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Abstract 

The hydroxyl radical (OH) is the primary oxidant in the atmosphere with its 

concentration determining the lifetime of many species and its reaction with 

volatile organic compounds leading to the production of secondary organic 

aerosols and tropospheric ozone. It is therefore important that its sources are well 

understood. Nitrous acid (HONO) is an important source of OH, building up 

overnight and is photolysed to form OH in the morning. HONO is also present 

during the day at much lower concentrations. Models however are currently under 

predicting these daytime concentrations, indicating a missing source of HONO. 

With HONO being a dominant source of OH in polluted environments it is 

important that its concentration is accurately modelled in order to predict a correct 

OH production rate. 

In order to identify and study these missing sources and determine their 

atmospheric relevance, a photo-fragmentation laser induced fluorescence (PF-

LIF) instrument has been built and coupled to an aerosol flow tube to provide a 

fast and sensitive measurement of HONO. Two aerosol types, previously 

proposed as possible HONO sources, have been investigated. Illuminated TiO2, 

was found to generate HONO in the presence of NO2 and the reactive uptake 

coefficient was calculated for a range of NO2 concentrations, peaking at 2.5×10-

4 for 30 ppb NO2. Investigation of ammonium and sodium nitrate aerosols showed 

no measureable HONO production. Results from the TiO2 experiment were 

included in a box model for Beijing where, assuming all the observed aerosol 

surface area was pure TiO2, the HONO contribution from this aerosol source was 

modelled to be roughly 10% of the modelled concentration at midday. This model 

was not able to replicate the measured HONO data, however, indicating the need 

for other sources of HONO. 

As part of the atmospheric chemistry of amines project measurements of OH and 

HO2 were carried out at the EUPHORE chamber using LIF. The measured OH 

and OH calculated from the amine decay did not agree indicating either a possible 

interference from the amine oxidation products in the LIF system or in 
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homogeneous air at the LIF and amine sampling ports. The measured HO2 in the 

dark was observed to have a lifetime exceeding 2 hours. This slow HO2 decay 

could not be reproduced by a kinetic model which predicted a HO2 lifetime of 

seconds suggesting an unknown a source of HO2 in the dark. 
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Chapter 1 Introduction 

1.1 Air Quality 

In recent years there has been a big focus on improving air quality and reducing 

the impacts of climate change in order to mitigate the damaging effects on public 

health, impacts to economies and damage to the environment. For government 

to implement policies that will improve air quality in a changing climate the policies 

need to be based on reliable science to ensure that they will be effective. 

Atmospheric models are used to assess the impacts of pollutants and 

greenhouse gases on local, regional and the global scales, however, for the 

models to be considered accurate they need to be validated against 

measurements made in the field.  When there are discrepancies in between the 

model and measurement, research in a controlled laboratory experiment or 

environmental chamber can help to better understand individual processes. 

Atmospheric science relies on modelling, fieldwork and lab studies with results 

from each supporting and driving research in the other areas. 

Two targets of the governments clean air strategy 2019 are nitrogen oxides (NOx) 

and fine particulate matter (PM2.5) with aims to reduce PM by 46% and NOx by 

75% compared to their baseline averages1. Both species are regulated with WHO 

guidelines2 recommending limits of 10μg m3 annual mean and 25 μg m3 daily 

mean for PM2.5 (UK target3 25 μg m3), and 40 μm3 annual mean and 200 μg m3 

1 hour mean for NO2 (UK target3 identical). No official recommended guidelines 

for exposure to HONO are available however, a study investigating the 

correlations between lung function to measurements of HONO and NO2 showed 

that a similar decline in lung function with increases in both species4. This 

indicates that limits for HONO should be similar to those set for NO2. NOx is 

primarily emitted from combustion sources and the public awareness of it as a 

harmful pollutant stemmed from the “diesel gate5” saga. NO2 can cause damage 

to human health and leads to the generation of tropospheric ozone, another 

harmful secondary species. 
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Aerosol particles are a major contributor to the severe haze events (100 to 1000 

μg m−3)6 seen in many cities. The source of this haze varies depending of the city 

and often the season: for example in Beijing severe haze events are most 

prevalent in the wintertime6 and are caused by both meteorological and 

topographic effects6 and elevated emissions from power stations, black carbon, 

during the heating season. There is increasing evidence, however, that 

secondary aerosols7 do contribute to PM even in the wintertime in Beijing. In the 

springtime haze events are dust events where dust is transported in from the 

Gobi desert leading an increase in metal ions present in the aerosols8 (e.g. Ca2+ 

vs NH4
+) while in the summer larger the formation of secondary organic aerosols 

is greater due to increased emissions of biogenic compounds9. This means that 

different approaches may be needed to reduce the occurrence of severe pollution 

events in different locations and at different times of the year. Inhalation of 

aerosols increases human mortality by causing damage to respiratory and 

cardiovascular functions10. 

These severe haze events are also important when considering heterogeneous 

processes. Reactions involving gas and aerosol interactions are often not 

included in models, yet within haze episodes, particles can provide a large 

reactive surface for the production or loss of atmospherically important species. 

There has been active research into the heterogeneous loss of HO2 via aerosol 

uptake where studies have found an over prediction of modelled HO2 

concentration when uptake coefficients are not included. Measurements of HO2 

during the Hill Cap Cloud Thuringia campaign11 in 2010 found that modelled HO2 

was over predicting the HO2 concentrations compared to the measured values 

unless a loss term was included. While a global model12, figure 1.1, comparing 

the change in species concentration if a uptake of HO2 was included or not. The 

plots show the difference in concentration for the model with no HO2 uptake and 

a model with an uptake of 1. This shows the decrease in the hydroxal radicals in 

the atmosphere as less recycling occurs between OH and HO2. This decrease 

results in an increase in CO concentration because it is no longer removed 

through reaction with OH and there is an decrease in ozone which is a product of 

the recycling process when HO2 reacts with NO.  Understanding the product from 

the uptake is also important as HO2 uptake is assumed to form H2O2 which can 

photolyse back to OH regenerating the gas phase HOx radical 
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Figure 1.1.The effects of HO2 uptake on aerosols (γ (HO2)=1) on concentration of OH, 
HO2, CO, and O3 in the GEOS-CHEM model. The plot has been taken from Mao et. al. 
12 and the data represent annual means for 2005. The difference was calculated by 
subtracting results from a model with no HO2 uptake. 

At Leeds research has continued the investigation of HO2 uptake onto a range of 

species including Arizona test dust13, 14, ammonium nitrate14 and inorganic 

aerosols doped with transition metal ions15. Most recently both the uptake16 and 

production17 from TiO2 aerosols. 

The focus of the research presented in this thesis is on the role of atmospheric 

particles in the generation of daytime nitrous acid. 
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1.2 Aerosols in the troposphere 

Atmospheric aerosol are solid or liquid particles suspended in the air with 

diameters between 0.002 and 100 μm18. Aerosols in the atmosphere have both 

a positive and negative radiative forcing effect on the atmosphere, either cooling19 

or warming20 the atmosphere. This effect is caused by their ability to absorb and 

reflect solar radiation, they also act as cloud condensation nuclei21; the formation 

of clouds increases the albedo of the earth’s surface. Aerosols also impact gas 

phase chemistry through heterogeneous loss or production. As figure 1.2 shows 

it is believed that the overall effect of aerosols in the atmosphere is a cooling 

affect however because processes that interact with aerosols are not well 

understood, the error bars are large so this impact has the possibility to change 

in the future 

 

Figure 1.2. Plot showing the effect aerosols have on radiative forcing since 1850. 
Negative values represent a cooling effect while positives indicate a heating effect. 
Figure taken from the IPCC 2013 report. 
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Atmospheric aerosols, both natural and anthropogenic, are formed through two 

different routes either emissions of primary particulate matter or the formation of 

secondary particulates from gas phase species22. Examples of primary 

particulate production routes include incomplete combustion, suspension due to 

wind for example mineral dust from deserts or sea salt from sea spray. Secondary 

organic aerosols, are formed via the condensation of VOCs with low vapour 

pressures leading to the formation of new aerosols directly or by condensation 

onto the surface of existing aerosols; this mechanism can contribute to the growth 

of existing particles.  
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1.3 The Hydroxyl Radical 

The hydroxyl radical (OH) is the primary daytime oxidant in the atmosphere. It is 

an important reactive species in the atmosphere and is highly reactive to many 

primary emissions such as carbon monoxide (CO), methane and volatile organic 

compounds (VOCs) 23. Understanding the sources and reactivity of OH is critical 

for climate change as OH controls the lifetime of the greenhouse gas methane. It 

also controls the lifetime of toxic gases such as benzene and CO and so plays a 

central role in air quality too. Following reaction with OH, VOCs form either HO2 

or RO2. These peroxy radicals react with NO leading to the generation of NO2 

that can photolyse to form ozone, a secondary pollutant that is harmful to both 

human and plant life. Oxidised VOCs can also form secondary organic aerosols 

(discussed above), which are important components of particulate matter (PM) in 

the atmosphere.  These reactions, initiated by OH, are shown in figure 1.3 below, 

with the red reactions showing the recycling of the HOx radicals, blue shows 

primary sources of OH. 

 

Figure 1.3. Reaction diagram showing the major reaction pathways in the troposphere, 
taken from reference 24. 

  



Chapter 1  Introduction 

7 

 

The significant reactivity of OH means its lifetime is typically much less than 1 s. 

With such a short lifetime, the observed OH concentration is controlled by 

chemistry rather than transport. This makes OH an ideal tracer for atmospheric 

chemistry models because if a model is able to accurately simulate OH 

concentrations, then this suggests that the sources and loss pathways for OH are 

well represented in the model. The accuracy of a model chemistry scheme is 

important in determining the lifetime of longer lived species that are relevant to 

air quality and climate (e.g. CH4 or CO), and also the production of secondary 

pollutants (e.g. O3 or SOA). 

In clean ,unpolluted environments the primary source of OH is the photolysis of 

ozone followed by a reaction with water (R1, R2, R3)25. 

 𝑂3 + ℎ𝑣(𝜆<320𝑛𝑚) → 𝑂( 𝐷
1 ) + 𝑂2 (R1) R(1)  

 𝑂( 𝐷)1 + 𝐻2𝑂 → 2𝑂𝐻 R(2)  

 𝑂( 𝐷)1 + 𝐻2𝑂 → 2𝑂𝐻 R(3)  

In more polluted atmospheres, OH is also produced, via the reaction of HO2 with 

NO (R4) and following photolysis of HONO (R5). Ozonolysis reactions can also 

generate OH.  

 𝐻𝑂2 + 𝑁𝑂 → 𝑂𝐻 + 𝑁𝑂2 R(4)  

 𝐻𝑂𝑁𝑂 + ℎ𝑣(320𝑛𝑚<𝜆<400𝑛𝑚)   → 𝑂𝐻 + 𝑁𝑂 R(5)  

1.4 Nitrous Acid  

HONO was first detected in the atmosphere in 1979 by Perner and Platt26 using 

the DOAS technique, see section 3.1.1 . The group detected concentrations of 

~0.8 ppb before sunrise in Jülich. In urban areas HONO is an early morning 

source of OH with the photolysis (R5)27 of HONO. The concentration of HONO 

builds up overnight as the main loss pathways (photolysis and reaction with OH) 

switch off. The slow heterogeneous conversion of NO2 to HONO on humid ground 

surfaces28 contributes to HONO production overnight. HONO photolyses at 

longer wavelengths than O3, meaning that it is photolysed earlier in the morning 

than ozone at higher solar zenith angles and can act as the dominant OH source 

at these times29.  
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Atmospheric HONO can impact human health, HONO causes damage to the 

lungs and mucous membranes due to its acidity or it can combine with secondary 

amines either in the atmosphere or in-vivo producing nitrosamines which are 

carcinogenic4.  

High concentrations of HONO have been observed in urban locations throughout 

the day and current models are often unable predict these elevated 

concentrations30, 31, 32, 33, 34 . A detailed chemistry box model based on the Master 

Chemical Mechanism v3.2 and constrained to data collected during the ClearfLo 

campaign in London30, predicted a daytime HONO concentration close to 0 whilst 

the measured values reached ~0.4 ppbV. The base model only considered the 

gas-phase source of HONO from the reaction between OH and NO. The inclusion 

of additional HONO sources, including heterogeneous sources (discussed in 

section 1.5.3) (figure 1.4), improved the modelled to measured agreement for 

HONO. 

 

Figure 1.4. Modelled production rates of HONO from various sources compared to 
measured values (black line) showing the large gap in unknown sources of HONO during 
the day. This model was run using the master chemical mechanism (MCM). The 
proposed sources of HONO are discussed later in section 1.5. 
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HONO is primarily removed from the atmosphere during the day by photolysis. It 

can also be removed by reaction with OH35 (R6). 

 𝑂𝐻 + 𝐻𝑂𝑁𝑂 → 𝐻2𝑂 + 𝑁𝑂2 R(6)  

During the day, HONO only has a lifetime of around 10 minutes at midday35. 

Daytime concentrations remain at around 100-300 parts per trillion (ppt) in urban 

areas and 10-200 ppt in rural areas36 showing that there must be a source of 

HONO that is able to maintain these levels in balance with the removal of 

HONO35. 

Table 1.1 below gives a summary of HONO measurements across a range of 

different sites and the average day and night concentrations measured at each 

location. These results all show a similar trend, with HONO concentration peaking 

in the early morning before sunrise and reaching a minimum at solar noon. The 

only outlier are measurements made at Cape Verde were the HONO maximum 

was observed at solar noon37. This maxima was thought to relate to the photolysis 

of particulate nitrates acting as a source of HONO, discussed further in section   

1.5.3. The NO produced from the photo dissociation of HONO is significant in 

clean environments where it will react with peroxy radicals to form NO2
24 (R7). 

The NO2 can then lead to the formation of ozone in the troposphere38 (R8-9). This 

addition of NO2 and O3 to the remote atmosphere will contribute to the increase 

in their concentrations seen in background environments39. 

 𝑅𝑂2 + 𝑁𝑂 → 𝑅𝑂 + 𝑁𝑂2 R(7)  

 𝑁𝑂2 + ℎ𝑣 (𝜆 < 420𝑛𝑚) → 𝑁𝑂 + 𝑂 R(8)  

 𝑂 + 𝑂2 +𝑀 → 𝑂3 +𝑀 R(9)  
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Table 1.1. Field measurement data of HONO across and range of locations showing the 

average day and night concentrations 

Site Date Day (ppb) Night (ppb) Ref. 

IEECAS (Xi'an, 

China) 

Jul.–Aug. 2015 0.51 1.57 Huanng 

et. al.40 

ICCAS 

(Beijing, China) 

(Urban) 

Dec 2016 

(Haze) 

4.6 1.4 Zhang et. 

al.41 

ICCAS 

(Beijing, China) 

(Urban) 

Dec 2016 

(Severe Haze) 

10.0 1.4 Zhang et. 

al.41 

London, UK (Urban 

background) 

Jul – Aug 2012 0.3-0.6 0.7-1.8 Lee et. 

al.42 

Pearl River Delta, 

China (Rural) 

July 2006 0.2 1.5 Li et. al.33 

Jülich, Germany 

(Forest) 

June-Aug 2003 0.04-0.3 0.5-2 Kleffmann 

et. al.43 

Cape Verde 

Atmospheric 

Observatory (remote 

marine) 

Nov – Dec 2015 0.0035 ~0 Reed et. 

al.37 
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1.5 Sources of Nitrous Acid in the Troposphere 

Various sources have been suggested for HONO involving both homogenous 

and heterogeneous (on surfaces and aerosols) reactions and also direct 

emissions.  

1.5.1 Homogenous Reactions 

The primary, well understood, homogenous source of HONO involves the 

reaction R10; 

 𝑂𝐻 + 𝑁𝑂 +𝑀 → 𝐻𝑂𝑁𝑂 +𝑀 R(10)  

This is primarily a daytime reaction, due to the requirement of OH38 and occurs  

at a rate of approximately 9.7 × 10-12 cm3 molecule-1 s-1 (1 bar of N2 at 300 K)44. 

If OH is present at night, for example through ozonolysis reactions or due to the 

oxidation of VOCs by NO3
45 then reaction R10 could remain as a potential source 

of HONO during the night. 

The photolysis of ortho-nitrophenols is a potential daytime gas-phase HONO 

source46. Ortho-nitrophenols form HONO by undergoing a proton transfer 

rearrangement to form a nitronic acid structure, and the dissociation of the nitro 

group, due to photolysis, will lead to the formation of HONO. Experimental 

estimations made by I. Bejan et. al. determined an atmospheric formation rate for 

HONO of 100 ppt h-1 from 1 ppb nitrophenol when J(NO2) is 10-2 s-1. 

 

Figure 1.5. Reaction scheme showing the proton rearrangement of the nitrophenol (A) 
forming the nitronic acid (C). Scheme taken from reference 46. 

Another recent formation mechanism involves the reaction between NO2 and a 

HO2.(H2O) complex47 as a possible source of HONO with this complex reacting 

3-4 times faster with NO2 than HO2 alone.  
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1.5.2 Direct Emissions 

It has been found that HONO can be emitted directly into the atmosphere through 

a variety of combustion processes, for example, cars and power stations48.  

Measurements of car exhaust emissions have shown that older cars will generally 

emit higher concentrations of HONO than newer cars, with the presence of a 

catalytic converter significantly reducing the concentration to below detectable 

levels49. Tunnel studies have demonstrated that during periods of high traffic the 

concentration of HONO can increase to roughly 45 ppbv while decreasing to 10 

ppbv during quiet periods48. This background level is still relatively high and they 

believed this to be caused by either NO2 and water reacting on the tunnel walls, 

or the reduction of HNO3 in the presence of VOCs emitted by the vehicles, either 

homogenously or heterogeneously as particles are co-emitted from motor 

vehicles50. Studies using a chassis dynamometer, rolling road, found that 

emissions had HONO/NOx ratio of between 0.03-0.42 percent when simulating 

Beijing driving conditions51. 

1.5.3 Heterogeneous reactions 

The heterogeneous formation of HONO involves the uptake of gas phase 

reactants, such as NO2, onto either surfaces or aerosols. 

The primary source for HONO at night involves the heterogeneous reaction of 

NO2 with water on various surfaces which is why field campaigns observe a build-

up of HONO through the night35.  

 
2𝑁𝑂2 + 𝐻2𝑂(𝑎𝑑𝑠)

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

→   𝐻𝑂𝑁𝑂(𝑔) + 𝐻𝑁𝑂3(𝑎𝑑𝑠) 
R(11)  

 𝑁𝑂2 + 𝑁𝑂 + 𝐻2𝑂 → 2𝐻𝑂𝑁𝑂 R(12)  

Of these two reactions the dominant pathway is R11, where HONO is released 

as a gas while HNO3 remains adsorbed on the surface, while R12 has been 

shown to only be a significant source of HONO in areas of high pollution52. There 

have been several laboratory studies investigating light induced production of 

HONO following the uptake of NO2 on to surfaces (coated-wall experiments) and 

on to aerosols of different composition in an attempt to explain the missing 

daytime HONO source. The study of heterogeneous production of HONO from 

aerosol surfaces remain relatively rare, however.  
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HONO production from humic acid particles and titanium dioxide (TiO2) particles, 

which is a component of mineral dust have been reported in the literature. Various 

other studies have also shown that snow53 and soot54 surfaces enhance the 

production of HONO in the atmosphere under illuminated conditions. 

1.5.3.1 Humic Acid 

Humic acid is the most abundant group of organic compounds on the earth’s 

surface, formed from the degradation of biological matter55. HONO production 

from surfaces of humic acid were discussed in a paper by Stemmler et al. 

(2006)56. By coating a wall in the flow tube with humic acid and flowing NO2 

across it they were able to estimate a light activated production of HONO. At 

20ppb NO2 and at solar irradiances between 300–700 nm of approximately 400 

W m-2, a HONO production rate of roughly 5 × 1010 molecule cm-2 s-1 and an 

uptake coefficient equal to 2 × 10-5 was reported. From this a HONO production 

rate of roughly 700 ppt hr-1 over the lowest 100 m of the atmosphere was 

calculated57. 

The pathways by which aerosols of humic acid are formed can be through either 

biomass burning or soil abrasion. In a later paper by Stemmler et al. (2007)57 the 

production of HONO from humic acid aerosols was measured using an aerosol 

flow tube. From these experiments, an upper limit for the production of HONO of 

1.2 ppt hr-1 (10 ppb NO2) in rural environments and 17 ppt hr-1 (20 ppb NO2) in 

urban environments (actinic flux= 17 x 1017 photons cm-2 s-1, relative humidity 

between 20-60%, uptake coefficient of 3 x 10-6) was calculated. 

The suggested pathway through which HONO is formed on humic acid involves 

the photocatalytic production of a reductive species (Ared) which can then react 

with NO2 to form HONO (R13-14). 

 𝐻𝐴
ℎ𝑣
→ 𝐴𝑟𝑒𝑑 + 𝑋𝑜𝑥 R(13)  

 𝐴𝑟𝑒𝑑 + 𝑁𝑂2 → 𝐻𝑂𝑁𝑂 R(14)  

The photo-oxidant (Xox) which also forms, was suggested as a side product (HA') 

that forms resulting in the competition reaction (R15) in order to explain why they 

observed a decrease in HONO production at higher light intensities. 

 𝐴𝑟𝑒𝑑 + 𝑋𝑜𝑥 → 𝐻𝐴′ R(15)  
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1.5.3.2 Mineral Dust 

Atmospheric mineral dust, fine particles of crustal origin carried from arid and 

semi-arid regions, is an important component in the troposphere52 with 1000 to 

3000 Tg being released into the atmosphere every year58. One component of 

mineral dust is TiO2 which is known to act as a photo-catalyst for the degradation 

of organic molecules into carbon dioxide and water52. The photo-catalytic nature 

of TiO2 has motivated a number of studies investigating TiO2 aerosol as a 

potential source of HONO following the uptake of NO2. Dupart et al.58 identified 

HONO as a product from the reaction between TiO2 aerosol and NO2 when 

exposed to light. They proposed that this reaction is activated by the formation of 

electron-hole pairs (ecb
- and hvb

+) with an electron in the conduction band, which 

initiates reduction, and a valence band hole, which will initiate oxidation59. This 

can then cause the following set of surface reactions58, leading to the formation 

of HONO; 

 𝐷𝑢𝑠𝑡(𝑇𝑖𝑂2) + ℎ𝑣 → ℎ𝑣𝑏
+ + 𝑒𝑐𝑏

−  R(16)  

 ℎ𝑣𝑏
+ + 𝐻2𝑂 → 𝑂𝐻 + 𝐻

+ R(17)  

 𝑁𝑂2 + 𝑂𝐻 → 𝐻𝑁𝑂3 R(18)  

 𝑒𝑐𝑏
− + 𝑂2 → 𝑂2

− R(19)  

 𝑁𝑂2 + 𝑂2
−(𝑜𝑟 𝑒𝑐𝑏

− ) → 𝑁𝑂2
− + 𝑂2 R(20)  

 𝑁𝑂2
− + 𝐻+ → 𝐻𝑂𝑁𝑂 R(21)  
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1.5.3.3 Particulate Nitrate 

Nitric acid, HNO3, is formed in the atmosphere primarily through the oxidation of 

NO2 by OH, R22, with other formation routes also including N2O5 hydrolysis, and 

the NO3 reactions with dimethylsulfide or hydrocarbons. Global yields for these 

routes are 76%, 18% and 4% respectively60. 

 𝑁𝑂2 + 𝑂𝐻 → 𝐻𝑁𝑂3 R(22)  

The formation of nitrate aerosols from N2O5 involves the reaction of N2O5 with 

water on surfaces via reactions 23-2561 

 𝑁2𝑂5(𝑔) + 𝐻2𝑂(𝑙) → 2𝐻𝑁𝑂3(𝑎𝑞) R(23)  

 𝑁𝑂2 + 𝑂3 → 𝑁𝑂3 + 𝑂2 R(24)  

 𝑁𝑂3 + 𝑁𝑂2 ⇌ 𝑁2𝑂5 R(25)  

N2O5 is formed via the reaction of NO2, first with O3 and then the NO3 product 

from this reaction. N2O5 is thermally unstable, reforming NO2 and NO3 so the 

formation of N2O5 primarily occurs at night when temperatures are low and 

photolysis of NO2 and O3 does not occur. 

Figure 1.6 shows the global distribution of nitrate aerosols at two times of the 

year. Nitrate aerosols peak in winter where the fine mode nitrate, diameters 

smaller than 1.25 µm, is form primarily through the hydrolysis of N2O5 on surfaces 

as there is less thermal and photolytic decomposition of N2O5 in the winter 

months. The formation of coarse mode nitrate, diameters greater than 1.25 µm, 

in Africa has been attributed to biomass burning. While in the summer there is a 

minimum due to the generation of sulphate aerosols, via the oxidation of SO2, 

which ammonia preferentially reacts with reducing the nitrate aerosol 

concentration62.  
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Figure 1.6. Monthly predicted mixing nitrate aerosols near the surface for January (top) 

and July (bottom)62. Broken down into fine (diameter <1.25μm, left) and coarse (diameter 

>1.25μm, right) aerosol modes. 

Nitrate formation in the atmosphere is generally considered a sink for reactive 

nitrogen as HNO3 only photolyses slowly at a rate of 7×10-7 s-1 in the gas phase63. 

Reactions with water droplets and aerosols leads to the formation of particulate 

nitrate in the atmosphere, this wet deposition is considered the primary loss route 

of HNO3 from the atmosphere64. Studies by C. Ye et. al.63 of particulate nitrate 

aerosols collected on filter samples demonstrated HONO and NO2 production 

when exposed to UV, as shown in figure 1.7, with production rates increasing 

with nitrate loading. The production rate was variable depending on the location 

where the aerosols were collected with a rate of 6.2×10-6 s-1 for a winter urban 

environment and 5.0×10-7 s-1 for a summer rural environment.  
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Figure 1.7. HONO and NO2 production from filter samples containing nitrates. Plot taken 
from reference 63. 

Measurements of HONO in Cape Verde, a remote marine boundary layer 

location, showed a daytime peak of 3.5 pptV hinting at a potential photolytic 

source. A box modelling studies by C. Ye et. al.65 and  C. Reed et. al.37 using a 

photolysis rate for particulate nitrate that is 10× higher than gas phase nitrate, 

was able to replicate these measured HONO concentrations37. This generation 

of HONO from a nitrates is significant as it is a renoxification route in remote 

environments where NOx concentrations are small. 
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1.5.4 Experimental parameters affecting HONO production rates 

Relative humidity and aerosol acidity have been identified in both the TiO2 and 

the humic acid aerosol experiments as experimental parameters which can affect 

the rate of HONO production.  

1.5.4.1 Impact of RH 

The relative humidity can impact the production of HONO from both aerosol and 

coated wall surfaces. For TiO2, peak HONO production was observed at 

humidity’s around 20% with production dropping as the humidity was 

systematically increased or decreased from 20%52, 66. This trend is likely due to 

TiO2 being hydrophilic so it attracts the water readily, yet when the water content 

is high it will compete with NO2 for the sites on the aerosol surface52. At lower 

RHs the reaction is limited by the availability of water, which is required in the 

production of HONO (R17 and R21) where it is oxidised to generate H+ ions which 

reacted with the reduced NO2−.  

In experiments conducted on humic acid surfaces, of the production of HONO 

was insensitive to RH until high humidities were reached (>60%). At high RH 

humic acid aerosol may have dissolved into the water57, removing the reactive 

surface. The effect on the NO2 uptake onto the humic acid aerosols as a function 

of RH in shown below in figures 1.8 and 1.9. 

 

Figure 1.8. The effect of increasing humidity on the uptake of NO2 onto humic acid 
aerosols (filled circles) and surfaces (empty circles), taken from reference 57. 
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Figure 1.9. The effect of increasing humidity on the uptake of NO2 onto TiO2 aerosols, 
taken from reference 33. 

 

 

1.5.4.2 Impact of pH 

For humic acid aerosols, increasing the pH was found to reduce the amount of 

HONO produced withhout significantly effecting the removal of NO2 from the 

system, under illuminated conditions57. The more basic aerosols appeared to 

show a greater uptake of the NO2 in the dark with an enhancement of dark HONO 

production at pH 7.5. This can  be seen in figure 1.10 below where the black 

points, representing HONO production, decreases as the aerosols becomes 

more basic while the empty circles represent the amount of NO2 removed from 

the air. 
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Figure 1.10. The formation of HONO (filled circles) and removal of NO2 (empty circles) 
on humic acid coatings and various pH and the NO2 uptake coefficients at various pH 
values. The bar above plots b, c and d represent when the coatings were exposed to 

light (yellow) and were in the dark (grey). Figure taken from reference 57. 

 

The effect of pH on the reactions on TiO2 can be seen by comparing the 

experiments invovling the mineral dust by Y. Dupart et al.58 to a second project 

investigating the conversion of nitrogen oxides on photocatalytic dispersion 

paints59 (S. Laufs et al.). HONO production was reported from the mineral dust, 

yet no gas phase HONO production was observed from the paint surfaces (pH 8-

8.5). S. Laufs et al. proposed that this may be due to the surface reaction below 

(R 26) which under acidic conditions will be shifted towards the left but under 

basic conditions will favour the right59, after which the NO2
¯ will be oxidised by 

the electron hole to form NO3
¯ (R 27). This will also explain why a reduced HONO 

production is observed at higher humidity’s as the larger water concentration will 

also push the reaction to the right. 

 𝐻𝑂𝑁𝑂 + 𝐻2𝑂 ⇌ 𝑁𝑂2
− + 𝐻3𝑂

+ R(26)  

 𝑁𝑂2
− + 2ℎ+ + 𝐻2𝑂 → 𝑁𝑂3

− + 2𝐻+ R(27)  
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1.5.5 Aerosol Chemistry 

1.5.5.1 Liquid Aerosols 

Aqueous aerosols are important for heterogeneous chemistry as they generally 

result in higher uptake rates than dry aerosols. The overall volume of aerosols in 

the aqueous phase is small, however the collision rate of gas phase species with 

condensed phase aerosols is relatively rapid. In polluted atmospheres a gas 

phase molecule will undergoes a collision with an aqueous phase aerosol every 

few minutes67. 

The resistor model, described by equation 1 is used to describe reaction involving 

uptake onto liquid aerosols. The model is compared to the principle of operation 

of an electrical circuit with the movement of species within the liquid bulk in terms 

of their conductance (Γ) and normalised to the rate of gas-surface collisions 68.  

The steps considered in this model are; 

1. Gas phase transport to the aerosol surface. 

2. Accommodation at the aerosol surface. 

3. Diffusion in and out of the aerosol. 

4. Chemical reaction. 

5. Desorption from the surface. 

 1

𝛾
=

1

𝛤𝑔𝑎𝑠 𝑑𝑖𝑓𝑓
+
1

𝛼
+

1

𝛤𝑠𝑜𝑙 + 𝛤𝑟𝑥𝑛
 

Eq(1) 

Γgas diff is the conductance associated with gas-phase diffusion to the surface of 

the aerosol, Γsol is the conductance associated with solubility, Γrxn is the 

conductance associated with the reaction in the aqueous bulk, γ is the uptake 

coefficient and α is the mass accommodation coefficient. 

The first step of the process of heterogeneous uptake involves diffusion of the 

gas phase molecule to the surface of the aerosol this is dependent on the gas 

phase diffusion and gas-surface collision frequency.  This is process is 

characterised in the Resistance Model by Γgas diff. 

Once a collision occurs the gas phase molecule will either “bounce” off the 

surface or be accommodated into the interface of aerosol.  The fraction of gas 

phase molecules that are accommodated is a function of the viscosity of the 
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aerosol.  The character of the interface of the aerosol is between the gas and 

bulk liquid phases and is only a few monolayers in thick.  The fraction of gas 

phase molecules that are accommodated into the interface against the number 

of collisions with the surface, is defined by the mass accommodation coefficient 

(α). 

From here most molecules diffuse into the bulk of the aerosol however surfactant 

type molecules preferentially adsorb to the interface rather than undergo diffusion 

into the bulk.  The hydrophilic heads and hydrophobic tails of the surfactants 

make it less energetically favourable for these molecules to diffuse in the bulk 

where they would cause disruption to the hydrogen bond networks.  Diffusion in 

the liquid bulk of the aerosol is characterised in the Resistance Model by Γsol. 

Uptake of the gas-phase molecule by the aerosol can either lead to desorption 

back into the atmosphere, a non-reactive uptake, or a reaction within the bulk of 

the aerosol which leads to its destruction, a reactive uptake. Reactive uptake 

occurs when the rate of the reaction between the adsorbed species and bulk 

aerosol is faster than rate of uptake and diffusion. The conductance of reaction 

in the bulk, Γrxn. A non-reactive uptake occurs if the rate of reaction is slower than 

the rate of uptake and diffusion in the liquid, this process is expressed by equation 

…without Γrxn term. 

 

1.5.5.2 Solid Aerosols 

Two possible mechanisms have been developed to describe heterogeneous 

reactions on solid aerosol surfaces; the Eley-Reid (ER) and Langmuir-

Hinshelwood (LH). The ER mechanism involves the adsorption of one gas phase 

molecule to the surface and a second molecule, still in the gas phase reacting 

with it. The LH involves the adsorption of both molecule to the surface where 

once they diffuse across the surface until they are in close enough proximity to 

react. The two reaction can be distinguished experimentally as the LH 

mechanism will reach a maximum rate as the concentration of the reactants is 

increased due to competition for binding sites at the surface, which is not 

observed in the ER mechanism. Figure 1.11 below shows how these two 

processes differ for a simplified reaction between two species. 
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Figure 1.11. Diagram showing two possible reaction mechanisms for reaction between 
two molecules on a solid surface. 
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1.6 Project Aims 

The aim of this project was to investigate missing heterogeneous sources of 

HONO in the atmosphere focussing on light-induced HONO production on the 

surfaces of aerosols. Initial work involved developing a photo-fragmentation laser 

induced fluorescence (PF-LIF) instrument to detect HONO. The instrument 

measures the resulting hydroxyl radical (OH) photo fragment produced following 

the photolysis of HONO using 355 nm laser light. To accomplish this the following 

steps were carried out; 

1. A base FAGE cell was built as the basis of the HONO instrument. 
2. Testing of two photolysis light sources, LED or laser, to determine the best 

choice. 
3. Optimisation of experiment conditions to enhance the detection of HONO. 
4. Develop a suitable gas phase calibration technique. 

The FAGE method used as the basis of the HONO instrument is described in 

chapter 2, detailing the measurement technique and the calibration process 

currently used at the University of Leeds. Chapter 3 details the final HONO 

instrument and the optimisation steps investigated in its development. 

Chapter 4 details the application of the newly developed HONO instrument in 

order to study heterogeneous production from aerosols. The chapter describes 

the following; 

1. The coupling of the instrument to an aerosol flow tube. 
2. Measurement of HONO production from illuminated TiO2. 
3. Measurement of HONO production from sodium and ammonium nitrate. 
4. Use of experimental results in an atmospheric box model to assess the 

impact on daytime chemistry in Beijing. 

The TiO2 aerosol was chosen as it has been previously investigated for its ability 

to convert NO2 to HONO under illuminated conditions. This allows the instrument 

to be tested using a system that is known to generate HONO and allow for 

comparison to previous results. Nitrate aerosols were investigated as they are a 

proposed source of HONO in the atmosphere and there are minimal studies 

investigating the potential contribution. 

The final chapter covers the measurement of OH and HO2 data collected during 

a chamber study at EUPHORE, Spain as part of the atmospheric chemistry 

project investigating the oxidation of carbon capture related amines. Chapter 2 

details the experimental for this field work.
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Chapter 2 The FAGE Technique 

This section will describe how the hydroxyl radical (OH) is measured and will 

detail the method used at the University of Leeds to measure OH in both 

laboratory and field scenarios. This chapter serves as an introduction to chapter 

3 (PF-LIF experimental chapter) because the development of the PF-LIF 

instrument for the measurement of HONO utilises the Fluorescence Assay by 

Gas Expansion (FAGE) technique for the measurement of the OH photo-

fragment and is the basis for the PF-LIF instrument. This chapter also serves as 

the experimental section chapter 5 where the aircraft FAGE instrument69 was 

used to measure OH and HO2 during a chamber study at the EUPHORE 

chamber in Valencia. 

Measurements of the OH radical in the atmosphere provide a good tracer for 

understanding the oxidation chemistry in the atmosphere. This is because as a 

radical the lifetime of OH is very short, less than 1 s, so its concentration is 

primarily dependent on the local chemistry rather than via transport effects. 

Hence, it is possible to use the agreement between measured OH and modelled 

OH, a good agreement shows that the chemistry is well understood while 

disagreements suggest a problem with the chemistry. Due to the short lifetime of 

OH, its concentration in the atmosphere is very low (106-107 maxima), therefore 

in order to detect it highly sensitive instruments are needed. 

FAGE is currently the most common70 method used to directly measure 

atmospheric OH both in the field and in atmospheric simulation chambers. Other 

methods used to measure OH include chemical ionisation mass spectrometry 

(CIMS) and differential optical absorption spectroscopy (DOAS, chamber only). 

A summary of all techniques and their sensitivity for detection, is shown in table 

2.1. CIMS is an indirect method for OH detection where the OH is first chemically 

converted, by reaction with 34SO2, to form sulphuric acid (H2SO4). The H2SO4 is 

converted to a HSO4
- ion by reaction with NO3

- (chemical ionisation), and the 

HSO4
- ion is detected in the mass spectrum71. The DOAS technique is the only 

measurement of OH where a calibration is not required because it is an 

absorption technique. The DOAS technique uses a broadband laser, centred at 
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~308 nm wavelength that covers a range of OH rotational lines. OH is detected 

by measuring the absorption of light at these wavelengths, with the concentration 

calculated using the Beer-Lambert law. Currently the only DOAS instrument still 

used to measure OH is housed in the SAPHIR chamber in Julich, Germany72. 

An inter-comparison between this DOAS system and the Julich FAGE instrument 

in SAPHIR demonstrated good agreement between both techniques for a range 

of atmospheric conditions73. 

 



 

 

 

2
7
 

Table 2.1. Summary of atmospheric concentrations of OH and HO2 measurement techniques. 

Technique Summary Sensitivities Reference 

DOAS 

Differential Optical 

Absorption 

Spectroscopy 

Utilises a laser light source at ~308 nm. Measures the 

absorption over a long path length. Currently not used in the 

field but used in the SAPHIR chamber (path length 2.24 km). 

Requires no calibration, however the long path lengths 

required requires a complex mirror setup. 

OH: detection limit = 7.3 × 105 molecule  cm−3 

       100 s integration time. 

       uncertainty = 6.5% 

 

73,74 

CIMS 

Chemical 

Ionisation Mass 

Spectrometry 

Air is sampled into a reaction chamber where OH is 

converted to H2SO4 by reaction with 34SO2. The H2SO4 is 

then converted to HSO4
– ions, through reaction with NO3

¯, 

and detected via quadrupole mass spectrometry. HO2 

detection by conversion to OH through the reaction with NO. 

OH: detection limit = 2 × 105 molecule cm−3 

        uncertainty = 25% 

HO2: detection limit = 1 × 105 molecule  cm−3 

        uncertainty = 30% 

10 min integration time. 

71 

FAGE  

Fluorescence 

assay by gas 

expansion 

A laser induced fluorescence technique. The OH molecule is 

selectively excited using a 308 nm laser with the resulting 

fluorescence being proportional to the [OH]. Possible to 

measure HO2 through conversion to OH after reaction with 

NO. Non-absolute technique so requires calibration. 

OH: detection limit = 7.1×105 molecule cm−3 

        1 min integration time. 

        uncertainty = 25% 

HO2: detection limit = 7.5×105 molecule cm−3 

        1 min integration time. 

        uncertainty = 26% 

69, 75 
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2.1 Principle of Operation 

Measurement of OH in the atmosphere is challenging because of the low 

concentration of OH, with a daytime range73 of 105 - 107 molecules cm-3. Because 

of this, a sensitive and selective method is needed for an accurate detection. 

Fluorescence assay by gas expansion (FAGE) is one method that is used to 

detect OH in both the laboratory, atmospheric simulation chambers and in the 

atmosphere. The process involves using a laser, whose wavelength is tuned to a 

specific OH transition, to electronically excite (X2π ν’’=0 ← A2∑ ν’=0) the OH 

molecule. The resulting fluorescence, that is emitted as OH relaxes back to the 

ground state via the same transition, is detected using a sensitive detector such 

as a photo-multiplier tube (PMT).  

Using laser induced fluorescence (LIF) to measure atmospheric OH was first 

suggested in 197276. This initial method used a wavelength of 282 nm as the 

excitation wavelength, however, it was soon found that by using this method 

introduced an interference to the technique, caused by the generation of OH from 

O3 photolysis within the detection cell, and the wavelength was changed to use a 

wavelength of 308 nm wavelength. By utilising low pressure detection cells it is 

possible to further reduce the effect of interferences as the concentrations of O3 

and H2O are reduced, this decreases the production of laser generated OH and 

secondary chemistry within the cell77, while also reducing the quenching rate of 

OH. A high pulse repetition frequency laser is also used to further reduce the 

laser generated interference as there is less energy per pulse reducing the 

possibility of photolysis occurring78. By using these techniques to reduce the 

background it cancels out the loss of signal due to the reduction of the 

concentration of OH in the detection cell. 

As shown below in figure 2.1, LIF operates by exciting the OH molecule from its 

ground state to an excited electronic state, with specific transitions occurring due 

to the transition to and from different rotation energy levels during this excitation. 

By using a laser it is possible to target a specific transition due to the laser’s 

narrow spectral line width. The excited OH molecule will return to its ground state 

via several pathways79. It can be quenched back to its ground state, with no 

emission, due to transfer of energy through collisions with other molecules, such 
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as N2 and O2; this is reduced by decreasing the pressure in the detection cell.  

The final transition that OH will undergo is fluorescence where the molecule 

returns to the ground state emitting the energy as a photon, which can be 

measured. 

 

Figure 2.1. OH transitions which occur for both the on resonance (a) measurement using 
282nm laser and the off resonance (b) measurements using the 308nm laser. Figure 

taken from reference 80. 

 

Two laser wavelengths have been used for the measurement of OH, one at 282 

nm and the other at 308 nm. Using a 282 nm laser, involves exciting the OH 

molecule to an excited electronic state (A2∑ ν’=1 ← X2π ν’’=0), OH then will then 

relax to a lower vibrational energy state (A2∑ ν’=0 ← A2∑ ν’=1) before it relaxes 

back to its ground state during which it fluoresces at 308nm (X2π ν’’=0 ← A2∑ 

ν’=0). The advantage of the off resonance method is because it is easily possible 

to distinguish the laser scatter from the fluorescence signal using optical filters. 

The O3 interference (R28, R29) this method suffers from limits its use to areas of 

very low humidity (e.g. stratosphere, Antarctica, laboratory studies).  

 𝑂3  +  ℎ𝑣 (282𝑛𝑚) →  𝑂( 𝐷) + 𝑂2
1  R(28)  

 𝑂 ( 𝐷) + 𝐻2𝑂 →  2𝑂𝐻
1  R(29)  
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Measurement of OH at 308 nm simply involves exciting the OH (A2∑ ν’=0 ← X2π 

ν’’=0) after which it will relax with the fluorescence occurring at the same 

wavelength. This on resonance measurement requires a low pressure detection 

cell (~2 Torr or less) to extend the fluorescence lifetime of the OH molecule 

beyond the laser pulse separating the small fluorescence signal from the much 

larger laser scatter80. The absorption cross section of O3 is also smaller at the 

308 nm wavelength compared to 282 nm, so this interference has a negligible 

effect on the measured OH when using the on resonance method80. The on 

resonance method is predominantly used currently in the field. 

2.2 The FAGE Instrument 

The equipment used for the measurement of OH in the experiments described in 

chapters 3 and 5 is described below. It consists of the laser system, used to 

generate the 308 nm probe light, a detection cell, containing the detector used to 

measure the fluorescent signal, a reference cell, which provides an environment 

of high OH concentrations to allow the scanning of a reference spectrum. Lastly 

the data collection system, in which is a fast photon counters are used to monitor 

the fluorescent signal. Laser light is delivered to the cell via a fibre optic cable 

and data was collected using a PMS-400a counting card. 
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2.2.1 Laser System 

Two laser systems were used in this project for the excitation of OH. The first is 

an Nd:YAG pumped Ti:Sapphire laser (Photonics Industries Inc), which was used 

in the detection of OH during the ACA campaign (chapter 5), and the second was 

a SIRAH dye laser system, which was used in the PF-LIF experiment described 

in chapters 3 and 4. 

2.2.1.1 Laser system 1 - Nd:YAG pumped Ti:Sapphire laser 

 

Figure 2.2. Diagram showing the laser system for the Leeds aircraft FAGE. M = mirror, 
WP = waveplate, OC = output coupler, SHG = second harmonic generator, THG = third 
harmonic generator. Green lines represent laser light at 532 nm, red lines represents 
light at 924 nm, blue lines represents light at 308 nm. The average power of each 
wavelength is approximately 10 W, 1 W and 20-40 mW respectfully. 

 

The laser, which is shown in figure 2.2 above, is the Nd:YAG Ti:Sapphire system 

used to generate the pulsed 308 nm light (5 kHz pulse frequency) needed to 

measure OH during the ACA campaign, described in chapter 5. In this system 

laser light (532 nm) from the Nd:YAG is focused onto a Ti:Sapphire crystal. The 

crystal generates a broad range of light (700 nm to 1000 nm) which is passed 

through a prism and onto a diffraction grating. The incident angle of the light 

hitting the grating is controlled by rotating the grating with a stepper motor 

allowing for a precise selection of ~924 nm wavelength. The 924 nm light is then 

passed through a second harmonic generation crystal (SHG), LBO (Lithium 



Chapter 2  The FAGE Technique 

33 

 

triborate), to generate light at 462 nm. This light then passes through a third 

harmonic generation crystal (THG), BBO (β-barium borate), which generates the 

308 nm light by mixing the fundamental and second harmonic frequencies. Two 

small fractions (~1%) of the second harmonic blue light are focused onto a 

wavemeter, in order to monitor the wavelength, and a photodiode, to track the 

timing of the laser pulse. It is necessary to track the laser pulse timing because 

the exact laser trigger time varies slightly for each pulse, due to changes to the 

internal optics of the Nd:YAG (e.g. alignment or burns). By tracking the timing of 

the laser pulse relative to the initial trigger, factors dependent on the position, 

such as the collection of fluorescence, of the laser pulse can be time corrected. 

The 308 nm light is delivered to the detection cell and reference cell via a series 

of beam splitters,  fibre launchers, and fibre optics (Oz optics). The 308 nm light 

is generated at a pulse repetition frequency of 5000 Hz and typical power of 5-10 

mW (1-2 µJ per pulse). 

2.2.1.2 Laser system 2 - SIRAH dye laser 

 

Figure 2.3. Dye laser system used in the PF-LIF setup. 

For the measurement of OH using the PF-LIF instrument a SIRAH dye laser was 

used to generate the 308 nm light, figure 2.3. The system used in a JDSU Q201-

HD Q-series Nd:YAG and a SIRAH Cobra Stretch dye laser. Laser light is 

generated by pumping a dye mix of Rhodamine B and Rhodamine 640 (0.15 g L-

1 and 0.0375 g L-1 in methanol) using 532 nm light generated from the Nd:YAG 

laser.  
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The peak maximum power for the red shifted output is centred at ~616 nm with a 

single wavelength being enhanced by specific reflection from a grating that forms 

part of a laser cavity. The 616 nm light is then passed through a non-linear barium 

borate (BBO) crystal that frequency doubles the light to 308 nm. A Pellin Broca 

optic set is used to separate the 308 nm light from the remaining 616 nm light. 

After exiting the main laser system 90% of the 308 nm light is directed into a fibre 

launcher while the remaining light is passed through a reference cell. The 308 

nm light is generated at a pulse frequency of 5000 Hz and typical power of 3 -10 

mW. 

2.2.2 Detection Cell 

The detection cells used in the PF-LIF experiments and the ACA campaign both 

follow the same design as those used in the Leeds aircraft FAGE 69 instrument. 

This section will cover the design used during the ACA campaign with the design 

of the PF-LIF cell being described later in chapter 3, however the principle behind 

the measurement of OH remains the same for both instruments. 

Air is sampled through a flat pinhole (0.7 mm diameter), 10 cm from the detection 

region. This insitu sampling is needed for the detection of OH as the radical will 

quickly be lost by collisions to the walls if a sampling line is used. The cell is 

evacuated to a pressure of ~2 Torr using a rotary pump (Edwards, model E1M80), 

super charger combination (Edwards, model EH1200). The low pressure is 

needed to allow the temporal separation of the fluorescent signal from the laser 

scatter. The pressure is monitored using a pressure gauge (MKS, 10 Torr 

baratron pressure transducer). 

The gas that passes through the pinhole is accelerated by the pressure 

differential between atmospheric pressure and the pressure in the detection cell. 

The gas velocity after the pinhole will be close to the speed of sound and will form 

a rotationally cold jet. The gas in the jet is under expanded and so begins to 

rapidly expand to reach the background pressure of the detection cell, causing 

the jet to break down. The lifetime of the jet is determined using equation 2 that 

is dependent on the pressure differential and the pinhole diameter.  

 
(
𝑥𝑚
𝑑
) = 0.67(

𝑃0
𝑃𝑏
)1/2 

Eq(2) 
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For the FAGE cell used in the HONO instrument and during the ACA campaign 

distance of the jet is approximately 2 mm. This is before the measurement region, 

HONO instrument = 60 mm and ACA instrument = 150 mm. This means that the 

laser in both instruments are sampling a region where the jet has broken down 

and the gas can now be considered well mixed across the cell. The temperature 

in this region is no longer rotationally cooled as it would be in the jet with 

experiments carried out by Creasey et. al.81 showing that the gas has returned to 

approximately room temperature. 

Figure 2.4 shows a cross section through the detection region. Laser light is 

delivered to the cell via a fibre optic cable connected to a fibre coupler connected 

to the cell entrance arm via a collimating unit. The light is delivered perpendicular 

to the air flow across the detection region and exits the cell through a 308 nm 

anti-reflective coated window on the opposite side. The detector is mounted 

perpendicular to both the laser beam and gas flow axes. A window coated for the 

transmission for 308 nm light separates the detector barrel from the low pressure 

cell. Any fluorescence that passes through the window will pass through an optics 

barrel which focuses the light onto the detector. The optics barrel also contains a 

Barr Associates filter that only allows the transmission of light at 308 nm (± 8 nm 

with approx. 50% transmission) in order to prevent room light reaching the 

detector. The light is focused onto a multi-channel plate (MCP) detector which 

outputs an electronic pulse when a photon makes contact with the detection plate. 

Opposite the detector barrel, a retro reflector mirror is positioned to increase the 

amount of fluorescence signal captured.  
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Figure 2.4. Cross section of the detection region in the FAGE cell. The air flow travels 
through the central region. 

 

2.2.3 Reference Cell 

In order to ensure that the laser wavelength is tuned to the peak of the OH 

transition a reference cell is used. The reference cell provides an environment 

with a constant amount of OH by flowing humidified air over a hot filament (0.2 

mm diameter 80:20 NiChrome wire) and the thermolysis of the water generates 

the OH. By directing 5% of the laser light through the reference cell and 

measuring the fluorescence, using an ungated CPM with a 308 nm filter, allows 

the laser software to scan the online peak, the Q1 (2) rotational peak is targeted 

(figure 2.5), so that on a second scan it can accurately find the point when the 

wavelength peak is at its maximum. 
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Figure 2.5. Measured OH fluorescence spectrum around the 308 nm wavelength 
showing three rotational lines with a spectrum simulated using LIFBASE inserted. The 
Q1 (2) line is the transition targeted during measurements of OH in subsequent 
experiments. 
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Figure 2.6. An example scan of a reference cell showing the initial scan across the peak 
Q1 (2) (red), the online measurement (green) and the offline measurement (blue). 
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Figure 2.6 shows a single scan of the reference cell: the first section of the plot, 

‘finding the line’, involves the software scanning the laser wavelength over a 

range that encompasses the transition to find the maximum. Figure 2.5 shows 

the OH absorption peaks around the 308 nm wavelength. The Q1(2) peak used 

represents a transition from the 2nd rotational energy level in the ground state to 

the same rotation level in the electronic excited state. The software return to a 

starting wavelength and rescans, stopping at the wavelength where the peak 

height is similar (within 95%) to the first scan. The laser will then stay on this 

wavelength, ‘online’, for a defined length of time to measure the OH signal. The 

laser will then move to 308.004 nm where OH does not absorb to measure the 

offline signal, this consists of signal generated by laser scatter. 

2.2.4 Data Acquisition 

This measurement method uses the on resonance method, where the laser and 

resulting fluorescence are both at a wavelength of 308 nm, gating of the MCP 

detector is required to minimise collection of the laser pulse and the resulting 

laser scatter signal from the fluorescence signal. Gating involves switching the 

detector to a low gain state during the laser pulse using a Photek gating box 

(GM10-50B), to prevent oversaturation of the detector, and it is then rapidly 

turned back to a high gain state to capture the fluorescence signal. The width of 

this low gain state is changed so that any residual laser scatter is minimised to 

an acceptable level, 1-2 counts s-1, before it returns to a high gain state. 

Figure 2.7 shows the relation between the laser pulse, fluorescence, and gating 

and data collection. The photon counters used are PMS-400A counting cards 

(Becker & Hickl GmbH), these count the output pulses from the MCP detector. 

The photon counter is turned on after the laser pulse in order to count the 

fluorescence signal, it is then turned off after 500 ns and then turned on again for 

5 µs, 50 µs after the laser pulse, in order to collect a dark count signal, which 

represents the solar/room counts and detector dark counts. These background 

counts are divided by 10 (to correct for the different counting widths) and 

subtracted from the fluorescence signal in order to remove any signal due to room 

light that enter the cell through the pinhole. Electronic noise is minimised by 

disregarding any signal below a set voltage, a discriminator level.  
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The trigger for both the gate and the photon counting card is controlled by a BNC 

555 delay generator which also define the t0 position and trigger the laser.  

.  

Figure 2.7. Timing diagram representation of the fluorescence and laser scatter signal 
and the CPM and counting card switching pulses. 

Data collected, is integrated over a one second period, which will consist of 5000 

laser pulses. The OH signal is determined using the following equation: 

 
𝑂𝐻 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑂𝐻𝑠𝑖𝑔𝐴  − 

𝑂𝐻𝑠𝑖𝑔𝐵

𝑥
 

Eq(3) 

where OHsigA and OHsigB are the accumulated counts in the A and B gates 

respectively, x (= 10) is the difference in width between the A and B gates and 

OH signal is the fluorescence signal and laser scatter signal. During a standard 

measurement, the instrument will initially scan the OH transition to find the 

maximum signal. Once online, the instrument will remain at that wavelength for 

the time set for that experiment. Once the allotted online time has been reached 

the software will scan the laser to a wavelength position where OH does not 

absorb, ‘offline’, to provide a background measurement of the 308 laser scatter 

that is present during the A gate – this is then subtracted from the OH signal 

determined in Eq 3. As the amount of fluorescence is linearly dependent on the 

amount of laser light absorbed, i.e. a higher OH signal will be observed when the 

laser power is higher. To correct for changes in laser power, the signal is divided 

by the laser power at that time to normalise the signal. 
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To convert this signal to a concentration the following equation is used; 

 
𝑂𝐻𝑐𝑜𝑛𝑐 = (

𝑂𝐻𝑜𝑛
𝐿𝑃𝑜𝑛

−
𝑂𝐻𝑜𝑓𝑓

𝐿𝑃𝑜𝑓𝑓
)/𝐶𝑂𝐻 

Eq(4) 

where OHconc is the concentration of OH in molecule cm-3, OHon and OHoff (counts 

s-1) are the online and offline signals respectively, LPon and LPoff are the UV power 

of the online and offline signal (mW). COH is the sensitivity of the instrument (cts-

1 mW-1 molecule-1 cm3) which is determined by calibration as explained in the 

following section.  

2.3 Calibration 

As the FAGE technique does not provide an absolute measurement, a calibration 

is required in order to relate the amount of fluorescence measured to a 

concentration. At Leeds this is done using a “Calibration wand” which produces 

OH and HO2 in equal concentrations (R30 and 31) from the photolysis of water 

(in the presence of O2) using light at 185 nm.  

 𝐻2𝑂
ℎ𝑣
→ 𝑂𝐻 + 𝐻 R(30)  

 𝐻 + 𝑂2 +𝑀 → 𝐻𝑂2 +𝑀 R(31)  

A diagram of the wand is shown in figure 2.8. A mercury pen ray lamp (LOT Oriel) 

is used to generate the 185 nm light, this is then collimated using multiple small 

tubes before it passes through a glass window to irradiate the gas flowing down 

the wand.  

 

Figure 2.8. Cross section of the calibration wand used for the calibration of the FAGE 
cells for OH. The species in blue are for the calibration for OH/HO2 and the species in 
red are for the N2O actinometry experiments, see next section. The flow of nitrogen over 
the lamp is to both help cool the lamp and prevent the formation of ozone. 
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The amount of HOx produced in the wand is calculated using equation 5; 

 [𝑂𝐻] = [𝐻𝑂2] = [𝐻2𝑂] 𝜎𝐻2𝑂 Ø𝑂𝐻 𝐹 𝑡 Eq(5) 

where [H2O] is the concentration of water in the gas flow, σH2O is the absorption 

cross section of H2O at 185 nm (7.14 x 10-20 cm2 molecule-1), ØOH (= 1) is the 

quantum yield of OH (and HO2) for the photodissociation of H2O at 185nm. F is 

the lamp flux, which can be changed by altering the lamp current, and t is the 

irradiation time. The product, F.t are calculated experimentally using N2O 

actinometry, the process of which is discussed below in section 2.3.1. 

The flow rate in the wand is held at 40 L min-1 so the air flow down the tube is 

turbulent. This ensures that the flow rate will be equal across the cross section of 

the wand, otherwise under laminar flow conditions it would be necessary to take 

into account that the air in the centre of the wand will flow faster that the air near 

the walls which would mean that each region would experience different 

irradiation times. 

To calibrate, 40 SLM of zero air (BOC, BTCA 178) is humidified by flowing it 

through a water bubbler. The air is then flowed down the calibration wand, with a 

small flow (1 L min-1) going to a chilled mirror hygrometer (Buck Research 

Instruments, CR-4) to measure the concentration of water vapour in the flow. The 

wand is positioned so that the air flow exiting overflows the pinhole at an angle of 

45 degrees. The flow rate exiting the wand is significantly higher than the 

sampling rate of the instrument, this ensures that only the air from the wand is 

sampled and not the surrounding lab air. The gradient of a plot of the observed 

signal, normalised for laser power, (cts-1 mW-1) against OH concentration 

(molecule cm-3), determined by equation 3, provides the sensitivity. The 

sensitivity achieved for the detection cell used during the Valencia campaign was 

COH = 1.09 x 10-7 counts s-1 molecule-1 cm3 mW-1, see figure 2.9, and the 

sensitivity for the HONO cell was COH = 9.36 × 10-8 counts s-1 mW-1 molecule-1 

cm3 (MCP detector) and 5.79 × 10-9 counts s-1 mW-1 molecule-1 cm3 (CPM 

detector), figure 2.10. Typical sensitivities achieved for other FAGE instruments 

in Leeds are ~1.7 x 10-7 counts s-1 mW-1 molecule-1 cm3 for the container FAGE 

cell and 3.95 x 10-7 counts s-1 mW-1 molecule-1 cm3 for the HO2 uptake flow tube 

cell. This shows that the current set up for the HONO instrument is not as 

sensitive towards OH as the other FAGE instruments currently in use. The main 
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reason for the low sensitivity seen in the HONO cell is due to the pinhole design 

being optimised for the detection of HONO rather than OH. 
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Figure 2.9. Results showing the OH sensitivity of the aircraft detection cell used during 
the Valencia campaign, allowing the calculation of the measured OH concentration from 
an observed number of counts per mW of laser power. MCP detector used. 2 % water. 
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Figure 2.10. Results showing the difference in OH sensitivity for two different detectors 
used on the HONO detection cell (CPM and MCP). The significant increase in sensitivity 
is due to the MCP being a newer more efficient detector. 
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2.3.1 N2O Actinometry 

The product of the lamp flux (F) and the irradiation time (t) from equation 4 is 

determined using N2O actinometry. N2O and air are turbulently flowed through 

the calibration wand where the N2O is photolysed to produce NO and O(1D) (R 

32). The (O1D) reacts with N2O (and other species R 33, 34, 35) to form NO (R 

36) which is measured using a NOx analyser. 

 𝑁2𝑂 + ℎ𝑣 → 𝑁2 + 𝑂( 𝐷
1 ) R(32)  

 𝑂( 𝐷1 ) + 𝑂2
𝑘6
→   𝑂( 𝑃3 ) + 𝑂2 R(33)  

 𝑂( 𝐷1 ) + 𝑁2
𝑘7
→   𝑂( 𝑃3 ) + 𝑁2 R(34)  

 𝑂( 𝐷1 ) + 𝑁2𝑂
𝑘8
→   𝑁2 + 𝑂2 R(35)  

 𝑂( 𝐷1 ) + 𝑁2𝑂
𝑘9
→   2𝑁𝑂 R(36)  

Table 2.2. Rate constants for the quenching a reactions of O(1D) in the N2O 

actinometry experiments. 

Rate Constant Value at 298 K/ 

cm3 molecule-1 s-1 

k6 3.95 × 10-11 

k7 3.1 × 10-11 

k8 4.95 × 10-11 

k9 7.75 × 10-11 

The NOx analyser (Thermo Electron Corp. 42C) is a chemiluminescence 

instrument and measures NO by measuring the light produced when NO is 

reacted with ozone to produce electronically excited NO2 and oxygen. As the 

NO2* decays to lower energy states it emits visible and near IR light which is 

detected by a PMT and a NO concentration determined. The NOx box is first 

calibrated using known amounts of NO, from an NO standard. However, it is also 

necessary to do these calibrations at various concentrations of N2O as the NO2* 

can be collisionally quenched by the N2O. This is done by mixing a flow of air and 

NO in various ratios to give different concentrations of NO which the NOx analyser 
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samples directly from a sample line. 3 runs are done; one with no N2O present 

and two with N2O at 7 % and 14 %. The results from this are shown in figure 2.11. 

A decrease in the instrument sensitivity as the percentage of N2O increases is 

observed demonstrating that the N2O is an interference in the NO measurement. 

 

Figure 2.11. Plot showing results from the NOx analyser showing the impact on the NO 
signal with increasing N2O. 

The actinometry experiment is then done by flowing a mixture of synthetic air (40 

SLM) and N2O (5 SLM) through the calibration wand. The output from the wand 

is sampled using the NOx analyser with a sampling line placed in front of the exit 

of the wand. By altering the lamp current the amount of NO produced will change 

and by substituting the measured concentrations of NO using equation 6 it is 

possible to calculate the product F and t. See appendix A for how equation has 

been derived. 

 
𝐹 𝑡 =

[𝑁𝑂] (𝑘1 [𝑂2] + 𝑘2 [𝑁2] + (𝑘3 + 𝑘4) [𝑁2𝑂])

2𝑘4 𝜎𝑁2𝑂 Ø𝑁𝑂[𝑁2𝑂]2
 

Eq(6) 

The value for t can then be calculated using the gas flow rates and the dimensions 

of the wand, which will remain constant throughout the experiment as only the 

lamp current is changed. The graph below shows the resulting plot of lamp flux 

against current. The gradient in this example is similar to previous actinometry 

experiments, using the same wand and lamp which were 7.53 x 1012 and 5 x 1012 

photons cm-2 s-1 mA-1, suggesting the lamp output has remained similar. 
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Figure 2.12. Actinometry plot of lamp flux vs lamp current. The gradient, (6.45±0.01) × 
1012 photons cm-2 s-1 mA-1 can be used to calculate the lamp flux for a given lamp current 
to be used in equation 4. 

 

2.3.2 Determination of calibration and measurement uncertainties 

The uncertainty in the [OH] measurements is determined using the sum in 

quadrature of the fractional uncertainty in COH, the standard deviation of the 

online and offline OH signals, and the standard deviation of the laser power 

measurement in the OH cell. The uncertainty in the OH calibration coefficient is 

given by the standard error of the slope of the linear fit to the calibration data, 

figure2.9 

The uncertainty in each point in the calibration plot is given by the sum in 

quadrature of the fractional uncertainties for each element in equation 5 For the 

calculated concentration, while the error in the fluorescence signal is determined 

from the standard deviation in the raw signal and laser power. Approximate 

uncertainty for these values is shown in table 2.3. 
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Table 2.3. Summary of the uncertainties that contribute to the accuracy of the OH 
calibration factor. 

Term Value or range of values Uncertainty 

[H2O] 0.29–2.5 × 1017 molecule cm−3 1 % 

σH2O 7.14 × 10−20 cm2 molecule−1 2.8 % 

ϕOH 1 negligible 

F  0.0–1.5 × 1013 photon cm−2 s−1 13 % 

t 7.5 × 10−3 1.3 % 

Online wavelength 

position 

~ 308 nm 5 % 

OH LP 20–30 mW 8 % 

Accuracy 16 %  

Precision 4 %  

Final Uncertainty 17 %  

 

The uncertainty in t stems from uncertainty in total flow rate and gas temperature. 

The uncertainty in laser power (OH LP) is determined from the calibration of the 

OH photodiodes across a range of laser powers. The uncertainty in the position 

of the online wavelength stems from procedure for finding the online wavelength, 

where the laser wavelength is scanned until the reference cell signal reaches 95 

% of the maximum signal obtained when initially scanning over the OH rotational 

line (see section 2.4.2). 

The largest uncertainty in the FAGE calibration comes from the determination of 

the lamp flux. This uncertainty is smaller than the true uncertainty when 

calculated for an individual lamp current, as it is determined using the standard 

error in the slope and intercept of the NO actinometry plot, shown in figure 2.12 

Uncertainty in the NO actinometry points are determined in the following manner. 

The x error bars are the standard deviations of the lamp current during 

measurement period. The y error bars are calculated by propagating the 

uncertainties in each of the terms on the right hand side of equation 6, details of 

which are given in Table 2.4. 
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Table 2.4. Summary of uncertainties in the calculation of the lamp flux during the N2O 
actinometry experiments. 

Parameter Uncertainty calculation Uncertainty References 

Flow rate 0.007 × flow rate + 0.002 × 

full range 

1 % Brooks Smart 

5850S Manual 

Temperature  1 %  

Pressure  1 %  

k1 

 
1.1 × 𝑒𝑥𝑝 |10 (

1

𝑇
−
1

298
)| 

10 % Sander et al. 

(2011) 

k2 
1.1 × 𝑒𝑥𝑝 |10 (

1

𝑇
−
1

298
)| 

10 % Sander et al. 

(2011) 

k4 
1.1 × 𝑒𝑥𝑝 |10 (

1

𝑇
−
1

298
)| 

10 % Sander et al. 

(2011) 

k5 

 
1.1 × 𝑒𝑥𝑝 |10 (

1

𝑇
−
1

298
)| 

10 % Sander et al. 

(2011) 

F  25 %  

 

2.3.3 Calculating a Limit of Detection 

The FAGE limit of detection (LOD) for OH and HO2 is commonly defined as the 

lowest concentration that can be reliably distinguished from the background noise 

for a given averaging period. It is determined from the instrument sensitivity and 

the variability (standard deviation) of the background signal using the following 

equation: 

 

[𝑂𝐻]𝑚𝑖𝑛 =
𝑆𝑁𝑅

𝐶𝑂𝐻  × 𝑂𝐻𝑃𝑜𝑛
𝜎𝑜𝑓𝑓√

1

𝑚
+
1

𝑛
 

Eq(7) 

where [OH] min is the minimum concentration of OH that can be detected, the limit 

of detection. SNR is the signal to noise ratio above which OH can be detected, 

COH is the calibration coefficient for OH, OHPon is the online laser power, σoff is 

the standard deviation of the background signal (laser scatter, room light and dark 

counts), m and n are the number of points measured both online and offline 

respectively. This equation, with substitution of COH for CHO2, is also used for 

calculating the LOD for HO2. 

During the ACA campaign the average LOD was 1.01×107 molecule cm-3 for OH 

and 6.14×106 molecule cm-3 for HO2 for 3 minute averages and a SNR of 1. 
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2.4 Summary 

This chapter has described the fundamental principles behind the detection of 

OH and HO2 radicals using laser induced fluorescence at low pressures, FAGE. 

The method operates by sampling gas into a low pressure cell and electronically 

exciting the OH molecule using a laser at the 308 nm wavelength. As the 

molecule of OH returns to its ground state it emits a photon of light, fluorescence, 

which can be detected. This fluorescence is proportional to the amount of OH 

and with calibration can be converted to a concentration. The technique 

described was used to measure the HOx radicals during the ACA campaign at 

the EUPHORE chamber, which will be described in more detail in chapter 5. The 

instrument design also forms the basis for the development of the PF-LIF 

instrument used for the detection of HONO, which will now be described in the 

following chapter. 
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Chapter 3 Detection of HONO via PF-LIF 

This chapter describes the nitrous acid (HONO) instrumentation used for 

measurement of HONO in the aerosol flow tube experiments that are described 

in chapter 4. The optimisation of the instrument to improve its sensitivity to HONO 

is described in section 3.5. In order to better explain the choice of instrument, a 

summary is given of previous detection methods that have been used to measure 

HONO both in the field and the lab. 

3.1 Previous HONO instrumentation 

This section will describe the different instrumentation used to measure HONO. 

The three most common methods used to detect HONO either in the field and/or 

in laboratory studies investigating the heterogeneous production of HONO will 

be described, with other methods summarised in table 3.1. 

3.1.1 DOAS 

Two types of differential optical absorption spectroscopy (DOAS) instruments 

have been used in the measurement of HONO; the long path DOAS (LP-DOAS) 

and the multi axis DOAS (MAX-DOAS) instruments. Both operate on the same 

principle, where the absorption by different species is measured between a 

broadband light source and a detector. For LP-DOAS the absorption area covers 

a distance between an artificial light source and a detector. The path length of 

the light will generally be several km in length and this can be achieved either by 

placing the light source and detector a set distance apart or through the use of 

mirrors to achieve multiple passes over a shorter distance. The light source will 

be a high powered lamp or laser that is able to generate a wide range of 

wavelengths. The light is then collimated into a parallel light beam and directed 

towards the detector. A spectrometer will generate an absorption spectrum and 

by using the known output from the lamp it is possible to determine 

concentrations of a range of species over the lights path after correcting for 

atmospheric effects82.  
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MAX-DOAS uses scattered sunlight as the light source and is able to scan 

different angles from the vertical to determine concentrations at different 

altitudes83. The instruments consist of a light collector that focuses the light into 

a fibre optic that is connected to a spectrometer that is able to measure the 

intensity of light at different wavelengths. The absorption spectrum is converted 

to an integrated trace gas concentration along the path length of the light in the 

atmosphere by fitting a range of reference spectra to the initial measured 

spectra84. 

As an absorption technique DOAS does not require any calibration for individual 

species, but reference spectra are needed for interpretation of data. The main 

disadvantage in DOAS measurements is that the measured concentration is 

averaged over the entire path length making it difficult to identify local sources. 

3.1.2 LOPAP 

The long path absorption photometer, LOPAP, is a wet chemical technique used 

in the measurement of HONO that was developed in 2001 at the University of 

Wuppertal85. The instrument operates by collecting gas phase HONO into a 

liquid sample where it reacts to form a dye which can be analysed using an 

optical absorption method. The standard instrument consists of 3 stages, the first 

is the stripping coil where the HONO gas is collected into the liquid phase; a 

sulphanilamide in HCl solution. The liquid then enters the azo dye unit where n-

(1-naphthyl) ethylenediamine-dihydrochloride solution is injected, this reacts with 

the sample to form an azo dye. The final stage is the detection unit where the 

azo dye is detected by measuring the absorption of visible light by the solution. 

This technique does suffer from interferences both known, such as NO2, and 

unknown. To remove the interference, LOPAP instruments use two stripping 

coils in sequence. The first coil removes virtually all the HONO from the sampled 

gas along with a small percentage of the interfering species, the second coil will 

only sample the interfering species. It is then possible to subtract the interference 

signal leaving just the HONO signal. This method operate assuming only small 

fractions of the interfering sample is adsorbed by each coil, however if a species 

is absorbed efficiently or is present in small concentrations all the sample may 

be removed by the first coil causing an underestimation of the interference by 

the second coil.  
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Reaction in the liquid stage may also generate in interference with the reaction 

between oxidised hydrocarbons and NO2
86. Calibrations for the instrument are 

carried out using liquid nitrite standard. 

The LOPAP instrument has been compared against a DOAS instrument in the 

EUPHORE chamber in Valencia86 under a range of conditions. These 

experiments showed good agreements between the 2 instruments in the 

chamber, with the slope of 0.9987 for plots of LOPAP HONO vs DOAS HONO. 

During the FORMAT-1 field campaign in Milan in 2002, the data was more 

spread out from the chamber experiment, this was predicted to be caused by the 

greater heterogeneity seen in the atmosphere compared to a simulation 

chamber. 

3.1.3 Detection using a NOx analysers 

It has been shown that both NO2 and HONO are efficiently converted to NO by 

a molybdenum catalyst used in the NO2 channel of NOx chemiluminescent 

analysers. Owing to this, modifications have been made to standard NOx 

analysers (e.g. TECO NOx boxes) to quantify HONO. The NOx analysers are 

operated by sequentially removing HONO from the gas flow by passing or 

bypassing the flow through Na2CO3 denuders52. By comparing the 

concentrations when the sample flow is either bypassing the converter or 

passing through the denuder it is possible to calculate the HONO concentration. 

Another NO2 conversion method that can be employed for HONO detection is a 

differential photolysis technique where two UV LEDs of different wavelengths 

(385 nm and 395 nm) are used to illuminate a reaction chamber87. The 

wavelengths of the LED’s are chosen so that one wavelength more efficiently 

photolyses HONO to NO than the other wavelength. Using the production ratios 

of NO by each lamp the ambient HONO concentration can be calculated. 
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Table 3.1 Summary of techniques used for the measurement of HONO.  

Technique Description Detection 

Limit 

Advantages Disadvantages Ref. 

DOAS 

Differential optical 
absorption 
spectroscopy. 

Measures total absorption along a 
fixed path length, using and 
artificial light source. 

84 ppt per 
5 min 

No calibration 
required. 
Allows measurement 
of many different 
species at once. 
Well developed 

Difficult to site due to size of 
equipment and need for a long 
absorption path. 

Poor spatial resolution. 

Poor performance when 
visibility is poor. 

88, 89 

Denuder HONO sampled on humid alkaline 
Na2CO3 surfaces as nitrite (NO2

-), 
which is determined by ion 
chromatography after washing the 
denuder with pure water. 

5 ppt per 
30 min 

High sensitivity 
possible 

Low time resolution 

Time consuming off line 
analysis 

Interferences 

88,90, 91 

PF-LIF 

Photo- fragmentation 
laser induce 
fluorescence. 

Section 3.2 15 ppt per 
min 

Is highly selective and 
sensitive. 
Has very good time 
resolution. 
Has a background 
measurement close to 
zero. 

Requires calibration using a 
known concentration. 

88 
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MC/IC 

Mist chamber/ Ion 
Chromatography. 

 

A dense mist of ultra-pure water 
scavenges any soluble gas from 
the air. The droplets are then 
collected and analysed. 

1 ppt per 
30 min 

High sensitivity. Long integration time. 

Interferences from pernitric 
acid 

88, 92 

DNPH-HPLC 

2,4-
dinitrophenylhydrazine 
derivatization and 
high-performance 
liquid 
chromatographic 
analysis. 

Derivatization nitrite with DNPH to 
form DNPA. DNPA is then 
separated from DNPH on a HPLC 
column and detected using a UV 
detector. 

1-5 ppt per 
5 min 

High sensitivity. Interferences from other 
nitrogen species. 

Interferences from carbonyl 
compounds, however these 
can be separated in the HPLC. 

88, 93 

LOPAP 

Long Path Absorption 
Photometer. 

HONO sampled by a fast, 
selective chemical reaction in a 
stripping coil, converted into an 
azo dye, which is detected in long 
path absorption spectrometer. 

1 ppt per 5 
min 

Comparison with 
DOAS instrument 
shows good 
agreement. 

Interferences need to be 
corrected for using a two 
channel design. 

88,85, 86, 

94, 95 

IBBCEAS 

Incoherent 
broadband cavity-
enhanced absorption 
spectrometer 

Time integrated light intensity 
measurement of light leaking from 
a cavity between two highly 
reflective mirrors. 

~100 ppt 
per 30 sec 

No calibration required 
as it is an absorption 
technique. 

Single instrument can 
target multiple species 

Overlap of other absorption 
cross sections. 

Difficulty detecting low 
concentrations 

96, 97 
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3.2 Description of the PF-LIF instrument 

The PF-LIF technique for the measurement of HONO operates by photolysing 

the HONO molecule to OH and NO after which either species (OH or NO) can be 

measured using, for example, laser induced fluorescence (LIF). Two examples 

of previous PF-LIF instruments that have been developed for the detection of 

HONO in the field have been reported in the literature. The Georgia Institute  of 

Technology instrument88 achieved a detection limit of 15 ppt for a 1 min 

integration time, while a more recent example has been developed by a group at 

Indiana University who have achieved a limit of detection (LOD) for HONO of 18 

ppt for a 30 min average. These LODs demonstrate that this instrument type is 

able to achieve the desired sensitivity necessary for the experiments discussed 

in chapter 4, and, as demonstrated by the Georgia Tech instrument, a short (1 

min) time resolution. Both instruments use a 355 nm laser to photolyse HONO 

and then measure the OH photo-fragment with a probe laser at 282 nm (Georgia 

Tech institute), or 308 nm (Indiana University). The two instruments use 5 kHz 

photolysis and probe lasers that are aligned collinearly across the cell. This differs 

from the Leeds design (see section 3.2.4) where the probe laser is run at 5 kHz 

but the photolysis laser runs at 10 Hz. The two lasers in the Leeds design are 

aligned perpendicular to each other. 

3.2.1 Fragmenting HONO 

The photolysis of HONO has been shown to have a near unity quantum yield 

(ΦA=0.95) to form OH, for dissociation at 355 nm98, figure3.1 shows the 

absorption cross section showing the strong absorption peak at 355 nm. The 

photolysis process occurs due to movement of a non-bonding electron on the 

terminal O to the lowest π* orbital on the N=O bond88. This causes an extension 

in the N=O bond length with the vibration causing a recoil along the O-N bond 

which leads to the breaking of the bond as the bond length increases, generating 

OH and NO in the ground electronic state99.  
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Figure 3.1. UV absorption spectrum of HONO showing the strong peak at 355nm, taken 
from reference 100. 

In the development of the Leeds PF-LIF instrument, a 355 nm laser was used to 

photolyse HONO. Although it is possible to measure both the OH and the NO 

photo-fragments that result, this research has only detected the OH fragment. 

The challenge with detecting the NO fragment is that NO2, a planned aerosol 

experiment reactant, will also photolyse to NO at the 355 nm wavelength88
. This 

is significant because the amount of NO2 that is added is in the range of 10-200 

ppb, while the expected HONO will be ~100 ppt which will make differentiating 

the NO from HONO photolysis very difficult. OH, however, is not expected to form 

from any of the reagents or reaction products that have been used during the flow 

tube experiments. The detection of OH is also a much more sensitive technique 

compared to the detection of NO with OH LIF measurements achieving 

sensitivities of 0.018 ppt for a 7 min average101 and NO chemiluminesence 

methods achieving 1.8 ppt for a 1 hour average102.By measuring the OH fragment 

the higher sensitivity will allow detection of smaller changes in HONO 

concentration. The OH fragment was also chosen as the technique of measuring 

OH using LIF is well developed in the Heard group at Leeds. 
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3.2.2 Measurement of the OH Fragment 

Detection of the OH fragment involves using the on-resonance FAGE technique 

introduced in chapter 2. In summary FAGE, fluorescence assay by gas 

expansion, is a low pressure laser induced fluorescence method, commonly used 

for the measurement of OH (and HO2 indirectly) both in the lab and in the field70. 

The process involves using a laser to excite from specific rovibrational energy 

levels to an electronically excited state and then measure the resulting 

fluorescence as the electrons relax back to a ground vibrational state. Detection 

of ambient OH employs 308 nm laser light, which excites the OH molecule (A2∑ 

ν´=0 ← X2π ν´´=0), after which it relaxes and fluoresces at 308 nm80. 

This on resonance OH detection method is utilised in the Indiana University PF-

LIF HONO instrument for detection of the OH fragment. In contrast, the Georgia 

Tech Institute PF-LIF instrument utilised an off-resonant (OH excitation at 282 

nm, detection at 308 nm) method for HONO detection. In the experiments 

discussed in this thesis, on-resonance excitation and detection was employed to 

minimise/prevent probe-induced signals (e.g. background signals generated from 

OH formed from ozone photolysis in humidified flows). If a 282 nm laser was 

used, the OH background (from probe-induced OH) can be subtracted by 

measuring without the photolysis laser, however when trying to achieve a low 

limit of detection (LOD) it is best to remove the majority of the background in order 

to maximise the signal-to-noise ratio. 
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3.2.3 Laser Systems 

 

Figure 3.2. Top down diagram showing delivery of laser light to the detection cell. 

 

As described in the previous section two laser wavelengths (and, hence laser 

systems) are used in the PF-LIF instrument (355 nm to photolyse HONO and 282 

nm or 308 nm to detect the OH fragment). Figure 3.2 shows a plan of the layout 

of the Leeds PF-LIF instrument. The layout has the photolysis laser and the probe 

laser orientated perpendicular to each other on the same horizontal axis. 

3.2.3.1 355 nm Light Generation 

The 355 nm photolysis laser was generated by several different lasers over the 

course of this research, however, they each generate the 355 nm light using the 

same method. The lasers used were a Continuum Surelite  I-10, Spectra-Physics 

GCR-130 and Spectron Nd:YAG laser; all lasers were operated at a pulse 

repetition frequency of 10 Hz. These three laser systems initially generate 1064 

nm light from a flash lamp pumped Nd:YAG crystal. This light is then converted 

first to 532 nm light and then the 1064 and 532 are mixed to generate the 355 nm 

light. Upon exiting the laser, the 355 nm light is separated from the remaining 

1064 and 532 nm light using two dichroic beam splitters before being delivered 

directly to the detection cell. The light entering the cell has a beam width of 0.5 

cm and a power 200 mW (20 mJ per pulse). 
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3.2.3.2 308 nm Light Generation - SIRAH dye laser 

 

Figure 3.3. Dye laser system used in the PF-LIF setup. 

The SIRAH dye laser system described in chapter 2 was used to generate the 

308 nm probe light for this experiment. The laser operates by using the green 

light from a JDSU Nd:YAG to pump a dye cell to generate 616 nm light which is 

then doubled to generate the 308 nm light. See section 2.2.1 for a detailed 

description of the light generation. The power of 308 nm light generated ranged 

between 10-30 mW at 5 kHz. After exiting the main laser system 90% of the 308 

nm light is directed into a fibre launcher while the remaining 10% of the light 

passed through a reference cell. 

3.2.4 Detection Cell 

Figure 3.4 shows a simplified cross section schematic of the PF-LIF instrument. 

The cell is constructed of several black anodised aluminium cylinders, 50 mm 

internal diameter, following the same design as the Leeds aircraft FAGE 

instrument69. 

Air is sampled through an off centre, angled pinhole (1 mm diameter), the design 

of this pinhole will be discussed further in section 3.4.4.1, at a typical flow rate of 

~5 SLM, 5 cm from the detection region. The short distance between sampling 

and detection is required to reduce the loss of species (HONO and OH) to the 

inner walls of the cell. The cell is continuously pumped to a pressure of ~2 Torr 

using a rotary pump (Edwards, model E1M80), roots blower combination 

(Edwards, model EH1200). The pressure is monitored using a pressure gauge 

(Tylan General, CDC 11) mounted after the detection region.  
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Figure 3.4. Vertical cross-section schematic of the PF-LIF detection cell. 

 

The 308 nm probe light is delivered to the cell via a fibre optic cable connected 

to the cell entrance arm via a collimating unit. The light is delivered perpendicular 

to the air flow across the detection region and exits the cell through a 308 nm 

anti-reflective coated window on the opposite side. Both cell arms contain baffles 

to reduce scattered light by selectively blocking light that does not travel along 

the central axis. After the laser light exits the cell the relative laser power is 

measured using a UV sensitive photodiode (New Focus 2032) to monitor 

fluctuations in laser power and allow normalisation of the signal. The 355 nm 

photolysis laser light enters the detection cell through a quartz window opposite 

the pinhole. The 355 nm travels along the same axis as the gas flow but in the 

opposite direction. The light then strikes a 355 nm coated mirror at the top of the 

cell, directing the light back along the same path. This is to both enhance the 

percentage of HONO that is photolysed and removes the random scatter of the 

355 nm light that would be generated by the laser reflecting off the metal surface. 
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A detector is mounted perpendicular to both the laser axis and gas flow. A window 

coated for the transmission for 308 nm light separates the detector barrel from 

the low pressure cell. Any fluorescence that passes through the window will pass 

through an optics barrel which focuses the light onto the detector. The optics 

barrel also contains a Barr associates interference filter that only allows the 

transmission of light at 308 nm (± 8 nm with approx. 50% transmission, FWHM = 

5 nm) in order to prevent room light and scatter from the photolysis laser reaching 

the detector. The light is focused onto a detector; both a channel photomultiplier 

(Perkin Elmer 993P, CPM) and a multi-channel plate (Photek, MCP 325) were 

used in these experiments. The detector monitors the fluorescence signal by 

converting photons hitting the active area of the photocathode into electrical 

pulses. To avoid saturation by laser light, the detector is gated (switched off) 

during the laser pulses, using a Leeds home-built gating unit for the CPM detector 

and a Photek gating unit for the MCP detectors. Opposite the detector barrel a 

retroreflector mirror is positioned to increase the amount a fluorescence signal 

captured by reflecting any light traveling downwards back towards the detector.  

Timing in the instrument is controlled by a delay generator (BNC, model 555) 

which acts as the master clock for the system. It is run with an internal trigger a 

5 kHz. A direct output at this rate is used to trigger the OH probe laser and the 

gating of the detectors and counting card. A pulse divided output at 10 Hz is used 

to trigger the HONO photolysis laser and to initiate the counting cards. Using this 

shared triggered source for both lasers ensures that, although they are run at 

different rates, the triggering of each laser is the identical in each run. 
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3.2.5 Data Acquisition 

A photon counting card (Becker and Hickl, PMS-400a) is used for data 

acquisition. Unlike the data collection for the OH instrument (chapter 2) which 

uses 2 distinct bins after the laser pulse (bin one = signal and scatter, bin two = 

dark counts), the software for the HONO instrument uses a continuous sequence 

of 2 µs wide bins. The detection of OH is carried out in the same way as in the 

standard FAGE cell described in chapter 2, with the MCP detector responding to 

photons when in a high gain mode and sending the electronic signal to the 

counting card. Here, for HONO data acquisition, the counting card is run at 10 Hz 

covering 500 probe pulses and a single photolysis pulse each time the counting 

card is triggered. The internal clock the BNC pulse generator was used to 

generate the triggers required at each stage of the instrument for laser operation 

and data collection. Figure 3.5 shows the pulses generated and their relation to 

each other. 

 

Figure 3.5. Representation of the pulses in a single measurement sweep with the top 
three panels repeating at a rate of 10 Hz and the bottom 4 panels at 5000 Hz. The flash 
lamp and Q-switch triggers control the photolysis laser with the time difference between 
them controlling the photolysis laser power.  A-D are the different 2 µs measurements 
bins that the software counts the total fluorescence signal in. 
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After triggering the counting card (t0), an initial OH signal is measured for 0.01 

seconds, to provide a background measurement of the OH and 308 nm scattered 

light, present in the system, before HONO is photolysed. After this period the 

photolysis laser is triggered; the position of the 355 nm laser pulse in time is set 

so that it pulses 800 ns before a 308 nm probe pulse and, hence, occurs whilst 

the detector is in a low gain state, ensuring that detection of the initial scatter from 

the photolysis laser is minimised. The maximum fluorescence signal from the OH 

generated from the photolysis of HONO is observed immediately after the 

photolysis pulse as the OH detected at this time has been generated close to the 

probe region and has not diluted. The OH generated from photolysis in the cell is 

then measured for a further 0.01 seconds. A sweep refers to the period from the 

initial triggering of the counting card to the end of the OH measurement (0.01 sec 

later). Multiple sweeps are collected per run with the signal in each bin being 

added to the corresponding bin in the previous run. This accumulation helps 

increase the observed signal bringing any measured OH signal above the 

background noise. The number of sweeps can be adjusted for different 

experiments as increasing the number of sweeps will make it possible to detect 

smaller concentrations, however this will also increase the length of the 

measurement time for each run reducing the time resolution.  

Typically the number of sweeps used in experiments discussed in chapter 4 were 

either 500 or 1000. Figure 3.5 above shows a representation of how all the 

triggers are set up.  

Figure 3.6 shows a signal plot in which HONO was homogeneously generated 

by reaction of OH, generated by flowing humidified N2 past a Hg lamp, in the 

presence of excess NO. Each point in figure 3.6, represents an OH signal that 

has been accumulated over 1000 sweeps. The photolysis laser pulse is indicated 

by the red line. Following photolysis, there is a large increase in the measured 

OH signal due to the generation from HONO via photolysis. The decay occurs 

primarily due to diffusion away from the central measurement axis as the 

recombination between the generated OH and NO is slow enough that it doesn’t 

have a significant impact on this decay.  
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This was proven to be the case by a modelling exercise using the Kintecus 

integrator103 where no HONO formation was seen during the time between 

photolysis at the pinhole and the detection of OH (~5 ms). For the aerosol 

experiments only the first OH point following the photolysis laser was used in the 

determination of HONO production due to interferences beginning to contribute 

to the signal in the later points; this interference signal is discussed further in 

section 3.4.4. To calculate the signal due to HONO the following equation is used; 

 
𝐻𝑂𝑁𝑂𝑠𝑖𝑔 =

(𝑏𝑖𝑛𝑛 − 𝑂𝐻𝑏𝑎𝑐𝑘)

𝐿𝑃
 

Eq(8) 

where HONOsig is the signal due to HONO, binn is a particular measurement bin, 

OHback is the averaged value from all OH background bins (which occur pre-

photolysis laser pulse) and LP is the average laser power for all sweeps in the 

run. This is repeated for both OH online and offline wavelengths, when the probe 

laser is tuned to (online) and away from (offline) the OH Q1(2) transition. The 

HONOsig for the offline wavelength is then subtracted from the online HONOsig to 

remove the signal due to laser scatter (355 nm and 308 nm), room light and 

detector dark counts. 
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Figure 3.6. Data generated from the PF-LIF instrument when sampling HONO generated 
from the glass wand, section 3.3. Each cross is the OH fluorescence signal measured 
following each 308nm laser pulse (500 points per sweep). The red line shows when the 
photolysis laser is triggered. This plot was generated after 1000 sweeps which takes 100 
seconds to collect. 
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3.3 Calibration 

HONO used during the initial setup experiments (see section 3.4), where a 

constant concentration was needed in order to validate the design and optimise 

the sensitivity of the instrument, was generated via the reaction of OH and NO. 

The OH was generated within a glass flow tube with a mercury pen ray lamp 

housed inside (figure 3.7). Humidified N2 was flowed past the lamp, generating 

OH through the photolysis of water vapour. By adding an excess of NO (1016 

molecule cm-3) to the flow, HONO is generated. The NO and HONO will not be 

affected by the 185 nm light that the lamp outputs as neither have strong 

absorption cross sections (HONO = 9×10-19 cm2 molecule-1, NO = 1.4×10-20 cm2 

molecule-1) at this wavelength. This design generated large concentrations of 

HONO (1011 molecule cm-3) that was readily detectable. 

 

Figure 3.7. Cross section of the glass flow tube used to produce the HONO. 

The flow rates used through the glass flow tube were 5 SLM N2 and 5 SCCM of 

NO to give a 0.1 % mix of the NO.  The HONO exiting the flow tube was 

measured, using UV/vis spectroscopy104 (4.5 meter path length, Laser Driven 

Light Source, NIR to the UV) to determine the concentration of HONO generated. 

The absorption spectrum of HONO generated using the glass flow tube is 

presented below (figure 3.8) and closely resembles the published HONO 

spectrum (figure 3.1). 
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Figure 3.8. Measured spectrum of HONO produced in the glass flow tube. A background 
of NO2 was observed however a measurement of the outflow from the wand with the 
lamp off, no HONO production, showed the same background of NO2 allowing its 
subtraction from the lamp on spectrum. The absorption at lower wavelengths <280 nm 
is and instrument artefact. 

Using the Beer lambert law equation; 

 𝐴 = 𝜀 𝑙 𝑐 Eq(9) 

where A is absorbance, ε is the absorption cross section of HONO, l is the path 

length and c is the concentration it is possible to determine a concentration of 

HONO. Using the major peak at 355 nm in figure 3.8 a HONO concentration of 

3.5  x 1014 molecule cm-3 was calculated (path length = 443 cm). 

A method to generate a calibrated amount of HONO to allow for the calculation 

of a detection limit for the instrument is necessary. Methods used to calibrate 

HONO instruments that have been reported in the literature previously often rely 

on a second instrument to validate the concentration of HONO produced, for 

example an absorption technique that does not require calibration, or a LOPAP 

instrument that has been calibrated using liquid standards. A method used in the 

literature to generate flows of HONO involves flowing HCl gas over a bed of 

NaNO2 generating HONO in the gas phase90.  

 𝐻𝐶𝑙(𝑔) + 𝑁𝑎𝑁𝑂2(𝑠)
𝐻2𝑂
→  𝐻𝑂𝑁𝑂(𝑔) + 𝑁𝑎𝐶𝑙(𝑠) 

R(37)  
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The method chosen to calibrate the Leeds instrument involved adapting the 

methodology for the OH calibration (discussed in chapter 2, section 2.3) by 

adding NO to a humidified nitrogen flow (figure 3.10). The NO reacts with the 

known amount of OH generated (and also any HO2, which forms from the small 

amount of O2 present in the N2) to form a known amount of HONO. The absolute 

amount of HONO generated was calculated using a kinetics model run using 

Kintecus103 and the inputs listed in table 3.2. The literature rate constants have 

been taken from the IUPAC website, while the loss of OH and HONO were 

estimated by measuring the decrease in signal as the distance between the 

calibration wand and the pinhole was increased. 
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Figure 3.9. Results from a HONO calibration experiment using the CPM detector, with 

the normalised signal versus the calculated HONO concentration. Each point is an 
average of multiple runs, the y error bars represent the standard deviation for the 
averaged normalised signal at a set concentration. The x errors are calculated using 
the same method discussed in section 2.3.2 for the calibration of OH, this was because 
the HONO concentration is determined assuming conversion of all OH to HONO. 
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Figure 3.10. Calibration wand showing the reactions used to generate HONO. 

Table 3.2. Reactions used in the Kintecus model to predict the amount of HONO 

produced in the calibration wand. Rate constant were taken from the IUPAC website 

(http://iupac.pole-ether.fr/). 

Reaction Rate constant (T=298 K) 

HO2 + HO2 = H2O 2+ O2 2.90 × 10-12 moleculel-1 cm3 s-1 

OH + H2O2 = H2O + HO2 1.70 × 10-12 molecule -1 cm3 s-1 

OH + OH = H2O2 2.26 × 10-11 molecule -1 cm3 s-1 

HO2 + NO = NO2 + OH 8.54 × 10-12 molecule -1 cm3 s-1 

NO + NO2 = N2O3 8.03 × 10-15 molecule-1 cm3 s-1 

HO2 + NO2 = HO2NO2 3.52 × 10-12 molecule-1 cm3 s-1 

OH + NO2 = HONO2 8.11 × 10-11 molecule-1 cm3 s-1 

OH + NO2 = HOONO 2.54 × 10-12 molecule-1 cm3 s-1 

NO2 + NO2 = N2O4 3.53 × 10-14 molecule-1 cm3 s-1 

N2O3 = NO + NO2 3.83 × 105 s-1 

N2O4 = NO2 + NO2 1.54 × 105 s-1 

OH + HONO2 = H2O + NO3 1.50 × 10-13 molecule-1 cm3 s-1 

OH + NO3 = HO2 + NO2 2.00 × 10-11 molecule-1 cm3 s-1 

HO2 + NO3 = O2 + HNO3 4.00 × 10-12 molecule-1 cm3 s-1 

NO + NO3 = 2NO2 2.60 × 10-11 molecule-1 cm3 s-1 

NO2 + NO3 = N2O5 9.10 × 10-11 molecule-1 cm3 s-1 

HONO = Loss 1.00 × 10-3 s-1 

OH = Loss 1.00 s-1 

HO2 + NO2 = PNA 1.38 × 10-12 molecule-1 cm3 s-1 

PNA = HO2 + NO2 8.30 × 10-2 s-1 

NO2 + NO2 = HONO 9.18 × 10-6 molecule-1 cm3 s-1 

HONO = OH + NO 4.47 × 10-12 s-1 

  



Chapter 3  The PF-LIF Technique 

69 

 

For these experiments 40 SLM of humidified N2 and 5 sccm of a 5% mix of NO 

in N2 was used. The NO was added into the main N2 flow, before entering the 

wand to allow it to mix into the bulk flow completely prior to reaching the irradiation 

region. Variable amounts of HONO were generated by varying the Hg lamp 

current. The NO used was found to have a large, variable HONO background 

(observed when the Hg lamp was switched off), that needed to be subtracted 

from each HONO signal measured. In order to reduce this background the NO 

concentration was kept as low as possible (but still in excess to ensure rapid 

conversion of OH to HONO) and it was passed through an Ascarite filter, which 

removes acidic compounds, and so removed HONO present in the NO cylinder 

without effecting the NO. Despite these clean-up steps, a HONO background, 

likely from HONO forming along the gas lines was still observed. 

A multi-point calibration of HONO concentration vs HONO signal is shown in fig 

3.9. From this calibration, a detection limit of 50 ppt, 2 min average, was 

determined. This compares well with the Georgia Tech institute instrument that 

has a detection limit of 15 ppt for a 1 min average. The use of the OH calibration 

system (which generates a maximum of 1011 molecule cm-3 OH) to determine the 

sensitivity of the PF-LIF instrument to HONO was challenging owing to the 

variability in the HONO background signal. The variability was often larger than 

the changes in the HONO signal generated by varying the Hg lamp current. 

To overcome this limitation, a glass wand with the Hg lamp located within the gas 

flow, was used to calibrate the instrument. The glass wand generates a much 

larger OH concentration (> ~1012 molecule cm-3) and, therefore, a larger HONO 

concentrations (~1 x 1014 molecule cm-3). The lamp flux was calculated using 

ozone actinometry, this technique was carried out in a similar method to what is 

described in section 2.3.1 for N2O actinometry. The difference is simply that a 

humidified air flow is passed over the lamp, this generates ozone in the flow, 

which is measured using an ozone box (Thermo environmental Instruments 49C). 

 [𝑂3] = [𝑂2] 𝜎𝑂2 Ø𝑂3 𝐹 𝑡 Eq(10) 

 
[𝑂𝐻] = [𝐻𝑂2] =

[𝑂3][𝐻2𝑂]𝜎𝑂2 Ø𝑂3
[𝑂2]𝜎𝑂2Ø𝑂3

 
Eq(11) 
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Calibrations performed using the glass wand were run using a  20 SLM flow of 

N2 and a 5 sccm flow of NO; a typical multi-point calibration is shown in, figure 

3.11. The large y intercept is due to the presence of HONO in the NO gas. Varying 

the NO concentration in different calibrations results in a variable intercept, 

however, the gradient remains the same highlighting that the NO remained in 

excess and all OH was rapidly converted to HONO. 
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Figure 3.11. Calibration plot for the PF-LIF instruments sensitivity to HONO using the 
glass flow tube. The MCP detector was connected to the cell for this calibration. 
Calibration carried out using N2, 0.025% NO, 3% water vapour. 

 

This chapter so far has described the optimised PF-LIF instrument that was used 

in the heterogeneous HONO production experiments that are detailed in chapter 

4. However, many iterations of the instrument were assessed before the 

development of the final apparatus. The following sections detail the major 

instrument developments that have occurred over the course of this research. 
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3.4 PF-LIF instrument Optimisation 

3.4.1 Initial Experimental design 

The initial design, figure 3.12, for the HONO cell was based on the Leeds aircraft 

FAGE cell, see chapters 2 or 5. The main design features of the instrument that 

were characterised and optimised were the detection cell inlet (or pinhole) and 

the radiation source used to photolyse HONO. In the initial cell design a flat and 

on the central axis pinhole was used, similar to other detection cells used for the 

measurement of OH.  

Two photolysis methods were tested for their efficiency to photolyse HONO. 

These were an LED, centred around the 385 nm wavelength, and the 355 nm 

laser discussed above. Both light sources were also tested in two orientations: 

down the length of the cell, left to right in figure 3.12, and across the cell axis, via 

the quartz window. 

 

Figure 3.12. Starting cell design in the development of the photo fragmentation laser 
induced fluorescence instrument for the measurement of HONO. 
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3.4.2 LED Photolysis Source 

The LED offers a cheaper and more compact alternative to using a laser for 

HONO photolysis. The LED also had the advantage of being able to provide a 

continuous light source (as opposed to a pulsed 355 nm laser) so it would be 

possible to measure the OH produced through photolysis during every 308 nm 

laser pulse (5000 shots per sec) and simply turning off the LED would give the 

background OH signal. 

 

Figure 3.13. LED used initially to photolyse HONO. The lens is visible in the centre with 
the LED mounted beneath. 

Initially a LED (Air Quality Design, Inc) centred on 385 nm, as seen in figure 3.13 

above, was tested to see if it was able to provide enough energy to photolysis 

HONO.  This LED had been successfully used in a differential photolysis HONO 

detector instrument87. The LED was housed with a lens in front in order to 

maximise the spread of the light over a short distance. This, however, was a 

disadvantage for any experiments using the FAGE cell as it was not possible to 

mount the LED within the detection cell, so it needed to be placed outside the cell 

with the light directed through one of the two windows on the cell figure 3.12. The 

spread of the light meant that the majority of the light was lost before it entered 

the cell, even with the addition of a focusing lens. The power of the LED was 

around 100 mW when measured directly in front of the lens but once moved 10 

cm away the power dropped by roughly 70%. Compared to the photolysis laser 

which had 200mW of power it is both lower overall and because the LED is 

continuous the amount of energy is released over a broader time period while the 

laser is concentrating the energy in short pulses. 
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Figure 3.14. The absorption spectrum of HONO with the area in grey showing the range 
of light emitted by the 385 nm LED 100. 

 

3.4.2.1 Orientation of the LED 

Two orientations of LED light delivery were tested to see which would provide the 

greatest HONO sensitivity. These orientations are shown below in figures 3.15 

and 3.26. For the cross axis orientation the LED was placed outside a window 

before the probe laser so that any HONO present in the sampled air flow would 

be photolysed as it passed. For the down axis orientation the LED was placed 

outside a window at the end of the cell, but because of the distance of this window 

from the measurement region and due to the divergence of the light it was 

necessary to use a focusing lens to focus the light to a point near the pinhole. 

This orientation allowed for a longer photolysis time as any HONO present will 

see the light as it moves down the cell immediately after entering the cell. 
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Figure 3.15. Representation of the detection cell with the LED placed in the cross axis 
orientation with the LED mounted outside a side window before the air flow reaches the 
probe laser. 

 

Figure 3.16. Down axis orientation, a focusing lens was used to focus as much light as 
possible onto the centre of the pinhole. 

 

The results from both orientations are shown below in figures 3.17 and 3.18. The 

first notable feature is that the background signal is increased in each run when 

the LED is turned on. It is not completely understood why this occurs as the Barr 

filter in the fluorescence collection optics barrel should only allow 308 nm light 

through and the output spectrum of the LED, measured using a 

spectroradiometer (Ocean Optics), showed no emission around this wavelength. 

It is possible that due to the intensity of light generated by the LED the optical 

filter was unable to remove all light as it passed through to the detector. From 

experiments carried out using both orientations it was found that there was no 

significant increase in OH signal observed when comparing results with the LED 

turned off or on. The increase seen on both plots is removed when the 

background signal is subtracted. The smaller HONO signal (online – offline) 

observed in figure 4.18 (cross axis experiments) vs figure 4.19 (down axis 

experiments) are due to the use of a lower NO concentration which left some 

unreacted OH in the flow. The NO concentration was reduced to assess if the 

excess NO present was reacting with the OH formed from HONO photolysis. This 

test was not repeated for the cross axis orientation as it was thought that it was 

unlikely to be the reason for the lack of an increase in the measured OH.  
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Figure 3.17. Example results from the cross axis LED experiments showing the increase 
in background counts when the LED was switched on. Each point represents a 1 second 
average. The counts have not been normalised in these plots as the laser power at the 
cell was not monitored throughout these runs so the difference between online and offline 
may be due to a change in the 308 nm laser power. 

 

Figure 3.18. Example results from the cross axis LED experiments showing the increase 
in background counts when the LED was switched on. Each point represents a 1 second 
average. 
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Results from these experiments showed that using the LED in these ways will not 

provide an adequate photolysis source for measuring HONO sensitively in this 

instrument. Utilising the LED as a light source will result in a much higher 

detection limit of HONO this is because with no response to HONO generated 

using the glass wand it can be assumed that the detection limit is above the 

concentration generated by the wand. In this case that detection limit would be 

~10ppm for a 2 min collection While for the laser instrument in the optimal setup 

the detection limit is 50 ppt for a 2 min collection, which is considerably less.. 

However, due to their low cost reinvestigating different designs using the LEDs 

as a photolysis source with the LEDs mounted inside the detection cell to take 

advantage of as much of the LEDs power as possible would be worthwhile. The 

LEDs could also be arranged in an array which would increase the area which is 

being irradiated. Alternatively, an attachment to the current FAGE cell before the 

pinhole, where HONO could be photolysed at atmospheric pressure, meaning 

HONO would be at a higher density, may increase the overall sensitivity. 

However, it should be noted that OH would be preferentially lost to the pinhole 

surface (relative to HONO) so it will be a balance between the extra OH 

production and the OH loss during sampling. 

 

3.4.3 Photolysis Laser 

The description of the photolysis laser method is found in section 3.2. This section 

will describe the effects of changing the orientation of the photolysis laser. Two 

different orientations were used for the experiments using the laser photolysis 

source, a down axis and an across axis, this can be seen in the layout diagram 

(figure 3.19). By moving the beam splitter 1 (BS1) between either of its two 

positions it was possible to direct the laser light along each axis.  
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Figure 3.19. Diagram showing layout for the photolysis laser system. The green light 
represents the mixture of 1064 nm, 534 nm and 355 laser light. The blue lines represent 
the 355 nm light and the purple line represents the 308 nm light. BS represents the beam 
splitter/coated dichroic mirror. 

 

The figures, 3.20 and 3.22, below show the results from the cross axis orientation. 

In the presence of HONO this produced a large signal compared to the 

background (figure 3.22). The shape of the curve is likely caused by the flow 

profile down the cell, with the steeper leading edge due to the faster moving air 

in the centre, while the longer trailing edge is due to the dilution within the cell 

and slower moving air near the walls of the cells. In this set up the photolysis 

laser is roughly 4 cm upstream of the probe laser, this leads to the OH generated 

diffusing away from the horizontal axis that the probe laser measures across so 

not all of the OH generated following HONO photolysis will be measured. This 

effect could be reduced by moving the photolysis and the probe laser closer 

together so that they almost overlap. This will reduce the amount of diffusion, 

maximising the amount of measured OH. The reason that this method has yet to 

be tested is due to the fact that we are delivering the OH probe laser via a fibre. 

This means that both the photolysis and probe laser are unable to enter the cell 

from the same side as previous groups have done by free-beaming their probe 

laser. And by introducing the photolysis laser opposite to the probe laser there is 

a chance that the fibre may be damaged due to the higher energy of the 

photolysis laser if it is hit.  
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Results from the down axis orientation (3.21 and 3.23) showed a large signal in 

the background scan, as seen in figure 3.23 , due to laser scatter caused by the 

photolysis laser. It is unknown why the scatter from the 355 nm light is seen by 

the detector when a 308 nm barr filter is present between the main cell body and 

the CPM, however it is assumed that it is due to the intensity of the 355 nm light 

being high enough that not all of it will be removed as it passes throught the filter, 

blocking intensity at 355 nm 106. In the background scan a second peak is seen, 

figure 3.23, and this is caused by OH being generated at the pinhole when the 

photolysis laser impacts it generating a plasma which is generating OH. This 

signal was determined to be caused by OH fluoresence as when the probe laser 

was blocked only the laser scatter peak was visible. Although compared to the 

actual signal seen in figure 3.21 this plasma signal is relatively small, it will 

become more of an issue when measuring ppt levels of HONO. 

From these two orientations it was thought that the across axis set-up would 

provide the more reliable results due to the lower background. 
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Figure 3.20. Measurement plot with HONO being introduced to the detection cell. 

 

 

Figure 3.21. Measurement of HONO using the down axis orientation showing the curve 
generated. 
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Figure 3.22. Background measurement with only H2O and N2 entering the cell. The 
higher baseline signal is due to the production of OH in the wand which is removed when 
NO is added to produce HONO. 

 

Figure 3.23. Background measurement for the down axis orientation showing the large 
peak caused by laser scatter from the photolysis laser. 
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3.4.4 Background Signal 

In the earliest instrument configurations, the majority of the observed signal was 

not linked to the presence of HONO in the system. Decreasing this background 

signal observed has been the biggest challenge so far in the development of the 

PF-LIF instrument. The background signal is shown in figures 3.24 shows the 

laser scatter and plasma peak discussed above. Peak A remains when the probe 

laser is either tuned away from the OH transition (offline) or when the probe laser 

is blocked and, therefore, is not related to OH. By removing the pinhole, this 

allowed the laser to pass straight through the cell (these measurements were 

carried out at atmospheric pressure) peak A disappeared, indicating that it is 

generated by scatter of the photolysis laser off the pinhole surface. 

Peak B is an OH signal. However, this is OH generated by the photolysis laser 

hitting the metal surface of the inlet generating a plasma which in turn generates 

a high concentration of OH. Peak B was determined to be OH as the signal 

disappeared when the probe laser was tuned away from the OH transition. 

 

Figure 3.24. Figure showing the initial background signal observed when sampling a 
nitrogen flow. This shows the large peak A generated by laser scatter and peak B which 
is a plasma generated OH signal. The insert shows an expanded view of the lower half 
of data. 
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3.4.4.1 Plasma Background 

The plasma generated OH background can be observed in several probe pulses 

and was found to vary in size meaning that it couldn’t easily be subtracted from 

an overlying HONO signal.  

 

Figure 3.25. Plots showing the change to the background signal when the alignment of 
the laser down the axis of the detection cell is changed. The circular diagram shows 
where on the pinhole surface the laser hits. The inner circle is stainless steel and the 
outer part is black anodised metal. 

It was found, however, that this plasma OH peak disappeared as the photolysis 

laser was walked away from the centre of pinhole. Figure 3.25 highlights that by 

adjusting the angle of beam splitter 2, fig 3.2, (and walking the photolysis laser 

away from the central axis – red to purple), the magnitude of the plasma peak 

(peak B) decreased.  This suggests that it is necessary for the jet of sampled air, 

high density air immediately after the pinhole, to pass through the plasma to either 

provide the species/density needed to generate OH or to provide the gas flow to 

carry the OH away from the plasma at the surface to the detection region. Based 

on this hypothesis and experimental results, a new inlet was designed to allow 

for the photolysis laser to remain along the central axis, so that the OH generated 

is less likely to be lost to walls, but separates the pinhole from the plasma. Figure 

3.26 below shows the new inlet design that uses an off centre pinhole and a 

turreted beam dump.  
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The turreted section creates a dead zone of air in the cell preventing any species 

generated by the plasma from being pulled into the cell. The off centre pinhole 

should have little impact on HONO loss as, unlike OH, HONO is a stable gas and 

so is not lost as quickly to walls. The effect on the flow inside the cell is not known, 

however, it is assumed that the jet quickly breaks up into a uniform flow away 

from the pinhole. 

 

Figure 3.26. Cross section of the detection cell. The new inlet is highlighted in green. 
The current pinhole has been designed to be coupled with a flange that connects to an 
aerosol flow tube which will be discussed in chapter 4. 

The results from a measurement using the off-axis pinhole when sampling 

ambient air is shown below (figure 3.27). These results clearly show the complete 

removal of the plasma OH peak simply leaving the laser scatter peak and this 

peak can be easily subtracted using the offline signal, compared to the original 

flat pinhole (figure 3.28).  
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Figure 3.27. Plot showing the results using the redesigned turreted pinhole. The black 
points shows the online signal while the red points show the remain signal after the OH 
offline has been subtracted from the online signal. 
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Figure 3.28. Plot showing the results using the original flat pinhole. The black points 
shows the online signal while the red points show the remain signal after the OH offline 
has been subtracted from the online signal. This shows that although the laser scatter 
peak is subtracted the plasma OH peak is not. 
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3.4.5 Decreasing Laser Scatter 

Decreasing the laser scatter peak was important as the first few points after the 

photolysis laser (where the laser scatter peak is observed) are considered to be 

the most reliable as there is less time for secondary reactions to occur. 

Furthermore, the OH signal is at its maximum due to minimal diffusion away from 

the central detection axis. 

3.4.5.1 Gating 

The first method that was tried was to set the timings of the photolysis laser so 

that the 355 nm laser pulse occurred during the period when the detector was 

gated off during the probe laser pulse so it is not detected, see figure 3.5. In order 

to do this a fast photodiode was used to determine the delay between the trigger 

sent to the photolysis laser and when the laser pulse fired. When measuring the 

signal using the CPM detector it was found that the peak was close to 50000 

counts when the laser pulse was positioned before and after the gating period 

but dropped to 3000 when positioned under the gate. This is a significant 

improvement with the remaining signal being due to some remaining scattered 

light that is not completely covered by the gate. 

3.4.5.2 Counting card bin width 

It is possible to adjust the bin width on the photon counting card. A bin is a time 

period over which the counting card will count pulses sent by the detector in 

response to the detection of a photon. A longer bin will result in a larger signal as 

it will integrate more counts into a single bin value. However, when measuring 

the fluorescence from OH, the majority of the signal is gone within the first 1 μs 

following the probe laser due to the short fluorescence lifetime of OH. By 

decreasing the bin width from 50 μs to 1 μs helps to decrease the laser scatter 

signal without decreasing the OH fluorescence signal. Figure 3.29 shows a 

zoomed in measurement of the laser scatter peak including all bins. For this 

experiment the probe laser was turned off so that the signal is solely from the 

photolysis laser scatter. By decreasing the bin width both the magnitude and the 

lifetime of laser scatter peak decreases as the signal from the laser scatter 

becomes spread over multiple bins, many of which can be ignored as 

fluorescence from OH will not be present in them. For the experiments described 

in chapter 5, the bin width was set to 2 μs.  
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Figure 3.29. The decrease in counts as the bin width is decreased. Data from this plot 
also has the mirror in place, details of which are discussed below. 

 

3.4.5.3 Addition of an internal mirror 

A mirror was mounted inside the turreted section of the new pinhole with the aim 

of decreasing the scattered light further. The mirror prevents the 355 nm 

photolysis laser from hitting the bare metal surface of the pinhole and scattering 

randomly. Furthermore, with the mirror in place, the laser light is reflected back 

along the same axis with minimal scatter and so can potentially enhance HONO 

photolysis. In order to avoid any problems caused by the photolysis laser light 

following a path back to the laser, the laser light was directed along a slight angle 

in the cell so that its return path from the cell would miss the beam-splitter. Figure 

3.30, has two overlaid OH offline background scans and highlights that the 

background has been reduced significantly from the original background with only 

a single peak of 100 counts remaining. This reduction in the laser scatter (from 

30000 counts) results from a combination of mirror installation and changes to 

the bin width; using a bin width of 50 μs results in ~700 background counts from 

laser scatter. 



Chapter 3  The PF-LIF Technique 

87 

 

 

0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

0

25

50

75

100

O
H

 f
ro

m
 H

O
N

O
 (

C
o
u
n
ts

/1
0
0
s
e
c
)

Time from Trigger (s)
 

Figure 3.30. Two overlaid background scans, OH offline, after the bin width was reduced 
to 1 us and mirror put in place. 

 

3.4.6 Run Repeatability 

It was thought that the non-zero points after the main laser scatter peak could 

have been caused by a timing problem where the photolysis laser firing time 

might drift so that some of the scattered light might be seen in the adjacent bins. 

In order to ensure that any signal seen was not due to a variation in the laser 

pulse time that may change for each sweep, a repeatability test was done, by 

running 30 single sweep runs, ten 30 sweep runs and one 300 sweep run. Results 

from this showed very little variability between the same length runs indicating 

that there is no drift in the photolysis laser timing. The comparison between the 

sum of the ten runs with 30 sweeps and the 300 sweep run showed that when 

the shorter runs combined there is very little difference to the longer run indicating 

that the non-zero points after the laser scatter peak are not caused by a random 

drift in the timing of the laser pulses. 
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3.4.7 Addition of a Second 308 nm Filter 

The aim for this experiment was to improve the removal of wavelengths other 

than 308 nm. To do this a second 308 nm coated Barr Associates filter was added 

after the standard optic set to improve the filtering efficiency. The background 

signal, shown in figure 3.31, shows that the laser scatter point is completely 

removed when two filters are used. However this reduction of the background is 

less beneficial as there is also a reduction of the online signal (figure 3.32). This 

is because although the Barr filter is coated for the 308 nm wavelength, only 50% 

of light at this wavelength is transmitted, this is demonstrated by the ~50 % drop 

in signal, seen in the online plot, when the second filter is present. From this it 

has been decided that a single filter will be used as the losses seen in the online 

signal where not regained by the reduction in the background. 
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Figure 3.31. Offline signal. Comparing the results using a single Barr filter (black) and 
two Barr filters (blue). 



Chapter 3  The PF-LIF Technique 

89 

 

0.00 0.01 0.02 0.03
0

5000

10000

15000

20000

25000

 Extra filter

 Single filter

A
c
c
u

m
u

la
te

d
 S

ig
n

a
l

Time from trigger (sec)
 

Figure 3.32. Online signal. Comparing the results using a single Barr filter (black) and 
two Barr filters (blue). 
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3.4.8 Dependence of HONO Signal on Detection Cell Pressure 

A change in the cell pressure has two effects in the detection cell. At higher 

pressures the density of the gas in the cell will be higher which will result in a 

higher concentration of HONO that will be photolysed and therefore a larger OH 

signal. However, the fluorescence lifetime of molecules decreases as pressure 

increases due to increased quenching rates caused by the higher frequency in 

collisions. In the FAGE measurements of OH, low pressure is required to extend 

the fluorescence lifetime beyond the lifetime of the laser scatter at the same 

wavelength. Figure 3.33 shows the effect of pressure on the HONO signal, with 

the plot showing the balance between these two effects where, as pressure 

increases the increased number density increases the signal. However, above 

4.5 Torr the gains in number density are lost due to a decreasing fluorescence 

lifetime. It may be possible to increase the pressure further with faster gating and 

a shorter probe laser pulse as this will allow measurements closer to the probe 

laser where the OH fluorescence is at a maximum. 

This pressure dependence can be compared to the theoretical pressure 

dependence calculated for the fluorescence signal measured in FAGE cell at 

increasing pressure. Figure 3.33 shows how the fluorescent signal is dependent 

on the OH density in the cell, which increases with pressure and the fraction of 

OH that returns to the ground state via fluorescence, quantum yield, which 

decreases as pressure increases due to the increased rate of collisions that 

quench the excited OH105. The difference in the experimental to the literature are 

likely to be due to a combination of the results not following the ideal conditions 

the literature values depend on. The conversion of HONO to OH is also not 

considered in the model as the conversion efficiency for the photolysis process 

will also depend on pressure. 
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Figure 3.33. HONO pressure dependence normalised to the signal at 3 torr 
(black circles) compared to the theoretical sensitivity pressure dependence (red). 
The theoretical pressure dependence is defined by the OH concentration (green) 
and the fluorescence quantum yield (orange). 
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3.5 Summary 

In this chapter the photo-fragmentation laser induced fluorescence instrument 

(PF-LIF) that has been developed has been discussed along with a comparison 

of previous techniques. A suitable gas phase calibration technique has been 

developed that allows for the generation of known concentrations of gas phase 

HONO. The calibration technique could be improved, however, by minimising the 

HONO background in the gas standards used. The optimisation of the instrument 

has also been described. This work demonstrated that a pulsed laser source was 

the most effective method for HONO photolysis in a FAGE cell. Overlapping the 

photolysis laser with the probe laser and, thereby, facilitating immediate detection 

of the OH product following the photolysis of HONO maximises the sensitivity of 

the technique. In the Leeds design this overlap has been achieved by aligning 

the two lasers perpendicular to one another. This laser orientation, resulted in 

with the requirement to move the pinhole away from the central cell axis to 

minimise the effects of laser-induced plasma OH at the pinhole surface.  Chapter 

4 will discuss the coupling of the PF-LIF instrument to an aerosol flow tube to 

allow the measurement of heterogeneous HONO production from illuminated 

aerosol surfaces. 
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Chapter 4 Production of HONO from Aerosols 

This chapter will describe the experimental setup used for the measurement of 

production rates of HONO from aerosols. The results from experiments carried 

out using titanium dioxide and two nitrates, ammonium and sodium, are also 

shown. These laboratory experiments are being carried out to provide 

heterogeneous production data for atmospheric models in order to explain the 

missing HONO source discussed in chapter 1. The use of an aerosol experiment 

was chosen over a coated wall experiment as the reactive surface in a coated 

wall experiment will change over time while the aerosols are constantly “fresh” 

allowing a more accurate study of a particular surface type. It is also easier to 

define the total surface area in an aerosol experiment, utilising a size and mobility 

particle analyser, over the coated wall which depends on assumptions of a flat 

surface. Previous studies of HONO production from aerosol studies are shown in 

table 4.1 below showing the instrument used and the calculated reactive uptake. 

Table 4.1. Previous illuminated aerosol experiments investigating the production of 

HONO. 

Aerosol Type HONO 

measurement 

Reactive uptake Reference 

α-pinene/O3 LOPAP < 1 × 10−7 R. Bröske et. al.106 

limonene/O3 LOPAP < 8.5 × 10−8 R. Bröske et. al.106 

catechol/O3 LOPAP < 8.5 × 10−8 R. Bröske et. al.106 

limonene/OH LOPAP < 8.5 × 10−8 R. Bröske et. al.106 

tolouene/OH LOPAP < 8.5 × 10−8 R. Bröske et. al.106 

Humic acid LOPAP 2.6×10−6 – 3.7×10−6 K. Stemmler et. 

al.57 

TiO2 Chemiluminescence 

NOx analyser 

1.2×10−4 – 9.6×10−4 R. Gustafsson et. 

al.52 

 

In order to show any atmospheric impact that these aerosol will have they will be 

included in a 1D box model using the chemistry data from Beijing collected during 

the APHH measurement campaign carried out during the summer of 2017. 
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4.1 HONO production experimental setup 

For these experiments the PF-LIF cell described in chapter 3 was coupled to a 

quartz glass flow tube in order to investigate the production of nitrous acid from 

aerosol surfaces when illuminated by UV light. A PF-LIF instrument was chosen 

over other HONO measurement techniques as it does not have an NO2 

interference. This is important as NO2 is used in many of the HONO production 

experiments.  No changes were necessary to the detection cell other than 

coupling the cell to a flow tube. 

 

Figure 4.1. Image showing the experimental setup of the Leeds PF-LIF detection cell 
coupled to an aerosol flow tube. 

 

Figure 4.2. Top down simplified schematic of the Leeds PF-LIF setup for the 
measurement of HONO from illuminated aerosols, this shows the flow tube, detection 
cell and the orientation of the two lasers. 
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4.1.1 Cell coupling 

Figure 3.27 shows the coupling used to attach the flow tube to the cell. The flow 

tube used in all the following experiments is 120 mm in diameter and made of 

quartz glass, to allow transmission of UV light. The tube was sealed to the 

detection cell by compression of an O-ring on the inner diameter of the tube at 

either end. There is also the possibility of connecting a 60 mm diameter flow tube 

to the cell with the fitting to allow measurements of faster reactions. 

4.1.2 UV lamp 

A UV lamp (UVproducts, XX-15LW Bench Lamp, 365nm) is placed outside the 

flow tube to illuminate the aerosol flow. This is used to investigate light induced 

heterogeneous reactions in the flow tube. The lamp used in the aerosol 

experiments described in this thesis is a 40 W lamp positioned on one side of the 

flow tube. Reactions that are photocatalytic will be affected by the amount of light 

the reactants are exposed to. In order to provide a comparison between the 

experiments and the solar spectrum the flux of the light inside the flow tube was 

calculated. Two methods where used; the first used a fibre optic cable connected 

to a spectrometer, and the second measured the concentration of NO produced 

from the photolysis of NO2.  

The spectrometer measurements show the wavelengths generated by the lamp 

and magnitude of light at each wavelength. This is the method used during field 

campaigns, with a 2-Pi actinic receiver optic to collect light equally across all 

angles, to measure the solar flux107. In the HONO experiment it is not possible to 

calculate an accurate total flux using this method as the measured output varied 

with the position of the fibre optic in the flow tube. Combining this with the second 

method where the photolysis of NO2 was used to provide a value for the total flux 

across the entire flow tube. To do this NO2 was added to the flow tube in 

increasing concentrations and the amount of NO produced, measured using a 

NOx analyser (see section 2.3.1) from photolysis is proportional to the flux. 
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Figure 4.3.This plot shows the results from the NO2 photolysis experiment. The coloured 
bars show the lamp state; grey = lamp off and yellow = lamp on. The blue line shows the 
total NOx concentration, the red line shows the NO2 and the black shows the NO. This 
shows that when the lamp is on NO2 concentration decreases while the NO concentration 
increases. 

When NO2 is photolysed NO and O is produced, the oxygen can either be in a 

triplet state or singlet state however due to the wavelength range of the lamp 

output only triplet state oxygen is produced108. The production of singlet oxygen 

only occurs below 244 nm where the lamp has no output, see figure 4.5. The rate 

of NO production is equal to the product of the [NO2] and its photolysis rate; 

 𝑑[𝑁𝑂]

𝑑𝑡
= 𝐽[𝑁𝑂2] 

Eq(12) 

Converting this to the integrated rate equation and plotting the change in NO 

concentration versus the product of the initial NO2 concentration and the reaction 

time allows calculation of the photolysis rate constant J from the gradient on the 

line, figure 4.4. 

 𝑑[𝑁𝑂] = 𝐽[𝑁𝑂2]𝑑𝑡 Eq(13) 

 ∆[𝑁𝑂] = 𝐽[𝑁𝑂2]∆𝑡 Eq(14) 
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Figure 4.4. Plot showing concentrations of NO versus (NO2 × t) where the slope of the 
line is equal to the photolysis rate constant, J (s-1). 

The value for J then allows the lamp flux to be determined using the following 

equation; 

 
𝐽 =  ∫Φ(𝜆, 𝑇)𝜎(𝜆, 𝑇)𝐹(𝜃, 𝜆)𝑑𝜆 

Eq(15) 

Where J is the photolysis rate across all wavelengths and is the product of the 

quantum yield (λ, T), the absorption cross section (λ, T) and the total actinic flux 

(λ, T); the latter being the light source intensity. This flux value must be 

determined to allow comparison between experiments when lamps are changed 

and will allow the calculation of photolysis rate constants for other species i.e. 

jHONO present in the flow tube. For the photolysis rate of NO2, the quantum yield 

is 1, the absorption cross section is taken from ref. 109 found on the “The MPI-

Mainz UV/VIS Spectral Atlas” and integrated between 250 and 398 nm, figure 

4.6. 250 nm is selected as it ensures that the full range of the lamp output is 

covered as there are some none zero values present below 300 nm. 398 nm is 

selected as an upper limit as photolysis of NO2 does not occur above this value. 
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Figure 4.5. Overlap of the output of the UV lamp and the NO2 absorption cross section 
for the region used in the calculation of the total flux inside the aerosol flow tube. The 
lamp output spectrum was measured using an ocean optics spectrometer. The NO2 
spectrum is taken from ref. 109 found on the MPI-Mainz UV/VIS Spectral Atlas. The 
intergrated cross section under the NO2 spectrum is 4.46×10-17 cm2 molecule-1 

It is then possible to use the integrated area under the NO2 cross section as the 

absorption cross section σ, in equation 15 the quantum yield,  Φ, is 1 and the 

value for JNO2 is 0.00133 s-1 taken from figure 4.4. Rearranging equation 2 it is 

possible to extract the total flux, 2.98 × 1013 molecule cm-2 s-1. Using this in 

combination with the output spectrum of the lamp it is possible to determine the 

flux at the wavelengths that photolyse NO2. The area under the curve for the lamp 

output where the NO2 flux was measured is 189896.28417 AU, by making this 

equal to the total flux measured it will be possible to scale the flux depending on 

lamp output in the area of interest. For HONO, at the 354 nm wavelength, a 

photolysis rate constant, jHONO, was calculated to be 3.87 × 10-7 s-1 (σ = 5.81 × 

10-19 cm2 molecule-1, Φ = 1, F = 6.66 × 1011 molecule cm-2 s-1). During the APHH 

campaign the maximum JHONO observed was 1.78 × 10-3 s-1. This shows that 
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the current setup is below an atmospherically relevant flux. To increase the flux 

in the flow tube multiple lamps will be used to surround the flow tube. 

Using a single lamp to illuminate the aerosol flow tube does have several 

drawbacks. The lamp output does not illuminate the full length of the flow tube 

and so it reduces the irradiation time experience by the aerosols. Secondly, the 

lamp is only positioned on one side of the flow tube and so the light field will not 

be constant across the flow-tube. These limitations could be solved by 

surrounding the flow tube with multiple lamps. A final drawback is that the current 

lamp primarily outputs in the UV meaning that reactions initiated at longer 

wavelengths, present in the solar spectrum, cannot yet be studied. Previous work 

by Stemmler et. al.56, 57 found that HONO production showed a wavelength 

dependence,  measured at 300–420 nm, 400–700 nm and 500–700 nm. Their 

results showed that at UV wavelengths the production of HONO from humic acid 

surfaces was greater than at the visible wavelengths. In the Leeds setup in the 

future studies of wavelength dependence are planned using either different lamp 

types or optical filters. 
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4.1.3 NO2 Background 

The aerosol experiments that have been conducted include studies into the 

production of HONO from aerosols when they are exposed to NO2. In order to 

determine if there is a HONO background from the NO2 gas generating HONO 

through wall reactions or the NO + OH reactions as NO is a product of NO2 

photolysis or from a HONO impurity in the cylinder, measurements were made of 

the HONO signal over a range of NO2 concentrations. For this experiment a flow 

of NO2 was diluted from a 2 ppm cylinder into a flow of humidified nitrogen to give 

concentrations similar to what are used in the aerosol experiments. The total flow 

through the flow tube was kept at 6 SLM and the full length of the flow tube was 

used, giving a residence time close to 2 min. At each concentration the HONO 

signal was measured under both room light conditions and when illuminated by 

a UVA lamp (300-400nm) and after each change the flow tube was given several 

minutes to equilibrate. The results from this experiment, shown below in figure 

4.6, showed a small increase in HONO signal after the addition of NO2. There 

was a slight increase in signal when the flow tube was exposed to UV light. The 

HONO signal gradually increased across the range of NO2 concentrations. These 

results show that in the eventual aerosol experiments measurements of the 

background HONO signal without aerosols present will be required to account for 

the signal from the NO2. 
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Figure 4.6. The effect of increasing NO2 concentration on the HONO signal in the 
absence of aerosols. Each point uses the total OH signal across the measured curve. 
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4.1.4 Aerosol generation 

 

Figure 4.7. Schematic diagram of the aerosol generation system. 

 

Figure 4.7 shows the complete setup for the delivery of the aerosols used in the 

heterogeneous HONO production experiments. To generate the titanium dioxide 

and nitrate aerosols a commercial constant output atomiser (TSI 3076) was used; 

a cross-section schematic of the atomiser is shown below in figure 4.8. The 

atomiser operates by passing a high pressure gas supply (N2 or air) through a 

pinhole. This forms a high velocity jet. Liquid is drawn up from a reservoir and as 

the liquid steam enters the jet the liquid it is atomised. Larger droplets will impact 

on the wall of the atomiser and will return to the reservoir while small droplets 

become entrained in the gas flow and are carried out of the atomiser. The 

aerosol/gas flow exiting the atomiser is passed through a diffusion drying tube 

(TSI 3062) to reduce the relative humidity of the flow to below 15%. This reduces 

loss of aerosols to the walls but also allows RH to be controlled later on in the 

aerosol generation process. 
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Figure 4.8. Cross section of the constant output analyser from TSI (model 3076)110. 

 

4.1.5 Neutraliser 

The aerosols generated by the atomiser are highly charged due to a high 

frequency of collisions that occur111. This increases the loss of aerosols to the 

walls throughout the experimental setup due to coulombic forces. Aerosols that 

are highly charged are also more difficult to characterise using the Differential 

Mobility analyser (TSI 3080), described in section 4.1.8. After aerosols exit the 

atomiser they enter a neutraliser, reducing the overall charge of the aerosols. The 

neutraliser contains a radioactive source, Krypton-85, that ionises the aerosol 

flow into a balanced state of positive and negative charges. The radioactive 

source generates ions that the particles collide with, causing highly charged 

particles to lose some of their charge and low charge particles to gain some 

charge. To further reduce wall losses anti-static tubing (TSI, Conductive Silicon 

Tubing 0.19 inch ID) was used wherever possible to further reduce the loss of 

aerosols. 
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4.1.6 Control of relative humidity 

After exiting the neutraliser, the flow from the atomiser is mixed with a humidified 

flow of nitrogen to adjust the RH in the experiment. The humidity of this flow is 

controlled by using two mass flow controllers, one is a dry nitrogen flow and the 

second is a flow humidified by passing nitrogen through a water bubbler. The 

ratio of the flows from these MFCs is altered to vary the resulting RH. After mixing 

with the humidified flow, the aerosols pass through a conditioning tube (~6 s 

residence time) allowing time for the aerosols to equilibrate with the surrounding 

environment, allowing absorption of water onto the aerosols and stabilised 

growth. The RH of the flow was measured using a humidity probe (Rotronics 

HygroClip2, accuracy ± 0.8 % RH) positioned in the exhaust flow after the flow 

tube. 

4.1.7 Control of Aerosol Concentration 

To determine an aerosol uptake number, the aerosol surface area must be varied. 

To vary the surface area of the aerosols the total number of aerosols are varied. 

The number of aerosols being delivered to the experiment are controlled by using 

a high-efficiency particulate (HEPA, PALL Life Science) filter with a bypass flow. 

By passing the total flow through the filter, 100 % of the aerosols are removed, 

while 100 % are delivered when the filter is fully bypassed by controlling the two 

fractions it is possible to vary the number of aerosols present in the flow tube, this 

can be seen in figure 4.7. 

4.1.8 Monitoring Aerosol Surface area 

As the aerosols generated by the atomiser are poly-dispersed in size it is 

necessary to characterise the size distribution in order to determine the total 

surface area.  For this a scanning mobility particle sizer (SMPS) and a 

condensation particle counter (CPC) are used in combination and are connected 

to the apparatus after the aerosol flow tube. The SMPS extracts a known size 

fraction from the aerosol flow and the CPC counts the total aerosol number. Tests 

have been conducted where the SMPS and CPC were coupled to the experiment 

before the aerosol flow tube to assess losses on the aerosols to the flow tube 

walls. The surface area determined before and after the flow tube agreed within 

10 % 
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4.1.8.1 SMPS 

 

Figure 4.9. Schematic of the 3080 series SMPS model used in these experiments112. 

 

The SMPS is connected to the exhaust of the flow tube and samples at a rate of 

0.3 L min-1. Figure 4.9 shows a schematic of the instrument. As the schematic 

shows, prior to entering the SMPS, the flow first passes through an impactor 

(D50=1024 nm) that prevents large particles, that could block the instrument line, 

entering the instrument and then passes through a Kr-85 neutraliser that is 

needed to maintain the Boltzmann charge distribution, as described in section 

4.1.5. The flow then enters the differential mobility analyser (DMA) which is 

responsible for the size separation of the aerosols. The DMA consists of a metal 

cylinder with a rod in the centre. The aerosol flow enters at the top of the DMA 

into a laminar sheath flow. The central rod has a high negative charge, while the 

outer cylinder is grounded.  
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This creates an electric field between them. Positively charged aerosols are 

attracted towards the central rod and will move though the sheath flow. The ability 

of these particle to move through the flow is described as the particles electrical 

mobility (Zp) and as shown in equation 16, is dependent on the midpoint diameter 

of the particle, where n is the number of elementary charges on the particle, e is 

the elementary charge, C is the Cunningham slip correction and u is the gas 

viscosity112. 

 
𝑍𝑝 =

𝑛𝑒𝐶

3𝜋𝜇𝐷𝑝
 

Eq(16) 

Particles with a specific value of Zp will flow out of the monodisperse aerosol 

outlet while the remaining aerosols flow through the excess air outlet. 

 𝑍𝑝 =
𝑞𝑠ℎ
2𝜋𝑉𝐿

ln(
𝑟2
𝑟1
) Eq(17) 

Zp can also be defined in terms of the parameters of the DMA tube, shown in 

equation 17112, where qsh is the sheath flow rate, V is the average voltage of the 

central rod, L is the length between the aerosol inlet and exit slit, r1 and r2 are the 

radii of the inner edge of the cylinder and the rod respectively. By combining 

equations 3 and 4 it is possible to determine the instrumental parameters required 

to select a particular aerosol diameter that will exit the SMPS, equation 5112. In 

this experiment the sheath flow was set at ten times the sampling flow at 3 L min-

1. 

 𝐷𝑝

𝐶
=

2𝑛𝑒𝑉𝐿

3𝜇𝑞𝑠ℎ ln(
𝑟2
𝑟1
)
 

Eq(18) 
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4.1.8.2 CPC 

 

Figure 4.10. Schematic of the Model 3775 CPC schematic taken from reference 113. 

 

The monodisperse aerosol flow then enters a CPC where the number of particles 

are counted. A schematic of the CPC instrument is shown in figure 4.10. Aerosols 

that enter the CPC pass through a cooled condenser containing butanol vapour. 

The butanol condenses on to the aerosols, growing them to larger diameters. 

This growth then allows each particle to be counted using an optical detector, 

consisting of a laser diode and a detector to measure the scattered light. When 

particle concentrations are below 5 × 104 particles cm-3 the instrument is able to 

detect individual particles. However, above this number multiple particles will 

pass through the beam at the same time resulting in an undercounting error. The 

instrument is able to correct for this by measuring the amount of scattered light113. 

Data is collected using the Aerosol Instrument Manager software (AIM v8.1.0.0). 

Each size distribution measurement takes 2 min 15 sec to run and is repeated 

every 3 minutes.  
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4.2 HONO Production from Aerosol Surfaces 

Three aerosols were investigated for their potential to generate HONO under 

illuminated conditions. These were titanium dioxide (TiO2) and two nitrates; 

ammonium and sodium nitrate. TiO2 was chosen as it has been studied 

previously both in surface reactions and as an aerosol52 for its ability to convert 

NO2 to HONO under illuminated conditions. Comparing to these previous studies 

allows for confirmation that the experimental method is working as expected 

before moving on to new targets that have not yet been studied. TiO2 is 

atmospherically relevant as it is a component of mineral dust (5 %) which is the 

dominant aerosol in the atmosphere. TiO2 has also been used on various 

constructed surfaces, such as paint or glass, with the aim of “cleaning” the 

atmosphere by removing NOx
114, 115. The two nitrate aerosols were chosen 

because it has been proposed that nitrates, normally considered a loss route for 

NOx in the atmosphere, may generate HONO under illuminated conditions 

recycling NOx back into the atmosphere37, 65. This process is likely to be most 

significant in remote clean environments where atmospheric NOx concentrations 

from other sources are low. A study116 on sodium nitrate in a liquid reactor 

demonstrated gas phase HONO production when the system was illuminated. 

The primary work that will be discussed here covers the TiO2 studies as no 

production was observed from the nitrate aerosols during initial studies. 

 

4.2.1 Titanium Dioxide 

The TiO2 experiments were carried out using 5 g of TiO2 (Aldrich Chemistry 

718467, 99.5 % Degussa) suspended in 500 ml of water. A supply of 3 bar of 

nitrogen (BOC) was supplied to the atomiser to generate the aerosols. RH was 

set to 15 % as a previous aerosol study52 reported peak HONO production at this 

RH. The total aerosol flow entering the flow tube was ~3.5 SLM. The NO2 flow 

consisted of a flow of 1-20 sccm NO2 (0.1 % mix in N2) diluted in a 1.5 SLM flow 

of nitrogen. The aerosol and NO2 flow were introduced through separate ports at 

one end of the flow tube. Each experiment was run at a constant NO2 

concentration and RH, while the aerosol surface area was varied.  
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After the addition of the NO2 gas a 2 hour stabilisation period occurred, this was 

due to an increase in measured HONO after the first addition of NO2, which would 

decay back to a stable background level. This initial increase in HONO signal is 

due to HONO formation in the NO2 sample lines when not in use, that required 

time to flush out. Once stable, measurements began with the UV lamp being 

turned on and off for ~ 5-10 min periods, repeated for 5-10 runs (500 sweeps 

each), for each aerosol SA. After measuring a lamp on and off for a set SA an 

OH offline was measured (giving the signal due to laser scatter and room light). 

The aerosol surface area was then changed and allowed to stabilise before the 

measurement process was repeated. 

Figure 4.11 shows the results from an experiment where each point is a single 

run; the point colours illustrates the lamp status. The error bars represent the 

variability of counts from the individual sweeps in each run. There is a gradual 

decrease in the lamp off points over time, possibly due to either the gas lines 

slowly clearing of background HONO or a deactivation of HONO production sites 

on the walls of the flow tube. To correct for this, a line of best fit was fitted through 

these point and subtracted from the lamp-on points. The calibration factor is 

applied and the concentration points plotted against the aerosol SA, producing 

the plot shown in figure 4.12 The figure shows that under illuminated conditions 

the concentration of HONO measured increases as the SA of TiO2 increases, 

indicating that the aerosols are acting as a HONO source in the flow tube. 
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Figure 4.11. Plot of HONO signal during the experiment ([NO2] = 400 ppb, Aerosol 
surface area = 0 – 0.035 m2/m3). The red points were measured while the lamp was 
turned on and the blue are when the lamp is off. The line fitted through the lamp off points 
allows subtraction of the drift in background signal. 
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Figure 4.12. Plot of HONO concentration against the aerosol surface area using the data 
from figure 4.12 after subtraction of the lamp off points and the calibration factor has 
been applied. 
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4.2.1.1 Uptake coefficient calculation 

A reactive uptake coefficient was then calculated using the results to allow a 

production rate to be calculated for models. The reactive uptake coefficient is a 

parameter that represents the probability that a collision of NO2 with the aerosol 

surface will result in a reaction that generates HONO. This does not represent 

the total loss of NO2 as it is possible that not all NO2 taken up on the surface will 

react to form HONO. As the NO2 concentration was not measured during these 

experiments it is not possible to state the unreacted NO2 uptake, however, this 

factor will be investigated in the future. To calculate the reactive uptake coefficient 

the following formulas are used. Equations 19-22 show the rate equation for the 

loss of NO2 and the integrated rate equation. [NO2]t can be calculated from the 

initial NO2 concentration with the fraction converted to HONO subtracted; 

 
−
𝑑[𝑁𝑂2]

𝑑𝑡
= 𝑘 [𝑁𝑂2] 

Eq(19) 

 

− ∫
𝑑[𝑁𝑂2]

[𝑁𝑂2]

[𝑁𝑂2]𝑡

[𝑁𝑂2]0

= ∫𝑘 𝑑𝑡

𝑡

𝑡0

 

Eq(20) 

 ln[𝑁𝑂2]𝑡 − ln[𝑁𝑂2]0 = 𝑘𝑡 Eq(21) 

 [𝑁𝑂2]𝑡 = [𝑁𝑂2]0 − [𝐻𝑂𝑁𝑂] Eq(22) 

 

Substituting equation 22 into equation 21 and rearranging to equation 24, allows 

the rate constant, k, for the heterogeneous reaction of NO2 to HONO to be 

determined. 

 ln ([𝑁𝑂2] − [𝐻𝑂𝑁𝑂]) − ln[𝑁𝑂2]0 = 𝑘𝑡 Eq(23) 

 

k = −
𝑙𝑛 (

[𝑁𝑂2]0 − [𝐻𝑂𝑁𝑂]
[𝑁𝑂2]0

)

𝑡
 

Eq(24) 

The rate constant for an aerosol reaction can also be calculated using equation 

25, which contains the reactive uptake coefficient, γr, the aerosol surface area, 

SA, and ω (calculated using equation 14), which is the mean velocity of NO2. 

Rearranging equation 25 to equation 26 and taking the gradient of k vs SA allows 

the determination of the reactive uptake coefficient. 
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k =

𝛾𝑟  × 𝑆𝐴 ×  𝜔

4
 

Eq(25) 

 k

𝑆𝐴
=
𝛾𝑟𝑥𝑛 ×  𝜔

4
 

Eq(26) 

 𝛾𝑟𝑥𝑛 =
 𝜔

4 ×
k
𝑆𝐴

 Eq(27) 

 

𝜔 = √
8𝑅𝑇

𝜋𝑀
 

Eq(28) 

Figure 4.13 shows the calculated uptake coefficient calculated at different 

concentrations of NO2. The figure shows data collected by two users at Leeds 

using the most recent PF-LIF setup, one point collected during an early design 

and one point from a publish aerosol result by Gusstafasson et. al.52. The most 

recent Leeds measurements are considerably smaller than the value calculated 

by Gusstafasson and co-workers, potentially due to different experimental setup, 

such as the lamp output, which has not yet been parametrised for in the results. 

The point measured at the early stage of design may be higher due to higher UV 

output from the flow tube lamp; NO2 actinometry experiments are underway to 

assess if the UV output has decreased since the initial actinometry experiments 

described in section 4.1.2. Photodiodes have now been added to the 

experimental set-up to monitor changes in the total lamp output over time. 

Periodic measurements of the lamp output using a spectral radiometer to monitor 

changes at different wavelengths will be conducted as part of the experimental 

protocol.  

With the majority of experiments being carried out in nitrogen an experiment was 

done using air. This was to ensure that nitrogen experimental results are 

atmospherically relevant. Previous measurements17 by the Leeds group 

investigating HO2 production from TiO2 aerosols found a production dependence 

on the oxygen content in the system, with HO2 production increasing with oxygen 

concentration. The reactive uptake for HONO calculated in this experiment, at 

1440 ppb NO2, overlapped well with an experiment in nitrogen. However further 

repeats need to be carried out at lower NO2 concentrations. 
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Figure 4.13. Reactive uptake values calculated using the Leeds PF-LIF instrument for a 
range of NO2 concentrations. The Green point at 1440 ppb NO2 is the experiment carried 
out in air, while the remaining points were all carried out in nitrogen. The red point shows 
the value calculated by Gusstafsson et. al52. 

The data shows that the reactive uptake of HONO decreases at high NO2 

concentrations. This trend could be explained by assuming that the reaction 

proceeds via the Lindemann-Hinshelwood mechanism, which describes a 

process where both reactive species (NO2 and H2O) bind to a catalyst surface 

and react when they are in proximity to each other (see section 1.5.5). This 

mechanism explains the decrease in HONO production as both species compete 

for binding sites and as the NO2 concentration increases, the binding sites 

become saturated with NO2, decreasing available sites for water to bind to and 

thereby slowing the reaction. This trend has also been observed in other studies 

investigating HONO production from TiO2
58 and humic acid57. 

The Eley-Rideal mechanism, which is also used to describe reactions on solid 

surfaces, is not considered here due to the decrease in the reactive uptake with 

increasing NO2 concentration. This decrease is unlikely to be observed if this 

mechanism was followed as this mechanism considers only one species binding 

to the surface whilst the second species remains in the gas phase during the 

reaction. This mechanism results in no competition for reactive sites on the 

aerosol surface when a concentration of one reactant is increased. 
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Han et. al117. derived the following equation (eq. 29) from their measurements of 

reactive NO2 uptake on humic acid in a coated wall experiment (34 cm length, 

1.6 cm ID, 30-160 ppb NO2, 0.9 SLM, chemiluminescence NOx analyser) which 

they used to fit to their data with good accuracy and from this were able to 

calculate the Langmuir adsorption constant of NO2 (KNO2) on humic acid and the 

maximum reaction rate (k[S]T). The results of fitting equation 29 to the 

experimental data from 2019 and allowing ‘k[S] T’ and ‘KNO2’ to float is presented 

in figure 4.14. From this fit, Langmuir adsorption constant and the maximum rate 

are determined to be 2.62×105 cm3 and 0.297 s-1. Han et. al calculated values of 

7.85×10-13 cm3 and 12.3 s-1 respectively. 

 𝛾𝐻𝑂𝑁𝑂 =
 𝑎

1 + 𝐾𝑁𝑂2 [𝑁𝑂2]
 Eq(29) 

 
𝑎 = (

4  

𝜔 × 𝑆𝐴
 ) 𝑘 [𝑆]𝑡𝐾𝑁𝑂2 

Eq(30) 
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Figure 4.14. Reactive uptake versus NO2 concentration where equation 27 has been 
used to fit a line allowing calculation of the Langmuir adsorption constant (KNO2) and the 
maximum rate (k[S]T). 
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This equation, however, does not best describe the mechanism as shown by the 

significant different values for both KNO2 and k[S]T and their large errors, as it does 

not include the uptake of water to the surface which is also required in the HONO 

reaction. The following equations have been derived that will allow the rate 

constant for the reaction to be calculated. For this the following reactions are 

used; 

 [𝑁𝑂2] + [𝑆]
𝐾[𝑁𝑂2]
↔   [𝑁𝑂2]𝑎𝑑𝑠 

R(38)  

 [𝐻2𝑂] + [𝑆]
𝐾[𝐻2𝑂]
↔   [𝐻2𝑂]𝑎𝑑𝑠 

R(39)  

 [𝐻2𝑂]𝑎𝑑𝑠 + [𝑁𝑂2]𝑎𝑑𝑠
𝑘
→ [𝐻𝑂𝑁𝑂] R(40)  

By assuming that the formation of HONO is the rate limiting step, the rate of the 

reaction will be; 

 𝑑𝐻𝑂𝑁𝑂
𝑑𝑡

=  𝑘17. [𝐻2𝑂]𝑎𝑑𝑠 . [𝑁𝑂2]𝑎𝑑𝑠 
Eq(31) 

here the concentrations of the adsorbed water and NO2 are both described by 

the following, where [S]T is the number of surface sites and θ is the fraction 

adsorbed on the surface calculated using equation 33. 

 [𝑁𝑂2]𝑎𝑑𝑠 = [𝑆]𝑇𝜃𝑁𝑂2 Eq(32) 

 
𝜃𝑁𝑂2 =

𝐾𝑁𝑂2[𝑁𝑂2]𝑔

1 + 𝐾𝑁𝑂2[𝑁𝑂2]𝑔
 

Eq(33) 

This can be substituted back into equation 31 to give equation 34 giving the rate 

of HONO formation.  

 𝑑𝐻𝑂𝑁𝑂
𝑑𝑡

=  
𝑘17[𝑆]𝑇𝐾𝑁𝑂2[𝑁𝑂2]𝑔𝐾𝐻2𝑂[𝐻2𝑂]𝑔

(1 + 𝐾𝑁𝑂2[𝑁𝑂2]𝑔 + 𝐾𝐻2𝑂[𝐻2𝑂]𝑔)2
 

Eq(34) 

However this equation requires further experiments at multiple RHs and 

concentrations of NO2, to solve as both the values of KNO2 and KH2O, the Langmuir 

adsorption constants, are unknown and so would require reactive uptake curves 

to be measured at different RH. The reaction would also likely have a temperature 

dependence which would affect the adsorption to the surface, however this 

currently cannot be studied using the current setup due to the difficulty in 

controlling the temperature evenly across the whole system.  
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For modelling purposes the data collect by J. Dyson was fitted using the 

LORENTZ fitting option in the origin pro software. This function was chosen as 

the fit followed the data trend well, allowing calculation of the reactive uptake 

coefficient across a range of NO2 concentrations. These calculated uptake 

coefficients as a function of NO2 have been used in the models described later in 

section 4.3, where proposed sources of HONO have been added to an 

atmospheric box model for Beijing, China, using data collected during a field 

campaign in the summer of 2017, in order to assess their atmospheric impact. 

The most recent experimental data provided by J. Dyson is used as the NO2 

concentration in these experiments were primarily below 100 ppb and so 

overlapped directly with the ambient NO2 concentrations observed in Beijing. 
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Figure 4.15. Reactive uptake data used to calculate values to be used in the atmospheric 
box model described in section 4.3. 
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4.2.1.2 Production dependence on Relative Humidity 

The production of HONO was also measured a different relative humidities for a 

fixed aerosol concentration to compare with previous experiments that reported 

dependence on RH52, 58. Figure 4.16 shows the results for this experiment. These 

results show a peak in HONO production at 20 % RH which is similar to what 

other groups have shown52, 58. This peak is due to a requirement of water on the 

surface of the aerosol for the reaction, which is why the HONO concentration 

increases as RH increases. However there is a tail off at high humidities due to a 

blocking of active sites at the surface, due to water binding on the surface. This 

trend is linked to the competition covered by the Linderman-Hishertialwood 

mechanism with the increased water competing with the NO2. This could be 

further investigated in the future by running experiments at higher RH and also to 

investigate how the peak in HONO production for different RHs is altered as NO2 

concentration is increased. 
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Figure 4.16. The effect of RH on the HONO production from TiO2. Graph shows a 
maximum in HONO signal at 22% RH. 
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4.2.1.3 Error analysis 

The following values in table 4.2 were used in the calculations of errors for the 

reactive uptake coefficient. These errors were propagated through the 

calculations using the standard error propagation formulas. 

Error in the NO2 concentration in the flow tube are determined as a combination 

of the error in the initial concentration of the NO2 before mixing in the flow tube 

which comes from the 1% error for the pressure readings used during preparation 

of the cylinder. Further error is introduced due to errors in the flow values set on 

the MFCs used to deliver gasses to the flow tube (1 % of set flow). Errors in 

reaction time are taken from the errors of the flow rate the error to the volume is 

not used in this calculation as it is negligible and remains constant for all 

experiments. The standard deviation of the points averaged together normalised 

for laser power. The error for the line of best fit used to calculate the calibration 

coefficient (figures 3.9 and 3.11) is used when converting a HONO concentration. 

No error is considered for the aerosol surface as it is small compared to the 

contribution from the variation in the HONO signal. These errors are propagated 

through the equations used to calculate the reactive uptake coefficient using the 

sum in quadrature. 

 Table 4.2. Errors used in the calculation of the reactive uptake coefficient. 

Parameter Error 

Gas flow 1 % of set flow 

[NO2]cylinder 3 % 

Temperature 0.5 °C 

Relative Humidity 0.5 % 

Signal Variation in individual sweeps 

Laser Power Std. deviation during run 

Calibration Factor Fit error on calibration plot 

k Fit error on plot 

Aerosol Surface Area Not included 
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4.2.1.4 HONO production mechanism 

The results from the experiments discuss highlight that TiO2 will generate gas 

phase HONO when exposed to NO2, water and UV light. This is shown by the 

positive gradient observed in figure 4.12 where the concentration of HONO, when 

the system is exposed to UV light, is plotted against the surface area of the TiO2 

aerosols. To explain this production the following mechanism has been proposed 

by previous groups who have studied the reaction on surfaces52,58,115,118 

As a semiconductor, is considered both a conductor and an insulator, TiO2, has 

a small energy gap between its conduction and valence band allowing irradiation 

to excite an electron from the valence band to the conduction band, creating an 

electron and hole pair. The electron (e-
CB) in the conduction band acts as an 

electron donor and is able to oxidise different species, while the valence band 

hole(h+
VB) will reduce species119. Figure 4.17 shows the pathways that may 

oxidise and reduce NO2 and water to form the reactive species that will form 

HONO. 

 

Figure 4.17. Figure showing the formation of electron and hole pairs after irradiation by 
UV light120. 
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The proposed mechanism for this reaction has been discussed in previous 

papers and is shown in reaction 41 to 47. 

 𝑇𝑖𝑂2 + ℎ𝑣(𝜆<388 𝑛𝑚)⟶ ℎ𝑉𝐵
+ + 𝑒𝐶𝐵

−  R(41)  

 ℎ𝑉𝐵
+ + 𝐻2𝑂(𝑎𝑑𝑠)⟶ 𝑂𝐻(𝑎𝑑𝑠)

. + 𝐻+ R(42)  

 𝑁𝑂2(𝑎𝑑𝑠) + 𝑒𝐶𝐵
− ⟶𝑁𝑂2(𝑎𝑑𝑠)

−  R(43)  

 𝑁𝑂2(𝑎𝑑𝑠)
− + 𝐻+ ⇌ 𝐻𝑂𝑁𝑂(𝑎𝑑𝑠) R(44)  

 𝑁𝑂2(𝑎𝑑𝑠) + 𝑂2(𝑎𝑑𝑠)
.− ⟶𝑁𝑂2(𝑎𝑑𝑠)

− + 𝑂2 R(45)  

 𝑁𝑂2(𝑎𝑑𝑠)
− + 2∙𝑂𝐻(𝑎𝑑𝑠) ⇌ 𝑁𝑂3(𝑎𝑑𝑠)

− + 𝐻2𝑂(𝑎𝑑𝑠) R(46)  

 𝑁𝑂2(𝑎𝑑𝑠)
− + 𝑂𝐻(𝑎𝑑𝑠)

. ⇌ 𝑁𝑂3(𝑎𝑑𝑠)
− +𝐻2𝑂(𝑎𝑑𝑠) R(47)  

A more visual mechanism is shown in figure 4.18. This mechanism has been 

adapted from a proposed mechanism for the conversion of NOx to N2 and water 

in a TiO2 based photo-catalyst for a vehicle engine121. 

 

Figure 4.18. Mechanism for the conversion of NO2 to HONO on TiO2 surfaces. (1) 
Absorption to surface, (2) irradiation, (3) desorption. Proposed mechanism adapted from  
Schneider et.al. 121 to describe the conversion of NO to N2 and H2O seen in their 
experiment. The blue species represent how the mechanism could be adapted for the 
conversion of NO2. 
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Results from these experiments do not permit for a detailed study of the reactive 

pathway mechanism, however, the results seen so far can be explained by the 

mechanism outlined in figure 4.18. Nonetheless, from the experimental results, a 

reactive uptake coefficient, dependent on the concentration of NO2, has been 

determined. The impact of this experimentally determined reactive uptake 

coefficient on ambient HONO and OH concentrations in central Beijing is 

investigated in section 4.3. 
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4.2.2 Nitrate Aerosols 

As discussed in the introduction (section 1.5.3.3), nitrates have been proposed 

as a possible source of HONO in the atmosphere. These sources are likely to be 

significant across a range of environments however the main interest are in low 

NOx environments where the formation of nitrate aerosols was considered to be 

a removal pathway for NOx in the atmosphere. However various modelling 

studies37, 65 and lab studies116,63 have found that there may be a recycling route 

back to gaseous NOx via the production of HONO under sunlit conditions. 

Two nitrate aerosols have been investigated in Leeds; ammonium nitrate and 

sodium nitrate. These were generated by dissolving 1 g of the respective nitrate 

in water. These aerosols were introduced into the aerosol flow tube as described 

for the TiO2 experiments and experiments were conducted over a range of 

relative humidity’s. The initial aerosol solutions and the humidified flow in the 

aerosol generation stage, were also acidified using pH buffers as Scharko et. al. 

found a pH dependence on HONO production with increased HONO at lower pH 

values116. 

The studies of both nitrates showed no observable HONO production when the 

aerosol flow tube was illuminated under all conditions tested. Since HONO has 

been observed in previous experiments by other groups, a possible explanation 

for this is that the HONO concentration generated is below the instruments 

detection limit. Possibilities for the below detection limit concentrations include; 

too short a residence time in flow tube, problems with the 355 nm laser beam 

diameter (see comment below) or potentially insufficient aerosol surface area. 

The residence time controls the amount of time the aerosols are exposed to the 

UV light and time for the HONO to escape from the aerosol surface. In the current 

setup it is not possible to reduce the gas flow due to the current flow being set 

very close to the sampling rate of the HONO detection cell.  

During the nitrate experiments, due to a laser failure, it was necessary to change 

the photolysis laser used. The laser employed for the nitrate experiments had a 

larger beam diameter (1 cm vs 0.4 cm), this results in the photons being less 

focused along the central axis where there is overlap with the probe laser 

resulting in fewer HONO molecules being detected due to reduced photolysis. 
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Using the results achieved however a possible upper limit in production can be 

calculated using the instruments limit of detection as maximum amount of HONO 

that can be produced at the maximum aerosol surface area observed in the flow 

tube. Assuming the production of HONO involves the photolysis of the nitrate 

surface the reaction can be defined in terms of a photolysis rate constant (Jnitrate) 

and the surface area (SA) in equation 35 which rearranges to equation 36. 

 𝑑[𝐻𝑂𝑁𝑂]

𝑑𝑡
= 𝐽𝑛𝑖𝑡𝑟𝑎𝑡𝑒 × 𝑆𝐴 

Eq(35) 

 [𝐻𝑂𝑁𝑂]𝑡 = 𝐽𝑛𝑖𝑡𝑟𝑎𝑡𝑒 × 𝑆𝐴 × 𝑡 Eq(36) 

Using the detection limit of 50 ppt, a surface area of 1 × 10-4 cm2 cm-3, and a 

reaction time of 120 s a rate constant of 1 × 10-4 molecule cm2 s-1 can be 

calculated. This is in terms of the aerosol surface area. This is difficult to compare 

to literature values as previous studies have used the nitrate content of the 

samples to calculate the photolysis rate constant (Jnitrate /s-1). This is currently 

difficult to back out of the Leeds experiments as although a volume measurement 

is available from the SMPS the aerosols are they have deliquesced at the 

humidity the experiment is run at. This means that the volume measurement will 

not be representative of the pure nitrate content. Measurement of this could be 

achieved in the future using either an atmospheric mass spectrometer (AMS) or 

by collecting aerosol samples after the flow tube.  

The experiments reported in the literature where HONO production has been 

observed used a coated surface63 or liquid flow reactor116 rather than aerosols. 

These will have a much larger surface areas for reaction compared to an aerosol 

experiment. Here it will be difficult to increase the total number of aerosols due to 

upper limits on what the aerosol generation equipment produce and because the 

reliability of results from the Leeds SMPS will decrease as particle numbers 

increase. However the advantage of the aerosol experiment is that the nitrate 

surface is always “fresh” while with a coated surface experiment the surface will 

be changing through the experiment. This may introduce alternative production 

pathways that do not rely on the initial surface nitrate.A final change that may 

increase the possibility of generating an observable HONO signal would be to 

increase the amount of light the aerosols are exposed to by adding multiple lamps 
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around the flow tube. Studies by Stemmler et. al.57 showed a linear increase in 

HONO signal from humic acid surfaces as the number of lamps were increased. 
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4.3 Missing HONO in Beijing 

In order to evaluate the effects of the reactive uptake values calculated for TiO2 

they have been included into a box model using measurements from a site in 

Beijing, China during the APHH campaign in 2017. A range of HONO sources 

are included in the model and the contribution from each to the modelled HONO 

concentration is assessed compared to the concentrations of HONO measured 

at the field site. An initial comparison between the base model that only considers 

HONO production from OH + NO and the measured HONO is shown below in 

figure 4.19. This clearly shows that the model is not able to replicate the 

measured HONO and other HONO sources need to be included in the model 

chemistry scheme.  
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Figure 4.19. Diurnal plot showing the difference in concentration between the measured 
HONO and the HONO predicted by the model. The coloured sections show the 75 and 
25 percentiles in the data. 

 

This missing source of HONO is significant because in urban centres, such as 

Beijing, HONO is the dominant primary source of radicals during the day in both 

summer and winter.  
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Figure 4.20 below shows the model breakdown in the primary radical sources 

summer and winter. The yellow section of each plot represents the contribution 

from HONO. In winter it is the primary source while in the summer the number of 

sources are more varied but HONO is still a major contributor to the radical 

budget. The missing HONO would, therefore, be expected to have a significant 

impact on the model’s ability to predict OH.  

 

Figure 4.20. Diurnal plots showing the primary sources of radicals during both the 2016 
winter (top) and 2017 summer (bottom) campaigns in Beijing. Radical propagation 
reactions are not included. Plots provided by Lisa Whalley. 
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4.3.1 Master Chemical Mechanism 

The master chemical mechanism (http://mcm.leeds.ac.uk/MCM/home) is a zero-

dimensional box model, which has a near-explicit chemical mechanism 

representing the degradation of methane and 142 primary emitted VOCs. The 

mechanism has a total of ~17,000 and ~6700 species. The model was run using 

a sub-set of the MCM that included 11500 reactions and ~3800 species. A full 

description of the kinetic and photochemical data used in the mechanism can be 

found on the MCM website (http://mcm.leeds.ac.uk/MCM/home). The model was 

constrained by measurements of NO, NO2, O3, CO, VOCs, CH4, HCHO, HNO3, 

HONO, water vapour, temperature and pressure. The VOCs species were 

measured by GC-FID and PTR-ToF-MS. The photolysis rates for j(O1D), j(NO2) 

and j(HONO), calculated from the measured actinic flux and published absorption 

cross sections and quantum yields, were included as model inputs. Other 

photolysis frequencies used in the model were calculated. For UV-active species, 

such as HCHO and CH3CHO, photolysis rates were calculated by scaling to the 

ratio of clear-sky j(O1D) to observed j(O1D) to account for clouds. For species 

able to photolyse further into the visible the ratio of clear-sky j(NO2) to observed 

j(NO2) was used. Inputs into the model were updated every 15 minutes. The 

model was run both as a time-series for the whole campaign, but also as an 

average campaign day with mean concentrations from the whole campaign used 

as the model constraints; the latter model was run to quickly assess the impact 

of the different HONO sources considered.  

 

4.3.2 Beijing Measurement Site 

Results used in this model were collected during the APHH measurement 

campaign at the Institute of Atmospheric Physics in central Beijing. This site 

represented a residential area of Beijing with multiple roads located nearby. 

Details of the project are described in Shi. Z et. al.122 along with the list of 

instruments used. 
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This modelling work will focus primarily on the summer Beijing measurements. 

Modelling studies from the winter project, highlighted that the observed HONO in 

the day could be described reasonably well when only the gas phase reaction 

between OH and NO was included in model simulations; as shown in figure 4.21. 

This finding is surprising considering the high aerosol loading where we may have 

expected heterogeneous sources to be important. In the wintertime, extremely 

high concentrations of NO were observed in Beijing and this leads to fast HONO 

production from OH+NO.  Furthermore, radiation is reduced due to the severe 

haze events which inhibits light-induced processes. 

 

Figure 4.21. Comparison between the measured HONO (blue) and modelled HONO 
(purple) for the winter months during the APHH campaign. Graph provided by E. Slater 
from University of Leeds. 
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4.3.2.1 Data correlations 

In order to identify potential sources of HONO, the missing production rate for 

HONO was correlated with other measured species from the campaign. The 

missing production rates were calculated using the concentration difference 

between measured HONO and modelled HONO where only the reaction between 

OH and NO forming HONO was considered. 

 [𝐻𝑂𝑁𝑂] = 𝑘𝑚𝑖𝑠𝑠𝑖𝑛𝑔 + 𝑘(𝑂𝐻+𝑁𝑂)[𝑂𝐻][𝑁𝑂] − 𝑘𝑙𝑜𝑠𝑠[𝐻𝑂𝑁𝑂] R(48)  

The concentrations and rates were normalised to their highest measured value. 

In order to capture any synergistic links between species, the products of all 

species were also calculated and plotted against the missing HONO rate. The 

highest values are shown below in table 4.3. 

Table 4.3. Highest correlation values from plots of the missing HONO production rate 
versus different measured species. A larger value indicates a better correlation indicating 
a potential link to the unknown HONO source. 

Species R2 of correlation 

NO2 × JHONO 0.8034 

NO2 × JNO2 0.8034 

JHONO 0.7910 

JNO2 0.7889 

NO2 × JO1D 0.7339 

JO1D 0.7014 

O3 × NO × T 0.6803 

O3 × NO 0.6780 

NO × HO2 0.5148 

NO2 × HO2 0.2593 

NO × HCHO 0.2580 

NO × T 0.2471 

NO 0.2438 

HO2 0.2373 

NO2 × HCHO 0.1715 

T 0.1658 

HCHO 0.1538 

NO2 0.1089 

Toluene 0.0251 
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Figure 4.22. Correlation plots of the missing HONO production rate vs NO2 and NO2 * 
JNO2. This shows how on its own NO2 concentration do not correlate well with the missing 
HONO source however the product of NO2 and various photolysis rate constants show 
very good correlation. Indicating the possibility of a daytime conversion of NO2 to HONO. 

 

Examples of two correlations plots are shown in figure 4.22 where the normalised 

missing production rate is plotted against the NO2 concentration. On its own there 

is no significant correlation however, when plotting the product of NO2 and JNO2 

a very good correlation is produced with an R2 value of 0.8. This shows that the 

missing HONO rate is highest when NO2 concentration is high during the day 

which would fit with the suggested production route from illuminated surfaces. 
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4.3.3 Model Inputs 

The following proposed sources for HONO were included in the MCM model for 

Beijing. Details of the individual reactions are discussed in the introduction in 

section 1.5. The reaction between OH and NO is the only source of HONO 

included in the base MCM model run, and uses the IUPAC recommended rate. 

The remaining reaction have been adapted from previous studies of proposed 

sources and the daytime aerosol production rate uses results from the TiO2 

experiments discussed previously in chapter 1. The direct emission of HONO was 

calculated as a fraction of the total NO2. The fraction used was taken from Liu et 

al.51 where they measured HONO emission ratios using a rolling road experiment 

under Beijing driving conditions. The dark conversion of NO2 to HONO was set 

so that the HONO concentration at night was correct in the model using the 

assumption that HONO is produced at night via NO2 reactions on humid surfaces. 

The nitrophenol reaction was taken from Benjan et. al.46, where a HONO 

production rate of 100 pptv h-1 for 1 ppbv nitrophenol was determined under 

illuminated conditions equivalent to JNO2 equal to 10-2 s-1 . The rate constant used 

in the model was scaled to account for the differences in JNO2.  

The daytime aerosol NO2 conversion rate is determined using the reactive uptake 

coefficient calculated in this work. Using the TiO2 experiments discussed above 

scaled to account for the differences between the JNO2 in the experiment 

(determined in section 4.1.2) and observed JNO2.a reactive uptake coefficient was 

calculated for each time step in the model using the measure aerosol SA. This 

model will assume that the measured aerosols are pure TiO2. 
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Table 4.4. HONO production reactions used in the modified MCM box model for Beijing, 
showing the rate of production for each reaction. 

Reaction Rate Ref. 

OH + NO = HONO 8.9x10-31 × (T/298)-2.1 × [M] MCM 

Direct Emission [NO2] × 0.0042 Liu et al.51 

Aerosol NO2 conversion 

NO2 = HONO 

𝛾𝑟  × 𝑆𝐴 ×  𝜔

4
 

= 6.79×10-6 s-1 

for JNO2 = 8.4×10-3 s-1 

 And [NO2] = 13 ppb 

This work 

Dark NO2 conversion 

NO2 = HONO 

0.5/(MH) Matched to night 
time HONO 

Day-time NO2 conversion 

NO2 = HONO 

(1/MH)×JNO2*300  

Set so average = 10-6 s-1 

Lee et. al.102 

Nitro-phenol photolysis 

HOC6H4NO2=HONO 

0.0028×JNO2 Benjan et. al 46 

 

4.3.3.1 Night time HONO contribution 

In order to ensure that the daytime HONO is simply not present due to the 

photolysis and recycling of night time HONO, a model was run where during the 

night the measured HONO concentration was input into the model while during 

the day the model was run unconstrained to the observed HONO. As shown in 

figure 4.23, these results demonstrate that despite the build-up of high 

concentrations of HONO overnight, this does not contribute to the HONO source 

in the daytime and the production rate is still not high enough to maintain the 

measured HONO concentration during the day. 
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Figure 4.23. Diurnal plot showing measured (red) vs modelled (blue) HONO 
concentrations. HONO concentration at night in the model were fixed to the measured 
values. 
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4.3.4 Model Outputs 

Figure 4.24 shows the output from the average model. The model is able to 

simulate the HONO concentration that was observed during the night-time and 

early morning, however, the daytime production is still too slow to simulate the 

observed HONO concentration during the day. The aerosol contribution to the 

modelled HONO production is small and peaks in the morning and then 

decreases later in the day. Figure 4.25 shows the production rates for HONO 

from various sources throughout the day. 
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Figure 4.24. Diurnal plot showing measured HONO, black line, and modelled HONO, 
coloured sections, from the average MCM model. Each colour represents the fraction 
that is associated with each source that contributes to the total modelled HONO. Green 
section represent the fraction generated from aerosols using the calculated uptake 
coefficient from this work. 
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Figure 4.25. HONO production rates in the modified model showing the contribution from 

each HONO source. 

As discussed in the introduction, HONO is important in the atmosphere because 

it is photolysed during the day to form the hydroxyl radical, OH. To demonstrate 

the importance of understanding HONO production pathways, figure 4.26 shows 

the modelled OH concentration from three model runs. The pink line is modelled 

OH, where the only HONO source included is from the OH + NO reaction. The 

blue line is average OH measured during the campaign and the black line is the 

modified model that includes the additional sources of HONO listed in Table 4. It 

can be seen that the base model (that only considers OH+NO as a source of 

HONO) under predicts the OH concentration throughout the daytime. While the 

modified model is over predicting in the morning but matching the measured data 

more closely at midday. 
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Figure 4.26. Diurnal plot showing [OH] during the day for different model runs. The 
model was either the base model unconstrained to HONO, pink, constrained to 
measured HONO, blue, or the modified model, black. 
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4.4 Conclusions and Future Work 

Under illuminated conditions, TiO2 aerosols have been shown to generate HONO 

when exposed to NO2. The reactive uptake coefficient determined ranged from 

0.1×10-4 and 2.5×10-4 for NO2 concentrations in the range 25 ppb to 1000 ppb 

under UV radiation equivalent to jno2 = 0.00133 s-1. These uptake coefficients are 

lower than reported by Gustafsson et. al. where a value of 13 × 10-4 was 

calculated. The Gustafsson et. al. study does not report the lamp output and so 

it is difficult to compare the two studies directly. The measured reactive uptake 

coefficients follow the Lindemann-Hinshelwood mechanism, with the reactive 

uptake coefficient decreasing at high NO2 concentrations, indicating a 

competition in binding on the surface between NO2 and water. The aerosol 

reaction was found to be dependent on RH with the peak in HONO production 

being observed at ~20 % RH. 

Using the TiO2 experiment results from figure 4.15, reactive uptake coefficients 

for NO2 on aerosol surfaces were calculated and used in a box model for Beijing. 

The model showed that the aerosol contribution peaks early in the morning. This 

simulation assumes that all the aerosols measured in Beijing contain TiO2 at the 

surface while in reality they will be a mixture of both organic and inorganics. 

This leads on to some potential future research changing from model aerosols in 

the lab to “real” aerosols found in the atmosphere that consist of a mix of 

compounds that may interact differently. In order to investigate this potential 

difference, aerosols collected in Beijing will be added to the flow tube and the 

production of HONO measured. Two methods will be used; extraction of the 

aerosols from the filter samples followed by re-atomisation, or investigation using 

the filter sample as a reactive surface. This will provide production rates for 

HONO that may be correlated to the different aerosol components which will also 

be measured during the collection of the initial samples. 

Studies will also be done to investigate the effect of the wavelengths of light on 

production as the wavelengths in the solar spectrum change during the day with 

the short wavelengths primarily being present at midday while longer 

wavelengths persist into the early mornings and late afternoon. This will be 

important as UV light is higher in energy but at ground level the amount is low 
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when compared to the visible and infra-red wavelength. Therefore if the reactions 

are activate by these longer wavelengths the production of HONO will occur over 

a wider period during the day. 

HONO production was not observed in the nitrate aerosol studies.. These 

experiments will be repeated in the future using a more optimal setup to maximise 

HONO production to a detectable level. This will be done using the most recent 

instrument design that is more sensitive to HONO and increasing the UV 

exposure in the tube using multiple lamps. 

Results from these experiments will be important in future atmospheric models 

as heterogeneous chemistry is rarely considered in detail in chemistry models. 

This study has shown that the unknown source of HONO could be explained by 

a heterogeneous process. In areas where HONO is a primary hydroxal radical 

source it would be important to include these heterogeneous reaction when 

modelling future changes in air quality 
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Chapter 5 Atmospheric chemistry of Amines 

In July and September 2016 a series of amine oxidation experiments were carried 

out at the EUPHORE chamber in Valencia, Spain. The compounds investigated 

were morpholine, piperadine, piperazine, ethylenediamine, diaminopropane, 

piperazine nitramine, nitrosopiperazine, imidazole and methylmethanimine. 

These species were investigated because of their potential role as solvents in 

carbon capture plants. The aims of these studies was to investigate the potential 

oxidation products if these amines were released into the atmosphere during the 

carbon capture process. This was a continuation of previous projects carried out 

by Nielsen et al. including studies at the EUPHORE chamber in 2015123. 

In this chapter a description of the chamber experiments will be given and the 

results derived from the OH and HO2 data collected by the Leeds group, along 

with a comparison between the measured OH in the chamber and predicted 

concentrations using the decay of amines in the chamber. Only the experiments 

for morpholine, piperedine and piperazine, figure 5.1, will be covered due to a 

sparse OH and HO2 data set from the September Campaign, when the remaining 

species were measured, due to instrumental problems. 

 

Figure 5.1. The 3 amines studied during the June 2016 campaign. 
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5.1 Carbon Capture 

With CO2 being the dominant anthropogenic greenhouse gas in the 

atmosphere124, a primary goal of mitigating climate change is the prevention of 

further increases in CO2 emissions and eventually reduction to a zero CO2 

emission rate. A major source of CO2 in the atmosphere is the burning of fossil 

fuels for industry and electricity generation125. To minimise these emissions, 

various methods have been proposed that allow capture of the CO2 produced, 

these include; pre-combustion capture, post-combustion capture and oxy-fuel 

combustion.  

Pre-combustion capture involves the removal of all carbon content in the fuel 

before burning, this is done by converting the fuel to CO2 and H2 via gasification 

of coal or reforming natural gas with oxygen126 where the CO2 can be captured 

and the H2 can be used in gas turbines or fuel cells127. 

In oxy-fuel combustion the fuel is burnt in a mixture of pure oxygen and recycled 

flue gas resulting in a cleaner burn so that the main products that form are CO2 

and H2O vapour. This makes it easier for post-combustion carbon capture while 

also reducing other combustion products such as NOx
128. 

The post-combustion carbon capture technique is what most people are aware 

of when they think of carbon capture. It involves removal of the CO2 from the flue 

gases generated by fossil fuel burning. Methods include chemical absorption, 

adsorption, membrane separation, Ca-Looping technology and cryogenic 

fractionation, with chemical absorption using amines being the most common129. 

Amine carbon capture, simplified in figure 5.2, involves scrubbing CO2 from the 

flue gases using aqueous amine solutions.  This process involves passing the 

flue gas through a scrubber containing the amine solution. This scrubber will 

normally contain a high surface to volume ratio to maximise the interaction 

between the gas and liquid. The process operates by converting the CO2 to a 

carbamate or bicarbonate in the liquid phase. The solution is then sent to a 

stripper where it is heated using steam releasing the CO2 from the solution. The 

CO2 can then be compressed for transport to storage sites or to be utilised in 

different industrial processes130.  



Chapter 5  ACA Campaign 

141 

 

The stripping process also regenerates the amine allowing reuse in the carbon 

capture process. To prevent the release of unreacted amines into the atmosphere 

the flue gas is passed through water which scrubs the amine from the gas. 

 

Figure 5.2. Simplified schematic showing the CO2 capture process. Adapted from 
reference Dutcher et. al.131. 

The challenges with the amine based solvent is that they can be oxidatively and 

thermally degraded in the scrubber. However, the problem of interest for the 

Atmospheric Chemistry of Amines (ACA) project is the formation of nitrosamines 

and nitramines, with N-Nitrosomorpholine and N-Nitrosopiperidine both being 

classified as group 2a agents by the international agency for research on cancer; 

i.e. probably carcinogenic to humans, 132. Nitrosamines and nitramines form 

when the amines react with NOx in the carbon capture system or after the release 

of the amines into the atmosphere where they are oxidised by OH before reacting 

with NO2
133, 134. 

The ACA project aims to identify and quantify the gas phase photochemical 

degradation products of the possible amine emissions. The data will then be used 

to update current photo oxidation schemes for those amines135. 
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5.2 The European Photoreactor 

The EUPHORE chamber is located in Valencia, Spain and is operated by the 

Mediterranean Centre for Environmental Studies Foundation (CEAM)136. The 

research site has two half spherical atmospheric simulation chambers each with 

a volume of approximately 200 m3.This large volume provides a low surface-to-

volume ratio minimising losses and heterogeneous reactions on the chamber 

walls. The chamber domes, shown in figure 5.3, are made of 0.13 mm thick 

fluorine-ethene-propene (FEP), and allows transmission of more than 80 % of 

sunlight in the near UV and visible light range. The FEP surface is also chemically 

inert, further minimising the chance of heterogeneous processes. The chamber 

floors consist of aluminium panels covered in FPE with rubber cord being used 

to seal the chamber walls to the floor. The chamber floor is also cooled using a 

refrigeration system to compensate for the heating by solar radiation. Instruments 

are connect to the chambers via ports in the chamber floor. The chamber also 

has a steel canopy that can be opened and closed allowing shielding or exposure 

to sunlight. 

 

Figure 5.3. The chamber used in the experiments described in this chapter. The inlet for 

the FAGE cell, not visible, was located on the opposite side of the chamber. 
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5.2.1 OH measurements 

Measurements of OH and HO2 were carried out using the FAGE technique 

described in chapter 2. The FAGE cell was located near the edge of the chamber, 

with the pinhole situated 10 cm above the base of the chamber floor. Figure 5.4 

shows a cross section of the instrument. The setup to measure OH and HO2 

simultaneously with the two cells was not possible during the ACA campaign due 

to the poor performance of the detector on the second cell. Hence OH and HO2 

were measured sequentially in the first detection cell. During the measurements, 

the detector was cooled with chilled air in order to reduce the elevated 

background noise observed due to instrumental heating via thermal conduction 

from the chamber floor. A typical measurement day involved beginning 

measurements whilst the chamber was closed, continuing when the shields were 

opened and finishing after the chamber was closed once more and chamber 

flushing, with zero air, had begun. Throughout the campaign, calibrations were 

run once a week in order to track instrument sensitivity. To do this, the instrument 

was disconnected from the chamber and placed in a floor mount, then calibrated 

using the calibration wand method described in section 2.3. It was not possible 

to calibrate every day, which would be the ideal case, due to the start and end 

times of the experiments in relation to working hours at the EUPHORE chamber. 

It was also not possible to disconnect or reconnect to the chamber during an 

experiment due to the toxic nature of the species used. This meant that when 

calibrating it was not possible to measure with FAGE on that day, so where 

possible these calibrations were done on days when no measurements were 

taking place, primarily due to poor weather. 
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Figure 5.4. Schematic of the FAGE cell connected to the EUPHORE chamber. Image 
created by Trevor Ingham. 

 

5.2.1.1 EUPHORE chamber instrumentation 

As an international chamber, the EUPHORE chamber is equipped with a range 

of instrumentation that are permanently installed allowing monitoring of the 

chamber conditions. These instruments were operated by the staff at CEAM. 

Measurements of NOx in the chamber were performed using a NO-NO2 analyser 

(T200UP Teledyne API) and j(NO2) was monitored using a filter radiometer. 

HONO was measured using a LOPAP, see section 3.1.2. Ozone was monitored 

using a Serinus 10 ozone analyser (Ecotech). A SMPS and CPC were used to 

monitor the number concentration of particles formed in the chamber during 

measurements. A Nicolet FTIR spectrometer with a path length of 553 m between 

two mirrors in the chamber allowed in situ spectra to be measured every 10 min. 

The FTIR was used to measure the decay of SF6 in the chamber, an inert tracer 

gas. The decay rate of SF6 provides the dilution rate in the chamber due to the 

inflow of replacement air to compensate for the loss of gas in the chamber caused 

by instrument sampling and minor leaks. The chamber pressure, temperature 

and humidity were also monitored during each experiment. 
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5.2.1.2 ACA participant instrumentation 

Other instrumentation used during the project by participants of the campaign 

were 4 mass spectrometers; an aerosol mass spectrometer (AMS)137, a high-

resolution proton transfer time of flight mass spectrometer (PTR-TOF-MS)138, a 

high-temperature proton transfer mass spectrometer (HT-PTR-MS)139 and a 

chemical analysis of aerosol online system coupled to a proton transfer time of 

flight mass spectrometer (CHARON-PTR-TOF-MS)140. Filter samples were also 

collected to allow offline analysis using 2D gas chromatography time of flight 

mass spectrometry (GC×GC-TOF-MS)141. 

 

5.2.2 Experimental summary 

Before each experiment the chamber was flushed overnight with zero air 

removing any contaminants from previous experiments. During this period the 

steel canopy is closed. Instruments then begin sampling to provide a chamber 

background measurement. The required reagents are then added and time is 

given to allow for the chamber to become homogenously mixed. The canopy is 

then opened to sunlight to allow reactions to begin. Once the reaction was 

finished, the chamber was closed and the flushing process was started. During 

the campaign two types of studies were carried out these will be described here 

as the amine studies, were the reaction products of amine oxidation were studied, 

and the kinetic studies where the oxidation of the amine was measured alongside 

several tracer species. 
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5.2.2.1 Generation of OH radicals 

The primary source of OH in the chamber was isopropyl nitrite, IPN, which was 

added to the chamber in the dark and when the chamber was opened to the 

sunlight was photolysed to form an alkoxy radical and NO. This radical can then 

go on to react with O2 to form and HO2 which can go on to react with NO forming 

OH142. This reaction scheme is shown in reactions 49 to 42. 

 
𝑖𝐶3𝐻7𝑂𝑁𝑂 (𝑆0) + ℎ𝑣 (𝜆 = 300 − 450 𝑛𝑚) →   𝑖𝐶3𝐻7𝑂𝑁𝑂(𝑆1) 

R(49)  

 
𝑖𝐶3𝐻7𝑂𝑁𝑂(𝑆1)𝑖 →   𝑖𝐶3𝐻7𝑂 + 𝑁𝑂 

R(50)  

 
𝑖𝐶3𝐻7𝑂 + 𝑂2  → 𝐶𝐻3𝐶(𝑂)𝐶𝐻3 + HO2 

R(51)  

 
HO2 + 𝑁𝑂 →𝑂𝐻 + 𝑁𝑂2 

R(52)  

Another source of OH in the chamber is photolysis of heterogeneously produced 

HONO, formed from NO2 and H2O in the dark on the chamber walls, see section 

1.5.3, which photolyses to form OH when the chamber is opened. Minimal OH 

was seen via this pathway with the addition of IPN being the primary route for OH 

generation. However, it was possible to see the impact of OH from HONO 

production on one experimental day. Figure 5.5 shows a day where due to high 

wind the chamber was closed part way through the experiment when the chamber 

was reopened HOx concentrations reached higher levels that before the closed 

period. It is assumed that this is due to HONO production during the dark period, 

however, it is not possible to validate this due to a fault with the LOPAP instrument 

which showed a level concentration of HONO across the experimental day which 

cannot be correct. 
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Figure 5.5. Experimental day that included a period where the chamber was closed to 
sunlight during the experimental run. The yellow section represent show when the 
chamber was opened, the red points are [HO2] and blue is the [OH]. When the chamber 
has been reopened significantly more OH and HO2 are seen, this is likely due to a build-
up of HONO during the dark period. 

5.3 Results 

Due to the role Leeds played during the campaign, minimal analysis of the amine 

chemistry will be discussed here, with that aspect of the project being covered by 

the project leads at the University of Oslo in future papers. However, several 

topics covering the measured radical data will be discussed here. This includes 

HO2 decays observed in the dark and comparisons between measured and 

calculated OH concentrations. Figure 5.6 shows a typical measurement of OH 

and HO2 collected for one of the amine studies using piperadine, see figure 5.4. 

The same trend of increasing concentrations when the chamber was opened was 

seen for all days in the HO2 signal. The OH signal was always much smaller with 

the major peaks above the background appearing on days when larger amounts 

of the OH precursor were added. 
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Figure 5.6. Example of a measurement taken during the ACA campaign. This 
experiment studied the oxidation of piperadine. The plot shows the changes in [OH], blue 
points, and [HO2], red points. The errors on these plots come from the standard deviation 
of the signal in each run. 

  



Chapter 5  ACA Campaign 

149 

 

5.3.1 Calculated OH concentrations 

The kinetic studies were run with the addition of multiple OH tracers (see table 

5.1) to the chamber to allow the determination of the OH concentration in the 

chamber via a secondary method143. The rate coefficients of the tracer species 

with OH are well known, and by using their decay rates in the chamber it is 

possible to calculate the OH concentration present in the chamber. This 

calculated OH, assuming no other species removes the amine, can then be 

compared to the measured OH. Figure 5.7 shows the decay of two species in an 

experiment; Acetonitrile does not react with OH so its loss route is only through 

dilution and wall loss, and Isoprene that reacts with the OH present in the 

chamber.  
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Figure 5.7. Concentration measurements of two tracers during a kinetic study. The blue 
section shows the period used to calculate the non-oxidative removal processes while 
the yellow section shows when the tracer is undergoing removal by OH. Acetonitrile 
shows a constant decay as it does not react with OH, while Isoprene will react with OH 
leading to the increased loss rate. 

Using equation 37, using the decay of each species before the addition of OH to 

the chamber, the rate constant kloss can be calculated. When OH is present the 

rate of loss is determined using equation 38 which can be rearranged to allow 

calculation of the OH concentration, equation 39. The values for kOH for each 

species is shown in table 5.1. 
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The time period used for the loss rates was varied between experiments to 

ensure that the decay rate observed for all tracers at that time was linear. 

 𝑑[𝑇]

𝑑𝑡
= −𝑘𝑙𝑜𝑠𝑠[𝑇] 

Eq(37) 

 𝑑[𝑇]

𝑑𝑡
= −𝑘𝑂𝐻[𝑂𝐻][𝑇] −  𝑘𝑙𝑜𝑠𝑠[𝑇] 

Eq(38) 

 

[𝑂𝐻] = −

𝑑[𝑇]
𝑑𝑡

−  𝑘𝑙𝑜𝑠𝑠[𝑇]

𝑘𝑂𝐻[𝑇]
 

Eq(39) 

The calculated OH from each kinetic study is shown in figures 5.8 to 5.11. For 

the first three plots the calculated OH showed good agreement from all tracers, 

because of this the averaged calculated OH is shown. For the final plot, figure 

5.11, the 3 tracers showed very different shapes so the calculated OH has been 

shown for each individual tracer. 

Table 5.1. Rate coefficients used to calculate the OH concentration in the chamber using 

the loss rate of each tracer. 

Tracer kOH / cm3 molecule-1 s-1 

T= 300 K 

Morpholine144 9.5 ± 0.95 ×10-11 

Piperidine144 7.4  ± 0.7 ×10-11 

Piperazine145 23.8 ± 0.28 ×10-11 

Isoprene (IUPAC) 8.96 × 10-11 

Styrene (IUPAC) 5.80 × 10-11 

Trimethyl benzene (IUPAC) 5.67 × 10-11 

Limonene (IUPAC) 1.63 × 10-10 

Pyrrole (IUPAC) 6.59 × 10-11 



Chapter 5  ACA Campaign 

151 

 

25000 30000 35000 40000 45000 50000

0.0

5.0x10
7

1.0x10
8

1.5x10
8

 Measured OH

 Ave predicted OH

Time(s)

M
e
a

s
u
re

d
 O

H
 (

m
o
le

c
u

le
 c

m
-3
)

0.00

1.50x10
6

3.00x10
6

4.50x10
6

6.00x10
6

 A
v
e

 p
re

d
ic

te
d

 O
H

 (
m

o
le

c
u

le
 c

m
-3
)

 

Figure 5.8. Comparison between the measured, black cross, and predicted OH, blue 
circles, for the morpholine kinetic study. Tracers; isoprene, styrene, trimethyl benzene, 
morpholine. 
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Figure 5.9. Comparison between the measured, black cross, and predicted OH, blue 
circles, for the piperidine kinetic study. Tracers; isoprene, styrene, trimethyl benzene, 
piperidine. 
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Figure 5.10. Comparison between the measured, black cross, and predicted OH, blue 
circles, for the piperazine kinetic study. Tracers; isoprene, limonene, trimethyl benzene, 
piperazine. 
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Figure 5.11. Comparison between the measured, black cross, and predicted OH, blue 
circles, for the piperazine kinetic study. Tracers; pyrrole, limonene, piperazine. 



Chapter 5  ACA Campaign 

153 

 

These plots show a clear difference in the measured concentrations, left axis, 

and calculated, right axis, with calculated OH being at least 10 times lower than 

the measured OH. This under prediction was also observed in the product studies 

where the removal of the initial amines was slower than would be expected for 

the measured OH. There are several possible explanations for this. The first is 

that the comparison assumes that the chamber is well mixed. However, because 

both instruments were sampling from different locations and both were sampling 

near the outer edges of the chamber there is the possibility of poor mixing 

resulting in an uneven distribution of both the OH and amine throughout the 

chamber. The second is that a possible interference in the FAGE cell caused by 

species in the chamber is contributing to the elevated OH signal. These are 

species that will generated OH in the detection cell when photolysed by the 308 

nm laser light, or by decomposition when they are drawn into the low pressure 

cell146. No interference testing has been done for the Leeds aircraft cell in relation 

to this project so it is not possible to identify a specific compound. A final 

possibility is that an incorrect calibration factor for the FAGE instrument was 

applied.  

As well as the weekly calibrations conducted during the campaign, the FAGE 

instrument was calibrated at Leeds before and after the ACA campaign for OH. 

These calibrations showed that when calibrated at Leeds the instrument was 

much more sensitive to OH than when calibrated at the EUPHORE chamber. 

When applying the Leeds calibration factors the measured OH concentrations 

decrease by a factor of 3. This decrease, shown in figure 5.12, does bring the 

measured values closer to the predicted values however there is still no 

agreement indicating that an unknown effect, such as inadequate chamber 

mixing, that is still contributing to the difference.  
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Figure 5.12. Comparison of the measured OH concentration, with both the Leeds, red 

line, and Valencia, black line, calibration factors applied, to the predicted OH, blue line 

for an amine study of Morpholine. 
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5.3.2 Decay of HO2 in the dark 

When the chamber was closed at the end of an experiment, elevated 

concentrations of HO2 were still observed for up to 1.5 hours after. This observed 

decay was compared to a modelled decay of HO2  Predicted using a model 

incorporating the mechanisms described by reactions 53 to 59 and utilising the  

Kintecus integrator103.  For the reactions used to in the model, the rate constants 

have been calculated using the IUPAC recommended values108 for the average 

chamber temperature during the HO2 decay. The model inputs (HO2, NO2, NO, 

OH, O3) were set to the concentration of each species 5 minutes after the 

chamber was closed.  

 

HO2 + HO2

k=1.56E−12
𝑐𝑚3𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1𝑠−1
→              H2O2 + O2 

R(53)  

 

HO2 + HO2 +M

k=1.10E−12
𝑐𝑚3𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1𝑠−1
→              H2O2 + O2 +M 

R(54)  

 

HO2 + NO

k=8.54E−12
𝑐𝑚3𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1𝑠−1
→              NO2 + OH 

R(55)  

 

HO2 + O3

k=2.14E−15
𝑐𝑚3𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1𝑠−1
→              OH + 2O2 

R(56)  

 

HO2 + OH

k=1.09E−10
𝑐𝑚3𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1𝑠−1
→              H2O + O2 

R(57)  

 

HO2 + NO2

k=3.10E−12
𝑐𝑚3𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1𝑠−1
→              HO2NO2 

R(58)  

 
HO2NO2

k=0.158
𝑠−1
→     HO2 + NO2 

R(59)  
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Figure 5.13. Comparison between measured HO2, black crosses, and a calculated HO2 
decay, black circles. The decay of HO2 occurs after the chamber has been closed at time 
zero. The full measurement day is shown in figure 6.6. 

Figure 5.13 shows the comparison between the measured HO2 and the model 

results. The model shows a considerably faster decay in HO2 concentration than 

is seen in the chamber. This finding indicates that there is a source of HO2 in the 

chamber in the dark. Possible sources of HO2 in the dark include amine RO2 

species that can react with NO and O2 to form HO2 (R 60-64), or reactions 

between O3 and species with double bonds generating Criegee intermediates 

that can break down to form HO2
147.  

 
𝑅𝑂2 + 𝑁𝑂 → 𝑅𝑂 

R(60)  

 
𝑅𝑂2 + 𝑁𝑂3  → 𝑅𝑂 

R(61)  

 
𝑅𝑂2 + 𝑅𝑂2  → 𝑅𝑂 

R(62)  

 
𝑅𝑂2 + 𝐻𝑂2  → 𝑅𝑂𝑂𝐻 + 𝑂2 

R(63)  

 
𝑅𝑂 + 𝑂2→  𝐻𝑂2 

R(64)  

This will be significant as in regions of high amines where this will be both a 

potential source during the day and will extend the production of HO2 after sunset 

when the primary radical sources are normally reduced. This occurs because 

HO2 can react with O3 and NO3 generating OH leading to removal of VOCs.  

0 2000 4000 6000

0.0

2.0x10
8

4.0x10
8

6.0x10
8

8.0x10
8

1.0x10
9  Measured

 Calculated

[H
O

2
] 

/ 
m

o
le

c
u

le
s
 c

m
-3

Time / seconds



Chapter 5  ACA Campaign 

157 

 

5.4 Chapter Summary 

This chapter has described the use of the Leeds FAGE instrument during the 

atmospheric chemistry of amines project carried out at the EUPHORE chamber 

in June and August 2016. Results showed high concentrations of HO2 on all days 

when the radical precursor, IPN, was added, while concentrations of OH were 

always close to the background signal. Challenges were discovered due to 

differences between measured OH and a calculated OH concentration, using the 

removal rates of different compounds in the chamber that indicated possible 

problems with uneven mixing in the chamber, possible FAGE interferences or 

uncertainties in OH calibration factors. Variation in the calibration coefficient due 

to the quality of gas used will be an important factor to consider when calibrating 

on field campaigns were the quality of the cylinder gas may vary depending on 

the manufacturing process. To account for this it will be important that calibrations 

are done using a trusted cylinder gas source before and after campaigns to 

ensure consistency of the calibration coefficient. 

The Leeds aircraft FAGE cell needs to be tested for interferences from amines 

and their oxidation products to identify to what extent it is affected. These possible 

interferences from amine environments would need to be considered during 

future field measurements of OH. However recent developments of inlet pre 

injector devices (IPIs) that are used on field FAGE instruments are able to 

measure the OH interference. The device operates by removing ambient OH from 

the sample gas using a scavenger such as propane. By turning the flow of the 

scavenger on and off the instrument can measure ambient OH or the OH 

interference generated in the detection cell. 

After the chamber was closed HO2 was seen to remain for up to 2 hours. 

However, a modelled HO2 decay was considerably faster indicating the presence 

of an HO2 source in the dark potentially linked to amine RO2’s or the formation of 

Criegee radicals. It was not possible to expand of this observation further as there 

was limited data so dependence on variations of NOx, O3 or amine type could not 

be studied. Future studies could be include investigations into the night time 

sources of HOx generated by amine based carbon capture plants, either via field 

studies or chamber measurements. 
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Appendix A 

Actinometry formula Derivatization 

The following equations are used to calculate the equation used to calculate the 

lamp flux in section 3.3.1. 

The rate of production of O(1D) is; 

𝑑[𝑂( 𝐷)]1

𝑑𝑡
=  [𝑁2𝑂] 𝜎𝑁2𝑂 Ø𝑁𝑂𝐹 

 

The rate of removal of O(1D) through reactions is given by; 

−𝑑[𝑂( 𝐷)]1

𝑑𝑡
=  𝑘1 [𝑂( 𝐷)]

1 [𝑂2] + 𝑘2 [𝑂( 𝐷)]
1 [𝑁2] + ((𝑘3 + 𝑘4) [𝑂( 𝐷)]

1 [𝑁2𝑂]) 

 

By assuming a steady state so that O(1D) photolysis and removal are equal; 

[𝑁2𝑂] 𝜎𝑁2𝑂 Ø𝑁𝑂𝐹 = 𝑘1 [𝑂( 𝐷)]
1 [𝑂2] + 𝑘2 [𝑂( 𝐷)]

1 [𝑁2] + (𝑘3 + 𝑘4) [𝑂( 𝐷)]
1 [𝑁2𝑂] 

 

The rate of formation of NO2 is given by; 

𝑑[𝑁𝑂]

𝑑𝑡
= 2𝑘4[𝑂( 𝐷)]

1 [𝑁2𝑂] 

 

This equation can then be integrated; 

[𝑁𝑂]𝑡 = 2𝑘4[𝑂( 𝐷)]
1 [𝑁2𝑂]𝑡 

[𝑁𝑂]0 = 0 

 

By rearranging in terms of O(1D) and substituting into the steady state equation 

gives the equation for calculating the lamp flux; 

 𝐹 𝑡 =
[𝑁𝑂] (𝑘1 [𝑂2] + 𝑘2 [𝑁2] + (𝑘3 + 𝑘4) [𝑁2𝑂])

2𝑘4 𝜎𝑁2𝑂  Ø𝑁𝑂[𝑁2𝑂]2
 

 

 


