 

number of replicas of each VM into two and four replicas under 5 and 25 Mbps 

download rates, respectively as traffic among VM replicas distributed to all clouds 

will highly burden the network. The optimum placement when considering 

cooperation and synchronisation traffic jointly (Fig. 4-4 (c)) is a trade-off between 

the placement in Fig. 4-4 (a) and (b) with the impact of synchronisation traffic 

dominating. 
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Figure 4-3: The optimal placement of VMs under 1% workload baseline considering 

users traffic only. 

 
(a) 
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(b) 

 
(c) 

Figure 4-4: The optimal placement of VMs under 1% workload baseline considering 

users traffic and 100 Mbps a) cooperation traffic, b) synchronisation traffic, c) total 

inter-VM traffic. 

 

In Fig. 4-5, the power consumptions of different VMs placement and inter-VM 

traffic scenarios are compared as follows; 
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• Cooperation traffic: power consumption of users’ download traffic and 

cooperation traffic of VMs. 

• Synchronisation traffic: power consumption of users’ download traffic and 

synchronisation traffic of VMs. 

• Cooperation and synchronisation traffic: power consumption of users 

download traffic, cooperation traffic and synchronisation traffic of VMs. 

In each scenario, we study the potential increase in total power consumption 

resulting from optimising the placement of VMs considering users download traffic 

only with scenarios where cooperation and/or synchronisation traffic are optimised 

in additional to users download traffic. The results show very limited increase in 

total power consumption if the VMs are placed considering users download traffic 

only (as seen in Fig. 4-3) compared to a scenario where users download and 

cooperation traffic exist. The full replication of VMs of 5 and 25 Mbps has confined 

the cooperation traffic among them to the intra datacentre network and hence 

limited the increase in total power consumption. However, not taking 

synchronisation traffic into consideration when optimising VMs placement has 

increased the total power consumption by a factor of 1.5 in cooperation traffic 

scenario and cooperation and synchronisation traffic scenario. These increases are 

mainly caused by the synchronisation traffic among the fully distributed replicas of 

each VM of 5 and 25 Mbps download rate creating a full mesh traffic matrix 

traversing the IP over WDM network, whereas, cooperation is point-to-point traffic. 

 

Figure 4-5: Power consumption associated with different VMs placement scenarios 

under 1% workload baseline considering 100 Mbps inter-VM traffic. 
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Fig. 4-6 shows the optimal VMs placement considering 1 Gbps inter-VM traffic. 

Similar to the previous scenario, the placement under 1 Gbps cooperation traffic (Fig. 

4-6 (a)) has resulted in full replicas of all VMs. These replicas are collocated so 

cooperation traffic is kept within the datacentre. Considering VM synchronisation 

traffic in (Fig. 4-6 (b)) has limited the placement in a single cloud under VMs of 5 

Mbps and two clouds placement under VMs of 25 Mbps. A single cloud placement is 

obtained from considering both inter-VM traffic jointly (Fig. 4-6 (c)). As shown in 

Fig. 4-7, placing VMs closer to the users without bearing in mind the existence of 1 

Gbps inter-VM traffic causes the power consumption to increase by factor of 13 

compared to placing them based on the existence of both traffic. 

 

 
(a) 
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(b) 

 
(c) 

Figure 4-6: The optimal placement of VMs under 1% workload baseline considering 

users traffic and 1 Gbps a) cooperation traffic, b) synchronisation traffic, c) total inter-

VM traffic. 
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Figure 4-7: Power consumption associated with different VMs placement scenarios 

under 1% workload baseline considering 1 Gbps inter-VM traffic. 

 

Fig. 4-8 shows the optimal VMs placement considering 5 Gbps inter-VM traffic. 

The placement under 5 Gbps cooperation traffic (Fig. 4-8 (a)) has resulted in 4 replicas 

of all VMs. Fig. 4-9 shows that the potential increase in total power consumption 

resulting from optimising the placement of VMs considering users download traffic 

only with scenarios where 5 Gbps cooperation and synchronisation traffic exist in 

additional to users download traffic can be up to a factor of 72 compared to scenarios 

ignoring them.  
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(a)       

 

(b) 
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 (c) 

Figure 4-8: The optimal placement of VMs under 1% workload baseline considering 

users traffic and 5 Gbps a) cooperation traffic, b) synchronisation traffic, c) total 

inter-VM traffic. 

 

Figure 4-9: Power consumption associated with different VM placement scenarios 

under 1% workload baseline considering 5 Gbps inter-VM traffic. 

4.3.2 Linear Workload (5% Workload Baseline): 

Fig. 4-10 shows the optimum placement of VMs under 5% workload baseline 

considering users download traffic only. Three replicas are created of each VM of 

5 Mbps download rate, while VMs with 25 Mbps download rate are fully replicated 
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in all cloud locations. The optimal placement of VMs under 5% workload baseline 

considering inter-VM traffic of 100 Mbps in addition to the user download traffic 

is shown in Fig. 4-11. Fig. 4-11 (a) shows that taking cooperation traffic of 100 

Mbps into consideration when placing VMs has resulted in creating more replicas 

(four replicas) of the VMs of 5 Mbps users download rate compared to optimisation 

considering users traffic only (three replicas). This placement allows cooperation 

traffic between VMs of 25 Mbps (replicated everywhere) and VMs of 5 Mbps to 

traverse a maximum of a single hop in the IP over WDM network. In Fig 4-11 (b), 

the existence of synchronisation traffic has limited the number of replicas of each 

VM into two and four replicas under 5 and 25 Mbps download rates, respectively. 

The optimum placement considering cooperation and synchronisation traffic jointly 

(Fig. 4-11 (c)) is a trade-off between the placement in Fig. 4-11 (a) and (b) with the 

impact of synchronisation traffic dominating. 

 
Figure 4-10: The optimal placement of VMs under 5% workload baseline 

considering users traffic only. 
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(a) 

 
(b) 
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(c) 

 Figure 4-11: The optimal placement of VMs under 5% workload baseline considering 

users traffic and 100 Mbps a) cooperation traffic, b) synchronisation traffic, c) total 

inter-VM traffic. 

Fig. 4-12 studies the potential increase in total power consumption resulting 

from optimising the placement of VMs considering users download traffic only 

with scenarios where cooperation and synchronisation traffic exist in additional to 

users download traffic. The results show a limited increase of 1% in total power 

consumption if the VMs are placed considering users download traffic only (as seen 

in Fig. 4-10) in a scenario where users download, and cooperation traffic exist as 

the difference between the two placement scenarios is limited. However, for 

cooperation and synchronisation traffic scenario, not taking synchronisation traffic 

into consideration when optimising VMs placement has increased the total power 

consumption by 73%. This increase is mainly caused by the full mesh 



123 
 

synchronisation traffic among the distributed replicas of each VM of 25 Mbps 

download rate.  

 

 

Figure 4-12: Power consumption associated with different VMs placement scenarios 

under 5% workload baseline considering 100 Mbps inter-VM traffic. 

 

Fig. 4-13 shows the optimal VMs placement for VMs under 5% workload baseline 

considering 1 Gbps inter-VM traffic. The placement under 1 Gbps cooperation traffic 

(Fig. 4-13 (a)) has resulted in 4 replicas of all VMs. These replicas are collocated so 

cooperation traffic is kept within the datacentre. Similar to the placement of VMs 

under 1% workload baseline, considering 1 Gbps synchronisation traffic in Fig. 4-13 

(b) has limited the number of copies to two replicas under 25 Mbps users download 

rate and 1 replica under 5 Mbps users download rate, whereas, considering both inter-

VM traffic in Fig. 4-13 (c) has resulted in a single cloud location.  
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(a) 

 

(b) 
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 (c) 

Figure 4-13: The optimal placement of VMs under 5% workload baseline considering 

users traffic and 1 Gbps a) cooperation traffic, b) synchronisation traffic, c) total inter-

VM traffic. 

 

Fig. 4-14 shows the power consumption of the different inter-VM scenarios, which 

discussed above, considering 1 Gbps inter-VM traffic and 5% workload baseline. The 

results show that considering only the users download traffic in the three scenarios 

can potentially increase the total power consumption by a factor of 0.3, 7.5 and 7.6, 

compared to a scenario that considers users download traffic and cooperation traffic, 

synchronisation traffic and both inter-VM traffic respectively if inter-VM is not taken 

into consideration when optimising the placement of VMs. 
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Figure 4-14: Power consumption associated with different VM placement scenarios 

under 5% workload baseline considering 1 Gbps inter-VM traffic. 

 

Fig. 4-15 shows the optimal VMs placement considering 5 Gbps inter-VM 

traffic. The placement under 5 Gbps cooperation traffic (Fig. 4-15 (a)) has resulted 

in four replicas of all VMs. These replicas are placed together so cooperation traffic 

is kept within the datacentre. Considering VMs synchronisation traffic (Fig. 4-

15(b)) has resulted in a single cloud placement as the synchronisation traffic power 

consumption surpasses the potential saving obtained by placing VM replicas closer 

to user premises. The same trend of single cloud placement is observed by 

considering both inter-VM traffic jointly (Fig. 4-15(c)). As shown in Fig. 4-16, 

placing VMs closer to the users without bearing in mind the existence of 5 Gbps 

inter-VM traffic causes the power consumption to increase by a factor of 39 

compared to placing them based on the existence of inter-VM and users download 

traffic. 
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(a)       

 

(b) 
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 (c) 

Figure 4-15: The optimal placement of VMs under 5% workload baseline considering 

users traffic and 5 Gbps a) cooperation traffic, b) synchronisation traffic, c) total inter-

VM traffic. 

 

 

Figure 4-16: Power consumption associated with different VM placement scenarios 

under 5% workload baseline considering 5 Gbps inter-VM traffic. 
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4.3.3 Constant Workload: 

Fig. 4-17 shows the results associated with energy efficient VMs placement for 

VMs of constant workload profile considering users download traffic only. VMs with 

lower workloads are distributed into multiple cloud locations to satisfy the users 

demand traffic and reduce the network power consumption. For VMs of a download 

rate of 5 Mbps, multiple replicas of VMs with 10% CPU workload are created. The 

increased network traffic requirement for VMs of 25 Mbps download rate has justified 

the creation of multiple replicas of VMs with 10% and 50% workloads. 

 

Figure 4-17: The optimal placement of VMs under constant workload profile 

considering users traffic only. 

Fig. 4-18 shows the optimal VM placement under constant workload profile 

considering inter-VM traffic rate of 100 Mbps in addition to the download traffic to 

VM users. The existence of cooperation traffic of 100 Mbps has no major effect on 

the placement of VMs as seen in Fig. 4-18 (a). However, a replica of each VM is either 

placed in nodes 6 or 9 so cooperation traffic is kept intra cloud or within a single hop 

in the core network. Synchronisation traffic that sit between all replicas of a VM has 

resulted in fewer replicas compared to the number of replicas under cooperation 

traffic. A user download rate of 5 Mbps does not justify replicating VMs while only 

10% and 50% workload VMs of 25 Mbps download rate have justified the creation of 
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multiple VM replicas. The optimal placement when considering cooperation and 

synchronisation traffic (Fig. 4-18(c)) is a trade-off between the placement in Fig. 4-

18 (a) and (b) with the impact of synchronisation traffic dominating. Note that two of 

the three replicas of VMs with 25 Mbps download rate and 10% workload are moved 

from their optimal location considering synchronisation traffic only (nodes 8 and 11) 

to nodes 1 and 9 so that the hops traversed by cooperation traffic are minimised.  

 

(a)       
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(b) 

  

 (c) 

Figure 4-18: The optimal placement of VMs under constant workload profile 

considering users traffic and 100 Mbps a) cooperation traffic, b) synchronisation 

traffic, c) total inter-VM traffic. 

Fig 4-19 compares the power consumption of different VM placements and inter-

VM traffic scenarios. Due to the low data rate of inter-VM traffic and the constant 
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workload profile, a limited increase in the total power consumption (up to 3%) is 

achieved from considering only the users download traffic in the three scenarios 

compared to optimising VMs placement while considering both users and Inter-VM. 

 

Figure 4-19: Power consumption associated with different VMs placement scenarios 

under constant workload profile considering 100 Mbps inter-VM traffic. 

The optimal VMs placement of constant workload profile considering inter-VM 

traffic rate of 1 and 5 Gbps in addition to the download traffic of VMs users is 

illustrated in Fig. 4-20. The high inter-VM traffic has put an end to the efficiency of 

replicating VMs in distributed cloud considering the all inter-VM scenarios. All VMs 

are optimally placed in one cloud (node 6) to keep the cooperation traffic intra 

datacentre and eliminate the need for the synchronisation traffic.  



133 
 

 

Figure 4-20: Optimal placement of VMs under constant workload profile considering 

users traffic and 1 or 5 Gbps a) cooperation traffic, b) synchronisation traffic, c) total 

inter-VM traffic. 

Fig. 4-21 and Fig. 4-22 show the power consumption scenarios of 1 Gbps inter-

VM traffic and 5 Gbps inter-VM, respectively, which are similar to what is discussed 

above. The results show that only considering users download traffic in the three 

scenarios can potentially increase the total power consumption by 14%, 16% and 29% 

under 1 Gbps inter-VM traffic and 51%, 54% and 69% under 5 Gbps inter-VM traffic, 

considering cooperation traffic, synchronisation traffic and both inter-VM traffic, 

respectively if inter-VM traffic is not taken into consideration when optimising the 

placement of VMs. 
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Figure 4-21: Power consumption associated with different VM placement scenarios 

under constant workload profile considering 1 Gbps inter-VM traffic. 

 

 

Figure 4-22: Power consumption associated with different VM placement scenarios 

under constant workload profile considering 5 Gbps inter-VM traffic. 

 

Generally, this chapter shows that only considering users traffic and ignoring 

inter-VM traffic when placing VMs can significantly mount up the total power 

consumption. Thus, it is important to co-optimise the two types of traffic. 

 

4.4 EEVM-C-IVM Heuristic  



135 
 

In this section, we validate the MILP operation by developing a heuristic that 

mimics, in real time, the behaviour of the MILP. The heuristic of energy efficient VM 

placement problem considering inter VMs traffic referred to Energy Efficient VMs 

Placement Considering Inter-VM traffic (EEVM-C-IVM). Similar to the heuristic of 

Chapter 3, the EEVM-C-IVM heuristic consists of two-phases: an offline phase and 

an online phase.  

As shown in the flowchart in Fig. 4-23 (a), the offline phase starts by classifying 

VMs based on their workload and user data rate. Similar to the heuristic in Chapter 3, 

the offline phase starts by finding the most energy efficient placement for each number 

of replicas through an exhaustive search over all the possible placements for this 

number of replicas. Unlike Chapter 3 where the optimal placement for each VM type 

is found independently, this heuristic finds the optimum placement for all VM types 

jointly as the decision to place each VM type depends on the placement of the other 

VM types cooperating with this VM type. The optimum placement of VMs is found 

through an exhaustive search over all possible placement combinations considering 

the most energy efficient placement of 1 replica, 2 replicas…N replicas for each VM 

type. The size of the search space grows exponentially with the number of VM types 

(𝑵|𝑽𝑴𝑷|), where N is the number of nodes in the network and |𝑽𝑴𝑷| is the number 

of VMs types. 

The traffic between users and VMs, traffic between cooperating VMs and 

synchronisation traffic (if any) resulting from the placement are routed based on 

minimum hop routing and the workload of VMs of a linear workload profile is 

calculated based on the number of users each VM serves. The network power 

consumption and the cloud power consumption are calculated and the optimum 

placement of each VM type is the placement that results in the minimum total power 

consumption. 

In the online phase, shown in the flowchart in Fig. 4-23 (c), each VM is matched 

to a type and placed according to the placement obtained in the offline phase. Traffic 

demands resulting from this placement (user traffic and inter VM traffic) are routed 

on the core network using multi-hop routing [19] and the workload of clouds where 

the VM replicas are placed is updated. After placing all VMs, the total power 

consumption of distributed cloud is calculated. 

 



136 
 

 

 

(a) 



137 
 

 

 (b)  

Figure 4-23: The flow chart of the EEVM-C-IVM heuristic (a) offline phase ( (c) 

online phase. 

 

Fig. 4-24 compares the total power consumption resulting from placing VMs using 

the EEVM-C-IVM heuristic with the power consumption resulting from the MILP 

model placement considering the NSFNET core network topology with the 

parameters mentioned in Section 4.3. The heuristic is evaluated for VMs under 

constant workload and linear workload (workload baselines of 1% and 5%), 5 and 25 
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Mbps users data rates and 100 Mbps and 5 Gbps inter-VM traffic. The gap between 

the EEVM-C-IVM heuristic and the MILP model range between 1% and 3% of the 

total power consumption in the synchronisation traffic scenario and cooperation and 

synchronisation traffic scenario, and less than 1% in the cooperation traffic scenario. 

The time required to run the offline phase is 155 minutes while the time required to 

run the online phase is 28 seconds. Running the MILP requires 1-3 days. 
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(b) 

  

(c) 
Figure 4-24: Comparison of total power consumption of (a) cooperation traffic scenario, (b) 

synchronisation traffic scenario, (c) cooperation and synchronisation traffic scenario, between 

the MILP model and EEVM-C-IVM heuristic considering VMs with constant workload and 

linear workload with 1% and 5% workload baseline under 100 Mbps and 5 Gbps inter-VM 

data rates. 
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4.5 Summary 

In this chapter, the energy efficiency of geo-distributed VMs in IP over WDM 

core networks is investigated taking into consideration inter-VM cooperation traffic 

and synchronisation traffic between replicas of the same VM in addition to the 

download traffic from VMs to users. The problem was formulated as a mixed 

integer linear programming (MILP) model. Also, a real-time heuristic that mimics 

the MILP model has been developed.  

For cooperation traffic, in addition to sending traffic to users, each VM has another 

VM to cooperate with. The objective is to find the optimum placement of VMs on 

distributed clouds and to create an optimum number of replicas that result in minimum 

power consumption. For synchronisation traffic, VM replicas can be created to serve 

distributed users, however, these replicas need to be synchronised to each other to 

keep the content at each location up to date. 

Our results showed the dominating impact of synchronisation traffic on the 

placement of VMs, reducing the energy efficiency of replicating VMs. Neglecting 

inter-VM traffic when placing VMs can mount up the total power consumption by 

a factor of 39 for VMs with an inter-VM traffic data rate of 5 Gbps. 
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Chapter 5: Energy Efficient Virtual 

Machines Placement over Cloud-Fog 

Architecture 

5.1 Introduction 

In this chapter, the VMs placement architecture considered in Chapter 3 where users 

access VMs in the cloud is extended by adding fog computing layers at the metro and 

access networks to provision VMs in the proximity of users’ premises. A 

comprehensive framework is developed based on mathematical modelling and 

heuristics to study the offloading of VMs from the cloud to the fog layers with the 

objective of minimising the total power consumption of providing the VMs. The 

placement of VMs in the cloud at the core network will allow VMs to serve users 

distributed across the core nodes whereas placing the VM replicas closer to the users 

in the fog nodes in the metro or access network will save the traffic between users and 

VMs from traversing the core network and therefore reduce the network power 

consumption, but will increase the processing power consumption due to the creation 

of multiple replicas of the VMs. Overall, the power consumption can be reduced if 

the VM users traffic is high and/or the VMs have a linear power profile. In such a 

linear profile, the creation of multiple VM replicas does not increase the power 

consumption significantly (there may be a slight increase due to idle / baseline power 

consumption) if the number of users remains constant. 

5.2 MILP Model 

In this section, a MILP model is developed to optimise the placement of VMs over 

the cloud-fog architecture so that the power consumption of providing the VMs is 

reduced. The architecture in Fig. 5-1 is considered where in addition to the clouds 

placed at the core network nodes, two fog layers are introduced at the metro network 

and the access network. The MILP model is used to select the most energy efficient 
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placement for each VM based on the VM popularity, workload and data rate. The 

model aims to achieve a trade-off between the network power saved by replicating 

VMs in multiple cloud and/or fog nodes and the extra power consumed by these 

replicas. The creation of a VM replica will result in power savings if the former power 

consumption exceeds the latter power consumption. The MILP model minimizes the 

power consumption of the end-to-end cloud-fog network architecture accounting for 

different communication and processing layers. The model’s total power consumption 

comprises two main parts: telecommunication network layers (including core, metro, 

and access networks) and computing layers (including cloud, metro fog, and access 

fog). The first is the traffic-induced power consumption of communication networks 

generated by VM requests (placed either in the cloud or fog) and delivered to user 

premises in the access network. The second represents the processing-induced power 

consumption of placing VMs in cloud-fog data centres. The MILP model objective is 

subject to many constraints related to VM placement, communication network, and 

processing requirements and capabilities. For more clarity in MILP expressions and 

notations, we use superscripts to index the types of variables and parameters and 

subscripts for variables and parameters. 
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Figure 5-1: Cloud-Fog architecture 
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The resources at the fog nodes form a mini datacentre connected in a similar way 

to the cloud datacentres (as shown in Fig. 5.1). In addition to the cloud parameters 

and variables defined in Chapter 3, Table 5-1 and Table 5-2 define the parameters 

and variables of fog nodes. 

Table 5-1:  List of fog input parameters used in the MILP model 

Parameter Description 

𝑺𝑾(𝑴𝑭𝑩) Metro fog switch bit rate. 

𝑺𝑾(𝑴𝑭𝑷) Metro fog switch power consumption. 

𝑺𝑾(𝑨𝑭𝑩) Access fog switch bit rate. 

𝑺𝑾(𝑨𝑭𝑷) Access fog switch power consumption. 

𝑹(𝑴𝑭𝑩) Metro fog router port bit rate. 

𝑹(𝑴𝑭𝑷) Metro fog router port power consumption. 

𝑹(𝑨𝑭𝑩) Access fog router port bit rate. 

𝑹(𝑨𝑭𝑷) Access fog router port power consumption. 

𝒎 Metro fog power usage effectiveness. 

𝒂 Access fog power usage effectiveness. 

 

Table 5-2:  List of fog variables used in the MILP model 

Variable Description 

𝑭𝒔
(𝑴𝑭)

 𝑭𝒔
(𝑴𝑭)

=  𝟏 if a fog processing node is hosted in the metro network 

connected to core node 𝒔, otherwise 𝑭𝒔
(𝑴𝑭)

 = 𝟎. 

𝜹𝒗,𝒔
(𝑴𝑭)

 𝜹𝒗,𝒔
(𝑴𝑭)

= 𝟏  if the fog processing node hosted in the metro network 

connected to node 𝒔 hosts a replica of VM 𝒗, otherwise 𝜹𝒗,𝒔
(𝑴𝑭)

= 𝟎. 

𝑹𝒔
(𝑴𝑭)

 Number of router ports used in the fog processing node hosted in the 

metro network connected to node 𝒔. 

𝑺𝑾𝒔
(𝑴𝑭)

 Number of switches used in the fog processing node hosted in the 

metro network connected to node 𝒔. 

𝑺𝒔
(𝑴𝑭)

 Number of processing servers in the fog processing node hosted in the 

metro network connected to node 𝒔. 

𝑭𝒑,𝒔
(𝑨𝑭)

 𝑭𝒑,𝒔
(𝑨𝑭)

= 𝟏 if a fog processing node is built in access network 𝒑 

connected to core node 𝒔, otherwise 𝑭𝒑,𝒔
(𝑨𝑭)

= 𝟎. 

𝜹𝒗,𝒑,𝒔
(𝑨𝑭)

 𝜹𝒗,𝒑,𝒔
(𝑨𝑭)

= 𝟏  if the fog processing node in access network 𝒑 connected 

to core node 𝒔, hosts a replica of VM 𝒗, otherwise 𝜹𝒗,𝒑,𝒔
(𝑨𝑭)

= 𝟎. 

𝑹𝒑,𝒔
(𝑨𝑭)

 Number of router ports used in the fog processing node located in the 

access network 𝒑 connected to core node 𝒔. 

𝑺𝑾𝒑,𝒔
(𝑨𝑭)

 Number of switches used in the fog processing node located in access 

network 𝒑 connected to core node 𝒔. 
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𝑺𝒑,𝒔
(𝑨𝑭)

 Number of processing servers in the fog processing node located in the 

access network 𝒑 connected to core node 𝒔. 

 

In addition to the VMs parameters and variables defined in Chapter 3, the VMs to 

be hosted in the fog and the traffic resulting from them are defined by the variables in 

Table 5-3: 

Table 5-3:  List of VM variables used in the MILP model 

Variable Description 

𝑾𝒗,𝒔
(𝑴𝑭𝑹)

 Workload of the VM replica 𝒗 hosted in the fog processing node located 

in the metro network connected to node 𝒔.  

𝑾𝒔
(𝑴𝑭)

 Total workload of the metro fog processing node located in core node 

𝒔. 

𝑫𝒗,𝒔
(𝑴𝑭)

 Traffic from the VM replica 𝒗 hosted in the fog processing node of the 

metro network connected to core node 𝒔. 

𝑾𝒗,𝒑,𝒔
(𝑨𝑭𝑹)

 Workload of the VM replica 𝒗 hosted in the fog processing node located 

in the access network 𝒑 connected to core node s.  

𝑾𝒑,𝒔
(𝑨𝑭)

 Total workload of the fog processing node located in the access network 

𝒑 connected to core node 𝒔. 

𝑫𝒗,𝒑,𝒔
(𝑨𝑭)

 Traffic flow from the VM replica 𝒗 hosted in the fog processing node 

located in the access network 𝒑 connected to core node 𝒔. 

 

In addition to the clouds, IP over WDM, metro and access power networks 

consumption equations (3.1) -(3.11) defined in Chapter 3, the metro fog and access 

fog nodes power consumptions are defined as follows: 

The metro fog nodes power consumption is composed of: 

• Power consumption of metro fog servers: 

 𝒎 ∑ 𝑺𝒔
(𝑴𝑭)

 𝑺(𝑷)  

𝒔 ∈𝑵

                                                                 (𝟓. 𝟏) 

• Power consumption of metro fog switches and router ports: 

 𝒎(∑((𝑺𝑾𝒔
(𝑴𝑭) 𝑺𝑾(𝑹) 𝑺𝑾(𝑴𝑭𝑷)) +  𝑹𝒔

(𝑴𝑭) 𝑹(𝑴𝑭𝑷))

𝒔∈𝑵

)               (𝟓. 𝟐) 

The access fog nodes power consumption is composed of: 

• Power consumption of access fog servers: 
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 𝒂∑∑𝑺𝒑,𝒔
(𝑨𝑭)

 𝑺(𝑷)  

𝒑∈𝑷

  

𝒔∈𝑵

                                                       (𝟓. 𝟑) 

• Power consumption of access fog switches and router ports: 

 𝒂 (∑∑((𝑺𝑾𝒑,𝒔
(𝑨𝑭)

 𝑺𝑾(𝑹) 𝑺𝑾(𝑨𝑭𝑷)) + 𝑹𝒑,𝒔
(𝑨𝑭)

𝑹(𝑨𝑭𝑷))

𝒑∈𝑷𝒔∈𝑵

)             (𝟓. 𝟒)  

Note that similar to the cloud servers we consider an on-off power profile for the 

fog servers, i.e. if a server is activated, it will operate at maximum power 

consumption.  

The model is defined as follows: 

The objective: Minimise the total power consumption given as:  

𝒎 ∑ 𝑺𝒔
(𝑴𝑭) 𝑺(𝑷)  +

𝒔 ∈𝑵

 𝒎(∑((𝑺𝑾𝒔
(𝑴𝑭) 𝑺𝑾(𝑹) 𝑺𝑾(𝑴𝑭𝑷)) +  𝑹𝒔

(𝑴𝑭) 𝑹(𝑴𝑭𝑷))

𝒔∈𝑵

) 

 + 𝒂∑∑𝑺𝒑,𝒔
(𝑨𝑭) 𝑺(𝑷)

𝒑∈𝑷

 

𝒔∈𝑵

 

+ 𝒂(∑∑((𝑺𝑾𝒑,𝒔
(𝑨𝑭)

 𝑺𝑾(𝑹) 𝑺𝑾(𝑨𝑭𝑷)) + 𝑹𝒑,𝒔
(𝑨𝑭)

𝑹(𝑨𝑭𝑷))

𝒑∈𝑷𝒔∈𝑵

) 

+ 𝒄 ∑ 𝑺𝒔
(𝑪) 𝑺(𝑷)

𝒔 ∈𝑵

+  𝒄 (∑((𝑺𝑾𝒔
(𝑪) 𝑺𝑾(𝑹) 𝑺𝑾(𝑪𝑷)) +  𝑹𝒔

(𝑪) 𝑹(𝑪𝑷))

𝒔∈𝑵

)      

     + 𝒏(∑∑  (𝑶𝑳𝑻(𝑷) 𝑶𝑳𝑻𝒑,𝒅
(𝑵))

𝒅∈𝑵𝒑∈𝑷

 ) +  𝒏(∑∑  (𝑶𝑵𝑼(𝑷) 𝑶𝑵𝑼𝒑,𝒅
(𝑵))

𝒅∈𝑵𝒑∈𝑷

 ) 

+ 𝒏  (∑𝑹𝒔
(𝑴)
 𝑹(𝑴𝑹)𝑹(𝑴𝑷)

𝒔∈𝑵

)  +  𝒏 (∑𝑺𝑾𝒔
(𝑴)
 𝑺𝑾(𝑴𝑷)

𝒔∈𝑵

)          

+ 𝒏(∑𝑹(𝑷) 𝑹𝒔
(𝑨𝑪)

𝒔∈𝑵

+∑𝑹(𝑷)𝑹𝒅
(𝑨𝑬)

𝒅∈𝑵

+ ∑ ∑ 𝑹(𝑷)

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

𝓦𝒎𝒏) 

+ 𝒏(∑ ∑ 𝒕(𝑷) 𝓦𝒎𝒏

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

) +  𝒏(∑ ∑ 𝒆(𝑷) 𝑭𝒎𝒏 𝑨𝒎𝒏
𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

) 
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+ 𝒏(∑𝑺𝑾𝒔
(𝑷)

𝒔∈𝑵

) +  𝒏(∑ ∑ 𝑮(𝑷) 𝑮𝒎,𝒏 𝓦𝒎,𝒏

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

) 

                                (𝟓. 𝟓) 

Equation (5.5) gives the total power consumption as the sum of the power 

consumption of the access fogs, the metro fogs, the clouds, the access network, the 

metro network and the IP over WDM core network.  

 

Subject to: 

In addition to the constraints (3-14) - (3-29), the model is subject to the following 

constraints: 

 

Serving VM demands: 

∑∑𝑫𝒗,𝒑,𝒅
𝒅∈𝑵𝒑∈𝑷

=∑∑𝑫𝒗,𝒔,𝒅
(𝑪)

𝒅∈𝑵𝒔∈𝑵

+ ∑𝑫𝒗,𝒔
(𝑴𝑭)

𝒔∈𝑵

+ ∑∑𝑫𝒗,𝒑,𝒔
(𝑨𝑭)

𝒔∈𝑵𝒑∈𝑷

  

∀  𝒗 ∈ 𝑽𝑴                                                                         (𝟓. 𝟔) 

Constraint (5.6) ensures that all the user demands for a VM are served by the 

clouds, the metro fogs or the access fogs. 

Placing VMs in metro fog constraints: 

𝑫𝒗,𝒔
(𝑴𝑭)

≥ 𝜹𝒗,𝒔
(𝑴𝑭)

 

∀ 𝒔 ∈ 𝑵 , 𝒗 ∈ 𝑽𝑴                                               (𝟓. 𝟕) 

𝑫𝒗,𝒔
(𝑴𝑭)

≤  𝑳 𝜹𝒗,𝒔
(𝑴𝑭)

 

∀ 𝒔 ∈ 𝑵 , 𝒗 ∈ 𝑽𝑴                                                 (𝟓. 𝟖) 

Constraints (5.7) and (5.8) relate the binary variable that indicates whether a VM 

is hosted in a metro fog or not (𝜹𝒗,𝒔
(𝑴𝑭)

) to the traffic between users of this VM and 

the metro fog (𝑫𝒗,𝒔
(𝑴𝑭)

) by setting 𝜹𝒗,𝒔
(𝑴𝑭)

= 𝟏 if  𝑫𝒗,𝒔
(𝑴𝑭)

> 𝟎 and 𝜹𝒗,𝒔
(𝑴𝑭)

= 𝟎 otherwise. 

 

Placing VM in access fog constraints: 

𝑫𝒗,𝒑,𝒔
(𝑨𝑭)

≥ 𝜹𝒗,𝒑,𝒔
(𝑨𝑭)
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∀ 𝒔 ∈ 𝑵 , 𝒗 ∈ 𝑽𝑴 , 𝒑 ∈ 𝑷                              (𝟓. 𝟗) 

𝑫𝒗,𝒑,𝒔
(𝑨𝑭)

 ≤  𝑳 𝜹𝒗,𝒔
(𝑨𝑭)

 

∀ 𝒔 ∈ 𝑵 , 𝒗 ∈ 𝑽𝑴 , 𝒑 ∈ 𝑷                               (𝟓. 𝟏𝟎) 

Constraint (5.9) and (5.10) relate the binary variable that indicates whether a VM 

is hosted in an access fog or not (𝑨𝜹𝒗,𝒑,𝒔
(𝑨𝑭)

) to the traffic between users of this VM and 

the cloud (𝑫𝒗,𝒑,𝒔
(𝑨𝑭)

), by setting 𝑨𝑭𝜹𝒗𝒔𝒑 = 𝟏 if 𝑫𝒗,𝒑,𝒔
(𝑨𝑭)

> 𝟎 and 𝜹𝒗,𝒔
(𝑨𝑭)

= 𝟎 otherwise. 

 

Metro fog location constraints: 

∑ 𝜹𝒗,𝒔
(𝑴𝑭)

≥ 𝑭𝒔
(𝑴𝑭)

𝒗∈𝑽𝑴

 

∀ 𝒔 ∈ 𝑵                                                             (𝟓. 𝟏𝟏) 

∑ 𝜹𝒗,𝒔
(𝑴𝑭)

≤ 𝑳 𝑭𝒔
(𝑴𝑭)

  𝒗𝝐𝑽𝑴

 

∀ 𝒔 ∈ 𝑵                                                             (𝟓. 𝟏𝟐) 

Constraints (5.11) and (5.12) ensure that a metro fog is built in metro nodes 

selected to host VMs by setting 𝑭𝒔
(𝑴𝑭)

= 𝟏 if  ∑ 𝜹𝒗,𝒔
(𝑴𝑭)

𝒗𝝐𝑽𝑴 > 𝟎 and 𝑭𝒔
(𝑴𝑭)

= 𝟎 

otherwise.  

 

Access fog location constraints: 

 ∑ 𝜹𝒗,𝒑,𝒔
(𝑨𝑭)

𝒗𝝐𝑽𝑴

≥ 𝑭𝒑,𝒔
(𝑨𝑭)

 

∀ 𝒔 ∈ 𝑵                                                                   (𝟓. 𝟏𝟑) 

∑ 𝜹𝒗,𝒑,𝒔
(𝑨𝑭)

 ≤ 𝑳 𝑭𝒑,𝒔
(𝑨𝑭)

  

𝒗𝝐𝑽𝑴

 

∀ 𝒔 ∈ 𝑵                                                                   (𝟓. 𝟏𝟒) 

Constraint (5.13) and (5.14) ensure that an access fog is built in access nodes 

selected to host VMs by setting  𝑭𝒑,𝒔
(𝑨𝑭)

= 𝟏 if  ∑ 𝜹𝒗,𝒑,𝒔
(𝑨𝑭)

𝒗𝝐𝑽𝑴 > 𝟎 and 𝑭𝒑,𝒔
(𝑨𝑭)

= 𝟎 

otherwise.  
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Fog workload: 

𝑾𝒗,𝒔
(𝑴𝑭𝑹)

= 𝜹𝒗,𝒔
(𝑴𝑭)

  𝑾𝒗         (𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝑾𝒐𝒓𝒌𝒍𝒐𝒂𝒅 𝑷𝒓𝒐𝒇𝒊𝒍𝒆)   

∀  𝒗 ∈ 𝑽𝑴, 𝒔 ∈ 𝑵                                                                   (𝟓. 𝟏𝟓) 

𝑾𝒗,𝒔
(𝑴𝑭𝑹)

= (
𝑫𝒗,𝒔
(𝑴𝑭)

𝒓𝒗 𝒙
  𝑴 𝜹𝒗,𝒔

(𝑴𝑭)
)

+ (𝑾𝒗
(𝑹)
∑𝑫𝒗,𝒔,𝒅

(𝑴𝑭)

𝒅∈𝑵

)   (𝑳𝒊𝒏𝒆𝒂𝒓 𝑾𝒐𝒓𝒌𝒍𝒐𝒂𝒅 𝑷𝒓𝒐𝒇𝒊𝒍𝒆)   

∀  𝒗 ∈ 𝑽𝑴, 𝒔 ∈ 𝑵                                                                (𝟓. 𝟏𝟔) 

𝑾𝒔
(𝑴𝑭)

= ∑ 𝑾𝒗,𝒔
(𝑴𝑭𝑹)

𝒗𝝐𝑽𝑴

                                  

∀ 𝒔 ∈ 𝑵                                                                                   (𝟓. 𝟏𝟕) 

𝑾𝒗,𝒑,𝒔
(𝑨𝑭𝑹)

 =  𝜹𝒗,𝒑,𝒔
(𝑨𝑭)

   𝑾𝒗       (𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝑾𝒐𝒓𝒌𝒍𝒐𝒂𝒅 𝑷𝒓𝒐𝒇𝒊𝒍𝒆)                 

∀  𝒗 ∈ 𝑽𝑴, 𝒔 ∈ 𝑵, 𝒑 ∈ 𝑷                                                   (𝟓. 𝟏𝟖) 

 

𝑾𝒗,𝒑,𝒔
(𝑨𝑭𝑹)

 =  (
𝑫𝒗,𝒑,𝒔
(𝑨𝑭)

𝒓𝒗 𝒙
  𝑴 𝜹𝒗,𝒑,𝒔

(𝑨𝑭)
)

+ (𝑾𝒗
(𝑹)𝑫𝒗,𝒑,𝒔

(𝑨𝑭)
)           (𝑳𝒊𝒏𝒆𝒂𝒓 𝑾𝒐𝒓𝒌𝒍𝒐𝒂𝒅 𝑷𝒓𝒐𝒇𝒊𝒍𝒆)   

∀  𝒗 ∈ 𝑽𝑴, 𝒔 ∈ 𝑵, 𝒑 ∈ 𝑷                                                   (𝟓. 𝟏𝟗) 

𝑾𝒑,𝒔
(𝑨𝑭)

= ∑ 𝑾𝒗,𝒑,𝒔
(𝑨𝑭𝑹)

𝒗𝝐𝑽𝑴

                                  

∀ 𝒔 ∈ 𝑵                                                                                   (𝟓. 𝟐𝟎) 

 

Constraints (5.15) and (5.18) calculate the workload of a VM replica under a 

constant workload profile in a metro fog and an access fog, respectively. Constraints 

(5.16) and (5.19) calculate the workload of a VM replica in a metro fog and an access 

fog, respectively as a linear function of the traffic resulting from serving users of the 

replica with a minimum CPU usage. Note that in the model, a VM workload is 

calculated as a function of the traffic associated with the users served by it. Constraints 

(5.17) and (5.20) calculate the total workload of a metro fog and an access fog, 

respectively by summing the workload of VMs hosted in it. 
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Number of servers in fog: 

𝑺𝒔
(𝑴𝑭)

≥
𝑾𝒔

(𝑴𝑭)

𝑺(𝒎𝒂𝒙𝑾)
 

∀ 𝒔 ∈ 𝑵                                                               (𝟓. 𝟐𝟏) 

𝑺𝒑,𝒔
(𝑨𝑭)

≥
𝑾𝒑,𝒔

(𝑨𝑭)

𝑺(𝒎𝒂𝒙𝑾)
 

∀ 𝒔 ∈ 𝑵, 𝒑 ∈ 𝑷                                                      (𝟓. 𝟐𝟐) 

Constraints (5.21) and (5.22) calculate the number of servers in each metro fog and 

access fog, respectively, based on the CPU utilisation. 

Number of router ports and switches in fog: 

𝑹𝒔
(𝑴𝑭) ≥

∑ 𝑫𝒗,𝒔
(𝑴𝑭)

𝒗∈𝑽𝑴

𝑹(𝑴𝑭𝑩)
     

∀ 𝒔 ∈ 𝑵                                                                  (𝟓. 𝟐𝟑) 

𝑺𝑾𝒔
(𝑴𝑭) ≥

∑ 𝑫𝒗,𝒔
(𝑴𝑭)

𝒗∈𝑽𝑴

𝑺𝑾(𝑴𝑭𝑩)
 

∀ 𝒔 ∈ 𝑵                                                                 (𝟓. 𝟐𝟒) 

𝑹𝒑,𝒔
(𝑨𝑭) ≥

∑ 𝑫𝒗,𝒑,𝒔
(𝑨𝑭)

𝒗∈𝑽𝑴

𝑹(𝑨𝑭𝑩)
 

∀ 𝒔 ∈ 𝑵, 𝒑 ∈ 𝑷                                                     (𝟓. 𝟐𝟓) 

𝑺𝑾𝒑,𝒔
(𝑨𝑭) ≥

∑ 𝑫𝒗,𝒑,𝒔
(𝑨𝑭)

𝒗∈𝑽𝑴

𝑺𝑾(𝑨𝑭𝑩)
 

∀ 𝒔 ∈ 𝑵, 𝒑 ∈ 𝑷                                                      (𝟓. 𝟐𝟔) 

Constraints (5.23) -(5.26) calculate the number of router ports and switches in 

each metro fog and access fog. 

Number of metro routers ports and ethernet switches in metro network: 

𝑹𝒔
(𝑴) ≥

∑ ∑ 𝑫𝒗,𝒔,𝒅
(𝑪)

 +  ∑ 𝑫𝒗,𝒔
(𝑴𝑭)

𝒗∈𝑽𝑴𝒔∈𝑵𝒗∈𝑽𝑴

𝑹(𝑴𝑩)
     

∀ 𝒔 ∈ 𝑵                                                            (𝟓. 𝟐𝟕) 

𝑺𝑾𝒔
(𝑴) ≥

∑ ∑ 𝑫𝒗,𝒔,𝒅
(𝑪)

 +  ∑ 𝑫𝒗,𝒔
(𝑴𝑭)

𝒗∈𝑽𝑴𝒔∈𝑵𝒗∈𝑽𝑴

𝑺𝑾(𝑴𝑩)
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∀ 𝒔 ∈ 𝑵                                                        (𝟓. 𝟐𝟖) 

Constraints (5.27) and (5.28) calculate the number of routers ports and switches, 

respectively, in each metro network. 

5.3 Results and Discussions 

In the following, the problem of VMs placement in the cloud-fog architecture 

considering the US’s AT&T network and the UK’s BT network is investigated. 

5.3.1 AT&T Network Use Case: 

In this section, the optimal VMs placement over AT&T cloud-fog architecture is 

investigated as the first use case (AT&T core networks topology is illustrated in Fig. 

5-2 [144]). We start by optimising a single VM as the simplest representative problem. 

Then we consider optimisation in a realistic scenario with multiple VMs.  

Figure 5-2: AT&T core network topology. 

5.3.1.1 Simple Representative Scenario: 
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This section investigates how the energy efficient placement of a single VM over 

cloud-fog architecture will vary based on three factors; the CPU requirements, 

download traffic and PUE values.  

Similar to the analysis carried out in Chapter 3, the impact of the VM workload on 

the VM placement is examined by considering the constant and linear workload 

profiles considering the same input parameters. The VM is considered to has 800 

users. The workload of the constant workload profile and the workload of serving the 

maximum number of users of a VM with linear workload are considered to have one 

of three workloads: 10%, 50% and 100% of the server CPU capacity. VM of linear 

profile is considered to have no baseline. The users are considered to access the VM 

with one of following download rates; 0.1 Mbps, 1 Mbps, 10 Mbps, 20 Mbps, 50 

Mbps, 100 Mbps or 200 Mbps.  

Based on the US data centre energy usage [146], the PUE varies based on the 

datacentre size as more efficient cooling technologies are used in larger datacentres. 

For best practice datacentres, PUE of clouds, metro fogs and access fogs take the 

values of 1.3, 1.4 and 1.5, receptively [146]. For datacentres from 2014, the PUE 

values considered are 1.7, 1.9 and 2.5, respectively [146] . In network infrastructures, 

a typical telecom office PUE value is 1.5 [75].  

In this scenario, the model takes into consideration the Cisco CRS-1 router [148] 

as a core network IP router which consumes 638W per 40 Gbps port and the Cisco 

NCS 5502 router [153] as the cloud and metro networks router which consumes 30W 

per 40 Gbps port. In the metro and fog datacentre, Cisco NCS 5501 [153] is considered 

with a power consumption of 13W per 40 Gbps port. Furthermore, the Cisco Nexus 

93180YC-EX [154] switch is considered as metro, cloud and metro fog LAN Ethernet 

switch with upload capacity of 600 Gbps and power rating at 470W. In access fog, the 

Cisco Nexus 93180YC-EX [154] switch is considered with capacity of 240 Gbps 

while consuming 210W.  

Table 5-4, Table 5-5, Table 5-6 and Table 5-7 define the IP over WDM network, 

metro network, access network and cloud-fog input parameters, respectively. 

 Table 5-4: IP Over WDM core network input parameters used in the model 

40 Gbps router port power consumption (𝑹(𝑷)) 638W [148] 

40 Gbps transponder power consumption (𝒕(𝑷)) 129W [149] 
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40 Gbps regenerator power consumption (𝑮(𝑷)) 114W, reach 2000 km [150] 

EDFA power consumption (𝒆(𝑷)) 11W [151] 

Optical switch power consumption (𝑺𝑾(𝑷)) 85W [152] 

Number of wavelengths in a fibre (𝓦) 32 [20] 

Bit rate of each wavelength (𝓦(𝑷)) 40 Gbps [20] 

Span distance between two EDFAs (𝑺) 80 km [151] 

Network power usage effectiveness (𝒏) 1.5 [6] 

 

Table 5-5: Metro network input parameters used in the model 

Metro router redundancy (𝑹(𝑴𝑹)) 2 

Metro router port bit rate (𝑹(𝑴𝑩)) 40 Gbps 

Metro router port power consumption (𝑹(𝑴𝑷)) 30W [153] 

Metro ethernet switch bit rate (𝑺𝑾(𝑴𝑩)) 600 Gbps  [154] 

Metro ethernet switch power consumption 

(𝑺𝑾(𝑴𝑷)) 

470W [154] 

 

Table 5-6: Access network input parameters used in the model 

Number of PON networks in a node (𝑷) 2 

Maximum number of single VM users (𝒙) 800 concurrent users 

Number of ONU devices in a PON network 

(𝑶𝑵𝑼𝒑,𝒅
(𝑵)

) 

512  

Power consumption of ONU device (𝑶𝑵𝑼(𝑷)) 5W [155] 

Number of OLTs in a PON network (𝑶𝑳𝑻𝒑,𝒅
(𝑵)

) 1  

OLT Capacity (𝑶𝑳𝑻(𝑩)) 1280 Gbps [145] 

 

Table 5-7: Clouds and fog input parameters used in the model 

Number of VMs (𝑽) 1  

User download rate (𝒓𝒗) {0.1, 1, 10, 20, 50, 100 or 

200 Mbps} 

Maximum workload of VM (𝑾𝒗) 10%, 50% and 100% 

Server power consumption (𝑺(𝑷)) 333 Watt [156] 

Maximum server workload (𝑺(𝒎𝒂𝒙𝑾)) 100% 
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Cloud and metro fog switch bit rate 

(𝑺𝑾(𝑪𝑩), 𝑺𝑾(𝑴𝑭𝑩)) 

600 Gbps [154] 

Cloud and metro fog switch power consumption 

(𝑺𝑾(𝑪𝑷), 𝑺𝑾(𝑴𝑭𝑷)) 

470 Watt [154] 

Access fog switch bit rate (𝑺𝑾(𝑨𝑭𝑩)) 240 Gbps [154] 

Access fog switch power consumption (𝑺𝑾(𝑴𝑭𝑷)). 210 Watt [154] 

Cloud and fog switch redundancy (𝑺𝑾(𝑹)) 2 

Cloud and fog router port bit rate 

(𝑹(𝑪𝑩), 𝑹(𝑴𝑭𝑩), 𝑹(𝑨𝑭𝑩)) 

40 Gbps 

Cloud router port power consumption (𝑹(𝑪𝑷)) 30 Watt [153] 

Metro and access fog router port power consumption 

(𝑹(𝑴𝑭𝑷), 𝑹(𝑨𝑭𝑷)) 

13 Watt [153] 

Cloud power usage effectiveness (𝒄) 1.3 or 1.7 [146] 

Metro fog power usage effectiveness (𝒎) 1.4 or 1.9 [146] 

Access fog power usage effectiveness (𝒂) 1.5 or 2.5 [146] 

 

Fig. 5-3 (a), (b) and (c) show the optimal placement of VM of 10%, 50% and 100% 

CPU requirements, respectively, considering the best practice PUE values. In each 

figure, the x-axis is the VM workload profile, the y-axis is the data rates which range 

from 0.1 Mbps to 200 Mbps and the z-axis is the percentage of VM replicas in each 

location over the cloud-fog architecture. The placement of VMs in the cloud at the 

core network will allow VMs to serve users distributed across the core nodes whereas 

placing the VM replicas closer to the users in the fog nodes in the metro or access 

network will save the traffic between users and VMs from traversing the core network 

and therefore reduce the network power consumption, but will increase the processing 

power consumption due to the creation of multiple replicas of the VMs. 

As discussed in Chapter 3, the placement of VM with linear workload profile is 

not affected by the VM workload as serving users will consume the same power 

whether centralised in a single VM or distributed among multiple replicas with 

smaller workloads. However, the higher PUE of fog nodes compared to the cloud, 

results in a situation where distributing replicas into fogs processing nodes incurs 

additional power consumption as the PUE value of fog nodes is higher than clouds. 

Hence, there is a trade-off between network power saved by replicating VMs into fogs 
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and the additional power consumed by these replicas. The creation of a VM replica 

will result in power savings if the former power exceeds the latter power. At data rates 

of 1 Mbps and higher, VMs of 10%, 50% and 100% workloads are offloaded to access 

fog processing nodes considering a linear workload profile.  

For constant workload profile, replicas are less energy efficient, therefore, 

offloading VMs to fog nodes decreases as the VM workload increases. While VMs of 

10% workload and 20 Mbps are fully offloaded to metro fogs, 50% and 100% 

workload VMs are replicated only to clouds. Also, users of VM of 50% workload at 

100 Mbps data rate as well as VMs of 100% workload at 200 Mbps data rate are 

served by clouds and metro fogs. A VM replica is offloaded to 14 metro fogs (in core 

nodes 1, 2, 4, 6, 7, 8, 13, 16, 19, 20, 21, 22, 23, 25) while users from other nodes are 

served by the replica placed in the cloud in core node 11 which they can access by 

traversing a single hop in the core network. These 14 metro fog nodes are selected to 

host replicas of the VM as the traffic flows will traverse more than a single hop in the 

IP over WDM network to access the VM placed in the cloud hosted in node 11 and 

therefore increase the needs for IP router ports (the most power consuming device in 

the IP over WDM network).  

The results also show that VM with higher data rates justify the creation of more 

replicas closer to users premises in the fog layer, thus, the power consumption of 

networks, which is the major contributor to the power consumption in the cloud-fog 

architecture, is reduced. For example, VMs of 10% workload under the linear 

workload profile, are fully replicated to clouds and offloaded to access fogs for VMs 

of 0.1 Mbps, and ≥ 1 Mbps user data rates, respectively.  

Placing VMs in cloud architecture with higher PUE (2014 PUE), as in Fig. 5-4, 

increases the replicas power consumption and therefore limits offloading VMs into 

the fog processing nodes, e.g., VM of constant workload profile with 100% workload 

and 200 Mbps data rate, that are fully offloaded to metro fogs considering clouds of 

best practice PUE, are limited to clouds with 2014 PUE. 
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(a) 
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(b) 

 

(c) 

Figure 5-3: Optimal VM placement of (a) constant profile at 10% of CPU and linear 

profile with peak utilisation at 10%, (b) 50% case, (c) 100% case at different data 

rates considering best practice PUE value (𝒄=1.3, 𝒎 = 𝟏. 𝟒, 𝒂 = 𝟏. 𝟓). 
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(a) 

 

(b) 
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(c) 

Figure 5-4: Optimal VM placement of (a) constant profile at 10% of CPU and linear 

profile with peak utilisation at 10%, (b) 50% case, (c) 100% case at different data 

rates considering 2014 PUE value (𝒄=1.7, 𝒎 = 𝟏. 𝟗, 𝒂 = 𝟐. 𝟓). 

5.3.1.2 Realistic Scenario 

In this scenario, analysis based on realistic number of users and VM popularity is 

studied. The number of users, number of VMs, VM popularity, VM workload, users’ 

data rate are considered to be the same as in Chapter 3. The PUE values are considered 

to follow the best practice PUE, where the PUE values for cloud, metro fog and access 

fog are 1.3, 1.4 and 1.5, respectively. 

The optimised VMs placement over the cloud-fog architecture, referred to as 

Optimised clouds and fogs placements (OC&F) approach, is compared to the OC 

approach (the optimised VMs placement over distributed clouds) and AT&T clouds 

investigated in Chapter 3.  

Two network components scenarios are considered to show how the energy 

efficiency of network components is a key factor in the placement of VMs across the 

cloud-fog architecture.  
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a) Network Components with Low Energy Efficiency:  

In the following, the OC&F approach is compared to the AT&T clouds and OC 

approach considering the different linear workload baseline scenarios 1%, 5% and 

40% discussed above. In addition to the parameters in Table 5-4 to Table 5-7, Table 

5-8 shows the additional/modified parameters considered for the following results. 

Table 5-8: Input parameters used in the model 

Number of VM users in each PON based on 

VM popularity groups (𝑼𝒗,𝒑,𝒅) 

13,000 users in each PON, six 

VMs popularity groups; 

16%, 5%, 2%, 1%, 0.5% and 

0.05% 

Number of VMs (𝑽) 300 

User download rate (𝒓𝒗) {1, 10 or 25 Mbps} 

Maximum workload of VM (𝑾𝒗) 50%  

Cloud power usage effectiveness (𝒄) 1.3 [146] 

Metro fog power usage effectiveness (𝒎) 1.4 [146] 

Access fog power usage effectiveness (𝒂) 1.5 [146] 

 

i. Linear Workload (1% Workload Baseline): 

Fig. 5-5 shows the power consumption resulting from placing VMs of 1% workload 

baseline considering the different placement approaches under 1, 10 and 25 Mbps user 

data rates. The efficiency of VMs with 1% workload baseline allows the creation of 

more efficient VM replicas as the workload is proportional to the number of users 

served by the VM with a limited workload baseline required by each VM. Under 1 

Mbps data rate, the OC&F approach achieves 6% reduction in the total power 

consumption compared to the AT&T clouds. The total reductions widen more to 40% 

under 10 Mbps data rate and 64% under 25 Mbps data rate. The savings achieved by 

the OC&F approach compared to the OC approach are 4%, 31% and 48% under the 

low, medium and high data rates, respectively.  
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Figure 5-5: The power consumption of different VMs placement approaches 

considering VMs of 1% workload baseline. 

 

In Fig. 5-6, the OC&F placement approach is further investigated by looking at how 

VMs of different data rates and popularity groups are placed considering the low, 

medium and high data rates. Note that the different colours show if VM of a certain 

popularity is placed in this location or not, i.e. it does not represent the number of 

replicas.  

Figure 5-6(a) shows that VMs with a low user data rate of 1 Mbps have only 

justified creating three metro fogs in nodes 6, 8, and 19 as the traffic flows from these 

nodes traverses more than a single hop in the IP over WDM network to access the 

replicas optimally placed in the distributed clouds built in nodes 3, 11, 20, and 24. 

Thus, these fog nodes are built to serve the users demand locally, and consequently, 

eliminate the needs for IP router ports. However, VMs with the lowest popularity 

(0.05%) have only justified the creation of two replicas only in nodes 11 and 20.  

VMs with 10 Mbps data rate are fully offloaded to every metro fog as shown in Fig. 

5-6(b). Note that, VMs users are uniformly distributed across the metro and access 

networks, thus, the placement of a VM is consistent across all the metro fogs.  In Fig. 

5-7(c), VMs with high data rate of 25 Mbps show that in addition to a full replication 

in metro fogs, VMs with 16% popularity group justified creating VM replicas in some 

access fogs. Although, we are able to reduce the traffic traversing the metro network 

and consequently reduce the total power consumption, however, VMs with 16% 

popularity are not fully replicated to access fogs. There are a number of replicas 

offloaded to metro fogs. The reason for that is the on-off power consumption profile 
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of fog and network resources. Thus, before creating a new fog node in the access 

network, VMs are consolidated into the available resources remained from the 

placement of other VMs that share the same architecture. 

 
(a) 
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(b) 

 

(c) 

Figure 5-6: Optimal placement of different VMs popularity groups of 1% workload 

baseline under the OC&F approach with (a) 1 Mbps data rate per user, (b) 10 Mbps 

data rate per user and (c) 25 Mbps data rate per user. 

In Fig. 5-7, OC&F1 and OC&F2 placement approaches are introduced. The former 

represents the optimal placement considering clouds and metro fogs only and the latter 

shows the optimal placement considering the three computing layers; clouds, metro 
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and access fogs. These two approaches show how introducing fog nodes in access 

network (OC&F2), in addition to metro fogs, are able to save total power consumption 

compared to an approach that considers only fog nodes connected to metro network 

(OC&F1). Under a 25 Mbps user data rate, it can be observed that the OC&F2 

approach achieves 6% extra power saving compared to the OC&F1 approach.  

 

Figure 5-7: The power consumption considering OC&F1 and OC&F2 placement 

approaches. OC&F1 represents the optimal placement considering clouds and metro 

fogs only and OC&F2 represents the optimal placement considering clouds, metro 

and access fogs. 

 

Fig. 5-8 shows the number of servers required to host VM replicas under the OC&F 

approach. The number of servers is a function of the number of VM replicas hosted 

and their workload. For instance, in the OC&F approach under 25 Mbps user data rate 

(Fig. 5-9(c)), two servers are activated in the access nodes selected to host replicas of 

VMs of 16% popularity. Also, 18 servers are activated in each metro fog in order to 

serve users of VMs with ≤ 5% popularity as well users of VMs with 16% popularity 

who are users not served by the replica created in the access fogs. Such number of 

servers can be practically attached to the metro edge routers to create the metro fog 

layer and to OLT in the access network to create the access fog layer. 
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(a) 

 
(b) 

 

 
(c) 

Figure 5-8: Number of servers in OC&F approach required to host VMs of 1% 

workload baseline with (a) 1 Mbps data rate per user (b) 10 Mbps data rate per user 

(c) 25 Mbps data rate per user. 

 

ii. Linear Workload (5% Workload Baseline): 

Fig. 5-9 shows the power savings achieved under VMs of linear workload profile 

of 5% minimum CPU utilisation. Increasing the minimum CPU utilisation of the VM 

workload profile to 5% reduces the efficiency of creating more VMs replicas. The 
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total savings achieved under the OC&F approach compared to the AT&T cloud are 

12%, 35% and 55% under the low, medium and high data rates, respectively. 

Compared to the OC approach, there is no extra power saving achieved under low 

data rate, as the total traffic has not justified replicating any VM into fogs. Under the 

medium and high user data rates, the power savings achieved are 28% and 47%, 

respectively.  

 

Figure 5-9: The power consumption of different VMs placement approaches 

considering VMs of 5% minimum CPU workload. 

Fig. 5-10(a) and (b) illustrate the placements of the VMs of 5% minimum CPU 

utilisation considering the OC&F placement approach under low and high user data 

rates, respectively. VMs with low user data rates are distributed among distributed 

clouds. The low user data rates have not justified offloading VMs to any fog node. 

VMs of ≥ 𝟏% popularity have justified the creation of five cloud locations. VMs with 

0.5% and 0.05% popularity groups have only justified the creation of three and two 

replicas, respectively. Under the high user data rates, , it can be observed that VMs 

with ≥ 𝟎. 𝟓% and ≤ 𝟓% popularity groups are fully offloaded to the metro fogs. In 

addition, VMs with 16% popularity have justified the creation of replicas in some 

access fogs. Whereas, VMs with 0.05% popularity group have only justified the 

creation of two replicas in nodes 3 and 14. 
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(a) 

 
(b) 

Figure 5-10: Optimal placement of different VMs popularity groups of 5% workload 

baseline under the OC&F approach with (a) 1 Mbps data rate per user and (b) 25 Mbps 

data rate per user. 
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iii. Linear Workload (40% Workload Baseline): 

Fig. 5-11 shows the power savings achieved under VMs of 40% minimum CPU 

utilisation. The total savings achieved under the OC&F approach compared to the 

AT&T clouds are 53%, 44% and 48% under the low, medium and high users data 

rates, respectively. Compared to the OC, there is no extra power saving achieved 

under the low user data rates, as the total traffic has not justified replication of any 

VM into any fog node. Under the medium and high user data rates, the power savings 

achieved are 12% and 31%, respectively.  

 

Figure 5-11: The power consumption of different VMs placement approaches 

considering VMs of 40% minimum CPU workload. 
 

Fig. 5-12 (a), (b) and (c) illustrate the optimal VMs placement under low, medium 

and high user data rates, respectively, considering the OC&F approach. It can be 

observed that that increasing the minimum CPU utilisation of VM workload to 40% 

reduces the efficiency of creating more replicas of VMs with a low popularity across 

distributed cloud and fog nodes, compared to VMs with 1% or 5% minimum CPU 

utilisation. VMs with data rate of 1 Mbps are replicated among distributed clouds. The 

low user data rates have not justified offloading VMs to any fog node. VMs of ≥ 𝟏% 

popularity have justified the creation of five cloud locations. However, VMs with 

0.5% and 0.05% popularity groups have only justified the creation of three and one 

replicas, respectively. Under medium user data rates, VMs with ≥ 𝟏% popularity are 

offloaded to metro fogs whereas other popularity groups are optimally placed in 

clouds. Under high user data rates, despite the high workload baseline, VMs with high 

popularity of 16% justified the creation of VM replicas in some access fogs. VMs 
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with ≥ 𝟎. 𝟓% and ≤ 𝟓% popularity groups are fully offloaded to metro fogs whereas 

VMs with 0.05% popularity group have not justified the creation of multiple replicas. 

Only a single replica is optimally placed in node 11 to serve its distributed users. 

  
(a) 

 

(b) 
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(c) 

Figure 5-12: Optimal placement of different VMs popularity groups of 40% workload 

baseline under the OC&F approach with (a) 1 Mbps data rate per user, (b) 10 Mbps 

data rate per user and (c) 25 Mbps data rate per user. 

 

b) Network Components with High Energy Efficiency: 

The previous scenario has considered Cisco CRS-1 as a core network IP router which 

consumes 638W per 40 Gbps port and Cisco NCS 5502 router as cloud and metro 

networks which consumes 30W per 40 Gbps port. In this part of the study, in metro 

and fog datacentres, the Cisco NCS 5501 router is considered which consumes 13W 

per 40 Gbps port. However, this is not the only option available in the market. In this 

scenario, Juniper’s PTX1000 and Juniper’s MX series 5G universal routing platform 

are considered to evaluate the cloud-fog architecture model. In core network, 

PTX1000 provides a 40 Gbps router ports while only consuming 20W [168]. Also, 

MX series 5G universal routing platform [169] provides a 40 Gbps router ports for 

clouds while consuming 20W . It also provides a 40 Gbps router ports for metro, metro 

fog and access fog while consuming 36W. In addition to cloud-fog architecture 

parameters in Table 5-4 Table to 5-7, Table 5-8 shows the considered IP router ports 

input parameters of the model. 
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Table 5-9: IP routers input parameters used in the model 

40 Gbps core network router port power 

consumption (𝑹(𝑷)) 
20W [168] 

40 Gbps cloud router port power 

consumption (𝑹(𝑪𝑷)) 
20W [169] 

40 Gbps metro, metro fog and access fog 

router port power consumption 

(𝑹(𝑴𝑷), 𝑹(𝑴𝑭𝑷), 𝑹(𝑨𝑭𝑷)) 

36W [169] 

 

Fig. 5-13 shows that the total saving achieved in the OC approach is 5% compared 

to the AT&T clouds and no extra saving is achieved by introducing OC&F approach, 

therefore, no replicas are offloaded to any fog node, as shown in Fig 5-16. Offloading 

VM replicas to clouds becomes more energy efficient as traversing IP routers becomes 

more energy efficient than creating multiple fog nodes.  

 

Figure 5-13: The power consumption of different VMs placement approaches 

considering VMs of 1% workload baseline. 
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Figure 5-14: Optimal placement of different VM popularity groups of 1% workload 

baseline under OC&F approach with 25 Mbps data rate per user. 

5.3.2 BT networks Use Case: 

In this use case, the BT network topology [144] is considered as a core network 

topology example (illustrated in Fig. 5-15). Similar to Section 3.1.2, 18.8k users are 

considered in each PON to access the 300 applications/websites hosted in VMs. The 

popularity of these applications / websites VMs is considered to follow a Zipf 

distribution with the same popularity groups defined in Table 5.8. 

The datacentres and networks components parameters of the cloud-fog architecture 

in the BT topology use case are considered to take the same values considered in 

Section 5.3.1. 

The OC&F approach is compared to the OC approach for the BT topology obtained 

in Chapter 3. It is also compared to SC where the VMs are placed in node 6 (City of 

London).  
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Figure 5-15: BT core network topology. 

Fig. 5-16 shows the power consumption resulting from placing the VMs 

considering the different placement approaches under different users’ data rates. 

Compared to the OC approach, the total savings achieved under the OC&F approach 

are 2%, 37% and 59%, under 1 Mbps, 10 Mbps and 25 Mbps user data rates, 

respectively. The total power savings achieved under the OC&F approach compared 

to the SC approach are 5%, 48% and 75%, under 1 Mbps, 10 Mbps and 25 Mbps user 

data rates, respectively.  

 

Figure 5-16: The power consumption of different VMs placement approaches 

considering VMs of 1% workload baseline. 
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Fig. 5-17 shows the optimal VMs placement under the OC&F approach. Fig. 5-

20(a) shows that the cloud in node 2 is selected to serve distributed users of VMs of 

1 Mbps users data rate and 0.05% popularity. VMs of 1 Mbps and a popularity of ≥ 

0.5% are replicated into every metro fog location except in node 2. Users in node 2 

access VMs of 0.5%-16% popularity in the cloud located in node 2 to avoid setting 

another computing location in node 2 as on-off power profile is considered across 

cloud-fog architecture. Under the 10 Mbps user data rate, VMs of every popularity 

group are fully offloaded to metro fog nodes as shown in Fig. 5-20(b). Under the 25 

Mbps user data rate, VMs of ≥ 𝟐% popularity have justified creating a replica in each 

access fog node. Other VMs of 𝟏% popularity and less are offloaded to metro fog 

nodes, as shown in Fig. 5-20(c).  

 

(a) 
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(b) 

 

(c) 

Figure 5-17: The optimal placement of different VMs popularity groups with 1% 

workload baseline under the OC&F approach with (a) 1 Mbps data rate per user, (b) 

10 Mbps data rate per user and (c) 25 Mbps data rate per user. 
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We can observe that the VMs placement in the BT network architecture tends to 

offload more replicas to the access fog compared to the AT&T network. The reason 

behind this trend is that the top 300 VMs considered in the evaluation scenario are of 

higher popularity among users in the BT network compared to the AT&T network. 

5.4 EEVM-CF Heuristic  

As described in Chapter 2, the VM placement problem over cloud-fog architecture 

is NP-Hard. Therefore, it is not practical to apply the MILP model in a real time 

implementation. The optimal solutions obtained from the MILP model can offer a 

benchmark for determining the performance of developed heuristics. Thus, to mimic 

the MILP model, a real time heuristic is implemented. The heuristic in Chapter 3 is 

extended to optimise the placement over cloud-fog architecture. We refer to the 

extended heuristic as Energy Efficient VMs Placement Heuristic for the Cloud-Fog 

architecture (EEVM-CF).  

Similar to the heuristic in Chapter 3, in the offline phase, as shown in the flowchart 

in Fig. 5-18(a), VMs are classified into different types and the optimal placement of 

different VMs types are found. The search space, 𝑷, to find the optimum placement 

for each VM type includes the most energy efficient placement to place 1 replica, 2 

replicas… up to 𝑵 replicas in the clouds, where 𝑵 is the number of clouds. For fog 

nodes, there are two placement scenarios. In one scenario, VMs are replicated to the 

metro fog and in all core nodes and in the other scenario VMs are replicated to the 

two access fogs in all core nodes. The traffic resulting from replicating the VMs in 

clouds and fogs and the workload of VMs of a linear workload profile are calculated 

based on the number of users each VM serves. The networks, the cloud and the fog 

power consumptions are calculated and the optimum placement of a VM type is the 

placement that results in the minimum total power consumption. 

Then, VMs are matched to their type in real time (online phase), which is shown 

in the flowchart in Fig. 5-18(b) and placed according to the placement obtained in the 

offline phase. Then, the traffic resulting from replicating the VM in the cloud is routed 

on core network based on multi-hop routing [19] and the workload of clouds where 

the VM replicas are placed is updated. After placing all VMs, the total power 
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consumption of the distributed cloud is calculated. After placing all VMs, the total 

power consumption of cloud-fog architecture is calculated.  

 

 

(a) 
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(b)  

Figure 5-18: Flowchart of (a) the offline phase and (b) the online phase of EEVM-

CF heuristic. 

The heuristics are examined by considering the AT&T network as a network 

example. The EEVM-CF heuristic took 55 seconds to evaluate the offline phase and 

2 seconds to evaluate the online phase running on an Intel i-7 core machine with 16 

GB of RAM. Fig. 5-19 compares the total power consumption of the EEVM-CF to 

the that of the MILP model considering the network, cloud, and fog parameters 

discussed in Section 5.2. The heuristic is evaluated at 1%, 5%, and 40% workload 

baselines at 1 Mbps, 10 Mbps, and 25 Mbps user data rates. Clearly, the power 
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consumption of the MILP and the EEVM-CF are comparable; the gap between them 

ranges from 1–2% of total power consumption due to almost identical VM placement 

by the model and the heuristic. 

 

 

Figure 5-19: Total power consumption of the MILP model compared with EEVM-CF 

heuristics considering VMs with 1%, 5% and 40% CPU workload baseline. 

5.5 Summary 

In this chapter, the placement of VMs over a cloud-fog architecture is investigated 

with the aim of minimising the total power consumption. The optimisation is 

performed using a Mixed Integer Linear Programming (MILP) model considering 

AT&T and BT networks as use case scenarios. The MILP model is used to analyse 

the impact of different factors including VM popularity, the traffic between the VM 

and its users, the VM workload, the workload vs. number of users profile, the 

proximity of fog nodes and the PUE.  

The decision to serve users from fog nodes is driven by the trade-off between 

network power saved by placing VMs in fog nodes and the increase in processing 

power that results from replicating VMs to the fog. Our results demonstrate that VMs 

placement in fog computing might lead to power saving depending on many factors; 
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workload and network bandwidth requirements of VMs, VMs popularity among users 

and energy efficiency of distributed clouds.  Overall, the power consumption can be 

reduced if the VM users traffic is high and/or the VMs have a linear power profile. In 

such a linear profile, the creation of multiple VM replicas does not increase the power 

consumption significantly (there may be a slight increase due to idle / baseline power 

consumption) if the number of users remains constant. 

The results also show that (in AT&T networks) the processing requirements 

efficiency of VMs of a linear workload profile with high data rate and minimum CPU 

utilisation of 1% allows offloading VMs with 16% popularity to the access fogs. Other 

VMs are optimally replicated to metro fog nodes. Significant power savings of 48% 

compared to optimised placement in distributed clouds and 64% compared to a 

placement considering traditional cloud locations, have resulted from this offloading. 

VMs with linear workload of a minimum CPU utilisation of 40% tend to offload fewer 

replicas into fog nodes as the high workload baseline means that VM consolidation in 

fewer locations is the most efficient approach. 

Furthermore, we have developed a heuristic based on an offline exhaustive 

search, referred to as energy efficient VM placement heuristic for the cloud-fog 

architecture (EEVM-CF) to place VMs over the cloud-fog architectures in real-time. 

The heuristic results closely approach those of the MILP model. 
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Chapter 6: Impact of the Repeal of Net 

Neutrality on Communication Networks 

6.1 Introduction 

Network neutrality (net neutrality) is the principle of equally treating all Internet 

traffic regardless of its source, destination, content, application… etc. Under net 

neutrality, Internet Service Providers (ISPs) are compelled to charge all Content 

Providers (CPs) the same per Gbps rate despite the growing profit achieved by CPs. 

Any discrimination on the internet traffic violates the concept of net neutrality.  

In this chapter, a techno-economic Mixed Integer Linear Programming (MILP) 

model is built to study the potential profit ISPs can achieve by a differentiated pricing 

scheme under the repeal of net neutrality. We consider that the ISP offers the CP 

service classes, which represent different data rate requirements. The model optimises 

the pricing scheme of differentiated service classes to maximise the ISP profit based 

on price elasticity of demand (PED). The MILP model finds the resulting equilibrium 

pricing, core network power consumption and traffic. 

6.2 Pricing Model: 

In economics, the relationship between users demand and price is referred to as price 

elasticity of demand (PED) [170]. PED measures the percentage change in demand 

resulting from one percent change in price. To decide pricing strategy of a product, 

the seller looks at different sensitivities to various factors that may affect their decision 

to purchase a product. The dominant factor in determining PED is the users’ ability 

and willingness at any given price. Many factors have an effect on users’ behaviour 

such as substitution availability, market competition, frequency of purchase, 

Necessity of the product, and how much the product price represents in users income. 

The PED is calculated as follows: 
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𝑷𝑬𝑫 =
% 𝑪𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝑫𝒆𝒎𝒂𝒏𝒅

% 𝑪𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝑷𝒓𝒊𝒄𝒆
 .                    (𝟔. 𝟏) 

Equation (6.1) measures the sensitivity of demand after a change in a product price. 

For example, if the price increases by 2% and demand decreases by 2%, then the 

elasticity at the PED = 
−𝟐%

𝟐%
= −1. 

In telecommunications, it is not easy task to estimate an exact value of PED for 

various Internet applications as the factors that affect the elasticity change from area 

to another e.g. wealth, popularity of an application, quality of services provided by 

ISPs/CPs or competition between different CPs. However, PED for broadband 

subscriptions in Organisation for Economic Co-operation and Development (OECD) 

countries has been analysed in [171] by studying the relationship between price, 

income and broadband adoption. Additional factors have been included in [172], 

which are age and education to study PED for broadband subscriptions in Latin 

America and the Caribbean countries. They found that 1% decrease in price would 

lead to 0.43% and 2.2% increase in demand, respectively, over the two selected areas. 

6.3 Profit-Driven MILP Model: 

We develop a profit-driven MILP model where the objective is to maximise the 

total profit of an ISP offering core network infrastructure to CPs to deliver content 

from distributed clouds and/or fog nodes to their users.  

In terms of computational complexity, we do not need to run the model in real-

time as the optimization of pricing is an offline problem solved at the service planning 

and service update phases. However, it is important to ensure that we can obtain 

solutions for networks with large number of nodes. The above MILP optimization 

model has a total of 𝑶(𝑵𝟒) variables and 𝑶(𝑵𝟑) constraints where 𝑵 is the number 

of nodes. For a network of 𝑵=25, there is a total of about 𝟐𝟓𝟒 variables and 𝟐𝟓𝟑 

constraints. Using a 2.5 GHz Intel core i7 with 16 GB memory, the model runs for a 

maximum of 7 minutes to obtain the optimum pricing for each price elasticity of 

demand (PED) scenario. 
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We consider a monopolist ISP who owns the network backbone, i.e. CPs have to 

subscribe to the monopolist ISP to reach their customers. According to the FCC, 40% 

of total US Internet subscribers have only a single ISP option in their area [173]. The 

ISP has the power to control the pricing scheme. Under the net neutrality repeal, the 

ISP can deliver CPs content of different data rate requirements at a varying price per 

bit rate. We consider three classes to represent different data rate requirements of CPs 

services; 

• Class A for high data rate content (i.e. UHD video service). 

• Class B for medium data rate content (i.e. HD video service). 

• Class C for low data rate content (i.e. SD video service). 

The ISP needs to optimise the price of the three classes to maximise its profit. We 

consider content with higher data rate, which causes extra burden on core network, to 

be priced higher per bit rate than content with a lower data rate. End-users will 

perceive varied video definitions from CPs based on their CP subscribed class. We 

assume that CPs will transfer the ISP new prices to their users to maintain their profit 

margin. Therefore, for the sake of simplicity we consider CPs to offer the same classes 

to their users. We assume a certain number of users to initially subscribe to each class 

under net neutrality. As the ISP and consequently the CPs vary the per bit rate charges 

for the different classes, users can choose to upgrade, downgrade or unsubscribe to 

the service. The number of users subscribing to each class depends on the PED. We 

assume that users leaving class A will join class B, users leaving class B will join class 

C and users leaving class C will unsubscribe to the service. 

Before introducing the model, in addition to the parameters and variables defined in 

Chapter 3, Table 6-1 and Table 6-2 define the parameters and variables used in the 

model:  

Table 6-1:  List of parameters used in the profit-driven MILP model 

Parameter Description 

𝜶 Set of service classes. 

𝑩 Wavelength data rate. 

𝑪𝑵 Number of clouds hosted in core network. 

𝒖 Total number of users in net neutrality scenario (i.e. before net 

neutrality is repealed). 

𝑳𝑩 Minimum percentage of users served by CP to be maintained by the 

pricing scheme.  
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𝙙𝒊 Download rate of class 𝒊. 

Ͼ The cost in US$ of provisioning a Gbps of IP over WDM network 

bandwidth per month. 

Ͽ The cost in US$ of provisioning a Gbps of metro and access network 

bandwidth per month. 

𝑷𝑺 The net neutrality selling price in US$ of a Gbps of network 

bandwidth per month. 

𝑬𝒊 Price elasticity of demand of class 𝒊. 

𝑵𝒅,𝒊 Number of users of class 𝒊 located in node 𝒅 under net neutrality 

scenario. 

𝜹𝒔 𝜹𝒔 = 𝟏, if a cloud datacentre is hosted in node 𝒔, otherwise 𝜹𝒔 = 𝟎.   

𝑭𝒅 𝑭𝒅 = 𝟏, if there is no fog datacentre hosted in node 𝒅, otherwise 𝑭𝒅 =
𝟎. 

Ϩ Set of all possible solutions.  

𝝆𝒔,𝒊 The price of class 𝒊 under solution 𝒔 and class 𝒊. 

𝒚𝒏𝒔,𝒅,𝒊 The number of users in solution 𝒔 subscribing to class 𝒊 in node 𝒅 as 

a result of its PED, where 

𝑷𝑺

𝝆𝒔,𝒊 − 𝑷𝑺
 𝑬𝒊 = ∑(

𝒚𝒏𝒔,𝒅,𝒊  −  𝑵𝒅,𝒊
𝑵𝒅,𝒊

)

𝒅∈𝑵

 

 

           ∀  𝒊 ∈ 𝜶 ,   𝒔 ∈ Ϩ.  

 

Table 6-2:  List of variables used in the profit-driven MILP model 

Variable Description 

𝒓𝒊 ISP’s revenue achieved by delivering traffic of class 𝒊 to CP users. 

𝑹 Total ISP’s revenue in US$ of delivering networking services to CPs 

content. 

𝑪 Total ISP cost in US$ of provisioning core network. 

𝑷𝒊 The price in US$ per Gbps of network bandwidth per month charged to 

the class 𝒊. 

𝑼𝒅,𝒊 Number of users who subscribe to class 𝒊 located in node 𝒅.  

𝑪𝑫𝒊,𝒅 Cloud flow from users in node 𝒅 subscribed to class 𝒊. 

𝓩𝒔,𝒊 𝓩𝒔,𝒊 = 𝟏, if solution 𝒔 is selected for class 𝒊, otherwise 𝓩𝒔,𝒊 = 𝟎.   

𝒚𝒔𝒔,𝒅,𝒊 The number of users in solution 𝒔 subscribing to class 𝒊 in node 𝒅, 

𝒚𝒔𝒔,𝒅,𝒊 > 𝟎 if solution 𝒔 is selected for class 𝒊, otherwise 𝒚𝒔𝒔,𝒅,𝒊 = 𝟎.   

  

Total ISP’s cost and revenue of delivering CP contents are calculated as follows: 

Cost of provisioning core, metro and access networks infrastructure: 

∑ 𝑹𝒔
(𝑨𝑪) 𝑩   Ͼ

𝒔∈𝑵

 +∑∑𝑼𝒅,𝒊
𝒅∈𝑵

Ͽ

𝒊∈𝜶

 𝙙𝒊                                           (𝟔. 𝟐) 
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Revenue of delivering networking services to CP users: 

∑𝒓𝒊
𝒊∈𝜶

                                                                                            (𝟔. 𝟑) 

The model is defined as follows: 

The objective:  

Maximise total profit given as:  

∑𝒓𝒊
𝒊∈𝜶

         −            (∑  𝑹𝒔
(𝑨𝑪) 𝑩   Ͼ

𝒔∈𝑵

 

+∑∑𝑼𝒅,𝒊
𝒅∈𝑵

Ͽ

𝒊∈𝜶

 𝙙𝒊)                                      (𝟔. 𝟒) 

Equation (6.4) gives the total profit in US dollar. 

Subject to: 

Subject to: (3-23) – (3-29), and the following constraints: 

Revenue of each class: 

𝒓𝒊 = 𝑼𝒅,𝒊 𝙙𝒊 𝑷𝒊  

∀ 𝒊 ∈ 𝜶                                                                (𝟔. 𝟓) 

Constraint (6.5) calculates the revenue the ISP achieves by delivering a service class 

by multiplying the class price by the total traffic in each class. Note that, the total 

revenue is obtained by multiplying two variables (𝑼𝒅,𝒊 𝒂𝒏𝒅 𝑷𝒊) which is a non-linear 

process. A look up table of solutions under different PED values defined by 

parameters  𝝆𝒔𝒊,𝒚𝒔𝒔,𝒅,𝒊, 𝒚𝒏𝒔,𝒅,𝒊 is used for linearization. Constraints (6.6)-(6.10) select 

the optimum number of users and price for each class and the calculate the resulting 

revenue.  

𝒚𝒔𝒔,𝒅,𝒊

{
 
 

 
 

= (𝒚𝒏𝒔,𝒅,𝒊 𝓩𝒔,𝒊)                                    𝒊𝒇  𝒊 = 𝐀
     

≤ (𝒚𝒏𝒔,𝒅,𝒊 +𝑵𝒅,𝐀)𝓩𝒔,𝒊                            𝒊𝒇  𝒊 = 𝐁  
     

≤ (𝒚𝒏𝒔,𝒅,𝒊 +𝑵𝒅,𝐁)𝓩𝒔,𝒊                             𝒊𝒇  𝒊 = 𝐂
                             

 

∀  𝒊 ∈ 𝜶 ,    𝒔 ∈ Ϩ  , 𝒅 ∈ 𝑵                                                                (𝟔. 𝟔) 

𝑷𝒊 =∑(𝝆𝒔,𝒊 𝓩𝒔,𝒊)

𝒔∈Ϩ

          ∀ 𝒊 ∈ 𝜶                                                             (𝟔. 𝟕) 

∑𝓩𝒔,𝒊 = 𝟏

𝒔∈Ϩ

                    ∀ 𝒊 ∈ 𝜶                                                         (𝟔. 𝟖) 
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𝑼𝒅,𝒊 =∑𝒚𝒔𝒔,𝒅,𝒊
𝒔∈Ϩ

        ∀  𝒅 ∈ 𝑵, 𝒊 ∈ 𝜶                                     (𝟔. 𝟗) 

𝒓𝒊 =∑(∑𝒚𝒔𝒔,𝒅,𝒊
𝒅∈𝑵

 𝙙𝒊 𝝆𝒔,𝒊)

𝒔∈Ϩ

     ∀ 𝒊 ∈ 𝜶                                          (𝟔. 𝟏𝟎) 

 

Constraint (6.6) calculates the number of users located in node 𝒅 of class 𝒊 in 

solution 𝒔. The number of users in class A is the number of users subscribing to the 

class as a result of its PED (from the look up table described in the parameter  

𝒚𝒏𝒔,𝒅,𝒊 above). In the case of class B, the number of users available to class B includes 

all users subscribing to the class B as a result of its PED plus any users downgrading 

their subscription from class A to class B. In the case of class C, the number of users 

available to class C includes users subscribing to class C as a result of its PED plus 

any users downgrading their subscription from class B to class C. Constraint (6.7) 

gives the price of each class based on the solution selected from the lookup table. 

Constraint (6.8) ensures that only one solution is selected. Constraint (6.9) calculates 

the number of users of class 𝒊 in node 𝒅. Constraint (6.10) calculates the revenue the 

ISP achieves by delivering a service class by multiplying the class price by the total 

traffic in each class. 

Constraints on number of users and prices: 

∑∑𝑼𝒅,𝒊
𝒊∈𝜶𝒅∈𝑵

≥ 𝒖 𝑳𝑩                                                                       (𝟔. 𝟏𝟏) 

 

𝑷𝟏 ≥ 𝑷𝟐 ≥ 𝑷𝟑                                                                        (𝟔. 𝟏𝟐) 

 

∑ 𝑼𝒅,𝒊𝒅∈𝑵

∑ ∑ 𝑼𝒅,𝒊𝒊∈𝜶𝒅∈𝑵
=

𝑼𝒅,𝒊
∑ 𝑼𝒅,𝒊𝒊∈𝜶

               

          ∀ 𝒊 ∈ 𝜶, 𝒅 ∈ 𝑵                                                                     (𝟔. 𝟏𝟑) 

Constraint (6.11) defines the minimum user percentage the CP service needs to 

maintain. Constraint (6.12) ensures that the price of a lower class does not exceed the 

price of upper classes, i.e. the price of class C does not exceed the price of class B and 

the price of class B does not exceed the price of class A. Constraint (6.13) ensures that 

the ratio of users in different nodes is identical. 

Core network traffic: 
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𝑪𝑫𝒅,𝒊 = 𝑼𝒅,𝒊 𝑭𝒅 𝒅𝒊 

∀ 𝒅 ∈ 𝑵,    𝒊 ∈ 𝜶                                           (𝟔. 𝟏𝟒) 

∑𝑳𝒔,𝒅
𝒔∈𝑵

=∑∑𝑪𝑫𝒅,𝒊
𝒅∈𝑵𝒊∈𝜶

 

∀ 𝒅 ∈ 𝑵                                             (𝟔. 𝟏𝟓) 

   Constraint (6.14) ensures that nodes with a fog built in its proximity are not 

served by a cloud. Constraint (6.15) calculates the download traffic from CP cloud to 

users in different nodes. 

 

User demands can be used to decide on datacentre locations as follows: 

𝑳∑𝑳𝒔,𝒅
𝒅∈𝑵

≥ 𝜹𝒔                                                                   ∀ 𝒔 ∈ 𝑵         (𝟔. 𝟏𝟔) 

 ∑ 𝑳𝒔,𝒅
𝒅∈𝑵

≤ 𝑳 𝜹𝒔                                                                    ∀ 𝒔 ∈ 𝑵       (𝟔. 𝟏𝟕) 

Constraints (6.16) and (6.17) relate the binary parameter that indicates whether 

there is a datacentre built in node 𝒔 or not (𝜹𝒔) to the traffic between users in node 𝒅 

and datacentre in node 𝒔. 

The mathematical model given above maximises the total profit of an ISP. To 

calculate the core network power consumption that results from the profit-driven 

model, network components defined in Chapter 3 (Table 3-9 and Table 3-10) are 

considered.  

The IP over WDM network power consumption is composed of; 

𝒏(∑𝑹(𝑷) 𝑹𝒔
(𝑨𝑪)

𝒔∈𝑵

+∑𝑹(𝑷)𝑹𝒅
(𝑨𝑬)

𝒅∈𝑵

+ ∑ ∑ 𝑹(𝑷)

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

𝓦𝒎𝒏) 

+ 𝒏(∑ ∑ 𝒕(𝑷) 𝓦𝒎,𝒏

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

)+  𝒏(∑ ∑ 𝒆(𝑷) 𝑭𝒎,𝒏 𝑨𝒎,𝒏
𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

) 

+ 𝒏(∑𝑺𝑾𝒔
(𝑷)

𝒔∈𝑵

) +  𝒏(∑ ∑ 𝑮(𝑷) 𝑮𝒎,𝒏 𝓦𝒎,𝒏

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

) 

(𝟔. 𝟏𝟖) 
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Equation (6.18) calculates the total IP over WDM network power consumption. 

The total traffic carried over the core physical links is given as: 

∑ ∑ 𝑾𝒎,𝒏 𝑩

𝒏∈𝑵𝒎𝒎:𝒏≠𝒎𝒎∈𝑵

                                                     (𝟔. 𝟏𝟗) 

6.4 Results and Discussions: 

In this section, we evaluate the increase in ISP profit and the reduction in network 

traffic and subsequently power consumption resulting from the optimised pricing 

scheme under the repeal of net neutrality.  We define the three services classes as 

follows; 

• Class A; for UHD video service; 18 Mbps download rate.  

• Class B; for HD video service; 7.2 Mbps download rate.  

• Class C; for SD video service; 2 Mbps download rate.  

 

We investigate CP’s end users’ choices of service classes based on different PED. 

We show how users behaviour under the different PED; 0.2, 0.4, 0.6, 0.8, 1 or 2 affect 

the equilibrium price of each class the ISP will charge the CP for delivering its content.  

As discussed above, we assume that CP will transfer the price increase to their 

customers at the same rate (if the CP absorbs some of the increase in prices, then this 

may represent a different PED). As a benchmark, we consider users to be distributed 

among classes according to the Cisco forecast report [174], where UHD, HD, and SD 

users distribution are 19%, 56% and 25% respectively. We consider 1.8 million users 

active simultaneously in the network. This figure is obtained as follows: The number 

of users is 44 million users in Netflix in the US and the average user spent around 1 

hour per day watching movies in 2015 [175]. Therefore, the average number of users 

during one hour of the day is 1.8 million users, which is an average number that does 

not consider the popularity of different viewing times in the day. The concentration 

of users at any node in AT&T network is based on the population of the state where 

the node is located (see Fig. 6.1).  
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Figure 6-1: AT&T core network with percentage of population in each node. 

 

In the following, the connectivity selling price and the cost of provisioning different 

telecom network layers are explained. we consider the BT network connectivity 

selling price as the net neutrality price of the three classes where 10 Gbps connectivity 

is priced at £12,600 ($15,750) per year [168], i.e.  $131 per 1 Gbps link per month. 

The actual cost of provisioning ISP core network infrastructure is sensitive 

information and not usually shared by ISPs. However, we estimate the cost of 

provisioning 1 Gbps of network as $118 considering 10% as the ISP profit margin 

(the profit margin average for AT&T [121] and Comcast [176] were approximately 

9% and 12%, respectively between 2013-2018). We divided the cost among the three 

network layers; core, metro and access network based on their power consumption 

percentage; 24%, 6% and 70%, respectively [177] which corresponds to $28, $7, $83, 

respectively. The cost of $28 per Gbps in the core network is associated with a single 

hop. For the AT&T architecture the average hop count between clouds and other 

nodes is 1. 

As shown in Fig. 6.1, we choose AT&T core network (a primary core network 

topology in the US) as a core network topology example. This core network consists 

of 25 nodes and 54 bidirectional links. AT&T hosts data centres in nodes 1, 3, 5, 6, 8, 

11, 13, 17, 19, 20, 22, and 25 [144]. These nodes are used to host datacentres to serve 

distributed CPs users. The input parameters used are given in Table 6.3. 
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Table 6-3: Input parameters of profit-driven MILP model 

40 Gbps router port power consumption (𝑹(𝑷)) 638W [148] 

40 Gbps transponder power consumption (𝒕(𝑷)) 129W [149] 

40 Gbps regenerator power consumption (𝑮(𝑷)) 114W, reach 2000 km [150] 

EDFA power consumption (𝒆(𝑷)) 11W [151] 

Optical switch power consumption (𝑺𝑾(𝑷)) 85W [152] 

Number of wavelengths in a fibre (𝓦) 32 [20] 

Bit rate of each wavelength (𝓦(𝑩)) 40 Gbps [20] 

Span distance between two EDFAs (𝑺) 80 km [151] 

Network power usage effectiveness (𝒏) 1.5 [6] 

Total users (𝑢) 1.8 million users [175] 

The cost of provisioning 1 Gbps of core network 

bandwidth per month (Ͼ) 

$28 

The cost of provisioning 1 Gbps of metro and 

access network bandwidth per month (Ͽ).  

$90 

The net neutrality selling price of downloading 1 

Gbps of network bandwidth per month (Ps) 

$131 [168] 

Set of classes (𝜶) 3 classes; A, B and C 

Number of users of class 𝒊 located in node 𝒅 under 

net neutrality scenario (𝑵𝒅,𝒊) 

19% of total users for class 

A, 56% for class B, and 

28% for class C [174].  

Number of users in each 

node is based on the 

population of the state 

where the node is located 

(see Fig. 6.1). 
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Download rate of class 𝒊 (𝒅𝒊) 18 Mbps for class A, 7.2 

Mbps for class B, and 2 

Mbps for class C [174] 

Price elasticity of demand (𝑬𝒊) 0.2, 0.4, 0.6, 0.8, 1 or 2 

Minimum percentage of users served by CP to be 

maintained by the pricing scheme (𝑳𝑩). 

0 or 100 

 

In the following subsections, we evaluate two scenarios; equal PED for all classes 

and different PED for different classes. Under each scenario we study three scenarios 

of delivering CPs contents to users; a cloud-based delivery and a cloud-fog based 

deliver and fog-based delivery. 

 

6.4.1 Equal PED among classes: 

 

In the following, we study three scenarios of delivering CPs contents to users; a 

cloud-based delivery and a cloud-fog based deliver and fog-based delivery. 

6.4.1.1 Cloud based delivery:  

Fig. 6-2 to 6-4 show the profit-driven model results for AT&T core network where  

content is delivered from the 12 datacentres in the AT&T topology [144]. The number 

of users and the corresponding price of each class under different PED are illustrated 

in Fig. 6-2. The primary y-axis shows price per Gbps per month of each class in US 

dollar. These prices represent the equilibrium point of users’ willingness to follow the 

price increase which result in maximum profit for the ISP. The secondary y-axis 

corresponds to the percentage of users subscribed to each class. The x-axis shows 

different PED scenarios from 2 to 0.2. The former represents highest sensitivity to the 

price change, whereas, the latter represents the contrary. PED values are shown along 

with the case of net neutrality where the price of different classes is fixed to 113$ and 

the percentage of users in each class follows Cisco forecast report [174] as discussed 

above. For each PED value we consider two cases; a case where the optimised pricing 

scheme should maintain 100% of the users that existed under net neutrality (𝑳𝑩 ≥
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𝟏𝟎𝟎) and another case where the pricing scheme can result in users leaving the service 

(𝑳𝑩 ≥ 𝟎).  

Fig. 6-3 is a plot of the monthly profit of ISP considering different PED values as 

well as net neutrality scenario. Total traffic of core network and the power 

consumption from this traffic under different PED scenarios and the net neutrality 

scenario are plotted in Figure 5. 

In case of content with 𝑷𝑬𝑫 = 𝟐,  under 𝑳𝑩 ≥ 𝟏𝟎𝟎 or 𝑳𝑩 ≥ 𝟎, Fig. 6-2 shows 

that repealing net neutrality has increased class C users to 48% of the total number of 

users compared to 14% only under the net neutrality pricing scheme. This increase is 

a result of some users of class B downgrading to class C as the class B price increased 

slightly by 18% (the number of users in class B reduced to 36%) and new users joining 

the service (the total number of users increased to 102%) attracted by the 1% decrease 

in class C price. Note that LB defines the minimum user percentage the CP service 

needs to maintain.  The users of class A are reduced to 18% of the total number of 

users as a result of the slight increase in price by 19%. This pricing scheme and 

distribution of users have resulted in an increase in the total profit by 54% compared 

to the net neutrality scenario as seen in Fig. 6-3. For a less sensitive content with 

𝑷𝑬𝑫 = 𝟎. 𝟐 under 𝑳𝑩 ≥ 𝟎, the equilibrium pricing scheme resulted in 28% of the 

users leaving the service as the increase in the classes price resulted in increasing the 

profit by a factor of 8.3 compared to the net neutrality scenario. Maintaining all the 

users of the service (𝑳𝑩 ≥ 𝟏𝟎𝟎) has slightly reduced the profit by 10%.  

In addition to growing ISP profit, we also observe in Fig. 6-4 a decline in the core 

network traffic by up to 55% under 𝑷𝑬𝑫 = 𝟎. 𝟐, 𝑳𝑩 ≥ 𝟎 and a consequent reduction 

in power consumption by 49%. This reduction in core network traffic and power 

consumption occurred for two reasons; 1) some cloud service users leaving classes A 

and B to subscribe to class C as the charges per Gb/s of the classes A and B increase. 

2) the total cloud service subscribers diminished due to the increase in class C price 

(in case of 𝑳𝑩 ≥ 𝟎).  

 



193 
 

 

Figure 6-2: Price per Gbps per month and the corresponding number of users in each class 

based on different PED after removing net neutrality (cloud-based delivery). 

 

  

Figure 6-3: Total profit per month under different PED scenarios for cloud-based delivery. 
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Figure 6-4: Total core network traffic and power consumption under different PED 

scenarios for cloud based delivery.   

6.4.1.2 Cloud-Fog based delivery:  

Next, we introduce 10 fog nodes in addition to the 12 datacentre locations. These 

fogs are assumed to be built in the proximity of nodes with the highest population in 

AT&T core network, so no core network cost (Ͼ) is incurred by serving demands of 

these nodes. Fig. 6-5 shows that the prices per Gbps per month under different PED 

that are less than the previous case (cloud-based delivery) as we reduced the cost of 

the core network by introducing the fog nodes. Under 𝑷𝑬𝑫 = 𝟐, the prices compared 

to the net neutrality case in class A and B are increased by 12% and 11%, respectively, 

while the price of class C dropped by 1% as opposed to 19%, 18% and 1% with cloud-

based delivery. The reduced prices attracted more users resulting in increasing the 

profit by 18% compared to the net neutrality case as seen in Fig. 6-6 as opposed to a 

54% increase in profit with cloud-based delivery. Fig. 6-7 shows a reduction in core 

network traffic (40%) and power consumption (35%) by repealing net neutrality in 

the cloud-fog architecture. 
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Figure 6-5: Price per Gbps per month and the corresponding number of users in each class 

based on different PED after removing net neutrality (cloud-fog based delivery). 

 

 

Figure 6-6: Total profit per month of profit-driven model under different PED (cloud-fog 

based delivery). 
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Figure 6-7: Total core network power consumption and bandwidth of profit- driven model 

under different PED (cloud-fog based delivery). 

6.4.1.3 Fog based delivery:  

Here, we consider a scenario in which all users access CP contents from a local fog 

node. Although, deploying a fog node locally to serve CP customers increases the 

capital expenditure (CAPEX) and operating expenses (OPEX) of provisioning 

multiple locations (i.e. 25 fog nodes in AT&T network), it reduces the communication 

network transit cost burden to the minimum. However, fog nodes are not always an 

option due to the finite capacity of processing and storage. The results show that the 

prices are further reduced under fog-based delivery (Figs. 6-8) as no core network cost 

(Ͼ) is incurred by serving demands. For instance, under 𝑷𝑬𝑫 = 𝟐, the prices 

compared to the net neutrality case in class A and B is increased by 9% while the price 

of class C is decreased by 11% resulting in increasing the profit by 6% compared to 

the net neutrality scenario as seen in Fig. 6-9.  
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Figure 6-8: Price per Gbps per month and the corresponding number of users in each class 

based on different PED after removing net neutrality (fog-based delivery). 

 

 
Figure 6-9: Total profit per month of profit-driven model under different PED (fog-based 

delivery). 
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respectively. Thus, 1% increase in price of classes A, B, and C will result in 2%, 0.8% 

and 0.2% decrease in the number of users, respectively. Hence, the users in class C 

will highly try to follow the increase in the price, compared to users of classes A and 

B in order to stay in the service. Fig. 6-10 shows the price per Gbps for classes A and 

B is the same under different scenarios and delivery schemes as a result of the high 

PED of class A. Class C is priced at the same level of classes A and B for 𝑳𝑩 ≥ 𝟎 as 

the low PED of class C limits the number of users leaving the services as a result of 

increasing the price. Fig. 6-11 shows an increase in profit by up to 88%, 29% and 16% 

under cloud-based delivery, cloud-fog based delivery and fog-based delivery, 

respectively, compared to the net neutrality scenario. Fig 6-12 shows a decrease in 

core network traffic by up to 43% and 30% under cloud-based delivery, cloud-fog 

based delivery, respectively, compared to the net neutrality scenario. Also, the total 

reductions of core network power consumptions (as shown in Fig 6-13) are up to 40% 

and 32% under cloud-based delivery, and cloud-fog based delivery, respectively. 

 

Figure 6-10: Price per Gbps per month and the corresponding number of users in each class 

for different CP delivery scenarios where PED values of different classes A, B and C are 2, 

0.8 and 0.2, respectively. 
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Figure 6-11: Total profit per month of profit-driven model for different CP delivery scenarios 

where PED values of different classes A, B and C are 2, 0.8 and 0.2, respectively. 

 

Figure 6-12: Total traffic resulting from profit-driven model for different CP delivery 

scenarios where PED values of different classes A, B and C are 2, 0.8 and 0.2, respectively. 
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Figure 6-13: total core network power consumption resulting from profit-driven model for 

different CP delivery scenarios where PED values of different classes A, B and C are 2, 0.8 

and 0.2, respectively. 

6.5 Summary 

In this chapter, we developed a MILP model to optimise the pricing scheme used 

by ISPs to charge CPs for delivering their video content under the repeal of net 

neutrality where ISPs can apply discrimination treatment on data intensive traffic. A 

techno-economic Mixed Integer Linear Programming (MILP) model is developed to 

maximise the ISP profit by optimising the ISP pricing scheme to charge different 

classes of service differently subject to PED. We considered three classes of service 

that represent different data rate requirements of video content. The analysis 

addressed three CP delivery scenarios; cloud-based delivery, cloud-fog based delivery 

and fog-based delivery. The results show that the discriminatory pricing scheme on 

video contents, which has low sensitivity to the change of price, can increase the ISPs 

profit by a factor of 8. The results also show that by influencing the way end-users 

consume data-intensive content, the core network traffic and consequently power 

consumption are reduced by up to 49% and 55%, respectively, compared to the net 

neutrality scenario. 
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Chapter 7: Conclusions and Future work 

In this chapter, the thesis is summarised highlighting the original contributions 

and conclusions of each chapter. Directions for potential future work are also 

outlined. 

7.1 Conclusions 

The thesis has addressed the energy efficiency and profitability of cloud-fog 

architectures through the following contributions:  

In Chapter 3, energy efficient VMs placement was investigated considering the 

problem of joint optimisation of energy consumption of optical core networks 

represented by an IP over WDM network and distributed clouds. The analysis 

addressed the impact of different factors including VM popularity, the traffic between 

the VM and its users, the VM workload, the workload versus number of users and 

their profile and power usage effectiveness (PUE). To evaluate the potential power 

savings, the problem is formulated as a MILP model and a real-time heuristic was 

developed to find the optimal VMs placement. The results show that popular VMs 

and VMs with high user data rate make network power consumption a vital factor in 

determining the VM placement. Also, the results indicate VMs with linear workload 

profile should be distributed to multiple clouds compared to VMs with constant 

workload. In addition, the results show that at high PUE, VM processing power 

consumption becomes a dominant factor in deciding VM placement. The results 

showed that the potential power savings achieved from the energy efficient VM 

placement over distributed clouds in AT&T and BT core networks considering the 

state-of-the-art applications are 51% and 38%, respectively, compared to a placement 

in conventional cloud locations. 

In Chapter 4, the problem of energy efficient VMs placement over distributed 

clouds was further investigated by studying the impact of inter-VM traffic, in addition 

to users’ traffic. The investigation considered the impact of two types of inter-VM 
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traffic; synchronisation and cooperation traffic. Cooperation traffic exists between 

different VMs to support the completion of their processing jobs. Synchronisation 

traffic exists among replicas of the same VM to keep the content of each replica up to 

date. The problem was formulated as a MILP model and a real-time heuristic was also 

developed. The results show that neglecting inter-VM traffic when placing VMs can 

increase the total power consumption by a factor of 39 for VMs with an inter-VM 

traffic data rate of 5 Gbps.  

In Chapter 5, a framework based on MILP mathematical modelling and a heuristic 

was developed to study the energy efficient VMs placement problem over a cloud-fog 

architecture including the three layers of telecommunication networks; core, metro 

and access networks. The framework jointly optimised the use of networking and 

computing resources from the core to access networks, taking into consideration 

minimising the total power consumption of providing the service. It also addressed 

the impact of different factors including the VM popularity, traffic between the VM 

and its users, the VM workload, the workload versus number of users profile, 

proximity of fog nodes and the PUE. The optimal VMs placement and total power 

consumption savings were investigated considering AT&T and BT network 

topologies. The placement of VMs in cloud allows them to serve geo-distributed users 

across the core nodes whereas placing the replicas of a VM in the fog nodes eliminates 

core network crossing for the traffic between VMs and users and therefore reduces 

the network power consumption. However, placing VM replicas in distributed fogs 

increases the processing power consumption due to the creation of multiple replicas 

of the VMs. The creation of a VM replicas therefore results in power savings if the 

former power consumption exceeds the latter power consumption. Significant power 

savings of 48% compared to optimised placement in distributed clouds and 64% 

compared to a placement considering traditional cloud locations, have resulted from 

offloading VMs to the fog. 

In Chapter 6, the potential impact of the repeal of net neutrality on communication 

networks has been explored. A techno-economic MILP model is developed with an 

objective to maximise ISPs profit by optimising the pricing scheme used by an ISP to 

charge CPs for delivering their video content. ISPs are considered to differentially 

charge classes of service representing data rate requirements of different video content 

quality. The analysis addressed three CP delivery scenarios; cloud-based delivery, 

cloud-fog based delivery and fog-based delivery. The results show that the proposed 
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pricing scheme can increase the ISPs profit by a factor of 8. The results also show that 

by applying a discriminatory pricing scheme on data-intensive content, the network 

traffic and consequently power consumption can be reduced by up to 49% and 55%, 

respectively, compared to the net neutrality scenario. 

7.2 Future Work 

In the following, potential future research directions in energy efficient cloud-fog 

architectures are proposed: 

7.2.1 Concave Workload Profile 

The work in this thesis has considered two different workload profiles; linear and 

constant VM workload profiles. However, there are other workload profiles that can 

be tackled when studying the relationship between users and VM workload such as 

concave workload profile [160]. This requires non-linear programming modelling.  

7.2.2 Minimising Carbon Emission Intensity of Cloud-Fog Architecture 

The VMs placement study can be extended to consider minimising the total carbon 

emission intensity of the cloud-fog architecture. Carbon emission intensity is the 

carbon emission per unit of energy consumed. In the UK grid system, the emission 

value varies from region to another based on the fuel type for each region. For 

instance, the carbon emission intensity in North Scotland is much lower than the 

carbon emission intensity in London [178]. However, London has a greater population 

than North Scotland. Thus, there is a trade-off between cloud emission reduction by 

placing VMs in North Scotland and the network emission increase incurred due to the 

need to route the users’ traffic to London.  
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7.2.3 Energy Efficient Content Distribution over Cloud-Fog architecture 

The study of energy efficient VMs placement can be extended to study energy 

efficient content distribution over cloud-fog architectures. The locations to store 

content can be optimised to minimise energy taking into consideration the 

requirements of the state-of-the-art content delivery applications (e.g. storage 

requirements, data rates, CPU requirements for video compression … etc). 

7.2.4 Net Neutrality in A Competitive ISP Market 

The net neutrality work presented in this thesis considered a monopoly ISP market, 

where a single ISP exists. However, more than a single ISP can be offering their 

services creating a competitive ISP market. The problem of the competitive ISP 

market can be mathematically solved by game theory, where the strategic interaction 

in between rational decision-makers is considered. In game theory, each player 

chooses the best decision taking into account the other players’ decisions. 

7.2.5 Minimising Latency in Cloud-Fog Architectures 

In this thesis, the focus has been on investigating the cloud-fog architecture 

considering power consumption and profit as the performance metrics. However, the 

demand for delay-sensitive applications such as autonomous cars, augmented and 

virtual reality, real-time data analytics, and video surveillance applications is growing. 

One of the research directions that can be pursued is energy efficient and profitable 

placement in cloud-fog architectures where delay-sensitive applications have the 

priority to access fog nodes over less critical applications. 
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