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Abstract

Terahertz frequency quantum cascade lasers (QCLs) are state of the
art structures that exploit multiple quantum well (MQW) system to
generate emission by radiative transition between very narrow spaced
energy levels (∼ 12 meV) through resonant tunnelling quantum mech-
anical process. The complexity of MQW prevents use of ab initio
models, and only models that exploit the periodicity of the structure
may be applied.

Terahertz frequency devices can have 3 - 12 (and more) states per
MQW period, thus there is an interest for a general model that is
not dependent on number of states per module. Additionally, the
resonant tunnelling process experiences significant issues with typ-
ically used semi-classical rate equation (RE) models, by generating
discontinuities due to the lack of coherent quantum mechanical trans-
port within these models. The quantum mechanical models such as
Non-Equilibrium Green Function (NEGF) and Density Matrix (DM)
approaches therefore, need to be applied. NEGF models provide de-
tail analysis of quantum effects, however they typically exhibit very
high numerical cost which limits modelling QCLs with large num-
ber of states per module. On the other hand, DM approaches have
low numerical complexity which allows more versatility of the model
applications.

This thesis will focus on DM approach that is independent on num-
ber of states per module. Both NEGF and DM have been avoided in
wide spread use also due to their complicated mathematical formula-
tion. One of the main contributions of this work is a detail algebraic
simplification of DM model, where its entire construction can be laid
out by a single algebraic expression which also allows straightforward
numerical implementation, similar to RE models.

The low numerical cost of DM approach allows further expansion of
the model by coupling the transport model to Maxwell wave equa-
tion (creating Maxwell-Bloch (MB) model) and investigating dynamic
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processes and properties of emitted radiation. This thesis will present
the first (to the best of author’s knowledge) dynamic Maxwell-Bloch
model for terahertz frequency QCLs, that is independent on number
of states per period. In addition to this, MB model will be exten-
ded to allow reinjection of optical radiation to the laser cavity which
will formulate general model for optical feedback intereferometry that
would be capable of studying the self–mixing (SM) effect.

Overall, steady–state and dynamics analysis of terahertz frequency
QCLs will be discussed through several applications that model exper-
imental current-voltage-power characteristics, acoustic phonon mod-
ulation, Maxwell-Bloch dynamics and self-mixing interferometry dy-
namics. This thesis will also discuss the potential applications of DM
model in design of terahertz frequency QCLs, where Chapter 8 will
present a novel structure proposal that provides high temperature
performance, comparable to the current record designs.
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4. A. Demić, A. Grier, Z. Ikonić, A. Valavanis, C. A. Evans, R. Mohan-
das, L. Li, E.H. Linfield, A. G. Davies, and D. Indjin, Infinite-Period
Density-Matrix Model for Terahertz-Frequency Quantum Cascade Lasers,
IEEE Transactions on Terahertz Science and Technology 7, 4 (2017).
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I. Kundu, L. Li, A. Akimov, A. G. Davies, E. Linfield, J. Cunningham and
A. Kent, High-Speed Modulation of a Terahertz Quantum Cascade Laser by

1Publications 4–8 are a relevant for work presented in this thesis, publication 7 is accepted,
publication 8 is under review

xxiv



LIST OF TABLES

Coherent Acoustic Phonon Pulses, Nature Communications, 2020 (accepted
for publication).

8. X. Qi, G. Angew, T. Taimre, S. Han, Y. L. Lim, K. Bertling, A. Demić, P.
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Chapter 1

Introduction

1.1 Semiconductor lasers

Laser (Light Amplification by Stimulated Emission of Radiation) represents a
concept of a device that emits coherent electromagnetic radiation. The principle
of laser operation lies in the sustainability of the stimulated emission. Typically,
all lasers operate on the quantum mechanic principles and generally require: i)
a laser medium that contains two or multi-level system (including carriers in
semiconductors) ii) a pumping process that sustains population inversion between
at least two quantum mechanical energy levels so that transitions generate the
desired electromagnetic radiation and iii) an optical feedback element that directs
the radiation to be amplified either through a single or multiple pass across the
medium [1]. A typical laser structure is presented in Fig. 1.1.

Note that population inversion is not achieved exclusively through the pres-
ence of the energy levels. A good example is a free electron laser [2] that uses
highly accelerated electrons that are focused over a periodic set of magnets. The
magnetic field periodically curves the electrons’ trajectory, and in each “bend” of
the trajectory, a photon is emitted due to the change of the electron’s velocity.
So far, these structures represent the most powerful and most tunable lasers and
they are able to emit radiation between X-Ray and microwave part of the elec-
tromagnetic spectrum. However, major flaw of free electron lasers is a need for a
particle accelerator, and a variety of other media is used to cover the spectrum,
most notably gas, chemical dyes, solid-state and semiconductor lasers [3].
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1.1 Semiconductor lasers

Figure 1.1: The principle of typical laser operation. The medium is pumped into
higher states, and radiative transition generates emission of photons at a frequency
determined by the energy level separation. The amplification process is periodically
repeated by using a feedback element, in this case a Fabry-Pérot resonator that consists
of one non transparent and one semi-transparent mirror.

Semiconductor lasers were first demonstrated in 1962 in GaAs PN junction
[4]. As crystalline structures, semiconductors exhibit periodicity in their atomic
potential that results in formation of energy bands that the carriers may occupy.
In every semiconductor, two bands are of interest: the valence band (EV) which
is nearly fully occupied by electrons and the conduction band (EC) which is
nearly empty. These bands are separated by energy energy gap EG. In principle,
lasing transition in diode lasers occurs between EC and EV bands and emission
frequency is determined by the size of the energy gap.

Theoretically, semiconductors are able to cover any desired frequency, as long
as the material with the appropriate direct energy gap is available, and a variety
of binary, ternary and quaternary semiconductor materials [5] may be employed.
At first, it may seem impossible to achieve semiconductor lasers in far-infrared
portion of the electromagnetic spectrum, because a structure with such low band
gap (∼ 10 meV) would not represent a semiconductor, but rather a metal.

Throughout the development of the diode lasers [6], various quantum mech-
anical effects have been employed in order to improve their operation, namely
imposing the constraints on the carrier transport by the use of hetero-junctions
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1.2 Quantum Cascade Laser

which create quantum wells and barriers [7]. The introduction of the heterojunc-
tions, allowed engineering of the band-structure potential and the study of the
state of the art multiple quantum well theoretical proposals presented in [8, 9, 10]
that offered a novel lasing concept in semiconductors, which was able to surpass
the band gap limit on the desired emitting frequency.

1.2 Quantum Cascade Laser

The pioneering proposal in [10] presented a potential lasing semiconductor struc-
ture that employs multiple quantum wells in the valence or the conduction band.
The periodicity of the quantum well superlattice would induce the formation of
energy subbands within the valence or conduction band, in a similar fashion as the
atomic potential in the crystalline lattice of the semiconductor forms the energy
bands. The population inversion may be sustained through the application of
external bias and the tunnelling process between the wells. This cascading struc-
ture is presented in Fig. 1.2b) and the principle of its operation is fundamentally
different from that in the conventional diode lasers. Quantum Cascade Laser
(QCL) is a unipolar device as it uses only electron transport in the conduction
band and its cascading structure promises generation of significantly larger num-
ber of photons because in diode lasers, one electron can only create one photon
after the recombination process with a hole, while in the QCLs one electron may
create as many photons as there are periods in the cascade, if the tunnelling
efficiency is high.
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Figure 1.2: a) Inter–band transition in the diode laser, the emitting frequency is de-
termined by the size of the energy gap and the recombination of electrons and holes. b)
Intra–band (inter–subband) transition in the quantum cascade laser. The lasing trans-
ition occurs between the energy subbands within the conduction band. The population
inversion is maintained through the application of the external bias and the tunnelling
effect.

The first QCL was demonstrated in 1994 by [11] in Al0.48In0.52As/Ga0.47In0.53As
structure, that lased at 4.2 µm giving promising advantages over diode lasers in
terms of the threshold current and mode linewidth, but more importantly, the
possibility of designing sources in mid-infrared (MIR) and far-infrared (FIR). A
variety of material systems (InP/InGaAs, GaAs/AlGaAs,InAs/ AlSb ...) and
designs [12, 13] have been employed to generate QCLs at room temperature
[14, 15] and with high power performance [16, 17] emitting frequencies from 3 µm
[18] to 16 µm [19]. The QCLs have found numerous applications across the MIR
spectrum in chemical sensing [20, 21], free-space communications [22], medical
diagnostics [23], industrial process monitoring [24], plasma spectroscopy [25], gas
spectroscopy [26], etc.

1.3 Terahertz Quantum Cascade Laser

The Terahertz (THz) (or FIR) region is located between the microwave and the
mid-infrared region and the required energy level separation is 1.2 − 30 meV as
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depicted in Fig. 1.3. This frequency range had been nearly inaccessible due
to the meagre availability of the possible sources, such as p-Ge laser [27], THz
parametric oscillator [28] and free electron laser [29].

Figure 1.3: a) Electromagnetic spectrum across wavelength λ, photon energy E and
frequency ν, scaled in µm, meV and THz respectively

The principle presented in Fig. 1.2b) allows the construction of light sources
with very narrow energy separation and the first THz QCL was demonstrated
in 2002 [30] in GaAs at 4.4 THz, that lased up to 50K. Since then, a variety of
structures and designs have been presented [31, 32] that delivered sources from
1.2 THz [33, 34] to 5.4 THz [35], and enabled lasing up to 210K [36] in pulsed
operation, without the assistance of external magnetic field.

The temperature limitation of the THz QCLs comes from the difficulty of
maintaining the low ∼ 10 meV energy separation at higher temperatures and
the lack of the supporting technology for alternative material systems other than
GaAs [37]. The upper frequency limit is determined by the material properties,
namely the existence of highly absorbing Reststrahlen band in GaAs/AlAs above
6 THz [38, 39], while the lower frequency limit is attributed to the fact that the
required energy separation for radiation below 1 THz is lower than 4.1 meV and
designing a structure that can prevent absorption, even at the cryogenic temperat-
ures, is very challenging. Some of the performances have been improved by using
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external magnetic field [40] where lasing up to 225 K was reported, however the
only available room temperature THz QCL sources employ frequency difference
non-linear effects through the use of the MIR QCLs [41, 42]. These structures
up to now generate very low optical power, due to the very low efficiency of the
non–linear processes.

1.4 THz QCL designs

The band-structure engineering for the THz QCLs is more challenging than for
the MIR QCLs, mostly due to the low energy difference between lasing levels
requirement. The principle described in Fig. 1.2b) is not feasible with a repeti-
tion of a single quantum well, but rather with a periodic repetition of a multiple
quantum well stack, where both selective injection into upper lasing level and
efficient extraction from the lower lasing level is maintained with reasonable dy-
namics working range. The period of any QCL structure needs to ensure that
the population inversion is maintained and this is achieved through the design
of the active region which contains lasing states and the injector/collector region
that efficiently transports the carriers between the active regions by resonant
tunnelling effect.

• The active region needs to generate the desired emission through the ra-
diative transition between an upper lasing level (ULL) and a lower lasing
level (LLL). Quantum-mechanically, each energy state is described by the
corresponding wavefunction, whose square moduli represent the state oc-
cupation probability. If two states have highly overlapping wavefunctions,
there is a high probability of their interaction. For the ULL → LLL trans-
ition only radiative interaction is of interest, and fully overlapped ULL and
LLL states (vertical transition) are not generally desired, since the absorp-
tion probability for interaction between LLL and ULL is also higher, along
with potential non-radiative processes that may occur when subbands are
full [43], especially at higher temperature [44]. On the other hand, mater-
ial gain is proportional to the wavefunction overlap through the square of
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the dipole matrix element, and wavefunction misalignment (diagonal trans-
ition) between ULL and LLL is not desired. A good QCL design needs to
find a compromise between these two effects.

• The injector region needs to be efficiently coupled with the active region
so that it maintains the population inversion through two effects: i) collec-
tion/extraction of the carriers from LLL and ii) injection of those carriers
into the ULL of the next period. Employment of an additional injection las-
ing level (ILL) is therefore required. Note that in any quantum mechanical
system, electron would always tend to the lower potential energy, and the
ILL is usually the ground state of the QCL period, usually separated from
the LLL by LO-phonon energy (36 meV in GaAs) for efficient extraction of
carriers from LLL. However in order for the transition LLL → ILL to be
optimal, a cluster of intermediate states may be employed. ILL also needs
to be strongly coupled (nearly aligned) with the ULL of the next period.
The use of additional intermediate states provides more efficient depopu-
lation of LLL leading to the high power operation of the QCL, however it
limits the temperature operation of the device, since parasitic absorption is
more likely to occur, and another compromise needs to be made.

For the THz QCLs, this has led to three major designs [31, 45]: Resonant-phonon
(LO-phonon) structure, Bound-to-continuum (BTC) structure and Hybrid struc-
ture.

1.4.1 LO-phonon design

The LO-phonon design [46, 44, 47] comprises only a small number of quantum
wells, usually two in the active region and one or two in the injector region. This
design, therefore, has only several energy states as depicted in Fig. 1.4. The
key feature of this design is its temperature performance. The depopulation of
the LLL is optimised through the use of LO-phonon scattering mechanism. The
LO-phonon energy in GaAs is 36 meV, and that value corresponds to the energy
difference between LLL and ILL.
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Figure 1.4: LO-phonon design of the high temperature performance structure [47]
that is lasing in the pulsed operation up to 200K. The lasing transition is diagonal, the
depopulation of LLL is obtained through an intermediate level labelled as LLL1 which
scatters to the ILL through the LO-phonon process. ILL is then resonantly coupled
with the ULL of the adjacent period (One QCL period is denoted by dotted vertical
lines).

The LO-phonon scattering mechanism is dominant in any QCL structure,
and it is also essential to prevent the depopulation of the ULL [31] as well. This
is achieved through the addition of intermediate state between LLL and ILL
(labelled as LLL1 in Fig. 1.4). This state is strongly coupled with the LLL, and
at the same time its wavefunction is located in the same well as the ILL. This
has two major advantages: i) LLL is depopulated efficiently to the intermediate
state from the adjacent well and ii) intermediate state undergoes the LO-phonon
transition to the ILL, without having any significant overlap with the ULL.

Another approach to suppress parasitic leakage is to employ higher barriers as
was done in the record highest temperature QCL [36] that lases up to 210K. The
barrier height is controlled by molar fraction of Al, x, which is added to GaAs,
creating AlxGa1−xAs alloy. The value of x = 0.15 is most common for nearly
all realised THz QCLs. The reason for this, is that with low barriers (around
125 meV), the design does not suffer significantly due to experimental tolerance
during the growth. Another issue with high barrier THz QCL is the necessity
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for higher doping, since electrons are more confined than in low barrier material.
For these reasons, the record temperature [36] device operates with very high
current density. However, breaching the previous record of 200K [47] has allowed
thermoelectric cooling systems to be used instead of liquid Helium, which enables
broader industry applications of THz technology.

The advantages of LO-phonon design are:

• Short period length which significantly reduces fabrication and growth is-
sues

• Temperature robustness in pulsed operation at higher frequencies, due to
the low number of energy states

The drawbacks:

• Very high threshold current that also results in high voltage operation

• Very bad temperature performance in continuous-wave (CW) operation due
to the previous drawback (heating of the device).

• Low coupling strength between ILL and ULL

• Non optimal temperature performance in pulsed operation at lower frequen-
cies due to the difficulty of maintaining the population inversion, mostly due
to the previous drawback.

• Non optimal optical power performance due to the diagonal lasing transition
and relatively low injection efficiency

Several variations of LO-phonon design have been realised. A scattering as-
sisted QCL design [48] essentially represents inverted LO-phonon structure. In-
stead of extracting LLL by LO-phonon transition, ULL is being pumped by this
process, while LLL is being extracted through resonant tunnelling. For that
reason, the first well in the design needs to be narrow in order to “lift” the first
state ∼36 meV above ULL and the injection barrier needs to be thin in order to
efficiently depopulate LLL. This design did not provide significant benefits when
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compared to the other ones [49] mainly due to parasitic states that were not sup-
pressed by the design itself. Recently, this issue has been addressed by proposing
designs with higher AlGaAs barriers [50] (Al molar fraction x = 0.2− 0.3). This
design has several significant disadvantages, such as very high operating voltage,
very high current density at the threshold, bad temperature performance with
Al0.15Ga0.85As barriers and fabrication issues with x > 0.15 barriers. The latter
disadvantage is a consequence of slight variation of x during the growth. Ad-
ditionally, designs with high barriers require higher doping which increases the
threshold current (the record structure lases only at threshold current as high as
10 A).

Another variation of LO-phonon design is a scattering assisted device that
has two consecutive LO-phonon transitions ensuring that both ULL and LLL
are being pumped/extracted by this mechanism. This structure has generated
the highest temperature performance at low frequencies [51]. The main issue,
however is a very high bias (voltage) needed to align the states by ≈ 36 + 8 +
36 meV per period. Chapter 8 of the thesis will present similar design scheme
to [51] which does not need very high operating bias operation and represents a
novel design that has not been investigated in literature so far. Calculation and
optimisation technique presented in Chapter 8 has yielded several active region
designs that promise temperature performance above that of the present record
holding structure.

1.4.2 BTC design

The BTC design [33] is composed of a large number of quantum wells, mimicking
chirped superlattice structures designed for MIR QCLs. The presence of multiple
quantum wells results in the formation of quasi-continuous mini-bands rather
than clearly outlined set of bound states as in LO-phonon structures. These
mini-bands contain a dense set of bounds states between LLL and ILL, while
ULL remains bound – isolate in energy spectrum in optically active part of the
structure (which is the reason for the design’s name).
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z

ILL
Mini-band
LLL
ULL

28 meV

5 meV

Figure 1.5: The BTC design of the low frequency record structure [33] (without the
assistance of the magnetic field) that is lasing at 1.2 THz. One QCL period is denoted
by vertical dotted lines. The lasing transition is mostly vertical. The LLL is relaxed
to the ILL with the diagonal transitions within the mini-band (denoted by the green
arrow). The ILL and some of the lower mini-band states then couple with the ULL
from the adjacent period. The ULL - ILL energy difference within the same module
must be kept below LO-phonon energy (36 meV).

The main aim of the BTC structure is in optimising the LLL depopulation
and the injection to the adjacent period ULL by connecting the LLL and ILL
with a cluster of narrow states. As the electrons always tend to the lower energy
the relaxation within the mini-band is very likely to occur, however absorbing
processes are highly probable as well, which is the reason why the number of
quantum wells needs to be high, in order to ensure that the wavefunctions of each
state within the mini-band are spatially shifted mimicking the diagonal transition
in the traditional sense as shown in Fig. 1.5. Note that the lasing transition is
mainly vertical, which results in higher material gain. The important specification
of this design is that the energy difference between the ULL and ILL (within
the same period) must be lower than LO-phonon energy in order to avoid the
depopulation of the ULL by direct electron – LO–phonon scattering. Since the
LO-phonon scattering process is not dominant at low temperatures, this design
is very suitable for CW operation, however the large number of closely separated
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states disables high-temperature applications. The advantages of the BTC design
are:

• Low current threshold which enables CW operation.

• Very good performance at low frequency

• Very good power performance at low temperatures

• High injection and extraction efficiency, the injection to the adjacent period
is highly coupled which tolerates the fabrication and growth variations.

The drawbacks:

• Bad performance with the temperature increase due to the large number of
closely spaced energy levels

• High period length that affects the growth

1.4.3 Hybrid design

The Hybrid design [52] represents the combination of the former two. This design
takes the advantage of high temperature performance of the LO-phonon struc-
tures and high extraction efficiency (and high power) of the BTC structures. In
the simplest manner, this structure can be explained as bound-to-continuum-to-
bound meaning that the ULL is bound, the LLL is formed as a narrow mini-band,
and the ILL is separated from the LLL by the LO-phonon energy.
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z

ILL
Mini-band
LLL
ULL

14 meV

36 meV

Figure 1.6: The Hybrid design of the record highest power structure [53]. Vertical
dotted lines denote one period of the structure. The lasing transition is diagonal, while
LLL is the top of the mini-band. The mini-band relaxation is very fast and mostly
consists of direct transitions, but the transition from the top to the bottom of the mini-
band is overall diagonal (as depicted by the purple arrow). The structure is designed
in a such way that the middle state of the mini-band is separated from the ILL by the
LO phonon energy, and this transition is vertical, ensuring very efficient extraction.

.

The mini-band that forms below the LLL helps in its depopulation, and this
is further enhanced by incorporating the LO-phonon transition in the ILL. This
design solves the main issues from the previous two: i) The efficient mini-band
extraction compensates for the low coupling strength between ILL and ULL and
the current threshold is lower than in the LO-phonon structures which enables
CW operation, ii) the operating temperature is higher than in the BTC structures
due to the LO-phonon extraction stage, iii) The period length is shorter than in
the BTC structures, which allows stacking of high number of periods (∼150) in
order to obtain high optical power. As the LO-phonon process is dominant at
higher temperatures, this design displays very broad optical power dynamic range
and currently holds the records for the highest power [53], the highest frequency
[35] and the highest temperature CW [54] THz QCL. The advantages of the
Hybrid design are:
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• Very high optical power performance, due to the period length and efficient
injection and extraction.

• Very good performance at high frequency

• Very broad dynamic range

• Moderate current threshold which enables CW operation

The drawbacks:

• Moderate temperature performance in pulsed operation due to the mini-
band

• Moderate current threshold value

• High period length that affects the growth

1.5 Growth, Fabrication and Waveguides for THz
QCL

1.5.1 Growth and Fabrication

The nanotechnology has been immeasurably boosted by the invention of Scanning
Tunnelling Microscopy (STM) [55] and Molecular Beam Epitaxy (MBE) [56]. The
latter method allowed physical deposition of very thin epitaxial atomic layers of
material and this started the realisation of structures in nanoscale. MBE is today
the well established technology, especially for wide spread material systems such
as Si and GaAs. The main advantage of MBE is the slow deposition rate (less
than 1000 nm per hour) that requires high vacuum in order to reduce impurities
in the layers.

THz QCLs require high precision of growth, and the main issue in the fabric-
ation is the reproducibility despite the high calibration [57, 58]. In general, QCL
designs with longer periods and higher number of layers display greater variation,
however the Hybrid and BTC design have more efficient pumping of ULL than
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the LO-phonon design and the performance of the device is not significantly im-
pacted. The temperature performance should be better with the larger chip size,
however that also may cause growth defects.

The details of full fabrication and growth processes are beyond the scope of
this thesis. Generally, they involve a multitude of highly sensitive steps that
apart from MBE growth, involve several photolithography, etching, annealing,
deposition and cleaving techniques along with the state-of-the-art calibration and
process monitoring [59].

MBE needs to be calibrated for the specific material system. Apart from
GaAs, THz QCLs have been realised in InGaAs with InAlAs, GaAsSb, AlInGaAs
barriers [37, 60], but none of them match the performance of GaAs devices.
Semiconductors with lower effective mass are preferable due to the potential for
the larger material gain, however the LO-phonon energy needs to be significantly
higher as well. Currently, the only room temperature semiconductor THz QCLs
are realised through non-linear frequency difference effect that uses combination
of MIR QCLs [41].

High interest is drawn by nitride structures due to the very large LO-phonon
energy (∼90 meV) and quantum dot QCLs due to the additional restrictions of
the transport, however the growth technology is extremely challenging. Nitride
structures display built in polarisation, creating saw-like band potential profile
due to material strain, and realising a single quantum well has been very challen-
ging [61, 62]. On the top of that GaN has quite large electron effective mass that
may reduce the laser gain. Theoretically, the low effective mass semiconductors
introduce higher non-parabolicity, which increases the transition line broadening.

1.5.2 Waveguides

Every laser requires a feedback element that directs the generated light to be
amplified through single or multiple passes through the medium. The main issue
with THz radiation is that the free carrier absorption is very high [31] and unique
waveguide designs have been developed that use plasmonic effect [63] in metals or
highly doped semiconductors. The characterisation of waveguides in Fabri-Pérot
setup is determined by the mirror loss αm and the waveguide loss αw.

15



1.5 Growth, Fabrication and Waveguides for THz QCL

The mirror loss depends on the cavity length Lc and reflectivity of the left RL

and the right RR mirror (which are usually equal) as αm = −L−1
c ln(

√
RLRM ) and

for RL = RR = (n+1)2/(n−1)2 the logarithm value varies in range [−0.6,−0.46],
as most III-V semiconductors have the refractive index n between 3 and 3.8. For
GaAs superlattice [64] the value n ≈ 3.25 (= √ε∞ ) can be taken and the mirror
loss is roughly αm[cm−1] = 5.5 L−1

c [mm] which indicates the lower losses for
longer cavities.

The waveguide loss is dominant and requires detailed consideration of the
dielectric properties of the material [45, 65]. The primary mechanism is the free
carrier absorption αfc ∝ NDλ

2µ−1
e (T ) where ND is the doping density, and µe is

electron mobility that depends on temperature and doping density. It is clear
that the operating wavelength strongly influences the free carrier loss.

The laser starts working once the confined light in the waveguide overcomes
the total loss:

Γgth = αm + αw (1.1)

where Γ represents the mode confinement factor which is defined as the fraction of
light confined in the active region. Throughout this thesis we will use the model
developed in this group in [45] that uses one-dimensional transfer matrix method
to determine the dielectric function and total loss (αm + αw) in the waveguide
which is also capable of determining the modal overlap Γ.
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Figure 1.7: a) SP waveguide b) MM waveguide. The scale has been adjusted for better
view, note that the usual dimensions are Hsub ≈ 200− 300 µm, Lc ≈ 1− 4 mm, W ≈
100− 250 µm, HQCL = 9− 15 µm.

Two types of waveguides have been developed for THz QCLs: semi-insulating
single-plasmon (SP) and metal-metal (MM) waveguide [31] that are presented in
Fig. 1.7.

For the SP waveguide, the active region is “sandwiched” between the two
highly doped thin layers, and this ridge is grown on a semi-insulating GaAs and
finished off by the top metal contact. Such configuration forms surface plasmon
modes throughout the doped region, the top metal contact prevents the dissipa-
tion of light, however the bottom contact allows the light to propagate through
the substrate. This results in a relatively small modal overlap (Γ ≈ 0.1 − 0.5),
however the free-carrier loss is minimised because the overlap with the doped
layers is small.

The MM-waveguide uses metal contacts instead of the highly doped layers.
This allows very high confinement of light in the active region (Γ ≈ 1), however
the free-carrier loss is considerably higher than in the SP waveguides. The addi-
tional benefit of the MM-waveguide is the higher mirror reflectivity (R ≈ 0.5−0.9)
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that results in the lower mirror loss, and overall the MM-waveguides have lower
modal loss (total loss divided by Γ) than the SP-waveguides.

The advantages of the SP waveguides are very good beam profile properties
and very high power, while the main disadvantage is the higher current threshold
(due to the higher loss) and the higher thermal dissipation which mainly limits
CW operation. The advantages of the MM-waveguides are in low thermal dissip-
ation and low current threshold, while the power output and beam quality are
non-optimal.

Note that the thermal dissipation highly affects the active region of QCL, and
this will be discussed in detail in chapter 4.

1.6 Modelling approaches

The modelling of laser structures can usually be split into a coupled system of
the gain medium model and the waveguide model equations.

The gain medium modelling requires the investigation of the quantum trans-
port and the thermal effects in the medium. The thermal effects are represen-
ted by the heat equation, while the quantum transport effects are described by
the Schrödinger equation. In solid state devices, the general approach would
account for the many-body crystalline structure through the density functional
theory (DFT) [66, 67] and the carrier transport through the Schrödinger-Poisson
approach by usually employing the Non-Equilibrium-Green-Function (NEGF)
method [68, 69, 70, 71]. The more common approaches would avoid many-body
modelling with DFT by adopting the one-electron approximation and focus only
on Schrödinger-Poisson equation by employing simpler methods than NEGF.

The waveguide modelling requires solving the Maxwell’s wave equation. De-
pending on the type of the resonator, various dynamical properties, multimode
behaviour and non-linear effects may be investigated. The outline of the model-
ling approaches for THz QCLs is briefly presented in table 1.1.
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Gain medium modelling

Transport models Thermal model
3-level RE N -level RE DM NEGF Heat equation

• Simple
• Intuitive
• Analytic expressions
• Low computational

cost
• No coherent transport
• Too few levels

• Simple
• Applicable for any N
• Low computational

cost
• No coherent transport

• Coherent transport
• Applicable for any N
• Moderate computational

cost
• Cumbersome mathematics
• Incomplete transport

consideration
• Debatable input parameters

• General
• Detail transport analysis
• Cumbersome mathematics
• Very high computational

cost

• Linear model possible
• Breaks periodicity
• Fitting approach
• Debatable material

parameters

Waveguide modelling

Travelling wave method Fourier method
Slow-envelope approximation Multi-mode

• Spatial effects
• Dispersion effects
• Partial differential equation
• High computational cost

• Simple
• Low computational cost
• No spatial effects

• Higher computational
cost

• Mode coupling
parameters

Table 1.1: Overview of some properties of modelling approaches

1.6.1 Transport modelling in QCLs

The detailed theoretical background for the Schrödinger-Poisson equation and
the transport mechanisms will be presented in Chapter 2. For a crystalline semi-
conductor structure, the solution yields energy levels Ei and their corresponding
wavefunctions ψi. This allows extraction of the energy level population ni and
the transition (scattering) times τij between the levels i and j. The scattering
mechanisms represent a perturbation effect and simpler methods treat them by
perturbation theory, while the more extensive methods such as the density matrix
(DM) [72] and the NEGF employ complex many-body interaction. Historically
however, the rate equation (RE) method that uses perturbed transport has been
a dominant model for laser description ranging from a 3-level to N -level consid-
eration. The main drawback of RE is that it represents a semi-classical model
and cannot fully account for the resonant tunnelling effect in QCLs and quantum
models such as the density matrix [73, 61, 74] and NEGF [69, 75] approach need
to be employed.

19
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3-level and rate equation model

The 3-level model can be applied to nearly any laser structure [1]. The rate
equations have an intuitive formulation and depict flow of carriers across each
level. The model assumes the existence of carrier pump that generates the pop-
ulation inversion. For resonant tunnelling structures such as QCL, injection can
be allowed into the lower level as well, through the introduction of the injec-
tion efficiency η, as depicted in Fig. 1.8 (assuming injection to level 1 is very
small/neglected).

Figure 1.8: 3 - level transport

Each level is characterised by its population ni and all interactions between
the levels are characterised through the scattering times τij. Additionally, we can
define a value τ−1

i = ∑
j τ
−1
ij that describes all transitions from level i to all other

levels. This value represents the level lifetime and it is commonly used for the
laser characterisation. The rate equations for a 3-level system are:

dn3

dt
= η

Jinj

e
− n3

τ3
+ n2

τ23
+ n1

τ13
dn2

dt
= (1− η)Jinj

e
+ n3

τ32
− n2

τ2
+ n1

τ12
dn1

dt
= −Jext

e
+ n3

τ31
+ n2

τ21
− n1

τ1

(1.2)

or in matrix form:

d

dt


n3

n2

n1

 =


− 1
τ3

1
τ23

1
τ13

1
τ32

− 1
τ2

1
τ12

1
τ31

1
τ21

− 1
τ1



n3

n2

n1

+


ηJinj

(1− η)Jinj

−Jext


dn

dt
= Wn+ Jη

(1.3)
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where W is usually referred to as the rate matrix. In steady state, the derivatives
tend to zero and Jinj = Jext, the solution of Eq. (1.3) is n = −W−1Jη. The
model can be intuitively extended to any number of levels, and pumping effect
can be generalised by addition of individual level pumping efficiencies, although
it is more common to employ η = 1.

For a QCL structure, we can neglect absorption at low temperatures, this
will simplify Eq. (1.3) significantly and by setting τ−1

12 , τ
−1
13 , τ

−1
1 , τ−1

23 to zero the
system yields analytical solution:

n3 = ητ3
J

e

n2 = τ2

(
1− η(1− τ3

τ32
)
)
J

e

(1.4)

The optical gain [45] G32 is usually fitted to the Lorentzian function, and it
is proportional to the population inversion ∆n32 = n3 − n2:

G32 = 4πe
ε0n

z2
32

2γ32LPλ

(
ητ3 − τ2

(
1− η(1− τ3

τ32
)
))

J

G32
η=1= 4πe

ε0n

z2
32

2γ32LPλ
τ3

(
1− τ2

τ32

)
J

(1.5)

where z32 is the dipole matrix element between the ULL (level 3) and LLL (level
2), 2γ32 is the full width at half-maximum (FWHM) of the Lorentzian function,
LP is QCL period length and λ = hcE−1

32 is the lasing wavelength determined
by the energy separation between the ULL and LLL. The modal gain represents
GM = G32J

−1 and for the structure to lase it is required to reach the threshold
gth given by Eq. (1.1).

It is clear from Eq. (1.5) that modal gain benefits from the high injection
efficiency, very short LLL lifetime (τ2) and high ULL τ3 lifetime, shorter QCL
period, shorter wavelength and larger dipole matrix element z32, although there
is a trade off since τ32 is inversely proportional to z32.

This model on its own gives a good background for the laser characterisation,
in terms of its simple parameters, and it is applicable to a variety of MIR and LO-
phonon design THz QCLs. In the literature, the term τ2τ

−1
32 may be used as target

for minimisation optimisation techniques. The more common term of interest is
refereed to as oscillator strength fij = 2m0

~2 (Ei−Ej)z2
ij (where i is usually ULL, and
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j LLL) and many optimisation techniques may focus strictly on it, as it has been
for the former temperature record THz QCL [47]. Oscillator strength benefits
from larger energy separation and dipole element, meaning that it favours the
structures with direct radiative transition and higher emitting frequency. These
properties, however do not ensure the best performance at higher temperatures,
if structure design has multiple parasitic channels that could be suppressed by
larger barriers (which reduces f32, but increases τ2τ

−1
32 ).

The inherent drawback of RE is its inability of modelling quantum effects
such as the coherent tunnelling. The 3-level setup does not show how the carriers
are injected in the subsequent period of QCL and even in the N -level RE model,
the alignment of the resonant states would cause the singularities in the model
results since the transition time would be estimated as an instant effect [76, 74].

Density matrix model

The density matrix model represents a quantum approach that uses a wavefunc-
tion basis to form a statistical ensemble of all possible interactions in the system.
This is particularly useful in systems where mixed states are of interest. The
time-dependent Schrödinger equation describes the time evolution of pure state
|ψ(t)〉 represented by its Hamiltonian Ĥ, while the density matrix introduces an
operator ρ̂ =

∣∣∣ ˆψ(t)
〉 〈 ˆψ(t)

∣∣∣ which, when substituted into the Schrödinger equa-
tion (instead of |ψ(t)〉), describes evolution of the ensemble of wavefunctions that
correspond to the chosen basis. The new equation is called Liouville equation:

dρ̂

dt
= − i

~
[Ĥ, ρ̂] (1.6)

and its derivation can be found in many quantum mechanics books [77]. If the
wavefunction basis consists of pure states, Eq. (1.6) would provide information on
evolution of mixed states through its off-diagonal elements ρ̂ij =

∣∣∣ψ̂i〉 〈ψ̂j∣∣∣. It is
also common to add perturbation theory scattering rates, similarly as in Eq. (1.3)
by adding dissipator term D = −( ρ

τ
)relax to Eq. (1.6). This term would account

for processes that are not included in the Hamiltonian, but cause decoherence of
the system.
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In application to QCLs, the difference between RE and DM is in the different
Hamiltonians. RE solves the Schrödinger-Poisson equation for the two-period
Hamiltonian of the system, while DM solves it only in one period in a tight-
binding approximation by putting infinitely thick barriers on either side of the
period. The solution of the tight-binding problem is then used as the basis for Eq.
(1.6) and the tight-binding Hamiltonian is extended to include finite dephasing
time through the barrier as well as Rabi oscillations at the frequency ∆ij′/~,
where ∆ij′ is the anticrossing energy between states i and j’ where j’ is the state
from the adjacent period which is aligned with state i due to the external bias.

It can be shown that equations that correspond to the diagonal of the matrix
system in Eq. (1.6) (with the dissipator) are actually the rate equations. In [74]
we showed that model output of the DM approach contains the output from RE
model. DM can be viewed as generalisation of RE approach, and it is possible to
add correction terms to RE model [76, 78] to account for the quantum effects.

Vast literature is available [79, 80, 81] for DM implementation in a 3-level
scheme, however in this thesis the main focus will be on modelling bound-to-
continuum and Hybrid THz QCL structures that employ large number of energy
levels per period. Chapter 3 will focus in detail on DM model that was first
presented in [82] and then generalised for arbitrary number of states per period
in our group, in [73, 61]. One of the main contributions of this thesis is in the
detailed mathematical description of this model [83] and its adjustment for the
dynamical modelling that was partly published in [83] which will be discussed in
chapter 7.

1.6.2 Thermal modelling of THz QCLs

QCLs represent highly complex structures. The active region consists of ∼ 100
periods and each period comprises at least six layers (for the three-well LO-
phonon structures) of quantum barriers and wells. Implementing ab initio ap-
proaches like DFT is virtually impossible, along with the accounting of the
quantum behaviour of all the periods. For that reason nearly all QCL models
[76] exploit the periodicity of the structure for the transport modelling techniques.
This however imposes that the effect of the external bias is uniform, which is not
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generally correct. It is likely that different periods have different bias conditions
[68, 84, 85] due to the nature of the sample and the dynamics of the current flow
between the contacts. This can be circumvented by treating the constant electric
bias as an effective value, however THz QCLs are highly influenced by thermal
effects as well.

Thermal distribution of the carriers strongly influences the Schrödinger-Poisson
equation, and due to the cooling setup of QCLs it is likely that different periods
have different temperatures, and this would not only cause the shifts in the bias,
but also the changes in the current transport and the optical characteristics of
different periods.

QCLs usually operate in continuous-wave or pulsed operation and thermal
effects are particularly critical for CW, where the device is heated due to the
electrical losses in the circuit. The cooling setup of QCL puts the operating (cold
finger or heat sink) temperature on the substrate bottom contact (Fig. 1.7) and
it is expected that the temperature would rise towards the top contact, due to
the electrical power dissipation in the active region. Note that the process is
anisotropic, however the critical effect occurs in the lateral direction, since the
thickness of QCL stack is much smaller than its width and length. Fourier law
of conduction (the heat equation) in one dimension is:

ρmcp
∂T

∂t
= ∂

∂z

(
kz
∂T

∂z

)
+ Pe

VV
(1.7)

where ρm is the material density, cp is the specific heat capacity, kz is thermal
conductivity in lateral direction, Pe is the electrical power and VV is the volume
of the active region. In steady state, this equation only requires the information
on thermal conductivity which is spatially dependent due to the heterostucture
layers in the active region. It is possible to use Abele’s interpolation scheme [86]
to determine kz in the barriers, however it is debatable whether the bulk values
can be used, since the phonon modes would be different. It is more reliable to
model the active region as a homogeneous material with a smaller conductivity
than in the bulk. It has been estimated that for the GaAs superlattice, kz ≈
9.6T−0.14 Wm−1K−1 [87]. The heat generation is present only in the ridge of the
device, specified by dimensions LC ×W ×HQCL as presented in Fig. 1.7.
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For illustration, we can assume that kz and Pe are constant. In the segment
[0, HQCL] we can assume boundary conditions ∂T

∂z
|z=0 = 0 and T |z=HQCL = Tsub,

and analytical solution is T = Tsub+ Pe
2kzVV

(
H2

QCL−z
2

2

)
. This is a parabolic depend-

ence and we can introduce an effective active region temperature, by integrating
additionally over the [0, HQCL] segment, this yields T = Tsub + HQCLPe

3kzWLc
(note that

we used VV = HQCLLcW ). Although this derivation is ambiguous, steady state
solution of the heat equation in the form:

T = TH +RTHPe (1.8)

where RTH is a thermal constant, has been the usual model for thermal effects
in QCLs [45]. Interestingly, the analytically derived thermal resistance would be
equal to RTH = HQCL

3kzWLc
and this does give intuitive confirmation that QCLs with

wide ridge, long cavity and shorter active region display better thermal perform-
ance. However, electrical power is the product of current and voltage, which when
re-scaled to the current density and electrical field Pe = IV = JKWLcHQCL can-
cel the dimension terms in RTH and only suggests that the height of QCL ridge
HQCL has the main effect on heating. Experimentally however, devices with larger
WLc do heat less, however due to the fabrication process, probability of defects
is higher, and size optimisation needs to be performed (note that larger Lc also
reduces cavity loss).

Note that Eq. (1.8) has been phenomenologically derived from the experi-
mental observations. The derivation we performed assumed constant electrical
power, constant thermal conductivity and most importantly, we averaged the
analytical solution in the active region. Note also that Eq. (1.8) has a free term
of the heat sink temperature TH, while our derivation took into account that sub-
strate temperature would be different. The main issue with Eq. (1.8) is that RTH

is not a constant, but rather a fitting parameter [45] which will unfortunately be
different for the different heat sink temperatures. This will make modelling of
the temperature dependence of the threshold current very challenging.
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Figure 1.9: Numerical solution of the steady state heat equation, using kz = 9.6T−0.14

Wm−1K−1 [87] for a ridge of 200 × 3000 × 14 µm size. The top of the substrate
temperature is set to 20 K, and solution was plotted only across the 14 µm thick
active region for three constant power values. The green line corresponds to the pulsed
operation of QCL with 5% duty cycle, while blue and red correspond to the CW
operation.

The numerical solution in steady state of Eq. (1.7) is presented in Fig. 1.9
and it is clear that different periods would have different temperatures in CW
operation. The simulation used kz = 9.6T−0.14 Wm−1K−1 [87] and assumed
constant power, which is mostly true at low temperatures in QCLs. Note that
this simulation assumed that the top of the substrate is at heat sink temperature,
which is also an approximation, Eq. (1.7) needs to be solved across the substrate
as shown in [86]. The electrical power can be represented as Pe = σdIV where σd

is the duty cycle (100% for CW, 2-15% for pulsed operation), I is the electrical
current and V the voltage.

The thermal model in Eq. (1.8) has almost negligible effect in pulsed oper-
ation, however due to the dynamics of the process, the appropriate equation is
Eq. (1.7) and the specific heat capacity cp is dependent on temperature.

Chapter 4 will present in detail the steady state modelling of QCL structures
in CW and pulsed operation that accounts for thermal effects, where pulsed
modelling of QCLs shows to be more reliable.
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1.6 Modelling approaches

1.6.3 Maxwell wave equation

In general, Maxwell’s wave equation for a homogeneous, isotropic medium, without
the external magnetic field is [1]:

∇2E− 1
v2

g

∂2E
∂t2
− σ

ε0c2
∂E
∂t

= 1
ε0c2

∂2P
∂t2

(1.9)

where E(r, t) is the optical electric field, P(r, t) is the medium polarisation,
vg = cn−1 is the group velocity, σ is the conductivity that accounts for the
ohmic losses in the cavity [1] 1 and n is the refractive index. Note that it applies
σ = ε0ncgth when combined with Fabri-Perót resonator in Eq. (1.1).

Equation (1.9) is rarely being solved in this form. The common approxima-
tions are travelling wave method and Fourier method.

Travelling wave method

The travelling wave method (TW) assumes that the electrical field propagates as
a combination of the forward f+ and the backward f− wave E(z, t) = 1

2 f
+(z, t)

ei(kz−ωt) + 1
2f
−(z, t)e−i(kz+ωt) + c.c where k and ω are the corresponding wave

number and the frequency, respectively, and ω = kvg. We additionally assume,
that the polarisation will follow the symmetry of the electrical field and have
similar form: P (z, t) = P+(z, t)ei(kz−ωt) + P−(z, t)e−i(kz−ωt) + c.c. When this is
plugged into Eq. (1.9) under slow-varying envelope approximation, we have:

1
vg

∂f±

∂t
± ∂f±

∂z
+ σ

nε0c
f± = i

ω

nε0c
P± (1.10)

More detailed derivation of Eq. 1.10 can be found in the Appendix A. This
equation can be combined with the transport models which can yield information
on the polarisation. The density matrix model, for instance, can provide the
polarisation directly, and material gain is directly proportional to the polarisation
g ≈ − ω

nε0c
Im{P}
Re{E} .

The application of Eq. (1.10) to QCLs can be found in [88], however, these
equations are of interest when modelling spatial properties of the optical field and
effects that employ coupled cavities or frequency combs. Solving Eq. (1.10) is a

1In some literature this term is added separately
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1.6 Modelling approaches

challenging task as it requires detailed consideration of numerical stability issues
and the computational cost is higher than for the commonly employed Fourier
method.

Fourier method

The Fourier method is the most commonly employed approximation for the
wave equation. The electric field is presented as a collection of orthogonal nor-
mal modes un(r) that are modulated by the time dependent envelopes En(t),
E(r, t) = ∑

n un(r)En(t). The orthogonal modes satisfy the Laplace equations
(∇2 + k2

n)un(r) = 0 and when this is substituted in Eq. (1.9), we obtain:

∂2En
∂t2

+ σ

ε0n2
∂En
∂t

+ ω2
nEn = − 1

ε0n2
∂2Pn
∂t2

(1.11)

where ωn are the resonance frequencies of the cavity. un(r) and ωn are the
eigenvectors and eigenvalues of the empty cavity (without polarisation) [1]. This
formulation of the wave equation may be used for multimode modelling of laser
structure [1]. For a single mode structure, the usual approach is to introduce a
slow varying envelope E(t) and seek the response to a cosine excitation at carrier
frequency ω as En = E(t)(eiωt + e−iωt), with Pn = P (t)(eiωt + e−iωt) Eq. (1.11)
becomes:

∂E

∂t
= −

(
σ

2ε0n2 + i(ω − ωn)
)
E − i ω

2ε0n2P (1.12)

In single mode lasers, the lasing frequency is at resonance with the cavity mode
ωn = ω, and this further simplifies Eq. (1.12). Eq. (1.12) is the most widely
used Maxwell equation for laser modelling, and it is often presented without prior
derivation. Detailed derivation of Eqs. (1.10,1.11) is given in the Appendix A.

Note that the polarisation P is expanded in the same orthogonal basis un(r),
because P is usually produced coherently through the electric field, however if
there is some coupling between the modes, or the presence of non-linear effects,
a separate equation similar to Eq. (1.9) can be formulated for Pn(t) [1].

Dynamic laser modelling will be presented in Chapter 6. It can be shown
that the real part of Eq. (1.12) has a term (loss − gain)E which describes the
fundamental principle of the laser operation, in the sense that the generated
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1.7 Self-mixing interferometry

optical electric field will tend to equalise the modal gain and modal loss in the
steady state.

1.7 Self-mixing interferometry

The fact that FIR spectrum has been almost inaccessible for research before
the development of THz QCLs shows their significance and possible applications
[32, 89, 90]. In this thesis, one of the focuses will be on modelling of the self-
mixing (SM) interferometry applications.

The self-mixing interferometry represents an interferometry effect in the laser
due to the external homodyne optical feedback. This effect has been demon-
strated for multiple laser types [91] and its principle relies on the reinjection of
the laser light into the cavity. Normally, the reflected radiation is detrimental to
the laser performance, however if the small portion of the laser’s own radiated
light is reinjected into the cavity by using the third, external mirror, the effect
can be experimentally measured. More importantly, the measured signal (ter-
minal voltage) can be used to extract the information on the properties of the
external mirror/target. This presents a unique possibility of using the laser as a
light source and a detector at the same time [92].

The range of detectors for THz radiation are nearly as limited as the range of
sources [32], and along with the already expensive QCL cooling system, using the
SM effect represents an ideal solution. The SM in THz QCLs is further boosted
by their superior characteristics in terms of the fast gain recovery and the lack
of the relaxation oscillations. Group in Leeds is currently a leading research
institution in self–mixing interferometry THz QCL applications with multiple
pioneering achievements [93, 94, 95, 96, 97] along with the collaborative group in
University of Queensland, Australia [98, 99, 100, 101].

The modelling of SM effect relies on adding a feedback term to the slow-
varying envelope wave equation Eq. (1.12) written for diode laser and this is
commonly referred as the Lang-Kobayashi (LK) model [102]. The modified wave
equation is:
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1.7 Self-mixing interferometry

∂E

∂t
=
(
i(ωn − ω) + 1

2

(
ΓG− 1

τp

))
E + κ̃E(t− τext)e−iωτext (1.13)

where ΓG represents modal gain rate, τp photon lifetime in the cavity, τext ex-
ternal cavity round-trip time and κ̃ feedback coupling rate. This equation with
a complex variable can be converted into two equations corresponding to the
real and the imaginary part or the amplitude and the phase equation, or the
amplitude squared (proportional to optical power) and the phase equation [91].

Note that LK model has been developed phenomenologically for the diode
lasers, and the derivation of Eq. (1.13) from Eq. (1.12) requires introduction of
gain factor G (unit s−1) that is coupled to the population inversion [7].

This requires the modelling of QCLs for SM effect to revert to an effective
two-level model [103, 104] common for diode lasers. As discussed earlier, RE
models are not fully applicable to THz QCLs, furthermore the number of states
in QCL period is much larger than two and coherent transport model needs to be
applied. The DM model for diode laser has been coupled to Eq. (1.13) before the
introduction of LK model [105] and theory that extends the Maxwell equation to
account for feedback beyond phenomenological consideration, has been developed
[1].

Note that Eq. (1.13) still describes the fundamental property that the feed-
back would modify the electric field in the cavity, and this may effectively be
modelled as a reduction of the loss, which represents the effective mirror model
[7] and was applied to QCLs in [106].

The main issue in the derivation of Eq. (1.13) is that it uses the diode laser
parameters such as the gain factor G which is usually obtained through the linear-
isation of the material gain profile. Additionally, the information on the medium
polarisation is lost. The modelling techniques for THz QCLs, described earlier,
all yield material gain, and the optical feedback needs to be introduced in Eq.
(1.13) instead, as suggested in [1]. Chapter 6 presents the dynamic modelling of
THz QCL, while Chapter 7 gives a detailed study of the SM effect, coupled with
the DM model that is independent on the number of states considered.
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1.8 Thesis outline

This thesis presents the numerical modelling of THz QCLs by the DM model
and focuses on the modelling of the dynamic effects with feedback, specifically
the self-mixing effect. Chapter 2 presents the theoretical background for the
scattering mechanisms employed for the transport description in QCL along with
the RE model that has been developed in previous work within this group.

Chapter 3 relies on DM model developed in 2012 [73] and 2015 [61], however
methodology used in this chapter is a novel and original work, that resulted in
publications [74, 83]. This chapter offers full mathematical explanation behind
the DM model and presents the DM system in a compact algebraic form.

Chapter 4 explains the technical application of the steady-state QCL model-
ling and applies the DM model to several exemplar QCL structures. The con-
sidered structures correspond to the designs described in Introduction 1.4 to dis-
play the broad versatility of the model. Comparison of the DM and RE models
from Chapter 2 is also given. This model has been used in several successful
collaborations with groups in University of Queensland, Australia, University of
Nottingham, United Kingdom and University of Belgrade, Serbia.

Chapter 5 focuses on acoustic modulation of THz QCLs. This chapter is a
product of joint research with University of Nottingham. A publication by Dr.
Aniela Dunn is most recently accepted in Nature Communications [107], and the
theoretical work of this publication was performed by the author of this thesis and
will be presented in this chapter. This modulation scheme is based on sending
an acoustic wave that creates a strain deformation potential which perturbs the
QCL structure, allowing state of the art modulation technique.

Chapter 6 extends the DM model presented in Chapter 3 for the dynamic
applications. To our knowledge, this work represents the first Maxwell-Bloch
model for QCL structure that is independent on the number of states in one
QCL module. Content of this work has resulted in the publication [83] which
also displayed the simplest algebraic formulation of the DM model that was also
described in Chapter 3. The dynamic model has been applied to several structures
and some known concepts of QCL dynamics have been discussed.
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Chapter 7 modifies the Maxwell wave equation from Chapter 6 by adding the
self-mixing feedback term. This allows modelling of SM interferometry techniques
except the frequency sweep which requires alterations of the model that are not
numerically feasible in reasonable time (coupling the dynamic heat equation to
account for heating effects).

Chapter 8 discusses QCL designs and proposes novel and original structures
for improved temperature performance, by employing the model presented in
Chapter 4.

Chapter 9 presents the concluding remarks, potential applications of the model
in the current form and the future challenges and the drawbacks of the model.
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Chapter 2

Schrödinger-Poisson equation
and transport mechanisms

The carrier transport in nanostructures is heavily dependent on quantum mech-
anical effects, and this chapter will illustrate the calculation of the electronic
structure under the envelope function approximation which will determine the
output characteristics of the QCL. The Schrödinger–Poisson equation will be
presented along with the discussion of the numerical procedure for determining
the quantised energy levels and their wavefunctions. We will also discuss the
scattering mechanisms that describe the interaction of carriers with the alloy dis-
order, the impurities within the material, the interface of the heterostructure, the
acoustic and optical vibrations of the lattice and the other carriers. The models
in this chapter do not present author’s original work and rely on the derivations
available in the literature and the numerical code that was developed by previous
research in this group 1. However, the author did restructure the original code
for the numerical optimisation, that has significantly speeded up the simulation
of one QCL structure, from ∼ 2 hours to ∼ 5 minutes, which allowed the author
to upgrade the model for the dynamical study and the SM effect, which will be
discussed in the following chapters.

1Dr Vladimir Jovanović, Dr Alex Valavanis, Dr Jonathan Cooper, Dr Craig Evans, Dr
Nenad Prodanović, Dr Andrew Grier and their supervisors’ works
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2.1 Schrödinger equation

2.1 Schrödinger equation

The Schrödinger equation that would yield energy levels in QCL, similar to
the ones in Fig. 1.1 is derived through several approximations. The electronic
structure of the bulk semiconductor material involves the many-body interaction
between the atoms in a periodic lattice. We are mainly interested in properties
of electrons that are able to flow through the structure, and therefore create the
electrical current. To obviate the need for the many-body considerations, the
periodicity of the lattice is exploited through the introduction of the envelope
function approximation [108] and the one-electron approximation [109].

The one-electron approximation assumes that the quantum mechanical prop-
erties can be determined by considering the properties of a single electron, there-
fore neglecting any interaction with other electrons. This does not mean that the
electrons do not have any influence in the system, but rather that eigenvalues and
eigenfunctions of the single electron Hamiltonian are not significantly influenced
by the interaction part of the Hamiltonian. The perturbation techniques can still
be used to account for this negligence. This is a standard technique which avoids
the many-body consideration, both in the atomic and the electronic structure of
the material.

An electron in the semiconductor lattice “sees” the Hamiltonian consisting
of the kinetic operator T̂ , the atomic potential Ûa and the conduction band po-
tential Û . The potentials have only spatial dependence, and time-independent
Schrödinger equation may be used. The envelope function approximation essen-
tially decouples the effects of Ûa and Û by assuming that the solution has a form
of the product of the individual potential’s solutions. The derivation, however is
not straightforward, and it employs several approximations, most notably, that
we are seeking the solution around the bottom of the conduction band – the
Gamma Γc point. This is a good approximation in GaAs which is a direct band
gap semiconductor, but inter-valley scattering may be of high importance in ma-
terials with low effective mass, like GaSb [110] or indirect semiconductors like Si
[111]. The slow varying envelope approximation can be found in [108] and it is
explained in the Appendix B.

34



2.1 Schrödinger equation

The Schrödinger equation under the envelope function approximation in the
semiconductor with a direct band gap is:

(
−~2

2 ∇
1

m(r)∇+ U(r)
)
ψ3D = (E − EC,0)ψ3D (2.1)

where EC,0 is the energy at the bottom of the conduction band (Gamma point),
the kinetic operator was written in ∇ 1

m(r)∇ form to account for the spatial de-
pendence of the effective mass, due to the heterostructure layers, and ψ3D is the
envelope wavefunction that modulates the wavefunction that corresponds to the
atomic potential (Appendix B). Depending on the level of the spatial freedom of
the structure, or in other words, whether we are dealing with the quantum wells
(1D restriction), quantum wires (2D restriction) or quantum dots (3D restriction),
Eq. (2.1) takes different forms, resembling the Fourier method of separation of
variables.

For a quantum well system, we assume that the motion of the electron in
plane is free Ux = Uy = 0, Uz = V (z) and that the wavefunction can be written
as a product of a plane wave in the plane r‖ = {x, y} and z–dependent envelope
function ψ(z) in the direction of the layer growth, ψ3D = A−

1
2ψ(z)eikr‖ where

A is the normalisation constant equal to the layer surface, and k = (kx, ky) is
the wavevector in plane. The effective mass and the potential only vary in the
z direction and we can take EC,0 = 0 for simplicity (since we can shift energy
coordinate system to our own preference). The Schrödinger equation for the
quantum well system obtained by the bandstructure potential V (z) is:(

−~2

2
d

dz

1
m(z)

d

dz
+ V (z)

)
ψ =

(
E + ~2k2

2m

)
ψ (2.2)

The dispersion relation of energy in form Es(k) = E+ ~k2

2m is commonly referred
to as a subband energy and it physically shows that 1D alternation of wells and
barriers caused by the heterostructure layers in QCL gives discrete energy levels
E, but allows a continuous dispersion in k plane. Equation Eq. (2.2) needs to be
solved for a continuous set of k values, which is not numerically feasible.

The common approach is to find the value of the subband energy minima E
by setting k to zero. The influence of k can then be treated as a correction to the
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2.2 Poisson equation

potential V , through the perturbation theory and the effect may be incorporated
into the effective mass. Additionally, the approximation from which the Eq. (2.2)
has been derived, in particular focusing only around the Γc point of Brillouin zone,
is not viable for higher energies and the dispersion relation may have additional
terms (powers of k) causing the non-parabolic subband dispersion.

The most commonly used approximation uses the two-band Kane model which
introduces the correction in the form m∗(z, E) = m(z, 0) (1 + αk(E − V )). Para-
meter αk is inversely proportional to the band gap energy. The non-parabolicity
effects affect the subband minima energy values, especially when the higher states
are of interest. In GaAs–based QCLs, this approximation is adequate, since the
band gap is large (∼ 1.42 eV), and states are relatively low. Additional corrections
can be made directly to the energy dispersion relation by using the multi-band
(usually 6,14 or 26 – band) kp model, however these corrections are negligible in
GaAs QCLs, even with the application of the magnetic field [112].

If we substitute the mass m(z) by an effective value m∗(z, E) and focus on the
subband minima energy by setting k to zero, equation (2.2) can be turned into the
eigenvalue problem Hψ = Eψ through the finite difference approach [108, 113].
However the introduction of the energy dependent effective mass, turns Eq. (2.2)
into a non-linear eigenvalue problem, which can be solved by searching for an
energy Ei that provides zero eigenvalue of (H(Ei)− EiI)ψi = λiψi equation.

2.2 Poisson equation

In order to achieve the flow of electrons, the semiconductor material needs to
be doped. This is a common technique in diode lasers, although in QCLs the
manipulation of the carrier flow is different. The QCL is unipolar device and needs
only electrons as carriers, thus donor doping is needed. The dopants represent
ionised impurities in the semiconductor crystal lattice that provide free electrons.
Both of these carriers induce their own contribution to the electric field whose
potential φ may be treated through the Poisson equation:

d2φ

dz2 = − e

ε0n2

(
N+

d (z)− ρc(z)
)

(2.3)
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2.2 Poisson equation

where N+
d (z) is the distribution of the ionised donors and ρc(z) is the spatial dis-

tribution of the electrons. If all donors are ionised, their distribution equals to the
concentration of the donor doping level ND which is a justifiable approximation at
higher temperatures. At lower temperatures, the distribution is given through the

standard doped semiconductor theory as N+
d (z) = ND

(
1−

(
1 + 1

2e
ED(z)−EF

kBT

)−1)
where ED and EF are the donor energy level and Fermi level, respectively.

The electron distribution is spread throughout several subbands that arise
from the Schrödinger equation. The QCL is a non-equilibrium device and each
subband i has Fermi-Dirac distribution of electrons with its own quasi-Fermi level
EQFi (and electron temperature) which is linked to the subband population as:

ni = mdkBTi
π~2

(
EQFi

kBTi
+ ln(1 + e

EQFi
kBTi )

)
(2.4)

The subband populations can be obtained through the transport model (RE,
DM, NEGF ...) and require solving the Schrödinger equation. The spatial distri-
bution of the electrons in subband i is given through the product of the popula-
tion ni and its probability given by |ψi(z)2|, thus the total electron distribution
is determined as a sum over all the subbands:

ρc(z) =
∑
i

ni|ψi(z)|2 (2.5)

To solve Eq. (2.3), information on ρc(z) is needed through the solution of Eq.
(2.2), however the potential in Eq. (2.2) needs to be corrected by the solution of
Eq. (2.3) which is commonly referred to as the Hartree potential, which results
in a system of coupled differential equations.

This system can be solved through an iterative procedure that uses an initial
guess for n(z) and solves Eqs. (2.2,2.3) separately, and then repeating the pro-
cedure, until convergence. The system of Eqs. (2.2,2.3) is commonly referred as
Schrödinger-Poisson equation, and iterative approach as self-consistent approach.

The numerical discretisation of Schrödinger-Poisson equation may be treated
through the finite-difference method that yields tridiagonal eigenvalue problems,
that have direct solution by the Gaussian elimination (Thomas algorithm [114]),
if the matrix is diagonally dominant. This is presented in Appendix C.
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2.3 Fermi golden rule

The perturbation theory for the Schrödinger equation has been the most common
technique for treating various effects that are not included in the Hamiltonian,
with a requirement that the perturbation Hamiltonian has much smaller mag-
nitude (in terms of its elements in the matrix form) than the Hamiltonian of the
unperturbed system.

If the perturbation is only spatially dependent, the framework expands the
wavefunction and the energy to include correction terms that depend on the per-
turbation Hamiltonian simply through its matrix elements (the diagonal elements,
for instance, are the first correction to the energy) [112].

The time–independent Schrödinger equation is applicable only to the spa-
tially dependent Hamiltonians. The derivation strongly depends on this, as it
essentially applies the Fourier variable separation approach by assuming that the
wavefunction can be written as a product of only time dependent and only spa-
tially dependent function. When this is plugged into the general Schrödinger
equation, the separation approach results in a usual sum of the only time and
only space-dependent terms, and the only solution is if they individually equal
to a constant. For the time dependent part of the equation, this constant turns
out to be the energy, and the time dependent part of the total wavefunction has
a form e−

iEt
~ while the spatial part needs to be determined by solving the time-

independent Schrödinger equation. Clearly, as soon as the Hamiltonian becomes
time-dependent, the Fourier separation is no longer possible, and the physical
“meaning” of the energy is lost.

The time–dependent perturbation theory requires that the perturbation Hamilto-
nian H ′(t) does not affect energies of the system obtained by the unperturbed
Hamiltonian. This formalism provides corrections to the wavefunction of the un-
perturbed system. This may be used to obtain the transition probabilities caused
by H ′(t). The first and the second correction term of the wavefunction ψf , due
to the interaction with the wavefunction ψi for f 6= i have the form:
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ψ
(1)
f = − i

~

∫ t

t0
H ′fi(t′)eiωfitdt′

ψ
(2)
f = − 1

~2

∑
m

∫ t

t0

∫ t′

t0
H ′fm(t′)H ′mi(t′′)eiωfmt

′+iωmit′′dt′′dt′
(2.6)

where ωfi = ~−1(Ef − Ei) is a frequency proportional to the energy separa-
tion. The first correction, resembles the Fourier transform of the perturbation
Hamiltonian. To obtain the physical interpretation, the modulus squared of the
wavefunction gives the probability of transition Pi→f = |ψf |2 = |δfi+ψ(1)

f +ψ(2)
f |2.

Approach in Eq. (2.6) may be used to treat a variety of the time dependent
perturbations such as the effect of the propagation of an acoustic wave through
the QCL stack which will be discussed in Chapter 5.

If we assume that the first correction term in Eq. (2.6) is dominant, and that
the perturbation is harmonic in the form H ′ = V ′(r)e−iωtθ(t) where θ(t) is a step
function, we obtain:

ψ
(1)
f = − i

~
V ′fi

sin
(
ωfi−ω

2 t
)

ωfi−ω
2

e
ωfi−ω

2 t (2.7)

The probability of the transition i→ f is given as Pi→f = |ψ(1)
f |2. If we define

the transition rate as Wi→f = lim
t→∞

Pi→f
t

and use the limit properties of the sinc
function, we obtain the Fermi golden rule:

Wif = 2π
~2 |V

′
fi|2δ(ωfi − ω) (2.8)

The delta function depends on the energy difference between the states f and
i, and since in our case this dependence has parabolic dispersion relation with k as
shown in Eq. (2.2), the scattering may occur for any value of k. This extends the
principle presented in 1.1 and introduces the interaction between the parabolic
energy subbands.
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Figure 2.1: Energy subbands of two states following the parabolic dispersion rela-
tion with k. Transition that satisfy the delta function selection may occur within the
subband (the yellow line) or between two different subbands (the purple line).

These subbands are continuous in k space, and the transport may be envi-
sioned as the interaction between the parabolas depicted in Fig. 2.1 where Fermi
golden rule serves as a selection rule which restricts kf and ki so that they satisfy
the delta function selection principle. The interactions also need to satisfy the
energy conservation law, thus the kinetic-balance model needs to be introduced,
which will add an additional iterative procedure to the Schrödinger-Poisson equa-
tion, resulting in a self-self-consistent method.

The static perturbation potentials in form H ′ = V (r)θ(t) are actually more
common than the harmonic ones, and we may set ω to zero in Eq. (2.8) to obtain
the static perturbation Fermi golden rule (or alternatively solve Eq. (2.6), which
will clearly reduce to the Fourier transform of a step function):

Wif (ki) = 2πm∗
~3|kα

||V ′fi|2δ(|kf | ± |kα|)θ(k2
f )

kα =
√
k2
i −

2m∗Efi
~2

(2.9)

where the step function θ(k2
f ) was added to ensure that the final state lies in the

final subband [111].
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This derivation substituted the parabolic subband dependence, assumed the
identical effective mass in i and f subbands and used the properties of the delta
function. However, we are interested in the averaged scattering rate that occurs
between the subband i and all the other subbands. Nominally, this requires us
to sum Eq. (2.9) for different values of kf . Since this is a continuous variable,
the sum can be switched to the integration and we can additionally improve the
expression by implementing the Pauli selection rule which states that scattering
cannot occur, if the state is already occupied. The reduced W ′

if and the averaged
W̄if scattering rates are:

W ′
if (ki) = Am∗

2π~3 Θ((kα2)(1− fFD(Esf , Te))
∫
|V ′fi|2dφ

W̄if =
∫∞
0 fFD(Esi, Te)W ′

ifkidki

πni

fFD(Es, Te) =
(
e

1
kBTe

(
E+ ~2k2

2m∗ −EF

)
+ 1

)−1

(2.10)

where A is the surface area and φ is the angle (both arise from the transforma-
tion of a sum into an integral when polar coordinate system is used), kB is the
Boltzmann constant, EF is the Fermi level, Te is the electron temperature, ni is
the population of the subband i and Esi and Esf are the parabolic subband ener-
gies of the states i and f , respectively. The Fermi-Dirac fFD(Es, Te) distribution
gives the occupancy probabilities of subband Es. Note that the delta function se-
lected kf = kα above, the detail derivation can be found in [111]. The integration
of W̄if is usually applied over the finite boundaries, as it can be approximated
that 99% of the subband population lies below 4.6 kBTe. Note that the Fermi
energy EF cannot be defined in a non-equilibrium system as a QCL. Instead, each
subband has its own quasi-Fermi level and the electron temperature, which com-
plicates Eq. (2.10) further, however the simplification can be provided through
the kinetic balance model.

The wavefunction basis for the determination of Vfi matrix elements are not
the envelope wavefunctions obtained by Eq. (2.2), but rather the full wavefunc-
tion ψ3D = A−

1
2ψ(z)eikr‖ and for the most scattering effects Vfi would not depend

on the transversal wavevector which will cancel 2π, and the spatial integration of
Vfi would also cancel the normalisation parameter A.
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We may separately treat several elastic and non-elastic perturbation effects
with Eq. (2.8) to describe the intersubband scattering transition processes in
QCLs (and plethora of quantum well systems). The obtained rates are additive,
and transport may be modelled through the rate equation or the density matrix
model. The scattering rates obtained by Eq. (2.8) are semi-classical and inco-
herent, however the DM model may account for the quantum effects, and even
extend the Fermi golden rule [72]. The main drawback of Eq. (2.8) is that this is
a perturbation approach, and non-equilibrium-Green-function model treats the
scattering Hamiltonians in a different manner, giving more precise values [76, 68],
but more demanding computational implementations.

2.4 Alloy disorder scattering

The heterostructure with any semiconductor materials theoretically breaks the
crystal lattice structure of the bulk material. For that reason, materials need
to be well matched, so that the heterostructure remains stable. This results in
pairs of the adequate materials that can be combined to form a quantum well
heterostructure, and some may even allow mismatch of the lattice constants,
that leads to strain. The GaAs in QCLs is commonly used for the quantum well
material and it is well matched with the AlAs which is used for the quantum
barrier material. The formation of the barriers is achieved by doping the GaAs
with a fraction of Al that creates AlxGa1−xAs where x represents the barrier alloy
content. The lattice constant of GaAs is the same as that of AlGaAs for any x

fraction, however the band gap is direct up to x = 0.45 which is a crucial property
for the laser operation.

The atoms of the heterostructure do not form the perfect periodic crystal po-
tential as in the bulk material. The stochastic presence of the Al atoms represents
an impurity in the lattice that causes the scattering. It is not feasible to treat
this effect on atomic scale with Schrödinger equation, however this effect may be
treated as a perturbation.

The alloy disorder scattering (ADS) formulates a virtual GaAl atom with
potential VGaAl = x(z)VGa(r‖) + (1 − x(z)VAl(r‖)). The virtual crystal lattice
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2.5 Ionised impurity scattering

potential is then formed through the summation across the crystal. The perturb-
ation potential is the difference between the actual and the virtual crystal lattice
potential. This difference is small and can be approximated to Vdiff ≈ a3

8 Vadδ(r‖))
where a is the lattice constant of the well material (GaAs) and Vad is a constant
alloy scattering potential [115] which can be taken as the offset between the bar-
rier and the well material. Vdiff is the perturbation on the atomic scale, and its
matrix elements need to include the full wavefunction, including both the Bloch
and the envelope function. The mean square value for Vfi elements [111] is:

|V ′ADS
fi |2 = a3V 2

ad
8A

∫
|ψf |2|ψi|2x(z) (1− x(z)) dz (2.11)

This needs to be plugged in Eq. (2.10), and the reduced scattering rate due
to the alloy disorder is given as:

W ′
if (ki) = m∗a3

8~3 Θ(k2
α)(1− fFD(Esf , Te))V 2

ad

∫
|ψf |2|ψi|2x(z) (1− x(z)) dz (2.12)

The term |V ′ADS
fi | is constant with the wavevector which simplifies the cal-

culation of the average scattering rate in Eq. (2.12). Additionally, the spatial
dependence of the alloy fraction alternates as wells and barriers alternate. In the
wells x = 0 and the integration can be performed only across the barriers, and
since x = const in every barrier (in most QCL designs), the ADS scattering is
only a consequence of the wavefunction overlaps in usually relatively thin barriers.

2.5 Ionised impurity scattering

The doping in semiconductors introduces new atoms in the bulk semiconductor
lattice, thus creating a defect or impurity in it. In order to create electron charge,
the dopant atoms need to release an electron upon incorporation in the lattice.
This leaves the dopant atom positively charged and Coulomb interaction may
occur with the free electrons. The ionised impurity (IMP) scattering therefore
employs a perturbation Hamiltonian in Coulomb form:

V ′IMP = e2

4πε0n2|r− r0|
(2.13)
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2.5 Ionised impurity scattering

where r0 is a spatial coordinate of the impurity.
The confinement of wells and barriers in QCLs only occurs in one spatial

direction (z) and calculation of the matrix elements of this perturbation can be
further simplified. The full wavefunction has a form ψ3Di = A−

1
2 eikirψi and the

square matrix elements of V ′IMP can be simplified to the form:

∣∣∣V ′IMP
fi

∣∣∣2 =
(

e2

2ε0n2q

)2

Jfi

Jfi =
∫
l0|Ifi|2dz0

Ifi =
∫
ψ∗fe

−q|z−z0|ψidz

(2.14)

where q = kf − ki represents scattering wavevector. A single impurity perturba-
tion is given only through the |Ifi|2, the introduction of Jfi is performed in order
to account for all impurities throughout the volume. This is done by integration
of the impurities |Ifi|2 on a thin slice l0(z0)dz0 across z0. The detailed derivation
can be found in [111].

When we substitute Eq. (2.14) in Eq. (2.10), we obtain the reduced scattering
rate due to ionised impurities as:

W ′
if (ki) = m∗e4

4π~3ε20n
4 Θ((k2

α)(1− fFD(Esf , Te))
∫ π

0

Jfi
(qα + qTF)2dφ (2.15)

where qTF = me2

2πε0n2~2 is the Thomas-Fermi inverse scattering length introduced to
correct the model for the screening effect. The presence of multiple electrons over
a single positive ion, weakens the Coulombic interaction of the ion and remote
electrons. This correction to the scattering wavevector q needs to be added into
Ifi and Jfi as well (and due to the selectivity of the delta function, needs to equal
to qα).

Since matrix elements Ifi depend on modulus |z − z0|, simplification in form:

Ifi = e−qαz0C−fi + eqαz0C+
fi

C−fi =
∫ z0

−∞
ψ∗fe

qαzψidz

C+
fi =

∫ ∞
z0

ψ∗fe
−qαzψidz

(2.16)
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2.6 Interface roughness scattering

can be exploited for the numerical optimisation by tabulating the exponential
terms and avoiding their multiple calculation.

IMP scattering is highly sensitive to the wavefunction overlap, and doping may
be employed in areas of the QCL stack where scattering is desirable, however the
active region in QCLs where optical transition takes place is not doped due to
the detrimental effect on the optical linewidth [61, 76].

2.6 Interface roughness scattering

The confinement of the electron transport in the QCLs is obtained by alterna-
tion of quantum wells and barriers in one direction, z. In most representations,
the conduction band potential, is presented only in one dimension, since the
Schrödinger in Eq. (2.2) assumed that an electron is free in other two dimen-
sions. An actual 3D spatial form of the conduction band potential represents
“sheets” of wells and barriers as presented in Fig. 2.2. The THz QCL device usu-
ally employs ≈ 100 periods whose total height is around 12 µm, while the ridge
width is 10 − 20 times larger, and cavity length is 100 − 200 times larger. The
interfaces between wells and barriers across this area are not perfectly flat as the
material composition fluctuates, effectively producing interface roughness. Also
note that the potential drop between the wells and the barriers is not perfectly
steep as in most heterostructure models.
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2.6 Interface roughness scattering

zl zu

Figure 2.2: The interface roughness of the quantum well and the barrier junction that
cause perturbation to the conduction band potential and cause scattering.

The formation of imperfections across QCL is random and the appropriate
model assumes their Gaussian distribution such that Gaussian Fourier transform
∆z(r) with the root mean square (r.m.s) height ∆IFR and the correlation length

ΛIFR has average property < ∆z(r)∆z(r0) >= ∆2
IFRe

− |r−r0|
Λ2

IFR . The perturbation
potential around an interface I is:

V ′IFR
I = −∆z(r)dV

dz
rect

(
z − zI

zu − zl

)
(2.17)

where the conduction band potential deviation occurs over a rectangle that devi-
ates from the nominal position zI towards the lower and the upper bound zl and
zu, respectively. Similarly as in IMP scattering derivation, the Bloch wavefunc-
tion would serve towards the inverse Fourier transform of the in-plane dependence
of the perturbation potential, which leads to final form of the matrix elements
[111]:

|V ′IFR
Ifi |2 = |FIfi∆IFRΛIFR|2π

A
e−

q2Λ2
IFR
4

FIfi =
∫ zIu

zIl

ψ∗f
dV

dz
ψidz

(2.18)

where q = kf − ki is the scattering wavevector.
The reduced scattering rate (Eq. (2.10)) across interface I is given as:
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2.6 Interface roughness scattering

W ′
Iif (ki) = m|FIfi|2∆2

IFRΛ2
IFR

~3 Θ(k2
α)(1− fFD(Esf , Te))

∫ π

0
e−

q2αΛIFR
4 dφ (2.19)

The integral in Eq. (2.19) can be solved by using the identity
∫ π

0 e
a·cosφdφ =

πI0(a) where I0 is the regular modified cylindrical Bessel function of the zeroth
order. To obtain the overall scattering rate across all interfaces, we may perform
direct summation (since there is no correlation):

W ′
if (ki) = πm∆2

IFRΛ2
IFR

~3 β(ki)
∑
I

|FIfi|2

β(ki) = e−
(k2
i

+k2
α)Λ2

IFR
4 I0

(
kikαΛ2

IFR
2

)
Θ(k2

α)(1− fFD(Esf , Te))
(2.20)

The matrix elements FIfi in Eq. (2.18) represent a general form where the
interface between a well and a barrier has some transition spatial dependence. In
case where the heterojunction is modelled by a step change in the conduction band
potential, the derivative becomes the delta function and FIfi ≈ VIbψ

∗
f (zi)ψi(zi)

where VIb is the barrier height. The interface roughness scattering mechanism
mainly depends on the wavefunction overlap at the interfaces, and on the barrier
height. This mechanism is more significant in structures with higher barriers and
more interfaces.

Note that the correlation length and the correlation height are not known in
advance. For that reason, this mechanism serves as a fitting tool in simulations.
The dependence of the current density and material gain of QCL is mostly linear
with ∆IFR and ΛIFR with the higher sensitivity on ∆IFR [74]. Chapter 4 will
present the application of the model to several QCL structures, where ΛIFR will
be varied between 20 − 120 Å and ∆IFR between 0.1 − 3 Å. Note that IFR
scattering may sometimes be employed to compensate for the commonly neglected
mechanisms such as electron-electron scattering or yet unknown mechanisms.
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2.7 LO-phonon scattering

2.7 LO-phonon scattering

The previously mentioned scattering mechanisms were all elastic, hence there
was no loss of energy in the process. The optical (LO) scattering is a non-elastic
mechanism in which the electron would partly lose its energy, transferring it to
the crystal or gain the energy from it. The interaction with the crystal lattice is
modelled by the introduction of an imaginary particle – phonon, with which the
electrons may interact. The lattice is modelled as a harmonic oscillator where
the phonons vibrate causing a periodic perturbation of the strain which perturbs
the overall conduction band potential. The harmonic oscillator is modelled by
the usual second quantization formalism [108]:

p̂q
2

2m +
mω2

q ûq
2

2 = ~ωq(âq†âq + 1
2)

âq =
√
mωq
2~ ûq + i

√
1

2~mωq
p̂q

ûq =
√√√√ ~

2mωq
(âq + âq

†)

(2.21)

where q is the phonon wavevector, ûq and p̂q are the Hermitian displacement and
momentum operators, respectively, that correspond to the phonon frequency ωq.
The overall displacement vector is obtained as a sum of all uq for all possible
polarisation modes j:

u(r) = N
− 1

2
cell

∑
q

∑
j

√√√√ ~
2mωq

eq,j(âq + âq
†)eiqr (2.22)

where Ncell is the number of crystal unit cells and eq,j is the unity polarisation
vector. The polarisation is directly proportional to the displacement through
the dielectric constant. The Hamiltonian of the interaction (known as Fröhlich
interaction) is a spatial derivative of the polarisation, and it reads [108, 86, 111]:

V ′ph =
∑
q

C

q
(âqeiqr + âq

†e−iqr)

C = −i

√√√√2πe2~ω2
LO

Vc

(
1

ε(∞) −
1
ε(0)

) (2.23)
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2.7 LO-phonon scattering

where ωLO is the longitudinal phonon frequency, ε(∞) is the dielectric constant
at ωLO and Vc is the volume of the crystal. This interaction employs wavevector
q in all three spatial dimensions. For the determination of the matrix elements of
V ′ph, ψ3D needs to be used and after the lengthy derivation, the reduced scattering
rates, in accordance with Eq. (2.12) are:

W ′
if = Υ

2 (1− fFD(Esf , Te))Θ(k2
i −

2m∗∆E

~2 )
∫ π|Gfi(qz)|2√

q4
z + 2q2

z(2k2
i − 2m∗∆E

~2 ) + (2m∗∆E

~2 )2
dkz

Gfi =
∫
ψ∗fe

−iqzzψidz

Υ = 2m∗e2ωLO

h2 P ′

P ′ =
(

1
ε(∞) −

1
ε(0)

)(
N0 + 1

2 ∓
1
2

)

N0 =
(
e

~ωLO
kBT − 1

)−1

(2.24)
where the factor ∆E = Ef − Ei ± ~ωLO is taken with −~ωLO for the phonon
absorption and with +~ωLO for the phonon emission. The number of phonons
N0 is described by the temperature dependent Bose-Einstein distribution. Addi-
tionally, similarly to the IMP scattering, the lattice vibrations would be affected
locally by the electron presence, thus screening of the electrons needs to be in-
cluded through the screening length Λs that alters the z-component of the phonon
wavevector q2

z → q2
z(1+ Λ2

s
q2
z

)2. The usual approaches are Park and Debye methods
[86]:

ΛDebye
s =

√
εkBT

e2ND

ΛPark
s = e2

π~2ε(0)
∑
i

√
2m∗Eim∗fFD(Ei)

π~

(2.25)

The LO-phonon scattering mechanism is a crucial process for operation of the
THz QCLs. The LO-phonon energy ~ωLO in GaAs is ∼36 meV and this presents
one of the main limitations for the THz operation of the GaAs THz QCL struc-
tures at higher temperatures. The scattering rates in Eq. (2.24) strongly depend
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2.8 Acoustic phonon scattering

on the level separation and their population through the ∆E term, and have ad-
ditional temperature dependence through Bose-Einstein phonon distribution and
the screening length.

2.8 Acoustic phonon scattering

The acoustic phonon (ACP) scattering process is closely related to the LO phonon
process, and the main difference is in the consideration of the different dispersion
relation branch. The phonon dispersion relation has two branches, the upper
(optical branch) and the lower (acoustic branch). In the upper branch, two atoms
vibrate with the opposite phase, while in the lower branch, they oscillate with the
same phase (at long wavelength). The interaction Hamiltonian for the acoustic
phonon scattering may be taken as in Eq. (2.23) where the main difference would
be in different form of the coupling constant C. For the LO-phonon process C
is derived by considering polarisation and finding its derivative, for the acoustic
phonon process we may take that the phonon frequency is proportional to the
speed of sound ωq = qvs and this would make parameter C proportional to q

which would cancel in Eq. (2.23). However, rather than altering the C in Eq.
(2.23) it is more efficient to take advantage of the fact that atoms oscillate in
phase, with the same amplitude U0, this means that average potential energy is
ρmVcU

2
0ω

2
q/2 (where ρm is material density) and equating this to the quantized

phonon energy gives the amplitude U0 [111, 86]. All atoms oscillate in phase
as u(z) = U0e

i(qzz−ωqt) and by using linear relation between energy and strain
V ′ = DacVstrain = Dac

∂u
∂z

, where Dac is the deformation potential, we obtain the
interaction energy in form:

V ′ac = Dac

√√√√Vc
2~
ρωq

eiqzz−iωqt (2.26)

The lengthy derivation (which can be found in [86]), brings Eq. (2.12) to:
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W ′
if = D2

acm
∗

ρmvsh2 (1− fFD(Esf , Te))
(
N0 + 1

2 ∓
1
2

)

×
∫ ∞

0

∫ 2π

0
|Gf i(qz)|2

α1

√
α2

1 + q2
z Θ(α1) + α2

√
α2

2 + q2
z Θ(α2)

α1 − α2
dφdqz

α1,2 = −kicosφ±
√
k2
i cos

2φ− 2m∗(Ef − Ei)
~2

(2.27)

The acoustic phonon process is elastic and slower than LO-phonon scattering.
Typically, its effect is negligible for THz QCLs compared to electron–LO–phonon
scattering, and its numerical implementation in simulations in Chapter 4 will
often be taken with lower precision than the other scattering processes.

2.9 Electron Electron scattering

The electron-electron (EE) scattering accounts for the many-body interactions
between the electrons in the energy subbands. The interaction Hamiltonian is
identical to the IMP scattering process in Eq. (2.13), however the main difference
is that r0 represents a coordinate of another electron. The difficulty of this pro-
cess is that both electrons are described by their own wavefunctions, and in order
to account for the interaction, four electrons need to be considered and there
are sixteen possible scattering processes, half intersubband, half intrasubband.
Although the interaction Hamiltonian is relatively simple, the Fermi golden rule
in Eq. (2.8) needs to consider the transition from a two-level state |i, j〉 to |f, g〉
which leads to a quadrupole integral for the matrix element V ′ee

f,g,i,j. The main
challenge is that the delta function would need to satisfy the four energy conser-
vation conditions, rather than the two as in the other scattering mechanisms.

The detailed derivation is outside of scope of this thesis, and can be found in
[86, 111]. The scattering rate for |i, j〉 → |f, g〉 transition is:
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Wi,j,f,g; = m∗e4

8h3ε20n
2

∫ ∫ 2π

0

∫ 2π

0

|Af,g,i,j|2

q2
xy

Pj(kj)dθdαkjdkj

Af,g,i,j =
∫ ∫

ψ∗f (z′)ψ∗g(z′)e−qxy |z−z
′|ψi(z)ψj(z)dz′dz

4q2
xy = 2k2

ij + δk2
0 − 2kij

√
k2
ij + δk2

0 cosθ

kij = k2
i + k2

j − 2kikjcosα

(2.28)

where Pj(kj) = fFD(Esj, T ) is the Fermi–Dirac distribution function.
The screening of the electrons needs to be added to account for the reduction

of the scattering rate. This can be done by altering the dielectric constant in
form ε0n

2 → ε0n
2εsc where the screening is given as [116]:

εsc = 1 + e2

2ε0n2qxy
Πii(qxy, T )Ai,i,i,i

Πii =
∫ ∞

0

Πii(qxy, T = 0)
4kBTcosh2

(
EF−E
2kBT

)
Πii(qxy, T = 0) = m∗

π~2

1−Θ(qxy − 2
√

2πNi )
√√√√1− 8πNi

q2
xy


(2.29)

The EE scattering is computationally very expensive, as for N states, it has
N4 numerical burden, while all other process have N2 complexity. The numerical
implementation can take advantage of relation Ai,j,f,g =

∫
ψ∗fψiIjg(q, z)dz where

Ijg(q, z) is identical to the matrix elements from the IMP scattering process in Eq.
(2.16). Apart from the numerical cost, the difficulty of the EE process is its phys-
ical interpretation and validity. The derivation assumed classical Hamiltonian
where quantum effect of the many-body interaction of the two state system can
be presented by a product of the single state wavefunctions with no correlation.
The choice of the screening depends on the temperature and state population
and it can significantly affect the results. Some numerical load can be reduced by
neglecting intersubband interaction of largely separated states, however this may
cause significant changes in the final results [76]. It can be estimated that the in-
tersubband EE interaction thermalises the subbands similarly as the other elastic
process (not significantly), while intrasubband EE interaction has more signific-
ant effect. Since IFR mechanism is used for the model fitting, the simulations in
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2.10 Kinetic balance equation

Chapter 4 neglect the EE interaction and assume that any EE contribution may
be compensated by the IFR process. The validity of this approximation will also
be examined in Chapter 4.

2.10 Kinetic balance equation

The mentioned scattering mechanisms all employ the Hamiltonians with classical
interpretation. The quantum nature of the transport is only accounted through
the Fermi-Golden rule and therefore any model that consists of such scattering
rates is considered as semi-classical. The Fermi-Golden rule dictated the energy
selection principle through the delta function that is purely the consequence of
the quantum-mechanical nature of the energy levels, however all scattering mech-
anisms have a collision interpretation in the classical sense, and therefore energy
conservation law equation is needed. The distribution of the electrons in each sub-
band is considered to be Fermi-Dirac, however laser is a non-equilibrium device
driven by the application of the external bias. This can be modelled by assign-
ing Fermi-Dirac distribution to each subband individually, with its own electron
temperature and a quasi-Fermi level.

The kinetic energy distribution can be modelled in similar framework as the
RE model. Each subband may gain or lose the kinetic energy and this may
be described by an electron temperature. If the scattering occurs between the
subbands i→ f , the subband f is heated and gains the kinetic energy, while the
subband i loses it. Additionally if the scattering process is inelastic, the gain/loss
of kinetic energy is further changed. The difference between the kinetic energy
of the subband f , Ef

k and the kinetic energy of the subband i, Ei
k is:

∆Ek = Ef
k − Ei

k = Ei − Ef + δE

δE =
{
±ELO, for phonon absorption/emission process
0, for elastic scattering process

(2.30)

Each subband i has population of ni and average scattering rate W̄if for a
variety of the scattering mechanisms. The transfer of the kinetic energy between
the subbands i and f can be described by introducing the kinetic energy rates
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w+
if and w−if that represent the rate at which the kinetic energy of the subband

f is increasing and the rate at which the kinetic energy of the subband i is
decreasing. These rates are introduced through the normalisation over the Fermi-
Dirac distribution:

w+
if =

∫
Ef
k W̄iffFD(Ei

QF, Ti)(1− fFD(Ef
QF, Tf )dEi

k∫
fFD(Ei

QF, Ti)dEi
k

w−if =
∫
Ei
kW̄iffFD(Ei

QF, Ti)(1− fFD(Ef
QF, Tf )dEi

k∫
fFD(Ei

QF, Ti)dEi
k

(2.31)

where Ei
QF is the quasi-Fermi level of the subband i. By using Eq. (2.30) it

leads to w+
if = ∆EkW̄if + w−if . Note that for the intrasubband scattering pro-

cess, it means w+
ii = w−ii which is particularly relevant for the electron-electron

mechanism [108]. The kinetic energy transfer equation is defined as a net process:

dεk
dt

=
∑
i

niw
+
if − nfw−fi (2.32)

At steady state Eq. (2.32) equals to zero and if we assume the nearest neigh-
bor approximation where we only consider scattering interactions between two
periods, we would obtain a system of 2N non-linear equations that yield N elec-
tron temperatures and N subband concentrations, where N is the number of
the subbands per one QCL period. The main issue with this system is with the
Fermi-Dirac distribution. The averaging of the reduced scattering rates in Eq.
(2.10) and the kinetic energy rates in Eq. (2.31) both require quasi-Fermi levels
and the subband temperatures Ti which makes Eq. (2.32) numerically and math-
ematically challenging to solve since this equation needs to be coupled with the
Schrödinger-Poisson equation. The common approximation that simplifies the
calculation assumes equithermal subbands – all subbands have an electron tem-
perature Te that satisfies Eq. (2.32) [117]. This approximation does not physically
support the laser operation principle since the paradigm requires the maintenance
of the population inversion between ULL and LLL meaning that LLL (and ILL)
receives more kinetic energy than other levels. However, equithermal approxim-
ation may be interpreted as an effective temperature approximation similarly as
the electric field domain formation is circumvented by assuming a constant bias
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over the entire QCL stack. The simplification of Eq. (2.32 [108, 118] results in
kinetic balance equation [86, 119]:

∑
processes

∑
f

∑
i

niW̄if
process∆Eprocess

k = 0 (2.33)

where “processes” represents all elastic and non-elastic scattering processes that
are considered, note that ∆Ek depends on this as well, in accordance with Eq.
(2.30).

2.11 Self-self-consistent algorithm

The equithermal subband approximation removed the necessity for the kinetic en-
ergy rates in Eq. (2.31) and quasi-Fermi levels. However Eq. (2.33) still needs to
be solved self-consistently with the self-consistent approach for the Schrödinger-
Poisson equation [119, 43]. The kinetic balance equation (2.33) is a numerical
minimisation problem which can be solved by numerous approaches such as Brent
algorithm [120]. The Schrödinger–Poisson equation is numerically solved as a
coupled system of the discretised nonlinear eigenvalue and linear matrix prob-
lem (Appendix C) in an iterative procedure. The solution yields the subband
energies and the wavefunctions, which are then plugged again into the transport
model (i.e. the Density Matrix) for fine-tuning of the output parameters: current
density J , material gain g and optical power L. The transport model can be fur-
ther coupled with the Maxwell equations for the determination of the dynamic
properties of the optical power. The algorithm schematic is presented in Fig. 2.3.
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Figure 2.3: Simplified flowchart of the simulation code. The algorithm consists of two
nested self-consistent approaches that are solving the Schrödinger–Poisson equation
and Kinetic balance equation. Note that Schrödinger–Poisson equation is implemented
via for loop, allowing user specification for number of iterations which (with some care)
may reduce the simulation time. 56
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The initial structure of the numerical implementation in Leeds group em-
ployed independent codes that were solving different parts of the algorithm. This
implementation was needed due to the historic reasons and limitation of the
RAM memory at the time of the development. For a single external bias point
Ki the simulation time was around 2 hours and sweeping the bias for genera-
tion of an adequate I − V graph yielded the overall simulation time of several
days. Since the model can be fitted to the experiment by variation of the inter-
face roughness parameters, modelling one QCL structure required extensive total
simulation time. However, some approximations, such as a guess for the electron
temperature (which avoids kinetic balance equation) could be used to speed up
the process.

The author of this thesis took advantage of the supercomputer facilities (ARC2)
at University of Leeds and developed a numerical script which runs independent
simulations for different biases Ki on different processors, which (if the processors
are immediately available) reduced the code operation to the time required for
a simulation of the single bias point. Furthermore, the author restructured the
code into a set of C++ classes instead of independent codes. This circumven-
ted excessive reading/writing of the temporary data. The author also unified all
scattering mechanisms (except EE) into a single class in order to avoid multiple
invoking of identical loops. This optimisation work reduced the single external
bias Ki operating time from ∼ 2 hours to ∼ 5–10 minutes which allowed the
author to add optical power calculation into the model, along with the study of
the dynamic effects given by the Maxwell equation.

Figure 2.3 reflects the exact implementation of the simulation script, however
the processes are broken into ∼ 20 C++ classes. The structure of the code keeps
all external input in a single class (QCLOptions) where user can select multitude
of options (choice of transport model, manual input of electron temperature or
waveguide loss, IFR parameters, number of simulation points (number of states
per modules, number of time points for dynamics model, number of Schrödinger–
Poisson iterations, number of thermal equation iterations etc.)). The output
of the code is split into two classes. Class QCLInput is continuously updated
during self-self consistent algorithm and contains full subband and conduction
band potential information, while transport models (DM and RE) separately
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2.11 Self-self-consistent algorithm

output information on transport characteristics (current density, material gain,
optical power, frequency dependence of material gain, time dependencies within
the dynamics model etc.). In addition to C++ codes, few simulations scripts
have been constructed in order to sweep input parameters on ARC2 and ease
user interaction with the code.

The steady–state simulation results are presented in Chapter 4, while dynam-
ics modelling and the simulation results are given in Chapters 6 and 7.
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Chapter 3

Density Matrix Model

The semi-classical models such as Rate Equation approach consider transitions
of electrons between discrete energy levels while neglecting coherence effects and
quantum mechanical dephasing. The density matrix model is capable of solving
the shortcomings of RE model and can be viewed as its generalisation. Nom-
inally, the computational cost of the DM model is squared in comparison with
the RE model. Furthermore, the DM model has more complex formulation and
requires advanced mathematical understanding. The algebra needed for the DM
theory is presented in Appendix D and it is recommended to review it prior to
this Chapter. The model is based on the former research at University of Leeds 1,
however the entire mathematical formulation and the numerical implementation
represents author’s original work that resulted in few publications [74, 83]. This
chapter will present the DM theory for QCL structures in detail and discuss the
periodic boundary conditions, the nearest neighbour approximation, the dipole
approximation, the non-rotating-wave approximation (NRWA) and the output
properties which can be directly written as extensions of the RE model expres-
sions. The mathematical formulation allows efficient numerical implementation
and also offers a direct possibility of coupling the DM model with the Maxwell
equation for the study of the dynamic properties of QCLs discussed in Chapter
7.

1Dr Andrew Grier, Dr Viet Dinh
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3.1 Liouville Equation

3.1 Liouville Equation

The density matrix formalism was first introduced by J. Von Neumann [121, 122]
and its applications span throughout a variety of fields in Quantum Mechanics
[77, 79]. As discussed in section 1.6.1, the density matrix operator is constructed
as ρ̂ =

∣∣∣ ˆψ(t)
〉 〈 ˆψ(t)

∣∣∣. The normalisation condition of the Schrödinger equation
is ∑i

∣∣∣ψ̂i〉 〈ψ̂i∗∣∣∣ = 1 and if the wavefunction basis is expanded in coefficient form
ψi = Ciφi where φi is a basis function, the density matrix represents all com-
binations of Ci coefficients in form ρij = CiC

∗
j . The sum of the main diagonal

elements of the density matrix therefore represents the probability normalisation
condition, and the entire matrix can be viewed as a probability measure. Since
the wavefunction holds information on all properties of the quantum system, the
density matrix formalism may be viewed as a statistical phase-space probabil-
ity measure of the distribution of wavefunctions and any property that may be
derived through them. The simpler point of view, interprets the density mat-
rix formalism as evolution of a statistical ensemble. The Schrödinger equation
describes behaviour of a single quantum system, while the density matrix form-
alism describes statistical behaviour of the ensemble of such quantum system.
This provides an opportunity of describing coherent effects and mixed quantum
states.

The evolution of the density matrix can be simply derived by finding the
derivative of ρ̂ =

∣∣∣ ˆψ(t)
〉 〈 ˆψ(t)

∣∣∣ and using the time-dependent Schrödinger equation
i~∂ψ

∂t
= Hψ. The resulting equation is the Liouville equation:

i~
dρ̂

dt
= [Ĥ, ρ̂] + i~D̂ (3.1)

where Ĥ is the Hamiltonian, and D̂ is the dissipator which is additionally in-
cluded. The main requirement for a physical solution is that ρ must be a positive
semi-definite matrix. This is ensured if the dissipator is written in Lindblad form
[123, 124, 125, 126]. Physically, the dissipator represents all processes that are
not included in the Hamiltonian, such as various perturbation effects. Clearly,
all transport mechanisms discussed in Chapter 2 can be treated as perturbative
effects via Fermi golden rule and the dissipator would have a form D̂ = − ρ̂

τ
.

The Fermi golden rule satisfies the Lindblad formulation, however the scattering
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3.2 The nearest neighbour and the infinite periods approximation

mechanisms discussed in Chapter 2 would still add semi-classical treatment of
transport. The dissipator can be further altered to add dephasing effects and
such DM model can be viewed as a generalisation of the RE approach. Note that
alternative formulations of the dissipator are possible [72] and may offer improved
insight of the quantum properties of the system.

3.2 The nearest neighbour and the infinite peri-
ods approximation

The early DM models for the study of the QCLs [81, 127, 82, 47] considered
several states (ULL, LLL, and ILL) which is justified for modelling of MIR [88]
and THz LO-phonon structures. Note that even for a three level consideration,
DM approaches may result in large number of equations ≈ 27 where analytical
solution is not feasible. The later approaches [61, 73, 74, 128, 129, 130, 131, 132]
developed DM models that were applicable for the arbitrary number of states per
period. This thesis will focus on the model developed in Leeds group [73, 61, 74]
that essentially generalises the earlier technique in [82].

𝑯𝟎
𝑯𝟏

𝑯−𝟏

Figure 3.1: The nearest neighbour approximation. One QCL period is depicted by its
Hamiltonian H0 and it interacts with its neighbours through the interaction Hamilto-
nians H±1

.

Similarly to the semiconductor crystal theory, we will exploit the periodicity of
QCL structure by setting the number of periods Q to the infinity. Furthermore,
we will apply the tight-binding nearest neighbour approximation that assumes
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3.2 The nearest neighbour and the infinite periods approximation

that one QCL period only interacts with its nearest neighbours. The resulting
Hamiltonian can be written as a tridiagonal matrix:

H =



H0 H1 0 · · · · · · · · · 0

H−1
. . . . . . . . . · · · · · ·

...

0
. . . H0 H1 0 · · ·

...
...

. . . H−1 H0 H1
. . .

...
...

... 0 H−1 H0
. . . 0

...
...

...
. . . . . . . . . H1

0 · · · · · · · · · 0 H−1 H0



+ eKLP



Q
2 0 · · · · · · · · · · · · 0

0
. . . . . . · · · · · · · · ·

...
...

. . . 1
. . . · · · · · ·

...
...

...
. . . 0

. . . · · ·
...

...
...

...
. . . −1

. . .
...

...
...

...
...

. . . . . . 0

0 · · · · · · · · · · · · 0 −Q
2


(3.2)

where LP is the length of one QCL period. We are focusing on one QCL period,
surrounded by Q

2 neighbours on either side. The central period Hamiltonian is
given by H0, while the interaction with its left and right neighbour is given by
H−1 and H1 respectively. The second term in Eq. (3.2) is added to account for
the application of the external electric field K. We assume that the neighbours
to the right of H0 have lower potential (hence the − sign within the matrix) as
depicted in Fig. 3.1. Note that this is not correct orientation for the actual QCL
operation – application of bias tilts the potential from right to left, however, this
can be rectified by reversing the order of QCL layers in the simulation. The
Hamiltonian H must be Hermitian and it applies H0 = H†0 and H1 = H†−1.

QCL is a resonant tunnelling device, thus interaction between the periods
needs to take that into account. As the external electric field K is varied, periods
of QCL tilt bringing ILL and ULL into resonance. However, as K is varied, the
energy of two discrete levels may not fully align in quantum well system. Instead,
they reach the minimal energy separation – the anti-crossing energy at KA value
of the electric field. For any field K > KA the levels would swap their energy
position (anti-cross) and transport would resume normally. At K = KA the
resonant effects take place. If ILL from one period is (nearly) aligned with ULL
from the adjacent period, the device would yield maximum optical power as the
transport would be the most efficient. The resonance between two states causes
the population of electrons to be in phase coherence, and the wave packet would
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3.2 The nearest neighbour and the infinite periods approximation

oscillate at Rabi frequency, damped by the dephasing processes [81]. Multiple
resonances may occur for the same value of K causing multiple coherent effects
that may not be modelled by RE approach.

The tight-binding scheme requires solving the Schrödinger–Poisson equation
on one QCL period where conduction band potential is “flattened” at its end-
points. For that reason, the period of QCL must start from the injection barrier.
The resulting wavefunctions form an orthonormal basis for the density matrix
formalism, and we may assume that all periods have identical wavefunctions
translated by the corresponding period distance from the central period.

The simplest approximation for the period interaction Hamiltonian is to adopt
the standard resonant tunnelling approach [133] across the injection barrier where
the interaction between a state from the upper period i1 and a state from the
central period j0 is

H1i1j0 =
√
〈i1|V − VTB0 |j0〉 〈i1|V − VTB1 |j0〉 (3.3)

V is the conduction band potential of the infinite structure consisting of Q QCL
periods. VTB0 and VTB1 are the tight binding conduction band potentials that
correspond to the central period and the period left to it, respectively. The
tight binding potential VTB0 is equivalent to the potential of one period where all
the other periods are replaced by the potential’s endpoints (the standard tight-
binding scheme). Note that VTB1(z) = VTB0(z + LP) + eKLP due to the struc-
ture periodicity. Since the wavefunctions have the spatial offset of one period,
the value of 〈i1|V − VTB0,1 |j0〉 depends mostly on how much the wavefunctions
“leak” through the injection barrier. This approximation is debatable, because
the original approach [133] was considering the resonance between two quantum
wells, rather than two multiple quantum well periods. We will keep this formal-
ism due to its simplicity, and the fact that model provides good match with the
experimental results (which are presented in the next Chapter), with a note that
more general approach could be applied as in [72].

The wavefunction basis is taken in the tight-binding fashion on one period
and for that reason, the density matrix will follow the tridiagonal form of the
Hamiltonian in Eq. (3.2):
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3.2 The nearest neighbour and the infinite periods approximation

ρ =



ρ0 ρ1 0 · · · · · · · · · 0

ρ−1
. . . . . . . . . · · · · · · ...

0 . . . ρ0 ρ1 0 · · · ...
... . . . ρ−1 ρ0 ρ1

. . . ...
... ... 0 ρ−1 ρ0

. . . 0
... ... ... . . . . . . . . . ρ1

0 · · · · · · · · · 0 ρ−1 ρ0



(3.4)

Note that the external electric field breaks the symmetry of the Hamiltonian
in Eq. (3.2) on the main diagonal, however we still assume that its effect is small,
and that the wavefunction basis may be spatially translated to adjacent periods.
This approximation will have significant effects on the derivation of the output
parameters.

The commutator in Eq. (3.1) employs a product of two tridiagonal matrices,
which results in pentadiagonal matrix yielding five equations. We only have three
unknown density matrix partitions, and the system seems to be overdetermined.
However, equations of interest are the ones which correspond to the central three
diagonals. The additional two equations [H1, ρ1] = [H−1, ρ−1] = 0 are the con-
sequence of the duplication of information in the system. This commonly occurs
in the nearest neighbour approximation. Nominally, we should assume that the
density matrix is full for avoiding this issue. However, since the interaction with
the second period is highly unlikely due to the spatial separation of the wave-
functions in QCL structure, we may take the density matrix as in Eq. (3.4). We
are forcing the system to interact with its nearest neighbour, and the additional
equations are a residue of interaction between the first and the second neighbour,
which duplicates the information of the system.

The equations of interest are:
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3.3 Commutator linearisation

i~
dρ1

dt
= [H0, ρ1] + [H1, ρ0] + eKLPρ1 − i~

ρ1

τD

i~
dρ0

dt
= [H−1, ρ1] + [H0, ρ0] + [H1, ρ−1]− i~ ρ0

τD0

− i~ρ0

τ

i~
dρ−1

dt
= [H−1, ρ0] + [H0, ρ−1]− eKLPρ−1 − i~

ρ−1

τD

(3.5)

where the dissipator assumed that inter-period relaxation is purely coherent and
given by a dephasing tensor τD, while central period involves coherent interaction
and incoherent interaction given by a tensor τ where all scattering interactions
are considered via Fermi-golden rule.

The system in Eq. (3.5) is nonlinear and it comprise 3N2 equations written
in matrix form. The solution of such system is not trivial, and it requires linear
transformation of Eq. (3.5). Formally, the Liouville equation (3.1) can be lin-
earised in form i~ρlin = Lρlin where L is commonly referred as the Liouvillian
superoperator. However, with the nearest period approximation, we obtained
the system in Eq. (3.5) which needs to be linearised by a different superoperator.
In the following sections, we will discuss its derivation in detail. Note that our
formalism can be expanded to the higher neighbour approximation [83] and we
may additionally introduce the interaction with the device contacts, by altering
the form of the Hamiltonian [134] and using the properties of banded matrices
[135].

3.3 Commutator linearisation

A mathematical expression AXB = C where, A, B, C and X are square matrices
of the same size, can be written in linear form as (A⊗BT )X ′ = C ′ where X ′ and
C ′ are vectorised forms of the original matrices X and C unpacked row-wise and
⊗ is Kronecker tensor product [136]. More details can be found in Appendix D.

The commutator [A,X] therefore linearises as (A ⊗ I − I ⊗ AT )X ′ where I
is an identity matrix of the same size as A. The commutator part of Eq. (3.1)
often introduces operator L̂ = Ĥ ⊗ I − I ⊗ ĤT which with the corresponding
linearisation of the dissipator in Eq. (3.1) forms the Liouvillian superoperator.
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3.3 Commutator linearisation

In the case of the periodic structure, we cannot formulate the linearisation of
Eq. (3.1) in this form, since the Hamiltonian in Eq. (3.2) is infinite banded matrix
with high level of symmetry. Instead, we need to linearise each commutator in
Eq. (3.5) individually. If we neglect dissipator terms in Eq. (3.5), we have a
system:

i~
dρ′1
dt

= (H0 ⊗ I − I ⊗HT
0 )ρ′1 + (H1 ⊗ I − I ⊗HT

1 )ρ′0 + eKLP(I ⊗ I)ρ′1

i~
dρ′0
dt

= (H−1 ⊗ I − I ⊗HT
−1)ρ′1 + (H0 ⊗ I − I ⊗HT

0 )ρ′0 + (H1 ⊗ I − I ⊗HT
1 )ρ′−1

i~
dρ′−1
dt

= (H−1 ⊗ I − I ⊗HT
−1)ρ′0 + (H0 ⊗ I − I ⊗HT

0 )ρ′−1 − eKLP(I ⊗ I)ρ′−1

(3.6)
If wavefunction basis on one period has N states, each equation in Eq. (3.6)

consists of N2 equations. We can group the vectorised forms ρ′′ = ρ′1, ρ
′
0, ρ
′
−1 into

a single vector of 3N2 size. If we separate the Kronecker product terms in Eq.
(3.6) into groups that perform the operation from the left and from the right, we
may write:

i~
d

dt


ρ′1
ρ′0
ρ′−1

 =




H0 H1 0
H−1 H0 H1

0 H−1 H0

�


I I I

I I I

I I I





ρ′1
ρ′0
ρ′−1



−



I I I

I I I

I I I

�


HT

0 HT
1 0

HT
−1 HT

0 HT
1

0 HT
−1 HT

0





ρ′1
ρ′0
ρ′−1



+ eKLP



I 0 0
0 0 0
0 0 −I

�


I I I

I I I

I I I





ρ′1
ρ′0
ρ′−1



(3.7)

where � represents Khatri-Rao product [137, 138, 139]. Khatri-Rao product
is defined as a “dot” product of partitioned matrices, where the “dot” is the
Kronecker tensor product. Different definitions exist in the literature [140] and
we will focus on that in [141, 142], which requires matrices to be partitioned in
identical manner as presented in Appendix D. This type of product is particularly
useful for describing systems of equations involving Kronecker tensor products.
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3.4 Dissipator linearisation

Each zero in Eq. (3.7) is N×N zero matrix. Note that the last term in Eq. (3.7)
is a consequence of a constant term ±eKLP multiplying the vectorised forms
of the density matrix blocks, and the Kronecker tensor product of two identity
matrices simply creates identity matrix of a larger size, in our case I ⊗ I = IN2 ,
I ⊗ 0 = 0N2 . If we introduce:

H =


H0 H1 0
H−1 H0 H1

0 H−1 H0

 ,Υ = eKLP


I 0 0
0 0 0
0 0 −I

 , IU =


I I I

I I I

I I I



ρ′′ =


ρ′1
ρ′0
ρ′−1


(3.8)

the commutator part of Eq. (3.6) linearises as:

i~
dρ′′

dt
=
(
H � IU − IU �H .T + Υ � IU

)
ρ′′ (3.9)

Note that the second term in Eq. (3.9) uses “dot” transpose .T operation
on the Hamiltonian H which only transposes the blocks individually, as in the
second term on right hand side of Eq. (3.7). This operation is not identical to
the transpose of H, because the reduced Hamiltonian that we introduced in (3.8)
is Hermitian and it applies H0 = H†0 and H1 = H†−1.

3.4 Dissipator linearisation

The dissipator in Eq. (3.5) is introduced by tensors τD and τ which represent
coherent dephasing and incoherent scattering in the QCL. This formulation allows
scattering only within the central period, while dephasing is allowed between the
periods as well. This is fundamentally different from the RE approach which
neglects the dephasing effect, but allows inter period scattering.

In this DM model, the scattering only occurs within the central period de-
scribed by the density matrix block ρ0 and, as in RE approach, incoherent effects
only affect the subband populations [79] (which are given by the diagonal elements
of ρ0):
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3.4 Dissipator linearisation

(
ρ0

τ

)
ii

= −ρ0ii
τi

+
∑
j 6=i

ρ0jj

τji
(3.10)

where τ−1
i = ∑

j τ
−1
ij are state lifetimes.

The dephasing can be interpreted from dipole example [1]. If a wavefunction
is approximated as a mixture of two states that have single-state wavefunctions
ψi = ai(t)e−iEit/~ψi(r) and ψj = aj(t)e−iEjt/~ψj(r), the probability will have
three terms: i) individual occupancies |ai(t)ψi(r)|2 ii) and |aj(t)ψj(r)|2 iii) and
sinusoidal component at frequency equal to the energy spacing between states i
and j. The latter term resembles the dipole oscillation in the classical mechanics,
and directly corresponds to the off-diagonal elements in the density matrix. This
term decays as ai(t)aj(t)ψi(r)ψj(r), and this decay is proportional to the decay
of |ai(t)aj(t)|, however these terms describe level occupancy and they can have
a phase ai(t) = |ai(t)|eiφi which creates additional term ei(φj−φi). This phase
can be randomised by the dephasing processes that do not change occupancies
(amplitudes of ai, aj) which is referred to as the pure dephasing. The dephasing
affects every off-diagonal element in the density matrix, regardless of the block it
is located in, and the most common approach introduces it as:

ρ0,±1ij

τij
= −

ρ0,±1ij

τ||ij
, ρ0 : i 6= j

1
τ||ij

= 1
2τ ∗i

+ 1
2τ ∗i

+ 1
τ ∗ii

+ 1
τ ∗jj
− 2√

τ IFR
ii τ IFR

jj

(3.11)

where scattering rates and lifetimes with an asterisk ∗ exclude interface roughness
mechanism. IFR effect on coherence is added differently [61] through rates with
IFR notation. Note that the coherent dephasing does not occur in the central
period for i = j. The dephasing time τ||ij′ between state i from the central period
and state j′ from the adjacent period is identical to τ||ij where j is a state from
the central period, because the wavefunctions in the adjacent period are spatially
translated and expression in Eq. (3.11) is invariant.

The direct implementation of Eqs. (3.10,3.11) results in matrices that consist
of unknown terms, however we are mainly interested in following the linear vec-
torisation of the density matrix blocks from the previous section, and decoupling
the tensor form. Unfortunately, a direct algebraic transformation similar to the
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3.4 Dissipator linearisation

Kronecker or the Khatri-Rao product is not possible, and linearisation needs to
be performed through mathematical induction.

Let us construct three tensor matrices:

1
τ

=



−τ−1
1 τ−1

12 · · · τ−1
1N

τ−1
21 τ−1

2
. . . τ−1

2N
... ... ... ...
τ−1
N1 τ−1

N2 · · · τ−1
N

 ,
1
τD

=



τ−1
||11

τ−1
||12

· · · τ−1
||1N

τ−1
||21

τ−1
||22

. . . τ−1
||2N

... ... ... ...
τ−1
||N1

τ−1
||N2

· · · τ−1
||NN



1
τD0

=



0 τ−1
||12

· · · τ−1
||1N

τ−1
||21

0 . . . τ−1
||2N

... ... ... ...
τ−1
||N1

τ−1
||N2

· · · 0



(3.12)

It implies that 1
τD0

= 1
τD
− diag( 1

τD
).

Let us apply Eqs. (3.10,3.11) for N = 2 and focus on dissipator terms in Eq.
(3.5) for block ρ0 and ρ1 (ρ−1 has identical form) :

i~
dρ1

dt
= −i~

 ρ111
τ||11

ρ112
τ||12ρ121

τ||21

ρ122
τ||22


i~
dρ0

dt
= −i~

 ρ022
τ||21

0
0 ρ011

τ||12

− i~
 −ρ011

τ1

ρ012
τ||12ρ021

τ||21
−ρ022

τ2

 (3.13)

When ρ0 and ρ1 are vectorised row-wise, Eq. (3.13) transforms to:

i~
dρ′1
dt

= −i~



1
τ||11

0 0 0
0 1

τ||12
0 0

0 0 1
τ||21

0
0 0 0 1

τ||22




ρ111

ρ112

ρ121

ρ122

 = −i~D′1ρ′1

i~
dρ′0
dt

= −i~


− 1
τ1

0 0 1
τ21

0 0 0 0
0 0 0 0
1
τ12

0 0 − 1
τ2




ρ011

ρ012

ρ021

ρ022

− i~


0 0 0 0
0 1

τ||12
0 0

0 0 1
τ||21

0
0 0 0 0




ρ011

ρ012

ρ021

ρ022

 = −i~D′0ρ′0

(3.14)
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3.4 Dissipator linearisation

By performing mathematical induction for N = 3 and N = N + 1 and re-
peating the derivation of Eq. (3.14) the dephasing terms in Eq. (3.5) linearise by
placing elements of 1

τD
and 1

τD0
from Eq. (3.12) row-wise, on a main diagonal of

a N2 ×N2 matrix.
The incoherent scattering given by 1

τ
in Eq. (3.12) needs to undergo more

complicated transformation that is not directly apparent from N = 2 case in
Eq. (3.14). If we decompose 1

τ
into a sum of N2 matrices Tij that only have

one element 1
τij

in the ij-th position while all other elements are set to zero, the
corresponding linearisation matrix would be a transpose of a block N×N matrix
with Tij blocks as its elements:

1
τ

=



−τ−1
1 τ−1

12 · · · τ−1
1N

τ−1
21 −τ−1

2
. . . τ−1

2N
... ... ... ...
τ−1
N1 τ−1

N2 · · · −τ−1
N

 =



−τ−1
1 0 · · · 0

0 0 . . . 0
... ... ... ...
0 0 · · · 0

+



0 τ−1
12 · · · 0

0 0 . . . 0
... ... ... ...
0 0 · · · 0

+ · · ·+



0 0 · · · 0

0 0 . . . 0
... ... ... ...
0 0 · · · −τ−1

N


= T11 + T12 + · · ·+ TNN

(1
τ

)
lin

=



T11 T12 · · · T1N

T21 T22
. . . T2N

... ... ... ...
TN1 TN2 · · · TNN



T

(3.15)
Note that both expansions have straightforward numerical implementation.

In C++, both expansions run two nested loops i, j = 0 · · ·N − 1 and construct
N2 ×N2 linear forms of τD and τ as

(
1
τD

)
lin

(iN + j, iN + j) = 1
τ||ij

and if i 6= j,(
1
τ

)
lin

(iN + i, jN + j) = 1
τji

, all other elements are zero. The dissipator terms in
Eq. (3.5) therefore linearise as:
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3.5 Dipole approximation

i~
dρ′′

dt
= −i~


D′1 0 0
0 D′0 0
0 0 D′−1

 ρ′′ = −i~D′′ρ′′

D′1 = D′−1 =
( 1
τD

)
lin
, D′0 =

(
1
τD0

)
lin

+
(1
τ

)
lin

(3.16)

The linearised dissipator terms in Eq. (3.16) are N2 × N2 matrices (zero
matrices as well) and need to be added to Eq. (3.9) after Khatri-Rao product is
performed. The superoperator for periodic system LQCL is:

dρ′′

dt
= LQCL ρ

′′

LQCL = − i
~
(
H � IU − IU �H .T + Υ � IU − i~D′′

) (3.17)

3.5 Dipole approximation

The DM formalism is directly linked to the optical properties of the quantum sys-
tem which is represented by its Hamiltonian. In QCL structure, we assume that
the optical interaction occurs only within the period and thus only H0 partition
of the Hamiltonian in Eq. (3.2) is affected.

The common approach is to model quantum level system as a dipole antenna
that resonates at a specific level transition energy. For that reason we formulate
the Hamiltonian of the central period as a sum of the tight-binding Hamiltonian

ˆVTB and the dipole interaction energy V̂d = −µE ,where µ = −er is the electric
dipole moment operator [79] and E(r, t) is the optical electric field. The matrix
form of the central period Hamiltonian could then be written as H0 = HDC +HAC

where HDC is a diagonal matrix consisting only of the tight–binding energies on
the main diagonal and HAC = −eZE(z, t) where Z is the dipole matrix consisting
of the expectation values of the position operator Zij = 〈i| ẑ |j〉. Note that in the
QCL we assume that transport in (x, y) plane is free, and QCL layers are grown
in z direction.

The optical electrical field needs to be modelled by Maxwell equation Eq.
(1.9). Additionally, the polarisation in Eq. (1.9) can be obtained by DM form-
alism through the expectation value of the polarisation operator P̂ = −eNDẑ
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3.6 Non-rotating wave approximation

where ND is spatial concentration of carriers (or the doping level). In DM ap-
proach expectation value of any operator Ô can be found as 〈O〉 = Tr(ρ̂Ô), thus
polarisation is calculated as P = −eNDTr(ρZ). For this reason, Eq. (1.9) is
coupled to the Liouville equation (3.5) creating a complicated set of differential
equations. Note that any approximation for the Maxwell wave equation discussed
in section 1.6.3 affects the Liouville equation and its linearisaiton.

3.6 Non-rotating wave approximation

In section 1.6.3 and Appendix A we discussed travelling wave and Fourier ap-
proaches that simplify the Maxwell equation. Both approaches have been suc-
cessfully applied to QCLs [88, 74] along with the multi frequency optical field
components that allow the study of non–linear effects [129]. In this work we will
focus on Fourier approach under the slow-envelope approximation given by Eq.
(1.12).

A very common approximation formulates optical interactions between the
levels by assuming the optical electrical field as ERWA = E0e

±iωt where sign is
taken depending on the relative level position. Such model represents a rotat-
ing wave approximation (RWA) and it requires a careful consideration of which
elements of HAC Hamiltonian partition have + or − exponential term. RWA is
only feasible for systems with several states, and its generalisaiton to N state
system is challenging. The biggest advantage of RWA is that it does not extend
the Lioville equation significantly, however it does not simplify the numerical and
mathematical implementation.

The generalisation of RWA models the optical field as a cosine wave at the
resonant frequency ω, ENRWA = E(t)(eiωt + e−iωt) and this represents the non-
rotating-wave-approximation (NRWA). The central period Hamiltonian block has
a form H0 = HDC +H+

ACe
iωt +H−ACe

−iωt where H±AC = −eZE(t). This represents
a time dependent driving term to the Liouville equation (3.5) and we need to
assume that each density matrix block ρk, k = 0, 1,−1 will have three components
ρk = ρDC

k +ρ+
k e

iωt+ρ−k e
iωt. When this is substituted in Eq. (3.5), the system size

increases three times, consisting of 9N2 equations:
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3.6 Non-rotating wave approximation

i~
dρ−1
dt

= [HDC, ρ
−
1 ] + [H−AC, ρ

DC
1 ] + [H1, ρ

−
0 ] + eKLPρ

−
1 − i~

ρ−1
τD
− ~ωρ−1

i~
dρDC

1
dt

= [HDC, ρ
DC
1 ] + [H1, ρ

DC
0 ] + [H+

AC, ρ
−
1 ] + [H−AC, ρ

+
1 ] + eKLPρ

DC
1 − i~ρ

DC
1
τD

i~
dρ+

1
dt

= [HDC, ρ
+
1 ] + [H+

AC, ρ
DC
1 ] + [H1, ρ

+
0 ] + eKLPρ

+
1 − i~

ρ+
1
τD

+ ~ωρ+
1

i~
dρ−0
dt

= [H−1, ρ
−
1 ] + [H−AC, ρ

DC
0 ] + [HDC, ρ

−
0 ] + [H1, ρ

−
−1]− i~ ρ

−
0
τD0

− i~ρ
−
0
τ
− ~ωρ+

0

i~
dρDC

0
dt

= [H−1, ρ
DC
1 ] + [HDC, ρ

DC
0 ] + [H+

AC, ρ
−
0 ] + [H−AC, ρ

+
0 ] + [H1, ρ

DC
−1 ]− i~ρ

DC
0
τD0

− i~ρ
DC
0
τ

i~
dρ+

0
dt

= [H−1, ρ
+
1 ] + [HDC, ρ

+
0 ] + [H+

AC, ρ
DC
0 ] + [H1, ρ

+
−1]− i~ ρ

+
0
τD0

− i~ρ
+
0
τ

+ ~ωρ+
0

i~
dρ−−1
dt

= [H−1, ρ
−
0 ] + [HDC, ρ

−
−1] + [H−AC, ρ

DC
−1 ]− eKLPρ

−
−1 − i~

ρ−−1
τD
− ~ωρ−−1

i~
dρDC
−1
dt

= [H−1, ρ
DC
0 ] + [HDC, ρ

DC
−1 ] + [H+

AC, ρ
−
−1] + [H−AC, ρ

+
−1]− eKLPρ

−
−1 − i~

ρ−−1
τD

i~
dρ+
−1
dt

= [H−1, ρ
+
0 ] + [HDC, ρ

+
−1] + [H+

AC, ρ
DC
−1 ]− eKLPρ

+
−1 − i~

ρ+
−1
τD

+ ~ωρ+
−1

(3.18)
The system in Eq. (3.18) is non–linear and needs to undergo similar lin-

earisation steps discussed in sections 3.3 and 3.4 in order to formulate a linear
superoperator suitable for numerical implementation. However, this system has
high level of symmetry and we may construct similar form of the superoperator to
the one in Eq. (3.17). Let us assume general NRWA form of Hj and ρk partitions
as Hj = HDC

j +H+
j e

iωt+H−j e
−iωt and ρk = ρDC

k +ρ+
k e

iωt+ρ−k e
iωt, the commutator

[Hj, ρk] splits into three equations:

e−iωt : [HDC
j , ρ−k ] + [H−j , ρDC

k ]
e0 : [H−j , ρ+

k ] + [HDC
j , ρDC

k ] + [H+
j , ρ

−
k ]

eiωt : [H+
j , ρ

DC
k ] + [HDC

j , ρ+
k ]

(3.19)

If we repeat commutator linearisation as in Eq. (3.7), Eq. (3.19) can be
written as:
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3.6 Non-rotating wave approximation



HDC
j H−j 0
H+
j HDC

j H−j
0 H+

j HDC
j

� IU − IU �


HDCT
j H−

T

j 0
H+T
j HDCT

j H−
T

j

0 H+T
j HDCT

j





ρ−
′

k

ρDC′
k

ρ+′
k


(3.20)

where terms with the apostrophe represent the vectorised forms of the corres-
ponding matrices.

Transformation in Eq. (3.20) needs to be applied to every commutator in Eq.
(3.5), however if we introduce a NRWA expansion rule as:

HNRWA
j →


HDC
j H−j 0
H+
j HDC

j H−j
0 H+

j HDC
j

 , ρNRWA′
k →


ρ−
′

k

ρDC′
k

ρ+′
k

 (3.21)

and apply it to each Hamiltonian and constant block in Eq. (3.8) (note that H−1,
H1 and I (within Υ) do not have ± terms), and expand IU into 9× 9 partitioned
matrix system filled by N × N identity matrices I, the system in Eq. (3.19)
linearises as [83]:

dρNRWA′′

dt
= LNRWA

QCL ρNRWA′′

LNRWA
QCL = − i

~
(
HNRWA � INRWA

U − INRWA
U �HNRWA.T

+ ΥNRWA � INRWA
U − i~D′′NRWA + ~ωΩNRWA

) (3.22)

where

• HNRWA is a 9× 9 partitioned Hamiltonian obtained by applying Eq. (3.21)
on each block of the Hamiltonian in Eq. (3.8), each partition (including
zeros) in HNRWA is N ×N matrix.

• The external electric field term ΥNRWA′′ can technically be constructed by
applying the rule in Eq. (3.21) on Υ in Eq. (3.8) by treating the identity
matrices as DC terms. However, instead of this ΥNRWA′′ can be directly
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3.6 Non-rotating wave approximation

implemented as a 9 × 9 partitioned matrix, where blocks on the main di-
agonal are I, I, I, 0, 0, 0,−I,−I,−I and each partition has N ×N size and
all other blocks are zero matrices.

• INRWA
U is a 9× 9 partitioned matrix filled with identity matrices of N ×N

size. For the Khatri-Rao product in (3.22), this matrix only needs to have
partitions at positions in which HNRWA has non-zero partitions, however
INRWA

U has a direct algebraic formulation as: INRWA
U = U9×9 ⊗ IN×N , where

U9×9 is a 9× 9 unit matrix (matrix filled with unit values).

• ρNRWA′′ is a column vector of 9N2 size, whose elements correspond to the
stacked vectorised forms of ρ−′1 , ρ

DC′
1 , ρ+′

1 , ρ
−′
0 , ρ

DC′
0 , ρ+′

0 , ρ
−′
−1, ρ

DC′
−1 , ρ

+′
−1 in that

respective order.

• The dissipator DNRWA′′ can technically be constructed by applying the rule
in Eq. (3.21) to blocks of D′ in Eq. (3.16), with notion that those blocks
do not have ± terms, and have N2 × N2 size. In simpler sense, DNRWA′′

is 9 × 9 block diagonal matrix, where 9 blocks on the main diagonal are
D′1, D

′
1, D1, D

′
0, D

′
0, D0, D

′
1, D

′
1, D

′
1 and each has N2 ×N2 size.

• Frequency terms in NRWA are the consequence of the time derivative of the
density matrix in the Liouville equation and this is illustrated by ΩNRWA.
These terms originally had exponentials e±iωt, when we take the derivat-
ive of d(ρ±k e±ωt)

dt
= e±iωt

(
dρ±
k

dt
± iωρ±k

)
, the factor i~ from the left hand

side of Eq. (3.18) turns ±ω term to ∓~ω which changes the sign again
when moved to the right hand side of Eq. (3.18). In Eq. (3.18) fre-
quency terms occur only in odd equations and alternate as −~ω, 0, ~ω · · · .
Since this is a constant multiplying the entire block ρ0,±

k , the linear form
would be N2 × N2 identity matrix. For that reason ΩNRWA is a diag-
onal 9 × 9 partitioned matrix, where elements on the main diagonal are
IN2 , 0N2 ,−IN2 , IN2 , 0N2 ,−IN2 , IN2 , 0N2 ,−IN2 . Algebraically, this can also
be constructed as ΩNRWA = (I3×3 ⊗ G3×3) ⊗ IN2×N2 where G is a matrix
with entries 1, 0,−1 on the main diagonal.
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3.7 Steady state solution and normalisation

It is important to note that the Liouvillian LNRWA
QCL is a partitioned pentadi-

agonal 9× 9 matrix where each partition has N2 ×N2 size [74, 83], however five
diagonals are only the consequence of the Khatri–Rao product between HNRWA

and INRWA
U , all other terms in Eq. (3.22) only affect the main block diagonal of

the system. For that reason it is not numerically advisable to construct these
terms separately into several 9N2 × 9N2 matrices, but rather directly add them
once the Khatri-Rao product is performed.

3.7 Steady state solution and normalisation

The normalisation condition for the density matrix is that its trace needs to have
the unit value since the diagonal elements physically represent the probability.
This affects the basis chosen for DM, and since we focused on one QCL period, this
condition needs to be satisfied only by DC block of the central period partition
of the density matrix. We can substitute one of the equations corresponding to a
diagonal elements of ρDC′

0 block and steady state solution would simply be given
as:

∑
i

ρDC
0ii = 1

dρNRWA′′

dt
= LNRWA

QCL ρNRWA′′ +B

ρNRWA′′(t→∞) = −
(
LNRWA

QCL

)−1
B

(3.23)

where B is a column vector of 9N2 size whose elements are zeros, except at the
position where normalisation condition is implemented. In numerical procedure
that we implemented, we chose to substitute an equation targeting N–th popula-
tion (N–th element of the main diagonal of ρDC′

0 ) which lies in (5N2 − 1)–th line
of the system.

The alternative approach is to reduce the system by one equation by substi-
tuting ρDC

0NN = 1 − ∑i 6=N ρ
DC
0ii in the entire system, however former approach is

substantially simpler.
The steady state analysis of various QCL structures is presented in the next

chapter. Equation (3.23) consists of 9N2 equations that are complex. For steady
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3.8 Current density, material gain and optical power

state analysis, inversion of such Liouvillian is straightforward and we did not use
its sparse properties or a potential possibility of block-Gaussian elimination. For
the dynamic analysis, system in Eq. (3.23) is not numerically feasible and we need
to take advantage of Hermitian symmetry of the density matrix and Hamiltonian
in order to split the system into a set of real equations and this will be discussed
in Chapter 6.

The approach we presented in this Chapter can be further generalised for a
variety of the tight–binding models (i.e. graphene [143]) and detailed summary
was published by the author in [83].

3.8 Current density, material gain and optical
power

The macroscopic properties of QCL structure can be obtained by finding the
expectation values of the current density and the polarisation operators:

Ĵ = i

~
eND[Ĥ, ẑ]

P̂ = −eNDẑ
(3.24)

The expectation values need to be calculated by using the overall density
matrix in Eq. (3.4). We reduced the initial infinite system to three equations
in Eq. (3.5) and formulated the reduced Hamiltonian H in Eq. (3.8) for linear-
isation purposes, however it is incorrect to apply reduced expressions for finding
the expectation values. This was discussed in detail in author’s publication in
[74]. When we seek product of two partitioned matrices, partitions at corners act
similarly as initial conditions in finite difference models and add incorrect contri-
butions to the overall result. Expectation values in DM formalism are obtained
as a trace of the product of the density matrix and the operator (in matrix form).
Since we have infinite matrices of size Q × Q, Q → ∞, the expectation value
of operator Ô may be determined by finding the limit 〈Ô〉 = limQ→∞

1
Q

Tr
(
ρ̂Ô
)
.

The current density is therefore calculated as [74]:
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3.8 Current density, material gain and optical power

J = i

~
eNDTr (ρ0[H0, Z] + ρ−1[H1, Z] + ρ1[H−1, Z] + LP (H1ρ−1 − ρ1H−1))

= − i
~
eNDTr [Z ([H0, ρ0] + [H1, ρ−1] + [H−1, ρ1])− LP (H1ρ−1 − ρ1H−1)]

= eNDTr
(
Z

(
dρ0

dt
+ ρ0

τ
+ ρ0

τD0

))
+ i

~
eNDLPTr (H1ρ−1 − ρ1H−1)

(3.25)
The expressions in Eq. (3.25) are obtained by using the rotating properties of

trace operation. Interestingly, the current density is proportional to the trace of
the central equation in Eq. (3.5) and additional term LP (H1ρ−1 − ρ1H−1) which
is a consequence of the application of the external electric field. Note that this
term applies the periodic boundary condition.

The expectation value of the polarisation is simpler, and it reads:

P = −eNDTr (Zρ0) (3.26)

The NRWA approximation causes J and P to have three components, however
measurable properties are the DC term of the current density and the response
to the optical field which is determined by + or − term of the polarisation (P+ =
P−):

JDC = − i
~
eNDTr

[
Z
(
[H−1, ρ

DC
1 ] + [HDC, ρ

DC
0 ] + [H+

AC, ρ
−
0 ] + [H−AC, ρ

+
0 ] + [H1, ρ

DC
−1 ]

)
− LP

(
H1ρ

DC
−1 − ρDC

1 H−1
)]

P+ = −eNDTr
(
Zρ+

0

)
(3.27)

Note that the polarisation P+ needs to be inserted in Maxwell equation, thus
creating a system of coupled equations since HAC is proportional to the optical
field.

Material gain can be obtained from the polarisation, assuming that QCL is
isotropic linear medium whose polarisation has a form P+ = ε0χE. Imaginary
part of the susceptibility χ represents the material gain:
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3.8 Current density, material gain and optical power

g = ω

cnε0

Im{P+}
Re{E} = − ω

cnε0
eND

Im
{

Tr
(
Zρ+

0

)}
Re{E} (3.28)

The optical field intensity can be obtained as:

S = cnε0
2 |E|

2 (3.29)

The experimental properties are usually measured as the optical power L,
the current I and the voltage V and are commonly presented on a single graph
referred to as L−I−V characteristic of QCL. These values are obtained by scaling
the optical intensity and the current density by emitting surface WLc, and the
external electric field by the active region thickness HQCL and also account for
the resistance of the contacts, respectively.

L = SWLc

I = JDCWLc

V = KHQCL + IRc

(3.30)

The contact resistance Rc is added to describe the effects of QCL contacts
on the structure [61] and its values are small ∼ 0 − 3 Ω, however necessary if a
precise fitting of the model to the experiment is needed.

The optical intensity requires the information on the optical electric field E

given by Maxwell equation, however in steady–state, any laser needs to clamp its
gain to the loss, and real part of Maxwell equation in Eq. (1.12) can be written as
(loss− gain)E = 0 by using the expression in Eq. (3.28). The material gain will
be largest when the optical field is small, and as the optical field is increasing, the
gain will saturate [1]. For that reason, instead of solving Eq. (1.12), we can vary
E until the value of the material gain saturates to the value of loss by employing
a minimisation algorithm. The obtained value for the optical power would be a
steady–state result. If dynamic behaviour is of interest, solving Eq. (1.12) (and
coupling it to DM model) is necessary.
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3.9 Connection to the RE approach

3.9 Connection to the RE approach

In simplest terms, the rate equation approach only focuses on equations that lie
on the main diagonal of Liouville equation. Current density in RE approach is
calculated as [111]:

JRE
DC = e

LP

∑
i

∑
j 6=i

ni

(
Zii − Zjj

τ ∗ij

) (3.31)

If we take the steady state value of DC component of the third equation in
Eq. (3.25), and write the sum form of trace operation of term ρ0

τ
by using Eq.

(3.10), we can write an expression for current density in DM model as [74]:

JDM
DC = e

LP

∑
i

∑
j 6=i

ni

(
Zii − Zjj

τij

)+ enS

LP
Tr

(
ZρDC

0
τD0

+ LP(H1ρ−1 − ρ1H−1)
)

(3.32)
where we applied ni = NS ρii where NS is sheet doping density, and NS = NDLP.

The first term in Eq. (3.32) is nearly identical to the expression for RE current
density in Eq. (3.31), however the major difference is that in Eq. (3.31) inter–
period scattering is considered as well (hence τ ∗ij notation) and wavefunction basis
was extended on two periods while the wavefunction basis for DM is obtained by
solving the Schrödinger–Poisson equation on one QCL period.

Equations (3.31, 3.32) still illustrate close connection of these two models,
which is partly the consequence of the dissipator form that we chose for our
formulation in Eq. (3.10).
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Chapter 4

Steady-State-Modelling of THz
QCLs

The density matrix model discussed in the previous chapter provides efficient
numerical approach for modelling THz QCLs. The L − I − V characteristic of
QCL is dependent on the design, temperature, and type of QCL operation (pulsed
or CW). The steady-state modelling combines DM approach, self-self consistent
Schrödinger-Poisson equation, thermal equation and medium loss model. This
chapter will discuss the fitting procedure to the experimental results for various
THz QCL structures, along with the challenges and the limitations of the overall
model. Chapter will also provide comparison with RE approach, discussion on
the significance of the electron-electron scattering and the possibility of exploiting
the model for optimisation of high temperature performance THz QCL designs.

4.1 Fitting challenges

The experimental characterisation of QCL is provided by a temperature depend-
ent L−I−V characteristic and emission frequency dependence, usually measured
both in pulsed and CW operation. Fitting the theoretical model to all experi-
mental graphs with single set of fitting parameters is not feasible, mainly due to
the large number of approximations within various models involved in the pro-
cedure and some fluctuations in the measurement itself. The latter issue is more
apparent in pulsed operation where laser is driven by periodic current pulses,

81
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while the voltage and the optical power are being measured. The measurement
records periodic set of voltage and optical power values that correspond to each
current pulse. A single point on the pulsed L − I − V characteristic however
represents an averaged value of the pulsed measurement points obtained by a
lock-in amplifier, therefore adding a slight tolerance in the result. The theoret-
ical model is highly sensitive, which is further critical due to the scaling of the
output parameters with the device dimensions in Eq. (3.30) (also note that we
assume linear distribution of the electric bias across the active region and homo-
geneous distribution of the current density across the emitting cross section).

The input of the DM model is the electric bias, while in the experimental
setup, the device is driven by the current. Furthermore, the voltage is obtained
by Eq. (3.30) which assumes uniform distribution of the electric field across the
active region, which may not be fully correct. Additionally, nearly every QCL
device gives a multimode lasing spectrum, however the theoretical approach we
are presenting will solely focus on the frequency that provides the highest material
gain, although it is possible to account for other modes.

The most debatable model is the thermal equation discussed in 1.6.2 often
taken under the linear approximation in Eq. (1.8), which is critical for CW
operation. The reliability of the model is therefore low for CW operation, mainly
due to the fact that different periods of the QCL active region exhibit different
temperatures as depicted in Fig. 1.9, thus the periodic infinite-period approach
for transport is not fully applicable without relatively rough approximation.

Initial THz QCL RE models were mainly focusing on modelling the current
around the threshold or the peak optical power at particular heat sink temperat-
ure, however RE models required detail processing of the simulation data due to
the non physical results. The DM model does not have such issues, and higher
fitting precision to the experiment is feasible. The approach is independent on
the number of states per period, and it can, in principle, be applied to any design.
The steady state model consists of:

• Transport model

• Waveguide model

82



4.2 Interface roughness scattering parameters

• Thermal model

All three models are coupled, and each has a corresponding fitting parameter.
The most important fitting parameters are within the transport model. The in-
terface roughness scattering mechanism, discussed in 2.6 uses Gaussian - like dis-
tribution to describe somewhat random imperfections of the QCL layers. These
parameters directly affect the current and represent the key fitting tool. The
waveguide model uses a one-dimensional transfer matrix method that determines
the dielectric function of the medium [45] discussed in 1.5.2. However, medium
is three-dimensional and Drude model of thin heterostructure layers is debatable.
The loss is dependent on temperature, however the threshold gain in some sim-
ulations may require manual setting instead of using this model, especially for
devices that use metal-metal waveguides. The thermal model under the linear ap-
proximation has shown discrepancy even within the experimental measurement,
and its validity will be particularly discussed.

The following sections will discuss IFR fitting parameters by fitting several
exemplary structures at single heat sink temperature, significance of EE scatter-
ing, comparison with RE approach and fitting the temperature dependence of the
threshold current.

4.2 Interface roughness scattering parameters

The average imperfections of heterojunction interfaces between QCL layers as
depicted in section 2.6 and Fig. 2.2 are described by Gaussian distribution char-
acterised through the IFR correlation length ΛIFR and r.m.s. height ∆IFR. The
QCL structure consists of hundreds of interfaces and these parameters are not
known in advance and may vary from structure to structure even for the identical
layer design. Reproducibility of QCL growth and fabrication is a known issue and
in modelling approaches IFR parameters are often employed as fitting tools.

The model is independent on the number of states per QCL module and
therefore on the QCL design type. For that reason, the fitting procedure will be
demonstrated on a highly complex design, such as BTC QCL. The layer structure
[74] (based on earlier work in [144]) is presented in Fig. 4.1
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Figure 4.1: Layer thicknesses for the analysed BTC QCL design, starting
with the injection barrier (until dotted horizontal line), are 5.0/14.4/1.0/11.8
/1.0/14.4/2.4/14.4/2.413.2/3.0/12.4/3.2/12.0/4.4/12.6 nm, Al0.1Ga0.9 As barriers
are shown in bold and wells doped to 1.3 · 1016 cm−3 are underlined. Two periods are
shown, along with the corresponding wavefunctions moduli squared.

The effects of IFR parameters at bias K = 1.8 kV
cm on the material gain, current

density and optical power are presented in Fig. 4.2
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a)

b)

c)

Figure 4.2: a) Material gain, b) Current density and c) Optical power dependence
on IFR parameters ΛIFR and ∆IFR at K = 1.8 kV

cm at heat sink temperature of 20 K.
Figures on the left hand side present the dependence on both parameters, while figures
on the right hand side are one dimensional projections of the dependence on the left
hand side (effect of ∆IFR is plotted first, while ΛIFR is being varied, and insets show
vice versa).
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4.2 Interface roughness scattering parameters

The interface roughness parameters always increase the current density and
decrease the material gain and therefore the optical power. The r.m.s. height
∆IFR has a stronger effect than the correlation length, and for a fixed ΛIFR,
∆IFR will have linear effect on the current density and the material gain, while
in contrast, the effect is usually linear only in the range ΛIFR ≈ 20 − 80 Å
as it can be observed in Fig. 4.2. This observation is consistent in all designs
simulated so far and for that reason, these parameters are usually swept in range
ΛIFR ≈ 20− 100 Å and ∆IFR ≈ 0.1− 3 Å.

4.2.1 L− I − V fitting at fixed temperature in pulsed op-
eration

The fitting procedure at fixed temperature in pulsed operation is performed in
several steps:

• Determining the material modal threshold gain by either using a waveguide
loss model from [45] for surface plasmon waveguides or using an estimated
value of gth = 18 − 20 cm−1 for double metal waveguides. In rare cases,
manual alterations of the values provided by model in [87] are needed, which
is justifiable by the fact that this model performs one dimensional analysis
and neglects effects in the perpendicular plane. For BTC structure in Fig.
4.1, waveguide loss at T = 20 K, determined by [87] is gth = 33.56 cm−1.

• Determining a point of the highest interest on experimental L − I − V

characteristic. This is usually lasing threshold or the peak of the optical
power dependence on current. The latter point can be found by sweeping
bias for typical values of ∆IFR = 1 Å and ΛIFR = 80 Å in order to detect
at which bias the maximum optical power occurs, if possible. Some QCL
designs “turn off” due to the high electrical heating or the high current
during the experimental measurement and I −L dependence does not have
a maximum. However, resonant bias is usually known by the design itself.

• Performing a two dimensional sweep of ∆IFR and ΛIFR at fixed bias with two
aims: a) to match the current density at the chosen bias (usually the one
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4.2 Interface roughness scattering parameters

that corresponds to the peak of optical power) and b) to match the current
density at the threshold at the same time. Alternatively, if resonant bias is
not known, fixing i.e. ΛIFR = 80 Å and sweeping ∆IFR and the bias can be
performed in order to match the experimental I − L as much as possible.

• Determining the contact resistance which fits the experimental I − V de-
pendence. Typical values are 0.1−3 Ω and finding this parameter is trivial.

The initial sweep of bias, indicated that BTC structure in Fig. 4.1 resonates
at K = 2 kV

cm . At 20 K, the threshold current density is 139 A
cm2 while at the peak

of the optical power, the current density is 182 A
cm2 . In order to match these two

values, IFR parameters were varied as presented in Fig. 4.3.
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Figure 4.3: L − I − V fitting of BTC device at 20 K by varying a) IFR correlation
length ΛIFR for fixed ∆IFR = 2.03 Å b) IFR r.m.s. height for fixed ΛIFR = 80 Å.
Contact resistance for I − V dependencies was not included.
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Figure 4.4: L − I − V characteristic of the BTC device at 20 K in pulsed operation.
Contact resistance is 2.15 Ω. Both DM model fit (blue) and RE model fit (inset - red)
were fitted to experimental threshold at (It, Vt) = (0.83 A, 3.78 V). Experimental I −L
data is presented along DM I − L data and normalised in arbitrary units.

.

Simulations performed in Fig. 4.3 again show that varying ΛIFR outside the
linear range (i.e 10 Å) causes changes in shape of L − I − V indicating a po-
tential non-physical value, while varying ∆IFR has a consistent linear effect. The
values ΛIFR = 80 Å, ∆IFR = 2.03 Å provide a perfect fit of the optical power
dependence, and adding a contact resistance of 2.15 Ω provides a perfect fit of
experimental measurement at 20 K as presented in Fig. 4.4.

Note that the optical power is presented in arbitrary units. The reason for
this is that the actual optical power generated by QCL is not known. The ex-
perimental measurement is dependent on the efficiency of detector (usually a
bolometer) which is in range of 15 – 30%. Additionally, the detector measures
optical power originating from all modes, while the simulation performs the cal-
culation of the dominant optical mode. For these reasons, the fitting procedure is
focused on fitting the dynamic range and not the amplitude of I−L dependence.
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4.2.2 Comparison of Density Matrix and Rate equation
model

The inset in Fig. 4.4 shows RE model fit to the experimental I − V dependence.
This has not been obtained by procedure discussed in 4.2.1, due to the lack of
photon number equation (which would yield optical power dependence) in the
implementation of RE model developed previously in the group. This RE model
can only provide current density fitting to the experiment shown in Fig. 4.5.
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Figure 4.5: Current density versus electric field from RE (red) and DM model (blue).
Results were fitted to threshold point at (Kt, Jt) = (1.64 kV/cm, 139.5 A cm−2). RE
model requires ∆′IFR = 3.15 Å for threshold fit, while DM needs ∆IFR = 2.03 Å. Results
for ∆′IFR = 2.03 Å for RE model are also displayed (dashed green).

The RE simulation has been initially performed with the identical IFR para-
meters as those used in Fig. 4.4, however the results yielded much lower current
density (and a higher material gain) than the DM simulation, as depicted in Fig.
4.5 by the dashed green line. A match between the two models can be obtained
by using ∆IFR = 3.15 Å. Note that both DM and RE models predict the lasing
frequency correctly, as shown in Fig. 4.6

89



4.2 Interface roughness scattering parameters

1.5 2 2.5 3
 f [THz]

0

10

20

30

40
 G

 [
cm

-1
]

DM
RE

1.9 2 2.1 2.2
f [THz]

0

0.5

1

a.
u.

Figure 4.6: Gain versus frequency from RE (red) and DM model (blue). Results were
fitted to losses of 33.56 cm−1 at threshold point (Kt, Jt) = (1.64 kV cm−1, 139.5 A cm−2)
at 20 K. Inset shows experimental spectral measurement at 20K at threshold bias.

This difference between fitting parameters occurred due to differences between
RE and DM models. RE and DM models do not use the same wavefunctions as
basis for the transport model and intermodule transport is modelled differently,
although the current density does link two models as shown in (3.32) in sec-
tion 3.9. RE model uses extended wavefunctions by solving Schrödinger-Poisson
equation on two QCL periods, while DM uses the basis on one period under tight-
binding approximation. The occurrence of non physical spikes in RE output is a
known issue, occurring due to the lack of coherent effects in the RE model setup.
During the tunnelling through the injection barrier, two states at resonance are
split by the anti-crossing energy (<1 meV) where wave packet oscillated through
the barrier at Rabi frequency [81]. DM model directly implements this coherent
effect as discussed in Eq. (3.3) while RE model assumes that these nearly aligned
states perform identical transport as any two other states under consideration,
which forms a discontinuity in scattering rate. In simpler terms, RE model as-
sumes instantaneous transport through the injection barrier, while DM model
provides finite coherent time needed for carriers to tunnel through.
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Figure 4.7: Band diagram and the corresponding wavefunctions at a) K =
1.28 kV cm−1 (non-spike point) and b) K = 1.29 kV cm−1 (spike point). States of
interest are labeled as |i〉 if they belong in the left period and |i′〉 if they belong in the
adjacent period to the right. Circles indicate the change of the second state in the spike
point.

In order to closely examine what happens around a spike, we will focus around
the point K = 1.3 kV

cm in Fig. 4.5. In Fig. 4.7 we present band diagram and the
corresponding wavefunctions moduli at a non-spike point K = 1.28 kV

cm and at
the spike point K = 1.29 kV

cm . In the left figure, we can see that the fourth state
from the left period |4〉 is nearly aligned with the 8th state |8′〉 from the adjacent
period at K = 1.28 kV

cm . At K = 1.29 kV
cm (on the second figure) position of the

states has changed. State |8′〉 is now nearly aligned with the state |2〉 however
compared to the situation at K = 1.28 kV

cm it seems that the state |2〉 does not
exist at K = 1.29 kV

cm (indicated by circles).
Effectively, state |8′〉 from the second period before resonance became state

|4〉 in the first period after resonance, this then caused the shift of states when
two figures are compared (|8′〉a → |4〉b, |4〉a → |3〉b and |3〉a → |2〉b, changes are
purposely colored the same in Fig. 4.7a,b). This observation occurs at every
spike present in Fig. 4.5 and it depicts that RE model predicts non physical
high currents due to instantaneous non-local transport for spatially separated
resonances, which has detrimental effects in the electron transport. Note that
depending on the resolution of electric field points in the simulation, more spikes
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would occur due to a higher probability of producing state alignment (it is also
possible to have multiple anticrossings at one bias point).

The DM model does not suffer from such a behaviour and it is required for
QCL study. However DM model is applied under tight binding approximation at
the period ends. The layer structure needs to be provided from the injection bar-
rier (as in Fig. 4.1) otherwise localisation of the states within the module would
be affected differently. RE model can still provide useful information during the
design of novel structures because it would be able to display extended wavefunc-
tion and the effect of the injection barrier by not forcing the wavefunctions to
attenuate rapidly as in DM model.

4.3 Electron-Electron scattering

Electron-electron scattering is often neglected due to its numerical complexity
and the ambiguity of the model itself. As discussed in 2.9 this mechanism is a
Columbic interaction involving four electrons. The many-body effect and genera-
tion of a two–electron wavefunction from single–electron ones is a rough approx-
imation and the entire model is further distorted by neglecting non-parabolicity
of the subbands and adding phenomenological screening effect.
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Figure 4.8: Current density versus applied bias with inclusion of EE (black line) and
without EE (red line) scattering. Inset shows the material gain. Dashed green line
depicts the threshold.

The main justification for neglecting EE mechanism is very wide fitting range
of IFR mechanism shown in Fig. 4.2. In most cases, EE scattering has more
detrimental effect on the material gain, rather than on the current density, as
shown in Fig. 4.8. Fitting the data to the experiment with the inclusion of EE
mechanism would need different IFR parameters (∆IFR = 1.5 Å,ΛIFR = 100 Å)
and the simulation time would be greatly extended.

In author’s publication in [74] the fitting procedure discussed in the previous
sections did provide good results at 20 K in pulsed operation and EE scattering
was not considered. On the other hand, some QCL designs, like [145] cannot
be well matched with the experiment even when fitting L − I − V at a single
temperature in pulsed operation, which will be further discussed in the next
section.
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4.4 Temperature dependence

Thermal performance of QCL is mainly limited by thermalisation of subbands at
high temperatures, especially due to LO-phonon scattering process. The BTC
QCLs cannot achieve high temperature performance due to the narrow cluster of
states which undergo multiple absorption transitions that degrade the population
inversion. LO-phonon assisted designs can improve the temperature performance,
which led to the pulsed operation up to 210 K [36].

The electrical heating in pulsed operation should not be the main limiting
factor and it is often neglected in modelling. This means that fitting parameters
obtained for one temperature should be applicable for the entire L− I − V char-
acterisation in pulsed operation for all heat sink temperatures. However, several
issues arise with fitting the temperature dependence of the current:

• Sensitivity of the model and stiffness of conversion of the current density
to current. Slight variation of the model output (the current density) is
expected from the model, however, to obtain the current, this value needs to
be multiplied by a surface of QCL cross-section (usually 150 µm×2000 µm).
This creates bigger variation while fitting the results.

• Modal loss (threshold gain) is dependent both on the current and frequency.
The one-dimensional model [65] that is used introduces the additional vari-
ation of the model output values. Note that the transport model is highly
sensitive on the value of the threshold gain which can also be observed in
the inset in Fig. 4.8.

• The electron temperature discussed in 2.10 has the main effect on the
temperature dependence of the transport model. The issue with the ap-
proach given in Eq. (2.33) is that the self-self-consistent algorithm seeks
unique electron temperature of all the subbands involved in the transport
model. Physically, this is not fully correct, since the QCL is non-equilibrium
device where lasing subbands may have different electron temperatures
[146, 147, 148, 37, 149] and this may be more apparent in LO-phonon
structures rather than BTC design [149]. The temperature obtained by
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Eq. (2.33) satisfies the energy conservation law, however transport charac-
teristics would represent an average result. Additionally, the EE scattering
mechanism does not affect the electron temperature mainly because it is
very challenging (and debatable) to model the kinetic energy balance sim-
ilar to Eq. (2.30) for a four electron process.

• IFR scattering parameters are most commonly employed as a fitting tool.
The fitting approach discussed in 4.2.1 only seeks a pair of IFR parameters
value that match a single point (or two) of interest, however it is clear from
Fig. (4.2) that multiple pairs may exist, and that the fitting approach may
need to be altered in order to find IFR parameters able to match the full
experimental L− I − V output.

• Electrical heating of the device is also present in the pulsed operation.
Although this effect is very small, introducing a rough approximation to
the lattice temperature ≈ RTHdcIV (RTH - heating resistance, dc - duty
cycle) may provide better results due to high sensitivity of the model.

• The transport model uses electric bias as an input and displays very high
sensitivity to its variation. The numerical implementation of the overall
model is already parallelising the simulations for different bias values, and
reducing the bias step is not numerically feasible. For this reason it is often
challenging to fit the model at the threshold current, even at single heat
sink temperature. Additionally, the optical power is calculated through
minimisation algorithm that exploits the gain saturation effect, however
this approach assumes that the optical electric field is purely real in order
to avoid a two-dimensional minimisation implementation. The dynamical
model considers both real and imaginary part of the optical electric field and
may provide a better result and display the transient around the threshold.
This will be further discussed in the Chapter 7.
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4.4.1 Pulsed operation
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Figure 4.9: I − L characteristics for different heat sink temperatures. Full lines rep-
resent simulation results, while dashed lines represent the experimental measurements.
Scaling was performed so that the peak ratio is consistent in both results. Dependence
of cavity loss on temperature in accordance with [45, 87] has been included.

Figure 4.9 shows somewhat poor agreement with the experimental measurements
(apart from the fitted I −L dependence at 20K) when the temperature is varied
[74]. The main issues in Fig. 4.9 are that the threshold current dependence
shows unexpected behaviour (reduction with the increase of temperature), the
dynamic ranges at higher temperatures are greatly overestimated and the optical
power decrease with the temperature is underestimated. To rectify these issues,
we will focus on value of current I = 1.01 A and address some of the previously
discussed potential reasons for non ideal result. Several techniques may be applied
to the model for potential improvement. It was noticed that the threshold gain
is reduced with the temperature increase in model [45, 87]. Since the model is
highly sensitive to this value, one approach is to use fixed value of the threshold
gain that was used to obtain the initial fit at 20 K. Additionally, some electrical
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heating is present at pulsed operation, and adding an increase of the temperature
by RTHdcIV may provide improvement.

Figure 4.10: Optical power dependence on temperature shown as relative ratio to the
value at 20 K at current I = 1.01 A. Only 6 temperatures were used in the experiment,
thus full lines only serve for illustration, markers show the correct behaviour.

Figure 4.10 displays that using a fixed value of loss provides some improve-
ment, however, as estimated in [74] the electrical heating has a more significant
effect. The improved I −L temperature dependence that corresponds to heating
of ∼ 2 K/W is presented in Fig. 4.11.
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Figure 4.11: I − L characteristics for different heat sink temperatures with added
electrical heating RTHdcIV = 1.6 [K/W]× IV . Full lines represent simulations result,
while dashed lines represent the experimental measurements. Scaling was performed
so that the peak ratio is consistent in both results (amplitude of each curve has been
divided by peak value of I − L dependence at 20K).

The added electrical heating in Fig. 4.11 has provided only slight improvement
in comparison to the results in Fig. 4.9. Although seemingly the threshold current
is well matched at 20 K and 55 K, the transient around the threshold current is
too steep and its discussion is not fully valid. The main improvement is in relative
ratio of the optical power amplitudes presented in Fig. 4.10, however results for
20,30, and 40 K are very similar, which is not correct. Additionally the dynamic
range is still greatly overestimated at higher temperatures.

To analyse the reason for such behaviour, we shall focus on temperature de-
pendence of the model output at single bias point rather than interpolating the
results as in Fig. 4.10.
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Figure 4.12: a) Material gain and b) current density dependence on temperature
for multiple value of electric bias. c) Material gain dependence on temperature for
electric bias points around the threshold. Black solid line represents the threshold gain
determined by the model in [45, 87]

Figure 4.12 displays the expected converse effect between the current density
and material gain with the variation of temperature. The dependencies are con-
stant for wide range of temperatures. This causes very similar I−L dependencies
in the temperature range 10 - 40 K. The main reason why the threshold current
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was dropping with the increase of temperature in Fig. 4.9 is the slight drop of
the threshold gain in Fig. 4.12c) with temperature (which also illustrates the
model’s high sensitivity). The temperature behaviour in Fig. 4.12 is mainly de-
termined by the scattering mechanisms included in the transport model, mainly
the LO-phonon process. Note that all these processes have been averaged over
Fermi-Dirac distribution (as in Eq. 2.10) at single electron temperature as dis-
cussed in 2.10. Although such approach significantly simplifies the model and
improves its performance, this simplification disables the overall model to cor-
rectly predict the experimental temperature behaviour.

4.4.2 CW operation
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Figure 4.13: I−L characteristics for different heat sink temperatures in CW operation.
Full lines represent simulation results, while dashed lines represent the experimental
measurements. Scaling was performed so that the peak ratio is consistent in both
results.

Figure 4.13 shows the fitting results for CW operation. Fitting was performed to
match the experimental dynamic range at 25 K. The novel fitting parameter that
was introduced was the thermal constant RTH = 9.6 K/W . The only difference
to the result in Fig. 4.9 was adding increase of the operating temperature in the
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form T = Tcf +RTHIV , where Tcf is the cold finger temperature. Similarly as in
Fig. 4.9 and 4.11 there is a considerable difference between the theoretical and
experimental results for different cold finger temperatures (apart the one that
the model was fitted to). The model is more sensitive and harder to fit when
electrical heating is considered, as the electrical power of the device varies in a
wide range while bias is being swept. The main issue is that the contact resist-
ance which increases the voltage also affects the fitting procedure, making this a
two dimensional fitting challenge. Overall, the observations are consistent with
the previous discussion that the model is not fully able match the temperature
behaviour with the linear electric heating approximation. Possible improvement
of the temperature fitting procedure, is to allow different RTH values at different
cold finger temperatures, as modelled in [87, 86], however note that the disparity
in temperature dependence of QCL output characteristics occurs due to multi-
tude of approximation involved in the model. Additionally, the overall model for
CW operation is highly approximative, as it is experimentally (and physically)
known that QCL periods are not exposed to the same operating conditions [150].

4.5 Temperature optimisation

Interestingly, this model is capable of predicting the maximum operating tem-
perature of QCL device. The behaviour similar to Fig. 4.12 has been observed
within multiple THz QCL designs even without the IFR parameter fitting. Know-
ing that the threshold gain for most surface plasmon waveguides is 40− 60 cm−1

and for most metal-metal waveguides 20 − 30 cm−1, it is possible to predict the
maximum operation temperature of the device. This enables using this model for
design optimisation. Simulations of several exemplary structures are presented
in Fig. 4.14.
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a) 1.2 THz BTC QCL [33] b) 3.4 THz Hybrid QCL [53]

0 50 100 150 200 250 300
T [K]

0

20

40

60

80

100

120

140

G
 [c

m
-1

]

0 50 100 150 200
z [Å]

850

900

950

1000

1050

1100

V
ba

nd
 [m

eV
]

T
max

 = 120 K

K = 4.8 
kV__
cm

J = 500   
A__

cm
2

0 50 100 150 200 250 300
T [K]

0

10

20

30

40

50

60

70

80

90

100

G
 [c

m
-1

]

0 10 20 30 40 50
z [Å]

850

900

950

1000

1050

V
ba

nd
 [m

eV
]

T
max

 = 123 K

K = 16.6 
kV__
cm

J = 1700   
A__

cm
2

c) 3.5 THz Hybrid QCL [151] d) 3.3 THz scattering assisted QCL [49]
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Figure 4.14: Material gain dependence on temperature for several QCL designs at their
respective resonant bias. a) The lowest frequency THz QCL [33], b) The highest power
THz QCL (> 1 W, fabricated in Leeds) [53], c) Hybrid THz QCL [151] (it displays very
wide dynamic range, suitable for self-mixing interferometry applications), d) Scattering
- assisted QCL (designed and fabricated in Leeds) [49],
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4.5 Temperature optimisation

Figure 4.14: e) Former high operating temperature record THz QCL (200 K) [47], f)
The highest temperature THz QCL (210 K) [36]. The vertical red line displays exper-
imental cut-off temperature, while orange lines roughly display the region of expected
modal loss. Structures a), d), e) and f) were fabricated with metal-metal waveguide,
structures b) and c) used surface-plasmon waveguide. Insets show the layer sequence
with wavefunction moduli.

The 1.2 THz structure seemingly does not match with the model prediction
in Fig. 4.14. However, the threshold gain in [33] was estimated around 20 cm−1

which is highly unlikely for such low frequency. The waveguide loss study in [152]
indicates that the value should be around 40 − 50 cm−1 in this frequency range
making the prediction in Fig. 4.14 very good.

For QCLs that operate around 3.5 THz, the modal loss in metal-metal wave-
guide is usually around 20 cm−1, and some results in Fig. 4.14 do overestimate
the cut-off temperature. However, when electrical heating is taken into account,
even though only pulsed operation is being considered, the model predicts the cut
off temperature remarkably well, given the fact that no IFR scattering paramet-
ers were varied to fit any of the results in Fig. 4.14. Simulations were performed
with ∆IFR = 1 Å,ΛIFR = 80 Å and EE scattering was not considered. To account
for the electrical heating, it is convenient to express electrical power by scaling
the units as:

Pe = J [ kA
cm2 ]×K [ kV

cm]× VQCL [µm2 m] = HF × VQCL [µm2 m] (4.1)

The heating factor HF in Eq. (4.1) determined simply by the product of the
current density and electric bias in such units can provide a rough estimate for the
electrical heating effect in pulsed operation. The heating factors that correspond
to the designs in Fig. 4.14 at the cut-off temperatures are: a) 0.84, b) 6.8, c) 2.4,
d) 28.22, e) 26 and f) 63.375 [kA×kV

cm3 ]. If the common fabrication dimensions are
used as 15×200×0.002 [µm2×m] ≈ 6 [µm2×m] and assuming a 2% duty cycle
and thermal constant RTH = 7 K/W, the linear electric heating approximation
in form RTHdcPe for these designs would be 0.84×HF[K]. This clearly shifts the
model predictions nearly ideally at 20 cm−1 loss limit in Fig. 4.14 for designs
d) - f) (apart for the design in subfigure e) because this operating temperature
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4.5 Temperature optimisation

was achieved by very large dimensions of the structure in [47] which results in
the lower thermal constant). Note that these values were taken arbitrarily, and
studying each of the designs individually would show that the model predicts the
cut off temperature remarkably well. However, for any optimisation purposes, a
10-20% tolerance is expected. The rule of thumb is to expect heating proportional
to 0.5− 0.9×HF (or directly as 1×HF which overestimates the effect, however
would pose as a very strict optimisation condition).

A novel THz QCL design for the high temperature operation will be discussed
in Chapter 8 where the temperature performance estimation presented here will
be exploited in determining the layer sequences that generate the desired struc-
ture.
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Chapter 5

Acoustic phonon pulse
modulation of THz QCL

High speed modulation of laser sources is essential for a variety of applications.
This chapter will discuss a novel state-of-the-art modulation scheme that employs
electron-phonon interaction and perturbs the QCL operation by a propagating
deformation potential wave induced by an acoustic wave. Most of modulation
schemes for QCLs are electronic and are limited by parasitic device impedance
enabling modulation up to 35 GHz. Theoretically, QCLs do not exhibit relaxation
oscillations and may be modulated over 100 GHz. This modulation scheme shows
potential for such high speed performance and was studied in a collaboration
with an experimental group at University of Nottingham. The chapter focuses
on theoretical modelling of this effect developed by the author and then used as
theoretical support to explain experimental results in a recent joint publication
(accepted) [107] with experimental teams in Leeds and Nottingham University.

5.1 Acoustic phonon effect in semiconductor su-
perlattice

The acoustic phonon generation in semiconductor superlattice was first demon-
strated in pump-probe experiment in [153]. The similarity between light and
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5.1 Acoustic phonon effect in semiconductor superlattice

sound propagation equations [154] has generated applications of using a super-
lattice as a reflective mirror for phonons. Acoustic phonons in semiconductor
structures describe mechanical atomic vibrations that are in phase. The theory
presented in section 2.8 describes acoustic phonon vibrations for bulk semicon-
ductors, which is not fully accurate for superlattice structures, however would
be acceptable for carrier transport. It is possible to additionally perturb these
atomic vibrations (and therefore the material strain) by additionally heating the
device by an external laser pump [155]. This perturbs the deformation potential
that is a consequence of acoustic phonons.

A simple way of generating acoustic phonon wave is by heating a thin metallic
film bonded to a semiconductor material. Detailed explanation can be found in
[156, 157, 158]. The metallic film irradiated by a femtosecond laser pulse absorbs
the energy Ef which causes the temperature rise [159, 160]:

∆T (z) = −1−Rf

cfAz′
Ef · exp

(
− z
z′

)
(5.1)

where Rf is the reflection coefficient of the film, cf is the specific heat capacity (per
unit volume), z is the film growth direction, z′ is the absorption depth of the film
and A is area of the irradiated spot on the film. This temperature change causes
linearly proportional isotropic stress [161] which initiates longitudinal acoustic
waves within the film. After multiple reflections of this wave, strain signal that
leaves the film has bipolar nature. Note that generated strain signal is not directly
proportional to the energy transferred by the laser to the film due to electron
diffusion effects, which broadens the profile of the bipolar acoustic signal [162,
161].

The detailed parametric formula for the strain signal can be found in [161].
In this thesis, this signal will be modelled as Gaussian derivative function in time
and space. The propagation of this strain signal throughout a superlattice causes
acoustic phonon vibrations that modulate sequential tunnelling between wells
and barriers. Nominally, this causes domain formation as the signal propagates,
however it can be modelled by an effective electric field model [163] by performing
pulsed irradiation of the metallic film.
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5.2 Acoustic phonon modulation effect in THz QCL

A detailed theoretical and experimental review of pump-probe technique for
acoustic phonon generation in GaAs/AlGaAs superlattice can be found in [161].

5.2 Acoustic phonon modulation effect in THz
QCL

A QCL structure is optically active superlattice and acoustic phonon effect may
serve as a very fast optical modulation scheme. The voltage modulating properties
of this effect have been previously demonstrated in resonant tunnelling diode
[164, 165] and weekly coupled superlattice structures [161]. The joint research
with Nottingham University has demonstrated this effect for the first time in THz
QCL structures [107].

V  DC

V  AC

Tee

V(t)

L(t)

10 dB

Schottky 
diode

10 dB

~ 40 fs, 800nm, 1 kHz pump

QCL

Al film

Figure 5.1: Experiment setup. Ridge of QCL device (blue) is grown on GaAs substrate
(gray) mounted on cold finger at temperature (not shown) of 10K. The bottom of
substrate is covered by thin Al transducer film that is pumped by external 800 nm
femtosecond pulses. QCL device is operating in pulsed operation and driven by 5%
duty cycle voltage source, connected to bias tee. Voltage difference and optical power
are measured by two 10 dB lock in amplifiers.
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5.2 Acoustic phonon modulation effect in THz QCL
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Figure 5.2: Layer thicknesses for the analysed hybrid QCL design, start-
ing with the injection barrier, are 4.1/10.6/0.5/17.0/1.0/13.5/2.1/12.4/3.1/10.0/
3.1/9.0/3.1/75/3.1/17.8/3.1/15.2 nm, Al0.14Ga0.86As barriers are shown in bold and
the well doped to 3.2 · 1016 cm−3 is underlined. Two periods are shown at the reson-
ance bias K = 3.63 kV

cm along with the corresponding wavefunctions moduli squared.
Insets show spatial and temporal form of approximated strain wave that is propagating
throughout all periods of QCL structure.

The experimental setup presented in Fig. 5.1 uses a 2.7 THz QCL based
on hybrid design [145] whose layer structure is shown in Fig. 5.2. The QCL
active region consists of 88 periods grown on semi-insulating GaAs substrate,
processed into surface-plasmon waveguide of 150 µm width and 2 mm cavity
length. The substrate was additionally cleaved for the thermal dissipation effect
to take place, and a thin (100 nm) Al acoustic transducer film was deposited at
the back of the substrate. In order to generate acoustic pulses, the experiment
needed to be conducted at low temperature (15 K) due to acoustic transparency
of the material. A femtosecond Ti:Sapphire laser was run under pulsed operation,
generating 40 fs pulses aimed at the transducer film. Note that the bottom of
the substrate in Fig. 5.1 is at cold finger, however a small aperture was made,
to allow irradiation by the femtosecond pump. The QCL device was also driven
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5.2 Acoustic phonon modulation effect in THz QCL

in pulsed operation with 50 µm voltage pulses with synchronised repetition rate
as the femtosecond pump. Measurement of voltage change were procured by a
microwave (14 GHz bandwidth) bias tee and 10 dB lock in amplifier, while optical
power was measured by Schottky diode and the amplifier. The experimental
measurement at three voltage points of interest1 is presented in Fig. (5.3).
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Figure 5.3: Experimental results for measured optical power and voltage difference.
Figures at the bottom are are expanded around the first echo of the acoustic signal
from the figures at the top. Voltage V1 corresponds to the voltage point on the rising
part of optical power dependence, while V2, V3 (V3 > V2) correspond to the falling
part.

Figure (5.3) shows the time dependence of the observed signal. In both the
1Courtesy of Dr. Aniela Dunn (Univerity of Leeds) and Prof. Anthony Kent (University of

Nottingham)
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5.2 Acoustic phonon modulation effect in THz QCL

voltage and the optical power measurement, two echoes can be noticed on a
timescale needed for the acoustic pulse to propagate through the structure. The
first response occurs 32 ns after the pump excitation, which corresponds to the
time needed for the acoustic pulse to travel through the substrate at 4800 ms−1

speed of longitudinal sound propagation. The subsequent echoes are observed
every 70 ns (only the second echo is shown in Fig. 5.3) due to multiple reflections
of the acoustic wave across the entire structure. Several observations can be made
from Fig. (5.3):

1. Time needed for the acoustic pulse to travel through the entire stack of
QCL is ∼6 ns and time for the signal to reach the top contact is ∼38 ns.
The signal, however only shows the response during the propagation of the
signal in one direction (“forward”) and the second response is observable at
∼70 ns. This indicates that the acoustic signal only affected the transport
when propagating towards the top contact.

2. Voltage difference measurement always resulted in an increase of voltage,
regardless which portion of L− I − V dependence was modulated.

3. Optical power measurement has bipolar nature and it switches polarity
depending on whether modulation is done on the rising (at voltage V1) or
falling portion (at voltage V2, V3) of L− I − V dependence.

4. At the peak of the L− I − V dependence the response could not be distin-
guished from the noise (not shown in Fig. 5.3).

The lack of signal at the peak of the optical power dependence on current
and signal polarity behaviour of the measurement can, in principle, be explained
through standard electric modulation approach. Assuming that the acoustic wave
perturbs the voltage as bipolar dependence, the mostly linear I−V dependence of
QCL device would mostly replicate the modulation signal. Since I−L dependence
changes its linearity after the peak, the measured signal would change polarity
and there would be no signal at the peak (due to its “flatness”). Additionally,
the response would be stronger at voltage point that is located on sharper slope
of L− I − V dependence. It is possible to employ this modulation approach and
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5.3 Time dependent perturbation theory

provide a quantification of the effect, as it was done in the theoretical section
in [107], showing sound agreement with the measurement data. For an in-depth
understanding of this effect in THz QCL, a model that describes quantum mech-
anical nature of QCL needs to be applied. All the observations above can be
qualitatively explained through the time dependent perturbation theory, while a
quantitative model would be very challenging.

The observed modulation depth ∆L/L is around 6%. The voltage and op-
tical power signal observation were limited by parasitic impedance (rise time of
∼ 800 ps) and Schottkey detector response. Theoretically, the transient time
of this mechanism is determined by signal propagation through QCL structure,
thus higher modulation frequency would be attainable with thinner QCL active
regions or generating the acoustic wave on several selected QCL periods. It could
be also feasible to employ the acoustic perturbation on all QCL periods by set-
ting an acoustic standing wave (i.e by putting acoustic Bragg mirrors) on the
device, which would generate a stronger modulation depth. The main challenge
in realising higher speed is the ≈ 32 ns needed for the strain signal to propagate
through the substrate and reach the active region of the QCL structure. This
limit may be averted by sending a train of narrow spaced strain pulses. A narrow
spaced train of strain pulses may deteriorate due to interference or may behave
as one collective heating signal that does not alternate. The QCL dynamics is
on picosecond scale and it is also unknown how would a perturbation on similar
timescale affect the overall behaviour and more experimentation is needed.

5.3 Time dependent perturbation theory

The propagating acoustic wave effect may be viewed as additional perturbation
to the deformation potential Dac in section 2.8, however its effect conversely has
more significance on transport than ACP scattering mechanism itself. Modelling
this effect in THz QCL is very challenging. It is estimated that bipolar strain has
an amplitude of 0.1 - 1 meV and temporal width of 15 - 20 ps as presented in the
inset in Fig. 5.2. The amplitude of the signal is much smaller than the subband
energy making this signal suitable for perturbation theory, however the timescale
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5.3 Time dependent perturbation theory

is similar to subband lifetime, and propagation of the signal affects periods se-
quentially. The latter issue prevents feasible quantization of this effect, because
the periodical foundation of QCL modelling would be broken and formation of
the electric bias domains is a certainty.

The general time dependent perturbation theory (TDP) presented in Chapter
2.3 may therefore be used to explain only qualitatively the consequences of the
acoustic signal propagation. The TDP theory provides interaction probabilities
by determining wavefunction interaction corrections in Eq. (2.6). These ex-
pressions resemble Fourier transformation, however their values would be largest
when energies are aligned (ωfi = 0). This means that the second correction in
Eq. (2.6) must be included as well. This property of TDP theory implies that
the acoustic effect will mainly affect energy subbands with narrow spacing and
that the effect would be the strongest between the states involved in resonant
tunnelling, depicted as ILL and ULL in Fig. (5.2).
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Figure 5.4: L − I − V characteristic of hybrid device in Fig. 5.2 at 20 K in pulsed
operation. Contact resistance is 1.5 Ω. The IFR parameters are ΛIFR = 80 Å, ∆IFR =
0.95 Å, EE scattering mechanism was considered as well. Insets show material gain
(left) and frequency (right) dependence on applied external bias. Note that both insets
focus on the mode with the highest material gain, and other modes are being ignored
in the calculation.
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5.3 Time dependent perturbation theory

The fitting procedure discussed in Chapter 4 cannot be performed to provide
the perfect L− I − V agreement, due to the noisy measurement data around the
peak of the optical power dependence caused most likely by multi-mode behaviour
of the device and mode hopping effect. For that reason, the fitting procedure was
aimed at the negative differential resistance (NDR) occurrence. When QCL is
displaying NDR, the voltage starts to rapidly increase, the current is dropping
and radiation from QCL is sharply decreasing. For that reason, the numerical
result in Fig. 5.4 for optical power is not shown after the NDR occurrence as the
model is overestimating the effect as it can be seen by the sharp curving of the
model’s L − I − V results in the figure. Additionally, note that the theoretical
model predicts steady increase of the optical power with the current, while the
experimental I−L dependence is bell shaped. This is the consequence of limiting
the model only to one waveguide mode, meaning that only the frequency that
has the highest material gain is considered. For that reason, the optical power is
shown in normalised units, and I−L modelling is focused on fitting the dynamic
range.

Figure 5.5: Net probability between tunneling states due to the transit of the acoustic
wave, calculated using a time-dependent perturbation model for biases after subband
alignment (KF = 3.63 kVcm−1), at alignment (KF = 3.53 kVcm−1) and before align-
ment (KR = 3.36 kVcm−1). The timescale of the simulation is set so that the pulse can
propagate over two adjacent periods.
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5.3 Time dependent perturbation theory

The TDP approach was performed at three bias points of interest, KR <

KP, KP and KF > KP that correspond to the voltage values before the peak, at
the peak, and after the peak of the optical power dependence, respectively.

At each of these bias points, self-self-consistent Schrödinger-Poisson equation
has been solved providing the wavefunction basis for the application of the TDP
theory. The perturbation Hamiltonian was modelled as Gaussian derivative func-
tion:

X√
2π σ2

a
exp

(
−X

2

2σ2
a

)
(5.2)

where X = ct − kz, σa = 13 nm, c = 4780 ms−1, k = 1.012 m−1. The Gaussian
dependence is afterwards normalised to the approximated amplitude of the signal
of 1 meV.

The simulations in Fig. 5.5 were performed when signal propagates towards
the top contact of QCL as indicated in Fig. 5.2. Since TDP provides interaction
probability, the first approximation effect would be to seek the net charge that
would undergo the tunnelling effect. It is a good approximation to assume equal
population of ILL and ULL subbands and present the net TDP effect directly.
The main simulation observation was that regardless of the operating bias, the net
probability of transport between ILL and ULL is always negative. This indicates
higher interaction probability for electrons to scatter back at the ILL, or in other
words, the acoustic wave lowers the tunnelling efficiency as it propagates through
QCL periods. Since a constant current must flow through QCL, the effect in
Fig. 5.5 will cause an increase of QCL resistivity, and therefore always result in
voltage increase which was observed in the experiment as well.

In terms of optical power, Fig. 5.5 can also explain the polarity change in the
experiment. At the peak of optical power, subbands ILL and ULL are fully aligned
up to energy difference equal to the anticrossing energy (∼0.3 meV). Before the
resonant tunnelling alignment, the subband energy EILL < EULL and converse
effect occurs after the subband alignment (as these state anti-cross). An increase
of voltage on the rising edge of I − L dependence (at bias KR) would therefore
bring the tunnelling states effectively closer together which would increase the
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5.3 Time dependent perturbation theory

optical power, while an increase of voltage on the falling edge of I−L dependence
(at bias K = KF) would have the opposite effect.

The simulation however indicates that the strongest effect would occur at
bias KP that corresponds to the peak of I − L, however experimentally, this
resulted in non observable measurement. TDP theory predicts that an increase
of voltage at this point should result in a signal with similar polarity as on the
falling edge of I − L, however, note that this QCL structure has very “flat” and
noisy I−L dependence at the peak (Fig. 5.4), and the lack of signal is clear from
electronic point of view. From quantum mechanical point of view, the “flatness”
of this structure is one of the main arguments of hybrid design QCLs which have
very wide dynamical range. In Fig. 5.2 it can be seen that state |2〉 is ILL.
However, ground state forms a mini-band with ILL, and injection to ULL in
the next period is being additionally done by the ground state as well, resulting
in broader dynamic range and broader peak power range. The fluctuation of
optical power most likely occurs due to change of ILL from |2〉 to |1〉. Naturally,
any additional perturbation in this range would not result in distinct observable
result.

Figure 5.6: L − I − V characteristic of hybrid device in Fig. 5.2 at 15 K in pulsed
operation. Contact resistance is 1.5 Ω. The IFR parameters are ΛIFR = 80 Å, ∆IFR =
0.95 Å, EE scattering mechanism was considered.
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5.3 Time dependent perturbation theory

This modulation approach also affects the QCL radiative transport. However,
TDP only provides significant effect when two narrowly spaced energy subbands
are considered. In Fig. 5.6 interaction probability between the lasing states
is presented. Note that here the converse probability is not significant, as the
population of the LLL is much lower than ULL when laser is working. The very
weak effect in Fig. 5.6 was expected as energy spacing is ≈ 12 meV, while the
perturbation had 1 meV amplitude.

From the modelling point of view, the acoustic wave effect does have a very
low amplitude and TDP theory could be extended to yield another scattering
mechanism, however its effect would not be noticeable because more dominant
transport mechanism occur on more significant energy scale (i.e. LO-phonon
mechanism at ∼36 meV). The main challenge with modelling is that the signal
is travelling both in time and space, on a timescale similar to state lifetimes.
The Fermi-golden rule with TDP approach would unjustly assume that this per-
turbation is affecting every QCL period at the same time. A more appropriate
approach would be using Landau-Zener theory [166, 167] in order to address the
complicated nature of acoustic wave.

From the theoretical approach used in this chapter it can be concluded that
this effect may yield a higher modulation depth with QCLs with narrow injection
barriers, such as bound-to-continuum or scattering assisted devices. In general,
since this effect is omitting the tunnelling, and design with highly sensitive sub-
band alignment (as LO-phonon or BTC QCLs) would yield better observable
effect at the peak of I−L dependence. In terms of transport effect and potential
frequency modulation, designs with narrowly spaced energies should yield better
desired performance.

NB: The TDP model in this section was main contribution of the author in
joint research and publication with Dr. Anila Dunn and Prof. Antony Kent
(University of Nottingham). EE mechanism was not implemented within the
transport model at the time of the collaboration. Thus, the values of few selec-
ted bias points of interests differ from the ones in the publication, where fitting
procedure was performed without EE scattering mechanism.
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Chapter 6

Density Matrix Model Dynamics

The dynamical properties of QCL require solving a coupled system of differential
equations in complex coordinate space consisting of DM model, Maxwell wave
equation and thermal equation. Numerically, DM model has the highest cost, and
requires solving 9N2 equations in complex coordinate space. However, the density
matrix itself is Hermitian and a significant reduction of equations is possible.
This chapter will transform the system reviewed in Chapter 3 to obtain 10N2

differential equations in real coordinate space and couple them to the Maxwell
equation under the slow envelope approximation. The dynamic model will then
be applied to an exemplary QCL structure offering key insight into QCL dynamics
along with the possibility of extending the model for optical feedback applications.

6.1 Reduced superoperator for DM model

The superoperator derived in Eq. (3.22) originates from the initial set of equations
(3.5). Density matrix is a Hermitian operator, and when this is applied to the
initial partitioned density matrix in Eq. (3.4) it follows that ρ0 = ρ†0 and ρ1 = ρ†−1.
It also follows that the first and the third equation in Eq. (3.5) are complex
conjugates of each other, however both are needed in solving because the second
equation couples them.

The system expands three times when NRWA approximation is applied yield-
ing 9N2 equations given in Eq. (3.18). Note that NRWA implies that the density
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6.1 Reduced superoperator for DM model

matrix partition is ρk = ρDC
k + ρ+

k e
iωt + ρ−k e

iωt, k = 0,±1 and from Hermiticity,
the following equalities apply:

ρ+
0 = (ρ−0 )†, ρ+

1 = (ρ−−1)†, ρ−1 = (ρ+
−1)†

ρDC
0 = (ρDC

0 )†, ρDC
1 = (ρDC

1 )†, ρDC
−1 = (ρDC

−1 )†
(6.1)

Due to the Hermiticity, the third equation in (3.5) does not need to be solved,
and in NRWA system in Eq. (3.18), the last three equations (and any of equations
involving ρ±0 ) can be discarded due to identities in Eq. (6.1), yielding a reduced
system of 5N2 equations:

i~
dρ+

1
dt

= [HDC, ρ
+
1 ] + [H+

AC, ρ
DC
1 ] + [H1, ρ

+
0 ] + eKLPρ

+
1 − i~

ρ+
1
τD

+ ~ωρ+
1

i~
dρDC

1
dt

= [HDC, ρ
DC
1 ] + [H1, ρ

DC
0 ] + [H+

AC, ρ
−
1 ] + [H−AC, ρ

+
1 ] + eKLPρ

DC
1 − i~ρ

DC
1
τD

i~
dρ−1
dt

= [HDC, ρ
−
1 ] + [H−AC, ρ

DC
1 ] + [H1, (ρ+

0 )†] + eKLPρ
−
1 − i~

ρ−1
τD
− ~ωρ−1

i~
dρ+

0
dt

= [H−1, ρ
+
1 ] + [HDC, ρ

+
0 ] + [H+

AC, ρ
DC
0 ] + [H1, (ρ−1 )†]− i~ ρ

+
0
τD0

− i~ρ
+
0
τ

+ ~ωρ+
0

i~
dρDC

0
dt

= [H−1, ρ
DC
1 ] + [HDC, ρ

DC
0 ] + [H+

AC, (ρ+
0 )†] + [H−AC, ρ

+
0 ] + [H1, (ρDC

1 )†]

− i~ρ
DC
0
τD0

− i~ρ
DC
0
τ

(6.2)
The terms in red colour in Eq. (6.2) are the consequence of Eq. (6.1). These

terms have special commutator linearisation that is discussed in Appendix D.
Technically, this system can be used instead of Eq. (3.18) for the steady state
solution (and even semi-analytical result may be derived by block Gaussian elim-
ination), however the superoperator would not have straightforward symmetric
expansion that was discussed in Chapter 3. Numerically, inverting 9N2 and 5N2

superoperator in Eq. (3.23) has similar CPU time cost on modern processors
(note that usually N ∼ 3 − 12) which is why the numerical implementation
and the system construction was explained as in Chapter 3. For the dynamical
properties, we must take the reduced form. If we construct the following:
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6.1 Reduced superoperator for DM model

Hred =



HDC H+
AC 0 H1 0

H−AC HDC H+
AC 0 H1

0 H−AC HDC 0 0
H−1 0 0 HDC H+

AC

0 H−1 0 H−AC HDC


5N×5N

IUred =



I I I I I

I I I I I

I I I I I

I I I I I

I I I I I


5N×5N

Υred = eKLP



eKLPIN2 0 0 0 0
0 eKLPIN2 0 0 0
0 0 eKLPIN2 M1 0
0 0 M1 0 0
0 M1 0 M+

AC 0


5N2×5N2

D′′red =



D′1 0 0 0 0
0 D′1 0 0 0
0 0 D′1 0 0
0 0 0 D′0 0
0 0 0 0 D′0


5N2×5N2

Ωred′′ =



IN2 0 0 0 0
0 0 0 0 0
0 0 −IN2 0 0
0 0 0 IN2 0
0 0 0 0 0


5N2×5N2

ρred =



ρ+′
1

ρDC
′

1

ρ−
′

1

ρ+′
0

ρDC
′

0


5N2×1

(6.3)

where I is N ×N identity matrix, IN2 is N2×N2 identity matrix. Zero blocks in
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6.1 Reduced superoperator for DM model

Hred are N×N in size, while all other zero blocks are N2×N2 in size. M1 and M+
AC

are special sub-Liovillian superoperators that correspond to linearisation of com-
mutator consisting of H1 and H+

AC, respectively, that also correspond to the terms
in red colour in Eq. (6.2). Formally, the issue with these terms is that they target
the conjugate transpose of the unknown, while requesting row-wise vectorisation
of the original (non-transposed) density matrix block. While the commutator
[A,X] has direct linearisation through Kronecker product as A⊗ I − I ⊗AT , the
commutator [A,XT ] which requires same vectorisation as linear form of [A,X]
does not have linearisation determined by a particular operation in algebra lit-
erature. The derivation therefore needs to be done by mathematical induction
as presented in detail in appendix D.3. Algebraically, we can construct linear
form of [A,XT ] as (IR � AR − (IR � AR)T ) where AR is partitioned one-column
matrix where each column is a row of the the original matrix A, and IR is a
column partitioned matrix (with N partitions) where each partition is identity
matrix I of N × N size. We can introduce Mr1 = IR � H1,Mac1 = IR � HAC

and define M1 = Mr1 − MT
r1,MAC = Mac1 − MT

ac1, however the numerical im-
plementation of Mr1 and Mac1 does not need to follow its definition, since the
numerical code in C++ is straightforward, with two nested loops i, j = 1, · · ·N ,
Mr1(iN + j, span(jN, (j+ 1)N − 1)) = A.row(i) (span operation and .row opera-
tion are part of armadillo algebra library that was used, span focuses on particular
set of columns within iN + j row and this code replicates i–th row of matrix A

obtained by .row function).
The reduced superoperator for linearising the system in Eq. (6.2) is:

dρ′′red
dt

= Lredρ
′′
red

Lred = − i
~
(
Hred � IUred − IUred �H .T

red + Υred − i~D′′red + ~ωΩ′′red

) (6.4)

The Khatri–Rao product needs to be performed before adding other terms.
These additional terms in Eq. (6.3) are sparse, and mostly have elements only on
the main block diagonal, thus a formal construction as in Eq. (6.3) is not neces-
sary, and manual addition (to the specific blocks after the Khatri–Rao product)
may be performed instead.
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6.2 Superoperator of DM model in real plane

6.2 Superoperator of DM model in real plane

The system in Eq. (6.3) and its linear form in Eq. (6.4) is written in com-
plex plane, however many C++ libraries (as GSL [168]) need a system of real
equations. Splitting the real and imaginary parts in Eq. (6.3) would result in
a system of 10N2 real equations. Fortunately, an expansion rule similar to Eq.
(3.21) is possible. Consider a commutator −i[Hk, ρk], where both are complex
Hk = HkR + iHkI and ρk = ρkR + iρkI . The commutator results in two equations:

Im : [HkI , ρkI ]− [HkR , ρkR ]
Re : [HkI , ρkR ] + [HkR , ρkI ]

(6.5)

Linear form of Eq. (6.5) is:

((
HkI −HkR

HkR HkI

)
�

(
I I

I I

)
−
(
I I

I I

)
�

(
HT
kI

HT
kR

−HT
kR

HT
kI

))(
ρkI

ρkR

)
(6.6)

This is similar to the rotation matrix for any complex number, however we are
interested in formulation multiplied by imaginary unity, since most terms have
this form in Eq. (6.4), thus we define a complex rotation expansion rule as:

Hrot
k →

(
HkI −HkR

HkR HkI

)
(6.7)

Additionally, terms in red colour in Eq. (6.2) target complex conjugate of
the density matrix partitions, this has the same effect as multiplying the second
equation in Eq. (6.5) by −1 and the expansion rule for the linearised form of
[Hk, ρ

T
k ] = Mkρ

′
k would be:

M rot
k →

(
MkI −MkR

−MkR −MkI

)
(6.8)

The expanded superoperator of real equations can be written as:

dρrot′′
red
dt

= Lrot
redρ

rot′′
red

Lrot
red = 1

~
(
Hrot

red � Irot
Ured
− Irot

Ured
�Hrot.T

red + Υrot
red + ~D′′red + ~ωΩrot′′

red

) (6.9)

where:
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6.3 Normalisation of the superoperator

• Hrot
red is a 10N ×10N partitioned matrix, obtained from the one in Eq. (6.3)

by applying expansion rule in Eq. (6.7). Note that only HAC block has
an imaginary part, and that real basis of wavefunctions was used to obtain
blocks H±1.

• Irot
Ured

is 10N × 10N partitioned matrix, where each partition is identity
matrix I. It can be algebraically formed as U10×10 ⊗ IN×N .

• Υrot
red is 10N2× 10N2 partitioned matrix obtained from the one in Eq. (6.3)

by applying the rule Eq. (6.7) to terms eKLPIN2×N2 , treating them as
purely real, and rule (6.8) to terms M1 and MAC.

• D′′red is a 10N×10N partitioned matrix, obtained by applying rule Eq. (6.7)
by treating this matrix as purely imaginary, because this term contained
additional imaginary unity in Eq. (6.4) (this also causes the sign change
in front of this term). In simpler terms, D′′red is block diagonal matrix with
elements D′1, D′1, D′1, D′1, D′1, D′1, D′0, D′0, D′0, D′0 on the main diagonal.

• Ωrot′′
red is a 10N × 10N partitioned matrix obtained from the one in Eq. (6.3

by applying the rule in Eq. (6.7) on each IN2 element, treating it as purely
real.

• ρrot′′
red is 10N2 column vector consisting of stacked vectorised elements

ρ+′
1I , ρ

+′
1R, ρ

DC′
1I , ρDC′

1R , ρ−
′

1I , ρ
−′
1R, ρ

+′
0I , ρ

+′
0R, ρ

DC′
0I , ρDC′

0R

in that order.

6.3 Normalisation of the superoperator

The normalisation condition is given in Eq. (3.23). For the steady state solution
we can replace one of the equations ρDC

0ii given by the superoperator in Eq. (6.4)
and obtain a simple linear system as in Eq. (3.23). For the dynamical solution,
it is much better to implement the normalisation condition by discarding the
equation targeting ρDC

0NN (we chose the last state), and substituting it by ρDC
0NN =∑

i 6=N 1− ρDC
0ii , the resulting system of equations can then be written as:
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6.4 Maxwell – Bloch equations

dρdyn

dt
= Ldynρdyn +BN (6.10)

where Ldyn is obtained from Lrot
red by applying the normalisation condition, ρdyn

lacks the real and imaginary part of ρDC
0NN , otherwise it is identical to ρrot′′

red from
Eq. (6.9). The Ldyn matrix is similar to Lrot

red and it differs in the lack of rows and
columns (imaginary and real part) that correspond to the ρDC

0NN element in the
original system ((5N2−1)–th row and column) and each column targeting ρDC

0ii , i 6=
N is altered by subtracting the columns targeting imaginary and real part of ρDC

0NN
from the original system. The Ldyn matrix therefore has (10N2 − 2× 10N2 − 2)
size. BN is 10N2 − 2 column vector that is actually a column from the original
superoperator that targeted the real part ρDC

0NN while the two rows were omitted
since the equations targeting real and imaginary part of ρDC

0NN are deleted. The
detailed explanation on how Ldyn and BN are generated from the initial system
is given in Appendix D.4.

6.4 Maxwell – Bloch equations

The formal solution of linear system in Eq. (6.10) can simply be determined
through eigenvectors and eigenvalues of Ldyn, however this is only possible if the
optical electric field is considered constant. The superoperator depends on the
optical electric field through HAC partition of the reduced Hamiltonian in Eq.
(6.3). The optical electric field is given by Maxwell equation, and if we adopt
Fourier approach under slow-envelope approximation in Eq. (1.12), the real ER

and imaginary part EI of this equation may be written as:

∂ER

∂t
= − σ

2ε0n2ER + (ω − ωn)EI + ω

2ε0n2 Im{P}

∂EI

∂t
= −(ω − ωn)ER −

ω

2ε0n2 Re{P}
(6.11)

If we apply the expressions for the polarisation in Eq. (3.27), material gain in
Eq. (3.28), and that the conductivity is linked to the modal loss as σ = ε0ncgth,
where modal threshold gain is given by Eq. (1.1), as gth = (αm +αw)Γ−1, we can
write Eq. (1.12) as:
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6.4 Maxwell – Bloch equations

∂ER

∂t
= c

2n (g − gth)ER + (ω − ωn)EI

∂EI

∂t
= − c

2ngthEI − (ω − ωn)ER + eNDω

2ε0n2 Re
{
Tr(Zρ+

0 )
} (6.12)

We can also assume that the resonant frequency would be exactly equal to
the Fabry–Perot́ mode ω = ωn which simplifies Eq. (6.12) further. The real part
of Eq. (6.12) illustrates the key mechanism of damping the optical gain to modal
loss.

The system of equations given by Eq. (6.10) and Eq. (6.12) is non-linear
system of ordinary differential equations (ODE) commonly referred in literature
as Maxwell–Bloch (MB) equations [169]. The MB equations are usually written
for several states only, however the formulation developed by the author of this
thesis in Eqs. (6.10,6.12) is general and independent on the number of states
considered. The mathematical formulation in Eq. (6.10) and Eq. (6.12) with
the relative mathematical simplicity of Eq. (6.9), allows a better insight into
the DM approach and a straightforward numerical implementation. The system
comprises 10N2 equations and may be solved by numerous packages available in
C++ GSL library [168].

The important note should be made on the choice of the initial conditions for
the density matrix elements and optical electric field. The natural choice is to
assume that optical electric field is low (i.e. ER = EI = 1 Vm−1) and the density
matrix initial condition may be set to the steady solution for such value of the
optical electric field. Physically, however this is not fully correct. The optical
field is generated in the cavity by numerous transitions in the medium, regardless
if the device is lasing or not. This represents spontaneous emission, and some
moderate values for E may be chosen as well.

The material gain is calculated by dividing the imaginary part of the polarisa-
tion by the real part of the optical electric field, and therefore, if initial condition
for ER is not properly set and a change of sign occurs, the material gain would
display non–physical discontinuity. This may be ignored as it would not affect the
steady state value, however it may be rectified by changing the initial condition
once its sign is known at the steady state solution.

124



6.5 QCL Dynamics

6.5 QCL Dynamics

The system of Eqs. (6.10,6.12) may be numerically implemented in relatively
straightforward manner. Since this is an ODE system of the first order, numerous
solvers exist across multiple mathematical libraries. The implementation for this
work has used a GSL library within C++ 1 and exploited Runge-Kutta Cash-
Karp algorithm suitable for stiff problems [168].

This algorithm requires very small simulation time–step (100 fs). For this
reason its needed CPU–time is expectedly higher in comparison to the steady
state model discussed in Chapter 4. For a twelve states QCL, steady–state model
needs approximately 20 minutes for simulation at a single bias point, while dy-
namic model requires approximately a couple of hours. Note, however, that the
steady–state model does not consider the imaginary part of the optical electric
field, doing so would require a two dimensional minimisation algorithm which
would significantly increase the simulation time. The steady state solution of the
dynamic model does provide different values for optical power and the current
density and its use is advised if high precision of data is required from the model.

1Note that GSL library is also supported in C, however all GSL algorithms require functions
in specific format as f(x, parameters) where parameters is a pointer of void type. Usual
methodology is to formulate a structure of all parameters, however C++ allows very convenient
approach, where all parameters can be put in a class, and GSL function can be declared as
static function within the class. This allows sending class pointer this to the GSL function as
parameters pointer and allows usage of all parameters and class methods to the GSL function.
Given that the formulation of the system in Eq. 6.10 requires cumbersome algebra methods,
use of GSL functions in this way is highly recommended.
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a) 3.4 THz high power QCL [53] b) 3.4 THz Hybrid QCL [151]
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c) 2 THz BTC QCL [74] d) 3.9 THz LO-phonon QCL [36]

Figure 6.1: Material gain dependence on time for several QCL designs at their re-
spective resonant bias at 20 K. a) The highest power THz QCL (> 1 W, fabricated
in Leeds)[53] at K = 8.8 kV

cm , b) Hybrid THz QCL[151] at K = 4.7 kV
cm , c) BTC QCL

(designed and fabricated in Leeds) [112, 144] at K = 1.95 kV
cm , f) The highest temper-

ature THz QCL (210 K) [36] at K = 19 kV
cm . Inset on the left side presents the time

dependence of optical electrical field (real (blue) and imaginary (red) part), and the
inset on the right side displays the time dependence of optical power. Structures a)
and b) and c) were fabricated with surface plasmon waveguide, while structures d) has
metal-metal waveguide.

Figure 6.1 presents some of the key features of THz QCL laser dynamics.
The round trip time of lasing cavity of length Lc is 2nLc/c ≈ 22 Lc [ps mm−1].
The usual cavity lengths are 1 − 3 mm, meaning that the round trip time is on
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6.5 QCL Dynamics

the scale of ≈ 22 − 66 ps. In all examples in Fig. 6.1 it can be noted that the
transient effect occurs on timescale that is typically faster than the round trip
time. This also means that due to the short ULL lifetime (∼12 ps) QCL devices
would not display any relaxation oscillations [170], which occur with other types
of lasers. The fast gain recovery time of THz QCLs has been experimentally
observed [171, 172, 173] and this is highly important property for modulation
applications.

The initial guess for electrical field was set to (ER, EI) = (104,−104)[Vm−1] in
all examples. The divergent behaviour of the material gain occurred in instances
where ER changes sign, however this is purely a numerical issue and it does
not affect the steady state value. The dynamical model is usually invoked when
material gain at very low optical electrical field exceeds the modal loss. The
initial guess for structure in Fig. 6.1c overestimated the steady state value, thus
the transient lasted significantly longer, however this example illustrates that the
simulation can reach the steady–state with poor initial guess that is also lower
than the modal loss (this is the structure discussed in Chapter 4).

Note that the choice of initial guess plays an important role in ODE solving,
mainly because this is a stiff numerical problem. In some cases, setting electrical
field to very low value would prevent the method to converge. The initial guess
for the density matrix elements is usually best set as the steady state solution
at very low electrical field. It was also noticed that the method may diverge if
states that are not relevant for key QCL transport behaviour are included in the
simulation (i.e. higher continuum–like states). This is shown in Fig. 6.2.
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Figure 6.2: Optical power dependence on time for a 3.4 THz QCL structure [53] (record
high power operation) when eleven states are included in the simulation. Insets show
optical electrical field (left) and material gain dependence (right).

Simulation performed in Fig. 6.2 used eleven states for the transport consid-
eration. In Fig. 4.14b in Chapter 4, however, it can be noticed in the inset that
ULL state is the fifth state, and higher states do not affect the transport signi-
ficantly, which expectedly did not cause any issues in the simulation performed
in Fig. 4.14b. However, for the dynamics model, this does present complication
and method diverges as shown in Fig. 6.2. Figure 6.1a) shows the simulation
with six states under consideration, in which case the divergent behaviour does
not occur.
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Figure 6.3: Layer thicknesses for the analysed hybrid QCL design [151],
starting with the injection barrier, are 3.8/10.8/0.5/12.6/1.0/12.9/1.9/11.3/2.9/
9.1/2.9/8.2/2.9/6.8/2.9/16.3/2.9/14.2 nm, Al0.18Ga0.72As barriers are shown in bold
and the well doped to 3 · 1016 cm−3 is underlined. Two periods are shown at the res-
onance bias K = 4.6 kV

cm along with the corresponding wavefunctions moduli squared.

Figure 6.3 shows the layer structure of 3.4 THz QCL laser analysed in Fig.
6.1b. This structure [151], similarly to the one analysed in Chapter 5 is based
on the design in [54], however both devices were modified, and fabricated in
Leeds group. This structure used barriers with x = 0.18 Al content and its main
feature was a very wide dynamical range suitable for self-mixing interferometry
application. Additionally, this structure has a Bragg grating on the top contact,
which serves as a filter for lasing frequency (at 3.4 THz).

129



6.5 QCL Dynamics

0 50 100 150 200
t [ps]

0

100

200

300

400

500

600
J 

[A
 c

m
-2

]

K

Figure 6.4: Current density dependence on time for various values of external bias,
varied in range 3.8− 5 kV

cm at operating temperature of 20 K. EE scattering mechanism
was included in the simulation.

Figure 6.4 shows the current density dependence on time of the Maxwell-Bloch
model for various value of electric bias. It can be noticed again, that steady state
is reached on a timescale that is comparable to the round trip time through the
laser cavity (the laser dimensions are 1800 × 150 × 14.2 µm3). Note that fitting
procedure discussed in Chapter 4 can also be applied by observing steady–state
values of output parameters.
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Figure 6.5: Current density dependence on time for various value of external bias,
varied in range 3.8 − 5 kV

cm at 20 K. The values of data in blue were taken as steady
state solutions of the dynamics model shown in Fig. 6.4. The data in blue includes EE
scattering, the data in purple does not. Data in green is obtained through steady–state
model described in Chapter 4 without consideration of EE mechanism. Inset shows
the material gain dependence on the applied electric field and the red line indicates the
modal loss for SP waveguide, determined by the model in [87].
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Figure 6.6: L− I −V characteristic of 3.4 THz QCL structure [151] at 20 K in pulsed
operation. Fitting value of contact resistance is 1.2 Ω. The optical power values are
scaled for the clearer comparison of the dynamic range.

Figure 6.5 displays the current density dependence on the applied bias ob-
tained by three methods: i) Steady–state model discussed in Chapter 4 with IFR
parameters ∆IFR = 0.45 Å, ΛIFR = 50 Å and without EE scattering (green), ii)
Dynamic model in steady–state without EE scattering (purple) with IFR para-
meters ∆IFR = 0.45 Å, ΛIFR = 50 Å and iii) Dynamic model in steady–state
with EE scattering (blue) with IFR parameters ∆IFR = 0.25 Å, ΛIFR = 40 Å.
Experimentally, at 20 K, this structure has threshold current around ∼120 A

cm2

and at the optical power peak ∼390 A
cm2 . The main fitting challenge for this

structure was in matching the threshold current. The steady–state model dis-
cussed in Chapter 4 calculates optical power through minimisation algorithm by
exploiting gain saturation effect, however only real part of optical electric field is
considered in DM approach in order to avoid high numerical cost of dual minim-
isation process. For this reason, the values obtained by such model differs from
dynamic model discussed in this Chapter. It was found, that for this structure,
IFR parameters that match the threshold current density overestimate the cur-
rent density at optical power peak if EE scattering is not included. The best
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6.5 QCL Dynamics

fitting (with expectedly different IFR parameters) is shown by blue line in Fig.
6.5. The comparison between this result and experimental L − I − V data is
shown in Fig. 6.6. The NDR is displayed in both theoretical and experimental
data. Similarly to [130] the model is mostly reliable to describe the rising por-
tion of I − L dependence, as the NDR effect displays itself as sudden drop of
current density, rather than the increase of voltage. The shape and the slope of
I − L dependence is not comparable since the model performs calculation only
at one cavity mode, while experimental measurement collects emitted power via
detector (usually bolometer) of particular efficiency.
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Chapter 7

Dynamic Model for self-mixing
interferometry in Terahertz
QCLs

The self-mixing interferometry occurs when a laser is exposed to external homo-
dyne optical feedback. In most of laser applications, the reflected light is usually
considered detrimental, however if a small portion of laser’s own radiation is rein-
jected into the cavity (by use of an external mirror) the interference would act as
a perturbation to laser characteristics such as threshold gain, optical power, las-
ing frequency and terminal voltage. Using the homodyne mixing, it is possible to
study the properties of the reinjected light, by examining the perturbed response
(optical power or terminal voltage). In essence this effect behaves as highly sens-
itive modulation technique, which may be exploited for state of the art imaging
and sensing applications [91, 97, 174]. This chapter will focus on incorporating
this effect into Maxwell-Bloch model discussed in the previous chapter.

7.1 Lang - Kobayashi and the three mirror model

The self - mixing effect was first observed in gas maser devices [175, 176], and
since then, it was examined in a variety of laser media: semiconductor diode
lasers [177, 178, 179], solid state lasers [180, 181, 182], fiber [183, 184] and fiber
ring lasers [185, 186], quantum cascade lasers [187, 188, 93, 95, 97, 96, 189, 99],
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7.1 Lang - Kobayashi and the three mirror model

interband cascade lasers [190], etc. The effect has had many names in literature
[91] and the widespread ones are self - mixing interferometry (SMI) and laser
feedback interferometry (LFI).

From modelling point of view, the initially employed approach was for diode
lasers where Maxwell-Bloch equation was considered to be affected by the semi-
transparent mirror [191] which led to introduction of feedback term, however
the polarisation of the medium was calculated via rate equation approach. The
most widespread modelling approach, known as Lang-Kobayashi (LK) model, has
been presented in [102] which in essence is a combination of rate equation model
and Maxwell wave equation under slow-varying envelope approximation. Note
that initial work in [191] is more general than [102], and this Chapter will focus
on further generalisation, since both approaches consider two level laser systems
which is not fully justifiable for highly complex structure as THz QCL.

7.1.1 Three mirror model

R1 R2 R3

n next

Lc , 𝜏c Lext , 𝜏ext

QCL

Figure 7.1: The three mirror model. QCL is characterised by its cavity round trip time
τc = 2nLc/c. The first mirror in the laser cavity is highly reflective with reflectivity R1.
After τc the emitted radiation passes through semitransparent mirror (with reflectivity
R2) and propagates towards the target, represented by a third mirror with reflectivity
R3. The external cavity is characterised by its round trip time τext = 2nextLext/c, after
which the light reflected off the target enters the laser cavity.

.
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7.1 Lang - Kobayashi and the three mirror model

The simplest approach for SM effect is given by the three mirror model shown
in Fig. 7.1. By simple tracing of reflections (and neglecting the higher orders)
[192] it is possible to model the SM effect by creating an effective mirror that
takes into account the effect of the external cavity, and substitute the effective
mirror’s reflectivity into the waveguide loss. In essence, the three mirror model is
representing the effect of the re-injected light as a perturbation to the waveguide
loss [92, 7]. This model is unable to describe the dynamics of the SM effect,
however two parameters of high importance can be obtained [193, 194]:

κ̃ = κ

τc
= ζ(1−R2)

√
R3

R2

1
τc

C = κ̃τext

√
1 + α2

LEF

(7.1)

where κ̃ represents the rate of reinjection of the light into the laser cavity, κ is the
coupling strength, ζ is phenomenologicaly added into κ to account for additional
possible loss during reinjection (|ζ| ≤ 1), αLEF is linewidth enhancement factor.
Parameter κ̃ is commonly referred to as coupling rate, and parameter C as feed-
back level. The feedback level is dimensionless and it is used to characterise the
regimes of SM effect [91]:

• C ≤ 1 – Weak optical feedback regime - this regime is of the greatest
interest for most SM applications since the phase change due to external
cavity affects the line broadening at single emitting frequency.

• C > 1 – Moderate optical feedback regime - this regime generates mul-
timode frequency behaviour that splits the emission line due to mode hop-
ping.

• C � 1 – Strong optical feedback regime - this regime re-stabilizes emission
at a single frequency, however it can lead to non linearity and hysteresis in
the observed signals.

• κ̃ ≈ fro – Chaotic optical feedback regime - this regime occurs when coupling
rate is comparable to relaxation oscillations frequency fro. The effect results
in chaotic dynamics.
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7.1 Lang - Kobayashi and the three mirror model

• κ̃� fro – Stable optical feedback regime - this regime is equivalent to mode
locking effect where a laser is externally pumped.

The last two regimes show no (or low) dependence on external feedback phase,
and the first three regimes are exploited in SM effect applications.

The three mirror model, replaces the second mirror in Fig. 7.1 with an ef-
fective mirror, given by amplitude reflection coefficient R̃2 = R2e

jθf = R2 + ε(1−
R2)R3e

−jωτext Under the assumption of weak optical feedback where κ � 1 and
Re(R2) ≈ |R2|:

|R̃2| = R2 (1 + κcos(ωτext))
θf = −κsin(ωτext)

(7.2)

The round trip phase within the laser cavity without feedback equals an in-
teger multiple of 2π: −2ωnLc/c + θf = −2mπ,m = 0,±1,±2 . . . . At threshold
where laser lases at frequency ω = ωth, we can take θf = 0. The optical feed-
back effectively changes the threshold gain. The mirror loss in Fabri-Perót cavity
equals 1

Lc
ln
(

1
R1R2

)
(where r1 and r2 are amplitude reflections coefficients), thus

the mirror loss due to the introduction of the effective mirror would only change
R2 in this expression. Under the assumption of weak feedback κ� 1, the change
in threshold gain and the phase [192] due to optical feedback is:

∆g = − κ

Lc
cos(ωthτext)

∆θf = 2ngLc

c
(ω − ωth) + κ (sin(ωτext) + αLEFcos(ωτext))

= (ω − ωth) τext + C sin
(
ωτext + tg−1(αLEF)

) (7.3)

where ng is effective group refractive index.
The last equation in Eq. (7.3) represents excess phase equation and it is often

used for information extraction in SM applications as in steady state ∆θf = 0
and variable parameters are the feedback level C which contains information on
reflectivity of the external mirror and τext which contains information on the
refractive index of the external mirror and the external cavity length.
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7.2 Reduced rate equation model for SM effect

7.1.2 Lang – Kobayashi model

The Lang – Kobayashi (LK) model [102] represents the Maxwell equation with
the optical feedback, under the slow varying envelope approximation, coupled
with the rate equation in diode laser:

d

dt

(
E(t)ejωt

)
=
[
jωn + 1

2

(
ΓGX −

1
τp

)]
E(t)ejωt + κ̃E(t− τext)ejω(t−τext)

dNc

dt
= −Nc

τn
−GX(Nc)S + ηiI

eV

(7.4)

where τp is the photon lifetime in the cavity, Nc is the carrier density, τn is the
lifetime of carriers, I is the injection current, ηi is the injection efficiency, S = |E|2

is proportional to the optical power, however it is normalised so that it is in [m−3]
units, G0(n) is the gain. Note that G0 is not the material gain, in the original
work [102] this parameter is in [1/s] units in the Maxwell wave equation, and in
the population equation (Eq (7) in [102]) there seems to be some unit disparity
due to the term −G(n)|E|2), however this occurs due to somewhat arbitrary
normalisation of E amplitude. This is a common approach with this system of
equations [1] mainly designed to accommodate different functional formulas that
approximate the gain profile and the injection pumping of the laser. The diode
lasers have I − V characteristic that is exponential after the threshold, however
in many applications operation around the threshold is of highest interest, and
linearisation of the gain profile is performed for convenience [7] by setting GX =
vgαLEF(Nc − Nth), where αLEF is the linewidth enhancement factor, and Nth is
the carrier density at threshold.

7.2 Reduced rate equation model for SM effect

The system given in Eq. (7.4) has been constructed for diode lasers where carrier
density corresponds to electron-hole pairs that are being generated by injection
process and “spent” by carrier recombination and stimulated emission which aims
to clamp the gain to the loss (at operating frequency ω). The Maxwell equation
in this system is often written as a set of equations that describe modulus and
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7.2 Reduced rate equation model for SM effect

phase, however, since photon density S is coupled to the carrier density, it is
convenient to reconstruct the system in Eq. (7.4) to target modulus of photon
density |S|, phase of the optical field φ and keep carrier density equation as is.
Note that due to scaling of E the obtained values would not reflect actual optical
field, but rather an amplitude of its envelope.

QCL device is a unipolar device that cannot be described by a single parameter
for carrier density. The simplest approach is to adopt the two–level model [189]
with carrier densities N3 and N2 while the effect of other levels in QCL structures
is taken by defining injection efficiency η3 and η2 at which these levels are pumped
with electrons and considering lifetimes and scattering rates of two effective levels
generated from parameters of a more general model. The radiative transport in
QCL does occur between two levels and this model may provide an adequate
treatment of LK equations. The detailed transformation of Eq. (7.4) to describe
a two level QCL device given in [189, 91, 192] yields:

dN3(t)
dt

= η3

e
I(t)− (N3(t)−N2(t))G0S −

(
1
τ2

+ 1
τsp

)
N3(t)

dN2(t)
dt

= η2

e
I(t) + (N3(t)−N2(t))G0S +

(
1
τ32

+ 1
τsp

)
N3(t)− N2(t)

τ2

dS(t)
dt

=
(
MG0 (N3(t)−N2(t))− 1

τp

)
S(t) +Mβsp

N3(t)
τsp

+

+ 2κ̃
√
S(t)S(t− τext) cos (ωthτext + φ(t)− φ(t− τext))

dφ(t)
dt

= αLEF

2

(
MG0 (N3(t)−N2(t))− 1

τp

)
−

− κ̃

√√√√S(t− τext)
S(t) sin (ωthτext + φ(t)− φ(t− τext))

dT

dt
= 1
mcp

(
I(t)V (t)− T (t)− T0(t)

RTH(T )

)

(7.5)

where M is the number of periods in QCL structure, ωth is the emission frequency
at threshold without the optical feedback, βsp is the spontaneous emission factor,
cp is the specific heat capacity and G0 is the gain factor ([1/s] unit). The last
equation was added to include thermal effects. Note that all transport parameters
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7.3 Self-mixing effect applications

(G0, τ3, τ2, τ32, η3, η2) in this system depend on temperature and applied voltage.
This information needs to be obtained through a more general model that con-
siders more states in transport model, so actually this model represents a hybrid
approach.

The system in Eq. (7.5) formulates the reduced rate equation (RRE) model
and has been applied to THz QCL structure in [103, 189, 104] and it has resulted
in running collaboration with the research group at University of Queensland,
Brisbane, Australia. The current collaboration aim is modelling of SM effect
under pulsed operation, which has been recently realised experimentally, in the
collaboration group [174]. The author has visited this group as part of the project
in this thesis, where he provided the temperature dependent input data by the
approach presented in Chapter 4. This model can also be extended to consider-
ation of multi–mode behavior and a publication was recently submitted by Dr.
Xiaoqiong Qi in Optics Express which uses some of the data obtained in work
presented in this thesis.

7.3 Self-mixing effect applications

The applications of SM effect are mainly dictated by excess phase equation in
(7.3). This equation has parameters that are related to the properties of the
external cavity, internal cavity and the third mirror (the target) giving several
degrees of freedom for parameters variation. A detailed review of applications
can be found in [91].

The phase in Eq. (7.2) provides the best sensitivity when ωτext equals to mul-
tiples of π/2, thus any perturbation would occur with the period that corresponds
to the half of the operating wavelength. The product of ω and τext can be manip-
ulated and the resulting observable signal would oscillate in correspondence to
half a wavelength period. For instance, if displacement of the external cavity is
periodically varied (i.e. by a vibrating target) two regimes would be of interest:

• Large displacement regime where the target is periodically displaced by
length that is much larger than the half of operating wavelength λ/(2next).
The observed signal will result in periodic fringes that oscillate at half of the
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7.4 Maxwell – Bloch dynamics of self-mixing effect

operating wavelength, allowing measurement of next. Note that in this setup
feedback level C is constant, however in weak optical feedback regimes, all
fringes occur, while the strong optical feedback would lose sensitivity and
simply replicate the driving vibration signal.

• small displacement regime where ∆Lext � λ/(2next). In this setup, it
is required that small vibrations occur within half a wavelength for best
sensitivity, and measurement is best performed with stronger feedback level
to compensate for lower sensitivity in this regime.

In a very similar manner, a variation of frequency ω is possible by varying the
laser’s driving current. This dependence is linear for small variations of current
[104], although if the laser works only in single mode, larger dynamic range is
possible. The linear shift of frequency in excess phase equation would cause
nearly identical behaviour as with the periodic displacement (since phase in Eq.
(7.2) is sensitive to the product of ω and τext). This measurement methodology is
commonly referred to as frequency sweep and it may be exploited for measuring
the properties of τext = 2next/Lext. Note that in this regime laser is tuned, thus
the best sensitivity will be achieved at half of wavelength that corresponds to the
tuning range (i.e. 300–800 MHz [101]).

The methodology of data extraction from the phase equation can be found in
[195], while multiple examples and review of applications is available in [91, 95,
96].

7.4 Maxwell – Bloch dynamics of self-mixing ef-
fect

The LK model in section 7.1.2 has been originally constructed for diode lasers
which typically have only two levels under consideration. This naturally poses an
issue for modelling three or more level lasing systems such as QCL. Considerable
effort was invested in the reduced rate equation (RRE) model in section 7.2, whose
rate equation approach is based on work in [196]. However, the main issue with
LK and RRE models is not the lack of multilevel dynamics and implementation
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7.4 Maxwell – Bloch dynamics of self-mixing effect

of RE approach, but the fact that LK model has been historically calibrated to
diode lasers [193]. This means that modelling approximations that are commonly
made for diode lasers need to be inherited and all specifically defined parameters
in diode laser models need to have the equivalents or be specifically derived for
another type of laser.

For instance, LK model in Eq. 7.4 seemingly has a unit disparity since gain
GX has [1/s] and optical field needs to undergo specific scaling to rectify this issue.
Additionally, in diode laser it is common to linearise the gain around the threshold
as GX = vgaLEF(Nc−Nth) or use several different functional expressions for gain
to describe the laser characteristics. Overall, simplifying the laser dynamics to a
two level model does not necessarily offer a simpler approach since considerable
effort needs to be put into determination of parameters that are equivalent to
those in diode lasers.

Maxwell wave equation under the slow - varying envelope approximation, on
the other hand, has a general form presented in Eq. 6.12 [169, 193] where no
linearisation of the gain profile had been performed and no scaling is needed to
match the units. Note that LK model in Eq. (7.4) without the feedback term
ideally matches the real part of equation in Eq. 6.12 since this equation describes
fundamental property of any laser. The feedback term in LK model is added
as linearly proportional to the optical electric field, however it is worth investig-
ating how does this term enter the Maxwell equations before the application of
slow-varying envelope approximation. In [1], optical feedback is viewed through
consideration of an equivalent electric circuit that results in adding

(
8γe
εVC

) 1
2 dEn

dt
to

the right hand side of Maxwell wave equation obtained through Fourier method
presented in Eq. (1.11) where γe are losses in the external cavity, and VC is nor-
malisation constant. By studying reflections of the electrical field wave in the
compound cavity [192] it can be derived that electrical field reinjected into cavity
is κ̃E(t − τext)e−jωτext , as LK approach suggests. For that reason, the Maxwell-
Bloch system for a structure under optical feedback and under the slow-varying
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7.4 Maxwell – Bloch dynamics of self-mixing effect

envelope approximation can be written as:

dρdyn

dt
= Ldynρdyn +BN

∂ER

∂t
= c

2n (g − gth)ER + (ω − ωn)EI + κ̃ cos(ωτext)ER(t− τext)

+ κ̃ sin(ωτext)EI(t− τext)
∂EI

∂t
= − c

2ngthEI − (ω − ωn)ER + eNDω

2ε0n2 Re
{
Tr(Zρ+

0 )
}
− κ̃ sin(ωτext)ER(t− τext)

+ κ̃ cos(ωτext)EI(t− τext)
(7.6)

where the feedback term is simply added to the Maxwell-Bloch dynamics equa-
tions discussed in the previous chapter. The electric field is in [V/m] units and
no linearisation or alteration of the material gain is being performed. Note that
these equations can be written in another form, i.e. amplitude and phase equa-
tion. For the simplicity of numerical implementation it is convenient to proceed
with the system as is, since electrical field phase can be trivially extracted when
Eq. (7.6) is solved.

Note that κ̃ = κ/τc = (κc)(2nLc) = vg/2 · κ/Lc, it is convenient to introduce
a new variable gc = κ/Lc that can be physically interpreted as coupling loss. If
we assume that operating frequency matches the waveguide mode ωn, Eq. 7.6
can then be restructured as:

dρdyn

dt
= Ldynρdyn +BN

∂ER

∂t
= c

2n [(g − gth)ER(t) + gc cos(ωτext)ER(t− τext) + gc sin(ωτext)EI(t− τext)]
∂EI

∂t
= − c

2n [gthEI(t)− gc sin(ωτext)ER(t− τext) + gc cos(ωτext)EI(t− τext)]

+ eNDω

2ε0n2 Re
{

Tr(Zρ+
0 )
}

(7.7)
Equation that corresponds to the real part of the optical electric field justifies

the use of simpler models such as the three mirror approach. The optical feedback
can be interpreted as an effective change of the waveguide loss in steady–state as
gtheff = gth + gc cos(ωτext). This also allows using using steady state DM model
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7.4 Maxwell – Bloch dynamics of self-mixing effect

by simply modulating the loss. The previous work by Leeds group [106] modelled
the SM effect by altering the waveguide loss and investigating the change in QCL
output characteristics. In this work, we will solve the system (7.7) and provide
dynamics study of SM effect in THz QCLs.
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7.4 Maxwell – Bloch dynamics of self-mixing effect

7.4.1 Steady–state analysis
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Figure 7.2: a) Relative optical power and b) self–mixing voltage dependence on ex-
ternal cavity length Lext = 0.7 [m] + ∆Lext for different values of gc in 3.4 THz QCL
[151]. Self–mixing voltage was obtained through inverse interpolation of current density
(in steady–state) using the experimental I−V dependence at 20K in pulsed operation.

.

Figure 7.2 displays how the variation of external cavity length on a half wavelength
scale affects the self–mixing signal in steady–state. These observations agree with
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7.4 Maxwell – Bloch dynamics of self-mixing effect

steady–state excess phase model [91]. The value of coupling loss is proportional to
the feedback level and these results correspond to moderate and strong feedback
regimes (apart from gc = 0.1 cm−1). The 3.4 THz structure used in simulation
[151] was fitted to the experiment in previous Chapter at 20 K under pulsed op-
eration in Fig. 6.6. Note that the input in DM model is the external electric
bias (proportional to the voltage), thus the model in Eq. 7.7 can provide optical
power and current density information and the self–mixing voltage VSM has been
obtained through inverse interpolation, while the optical power change has been
obtained directly. Note that typical SM applications exhibit voltage signals with
amplitudes ≤ 10 mV [93] and operate under weak feedback regime.

With the approach presented in Fig.7.2 we can directly compare with the
experiments where the external cavity length is changed on a half a wavelength
scale [98] (large displacement measurement [91]). This is typically performed by
sinusoidal variation of the external cavity length, therefore replicating the graphs
in Fig. 7.2 over the period of the used sinusoid.

Another application of SM effect is the small displacement measurement,
where the target is varied on a scale that is much smaller than the lasing wavelength.
This is typically done by applying the small modulation signal on the linear por-
tion of sinusoidal dependence displayed in Fig. 7.2.
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Figure 7.3: Self–mixing voltage signal (red) obtained by variation of external cavity
length (blue) Lext = 0.7 [m] + 75 [µm] + ∆ for coupling loss of gc = 0.6 cm−1.
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7.4 Maxwell – Bloch dynamics of self-mixing effect

Figure 7.3 is generated by changing the external cavity length through sinus-
oidal dependence with amplitude of 2 µm, and modulating the large displacement
self–mixing voltage signal at gc = 0.6 cm−1 around Lext = 0.7 [m]+75 [µm] where
dependence is highly linear as presented in Fig. 7.2. Note that this result has
been obtained through interpolation of the data presented in Fig.7.2, as this is a
straightforward demonstration of this modulation technique.

7.4.2 Dynamics analysis

The previously displayed results have been obtained through steady–state values
of dynamic results. The simulations that model displacement modulation tech-
nique (the variation of Lext) have been performed at bias K = 4.56 kVcm that
corresponds to the current density value of 357.3 A

cm2 for 3.4 THz QCL [151] pre-
viously fitted to the experiment at 20 K cold finger temperature in Fig. 6.5 where
CC scattering was included. The device dimensions used for current density and
voltage scaling are 1800× 150× 14.2 µm3, where additionally contact resistance
of 1.2 Ω has been used.
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1.1 cm−1, for different values of external cavity length Lext = 0.7 [m]+75 [µm]+∆Lext,
where ∆Lext has been varied in range 50–90 [µm].

.

Figure 7.4 shows the optical power dependence on time as the coupling loss re-
injected into the cavity is increased, while external cavity length is kept constant
at Lext = 0.7 [m] + 80 [µm] which corresponds to the highest sensitivity of SM
effect (peak of dependencies displayed in Fig. 7.2). We can observe that re-
injected light causes osculating behavior with higher feedback level. Figure 7.5
displays dynamics of electrical field phase and optical power (which is proportional
to electrical field modulus squared) for various values of external cavity lengths
with gc = 1.1 cm−1 and gc = 3.1 cm−1 which reflect the SM feedback strength.

The self–mixing signal is applied at 50 ps, after which the structure experiences
oscillations at frequency roughly proportional to the round trip in the internal
cavity (the internal cavity length is 1.8 mm, which corresponds to ∼38 ps round
trip time), similar to seeded laser dynamics [197]. Note that gc = 1.1 cm−1 value
corresponds to moderate feedback regime and these pulsations reach the steady–
state after several oscillation cycles, while the strong feedback gc = 3.1 cm−1

results in higher amplitude and longer settling time. Note that very strong feed-
back levels do not reach steady–state in the simulation (the time scale goes up to
250 ps), additionally the results displayed in Fig. 7.2 do not reflect the behaviour
of SM effect under high feedback properly, due to drawbacks of the presented
approach.
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7.4 Maxwell – Bloch dynamics of self-mixing effect

The simulations in Figs. 7.2 and 7.5 were performed around 1 A of the
experimental L − I − V dependence of 3.4 THz structure at 20 K [151]. The
frequency in the simulations was kept constant, however the frequency shifts with
the increase of current due to Stark effect. The material gain profile displayed in
inset in Fig. 6.5 has been obtained from material gain dependence on frequency,
at frequency value that yields the maximum material gain. The re–injection of
large value of gc would clearly cause mode hopping that is not considered by
the presented approach. Additionally, THz QCLs are electrically heated, even in
the pulsed regime as discussed in Chapter 4, thus any modulation of current or
voltage would affect the electrical power as well.

The presented model in Eq. (7.7) is able to describe SM effect dynamics to
a very high degree and the results obtained so far do agree with SM steady–
state theory in three mirror model [91] for weak and moderate feedback level.
However, SM effect in THz QCLs is mainly applied in CW operation (until very
recent demonstration in pulsed operation [198]) where significant electrical heat-
ing occurs. The RRE model [103] couples the heat equation as well and shows
that SM fringe generation significantly depends on the device temperature [103].
As the reinjected light modulates the losses in Eq. (7.7) it modulates the optical
power and current density (in our model). The change of current also affects
the electrical heating of the device, transport characteristics of the medium and
operating frequency.

The RRE model is a hybrid approach where information on temperature de-
pendence of model parameters are obtained through steady–state results of a
more general model. A non–hybrid approach could be directly implemented in
model in Eq. (7.7) by adding the heat equation in the system along with the
self–self–consistent Schrödinger-Poisson algorithm. However this would create
a numerical model with very high simulation time cost and its feasibility with
available computational resources would be questionable. A simpler approach
is to create a “look–up” table of the temperature dependence of device para-
meters, similarly as in RRE approach. The main advantage of the presented
model over RRE approach is that it does not need device–specific calibration
[189, 103, 104, 101, 174], that it includes consideration of transport in high detail
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and that it does not need any effective parameters present in diode laser models
[7].
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Chapter 8

High Temperature Performance
Optimisation of THz QCLs

Quantum cascade lasers have undergone multiple stages of development since the
initial proposal by Kazarinov and Suris’ in 1971 [10]. The resonant tunnelling
structure, based on two states in cascading setup as in Fig. 1.2 has not been
realised by following that design concept exactly. Nominally, the BTC structures
match the proposal paradigm if continuous cluster of states that forms LLL is
considered as one effective level. The majority of other designs employ the tunnel-
ling principle that can be effectively represented through a three-level model. The
designs of THz structures are very challenging due to the low energy spacing of
the radiative transition and non radiative scattering processes that strongly affect
the temperature performance of the device. The current high temperature THz
QCL designs rely on exploiting the LO phonon scattering process to depopulate
the LLL while ULL is being pumped by the tunnelling process through a three
level setup. In this chapter, we propose a novel design concept, based on a four
level system that uses two LO phonon processes and two resonant tunnelling pro-
cesses, to both pump and depopulate ULL and LLL, while keeping the required
operation bias the same as in the resonant phonon designs. This paradigm has
been proposed by the author during the late stages of this thesis project, and
optimised structure has not yet been grown, fabricated and experimentally char-
acterised. The author exploited the steady–state transport model discussed in
Chapter 4 and implemented a brute-force search for the structure that matches
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8.1 THz QCL designs

the design criteria. The obtained results show very promising performance and
will be presented in this chapter.

8.1 THz QCL designs

In section 1.3 we discussed some fundamental designs for THz QCL. The principle
of operation is based on resonant tunnelling as initially proposed in [10], however
realisations of QCL at terahertz frequencies have met several significant imped-
iments on high temperature performance that limit the wide–spread industrial
application of THz technology.

QCL designs realised so far, did deliver an excellent solution as sources for THz
spectrum, however they still represent the pinnacle of semiconductor engineering
with an operating temperature limit of∼200 – 210 K with GaAs/AlGaAs material
system [47, 36]. The hope for better performance currently lies in other material
systems, however the required technology has not yet matured and only a few
THz QCL have been experimentally realised with similar (or worse) performance
than with GaAs [44].

In essence, the greatest challenge of any THz source is the requirement for
very narrow energy spacing between the lasing levels, of 8 − 15 meV, and in
difficulty of maintaining the population inversion. A multitude of factors limit
the temperature performance of THz QCLs:

1. LO phonon scattering is a highly detrimental process in semiconductor ma-
terials. The resonant energy for this process in GaAs is ∼36 meV, however
the process activates on a similar scale as the lasing energy separation. This
process may be exploited to assist the pumping or extraction, however it
may also act as a parasitic process where it affects both (or more) lasing
levels.

2. The tunnelling process creates a desired leakage channel between two QCL
periods, however, at high temperatures, this channel may affect both (or
more) lasing levels and impede the population inversion significantly.
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8.1 THz QCL designs

3. The number of layers per period in the design increases the number of quasi–
bound states per period, and therefore the thermal absorption processes are
more likely to take place.

4. Operating bias and the current density affect the electrical heating of the
device. The current density can be reduced by reducing the doping level,
however this reduces the material gain as well. The operating bias can be
reduced by adding more layers into the period design, however compromise
needs to be made with the previous drawback.

5. Parasitic levels are present in nearly every THz QCL design. For instance,
if LO phonon process is used to depopulate the LLL, the well that creates a
state that has an energy state that is ∼36 meV below LLL, needs to be very
wide. A wide quantum well, however, will not produce just one state at low
energy, but rather several higher states as well. These states are often used
either as LLL or form a miniband below LLL, however in essence, they act as
parasitic states that increase the probability of thermal absorption and have
detrimental effect on maintenance of population inversion. Higher states
also occur in continuum and there is also a danger of transport leakage. The
effect of parasitic levels may be reduced by employing higher barriers within
the design, however this also causes the reduction of the material gain,
and the requirement of the higher doping level which increases the current
density, thus another compromise needs to be made. Higher barriers also
could make design more sensitive to barrier thicknesses fluctuation during
the MBE growth

If we adopt a notation that a miniband of narrowly spaced states can be repres-
ented by one effective state, we can then schematically describe a vast number of
THz QCL designs by an effective three level schematic model, shown in Fig. 8.1.
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8.1.1 3 level schemes
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c) Scattering assisted design

Figure 8.1: Schematic diagram of effective three level schemes for THz QCL designs.
The rectangles illustrate the typical wavefunction localisation (probability density) of
each state within the QCL period. The dotted arrow line illustrates tunnelling process
between two adjacent periods, while the solid arrow lines illustrate the transitions.
Of course, other trensitions between effective “levels” also exist, however dominant
mechanisms are shown.
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8.1 THz QCL designs

Figure 8.1 describes the operation principle of the most common THz QCL
designs. Note that any state apart from ULL in Fig. 8.1 may be a cluster
(miniband) of energetically narrowly spaced states. With such schematic rep-
resentation a BTC structure considered in Chapter 4 is a two–level system that
most closely relates to the original proposal in [10]. However the LLL in BTC
structures is in fact a very dense miniband. This results in periods of large length
and many states as depicted in Fig. 4.1. Although the operating bias (and the
threshold) is very low in BTC structure, the large number of states in the mini-
band undergoes multiple absorption processes when the temperature is increased,
meaning that realising a high temperature performance with BTC design is not
possible, or at least not as efficient as other design schemes.

The design in Fig. 8.1b on the other hand has delivered the record high tem-
perature performance [36]. This design can either be implemented with just three
states (reflecting the LO-phonon design) or LLL or ILL may be formed through
a continuous cluster (reflecting the Hybrid design discussed in 1.3). The Hybrid
designs are capable of high temperature operation and have lower operating bias
than LO-phonon designs, however they suffer from similar issues as BTC struc-
tures due to formation of minibands. A closer study of these designs is needed
for better insight into their operation. For instance the former high temperature
record [47] that lased up to 200 K (Fig. 1.4) technically has miniband that form
the LLL, but it is more frequently classified as a LO–phonon structure.

The record high temperature design [36] (inset in Fig. 4.14f) implemented the
scheme in Fig. 8.1b exactly. ULL, LLL and ILL are purely bound states. This was
achieved through the use of high barriers (Al content x = 0.25) that suppressed
the parasitic level created by the widest well. This design used only two wells
and parasitic levels were also designed to form a separate leakage channel. By
using the model presented in Chapter 4, this structure displays material gain of
20 cm−1 (which is a common approximation for the waveguide loss of metal–metal
waveguides) up to 250 K (Fig. 4.14f)), however due to the high barriers this design
required very high doping level, that resulted in very high current density (3.25
kA
cm2 ) and operating bias (19.5 kV

cm) which both cause additional electric heating
(the device operated at 210 K at ∼ 9 A and 25 V) that reduces the operating
temperature significantly, as discussed by Eq. (4.1).
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8.1 THz QCL designs

A very interesting design scheme in Fig. 8.1c where LO phonon process is
used to pump the ULL, rather than extract the LLL has been realised as well
[199, 49]. Conceptually the pumping and extracting mechanisms have switched
places, showing that tunnelling effect can be used for LLL extraction as well.
This design did not show temperature performance as good as its counterpart.
Note however, that not many realisations of this principle have been realised and
several different proposals promise better performance [200, 201, 50]. The issues
of this design lie in very high operating bias and the fact that the tunnelling
is the most sensitive process in any QCL design. At first sight, extracting LLL
through the tunnelling effect allows fabrication of thinner injection barriers, and
ULL should not be leaking significantly since it is mainly localised in the other
end of the period. However, experimental realisations delivered devices that have
no significantly different performances than previous designs.

It is difficult to be conclusive which process is crucial for high temperature
performance and several “exotic” proposals with asymmetric wells or barriers
have been attempted and proposed [50, 202]. Both of the designs involving LO
phonon transition in Fig. 8.1 have the same concept: LO phonon process is used
for extraction, the tunelling process is used for injection or vice versa. It is clear
that at high temperature these two processes affect the other state as well. The
record high temperature design [36] actually uses 41 meV separation between LLL
and ILL, mostly to suppress the depopulation of ULL at high temperature which
is one solution to the issue, that also increases the operating bias of the device.
The last design in 8.1 served as an inspiration to the author for the proposal that
will be presented in this chapter. A simple question can be asked: “Can we add
another LO phonon process to achieve both pumping and extraction by it?”.

8.1.2 4 level schemes

A summary of several realised QCLs that can be effectively shown by a 4 level
scheme is presented in Fig. 8.2.
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157
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Figure 8.2: Schematic diagram of effective four–level schemes for THz QCL designs.
The rectangles illustrate the typical wavefunction localisation (probability density) of
each state within QCL period. The dotted arrow line illustrates tunnelling process
between two adjacent periods, while the solid arrow lines illustrate the transitions.

Figure 8.2a shows a design where two radiative processes take place. This
design is not of interest for high temperature performance, however the interesting
paradigm of the operating principle has been experimentally achieved [203].

A concept in Fig. 8.2b has been investigated [204, 206] in early development
of THz QCLs. The realisations showed good temperature performance (up to
138 K) which was mainly limited due to use of very high barriers (x = 0.3) that
was required to achieve such large energy spacing. By comparing the schemes
in Fig. 8.2b and Fig. 8.1b it can be concluded that this setup does not offer
much improvement. The existence of two consecutive LO phonon transitions may
achieve better injection of ULL, however the extraction process of LLL remains
the same, along with all parasitic issues at high temperatures that occurred in
the designs in Fig. 8.1.

The most interesting design is presented in Fig. 8.2c. This structure em-
ploys two LO phonon transitions to pump and extract the lasing levels, and the
tunnelling process is essentially not directly employed in the maintenance of the
population inversion. This design has achieved a very high temperature perform-
ance [51] of 144 K at 2.1 THz and structure in [48] lased at 1.8 THz at 155 K.
Note that losses at 2.1 THz and 1.8 THz are very high [152, 207] giving hope
for achieving much higher temperature performance at frequencies where losses
are smaller. The device fabricated at 3.2 THz [205], however, did not provide
significant improvements as it operated up to 150 K. The underlying issue of the
design scheme in Fig. 8.2c can be attributed to the need of very high barriers
and high operating bias.

The resonant bias of any THz QCL structure is determined by:
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8.1 THz QCL designs

K = ∆ER

eLP

∆ER1a = ~ω + ∆ELLL

∆ER1b,c = ~ω + ~ωLO + ∆Eminibands

∆ER2a = 2~ω + ~ωLO + ∆Eminibands

∆ER2b,c = ~ω + 2~ωLO + ∆Eminibands

(8.1)

where ∆ER is the required energy separation needed to bring the states into tun-
nelling resonance. ∆ER1a,b,c corresponds to cases displayed in Fig. 8.1a,b,c while
∆ER2a,b,c corresponds to cases displayed in Fig. 8.2a,b,c, ∆ELLL is the energy spa-
cing of miniband that forms the LLL in BTC design in Fig. 8.1a and ∆Eminibands

is added to the formula in case that some of the levels form a miniband (similarly
as the case with ∆ELLL).

The four level designs in Fig. 8.2 share the same issue. If two LO phonon
transitions take place, the required energy separation is much larger than for
the designs in Fig. 8.1 that use one LO phonon transition. This means that
for similar period length, the applied voltage needs to be significantly higher as
well. This can be rectified by engineering designs with longer periods, however
any addition of states into the design increases the chance of thermal absorption
processes that impede temperature performance. Additionally, achieving a design
with such a large energy spacing is highly challenging. Note that in any quantum
well system, the electrons would always tend towards the lower potential energy.
Exciting the carriers to the fourth level and maintaining its population through
pumping process represents a big challenge.

Overall, the design in Fig. 8.2c did not solve any problems of 3–level res-
onant phonon schemes, but rather doubled their issues. At high temperature,
the pumping process may leak to the LLL, and on the other hand, the extrac-
tion process may also extract the ULL. In addition to this the operating bias is
significantly higher leading to higher electrical heating. These issues potentially
explain the non–ideal temperature performance in [205].

Note that the concepts presented in Fig. 8.2 have not been fully investigated,
for instance an inverted structure similar to 8.1c can be obtained for a design in
8.2b. Any level (apart from ULL) can be formed from a miniband in the presented
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schemes, which would not nominally improve the temperature performance, but
it might open other potential applications. A good review of THz QCL designs
can be found in [208].

Interestingly, a concept similar to 8.2c that solves all discussed issues above is
possible. This is an original work proposed by the author, and will be presented
in the next section.

8.2 Novel proposal – Double resonance phonon–
photon–phonon design

If we closely examine the phonon–photon–phonon design in Fig. 8.2b, we can
notice that this is a symmetric scheme if only one period is considered. Since the
ILL1 and ULL separation is equal to the separation between LLL and ILL2, the
resonance can also be achieved by applying the old resonant phonon paradigm
where ILL2 pumps the ULL through the tunnelling process. The schematic of
the design is shown in Fig. 8.3.
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Figure 8.3: Schematic diagram of new THz QCL design proposal. The rectangles
illustrate the desired wavefunction localisation of each state within the period. The
dotted arrow lines illustrate the tunnelling processes between adjacent periods, while
the solid arrow lines illustrate the desired transitions.

The proposal in Fig. 8.3 can be viewed as a four–level phonon-photon-phonon
proposal that undergoes two tunnelling processes, or as a three level resonant
phonon scheme where ILL1 is added to act as a parasitic state that assists the ex-
traction and pumping processes. In either case, this proposal offers the following
advantages:

• The required potential drop is identical as in the three–level designs (in Eq.
(8.1): ∆ER = ~ω + ~ωLO.

• Pumping of ULL is achieved both by the tunnelling process and the LO
phonon process that extracts parasitic leakage from the previous period.

• Extraction from LLL is achieved both by the LO phonon process and
through the resonant tunnelling process to the next period.
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• The operating bias is lower than the one in three–level designs, since addi-
tional well (and barrier) is needed, in order to generate ILL1 state, which
results in larger period length.

The potential disadvantages are:

• The design may require high barriers to generate the ILL1 state in order
to suppress the higher parasitic states created by the widest well (that is
needed to create ILL2 and LLL) and to achieve operating frequency that
has low loss (3.2 – 4 THz).

• The double tunnelling process may be affected by growth, as this design
needs precise layer thicknesses growth to avoid parasitic depopulation of
ULL.

At first sight, this design solves all parasitic processes that may be responsible
for temperature degradation of three level LO phonon designs. The full symmetry
of transitions in Fig. 8.3 may even treat this scheme as the authentic two level
design by [10] where one needs to effectively view the resonantly coupled states
as one state. At high temperature, if ILL1 starts to pump the LLL as well, a part
of population of LLL will be reinjected to ILL1 into the next period, similarly
if ILL2 starts to extract the ULL as well, a part of population of ULL will be
injected into ULL in the next period. Similar principle arises in case that one of
the tunnelling processes starts to pump/extract the undesired state.

Although this seems to be a conceptually very good design, it is challenging
to find the layer sequence to match the design criteria. The biggest challenge lies
in potential parasitic states that may occur in the vicinity of ILL1. Additionally,
similar designs to this one do not exist in the literature (to the best of author’s
knowledge) thus it is not possible to alter the layers’ thicknesses around already
known designs. The author proposed this structure in final stage of his project,
and the development of optimisation algorithm, based on the transport model
presented in this thesis, was not possible. However, the author did perform a
brute–force search for the design in Fig. 8.3 which will be discussed in the next
section.
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8.3 Brute – force optimisation of THz QCLs

The steady–state model presented in Chapter 4 displayed potential applicability
for high temperature optimisation as discussed in 4.5 and presented in Fig. 4.14.

As the first step, the design in Fig. 8.3 can be achieved by adding only one
(wide) well to a scattering assisted three level design, such as [49], and altering
its layers. This was performed by the author, and the increase in temperature
performance was instantly achieved, however the addition of another well per-
turbed the lasing level, and reduced the pumping transition below 36 meV which
is far from optimal setup.

The numerical implementation of the DM model, performed by the author, is
able to simulate a 3 − 6 level structure at a single bias point within 10 seconds.
Such a fast calculation requires disabling the calculation of optical power, redu-
cing the number of iterations of Schrödinger-Poisson equation (which typically
does converge in 8–15 iterations, although very good convergence occurs with 4
iterations in structures with a few states in the period) and neglecting EE scat-
tering mechanism. This allows sweeping the operation bias range with 30 points
within 5 minutes.

The numerical implementation also has access to a supercomputer cluster
Advance Research Computing 2 (ARC2) within the University of Leeds. For that
reason, the author performed a multitude of brute–force simulations.

The starting parameters and layer variation range were not taken arbitrarily.
The simplest implementation of the design in Fig. 8.3 requires at least three
wells. The first well needs to be very narrow (40 – 60 Å) in order to generate
a state at high energy, the subsequent barrier needs to be very thin in order to
achieve good coupling with the well that generates ULL, the second well needs
to have the width commonly employed in two and three–well resonant phonon
design (55 – 90 Å), the second barrier needs to be thick in order to generate the
diagonal radiative transition which is more desirable at high temperature and the
last well needs to be very wide (130–180 Å) in order to create extraction state
and lower lasing level. The last layer is the injection barrier and this will not be
varied, as the DM model performs the tight binding approximation and nearly

163



8.3 Brute – force optimisation of THz QCLs

every realised THz QCL has injection barrier in very narrow range 3.8–4.5 nm at
x=0.15, which is typically reduced by one monolayer as x rises by 2%.

Nominally, highly doped structures would exhibit high current density and
material gain would increase with doping, until the saturation [209], however this
is not relevant for high temperature designs. The doping is usually applied to the
widest well. Although the doping of different parts of the well is feasible during
the growth, author adopted the doping value of 1.3 · 1016 cm−3 which was used in
the previous record high temperature design [47]. Note that technically, the sheet
doping density per period would therefore vary as the thickness of the widest well
varies, however this is a very low doping for typical THz QCLs. The reason for
low doping in [47] was to reduce the current density and therefore the electrical
heating. The barrier height was varied (Al content) in the range 0.15−0.25, table
8.1 shows the variation range of each layer, the layer thickness step was equal to
the thickness of one monolayer (2.825 Å).

Layer no. x Range [Å] Number of points

1. 0 39.55− 67.8 11
2. 0.15–0.25 5.65− 16.95 5
3. 0 39.55− 67.8 11
4. 0.15–0.25 19.75− 48.025 11
5. 0 135.6− 166.675 12

Total: 11 variations 240.1− 367.25 79860 per one x value

Table 8.1: The layer thickness variation of a three well structure. The variation step
is thickness of a single monolayer (2.825 Å), the fourth column indicates the variation
resolution of each layer for one value of x. Total number of performed simulations is
therefore ≈ 11× 79860.

Table 8.1 shows the ranges and number of simulation points mainly for x =
0.15. When structures with higher barriers were simulated, it was taken into
account that some layer variation ranges need to be slightly altered (i.e. barrier
thicknesses can be reduced). Overall, roughly ∼ 900 000 QCL structures have
been simulated!
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Figure 8.4: Material gain at 250 K, for structures obtained by layer thickness variation
displayed in Table 8.1 where barriers had x = 0.16 Al fraction. The dotted vertical
lines depict the number of points varied within each layer. Graph a) displays the result
of all performed simulations, while b,c,d,e are zooming in towards the simulation that
yielded the highest value of material gain. Note that simulations that yield material
gain values below 15 cm−1 are set to zero for clearer presentation.
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Figure 8.4a shows the material gain dependence on the number of the per-
formed simulations. The layer thicknesses in Table 8.1 have been varied by five
nested loops, thus Fig. 8.4 displays the periodicity that corresponds to the num-
ber of points varied within each layer. This figure provides visual information
on whether the structure has high material gain at 250 K, and it also displays
the effect of thickness variation of each layer. This information can be used dur-
ing the design to depict which layer is most sensitive to growth tolerance and
also to justify the layer thickness variation range used in the simulation (ideally,
each enlarged graph in Fig. 8.4 should display parabolic dependence). Note that
simulations that yielded material gain below 15 cm−1 have been suppressed.

The simulation with the highest material gain Fig. 8.4 is not necessarily
optimal, and selection of the structure cannot be obtained from the graph alone.
As discussed earlier, operation electric filed (corresponds to the terminal voltage)
has significant effect on temperature performance. In Eq. 8.1 the resonant energy
difference is nominally set to the same value as in two well resonant phonon
devices (∼ 36 + 12 meV per period), meaning that the period length is the main
factor on the resonant bias. Simulations that have smaller simulation number
also have shorter periods and therefore larger resonant bias.

Figure 8.4 also does not display the lasing frequency. Several works [152, 207]
show somewhat conflicting threshold gain values in metal–metal waveguides at
high temperatures. The work in [152] shows that threshold gain has a minimal
value of ∼ 20 cm−1 in range 3.3 − 3.8 THz, at room temperature, while work
in [207] predicts increase of threshold gain with temperature along with the fre-
quency shift, at 300 K, minimal threshold gain ∼ 25 cm−1 would occur around
5 THz. It is beyond the scope of this thesis to provide in–depth discussion of
waveguide loss models. Experimentally, the structures that lase around 3.3 THz
provide the best performance, the highest operation temperature devices lase at
3.3 THz [47] and 3.8 THz[36], however due to the lack of designs at higher tem-
peratures the value of threshold gain is debatable. For simplicity we will adopt
the prediction in [152] and estimate the loss of ∼ 20 cm−1.

The simulations in Fig. 8.4 have been performed by doping the widest well
to 1.3 · 10−16 cm−3. This is typically a very low doping level, chosen in order to
reduce the current density and electrical heating effects. Higher material gain can

166



8.3 Brute – force optimisation of THz QCLs

be obtained by higher doping. Note that similar simulation diagrams have been
obtained for x = 0.15−0.25, however finding the optimal value is challenging due
to the fact that higher barrier devices yield smaller material gain, which on the
other hand can be counteracted with the higher doping. Additionally, the choice
of doping the widest well to a preset value causes the variation of sheet doping
profile since the widest well width is varied as well.

The procedure for selecting the best device first sorted the simulations results
by the value of the material gain and then by the value of the resonant frequency.
Designs with smaller barrier i.e. Al mole fraction in the range x = 0.15 − 0.18
yielded more structures with lasing frequencies below 3 THz, while higher barrier
simulations provided higher frequency structures, however with the lower material
gain. The layer sequences of best structures at x=0.16 and x=0.25 are presented
in Fig. 8.5.
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a) 3.5 THz QCL: 4.236/4.52/0.8475/4.8025/3.1075/14.9725
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Figure 8.5: THz QCL design where layers in bold text use barriers a) Al0.16Ga0.84As
and b) Al0.25Ga0.75As. The well doped to 1.3 · 1016cm−3 is underlined. Wavefunctions
are obtained at 250 K at resonant bias. Material gain dependence on bias is shown
in the top inset, while its temperature dependence at resonant bias is shown in the
bottom inset.

The structures in Fig. 8.5 have been selected out of multiple potential can-
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didates that implement the design paradigm in Fig. 8.3. The injection barrier
was not varied in the simulation, because DM model works within the tight bind-
ing approximation. Note that this design might accept thinner barriers because
both injection and pumping process are assisted by LO phonon scattering. How-
ever, this prediction was also made for scattering assisted QCLs [200, 75] while
most of experimental realisations still used the barrier thicknesses common for
typical resonant phonon structures [49]. If the injection barrier thickness in the
first design in Fig. 8.5 is reduced by two monolayers, to 3.672 nm, the material
gain would increase by 5 cm−1. Similarly, if sheet doping density is doubled in
both designs, the material gain would increase by ∼7 cm−1, however the current
density would nearly double as well to very high value (over 3 kA

cm2 ).
Figure. 8.5a does not implement the proposed design from Fig. 8.3 directly.

The design has a parasitic state that is partially depopulating ULL. This creates a
dual lasing channel, one between the ULL and LLL, and one between the parasitic
state that depopulates ULL and LLL. This channel is not efficient since ULL is
mostly localised at the beginning of the period and is already depopulated by the
originally designed lasing transition. The high temperature operation is achieved
mainly by very high material gain. Note that the bottom inset in 8.5a shows
that this design displays material gain of over 120 cm−1 (which is the highest
value that we obtained from any simulated THz QCL so far, typical values are
30-40% lower, as depicted in Fig. 4.14). On the other hand, the resonant bias
is 18 kV cm−1 and the current density is 1.79 kA cm−2. Note that the optical
power was not calculated in order to increase the simulation speed, and the IFR
parameters were chosen to their typical values, thus the current density estimation
is approximate.

Figure. 8.5b does implement the proposed design in Fig. 8.3 although the ad-
ded state is distributed throughout the entire period. The design has one higher
parasitic state that may have detrimental effect on the temperature performance.
The design itself does not exceed the approximated loss of 20 cm−1 at 250 K,
however the temperature dependence of material gain, give in the bottom inset,
shows an impressive improvement that exceeds the previous two record high tem-
perature designs [47, 36]. The resonant bias is 18.75 kV cm−1 and the current
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density is 2.1 kA cm−2. This would lead to lower electrical heating than the cur-
rent record design [36] (19.5 kV cm−1 and 3.25 kA cm−2), mainly credited to low
doping.

The simulations conducted with barriers with x = 0.18 − 0.22 Al content,
produced structures with very high operating frequency (4–5 THz) and struc-
tures that operate in phonon–photon–phonon scheme, shown in Fig. 8.2. Al-
though simulations gave high material gain, the resonant bias was very high (≥
30 kV cm−1). The reason why the desired design was suppressed by the sim-
ulations is the fifth parasitic state shown in Fig. 8.5. At low Al content this
state creates dual lasing channel, while at high Al content it is less relevant to
transport. In between, however, this state is highly parasitic and impedes the
structure operation.

All simulations were performed by limiting the number of states to five, in
order to increase the simulation speed. Given that it is possible for the sixth
state to impede performance, it was added only in simulations for x=0.15 and
x=0.23. At x=0.23 the results were very similar, however at x=0.15 the maximum
material gain has dropped by 8–9 cm−1, to slightly below 20 cm−1. One of the
best designs is presented in Fig. 8.6.
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Figure 8.6: 4.43 THz QCL with layer sequence 4.236/4.52/0.8475/3.955/3.1075/
14.4075 . Al0.15Ga0.85As barriers are shown in bold and the well doped to 1.3·1016 cm−3

is underlined. Two periods are shown at the resonance bias K = 21.75 kV
cm along with

the corresponding wavefunctions moduli squared.

When the additional state is added into simulation, the operating principle in
Fig. 8.6 is similar to the one in Fig. 8.5a, where the parasitic state creates dual
lasing channel, however this is now the highest (sixth state) in the design, the
fifth state depopulates LLL, while the forth state essentially creates a miniband
with the fifth state. Due to closely separated parasitic states, the material gain
at 250 K is lower. Note that addition of another state in the simulation did not
have detrimental effects when very large barriers are used, mainly because high
states are not relevant for transport.

Overall, the conducted simulations provide identical debate to discussion of
two well THz QCL designs in resonant phonon scheme. High barriers suppress
parasitic states, but increase the operating bias and threshold current, while low
barriers exhibit parasitic leakage. The main difference in this debate is that
typical two well THz QCL designs do not operate well at high temperatures due
to high electrical heating, apart from the record temperature performance that
was required high doping to counteract disadvantages of using high barriers. All
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designs in this chapter used very low doping, giving further motivation for device
optimisation.

The new design in Fig. 8.3 has been proposed in very late stages of author’s
project and further work is needed in developing systematic classification of the
simulated structures and implementing an optimisation algorithm instead of brute
force approach. The main conclusion of this section is that parasitic states need
to be considered in the design. The presented results do resemble the discussion of
two well THz QCLs (as this design just adds a narrow well before it, to introduce
the desired parasitic state), and the next step is simulating devices with additional
well or even two wells. Addition of one well in this design, would ideally introduce
another level below ULL, similar to the previous record temperature structure
[47], shown in Fig. 1.4. This level would then ideally be in resonance with ILL and
parasitic states, as noticed in this section, which would avoid dual lasing channel,
achieve very efficient extraction of LLL and most importantly, significantly reduce
the operating bias and current density.

Figure 8.7 shows a design that was obtained only by variation of well thick-
nesses (this was performed as a test).
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Figure 8.7: 2.6 THz QCL with layer sequence 4.4/5.6/0.8/5.8/3.0/6.6/4.4/14.9 .
Al0.15Ga0.85As barriers are shown in bold and the well doped to 1.3 · 1016cm−3 is
underlined. Wavefunctions are obtained at 250 K at resonant bias. Material gain
dependence on bias is shown in the top inset, while its temperature dependence at
resonant bias is shown in the bottom inset.

The structure in Fig. 8.7 is not an optimal design, however it still displays
very good temperature robustness. The parasitic states have aligned as desired,
resonant bias has been significantly reduced (12.1 kV cm−1) along with the cur-
rent density of 1.7 kA cm−2. Note that 4.4 nm barrier in the active region mainly
limits the material gain value (as lasing transition is highly diagonal). Additional
simulations that vary more layers are required in order to obtain the optimal
design at higher frequency. This will provide a prospect of future optimisation
followed by growth, fabrication and characterisation of selected set of the designs.

Note that energy spacings between levels that undergo LO–phonon transition
are around 40 meV in all structures that simulations yielded as best. This also
occurred in the record temperature design [36] that was optimised by NEGF
model. This was expected, because the slightly higher energy than LO–phonon
energy in GaAs (∼ 36 meV) suppresses potential leakage that is more likely to
occur at higher temperature. Note that if high material gain operation at lower
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temperature was of interest, the energy spacing nearer to 36 meV would most
likely be more optimal.
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Figure 8.8: Material gain dependence on temperature at resonant bias of 200 K struc-
ture [47] (black), the record 210 K structure [36] (red), the proposed design with AlAs
barrier content of x=0.25 in Fig. 8.5b (green), the proposed design with AlAs barrier
content of x=0.16 in Fig. 8.5a (blue) and the proposed four well design with AlAs
barrier content of x=0.15 in Fig. 8.7 (violet). The inset shows these results around the
gain value of 20 cm−1 which is the assumed threshold gain.

Figure 8.8 displays the summary of presented designs in this Chapter and also
compares with the simulations of already experimentally realised record operation
temperature devices. Note that all proposals have very high gain value at 200
K and comparable behaviour with the record temperature design [36], with an
important note that doping is lower (the sheet doping density per period in all
proposed designs is ∼ 2 · 1010 cm−2, while in [36] it is ∼ 4.5 · 1010 cm−2) and
therefore the current density is lower and resonant bias is also lower. All this
suggests that these designs may provide a better performance. The four–well
design has a significantly lower current density and resonant bias and is the best
structure designed so far by this model, even though this is not an optimised
design, and 2.6 THz frequency would exhibit higher loss.
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Chapter 9

Conclusion and future work

The presented work in this thesis has provided a detailed overview of DM model
for THz QCLs along with various applications. This chapter will provide overview
of presented work in this thesis with discussion of model drawbacks and future
work.

9.1 Transport mechanisms and self-self consist-
ent approach

Chapter 2 discussed common transport mechanisms that are considered in THz
QCL devices, modelled via Fermi–golden rule. An overview of several scattering
processes is presented along with the algorithm approach for determining the
electron structure.

Scattering rates obtained by Fermi–golden rule have semi-classical nature.
Several works have considered more general interactions between subbands [72,
68], work [72] generalises the dissipator in DM model, while work [68] and similar
NEGF models [70] implement scattering mechanisms in different manner. These
works still provide very similar results as Fermi–golden rule [131, 130] justifying
the use of simpler approach used in this thesis.

The most challenging component in the transport model is the description
of electron-electron scattering mechanism. The approach discussed in Chapter 2
is mainly based on work in [116, 86] where the subband nonparabolicity is not
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9.1 Transport mechanisms and self-self consistent approach

considered. Additionally, inclusion of this process into kinetic balance equation
represents a great challenge. This mechanism is often avoided due to its numerical
complexity, however it may be of theoretical interest to examine this model, espe-
cially if QCL material choices with higher non–parabolicity need to be modelled
(for example THz QCLs based on InAs/AlSb system [210, 211, 110, 60]).

The kinetic balance equation (2.33) [119, 86] provides significant simplifica-
tion in solving the Schrödinger–Poission system. This neat application of energy
conservation law avoided introduction of quasi–Fermi levels and electron temper-
atures for particular subbands [117]. The experimental pump–probe measure-
ments suggest that this approximation is justifiable for BTC QCL designs, while
designs that exploit electron–LO–phonon interaction exhibit different subband
temperatures [146, 147, 148, 37, 149]. Consideration of different subband tem-
peratures has been applied to DM model [130], and this in essence increases the
numerical cost of determining the electronic structure. Due to very large number
of approximations present in all THz QCL models, it is unclear whether more
general consideration of subband temperature would provide better model res-
ults, however work in this thesis met significant challenges with modelling THz
QCLs in CW operation and further work on subband temperatures (and heat
equation effects) may provide improvement.

Chapter 2 mainly presents an overview of earlier works, however, author re-
structured the previous numerical implementation to significantly decrease the
simulation time (from ∼2–3 hours to ∼ 5–10 minutes at single bias point) and
exploited the Leeds group’s access to supercomputer cluster ARC2 to parallelise
simulations. This allowed the author to consider optical effects, dynamics effects
and apply the overall model for design optimisation.

Note that author did not fully exploit the large number of zero elements
(sparse matrices) in DM model. The latest profiling of the numerical code in-
dicates that the main simulation bottleneck is the Schrödinger equation solver
and transport-mechanism solver, and there is a space for additional numerical
improvements along with the development of “user–friendly” simulator for THz
QCLs.
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9.2 Density Matrix Model

Chapters 3 and 6 presented the theoretical outline of DM model. The underly-
ing mathematical formulation has been explained in detail, leading to algebraic
simplification given by Eq. (3.22) and (6.9). This is an original contribution of
the author, published in [74, 83]. The mathematics of DM model is unavoidably
cumbersome when compared to RE approach in 1.6.1, however the conducted
algebraic formulation of DM superoperator allows relatively simple numerical
implementation.

This model is technically the generalisation of [82] and continuation of work
in [73, 61], where the main aim was to generalise the approach to be independent
on the number of states considered. Note that [82] has also been applied for
optimisation of the former record temperature design [47]. The main drawback of
the model is mainly within the determination of period interaction Hamiltonian
in Eq. 3.3. This expression essentially measures the wavefunction overlap in
the injection barrier and it is based on work in [133] that considered only a
two–well quantum system. A minor drawback is also the use of semi–classical
scattering rates and a dissipator that is essentially identical to RE approach (Eq.
3.10). The work in [72] avoids both drawbacks by constructing the Hamiltonian
in different manner and generalising the dissipator, so that it slightly resembles
NEGF approaches.

The model in this thesis represents a generalisation of RE approach where
coherent transport is added through inter–period interaction Hamiltonian. Note
that nearly all equations within RE approach are also present in DM system as
well. The difference between the implemented DM approach and RE approach
is the use of single period wavefunction basis under tight–binding approximation
and different inter–period interaction. Overall, the model has medium math-
ematical and computational complexity among various QCL models [76]. Some
future development may be conducted similarly to [72]. In comparison to the
NEGF models, DM approach offers very low numerical cost which is the essen-
tial property in optimisation schemes, note that in Chapter 8 over a million QCL
structures were simulated within roughly a week of time (this was mainly achieved
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by the use of supercomputer cluster ARC2 at University of Leeds, single QCL
structure simulation time was ∼ 5 minutes).

9.3 Steady–state density matrix modelling

Chapter 4 discussed the fitting procedure to the experimental results in detail.
The fabrication and growth processes have tolerances that may generate struc-
tures that have different properties, even when based on the same design. This
was taken into account through interface roughness scattering mechanism which
introduces Gaussian distribution–like perturbation Hamiltonian (Eq. 2.18) and
two fitting parameters. The IFR correlation length ΛIFR displays has a smal-
ler influence than IFR r.m.s height ∆IFR, and both have mostly linear effect on
output characteristics as shown in Fig.4.2.

The main issue that was encountered Chapter 4 was in fitting the temper-
ature dependence of experimental QCL characteristics, both in pulsed and CW
operation. It is clear that the conducted fitting approach did not consider that
multiple pairs of IFR parameters may provide the desired match with the experi-
ment, and development of more systematic approach may be required. However,
the analysis presented in Chapter 4 has shown that issue also lies in temperature
degradation of material gain and current density which may be attributed to the
lack of different subband temperatures in kinetic balance equation or even in a
missing transport mechanism.

Some improvement may be obtained by consideration of heat equation in Eq.
(1.8). The commonly used linear approximation is known to have different linear
slope with different cold finger temperature [189, 86] which may be exploited,
however this would result in construction of parametric model with too many
fitting parameters.

CW operation experiences very high electrical heating and applying the heat
equation is debatable, mostly because the temperature profile over the QCL ridge
is not uniform [45, 86] as shown in Fig. 1.9, and this breaks the periodicity of
QCL structure and makes the application of periodic approach for transport
questionable. Overall, the pulsed operation may be reliably fitted at any cold
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finger temperature for a variety of designs, while some caution is needed in CW
simulations.

9.4 Acoustic–phonon modulation

Chapter 5 has discussed a new THz QCL modulation technique, recently ac-
cepted for publication in [107]. Acoustic phonon effect generates a strain signal
that travels through semiconductor medium and may be used for perturbing the
active part of the medium. Voltage modulation properties of this effect have
been demonstrated in resonant tunnelling diode [164, 165] and weekly coupled
superlattice structures [161] and the joint research between University of Leeds
and University of Nottingham has demonstrated and theoretically explained this
effect for the first time in THz QCL structures [107].

Chapter 5 was focused on theoretical approach, developed by the author of this
thesis, that was used to explain the experimental observations in joint publication
[107].

The presented theory applies time dependent perturbation approach discussed
in Chapter 2.3 (Eq. (2.6)) in order to investigate the effect of strain induced by the
acoustic phonon perturbation on resonant tunnelling process. The calculations
were able to explain the experimental observations qualitatively, namely that the
propagating strain would always cause the increase of voltage, while the optical
power difference would change its sign, depending on whether the effect is applied
on the rising or falling edge of I − L characteristic of QCL.

The TDP approach is a rough approximation of this effect. The acoustic sig-
nal propagates through QCL structure on timescale similar to the lifetimes and
the propagating nature of this perturbation indicates the generation of electric
field domains (as signal is affecting the QCL period by period, and not all periods
at once). Modelling of this effect in detail is very challenging. A slight improve-
ment may be conducted by Landau-Zener–like model [166, 167]. It also may be
of interest to implement this effect as a new scattering mechanism in order to
investigate its effect on transport, however due to a small amplitude of the per-
turbation (∼ 1 meV), this effect would not have as significant contribution to the
transport as other scattering mechanisms.
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9.5 Self–mixing effect modelling

Chapter 6 presented Maxwell-Bloch model by coupling the density matrix model
to Maxwell wave equation under slow–varying envelope approximation.

The MB models are usually implemented in systems with several states [79,
76] although general formulation exists in the literature [169, 193], where the
main challenge is constructing the DM superoperator for the particular problem
of interest. The work presented in Chapter 6 is an original contribution that
resulted in publication [83]. The potential future improvements of the model are
in implementing the travelling wave approximation for Maxwell wave equation
(Appendix A), which would allow better insight into spatial properties of optical
wave within the cavity and allow modelling of coupled cavity effects such as
frequency comb generation. Travelling wave method, on the other hand, has both
spatial and temporal dependence, which would also extend to the density matrix
elements as in [88, 197], thus the time complexity of the model would greatly
increase. Another potential improvement of the model is examining multimode
operation of THz QCLs. This typically requires additional differential equations
for different optical electric field modes and it may be performed without affecting
the density matrix equations (i.e. only adding equations for electric field modes,
with specially added model for mode suppression by the material gain of the
medium [212]).

Chapter 7 extended the MB model to external homodyne reinjection of light,
enabling modelling of SM effect. The model solves 10 N2 differential equations
and includes detailed transport information through DM approach. To the best
of the author’s knowledge, this is the first general formulation of SM effect model.
The existing Lang–Kobayashi [102] model in the literature is originally construc-
ted for diode lasers, and subsequent applications of this model to different laser
systems required determining parameters equivalent to those in diode laser [7].
In terms of THz QCL structure, a hybrid model [189, 103, 104, 174] that models
QCL as a two level system with parameters derived from a model with N–level
system has been widely applied. Recently, a great interest is drawn by using
SM effect in pulsed operation [174], where hybrid approach may experience diffi-
culties.
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The formulation in Chapter 7 is able to provide a non–hybrid approach and
is an original work by the author of this thesis. However, SM effect applications
are usually conducted under CW operation where the laser gets significantly
heated. As discussed in Chapter 4, electrical heating is also present under pulsed
operation. This raises the necessity of coupling the thermal equation to the sys-
tem, similarly as in [189]. This is a demanding future work in the numerical
sense, as the addition of thermal equation would require the self–self–consistent
Schrödinger–Poission algorithm to be invoked at each time step within the differ-
ential equation solver. The system in Chapter 7 has 10N2 size and currently for
N = 11, ∼10-40 minutes is needed for self–self–consistent Schrödinger–Poission
algorithm (40 minutes is needed if electron-electron scattering is included) and
∼4 hours for ODE solver in 2000 time points at single electric bias value. Coup-
ling these approaches together would create a very general model, however this is
not feasible within reasonable simulation time. The simpler approach would be
to determine transport properties separately in order to obtain their temperature
dependence, and then use these data through a look up table (as was done in
[189]) or reducing the transport model to an effective model with fewer states.

9.6 Design optimisation

Chapter 8 discussed the THz QCL designs and proposed a novel design that is a
good candidate for high temperature performance.

The current record high temperature design [36] has been obtained through
optimisation technique that uses NEGF transport model. This structure lases
up to 210 K, however due to high barriers, high doping and short period (two
quantum wells) this operation is achieved at very high threshold current (9 A)
and operation bias, which cause very high electrical heating. Modelling this
structure by DM approach presented in this thesis, without specific IFR fitting,
shows that this design has material gain over 20 cm−1 up to 250 K, however when
the electrical heating is taken into account, the operating temperature prediction
agrees with the experimentally achieved results.

The operation temperature prediction has also been discussed in Chapter 4.
Due to very efficient numerical implementation of the transport model, developed
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by the author, the search for newly proposed design in Fig. 8.3 may be conducted
through brute force approach.

Note that this proposal was constructed in very late stages of author’s pro-
ject, thus Chapter 8 only presents the results obtained very recently. Three–well
QCL designs have been investigated through brute force simulations. The first
quantum well in the design is added to introduce a parasitic state that would
extract LLL from previous period and pump the ULL in its own period, therefore
achieving double resonant phonon-photon-phonon operation. Such three–well
QCL design therefore resembles the two–well design for typical resonant–phonon
QCLs structure. The overall conclusion of this Chapter has resulted in similar
arguments and discussion that were made for advantages and disadvantages of
two–well resonant–phonon devices, however, the main difference is that all pro-
posed designs in Chapter 8 have material gain over 20 cm−1 up to 240 - 250
K, have lower doping profile and lower threshold current than the record high
temperature design [36], giving hope for better performance. Additional consid-
eration of four-well and five-well designs is needed in order to propose a structure
that best matches the author’s proposal in Fig. 8.3.

The conducted simulations have shown a great potential of the model de-
veloped in the thesis for systematic design optimisations e.g. by genetic algorithm
[61] and a need for a “user–friendly” THz QCL simulator (the current implement-
ation does not have graphic user interface, and uses Bash scripts on terminal
within Linux operating system).

This thesis only modelled GaAs/AlGaAs THz QCL structures as this is cur-
rently dominant material setup in practice. However, great interest is drown by
material systems that have lower effective mass or higher LO–phonon energies.
Changing the material system in the model may seem straightforward as only
material parameters need to be updated [5], however the Schrödinger–Poisson
equation that is discussed in Chapter 2 uses 2 – band Kane model for subband
nonparabolicity. In author’s publication [112] prior to this thesis project, a 14
band nonparabolicity parameters were used where various THz QCL structures
were modelled in different material systems, showing significant effects of non-
parabolicity model. Additionally, the materials with low effective mass may also
exhibit undesired transport from other valleys [110, 60], note that the entire model
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formulation in Chapter 2 is focusing at the bottom Gamma valley of the conduc-
tion band profile. The future work needs to consider these effects and update the
Schrödinger–Poisson equation solvers accordingly.

9.7 Future and ongoing collaborative work

9.7.1 Reduced and parametric dynamics models

The steady–state model solves 9N2 equations (where N is the number of states
per QCL period), making any analytic study impossible. A variety of laser models
[1] use the effective two, three or four level schemes which provide very convenient
and intuitive physical interpretations of the model. Historically, the majority of
the dynamic Maxwell - Bloch models have been implemented in such schemes.
Chapter 6 presents a general Maxwell - Bloch dynamics approach in neat math-
ematical formulation, however effective and reduced dynamics models are also
capable of high quality study of various effects.

The model developed in this thesis has been employed in several collaborative
works that exploit the general scope of the model and provide effective parameters
for the reduced models.

The long running collaboration with a group in University of Queensland,
Brisbane, Australia has generated an effective two level dynamic model for the
self mixing effect [189, 91]. This model uses a large data set of various temperature
dependent parameters as material gain, lasing states’ lifetimes, current density,
voltage, etc., generated by the approach in this chapter. Recently, a state-of-
the-art application of SM effect under pulsed operation of the QCL device has
been performed in Queensland group [198], and modelling efforts on both sides
are being conducted towards improvement of the effect with the prospect of new
joint publications.

Similar methodology can also be applied for the study of multimode operation
of THz QCLs where a set of dynamic equations is being coupled to the effective
two level model. A publication has been submitted by Tina Xiaoqiong Qi in
Optics Express [213] where the author of this thesis has provided the steady
state data obtained by the model in this thesis.
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Another ongoing collaboration with Quantum Electronics group at University
of Belgrade, Serbia uses the model to provide effective parameters for a three level
laser structure for the dynamical Maxwell-Bloch study of self-pulsation effect.
This effect has been observed in mid-infrared QCL [214, 215] and the and a
collaboration effort is agreed in investigating this effect in THz QCLs.

9.7.2 Wavefunction basis exploitation

The steady–state model aslo provides detailed transport information and various
theoretical concepts can be studied by analysing the wavefunctions of interest.
Note that the model predicts the lasing frequency with very high precision and in
some cases it may be of interest to observe the lasing principle of the device and
discuss the diagonality of transitions, dipole matrix elements, oscillation strength,
etc.

Chapter 5 discuss in detail a modulation technique that requires time-dependent
perturbation theory approach where wavefunctions that model provides are es-
sential elements of the approach.
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Appendix A

Maxwell equation simplification

Maxwell’s wave equation for a homogeneous, isotropic medium, without the ex-
ternal magnetic field is [1]:

∇2E− 1
v2

g

∂2E
∂t2
− σ

ε0c2
∂E
∂t

= 1
ε0c2

∂2P
∂t2

(A.1)

where E(r, t) is the optical electric field, P(r, t) is the medium polarisation,
vg = cn−1 is the group velocity, σ is the conductivity that accounts for the
ohmic losses in the cavity [1].

A.0.1 Travelling wave method derivation

Let us assume that the electrical field has no spatial variation in plane ∂Ex
∂x

=
∂Ey
∂y

= 0 and that the propagation in the z direction is given as a linear com-
bination of the forward f+ and the backward f− propagating plane waves in the
form E(z, t) = 1

2 f
+(z, t)ei(kz+ωt) + 1

2f
−(z, t)e−i(kz+ωt) +c.c, where k and ω are the

corresponding wave number and the frequency, respectively, and ω = kvg. Addi-
tionally, we assume that the polarisation will follow the electric field in the similar
form: P (z, t) = P+(z, t)ei(kz−ωt) + P−(z, t)e−i(kz+ωt) + c.c The partial derivatives
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are:
∂E

∂t
= 1

2

[(
∂f+

∂t
− iωf+

)
ei(kz−ωt) +

(
∂f−

∂t
− iωf−

)
e−i(kz+ωt)

]
+ c.c

∂2E

∂t2
= 1

2

[(
∂2f+

∂t2
− 2iω∂f

+

∂t
− ω2f+

)
ei(kz−ωt)

+
(
∂2f−

∂t2
− 2iω∂f

−

∂t
− ω2f−

)
e−i(kz+ωt)

]
+ c.c

∂2E

∂z2 = 1
2

[(
∂2f+

∂z2 + 2ik∂f
+

∂z
− k2f+

)
ei(kz−ωt)

+
(
∂2f−

∂z2 − 2ik∂f
−

∂z
− k2f−

)
e−i(kz+ωt)

]
+ c.c

∂2P

∂t2
=
(
∂2P+

∂t2
− 2iω∂P

+

∂t
− ω2P+

)
ei(kz−ωt)

+
(
∂2P−

∂t2
− 2iω∂P

−

∂t
− ω2P−

)
e−i(kz+ωt) + c.c

(A.2)

The slow-varying envelope approximation assumes that

∂2

∂t2
<< ω

∂

∂t
,

∂2

∂z2 << k
∂

∂z
∂

∂t
<< ω

(A.3)

First we apply the first approximation from Eq. (A.3) and substitute Eq.
(A.2) without the second derivatives into Eq. (A.1) and group the terms with
the same exponentials:

1
2

(
2ik∂f

+

∂z
− σ

ε0c2

(
∂f+

∂t
− iωf+

)
− k2f+ − 1

v2
g

(
−2iω∂f

+

∂t
− ω2f+

))
ei(kz−ωt)+

1
2

[
∂2f−

∂z2 − 2ik∂f
−

∂z
− k2f− − σ

ε0c2

(
∂f−

∂t
− iωf−

)

− 1
v2

g

(
−2iω∂f

−

∂t
− ω2f−

)]
e−i(kz+ωt) + c.c

= 1
ε0c2

(
−2iω∂P

+

∂t
− ω2P+

)
ei(kz−ωt) + 1

ε0c2

(
−2iω∂P

−

∂t
− ω2P−

)
e−i(kz+ωt) + c.c

(A.4)
Next we use the identity vg = cn−1 = ωk−1, we can also split Eq. (A.4) into

two independent equations that correspond to the different exponential terms,
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and ignore c.c:

1
2

(
2ik∂f

+

∂z
+ 2iω∂f

+

∂t
− k2f+ + k2

ω2ω
2f+ − σ

ε0c2

(
∂f+

∂t
− iωf+

))

= 1
ε0c2

(
−2iω∂P

+

∂t
− ω2P+

)
1
2

(
−2ik∂f

−

∂z
+ 2iω∂f

−

∂t
− k2f− + k2

ω2ω
2f− − σ

ε0c2

(
∂f−

∂t
− iωf−

))

= 1
ε0c2

(
−2iω∂P

−

∂t
− ω2P−

)
(A.5)

It is clear that k2 terms will cancel out, and next we apply the second approxim-
ation in Eq. (A.3) and divide both equations by iω:

k

ω

∂f+

∂z
+ ∂f+

∂t
+ σ

ε0c2f
+ = iωP+

ε0c2

−k
ω

∂f−

∂z
+ ∂f−

∂t
+ σ

ε0c2f
− = iωP−

ε0c2

(A.6)

if we now use vg = kω−1 = cn−1 and rearrange Eq. (A.6) by dividing by vg, we
get two equations that correspond to Eq. (1.10) from travelling wave section in
chapter 1.6.3.

A.0.2 Fourier method derivation

Let us assume that electric field can be expanded as E(r, t) = ∑
n un(r)En(t)

where un(r) are the orthogonal cavity modes that satisfy the Laplace equation
(∇2 + k2

n)un(r) = 0, where kn = ωnnc
−1 is the wave number that corresponds

to the eigenmodes at frequency ωn. Let us also assume that the polarisation will
follow the electric field symmetry as P(r, t) = ∑

n un(r)Pn(t). By substituting
E(r, t) and P(r, t) into Eq. (A.1) we get:

∑
n

[
∇2unEn(t)− 1

v2
g

un
∂2En
∂t2

− σ

ε0c2 un
∂En
∂t

]
=
∑
n

1
ε0c2 un

∂2Pn
∂t2

(A.7)

If we add and subtract a term ±k2
nunEn(t) under the sum on the left hand

side of Eq. (A.7), the Laplacian term would cancel with −k2
n term. We can then

multiply the entire equation by −v2
g and apply vg = ωk−1

n = cn−1, we then obtain:
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∑
n

[
un
∂2En
∂t2

+ σ

ε0n2 un
∂En
∂t

+ w2
nunEn(t)

]
= −

∑
n

1
ε0n2 un

∂2Pn
∂t2

(A.8)

Finally, to obtain the individual equation for mode n we can multiply Eq.
(A.8) by um, integrate, and use the orthogonality property of the expansion
basis. The resulting equation is:

∂2En
∂t2

+ σ

ε0n2
∂En
∂t

+ ω2
nEn = − 1

ε0n2
∂2Pn
∂t2

(A.9)

which is identical to Eq. (1.11) from the 1.6.3 section.
This equation can be further simplified under the slow-varying envelope ap-

proximation. We assume that electric field has a cosine form at carrier frequency
ω, modulated by an envelope E(t) as En(t) = E(t)(eiωt + e−iωt). We assume
that the polarisation would also follow this form Pn(t) = P (t)(eiωt + e−iωt). The
partial derivatives are:

∂En
∂t

=
(
∂E

∂t
+ iωE

)
eiωt +

(
∂E

∂t
− iωE

)
e−iωt

∂2En
∂t2

=
(
∂2E

∂t2
+ 2iω∂E

∂t
− ω2E

)
eiωt +

(
∂2E

∂t2
− 2iω∂E

∂t
− ω2E

)
e−iωt

∂2Pn
∂t2

=
(
∂2P

∂t2
+ 2iω∂P

∂t
− ω2P

)
eiωt +

(
∂2P

∂t2
− 2iω∂P

∂t
− ω2P

)
e−iωt

(A.10)

It is clear that if we substitute Eq. (A.10) into Eq. (A.9), terms around
the same exponential would result into two complex conjugate equations. For
that reason, we can focus only on terms with eiωt. Similarly, as for slow-varying
envelope approximation for the travelling wave method in Eq. (A.3), we can
neglect the second order time derivatives:

2iω∂E
∂t
− ω2E + σ

ε0n2

(
∂E

∂t
+ iωE

)
+ ω2

nE = − 1
ε0n2

(
2iω∂P

∂t
− ω2P

)
(A.11)

Next we apply ∂
∂t
<< ω and assume that the carrier frequency is nearly at

resonance with the cavity mode frequency ω ≈ ωn which makes term ω2
n − ω ≈

2ω(ωn − ω), and if we divide Eq. (A.11) by 2iω:
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∂E

∂t
− i(ωn − ω)E + σ

2ε0n2E = − iωP

2ε0n2 (A.12)

When the terms in Eq. (A.12) are rearranged so that the derivative is on
one side, this equation is identical to Eq. (1.12) from Fourier method section in
chapter 1.6.3.
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Appendix B

Slow envelope approximation

If the conduction band potential is set to zero, general solution of the Schrödinger
equation for the atomic potential is presented through the orthogonal set of the
Bloch functions un,k(r) = 1√

Vc
eikrUn,k, where k is Bloch wavevector, Un,k is the

periodic part of the Bloch function which follows the periodicity of the atomic
potential and Vc is the volume of the crystal.

The conduction band potential represents a perturbation over the atomic po-
tential, and we can formulate that the solution of the Schrödinger equation with
the conduction band potential can be expanded through basis of Bloch’s func-
tions as ψn,k = ∑

n,k an,kun,k. When this is substituted into the Schrödinger
equation, we obtain a set of equations in the usual sum form. In order to extract
an equation for particular expansion term n, we may exploit orthogonality of the
Bloch functions basis, multiply the set by ψ∗n,k’ and integrate over the volume,
this yields:

1
Vc

∑
n,k

an,k

∫
Vc
eikrUn,k(r)U(r)e−ik’rU∗n,k’(r)dr = an,k(E − En,k) (B.1)

where En,k are the solution eigenvalues of the Schrödinger equation that corres-
pond to the system unperturbed by the conduction band potential (the atomic
potential only) and has Bloch function basis as eigenfunctions.

If we assume that the conduction band potential U(r) is slow-varying, we can
use its Fourier transform U(r) = ∑

q u(q)eiqr where q is small, this simplifies Eq.
(B.1):
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∑
n,k,q

an,k
u(q)
Vc

∫
Vc
ei(k-k’+q)rUn,k(r)U∗n,k’(r)dr = an,k(E − En,k) (B.2)

The Bloch functions are periodic due to the crystal lattice and this property
can be exploited to further simplify Eq. (B.2) and perform the integration only
over the primitive cell, rather than the entire crystal. The coordinate r = r + Ri

can be expressed through the relative position r’ and the position of the i-th cell
Ri. This simplifies the integration, the derivation can be found in [108], simplified
form is:

∑
n,k,q

an,k
u(q)
Vcell

∆k-k’+q

∫
Vcell

Un,k+q(r’)U∗n,k’(r’)dr’ = an,k’(E − En,k’) (B.3)

The slow-varying approximation for the conduction band potential allows the
integral in Eq. (B.3) to be expanded into Taylor series (because q is small), where
the first would be dominant. The integral would then satisfy the normalisation
condition and be equal to Vcell, therefore simplifying the Schrödinger equation to:

∑
q
an,k’+qu(q) = an,k’(E − En,k’) (B.4)

The envelope function can be introduced as Ψ3D = ∑
k’ an,k’e

ik’r and Eq. (B.4)
can be restructured to read:

∑
q
u(q)e−iqr∑

k
an,ke

ikr = E
∑
k’
an,k’e

ik’r −
∑
k’
En,k’an,k’e

ik’r

U(r)Ψ3D(r) = EΨ3D(r)− 1
8π3

∫
k’
an,k’En,k’e

ik’r
(B.5)

The second equation in Eq. (B.5) is derived by the identification of all the
previous substitutions and transformation of the sum over k’ into an integral.
The very important step towards the slow-varying envelope approximation, is in
handling the integral in Eq. (B.5). We are mainly interested in laser modelling
with direct semiconductor such as GaAs and isotropic effective mass. This allows
us to focus only at the Brillouin zone centre (Γc point) where k’ tends to zero,
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which allows us to write the dispersion relation in parabolic form as En,k’ =
En,0 + ~2k′2

2m , where En,0 is the energy around the Γc point of the n-th band. We
can then perform the inverse Fourier transform of (B.5) which yields Eq. (2.1)
from the section 2.1:

− ~2

2m
(
∇2

r + U(r)
)

Ψ3D(r) = (E − En,0)Ψ3D(r) (B.6)

In this derivation, we have introduced several approximation that transform
the Schrödinger equation in order to omit the general form that includes the
atomic potential. In essence, the derivation is formulating the Schrödinger equa-
tion that depends only on perturbation of the system (the conduction band po-
tential), while the effects of the unperturbed system are taken into account by
knowing the material properties. Equation Eq. (B.6) is a general form of the
Schrödinger equation that can be restructured differently, depending on the form
of the spatial confinement determined by the conduction band potential.
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Appendix C

Finite difference method for the
Schrödinger-Poisson equation

The finite difference method is a standard technique for solving differential equa-
tions. In one dimension the dependent variable (z) is discretized in nz equidistant
points with separation hz and the first and the second derivative of the function
f(z) are given as:

dfi
dz

= fi − fi−1

hz
d2fi
dz2 = fi+1 − 2fi + fi−1

h2
z

(C.1)

The first derivative in Eq. (C.1) is given nearly by the definition (where
hz → 0) through the forward Euler rule, while the second derivative may be
defined in several forms (depending on the desired precision). In Eq. (C.1),
the second derivative is given through central difference rule where three points
are needed. This determines how many diagonals would the matrix form of the
discretized differential equation have.

Schrödinger equation

The Schrödinger equation is of the second order, and when Eq. (C.1) is applied,
it follows the following rule:
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aiψi−1 + biψi + ciψi+1 = Eψi

bi = ~2

h2
z

 1
m∗
i+ 1

2

+ 1
m∗
i− 1

2

+ Vi

ai+1 = ci = − ~2

2m∗
i+ 1

2
h2
z

(C.2)

where i+ 1
2 represents linear interpolation of the effective around point zi.

When difference equation rule in Eq. (C.2) is applied for every point of the
z − axis, the resulting matrix problem is:



b0 c0 0 · · · 0
a1 b1 c1 · · · 0

0 . . . . . . . . . 0
0 · · · anz−2 bnz−2 cnz−2

0 · · · 0 anz bnz−1





ψ0

ψ1
...

ψnz−2

ψnz−1


= E



ψ0

ψ1
...

ψnz−2

ψnz−1


(C.3)

This is a tridiagonal eigenvalue problem which could be solved by numerous
approaches available in numerical packages, such as LAPACK in C++. However,
the effective mass is energy dependent due to the nonparabolicity m∗ = md(1 +
αkE) which transforms Eq. (C.3) into a nonlinear eigenvalue problem in the form
H(E)ψ = Eψ. The methodology for solving such a problem is to search for zero
eigenvalue solutions of (H(E)− EI)ψ = λ0ψ where I is an identity matrix and
the solution of Eq. (C.3) is a set of energies that yield λ0 = 0.

Poisson equation

The Poisson equation is of the second order as well, however its form is sig-
nificantly simpler than the Schrödinger equation and does not yield an eigen-
value problem. Its finite-difference form is φi−1 − 2φi + φi+1 = − h2

z

ε0n2 ci where
ci = e(N+

di − ρci) represents the charge density in accordance with expressions for
Nd(z) and ρc from the section 2.2.
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The matrix form of the discretized Poisson equation is:

−2 1 0 · · · 0
1 −2 1 · · · 0

0 . . . . . . . . . 0
0 · · · 1 −2 1
0 · · · 0 1 −2





φ1

φ2
...

φnz−1

φnz


= − h2

z

ε0n2



c1

c2
...

cnz−1

cnz


(C.4)

This is a linear diagonal dominant matrix equation and instead of the inversion
of the coefficient matrix, the Thomas algorithm solution is given by [114]:

φnz = h2
z

ε0n2
cnz
2

φi =
h2
z

ε0n2 ci + φi+1

2 , i 6= nz

(C.5)

Note that the Thomas algorithm in Eq. (C.5) requires only alteration of
the charge density function and avoids the direct inversion of the tridiagonal
nz − 1× nz − 1 coefficient matrix in Eq. (C.4).

The resulting potential from the Eq. (C.5) needs to be added to the potential
in the Schrödinger equation V = VCB− eKz+φ which consists of the conduction
band potential VCB and the potential drop due to the applied external bias K.
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Appendix D

Algebraic properties of matrix
systems

D.1 Kronecker product

The Kronecker product ⊗ between two matrices Am×n and Bp×q is defined as:

A⊗B


a11B · · · a1nB

... . . . ...
am1B · · · amnB


mp×nq

(D.1)

The resulting matrix has mp × nq size. We will focus on cases when both A

and B are square matrices of N ×N size. The most relevant application for the
density matrix model is ability of Kronecker product to linearise matrix equations
in form AXB = C where X is an unknown matrix, and C is a matrix of the same
size as A,X and B.

Consider a 2× 2 cases AX = C and XB = D where:
(
a11 a12

a21 a22

)(
x11 x12

x21 x22

)
=
(
c11 c12

c21 c22

)
(
x11 x12

x21 x22

)(
b11 b12

b21 b22

)
=
(
d11 d12

d21 d22

) (D.2)
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D.1 Kronecker product

The products in Eq. (D.2) are:(
a11x11 + a12x21 a11x12 + a12x22

a21x11 + a22x21 a21x12 + a22x22

)
=
(
c11 c12

c21 c22

)
(
x11b11 + x12b21 x11b12 + x12b22

x21b11 + x22b21 x21b12 + x22b22

)
=
(
d11 d12

d21 d22

) (D.3)

Each element of the left hand matrices in Eq. (D.3) is a separate equation, and
if we write them following row-wise separation, we obtain four linear equations
from each product. We can then formulate a vector x′ that represents row-wise
vectorisation of matrix X and write the equations in Eq. (D.3) as:


a11 0 a12 0
0 a11 0 a12

a21 0 a22 0
0 a21 0 a22




x11

x12

x21

x22

 =


c11

c12

c21

c22



b11 b21 0 0
b12 b22 0 0
0 0 b11 b21

0 0 b12 b22




x11

x12

x21

x22

 =


d11

d12

d21

d22



(D.4)

Equations in Eq. (D.4) can be written as (A⊗ I)x′ = c′ and (I ⊗BT )x′ = d′

where I is 2 × 2 identity matrix and c′ and d′ are column vectors obtained by
row-wise vectorisation of C and D matrix, respectively:

(
a11I a12I

a21I a22I

)
x11

x12

x21

x22

 =


c11

c12

c21

c22

 = (A⊗ I)x′ = c′

(
BT 02×2

02×2 BT

)
x11

x12

x21

x22

 =


d11

d12

d21

d22

 = (I ⊗BT )x′ = d′

(D.5)

This derivation generalises further to show that any system in form AXB = C

can be linearised as (A⊗BT )x′ = c′. For the density matrix model, linearisation
of the commutator [H, ρ] is (H ⊗ I − I ⊗HT )ρ′. Kronecker tensor product can
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D.2 Khatri–Rao product

also be used for description of various banded partitioned matrices. For instance,
generating a block diagonal matrix of k×k block size, with blocks B on the main
diagonal is obtained by Ik ×B where Ik is identity matrix of k × k size.

D.2 Khatri–Rao product

Khatri–Rao product � is an algebraic operation defined for partitioned matrices
[137, 138, 139, 141]. If A and B are partitioned matrices, with equal numbers of
partitions in rows and columns ( with K×J partition size), Khatri–Rao product
is defined as:

A�B =


A11 ⊗B11 · · · A1J ⊗B1J

... . . . ...
AK1 ⊗BK1 · · · AKJ ⊗BKJ

 (D.6)

The formal definition in Eq. (D.6) allows partitions to be rectangular matrices
of different sizes as long as the definition of Kronecker product in Eq. (D.1) is
satisfied. Khatri–Rao product may be interpreted as dot product of partitioned
matrices A and B where “dot” represents the Kronecker product.

Khatri–Rao product may be used for algebraic description of various banded
matrices. The main property of interest, is ability to describe linear systems
consisting of equations involving Kronecker product.

Consider a system of three equations:

A1 ⊗BT
1 x
′
1 = c′1

A2 ⊗BT
3 x
′
2 = c′2

A3 ⊗BT
3 x
′
3 = c′3

(D.7)

where A1,2,3, B1,2,3 and c′1,2,3 are linearised forms of equations AkXkBk = Ck. For
simplicity, assume that Ak, Bk and Ck are square N × N matrices. The system
in Eq. (D.7) can be written as:
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
A1 ⊗BT

1 0 0
0 A2 ⊗BT

2 0
0 0 A3 ⊗BT

3



x′1
x′2
x′3

 =


c′1
c′2
c′3




A1 0 0
0 A2 0
0 0 A3

�


BT

1 0 0
0 BT

2 0
0 0 BT

3




x′1
x′2
x′3

 =


c′1
c′2
c′3


(D.8)

This is clearly a new linear system and it is clear that this approach extends
to coupled systems as shown in Chapter 4.

D.3 Linearisation of AXTB

Kronecker product can be used to linearise equation AXB = C as (A⊗BT )x′ =
c′ where x′ and c′ are row-wise vectorised forms of X and C respectively. If
vectorisation was done column-wise, the linearisation would read (BT⊗A)xc = cc.
However, if we have an equation involving both X and XT , linearisation of AXTB

cannot be performed through Kronecker product, mainly because of vectorisation
of X and order of equations involved in AXTB.

Consider a 2× 2 case of AXT = E and XTB = F where:
(
a11 a12

a21 a22

)(
x11 x21

x12 x22

)
=
(
e11 e12

e21 e22

)
(
x11 x21

x12 x22

)(
b11 b12

b21 b22

)
=
(
f11 f12

f21 f22

) (D.9)

The products in Eq. (D.9) are:(
a11x11 + a12x12 a11x21 + a12x22

a21x11 + a22x12 a21x21 + a22x22

)
=
(
e11 e12

e21 e22

)
(
x11b11 + x21b21 x11b12 + x21b22

x12b11 + x22b21 x12b12 + x22b22

)
=
(
f11 f12

f21 f22

) (D.10)

If we formulate x′ through row-wise vectorisation similarly as in Eq. (D.4)
and write equations in Eq. (D.10) in row-wise order, the resulting system is:
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
a11 a12 0 0
0 0 a11 a12

a21 a22 0 0
0 0 a21 a22




x11

x12

x21

x22

 =


e11

e12

e21

e22



b11 0 b21 0
b12 0 b22 0
0 b11 0 b21

0 b12 0 b22




x11

x12

x21

x22

 =


d11

d12

d21

d22



(D.11)

The 4 × 4 matrices in Eq. (D.11) do not have directly associated type of
algebraic product as in Eq. Eq. (D.5). Visually, linearisation of AXT diagonally
displaces rows of A, while XTB displaces columns of B. These operations may
be performed by Khatri–Rao product as:

(
I2×2

I2×2

)
�

(
AR1

AR2

)
x11

x12

x21

x22

 =


e11

e12

e21

e22

 = (IR � AR)x′ = e′

(
I2×2 I2×2

)
�
(
BC1 BC2

)

x11

x12

x21

x22

 =


f11

f12

f21

f22

 = (IC ⊗BC)x′ = f ′

(D.12)

This also gives:

(IC �BC) = (IR �BR)T (D.13)

where AR is partitioned matrix where each partition is a row of the original
matrix. IR is partitioned matrix where each row is identity matrix. Similarly BC

is partitioned matrix, where each partition is a column of the original matrix and
IC has identity matrices as its column partitions. Note that identity in Eq. (D.13)
follows directly from Eq. (D.11) if we equalise a and b elements and transpose
the 4× 4 matrices.
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D.4 Normalisation of DM superoperator

This formulation generalises for matrices A and B as AXTB → AR � (BT )C

where (BT )C represents partitioning of matrix BT into columns:

AXTB →


AR1

AR2

...
ARN

�
(
BT

C1 BT
C2 · · · BT

CN

)
x′ =


AR1 ⊗BT

C1

AR2 ⊗BT
C2

...
ARN ⊗BT

CN

x
′

(D.14)
note that the requirement is that the number of columns in BT matches the
number of rows in A.

For the density matrix model, Eq. (D.12) will be relevant when linearisation
of terms in form [A, ρ] + [B, ρT ] is required:

[A, ρ] + [B, ρT ] = C

→ (A⊗ I − I ⊗ AT )ρ′ + (IR �BR − (IR �BR)T )ρ′ = c′
(D.15)

D.4 Normalisation of DM superoperator

Normalisation condition in density matrix formalism states that sum of diagonal
elements of the density matrix has unity value. This corresponds to the probab-
ility conservation within the chosen basis. This condition can be set in several
ways. The easiest approach is to delete one equation that corresponds to one
of the diagonal elements of the density matrix and replaced it with the norm-
alisation condition, this would add a constant term to the superoperator of the
system as in Eq. (3.23) and allow straightforward solution in steady state. This
approach is not compatible with the dynamic model, as most solvers require a
specific vector of equations, which places the derivatives on one side.

Another approach is to reformulate the normalisation condition by reordering
terms and setting one diagonal element of the density matrix to equal one minus
all other diagonal elements:

ρjj = 1−
∑
i 6=j

ρDC
0ii (D.16)

This equation needs to be substituted across the entire system where the
selected ρjj occurs and the system will “shrink” by the row and the column
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D.4 Normalisation of DM superoperator

that correspond to ρjj element. To illustrate this, consider a linear system of
differential equations LX = dX

dt
:


a11 a12 a13

a21 a22 a23

a31 a32 a33



x1

x2

x3

 = d

dt


x1

x2

x3

 (D.17)

If we implement x3 = Y − x2 − x1 (Y = 1, however we will keep the general
notion) and delete the third equation, the system in Eq. (D.17) becomes:

(
a11 − a13 a12 − a13

a21 − a23 a22 − a23

)(
x1

x2

)
+ Y

(
a13

a23

)
= d

dt

(
x1

x2

)
(D.18)

Two effects can be noticed in Eq. (D.18):

• The column that corresponds to x3 in the initial system in Eq. (D.18)
excluding the a33 element, remained as a free term in Eq. (D.18) times the
constant Y .

• The same column is subtracted from columns that correspond to x1 and x2

variable.

If we partition the system in Eq. (D.17) in column from as (A1 A2 A3)X = dX
dt

,
the condition x3 = 1− x2 − x1 modifies the system as:

(A1R − A3R A2R − A3R)�XR + Y A3R = dXR

dt
(D.19)

where R notation refers to the fact that the last equation in Eq. (D.17) is removed
and original columns are “shrank” by the last element, � only refers that this is
a dot type product when partitioned form is used.

The normalisation condition for the DM model used in this thesis follows
the outline in Eqs. (D.18,D.19), however there is a slight complication in which
columns and which rows need to be altered. The system in Eq. 6.9 has 10N2 ×
10N2 size, however normalisation condition only affects the diagonal elements of
ρDC

0 that are located in N2 × N2 partition in the the 10th (real part) and 9th
(imaginary part) row of the overall system. The selected diagonal element was
the one that corresponds to the last state in the basis, whose equation is written
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D.4 Normalisation of DM superoperator

in 10N2-th row (real part) and 9N2-th row (imaginary part). The normalisation
condition ρDC

0NN = ∑
i 6=N 1− ρDC0ii affects the system created in Eq. 6.9 as follows:

• Rows 10N2 and 9N2 are deleted from the system

• Columns 10N2 and 9N2 (after the previous shedding) are also deleted from
the system, and stored in column vectors CR and CI, respectively.

• Each column that targets real part of diagonal elements ρDC
0ii , i 6= N is

subtracted by column CR

• Each column that targets imaginary part of diagonal elements ρDC
0ii , i 6= N

is subtracted by column CI

• Column CR is added as free term to the system (note that CI is not added,
since in that case Y = 0 in Eq. (D.19))

The system can then be written as in Eq. (6.10). Note that overall Maxwell-
Bloch system is coupled, and the optical electric field equations can be added at
the bottom of the DM system, or at the position of the deleted equations due
to the normalisation condition. In either case, the overall system will have 10N2

differential equations, which can be solved by various packages within C++ GSL
library.
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cicki, K. Kosiel, I. Sankowska, J. Kubacka-Traczyk, and M. Bugajski, “Op-
tical properties of active regions in terahertz quantum cascade lasers,”
Journal of Infrared, Millimeter, and Terahertz Waves, vol. 37, no. 7,
pp. 710–719, 2016.

[40] A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. Williams, Q. Hu, and
J. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating
up to 225 k,” Nature Photonics, vol. 3, no. 1, p. 41, 2009.

[41] K. Fujita, S. Jung, Y. Jiang, J. H. Kim, A. Nakanishi, A. Ito, M. Hitaka,
T. Edamura, and M. A. Belkin, “Recent progress in terahertz difference-
frequency quantum cascade laser sources,” Nanophotonics, vol. 7, no. 11,
pp. 1795–1817, 2018.

[42] M. Razeghi, Q. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and
S. Slivken, “Quantum cascade lasers: from tool to product,” Optics express,
vol. 23, no. 7, pp. 8462–8475, 2015.

208



REFERENCES

[43] D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Mechanisms of tem-
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lavanis, P. Dean, J. Cooper, S. P. Khanna, M. Lachab, E. H. Linfield, A. G.
Davies, P. Harrison, D. Indjin, and A. D. Rakić, “Model for a pulsed tera-
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