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Abstract 

 

The increasing application of machine learning models in sensitive areas, such as 

medicine and manufacturing, without proper knowledge of the inference process 

occurring within these models raises serious ethical issues. It is more important than 

ever to focus in the development of interpretable and transparent models based on 

human intuition. Fuzzy logic represent knowledge utilizing human natural language, 

resulting in interpretable and transparent models.  

 

This Thesis focuses on two expansions to the traditional fuzzy set, these are complex 

fuzzy sets and fuzzy rough sets. Complex fuzzy sets add context to linguistic variables, 

resulting in compact models capable of describing the interaction between features and 

outputs as interferences. The developed complex fuzzy inference systems are 

demonstrated to be transparent and interpretable with an increase of up to 10% in 

prediction accuracy in comparison with state-of-the-art known fuzzy modelling 

approaches and up to a 300% reduction in computational time for training. Further 

advances are presented for the development of a complex Gaussian membership 

function to model uncertainties. Expanding the model to the complex domain present 

further advantages, including the application of complex-valued statistics for the 

development of a feature selection algorithm. Fuzzy rough sets are implemented for 

identifying inconsistencies in datasets. The models and algorithms developed in this 

work are applied to four real-world datasets, demonstrating the applicability in different 

areas. The first two datasets are material testing datasets obtained from industrial 

applications; the third dataset contains the information of a survival analysis performed 

in patients suffering from bladder cancer; the fourth dataset describes the critical 

temperature of superconductors. 
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Chapter 1  

Motivation and Thesis Overview 

 

1.1 Motivation and Introduction 

 

The development and the application of machine learning and Artificial Intelligence 

(AI) models have increased significantly in the last decade. With the application of such 

algorithms to high impact areas such as medical diagnosis and manufacturing it is 

important to develop accurate but also interpretable models based on human intuition.  

 

The increased availability of high computing power has made feasible to develop 

complex machine learning models capable of surpassing human performance in certain 

applications, such is the case with deep Artificial Neural Networks (ANN) [1]. Many 

of these algorithms are being deployed in sensitive areas such as medicine [2] and 

finance [3]. The problem with such complex machine learning algorithms remains the 

inability of interpreting the inference process of black-box models. In recent years The 

European Union’s General Data Protection Regulation included a section known as the 

“right to explanation”, these laws may have a serious impact in the accountability of 

companies and industries that use machine learning and AI algorithms, potentially 

leading to the development of laws requiring the utilization of interpretable machine 

learning models or the development of tools to interpret the inference process of black-

box models [4]. 

  

Fuzzy logic was developed with the intention to model human reasoning [5]. Fuzzy 

Inference Systems (FIS) are AI models capable of describing a system utilizing a rule-

base composed of linguistic variables [6]. Compared with black-box models, FISs are 
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known to be transparent and interpretable given the approximation with human natural 

language. The transparency of a FIS assures the applicability of the model within a 

range of operations, while the interpretability allows the model to be validated by 

experts and allows to extract valuable information from a dataset to derive conclusions 

and make decisions [7].  

 

The objective of this Thesis is to develop transparent, interpretable and accurate 

fuzzy logic models. For this work, two expansions to the fuzzy set are studied, these 

being, Complex Fuzzy Sets (CFS) [8] and fuzzy rough sets [9]. CFSs expand the 

traditional fuzzy set into the complex domain, allowing to embed concepts such as 

context and time. Fuzzy rough sets allow the representation of information within two 

approximations to model uncertainty, vagueness and inconsistencies in the data.  

 

The models and tools developed are implemented using four different real-world 

datasets. The first two are industrial datasets, containing information of two common 

material testing, Charpy impact test, and Ultimate Tensile Strength (UTS) one. The 

third dataset is a medical dataset obtained from a survival study of patients suffering 

from bladder cancer. The fourth dataset describes the critical temperature of 

superconductors. 

 

Each one of the datasets studied in this work present different challenges. Applying 

the tools developed on such different datasets demonstrates its generalization properties 

and the possibilities to expand the application of such tools to other areas.  

 

1.2 Thesis Overview 

 

Chapter 2 contains the literature review surveyed in this work. A brief overview of 

fuzzy logic and fuzzy sets is provided, followed by a review of the different types of 

FISs, including neuro-FIS. New advances in the expansion of the fuzzy sets are later 
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introduced, including the rough sets and CFS, the focus of this work. The chapter is 

finalized by presenting an overview of interpretability.   

 

Chapter 3 include detailed information regarding the four datasets studied in this 

Thesis. The first two are material testing datasets obtained from a Charpy impact and a 

UTS testing. The third dataset is a survival study performed on patients suffering from 

bladder cancer. The fourth dataset contains information related to the critical 

temperature of superconductors.  

 

Chapter 4 introduces the Single Input Complex Fuzzy Inference System (SICFIS). 

The SICFIS is a single feature partition per rule FIS. The concept of interference is 

exploited to represent the complex interaction between features and outputs. The 

SICIFIS model is proved to be transparent and interpretable, with a performance 

superior to state-of-the-art fuzzy models.  

 

Chapter 5 improves the known Adaptive Neuro Fuzzy Inference System (ANFIS) 

model by substituting the linear regression consequents with SICFISs models. The 

ANFIS-SICFIS therefore becomes a global model composed of local interpretable 

SICFISs, results obtained are comparable with ensemble-ANN and evolutionary ANN 

models. The interpretability of the model is assessed by using a local-global 

performance index. 

 

Chapter 6 introduces a complex Gaussian membership function for the development 

of a Mamdani-SICFIS model. The Mamdani-SICFIS is a linguistic interpretable 

complex FIS capable of developing models with uncertainties present in the datasets.  

 

Chapter 7 presents the development of a filter method for feature selection based on 

the SICFIS model developed in Chapter 4. The results obtained are comparable with 

known feature selection algorithms with a considerable reduced computing time.  
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In Chapter 8 fuzzy rough sets are utilized for data-mining applications in the Charpy 

impact test dataset and the Bladder Cancer dataset. Fuzzy rough sets offers a novel tool 

to obtain deeper insight in the datasets and extract valuable information for developing 

prediction models.  

 

Chapter 9 presents the conclusions and the future work in the field of complex FIS. 
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Chapter 2  

State of the Art  

 

2.1 Fuzzy Sets and Fuzzy Logic 

 

Fuzzy sets and fuzzy logic were developed by Zadeh in [5] to model and 

approximate human reasoning. Fuzzy sets have a continuum grade of membership 

between 0 and 1, which allows the representation of vagueness and uncertainty in 

human natural language and in real world objects. While traditional sets classify objects 

with an absolute membership value of either belonging or not belonging to a class (truth 

or false; 1 or 0) statements such as “the oven is hot” are not intuitively represented as 

either completely truth or false. For example, an oven at a temperature of 160° degrees 

can be considered as “hot”, or even “very hot”, another oven with a temperature of 175° 

may considered to be between “hot” and “very hot”. Traditional logic is not capable of 

representing such statement as intuitively as fuzzy logic. Because of the continuum 

degrees of membership, it is possible to define “soft” boundaries between classes, 

allowing for an intuitive transition between class membership and the changes in a 

feature. In contrast with traditional logic which can be considered as having “hard” 

boundaries, small changes in a feature could mean complete change in a class 

membership, for example, an oven whose temperature changes from 174° to 176°  

would change from class membership “hot” to “very hot” instantly.  

 

A graphical representation of the oven example from the previous paragraph is 

shown in Figure 2.1. The class membership assigned to each one of the values is 

performed by a mathematical function defined as fuzzy membership function, defined 

below:  
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Definition  1:  Fuzzy membership function [10]: 

If X is a collection of objects denoted generically by x, then a fuzzy set A in U is 

defined as a set of ordered pairs: 

 

 ( ) , ( )AA x x x U=    (2.1) 

 

where ( )A x  is called the membership function for the fuzzy set A. The membership 

function maps each element of U to a membership grade (or membership value) 

between 0 and 1. The set U is usually referred to as the universe of discourse.  

 

 

Figure 2.1: Oven temperature example to compare fuzzy sets and crisp sets. 
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2.1.1 Fuzzy Membership Functions  

 

In the example shown in Figure 2.1 a Gaussian membership function (2.2) is utilized. 

Other examples of membership functions are the singleton membership function (2.4), 

and the triangular membership function (2.3) among others. A graphical representation 

of the Gaussian, triangular and singleton membership functions is shown in Figure 2.2.  

 

2

1
Gaussian membershipfunction : ( , , ) exp

2
A

x c
x c 



  −
  = −
  

  

 (2.2) 

Triangular membershipfunction : ( , , , ) max min , ,0A

x a c x
x a b c

b a c b


 − −  
=   

− −  
  (2.3) 

 
1

Singleton membershipfunction : ( , )
0

A

if x b
x b

if x b


=
= 


  (2.4) 

 

 

Figure 2.2: Gaussian, triangular and singleton membership functions. 

 

2.1.2 Fuzzy Logic Operators 

 

Just as in traditional logic and set theory, fuzzy logic utilizes logic operators to 

perform a diverse number of operations. Given two fuzzy sets A and B, the fuzzy 

intersection and union are as follows:  
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 ( ) ( )A B A Bx x   =    (2.5) 

 ( ) ( )A B A Bx x   =    (2.6) 

 

where   and   are known as triangular norms (t-norm) and triangular conorm (t-

conorm or s-norm) operations respectively defined below:  

 

Definition  2: T-norm [10].  

A t-norm operator is a binary operation satisfying, monotonicity, commutativity and 

associativity axioms and whose boundaries are as follows: 

 

 t-norm( ,0) 0a =   (2.7) 

 t-norm( ,1)a a=   (2.8) 

 

Definition  3: T-Conorm [10].  

A t-conorm operator is a binary operation satisfying, monotonicity, commutativity 

and associativity axioms and whose boundaries are as follows: 

 

 t-conorm( ,0)a a=   (2.9) 

 t-conorm( ,1) 1a =   (2.10) 

 

Some common t-norm operations are the minimum t-norm  (2.11), and the product 

t-norm (2.12). Some common s-norm operations are the maximum s-norm (2.13) and 

the probabilistic sum (2.14). 

 

 Minimumt-norm: min( , )A B A b   =   (2.11) 

 Product t-norm: A B A b   =    (2.12) 

 Maximums-norm: max( , )A B A b   =   (2.13) 

 Probabilistic sum s-norm: A B A B A B     = + −    (2.14) 
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2.1.3 Fuzzy Rules and Inference 

 

Fuzzy rules are logical statements composed of linguistic variables of the following 

form:  

 if is Then isx A y B   (2.15) 

 

where A and B are fuzzy linguistic variables represented by fuzzy membership 

functions, usually referred to as the premise, and the consequence respectively. Fuzzy 

rules, given its proximity to human reasoning, is the main method of representing 

information in fuzzy logic. In the fuzzy rule (2.15) the mathematical operation where if 

x is A implies that y is B is called the implication and is as follows: 

 

 ( ) ( )A B A Bx x  → =    (2.16) 

where   is a t-norm. 

 

2.2 Fuzzy Inference Systems 

 

FISs are models created to represent the behaviour of a real-world system utilizing 

a rule-base composed of the aggregation of fuzzy rules of the form (2.15) [11]. FISs 

are known to be universal approximators, capable of approximating any continuous 

function within a level of accuracy [12]. Additionally, FISs are transparent and 

interpretable due to its intuitive linguistic modelling. This makes them useful for 

modelling, representing and extracting knowledge.  

 

The two main FISs types are Mamdani and Takagi-Sugeno-Kang (TSK). The 

Mamdani FIS utilize linguistic variables for both the premise and the consequences of 

the rule-base. TSK FISs, utilize linguistic variables for its premises but consequences 

are expressed utilizing a function, usually, a linear regression model [13]. 
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2.2.1 Mamdani Fuzzy Inference Systems 

 

The Mamdani FIS is known to be highly interpretable due to its approximation to 

human natural language and expressing values utilizing linguistic variables for both its 

premises and consequences. An example of a Mamdani FIS rule-base is shown in Table 

2.1. The stages of inference in a Mamdani FIS are: fuzzification, rule firing strength, 

inference, rule aggregation and defuzzification. Given R rules and P features a 

Mamdani FIS can be represented as a 5 layered system as follows: 

 

Table 2.1 Mamdani FIS rule-base 

If 
1 1,1x is A  And/Or 

1 1,1x is A  And/Or … 
,1P Px is A  Then 

1 1

Qy =  

If 
1 1,2x is A  And/Or 

2 2,2x is A  And/Or … 
,2P Px is A  Then 

2 2

Qy =  

         
If 

1 1,Rx is A  And/Or 
3 3,Rx is A  And/Or … 

,P P Rx is A  Then Q

R Ry =  
 

 

The first layer fuzzifies a crisp input utilizing a fuzzy membership function.  

 

 1

, , ( )r p r p pO x=   (2.17) 

 

The second layer calculates the rule firing strength of each rule according to the logic 

operation stated in the rule-base, for an “And” logical operator a t-norm ( )  function 

is selected, in the case of the “Or” operator an s-norm ( ) function is utilized: 

 

 2

,1 ,2 , 1 ,/ / /r r r r r p r pO w    −= =         (2.18) 

 

The third layer is the inference layer which is calculated utilizing a t-norm function.  

 

 3 Q Q

r r r rO y w = =    (2.19) 
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The fourth layer aggregates the output of the fourth layer utilizing an s-norm 

 

 
ˆ4

1 2 1

Q Q Q Q Q

R RO y y y y y−= =       (2.20) 

 

 

For the final layer, it is necessary to defuzzified the output of the fifth layer. Several 

functions have been proposed. The one explored in this work is the center of gravity 

(COG) defuzzification which is as follows: 

 

 

ˆ

1

ˆ

1

( )

ˆ

( )

N
Q

i i

i

N
Q

i

i

k y k

y

y k

=

=



=



  (2.21) 

 

where ik  is variable with strictly increasing values within the specified range. 

 

2.2.2 TSK Fuzzy Inference Systems 

 

The TSK FIS was designed to model the dynamical behaviour of systems [14], 

utilizing an ensemble of local linear models. The premise of the rule-base creates a 

partition in the feature space, where each rule represents a local linear model of the 

described system. The soft boundaries between the rules allows to model a smooth 

transition between each of the local linear models in order to create an accurate and 

interpretable non-linear model [13]. An example of a rule-base system of TSK is shown 

in Table 2.2. 

Table 2.2: TSK FIS rule-base. 

If 1 1,1x is A  And/Or … ,1P Px is A  Then 
1 1 1 1 1

1 1 1 1 2 0( ) ... p py f x b x b x b b= = + + + +x  

If 1 1,2x is A  And/Or … ,2P Px is A  Then 
2 2 2 2 2

2 1 1 1 2 0( ) ... p py f x b x b x b b= = + + + +x  

       

If 1 1,Rx is A  And/Or … ,P P Rx is A  Then 1 1 1 2 0( ) ...R R R R R

R p py f x b x b x b b= = + + + +x  
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The overall structure of the TSK rule-base is very similar to that of the Mamdani 

FIS. The stages of inference in a TSK FIS are: fuzzification, rule firing strength, 

inference and rule aggregation. The consequences of the TSK are linear functions 

therefore the output of each rule is a crisp quantity and does not require de-fuzzification. 

The TSK FIS can be described as a 5-layered system as follows:  

 

The first layer fuzzifies a crisp input utilizing a fuzzy membership function.  

 

 1

, , ( )r p r p pO x=   (2.22) 

 

The second layer calculates the rule firing strength of each rule according to the logic 

operation stated in the rule-base, for an “And”  and “Or” logical operator a t-norm ( ) 

and  a s-norm ( ) functions are selected respectively. 

 

 2

,1 ,2 , 1 ,/ / /r r r r r p r pO w    −= =         (2.23) 

 

The third layer performs a rule normalization operation. 

 

 3

1

1

R
r

r r R
r

r

r

w
O w

w=

=

= =


  (2.24) 

 

The fourth layer performs the rule inference operation utilizing a t-norm. 

 

 ( )4

1 1 1 2 0...r r r r

r r r P PO y w x b x b x b b= =  + + + +   (2.25) 
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The final layer aggregates each of the inferred rules utilizing an s-norm. Because the 

linear function utilized as the output of the rules in the TSK FIS, it is not necessary to 

perform a defuzzification operation. 

 

 5

1 2 1
ˆ

R RO y y y y y−= =       (2.26) 

 

The lack of linguistic variable in the consequences of the rule-base cause the TSK 

FIS to be less interpretable than Mamdani FIS. The loss in interpretability is 

compensated by an increase in prediction accuracy and a reduction in computational 

time. 

 

 

2.2.3 Single Input Fuzzy Inference Systems 

 

The FISs rule-bases explored so far are composed of a series of statements connected 

with AND-OR operations. Single input FISs rules are composed of a single premise per 

rule. These systems can describe the individual effect of a feature to the output. Two 

common single-input FIS are the Single Input Rule Modules (SIRM’s) Connected 

Fuzzy Inference Model [15] and the Single Input Connected (SIC) fuzzy inference 

method [16]. 

 

The SIRM’s Connected Fuzzy Inference Model was proposed in [15] to solve the 

problem of combinatorial rule explosion by creating rules composed of a single premise 

and a single consequent. Given P features and sp partitions per feature, the SIRMs rule-

base is as follows: 
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Table 2.3: SIRM rule-base. 

 1,1 1 1,1 1,1 1,1SIRM if =A then =x y b=  

 1,2 1 1,2 1,2 1,2SIRM if =A then =x y b=  

 

 1, 1 1, 1, 1,SIRM if =A then =
p p p pS S S Sx y b=  

 2,1 2 2,1 2,1 2,1SIRM if =A then =x y b=  

 

 , , , ,SIRM if =A then =
p p P pP S P P S P S P Sx y b=  

 

 

The inference process of the SIRM is as follows. Each feature p is partitioned into 

ps  partitions, the membership function of each partition is calculated utilizing a 

selected membership function, from the rule-base in Table 2.3 this membership 

function is as follows: 

 

 , , ( )
p pp s p s pA x =   (2.27) 

 

The inference of each feature is then calculated utilizing the normalized rule strength 

of the feature partitions as follows:  

 

 

, ,

1

,

1

p

p p

p

p

p

p

S

p s p s

s

p S

p s

s

b

y





=

=



=




  (2.28) 

 

The final output of the system is calculated as the weighted sum of the features 

inferences, the weight parameter 
pw  is selected to give the relative importance of each 

feature, the parameter can be selected initially from expert knowledge.  

 

 
1

( )
P

p p

p

f w y
=

=x   (2.29) 
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For the SIC fuzzy inference method utilizes the same rule-base described in Table 

2.3, the main difference lies with the system output and inference process, instead of 

utilizing a weighted sum, it utilizes the normalized rule strength of the feature partitions 

and the features, the system output can be modelled as follows: 

 

 

, ,

1 1

,

1 1

( )

p

p p

p

p

p

p

SP

p s p s

p s

SP

p s

p s

b

f





= =

= =



=




x   (2.30) 

 

The simple structure of the SIRM and the SIC fuzzy inference methods are 

computationally efficient given the low number of operations.  

 

2.2.4 Fuzzy Rule-Base Elicitation 

 

The rule-base which composes a FIS can be created utilizing different methods. The 

utilization of expert knowledge to derive a FIS is the earliest example of rule-base 

elicitation [6]. The rule-base is created based on the expert knowledge of a process. 

With simpler process these rule-bases can create accurate and reliable models. 

Nowadays is more common to develop rule-bases automatically utilizing a dataset or 

an information system containing the relevant information required to model a system 

[13]. Some of the most common methods are grid-partition and cluster base methods.  

 

Grid partition methods are among the earlier FIS automatic rule-base elicitation 

methods. The features and outputs are divided into partitions creating a grid. The rule-

base is composed of a combination of every feature partition and output. These number 

of rules grows exponentially with the addition of features and partitions, creating what 

is known as combinatorial rule explosion [17]. An example of a two-dimensional 

partition is shown in Figure 2.3. To solve the problem of combinatorial rule explosion, 
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different techniques have been developed; most commonly rule-bases are developed 

from data clusters or granules that produce more accurate and compact models. 

 

 

Figure 2.3: Two-dimensional grid-partition with three membership function per 

feature. 

 

Cluster base methods utilize input and output data from a system or process to 

identify patterns, each cluster results in the formation of a rule, the size and shape of 

the membership function are calculated based on the geometry of each one of the 

clusters or granules obtained from the data, an example of cluster-based rule elicitation 

is shown in Figure 2.4. Two commonly used clustering algorithms are the Fuzzy C-

Means (FCM) clustering algorithm [18]–[23] and the subtractive clustering algorithm 

[24]. Other alternatives to create initial rule-base based on the input/output information 

is the utilization of information granulation algorithms[25], [26] and hierarchical 

clustering [27]. 

 

 

Figure 2.4: Two-dimensional cluster rule-base. 
 



Chapter 2 

State of the Art 

 

 

17 

 

2.3 Neuro-Fuzzy Inference Systems 

 

Eliciting a rule-base utilizing any of the methods previously described does not 

necessary guarantee an optimal performance of the FIS. In order to improve the 

performance, it is required to perform a “fine tuning” on the system parameters, such 

as changing the shape and position of the membership functions. A manual tuning of 

these rules may become intractable as the complexity increases. In order to tune 

automatically the parameters of a FIS it is necessary to either utilize global optimization 

methods such as genetic algorithms (GA) [28] or to implement learning techniques 

utilized in ANN defined as neuro-FIS [29]. 

 

The ANN is a black-box machine learning model known to be universal 

approximation [30]. On the one hand the main drawback of utilizing any type of black-

box models in applications is the lack of transparency. On the other hand neuro-FIS 

combine the learning capabilities of ANN and the interpretability and transparency of 

fuzzy logic [29]. Additionally neuro-FIS are also known to be universal approximators 

[31].  

 

2.3.1 Artificial Neural Networks 

 

The ANN is a mathematical model inspired by the behaviour of neurons in the 

human brain. The network consists of the arrangement of artificial neurons called 

perceptron’s in different layers to achieve a nonlinear mapping between inputs and 

outputs. The simplest type is the single-layer feedforward ANN. In a feedforward ANN 

the information flows in a single direction. In Figure 2.5 a feedforward ANN with a 

single hidden layer is shown. The mathematical equation is as follows:[32] 

 

 2 1 1 2

0 0

1 1

( , )
K P

k k kp p

k p

y x w w w x w w
= =

  
= + +   

  
    (2.31) 



Chapter 2 

State of the Art 

 

 

18 

 

 

Figure 2.5: One hidden layer feedforward ANN.  

 

where P represents the number of features, K the number of neurons in the hidden 

layer,   represents the activation function, a common activation function is the 

sigmoidal function (2.32). The W parameters are called the weights of the ANN, and 

the 0w ’s are defined as the bias. These W parameters are usually calculated utilizing a 

gradient based optimization algorithm in order to minimize an objective function. The 

most common optimization method is the error-backpropagation algorithm [33]. 

 

 
( )

1
( )

1 a
a

e


−
=

+
  (2.32) 

 

2.3.1.1 The Error-Backpropagation Algorithm 

 

The error-backpropagation algorithm is a gradient-based optimization algorithm 

implemented in ANN and neuro-FIS to update the parameters of a model and improve 
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the performance based on an objective function. The objective function utilized in the 

error-backpropagation is the sum of squared errors: 

 

 ( )
21

ˆ
2

E y y= −   (2.33) 

 

where ŷ  is the estimated output of a model and y  is the real output. The weights 

and biases of the ANN are updated according to: 

 

 1 ( )t t tE + = −w w w   (2.34) 

 

where w  is the vector containing the weights of the ANN, ( )E w  is the gradient 

of the objective function with respect of the weights and   is the step size. 

 

 
1 2

( )t

N

E E E
E

w w w

   
 =  

   
w   (2.35) 

 

2.3.1.2 Radial Basis Function Networks 

 

Radial basis function networks (RBFN) are a type of ANN with a single hidden layer 

and the selected activation function is a Gaussian (2.36). While activation functions, 

such as the sigmoidal function, are supposed to activate the neuron once a threshold is 

met, RBFN respond to inputs located in certain regions in the feature space.  
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Figure 2.6: Single output RBFN a) weighted sum output and b) weighted average 

output. 

 

The output of the RBFN can be either a weighted sum (2.37) (Figure 2.6 (a)) or a 

weighted average (2.38) (Figure 2.6 (b)). The similarities between the weighted average 

RBFN and the Mamdani FIS are evident, in the following section it will be 

demonstrated that both can be functional equivalent given certain conditions.  
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2.3.2 Neuro Fuzzy Mamdani Fuzzy Inference System  

 

The Mamdani FIS can be functionally equivalent to RBFN under certain conditions 

[34][35]. The first condition is the selection of a fuzzy Gaussian membership function 

for the premises. The second condition is to select the algebraic product as the t-norm 

operation for the calculation the rule firing strength and the implication. The third 

condition is to aggregate the rules utilizing an algebraic sum operation. Finally by 
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selecting a singleton membership function (2.4) for the consequents of the rules and 

selecting the COG defuzzification method results in a function equivalent to the 

weighted average of the RBFN activation functions outputs (2.38). It is important to 

note that the algebraic-sum is not an s-norm, such modification result in greater 

computationally efficiency [10] and in a functional equivalence to the RBFN. 

 

The Mamdani FIS with singleton defuzzification can be described as a four layered 

system. The first layer fuzzifies  the input (2.39), the second layer calculates the rule 

firing strength (2.40), the fourth layer calculates the inference (2.41). The final layer 

defuzzified the input utilizing the COG method (2.42).  
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The backpropagation algorithm can be utilized for adjusting the singleton 

membership function position rb , the spread 
,r p  ,and centre 

,r pc  of the Gaussian 

membership function. The partial derivatives of the objective function (2.33) with 

respect to the , andb c   parameters are as follows: 
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2.3.3 The Adaptive Network Based Fuzzy Inference System  

 

The ANFIS model is based on the TSK FIS [10]. Rules are composed of premises 

whose membership function usually is selected to be a Gaussian, it utilizes the product 

t-norm for the conjunction and implication operations and utilizes the algebraic sum for 

aggregating rules.  

 

The ANFIS model can be described as a five-layered system as shown in Figure 2.7. 

The first layer fuzzifies  the input (2.46), the second layer calculates the firing strength 

(2.47). The third layer performs a rule normalization operation (2.48). The fourth layer 

calculates the inference (2.49). The fifth layer aggregates the rules with the algebraic 

sum operation (2.50).  
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What differentiates the ANFIS from the TSK model is the application of a hybrid 

learning method. The premises parameters ( ,c ) are optimized utilizing the 

backpropagation algorithm while the consequence parameters (
1,0 ,R Pb b  ) are 

optimized utilizing a linear least-squares error method. The output of the fifth layer is 

a weighted sum of the output of a linear regression model (2.50). Therefore, by treating 

the normalized fired rule strength rw  as a constant, it is possible to perform a linear 

least squares optimization as follows:  
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Figure 2.7: ANFIS schematic. 
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where   is called the design matrix, and N represents the number of instances in 

the dataset. The hybrid optimization algorithm alternates the training at each step of the 

premise parameters σ and c  ,and the consequent parameters b . 

 

2.4 Type-2 Fuzzy Sets 

 

Type-2 fuzzy sets where originally proposed by Zadeh in [36]. In a type-2 

membership function, each value of its membership is a type-1 fuzzy set, as shown in 

Figure 2.8, this increases the ability of a fuzzy membership function to model 

uncertainties.  

 

The development of a type-2 fuzzy inference system represents several challenges, 

mainly due to the computational requirements for modelling and performing operations 

in type-2 fuzzy membership functions [37].  To overcome these limitations, interval 

type-2 fuzzy sets and membership function were developed [37]. An interval type-2 

fuzzy sets is composed of an upper and a lower type-1 fuzzy membership function, 

representing the region between the membership functions as the footprint of 

uncertainty as shown in Figure 2.8 a and b. This allows to model uncertainties while 

reducing the computational requirements of type-2 fuzzy inference systems.  

 

 

Figure 2.8: Type-2 Gaussian membership function  
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(a) 

 

(b) 

Figure 2.9: (a) Interval type-2 Gaussian membership function. (b) Interval type-2 

Gaussian membership function and 

 

Type-2 and interval type-2 fuzzy inference systems have been applied to a wide 

range of fields, including control [38], healthcare [39], and metallurgy [40].  

 

2.5 Rough Sets 

 

Rough sets were developed by Pawlak in [41] to model vagueness and uncertainty. 

A rough set is composed of two approximations: a lower approximation that contains 

all the objects that certainly belong to a class and an upper approximation that contains 

all the objects that may or may not belong to a class. An example of an information 

table is shown in Table 2.4. 

 

Table 2.4: Information table example. 

Object Feature 1 Feature 2 Feature 3 Output 

1 A C B 1 

2 A C B 0 

3 B A C 0 

4 B A A 1 

5 A A C 0 

6 B A A 1 
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In an information system given any subset D of P conditional features 

indiscernibility is assessed as follows [41]: 

 

 
2( ) {( , ) | , ( ) ( )}IND D x y U d D d x d y=    =   (2.53) 

 

Therefore, two objects are indiscernible if they contain the same feature values, for 

the features in D. For example in the information system shown in Table 2.4 the 

indiscernible objects of the following subsets 1 { 1, 2, 3}D Feature Feature Feature= ,  

2 { 1, 2}D Feature Feature=  and 3 { 3}D Feature= are as follows: 

 

 1( ) {{1,2},{3,5},{4,6}}IND D =   (2.54) 

 2( ) {{1,2},{3,4,6},{5}}IND D =   (2.55) 

 3( ) {{1,2},{3,5},{4,6}}IND D =   (2.56) 

 

Indiscernible objects are treated as a single information granule and represented by 

a set [x]p.- The lower and upper approximation are respectively: 

 

 { |[ ] }pPX x x X=    (2.57) 

 { | [ ] }pPX x x X=     (2.58) 

 

The tuple ,PX PX  is defined as the Rough set. A graphical representation of a rough 

sets is shown in Figure 2.10.  

 

The positive, negative and boundary regions of a rough set given two sets of 

attributes P and Q are as follows: 

 

 
/

( )P

X U Q

POS Q PX


=   (2.59) 
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/

( )P

X U Q

NEG Q U PX


= −   (2.60) 

 
/ /

( )P

X U Q X U Q

BND Q PX PX
 

= −   (2.61) 

 

The positive region contains all the objects of U that can be classified to a class 

/U Q  given the information contained in the attributes P. The boundary region contains 

the set of objects that can’t be classified with absolute certainty, and the negative region 

contains the objects that certainly cannot be classified. In the example shown in Table 

2.4, the positive regions of D1, D2 and D3 given Q Output= are as follows: 

 

 
1

1 0

( ) {{4,6},{3,5}}DPOS Q =   (2.62) 

 
2

1 0

( ) {{ },{5}}DPOS Q =    (2.63) 

 
3

1 0

( ) {{4,6},{3,5}}DPOS Q =   (2.64) 

 

From the Positive region of D1 instances {1,2} do not form part of any class, the 

reason for this is the conflict in the output Q, it is not possible to determine whether a 

such feature values would determine a precise output, therefore instances {1,2} are 

considered inconsistent. From D2 it is seen a decrease in the size of the sets. That is 

because the removal of features, especially Feature 3, makes it impossible to discern 

between objects and to classify the output appropriately. Additionally, it is seen from 

the results, that D3 contains the same number of objects in its positive region as D1. The 

feature dependency can be measured as follows: 

 

 
( )

( )
D

D

POS Q
Q
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The feature dependency is a measure of how well a set of features can describe the 

output. For the subsets D1, D2 and D3 from the example of Table 2.4 the feature 

dependency is the following: 

 

 
1

{3,4,5,6}
( ) 0.6666

{1,2,3,4,5,6}
D Q = =   (2.66) 

 
2

{5}
( ) 0.1666

{1,2,3,4,5,6}
D Q = =   (2.67) 

 
3

{3,4,5,6}
( ) 0.6666

{1,2,3,4,5,6}
D Q = =   (2.68) 

 

 

Figure 2.10: Rough set representation. 
 

 

Rough sets were applied for a diverse number of applications such as knowledge 

discovery [42] and clustering [43]. Where rough sets have been most successfully 

applied has been in the development of feature selection algorithms [44]–[47]. Rough 

sets suffer from the limitation of being only applicable to qualitative datasets, thus 

limiting its applicability considerably given that most real-world datasets are composed 

of mixed valued data. To solve this problem, the development of fuzzy-rough sets 
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hybrids were developed [9]. Fuzzy rough sets are capable of modelling mixed datasets 

given the continuous degree of membership of fuzzy sets.   

 

2.5.1 Fuzzy Rough Set Theory 

 

The fuzzy rough sets hybrids were initially proposed by Dubois and Prade in [9], the 

method consists of developing fuzzy partitions in the dataset. The fuzzy rough lower 

and upper approximations are estimated as follows: 

 

  ( ) inf max 1 ,( ), ( )
iPX i x F XF x x  = −  (2.69) 

  ( ) sup max ,( ), ( )
ii x F XPX

F x x  =   (2.70) 

 

where iF  is a fuzzy equivalence class and ( )X x  denotes the degree to which x 

belongs to fuzzy equivalence class X [30]. The main drawback with Dubois and Prade’s 

fuzzy rough sets is the exponential increase in computations required with the addition 

of features and fuzzy partitions. An alternative fuzzy-rough set elicitation method was 

introduced by Radzikowska and Kerre in [48]. Instead of measuring the indiscernibility 

relationship between objects a measure of their similarity is calculated using a fuzzy 

tolerance relationship, 
PR . The fuzzy-rough lower and upper approximations are as 

follows: 

 ( ) inf ( ( , ), (y))
P PR X R X

y U
x I x y  


=  (2.71) 

 ( ) sup ( ( , ), ( ))
PP

R XR X
y U

x T x y y  


=   (2.72) 

 ( , ) { (x, y)}
P pR R

p P

x y 


=   (2.73) 

 

where T is a t-norm, and I is a fuzzy implicator. 
Rp  is a similarity measure between 

objects x and y for a feature p. Jensen and Chen [49] proposed the application of the 
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Łukasiewicz t-norm (2.74) , the Łukasiewicz implicator (2.75) and proposed the 

following fuzzy similarity relations (2.76)-(2.78). 

 

 ( )( )max 1,0T x y= + −   (2.74) 

 ( )( )min 1 ,1I x y= − +   (2.75) 
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  (2.78) 

 

where 2

p  is the variance of feature p. 

 

The positive region and feature dependency of a fuzzy-rough sets are calculated as 

follows: 

 

 ( )
/

( ) sup ( )
R PP

POS Q R X
X U Q

X x 


=   (2.79) 

 
( ) ( )

( ) RPPOS Qx U
p

x
Q

U



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

  (2.80) 

 

Rough set theory and fuzzy rough set theory have been implemented successfully in 

different fields such as in pattern recognition [45], attribute selection [44], [45], [47], 

[49]–[52], rule induction [53], classification [47], [54]  and knowledge discovery [42], 

[47]. 
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2.6 Complex Fuzzy Sets and Logic 

 

CFS theory was first developed by Ramot et al. [8] [55]. A CFS S in a universe of 

discourse U is defined as follows:  

 

 ( )
( ) Sj x

S Sx r e
 =   (2.81) 

 

where 1j = − , Sr and S  are the magnitude and the phase of the CFS respectively. 

While traditional type-1 fuzzy sets lie within the interval [0,1]  the CFS lies within a 

unit circle. The magnitude Sr  represents a type-1 fuzzy sets and the phase S  is a 

relative quantity that assigns the “context”. This makes the type-1 fuzzy set a special 

case of the CFS when all phases are equal to zero.  

 

2.6.1 Complex Fuzzy Operations 

 

According to [8] [55], the magnitude and the phase of the CFS are two separate 

identities, and therefore the operations applied to one should not affect the other. In the 

case for the complex fuzzy union and intersection, given two complex membership 

functions A and B, the resultant membership function of the union operation A B  and 

intersection operation A B   is given as follows: 

 

   ( )( ) ( ) ( ) A Bj x

A B A Bx r x r x e  

 =     (2.82) 

   ( )( ) ( ) ( ) A Bj x

A B A Bx r x r x e  

 =     (2.83) 

 

where  represents any t-conorm function and   represents any t-norm function. 

The following equations (2.84)-(2.90)  are proposed for both the union and intersection 

of the phase [8], [55]: 
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 A B A B   = +   (2.84) 

 ( )max ,A B A B   =   (2.85) 

 ( )min ,A B A B   =   (2.86) 

 A B A B   = −   (2.87) 

 
A A B

A B

B B A

r r

r r








= 


  (2.88) 

 A A B B
A B

A B

r r

r r

 
 

 + 
=

+
  (2.89) 

 
2

A B
A B

 
 

+
=   (2.90) 

 

The characteristic operator of the CFS is the complex fuzzy aggregator which is also 

called vector aggregation [8] [55]. CFSs are composed of a magnitude and a phase, 

therefore CFSs exhibit “wave-like” properties, when two or more CFS are aggregated 

the magnitude of the resultant vector will depend on the phase alignment of the CFSs. 

The definition of the complex fuzzy aggregation [55] is as follows: 

 

Definition 4 [55]: Let 1 2, ,..., nA A A  be CFS defined on the universe of discourse U. 

vector aggregation on 1 2, ,..., nA A A  is defined by a function v as follows: 

 

    : , 1 , 1
n

v a a a b b b  →     (2.91) 

 

The function v produces an aggregate fuzzy set A by operating on the membership 

grades of 1 2, ,..., nA A A  for each x U . For all x U , v is given by: 

 ( )
1 2

1

( ) ( ), ( ),..., ( )
n i

n

A A A A i A

i

x v x x x w    
=

= =   (2.92) 
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With  , 1iw a a a     for all i, and 
1

1
n

ii
w

=
=  . 

 

The definition of the vector aggregator operation is intended to be as general as 

possible and the calculation of the complex weights iw  are problem-dependent [55].   

 

For the implication operator, the proposed function is the algebraic product (2.93). 

 

 ( , ) ( ) ( )A B A Bx y x y  → =    (2.93) 

 

where: 

 

 ( , ) ( ) ( )A B A Br x y r x r y→ =    (2.94) 

 ( , ) ( ) ( )A B A Bx y x y  → = +   (2.95) 

 

 

2.6.2 Complex Fuzzy Sets With and Without Rotational Invariance 

 

The magnitude and the phase of the CFS  proposed in [8] and [55] have separate 

identities, and the operations performed on one should not have an effect on the other. 

Dick [56] defines this CFS as one “with rotational invariance”. A rotational invariant 

CFS has several limitations, and most importantly, Dick demonstrates that “the 

algebraic product cannot be used as a conjunction operation” [57]. in a rotational 

invariant CFS, even though Ramot et al. utilizes the product function as implication 

[56], [57]. To resolve these limitations Dick proposes a CFS “without rotational 

invariance” based on vector logic, where the magnitude and phase are not separate 

identities. Dick proves that in a CFS without rotational invariance the algebraic product 

can be used as a conjunction operation  [56], [57]. 
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2.6.3 Pure Complex Fuzzy Sets 

 

Tamir [58] expands the original idea of CFS devised by Ramot et al.  [8] [55] and 

proposes a “pure CFS”. The rotational invariant CFS only conveys the fuzzy 

information in the magnitude, in a pure CFS both the magnitude and the phase convey 

the fuzzy information; the pure CFS can be alternatively represented in rectangular 

form. In a pure CFS either the real or the imaginary part (alternatively the magnitude 

and the phase) represents a fuzzy set, while the other represents a fuzzy class. Fuzzy 

classes [59] are sets of fuzzy sets, therefore a pure CFS represents the membership of 

an object in a fuzzy class and a fuzzy set.  

 

2.6.3.1 Other Complex Fuzzy Sets 

 

The field of CFS and logic is relatively new, and more research and applications are 

being developed. With that a whole new development of different CFS, including those 

based in Atanassov intuitionistic fuzzy sets [60], which include the Pythagorean fuzzy 

sets [61], and the complex intuitionistic fuzzy sets [62]. Complex neutrosophic sets 

have also been proposed [63]. 

 

In [64] the authors make a comparison between the CFS and a type-2 fuzzy sets, 

among their conclusions, it is of importance to denote the following:  

 

1) The CFS conveys an extra dimension of information while a type-2 fuzzy set is 

used to represent uncertainty.  

 

2) In 3 dimensions a type-2 fuzzy sets represent a surface while the CFS represents 

a trajectory.  
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Additional work on type-2 and interval valued complex fuzzy sets can also be found 

in [65]–[67]. A comprehensive review of the state of the art of CFS can be found in 

[57] 

 

2.6.4 Complex Fuzzy Inference Systems 

 

Complex fuzzy inference systems (CFISs) are a set of FIS based on the CFS with 

rotational invariance proposed by Ramot et al. in [8] and the CFS without rotational 

invariance proposed by Dick in [56]. These CFISs are not to be confused with complex 

valued fuzzy inference systems which are not based on CFS but are based on either 

complex fuzzy numbers or the application of complex valued information in the FIS 

[68]–[72]. The CFISs developed so far are the Adaptive Neuro Fuzzy Complex 

Inference System (ANCFIS) [73], the Complex Neuro Fuzzy System (CNFS) [74], and 

the Adaptive Complex Neuro Fuzzy Inferential System (ACNFIS) [75]. 

  

2.6.4.1 The Adaptive Neuro Fuzzy Complex Inference System 

 

The first CFIS developed was the ANCFIS [73]. The ANCFIS is a six-layered 

system (Figure 2.11) based on the ANFIS architecture [76] designed specifically to 

model time series data utilizing CFSs without rotational invariance  [56]. Compared 

with most FIS the ANCFIS utilizes a sinusoidal membership function; It is known from 

the Fourier theorem that any periodic function can be approximated with a series of 

sums of sines and cosines, therefore it is proposed in [73] a sinusoidal membership 

function to capture the most important frequencies and model the approximate periodic 

behaviour of an input window.  

 

The sinusoidal membership function is as follows: 

 

 ( ) sin( )sr d a b c = + +   (2.96) 
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where, r and   are the magnitude and phase of the CFS respectively, the parameters 

a, b, c and d modify the frequency, phase shift, vertical shift and amplitude respectively.   

 

 

Figure 2.11: ANCFIS schematic. 

 

The first layer of the ANCFIS convolves an input window time series dataset. The 

second layer calculates the firing strength of the rules utilizing the algebraic product. 

The third layer normalizes the firing strength, during normalization only the magnitudes 

of the CFSs are normalized and the phases are left unchanged. The fourth layer is an 

additional layer not present in the ANFIS model, called the rule interference layer, 

instead of utilizing the vector aggregation proposed by Ramot et al., the interferences 

are created by applying a dot product between the rules; the output of the fourth layer 

is a real valued scalar. The fifth layer calculates the consequent parameters and 

multiplies the output of the fourth layer. The sixth layer is the output layer where the 

scalar output of each rule are summed. 

 

The ANCFIS model utilizes an input window instead of delayed inputs; this reduces 

the number of rules to the number of input windows creating a compact FIS. The 

parameters are optimized utilizing a hybrid optimization algorithm, for the forward pass 

a least squares algorithm is used to update the consequences, the backward pass utilizes 

a combination of complex back propagation [77] and derivative free optimization to 

update the premise parameters.  
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Variations on the ANCFIS input type, architecture and operations have been 

explored throughout its development and the author encourages the reader to research 

the work done for the ANCFIS model.  

 

The ANCFIS model has been applied to different datasets: The Wolfer sunspot 

numbers [73], [78], [79], the Mackey-Glass 17 [73], [78], the Santa Fe laser dataset 

[73], [78], stellar brightness [78], wave heights [78], [79], Photovoltaic power dataset 

[80]. The ANCFIS has also been implemented successfully in modelling multivariate 

time series, such as a Motel monthly occupancy [81] [82], Flour monthly price[81], 

[82] Monthly precipitation in different areas in Tennessee [81], [82], and NASDAQ 

[82]. A variation on the training algorithm to incorporate extreme learning machines 

was applied to four different software reliability growth datasets [83] . The reported 

results obtained from the ANCFIS are comparable with other models while maintaining 

a compact model, utilizing in some circumstances fewer than 3 rules to model complex 

datasets and chaotic time series.  

 

2.6.4.2 The Complex Neuro-Fuzzy System 

 

The CNFS is based on the ANFIS architecture [76] and CFSs with rotational 

invariance [8], the system utilizes a complex Gaussian membership function. A hybrid 

learning algorithm is applied for the training which consists of a least squares algorithm 

for consequences and a derivative free optimization algorithm for the premises. The 

model output is a complex number with a real and imaginary part, defined as the dual 

output property. The real part is generally used as the final output of the system, with 

the dual output property is explored in [84] and [85]. 

 

Two different types of complex Gaussian membership function are utilized. Initially 

in [86]–[88] the membership function used is the Gaussian membership function 

represented in rectangular form: 
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In subsequent papers [84], [85], [89], the complex Gaussian membership function is 

modified to add a term   called the frequency factor which multiplies the phase of the 

membership function, and the polar representation is utilized:  
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The first layer of the CNFS calculates the value of the complex membership utilizing 

either (2.97) or (2.98). The second layer calculates the firing strengths according to 

(2.83) utilizing the product operation of the magnitudes and the addition operation for 

the phases (2.84). The third layer normalizes the whole complex number. The fourth 

layer calculates the linear consequences and multiplies the normalized weights from the 

third layer. The fifth layer calculates the output by summing the signals of the network, 

the real part is used as the final output. The imaginary part can also be used as an output 

in certain circumstances.  

 

CNFSs have been applied for function approximation [74], noise cancelling [86], 

time series prediction [87], [89], knowledge discovery [88]. The dual output property 

is explored in [84] for financial purposes to calculate both the opening and closings of 
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the NASDAQ and in another instance to calculate simultaneously the TAIEX index and 

the Dow Jones with the real and the imaginary part of the complex output.  

2.6.4.3 The Adaptive Complex Neuro–Fuzzy Inferential System 

 

The ACNFIS [75] is a 5 layer FIS (Figure 2.12) based on the ANFIS model [76] and 

utilized a CFS with rotational invariance [8]. The ACNFIS utilizes two Gaussian 

functions as the magnitude and phase membership function, because “a complex valued 

function cannot be both analytical and bounded unless is a constant” [75], the complex 

membership function utilizes two real valued functions to bound the complex 

membership within the unit circle. The complex membership function is as follows: 
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where A is the magnitude and P is the phase. 

 

 

Figure 2.12: ACNFIS schematic. 
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The first layer of the system calculates the complex membership function according 

to (2.101). The second layer calculates the firing strengths according to (2.83) utilizing 

the product operation of the magnitudes and the addition operation for the phases (2.84)

,  utilizing the product operation of the magnitudes and the addition operation for the 

phases. The third layer normalizes the magnitude of the complex number. The fourth 

layer calculates the linear consequences, in the ACNFIS two linear consequences per 

rule are calculated, one for the real part and one for the imaginary part. The real part is 

utilized as the final output. The system utilizes a Levenberg-Marquardt (LM) 

optimization algorithm for training. 

 

2.7 Interpretability and Transparency 

 

Interpretability and transparency are subjective properties of models which 

definition varies from different sources. According to Mencar and Fanelli [90] 

Transparency is a property of a system to represent the relationship between features 

and output variables, interpretability is a subjective property related to the 

representation and transmission of knowledge trough symbols and characters (e.g. 

linguistic variables and rules of a fuzzy system) [90].  

 

For Lipton [91] the interpretability of a model can be composed of two main 

properties, transparency and post-hoc explanations. Transparency is the property of a 

model to explain how a model works, by its entirety and its individual components. 

Post-hoc explanations relate to the representation of information to extract knowledge 

about a process.  

 

Other authors consider interpretability and transparency not to be closely related 

properties. In [92] the author considers all FIS to be interpretable given its proximity to 

natural language, while transparency is a property that measures the reliability and 

robustness of a model.  
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2.7.1 Interpretability and Transparency in Fuzzy Inference Systems  

 

The main advantage of utilizing FIS over others is the interpretability and 

transparency that fuzzy logic provides. Good performance and generalization properties 

have been shown, with the additional advantage already explained in previous section 

of soft boundaries. There exists no clear mathematical definition of interpretability and 

transparency, regardless a few guidelines [93], and measurements [7], [93]–[96] can be 

taken into consideration to better develop interpretable and transparent FISs. 

 

In [93], the authors develop a taxonomy to classify the proposed interpretability 

measures and techniques to improve interpretability in linguistic (Mamdani) rule-base 

FIS (Table 2.5). These sets of measures and techniques are grouped into a double helix 

“complexity versus sematic interpretability” and “rule-base versus fuzzy partition”. The 

four quadrants (Q) are Q1 Complexity at the rule-base level, Q2 Complexity at the level 

of fuzzy partitions, Q3 Semantics at the rule-base level, Q4 Semantics at the fuzzy 

partition level. 

 

 The first quadrant relates to the number of rules and the number of conditions per 

rule. Maintaining a parsimonious model is essential to be interpretable. It is known in 

psychology that humans struggle processing more than seven information objects. In 

[97] the number of information objects that a human can process was found to be 7 2

. Therefore, it is important to maintain rule-base systems with no more than 9 premises 

per rule [93]. 

 

The second quadrant relates to the number of features and the number of 

membership functions per feature. The limit of humans to process information was 

mentioned in the previous paragraph [93]. 
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The third quadrant relates to the consistency of a rule-base, and the number of rules 

fired at the same time. A rule-base is considered consistent when there are no 

contradictory rules [93]. 

 

The fourth quadrant is related to the completeness, normalization and 

distinguishability of the membership functions describing the FIS. Completeness is a 

property in which given any combination of feature values at least one rule is fired, that 

requires that for any feature the universe of discourse is covered by at least a 

membership function value greater than 0. A membership function is considered normal 

when its maximum value is equal to 1. Distinguishability relates to the ability of a 

human to properly distinguish between the membership functions, this requires for the 

membership functions to be properly separated between each other, with little overlap 

between the membership functions partitions of a rule or feature [93].     

 

For TSK FISs interpretability is considerably reduced given that the consequents of 

the rule-base are composed of linear regression models and not linguistic variables. The 

TSK FIS is a local linear model, linear regression models are transparent, given that it 

is possible to assess the impact of each feature on the output, these same properties 

allows to for the models to be interpretable to some extent. Therefore, a TSK FIS can 

be locally interpretable. In order to maintain the interpretability of the TSK FIS some 

authors have developed learning algorithms to maintain a local -global performance 

[98], [99]. 

 

Table 2.5: Taxonomy To Classify Interpretability [93]. 

 Rule base level Fuzzy partition level 

Complexity-based 

interpretability 

(Q1) Complexity at the rule-

base level.  

(Q2) Complexity at the fuzzy 

partition level. 

Semantic-based 

interpretability 

(Q3) Semantics at the rule-base 

level. 

(Q4) Semantics at the fuzzy 

partition level. 
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2.8 Summary 

 

Fuzzy sets and logic were developed to model the complexity and vagueness of 

human natural language [5]. Fuzzy statements are arranged in the form of if-then rules, 

capable of modelling natural phenomena intuitively. This arrangement of if-then rules 

is defined as a FIS. The two main type of FIS are Mamdani [6] and TSK [14]; Mamdani 

FIS are more interpretable given it only utilizes linguistic variables to form its rule-

base. TSK are more accurate, given its consequences are composed of linear functions.   

 

The rule-base of a FIS can be generated manually utilizing expert knowledge or 

automatically, by generating either a grid-partition of the dataset or applying clustering 

algorithms. The number of rules in a grid-partition method increase exponentially with 

the addition of features and partitions. Clustering algorithms solve this problem by 

creating a partition in the feature space instead.  

 

The performance of FIS can be further enhanced by applying learning algorithms 

utilized in ANN. These neuro-FISs merge the prediction accuracy of ANN and the 

interpretability of fuzzy logic. A special type of ANN called the RBFN can be 

functionally equivalent to a Mamdani FIS given certain conditions [34].  

 

To model different phenomena several expansions to the type-1 fuzzy set have been 

developed, these include, fuzzy rough sets and CFS. Rough sets are composed of two 

approximations to represent the possible membership of an object, fuzzy rough sets 

expand the applicability of rough sets to add vagueness and soft boundaries to 

membership values. CFS add context and time to linguistic variables.  

 

So far only three CFISs have been developed to date, these are the ANCFIS [73], 

CNFIS [74] and ACNFIS [75]. Results obtained from these CFISs are comparable with 

other known FISs such as RBFN and ANFIS. The ANCFIS was designed for time series 
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prediction, compared with most FIS, the ANCFIS utilize a sinusoidal membership 

function, the rule interference is performed by a dot product operation. Both the CNFIS 

and ACNFIS neglect, for the most part, the effect and meaning of the imaginary 

component of the CFS, furthermore neglecting the effect of the rule interference 

operation. None of the CFISs developed to date address the problem of interpretability. 

 

Interpretability is a property of FIS given its proximity to human natural language. 

Transparency and interpretability are related but do not mean the same [90]. A 

mathematical definition of interpretability does not exist, but rather a set of guidelines 

can be implemented to evaluate the interpretability of a FIS [93].  
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Chapter 3  

Selected Datasets for Algorithms Validation 

 

The models elicited in this work will utilize four real world datasets. The first two 

are industrial datasets obtained from material testing. The third is a dataset obtained 

from a clinical study. The fourth is publicly available dataset. 

 

3.1 Brief Overview of Mechanical Properties of Steel 

 

Metallurgy is a branch of material sciences that studies the behaviour metals. The 

field of metallurgy is divided into two main branches, ferrous-metallurgy and 

nonferrous metallurgy. Ferrous metals are those metals whose main alloying element 

is iron. Among them, one of the most important alloys is steel whose main components 

are iron and carbon [100]. 

 

Metals are composed of microscopic crystal grains. Crystals are classified according 

to the arrangement of the atoms composing them. Iron, the main component of steel, 

can take three different structures, ferrite, austenite or martensite. The macrostructural 

properties of steel rely on the microscopic structure and arrangement of these crystals. 

The production, treatments and addition of alloying elements to steel change the 

structure and arrangements of the crystals changing its properties [100]. 

 

3.2 Charpy Impact Test 

 

The Charpy impact test is used to measure the fracture energy absorbed by a 

material. A sample is placed in the Charpy impact test machine where a pendulum 

strikes the sample and fractures it, registering the loss of potential energy of the 
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pendulum as the energy absorbed by the material [101]. To facilitate a fracture, samples 

are machined to add a notch which creates a triaxial state of stress in the centre of the 

sample [101]. The resistance to fracture is called “notch toughness” [101]. Fractures 

can be classified as ductile or brittle, ductile fractures are associated with a higher 

absorption of energy compared with brittle ones [102]. 

 

The body-cantered cubic lattice structure, characteristic of iron at low temperature 

and present in plain carbon and low-alloy steels causes the material to become brittle at 

low temperatures, therefore it is observed a reduced fracture energy at those 

temperatures. To characterize the change from ductile to brittle fracture the Charpy 

impact test is performed at different temperatures. The obtained measurements are used 

to calculate the Charpy impact energy curves. These curves have an “S” shape as shown 

in Figure 3.1. The temperature range at which the materials exhibit brittle and ductile 

fracture are called the lower and upper shelf region respectively, the temperature of the 

transition region is called the Ductile to Brittle Transition Temperature (DBTT) [103]. 

 

 

Figure 3.1: Charpy impact test DBTT curve. 

 

The Charpy impact test presents a difficulties for modelling mainly due to the scatter 

in measurements [104] and the amount of inconsistencies [105], inconsistencies are 
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related to samples with the same or similar feature parameters and different outputs. 

The inconsistencies present in the dataset are attributed to features not measured in the 

dataset. Features, such as grain size and other micro-scale material properties, are time 

consuming and/or expensive to measure [106] and therefore it is not uncommon for 

these variables not to be found in the datasets.  

 

The Charpy impact dataset utilized in this work consist of 1661 records, 16 features 

and one output which corresponds to the measured Charpy impact energy, a summary 

of the dataset information is shown in Table 3.1. Additionally, a partial correlation plot 

is shown in Figure 3.2.  

 

Table 3.1 Charpy Impact Dataset information. 

Continuous Variables Mean Median Range 

Test Dept 20.8 12.7 5.5-146.05 

Sample size 172.49 155 11-381 

C 0.3942 0.42 0.13-0.52 

Si 0.2548 0.25 0.11-0.38 

Mn 0.8409 0.82 0.41-1.75 

S 0.0167 0.019 0.0008-0.052 

Cr 1.0752 1.08 0.11-3.25 

Mo 0.2394 0.23 0.02-0.98 

Ni 0.3683 0.2 0.03-4.21 

Al 0.027 0.026 0.003-0.047 

V 0.0077 0.005 0.001-0.26 

Hardening Temperature 864.02 860 810-980 

Tempering Temperature 647.19 650 190-730 

Impact Temperature -5.7869 -10 -53 - 23 

Charpy Energy 89.642 89.333 3.46-245.33 

Categorical variables Number of categories 

Site 3 

Cooling Medium 5 
 

 

The effects of materials alloying, and processing are highly-nonlinear, therefore 

from the partial correlation plot only a few conclusions can be made such as the effect 

of Carbon, Tempering and Impact Temperature. The effect of Carbon in steel is well 

known, an increase percentage of carbon increases its strength and its brittleness. 

Tempering is a heat treatment process in which a material is heated at certain 
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temperature and then cooled at a controlled temperature; tempering increases the 

ductility of ferrous materials.  

 

The addition of other alloys and process are harder to measure and quantify, some 

alloys such Chromium and Nickel are added to a material to increase its resistance to 

corrosion, and therefore it is important to understand the relationship to perform a cost-

benefit analysis or a trade-off between different desired material properties.  

 

 

3.3 Ultimate Tensile Strength 

 

The UTS is common measure of a material strength. In order to measure the UTS a 

sample is placed in a tensile test machine which applies a load at a constant speed, the 

deformation and required force is measured and the data is used to obtain stress-strain 

 

Figure 3.2: Charpy Impact partial correlation plot. 
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curves. The UTS is defined as the maximum engineering stress and corresponds to the 

maximum stress measured in a stress-strain curve [101]. 

 

The UTS dataset consists of 3760 records, 15 features and one output which 

correspond to the UTS value. The characteristics of the dataset are shown in Table 3.2. 

Additionally 12 data points are used for validation, these 12 data points are outliers and 

therefore used to validate the generalization properties of a model [40].  

 

Table 3.2: UTS dataset information. 

Continuous Variables Mean Median Range 

Test Depth 16.08 12.7 4-140 

Sample Size 156.93 150 8-381 

C 0.3902 0.41 0.12-0.62 

Si 0.2546 0.25 0.11-0.35 

Mn 0.7524 0.73 0.35-1.72 

S 0.021 0.023 0.0005-0.21 

Cr 1.053 1.07 0.05-3.46 

Mo 0.2631 0.23 0.01-1 

Ni 0.8039 0.25 0.02-4.16 

Al 0.036 0.027 0.005-1.08 

V 0.0075 0.005 0.001-0.27 

Hardening Temperature 856.81 850 820-980 

Tempering Temperature 604.18 610 170-730 

UTS 932.09 912.9 516.2-1842 

Categorical variables Number of Categories 

Site  6  

Cooling Medium  3  
 

 

 

The partial correlation plot is shown in Figure 3.3. From the partial correlation plot, 

similarly to the Charpy impact test, only a few conclusions can be drawn given the 

nonlinear relationship between alloying elements, process and material properties. It is 

well known that while the content of carbon increases its brittleness, it does increase its 

strength as well. Tempering increases the ductility of a carbon steel while decreasing 

strength.  
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Figure 3.3: Ultimate Tensile Strength Partial correlation plot. 

 

3.4 Bladder Cancer 

 

Patients diagnosed with cancer are often given an estimate of the risk of 

death/relapse from the disease. The risk estimation is based on the lifetime expectancy 

after the diagnose, a common practice is to classify as high risk of mortality patients 

whose death may occur within the next 5 years, and low risk those patients whose life 

expectancy is superior to 5 years [40]. 

 

Such estimations are usually made by medical professionals, more recently 

prediction models are being used to assist in the diagnosis. Eliciting prediction models 

for medical purposes is considered a challenging task due to the presence of “censored 

data” [107]. In medical studies is common for patients to withdraw before completion, 

for the patients to die due to unrelated events, or for the patients to outlive the period 

of observation, when such circumstances occur, the records are marked as “right 
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censored” [107]. An example of the records and censoring is shown in Figure 3.4. The 

branch of statistics that studies time-to-event data is called survival analysis.  

 

The dataset consists of the records obtained from 2918 patients who suffer from 

bladder cancer; the dataset contains 16 features and 1 output, which corresponds to time 

of death or last observed time. Out of the 2918 patients records, 613 are marked as non-

censored. The dataset used in this work consists of the non-censored records as well as 

those right censored records whose last-observed time surpassed the threshold of 60 

months. The resulting dataset consists of the records of 1581 patients. A summary of 

the dataset is shown in Table 3.3. 

 

 

Figure 3.4: [39] Illustration of right censoring: Patients A and B, outlived the study, 

Patient C was lost due to an unrelated event, patient E withdrew from the study. The 

records of patient A and F are the only ones not censored as the time of death from the 

event of interest occurred within the duration of the study. The recorded time is equal 

to the observed time only. In this example patient C last observed time is 20 months, 

as the observation period begun at 20th month and was lost at the 40th month.   

  

Patients whose last observed time is superior to  0 months are labelled as “1”, while 

non-censored patients whose last observed time is below the 60-month threshold are 
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labelled as “0”.  This is a simple solution that does not require application of survival 

analysis methods [108], which are out of the scope of this work.  The dataset will be 

utilized as a least square problem.  

 

Table 3.3 Bladder Cancer dataset information. 

Continuous Variables Median Mean Range 

Age (years) 72.7 71.6 21.3–101 

Stage 4.03 4.02 0.00–9.00 

Urothelium 2 3.42 0.00–6.00 

Nodes detail 4 3.94 0.00–4.00 

Categorical Variables Values Number of Patients Percentage 

Sex Male 2129 0.7296 
 Female 789 0.2704 

Tumour grade Good 736 0.2522 
 Moderate 956 0.3276 
 Poor 1226 0.4202 

Squamous No 2789 0.9558 
 Yes 129 0.0445 

CIS Present No 2548 0.8732 
 Yes 370 0.1268 

SPB Solid 492 0.1686 
 Papillary 1856 0.6361 
 Both 570 0.1953 

Vascular invasion No 2701 0.9256 
 Yes 217 0.0744 

Muscle invasion No 816 0.2796 
 Yes 2102 0.7204 

Cystectomy No 2886 0.989 
 Yes 32 0.011 

Radiotherapy No 2854 0.9781 
 Yes 64 0.0219 

 

 

3.5 Superconductivity 

 

Superconductors are materials known to have near zero resistance when their 

temperature is bellow a critical temperature [109]. The superconductivity dataset 

consists of 21263 instances, 80 features and 1 output which corresponds to the critical 

temperature of such semiconductors [109], [110].  
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3.6 Summary 

 

A brief overview of the datasets explored on this work has been presented, each 

dataset present different challenges. The partial correlation plots for the Charpy impact 

test and UTS were able to describe, certain behaviour that has been well understood in 

material science. It is clear the limitations of utilizing linear statistical methods for 

knowledge extraction.  

 

The Bladder cancer dataset present difficulties given the number of censored data 

present in clinical studies. A modelling approach is presented that do not require the 

application of statistical survival analysis tools, allowing to model the dataset utilizing 

a least squares algorithm. 

 

The super conductivity dataset contains a large number of features and instances, 

therefore the results obtained would validate the application of the developed 

algorithms for large datasets.  

 

Given the known difficulties of modelling the Charpy impact test dataset, this set 

will be analysed and tested in greater detail in comparison with the other datasets to 

demonstrate the capabilities of the models and tools developed.  
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Chapter 4  

The Single Input Complex Fuzzy Inference System 

Model  

 

4.1 Introduction  

 

Complex Fuzzy Logic (CFL) and CFSs expand the traditional type-1 fuzzy sets and 

logic to the unit circle. CFS and logic was initially developed by Ramot et al. who 

proposed the utilization of CFS to model periodic data [8] [55]. 
 

Most of the developed CFIS so far have explored the ability to represent approximate 

periodic data with CFS and have produced highly accurate results. Regardless of the 

achievements of these CFIS, the problem of interpretability has not been fully addressed 

though.   

 

According to Ramot et al. [55] the development of a CFL should retain the properties 

of traditional fuzzy logic and benefit from the use of complex numbers; the authors 

point out to the following properties: 1) The framework should handle numerical data 

and linguistic knowledge. 2) CFL system must remain simple and intuitive. 3) Rules 

should be fired in parallel for efficiency [55]. 

 

The proposed Single Input Complex Fuzzy Inference System (SICFIS) model was 

developed in accordance with these three requirements. In order to create an 

interpretable CFIS the structure needs to remain as simple as possible: the SICFIS 

model represent a single-feature-partition-per-rule CFIS where the premises are 

composed of type-1 fuzzy Gaussian membership functions and the consequences are 

complex fuzzy singleton membership functions. This simple structure allows the user 
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to identify the relationship between features partitions based on the phase difference of 

the consequences, additionally the system is capable of handling continuous, 

categorical and linguistic data.  

 

The simple structure of the SICFIS presents several advantages: 1. The number of 

parameters grows linearly with the number of features in the dataset. 2. The 

combinatorial rule explosion problem is avoided. 3. It is not necessary to execute a 

clustering algorithm or the assistance of expert knowledge to create an initial rule-base. 

Therefore, training time is reduced considerably since the number of operations and 

parameters are lower than traditional FISs. Additionally, a parsimonious model should 

be able to reduce the probability of overfitting [111]. 

 

In this chapter the SICFIS model is tested on three different datasets. The first dataset 

is used for the prediction of a Charpy impact test in steel. The second dataset is used 

for prediction of the UTS of steel. The third dataset consists on predicting the risk of 

mortality for bladder cancer patients. Results obtained from the three different datasets 

show an equivalent level of accuracy as RBFN, ANFIS models, simple ANN as well 

as other type-1 and type-2 FISs. An interpretability analysis applied to the Charpy 

impact test will demonstrate that the knowledge extracted from the model is consistent 

with what is known in the literature.  

 

4.2 The Single Input Complex Fuzzy Inference System Model 

 

Most of the applications of CFS, as originally proposed in [8], have mainly focused 

on modelling datasets which contain approximately periodic data. However, to 

illustrate the applicability as well as the advantage of CFSs in generic data modelling 

problems, Ramot et al. proposed an application where CFSs are used to predict voter 

turnout in an election [55] through the use of the  two rules shown in Table 4.1. 
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According to Ramot et al. while each individual rule when true provides a high and 

very high voter turnout, when both of them are true, the voter turnout is in fact Low 

[55]. This phenomenon can be easily and elegantly modelled by assigning different 

phases to each rule in order to cause a destructive interference. The proposed SICFIS 

model expands on this idea to create a compact model capable of modelling the 

complex interaction between feature partitions.  

 

The SICFIS model is a single-feature-partition-per-rule CFIS. Compared with 

traditional rule-base FIS the SICFIS model utilizes CFS to represent each consequence 

as a two-dimensional vector. Because each vector has a direction and a magnitude, it is 

possible to model the interaction between partitions as interferences, thus avoiding the 

problem of combinatorial rule explosion [17], or the need to apply a clustering or 

granulation algorithm to derive an rule-base for the system. 

 

 

Table 4.1: Complex fuzzy rule-base to determine voter turnout in an election. 

  Premise     Consequence 

Rule 1: IF “Confidence in Democracy” is “High”  THE  “Voter Turnout” is “High” 

Rule  : IF “Disenchantment with  eaders” is “High”  THE  “Voter Turnout” is “Very High” 
 

 

 

While previously developed CFISs have focused on compactness and accuracy, 

none of them addresses the problem of interpretability of CFS.  

 

A similar model was proposed in [112]. Although the proposed methods are similar, 

the authors of [112] fail to provide any results. Additionally the equations presented are 

identical as the ones presented in the real-valued SIRM model proposed in [15]. 

Therefore, due to the lack of results and evidence provided in [112] , the SICFIS model 

proposed in this work is the first interpretable CFIS. 

 



Chapter 4 

The Single Input Complex Fuzzy Inference System Model 

 

 

57 

 

4.2.1 The Single Input Complex Fuzzy Inference System Membership Function 

 

The SICFIS model utilizes a real valued Gaussian membership function for the 

premises, for a feature p and a partition sp the membership function is as follows: 
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  (4.1) 

 

where c   and    are the centre and the spread of the Gaussian membership function 

respectively. 

 

For the consequences a complex singleton membership function is used as follows:  
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where   represents the magnitude and   represents the phase. Equations (4.3) and 

(4.4) show rectangular coordinates of the singleton membership function; both 

parameters   and   are real-valued scalars.   

 

4.2.2 The Single Input Complex Fuzzy Inference System Model Architecture 

 

The SICFIS is a Mamdani CFIS with singleton defuzzification, therefore the 

architecture resembles that of a RBFN model. The implication operation is the 

algebraic product and the aggregation operation is the vector aggregation method. For 

the vector aggregation the complex weights will be eliminated.  
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Each feature p is to be partitioned into sp partitions (e.g. Low-Medium-High) and, 

each partition will be assigned a real valued Gaussian membership function,  (4.1). The 

rule consequences are represented by the complex singleton membership function,  

(4.2). The parameters in the model are real-valued therefore traditional optimization 

methods can be implemented. 

 

 

Figure 4.1: The SICFIS schematic. 

 

The SICFIS is a 5-layer model as shown in Figure 4.1. The first layer is the 

fuzzification layer which assigns a degree of membership to a partition sp of a feature 

p, according to: 

 

2

,1

, ,

,

1
exp

2

p

p p

p

p p s

p s p s

p s

x c
O 



  −
  = = −

  
  

  (4.5) 

The second layer performs a normalization operation for the sp partitions of a 

feature p as follows: 
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The third layer performs the implication operation. The algebraic product is selected 

as the implication operation. The output of the second layer (4.6) multiplies the complex 

singleton membership function,  (4.2). The rectangular form of the complex singleton 

membership function is used in order to facilitate calculations as follows:  
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3 2
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The third layer is the vector aggregation (or rule interference) layer in which the real 

and imaginary parts are added respectively as follows: 
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The fifth layer calculates the magnitude and the phase of the resultant vector as 

follows: 

 

 ( )5 4 4argO O O=    (4.11) 

 

 

The magnitude of the resultant vector is utilized as the final output of the model to 

evaluate its performance; the phase may be used as additional information to improve 

the interpretability of the system. Particularly, as it will be demonstrated in this work. 
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4.3 Model Initialization 

 

In order to improve the results from the optimization it is important to select a valid 

initial model since a randomly or an inadequately initialized model is more likely to 

drive the optimization algorithm into a sub-optimal solution. The initialization of the 

model works as follows: for the premises a grid partition of the data is performed, each 

feature p will be divided into sp partitions (Figure 4.3) , each partition will have a centre 

and Standard Deviation (SD) as is recommended in [113], where the membership 

values are continuous and the partition intersect at approximately 0.5 membership value 

as shown in Figure 4.2 a. For the complex consequences a phase is assigned to each 

membership function, with the values of the phases being linearly spaced between 0 

and  π as shown in Figure 4.2 b. The initial values β are obtained from the coefficients 

of a partial correlation (PC) analysis as follows: 
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  (4.12) 

 

where are the residuals obtained from a linear regression and X,Y are the datasets. 

The process is shown in Algorithm 4.1. 

 

 

Figure 4.2: (a) Initial grid partition for a feature p. (b) Initial vector assigned to the 

output of a rule, with a length equal to 
, pp s  and an phase equal to  

, pp s . 

1

1
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Algorithm 4.1: SICFIS initialization. 

Inputs: Number of features P, Number of partitions sp for each feature p, partial correlation 

analysis PC  (4.12). 

Outputs: Rule output parameter β, consequent membership function parameter φ, premise 

membership function parameter σ, premise membership function parameter c.     

𝑝 ← 1 

while p P  

     1k   

     while pk s  

            
,p k pPC   

            ( )( ), 1p k p
k s  −    

            ( )( ), 1 2.3333 1  p k js −   

            ( )( ), 1 1p k jc k s −   

            1k k +  

     1p p +  

     1k   
 

 

 

 

Figure 4.3: Example of a grid partition of a two-dimensional dataset. 
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4.4 Interpretability, Transparency and Knowledge Extraction 

 

4.4.1 Interpretability Concepts and Comparisons with Traditional Fuzzy Rule-

Base Models 

 

The SICFIS model has several advantages over traditional fuzzy rule-base systems. 

In order to highlight these advantages as well as some considerations to be made for 

assessing interpretability the taxonomy introduced in section 2.7.1 will be used. 

 

4.4.1.1 First Quadrant: Complexity at the Rule-Base Level:  

 

The number of rules of the SICFIS is much lower than that of grid-partition based 

methods; the combinatorial rule explosion problem is avoided given that the number of 

rules grow linearly with the addition of features and partitions. Given that the number 

of rules is equal to the number of features and partitions, the number of rules for the 

SICFIS can be greater than that of cluster-based methods.  

 

The number of conditions per rule is clearly reduced since the SICFIS model is a 

single feature partition per rule FIS. The number of conditions per rule in both grid-

partition and cluster-based methods is usually equal to the number of features in the 

dataset.   

 

4.4.1.2 Second Quadrant: Complexity at the Level of Fuzzy Partitions:  

 

The number of conditions per feature is considerably reduced in the SICFIS. While 

the number of conditions per feature in cluster-based methods is equal to the number 

of clusters or rules, and the number of conditions per features in gird partition methods 

is equal to the size of the grid, it will be demonstrated in the following sections that a 
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superior performance be achieved with the SICFIS model in comparison with 

traditional FIS models with as few as 3 partitions per feature.    

 

4.4.1.3 Third Quadrant: Semantics at the Rule-Base Level:  

 

The problem of two or more contradictory rules being fired at the same time is 

avoided completely, given that a rule corresponds to the behaviour of a specific feature 

partition, the concept of contradiction does not apply to the SICFIS model. 

Additionally, the main characteristic of the SICFIS model is the ability to model the 

interaction between feature partitions as interferences.  

 

4.4.1.4 Fourth Quadrant Semantics at the Fuzzy Partition Level: 

  

In a traditional fuzzy rule-base model completeness in the system is achieved only 

if all features are complete. In a SICFIS model incompleteness in the system would 

require incompleteness in all the features. Additionally incompleteness in a feature 

would signal a lack of effect in such region in the overall output of the model, therefore 

incompleteness would not be considered as an error entirely, but such assumptions 

would require analysing the results, as it is possible that the incompleteness is due to a 

lack of data points in such regions.  

 

4.4.2 Knowledge Representation with the SICFIS Model 

 

It is well known that the visual representation of machine learning and AI models 

facilitates the extraction of knowledge of a system and increases its interpretability.  

 

The SICFIS model specific properties allows for the representation of knowledge in 

different forms, presenting an additional advantage over traditional fuzzy rule-base 

models. In the following subsections different forms of representing knowledge will be 
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introduced, an accompanying mock-up example will be used to demonstrate these 

representation forms.   

 

4.4.2.1 Magnitude-Phase Plots 

 

The Magnitude-Phase plots are composed of the resultant magnitude and phase of 

each individual feature p for a specific range of operation. The calculation of the 

magnitude (4.13) and the phase  (4.14) for a feature p is calculated as follows: 
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where 
, ( )

pp s pk  is the normalized firing rule strength of a feature p and partition 
ps  

which corresponds to the output of the second layer of the SICFIS model (4.6), kp is a 

continuous variable with strictly increasing values within the specified range of 

operation of a feature p. The transparency of the system can be demonstrated utilizing 

the information contained in the magnitude-phase plots, as the behaviour of the system 

for any combinations of values within a range of operation can be assessed and 

measured. An example of a magnitude-phase plot is shown in Figure 4.6. 

 

4.4.2.2 Fuzzy Rules-Base Derived From SICFIS 

 

Even though the SICFIS is not a traditional rule-base it can however represent one. 

A grid partition rule-base can be created by measuring the resultant vector of all 

possible combinations of feature partitions. The problem of combinatorial rule 

explosion can be avoided by creating short rules [114] utilizing only the most important 
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feature partitions which can be easily assessed by measuring the magnitude of each 

feature partition. This provides an additional level of control over the granularity and 

interpretability of the model. Table 4.2 shows an example of a small SICFIS rule-base 

and Table 4.3 shows the derived grid-partition rule-base from the SICFIS rule-base.  

 

Table 4.2: Example of a SICFIS rule-base. 

Premise Consequence 

If 1A  is “High”  
Then B1 

If 1A  is “ ow”  
Then B2 

If 2A  is “High”  
Then B3 

If 2A  is “ ow”  
Then B4 

 

 

Table 4.3: Example of the derived grid-partition rule-base from the SICFIS rule-base. 

Premise Consequence 

If 1A  is “High” and 2A  is “High” 
Then 1 3B B+   

If 1A  is “High” and 2A  is “ ow” 
Then 1 4B B+  

If 1A  is “ ow” and 2A  is “High” 
Then 2 3B B+  

If 1A  is “ ow” and 2A  is “ ow” 
Then 2 4B B+  

 

 

4.4.2.3 Vector Partition Plot 

 

The vector partition plots shows two different graphs, the first one shows how a 

feature p is partitioned into the different membership function , pp s  for 1, ,p ps S=  , 

the second graph represents graphically the consequence corresponding to the partitions 

of the feature p as a two dimensional vector with a magnitude , pp s and an phase , pp s . 

The vector partition plot presents the rules premises and consequences in an orderly 

manner. This allows the user to identify and measure the interaction between different 

partitions corresponding to different features. An example of the vector partition plot 

of three features is shown in Figure 4.4. 



Chapter 4 

The Single Input Complex Fuzzy Inference System Model 

 

 

66 

 

4.4.2.4 Cosine Distance Matrix Plot 

 

The cosine distance matrix plot represents the level interference between each two 

partition consequences, with a number within [-1,1], to represent degree to which an 

interference is destructive or constructive respectively. The cosine distance matrix 

information, can be used just as a Pearson correlation matrix plot to derive knowledge, 

compared with the correlation matrix, the cosine distance matrix is able to represent the 

non-linear relationship between the different partitions. An example of the cosine 

distance matrix plot is shown in Figure 4.5. 

 

4.4.3 Example of the Application of the SICFIS to Model Material Properties 

 

Interferences can be used to model the complicated relationship between material 

alloys and process to the properties of the materials. In order to demonstrate how the 

SICFIS model can be used to model features as interference a simple mock-up example 

can be stated as follows: 

 

It is known that increasing the percentage of carbon in steel improves its strength 

until a threshold is met, any addition of carbon beyond this threshold will decrease its 

strength as the material becomes too brittle. The content of carbon can be labelled as 

low (L), medium (M), high (H) and very high (VH). For this example, two more 

features are included, one is the content of iron, and finally let’s assume that a process 

“X” is applied to the material in order to improves its properties. For simplicity let’s 

assume the effect of the content of iron and the process “X” is the same for the whole 

range of possible input values, and therefore a feature partition of the iron and the 

process “X” will not be created as it is in the case of carbon.  

 

It is assumed that as the content of carbon increases from L to M, the strength 

increases, therefore there is a constructive interference between the content of iron and 

carbon for these partitions.  The threshold in which the addition of steel becomes 
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detrimental to its strength is met when the content is H, and is completely detrimental 

when it reaches VH, then we can infer that the output vector H is orthogonal to that of 

the content of iron output vector, and for VH a destructive interference occurs. Further 

let’s suppose that the process “X” is known to improve the strength of high carbon steel 

and has little or no effect for low, medium or very high carbon steel, meaning that a 

constructive interference occurs with the H carbon partition, and for the rest of the input 

values little or no interference occurs. 

 

The SICFIS rule-base is shown in Table 4.4, the corresponding grid partition rule-

base is shown in Table 4.5. It is clear how the SICFIS rule-base contains fewer rules 

than that of the grid partition, the difference becomes greater as more feature partitions 

are created as the number of rules grows exponentially for the grid partition fuzzy rule-

base system and linearly for the SICFIS model.  

 

Figure 4.4 shows the vector partition plot of this model. As mentioned previously, 

the carbon content is partitioned into 4 membership functions, and the corresponding 

output of each rule is shown below. No feature partition is implemented for the iron 

content and the process ‘X’, therefore only one output vector is assigned. Figure 4.5 

shows the cosine distance matrix plot which shows the degree of interference between 

the different feature partitions. Figure 4.6 shows the corresponding magnitude-phase 

plots, which represents the magnitude and phase values of the feature vector for all the 

possible values within the range of operation. 

 

Table 4.4: SICFIS rule-base. 

 Premise Consequence 

1) If C is L Then B1 

2) If C is M Then B2 

3) If C is H Then B3 

4) If C is VH Then B4 

5) If Fe is y Then B5 

6) If X is x Then B6 
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Table 4.5: Grid partition rule-base. 

 Premise Consequence 

1) If C is L    and Fe is y Then B1 

2) If C is M   and Fe is y Then B2 

3) If C is H    and Fe is y Then B3 

4) If C is VH and Fe is y Then B4 

5) If C is L    and Fe is y and X is x Then B5 

6) If C is M   and Fe is y and X is x Then B6 

7) If C is H    and Fe is y and X is x Then B7 

8) If C is VH and Fe is y and X is x Then B8 
 

 

Figure 4.7 shows the results given three different scenarios: a) the total strength of a 

high carbon steel when the process “X” is not applied, b) the total strength of high 

carbon steel when the process “X” is applied and c) the total strength of medium carbon 

steel when the process “X” is applied. From the results it can be confirmed that the 

process “X” increases the strength of high carbon steel and has little effect on medium 

carbon steel. Additionally, the high carbon steel with the process “X” has the same 

strength as medium carbon steel. It is demonstrated with this simple example how the 

CFS can be used to model the complex interaction between alloying elements and 

process utilizing interferences. 

 

 

Figure 4.4: Vector partition plot for Carbon (C), Iron (Fe) and the process “X”. 

 

FeC X
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Figure 4.5: Cosine distance matrix plot for Carbon (C), Iron (Fe) and the process “X”. 

 

 

Figure 4.6: Magnitude Phase plots for Carbon (C), Iron (Fe) and the process “X”. 

 

 

Figure 4.7: Resultant vector for high carbon steel, medium carbon steel with process 

“X” and high carbon steel with process “X”. 
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4.5 Optimization 

 

In order to improve the system performance, the parameters are to be updated 

utilizing a gradient-based learning algorithm. The error-backpropagation algorithm 

utilizes squared error as an objective function.  The derivatives of the parameters with 

respect of the function are as follows: 
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The parameters to be updated can be stored in a single vector w as follows: 

 

 1,1 , 1,1 , 1,1 , 1,1 ,P P P PP S P S P S P Sc c      =  w   (4.19) 

 

Three different backpropagation algorithms are implemented to evaluate their 

performance measured using the Root Mean Squared Error (RMSE), the first one is a 

recursive backpropagation algorithm, the second one a batch backpropagation 

algorithm and finally the LM optimization algorithm.  
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4.5.1 Recursive Backpropagation 

 

The recursive backpropagation algorithm is specially utilized in dynamical systems. 

The parameters are updated utilizing the information of each new sample obtained. For 

information tables or datasets, the recursive backpropagation calculates the gradient of 

the squared error of each sample in the dataset. 

 

 Each iteration of the algorithm is called an epoch. The process is repeated until an 

end condition is met, such as conditions may include reaching a maximum number of 

epochs or a local minimum. 

 

Results from a recursive backpropagation for the Charpy impact test dataset is shown 

in Figure 4.8. The model was trained for 50 epochs, taking a total of 1937 seconds to 

be computed in a computer Windows 10 with a processor intel i5-9400F @ 2.90 GHz 

with an installed memory RAM of 8.00GB, and a Graphic Processing Unit (GPU) 

NVIDIA 1660 6GB. 

 

 

Figure 4.8: Charpy recursive backpropagation RMSE at each epoch. 
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4.5.2 Batch Backpropagation 

 

Recursive backpropagation algorithms are effective for real-time applications. For 

other tasks it is more computationally efficient to calculate the Jacobian matrix of the 

parameters for all the records in the dataset; this is defined as batch backpropagation. 

The algorithm is more efficient if parallel computation with GPUs is implemented. 

Results from a batch backpropagation for the Charpy impact test dataset is shown 

Figure 4.9. The model was trained for 2000 epochs, taking a total of 72 seconds to be 

computed in the same computer mentioned in the previous section, the GPU was 

utilized for parallel computing for both algorithms. Given that the batch 

backpropagation calculates the Jacobian matrix in a single operation, an exponential 

reduction in computing time can be observed.  

 

 

Figure 4.9: Charpy batch backpropagation RMSE at each epoch. 
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4.5.3 Levenberg-Marquardt Optimization 

 

The recursive and batch backpropagation utilizes the information of the first 

derivatives to find the local minima. It is possible to improve the optimization model 

by including the information obtained from the second derivative. Algorithms that 

utilize the second derivative are known as Newton-Raphson methods, and require the 

computation of the Hessian matrix. For large models computing the Hessian matrix 

becomes intractable [115]. The LM algorithm [116] utilizes an approximation of the 

Hessian matrix utilizing the Jacobian that results in a fast and efficient optimization 

algorithm shown in Algorithm 4.2.  

 

Figure 4.10 shows the training performance of the LM algorithm for each epoch 

applied to the Charpy impact test dataset. The model was trained for 40 epochs, taking 

a total of 2.8 seconds to be computed in the same computer mentioned in the previous 

section. The LM shows superior performance compared with both the recursive and 

batch backpropagation algorithms, a further exponential reduction in computing time 

is achieved by parallel computing and utilizing the approximation to the Hessian matrix. 

 

 

Figure 4.10: Charpy LM RMSE at each epoch. 
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Algorithm 4.2: Levenberg-Marquardt optimization 

Inputs: initial parameter vector 
0w , dataset input vector x  ,dataset output vector y , SICFIS 

output vector ˆ [ ( , )]if x= Ty w  for 1,2, ,i N= , LM coefficient  , LM coefficient modifiers

1a b   , identity matrix I , end condition threshold  , maximum number of epochs m . 

Outputs: optimized parameter matrix w  

While t m  or 1 1

1 1

2 2
t t t t + + − T Te e e e   

         Compute  Jacobian matrix
tJ   
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          If 1 1

1 1

2 2
t t t t+ + T Te e e e   

                Then: 
1t a t  + =   

                Else:  
1t b t  + =    

        1t t +  
 

 

 

4.6 A Faster SICFIS Model 

 

The SICFIS model presented in this Chapter presents a simple architecture, being 

possible to train models within a few seconds with the addition of parallel computing. 

By making a few modifications to the model, it is possible to obtain a faster SICFIS 

model, reducing the training times even further. It is possible to obtain an equivalent 

model, which maintains the advantages presented in section 4.4, by removing the 

normalization operation in the second layer. This modification reduces the number of 

operations considerably, especially for larger datasets. The fast-SICFIS model is a 4-

layer system as observed in Figure 4.11. 
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Figure 4.11: The fast-SICFIS schematic. 

 

The first layer is the fuzzification layer which assigns a degree of membership to a 

partition sp of a feature p, according to 

 

 
1

, ,p pp s p sO =   (4.20) 

 

The second layer is the implication operation, which multiplies the premises and the 

consequences. The rectangular form of the complex singleton membership function is 

used in order to facilitate calculations as follows:  

 

 
2 1

Re, , , , ,cos( )
p p p pp s p s p s p sO O  =     (4.21) 

 
2 1

Im, , , , ,sin( )
p p p pp s p s p s p sO O  =     (4.22) 

 

The third layer is the vector aggregation (or rule interference) layer in which the real 

and imaginary parts are added respectively as follows: 

 

 
3 2

Re Re, ,

1 1

p

p

p

SP

p s

p s

O O
= =

=   (4.23) 

 
3 2

Im Im, ,

1 1

p

p

p

SP

p s

p s

O O
= =

=   (4.24) 

 



Chapter 4 

The Single Input Complex Fuzzy Inference System Model 

 

 

76 

 

The fourth layer calculates the magnitude and the phase of the resultant vector as 

follows: 

 ( )4 3 3argO O O=    (4.25) 

 

4.6.1 Performance Comparison Between the Normalized-SICFIS and the Fast-

SICFIS 

 

The Charpy impact dataset will be utilized to compare the normalized-SICFIS model 

and the fast-SICFIS model training times and performance. The LM algorithm 

presented in previous section provided the best results and will be the one selected for 

this analysis. Each feature is partitioned into three partitions. The models are trained 

from 20 to 70 epochs, the RMSE is utilized to measure the performance, a 5 k-fold 

cross validation is applied; the mean RMSE at each epoch is recorded. The results are 

shown in Figure 4.12. 

 

 

Figure 4.12 Charpy impact dataset, training, checking and testing performance for 

different number of epochs for the normalized and fast SICFIS models. 

 

Figure 4.13 shows the required computation time for different number of epochs. It 

is observed a linear increase of computational time with the addition of epochs, 

although with different slopes. For the 210 epochs the training times were 12.12 and 



Chapter 4 

The Single Input Complex Fuzzy Inference System Model 

 

 

77 

 

6.61 seconds for the normalized and the fast SICFIS model respectively, roughly twice 

the computation time required. The difference between the RMSE is minimal and may 

be attributed to random effects. Further comparison of the performance between models 

will be presented in the results sections for the three real world datasets.   

 

 

Figure 4.13 Charpy impact dataset, training times for the normalized and fast SICFIS 

models for different number of epochs. 

 

4.7 Results 

 

In Order to validate the generalization properties of the normalized-SICFIS and the 

fast-SICFIS introduced in this Chapter, the four real-world datasets presented in 

Chapter 3 are utilized. A parameter grid search is performed on each of the datasets, 

and the performance of each combination of parameters from the grid is recorded.  

 

4.7.1 Charpy Impact Dataset Results 

 

For the Charpy impact dataset the parameter grid is shown in Table 4.6. The RMSE 

is used to measure the performance of the models. A summary of the results of the 

normalized-SICFIS and the fast-SICFIS models are shown in Table 4.7 and Table 4.8 
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respectively. The best models obtained from both the normalized and the fast model are 

shown in Table 4.9. The regression plots of the best performing models for the fast and 

normalized-SICFIS models are shown in Figure 4.14 and Figure 4.15 respectively. 

 

Table 4.6: Charpy impact dataset parameter grid. 

Parameter Values 

Models {Normalized-SICFIS, Fast-SICFIS} 

Optimization Method LM 

Number of membership functions per feature {2,3,4,5,6} 

Initial LM coefficient {20,40,60,80,100} 

Number of k-fold cross validation per model 5 

Maximum number of epochs 70 

Training-Checking-Testing partitions  [65-18-17] 
 

 

Table 4.7 Charpy Impact Normalized-SICFIS Results Summary. 

No. mF* Training Checking Testing All 

 Mean SD  Mean SD Mean SD Mean SD 

2mF 18.64 0.39 20.52 1.07 21.29 0.75 19.47 0.22 

3mF 16.45 0.48 20.16 1.14 19.94 1.04 17.81 0.35 

4mF 15.92 0.48 21.04 1.57 20.11 1.27 17.72 0.33 

5mF 16.08 0.50 20.57 0.92 20.94 1.46 17.87 0.41 

6mF 15.69 0.45 20.12 1.00 21.37 2.15 17.64 0.65 
*mF: membership function 

 

Table 4.8: Charpy Impact Fast-SICFIS Results Summary. 

No. mF* Training Checking Testing All 

 Mean SD Mean SD Mean SD Mean SD 

2mF 16.96 0.54 21.28 1.80 20.49 1.37 18.46 0.41 

3mF 16.22 0.44 21.25 1.78 20.57 1.32 18.03 0.33 

4mF 16.30 0.44 22.05 2.39 20.83 1.53 18.31 0.66 

5mF 15.70 0.51 20.66 1.60 20.46 1.48 17.58 0.56 

6mF 15.70 0.28 21.57 1.50 20.65 1.15 17.80 0.42 
*mF: membership function 

 

For comparison purposes four additional models are shown in Table 4.10. The first 

model is a Mamdani FIS with singleton defuzzification, which is equivalent to a RBFN. 

It is a 9 rule FIS, the input partition is 56.25-18.75-25 for training, checking and testing 

respectively [25]. The second model is an ANFIS model with a quantum membership 

function [117]. It is a 6 rule FIS created utilizing a fuzzy c-means clustering algorithm 

and the input partition is 55-15-30 for training, checking and testing respectively [117]. 

The third and fourth model are a 6 and 8 rule Interval Type-2 TSK FISs (IT2-Squared) 
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respectively, as proposed in [40] for UTS predictions. The data partition is 60-20-20 

for training, checking and testing respectively. 

 

Table 4.9: Charpy Impact SICFIS Best Results. 

No. mF ‡ Training Checking Testing All 

 Norm* Fast† Norm* Fast† Norm* Fast† Norm* Fast† 

2mF 18.12 16.90 19.76 20.35 21.01 19.21 18.94 17.97 

3mF 15.87 16.31 18.31 20.57 20.52 18.10 17.20 17.46 

4mF 15.26 15.82 20.99 20.91 19.04 18.05 17.10 17.23 

5mF 15.23 15.38 21.12 19.63 19.75 18.52 17.25 16.77 

6mF 15.41 15.82 19.45 18.71 17.98 19.89 16.66 17.12 
*Norm: Normalized-SICFIS model. †Fast: Fast-SICFIS model. ‡mF: Membership Function. 

 

The differences between the normalized and the fast SICFIS performance are 

comparable, with a lower SD between the results of the normalized-SICFIS model, 

would mean the results are more consistent. The best results of both models are similar. 

 

 

Table 4.10 Charpy Impact Results Comparison. 

Model Training Checking Testing All 

RBFN [25] 14.66 21.24 20.42 17.33 

ANFIS [117] 17.75 18.84 18.17 18.03 

IT2-Squared 6 rules 16.41 19.4 19.65 17.65 

IT2-Squared 8 rules 15.74 20.73 19.83 17.55 
 

 

In comparison with other models, the mean performance of both SICFIS models is 

comparable with the best models registered in Table 4.10. Demonstrating the 

superiority of the SICFIS model, in both performance and computation time.  

 

The computation times measured in seconds of 9 different models are shown in 

Table 4.11. These results were obtained on a Windows 10 64 bit desktop computer with 

a processor Intel Core i5-4590 CPU @3.30 GHz and an installed memory RAM of 8.00 

GB. The initial FISs for the RBFN and the ANFIS were obtained by utilizing the 

Subtractive Clustering algorithm from the MATLAB 2018b fuzzy toolbox, each model 

having been trained for 20 epochs. For optimization, the RBFN utilizes a 
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backpropagation algorithm and the ANFIS a hybrid backpropagation-least-squares 

algorithm. 

 

 

 

Figure 4.14: Charpy Impact test, results regression plot, normalized-SICFIS model with 

6 membership functions partitions per feature. 
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Table 4.11: Charpy Impact, initial FIS and training computation times in seconds. 

 RBFN 9 Rules ANFIS 9 Rules Normalized-SICFIS 2mF Fast-SICFIS 2mF 

Initial FIS 1.694s 1.728s 0.018s 0.017s 

Training 1.44s 4.727s 2.52 0.134s 

 RBFN 10 Rules ANFIS 10 Rules Normalized-SICFIS 3mF Fast-SICFIS 3mF 

Initial FIS 1.772s 1.772s 0.017s 0.017s 

Training 1.618s 5.508s 2.53 0.18s 

 RBFN 11 Rules ANFIS 11 Rules Normalized-SICFIS 4mF Fast-SICFIS 4mF 

Initial FIS 1.847s 1.824s 0.019s 0.016s 

Training 1.759s 6.554s 2.52 0.238s 
 

 

 

Figure 4.15: Charpy Impact test, results regression plot, fast-SICFIS model with 5 

membership functions partitions per feature. 
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Table 4.12: Charpy Impact inference computation time in seconds. 

 RBFN 9 Rules ANFIS 9 Rules Normalized-SICFIS 2mF Fast-SICFIS 2mF 

Inference 0.1094s 0.1563s 0.01001s 0.0020s 

 RBFN 10 Rules ANFIS 10 Rules Normalized-SICFIS 3mF Fast-SICFIS 3mF 

Inference 0.2188s 0.2231s 0.01003s 0.0025s 

 RBFN 11 Rules ANFIS 11 Rules Normalized-SICFIS 4mF Fast-SICFIS 4mF 

Inference 0.2344s 0.2434s 0.01004s 0.0030s 
 

 

4.7.2 Ultimate Tensile Strength Results 

 

The dataset includes two categorical features with 3 and 6 categories, a membership 

function per category will be used for these features. The data partition is 70-30 for 

training and testing respectively, the validation consists of 12 data points. The 

parameter grid is shown in Table 4.13: UTS parameter grid.. The UTS results summary 

containing the mean and SD results from the normalized and fast SICFIS model are 

shown in Table 4.14 and Table 4.15 respectively. 

 

Table 4.13: UTS parameter grid. 

Parameter Values 

Models {Normalized-SICFIS, Fast-SICFIS} 

Optimization Method LM 

Number of membership functions per feature {3,4,5,6,7,8} 

Initial LM coefficient {20,40,60,80,100} 

Number of k-fold cross validation per model 5 

Maximum number of epochs 70 

Training-Testing partitions  [70-30] 
 

 

Table 4.14: UTS normalized-SICFIS UTS results summary. 

No. mF* Training Testing Validation All 

 Mean SD Mean SD Mean SD Mean SD 

3mF 36.03 0.90 38.81 1.54 54.46 6.66 36.97 0.75 

4mF 37.51 1.93 41.72 2.24 63.36 4.39 38.93 1.91 

5mF 36.58 1.69 41.29 1.58 65.73 8.87 38.19 1.35 

6mF 36.69 1.84 42.24 2.29 64.04 7.34 38.56 1.83 

7mF 37.75 3.53 44.65 4.29 79.14 18.41 40.16 3.62 

8mF 36.55 1.83 43.33 2.70 62.78 7.04 38.82 1.83 
*mF: membership function, 
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The best models obtained from both the normalized and the fast model are shown in 

Table 4.16. The regression plots of the best performing models for the fast and 

normalized-SICFIS models are shown in Figure 4.16 and Figure 4.17 and respectively. 

 

Table 4.15: UTS fast-SICFIS UTS results summary. 

No. mF* Training Testing Validation All 

 Mean SD Mean SD Mean SD Mean SD 

3mF 37.24 1.02 40.19 1.42 59.67 5.03 38.25 0.75 

4mF 35.78 0.93 41.12 3.77 57.90 4.43 37.58 1.46 

5mF 37.31 1.83 45.49 4.18 65.62 4.80 40.07 2.37 

6mF 37.75 1.97 46.65 3.99 67.19 5.00 40.77 2.24 

7mF 37.16 1.59 45.04 3.97 69.25 7.43 39.85 2.04 

8mF 34.80 1.85 48.54 6.60 60.81 6.30 39.61 2.76 
*mF: membership function, 

 

Figure 4.16: UTS test, results regression plot, normalized-SICFIS model with 6 

membership functions partitions per feature. 
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Table 4.16: UTS Normalized and Fast SICFIS UTS Best Results. 

No. mF Training Testing Validation All 

 Norm* Fast† Norm* Fast† Norm* Fast† Norm* Fast† 

3mF 35.36 35.13 41.07 36.93 49.80 51.96 37.22 35.74 

4mF 35.64 33.69 36.25 39.26 55.05 52.30 35.91 35.52 

5mF 35.22 33.14 39.65 40.43 59.91 50.19 36.70 35.54 

6mF 35.97 34.71 42.40 38.19 63.76 53.86 38.12 35.86 

7mF 34.20 33.88 41.07 39.26 49.08 68.87 36.45 35.74 

8mF 32.23 34.49 41.15 38.89 57.25 65.87 35.24 36.00 
*Norm: Normalized-SICFIS model. †Fast: Fast-SICFIS model. ‡mF: Membership Function. 

 

 

Figure 4.17: UTS test, results regression plot, fast-SICFIS model with 5 membership 

functions partitions per feature. 
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For comparison purposes the results of three different FISs is shown, the IT2-

Squared and the Multi- Objective Interval Type-2 Fuzzy Modelling (MOIT2FM) [118] 

are type-2 FISs, the IMOFM-M [118] is a Mamdani type-1 FIS, all are composed of 6 

rules. The RMSE is used to measure the performance and results are shown in Table 

4.17. The results are mixed, as the normalized and fast SICFIS model outperform the 

training partition, the testing partition performance is equivalent to the IT2-Squared and 

MOIT2FM, while the validation partition underperforms in comparison.  

 

Table 4.17: UTS results comparison. 

Model Training Testing Validation 

IT2-Squared [40] 34.45 38.76 37.34 

MOIT2FM [118] 36.33 40.52 34.77 

IMOFM-M [118] 46.47 45.52 49.87 
 

 

4.7.3 Bladder Cancer Results 

 

The Bladder cancer dataset includes mostly categorical features. Three continuous 

features contain integer values and therefore will be considered as being categorical in 

this study. Therefore, only one feature is treated as being continuous. The Area Under 

the Curve (AUC) is used to measure performance to compare with other models. The 

AUC is calculated with the same dataset as the one in this work, that is the resulting 

dataset of the records of the non-censored patients and the records of the right-censored 

patients whose last observed time surpasses the 60-month threshold.  

 

The Bladder cancer parameter grid is shown in Table 4.18. A summary of the results 

obtained by the normalized and fast SICFIS models are shown in Table 4.19 and Table 

4.20 respectively. The best results obtained are shown in Table 4.21. 

 

For comparison 5 other models are shown in Table 4.22, these models being: The 

Cox regression model, a logistic regression model (LoR), an ANN and two FISs. The 
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FISs shown in Table 4.22 have been integrated into the Cox regression model in order 

to perform a risk prognosis analysis. The first is a type-1 FIS with 20 Fuzzy Mamdani 

type rules and the second a type-2 FIS also composed of 20 Fuzzy Mamdani type rules. 

Further information regarding these models can be found in [39].  

 

Table 4.18: Bladder Cancer Parameter Grid. 

Parameter Values 

Models {Normalized-SICFIS, Fast-SICFIS} 

Optimization Method LM 

Number of membership functions per feature {2,3,4} 

Initial LM coefficient {20,40,60,80,100} 

Number of k-fold cross validation per model 5 

Maximum number of epochs 70 

Training -Testing partitions  [65-35] 
 

 

Table 4.19 Normalized-SICFIS Bladder Cancer Results Summary. 

No. mF* Training Testing All 

 Mean SD Mean SD Mean SD 

2mF 0.9022 0.0076 0.8726 0.0084 0.8918 0.0057 

3mF 0.9027 0.0064 0.8710 0.0081 0.8915 0.0041 

4mF 0.9037 0.0060 0.8725 0.0084 0.8928 0.0036 
*mF: membership function 

 

Table 4.20: Fast-SICFIS Bladder Cancer Results Summary. 

No. mF* Training Testing All 

 Mean SD Mean SD Mean SD 

2mF 0.9057 0.0084 0.8747 0.0087 0.8952 0.0047 

3mF 0.9065 0.0054 0.8763 0.0132 0.8963 0.0030 

4mF 0.9046 0.0090 0.8751 0.0145 0.8945 0.0069 

*mF: membership function. 

 

The Receiver Operating Characteristic (ROC) curves of the best results for the 

normalized and fast SICFIS models are shown in Figure 4.18 and in Figure 4.20 

respectively. The corresponding scatter plots of the Scores are shown in Figure 4.19 

and in Figure 4.21 respectively. The optimum point is selected as the point in which the 
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prediction accuracy it’s at its maximum. The confusion matrix corresponding to such 

optimum point is shown in Table 4.23 and in Table 4.24. 

 

Table 4.21:Normalized and Fast SICFIS Bladder Cancer Best Results. 

No. mF‡ Training Testing All 

 Norm* Fast† Norm* Fast† Norm* Fast† 

2mF 0.9115 0.9190 0.8824 0.8652 0.9005 0.9001 

3mF 0.9119 0.9022 0.8795 0.8985 0.8971 0.9011 

4mF 0.9060 0.9015 0.8852 0.8998 0.8976 0.9010 
*Norm: Normalized-SICFIS model. †Fast: Fast-SICFIS model. ‡mF: Membership Function. 

 

Table 4.22: Bladder Cancer Results Comparison. 

Model Training Testing All 

Cox [39] 0.83 0.82 0.83 

LoR [39] 0.76 0.74 0.75 

ANN [39] 0.88 0.84 0.87 

T1 FIS [39] 0.88 0.83 0.86 

T2 FIS [39] 0.92 0.91 0.92 
 

 

 

Figure 4.18: Normalized-SICFIS 2 membership functions ROC curves. 
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Figure 4.19: Normalized-SICFIS 2 membership functions scores scatter plot.  

 

 

Figure 4.20: Fast-SICFIS 4 membership functions ROC curves. 
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Figure 4.21: Fast-SICFIS 4 membership functions scores scatter Plot. 

 

 

 

Table 4.23: Normalized-SICFIS 2 membership functions Confusion Matrix. 

  True Class 

  Low Risk High Risk 

  Training Testing Training Testing 

Predicted Class Low Risk 272 149 94 44 

 High Risk 62 51 599 310 
 

 

 

Table 4.24: Fast-SICFIS Confusion 4 membership functions Matrix. 

  True Class 

  Low Risk High Risk 

  Training Testing Training Testing 

Predicted Class Low Risk 298 162 67 32 

 High Risk 79 47 583 313 
 

 



Chapter 4 

The Single Input Complex Fuzzy Inference System Model 

 

 

90 

 

4.7.4 Superconductivity Results 

 

A summary of the results obtained from the superconductivity data set are shown in 

Table 4.25 and Table 4.26. The best results obtained given a number of membership 

functions per feature is shown in Table 4.27. A results comparison is shown in Table 

4.28, five different models are shown: a linear regression model, an XG-Boost model, 

an ANFIS model and two ANNs. Both the linear regression and XG-Boost results are 

obtained from [109]. The training partitions for the linear regression and the XG-Boost 

model is 2/3 for training and 1/3 for testing, the reported results are only for the out-of-

sample data and no information is available for the remaining partitions. The data 

partition for the ANFIS model and the two ANN is 65-18-17 for training, checking and 

testing respectively. The ANFIS model is composed of 8 rules, while the two ANN are 

composed of 10 and 20 hidden layers.   

 

 

Table 4.25: Superconductivity Normalized-SICFIS Results Summary. 

No. mF* Training Checking Testing All 

 Mean SD  Mean SD Mean SD Mean SD 

2mF 14.72 0.128 14.90 0.315 15.02 0.150 14.80 0.067 

3mF 14.22 0.116 14.65 0.396 14.54 0.247 14.35 0.113 

4mF 13.79 0.157 14.50 0.381 14.34 0.286 14.02 0.106 
*mF: membership function 

 

 

Table 4.26: Superconductivity Fast-SICFIS Results Summary. 

No. mF* Training Checking Testing All 

 Mean SD Mean SD Mean SD Mean SD 

2mF 13.99 0.137 14.46 0.358 14.61 0.185 14.18 0.133 

3mF 13.80 0.088 14.40 0.286 14.57 0.182 14.04 0.081 

4mF 13.45 0.103 14.55 0.633 14.47 0.246 13.83 0.149 
*mF: membership function 
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Table 4.27: Superconductivity SICFIS Best Results. 

No. mF ‡ Training Checking Testing All 

 Norm* Fast† Norm* Fast† Norm* Fast† Norm* Fast† 

2mF 14.76 13.79 14.55 13.92 14.81 14.37 14.73 13.91 

3mF 14.21 13.60 14.07 14.86 14.34 14.15 14.21 13.93 

4mF 13.45 13.19 14.25 14.05 14.46 14.65 13.77 13.61 
*Norm: Normalized-SICFIS model. †Fast: Fast-SICFIS model. ‡mF: Membership Function. 

 

Table 4.28 Superconductivity Results Comparison. 

Model Training Checking Testing All 

Linear Regression [109] NA NA 17.6 NA 

XG-Boost [109] NA NA 9.4 NA 

ANFIS 8 Rules 13.37 16.27 16.08 14.42 

ANN 10 hidden layers 13.42 13.50 14.23 13.58 

ANN 20 hidden layers 12.54 13.39 12.93 12.76 
 

 

4.8 Interpretability Analysis: Example of the Charpy Impact Dataset  

 

The interactions of processes and alloying elements and their effect on the material 

properties are complex and are often difficult to represent. For the purpose of this 

analysis, the magnitude-phase plots of a selected number of features is shown in Figure 

4.23. Because the Charpy impact dataset is known for the scattered measurements this 

diagram is obtained from a SICFIS model trained with the complete dataset. For 

validation, the information in [119] will be utilized. This information contains a 

comprehensive summary of the effect of alloying elements to notch toughness.   

 

A scatter plot of the results is shown in Figure 4.22. The plot shows the whole 

complex number coordinates. It is shown that most of the predictions are located within 

the second and third quadrants.  

 

As already stated, the Charpy impact test measures the notch toughness of a material 

and characterizes the DBTT. The impact temperature is an important variable in the 

model, and it is known that at low temperatures the material becomes brittle and at high 
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temperatures the material becomes ductile. Carbon is the main alloying element in steel, 

of which a high concentration of carbon causes the material to become brittle and 

therefore an increase of carbon in steel is associated with a decrease in impact energy  

[119]. 

 

 

Figure 4.22: Two-dimensional magnitude and phase scatter plot of results. 

 

Figure 4.23: Charpy impact test magnitude-phase plots. 
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Given the known effect of both impact temperature and Carbon, it is possible in 

general to associate a positive effect on impact energy to angles within the second and 

third quadrant, and a negative effect to angles within the first and fourth quadrant. There 

are exceptions to this however, and this would depend mostly on the interaction with 

other alloying elements and the process [119].  

 

Increasing the Manganese content reduces the transition temperature and improves 

the upper shelf energy in low carbon steel. A lesser effect is observed in medium carbon 

steel and has little effect on high carbon steels. Manganese can have the opposite effect 

on tempered and hardened steel. In the magnitude and phase plot of these alloying 

elements it is observed that a high content of Manganese is detrimental to high carbon 

steel, high hardening temperatures and to tempering, while being beneficial to some 

extent to low carbon steel [119].  

 

Nickel is used to improve the materials properties at low temperatures but is also 

known to have a negative effect on the upper shelf energy while Chromium is known 

to increase the upper shelf energy. It is shown that a high content of nickel has a 180° 

phase difference with a high impact temperature, hence creating a negative interference, 

and it remains mostly orthogonal with a low impact temperature. Chromium’s phase, 

however, would produce a positive interference with a high impact temperature and is 

orthogonal to a low impact temperature, which means its effect is mostly on the upper 

shelf energy [119]. 

 

Vanadium improves notch toughness [120], while the addition of Sulphur has a 

negative effect in notch toughness [119]. This can be emphasized by the fact that 

Sulphur is located within the fourth quadrant and vanadium in the second and third 

quadrants.  
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4.9 Summary 

 

To the authors’ best knowledge, the SICFIS model is the first interpretable CFIS 

based on CFSs. It was demonstrated that the SICFIS model performs equivalently to 

other well-known models with as little as 2 partitions per feature. Computational times 

are reduced exponentially due to its simple structure and the application of GPU parallel 

computing.  

 

The results obtained from the Charpy impact test are superior to other FISs. SICFIS 

was shown to be transparent and interpretable. The interpretability analysis performed 

on the magnitude-phase plots is consistent with what is currently known in the 

literature. Given the single input-partition-per-rule architecture of SICFIS it is possible 

to determine the individual effect of each alloying element and process. Moreover, 

eliciting an initial SICFIS is approximately 100 times faster than traditional FISs 

utilizing a subtracting Clustering algorithm. The training time is 10 and 30 times faster 

compared with the RBFN and the ANFIS models respectively. The fast-SICFIS model 

can improve the computation times even further with a more computational efficient 

architecture and the power of parallel computing.  

 

The results obtained from the UTS dataset for the training and testing partition 

produce equivalent performance to the other FIS methods, for the 12 validation points 

the results perform are sub-optimal, and more work is required to improve upon the 

results.  

 

The results obtained from the Bladder cancer prediction were superior to the other 

models, excluding the type-2 FIS. It should be mentioned even better results may have 

been obtained by modifying the model to perform a proper survival analysis, which is 

out of the scope of this work. The fact that it demonstrated a superior performance 

compared with state-of-the-art models shows promise of utilizing SICFIS for other 
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medical applications. For this dataset, the normalized-SICFIS model performed 

considerably worse than the fast-SICFIS model, this differences in performance are 

attributed to the negative influence of the rule normalization operation when a large 

number of categorical features are present.       

 

The results obtained from the superconductivity dataset are comparable with the 

ANN and ANFIS models. Demonstrating the capabilities of the normalized and fast 

SICFIS models to perform predictions with large datasets.   

 

The normalized and the fast SICFIS models provide similar results. The slight 

reduction in the standard deviation obtained from the result summary may indicate a 

more consistent performance from the normalized-SICFIS model. The fast-SICFIS 

model can train models around two times faster than the normalized SICFIS model, this 

reduction in computational time may become more significant for larger datasets. 

Therefore, the trade-off between computational speed and consistent results should be 

taken into consideration depending on the application, such as in real-time applications, 

it would be of great benefit a considerable reduction in computational times. For 

datasets with a large number of categorical features the fast-SICFIS model would in 

theory be a better choice as demonstrated by the results obtained by the Cancer dataset. 

 

In addition to the superior performance obtained from both SICFIS models it was 

demonstrated the interpretability and transparency of the models. Among the different 

knowledge representation methods it can be argued that the magnitude-phase plots 

provide crucial information for the validation of the model and the extraction of 

knowledge, moreover, its interpretability is not affected when there is overlap between 

partitions or when the number of partitions increases as it may be the case with the 

vector partition plots and the cosine distance matrix plot.  
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In comparison with type-1 and type-2 FIS, the SICIFS model provides better insight 

of the individual effects of a feature in the overall performance of a model. 

Additionally, the SICFIS rule-base can be represented utilizing the traditional type-1 

fuzzy rule-base, with an additional control over the granularity of the information 

presented. 
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Chapter 5  

The Adaptive Neuro Fuzzy Inference System with 

Single Input Complex Fuzzy Inference System 

Consequences 

 

5.1 Introduction and Background 

 

The TSK FIS is a rule-base model whose premises are composed of linguistic 

variables and the consequences are composed of functions, which are most commonly 

linear regression models. Each rule represents a region of the dataset that can be 

approximated by a local linear model, this divide-and-conquer strategy allows to model 

complex nonlinear systems as a combination of interpretable linear models. Defining 

fuzzy boundaries allows for a better representation of the local model and improves the 

prediction accuracy for data points located within the boundaries of two or more local 

regions. Dividing a large and complex problem into local interpretable models may 

become a problem as the complexity increases. The larger and the more complex a 

dataset is the more rules are required to model its behaviour, hence decreasing its 

interpretability. 

 

In order to improve the prediction accuracy of TSK models and reduce the number 

of rules some authors have devised different adaptations to the TSK architecture. 

Models such as the neural networks designed on approximate reasoning architecture 

[121], and the co-active neuro fuzzy inference system [122] embed ANNs to the TSK 

FIS architecture with the objective of combining the interpretability of FISs and the 

prediction accuracy of ANNs. Embedding ANN into FIS reduces considerably, if not 
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at all, its interpretability as ANN are black-box models. These models are not to be 

confused with the popular ANFIS model [76], the ANFIS is a TSK FIS and does not 

embed ANN to its architecture but rather utilizes backpropagation learning algorithms 

to improve its accuracy while maintaining its interpretability. 

 

Other strategies developed to reduce the number of rules and improve upon the 

accuracy of the results while maintaining the transparency and interpretability of the 

system include replacing the consequences of a TSK FIS with nonlinear functions. The 

number of rules is reduced considerably given that the overall architecture of the system 

is local-nonlinear which can describe a larger region of the dataset more accurately 

compared with linear models. These methods have been applied for control 

applications. Rajesh  [123] include sinusoidal functions to improve accuracy of a 

controller. Sala and Ariño [124] utilize polynomials from Taylor series expansion. 

Tanaka [125] utilizes a sum of squares for modelling non-linear dynamical systems. 

Dong [126] utilizes local nonlinear TSK rules for the design of a controller. 

 

In this work it is proposed to replace the linear consequence of the TSK with the 

fast-SICFIS model. In Chapter 4 the interpretability properties of the SICFIS was 

demonstrated, its superior accuracy compared with other models, and the considerable 

reduction in training times, especially in the case of the fast-SICFIS model were also 

shown.  These properties make it an ideal candidate for improving upon the accuracy 

of the ANFIS model while retaining its interpretability. The Results obtained are 

comparable with ensembles of ANN. Training times are comparably lower than other 

more complex methods, while maintaining its interpretability.  

   

5.2 The ANFIS-SICFIS Model 

 

The ANFIS-SICFIS model is a neuro fuzzy inference system based on the popular 

ANFIS architecture. The ANFIS-SICFIS premise is composed of a traditional type-1 
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rule-base and the consequences are composed of SICFIS models. The ANFIS-SICFIS 

fuzzy rule-base is given in Table 5.1. 

 

Table 5.1: ANFIS-SICFIS Rule-base. 

 Premise       Consequence 
1 1 1 1

1 1 2 2 ( )P PIF x is A ANDx is A ANDx is A THEN y ish= x  
2 2 2 2

1 1 2 2 ( )P PIF x is A ANDx is A ANDx is A THEN y ish= x  

 

1 1 2 3 ( )R R R R

P PIF x is A ANDx is A ANDx is A THEN y ish= x  
 

 

where px  represents the input value for a feature p 
r

pA  represents a type-1 fuzzy 

membership function for a rule r and a feature p and hr represents the output of a local 

SICFIS model corresponding to the rule output.  

 

5.2.1 ANFIS-SICFIS Premises 

 

The premise of the ANFIS-SICFIS can be represented as a three layered system, the 

first layer fuzzifies  the input utilizing a Gaussian membership function (5.1), the 

second layer calculates the rule strength utilizing the product t-norm (5.2), finally the 

third layer normalizes the fired rule strength (5.3). 
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  −
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The premises of the rules correspond to a region of the dataset. The rules may be 

defined by an expert or by utilizing a clustering algorithm. The clustering algorithm 

allows to identify the associations between the inputs and the output in the dataset  

[127]. The most common fuzzy clustering algorithm and the one utilized in this work 

is the Fuzzy C-Means (FCM) algorithm [20]. The FCM algorithm is as follows: 

 

Algorithm 5.1 Fuzzy C-Means clustering algorithm 

Inputs: Dataset x, fuzzy partition exponent m>1 end condition threshold  , maximum number of 

epochs q, number of centers C. 

Output: fuzzy partition matrix u, fuzzy cluster center positions v 

Assign initial values for prototypes 
1 2, ,..., Cc c c    

While t q  or
1t tJ J −−    

          Calculate fuzzy partition matrix

2

1

1

FCM mC
i j

ij FCM
k i k

x c
u

x c

−
−

=

 −
 
 −
 

   

          Update prototypes
1 1

N N
FCM m m

j ij i ij

i i

c u x u
= =

   

          compute objective function
2

1 1

N C
m FCM

m ic i j

i j

J u x c
= =

= −   

 

 

where 1m  is the fuzzy partition exponent, 
FCMc  are the initial values for the 

prototypes and N is the total number of instances in the dataset. From the FCM 

clustering algorithm it is possible to create a rule-base utilizing the c prototypes and the 

fuzzy partition matrix u. The centers of the Gaussian membership functions for the rule-

base ,

RB

r pc  are equal to the projections of the prototypes 
FCMc  of the FCM algorithm. 

The calculation of the spreads ,

RB

r p  are calculated utilizing the fuzzy covariance matrix 

[27] as follows: 

 

( )( )
1

1

( )

( )

N
T

m k k

ij i i

j

i n
m

ij

j

u

Cov

u

=

=

− −

=





a v a v

  (5.4) 

 
1/2

, [ ( )]RB

r p iDiag Cov =   (5.5) 
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The fuzzy partition exponent determines the “fuzziness” of the clustering algorithm. 

It can be shown that when m=1 the FCM algorithms produces “hard” partitions of the 

dataset [128].  The degree of fuzziness or overlap between partitions can be measured 

utilizing the partition coefficient shown in (5.6)  [20]. The partition coefficient 

approaches 1 as the partition become “harder”. Similarly, a partition coefficient of the 

rule-base can be measured utilizing normalized rule strength rw   (5.3),  instead of the 

fuzzy partition matrix u as shown in (5.7). 

 

 ( )
2

1 1

(FCM)
N C

ij

i j

PartitionCoefficient u N
= =

=   (5.6) 

 ( )
2

,

1 1

(Rule-Base)
N R

i r

i r

PartitionCoefficient w N
= =

=   (5.7)| 

 

where N is the total number of instances C is the number of clusters and R is the 

number of rules. Figure 5.1 shows the partition coefficient value as the fuzzy partition 

exponent m increases for both the FCM and the rule-base. A sharp decline in the FCM 

partition coefficient is observed as m increases with lesser effect in the rule-base 

partition coefficient. Therefore, it can be inferred that to obtain distinguishable local 

interpretable models it is important to choose a partition coefficient value between 1 

and 2. 

 

5.2.2 ANFIS-SICFIS Consequences  

 

The fast-SICFIS model already explored in Chapter 4 is a 4 layered complex-FIS. 

The SICFIS present several advantages over traditional FIS and other machine-learning 

models, these advantages include its interpretability, its low complexity and fast 

computation. In order to differentiate between the premise membership functions of the 

ANFIS-SICFIS rule-base and the SICFIS the symbol   will be used for the former and 
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the symbol   for the latter. The SICFIS will be represented as a nonlinear function, the 

architecture of the model was presented in Chapter 4.6 and the equations are 

summarized below: 

 

 ( ) ( )
2 2

Re Im( )r r rh g g= +x   (5.8) 

 
Re , , ,

1 1

cos( )
p

p p p

SP
r r r r

p s p s p s

p s

g   
= =

=     (5.9) 

 
Im , , ,

1 1

sin( )
p

p p p

SP
r r r r

p s p s p s

p s

g   
= =

=     (5.10) 
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p s CFR r

p s

x c




  −
  = −

  
  

  (5.11) 

 

 

Figure 5.1 Fuzzy partition coefficient values given different clusters and changing the 

fuzzy partition exponent value. 
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The output of the SICFIS model is a complex number, with a phase and a magnitude, 

something referred to as the “dual output property”; in Chapter 4 the magnitude of the 

SICFIS model was used to asses its performance and the phase was utilized as 

additional information utilized during the interpretability analysis. To adequately 

address the dual output property of the SICFIS within the context of the ANFIS-SICFIS 

model, two different approaches will be explored. The first one passes the output of the 

SICFIS as real-valued, that means, only the magnitude information of the output. The 

second approach passes the output of the SICFIS as complex-valued.  

 

The first approach is relatively straightforward, as the last layers of the ANFIS-

SICFIS simply perform an algebraic product between the normalized rule strength and 

the real-valued consequent later to sum the outputs of each rule, the output of this model 

is real-valued, therefore from here after this approach will be defined as the real-

ANFIS-SICFIS model. The second approach would require and additional layer, a 

second rule interference layer, which would calculate interference between the rules, 

the final output of this model is complex-valued, therefore the magnitude is utilized to 

assess its performance and the phase can be used as additional information, from here 

after this approach will be defined as the complex-ANFIS-SICFIS model.   

 

5.2.3 Real-ANFIS-SICFIS 

 

The first three layers of the real-ANFIS-SICFIS represent the premise rule-base of 

the system described by the equations (5.1)-(5.3). The fourth layer of the real-ANFIS-

SICFIS is the magnitude of the local SICFIS for a rule r as follows:  

 

 ( ) ( )
2 2

Real,4

Re Im( )r r r

r iO h g g= = +x   (5.12) 
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The final output aggregates the inference between the premises and the 

consequences of each rule as follows: 

 

 
Real,5

1

R
r

r

r

O w h
=

=    (5.13) 

 

A schematic of the real-ANFIS-SICFIS is shown in Figure 5.2. The architecture of 

this model resembles closely the one of Jang’s A FIS model [76].  

 

 

Figure 5.2: The real-ANFIS-SICFIS schematic. 

 

5.2.3.1 Real-ANFIS-SICFIS Training 

 

For the optimization the LM optimization algorithm explored in section 4.5 is 

utilized. To differentiate between the premise and the consequences parameters a 
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superscript with the symbol   is used for the premise parameters of the type-1 fuzzy 

rule-base. A superscript r  is used for the parameters of the SICFIS model, 

corresponding to a rule (local model) r.  

Premise parameters: 

 , ,r p r pc      (5.14) 

Consequence parameters:  

 
, , , ,

r r

p p p p

r r

p s p s p s p sc    
 

  (5.15) 

Derivatives: 

 
, ,

r

r p r r p

f f
 



  

  
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  (5.16) 
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
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  
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  (5.17) 
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  (5.18) 
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  (5.19) 
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  (5.20) 
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  (5.21) 

 

5.2.4 Complex-ANFIS-SICFIS 

 

A schematic of the complex-ANFIS-SICFIS model is shown in Figure 5.3. The first 

three layers represent the premise rule-base of the system described in the equations 
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(5.1)-(5.3). The output of the fourth layer of the complex-ANFIS-SICFIS utilizes the 

real and the imaginary output of the SICFIS for a rule r as follows: 

 Complex,4

,Re Re , , ,

1 1

cos( )
p

p p p

SP
r r r r

r p s p s p s

p s

O g   
= =

= =     (5.22) 

 Complex,4

,Im Im , , ,

1 1

sin( )
p

p p p

SP
r r r r

r p s p s p s

p s

O g   
= =

= =     (5.23) 

 

Figure 5.3: The complex-ANFIS-SICFIS schematic. 

 

Given that the output of the fourth layer is a complex number, the complex-ANFIS-

SICFIS includes an additional layer, which measures the interference between the rules, 

additionally, each rule consequent is multiplied by the normalized rule strength. The 

output of the fifth layer is also a complex quantity with a real and an imaginary part as 

follows: 
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Re Re
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r r
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The output of the sixth layer calculates the magnitude and the phase of the real and 

imaginary quantities obtained from the output of the fifth layer. The magnitude is 

utilized to make the predictions and measure the performance of the system while the 

phase is utilized for additional information.  

   

 ( )Complex,6 Complex,5 Complex,5argO O O=    (5.26) 

 

5.2.4.1 Complex-ANFIS-SICFIS Training 

 

For the optimization the LM optimization algorithm explored in section 4.5 is 

utilized. To differentiate between the premise and the consequences parameters a 

superscript with the symbol   is used for the premise parameters of the type-1 fuzzy 

rule-base. A superscript r  is used for the parameters of the SICFIS model, 

corresponding to a rule local model r.  

 

Premise parameters: 

 , ,r p r pc      (5.27) 

Consequence parameters:  

 
, , , ,
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p p p p
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  (5.28) 

Derivatives: 
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  (5.34) 

 

5.3 Model Evaluation 

 

The objective of the ANFIS-SICFIS model is to create a partition of the dataset in 

order to obtain a global model composed of local interpretable non-linear models. To 

maintain interpretability each rule should model accurately a local region of the dataset. 

Therefore, to assess the performance and interpretability of the system, a local 

performance will be taken into consideration, this measurement will not be included in 

the objective function, rather it will be used to assess the final performance of the 

system. 

 

The local performance is assessed as follows: Each one of the instances in a dataset 

is evaluated utilizing the trained real and complex ANFIS-SICFIS models. Instead of 

utilizing the prediction of the global model, a local SICFIS model will be selected to 

assess its performance, the local SICFIS model is selected according to the normalized 

rule strength values. The rule with the highest normalized rule strength corresponds to 

the local SICFIS utilized in the evaluation of that record. This is repeated for each data 

point, the results are collected and the RMSE is calculated for the training, checking 

and testing partitions. Both ANFIS-SICFIS models utilize the same evaluation method 

shown in Algorithm 5.2. 
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During the training of the ANFIS-SICFIS models, the rule-base may be altered, this 

may affect the local performance of a model. To asses these alterations three different 

optimization strategies are to be implemented. The first one will optimize all the 

parameters at the same time, we would define this as the complete parameter 

optimization process. The second one would optimize the premise parameters and the 

SICFIS parameters separately, each one at different epochs, this method is defined as 

the alternate parameter optimization process. The third method would optimize solely 

the SICFIS parameters, we would define this method as the consequent parameter 

optimization process.  

 

Algorithm 5.2: Local Performance Evaluation 

Inputs: Parameter vector: normalized rule firing strength 
1( ) [ ( ) ( )]j j R jw w=w x x x  obtained 

from (5.3). Vector containing the local SICFIS magnitude output for the rules 
1( ) [ ( ) ( )]R

j j jh h=h x x x  obtained from (5.8). Number of records N. outputs Y 

Outputs: RMSE pertaining to the local performance     

1j   

while j N  

  
1( ) [ ( ) ( )]j j R jw ww x x x   

        argmax( ( ))j jk  w x   

 
,

ˆ ( )k

Local j jy h x   

( )
2

,

1

1
ˆ

N

Local Local j j

j

RMSE y y
N =

= −   

 
 

 

It is expected that the consequent optimization algorithm would yield the best local 

performance given that the premises of the rule-base would remain unaltered. 

Additionally, it is expected that an initial rule-base created with a fuzzy partition 

coefficient closer to one would improve upon the local performance. To assess these 

hypotheses a parameter grid search will be performed with the parameters observed in 

Table 5.2. This exhaustive grid search is implemented to the Charpy impact dataset, 

resulting in the training of 1,440 models. 
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A summary of the results from the exhaustive grid search can be observed in the four 

graphs shown in Figure 5.4 and Figure 5.5. The four graphs correspond to the Global 

and Local performances of the real and complex -ANFIS-SICFIS, showing the mean 

RMSE of the models with 2, 3 and 4 rules utilizing each of the three different 

optimization strategies, Complete, Consequents and Alternate. The results include the 

training, checking and testing partition performance displaying the corresponding 

proportion of influence to the final error, the total length of these bars represent the 

complete RMSE. Any performance registering a deviance of more than two standard 

deviations is treated as an outlier and removed.  

 

Table 5.2: Parameter grid search. 

Parameter Values 

Models {Real-ANFIS-SICFIS, 

Complex-ANFIS-SICFIS} 

Optimization Method {Complete, Consequents, Alternate} 

Number of rules {2,3,4} 

Number of membership functions per feature (SICFIS) {2,3,4,5} 

Fuzzy partition coefficient values {1.1,1.35,1.85,2.10} 

Number of k-fold cross validation per model 5 

Maximum number of epochs 50 

Training-Checking-Testing partition  [65-18-17] 
 

 

No correlation between the fuzzy partition coefficients, this may be very well 

explained from the graphs in Figure 5.1 as there is not a major change in the partition 

coefficient of the rules base for values of m between 1 and 2. 

 

It is shown in the graphs below that the worse performing optimization strategy is 

the alternate parameter optimization process. With just a minor difference between the 

complete and the consequent optimization results. The complex ANFIS-SICFIS models 

yielded better results for the local models. In Figure 5.6 the training times for each of 

the optimization strategies is shown. It can be observed that the slowest algorithm is 

the complete parameter optimization process as it’s training time grows exponentially 

with the addition of rules and membership functions.  
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Figure 5.4: Real and Complex ANFIS-SICFIS global performance for the three 

optimization process given 2,3 and 4 rules. Stacked bar chart. 

 

 

 

Figure 5.5: Real and Complex ANFIS-SICFIS local performance for the three 

optimization process given 2,3 and 4 rules. Stacked bar chart. 
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Figure 5.6 Training times for the complex-ANFIS-SICFIS model utilizing the alternate, 

consequent and complete parameter optimization method with a varying number of 

rules and membership functions (mF). Overlapping bar chart. 

 

The fastest and worse performing optimization process is the alternate optimization 

algorithm. Therefore, the consequences optimization algorithm offers the best trade-off 

between Local-Global performance and training times.  

 

It is concluded that the best results are obtained utilizing the complex-ANFIS-

SICFIS model, and the consequent optimization process. Therefore in the following 

section and simulations it is the model selected to obtain the results. 

 

5.3.1 Charpy Impact Test Results 

 

A parameter grid search was performed on the Charpy impact test in the previous 

section to determine the performance of the two different ANFIS-SICFIS models and 

various optimization methods. A more detailed analysis based on the previous results 
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obtained is performed, the details of the new grid search are shown in Table 5.3, the 

training, checking and testing partition remains 65-18-17 respectively. 

 

Table 5.3: Parameter grid search for the Charpy impact test. 

Parameter Values 

Models {Complex-ANFIS-SICFIS} 

Optimization Method {Consequents} 

Number of rules {2,3,4,5,6} 

Number of membership functions per feature (SICFIS) {2,3,4} 

Fuzzy partition coefficient values {1.2,1.8} 

Number of k-fold cross validation per model 5 

Maximum number of epochs 70 
 

 

The mean results and the corresponding standard deviation given a number of rules 

are shown in Table 5.4 and Table 5.5 respectively. The mean RMSE for the training 

decreases with the addition of rules, while the checking and testing mean RMSE 

increases. The effect is greater for the local performance. The sharp increase in the 

standard deviation and mean RMSE given 6 rules indicates overfitting.  

 

Table 5.4: Charpy Mean RMSE results given different number of rules. 

 Training Checking Testing All 

No. Rules Global Local Global Local Global Local Global Local 

2 15.78 15.81 19.21 19.32 19.93 19.94 17.22 17.27 

3 15.19 15.37 18.83 19.21 19.19 19.46 16.67 16.90 

4 14.68 16.19 20.13 21.44 20.32 21.39 16.87 18.24 

5 14.53 15.43 19.69 20.62 19.98 20.97 16.62 17.54 

6 14.58 20.02 19.29 24.15 19.27 24.41 16.42 21.68 
 

 

Table 5.5: Charpy Standard deviation results given different number of rules. 

 Training Checking Testing All 

No. Rules Global Local Global Local Global Local Global Local 

2 0.947 0.976 1.421 1.377 1.303 1.317 0.650 0.674 

3 1.268 1.100 1.385 1.386 1.419 1.530 0.604 0.479 

4 0.946 1.645 1.755 2.191 1.771 2.260 0.478 1.378 

5 1.341 1.396 1.799 1.890 1.584 1.925 0.893 1.071 

6 1.100 10.738 1.398 9.815 1.430 9.907 0.658 10.288 
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Similar results are observed in Figure 5.7, where the addition of membership 

function results in a decreasing RMSE for the training partition and an increasing 

RMSE for the testing partition.  

 

 

 

Figure 5.7: effect of membership functions to performance. 

 

 

The best results given different number of rules are shown in Table 5.6, with the 

corresponding number of membership function per feature. For comparison purposes 

the results obtained from different studies utilizing ANN are shown in Table 5.7. The 

first one is an Ensemble-NN [129], the second one is an ANN model whose 

hyperparameters are selected with a GA [129], the third one is an GA-NN Ensemble 

[129], which optimize the hyperparameters as well as the ensemble structure. The best 

out-of-sample RMSE was obtained with a 2-rule complex-ANFIS-SICFIS model with 

4 membership functions per feature. The regression plots of the global and local models 

are shown in Figure 5.8 and Figure 5.9 respectively. 
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Table 5.6: Charpy Best results given different number of rules. 

  Training Checking Testing All 

No. Rules No. mF Global Local Global Local Global Local Global Local 

2 4 14.58 14.59 17.44 17.47 18.01 17.92 15.73 15.75 

3 4 12.76 13.39 19.75 20.37 18.36 19.08 15.28 15.91 

4 4 13.12 13.67 18.07 18.27 21.67 22.07 15.83 16.27 

5 4 11.94 12.30 21.07 22.00 18.06 18.20 15.10 15.55 

6 3 11.49 12.89 19.77 19.74 19.50 20.82 14.86 15.87 
*mF: Membership function 

 

 

 

Figure 5.8: Charpy Impact complex ANFIS-SICFIS global performance 2 rules. 
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Figure 5.9: Charpy Impact complex ANFIS-SICFIS local performance 2 rules. 

 

Table 5.7: Charpy results comparison. 

Model Training Checking Testing All 

Ensemble-NN[129], 12.60 17.30 19.4 14.79 

GA-NN Optimized [129] 14.32 17.94 18.96 15.92 

GA-NN Ensemble[129]   13.12 17.25 18.13 14.90 

Normalized-SICFIS 6mF 15.41 19.45 17.98 16.66 

Fast-SICFIS 5mF 15.38 19.63 18.52 16.77 
*mF: Membership function 
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5.3.2 Tensile Strength Results 

 

The same parameter grid search shown in Table 5.3 is implemented to the UTS 

dataset, with a training-checking partition of 70-30 respectively and 12 data points for 

the validation. The mean results and the corresponding standard deviation given a 

number of rules are shown in Table 5.8 and Table 5.9 respectively. The mean RMSE 

for the training decreases with the addition of rules, while the checking and testing 

mean RMSE increases slightly. However, no major differences are observed between 

the global and local performances for the training and checking partitions with the 

addition of rules. An increase in the mean RMSE is observed for the validation 

partition.  

 

Just as in the case with the Charpy Impact test, in Figure 5.10,  is observed that the 

addition of membership function results in a decreasing RMSE for the training partition 

and an increasing RMSE for the testing partition.  

 

Table 5.8: UTS mean of results given different number of rules. 

 Training Checking Testing All 

No. Rules Global Local Global Local Global Local Global Local 

2 32.99 34.00 40.32 41.38 52.90 53.72 35.45 36.47 

3 32.20 34.38 42.71 44.73 57.14 57.90 35.81 37.91 

4 31.37 33.80 41.98 44.82 70.80 74.29 35.10 37.67 

5 29.25 31.95 41.29 43.24 60.46 60.40 33.49 35.85 

6 29.56 32.81 41.08 44.09 62.07 63.50 33.61 36.72 
 

 

 

 

Table 5.9: UTS standard deviation of results given different number of rules. 

 Training Checking Testing All 

No. Rules Global Local Global Local Global Local Global Local 

2 1.66 1.83 3.01 3.19 10.15 11.35 1.67 1.95 

3 2.22 2.18 4.00 4.61 12.14 11.78 2.41 2.58 

4 1.52 2.12 3.62 3.95 9.67 11.43 1.71 2.13 

5 1.67 1.56 3.50 3.78 10.03 9.64 1.80 2.02 

6 1.97 2.56 2.61 3.33 12.48 12.11 1.37 2.28 
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Figure 5.10: Effect of membership functions to performance 

 

The best results given a number of rules are shown in Table 5.10. For comparison 

purposes the results obtained from different studies are shown in Table 5.11 as well as 

the results obtained in Chapter 4. The best out-of-sample RMSE was obtained with a 

5-rule complex-ANFIS-SICFIS model with 3 membership functions per feature. The 

regression plots of the global and local models are shown in Figure 5.11 and Figure 

5.12 respectively. 

Table 5.10: UTS Best results given different number of rules. 

  Training Checking Testing All 

No. Rules mF* Global Local Global Local Global Local Global Local 

2 2 32.36 33.35 35.48 37.23 33.25 32.25 33.32 34.55 

3 4 30.59 33.24 44.24 45.76 34.28 42.79 35.24 37.45 

4 4 31.49 35.01 37.12 43.22 45.71 48.82 33.33 37.70 

5 3 27.84 29.91 33.20 35.66 43.94 44.33 29.61 31.79 

6 4 27.25 33.35 38.10 45.89 59.38 55.61 31.04 37.63 
*mF: Membership function 

 

Table 5.11: UTS result comparisons 

Model Training Testing Validation 

IT2-Squared [40] 34.45 38.76 37.34 

MOIT2FM [118] 36.33 40.52 34.77 

IMOFM-M [118] 46.47 45.52 49.87 

Normalized-SICFIS 4mF 35.64 36.25 55.05 

Fast-SICFIS 4mF 33.69 39.26 52.3 
*mF: Membership function 
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Figure 5.11: UTS complex ANFIS-SICFIS global performance 5 rules. 
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Figure 5.12: UTS complex ANFIS-SICFIS local performance 5 rules. 

 

5.3.3 Bladder Cancer Results 

 

A smaller parameter grid search is performed on the Bladder Cancer dataset, shown 

in Table 5.12 with a 70-30 partition for training and testing respectively. The mean and 

standard deviation RMSE results obtained from the parameter grid search given a 

number of rules is shown in Table 5.13 and Table 5.14 respectively. A decrease in 
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performance for the testing partition is observed with the addition of rules with just a 

slight increase in the training partition performance.  

 

The best results obtained given a number of rules are shown in Table 5.15. The 

corresponding ROC curves and score scatter plots obtained from the best performing 

models are shown in Figure 5.13, Figure 5.14 and Figure 5.15. It is evident from the 

Table 5.13 and Table 5.15 that the ANFIS-SICFIS model overfits the bladder cancer 

dataset. For comparison purposes Table 5.16 shows the results obtained in previous 

studies as well as the results obtained in Chapter 4.  

 

Table 5.12: Parameter grid search for the Bladder Cancer dataset. 

Parameter Values 

Models {Complex-ANFIS-SICFIS} 

Optimization Method {Consequents} 

Number of rules {2,3,4,5} 

Number of membership functions per feature (SICFIS) {2,3,4} 

Fuzzy partition coefficient values {1.2,1.8} 

Number of k-fold cross validation per model 5 

Maximum number of epochs 70 
 

 

Table 5.13: Bladder Cancer Mean results. 

 Training Testing All 

No. Rules Global Local Global Local Global Local 

2 0.9086 0.8980 0.8699 0.8600 0.8954 0.8850 

3 0.9168 0.8889 0.8703 0.8529 0.9009 0.8765 

4 0.9182 0.8440 0.8723 0.7977 0.9025 0.8281 

5 0.9184 0.8896 0.8693 0.8436 0.9016 0.8739 
 

 

Table 5.14: Bladder Cancer standard deviation results. 

 Training Testing All 

No. Rules Global Local Global Local Global Local 

2 0.0063 0.0105 0.0102 0.0104 0.0034 0.0073 

3 0.0064 0.0142 0.0121 0.0140 0.0034 0.0098 

4 0.0073 0.0777 0.0115 0.0773 0.0046 0.0770 

5 0.0076 0.0234 0.0134 0.0187 0.0029 0.0195 
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Table 5.15: Bladder Cancer best results given a number of rules and membership 

functions. 

  Training Testing All 

No. Rules No. mF* Global Local Global Local Global Local 

2 2 0.9122 0.9034 0.8886 0.8734 0.9040 0.8928 

3 3 0.9138 0.8658 0.8935 0.8667 0.9069 0.8665 

4 3 0.9086 0.8481 0.8994 0.8397 0.9055 0.8453 

5 3 0.9144 0.8441 0.8915 0.8041 0.9065 0.8292 
*mF: membership function 

 

Table 5.16 Bladder Cancer Results Comparison. 

Model Training Testing 

Cox [39] 0.83 0.82 

LoR [39] 0.76 0.74 

ANN [39] 0.88 0.84 

T1 FIS [39] 0.88 0.83 

T2 FIS [39] 0.92 0.91 

Norm-SICFIS 4mF* 0.906 0.8852 

Fast-SICFIS 4mF* 0.9015 0.8998 
*mF: membership function 

 

 
(a) 

 
(b) 

Figure 5.13: Bladder cancer ROC curves for the global (a) and local performance (b). 
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Figure 5.14: Bladder Cancer Global Scores. 

 

 

Figure 5.15: Bladder Cancer Local Scores. 
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5.3.4 Superconductivity Results 

 

A summary of the results obtained from the superconductivity data set are shown in 

Table 5.17 Table 5.18 and. The best results obtained given a number of rules and 

membership functions is shown in Table 5.19. A result comparison is shown in Table 

5.20.  

 

Table 5.17: Superconductivity mean of results given different number of rules. 

 Training Checking Testing All 

No. Rules Global Local Global Local Global Local Global Local 

2 – 2mF 12.60 12.66 13.82 13.87 13.39 13.42 12.97 13.02 

2 – 3mF 12.23 12.28 13.44 13.50 13.09 13.11 12.61 12.65 

3 – 2mF 13.00 13.18 13.91 14.04 13.61 13.67 13.27 13.42 
 

 

Table 5.18: Superconductivity standard deviation of results given different number 

of rules. 

 Training Checking Testing All 

No. Rules Global Local Global Local Global Local Global Local 

2 – 2mF 0.74 0.76 0.15 0.16 0.47 0.49 0.56 0.58 

2 – 3mF 0.45 0.46 0.30 0.32 0.27 0.29 0.36 0.38 

3 – 2mF 0.33 0.18 0.17 0.10 0.14 0.09 0.26 0.13 
 

 

Table 5.19: Superconductivity best results given different number of rules. 

 Training Checking Testing All 

No. Rules Global Local Global Local Global Local Global Local 

2 – 2mF 11.97 12.00 13.68 13.71 12.97 12.97 12.46 12.49 

2 – 3mF 11.95 11.98 13.13 13.16 12.70 12.70 12.30 12.32 

3 – 2mF 12.65 12.93 13.72 13.90 13.54 13.64 13.00 13.23 
 

 

Table 5.20: Superconductivity Results Comparison. 

Model Training Checking Testing All 

Linear Regression [109] NA NA 17.6 NA 

XG-Boost [109] NA NA 9.4 NA 

ANFIS 8 Rules 13.37 16.27 16.08 14.42 

ANN 10 hidden layers 13.42 13.50 14.23 13.58 

ANN 20 hidden layers 12.54 13.39 12.93 12.76 

Normalized-SICFIS 4mF 13.45 14.25 14.46 13.77 

Fast-SICFIS 4mF 13.19 14.05 14.65 13.61 
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5.4 Summary 

 

This work presented an improvement of the traditional ANFIS model, whose linear 

consequences are replaced with the SICFIS model, a non-linear and highly interpretable 

model. The compactness, interpretability properties and low computation required to 

train local SICFIS allows to create accurate rule-base system with a considerable low 

number of rules.  

 

Two different modelling strategies where presented as well as three different 

optimization processes. From the exhaustive grid search it was determined that the best 

performances where obtained when the complex information from the local SICFIS 

was transmitted through the rules. Together with better performances, the ability to 

obtain an additional degree of information made the complex-ANFIS-SICFIS the clear 

choice for future work.  

 

From the optimization strategies presented it was determined that optimizing solely 

the consequents would return the best performance, especially for local performance 

evaluation, additionally this strategy would reduce considerably the training times for 

larger datasets. The design of optimization algorithms that modify the premises of the 

rule-base while maintaining in consideration it’s interpretability would require 

modifications to the objective function, it has been proposed the application of 

evolutionary algorithms in the optimization process in order to maintain interpretability 

of the rule-base premises [93], [95], [130], [131]. It is important to consider that 

evolutionary algorithms and other global optimization require to evaluate a large 

number of models which increasing exponentially computation times. It is therefore 

concluded that the premises of the rule-base should remain unchanged during the 

optimization processes.  
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The ANFIS-SICFIS was tested in four different datasets. The results obtained from 

the Charpy impact test are comparable with large and complex ANN models, this 

performance was obtained with just two rules. The results from the UTS dataset are the 

best obtained so far in the literature. The results from the Cancer dataset 

underperformed and overfitted the data, this may be caused by the large number of 

categorical features in the dataset and the application of a least square optimization 

algorithm instead of performing a survival analysis which is out of the scope of this 

work. Results obtained from the superconductivity dataset are superior to most 

modelling strategies.   
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Chapter 6  

Mamdani Single Input Complex Fuzzy Inference 

System 

 

6.1 Introduction 

 

The consequence of the SICFIS proposed in Chapter 4 was defined as a complex 

singleton membership function. The disadvantage of utilizing a singleton membership 

function is the loss of vagueness and linguistic meaning a typical gaussian membership 

function may provide, as it is the case in Mamdani-FIS. Therefore, a Mamdani-SICFIS 

model, where the fuzzy complex singleton membership function is replaced with a 

complex Gaussian in order to better model uncertainties and increase interpretability is 

proposed. 

 

According to Ramot et al [8], [55]. the magnitude of a CFS represents a traditional 

type-1 fuzzy set while the phase is a non-fuzzy quantity that defines the “context”. The 

CF membership function represents a trajectory in 3 dimensions, in contrast with the 

type 2 fuzzy set which represent a surface [132], the reason for this representation is 

that while a type-2 fuzzy set includes an additional degree of uncertainty, the CFS 

includes an additional non-fuzzy degree of information defined as the “context”. 

 

Complex membership functions have been proposed previously [57]. The complex 

Gaussian membership functions proposed to date [74], [75] do not represent a trajectory 

in 3 dimensions whit a coupled phase and magnitude. The sinusoidal membership 

function proposed by Dick [73] does represents a 3 dimensional trajectory, where both 

the magnitude and the phase are coupled.  

 



Chapter 6 

Mamdani Single Input Complex Fuzzy Inference System 

 

 

128 

 

Sinusoidal and Gaussian membership functions are utilized for different purposes, 

while the sinusoidal membership function is utilized to model semi-periodic behaviour, 

Gaussian represent a region of space at a particular time [57]. The proposed complex 

Gaussian membership function is therefore the first linguistic membership function 

based on the CFS and CFL developed by Ramot et al. [8], [55].  

 

6.2 Development of a Complex Gaussian Membership Function 

 

The complex membership function should respect the following:  

 

1) The magnitude represents a type-1 fuzzy membership function, the phase is a non-

fuzzy quantity that represents the “context”. 

2) A complex membership function in 3 dimensions should represent a trajectory, 

not a surface.  

3) A complex membership function should be equivalent to a traditional type-1 

membership function when all the phases are equal to zero.  

4) The defuzzification results in crisp complex number, with a magnitude and a 

phase. 

5) Given points (3) and (4); when all the phases in a system are equal, that is when 

no interference occurs, the resultant magnitude should be equivalent to a traditional 

type-1 system. Given that an ordering does not exists in complex numbers, the phase 

should be taken into consideration together with a frame of reference.  

    

In order to differentiate between real valued membership functions and complex 

membership function the symbol   will be used for the former and   for the latter. The 

complex membership function will be defined as follows: 

 

 
( )

( ) Sj x

S Sx r e
 =   (6.1) 
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where r represents the magnitude and   the phase. The complex membership 

functions described in the following section maps real-valued inputs to the complex 

domain, → . 

 

6.2.1 Type-1 Membership Function Equations: Singleton and Gaussian 

Membership Functions 

 

For the development of a complex fuzzy gaussian membership function it is 

necessary to first present the equations for a traditional type-1 singleton and Gaussian 

membership functions. The singleton membership function has a membership value of 

1 when a variable x is equal to the singleton position b, and 0 otherwise. The Gaussian 

membership function is a normal convex function which has a value of 1 when a 

variable k is at the center of the gaussian membership function, defined as b in this 

example, the value decreases as the distance between k and b increases. In two 

dimensions the x-axis represents the value of the variable k. The position of the 

singleton membership function and the center of the Gaussian membership function are 

represented by the same variable b. 

 

Singleton membership function: 

 

 
Singleton Singleton

1,
( )

0,

if k b
y k

if k b


=
= = 


  (6.2) 

 

Gaussian membership function: 

 

 
( )

2

Gaussian Gaussian 1
( ) exp

2

k b
y k



 − 
 = = −  
   

  (6.3) 
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Figure 6.1 shows the two-dimensional view of a gaussian membership function and 

singleton membership function, both functions centres are equal to 0.5 and the spread 

  of the Gaussian membership function is equal to 0.2. 

 

 

Figure 6.1: Two-dimension view of a Gaussian and singleton membership function, 

center b=0.5 and  =0.2. 

 

6.2.2 Complex Singleton Membership Function 

 

In the case of a complex fuzzy singleton membership function in 3-dimensions the 

x, and y axis represents the real and the imaginary plane respectively, while the z axis 

represents the membership value, which would be equal to the magnitude of the 

complex membership function. Therefore, taking a real-valued input k the magnitude 

and the phase of the complex singleton membership function is as follows: 

 

 
Re Im1 cos( ) and sin( )

( )
0 otherwise

if k k
z k

   


 =  =
= = 


  (6.4) 

 

 arg( ( ))k =   (6.5) 
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where z represents the magnitude of the fuzzified variable.   represents the phase 

of the membership function, 
Re  and 

Im represent the real and the imaginary 

coordinates of the singleton location and are calculated as follows: 

 

 
Re cos( )b =    (6.6) 

 
Im sin( )b j =    (6.7) 

 

It should be noted that the magnitude of the complex singleton membership function 

is equivalent to a type-1 singleton membership function with the addition of the context 

represented by the phase variable  . This is in accordance with points 1 and 3, and the 

complex singleton membership function can be tough as a traditional type-1 singleton 

membership function whose centers rotates according to the value of the context 

variable  . An example of a singleton membership function located at 0.5 =  and 

45 =   is shown in Figure 6.2. The dotted lines represent the slope where the trajectory 

of k travels as well as the location of 
Re  and 

Im for visual reference.  

 

 

Figure 6.2: Three-dimension view of a singleton membership function, center   =0.5 

and a pahse 45 =    
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6.2.3 Complex Gaussian Membership Function 

 

Just as in the case of the complex singleton membership function, in 3-dimensions 

the complex Gaussian membership function should represent a traditional type-1 

Gaussian membership function whose trajectory is rotated by  degrees. The parametric 

equations in 3-dimensions of the complex Gaussian membership function for the x, y 

and z axis are as follows: 

 

 *cos( )x k =   (6.8) 

 *sin( )y k =   (6.9) 

 

2

( , )1
( ) exp

2

x y
z k






  − 
 = = −  
   

  (6.10) 

 arg( , )x y =   (6.11) 

 

where x and y represent the real and the imaginary values, because the phase is 

constant, the values should move in a straight line, and the slope represent the phase  

. The z axis represents the magnitude of the CFS, which represents a traditional type-1 

fuzzy set and its shape should then be of a type-1 gaussian membership function. An 

example of a complex-Gaussian membership function is shown in Figure 6.3. 

 

During the rule interference process, it is necessary to aggregate the real and 

imaginary parts respectively. In the case of the complex Gaussian membership function, 

it is necessary to separate the real and imaginary components of the complex Gaussian 

membership function to assign the proportional degree of membership. This can be 

accomplished by multiplying the Gaussian membership function by the absolute value 

of a sine and cosine function. The absolute value is utilized given that the membership 

value needs to remain positive. The real and imaginary components of a complex 
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Gaussian membership function are shown in Figure 6.4. The complex Gaussian 

membership function is as follows: 

  

2 2

( , ) ( , )1 1
( ) exp cos( ) exp sin( )

2 2

x y x y
k j

 
  

 

    −   − 
   = − + −   
         

      (6.12) 

 

where ( , )x y −  represents the distance from the origin to the centre of the 

membership function,   is the spread and   is the angle of the complex Gaussian 

membership function. 

 

The proposed complex Gaussian membership increases the interpretability of the 

system given its proximity to human natural languages. While the complex Singleton 

membership function allows to represent linguistic variables with context, the complex 

Gaussian membership function adds the vagueness characteristic of human speech. The 

oven example shown in Section 2.1 demonstrates how a normal membership function 

is better suited for representing information in an intuitive manner, something that 

cannot be fully achieved with a complex Singleton membership function.   

 

By adding context to a complex Gaussian membership function, it is possible to 

increase the information representation in the system. As an example, an Oven might 

be considered “Hot” at a certain temperature, given other circumstances such 

temperature might not be considered “Hot” at all. The context is expressed as 

interference, and depends on the angle   of the complex membership function.  
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Figure 6.3: Three-dimension view of a complex Gaussian membership function, center 

  =0.5, spread    =0.2 and phase 45 =   . 

 

 

Figure 6.4: Three-dimension view of a complex Gaussian membership function and the 

corresponding real and imaginary projection. Center   =0.5, spread    =0.2 and phase 

45 =  .  

 

6.2.4 Interference and Defuzzification 

 

The interference and defuzzification operation are relatively straight forward. The 

complex gaussian membership function is represented by its real and imaginary part, 

each is aggregated respectably, creating an interference. The obtained crisp value is a 
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complex quantity, and the measured output is the magnitude, while the phase is used 

for additional information. The COG de-fuzzification is as follows: 

 

 

Re

Re 1 1

Re

1 1

( )

( )

D R

r d d

d r

D R

r d

d r

k x

h

k




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
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  (6.13) 

 

Im

Im 1 1

Re

1 1

( )
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D R

r d d

d r

D R

r d

d r

k y

h

k





= =

= =



=



  (6.14) 

 ( ) ( )
2 2

Re Im( )if x h h= +   (6.15) 

 

As explained in the previous section, the real and the imaginary parts of the complex 

gaussian membership function corresponds to the projections to their respective axis. 

The particle moves at k intervals in the space, at a rate of cos( )k   in the x-axis and 

sin( )k   in the y-axis as shown in Figure 6.5. The equations (6.12)-(6.15) comply with 

the objectives formulated at the beginning of this Chapter. 

 

6.2.4.1 Defuzzification and Equivalence to Type-1 System 

 

One of the essential requirements for the proposed complex gaussian membership 

function is the equivalence to a type-1 membership function when all the phases are 

equal to zero. Additionally, the proposed membership function is equivalent to a type-

1 system when all the phases in a system are equal, the magnitude of the defuzzied 

value should remain constant as there is no interference, below is an example of the 

defuzzification of two complex gaussian membership function and the defuzzification 

of two type-1 gaussian membership functions. Table 6.1 shows the parameters of both 

the complex and the type-1 Gaussian membership functions. The graphical 
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representation of the defuzzification are shown in Figure 6.6 and Figure 6.7 for the 

type-1 and the complex membership function respectively.  

 

Both the magnitude of the complex defuzzified value and the absolute value of the 

type-1 defuzzification are the same. Complex numbers are not ordered; therefore the 

resultant number has an phase of 240° and the type-1 quantity has a negative sign.   

  

 

Figure 6.5: Three-dimension view of a Gaussian membership function. Center   =0.5, 

spread    =0.2 and phase 135 = . 

 

Table 6.1 Complex and type-1 defuzzification 

 Complex Gaussian Type -1 Gaussian 

Sigma [0.2],[0.3] [0.2],[0.3] 

Centre [0.7],[0.1] [-0.7],[0.1] 

Angle(degrees) [240],[60] NA 

Defuzzified value 0.220, 240° -0.220 
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Figure 6.6: Type-1 COG defuzzification Sigma=[0.2,0.3], centres =[-0.7,0.1]. 

 

 

 

Figure 6.7: complex defuzzification Sigma:[0.2,0.3], centres:[0.7,0.1], angles = 

[240,60]. 

 

6.3 The Mamdani-Single Input Complex Fuzzy Inference System Model 

 

The Mamdani-SICFIS just as the SICFIS is a single rule per feature partition rule-

base FIS, each rule has one premise and one consequent, the premises are composed of 
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type-1 Gaussian membership functions and the consequents are composed of complex 

Gaussian membership function defined in (6.12).  

 

Table 6.2: Mamdani SICFIS rule-base 

Premise  Consequence 

1 1

1 1 1IF x is A THEN y is=   

2 2

1 1 1IF x is A THEN y is=   

1 1

2 2 2IF x is A THEN y is=   

2 2

2 2 2IF x is A THEN y is=   

  

pP
SS

P P PIF x is A THEN y is=   
 

 

 

Figure 6.8 Mamdani-SICFIS architecture. 

 

The Mamdani SICFIS can be described as a 6 layered FIS, the first layer fuzzifies 

the input utilizing a type-1 Gaussian membership function as follows: 

 

 

2

,1

, ,

,

1
( ) exp

2

p

p p

p

p p s

p s p s p

p s

x c
O x








  −
  = = −

  
  

  (6.16) 
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The second layer calculates the consequents of the rules utilizing the complex 

gaussian membership function, the real and imaginary components of the complex 

gaussian membership function are as follows: 
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,2,Re Re
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1
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  (6.17) 
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2
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1
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p p p

p

j p s
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
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  −  = = −  
   

  (6.18) 

 

The third layer aggregates the real and imaginary components of the complex 

Gaussian membership function respectively.  

 

 3,Re Re
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1
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S
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 3,Im Im

, ,

1
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p

p p

p

S

p p s p p s

s

O x 
=

=    (6.20) 

 

The fourth layer performs the defuzzification operation: 
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  (6.22) 
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The fifth layer performs the rule interference layer is the output of the system as 

follows: 

 
5,Re Re 4,Re

1

P

p

p

O h O
=

= =   (6.23) 

 
5,Im Im 4,Im

1

P

p

p

O h O
=

= =   (6.24) 

 

The sixth layer calculates the final output as follows: 

 

 ( ) ( )
2 2

Re Im( )f h h= +x   (6.25) 

 

6.3.1 Optimization 

  

The optimization algorithm is the LM and the derivative equations are as follows: 

 

 
Re Im
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The application of such optimization algorithm presents several challenges, given 

the computation of the defuzzification operation. The LM optimization requires the 

calculation of a pseudoinverse matrix. Additionally, if parallel computation is 

implemented, the size of the matrix increases exponentially, therefore increasing the 

computational complexity of the pseudoinverse matrix calculation. 

 

6.4 Results 

 

6.4.1 Charpy Impact Test 

 

For the Charpy impact dataset the parameter grid is shown in Table 6.3. The RMSE 

index is used to measure the performance of the models. A summary of the results of 

models is shown in Table 6.4. The best results given a number of membership functions 

are shown in Table 6.5. The regression plot of the best performing model is shown in 

Figure 6.9 

 

Table 6.3: Charpy impact Mamdani-SICFIS parameter grid. 

Parameter Values 

Model Mamdani-SICFIS 

Optimization Method LM 

Number of membership functions per feature {2,3,4,5,6} 

Initial LM coefficient 20 

Number of k-fold cross validation per model 5 

Maximum number of epochs 90 

Training-Checking-Testing partitions  [65-18-17] 
 

 

Table 6.4: Charpy Impact Mamdani-SICFIS Results Summary. 

No. mF Training Checking Testing All 

 Mean SD Mean SD Mean SD Mean SD 

2mF 18.45 0.77 19.33 0.53 21.71 0.78 19.20 0.67 

3mF 17.57 1.53 21.22 2.12 21.61 1.68 19.02 1.49 

4mF 17.61 1.65 21.84 1.73 22.66 1.87 19.40 0.95 

5mF 16.17 0.31 19.43 1.81 19.23 1.32 17.36 0.19 

6mF 15.78 0.75 21.18 0.83 22.40 1.70 18.11 0.76 
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Figure 6.9: Charpy Mamdani-SICFIS 5 membership Functions (mF) regression plots. 

 

 

Table 6.5: Charpy Impact Mamdani-SICFIS Best Results. 

No. mF Training Checking Testing All 

2mF 17.75 19.42 20.91 18.63 

3mF 17.00 21.65 19.33 18.32 

4mF 18.83 22.63 20.54 19.86 

5mF 16.66 18.89 18.03 17.32 

6mF 15.68 20.10 21.14 17.56 
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6.4.2 Tensile Strength 

 

For the UTS dataset the parameter grid is shown in Table 6.6 the RMSE is used to 

measure the performance of the model. A summary of the results of models are shown 

in Table 6.7. The best results given a number of membership functions are shown in 

Table 6.8. The regression plots of the best performing model are shown in Figure 6.10. 

 

Table 6.6: UTS Mamdani-SICFIS parameter grid. 

Parameter Values 

Model Mamdani-SICFIS 

Optimization Method LM 

Number of membership functions per feature {2,3,4,5,6} 

Initial LM coefficient 20 

Number of k-fold cross validation per model 5 

Maximum number of epochs 90 

Training-Checking-Testing partitions  [65-18-17] 
 

 

Table 6.7: UTS Mamdani-SICFIS results summary. 

No. mF Training Checking Validation All 

 Mean SD Mean SD Mean SD Mean SD 

2mF 45.07 4.47 46.44 4.05 78.51 5.06 45.63 4.33 

3mF 42.45 3.89 46.76 5.33 68.97 12.24 43.90 4.35 

4mF 36.90 0.68 40.79 1.51 63.36 3.01 38.22 0.46 

5mF 39.97 1.95 47.58 6.01 63.32 4.89 42.55 2.45 

6mF 45.92 7.41 52.33 6.28 76.46 18.10 48.06 7.06 
 

 

Table 6.8: UTS Mamdani-SICFIS best results. 

No. mF Training Checking Testing All 

2mF 40.70 42.54 73.35 41.40 

3mF 37.97 40.40 58.04 38.79 

4mF 37.06 38.89 62.78 37.72 

5mF 38.32 41.44 66.87 39.40 

6mF 37.54 44.96 69.62 40.04 
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Figure 6.10: UTS Mamdani-SICFIS 4 membership Functions regression plots. 

 

6.4.3 Bladder Cancer 

 

For the Bladder Cancer dataset, the parameter grid is shown in Table 6.9 the RMSE 

is used to measure the performance of the models during training. A summary of the 

results of models measured utilizing the AUC are shown in Table 6.10. The best results 

given a number of membership functions are shown in Table 6.11. The ROC curves of 

the best performing model is shown in Figure 6.11 and the scatter plot of the scores is 

shown in Figure 6.12 
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Table 6.9: Bladder Cancer Mamdani-SICFIS parameter grid. 

Parameter Values 

Model Mamdani-SICFIS 

Optimization Method LM 

Number of membership functions per feature {2,3,4} 

Initial LM coefficient 20 

Number of k-fold cross validation per model 5 

Maximum number of epochs 90 

Training-Checking-Testing partitions  [65-18-17] 
 

 

Table 6.10: Bladder Cancer Mamdani-SICFIS results summary. 

No. mF Training Testing All 

 Mean SD Mean SD Mean SD 

2mF 0.9022 0.0046 0.8753 0.0069 0.8941 0.0026 

3mF 0.8772 0.0186 0.8483 0.0171 0.8684 0.0176 

4mF 0.8914 0.0106 0.8815 0.0168 0.8886 0.0077 
 

 

Table 6.11: Bladder Cancer Mamdani-SICFIS best results. 

No. mF Training Testing All 

2mF 0.9075 0.8704 0.8957 

3mF 0.8910 0.8726 0.8855 

4mF 0.9083 0.8604 0.8952 
 

 

 

Figure 6.11: Bladder Cancer Mamdani-SICFIS 2 membership Functions ROC curves. 
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Figure 6.12: Bladder Cancer Mamdani-SICFIS 2 membership Functions Scores. 

 

6.4.4 Superconductivity Results 

 

The superconductivity results are shown in Table 6.12. The data partition is 65-18-

17 for training, checking and testing respectively.  

 

Table 6.12: Superconductivity results. 

 Training Checking Testing All 

Mamdani 2mF 16.93 17.33 16.97 17.01 

Mamdani 3mF 16.74 17.04 16.55 16.76 
 

 

 

6.5 Charpy Impact Magnitude-Phase Plots Comparison Between SICFIS 

Models 

 

In order to perform some comparison between the Mamdani, normalized and fast 

SICFIS models beyond the prediction accuracy, the magnitude and phase plots of the 
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output of three features, carbon, tempering temperature and impact temperature are 

shown in Figure 6.13, Figure 6.14 and Figure 6.15 respectively, each feature is 

partitioned by 5 membership functions. 

 

Table 6.13: Charpy impact normalized, fast and Mamdani-SICFIS best results given 5 

membership functions (mF). 

 Training Checking Testing All 

Normalized 5mF 15.23 21.12 19.75 17.25 

Fast 5mF 15.38 19.63 18.52 16.77 

Mamdani 5mF 16.66 18.89 18.03 17.32 
 

 

On the one hand the sharp changes shown in Figure 6.15 may result in overfitting, 

on the other hand the small changes shown in Figure 6.13 may result in an 

underperforming model. From Table 6.13 it can be observed that the Mamdani SICFIS 

model obtained the best out-of-sample RMSE in comparison with the normalized and 

fast SICFIS models. Therefore, it may be concluded that the Mamdani-SICFIS model 

may model uncertainties more appropriately in the Charpy impact test dataset than the 

normalized and fast SICFIS models. 

 

 

Figure 6.13: Magnitude-Phase plots for the Mamdani-SICFIS model for Carbon, 

Tempering Temperature (T.Temp) and Impact Temperature (Imp. Temp). 
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Figure 6.14: Magnitude-Phase plots for the Normalized-SICFIS model for Carbon, 

Tempering Temperature (T.Temp) and Impact Temperature (Imp. Temp). 

 

 

Figure 6.15: Magnitude-Phase plots for the Fast-SICFIS model for Carbon, Tempering 

Temperature (T.Temp) and Impact Temperature (Imp. Temp). 

 

6.6 Summary 

 

This chapter presented the development of a linguistic and interpretable complex 

Gaussian membership function following the indications presented in [8], [55], [132]. 

The complex fuzzy Gaussian membership function was implemented to develop 

linguistic complex single input FIS. The system is equivalent to a type-1 single input 

Mamdani FIS when all the phases are equal to zero, furthermore this equivalence extent 
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to cases in which all the phases in the system are aligned, that is, when no interference 

occurs in the system.  

 

The results obtained from the SICFIS -Mamdani model are comparable with other 

FIS systems such as the RBFN and the ANFIS models. The results did not outperform 

the singleton-SICFIS model. These results are consistent with type-1 Mamdani FIS, 

which are known to be less accurate than RBFN and TSK FISs. The reduced accuracy 

can be compensated with an increase in the interpretability of the model.  
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Chapter 7  

Feature Selection Algorithm with Fuzzy Rough Sets 

and the Single Input Complex Fuzzy Inference System 

 

7.1 Introduction 

 

Feature selection algorithms have become increasingly important in machine 

learning and AI given the ever-expanding size of databases created for industrial and 

commercial applications [133]. Feature selection algorithms can be used to create 

smaller datasets composed of the features that have the most impact in the prediction 

accuracy, producing better and more compact models by removing unimportant and 

uncorrelated information. Other advantages of feature selection algorithm are the 

assessment of the impact a feature has in increasing the prediction accuracy of a model. 

 

Assessing the importance of a feature is of importance in fields such as medicine 

and engineering. In medicine for example, it is crucial to identify symptoms for the 

proper diagnosis of diseases [134], [135]. In material engineering it is important to 

identify process and alloys that have the most impact in the material properties in order 

to allocate properly the resources to ensure right first-time production.  

 

Feature selection algorithm can be classified in three major categories. Filter, 

wrappers and embedded methods [136]. Filter methods are used during data pre-

processing. Wrapper methods select a subset of a features based on their impact in the 

prediction accuracy of a model. Embedded methods realize the feature selection process 

within the algorithm and training.  
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The SICFIS model introduced in Chapter 4 presents novel methods for interpreting 

and extracting knowledge. The SICFIS model maps real-valued inputs into the complex 

domain, representing the relationship between input and output variables as 

interferences. The magnitude-phase plots introduced in section 4.4.3 display the 

behaviour of the system given any combination of inputs within a range of operation. 

A filter method utilizing complex-valued statistics and the information extracted from 

the magnitude-phase plots is devised and implemented in four real-world datasets 

utilized in this work.  

 

For comparison purposes a wrapper method utilizing the SICFIS model and a 

filter/wrapper method utilizing fuzzy rough sets are to be implemented in Charpy, TS 

and Bladder cancer datasets previously studied, in order to compare the performance of 

the SICFIS filter. For the superconductivity dataset, a result comparison is presented 

from the results presented in [109]. 

 

7.2 Wrapper Method Utilizing the SICFIS Model 

 

Wrapper methods select a subset of features based on the impact these features have 

on the prediction accuracy. Wrapper methods are “model agnostic” meaning that any 

model can be selected, including simple linear models or more complex machine 

learning models such as ANN. Wrapper methods can be considered “brute force” as it 

requires to compute a large number of models to derive a proper subset of features. 

These methods become intractable as the dimension of the dataset increases, given that 

the number of models needed to evaluate grows exponentially. To reduce the size of 

the grid search, it is possible to implement Greedy search strategies. Greedy search 

strategies can be either forward selection or backward elimination [136]. 

 

In a forward selection algorithm, the algorithm begins by selecting each of the 

feature of the sets of available features. The performance of each feature is assessed 
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and compared, the best performing feature is added to a subset of features, once added 

to this subset, it will be part of the remaining iterations of the algorithm. This process 

is repeated until an end condition is met, such as an optimal number of features are 

selected, or no features are left to be tested, the forward selection algorithm is shown in 

Algorithm 7.2. The backward elimination algorithm works opposite, eliminating the 

worst performing feature at each iteration, the backward elimination algorithm is shown 

in Algorithm 7.1. The order in which the features are eliminated or added to the 

algorithm can serve as a measurement of their impact on the prediction [136].   

 

Algorithm 7.1: Backward elimination algorithm. 

Inputs: Set of all possible features 
1 2 1{ , ,..., , }P PFeatures p p p p−=   

Output: Set A composed of subsets of best features at each iteration 

1A Features=   

For 2: 1j P= −     

 For 11: jk A −=   

  
1 \{ }k j kB A a−=   

  Calculate performance ( )kf B   

 End 
 

j kA B Best Performance=  

End 
 

 

Algorithm 7.2: Forward selection algorithm. 

Inputs: Set of all possible features 
1 2 1{ , ,..., , }P PP p p p p−=   

Output: Set A composed of subsets of best features at each iteration 

1A =   

For 2: 1j P= −     

 For 11: jk A −=   

  
1 { }k j kB A a−=   

  Calculate performance ( )kf B   

 End 
 

j kA B Best Performance=  

End 
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In this section, a backward elimination algorithm is to be developed utilizing the 

fast-SICFIS model, given the low computation required to train the fast-SICFIS 

algorithm it is ideal for such brute-force algorithms. 

 

7.2.1 Results Wrapper Method Utilizing Fast-SICFIS Model 

 

The results of the first three real-world datasets are summarized in Table 7.1. The 

order in which features are eliminated is shown in descending order, showing at the last 

row of each column the last remaining feature, which can be considered as the most 

important feature for prediction accuracy. To assess the performance of the feature 

selection algorithm, P-1 models are to be trained and evaluated (P being the number of 

features in a dataset), each with a decreasing number of features according to the results 

obtained and shown in Table 7.1. Ideally, a slight decrease in performance should be 

observed, a sharp decrease in performance would indicate an improper elimination of a 

feature. Results for the Charpy, UTS and Bladder Cancer datasets are shown in Figure 

7.1, Figure 7.2 and Figure 7.3 respectively 

 

Table 7.1: SICFIS Wrapper method for feature selection results. 

 Charpy  UTS  Cancer 

1 Test Depth 1 S 1 CIS Present 

2 Cooling Medium 2 Al 2 Squamous 

3 Al 3 Hardening Temperature 3 Muscle 

4 Mo 4 Mn 4 Cystectomy 

5 V 5 Si 5 Grade 

6 Ni 6 V 6 Sex 

7 S 7 Test Depth 7 Urothelium 

8 Si 8 Site 8 Radiotherapy 

9 Cr 9 Ni 9 Nodes Details 

10 Mn 10 Cooling Medium 10 Vascular 

11 Hardening Temperature 11 Cr 11 SPB 

12 Site 12 Size 12 Age 

13 C 13 C Final Stage 

14 Impact Temperature 14 Mo   

15 Size Final Tempering Temperature   

Final Tempering Temperature     
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Figure 7.1: Charpy Impact Test SICFIS Backward elimination feature selection results. 

 

 

Figure 7.2: UTS SICFIS Backward elimination feature selection results. 
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Figure 7.3: Bladder Cancer SICFIS Backward elimination feature selection results. 

 

The backward elimination algorithm is designed specifically to obtain the best 

results given such evaluation, therefore the wrapper-SICFIS method will serve as a 

benchmark score for the remining models.   

 

7.3 Filter Method Utilizing Fuzzy Rough Sets 

 

Rough sets and fuzzy rough sets can be utilized to measure the dependency between 

features and output variables. The rough set feature dependency is a measure of how 

accurately a set of features can describe the output. An information table filled with 

irrelevant and/or random features would score a low dependency value. The method 

described in this section for feature selection may be classified as a filter/wrapper 

method, given that it is necessary to implement “brute-force” algorithms to measure the 

feature dependency of different combination of features. Methods such as particle 

swarm optimization [46] and a forward selection algorithm [49], [50] have been 
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implemented successfully. As is the case in the previous section, a backward 

elimination greedy search algorithm is to be implemented, utilizing the fuzzy-rough 

feature dependency as a criterion for eliminating poor performing features. 

 

A major disadvantage of utilizing fuzzy rough sets methods for feature selection is 

the exponential growth of computational time with the addition of features and the 

number of instances in the dataset [52], the implementation of parallel computing 

operations reduces considerably the computation time for larger data-sets, nonetheless 

memory problems may arise for “big data” applications.  

 

In section 2.5 rough sets and fuzzy rough sets were introduced. The method for 

calculating the fuzzy roughs sets, positive region and feature dependency utilized in 

this work is the same as the one introduced by Etienne and Kerre in [48] and further 

developed by Jensen and Shen in [49]. Three different fuzzy similarity relationship 

equations utilized to calculate fuzzy-rough sets were presented, the three equations are 

presented again for clarification below:  

 
max min

( ) ( )
( , ) 1

pR

p x p y
x y

p p


−
= −

−
  (7.1) 

 
2

2

( ( ) ( ))
( , ) exp

2
R

p

p

p x p y
x y



−
= −

 
 
 

  (7.2) 

 
( )
( )

( )
( )

( , )
( ) ( ) ( ) ( )

max min ,
( ) ( ) ( ) ( )

Rp

p p

p p

x y
p y p x p x p y

p x p x p x p x


 

 
=

  − − + +
  

  − − + +
  

  (7.3) 

 

The positive region and feature dependency of a fuzzy-rough sets are calculated as 

follows: 

 
( )

/

( ) sup ( )
R PP

POS Q R X

X U Q

X x 


=   (7.4) 

 
( )

( )
( ) RP

POS Qx U

p

x
Q

U







=


  (7.5) 
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Each of the three equations will be implemented and the performance is to be 

compared in order to identify the best fuzzy similarity relationship equation for 

measuring feature dependency.  The equations (7.2), (7.1) and (7.3) will be referred to 

as fuzzy similarity -1, fuzzy similarity -2 and fuzzy similarity -3 respectively.  

 

7.3.1 Results 

 

The order in which features are eliminated at each iteration for the Charpy, UTS, 

and Bladder Cancer datasets are shown in Table 7.2, Table 7.3 and Table 7.4 

respectively.  The performance evaluation method utilized with the wrapper-SICFIS 

method is implemented and the results for the Charpy, UTS  and Bladder Cancer 

datasets are shown in Figure 7.4, Figure 7.5 and Figure 7.6 respectively. It is seen that 

the performance of Fuzzy similarity -1 is superior as compared with Fuzzy similarity -

2 and Fuzzy similarity.  

 

Table 7.2: Fuzzy Rough set feature selection Charpy dataset variables eliminated at 

each iteration 

 Feature Eliminated 

Iteration Fuzzy Similarity - 1 Fuzzy Similarity - 2 Fuzzy Similarity - 3 

1 V V Mo 

2 Ni Ni V 

3 Cr Cooling Medium Ni 

4 Mo Mn Cooling Medium 

5 Mn Cr C 

6 Hardening Temperature Mo Site 

7 Cooling Medium Hardening Temperature Mn 

8 Test Depth Test Depth Cr 

9 S S Test Depth 

10 Al Site Hardening Temperature 

11 Site Impact Temperature Impact Temperature 

12 Si Si Si 

13 Impact Temperature Al S 

14 Size Size Al 

15 Tempering Temperature Tempering Temperature Size 

Final C C Tempering Temperature 
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Table 7.3: Fuzzy Rough set feature selection UTS dataset variables eliminated at each 

iteration 

 Feature Eliminated 

Iteration Fuzzy Similarity - 1 Fuzzy Similarity - 2 Fuzzy Similarity - 3 

1 V V V 

2 Al Al Cr 

3 Test Depth Cr Al 

4 Ni Test Depth Ni 

5 Mn Mn Cooling Medium 

6 Cooling Medium Cooling Medium Test Depth 

7 Site Site Mn 

8 S Ni Site 

9 Cr Hardening Temperature Hardening Temperature 

10 Hardening Temperature S S 

11 Si Si Si 

12 Size Size Mo 

13 C C C 

14 Mo Mo Size 

Final Tempering Temperature Tempering Temperature Tempering Temperature 
 

 

 

Table 7.4: Fuzzy Rough Sets feature selection Cancer dataset features eliminated at 

each iteration 

 Variable Eliminated 

Iteration Fuzzy Similarity - 1 Fuzzy Similarity - 2 Fuzzy Similarity - 3 

1 Cystectomy Cystectomy Cystectomy 

2 Radiotherapy Radiotherapy Radiotherapy 

3 Nodes Detail Nodes Detail Nodes Detail 

4 Squamous Squamous Squamous 

5 CIS Present CIS Present CIS Present 

6 Vascular Vascular Vascular 

7 SPB SPB SPB 

8 Urothelium Urothelium Urothelium 

9 Grade Grade Grade 

10 Muscle Muscle Muscle 

11 Sex Sex Sex 

12 Age Age Stage 

Final Stage Stage Age 
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Figure 7.4: Charpy Fuzzy-rough sets Backward elimination feature selection results. 

 

 

Figure 7.5: UTS  Fuzzy-rough sets Backward elimination feature selection results. 
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Figure 7.6:Bladder Cancer Fuzzy-rough sets Backward elimination feature selection 

results. 

 

7.4 SICFIS Filter Feature Selection Algorithm. 

 

The SICFIS model introduced in section Chapter 4 maps real-valued inputs to the 

complex domain, this allows to model the interaction between features as interferences. 

This process can be represented utilizing the magnitude-phase information of each 

feature (section 4.4.2.1) to model the behaviour of the system given any input within 

the range of operation. The magnitude and phase information for a feature p given an 

input k  are as follows: 

( ) ( ), , , , , ,

1 1

( ) cos( ) ( ) sin( )
p p

p p p p p p

p p

S S

p p s p p s p s p s p p s p s

s s

Mag k k i     
= =

= +  + +     (7.6) 

( ) ( ), , , , , ,

1 1

arg ( ) cos( ) ( ) sin( )
p p

p p p p p p

p p

S S

p p s p p s p s p s p p s p s

s s

Ph k k i     
= =

 
= +  + +  

 
 
    (7.7) 
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where k is a continuous variable with strictly increasing values within the range of 

operation of a feature p. 

 

Given that the entire behaviour of the system is represented with the magnitude-

phase plots, it is possible to estimate which are the most important features in the 

system. For example, below in Figure 7.7 are shown the magnitude-phase plots for the 

Charpy impact test features, utilizing 3 membership function per feature. In Figure 7.8 

the complex-valued output prediction when fixing all the features to a specific value 

and varying each one of the following features Carbon, Sulphur, Nickel and tempering 

temperature is shown. 

  

From the results shown in Figure 7.8 the feature “tempering temperature” produces 

the highest complex-valued variance, followed by Carbon, while Nickel and Sulphur 

hardly produce any variance in the complex valued output.  

 

 

Figure 7.7: Charpy Impact Magnitude Phase Plots.  
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Figure 7.8: Charpy Impact normalized complex-valued output prediction varying: 

Carbon (C), Sulphur (S), Nickel (Ni) and tempering temperature (T. Temp).  

 

Given the example, two different feature importance measurement methods may be 

implemented. The first method takes into consideration the variables that produce the 

greater variance in the output, these variables are: the magnitude of the resultant vector 

of a feature and the rate of change of its magnitude and phase. The second method 

measures the complex-valued covariance between a complex-value feature and the 

predicted output.   

 

7.4.1 Feature Importance Score Based on a Features Magnitude and Rate of 

Change. 

 

A feature importance score based on a features magnitude and rate of change may 

be calculated utilizing the magnitude-phase plots. One may calculate the area under the 

curve of the magnitude and the area under the curves of the magnitude and phase rate 

of change. This method presents several challenges: The first challenge arises from the 

datasets itself. Such method would be appropriate only for datasets containing 

continuous features with a uniform distribution. For example, the Charpy impact test is 

known for its scattered measurements, (the histogram plots of each of the features is 

shown in Figure 7.9, additionally the Bladder cancer dataset contains mostly categorical 

features.  



Chapter 7 

Feature Selection Algorithm with Fuzzy Rough Sets and the Single Input Complex Fuzzy Inference 

System 

 

 

163 

 

 

Figure 7.9: Charpy impact test feature histogram. 

 

Therefore, in order to develop an appropriate feature importance score formula, it is 

necessary to utilize the magnitude and the phase information of the instances
n

px  in the 

dataset. The magnitude, phase are as follows: 

 

( ) ( ), , , , , ,

1 1

( ) cos( ) ( ) sin( )
p p

p p p p p p

p p

S S

n n n

p p s p p s p s p s p p s p s

s s

Mag x x i     
= =

= +  + +     (7.8) 

( ) ( ), , , , , ,

1 1

arg ( ) cos( ) ( ) sin( )
p p

p p p p p p

p p

S S

n n n

p p s p p s p s p s p p s p s

s s

Ph x x i     
= =

 
= +  + +  

 
 
    (7.9) 

The resulting complex-valued variable for each feature instance is as follows: 

 

( ) ( ), , , , , ,

1 1

( ) cos( ) ( ) sin( )
p p

p p p p p p

p p

S S

n n n

p p s p p s p s p s p p s p s

s s
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= =

= +  + +     (7.10) 
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where :[1 ]n N and N represent the number of instances in the dataset.  

 

The following formula replaces the area under the curve of the magnitude with the 

expected value of the magnitude, and the area under the curves of the rate of change of 

the magnitude and the phase with the variance function.  

 

1 1

var( ) var( )
[ ]

var( ) var( )

p pMag Ph

p p P P

p p

p p

Ph
FeatureScore E

Ph

−

= =

 
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 =  +
 
 
 
 

Mag
Mag

Mag

  (7.11) 

 

 

The calculation of the expected value and variance of the magnitude is straight 

forward. Calculating the variance of the phase requires some modifications to the 

variance equation. The variance is calculated as the expected value of the squared 

distances between the mean and the samples. Given that the angular values are circular, 

it is more appropriate to calculate the angular distance between the mean value of the 

complex random variable z as follows: 

 

 

2

1
[ ]

var( ) cos
[ ]

p p

p

p p

E
Ph E

E
−
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z z
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  (7.12) 

 

The expected value of a complex random variable is calculated as follows [137]: 

 

 Re Im Re Im[ ] ( ) ( ) ( )E E i E E i= + = +z z z z z   (7.13) 
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Given that the magnitude an the angular distance utilize different measurements, 

each of the variables in (7.11) are normalized to give a proportional weight to each of 

the variables.  

 

7.4.2 Covariance of Complex-Valued Random Variables 

 

In the previous section t was shown that the SICFIS model maps real-valued features 

inputs into the complex domain, the variance and covariance of two complex-valued 

random variables is as follows [137]: 

 

  2 ( ) ( [ ])( [ ])*x Var E E E = − −z z z z z   (7.14) 

 1 2 1 2 1 2( ) [ ] [ ] [ ]*cov E E E= −z z z z z z   (7.15) 

 

where * represents the complex conjugate of the complex quantity.  

In order to utilize the complex covariance as a feature importance measure, it is 

necessary to calculate its magnitude, the larger the magnitude, the larger the covariance 

between a feature and the output. 

 

 ( )Cov

p p outputFeatureScore cov= z z   (7.16) 

 

7.4.3 Combined Feature Importance Equation 

 

Finally, it is possible to combine both equations into a single feature importance 

equation as follows:  

 

1 1

Mag Ph Cov

p pCombined

p P P
Mag Ph Cov

p p

p p

FeatureScore FeatureScore
FeatureScore

FeatureScore FeatureScore

−

−

= =

= +

 
  (7.17) 
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Equation (7.17) utilizes both measurements, in order to provide more robust 

predictions, each one normalized to provide an adequate weight to each of the feature 

score equations. The three equations, (7.11), (7.16) and (7.17) will be evaluated in the 

following section to provide more insight to which feature selection equation provides 

best results.  

 

7.4.4 Results 

 

The feature importance measurements relies entirely on producing a properly trained 

SICFIS model, therefore in order to increase robustness in the feature score 

measurement, K models are to be trained and evaluated, utilizing the same training data 

partition, the initial values will be randomly modified to present different results. The 

final feature importance equation is as follows: 

 

 

,

1

K

p k

k
p

FeatureScore

FeatureScore
K

==


  (7.18) 

 

Each of the datasets will be evaluated utilizing the three feature score equations 

(7.11), (7.16) and (7.17). Both the normalized and fast SICFIS models will be evaluated 

utilizing the same method explained in the previous sections.  

 

Results of the Charpy impact test for the normalized and fast SICFIS models are 

shown in Table 7.5 and Table 7.6. The evaluation of each of the equations and both the 

normalized and fast models is shown in Figure 7.13. Results obtained by the 

normalized-SICFIS model are superior to that of the fast-SICFIS model, given the 

obvious elimination of tempering feature.  For both models the combined equation 

performed slightly better than the Mag-Phase equation. The worse performing equation 

was the covariance equation for both models. 



Chapter 7 

Feature Selection Algorithm with Fuzzy Rough Sets and the Single Input Complex Fuzzy Inference 

System 

 

 

167 

 

 

Table 7.5: Charpy Normalized-SICFIS filter method for feature selection results. 

 Combined Score Mag-Phase Score Covariance Score 

1 Si 0.0220 Ni 0.0172 Al 0.0172 

2 Al 0.0224 Si 0.0210 Si 0.0251 

3 H.Temp 0.0401 Al 0.0258 H.Temp 0.0399 

4 Ni 0.0632 H.Temp 0.0397 S 0.0411 

5 Depth 0.0665 Depth 0.0630 Depth 0.0719 

6 Site 0.0733 Site 0.0672 Site 0.0761 

7 S 0.0798 Cool. Med. 0.0875 Ni 0.1032 

8 Cool. Med. 0.1156 S 0.1061 Mn 0.1246 

9 Cr 0.1344 Cr 0.1235 Cr 0.1334 

10 Mn 0.1352 Mn 0.1324 Cool. Med. 0.1355 

11 V 0.2375 V 0.1531 V 0.2975 

12 Mo 0.3619 Mo 0.2907 Imp. Temp. 0.3017 

13 C 0.3941 C 0.3049 Mo 0.4168 

14 Imp. Temp. 0.5503 Size 0.6329 C 0.4500 

15 Size 0.5698 Imp. Temp. 0.7339 Size 0.4648 

Final T. Temp. 1.0000 T. Temp 0.9147 T. Temp 1.0000 
 

 

 

Table 7.6: Charpy Fast-SICFIS filter method for feature selection results. 

 Combined Score Mag-Phase Score Covariance Score 

1 Al 0.0075 Al 0.0173 Al 0.0097 

2 Ni 0.0177 Ni 0.0184 Si 0.0218 

3 Si 0.0199 Si 0.0284 Ni 0.0269 

4 Site 0.0854 Site 0.0933 Site 0.0834 

5 Mo 0.1129 Cool. Med. 0.0937 Mo 0.1014 

6 Cool. Med. 0.1320 H.Temp 0.1181 S 0.1372 

7 S 0.1361 Mo 0.1293 V 0.1444 

8 Depth 0.2006 S 0.1399 Depth 0.1577 

9 V 0.2141 Cr 0.1958 Cool. Med. 0.1739 

10 H_temp 0.2170 Mn 0.2412 Mn 0.2881 

11 Mn 0.2674 Depth 0.2440 H.Temp 0.3148 

12 Cr 0.3156 V 0.2835 Size 0.4043 

13 Size 0.3700 Size 0.3282 Cr 0.4297 

14 T. Temp. 0.5523 T. Temp 0.5264 T. Temp 0.5677 

15 C 0.7719 C 0.8556 C 0.6603 

Final Imp. Temp. 0.9713 Imp. Temp. 0.9303 Imp. Temp. 0.9799 
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Figure 7.10: Charpy SICFIS-Filter feature selection results. 

 

Results of the UTS for the normalized and fast SICFIS models are shown in Table 

7.7 and Table 7.8. The evaluation of each of the equations for both the normalized and 

fast models is shown in Figure 7.14. The best results are obtained by the combined 

equation for the fast-SICFIS model. The results from the Mag-Phase and the 

Covariance equation seem to vary between different points, showing a clear advantage 

of utilizing both equation for obtaining better and more robust results.  

 

Results of the Cancer for the normalized and fast SICFIS models are shown in Table 

7.9 and Table 7.10. The evaluation of each of the equations for both the normalized and 

fast models is shown in Figure 7.12 Figure 7.15. In section 4.7.3, the results for the 

Cancer dataset utilizing the normalized and fast-SICFIS models showed a clear 

difference between both methods, being the fast-SICFIS model better suited for 

modelling the Cancer dataset, therefore a poor performance of the normalized-SICFIS 

model for feature selection is the results of its poor performance in prediction. The 
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combined equation provided the best results as shown in Figure 7.12. From the results 

observed it is concluded that after Stage, Age is the most important feature for 

prediction. 

 

Table 7.7: UTS Normalized-SICFIS filter method for feature selection results. 

 Combined Score Mag-Phase Score Covariance  Score 

1 Si 0.00172 Si 0.00128 Si 0.00320 

2 Al 0.00426 Al 0.00394 Al 0.00571 

3 Depth 0.00777 Depth 0.00776 Depth 0.00860 

4 H. Temp 0.01227 H. Temp 0.01289 H. Temp 0.01216 

5 V 0.02945 Site 0.02332 V 0.02991 

6 S 0.04061 V 0.02854 S 0.04336 

7 Site 0.04424 S 0.03700 Site 0.06466 

8 Mn 0.06885 Mn 0.04977 Mn 0.08434 

9 Size 0.12031 Cool. Med. 0.05208 C 0.12399 

10 Cool. Med. 0.12953 Size 0.09009 Size 0.14659 

11 C 0.20376 Mo 0.21006 Cr 0.18584 

12 Mo 0.29607 C 0.27420 Cool. Med. 0.20420 

13 Cr 0.35418 Ni 0.27670 Mo 0.36804 

14 Ni 0.42908 Cr 0.49190 Ni 0.55409 

Final T. Temp 1.00000 T. Temp 0.95626 T. Temp 1.00000 
 

 

 

 

Table 7.8: UTS Fast-SICFIS filter method for feature selection results. 

 Combined Score Mag-Phase Score Covariance Score 

1 Al 0.00000 Al 0.00000 Al 0.00000 

2 Si 0.00640 Si 0.00218 Si 0.01061 

3 V 0.01621 Depth 0.00345 V 0.02894 

4 Depth 0.02358 V 0.00348 Depth 0.04371 

5 H. Temp 0.03047 S 0.00603 H. Temp 0.05384 

6 S 0.03049 H. Temp 0.00710 S 0.05495 

7 Cool. Med. 0.06226 Cool. Med. 0.01945 Mn 0.07376 

8 Mn 0.07073 Size 0.02420 Cool. Med. 0.10508 

9 Site 0.08729 Site 0.02525 Site 0.14934 

10 Cr 0.11057 Cr 0.05424 Cr 0.16691 

11 Size 0.13020 Mo 0.06677 Size 0.23621 

12 C 0.16364 Mn 0.06769 C 0.25593 

13 Mo 0.18410 C 0.07135 Mo 0.30143 

14 Ni 0.22954 Ni 0.07570 Ni 0.38337 

Final T. Temp 1.00000 T. Temp 1.00000 T. Temp 1.00000 
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Figure 7.11: UTS SICFIS-Filter feature selection results. 

 

Table 7.9: Bladder Cancer Normalized-SICFIS filter method for feature selection 

results. 

 Combined Score Mag-Phase Score Covariance Score 

1 Cystectomy 0.0033 Cystectomy 0.0053 Cystectomy 0.0035 

2 Vascular 0.0485 Vascular 0.0303 Radiotherapy 0.0288 

3 Radiotherapy 0.0548 Radiotherapy 0.0676 Squamous 0.0305 

4 Grade 0.0908 Grade 0.0962 Urothelium 0.0611 

5 Urothelium 0.1078 Urothelium 0.1386 Vascular 0.0778 

6 Nodes Detail 0.1166 Nodes Detail 0.1403 Nodes Detail 0.0862 

7 Squamous 0.1686 Squamous 0.1438 CIS Present 0.1459 

8 CIS Present 0.1974 CIS Present 0.1694 Muscle 0.1460 

9 Muscle 0.2139 Muscle 0.2226 Sex 0.1567 

10 Age 0.2584 Age 0.2601 Age 0.2416 

11 Sex 0.2613 Sex 0.3349 Grade 0.3126 

12 SPB 0.7550 SPB 0.8052 SPB 0.6131 

Final Stage 0.9581 Stage 0.8308 Stage 1.0000 
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Table 7.10: Bladder Cancer Fast-SICFIS filter method for feature selection results. 

 Combined Score Mag-Phase Score Covariance Score 

1 Squamous 0.0017 Squamous 0.0021 Sex 0.0026 

2 Vascular 0.0088 Vascular 0.0070 Squamous 0.0032 

3 Radiotherapy 0.0089 Radiotherapy 0.0104 Radiotherapy 0.0095 

4 Cystectomy 0.0104 Cystectomy 0.0125 Cystectomy 0.0104 

5 Sex 0.0178 Sex 0.0171 Nodes Detail 0.0196 

6 Nodes Detail 0.0243 Nodes Detail 0.0180 Vascular 0.0437 

7 Grade 0.0718 Grade 0.0823 Muscle 0.0612 

8 Muscle 0.1453 Muscle 0.0841 Urothelium 0.1417 

9 SPB 0.1752 SPB 0.1326 CIS Present 0.1506 

10 Urothelium 0.1948 Urothelium 0.1503 Grade 0.3089 

11 CIS Present 0.2578 CIS Present 0.2014 Age 0.3267 

12 Age 0.3222 Age 0.3193 SPB 0.3846 

Final Stage 1.0000 Stage 1.0000 Stage 1.0000 
 

 

 

 

 

Figure 7.12: Bladder Cancer SICFIS-Filter feature selection results. 
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7.5 Results Comparisons  

 

The results of the combined filter-SICFIS method for the fast and normalized 

SICFIS model, the wrapper-SICFIS method and the best performing Fuzzy rough set 

method are plotted for comparison purposes. Some variation is expected given random 

effects during training.  

 

Results for the Charpy impact test are shown in Figure 7.13. The worse performing 

method is the filter fast-SICFIS method. While the remaining methods seem to perform 

equivalent and most of the difference in performance can be attributed to random errors.  

 

The UTS results are shown in Figure 7.14. The wrapper method provided the best 

results, while the rest of the methods performance deviate from the wrapper method 

slightly at different points. 

 

The Bladder Cancer results are shown in Figure 7.15. The worse performing model 

is the filter normalized-SICFIS method. This is expected, given the results observed in 

section 4.7.3. The rest of the results difference are attributed to random errors.   

 

The computation time of each algorithm are shown in Table 7.11. From the 

computation times an exponential increase in computational times for the UTS dataset 

utilizing any of the fuzzy-rough set methods is observed. This exponential increase is 

due to the UTS dataset containing twice the number of instances in comparison with 

the Charpy impact dataset. For the wrapper method the number of features in the dataset 

has more of an impact than the number of instances. The filter SICFIS method proposed 

in this work produced the lowest computational time as expected, with a considerable 

reduction in computational times.  
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Figure 7.13: Charpy Results Comparisons between Filter-SICFIS methods, Wrapper-

SICFIS and Fuzzy Rough sets 

  

 

Figure 7.14: UTS Results Comparisons between Filter-SICFIS methods, Wrapper-

SICFIS and Fuzzy Rough sets 
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Figure 7.15: Cancer Results Comparisons between Filter-SICFIS methods, Wrapper-

SICFIS and Fuzzy Rough sets 

 

Table 7.11: Computation time comparison between the different datasets and methods 

measured in seconds (s). 

 Charpy UTS Cancer 

Wrapper-SICFIS 289.25 s 234.43 s 121.95 s 

FRS-01 101.49 s 1012.2 s 57.34 s 

FRS-02 100.78 s 975.03 s 56.07 s 

FRS-03 101.35 s 978.05 s 56.34 s 

Filter N-SICFIS 31.26 s 32.05 s 22.05 s 

Filter F-SICFIS 17.67 s 22.81 s 13.83 s 
FRS: Fuzzy Rough Set, N: Normalized, F: Fast. 

 

7.6 Superconductivity Results 

 

Given the large size of the superconductivity dataset, it is not possible to implement 

the rough -sets and wrapper feature selection methods. In [109], the authors present the 

20 most significant features obtained from an XG-Boost analysis results. The results 

obtained from the three feature selection algorithms as well as the XG-Boost analysis 

are shown in Table 7.13. In order to compare the efficacy of the feature selection 

algorithms a reduced data set consisting of the 20 most significant features is utilized 
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for training a 5 membership function normalized and fast SICFIS models. The results 

of the evaluation are shown in Table 7.12. 

 

Table 7.12: Superconductivity results obtained from reduced model, utilizing 5 

membership functions (mF) per feature normalized(N) and fast (F) SICFIS models. 

  Training Checking Testing All 

XG-Boost 
N-SICFIS 5mF 15.33 15.65 15.40 15.40 

F-SICFIS 5mF 15.64 16.07 15.94 15.77 

Combined 
N-SICFIS 5mF 17.95 18.18 18.25 18.04 

F-SICFIS 5mF 17.34 17.70 17.69 17.46 

Mag-Phase 
N-SICFIS 5mF 17.45 16.99 17.49 17.38 

F-SICFIS 5mF 17.46 17.33 18.03 17.53 

Covariance 
N-SICFIS 5mF 18.73 18.49 18.21 18.60 

F-SICFIS 5mF 18.68 18.50 18.27 18.58 
 

 

 

Table 7.13: Superconductivity feature selection results summary. 

Combined Mag-Phase Covariance XG-Boost [109] 

Feature Score Feature Score Feature Score Feature Score 

24 1.000 24 1.000 15 1.000 67 0.295 

15 0.668 22 0.562 74 0.726 70 0.084 

22 0.562 15 0.668 25 0.719 27 0.072 

25 0.480 25 0.480 24 0.713 64 0.047 

74 0.462 74 0.462 72 0.691 69 0.042 

72 0.423 75 0.366 75 0.568 76 0.038 

75 0.366 73 0.344 73 0.548 50 0.036 

73 0.344 12 0.269 71 0.546 6 0.025 

71 0.332 72 0.423 12 0.421 72 0.022 

12 0.269 4 0.153 22 0.418 44 0.021 

54 0.214 69 0.127 54 0.352 48 0.016 

14 0.186 71 0.332 14 0.297 62 0.015 

52 0.174 14 0.186 52 0.284 74 0.014 

76 0.153 27 0.092 76 0.251 9 0.013 

4 0.153 2 0.124 19 0.246 39 0.01 

19 0.150 54 0.214 4 0.233 68 0.01 

17 0.138 52 0.174 17 0.228 66 0.01 

51 0.130 67 0.074 51 0.213 2 0.009 

69 0.127 19 0.150 2 0.195 33 0.009 

2 0.124 76 0.153 53 0.194 10 0.009 
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7.7 Summary 

 

From the results obtained, the best performing algorithm in the first three datasets 

was the wrapper method utilizing the fast-SICFIS model. The feature selection method 

utilizing fuzzy rough sets with the first formula also produced comparable results, with 

the UTS dataset outperformed by the wrapper method. The filter-SICFIS performed 

comparable with the other methods, slightly decrease in performance in the UTS and 

cancer dataset was observed.  

 

The advantages of the filter-SICFIS method is the possibility of assigning a score to 

each of the features, and the fast computation times. The fuzzy rough sets relative 

feature dependency can also be utilized to rank each of the features, but as observed, 

the computational times for both the fuzzy rough sets and the wrapper method grow 

exponentially with the size of the dataset.  

 

Given that the demand for computational efficient code to deal with big-data, both 

the fuzzy rough set and the wrapper methods are not well equipped for large dataset 

such as the superconductivity dataset. The filter SICFIS-model has shown promising 

results for the smaller datasets but requires additional modifications for larger datasets.  
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Chapter 8  

Fuzzy Rough Sets for Data-mining: Inconsistency 

Identification and Modelling 

 

8.1 Introduction 

 

The Charpy impact dataset is known to be difficult to model due to the scatter in the 

dataset and inconsistencies in the measurement values [129]. Objects in an information 

table are considered inconsistent when two or more objects contain the same or similar 

feature values but different outputs. Inconsistencies arise either by errors in 

measurement or by features not included in the information table. Rough sets can be 

utilized to identify inconsistent records and to measure the degree of inconsistency in a 

dataset.  

 

This Chapter proposes an application of fuzzy rough sets for modelling under 

inconsistent datasets. The modelling paradigm proposes to 1. Identify and classify 

consistent and inconsistent instances present in the dataset utilizing fuzzy rough sets. 2. 

Propose a method for identifying inconsistencies in a testing partition. 3. Improve upon 

the results by crating different models to predict the previously identified consistent 

and inconsistent partitions. 4. Generate a multiple point prediction instead of single 

point to model inconsistencies and aid in the development of material design.   

  

8.2 Data Inconsistency Identification 

 

The consistency of an object can be measured by utilizing the positive region of the 

lower approximation of a fuzzy-rough set (8.2). The feature dependency (8.1) utilized 
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in the previous section can be considered as the mean measurement of consistency. In 

a classic rough set, a consistent object is added to its lower approximation, assigning a 

membership value of 1. For continuous datasets, it is necessary to implement fuzzy-

rough sets. The values of the lower approximation range from 0-1, an object considered 

totally consistent would be assigned a membership value of 1, and a totally inconsistent 

object would be assigned a membership value of 0.  

 

 ( ) ( )
' ( ) RPPOS Qx U
P

x
Q

U


 =

   (8.1) 

 ( )
/

( ) sup ( )
R PP

POS Q R X
X U Q

X x 


=   (8.2) 

 

Table 8.1 shows an example of an inconsistent information granule. The features are 

normalized, rounded and randomly selected for confidentiality reasons. The positive 

region score (8.2) shown is the last column allows to identify such information granule 

as inconsistent. Given that the membership value of the positive region ranges from 0 

to 1 it is necessary to select a threshold value to classify objects as either consistent or 

inconsistent. 

Table 8.1: Inconsistencies in the Charpy Impact Dataset 

 Ftr 0 Ftr 1 Ftr 2 Ftr 3 Ftr 4 Ftr 5 Ftr 6 Ftr 7 Ftr 9 Output ( )
RP

POS Q
   

1 0.05 0.25 0.50 0.44 0.02 0.31 0.23 0.03 0.35 106.204 0.29 

2 0.05 0.25 0.50 0.44 0.02 0.31 0.23 0.03 0.35 173.543 0.29 

3 0.05 0.25 0.50 0.44 0.02 0.31 0.23 0.03 0.35 173.543 0.30 

4 0.05 0.25 0.50 0.44 0.02 0.31 0.23 0.03 0.35 61.011 0.33 

5 0.05 0.25 0.49 0.44 0.02 0.31 0.23 0.03 0.35 89.9347 0.33 

6 0.05 0.25 0.49 0.44 0.02 0.31 0.23 0.03 0.35 86.319 0.33 

7 0.05 0.25 0.49 0.44 0.02 0.31 0.23 0.03 0.35 121.118 0.40 

8 0.05 0.25 0.49 0.44 0.02 0.31 0.23 0.03 0.35 101.233 0.40 

Ftr: Feature. 

 

A simple method for identifying inconsistent instances is to select the a threshold 

value equal to the feature dependency (8.1). Table 8.2 shows the feature dependency 
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value of the first three real world datasets explored in this work. It can be observed that 

the Cancer dataset contains by far the lowest feature dependency, followed by the 

Charpy impact test, while the UTS can be considered mostly consistent. 

 

Table 8.2: Dataset Feature Dependency 

 Fuzzy similarity 1 Fuzzy similarity 2 Fuzzy similarity 3 

Charpy Impact 0.9612 0.9310 0.9196 

UTS 0.9960 0.9883 0.9769 

Cancer 0.4211 0.5299 0.6786 
 

 

The low feature dependency observed in the bladder cancer dataset is related to the 

complex relationship and difference between different persons genetics and lifestyle, 

making a prediction based on a few parameters highly difficult and random [39].  

 

8.2.1 Effects of Feature Selection in the Number of Inconsistencies and Feature 

Dependency 

 

In Chapter 7 fuzzy-rough sets were implemented to develop a feature selection 

algorithm. This feature selection algorithm removed features based on the value of its 

feature dependency score. Within the context of rough sets, removing features reduces 

the capability of discerning between instances, increasing the number of inconsistencies 

in the dataset and reducing its feature dependency.  Figure 8.1 shows the effect of the 

number of features in a dataset and the feature dependency value. The features selected 

for such plots where taken from the results obtained and shown in in the previous 

chapter in Table 7.2. 

 

Figure 8.2 shows the effect of the number of features and a selected threshold in the 

number of inconsistencies. The number of inconsistencies grows significantly with the 

elimination of features, even when these features have a small impact in the prediction 

accuracy as observed in the previous chapter in Figure 7.1. 



Chapter 8 

Fuzzy Rough Sets for Data-mining: Inconsistency Identification and Modelling 

 

 

180 

 

 

Figure 8.1: Effect of the number of features in Feature Dependency. 

  

 

Figure 8.2: Effects on the number of inconsistencies given different number of features 

and different threshold values. 
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8.2.2 Inconsistency Identification in Testing Partition of Dataset Utilizing k-

Nearest Neighbour 

 

The identification of inconsistent instances in the dataset is performed in the training 

partition utilizing fuzzy-rough sets, in order to identify inconsistencies located in the 

testing partition it is proposed the utilization of a k-nearest neighbour (KNN) algorithm.  

 

The KNN algorithm can be utilized for classification tasks, it classifies testing 

sample based on the known class values of the k nearest samples [138]. An example of 

the KNN classification is shown in Figure 8.3. Different metrics can be implemented 

for finding the nearest neighbour. In this work a Euclidean distance metric is 

implemented, a weighted method is implemented, in which nearest neighbours have 

more impact in the decision than further neighbours, ties are resolved by the nearest 

neighbour. 

  

In order to identify am optimal number of k neighbours, a 10 k-fold cross validation 

is performed in the Charpy impact dataset, varying the number of features from 16 to 9 

and selecting the number of k neighbours from 1 to 10. The feature similarity equation 

(7.1) and a threshold value of 0.9 are selected. The mean results are shown in Table 8.3. 

It is observed that the number of features have an impact in the prediction accuracy of 

the testing dataset, overall the prediction is above 85%, the number of k neighbours 

seems to have a random effect on the prediction accuracy, therefore it can be concluded 

that any number of k neighbours may be selected without affecting significantly the 

overall results, as a rule of thumb a k value below 5 seems to be sufficient.  
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Figure 8.3: Example of a KNN classification utilizing Euclidean distances. If k=1,5 

then test sample will be classified as a circle, if k=3 test sample is classified as square, 

tie resolution is problem dependent.  

 

Table 8.3: Accuracy varying the number of features and the number of k neighbours 

 16 Features 14 Features 12 Features 10 Features 8 Features 

k=1 89.47 89.08 86.18 87.06 86.72 

k=2 89.47 89.08 86.22 87.06 86.72 

k=3 89.45 89.10 86.28 86.97 86.95 

k=4 89.62 89.18 86.07 86.85 86.81 

k=5 90.15 88.87 86.24 86.79 86.56 

k=6 89.94 88.80 86.43 86.79 86.47 

k=7 90.10 88.87 86.39 86.55 86.34 

k=8 89.98 88.78 86.34 86.43 86.18 

k=9 89.92 88.93 86.36 86.15 85.82 

k=10 89.83 88.86 86.51 86.34 85.73 
 

 

8.3 Effect of Inconsistencies in Performance 

 

The effect of inconsistencies in performance is considerable. In Figure 8.4 a) and 

Figure 8.4 b) it is observed the regression plots of the results of the Charpy impact test 

and the UTS datasets respectively, utilizing all the features in the dataset and selecting 

a threshold value equal to the feature dependency measure. the consistent and 

inconsistent instances are shown in blue and red respectively. An increase in the RMSE 

of 54% and 99% for the Charpy and the UTS datasets respectively is measured. Such 

results show that a significant portion of the error in prediction can be attributed to 

inconsistencies present in the dataset. 
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(a) 

 
(b) 

Figure 8.4: Effect of inconsistence in Charpy impact prediction (a) and UTS prediction 

(b). 

 

8.4 Multiple Point Prediction for Datasets Containing Inconsistencies  

 

On the one hand removing inconsistent objects from the dataset may cause the loss 

of valuable information, limiting the prediction capabilities of a model. On the other 

hand, inconsistencies may result in unreliable models and a considerable increase in the 

prediction error, as is observed in Figure 8.4. Therefore, in the presence of 

inconsistencies it is proposed to implement a modelling strategy, which considers the 

inconsistencies present in the dataset and perform predictions accordingly. Instead of 

providing a single point prediction, a set of predictions are to be presented in regions 

estimated to contain inconsistencies.  

 

Two or more instances are considered inconsistent when contain the same or very 

similar feature values and different outputs. These inconsistencies result in a large 

portion in the error prediction, nonetheless, contain valuable information, given that the 
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inconsistencies do not arise due to errors in measurements, but for the lack of 

information. This was confirmed with the observed increase in inconsistencies with the 

removal of features.  

 

In the case of the Charpy impact test, it is well known the considerable amount of 

inconsistencies in measurements. Some of these inconsistencies may be attributed to 

inhomogeneities in the microstructure [139], or other features difficult or non-cost 

efficient to measure.  

 

A modelling paradigm is proposed to perform prediction in inconsistent datasets 

utilizing a multiple point prediction. The multiple point prediction is formed by a set of 

M-models, each trained with a different dataset containing a consistent partition of the 

training dataset and a number of inconsistent instances.  

 

Initially, the inconsistencies are identifying utilizing the positive region of the fuzzy-

rough sets, calculating utilizing the fuzzy similarity equation (7.1). The consistent 

instances are added to a set C, the inconsistent instances are divided into N different 

sets 1{ ,..., }NI I I=  clusters utilizing a FCM algorithm. A SICFIS model is trained 

utilizing the set containing only the consistent instances, further N SICFIS models are 

trained utilizing the consistent partition and each one of the inconsistent partitions nI . 

The process is summarized in Algorithm 8.1.  

 

8.4.1 Results 

 

In order to increase the number of inconsistencies a reduced dataset consisting on 

the 8 most important features obtained from the results obtained in Chapter 7 and shown 

in Table 7.2. The normalized-SICFIS model with 3 membership function per feature is 
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used for performing the predictions. A 1 K-NN algorithm is performed in the testing 

partition to identify inconsistencies. 

Algorithm 8.1: Data selection for training M SICFIS models to perform the multiple 

point prediction. 

Inputs: Charpy impact dataset H, Threshold Thr 

Output: Set containing consistent elements C, set containing 

inconsistent elements I, set of M trained SICFIS models 

,C I =  

Calculate ( )
R

P

POS Q
  for all the elements in H  

For 1:j H=     

 If ( )
( )

R
P

POS Q jh Thr  : { }jC C h=   

 Else: { }jI I h=    

Create a KNN model with C and I 

Train SICFIS1 with C 

Create N clusters from inconsistent set I; 
1 2{ , ,..., }c c cnI I I I=   

For 1:j N=     

 Train SICFISj+1 with 
c jC I   

End 

 
 

 

The results for the consistent and inconsistent partitions are shown in Figure 8.5 an 

Figure 8.6 respectively. It can be observed a greater gap between the benchmark and 

the prediction intervals for the inconsistent testing partition. Table 8.4 shows the mean 

gap in prediction measured using the RMSE index. Furthermore, it is observed from 

Figure 8.6 both the benchmark model and the intervals seem to be unable to perform 

proper predictions to the inconsistent testing partition.  

 

 

Table 8.4: Mean absolute prediction difference between the prediction interval for the 

consistent and inconsistent partitions 

 Mean prediction interval absolute difference 

Inconsistent Testing partition 29.31 RMSE 

Consistent Testing Partition 13.95 RMSE 
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Figure 8.5: Charpy Impact test prediction interval for consistent testing partition. 

 

 

Figure 8.6: Charpy Impact test prediction interval for inconsistent testing partition. 
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8.5 Data-Mining Utilizing Fuzzy Rough Sets- Application to The Bladder 

Cancer Dataset 

 

It was shown in Table 8.2 that the Cancer dataset contained the worse score in feature 

dependency, meaning that most of the records are inconsistent. This is well known in 

medicine, given that the different effects of lifestyle and genetics make it almost 

impossible to obtain consistent results. Utilizing a Threshold, it was selected the most 

consistent data points.  

 

A summary of the results is shown in Table 8.5, the consistent partition consists of 

97 patient records. Most of such records contain patients whose time of death was 

within the first five years. As observed by the mean observed time, being 10 months. 

The age, and grade means are also superior to the average, while the stage seems to be 

below the average.  

 

Table 8.5: Cancer dataset comparison Consistent dataset 

 Mean Mode Standard deviation 

Feature All Consistent* All Consistent* All Consistent* 

Time 52.35 10.04 ** ** 48.66 9.91 

Age 71.59 76.24 ** ** 11.02 9.42 

Sex 0.73 0.68 1 1 0.44 0.47 

Grade 2.17 2.48 3 3 0.80 0.75 

Stage 4.03 3.02 6 2 2.25 2.02 

Nodes 3.97 3.94 4 4 0.30 0.43 

Squamous 0.04 0.10 0 0 0.21 0.30 

CIS Present 0.13 0.20 0 0 0.33 0.40 

SPB 2.03 2.00 2 2 0.60 0.79 

Vascular 0.07 0.14 0 0 0.26 0.35 

Urothelium 3.42 3.40 2 2 1.80 1.73 

Muscle 0.72 0.73 1 1 0.45 0.44 

Cystectomy 0.01 0.03 0 0 0.10 0.17 

Radiotherapy 0.02 0.02 0 0 0.15 0.14 
*Consistent: Consistent Partition. 
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8.6 Summary 

 

In this work a method for evaluating the consistency of a dataset utilizing fuzzy 

rough set was implemented for data-mining. The feature dependency was shown to 

measure the average consistency of a dataset. Inconsistencies are the result of instances 

that contain the same or similar input values and exhibit different outputs.  

 

It was demonstrated that a significant proportion of the errors in prediction can be 

attributed to the presence of inconsistencies in the dataset. Inconsistencies present in a 

testing partition can be identified by applying a k-NN algorithm. The gap in prediction 

accuracy between the benchmark model and the prediction interval increases 

considerably between the consistent and inconsistent testing partition data. It can be 

further concluded that fuzzy-rough set can be used to measure the limitations in 

prediction accuracy of a model given a dataset.  

 

Additionally, fuzzy rough sets can be used to identify consistencies in the dataset as 

it was the case in the Cancer dataset, where it is possible to determine which parameter 

values produces more consistent results. Such information can be used by a medical 

professional for evaluating the life expectancy of a patient.  
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Chapter 9  

Conclusions and Future Work 

 

9.1 Conclusions 

 

Among the research realized in the topic of CFS worldwide only three research 

groups have focused on the development of CFISs, resulting in the development of the 

ANCFIS, CNFIS and ACNFIS. Neither the ACNFIS nor the CNFIS model exploit the 

property of interference, which according to Ramot, is the main property of CFS. 

Furthermore, both models (CNFIS and ACNFIS) ignore, for the most part, the effect 

and meaning of the imaginary component of the output. It can be concluded that neither 

one of these two models are adequate CFISs and should be considered instead as 

modifications to the real-valued ANFIS. The ANCFIS model, however, utilizes the 

complex component of the CFS to model interferences by using a dot product operation. 

ANCFIS was developed for time series applications showing promising results. 

Regardless, none of the research groups have adequately addressed the problem of 

interpretability, the raison d’etre of fuzzy logic.  

 

The SICFIS model introduced in Chapter 4 is therefore the first interpretable CFIS 

hitherto proposed. The SICFIS exploits the property of interference to model the 

complex interaction between features and outputs, resulting in a parsimonious model 

framework. The expansion to the complex domain presents several advantages over 

traditional FIS, including a higher prediction accuracy, faster computation times and 

greater interpretability given the number of tools capable of extracting and representing 

knowledge. The magnitude-phase plots demonstrate the full transparency; the 

interpretability analysis performed for the Charpy impact test demonstrated its 

interpretability. Both the normalized and fast SICFIS models outperformed most of the 
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FIS for different applications, and the choice of one over the other one is problem 

dependent, as was observed in the Bladder Cancer results, where the fast-SICFIS 

outperformed the normalized-SICFIS. This, in fact, can be attributed to the number of 

categorical variables present in the dataset. 

 

Given the fast-SICFIS considerable reduction in computational time and the simple 

structure it was possible to improve upon the ANFIS model, by replacing the linear 

consequents with SICFISs models. The premises create a partition in the feature space, 

where each rule represents a local model. The global model is therefore composed of 

an ensemble of interpretable local SICFISs. The performance obtained is comparable 

with those obtained by a large ensemble of ANN. The interpretability of the model was 

assessed with a global-local performance index in all four datasets. Given the large 

number of categorical variables present in the Bladder Cancer dataset, there was a 

decrease in performance compared with the SICFIS.   

 

The SICFIS model utilizes a complex singleton membership function. Type-1 

singleton membership functions are known to be less interpretable and are less capable 

of modelling uncertainties compared with Gaussian membership functions. Therefore, 

in Chapter 6 the development of a complex Gaussian membership function is presented. 

A Mamdani-SICFIS is therefore created by replacing the complex singleton 

membership function with a complex Gaussian. The results obtained are comparable 

with other known neuro-FIS, but did not outperformed the singleton-SICFIS model, the 

reduction in accuracy can be compensated with the addition of a linguistic variables 

with context, making it potentially more interpretable than the SICFIS model. 

 

The knowledge extracted from the SICFIS model may potentially be utilized for 

further applications. In Chapter 7 a feature selection algorithm is developed, based on 

the complex valued information obtained from the SICFIS output. The filter-SICFIS 

method assigns a score to each of the features based on their importance. The algorithm 
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performance is comparable with fuzzy rough sets and a wrapper-method, with a 

considerable reduction in computational time. 

 

Fuzzy rough sets have been mostly utilized for feature selection. In Chapter 8 fuzzy 

rough sets are implemented into the Charpy and Bladder Cancer datasets. Both datasets 

present tough challenges given the number of inconsistencies, that where identified 

from the positive region of the lower approximation of the fuzzy rough sets. It was 

demonstrated that the prediction errors can be attributed greatly to the presence of 

inconsistencies.  

 

9.2 Future Work 

 

The considerable reduction in computation, shows promises for deploying the 

SICFIS model for real time applications.  In areas such a control, the application of the 

fast-SICFIS model for nonlinear model predictive control may result in a reliable tool 

capable of producing accurate predictions in a timely manner.  Furthermore, the 

complex component of the output may be utilized for real-time decision making in 

applications such as autonomous vehicles.  

 

Overfitting was observed in the ANFIS-SICFIS model with the addition of rules. In 

order to improve upon the results and reduce overfitting, the implementation of 

regularization strategies may potentially solve this problem, while maintaining a good 

global-local performance. The implementation of better methods for rule elicitation 

may improve the results obtained even further. For datasets containing a large number 

of categorical variables further research needs to be conducted, such as the 

implementation of hyperparameter optimization.  

 

While Gaussian membership functions are considered more interpretable, it is 

necessary to improve the Mamdani-SICFIS performance. By implementing interval 
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type-2 strategies the system may potentially model uncertainties and improve upon the 

results.  

 

The application of complex-valued statistics for feature selection demonstrated the 

advantages of working in a higher dimensional plane. Further applications may be 

developed by researching further into the properties of CFS. Other areas of research 

may include the implementation of complex fuzzy rough sets, for developing better 

data-mining tools taking into consideration the “context”. 
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