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Abstract 
 

Senescence has been associated with, and accumulates in, aged tissues and age-associated pathologies. Recent 

evidence suggests that targeting senescence could improve the health span of older individuals, which is the fastest 

growing demographic worldwide. Therefore, drugs that efficiently eliminate senescent cells, namely senolytics, are 

required. I proposed that a novel zebrafish-based model of senescence could provide a better method of identifying 

senolytics and understanding in vivo senescence. I hypothesised that zebrafish larvae undergo cellular senescence in 

response to irradiation, and that induced senescence in zebrafish larvae shares features with human ageing-induced 

senescence, allowing new insights into human ageing.  

Here a non-lethal dose of irradiation was established in zebrafish larvae to develop a rapid accumulation of multiple 

senescence markers in vivo. Bacterial artificial chromosome (BAC) transgenesis was then used to develop a transgenic 

zebrafish that expresses GFP under promoter regulation of the senescence marker p21 [TgBAC(p21:GFP)sh506]. This 

transgenic reporter has allowed live in vivo imaging and prospective isolation of potentially senescent cells at the 

cellular level from a mixed population for the first time. Cell sorting of the GFP population showed an enrichment for 

multiple markers of senescence in the same cell, being positive for γH2AX and IL6, and negative for PCNA. For the first 

time, potentially senescent cells were able to be distinguished into a dim and bright population, whereby only the 

bright population expressed IL6. Irradiated zebrafish also show reduced mobility, a common predictor of age-

associated mortality in humans. Now characterised, the system can provide a novel approach to compliment other 

established in vivo senescence models to further our understanding of the mechanisms underlying ageing, and allow 

the development of an in vivo compound screen for senolytics. 
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1. Introduction 

1.1. The ageing population 
Ageing of eukaryotic organisms can be defined as an almost universal decline in organ function leading to increased 

risk of mortality (Partridge, 2010; Leng, Chen and Mao, 2014). It is something that can be seen clearly, with features 

such as skin wrinkling, spine curvature and hair loss all becoming more prevalent over time, and it is something that 

occurs almost universally across all species (Chan & Duque, 2002.; HAMILTON, 1951; Katzman, Wanek, Shepherd, & 

Sellmeyer, 2010; Larsson et al., 2019; Makrantonaki & Zouboulis, 2007). What is fascinating about ageing is that the 

rate at which we age is extremely diverse (Fabian, D. & Flatt, 2011; Jones et al., 2014). Dogs and humans are both 

mammals, and companion dogs share arguably the same environment, however the median lifespan of a dog is vastly 

shorter than that of a human at 14 years compared to 80 (Hoffman et al., 2018). Even within humans from the same 

socioeconomic background and country can age differently and succumb to ageing in different ways (Huisman et al., 

2013; Public Health England, 2019). Ageing is a process that involves multiple organ tissues, environmental and genetic 

factors and occurs over an extremely long time in humans, making it arguably one of the most difficult areas to 

research as a whole (Studenski, 2008; Bellantuono and Potter, 2016). What is clear is that although we have made vast 

progress over the last few decades to understand how we age, with clear ‘hallmarks of ageing’ now being well 

characterised, we are yet to be able to effectively modulate the rate of ageing or reverse age-associated pathologies 

to keep people healthier for longer (López-Otín et al., 2013). 

Ageing is an important risk factor for most non-communicable diseases in almost all organ systems, including cancer, 

Alzheimer’s, atherosclerosis, and osteoarthritis (Hebert et al., 2001; Finkel, Serrano and Blasco, 2007; Colman et al., 

2009; Mantovani et al., 2010; Shane Anderson and Loeser, 2010; Wang and Bennett, 2012). Even in the context of 

infectious diseases, an aged individual is much worse at fighting infections and less able to be vaccinated against them 

(Weinberger et al., 2008). This leads to increased hospital admissions in older people, reduced quality of life and 

independence, and is costly to our health and social care services (Christensen et al., 2009). However, this has only 

become an issue of great urgency over the last few decades with the onset of our ageing population.  
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In the UK, the predicted population increase between 2016 and 2036 is 36% for those aged between 65 and 79 years 

old, and 69% for those aged over 85 years old, whilst all other age groups remain relatively unchanged (Centre for 

Ageing Better, 2019). By 2037, one in four people in the UK will be 65 or older (Statistics, 2017).  This means that our 

population is ageing, and this is the case in both developing and developed countries. One reason for this is that we 

are becoming better at treating individual diseases, with the invention of antibiotics for infectious disease, anti-cancer 

drugs and treatments such as Statins to treat heart disease (Wilmoth, 2000). However, this means that we are surviving 

with disease for longer, rather than increasing the proportion of our lives that are spent disease-free, otherwise known 

as our healthspan. This, alongside ageing being a key risk factor for non-communicable diseases, results in a greater 

proportion of our population that are retired and more likely to be suffering from age-associated frailty and multi-

morbidity (Christensen et al., 2009). On average in 2015, women, who typically have a longer lifespan than men, can 

expect to live 19 years of their life with age-associated diseases (Office for National Statistics, 2015). The amount of 

people requiring significant social care has doubled between 1991 and 2011 (Bulman, 2017). Additionally, 75% of over 

65s suffer from more than one age-associated diseases, and 20% of over 65s have at least five age-related chronic 

conditions (Vogeli et al., 2007; Goldman et al., 2013). The prevalence of multi-morbidity means that an individualistic 

approach to treating age-associated diseases are becoming less effective, polypharmacy comes into play where drug 

interactions and multiple side effects limit the efficacy of drugs to treat individual pathologies used in combination. 

There must be a shift into the development of more multi-disciplinary, holistic approaches to limiting age-associated 

pathologies. In summary, there has never before been a greater and more urgent need to understand the underlying 

mechanisms of ageing that result in increased disease incidence and multimorbidity in older people. From an economic 

standpoint, reducing the pressure on our health and social services is essential, but also improved fitness in the elderly 

would allow a greater contribution to our workforce and strengthen individual independence (Silverstein, 2008; 

Marešová, Mohelská and Kuča, 2015). Further, 1 in 6 people in the UK over 65 live in relative poverty, therefore the 

financial pressure of requiring constant care can prove extremely debilitating for both the individual and the support 

networks that surround them (Pensions, 2018). This does not necessarily just mean developing new treatments to 

health span, but also improved social awareness of factors that contribute to healthy ageing through lifestyle changes 

such as diet, exercise and social interaction (Holmes and Joseph, 2011; McPhee et al., 2016; Robinson, 2018). 
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1.2.1 The rate at which we age is malleable: Lifespan 
Over the past few decades, the notion that it is possible to change the rate at which we age has become well evidenced. 

Rather counterintuitively, during the Great Depression in the early 20th Century, life expectancy increased and 

mortality rates decreased despite poor economic health and food rationing (Granados and Roux, 2009). Later, when 

mammals were calorie restricted they showed a strong improvement in life and health-span (McCay, Crowell and 

Maynard, 1935; Weindruch et al., 1986; Mattison et al., 2012). This provided vital evidence to support the idea that 

the rate of ageing is changeable. In c.elegans their median lifespan can be extended from three weeks to four months 

when there is limited availability of nutrition, in a state referred to as dauer diapause (Riddle, Swanson and Albert, 

1981). Mutant screens in c.elegans showed that daf proteins, later shown to be orthologous to the human insulin/IGF 

pathways, can regulate lifespan and were involved in controlling the dauer state (Klass, 1983; Kenyon et al., 1993; 

Gottlieb and Ruvkun, 1994). In humans, there are disorders such as Hutchinson-Guildford Progeria Syndrome (HGPS), 

and Werner Syndrome that present with rapid ageing phenotypes (Hutchinson, 1886; EPSTKIN et al., 1966). 

Sequencing demonstrated that these were disorders of the LMNA and WRN genes, involved in DNA repair and nuclear 

membrane integrity, and further indicated mechanisms that modulate the ageing process (Chen et al., 2003; Eriksson 

et al., 2003). The Italian island of Sardinia has been of interest in understanding how people can live longer and 

healthier lives as it is a ‘blue zone’, which is a region where the lifespan is much higher than average (Salaris, 2015; 

Buettner and Skemp, 2016). Reasons for this include increased activity levels, improved diet, and high levels of societal 

interactions (Pes et al., 2013; Buettner and Skemp, 2016). Indeed, when Frome, a small town in the south west of the 

UK introduced schemes to try and reduce isolation in older people, hospital admissions dropped by 14% between 2013 

and 2017 whilst they increased by 28.5% in surrounding regions (Abel et al., 2018). These examples demonstrate that 

the rate at which we age is malleable, and requires a multi-faceted and multi-disciplinary approach to help tackling 

the prevalence of age-associated disease in older people. 

 

1.2.2 The rate at which we age is malleable: Healthspan 
A pertinent question within the field of ageing research is whether it is possible to improve an individual’s healthspan 

without further extending their lifespan, thereby compressing their morbidity (Fries, 1980). Without this ‘compression 

of morbidity’, there will be little net improvement on the number of people that are suffering from age-associated 

disease, it would instead delay the age at which they begin to suffer from them. There are notable cases whereby 

compression of morbidity has been described however. Centenarians, for example, have a much lower incidence of 

disease until later compared to those that live until decades earlier (Perls, 1997). They show a lower incidence of 

chronic illness, and are sick for a shorter period of time, reducing the medical costs for centenarians compared to 

those with a 70-year lifespan by two-thirds (Kheirbek et al., 2017). This suggests, rather unsurprisingly, that if one can 

delay the initial onset of age-associated disease, then healthspan extension is possible. However, this is not so helpful 

for those that arrive at the clinic already presenting with symptoms, therefore, studying the underlying mechanisms 

that control maximum lifespan have been examined. For example, there is a strong correlation between rodents with 

a longer maximum lifespan and more efficient DNA repair mechanisms, which is the opposite phenotype to rapidly-
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ageing patients with Werner syndrome (Tian et al., 2019). Additionally, systemic improvements in multiple organ 

tissues was demonstrated upon modulating myostatin and activing signalling in a progeric mouse, without affecting 

lifespan (Alyodawi et al., 2019). These evidence that compression of morbidity is possible in our ageing population, 

and that understanding the mechanisms linking ageing and increased disease incidence could provide new therapeutic 

avenues for extending healthspan. 

 

1.3. Mechanisms of ageing  
Research into the mechanisms underlying ageing are well underway. In a landmark review, nine processes were coined 

‘The Hallmarks of Ageing’ (López-Otín et al., 2013) (Figure 1.1). ‘Genomic instability’, ‘stem cell exhaustion’, ‘telomere 

attrition’, ‘loss of proteostasis’, ‘deregulated protein sensing’, ‘mitochondrial dysfunction’ ‘epigenetic alterations’, 

‘altered intercellular communication’, and ‘cellular senescence’ are linked by stress and can be generally attributed to 

a loss in homeostasis. External stresses such as exposure to ultraviolet components of sunlight can increase oxidative 

stress, expose cells to DNA damage, and lead to genomic instability (Debacq-Chainiaux et al., 2005). When the extent 

of stress reaches a critical level or the cell cannot handle the level of stress, they can go into a state of senescence 

(d’Adda di Fagagna et al., 2003a; Parrinello et al., 2003a). Senescence is a stress response that can alter intercellular 

communication and warn surrounding cells of a stress, even inducing senescence in nearby cells by a process called 

bystander or paracrine senescence (Nelson et al., 2012a; Acosta et al., 2013). When the protective caps on the end of 

chromosomes known as telomeres become critically short, this in turn can act as an internal stress and induce 

senescence (C B Harley, Futcher and Greider, 1990). The rate of telomere attrition is a strong predictor of median 

lifespan between species (Whittemore et al., 2019). Additionally telomerase, an enzyme that can maintain telomere 

length, can be introduced to mice with pulmonary fibrosis to tackle telomere attrition and improve prognosis of this 

age-associated pathology (Povedano et al., 2018). The methylation of genes can modulate gene expression, but 

alterations in epigenetic regulation are seen with age (Maures et al., 2011). For example, H3K27me3 is generally known 

to decrease with age; it is also highlighted as a repressor of the senescence-inducing INK4A/ARF locus (Bracken et al., 

2007). Removing the demethylase that acts on H3K27me3 can extend the lifespan of c.elegans (Maures et al., 2011). 

Another type of internal stress that can induce senescence is mitochondrial dysfunction (Wiley et al., 2016). When the 

efficiency of cellular metabolism decreases over time, the amount of reactive oxygen species (ROS) that are produced 

increases and can damage DNA (Chance, Sies and Boveris, 1979; Bulua et al., 2011). The ROS itself can further damage 

mitochondrial DNA and lead to a positive feedback loop and excessive oxidative stress. Mitochondrial dysfunction can 

further be aggravated by age-related loss of the protein quality control systems termed autophagy and mitophagy 

(Sun et al., 2015). Modulation of autophagy and mitophagy can change the rate of ageing (Zhang and Cuervo, 2008). 

For example, mice with an extra copy of a lysosomal receptor required for chaperone-mediated autophagy experience 

a protective effect against the age-dependent increases in pathology that associated with reduced autophagy. The 

relationship between protein control and senescence is interesting in that effective autophagy can prevent senescence 

in stem cells, whilst increases in autophagy are seen in senescent cells and seems to control their inflammatory 

phenotype (Narita et al., 2011; García-Prat et al., 2016). Another way in which autophagy and senescence can be 
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regulated is through nutrient sensing (Herranz et al., 2015). mTOR signalling, for example, can interpret nutrient and 

growth signals, and is required to induce the inflammatory nature of senescence (Herranz et al., 2015; Laberge et al., 

2016). Modulation of this signalling pathway by rapamycin can extend lifespan of mice (Harrison et al., 2009). The 

inflammatory nature of senescence, an example alteration of intercellular signalling, contributes to the age-dependent 

increase in chronic inflammation, which is causal to multiple age-associated diseases (Childs et al., 2016; Jeon et al., 

2017a; Schafer et al., 2017; Bussian et al., 2018; Chinta, Woods, Demaria, Madden, et al., 2018). Alongside this, with 

age the function of the immune system declines (Solana, Alonso and Peña, 1999; Solana and Mariani, 2000; Deng et 

al., 2004a; Czesnikiewicz-Guzik et al., 2008). We are less able to fight off infections and clear senescent cells, one 

reason being due to a reduced number of white blood cells in our blood with age. As well as reduced white blood cell 

numbers with age, those immune cells that that are present are less functional, T cells are less likely to be activated in 

response to a stimulus and increases in senescence markers are seen also (Deng et al., 2004b; Liu et al., 2009). Reduced 

immune cell number and function could be attributed to stem cell exhaustion in the hematopoietic stem cell niche. 

Stem cells are required to replenish the cell populations in damaged tissues and maintain tissue homeostasis, and 

there is an age-dependent decline in functional stem cells over time with increasing markers of senescence seen 

(Beerman et al., 2010; Molofsky et al., 2006; Fali et al., 2018). Eventually over time, an organ’s regenerative capacity 

will not be able to overcome the damage and our organ reserve, the ability for a tissue to return to physiologically 

functional state after a stress, would be depleted and lead to age-associated frailty (Neustadt and Pieczenik, 2008). 

Once one area starts to malfunction in this manner, it puts pressure on other regions, leading to a positive feedback 

loop and multimorbidity. At the DNA level, this is described as the ‘Somatic Mutation Theory of Aging’ (Szilard, 1959; 

Moskalev et al., 2013). An added complexity to these hallmarks of ageing is that they are not mutually exclusive. This 

could be useful in the context of improving healthspan, in that one could propose that pharmacologically improving a 

central ageing hallmark like senescence may also help with other hallmarks of ageing, but conversely it may require 

targeting multiple hallmarks at once to have a functional improvement on whole organism health. The way in which 

our cells respond to various stressors seems central to many of these mechanisms, therefore I believe that targeting 

a stress response like senescence could be a promising approach and a good place to research to achieve the goal of 

systemic health-span extension.  
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Figure 1.1. The mechanisms of ageing. Mitochondria dysfunction, telomere attrition, loss of proteostasis and genotoxic

stress are all able to induce senescence. Senescent cells accumulate with age and can secrete warning signals known as the

sensescence-associated secretory phenotype (SASP), which includes inflammatory factors. The SASP is able to induce

senescence in nearby tissues in a process known as bystander senescence. It can also signal to immune cells and lead to

chronic inflammation. This inflammatory microenvironment of accumulated senescent cells and chronic inflammation can

damage stem cell niches and reduce function, further reducing organ reserve and leading to age-associated multimorbidity.

Figure adapted from López-Otín et al. (2013). DIagram created with  BioRender.com.

 

Figure 1.1 Mechanisms of ageing. 
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1.4.1. Cellular senescence  
Cellular senescence is a hallmark of ageing, and the clearance of senescent cells has been highlighted as a potential 

mechanism by which age-associated pathologies could be treated (López-Otín et al., 2013). Cellular senescence in 

most contexts can be defined as a stress-response (Sharpless and Sherr, 2015a; He and Sharpless, 2017). Senescence 

is a very dynamic and contextually dependent phenotype but generally, senescent cells have three main components 

in common (Shelton et al., 1999). Stressed cells that become senescent undergo a seemingly permanent arrest of the 

cell cycle (Manuel Serrano et al., 1997; Blais et al., 2007). Though it is worth noting that this does not mean that only 

proliferating cells can become senescent, post-mitotic neurons are able to induce a senescence phenotype via p21 for 

example (Jurk et al., 2012). Unlike with quiescence, the proliferative arrest is permanent, and these cells are no longer 

optimised to carry out their typical cellular functions, which is distinct from terminal differentiation (Buttitta and Edgar, 

2007). A particularly important aspect of senescence, and one that sets it apart from alternative stress responses such 

as programmed cell death mechanisms, is the increases in metabolic activity and induction of a secretome deemed 

the Senescence Associated Secretory Phenotype (SASP) (Shelton et al., 1999). The SASP comprises of complex and 

dynamic signals, including pro-inflammatory cytokines, chemokines, growth factors, and proteases (Shelton et al., 

1999; Bavik, 2006; Coppé et al., 2006; Acosta et al., 2008; Kuilman and Peeper, 2009; Freund et al., 2010; Krtolica et 

al., 2011; Laberge et al., 2016). This is thought to be the basis of their paracrine functions and interactions with the 

immune system (Gasser et al., 2005a; Kang et al., 2011b; Antonangeli et al., 2016a). Additionally, the SASP is implicated 

in inducing senescence in surrounding tissues, termed bystander senescence (Nelson et al., 2012b). Although 

senescent cells can be activated through comparable stressors that can also induce apoptosis, these cells actively 

develop methods for resisting cell death (Sasaki et al., 2001). In fact, the length of time that senescent cells can survive 

for in vivo is unknown, though markers of senescence have been shown 12-months after chemotherapy treatment in 

breast cancer patients, which was the longest time-point examined in the study (Sanoff et al., 2014). Understanding 

the three central components that define senescence are vital in being able to appreciate markers that can identify 

them, their functions and how they are linked with ageing.  

 

1.4.2. Markers of senescence 
Senescent cells can be difficult to identify and often requires multiple markers being used together. One of the first 

identified markers of senescence is senescence-associated β-Galactosidase activity (SA-β-Gal) (G P Dimri et al., 1995). 

It correlated with cells from older humans and was absent in quiescent, terminally differentiated and cancer cells in 

that study. It was since shown that this activity is not actually required for senescence, where reducing the expression 

of the β-gal encoding gene glb1 did not stop senescence induction (Lee et al., 2006). As well as this, there are now 

multiple examples whereby non-senescent cells express SA-β-gal activity, putting into question the validity of it as a 

specific marker of senescence (Krishna et al., 1999; Severino et al., 2000; Going et al., 2002; Untergasser et al., 2003; 

Yang and Hu, 2005; Hall et al., 2017).  
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As senescent cells are a stress response, markers of the DNA damage response such as γH2AX and p53 have been used 

to help identify senescence (d’Adda di Fagagna et al., 2003; Herbig et al., 2004). However, these alone cannot 

distinguish between other phenotypes that can occur following DNA damage response such as repair and apoptosis 

(Rogakou et al., 2000; Haupt et al., 2003). Additionally, senescent cells have been identified in p53-null mice (Muñoz-

Espín et al., 2013). In the context of senescence, the components of the DNA damage response, particularly p53, help 

signal to the cyclin-dependent kinase inhibitor P21 to help elicit the permanent cell cycle arrest that senescent cells 

are known for (Di Leonardo et al., 1994). P21WAF1 predominantly acts on CDK2 to arrest cell cycle at either G1 or G2 

phase (Wade Harper et al., 1993; Xiong et al., 1993; Bunz et al., 1998). Interestingly, mice lacking in the P21WAF1 locus, 

CDKN1A, are defective in G1 and G2 cell cycle checkpoint control and have more tumours, a disease of uncontrolled 

proliferation, at 16months compared to wild-type siblings (Deng et al., 1995; Martín-Caballero et al., 2001). However, 

P21-mutant mice do not show sensitivity to senescent-inducing stressors such as radiation or telomerase-deficiency 

(Choudhury et al., 2007). P16INK4A is another exemplar cyclin-dependent kinase inhibitor that helps to maintain the 

senescence cell cycle arrest by inhibiting the kinase activity of CDK4 and cyclin-D (Serrano, Hannon and Beach, 1993). 

The inhibition of CDK4 and cyclin-D by P16 is through activation of the tumour suppressor Rb, which in turn represses 

the E2F transcription factors associated with cell cycle progression (Narita et al., 2003). Unlike P21, P16 is commonly 

mutated in tumours, and P16 mutant mice have increased susceptibility to tumour-inducing stressors (Serrano et al., 

1996). The current understanding of the relationship between the CDKIs is that p21Waf1 seems to be an earlier marker 

of senescence, and helps induce the cell cycle arrest, whilst P16Ink4a further helps mediate the irreversible nature of 

senescence (Stein et al., 1999). However, the exact kinetics of these genes are not entirely clear yet with relation to 

senescence induction and maintenance. Some evidence suggests that it takes 4 days of p21 expression to be indicative 

of senescence (Sang, Coller and Roberts, 2008). Others have shown that in replicative senescence of in vitro human 

fibroblasts, P21 is activated before P16 takes over for longer periods afterwards for senescence to be maintained 

(Alcorta et al., 1996; Stein et al., 1999). Conversely, more recent single-cell analysis of senescent cells 10 days after 

bleomycin treatment demonstrated that P21 is one of the highest predictors of senescence over quiescence, whilst 

P16 was not examined in this study (Wiley et al., 2017). Additionally, P16INK4A expression has been identified in the 

context of macrophage polarization, independent of senescence (Hall et al., 2017). In summary, P21 and P16 are clearly 

important in the induction of permanent cell cycle arrest in senescent cells and are therefore viable means for 

identifying these cells in vivo. However, as their involvement can alter according to context and there examples of 

expression of both genes independently of senescence, a combination of senescence markers would provide greater 

confidence of detecting the senescent phenotype reliably.  

Similarly, though the SASP is a unifying feature of senescent cells, it is variable and temporally dynamic. For example, 

10Gy IR on Mouse Embryonic Fibroblasts (MEFs) resulted in high IL6 expression, whereas senescent cells sorted from 

wounds show almost no change in IL6 expression (Demaria et al., 2014). Furthermore, the SASP profile of primary lung 

mice fibroblasts was drastically different depending on whether they had underwent senescence through replicative 

senescence or stress-induced senescence, and the expression of SASP-related chemokines, cytokines, and growth 

factors such as IL-12, MIP-1α, and VEGF varied largely according the mode at which senescence was induced (L. A. 
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Maciel-Barón et al., 2016). There were some common SASP features identified in senescent cells induced by five types 

of genotoxic stress and include the proteases MMP2, TIMP2, the growth factor binding protein IGFBP3, PAI1 amongst 

others (Özcan et al., 2016). Interleukins such as IL1, IL6 and IL8 also seem to be quite common to the SASP phenotype 

(Coppé et al., 2008; Acosta et al., 2008; Kuilman and Peeper, 2009; Rodier et al., 2009; Laberge et al., 2016). Though 

the dynamic and complex nature of the SASP has plagued researchers in understanding the secretome of senescent 

cells, recent advancement in single-cell analysis has allowed the development of a proteomic database called the SASP 

atlas, which may help piece apart whether there are distinct and consistent components of the senescence secretome 

in different contexts (Basisty et al., 2019). 

Though senescent cells seem to last for a long time after stress in vivo, their mechanisms of cell death resistance are 

unclear (Sanoff et al., 2014). Both of the aforementioned cell cycle inhibitors P21 and P16 have been identified as 

negative regulators of apoptosis (Bissonnette and Hunting, 1998; Sviderskaya et al., 2003). Additionally, P53 can induce 

cytochrome c release from mitochondria for cell death mechanisms for example through its cytosolic subcellular 

localisation (Schuler et al., 2000). In senescent cells, p53, though also up-regulated, can instead interact with FOXO4 

and become localised to promyelocytic leukemia (PML) bodies in the nucleus that play a role in SASP regulation (Rodier 

et al., 2011; Baar et al., 2017). When this interaction is inhibited, senescent cells tend to become apoptotic more than 

non-senescent cells. Additionally, HSP90s are up regulated some senescent cells (Fuhrmann-Stroissnigg et al., 2017; 

Basisty et al., 2019). This heat shock protein interacts with Akt to inhibit apoptosis and promote cell survival 

(Fuhrmann-Stroissnigg et al., 2017). Similarly, an siRNA against Bcl-xl, part of the bcl-2 family proteins involved in the 

same cell survival pathway, was able to reduce the viability of senescent cells (Zhu et al., 2015). However, a 

contradictory study suggests that four different senescent fibroblast strains have low bcl2 activity, whilst still being 

more resistant to hydrogen peroxide-induced cell death than young cells (Sasaki et al., 2001). This suggests the 

mechanisms for maintaining resistance to cell death in senescent cells can vary according to context. 

Now there are multiple transcriptomic and proteomic changes identified with senescent cells, which helps to identify 

and research them. However, due to the many different contexts linked to senescence and the lack of reliable model 

organisms that can detect these cells at the cellular level in vivo, appreciating how they accumulate and are linked 

with ageing has proven challenging in the past (Calvin B Harley, Futcher and Greider, 1990; M Serrano et al., 1997; 

Parrinello et al., 2003b; Baker et al., 2011; Demaria et al., 2014; Liu et al., 2019).  

1.4.3.1. Replicative senescence 
To understand how senescent cells are linked to ageing, an appreciation of the pathways for inducing senescence is 

essential. Replicative senescence was the first induction method identified (Hayflick and Moorhead, 1961; Hayflick, 

1965; Calvin B Harley, Futcher and Greider, 1990; d’Adda di Fagagna et al., 2003a). The term senescence was first 

coined in 1961 to describe the time-dependent decrease in proliferative ability of cells in culture after each round of 

cell division (Hayflick and Moorhead, 1961). When cells were unable to continue dividing, it was termed that the cells 

had reached their ‘Hayflick Limit’. This was later attributed telomere attrition during cell division (Harley et al., 1990). 

Telomeres are ‘TTAGGG’ repeat sequences of genomic DNA located at the end of chromosomes that get shorter with 

each round of DNA replication, due to the end-replication problem (Olovnikov, 1971; Watson, 1972). DNA polymerases 
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can only go in the five prime to three prime direction, therefore Okazaki fragments are required to make the lagging, 

reverse strand, of DNA. Once the last Okazaki template fragment has been removed, it leaves a short piece of single-

stranded DNA at the three prime end, shortening the overall length of the chromosome with each round of DNA 

replication (Huffman et al., 2000). Telomeres protect important intron and exon sequences by acting as a protective 

cap, and allow the recruitment of proteins that inhibit the response that would recognise this single-stranded piece of 

DNA as damaged (d’Adda di Fagagna et al., 2003b; O’Sullivan and Karlseder, 2010). Eventually, these telomeres get 

too short and cannot provide room for these protective proteins to be recruited to them, the DNA damage response 

becomes activated and the cell enters replicative senescence where it will no longer undergo DNA replication or cell 

division. It was not known for some time whether this was an artefact of growing cells in vitro, or whether they actually 

had significance in vivo. 

1.4.3.2. Oncogene-induced senescence 
Cancer is a disease of uncontrolled proliferation, and therefore, it would be a logical place to assess whether the 

immortalisation of cells has something to do with overcoming the senescence phenotype and associated cell cycle 

arrest (Shay, Pereira-Smith and Wright, 1991). This was first shown through oncogenic activation of the G-protein RAS, 

which becomes hyperactive and causes excessive mitogenic signals, increasing p53 and p16INK4A levels and inducing 

senescence (M Serrano et al., 1997). A concurrent induction mechanism following excess mitogenic signals from RAS 

is the resulting increase in metabolic activity, which in turn increases expression of DNA damaging reactive oxygen 

species (ROS), eventually inducing senescence (M Serrano et al., 1997; Lin et al., 1998; Halazonetis, Gorgoulis and 

Bartek, 2008). Importantly the DNA damage response is not always required for oncogene-induced senescence (Olsen 

et al., 2002; Efeyan et al., 2009). Certainly, immortalisation only occurred by an oncoprotein if key components of the 

senescence pathway, namely P53 and P16INK4A, were inhibited. Additionally, tumours often contain mutations in 

senescence induction mechanisms, as well as activating telomerase to prevent telomere shortening (Kim et al., 1994; 

Serrano et al., 1996; Shay and Bacchetti, 1997). Experimentally altering the senescence machinery has a large effect 

on the onset of cancers in vivo (Lindsten et al., 2000). Whereas modifying the machinery for programmed cell death, 

an alternative stress response, did not have much effect on in vivo cancer onset. The term oncogene-induced 

senescence (OIS) was used to describe senescent cells that were arrested in G1 phase following by oncogenic 

mutations in RAS (M Serrano et al., 1997). Importantly, P53 and P16 were up regulated in these cells and the cell cycle 

arrest was abrogated when either of these proteins were mutated in the presence of RAS mutations. Interestingly, OIS 

is not universal across all cell types. Oncogenic mutations in BRAF will cause OIS, but this cannot be abrogated by P16 

mutations, unlike in the case of RAS-mutant OIS (Michaloglou et al., 2005). OIS was termed a unique type of 

senescence induction from replicative senescence as concurrent expression of telomerase did not overcome RAS-

induced senescence (Wei, Wei and Sedivy, 1999). Senescent cells therefore play a key role in the prevention of cancer 

in vivo, and cancers must overcome the Hayflick limit to become immortalised.   
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1.4.3.3. Stress-induced senescence 
Another type of senescence-induction is defined as stress-induced senescence. As DNA damage accumulates with age 

and stress induced senescence typically involves the P53/P21WAF1 DNA damage response pathway, this type of 

senescence is thought to have significance in the context of ageing (Toussaint et al., 2002). ATM is a damage sensor 

proteins that recognise these shortened telomeres and recruits and activates proteins such as γH2AX and eventually 

the master regulator p53 (Burma et al., 2001; Herbig et al., 2004; Stiff et al., 2004). P53 will then induce cell cycle 

arrest through upregulation of Cyclin-dependent kinase inhibitors (CDKIs) such as p21Waf1. If the damage is too severe 

or irreparable, the prolonged cell cycle arrest and p21Waf1 signalling induces further expression of other cell cycle 

regulators such as p16Ink4a and pRb to strengthen the non-proliferative phenotype, modulate chromatin organisation, 

gene expression, and induce senescence (Collins and Sedivy, 2003; Narita et al., 2003; Rodriguez and Meuth, 2006). 

Senescence can also be induced through autonomous production of stressors. ROS is also a side effect of mitochondrial 

metabolism for example, and with age mitochondria become dysfunctional and their reduced efficiency exacerbates 

the ROS production seen, also inducing senescence through the DDR (Chance, Sies and Boveris, 1979; Bulua et al., 

2011). Finally, exposure to exogenous sources of DNA-damaging agents such as doxorubicin, H2O2, bleomycin and 

exposure to ionising radiation (IR) have all been shown to activate this same pathway (Chen et al., 1998; Suzuki et al., 

2001; Aoshiba, Tsuji and Nagai, 2003; Sliwinska et al., 2009). An added complication is that both telomere shortening 

and oncogene activation can induce the DNA damage response, and as such the mechanisms of senescence induction 

are not necessarily mutually exclusive (d’Adda di Fagagna et al., 2003a). Despite this, the phenotype that results from 

different induction methods can vary (L. A. Maciel-Barón et al., 2016). An added layer of complexity is that senescence 

is not the only possible phenotype that can result from the DDR (Childs et al., 2014). As well as senescence, the DDR 

can alternatively cause quiescence and repair DNA damage, as well as programmed cell death. Contributing factors to 

the cell fate choice include the type and extent of the DNA damage, as well as a specific cell type’s DNA repair 

machinery. The addition of Doxorubicin to breast cancer cells for example can induce senescence or apoptosis 

depending on the applied dose, yet the addition of the DNA-damaging agent Bulsulfan to WI38 fibroblasts will only 

induce senescence regardless of dose (Song, Lee and Hwang, 2005; Probin et al., 2006). P53 up-regulation can increase 

expression of pro-apoptotic genes, leading to cytochrome C release from mitochondria and the caspase cascade to 

trigger programmed cell death (Zou et al., 1999; Vakifahmetoglu et al., 2006). However, p53 can also interact with 

FOXO4, stay in the nucleus and instead cause senescence (Baar et al., 2017). Normally, low dose gamma-irradiation 

(γ-IR) can induce a transient cell-cycle arrest via low activation of p53, but blocking p53 degradation through MDM2 

inhibition via Nutlin-3 causes the same treatment in the same cell type to instead become senescent (Purvis et al., 

2012). Therefore, careful consideration into the context that one is examining senescence is an important 

consideration when studying these cells. 
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1.5. Physiological senescence 
Though senescence is a hallmark of ageing, it clearly has evolved and been selected for to have physiological roles 

alongside other stress responses like apoptosis (Childs et al., 2014). The first role identified for in vivo senescent cells, 

as already eluded to, is to prevent the onset of tumorigenesis. Senescent cells are non-proliferative, and the senescent 

program can be induced by oncogenic mutations like RAS and BRAF, as well as loss of function mutations in tumour 

suppressor genes like PTEN (M Serrano et al., 1997; Chen et al., 2005; Michaloglou et al., 2005). Mice with mutated 

forms of key senescence proteins P16, P53, and P21 all are more susceptible to tumours than their wild type siblings, 

albeit to differing degrees (Jacks et al., 1994; Serrano et al., 1996; Martín-Caballero et al., 2001). Additionally, mice 

with an extra copy of P53 or P16 were resistant to tumorigenesis (García-Cao et al., 2002; Matheu et al., 2004). Further, 

induction of senescence in tumour cells is thought to limit their pathology (Ventura et al., 2007; Xue et al., 2007). 

Though in lymphomas, the reintroduction of p53 led to apoptosis-based tumour regression, cellular senescence was 

identified in sarcomas by showing suppression of tumour growth and increases in P16 and SA-β-Gal activity (Ventura 

et al., 2007). Murine liver tumours did not show increases in apoptotic markers such as TUNEL and caspase 3 upon 

p53 reactivation, but instead showed strong P16 expression and SA-β-Gal activity (Xue et al., 2007). Further, increases 

in chemokine expression and leukocyte infiltration was seen, which could be attributed to a SASP from the induced 

senescent cells, but this was not directly shown in this study. This would demonstrate the unique advantages of 

senescence over apoptosis in tumour clearance, as senescent cells can lead to more prolonged paracrine signalling to 

phagocytes in a non-autonomous fashion (Kang et al., 2011b). Only an oncogenic form of RAS able to signal 

downstream was able to induce senescence when injected into mouse liver tumours, and here there was rapid 

infiltration of multiple immune cell types and a decline in RAS-positive cells without detectable changes in TUNEL 

staining. Immuno-deficient mice also showed senescence induction following RAS injection, but were not able to clear 

the premalignant cells and tumour modules were later identified on the immune-deficient mouse livers. This effect 

was also seen in CD4 mutant mice, implicating CD4 positive T cells as central to the senescent cell-mediated immune 

surveillance. Both the removal of the senescence program increases in vivo tumour susceptibility and the reactivation 

of senescence reduces tumour progression, providing strong evidence that it is an anti-tumour mechanism.  

The clear inflammatory nature of the SASP and evidence of immune surveillance of senescent cells prompted the idea 

that senescent cells may also play a role in other immune-mediated physiological functions such as wound healing and 

tissue regeneration (Demaria et al., 2014). Cells expressing the senescence marker P16INK4a were identified at the site 

of cutaneous wounds in mice skin, and removal of these cells delayed the amount of time it took for the wound to 

heal and increased fibrotic collagen deposits were seen (Demaria et al., 2014). PDGF-AA was secreted by senescent 

cells induced in response to tissue injury to promote myofibroblast differentiation and help with tissue remodelling 

required for effective tissue repair. In another study, when mice deficient in P21Waf1 and P16Ink4a experienced acute 

liver injuries, additional fibrosis was observed, indicating incomplete tissue repair (Krizhanovsky et al., 2008). Whereas, 

mice with unhindered senescence pathways exhibit cells that became senescent in response to injury, promote 

immune clearance, and showed improved tissue repair with less fibrosis. Likewise, in a cutaneous wound-healing 

model, myofibroblasts became senescent, which was thought to assist clearance of the extracellular matrix, and limit 

fibrosis (Jun and Lau, 2010). As it seemed that natural killer T cells (CD4+) were important in clearing senescent cells 
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in the context of cancer, studies explored whether there was a mechanism for this interaction in the context of wound 

healing (Kang et al., 2011b). Though senescent cells were not directly examined, ligands for a natural killer T cell 

receptor, NKG2D, is expressed in cells with an activated DNA damage response pathway (Gasser et al., 2005). More 

recently, fibroblasts induced into replicative senescence up-regulated ligands to the NKG2D receptor and was 

dependent on the DNA damage response (Sagiv et al., 2016). In a liver fibrosis model, mice without the NKG2D 

receptor showed increased fibrosis and the accumulation of senescent cells was worsened. 

Though it is less described, senescent markers seem to be present in the context of development (Muñoz-Espín et al., 

2013; Storer, Mas, Robert-moreno, et al., 2013). There are periods of tissue remodelling during development that 

involve programmed cell death and immune clearance (Sulston et al., 1983; Zou and Niswander, 1996; Kierdorf et al., 

2013). Macrophages are innate immune cells that are involved in surveying tissues during development to assist in 

tissue remodelling (McKercher et al., 1996; Kierdorf et al., 2013). There were fewer macrophages present during 

development in a P21Waf1-null mice, these were lacking in senescent cells, suggesting a potential role in development 

also (Muñoz-Espín et al., 2013). Interestingly, P53-null mice did not have this effect, p21 and SA-β-Gal activity was still 

detected and macrophages were present, suggesting that this type of senescence did not involve the central DNA 

damage response protein P53. Senescent cells were further identified during the development of the placenta 

(Rajagopalan and Long, 2012). Senescence activation in Natural Killer cells were identified nearby an explanted 

placenta, these cells was required to promote vascular remodelling during early pregnancy. Similarly, SASP expressing 

senescent cells were identified in mammalian embryos and seemed to be controlled by P21 and not P16 (Storer, Mas, 

Robert-moreno, et al., 2013). Growth factor signalling through p-ERK induced senescence in this context and they were 

surrounded by infiltrating macrophages, suggesting a possible role in immune clearance here also. These examples 

are the first time that senescence has been implicated during normal development without the context of stress or 

disease. 

The three seemingly diverse contexts involving senescence demonstrates the complexity of the phenotype. It is vital 

that one appreciates these physiological roles to understand the mechanism linking senescent cells with age-

associated pathology. For example, in all three examples there is a strong association with the immune system and 

inflammation, a system known to have clear age-dependent loss in functions as mentioned (Solana et al., 2012). 
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1.6.1. Pathological senescence: accumulation with age 
Senescence is a clear and central hallmark of ageing (López-Otín et al., 2013). The dominant theory about why these 

cells become pathological with age is the fact that they accumulate over time (van Deursen, 2014). The first evidence 

of this in humans was that increased SA-β-Gal activity was identified in older people (Goberdhan P. Dimri et al., 1995). 

Further, in the skin and brain of aged primates there was an increase in multiple senescence markers such as SA-β-Gal 

activity, P16, P21, IL6 and γH2AX (Martin and Buckwalter, 2002; Herbig et al., 2006a; Jeyapalan et al., 2007; Bhat et 

al., 2012; Kang et al., 2015). Importantly, senescent cells also accumulate and correlate even further in the tissues of 

age-associated diseases such as Alzheimer’s Disease (AD), Ideopathic Pulmonary Fibrosis (IPF) and Osteoarthritis (OA) 

in humans (Jeon et al., 2017b; Schafer et al., 2017; Bussian et al., 2018). This compliments evidence from a whole host 

of other disease models in mice including Atherosclerosis and Parkinson’s Disease (Childs et al., 2016; Chinta, Woods, 

Demaria, Rane, et al., 2018). The exact reasons as to why senescent cells accumulate with age are not completely 

understood, however several proposals have been established. One is that more senescent cells are produced in an 

aged context. If the ‘somatic theory of ageing’ holds true, then it would make sense that more senescent cells are seen 

with age due to increases in the amount of intrinsic and extrinsic genotoxic damage that cells are confronted with 

(Szilard, 1959; Moskalev et al., 2013). Alongside this, over time cells will have gone through more rounds of cell 

division, increasing the likelihood for telomeres to be critically shortened and replicative senescence to be induced in 

an older individual (Calvin B Harley, Futcher and Greider, 1990; d’Adda di Fagagna et al., 2003a). A complimentary age-

dependent change that could contribute to senescence accumulation over time is alterations in the DNA damage 

response machinery. For example, the stability of P53 is lessened with age (Feng et al., 2007). This could mean that 

the same genotoxic stress that would induce apoptosis in a younger cell can instead induce senescence in an aged 

context. DNA repair machinery itself changes with age, more DNA lesions are observed following H2O2 induced 

genotoxic stress of senescent fibroblasts compared to younger counterparts (Seluanov et al., 2001). The ability for 

cells to repair UV-induced DNA damage decreased with donor age also (Wei et al., 1993; Moriwaki et al., 1996). 

Importantly, evidence has not directly shown that changes in DNA repair mechanisms or p53 stability are more likely 

to induce senescent cell accumulation. Alongside the idea that an older individual is more likely to be exposed to 

senescence-inducing stimuli and produce more senescent cells, there is an age-dependent decline in immune cell 

function that may be a driver for age-dependent senescent cell accumulation (Solana, Alonso and Peña, 1999; Solana 

and Mariani, 2000; Solana et al., 2012; Antonangeli et al., 2016b; Sagiv et al., 2016). Although senescent cell markers 

remain for longer in the absence of immune cells, such as in the CD4 knockout mouse, direct interactions between 

these two cell types, such as real time phagocytosis of a senescent cell, have not yet been described (Kang et al., 

2011b). In reality, a combination of the aforementioned theories probably play a part in age-dependent senescent cell 

accumulation in a positive feedback loop. More senescent cells with age means more SASP, which could lead to a more 

chronic inflammatory microenvironment that further induces more genotoxic stress, inducing more senescence 

(Shelton et al., 1999; Nelson et al., 2012a). If they are not cleared well that could induce more bystander senescence 

in surrounding cells and tissues (da Silva et al., 2019). Up until a few years ago, the evidence linking senescent cells 

and ageing was correlative, but now evidence suggests that these cells are causal to multiple age-associated 

pathologies. 
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1.6.2. Senescence is causal to age-associated pathology 
The first causal link between senescence and ageing phenotypes surfaced through a transgenic mouse model that 

utilized the promoter of the senescence marker p16Ink4a as a driver for an inducible caspase 3 and 7-based cell death 

(Baker et al., 2011). This allowed specific ablation of these cells in the presence of an inducer drug. These mice were 

bred with a progeric mouse, which displayed age-related disease much earlier in development due to BubR1-based 

DNA repair deficiency. Once p16Ink4a -expressing cells were ablated in these mice, a significant delay in age-related 

diseases such as sarcopenia and cataracts was demonstrated, though lifespan was unaffected. Effects were seen in 

mice treated with the drug from weaning, meaning life-long p16Ink4a ablation, as well as those treated from adulthood. 

As this was a progeric mouse with DNA repair deficiencies, it was not known whether this effect was translatable to a 

wild-type ageing context. To answer this, the p16Ink4a ablation system was then used in a wild-type strain mice (Baker 

et al., 2016). These mice were treated from 12 months of age, and therefore already presented with some senescence, 

making the results more clinically relevant to the way in which patients are treated after symptom onset. The effect 

of this treatment was a 17-35% increased median lifespan, depending on the strain and sex of the animal. The onset 

of cancer and cataracts, which are both well-documented age-related disorders was reduced, and improvements in 

movement and exploratory behaviours were seen, suggesting healthspan improvements also. This research confirmed 

that senescent cell accumulation not only correlates with ageing, but that this phenomena is directly involved in the 

onset of age-associated pathologies that limit lifespan and healthspan. 

Since then, causal evidence linking senescence and age-associated pathologies have been shown within the contexts 

of multiple different disease models in mice. Bleomycin-treated mice show lung injury and can be used to model lung 

damage seen in the age-associated disorder idiopathic pulmonary fibrosis in humans (Schafer et al., 2017). Genetic 

ablation of senescent cells reduced inflammation and improved exercise capacity and running ability. Improvements 

in disease pathology and whole organism health are also seen in models of the age-associated bone diseases 

osteoporosis and osteoarthritis (Farr et al., 2017; Jeon et al., 2017). Reduced cartilage thickness and joint health are 

causal to osteoarthritis onset, an age-associated pathology common in older people with no treatment available 

(Loeser, 2017). The histopathology seen in the cartilage, detected by the commonly used OARSI scoring system was 

improved and markers of inflammation reduced in a spontaneous age-dependent mouse model of osteoarthritis. 

Joint-injury, alongside ageing, is another risk factor for osteoarthritis development, senescence removal in a model for 

post-traumatic osteoarthritis also showed clear improvements in bone health. Age-related bone loss is causal to 

osteoporosis development (Sozen, Ozisik and Calik Basaran, 2017). Removal of senescent cells in adult mice at 20-

months old improved multiple measures of bone thickness, such as spinal bone volume over trabecular volume 

(BV/TV) (Farr et al., 2017). Senescent cells are also causal to the pathology of the age-associated neurodegenerative 

disorders, Alzheimer’s Disease and Parkinson’s Disease (Bussian et al., 2018; Chinta, Woods, Demaria, Rane, et al., 

2018). Paraquat is associated with increased risk of idiopathic Parkinson’s Disease and Paraquat-treated mice show 

neuronal loss, loss of motor function and reduced neurogenesis, all features that are common with Parkinson’s Disease 

(Chinta, Woods, Demaria, Rane, et al., 2018). Paraquat treatment up-regulated markers of senescence, and when 

senescent cells were cleared from these mice via genetic ablation of p16-positive cells, improvements in all of these 

areas were seen. When assessing for a potential mechanism linking senescent cell accumulation and Parkinson’s 
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pathology, conditioned media from senescent cells had detrimental effects on neurons suggesting the SASP as a driver 

for this pathology. Similarly, hippocampal expression of markers of inflammation and senescence were improved in a 

tau-dependent neurodegenerative mouse that models Alzheimer’s (Bussian et al., 2018). Importantly, this was 

associated with improvements in markers of cognition, such as their ability to discriminate between new objects and 

those that the mouse has already come across. These examples highlight where senescence is a common cause to a 

number of age-related phenotypes and disorders.  

In the context of atherosclerosis and cancer, senescent cells have been shown to have both a causal and preventative 

role in their pathology. Low-density lipoprotein receptor–deficient (ldlr) mutant mice show atherosclerotic plaques in 

the aorta when fed on a high fat diet (Childs et al., 2016). Senescent cells were identified in the atherosclerotic lesions 

in mice and their removal reduced inflammation, lipid accumulation and plaque numbers. Conversely however, loss-

of function mutations in the senescence-associated P16 locus, CDKN2A, correlated with an increased risk of 

atherosclerosis development, this was suggested to act as a limiting factor on macrophage foam cell proliferation and 

as such, would limit the size of atherosclerotic plaques when functioning normally (Gizard et al., 2005; Kuo et al., 

2011). As mentioned, senescent cells are non-proliferative and a clear anti-cancer mechanism (Serrano et al., 1997). 

However, a more recent study showed that women with breast cancer that had higher markers of senescence in their 

blood were more likely to experience chemotherapy-induced side effects (Demaria et al., 2017). Further, removing 

senescent cells actually abrogated the adverse effects of chemotherapy such as cardiac dysfunction, reduced the 

likelihood of cancer relapse, metastasis and improved physical functions of mice. A complimentary study also showed 

that the removal of senescent cells was able to reduce the amount of kidney damage seen in response to doxorubicin 

treatment (Baar et al., 2017). These two examples show how senescent cells are an example of the antagonistic 

pleiotropy theory, where they are useful in one context but detrimental in another (Williams, 1957). This further 

emphasises the complexity of senescent cells and the care required to develop drugs that ideally only stop the 

detrimental effects seen from senescent cells and not cause side effects from removing the beneficial effects of these 

cells. Regardless, mounting evidence suggests that clearance of senescent cells is a viable therapeutic option for the 

treatment of multiple age-associated disorders and healthspan extension in humans. 

1.6.3. Pharmacological targeting of senescent cells to treat age-associated diseases. 
Now that there is causal evidence linking senescent cell accumulation and multiple age-associated pathologies, it is 

important to assess the theoretical potential of senescent cells to be a viable pharmacological target to treat age-

associated multimorbidity (Scudellari, 2017). Firstly, having few senescent cells should not induce significant side 

effects because in the context of youth there are very few senescent cells without their being obvious consequences 

(Biran et al., 2017a). In young mice for example there is only around 1% senescence, compared to up to 20% in older 

mice, and these are healthier than their older counterparts. Secondly, the pathology associated with senescent cells 

in the aged context could theoretically be reduced without having to clear all senescent cells. Unlike in the context of 

cancer or infection, a senescent cell remaining after treatment will not expand rapidly and become resistant to 

treatment, as they are non-proliferative (Kobayashi et al., 2005; Shah et al., 2007). It is thought that the accumulation 

of many senescent cells that is the issue rather than individual cells themselves, meaning lower compound doses may 
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be required and further improve the therapeutic index. Thirdly, senescent cells take time to accumulate, almost a 

whole lifetime, and so one would expect that once senescent cells are removed pharmacologically then it would take 

time for a patient to require treatment again (Herbig et al., 2006a). Intermittent treatment would likely cause fewer 

off-target toxicities compared to constant treatment. Fourthly, senescent cells are linked with multiple hallmarks of 

ageing and have been identified in numerous age-associated diseases; if a treatment could effectively be used 

systemically without toxicity, it could potentially directly target age-associated multimorbidity and overcome issues of 

polypharmacy (Doan et al., 2013). Of course, there are likely caveats to this, and huge amounts of research are 

required to test whether these theories are true, but initial data around pharmacologically altering senescent cells as 

a treatment against age-associated diseases are promising. 

 

Whilst evidence continues to emerge causally linking senescent cells with age-associated disease, efforts to identify 

compounds that can phenocopy the positive effects seen from genetic-based senescent cell clearance are well under 

way (McHugh and Gil, 2018). One approach to reduce the negative effects of age-associated senescence is to reduce 

the inflammatory SASP, these types of compounds are called ‘Senostatics’. A screen identified inhibition of PTBP1 as 

an approach to limit the SASP and block the tumour-promoting functions of senescence (Georgilis et al., 2018). 

Additionally, the JAK/STAT pathway is important in cytokine production, and the JAK1/2 inhibitor ruxolitinib was able 

to reduce the age-related bone loss seen in mice that is associated with osteoporosis (Xu et al., 2015; Farr et al., 2017). 

Rapamycin has also been implicated as a potential senostatic through limiting mTOR signalling known to regulate the 

SASP (Laberge et al., 2015; Wang et al., 2017). Similarly, Metformin can inhibit the SASP by interfering with NF-κB 

signalling (Moiseeva et al., 2013). Both Rapamycin and Metformin are known to extend lifespan and healthspan of 

model organisms, though whether these effects are directly due to SASP-inhibition is not known (Harrison et al., 2009; 

Martin-Montalvo et al., 2013; Bitto et al., 2016; Correia-Melo et al., 2019). Though this approach has some merit, a 

caveat is that in this context the senescent cells themselves will still be present, so it is possible that once the SASP-

inhibiting drug has been metabolised then the SASP could be reactivated. If this were the case then patients would 

need to be on lifelong treatment, which is less favourable than acute treatment regimes. A further proposed method 

for targeting senescent cells is to boost their clearance by the immune system, in a comparable manner to the method 

described that won James Allison and Tasuko Honjo the 2018 Nobel Prize in Physiology and Medicine by reactivating 

T cell killing of cancer cells (Hodi et al., 2013). For this to become a viable option, much more work into defining the 

mechanisms and characteristics of immune-mediated senescent cell clearance and deciphering whether reduced 

immune function is causal to senescent cell accumulation with age. One further proposed means of reducing senescent 

cell burden is promoting DNA repair to actually stop or reverse the senescent cell onset, which in theory would be less 

reliant on healthy progenitors to replenish the tissue like with senolytics (Bernardes De Jesus et al., 2012). A concern 

with this approach is whether the cells who have reversed out of senescence are actually cancerous, or at least more 

susceptible to cancer than healthy counterparts. Indeed, re-activation of tert was shown to promote prostate cancer 

progression (Ding et al., 2012). Conversely, a viral vector that reintroduces telomerase was given to adult mice and 

delayed ageing in multiple tissues, extending lifespan as a result without increasing the incidence of cancer (Bernardes 
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de Jesus et al., 2012). One explanation for this contradiction is because the viral vector does not affect the genome 

and will be diluted out of cells as they proliferate, making them distinct from the telomerase activation seen in cancers. 

More recently, the same vector was used in a mouse model of lung fibrosis and showed reduced senescence, 

inflammation and lung fibrosis (Povedano et al., 2018). This approach also shows promise but more evidence to ensure 

that the physiological role of senescence as an anti-cancer mechanism is not implicated. Particularly as this approach 

does not remove cells that were originally stressed enough to become senescent. Additionally, the evidence does not 

distinguish currently whether this approach can reverse cells that are already senescent, or prevent more from 

become senescent later, which has important implications in terms of translating to a therapy in humans. 

 

The most popular approach is through targeting the mechanisms that senescent cells use to resist cell death to 

selectively kill them, in a process called senolysis (Kirkland et al., 2017) (Table 1.1.). Theoretically, senescent cells 

should rely on these pathways more than non-stressed cells, in an analogous way that cancers with BRCA mutations 

are more susceptible to PARP inhibitors due to compromised DNA repair mechanisms (Bryant et al., 2005). The main 

limitation of this approach is that the exact mechanisms for cell death resistance are not well understood and seem 

to be variable (Sasaki et al., 2001; Zhu et al., 2016). This means that their efficacy is contextually dependent and their 

therapeutic window, the dose that can kill senescent cells without damaging control cells, is small and can depend on 

the cell type and induction stimulus (Zhu et al., 2016; Baar et al., 2017). Despite this, senolytics have indeed shown 

significant in vivo efficacy in the context of multiple age-associated pathologies. Unlike the aforementioned 

approaches, direct removal of senescent cells should have long lasting effects as it takes a long time for senescence to 

be accumulated (Herbig et al., 2006). Indeed, one dose of a senolytic had long lasting physical improvements in a 

mouse model of transplanted senescent cells (Xu et al., 2018). Currently though, this theory has not been evidenced 

in a wild-type aged mouse.  

The first identified and most successful senolytic currently is the combination of Dasatinib and Quercetin (Zhu et al., 

2015). Quercetin inhibits PI3K signalling and Dasatinib acts on the dependence receptor EFNB, both of which are 

involved in preventing apoptosis, in combination they are able to selectively reduce the viability of senescent cells 

induced by irradiation or serial passaging. The drug combination has since shown efficacy in models of multiple age-

associated diseases including Atherosclerosis, Osteoporosis and Ideopathic Pulmonary Fibrosis (Roos et al., 2016; Farr 

et al., 2017; Schafer et al., 2017). A phase one clinical trial has also been carried out testing the use of Dasatinib & 

Quercetin in the context of human Ideopathic Pulmonary Fibrosis (Justice et al., 2019). Though this was only a three-

week treatment regime tested in 16 patients, clinically relevant improvements in pulmonary and physical function 

were observed. For example, the distance walked in 6 minutes, improved from 447 (SD 83) to 468 (SD 81), a 4.5% 

improvement. This is the first time that a senolytic has shown efficacy in human disease. As it is only a phase one 

clinical trial, larger studies are required to determine their reliability. It would also be important to see whether the 

improvements in health status described in the IPF study such as 6-minute walking distance are classified relative to 

IPF severity and associated side effects from the treatment. Additionally, lung biopsies to show that in humans, oral 

Dasatinib and Quercetin treatment both reduces senescence and senescence-associated inflammation are vital to 
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determine the mechanism of action for these health improvements are truly due to senescence ablation. More 

recently, another clinical trial showed that Dasatinib was able to reduce the SASP in Systemic Sclerosis (SSc) patients 

(Martyanov, Whitfield and Varga, 2019). Interestingly, those who showed improvements in the modified Rodnan skin 

thickness score, a validated measure of SSc disease outcome, showed a much greater reduction in SASP factors 

compared to non-improvers (Clements et al., 1995). This further implicates the SASP in human disease pathology. In 

the context of diabetic kidney disease, Dasatinib & Quercetin was able to reduce SASP markers such as IL1a, IL6, 

MMP9, MMP12 in peripheral blood, and markers of senescence such as P21, P16, and SA-β-Gal in skin and adipose 

tissue, as well as reduced macrophage infiltration (Hickson et al., 2019). This directly evidenced that these drugs 

actually reduce senescence markers in humans. An important limitation to these clinical trials is that they were all one-

armed studies, this means that differences were seen before and after treatment, but a placebo control was not used. 

This means that the placebo effect cannot be ruled out as a contributing factor to these trials, where patients get more 

time and attention from medical professionals that could contribute to better outcomes (Thompson, Ritenbaugh and 

Nichter, 2009). There are limitations to these drugs also; they are not effective in certain cell types such as endothelial 

cells (Zhu et al., 2015; Hwang et al., 2018). Further, Dasatinib & Quercetin are much less effective at treating senescent 

cells induced by doxorubicin compared to irradiation (Baar et al., 2017). Dasatinib is used as a chemotherapeutic agent 

against leukaemia and has common side effects associated such as low blood counts and increased risk to infection 

(Futosi et al., 2012; Zarbock, 2012).  

Fisetin, like Quercetin, is a flavonoid that shows senolytic potential (Yousefzadeh et al., 2018). Unlike Quercetin, its 

effects are seen without another drug in combination, it improved liver and pancreatic homeostasis and reduce 

markers of pathology in brain and kidney of progeric and wild type aged mice. Though no physiological improvements 

in healthspan were examined outside of histopathology, median and maximum lifespan were extended even when 

the treatment was given at later life. The senolytic mechanism of action for Fisetin is thought to involve caspase 3-

mediated apoptosis of senescent cells, via the PI3K/AKT/NF-κB and ERK1/2 pathways (Kim et al., 2015; Zhang and Jia, 

2016). The effect on NF-κB would also potentially have a senostatic effect, though it has been proposed that senostatic 

treatment may have a net senolytic effect due to the limiting effects on bystander senescence (Chien et al., 2011; da 

Silva et al., 2019). Additionally, it is worth noting that flavonoids such as Quercetin and Fisetin are known to have 

multiple mechanisms of action that could contribute to in vivo healthspan extension outside of senescence, such as 

alterations in the gut microbiota (Kawabata et al., 2013). An important limitation of both flavonoids in the context of 

age-associated multimorbidity is that they interact with the family of enzymes typically used to metabolise drugs in 

the liver, cytochrome p450, which limits their use in the elderly who are taking other common medications that also 

interact with the same enzyme (Doan et al., 2013; Lee et al., 2014; Elbarbry, Ung and Abdelkawy, 2017).  

 

 

 



31 
 

UNITY biotechnology is the first company with the sole focus of developing senolytics to target age-associated 

pathologies (UNITY Biotechnology, 2019). Their first drug being developed is a p53/MDM2 interaction inhibitor called 

UBX0101, which has shown efficacy in an osteoarthritis mouse model (Jeon et al., 2017). In principle, inhibiting the 

negative regulator of p53 should cause cell death in senescent cells that are present in the joints of patients with 

osteoarthritis (Price et al., 2002). Indeed, UNITY published initial results from a phase one clinical trial treating 

osteoarthritic knees with UBX0101 and showed some reduction in pain scoring at the highest dose, which was 

tolerated well (Spark, 2019; NCT03513016). However, in the second part of this study, the commonly used scoring for 

osteoarthritis severity, The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), did not show 

large improvements, nor in the level of inflammation in the synovial fluid. A possible reason for this is that the trial 

only included patients between 40 and 85 years of age, and so could have included late-stage disease patients. 

Moreover, the effect of this drug on late-stage osteoarthritic mice was less pronounced than life-long treatment of 

the drug for post-traumatic osteoarthritis (Jeon et al., 2017). 

Navitoclax (ABT-263) is another senolytic that instead induces cell death by acting against anti-apoptotic proteins BCL-

2, BCL-XL and BCL-W (Zhu et al., 2016). Mutant mice with tau pathology and cognitive decline that is comparable with 

Alzheimer’s disease showed senescence clearance and reduced tau phosphorylation in the presence of Navitoclax, but 

functional effects on cognitive function were not examined (Bussian et al., 2018). Similarly, myocardial infarctions are 

known to accelerate the age-associated disease atherosclerosis (Dutta et al., 2012). Removal of senescent cells were 

able to improve survival and recovery following a heart attack in mice (Walaszczyk et al., 2019). ABT-263 was originally 

identified to have efficacy against cancer cells that overexpress BCL2 proteins (Tse et al., 2008), but clinical trials using 

ABT-263 to treat leukaemia’s and lymphomas (NCT00406809), and lung cancer (NCT00445198) showed limited 

efficacy and significant side effects such as thrombocytopenia. It is not clear whether the efficacy of this drug is due 

to directly targeting cancer cells expressing BCL2 or by removing tumour promoting senescent cells in the surrounding 

niche, as both cell types can be targeted by ABT-263 (Wang et al., 2017). This does highlight ABT-263 as a potential 

adjuvant therapy option for chemotherapy drugs, as ABT-263 but interestingly not the combination of Dasatinib and 

Quercetin, were able to reduce cancer growth and metastasis induced by senescent cells produced from 

chemotherapy treatment (Wang et al., 2017; Kovacovicova et al., 2018). In other contexts, Dasatinib and Quercetin 

are more useful however; ABT-263 is not effective at targeting senescent human primary adipocytes for example (Zhu 

et al., 2016). 
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An in vitro screening approach identified the HSP90 inhibitor 17-DMAG (Fuhrmann-Stroissnigg et al., 2017). 

Phosphorylated Akt levels decreased in response to 17-DMAG, implicating a potential mechanism of action for the 

HSP90I on the cell-survival pathway. Progeric mice treated with 17-DMAG presented with reduced symptoms of age-

associated pathology such as grip strength and tremor, but more clinically relevant models and assessment of 

pathology are required before testing in humans. A peptide with senolytic efficacy was also identified that, rather than 

directly inhibiting proteins, inhibited the interaction between FOXO4 and p53 (Barr et al., 2017). This FOXO4-DRI 

peptide was able to reduce the amount of senescence seen in mice treated with doxorubicin, reducing inflammatory 

markers such as IL6 damage to the kidney and liver, implicating a potential role in combination with chemotoxic cancer 

therapies. Additionally, rapid-ageing mice treated with FOXO4-DRI showed multiple improvements in behaviour such 

as responsiveness and running distance on a wheel.  

In summary, multiple methods for killing senescent cells are now in development with varying levels of in vivo efficacy, 

but senolytics seem to be the most promising currently. Much work is still required to ensure they are a safe and 

effective treatment option for patients with multimorbidity as a means to extend healthspan. Less toxic drugs would 

likely be required as higher doses would be required for systemic treatment to have an efficacious dose in all required 

organ systems, passing the blood brain barrier effectively for example (Serwer et al., 2010). 

The progress on identifying causal links between senescence and age-associated disease and developing drugs to treat 

them has been extensive, however there are still important limitations in the field that prevent the use of senolytics 

as an effective treatment against multi-morbidity in older people. There is almost no evidence of senolytics being 

useful in improving the healthspan of older patients suffering from multiple age-associated diseases at the same time. 

This is the most important aspect of developing drugs against the mechanisms of ageing, as it has the potential to 

tackle the problems of polypharmacy seen in the elderly population that limits the efficacy of treating individual 

disease (Doan et al., 2013). UBX0101 treatment in humans presenting with osteoarthritis were only treated by local 

injection, and not systemic treatment for example (Spark, 2019). In comparison, Dasatinib and Quercetin were given 

by systemic oral treatment in patients with Ideopathic Pulmonary Fibrosis. (Justice et al., 2019) In this context, a 

serious adverse event involving bacterial pneumonia and pulmonary oedema, as well as 37 mild and 31 moderate non-

serious advents were described in the 16 patients treated over the short three-week period. However, the majority of 

these patients did also present with co-morbidities such as hypertension and depression, four of which had more than 

seven classified, and so the fact that a positive effect was seen in this context is indeed promising. Additionally, longer-

term side effects related to senescent cell removal, such as increased cancer incidence and impaired recovery from a 

wound have not yet been examined in these trials. These data are an encouraging start, but do highlight that more 

work is to be done to make these drugs safe and effective as their efficacy is limited and contextually dependent. 
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Table 1.1. List of senolytics that have shown in vivo efficacy in age-associated

pathologies.

Senolytic Mechanism Disease tested (species) Reference

Dasatinib 
(D) & 

Quercetin 
(Q)

PI3K, AKT (Q);
Dependence 
receptor (D) 

inhibitors

Cardiovascular  disease (mouse) Zhu et al., 2015

Atherosclerosis (mouse) Roos et al., 2016

Idiopathic Pulmonary Fibrosis (mouse & human) Schafer et al., 2017; 
Justice et al., 2019

Systemic Sclerosis (human) Martyanov et al., 2019

Diabetic kidney disease (mouse & human) Hickson et al., 2019

Osteoporosis (mouse) Farr et al., 2017

Hepatic stenosis (mouse) Ogrodnik et al., 2017

Cachexia (mouse) Zhu et al., 2015

UBX0101
MDM2/p53 
interaction 

inhibitor

Osteoarthritis (mouse & human) Jeon et al., 2017; 
Spark, 2019 
(NCT03513016)

Navitoclax
(ABT-263)

BCL2 inhibitor

Alzheimer’s Disease (mouse) Bussian et al., 2018

Atherosclerosis (mouse) Childs et al., 2016

Myocardial infarction (mouse) Dutta et al., 2012; 
Walaszczyk et al., 2019

Sarcopenia (mouse) Chang et al., 2016

Fisetin
PI3K, AKT, 

NFκB, ERK1/2 
inhibitor

Lifespan & age-related pathology (mouse) Yousefzadeh et al., 
2018

FOXO4-DRI
FOXO4/p53 
interaction 

inhibitor

Chemotherapy-induced toxicity (mouse) Barr et al., 2017

17-DMAG
HSP90 

inhibitor
Age-related pathology (progeric mouse) Fuhrmann-Stroissnigg

et al., 2017

 

Table 1. 1 List of senolytics that have shown in vivo efficacy in age-associated pathologies 
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It is clear that a deeper understanding of the senescence phenotype and the differences between senescent cells in 

different contexts is required to improve the therapeutic potential of this avenue of treatment. There is a need to 

accelerate the progress of senolytic development by screening for novel senolytic compounds in a whole organism 

context earlier in drug development. This allows for testing for changes in whole-organism health earlier. Long ageing 

mice experiments are inefficient and often show that previous in vitro work does not often translate as well into 

mammals, particularly in the context of an old animal with multiple age-associated diseases (Bellantuono & Potter, 

2016). A more in-depth characterisation of senescent cells in vivo to determine individual cell variability; with a tool 

to prospectively identify potentially senescent cells from a mixed cell population in vivo would strengthen the 

understanding of the limitations of current markers of senescence and their reliability at predicting senolytic efficacy. 

Additionally, an understanding about whether there are distinguishable features in vivo between senescent cells that 

are present in a beneficial context, as an anti-tumour mechanism or to promote wound healing for example, and 

senescent cells that are present in a detrimental context and causal to age-associated pathology. An in vivo model that 

can assess the paracrine interactions between senescence, the SASP, and the immune system would likely assist in 

this regard. Novel tools to assist and compliment already established models will most likely lead to these important 

advances and develop viable treatment regimens for improving the quality of life of our ageing population. 

 

1.7.1. The zebrafish as a model organism 
The danio rerio, or zebrafish, are a useful model organism that are not highly utilised currently in the context of 

senescence research. The first zebrafish clones were used to understanding in vivo vertebrate developmental biology 

(Streisinger et al., 1981). Zebrafish share 84% of known human disease-associated genes and 70% of human protein-

encoding genes (Howe et al., 2013). Their innate immune system for example, which is of clear importance in human 

ageing and senescence, show great conservation between the two species, despite diverging 450 million years ago 

during the Palaeozoic era (Kumar and Hedges, 1998). The model organism is advantageous due to rapid growth and 

development, optical transparency and the ability to genetically and pharmacologically manipulate zebrafish, making 

it a now extensively used system throughout a wide variety of disciplines, including those related to senescence and 

ageing (Murtha and Keller, 2003; Van houcke et al., 2015). 

 

Zebrafish have unique aspects as a model organism that make them useful to tackle current limitations in the 

senescence field. Firstly, unlike mammalian model systems, zebrafish are fertilised externally and translucent during 

early development (Poleo et al., 2001; Renshaw and Loynes, 2006). This, alongside their genetic malleability and 

sequenced genome, means that methods for studying organismal processes at the cellular level, live and in vivo are 

plausible in zebrafish (Renshaw et al., 2006). Developing transgenic fluorescent reporters for genes that are associated 

with certain cell types for example mean that those cell types can be visualised and imaged through fluorescent 

microscopy (Ellett et al., 2011). For example, the discovery of neutrophil and macrophage-specific promoters in 

zebrafish enabled the development of stable transgenic lines to drive the expression of fluorescent proteins in these 
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innate immune cells (Renshaw et al., 2006; Ellet et al., 2011). Live imaging of specific immune cell types was able to 

disseminate important evidence about the dynamics of the immune cell response and inflammation in response to 

tissue injury. This was able to be established by imaging transparent and transgenic fish, tracking individual cells within 

the same animal over time to elucidate novel components of immunity that were not feasible in mammalian systems 

(Mathias et al., 2008; Yoo and Huttenlocher, 2011). Further, mechanisms about how the immune system interacts 

with other cells to fight infection or survey pre-neoplastic cells have been possible due to the unique advantages of 

the zebrafish as a model organism (Feng et al., 2010; Prajsnar et al., 2012; Santhakumar et al., 2012; Elks et al., 2013; 

Thompson et al., 2014). These advantages could be translated into the context of senescence, whereby assessment of 

the temporal induction of senescent-associated genes, their reliability at detecting in vivo senescence, and whether 

immune cells directly interact with them could be possible in a more feasible manner than current mouse models 

(Baker et al., 2006; Demaria et al., 2014; Liu et al., 2019).  

 

Further, zebrafish are uniquely amenable to study the in vivo efficacy of drugs involved in complex multi-cellular 

processes because they are small, have high fecundity and develop rapidly (Meyers, 2018). For example, a drug for 

enhancing engraftment of blood transplants in leukemic patients was identified in a zebrafish-based screen, and has 

shown success in phase I and II clinical trials (North et al., 2007; Cutler et al., 2013). Novel compounds that regulate 

the resolution of inflammation have also been identified in zebrafish (Robertson et al., 2014). Tanshinone IIA can 

reduce the number of neutrophils present at the site of injury, highlighting it as a potential treatment for diseases of 

failed inflammation resolution such as chronic obstructive pulmonary disorder of the lung. Additionally, zebrafish have 

been used to carry out a compound screen to find novel methods to reduce convulsions as a treatment against epilepsy 

(Baxendale et al., 2012). Similarly, zebrafish mutants that phenocopied seizures seen in Dravet syndrome were 

screened to identify compounds that limited the convulsions (Griffin et al., 2017). Locaserin showed improvements in 

zebrafish and patients, skipping pre-clinical murine testing entirely. These types of screens can be scaled up to an 

almost comparable manner with in vitro screening (Wang, Rajpurohit, Delaspre, Walker, White, Ceasrine, Kuruvilla, 

R.-J. Li, et al., 2015). With automated quantitation, more than 500,000 zebrafish larvae were screened to identify novel 

compounds that increase the number of insulin-producing β cells in the pancreas, as a potential treatment for diabetes 

(Wang, Rajpurohit, Delaspre, Walker, White, Ceasrine, Kuruvilla, R.-J. Li, et al., 2015). These together emphasise the 

unique potential of zebrafish to identify novel modulators of senescence in an in vivo context earlier in the drug 

development process. This should help overcome the toxicity issues seen in senolytics currently, whereby only those 

screened to show direct improvements in whole organism health and with limited off-target toxicity would be taken 

into preclinical trials. These types of assessment are not feasible in current in vitro screening approaches, and are 

timely and costly to do in aged mouse studies (Zhu et al., 2015; Zhu et al., 2016; Fuhrmann-Stroissnigg et al., 2017). 

Currently though, there are no transgenic reporters for senescence that could identify senescent cells in vivo. 
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1.7.2. Zebrafish as a model of senescence 
Though zebrafish senescence has not been as extensively studied as mammalian systems, almost all of the hallmarks 

of ageing that have strong associations with senescence are described in zebrafish (Figure 1.1) (López-Otín et al., 2013; 

Van houcke et al., 2015). As is seen in mammals, zebrafish cells exposed to an external genotoxic stressor will up-

regulate markers of the DNA damage response and senescence including p53 and p21 (Sandrini et al., 2009). In terms 

of epigenetic regulation, evidence of age-dependent decline in methylation with age in zebrafish has been described 

(Shimoda et al., 2014). Though direct evidence for specific methylation marks identified as regulators of senescence-

associated genes such as H3K27me3 were not studied, the hypomethylation described was located predominantly in 

CpG islands that are a common site of age-dependent hypomethylation in mammals. Further, older zebrafish 

demonstrate signs of reduced proteostasis, with increased protein oxidation in muscle with age and a decrease in the 

prevalence of heat shock protein 70 (Gerhard et al., 2002; Kishi et al., 2003; Murtha and Keller, 2003). Lipofuscin 

accumulation has been described as a potential marker of senescence, it accumulates with age and demonstrates a 

loss in protein quality control as it indicates aggregates of oxidised material (Georgakopoulou et al., 2013). Lipofuscin 

accumulation has also been described with age in zebrafish (Ruhl et al., 2015). Nutrient sensing can regulate 

senescence phenotypes in zebrafish also. For example deficiencies in the nutrient folate is associated with Alzheimer’s 

disease in older humans, a disease causally linked with senescence (Kao et al., 2014; Bussian et al., 2018). When 

zebrafish are deficient in this nutrient, phosphorylated tau and β-amyloid protein deposits, a marker of Alzheimer’s-

like pathology, were also seen in their brains. Additionally, altered growth hormone signalling leads to accelerated 

ageing phenotypes such as spinal curvature and reduces anti-oxidative enzymes; it is plausible that this compromise 

could induce senescence via excess reactive oxygen species (ROS) availability (Rosa et al., 2010). An important 

producer of ROS and senescence induction is through mitochondrial dysfunction, which is increased with age in 

zebrafish (Almaida-Pagán, Lucas-Sánchez and Tocher, 2014; Ruhl et al., 2015). Zebrafish mitochondrial DNA shows a 

high similarity to that seen in humans, as seen on GenBank (Accession AC024175). Imbalanced mitochondrial fission 

and fusion, decreased autophagy and mitophagy and increased inflammation was described in the aged zebrafish 

retina, indicating abnormal intracellular signalling, protein regulation and mitochondrial dysfunction (Wang et al., 

2019). As is described in mammals, telomeres shorten and telomerase expression is decreased in zebrafish with age 

(Anchelin et al., 2011; Carneiro, Castro and Ferreira, 2016). Further, when telomerase was mutated and non-functional 

in zebrafish, it caused earlier telomere attrition and as a result, earlier senescence accumulation and ageing 

phenotypes (Henriques et al., 2013).  

As well as the fact that many of the senescence-regulating pathways are common to zebrafish, senescent cells 

themselves have been described and are associated with ageing in this model organism. For example, the senescence 

marker SA-β-Galactosidase showed higher activity in aged zebrafish (Kishi et al., 2003). Additionally, young zebrafish 

harbouring Lamin A (LMNA) mutations, which are known to cause human progeria, increased the expression of p21 

and SA-β-Gal (Koshimizu et al., 2011). Random mutation of the zebrafish genome via retrovirus-insertion identified 

mutants that caused earlier senescence accumulation and ageing phenotypes (Kishi et al., 2008). One of these mutants 

harboured a mutation in the homologue of the human telomeric repeat binding factor 2 (terf2) gene, known to 

regulate telomere length. Senescence plays a protective role against cancer in mammals and mutations in the 
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senescence pathway, particularly P53 and P16INK4A are known to induce tumour sensitivity (Jacks et al., 1994; Serrano 

et al., 1996). Similarly, zebrafish homozygous mutants for tp53 show increased tumorigenesis (Berghmans et al., 2005).  

These mutants were unable to up-regulate p21; suggesting senescence is protective against immortalisation in 

zebrafish as is seen in humans. Additionally, a CRISPR against the zebrafish P16 orthologue was able to induce 

oncogenesis in zebrafish (Ablain et al., 2018). With age zebrafish show declining ability to regenerate tissues (Anchelin 

et al., 2011; Münzel et al., 2014). In mammals this has been partially attributed to senescence-like phenotypes in 

immune and stem cell populations, so it may be that this is also contributing to the phenotype seen in aged zebrafish 

(Deng et al., 2004; Molofsky et al., 2006; Czesnikiewicz-Guzik et al., 2008; Beerman et al., 2010; Solana et al., 2012; 

Fali et al., 2018).  

At the behavioural level, many of age-associated changes that are improved by senescence-removal in (Knights et al., 

2006)mammals are also demonstrated in zebrafish. For example, zebrafish show spine curvature and muscle wastage 

and reduced swimming ability with age, indicating a loss in structure and function of the musculoskeletal system 

(Gerhard et al., 2002; Gilbert, Zerulla and Tierney, 2013). Sarcopenia is delayed in mice with genetically ablated 

senescence and preliminary evidence in humans suggests that senolytics can improve motor function in humans (Baker 

et al., 2006; Justice et al., 2019). The skeletal architecture in the spines of old zebrafish resembles osteoarthritic 

disease, the pathology of which can be improved in mice by the senolytic ABT-263 (Hayes et al., 2013; Jeon et al., 

2017). Further, signs of cognitive decline correlate with age in wild-type zebrafish, measured by their ability to 

remember positive and negative cues associated with food and electric shock (Yu et al., 2006). Irradiated zebrafish 

show earlier reductions in cognition. This is a common inducer of senescence in mammals, and removal of senescent 

cells was able to improve cognition in a mouse model of Alzheimer’s Disease (Oanh N L Le et al., 2010a; Demaria et 

al., 2014; Bussian et al., 2018). These together indicate that many vital hallmarks of senescence are conserved in 

zebrafish, making it a viable model organism for studying this age-associated phenotype. However, currently there is 

not a well-characterised assay for senescence induction in young zebrafish that would make them amenable to drug 

screening, nor a means to prospectively isolate senescent cells from a mixed population in vivo. Both of these are 

important for utilising zebrafish as a model organism to tackle current gaps in the senescence field.  
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1.8. Thesis aims 
Senescence accumulation is a major driver associated with multiple age-associated pathologies in humans. The current 

therapies being developed, though promising, are not yet able to focus on systemic senolytic treatment to tackle multi-

morbidity directly. Further understanding on the mechanisms underlying senescent cell accumulation and how they 

can directly cause disease, as well as tools to screen senolytics in the context of systemic treatment, would provide a 

more effective means to identify therapeutic targets to treat multiple age-associated pathologies at once.  

I hypothesised that by irradiating zebrafish larvae, senescence accumulation could occur ectopically in a comparable 

manner to that which is described in mammalian systems. Further, that the stress-induced senescence seen in 

response to irradiation in zebrafish larvae shares features with human ageing-induced senescence, thereby allowing 

the unique advantages of the zebrafish to be used in this context. The thesis aims are: 

 To optimise and characterise a method for ectopic induction of senescence in zebrafish larvae without causing 

significant off-target toxicities.  

 To develop a novel transgenic reporter that can identify senescent cells in live zebrafish larvae.  

 To investigate whether irradiated zebrafish larvae have phenotypes that are comparable with an aged context.  
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2 Materials and Methods 
 

2.1. Reagents. 
All reagents were purchased from Sigma (Poole, UK) unless stated otherwise  

 

2.2 Zebrafish work 

2.2.1 Husbandry 

Zebrafish are housed in accordance to the UK Home Office Licence animal care protocols in the Bateson Centre at The 

University of Sheffield, UK under standard conditions (Nüsslein-Volhard, C. and Dahm, 2002). Adults reside in a 28°C 

closed aquarium system with 14 hours of light per day. Zebrafish between 5 and 13dpf were fed Tetra A-Z powdered 

fish food twice daily, whilst older fish were fed live artemia. Zebrafish were bred using either the marbling technique, 

or by individually pairing males and females. The former involves 10-40 adults laying eggs into marbles on top of a grid 

whereby the eggs will filter through for collection. Pairing involved placing a male and female adult fish into a small 

mating tank after feeding, separated by a divider. As the light cycle starts the following morning, the divider is removed 

and eggs are filtered through a plastic grid and collected within a few hours before returning adults to their respective 

tanks. This technique was used when it was necessary to be able to identify the parents that gave rise to the embryos, 

particularly for genotyping purposes. Collected embryos were sorted into petri dishes at a density of 30-60 embryos 

per dish and incubated in approximately 25-35mls of E3 media at 28°C. Experiments were performed up until 5.2dpf, 

before they became protected animals by The Animals (Scientific Procedures) Act 1986 set by the Home Office, where 

they were sacrificed through immersion in 0.017% 3-amino benzoic acid ethyl ester (tricaine) and either fixed for 

experimentation in 4% paraformaldehyde or immersed in bleach. When experiments were carried out on 12dpf larvae, 

all procedures were approved by the Home Office in the appropriate Project License (PPL: 70/8178) by a trained 

individual with an up-to-date personal license (163486AFC), and performed in compliance with animal welfare laws 

and guidelines. At the end of these experiments, animals were sacrificed by a schedule 1-approved method, which 

usually involved submersion in anaesthesia (1.33g/l 3-amino benzoic acid ethyl ester, MS222) and a secondary method 

of confirming rigor mortis.  

2.2.2 Anaesthesia 

Whenever zebrafish embryos were anaesthetised, 168mg/l of MS222 (Sigma, MO, USA) was added to a plate of up to 

60 embryos, in approximately 25mls 1X E3. Adult zebrafish were anaesthetised by submerging them in a 4.2% MS322 

solution, made up with aquarium system water. After experimentation, zebrafish were allowed to recover was 

completed through replacing medium with fresh E3 medium (for larvae) or aquarium system water (for adults) that 

did not contain tricaine. 
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2.2.3 Irradiation  

To induce senescence, up to 200 zebrafish were removed from their chorions at 2 days post-fertilisation (dpf) using 

forceps prior to irradiation. The zebrafish were placed without anaesthetic in 10mls E3 media in a 25ml universal tube. 

An unirradiated control was always used and zebrafish were assigned randomly across irradiated and unirradiated 

groups. All fish would be moved into one petri dish and up to 20 fish would be assigned to one group then another 20 

would be assigned to another, this process would be repeated until all fish were assigned to their respective groups. 

Zebrafish would be transported in universal tubes encased in gel packs heated to 28°C. Zebrafish are placed in a closed 

Cesium-137 source to receive the required dose of radiation. To be confident that our zebrafish larvae receive the 

expected dose of irradiation, we calculated the amount of time required to expose the correct dose of radiation, taking 

into account the age, half-life and radioactive decay of our source (Figure 2.1A). Further, dose mapping was carried 

out by Ashland (USA) to determine the actual dose that different areas of the canister received, to ensure the fish 

were located in the correct region (Figure 2.1B). A radiation-sensitive film was placed in the middle of the canister, 

between two water-equivalent phantoms. These films are then sent to the USA alongside an unirradiated film to 

remove any radiation incurred from the transport itself, the amount of light that flows through the film before and 

after radiation is measured to determine dose absorbed. The zebrafish placed in the centre of the canister to ensure 

the dose received is as expected, as depicted by the white regions on the dose mapping. After irradiation, zebrafish 

were returned to petri dishes at a maximum density of 60 zebrafish per dish in E3 media. These fish were returned to 

a 28°C incubator until assessment for the onset of senescence. Zebrafish were assessed for senescence at 5dpf (Figure 

2.2.). 
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A

B

Cs137 Activity 
(30 year half-life) 

Cs137 Dose calculations 

From the date below Increase time by 

1Gy per 21s on 
31/08/2000 

1/09/2015 1.4141 

1/09/2016 1.4472 

1/09/2017 1.4810 

1/09/2018 1.5156 

 

Figure 2.1. Irradiation dose calculations. A) Calcuations for determining the timings required for applying a

dose of radiation from a Cs137 source, taking into account radioactive decay B) Dose mapping by Ashalnd

(USA) describing actual dose received within the cannister following 21Gy of radiation.  Fish are placed in the

middle of the bottom of the inner canister to ensure dose received matches dose applied.

 

Figure 2. 1 Irradiation dose calculations. 
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Figure 2.2. Diagram depicting the optimised timing of irradiation assay. Zebrafish are irradiated

with 12Gy Cs137 closed source -irradiation at 2dpf, and senescence was assessed at 5dpf. Images

of zebrafish stages adapted from  ZFIN.

 

Figure 2. 2 Diagram depicting the optimised timing of irradiation assay. 

2.2.4 Assessment of irradiation-induced toxicity in zebrafish  

To determine an effective dose of irradiation that did not induce off-target toxicities, zebrafish were examined for 

common signs of oxidative stress (Figure 2.3). Examples include pericardial oedema (Figure 2.3A), undeveloped or 

deflated swim bladder (Figure 2.3B), spine curvature, obviously stunted growth, or blue skin from the methylene blue 

in the E3, indicative of cell death (Davies et al., 1980). Zebrafish with any of these signs of toxicity would be sacrificed 

through immersion in 0.017% 3-amino benzoic acid ethyl ester (tricaine) and immersed in bleach before 5.2dpf. 
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A

B

Figure 2.3. Example images of signs of irradiation-induced toxicity. Representative transmitted

light photomicrographs of fish with signs of toxicity and as such removed from later analyses (10%,

Figure 3.2.). A) Pericardial oedema  B) Deflated swim bladder following 12Gy irraidation, with

unirradiated zebrafish for comparison. Areas of oedema and swim bladder depicted with arrows.

 

Figure 2. 3. Example images of signs of irradiation-induced toxicity. 

 

2.2.5. Fixation 
 

When fish reached the required stage of development for assessment of senescence markers by whole-mount in situ 

hybridisation, immunofluorescence, or the senescence-associated β-Galactosidase (SA-β-Gal) assay, they were fixed 

in 4% paraformaldehyde (PFA) overnight at 4°C. For in situ hybridisation, zebrafish were washed in PBS and dehydrated 

in a Methanol (MeOH) series of increasing concentration, until reaching 100% and being stored for at least 24 hours 

prior to use at -20°C. For SA-β-Gal and immunofluorescence experiments, the assay was carried out immediately after 

fixation.  
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2.2.6. Movement analysis  
 

At 4, 5, and 12 days post-fertilisation (dpf), locomotor activity was recorded using the Zebrabox (ViewPoint Life 

Sciences, Lyon, France) tracking system and Zebralab software. The distance moved over a 30 minute period was 

recorded after zebrafish were transferred to a 24-well plate, one larvae per well in 1ml of E3 medium and acclimatised 

for 30-60 minutes (Figure 2.4.). Light and dark cycles of 5 minutes at 100% light and 5 minutes at 0% light were used 

to stimulate movement of the fish. The tracking was always carried out at the same time of day, between 2 and 4 

hours of the changing of incubator light cycle where the zebrafish are stored. 

 

Figure 2.4. Example tracking of locomotor activity. Zebrafish are placed on a 24-well plate,

acclimitised for 30-60 mintes, and their movement recorded. Red tracks depict slower movement and

green tracks depict fast movement (further than 3 lengths of the fish, 12mm at 5dpf within a second). This

is example tracks over a 30 second period. Data was quantified over a 30 minute period.

 

Figure 2. 4. Example tracking of locomotor activity. 
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2.3. Molecular biology 

2.3.1. Visualising & quantifying DNA & RNA: 

The ApE plasmid editor (Biology Labs Utah, 2013) was used to plan and visualise DNA plasmids, targeting constructs, 

primer sequences, and sequencing data. DNA & RNA were quantified using agarose gel electrophoresis. Next, 1% 

agarose (Bioline Reagents Ltd, London, United Kingdom) was dissolved in 1x TAE buffer and heated until the agarose 

is in solution. Ethidium Bromide was added to the gel (0.8μg/ml, ThermoFisher Scientific Inc., USA) and once set, the 

sample was loaded with 6x loading buffer (NEB, Ipswich, USA), alongside a 1kbp normalised DNA hyperladder (Bioline 

Reagents Ltd, United Kingdom) for reference and quantification. 

2.3.2. Heat-shock Transformation 

Competent E.coli cells (ThermoFisher Scientific Inc., USA) were defrosted on ice alongside SOC media (Sigma, MO, 

USA) & DNA (100ng). DNA was added to cells and incubated on ice for 30 minutes, before being added to a 42°C water 

bath for 30 seconds, and returned to ice for 2 minutes. 200μl SOC media was added to cells and placed on a 37°C 

rocker for 90 minutes, and then cultured overnight at 37°C on dry, pre-warmed agar plates containing appropriate 

antibiotic at 50μg/ml. 

2.3.3. Plasmid DNA purification  

Following transformation, DNA was purified using a plasmid DNA Midiprep Kit (Qiagen, Venlo, Netherlands). Bacteria 

were grown at 37°C in LB containing appropriate antibiotics before 4°C centrifugation at 6,000g for 15 minutes pelleted 

the bacteria containing plasmid DNA, where they can then be stored at -20°C. The bacterial pellet was thawed when 

required and re-suspended in 6mls of Buffer P1 containing RNase A and Lyse Blue. 6mls of Buffer P2 was then added 

before 6 vigorous inversions and 5 minutes incubation. 6mls of chilled Buffer P3 are added to the suspension, mixed, 

and immediately transported to a QIA filter cartridge for 10 minutes. 4mls Buffer QBT was added to the HiSpeed Midi 

tip and the column emptied by gravity flow. A plunger was gently inserted to the QIA filter to transfer the solution into 

the equilibrated HiSpeed Midi tip. 20mls of Buffer QC was added to the HiSpeed Midi tip, and the DNA eluted by 

addition of 5mls Buffer QF. 3.5mls of room temperature isopropanol (Sigma, MO, USA) precipitate the elute and 

incubated for 5 minutes. DNA was then transferred into reaction vials, and centrifuged at 13,000rpm at 4°C for 30 

minutes. DNA pellets were washed with 200μl 70% RNase-free EtOH (Fisher Scientific UK, Loughborough, UK) and 

again centrifuged at 13,000rpm at 4°C for 10 minutes. The pellets were air dried, and resuspended in 1ml DEPC water, 

before being stored at -20°C until required. Plasmid DNA Miniprep purification kits (Qiagen, Netherlands) were also 

used to purify smaller plasmid volumes (1-5mls) as required. 

BACs were purified through a Nucleobond pc100 midiprep kit (Machery-Nagel, Düren, Deutschland) as per 

manufacturer’s instructions. BAC-containing bacteria are centrifuged 6,000g at 4°C for 15 minutes before removing 

supernatant and adding 8mls pre-chilled Buffer S1 containing RNAse. 8mls Buffer S2 was added and mixed through 

gentle inversion, before 8mls pre-chilled Buffer S3 was added and mixed through inversion. Buffer N2 was added to a 

Nucleobond AX100 column before the bacterial lysate is filtered through into the column. The column was washed 

with 12mls Buffer N3, before the DNA was eluted with 5mls of preheated (50°C) buffer N5 and precipitated with 3.5mls 
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room temperature isopropanol (Sigma, USA). Precipitate DNA is added to reaction vials and centrifuged at 15,000g, 

4°C for 15 minutes and supernatant discarded. A total of 2mls 70% EtOH (Fisher Scientific UK, UK) is split between 

reaction vials, before mixing by vortex and centrifugation at 15,000g, room temperature for 10 minutes. Supernatant 

is removed, and the DNA pellet dried for 10 minutes, before being dissolved in 10% TE buffer before quantification. 

The protocol was modified to improve the yield by splitting the precipitated DNA in fewer reaction vials and carrying 

out successive 4°C centrifugations at 15,000g for 15 minutes, and adding DNA to the same two reaction vials. 

Additionally, dissolving the DNA pellet overnight, rather than the 20 minutes suggested, at 4°C in 10% TE buffer 

improved the yield.  DNA concentration was determined by a NanodropTM spectrophotometer (ND1000, Thermo-

Scientific, Hemel Hempstead, UK). 

2.3.4. PCR purification & Gel extraction 

For DNA products <4kbp in size, a PCR purification kit (Qiagen, Netherlands) was used as per manufacturer’s 

instructions. Five volumes of buffer PB was added to the solution and placed into a pre-chilled QIAquick MinElute® 

column. The sample is centrifuged for 60 seconds, 13,000rpm at room temperature and the supernatant removed. 

This was repeated where the PCR & buffer PB solution had a greater volume than 750μl. Buffer PE (750μl) was added 

to the column and centrifuged for 60 seconds, 13,000rpm at room temperature. A repeat centrifugation 60 seconds, 

13,000rpm at room temperature was carried out to remove residual buffer, and then the column was placed into a 

reaction vial. The DNA was eluted with 10μl of buffer EB and a repeat centrifugation, before being quantified through 

agarose gel electrophoresis. For DNA products larger than 4kbp, a QIAquick column was instead used and the DNA 

eluted in 30-50μl. Alternatively, when a DNA product of a known size required purification, it was first visualised in a 

low-level UV lamp and excised using a MinElute® Gel Extraction kit (Qiagen, Netherlands) according to manufacturer’s 

instructions. Once excised, the gel fragment is weighed and 3 volumes of Buffer QG added, before being incubated at 

50°C for 10 minutes, or until the gel had completely dissolved. One volume of room temperature Isopropanol (Sigma, 

USA) was added and the sample placed in a pre-chilled MinElute® spin column, before 60 seconds centrifugation, 

13,000rpm, at room temperature. This centrifugation was repeated where the dissolved agarose gel & buffer QG 

solution had a greater volume than 750μl. Buffer QG (500μl) was added and centrifugation repeated, then 750μl buffer 

PE was added and centrifugation repeated again. The column is centrifuged again to remove residual buffers, and the 

column placed in a reaction vial. Buffer EB (10μl) was added to the column membrane, and centrifugation was 

repeated, before quantification by agarose gel electrophoresis. 

2.3.5. Restriction digests 

Each digestion was incubated for at least 2 hours at 37°C. All restriction enzymes used were obtained from New 

England Biolabs (NEB, Ipswich, USA), and the relevant digestion buffer was chosen according to their instructions.  
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2.3.6. Ligation 

Ligations of two DNA constructs were carried out using T4 DNA ligase at 16°C overnight. The amount of vector and 

insert used was calculated using the following equation: 

 

𝑉 + 𝐼 = 100𝑛𝑔 

 

𝐼 =  
3(100 − 𝐼)  ×  𝑠𝑖𝑧𝑒 𝑖𝑛𝑠𝑒𝑟𝑡 𝑏𝑝

𝑠𝑖𝑧𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑏𝑝
 

 

Ligated DNA was then transformed using the aforementioned protocol, and between six and ten bacterial colonies 

were grown up in 5mls Lysogeny Broth (LB) and purified using the plasmid purification MiniPrep kit (Qiagen, 

Netherlands). Restriction digests were used to confirm whether the ligation was successful.  

2.3.7. Developing specialised targeting constructs for BAC cloning  

Once a plasmid of interest was purified, a test PCR would be carried out to ascertain the optimised conditions for the 

specific reaction. Once optimised, a 300μl PCR was carried out using Q5 polymerase (NEB, USA) with specially designed 

primers (Integrated DNA Technologies, Iowa, USA). 5μl of dpn1 (NEB, USA) was then added and incubated at 37°C for 

an hour. The product was purified with a PCR purification kit (Qiagen, Netherlands), and then added to a 1% agarose 

gel for electrophoresis, before the correct size DNA fragment is extracted through the Gel Extraction kit (Qiagen, 

Netherlands). The product was then quantified and stored in -20°C until required. 

2.3.8. Tol2 RNA development 

To make tol2 transposase RNA, 20μg of a tol2-containing plasmid was linearised with 1μl of Not1 restriction enzyme 

(NEB, USA) for 2 hours at 37°C in a 200μl reaction volume. The linearised DNA was then purified using a PCR purification 

kit (Qiagen, Netherlands) and quantified using gel electrophoresis. 1μg of linearised DNA was used in a mMessage 

mMachine transcription reaction kit (ThermoFisher Scientific Inc., USA) to make RNA according to manufacturer’s 

instructions. The linearised DNA was incubated at 37°C for 2 hours with the SP6 polymerase in a final volume of 20μl 

before 1μl of Turbo DNase is added and incubated for a further 15 minutes at 37°C. The resulting RNA was 

phenol:chloroform extracted, first 115μl dH2O and 15μl Ammonium Acetate Stop Solution was added, then an equal 

volume of phenol:chloroform (Sigma, USA) was added and the solution vortexed for 3 minutes, and centrifuged at 4°C 

for 7 minutes, 13,000rpm. The top aqueous layer that resulted was transferred into a new reaction vial, and equal 

volume of chloroform (Sigma, USA) added before vortexing for 1 minute and centrifuged at 4°C for 5 minutes, 

13,000rpm. The resulting aqueous layer was again transferred to a new reaction vial, and equal volume of room 

temperature isopropanol was added (Sigma, USA). The solution was chilled at -20°C for 15 minutes, before being 

centrifuged at 4°C for 15 minutes, 13,000rpm. Supernatant was removed and the pellet washed in 500μl 70% EtOH 
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and centrifuged twice further at 4°C for 10 minutes each, 13,000rpm. The supernatant was again removed and 

resuspended in 20μls dH2O, before a sample was quantified by gel electrophoresis and the rest stored in -80°C until 

required. 

2.3.9. RNA extraction 

Zebrafish embryos were homogenised by addition of Trizol reagent (Sigma, USA) and mixing with a pellet pestle on 

ice. Samples were added into a QIAshredder shredder column (Qiagen, Netherlands) to further homogenise the tissue, 

before centrifugation at 13,000rpm for two minutes a room temperature. The RNA is then purified through addition 

of 100μl chloroform (Sigma, USA), vortexing for 3 minutes, and centrifuging at 13,000rpm for 5 minutes. The aqueous 

phase was transferred into a new reaction vial and 250μl of isopropanol (Sigma, USA) was then added before vortexing 

again and incubating at room temperature for 10 minutes. The sample was then centrifuged at 4°C for 15 minutes and 

then the pellet is washed with 70% EtOH, resuspended in H2O, and quantified by a NanodropTM spectrophotometer 

(ND1000, Thermo Scientific, Hemel Hempstead, UK) and stored in -80°C until required. 

2.3.10. cDNA synthesis 

cDNA was made from purified 2μg zebrafish RNA using First-Strand cDNA Synthesis using SuperScriptTM II Reverse 

Transcription kit (Invitrogen, UK) as per manufacturer’s instructions. RNA was added to a reaction vial alongside 1μl 

OligoDT (500μg/ml), 1μl nucleotide mix (10mM each nucleotide), and made up to 12μl with dH2O. The mixture was 

heated to 65°C for 5 minutes and quick chilled on ice before adding 4μl 5X First-Strand Buffer, and 2μl 0.1M DTT. The 

solutions was mixed and incubated at 42°C for 2 minutes, before 1μl of SuperScriptTM II Reverse Transcriptase (200 

units) was added and incubated at 42°C for 50 minutes. The reaction was inactivated by heating to 70°C for 15 minutes. 

2.4 Whole-mount In situ Hybridisation (WISH) 

2.4.1 Probe development 

WISH antisense RNA probe for p21 was synthesised from linearised plasmid DNA made from a plasmid vector 

containing the p21 coding sequence, provided by David Whitmore (University College London) (Laranjeiro et al., 2013). 

2μg of linearised DNA was used to transcribe RNA with the T7/SP6 DIG RNA labelling kit in a final volume of 20μl, the 

list of reagents are described in table 2.1 and were incubated for 2 hours at 37°C (Sigma, USA). Either SP6 or T7 

polymerase was used to make the RNA according to the orientation of the gene of interest in the plasmid. Following 

the reaction, 4μl of DNase was added and incubated for 20 minutes at 37°C, before precipitation with 1μl EDTA 0.5M 

pH 8, 2.5μl LiCl 4M, and 75μl 100% EtOH, the solution was then incubated at -80°C for up to 24 hours. The precipitate 

was centrifuged at 4°C, 14,000rpm, for 30 minutes. The pellet was then washed in 70% EtOH and centrifuged at 4°C, 

13,000rpm, 10 minutes, before being air dried for 10 minutes. The RNA was then resuspended in 20μl sterile water, 

and quantitated on an agarose gel. Finally, 80μl formamide was added and the probes were stored immediately at -

80°C until required. 
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Reagent Volume (μl) 

Linearised DNA 2μg  

Transcription buffer 2μl 

NTP-DIG-RNA labelling mix 2μl 

RNAse inhibitor 1μl 

SP6 or T7 Polymerase 1μl 

dH2O 13μl 
Table 2. 1. List of reagents used for transcription reactions. 

Table 2.1. List of reagents used for transcription reactions 

 

To make DIG-labelled RNA probes for whole mount zebrafish in situ hybridisations for p16-like, where no plasmid was 

available; a PCR on cDNA made from RNA extracted from homogenized zebrafish embryos with primers for the gene 

of interest was carried out (Figure 2.5.). This was then purified through gel extraction (Qiagen, Netherlands), and 

ligated into an pCR-Blunt ii- TOPO vector (ThermoFisher Scientific Inc., USA), before being transformed into competent 

cells and grown overnight at 37°C on agar containing appropriate antibiotic. Between 6 and 10 bacterial colonies that 

resulted would then be grown up in 5mls of LB with antibiotic for purification using the plasmid purification MiniPrep 

kit (Qiagen, Netherlands), the elutes were then sent for sequencing to confirm whether the ligation worked and 

contained the TOPO vector with p16-like, as well as the orientation of the gene (Figure 2.6A). The sequence was aligned 

against the known p16-like mRNA sequence and confirmed 100% sequence identity (Figure 2.6B). Once the correct 

bacterial colonies were identified, a larger plasmid purification using a Midiprep kit (Qiagen, Netherlands) was carried 

out. 20μg of purified plasmid was then used for linearisation with the appropriate restriction enzyme at 37°C for 2 

hours in a final volume of 200μl. Equal volume of phenol:chloroform was added and the mixture vortexed for 3 

minutes, before centrifugation at 14,000rpm for 7 minutes. The aqueous layer is transferred to a new tube, and an 

equal volume of chloroform was then added. The mixture was then vortexed for 1 minute, and centrifuged at 

14,000rpm for 5 minutes. Again the aqueous layer was transferred into a new reaction vial, before precipitating the 

linearised plasmid with 10% Na acetate 3M, and 1 volume isopropanol at -20°C for up to 24 hours. The solution was 

then centrifuged at 14,000rpm at 4°C for 20 minutes, the supernatant removed and the pellet washed with 70% EtOH. 

Room temperature centrifugation at 5 minutes was repeated to re-pellet the linearised DNA, before air drying for 10 

minutes, and resuspending in 20μl dH2O. Quantification through gel electrophoresis confirmed both concentration of 

linearised DNA and that the restriction enzyme reaction was carried out to completion. The linearised DNA was then 

used to make a DIG-labelled mRNA probe as described above (Figure 2.6C).  



50 
 

DNA 
ladder

57°C 59°C 61°C 63°C

P16-like cDNA 
amplification

200 -
400 -
600 -

1500 -

10,037 -

Size (bp)

Ta:

A

B

Figure 2.5. Cloning of p16-like. A) ApE map of whole p16-like zebrafish mRNA (uppercase letters). Forward

(purple) and reverse (green) primers described where PCR amplification took place. B)  Optimisation of PCR

annealing temperature to extract p16-like sequence  from whole zebrafish cDNA with size of 400bp.

 

Figure 2. 5. Cloning of p16-like. 
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Figure 2. 6. Development of p16-like DIG-labelled mRNA probe for in situ hybridisation. 
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Figure 2.6. Development of p16-like DIG-labelled mRNA probe for in situ hybridisation. A) ApE map

of sequencing for p16-like cDNA that was ligated into pCR-Blunt ii- TOPO vector, with EcoR1 restriction

sites highlighted to make linearised DNA for in sit probe synthesis. B) Sequence alignment of PCR

product ligated into pCR-Blunt  II-TOPO against known p16 mRNA sequence. C) Visualisation of

DIG-labelled mRNA probes for p16-like by gel electrophoresis.

 

2.4.2 Whole-mount In situ hybridisation (WISH) protocol 

WISH was carried out to determine spatial expression of p21 and p16-like mRNA following irradiation. Fixed and 

dehydrated zebrafish were rehydrated through a series of 5-minute washes in decreasing concentrations of MeOH, 

made up in PBS, before 4 further 5 minute washes in 100% PBT (PBS plus tween 20) (Sigma-Aldrich, UK). The fish were 

then digested in Proteinase K, where the length of incubation and concentration used required optimisation. Following 

optimisation, 10µg/μl for 75 minutes at 22°C (room temperature) was used for 5dpf larvae. Embryos were then fixed 

in 4% PFA-PBS for 20 minutes at room temperature and then washed 5 times for 5 minutes in PBT. The embryos were 

incubated in preheated 1ml PreHyb for 2-5hours at 70°C, before incubating in preheated ProbeHyb overnight at 70°C. 

The following day, the ProbeHyb was removed and embryos washed briefly in pre-heated HybWash, before washing 

in a series of 4 HybWash:2XSSC dilutions for 15 minutes each at 70°C. The embryos were then washed in 2X SSC for 15 

minutes, and twice in 0.2X SSC for 30 minutes at 70°C. Then they were returned to room temperature and incubated 

in a series of 0.2X SSC: PBT dilutions for 10 minutes until incubating in PBT alone for a further 10 minutes. The embryos 

are then incubated in Blocking Solution at room temperature for several hours, and then incubated in a 1:5000 dilution 

of the anti-DIG-AP antibody (Roche, UK) overnight at 4°C. The following day, the embryos were washed for 15 minutes 

in PBT 6 times at room temperature and transferred to a 24-well plate. The zebrafish were then washed in Staining 

Wash 3 times for 5 minutes, and then the staining solution is added, containing BCIP (175μg/ml) and NBT (225μg/ml). 

Once the satisfactory amount of staining had developed, the staining solution is removed and stop solution added 

(PBS, 1mM EDTA) for 5 minutes, before washing in 4% PFA for 30 minutes at room temperature. The embryos were 

then placed through a MeOH series and stored in 100% MeOH overnight. The embryos can be stored at -20°C until 

required, where they then are placed through a reverse methanol series containing increasing concentrations of 

glycerol. Imaging was performed by placing larvae in 80-100% glycerol solution on a glass cover slip (Scientific 

Laboratory Supplies, UK) and orientating them with a human hair. Transmitted light imaging was performed using a 

Nikon SMZ1500 stereomicroscope with a Prior Z-drive and a Nikon DS-Fi1 colour camera with NIS elements software 

(Version 4.3). For quantitation, colorimetric analysis was chosen by selection of the zebrafish head, excluding the eye 

and extending as far as the otic vesicle. Blink ranking was carried out by randomly assigning codes to images from 

irradiated and non-irradiated groups, before ordering them by eye according to staining intensity whereby the 

strongest staining had the highest rank. The code was then used to determine which group each image and rank 
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corresponded to and then data were examined by a Kruskal-Wallice (for p21, 3 groups examined) or Mann-Whitney 

test of ranks (for p16-like, 2 groups examined). 

 2.5. Quantitative Polymerase Chain Reaction (qPCR) 
 

To assess quantitative changes in mRNA expression of senescence-associated genes, quantitative PCRs were carried 

out. RNA extraction and cDNA synthesis were carried out as described above (2.3.9, 2.3.10). Quantitative PCR (qPCR) 

was performed using MESA GREEN qPCR MasterMix Plus for SYBR® (Eurogentec, UK) and an ABI 7900HT Sequence 

Detection System (Applied Biosystems, CA, USA). qPCRs were carried out in triplicate for each cDNA sample and mRNA 

expression was normalised to βactin, which acted as a reference gene. Reaction vials, dH2O, pipettes, pipette tips 

were all UV-treated for 20-40 minutes prior to use, and surfaces cleaned with RNAseZAP® (Sigma-Aldrich, UK) to 

prevent nuclease contamination. Wells containing only water, and wells containing cDNA made from reactions without 

the reverse transcriptase were used to confirm there were no sources of contamination. Quantification was carried 

out by relative mRNA expression (2^-ΔCt, relative to βactin) or fold expression change following irradiation (2^-ΔΔCt, 

relative to βactin and unirradiated control) (Livak and Schmittgen, 2001). Reactions are described in Table 2.2, primer 

sequences are listed in Table 2.3. 

 

Reagent Volume per reaction (μl) 
MESA GREEN qPCR MasterMix Plus for SYBR® 5 

10μM forward primer 0.2 

10μM reverse primer 0.2 

dH2O 2.6 

cDNA (diluted 1:10) 2 

Total: 10 
Table 2. 2. List of reagents used for qPCR reactions. 

Table 2.2. List of reagents used for qPCR reactions 
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Gene Sequence 

βactin Forward – 5’ TTCACCACCACAGCCGAAAGA 3’ 

Reverse – 5’ TACCGCAAGATTCCATACCCA 3’ 

P21 (cdkn1a) Forward – 5’ AGGAAAAGCAGCAGAAACG 3’ 

Reverse – 5’ TGTTGGTCTGTTTGCGCTT 3’ 

P16-like (cdkn2a/b) Forward - 5’ ATGATGAACGTCGAGGATGAACTG 3’ 

Reverse – 5’ ATTGGCATTCACTCCGTTAGAAAGT 3’ 

Il1b Forward – 5’ TGGACTTCGCAGCACAAAATG 3’ 

Reverse – 5’ GTTCACTCCACGCTCTTGGATG 3’ 

Il6 Forward – 5’ GCTCATCCAGCAGGGTCCG 3’ 

Reverse – 5’ CGACACACACTGTTTGGCCTTG 3’ 

Il8a Forward – 5’ GAAAGCCGACGCATTGGAAA 3’ 

Reverse – 5’ TTAACCCATGGAGCAGAGGG 3’ 

Mmp2 Forward – 5’ AGCTTTGACGATGACCGCAAATGG 3’ 

Reverse – 5’ GCCAATGGCTTGTCTGTTGGTTCT 3’ 

Mmp9 Forward – 5’ AACCACCGCAGACTATGACAAGGA 3’ 

Reverse – 5’ GTGCAAGGCTATCCCAAGAGT 3’ 

Mmp13 Forward – 5’ ATGGTGCAAGGCTATCCCAAGAGT 3’ 

Reverse – 5’ GCCTGTTGTTGGAGCCAAACTCAA 3’ 

Cyclin-g1 Forward – 5’ GTGATGAAGATTCAGCCCAAGC 3’ 

Reverse – 5’ CACTGGCCAGAGGGACATTTTTCT 3’ 

P53 Forward – 5’ GCTTGTCACAGGGGTCATTT 3’ 

Reverse – 5’ ACAAAGGTCCCAGTGGAGTG 3’ 

Table 2. 3. Table of primer sequences used for qPCR reactions. 

Table 2.3. Table of primer sequences used for qPCR reactions 
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2.6. Senescence-associated β-Galactosidase (SA-β-Gal) assay 
After overnight fixation in 4% paraformaldehyde (PFA) in PBS, larvae were washed 3 times for 1 hour in PBS (pH 7.0). 

Larvae were then washed for 1 hour in PBS (pH 6.0) at 4°C. The enzymatic reaction was then performed overnight at 

37°C in 5mM potassium ferrocyanide, 2mM MgCl2, and 1 mg/ml X-gal in PBS (pH 6.0). Afterwards, zebrafish were 

washed 3 times in PBS (pH 7.0) and fixed in 4% PFA for 4 hours. Zebrafish were washed 3 times in PBS (pH 7.0) and 

prepared for imaging by placed through a series of washes containing increasing concentrations of glycerol. Imaging 

was performed by placing larvae in 80% glycerol solution on a glass cover slip (Scientific Laboratory Supplies, UK) and 

orientating them with a human hair. Transmitted light imaging was performed using a Nikon SMZ1500 

stereomicroscope with a Prior Z-drive and a Nikon DS-Fi1 colour camera with NIS elements software (Version 4.3). For 

quantitation, colorimetric analysis was chosen by selection of the zebrafish head, excluding the eye and extending as 

far as the otic vesicle. Blink ranking was carried out by randomly assigning codes to images from irradiated and non-

irradiated groups, before ordering them by eye according to staining intensity whereby the strongest staining had the 

highest rank. The code was then used to determine which group each image and rank corresponded to and then data 

were examined by a Mann-Whitney test of ranks.  

 

2.7. Bacterial Artificial Chromosome (BAC) transgenesis 

Firstly, a pipeline for the development of TgBAC(p21:GFP) was established (Figure 2.7) (Suster et al., 2011). A BACs 

was to be identified that encompassed the cdkn1a zebrafish locus (p21) (Table 2.4.). Once identified, the BACs were 

cloned into competent cells with the appropriate antibiotic resistance (Lee et al., 2001) (Table 2.5.). A plasmid 

containing the gene sequence for GFP was identified, and a restriction digest was carried out on the identified BACs 

and a plasmid containing the GFP-encoding sequence, such that the GFP sequence could then be ligated into the BAC 

directly after the start codon of the p21 coding sequence. Primers were designed such that the first 50 base pairs 

overlapped with the BAC, the last 3 bases being the ATG (p21 start codon), followed by 24 more bases that overlap 

with the target sequence (Table 2.6.). This should result in a plasmid that expresses GFP under p21 promoter 

activation, but the p21 coding-sequence itself is disrupted, such that endogenous levels of p21 are not affected in 

zebrafish with BAC insertion into their genome. As the BAC is a large plasmid, and therefore prone to breakage and 

partial insertions (Suster et al., 2011), a tol2-transposon mediated system to improve transgenesis efficiency was 

incorporated. This involves modifying the GFP-BAC plasmid such with tol2-recognition sites that the tol2 transposase 

can recognise and insert randomly into the zebrafish genome as a whole. Finally, the modified plasmids were injected 

into single-cell stage nacre-strain zebrafish embryos, and screened prior to independent feeding for GFP expression. 

The next generation of GFP-positive fish were assessed using the established irradiation assay for germline-

transmission of the plasmid and irradiation-induced fluorescence up-regulation that matches p21-mRNA expression 

spatially predominantly in the head and intestinal regions. 
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Figure 2.7. Schematic diagram depicting the development of TgBAC(p21:GFP) using Bacterial Artificial

Chromosome (BAC) transgenesis. The BAC chosen (DKEY192-O24) included the zebrafish p21 gene sequence and

surrounding promoter regions. The GFP sequence was targeting into the BAC and inserted after the first p21 start

codon. Once created, the BAC was injected alongside tol2 mRNA in single-cell stage zebrafish embryos. Tol2 is a

transposase that aids in incorporation of the BAC into the genome, through the addition of tol2 recognition sites onto

the BAC itself. The injected embryos were then screened for fluorescence at 5dpf. Once adults, their progeny were

examined for p21-regulated fluorescence to determine successful incorporation of the BAC into the germline, creating

the stable transgenic reporter zebrafish. Image of single cell-stage embryo and 5dpf non-fluorescent zebrafish larvae

adapted from ZFIN.

 

 

 

Figure 2. 7. Schematic diagram depicting the development of TgBAC(p21:GFP) using Bacterial Artificial Chromosome (BAC) transgenesis. 
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2.7.1 Making electro-competent EL250 cells 

A stock of EL250 bacteria (gift of Dr Neal Copeland, National Cancer Institute) was incubated overnight in 2mls LB at 

32°C. 1ml was then transferred into a fresh 50ml LB culture and incubated at 32°C until the Jenway 6100 

spectrophotometer determined optimal density, with Abs at 0.5 (600nm, OD600). The bacteria were then centrifuged 

at 3,000rpm for 15 minutes at 4°C, before removing the supernatant and resuspended in 50mls ice-cold dH2O. 

Centrifugation was repeated and the bacteria re-suspended in 5mls ice-cold dH2O. The bacteria were then split into 5 

reaction vials and washed 3 further times in ice-cold dH2O in a 4°C microfuge at 13.3krpm, for 20 seconds per wash. 

100μl of dH2O was used to re-suspend the pellet in each reaction vial, and then further split into 50μl aliquots for 

electroporation. The bacteria were electroporated (25μF, 1.3kv, 200Ω) and 12% Glycerin was added before the 

competent cells were stored at -80°C until required. 

2.7.2 BAC electroporation into EL250s 

Purified BACs (100ng) were added to a 40μl aliquot of electrically competent EL250s and then placed on ice for 60 

seconds. The EL250s were added to a cuvette (Bio-Rad, California, USA) before being electroporated (25μF, 1.3kv, 

200Ω). 1ml SOC media (Sigma, USA) was added, and the cells were incubated on a shaker at 32°C for 90 minutes, 

before being added to agar plates with Chloramphenicol (12.5μg/μl) and incubated overnight at 32°C.  

2.7.3 Targeting BACs in EL250s with GFP targeting sequence 
BAC-containing EL250 bacterial colonies were picked from the agar plate and added to 1ml of liquid broth (LB) with 

antibiotic (12.5μg/μl Chloramphenicol, Cm) at 32°C overnight. 0.4ml of culture was then added to 20mls LB Cm in a 

baffled flask at 32°C until the spectrophotometer determined optimum density at Abs0.5 (600nm). Half of the culture 

was transferred into a pre-heated conical flask and incubated in a shaking 42°C water bath for 15 minutes. The flask 

was then transferred to a shaking ice slurry bath for 20 minutes at 4°C. From this point, everything was carried out at 

4°C, the culture was transferred to reaction vials and centrifuged at 13,000rpm, the supernatant was removed and the 

bacterial pellet washed in ice-cold dH2O. The pellet was centrifuged again at 13,000rpm and resuspended in dH2O such 

that all pellets were pooled into one reaction vial, before another centrifugation at 13,000rpm. The target construct 

(300ng) was added to the cells with a final volume of 50μl made up with ice-cold dH2O. The cells were then 

electroporated at 1.8kV, shaken at 32°C for 90 minutes in 1ml LB containing no antibiotics, and then added to agar 

plates with antibiotics. To confirm whether targeting was successful, at least 6 bacterial colonies were spread out onto 

three agar plates with low-dose Kanamycin, Carbenacillin, or Chloramphenicol present. Successful targeting will result 

in Kanamycin resistance as the targeting sequence contained a resistance sequence, whilst also being chloramphenicol 

resistant with resistance coming from the BAC itself. The bacteria should also be Carbenacillin sensitive, bacteria 

resistant to this antibiotic indicates there is plasmid contamination, as the plasmids used to develop the targeting 

constructs contain a resistance sequence that was outside the targeting construct region. The kanamycin resistance 

was removed from BACs through treatment with L-arabinose (Santa Cruz Biotechnology, Texas, USA). EL250s were 

grown until the spectrophotometer confirmed bacterial density at Abs0.5. Then the cells were incubated in 0.1% L-

arabinose for an hour at 32°C. The cells were then grown up in LB without antibiotics for an hour at 32°C and then 

overnight on agar plates containing antibiotics. To confirmation that arabinose treatment worked, the resulting 
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bacterial colonies are again spread out onto three further agar plates containing Kanamycin, Carbenacillin, and 

Chloramphenicol respectively. In this case, the EL250s should become sensitive to Kanamycin once more. 

2.7.4 Injecting BACs into 1-cell stage zebrafish embryos 

Purified BAC containing the GFP and tol2 targeting sequences were purified by the Nucleobond PC100 kit (Machery-

Nagel, Deutschland) as per manufacturers instructions and quantified. PhenolRed (Sigma, USA), Tol2 RNA (25-

30ng/μl), and the purified BAC (50ng/μl) were made up to 5μl in dH2O. Injections were performed using glass capillary 

needles (Kwik-FilTM Borosilicate Glass Capillaries, World Precision Instruments (WPI), Herts, UK), made using a Flaming 

Brown micropipette puller (Sutter Instrument Co., Novato, USA). A Pneumatic PicoPump PV 820 was used to inject 

approximately 2-4nl, determined by a graticule, of the BAC solution into single-cell stage zebrafish embryos. A control 

group was injected with a BAC solution not containing tol2 RNA, to assess whether the transposase RNA is functional. 

Following microinjection, embryos were transferred to E3 media and left to recover at 28°C.  

2.7.5. Development of transgenic line TgBAC(p21:GFP)sh506 

Following 1-cell stage injection of zebrafish embryos, larvae were selected for GFP fluorescence at 4dpf when 

endogenous expression has been described (Laranjeiro et al., 2013). Those positive for GFP and showed no signs of 

toxicity were raised to adulthood. As adults, the zebrafish were crossed to wild-type adult zebrafish and these offspring 

were assessed for GFP fluorescence with and without irradiation and their pattern of expression compared to known 

p21 mRNA expression as determined by WISH. Two adults were identified as able to pass on fluorescence to their 

offspring in a pattern that resembled p21 mRNA expression were deemed founders for the TgBAC(p21:GFP)sh506 and 

TgBAC(p21:GFP)sh507. Expression from both alleles were identical by eye, but because the founder for 

TgBAC(p21:GFP)sh506 had higher fecundity, subsequent experiments and the next generation used this allele alone.  

2.7.6. Imaging TgBAC(p21:GFP)sh506 larvae 
 
TgBAC(p21:GFP)sh506 were mounted at 4 or 5dpf in 1% low melting point agarose solution (Sigma-Aldrich) containing 

4.2% 3-amino benzoic acid ethyl ester. Larvae were then transferred to an Eclipse TE2000-U inverted compound 

fluorescence microscope with 10x NA objective lens to acquire images using an andor zyla 5 camera (Nikon). Zebrafish 

were excited with a 488nm laser and GFP fluorescence detected by a GFP-specific filter. Maximum intensity projections 

were generated by NIS elements and mean fluorescence intensity of regions of interest were quantified by FIJI 

(ImageJ2).  
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Name Description Reference 

DKEY-192O24 pIndigo BAC-536 vector containing 

zebrafish p21 gene sequence 

ZFIN, 2019 

DKEY-254C20 pIndigo BAC-536 vector containing 

zebrafish p21 gene sequence 

ZFIN, 2019 

CH211-228E15 pTARBAC2.1 cloning vector containing 

zebrafish p21 gene sequence 

Children’s Hospital Oakland Research Institute 

(2016). [Online] Available from: 

http://bacpac.chori.org/zebrafish211.htm 

[Accessed 28/07/16] 

K11 Plasmid containing GFP & kanamycin 

resistance sequence flanked by FRT sites 

Generated by Dr. Stone Elworthy, The University 

of Sheffield 

Itol2kan Plasmid containing inverted tol2 

recognition sequences and a kanamycin 

resistance sequence, used to make eye 

marker targeting sequence 

Generated by Renshaw lab, The University of 

Sheffield 

Table 2. 4. List of reagents used for BAC transgenesis. 

Table 2.4. List of reagents used for BAC transgenesis 

 

Antibiotic 

 

Working concentration 

Carbenicillin (Carb) 50μg/ml 

Kanamycin (Kan) 50μg/ml OR 10mg/L  

Chloramphenicol (Cm) 12.5μg/ml 

Table 2. 5. List of antibiotics used for BAC transgenesis. 

Table 2.5. List of antibiotics used for BAC transgenesis  

 

 

 

 

 

 

 

http://bacpac.chori.org/zebrafish211.htm
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Name Primer sequences 

GFP targeting construct Forward  

5’ATATTTAATGTGATTTTTACTGTGGTTTGTGTTTGXAGAATTACCGCCATGGTGAGCAAGG

GCGAGCTGTTC 3’ 

Reverse 

5’GCCTAGTCGGCCCATTACCGAGTGAACGTAGGATCCGCTTGTGCGCCGCGATATCTGCAG

AATTCGCCCTTGA 3’ 

Tol2 targeting construct Forward 5’ AAGCTTAAGTGATCTCCAAAAAATAA 3’ 

Reverse 5’ GAATTCAATACTCAAGTACAATTTTA 3’ 

Table 2. 6. Primer sequences used to insert GFP and itol2 targeting sequences into BACs. 

Table 2.6. Primer sequences used to insert GFP and itol2 targeting sequences into BACs 

 

2.8. Whole-mount immunofluorescence for γH2AX 
 

To assess the amount of DNA damage response activation seen following irradiation of zebrafish larvae, whole-mount 

immunofluorescence for γH2AX was carried out. Fixation of larvae <5.2dpf was carried out as described above, using 

4% paraformaldehyde (PFA) in PBS overnight at 4°C. After fixation, embryos were washed 3 times in PBS (1ml total 

volume, with a maximum of 20 fish per reaction vial). Zebrafish were then transferred to glass reaction vials and 

incubated with Acetone for 7 minutes at -20°C. Fish were then washed twice with PBS-T (PBS, 0.1% Tween-20, Sigma-

Aldrich, UK). Zebrafish were blocked for 60 minutes in PBST with 2% blocking reagent (Roche, UK), 5% foetal calf serum 

(Sigma-Aldrich, UK) and 1% DMSO (Sigma-Aldrich, UK). Zebrafish were then incubated with Histone H2A.XS139ph 

(phospho Ser139) antibody (Genetex, CA, USA, 1:1000 dilution in blocking solution) and then washed 4 times for 15 

minutes each in PBS-T before being incubated with Alexa Fluor 568 goat anti-rabbit (Invitrogen, UK, 1:500 dilution in 

blocking solution) for two hours at room temperature in the dark. From now on, all reaction vials are wrapped in foil 

to limit light exposure. Zebrafish are washed 4 times for 15 minutes each in PBS-T before adding DAPI (Sigma-Aldrich, 

UK, 1:2000 dilution in PBS) for 15 minutes at room temperature. Larvae were washed once more with PBS and liquid 

was aspirated before the fish were mounted with Vectashield (Vector laboratories, UK). The UltraVIEWVoX spinning 

disc confocal laser imaging system (Perkin Elmer) was used to image the tails or heads of these fish, using 1μM z-stacks 

with the Prior 200μm z-piezo. Fluorescence for DAPI was acquired using an excitation wavelength of 405nm and 

emission was detected with a DAPI emission filter. Fluorescence for γH2AX was acquired using an excitation 

wavelength of 561nm and emission was detected with a TxRed emission filter. Images were analysed on VolocityTM 

software (version 6.3) to determine number of cells positive for γH2AX. Multiple analysis techniques were utilized, 

either by counting number of cells with 5 or more foci, or counting the number of very positive (bright red) cells, or by 

determining mean fluorescence intensity on FIJI (ImageJ2), through drawing a region of interest around nuclei and 

determining mean fluorescence intensity of each region. At least 300 cells were quantified for each technique.  
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2.9. Flow Cytometry of TgBAC(p21:GFP)sh506 
 

2.9.1. Dissociation of zebrafish larvae 
 

Zebrafish are sacrificed by immersion in 1.33g/l 3-amino benzoic acid ethyl ester (in E3 media) and up to 100 are placed 

on the lid of an ice-cold petri dish. Excess E3 media is removed and zebrafish are chopped up finely with a scalpel blade 

before being recovered in 1-3mls PBS, depending how many fish were pooled (approximately 1ml PBS per 30 larvae 

was used). Liberase TL (Roche, UK) is added to reaction vials containing zebrafish at 40μg/ml and incubated at 37°C 

for 35 minutes. Every 10 minutes during this incubation, zebrafish are disturbed by mixing to prevent clumping, no 

visible features of the zebrafish remain after this period. The reaction is stopped by addition of Fetal Bovine Serum 

(FBS) (Sigma-Aldrich, UK) to a final concentration of 10% and the suspension is filtered through a 40μm filter. The 

suspension is then centrifuged at 1,500rpm for 5 minutes, before cells are re-suspended in media for flow cytometry 

(L15 media, 20% FBS, 5mM EDTA).  

 

2.9.2. Flow cytometry of live cells from dissociated zebrafish larvae 
 

To assess TgBAC(p21:GFP)sh506 suspensions following dissociation, cells were incubated with 7-Aminoactinomycin D 

(7AAD, ThermoFisher Scientific Inc., USA) at a concentration of 5μl per million cells for 5 minutes before being 

examined by a LSRII (BD) flow cytometer (BD Biosciences, San Jose, CA, USA). Gating was used to ensure only live cells 

were assessed. Debris was removed from analysis by gating out regions that were too small to be cells and were 

present in a control sample of live cell media alone. Secondly, a gate was used to remove non-spherical objects, which 

were usually clumped cells, by removing objects that did not have a 1:1 ratio of forward scatter height to area. The 

viability dye 7AAD allowed removal of dead cells from later analyses; it was excited by a 488 laser and detected by a 

695/40nm filter. A 7AAD negative sample determined the amount of fluorescence required for a cell to be deemed 

live or dead in this system. The same was then carried out for GFP fluorescence, using both irradiated and unirradiated 

wild-type siblings to remove any background fluorescence from analysis. GFP fluorescence was excited by a 488 laser 

and detected by a 530/30nm filter. Though the detectors used for both fluorophores are spectrally separate, 

assessment for compensation was carried out because the same laser was exciting them. Detection of 7AAD and GFP 

fluorescence were plotted together and showed no overlapping signal the detectors. Data were analysed using FlowJo 

software (TreeStar).  

 

 

 

 



62 
 

2.10. Immunofluorescence of sorted cells for γH2AX, PCNA and IL6 
 

A strategy was devised to be able to assess multiple markers of senescence in individual cells from 

TgBAC(p21:GFP)sh506 (Figure 2.8). 

Figure 2.8. Diagram depicting workflow to determine proportion of GFP positive cells from TgBAC(p21:GFP)sh506

that are positive for multiple senescence markers in the same cell. Zebrafish were irradiated at 2 days post fertilisation

(dpf) before being dissociated into cell suspension at 5dpf. The suspension was then gated such that only live cells were

sorted according to GFP intensity. GFP negative populations were defined as cells with a GFP intensity seen in wild-type

zebrafish, GFP dim populations were defined as cells with a GFP intensity above what was seen in wild-type fish and the

maximum intensity seen in unirradiated TgBAC(p21:GFP)sh506 zebrafish. GFP bright populations were defined as those

with an intensity that is only seen in irradiated TgBAC(p21:GFP)sh506 zebrafish.  Cells were fixed and cytospun onto

microscope slides, before immunofluorescence was carried out to assess protein expression of pH2AX, IL6 and  PCNA

in the sorted populations. Diagram created with BioRender.com.

 

Figure 2. 8. Diagram depicting workflow to determine proportion of GFP positive cells from TgBAC(p21:GFP)sh506 that are positive for multiple 
senescence markers in the same cell. 

 

 

 

 

 

 

 



63 
 

2.10.1 Fluorescence Activated Cell Sorting  
 

To sort cells of differing GFP intensities, TgBAC(p21:GFP)sh506 zebrafish were dissociated as described above. Cells 

were incubated with 7-Aminoactinomycin D (7AAD, ThermoFisher Scientific Inc., USA) at a concentration of 5μl per 

million cells for 5 minutes before being examined by a FACSAria IIu flow cytometer (BD Biosciences, San Jose, CA, USA). 

The gating strategy described above was used and cells were sorted at 4°C using the slowest flow rate and largest 

nozzle available to minimise further stressing the cells. GFP negative populations were defined as cells with a GFP 

intensity seen in wild-type zebrafish, GFP dim populations were defined as cells with a GFP intensity above wild-type 

fish and the maximum intensity seen in unirradiated TgBAC(p21:GFP)sh506 zebrafish. GFP bright populations were 

defined as those with an intensity that is only seen in irradiated TgBAC(p21:GFP)sh506 zebrafish. Between 50,000 (GFP 

bright) and 500,000 (GFP dim and negative) cells would be sorted per group from pools of up to 100 fish. Post-sort 

efficiency was determined by placing sorted cells back through the FACSAria IIu flow cytometer and examining the 

proportion of cells that were specific to their originally sorted group, GFP negative, GFP dim or GFP bright. 

 

2.10.2. Fixing and cytospinning of sorted cells onto microscope slides 
 

Sorted cell populations from TgBAC(p21:GFP)sh506 were kept on ice and centrifuged at 4000rpm (4°C) and washed 

with 1ml ice-cold PBS. Cells were centrifuged (4000rpm, 4°C) and fixed with 500μl 4% paraformaldehyde (PDA) for 20 

minutes on ice. Cells were centrifuged (4000rpm, 4°C), PFA was removed and cells were washed with 1ml PBS, before 

another centrifugation (4000rpm, 4°C) and resuspension in 200μl PBS for cytospinning onto microscope slides. 

Cytospin receptacles were assembled and the suspension of fixed cells were added to the cytospin slide centrifuge 

(Cytospin 3, Shandon Southern Instruments, Inc, Sewickley, PA, USA). Cells were centrifuged at 500rpm for 5 minutes 

with medium acceleration onto SuperFrost Ultra Plus™ adhesion slides (ThermoFisher Scientific Inc., USA) before being 

dried face up in the dark overnight at room temperature (22°C). 

 

2.10.3. Immunofluorescence of sorted cells  
 

Following overnight drying, cytospun cells from TgBAC(p21:GFP)sh506 were then permeabilised with 0.5% Triton X-

100 (Sigma-Aldrich) in PBS for 10 minutes at room temperature. The area around cells on the slide were defined with 

a hydrophobic pen (ThermoFisher Scientific Inc., USA) and then blocked for 1-2 hours at room temperature (PBS with 

3% Bovine Serum Albumin, 5% Goat Serum, 0.3% Tween-20). Adhesion slides were then incubated with primary 

antibodies overnight in the dark at 4°C in a humid incubating chamber. Combination of antibodies against Proliferating 

Cell Nuclear Antigen (PCNA, Santa Cruz, CA, USA, 1:200 dilution) and Histone H2A.XS139ph (phospho Ser139) antibody 

(Genetex, CA, USA, 1:300 dilution) or Proliferating Cell Nuclear Antigen (PCNA, Santa Cruz, CA, USA, 1:200 dilution) 

and Interleukin 6 (Abcam, MA, USA, 1 in 500 dilution) or Green Fluorescent Protein (GFP, Sigma-Aldrich, UK, 1:500 
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dilution) were used. The next day, antibodies were washed 3 times for 10 minutes each at room temperature in 0.1% 

Tween-20 (Sigma-Aldrich, UK) in PBS. A hydrophobic pen was used to re-define area of cells on the adhesion slides, 

before overnight incubation in secondary antibodies were carried out at 4°C. Combinations of antibodies against Alexa 

Fluor 488 goat anti-chicken (Abcam, MA, USA, 1 in 500 dilution), Alexa Fluor 568 goat anti-rabbit (Invitrogen, UK, 1:500 

dilution) and Alexa Fluor 647 goat anti-mouse (Invitrogen, UK, 1:500 dilution) were used. The next day, antibodies 

were washed 3 times for 10 minutes each at room temperature in 0.1% Tween-20 (Sigma-Aldrich, UK) in PBS, before 

being stained with DAPI (Sigma-Aldrich, UK, 1:2000 dilution in PBS) for 10 minutes at room temperature. Slides were 

then washed with PBS for 10 minutes and then mounted in Vectashield (Vector laboratories, UK) and sealed with a 

22x22mm No. 0 coverslip (Scientific Laboratory Supplies, UK) using nail varnish. Slides were imaged on a Deltavision 

microscope using an UplanSApo 40x oil objective (NA 1.3) and Photometrics CoolsnapHQ CCD camera. Z stacks were 

imaged at 1μm and deconvolution software was used for the γH2AX staining to make the foci more visible. Excitation 

by a 100W Hg lamp was used. DAPI fluorescence was detected by a 360/457nm filter, GFP was detected by a 

490/528nm filter, γH2AX and IL6 fluorescence was detected by a 555/617nm filter, PCNA fluorescence was detected 

by a 640/700nm filter. Quantification was carried out with maximum intensity projections of 15 z-stacks (15μm 

thickness). Negative control slides without primary antibody incubation was used to determine background 

fluorescence and settings were determined by using an example image from each group, before all other images are 

given an automatic and random code for quantification. Cells positive for γH2AX were deemed to have 5 or more foci 

in a single nucleus (stained with DAPI), cells positive for IL6 had clear red fluorescence in the regions around the 

nucleus, whilst cells positive for PCNA had clear nuclear staining. At least 300 cells were quantified per group. 

 

2.11. Solutions 

ISH solutions 

 PreHyb: 50% formamide, 5X SSC, 0.1% Tween 20, Citric acid to pH6, 50ug/ml heparin, 500ug/ml tRNA 

 ProbeHyb: 50% formamide, 5X SSC, 0.1% Tween 20, Citric acid to pH6, 50ug/ml heparin, 500ug/ml tRNA, 1:200 

dilution of probe in formamide 

 WashHyb: 50% formamide, 5X SSC, 0.1% Tween 20, Citric acid to pH6 

 20X SSC: 35.06g NaCl, 17.64g NaCitrate, pH7 using citric acid, dH2O to 200mls 

 

E3 (10X) – diluted to 1x using dH2O, and three drops of methylene blue per litre to avoid fungal contamination 

 50mM NaCl 

 1.7mM KCl 

 3.3mM CaCl2 

 3.3mM MgSO4 
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PBS 

 NaCl 8g/l 

 Na2HPO4 1.4g/l 

 KCl 0.2g/l 

 KH2PO4 0.2g/l 

 

2.12. Software 
 

1- Graph pad & Prism (version 8.1) was used for all data entry and statistical analysis.  

2- NIS elements (version 4.3) was used where described for experiments performed using the Nikon wide field 

fluorescence microscope.  

3- Velocity™ Software (version 6.3) was used where described to image experiments performed using the UltraVIEW 

VoX spinning disk confocal microscope (Perkin Elmer, Cambridge, UK). 

4- FIJI (ImageJ2) was used where described to analyse experiments for mean pixel intensity, mean fluorescence 

intensity, or counting positive cells from immunofluorescence.  

 

2.13. Statistical Analysis 
 

Prism software (version 8.1) was used for the generation of all survival curves, column and grouped graphs, as well as 

all statistical analyses used. The statistical test used was dependent on the number of groups analysed, whether the 

data was parametric or non-parametric (for example in the context of ranked data), whether the data had Gaussian 

distribution or not. Analysis and post-hoc tests carried out for individual data sets are specified in their respective 

figure legends. The Dunnett’s posthoc test was used for comparing means to a control mean, whereas the Sidak’s test 

was used for making a selected set of comparisons, and Tukey’s test was used for comparing all mean values with one 

another. The following identifies the significance values: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. All error 

bars represent standard deviation unless stated otherwise. 
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Chapter 3: Irradiation induces up-regulation of multiple senescence markers in 

zebrafish larvae 

3.1.1. Introduction  
Removing senescent cells from older people is a viable option for tackling age-associated multi-morbidity and 

extending healthspan. This is due to senescent cells being causally linked to multiple age-associated disorders, 

including Alzheimer’s Disease, Parkinson’s Disease, Osteoarthritis, Osteoporosis, Ideopathic Pulmonary Fibrosis and 

cancer to name a few (Bussian et al., 2018; Schafer et al., 2017; Jeon et al., 2017; Childs et al., 2016; Chinta et al., 

2018). Currently the treatment regime for older people, many of whom suffer from multiple diseases at once, is to 

treat diseases individually. However, this has led to the issue of polypharmacy, where multiple drugs being taken 

together exacerbate side effects and reduce their therapeutic efficacy, by interacting with Cytochrome P450 (Doan et 

al., 2013). However, as ageing is a risk factor that is common to these diseases, then targeting a mechanism underlying 

ageing that leads to increased susceptibility to these diseases, such as the accumulation of senescent cells, could 

overcome these issues as only one treatment option theoretically would be required to tackle multimorbidity directly 

(Bellantuono, 2018). As our population is ageing and multimorbidity is becoming more prevalent, we have an urgent 

need to understand senescence and improve the efficacy of senolytic compounds (Centre for Ageing Better, 2019).  

 

Currently, studying senescent cells in a whole organism context is difficult because there is no clear marker to study 

them easily in vivo, rather combinations of markers are required (Sharpless and Sherr, 2015). Further, mouse models 

of senescence accumulation do not permit live tracking of in vivo senescence at the cellular level in real time, thereby 

limiting their ability to study senescent cell interactions with immune cells for example (Baker et al., 2006; Demaria et 

al., 2014; Liu et al., 2019). The p16-3MR transgenic mouse model for example uses luciferase to detect p16 positive 

cells, however this signal is diffuse making them only detectable at the population level, and p16 positive cells cannot 

be sorted by luciferase signal to study them at greater resolution (Demaria et al., 2014). This reporter also expresses 

RFP in p16-positive cells but this cannot be detected well without first culling the animal and fixing the tissue, and 

therefore you cannot track senescent cells within the same animal over time easily. Though one could sort fluorescent 

p16-positive cells, which allows for more in-depth assessment other senescence markers, this loses spatial information 

(Baker et al., 2011, Liu et al., 2019). To be able to study these cells live and in vivo, a transgenic zebrafish reporter 

could instead be utilised as they are, unlike mice, fertilised externally and transparent at early developmental stages 

(Meyers, 2018).  

 

To be able to use the transparency of young zebrafish to study in vivo senescence, a means to induce senescent cell 

accumulation during these early stages is required. A rapid assay for in vivo senescence accumulation would also make 
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the system compatible with in vivo compound screens, where off target toxicities and changes in organism health 

could be identified earlier in the drug development process (Vaz, Outeiro and Ferreira, 2018). This would improve the 

efficiency of identifying new senolytics, as efforts would not be wasted in translating compounds with in vitro efficacy 

into a more translatable in vivo context (Fuhrmann-Stroissnigg et al., 2017). There is only limited evidence of early 

senescence accumulation in zebrafish larvae outside of assessing SA-β-Gal activity, which is not specifically required 

for senescence (Lee et al., 2006; Kishi et al., 2008; Koshimizu et al., 2011). As such, a more in-depth characterisation 

of ectopic senescence induction in zebrafish larvae is required. To induce senescence accumulation in young zebrafish, 

I propose using total body irradiation. Irradiation has been used as a rapid inducer of in vivo senescence accumulation 

in mice and evidence suggests that zebrafish respond similarly to this senescence inducer (Le et al., 2010; Demaria et 

al., 2014). For example, increased activity of SA-β-Gal in adult zebrafish skin was described following irradiation (Tsai 

et al., 2007). Although this is not a specific senescence marker alone, irradiation in mice also increased SA-β-Gal 

activity, as well as other more specific markers of senescence including P16 (Demaria et al., 2014). At larval stages, an 

alternative oxidative stressors such as H2O2 can increase SA-β-Gal activity in zebrafish larvae also (Driessens et al., 

2009; Koshimizu et al., 2011). Though different senescence inducers can lead to different senescence phenotypes, one 

could propose that irradiation could induce senescence in a comparable manner in early development (L A Maciel-

Barón et al., 2016) 

 

To develop a panel of markers for identifying and characterising irradiation-induced senescence in zebrafish larvae, 

one must compare which genes are associated with irradiation-induced senescence in mammals. For example, key 

components of the DNA damage response, such as p53, p21, γH2AX that are important in irradiation-induced 

mammalian senescence, have also been implicated in replicative senescence in zebrafish, and so will be assessed 

following irradiation (Suzuki et al., 2001; Henriques et al., 2013; Demaria et al., 2014). Although the locus for zebrafish 

p16 (cdkn2a/b) is not well characterised, mammalian P16 is up-regulated in response to irradiation and is also involved 

in the anti-cancer role of senescence (Serrano et al., 1996; Demaria et al., 2014). Inactivation of cdkn2a/b by CRISPR 

correlated with melanoma formation in adult zebrafish, implying that there may be a conserved role and therefore 

should be examined in the context of irradiation of zebrafish larvae also (Ablain et al., 2018). Finally, markers for the 

senescence-associated secretory phenotype (SASP) such as interleukins 1, 6, 8 and matrix metalloproteinases 2, 3, 9, 

13 are implicated in both in irradiation-induced senescence in mammals and senescence, and have zebrafish 

orthologues (Appendix table 3.1; Chen et al., 2002; Lieschke and Currie, 2007; Coppé et al., 2008; Varela et al., 2012; 

Özcan et al., 2016). Examining a combination of these factors, alongside SA-β-Gal activity, would provide evidence to 

support the proposal that irradiation of zebrafish larvae can cause senescence accumulation, as is seen in mammals. 
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3.1.2. Aims 
To be able to use zebrafish as a novel tool for screening modifiers of senescence, a clear and rapid assay for senescence 

induction is required. Senescence accumulation can occur in response to irradiation in multiple mammalian systems. 

Zebrafish have a competent DNA damage response pathway, and irradiation of zebrafish larvae shows earlier 

accumulation of ageing-phenotypes associated to senescence such as cognitive decline. However, an irradiation assay 

to ectopically induce senescence accumulation in zebrafish during early development has not yet been established. I 

hypothesise that irradiation of zebrafish larvae will induce accumulation of senescence as is described in mammalian 

in vivo and in vitro systems. The aims of this chapter are: 

 To characterise an assay for irradiating zebrafish larvae that causes up-regulation of senescence markers 

without affecting survival 

 To develop methods for identifying induction of multiple senescence markers following irradiation of zebrafish 

larvae 

 To establish whether there are particular regions of the zebrafish that are more sensitive to senescence 

induction by irradiation 

 To determine whether there are any signs of irradiation-independent senescence in developing zebrafish 

larvae 
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3.2. Optimising dosage and timing of γ-irradiation in zebrafish larvae 
No reports currently exist on the optimal dose and timing required for irradiation to induce senescence in zebrafish 

larvae, although senescence has been up regulated by other means in this model organism. I hypothesised that 

irradiation, at the appropriate dose and timing, can activate senescence-associated genes without causing significant 

loss in survival and viability.  

 

To establish an appropriate irradiation dose in 1dpf zebrafish, a dose response based on previous evidence of zebrafish 

survival following irradiation was carried out (Daróczi, 2006; Daroczi et al., 2006, 2009). 1dpf zebrafish were treated 

with 5, 12 or 20Gy irradiation before their survival and viability was assessed until before the onset of independent 

feeding, 5dpf (Figure 3.1). By 5dpf, only 20Gy irradiation caused a significant reduction in viability compared to 

unirradiated controls, where only 20% of fish were deemed viable. There was a 20% loss in viability in the other groups, 

but this was not an irradiation-specific effect as unirradiated controls showed comparable levels of viability by 5dpf. 

12Gy was deemed an appropriate dose to treat zebrafish larvae, with it being the highest dose that did not cause 

significant loss in viability.  
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Figure 3.1: 20Gy irradiation at 1 day post-fertilisation causes loss in viability by 5 days

post-fertilisation. Zebrafish were removed from chorions and irradiated at 1dpf with a range of doses

of Cs 137 -Irradiation. Survival was assessed daily until 5dpf, where the proportion of viable and

healthy fish was assessed. Data are shown as Mean +/- SD and examined by one-way ANOVA with

Dunnet's test for multipe comparisons with the control group  (0Gy), at least 50 fish were examined

across three independent repeats, *** p>0.001.

 

Figure 3. 1. 20Gy irradiation at 1 day post-fertilisation causes loss in viability by 5 days post-fertilisation 
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3.2.2. Identifying an optimal stage of development for irradiation in zebrafish larvae 
To establish an optimal time at which zebrafish can be treated with irradiation, 12Gy irradiation was given at 1, 2, or 

3dpf (Figure 3.2). 12Gy did not give a loss in survival by 5dpf when given at 1, 2 or 3dpf. A more in-depth assessment 

of 1dpf irradiated zebrafish showed signs of toxicity such as oedema and deflated swim bladder by 5dpf. A third of fish 

(n = 100) had under-developed swim bladders, and though not statistically significant there were some cases of more 

severe toxicities such as spinal curvature and stunted growth. 12.5% of fish had a blueish colouring to their skin, which 

looked like the methylene blue in the media was being absorbed, a possible indication of dead or damaged tissue 

(Davies et al., 1980). 12Gy irradiation of zebrafish at 2dpf showed much lower signs in toxicity, where only 10% of 

irradiated fish presented with underdeveloped swim bladders. Irradiation at 3dpf showed even less signs of toxicity. 

Importantly, enough time is required for senescence to be induced before the zebrafish are protected by ASPA such 

that it remains a high throughput assay. Therefore, 12Gy irradiation at 2dpf was deemed most appropriate for our 

senescence induction assay with the caveat that fish showing signs of ill health, such as deflated swim bladders, are 

removed from later analyses. 
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Figure 3.2. Survival and health status of zebrafish following 12Gy irradiation until 5dpf. A) Zebrafish were

irradiated at either A,B) 1dpf, C,D) 2dpf or E,F) 3dpf. A,C,E) Survival was assessed daily until zebrafish reached

5dpf. Kaplan Meier curves displayed with % survival inserted. B,D,F) Viable zebrafish at 5dpf were assessed for

signs of poor health that are commonly associated with irradiation. G) Diagram depicting the optimal timing for an

irradiation assay that doesn't induce excess toxicity whilst still allowing time for senescence to be induced by 5dpf.

Images of zebrafish from different stages adapted from ZFIN. B,D,F) Data was examined by 2way ANOVA with

Bonferroni's test for multiple comparisons. n=300 over three independent experiments **** p < 0.0001.Error bars

are standard deviation.

 

Figure 3. 2. Survival and health status of zebrafish following 12Gy irradiation until 5dpf. 

3.3. Irradiation activated senescence-associated cell-cycle inhibitors in zebrafish larvae 
 

Once a non-toxic dose of irradiation had been determined, I sought to assess whether there were signs of stress-

induced senescence in irradiated zebrafish 3 days after irradiation (3dIR). The senescence-associated genes cdkn1a 

(p21) and cdkn2ab (p16-like) are commonly used as markers of senescence, and so I used quantitative PCR (qPCR) to 

study their transcriptional activation following irradiation. 

3.3.1. Primer optimisation for quantitatively assessing p21 and p16-like mRNA expression 
 

To verify whether the selected primers for were amplifying the desired cDNA efficiently, serial dilutions of irradiated 

zebrafish cDNA was performed followed by PCR amplification (Figure 3.3). A reaction is considered efficient with a 

coefficient between -3.3 and -3.9. The efficiency of p21 was 85% (coefficient =-3.758), and 95% efficient for p16-like 

(coefficient -3.448) (Figure 3.3A, B). βactin was chosen as a reference gene to work out fold expression changes of p21 

and p16-like as there was no difference in expression between cDNA from irradiated and unirradiated controls, the 

primers for this gene was 95% efficient also (-3.514) (Figure 3.3C). These data suggest the primers amplify the specific 

gene of interest efficiently within the cDNA concentrations analysed. To assess technical reproducibility, PCRs of the 

same cDNA were repeated over different days, and Ct values were assessed, these showed very little variability with 

R2 values of at least 0.95, suggesting proficiency of both the experimental protocol and handler (Figure 3.3A-C).  
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Figure 3. 3. Technical qPCR reproducibility of 5dpf zebrafish. 
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Figure 3.3. Technical qPCR reproducibility of 5dpf zebrafish. qPCR was carried out to determine

primer efficiency (A,C,E) and specificity (B,D,F) to assess expression the senescence markers p21

(A,B), p16-like (C,D). The housekeeping gene actin was also assessed to act as a reference gene.

mRNA from pools of 50 irradiated 5dpf zebrafish were used to make cDNA for PCR amplification,

unirradiated zebrafish were used for comparison. A,C,E) The same cDNA was used at different

dilutions (1:10, 1:100, 1:1000, 1:10,000) to determine whether the primers can amplify efficiently.

B,D,F) A melting reaction was performed to determine whether primer-cDNA binding was specific. At

least 50 fish were pooled for each of the three independent repeats..

 

 

3.3.2. 3dpIR 12Gy irradiation significantly up-regulates p21 and p16-like mRNA expression 
To determine the expression of the senescence-associated genes p21 and p16-like in 3dpIR zebrafish, quantitative PCR 

was carried out (Figure 3.4). A dose response for p21 expression was assessed following 3, 5 or 12Gy irradiation 

compared to unirradiated controls and the reference gene βactin. A dose-dependent increase in p21 mRNA expression 

was detected in AB(wt) strain larvae, with the largest mRNA expression seen at 12Gy (Figure 3.4A). 

To assess whether there are spatial differences in irradiation induced p21 expression, I examined RNA extracted from 

zebrafish tails only (Figure 3.4B). Again, a dose-dependent increase of p21 mRNA was seen, and 12Gy irradiation gave 

the highest induction. mRNA expression from the zebrafish tail was 0.066 (SD 0.004) increase following 12Gy 

irradiation, which is comparable to changes from whole zebrafish mRNA (0.066, SD 0.009) indicating there isn’t much 

difference in this area of the fish compared to the whole organism. An optimal location to optimised imaging-based 

senescence detection techniques would be the tail as it is the thinnest region of the organism. To ensure this induction 

of p21 mRNA wasn’t a strain-specific effect of AB(wt) zebrafish, I also examined changes in expression in nacre-strain 

zebrafish, and found a comparable mRNA expression patterns for p21 (Figure 3.4C). p16-like mRNA was also assed in 

nacre-strain zebrafish, and the mRNA expression was again highest in the 12Gy groups (0.003, SD 0.001) compared to 

unirradiated controls (0.0009, SD 0.0003) (Figure 3.4D). Interestingly, the expression of p16-like was around 20 fold 

lower than that of p21. Together, this evidence suggests that 12Gy irradiation at 2dpf can induce expression of central 

senescence markers by 5dpf.  
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Figure 3.4. Quantitative expression changes of p21 and p16-like mRNA following irradiation. Zebrafish were

irradiated at 2 days post-fertilisation  (2dpf) and assessed for the senescence markers p21 (A-C) and p16-like (D).

Changes in expression are relative to the reference gene actin.  Expression was assessed in two different

zebrafish strains, AB(wild-type) (A,B) and  Nacre (C,D). mRNA from pools of 50 whole zebrafish (A,C,D) and

zebrafish tails (B) were used for each independent replicate. Relative expression  was calculated by 2^-Ct,

relative to -actin expression and unirradiated controls. Data was examined by one-way ANOVA with Sidak's

multiple comparisons test. At least 50 fish were pooled for each of the three-four independent repeats. Error bars

represent standard deviation.
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Figure 3. 4. Quantitative expression changes of p21 and p16-like mRNA following irradiation. 
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3.3.3. Endogenous p21 mRNA expression is regulated by the circadian rhythm, which is less 
pronounced following irradiation  
There is evidence that suggests that p21 expression is influenced by the circadian rhythm, independently of 

senescence (Laranjeiro et al., 2013). To determine the best time of day to assess irradiation-induced expression of 

senescence-associated genes, a time-course for p21 and p16-like mRNA expression following irradiation was carried 

out. Following irradiation at 2 or 3dpf, RNA was extracted every morning and evening until the zebrafish reached 5dpf.  

24 hours following 12Gy irradiation at 2dpf, both p21 and p16-like mRNA expression is increased 6 fold, which 

decreases by 72 (3 days) post irradiation (Figure 3.5A, B). Fold expression change of p21 did seem to fluctuate 

according to the time of day (Figure 3.5A), which was not seen with p16-like (Figure 3.5B). Fold expression change 

tended to increase during the evening time-points (30 and 54hpIR), at its peak being up to 7x higher than during 

morning time-points (24, 48, 72hpIR). With p16-like, it seemed that fold expression only decreased between 54 and 

72hpIR indicating potentially different regulatory mechanisms between the two senescence-associated genes. 

Examining fold expression of p21 in unirradiated and irradiated fish independently showed that there is oscillating 

expression according to the time of day in both groups (Figure 3.5C), though expression in the irradiated fish remained 

higher throughout. P16-like again did not show this oscillation (Figure 3.5D), however interestingly it did seem to show 

an up-regulation at 5dpf in unirradiated fish which would explain the effect seen in Figure 3.5B. Although the fold 

change in expression of p21 and p16-like mRNA being comparable at 72hpIR (3dpIR), the actual expression levels of 

p16-like following irradiation (0.002, Figure 3.5D) was around 35 times lower than that of p21 mRNA (0.07, Figure 

3.5C). When comparing fold expression change of p21 and p16-like mRNA expression relative to the 24hpIR time-point, 

I was able to compare the magnitude of this change in expression during the day in irradiated and non-irradiated 

zebrafish. With p21 expression, the oscillations over time was less pronounced in irradiated zebrafish and no longer 

significantly different between morning and evening time-points (Figure 3.5E). Again, this effect was not seen with 

p16-like expression, which seemed consistent up until 70hpIR where unirradiated fish showed an increase in 

expression (Figure 3.5F). I also assessed whether irradiation at 3dpf had the same effect on cyclic p21 mRNA 

expression, as this would allow an extra day for irradiation-independent cyclic p21 regulation to be established before 

irradiation-induced p21 transcription. Irradiation at 3dpf showed comparable results to irradiation at 2dpf, with 

oscillating irradiation-independent p21, but not p16-like mRNA expression (Figure 3.6). Interestingly, unirradiated 

controls in these zebrafish did not show an increase in p16-mRNA between the final two time-points as was seen in 

Figure 3.5B. Therefore, as is evidenced in the literature, p21 seems to be regulated by the time of day but expression 

induced by irradiation is always greater. 
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Figure 3. 5. Temporal regulation of senescence-associated genes p21 and p16-like following irradiation at 2dpf. 
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Figure 3.5. Temporal regulation of senescence-assocaited genes p21 and p16-like following

irradiation at 2dpf. Zebrafish were irradiated at 2 days post-fertilisation and assessed for p21 and p16-like

expression every morning (10am-12pm) and afternoon (4-6pmuntil they 5 days post-fertilisation. A) Fold

expression change in p21, relative to 0Gy control and -actin reference gene (Ct). B) Fold expression

change in p16-like, relative to 0Gy control and -actin reference gene (Ct). C) p21 fold induction, relative

to -actin  (2^-Ct).  D) p16-like fold induction, relative to -actin  (2^-Ct).  E) Fold change in p21

expression, relative to intial 24hpIR timepoint. F) Fold change in p16-like expression, relative to intial 24hpIR

timepoint. Data were examined by one-way ANOVA with Sidak's test for multipe comparisons. At least 50

fish were pooled for each of the three independent experiments, * p>0.05; ** p>0.01; *** p>0.001. Error

bars represent standard deviation.
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Figure 3.6. Temporal regulation of senescence-assocaited genes p21 and p16-like following

irradiation at 3dpf. Zebrafish were irradiated at 3 days post-fertilisation and assessed for p21 and p16-like

expression every morning  (10am-12pm) and afternoon (4-6pm) until they 5 days post-fertilisation. A) Fold

expression change in p21, relative to 0Gy control and -actin reference gene (Ct). B) Fold expression

change in p16-like, relative to 0Gy control and -actin reference gene (Ct). C) p21 fold induction, relative

to -actin  (2^-Ct).  D) p16-like fold induction, relative to -actin  (2^-Ct).  Data were examined by

one-way ANOVA with Sidak's test for multipe comparisons.  At least 50 fish were pooled for each of the

three independent experiments. * p>0.05; ** p>0.01. Error bars represent standard deviation.

 

Figure 3. 6. Temporal regulation of senescence-associated genes p21 and p16-like following irradiation at 3dpf. 
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3.4. Irradiation-induced p21 mRNA expression is located spatially in head and intestinal regions of 
3dpIR zebrafish larvae 

3.4.1. Optimisation of proteinase K treatment to detect spatial p21 mRNA expression  
To determine whether there were particular tissues or spatial regions of irradiation-induced expression of senescence-

associated genes, I optimised whole-mount in situ hybridisation of 3dpIR zebrafish larvae. I used a published probe for 

p21 (Laranjeiro et al., 2013), and first optimised the correct incubation protocol for proteinase K digestion, an 

important step that determines mRNA accessibility for probe binding and can cause background staining if suboptimal 

(Figure 3.7). 4 treatment regimens were examined, using two different concentrations (10 or 15µg/μl) and 

temperatures (22 or 37°C) across 55 to 90 minute incubation length. These conditions were chosen based on evidence 

from colleagues using this technique at 5dpf for alternative genes of interest. A treatment of 10µg/μl for 75 minutes 

at 22°C (room temperature) provided the most specific staining in irradiated fish, compared to the sense probe, which 

should have no specific binding (Figure 3.7). Now, an optimal method for digesting fixed zebrafish larvae has been 

established for detecting specific p21 mRNA expression at 5 days post-fertilisation. 
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Figure 3.7. Optimisation of enzymatic digestion of 5dpf zebrafish larvae for p21 in situ hybridisation. Transmitted light

photomicropraphs of an in situ hybridisation for p21 mRNA in 12Gy-irradiated zebrafish following different proteinase k

treatment conditions, representative images shown. Expression of p21 mRNA (left panels) and a negative control sense probe

that has no binding parter (right panels) 3 days after 12Gy irradiation. A,B) 55 minutes 37 degrees 15ug/l. C,D) 90 minutes 22

degrees 15ug/l. E,F) 45 minutes 22 degrees 10ug/l. G,H) 75 minutes 22 degrees 10ug/l. 15-20 fish used per treatment

group. Scale 250m.

 

Figure 3. 7. Optimisation of enzymatic digestion of 5dpf zebrafish larvae for p21 in situ hybridisation. 
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3.4.2. Optimising analysis methods for detecting whole mount in situ hybridisation p21 mRNA expression 
To determine the best method for analysing changes in in situ hybridisation staining for p21 mRNA expression, two 

alternative analysis techniques were used in a pilot experiment to assess strength of staining after 5 or 12Gy irradiation 

(Figure 3.8). Firstly, I measured mean grey value of images around the head and intestinal regions whilst blinded, 

where there was a clear visual increase in purple staining (Figure 3.8A, B). This technique showed a statistically 

significant dose-dependent decrease in mean grey value following irradiation. To corroborate this technique, I blindly 

ranked these images according to strength of staining, so that the higher the rank, the stronger the staining (Figure 

3.8D). Like with mean grey value, ranking showed a significant dose-dependent increase in irradiation-induced p21 

expression at 3dIR. Out of the two techniques, I employed the ranking technique for final analyses, as it was the more 

discriminatory of the two (Figure 3.8A, B). 
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Figure 3.8. Comparison of analysis techniques to assess the strength of p21 mRNA signal by in situ

hybridsation. A,B)  Transmitted light photomicrographs of an in situ hybridisation for p21, example images

where region of interest  (highlighted in yellow) was quantified for mean grey value, where the stronger the

staining, the lower the value will be.  Regions were defined as the head region excluding the eyes to the end

of the main protrusion of the yolk sac. A) Example image of 0Gy fish, 3dpIR. B) Example image of 12Gy

fish, 3dpIR. C) Quantification of mean grey value. D) Corresponding values of blind ranking in the same fish.

15 fish were used per treatment group.  Data were examined by one-way ANOVA. **** p<0.0001. Scale

250m. Error bars standard deviation.
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Figure 3. 8. Comparison of analysis techniques to assess the strength of p21 mRNA signal by in situ hybridisation. 
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3.4.3. Dose-dependent increase in p21 mRNA expression is predominantly located in pharyngeal arches, 
intestine, and head regions of 3dpIR zebrafish larvae 
To determine whether p21 induction is different across regions of 3dpIR zebrafish, the optimised in situ hybridisation 

protocol and ranking analysis was carried out following 5 or 12Gy irradiation. A clear dose-dependent increase in p21 

staining following irradiation was seen compared to unirradiated controls, whilst the negative control p21 sense probe 

showed no staining whatsoever (Figure 3.9). This purple staining was particularly localised to the pharyngeal arches, 

brain, and intestinal regions of the zebrafish, depicted by the red arrows. It did also seem that there was some 

expression in the unirradiated control group, compared to the sense probe, most notably in the regions where the 

pharyngeal arches are located, which corroborates with previous qPCR data that there is an irradiation-independent 

component to p21 mRNA regulation.  
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Figure 3. 9. Whole-mount in situ hybridisation (WISH) of 5dpf zebrafish larvae shows dose-dependent p21 mRNA induction by irradiation. 
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Figure 3.9. Whole-mount in situ hybridisation (WISH) of 5dpf zebrafish larvae shows dose-dependent p21 mRNA

induction by irradiation. Zebrafish with irradiated at 2 days post-fertilisation with 5  (B) or 12Gy  (C) irradiation,

unirradiated zebrafish werre used for comparison. A DIG-labelled antisense RNA probe was used to detect p21

expression, with sense probes used as a negative control. A-D)Transmitted light photomicropraphs of an in situ

hybridisation, representative images of each group are shown and coloured on graph. Red arrows depict areas of

increased staining. E) Analysis of zebrafish images (4.5x magnification) was carried out through blind ranking according

strength of purple staining, such that the fish with the strongest staining correlated with the highest rank. Data was

examined by Kruskal Wallace test with Dunn's mutiple comparisons. ****P ≤ 0.0001. 15 fish were used for each of the

three independent experiments. Scale 250m. Error bars standard deviation.

 

3.4.4. An in situ hybridisation probe was unable to detect changes in p16-like expression in 3dpIR zebrafish 
larvae 
To assess spatial expression of p16-like mRNA expression, an in situ hybridisation probe was developed (Figure 2.5, 

2.6). Interestingly, unlike p21, the p16-like probe did not show specific increases in expression following irradiation, 

with the sense probe consistently showing a similar pattern to the antisense probe (Figure 3.10). Ranking of the images 

showed insignificant differences following irradiation in one independent experiment, but then less staining in 

another. I believe this is an artefact due to there being such small differences in staining between the groups, and as 

such, the analysis method is less reliable than with p21 staining. The spread of the data is such that there was not clear 

separation between the two groups, despite knowing that by qPCR, expression was expected to increase. This indicates 

that p16-like may not be as useful as p21 in detecting in vivo senescent cells in irradiated zebrafish larvae at 5 days 

post-fertilisation. 
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Figure 3. 10. Blind ranking of in situ hybridisation of p16-like did not show reliable changes in spatial expression following irradiation. 

Figure 3.10. Blind ranking of in situ hybridisation for p16-like did not show reliable changes in spatial expression

following irradiation. p16-like mRNA expression was detected through a DIG-labelled antisense mRNA probe, with sense

probes used as a negative control. Analysis of ventral zebrafish head images (4.5x magnification) was carried out through blind

ranking according strength of purple staining, such that the fish with the strongest staining correlated with the highest rank. A)

Quantification of  20 zebrafish stained for p16-like expression either irradiated (12Gy) or not  (0Gy) over two independent

repeats. B) Quantication of zebrafish from the Irst independent experiment, with images that represent mean rank  and coloured

on graph. C) Quantication of zebrafish from the second independent experiment, with images that represent median rank  and

coloured on graph.  Error bars represent median rank and 95% confidence intervals. Data was examined by Mann-Whitney

test. ** p<0.01. Scale 250m. Error bars standard deviation.

 

 

3.5. Irradiated zebrafish larvae show increased senescence-associated β galactosidase activity in 
comparable regions to p21 mRNA expression 
To provide further evidence of irradiation-induced senescence in 3dpIR zebrafish larvae, a whole-mount senescence-

associated β-Galactosidase (SA-β-Gal) assay was carried out to determine whether this senescence-associated marker 

is also up regulated in regions of high p21 mRNA expression. Blind ranking of the images showed a significant increase 

for SA-β-Gal staining in the head region of the 3dpIR zebrafish (Figure 3.11 A-D). Looking at the median ranked fish 

(Figure 3.11A, B), there is a clear increase in the amount of blue staining in the brain regions, and a few blue cells 

around the pharyngeal arches, areas previous shown to have high p21 mRNA levels. Interestingly, when looking at 

images of the whole zebrafish there seemed to be irradiation-independent expression in the intestine and the caudal 

haematopoietic tract (CHT) of 5dpf zebrafish (Figure 3.11 E, F). To confirm the ranking method is applicable for SA-β-

Gal staining, the head regions of these zebrafish were also quantified for mean grey value (Figure 3.12A, B). A sample 

of 35 fish were analysed for both their rank and mean grey value, which allowed a correlation to be drawn between 

the two analysis methods (Figure 3.12C). This information to assess correlation for in situ hybridisation techniques was 

not available (Figure 3.8C, D). This correlation suggested that both methods could be used to draw the same 

conclusion.  
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Figure 3.11. Senescence-associated -galactosidase activity in regions of p21-positivity. Transmitted light

photomicrographs of irradiated zebrafish stained for senescence-associated -Galactosidase activity, A-C) Representative

images of 3dpIR zebrafish, 0Gy (A) or 12Gy (B) irradiation at 2dpf, 12Gy fish without X-gal substrate added as negative

control  (C). D) Analysis of zebrafish images (11x magnification) was carried out by blinded ranking according strength of

blue staining, such that the fish with the strongest staining correlated with the highest rank. E,  F) Representative whole-body

images (4x magnification) of 3dpIR zebrafish, 0Gy (E), or 12Gy  (F) irradiation at 2dpf. Data examined with Mann-Whitney

test of ranks. 15-20 fish were used for each of the three independent experiments. **** p < 0.0001. Scale 200m. Error bars

standard deviation.

 

Figure 3. 11. Senescence-associated beta-galactosidase activity in regions of p21-positivity. 
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Figure 3.12. Blind ranking of SA--Gal staining correlataes with pixel intensity. A) Quantification of zebrafish head

region by pixel intensity, whereby the darker the pixel, the lower the mean grey value. B) Quantification of by blinded

ranking according strength of blue staining, such that the fish with the strongest staining correlated with the highest rank.

C) Correlation of mean grey value with rank for each fish.  Data examined with Mann-Whitney test, 15-20 fish were

used over two independent experiments. *** p < 0.001; **** p < 0.0001. Error bars standard deviation.
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Figure 3. 12. Blind ranking of SA-b-Gal staining correlates with pixel intensity. 
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3.6. Irradiated zebrafish larvae have an activated DNA damage response pathway at 3dpIR 
The canonical stress-induced senescence pathway following irradiation occurs through the DNA-damage response 

(DDR) pathway. To provide further evidence as to whether 3dpIR zebrafish contain stress-induced senescent cells, I 

analysed expression of a key component of the DDR, phosphorylated γH2AX foci in the nuclei through 

immunofluorescence.  

3.6.1. Detecting activation of γH2AX in whole mount zebrafish larvae 
To first optimise detection of the DNA damage foci, I imaged the tail fin of 3dpIR zebrafish (Figure 3.13). Being the 

thinnest tissue in the zebrafish, it is the clearest to image, and I previously showed increased p21 and p16-like mRNA 

expression in the tail region (Figure 3.13B). There was a dose dependent increase in the number of γH2AX positive 

cells in the tails of 3dIR zebrafish, but due to the number of cells imaged, maximum intensity projections proved 

difficult to count foci, which is a commonly used technique for determining γH2AX positive cells. Mean fluorescence 

intensity was instead examined (Figure 3.13C). Further, a pilot experiment was used to assess whether imaging of the 

head region of the zebrafish, where p21 expression was highest could show γH2AX foci (Figure 3.14). As was seen in 

the tail regions, irradiated zebrafish had higher expression of γH2AX foci and quantification of single slices permitted 

foci counting. Now that imaging and analysis have been optimised to detect γH2AX foci in regions of irradiated 

zebrafish larvae that are positive for p21 expression, an experiment using more zebrafish can be used to more robustly 

assess this senescence-associated protein. 
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Figure 3. 13. Pilot experiment shows imaging & quantification of zebrafish tail regions allows for detection of pyH2AX positive foci in 3dpIR 
zebrafish larvae. 

Figure 3.13. Pilot experiment shows imaging & quantification of zebrafish tail regions allows for detection

of H2AX positive foci in 3dpIR zebrafish larave. A) Reflected light photomicrograph of a 5 days

post-fertilisation zebrafish larvae to demonstrate where imaging was first optimised in the tail fin, highlighted in

red. B-D) Confocal fluorescence photomicrographs of antibody staining to detect H2AX protein expression

(red), DAPI was used to stain nuclei (blue).  Example maximum intensity projections of zebrafish following 0Gy

(B), 3Gy (C), 5Gy (D), 12Gy (E). Scale bar 24M. F) quantification H2AX expression by mean fluorescence

intensity relative to secondary alone. Six fish were examined over two independent experiments. Two 3M

substacks were imaged, 10M apart, to quantify expression. Data were examined by the Kruskal Wallace with

Dunn's test for multiple comparisons, * p < 0.05. Scale 24m. Error bars standard deviation.
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Figure 3.14. Pilot experiment shows imaging & quantification of zebrafish head regions allows for

detection of H2AX foci in 3dpIR zebrafish larave. Confocal fluorescence photomicrographs of antibody

staining to detect H2AX protein expression (red), DAPI was used to stain nuclei (blue).  A - C) Analysis of

lateral images of the zebrafish head. A) Example unirradiated, 0Gy, control.  B) Example 12Gy image. C)

percentage of cells with 5 or more foci quantified. D-F) Analysis of ventral images of the zebrafish head. D)

0Gy example  E) 12Gy example  F) percentage of cells with 5 or more foci quantified. Two 3M substacks

were imaged, 10M apart, to quantify expression in four distinct regions of the zebrafish head. Data examined

by unpaired t test. 18 images from two fish were used. **** p < 0.0001. Scale 24m. Error bars standard

deviation.
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Figure 3. 14. Pilot experiment shows imaging & quantification of zebrafish head regions allows for detection of pyH2AX foci in 3dpIR zebrafish 
larvae. 
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3.6.2. Irradiation activates the DNA-damage response marker γH2AX in p21-positive regions of 3dpIR zebrafish 
To assess whether DNA damage response foci was present in regions of high p21 mRNA expression in 3dpIR nacre-

strain zebrafish, I carried out whole-mount γH2AX immunofluorescence and imaged and quantified the ventral head 

region of the zebrafish, where p21 expression was previously described (Figure 3.9). An increase in γH2AX positive 

cells following 12Gy irradiation was demonstrated (Figure 3.15). 3dpIR zebrafish showed 6.27% (SD 2.369) positive 

cells, whereas unirradiated fish had 0.53% (SD 0.50)  at the same time point (Figure 3.15D). As the 5dpf zebrafish head 

is a thick tissue and contains many cells, I would envisage that confocal imaging of this region would prove difficult to 

pick up DNA-damage foci themselves, as well as brightly positive cells, and so the true percentage of positive cells is 

likely under-represented through this whole mount imaging method.  
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Figure 3. 15. Upregulation of pyH2AX DNA damage-associated foci in irradiated zebrafish larvae. 

Figure 3.15. Upregulation of H2AX DNA damage-associated foci in irradiated zebrafish larvae. Confocal

fluorescent photomicrographs of antibody staining to detect H2AX protein expression (red), DAPI was used to

stain nuclei (blue). Representative images of pγH2AX antibody staining (red) in the ventral zebrafish head regions

(40x magnification). A) 0Gy, B) 12Gy, C) Control in 12Gy irradiated zebrafish with only the secondary antibody. E)

Quantification of pγH2AX immunofluorescence. The % of positive (red) cells were plotted for each image. 4 Fields

of view (FOV), and 3 substacks were quantified within each FOV were quantified. 3 fish were examined for each of

the three independent experiments. E) Diagram of areas imaged per fish. Data was examined by Mann-Whitney

test.  **** p < 0.0001. Scale 24m. Error bars standard deviation.

 

 

3.7.2. RNA from whole irradiated zebrafish larvae shows up-regulation of some but not all SASP factors  
By assessing genes that are both up-regulated following irradiation-induced senescence and present in zebrafish, I was 

able to better assess the senescence profile of 3dpIR zebrafish larvae, including the SASP (Appendix table 3.9.1). 

Primers were optimised to detect mRNA expression of SASP factors il1b, il6,  il8a, mmp2, mmp9, mmp13, as well as 

p53, a central regulator of the DDR and senescence induction, and cyclin g1, an indicator of reduced proliferation that 

is associated with senescence. In whole zebrafish mRNA, the SASP factor mmp2 showed a significant increase, more 

than doubling following irradiation. Significant increases in p53 and cyclin G1 were also seen following irradiation, 

further evidencing activation of the DNA damage response, and that less cells are proliferating and instead in G1 phase 

of the cell cycle (Figure 3.16). The other SASP factors examined however showed no detectable change in mRNA 

expression (Figure 3.16 A, B, D, E). Interestingly, one independent experiment showed increased expression of il1, 

mmp9, and mmp13 (Figure 12H). The reason for this pool of 50 3dpIR zebrafish larvae to have high expression is not 

known, but as this effect is specific to some genes and not others, there may have been a compounding factor that 

induced inflammation in some fish within this group.  
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Figure 3. 16. mRNA expression of alternative senescence-associated genes by qRT-PCR. 
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Figure 3.16. mRNA expression of alternative senescence-associated genes by qRT-PCR. Zebrafish were

irradiated at 2 days post-fertilisation  (2dpf) and assessed for the senescence markers il1b (A), il8 (B), mmp2

(C), mmp9 (D), mmp13 (E), cyclin g1 (F), p53 (G) il6. Absolute expression change calculated by 2^-Ct. RNA

was collected from 50 pooled zebrafish for each of the 4 independent experiments that were carried out. Data

was examined by Mann-Whitney test  (A,B,D,E) or unpaired T test (C,F,G). ** p < 0.01; **** p  < 0.0001. Error

bars represent standard deviation.
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3.8. Conclusion and chapter discussion 
In this chapter, I have established a method for ectopically inducing markers of senescence in early development 

zebrafish without causing significant toxicity or lethality. By studying expression of key senescence genes and proteins 

following γ-irradiation, I have characterised for the first time that 12Gy irradiation can activate numerous markers of 

senescence in 5dpf zebrafish larvae. I demonstrated that irradiation of zebrafish larvae shows a dose-dependent 

increase in cyclin-dependent kinases p21 and p16-like within 24 hours and remains elevated until the latest time-point 

examined, 5dpf (3dpIR). In the case of p21, mRNA is predominantly located in the head and intestinal regions. Most 

notably, my work has begun to dissect a novel model to rapidly induce and assess an in vivo hallmark of ageing and 

age-associated disease, the accumulation of senescent cells. As this assay only takes 5 days to see these senescence 

markers, this system could be amenable to in vivo drug screening for novel senolytics. I have identified that within this 

timeframe, there is activation of the canonical senescence-induction signalling pathway, the DNA damage response, 

cell cycle inhibitors are increased, as well as SA-β-Gal activity, and some but not much SASP activation. I now have 

significant evidence to support the development of a transgenic reporter for cellular senescence, which could allow 

unprecedented access to this phenotype that is causal to age-associated multimorbidity.  

The assay to induce rapid in vivo senescence accumulation uses 12Gy of Cs137 γ-Irradiation on 2dpf zebrafish, before 

assessing the onset of senescence markers at 5dpf. The timing and dose was optimised based on a balance between 

being a high enough dose and early enough time point such that it can be tolerated by the zebrafish without severely 

disrupting off-target developmental mechanisms that could reduce the reliability of the assay. The dose and times 

assessed were based on previous evidence of zebrafish embryo survival following irradiation. For example, zebrafish 

embryos between 2 and 8hpf show significant sensitivity to radiation doses between 2 and 10Gy (McAleer et al., 2005). 

Irradiation at 24hpf showed a reduction in survival at 10Gy only, suggesting that the zebrafish become more resistant 

to radiation with age. Additionally, 1dpf zebrafish embryos irradiated with 20Gy showed a significant reduction in 

survival by 5dpf, which is demonstrated in this study (Daroczi et al., 2009). A dose of 8Gy of total body irradiation dose 

is typically used to induce senescence in mice (Demaria et al., 2014). A reason for the higher dose of 12Gy being 

tolerated in zebrafish larvae may be because only a shorter time after irradiation was examined, though this was 

important to make the senescence-induction assay rapid and therefore more amenable to in vivo compound screens 

for senolytics. Additionally, zebrafish have been extensively studied in the context of regenerative medicine as they 

are better than mammals at recovering from injuries such as heart transections (Poss, Wilson and Keating, 2002). In 

the context of irradiation, it is not clear whether zebrafish have improved DNA repair mechanisms compared to 

mammals. Though, a study comparing the ability of zebrafish to repair UV-induced DNA lesions with humans suggested 

they were able to tolerate a higher dose (Sussman, 2007). However, this data was obtained by comparing an assay to 

assess DNA repair capacity human peripheral blood cells with an assay using whole zebrafish embryos (Athas et al., 

1991). The comparison therefore is strenuous, statistical analysis could not be performed and there was no matching 

of cell type and age, which are both contributing factors to the DNA damage response and repair capacity (Song et al., 

2005; Probin et al., 2006; Gorbunova et al., 2007). More in-depth comparisons between zebrafish and mammalian 

DNA repair capacity would prove useful for understanding the similarities of the DNA damage response between the 

two organisms. Importantly for this study, the dose optimised for senescence induction in irradiated zebrafish larvae 
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does not reduce survival in the time-points examined, and are relatively comparable with previously published 

evidence. 

 

Senescence can be a difficult phenotype to identify in vivo, as there is no marker that will always identify the phenotype 

specifically. Following irradiation of zebrafish larvae, I identified markers that indicated activation of central DNA-

damage response, the pathway known to prompt stress-induced senescence (γH2AX, p53). Though it is associated 

with senescence, an important limitation of γH2AX is that it can also be present during DNA replication (Sedelnikova 

et al., 2004; Gagou, Zuazua-Villar and Meuth, 2010). To overcome this in mammals, researchers often use another 

marker of the DNA damage response such as 53BP1 in combination with γH2AX (Ward et al., 2003). However, the 

antibodies for both of these markers for zebrafish are raised in the same species, and so cannot be used together 

without difficulty (Henriques et al., 2013; Percival et al., 2015). Further, both p53 and γH2AX can play a role in cell 

death mechanisms, and so in future it would be useful to carry out assays for markers of apoptosis like caspase 3 or 

TUNEL alongside senescence markers to discount these cells when quantifying senescence burden in irradiated 

zebrafish (Rogakou et al., 2000; Haupt et al., 2003; Sorrells et al., 2013). Importantly though, irradiated zebrafish larvae 

also show up-regulated cyclin-dependent kinase inhibitors p21Waf1 and p16Ink4a, both of which have been described as 

negative regulators of apoptosis (Bissonnette and Hunting, 1998; Sviderskaya et al., 2003). These genes inhibit cyclin-

dependent kinases and alongside cyclin g1 can help arrest the cell cycle, a key component of senescence (Kimura et 

al., 2001; Suzuki et al., 2001). Regardless, even if senescent cells were induced in irradiated zebrafish larvae, the 

evidence does not show whether apoptosis is also present. P16Ink4a, though a well described and commonly used 

senescence marker, is also part of a reversible response in macrophages that does not seem related to senescence, 

but instead class switching to M2-type macrophages in response to nearby senescent cells (Hall et al., 2017, Liu et al., 

2019). Additionally, p21 has shown regulation by the circadian clock, which I also demonstrated (Figures 3.5 & 3.6), 

and may be up regulated in quiescent cells that do not become senescent (Laranjeiro et al., 2013; Sang et al., 2008). 

To tackle this, I intend to examine senescence marker expression at a later time point following irradiation to validate 

whether p21 cells persist and are therefore more likely senescent (Sang et al., 2008). This would also be useful in the 

context of the SASP, as the majority of work published around irradiation-induced senescence in mice suggests that a 

6-10 day period post-irradiation are required for strong expression of SASP markers such as IL6 and IL8 (Demaria et 

al., 2014; Laberge et al., 2015; Freund et al., 2011; Acosta et al., 2008). This would likely explain why only mmp2 up-

regulation at 3-days post-irradiation in zebrafish larvae (Figure 3.15). One could argue that if the SASP were greater at 

a later time-point in irradiated zebrafish larvae, then this would validate the model organism, because the temporal 

regulation of senescence marker induction would be comparable with mammalian systems. Moreover, with more time 

a more in-depth assessment of the SASP profile would bolster the current evidence of senescence in irradiated 

zebrafish larvae (Table 3.1). Antibody arrays and RNAseq that are comparable to data from mammalian systems would 

describe in greater detail the similarities and differences in irradiated zebrafish larvae (Coppé et al., 2008; Coppé et 

al., 2011; Demaria et al., 2014; Purcell et al., 2014; Wiley et al., 2017). The limitations of in vivo markers of senescence 

mean that assessing a panel of them provides the most confidence that senescence is truly present. A strength of the 
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current evidence is that multiple of the aforementioned markers of senescence (γH2AX, SA-β-gal, p21) were present 

within the same regions of the fish. Further, previous evidence assessing senescence induction in zebrafish larvae was 

limited to SA-β-Gal, which is not required for senescence (Lee et al., 2006; Koshimizu et al., 2011; Kishi et al., 2008). 

The markers identified in irradiated zebrafish larvae are comparable with mammalian systems, with the exception of 

IL6 (Demaria et al., 2014; Fuhrmann-Stroissnigg et al., 2017). Now, there is enough evidence to support the 

development of a transgenic reporter of senescence, which would allow assessment of multiple senescence markers 

at the cellular level through cell sorting. 

Irradiated zebrafish larvae show senescence in some regions that have been highlighted in irradiated murine systems, 

providing evidence to support the notion that this model system can be used to understand mammalian senescence. 

The regions of the 3dpIR zebrafish larvae with the greatest up-regulation of p21 mRNA following irradiation were the 

intestinal and head regions, particularly the pharyngeal arches and brain regions, which are highly proliferative regions 

during early development (Wallace et al., 2005; Hall and Tropepe, 2018). Highly proliferative cells would be more likely 

to have encountered irradiation-induced DNA damage through reaching the relevant cell cycle checkpoints (Weinert 

and Hartwell, 1988). Zebrafish with mutated telomerase also showed up-regulated p21 expression in the intestine 

faster than wild-type siblings (Henriques et al., 2013). Increases in SA-β-Gal activity were also described in the 

intestine, head kidney and testes of these mutant zebrafish. The testes are not present in 5dpf zebrafish larvae, and 

though there are functioning pronephros, the head kidney is also not fully developed and so neither can be examined 

at these stages (Orban, Sreenivasan and Olsson, 2009; Gerlach and Wingert, 2013). Irradiated mice also show 

senescent cells in the brain and small intestine, as was described in irradiated zebrafish larvae (Oanh N.L. Le et al., 

2010; Demaria et al., 2014; Zhao et al., 2019). Expression of DNA damage markers were present in the liver, kidney, 

brain and lungs as early as 24 hours after irradiation and persisted for 45 weeks, which was the latest time point 

examined. However, p16 expression was not reliably detected until 12 weeks after irradiation (Oanh N.L. Le et al., 

2010). It is worth noting that these murine studies were carried out at adult stages, and a much longer period after 

irradiation (10 months for small intestine) was used before assessing senescence marker onset in these organs, which 

is a possible reason for the differences described. Additionally, as irradiated zebrafish larvae are in early development, 

they are rapidly proliferating and as such could alter the sensitivity of different tissues to irradiation (Sugiyama et al., 

2009). Increased SA-β-Gal activity was detected in the skin of irradiated adult zebrafish (Tsai et al., 2007). This was not 

directly examined in zebrafish larvae, though as a similar induction of p21 mRNA by qPCR in their tail fin compared to 

mRNA of the whole zebrafish, this may be due to expression in the skin (Figure 3.4B). A comparison of where senescent 

cells are seen in irradiated zebrafish larvae, irradiated adult zebrafish, and old wild-type aged zebrafish would provide 

important evidence about organ-sensitivities to stress-induced senescence. However, the initial similarities in the 

sensitivity of the brain and intestine to irradiation in zebrafish larvae compared adult zebrafish and mice are promising 

and provoke more in-depth studies.  
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An important difference between irradiated zebrafish larvae and adult mammalian systems is that p16-like was not a 

very reliable reporter of senescence. The zebrafish orthologue for P16 (CDKN2A), p16-like (cdkn2ab), showed 

significant transcriptional activation by qPCR, but there was not reliable spatial expression by in situ hybridisation. This 

may be due to resolution of the technique compared to qPCR, which would be able detect smaller changes in 

expression. Indeed, relative mRNA expression at 3 days post-irradiation (dpIR) for p21 was 0.07 (Figure 3.5C), whereas 

p16-like was approximately 0.002 (Figure 3.5D). This low level of expression would probably be difficult to detect by 

in situ hybridisation. An alternative explanation for low transcript levels aside from low expression is low transcript 

stability; however, a recent study on mammalian P16 showed that the mRNA had a half-life of over 24 hours (Liu et 

al., 2019). This is unusually long, longer than >95% of mRNA transcripts, and further emphasises that expression of 

zebrafish p16-like is very low in 3dpIR, and perhaps p21 may prove a more reliable reporter in this context. This 

disparity in p16-like expression may be due to a lack in our understanding of the zebrafish orthologue of P16. In 

mammals, there are separate loci for p16INK4A (CDKN2A) and p15 (CDKN2B), as well as a splice variant in the CDKN2A 

locus for the protein p19ARF (ZFIN, 2019; Zerbino et al., 2018). However, in zebrafish, there is seemingly no splice variant 

in the cdkn2a locus for p16, and no identified cdkn2b locus. Therefore, it is feasible that the zebrafish orthologue may 

be carrying out roles that the mammalian p15 and p19 genes are doing. Both of these genes are involved in cell cycle 

arrest in mammals, much like p16, but it has been shown that inactivation of p19 can exacerbate senescence in a 

BUBR1 mutant mouse (Baker et al., 2008). It is not clear currently how zebrafish p16-like gene functions in comparison 

to mammalian p16, and requires further characterisation. Though, a CRISPR knockdown of the zebrafish gene does 

result in tumour formation, one could infer that the gene could therefore play a role in the anti-tumour function of 

senescence, as is known in mammals, but it was not directly examined (Ablain et al., 2018). As I have described 

increased expression following irradiation of larvae, this further shows that the gene may have a conserved role in 

senescence. Timing may also be a factor, as mentioned, irradiated mice are often left for much longer until increases 

in P16 are described (Oanh N L Le et al., 2010; Demaria et al., 2014). Therefore, examining this gene at a later time 

point could help discern whether this is an important factor. Due to these factors, p21 is our best senescence-

associated gene to develop a transgenic reporter for live detection of potentially senescent cells in zebrafish larvae. 

Certainly, single-cell RNA sequencing on serum-starved quiescent human cells versus bleomycin-induced senescent 

cells, identifying the genes most reliably activated in senescence (Wiley et al., 2017). CDKN1A (P21) was one of the 

best, predicting senescence over quiescence 89% of the time. As p21 is not unique to senescence, like all other 

senescence-associated genes, an assessment of how reliable p21 is as a reporter of senescence at the cellular level is 

vital in this system, and can be carried out once the transgenic reporter is developed.  
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Whilst identifying markers of senescence that are up-regulated following irradiation in zebrafish larvae, I also identified 

that some of these genes showed expression in normally developing unirradiated controls. For example, irradiation-

independent activity of SA-β-Gal was observed in the intestine and caudal hematopoietic tract (CHT), in a pattern that 

matched previous evidence in a wild-type 4.5dpf zebrafish (Kishi et al., 2008). SA-β-Gal Intestinal expression could be 

due to detecting a different type of beta-galactosidase activity, with it also being a digestive enzyme, and expression 

in the gastrointestinal tract of SA-β-Gal has been identified in humans (Gray and Santiago, 1969; Going et al., 2002). 

The SA-β-Gal assay is not run at the optimal pH to detect this type of galactosidase activity, however that does not 

necessarily mean it will not be detected at all. The CHT is where innate immune cells, such as neutrophils and 

macrophages are formed and reside during early zebrafish development (Murayama et al., 2006). There has been 

recent evidence suggesting that SA-β-Gal can be present in some macrophages that are likely not senescent, so this 

may be what is shown in these zebrafish larvae (Hall et al., 2016; Hall et al., 2017; Liu et al., 2019). However, the a-

specificity of SA-β-Gal is well described and should be considered when inferring this evidence (Lee et al., 2006; 

Untergasser et al., 2003). Additionally, p21 also showed some irradiation-independent expression in developing 

zebrafish larvae. There is evidence of circadian clock-regulation of p21 (Laranjeiro et al., 2013). This may be an 

evolutionary response to slowing the cell cycle to avoid DNA-damage from UV radiation following sunrise, as a 

temporary quiescence (Dakup and Gaddameedhi, 2017). Importantly for our assay, I needed to choose a time-point 

to assess senescence such that the fold increase of p21 is the true increase following irradiation and not an over-

representation by altered background levels. There may be a case for p21 expression due to embryonic senescence 

being present at these stages of development also. For example, SA-b-Gal expression was demonstrated in the 

developing chick embryo pharyngeal arches and gut endoderm (Storer et al., 2013), which are regions where I also see 

expression, particularly p21 (Figure 3.9). The development of a transgenic reporter for p21 would allow for assessment 

of the differences between those p21-positive cells from irradiation and those present in irrespective of radiation. If 

there are brighter cells with more p21 expression following irradiation, which the in situ hybridisation would suggest 

(Figure 3.9), then one could use unirradiated transgenic zebrafish to set a threshold upon which irradiated transgenic 

zebrafish are imaged, to only include those most likely associated with stress-induced senescence. If there are actually 

developmental senescent cells in the zebrafish, and I could distinguish between developmental and irradiation-

induced senescence by sorting p21 positive cells from irradiated and non-irradiated zebrafish, this could also provide 

a unique opportunity to identify differences between the two contexts. Due to this, it is still worthwhile using p21 as 

a transgenic reporter for potentially senescent cells. 
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3.8.5 Future work and conclusions 
 

I have identified that, as is described in mammals, irradiation can up-regulate multiple markers of senescence in 

zebrafish larvae. This evidence permits the development of a transgenic reporter for senescence, like the p16-3MR 

mouse model (Demaria et al., 2014), but with the advantage of being in a transparent organism. This will allow us to 

identify potentially senescent cells live and in vivo, sort them by flow cytometry, and validate several of these markers 

in the same cell to give a true representation of the number of senescent cells in irradiated zebrafish larvae. This will 

give us a better understanding of how good p21 is as a marker of senescence in our system, and perhaps the kinetics 

of its promoter activation in vivo following senescence induction. This method of assessing senescence will have much 

greater resolution than simply extracting RNA from a whole zebrafish for example, which will dampen the signal of 

senescent cells by also including RNA from non-senescent cells. This is particularly important when looking relatively 

early after irradiation, to assess small changes in genes such as those associated with the SASP. Further, because of 

the technical difficulties of quantifying H2AX staining in thick tissues, this method will give a more accurate read of the 

proportion of cells are truly senescent, and allow us to combine immuno-fluorescent antibodies more accurately, such 

as PCNA as a marker for proliferation. Once validated, this zebrafish reporter for senescence could allow for live 

identification of potentially senescent cells at the cellular level in vivo within a 5-day period, something that has not 

been previously possible. Potential benefits of this include a novel system for identification of senescence-modulating 

compounds that show efficacy in vivo in the first instance, something that would likely streamline the drug 

development process and help speed up the identification of drugs that could reduce the prevalence of ill health in 

our rapidly growing elderly population. As I have demonstrated that it is feasible to increase the amount of senescence 

in zebrafish through irradiation, it does not seem far-fetched to assume that drugs that are effective at removing 

senescent cells can be assessed within this system. This level of resolution could also allow depicting the kinetics of 

senescence genes following irradiation, examining tissues and cell types that they interact with, tackling questions in 

the field such as mechanisms for immune cell senescence clearance.  
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3.9.1. Table of SASP factors induced by irradiation 
 

 

Table 3. 1. List of SASP factors induced following irradiation. 
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Table 3.1. List of SASP factors up-regulated following irradiation. References are numbered as follows: 1) Demaria et 

al., 2014; 2) Laberge et al., 2015; 3) Freund et al., 2011; 4) Marthandan et al., 2016; 5) Wiley et al., 2017; 6) Maciel-

Barón et al., 2016;  7) Acosta JC, et al., 2008; 8) Coppé, et al., 2008; 9) Coppé, et al., 2010; 10) Bavik C, et al., 2006; 11) 

Liu et al., 2007; 12) Rodier F et al., 2009; 13) Parrinello S et al., 2005; 14)(Krizhanovsky et al., 2008)Krizhanovsky V, et 

al., 2008; 16) Coppé, et al., 2011; 17) Liao et al., 2014 18)Laberge et al., 2012; 19) Biran et al., 2017; 20) Schafer et al., 

2017; 21) Bhaumik et al., 2009; 22) Gluck et al., 2017; 23) Sanoff et al., 2014; 24) Kang et al., 2011. 
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Chapter 4 – Development of transgenic larval zebrafish reporter for p21  

4.1.1. Introduction  
Having a method for inducing early senescence accumulation in optically transparent zebrafish larvae provides a more 

amenable system for studying in vivo senescent cells within a whole organism context. To better identify and track 

senescent cells in irradiated zebrafish larvae, a transgenic system whereby cells expressing a marker of senescence 

fluoresce was developed. Due to the genetic malleability of this model organism, a technique called Bacterial Artificial 

Chromosome (BAC) transgenesis can be utilised to report promoter activation of a gene of interest (Suster et al., 2011). 

This is particularly useful since zebrafish are transparent during early development, which means that fluorescently-

labelled cells can be tracked over time, to allow visualisation of cellular life-span and the tissues they are located in 

and interact with (Renshaw and Loynes, 2006). Live visualisation of senescent cells can allow a deeper understanding 

about senescence and their roles in age-associated disease. This includes an appreciation for what and where these 

cells are, how long they live for in vivo, how they interact with surrounding tissues, and whether drugs can efficiently 

remove them in a systemic context with translatability to age-associated multimorbidity. The SASP is highly interactive, 

and different cell types have different rates of senescence induction (Song, Lee and Hwang, 2005; Probin et al., 2006; 

Hernandez-Segura et al., 2017). Therefore, by looking in a whole organism context, it would better recapitulate these 

complicated aspects of in vivo senescence over typical in vitro systems and provide novel insight into a causal 

mechanism underlying age-associated multimorbidity. 

To develop a transgenic reporter for senescence, I chose to report the p21 (cdkn1a) promoter. This is the best-

characterised reporter of senescence in zebrafish currently. In support of this, there has been recent evidence 

highlighting the ability of p21 in mammalian systems to identify bleomycin-induced senescent cells (Wiley et al., 2017). 

This induction method in mammalian cells, which also acts through the DNA damage response, showed that p21 

expression could distinguish senescent from quiescent cells at the single cellular level. I have also previously 

demonstrated the spatial expression within irradiated zebrafish, which I can use to assess whether GFP expression 

faithfully reports the endogenous expression pattern. Another commonly used senescence marker in mammalian 

systems is P16INK4A (CDKN2A), however in zebrafish the orthologous locus is described as p16-likeINK4A/B (cdkn2ab) (ZFIN, 

2019). The locus in zebrafish is a combined form of mammalian p15 and 16, and they do not have the splice variant 

p19ARF. An alginate bead injection into the murine peritoneum lead to the recruitment of immune cells, predominantly 

macrophages, to senescent beads via the SASP (Hall et al., 2016). What was interesting is that it seemed that these 

macrophages themselves used P16 and SA-β-Gal to switch to an M2-like phenotype (Hall et al., 2017). I have therefore 

made the decision to use p21 as the transgenic reporter for senescence, due to the similarity between zebrafish and 

mammalian orthologues and better characterisation of this gene in zebrafish over p16-like. 
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4.1.2. Aims  
To be able to study live senescent cells in irradiated zebrafish larvae, a transgenic reporter that fluoresces under p21 

promoter regulation is required. An optimised assay for irradiation-induced senescence accumulation provides a 

method for determining whether the fluorescent reporter being developed fluoresces under the correct regulation, 

for example in the same spatial and temporal kinetics as previously demonstrated by assessment of p21 mRNA 

expression. I hypothesise that fluorescence from a transgenic reporter for p21 promoter activation using BAC 

transgenesis will mimic spatial and temporal kinetics of p21 mRNA expression. The aims of this chapter are: 

 To develop a novel transgenic zebrafish that reports p21 promoter regulation. 

 To characterise the fluorescence seen in the novel transgenic zebrafish to confirm the fluorescence increases 

following irradiation and matches p21 mRNA expression. 

 To confirm that the transgenic reporter activates p21 mRNA following irradiation in the same manner as wild-

type strain zebrafish. 
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4.2. BAC transgenesis 
To develop a transgenic zebrafish that reports the gene of interest’s expression pattern, a technique called Bacterial 

Artificial Chromosome (BAC) transgenesis was used. This involves firstly identifying a BAC, which is a large (100-

150kbp) segment of genomic DNA, that encompasses the locus of p21. It must then be modified such that, once 

randomly inserted into the zebrafish genome through tol2-mediated transgenesis, the extra p21 locus will now express 

GFP under p21 promoter (summarised in Figure 2.7). 

4.2.1. BAC identification 
First, the gene sequence that encodes for human p21 (CDKN1A) was acquired on Ensembl and used to acquire the 

danio rerio (zebrafish) orthologue (cdkn1a) (ZFIN, 2019; Zerbino et al., 2018).  Three BACs containing the cdkn1a 

zebrafish locus and the two associated splice variants (cdkn1a-001; cdkn1a-002) were identified using Ensembl blast 

feature (Figure 4.1). Two were shotgun clones sequences from the Daniokey library, from partially digested genomic 

DNA (HindIII) from Tübingen zebrafish strain male testis (prefix: DKEY) (ZFIN, 2019c). The other being from the Chori-

211 library, also from Tübingen zebrafish strain male testis DNA, but instead cut with EcoR1 (prefix CH211) (ZFIN, 

2019). Once acquired, the BACs were transformed into electroporation-competent E-coli cells and then grown up in 

appropriate antibiotic resistance (Chloramphenicol) medium, to allow for modification steps that allow p21-regulated 

GFP expression from the BAC.  
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Figure 4. 1. Identification of BAC sequences at cdkn1a (p21) zebrafish locus. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Identification of BAC sequences at cdkn1a (p21) zebrafish locus. Examined Ensembl danio rerio version 

82.10 (GRCz10) at Chromosome 22: bases 407,874 – 727,875. Three BACs were identified that overlapped with 

cdkn1a locus and contained at least 100kbp downstream and 590kbp upstream of the start codon (arrow, also 

indicates direction of transcription). 
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4.2.2. Inserting GFP sequence after BAC p21 start codon. 
Once I had identified BACs of interest, I next had to modify them such that GFP was under p21-promoter regulation 

and that the BAC itself did not express an extra copy of p21 when inserted into the zebrafish genome. Ultramer primers 

were designed to modify the GFP-targeting sequence such that there were overhanging single-strand DNA sequences 

that matched the BAC (Figure 4.2A). For example, the forward primer was designed such that the first 50 base pairs 

complimented with the BAC sequence, with the last three bases being the start codon of the p21 locus, followed by 

24 more bases that overlap with the end of the target cassette (Figure 4.2A). Once the GFP sequence with homology 

arms to the BAC was designed and purified (figure 4.2B), it was electroporated into BAC-containing cells. This allows 

for the GFP sequence to be incorporated into the BACs after the initial start codon (ATG sequence) of the p21-encoding 

region, so that the GFP is placed under p21-promoter regulation, and disrupts the BAC’s copy of p21 (Figure 4.2C). 

Using Ensembl and ZFIN, I checked that both p21 splice variants contained the same first exon, which is where the GFP 

was targeted and so it should represent both splice variants’ expression (ZFIN, 2019). To check that these sequences 

contained the p21 promoter region, I aligned them against primers for cdkn1a published in Henriques et al., 2013 and 

showed a 100% match. I also blasted the version of cdkn1a that were used to design primers against a published p21 

sequence (Laranjeiro et al., 2013). As the GFP-targeting sequence contained a kanamycin-resistance cassette, the cells 

were then grown on kanamycin antibiotic medium to identify cells that have incorporated the GFP cassette, as only 

those that have would survive in the presence of this antibiotic. Cells containing the modified back that have grown 

on the antibiotic-containing medium were extracted and the BAC purified. The purified BAC was then sequenced to 

confirm the GFP coding sequence was fully incorporated. As the BAC no longer requires this antibiotic resistance 

cassette, the FLP/FRT system was used to remove it (Figure 4.2D). FRT recognition sites were contained within the 

GFP-targeting sequence, flanking the kanamycin resistance cassette. These are recognised and excised once the 

enzyme L-arabinose is added to BAC-containing cells (Schlake and Bode, 1994).  
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Figure 4. 2. Development of GFP targeting construct for TgBAC(p21:GFP) transgenic zebrafish. 

Figure 4.2. Development of GFP targeting construct for TgBAC(p21:GFP) transgenic zebrafish. A) ApE plasmid map

for GFP targeting construct, 2.4kbp in size.  B) Visualisation of modified, linearised and purified GFP plasmid with primers

for insertion into cdkn1a BACs. C) Diagram depicting targeting of the GFP sequence after the promoter for the p21 locus

(cdkn1a). The kanmycin resistance sequence (Kan) is introduced to the  BAC such that once successfully targeted, they

can be grown on agar plates containing the antibiotic kanamycin. D) Diagram depicting how the Kanamycin sequence is

removed from the  GFP-BAC. In the presence of arabinose, the recombinase flippase is expressed in BAC-containing

E.coli, which recognises the FRT sites surrounding the Kanamycin sequence and removes it from the BAC. Diagrams

created on BioRender.com.

 

4.2.3. Modification of GFP-BAC for tol2-mediated transgenesis in single cell-stage zebrafish embryos 
To improve the likelihood that the modified BAC will be fully incorporated into the zebrafish genome, a transposon-

mediated system was utilised. As the BAC is a large plasmid, it is therefore prone to breakage and partial insertions 

(Suster et al., 2011). Introducing the tol2-mediated system involves modifying the GFP-BAC plasmid with inverted cis-

sequence tol2-recognition sites, such that the tol2 transposase can recognise and insert randomly into the zebrafish 

genome by homologous recombination. This sequence also contained a Chloramphenicol resistance sequence within 

the two recognition sites as was seen in the GFP-targeting cassette. Once the tol2 sequence is electroporated into the 

GFP-BAC, it will provide selective resistance to identify those competent cells with the tol2 sites incorporated. Cells 

containing the newly modified BAC were again purified and sequenced to confirm correct insertion of the tol2-

regonition sequence. The FLP/FRT system was not required to then remove this antibiotic resistance sequence, 

because this was located outside of the sequence that the tol2-recognition sites will incorporate into the zebrafish 

genome, as depicted in Figure 2.7. For a successful tol2-mediated transgenesis, tol2 mRNA was synthesised and 

purified (Figure 4.3A). The BAC was then injected alongside tol2 mRNA, which in turn will be translated into 

transposase protein that recognises the cis sites within the BAC, and incorporate the plasmid as a whole randomly into 

the zebrafish genome. The exception to this is the kanamycin-resistance cassette, which are located outside of the 

tol2 recognition sites. Once the BACs were modified and tol2 transgenesis system established, injected single-stage 

zebrafish were allowed to develop before screening for GFP expression at 4 or 5dpf before the onset of independent 

feeding. Compared to zebrafish injected with BAC alone, tol2 mRNA concurrent injection did not show a significant 

increase in the number of GFP-positive zebrafish (Figure 4.3B). However, within those fish positive for GFP, tol2 

concurrent injection increased the number of GFP-positive cells in these fish (Figure 4.3C), possibly indicating improved 

incorporation of the BAC into the genome but due to only being a pilot experiment this cannot be confirmed 

statistically. Figure 4.4 further demonstrates example images of BAC & tol2 mRNA-injected zebrafish with larger 

numbers of GFP positive cells in the head and tail regions at 4dpf, areas previously demonstrated to express p21 mRNA. 

 



122 
 

-Tol2 +Tol2

0

5

10

15

20

25

30

%
 P

o
s
it

iv
e
 f

o
r 

G
F

P

p = 0.25

-Tol2 +Tol2

0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 o
f 

 G
F

P
 p

o
s
it

iv
e

fi
s

h
 w

it
h

 h
ig

h
 o

r 
lo

w

p
ro

p
o

rt
io

n
 o

f 
G

F
P

 c
e

ll
s

Low

High

Figure 4.3 Tol2 transposase mRNA synthesis. A) Gel electrophoresis showing synthesised

tol2 mRNA, with predicted sequence length of 1000bp. B) Analysis of GFP positive fish 4-5

days after injection of TgBAC(p21:GFP) with or without tol2 mRNA. 261 to 451 fish analysed

over 4 independent experiments, no statistical significance observed using unpaired t-test. C)

Proportion of GFP positive fish 4 or 5 days after injection with low (5 or fewer) or high (more

than 5) numbers of GFP positive cells. 20-38 fish examined in a single pilot experiment.
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Figure 4. 3. Tol2 transposase mRNA synthesis. 
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Figure 4.4. Example images of zebrafish injected with the p21:GFP BAC

at 4dpf. Regions with high (more than 5) GFP positive cells that are known to

express p21 mRNA at these timepoints. 100m scale bar.

GFP Brightfield & GFP

 

Figure 4. 4. Example images of zebrafish injected with the p21:GFP BAC at 4dpf. 
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4.2.4. Identification of stable founders of the TgBAC(p21:GFP) zebrafish line 
To identify whether any of the BAC-injected zebrafish had incorporated the transgene into their germline, the injected 

GFP-positive fish were grown to sexual maturity. At 3-4 months of age, the next generation of zebrafish larvae were 

assessed for p21 promoter-regulation of GFP expression. The adult fish were placed into individual tanks during 

screening of the next generation, such that the parent fish could be identified from different groups of offspring. Two 

adult zebrafish (Allele numbers SH506, SH507 respecitvely) were identified that were able to produce GFP-positive 

offspring (Figure 4.5A). These offspring were grown up to adulthood to have stocks of fish with stable incorporation 

of the p21:GFP BAC into their genome. Quantification of the unirradiated transgenic fish showed increased 

fluorescence compared to their siblings that did not express the transgene, notably in the head, intestine and trunk 

regions (Figure 4.5B-E). The largest region for transgene-specific expression compared to wild-type siblings was the 

intestine, which was previously highlighted as a region of interest with endogenous p21 expression (Figure 4.5C). The 

expression of GFP-positive zebrafish from these crosses were approximately 50%, which is evidence towards a single 

insertion of the transgene into the genome. 
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Figure 4.5. Confirming germline transmission of TgBAC(p21:GFP)sh506. A) Outcross of

TgBAC(p21:GFP)sh506 with wild-type zebrafish resulted in 50% of the next generation were

GFP negative  (left) and 50% GFP positive (right). 1mm scale bar. B-E) Quantification of

different regions of the zebrafish. B) Whole fish.  C) Intestine.  D)  Head region.  E)  Trunk.

Statistical significance determined by unpaired  T test, 4-7 fish analysed.
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Figure 4. 5. Confirming germline transmission of TgBAC(p21:GFP)sh506. 
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4.3. Characterisation of TgBAC(p21:GFP)sh506 

4.3.1. Fluorescence imaging of TgBAC(p21:GFP)sh506 after irradiation showed increased fluorescence that 
matches endogenous p21 mRNA patterns. 
Following identification of injected zebrafish with germ-cell incorporation of the BAC, characterisation using the 

developed irradiation assay was carried out to confirm that the GFP is under p21-promoter regulation (Figure 4.6.). 

For example, it is possible that partial incorporation of the BAC into the zebrafish genome has occurred, which would 

result in GFP expression that is not p21 promoter regulated. This would mean that the GFP expression might not be 

specific to p21-promoter activation. Expression of p21 mRNA is increased following 12Gy of Cs137 γ-irradiation at 2dpf, 

and predominantly located in the head and intestinal regions at 3 days post-irradiation (dpIR) (Figure 3.9.). Following 

12Gy of Cs137 γ-irradiation of an in-cross between TgBAC(p21:GFP)sh506 zebrafish at 2 days post-fertilisation (dpf), 

increased fluorescence was detected 3dpIR (Figure 4.6). This increase in GFP expression is consistent with previous 

qPCR and in situ hybridisation expression data for p21 mRNA levels, indicating that the fluorescence is associated with 

p21-promoter activation, with the intestine and head regions, such as pharyngeal arches, being most obviously 

increased. The unirradiated fish had more GFP expression compared to wild-type siblings, albeit much less than 

irradiated transgenic fish. This was also demonstrated in my previous work showing some p21-promoter activation 

independent of irradiation.  
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Figure 4.6. Representative images of  TgBAC(p21:GFP)sh506  zebrafish. GFP expression

pattern of whole 5dpf zebrafish. Increased fluorescence seen following 12Gy 3pdIR, particularly

in the head regions, including the pharangeal arches, and intestinal regions.
 

Figure 4. 6. Representative images of TgBAC(p21:GFP)sh506 zebrafish. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



128 
 

To quantify this increased fluorescence, I chose the head region of the zebrafish, which, alongside the intestine, is the 

region of highest irradiation-induced p21 mRNA expression (Figure 4.7). The head was chosen over the intestine 

because this area contains less fluorescence in unirradiated zebrafish compared to the intestinal region (Figure 4.5C, 

D). A quantitative increase in GFP fluorescence following irradiation was demonstrated, being on average 2.86x 

brighter (SD 0.759) than wild-type siblings, compared to unirradiated zebrafish that were 1.67x brighter than wild-

type siblings (SD 0.409) Thus the fluorescence from TgBAC(p21:GFP)sh506 zebrafish compliments evidence describing 

p21 mRNA increase in the head region of 3dpIR zebrafish  

(Figure 3.9.).  
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Figure 4. 7. Quantification of head region fluorescence of 5dpf TgBAC(p21:GFP)sh506. 
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Figure 4.7. Quantification of head region fluorescence of 5dpf TgBAC(p21:GFP)sh506. A-C) Unirradiated

examples.  A) Example with lower expression. B) Mean expression. C) High expression. D-F) 12Gy 3dpIR examples.

D) Example with low expression. E) Mean expression. F) High expression.  G-I) Wild type sibling examples. J & K)

Quantification of head region of 5dpf zebrafish. J) Pixel intensity of fluorescent fish analysed. K) Fold increase in

expression compared to wild-type siblings. Data was examined by Kruskal Wallace test with Dunn;s multiple

comparisons, as wild type sibling data is non-parametric  (J) or relative (K). 24 fish analysed over 3 independent

experiments. Error bars represent standard deviation.

 

 

To assess whether GFP fluorescence from TgBAC(p21:GFP)sh506 zebrafish has the same spatial regulation as p21 

mRNA expression detected by in situ hybridisation, I compared the patterns of these two techniques (Figure 4.9.). The 

transgene faithfully recapitulates endogenous p21 mRNA expression patterns. Lateral and ventral images of the head 

region show that both p21 mRNA and GFP following irradiation are located predominantly in the pharyngeal arches 

and specific brain regions at 3dpIR. Additionally, p21 mRNA is also increased in the intestine of zebrafish, which is 

shown clearly in the previous figure of whole zebrafish fluorescence.  
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Figure 4.8. Comparison of p21 mRNA expression and TgBAC(p21:GFP)sh506 fluorescence at 5dpf in

zebrafish head region. 12Gy irradiation 3dpIR and unirradiated controls, taken laterally and ventrally showing

transgenic fish recapitulates endogenous expression patterns. Scale bar 100M.

 

Figure 4. 8. Comparison of p21 mRNA expression and TgBAC(p21:GFP)sh506 fluorescence at 5dpf in zebrafish head region. 
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4.3.2. TgBAC(p21:GFP)sh506 zebrafish show endogenous levels of p21 mRNA expression 
To further characterise the new transgenic reporter for p21, quantitative assessment for mRNA expression levels of 

p21 and GFP using qPCR in TgBAC(p21:GFP)sh506 zebrafish was used. It is important to compare this with expression 

levels in wild-type strain zebrafish to ensure that the transgenic reporter has a comparable endogenous p21 mRNA 

response without any contribution from the BAC. Following irradiation, p21 mRNA expression was increased in RNA 

extracted from whole TgBAC(p21:GFP)sh506 3dpIR zebrafish compared to unirradiated controls, and this 5-fold 

increase was matched in Nacre (wild type) 3dpIR zebrafish not containing the BAC transgene (Figure 4.9A & B). 

Expression levels of GFP mRNA were increased following irradiation in only the transgenic zebrafish and not wild-type 

strains (Figure 4.9C). The level of increase was approximately half that of p21 mRNA (Figure 4.9A), which may support 

the notion that there is only a single insertion of the GFP-BAC in these transgenic fish, whereas there are two copies 

of endogenous p21, though this evidence is not definitive as RNA stability may differ between the two genes for 

example. Importantly, this shows that the endogenous p21 expression levels, both with and without irradiation, are 

comparable between TgBAC(p21:GFP)sh506 and the Nacre-strain zebrafish used to optimise the irradiation assay. 
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Figure 4.9. mRNA expression of p21 and GFP in TgBAC(p21:GFP)sh506 zebrafish by qPCR. Zebrafish were

irradiated at 2 days post-fertilisation  (2dpf) and assessed for the senescence marker p21 in TgBAC(p21:GFP)sh506

and  Nacre-strain zebrafish. A) Fold expression change 3 days post-irradiation  (dpIR)  in transgenic and wild-type strain

zebrafish, calculated by Ct, relative to -actin expression and unirradiated controls. B) p21 fold induction in transgenic

and wildtype strains, relative to -actin  (2^-Ct). Data examined by 2way ANOVA with  Sidak's multiple comparison test.

C) GFP fold expression change 3dpIR in transgenic and wild-type strain zebrafish.  *** p  < 0.001. RNA from 50

zebrafish were pooled for each of the three independent repeats. Error bars represent standard deviation.
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Figure 4. 9. mRNA expression of p21 and GFP in TgBAC(p21:GFP)sh506 zebrafish by qPCR. 
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4.4. Conclusion and chapter discussion 
To assess in vivo senescent cells live in irradiated zebrafish larvae, development and characterisation of a novel 

transgenic zebrafish reporting p21 promoter activation by GFP fluorescence was carried out. As zebrafish larvae are 

transparent, new insights into in vivo senescent cells are now possible at cellular resolution. By comparing GFP 

fluorescence with p21 mRNA expression following irradiation in zebrafish larvae, I was able to ascertain with 

confidence that the GFP fluorescence seen in the transgenic zebrafish reporter does indeed match p21 expression 

patterns spatially, suggesting I was successful in placing GFP under p21 promoter regulation in this transgenic 

zebrafish. Here I demonstrated that the endogenous p21 mRNA expression levels, both with and without irradiation, 

are unchanged in the transgenic zebrafish compared to wild-type counterparts. This retains physiological relevance 

and allows me to make comparisons with previous data on senescence in irradiated wild-type fish.  

4.4.1. Development of TgBAC(p21:GFP)sh506 
Transgenic zebrafish reporters for gene activation can be made through a variety of methods (Meyes, 2018). GFP-

fusion proteins can be developed to assess subcellular protein localisation, but this tag can affect translational 

modifications and protein function (Burket et al., 2008). Similarly, targeting GFP to an endogenous p21-locus would 

disrupt an allele of the gene, therefore possibly altering endogenous signalling. Additionally, the BACs used 

encompassed 50kbp of upstream and 100kbp downstream of DNA sequence around the gene of interest. This is 

important because not only the proximal promoter region can regulate gene transcription, but also nearby regulatory 

elements and enhancers that are not always proximal to the gene of interest (Suster et al., 2011; Gallegos and Rose, 

2017). By considering this, it increases the likelihood that the fluorescence from the BAC is as closely related to 

endogenous p21 transcriptional regulation as possible.   

I chose to use Nacre-strain zebrafish as the background for the transgenic because they do not produce melanophores 

and have a reduced number of pigmented cells (Lister et al., 1999). Having a transgenic reporter for senescence with 

reduced pigmented cells will improve my ability to track, image, and prospectively isolate potentially senescent cells 

based on GFP expression (Renshaw et al., 2006). Further, I previously showed that the induction of p21 following 

irradiation in nacre fish is comparable to the AB wild-type zebrafish, so the lack of pigmented cells due to the nac(w2) 

mutation has not caused any confounding factors that affect the senescence response (Lister et al., 1999). This was 

important because different zebrafish strains may exhibit different sensitivities to irradiation or patterning of 

senescence. For example, different zebrafish strains can have differing telomere lengths (Anchellin et al., 2011). 

Additionally, zebrafish have a high degree of genetic diversity between genomes (Guryev et al., 2006).  

4.4.2. TgBAC(p21:GFP)sh506 faithfully reports in vivo p21 promoter activation 
My previous evidence showed that p21 expression could be induced following 12Gy irradiation of 2dpf zebrafish larvae 

without significant developmental abnormalities. Using this assay, I was able to demonstrate that the fluorescence 

from TgBAC(p21:GFP)sh506 was comparable with the spatial and temporal kinetics of p21 mRNA, as detected by in 

situ hybridisation. It was important to compare the spatial location of GFP fluorescence with p21 mRNA expression as 

it is possible that the irradiation induces auto-fluorescence due to cell death and so could give false positives (Schaue, 

Ratikan and Iwamoto, 2012). The fluorescence was located in regions where highest p21 mRNA expression. These are 
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typically areas of high proliferation such as the intestine, pharyngeal arches, and hindbrain. Additionally, irradiation of 

wild-type siblings did not increase the number of fluorescent cells by flow cytometry. Looking at the transcriptional 

level, GFP induction following irradiation was approximately half that was seen with p21, which correlates with a single 

copy of the transgene being inserted. Whenever these fish were crossed with a wild-type zebrafish, 50% of offspring 

would be fluorescent and so further indicates a single insertion of the transgene. To strengthen this evidence in 

hindsight, I would also use zebrafish that have two copies of the transgene following an in-cross to show that GFP 

mRNA induction is the same as p21 mRNA induction following irradiation. 

Though the presented evidence suggests that fluorescence recapitulates patterns of p21 transcriptional expression, 

this has not been described at the cellular level. For example, GFP has a 26-hour half-life, compared to 4.1-hour half-

life of p21 mRNA and even shorter half-life of p21 protein (Corish and Tyler-Smith, 1999; Jascur et al., 2005; Scoumanne 

et al., 2011). It is worth noting however that it was demonstrated that HSP90 can stabilise p21 expression, and the 

inhibition of HSP90 has been identified as a senolytic pathway (Jascur et al., 2005; Fuhrmann-Stroissnigg et al., 2017). 

Therefore, it is possible that any senescent cells may have an extended p21-protein half-life due to HSP90 expression, 

and that the GFP reporter may coincide with this more than expected in senescent cells specifically. Regardless, this 

may mean that by 3dpIR, some cells with early p21 promoter activation could have repaired their DNA, returned into 

the cell cycle, and switched of p21 transcription, whilst still expressing GFP signal (Sang et al., 2008). This further 

emphasises the importance of using flow cytometry to assess the true proportion of senescent cells in this system.   

4.4.5. Future work and conclusions 
This study provides the first example of a transgenic reporter in a translucent organism that can track potentially 

senescent cells live and in vivo, providing new insights into where these cells are located and which tissues are most 

sensitive to irradiation-induced senescence. Assessment of GFP positive cells that are truly senescent in irradiated 

TgBAC(p21:GFP)sh506  is still required, by reviewing a combination of markers within specific GFP populations at the 

cellular level. I will additionally examine whether senescent cell phenotype changes according to length of time after 

irradiation. I would expect there to be temporal changes in these senescence markers, such as later SASP induction, 

as has been published in mammalian systems (Demaria et al., 2014; Laberge et al., 2015; Freund et al., 2011; Acosta 

et al., 2008). I will also assess zebrafish behaviour for changes in phenotype of movement & heart function, as you 

would expect in an aged animal with high burden of senescence, providing evidence to support the idea that 

irradiation-induced senescence is acting as a proxy for ageing-induced senescence. These in combination would 

validate the zebrafish system, and allow us to begin to tackle the current gaps in knowledge within the senescence 

field. 
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Chapter 5. Validation of zebrafish larval irradiation-induced senescence model. 

5.1.1. Introduction  

Having a method for identifying p21 positive cells in a translucent model organism will allow assessment of in vivo 

senescent cells in a whole organism context. Irradiation of zebrafish larvae up-regulates multiple markers of 

senescence described in the context of mammalian ageing, such as p21, p16-like, mmp2, p53 and γH2AX. As these 

zebrafish develop rapidly and have high fecundity, then compounds that modulate the amount of senescence 

following irradiation, can be screened by monitoring fluorescence intensity in TgBAC(p21:GFP)sh506 zebrafish. To be 

able to fully establish a new model of stress-induced senescence in irradiated zebrafish larvae, comparisons between 

senescent cells in an aged mammalian context with the fluorescent cells seen in irradiated TgBAC(p21:GFP)sh506 

zebrafish are required. One major component is the assessment and presence of a multitude of senescence-associated 

markers within the same cell. Demonstrating comparable markers in 3 days post-irradiation (dpIR) 

TgBAC(p21:GFP)sh506 zebrafish would greatly support the theory that the GFP positive cells were truly senescent. 

Using the transgenic fluorescent reporter established in the previous chapter, I have used techniques such as flow 

cytometry and fluorescent activate cell sorting (FACS) to assess alternative markers of senescence in GFP positive cells. 

A further feature of senescent cells is that they are long lasting in vivo, with levels of p16 still being present in 

chemotherapy-treated breast cancer patients 12 months after chemotoxic therapy (Sanoff et al., 2014). Additionally, 

it can take up to 8 days after irradiation of cells for later SASP factors to be induced (Demaria et al., 2014; Laberge et 

al., 2015; Freund et al., 2011; Acosta et al., 2008). Therefore, it would be a useful validation of the model to determine 

whether the GFP cells in irradiated TgBAC(p21:GFP)sh506 zebrafish were persistent for longer after irradiation and 

have the same temporal SASP regulation. 

In an irradiated zebrafish with a significant portion of senescent cells, I would expect to see changes in organismal 

health status that would mimic common signs of ageing. A typical example is reduced mobility, a common sign of age-

associated frailty (Goodpaster et al., 2006; Bergland et al., 2017). The benefit of being able to study whole organism 

health in our senescent model is so to establish whether senolytics, which were supposed to reduce age-associated 

disease, can improve changes in our irradiated zebrafish’s health status. Altogether, this would permit screening for 

senolytics in vivo in the first instance, therefore taking into account off-target toxicities and changes in organism 

health. This would likely improve the success rate of senolytics going through preclinical and clinical trials that 

identified through this method.  
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5.1.2. Aims 
This chapter aims to validate the new transgenic reporter for p21 promoter activation, TgBAC(p21:GFP)sh506. It is 

important to assess how well the GFP reports live in vivo senescence, by examining multiple senescence markers and 

whether they correlate with GFP fluorescence. Further validation is required to strengthen the evidence that 

irradiation-induced senescence in zebrafish larvae is comparable to phenotypes described in age-associated 

senescence accumulation in mammals.  

 

 

 

The aims of this chapter are: 

1. To develop an assay for assessing multiple markers of senescence within the same cell through Fluorescent 

Activated Cell Sorting (FACS) and immunofluorescence. 

2. To determine the proportion of fluorescent cells from TgBAC(p21:GFP)sh506 that also express markers for the 

DNA damage response, SASP, and lack of proliferation. 

3. To assess whether TgBAC(p21:GFP)sh506 fluorescence is persistent after 3dpIR.  

4. To identify changes in health status that were relevant in age-associated pathology following irradiation of 

zebrafish larvae. 
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5.2.1. Optimisation of flow cytometry for assessment of cells from TgBAC(p21:GFP)sh506 
Alongside live imaging of senescent cells, a useful feature of having a fluorescent transgenic reporter zebrafish for p21 

is the ability to analyse cell morphology and protein expression by flow cytometry and cell sorting. First, optimisation 

of the dissociation process was required to retrieve live cells from whole 3dpIR zebrafish larvae. 30 minutes of 

dissociation using the collagenase liberase (40μg/ml) was the minimum amount of time required for zebrafish tissue 

to disintegrate into a dissociated cell suspension. Cells were then assessed on a haemocytometer, where it was 

confirmed that the majority of cells were in single cell suspension (Figures 5.1, 5.2). Fluorescent microscopy of these 

cells showed a much higher proportion of GFP positive cells in transgenic fish compared to wild-type siblings, and even 

more so in cells from irradiated fish compared to unirradiated controls, corroborating results from live fluorescence 

imaging at the same time-point.  
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Figure 5. 1. Live cells dissociated from 5dpf TgBAC(p21:GFP)sh506 zebrafish (example 1). 
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Figure 5.1. Live cells dissociated from 5dpf TgBAC(p21:GFP)sh506 zebrafish  (example 1).

10ul of dissociated cells were added to a haemocytometer, before being imaged for GFP

fluorescence. Wild type siblings and unirradiated fish were used to compare with cells from 12Gy

3dpIR zebrafish. Scale bar 25M.
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Figure 5. 2. Live cells dissociated from 5dpf TgBAC(p21:GFP)sh506 zebrafish (example 2). 
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Figure 5.2. Live cells dissociated from 5dpf TgBAC(p21:GFP)sh506 zebrafish  (example 2).

10ul of dissociated cells were added to a haemocytometer, before being imaged for GFP

fluorescence. Wild type siblings and unirradiated fish were used to compare with cells from 12Gy

3dpIR zebrafish. Scale bar 25M
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To assess GFP intensity of single cells dissociated from TgBAC(p21:GFP)sh506 zebrafish, flow cytometry of single cell 

suspensions were carried out (Figure 5.3). I then determined a suitable gating strategy such that only live cells are 

assessed. Debris was removed from analysis by gating out regions that were too small to be cells and were present in 

a control sample of live cell media alone. Secondly, a gate was used to remove non-spherical objects, which were 

usually clumped cells, by removing data that did not have a 1:1 ratio of forward scatter height to area. The viability 

dye 7AAD allowed removal of dead cells from later analyses. A 7AAD negative sample determined the amount of 

fluorescence required for a cell to be deemed live or dead in this system. The same was then carried out for GFP 

fluorescence, using both irradiated and unirradiated wild-type siblings to assess whether the treatment may induce 

auto-fluorescence or non-specific signal, which was not the case under these conditions. During the gating for GFP, I 

was able to assess not only GFP positive or negative groups, but also split the positive cells into dim and bright, with 

the bright cells having high GFP intensities that were only seen in transgenic zebrafish following irradiation (Figure 

5.3E).  
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Figure 5. 3. Flow cytometry gating strategy to assess GFP intensity of live cells dissociated from 5dpf TgBAC(p21:GF)sh506 zebrafish 
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Figure 5.3. Flow cytometry gating strategy to assess GFP intensity of live cells dissociated from 5dpf

TgBAC(p21:GFP)sh506 zebrafish. Dissociated cells were gated to remove debris using  forward and side scatter

(column 1). The population was then gated to remove doublets using forward scatter height and area (column 2). Dead

cells were then removed from analysis using 7-Aminoactinomycin D (7AAD) viability dye (column 3), live cells were

gated using a 7AAD negative control (A). Live cells were then assessed for  GFP intensity (column 4), using cells from

wild type siblings as negative controls (B,D) to determine the gate for positive cells (column 4). A further gate was

established to determine a population of cells specific to irradiation according to GFP intensity, using unirradiated

transgenic fish (C) as a negative control.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



144 
 

 

 

5.2.2. Quantifying live GFP positive cells in TgBAC(p21:GFP)sh506 fish after irradiation by flow cytometry 

Following dissociation of live fluorescent cells from irradiated zebrafish larvae, GFP intensity at the single-cell level was 

determined by flow cytometry (Figure 5.4). Not only were there more GFP positive cells overall following irradiation, 

14% (SD 1.762) of GFP positive cells from irradiated TgBAC(p21:GFP)sh506 zebrafish had a higher intensity that was 

ever seen in their unirradiated counterparts, I defined these as ‘GFP-bright’ (Figure 5.4A). The proportion of cells 

positive for GFP in unirradiated fish [23% (SD 5.696)], classified as GFP-dim, was also increased to 39.9% (SD 7.802) 

following irradiation. The mean fluorescence intensity of all live cells also increased both with the transgene compared 

to wild-type siblings, being on average 3x brighter, and with the irradiated vs. unirradiated transgenic fish being 2.5x 

brighter still (Figure 5.4B). Verifying this, histograms for GFP intensity of cells with or without irradiation also displayed 

higher fluorescence intensity following irradiation of TgBAC(p21:GFP)sh506 (Figure 5.4C). This suggested that, as was 

seen by fluorescence microscopy (Figure 4.7), GFP intensity was higher in TgBAC(p21:GFP)sh506 compared to wild-

type siblings. Further, GFP intensity increased following irradiation of TgBAC(p21:GFP)sh506 zebrafish compared to 

unirradiated TgBAC(p21:GFP)sh506 siblings. The proportion of cells positive for GFP when quantified in this manner 

was 38.96% (SD 1.509) at 3dpIR, and 8.35% (SD 3.063) without irradiation. Importantly, fluorescence intensity and 

number of positive cells did not change following irradiation in live cells from wild-type siblings (Figure 5.4B-D). All of 

these data show comparable results to previous microscopy data (Figure 4.7), strengthening the conclusions from both 

of these techniques. 
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Figure 5. 4. Quantification of live cells dissociated from 3dpIR TgBAC(p21:GFP)sh506 
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Figure 5.4. Quantification of live cells dissociated from 3dpIR TgBAC(p21:GFP)sh506. A)

Histogram of  GFP intensity of live cells, each group is plotted as a % of maximum intensity. Gate for cells deemed as GFP

positive is demonstrated. Staggered overlay is also shown for visualisation purposes. B) Percentage of live GFP positive

cells, using wild type siblings to determine intensity that is GFP negative, as anotated by GFP positive gate in (A). C) Mean

GFP fluorescence intensity of live cells. D) The proportion of live cells that are GFP negative, dim, or bright in 3dpIR

TgBAC(p21:GFP)506, determined by aforementioned gating strategy.  Wild type siblings and unirradiated fish were used for

comparison. Data was examined by 2way ANOVA with Tukey's (B,C) or Sidak's (D) multiple comparison test. At least 50 fish

were examined in three-five indepenent experiments. * p < 0.05; *** p < 0.001; **** p <0.0001. Error bars represent standard

deviation.
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Cells dissociated from TgBAC(p21:GFP)sh506 zebrafish had a larger cell size (forward scatter) and granularity (side 

scatter) at higher GFP intensities (Figure 5.5). This change in size is a phenotype well associated with in vitro senescence 

and so could support the notion that GFP fluorescence is marking senescent cells in our irradiated zebrafish (Parrinello 

et al., 2003a). 

 

Figure 5. 5. Assessment of cell size and granularity according to GFP intensity in 3dpIR TgBAC(p21:GFP)sh506. 
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Figure 5.5. Assessment of cell size and granularity according to GFP intensity in 3dpIR TgBAC(p21:GFP)sh506. Live

cells were dissociated from 3dpIR TgBAC(p21:GFP)506, forward scatter  was used to assess cell size, side scatter was

used to assess granularity. A-E) Representative contour plots of live cells.  A-B) Unirradiated controls, with either negative

(A) and Dim (B) GFP expression. C-E)  12Gy 3dpIR cells, with either negative (C), Dim  (D) and bright (E)  GFP expression.

F) relative cell size determined by forward scatter values in different GFP populations relative to forward scatter of all live

cells regardless of  GFP intensity. G) relative cell granularity determined by side scatter values in different GFP populations

relative to side scatter of all live cells. Three independent repeats were carried out. Data was examined  by 2way ANOVA

with Tukey's multiple comparisons. ** p < 0.01; *** p < 0.001. Error bars represent standard deviation.

 

 

5.2.3. Optimisation of FACS for separating dissociated zebrafish cells based on GFP intensity in 
TgBAC(p21:GFP)sh506 
To be able to assess numerous alternative senescence markers in these different cell populations of GFP intensity, by 

FACS for 3dpIR zebrafish cells, I first assessed the efficiency of the sorting process itself in our system. Using optimised 

flow cytometry gating strategies (Figure 5.3.), cells were sorted according to GFP-negative, dim and bright populations 

in 5dpf TgBAC(p21:GFP)sh506 zebrafish (Figure 5.6). Unirradiated controls were sorted into negative and dim 

populations, and 12Gy 3dpIR zebrafish were sorted into negative, dim and bright. Following this, the sorted cells were 

placed back into the flow cytometer to assess fluorescence intensity of each population. The resulting populations 

were between 86 and 99% specific to their sorted groups, which I deemed efficient enough for later experiments. 
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Figure 5.6. FACS of TgBAC(p21:GFP)sh506 zebrafish is between 86 and 99% efficient. A) Representative images of

flow cytometry profile of cells sorted by FACS Aira II flow cytometer. B) Efficiency of cell sorting was calculated in each of

the sorted groups according to percentage of cells that are within the correct groups of GFP intensity that they were originally

sorted for. Assessed over three independent experiments. Data was analysed by one-way ANOVA and Tukey's test for

multiple comparisons, P values were between 0.23 and 0.99. Error bars standard deviation.

 

Figure 5. 6. FACS of TgBAC(p21:GFP)sh506 zebrafish is between 86 and 99% efficient. 
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I next developed a protocol to cytospin these cell populations onto individual slides for immunofluorescence analysis. 

A pilot experiment whereby cells were fixed and cytospun at different speeds and cell densities, before Haematoxylin 

and Eosin (H&E) staining to look at cell morphology post-cytospin (Figure 5.7). 500rpm was found to be the best 

protocol to cytospin cells at densities typically seen following sorting the zebrafish previously (50,000-250,000), they 

were spaced out enough to identify individual cells whilst remaining intact. 
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Figure 5.7. Cytospin at 500rpm of dissociated 5dpf zebrafish cells allowed single cells to be distinguished

and maintain morphology. Transmitted light photomicropraphs of Haemotoxylin and Eosin  staining of cytospun

cells at different densities that are typically seen from sorting TgBAC(p21:GFP)sh506 zebrafish (50,000 in GFP

bright; 100,000-250,000 in  GFP negative and dim populations).  Representative images (2x magnification)

shown. Different cytospin speeds were assessed to determine optimal conditions required to get a single layer of

dissociated zebrafish cells adhering to a microscope slide. Scale 500m.

 

Figure 5. 7. Cytospin at 500rpm of dissociated 5dpf zebrafish cells allowed single cells to be distinguished and maintain morphology. 
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To confirm that the sorted cells did in-fact have differing proportions of GFP intensity, the cytospun cells were stained 

by immunofluorescence using an anti-GFP antibody (Figure 5.8). Similar to the flow cytometry profile of these post-

sorted cells, there was a clear association with anti-GFP staining and GFP intensity used to sort the cells. Cells sorted 

as GFP-negative has practically no staining, whilst the majority of cells sorted as dim were majority positive for anti-

GFP staining, but were not as high in intensity as the GFP-bright group. Together, these confirmed that I could now 

sort fluorescent cells from my zebrafish model, cytospin them onto microscope slides, and carry out an 

immunofluorescence procedure such that enough cells remain adherent to assess protein expression in these different 

populations.  

 

 

DAPI GFP

0Gy GFP - 0Gy GFP + Secondary alone

12Gy GFP - 12Gy GFP + 12Gy GFP ++

Figure 5.8. GFP immunofluorescence on sorted cells from 3dpIR TgBAC(p21:GFP)sh506 zebrafish.

Confocal fluorescent photomicrographs of immunofluorescence images to assess GFP fluorescence in sorted

and cytospun cells.  Representative images shown. DAPI was used to stain nuclei. Cells sorted as Negative (-),

Dim (+), and Bright (++) populations. Scale bar 25M.

 

Figure 5. 8. GFP immunofluorescence on sorted cells from 3dpIR TgBAC(p21:GFP)sh506 zebrafish. 
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5.2.4. Markers for DNA damage response and lack of proliferation associated with GFP intensity in cells sorted 
from irradiated TgBAC(p21:GFP)sh506 
To assess the proportion of alternative markers of senescence in cells sorted from TgBAC(p21:GFP)sh506 zebrafish, 

immunofluorescence for γH2AX, a marker of DNA-damage response and PCNA, a marker of proliferation, was carried 

out (strategy depicted in Figure 2.8). GFP-bright cells had the highest proportion of H2AX positive, PCNA negative cells 

at 52.16% (SD 8.15), and the GFP-dim populations had more than the GFP-negative group (Figure 5.9). The GFP-dim 

population from 3dpIR zebrafish had more senescent cells (29.60%, SD 11.39) compared to their unirradiated 

counterparts (9.54%; SD 3.80). This confirms that the fluorescence from irradiated TgBAC(p21:GFP)sh506 zebrafish is 

able enrich for markers of senescent cells in the brightest groups.  
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Figure 5. 9. GFP intensity positively correlates with pyH2AX positive, PCNA negative cells following irradiation in 3dpIR 
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TgBAC(p21:GFP)sh506 zebrafish.

Figure 5.9. GFP intensity positively correlates with H2AX positive, PCNA negative cells following irradiation in

3dpIR TgBAC(p21:GFP)sh506 zebrafish. A) Confocal fluorescent photomicrographs of double immunofluorescence

for H2AX (red) and PCNA (white) in cells sorted by  GFP intensity (- negative; + dim; ++ bright) and cytospun onto

microscope slides. Representative images shown. A sample without the primary antibody (secondary alone) was used

as a negative control. Scale bar 25M.  B) Quantification of the proportion of H2AX positive, PCNA negative cells

within each group. C) Quantification of H2AX negative, PCNA positive cells within the same groups. Data examined

by one-way  ANOVA with Sidak's multiple comparisons test. 300 cells quantified for each group over 3 independent

experiments. * p < 0.05. Error bars represent standard deviation.

 

5.2.5. IL6 expression correlates with GFP intensity in 5dpf TgBAC(p21:GFP)sh506 regardless of irradiation 
To examine the presence of late senescence markers in these sorted populations, a dual immunofluorescence for IL6 

and PCNA was carried out. Due to limited availability of zebrafish-compatible antibodies, γH2AX could not be used in 

combination with IL6 as they shared the same species of secondary antibody. As with γH2AX expression, there was a 

significant proportion of IL6 positive and PCNA negative cells in the GFP-bright population (Figure 5.10). Importantly, 

the levels of IL6 positive and PCNA negative GFP-bright cells was 20.3% (SD 5.332), was less than half the amount of 

γH2AX positive and PCNA negative GFP-bright cells at the same time-point (52.16%, SD 8.15). Additionally, there was 

14.7% (SD 3.549) of IL6 positive, PCNA negative cells in unirradiated GFP-dim cells, which is comparable to that which 

was demonstrated following irradiation in the GFP-bright group. This suggests that following irradiation in zebrafish 

larvae, it may take longer for the onset of the SASP compared to DNA damage response and p21 expression.  
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Figure 5. 10. A portion of GFP positive cells are IL6 positive, PCNA negative irrespective of irradiation in 3dpIR TgBAC(p21:GFP)sh506 zebrafish.

Figure 5.10. A portion of GFP positive cells are IL6 positive, PCNA negative irrespective of irradiation in 3dpIR

TgBAC(p21:GFP)sh506 zebrafish. A) Transmitted fluorescent photomicrographs of double immunofluorescence for IL6 (red)

and PCNA (white) in cells sorted by  GFP intensity (- negative; + dim; ++ bright) and cytospun onto microscope slides.

Representative images shown. A sample without the primary antibody (secondary alone) was used as a negative control. Scale

bar 25M.  B) Quantification of the proportion of IL6 positive, PCNA negative cells within each group. C) Quantification of IL6

negative, PCNA positive cells within the same groups. Data examined by one-way  ANOVA with Sidak's multiple comparisons

test. 300 cells quantified for each group over 3 independent experiments. **p < 0.01; *** p < 0.001.  Error bars represent

standard deviation.
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5.3.1 - Irradiated zebrafish show no reduction in survival by 10dpIR  
To address whether expression of markers of senescence changes at later time-points in irradiated zebrafish larvae, I 

next assessed survival and irradiation-induced toxicity of these animals at 10dpIR. It is important to emphasise at these 

time-points, zebrafish become protected animals and as such, I first received approval from the UK Home Office to 

allow me to carry out these experiments. Zebrafish were irradiated at 2dpf and assessed for signs of toxicity at 5dpf, 

those that looked healthy and did not present with signs of toxicity described in Figure 3.2 were allowed to grow until 

12dpf. No reduction in survival was seen between 5 and 12dpf in irradiated zebrafish compared to unirradiated 

counterparts (Table 5.1). 12dpf zebrafish were smaller in overall size compared to unirradiated counterparts (Figure 

5.11), despite displaying no obvious signs of ill health and irradiation-induced toxicity. 12dpf zebrafish were irradiated 

10 days prior, in mammalian models the same timeframe was enough to show SASP factors like IL6 to be up regulated 

compared to unirradiated controls (Coppé et al., 2008). 

 

0Gy Survival at 12dpf (%) 12Gy Survival at 12dpf (%)

Experiment 1 96 94

Experiment 2 94 92

Experiment 3 90 90

Table 5.1. % survival of zebrafish from 5 to 12dpf. Zebrafish were irradiated at 2dpf and were assessed

daily between 5 and 12dpf for signs of ill-health such as abnormal swimming behaviour. %  survival was

calculated between 5 and 12dpf. 50 fish used per independent experiment. Data examined by unpaired T

test, p = 0.5614.

 

Table 5. 1. % survival of zebrafish from 5 to 12dpf. 
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Figure 5.11. 10dpIR zebrafish are smaller than unirradiated counterparts. 12dpf zebrafish, either irradiated at 2dpf or

not, were imaged to assess morphology.  A) Reflected light photomicrographs are representative 4x magnification images

that refer to averagely sized fish from each group  (coloured in graph, arrow in image). B) Quantification of whole body

length from mouth to end of tail fin. Statistical significance determined by unpaired T-test with Welch's correction. n = 5

(0Gy), 11 (12Gy). Scale 500m. Error bars standard deviation.
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Figure 5. 11. 10dpIR zebrafish are smaller than unirradiated counterparts. 
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5.3.2 – GFP-dim and bright populations were persistent in 10dpIR TgBAC(p21:GFP)sh506 zebrafish  
To examine whether p21 promoter activation and GFP fluorescence is persistent following irradiation of zebrafish 

larvae, cells from 10dpIR p21:GFP zebrafish were sorted and examined for GFP expression. Live dissociated cells from 

10dpIR zebrafish showed an increased proportion of GFP positive cells when compared to their unirradiated 

counterparts (Figure 5.12). There remained a ‘GFP-bright’ population, which most likely suggests that there were cells 

with sustained p21-promoter activation. Compared to 3dpIR, the number of cells classified as GFP-bright was reduced 

from 14.07% (SD 1.76) of the total cell population to 6.33% (SD 0.69) (Figure 5.12B). There were a greater proportion 

of GFP-dim cells in unirradiated TgBAC(p21:GFP)sh506 zebrafish (54%, SD 10.96) compared to the earlier 5dpf time-

point (23.27% SD 5.97). The proportion of GFP-dim cells following irradiation, 48.33% (SD 5.599) is much more 

comparable to unirradiated zebrafish at this time-point. However, the mean fluorescence intensity of all live cells 

remained around twice as bright following irradiation (5.12C). These data suggest that some of the irradiation-induced 

GFP expression in TgBAC(p21:GFP)sh506 zebrafish is persistent at later time-points.  
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Figure 5. 12. GFP bright cells are still present in 10dpIR TgBAC(p21:GFP)sh506 zebrafish. 
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Figure 5.12. GFP bright cells are still present in 10dpIR TgBAC(p21:GFP)sh506 zebrafish. A)  Representative flow

cytometry profile of 10dpIR TgBAC(p21:GFP)506 zebrafish compared to wild-type siblings and unirradiated counterparts.

B) Summary table of the average proportions of negative, dim and bright cells that make up the transgenic zebrafish at

10dpIR compared to 3dpIR . C) Mean fluorescence intensity of live cells of 10dpIR TgBAC(p21:GFP)506 zebrafish

compared to wild type siblings and unirradiated counterparts. Data examined by 2way ANOVA with  Tukey's multiple

comparisons. 3 independent experiments. **** p < 0.0001. Error bars represent standard deviation.

 

 

5.3.3. GFP-bright cells from 10dpIR TgBAC(p21:GFP)sh506 zebrafish show persistent DNA damage response 
and increased IL6 expression 
To test whether the persistent GFP positive cells from 10dpIR TgBAC(p21:GFP)sh506 zebrafish had changes in the 

proportions of aforementioned markers of senescence, FACS, cytospin and immunofluorescence was carried out. 

There were fewer GFP-bright cells that remained positive for the DNA damage response and negative for proliferation, 

with 38.49% (SD 4.50) being positive compared to 52.16% (SD 8.15) at 3dpIR (Figure 5.13). 29.35% (SD 0.55) of GFP-

dim cells remained positive for DNA damage response and negative for proliferation, which was comparable to that 

which was seen at 3dpIR [29.60% (SD 11.39)]. At the later time-point, the p value was 0.16 between the irradiated 

GFP-dim and bright groups, which may suggest they are more variable compared to 3dpIR. When examining 

proliferating cells (PCNA positive, γH2AX negative cells), there was an increase in GFP-dim cells compared to negative 

in the unirradiated population, but this was not seen in the irradiated groups. Though there are consistent GFP positive 

cells at later time-points, the exact proportion of senescence markers does change over time suggesting a dynamic 

temporal regulation in the onset of these markers of senescence following irradiation in zebrafish larvae.  
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Figure 5. 13. GFP positive cells following irradiation have a persistent proportion of pyH2AX positive, PCNA negative cells in 10dpIR 
TgBAC(p21:GFP)sh506 zebrafish 

Figure 5.13. GFP positive cells following irradiation have a persistent proportion of H2AX positive, PCNA negative cells

in 10dpIR TgBAC(p21:GFP)sh506 zebrafish. A) Conforcal fluorescent photomicrographs of double immunofluorescence for

H2AX (red) and PCNA (white) in cells sorted by  GFP intensity (- negative; + dim; ++ bright) and cytospun onto microscope

slides. Representative images shown. A sample without the primary antibody (secondary alone) was used as a negative control.

Scale bar 25M.  B) Quantification of the proportion of H2AX positive, PCNA negative cells within each group. C)

Quantification of H2AX negative, PCNA positive cells within the same groups. Data examined by one-way  ANOVA with Sidak's

multiple comparisons test. 300 cells quantified for each group over 3 independent experiments.  * p < 0.05; ** p < 0.01; *** p <

0.001. Error bars represent standard deviation.
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The presence of the SASP-associated marker IL6 did not associate with irradiation at 3dpIR (Figure 5.10.). However, a 

much greater association of IL6 positive, and PCNA negative cells with GFP fluorescence was seen at 10dpIR (Figure 

5.14). 48.09% (SD 6.67) of GFP-bright cells are IL6 positive PCNA negative. This is much greater than the 12.72% (SD 

5.70) and 14.87% (SD 0.88) seen in unirradiated and irradiated GFP-dim populations. The proportion of PCNA positive, 

IL6 negative cells were comparable in GFP-dim populations regardless of irradiation, but was lower in GFP-negative (p 

= 0.037) and bright (p = 0.065) cells. Therefore, at 10dpIR, IL6 much more strongly correlates with strong GFP 

fluorescence compared to 3dpIR. 

 

Figure 5. 14. GFP bright cells from TgBAC(p21:GFP)sh506 zebrafish 10 days after irradiation have a specific population of IL6 positive and PCNA 
negative cells. 
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Figure 5.14. GFP bright cells from TgBAC(p21:GFP)sh506 zebrafish 10 days after irradiation have a specific

population of IL6 positive PCNA negative cells. A) Confocal fluorescent photmicrographs showing double

immunofluorescence for IL6 (red) and PCNA (white) in cells sorted by  GFP intensity (- negative; + dim; ++ bright) and

cytospun onto microscope slides. Representative images shown. A sample without the primary antibody (secondary alone)

was used as a negative control. Scale bar 25M.  B) Quantification of the proportion of IL6 positive, PCNA negative cells

within each group. C) Quantification of IL6 negative, PCNA positive cells within the same groups. Data examined by

one-way  ANOVA with Sidak's multiple comparisons test. 300 cells quantified for each group over 3 independent

experiments. * p < 0.05; **** p < 0.0001. Error bars represent standard deviation.

 

 

5.4. Irradiated zebrafish show persistently reduced motility 
To test whether irradiated zebrafish larvae show behavioural changes seen with age, I tested for altered swimming 

ability by tracking irradiated zebrafish movement at different times post irradiation (Figure 5.15). Mobility was 

persistently reduced over a 30-minute period at 2, 3 and 10dpIR compared to unirradiated counterparts. The zebrafish 

were able to move more over time regardless of irradiation. with the average distance moved in a 30 minute period 

being 1583mm (SD 1588) and 2923mm (SD 1602) at 2dpIR for irradiated and non-irradiated fish, whilst at 10dpIR 

irradiated and non-irradiated zebrafish moved 7008mm (SD 1930) and 10484mm (SD 2827) respectively. This 

demonstrates that irradiation induces reduced swimming ability in zebrafish larvae at multiple time-points.  
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Figure 5.15. Irradiated zebrafish show persistently reduced mobility. Zebrafish larvae were placed

individually in a 24-well plate and their movement assessed over a 30-minute period at 2, 3, and 10dpIR. A) A

significant reduction in the distance moved over a 30min period was observed in 2dpIR zebrafish exposed to

12Gy irradiation at 2dpf, compared to non-irradiated fish (n = 50/group over four independent experiments).

This is a persistent change that is also seen at 3dpIR (B) and 10dpIR (C). n = 24 - 50 per group over three

independent experiments. Data was examined by unpaired T-test. **** p < 0.0001. Error bars represent

standard deviation.

C

 

Figure 5. 15. Irradiated zebrafish show persistently reduced mobility. 
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5.5. Conclusion and chapter discussion 

In this chapter, I have characterised the ability of this novel transgenic reporter for p21 to identify live senescent cells 

in vivo. By using the aforementioned gating strategy, I was able to sort live cells from TgBAC(p21:GFP)sh506 and 

cytospin the different populations to study the relationship of GFP intensity with other markers of senescence, the 

presence of γH2AX and IL6, and the absence of PCNA. I have provided evidence to support the idea that irradiated 

zebrafish larvae can act as a model for mammalian ageing-induced senescence by comparing how the phenotype 

changes over time and demonstrating that these fish show a persistently reduced mobility, a common symptom of 

mammalian frailty. I have shown that a portion of GFP-bright cells were present at 10dpIR, and that these cells had a 

larger proportion of IL6 positive, PCNA negative cells compared to 3dpIR. This recapitulated the kinetics of this late 

senescence marker described in mammalian systems. In summary, I have now evidenced that using the irradiated 

zebrafish can model numerous aspects of mammalian age-induced senescence. I can now begin to explore the 

applications for this model system by taking advantage of the optical transparency and rapid development of zebrafish 

larvae. Being able to study in vivo senescent cells accumulation and assess off-target toxicities and changes in health 

status in a 5-day test will compliment already-established mammalian models of senescence and hopefully streamline 

the drug development process to identify novel compounds that can remove these cells effectively. 

A unique feature of this study is that two p21-positive cell populations were examined, deemed dim and bright that 

seemed to show important differences in senescence marker expression. In mammalian transgenic reporters for P16, 

only positive and negative cells were examined both in the context of irradiation and ageing (Baker et al., 2011; Baker 

et al., 2016; Demaria et al., 2014; Liu et al., 2019). Importantly, I demonstrated that there were differences in dim and 

bright cells. For example, at 3 days post-irradiation (dpIR), 52.16% (SD 8.15%) GFP-bright cells but only 29.5% (SD 3.80) 

of 12Gy GFP-dim cells were positive for γH2AX and negative for PCNA. However, at 10dpIR, γH2AX positive PCNA 

negative cells are still much higher in the irradiated GFP-dim and bright groups compared to unirradiated cells, but the 

irradiated GFP-bright cells do not show much more than the irradiated GFP-dim cells. Further, at 10dpIR, IL6 positive 

and PCNA negative cells were only identified in the 12Gy GFP-bright population and not the dim population. This may 

have relevance in terms of senescence subtypes, where expression of IL6 was demonstrate in p16-positive cells in 

mice following irradiation but not wound healing (Demaria et al., 2014). Very little is known about the differences 

between physiological senescence such as those involved in wound healing and present during development, 

compared to stress-induced senescence more commonly associated with age-associated pathology. This model could 

provide a unique means to identify differences between these groups, but more work is required to assess this 

effectively. For example, if GFP dim, IL6 negative cells were identified following in a zebrafish wound healing model, 

as was shown in mice, comparisons could be made to distinguish this type of senescence from irradiation-induced 

senescence (Demaria et al., 2014). Similarly, developmentally senescent cells were deemed to be negative for IL6 

(Storer, Mas, Robert-Moreno, et al., 2013). As the majority of GFP dim cells were IL6 negative, there may be some 

developmentally senescent cells present in this population, which prompts further study. For example, if a portion of 

the GFP dim cells were identified as developmentally senescent and comparable with previous evidence  in chick and 

mouse embryos, then zebrafish could uniquely assess differences between GFP dim and bright cells within the same 
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organism (Muñoz-Espín et al., 2013; Storer et al., 2013). To do this, one could demonstrate that GFP dim are still 

present in a p53-null zebrafish, as was described in mice (Muñoz-Espín et al., 2013). Further evidence to show that 

this is not a senescence-independent effect of p21 and il6, sorting the GFP dim cells and showing they have SA-β-Gal 

activity would prove useful. As some macrophages have been shown to be p16 and SA-β-Gal positive, a dual transgenic 

zebrafish for p21 and the macrophage reporter mpeg1:mCherry could be utilized, and only mCherry-negative cells 

could be sorted (Ellett et al., 2011). Understanding these differences in senescence subtypes would have great 

implications in terms of senolytic development, as once differences are identified, drugs could be developed to 

specifically remove stress-induced senescent cells and not those present from wounding or development. As senolytics 

currently have problems with toxicity, this would likely improve their therapeutic window and make it more feasible 

for senolytics to be administered systemically to treat multiple age-associated diseases at once.  

Zebrafish larvae only demonstrate an irradiation-specific induction of the SASP marker, IL6, at the later 10 days post-

irradiation (10dpIR) time-point. This indicates that the SASP is a later marker of senescence compared to p21 and 

γH2AX, corroborating the limited SASP-marker expression shown previously at the whole-organism RNA level at 3dpIR 

(Figure 3.15). This is well described in mammalian systems and provides validation that the zebrafish respond to 

irradiation in a comparable manner (Laberge et al., 2015; Freund et al., 2011). An important consideration is that as 

IL6 was the only SASP-associated marker examined at 10dpIR, a panel of markers by microarray or RNAseq on sorted 

populations would greatly strengthen this conclusion (Baker et al., 2011; Coppé et al., 2008; Coppé et al., 2011; 

Demaria et al., 2014; Purcell et al., 2014; Wiley et al., 2017). This also provides evidence to support my hypothesis that 

the population of cells with the highest GFP intensity would be more likely senescent. This could be due to some DNA 

repair occurring over time, with dim cells having less extensive DNA damage that is repairable, whilst the bright cells 

have a more serious damage load, which induces senescence and IL6 expression. This would imply that a portion of 

the 3dpIR p21-positive cells may have instead been quiescent (Sang et al., 2008). Complimenting this idea, single cell 

RNAseq of human bleomycin-treated cells showed p21 expression was highly related to senescence 10 days after 

treatment (Wiley et al., 2017). Additionally, cells that were positive for p21 for more than 4 days were shown to no 

longer return to the cell cycle (Sang et al., 2008). The idea that the reporter is more specific to senescence at 10dpIR 

would have implications for the use of the zebrafish model as a senolytic screening tool. To assess this, a future 

intention is to test already-available senolytics such as Dasatinib & Quercetin, ABT-263 (Navitoclax), and Fisetin for 

their ability to modulate GFP fluorescence in 3 and 10dpIR zebrafish (Zhu et al., 2015; Zhu et al., 2016; Yousefzadeh et 

al., 2018). Unirradiated zebrafish would be used to threshold the quantification such that only changes in bright cells, 

those with IL6 at 10dpIR, would be assessed to reduce background noise.   

Though there was an enrichment for senescence-associated markers with increasing GFP intensity, some expression 

was present irrespective of radiation. For example, I have described a population of IL6 positive cells in GFP dim 

populations at 3dpIR independent of irradiation. One possible reason for this is that IL6 is induced following mechanical 

stress of smooth muscle, independently of senescence (Zampetaki et al., 2005). In 4-day-old zebrafish larvae, there is 

smooth muscle in the intestine, which is a region that I had demonstrate GFP expression without irradiation (Seiler, 

Abrams and Pack, 2010) (Figure 4.6). Additionally, IL6 is expressed in macrophages in zebrafish larvae (Nguyen-Chi et 
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al., 2015). This expression was more prominent following caudal tailfin amputation or infection, however their data 

did not demonstrate that there was no expression in uninfected or uninjured zebrafish. Indeed, macrophages can be 

activated in normally developing zebrafish through clearing apoptotic bodies that appear as a part of development 

(Herbomel, Thisse and Thisse, 1999; Yabu et al., 2001). IL6 is also known to play a role in neurogenesis, both directly 

on neurons as a neurotrophic-like factors, and in non-stimulated human microglia, a macrophage subtype typically 

associated with the central nervous system (Satoh et al., 1988; Kim and de Vellis, 2005). These microglia were present 

in the brain of zebrafish around the same time that I have examined unirradiated p21:GFP fluorescence, and I have 

demonstrated GFP fluorescence in the head regions of these fish (Casano, Albert and Peri, 2016) (Figure 4.6). In all 

examples, we do not know whether any of these macrophages are also positive for p21, but as macrophages only 

make up a small population of total cell number, then they could only ever account for a small proportion of these IL6 

& p21 positive cells (Nguyen-Chi et al., 2015). This could be examined in future by utilising the macrophage reporter 

mpeg1:mCherry alongside the p21 reporter (Ellett et al., 2011). Further, this emphasises that the specificity of the 

reporter could potentially be improved in the future. An additional reporter for IL6 in the TgBAC(p21:GFP)sh506 

zebrafish would allow live sorting of cells according to IL6 expression as well as p21 expression for example. This could 

potentially prove more specific than the current murine reporters that rely on p16 alone, with the added benefit of 

being in a transparent organism (Demaria et al., 2014; Baker et al., 2011; Liu et al., 2019). A more in-depth assessment 

of the dual reporter, looking at a larger panel of senescence-associated genes and proteins would be required before 

this is clear. Further, assessment of transcript expression by qPCR in cells sorted by p21 and il6 expression could 

provide novel insights into the reliability of these markers of senescence. Even without the dual reporter however, 

single-cell RNAseq of cells sorted by GFP fluorescence of the p21 reporter could provide these insights by possibly 

distinguishing the GFP bright cells that are negative for markers of senescence (Wiley et al., 2017). Though there are 

cells detected by the TgBAC(p21:GFP)sh506 that may not be senescent, there is a clear enrichment of these markers 

according to GFP intensity making it a useable senescence reporter.  

An important advantage of studying senescence in zebrafish is that it is a whole organism, and therefore assessments 

of health status could be used to determine whether senolytics actually reduce signs of pathology. I have described 

that irradiated zebrafish show reduced mobility compared unirradiated counterparts. In humans, mobility is classified 

as one of the greatest predictors all-cause mortality (Bergland et al., 2017). The ‘Timed Up and Go’ test is one of the 

most suitable performance measures for older people and clearly decreases with age-associated muscle loss (Samson 

et al., 2000; Lin et al., 2004). In this sense, irradiated zebrafish larvae phenocopy this age-associated predictor of 

pathology, however a limitation of this evidence is that it is not yet known whether the effect is due to increased 

senescence or another effect of irradiation. To assess this, if senolytics such show efficacy in irradiated zebrafish larvae, 

they will be assessed to see whether mobility is improved in their presence. In humans, Dasatinib and Quercetin 

improve mobility in Ideopathic Pulmonary Fibrosis patients (Justice et al., 2019). Walk distance and gait speed were 

assessed in this case, but it is worth noting that this phase 1 clinical trial did not have a placebo control, and only used 

a limited number of patients. Further, as 10dpIR zebrafish are clearly smaller in overall size, more in-depth assessment 

of muscle loss would bolster this data to demonstrate that it is not just their smaller size that contributes to their 



168 
 

reduced movement. Histology staining of sections of 10dpIR zebrafish larvae could be able to demonstrate changes in 

muscle that are correlated with sarcopenia in aged mice, as can phalloidin staining of actin filaments (Snow et al., 

2008; Lin et al., 2018). Assessment of other health parameters are also possible in zebrafish larvae. Heart failure is an 

age-associated pathology for example, and removal of senescent cells in mice shows improved recovery after heart 

attacks, as well as alleviates age-associated cardiac dysfunction (Strait and Lakatta, 2012; Lewis-McDougall et al., 2019; 

Walaszczyk et al., 2019). Heart rate and blood flow can be assessed in zebrafish larvae, and so may prove a useful 

health parameter to assess following irradiation (Zakaria et al., 2018). Additionally, senescent cells contribute to 

anxiety-like phenotypes in obese mice (Ogrodnik et al., 2019). Parameters to assess stress and anxiety have been 

established in zebrafish larvae, and shock responses could be incorporated to test these measures in irradiated 

zebrafish also (Alsop and Vijayan, 2008). Together, these relatively simple assessments of whole organism health 

status that are associated to senescence and ageing can be employed in zebrafish and provide a great advantage in 

the development of senolytics.  

Currently in the field of senescence and ageing, it is not well understood how well irradiation acts as a proxy ageing. I 

have demonstrated reduced mobility and increases in multiple senescence markers that are associated with ageing in 

irradiated zebrafish larvae. Increases in p16, SA-β-Gal, γH2AX, IL6 expression are all associated with mammalian ageing 

and indicate an age associated accumulation of senescent cells. For example, IL6 protein levels in the blood serum 

strongly correlates with frailty in the elderly (Van Epps et al., 2016). Now with the development of the transgenic 

reporter and ability to sort potentially senescent cells, their abundance can be quantified and compared with 

mammalian ageing. At 3dpIR, 19.64% of all cells were positive for p21, γH2AX, and negative for PCNA, as 11.77% and 

7.87% of all cells were γH2AX positive and PCNA negative cells in the 12Gy GFP-dim and bright populations 

respectively. At 10dpIR, 16.62% of all cells were positive for p21, γH2AX, and negative for PCNA, with 14.18% and 

2.44% being γH2AX positive and PCNA negative in the 12Gy GFP-dim and bright populations respectively. In the skin 

of aged primates, 15% of cells were positive for three markers of senescence, including activation of the DNA damage 

response (Herbig et al., 2006). The majority of 24-month old mice had increased SA-β-Gal activity compared to 2-

month old mice (Biran et al., 2017b), however the actual levels varied from 2% in the lymph node to 15% in 

subcutaneous stroma indicating there is tissue-specific variation in the prevalence of senescence.  Additionally, more 

than 20% of cells were positive for senescence markers SA-β-Gal and senescence-associated heterochromatic foci 

(SAHF) in 22-month murine liver hepatocytes (Panda, Isbatan and Adami, 2008). These old mice also have 20% of 

hepatocytes with an activated DNA damage response (53BP1 positive; phosphorylated ATM positive), but these 

markers were not used in combination with SA-β-Gal and SAHF so may not all be specific to senescence. The amount 

of DNA damage response activation in the aged mouse liver was comparable with the amount seen 1 week after the 

addition of the DNA damaging agent Aminoazotoluene (AAT) in juvenile mice, which was used to induce ectopic 

senescence accumulation. The percentage of cells that were senescent in my larval zebrafish irradiation model were 

therefore comparable with the prevalence senescence in the skin of aged primates and the liver of mice. The limitation 

to this is that all cells positive for p21, γH2AX, and negative for PCNA are senescent, which may not be the case. If 

instead cells positive for p21, IL6, and negative for PCNA were considered ‘senescent’, only 3.03% of all cells would fit 
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this category at 10dpIR. Regardless, this method of inducing in vivo senescence is a much more cost and time-effective 

method with multiple similarities to mammalian age-induced senescence, as well as reducing the number of ASPA-

regulated animals required for this type of research (Home Office, 2014). In the future, a more in-depth assessment 

comparing the GFP positive cells seen following irradiation in TgBAC(p21:GFP)sh506 compared to those seen in aged 

TgBAC(p21:GFP)sh506 would provide novel insights into similarities and differences between irradiation-induced and 

age-induced senescence. Paraffin sections of old versus young TgBAC(p21:GFP)sh506 zebrafish would demonstrate 

whether fluorescence is increased with age and whether the tissues with the highest burden of senescent are similar 

or different to those seen in irradiated larvae. Expression of p21 has not been studied in old wild-type aged zebrafish, 

but the head kidney, gut and testes express high levels of cdkn1a (p21) in telomerase mutant zebrafish (Henriques et 

al., 2013). Moreover, actually sorting the tissues from aged transgenic zebrafish to assess whether there is again a GFP 

bright population that is more specific to IL6 expression compared to GFP dim cells would elucidate whether this is an 

irradiation-specific effect or one directly relevant to ageing.  

 

Another factor to consider in the context of whole organism ageing is immune-system clearance of senescent cells 

(Kang et al., 2012). Until 4-6 weeks of age, zebrafish do not have a functional adaptive immune system and so T-cell 

mediated clearance of senescence would not be possible in 5-12dpf zebrafish (Lam et al., 2004). However, 

macrophages have also been implicated as senescence-clearing cells and were present at these time-points and so 

may have played a role in clearing GFP-bright cells (Herbomel, Thisse and Thisse, 1999; Kang et al., 2011a). In the 

context of the irradiated zebrafish larvae, it is possible that these macrophages may have altered functional capacity 

as they themselves have also been irradiated. This is well established in radiotherapy-treated cancer patients, who 

present with reduced lymphocyte numbers following treatment (Belka et al., 1999). If this was the case then one could 

argue that this irradiated zebrafish larval model is actually even more comparable with an ageing context in that both 

contexts show compromised immune cell function. This could be explored in the future through already established 

techniques for studying immune cell function in zebrafish, to see how well they handle infection for example (Renshaw 

and Trede, 2012). Alternatively, transplanting mpeg1:mCherry macrophages sorted from non-irradiated zebrafish 

could potentially show whether any change in function is due to irradiation of the macrophages or increased 

senescence burden. As zebrafish are transparent at these stages, one could dissect whether immune cell clearance of 

senescent cells does take place in real time. Further, one could modulate the amount of macrophages present with 

Liposome encapsulated clodronate (L-clodronate), and show whether the senescence burden is increased and signs 

of pathology such as mobility are worsened (Bernut et al., 2014).  
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6. Final discussion and future work 
 

Lifelong exposure to endogenous and exogenous sources of stress, and a time-dependent decline in our immune 

system’s ability to clear damaged tissue and mediate inflammation causes a chronically inflamed and pathogenic 

environment (Figure 1.1) (Solana, Alonso and Peña, 1999; Solana and Mariani, 2000; d’Adda di Fagagna et al., 2003a; 

Deng et al., 2004a; Czesnikiewicz-Guzik et al., 2008; Baker et al., 2011). It is now well established that the amount of 

senescent cells present in many of our tissues, increases with age (Martin and Buckwalter, 2002; Kang et al., 2011a, 

2015; Bhat et al., 2012). Not only this, they are directly causal to the onset and pathology of a multitude of age-

associated diseases (Childs et al., 2016; Baker et al., 2016; Jeon et al., 2017; Bussian et al., 2018; Chinta et al., 2018). 

As our population is ageing rapidly, thereby increasing the prevalence of age-associated diseases, there is an 

unmanageable strain on our health and social care services that cannot be sustained. Therefore, it is imperative that 

we understand the mechanisms that lead to age-dependent increases in disease incidence, including senescent cell 

accumulation, with great urgency. Drugs called senolytics are being developed to remove senescent cells and are 

starting to show promise in early clinical trials (Justice et al., 2019; Spark, 2019; Hickson et al., 2019). However, these 

trials are focusing on individual age-associated diseases, and some of the senolytics interact with cytochrome p450 

that is causing issues of polypharmacy with other common medications in older people (Doan et al., 2013; Elbarbry et 

al., 2014; Jung & Lee et al., 2014). To be able to use senolytics to tackle age-associated multimorbidity, more work is 

required to understand senescent cells in vivo. This is because in vitro studies do not take into account the paracrine 

nature and complex tissue interactions that senescent cells are involved in in vivo. Additionally, as senolytics currently 

have a small therapeutic window; identifying efficacy in vivo in the first instance would likely improve the translatability 

of these compounds (Fuhrmann-Stroissnigg et al., 2017; Zhu et al., 2015; Zhu et al., 2016; Baar et al., 2017). Currently, 

it is difficult to study senescent cells in vivo due to multiple markers being required to identify them, and the resulting 

phenotype is dynamic and contextually dependent (Maciel-Barón et al., 2016; Basisty et al., 2019). Additionally, age-

associated accumulation of senescent cells is a laborious process as it is costly in terms of both time and money to 

study old animals. Further, mouse models to identify senescence do not allow live tracking of these cells in a mixed 

population and at the cellular level (Baker et al., 2011; Demaria et al., 2014; Liu et al., 2019). Here, I have investigated 

the potential of zebrafish larvae to compliment already established systems and provide novel information about 

senescent cells in vivo. Irradiation is a well-described means of inducing senescence, both in vitro and in vivo, but a 

dose and time had not been optimised to induce rapid senescent cell accumulation without causing significant lethality 

or toxicity in zebrafish larvae (Coppé et al., 2008; Demaria et al., 2014). Once optimised, I was able to study senescent 

cells and show that irradiation of zebrafish larvae, much like is seen in mammalian systems, can induce accumulation 

of multiple senescence markers. The predominant reasons for developing this model is that zebrafish larvae are 

optically transparent, genetically malleable, and develop rapidly. This allowed the development of a tool that could 

track in vivo senescent cells, live and at the cellular level, which was not possible previously. The TgBAC(p21:GFP)SH506 

zebrafish, once irradiated, shows multiple similarities with the senescent cell phenotype in mammals, and therefore 
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provides a means to study these cells in a much more timely and cost-effective manner, whilst also reducing the 

number of ASPA-protected animals required for this type of research.  

 

6.1. Developing an assay for in vivo senescence accumulation with the potential for senolytic screens. 
I have demonstrated that irradiated zebrafish larvae accumulate multiple senescence markers that have been 

demonstrated in the context of stress and age-induced mammalian senescence. Expression of markers identified 

include p21, p16-like, mmp2, γH2AX, il6, SA-β-Gal and reduced proliferation were all present following irradiation. 

Complimentary to this, irradiation of human fibroblasts also showed increased expression of P21WAF1, γH2AX, P16INK4A, 

IL6 and MMP2 (Schafer et al., 2017). MMP2 was additionally implicated as a central SASP marker by unbiased analysis 

of two human cell lines induced to senescence by five different methods (Özcan et al., 2016). Further, in the skin and 

brain of aged non-diseased primates, there is an increase in SA-β-Gal, P16INK4A and γH2AX foci (G P Dimri et al., 1995; 

Martin and Buckwalter, 2002; Herbig et al., 2006b; Jeyapalan et al., 2007; Bhat et al., 2012; Kang et al., 2015). 

Additionally, combinations of P16INK4A, IL6, SA-β-Gal, MMP2, γH2AX, and reduced proliferation are seen in tissues from 

human patients with age-associated diseases such as Alzheimer’s Disease, Ideopathic Pulmonary Fibrosis and 

Osteoarthritis (Chinta et al., 2018; Schafer et al., 2017; Jeon et al., 2017). As is demonstrated in the context of 

mammalian ageing, the irradiated zebrafish also demonstrated reduced mobility, a common pathology of ageing and 

predictor of mortality (Goodpaster et al., 2006; Bergland et al., 2017). Using BAC transgenesis, I have developed a 

method of imaging fluorescent cells in irradiated zebrafish that correlate with multiple senescence markers within the 

same cell. With more time, I would change the inducer of senescence to see how well this reporter can detect 

senescence in different contexts, particularly in aged zebrafish. Comparing the location of fluorescent cells in older 

fish and the expression of SASP factors with irradiated zebrafish larvae would provide important validation about the 

use of irradiation as a model for age-associated senescent cell accumulation. Further, I would expand the SASP markers 

assessed, principally in sorted cell populations, and identify whether the SASP changes according to the inducer as is 

suggested in mammalian systems (Demaria et al., 2014; Maciel-Barón et al., 2016). Finally, I would test known 

senolytics to determine whether they show efficacy and are able to both reduce the amount of fluorescence seen 

following irradiation and rescue the loss in mobility, this would emphasise the unique ability to identify senolytics with 

the ability to improve health status in a rapid and reliable manner. The current evidence does describe multiple 

similarities in the phenotype of irradiated zebrafish with human ageing and age-associated disease, at the transcript, 

proteomic and behavioural level, and therefore it is now feasible to study aspects of in vivo senescent cell 

accumulation within a live organism in a 5-day test. 
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A vital use of this zebrafish system is to for an in vivo drug screen for modulators of senescence. Drugs are being 

developed to remove the age-associated burden of senescence and extend the healthspan of our ageing population. 

Currently, these drugs are identified through in vitro approaches that do not take into account the paracrine effects 

of the SASP, and the complex interactions between cell types that result in vivo (Fuhrmann-Stroissnigg et al., 2017; 

Zhu et al., 2015; Zhu et al., 2016). Additionally, these drugs have a limited therapeutic index, meaning the dose 

required for an effect is close to the dose required to see side effects. As these side effects are only seen once tested 

in mice, this wastes animals, time and money if the compounds are not effective in vivo. Further, as current senolytics 

such as Quercetin and Fisetin are cleared by cytochrome p450, this interferes with other drugs commonly used in older 

people (Doan et al., 2013; Elbarbry et al., 2014; Jung & Lee et al., 2014). The result of these drawbacks is that only one 

age-associated disease can be tackled at a time, which is not tackling the urgent issue of multimorbidity and 

polypharmacy (Justice et al., 2019; Spark, 2019). Systemic administration of senescence-modifying drugs has the 

potential to tackle multiple diseases at once and overcome the current issues of polypharmacy (Bellantuono, 2018). 

To achieve systemic treatment of senescence-modifying compounds, a method for screening senescence modifying 

drugs in a whole organism context, in a timely manner, is required. In this regard, compounds would be identified as 

hits if they were able to remove senescent cells, have limited off-target toxicities, and actually improve the health 

status of an organism. This approach would more likely identify compounds that would go through pre-clinical and 

clinical trials successfully, as the compounds would be identified in a more physiologically relevant manner. Here, I 

have described how irradiation of zebrafish larvae induces senescent cell accumulation within a 5-day test. Zebrafish 

are amenable to high throughput drug screening approaches (Robertson et al., 2014; Wang, Rajpurohit, Delaspre, 

Walker, White, Ceasrine, Kuruvilla, R. Li, et al., 2015). They develop rapidly, and by 5dpf have multiple other organ 

systems that would better recapitulate the context of senescence in an aged individual compared to in vitro screening 

(Vaz et al., 2018). Zebrafish larvae are considered a replacement for mice since they are not protected by the Animals 

(Scientific Procedures) Act (ASPA) also, reducing the number of animals required for in vivo screening (Home Office, 

2014). Therefore, this system could be used to rapidly identify novel compounds that modulate the amount of in vivo 

senescence seen following irradiation, as well as monitoring for off-target toxicities and changes in mobility in the first 

instance.  

 

To develop an in vivo compound screen for modulating senescence using irradiated TgBAC(p21:GFP)SH506 zebrafish, 

a pipeline for the drug development process must first be established. Initially, the amount of fluorescence after 

irradiation without the presence of any compounds must be assessed in greater detail to assess signal variability 

compared to unirradiated controls. Z-scores, inter- and intra-plate variability would permit effective experimental 

design to appropriately power the screen (Fuhrmann-Stroissnigg et al., 2017). Secondly, drugs with already established 

efficacy at killing senescent cells in vivo would be assessed in irradiated zebrafish larvae to identify whether they 

reduce the amount of fluorescence seen following irradiation (Figure 6.1.). Dasatinib & Quercetin (DQ), ABT-263 

(Navitoclax) and Fisetin would be amongst the first to be tested (Zhu et al., 2015; Zhu et al., 2016; Yousefzadeh et al., 

2018). The timing of this treatment would also be important, as it would affect the translation of the compound. For 
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example, drugs that can remove senescence after they are established would probably prove more beneficial for 

patients that come to the clinic with symptoms already present. Whereas, drugs that can prevent senescence may 

prove more useful in the context of preventing senescence accumulation in response to surgery or chemotherapy 

(Sanoff et al., 2014; Collins et al., 2017). To confirm that compounds are effectively reducing senescent cell burden 

and able to improve organism health, a secondary screen to assess for changes in IL6 following FACS of treated and 

irradiated zebrafish, as well as monitoring for mobility as I have previously described (Fuhrmann-Stroissnigg et al., 

2017). Additional behavioural screens for health status would be established to strengthen the model, such as 

assessment of heart function and anxiety, both of which are senescence-associated pathologies (Lewis-McDougall et 

al., 2019; Ogrodnik et al., 2019; Walaszczyk et al., 2019). Once validated with positive control senolytics, screening a 

library of compounds to compare their efficacy to the already-established drugs would be carried out (Figure 6.1.). 

Once hit compounds are identified, then the mechanism for how they can induce cell death selectively in senescence 

would be investigated. Additionally, if an assay to assess physiological senescence in zebrafish, such as from a wound 

healing perspective, hit compounds would be tested in this context also (Demaria et al., 2014). The benefit of this 

would be that one could take hit compounds forward if they selectively remove stress-induced pathological 

senescence and not physiological senescent cells. Once elucidated, the compounds would be tested in a mammalian 

system, ideally an aged mouse with signs of multimorbidity. This method will hopefully provide a more streamlined 

pipeline for the development of senescence modifying drugs to tackle multiple age-associated pathologies.  
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Figure 6.1. An in vivo compound screen to identify modulators of senescence in irradiated

TgBAC(p21:GFP)SH506 zebrafish. Diagram depicting an approach for an initial screen to identify modulators of in

vivo senescence. A) Careful assessment of the amount of fluorescence seen following irraidation of

TgBAC(p21:GFP)SH506 zebrafish will allow assessment of the robustness of the assay, through Z-scores and

understanding inter and intra-plate variability. B) A compound library will then be added to irradiated zebrafish before

assessment of fluorescence to identify those that are able to reduce the amount of senescent cells in the zebrafish

without causing obvious toxicity.

 

Figure 6. 1. An in vivo compound screen to identify modulators of senescence in irradiated TgBAC(p21:GFP)sh506 zebrafish. 
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6.2. Prospective isolation of cells with p21 promoter activation could provide novel insight into the 
senescence phenotype 
 

As the irradiation assay causes a rapid accumulation of multiple senescent cell markers in a developing and transparent 

organism, one could propose that the system provides a unique opportunity to study physiological and pathological 

senescence to identify features that distinguish them from one another. For example, I have also demonstrated the 

presence of senescence markers such as p21 and SA-β-Gal in unirradiated zebrafish larvae that could be a form of 

developmental senescence, though more work is required to confirm this (Kishi et al., 2008). The intestine and 

pharyngeal arches are areas highlighted as SA-β-Gal positive and potentially a form of developmental senescence in 

the mouse and chick embryo (Munoz Espin et al., 2013; Storer et al., 2013). The same regions showed expression in 

unirradiated developing zebrafish larvae showed some expression of these markers and so it is possible that the same 

process is being identified here. As the process of developmental senescence is p21-dependent (Munoz Espin et al., 

2013), then it could be possible to study these cells in comparison to the stress-induced senescent cells in 

TgBAC(p21:GFP)SH506 zebrafish. Being able to study both types of senescence within the same organism could prove 

extremely useful in understanding whether there are distinguishable features between the two types of senescence.  

I have begun to describe a possible example of this, where at 10dpIR only the GFP bright cells from irradiated 

TgBAC(p21:GFP)SH506 zebrafish have IL6. One study has shown that IL6 is only up regulated in senescent cells 

following irradiation and not following wound healing, potentially defining an example difference between 

physiological and pathological senescence (Demaria et al., 2014).  Though the evidence is limited to IL6 currently in 

these zebrafish, it highlights the ability to identify p21-positive cells that may have different phenotypes.  This could 

be examined further with single cell RNAseq to determine whether there are more distinguishable features about the 

two types of p21-positive cell (Wiley et al., 2017). Though it is not well understood currently, SASP-expressing 

senescent cells are thought to contribute to their pathogenicity and without the SASP the tumour promoting effects 

of senescence are abrogated (Georgilis et al., 2018). It is worth noting that work is required to determine whether the 

expression of p21 and SA-β-Gal in these zebrafish larvae does have a component of developmental senescence, and 

is not just a senescence-independent role of these markers (Untergasser et al., 2003; Laranjeiro et al., 2013; Hall et 

al., 2017). If this is the case however, it would have relevance and provide further insight into precautions for reliably 

detecting senescent cells in vivo (line Cudejko et al., 2011; Hall et al., 2017). The zebrafish would be a uniquely useful 

tool for assessing the kinetics of senescence markers such as p21 with the development of the transgenic reporters 

such as TgBAC(p21:GFP)SH506. This is because the transparency of the zebrafish allows tracking of different reporters 

of senescence over time after taking into account potential differences in fluorescent protein and p21 protein half-life 

(Corish and Tyler-Smith, 1999; Jascur et al., 2005). It would further emphasise the need for analysis of senescence at 

the single-cellular level to help determine an effective gold standard that can detect senescence reliably. I do not 

believe that this disregards p21 as a good marker currently, single cell RNAseq has shown this in other comparable 

contexts for example, and our transgenic reporter is able to enrich cells that are more likely senescent by cell sorting 

(Wiley et al., 2017). It would be useful in this regard to also make transgenic reporters for il6, and p16-like promoter 

regulation to other well-used reporters in detail. As I have demonstrated that the expression of p16-like is lower than 
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p21 in 3dpIR zebrafish, and it the half-life of p16-like mRNA is unusually long, including enhancer elements and brighter 

fluorescent proteins may be essential to report expression effectively in zebrafish (Liu et al., 2019). This work would 

also ideally involve characterisation of the zebrafish p16-like orthologue as a senescence marker in comparison to 

human & mouse P16INK4A.  

 

As well as being present in development, literature suggests interactions between senescent cells and the innate and 

active immune system, predominantly through Natural Killer T cells and macrophages (Munoz Espin et al., 2013; Storer 

et al., 2013; Kang et al., 2011;  Krizhanovsky et al., 2008; Antonangeli et al., 2016). I have demonstrated a novel ability 

to track senescent cells in transparent zebrafish larval tissues, in the same stages of development whereby there is 

only an innate immune system (Lam et al., 2004). These in combination provide a powerful opportunity to study 

macrophage interactions with senescent cells by making a dual transgenic reporter from TgBAC(p21:GFP)SH506 and 

TgBAC(mpeg1:mCherry-CAAX)SH378. Time-lapse LightSheet imaging of this dual transgenic reporter could elucidate 

whether macrophages do indeed interact with irradiation-induced senescent cells, as no one is yet to demonstrate 

this directly in real time. To ensure that the macrophages are functional and not themselves hindered by irradiation, 

transplanting mpeg1:mCherry positive cells that are sorted from non-irradiated zebrafish would prove useful. 

Alternatively, as senescent cells are induced in response to wounding and have a direct role in tissue repair, developing 

an assay to induce senescence from tissue injury in zebrafish larvae could also prove useful  (Demaria et al., 2014). 

Zebrafish larvae have well-established methods for monitoring wounding, macrophage recruitment, and tissue repair, 

and as such could be examined in TgBAC(p21:GFP)SH506 also (Ellet et al., 2011). If senescent cells were present at the 

site of injury, then experimental manipulation of the wound environment by removing senescent cells by senolytics 

could demonstrate modified tissue regeneration (Demaria et al., 2014). Further, mechanisms of the interaction 

between senescent cells and immune cells could be examined in greater detail compared to mouse models due to 

transparency of the organism. For example, if macrophages transplanted into larvae from older fish are not as able to 

interact with senescent cells compared to macrophages from younger fish, then it would provide direct evidence for 

the first time that the age-dependent decline in the immune system could be a mechanism for senescent cell 

accumulation with age.  
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6.3. Final conclusions and closing remarks 
In summary, I have described the development, characterisation and validation of a unique tool to study in vivo 

senescent cell accumulation in zebrafish larvae. The in-depth characterisation of irradiation-induced senescent cells in 

early-development zebrafish has identified that there are multiple similarities with the context of mammalian ageing-

induced senescence. I have identified common features that include expression of the cyclin-dependent kinase 

inhibitors p21 and p16-like, senescence-associated β-galactosidase activity, reduced proliferation and SASP markers 

such as mmp2 and Il6. Development of a novel transgenic reporter for p21 promoter activation permitted prospective 

isolation of fluorescent cells that recapitulate endogenous p21 mRNA expression patterns. FACS of these fluorescent 

cells demonstrated that a majority of those with high fluorescence intensity present with multiple senescent markers 

within the same cell, and that these cells can persist for at least 10 days following irradiation. The persistent highly 

fluorescent cells contained a greater proportion of IL6-positive cells within them compared to earlier time-points, 

replicating the kinetics of this senescence marker in mammalian senescence models. Together, these findings 

implicate zebrafish larvae as a new model to gain further insight into the senescence phenotype, in a much more 

timely and cost-effective manner.  

Expanding our knowledge on senescent cells is essential, and may help to identify novel targets to drive the removal 

of senescent cells in the context of age-associated pathology. Much work is still required to confirm whether 

pharmacologically removing senescent cells can actually improve the healthspan of our ageing population, thereby 

reducing the strain on health and social services and increasing the quality of life in our later years. Though, this study 

provides evidence that TgBAC(p21:GFP)SH506 zebrafish can complement alternative model systems with the unique 

advantages of amenability to in vivo drug screening and optical transparency to study senescent cells in a whole 

organism context at high resolution. 
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