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ABSTRACT 

Plasma cells are professional antibody secreting cells unlike their naïve B cell (NBC) 

precursors. By exploiting the remarkable contrast in their secretory capacity, we set out to 

identify novel factors involved in antibody secretion and PC physiology using a multiplatform, 

cross-species proteogenomics approach. Using this methodology, we have reproducibly 

identified a large number of genes which were consistently upregulated in antibody secreting 

cells (ASCs). As expected, genes involved in protein folding and membrane trafficking are 

significantly enriched in our data set thus validating this method. As thousands of genes were 

differentially regulated in PCs, we generated a web based bioresource to aid in the visualisation 

of our data. Using this resource, we have investigated the regulation of several genes families 

during plasma cell differentiation including transcription factors, coat proteins, tethers and 

SNAREs.  Our analysis suggests that ASCs specifically upregulate vesicle coats and tethers 

acting in the early but not the late secretory pathway. Interestingly, several genes implicated in 

collagen secretion are also significantly upregulated in ASCs suggesting that they may have a 

more general role in secretion than previously thought. For example, we have identified that 

NBAS a component of the ER localised tethering complex is upregulated in ASC which may 

explain why patients with mutations in this gene have defects in collagen secretion and 

hypogammaglobulinemia. Using the web-based resource, we have also identified a large 

number of poorly characterised genes which are significantly upregulated in ASCs so 

potentially having a role in antibody folding and/or trafficking (CRELD2, TMEM214 and 

HID1). Finally, this web-based resource will be useful for those aiming to identify novel 

biomarkers for plasma cells and factors which can be manipulated to enhance secretory 

capacity.  
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1 INTRODUCTION 

1.1 THE ENDOMEMBRANE SYSTEM AND VESICULAR TRAFFICKING 

Cell membranes are essential for the existence of living cells. Membranes are generally 

composed of lipid bilayers with a mosaic of embedded proteins that enclose cell contents in 

order to distinguish them from their external environment. In eukaryotic cells, membranes form 

a barrier between cytosol and intracellular organelles. This allows specialized compartments 

such as the nucleus, endoplasmic reticulum, Golgi apparatus, vesicles and so on to maintain 

their characteristic composition [1]. Eukaryotic cells employ vesicular trafficking to deliver 

newly synthesized lipids and proteins to their destination. Typically, proteins synthesized and 

folded in the Endoplasmic Reticulum (ER) are transported to the Golgi, where they undergo 

post-translational modifications (such as glycosylation, sulfation, etc) and packaged into 

transport carriers which bud from the trans Golgi network (TGN) and fuse with the destined 

target to deliver their protein contents [2]. 

1.1.1 Protein processing in the endoplasmic reticulum 

Approximately 30% of newly synthesised proteins are incorrectly folded in mammalian cells 

[3].  Proper removal of these proteins is a necessity for cell survival as misfolded proteins can 

disrupt ER function by aggregating via exposed hydrophobic residues or compete with 

substrate binding of correctly folded proteins [4]. The unfolded protein response (UPR) acts to 

remove these proteins from the ER and restore ER homeostasis. PERK, ATF6 and IRE1 are 

ER transmembrane protein that act as sensors of ER stress [5].  The PERK mediated pathway 

inhibits protein synthesis and reduces the generation of reactive oxygen species to relieve ER 

stress. ATF6 operates by upregulating the transcription of chaperones and protein folding 

enzymes and IRE1 performs the dual function of upregulating chaperones and protein folding 
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enzymes while also mediating degradation of terminally misfolded proteins [5]. If homeostasis 

cannot be achieved these pathways can commit to ER stress induced cell death [6]. In the 

following section we discuss key players in protein processing in the ER. 

1.1.1.1 ER Chaperones mediating protein folding and degradation 

1.1.1.1.1 CANX/CALR lectins 

The folding of nascent proteins in the ER is governed by lectin chaperones, calnexin (CANX) 

and calreticulin (CALR), and the protein disulphide isomerase, ERP57 (PDIA3) [7–9]. 

Misfolded proteins are recognised by the BiP chaperone (HSPA5), which facilities refolding 

or entry into the proteasomal degradation pathway. 

1.1.1.1.2 BiP 

The BiP chaperone (HSPA5) is a member of 70 KDa heat shock protein (Hsp70) family and 

acts as a master regulator of protein synthesis. When proteins are misfolded, BiP is able to bind 

to their characteristic exposed hydrophobic residues and thus prevent misfolded protein 

aggregation in the ER. This in turn allows these proteins to re-enter the CANX/CALR cycle 

and undergo further folding. If re-entry is delayed due to pressure from high levels of protein 

synthesis, or if the proteins are terminally misfolded, BiP promotes entry of these proteins into 

the ER associated degradation (ERAD) machinery through a complex mechanism [10, 11]. 

Degradation of soluble substrates and transmembrane proteins with luminal defects is 

dependent on BiP, whereas those with cytosolic defects enter the ERAD pathway in a BiP 

independent manner [12, 13]. 

1.1.1.1.3 EDEM 

EDEM (ER-degradation enhancing mannosidase-like protein) chaperones recognises 

terminally misfolded substrates from the CANX/CALR cycle and target them to the ERAD 

machinery [14–16]. Repeated demannosylation governs the degradation of misfolded 

glycoproteins. EDEM induces misfolded protein degradation by inhibiting the proteolysis of 
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the mannosidase, ERman1, and reglycosylation of its substrate, i.e. misfolded proteins [17, 18]. 

EDEM then targets these demannosylated proteins to the ER associated ubiquitin ligase 

complex via interaction with lectin chaperones, OS9 and XTP-3B (ERLEC1), and subsequent 

retrotranslocation via interaction with the translocon candidate, Derlin1 [19, 20].  

1.1.1.1.4 ERdj5 

Aberrant proteins have to be unfolded via reduction of disulphide bonds before they can be 

retrotranslocated to the proteasome for degradation. The 40 kDa heat shock protein, ERdj5 

(DNAJC10), is a luminal protein that acts as a BiP co-chaperone. It reportedly forms a complex 

with EDEM1 and reduces the disulphide bond of EDEM1 substrates to allow retrotranslocation 

of misfolded proteins via BiP [21]. 

1.1.1.2 Protein Glycosylation in the ER 

The majority of newly synthesized polypeptides are N-glycosylated with a high mannose 

containing core glycan group (Glc3GlcNAc2Man9) on entry into the ER [22]. Subsequent 

deglucosylation of 2 glucose residues allows nascent proteins to enter the CANX-CALR 

folding cycle [7–9]. Complete deglucosylation by α-glucosidase II (GANAB/PRKCSH), 

allows proteins to dissociate from the lectin chaperones and is typically done after folding 

process is complete. If resultant proteins are misfolded, the BiP chaperones bind to exposed 

hydrophobic residues and prevent their aggregation. Subsequently, re-glycosylation of these 

proteins by UDP-glucose: glycoprotein glucosyltransferase (UGGT1 / UGGT2) allows them 

to re-bind to the lectin chaperones and undergo further rounds of folding[22].   

If proteins have been correctly folded, ERMan1 mannosidases (MAN1A1, MAN1A1, 

MAN1B1, MAN1C1) demannosylate their N-glycan to produce GlcNAc2Man8 isomers, 

which prevents any further re-glucosylation and re-entry into the folding machinery so that the 

proteins can then exit the ER. On the other hand, EDEM bound terminally misfolded proteins 



Chapter 1 – Introduction 

 

Page | 5  

 

undergo further rounds of demannosylation by ErMan1 complex and enter the ERAD pathway, 

where proteins are shunted to the proteasome for proteolytic degradation [22]. 

1.1.2 Delivery of newly synthesized proteins to the Golgi apparatus 

Newly synthesized proteins that pass the folding quality check at the ER are typically packaged 

into vesicles and delivered to the ER-Golgi intermediate complex (ERGIC) and/or the cis-

Golgi. The well characterised COPII vesicle is thought to mediate this process [1]. This vesicle 

consists of a cytosolic small GTPase, called SAR1. In its GTP bound form SAR1 anchors to 

ER exit sites and recruits the heterodimeric inner coat proteins, SEC23-SEC24 via specific 

interaction with SEC23. SEC23 can later promote GTP hydrolysis, to promote SAR1, and thus 

COPII complex, disassociation from the donor membrane after it has been fully assembled 

[23].  

The SEC24 subunit is thought to play a key role in cargo sorting by specifically binding 

to export signals on cargo proteins and drawing them to the ER exit site. Some cargo are known 

to be loaded into COPII independently of SEC24, i.e. via transport adaptors or simple diffusion 

[24]. SAR1 and SEC23 are thought to interact with the outer COPII heterotetrameric coat 

proteins, SEC13-SEC31 and complete the COPII complex. The outer COPII coats of fully 

assembled COPII complexes are able to polymerise and give shape to the newly forming COPII 

vesicle. The resultant extruded portion of the ER membrane is then able to bud off and travel 

to the ER-Golgi intermediate complex (ERGIC) or the cis-Golgi [23]. 

1.1.3 Retrieval of ER resident proteins 

After delivering cargo to Golgi apparatus, ER resident and escaped misfolded proteins have to 

be trafficked back to maintain the volume and integrity of the ER and prevent cell surface 

expression of non-natively folded proteins. COPI-coated vesicles are implicated in this process 

[1]. However, this vesicle not only functions in the replenishment of ER membrane components 

but also operates in intra-Golgi membrane trafficking for the correct localisation of Golgi 
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resident glycosyltransferases. COPI has also been proposed to operate in endosomal trafficking 

[25]. 

 COPI is made up of 7 coat proteins, α-COP (COPA), β-COP (COPB1), β’-COP 

(COPB2), γ-COP (COPG), δ-COP (ARCN1), ε-COP (COPE) and ζ-COP (COPZ) [25].  At the 

Golgi-apparatus, cytosolic small GTPase, ARF1, can anchor to the Golgi membrane in its GTP 

bound form that then likely co-recruits γ-COP along with the ARF activating protein, 

ARFGAP2 or ARFGAP3. These ARFGAPS can sense membrane curvature and function to 

promote ARF1-GTP hydrolysis and subsequent disassembly of the COPI coat complex from 

the membrane of a fully formed vesicle [25]. α and β’ COP subunit have been implicated in 

cargo sorting by specifically binding to export signals on cargo proteins and concentrating them 

at the Golgi membrane. Adaptor proteins such as KDEL and ERGIC2-3 complex also mediate 

sorting by binding to COPI subunits and simultaneously recognising specific signals on cargo 

proteins. As six out of seven COPI subunit are adjacent to the donor membrane, these proteins 

could potentially participate in cargo sorting, however, the role of specific COPI subunits other 

than α and β’ COP are yet to be explored [25]. 

1.1.4 Post-Golgi transport of post translationally modified proteins 

At the Golgi apparatus, correctly folded proteins undergo post-translation modification and are 

then shunted to their target destination. As in the early secretory pathway, Golgi and plasma 

membrane volume and function is maintained by receptor mediated endocytosis from the cell 

surface to the Golgi via endosomal compartments and subsequent endocytic recycling of cargo 

from the Golgi back to the plasma membrane.  Clathrin coated vesicles have been implicated 

in the transport of cargo between the trans-Golgi, endosomal compartments and the plasma 

membrane [26].  

Clathrin coat complex is composed of three light chains and three heavy chains that 

interact to form a triskelion shape [27]. There are two known types of clathrin light chains, 
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CLTA and CLTB, and two types of known clathrin heavy chains (CLTC, CLTCL1) [27]. The 

clathrin triskelion structure can polymerise to create a polyhedral lattice that envelops the 

budding vesicle. Unlike COPI and COPII, clathrin does not bind to or sort cargo. Instead, 

adaptins or adaptor proteins have been implicated to perform this function [26]. The adapter 

protein 1 complex (AP-1), mediates endocytic recycling, i.e. the forward transport of protein 

from the trans-Golgi and/or recycling endosome to the plasma membrane. In contrast, AP-2 

mediates receptor mediated endocytosis, i.e. delivery of cell surface cargo to endosomal 

compartments [28]. 

1.1.5 Vesicle tethering  

We have illustrated an overview of tethering factors and coat proteins in Fig 1-1. Incoming 

vesicles from a donor membrane have to be recognised, docked and then fused to the acceptor 

membrane for the delivery of cargo. Large proteins or multi-protein complexes mediate 

Fig 1-1 | Coordination of Tethers and Coated vesicles in membrane trafficking. 
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interaction between target membrane and the incoming vesicles and restrain the latter in close 

proximity to SNAREs at the target membrane [29]. This promotes the formation of a trans-

SNARE complex between a vesicle embedded SNARE (v-SNARE) and its counterparts at the 

target membrane (t-SNARE). This promotes vesicle fusion at the target membrane [30].  

1.1.5.1 Tethering at the early secretory pathway 

1.1.5.1.1 TRAPP complex 

Studies in yeast have demonstrated that the heptameric TRAPPI complex may act as a tethering 

factor for trapping COPII coated vesicles at ERGIC and cis-Golgi. It’s homolog, TRAPPII, 

containing 3 additional protein subunits, is speculated to function in the tethering of COPI 

vesicles for intra-Golgi transport [29].  

1.1.5.1.2 COG 

The Conserved Oligomeric Golgi (COG) complex is an octameric tethering factor that serves 

as a tether in intra-Golgi retrograde transport to “catch” COPI vesicles arriving at the cis-Golgi. 

COG has been implicated in the correct localisation of glycosylation enzymes and other Golgi 

resident components [31].  

1.1.5.1.3 USO1 / p115 

USO1 was one of the first tethering factors implicated in ER-Golgi transport. It is a large 

coiled-coil protein that is believed to primarily operate at the cis Golgi. The mechanism of 

action of this protein is a topic of debate. One model suggests that USO1 acts in intra-Golgi 

transport by binding to the GOLGAB1/giantin localised to incoming COPI vesicles, and then 

binding to GOLGA2/ GM130 at the cis-Golgi to mediate tethering at this membrane [29].  

Another model suggests that two of the four coiled-coil domains of USO1, i.e. CC1 and 

CC4, may simultaneously bind a COPII v-SNARE and cis-Golgi t-SNAREs to promote the 

formation of the trans-SNARE complex for anterograde transport of cargo from the ER to 

Golgi apparatus [32].  
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1.1.5.1.4 NRZ Complex 

In mammalian ER, retrograde transport from Golgi to ER is thought to be mediated by the NRZ 

complex. This is a multi-subunit tethering factor made up of the proteins, NBAS, RINT1 and 

ZW10. NRZ is thought to promote trans-SNARE assembly and vesicle fusion by binding to 

the v-SNARE, SEC22B, on incoming COPI vesicles as well as the ER bound t-SNARE 

complex composed of STX18, USE1, and BNIP1 [33].  

1.1.5.2 Post-Golgi tethering 

1.1.5.2.1 CORVET/HOPS 

The CORVET and HOPS are heterohexameric tethering factors that share 4 subunits. HOPS 

localises to lysosomes and late endosomes and is implicated in the tethering of incoming 

vesicles from the early endosomes, TGN and autophagosomes containing cargo destined for 

lysosomal degradation [34]. The less understood CORVET complex is speculated to work as 

a tether for homotypic fusion, wherein sequential endosomal fusion promotes the sorting of 

membrane proteins in late endosomes and endocytic recycling to the plasma membrane. Thus, 

this tether is believed to localise to early/sorting endosomes [35].  

1.1.5.2.2 GARP Complex 

The GARP complex is a heterotetrameric complex proposed to perform as the tether for 

retrograde transport of vesicles arriving from the endosomes to the TGN [29].  

1.1.5.2.3 Exocyst 

The Exocyst complex is an octameric complex that serves at the plasma membrane as a tether 

for vesicles arriving from TGN and recycling endosomes. Exocyst complex is implicated in 

polarised exocytosis in budding yeast, synaptogenesis as well as neurite outgrowth during 

nervous system development [29]. However, alternative tethering complexes may act at the 

plasma membrane as synaptic vesicles are found to undergo membrane fusion independent of 

the Exocyst complex [29] 
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1.1.6 SNAREs  

SNAREs mediate the last step of vesicle docking and fusion to the target membrane. SNARE 

proteins on the vesicle and recipient membrane combine to form a 4-α-helical coiled-coil called 

the trans-SNARE complex (TSC) that underpins the docking and fusion of incoming vesicles 

[36]. Functionally SNARE proteins are divided based on their association to vesicles (v-

SNAREs) or the target membrane, (t-SNAREs) [36].  

t-SNAREs contribute three coiled-coils to the TSC, i.e. 1 heavy and 2 light chain motifs 

[37]. t-SNAREs can also be classified as Q-SNAREs and divided into 4 subcategories. Qa 

SNAREs typically contribute one heavy chain motif to the TSC. Qb and Qc SNAREs each 

contribute a light chain motif to heterotrimeric t-SNAREs, whereas Qbc SNAREs contributes 

2 coiled-coil light chains to a heterodimeric t-SNARE [37].  

v-SNAREs are tail anchored proteins that always contribute a single coiled-coil motif 

to the TSC. Structurally, these proteins are classified as R-SNAREs. As shown in Fig 1-2, one 

Fig 1-2 | Schematic diagram of structural and functional classifications of SNAREs. v-SNAREs are always R-

SNAREs. t-SNAREs are made up of 2-3 Q-SNAREs (2 light and 1 heavy coiled-coil motif). The heavy chain is 

typically a Qa SNARE. The light chains can be a single Qbc SNARE or a combination of Qb and Qc SNARE. 
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R-SNARE and 3 Q-SNAREs are needed to form a fusogenic trans-SNARE complex. An 

overview of SNARE localisation is given in Fig 1-3 [38]. 

 

1.1.6.1 Early Secretory Pathway 

1.1.6.1.1 ER-Golgi/ERGIC Anterograde transport 

YKT6 or SEC22B typically act as the v-SNAREs for COPII coated vesicles as illustrated in 

Fig 1-3 [36]. Studies have shown that YKT6 is able to fully substitute the role of SEC22B in 

COPII coated vesicles [36].  At the Golgi apparatus, these proteins can interact with the Q-

SNAREs: STX5, BET1 and GOSR2 [33].  A similar Q-SNARE complex operates at the 

Fig 1-3 | Overview of SNARE complex localisation in the cell. (Adapted from Wang et al). 
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ERGIC for the fusion of COPII, but in place of GOSR2, its isomer, GOSR1, lends a light chain 

coiled-coil motif to the ERGIC t-SNARE. 

1.1.6.1.2 Golgi-ER retrograde transport 

At the ER, the Q-SNAREs, syntaxin 18 (STX18), BNIP1 and USE1 make up a heterotrimeric 

t-SNARE. The NRZ complex, discussed in Section 1.1.5.1.4, traps incoming COPI vesicles by 

binding to the R-SNARE, SEC22B, and subsequently promotes the formation of the TSC [33].  

1.1.6.1.3 Intra-Golgi Retrograde transport 

Retrograde transport of cargo from trans-Golgi stacks to the cis-Golgi is thought to be mediated 

by the vesicular R-SNARE, YKT6, and the heterotrimeric t-SNARE complex consisting of the 

Q-SNAREs: syntaxin 5 (STX5), GOSR2 and BET1L. This SNARE complex is also believed 

to also operate in the tethering of vesicles returning from recycling endosomes to the TGN 

[36].  

1.1.6.2 Post-Golgi Pathway 

1.1.6.2.1 Retrograde transport from plasma membrane to TGN via endosomes 

Another heterotrimeric t-SNARE complex composed of STX16, VTL1A and STX6  mediates 

vesicle fusion in retrograde transport from the plasma membrane to the trans-Golgi via 

recycling endosomes through interaction with the vesicular R-SNARE, VAMP4 [39].  

1.1.6.2.2 Anterograde transport from the TGN to late endosome and/or lysosomes 

Fusion of vesicles destined for lysosomal degradation is mediated by the t-SNARE complex 

composed of the Q-SNAREs: STX7, VTL1B and STX8. At late endosomes this complex 

typically form a trans-SNARE complex with vesicles containing VAMP8, whereas lysosomal 

t-SNAREs interact with VAMP7 [40]. 

1.1.6.2.3 Exocytosis of lysosomal cargo 

Heterodimeric SNAREs operate at the plasma membrane. Secretory granules budding from 

lysosomes are thought to be tethered by the cell surface Q-SNAREs, STX4-SNAP23, that 
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forms a complex with the R-SNARE, VAMP7 [41]. Fusion of lysosome and the plasma 

membrane typically occurs in order to quickly patch leaks at the plasma cell membrane [42]. 

1.1.6.2.4 Regulated secretion of synaptic vesicle 

In the regulated secretory pathway, cargo destined for exocytosis are held within transport 

carriers until a stimulus promotes their release. In response to stimuli, synaptic vesicles release 

their cargo via fusion with the plasma membrane. This is thought to be mediated by the 

heterodimeric Q-SNARE complex consisting of STX1, SNAP-25 and the R-SNARE, VAMP2 

[43]. 

1.1.6.2.5 Exocytosis of secretory granules 

Plasma membrane fusion of pre-docked secretory granules carrying cargo, such as insulin, is 

thought to utilise STX4-SNAP23 t-SNARE complex and the VAMP2 v-SNARE [44]. Fusion 

of newly arriving secretory granules, on the other hand, reportedly involves the Q-SNARE, 

STX3 and the R-SNARE, VAMP8, both of which are located in the secretory granule itself 

[45]. Recently, the t-SNARE, STX1A, has been reported to interact with VAMP8 to replenish 

insulin granules at the plasma membrane of pancreatic β-cells  [44]. 
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1.2 PLASMA CELLS – A MODEL FOR STUDYING SECRETION 

Unlike regulated secretion, constitutive secretion does not require a stimulus to deliver cargo 

to the cell surface. This pathway is a fundamental process by which cells transport the majority 

of newly synthesized lipids and proteins to the plasma membrane. In this process, transport 

carriers are spontaneously secreted from the cell within minutes of exiting the Golgi apparatus 

and this process is independent of external stimuli [46]. Examples of constitutive cargo include 

collagen, fibronectin, and albumin [1]. The constitutive pathway operates in all cells at a basal 

level. However, professional secretory cells, such as plasma cells (PC), enhance this 

constitutive secretory pathway to expressly secrete thousands of proteins, in this case 

antibodies, per second [47].  

1.2.1 Plasma Cell Differentiation 

When resting B cells encounter an antigen they rapidly proliferate and differentiate into 

antibody secreting plasma cells. These are key effectors of the adaptive immune system that 

Fig 1-4 | Plasma cell Differentiation from Follicular B cells 



Chapter 1 – Introduction 

 

Page | 15  

 

protect our body from invading pathogen. Plasma cells can arise from 3 different types of B 

cells:  B1 B cells, Marginal zone B cells and follicular B cells.  

B1 B cells 

B1 B cells typically reside in the peritoneal cavity, pleural cavity and mucosal sites. They 

function in an innate-like manner and rapidly respond to invading pathogen. They produce 

poly-specific antibodies which means that they can recognise many different antigens with low 

affinity. These cells are responsible for maintaining humoral level of IgM and are also 

implicated in a protective role during infancy. B1 B cells are activated in a T-independent 

manner and, therefore, most abundant during vaccination or infection [48]. 

Marginal Zone B cells 

Marginal Zone B cells are typically located in the marginal zone of lymphoid organs such as 

spleen, tonsils and lymph nodes. They are polyreactive and mount a rapid, T-independent 

response to blood borne pathogens that become trapped in these organs. Furthermore, they are 

also able to present antigen to follicular B cells in T-dependant responses [48]. 

Follicular B cells 

Follicular B cells are located in the follicles of lymphoid organs. These cells typically recognise 

antigen in a T-dependant manner with higher specificity than both B1 and marginal zone B 

cells. Upon T-dependant activation, a portion of these cells rapidly proliferate and differentiate 

into short-lived plasmablasts for an early response to infection (Fig 1-4A). These plasmablasts 

primarily secrete IgM and a small amount of IgD that bind antigen with moderate specificity 

[48].  

Another portion of activated B cells will form a germinal centre (GC) in the lymphoid 

follicle through rapid proliferation followed by hypermutation (Fig 1-4B). Hypermutation 

generates B cell populations with varying affinity for the antigen. Those B cells with highest 
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antigen affinity will be positively selected via CD4+ T-Helper cell while the rest will undergo 

apoptosis. This then leads to the generation of high affinity memory B cells and also antibody 

secreting cells that can class switch to secrete IgE, IgA, IgG etc. While most of these 

proliferating early plasma cells / plasma blasts are relatively short lived, a small portion of GC 

derived plasma cells are able to migrate to bone marrow to become long-lived terminally 

differentiated plasma cells [49]. 

When naïve B cells (NBCs) encounter antigens (e.g. lipopolysaccharide) that cause 

cross linking of B cell receptors, the resultant antigen-receptor bond is strong enough to induce 

activation independent of T-helper cells (Fig 1-4C). In these cases, follicular B cells can form 

long lived plasma cells independent of affinity maturation at the GC [50].  

In 1986, Hibi et al used ELISA sandwich assays to estimate the rate of antibody 

secretion in vitro and found that plasma cells secreted between 13-27 thousand antibodies per 

second. [51]. In 1993, Werner-Favre showed that human plasma cells are capable of secreting 

~5000-6000 antibodies per second using limiting dilution [52]. A more recent study in 2009 

utilised a flourospot ELISA assay to estimate antibody secretion per cell and found that plasma 

cells in the blood secreted ~150 thousand antibodies per second while splenic plasma cells 

secreted 30 thousand antibodies per second [53].  As such it is apparent that plasma cells and 

plasmablasts are very highly specialised for secreting antibodies per second unlike NBCs [51]. 

In this project we exploit this remarkable difference in the secretory capacity of antibody 

secreting cells (ASC) and their follicular B cell precursor to understand antibody secretion.  



Chapter 1 – Introduction 

 

Page | 17  

 

 

Antigen 

A B

C

Fig 1-5 | Electron micrograph of A. Naïve B cell and B. Plasma Cell. Unlike NBCs, an extensive rough 

endoplasmic reticulum is apparent in PC and the rER appears swollen due to pressure from newly synthesized 

antibodies [1]. C. qRT-PCR results showing the upregulation of positive regulators of protein secretion in NBCs 

over 7 days after antigen activation. Purified B cell were in vitro activated with CpG, PWN and SAC at day 0. 



Chapter 1 – Introduction 

 

Page | 18  

 

1.2.2 Structural and Physiological changes during Plasma Cell Differentiation 

Unlike NBCs, which sport minimal endomembrane (Fig 1-5A), PCs exhibit an extensive rough 

endoplasmic reticulum which appears swollen, due to high levels of newly synthesized 

antibodies (Fig 1-5AB) [1]. Kirk et al quantified this organellar expansion and found that the 

rough endoplasmic reticulum (rER) of PCs was up to 4 fold larger and Golgi apparatus was up 

to 6.5 fold larger than NBCs to accommodate for  the increased demand for protein biosynthesis 

and secretion [54]. The study also measured the mRNA expression of in vitro activated NBCs 

over time and found that known positive regulators of secretion, such as XBP1 and BLIMP1, 

are markedly upregulated as NBCs transitions to ASCs (Fig 1-5C) [54]. In each case, NBCs 

show little or no expression while PCs show a marked upregulation in positive regulators of 

protein secretion. Using Amazonia! Gene Expression Atlas we see that these expression 

patterns are mirrored in high-throughput microarray profile of NBCs and PCs (Fig 1-6).  

1.3 HYPOTHESIS 

Based on the remarkable structural and physiological changes during the transition of NBCs to 

ASCs, we hypothesize that the transcriptome of NBCs can be used as a non-secreting control 

and contrasted against their antibody secreting progeny to isolate components required for 

antibody secretion. This may give valuable insights into the coordination and regulation of 

known membrane trafficking components and determine which specialised trafficking 

machinery (if any) contribute to enhanced antibody secretion. Furthermore, this analysis may 

help identify novel membrane trafficking components and regulatory mechanisms that play a 

role in this process.  
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1.4 RESEARCH RELEVANCE 

1.4.1 A Proteogenomic Atlas of Antibody Secreting Cells 

1.4.1.1 Transcriptomics 

A number of research groups have generated high throughput transcriptome profiles for 

comparison of NBCs, PCs and their intermediates in mice and human model [55–58]. These 

studies primarily focus on identifying key transcription factors regulating the stages of PC 

differentiation. Thus the potential role of downstream membrane trafficking components have 

not been explored [55–58]. We note that some of these studies were carried out using RNA-

Seq, while others with microarrays.  

1.4.1.1.1 Microarrays vs RNA-Seq 

Microarrays 

Arrays utilised in these studied were primarily probe based and are ideal for testing the 

expression of known sequences. Detection of genes using the same microarray platform has  

been shown to have 70-85% reproducibility across studies [59]. The median correlation 

Fig 1-6 | Microarray Signal Intensities in various stages of plasma cell differentiation. Derived from Amazonia! 

Gene Expression Atlas [55, 72]. 
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between differentially expressed genes (DEG) across different microarray platforms is reported 

to be 87% on average. We utilise Affymetrix arrays in this project and MAQC benchmarking 

show that intra-platform differential expression calls for Affymetrix arrays exhibit 91-98% 

concordance [59].  

RNA-Seq 

RNA-Sequencing is ideal for finding both known and novel genes as they do not rely on pre-

designed probes. SEQC benchmarking reports show that different RNA-Seq pipelines can 

reproducibly detect the expression of 90% of all known genes and 95% of differentially 

expressed genes [60]. As such RNA-Seq results are considerably more reproducible than 

microarray and has also been shown to have a higher dynamic range [61]. Nevertheless, SEQC 

studies comparing differential expression values from microarray and RNA-Seq show high 

correlation (89-92%) [60].  

1.4.1.1.2 qPCR 

Real time polymerase chain reaction (RT-PCR) is a low throughput transcriptomic method that 

utilises fluorescently labelled probes to quantify the absolute or relative copy number of a 

transcript during PCR amplification. It is thought to be the “gold standard” of transcript 

quantification. Differential expression values for both microarray and RNA-Seq show good 

correlation (over 90%) with qPCR studies [60]. Nevertheless, qPCR is used as downstream 

validation for microarray results. This is because of the limited and somewhat fixed dynamic 

range of microarrays as opposed to qPCR [62]. A higher dynamic range means that qPCR can 

accurately detect transcripts with very high or very low copy numbers more accurately. In 

contrast, qPCR is not recommended for RNA-Seq cross-validation unless the experimental 

design involves few or no replicates. This is because RNA-Seq has a broader dynamic range, 

which is primarily governed by sequencing depth [59, 60].  
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1.4.1.1.3 High Throughput Transcriptomics 

High-throughput transcriptomics is predictive in nature not only due to technical and biological 

limitations, but also because it does not substantiate protein expression. This makes genes 

beyond the “top hits” unattractive for cell biologists to carry forward for downstream analysis. 

Sufficient number of replicates are required to overcome these limitations as discussed in 

Section 2.1.2.3. Unfortunately, generating enough replicates has been difficult due to 

previously high cost of RNA-Sequencing and in some cases sample scarcity. In recent years, 

combining data from comparable transcriptomes generated by independent studies, otherwise 

known as “meta-analysis”, has proven to be a powerful tool for improving the reproducibility 

of transcriptomic data and thus candidate selection [63, 64].  For example, Shi et al compared 

a number of antibody secreting cell types in the mouse model to find signature genes for these 

cell types as opposed to plasma cells [56]. We note that meta-analysis of the transcriptomes of 

the plasma cell lineage across species and across platforms have not yet been performed. 

Therefore, we aim to leverage existing transcriptomes of ASCs accumulating on public 

repositories to build a meta-analysis bioresource that improves the identification of 

reproducibly changing genes by combining data from across studies, species and 

transcriptomic platforms. The resultant database may enable us to isolate membrane trafficking 

machinery in the PC physiology with more accuracy and serve as a useful resource for 

biologists who are interested in the physiology of ASCs in general.   

 

1.4.1.2 Proteomics 

During the era of microarrays, large scale studies showed that less than 27% of the changes 

occurring in human transcript levels related to consequent shifts in protein abundance [65]. In 

the recent years, considerably improved correlation ( 60- 90%) depending on the cell line was 

observed [66–68]. This is mainly due to recent advances in RNA-Sequencing and high-
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resolution mass spectrometry that alleviated imperfections in the previous systems used to 

perform these analyses.  

The proteome of the plasma cell lineage has previously profiled using I.29μ+ 

lymphoma cells, which does not accurately reflect the wild type physiology [69, 70]. Moreover, 

the total number of detected proteins were small (~2000 proteins) compared to the yield 

achievable today by  high resolution mass spectrometry (~5000-10000 protein) [69, 70]. In 

order to study the physiological proteome of the PC lineage, our colleagues E. Rajan and A.W 

Asral have isolated B cells and in vitro generated ASCs, whose proteome were externally 

profiled using high resolution mass spectrometry. Using this data, we aim to analyse the 

correlation between mRNA and their corresponding protein product in the physiological model 

of the PC lineage. This may not only strengthen the validity of utilising transcriptomic analyses 

for candidate selection in individual members of the PC lineage but also serve as soft validation 

for differential transcriptomics.  

1.4.1.3 Visualization of Proteogenomic Data 

High throughput differential expression analyses typically output large excel sheets of 

hundreds to thousands of rows of differentially regulated genes. This makes it difficult for cell 

biologists to discern important expression patterns hidden beyond the top hits. A number of 

web-based tools such as Amazonia! and Genomicscape allow the mining and visualization of 

the microarray profiles of the PC lineage [71, 72]. However, these studies do not allow 

visualization of comparable experiments from different labs nor do they incorporate recently 

available RNA-Seq data or any proteomic analyses. Therefore, we aim to create a web 

application that summarises our proteogenomic bioresource to overcome these limitations. By 

visualising changes in mRNA expression alongside their corresponding protein product, this 

web application may allow biologists to better judge candidates for downstream analysis and 

potentially improve the cost effectiveness of downstream validation. 
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1.4.2 Protein Secretion in the Plasma Cell Physiology 

To date, functional genomics approaches to identify components of protein transport have 

relied on artificially inducing the secretion of labelled fusion proteins and then performing 

genome wide RNAi screening to determine whether the loss of a gene perturbs this secretion 

[73–75]. However, these studies were typically performed using embryonic Drosophila cells, 

HeLa and HEK cells, none of which are naturally optimized for high levels of protein secretion 

[73–75]. As such, bulk protein secretion has not been studied in a physiological model. To 

address this issue, we aim to utilise the proteogenomic bioresource of plasma cells, discussed 

in 1.4.1, as they are specialized for secreting thousands of antibodies per second [51]. This may 

help us identify patterns of expression that would otherwise be absent in an artificial model, 

isolate novel trafficking components and gain valuable insights into how known membrane 

trafficking components are coordinated and regulated in a physiological manner.   

1.4.3 Cell Markers for Antibody Secreting Cells 

To generate antibody secreting cells in vitro, NBCs have to be purified from the spleen, 

activated by a selected antigen and resultant ASCs have to be isolated from a mixed population 

of non-secreting B cells and ASCs. Typically ASCs are isolated by positive selection using the 

CD138/syndecan-1 [76]. However, CD138 expression has been found to be heterogeneous in 

plasma cells and inconsistent in the various stages of differentiation. For example, short lived 

ASCs express lower levels of CD138 compared to long-lived plasma cells [77]. This means 

that using CD138 as the sole marker ASCs purification only allows partial yield of antibody 

secreting cell population. Therefore, we aim to utilise proteogenomic analysis of ASCs to 

identify novel biomarkers common to antibody secreting cells regardless of their maturation 

stage and half-life. These biomarkers may potentially play a role in improving the yield of 

ASCs in a laboratory setting as well as aid in the targeted destruction of plasma cells in cancer 

therapy.  
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1.5 MEDICAL RELEVANCE 

Plasma cell related autoimmune disorders have been implicated in diseases such as lupus 

erythematosus, rheumatoid arthritis, and multiple sclerosis. Emerging treatments for multiple 

sclerosis, for example, involves aggressive chemotherapy to destroy circulating lymphocytes 

with subsequent stem cell transplantation [78]. Unfortunately, aggressive chemotherapy is not 

suitable for all patients and a safer alternative would improve the success and applicability of 

such treatment. A possible solution is the usage of cell surface markers to allow selective 

targeting and destruction of circulating lymphocytes. Rituximab, a monoclonal antibody (mAb) 

against the CD20 marker, is one of the most successful candidates for treating plasma cell 

malignancies [79]. Unfortunately, this treatment is not successful in multiple myeloma, where 

plasma cells downregulate CD20 expression [80]. As discussed in the previous section, the 

commonly used CD138 marker does not give full coverage of existing antibody secreting cells. 

This means that if this marker is solely used for targeted destruction, malignant ASCs may be 

overlooked thus increasing the chances of relapse. Therefore, we utilize proteogenomic meta-

analysis to isolate novel biomarkers of ASC. These may potentially be used in combination 

with existing markers to achieve better coverage of ASCs targeted for destruction and improve 

the prognosis of stem cell therapy.  

1.6 INDUSTRIAL RELEVANCE 

1.6.1 Production of Recombinant Proteins 

The global market for biologics was worth over 221 billion dollars in 2017, 43% of which is 

accounted for by the sale of mAbs such as Rituximab and erythropoietin [81]. Industrial 

production of biologics typically involves the culturing of transfected cell lines in batch culture 

bioreactor tanks where the cells produce and secrete gram quantities of therapeutic proteins 

that are then harvested from the media. This means that yield is directly related to the ability 
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of host cell lines to efficiently exocytose the recombinant protein. Chinese Hamster Ovary 

(CHO) cells are a widely used cell line for the industrial production of recombinant proteins 

including antibodies due to their ability to often correctly glycosylate human proteins [82, 83]. 

However, this system has relatively low yield, stress resistances, is more expensive than its 

bacterial or yeast counterparts. Most of these problems arise from the fact that the CHO cell 

line is not naturally optimized for large levels of protein secretion as well differences in species-

specific glycosylation.  

 

Genetic modification of host CHO cells has been proven to improve the performance of protein 

production [82, 84]. This strategy typically involves the overexpression of beneficial genes or 

the repression of unfavourable ones through RNAi silencing or gene knockout. In Fig 1-7, the 

orange block highlights a list of genes that have been overexpressed to increase the level of 

Fig 1-7 | Over 25 year of genetic integration of advantageous genes in CHO cells (Fischer, 2015). 
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secretion in CHO cells. These include XBP1 and BLIMP1, which are known to be highly 

upregulated in plasma cells compared to B cells [85]. While genetic engineering techniques, 

media and vector optimization over the years have considerably improved the CHO cell 

performance[86], there is still a significant difference in the titre of plasma cell antibodies (over 

1000 mg/L) compared to the best optimized CHO cell biologics (~863 mg/L) [87, 88]. 

Therefore, if we establish how known and novel components of membrane trafficking are 

coordinated and regulated in ASCs, the same behaviour can potentially be replicated in CHO 

cells to optimize the yield of recombinant proteins. Doing so may improve the cost 

effectiveness of biologics and minimize the growing cost associated with the increasing 

demand for therapeutic proteins in the healthcare industry. 
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2 PRELIMINARY TRANSCRIPTOMIC ANALYSIS 

2.1 BACKGROUND 

When naïve B cells (NBC) encounter an antigen, they become specialised antibody secreting 

cells (ASCs) that release thousands of antibodies per second to fight infection [51]. ASCs are 

key components of adaptive immunity and make up 1% of circulating cells in the human body 

[47]. Proliferating ASCs, known as plasmablasts (PB), mount a rapid, early response to 

pathogens, while the terminally differentiated plasma cells (PC) provide long term humoral 

immunity [89, 90]. As NBCs differentiate into ASCs they undergo a 4 fold expansion in ER, 

6.5 fold expansion in Golgi volume and exhibit a sharp upregulation in the mRNA and protein 

level of known positive regulators of secretion such as XBP1 and BLIMP1 [54].  

2.1.1 HYPOTHESIS 

Based on these extraordinary structural and physiological changes occurring in NBCs as they 

transition to factories of antibody production and secretion, we hypothesize that if the whole 

cell transcriptome of antibody secreting cells are compared to non-secreting naïve B cell 

precursor we are likely to find enrichment in known and potentially novel components of 

protein processing, protein trafficking as well as antibody secreting cell markers amongst genes 

upregulated in ASCs. 

2.1.2 High Throughput Transcriptomics 

High throughput transcriptomics such as RNA-Sequencing (RNA-Seq) and gene-chip based 

microarrays allow the simultaneous study of thousands of genes within a cell in a quick and 

cost-effective manner. 

2.1.2.1 DNA Microarrays 

While RNA-Seq is a more robust and accurate means for transcriptome analyses, microarrays 

remain the fastest, cheapest and the simplest way to measure total gene expression within a 



Chapter 2 - Preliminary Transcriptomic Reanalysis 

 

Page | 29  

 

cell. DNA microarrays typically consist of clusters of immobilized probes, where each cluster 

contains hundreds of short (25-50bp) oligonucleotide strands that are pre-designed to hybridise 

to a specific genomic sequence. Sample RNA is reverse transcribed in vitro to cDNA, 

biotinylated or fluorescently labelled and added onto these gene chips. These cDNA bind to 

their complementary probe while unreacted reagents are washed away. Thus, probe clusters 

fluoresce where labelled cDNA have hybridised.  Fluorescent scan of the Genechip yields 

optical intensity values for probes that correlate to the cDNA fragments’ abundance. Therefore, 

these fluorescent intensities can be exploited to estimate the relative expression of mRNA 

sequences and generate a snapshot of the transcriptome of a given cell (Fig 2-1).  

2.1.2.2 Sources of Variation for Microarray Data 

Systematic variations or noise exert consistent effects on multiple measurements and typically 

arise during RNA extraction, reverse transcription, labelling or photodetection methods [91]. 

As such the raw intensity values from microarrays cannot directly be classified as mRNA 

Fig 2-1 | Generic RNA detection method by microarrays. From TORAY, 2013 
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expression.  Fortunately, systematic variations can be estimated and corrected through well 

characterised normalization methods.  

Stochastic/random variations specifically affect a few genes or corresponding probe 

clusters. These can arise due to variations in cDNA quality, in vitro amplification, probe 

binding efficiency, probe cluster size, non-specific or cross hybridization, stray fluorescent 

signals as well as biological differences between subjects arising from genotypic differences 

such as single nucleotide polymorphisms (SNPs)  [91]. Unfortunately, not all of these can be 

estimated. While RNA-Seq alleviates probe related limitations, other stochastic variations 

affect this technique the same way as microarrays. This is one of the core reasons individual 

high-throughput transcriptomics studies often generate non-reproducible results. 

2.1.2.3 Replicates for normalisation and differential expression analysis 

In order to correct for systematic noise arising from experimental procedures, technical 

replicates are required. A minimum of three technical replicates are recommended for 

estimating and removing noise in microarrays [92]. However, because correlation in gene 

expression between technical replicates tend to be high (86-93%), many experimental designs 

have foregone the use of technical replicates due to sample scarcity or run cost, in the case of 

RNA-Seq. Instead, more importance is given to biological replicates as correlation of gene 

expression across subjects is considerably lower (66-78%) [93]. Statistical power of differential 

analysis is directly related to the number of replicates which confers the degree of freedom for 

calculating p-values. For example, the probability of correctly detecting 2-fold change with 10 

replicates is 100% in RNA-Seq, which is reduced to 87% when 3 biological replicates are used 

[94]. Therefore, best practise for both microarray and RNA-Seq is to use a minimum of 3 

biological replicates. Sample scarcity and cost of analysis have caused some studies to generate 

samples with no replicates. The p-values for such experiments have little meaning and is 

thought to be exploratory at best. However, differential expression in stimulation studies, such 
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as antigen activation of immune cells, has been shown to outweigh both biological and 

technical variation and should not be ignored [94]. This is especially true when conducting 

meta-analysis where the evidence for differential expression can be cross validated from other 

studies having suitable number of replicates. 

2.1.2.4 Utilising comparable Omics data  

As discussed, sufficient replicates to overcome these above-mentioned limitations can be cost-

inhibitive. As such, the practise of combining data from comparable transcriptomes generated 

by independent studies has proven to be a powerful tool for improving the reproducibility of 

transcriptomic data and thus candidate selection [63, 64]. This can be done in two ways 

depending on the homogeneity of the data: “merging” or meta-analysis.  

“Merging” is a method where comparable data from different labs is pooled together 

prior to performing statistical analyses [95]. This method requires adjustment to remove any 

unwanted variation arising from the data set being generated by different research groups or in 

different conditions (Fig 2-2A). Meta-analysis, on the other hand, involves pooling data 

together after requisite statistical analyses has been performed. As such, this method does not 

require any special adjustment and has been found to be more conservative than merging [95]. 

Although, “merging” results in more differentially expressed hits, the approach is difficult to 

apply in heterogeneous data generated from different species or different platforms due to 

disagreements in gene/transcript identifiers, orthologs and measurement types (RNA-Seq 

transcript count vs. microarray optical intensity).  
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2.1.3 Leveraging Publicly Available Transcriptomes of ASCs 

Over the years a number of the microarray studies of in vitro and ex vivo ASCs have been 

published. Recently a comparable RNA-Seq study was performed on the mouse models [55–

58]. These studies primarily focus on identifying key transcription factors regulating the stages 

of PC differentiation. Thus, the coordination and regulation of downstream membrane 

trafficking components potentially contributing to enhanced secretory capacity in ASCs have 

been overlooked.  

Fig 2-2 | A. Workflow of Metanalysis. B. Workflow of Merging. From Taminau et al 2014 
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2.1.4 AIMS 

In this preliminary chapter, we “merge” three microarray datasets to improve reproducibility 

of differential expressed genes. Then add comparable RNA-Seq data (GSE60927) via meta-

analysis. We do this to:  

1. Evaluate our initial merging and meta-analysis protocol 

2. Determine whether upregulated genes in ASCs compared to NBCs are overall 

enriched for (a) Protein processing components, (b) Membrane Trafficking 

Components and (c) Cargo proteins 
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2.2   METHODS 

 

2.2.1 Data Source 

The data used in this chapter is summarised in Table 2-1. We utilised microarray-generated 

gene expression profiles from three distinct studies. All three data sets originated from Mus 

musculus and were generated using the same microarray gene chip: Affymetrix GeneChip 

Mouse Genome 430 2.0. Therefore, we assume there is sufficient homogeneity in the data to 

perform “merging” between these three datasets.  GSE11961 and GSE39916 profiled NBCs 

and transitional PCs from the spleen while GSE4142 profiled mature plasma cells from bone 

marrow (GSE4142). In vivo generated plasma cells were extracted 7 days post antigen 

Fig 2-3 | Workflow of Preliminary Merging and Meta-analysis of microarray data. Microarray-generated, pre-

processed gene expression profiles from three individual studies were downloaded and merged. After batch effect 

adjustment comparable gene expression profiles generated by RNA-Seq was added via meta-analysis. 

Differentially upregulated genes were functionally annotated, and the number of genes found to be in relevant 

functional groups were visualized. 
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activation in GSE11961 and GSE4142, while ASCs in GSE60927 were extracted 28 days post 

immunisation. In addition to these data, we utilise the recently submitted RNA-Seq study 

(GSE60927), that profiled the transcriptome of splenic NBCs and in vivo bone marrow PCs. 

The PC sample for this profile was extracted from three different mice to account for the rarity 

of ASCs in the organs of unstimulated mice [56]. 

2.2.1.1 Merging 

Pre-normalised profiles were downloaded from NCBI Gene Expression Omnibus (GEO). 

Replicates for follicular B cells and plasma cells from each study were merged together as 

shown in Fig 2-3. We assigned splenic and bone marrow PCs to the same group as we are 

interested in finding genes that show same direction of regulation in antibody secreting cells 

regardless of maturity 

2.2.1.2 Batch Effect Removal  

When merging data, unwanted sources of variation has to be adjusted before further analyses 

can be performed. While standard normalisation methods such as RMA caters for intra and 

inter array variations, unaccounted variables such as environmental, genetic or technical 

differences can have a strong effect on gene expression. These factors can be: the time when a 

sample was prepared, the person conducting the experiment, differences in reagents or 

transcriptomics platform used, as well as differences in the species or strain of the source 

Table 2-1 | Phenotype of Samples utilised for Cross-Study Meta-Analysis 

Study Cell 

Type 

Tissue Strain Ex vivo Stimulus Minimal Marker Replicate 

GSE11961 NBC Spleen C57BL/6 - CD45+ CD138-CD23+ 3 

GSE11961 PC Spleen C57BL/6 NP-CGG/alum CD45+ CD138+ IgG1-low 3 

GSE4142 NBC Spleen C57BL/Ka - CD45+ CD23+ IgM-low IgD+ 3 

GSE4142 PC Spleen C57BL/Ka NP-CGG/alum CD45-low CD138+ IgM-low 3 

GSE39916 NBC Spleen C57BL/6 - CD45+ CD23+ 3 

GSE39916 PC Bone 

Marrow 

C57BL/6 KLH CD45- CD138+ 3 

GSE60927 NBC Spleen C57BL/6 - CD45+ CD23+ 2 

GSE60927 PC Bone 

Marrow 

C57BL/6 - CD138+ Blimp+ 1 
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material. If these “batch” effects are not accounted for, gene expression will not be 

representative of the variable of interest. ComBat (Combatting batch effects when combining 

batches of microarray data) algorithm adjusts for known batch affects and is appropriate for 

small sample sizes.  

As shown in Fig 2-4A, principal component analysis of our data showed that the 

direction of variation in the data was due to cross-laboratory differences. Therefore, we 

removed batch effect using the above mentioned ComBat approach [96]. Batch adjusted data 

showed expected variation to be greatest between B cells and plasma cells. (Fig 2-4B).  

2.2.2 Differential Expression 

Batch adjusted data was fitted to the linear regression model for microarrays (limma) and 

empirical Bayes moderated t-statistics was used to calculate differential expression and 

adjusted for global false discovery [97]. A conservative threshold of 2-Fold Change (FC) and 

Benjamini & Hochberg adjusted p-value less than 0.05 was enforced to filter out noisy hits. 

2.2.3 Meta-Analysis of Cross-Platform Data 

For cross-platform comparison of RNA-Seq and microarray data, we extracted pre-calculated 

differential expression data from GSE60927. This data was merged to our microarray analysis 

Fig 2-4 | Principal Component Analysis of raw and batch adjusted cross-study mouse microarray data. A. 

Direction of variance before batch effect adjustment show all samples clustering by study. B. After batch effect 

adjustment samples cluster by cell type. 
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using gene identifiers and contradictory results were filtered out. Genes that were upregulated 

in the microarray data and downregulated in RNA-Seq or vice versa were considered 

contradictory. Differentially expressed genes missing genes in either data set were retained for 

further analysis.  

2.2.4 Ranking Differentially Expressed Hits 

We found a large number of genes with very low adjusted p-values and were unable to utilise 

this statistic for meaningful ranking. The alternative way to sort differentially expressed data 

is to use gene fold changes. However, as FC relies on ratios, small differences can produce 

inflated FC (e.g. going from 0.001 to 10 gives 10000 FC), while large changes (e.g. 1000 to 

2000) will only give an understated 2 FC. To circumvent this problem, raw intensity values 

were sorted into 5 bins with increments of 50, with the 5th bin holding intensity values greater 

than or equal to 200. Using these bins differentially expressed genes were custom sorted by 

largest plasma cell intensity then smallest B cell intensity followed by the greatest magnitude 

of change.  

2.2.5 Functional Annotation 

Differentially expressed genes were annotated with Entrez, Uniprot and Tocris Summary using 

Lifemap’s GeneAlaCart tool [98]. We used the 2015 version of David tools to retrieve Gene 

Ontology (GO) and Swiss-Prot Protein Information Resource (SP_PIR) terms[99, 100]. The 

knowledge based COMPARTMENTS database was used to group secreted and membrane 

proteins based on their localization [101]. 

Drosophila orthologs of differentially expressed genes were obtained using the DRSC 

Integrative Ortholog Prediction Tool (DIOPT) tool [102]. As invertebrates such as Drosophila 

melanogaster lack an adaptive immune system, matching orthologs should theoretically filter 

out genes related to adaptive immunity.  
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2.3 RESULTS 

Differentially expressed genes were defined by adjusted p-value less than 0.05 and fold change 

greater than or equal to 2. Microarray based transcriptome profiles of mouse splenic plasma 

cells (SplPC) and B cells were reanalysed.  From arrays of 45101 transcripts, 1873 (4.15%) 

were statistically significant (q-value<0.05) with at least 2-fold change. 72% of these results 

correlate with the equivalent RNA-Seq data [56]. By considering the respective missing genes 

in either platform, a total of 2042 differentially expressed genes with at least 2 FC were found. 

Of these, 1037 showed upregulation.  

2.3.1.1 Functional Analysis 

Counting number of genes with relevant functional annotations, showed 755 upregulated genes 

related to bulk transport and conserved among mice and drosophila (Fig 2-5A). At least 200 

genes mapped to groups of interest, such as SNAREs, chaperones, protein transport, etc., that 

are known or predicted to be related to vesicular trafficking. Fig 2-5B illustrate the localisation 

of upregulated genes in mice ASCs. At least 190 genes were predicted to be localized to ER 

and Golgi and another 125 at the plasma membrane. Fig 2-5C shows the number of genes 

mapping to functional categories of interest. 

Fig 2-6 illustrates the intensities/transcript counts of the most highly upregulated 

plasma cell cargo and transcription factors. Known markers of PC such as XBP1, PRDM1 and 

CD138 / SDC1 were upregulated and BCL6 a marker for B cells was downregulated. From 

functional analysis and the localization of the genes we identified the HID1 gene, which is 

implicated in the formation of large dense core vesicles and secretion of regulated secretory 

cargo, such as PRG2, which was also upregulated in ASCs [103, 104]. 
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Fig 2-5 | Venn diagram and Pie charts showing functional grouping of DEGs isolated in the preliminary study. 

A. Venn diagram of upregulated genes in plasma cells that are also present in Drosophila genome. Gene 

overlapping between groups are not unique, as one gene can belong to multiple groups. As Drosophila does not 

have an adaptive immune system, 282 genes that do not overlap are likely to be specific to adaptive immunity in 

plasma cells. B. Pie chart of membrane protein localization upregulated in plasma cells. Gene count is not distinct, 

as a single gene can be localized to multiple regions. 476 membrane proteins were upregulated in plasma cells. 

C. Functional groupings of upregulated genes. Gene count is not distinct, as a single gene can belong to multiple 

groups. 371 genes fall into these groups. Remaining 336 genes are ungrouped and require further analysis. 
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Fig 2-6 | Heatmap of potential genes of interest found in the preliminary study. Heatmap shows median raw 

intensities and transcript counts of microarray and RNA-Seq datasets respectively. Top upregulated hits among 4 

categories (vesicular cargoes, solute carriers, transcription factors, vesicular transport related proteins) are given. 

Well characterised markers of plasma cells are indicated in blue (XBP1, Blimp1 and SDC1). In red are potentially 

novel genes related to antibody secretion. 
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2.4 DISCUSSION 

2.4.1 Isolating Known and Novel Targets 

Results from the transcriptomic analysis were used to screen for upregulated genes encoding 

known and predicted components that play a role in protein processing or transport. As we 

hypothesized, a considerable number of genes were shown to be related to protein synthesis, 

post-translational modification and transport. This shows that using NBCs as a control for 

secretion competent ASCs allows isolation of genes contributing to enhanced protein secretory 

capacity (Fig 2-5C). Among these genes we noted components of the regulated secretory 

pathway.  

2.4.1.1 Regulated Secretory Pathway in ASCs? 

Plasma cells are known to utilise the constitutive pathway to secrete proteins as they are made. 

Unlike ASCs, specialised cells such as pancreatic exocrine cells and intestinal epithelial cells 

utilise another secretory pathway where cargo is secreted on demand in response to external 

stimuli. This is known as the regulated secretory pathway [46, 105, 106]. It has previously been 

noticed that plasma cells and gastric zymogenic cells are both specialised for high levels of 

protein secretion and arise from a non-secretory precursor; a study comparing their lineage has 

shown that these cells share 269 upregulated genes [107]. This included Mist1 (bHLHa15), a 

transcription factor that may be involved in the formation of large secretory granules. Mist1 is 

involved in the regulated secretion of digestive enzymes in gastric zymogenic cells [108]. 

However, Benjamin et al  has demonstrated that Mist1 double knockout has no effect on the 

secretion of IgM in plasma cells[107], indicating that MIST1 is not directly involved in 

constitutive secretion.  

 Nevertheless, the mRNA for one of the top upregulated cargo is PRG2, whose gene 

product is sorted into granule fractions in eosinophils and to a lesser extent in neutrophils [104, 

109–111]. As a further indication of a possible regulatory secretory pathway in PCs, our 
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preliminary results also showed a significant upregulation in V-ATPases (ATP6V0A1 and 

ATP6V0A2), Zinc transporters (multiple members of the SLC39 family) and Golgi-localized 

calcium transporters (NUCB1, SDF4 and TMEM165). Consistent with existing literature, 

MIST1 was also found to be highly upregulated. Therefore, we hypothesized that these genes 

together may play a role in sorting regulated cargo such as PRG2 into granules and act in a 

regulatory secretory pathway, hitherto unheard of in plasma cells.  

Unfortunately, when my colleagues E Rajan and AWA Aswani Western blotted PRG2 

they saw no significant increase in this gene in mouse PBs compared to NBCs. To understand 

whether this discrepancy was due to errors in our transcriptome analysis I evaluate the 

preliminary methods in the following section. 

2.4.2 Evaluation of Methods 

2.4.2.1 Normalisation and Batch effect Adjustment 

We used pre-processed data from three studies and each of them had used a different 

normalisation method. Arrays from GSE4142 were normalised using Robust Microarray 

Average (RMA), GSE11961 used GCRMA (guanine-cytosine RMA), while GSE39916 was 

normalised by proprietary Gene Pattern module from Illumina. Fig 2-7B shows that inter array 

bias was accounted for as the mean intensity within studies were fairly similar after batch effect 

adjustment. However, the batch affect variable was likely stronger than it should have been as 

cross-study differences were compounded with cross-normalisation differences.  

In the process of batch effect removal, the distribution of the three studies are 

normalised as evident in Fig 2-7B. However, removing batch effect prior to fitting the data to 

the regression model introduces an extra degree of freedom in the limma t-test because the 

function does not know that the batch effect has already been removed. This is why our 

resultant p-values were too small meaning changes in gene expression had over exaggerated 

statistical power and thus the number of false positives were increased. Ultimately, this affected 
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the ranking of genes whereby we had to resort to custom sorting rather than using adjusted p-

values as standard.  

2.4.2.2 Lack of Replicates in RNA-Seq Data 

Ideally, the issue with p-values in microarray will have been dealt with when performing cross 

platform meta-analysis using the RNA-Seq data. However, the BMPCs profiled in the RNA-

Seq data had no replicates. Even though the input sample was mixture of 3 biological samples, 

having only 1 replicate prevents the use of normalisation techniques and p-values have little 

meaning as discussed in Section 2.1.2.3. Thus, differentially expressed genes in the RNA-Seq 

data would not have reliably filtered or ranked genes based on these p-values. If done correctly, 

the microarray analysis would have helped filter out noisy genes and solve the issue of ranking.  

2.4.2.3 Phenotype Differences 

Other factors to take into consideration, is that samples from two of the studies used the 

C57BL/6 inbred mouse strain whereas one study used C57BL/Ka which can introduce some 

unwanted variations.  

Furthermore, while the authors of the 3 studies labelled the test array as plasma cells, 

they all used somewhat different markers for classifying plasma cells. Meaning the three 

Fig 2-7 | Boxplot of pre-normalised data and batch adjusted mouse microarray data.A. Pre-normalized intensity 

values from 3 difference studied B. Pre-normalized intensity values from 3 studied after batch adjustment. 
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different studies may have been studying plasma cells or plasma blasts at differing levels of 

maturity. 

2.4.2.4 Functional Annotation 

The list of terms we retrieved from SP-PIR and GO, had both computationally predicted and 

experimentally validated hits. As such, some genes could have been assigned to the wrong 

category. Annotation and counting number of recurring functional terms do not take into 

account the importance or rank of a gene in a differential expression study. While this did not 

affect our hypothesis related to regulated secretion, we acknowledge that the functional 

analysis can be improved using some form of gene set enrichment analyses [112, 113]. 

2.5 CONCLUSION 

Despite the errors and limitations mentioned above, known markers of plasma cells were 

differentially expressed in this study. This is likely due to meta-analysis of the microarray and 

RNA-Seq data, which will have removed a considerable number of false positive genes arising 

from the microarray analyses as these would show contradictory regulation in the two 

platforms. This strengthens the argument for cross-study meta-analysis as it prevents errors. 

Nevertheless, noise introduced due to batch effect adjustment of differently normalised data 

will have suppressed hits, which would otherwise be present if we used the processed RNA-

Seq results on their own. To avoid such errors and improve accuracy of our analysis, in the 

following chapters, we forego the use of processed data and begin our analysis from scratch to 

streamline the data processing methodology. Furthermore, we calculate enriched functional 

groups based on gene ranking and also utilise our own curated database of functional protein 

complexes to avoid the inclusion of poor-quality annotation. 

 It is important to note that the errors in the microarray analysis did not explain the 

presence of PRG2 as this gene was strongly upregulated in the RNA-Seq analysis as well. The 

web tool Amazonia! allows users to view gene expression in human ASCs and NBCs [72]. 
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Interestingly, PRG2 was not detected in the human transcriptome despite the microarray having 

probes hybridizing to this gene. Therefore, we theorised that the upregulation of PRG2 mRNA 

could potentially be some common form of contamination in the mouse RNA isolation and 

treatment protocol or a transient artefact in the mouse plasma cell transcriptome. Therefore, 

cross-species meta-analysis of the plasma cell lineage may potentially solve this issue. 
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3 CROSS SPECIES MICROARRAY ANALYSIS 

3.1 BACKGROUND 

Post antigen activation, naïve B cells (NBC) of the immune system show dramatic increase in 

their ability to secrete antibodies. Preliminary comparison of the mice transcriptome of non-

secreting NBCs to their antibody secreting progeny showed hundreds of genes upregulated in 

the differentiated antibody secreting cells (ASCs) that were related to protein processing and 

trafficking. However, we also identified a highly upregulated cargo known to be transported 

by the regulated secretory pathway whose protein product could not be detected in mice. 

Potential sources of errors in the merging procedure did not explain the presence of the 

confounding results as they were present across comparable RNA-Seq and microarray studies 

in the mice species. Upon further investigation, we noticed that these genes were absent in 

comparable human transcriptomes.  

3.1.1 Of Mice and Men 

The mouse model is used extensively in biomedical research due to their phylogenetic 

closeness to humans and the ease of breeding and handling in laboratories [114]. Protein coding 

regions of mice and human share about 85% similarity with gene identity ranging from 60 to 

99% while non-coding regions are much more dissimilar [115, 116]. Higher genetic similarity 

in coding regions between mammals suggest conservation of protein function across species. 

This property is particular useful in high throughput functional genomics for cross-referencing 

the reproducibility of candidate genes [63, 64]. Therefore, matching the regulation of genes 

across microarray profiles of mice and human ASCs may aid in filtering out erroneous results 

such as those identified in the previous chapter. 
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3.1.2 Review of Microarray Normalization 

In the previous chapter, we analysed Affymetrix arrays from different studies and came to the 

conclusion that normalisation methods for each array must be the same to allow for accurate 

quantification. However, each study had used a different technique and we wanted to know 

which procedure would be optimal for our analysis. Therefore, in this section we discuss the 

design and functionality of Affymetrix arrays and review the three major normalisation 

methods utilised for them. These normalisation methods are: Microarray Analysis Suite 5.0 

(MAS5), Robust Microarray Average (RMA) and its refined counterpart Guanine Cytosine 

Robust Microarray Average (GCRMA) [117–119].  

3.1.2.1 Affymetrix Gene chips 

Affymetrix systems utilise probes that perfectly match genomic regions called perfect match 

(PM) probes. Probe intensities in Affymetrix arrays always yield positive results due to optical 

noise and non-specific hybridization when there is no gene fragments present. Mismatch (MM) 

probes are used to detect these background noise in Affymetrix arrays. These probes are 

identical to PM probes except for a single nucleotide in the middle of the sequence, which is 

replaced by its complement [117]. The purpose of these probes is to allow for calculation of 

the true signal by subtracting the MM probe signals from the PM signals. Affymetrix 

Genechips typically have 11 to 20 different probe clusters that hybridize to the same sequence 

evenly spread throughout the chip. These are collectively called “probe sets”. Probe intensities 

have to be summarized to retrieve a representative value for each unique mRNA species.  

3.1.2.2 MAS5 

3.1.2.2.1 Background Correction & Summarisation 

MAS5 corrects for non-specific binding and summarises probe set level intensities in a single 

step. It uses the classical method of subtracting MM signals from PM intensities to calculate 

true signals and summarises these signals based on a robust average. Robust averages utilise 
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statistics based on median instead of the arithmetic mean to ensure that the probe set level 

intensities are insensitive to extreme outliers   

3.1.2.2.2 Criticisms 

Optical signals can only be present (positive values) or absent (zero). Often MM probes bind 

to relevant transcripts which can lead to the MM signal being larger than the PM intensities. 

This results in nonsensical negative signals when MM is subtracted from PM. The MAS5 

algorithm discards these PM and MM probes altogether to avoid this issue.  Unfortunately, 

these signals can account for up to a third of all probes and lead to considerable loss in probe 

level information. Furthermore, subtraction of MM signals can introduce unwanted noise at 

low intensities [117].   

Array bias arise from different samples having different overall intensity distributions. 

Unfortunately, MAS5 algorithm does not account for these differences as each array is 

normalized sequentially in an independent manner. 

3.1.2.3 RMA 

3.1.2.4 Background Correction 

For these reasons, RMA is now widely recommended for Affymetrix array analysis. RMA 

assumes that the MM derived background noise within an individual array follows a normal 

distribution to the left of the log2 transformed probe intensities, while PM probe signals follows 

an exponential model (Fig 3-1). Based on this assumption, subtracting an overall background 

estimate fitted to a normal model from the exponential model-fitted intensities of each probe 

yields a background corrected result that always remains positive [118]. Simply put, a 

background noise threshold is calculated and PM probes below this threshold are removed. The 

primary criticism of the background correction step of RMA is that it fully disregards MM 

signals and fails to utilise all available information on non-specific binding. 
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3.1.2.5 GCRMA  

3.1.2.5.1 Background Correction 

A modified form of RMA, known as, GCRMA overcomes this issue. It utilises probe sequence 

information to calculate specific and non-specific binding affinity of MM signals, meaning, 

MM probes that uniquely bind to relevant transcripts are reassigned as PM. This prevents the 

generation of negative intensities and retains both PM and MM information, which would have 

otherwise been discarded in MAS5 and RMA.  The inter array normalisation and 

summarisation step of both RMA and GCRMA are identical and is discussed below [119]. 

Fig 3-1 | Density distribution curve of Log2 transformed probe intensities (Adapted from Irizarry et al). This 

plot illustrates the model fitting used for background correction in RMA. Typically, most probes remain 

unhybridized and show 0 or very low optical intensity. These can be classified as background noise represented 

by the normal model (in blue) and appears to the left of the curve in the low intensity region, while the 

exponential model (in red) represents real PM probe signals. Background correction in RMA, works by 

subtracting an overall background estimate from the exponential fitted PM values. In other words, RMA filters 

out PM probes that show optical intensity below a noise threshold. 
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3.1.2.6 RMA/GCRMA 

3.1.2.6.1 Normalisation across arrays – RMA/GCRMA 

When biological replicates are measured using microarrays, array bias arises due to affinity 

differences, faulty/dead probes, or minor batch differences. These types of systematic errors 

are compensated for in RMA/ GCRMA by quantile normalisation. As illustrated in Fig 3-2, 

this procedure ensures that the range of values within each sample is the same. Background 

corrected intensity values are arranged in a matrix where each row is a probe, and each column 

is a sample. Quantile normalisation first sorts each sample column by size while remembering 

which probe each of the intensity values belonged to. The values of each resultant rows are 

then replaced by their average. Finally, the corrected values are returned to their original gene 

rows to give the normalised matrix.  

Simply put, if array A is naturally scaled by 2, and array B is scaled by 7.5, the arrays 

are not comparable. Without knowing these scaling factors, quantile normalisation will adjust 

the distribution of the two arrays such that the mean and interquartile range of the two arrays 

are fairly similar. This allows for direct intensity comparison. 

Fig 3-2 | Principle of quantile normalisation. To make arrays comparable quantile normalisation assumes that the 

distribution of intensities across arrays must be the same. In this example rows are genes/probes and columns are 

samples. First each column is sorted by size (and their gene assignment is remembered by the algorithm). The 

sorting occurs such that the first row shows maximum values found in each sample while last row shows minimum 

values found in each sample. Then the mean of each row is calculated and replaces the original values. Then these 

mean intensity values are returned to their original position. This method now ensures that if you calculate the 

average of a column (sample or array) it will be the same as all the other columns. Thus, direct comparison of 

genes across arrays are possible. 
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3.1.2.6.2 Probe Set Summarisation – RMA/ GCRMA 

As discussed in Chapter 1, Section 2.1.2.1, probes of the same gene / transcript are scattered 

throughout an Affymetrix arrays. The intensity values from these probes have to be aggregated 

and summarised. In the summarisation step, the log transformed, background corrected and 

normalised intensity of each probe is used to obtain a single intensity value for each probe set. 

The summarisation process used in RMA/GCRMA is called “median polish” [118].  

Median polish is a method where each column (probe) and each row (sample) of a matrix 

are normalised to their median (Fig 3-3) [120]. Take for example a matrix of processed intensity 

values arranged in a matrix where each column is a probe belonging to probe set A, and each 

row is a sample. The median intensity of each probe across samples is subtracted from the 

original intensities. Then the median of each samples across a probeset is subtracted from the 

result. This is repeated a maximum of 5 times or until the median converges, i.e. the median of 

each row and column is 0. The resultant median polish residuals are subtracted from the original 

Fig 3-3 | Principle of median polish. This procedure adjusts the intensity of probes belonging to probe set for 

outliers to prevent a skewed arithmetic mean. This process determines how much a probe differs from the median 

of all probes within an array and the median of all probes within a probeset. This is done by repeatedly subtracting 

these medians from each probe intensity until most probes are equal or close to 0, while outliers remain 

considerably larger. By subtracting these differences from the original matrix, outlying probes are adjusted. This 

ensures the final mean of all probes is minimally affected by outliers. 
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matrix of probe intensities and finally the average of each row is calculated to yield the most 

representative intensity of a given probe set in each sample. 

Simply put, this process calculates the median intensity of all probes within a probeset by 

first adjusting for outliers, judged based on their distance from the median probe intensity.  

3.1.2.6.3 Criticisms and Recommendations 

RMA/GCRMA is preferred over MAS5 because it provides fewer false positives, reduces noise 

at relatively low intensities and produces more reproducible fold changes. However, 

RMA/GCRMA assumes that all arrays have equal distributions. This can confound hidden 

structures in data that can be essential for downstream quality control such as identifying batch 

effects [117, 119]. Therefore, it is recommended to utilise MAS5 for downstream quality 

control and then redo the processing step using RMA/GCRMA for differential expression 

analysis [121]. 

3.1.3 Challenges of Meta-Analysis in Microarrays 

As mentioned previously, in order to improve the robustness of our results, we intend to carry 

out meta-analysis of mice and human ASCs. Pooling RNA-Seq experiments from different 

studies is relatively simpler as data can be combined as long as the same genome assembly and 

gene annotation or same gene repository for cross species comparison is used.  Unfortunately, 

DNA microarray platforms have distinct sets of probe sequences identified by distinct probe 

IDs. This means pooling probes from two different microarray platforms based on probe ID 

alone, is impossible. Furthermore, redundant probes mapping to coding as well as non-coding 

regions of the same gene complicate cross species comparison in microarrays. 

The most common and straightforward way to pool microarray data is to use gene ID, 

gene symbol or other gene level annotations to merge the datasets. However, this approach can 

lead to loss of relevant data and introduce biases into the analysis.  
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3.1.3.1 Batch Effect Estimation 

Microarrays 

A number of batch effect removal methods exist for microarrays as reviewed by Lazar et al 

[122]. However, these methods require over 25 samples for batch effect estimation, while we 

only have a total of 18 samples across 3 studies. The ComBat method used in the previous 

chapter requires a minimum of 5 samples and is a good tool for estimating batch effect when 

the source is not known [96]. However, this method has been reported to overexaggerate p-

values when used with limma’s moderated t-test [123]. Therefore, we utilise the blocking 

function available in the limma R package as it also caters to lower sample sizes.  

This method allows our desired groups, ASC and NBC, to be compared in separate 

“blocks” [97]. It thus allows batch effect adjustment while preventing errant degrees of 

freedom that occurs with the ComBat method, as discussed in Chapter 2, Section 2.4.2.1. An 

alternative to using the blocking function in limma is to estimate batch effect using ComBat 

first and then specify covariates in limma for blocking. However, this has been shown to 

produce somewhat deflated p-values [123].  

3.1.3.2 Inconsistency in probe design 

The library of probes used in each platform depends entirely on the manufacturer, which is 

generally influenced by the reference genomes and transcript annotations available at the time. 

We cannot avoid the underlying limitation that microarrays cannot bind to all genes and gene 

isoforms. Thus, when different platforms are matched based on gene identifiers, lack of 

consistency in expressed genes can be purely due to absence of probes for those genes or gene 

isoforms. Manufacturer’s discretion in designing probes also means that probes designed for 

the same gene will map to different regions in different platforms [61]. As a result, it is hard to 

determine whether difference in signal in a one-to-one mapping is purely due to platform 
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variation or due to the probes mapping to distinct differentially expressed transcripts / gene 

isoforms.  

3.1.3.3 Probes without annotations 

Probes with missing gene symbol or other identifiers may be intronic, pseudo genes or novel 

genes yet to be fully annotated. Therefore, merging data where probes have missing gene 

information, can lead to loss of information and potentially the removal of genes of interest. 

3.1.3.4 Redundant Probes 

Redundant probes exist to consolidate the expression pattern of a gene. However, the curse of 

redundant probes manifests itself when expression pattern for different probes for the same 

gene do not agree with each other. In one-to-one mapping, only one probe per gene is used, 

usually the first one that appears on a gene matrix. This leads to gene signal bias, as incorrect 

or inflated signals can be piped into downstream analysis. Contradictory regulation, commonly 

seen in microarrays, is found to be caused by probes that: (a) map to intergenic or intronic 

regions;  (b) map to multiple transcripts; or (c) contain outdated or incorrect annotations [61].  

3.1.4 Reannotation 
Realigning and reannotating probes to the updated reference genome can overcome some of 

these issues. With microarrays become an aging technology, most tools developed for 

microarray probe reannotation have become out of date or unusable due to lack of updates 

[124–126]. Saka et al has recently proposed a protocol for Affymetrix probe reannotation but 

has not provided a tool to streamline the process [127]. The Re-Annotator pipeline, last updated 

in 2014, relies on stepwise alignment with Burrow-Wheeler Aligner (BWA) of probe 

sequences to a custom-made in silico mRNA database [125]. Successful alignments are 

trimmed for mismatches, filtered to retain coding strands and then updated with gene 

annotations. The tool also specifies whether probes are intergenic, exonic, intronic, etc. For 

this project, this information is particularly important as it allows us to give weight to exonic 
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regions, as we are mainly interested in protein components of membrane trafficking. 

Unfortunately, the sequence aligner used in this pipeline (BWA), is inherently unsuitable for 

short oligomers such as microarray probes so Re-Annotator allows mismatches to account for 

this. While this works for probes sequences of 50 or more base pairs, shorter Affymetrix probes 

of 25bp length show poor alignment. Since this pipeline was written, better aligners specific 

for short sequences have become available [128].  In this chapter we update this tool for the 

purpose of updating our microarray annotations. 

3.1.5 Functional Analysis 

As mentioned in the previous chapter, hundreds of genes are differentially regulated in ASCs 

compared NBCs. It is difficult to pinpoint which genes are important if we consider their 

function one at a time. Looking at sets of genes collectively instead of in isolation can improve 

the statistical power of the analyses. If a set of gene with a common biological function is 

consistently regulated in the same direction, then we can derive biological meaning from it. 

Various databases of functionally relevant gene sets exist such as KEGG and Gene Ontology. 

The EnrichR tool allows mining of these databases and provides access to a useful collection 

of perturbation experiments that lets users determine whether a set of genes has previously 

been shown to be expressed as a result of a perturbation.   

EnrichR calculates the statistical validity of gene set enrichment for a functional term or 

gene perturbation using rank-based ranking [113]. This method utilises iterative Fisher Exact 

Test, which calculates the probability of a ranked set of genes overlapping with the members 

of a known functional group by random chance. In order to adjust for false discovery, the Fisher 

Exact test is run repeatedly for many random gene sets to calculate a mean rank as well as the 

standard deviation from the expected rank. The p-value is then adjusted based on this deviation 

[112].  
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3.1.5.1.1 Limitations of Functional Enrichment analysis 

The KEGG database is a concise database of well-known genes acting in largely 

experimentally characterised pathways. While this database is great for understanding the 

biology behind well characterised genes, it’s less useful for exploratory analysis for candidate 

selection. Therefore, Gene Ontology (GO) databases, containing both predicted and 

experimentally validated hits, are typically used to analyse the functional characteristics of 

differentially expressed genes.   

Summarising GO Terms 

Unfortunately, one of the caveats of GO analysis is that it typically outputs many overlapping 

and redundant GO terms or functional categories. The REVIGO tool uses machine learning 

algorithms to find highly similar GO terms and thus reduces redundancy in GO analysis results. 

Although, these machine learning algorithms summarise GO terms considerably well, some 

discrepancies remained that require unavoidable manual correction.  

Although the REVIGO tool tells us what GO terms fall under the same overall category, 

it does not solve the issue of differing number of genes, some overlapping, some not, appearing 

under GO terms falling under the same category. In order to fully summarise similar GO terms, 

genes belonging to these groups have to combined, duplicates have to be removed, and unique 

genes have to be counted to allow for visualisation. Unfortunately, this data mining process, 

though simple in concept, is laborious, time consuming and prone to user errors when 

attempted via excel or similar user-friendly software. Therefore, in this chapter we create a data 

mining tool to refine the results of GO Ontology analysis. 

Refining Pathway Enrichment Results 

Coexpression or perturbation databases, such as those generated from transcription factor or 

kinase perturbations, allow for complex pathway analysis. However, to make sense of these 

databases it is important to (a) check that genes known to be affected by the perturbation were 
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regulated in the same direction as the regulation seen in the user’s data (b) check that perturbed 

gene showed equivalent regulation in the users data, i.e. if knockdown of transcription factor 

X is known to result in the upregulation of gene set Y, we determine this perturbation to be 

potentially relevant if transcription factor X is among our differentially downregulated genes 

and a large portion of gene set Y is among our upregulated genes. Unfortunately, these checks 

cannot be carried out by EnrichR as the tool cannot distinguish between upregulated and 

downregulated genes. 

In addition, like GO ontologies, perturbation terms sometimes overlap and affected genes 

require summarisation. For example, knockdown, knockout, inhibition of the same gene can 

be loosely categorised as “downregulation”. Therefore, in this project we create a tool to 

automate the mining and refinement of gene perturbation or co-expression experiments using 

specific EnrichR databases.  
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3.1.6 AIMS & OBJECTIVES 

To date, a number of research groups have generated high throughput microarray profiles for 

of NBCs, PCs and their intermediates in mice and human model [55–58]. However, a 

comprehensive cross species or cross platform meta-analysis of the transcriptomes have not 

been performed.  Therefore, we aim to leverage these transcriptomes accumulating on public 

repositories to: 

1. Build a bioresource for the identification of reproducibly changing genes by combining 

microarray data from across studies, species and platforms. 

2. Perform robust functional enrichment analysis to identify conserved genes related to 

protein processing and transport. 

In the process of completing these objectives we create a set of bioinformatics tools that: 

3. Refine and summarises results of GO Ontology analysis. 

4. Automate the mining and refinement of gene perturbation or co-expression experiment 

databases and output a result suitable for visualisation. 

Furthermore, we update an existing tool such that:  

5. The Re-Annotator pipeline can accurately update the annotation of microarrays with 

relatively short probes. 
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3.2 METHODS 

3.2.1 Workflow 

Fig 3-4 | Workflow of Methodology used for Cross-Species Meta-Analysis of Microarray Data. 
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3.2.2 Mouse B Cell Lineage 

3.2.2.1 Data Source 

3.2.2.1.1 GSE11961  

Kaji et al isolated naïve, follicular B cells from the spleen of unstimulated, female, C57BL/6 

mice aged between 8-10 weeks using Magnetic-activated cell sorting (MACS) system. Cells 

were negatively selected for CD5, CD11b, CD95, CD138, CD43, Gr-1, TER119, F4/80, CD3 

and CD90 using biotinylated antibodies (Ab) followed by sorting for B220+, AA4.1-, CD21int, 

CD23+ fractions [57].  

The research group generated T-cell dependent ASCs by immunising equivalent mice 

models with 4-hydroxy-3-nitrophenylacetyl conjugated to chicken gamma globulin (NP-CGG) 

and aluminium adjuvant. 7 days post immunisation, splenic PCs (SplPC) were isolated by the 

MACS system [57]. This involved negative selection using biotinylated Abs against IgM, IgD, 

CD5, Gr1, NK1.1, DX5, TER119, F4/80, CD3 and CD90, followed by sorting for NIP-binding 

B220+, IgG1low, CD138+, Igλ+ fractions [57]. 

Kaji et al extracted whole cell RNA using triZOL (Invitrogen), amplified the RNA 

using MessageAmp aRNA kit (Ambion), and labelled them with biotin using Bioarray High 

Yield RNA Transcription Labelling kit (Enzo Life Sciences)[57]. This was followed by cRNA 

fragmentation and hybridization to GeneChip Mouse Genome 430 2.0 Array (MG430.2A) as 

instructed by Affymetrix [57]. 

3.2.2.1.2 GSE4142  

Luckey et al isolated naïve, follicular B cells from the spleen of unstimulated, male, C57BL/Ka 

mice aged between 4-8 weeks using double Fluorescence-activated cell sorting (FACS). This 

involved sorting for B220+, CD23+, IgM-low, IgD+, Igλ+, CD11b-, Ter119-, Gr-1-, CD3-, 

CD4-, CD8- and CD5- fractions [129]. 
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 In order to generate ASCs, Luckey et al immunised equivalent mice with NP-

CGG/alum. SplPCs were harvested 7 days after immunisation. These ASCs were sorted for 

B220-low, IgM-low, Igλ+, CD138+, NP-PE+, CD11b-, Ter119-, Gr-1-, CD3-, CD4-, CD5-, 

CD8- and PNA-negative cells fractions [129]. 

Luckey et al extracted whole cell RNA using triZOL (Invitrogen), amplified the RNA 

using Arcturus RiboAmp kits and labelled them with biotin using Affymetrix IVT Labelling 

kits [129]. This was followed by cRNA fragmentation and hybridization to MG430.2A as 

instructed by Affymetrix [129]. 

3.2.2.1.3 GSE39916  

Benson et al isolated naïve B cells from C57BL6/J mouse strain. Age or gender of mice has 

not been declared by the author. NBCs were isolated from spleen using MACS system and 

sorted for B220+ and CD23+ fractions [130]. 

 In order to generate mature PCs, Benson et al immunised mice on day 0 with keyhole 

limpet hemocyanin (KLH) and Freund’s adjuvant, rested them for 21 days and re-challenged 

pre-immunised mice with KLH. At day 28, bone marrow plasma cells (BMPCs) were isolated 

using MACS system and sorted for B220- and CD138+ fractions [130]. 

Benson et al extracted RNA using Ambion RNAqueous Micro kit, amplified the RNA 

using NuGen OvationRNA Amplification V2. This was followed by cRNA fragmentation and 

hybridization to MG430.2A as instructed by Affymetrix [130]. 

3.2.2.1.4 Treatment Differences across Studies 

The studies discussed so far use different kits for RNA extraction, purification and 

amplification. Table 3-1, summarise the major phenotypic differences and similarities between 

the three data sets. As these experiments utilise a number of disparate markers, we focused on 

common markers shared across studies to define ASCs and NBCs. This is mainly 
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to prevent confusion between PC and PB, which are used interchangeably by some authors.  

 We have previously discussed CD138, a common plasma cell marker. Contrary to 

CD138, B220 or the high molecular mass isoform of CD45 is a marker of unstimulated B cells. 

This marker is gradually replaced by the low molecular weight isoform, B200, as NBCs mature 

to antibody secreting plasma cells [131]. Therefore, B220 is a marker for identifying the 

maturity of plasma cells, with B220+ and CD138+ plasma cells likely to be less mature than 

B220- and CD138+ fractions. CD23+, on the other hand, differentiates between naïve and 

memory B cells [132]. 

3.2.2.2 Pre-Processing 

As discussed in Section 3.1.2, RMA or GCRMA is the best normalisation method for 

differential expression analysis. Due to the nature of quantile normalisation, inherent to these 

algorithms, normalising all three studies together using RMA/GCRMA assumes that cross 

study distribution of data is the same (Fig 3-5A) and masks underlying inter study differences. 

Normalising each study individually highlighted similarities in the distribution of GSE11961 

and GSE39916, which then differed from GSE4142 (Fig 3-5B). This difference is best 

explained by strain differences between C57BL/6 and C57BL/Ka (Table 3-1). 

 

Table 3-1 | Phenotype of Mouse microarray profiles of PC cell Lineage from different studies  

Study Type Tissue Gender Strain Day Stimulus Minimal Marker 

GSE11961 NBC Spleen Female C57BL/6 0 - B220+ CD138- CD23+ 

GSE11961 PC Spleen Female C57BL/6 7 NP-CGG/alum B220+ CD138+  

GSE4142 NBC Spleen Male C57BL/Ka 0 - B220+ CD23+  

GSE4142 PC Spleen Male C57BL/Ka 7 NP-CGG/alum B220-low CD138+  

GSE39916 NBC Spleen Unknown C57BL/6 0 - B220+ CD23+ 

GSE39916 PC Bone 

Marrow 

Unknown C57BL/6 28 KLH B220- CD138+ 
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3.2.2.2.1 Batch Groups 

Our experimental design involves multiple cell types from different studies. Therefore, we 

estimated cross-study correlation, i.e. the estimated size of the cross-study batch effect, using 

the duplicateCorrelation function in limma R package. This was considerably large i.e. 94.4%, 

when each study is considered a separate batch. Based on the Fig 3-5B, it is logical to assume 

that the two experiments carried out using the C57BL/6 mouse strain should be considered a 

single batch. However, this assumption would ignore protocol differences between the two 

studies and other unwanted variables discussed in Section 3.2.2.1. Furthermore, the computed 

cross-strain correlation was 94.8%, which is not significantly different from the cross-study 

correlation. 

In order to determine the correct batch grouping we visualised the multidimensional 

clustering of samples via principal component analysis (PCA). Raw intensities (Fig 3-6A) were 

normalised by MAS5 algorithm in order to determine the structure of the batch effect. Fig 3-6B 

Fig 3-5 | Box plot probe intensities in pooled vs separately normalised cross-study mouse arrays. A. RMA 

normalisation on “merged” studies. We pooled intensity data from all three experiments into a single matrix or 

table and carried out RMA normalisation. This method adjusts the data such that the mean of each array across 

studies is the same. This hides underlying cross study differences. B. RMA normalisation on individual studies. 

Arrays from each study were normalised separately. From the boxplot, it is apparent that the mean intensity of 

GSE11961 and GSE39916 groups away from the mean of GSE4142. As the former two studies are from a separate 

strain to the latter, from this data alone we could presume that the batch effect is primarily cross-strain. 
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shows that the primary variation across samples according to MAS5 normalised samples were 

between the three separate studies rather than strain as there was limited overlap between 

GSE39916 and GSE11961. Consistent with literature, RMA and GCRMA normalisation (Fig 

Fig 3-6 | PCA plots indicating sample clustering as a result of MAS5, RMA and GCRMA normalisation in cross 

-study, mouse microarray data. A.  Raw intensities show that SplPC and BMPC of GSE11961 and GSE39916 

studies cluster very close to NBCs, while difference between SplPC and NBC of GSE4142 is immediately 

obvious. B. After MAS5 normalisation, we see similar distance between the ASCs and NBCs on the y-axis. 

However, each study cluster separately on the x-axis. This suggests the presence of cross-study batch effect. C. 

Cross-study batch correction allows ASCs to cluster away from NBCs; however, the variation is poor (only 

26.9%). D. RMA normalisation, and F. GCRMA normalisation suggest cross-strain differences based on the 

clustering on the x-axis. E, G Cross-Study batch correction, based on MAS5 quality check, improve final 

variation from 26.9% to 54.8 – 57.1%. We opt for GCRMA as it is likely to give somewhat superior differential 

expression results based on higher ASC vs NBC variation. 
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3-6D, F) exaggerates strain differences by artificially altering the intensity distribution and is 

a poor choice for identifying batches. Therefore, we chose to adjust for three way cross-study 

differences as it takes into account strain as well as other possible confounding variables such 

as reagent, gender and age of mice. 

3.2.2.2.2 Normalisation & Batch Effect Adjustment 

We modelled batch adjusted probe intensities using the removeBatchEffect function from 

limma R package. MAS5 is an ideal pre-processing method for quality control. However, after 

batch effect adjustment our factors of interest, i.e. NBCs versus ASCs, only accounted for 

26.9% of the variation in the data using this normalisation method (Fig 3-6C). On the other 

hand, cell type differences accounted for 54.8% and 57.1% of the variation when RMA and 

GCRMA normalisation was used, respectively (Fig 3-6E, G). As GCRMA best represented 

cell type differences and is considered a superior method to RMA (as discussed in Section 

3.1.2), we chose to utilise this method followed by cross-study batch effect adjustment for 

downstream differential expression analysis.  

3.2.2.2.3 Experimental Design 

We utilise the blocking method provided by the R limma package to adjust for cross-study 

batch effects. This allows our desired variable (ASC vs. NBC) of each study to be calculated 

separately or in “blocks”, while allowing for multiple group comparison i.e. comparison of 

differential expression between different ASCs [97]. This method allows batch effect 

adjustment while preventing errant degrees of freedom that occurs with the ComBat method as 

discussed in Chapter 2, Section 2.4.2.1.  
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From Fig 3-6G, it is evident that SplPCs 

from two different studies clustered close together 

and away from BMPCs. This is a clear indication 

that the 7-day old SplPCs utilised in GSE4142 and 

GSE11961 are likely to share similar phenotype 

in terms of PC maturity and should be grouped away from the 28-day old BMPC which differs 

in both tissue origin and age (Fig 3-6BC). Therefore, instead of treating ASCs from all three 

studies as a single group we assign two groups: SplPC and BMPC to be compared to the NBC 

control. The experimental design for calculating differential expression is shown in Table 3-2. 

3.2.2.3 Differential Expression Analysis 

The processed data was fitted to the limma linear regression model while taking into account 

the inter-study batch effect.  F-statistic for multi-group comparison was calculated using 

empirical Bayes moderation provided in the limma R package. Computed p-values were 

adjusted using Benjamini & Hochberg method for global false discovery [133].  

A threshold of 2-Fold Change (FC) was enforced to differentiate up/downregulated 

genes from those showing no change. However, in order to avoid removal of potentially 

important genes, we retained genes that met our differential expression (DE) criteria in at least 

one cell type, in this case genes upregulated or downregulated in BMPC, SplPC or both 

compared to NBCs. For intraspecies analysis we enforce an adjusted p-value cut-off of 0.05. 

For cross species analysis, we do not enforce p-value cut-offs until after data pooling. 

3.2.2.4 Re-annotation 

As discussed in 3.1.4, when reannotating probes, BWA utilised in Re-Annotator pipeline is 

unsuitable for aligning short reads compared to available tools. Therefore, we edited the 

existing Re-Annotator Pipeline to use the Bowtie 1.2.2 aligner instead of BWA. Replacing 

BWA alignment command as shown below, allows robust output of uniquely mapping probe 

Table 3-2 | Experimental Design - MG430.2A 

Study Type Block Replicates 

GSE11961 NBC 1 3 

GSE11961 SplPC 1 3 

GSE4142 NBC 2 3 

GSE4142 SplPC 2 3 

GSE39916 NBC 3 3 

GSE39916 BMPC 3 3 
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sequences with no mismatches. This ensures that shorter microarray probes, such as those 

found in Affymetrix arrays, are correctly aligned. For mouse annotation, we used NCBI’s 

mm10 genome assembly submitted on Dec 2011, and Gencode gene annotation version 16 

submitted in Dec 2017. 

  

Using the modified Re-Annotator Pipeline, we have updated the annotation Affymetrix 

Mouse Genome 430 2.0 Array. This annotation was merged with the manufacturer annotation, 

last updated in March 2016, to account for any probes not correctly identified by the 

Reannotator tool [134]. Mouse and human orthology information were obtained from Ensembl 

database version 91. 

3.2.2.5 Removing Redundant Probes 

By reannotating, we were able to identify which probes hybridised to coding and non-coding 

transcripts. Differential expression analysis contained redundant probes for most genes. We 

removed these redundancies based on the type of transcript region the probes hybridised to. 

Unique genes were retained in the following order (most relevant first): exons, 5’ or 3’ 

untranslated region (UTR), introns, splicing regions, sequence up or downstream of open 

reading frame, intergenic transcripts and probes with one or more sequence mismatches. If 

redundant probes mapped to the same type of transcript region, the probe with lowest FDR 

adjusted p-value across test groups were retained. 

  

#Original Code 
bwa aln -l 100 -t $numCPU -n $numMismatch $db $inReads > $outAln 
 
#Commits by Nabila Rahman 
$bowtie1 -v 0 -m 1 $db -f $inReads -S $samFile -p 8 
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3.2.3 Human B cell Lineage 

3.2.3.1 Data Source 

Jourdan and Kassambara et al isolated cells of the PC lineage from adult human peripheral 

blood using FACS [55, 71, 135, 136]. Unlike the mouse lineage previously discussed, this 

study initially used in vitro generated ASCs from memory B cells (MBCs) rather than NBCs.  

MBCs were immunised at day 0 using CpG oligonucleotide, recombinant human 

CD40L in the presence of IL2, IL10 and IL15 [55, 71, 135, 136] . At day 4, non-secreting 

Activated B cells (ABC) fraction were harvested [55, 71, 135, 136]. From day 4, cells were 

cultured with IL2 and IL6 and harvested for plasmablasts (PB) at day 7 [55, 71, 135, 136]. 

Cells were cultured with IL6, IL5 and IFN-α until day 10 and harvested for PCs [55, 71, 135, 

136].  Markers used for sorting and harvesting relevant cell types is summarised in Table 3-3. 

Total RNA was extracted using Qiagen RNeasy Mini Kit. This was followed by P-

AFFY-2 Affymetrix biotin labelling and hybridization to Human Genome U133 Plus 2.0 

(HG133A) as instructed by Affymetrix  [71, 135].  

3.2.3.2 Normalisation 

All arrays were normalised using GCRMA in order to conform to the pre-processing methods 

applied to the mouse transcriptome profile described in Section 3.2.2.2. The resultant array 

distributions are visualised in Fig 3-7B.  

Table 3-3 | Phenotype of human microarray profiles of PC cell Lineage - HG133A (Jourdan et al) 

Sample Type Stimulus Day Markers Replicates 

E-MTAB-1771 NBC - 0 CD19+ CD27- 5 

E-MEXP-2360 MBC - 0 CD19+ CD27+ 5 

E-MEXP-2360 ABC CpG, CD40L 4 CD20+ CD38- 5 

E-MEXP-2360 PB CpG, CD40L 7 CD20- CD38+ 5 

E-MEXP-2360 PC CpG, CD40L 10 CD20- CD138+ 5 

E-MEXP-2360 BMPC - 0 CD138 5 

 



Chapter 3 – Cross Species Microarray Analysis 

 

Page | 70  

 

3.2.3.3 Experimental Design 

After normalisation we carried out principal component analysis to determine correct 

experimental design. We wanted to know whether utilising NBCs as the non-secretory control 

would be suitable for ASCs generated from MBCs. As shown in Fig 3-8B, both MBCs and 

NBCs cluster very close together and are likely to show very similar differential expression 

when compared to ASCs. Therefore, to conform to previous methods, we utilise NBCs as the 

control group and disregard MBCs for further analysis. As we are interested in ASCs, we 

primarily focus on contrasting BMPC, in vitro generated PC and PB groups to NBCs for cross 

species meta-analysis. Study of early stages of B cell differentiation, ABC and PBs, are not in 

the scope of this project. 

3.2.3.4 Differential Expression Analysis 

Fold changes and statistical test for DE were nearly identical to those described in Section 

3.2.2.3. The only difference was the exclusion of blocking methods as no cross-study merging 

was involved in this section.  

Fig 3-7 | Boxplot of probe intensities in raw and GCRMA normalised human microarray data. A. Raw Data. The 

distribution of optical intensities differs for each array. B. GCRMA normalisation, establishes background noise 

cut-off and normalises the range of intensities present in each array. There does not seem to be any obvious batch 

effect as all arrays conform to a similar range of intensity values. 
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3.2.3.5 Reannotation and Removing Redundancies 

Probes were reannotated using NCBI’s hg38 genome assembly submitted on Dec 2013, and 

Gencode gene annotation version 27 submitted in Jan 2017 through the modified Re-Annotator 

tool. Updated annotations were merged with latest manufacturer (March 2016) annotations for 

better probe coverage. Mouse orthologs were obtained from Ensembl mart release 91. Post 

annotation redundant probes were removed as described in Section 3.2.2.5. 

3.2.4 Cross Species Meta-Analysis 

In this section we combine processed DE results from Mouse and Human B cell lineage. 

3.2.4.1 Known orthologs 

Genes with known orthologs were merged using Ensembl ortholog annotations. As each of 

these genes now had two separate FDR adjusted p-values, one from mice and another from 

human studies, we combined this statistic by calculating the median of the adjusted p-values 

per gene. If a gene had multiple orthologs present in either species, the ortholog pair with 

Fig 3-8 | PCA Plot showing sample clustering in raw versus GCRMA normalised human microarray data. A. 

Raw data. Before normalisation the MBCs and NBCs together cluster away from ASCs. However, this variance 

is very small, 8.2%. B. After GCRMA normalisation, the variation between ASCs and NBCs are as much as 

46.4%.  
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homology lower than 50% were removed and then ortholog pairs with lowest FDR adjusted p-

value for multi group comparison was retained.  

3.2.4.2 Genes with No orthologs or Missing probes 

A number of mouse genes had no known human orthologs and vice versa. In addition, certain 

genes with known orthologs had probes in the mouse microarray but were missing in the human 

microarray or vice versa. As these are due to lack of annotation and design issues respectively, 

we wish to retain these genes. We took into consideration that these genes will not have cross-

species evidence to back their reproducibility and retained results from probes that only 

hybridised to exons and 5’ or 3’ UTR. We scaled the FDR adjusted p-values for these genes to 

conform to the median p-values calculated in Section 3.2.4.1 to prevent them from being over 

or underestimated. 

3.2.4.3 Cross Species Differential Expression 

Once cross-species data was combined, we used a voting-based system to select for DE genes 

conserved among species. We compared 5 ASCs types to NBCs: (1) mouse BMPC, (2) mouse 

SplPC (3) human BMPC, (4) human generated in vitro PB and (5) in vitro differentiated human 

PCs. If a gene showed DE (2 FC) in the same direction in half the test groups and the FC in the 

remaining groups showed no significant change/ was missing, the gene was considered 

differentially expressed. Same rules were applied to genes with no orthologs with the number 

of test groups and requisite number of “votes” adjusted accordingly. We then ranked our genes 

by median adjusted p-value, lowest value (i.e. most likely to be true positive) first and finally 

enforce a 0.05 FDR adjusted p-value cut-off. 

3.2.5 Functional Analysis 

After obtaining our differentially expressed gene set, we wanted to see what biological 

functions these genes related to. As previously discussed EnrichR allows users to query 

biological databases such as GO, KEGG, etc. In order to derive meaningful and statistically 
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valid results, we calculated the overlap of our differentially expressed genes (DEG) and 

biological databases using rank-based ranking via the EnrichR R package.  

 The EnrichR package can be used to query a comprehensive list of curated databases. 

For our purposes we utilised the following databases:   

• GO Cellular Component 2017 – a database of gene localisation relative to cell structure.   

• GO Biological Process 2017 – a database of biological functions relating to genes 

• ARCHS4 Transcription Factor Coexpression – database derived from large scale RNA-

Seq meta-analysis of thousands of datasets. It allows us to find transcription factors 

(TF) that are commonly co-regulated with sets of genes. 

• Transcription Factor Perturbations Followed by Expression – allows mining of TF 

perturbation experiments to see how they relate to gene sets. 

3.2.5.1 Summarising GO Terms 

In order to summarise these GO terms, we used REVIGO API (Application Programming 

Interface) via R [137]. Overlapping terms were given a simRel score, and any terms with 0.5 

similarity score were grouped under the same category. The “whole Uniprot database” was 

used for obtaining GO terms. The simRel score is a machine learning algorithm based on 

Resnik’s and Lin’s similarity measure [138, 139]. We manually curated discrepancies in 

overlapping GO terms assigned by this algorithm.  

Once GO terms were summarised, we ran into the issue of having multiple GO terms 

with differing numbers of member genes, some overlapping, some not. In order to combine 

these gene members and only retain unique ones, and then count how many unique genes 

mapped to each summarised group, we created R functions to automate the data mining process 

to allow for robust and reproducible results. These functions are available at: 

https://github.com/NabilaRahman/EnrichR-mining-tools. 

In the next section we explain the usage of these tools. 
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3.2.5.1.1 GO Ontology Summary and Visualisation Protocol 

Step 1: Database Query 

The following code chunk queries EnrichR to obtain enriched GO terms and relevant statistics 

for genes upregulated in ASCs across species. The grey boxes represent our R script and the 

white boxes show the processing and result of the script. 

## EnrichR ----- 

library(enrichR) 

my_chosen_databases <- c( 

   "GO_Biological_Process_2017" ) 

 

enriched.Up <- enrichr(Upregulated_genes, my_chosen_databases) 

  

## Uploading data to Enrichr... Done. 

##   Querying GO_Cellular_Component_2017... Done. 

##   Querying GO_Biological_Process_2017... Done. 

## Parsing results... Done. 

Step 2: Filter for True Positives 

Our getEnrichmentResults function filters out GO terms with adjusted p-value greater than 

0.01 (this threshold can be adjusted by the user). Member genes of these GO terms are not 

shown due to space constraint. 

## GO Biological Process -- 

goBP.UP <- getEnrichmentResults( 

  data = enriched.Up 

  , goTYPE="go.BP" 

  , direction = "UP" 

  , dbgo = "GO_Biological_Process_2017" )[["Enrichment"]] 

 head(goBP.UP)[,c(1,2,3,5)] 

 

##         Term Overlap Adjusted.P.value 

## 1 GO:0036498      32     1.866856e-14 

## 2 GO:0006890      35     6.938853e-12 

##                                            Description 

## 1              IRE1-mediated unfolded protein response 

## 2   retrograde vesicle-mediated transport, Golgi to ER 

Step 3: Obtaining Revigo Summary 

The getEnrichmentResults function is also used to obtain a result with format suitable for 

inputting directly into the REVIGO tool manually or automatically using our getRevigoTable 

function.  
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revigo.BP.UP <- getEnrichmentResults( 

  data = enriched.Up 

  , goTYPE="go.BP" 

  , direction = "UP" 

  , dbgo = "GO_Biological_Process_2017" )[["revigo"]] 

 

revigo.BP.UP.input <- pasteDataFrame(revigo.BP.UP) 

 

revigo.BP.UP.output <- getRevigoTable(goList = revigo.BP.UP.input 

                                      , cutoff= "0.5" 

                                      , isPValue= "yes" 

                                      , measure = "SIMREL" 

                                      , goSizes = "0"  

                                      ) 

 

Step 4: Manually Curated Summary of GO terms 

Once REVIGO results are obtained manual intervention is required to group overlapping gene 

sets into a common group. Example of the summary table is shown below. 

go.BP.ref <- read.table("F:/4.Microarray-Function/GO.BP.Ref.manual.txt", he

ader = T, sep="\t")  

head(go.BP.ref, 3) 

  

 

##         Term  Description   Summary 

## 1 GO:0006260  DNA replication   mitotic cell cycle 

## 2 GO:0007062  sister chromatid cohesion mitotic cell cycle 

## 3 GO:0055085  transmembrane transport transport 

Step 5: Summarise Go Terms for Visualisation 

The summary table is then used to update the processed enrichR results from step 2. Finally, 

our mergeGoSummary function is used to aggregate all the unique genes belonging to the same 

overall summary group and counted for visualisation as shown in Fig 3-9.  

goBP.UP <- merge(goBP.UP, go.BP.ref[,c(1,3)], by="Term", sort = F, all.x = 

T) 
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goBP.UP.summary <- mergeGoSummary(goBP.UP) 

3.2.5.1.2 Pathway Analysis – protocol for robust pathway enrichment 

Databases for transcription factor or kinase perturbation allow for complex pathway analysis. 

A kinase perturbation database allows us to query genes that were previously shown to be 

regulated in response to a kinase perturbation. To make sense of perturbation databases we 

retain hits where the perturbed genes and their affected genes match the direction of regulation 

found in the user’s data. As in the case of GO ontologies, we also summarise overlapping 

perturbation terms. Although we do not discuss kinase perturbations in this project, in the 

following example we utilise the kinase perturbation as an example of generic pathway analysis 

that can be performed using our protocol. Essentially, the same procedure applies to 

transcription factor perturbation. 

Fig 3-9 | Example GO Ontology summarisation for GO Biological Processes generated from the results of EnrichR 

mining tool. Under “ER stress” a number of redundant terms were found: IRE1 mediated pathway, IRE1-mediated 

unfolded protein response, ER unfolded protein response, response to ER stress, ubiquitin-dependent ERAD 

pathway, retrograde protein transport, ER to cytosol. Without summarisation over 60 GO terms persist with too 

many genes overlapping in each group. 
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Step 1: Database Query and Filtering 

We use EnrichR package and getEnrichmentResults function to obtain enrichment terms 

with adjusted p-value less than 0.01. In this example, differentially upregulated genes are 

shown. 

## EnrichR ----- 

library(enrichR) 

my_chosen_databases <- c( 

  "Kinase_Perturbations_from_GEO_up" ) 

 

enriched.Up <- enrichr(Upregulated_Genes, my_chosen_databases) 

 

##Kinases - Gene UP 

Kinase.result.UP <- getEnrichmentResults(  

  data = enriched.Up 

  , goTYPE="kinases" 

  , direction = "UP" 

  , dbgo = "Kinase_Perturbations_from_GEO_up" 

  , revigo = F )[["Enrichment"]] 

 

Step 2: Output based on kinase regulation 

The getGenePertubation function is used to query our DEG and only keep kinase terms 

whose perturbation matches the direction of regulation in our dataset.  

Kinase.result.UP <- getGenePertubation(data=Kinase.result.UP, direction="UP

", genesUp = uniqueUp, genesDown = uniqueDown 

                         , type = "kinases") 

 

Step 3: Direct Correlation 

The direct correlation of kinases and our DEGs can be visualised with the code chunk below. 

This is typically meant to summarise how many genes were upregulated when a specific kinase 

experienced upregulation, activation or overall gain of function.  The results here show that no 

genes were upregulated when kinases were upregulated. 

kinase.Up.Gene.Up <- Kinase.result.UP[["DirectSummary"]] 

head(kinase.Up.Gene.Up)[,c(1:3,5:7)] 

 

## [1] Term             Count            Adjusted.P.value pertType         

## [5] pertDir          geneDir          

## <0 rows> (or 0-length row.names) 
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Step 4: Inverse Correlation 

The inverse correlation ( InverseSummary ) of kinases and our differentially upregulated genes 

is shown below. For example, inhibition, downregulated or overall loss of function of TRIM33 

led to the upregulation of 79 genes in our dataset. Furthermore, TRIM33, BRD4, ATM, etc are 

kinases that were differentially downregulated in our dataset. Using such output, we can 

visualise enriched kinase perturbation the same way as the Gene Ontology example in Fig 3-9.   

kinase.Down.Gene.Up <- Kinase.result.UP[["InverseSummary"]] 

head(kinase.Down.Gene.Up)[,c(1:3,5:7)] 

 

##   Term Count Adjusted.P.value                 pertType pertDir geneDir 

## TRIM33    79     9.208714e-14                knockdown    DOWN      UP 

##   BRD4   128     3.386253e-12 druginhibition;knockdown    DOWN      UP 

##    ATM   169     4.696190e-09       knockout;knockdown    DOWN      UP 

## MAPK14   171     9.850537e-09       knockout;knockdown    DOWN      UP 

##    SYK   250     1.149229e-08           druginhibition    DOWN      UP 

##  IRAK4   109     5.453364e-08 knockout;defectivemutant    DOWN      UP 

Step 5: Extract Functionally Relevant Genes 

Using GO Enrichment, we were able to identify a number of genes that are likely to be relevant 

to membrane trafficking. If we want to know how many of these genes were affected by 

kinases, querying kinase databases with this filtered set of genes would underestimate the 

statistical power of the enrichment analysis due to smaller degree of freedom. Therefore, retain 

results of and highlight how many of the genes perturbed by kinases were among our genes of 

interest. This was done using our getDesiredEnrichment function.  

kinase.Down.Gene.Up.Desired<- getDesiredEnrichment(enrichData = kinase.Down

.Gene.Up  , desiredGenes  = desiredGenes ) 

 

##      Term Total Adjusted.P.value desiredGeneCount Remainder 

## 17 TRIM33    79     9.208714e-14               22        57 

## 4    BRD4   128     3.386253e-12               45        83 

## 2     ATM   169     4.696190e-09               59       110 

## 11 MAPK14   171     9.850537e-09               51       120 

## 15    SYK   250     1.149229e-08               71       179 
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 Using the above result, we can visualise how our genes of interest may be affected by kinase 

perturbation as shown in Fig 3-10. 

The above described protocol was utilised for mining other databases such as “ARCHS4 

Transcription Factor Coexpression” and “Transcription Factor Perturbations Followed by 

Expression”. 

  

Fig 3-10 | Example Visualisation of Pathway Enrichment results from EnrichR mining tool. The figure shows 

how many genes are upregulated as a result of Kinase loss of function. Kinases are order by statistical significance, 

highest first. User can input a separate set of “Desired Genes” to determine how many of genes of interest are 

being perturbed by a kinase or a transcription factor. Our “desired genes” were those that had GO terms related 

to ER, Golgi, and membrane trafficking components. Note that we do not discuss kinase perturbation in this 

chapter, and this database is used as an example only. 
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3.3 RESULTS 

3.3.1 Transcript Classification 

We updated the annotation on Affymetrix Genechips and found that the Mouse Genome 430 

2.0 Array have a total of 25596 unique genes or gene isoforms and the Human Genome U133 

Plus 2.0 Array had 30496 after re-annotation. Reannotation gave us valuable insight into the 

quality of the probesets. This information can be used to evaluate the how much of the 

differentially expressed transcriptome is protein coding.  

3.3.1.1 Cross Species Analysis verifies integrity of low-quality transcripts 

When we combine the differentially expressed genes (DEG) from mice and human, we are able 

to better ascertain whether genes showing differential expression (DE) via hybridization to 

poor quality probes are real. For example, if gene A in mouse showed DE via an intergenic 

probe, which maps to a non-coding region between gene A and gene C, it is unclear whether 

gene A or gene C is showing differential expression. But if at the same time the human dataset 

shows DE in gene A via a uniquely mapping exonic probe, we can say that the gene A is likely 

a valid hit. Likewise, if gene B in mouse showed DE via an intronic probe and the same gene 

in human dataset showed DE via a uniquely mapping exonic probe, we can say with higher 

confidence that gene B is likely to be protein coding.  As shown in Fig 3-11A-D, before cross 

species analysis, intergenic as well as mismatching transcripts accounted for approximately 10-

20% of DEG in both mice and human. After cross species meta-analysis, these low-quality 

transcripts accounted for less than 1% of the results. By removing low quality genes and 

prioritising exonic probes our methodology increased the representation of differentially 

expressed protein coding transcripts by up to 20% as shown in Fig 3-11E, F.  
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3.3.1.2 Length bias in UTR regions 

While removal of lower quality transcripts improves data quality, the importance of non-coding 

RNA cannot be ignored. We found that distribution of intronic gene and UTR regions were 

proportionately higher in downregulated genes as opposed to the upregulated set even after 

cross-species data analysis (Fig 3-11E, F). Previous studies have shown that a sizable portion 

of mammalian introns and UTR regions encode for gene regulatory elements [140, 141]. We, 

therefore, speculated that the overrepresentation of non-coding regions in the downregulated 

set may suggest a role in the B cell lineage. However, upon closer inspection we found that the 

lengths of the UTR regions found in the downregulated set were ~18% longer in mouse and 

~30% longer in human compared to the corresponding upregulated set (p-value<0.05). 

Therefore, this length bias may be the primary cause of differential number of UTR genes 

detected in the up- and downregulated sets  
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Fig 3-11 | Proportion differentially expressed coding and non-coding transcripts in mice arrays, human arrays and 

in cross species analysis. A-B. Number of genes DE in at least 1 cell type after standalone analysis of mice 

microarrays. Non-coding regions make up A. 21% of upregulated and B. 37% of downregulated genes. C-D. 

Number of genes DE in at least 1 cell type for standalone analysis of human microarrays. Non-coding regions 

make up C. 30% of upregulated and D. 34% of downregulated genes. E-F. Number of genes DE in at least half 

the ASCs studied across species, this set also includes genes with missing probes or orthologs for either species. 

Non-coding regions make up E. 11% of upregulated and F. 18% of downregulated genes. 
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3.3.2 Differential Expression 

3.3.2.1 Mouse ASC lineage 

In the mouse model, splenic plasma cells, bone marrow plasma cells or both showed 

differential upregulation in 3991 unique genes compared to naïve B cells (fold change ≥ 2, 

false discovery adjusted p-value < 0.05). A similar number of genes, 3896, were 

downregulated. 

3.3.2.2 Human ASC lineage 

In the human model, bone marrow PCs, in vitro generated PBs and PCs showed differential 

upregulation in 5783 unique genes in at least one cell type compared to NBCs. A similar 

number of genes, 5836, were downregulated.   

3.3.2.3 Cross Species Analysis 

3.3.2.3.1 Upregulated Genes 

Fig 3-13A, C summarises the overlap of differentially upregulated genes in mice and human. 

548 genes show conserved upregulation across species in all 5 ASC studied (Fig 3-13A). 511 

Fig 3-12 | Box plot of UTR lengths in A. Mice microarray and B. Human Microarray. Only UTRs differentially 

expressed in at least 3 out of 5 ASCs studied were considered. 
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genes were upregulated in 4 out of 5 ASCs and 820 were upregulated in 3 out of 5 ASCs. We 

carried forward these 3 groups of upregulated genes for further analysis (Fig 3-13C, middle, 

purple area). In addition to these subsets, differentially expressed genes (DEGs) that were 

present in one species but had no orthologs or array probes for another were included for 

downstream analysis (Fig 3-13C, in red). 

3.3.2.3.2 Downregulated Genes 

Fig 3-13BD summarises the overlap of differentially downregulated genes in mice and human. 

486 genes are consistently downregulated in all 5 ASCs (Fig 3-13B). 684 genes were 

upregulated in 4 out of 5 ASCs and 1025 were downregulated in 3 out of 5 ASCs. We carried 

forward these 3 groups of genes for further analysis (Fig 3-13D, middle, purple area).   
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3.3.2.3.3 Cross species analysis filters out up to 86% of DE genes. 

Fig 3-14 summarises the consistency of differential expression across species and ASC types. 

Filtering genes by the reproducibility of transcript expression across ASC types allowed us to 

narrow down around 500 (14%) upregulated genes from approximately 3500 potential 

candidates (Fig 3-14A). A similar proportion of genes were isolated from the downregulated 

  

   

  

  
   

   

  

  

  

  
  

  

   

  

  

   

  

   

   

 

   
  

  

   

   

  

 

   

   

   

     

     

          

     

  

     

  

     

    

   

  

  

  
   

   

 

  

   

  

  

  

  

  

  

 

   

  
  

  

 
 

  

   

  

  

  

   

   

   

     

     

          

     

  

     

  

     

    

  

   

  

  
   

   

  

  

  

    

  

   

  

  

    
   

  
  

  

  

  

       

     

          

     

  

     

  

     

    

   

  

  

  
   

   

 

  
   

  

  

  

  

  

    
   

 

  

  

  

  

       

     

          

     

  

     

  

     

    

Fig 3-13 | Venn Diagram showing the overlap of differentially regulated genes in ASCs of mice and human 

microarray profile. A. Upregulated in mice and human ASCs. B. Downregulated in mouse and human ASCs. C-

D. Genes differentially expressed in at least 3 ASCs are indicated by middle, purple region. An additional set of 

genes without known orthologs or having missing probes in either species (indicated in red), were included in the 

downstream analysis. C. Upregulated in mice and human. D. Downregulated in mice and human  
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set (Fig 3-14B). These genes show the most reproducible transcript expression and thus are 

supposedly the ideal candidates for downstream analysis.  

However, a caveat of meta-analysis is that the fold change values across species or 

platforms are very rarely the same. Typically, genes exhibit some scatter in the fold change 

values across similar tested conditions. We acknowledge that sometimes the minimum value 

of this range falls below the absolute 2-fold threshold. In this particular study, these changes 

could be due to (a) minor optical measurement differences pushing result below 2 FC threshold; 

(b) natural scatter or batch differences; or (c) phenotypic differences not accounted for. This is 

why, considering only the 14% genes expressed in every ASC studied in this chapter would be 

overly stringent. Therefore, we implemented a voting system to allow for genes that are 

Fig 3-14 | Visualisation of the number of DEG filtered out via cross-species microarray analysis. A. Upregulated 

genes overlapping in at least x ASCs and no significant change in either direction in any remaining groups. B. 

Downregulated genes overlapping in at least x ASCs and no significant change in any remaining groups. Note 

that prior to multi group filtering, low quality transcripts (intergenic, mismatches, introns) without cross species 

evidence were removed. This removes a up to 2500 hits. As there were only 2 mouse ASCs studied, the gene 

counts do not represent genes that are DE in mouse platform but had no ortholog or probes in the human one. 
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differentially expressed in the majority of ASCs. This method retains 57% upregulated genes 

and 64.2% downregulated genes, respectively.  

3.3.2.4 Global Gene Regulation 

Consistent Across Species 

Fig 3-14 only considers genes that were present in both microarrays and had orthologs across 

mouse and humans. After considering genes with unknown orthologs or lacking probes in one 

platform, we find a total of 2074 upregulated genes, and 2399 downregulated genes for further 

analysis. 

Differential Regulation between Species 

The premise of cross species analysis is that genes showing consistent regulation are likely to 

more reliable. Nevertheless, there may be some true positive contradictory results that highlight 

differences between mouse and human. We found 1085 genes showing differential regulation 

in mouse vs. human ASCs.  514 of these are upregulated in mouse but show no change or 

downregulation in humans and 574 genes are downregulated in mouse and upregulated in 

humans. However, we acknowledge that a considerable number of these genes are likely to be 

erroneous results brought on by systemic and/or non-systemic noise. Therefore, we mainly 

focus on genes showing species conserved regulation. 

3.3.3 Verification 

In order to determine whether our results have been correctly processed, we exploit well 

characterised markers that can be used as a reference to ensure the integrity of our data. 

Table 3-4 | Global summary of genes differentially expression in mouse and human ASCs 

Direction of Regulation Total Genes 

Mice ASC Human ASC 

Up Up 2074 

Down Down 2399 

Up Down 514 

Down Up 574 
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3.3.3.1 Known B cell biomarkers 

 PAX5, BCL6, BACH2  and FOXO1 are well studied transcription factors known to maintain 

the B cell phenotype [142, 143]. The expression of these genes are known to decrease when B 

cells commit to plasma cell differentiation. As shown in Fig 3-15, these genes were consistently 

downregulated in both human and mice ASCs compared to resting B cells in accordance with 

existing literature.  

3.3.3.2 Known ASC biomarkers 

IRF8, PRDM1/Blimp1, XBP1 as well as BHLHA15/MIST1 are known enhancers of the ASC 

phenotype [142, 144]. Our analysis indicates that IRF8, PRDM1/Blimp1, XBP1 genes are 

consistently upregulated across species. While BHLHA15/MIST1 also shows upregulation in 

mice, the human Affymetrix Genechip used to profile the human transcriptome did not have a 

probe for this gene. This justifies our experimental design in incorporating genes with missing 

probes and orthologs into the cross-species analysis. 

Fig 3-15 | Differential regulation of transcription factors characteristic of naïve B cell in cross-species microarray 

analysis. Literature shows these genes are characteristic of naïve B cells and decrease in expression when NBCs 

commit to antibody secretion. In line with previous studies, cross species analysis show that these genes are 

consistently downregulated in ASCs versus NBCs. (*) indicate FDR adjusted p-value < 0.05 
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3.3.4 Functional Analysis 

After narrowing down unique genes showing conserved differential regulation in both mouse 

and human antibody secreting cells, we studied what biological function and cellular 

localisation was enriched in this set.  

3.3.4.1 GO Biological Processes 

We interrogated the “GO Biological Processes 2017” database using EnrichR and found 66 

statistically significant GO terms (rank based ranking adjusted p-value <0.01). We summarised 

these GO terms based on overlapping genes by utilising the REVIGO API and manual curation. 

The summarised terms that we assigned to overlapping GO biological process in this chapter 

are given in Appendix Table 6-1, along with the number of genes enriched per GO term. 

Out of 2074 genes showing conserved upregulation across mouse and human ASCs, 

495 (23.8%) unique genes showed statistically significant enrichment for at least one GO 

biological process while downregulated genes showed enrichment in 609 (25.4%) genes out of 

2399. While most of the remaining genes had associated GO terms, there were either not 

Fig 3-16 | Differential regulation of transcription factors characteristic of antibody secreting cells in cross-species 

microarray analysis. Literature shows that these genes are characteristic of ASCs and increase in expression when 

NBCs commit to antibody secretion. In line with previous studies, cross species analysis show XBP1, PRDM1 

and IRF4 are consistently upregulated in ASCs versus NBCs. We also observe strong upregulation of 

BHLHA15/MIST1 in mice array, although, no data was available in human microarray due to missing probes for 

this gene. (*) indicate FDR adjusted p-value < 0.05. (?) indicates missing ortholog or probes. 
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enough members for each term to consider them statistically significant or the member genes 

were too scattered (rank wise) in the inputted gene lists. It may be tempting to assume that 

Fig 3-17 | Degree of consistency in the Differential Regulation of Functionally Enriched Genes and Visualisation 

of Summarised GO Biological Processes. A-B. Pie chart showing the robustness of genes enriched for GO 

biological functions, as implied by conserved differential expression in up to 5 ASCs. Genes showing conserved 

regulation in some but not all ASCs help improve the statitical power of enrichment analysis and highlight the 

importantance of avoiding overly stringent filtering. A. Upregulated Genes. B. Downregulated Genes. “Others” 

imply genes that were analysed separately due to lack of orthologs or probes across species. C-D Summary of GO 

Biological processes. Bar labels indicate number of genes enriched for each summarised GO term. The enrichment 

results are ranked by adjusted p-value denoting the chance of an enrichment occurring by random chance. ER 

stress had lowest adjusted p-value or highest -log10(adjusted p-value) meaning it is very likely to be a true positive 

enrichment. Note that these summarised categories are aggregated from overlapping GO terms as detailed in 

Appendix Table 6-1. C. Upregulated Genes, D. Downregulated Genes. 
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members of enriched GO terms mostly belong to the gene sets that show consistent 

upregulation in all 5 ASC types studied. However, Fig 3-17A, B shows that this is not the case, 

as enriched genes were evenly distributed across gene sets showing varying degree of overlap 

between different ASC type in mice and humans. The results of GO Biological process 

enrichment is summarised in Fig 3-17C,D. ER stress response and membrane trafficking were 

the top enriched functional categories for genes upregulated in ASCs compared to NBCs (Fig 

3-17C). On the other hand, downregulated genes were mostly associated with transcriptional 

regulators and modulation of protein activity through phosphorylation (Fig 3-17D). The 

specific DEGs that map to these functional groups can be found in Appendix Table 6-3 and 

Table 6-4. 

3.3.4.1.1 Protein Processing in the ER 

ASCs synthesise and secrete thousands of antibodies per second [51]. Under such forward 

pressure, it is expected that large number of unfolded and misfolded proteins would arise and 

Fig 3-18 | Enrichment Terms related to Unfolded Protein Response in cross-species microarray analysis. The 

enrichment results are ranked by adjusted p-value denoting the chance of an enrichment occurring by random 

chance. IRE1 mediated UPR had lowest adjusted p-value or highest -log10(adjusted p-value) meaning it is very 

likely to be a true positive enrichment. All GO terms shown had adjusted p-value <0.01. 
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accumulate in the ER.  This explains why the top biological process enriched for upregulated 

genes in ASCs compared to NBCs is ER Stress or the Unfolded Protein Response (UPR). We 

found a total of 139 unique genes upregulated in ASCs likely to be involved in maintaining ER 

homeostasis and Fig 3-18 shows the breakdown of GO terms under the UPR category. 

 IRE1 mediated UPR response was the top GO term enriched among biological 

processes. IRE1 (ERN1) and its downstream splicing target, XBP1, are well-known mediators 

of UPR and their role in ASCs is well characterised [1]. Splicing of XBP1 mRNA by IRE1 

allows XBP1 to upregulate ERAD proteins, protein folding enzymes, chaperones and also lipid 

biogenesis [145].  As such we see enrichment for the ERAD pathway, proteasomal degradation 

and oxidative stress likely from disulphide bond reduction for the unfolding of misfolded 

proteins. 

3.3.4.1.2 Membrane Trafficking 

When naïve B cells encounter an antigen, they become factories of protein (antibody) 

production and secretion. As such, we predicted that comparing ASCs to their non-secreting 

counterparts would allow us to isolate trafficking components responsible for this enhanced 

Fig 3-19 | Enrichment Terms overrepresented for Membrane Trafficking. The enrichment results are ranked by 

adjusted p-value denoting the chance of an enrichment occurring by random chance.  Retrograde vesicle mediated 

transport from Golgi to ER had lowest adjusted p-value or highest -log10(adjusted p-value) meaning it is very 

likely to be a true positive enrichment. All GO terms shown had adjusted p-value <0.01. 
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secretory phenotype. In accordance with this hypothesis, we found that membrane trafficking 

was the second most enriched functional category among genes upregulated in ASCs compared 

to NBCs (Fig 3-17C). Within this category, enrichment for vesicular transport between ER and 

Golgi was most statistically significant (Fig 3-19).  

3.3.4.2 GO Cellular Component 

We interrogated the “GO Cellular Component 2017” database using EnrichR and found 31 

statistically significant GO terms (rank based ranking adjusted p-value <0.01). The summarised 

terms that we assigned to overlapping GO biological process are given in Appendix Table 6-2. 

Out of 2074 genes showing conserved upregulation across mouse and human ASCs, 

676 (32.5%) unique genes showed statistically significant enrichment for specific 

compartments while downregulated genes showed enrichment in 256 (10.6%) genes out of 

2399. The results of GO Cellular Component enrichment is summarised in Fig 3-20. In line 

with biological function enrichment, the most overrepresented localisation among upregulated 

genes was the ER followed by mitochondria and the Golgi apparatus. Downregulated genes, 

Fig 3-20 | Summary of GO cellular components enriched among A. Upregulated Genes, B. Downregulated Genes. 

Note that these categories are aggregated from overlapping GO terms as detailed in Table 6-2. Genes localised to 

ER had lowest adjusted p-value or highest -log10(adjusted p-value) meaning it is very likely to be a true positive 

enrichment. All GO terms shown had adjusted p-value <0.01. 
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on the other hand, mostly localised to the nucleus and cytoplasm. The specific DEGs that map 

to these cellular locations can be found in Appendix Table 6-5 and Table 6-6. 

3.3.4.2.1 Genes of Interest based on GO enrichment Analysis 

We isolated gene sets that are enriched for GO terms of interest and performed further analysis 

to determine how they are being regulated in ASCs. We selected genes localised to the ER, 

Golgi, proteasome and secretory granules as well as any DEG associated with ER stress 

response, anti apoptotic processes, membrane trafficking, glycosylation, and antigen 

presentation as indicated by GO enrichment analysis. These genes account for a total of 534 

upregulated genes detailed in the Appendix Table 6-7. As downregulated genes were mostly 

related to gene expression or modulation of protein function, we indirectly utilise them to 

determine their effect on upregulated genes as detailed in the next section. 

3.3.5 Pathway Analysis 

3.3.5.1 Transcription Factors 

In order to investigate the role of transcription factors in the regulation of DEGs in ASCs as 

opposed to NBCs we looked at changes in these genes in relation to their downstream targets. 

Not surprisingly, the key regulators of ER stress, XBP1 and ATF6, as well as the lymphocyte 

host defense related gene, POU2AF1 , were highly enriched in ASCs (Fig 3-21A). XBP1 and 

ATF6 are well characterised transcription factors implicated in regulating unfolded protein 

response by upregulating chaperones, protein folding enzymes and the ER degradation 

pathway [5].  However these TFs only explain the upregulation of 318 unique genes, of which 

only 149 belong to our desired gene set (Fig 3-21A, in blue). The specific genes upregulated 

in ASCs by these transcription factors are given in Appendix Table 6-8.  

The ARCHS4 database allows us to determine which genes are commonly seen to be 

co-expressed with transcription factors across hundreds of RNA-Seq profiles. In order to 

identify potentially novel transcription factors playing a role in the ASC phenotype, we 
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analysed which transcription factors are commonly co-expressed with genes upregulated in 

ASCs.  We found 23 transcription factors that met this criterion. Top 15 coregulated TFs are 

shown in Fig 3-21B. In order to select the most important candidate among these TFs, we 

visualised the differential expression of these TFs in Fig 3-21C, to rule out false positives.  We 

note that CREB3L2 was one of the top hits with highest numbers of genes co-expressed with 

genes belonging to our gene set of interest. This gene has also been highlighted by Shi et al as 

a signature transcription factor for in vivo plasma cells[56]. 

Transcriptional Repressors 

We found 38 transcription factors downregulated in ASCs that were previously found to inhibit 

the expression of our differentially upregulated gene set (adjusted p-value < 0.05). Downstream 

targets of these transcription factors accounted for the expression of 1169 unique DEG of which 

381 were among our desired gene set (Fig 3-22A). BCL6 transcription factor is a well known 

marker of germinal centre B cells, whose downregulation is required for plasma  cell 

differentiation [146]. As expected BCL6 and it’s upstream enhancer, FOXO1, were the top two 

TFs consistently downregulated and likewise their repressed targets were upregulated in the 

ASCs of both mice and humans [147]. The full list of upregulated genes affected by the 

inhibition of transcription factors are shown in Appendix Table 6-8. SRF, is a TF factor linked 

to cell proliferation and differentiation. While the pertubation of this regulator appears to affect 

the largest number of genes of interest, Fig 3-22B illustrates that this gene had relatively low 

fold change and higher noise than most of the other downregulated TFs. Thus it is unlikely to 

be a candidate for downstream analysis. In fact the TFs exhibiting greatest downregulation, 

BCL11A, SATB1, affected genes involved in cell cycle, mitochondrial electron transport 

respectively (Fig 3-22B and Appendix Table 6-8). Overall, downregulated TF of interest to 

membrane trafficking were not immediately clear from our results.  
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Fig 3-21 | Bar charts showing potential positive regulators of genes upregulated in ASCs. A. Gene upregulation 

as a result of TF activation, upregulation or gain of function mutation. B. TFs found to be commonly co-expressed 

with relevant gene sets in hundreds of publicly available transcriptomes A-B. Transcription factors are ordered 

by adjusted p-value from ranked based ranking (most significant enrichment first). Desired genes (in dark blue) 

are upregulated genes that were enriched for GO summary terms of interest, i.e. ER stress and membrane 

trafficking related genes as described in Section 3.3.4.2.1. C. Differential Expression profile of ASCs compared 

to NBCs of TFs that are predicted to be co-expressed with considerable number of upregulated genes. Genes are 

arranged in order of adjusted p-value calculated for multi-group comparison. This means the TCF19 would have 

had highest probability of being truly differentially regulated in ASCs across species, if it had no missing value. 

(*) indicate FDR adjusted p-value < 0.05. (?) indicates missing data, i.e. no assumption can be made.
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Fig 3-22 | A. Bar charts showing potential negative regulators of genes upregulated in ASCs as evidenced by TF 

downregulation, inhibition or loss of function mutation experiments. Transcription factors are ordered by adjusted 

p-value from ranked based ranking (most significant enrichment first). Desired genes (in dark blue) are 

upregulated genes that were enriched for GO summary terms of interest, i.e. ER stress and membrane trafficking 

related genes as described in Section 3.3.4.2.1. B. Differential expression profile of TFs, whose 

inhibition/downregulation is known to overexpress considerable number of genes upregulated in ASCs.  

A-B. Genes are arranged in order of adjusted p-value calculated for multi-group comparison. This means the 

BCL11A had highest probability of being truly differentially regulated in ASCs across species. (*) indicate FDR 

adjusted p-value < 0.05. 
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3.4 DISCUSSION 

3.4.1 EDEM1-ERdj5 complex shows differential regulation in human 

Due to the considerable upregulation of ER components, we looked into the protein folding 

machinery of ASCs of mouse as opposed to humans. Our cross-species analysis shows that 

most chaperones participating in protein folding and degradation of terminally misfolded 

proteins were consistently upregulated in human and mice ASCs to meet the increased demand 

for protein biogenesis.  

In Chapter 1, Section1.1.1.1.3, we discussed the role of the EDEM chaperones in 

mediating the entry of misfolded proteins into the ERAD pathway. Interestingly, the according 

to our cross-platform microarray analysis, EDEM1 isoform was differentially regulated 

between mice and humans. This gene, implicated in promoting glycoprotein mannosylation, 

was highly upregulated in mice ASCs but exhibited relatively minor change in human ASCs 

(Fig 3-23) [14–16]. 

We note EDEM2 and EDEM3, paralogs of EDEM1, are highly upregulated in both 

species. EDEM2 has been shown to catalyse the first step of mannosylation and commit 

misfolded proteins to the ERAD pathway, while EDEM3 and EDEM1 perform redundant 

Fig 3-23 | Differential Expression profile of ER chaperones in the ASCs of mice and human compared to NBCs. 

Asterisks (*) indicate statistically significant expression among ASCs per species.  Most chaperones show DE 

above the 2-fold change (FC) threshold except EDEM1 and its interactor DNAJC10 (ERdj5). 
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function in mediating the subsequent mannosylation steps [148]. Unlike its paralogs, EDEM1 

functions as both a mannosidase and a lectin, whereby it delivers substrates to the ER 

membrane for retrotranslocation and subsequent degradation [148]. Therefore, it is surprising 

that unlike mouse EDEM1, the human ortholog does not follow a similar pattern of expression 

as other lectins such as OS9 and XTP-3B (ERLEC).   

The differential regulation of EDEM1 in ASCs across species is supported by the 

similar pattern of expression of the EDEM1 interactor, DNAJC10 (ERdj5) (Fig 3-23). This co-

chaperone reportedly binds to EDEM1 and enhances ERAD activity by catalysing the 

unfolding of EDEM1 substrates. (Fig 3-23) [21].  

Transcription perturbation analysis showed that EDEM2 and EDEM3 are upregulated 

in response to XBP1 overexpression but their paralog EDEM1 and its interactor DNAJC10 is 

unaffected.  Although, this explains the muted upregulation in humans it does not account for 

the considerable upregulation in mice. Together these results suggest that misfolded protein 

unfolding and delivery to the retrotranslocon mediated by EDEM1 and ERdj5 may be regulated 

at a post transcriptional level or alternative machinery may perform the function of these 

proteins in human ASCs. Therefore, further analysis via western blotting or proteomic 

validation is required to validate these findings. 

3.4.2 UGGT2 folding checkpoint enzyme is upregulated in human ASCs only 

In Chapter 1, Section 1.1.1.2, we discuss genes that mediate the return of misfolded proteins to 

the folding cycle. We noted that one of these genes, UGGT2 was differentially regulated among 

human and mice (Fig 3-24). The two known reglucosylation enzymes, UGGT1 and UGGT2, 

share about 55% similarity in their amino acid sequence. A study in 2010 transiently transfected 

human UGGT genes into monkey cells and found that UGGT1 expression increases in response 

to ER stress but not UGGT2 and reasoned that this is due to the UGGT2 protein possibly 

lacking glycosyltransferase activity [149]. Recently, however, UGGT2 has been shown to 
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expressly bind and glycosylate proteins in non-native conformations in a similar manner to 

UGGT1 [150]. However, the specific role of UGGT2 as opposed to the UGGT1 enzyme 

remains unclear. 

As expected, UGGT1 was 

consistently upregulated in ASCs across 

species in response to proteotoxic ER 

stress. Surprisingly, UGGT2 was 

upregulated as well but was unique to 

humans only, as the gene expression in 

the mouse model showed little or no 

change (Fig 3-24). While this result may 

contradict Arnold et al’s findings, it is 

important to note that the study had 

utilised immortalised fibroblast like cell line from monkey to study human UGGT2 expression. 

Therefore, the study may not have accurately reflected the physiology of ER stress in human 

ASCs. Moreover, Takeda et al showed that UGGT1 and UGGT2 has similar substrate binding 

capacity using synthetic substrates in human embryonic kidney cells [150]. We noticed that the 

binding capacity of UGGT2 has not been studied across species. If UGGT2 is able to detect 

misfolded substrates specifically incompatible with human, the enzyme may potentially be 

responsible for mediating species-specific folding in humans. This hypothesis may explain the 

accumulation of misfolded recombinant proteins in CHO cells, which is a major issue in the 

biologics industry. Therefore, we propose that UGGT2 is a key candidate for downstream 

validation by western blotting using mouse and human ASCs. 

Fig 3-24 | Expression profile of UGGT genes (microarray).  

These genes are known to reglucosylate misfolded proteins 

in the ER. UGGT1 is consistently upregulated across species. 

(*) indicate FDR adjusted p-value < 0.05 
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3.4.3 CREB3L2 may be a cargo selector for COPII vesicles 

After proteins are folded, they are packaged into COPII vesicles and transported to the Golgi 

apparatus for further processing [1]. Fig 3-25 shows the differential expression of COPII coat 

proteins in ASCs. It is evident that SEC24 isoform, SEC24D, stood out compared to other 

COPII components. Like ASCs, during hepatic fibrosis hepatic stellate cells enlarge their ER 

and Golgi apparatus to become a factory for releasing large amount s of α-smooth muscle actin 

and collagen I [151, 152].  A recent study reported that SEC24D transcription is activated by 

the CREB3L2 during hepatic stellate cell differentiation [153]. Interestingly, CREB3L2 was 

one of the very top ranking genes upregulated in ASCs compared to NBCs across species (Fig 

3-21C). In addition, the gene shows co-expression with the highest number of genes belonging 

to our gene set of interest compared to other TF candidates (Fig 3-21B). Although 28 of its 

enriched targets, primarily chaperones, are known to be upregulated as a result of XBP1 or 

ATF6 overexpression, the regulation of 57 unique genes coexpressed with CREB3L2 are less 

clear.  

 The bZIP transcription factor, CREB3L2/ BBF2H7 is a transmembrane protein 

implicated in ER stress responses in chondrogenesis and improved protein secretion through 

regulation of SEC23A and  MIA3 (TANGO1) [154, 155]. Studies in zebrafish mutant 

Fig 3-25 | Differential Expression of COPII vesicles components (microarray). SEC24D clearly stands out 

compared to other coat proteins. Genes are arranged in order of adjusted p-value calculated for multi-group 

comparison.  
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(feelgood) and the CREB3L2 knockout in medaka fish has previously shown a marked 

reduction in ER-to-Golgi transport [156, 157]. 

SEC24D has been implicated in the selective transport of the GPI anchored 

transmembrane protein, CD59 [158]. And our analysis shows that in addition to CD59, 

CREB3L2 is co-expressed with 8 other cargo proteins destined for the cell surface. As shown 

in Table 3-5, the majority of these cargoes are large glycosylated proteins, whose role is not 

restricted to chondrogenesis.  Due to the diversity of these protein cargo, we hypothesise that 

CREB3L2 may play a crucial role in the transport of large proteins, by regulating cargo 

selection of the COPII vesicle. Whether this cargo selection includes antibodies remains 

unclear. Further studies at the protein level is needed to validate our results.   

Fig 3-26 | Differential regulation of cargo proteins in ASCs vs NBCs (microarray). These genes, destined for cell 

surface, are predicted to be co-regulated with CREB3L2. Genes are arranged in order of adjusted p-value 

calculated for multi-group comparison. This means the leftmost gene had highest probability of being truly 

differentially upregulated in ASCs across species compared to equivalent NBCs. (*) indicate FDR adjusted p-

value < 0.05 

 
Size (aa) Description Glycosylated? 

FNDC3B 1204 Fibronectin Yes 

CD59 128 Antigen Yes 

TMEM184B 407 - - 

SLC39A14 492 Solute Carrier Yes 

ITGB1 798 Integrin Yes 

ATP2B4 1241 Solute Carrier No 

LAMC1 1601 Laminin Yes 

PLXNB2 1838 Plexin Yes 

SLC7A1 692 Solute Carrier - 
 

Table 3-5 | Cargo Proteins co-expressed with CREB3L2 
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3.4.3.1  CREB3L2 may regulate ribosome recruitment to the ER 

According to existing perturbation experiments, master regulators of ER stress, XBP1 or ATF6, 

do not affect CREB3L2 expression. Our pathway analysis results show that CREB3L2 might 

be upregulated as a result of FOXO1 inhibition (Appendix Table 6-8). Upon encountering an 

antigen, B cells commit to plasma cell differentiation and concurrently downregulate FOXO1 

[147]. As FOXO1 inhibition enhances gene expression of translocon components, folding 

enzymes and chaperones, it is logical to assume that FOXO1 inhibition improves rate of protein 

biosynthesis.  If CREB3L2 is a regulator of large cargo selection, its upregulation may be an 

indirect response to increased supply of folded proteins in the ER. 

Fig 3-27 | Predicted Gene regulatory network for large protein transport in the ER. FOXO1 downregulation 

potentially removes inhibitory effects on CREB3L2, translocon and protein folding components and explain their 

upregulation. CREB3L2 overexpression leads to upregulation of SEC24D and potentially the RRBP1 gene. 

Ribosome recruitment by RRBP1 and increased protein folding and translocation activity lead to synthesis and 

accumulation of cargo proteins. The recruitment of these cargo into COPII vesicles and transport to the Golgi is 

likely facilitated by the now abundant SEC24D.   
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 Interestingly, however, CREB3L2 

gene regulation has been predicted to 

coincide with the poorly characterised 

ribosome anchor, RRBP1 (p180), whose 

upregulation was consistent across species 

in ASCs (Fig 3-28). CREB3L2 may 

indirectly contribute to enhanced protein 

synthesis if it acts upstream of RRBP1. 

ASCs exhibit extensive rER compared to 

their non-secretory precursors to account 

for increased demand for antibody secretion [1]. This may be explained by the upregulation of 

RRBP1 , whose presence has been reported to enhance rough membrane proliferation, protein 

translocation and mammalian secretory phenotype  [159–161]. To date, the regulatory 

mechanisms governing RRBP1 expression remains unclear. Our pathway analysis show that 

RRBP1 gene expression most significantly correlates with CREB3L2 (Appendix Table 6-9). 

Therefore, we hypothesize that CREB3L2 may be acting upstream of RRBP1 to enhance 

protein synthesis. Our proposed regulatory network for CREB3L2 is illustrated in Fig 3-27.  

3.4.4 FNDC3B and TMEM184B may be potential biomarkers for ASCs 

Among the cargoes coregulated with CREB3L2, we note that the poorly characterised 

transmembrane proteins, FNDC3B and TMEM184B, and the divalent metal transporter, 

SLC39A14, were the top upregulated proteins in ASCs across species (Fig 3-26). Therefore, 

these genes maybe potential biomarkers for ASCs and are good candidates for downstream 

validation via proteomics or western blotting. 

  

 

 
  

 

  

  

 

 
 

  
 

    

    

   

   

   

   

                 

  
 
 
  
 
  
  
 
 
 
 
 
 

         

      

     

   

   

     

         

     

    

Fig 3-28 | Differential Expression of RRBP1 and FOXO1 

relative to CREB3L2 in ASCs vs NBCs. While RRBP1 

and CREB3L2 is upregulated in ASCs, FOXO1 is 

strongly downregulated. (*) indicate FDR adjusted p-

value < 0.05 
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3.5 CONCLUSION 

In this chapter we carried cross species meta-analysis and merging of microarray data to ASCs. 

We found that secretory phenotype in ASCs was maintained by strong upregulation of UPR 

and membrane trafficking. Meanwhile, components showing downregulation were those 

related to transcription factors and kinases.  Specifically, we found robust upregulation of the 

poorly characterised transcription factor, CREB3L2, and proposed a potential gene regulatory 

network for this component. Furthermore, we identified potentially novel biomarkers for 

ASCs. 

Our premise for carrying out the cross species meta-analysis was to narrow down robust 

candidates for downstream analysis assuming inconsistent regulation are poor candidates. 

However, differences in glycosylation of recombinant proteins in CHO cells are likely to be 

due to these very inconsistencies between species. As such, we identified differences in the 

expression of UGGT enzymes and ERDM1-ERdj5 complex between mouse and human ASCs. 

As we did not have an independent cross-species analysis to refer to, it is unclear whether this 

cross-species differential regulation is a robust result. In the next chapter we analyse the 

recently published RNA-Seq data for mice and human ASCs to verify this expression pattern.   

We note that candidates identified in this chapter require protein level validation. Our 

colleagues E Rajan and AWA Aswani have recently generated the proteomic profile of mouse 

B cells and plasmablasts. In the next chapter, we carry out proteomic analysis to soft validate 

our candidate genes. 
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4 MULTI-OMICS ANALYSIS OF ASCS 

4.1 BACKGROUND 

In Chapter 3, we used microarray profiling to study differential expression of genes between 

antibody secreting cells (ASC) and their non-secreting naïve B cells (NBC) counterparts. While 

cross species conservation in gene expression patterns indicated the robustness of our results, 

the reliability of potentially relevant species-specific expression was less clear. In this section, 

we ascertain the reproducibility of different gene expression patterns by studying equivalent 

RNA-Sequencing data and whole cell proteome profiling. We have shown that hundreds of 

genes were robustly upregulated in ASCs as opposed to NBCs. It is not feasible to validate all 

these genes in our cell biology laboratory. Therefore, we have opted to soft validate most of 

our results through proteomics.   

4.1.1 RNA-Sequencing 

In this chapter we delve into RNA-Seq analysis to obtain robust gene expression patterns in 

ASCs. As such we review RNA-Sequencing and discuss its advantages over microarrays to 

underscore how, taken together, results from both platforms can serve as strong evidence for 

gene expression.  

4.1.1.1 History of RNA-Sequencing 

Nucleic acid sequencing involves resolving the arrangement of nucleotides in a nucleic acid 

strand. The Human Genome project was completed using first generation sequencing based on 

Frederick Sanger’s chain termination method [162]. In the late 1990s shot-gun sequencing 

emerged. This procedure relies on digesting template DNA or RNA into short fragments 

following cloning and immobilisation of the reverse strand. The complementary strands are 

then enzymatically extended and each extension is detected via incorporation of fluorescently 

labelled deoxyribose nucleotide triphosphates (dNTPs).  As this process could be done in 
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parallel for each shotgun fragment it was much faster than Sanger sequencing [163]. This 

sequencing method would later become the basis of next generation sequencing (NGS) 

technology available today. NGS began with the sequencing of only bacterial genomes [164], 

since then the falling costs and improved robustness of analytical methods have allowed the 

sequencing of 326,287 bacterial species, 3558 Achaea, and 31,093 eukaryotes according to 

Genomes Online Database as of 2019. 

4.1.1.1.1 Illumina Sequencing 

The RNA-Seq data used in this chapter was generated by Illumina HiSeq 2500. The typical 

protocol for RNA sample preparation for this instrument requires sample RNA to be reverse 

transcribed into cDNA and primed with random hexamers [165]. The Illumina instrument then 

sequences these fragments via a method akin to Sanger’s capillary sequencing method where 

fluorescently labelled dNTP incorporation to target sequence is accompanied with chain 

termination. The difference is that the system utilizes reversible dye-terminators which are 

subsequently removed so chain extension and base identification can continue [166].  The 

HiSeq 2500 in particular can sequence around 44.44 million reads per hour, where each read 

Fig 4-1 | Overview of Illumina Sequencing (Kircher & Kelso 2010) 
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is a maximum of 100 nucleotide length [167]. Furthermore, sequencing with this instrument 

can cost as little as only 0.05 USD per mb today [168, 169]. This makes Illumina one of the 

choice methods for sequencing complex genomes, counting mRNAs, small RNA and single 

nucleotide polymorphisms [166]. 

4.1.1.2 Advantages of RNA-Seq 

Unlike microarrays that rely on optical signals, RNA-Seq measures the number of transcripts 

present in a sample by directly sequencing cRNA or cDNA. The sequenced fragments or reads 

are then aligned to a reference genome using analysis software to generate the whole cell 

transcriptome or alternatively de novo assembled into a new transcriptome if reference genome 

is unavailable [170]. As such the process is independent of genome annotations as it is not 

reliant on predesigned probes. There is mounting evidence that RNA-Seq data is highly 

reproducible and exhibit very little technical variations compared to hybridisation based 

platforms [61, 171–174]. Transcripts expressed at high levels tend to oversaturate microarray 

probes, while low abundance transcripts tend to fall below background noise levels. This is 

why RNA-Seq analysis outperforms microarrays in detecting very low or very high abundance 

transcripts [61]. Moreover, a study estimated the accuracy of RNA-Seq and microarray datasets 

by comparing it to equivalent proteomics data and found that RNA-Seq transcript counts were 

more representative of absolute transcript levels [175].  

4.1.1.3 Limitations of RNA-Seq 

Nevertheless, RNA-Seq remains a predictive science due to certain limitations. 

Complementary DNA or RNA must be fragmented before they can be detected by the RNA-

Sequencer. This typically results in short reads some of which do not map to a unique gene.  

Paralogous genes with high sequence similarity further complicate mapping prediction for such 

non-unique hits. Therefore, gene assignment for multi-genic mapping remain an unavoidable 

issue for RNA-Sequencing.  
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Typically, de novo sequencing methods suffer from issues arising from inconsistencies 

in fragment sampling and sequencing due to preferential fragmentation sites, primer bias and 

composition of tagged dNTPs in the reaction mixture [176, 177]. While some of these biases 

can be addressed using computational algorithms, they can lead to some fragments being 

undetected altogether.  

One limitation of sequencing by synthesis is the preference for longer genes. 

Fragmentation of genes means that longer genes produce a larger number of fragments than 

smaller ones. Using transcript per million (TPM) measures and TMM normalisation (Section 

4.1.2.1.6) account for systematic variation potentially arising from differing transcript 

composition to an extent but they do not fully address the gene length bias [94]. Furthermore, 

these normalisations are performed separately per study. This is of particular importance when 

conducting cross-species analysis. Although, human and mice exons show high conservation, 

about 68% of human introns have been reported to be 1.5 times larger than mice [178]. This 

means RNA-Sequencers will be better able to detect these longer human mRNA than their 

mouse equivalent. This could explain some of the genes detected in humans but not in mice. 

We note that in this experiment the human data was generated using single cell 

transcriptomics while mouse data was generated using bulk transcriptomics. While single cell 

transcriptomics should theoretically be more accurate in predicting gene expression between 

cell types, the input sample RNA content and thus the library size tend to be much smaller than 

in bulk RNA-Seq analysis [179]. This can unavoidably lead to genes detected in mice but not 

human. 

4.1.1.4 Microarrays can complement RNA-Seq analysis 

In such cases where genes are undetected in one species but not in the other, microarray 

evidence can complement RNA-Seq data, as probes for such genes should theoretically ensure 

correct detection. As microarray probes are a set length, the higher number of fragments in a 
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longer gene is irrelevant. This is viable as a previous study has reported that differential 

expression in RNA-Seq and microarray have considerable overlap [171]. It is this overlap that 

we exploit to refine our search for candidate genes for downstream analysis.  

4.1.2 RNA-Seq Data Analysis 

4.1.2.1.1 Retrieving Publicly Available Data 

Overall steps involved in RNA-Seq data analysis are summarised in Fig 4-2.  In house 

generated RNA-Sequencing data are typically outputted in FastQ format and can be piped into 

downstream processes immediately. If using publicly available data, raw RNA-Seq output can 

typically be downloaded as a compressed Sequence Read Archive (SRA) file from the SRA 

repository at NCBI or EBI. This compressed format is not usable for downstream analysis and 

must be converted to FastQ format for downstream processing.   

4.1.2.1.2 Trim Adapters / Contaminants 

RNA library preparation can introduce biases into RNA-Seq output due to possible microbial 

contamination, polymerase errors and the necessary introduction of random hexamer adapters 

for reverse transcription [180]. This can further be compounded by errors during sequencing 

i.e. mistakes in optical detection and phasing errors [180]. Phasing issues in sequencing by 

synthesis occur when more than one nucleotide get incorporated in the chain during the same 
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phase or the chain terminator does not get removed properly. This leads to poor quality reads 

that tend to accumulate with sequencing time i.e. at the 3’ end of sequence reads [181]. 

Fig 4-2 | Schematic of RNA-Seq Analysis Workflow. (1) Publicly available RNA-Seq reads are downloaded and 

converted to a usable format such as FastQ. (2) Contaminants such as adapters and low-quality reads are trimmed 

away. (3) Reference genome assemblies and gene annotations serve as reference to which trimmed reads are 

aligned. (4) Reads aligned to transcripts are counted and summarised as gene counts. (5) Counts are normalised 

and visualised for quality control purposes. (6) Normalised counts are used to calculate differential expression. 
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Therefore, after retrieving the raw reads of an RNA-Seq run, they have to be trimmed to remove 

contaminants and low-quality reads [94]. 

4.1.2.1.3 Mapping to Reference Genome 

Once these processing steps are complete, reads must be aligned to a reference genome with 

accompanying gene annotations in order to identify which gene or transcript the reads belong 

to. If reference genome does not exist, de novo assembly can be performed to generate a new 

one. However, this step is unnecessary for mice and human genomes as highly curated versions 

already exist [94].  

4.1.2.1.4 Read Counting and summarising gene expression 

Next reads aligned to specific transcripts must be counted and then summarised for the 

estimation of gene counts. These gene counts have to then be normalised before performing 

differential expression analysis [94].  

4.1.2.1.5 Low Count Filtering 

RNA-Sequencing utilises random sampling to quantify a transcriptome. This can directly affect 

accuracy and typically manifests in genes with low expression [182]. Therefore, to reduce false 

positives, it is common practise in RNA-Seq workflows to remove these low confidence genes.  

This not only improves confidence but has also been shown to improve differential expression 

analysis [182]. 

4.1.2.1.6 Normalisation 

In this chapter, we utilise Trimmed Mean of M value (TMM) normalisation to handle systemic 

variations. Systemic variations typically arise from external factors irrelevant to biological 

differences, such as sample handling, sequencing depth, etc, that often result in varying sample 

distributions. The TMM method assumes that most genes in a sample are not differentially 

expressed. It separately calculates log2 ratio of case vs control and trims away ratios for 

differentially expressed genes. Then the average log ratio of non-differentially expressed genes 
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serve as a scaling factor that is used to transform the counts of each sample, such that 

differences in sequencing depth and other unwanted variables are accounted for [183]. 

4.1.2.1.7 Differential Expression 

As with microarrays we opted to utilise the limma R package for calculating differential 

expression in this chapter. Standard limma procedure fits data to a normal distribution. This is 

not suitable for discrete gene counts generated by RNA-Seq as the variation from the mean is 

exaggerated with higher counts, and understated for lower counts. As such an underlying 

distribution cannot be assumed for such data. While logarithmic transformation brings these 

gene counts to a comparable level, it tends to overcompensate and obscure the importance of 

highly expressed and overestimate the importance of low-expressed genes. The variance 

modelling at the observational level (voom) algorithm was created to address this issue. The 

function logarithmically transforms count data while remembering the importance or weight 

of these genes, which is then reflected on the calculated fold change and p-values [184]. 

4.1.2.1.8 An Error Prone Process 

Unlike microarrays, RNA-Seq reads from each run typically take multiple gigabytes of disk 

space as each individual sample contain millions of reads. Processing each sample can take 

hours to fully complete on a low performance computer.  The entire process can be done using 

proprietary software or open source tools. We chose the latter option as proprietary software 

can cost hundreds of dollars each year in subscription.  

No single open source tool can carry out the entire RNA-Seq analysis workflow. 

Starting from processing raw data to differential expression analysis, each step requires one or 

more different tools, meaning familiarity with several different software across languages is 

required to complete the analysis. Depending on computational resources available, the whole 

process can take hours or even days to complete depending on the number and size of samples 

being studied. The need to use different tools for each step increases the scope for user errors, 
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and these errors can then be carried over and compounded in the next steps leading to the waste 

of considerable computational time and power.  

4.1.2.1.9 Defensive Programming  

In order to avoid such issues, it is important to utilise a tool that anticipates errors as soon as it 

is executed, gracefully fails and then instructs the user on how to recover from the failure.  

4.1.2.1.10 RNA-Seq Pipeline 

In informatic pipelines, the output of one program becomes the input of another. This concept 

can be applied to RNA-Seq analysis for automation. For example, trimmed reads generated by 

a trimming software automatically become the input for the alignment software. Using an 

RNA-Seq pipeline can reduce the complexity in manually executing each tool and maintain 

processing conformity among all samples passed through the pipeline. Therefore, we aim to 

create our own RNA-Seq analysis pipeline equipped with defensive programming to streamline 

our analysis. 

4.1.3 Proteomics 

4.1.3.1 Principles of Proteomics 

Unlike transcriptomics, whole cell proteome profiling relies on the molecular weight of 

proteins. The basis of proteomic measurements is mass spectrometry, where peptides generated 

from proteolytic digestion are ionized in gas phase and separated by their mass to charge ratio 

(m/z). The peptide masses are then referenced against a database of in silico digested proteins 

for identification.  As it is, a mass spectrometer is unable to handle complex mixtures of 

different proteins. Therefore, proteomic analysis today utilises tandem mass spectrometry (MS-

MS).  

MS-MS involves two mass spectrometers arranged in a series. Proteolytically digested 

and chromatographically separated peptides entering the first mass spectrometer are ionised 

and separated by their m/z ratio. Then individual peptides are selected and passed into a 
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chamber for further fragmentation to lower their complexity. These fragments are again 

separated by m/z values by the second mass spectrometer, which then outputs a mass spectra 

that can be used to computationally predict the peptide sequences, abundances as well as post 

translational modifications [185, 186]. We have illustrated a typical MS-MS run in Fig 4-1.  

4.1.3.1.1 Separation 

Complex mixture of peptides entering a mass spectrometer confounds results as the machine 

is unable to differentiate between two separate peptide ions. Therefore, liquid chromatography 

techniques are used to separate complex mixtures by specific affinities, such as hydrophobicity, 

such that the peptides form an affinity gradient. Thus at any given time simpler and purer 

peptides are sequentially fed to the  mass spectrometer  [185, 187].  

4.1.3.1.2 Ionisation 

Before peptides can enter the first mass spectrometer they have to be ionised. The instrument 

utilised in this study was equipped with a liquid chromatographer (LC) coupled to Electrospray 

ioniser (ESI). Here LC-separated peptide droplets are sprayed via a needle into the first mass 

spectrometer. As droplets travel, a high voltage is passed through them to ionise the peptides 

before they reach the mass spectrometer [188]. 

4.1.3.2 Mass Analyser - Orbitrap 

A type of ion trap mass analyser (Orbitrap Elite™ Hybrid Ion Trap-Orbitrap from 

Thermofisher) was utilised in this study. The core of the orbitrap is charged using a high 

voltage. As ions enter the orbitrap, the shape and charge of the orbitrap core causes them to 

oscillate around the core and reach a stable circular orbit. A complex equation then uses the 

period of oscillation to calculate the mass to charge ratio of the ions [186, 187]. 
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4.1.3.3 Fragmentation 

After exiting the first spectrometer, peptide ions enter a fragmentation chamber where they are 

typically bombarded by inert molecules, which causes the peptide to break into smaller 

Fig 4-3 | A Schematic Representation of Proteome Quantification. (1) Whole cell proteins must be isolated, 

purified and proteolytically digested (usually with trypsin). (2) Resultant peptides are inserted in the liquid 

chromatographer which separates peptides based on affinities such as hydrophobicity and an affinity gradient is 

established. (3) Separated peptides are sprayed by a needle at the entrance to the mass spectrometer and ionised 

on the way via a high electric voltage. (4, 6) Peptide ions entering the orbitrap mass spectrometer travel forward 

while oscillating around the charged core. The period of oscillation is used to calculate mass to charge (m/z) ratio. 

(5) Peptides with abundances above background noise are sent into the fragmentation chamber where peptides 

are broken up into smaller fragments using high voltage or collision. (6) Fragmented ions are passed through an 

Orbitrap mass spectrometer and resultant m/z ratios are outputted as mass spectra for estimation of peptide 

abundance, sequence and post translational modifications. 
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fragments. This specific form of fragmentation is called fast atom bombardment [185, 187]. 

Fragmented ions are fed to the second mass spectrometer, whose mass spectra output can be 

used to determine peptide sequence and abundance. 

4.1.3.4 Quantification methods 

In labelled quantification methods, different samples are mixed and analysed together after 

they have been labelled with stable isotope labels. The quantification is entirely based on the 

ratio of isotope labelled peptide pairs, where each member of a pair come from a different 

sample. Unfortunately, isotope labelling is costly and time consuming as it complicates sample 

preparation, increases the mass spectrometry run time, necessitates expensive reagents, 

proprietary software and high sample concentrations [189]. 

Label free approaches, on the other hand, involve measuring each sample individually. 

The quantification is like mRNA-Seq in that it compares measurements between samples to 

determine differential expression. In this case peptide intensities or spectral protein counts 

between samples are compared [189]. 

4.1.3.5 Limitation of Proteomics 

Despite improvements in reproducibility and robustness of proteomics approaches over the 

years, its usage continues to lag behind transcriptomics. This can be attributed to several 

factors. 

4.1.3.5.1 Sensitivity 

PCR amplification now allows RNA-Sequencing of the level of a single cell. This level of 

sensitivity cannot be achieved in proteomics as amplification of total cell proteome is near 

impossible with current technology [190]. 
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4.1.3.5.2 Proprietary software and less robust algorithms 

Most RNA-Seq analysis software are free and open source and has considerably matured in the 

recent years. This is not the case for proteomics, where the use of mainly proprietary software 

has limited the development, streamlining and benchmarking of proteomics algorithms [190].  

4.1.3.5.3 Difficulty in interpretation 

As proteomics is based on measuring ions with the same m/z ratio, different molecules with 

the same m/z ratio confounds interpretation. This means it is difficult to say for sure if a peak 

is definitely a protein of interest as it may just as well be a different peptide ion or even a non-

peptide ion having the same m/z ratio [190]. 

4.1.3.5.4 Limited number of proteins detected 

Unlike mRNA, different proteins have different biochemical properties due to varying amino 

acid composition, post translational modification, etc. This means conditions for solubilisation 

can drastically differ across proteins. As such some proteins will be better detected than others. 

This introduces an added layer of complication in proteomics analysis, as it is near impossible 

with the current technology to solubilize every protein and attain full coverage of a cell’s 

proteome [191]. While the technology utilised in this project separates proteins into fractions 

based on their hydrophobicity to overcome some of these issues. The number of fractions 

resolved for mass spectrometry is still highly limited by sequencing cost and machine 

availability. 

Due to the above mentioned limitation, large-scale proteomics output considerably 

fewer proteins than equivalents genes detected by transcriptomics[192]. After multiple 

hypothesis testing, i.e. correction for false discovery, this number drops even further. Meaning 

the overall number of differentially expressed genes in a comparative analysis can be 

considerably lower in proteomics experiments simply due to overall limitation in coverage 

[192]. 
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4.1.3.6 Proteogenomic Analysis may improve results 

In studies where thousands of differentially expressed hits are found, such as those in antigen 

secreting vs non-secreting cells, it is very challenging to validate every hit through low 

throughput method. Therefore, despite the limitations highlighted in the previous section, 

proteomics can be a useful tool for soft validation of transcriptomics data.  Furthermore, 

accompanying gene level data can give credence to protein level regulation, despite higher p-

values, and improve comparative analysis. Nevertheless, this must be done with careful 

consideration as gene and protein level does not always correlate due to different mRNA or 

protein turnover rates and translation efficiency. 

4.1.4 Investigation of Membrane Trafficking Components 

In previous chapter (section 3.4.3), we highlighted the ASC specific upregulation of COPII 

coat proteins, the RRBP1 ribosome anchor and proposed that CREB3L2 may be involved in 

the regulation of some of these components. We expand our investigation of known membrane 

trafficking genes and examine how tethering complexes, SNAREs and other coated vesicles 

are being regulated according to our proteogenomics analysis 

4.1.5 Cell Markers for Antibody Secreting Cells 

To generate antibody secreting cells in vitro, NBCs must be purified from the spleen, activated 

by a selected antigen and the resultant ASCs must be isolated from a mixed population of non-

secreting B cells and ASCs. In order to improve the yield of laboratory purification of ASCs, 

and potentially, the targeted destruction of plasma cells in cancer we aim to isolate high 

confidence surface markers that show consistent upregulation in ASCs across species, across 

platforms and soft validate them using proteomics.  
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4.1.6 Data visualisation 

In this project we carried out proteogenomic analysis of antibody secreting cells. We see ~1500 

genes upregulated in ASCs but highlighted and visualised selected components we deem 

important for our hypothesis. The remaining data exist as tables of hundreds of genes/proteins 

that has be to be explored with tools such as Microsoft Excel. Results in this format are difficult 

for bench biologists to navigate. Web-based tools such as Amazonia! and Genomicscape lets 

users mine and visualise microarray profiles of the PC lineage [71, 72]. However, these studies 

incorporate neither RNA-Seq nor proteomics data. Therefore, we aim to create a tool that 

allows users to visualise microarray, RNA-Seq and proteomics data side by side. By visualising 

changes in mRNA expression alongside their corresponding protein product, we hope to give 

biologists a better idea of whether their candidate protein is likely to be a “real” hit and thus 

potentially improve the cost effectiveness of downstream validation. 
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4.1.7 AIMS & OBJECTIVES 

In the last chapter we created a bioresource through microarray analysis of mouse and human 

B cell lineage. In this chapter, we expand this analysis and aim to: 

1. Study changes in gene expression in the PC lineage using publicly available RNA-Seq 

data of mice and human. 

2. Investigate the regulation of known membrane trafficking components such as 

SNAREs, tethering complexes and coated vesicles. 

3. Identify consistently expressed markers of ASCs. 

4. Carry out proteomic analysis of mouse plasma blast (PB) compared to NBCs  

5. Soft validate potential candidates identified in the current and previous chapter using a 

combination of RNA-Seq, microarray and proteomic results. 

In the process of fulfilling these aims we create: 

6. An RNA-Seq pipeline or workflow for automated analysis of raw data  

7. A data visualisation tool that will allow our colleagues and the wider scientific 

community to easily explore gene/protein expression between ASCs and NBCs. 
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4.2 METHODS 

4.2.1 Workflow  

  

Fig 4-4 | Workflow of multi-omics Analysis. We created an RNA-Seq analysis pipeline to streamline the analysis 

of publicly available RNA-Seq data of mice and human PC lineage. Resultant differential expression results were 

merged using orthologs for cross species analysis. The whole cell proteome of mice B cells, and plasmablasts 

were profiled by our colleagues. We performed proteogenomic analysis using RNA-Seq, microarray and 

proteomics result to isolate most reproducible hits. Then we used EnrichR mining tool, detailed in the previous 

chapter (3.2.5.1.1), to perform functional and pathway enrichment. Finally, to allow cell biologists to explore our 

data easily, we created a web application for viewing fold changes in genes/proteins across species and platforms. 
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4.2.2 RNA-Seq  

4.2.2.1  Data Source 

4.2.2.1.1 Mouse B cell Lineage 

 

Shi et al extracted ex vivo cell populations (NBCs, SplPBs, SplPCs and BMPCs) from the 

lymphoid tissues of unstimulated C57BL/6 or Blimp GFP reporter mice using FACsAria (BD 

Sciences) or MoFlo (Beckman Coulter) flow cytometers. As PCs are rare in vivo, cells had to 

be pooled from the spleens or bone marrows of 3 different Blimp1 reporter mice. These PCs 

were enriched using anti-CD138 beads (Miltenyi Biotec) before the sorting process. The 

markers used for sorting these cells are shown in Table 4-1 [56]. 

 For in vitro differentiation, resting splenic B cells were extracted from the spleen of 

Blimp1-GFP reporter mice and enriched using anti-B220 magnetic beads. These cells were 

immunised with 10μg/ml lipopolysaccharide (LPS) in vitro. 3 days post activation pre 

plasmablasts (prePB) were negatively selected for CD138 followed by sorting for B220+ and 

Blimp1-GFP+ fractions. More mature, in vitro generated plasmablasts were extracted using 

B220+, Blimp1-GFP+ and CD138+ markers [56]. 

Shi et al extracted total RNA using either Qiagen RNeasy Micro or Mini Kits dependent 

on cell number. Standard Illumina protocol were followed for RNA library preparation [193]. 

RNA-Sequencing was carried out using Illumina HiSeq 2500 [56].  

  

Table 4-1 | Phenotype of mouse RNA-Seq profiles of PC cell Lineage – Illumina HiSeq 2500 (GSE60927) 

Sample Type Tissue Stimulus Day Markers Replicates 

GSM1493786-7 NBC Spleen - 0 B220+ CD21+ CD23+ 2 

GSM1493800-1 prePB in vitro LPS 3 B220+ CD138- Blimp1-GFP+ 2 

GSM1493802-3 PB in vitro LPS 3 B220+ CD138+ Blimp1-GFP+ 2 

GSM1493794 SplPB Spleen - 0 CD138+ Blimp1-GFP-lo 1 (Pooled) 

GSM1493795-7 SplPC Spleen - 0 CD138+ Blimp-GFP+ 3 (Pooled) 

GSM1493798 BMPC Bone Marrow - 0 CD138+ Blimp-GFP+ 1 (Pooled) 
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4.2.2.1.2 Human B cell Lineage 

 

Lam et al isolated NBCs and tPBs from the tonsils of children undergoing elective 

tonsillectomy and BMPCs from the bone marrow of patients undergoing elective total hip 

arthroplasty. Prior to sorting, BMPCs were enriched using CD138 microbead (Miltenyi 

Biotech). All cells were sorted using BD FACS Aria II, LSRII or LSR Fortessa flow cytometer. 

Markers used for cell sorting are given in Table 4-2.  Total RNA was extracted using Qiagen 

RNeasy Microkit. Sequencing libraries were generated using Clontech Smart-Seq kit and 

sequenced using Illumina HiSeq 2500 [194]. 

4.2.2.2 Data Processing  

4.2.2.2.1 Download & Trimming 

Publicly available RNA-Seq data were downloaded and converted to FASTQ format using the 

fastq-dump command of NCBI’s SRA Toolkit. We used BBDuk command of the BBTools 

package for adapter and quality trimming of raw reads. We then sought to remove reads with 

low quality scores in the 10 base pairs on the 3’ end of reads to avoid phasing errors.  

4.2.2.2.2 Mapping 

After quality trimming, we aligned reads to reference genome using STAR aligner due to its 

speed, accuracy and robustness against SNPs compared to other aligners [195]. In order to 

maintain consistency, we used the same genome assemblies and gene annotations as those used 

for annotating microarray data in the previous chapter (section 3.2.2.4). For mouse RNA-Seq 

data we used NCBI’s mm10 gene assembly, submitted on Dec 2011 and Gencode version 16 

gene annotation submitted in Dec 2017. For human RNA-Seq data we used NCBI’s hg38 

Table 4-2 | Phenotype of human RNA-Seq profiles of PC cell Lineage – Illumina HiSeq 2500 (GSE81443) 

Sample Type Tissue Markers Replicates 

(Biological) 

Replicates 

(Technical) 

GSM2197438 NBC Tonsils CD19+ CD20+ CD27- IgM+ CD2- 1 3 

GSM2197435 tPB Tonsils CD19+ CD27+ CD38+ CD20- 

CD2- 

1 3 

GSM1493798 BMPC Bone Marrow CD19- CD138+ CD27+ CD38+ 4 3 
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genome assembly submitted on Dec 2013, and Gencode gene annotation version 27 submitted 

in Jan 2017. 

4.2.2.2.3 Read Counting and Summarisation 

We chose to use the RSEM tool for read counting. The workflow so far has been carried out in 

the UNIX environment. We now import our data into R and summarise gene counts using the 

tximport R package.  

4.2.2.2.4 Low Count Filtering 

The filterByExpr function of EdgeR package can identify and remove gene counts whose 

magnitude was below a statistically significant threshold. This algorithm by default keeps 

genes with more than 10 counts in a relevant number of samples based on experimental design 

[196].  

Quality Controlling Low Count Filtering 

To reduce false positives, we remove low confidence genes using the filterByExpr function. 

These genes can be visualised using a mean variance (MV) plot, which charts square root of 

standard deviation on the y-axis and the log2 transformed gene counts per million on the x-

axis. Typically, well-formed data consisting of replicates from different phenotypes exhibit 

high biological variation among lower counts and so standard deviation tend to be 

asymptomatic to the y-axis early on as shown in Fig 4-5A [184].  Low-confidence counts tend 

to accumulate among lower counts. These tend to break the asymptomatic trend and result in 

very low standard deviation among lowest counts, which then sharply increase to the expected 

high standard deviation (Fig 4-5B). These low-confidence genes are concentrated to the left of 

the chart and generally a certain count threshold is established to filter out these genes. 



Chapter 4 – Multi-Omics Analysis of ASCs 

 

Page | 127  

 

 Fig 4-5A shows filtered, mouse RNA-Seq data. We observe that filtering by the 

FilterByExpr function has been successful as low counts showed highest standard deviation. 

However, the filtering of human RNA-Seq samples shown in Fig 4-5B was not as successful 

as lower counts still showed very little standard deviation, i.e. biological variation. We redid 

the filtering with different criteria to try and solve this issue. First, we selected for genes with 

at least 10 counts, (~1.53 counts per million (CPM)) across samples in at least 4 samples. This 

was 1 sample more than the minimum number of available replicates among all tested groups 

(See Table 4-2). As shown in Fig 4-5C, the revised filtering criteria seemingly improves the 

Fig 4-5 | Mean Variance Trend Plot depicting limma-voom normalisation and low count filtering efficacy. A. 

Mouse RNA-Seq data has been correctly filtered for low counts by FilterByExpr algorithm as the standard 

deviation i.e. biological variation is highest among low count genes (Red line). B.  MV-plot for Human RNA-Seq 

shows remnants of low-expression genes as we see very low standard deviation in the leftmost counts, which rises 

immediately after a count threshold is reached. C. Re-adjustment of low count filtering of Human-RNA-Seq 

samples initially show better results. These samples have been filtered for genes with at least 10 counts per million 

in a minimum of 4 samples. However, this filtering removes genes that are uniquely expressed in human PBs but 

not in BMPCs. 
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filtering output. On closer inspection, we find that this filtering criteria led to the loss of genes 

that were exclusively expressed in plasmablasts, which had 3 replicates, but not in BMPCs or 

NBCs. Changing the other relevant criteria, such as minimum gene count, reduces sensitivity 

toward genes expressed in lower levels in NBCs but high levels in ASCs while the aberrantly 

low standard deviation among low counts remains the same. Therefore, we opt to retain the 

results from the standard FilterByExpr filtering criteria. The presence of low confidence counts 

is apparent in the aberrant peak in human PBs in the density distribution plot in Fig 4-6E-F.  

Nevertheless, we continue with this filtering as we predict that genes showing very low counts 

in one phenotype but not another are present among this group due to the nature of the 

biological phenotypes we are looking at.  

Fig 4-6 | | Density Distribution Plot of RNA-Seq Counts Before and After Low-Count Filtering. A-C Mouse B 

Cell Lineage. D-F. Human B Cell Lineage. A, D. Low counts in Unfiltered data overwhelm the count distribution. 

B, E. After filtering, the data distribution is more apparent. C, F. Normalisation of the filtered data yields uniform 

distribution across samples. Dotted line indicates estimated low CPM threshold 



Chapter 4 – Multi-Omics Analysis of ASCs 

 

Page | 129  

 

As shown Fig 4-6B, E, the distributions of gene counts are considerably different across 

samples for both mice and human datasets. Therefore, we used EdgeR package to perform 

Trimmed Mean of M value (TMM) normalisation. The efficacy of normalisation procedure is 

visualised in both Fig 4-6C and Fig 4-7B-D, where a more uniform distribution is apparent.  

4.2.2.2.5 Differential Expression Analysis 

The voom function of limma R package was used to calculate the precision-weight of gene 

counts. This is based on gene count variation from the global mean, where genes with low 

Fig 4-7 | Box Plot of RNA-Seq Counts before and after TMM normalisation. A. Mice and C. human gene counts 

before normalisation show considerable variation in distribution. After TMM normalisation it is apparent that both 

B. mice and D. human gene counts have a uniform distribution.  
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variance received higher weight than those with high variance. These weights were used to 

correctly fit the normalised data to a linear regression model.  The T- and F-statistic were 

calculated using empirical Bayes moderation provided in the limma R package. Computed p-

values were adjusted using Benjamini & Hochberg method for global false discovery [133]. 

No fold change threshold was initially enforced on intra-species differential expression results.  

4.2.2.3 Pipeline Creation 

In order to allow automated sequential processing of multiple RNA-Seq samples we created a 

pipeline using the packages mentioned in the previous section. Note that this program is not 

suitable for de novo assembly. This tool is available at:  

https://github.com/NabilaRahman/RNA-Seq-Pipeline 

4.2.2.3.1 Dependencies and System Requirements 

The pipeline was built on Bash version 4.3.48 and R version 3.5.1. It requires a minimum of 

16GB Physical Memory but over 32GB is recommended.  It is dependent on the following 

UNIX packages of the given version or higher: SRA Toolkit version 2.9.0, BBTools version 

38, STAR version 2.6.9c, RSEM version 1.3.1 and optionally GNU parallel 2017 [195, 197–

200].  Furthermore, the pipeline requires the following R packages: tximport, EdgeR, limma, 

ggplot, ggpubr, reshape2 [196, 201–205]. 

4.2.2.3.2 Configuration 

In order to run the pipeline, the user has to minimally specify (1) the SRA IDs to be processed, 

(2) location of requisite tools, (3) a Reference Genome in FASTA Format, (4) a gene annotation 

file in GTF Format, (5) a transcript ID to gene ID conversion table and (5) phenotypes to 

compare for differential expression analysis. We also provide additional options for advanced 

users which can be viewed in the Config.sh file at the GitHub repository.  
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STAR and RSEM tools require special indices created from the reference gene 

assembly and gene annotation file. Users are given the option to specify the location of these 

indices, otherwise the pipeline can create them on the fly. 

 



Chapter 4 – Multi-Omics Analysis of ASCs 

 

Page | 132  

 

4.2.2.3.3 Defensive Programming  

In order to prevent hours wasted on processing bad data, the first thing the pipeline does is 

anticipate errors in the users input. To do this, ValidateInput.sh script is run before performing 

any of the analysis. This shuts the entire program down if there is: (1) Insufficient RAM 

available, (2) Missing UNIX tools or reference files, (3) Invalid data e.g. decimals where 

Fig 4-8 | Schematic of our RNA-Seq Pipeline equipped with defensive programming and staged processes. For 

clarity we have placed the check points where they are relevant in the pipeline. However, all checks for missing 

packages, files or bad parameters are carried out before the pipeline even begins. The pipeline, in blue, will only 

initiate if there are no errors. After each successful processing step, a “save point” is made. If the program is 

terminated early, restarting the pipeline will cause the process to run from the last “save point”. 
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integers are expected.  Note that the process is not overly stringent with R packages, as 

processing times after read counting are very quick and can be redone in a matter of minutes. 

4.2.2.3.4 Staged Processes 

Each stage of RNA-Seq analysis e.g. trimming, alignment or counting can take a long time. 

Sometimes unexpected errors occur if users terminate the pipeline before it is fully complete. 

Having to re-run the whole pipeline from scratch can mean the waste of many hours of 

processing. Therefore, we mark the completion of each processing stage, such that re-running 

the pipeline allows users to restart the process from the last completed stage. The entire process 

is visualised in Fig 4-8. 

4.2.2.3.5 Output 

Once the pipeline is complete users will have, among others: (1) statistics on how many bases 

have been trimmed for adapters and quality, (2) machine readable (BAM) files containing read 

mapping to the genome, (3) Gene & Transcript Counts, (4) Density Distribution Plot before 

and after filtering low counts, (5) Box plot comparing raw and normalised counts, (6) Mean-

Variance Trend Plot (7) PCA plot comparing raw and normalised counts (8) Differential 

Expression Table. Users are advised to quality check outputs 4-7 before accepting the 

differential expression results. 

4.2.2.4 Cross Species Analysis 

We repeated the protocol for cross-species data pooling as detailed in Chapter 4. Differential 

expression (DE) results from mice and human RNA-Seq data were merged using Ensembl 

ortholog annotations and Global False Discovery adjusted p-values were averaged. Duplicate 

ortholog pairs with the lowest average p-values were retained. Genes with missing orthologs 

were processed separately. 

 Voting system was used to determine differentially regulated genes conserved in ASCs 

across species. We set a threshold of 1.2-Fold Change (FC) to differentiate up/downregulated 
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genes from those showing no change. This is less stringent than the industry standard 2 FC as 

(1) RNA-Seq is considerably more robust than microarrays (2) Fold change of relevant ER-

Golgi components may occur at a lower threshold than the industry standard (3) Comparison 

of microarray and RNA-Seq results from different species lend credence to small but consistent 

fold changes. For cross species analysis, we do not enforce p-value cut-offs until after data 

pooling. 

4.2.3 Proteomics 

4.2.3.1 Data source 

The sample preparation steps were wholly carried out by our colleagues E Rajan and AWA 

Aswani. Spleens were obtained from healthy C57BL/6 mice of 8-10 weeks of age. Spleens 

were crushed and filtered through a 40 μm cell strainer along with complete RPMI-1640 

medium, 50 μM of β-mercaptoethanol and 10% endotoxin-free Foetal Calf Serum, 2mM 

Penicillin-Streptomycin and L-Glutamine. After preparation of single cell suspension, standard 

protocol was used to lyse red blood cells.  

NBCs were purified using Magnetic-activated cell sorting (MACS) system and mouse 

B cell Isolation Kit (Miltenyi biotec) following manufacturer’s instructions, where cells were 

negatively selected for CD43, TER119 and CD4. The resultant isolated B cells had a purity of 

approximately 80%. 

To generate antibody secreting plasmablasts, NBCs were incubated with 10μg/ml 

lipopolysaccharide (LPS) in vitro. 3 days post activation, plasmablasts (mPB) were sorted for 

CD138 using magnetic beads (purity >80%).  

CD93 was identified as one of the top highly expressed cluster differentiation markers 

across ASCs according to our cross-species RNA-Seq analysis. Therefore, our colleagues, 

isolated another population of plasmablasts (mPB93) which was purified for CD93+ using 

magnetic beads [56]. Western blot carried out by my colleagues showed that this CD93 fraction 
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contained CD138, IgM, XBP1, and MIST1, which are 

known markers of antibody secreting cells (Fig 4-9). 

Western blotting of CD93 purified fraction alongside 

CD138 purified fraction shows that the former expressed 

fewer immunoglobulin M heavy chain (IgM-H) than the 

latter fraction. Prior to class switching in the spleen, IgM is 

a hallmark of circulating plasmablasts. Therefore, we 

predict CD93 purified cells might consist of a less mature 

fraction of ASCs than those captured by CD138 

purification, especially as the CD93 was present at lower 

levels in Naïve B cells. 

NBCs, mPBs and mPB93 samples (4 replicates 

each) were digested using trypsin by our colleagues and 

sent to the biOmics: Biological Mass Spectrometry facility, 

University of Sheffield for shot-gun proteomics. Samples 

were fractionated by high pH reverse phase chromatography. Each of the 12 fractions generated 

per sample were analysed by 2-hour MS/MS run using Orbitrap Elite Hybrid Ion Trap-Orbitrap 

(Thermofisher) system.  

4.2.3.2 Proteomic Data Analysis 

Raw data processing and normalisation was externally carried out using MaxQuant and Perseus 

software by Dr M. Collins.  

 We calculated differential expression between ASCs and NBCs using limma function 

in R. To allow comparison with RNA-Seq data, we set the threshold for fold change at 1.2 

while Benjamini-Hochberg adjusted p-value for multiple group comparison was set to be below 

Fig 4-9 | Western Blot of resting B cells, 

CD138 purified plasmablasts and CD93 

purified cells (E Rajan & AWA 

Aswani). Although typical markers of 

antibody secreting cells such as CD138, 

MIST1 and XBP1 are similar in CD93 

and CD138 fractions. 
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0.05. We considered genes that met these criteria in either mPB or mPB93 as differentially 

expressed. 

4.2.3.3 Proteogenomic Analysis 

We combined differential proteomic results with differential transcriptomic results from mice 

and human B cell lineage, generated by both microarray and RNA-Seq. As we have only 

profiled the proteome of mouse B cell lineage, we simply utilised mouse gene symbols to add 

proteome data to the microarray and RNA-Seq results. 

4.2.3.4 Functional Analysis 

In order to determine the biological functions enriched in differentially expressed genes across 

species and platforms we utilised our EnrichR-mining-tool detailed in Chapter 3, section 

3.2.5.1. 

4.2.3.5 Fold Change Visualisation as a Web Application 

We wanted to easily visualise how a component was changing across species in the gene and 

the protein level simultaneously. In order to allow users to explore our results, we retain all 

unique genes regardless of p-value or fold change. We visualised the fold changes of one or 

more gene using ggplot2 R package. Using the shiny package, we designed a web application 

to dynamically feed user input, i.e. gene/s of interest, to ggplot2 and output the resultant plot 

to the users’ browser (Fig 4-10, Fig 4-11). At the time of writing, the app, PlasmacytOMICs is 

available only on University of Sheffield LAN and is available on request. 



Chapter 4 – Multi-Omics Analysis of ASCs 

 

Page | 137  

 

4.2.3.5.1 Gene Input 

 

Fig 4-10 | Screenshots of input fields in the PlasmacytOMICs Web Application. A. Upon visiting the application, 

users are greeted with the input text box, which allows them to type in genes, separated by spaces, tabs, newline 

or any other punctuation. In addition, users can choose the cell models to display and customise the plot, e.g. 

showing/ hiding threshold and grid lines. B. By clicking on the “Select from menu” radio button, users can access 

the autocomplete search box. This is useful for finding gene isoforms or for finding genes whose nomenclature 

the user is unsure of. 

A 

B 
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This app allows user to input a list of genes separated by spaces, newline or punctuation (Fig 

4-10A). The input is then fed into our server and matched to our bioresource. Once inputted 

genes are found, their fold changes in ASCs vs NBCs are displayed to the client’s browser. The 

app also gives users an autocomplete option (Fig 4-10B). For example, if one is looking for 

genes of the CREB3 family, they can type in “CREB3”, and as shown in Fig 4-10B, other 

CREB3 isoforms present in the dataset will be displayed. This can be useful for looking up 

isoforms of a gene or in cases where a user is unsure of the nomenclature of a gene of interest.  

4.2.3.5.2 Options 

The PlasmacytOMICs app lets users choose which ASC phenotype to plot. ASCs profiled by 

microarray, RNA-Seq and MS/MS are available (Fig 4-10A). Furthermore, users can customise 

the outputted plot by showing/hiding gridlines as well as threshold lines indicating 2-fold or 

1.2-fold change. 

4.2.3.5.3 Output 

If inputted genes are not found in the bioresource, users will receive a message saying “No 

matching data”. Otherwise, the inputted genes will be plotted as bar charts displaying the 

logarithmic fold chance in ASCs versus NBCs (Fig 4-11).  By default, every available cell type 

is plotted.  

Below the bar chart, the app displays the number of inputted genes matched to our 

bioresource. As shown in Fig 4-11, we inputted 4 search terms, 3 of which were actual genes 

and 1 was a dummy input. As a result, the app informs the user that 3 genes inputted was plotted 

and 1 was not found. 

Once users have customised the plot to their liking, they can download the plot in png, 

pdf, svg or tiff format. The app then downloads a high-quality version of the chart while 

maintaining the aspect ratio seen on screen. This is useful as shiny dynamically alters the width 
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of the chart based on the browser window. On that note, this app will dynamically adjust to 

screen sizes and, therefore, is usable in desktop as well as mobile browsers. 

Fig 4-11 | Screenshot of an output from PlasmacytOMICs web application. Once users and inputted desired genes 

and pressed search, the fold changes of these genes in selected ASCs compared to NBCs will be plotted as a bar 

chart. Input information is given below the chart, which tells users how many of their inputted genes are being 

shown, and how many were not found in our dataset. 
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4.2.4 Low Throughput Validation 

All validation experiments were carried out by our colleagues E Rajan and AWA Aswani. 

Resting B cells were extracted, purified and stimulated as detailed in Section 4.2.2.1 to obtain 

in vitro generated PBs. These cell populations were used in Western blotting to validate the 

protein expression in PBs versus NBCs.  
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4.3 RESULTS 

4.3.1 RNA-Sequencing 

4.3.1.1.1 Mouse ASC lineage  

In the mouse model, splenic plasma cells (SplPC), bone marrow plasma cells (BMPC) and in 

vitro generated plasma blasts (PB) showed differential upregulation in 2550 unique genes in at 

least one cell type compared to naïve B cells (NBCs) (fold change ≥ 1.2, false discovery 

adjusted p-value < 0.05). Meanwhile, 2056 were found to be downregulated. 

4.3.1.1.2 Human ASC lineage  

In the human model, BMPCs, tonsillar plasmablasts (tPB) or both showed differential 

upregulation in 3379 genes compared to NBCs. Meanwhile, 2040 genes were downregulated. 

4.3.1.2 Cross Species Analysis 

 

Fig 4-12  | Venn Diagram of RNA-Seq results showing overlap between different ASCs across species. A. 

Upregulated in mice and human ASCs. B. Downregulated in mouse and human ASCs. A-B. Genes differentially 

expressed in at least 3 ASCs are indicated by purple region. An additional set of genes without known orthologs 

or having missing probes in either species (indicated in red), were included in the downstream analysis.  
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4.3.1.2.1 Upregulated Genes 

Fig 4-12A summarises the overlap of differentially upregulated genes in mice and human. We 

looked at a total of 5 different antibody secreting cell (ASC) types. By considered genes 

upregulated in at least 3 out of 5 ASCs we narrowed down 2027 genes consistently upregulated 

across species. A total of 1323 genes were not detected or missing in mice ASCs but were 

upregulated in humans. ~95% (1268) of these genes were protein coding. Another 482 genes 

were missing in humans but upregulated in mice and ~92% of these genes were protein coding 

(Fig 4-12A, in red). Thus, we consider a total of 3832 upregulated genes for downstream 

analysis. 

4.3.1.2.2 Downregulated Genes 

Fig 4-12B summarises the overlap of differentially downregulated genes across mice and 

human. By considered genes downregulated in at least 3 out of 5 ASCs we narrowed down 

1746 genes consistently downregulated across species. 257 genes were not detected or missing 

in mice ASCs but were downregulated in humans and ~91% (235) of these genes were protein 

coding. Another 246 genes were missing in humans but downregulated in mice where ~94% 

were protein coding genes (Fig 4-12B, in red). A total of 2249 downregulated genes were 

therefore considered for further analysis. Non coding genes have overall lower homology 

between species than protein coding ones and could contribute to missing orthology 

information [206–208]. However, the majority of genes with missing data in either species 

were protein coding in both up and downregulated sets and unlikely to be explained by poor 

homology between non-coding genes. 

4.3.1.2.3 Contradictory Regulation 

In Fig 4-13, we summarise genes that show contradictory regulation in mice as opposed to 

human ASCs. In the previous chapter, we discussed that while these results may specify 

diverging regulation in either species these results could contain erroneous results brought on 

by platform specific limitations or noise. Therefore, we isolated genes that showed differential 
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regulation between species in both RNA-Seq and microarray. The  reproducibility of this 

expression pattern across platforms thus improve the likelihood of these genes having species 

specific regulation. Overall, 258 genes were found to be upregulated in mice but were 

downregulated or had no change in human (Fig 4-13A, Appendix Table 6-7), while 244 were 

downregulated or showed no change in mice but were upregulated in human (Fig 4-13B, 

Appendix Table 6-16 ). 
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4.3.2 Proteomics 

My colleagues have recently profiled the proteome 

of NBCs, CD138 purified (mPB) as well as CD93 

purified plasmablasts (mPB93). We wanted to know 

which of the genes identified in our transcriptomic 

analysis showed consistent protein level regulation 

in CD138+ and CD93+ purified cells versus their 

non-secreting counterpart. 

Out of 7958 unique proteins detected by 

mass spectrometry 2679 genes were uniquely 

upregulated in either mPB.prot, mPB93.prot or both 

(FC > 1.2, FDR adjusted p-value < 0.05). These 

genes are given in Appendix Table 6-18. Another 

2340 genes were downregulated (Appendix Table 6-19). 

4.3.3 Proteogenomics 

With transcriptome and proteome profile of ASCs and NBCs available, we wanted to know 

how many genes showed conserved regulation across species as evidenced by RNA-Seq and 

Fig 4-14 | Venn diagram of showing overlap of 

differentially expressed proteins in CD138 and 

CD93 purified cells. Among 2679 genes 

showing upregulation in either ASC types, 

2008 genes showed consistent upregulation in 

both mPB and PB93 cells. While 1638 genes 

were downregulated. 

Fig 4-13 | Venn diagram of genes showing cross platform reproducibility in diverging gene regulation across 

species. A. Number of genes upregulated in mice but downregulated or no change in human ASCs. B. Number of 

genes downregulated or no change regulated in mice but upregulated human ASCs. 
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microarrays but were also validated at the protein level as corroborated by the mouse proteome 

profile generated by MS/MS. Top 500 differentially regulated genes are given in Appendix 

Table 6-27. 

4.3.3.1 Upregulated genes/proteins across platforms 

Immunoglobulins are poorly detected in microarrays and proteomics and therefore we filter 

them out of the proteogenomic analysis. With this consideration, we studied 3737 genes 

showing species conserved upregulation in the majority of ASCs identified by RNA-Seq 

analysis; 2178 genes identified by microarray; and 2332 genes identified by MS/MS.  Fig 

4-15A, shows that a total of 362 components showed shared upregulation in ASCs vs NBCs in 

all platforms. While 1136 show consistent upregulation in at least 2 platforms (Table 6-23). 

While it is tempting to focus on downstream analysis of 1498 genes upregulated in at least 2 

Fig 4-15 | Venn diagram showing consistency in differential expression across RNA-Seq, microarray and MS/MS. 

A. Upregulated Genes. 362 genes show upregulation in all 3 platforms and another 1136 genes show common 

upregulation in 2 out of 3 platforms. This comes to a total of 1498 genes upregulated in at least 2 platforms.  

B. Downregulated Genes. 393 genes showed downregulation in all 3 platforms and another 1093 genes show 

common downregulation in 2 out of 3 platforms. This comes to a total of 1486 genes downregulated in at least 2 

platforms. A, B. Over a thousand genes were uniquely regulated in the protein level but not transcript level in 

either direction. Coloured numbers and dashed lines indicate number of genes missing in the corresponding set of 

the same colour. Note that immunoglobulins are not counted in these Venn diagrams as their detection is poor in 

both microarray and proteomics. 
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out of 3 platforms, we note that 258 (~90% protein coding) genes, evidenced by RNA-Seq 

profiling were not detected by proteomics or microarray whatsoever. We predict that 

limitations of proteomics technology, discussed in Section 4.1.1.3, may play a large part in this 

as known marker of ASCs e.g. CD138/SDC1 was not detected by proteomic profiling. Due to 

these limitations we also consider this additional 258 genes evidenced solely by RNA-Seq but 

missing in both microarray and proteomics datasets. Therefore, we study a total of 1756 

upregulated genes in the functional/pathway enrichment analysis. Rank priority was given to 

genes/proteins expressed in 3 platforms followed by those expressed in 2 platforms and finally 

genes/proteins missing in microarray/proteomics data.  

4.3.3.2 Downregulated genes/proteins across platforms 

Fig 4-15B, shows that a total of 393 components showed shared downregulation in ASCs vs 

NBCs in all platforms. While 1093 show consistent downregulation in at least 2 platforms 

(Table 6-23). After considering 113 downregulated genes (~81% protein coding) evidenced 

solely by RNA-Seq but missing in the proteomics and microarray dataset, we consider a total 

of 1599 genes for further analysis. 

4.3.3.3 Components potentially regulated post translationally 

It is also interesting to note that ~1300 upregulated and ~1000 downregulated components were 

unique to proteomics and show poor evidence in the transcriptome of ASCs (Appendix Table 

6-24, Table 6-25). We predict that these proteins are potentially regulated via post translational 

modification. 

4.3.4 Verification 

As in the Chapter 3, Section 3.3.3, we determine the integrity of our results by analysing well-

established markers of resting B cells and their antibody secreting counterparts. As shown in 

Fig 4-16, transcription factors that maintain the NBC phenotype, i.e. ETS1, BACH2, IRF8 and 

PAX5, are downregulated in ASCs across species and in both mice transcriptome and 
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proteome. Likewise, transcription factors that enhance plasma cell differentiation, XBP1, 

IRF4, PRDM1 are highly upregulated. Measurement for BHLHA15/MIST1 gene was missing 

in the profile of both human microarray and RNA-Seq dataset, but strongly upregulated in 

mice. This is not surprising as the probe for this gene is missing in the human microarray 

GeneChip utilised, and our analysis shows that the RNA-Sequencing depth (number of reads 

detected) for human ASCs were considerably lower than that of the mouse transcriptome, 

which we predict is due to limited availability of patient samples as compared to the mouse 

model. This consolidates the need to incorporate genes missing in either species in the analysis. 

Fig 4-16 | Differential Regulation of well characterised ASC and NBC markers according to multi-omics analysis. 

A. Genes that maintain naïve B cell phenotype were downregulated in ASCs. B. Genes that maintain ASC 

phenotype were upregulated in ASCs compared to NBCs. Evidence for BHLHA15/MIST1 was missing in human 

RNA-Seq and microarray data. 
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4.3.5 Known and Novel Signature Genes for ASCs 

Shi et al isolated 1036 genes that were consistently upregulated in the transcriptome of mouse 

BMPC, and LPS activated plasmablasts [56]. In this project we reanalysed the raw RNA-Seq 

data from Shi et al’s study and differed our analysis method of the RNA-Seq data mainly in 

the stringency of the fold change threshold (1.2 FC as opposed to 1.5 FC) and reference genome 

version and source. Furthermore, we incorporated mouse microarray and MS/MS profiles as 

well as human microarray and RNA-Seq data. 

 We wanted to know how many of the genes predicted by Shi et al to be consistently 

differentially regulated genes across ASCs match our results. About 50% of genes regulated in 

either direction identified by Shi et al were validated by our multi-omics analysis as shown in 

(Fig 4-17). Remaining ~50% genes had contradictory regulation across species or in the mouse 

proteome. Interestingly, the regulated secretory cargo, PRG2, is one such gene.  

Fig 4-17 | Venn diagram showing overlap of reproducible gene/proteins isolated by multi-omics versus those 

identified by Shi et al. Diagonal lines indicate genes we considered for downstream analysis (excluding missing 

genes). A. Upregulated genes. Only 49.9% (517) genes upregulated in Shi et al’s data were validated either by 

our results and considered for further analysis. 1204 genes/ proteins were novel hits uniquely upregulated in ASCs 

according to our multi-omics analysis. B. Downregulated Genes. Only 49% (525) genes downregulated in Shi et 

al’s data were validated either by our multi-platform analysis method. 1044 genes/proteins were novel hits 

uniquely downregulated in ASCs according to our multi-omics analysis. The labels “RNA-Seq” and “Microarray” 

in the Venn diagram include cross species meta-analysis, and is prefiltered for genes that are inconsistent across 

species in the individual platforms. 
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We found 1204 novel genes/ proteins uniquely upregulated in ASCs that have not been 

previously isolated using functional genomics (Appendix Table 6-11) and 1044 novel genes/ 

proteins were found to be uniquely downregulated (Appendix Table 6-16).  

4.3.5.1 Novel Transcription Factors 

Shi et al identified 103 transcription factors (TF) differentially regulated in ASCs as opposed 

to NBCs[56]. We wanted to know how many of these were validated by our multi-omics 

analysis and extract potentially news ones.  

4.3.5.1.1 Upregulated Transcription Factors 

24 out of 45 upregulated TFs identified by Shi et al were validated by our analysis (Fig 4-18A). 

This includes well characterised TFs such as XBP1, PRDM1, IRF4 as well as our TF of interest, 

CREB3L2 highlighted in Chapter 3, Section 3.4.3.  

Interestingly, our results showed an additional 41 TFs upregulated in ASCs (Appendix 

Table 6-13). This gene list included the key regulator of ER stress ATF6, the ASC marker 

BHLHA15/MIST1 and also BHLHE41, which has been identified as a key repressor of cell 

proliferation for the generation of terminally differentiated plasma cells in a study published in 

2017 [5, 144, 209]. Proteomics results soft validated 18 out of these 41 transcription factors. 

These genes are shown in Fig 4-18B.   

4.3.5.1.2 Downregulated Transcription Factors 

37 out of 58 the downregulated TFs identified by Shi et al were validated by our analysis (Fig 

4-18A). This includes known enhancers of the B cell phenotype including BCL6 and PAX5. 
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Our results showed an additional 123 TFs downregulated in ASCs, of which 89 were soft 

validated by proteomics data (Appendix Table 6-14).  This gene set includes FOXO1 and 

RUNX1 genes, which are reported to be responsible for the maturation of B cells [210].  

Fig 4-18 | Transcription factors uniquely isolated by multi-omics analysis. A. Venn diagram showing transcription 

factors differentially regulated in ASCs according to our analysis and those identified by Shi et al (red: 

downregulated, green: upregulated). B. Top upregulated TFs uniquely isolated by our multi-omics analysis. The 

presence of the known marker of ASCs, BHLHA15, and the ER stress regulator, ATF6, demonstrate the integrity 

of our analysis. 
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We have highlighted known TFs relating to ASCs and NBC phenotype identified by 

our multi-omics analysis that were not isolated through RNA-Seq analysis of mice model 

alone. As this set consists of several genes whose role is less characterised in ASCs, this list 

could be a useful reference for characterisation of transcription enhancers in ASCs. 

4.3.6 Functional Analysis  

 

Fig 4-19 | Summarised GO Enrichment Results for multi-omics analysis. Red/blue highlights the number of genes 

mapping to GO terms that were uniquely isolated by our proteogenomic analysis A. GO Biological Processes 

enriched among upregulated genes. B. GO Biological Processes enriched among downregulated genes. C. GO 

Cellular Components enriched among upregulated Genes. D. GO Cellular Components enriched among 

downregulated Genes. 
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GO enrichment analysis for Biological processes consolidates our findings from the chapter 3, 

in that upregulated components in ASCs across platforms showed greatest enrichment for 

components of membrane trafficking and unfolded protein response (UPR) while 

downregulated genes were primarily related to transcriptional control and protein 

phosphorylation (Fig 4-19). GO cellular component were likewise enriched for ER and Golgi 

components for upregulated genes and the nucleus for downregulated genes. Interestingly, 

genes/proteins we isolated uniquely using multi-omics analysis improves the coverage of genes 

enriched for Biological function and Cellular Compartments as shown in Fig 4-19. For 

example, where Shi et al will have identified 92 components of membrane trafficking, we find 

a total of 167 components. 

4.3.7 Pathway Analysis 

In chapter 3, we highlighted CREB3L2 as the TF with co-expression with the largest number 

of components related to membrane trafficking/ UPR or machinery localised to ER, Golgi or 

secretory granules. As shown in Fig 4-20A, ARCHS4 transcription factor co-expression 

enrichment of our multi-omics analysis consolidates these results. In Fig 4-20A, transcription 

factors marked in red were those that were uniquely isolated by multi-omics analysis. We do 

not explore most of these genes in this project as they are not enriched for membrane trafficking 

components. However, we notice that CREB3 co-regulates with a set of ER-Golgi components 

that are somewhat distinct from its CREB3L2 isoform. This includes the COPII component 

SEC23B. Genes enriched for CREB3 and CREB3L2 co-expression are given in the Appendix 

Table 6-26.  
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Fig 4-20 | Transcription factors predicted to co-regulate with genes/proteins upregulated in ASCs according to 

multi-omics analysis. A. Top 15 ARCHS4 Transcription Factor Coexpression enrichment results for TFs and 

their targets upregulated in ASCs. B. Transcription perturbation analysis for TFs and targets downregulated in 

ASCs. “Desired genes” in blue were components that had GO terms related to ER, Golgi, and membrane 

trafficking machinery. TFs marked in red were those uniquely identified by our multi-omics analysis. X-axis and 

bar length indicate number of enriched gene members. TFs are order by FDR adjusted enrichment p-value 
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4.4 DISCUSSION 

4.4.1 EDEM1-ERDj5 complex does not show diverging regulation  

EDEM1-ERDj5 complex is responsible for the delivery of misfolded protein to the 

retrotranslocon for degradation. In the Chapter, Section 3.4.1, we hypothesised that this 

complex was being differentially regulated in mice as opposed to human based on microarray 

data analysis. However, cross platform proteogenomic study reveals that this is not the case, as 

EDEM1 shows significant upregulation in human ASCs according to RNA-Seq data.  

On the other hand, neither human RNA-Seq nor microarray showed significant in 

ERDj5/DNAJC10, while equivalent mice transcriptome was upregulated. However, as the 

human mRNA detected by RNA-Seq showed a positive tendency, taken together with EDEM1, 

we predict these genes may not be good candidates for downstream validation. Nevertheless, 

this analysis demonstrates the utility of multi-omics analysis in identifying noisy data.  

Fig 4-21 | Differential regulation of EDEM1-ERDj5 complex according to multi-omics analysis. Microarray 

analysis showed a stark contrast between EDEM1 and ERDj5/DNAJC10 expression in mice as opposed to human. 

However, RNA-Seq analysis demonstrate that this is not the case for EDEM1, as it was significantly upregulated 

in the human transcriptome. The upregulation of ERDj5/DNAJC10 is debatable as its change is not statistically 

significant in the ASCs studied in the human RNA-Seq profiles. (?) indicates missing data. (*) indicates FDR 

adjusted p-value<0.05. 
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4.4.2 UGGT2 may be specifically upregulated in human ASCs 

During protein processing in the ER, UGGT enzymes mediate the return of misfolded proteins 

to the folding cycle. The two known UGGT isoforms, UGGT1 and UGGT2, share about 55% 

similarity in their amino acid sequence. Takeda et al showed that UGGT1 and UGGT2 has 

similar substrate binding capacity using synthetic substrates in human embryonic kidney cells 

[150]. We noticed that the binding capacity of UGGT2 has not been studied across species. In 

Chapter 3, Section 3.4.2, we noted that UGGT2 was specifically upregulated in human ASCs 

but not mice. New evidence from our cross-species RNA-Seq analysis consolidates this 

diverging regulation between species (Fig 4-22). Overall, UGGT2 showed 8 to 64-fold 

upregulation, while UGGT1 showed only 4-fold change.  

Cross platform analysis supports our hypothesis that UGGT2 is differentially regulated 

in humans as opposed to mice. This result has exciting implications in human specific 

glycosylation. For instance, if UGGT2 can detect misfolded substrates specifically 

incompatible with human, the enzyme may potentially be responsible for mediating species-

Fig 4-22 | Differential Regulation of UGGT enzymes according to multi-omics analysis. In human ASCs, both 

microarray and RNA-Seq results confirm a strong upregulation of UGGT2 gene. In contrast, mouse ASCs show 

no change in UGGT2 level in either platforms. Unlike UGGT2, its UGGT1 isoform shows mild but significant 

upregulation in gene level across species, however, protein level evidence showed no significant change. (?) 

Indicates missing data. (*) indicates FDR adjusted p-value<0.05. 
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specific folding in humans and thus explain some of the accumulation of misfolded 

recombinant proteins in CHO cells, which is a major issue in the biologics industry.  Therefore, 

we predict that the protein level validation of UGGT2 would be a promising follow up to this 

finding. 

4.4.3 Novel Markers of ASCs  

4.4.3.1 CD Markers 

In order to isolate high confidence markers for antibody secreting cells, we utilised an existing 

list of cluster differentiation (CD) markers for mice and human from Uniprot. Then we looked 

at which of these genes showed species-conserved upregulation in ASCs versus NBCs 

according to our proteogenomic analysis. A total of 42 genes matched this criteria and are listed 

in Appendix Table 6-17 in order of FDR adjusted p-value. The top 10 hits are shown in Fig 

4-23.   

Fig 4-23 | Top 10 CD markers upregulated in ASCs according to multi-omics analysis.  
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4.4.3.2 CD93 

Among them CD93 was particularly interesting as it has not been implicated as a marker that 

is specific for antibody secreting variants of the B cell lineage. As discussed in Section 4.2.3.1, 

our colleagues validated the expression of CD93 by Western blot and have generated the 

proteome of CD93 isolated plasmablasts (Fig 4-9). Although not in the scope of this project, 

we note that the CD93 isolated cells (mPB93) differentially upregulated 386 genes and 

differentially downregulated 267 genes compared to CD138 isolated PBs (Appendix Table 

6-20, Table 6-21). 

 We are aware that many non-CD proteins localise to the cell surface, however, study of 

these proteins was not in the scope of this project and characterisation of these proteins should 

be performed for further analysis. 

4.4.3.3 Genes strongly upregulated in every cell type studied 

An obvious way to isolate ASC markers would be to pick the top hits that show no 

inconsistencies in any of the cell types we studied. As we mentioned before, these robust hits 

make up a total of 362 genes given in Appendix Table 6-22. Within this gene set, the less 

characterised CRELD2 gene was particularly interesting as it is one of top most statistically 

significant hits (p-value<0.05). CRELD2 is a ER stress related protein induced by ATF6 and 

at the time of writing, a 2018 study has been published that shows that CRELD2 deficiency 

increases the susceptibility of Neuro2a cells to tunicamycin induced ER stress [211]. Due to 

the reproducible upregulation of this gene in ASCs, as shown in Fig 4-24A-D, this gene may 

be a promising marker for ASCs. 

4.4.3.4 Genes Co-regulated with CREB3L2 

We identified 3 potential markers co-regulated with the transcription factor, CREB3L2, as 

discussed in Chapter 3, Section 3.4.4. These genes:  FNDC3B, TMEM184B and SLC39A14, 

were highly upregulated in microarrays. Multi-omics analysis revealed another 54 genes 
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upregulated in ASCs, also predicted to be co-regulated with CREB3L2. Among them we note 

the induction of the poorly characterised TMEM214 transmembrane protein, which is  

reportedly involved in ER stress mediated apoptosis [212].  

Fig 4-24 | A. Proteogenomic regulation of potential markers of ASCs.(?) indicates missing data. (*) indicates 

FDR adjusted p-value<0.05. B-C. Histograms and equivalent box plot representing normalised distributions of 

LPS activated mouse plasmablasts and naïve B cells. Expression of specific genes/proteins have been visualised 

in context of global data distribution. XBP1, a marker for ASCs is used as a positive control. B. Normalised 

transcriptome (RNA-Seq) and C. Proteome (MS/MS) of mouse plasmablasts. D. Western Blot of HID1, CRELD2, 

TMEM214, and FNDC3B validate the unique expression of these genes in PBs as opposed to NBCs (AWA 

Aswani and E Rajan). 
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 As shown in Fig 4-24A, we highlight some of these cargoes and all show consistent 

upregulation in the transcriptome of mice and human model across platforms. Protein level 

evidence is available for 3 out of 4 genes. We wanted to know how the expression of these 

genes and gene products compared to global expression. Therefore, we plotted the 

transcriptome and proteome of mouse PB and NBCs as histograms and highlighted the relative 

expression of our components of interest (Fig 4-24BC). Fig 4-24C show that the protein level 

expression of FNDC3B and SLC39A14 was lower in NBCs and higher in LPS activated PBs 

compared to the ASC marker, XBP1. This suggests that these genes could serve as novel 

biomarkers for ASCs. In fact, expression of TMEM214 and FNDC3B in PB as opposed to 

NBC has been validated by our colleagues using Western blot (Fig 4-24D).  

4.4.3.4.1 FNDC3B 

FNDC3B has been reported to localise to the Golgi network [213]. Aberrant expression of 

FNDC3B circular RNA has recently been implicated in the reduction of E-cadherin expression, 

leading to decreased cell-cell adhesion and promotion of cancer metastasis [214–216]. 

Furthermore, overexpression of this gene induces the cell surface localisation of transforming 

growth factor β receptor (TGFBR1) in cancer cells [213]. Beyond these studies, little is known 

about FNDC3B, especially in plasma cell physiology. From existing reports, we theorise that  

FNDC3B may play a role in trafficking of proteins from the Golgi apparatus to the cell surface, 

especially because its isomer FNDC3A has recently been implicated in the secretion and 

correct localisation of collagen [217]. We note that FNDC3A is also reproducibly upregulated 

in ASCs but to a lesser extent than its isomer. Therefore, through our analysis we have 

identified a potentially novel factor playing a role in post-Golgi trafficking in ASCs. This gene 

would be an ideal target for knockdown, knockout or overexpression studies to determine its 

effect on antibody secretion. 



Chapter 4 – Multi-Omics Analysis of ASCs 

 

Page | 160  

 

4.4.3.4.2 TMEM184B 

Studies in mice have revealed that TMEM184B localises to recycling endosomes in neuronal 

cell bodies and plays a role in axon degeneration [218]. Little else is known about this gene. 

As protein level data was missing, Western blotting of TMEM184B to validate its expression 

in ASCs versus B cells is recommended for further studies. If results match the transcript 

regulation, this protein may be a potential novel marker of ASCs and a possible candidate for 

low throughput functional studies.   

4.4.3.4.3 CRELD2 

CRELD2 is a stress inducible protein that localised to the ER/Golgi apparatus and is also 

reported to be constitutively exocytosed [219]. This glycoprotein is known to be upregulated 

in response to misfolded protein accumulation in the rER and reportedly regulated by BiP and 

ATF6 [219–221]. A previous study has proposed that CRELD2 may potentially function as a 

protein disulphide isomerase (PDI) based on its specificity for misfolded proteins [221]. 

Interestingly, exogenous CRELD2 has been shown to enhance the secretion of ECM proteins 

such as collagen during osteogenic differentiation [222]. According to our multi-omics 

analysis, this gene shows remarkable upregulation in ASCs and its expression has been 

validated by our colleagues using Western blot (Fig 4-24A-D). Based on this data we observe 

another parallel between the trafficking of the bulky cargo, collagen, to antibody secretion as 

in the case of COPII vesicle loading discussed in Chapter 3, Section 3.4.3. As ASCs do not 

secrete collagen, we hypothesise that this gene may be a key factor for enhanced secretion of 

antibodies in PCs. 

4.4.3.4.4 SLC39A14 

ZIP14/ SLC39A14 is a well characterised divalent metal transporter known to localise to the 

plasma membrane [223]. It has been implicated in the transport and homeostasis of primarily 

zinc, but also iron, cadmium and manganese [224–226]. As a cell surface membrane protein, 

SLC39A14 is an ideal marker for cell targeting. Due to its marked upregulation in ASCs vs 
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NBCs in both protein and gene level, SLC39A14 coupled with other ASC biomarker e.g. 

CD138, may improve the targeting of ASCs for laboratory purification and potentially targeted 

destruction in cancer therapy. 

4.4.3.4.5 TMEM214 

A study in 2013 determined TMEM214 to be prevalent in ER membrane fractions and 

colocalised with the translocon subunit, SEC61β [212]. Overexpression of this gene was found 

to promote apoptosis while knockdown led to the inhibition of ER stress induced apoptosis by 

preventing ER recruitment and subsequent cleavage of procaspase 4 [212].  ASCs can survive 

tremendous proteotoxic ER stress, therefore, TMEM214 induction in ASCs suggest that it may 

have a hitherto unknown role that is unrelated to apoptosis.  

4.4.3.5 HID1 – a promising marker for ASCs 

Perhaps the clearest marker for ASCs is HID1, which we first identified in the preliminary 

study in Chapter 2, Section 2.3.1.1. As apparent in Fig 4-24A, this gene showed almost 128 

fold consistent upregulation in our proteogenomic analysis. Histogram/boxplot of the mouse 

proteome shows that change in HID1 protein and gene expression far exceeded those of other 

markers we have discussed so far. HID1 levels were lower than many other markers in NBCs 

and encompassed their upregulation in the corresponding PBs (Fig 4-24BC). Western blotting 

confirms the unique upregulation of this gene in ASC vs NBCs (Fig 4-24D). 

 HID1 localises to the medial and trans-Golgi membrane [227]. HID1 is reported to be 

a component of dense core vesicles in synaptic transmission and hid1 null mutant was found 

to lower the secretion of neurotransmitter cargo [228].  In these dense core vesicles, HID1 is 

thought to play a role in the prevention of incorrect sorting of peptide cargoes for lysosomal 

degradation. [229].   Knockdown of HID1 in pancreatic β cells is reported to lead to an increase 

in the abundance of immature secretory granules and elevate the secretion of immature 

proteins, i.e. proinsulin [230]. A recent study has further shown that HID1 promotes trans-



Chapter 4 – Multi-Omics Analysis of ASCs 

 

Page | 162  

 

Golgi acidification via correct localisation of vacuolar ATP thus promoting dense core vesicle 

formation [230]. To-date HID1 gene function has been characterised in neurotransmitter and 

insulin secretion, both of which utilise the regulated secretory pathway. This is why we 

previously speculated the potential existance of a regulated secretory pathway in ASCs. As we 

find little evidence of regulated secretory pathway in ASCs, it is unclear what role HID1 is 

playing in the plasma cell physiology. As we have validated its upregulation in ASCs by both 

Western blotting and whole cell proteomics, future studies should include 

knockdown/knockout of this gene to determine its role in ASCs.  
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4.4.4 Review of Genes identified in Preliminary study  

 As HID1 is a component of regulated secretion, we hypothesised the presence of this regulated 

pathway in our preliminary study. We revisit the results of this study to show how cross species 

meta-analysis have improved our results. We rationalised that regulatory secretory pathway 

may play a role in ASCs noting the upregulation of HID1 but also the PRG2 cargo, which is 

transported in granule fractions of eosinophils and neutrophils [104, 109–111]. As further 

indication we noted the upregulation of vacuolar ATPases, ATP6V0A1 and ATP6V0A2, 

A 

Fig 4-25 | A. Proteogenomic regulation of components related to regulated secretory pathway. (?) indicates 

missing data. (*) indicates FDR adjusted p-value<0.05. B-C. Histograms representing normalised distributions of 

LPS activated mouse plasmablasts and naïve B cells. Expression of specific genes/proteins have been visualised 

in context of global data distribution. B. Normalised transcriptome (RNA-Seq) and C. Proteome (MS/MS).  
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which are also implicated in regulated secretion [231]. Proteogenomic meta-analysis shows 

that PRG2 expression is inconsistent across species and is downregulated in the mouse 

proteome. Although, ATP6V0A1 showed consistent upregulation in mouse proteogenome, it 

exhibited little change in human ASCs. Furthermore, its isoform ATP6V0A2 show very 

inconsistent and relatively muted regulation in ASCs. Thus, it is likely that our initial 

hypothesis was incorrect regarding regulated secretion in ASCs. This highlights the importance 

of multi-omics analysis in filtering out poor hits in the study of core cellular processes, such as 

secretion. Furthermore, the lack of evidence towards regulated secretion, indicate that the 

considerable upregulation in HID1 may play a role distinct from the regulated secretory 

pathway in the plasma cell physiology. 

4.4.5 RRBP1 – Ribosome Anchor  

In chapter 3, Section 3.4.3.1, we predicted that the CREB3L2 TF may co-regulate the poorly 

characterised ribosome anchor, RRBP1/p180. Proteogenomic analysis consolidates this finding 

as RRBP1 was upregulated in all ASCs studied across platforms, across species, and in both 

Fig 4-26 | A. Proteogenomic regulation of RRBP1. This gene is consistently upregulated in every ASC type 

studied. B. Western Blot of RRBP1 show unique expression of RRBP1 in PBs but not NBCs. (?) indicates missing 

data. (*) indicates FDR adjusted p-value<0.05. 
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gene and protein level (Fig 4-26A). The expression of this gene has also been validated by our 

colleagues using Western blot (E Rajan & AWA Aswani).  

4.4.5.1 RRBP1 may stabilise ribosomal RNA  

The ribosome is a complex multiprotein machinery made up of over 50 proteins that guide the 

synthesis of proteins from mRNA molecules. Each ribosome can be split into a small and a 

large subunit [1].  RRBP1 is thought to interact directly with translationally active ribosomes 

and promote their assembly at the ER [232]. RRBP1 has also been reported to directly anchor 

and potentially stabilise mRNA at the ER, independent of any interaction with ribosomes [232, 

233].  Notably, our data indicates the vast majority of ribosomal mRNA showed a tendency to 

be downregulated (Fig 4-27A), whereas, ribosomal proteins exhibited considerable 

upregulation (Fig 4-27B). As such, we observe that ribosomal proteins may be upregulated in 

ASCs in a post transcriptional manner. Therefore, we speculate that RRBP1 may recruit 

ribosomes to the ER by potentially stabilising the mRNA of their subunits, thus enhancing their 

translation. 

4.4.5.2 RRBP1 may stabilise ribosomal protein 

Soluble ribosomal subunits are typically synthesized in excess, where soluble and complexed 

subunits maintain a state of equilibrium [234]. Turnover of ribosomal subunits is reported to 

correlate with size and solubility, with soluble or large subunits showing higher rate of 

degradation than their complexed or lower molecular weight variants, respectively [234]. 

Excess subunits undergo degradation via ubiquitin-proteasomal degradation [235]. Our data 

shows marked upregulation in most ribosomal protein subunits in ASCs. While increased 

mRNA stability via RRBP1 may contribute to this increased expression, an alternative 

hypothesis is that RRBP1 may stabilise ribosomal proteins by (a) increasing ribosome 

assembly and thus the proportion of ribosomal subunits in complexed form; or (b) inhibiting 
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the ubiquitination and thus degradation of ribosomal subunits. Further study is required to 

ascertain the role of RRBP1 in potentially stabilising ribosomal proteins and/or mRNA. 

4.4.5.3 RRBP1 may promote antibody secretion 

Knockdown of RRBP1 in fibroblasts has previously been reported to impair trans-Golgi 

expansion and ribosome association to the ER [160, 236]. Importantly, this resulted in the 

specific reduction in the secretion of the bulky protein, collagen, via perturbation of 

procollagen translation, as mRNA levels were unaffected [160].  As collagen is not secreted by 

antibody secreting cells, the reproducible upregulation of RRBP1 gene and protein in ASCs 

leads us to hypothesise that RRBP1 may play a similar role in enhancing antibody translation 

and, therefore, secretion in plasma cells. This also highlights the potential importance of 

CREB3L2 as a regulator of antibody secretion, as we predict that this transcription factor may 

promote the expression of RRBP1.  



Chapter 4 – Multi-Omics Analysis of ASCs 

 

Page | 167  

 

 

Fig 4-27 | A-B. Proteogenomics regulation of ribosomal subunits in ASCs represented as coloured nodes. A. 

Transcriptomic Regulation of Ribosomal proteins in ASCs. mRNA for most small and large ribosomal subunits 

show a tendency to be downregulated (yellow/red) in ASCs as opposed to B cells. B. Proteomic Regulation of 

Ribosomal proteins in ASCs. Protein level expression of most small and large ribosomal subunits show a tendency 

for statistically significant upregulation (purple/green) in ASCs. C. Bar chart of fold changes of select ribosomal 

subunits, show start contrast in protein and gene regulation of ribosomal subunits. 
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4.4.5.4 Cargo selection at COPII vesicles may be mediated by CREB3L2 

In the Chapter 3, we also identified CREB3L2 as a regulator of potential cargo selectors for 

COPII vesicles by studying species conserved regulation in genes as evidenced by microarrays. 

In this chapter, we determine whether CREB3L2 upregulation is reflected in other platforms 

and in the protein level.  

 As shown in Fig 4-28, CREB3L2 was consistently upregulated across species in both 

RNA-Seq and microarray data. Although, protein level data for CREB3L2 was missing 

MS/MS output, Western blot shows that CREB3L2 is uniquely expressed in 3-day old PBs but 

not in NBCs. A recently published report inhibited the expression of CREB3 family proteins 

and sterol regulatory element-binding proteins (SREBPs) by disrupting a site-1 protease using 

the drug, PF-429242, in ASCs [237]. This resulted in the dramatic reduction in antibody 

secretion and Al-Maskari et al suggests that CREB3L2 may play a key role in this as PF-

429242 greatly attenuates its activity. We note that specific perturbation of CREB3L2 has not 

Fig 4-28 | A. CREB3L2 gene regulation across platforms and species. CREB3L2 is highly upregulated across 

mice and human transcriptome of ASCs as opposed to B cells. Protein level evidence was missing in the label 

free MS/MS output. (?) indicates missing data. (*) indicates FDR adjusted p-value<0.05. B. Western Blot carried 

out by colleagues E Rajan & AWA Aswani show clear induction of CREB3L2 in mouse CD138+ plasmablasts 

(PB) but none in equivalent naïve B cells (NBC).  
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yet been performed as the phenotype observed by Al-Maskari et al is a combined result of 

downregulating CREB3 TFs and SREBPs. 

4.4.5.5 COPII vesicle components 

The inner coat of the COPII complex is composed of SAR1 and the SEC23-SEC24 

heterodimer, while the outer coat is formed by SEC13-SEC31 heterotrimers [238]. Previous 

qRT-PCR studies have proposed the upregulation of SEC31A and SEC24C in ASCs [54]. It is 

evident from Fig 4-29, that while these genes showed a tendency to be upregulated in both the 

protein and gene level, the extent of regulation was relatively weak compared to other isomers 

of the inner COPII coat, i.e. SEC24A, SEC24D and SEC23B. 

4.4.5.5.1 SEC23 

CREB3L2 has been implicated in marginal but statistically significant upregulation of SEC23A 

during hepatic stellate cell differentiation [153]. However, in ASCs this is not the case as this 

SEC23 isoform showed contradictory regulation in gene level and little or no change in protein 

level. SEC23B is the likely SEC23 isoform that operates in ASCs as there is evidence of 

consistent upregulation of SEC23B in both transcriptome and protein level (Fig 4-29). 

Transcription perturbation analysis shows that the well characterised enhancer of plasma cell 

Fig 4-29 | Differential Regulation of COPII vesicle components according to multi-omics analysis. (?) indicates 

missing data. (*) indicates FDR adjusted p-value<0.05. 
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differentiation, XBP1, operates upstream of this gene. In addition, SEC23B is also predicted to 

be regulated by the upregulated transcription factor, CREB3. 

4.4.5.5.2 SEC24 

In this chapter, cross platform analysis highlighted a considerable upregulation in SEC24A 

(Fig 4-29). The upstream regulator for this gene has not been identified, but interestingly, 

ARCHS4 transcription factor co-expression analysis indicate that SEC24A is a likely co-

regulation target for the CREB3L2 TF (Appendix Table 6-9).  

We highlighted SEC24D in Chapter 3 as the most upregulated component of coatomer 

protein complex (COP)II vesicles. Here we show that this regulation is mirrored in the RNA-

Seq as well as MS/MS profile of ASCs (Fig 4-29). CREB3L2 knockout studies marginally but 

significantly reduced the expression of SEC24D during hepatic stellate cell differentiation 

[153]. The specific overexpression of the CREB3L1 isoform in HeLa cells has been reported 

to upregulate SEC24D as well [239]. The redundant regulation of SEC24D by CREB3L1 and 

CREB3L2 may explain why CREB3L2 knockout only had a marginal affect in HeLa cells. 

Furthermore, it is worth noting that HeLa cells are not naturally optimised for secretion.  

Unlike CREB3L2, the CREB3L1 gene is upregulated in mouse ASCs but not in the human 

model according to microarray profiles. Unfortunately, the equivalent RNA-Seq profile did not 

detect this gene (Fig 4-30). This contradiction points to CREB3L2, not CREB3L1, being the 

likely regulator of SEC24D in ASCs. Therefore, we predict that specific upregulation of 

CREB3L2 may improve protein secretion in ASCs. Nevertheless, as we do not have the full 

picture of CREB3L1, validation of this gene expression in ASCs vs NBCs is needed to alleviate 

any concerns of redundant gene regulation. 

As SEC23B, SEC24A and SEC24D are the highest upregulated components in antibody 

secreting cells. We hypothesise that a combination of SEC23B-SEC24A and/or SEC23B-

SEC24D may play a role in loading antibodies into COPII vesicles in ASCs. As we have soft 
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validated their expression by proteomics, for further studies, knockdown/knockout of these 

genes should be carried out in ASC model to determine their effect on antibody secretion.  

4.4.6 Regulation of Membrane Trafficking Components in ASCs 

Previous studies in PCs have shown that SEC31A and SEC24C is upregulated in plasma cells 

[54]. We have established that most components of the COPII coat including these proteins 

had a tendency to be upregulated in the ASC phenotype. Our aims were also to investigate how 

other known membrane trafficking vesicles were regulated in the plasma cell physiology. The 

summary of our findings for the upcoming sections is illustrated in Fig 4-40, page 186. 

4.4.6.1 Coated vesicles 

4.4.6.1.1 COPI isomers. ASCs show preference for early Golgi to ER transport route 

COPI participates in the retrograde transport of cargo from the Golgi apparatus to the ER. As 

Golgi-ER retrograde transport is a highly enriched GO term in ASCs, it is not surprising that 

almost all components of the COPI vesicles show reproducible upregulation in both gene and 

protein level (Fig 4-31).  

Fig 4-30 | Differential Regulation of CREB3-like isoforms (multi-omics). While CREB3L2 gene expression is 

consistent across species, CREB3L1 genes show little or no change in the transcriptome of human ASCs. MS/MS 

could not detect either genes. (?) indicates missing data. (*) indicates FDR adjusted p-value<0.05. 
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Interestingly, the COPZ2 isoform showed consistently higher gene expression 

compared to other COPI proteins. Quantitative immunoelectron microscopy has previously 

shown that COPI  isoforms may perform distinct functions in mammalian cells [240]. The 

COPG1-COPZ2 subunit combination has been reported to localise to the ERGIC and cis-Golgi, 

while the COPG2-COPZ1 may act in the trans-Golgi [240]. Our data suggests that ASCs may 

exhibit a physiological preference for retrograde transport from early Golgi apparatus to the 

ER, in line with our GO functional analysis. This hypothesis is further substantiated by the 

small but significant downregulation of COPG2 (Fig 4-31) acting in the trans-Golgi network 

(TGN). Based on interaction with other COPII coat proteins, COPZ2 is believed to have 

redundant functions in the cell [241]. We, however, note that the cargo specificity for COPZ2 

containing vesicles have not been studied. Therefore, as COPZ2 is remarkably upregulated in 

ASC, we speculate that this subunit may bind to signal sequences/ adaptors on bulky misfolded 

cargo, such as antibodies, and aggregate them for retrograde transport. Nevertheless, as the 

protein level data for COPZ2 was missing in the mass spectrometry analysis, we recommend 

Western blotting to validate this result, before attempting functional analysis. 

Fig 4-31 | Differential Regulation of COPI coat proteins (multi-omics). COPZ2 gene shows consistently higher 

upregulation (up to 256-fold) in ASCs of mice and human. 
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4.4.6.1.2 Clathrin coated vesicles show no significant regulation in ASCs 

Clathrin coated vesicles transport cargo to and from the trans-Golgi and are key components 

of receptor mediated endocytosis and endocytic recycling. Different heterotetrameric adaptor 

protein (AP) complexes participate in the recruitment of cargo and clathrin during the 

formation of these vesicles [242]. Typically professional secretory cells couple exocytosis with 

endocytosis to recycle membranes and prevent secreted cargo from accumulating on the plasma 

membrane [30]. As such one would expect components of clathrin mediated endocytosis to be 

upregulated in ASCs due to higher secretory demand. However, our data indicates that clathrin 

heavy and light chains (Fig 4-32A) and the requisite cargo-sorting AP-2 complex (Fig 4-32C) 

show no significant change in ASCs as opposed to B cells. We hypothesize that this is likely 

because the relative expression levels of clathrin vesicles components in NBCs are enough to 

handle the increased endocytic demand in ASCs.  

We note that the AP-1 complex, which mediates sorting of cargo for endocytic 

recycling, i.e. trafficking from the trans-Golgi to recycling endosomes, showed statistically 

significant downregulation in specific AP-1σ subunits (Fig 4-32B). Although, AP1S2 and 

AP1S3 is strongly downregulated, AP1S1 shows no significant change in expression in ASCs. 

As such, we predict that this may an indirect selection for the AP1S1 subunit in the AP-1 

mediated vesicles of ASCs. Further validation using Western blotting is needed to validate this 

result.  

We also note that other AP-1 subunits tended to show small but statistically significant 

downregulation in ASCs, especially in the protein level. This pattern of regulation is surprising 

as we expect a professional secretory cells to upregulate receptor  mediated endocytosis and 

endocytic recycling [30]. We initially noted that some of these regulations are less than 2-fold 

change and assumed that the change may not be substantial enough to have a significant impact 

on the ASC phenotype.  However, the consistency in the pattern of downregulation across 



Chapter 4 – Multi-Omics Analysis of ASCs 

 

Page | 174  

 

Fig 4-32 | Differential regulation of clathrin coated vesicles (multi-omics).A. Clathrin coat proteins. B. Clathrin 

adaptor protein complex 1 (AP1) that mediate transport between trans-Golgi and recycling endosomes. AP1σ 

isomers (AP1S2, AP1S3) show significant downregulation in ASCs. C. Clathrin adaptor protein complex 2 (AP2) 

mediate receptor mediated endocytosis at the plasma membrane. AP-2 complex shows little or no change in ASCs.  
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subunits was suspect, especially as this pattern was also seen in associated tethers discussed in 

the next section.  

4.4.6.2 Tethering Factors  

Membrane bound vesicles bud from donor membranes, travel to target membrane where Rab 

GTPases and tethering complexes make initial contact and promote SNARE assembly for the 

fusion of the incoming vesicle with the target membrane [30]. As tethers play a key role in 

vesicular trafficking, we take a closer look at the regulation of different tethering factors.  

4.4.6.2.1 Post-Golgi tethers 

CORVET and HOPS complex show mild downregulation 

CORVET and HOPS are homologous multi-subunit complexes. CORVET complex resides on 

the membrane of early endosomes and functions as a tether for incoming vesicles from the 

trans-Golgi and late endosome. HOPS, on the other hand, reside in lysosomes and late 

endosomes and tether incoming vesicles destined for lysosomal degradation [34]. According 

to our data, both these tethers show a tendency for mild but statistically significant 

downregulation in protein level in almost all their subunits (FDR adjusted p-value < 0.05) 

although there were some inconsistencies in gene level (Fig 4-33A). As we have previously 

noted a similar regulatory pattern in components of the clathrin adaptor, AP-1, we suspect that 

ASC may downregulate forward transport of cargo from the trans-Golgi to endosomes and 

lysosomes to some extent. Further validation is required to confirm these peculiar results. 

Exocyst and GARP complex 

Components of the GARP complex act to tether incoming vesicles from recycling endosomes 

to the trans-Golgi. As shown in shows Fig 4-33C, expression of this complex was relatively  

unaffected by plasma cell differentiation [34]. Likewise, the Exocyst complex, thought to tether 

incoming vesicles at the plasma membrane from the trans-Golgi and recycling endosomes, was 

also unaffected (Fig 4-33B).  
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Post Golgi trafficking of antibodies may utilise a shortcut to the plasma membrane 

Constitutive cargo in Madin-Darby Canine Kidney (MDCK) cells and macrophages are 

reportedly trafficked through endosomal compartments and require the Exocyst complex to 

mediate the fusion of incoming vesicles to the plasma membrane [243, 244].  However, we 

have shown that the AP-1 adaptor proteins of clathrin coated vesicles and CORVET/HOPS 

tethering complexes implicated in endocytic recycling show a tendency to be downregulated 

in ASCs, and the Exocyst complex exhibit no change in expression. A live-imaging study 

demonstrated that post-Golgi transport in non-polarised cells may not require trafficking 

through endosomal compartments or tethering via the Exocyst complex [245]. As ASCs are 

indeed non-polarised, our data supports this hypothesis. Therefore, we predict that antibodies 

forego trafficking through endosomal compartments and may take an alternate “shortcut” to 

the plasma membrane. Nevertheless, we recommend performing Western blot of these 

endosomal recycling components for confirming their expression in ASCs. 
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Fig 4-33 | Differential regulation of post-Golgi tethers (multi-omics). A. CORVET/HOPS showed mild 

downregulation in protein level and inconsistent regulation in gene level (less than 2 absolute FC). These two 

tethering complexes act in the delivery of cargo to lysosomes or the cell surface. B. The Exocyst complex showed 

no significant change in ASCs. This complex tethers vesicles arriving from the TGN to the plasma membrane. C. 

GARP complex showed no significant change in ASCs. This complex acts as a tether for  the retrograde transport 

of cargo from recycling endosomes to the Golgi apparatus. 
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4.4.6.2.2 ER-Golgi Tethers  

COG Complex 

The Conserved Oligomeric Golgi (COG) complex is thought act as the tether for intra-Golgi  

retrograde transport vesicles (COPI) and plays a role in the correct localisation of glycosylation 

enzymes and other Golgi resident components [31]. This tethering complex shows small but 

consistent upregulation in the protein level, but has somewhat inconsistent gene regulation (Fig 

4-34A). Curiously, COG subunits show small but statistically significant regulation 

reminiscent of CORVET/HOPS complex, but in this case, we observe an overall upregulation 

in these tethers. This tendency for upregulation possibly reflects the parallel induction of COPI 

vesicles in ASCs discussed in Section 4.4.6.1.1. Further validation, is required to determine if 

Fig 4-34 | Proteogenomic regulation of components of ER-Golgi tethers.A. COG complex acts as a tether for 

intra-Golgi transport vesicles. COG subunits show consistent upregulation. B. Components of TRAPPC1 complex 

show little or no reproducible change in ASCs. 
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the fold changes in the protein level are sufficiently large enough to have any discernible effect 

on the ASC phenotype.  

TRAPPI 

The TRAPPI complex acts at the ERGIC or cis-Golgi to tether incoming COPII vesicles from 

the ER. Based on the considerable upregulation of COPII vesicles in ASCs, we assumed this 

tether would also show upregulation to reflect the need to tether a greater number of COPII 

vesicles budding from the ER. However, as shown in Fig 4-34, TRAPPI components show no 

significant change in ASCs. 

USO1 

Interestingly, USO1/p115, the coiled-coil tethering factor operating at the cis-Golgi was 

considerably upregulated in ASCs (Fig 4-35). In Chapter 1, Section 1.1.5.1.3, we discuss the 

role of this protein in the tethering of COPII vesicles at the cis-Golgi. Based on the lack of 

change in TRAPPI expression and the distinct upregulation of USO1, we hypothesize that 

increased number of USO1 proteins may serve to speed up forward trafficking of cargo and 

potentially lead to the enhancement of antibody secretion.  

 USO1 is also believed to interact with GOLGA2 and GOLGB1 to mediate intra-Golgi 

tethering of COPI vesicles. Although, gene expression of GOLGA2 was inconsistent, both 

Fig 4-35 | Differential regulation of USO1 tethering factor and its interactors at the cis-Golgi. 
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GOLGA2 and GOLGAB1 showed a tendency to be upregulated in ASCs (Fig 4-35). Thus, our 

data indicates that USO1 mediated tethering may play an active role in intra-Golgi transport 

within ASCs. 

NRZ Complex 

The NRZ complex, discussed in Chapter 1, Section 1.1.5.1.4,  mediates tethering at the ER by 

“catching” incoming COPI vesicles returning from the Golgi and thus promoting their fusion 

with the ER membrane  [33].  

 NRZ was previously thought to only participate in retrograde transport but it has 

recently been implicated in the loading of collagen  into COPII vesicles for antegrade transport 

from the ER [246]. As shown in Fig 4-37, the tethering of COPI vesicles allows NRZ complex 

to interact with MIA3/TANGO1, which is a component of the COPII vesicle. Raote et al 

proposed that TANGO1 requires interaction with the large cargo (collagen), COPII inner coat 

proteins (SEC23- SEC24) as well as the NRZ complex to prevent premature budding and thus 

promote the loading of collagen into COPII vesicles. Due to the considerable upregulation of 

COPI and COPII components and the dual role of NRZ in both COPI and COPII vesicle 

transport we took a closer look at the NRZ complex. Components of NRZ complex, NBAS and 

Fig 4-36 | A. Differential Regulation of NRZ subunits in ASCs (multi-omics). Gene level regulation is somewhat 

inconsistent for NRZ proteins, but all three components show statistically significant upregulation in protein 

level. B. Western blot carried out by our colleagues validates the upregulation of NBAS in ASCs. 
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RINT1, show consistent upregulation in ASCs, while ZW10, showed upregulation mainly in 

the protein level (Fig 4-36A). This upregulation of NRZ complex in ASCs is interesting as we 

note that ASCs do not secrete collagen. As in the case of CRELD2 and COPII cargo loading, 

we find another potential parallel between collagen and antibody trafficking. Thus we predict 

that the NRZ complex participates not only in the transport of collagen but other bulky cargo 

such as antibodies. 

NBAS is a poorly characterised member of the NRZ tethering complex. This gene 

shows upregulation in the mice model but somewhat contradictory results in human ASCs. 

Nevertheless, NBAS showed ~2-fold upregulation in the mouse proteome and our colleagues 

performed Western blotting to validate this result and found that this gene was markedly 

upregulated in mouse plasmablasts (Fig 4-36B). Patients exhibiting mutations in NBAS gene 

have been reported to suffer from multisystem disorders characterised by liver dysfunction, 

Fig 4-37 | Schematic diagram of TANGO1 interaction with NRZ complex, COPII coat proteins and the cargo, 

collagen. This interaction prevents premature budding of COPII vesicles, and allows the loading of collagen into 

COPII vesicles (based on Raote et al’s report). 
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optic atrophy and, importantly, suffer multiple bone fractures, which suggests a possible 

dysregulation of collagen secretion [33, 247]. Interestingly, these patients also exhibit 

hypogammaglobulinemia. As such, we predict that the potential dual of NRZ complex in the 

COPI and COPII mediated transport of bulky cargoes such as antibodies, and not just collagen, 

may explain why these patients lack antibody secretion. 

4.4.6.3 SNAREs 

SNAREs mediate the last step of vesicle docking and fusion to the target membrane. Structural 

and functional characteristics of SNAREs are discussed in Chapter 1, Section 1.1.6. 

4.4.6.3.1 ER-Golgi trafficking SNAREs show upregulation  

Retrograde transport from the Golgi to ER 

The Q SNAREs, syntaxin 18 (STX18), BNIP1 and USE1 each contribute a coiled-coil motif 

to make up a heterotrimeric t-SNARE. The NRZ complex traps incoming COPI vesicles by 

binding to the R-SNARE, SEC22B and subsequently promotes the formation of trans-SNARE 

complex at the ER [33]. In accordance with the upregulation in NRZ subunits, we observe 

consistent upregulation in STX18 and SEC22B in both gene and protein level (Fig 4-38A, E). 

Our colleagues have validated the expression of SEC22B in ASCs as shown in Fig 4-38F. As 

USE1 and BNIP show somewhat contradictory results (Fig 4-38C), overall, we predict that 

ASCs specifically enhance the activity of v-SNAREs participating in the retrograde transport 

from the Golgi to ER. 

Intra-Golgi Retrograde transport 

Retrograde transport of cargo within the Golgi apparatus is mediated by the v-SNARE YKT6 

and t-SNAREs consisting of STX5, GOSR2 and BET1L [36]. Fig 4-38B, shows consistent 

upregulation in GOSR2 and BET1L gene, but neither showed induction in the protein level. 

YKT6 on the other hand show consistent upregulation in both the gene and protein level in 
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Fig 4-38 | Differential Regulation of SNAREs (multi-omics). A. Qa-SNAREs. Syntaxin 18 showed consistent 

upregulation in ASCs while Syntaxins 7 showed consistent downregulation. B. Qb-SNAREs. GOSR2 displayed 

consistent upregulation in gene level but little or no significant change in protein level whereas VTI1B showed 

statistically significant downregulation in protein level. C. Qc-SNAREs. BET1 was consistently upregulated in 

ASCs its isoform BET1L showed a similar pattern in gene level but showed no change in protein level. USE1 

showed contradictory regulation in gene as opposed to protein level. D. Qbc-SNAREs. SNAP47 showed small but 

consistent upregulation in ASCs. SNAP29 showed over 2-fold downregulation in protein level E. R-SNAREs. 

YKT6 and SEC22B show statistically significant upregulation in nearly all ASC types. F. Western blot of select 

SNAREs. 
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ASCs and its expression has been validated using Western blot (Fig 4-38F). Overall, evidence 

points to a tendency for ASCs to enhance v-SNARE expression for intra-Golgi transport. 

Anterograde transport from ER to Golgi/ERGIC 

YKT6 or SEC22B typically acts as the v-SNARE for COPII vesicles [36]. In accordance with 

the remarkable upregulation in COPII coat proteins, these SNAREs were highly induced in 

ASCs as shown in (Fig 4-38C). At the Golgi apparatus and ERGIC, the Q-SNAREs, STX5, 

GOSR1/GOSR2 and BET1 constitute the t-SNAREs for incoming vesicles [33]. While GOSR1 

showed no significant change, we have previously noted the tendency for SEC22B and YKT6 

to be upregulated in ASCs. Based on this data, we hypothesize that v-SNAREs acting in the 

cis-Golgi are induced to promote ER to Golgi transport in ASCs. 

4.4.6.3.2 Post Golgi SNAREs show no change or downregulation in ASCs 

We note that t-SNAREs subunits (STX7 and VTL1B) mediating fusion of cargo destined for 

lysosomal degradation showed downregulation in ASCs (Fig 4-38A, E)  [40].  

The Q-SNARE, Syntaxin 6 (STX6), contributes a coiled-coil motif to the trans-SNARE 

complex at the TGN for fusion of vesicles arriving from the cell surface via endosomes [39]. 

This gene was downregulated in ASCs as shown in Fig 4-38C. This result consolidates our 

hypothesis that antibodies may forego trafficking through endosomal compartments and take 

an alternate “shortcut” to the plasma membrane.  

SNAREs mediating fusion at the plasma membrane 

In this regard, we investigated SNAREs implicated in exocytosis from the trans-Golgi to the 

cell surface. The trans-SNARE complex made up of the heterodimeric t-SNAREs, STX1 and 

SNAP25, and the v-SNARE, VAMP2, is implicated in the spontaneous fusion of synaptic 

vesicles arriving at the plasma membrane from the TGN [43]. Other SNARE complexes 

consisting of a combination of the Q-SNAREs STX1, SNAP25/ SNAP29 and the R-SNARE 

VAMP3 or YKT6 have recently been reported in Drosophila [248]. However, the regulation 
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of STX1 isoforms and SNAP25 were inconclusive according to our data and most of these 

components other than YKT6, either showed a tendency for downregulation (SNAP29, 

STX4A) or no change (VAMP3) in the protein level (Fig 4-39). As such, we recommend 

alternative validation techniques such as Western blot of STX1A/B and SNAP25 to determine 

whether these genes may be upregulated in ASCs alongside YKT6. 

4.4.6.4 Summary of differentially regulated membrane trafficking genes 

In Fig 4-40, we summarise the regulation of coated vesicles, tethers and SNARE proteins in 

ASCs. The machinery involved in the forward transport of cargo from the endoplasmic 

reticulum to the Golgi apparatus show overall upregulation in ASCs. This includes almost all 

COPII coat proteins, associated v-SNARE as well as the tether, USO1, known to mediate 

docking and fusion at the cis-Golgi.  

In retrograde transport from Golgi to ER membrane, COPI coat proteins, their 

corresponding tether (NRZ) and v-SNAREs show upregulation in ASCs. Likewise, we also see 

the upregulation of intra-Golgi retrograde transport. Curiously, ASCs seem to preferably 

upregulate v-SNAREs rather than t-SNAREs in the early secretory pathway. The majority of 

known t-SNARE complexes do not show consistent upregulation. In fact, only the Q-SNAREs, 

Fig 4-39 | Differential Regulation of SNARE complex components known to play a role in exocytosis in neurons. 

Overall, these genes/proteins show inconsistent results, and in most cases, little or no change. 
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BET1 and STX18, acting in anterograde and retrograde transport between ER and Golgi 

apparatus, respectively, showed reproducible upregulation in ASCs.  We, therefore, speculate 

that upregulation in YKT6 and SEC22B may simply reflect the increased number of COPI and 

COPII coated vesicles operating in ASCs versus NBCs. Therefore, we hypothesize that ASCs 

may enhance the number of transport carriers and specific docking machinery operating at the 

early secretory pathway to coordinate the forward transport of antibodies from the ER to Golgi 

and recycling of ER membrane components to match this forward momentum. 

In contrast, we see little evidence of post-Golgi trafficking via endosomal compartments 

and clathrin coated vesicles in ASCs. Instead clathrin adaptors, SNAREs and tethers involved 

Fig 4-40 | Summary of regulation and coordination of coated vesicles, tethers and SNAREs in ASCs according to 

multi-omics analysis. Overall, we see consistent upregulation in membrane trafficking components mediating 

anterograde and retrograde transport from the ER to Golgi as well as intra-Golgi retrograde transport. In contrast, 

components of post-Golgi transport showed little or no change, whereas tethering complexes and associated 

SNAREs showed a tendency for downregulation. 
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in transport between trans-Golgi and plasma membrane via endosomes were downregulated. 

This is in accordance to previous studies that demonstrated that non-polarized cells likely 

utilise an alternate pathway for the delivery cargo from the TGN to the cell surface [245]. Based 

on the upregulation of Ykt6, we hypothesize that this R-SNARE may act as a v-SNARE for 

antibody containing vesicles acting in post-Golgi transport. However, what t-SNAREs may be 

mediating the fusion of these vesicles remains unclear. Interestingly, the Exocyst complex 

implicated in the tethering of vesicles in plasma membrane did not show any significant change 

in ASCs, suggesting that either the expression of Exocyst complex subunits in NBCs is 

sufficient to meet the increased secretory demand or perhaps different machinery acts in the 

tethering of antibody containing vesicles. However, what this machinery might be remains 

unclear. 

4.5 CONCLUSION 

In this project, we carry out cross species, cross platform comparative analysis of antibody 

secreting and non-secreting cells. We have demonstrated that combining microarray, RNA-Seq 

and tandem mass spectrometry data from two different species may help remove noisy hits 

such as PRG2 and EDEM1, and improve the coverage of differentially expressed genes, 

including those implicated in membrane trafficking. Cross-platform reproducibility allowed us 

to isolate genes that may be differentially regulated in mice as opposed to humans, such as 

UGGT2, and also components that are likely to be regulated on a post-transcriptional level (e.g. 

ribosomal subunits). Furthermore, by exploiting genes that reproducibly show remarkably high 

upregulation across platforms, species and in both gene and protein level we were able to 

identify potentially novel ASC markers (CD93, CRELD2, HID1). These markers may improve 

the purification and targeting of ASCs in research and medicine. As the less understood 

CRELD2 gene has previously shown specificity for misfolded protein substrate this gene may 
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also be of industrial relevance as its targeted overexpression in cell lines used in industry may 

potentially improve the secretion of biologics.  

The primary aim of our project was to utilise our multi-omics bioresource to study 

membrane trafficking in the plasma cell physiology. According to our results, ASCs 

specifically increase the expression of genes/proteins related to membrane trafficking and the 

management of proteotoxic stress at the ER. We observe that ASCs induce the expression of 

vesicle coats and specific tethers acting in the early but not the late secretory pathway. 

Furthermore, a noticeably higher induction of specific vesicular coat proteins, COPZ2 and 

SEC24A/D, led us to speculate that these components may play a role in the sorting of large 

cargoes (antibody) within COPI and COPII vesicles, respectively. Overall, our data highlights 

the importance of ER-Golgi trafficking for antibody secretion and raises the important question 

as to what transport vesicles and tethering factor mediate post-Golgi trafficking of antibodies.  

 Interestingly, we note the marked induction of a number of genes/proteins that has been 

proposed to play a role in collagen secretion but has yet to be studied in antibody secretion. 

The potential parallel role of less characterised machinery, NRZ complex, CREB3L2, 

CRELD2, RRBP1 and SEC24D, in collagen as well as antibody secretion indicate that these 

proteins may be key components required for constitutive secretion of bulky cargo in general. 

 Through characterisation of membrane trafficking in the plasma cell physiology we 

have demonstrated the utility of our multi-omics analysis. In order to make this resource 

available to the wider scientific community, we have created a user-friendly web application 

that lets users visualise the differential regulation of a gene/protein in ASCs versus NBCs, 

across species, across platforms and in both gene and protein level. By visualising the 

reproducibility, or conversely, the noisiness of a gene, we predict that this bioresource can help 

bench biologists make an informed decision in deciding whether to carry out low throughput 
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validation of gene/protein and thus potentially save cost and time otherwise wasted on noisy 

hits such as PRG2.  

4.6 EVALUATION 

In this study, we primarily focus on what components are consistently regulated among ASCs 

in different stages of maturation. While this allows us to find ASC markers, we also discard 

data that are unique to specific stages of PC differentiation. For example, we noticed that 

components of cholesterol biosynthesis are enriched in the MS/MS data, where ASCs studied 

were all 3-day old plasmablasts. Revisiting the microarray and RNA-Seq profile confirm that 

they are upregulated in the PB transcriptome but not in splenic and bone marrow plasma cells. 

As such our voting system will have filtered these genes out. Thus, we realised that many genes 

important for the early stages of plasma cell differentiation will not be captured in our analysis. 

In order to study genes upregulated in specific stages of PC differentiation, we recommend that 

multi-omics analysis of PBs, SplPCs and BMPCs be done separately. 

 In Chapter 3, Fig 3-9, we give an example of kinase enrichment based on previous 

perturbation experiments. We did not utilise this data because it is difficult to gauge the 

importance of these kinases without phospho-proteomics data. We note that in addition to the 

proteomic expression profile of ASCs and NBCs, our colleagues have generated phospho-

proteomics data for these cells. However, this was not in the scope of this project. While protein 

expression profile tells us how many molecules of a protein is present, phospho-proteomics 

can tell us how active a protein is likely to be in a sample. This can then be linked to the kinase 

perturbation database we highlighted in Fig 3-9 to pull out potentially important kinases 

regulating protein activity in ASCs. For future studies, we recommend incorporating this 

phospho-proteomics data into our bioresource in order to better understand the activity of 

proteins in the ASC phenotype. 
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 We studied microarray, RNA-Seq and MS/MS profile of ASCs in this project and used 

a voting system to extract genes whose fold changes are reproducible across these platforms. 

Our experimental design was firstly based on consistency in regulation between sample types 

within each platform, and secondly the consistency in regulation between platforms. However, 

this caused some genes such as RINT1, a member of the NRZ tethering complex, to not appear 

in the final set of filtered genes despite 9 out of 12 ASC types studied showing statistically 

significant upregulation. We note that this was simply because in the human microarray, 

RINT1 showed downregulation. Therefore, in future studies we recommend gene filtering to 

only be done after pooling the data from all platforms together. Furthermore, we believe the 

voting system is not “fair”, as the accuracy and importance of data generated from RNA-Seq, 

microarray and proteomics are not equal. Therefore, alternative methods that consider the 

weight of distinct platforms could be used to improve our analysis. We note that our online 

bioresource has every gene found in all platforms and is unaffected by the voting criteria.  

4.6.1 Differential Expression calls 

In this study we combined p-values from different experiments by calculating a median, which 

is not the optimal way to determine the statistically significant of meta-analysis procedures. 

Here we review alternative approaches that can be used to improve our data and potentially 

remove the need for the voting system. 

4.6.1.1 t-statistic based Methods 

t-statistic or effect size-based methods utilise t-statistics to determine differentially expressed 

genes. The GeneMeta method, for example, introduced in 2003, assigns a t-like statistic to 

genes within each study to give them weight based on their variances, which are then fit to a 

hierarchical model to determine intra and cross study variation in these t-like statistics. 

Methods such as this do not take into account the magnitude of differential expression when 

estimating these effect sizes [249].  
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4.6.1.2 Fold change-based methods 

In 2006, a method called RankProd was introduced that utilises the magnitude of fold change 

instead of the t-statistics to determine differential expression. This approach uses a non-

parametric approach to make differential expression calls. As such it makes fewer assumptions 

about the underlying distribution of  the data and has been shown to be relatively robust for 

heterogenous datasets or those lacking sufficient replicates [250]. T-statistic based approaches, 

discussed earlier, have been found to overestimate p-values and exhibit more false positives 

than RankProd. The latter has been found to outperform GeneMeta, especially when studies 

have fewer replicates or high cross-study variation [251]. Furthermore, the ranking of genes 

based on RankProd were more reproducible than GeneMeta [251].  

4.6.1.3 p-value based methods 

Fisher's inverse chi-square method is an easy to use method for combining p-values from 

individual datasets [252]. It sums the logarithm of all p-values and compares it against chi 

squared distribution. However, this method does not give an estimate of overall fold changes 

as it only utilises p-value statistics. p-value combination using this method has to be performed 

separately for up- and downregulated gene sets [252]. Furthermore, compared to newer 

methods this approach is highly dependent on the  quality of the original p-values [251].  

A newer p-value combination method, available in the metaMA package, solves the 

need to combine p-values separately for up- and downregulated genes by using a weighted 

method described by Marot and Mayer  [253, 254]. This method was found to outperform both 

t-statistic based and fold change-based methods [254].  

4.6.1.4 Combining t-statistic and fold change 

A novel method utilising both t-statistic based and fold change ratios has recently become 

available. This tool, called iMeta, quantile normalises fold changes against t-statistic to 

minimise biases arising from differences in distribution. Benchmarking studied show that this 



Chapter 4 – Multi-Omics Analysis of ASCs 

 

Page | 192  

 

method outperforms other existing methods for determining differential expression in cross 

study meta-analysis [255]. 

4.6.2 Alternative meta-analysis method 

We describe merging and meta-analysis in Section 2.1.3, which have also been referred to as 

“early” and “intermediate” merging, respectively [256]. Recently another approach has been 

highlighted where differential expression and downstream gene set enrichment analysis 

(GSEA) is performed first and then results from the GSEA is merged by combining p-values 

from the GSEA enrichment. This is known as “late” merging [256]. While early merging 

provided the best results, interestingly, late merging of GSEA enrichment results yield better 

results than intermediate merging, which we employed for cross-species and cross platform 

analysis in this study [256] . Note that p-value combination was carried out using the weighted 

inverse method available in the MetaMA package[256]. Using this meta-analysis method with 

EnrichR for future analysis is thus worth consideration. 

4.7 FUTURE DIRECTIONS  

The protein level expression of a number of genes identified in this project has been validated 

by our colleagues using Western blot and immunofluorescence. Ideally, the next step would 

have been to knockdown or overexpress these genes in naïve B cells and assess their antibody 

secreting capacity after activation. Unfortunately, this has proved to be problematic and the 

results have been inconsistent.  

 The monoclonal B cell lymphoma, i.29, can be activated by LPS to differentiate into 

antibody secreting plasma cells and plasma blasts [257]. As transfection of these i.29 cell lines 

tend to show better results [258], our colleagues intend to utilise i.29 for characterising the 

candidate genes identified in this study. However, this cancer cell line is not a physiological 

model of ASCs, therefore, it would be ideal to map the transcriptome differences in ASCs and 
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i.29 and test their viability as a model for ASCs before attempting the perturbation of candidate 

genes/proteins identified in this project. 
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6 APPENDIX 

Table 6-1 | Manually Curated Summary of Overlapping GO Biological Process Terms. 

 Summary Term Description Enriched Gene Count  

   

U
p

re
g

u
la

te
d
 

Membrane Trafficking 

  

  

retrograde vesicle-mediated transport, Golgi to ER 36 

ER to Golgi vesicle-mediated transport 42 

transmembrane transport 35 

neutrophil degranulation 78 

establishment of protein localization 10 
ER stress IRE1-mediated unfolded protein response 32 

  ER unfolded protein response 16 

  response to ER stress 22 

  ubiquitin-dependent ERAD pathway 21 

  retrograde protein transport, ER to cytosol 9 

  proteasome-mediated ubiquitin-dependent protein catabolic process 39 

  ERAD pathway 8 
  NIK/NF-kappaB signalling 18 

  tumour necrosis factor-mediated signalling pathway 26 

  cellular response to oxidative stress 20 

  ATF6-mediated unfolded protein response 6 

glycosylation protein N-linked glycosylation via asparagine 20 

  protein N-linked glycosylation 14 

  dolichyl diphosphate biosynthetic process 6 

  dolichol-linked oligosaccharide biosynthetic process 8 
electron transport chain 

  

  

  

mitochondrial translational elongation 32 

mitochondrial electron transport, NADH to ubiquinone 22 

mitochondrial translational termination 31 

heme biosynthetic process 8 

mitochondrial respiratory chain complex I assembly 27 

antigen presentation antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-

dependent 

22 

  antigen processing and presentation of exogenous peptide antigen via MHC class II 23 

  antigen processing and presentation of peptide antigen via MHC class I 10 

mitotic cell cycle anaphase-promoting complex-dependent catabolic process 29 

  positive regulation of ubiquitin-protein ligase activity involved in regulation of mitotic 

cell cycle transition 

27 

  negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 26 

  regulation of cellular amino acid metabolic process 19 

  chromosome segregation 17 
  negative regulation of G2/M transition of mitotic cell cycle 18 

  sister chromatid cohesion 25 

  nucleobase-containing small molecule catabolic process 8 

  regulation of transcription involved in G1/S transition of mitotic cell cycle 10 

  spindle organization 9 

  branched-chain amino acid catabolic process 9 

  SCF-dependent proteasomal ubiquitin-dependent protein catabolic process 19 

  mitotic cytokinesis 11 
  microtubule-based movement 17 

  regulation of transcription from RNA polymerase II promoter in response to hypoxia 19 

protein biosynthesis tRNA aminoacylation for protein translation 18 

anti apoptotic process negative regulation of apoptotic process 57 

 

   

D
o

w
n

re
g

u
la

te
d

 

phosphorylation protein phosphorylation 81 

 peptidyl-serine phosphorylation 35 
 negative regulation of myosin-light-chain-phosphatase activity 5 

response to DNA damage cellular response to DNA damage stimulus 53 

actin cytoskeleton 

organization 

cortical actin cytoskeleton organization 10 

RNA processing mRNA splicing, via spliceosome 55 

 RNA processing 20 

 RNA secondary structure unwinding 16 

regulation of transcription positive regulation of transcription from RNA polymerase II promoter 129 
negative regulation of transcription, DNA-templated 82 

positive regulation of transcription, DNA-templated 87 

regulation of DNA-templated transcription, elongation 7 

negative regulation of transcription from RNA polymerase II promoter 86 

regulation of transcription from RNA polymerase II promoter 60 

PI biosynthesis phosphatidylinositol biosynthetic process 24 

I-KB kinase/NF-KB 

signalling 

I-kappaB kinase/NF-kappaB signalling 18 

ubiquitination protein polyubiquitination 47 

 protein ubiquitination involved in ubiquitin-dependent protein catabolic process 31 

transcription transcription from RNA polymerase II promoter 54 

focal adhesion assembly regulation of focal adhesion assembly 8 

small GTPase regulation regulation of small GTPase mediated signal transduction 32 
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Table 6-2 | Manually Curated Summary of Overlapping GO Cellular Component Terms 

  Summary Term  Description Enriched Gene Count 
  

 

  

U
p

re
g

u
la

te
d

 

endoplasmic reticulum  endoplasmic reticulum membrane 152 

 endoplasmic reticulum 165 

 integral component of endoplasmic reticulum membrane 36 

 oligosaccharyltransferase complex 9 

mitochondria  mitochondrion 193 

 mitochondrial inner membrane 85 

 mitochondrial matrix 72 

 mitochondrial respiratory chain complex I 23 

 mitochondrial ribosome 13 

 mitochondrial large ribosomal subunit 18 

 mitochondrial small ribosomal subunit 10 

ER/Golgi intermediate  transport vesicle 30 

 endoplasmic reticulum-Golgi intermediate compartment 23 

Golgi apparatus  Golgi apparatus 116 

 Golgi membrane 73 

 COPI vesicle coat 9 

 integral component of Golgi membrane 14 

proteasome  proteasome complex 18  
 proteasome core complex 10 

chromosome/mitotic 

spindle 

 spindle microtubule 13 

 condensed chromosome outer kinetochore 6 

 kinetochore 20 

 mitotic spindle 14 

secretory granule  azurophil granule lumen 22 

 ficolin-1-rich granule lumen 27   
 

  

D
o

w
n

re
g

u
la

te
d

 

nucleus  nuclear speck 65 

 nucleolus 123 

 PML body 20 

 nuclear body 53 

cytoplasm  I-kappaB/NF-kappaB complex 5 

 beta-catenin destruction complex 7 
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Table 6-3 | GO Biological Process enrichment of Upregulated Genes in ASCs across species (Microarray).  

Term Adj p-
value 

Gene Symbol 

ER stress 
(139) 

6.0E-14 FKBP14, SHC1, GOSR2, MYDGF, SEC61A1, EXTL2, SERP1, SEC61G, ASNA1, LMNA, SSR1, DNAJB9, 

SEC61B, SEC62, SEC63, SEC31A, XBP1, HSPA5, WFS1, GFPT1, SYVN1, WIPI1, PDIA6, PDIA5, 

ARFGAP1, YIF1A, ERN1, DNAJC3, CTDSP2, DNAJB11, PREB, KDELR3, EDEM3, VCP, DERL3, EDEM2, 

DERL1, BHLHA15, CREB3, TBL2, SELENOS, CTH, ATF6, RNF121, ERO1A, PDIA3, CEBPB, UBA5, 

FAM129A, TXNDC11, ATP2A2, HERPUD1, PDIA4, HSP90B1, ERP44, TMEM33, TMX1, DDRGK1, 

CREB3L2, FLOT1, TRIB3, P4HB, SEL1L, ERLIN1, UBE2J1, ERLEC1, PSMC4, JKAMP, FBXO6, STT3B, 

UFD1, PSMD10, ANAPC16, PSMD14, BUB1B, TNFAIP1, PSMD8, PSMB6, PSMD9, PSMB7, RNF115, 

UCHL1, PSMB4, CDC23, PSMB5, PSMD4, PSMB2, HECTD3, CDC26, SPOP, PSMD1, GTSE1, UBE2C, 

BFAR, PSMB8, PSMA5, PSMA6, CDC34, PSMA4, GID4, PSMA1, TBL1XR1, CDK1, RNF181, STUB1, 

CLOCK, RNF187, MAD2L1, RHBDD1, DNAJB12, TRIM25, UBE2M, TNFRSF13B, TRADD, FOXO3, 

TXNDC17, TNFSF13B, PYCARD, TNFRSF17, CDIP1, LIMS1, VKORC1L1, GPX3, GSTP1, TXNL1, NUDT2, 

GPX7, HTRA2, PYCR1, PYCR2, PRDX6, PRDX3, PRDX2, PRDX1, SESN2, CYCS, CPEB2, ATF6B, CALR 

membrane 

trafficking 

(173) 

3.2E-12 ARF4, COPB2, COPA, TMED10, KDELR1, STX18, KIF11, SCFD1, RACGAP1, LMAN2, TMED3, TMED2, 

TMED7, KIFAP3, TMED9, SURF4, GOLPH3L, COPZ2, KIF23, KIF22, ARFGAP3, COPZ1, ARFGAP1, 

TAPBP, ARCN1, CENPE, KIF18A, GOLPH3, RER1, KIF4A, KDELR2, KDELR3, COPG1, SEC22B, ERGIC2, 

COPE, DYNC1I2, LMAN2L, ATL3, SAR1B, GOSR2, USO1, DCTN3, TEX261, MIA3, IER3IP1, LMAN1, 

CD59, YKT6, SEC31A, RAB2A, SEC24A, COG6, DYNLL1, BET1L, YIF1A, YIF1B, SEC23IP, PREB, GAS6, 

SEC24D, PSMD10, VCP, ABCD3, PSMD14, ABCB6, SLC44A1, SLC41A2, SEL1L, DERL1, MAGT1, 

PSMD8, PSMB6, PSMD9, ERLEC1, PSMB7, PSMB4, PSMB5, PSMD4, PSMB2, PDZD11, PSMD1, LRRC8D, 

ABCC3, RALBP1, ABCA5, SLC33A1, ERLIN1, EIF2S2, PSMB8, PSMA5, PSMA6, PSMA4, PSMA1, PEX3, 

PSMC4, CYFIP1, RAB3D, AP2A2, MPO, PYCARD, ALAD, GLIPR1, PNP, NAPRT, LAMP2, TIMP2, GUSB, 

GYG1, CTSD, PGM1, CTSB, HGSNAT, TICAM2, FCER1G, ANXA2, CD300A, ATP6AP2, NDUFC2, 

COMMD3, MIF, CKAP4, DNAJC3, C16ORF62, PKM, NPC2, DNAJC5, CSNK2B, S100A9, LTF, CSTB, 

CD63, GRN, GSTP1, MVP, FGL2, PRCP, PGRMC1, PRDX4, RAP1A, CREG1, ORMDL3, MLEC, STOM, 

METTL7A, AGA, ATG7, ATP6V1D, ARSB, VAT1, HSPA8, TMEM30A, FUCA1, FUCA2, RAB27A, GGH, 

PA2G4, PRDX6, DERA, RAB10, BST2, ERP44, IMPDH1, GLB1, GLA, SELENOS, PLK1, RDX, CRIPT, 

MDM2, CEP55, HINFP, LIMS1 

electron 

transport 

chain 
(67) 

1.8E-08 NDUFB9, NDUFB7, NDUFA11, NDUFB6, NDUFA12, NDUFB11, NDUFB5, NDUFB3, NDUFB1, 

FOXRED1, NDUFV3, NDUFA9, NDUFA8, TIMMDC1, NDUFA3, NDUFA2, NDUFA1, NDUFC2, 

NDUFAF8, NDUFS8, NDUFS7, NDUFS5, NDUFAF4, NDUFS4, NDUFAB1, NDUFAF2, NDUFAF1, 

MRPS15, MRPS14, MRPS11, MRPL18, MRPS12, MRPS34, MRPL17, MRPL36, MRPL58, MRPL37, 

MRPL15, MRPL34, MRPL35, MRPL13, MRPL57, MRPL4, MRPL42, MRPL20, MRPL40, CHCHD1, TSFM, 

MRPS24, MRPL27, MRPS2, MRPS18A, MRPL48, MRPS5, MRPS18C, MRPL53, MRPL50, MRPL51, 

AURKAIP1, ALAD, ALAS1, FECH, ATPIF1, HMBS, CPOX, FXN, NFE2L1 

mitotic cell 

cycle 
(113) 

2.8E-07 PSMD10, PSMD14, ANAPC16, BUB1B, AURKB, AURKA, PSMD8, PSMB6, PSMD9, PSMB7, CCNB1, 

PSMB4, CDC23, PSMB5, PSMD4, PSMB2, CDC26, PSMD1, SKP2, UBE2C, PLK1, PSMB8, PSMA5, PSMA6, 

PSMA4, PSMA1, PSMC4, CDK1, MAD2L1, FBXO5, OAZ1, AZIN1, CDT1, CENPW, SPAG5, KIF11, 

BRCA1, SKA3, KNSTRN, SKA1, SKA2, CENPE, CENPF, NTMT1, NUF2, NEK2, OIP5, TOP1, SPC25, 

CDCA5, CDCA8, CENPA, NUP43, BUB1, CENPU, SEC13, FBXW7, KNL1, KIF22, SGO2, KIF18A, CENPI, 

BIRC5, SPC24, NUDT9, ENTPD1, ENTPD4, ENTPD5, ENTPD7, NUDT1, NUDT18, NUDT5, PCNA, RRM2, 

CDC45, CCNE1, GFI1, CDC6, TYMS, HINFP, ASPM, TTK, AUNIP, MCCC2, BCKDK, HIBADH, AUH, 

BCAT1, HSD17B10, HIBCH, ACAT1, BCAT2, FBXO6, ANLN, SNX18, RACGAP1, KIF4A, NUSAP1, KIF23, 

STAMBP, KIF20A, CEP55, DYNC1I2, CLTA, AP2B1, AP2A2, KIF18B, KIFC1, KIF13B, KIF1B, KIFAP3, 

EPAS1, VEGFA 

Glycosylation 
(38)  

4.0E-07 OST4, VCP, ST6GAL1, RPN2, DERL3, RPN1, ALG5, SYVN1, MAGT1, UBE2J1, LMAN1, FUT8, DAD1, 

OSTC, STT3A, STT3B, NUDT14, ST6GALNAC4, ST3GAL2, ST6GALNAC6, DPAGT1, ALG8, ENTPD5, 

MOGS, TMEM165, TMEM258, DOLPP1, MAN1C1, PGM3, NUS1, SRD5A3, DOLK, DHDDS, ALG9, 

PQLC3, ALG14, ALG2, ALG3 

antigen 

presentation 
(46) 

4.5E-04 PDIA3, PSMD10, ITGB5, PSMD14, PSMB8, TAPBP, PSMD8, PSMA5, PSMB6, PSMD9, PSMA6, PSMB7, 

PSMB4, PSMA4, PSMB5, PSMD4, PSMA1, PSMB2, PSMC4, PSMD1, CALR, SEC22B, DYNC1I2, SEC13, 

FCER1G, SEC24A, SAR1B, DCTN3, CLTA, KIF23, KIF11, CTSV, KIF22, AP2B1, DYNLL1, AP2A2, 

CENPE, KIF18A, RACGAP1, KIF4A, CANX, KIFAP3, SEC24D, CTSD, SEC31A, ERAP1 

Protein 
biosynthesis 

(13) 

3.1E-03 CARS, YARS, DARS, TARS, SARS, EPRS, AIMP2, PPA2, PPA1, MARS, GARS, IARS, AARS 

Anti 
apoptotic 

process 

(57) 

4.2E-03 AVEN, ARF4, CITED2, APIP, MPO, SH3RF1, MYDGF, HMGN5, CCND2, CASP3, PIM2, ERC1, PRKCI, 

ANXA5, MIF, DNAJC3, HAX1, BIRC5, NAA38, ATF5, GAS6, FXN, LTF, PSMD10, SHC1, GSTP1, NOL3, 

MTDH, FAM129B, HSP90B1, PRDX3, SOCS2, PRDX2, DDRGK1, TAF9B, MCL1, PRELID1, XBP1, NPM1, 

STIL, HSPA5, RHBDD1, PLK1, ASNS, DHCR24, BFAR, PA2G4, CFLAR, VEGFA, GOLPH3, IL2RB, PPT1, 

CDK1, FAS, BCL2L2, MAD2L1, BCL2L1 

(#) Number in brackets indicate total number of enriched genes 
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Table 6-4 | GO Biological Process enrichment of Downregulated Genes in ASCs across species (Microarray) 

Term Adj p-
value 

Gene Symbol 

Phosphorylation (97) 1E-08 GSK3B, GMFB, DYRK2, GMFG, TESK2, ILK, PIK3CD, IKBKB, STK10, PPP4R1, RPS6KA5, AKT3, 

MAP3K8, MAP3K9, JAK2, JAK1, MAP3K5, MAP4K1, MAP4K2, MORC3, SYK, PRKCB, PRKCE, 

DYRK1A, CSNK1D, VRK1, IRAK3, OXSR1, PRKAB1, TGFBR2, BCR, FGR, HCK, ILF3, CREB1, LCK, 

RARA, BMP2K, PRKD2, BIRC6, RAF1, TRIB2, CSNK1G2, PXK, CAMK2D, PRKDC, ROCK2, PIK3R4, 

STK4, ACVR1B, MAPK8, NUAK2, IRAK2, STK38, MKNK2, MAPK1, CSK, FYN, MAP4K5, PAK2, 

MAP4K4, LYN, MAP3K2, CDK19, CSNK1A1, PLK2, BRAF, EIF2AK4, CLK2, SNRK, TAOK3, WNK1, 

STK17A, STK17B, TAOK1, STK26, CDK3, CDK10, ATM, COQ8A, MAP3K12, SMG1, MAST3, PRKX, 

RPS6KA3, GRK2, AKT2, RICTOR, CSNK1G3, CAMK1D, MAPK14, UHMK1, ATR, CDK5R1, ROCK1, 

NCKAP1L, TNF 

response to DNA 
damage (53) 

3E-07 ATF2, MRE11, DYRK2, RIF1, MCM9, PHF1, CIB1, ASH2L, SMC6, YY1, POLB, NIPBL, MYC, 

ZC3H12A, UBE2E2, SIRT1, DDX39A, TIMELESS, WAC, CUL5, BOD1L1, XIAP, ZBTB4, FAAP20, 

TANK, CDKN2AIP, FOXO1, WRN, RBBP6, SUSD6, TP53BP1, APBB1, LYN, PLK3, SLF1, UBE2B, 

NFATC2, USP28, FBXO31, SETX, CUL4A, RAD52, BCL6, APC, TAOK3, CDK3, TAOK1, BCL3, 

SPRTN, BCL2, ATM, TRIP12, ATR 

actin cytoskeleton 

organization (10) 

4E-04 IKBKB, STRIP1, DLG1, FMNL1, ROCK1, ROCK2, NCKAP1L, TNF, RHOQ, ARF6 

RNA processing (80) 4E-04 DDX46, HNRNPU, HNRNPR, YBX1, PNN, SART1, METTL14, PCF11, RSRC1, PAPOLA, RBM5, 

SRRM2, AQR, BUD31, PRPF40A, CDC40, DDX39A, SYF2, SRSF3, SNRNP27, HNRNPH2, HNRNPH3, 

SRSF6, SNRNP200, SLU7, SRSF7, SF1, RBM22, RBM8A, DHX9, WBP4, SNU13, RNPC3, PABPN1, 

FIP1L1, DHX35, TRA2B, TRA2A, SNRPB2, HNRNPA1, SF3B1, SMNDC1, HNRNPA0, ZRSR2, SF3A1, 

CPSF7, FUS, LSM3, U2SURP, LSM8, LSM6, HNRNPD, SNRNP48, HNRNPC, RBMX, RBM39, NUFIP1, 

CELF2, YTHDC2, THOC1, DDX54, RBM3, SETX, RBM4, DHX30, DHX57, DHX36, RBMS1, DDX59, 

DDX27, DDX3X, DDX24, DDX31, DDX21, DDX10, DDX52, DDX19B, AGO4, AGO1, AGO2 

regulation of 
transcription (298) 

5E-04 ATF2, CRTC2, GABPB2, CCNT2, CRTC3, MAML2, CCNH, YEATS4, PRDM2, IKZF1, GABPB1, 

NR3C1, TNF, IKZF3, ETS1, SPIB, RPS6KA3, CHCHD2, RPS6KA5, ZMIZ2, MYC, ZC3H12A, EPC1, 

KAT7, CCNL2, IER5, MEF2A, MED1, LMO2, RFX3, RUNX1, TFAM, PRKD2, PHIP, MAML3, SKAP1, 

CTBP2, KMT2A, PRKDC, NRF1, RLF, FOXO1, DHX36, CAMTA1, TP53BP1, PPARGC1A, BCL9L, 

CREBBP, SMAD4, ECD, NFATC1, INO80, SMARCA2, ELL3, NFKB1, NFKB2, SMAD7, SETX, 

NFKBIA, MLLT10, AHI1, AGO1, AGO2, CAPRIN2, REL, CDK12, CDK13, CIITA, CD40, DDX3X, 

LDB1, PHF20, HMGB1, YBX1, MYSM1, MED17, IRF2BPL, IKBKB, PPP3CA, HHEX, SIN3A, KDM6B, 

RIPK2, TCF12, MKL1, TFEB, SIRT1, SENP1, ZEB2, CREB1, TFDP2, ZNF639, ELF4, MTF1, TET3, 

RARA, HCLS1, IRF8, RHOQ, NFAT5, ZNF350, NUFIP1, SRF, CEBPG, LEF1, NR2C2, RELA, ARNTL, 

RELB, ATAD2B, ZNF746, STAT6, TBL1X, E2F5, BRD4, PCGF5, KLF4, KLF2, USF1, SKI, KLF7, 

CTNNB1, TAF7, CEBPZ, CRLF3, PAXBP1, SSBP2, RBMX, CCDC62, RB1, CREBZF, KDM5C, RSF1, 

CCAR2, ARHGAP35, MECP2, NIPBL, BCL7A, UIMC1, KAT8, LRRFIP1, JARID2, YAF2, TLE1, EED, 

ARID5B, CBFA2T2, FOXP1, EID1, HIC2, ILF3, ZEB1, KAT6A, CRY2, TIMELESS, PPARD, KHDRBS1, 

CIPC, ZBTB4, BCLAF1, BAHD1, INPP5K, ZNF148, ZBTB18, SMARCE1, ATF7IP, UBE2I, MTERF3, 

ZBTB14, SMURF2, NR1D2, WWP2, FOXN3, GATAD2A, BCL6, COPS2, BCL3, RLIM, PDCD4, ID3, 

RBAK, MPHOSPH8, ZNF256, TRIM33, RCOR1, CDK5R1, KDM5A, NCF1, ILK, ING5, LYL1, ZXDC, 

CDK5RAP2, MAP3K5, SMARCC1, ANKRD49, RHOG, AXIN1, MED4, RGMB, PIAS2, ZFP90, PIAS1, 

DNAJC2, PPM1A, ELF2, ZNF516, WAC, ENY2, CASZ1, SP100, KDM3A, BCL10, PSEN1, MED30, 

APBB1, HES5, BPTF, MAP3K2, BRPF1, NFATC2, GDF7, MLLT11, HNRNPD, TAF8, NAA16, TCEA2, 

THOC1, ZNF326, ERCC6, IWS1, ZNF254, TCERG1, RIF1, UBE2D1, DCAF1, YY1, SIN3B, TRPS1, 

WWC3, DACT1, TGIF1, KLF11, KLF12, KDM2B, DICER1, NCOR2, NCOR1, EZR, ZNF675, ZNF431, 

URI1, SATB1, ZNF8, MNT, TPR, FNIP1, IGBP1, PLK3, CBX6, BCL11A, KLF8, DLG1, CNOT2, TAF3, 

KDM5B, GMEB2, ARID4B, CHD4, CHD3, TTF1, CHD2, CHD1, TIAL1, BRD3, PRKCB, BUD31, 

VEZF1, MED26, KAT2A, SLTM, DMTF1, RFX7, CAMK2D, TRAK1, HSPD1, ELMSAN1, SMARCA5, 

ELP2, DEK, MAPK14, TARBP1, MRGBP, SP4, KLF9, BRWD1, NFKBID, BRWD3 

PI biosynthesis (24) 1E-03 ARF1, MTMR3, PLEKHA1, PLEKHA2, MTMR14, PTEN, PIK3R4, PIK3CD, SYNJ2, PIK3C2A, MTM1, 

PIKFYVE, PIK3CA, PITPNM1, INPP5F, INPP5D, PITPNM2, INPP5E, PLCG2, PI4KA, PIP4K2A, 

INPP5K, PIP5K1B, PI4KB 

IKB kinase/NFKB 

signalling (18) 

2E-03 ROCK1, ROCK2, RIPK2, NLRC3, TNF, NFKB1, RELB, NFKB2, IKBKB, NFKBIA, IRAK2, NKIRAS1, 

BCL3, TAB3, TAB2, ZNF675, BIRC2, BIRC3 

Ubiquitination (63) 5E-03 PSMD11, UBE3C, UBE2D2, CUL3, CUL1, UBE2D1, FBXO21, FBXO41, FBXL20, RNF114, RNF139, 

TNKS2, RNF138, RNF19A, ARIH2, RBBP6, LONRF1, FBXW4, MYLIP, FBXW12, WSB1, PPIL2, 

UBE2B, SMURF2, SMURF1, AMFR, SIAH1, HUWE1, FBXO11, FBXL14, RC3H2, RNF41, KLHL42, 

FBXO31, FBXL12, RNF144B, RNF145, MARCH1, ZNF738, RLIM, BCL2, FBXL3, TRIP12, FBXL5, 

DZIP3, RNF166, BIRC2, RNF34, CUL5, RCHY1, CBL, BTBD1, AREL1, HACE1, KLHL2, BTBD9, 

CUL4A, RNF146, ABTB1, KBTBD4, SPOPL, CACUL1, ANAPC1 

Transcription (54) 6E-03 KDM5A, TCERG1, GMEB2, CCNT2, CCNH, ASH2L, YBX1, ARRB2, NR3C1, AFF4, BACH2, TRPS1, 

NELFA, KLF11, TSC22D1, VEZF1, PAX5, ASH1L, MED4, KAT2A, NCOR1, ZNF516, ZNF831, TMF1, 

KMT2A, RNMT, SRF, LEF1, DTX1, DDX21, TAF5L, IWS1, MNT, TAF1C, TAF1A, HIVEP2, ZNF148, 

BTF3, ZNF141, ECD, TAF11, NFATC1, DEK, KLF4, ELL3, NFKB1, USF1, FUBP1, COPS2, TAF7, 

CEBPZ, ERCC6, RBMX, TAF3 

focal adhesion 
assembly (8) 

6E-03 MACF1, SLK, ROCK1, LDB1, ROCK2, PTK2, GPM6B, CLASP1 

small GTPase 

regulation (32) 

7E-03 ARHGAP9, TRIO, ARHGAP17, ARHGAP15, ARHGAP5, ARHGAP35, ARHGAP12, ARHGAP4, FGD3, 

CDC42, GNA13, AKAP13, ARHGDIB, TAGAP, SRGAP2, ARAP2, RHOG, RHOH, MYO9B, RHOF, 

ARHGAP26, GMIP, ARHGAP25, MYO9A, ARHGAP24, ARHGAP45, VAV2, BCR, ARHGEF1, 

ARHGEF7, SOS2, RHOQ 
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Table 6-5 | GO Cellular Component enrichment of Upregulated Genes in ASCs across species (Microarray) 

Term Adj  

p-value 

Gene Symbol 

endoplasmic 
reticulum (260) 

4E-25 ERO1A, DPAGT1, VKORC1L1, KDELR1, PLOD3, PLOD1, TM7SF2, FADS2, NSDHL, TMEM147, SLC39A7, 

SEC62, FADS1, SEC63, ALG8, ALG9, ALG5, ALG2, ALG14, ALG3, MOGS, ACSL4, ALG11, ATG13, PDIA6, 

PDIA5, DHDDS, ERN1, SELENON, SELENOS, TMX1, PREB, KDELR2, KDELR3, ATF6, RNF121, COPB2, 

RTN3, COPA, VCP, TMED10, RETSAT, RPN2, ABHD4, LMAN2L, SAR1B, INSIG2, RPN1, SEL1L, MGST2, 

TMTC2, HTRA2, MTDH, HSP90B1, APOO, PORCN, EBP, DDRGK1, HMOX1, SSR1, MLEC, KDSR, 

SEC31A, NUS1, SDF2L1, HSPA5, WFS1, RHBDD1, SRD5A3, SURF4, ERLIN1, DHCR24, DOLK, TMEM110, 

EXT1, NCEH1, GGCX, CDK1, STT3A, DHCR7, COPE, PIGU, PIGT, PIGN, GPAA1, TECR, ATP2A2, MIA3, 

IER3IP1, HERPUD1, SEC61A1, SERP1, SEC61G, TMED3, TMED2, SEC61B, SDF2, TMED7, TMED9, 

SEC13, COPZ2, ELOVL6, LSS, COPZ1, TAPBP, TMEM33, DAD1, CANX, RFT1, PIGK, PIGM, SEC22B, 

PIGF, MGLL, ATF6B, HM13, GOSR2, STX18, DERL1, FITM2, SELENOK, AGPAT1, LMF1, LMAN1, 

EXTL2, ASNA1, DNAJB9, CD59, SPTSSA, CDIPT, LNPK, APOL2, SEC11C, SEC24A, GALNT2, SYVN1, 

DHRS3, YIF1A, ARCN1, DHRS4, YIF1B, RAB10, ERP44, SPCS2, CD4, SPCS1, DHRS9, SCD, DOLPP1, 

COPG1, SEC24D, LPIN1, GOLT1B, TXNDC11, APMAP, CREB3L2, CAPN2, SIL1, PDIA3, MAP2K2, 

ENTPD5, DNAJB12, P3H1, CNPY2, TEX2, MR1, PDIA4, CPED1, TPST2, MINPP1, TMEM258, DNAJB11, 

PPIB, CES2, LRPAP1, LRRC59, FKBP2, ABCB6, HACD3, GIGYF2, EDEM3, NDFIP2, XBP1, CRTAP, 

VCAM1, EDEM2, BFAR, TOR1B, TMEM230, MANF, CCDC88A, EHD4, TBL2, CALU, EBPL, PSMG1, 

ACO1, CALR, STT3B, CPEB4, CD320, TRAM1, CCDC47, UFSP2, MAGT1, MAN1A2, UFD1, TMED1, 

IKBIP, PSENEN, JAGN1, SSR2, SIGMAR1, GPX7, CKAP4, DNAJC3, CREB3, DNAJC1, RCN1, HAX1, 

TMEM214, PEX3, GRN, ATL3, USO1, RRBP1, CLN6, CLN5, PGRMC1, FAM213B, SRP72, ORMDL2, 

ORMDL3, EMC2, MAN1C1, STOM, AGA, YKT6, SEC23B, UGGT1, TMEM30A, ERAP1, YIPF5, SRP68, 

DHRS1, TMCO1, VMP1, YIPF6, STUB1, P4HB, PTPN2, SLC35B3, SLC35B1, DERL3, TEX261, ZMPSTE24, 

BSCL2, OST4, KRTCAP2, OSTC 

Mitochondria 

(240) 

5E-20 DHFR2, ECI2, NUDT1, CISD1, GLS, GCSH, NFU1, BSG, VPS35, EARS2, MCCC2, CPT1A, STARD5, CMC2, 

SLC11A2, ATG13, CLPX, NIF3L1, MTHFD2, SCO2, CLPP, BOLA3, FDX1, UQCRC1, AURKAIP1, 

ALDH7A1, PIF1, GCDH, ABCB6, MRPL18, ATP5J, MRPL15, ATP5H, HACD3, PRDX3, MRPL20, APOO, 

NTHL1, PCK2, PRELID1, NDFIP2, APOOL, XRCC3, RMDN3, PYCR1, PYCR2, NDUFAF8, NDUFAF4, 

NDUFAF2, ALDH18A1, AARS, MRPS15, CLIC4, FEN1, FASTKD1, SLC44A1, MRPS11, MRPL36, MRPL37, 

IDE, MRPL42, MAP1LC3B, HINT2, AIFM1, AUH, AIFM2, ACADM, DLGAP5, ATPIF1, SIRT4, MRPS2, 

USMG5, MRPS5, UCHL5, IMMP1L, ALDH5A1, NME6, PTRH2, SDHAF1, PTRH1, ECHS1, GSTP1, MRPS34, 

IFI6, MRPL58, MALSU1, NOL3, TYMS, TMEM70, SAMM50, PDF, BRD8, YKT6, WWOX, TIMMDC1, 

MDH1, MDH2, MTX2, DHRS4, NUDT9, GATM, NDUFAB1, PNPLA4, FAS, MTCH2, ACAA2, NDUFA11, 

NDUFA12, CPOX, COX6A1, ALDH1L2, PYCARD, CHCHD1, MAP2K2, SDHC, LIG3, SDHD, TRNT1, 

ATP5J2, HTRA2, AK3, ACAT1, BCL2L13, NACC2, NDUFV3, MCL1, DNAJC19, PDHA1, GOT1, UQCC2, 

GOT2, IDH2, COQ9, CRLS1, COQ3, SCCPDH, UQCRQ, CDK1, CYCS, ACO1, ACO2, MXD1, BCL2L1, 

ALAS1, ETFA, ATP5G1, DHTKD1, NADK2, OPA3, ME2, COA7, TSFM, NDUFC2, GLRX2, REXO2, MUT, 

SMDT1, HAX1, NDUFS8, PKM, NDUFS5, DNAJC5, PCCB, NDUFS4, MTFR1, BCAT1, SLC25A11, FXN, 

BCAT2, NDUFB9, NDUFB7, NDUFB6, NAXE, POLDIP2, NDUFB5, NDUFB1, PDHB, MFF, HSD17B10, 

FOXRED1, C6ORF203, STOM, SLC25A20, SLC25A23, NDUFA9, NDUFA8, NDUFA3, NDUFA1, GSTZ1, 

BCKDK, PNKD, GOLPH3, RAD51, MRPS14, MRPS12, MRPL34, MRPL35, MRPL4, MRPL40, TIMM17B, 

TIMM29, MRPS24, MRPS18A, MRPL48, MRPS18C, MRPL53, MRPL50, MRPL51, MTFP1, NDUFB11, 

NDUFB3, MRPL17, UQCR10, MRPL13, COX5A, MRPL57, TMEM65, SQOR, NDUFA2, MRPL27, 

NDUFAF1, SLC25A35, HIBADH, NUDT2, ETFB, TFB1M, MCEE, HIBCH, GPT2, BTD, PPA2, NDUFS7, 

LACTB2, GARS, RNASEL, ACSS2, FECH, ETFDH, CCNB1, CBR4 

ER/Golgi 

intermediate 
(45) 

3E-10 COPB2, COPA, TMED10, KDELR1, USO1, GOLIM4, RABEPK, TMEM187, GOLGA5, TMED3, TMED2, 

CD59, AP3S1, TMED7, YKT6, TMED9, YIPF2, YIPF3, CAV2, SURF4, M6PR, COPZ2, COPZ1, ARCN1, 

TRIP11, KDELR2, KDELR3, COPG1, SEC22B, COPE, LRPAP1, HSPA5, PDIA6, YIF1A, YIF1B, LMAN1, 

ERP44, SEC23IP, LMAN2, NUCB1, TMED1, P4HB, UGGT1, TMED5, PTPN2 

Golgi apparatus 
(164) 

4E-08 GOLIM4, PLOD3, MANEA, HID1, GOLGA3, GOLGA4, GOLGA5, CAPN2, UNC13B, RAB2A, SLC30A7, 

SLC30A6, MAP2K2, AKR1E2, F2R, FNDC3A, ESCO2, LAX1, SCAMP2, TPST2, PREPL, KDELR2, ATF6, 

LRPAP1, PARM1, TMED10, ABCB6, FAM114A1, LMAN2L, ARL3, GLT8D1, ARL1, SLC38A10, GIGYF2, 

GLG1, ARHGAP21, FUT8, MYO6, NDFIP2, YES1, VCAM1, ATP8B2, SLC35E1, CAV2, PTCH1, RAB39B, 

CDC6, EXT1, ACER2, BST2, CCDC88A, B4GAT1, PPT1, IFT27, PSMG1, ACO1, ITM2B, COPE, TP73, 

ITM2C, DPY30, IER3IP1, LITAF, BICD1, MAN1A2, TRIM68, TMED3, TMED2, SDF4, TMED1, TMED7, 

PSENEN, TMED9, SLC39A11, PPHLN1, ARFGAP3, BET1L, PLSCR1, B3GNT9, CTTN, TMEM214, RER1, 

GORASP2, IMPAD1, TMEM5, SLC29A3, LEPROT, ATF6B, GOSR2, USO1, NOD2, SELENOK, CLCN3, 

TM9SF4, TMEM165, CLN5, LMAN2, CDIPT, YKT6, SEC23B, WWOX, YIPF2, YIPF3, GALNT2, QPCTL, 

YIPF5, PDE4DIP, PLEKHA8, RAB10, ATAT1, SEC23IP, GOLPH3, GLB1, TRIP11, COPG1, GLA, SLC35B3, 

CHPF, KDELR1, HS2ST1, NDST1, C1GALT1C1, BSG, PMEPA1, ST6GAL1, COG6, ENTPD4, CHPF2, 

GOLPH3L, COPZ2, NOSIP, WIPI1, COPZ1, TAPBP, CREB3, KDELR3, SEC22B, ST6GALNAC4, RNF121, 

ST6GALNAC6, COPB2, COPA, APOO, CHST11, CHST12, MAN2A1, DSEL, ST8SIA4, MGAT3, MAN1C1, 

CD59, MGAT1, ST3GAL2, B3GAT2, SURF4, SLC33A1, B3GALT6, ARCN1, C6ORF89, SLC35B1, TEX261, 

YIF1A, YIF1B, UNC50 

Proteasome 

(18) 

3E-05 PSMD10, VCP, PSMD14, PSMB8, PSMD8, PSMB6, PSMA5, PSMB7, PSMA6, PSMB4, PSMB5, PSMA4, 

PSMD4, PSMB2, PSMA1, PSMC4, PSMD1, PAAF1 

chromosome/mi
totic spindle 

(37) 

1E-04 SPAG5, ARL3, PLK1, KIF11, SKA3, SKA1, AURKB, AURKA, SKA2, TBL1XR1, KIF4A, CDK1, KIFAP3, 

CENPE, CENPF, BUB1B, CDT1, SEC13, CENPW, ANAPC16, KIF22, DYNLL1, KNSTRN, CENPI, 

TRAPPC12, NEK2, NUP43, BUB1, MAD2L1, CKAP2L, KIF23, CDC14B, ATAT1, TPX2, RACGAP1, ESPL1, 

ECT2 

secretory 

granule (44) 

3E-03 VAT1, VCP, GRN, ANXA2, FUCA1, FUCA2, GGH, PA2G4, MPO, PRDX6, PYCARD, DNAJC3, NPC2, 

GLB1, IMPDH1, NAPRT, CREG1, PSMD1, AGA, GUSB, GLA, ARSB, CSTB, PSMD14, MVP, GSTP1, FGL2, 
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ALAD, PSMB7, PNP, PRDX4, TIMP2, GYG1, ATG7, CTSD, PGM1, CTSB, HSPA8, COMMD3, MIF, DERA, 

PSMA5, PKM, CSNK2B 
 

Table 6-6 | GO Cellular Component enrichment of Downregulated Genes in ASCs across species (Microarray) 

Term p-value Gene Symbol 

nucleus 

(245) 

3E-05 DAZAP2, RBM25, DDX46, PHF7, PNN, RBM4, SART1, DUSP10, RSRC1, POLI, SRRM2, PNISR, BNIP3L, TCF12, 

THOC1, DYRK1A, PRPF40A, PPP4R3B, REXO4, UHMK1, ATXN2L, DDX39A, SYF2, KAT6A, CRY2, BMP2K, 

SRSF3, LUC7L3, FAM76B, NCBP3, MAML3, PPIG, SRSF6, RAF1, CBLL1, SLU7, SRSF8, FYTTD1, AP5Z1, 

RBM8A, YTHDC1, WBP4, OSGEP, TAF5L, BCLAF1, WRN, LPXN, SNRPB2, SF3B1, RBM39, SF3A1, CPSF6, 

SMURF2, WTAP, CSNK1A1, PUM1, MAPK14, SON, STK17A, APEX1, SPRTN, ACIN1, TRIP12, CDK12, CDK13, 

GORAB, HNRNPR, IKZF1, TTF1, PWP1, RPS19, MYC, OSBP, KAT7, MAF1, RPS10, MED1, NOM1, AGTPBP1, 

SCAF11, DIMT1, NGDN, CIRBP, WDR75, DNTTIP2, VRK1, SDHA, FBXO11, MIF4GD, THAP2, ILF3, NEIL2, 

SLBP, ZCCHC7, L3MBTL3, DHX9, SNU13, CDKN2AIP, FXR1, ATXN3, EMG1, CAMTA1, BRIX1, MDN1, 

SPTBN1, ZC3H15, BCL9L, PLK3, ZBTB14, PNO1, IQSEC1, NUP153, TBCA, ELL3, PUM3, MOB1B, ABTB1, 

RPS25, DIAPH2, GNL3L, UBLCP1, PLEKHM1, NOL11, BRWD1, SETD4, PHF2, ZCCHC11, CHD3, KRI1, CHD2, 

RBM3, XPO1, AKAP11, XPO6, RBM34, UTP15, DDX54, AEN, URB1, TERF1, SIRT1, ZFX, SEPT2, RBL2, ZEB2, 

PPM1B, RCN2, SDHAF2, KDM7A, NUFIP1, DDX27, DDX24, NIP7, RPL11, HEATR1, DDX21, CAPG, MALT1, 

RELA, PNMA1, TAF1C, ZNF506, SAP30L, ATXN1L, MKNK2, TRA2A, RPL18, ZNF346, E2F5, SUZ12, PCGF5, 

CRIPT, DDX31, YY1AP1, NIN, CDKN2AIPNL, BMT2, TTC3, PTPN6, CIAPIN1, ERCC6, NOP53, MPHOSPH8, 

RB1, CIITA, MORC3, SP100, MRE11, UBE2I, SATB1, SMC6, SENP2, PIAS2, PIAS1, KLHL20, SKI, ZMYM2, 

ELF4, SUMO2, EIF3E, ATR, RIF1, ICE2, TESK2, TCF20, AFF3, CDC14A, CAPN7, PAPOLG, UIMC1, SH3BGRL3, 

NELFA, RAB8B, KLF11, USP7, TERF2, NCOR2, ELF2, SLTM, KCTD13, GEMIN4, ZNF350, RNF34, DTX1, STK4, 

ZBTB4, FAAP20, ADD1, PCNP, TP53BP1, BANP, TOE1, ATF7IP, CREBBP, NFATC1, INO80, USP28, POU6F1, 

CLK2, SETX, GON4L, AGO4, FBXL3, RETREG1, SUGP2 

cytoplasm 

(12) 

4E-03 NFKBIA, REL, RELA, NFKB1, RELB, GSK3B, APC, CSNK1A1, SIAH1, AXIN1, CTNNB1, DACT1 

 

 

Table 6-7 | Differentially upregulated genes that are known/ predicted to localise to ER, Golgi, proteasome and 

secretory granules. Includes genes enriched for ER stress response, anti apoptotic processes, membrane 

trafficking, glycosylation, and antigen presentation as indicated by GO enrichment analysis. 

Gene Symbol (Total 534) 

ERO1A, DPAGT1, VKORC1L1, KDELR1, PLOD3, PLOD1, TM7SF2, FADS2, NSDHL, TMEM147, SLC39A7, SEC62, FADS1, 

SEC63, ALG8, ALG9, ALG5, ALG2, ALG14, ALG3, MOGS, ACSL4, ALG11, ATG13, PDIA6, PDIA5, DHDDS, ERN1, SELENON, 

SELENOS, TMX1, PREB, KDELR2, KDELR3, ATF6, RNF121, COPB2, RTN3, COPA, VCP, TMED10, RETSAT, RPN2, ABHD4, 
LMAN2L, SAR1B, INSIG2, RPN1, SEL1L, MGST2, TMTC2, HTRA2, MTDH, HSP90B1, APOO, PORCN, EBP, DDRGK1, HMOX1, 

SSR1, MLEC, KDSR, SEC31A, NUS1, SDF2L1, HSPA5, WFS1, RHBDD1, SRD5A3, SURF4, ERLIN1, DHCR24, DOLK, TMEM110, 

EXT1, NCEH1, GGCX, CDK1, STT3A, DHCR7, COPE, PIGU, PIGT, PIGN, GPAA1, TECR, ATP2A2, MIA3, IER3IP1, HERPUD1, 
SEC61A1, SERP1, SEC61G, TMED3, TMED2, SEC61B, SDF2, TMED7, TMED9, SEC13, COPZ2, ELOVL6, LSS, COPZ1, TAPBP, 

TMEM33, DAD1, CANX, RFT1, PIGK, PIGM, SEC22B, PIGF, MGLL, ATF6B, HM13, GOSR2, STX18, DERL1, FITM2, SELENOK, 

AGPAT1, LMF1, LMAN1, EXTL2, ASNA1, DNAJB9, CD59, SPTSSA, CDIPT, LNPK, APOL2, SEC11C, SEC24A, GALNT2, SYVN1, 
DHRS3, YIF1A, ARCN1, DHRS4, YIF1B, RAB10, ERP44, SPCS2, CD4, SPCS1, DHRS9, SCD, DOLPP1, COPG1, SEC24D, LPIN1, 

GOLT1B, TXNDC11, APMAP, CREB3L2, CAPN2, SIL1, PDIA3, MAP2K2, ENTPD5, DNAJB12, P3H1, CNPY2, TEX2, MR1, PDIA4, 

CPED1, TPST2, MINPP1, TMEM258, DNAJB11, PPIB, CES2, LRPAP1, LRRC59, FKBP2, ABCB6, HACD3, GIGYF2, EDEM3, 
NDFIP2, XBP1, CRTAP, VCAM1, EDEM2, BFAR, TOR1B, TMEM230, MANF, CCDC88A, EHD4, TBL2, CALU, EBPL, PSMG1, 

ACO1, CALR, STT3B, CPEB4, CD320, TRAM1, CCDC47, UFSP2, MAGT1, MAN1A2, UFD1, TMED1, IKBIP, PSENEN, JAGN1, 

SSR2, SIGMAR1, GPX7, CKAP4, DNAJC3, CREB3, DNAJC1, RCN1, HAX1, TMEM214, PEX3, GRN, ATL3, USO1, RRBP1, CLN6, 
CLN5, PGRMC1, FAM213B, SRP72, ORMDL2, ORMDL3, EMC2, MAN1C1, STOM, AGA, YKT6, SEC23B, UGGT1, TMEM30A, 

ERAP1, YIPF5, SRP68, DHRS1, TMCO1, VMP1, YIPF6, STUB1, P4HB, PTPN2, SLC35B3, SLC35B1, DERL3, TEX261, ZMPSTE24, 

BSCL2, OST4, KRTCAP2, OSTC, GOLIM4, RABEPK, TMEM187, GOLGA5, AP3S1, YIPF2, YIPF3, CAV2, M6PR, TRIP11, SEC23IP, 
LMAN2, NUCB1, TMED5, MANEA, HID1, GOLGA3, GOLGA4, UNC13B, RAB2A, SLC30A7, SLC30A6, AKR1E2, F2R, FNDC3A, 

ESCO2, LAX1, SCAMP2, PREPL, PARM1, FAM114A1, ARL3, GLT8D1, ARL1, SLC38A10, GLG1, ARHGAP21, FUT8, MYO6, 

YES1, ATP8B2, SLC35E1, PTCH1, RAB39B, CDC6, ACER2, BST2, B4GAT1, PPT1, IFT27, ITM2B, TP73, ITM2C, DPY30, LITAF, 
BICD1, TRIM68, SDF4, SLC39A11, PPHLN1, ARFGAP3, BET1L, PLSCR1, B3GNT9, CTTN, RER1, GORASP2, IMPAD1, TMEM5, 

SLC29A3, LEPROT, NOD2, CLCN3, TM9SF4, TMEM165, WWOX, QPCTL, PDE4DIP, PLEKHA8, ATAT1, GOLPH3, GLB1, GLA, 

CHPF, HS2ST1, NDST1, C1GALT1C1, BSG, PMEPA1, ST6GAL1, COG6, ENTPD4, CHPF2, GOLPH3L, NOSIP, WIPI1, 
ST6GALNAC4, ST6GALNAC6, CHST11, CHST12, MAN2A1, DSEL, ST8SIA4, MGAT3, MGAT1, ST3GAL2, B3GAT2, SLC33A1, 

B3GALT6, C6ORF89, UNC50, PSMD10, PSMD14, PSMB8, PSMD8, PSMB6, PSMA5, PSMB7, PSMA6, PSMB4, PSMB5, PSMA4, 

PSMD4, PSMB2, PSMA1, PSMC4, PSMD1, PAAF1, VAT1, ANXA2, FUCA1, FUCA2, GGH, PA2G4, MPO, PRDX6, PYCARD, NPC2, 
IMPDH1, NAPRT, CREG1, GUSB, ARSB, CSTB, MVP, GSTP1, FGL2, ALAD, PNP, PRDX4, TIMP2, GYG1, ATG7, CTSD, PGM1, 

CTSB, HSPA8, COMMD3, MIF, DERA, PKM, CSNK2B, FKBP14, SHC1, MYDGF, LMNA, GFPT1, ARFGAP1, CTDSP2, BHLHA15, 
CTH, CEBPB, UBA5, FAM129A, FLOT1, TRIB3, UBE2J1, ERLEC1, JKAMP, FBXO6, ANAPC16, BUB1B, TNFAIP1, PSMD9, 

RNF115, UCHL1, CDC23, HECTD3, CDC26, SPOP, GTSE1, UBE2C, CDC34, GID4, TBL1XR1, RNF181, CLOCK, RNF187, 

MAD2L1, TRIM25, UBE2M, TNFRSF13B, TRADD, FOXO3, TXNDC17, TNFSF13B, TNFRSF17, CDIP1, LIMS1, GPX3, TXNL1, 
NUDT2, PYCR1, PYCR2, PRDX3, PRDX2, PRDX1, SESN2, CYCS, CPEB2, NUDT14, PGM3, PQLC3, ITGB5, DYNC1I2, FCER1G, 

DCTN3, CLTA, KIF23, KIF11, CTSV, KIF22, AP2B1, DYNLL1, AP2A2, CENPE, KIF18A, RACGAP1, KIF4A, KIFAP3, AVEN, 

ARF4, CITED2, APIP, SH3RF1, HMGN5, CCND2, CASP3, PIM2, ERC1, PRKCI, ANXA5, BIRC5, NAA38, ATF5, GAS6, FXN, LTF, 
NOL3, FAM129B, SOCS2, TAF9B, MCL1, PRELID1, NPM1, STIL, PLK1, ASNS, CFLAR, VEGFA, IL2RB, FAS, BCL2L2, BCL2L1 
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Table 6-8 | Tables shows differentially upregulated genes in ASCs that are known to be upregulated as a result 

of TF overexpression/induction/gain of function mutation. 

Transcription 
Factor 

Adj p-
value 

Desired Genes (Upregulated) Other genes (Upregulated) 

XBP1 

Overexpression 
7E-49 ERO1A; SLC35B1; TXNDC17; PNP; SLC39A7; 

PDIA3; MOGS; PDIA6; PDIA5; PDIA4; 

SELENOS; DNAJB11; PREB; KDELR3; PPIB; 

LRRC59; COPB2; FKBP2; COPA; VCP; RPN2; 

PSMD14; UBA5; RPN1; SLC38A10; ZMPSTE24; 

HSP90B1; EBP; MAN2A1; HMOX1; SSR1; 
EDEM3; SDF2L1; HSPA5; WFS1; SURF4; 

EDEM2; PRDX6; MANF; OSTC; CALU; STT3A; 

RNF181; CALR; COPE; ITM2C; ARF4; MIA3; 

MAGT1; HERPUD1; SEC61A1; SERP1; SEC61G; 

TMED3; TMED2; SEC61B; SDF2; PSENEN; 

TMED9; SSR2; DYNLL1; ARFGAP3; PSMA5; 

DNAJC3; HAX1; GORASP2; DAD1; GSTP1; 

USO1; DERL1; RRBP1; SELENOK; LMAN1; 
LMAN2; DNAJB9; CDIPT; SEC23B; SEC11C; 

YIPF5; SYVN1; SRP68; YIF1A; ERP44; SPCS2; 

SPCS1; NUCB1; P4HB; SEC24D; FAM129B; 

KDELR1; CITED2; CCND2; AP3S1; CTSD; 

CTSB; FCER1G; ANXA5; PKM; NPC2; LTF; 

GRN; CEBPB; PRDX1; CREG1; PRELID1; XBP1; 

VCAM1; IL2RB; ITM2B; TM7SF2; BSG; KIFAP3; 
PGM1; KIF22; TBL1XR1; RTN3; TM9SF4; 

PGRMC1; SPOP; TMEM230; PPT1; COPG1 

LGALSL; HDLBP; MT2A; IER3; ARMCX3; 

SELENOM; NUPR1; NFXL1; ISG20; GPR180; 

CLPTM1L; NOP10; CCDC127; MRPS12; SSR4; 

SSR3; NME1; CRELD2; BCAT1; ALDH9A1; 

SELENOF; GLRX; SLC3A2; TM9SF3; SRM; 

TCEAL8; TMEM208; RABAC1; EMC7; AAMP; 
TCEAL9; SLC16A1; RRM2; TMEM176B; NDUFA1; 

ATOX1; CDK2AP2; FAM98A; LGALS3BP; IGHM; 

IFITM1; COX6A1; JCHAIN; SPN; IGHG1; LGALS1; 

MRC1; ATP6AP2; AKR1A1; TALDO1; TOX2; 

S100A9; HIST1H2BC; C1QB; SELPLG; POMP; 

ABRACL; COX7A2; OAZ1; COX5A; NDUFV3; 

CYB5A; NDFIP1; MDH2; NDUFA2; DNAJC15; 

DAP; RNF149; CD28; RGS10; MSRB1; GRINA; 
NRP1; PLEKHF1; QPRT; SRP54; GPHN; DTWD1; 

DEPTOR; IMPA2; BASP1; NMRK1; ARFIP2; TNS3; 

MITF; ACYP2; HDHD3; GNL3; SLC7A5; 

HIST1H2BE; LAP3; HIST1H2BG; NUP62CL; 

SLC26A2; CLDND1; ETFDH; PRCP; GPNMB; 

UAP1L1; TAF12; FAH; BSPRY; TM9SF2; PSAT1; 

GALK2 

ATF6 

Induction 
1E-11 ERO1A; HERPUD1; RNF115; TMED2; GYG1; 

RAB2A; PDIA3; ANXA5; PDIA6; PDIA4; PSMA5; 

DNAJC3; PSMA4; CANX; DNAJB11; GRN; VCP; 

PSMD14; SAR1B; ARL1; HSP90B1; PRDX3; 

APOO; PSMB4; PRDX1; EMC2; DNAJB9; 

SPTSSA; HSPA8; NPM1; HSPA5; MANF; EHD4; 

CALU; CYCS 

ETFA; GCSH; MT2A; LAMP2; VPS35; ACADM; 

IER3; HIST1H1C; GSTO1; SSR3; NEAT1; IMMP1L; 

PPA1; SUB1; HIST1H2BC; PCNA; NDUFB6; POMP; 

NDUFB3; RPS27L; SELENOF; PDHB; MFF; OAZ1; 

TMEM70; ACAT1; RAP1A; PDLIM5; MCTS1; 

CYB5A; NDFIP1; PDHA1; MDH1; GOT1; MTX2; 

DSTN; EIF2S2; AZIN1; CCT6A; QDPR; RCAN1 

POU2AF1  
Overexpression 

8E-09 PNP; SERP1; HMGN5; PSMA5; PSMA6; 
PSMD14; PSMB6; SOCS2; PGRMC1; PSMB4; 

XBP1; NPM1; SYVN1; DHRS3; PSMC4; PQLC3; 

CDK1; MAD2L1; RNF187 

IFITM1; NCAPG2; HMGB3; MKI67; GCSH; PBK; 
BLNK; PHGDH; FBXO5; CHCHD1; CPT1A; 

GAS2L3; RFC4; GNL3; CCNA2; CCNE2; MZB1; 

CKS2; KIF20A; LXN; PCNA; NDUFB6; UHRF1; 

CDCA5; MRPL18; CDCA8; COX7A2; TYMS; 

FAM117A; SRM; CCNB2; CCNB1; MAT2A; E2F2; 

CCT7; QSER1; SLC16A1; RRM2; MDH2; SHCBP1; 

CCT6A; POU2AF1; ADA 
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Table 6-9 | TF co-expression results for genes differentially upregulated genes in ASCs (cont.) 

Transcription 

Factor 

EnrichR 

Adj p-
value 

Genes of Interest Others 

TCF19 8E-12 KIF11; KIF23; KIF22; PKM; LRRC59; 

RACGAP1; YKT6; PRELID1; CDC6; PA2G4; 

KIF4A; CALR 

FEN1; CSE1L; NCAPG2; MCM10; MRPL37; MKI67; 

FOXM1; IPO4; LMNB1; EXO1; MYBL2; TK1; CEP55; 

CCT3; PRMT1; IFRD2; CAD; TUBG1; SND1; CDC25A; 

CCNA2; MELK; SAPCD2; ESPL1; TMEM106C; KIF20A; 

TTLL12; MCM6; GART; DTL; PCNA; RNASEH2A; 

CDCA5; NCAPG; TYMS; SLC7A1; NCAPH; UNG; SRM; 

RECQL4; GANAB; CDC45; POC1A; RAD54L; CCT7; 

CTNNAL1; PLK4; CDT1; CENPU; CDKN2C; RRM2; 
SPAG5; HMGA1; RRP1B; SHCBP1; ZWINT; TPX2; 

ANLN; RAD51; CARM1; NCAPD2; CLPTM1L; EIF3C 

CREB3L2 1E-16 TRAM1; CHPF; KDELR1; PLOD3; PLOD1; 

GOLGA3; NDST1; SEC61A1; TIMP2; CAPN2; 

SLC39A7; PDIA3; CKAP4; PDIA4; TMEM214; 

GORASP2; IMPAD1; CTDSP2; CANX; 

KDELR2; KDELR3; COPA; FAM114A1; SHC1; 

SEL1L; TEX261; RRBP1; TM9SF4; FAM129B; 

HSP90B1; LMAN1; MLEC; SSR1; CD59; 

UGGT1; SEC31A; CRTAP; SEC24A; HSPA5; 
WFS1; GALNT2; SURF4; SYVN1; ARCN1; 

EXT1; CALU; CALR; COPG1; P4HB 

ITGB1; CLIC4; RAPH1; HDLBP; LAMC1; TRAM2; 

ALDH1L2; AFF1; TNS3; C11ORF24; ARHGEF12; 

ZBTB38; SSR3; FNDC3B; SLC39A14; SND1; PCYOX1; 

H6PD; EPAS1; ABHD2; SLC7A1; TM9SF3; ITPRIPL2; 

LIMA1; GANAB; PRRC1; PGRMC2; TMEM184B; 

ATP2B4; ELL2; DAP; CPD; ASXL2; PLXNB2; 

ALDH18A1; NFE2L1 

RAD51 3E-27 BUB1B; ESCO2; PSMD14; PRDX1; UBE2C; 

PLK1; CDC6; PA2G4; KIF4A; PSMG1; KIF11; 

KIF23; KIF22; PSMA6; PSMA4; BIRC5; 

PSMB6; PSMB2; NPM1; MAD2L1 

CSE1L; GMNN; NUDT1; TMEM97; UBE2L3; SMC2; 

CHEK1; RUVBL1; NUSAP1; BANF1; OIP5; FBXO5; 

CDC25A; MELK; CCNE2; CCNE1; CDCA2; RNASEH2A; 

CDCA3; CDCA5; NCAPG; CDCA8; SKA3; MRPL13; 

NCAPH; CCNB1; EIF4EBP1; LYAR; PLK4; YARS; CDT1; 

FAM136A; ZWINT; TPX2; DIAPH3; UBE2T; PAK1IP1; 

NCAPG2; MCM10; MRPL37; BRCA1; ATP5G1; CKS1B; 

EXO1; NUF2; PBK; MYBL2; TK1; TCF19; CCT3; TSFM; 
RFC3; RFC4; ACTL6A; NME1; HAUS1; CCNA2; MCM6; 

GART; DTL; DTYMK; PCNA; PRIM1; TYMS; AURKB; 

UNG; PSMC3IP; HIRIP3; CDC45; POC1A; RAD54L; 

CCT7; BUB1; GINS1; CENPU; GINS2; PPIL1; RRM2; 

SPAG5; SHCBP1; AUNIP; SPC24; CDKN3 

CREB3 3E-18 ARF4; CLTA; PSMD8; MYDGF; SEC61A1; 

NSDHL; TMEM147; TMED3; TMED2; 

PSENEN; RAB2A; SEC13; ANXA2; ANXA5; 

COPZ1; BSCL2; GORASP2; DAD1; CSNK2B; 

KDELR2; KDELR3; COPB2; FKBP2; COPA; 
FAM114A1; HM13; GOSR2; DCTN3; ARL1; 

PSMB6; PSMB7; ASNA1; SEC23B; SEC31A; 

PRELID1; YIPF3; YIPF5; YIF1A; TMCO1; 

ATAT1; PSMC4; CALU; CYCS; COPG1; COPE 

SRP54; DUSP14; RABGEF1; TRMT112; LGALS1; 

MRPL40; GUK1; PPME1; ARFIP2; NANS; PELO; 

C11ORF24; GLRX3; SARS; FTSJ1; NDUFS8; TMX2; 

AKIP1; AURKAIP1; ERGIC3; PHPT1; PAFAH1B3; CUTA; 

MAGEH1; CD63; MAGED1; TULP3; SLC3A2; MFF; 
PLD3; TMEM205; EMC4; RABAC1; EMC7; ATP6V1D; 

AAMP; POLR2L; MDH1; SLC31A1; RMDN3; DSTN; 

MARS; MAGED2 

MYBL2 1E-07 BUB1B; KIF11; KIF22; CLN6; RACGAP1; 

PRELID1; PLK1; PYCR1; CDC6; PA2G4; 

KIF4A; UBE2M 

FEN1; CSE1L; NCAPG2; MRPL37; MKI67; FOXM1; IPO4; 

LMNB1; MRPL4; EXO1; PHGDH; TCF19; CCT3; PRMT1; 

CAD; MRPS2; SND1; CDC25A; CCNA2; SAPCD2; ESPL1; 

KIFC1; KIF20A; TTLL12; MCM6; RABL6; PCNA; 

CDCA5; NCAPG; TYMS; NCAPH; AURKB; UNG; SRM; 

RECQL4; GANAB; CDC45; NT5DC2; RAD54L; CCT7; 
BUB1; YARS; CDT1; RRM2; SPAG5; RRP1B; ZWINT; 

TPX2; CARM1; NCAPD2; CLPTM1L; EIF3C; AARS 

RIOK2 5E-04 GOLT1B; MAGT1; IER3IP1; SLC30A7; ALG8; 
PSMA5; PSMA4; PSMA1; TMX1; PSMD14; 

PRDX3; PSMB6; PSMB5; NPM1; TXNL1; 

SPCS1; OSTC; MAD2L1 

SUV39H2; PAK1IP1; CSE1L; GMNN; THYN1; CCNC; 
EPRS; MRPL42; NUDCD1; PPAT; USP46; ACTL6A; 

SDHD; GTF2F2; MRPS18C; THAP1; NME1; HAUS1; 

MRPL50; ANAPC13; TXNDC9; NDUFB6; GTF3C6; RPE; 

PDHB; MRPL13; CRYZ; TCEAL8; ORC3; ZNF420; 

DNAJC19; MDH1; CCT6A; NDUFAF4; NOP10; 

MPHOSPH6 

E2F7 3E-25 BUB1B; GTSE1; RACGAP1; STIL; PLK1; 

CDC6; PA2G4; KIF4A; CALU; CDK1; KIF11; 

KIF23; KIF22; PKM; BIRC5; NPM1; MAD2L1 

CSE1L; GMNN; MKI67; SMC2; CHEK1; NUSAP1; NEK2; 

FBXO5; CDC25A; MELK; KIF20A; BLM; CDCA2; 

RNASEH2A; CDCA5; NCAPG; CDCA8; TARS; SKA3; 

NCAPH; KIAA1524; ECT2; PLK4; HMGA1; ZWINT; 
CCT6A; TPX2; ANLN; DIAPH3; UBE2T; IARS; CLIC4; 

FEN1; NCAPG2; MCM10; BRCA1; BRCA2; FOXM1; 

CKS1B; LMNB1; EXO1; NUF2; PBK; MYBL2; CEP55; 

TCF19; RFC4; CKAP2L; ACTL6A; TUBG1; CCNA2; 

ASPM; ESPL1; KIFC1; DEPDC1; GARS; MCM6; 

NUP62CL; GART; DTL; FAM72A; PCNA; PRIM1; TYMS; 

SLC7A1; UNG; RECQL4; CDC45; KDELC2; RAD54L; 

CCT7; CTNNAL1; BUB1; GINS1; CENPU; GINS2; RRM2; 
SPAG5; RRP1B; SHCBP1; CENPI; TSR1; NCAPD2 

TCEAL8 4E-17 DPY30; IER3IP1; TXNDC17; CDC26; PSMA6; 
PSMA4; PSMA1; TMEM258; TBL1XR1; 

TMX1; DAD1; PIGF; PSMD10; PSMD14; 

PRDX3; PSMB6; APOO; EXTL2; PSMB5; 

HDDC2; NDUFA12; PAK1IP1; GMNN; THYN1; BRK1; 
CCNC; MRPL36; HIKESHI; COX6A1; CKS1B; GCSH; 

TRMT112; MRPL42; YAE1D1; PHACTR2; HMGN3; 

TMEM14C; GLRX3; USMG5; SDHD; MRPS18C; ATP5J2; 
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Table 6-9 | TF co-expression results for genes differentially upregulated genes in ASCs (cont.) 

Transcription 

Factor 

EnrichR 

Adj p-
value 

Genes of Interest Others 

PSMB2; NPM1; SPCS2; SPCS1; OSTC; 

MAD2L1 

HAUS1; MRPL50; TMEM256; MRPL51; SDHAF3; SUB1; 

NDUFS5; NDUFS4; CKS2; BCAT1; ANAPC13; NDUFB6; 

GTF3C6; POMP; NDUFB3; ATP5J; ABRACL; COX7A2; 

MRPL15; UQCR10; PDHB; MRPL13; POLR2I; DNAJC19; 

TIMM8B; MDH1; UQCC2; NDUFA3; NDUFA2; MRPL27; 

CRIPT; NDUFA1; FAM136A; NDUFAF4; NDUFAB1; 

NDUFAF2; NOP10; MPHOSPH6 

ATF6 1E-03 GOLGA4; CREB3L2; TMED5; SLC30A7; 

ANXA2; ANXA5; FNDC3A; DNAJC3; CANX; 

PIGK; SEC22B; COPA; ATL3; FAM114A1; 
SAR1B; SEL1L; FAM129A; ARL1; LMAN1; 

SSR1; CD59; SEC31A; EDEM3; SEC24A; 

ERAP1; CALU; TRIP11; FAS; SEC24D 

NRP1; RAPH1; IDE; EPRS; LAMP2; PHACTR2; TMED4; 

ZBTB38; SSR3; FNDC3B; LRRC41; HEATR5A; ATG4A; 

GBA; TOR1AIP2; ABHD5; ITPRIPL2; SLC17A5; 
TMEM176B; MGA; ELL2; OSTM1; REEP3; CPD 

E2F3 1E-03 BUB1B; UGGT1; NUS1; NPM1; CDC6; PA2G4; 

KIF4A; MAD2L1 

FEN1; NCAPG2; MCM10; MKI67; IPO4; LMNB1; 

LAPTM4B; EXO1; MYBL2; FBXO5; TCF19; RFC3; RFC4; 

CAD; CDC25A; CCNA2; ESPL1; KIFC1; DEPDC1; MCM6; 

TOP1; GART; DTL; PCNA; CDCA5; NCAPG; TARS; 

TYMS; SLC7A1; UNG; RECQL4; CDC45; RAD54L; 

BUB1; PLK4; GINS1; CDT1; CENPU; SLC16A1; SPAG5; 

RRP1B; ZWINT; TPX2; EIF3J; NCAPD2 

LARP4 1E-14 CCDC47; BUB1B; KIF11; GOLGA4; KIF23; 

CANX; USO1; ZMPSTE24; HSP90B1; PRDX3; 

LMAN1; PRDX1; HSPA8; NPM1; YES1; 
SEC24A; CDC6; PA2G4; SEC23IP; KIF4A; 

CALU; MAD2L1 

ABCD3; PAK1IP1; CSE1L; NCAPG2; CCNC; MCM10; 

IDE; EPRS; CDC73; EXO1; PPAT; GNPNAT1; SKP2; 

DLGAP5; CCT3; CSNK2A1; DESI2; SSR3; CDC25A; 
GNL3; MELK; MTHFD2; DEPDC1; GARS; MTFR1; 

MCM6; GART; DTL; CDCA2; GMPS; NCAPG; HSD17B4; 

TARS; HNRNPLL; SKA3; RPAP3; TM9SF3; KIAA1524; 

CCNB1; CCT7; ECT2; CTNNAL1; BUB1; QSER1; PLK4; 

PPIL1; SLC16A1; SPAG5; RRP1B; FAM136A; BLOC1S5-

TXNDC5; CCT6A; TPX2; ANLN; DIAPH3; PSAT1; TSR1; 

IARS; FAM98A 

FOXM1 4E-14 BUB1B; KIF11; BSG; SLC39A7; GTSE1; 

KIF23; KIF22; PKM; BIRC5; LRRC59; 

RACGAP1; YKT6; PLK1; PYCR1; CDC6; 
PA2G4; KIF4A; CALR; UBE2M 

FEN1; CSE1L; NCAPG2; MKI67; IPO4; LMNB1; EXO1; 

PBK; PHGDH; MYBL2; CEP55; TCF19; CCT3; PRMT1; 

CAD; SND1; CDC25A; CCNA2; MELK; SAPCD2; ESPL1; 
KIFC1; DEPDC1; KIF20A; TTLL12; MCM6; GART; 

RABL6; PCNA; CDCA3; CDCA5; NCAPG; FOXK2; 

TYMS; SLC7A1; NCAPH; AURKB; SRM; RECQL4; 

CCNB1; GANAB; NT5DC2; RAD54L; CCT7; ECT2; 

BUB1; CDT1; RRM2; SPAG5; HMGA1; RRP1B; SHCBP1; 

ZWINT; CCT6A; TPX2; ANLN; KIF18B; CARM1; 

CLPTM1L; EIF3C; AARS 

POLR2L 8E-28 TXNDC17; PSMD8; TMEM147; MIF; 

TMEM258; PPIB; FKBP2; PRDX4; OST4; 

PRELID1; RNF181; COPE; DPY30; TMEM187; 
MYDGF; SEC61B; PSENEN; TMED9; DAD1; 

NAA38; PSMB6; PSMB7; PSMB2 

CCDC167; NDUFA11; NDUFA12; CISD1; NUDT1; 

HIKESHI; COX6A1; MT2A; LGALS1; BANF1; CHCHD1; 

TMEM14C; ATP6V0E1; TRAPPC2L; MRPS18C; ATP5J2; 
TMEM256; BOLA3; BOLA2; AURKAIP1; PHPT1; CUTA; 

RNASEH2C; NDUFB11; MRPL17; ATP5J; COX7A2; 

ATP5H; MRPL13; MRPL20; EIF4EBP1; DNAJC19; COA4; 

UQCC2; MRPL27; LSM2; COPS6; UQCRQ; NDUFAF2; 

NOP10; MRPS15; MRPS12; BRK1; MRPL36; ATP5G1; 

CKS1B; TRMT112; UBL5; TMEM223; TIMM17B; 

MRPS24; ATPIF1; USMG5; NME1; RCN3; MRPL53; 

MRPL51; NDUFS8; NDUFS5; CD63; NDUFB7; NDUFB6; 
POMP; NDUFB3; RPS27L; NDUFB1; UQCR10; MALSU1; 

HSD17B10; POLR2E; RABAC1; POLR2I; POLR2J; 

TIMM8B; NDUFA8; NDUFA3; NDUFA2; NDUFA1; 

ATOX1; FKBP1A; NDUFAB1 

E2F2 1E-13 BUB1B; KIF11; PNP; GTSE1; ESCO2; KIF22; 

BIRC5; ST6GALNAC4; FOXO3; UBE2J1; 

PRDX2; STIL; CDC6; BCL2L1 

FEN1; NCAPG2; CPOX; MCM10; BRCA1; MKI67; 

BRCA2; FOXM1; SMC2; LMNB1; EXO1; NUSAP1; 

MYBL2; FBXO5; KMT5A; TCF19; RFC4; CKAP2L; 

BPGM; CDC25A; CCNA2; MMS22L; ASPM; ALDH5A1; 

CCNE2; ESPL1; KIFC1; HMBS; MCM6; DTL; BLM; 

PCNA; RNASEH2A; CDCA3; FECH; CDCA5; 
ARHGAP19; NCAPG; CDCA8; TYMS; NCAPH; SKA1; 

AURKB; FAM117A; RECQL4; BRIP1; CDC45; POC1A; 

RAD54L; DCAF12; PLK4; GINS1; CDT1; CENPU; 

CDKN2C; RRM2; EIF2AK1; XRCC3; SHCBP1; ZWINT; 

TPX2; KIF18B; UBE2T; NCAPD2; SPC24 

GTF2F2 4E-15 DPY30; TXNDC17; CDC26; PSMA5; PSMA4; 

TMX1; PSMD14; PSMB6; PSMB7; EXTL2; 

PSMB5; PSMB2; PRDX1; NPM1; OSTC; 

CYCS; MAD2L1 

SUV39H2; PAK1IP1; CSE1L; GMNN; HIKESHI; 

TMEM97; COX6A1; CKS1B; GCSH; NUDCD1; PPAT; 

RIOK2; OIP5; CHCHD1; TMEM14C; RFC3; RFC4; 

GLRX3; USMG5; MRPS18C; NME1; ATP5J2; HAUS1; 

MRPL50; MRPL51; SDHAF3; CCNE1; BOLA3; PTRH2; 
NDUFS5; CKS2; PCNA; NDUFB6; GTF3C6; POMP; 

NDUFB3; MRPL15; UQCR10; MALSU1; SKA3; MRPL13; 

SKA2; TCEAL8; MRPL20; CCNB1; LYAR; ATG5; 
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Table 6-9 | TF co-expression results for genes differentially upregulated genes in ASCs (cont.) 

Transcription 

Factor 

EnrichR 

Adj p-
value 

Genes of Interest Others 

DNAJC19; COA4; TIMM8B; CENPU; GINS2; PPIL1; 

CENPW; SLC16A1; FAM136A; EIF2S2; CCT6A; DIAPH3; 

NDUFAF4; NDUFAB1; NDUFAF2; NOP10; CDKN3; 

MPHOSPH6 

HMGB3 1E-15 BUB1B; KIF11; TXNDC17; HS2ST1; GTSE1; 

ST6GAL1; KIF23; PSMA4; BIRC5; PSMD14; 

PSMB5; PSMB2; PRDX1; NPM1; UBE2C; 

PLK1; CDC6; CENPE; KIF4A; CDK1; MAD2L1 

PAK1IP1; CSE1L; GMNN; MCM10; TMEM97; CKS1B; 

PPAT; CHEK1; NUF2; NUSAP1; PWWP2A; PHGDH; 

BANF1; OIP5; DLGAP5; RFC3; RFC4; CSNK2A1; 

CKAP2L; CDC25C; KNSTRN; CDC25A; NME1; HAUS1; 

CCNA2; SGO2; ASPM; MELK; NDUFS5; DEPDC1; CKS2; 

KIF20A; ALDH7A1; CDCA2; RNASEH2A; CDCA3; 
NCAPG; TARS; TTK; SKA3; NCAPH; AURKB; UNG; 

AURKA; CCNB2; KIAA1524; CCNB1; ECT2; BUB1; 

GINS1; CENPU; GINS2; PPIL1; SLC16A1; RRP1B; 

FAM136A; ZWINT; TPX2; CENPF; PSAT1; UBE2T; 

CDKN3 

ZBTB38 8E-09 TRAM1; TNFRSF13B; TXNDC11; SEC61A1; 

CREB3L2; TIMP2; CAPN2; ERN1; TMEM214; 

IMPAD1; KDELR3; GAS6; ATL3; FAM114A1; 

SEL1L; RRBP1; UBE2J1; HSP90B1; LMAN1; 

MAN2A1; TNFRSF17; CD59; UGGT1; EDEM3; 
SEC24A; TMEM30A; ATP8B2; CAV2; ERAP1; 

EXT1; CALU; FAS; SEC24D 

ITGB1; CLIC4; SLC35F5; HDLBP; LAMC1; TRAM2; 

ALDH1L2; GLS; MFSD6; LGALS1; CSRP1; ANXA6; 

IGLC1; TNS3; DUSP5; ARHGEF12; SSR3; FNDC3B; 

TWSG1; IRF4; SLC41A2; TM9SF3; CAMSAP2; ITPRIPL2; 

LIMA1; ATXN1; OSBPL3; ATP2B4; ELL2; IGLL5; 
DPY19L1; CPD; CLPTM1L; SERINC3; NFE2L1 

MLX 1E-14 SLC35B1; PSMD8; MYDGF; PNP; SSR2; 
ANXA5; ALG3; SCAMP2; PSMA5; RER1; 

CSNK2B; PPIB; RNF121; GRN; HM13; MVP; 

GOSR2; RPN1; MGST2; PRDX3; PSMB6; 

PSMB7; EBP; PSMB5; PSMB2; MGAT1; 

PRELID1; PA2G4; YIF1A; MANF; SPCS1; 

OSTC 

MRPS15; ALAS1; PAK1IP1; MRPL36; LSM10; GMPPB; 
AIFM2; BANF1; SLC39A4; C11ORF24; TCF19; 

ATP6V0E1; GSTO1; IFRD2; MRPS18A; TALDO1; SDHD; 

TUBG1; NME1; SCO2; BOLA2; UQCRC1; SLC25A11; 

CD63; ECHS1; ACSS2; NAXE; GBA; POMP; MRPL17; 

GLRX; OAZ1; EIF4EBP1; POLR2E; CCT7; PCK2; COA4; 

MDH2; TMEM176B; GLMP; C20ORF24; KIAA2013; 

NUDT22; FKBP1A; BCKDK; COPS6; GALE; GALM; 
MSRB1 

DEPDC1 3E-35 BUB1B; GTSE1; PSMD14; HSP90B1; 

RACGAP1; HSPA8; STIL; YES1; UBE2C; 
PLK1; CDC6; PA2G4; KIF18A; KIF4A; CDK1; 

KIF11; KIF22; PSMA4; BIRC5; NPM1; CENPE; 

MAD2L1 

CSE1L; GMNN; EPRS; MKI67; SMC2; PPAT; NUSAP1; 

NEK2; OIP5; FBXO5; CDC25C; KNSTRN; CDC25A; 
SGO2; MELK; MTHFD2; KIF20A; BLM; CDCA2; CDCA3; 

CDCA5; GMPS; NCAPG; CDCA8; TARS; SKA3; NCAPH; 

CCNB2; KIAA1524; CCNB1; ECT2; QSER1; PLK4; 

ZWINT; CCT6A; TPX2; ANLN; DIAPH3; UBE2T; IARS; 

SUV39H2; FEN1; NCAPG2; MCM10; BRCA1; BRCA2; 

FOXM1; CKS1B; LMNB1; EXO1; NUF2; PBK; GNPNAT1; 

MYBL2; CEP55; DLGAP5; CCT3; RFC3; RFC4; DESI2; 

CKAP2L; CCNA2; ASPM; SAPCD2; ESPL1; KIFC1; 
CKS2; MCM6; GART; DTL; FAM72A; PCNA; TTK; 

CENPA; AURKB; AURKA; POC1A; CCT7; CTNNAL1; 

BUB1; E2F7; GINS1; CENPU; SLC16A1; RRM2; SPAG5; 

RRP1B; SHCBP1; CENPF; CENPI; TSR1; NCAPD2; 

CDKN3 

HMGA1 2E-03 KDELR1; CLTA; BSG; SLC39A7; TMED9; 

PKM; VCP; HM13; ASNA1; LMNA; PRELID1; 

CRTAP; PLK1; PYCR1; PA2G4; CALR; 

BCL2L1 

FEN1; NCAPG2; FOXM1; IPO4; LMNB1; MRPL4; 

MYBL2; TCF19; PRMT1; IFRD2; CAD; MRPS2; SND1; 

CCNA2; SLCO4A1; KIFC1; FSCN1; TTLL12; CDCA5; 

UNG; SRM; RECQL4; BCL2L12; GANAB; NT5DC2; 

POLR2E; CCT7; CDT1; SLC52A2; FKBP1A; TPX2; DAP; 
CARM1; NCAPD2; EIF3C 

BOLA3 5E-24 TXNDC17; CDC26; MIF; TMEM258; OSTC; 
RNF181; DPY30; SEC61B; DYNLL1; PSMA5; 

PSMA4; DAD1; NAA38; PSMB6; PSMB7; 

PSMB5; PSMB2; SPCS1 

HDDC2; NDUFA11; NDUFA12; GMNN; CISD1; 
HIKESHI; COX6A1; UBE2L3; GCSH; BANF1; HMGN3; 

CHCHD1; TRAPPC2L; ACOT13; MRPS18C; ATP5J2; 

BOLA2; PHPT1; CUTA; NDUFB11; MRPL18; MRPL17; 

ATP5J; COX7A2; ATP5H; MRPL13; MRPL20; LYAR; 

DNAJC19; COA4; UQCC2; MRPL27; UQCRQ; NDUFAF4; 

UBE2T; NDUFAF2; NOP10; MRPS15; MRPL36; ATP5G1; 

CKS1B; TRMT112; UBL5; RFC4; MRPS24; GLRX3; 

ATPIF1; USMG5; NME1; HAUS1; MRPL51; NDUFS8; 
NDUFS5; CKS2; NDUFB9; NDUFB7; NDUFB6; GTF3C6; 

POMP; NDUFB3; RPS27L; NDUFB1; ABRACL; UQCR10; 

MALSU1; MRPL57; EMC4; POLR2I; POLR2J; POLR2L; 

TIMM8B; GINS2; NDUFA8; CENPW; NDUFA3; 

NDUFA2; NDUFA1; ATOX1; NDUFAB1; MMACHC 

ZNF593 1E-16 GPAA1; PSMD8; MYDGF; TMEM147; 

SEC61B; NUDT14; ALG3; MIF; MINPP1; 

DNAJC1; RER1; CSNK2B; NAA38; FXN; 

PRELID1; SDF2L1; B3GALT6; YIF1A; YIF1B; 

PSMG1; COPE; CD320 

MRPS15; NDUFA11; PYCRL; MRPS12; NUDT1; MRPL36; 

MRPL37; MRPL34; COMT; ATRAID; ATP5G1; UBE2L3; 

MRPL4; TRMT112; NTMT1; C9ORF16; OIP5; MRPS24; 

IFRD2; ATPIF1; MRPS2; GLRX2; NME1; NDUFS8; CLPP; 

BOLA2; PTRH1; HAGH; AURKAIP1; RNASEH2C; 
DTYMK; ECHS1; NDUFB7; NAXE; NDUFB11; MRPS34; 

MALSU1; COX5A; MRPL57; LAGE3; UNG; SRM; 

MRPL20; EXOSC4; MCRIP2; NTHL1; EIF4EBP1; 
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Table 6-9 | TF co-expression results for genes differentially upregulated genes in ASCs (cont.) 

Transcription 

Factor 

EnrichR 

Adj p-
value 

Genes of Interest Others 

POLR2E; POC1A; KCNN4; POLR2I; POLR2J; POLR2L; 

CDT1; MDH2; IDH2; HPS6; NMRAL1; LSM2; BCKDK; 

UQCRQ; NDUFAB1; GALK1 

THAP4 7E-05 PSMD8; SEC61A1; BSG; SDF4; SLC39A7; 

PGM1; MAP2K2; SIGMAR1; MOGS; CDC34; 

PKM; TMEM214; YKT6; PRELID1; SURF4; 

PYCR1; YIF1A; NUCB1; STUB1; P4HB; 

COPE; UBE2M 

CLTB; HDLBP; MRPL37; IPO4; MRPL4; MYBL2; CCT3; 

PRMT1; IFRD2; MRPS2; SND1; SAPCD2; CPTP; 

UQCRC1; TTLL12; AURKAIP1; RABL6; POLDIP2; 

MRPS34; SRM; RECQL4; GANAB; NT5DC2; CLPTM1; 

EIF4EBP1; POLR2E; CCT7; MDH2; SLC52A2; GOT2; 

KIAA2013; CARM1; ACO2; EIF3C; NFE2L1 

 

Table 6-10 | Tables shows differentially upregulated genes in ASCs that are known to be upregulated as a 

result of TF inhibition/downregulation/loss of function mutation (cont.) 

Transcription 

Factor 

Adj p-

value 

Genes of Interest Others 

FOXO1 
Knockout 

Knockdown 

siRNA 

2.1E-36 F2R; ESCO2; FKBP2; STIL; SDF2L1; 
UBE2C; PLK1; CDC6; BST2; PQLC3; 

KIF4A; CDK1; KIF11; LITAF; KIF23; KIF22; 

BIRC5; CEBPB; FAM129B; CENPE; 
SEC24D; MAD2L1; TRAM1; CITED2; 

DPY30; UFSP2; MPO; MANEA; KRTCAP2; 

SERP1; SEC61G; TRIM25; AP3S1; TMED7; 
GYG1; PDIA3; TMED9; CKAP4; SCAMP2; 

DNAJC3; HAX1; PKM; CANX; KDELR2; 

PPIB; RPN1; FOXO3; TMEM165; HSP90B1; 
EXTL2; ST8SIA4; MLEC; SSR1; SPTSSA; 

MANF; SPCS2; SPCS1; OSTC; CYCS; 

DHCR7; P4HB; TMED2; SEC61B; ANXA5; 
NOSIP; CNPY2; PSMD14; DCTN3; HSPA5; 

B3GALT6; YIF1B; CHPF; ATP2A2; PLOD1; 

BSG; CREB3L2; CTSB; FNDC3A; PDIA6; 
IMPAD1; LRPAP1; TMED10; PARM1; 

RPN2; DERL1; LMAN1; MAN2A1; STOM; 

CD59; CRTAP; GALNT2; SURF4; GFPT1; 
VEGFA; ARCN1; CALU; STT3A; ACO1; 

ITM2B; LIMS1; PSMA5; PSMA4; TMX1; 

DNAJB11; SAR1B; PSMB7; LMNA; MCL1; 
SEC11C; NPM1; VMP1; STT3B 

IFITM1; ZFAND4; LRR1; GMNN; PRDM1; MKI67; 
SMC2; IGHG1; LGALS1; ALCAM; SLC16A6; NEK2; 

FBXO5; ZBP1; GAS2L3; MREG; KNL1; CDC25C; 

RUNX2; SGO2; MELK; CCNE2; CCNE1; GPR160; 
KIF20A; ASF1B; CDCA2; EPAS1; CDCA5; NCAPG; 

CDCA8; UAP1; TAPBPL; NCAPH; ITPRIPL2; 

CCNB2; BRIP1; CCNB1; SLAMF7; ECT2; PLK4; 
MLKL; ISG15; ELL2; ISG20; TPX2; KIF18B; UBE2T; 

ADA; GPSM2; KCNK6; EIF4E3; SOWAHC; 

NCAPG2; JCHAIN; CKS1B; LMNB1; ACOXL; 
NUF2; PBK; TK1; IGLC2; CEP55; DLGAP5; TCF19; 

RFC3; RFC4; CKAP2L; PRSS16; CCNA2; ESPL1; 

DEPDC1; CKS2; CRELD2; UHRF1; GLRX; TTK; 
AURKB; PSMC3IP; CXCR3; RAD54L; IL12RB1; 

FNIP2; BUB1; E2F7; GINS2; CENPW; RRM2; 

SPAG5; GZMB; SHCBP1; DPY19L1; RAD51; 
CENPI; SPC24; CDKN3; SPC25; GFI1; ETFB; 

ATP6V0E1; ANKRD46; ELMOD2; ATP6AP2; 

MED7; ARMCX3; PTRH2; S100A9; DTYMK; PCNA; 
RPS27L; ABRACL; TYMS; TM9SF3; TSPAN31; 

MAT2A; METTL6; E2F3; DCAF12; ANKRD28; 

MDH1; DSTN; DNAJC15; CCT6A; KLHL9; 
FKBP1A; OSTM1; PSAT1; ACAA2; FAM45A; ETFA; 

NENF; PDCD2L; HINT2; BASP1; OPA3; FGFR1OP2; 

PHGDH; TXNL4A; MRPS24; METRN; ACOT13; 
H2AFV; UCHL5; SAP30; MRPL53; SDHAF1; 

UQCRC1; HIST1H2BH; C1QB; ANAPC13; 

RNASEH2C; NDUFB5; SELENOF; MCRIP2; 
TMEM205; UAP1L1; RABAC1; LCMT1; TMEM238; 

RGS10; EEF1AKMT1; GPR19; HSPB6; HDLBP; 

SLC7A11; LAMC1; CSRP1; LMO4; ACTA2; RCN3; 
MYADM; BCAT1; PCYOX1; GANAB; PGRMC2; 

ATXN1; METTL7A; MPZL1; ASS1; SERINC3; 

CLIC4; RABGEF1; RGS1; DUSP5; SSR3; GNL3; 
ETV6; SUB1; PRIM1; CYB5A; PDHA1; LARP4; 

RPIA; TCEA1 

BCL6 
Knockout 

1.6E-29 BUB1B; NSDHL; HMGN5; PNP; CAPN2; 
F2R; PDIA4; TMX1; ATF6; HACD3; SOCS2; 

EBP; PRDX4; RACGAP1; PRDX1; ST8SIA4; 

STIL; PLK1; FUCA2; ASNS; EHD4; PQLC3; 
CDK1; ITM2C; KIF11; CASP3; CTSB; 

KIF23; DNAJC1; TMEM33; CEBPB; FGL2; 

FAM129A; CLCN3; PSMB2; TAF9B; YKT6; 
SEC11C; CENPE; JKAMP; MAD2L1 

CYFIP1; NAB1; CPOX; PRDM1; MKI67; SMC2; 
RCBTB2; ALCAM; LGALS1; RGS1; LAMP2; 

SLC16A6; TNFSF10; SLC39A4; IER3; CPT1A; 

ENTPD1; GAS2L3; CISH; SDHD; CCNE2; ASF1B; 
LXN; CDCA2; MAGED1; MRPL18; NCAPG; LY96; 

SAMSN1; NCAPH; CCNB2; ATXN1; ECT2; N4BP1; 

GOT1; MLKL; OSBPL3; RAB27A; DSTN; 
FAM136A; TPX2; CPD; BMPR1A; LGALS3BP; 

NRP1; NCAPG2; LAMC1; LMNB1; IMPA2; NUF2; 

DLGAP5; DUSP5; RFC4; SSR4; ETV6; CCNA2; 
LMBRD2; CKS2; DEPDC1; DTL; CD63; RNASEL; 

SLC43A3; PRIM1; GLRX; HSPA13; STX11; 

TSPAN31; NFIL3; GMDS; EPCAM; CXCR3; BUB1; 
TCEAL9; PPIL1; CDKN2C; RRM2; MDH1; 

SLC31A1; NDUFA1; ATP2B4; GZMB; SHCBP1; 

HIPK2; DHRS7; RAD51; CENPI; PSAT1 
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Table 6-10 | Tables shows differentially upregulated genes in ASCs that are known to be upregulated as a 

result of TF inhibition/downregulation/loss of function mutation (cont.) 

Transcription 

Factor 

Adj p-

value 

Genes of Interest Others 

RELA 

Knockdown 

1.9E-25 SLC35B1; PSMD8; TMEM147; BSG; 

MAP2K2; MIF; PPIB; COPB2; VCP; RPN2; 

PSMD14; ZMPSTE24; PRDX3; PRDX2; 
PRDX4; PRDX1; HSPA8; PLK1; ASNS; 

DHCR24; PRDX6; MANF; CYCS; PSMG1; 

ARF4; CLTA; ATP2A2; SEC61A1; TMED2; 
UFD1; TMED9; SEC13; PSMA4; HAX1; 

PKM; DAD1; BIRC5; DCTN3; PSMB7; 

PSMB5; SRP72; PSMB2; ASNA1; ARCN1; 
GOLPH3; PSMC4; SCD; P4HB; GLA 

MTCH2; UBE2L3; BASP1; RUVBL1; TXNL4A; 

MCCC2; CSNK2A1; CDC25A; MTHFD2; SUB1; 

UQCRC1; MAGED1; NDUFB11; TARS; OAZ1; 
YARS; EIF2B3; PDHA1; GOT2; DSTN; EIF2S2; 

CCT6A; AIMP2; TPX2; UQCRQ; CDK4; IARS; 

AARS; LGALS3BP; ARPC1A; MRPS12; AKR1B1; 
ETFA; LAMC1; CKS1B; AIFM1; TIMM17B; 

PHGDH; CCT3; SSR4; GSTO1; HSBP1; PRMT1; 

ATP6AP2; NDUFC2; TUBG1; GNL3; NME1; 
NDUFS5; CKS2; GARS; ECHS1; PCNA; NDUFB6; 

PDHB; UQCR10; HSD17B10; COX5A; SRM; 

AURKA; PDF; CLPTM1; POLR2E; RABAC1; 
POLR2I; CCT7; NDUFA9; TIMM8B; GINS2; MDH1; 

MDH2; FKBP1A; PSAT1; NDUFAB1; ATXN10; 

MPHOSPH6 

SON 

Knockdown 

4.2E-24 TMEM147; PSMD4; FADS1; ALG5; TMX1; 

CSNK2B; RTN3; FKBP2; PRDX1; ASNS; 

BST2; PPT1; CDK1; CCDC47; TECR; GUSB; 
SEC13; ANXA2; SIGMAR1; DYNLL1; 

PSMA6; HAX1; PSMA1; CSTB; PSMB6; 

PSMB7; PSMB4; YIF1A; SPCS1; SCD; 
STUB1; P4HB; CEBPB; FAM114A1; SAR1B; 

HERPUD1; NSDHL; CAPN2; STOM; CD59; 

SEC61B; HSPA5; ARFGAP3; RCN1 

ECI2; HMGN3; TALDO1; ACOT13; NEAT1; MELK; 

BOLA2; UQCRC1; AURKAIP1; HIST1H2BD; 

ASF1B; CUTA; RNASEH2A; GMPS; MRPL17; 
MRPL15; OAZ1; ACAT1; GSTM3; ISG15; ZWINT; 

UQCRQ; CDK4; FEN1; ARPC1A; AKR1B1; ETFA; 

ATRAID; MRPL40; IMPA2; PHGDH; HIST1H1C; 
CCDC51; RFC4; PRMT1; AKR1A1; TUBG1; 

MZT2A; NDUFS7; PCCB; TMEM106C; MCM6; 

CRELD2; DTL; SLC25A11; ECHS1; PCNA; 
NDUFB5; PRIM1; NDUFB1; UQCR10; PDHB; 

TYMS; MRPL57; UNG; ANKMY2; SAMM50; 

TCEAL9; NDUFA9; TIMM8B; GINS2; NQO2; 
RRM2; MDH1; MDH2; NDUFA2; MARS; 

NDUFAB1; TCEA1; PFKM; CLIC4; NXN; RPS27L; 

TARS; MOSPD1; COX7A2; UAP1; GLRX; TMEM97; 
COX6A1; AURKA; LIMA1; MT2A; MAP1LC3B; 

CCNB1; CSRP1; NFIL3; ZMIZ1; BASP1; BANF1; 

CDR2; MT1HL1; IER3; FDPS; DNAJC15; REXO2; 
SLC39A14; CCT6A; SLC7A5; DAP; PPA2; FAM98A; 

GCLM; ALDH9A1 

ZFX 
Knockout 

2.0E-17 ERO1A; PIGT; SLC35B1; ATP2A2; MPO; 
SEC61A1; SERP1; PSMD1; TMED2; 

TMED7; CTSD; PSENEN; PDIA3; FCER1G; 

ENTPD4; ALG3; ELOVL6; MIF; PDIA4; 
DAD1; CANX; RTN3; GRN; HSP90B1; 

LMAN1; PSMB4; PSMB2; PRDX1; CREG1; 

EMC2; ST8SIA4; SSR1; SEC31A; SDF2L1; 
ASNS; PA2G4; SRP68; SEC23IP; SPCS2; 

OSTC; CTH; PPT1; STT3A; PSMG1; CALR; 

GLA; ARF4; CITED2; PLOD3; MAGT1; 
LITAF; PSMD8; CCND2; CAPN2; AP3S1; 

ANXA2; ANXA5; F2R; CKAP4; RCN1; 

TMX1; NPC2; COPB2; ABHD4; RPN1; 
SELENOK; VAT1; VMP1; CALU; P4HB; 

ITM2B; ITM2C 

IFITM1; SLC7A11; MRPL35; MT2A; TMEM223; 
RIOK2; IFNAR2; RFC4; SSR3; AKR1A1; SLC7A5; 

SUB1; NDUFS4; GARS; LAP3; CRELD2; BCAT1; 

GART; NDUFB6; FAM206A; SELENOF; WDR61; 
CSF2RB; SLC3A2; SAMSN1; SLC7A1; TSPAN31; 

GANAB; NT5DC2; DARS; SEPT11; GOT1; MDH2; 

GOT2; GLMP; UCK2; DAP; CDK4; INTS7; 
ALDH18A1; ATXN10; GCLM; SERINC3; 

MMACHC; ITGB1; NRP1; HMGB3; LAPTM4B; 

LGALS1; CSRP1; BASP1; LAMP2; PHLDA1; 
HMGN3; IER3; GSTO1; FNDC3B; ACTA2; TUBB2B; 

CLDN12; MYADM; FSCN1; ATP6V1A; ABRACL; 

TCEAL8; TCEAL9; MCTS1; DSTN; FKBP1A; 
CLPTM1L 

NFKB1 

Inactivation 

9.4E-16 ARF4; CLTA; KIF11; SEC61G; GTSE1; 

FADS1; DYNLL1; PSMA6; PSMA4; PSMA1; 
NPC2; PSMD14; SELENOK; RACGAP1; 

PSMB2; PRDX1; HSPA8; UBE2C; DHCR24; 

GOLPH3; CDK1; CYCS; ITM2B; MAD2L1; 
TRAM1; HERPUD1; SESN2; TMED2; 

PDIA3; TMX1; CANX; DNAJB11; TRIB3; 

CEBPB; RPN2; HACD3; TMEM165; 
HSP90B1; PGRMC1; PRDX4; NPM1; 

ARCN1; SCD; CTH; PSMG1; CASP3; 
PRKCI; NOSIP; BIRC5; PSMD10; RTN3; 

PSMB6 

FEN1; NDUFA12; CSE1L; GMNN; COX6A1; 

CKS1B; MT2A; MAP1LC3B; NUF2; PBK; NUSAP1; 
NEK2; FBXO5; DLGAP5; MT1HL1; CMC2; 

ARMCX3; CCNA2; SGO2; TMX2; NDUFS5; MT1F; 

DEPDC1; CKS2; KIF20A; CRK; PCNA; POMP; 
NDUFB3; ARHGAP19; NCAPG; CDCA8; COX7A2; 

TTK; MRPL13; OAZ1; CENPA; AURKA; CCNB1; 

FDPS; CENPW; RRM2; NDUFA1; SHCBP1; TPX2; 
ANLN; KIF18B; EVI2A; UBE2T; NOP10; CDKN3; 

SPC25; TSEN15; TXNDC12; TMEM97; SLC7A11; 
EPRS; LMNB1; MRPL42; PHGDH; CCT3; RFC3; 

RFC4; ARMC1; SLC7A5; PPA1; MTHFD2; TIPRL; 

GARS; TOP1; DTL; TARS; SELENOF; SLC3A2; 
TYMS; SLC7A1; HSPA13; ISOC1; CCT7; PCK2; 

YARS; DSTN; EIF2S2; ZWINT; CCT6A; RPIA; 

MARS; TCEA1; IARS; AARS; TMEM41B; OIP5; 
MELK; VGLL4; NDUFB11; BIK; GPN3; REEP5; 

PSAT1; NDUFAB1 
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Table 6-10 | Tables shows differentially upregulated genes in ASCs that are known to be upregulated as a 

result of TF inhibition/downregulation/loss of function mutation (cont.) 

Transcription 

Factor 

Adj p-

value 

Genes of Interest Others 

BPTF 

Knockout  

4.7E-15 CITED2; LITAF; TMEM147; PSMD4; 

SEC61G; SDF2; PSENEN; F2R; DYNLL1; 

PSMA4; NPC2; DAD1; ATF5; GAS6; CSTB; 
GRN; ANAPC16; DCTN3; HACD3; 

FAM129B; PRDX2; PSMB7; PSMB4; 

PSMB2; PRDX1; OST4; NPM1; SPCS1 

NRP1; CLIC4; MRPS12; BRK1; ETFB; COX6A1; 

ATRAID; UBL5; GLIPR1; CSRP1; LAMP2; PHGDH; 

CHAC1; CHCHD1; HIST1H1C; ATP6V0E1; SSR4; 
GSTO1; AKR1A1; ACOT13; NME1; ACTA2; 

TMEM256; SMDT1; ZC2HC1A; NDUFS7; 

HIST1H2BE; HIST1H2BH; NUPR1; HIST1H2BC; 
CUTA; NDUFB6; POMP; PRCP; UQCR10; TCEAL8; 

EMC4; ATP6V1D; TCEAL9; POLR2L; MCTS1; 

TIMM8B; UQCC2; NDUFA2; NDUFA1; ZWINT; 
ATOX1; SNX18; RGS10; HIST1H4H 

ZXDC 

Depletion 

1.4E-14 PIGU; BUB1B; KIF11; TNFSF13B; 

COMMD3; BIRC5; CDC6; CENPE; KIF4A 

FEN1; GFI1; GMNN; NUDT1; MCM10; BRCA1; 

BRCA2; FOXM1; PIK3CG; SMC2; IMPA2; EXO1; 
PBK; BLNK; CHAC2; OIP5; MYBL2; FBXO5; 

DLEU2; TK1; TCF19; CDC25A; CCNA2; CCNE2; 

SDHAF3; GPR160; KIF20A; MCM6; DTL; ASF1B; 
ZNF670; BLM; RNASEH2A; CDCA3; UHRF1; 

CDCA5; PRIM1; NCAPG; CDCA8; TTK; TYMS; 

CENPA; NCAPH; SKA1; SKA2; LIMA1; BRIP1; 
CCNB1; CDC45; RAD54L; CTNNAL1; GINS1; 

CDT1; CENPU; RRM2; ZWINT; TPX2; COQ3; 

CMSS1; RAD51; POLE2; SPC24; CDKN3; SPC25 

NRF1 
Knockout 

5.3E-14 ITGB5; SLC35B1; SEC61A1; SERP1; 
SEC61G; TMED3; FBXO6; SEC61B; 

SLC39A7; CTSD; CTSB; PDIA3; TMED9; 

ENTPD5; ANXA5; COMMD3; PDIA6; 
RER1; DNAJB11; ATF5; GAS6; GRN; 

TMED10; RPN2; ABHD4; GSTP1; RPN1; 

RRBP1; HSP90B1; PRDX1; LMNA; HSPA5; 
SURF4; SYVN1; DHCR24; MANF; BST2; 

SPCS1; CALR; P4HB; ITM2B 

LGALS3BP; ACAA2; ALAS1; GMNN; THYN1; 
NENF; PEPD; COMT; COX6A1; LGALS1; 

TNFAIP8L1; BLNK; SLC39A4; AKR1A1; TALDO1; 

NEAT1; HDHD3; HAGH; MCM6; CRELD2; AVPI1; 
ECHS1; PCNA; RPS27L; SELENOF; COX7A2; 

COX5A; ACAT1; TSPAN31; MRPL20; POLR2L; 

DNAJC19; GSTM3; CYB5A; MDH2; TMEM176B; 
TMEM176A; GOT2; HMGA1; ATOX1; GALE; 

SERINC3; MSRB1 

IRF8 

Knockout 

6.2E-13 DPAGT1; PIGU; TECR; GOLIM4; BUB1B; 

MPO; MANEA; TNFSF13B; APMAP; 

TMED3; GYG1; SLC39A11; WIPI1; ESCO2; 

KIF22; PLSCR1; BIRC5; LTF; MGST2; 
ZMPSTE24; PLK1; KIF4A; MAD2L1; APIP; 

TXNDC17; HMGN5; SSR2; ALG5; ALG14; 

ALG3; MGLL; GLT8D1; TEX261; EBP; 
FUT8; ASNA1; SLC33A1; PA2G4; ARCN1; 

EHD4; CDC26; SURF4; BET1L 

NRP1; FEN1; EIF4E3; NDUFA11; GFI1; RAB3D; 

ETFA; FOXM1; PPP3CB; MCEE; FNTB; PBK; 

PHLDA1; TRAPPC2L; CISH; SGO2; TMEM256; 

SAPCD2; GPR160; PGP; CD63; RNASEH2C; 
DTYMK; CDCA3; CDCA8; ABHD5; NCAPH; 

AURKB; AURKA; CCNB1; MARVELD1; 

TMEM205; NDUFV3; ANKRD28; DARS; NQO2; 
DSTN; BCKDK; KIF18B; FMNL2; CDKN3; SPC25; 

MPHOSPH6; AHCYL2; DENND5B; TSEN15; 

BHLHE41; TPGS2; GCSH; ABHD12; CEP55; 
TMED4; PCMTD1; ENTPD1; GLRX3; CMC2; 

AARSD1; HCFC2; SAP30; TMX2; AKIP1; 

TMEM106B; GEMIN6; PHPT1; ASF1A; 
HIST1H2BC; NDUFB6; LY96; TARS; MRPL57; 

SKA2; TSPAN5; PIP5K1B; RPRD1A; LYAR; 

MRPL17; MOSPD1; LAGE3; JCHAIN; EPM2AIP1; 
TNFSF10; HMGN3; HERC6; HIST1H1C; CENPU; 

SLC10A7; PRMT1; MTX2; RRP1B; TUBG1; REXO2; 

ATOX1; UCK2; GNAQ; CKS2; LCORL; TMEM19 

SRF 

Knockdown 

Mutation 
Knockout  

7.6E-13 GOLT1B; FKBP14; BUB1B; KIF11; 

TNFAIP1; TIMP2; FADS1; COPZ1; BIRC5; 

SAR1B; SOCS2; HMOX1; UBE2C; PLK1; 
GGH; CDC6; KIF4A; MAD2L1; KDELR1; 

SLC35B1; PSMD8; PNP; PSMD4; TRIM25; 

GTSE1; CTSB; PDIA3; SEC13; SSR2; F2R; 
ELOVL6; KIF22; DYNLL1; CKAP4; HAX1; 

UNC50; KDELR3; PPIB; LRRC59; TMED10; 

PSMD14; GSTP1; PSMB6; PSMB5; ASNA1; 
MCL1; ASNS; CALU; CDK1; MPO; 

KRTCAP2; SEC61G; PSENEN; FCER1G; 

DHRS3; PSMC4; FAM213B; HECTD3; 
EBPL; CSTB; GRN; FKBP2; PSMB2; HSPA5; 

RNF181; HERPUD1; UCHL1; HSPA8; 

NPM1; YES1; PGRMC1; PRDX1; VCP; 
CEBPB; GLG1; SURF4; ERO1A; TRAM1; 

LITAF; BSG; CTSD; ANXA2; ANXA5; 

TAPBP; COPB2; CITED2; COG6; PSMA6; 

TECR; GPX3; CDC34; NAA38; ABHD4; 

PRDX6; TMCO1; CALR; ITM2B; ITM2C; 

LGALS3BP; ENO2; NUDT5; METRNL; FOXM1; 

CKS1B; LMNB1; DHTKD1; MT2A; NUF2; PBK; 

NUSAP1; OIP5; MYBL2; DLEU2; TK1; CEP55; 
DLGAP5; MT1HL1; DUSP5; CKAP2L; LINC00294; 

ATP1B1; SLC7A5; SGO2; MELK; SAPCD2; ESPL1; 

CLDN12; MT1F; DEPDC1; CKS2; FSCN1; KIF20A; 
SLC26A2; CDCA3; UHRF1; CDCA5; POMP; 

ARHGAP19; CDCA8; TTK; CENPA; PAPSS1; 

CCNB1; LRRC8D; QSER1; RRM2; SPAG5; 
SLC31A1; DNAJC12; TPX2; ANLN; CENPF; 

NDUFAF4; POLR3D; NCAPD2; SPC25; BTG2; 

CLIC4; ACAA2; MRPS14; ETFA; ETFB; COX6A1; 
UBE2L3; SMC2; MRPL4; TMEM223; TIMM17B; 

ACADM; TXNL4A; SLC39A4; PSPH; SS18; GLRX3; 

AKR1A1; H2AFV; GNL3; SMDT1; MRPL51; 
NDUFS5; UQCRC1; GARS; ERGIC3; BCAT1; 

NDUFB9; NDUFB11; NDUFB5; PDHB; MRPL13; 

CCNB2; SLC25A20; ECT2; NDUFA9; NDFIP1; 

PDHA1; IDH2; NDUFA2; EIF2S2; AZIN1; ATOX1; 

TM9SF2; SP3; B9D1; BLMH; SERINC3; EIF3C; 
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Table 6-10 | Tables shows differentially upregulated genes in ASCs that are known to be upregulated as a 

result of TF inhibition/downregulation/loss of function mutation (cont.) 

Transcription 

Factor 

Adj p-

value 

Genes of Interest Others 

SEC31A; PSMG1; COPA; ARL3; RPN1; 

PSMB4; SERP1; SDF2; ST6GAL1; PRELID1; 

SPCS1; DAD1; OSTC; DNAJB11; CYCS; 
PIGF; HMGN5; RACGAP1; ALG3 

OGT; ECI2; BRK1; HDDC3; LAPTM4B; GLIPR1; 

LGALS1; HINT2; CHCHD1; MRPS24; CCNA2; 

NDUFS7; PHPT1; HIST1H2BC; CUTA; NDUFB7; 
DMAC1; PRIM1; NDUFB3; RPS27L; COX7A2; 

OAZ1; COX5A; NT5DC2; NDUFV3; NDUFA3; 

NDUFA1; DAP; OSTM1; RGS10; CDKN3; IFITM1; 
PAK1IP1; CPOX; LAMC1; SLC16A6; IL6R; TCF19; 

DTL; TYMS; SLC17A5; LYAR; GINS1; BIK; RPIA; 

CDK4; ALAS1; SLC44A1; CSRP1; BASP1; 
ATP6V1D; NDUFA8; MDH2; GLMP; ISG15; ASS1; 

RNF149; CDK2AP2; CARS; EPRS; MKI67; MRPL35; 

CDH1; CPT1A; ACOT13; TMX2; MTHFD2; 
ATP6V1A; BLM; SLC3A2; MFF; AURKB; UCK2; 

PSAT1; MARS; UBE2T; AARS; HIBADH; CISD1; 

BRCA2; VPS35; CCT3; ACTL6A; HMBS; PCNA; 
TARS; HSD17B10; POLR2E; RDX; TCEA1; IARS; 

NOP10; TOP1; CHMP6; AURKA; POLR2L; ITGB1; 

ANXA6; GSTO1; ACTA2; MYADM; TCEAL9; 
DSTN; HDLBP; IER3; SDHD; DDX19A; MAGED1; 

PLD3; MDM2; ATXN10; FEN1; SLC35F5; ALCAM; 

RGS3; PRKACA; HIST1H1C; ATP6V0E1; ECH1; 
TUBB2B; GPR160; UQCR10; TIMM8B; F8A1; 

MDH1; REEP5; ACO2; GRINA; EIF4EBP1; 

SMARCB1; TLE3; PRMT1; MRPL15; UNG; 
PRPSAP1; GANAB; SAMM50; AAMP; FDPS; 

QDPR; COPS6; IPO11; GMNN; JCHAIN; NTMT1; 

ARFIP2; CYB5A; NDUFC2; ETNK1; POU2AF1; 
CLPTM1L; S100A9; FERMT3; TMEM41B; HELB 

ADNP 

Deficiency 

1.4E-12 ERO1A; PSMD8; BSG; PDIA3; F2R; CDC34; 

TMX1; CSNK2B; COPA; PSMD14; SAR1B; 
ARL3; RPN1; ARL1; SSR1; MLEC; 

PRELID1; UBE2C; PSMG1; CALR; STT3B; 

ITM2C; TECR; CLTA; TMED2; AP3S1; 
SEC61B; SEC13; GPX3; KIF22; DYNLL1; 

HAX1; PKM; NPC2; GSTP1; DCTN3; 

PSMB6; PSMB7; PGRMC1; ASNA1; 
TMCO1; SPCS2; PSMC4 

CYFIP1; IPO11; CSE1L; GMNN; MSANTD4; MKI67; 

COX6A1; SMC2; LAPTM4B; BASP1; BANF1; 
TXNL4A; CHCHD1; MRPS18A; SAP30; MELK; 

ARMCX2; OAZ1; PRPSAP1; QDPR; CLPTM1L; 

NOP10; GALK1; LMNB1; NDUFC2; H2AFV; GNL3; 
PTRH2; CKS2; GARS; BCAT1; NDUFB7; UHRF1; 

ABRACL; SLC3A2; MESD; COX5A; DNPEP; 

MAT2A; NT5DC2; CCT7; POLR2L; TCEAL9; 
CYB5A; SLC16A1; RRM2; NDUFA3; NDUFA1; 

TM9SF2; KLHL9; RAD51; RNF149; PSAT1; CARM1 

ZNF395 
Knockdown 

1.3E-11 ARF4; KDELR1; TXNDC17; TMED3; 
TIMP2; SEC61B; NUDT14; PGM1; CTSB; 

TMED9; ANXA2; COMMD3; CKAP4; 

PSMA5; PSMA6; NPC2; DAD1; CSTB; 
LEPROT; CEBPB; PSMB6; PSMB7; 

ARHGAP21; PRDX1; OST4; TMEM230; 

DERA; PPT1; RNF181; ACO1 

LGALS3BP; SRP54; AKR1B1; MAP1LC3B; 
LGALS1; BASP1; LAMP2; PHLDA1; IER3; 

TMEM14C; HIST1H1C; ATP6V0E1; DUSP3; 

GSTO1; ATP6AP2; FNDC3B; IL18; TALDO1; 
REXO2; PLA2G16; NDUFS8; OAF; NDUFS5; GARS; 

NDUFB5; TACSTD2; MRPL17; RPS27L; LY96; 

COX7A2; GLRX; OAZ1; LIMA1; TCEAL9; 
NDUFA8; NDUFA1; ISG15; ATOX1; FKBP1A; 

ISG20; DHRS7; UQCRQ; FAM98A; NOP10 

ETS1 

shRNA 

2.0E-09 ERO1A; TRAM1; PIGT; CHPF; GPAA1; 

TECR; PLOD1; NDST1; FADS2; SEC61A1; 

TIMP2; CAPN2; CTSD; CTSB; PDIA3; 

ANXA2; ANXA5; PDIA6; SELENON; 

KDELR2; TRIB3; GAS6; PPIB; LRRC59; 
GRN; LEPROT; COPA; VCP; ATL3; 

FAM129B; HSP90B1; PRDX3; PRDX2; 

LMAN1; PRDX1; HMOX1; CD59; MCL1; 
CAV2; GFPT1; CALU; STT3A; DHCR7; 

CALR; COPG1 

ITGB1; LGALS3BP; NRP1; CLIC4; ARPC1A; 

HDLBP; EPRS; DCAF7; MT2A; PHGDH; PHLDA1; 

TNS3; ABCC3; DUSP5; DESI2; FNDC3B; FSCN1; 

TOP1; ERGIC3; RABL6; MAGED1; TACSTD2; 

UAP1; OAZ1; PLD3; TM9SF3; GANAB; DNPEP; 
MDH2; SLC52A2; HMGA1; CCT6A; FKBP1A; 

MARS; PLXNB2; SDC1; CALM3; ATXN10; 

SERINC3; NFE2L1; GRINA 

RUNX1 
Knockout 

1.3E-08 ERO1A; DPY30; SERP1; AP3S1; F2R; 
CNPY2; DYNLL1; PDIA6; PSMA5; PSMA4; 

PKM; DYNC1I2; PSMD14; SAR1B; 

TMEM165; PSMB7; PGRMC1; PRDX1; 
EMC2; SPTSSA; NPM1; MANF; ARCN1; 

SPCS2; CDK1; MAD2L1; TNFRSF13B; 

SLC35B1; SSR2; BHLHA15; LAX1; 
KDELR3; LRRC59; DERL3; LMAN2; 

TNFRSF17; SEC11C; SDF2L1; HSPA5; 

PYCR1; ASNS; TXNDC17; ARL1; PSMB6; 

PTCH1; CYCS; SDF2; ANXA2; ANXA5; 

PPIB; HSP90B1; FAM213B; VAT1; CALU; 

CSE1L; HMGB3; MSANTD4; GCSH; LAPTM4B; 
NUF2; VPS35; SMIM15; SSR3; MRPS18C; HAUS1; 

ARMCX3; IMMP1L; ARMCX2; PPA1; CKS2; 

ASF1A; PCNA; POMP; ABRACL; COX7A2; LAGE3; 
SKA2; TCEAL8; CCNB1; TCEAL9; NDUFA9; 

CYB5A; MTX2; RDX; NDUFA1; DSTN; SHCBP1; 

FMNL2; CDK4; ITM2A; SPC25; IGHM; FEN1; GFI1; 
LRR1; NCAPG2; ALDH1L2; PIK3CG; JCHAIN; 

CKS1B; GLIPR1; EXO1; MRC1; PBK; PHGDH; 

CHAC1; PHLDA1; ACOT13; SND1; NME1; SLC7A5; 

MTHFD2; SLCO4A1; KIFC1; FAM173A; CRELD2; 

SMPDL3B; FAM72A; SELPLG; SLC1A4; NFIL3; 
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Table 6-10 | Tables shows differentially upregulated genes in ASCs that are known to be upregulated as a 

result of TF inhibition/downregulation/loss of function mutation (cont.) 

Transcription 

Factor 

Adj p-

value 

Genes of Interest Others 

TNFAIP1; TMEM147; TMED3; GPX3; 

MOGS; TRIB3; ATF5; RPN1; FAM129B; 

XBP1; CALR 

GMDS; CCR10; TG; EVI2A; PSAT1; POU2AF1; 

ALDH18A1; IFITM1; SLC39A8; PRMT1; CCNA2; 

LAP3; RPS27L; HNRNPLL; NDFIP1; SLC16A1; 
PDHA1; BLMH; MKI67; TMEM223; BASP1; GNL3; 

SUB1; TIMM8B; NDUFA2; EIF2S2; ZWINT; GPN3; 

CENPF; BTG2; CLIC4; CSRP1; IER3; HIST1H1C; 
ABCC3; DUSP5; NEAT1; REXO2; TUBB2B; 

ZC2HC1A; GARS; TRIB1; TACSTD2; SLC3A2; 
SLC7A1; SRM; LRRC8D; KCNN4; LCMT1; 

OSBPL3; CCT6A; AIMP2; MARS; IARS 

YBX1 

siRNA 

1.8E-08 ERO1A; ATP2A2; FADS2; BSG; CAPN2; 

CTSD; FADS1; PGM1; CTSB; PDIA3; 
TMED9; ALG9; ANXA2; GPX3; ANXA5; 

PDIA6; LSS; PDIA4; TAPBP; PSMA6; PKM; 

LRRC59; VCP; TMED10; HM13; FAM129B; 
FUT8; PSMB2; PRDX1; LMNA; MCL1; 

HSPA8; NPM1; SEC24A; HSPA5; GALNT2; 

GFPT1; SURF4; DHCR24; ARCN1; VEGFA; 
NCEH1; STT3A; DHCR7; P4HB; CALR; 

STT3B; SEC24D; PLOD3; HS2ST1; NDST1; 

TIMP2; SELENON; GRN; HACD3; 
HSP90B1; CAV2; PPT1 

ITGB1; CLIC4; CSE1L; ECI2; HDLBP; EPRS; 

DCAF7; MT2A; LGALS1; ANXA6; PHLDA1; IER3; 
CCT3; DUSP5; SSR3; FNDC3B; ATP1B1; DNAJC5; 

GARS; TOP1; S100A9; UAP1; E2F7; MPZL1; YARS; 

PPIL1; HMGA1; DSTN; CCT6A; HOOK1; MARS; 
PLXNB2; CALM3; IARS; EIF3C; NFE2L1; LAMC1; 

LAPTM4B; LAMP2; KIF1B; TNS3; ATP6V0E1; 

ARHGEF12; NCBP2; SUB1; TRIB1; CRK; NXN; 
NLN; PPP2CB; PGRMC2; CDKN2C; REEP3; GRINA 

CREB1 

Depletion 

2.4E-08 ARF4; TRAM1; PLOD3; SEC61G; CAPN2; 

UFD1; AP3S1; CTSB; ANXA2; SSR2; MIF; 
DYNLL1; PDIA6; TMEM258; SELENOS; 

PPIB; CEBPB; HACD3; HSP90B1; SOCS2; 

PRDX4; SEC31A; MCL1; HSPA8; STIL; 
SDF2L1; HSPA5; YIPF5; GFPT1; DHCR24; 

ARCN1; CALU; P4HB; LPIN1 

IFITM1; TMEM41B; ARPC1A; TMEM181; CPOX; 

TMEM97; ENO2; TMEM263; TRMT112; LAPTM4B; 
MAP1LC3B; LGALS1; PHACTR2; TRIM27; IER3; 

CMC2; NEAT1; SLC7A5; TMX2; CKS2; SAMSN1; 

TSPAN31; RAP1A; PDZD11; NDUFV3; RABAC1; 
RAB4A; RRM2; RAB27A; TM9SF2; UQCRQ; 

NDUFAB1 

PAX5 

siRNA 

Knockdown  

3.4E-08 CHPF; ITGB5; CCDC47; APMAP; BSG; 

TMED3; TIMP2; TMED2; PMEPA1; CTSD; 

CTSB; PDIA3; TMED9; ANXA2; SSR2; 

PDIA6; PDIA4; PKM; CANX; PPIB; 
LRPAP1; GRN; VCP; TMED10; RPN2; 

HM13; RRBP1; GLG1; HSP90B1; PSMB4; 

PRDX1; LMAN2; STOM; CD59; SPTSSA; 
NPM1; HSPA5; GALNT2; M6PR; CALU; 

CALR; STT3B; P4HB; RTN3; SHC1; SEL1L; 

SERP1; RACGAP1; AP2B1; CTDSP2; 
TNFRSF13B; CITED2; TMED1; GPX7; 

WIPI1; LAX1; LEPROT; MVP; GLT8D1; 

UBE2J1; CHST12; TNFRSF17 

LGALS3BP; ITGB1; NRP1; LAPTM4B; BASP1; 

LAMP2; ATP6V0E1; SSR4; HSBP1; ATP1B1; SND1; 

SLC7A5; TOP1; CD63; IFI6; TACSTD2; SLC3A2; 

MESD; GANAB; EPCAM; ISG15; FKBP1A; 
SCCPDH; REEP5; EIF3C; CYB561; NFE2L1; 

SLC44A1; LIMA1; CCNB1; ALCAM; NEK2; 

METTL7A; CCT3; DUSP3; ARHGEF12; SLC11A2; 
TM9SF2; ANLN; TP53I3; CKS2; CALM3; GARS; 

ICAM2; IFI35; ETFB; PIK3CG; JCHAIN; LAMP3; 

ANXA6; KIF13B; ACP2; TNS3; HERC6; PCMTD1; 
ZBP1; ENTPD1; DESI1; ZBTB38; HRASLS2; 

CARD16; TRIB1; VGLL4; HIST1H2BD; SLCO5A1; 

CD99L2; STX11; NFIL3; CCR10; CRIPT; ISG20; 
EVI2A; HIST1H4H; GALM; TMEM19 

ZEB1 

siRNA 

9.4E-08 PLOD1; NDST1; FADS2; BSG; SEC62; 

FADS1; PDIA3; ACSL4; FNDC3A; PDIA6; 

PDIA4; KDELR2; PPIB; COPB2; RTN3; 
COPA; VCP; TMED10; RPN2; SHC1; RPN1; 

GLG1; HSP90B1; PRDX1; SSR1; MCL1; 

SEC31A; HSPA8; HSPA5; SURF4; DHCR24; 

BST2; CALU; CALR; ITM2B; TRAM1; 

ITGB5; ATP2A2; MIA3; SEC61A1; UCHL1; 

TIMP2; TMED2; CTSD; CTSB; ANXA2; 
CKAP4; RCN1; PKM; CANX; GRN; RRBP1; 

FAM129B; LMAN1; STOM; CD59; NPM1; 

TMEM30A; P4HB 

IFITM1; HDLBP; ALCAM; BASP1; LAMP3; 

ATP1B1; MAGED1; NDUFV3; RDX; HMGA1; 

ISG15; SPART; SYNJ1; MDM2; PLXNB2; IARS; 
NFE2L1; ITGB1; LGALS3BP; CLIC4; SLC7A11; 

GLIPR1; CSRP1; PHACTR2; ARHGEF12; CD63; 

IFI6; SLC3A2; TM9SF3; LIMA1; GANAB; MAT2A; 

APOL1; PDLIM5; SLC16A1; TM9SF2; EIF3C; 

GRINA 

BCL11A 

Knockout 

2.0E-07 ALAD; PNP; BSG; SEC62; TMX1; BIRC5; 

VCP; ABCB6; FOXO3; CLCN3; PRDX2; 

CREG1; UBE2C; CDK1; CPEB4 

BTG2; CPOX; IFI35; MKI67; PEPD; SMC2; CKS1B; 

NADK2; MAP1LC3B; NUF2; PBK; NUSAP1; 

CHAC2; TMEM14C; IFRD2; TALDO1; CCNA2; 
PLA2G16; CCNE2; HMBS; DEPDC1; CKS2; MTFR1; 

HIST1H2BC; NDUFB9; FECH; SLC43A3; CDCA8; 

SLC3A2; MFF; FAM117A; CCNB2; CCNB1; 
KCNN4; ECT2; CYB5A; SLC16A1; RRM2; 

EIF2AK1; ISG15; ARID3A; EIF2S2; AZIN1; SP3; 

GCLM; SERINC3; SSBP3; CDKN3; GRINA 

MYC 

Silencing 

Knockdown 

4.1E-07 KDELR1; PLOD3; MAGT1; UCHL1; 

SEC61G; BSG; CAPN2; PDIA3; TMED9; 

ANXA2; ANXA5; ARFGAP3; PDIA6; 

PSMA4; PKM; NPC2; CSNK2B; DNAJB11; 

PPIB; PSMD10; DYNC1I2; PSMD14; SHC1; 

ITGB1; CYFIP1; BRK1; LAMC1; MT2A; 

MAP1LC3B; CSRP1; ANXA6; HMGN3; IER3; CCT3; 

ATP6V0E1; TALDO1; ARMCX2; FSCN1; CRELD2; 

ALDH9A1; CD63; PCNA; TM2D2; MAGED1; 

SELENOF; CRYZ; PPP2CB; TCEAL9; GINS1; 
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Table 6-10 | Tables shows differentially upregulated genes in ASCs that are known to be upregulated as a 

result of TF inhibition/downregulation/loss of function mutation (cont.) 

Transcription 

Factor 

Adj p-

value 

Genes of Interest Others 

HACD3; HSP90B1; PSMB4; MCL1; HSPA5; 

TMEM230; OSTC; CALR; ITM2B; ITM2C; 

LIMS1; ARF4; TIMP2; PDIA4; PSMA6; 
DAD1; CEBPB; CD59; TMCO1; P4HB 

HMGA1; DSTN; ISG15; ZWINT; FKBP1A; RCAN1; 

MAGED2; ATXN10; GCLM; ARPC1A; LGALS1; 

BASP1; MT1HL1; ATP1B1; GBP1 

IKZF3 

Knockdown 

1.2E-06 CHPF; ITGB5; TNFSF13B; PYCARD; 

RNF115; PNP; PIM2; KIFAP3; MAP2K2; 
TAPBP; TPST2; PREPL; MGLL; TMED10; 

PARM1; MVP; FGL2; HTRA2; RRBP1; 

FAM129B; ORMDL3; MGAT3; ST3GAL2; 
CRTAP; PTCH1; CFLAR; DHRS3; ITM2C 

LGALS3BP; SLC44A1; TMEM131L; TRAM2; 

PIK3CG; LGALS1; ZMIZ1; BASP1; TNFSF10; 
TIMM17B; TNS3; PLS1; DUSP5; CD300A; REXO2; 

SND1; RRAGD; LAP3; CARD16; TRIB1; S100A9; 

BLVRA; ATP6V1A; STAU2; PAPSS1; STK3; 
LIMA1; CXCR3; RABAC1; MPZL1; APOBEC3G; 

IDH2; BSPRY; GALM; TMEM19; MSRB1 

KLF9 
Deficiency 

2.1E-06 KDELR1; TMEM147; CCND2; CASP3; 
ANXA2; MIF; PSMA5; NPC2; DAD1; 

CSNK2B; GRN; VCP; ABHD4; GSTP1; 

RPN1; PSMB6; PSMB4; PSMB5; HSPA8; 
PSMB8 

NDUFA11; CISD1; ETFB; COX6A1; MT2A; 
LGALS1; BANF1; ACADM; SLC39A4; CBR1; 

AKR1A1; TALDO1; H2AFV; SDHC; NME1; ACTA2; 

SMDT1; NDUFS8; NDUFS7; PPA1; FDX1; UQCRC1; 
MPND; PFDN6; ANAPC13; NDUFB9; NDUFB7; 

SLC3A2; OAZ1; COX5A; PAPSS1; PRPSAP1; 

SAMM50; DNPEP; NDUFV3; CDR2; GSTM3; 
NDUFA8; MDH2; NDUFA3; NDUFA1; ACO2; ADA 

KLF2 

Knockdown 

2.3E-06 TMEM147; PSMD4; PSMD1; PIM2; ALG8; 

ANXA2; DYNLL1; PSMA6; PSMA1; 

HACD3; PSMB6; PSMB4; PSMB5; PRDX1; 
HSPA8; PSMB8; TMEM230; BST2; PPT1; 

STUB1 

INTS13; FASTKD1; NDUFA12; MRPL36; ETFA; 

MRPL42; RGS1; NUSAP1; ME2; HMGN3; 

TMEM14C; CCT3; PRMT1; TALDO1; SDHD; 
HAUS1; SCO2; NDUFS5; RRAGD; CKS2; TOP1; 

ATP6V1A; NDUFB9; CLDND1; NDUFB3; IFI6; 

COX7A2; OAZ1; CRYZ; CCT7; NDUFA8; RRM2; 
MDH1; UQCC2; NDUFA3; ISG15; RRP1B; 

DNAJC15; EIF2S2; COPRS; RPIA; RNF149; PFKM; 

AARS 

NR2C2 

Knockdown 

2.5E-06 DCTN3; TXNDC17; PRDX2; PSMB4; BSG; 

AP3S1; OST4; PRELID1; ANXA2; ANXA5; 

MIF; PRDX6; STUB1 

CUTA; ZNF593; ECHS1; PCNA; NDUFA11; NAXE; 

NDUFB11; AKR1B1; RPS27L; NDUFB1; COX7A2; 

MRPL37; UQCR10; COX6A1; OAZ1; ATRAID; 

UBL5; LGALS1; RAP1A; MCRIP2; CHAC2; BANF1; 

SSR4; GSTO1; NDUFA3; NDUFA1; ATOX1; NME1; 

MZT2A; UQCRQ; UQCRC1; MCM6; PHPT1 

ARNTL 

Knockdown 

3.7E-06 ALAD; CHST12; TIMP2; UBE2C; PLK1; 

ESCO2; KIF22; CTH; CDK1; BIRC5 

LGALS3BP; CDCA3; SOWAHC; CDCA5; CDCA8; 

HDDC3; AURKB; IGKC; NFIL3; IMPA2; NUF2; 

NUSAP1; PBK; BUB1; CENPW; RRM2; GOT1; 
MLKL; FAH; HDHD3; SHCBP1; CCNA2; ACTA2; 

MELK; MTHFD2; TMEM56; HIST1H4H; 

HIST1H2BH; SPC24; ASF1B; SPC25 

EZH1 
shRNA 

1.3E-05 LITAF; MPO; FADS2; SERP1; APMAP; 
GUSB; CTSD; PDIA3; SSR2; PDIA6; LSS; 

PKM; NPC2; CANX; PPIB; LRPAP1; GRN; 

COPA; RPN2; ATF6B; GSTP1; SLC38A10; 
GLG1; MTDH; HSP90B1; UBE2J1; CREG1; 

LMNA; SSR1; MLEC; STOM; UGGT1; 

MCL1; HSPA5; SURF4; M6PR; DHCR24; 
CFLAR; STT3A; NUCB1; P4HB; CALR; 

COPE 

ITGB1; SLC44A1; WIPF1; GFI1; HDLBP; TXNDC12; 
EPRS; MKI67; DCAF7; LMNB1; LGALS1; BASP1; 

LAMP2; ANXA6; IL6R; CPT1A; ITGA4; MTHFD2; 

LCP2; CD63; H6PD; ABHD2; HSD17B4; 
ARHGAP18; OAZ1; PLD3; MAT2A; METTL7A; 

YARS; GSTM3; SEPT11; AZIN1; TM9SF2; CENPF; 

NCAPD2; CALM3; PTPN7; FERMT3 

ELF4 
Knockout 

1.4E-05 GRN; ARL3; MAGT1; HSP90B1; PRDX3; 
PRDX2; PSMB4; SERP1; PIM2; SEC61B; 

AP3S1; HSPA8; TMED9; HAX1; CTH; 

CANX; P4HB; RNF187; FLOT1; TRIM25; 
CTSD; PSENEN; ST6GAL1; F2R; MOGS; 

PSMA5; CTDSP2; UNC50; PPIB; RTN3; 

RPN1; ZMPSTE24; PSMB5; SPTSSA; MCL1; 
PRELID1; NPM1; SRP68; SPCS1; PSMC4; 

IMPDH1; ITM2B 

MFF; ALDH1L2; OAZ1; STX11; AIFM1; BASP1; 
NDUFV3; PRKACA; IER3; CYB5A; NDFIP1; CISH; 

ATP6AP2; SSR3; GZMB; ELL2; CCT6A; GATM; 

ARMCX2; MTHFD2; PSAT1; ITM2A; NOP10; FEN1; 
WIPF1; IFI35; JCHAIN; SPN; ACADM; IGLC2; 

AKR1A1; TALDO1; ATP1B1; PLA2G16; NDUFS7; 

CCNE1; S100A9; SELPLG; PCNA; DMAC1; 
NDUFB11; HSD17B4; PLD3; CIAO1; FAM117A; 

PRPSAP1; CXCR3; KCNN4; ATP6V1D; MCTS1; 

MDH2; DNAJC15; DAP; CDK4; CD28; RGS10; 
BLMH 

YY1 

Knockdown 

1.8E-05 PLOD3; PSMD8; PYCARD; BSG; PGM3; 

SDF4; FBXO6; SEC62; CTSB; RNF121; 
MVP; PSMB5; MGAT1; SEC31A; WFS1; 

PQLC3; GLA 

CCDC167; PECR; NUDT1; NENF; PPP3CB; 

MAP1LC3B; PRADC1; PBK; NUSAP1; OIP5; 
HERC6; TRAPPC2L; MRPS24; DESI2; CARHSP1; 

SELENOM; NDUFS7; MT1F; CUTA; LY96; SLC1A4; 

SKA1; TMEM70; BCL2L13; E2F2; LCMT1; 
SLC31A2; RAB27A; COQ9; NMRAL1; ISG20; 

SPSB2; PNKD; NCAPD2 

CHD1 

Knockout 

3.6E-05 ITGB5; GPAA1; PLOD3; ATP2A2; 

SEC61A1; BSG; PMEPA1; TMED2; CTSD; 

CLIC4; ARPC1A; HDLBP; DCAF7; ALCAM; 

PHGDH; TMED4; HIST1H1C; CCT3; SND1; 
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Table 6-10 | Tables shows differentially upregulated genes in ASCs that are known to be upregulated as a 

result of TF inhibition/downregulation/loss of function mutation (cont.) 

Transcription 

Factor 

Adj p-

value 

Genes of Interest Others 

PDIA3; SSR2; PDIA4; HAX1; PKM; 

TMEM33; CTDSP2; CANX; TRIB3; PPIB; 

ATF6; COPA; VCP; RPN2; MVP; RPN1; 
SEL1L; FAM129A; HACD3; PRDX2; LMNA; 

MLEC; HSPA8; HSPA5; PYCR1; P4HB; 

CALR; RNF187 

SLC7A5; UQCRC1; ERGIC3; S100A9; CD63; 

ABHD2; SLC3A2; OAZ1; SLC7A1; FAM83H; 

GANAB; MDH2; HIPK2; CDK4; MARS; PLXNB2; 
NCAPD2; IARS; ACO2; AARS; GRINA 

FOXP1 

Knockdown 

7.3E-05 CSTB; PSMD14; UBE2J1; PSMB6; 

TMEM147; HSPA5; UBE2C; DYNLL1; 

PSMA4; SPCS1; CDK1; NAA38; BUB1B; 
RACGAP1; ANXA5; ASNS; DERA; CENPE; 

TBL1XR1; ITM2B 

NDUFB9; MTCH2; PCNA; NDUFA12; LRR1; 

COX7A2; COX6A1; OAZ1; JCHAIN; CKS1B; UBL5; 

BASP1; LRRC8D; SMCO4; DLEU2; CCT7; 
CHCHD1; CDR2; POLR2L; GINS1; DARS; RRM2; 

TALDO1; NME1; CCT6A; CCNA2; TMX2; BOLA3; 

BOLA2; NDUFAB1; TCEA1; GARS; NOP10; 
CDKN3; SLC44A1; NCAPG2; NCAPG; AK3; BRK1; 

SAMSN1; TMEM263; PAPSS1; ALCAM; NUSAP1; 

BLNK; ACADM; ME2; TMEM14C; CENPU; RFC3; 
RFC4; H2AFV; NEAT1; SHCBP1; ZWINT; HAUS1; 

ASPM; EML6; MELK; SUB1; POU2AF1; TCF4; 

IARS; ATXN10; OGT 

RC3H1 

siRNA 

1.2E-04 PIGT; HERPUD1; PSMD8; CTSD; PSENEN; 

PDIA3; ANXA5; DYNLL1; PDIA6; PDIA4; 

RCN1; TMX1; PPIB; LRPAP1; GRN; 
TMEM165; HSP90B1; PRDX2; PGRMC1; 

PSMB4; PRDX1; HSPA8; PRELID1; 

GALNT2; DHCR24; PSMC4; IFT27; CALR; 
P4HB; ITM2B; RNF187 

SMARCB1; GMNN; HDLBP; AKR1B1; CCNC; 

COX6A1; UBL5; GUK1; EIF5B; HSBP1; H2AFV; 

CKS2; TTLL12; TOP1; ERGIC3; RABL6; ECHS1; 
NAXE; POLDIP2; COX7A2; TYMS; OAZ1; DPCD; 

HSD17B10; TM9SF3; CCNB1; POLR2E; BRD8; 

MDH2; UQCRQ; CDK4; PLXNB2; MAGED2 

SUZ12 

Knockdown 

1.5E-04 VCP; RRBP1; PRDX2; BSG; MLEC; CTSD; 

PGM1; HSPA5; SURF4; SIGMAR1; PYCR1; 

DHCR24; AP2B1; PDIA6; PKM; IMPDH1; 
CANX; CALR; P4HB; RNF187 

ATP6V1A; MAGED1; HSD17B4; FOXM1; TM9SF3; 

LMNB1; MYBL2; EIF5B; MDH2; DESI2; H2AFV; 

CSNK1E; LARP4; TUBG1; SND1; CDC25A; 
SLC7A5; TXLNA; FSCN1; CALM3; BLMH; TOP1; 

EIF3C; S100A9 

USF1 

Knockdown 

1.9E-04 CITED2; FKBP14; TECR; PYCARD; 

MAP2K2; GOLPH3L; FNDC3A; LAX1; 

PDIA4; PKM; COPA; LEPROT; INSIG2; 

MYO6; PA2G4; GLA 

NRP1; SLC44A1; CEP19; NUDT1; DCAF7; JCHAIN; 

SMCO4; ENTPD1; IL18; TUBG1; LZTFL1; TWSG1; 

IRF4; CPTP; MZB1; TRIB1; PAFAH1B3; VGLL4; 

BCAT2; CUTA; FOCAD; ECHS1; MAGED1; 
SLCO5A1; GSTT1; FOXRED1; SRM; NFIL3; 

NT5DC2; GBP1; PCK2; AZIN1; LPAR5; UBAP2; 

GALK1 

IKZF1 

Mutation 

2.0E-04 KDELR1; AP3S1; COG6; KIF22; PKM; 

GSTP1; STOM; SPTSSA; NPM1; HSPA5; 

PYCR2; VMP1; ITM2B; ITM2C 

LGALS3BP; ITGB1; ACAA2; HDLBP; BRK1; 

UBE2L3; LAPTM4B; WDR92; PHLDA1; CPT1A; 

GLRX3; PRMT1; LMO4; AKR1A1; TUBG1; INPP4A; 
SLC7A5; NDUFB5; CCNB2; IGKC; MAT2A; 

NT5DC2; ISOC1; DCAF12; TMEM176B; 

TMEM176A; GPN3; DAP; RSPH1; CDK4; PSAT1; 
RGS10; UBAP2; ACO2; EIF3C 

RARA 

Knockdown 

6.2E-04 ARF4; PMEPA1; TMED9; ANXA2; PLSCR1; 

PSMA4; NPC2; CSTB; GRN; CEBPB; 

TMED10; RPN2; EMC2; XBP1; DHCR24; 
DHRS3; PSMB8; BST2; SCD; GLB1; P4HB; 

ITM2B 

LGALS3BP; IFITM1; LAPTM4B; BASP1; 

PHACTR2; TMEM189-UBE2V1; ATP6V0E1; PPA1; 

GPR160; S100A9; HIST1H2BD; HIST1H2BC; CD63; 
EPAS1; IFI6; SELENOF; ABRACL; OAZ1; EPCAM; 

ATP6V1D; MDH2; BIK; RDX; DSTN; ISG15; 

SCCPDH; REEP5; CYB561 

MBNL1 

shRNA 

2.6E-03 VCP; SEL1L; HSP90B1; GOLGA4; PRDX1; 

CAPN2; FADS1; MCL1; NPM1; ANXA2; 

HSPA5; CAV2; ACSL4; DHCR24; PDIA6; 
ARCN1; PDIA4; VMP1; DNAJC1; PSMA4; 

PKM; ACO1; CALR 

ARPC1A; HDLBP; TARS; EPRS; LIMA1; MT2A; 

ALCAM; ANXA6; ECT2; DLGAP5; ANKRD28; 

FDPS; DARS; ARHGEF12; ZBTB38; RDX; RCAN1; 
REEP5; SUB1; GARS; BCAT1 

KMT2A 

Knockout 

2.6E-03 ERO1A; DPAGT1; TRAM1; PSMD8; 

PMEPA1; TMED7; NPM1; ANXA2; ANXA5; 
F2R; SIGMAR1; KIF23; MIF; DHRS1; 

PRDX6; PKM; HID1; FADS1; ASNS; VEGFA 

CYFIP1; HSPB6; CSE1L; MKI67; SMC2; CCNB2; 

MT2A; ALCAM; BASP1; ME2; ECT2; TNS3; BUB1; 
IER3; TMEM176B; ZBTB38; TMEM176A; CCNA2; 

ANLN; UCK2; TUBB2B; DPY19L1; PSAT1; 
MYADM; SLC44A1; ALDH1L2; AURKB; DUSP14; 

CEP55; GAS2L3; GOT1; IDH2; ATP2B4; ACTA2; 

ALDH18A1; IARS; ITM2A 

SATB1 
Knockdown 

6.3E-03 ABCB6; SAR1B; MANEA; ERC1; PGM1; 
SEC24A; ATP8B2; F2R; ELOVL6; KIF23; 

DERA; VEGFA; RCN1 

RBM47; CDCA3; EPAS1; TULP3; SLCO5A1; 
COPS7A; COX5A; DUSP16; BCL2L13; MCEE; 

IMPA2; MAP7; GNPNAT1; BPNT1; SLC25A20; 

HMGN3; CTNNAL1; NDUFA9; CPT1A; GSTO1; 
IDH2; ATP2B4; RAB27A; ATP1B1; ETV6; DHRS7; 

MRPL51; UQCRQ; PCCB; NCAPD2; NUP62CL; 

GPR19 
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Table 6-10 | Tables shows differentially upregulated genes in ASCs that are known to be upregulated as a 

result of TF inhibition/downregulation/loss of function mutation (cont.) 

Transcription 

Factor 

Adj p-

value 

Genes of Interest Others 

NR3C1 

Knockdown 

9.1E-03 INSIG2; MVP; DERL1; RRBP1; PLOD1; 

NOD2; TNFSF13B; FUT8; LMAN2; 

ORMDL3; TNFRSF17; LNPK; PGM1; 
JAGN1; PSMB8; TAPBP; NCEH1 

NDUFB9; CDCA2; TXNDC9; CSE1L; QPRT; 

ARHGAP19; TTK; SKA1; TRIM69; HERC6; 

PCMTD1; HIST1H1C; CCDC51; CCT3; CBR1; 
TIMMDC1; APOBEC3G; HRASLS2; DNAJC12; 

HCFC2; CARHSP1; TMEM106C; FSCN1; ZNF557; 

GALM; OGT; VGLL4 

 
 

   

Table 6-11 | Novel components uniquely upregulated in ASCs identified by proteogenomic analysis. (Cont.) 

Gene Symbol (Total 1204) 

KIF4, JCHAIN, TMEM97, CLPB, SELENOK, FOCAD, TJP2, NCAPG, PVR, EVI2A, PA2G4, PPFIBP2, PI4K2B, CDC45, ALDH7A1, 
GLA, FADS1, PIGK, CCDC167, GMDS, CHEK1, CDC20, DTL, MYDGF, NME2, TPX2, FAH, MGAT1, TECR, GOT1, PSAT1, 

TUBA1C, NT5DC2, CDCA3, KIF20A, HMMR, GSTO1, CKAP2L, IMPA2, FAM129A, AURKA, SLC1A4, MRPL37, TECPR2, SPC25, 

TK1, CDCA2, IQGAP3, TYMS, BRIP1, ST7, PFKM, NAPA, ARFGEF3, GLCCI1, WWOX, KIF22, FLT3, ESCO2, ENTPD7, SAPCD2, 
ALDH1L2, E2F8, KIF11, UBE2C, NEIL3, TMEM263, RAB39B, PIK3R6, FTSJ1, KIF18B, MELK, OAT, NAA20, DIAPH3, 

TNFRSF13B, MCM10, KIF2C, MLKL, GAS2L3, PLXNB2, COPZ1, PIGT, SLC7A1, HJURP, PBK, ARL1, GLCE, RAD54B, TXLNA, 

LRR1, SLC43A1, SLC30A6, IBTK, YIF1B, TMED5, CCNE1, DHCR24, CINP, ALG8, DNAJB12, PCLAF, TMEM33, SOWAHC, NXN, 
HASPIN, GNL3, EIF2A, ETV6, TXNDC15, MSANTD4, AMPD2, CYP20A1, PSMB2, RHEB, PRDX1, MRPS34, SPC24, PLXNA1, 

NME1, DDB1, EYA3, MRPL13, TRIM32, ATG4A, LY75, MINPP1, MRPL20, ANAPC5, GSPT1, BCAT1, NDUFAF2, UQCC2, 
CCDC88A, PSMB6, HEXIM2, MCRIP2, MRPS2, RDH11, COG4, AUH, PSMB5, ORMDL2, MRPL17, PABPC4, TMED1, PDE4DIP, 

NDUFB9, AAMP, CLPTM1, VPS25, EIF3C, SPG20, CLDND1, EIF2B4, PSMB7, TMEM41B, DCUN1D5, SCFD2, ADRM1, LNPK, 

SLC6A4, CALML4, DNAAF1, SCIN, CFAP46, RGS5, HIST1H2BG, TMEM167, CD59A, MCTS2, PLPP5, UBL5, GMPPA, NACC2, 
SLCO4A1, PISD, SLC5A2, SELENOS, TRP73, MGLL, TCEAL9, SSPN, TBC1D24, GPR155, TXLNB, GMPPB, EEF1AKMT3, 

FAM129B, GTSE1, EXO1, CEP170B, VEGFA, TMEM205, BSCL2, OSBPL3, TACC2, NCAPH, GCAT, CCNE2, THBD, MVB12B, 

NUGGC, CST3, GM20388, PLCD3, SKA3, TWSG1, KCNMA1, GLMP, CPTP, ALDH3B1, SOCS2, MARVELD1, PCDH15, CCNB1, 
LMNA, PKM, BMI1, SLC1A5, PTPN21, PLEKHF1, PEX11G, RAB2A, CLIC5, CSGALNACT1, YES1, CDK1, DLGAP5, SGO1, 

PRSS16, KIFC1, NRP1, SUB1, MYO6, LAPTM4B, MANSC1, CFLAR, PRR11, PLK1, BOLA2, NOL3, NEK2, CDC6, CORO2A, 

ASF1B, BRCA1, CCNA2, UNC13B, CKB, ENTPD4, RAD51, CAPN2, SGO2A, PSRC1, MAGED2, GPRC5D, TOX2, CEP55, GPX3, 
NCKAP1, SPRED3, AURKB, EPAS1, CST6, GNG12, ABI2, FAM114A1, ASS1, CCNB2, MAOA, IL15RA, RECQL4, CDCA8, H2-

T23, LRP8, ESPL1, ITGB6, BIRC5, GPR19, ABLIM2, FKBP14, ANLN, NCAPD2, PCBD1, FUOM, KCTD21, GINS2, CACNG6, KLC3, 

MAD2L1, TM9SF4, EHHADH, MELTF, EIF3J1, LDLRAP1, UBE2T, SETD3, MGST2, TTK, DHFR, CD274, ARHGAP11A, SCAMP2, 
FAS, SDF2, SLC7A3, ORC1, PDIA5, GPNMB, PKP2, ASRGL1, MYBL2, ETL4, TICRR, AIG1, CYB561, BMP6, BUB1, CNKSR1, 

BIK, IFT122, SEC61G, ATXN1, TRIP13, DCLRE1A, THYN1, H2-K1, MT2, LTBP3, BMPR1A, SEC14L2, CDKN3, TCTN3, 

TMEM141, STT3B, NEK6, SHCBP1, HIRIP3, ENPP6, ATP2B4, XK, CERCAM, FAM83D, NFIL3, DCAF12, CDK2AP2, SPOP, 
DTYMK, LTBR, FAM162B, GINS1, LGMN, CDC25C, PYCARD, EPN2, MBOAT2, EMC4, KDELC1, ULBP1, MAN1C1, CLN3, 

ECT2, DUSP26, PCGF5, GOLGA5, CCR10, COMMD3, ACP2, 5730409E04RIK, PHLDB1, MGAT3, MPI, ASPM, PCX, ZNHIT1, 

NCALD, DEPTOR, PNPO, EMP1, TMEM106C, SLC39A8, 1810055G02RIK, HSPB6, SYNDIG1L, ZC2HC1A, RAB4A, UBE2S, 
SLC7A11, YIF1A, TMEM256, SERINC3, SHB, SMOX, NDUFS5, PCNA, SWI5, LEPROT, DSTN, DARS, COX17, ITPRIPL2, 

ATRAID, AUNIP, SUMF2, GM17018, MTFR2, MOGS, PTGR1, KAZALD1, HIBCH, MGAT4B, TMEM255A, ARMCX2, NOD2, 

WDR62, PGAM2, ANG, 1110032A03RIK, MCPH1, ST14, SLC22A15, GIGYF2, CAMSAP1, ARL3, EDF1, ITFG1, PIPOX, PIF1, 
SLC11A2, KIF14, KNSTRN, RNF181, GALK2, FTL1, LCA5, TMED7, 1110004E09RIK, B9D1, SEPT2, SMPDL3B, PTER, NMRK1, 

GAS8, STXBP1, CEBPB, UNC50, RPS6KA2, AKR1E1, MVB12A, CENPI, RRAGD, WARS, ABHD5, CXADR, TOX3, RHPN2, 

GM20425, CRYL1, DSCC1, UGGT1, KIF23, SLC29A3, SPAG5, TEX35, POLE2, MORN2, STARD3NL, MS4A3, DHCR7, RSPH1, TG, 
PRADC1, KNTC1, LIMS1, EHD4, ITGA3, MAP2K2, CRELD1, 6430548M08RIK, DOLK, DLG3, CD63, ALG3, QTRT1, CMC1, 

1700047I17RIK2, MARC2, TARSL2, CSNK2A1, ETFA, ACSS2, RIMKLA, RNASE4, TESC, HELB, RER1, NDUFA4, AIFM2, HYKK, 

LOXL3, SEPT8, XRCC3, TMEM107, UNG, GOLGA1, PLXND1, CUTA, FECH, MCEE, YTHDF1, SHISA4, IPO4, PIMREG, ALG9, 
NDEL1, ETNK1, SHQ1, UBE2L3, GOT2, FAF2, GTF2A1, CARD10, DEPDC1B, NODAL, IER3IP1, PRR5, HMGB3, MSRB1, MITF, 

PVT1, TMED4, FAM221A, NUDT9, IFRD2, NEU3, AVPI1, CENPE, FOXRED1, CYB5D2, METTL6, ASNA1, ZFPL1, PSMC2, ECH1, 

DCAF10, IPO5, TM7SF2, GART, GOLPH3L, GEMIN5, LPIN1, GPR15, BLVRA, TRMT10A, RABGGTA, GDE1, IL2RB, PLOD1, 
EXTL2, NADK2, HEATR5A, ADAP1, COMT, PIGG, HAGH, PSMA5, ACO2, IER3, PPM1H, AU040320, LPCAT3, E2F7, PRC1, 

NDUFV3, ATG5, CEP19, EBI3, KCNAB2, FAHD2A, ANAPC13, RHBDD3, MAP3K20, VSIR, NEO1, NUDCD2, TFDP1, SHPK, 

S100PBP, AKR1B10, LZTFL1, ST8SIA4, ACADVL, NELFE, C1QBP, COL7A1, SSX2IP, TBC1D7, TBCD, E2F6, SMIM7, HSD17B14, 
CMSS1, CDCA5, CENPF, PUSL1, ATP5G3, ACOXL, PSME3, FOXO3, MICALL2, UMPS, LAS1L, MTHFSD, HIST1H2BC, MUC1, 

DAAM1, IFNA1, LMAN2L, UBXN8, BLMH, CNTNAP1, SELENOM, THNSL2, GRM1, PIEZO1, NT5C2, MIS12, PTCH1, RFT1, 

GNAS, UFD1, SAMM50, TMTC2, CDC34, PRDX2, HIBADH, FAM45A, PICK1, ETFB, COX7A2, DNAJB13, PSMC1, CASC4, 
FAM173A, IL12RB1, ATPIF1, RAB23, ISOC1, ISCA2, PSMD11, SLC35F2, GEMIN6, FITM2, UQCRQ, LYAR, ATP6V1D, DRG2, 

IL6RA, TMEM219, SLC45A4, TIMP2, EIF4G1, SDHAF4, PLCD1, TXNRD1, GSTM4, HINFP, SLC25A25, ZFP428, CLPX, PDZD11, 

DNAJC28, LRRC41, TMEM70, POP1, MRPS7, HIVEP3, ANKRD46, ACO1, DNAJA3, SURF1, RFC3, MRPS12, SAP30, CSTB, WBP1, 
RND2, TFB1M, MND1, ZFP825, ATF6B, UROD, CSF2RB2, KDELC2, FLNB, SNAP47, NGLY1, PSMC3, CTAGE5, PAPSS1, 

TNFRSF10B, XCR1, ANKRD6, HACD3, XKR8, ATP6AP2, SVIL, MTX1, CBWD1, MKRN2, PRMT7, KLHDC8B, DOCK4, SLC35B2, 

IFT43, EMC9, DNPH1, BFAR, OPA3, ISG15, EIF2B1, PRKCI, ELOC, TRPT1, SLFN9, CASKIN2, TUBG1, VSIG10, BRCA2, 
SUV39H2, REEP5, DCTN3, NDUFB6, LNP1, PRDX6, PRIM2, TKTL1, NDUFB11, TIMM17A, RAB13, DHRS3, ABCF2, NIFK, 

EIF2AK3, STIL, ATP5J, UBE2G1, AHSA1, NDUFA13, NUPR1, IKBIP, MAT2A, CRYZ, SIGMAR1, GINS3, NUDT5, GUK1, NENF, 

MRPL50, FNIP2, MCL1, PHPT1, USP54, CCT3, EIF2S1, UCHL5, PLXDC1, NCAPH2, NUDT2, LRRC28, TEX30, NDFIP2, RBKS, 
STAU1, CMC2, LUZP1, LMF2, MUL1, UBE4B, COX6A1, SELENOF, EIF2AK1, ABHD2, USMG5, PSMD6, COPS6, PPAT, TPI1, 

HMOX2, COX5A, ATP5H, B4GALT1, ALDOA, DYNC2LI1, KIF1B, 4933434E20RIK, SKA2, GRAMD3, IPP, ATAD1, IGHG2C, 

ACOT13, MTX2, NDUFA2, DTD2, NAA38, SOD1, TMEM106B, MTERF4, ENKD1, MON2, COPS4, TMED6, PSENEN, PEX11A, 

MYO5A, POLH, PSMB4, GALK1, PSMD13, NDUFA11, CHAC2, FABP3, ITFG2, MDH2, MRPL33, NAB1, NUP35, HSD17B4, 
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Table 6-11 | Novel components uniquely upregulated in ASCs identified by proteogenomic analysis. (Cont.) 

MINOS1, CCT7, PTDSS2, UBE2K, SACM1L, RNF14, NTHL1, UEVLD, GSTM5, MRPL34, DDX54, JAG1, DUSP19, PYCRL, MBD3, 

CPD, DNAJC12, ICAM1, RARS, METTL26, ATP5J2, ACACB, TIMM21, CISD1, ST6GALNAC4, RABL3, PSMD8, RAD54L, 
PSMD14, EMC1, GLRX2, UBFD1, PSPH, TUBB4B, MIA3, MRPL22, GCLM, FKBP1A, RPAP3, MRPL35, TIMMDC1, PRMT1, 

RAB6A, DHRS7B, P3H1, ZCRB1, RABEPK, MRPS14, UBL4A, TSR1, KIF18A, ELP5, ACSL4, NEK4, MRPS15, SMYD2, EIF4EBP1, 

ZFP706, MRPL53, CDK4, CIAO1, POMP, ELP4, CARM1, LSS, CNOT9, MRPL57, TIMM50, ACSL5, AIMP2, LARP1, HIGD1A, 
MRPS18A, NDUFA9, ARMC1, FAM120A, NSD2, FAM96A, AVEN, PEX19, GLS, MRPL48, PSMG1, ATP1A1, TTLL12, WDR92, 

MRPL28, MRPL16, DCTD, BYSL, ISYNA1, MRPL27, PSMD1, PSMC4, PEX14, CTH, ELP3, PSMD4, MECR, PEX3, SLC52A2, 

TOX4, DDX19A, ZCCHC9, TARBP2, GMPS, EIF4E, KDM5C, NTMT1, OGT, NLN, UBOX5, EIF2B3, MRPS5, PSMC5, DDX3X, 
CHEK2, OGFOD1, POLR3D, PREPL, LACTB2, METTL15, NDUFAF1, FNTB, MRPL18, MRPS23, MRPL58, MRPL46, TULP3, 

SLC25A17, DNAJC15, SCO2, MRPL4, RNASEH2C, NME6, FTO, SIRT4, POLDIP2, LARP4, MRPS24, DBI, AURKAIP1, EMC2, 

FZR1, RARS2, MRPL15, QSER1, TMEM129, MRPS11, CKAP5, MRPS17, TTC1, EEF1AKMT1, MRPL21, HNRNPAB, IGHG2B, 
KCNJ18, KIAA1549L, SCN9A, SLC9A4, PAK5, OR10A4, CYP2F1, TOPAZ1, OR2D3, ESRP1, TMEM200B, HEATR9, OR5R1, 

RFPL4AL1, OR4F15, SORCS1, MOBP, CBLN1, ELF3, AC092821.1, KIAA1024, U1, CYP4F12, TMEM178A, CD34, DYTN, ZNF462, 

EPHA10, ZNF750, LY6G5C, SLC6A20, UGT2B15, OR5AS1, TPRG1, ZNF804A, PNMA8A, DPCR1, CHST6, ZSCAN5A, CYP4F11, 
UNC79, KIAA1456, RGPD1, C1S, VWDE, AL161911.1, SIGLEC15, MYO15A, MSMP, NLRP2, ZNF185, KAZN, PLB1, WNK3, CA14, 

FAM209A, TNK1, AC118553.2, OR2AG1, SERPINA1, RGPD5, CA5A, RGPD8, FAM47E-STBD1, CAV1, NLRP7, FAM92B, 

MAGEC1, PTPRQ, CES1, RBMXL3, PCDHA6, AC083902.2, MUC22, CYP4F8, OR2T6, RTL1, OR10P1, CNTNAP5, C1QTNF1, CES3, 

LINGO4, SPPL2C, OR6C3, OR2J3, SPATA31D4, OR9Q1, TSHZ2, CCDC129, KRT6C, OR10D3, OR2AT4, DSG1, MAP3K15, 

OR13C3, FAM47A, TPTE2, OR52N2, DCAF8L2, OR4K5, SEPT5, BGLAP3, GFY, OR4K2, PRSS57, OR2AJ1, ADAMTS19, OR13C5, 

GSG1L2, OR51Q1, FAM47B, OR4C13, OR2L8, NPY4R2, GPR119, OR6C74, OR52K1, PCDHA4, CISH, TTLL8, SBK3, OR7G3, 
ZNF536, SLCO6A1, UGT2B17, OR5AU1, OR13H1, ZDHHC11B, TEX13C, MUC17, OR8U1, OR10A2, OR5V1, OR4C15, OTOL1, 

KCNK18, OR9A4, PCDHGB1, PCDHA13, MICALCL, ZNF205, OR1M1, OR13F1, OR4L1, MAGEB6P1, OR9G1, NEU4, TRIM75P, 

DNAAF3, OR6K3, SLC22A25, ADH1B, OR6Q1, PCDHGA6, TMC3, MAGEA10, SP9, SPATA31D1, OR4M1, OR4C46, OR52I2, 
OR10C1, PCDHGA5, PCDHGB4, OR6N1, OR9G4, PER3, OR1S1, OR51A4, OR6C6, VN1R5, TMEM151B, H2AFZ, HRNR, OR14J1, 

SPATA31D3, PCDHGB2, TP63, CYB5D1, OR4F6, TNR, OR1N2, ZNF334, MTCP1, OR1B1, OR52E4, FAM205A, TTC16, OR2AK2, 

KIAA1755, MYOC, CROCC2, AC135068.1, KRTAP29-1, KRT40, RUFY4, SERPINB4, OR5A1, LRRC30, GM867, OR9K2, RDH9, 
OR5A2, 1520401A03RIK, OR51D1, PELI3, NLRP9, CTNNBIP1, CFAP47, HOXB6, MFSD2B, HSD3B7, BORCS8, ZNF385B, OR51F2, 

DCAF12L2, TMEM253, PCDHGA12 

 

Table 6-12 | Novel components uniquely downregulated in ASCs identified by proteogenomic analysis. (cont.) 

Gene Symbol (Total 1204) 

RIPOR2, STK26, TMEM131L, AIDA, PIK3CD, IFIT2, FCMR, ARHGAP45, SLC2A3, GMIP, DMXL1, NFATC1, ZMAT1, AMPD3, 

SP110, RASSF3, LRRFIP1, ZFP639, PRKCE, TRIM7, FOXO1, FAM208A, LGALS8, CD200, PTBP3, ANKRD13A, ZFP263, VEZF1, 
ZFP518A, CD2AP, INO80, NFATC3, ZBTB5, AP1G2, DENND6A, CD79A, SLC25A24, MPRIP, STX7, BCL7A, TOP2B, ATG16L2, 

ZFP422, RXRB, MTM1, AKAP8, AP1S2, CEP135, KAT8, TRIO, PPP1R12A, AGO1, CEP68, PSD4, RABEP1, NR3C1, PDLIM2, 

MAPK14, CEP295, TCP11L2, BICRAL, ZBTB7A, PHF2, ARID4A, FMO5, PDP1, STRIP1, EZH1, ARID1A, PIBF1, NUMA1, ATXN3, 
PGM2L1, SETX, HMGN1, ZFP638, ZFP740, ARID4B, SUGP2, ARPC2, JARID2, CCDC82, NONO, AKAP8L, PEAK1, AGPAT2, 

NFATC2, DOPEY2, ZC3H6, CAMK2D, TMEM2, THUMPD1, UTRN, KANSL3, PRKX, UBA7, RBM5, ATP2A3, MSL2, ANKRD11, 

MECP2, LNPEP, YWHAZ, RPRD2, NEK9, HECA, WASHC4, NR2C2, GANC, MCTP2, USP12, CEP170, VPS13C, ARHGAP15, RP9, 
MAP4, PPTC7, SYF2, ACCS, PRR14, CNTRL, UVRAG, ILF3, IST1, TMEM63A, RBL2, DHX15, PDCD7, CPSF7, NIPBL, ANXA11, 

CREBBP, RCOR1, DENND5A, OTULIN, RYBP, ESCO1, MAP3K2, SLC23A2, NRF1, SNX6, ABCD4, DDX59, SPIN1, TAF3, 

NADSYN1, WASHC2, RAPGEF6, ZFP746, SNRK, DIDO1, KBTBD2, EPC2, SFPQ, PDCD4, NCOA1, EP400, OSGEP, CCNY, TAPT1, 
NFATC2IP, ADO, BRWD3, HACE1, TERF2, NCOR1, STK24, CCNDBP1, PLEKHM1, PHF20, EIF4A2, ODF2, TERF1, ACIN1, 

EFR3A, BRD4, UIMC1, ACSL1, EFHD2, ARHGEF7, PGLS, KAT5, HMGXB4, PITPNM2, COPG2, ZBTB24, PPP3CA, RAB21, PPIL4, 

SH3BP2, ELF2, METTL3, AFF4, GABPB1, CAPG, TRIP12, SLTM, DNMBP, FBXO41, STMN3, KIAA1683, OSBPL10, H3F3B, 
CAPZA1, HIST1H4E, L3MBTL4, LAMB1, SIAH1A, 0610030E20RIK, GDF7, MARCH1, MRFAP1, ZFP273, VMA21, CFAP44, 

CALD1, SLC4A7, DTX1, ZBTB4, I830077J02RIK, FAM129C, CRYBG1, SESN1, DENND4A, ABCA1, ZFP821, RETREG3, TTC9, 

SLC38A11, HMGB1, NLRC3, TRIM58, SLC38A1, COLGALT1, GMFB, JAKMIP1, MARCKSL1, TIMP3, ACOT2, CYB561A3, 
PITPNM1, CHML, PLEKHA2, SLC43A2, MAP3K8, RUBCNL, TEX10, PHTF2, TRAK1, CDC14A, FYN, DOCK8, TNFRSF13C, STS, 

ZFP329, MNDAL, H2-Q6, TEP1, ZFP157, ZFP512, L3MBTL3, LGALS9, SLF1, 2810021J22RIK, CD55B, MGAT5, CRIP3, AKAP5, 

ZFP65, RUBCN, UBE2R2, ADAM28, KLHL36, PIP4K2B, CCND3, R3HDM2, ZFP90, TRP53BP1, MYO9B, ZBTB14, CHKB, SEPT6, 
TMEM260, CNPY4, RETREG1, NSMF, GAB3, RELT, UHRF1BP1L, QK, CNRIP1, RNF145, BIN2, DIAPH1, DEPDC5, SIDT1, XPO1, 

DHX57, B3GNT7, USF3, CPNE1, RFX7, ZFP148, GPSM1, TES, CASP2, GATAD2A, DDX60, ANGEL2, CBFB, 9130401M01RIK, 

ATR, ITPR1, SMARCA2, CARMIL2, SMURF2, SLC39A10, CEPT1, ZMYM6, ZMYM5, ERP29, STX17, 2610507B11RIK, DUSP10, 
RUFY1, PARP6, MBTD1, GM14698, HEATR1, MLLT11, TCERG1, USP34, FAM107B, MED4, CEP85L, KLF16, CHD1L, JAK2, LPP, 

SYNE3, CHD1, TAF7, ZEB2, DDX6, PACS2, DTX4, OTUD4, RNMT, CYLD, CCDC88C, LBR, ATM, UBAC2, EGLN2, INVS, 

ZFP729B, RCC2, RAP2C, ATP8A1, TIGD2, RAB37, CAPRIN2, MYBPC2, ICE1, CYP4F18, DDX31, BICRA, SLC12A6, GLUD1, 
NFKBIA, NUP153, PDS5A, ITSN2, TARBP1, FANCM, IKZF1, SKAP2, PARP11, SNX10, TAF1A, MTERF1A, GABPB2, MCM9, 

SLC16A7, SIPA1L3, KDM5B, UNC93B1, CAP1, FAM102B, ERP27, ZCCHC7, INAFM1, HIP1, APPL1, ZFP729A, PRKDC, CASD1, 

UBA2, TWISTNB, PTK2, RAE1, POLI, CHMP2B, TAZ, ZC3H4, PTEN, BEGAIN, GNA13, DYRK2, SURF6, LPCAT2, CAST, PIK3R1, 
SLC6A6, ZFP143, NOP53, SENP1, ABHD17B, PDS5B, TMEM131, GPALPP1, BLOC1S2, STX6, PHF21A, ZFP407, TSGA10, DHX9, 

ZBTB37, CTDSPL2, MICALL1, PCM1, PUM3, ATG16L1, BOD1L, YTHDC2, ICE2, MEPCE, BBS4, WDR37, CCDC191, NUDT3, 

KANSL2, SIN3A, CHD6, GPM6B, KLHL42, ZCCHC8, SIPA1L1, PRRC2C, SLC2A1, TUBA1A, FBXO31, ZDHHC17, ZDHHC23, 
FBXO11, RAB4B, RBM27, FBXL3, EXOC2, PHF23, CHD8, POLG2, IREB2, ZFP28, KDM2B, 2610008E11RIK, PRDM4, AKAP7, 

STRADA, ARF6, FASTKD5, RASA1, FBF1, CCDC137, ZFP335, FAM117B, CC2D1A, CLASRP, ADRB2, TACC1, MTF2, DET1, 

DNAJC2, ABL2, OXSR1, MANBA, R3HCC1L, TGS1, ZBTB11, PHF3, ZFP35, TMEM222, DSTYK, RNF220, CYP2D22, IER5, 
SEC24B, TTF1, TAGAP, PPP4R3B, TAF4, GON4L, PLCG2, RAB32, PCMTD2, CHD4, WARS2, AHNAK, FIP1L1, ARHGEF6, 

CHMP1B, FAM126A, KLHL5, HARS2, MGEA5, PDSS1, ABRAXAS1, SMCHD1, SCIMP, GMCL1, NUCKS1, ARID5B, UCKL1, 

DDB2, B230219D22RIK, LASP1, SETD1B, TAOK3, ASH1L, CSE1L, TSC22D2, FRAT1, TOB2, FBXL8, PADI2, KDM6B, BRPF1, 
ATP2B1, HNRNPR, RPUSD2, MINDY2, UBXN1, USE1, IWS1, THOC1, PPP4R3A, CUX1, CNOT6L, MAF1, LEMD3, RECQL, 
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Table 6-12 | Novel components uniquely downregulated in ASCs identified by proteogenomic analysis. (cont.) 

ZBTB10, ZFP317, IFT74, TNKS2, EPB41, TMEM55B, KLHL20, ALOX5AP, SVBP, GGPS1, KLF7, ASTE1, MAML1, INPP5E, 

MAP2K1, TERF2IP, TBC1D32, MAU2, MFAP1B, PAK2, BEND5, PHIP, MFSD14A, RNF31, VPS13B, MSL1, SP1, SPTLC2, KAT2A, 
SNX3, TESK2, RAD52, KLF13, SPOPL, ATXN7L3B, BCL10, MAML2, FNTA, ZBED4, LETM1, GNA12, TIA1, THOC2, GPR137B, 

CEP120, ZFP207, JMJD1C, HNRNPU, TRIM21, TAF5L, COQ2, CLK2, PIK3R4, RPL18, CEBPZ, ABCB1A, ACTR5, AP5Z1, TAF11, 

MAP3K3, ARL6IP6, PPIG, SDCBP, USP3, PCF11, OSBPL8, XIAP, TRPS1, SELP, NRDE2, RLF, MAPK1, TMEM43, NOL11, 
RALGAPB, PTS, USP7, SPPL2B, MBNL1, CELF1, SART3, ERMP1, FAM168A, SACS, RALGAPA2, VPS18, CAR2, CREBRF, 

DCAF4, RBBP6, ZYG11B, IFI208, SNX25, RCN2, KCTD2, AQR, LMBR1L, HECTD1, RDH14, PUM2, RPGR, PHF14, ZFP326, 

GPATCH11, DNAJC27, MKL2, PYROXD2, KANSL1, ATXN2L, SZT2, CD1D1, CTCF, GPS2, MEF2C, MYNN, PTBP2, TBL1X, 
MCRIP1, AP3B1, UBE2W, MYD88, DDX55, SMC5, HNRNPC, SF3A1, ELF1, SNRNP200, ARRDC2, EIF3F, CMPK2, LTA4H, SFN, 

CCDC22, VHL, GPBP1L1, MKLN1, WIPF2, U2SURP, DDX39B, PHF20L1, YTHDC1, WDR11, POLR1C, KMT5B, CRTC1, BNIP3L, 

RWDD3, TRA2A, AGFG1, MCM3AP, POLR2D, FBRS, TECPR1, CHTOP, FIG4, MTERF3, BTBD1, RPL8, PDPR, ABHD10, NCBP3, 
BICD2, BNIP2, 4921507P07RIK, NUP205, UBL3, FBRSL1, TGIF1, GCC2, ZFP292, WSB1, PSMD5, KDM3A, RANBP6, SLC12A7, 

HUWE1, HSPBAP1, SECISBP2L, RNF216, SIRT1, TPK1, CAB39L, ZFP830, FBXO21, PLCG1, SDCCAG3, ATE1, FTH1, NPAT, 

DIAPH2, OVGP1, LONP2, ZHX2, CUL5, MEAF6, BRMS1, BMT2, UTP15, SRSF1, SF3B2, XRN2, GPATCH8, DYRK1A, ZFP865, 
SMARCA5, MCMBP, KMT2A, AP3M2, PDZD8, RLIM, SERPINE2, ZFP131, SMARCD1, RPL37, RPS11, SPATA13, UBTF, TPR, 

MLXIP, RALGAPA1, RERE, CIPC, TOR4A, API5, ZFYVE27, RPL37A, NOP16, ING1, TSR2, YPEL3, CERS4, ITPR3, BCOR, DDX23, 

SIRT5, PHKA2, FILIP1L, GIGYF1, TRAPPC8, CLK1, PTPN18, AMDHD2, SPG11, SGSH, MOB3B, SLC25A32, TMEM134, 

THUMPD2, LRBA, INO80D, EIF1B, DDX27, PRDM2, TNPO1, STX4A, TNIP1, DHX36, PAN3, ZFP619, BRD8, FAM193A, RBM34, 

DPF2, ZBTB3, SPRTN, RICTOR, DGKD, SF1, EXOC6B, XPA, ENSA, ZFP524, TMPO, BDP1, MYO9A, GATD1, CDK5RAP1, IFI205, 

DNMT3A, HNRNPDL, AMZ1, ILF2, ZFP58, SH3GLB1, ALDH16A1, 1700037H04RIK, TSNAX, RPS25, CHIC2, SKAP1, IARS2, 
MAVS, SPG21, ZC3HAV1, IRF9, HNRNPUL2, HNRNPM, CBLL1, TRIM11, NCL, LUC7L3, RBM6, KCTD13, NSD3, RACK1, 

RPL23A, SBNO1, AHI1, SAMHD1, CPSF6, PPCS, VPS16, ZFP346, POGZ, QDPR, ERBIN, FAM160A2, FAM20B, DENND4C, 

RASSF1, ZHX1, RASA3, IKZF3, ANKRD12, AFTPH, CUL3, KDM5A, MTMR3, MYL6, MDM1, NFRKB, PPM1A, TGFBRAP1, 
SFSWAP, ITPR2, AGL, NSUN6, UCK1, KHNYN, METAP2, ZFP953, STRN, MNT, WDR47, CABIN1, SDE2, HEXA, CAND1, EPC1, 

ZFP800, VPS26A, RSRC1, LEMD2, AKT2, PHF1, RPS6KA3, GMEB2, ZC3H12A, NDRG1, TLN1, PATJ, RAB24, LAMTOR1, FOXN3, 

FBXO38, HPS4, FCHSD1, UBE2I, KCTD18, VPS11, ATP9B, USP6NL, IKBKG, APPL2, ATP2C1, RELA, GDI1, ING3, GNL3L, 
CCDC93, SPICE1, KDM2A, RNF114, SART1, TTC14, HIST1H1D, SELENOO, MAPK8IP3, ZFP654, TUBGCP6, TMEM71, TAB2, 

SNX12, CLCN7, ZFP429, CAPZA2, MTRF1L, SMARCE1, WASHC1, ZFP809, SMC3, AKAP11, RUFY2, COQ8A, FAM32A, PIAS1, 

AP5M1, 2410004B18RIK, ZFP455, MED17, ZFP383, LRRC37A2, CCDC154, ZNF578, C1QTNF3-AMACR, TTC34, LINC01125, 
ZNF611, SMIM18, ZNF28, ZNF813, SBSPON, CCDC7, SPDYE2, UGT8, CYP3A5, ZNF808, SPIN2B, STEAP1B, ZNF354A, ZNF816, 

SPDYE6, RLN2, SPDYE1, OR13A1, ZNF525, HEATR4, SPDYE3, SLC9C1, ZNF320, SPDYE16, UPK3BL1, ZNFX1-AS1_2, ZNF888, 

RGPD6, ZNF816-ZNF321P, MICB, LRRC37A3, PRKN, FAXDC2, ZNF853, LRRC37B, HIST1H4K, DLEU1_2, KIAA1324L, 
AC073264.3, RNU6-118P, RGPD2, FPGT-TNNI3K, TAS2R14, SOX4, TCL1A, TCL1B, LCN10, COL19A1, OR2A7, AVPR2, HTR3A, 

HIF1A, ZNF711, ZNF860, FFAR3, FAM222A, CEACAM16, QRFP, NRARP, TCRG-C2, RIMKLB, WDR38, PPP1R3F, RDH5, ZFP82, 

RNASE12, CLEC9A, MANSC4, SCARNA2, SLC38A8, GML, SLC36A3, TIAM2, HOXB3, DYX1C1, LINC00854 

 

Table 6-13 | Upregulated Transcription factors in ASCs uniquely identified by our multi-omics analysis. Genes 

soft validated by proteomics are given in bold 

Gene Symbol (Total 41) 

BHLHA15, NACC2, BHLHE41, GFI1, ZBTB42, SUB1, CDC6, TOX2, EPAS1, PCBD1, BRIP1, MYBL2, ATF6, WWOX, E2F8, 

BMPR1A, NFIL3, CREB3, NFXL1, CEBPB, TOX3, ETV6, MITF, DDB1, E2F7, MAFG, TFDP1, LZTFL1, E2F6, FOXO3, PTCH1, 
HINFP, HIVEP3, ATF6B, SUV39H2, MLX, HMGN3, RNF14, PSMC5, DDX3X, HNRNPAB 

 

Table 6-14 | Downregulated Transcription factors in ASCs uniquely identified by our multi-omics analysis. Genes 

soft validated by proteomics are given in bold 

Gene Symbol (Total 124 

AFF3, CIITA, SCML4, SP100, DTX1, ZBTB4, DENND4A, HMGB1, ARID1B, SP110, LRRFIP1, SP4, SMARCD2, FOXO1, 

RUNX1, FOXK1, FLI1, ZFP263, VEZF1, ZFP90, BPTF, RARA, NFATC3, ZBTB5, REST, SKI, RFX5, RFX7, ZFP148, ATR, 

SMARCA2, MAFK, MLLT11, STAG2, KLF16, ZFP422, RXRB, LPP, TAF7, ZEB2, ATM, NR3C1, NFKBIA, IKZF1, TAF1A, 

ZBTB7A, ARID4A, FUBP1, ATF7IP, EZH1, ARID1A, ZMYM2, HMGN1, ARID4B, MLLT6, JARID2, SIN3A, NFATC2, PRDM4, 
CC2D1A, MTF2, TGS1, TFEB, TTF1, MECP2, NR2C2, ARID5B, DDB2, CUX1, ZBTB10, TFAM, KLF7, MAML1, SP1, KLF13, 

PDCD7, HNRNPU, CREBBP, RCOR1, CREB1, CEBPZ, RYBP, TAF11, TCEA2, TRPS1, FOXP4, NRF1, TAF3, CREBRF, APEX1, 

DIDO1, MKL2, CTCF, MEF2C, TBL1X, NCOA1, ELF1, TGIF1, NCOR1, PHF20, ZHX2, BRD4, SMARCA5, KMT2A, SMARCD1, 

UBTF, MLXIP, BCOR, ELF2, PRDM2, BDP1, IRF9, SRF, TAF8, ZHX1, IKZF3, STRN, MNT, GMEB2, FOXN3, RELA, 

SMARCE1, PIAS1, MED17 
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Table 6-15 | Contradictory regulation. Genes upregulated in mice ASCs but downregulated in humans ASCs 

across both RNA-Seq and microarray data 

Gene Symbol (Total 258) 

TMEM154, RILPL2, CORO2B, ADK, IL13RA1, SMIM10L1, AGPAT4, SLC12A2, TMBIM1, HTATIP2, GPR65, SNX22, PTPN22, 
CERS6, PSIP1, WEE1, TSPAN13, NCK2, FADS3, ABCB1B, MAP1LC3B, HK2, HS3ST3B1, FDFT1, QSOX2, NEIL1, RNF125, 

MTHFR, PSME4, CNST, GPM6A, METTL21A, PHF10, PPFIBP1, MTMR10, FAM135A, AKIRIN1, CEP44, KIF16B, TPST1, 

MCOLN2, PAWR, NVL, AGPAT5, UXS1, LIG4, USP47, SLC46A3, CKAP2, IPMK, ITGB2, GNB5, PHKB, JAZF1, P2RY14, CMPK1, 
CENPK, DYNLT3, MAPRE2, CCSER2, ZFP9, SMAD3, NRIP1, KIF5B, SLC36A4, ZRANB3, ABR, TLR2, SIAH2, APP, SERINC5, 

FAM91A1, LMO7, ZCCHC18, GNB4, YPEL2, CENPC1, CENPV, YBX3, MEF2A, RCBTB1, CLN8, UBAC2, HGSNAT, PIGB, 

ZFP386, TBC1D22B, HINT3, LPIN2, INTS6L, THAP2, PON2, APOLD1, ANKLE1, RIOK3, KCTD9, STX3, KAT2B, NKTR, CCS, 
DESI2, CCDC71L, ZDHHC2, CNOT8, ERCC6L2, GNAZ, SIK3, LHPP, GCA, GALNT7, FNBP1L, ATL2, LYRM2, ATP6V1H, ASCC3, 

EIF3B, GKAP1, TMEM203, CLHC1, SIDT2, SENP6, CEP192, CMSS1, FAM216A, TGFBR1, RBSN, ISCA1, 2010111I01RIK, SFT2D2, 

NEK7, SETD7, AMFR, HAUS3, TTC32, AKAP9, SWSAP1, SKIL, ALKBH2, HACD2, WDR59, TXLNG, ZHX3, IFFO2, MED23, 
HIVEP3, TMEM62, CDC123, MAN2A2, KCNMB4, IRS2, MDM4, IRAK1BP1, TMUB2, CCDC6, WHAMM, ZBTB20, UBE2Z, TTC13, 

DNAJC21, REPS1, CENPL, SC5D, LARS, MED30, NNT, MOB1B, PCED1A, RIPK1, MTMR4, ZC3H7A, SIN3B, ZC3H11A, ESF1, 

SLC25A33, TCF12, PBDC1, ZFP330, CFAP20, DEGS1, MAP2K3, RANBP2, MFN1, CHMP4B, OTUD3, MRPS25, USP22, NCOA2, 
ITFG2, 3110043O21RIK, JAM3, POLE3, KAT7, TASP1, INTS3, CARS2, DCLRE1B, BRAF, RAPGEF5, A230050P20RIK, DNAJC13, 

4930453N24RIK, PRNP, PNPLA8, ARL14EP, ERO1LB, TSPAN3, IL1RAP, RABGGTB, CCDC88B, ACER3, ADAT2, PPP3CC, 

DYNLL2, METAP2, PBRM1, BIRC2, MED22, MAN2B2, COX19, GRK5, GABARAPL2, USP9X, CBX4, PJA1, TM2D3, COX7C, 
XPNPEP1, SLC25A13, ARHGAP12, MCUB, ARL5A, AKAP1, ZFP281, PLEKHM2, TSSC4, TTC39B, TUBE1, UBR3, OGFRL1, 

MXD4, IGF1R, HIPK1, CHUK, IFRD1, RBM7, SEPSECS, TOP1MT, SYTL1, SLC15A2, RNASEH2B, AHSA2, AGO3, MEGF8, 

NPLOC4, ZIK1, SNRNP27, MZT2, DIRC2 

 

Table 6-16 | Contradictory regulation. Genes downregulated in mice ASCs but upregulated in humans ASCs 

across both RNA-Seq and microarray data 

Gene Symbol (Total 244) 

LDLR, KLHL6, ZBTB32, SLFN8, CD38, RAPGEF4, TLE3, RNF144A, STAT4, AIM2, OPTN, SAMSN1, GNS, BCL9, RFLNB, PMVK, 

THEMIS2, NABP1, VOPP1, MTHFD1L, CNP, PSEN2, CHST15, LTK, CTSC, DUSP7, PGLYRP2, TOR3A, HEXB, USB1, MTERF2, 
DEXI, SMARCB1, NETO2, CTSA, SLC39A3, ZCCHC24, PTPRS, TTBK1, NUDT19, PARP2, AACS, ZDHHC18, WWC2, DENND6B, 

UNC13D, PRR12, CD276, SMPD3, TTC38, SGK1, CPNE5, B4GALT3, ELAC1, PYM1, PQBP1, CISD2, PQLC2, TRADD, FBXO22, 

SLC25A11, DCPS, AAAS, RECQL5, UGDH, TUFT1, MAPKAPK3, GADD45A, CASP6, OTUD7B, MAPK12, S100A11, SFXN2, 

ERG28, BUD23, ABCD2, CDT1, SMIM20, KCTD12, HSCB, RGL1, CPT1A, SLAMF1, CKLF, DENND1B, DGLUCY, S100A6, 

LRRCC1, RGS13, SLC35D2, NPM3, MAGI3, 3110009E18RIK, PRMT5, TSEN34, PPCDC, BATF, 5031439G07RIK, ZFP574, IFI35, 

NCLN, FBXW5, SMUG1, SWT1, MAP2K6, SLC9A3R1, CLCC1, DTNB, ZFP593, SLC37A4, SCAMP3, CETN3, VAMP5, FDXR, 
VPS72, CDC42EP4, TMEM206, CEP70, MAF, GCLC, PLBD1, ALKBH7, SH2B2, POP7, ARMC9, GPD2, TMX2, EYA2, SUOX, 

FAM69A, GSTK1, MDP1, STN1, KIF1BP, CABLES1, DNAJB5, MEF2D, UTP11, WRB, MRPS6, PDP2, MCCC1, HYI, INSR, RAD17, 

CD226, FGD6, EMC6, PNPT1, MTUS1, FAM50A, BCAR3, CYFIP1, KIF1C, CCDC32, CENPS, ICAM2, ALAS1, LRRK1, AKR7A5, 
PRPSAP1, B4GALT7, COX11, ARMCX5, MRPL49, UBE2CBP, LIN52, HSPB11, MRPS16, TMEM8, SNX15, TMEM173, CNOT3, 

LRRC42, NDST1, NUDT6, SRD5A3, POLR2H, PAM, URM1, 2310022A10RIK, NLK, NCKIPSD, QDPR, ACTG1, EBNA1BP2, 

NDUFAF6, ENOX2, TOMM5, RPL22L1, UCHL4, PRKAG1, PPAN, MCOLN1, ZFP598, PDIK1L, FAM118B, JMJD4, ZFP664, AAK1, 
PPP1R7, ACP6, DGKZ, SFXN4, FAIM, ERLIN1, PDCD2L, COX18, P2RX7, PPP1R13B, FAM206A, PIP4K2C, MPG, ADM, ATG4B, 

MAST1, SLC25A19, PRDX5, CTSH, IRF5, TRMT2A, ELK3, MBOAT7, TXNL4A, LSM1, PUS3, MRPS31, PITPNA, CALHM2, PAK1, 

ERCC2, FHOD1, RAB35, ZFP827, HSPA8, SLC26A6, MRPL3, ELP6, MCC, PUS7, TEX9, HCFC1R1, MAPK7, CHST7 

 

 

Table 6-17 | Cluster Differentiation markers upregulated in ASCs vs. NBCs across species in RNA-Seq and/or 

microarray data. Ordered by FDR adjusted p-value. 

Gene Symbol (Total 42) 

SLAMF7, SLC44A1, ENTPD1, LAMP2, CD93, SPN, BST2, SELPLG, CD2BP2, HMMR, EPCAM, BSG, CD274, FAS, FLT3, ITGB1, 
TNFRSF10B, TNFRSF13B, ITGAL, SLC3A2, LY75, IGF2R, ICAM1, ALCAM, SDC1, TNFRSF17, CD28, CSF2RB, LAG3, PVR, 

CD59A, NRP1, IL15RA, CD68, BMPR1A, ITGA3, IL6RA, IL12RB1, JAG1, THBD, IL2RB, MUC1, 
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Table 6-18 | Upregulated proteins in the proteome of CD138+ plasmablast CD93+ plasmablast or both (cont.) 

Gene Symbol (Total 2679) 

KIF23, HMMR, LSS, DIAPH3, CYP51, KIF4, GPT2, ZWILCH, LIG1, CKAP2, SHCBP1, TIMELESS, BCAT1, FANCD2, CIP2A, 

WDHD1, KIF15, HMGCS1, PSAT1, LARS, MKI67, HELLS, CHAF1B, MTBP, CDC45, SLC7A3, PLXND1, SMC4, UHRF1, SLC3A2, 
ALDH18A1, PBK, ALPL, CDK1, BHLHA15, NCAPG, SLC7A1, KNTC1, ESCO2, SMC2, KNL1, KIF2C, NCAPD2, ERCC6L, TOP2A, 

DERL3, NCAPH, GTSE1, KIFC1, TFRC, SLC38A2, BLM, MTHFD2, MCM4, RRM2, ACACA, ORC1, CHEK1, PRC1, MANF, 

NUSAP1, MCM5, BARD1, DHCR24, SEC24D, THADA, SLC7A5, EIF2A, HK2, GARS, KIF22, RBL1, YARS, CTH, MCM2, TUBB6, 
ATF6, IMPDH2, INCENP, HEATR3, POLE, FAR1, SHMT2, PSMB5, ASNS, BRCA1, ACSL3, CAD, SQLE, GLT8D1, AURKA, PLK1, 

AURKB, CARS, TTF2, NAA25, EZH2, SLC1A5, TPX2, DDX20, CEP55, MCM7, FAM98A, TYMS, DSN1, SPC24, HMGCR, ACSL4, 

AFG3L1, BRIP1, ARMCX3, KIF11, TACC3, FANCI, ATAD5, CTPS, KLHDC4, IRF4, MGAT4A, FASN, GEMIN5, POLA1, KIF20A, 
CLIC4, LARP1, STIL, AEN, KPNA2, IMPDH1, RAD51, MTRR, RRP1B, DLGAP5, SRPK1, EIF2B1, IGHV6-3, GINS1, ANKRD52, 

HBS1L, WDR62, ABCF2, HIVEP3, CD36, CMSS1, ARL6, MVK, SHMT1, GM48551, KTN1, HDLBP, TNFRSF13B, EIF2B3, HAT1, 

EIF4G1, IFIH1, PDCD11, OS9, SRPR, PITRM1, RRM1, INF2, KNOP1, YBX3, SND1, CHD7, IARS, RIF1, KIF20B, ALCAM, OASL1, 
TOPBP1, ZFP281, SGO1, NCAPG2, CCNA2, FLT3, DHDDS, FPGS, NFKBIZ, HERC1, IPO7, CDCA5, CSDE1, TK1, MRPS34, 

TIMM17A, LIAS, PITPNB, RFC4, TRIP13, BUB1B, NSD2, EPRS, PSPH, PRDM1, ERI1, AACS, TTK, UMPS, KSR1, RSL1D1, ECT2, 

MAN1A1, RACGAP1, AARS, MCM6, PASK, GART, NCAPH2, MARS, HIRIP3, IQGAP3, CDCA2, SPDL1, EXT2, PRIM1, SIL1, 
ARID3A, MSTO1, MCM3, TRIM32, RDH11, MIPEP, NOB1, GCAT, USP36, POLE2, ST6GAL1, UBE2S, HEATR1, IGHV10-1, 

FASTKD5, EDRF1, NUF2, ELP4, FOCAD, CD93, KIFC5B, MAP1LC3B, NARS, DUT, PHF19, CHTF18, AKAP1, PECR, NIFK, CD69, 

PAICS, DENND4A, EIF2B4, CD86, MDN1, HJURP, LRRC40, ANKRD17, IGKV13-85, ASCC2, ZW10, GCN1L1, DNMT1, HERPUD1, 
SPC25, ZWINT, GFM1, CDCA8, LMAN1, MTHFD1, PSRC1, CLPB, KDELC1, ECM29, IPO5, IDI1, SLC16A1, EDEM3, CPOX, HID1, 

RILPL2, ERCC6L2, MMS22L, PRMT5, MPP7, LCMT2, IPO11, NOA1, FANCA, CLASP1, DCTD, CRELD2, ELL2, ABCB1B, BYSL, 
REXO2, NOC2L, CLUH, GFPT1, NLE1, RIOK1, PRIM2, URGCP, FADS2, SEC24A, UCK2, PIP5K1A, IFT80, FDPS, RPF2, FAM111A, 

UTP14A, ZFP330, TARS, CCNB2, RFC2, PIK3R6, HELZ, LDLR, CDC27, MCM10, MYBBP1A, FTSJ3, LSG1, ANKRD46, IGHM, 

AHSA2, ABCC4, SLC33A1, TMEM126A, ABCE1, EIF3D, TRAP1, PHGDH, PHF10, EIF4A1, CCNB1, TTC37, PFKP, PMVK, 
GM17296, XPO5, RRBP1, ELP3, SRM, CLPTM1, NSA2, IGHV1-22, RPS3A1, ANKRD16, TICRR, SUV39H1, PDE3B, FEM1B, 

NDC80, UBE2J1, LARP4B, TRAF3, UPF1, ERO1L, RPAP3, MTHFR, CENPK, PRMT7, GNL3, NOP2, GTF2E2, GEMIN2, ARFGAP3, 

IMP3, TTC27, TRIP4, BDH1, BSG, SLAMF7, DNAJC15, FADS1, NCAPD3, SLC4A8, PSMC3IP, KIF18B, EEF2KMT, ZC3H7A, 
XPOT, UTP20, ST7, OAT, PDCD2L, DNA2, PIGG, UTP6, IGHV1-52, AMPD2, LAP3, CBX4, SAC3D1, TMEM214, GRPEL2, UEVLD, 

BIRC6, BIRC5, PA2G4, NAT10, HSD17B7, PDIA6, EAF2, DNAJC21, POLA2, MPHOSPH10, IFRD2, GTF2E1, RPL23, CKAP2L, 

KBTBD8, HSP90B1, DALRD3, BOLA2, ABCF1, DUS1L, TMLHE, RPL4, RPS7, WDR3, MCM9, SEC14L1, RPLP0, MPP6, CKAP4, 
WDR36, NKRF, LRRC59, POLR1A, NAA15, ATP13A3, DHFR, FNDC3B, PWP2, DICER1, MRPS31, GM29394, MAOA, FKBP11, 

DAP3, PDE4DIP, RIOK2, MVD, RPS17, TM9SF4, CCDC47, DZIP3, IGHV14-2, OGT, NOL10, AMFR, USP33, IGKV9-120, EIF3A, 

IGHV1-15, RECQL4, RPS12, AEBP2, RPS5, IGHV14-1, GEMIN4, MRPS9, EIF2B5, SPAG5, IPO4, CLSPN, METAP1, OTUD6B, 

TOP1, ASCC3, RBMS2, KDM4C, NOL6, PI4K2B, GUSB, DHRS13, GLIPR2, IGKV6-13, DHODH, PPAT, CEBPZ, MRPL13, LARP4, 

SYVN1, NEK6, FKBP4, WDR6, MEF2B, LYAR, MRPS14, MINPP1, POP1, MSH6, MRPL14, ORC2, FOXK2, RBM47, HYOU1, 

PEX13, DDX3Y, NOMO1, DHX33, IGHV1-5, MRPL37, DHRSX, SLC12A2, SSR4, CCT5, PREP, RFC5, FCF1, PCK2, DUSP12, 
DDX3X, MRPS23, COLGALT1, SLC39A10, TIGAR, HSPA13, BMS1, DSCC1, SCPEP1, TBCE, HELQ, CDH17, TONSL, IGHV1-53, 

NMT2, NPC2, SEL1L, NAA20, DGKD, GOLIM4, MRPS7, SEC11C, RWDD4, TXNDC15, ZRANB3, EVI2A, ATP2A2, MLKL, COG4, 

SLC43A1, SRGAP2, DDX27, IGHV10-3, UBE2C, ZFP598, RPS2, ANKRD28, EEF2, IKBKAP, NEK4, NET1, UTP4, PMS1, MRPL47, 
NUP88, R3HDM4, NCLN, EIF2S3X, AIMP1, NSUN2, TBL3, TIPIN, ETNK1, NBR1, MTFR2, IGHV1-80, RIOK3, DCAF13, DONSON, 

PELO, NOP14, WDR74, USP45, IMPACT, NEIL3, GSTCD, SLC1A4, P3H1, FAM83D, IGHV6-6, LRRC8D, SRP72, DNAJC3, 

POLRMT, MCRIP2, NUP98, TXNDC5, SGO2A, ZNHIT3, RABGAP1L, CHAF1A, ANAPC7, MRPS22, NDC1, HUWE1, IGKV3-2, 
PRDX4, B4GALT1, CDCA7, FAM96A, DHX30, ERO1LB, HNF1B, NFXL1, ZFP280B, UBR2, CDK5RAP1, IGHV1-76, EIF3G, 

FASTKD1, RAD54L, RPL7, DIEXF, NUP107, KIF14, HSPA14, IGHV5-16, BAG6, ALKBH8, NAA16, TXNDC11, PSMB7, ASB6, 

MGAT2, SLC25A16, EIF2B2, PIH1D1, ARHGAP11A, MRPL2, FIGNL1, IGKV8-27, MLH1, MRPL28, MRPS6, GM20425, RAD51B, 
GLIPR1, SKA3, PABPC1, CENPE, MRPL17, YME1L1, BOP1, ASPM, YARS2, RRP7A, GSTT2, RTEL1, GSPT1, TRMT2B, UTP11, 

RB1, PNPLA6, GINS4, E2F8, SREBF2, UBR5, HSPH1, MRPS18B, SASS6, MRPL3, NVL, H2-T23, EIF4G2, ERP44, COPB1, TRAF6, 

PCX, EIF2S2, IGHV1-69, SLC39A14, MINDY3, LGALS9, PSMC2, NUFIP2, MTDH, SSR1, MYO19, EDEM1, MORF4L2, KDM4A, 
SDHAF2, PPFIBP1, TBL2, G3BP1, WDR43, SRP19, ATP8B2, COPA, TUBE1, USP16, TECPR2, HELZ2, ORF11, MYBL2, MIS18BP1, 

ATG2B, ACAD11, WDR46, GTPBP10, ASF1B, IMP4, SARS, PCNA, MDM4, RAB39B, CDCA3, NBAS, DNAJB11, EIF3B, CIT, 

IGHV1-55, NSDHL, SLC25A33, ORC3, PSMD1, MAK16, PYCR2, GALNT7, POLR1B, PDSS2, ERAP1, USP10, TELO2, PTTG1, 

PRR11, PGPEP1, CORO2A, DNAJB12, AMIGO2, XPO4, MRPS27, PVR, DTL, TEX30, LRWD1, TMED1, CAR13, SCFD2, PIEZO1, 

DNAJC7, KDM5C, DHX37, GRSF1, URB1, CERS5, RAD51C, PISD, FAM162A, CDC20, EPM2AIP1, TPP2, BZW2, KIF18A, 

SLC29A1, UBE2O, CCT3, H2-K1, UTP18, FCRL5, BBC3, PIN1, LMO7, ANKMY2, DAPK2, EIF3J1, NOL11, IGHV1-4, SAPCD2, 
PSMC6, PDXDC1, HASPIN, PREPL, PSMB6, PLCD3, ALDH7A1, CUL2, ERGIC1, NUP214, TFDP1, RPL18A, PSMD7, PLXNA1, 

PUM1, DROSHA, PER1, PSMD12, NUGGC, TRMT2A, RPS4X, ATG4A, DCUN1D5, EIF3C, CCT4, POLR1D, SIK3, TTI1, SEC23IP, 

GMDS, MAP3K20, AK6, NSUN4, STEAP3, NCDN, CASP8AP2, SLC35E1, RABL3, ESF1, INTS6L, ISYNA1, MARF1, EIF2AK2, 
CDK6, RACK1, IGHV1-74, MRPL9, NUFIP1, SLC35F2, DDX21, COX10, LACTB2, CPEB3, NUDCD1, WDR90, QPCTL, IGHV1-26, 

TRDMT1, DUS4L, DDX56, MIS12, EEF1A1, ATP6V0A1, EIF5B, PTCD3, PSMD6, BORA, MRPL20, NOC3L, UQCC1, IGF2R, 

FANCG, FAU, RPS3, LAMC1, RINT1, GNAS, IPO9, SRP68, USP37, PSMG2, RAD51AP1, FASTKD2, SLC25A19, GET4, IGHV5-17, 
WDR75, COG1, NIP7, MACO1, LNPK, NMD3, ZFP280C, MRPS35, IGKV4-68, GIGYF2, RCL1, AMMECR1, SLC4A7, SEC61A1, 

DNAJC2, DDX51, TMCC3, SLC2A6, MTERF3, IGKV5-43, CHEK2, NOTCH1, MZB1, UFL1, EME1, FTSJ1, MGEA5, TBC1D15, 

GNG12, FZR1, NT5C2, TRAF1, IGHV1-18, DERL1, YTHDC2, CLUAP1, MRM3, USP28, STAMBP, MRPL44, EIF2AK3, TRIP11, 
CCT2, SDF2L1, XBP1, P4HB, LDB1, UBL4A, CCT8, DDX52, DDX18, IGHV1-42, TDP1, RRP12, SKIV2L, NEMF, SHQ1, IGHV1-84, 

ASB3, ELP2, MRPL46, UQCC2, IFIT1, ACAT2, RRS1, PINX1, PRRC2B, QARS, TRMT11, MRPL51, EXO1, MBNL2, SLC7A6, 

PPFIBP2, PPA1, MEMO1, KNSTRN, ABT1, ATIC, FDFT1, GNPNAT1, TRIM56, 1110065P20RIK, UXS1, SLC7A6OS, PNP2, EIF2S1, 
4931406P16RIK, DNMT3B, MRPS11, MASTL, MMGT2, CD44, EPB41L5, NAF1, HSPA5, COPG1, SMYD5, ADA, MRPL21, PSMG1, 

ERCC6, NSL1, HSPA9, PPFIA1, CLPX, NAP1L1, ATXN2L, SCAP, TANGO6, EMC8, MSMO1, FASTKD3, LIG3, JADE3, CNOT6, 

CCDC124, APEX2, IGKV19-93, FNDC3A, DRG1, ATRN, METTL16, PYCR1, CLN6, GGNBP2, TTC13, EMC1, AAAS, RARS, 

BCAR3, GLE1, RPL5, IGHV1-62-2, DRG2, ATRIP, TP53, TCF25, GMPS, SCFD1, FABP5, RPS14, KYAT3, YDJC, ALKBH4, 

SEMA7A, KTI12, GOLM1, IL21R, CHORDC1, JMJD6, ZCCHC7, PAIP2, CARM1, AIMP2, 4932438A13RIK, RAD18, SAMSN1, 
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Table 6-18 | Upregulated proteins in the proteome of CD138+ plasmablast CD93+ plasmablast or both (cont.) 

Gene Symbol (Total 2679) 

GRWD1, PDF, TUBA1A, MARS2, FAM129A, TMEM33, STARD4, NSUN5, HECTD1, GM9833, EIF3E, XRCC3, PLOD3, EDEM2, 

PSME4, IGHV1-47, COX11, BAG2, RFC3, RPS9, GPCPD1, TFB1M, SCD2, MIA3, VHL, USP34, ABCF3, BTAF1, IL2RA, METTL13, 
HCCS, PUS10, MRPL16, SMARCAD1, IBTK, NOM1, UTP14B, CPPED1, IGKV4-57, BZW1, OSBPL8, RIC1, TRPC4AP, NME2, 

METTL6, LMAN2, CENPF, HARS, AVEN, RPS20, RETREG1, MRTO4, LRRC57, SMYD3, NAA35, DNAJC1, UBAP2, RPS19, 

ARCN1, SEC23B, RPL7A, GALE, GINS3, BRCA2, ERN1, IGHMBP2, YBX1, METTL15, MBNL3, RPL6, GM21987, OGFOD1, 
RPS6KB1, SSBP3, ACOT7, NUDC, NUCB1, GM17018, CINP, ZFP277, ARHGAP19, CRLS1, RPS6, MTFMT, TXNL1, DCAF10, 

ARHGAP21, GPN3, TWNK, LYRM7, HCFC2, BATF, HPRT, ALG11, COX15, TMEM154, REEP4, RPL10, DMD, NFKB2, CELF1, 

LTN1, SLC19A1, PDIA4, MRPL42, ABCC1, GLA, PSMD11, IGHV5-12, IRS2, DTYMK, MNS1, ORC5, PDIA3, GPHN, GBF1, 
MRPL4, ARMC6, MTHFD1L, RPL17, TM7SF2, GXYLT1, CACYBP, IQCB1, RPL21, CASC4, JAK3, PMPCA, ALG2, SDC4, PWP1, 

GM49333, UBE2K, ZCCHC4, COG5, IGKV17-127, LIG4, RALB, MRPL49, LPIN1, IGLC3, UTP15, RPF1, INSR, KARS, PIM1, 

AICDA, UBR7, MRPS16, PGS1, IGHV7-3, SURF1, ERLEC1, GOLGB1, SAR1B, CKAP5, LARP2, DDX6, EMG1, NAA50, DHX36, 
KPNA6, SRP54A, GPATCH4, ZBTB32, ATR, POLD3, IGHV1-81, DDX49, DDX54, TAOK1, R3HDM1, ERAL1, GTF3A, SCD1, 

COPB2, IGKV2-137, ANAPC1, SUZ12, METTL2, EEF1G, RPL3, BAZ1A, ANAPC5, AATF, DHRS1, ATXN7L3B, FOXRED1, 

POLDIP2, RAD54B, CRY1, ESPL1, NUP93, HSPD1, MRPL19, GAA, RPL9, NOL8, RPS10, PNPT1, IAP, MAP4K4, QSOX2, URB2, 
PRAG1, MRPS30, NAA40, DLG1, MRPS25, TSR1, KLHDC2, MCM8, DDX24, P4HA1, TPGS1, SEC63, SPATA5, CASP3, SELENOK, 

UBAP2L, APOBEC3, MRPL45, ITPK1, FAM221A, TMEM242, GALNT2, JUN, TJP2, RPL38, FOXM1, DNPH1, MRPS15, PSMG3, 

DNAJC10, CCDC167, NMT1, XRCC1, MRPL23, MCTS1, MRPL1, PLPP5, FLVCR1, LAS1L, HIVEP1, ATAD1, SOAT1, PRKCI, 
SYNCRIP, CAND2, SOWAHC, MRPL15, PSMC1, MTMR14, PUS7, TUBA1C, NUP160, STOML2, CCDC88A, TXLNA, MS4A6C, 

MIA2, PTAR1, MRPL32, TMEM131, ETF1, RPL36, SECISBP2, MRPS2, RFTN1, MECR, DYM, CLIP1, MKRN2, TXNRD1, IGHV9-

1, NLN, GNE, MTAP, SRFBP1, COG2, RPA1, TRMT1, VEZT, MRPS24, RBM28, PSMD2, ADAP1, SENP3, FEN1, ABCB6, MRPL35, 
VCP, ORC6, FANCL, EYA3, WEE1, RNFT1, TUBB4B, AHSA1, ATF6B, ZGRF1, FBXO3, CDC34, IGHV2-5, GGCX, PPP2R1B, 

ISG20, RABEPK, HEG1, MRPL22, ATP1A1, BCL2A1, CCDC88B, FAM117B, KDM4B, SETD6, DERL2, IDH3G, HMBOX1, NAMPT, 
GSTO1, EIF3K, RPL10A, HEXIM2, RPAP2, PSMD13, PMM1, UGDH, ENTPD1, TFB2M, ATP13A1, TULP3, CD81, WDR77, RPS13, 

TBCD, FANCB, STAU1, STRAP, FAM208B, NUP85, GEMIN8, SLC25A25, IGKV4-63, TGS1, TNRC6A, RPL24, TUBA1B, ACBD6, 

RPN1, RPL13A, GOT1, POLH, MRPL38, LRPPRC, VCPKMT, NQO1, SERBP1, NFX1, ATL2, TEFM, TROVE2, IGHV1-77, ITGB1, 
SIPA1L1, HERC2, SUMF2, MIB1, FAM129C, MRPL48, ALDH1L2, ZMAT3, TSR3, PIM2, MTF2, CD40, LONP2, POR, PSMD8, 

RANBP2, WDR4, NDUFAF1, ZBTB10, SLC38A10, PUM3, STAU2, RNF168, UBE2Q2, SLF1, WFS1, IGSF8, EIF5, PIK3C2A, SETD3, 

LIN7C, DHRS7B, QSER1, RPS11, PSMC3, NAA10, IGHV1-39, EIF3H, NT5DC2, OXA1L, RAB23, GEN1, EIF4ENIF1, RPL7L1, 
LAMP2, ZEB2, HAUS7, RPN2, GBP3, GOLGA2, ATG13, ANAPC4, TYW1, RPS15A, USP14, ALG5, NXN, MRPL24, MGAT1, 

RUVBL2, PDCD2, SIRT4, CNOT4, ATAD2, NUP188, ZC3HAV1, TRUB2, ARMC1, BC027231, WWOX, SLC35B2, IGHV13-2, 

GRPEL1, WDR92, DDX10, PON3, USE1, LATS1, JUNB, GLCE, EIF3L, RRP1, NSD1, SLC35A4, ULK1, SLC9A8, TMEM41B, FMR1, 
PPAN, RPL30, MRPL39, BET1, GLCCI1, RPL27A, UBXN8, CCDC69, LIN37, MUT, LMO2, TIMMDC1, SESN2, PRMT3, OPTN, 

GLMN, HSP90AA1, C1GALT1, MRPL30, UBE2T, HOMER1, TTLL12, RPL32, FXR2, VPS25, MCMBP, NDUFAF7, ACACB, RRAS2, 

MILR1, ORC4, FTO, ZC4H2, COX18, CSNK2A1, ZDHHC20, COPE, MAN1A2, GNL2, MYO5A, ALG8, EHD2, ZNHIT2, TACO1, 

HSD17B12, EIF3I, PEX3, TBRG4, DNAJC11, EMC7, ICAM1, RPAIN, MARK3, SRSF6, IGHV14-4, PSMA2, HERC6, ZFP36L1, 

ENKD1, LSM14B, IDE, AGPS, AKAP9, SLC25A17, COA3, TCP1, ABCD3, HAUS5, NEU1, PSMG4, RMI2, STEAP4, OSTC, KLHL11, 

PPID, NOC4L, SLAMF6, FAM207A, HDAC6, RBBP7, ZFC3H1, PTPN21, UTP3, FAN1, APPBP2, PRDX1, DENND5B, TECR, 
ST8SIA4, ALAS1, PCGF5, CCDC6, STT3A, STX18, TOP3A, IGHV8-8, MRPL10, ODR4, SLC25A13, AKT1S1, NTMT1, MKLN1, 

SEH1L, HAUS3, RPL19, KIN, RANGAP1, ST8SIA6, TXNDC16, SDHAF4, RBM3, ZDHHC21, CENPH, PPP5C, CCDC97, KCTD10, 

ITM2B, GPBP1L1, CDC123, RANBP9, UTY, TNFRSF10B, BTF3, SLC25A10, MCPH1, UBN2, RPS16, UBXN4, IGLV1, DOCK9, 
HIGD1A, IGKV4-53, MAPRE2, TTI2, RGP1, MUTYH, DDX19A, ARMC5, ELOVL5, DAB2IP, CSNK1G1, EIF1AX, QTRT2, CAPN7, 

SUGT1, MPP1, RABGGTA, CENPN, IGKV1-110, IGHV9-3, STXBP1, CDK2, CDCA7L, ANKHD1, MSH2, DDX31, RPL35A, 

SUV39H2, PROSER1, PKM, SEPSECS, NAPSA, EIF2S3Y, STK3, APRT, RNF219, UBE3A, GOLPH3, ANKRD39, SLC25A4, 
ENTPD7, PDP2, MAN1B1, EMC10, CDV3, METTL18, GM38394, CALR, PABPC4, QRSL1, CCNT1, ATP7A, 2310035C23RIK, 

POLR3B, NUP155, CBX2, UBOX5, MRPS17, POMT1, PIDD1, RPSA, NOP53, IVNS1ABP, GPN1, MTERF4, TRMT1L, ETV6, 

TMEM9, SPECC1L, RPL31, EDC4, TM9SF1, ACLY, USP4, PHAX, FBXW4, UBE4A, PTCD1, DNAJA3, DOT1L, C1GALT1C1, 
CNOT8, ZFYVE16, CASKIN2, RPL27, FLNB, SDF4, PSMC5, TMED9, NUP35, ST6GALNAC4, ST3GAL6, ECSIT, ATP2B1, ULBP1, 

ITFG2, ZDHHC5, AGPAT4, NKAP, PES1, RAE1, CHFR, CCT6A, GLS, MAN2A1, NMRAL1, SPCS2, H13, MRPS21, RXRA, 

PWWP2A, EEF1E1, ENY2, MRPL57, TARSL2, TNPO3, DNAJA1, DARS, OTUD5, KLHL25, RPS18, IGLV2, DUS2, OGFOD3, 
PSMD4, JCHAIN, CCND2, TCF12, IGKV9-124, YIF1B, PSMD3, 2700097O09RIK, CHD1L, SEC22B, INTS11, LGMN, SLC31A1, 

NBEAL2, DLG3, ZCCHC9, CERS2, RTTN, ELP6, CAPRIN1, NOL9, EIF3M, RPAP1, EIF5A, TLR7, DDX28, SPPL2A, GNB1L, 

ADAR, TMEM97, DCP1A, TUBB2B, USP47, FUBP3, PTPMT1, UROD, LUZP1, TMEM129, BPGM, NUP205, COX7A2L, TM9SF2, 

FAF2, ING2, RHEB, IFT172, ZDHHC17, SDHA, MTG2, GEMIN7, SMARCC1, PHIP, BTD, NASP, TOP3B, EXD2, LINS1, SPOP, 

RBM34, ATAD3A, FKBP2, PIMREG, BEND3, MSANTD4, CDK8, MGME1, INTS5, CEP72, ADAM9, SURF2, GDE1, RAB9A, 

ORMDL2, AAMP, ADRM1, FAM193A, GNAI3, PSMD14, UBE4B, SAP30BP, IGKV4-80, CDC23, EXOC3, STIP1, ANAPC2, 
RICTOR, MPC2, CSNK1D, MRPL41, VPS37C, ZC3H8, UPF3B, METTL5, CBWD1, FARS2, GK, RPS28, MTX1, RPS8, ARL5C, 

DDHD2, ARL8B, DOPEY1, 38412, GM15800, RB1CC1, IGHV1-78, SNUPN, SLC30A6, NUP133, RCBTB2, BST2, RPL12, EXT1, 

SLC6A4, RRP9, CYP20A1, RCC1L, TDRD3, TMED6, STYX, LY9, MRPS10, CCT7, MRPS5, AP4B1, PHLPP1, IGHV5-6, SLC35A3, 
ACSL5, NEURL4, IGKV8-28, ZMYM1, ZDHHC13, PGAM1, LRR1, CSRP2, AARS2, NUP50, RNF26, AP4E1, CDC16, CTNNA1, 

RBFA, RPL35, CCNL2, PARVG, FNTB, FAM120A, FUT8, PIGK, PUS1, TOE1, RPL8, METTL9, FCGR2B, USP42, STRADA, TIA1, 

CDK4, MND1, KPNB1, GTPBP1, H6PD, CAPN5, AURKAIP1, TSEN54, IGHV9-4, MANEA, LY75, MRPL27, BRAF, DNAAF5, 
MTA1, CNTNAP1, PMPCB, GPAT4, ZFP622, CYB5B, ZCRB1, MRPL11, EIF4E2, KCNK6, IGLC2, RNASEH2B, NAA11, IGKV6-29, 

IGHV1-82, IGKV12-38, ST14, ZNHIT6, KLHL7, CLCN6, PNO1, CEP85, SRP9, COG8, HYPK, CCNH, CNOT9, EBI3, NFU1, 

MOSPD2, G3BP2, SMPD4, BRIX1, ZBED3, DGCR8, RPS15, NME6, CDC7, USP15, TSPYL1, ITGAL, RWDD1, IGHV1-54, KCNAB2, 
RPS19BP1, EMC2, UBE2D3, ANAPC10, TMUB2, SELPLG, YIPF4, MBD3, SH3GL1, FARSA, PCED1B, AASDHPPT, PDK3, MELK, 

2510039O18RIK, GCLM, LTV1, CD3EAP, CSNK2A2, SIMC1, CNNM4, RARS2, SPG20, ARMCX2, SSSCA1, DTX3L, PRKCSH, 

TPST1, CUL1, RAB3GAP1, ITGB6, DDX41, SRSF3, EEF1B2, KPTN, CANX, NME1, KLHL9, SEC61G, NAPA, BUB1, KPNA3, 
TSG101, USP54, ARL1, AUH, SKIV2L2, TMEM263, PRPS1, MAD2L1, MRPL53, GPS1, FARSB, RPLP1, NPM3, IMPAD1, NARF, 

GCC2, HAX1, NAA30, PTPRA, ATXN10, SUMF1, SLC30A7, PDE7A, UCHL5, EPHA2, SNRPB2, HSP90AB1, PEF1, EDC3, POFUT1, 

HDAC9, SLC35B1, EBNA1BP2, HAUS4, QTRT1, GTF3C5, TIMM50, ARFGEF3, EIF4EBP1, UFSP2, PDAP1, UBFD1, DIS3, 

GRAMD3, TOMM40, TMEM165, IPP, NUP54, RAB3GAP2, ZFP825, NPAT, MT-ND4, KATNA1, PLXNC1, UAP1, NGDN, ABCC5, 

CENPM, SELENOS, ZBTB11, USO1, ACAP3, EHMT1, ZFAND1, ZFYVE21, PSMC4, PARP4, SDAD1, LZTR1, CHD1, GGTA1, 
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Table 6-18 | Upregulated proteins in the proteome of CD138+ plasmablast CD93+ plasmablast or both (cont.) 

Gene Symbol (Total 2679) 

TIMM10, GORASP1, TUBB2A, SLC25A32, EIF1AD, MRE11A, MAP3K5, CNBP, SRRD, PFKM, RPS25, POMP, PSME3, LSM12, 

PALB2, DNAJC25, MRPL52, TJAP1, MAP1A, ISG15, SLCO4A1, RNF126, MED8, GRM1, HAUS2, PAM16, RPE, PTBP2, GFM2, 
OIP5, HSPBP1, GADD45GIP1, GNPTAB, RPL14, DPH1, COG7, TNPO1, RAB6A, FKBP3, MRPL43, PEX12, NUDT1, NUDCD2, 

UBR4, ENDOU, RASGRP3, OSGEPL1, EHHADH, CCDC25, IP6K1, E2F4, NXPE3, ERGIC2, ATPAF2, PEX10, CLASRP, ENTPD6, 

SLC39A6, MRPL58, SMYD2, MED24, ZBED4, NDUFB9, STX12, WARS, JOSD2, GAPVD1, ZFPL1, SLFN9, IGHV7-4, NDUFB10, 
CNIH4, RCBTB1, RRAD, NUDT9, PIGT, EXOSC10, POT1A, PLEKHF1, HSD17B4, GRN, RBM19, GCSH, PIP5K1C, SACS, FXR1, 

HMG20B, ARID5A, CHML, FAM91A1, PTER, DDX11, NLRC5, SNAP47, CCNL1, NUP62, HGH1, NUPL1, SELENOI, GBA, 

AMMECR1L, GMPPA, RABAC1, ELL, COQ8B, BID, TXNDC9, SCO2, TIMM44, MUL1, CYBB, PPP2R2D, WDR48, YTHDF1, 
MRPS33, SNX10, ECD, DDX39, NOTCH2, METTL22, CLCN3, CCDC18, SAR1A, DARS2, KRR1, FAH, SPCS1, TSEN15, XRN1, 

MAPKAP1, MAN2B2, POLR3A, CCDC84, APOO, VRK2, CCP110, POLQ, STUB1, UBE3C, PPIB, TLR12, TSTD2, NDUFAF2, HPDL, 

CASP4, ATG9A, AKIRIN2, TYSND1, TBC1D10A, IDH3B, LAMC2, HIST2H3C2, SMCR8, KLHL6, IPMK, NPHP4, C1QBP, SUCO, 
NUDT4, RNASEH1, RPA2, TMED10, ALKBH1, SPTLC2, BCKDK, IGHV1-64, ARF4, SMYD4, RAP1A, HM13, BLMH, TRIM44, 

GSTT1, MTG1, TTC4, SSR3, ELP5, SNX14, COG3, METTL4, PBX1, NEDD4, GCFC2, GLRX3, MRPS18A, MTOR, PRKCZ, SIK1, 

ADAM19, SLC38A9, TMCO1, DUSP19, ARFGAP2, DCAF1, UBE2A, CEP290, DGKE, CNPY2, ARHGAP35, IGKC, RUVBL1, 
COPS5, AP4M1, TXNL4B, GTF2I, TENT5C, RSL24D1, LCMT1, MMS19, TBC1D10B, PRKCA, NOSIP, RPS27, USP30, GAS2L3, 

DPH6, TXN1, RELB, CDAN1, R3HDM2, NXT1, DDB1, SPN, PRRC1, RASA1, PCM1, MRPS12, PGK1, TMED7, CNOT1, HRAS, 

NPHP1, UHRF1BP1, LPCAT4, ATP6V1E1, AMBRA1, NT5DC3, CKS1B, SUPT16, NDUFB6, BCCIP, RRN3, CD19, MRPL18, 
ZC3H15, HSPA4, UBE2Z, PCLAF, CUL4B, HAUS6, UBE2E1, ALDOA, TTC1, TTC39B, NOLC1, GTPBP4, BCLAF1, OLA1, TPRN, 

HNRNPAB, ATP1B3, CIAO1, TLK2, APOBEC1, PLSCR1, PPP6R3, CLDND1, IPO8, PTPN9, CAMSAP1, POP4, NACA, PELP1, 

POLR1E, POLE4, PRMT1, RPL23A, DCAKD, ROMO1, YRDC, MYDGF, KPNA4, PARL, ADSL, PEX16, YOD1, PBDC1, FBXL15, 
EMD, RPS21, CCDC86, PLXNB2, PFDN1, RMND5A, ZNFX1, WDR12, GABARAPL2, CSE1L, DYNC1LI2, PEX14, EIF4E, HMGN3, 

GLRX2, PSMB8, GNL1, PAPD5, 2810428I15RIK, KLHDC3, AGGF1, ZFAND6, MAT2A, PAK1IP1, INTS7, GYPC, FKBP1A, DENR, 
PGAM5, KIFAP3, TOX4, RPS24, COPZ1, DTWD2, RFC1, EMB, SLC25A28, KIF1BP, TTC9C, IL2RG, SLC6A9, DHX29, ADSS, 

TMEM39B, ZC3H12D, NUP37, DCTPP1, ARPP19, CBX5, HNRNPA1, CNOT10, ARL6IP1, RAD50, CFP, RPL15, GBP2, MRPL50, 

THUMPD3, TARBP2, RABGGTB, SWAP70, TPT1, LACC1, ZPR1, SLIRP, PATL1, ATXN2, NUS1, MAPK8, FAM78A, MCL1, 
CDK12, PPP2R5D, PARP9, TM9SF3, DCAF4, TRAF4, TMEM161A, MRPL33, USP1, GEMIN6, RPS27L, GSTT3, URI1, NPLOC4, 

MED28, CTNND1, RRP8, POLR3E, NOP16, ADNP, TRMT61A, SLC20A2, THG1L, STMN1, TEX10, MED30, MAFG, DHX58, TCF3, 

DTD2, ARID3B, PCGF6, GANAB, HMBS, TRMT10A, TAF15, DPH2, UXT, ZFP142, PEX19, MTERF1B, TRIM25, CLN3, SLC43A3, 
DNMT3A, H2-Q8, TNPO2, ELAC2, CYP4A32, DNM1L, SS18L2, SENP6, GTF2H2, ABHD13, ZCCHC3, FOXJ3, POM121, PRRC2C, 

GTF2H1, IMPA2, RTN3, AHCTF1, EXOC4, RASA4, DBI, DDT, PUSL1, DNAJA2, RC3H1, WNK1, EEF1AKMT1, PARP14, PHLDB1, 

MRPL34, LDHA, ELOA, CCNE1, IGKV4-57-1, RPLP2, PPP2CA, LARP7, PPP2R1A, EFL1, GRCC10, FAF1, TMED5, TMX2, 
POLR2K, PYCRL, ATG7, TRAK1, ZFP644, PI4KB, RBM45, ZFP511, NBN, NRD1, OTUB2, PRRC2A, USP46, CLK3, TRMU, HINT1, 

SKA1, RWDD2B, GATM, 38777, RTCB, DAD1, PNKD, GOPC, ZFP53, CIAPIN1, POLR3D, RCOR3, ATM, ZFP444, CD48, MRS2, 

ADPRH, MRPL55, ZKSCAN1, SREK1, DDOST, DIS3L2, TOPORS, ZMIZ2, RPL34, FAS, TRUB1, TAF1C, CCNC, PRPF38A, NAA38, 

IGHV5-9-1, GBP5, DHCR7, CLASP2, ARFIP2, USP20, XPO6, PPP1R16B, LMCD1, HSBP1, REPIN1, ASCC1, PXN, EED, TSEN2, 

ICE2, PAN3, REXO4, EIF3F, EIF1, SURF4, H2-D1, RNPEP, NUB1, POLR3G, COIL, SLC38A1, RALBP1, GOT2, BICD2, DHPS, 

UBE2E3, ICE1, RSPRY1, USP38, PPP4C, SLC25A15, OVCA2, DESI2, PHF6, TWISTNB, LIMS1, RPUSD4, CSNK1G3, RAN, FNTA, 
EIF4B, ZFP64, METTL23, OSBP, LLPH, PPP4R3B, ARID5B, CD83, MED9, MED11, CHAC2, RUNX3, IGF2BP3, INTS3, RNF10, 

OXCT1, PPP1CA, TET2, SLC25A3, COPS3, SDHAF3, CLK2, GATB, HDAC4, XPO1, NGRN, GAPDH, NUP43, CR1L, EEF1D, TSFM, 

SLC30A9, NDRG3, TMEM199, KLHL20, WRNIP1, EXOSC1, PFDN4, RMDN3, GMPR2, AIM2, MED1, USP9X, D16ERTD472E, 
DYNLT1A, ATP5F1, CHMP7, RPUSD3, KAT14, CSNK2B, RRP15, CLNS1A, NUDT5, CNOT2, NCOA7, GM10881, NABP1, PFDN2, 

XPNPEP1, FAM193B, BHLHE41, YKT6, SPAST, ZFP160, MAGI3, CALU, RPL13, UBE2L3, TMEM209, ARNT, PSMB2, NUDT7, 

PTGES3, YEATS2, SERHL, ADI1, DDX1, SASH3, MRPL40, RNASEH2C, NUP153, ITGAV, MTHFSD, TSSC4, ZMYM4, KCMF1, 
TANC1, MT-ATP6 

 

Table 6-19 | Downregulated proteins in the proteome of CD138+ PB, CD93+ PB or both (cont.) 

Gene Symbol (Total 2340) 

ARHGEF18, ALB, SERPINB1A, ZFP318, CPT1A, MECP2, CROCC, ATP8A1, FGB, SFXN3, ANXA1, SELENBP1, ELMSAN1, SIPA1, 

GANC, ALDH2, CDKN1B, ZYX, RIN3, EPHX1, NUDT16, A430078G23RIK, AIF1, PHF1, ELMO2, FGG, GSN, LMNB2, FCRLA, H2-

OB, IGHD, BLVRB, SIGIRR, GP1BB, DOPEY2, PDCD4, KCTD12, ITPKB, IFI209, FGA, LSP1, ALOX12, SRPK3, ARRB1, H2AFY, 

PGAP1, SMARCA2, FCMR, TTC38, EVL, LPCAT2, MYL4, KBTBD11, CFAP43, TRIM65, SORL1, HS1BP3, GBP9, RUFY2, PLD4, 

ZC3H12A, SENP7, MTM1, CCDC71, PLCB2, CAPG, CASP6, TGM2, SUN2, AGO1, PITPNM1, VWF, SSH1, KMO, RPS6KA4, HIDE1, 
PARP3, B4GALNT1, CMPK2, HAAO, NFKBIE, TRIM21, SFXN2, CEP120, ADD1, DFFB, ACP6, CHD3, NDRG1, CRYL1, LRRK2, 

UCKL1, PNKP, ITGA2B, PCIF1, ZFP512B, H2-EB2, PLEC, AS3MT, GSTM1, VCL, HIST1H1T, BIN1, ARHGAP4, EML3, SETD1B, 

PITPNM2, FBXO22, FSCN1, MYL9, LIPE, FHOD1, EXOC6B, RBL2, GP9, TMEM71, GPD2, P2RX4, CEP95, ACTN1, CGGBP1, 
COQ8A, TRAF5, HMGB1, CD200, UBA7, ALDH6A1, AP3M2, PLBD1, TUBB1, PLGRKT, AP1S2, C4B, PAXX, ARID1B, CIRBP, 

SPTBN1, ENGASE, PTPRJ, RPS6KA5, KLC4, ARHGAP45, CYP4F18, CDT1, GRIPAP1, ITGB7, VRK3, ZHX2, DFFA, VASP, GPD1L, 

CAST, UBLCP1, TLR9, PIK3R1, ITPR2, RCSD1, PDPR, CEP135, TMX4, WDR44, SPTAN1, SH2D3C, IKBKB, TRP53I11, KAT6A, 
TNFSF13B, PPP1R12A, DGUOK, PRKAR1A, HMGA1, NFKBIB, SPICE1, WDR1, FYB, NAAA, CALHM6, THBS1, CTSH, 

ARHGEF1, NPEPL1, ANXA5, ABR, NUMA1, SH3BP1, ACAA2, PHF2, EPC1, SH3KBP1, BANK1, TSC22D4, ANKRD44, NAGK, 

HSPA1B, ASAP1, UCK1, CALHM2, LTA4H, NIN, CST3, STOM, ATP2A3, FGR, ADD3, NUDT14, LMNA, PARVB, NQO2, RGS14, 
STRN, LCP1, EIF4A2, NFATC1, GBE1, RIPOR2, PPBP, PRKAR2B, ARHGAP27, NR2C2, ZADH2, SERPINB9, TREML1, MAPK14, 

PACSIN1, GIMAP9, PGM2L1, HDAC10, HCK, CAPN1, PACS1, SELENOH, ZFP639, SP4, ANXA2, CBR1, RFX5, BLK, ARID4A, 

PRKD2, ACSS1, PRR12, CAPNS1, DNTTIP1, DLGAP4, AHDC1, RFX1, SMARCC2, HDGF, FILIP1L, SLC25A11, BIN2, FRY, IVD, 
TBC1D5, MLYCD, SYNE3, MDM1, MORC3, ARMC10, RFXAP, ABCG3, AMPD3, ING1, GAS7, RASSF2, DCXR, KHNYN, LRMP, 

NEK9, ALDH1B1, MAP2K6, AK3, PLEKHA1, PCTP, PPP1R9B, CARD6, GLYCTK, BRCC3, TRAF3IP3, DHDH, CREBRF, DAPK3, 

TLR3, CEP128, ZFP524, RTF1, HIVEP2, ZFP35, TESPA1, IDNK, IRAK1, LCK, ABLIM1, TFAM, PLEKHO1, VIM, LGALS3, NR3C1, 

SIGLECG, SELENOO, IRAK4, SH3GLB2, TBC1D9B, PPTC7, SCML4, HMOX1, THUMPD2, RAB32, TAF4, NFATC2, ALDH4A1, 

CDK13, METTL14, UVSSA, TDRD7, BASP1, BEND5, PDE5A, SMARCD1, MBD2, MSRA, MCCC1, PAFAH1B3, SIN3A, LENG9, 
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Table 6-19 | Downregulated proteins in the proteome of CD138+ PB, CD93+ PB or both (cont.) 

Gene Symbol (Total 2340) 

MNDAL, CNP, CNN2, TMEM63A, DIABLO, CIC, ADSSL1, RHOG, TMCC1, ANPEP, IBA57, ACIN1, DENND1C, BICRAL, CAP1, 

AAMDC, HVCN1, GLUD1, ASPH, FBXO7, RELA, PHC1, SIRT7, NRF1, AKAP13, TBC1D14, LEMD2, DEK, STK17B, CHTF8, 
STK10, MAP4K2, MCCC2, MYO18A, CBX1, RAC2, DNAJC9, TCOF1, BRWD1, FIG4, ECI1, ACOT2, OTUD7B, API5, NLRX1, 

CBFB, FAM50A, ZGPAT, SDCCAG3, EZH1, GRAMD4, STAT6, ZMYND11, PF4, METTL3, GIMAP8, PKN1, TWF2, VWA5A, 

DCLK2, SYNJ1, UIMC1, GGCT, MLLT6, CORO1B, ZFP512, PGM1, FAM98C, RASGRP2, MFN2, IL16, GP5, STARD10, PTPN6, 
LACTB, OXSM, DDX58, FLNA, PHF23, EAR1, CD2AP, ITGB3, TLE3, DBNL, TNKS1BP1, EPSTI1, CCDC90B, H1FX, HBB-BT, 

LMNB1, CPM, ATF7IP, TAF7, SP2, PEAK1, MPO, CUTC, PRDX5, IFI203, ZFP518A, HCFC1, GPX1, RPRD1B, SAMHD1, MTSS1, 

MYOF, GIGYF1, TERF2IP, ATAD2B, STK11IP, KANSL1, PPOX, MAPK12, ADPRHL2, SORD, TRP53BP1, RIDA, GDPGP1, MDP1, 
ARHGEF3, ZMAT1, HSPA2, MARCKS, HIST1H1A, SETD1A, POLR2G, PPP1R21, ANXA6, HHEX, AFF3, ARHGAP25, ENTPD5, 

ETS1, RABEP2, RAP1GAP2, CCDC93, CDKN2AIP, MYO1F, ANXA11, VPS33A, HSPA4L, INPP5F, TRIM7, ARHGAP26, SLC9A7, 

BC017158, RAB11B, CRTC1, TBCK, GMIP, UGP2, TMOD3, COBLL1, GMFG, ENO3, APOBR, EML2, GALK2, PARP1, IKZF3, 
CIZ1, XPC, CEP78, SERPINE2, PDXK, PANK2, FCER2A, BCL9, ARHGAP6, MEF2D, CD2, KDM7A, PPM1M, TMUB1, ARHGEF11, 

WDR91, LYZ2, BCR, GPAT3, IGHA, PDP1, CAR1, NFATC3, NFATC2IP, PFKFB4, GGA2, CPT2, A430005L14RIK, CLU, EFHD2, 

EZR, BNIP3L, PYGL, SYNE2, SNX8, IQGAP2, CRAT, VPS33B, KYAT1, SPIN1, VPS8, VTI1B, SYTL4, ABHD14B, AGL, GNS, 
XPNPEP3, PML, CHKB, ABHD16A, DOK3, KDM1B, DNM2, TAF6, INPP4A, LMBRD1, FLYWCH1, WDR81, NSF, CAMK1D, 

BRD3, FYCO1, MPRIP, ALYREF2, TNIK, CD22, TEC, SNX30, TOR4A, DENND2D, HBA-A1, UBAC2, ANP32A, CORO7, CAMP, 

GM340, APOE, PSMB10, SPAG9, ABI3, GRAP2, SHTN1, IFIT3, 9030617O03RIK, FLI1, 2310033P09RIK, ZFP148, SERPINB6B, 
DNMBP, TPRGL, MDH1, MICAL1, ECH1, D6WSU163E, FAM32A, KYNU, MPEG1, SLC25A20, GGPS1, BACH1, CDS2, DPP7, 

ZBTB3, ACCS, PGGHG, CD84, SMARCE1, PIK3C2B, RUFY1, ZMIZ1, DPF2, IPCEF1, SLC15A4, GMEB1, EEA1, STK19, TAX1BP1, 

RUBCN, TIPRL, ZC3H6, AKR1B3, CCAR2, SKAP2, GSDMD, NAXE, IST1, BRMS1, RGL2, VAV2, EP400, PLAUR, RASA3, 
RNF169, FBXO38, DDX59, SFN, CPSF7, TOR1AIP1, ZFP263, FMO5, RDH12, NLRC4, HEXA, HSD17B10, TPD52, PPM1F, BAHD1, 

KLHL14, RASSF5, STS, MAST3, CNTRL, SCAF1, HSDL1, FAM49B, ARL6IP4, ACSL1, RABEP1, COMMD7, CNTROB, IQGAP1, 
AP1G2, CARMIL2, ANKRD13A, MYH9, COMMD5, METTL7A1, TBC1D20, ELL3, PAG1, EPS15L1, MUM1, SGSH, TKT, AKAP2, 

SPTB, PAX5, RMND1, CEP170, NAT2, RNASEL, SERPINB6A, DHX34, TALDO1, LNPEP, BCL7A, MEF2C, DCPS, TGFB1, 

NFKBIA, SLC4A1, PLS1, TMPPE, FGD2, PSD4, ODF2, SCIMP, TCP11L2, ABRAXAS1, AHNAK, ECHS1, CDK5, RCOR1, KMT5C, 
IFI47, TIMP3, ZFP668, MAML1, AKAP5, ACAP2, KMT5B, NUDT3, ANKRD12, SP100, SNX29, CPNE1, GPALPP1, CEP250, EPX, 

PDK1, PMM2, HIST1H2BK, SRF, INPP5D, FCGRT, AKAP12, ETFDH, IRF8, GOLGA7, ACSF2, SCLY, GDI1, SQOR, SAFB2, 

OTUB1, SCRN3, BRD9, TRIM36, ERBIN, POLD4, ELF2, IRF9, NIT1, CDYL2, MTIF2, RAB4B, MAFK, TCEA1, ANXA4, BRD8, 
PBX2, TECPR1, EGR3, CBLB, PTK2B, IL4RA, HBP1, PAXBP1, SLC25A12, TNIP2, CD97, STK26, SMC5, TNFAIP8L2, RNMT, 

NCOR2, PIK3C3, NDUFV3, ALDH3B1, ACP5, AKAP8, PPM1A, DRAP1, HMGB2, MFF, BPHL, EPN1, ENDOG, MSN, OSGEP, 

DIDO1, SLC40A1, SMUG1, PPT1, RGS19, TRIM59, FCER1G, CXXC5, MICU2, SPG11, SP110, ZC3H4, H2-OA, TRAPPC5, 
HIST1H1B, PLAC8, BC026585, TMEM201, POT1B, ARID1A, TBXAS1, WBP11, ZBTB7A, CRK, SESN3, SSH3, SLAMF1, ARMT1, 

PRR14, FBXL8, PIK3AP1, UAP1L1, NMNAT1, HPCAL1, MRC1, UPF3A, RBM5, LRCH1, PIBF1, EIF4EBP2, HIP1, SCAF8, F13A1, 

SNX4, FKBP15, ASPSCR1, TAPT1, CNST, TM6SF1, STX7, PLEKHG2, SLC28A2, SAMD1, ZFP638, LCP2, TIFA, RREB1, FAM102A, 

CEP295, 2610507B11RIK, WAS, STRIP1, PFKFB2, OSTF1, ELK3, SNX18, FDXR, SLFN5, CR2, RENBP, SH3BP2, RGS18, DDX23, 

SNX2, CAB39L, MINDY2, ABCB10, CHIL3, CNRIP1, BOD1L, OARD1, CLCA3A1, H2-KE6, AKAP8L, ZFP422, NGP, TALPID3, 

PPP3CB, COPS7B, HK1, HECA, RNF6, REL, PRKX, YWHAZ, SHPK, TBC1D10C, MOB2, APEX1, SURF6, FAM208A, AP1M1, 
ALDH16A1, PPCDC, EMSY, NEMP1, LRBA, SERPINA3K, RAB27B, SPIB, QDPR, AGPAT2, JAK1, PPP2R5A, KDM2A, STX6, 

HSF1, KDM6B, PIP4K2A, TARDBP, TMEM2, UBXN6, GM4737, REST, ERLIN2, QK, MGMT, N4BP3, 1600014C10RIK, GPSM3, 

SAP130, PUF60, RFLNB, FAM213A, NFRKB, CBR3, NEDD4L, RSF1, ESCO1, TPCN1, WDR82, AMDHD2, PKNOX1, SMC3, 
PPP1R11, SDCCAG8, BDP1, PRCP, LASP1, PCCA, DDAH2, SNAPIN, RDH13, NT5C, HPS1, ABCD1, DENND6A, SFSWAP, DCTN1, 

MAP3K3, ITIH4, IKBKG, GP1BA, SRI, CUX1, RESF1, CD55, ARHGAP17, TLN1, ALDH3A2, TUT4, PGLS, GSTK1, SLC25A46, 

MON1A, WDR70, RIPK2, MTA3, AP1S3, RAB3IL1, ZFP407, ZMYND8, MAST2, APEH, LBH, ACOX3, TRAPPC9, MAPK3, TAF3, 
SYNE1, ANXA3, EFR3A, TBC1D8, LANCL1, SDE2, RPS6KA3, DTD1, DGKZ, UNC119, NFIC, YWHAQ, ATXN3, DUSP28, ITGAD, 

PRDM2, ITPR3, APPL2, LRP1, WDR45B, FOXN3, ANKRD11, ZFP608, SIRPA, LTBP1, TRIM14, CAPZA2, PLA2G4A, ACAP1, 

RFTN2, CNDP2, ZFP385A, CALD1, PDIA5, CREBBP, SART3, PCCB, CEP68, CREB1, IFNGR1, SLC23A2, DHX15, RAB28, TFEB, 
HAGH, PYGM, EHD3, ZFP592, SELENOT, ARHGAP18, SERPINA1B, TNIP1, HNRNPK, PLCG1, AI607873, ZC3H3, RARA, 

GNPDA1, PPP6R2, NCF2, PALM, NCOA6, KAT5, DAXX, GM20498, PTS, UPRT, CDK17, ERMP1, ASRGL1, WIPF1, PHF3, AHI1, 

HERC4, VCAM1, ETV3, ACTB, ASAH1, AAK1, RYBP, HOOK3, FOXO1, CAPZA1, HACE1, LBR, GMEB2, CORO1A, M6PR, ZBP1, 
INPPL1, UBE2N, LSM6, IRGC1, TTC28, PSME1, SIGLEC1, TUBGCP6, COMMD1, MACROD1, HOMER3, RUNX1, IFIT2, ITGA6, 

BPNT1, FMNL1, ENSA, OXR1, KIAA0226L, ACYP1, SRSF4, BAG1, HMGB3, BLES03, PRKCE, EMC6, PCYOX1, TGTP1, NFIA, 

BUD13, USP25, CABIN1, ACADM, STX8, EVI5L, ARHGEF7, IQSEC1, SMARCB1, COX7A2, KCTD18, CAVIN2, SMARCD2, 

HLCS, NCF4, CTSA, CARD9, BRMS1L, LRRFIP1, USP12, TBL1XR1, ZFP831, CHMP1A, CD38, YWHAB, FES, MNT, GM43302, 

MTFR1L, ROCK1, PDCD6, ITGAX, RALY, TOP2B, CAMKK2, AKAP11, RSU1, RASSF1, POLL, FAM20B, NMI, POLG2, H2-EB1, 

TRAPPC8, STK24, RNF114, THA1, MAPK8IP3, PTPA, CCNK, TRIM34A, LIPT1, NFS1, ATG5, NRIF1, MSL1, TERF1, IPO13, 
DENND1B, JAKMIP1, DUSP7, GPX4, PPM1E, NIPBL, PTGS1, TMED8, CASP1, ZFP691, NAPG, PDE2A, H2-DMA, ZFP335, 

ZFP143, FUS, STIM1, TRIM24, SMG6, CYLD, HDHD5, SUGP2, S1PR4, SETDB2, SLFN1, ARHGAP9, PPA2, MFN1, MAP3K8, FN1, 

LPP, HPS4, CYP2D22, CD79B, SETD2, GIT2, RIC8A, KMT2E, PPP1R13B, PXK, KDM5A, HP, BRD4, EPS8, VIPAS39, RNF170, 
DENND1A, TNK2, PPP3CA, BLOC1S1, MCUR1, ARHGDIA, TSPAN13, ECI2, MSL3, CD74, CLEC12A, FAM49A, GIMAP1, RING1, 

ATP9B, RBM14, AGAP2, MYL6, IMPA1, ZFP629, FBXO28, NRBP1, TMEM243, LIMK2, RXRB, VPS13C, PPP1R18, CCDC82, 

ACSS2, POC1B, MAP3K2, DDX17, PACS2, 3110001I22RIK, CTDP1, LSM3, BCL9L, SMAP2, MFAP1B, NSD3, USP11, PTPN23, 
BACH2, TST, EPC2, MOB1A, APBB1IP, COX4I1, CCDC71L, GIMAP7, LTF, LCN2, LTB, STK4, DDX60, FAM160A2, TMEM131L, 

NHEJ1, TK2, NUCB2, AKR1B10, L3MBTL3, ERCC4, ZBTB24, KAT8, RPRD2, JARID2, FUK, TMPO, GGA1, SRSF1, CARD11, 

WARS2, SF3A3, FOXO3, CXCR5, PHACTR4, D10JHU81E, GIMAP5, MSANTD2, OSBPL5, STAG1, ZFP553, RP9, FMNL2, 
WASHC5, NFYA, ACAT1, GNPDA2, PTBP3, CEP41, VPS16, FBXL4, CWF19L1, ARHGDIB, PRKACA, PFN1, CISD3, RAB27A, 

FAM151B, MGST1, THUMPD1, SSBP1, NADK2, DCAF11, VEZF1, NT5DC1, BECN1, ICOSL, CAMK2D, MTR, PLEKHF2, RAD21, 

MAPKAPK2, FAM126A, VPS35, CTPS2, TIGD2, SUDS3, PSMB9, NUDT13, PAK1, PSPC1, PIRB, 9930111J21RIK2, DCP1B, TUT7, 
FECH, CBX8, ZMYM6, CLEC16A, BTLA, BRPF1, SIKE1, PRCC, HNRNPUL2, BCL2L13, SH3GLB1, RALA, FN3KRP, ZBTB2, 

TOMM34, MOCS1, RAB11FIP1, FBXO4, PANK4, EMILIN1, ACAD10, KMT2D, RBCK1, LIMA1, RAP1GDS1, NCOA3, ACTL6A, 

KLF3, PADI2, MITD1, ULK3, SBF1, DEF8, LETM1, GRB2, 9030624J02RIK, CBX3, HNRNPUL1, TRIP12, IRF2BPL, ACAD12, 

6330416G13RIK, RBM6, HPS3, S100A9, C3, RSRC1, TGM1, GRK6, FBXL17, CRLF3, SF3A1, CSTF3, ZFP740, TRIO, B3GNT8, H2-

DMB2, SGPL1, CPQ, PDXP, H1F0, 5031439G07RIK, VAMP8, MTMR3, AHR, SIRT5, GLB1, FCHSD2, SLTM, ZBTB9, GM49405, 



Appendix 

 

Page | 233  

 

Table 6-19 | Downregulated proteins in the proteome of CD138+ PB, CD93+ PB or both (cont.) 

Gene Symbol (Total 2340) 

MAP2K1, SEPHS2, RDH14, RPS6KB2, SMC6, SLC25A24, ZFP207, NOL12, SATB1, ELF4, PDCD7, TRAPPC12, DET1, PIP4K2C, 

METAP2, LRSAM1, SLC27A4, TMX3, CLIC1, EML4, VPS11, HPS6, USF2, CD180, MBP, GATD1, PRG2, DENND5A, SINHCAF, 
RAD23A, CCSAP, RAB6B, WASHC2, UHRF1BP1L, CRIP2, MAF1, STAG2, BTG1, GFER, ZBTB4, DOCK5, MEN1, DPP9, NUAK2, 

GLRX, PPCS, AP5Z1, DENND4B, COTL1, PRKRIP1, PAPSS1, RASSF3, HK3, THNSL1, SLAIN2, EPB41, TMEM65, PRPF31, 

FAHD1, UBTF, UBXN7, BLOC1S5, PIK3CA, ARFIP1, RHBDF2, LSM7, RFXANK, 4933427D14RIK, ARPC2, FAM107B, BORCS5, 
ABCD4, PSME2, GPATCH11, SLC2A3, OSBPL2, NCBP2, ABHD17B, UNC93B1, ARHGAP15, UBE2R2, TAF11, PBXIP1, GTPBP3, 

NADSYN1, TUBA8, RBBP5, UBE2I, MAVS, PHKG2, CWC25, CASP7, DYNLL2, POGZ, SCIN, CMTR1, VPS4A, B2M, TXNRD2, 

FCHSD1, RBPMS, AKT3, PLEKHM1, ZCCHC17, POLR2A, MEAF6, ABHD10, AFTPH, NAGA, UVRAG, BC017643, TP53RK, 
WDR37, LPGAT1, CHMP2A, MSL2, UBL5, CLYBL, CCDC12, GSE1, KCTD14, OGG1, SART1, CELF2, STXBP3, CXXC1, SYNRG, 

MYL12B, BRWD3, SNX6, NME3, SFPQ, MMP9, THY1, SLC25A45, NPEPPS, CCNY, CSTF1, EPB41L3, TRAPPC1, GRAMD1A, 

37316, VAV3, FXYD5, SNX3, CAR2, PLAA, KBTBD2, DIS3L, JPT1, ACSF3, BCL6, GCC1, TGOLN2, DYNLT3, 1110004F10RIK, 
EXOSC9, SUMO1, POLR2C, DLD, NCOA1, ANKRD27, UBE2G1, MAN2C1, ACADVL, ACADS, SLC41A3, SMIM14, SF3B4, 

VPS26A, CPSF6, MKL2, ZFP292, AP1B1, MRI1, UNC13D, IDH2, CC2D1A, TAF8, TADA3, SMC1A, CEP57, EAR6, PCMT1, CNPY4, 

IDH1, CDK19, LENG1, RMDN1, HEXB, PIP4K2B, KIF1C, GIMAP4, NIPSNAP2, RAPGEF4, COQ5, IFI208, SCAF11, NFYC, MAP4, 
DPY30, BAG5, SNAP29, TAF5, EARS2, ZHX1, ECE1, POLR2J, ZFP746, GLYR1, OFD1, BICRA, SH3PXD2A, FADD, FTH1, DAPP1, 

MYO1C, HADH, TMCO4, MAPKAPK3, NUDT18, SETX, RANBP3, HIST1H1D, HSPA12A, CUTA, LYRM4, WASF2, CCDC9, 

TRIOBP, ATP6V0D1, SNRK, CSK, ACTR2, BPTF, ARAP1, PCBD2, CARMIL1, ISOC1, SAFB, MCTP2, APOOL, LAGE3, SRSF2, 
ILF2, ZFP830, CD79A, ILF3, XDH, BMP2K, TERF2, NSFL1C, ATP1B1, COPG2, RAI1, PDLIM5, DOCK11, ATG3, SPTA1, PHRF1, 

TOMM5, IGSF6, PDE1B, PHF20, SYPL, GABPB1, ARPC5, PPM1G, HEMGN, STX4A, ZNF326, SNRPA, MTMR12, ZFP280D, DDI2, 

PPIL4, CECR2, UQCRC2, PPM1K, NCK1, PRPH, STK38L, WDR47, LRCH4, RAB21, RALGPS2, HNRNPA3, USB1, YWHAG, SYF2, 
CAND1, POC5, ZFP865, PHC2, ABHD12, FKBP5, PTPN14, AKT2, SCAMP3, NFKBID, SH3BGRL2, LSM2, ANKFY1, PRDX2, 

BAK1, INO80, ABCB1A, NCKAP1L, CCAR1, RGS3, CHTOP, CBFA2T3, SETD5, YEATS4, NUCKS1, SERPINH1, KANSL3, 
PTPN18, MMAA, OSBPL7, HMGN1, RHOF, SNX12, FAM104A, CSAD, RETREG3, SARNP, SYNGR2, 1810043G02RIK, TAF1, 

KXD1, ZC3H18, DIP2A, KLF2, SRRT, SKI, BLOC1S3, ADO, MOB3A, TICAM1, ADCY7, MICALL1, ELMO1, PRKRA, FAM192A, 

MPPE1, IGHG2C, PPME1, UTRN, CYP4F14, PIK3CD, CYB5R3, EXOG, CISD2, BCL11A, COX6C, QRICH1, ARHGAP1, ZBTB14, 
HNRNPL, HP1BP3, CCDC22, GATAD2B, SLC9A9, ATF7, MAPK11, XRCC6, CLIP2, RNF146, TMEM43, BLOC1S2, WASHC1, 

ZBTB1, PQBP1, TMEM134, BRF1, HNRNPM, RCN1, NUMBL, DHX8, THYN1, CAPZB, STARD3, PPIA, RBM4B, FGD3, FAM213B, 

TAF9B, SRA1, TREX1, HMGXB3, RTCA, NIPSNAP1, HSDL2, DBN1, HBS1L, COA4, OGFRL1, RABIF, ZFP260, TOMM40L, 
NDUFS4, SUPT7L, TSNAX, HDAC8, CNN3, KALRN, PHC3, TCERG1, NT5C3, RNF31, PSMA3, MAGOH, DUSP3, PSMD5, 

LRRC45, STRN4, ZFP574, AQP1, TMEM175, SLC12A6, NONO, OPA3, IFI35, TGFBRAP1, DIAPH1, ARID4B, ZFP346, FIZ1, 

SLC29A3, EMC4, RBKS, CYC1, CLEC1B, PLP2, RAP1B, ACTR3, EAR2, STAM2, RCC2, FGD6, ANKIB1, ETHE1, NCKIPSD, 
AKR7A5, PSIP1, C2CD3, PITPNC1, DNAJC28, KDM3B, CD177, TSC22D2, EEFSEC, TRAPPC11, CENPV, TRRAP, PAK2, 

CDK5RAP2, PPP1R37, TES, APPL1, XIAP, PIN4, MYO6, HGSNAT, SPATA2, CUL4A, POLD1, ADRB2, XRN2, MSH3, GM608, 

BAP18, HMGXB4, HDGFL2, VARS2, GTF3C4, FRG1, MAP3K11, PLA2G15, SELL, LPXN, SLC25A35, MIOS, ZDHHC18, CFAP97, 

DNAJC16, SMAD5, CFL1, AGO2, TEX9, CNPY3, PIAS2, CTSB, SEMA4D, CAVIN1, CLCN7, HNRNPH3, ANP32B, DNAJC8, 

ATP5D, ANP32E, MYH10, MYADM, AFF4, WDR13, NUDT21, PDCD10, CEP44, NAIP2, RFK, FAM69A, MTMR6, PHYKPL, GBA2, 

RFX7, POLR2D, CTBP1, PTPRC, DGAT1, AK6, CDIPT, KPNA1, SMPD2, PLK4, FAM76B, FAHD2, PZP, EPS8L1, MAP2K4, PARN, 
XRCC5, MCAT, WASHC4, DCAF5, HTATSF1, GTF2A1, ARL6IP6, YTHDC1, PYM1, FLII, MYH14, LAMTOR1, CFAP20, ZMYM5, 

GATAD2A, SLA, ALOX5AP, XXYLT1, TAB2, AIDA, SVIL, IRF2BP2, MLLT3, HSCB, SLC25A44, HIF1AN, CRYZ, ESYT1, FBXO6, 

ABCA2, OSBPL11, ZER1, FBXO46, DNAJC17, MICAL3, KIAA1429, UBE3B, YJU2, TNFRSF13C, UBE2W, TBCA, PHOSPHO2, 
CYFIP2, HGS, TAF6L, NAXD, MTHFS, LRIF1, UCHL3, SLC12A7, SNX5, PPP6R1, TBC1D8B, FBXL20, LCLAT1, CACTIN, 

TBC1D17, ZFP41, ETFA, MATK, NEDD9, ZFP787, EXOSC8, POLB, NSMAF, POLR2E, SSFA2, TCIRG1, THOP1, NDUFA4, ZFP84, 

PRPF19, HEBP1, CDC73, TAPBPL, RAPGEF6, ZBTB18, CCHCR1, CUL3, LLGL1, GDA, LYPLA1, DOK1, TTC33, SYMPK, ZFX, 
ARL8A, UBN1, CRKL, PHF20L1, MCRIP1, VCPIP1, TUBA4A, RASSF4, VRK1, ZFP593, IGSF5, APMAP, PPIF, MYD88, DERA, 

HPS5, IGHV1-63, SFXN5, INIP, DMAP1, FLOT1, ZFP276, CYB5A, SNX25, PRKCB, PIP4P1, NDST1, SP1, ZFP953, TNRC6C, 

ATXN1L, THAP11, OPA1, LZTFL1, AGK, NFYB, 1700037H04RIK, BUB3, PLPBP, PEX5, ITSN2, SMTN, MROH1, MFSD6, 
MORF4L1, ALS2, CTDSP1, MIER3, ACO2, HNRNPH2, FYTTD1, AP3S1, 0610037L13RIK, NIT2, LZIC, BCOR, CEACAM1, PHF14, 

HNRNPF, N4BP1, ANKS1, IFI205, MAP2K2, AGPAT1, MBD4, GPAM, SRR, R3HCC1L, COQ9, SLC27A1, CCDC88C, LYPLAL1, 

RAB24, SCNM1, CCSER2, ANAPC11, SCAF4, CRNKL1, 4930523C07RIK, KHDC4, TMC8, RAC1, SMU1, EP300, DOCK4, PTPRE, 
PTGR2, ESYT2, HMCES, MYO9A, TMEM222, NCEH1, PPM1D, RGS10, UQCR10, PTGES2, TTC14, ERP29, ANTXR2, HDAC5, 

VAT1, PURA, ACAD8, LGALS8, VPS4B, RCHY1, CKB, XYLT1, SMPD3, UNKL, COQ6, UROS, PIAS1, SPG21, DXO, CD1D1, 

UTP23, SGK3, DMXL1, ITGA2, CYTIP, HIST1H1C, DPY19L1, TRAPPC13, NDUFS3, PDLIM2, AFG1L, KDM5B, RAB3D, RUFY3, 

ATP2C1, TRIM8, MICU1, TRIM30D, CCDC15, MCU, PRKACB, MFSD14A, GPANK1, STX17, GNAQ, KLF13, RAB1B, HNRNPLL, 

VWA8, ALG9, PPP3CC, CRTC3, FAAH, GMCL1, ACADSB, JAK2, PLBD2, MTRF1L, SLC4A2, HIPK1, PRKCD, TMEM120A, 

ZFP131, TMEM260, SAYSD1, GPN2, TTC7, IRAK2, TRAPPC10, GPKOW, GOLGA4, KIF1B, UNC50, USP6NL, ACAA1A, TUT1, 
SUCLG2, NSUN6, VPS18, TXNIP, F5, DTX1, KDM6A, DNAJC14, CALCOCO1, DOK2, SNX15, ZKSCAN3, RAB5B, DEAF1, COQ3, 

H3F3A, CIITA, CRLF2, DCUN1D2, NUDT6, OTULIN, CAPN2, BC037034, PIK3R2, PDZD8, ELMO3, CCNDBP1, ZBTB5, CAT, 

SUOX, ING3, ELF1, GZMA, PATJ, RNF216, BRD2, VPS72, COQ7, ATG16L2, AP5M1, HINT2, SRCAP, GNL3L, TCHP, DSP, EPPK1, 
FBXO18, NCOR1, PPIG, JUP, PLEKHG3, ZFP24, TMEM192, XPA, EVI5, PURB, MYLK, WDFY2, CEP350, DCTN2, GHDC, ARRB2, 

KCNA3, FHIT, ZNHIT1, SELP, ALDOC, LRRC8A, TRIM33, MAPK1IP1L, ETAA1, AZI2, RAB43, DSCR3, FCRL1, COL6A2, MTF1, 

ATG16L1, PNPLA7, TSPAN14, PDLIM7, SMARCA4, PIAS3, ARHGAP24, RPRD1A, TIMM22, AMACR, SHISA8, STAT5B, TOB2, 
LRRCC1, DR1, NNT, GLTP, CPLX2, GALNT12, CMIP, S100A10, HMGN2, DCAF7, BCAS2, FTL1-PS1, DDHD1, SORT1, NEDD8, 

ASAP2, TBRG1, RASGRP1, DGKQ, ACOT8, TFDP2, TAF10, VAPB, MADD, TIMM17B, DPY19L3, UBE2V1, MIDN, HTT, SPATA6, 

ZBTB22, BRD1, TBCC, TINF2, TIRAP, MRPS36, PRSS34, SLC5A6, HIST1H2AA, IRGM1, 2210016F16RIK, CBR4, GSTZ1, 
AI413582, F8A, ITGA4, PARK7, NECAP1, MTMR10, PRKD3, NEIL1, UBL3, HTRA2, TNS3, CDYL, C1D, 40057, CYP4F13, MYO7A, 

ALDH9A1, OCRL, ZAP70, NEURL3, ERLIN1, SH2B3, NDUFS8, PHLDB3, CHD2, STAMBPL1, RNH1, DTNB, IRF2BP1, INPP4B, 

FLOT2, VAMP5, SNX11, RMC1, NUBPL, IRGM2, GM49361, PRPF40A, VPS39, PROS1, SMAP1, PCBP3, ZDHHC8, STN1 
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Table 6-20 | Genes/proteins uniquely upregulated in CD93+ isolated but not in CD138+ isolated cells 

Gene Symbol (Total 386) 
RRN3, CD19, MRPL18, ZC3H15, HSPA4, UBE2Z, PCLAF, CUL4B, HAUS6, UBE2E1, ALDOA, TTC1, TTC39B, NOLC1, GTPBP4, 
BCLAF1, OLA1, TPRN, HNRNPAB, ATP1B3, CIAO1, TLK2, APOBEC1, PLSCR1, PPP6R3, CLDND1, IPO8, PTPN9, CAMSAP1, 

POP4, NACA, PELP1, POLR1E, POLE4, PRMT1, RPL23A, DCAKD, ROMO1, YRDC, MYDGF, KPNA4, PARL, ADSL, PEX16, 

YOD1, PBDC1, FBXL15, EMD, RPS21, CCDC86, PLXNB2, PFDN1, RMND5A, ZNFX1, WDR12, GABARAPL2, CSE1L, DYNC1LI2, 
PEX14, EIF4E, HMGN3, GLRX2, PSMB8, GNL1, PAPD5, 2810428I15RIK, KLHDC3, AGGF1, ZFAND6, MAT2A, PAK1IP1, INTS7, 

GYPC, FKBP1A, DENR, PGAM5, KIFAP3, TOX4, RPS24, COPZ1, DTWD2, RFC1, EMB, SLC25A28, KIF1BP, TTC9C, IL2RG, 

SLC6A9, DHX29, ADSS, TMEM39B, ZC3H12D, NUP37, DCTPP1, ARPP19, CBX5, HNRNPA1, CNOT10, ARL6IP1, RAD50, CFP, 
RPL15, GBP2, MRPL50, THUMPD3, TARBP2, RABGGTB, SWAP70, TPT1, LACC1, ZPR1, SLIRP, PATL1, ATXN2, NUS1, MAPK8, 

FAM78A, MCL1, CDK12, PPP2R5D, PARP9, TM9SF3, DCAF4, TRAF4, TMEM161A, MRPL33, USP1, GEMIN6, RPS27L, GSTT3, 

URI1, NPLOC4, MED28, CTNND1, RRP8, POLR3E, NOP16, ADNP, TRMT61A, SLC20A2, THG1L, STMN1, TEX10, MED30, 
MAFG, DHX58, TCF3, DTD2, ARID3B, PCGF6, GANAB, HMBS, TRMT10A, TAF15, DPH2, UXT, ZFP142, PEX19, MTERF1B, 

TRIM25, CLN3, SLC43A3, DNMT3A, H2-Q8, TNPO2, ELAC2, CYP4A32, DNM1L, SS18L2, SENP6, GTF2H2, ABHD13, ZCCHC3, 

FOXJ3, POM121, PRRC2C, GTF2H1, IMPA2, RTN3, AHCTF1, EXOC4, RASA4, DBI, DDT, PUSL1, DNAJA2, RC3H1, WNK1, 
EEF1AKMT1, PARP14, PHLDB1, MRPL34, LDHA, ELOA, CCNE1, IGKV4-57-1, RPLP2, PPP2CA, LARP7, PPP2R1A, EFL1, 

GRCC10, FAF1, TMED5, TMX2, POLR2K, PYCRL, ATG7, TRAK1, ZFP644, PI4KB, RBM45, ZFP511, NBN, NRD1, OTUB2, 

PRRC2A, USP46, CLK3, TRMU, HINT1, SKA1, RWDD2B, GATM, 38777, RTCB, DAD1, PNKD, GOPC, ZFP53, CIAPIN1, POLR3D, 

RCOR3, ATM, ZFP444, CD48, MRS2, ADPRH, MRPL55, ZKSCAN1, SREK1, DDOST, DIS3L2, TOPORS, ZMIZ2, RPL34, FAS, 

TRUB1, TAF1C, CCNC, PRPF38A, NAA38, IGHV5-9-1, GBP5, DHCR7, CLASP2, ARFIP2, USP20, XPO6, PPP1R16B, LMCD1, 

HSBP1, REPIN1, ASCC1, PXN, EED, TSEN2, ICE2, PAN3, REXO4, EIF3F, EIF1, SURF4, H2-D1, RNPEP, NUB1, POLR3G, COIL, 
SLC38A1, RALBP1, GOT2, BICD2, DHPS, UBE2E3, ICE1, RSPRY1, USP38, PPP4C, SLC25A15, OVCA2, DESI2, PHF6, TWISTNB, 

LIMS1, RPUSD4, CSNK1G3, RAN, FNTA, EIF4B, ZFP64, METTL23, OSBP, LLPH, PPP4R3B, ARID5B, CD83, MED9, MED11, 

CHAC2, RUNX3, IGF2BP3, INTS3, RNF10, OXCT1, PPP1CA, TET2, SLC25A3, COPS3, SDHAF3, CLK2, GATB, HDAC4, XPO1, 
NGRN, GAPDH, NUP43, CR1L, EEF1D, TSFM, SLC30A9, NDRG3, TMEM199, KLHL20, WRNIP1, EXOSC1, PFDN4, RMDN3, 

GMPR2, AIM2, MED1, USP9X, D16ERTD472E, DYNLT1A, ATP5F1, CHMP7, RPUSD3, KAT14, CSNK2B, RRP15, CLNS1A, 
NUDT5, CNOT2, NCOA7, GM10881, NABP1, PFDN2, XPNPEP1, FAM193B, BHLHE41, YKT6, SPAST, ZFP160, MAGI3, CALU, 

RPL13, UBE2L3, TMEM209, ARNT, PSMB2, NUDT7, PTGES3, YEATS2, SERHL, ADI1, DDX1, SASH3, MRPL40, RNASEH2C, 

NUP153, ITGAV, MTHFSD, TSSC4, ZMYM4, KCMF1, TANC1, MT-ATP6 

 

Table 6-21 | Genes/proteins uniquely downregulated in CD93+ isolated but not in CD138+ isolated cells 

Gene Symbol (Total 267) 
DOCK4, PTPRE, PTGR2, ESYT2, HMCES, MYO9A, TMEM222, NCEH1, PPM1D, RGS10, UQCR10, PTGES2, TTC14, ERP29, 

ANTXR2, HDAC5, VAT1, PURA, ACAD8, LGALS8, VPS4B, RCHY1, CKB, XYLT1, SMPD3, UNKL, COQ6, UROS, PIAS1, SPG21, 

DXO, CD1D1, UTP23, SGK3, DMXL1, ITGA2, CYTIP, HIST1H1C, DPY19L1, TRAPPC13, NDUFS3, PDLIM2, AFG1L, KDM5B, 
RAB3D, RUFY3, ATP2C1, TRIM8, MICU1, TRIM30D, CCDC15, MCU, PRKACB, MFSD14A, GPANK1, STX17, GNAQ, KLF13, 

RAB1B, HNRNPLL, VWA8, ALG9, PPP3CC, CRTC3, FAAH, GMCL1, ACADSB, JAK2, PLBD2, MTRF1L, SLC4A2, HIPK1, 
PRKCD, TMEM120A, ZFP131, TMEM260, SAYSD1, GPN2, TTC7, IRAK2, TRAPPC10, GPKOW, GOLGA4, KIF1B, UNC50, 

USP6NL, ACAA1A, TUT1, SUCLG2, NSUN6, VPS18, TXNIP, F5, DTX1, KDM6A, DNAJC14, CALCOCO1, DOK2, SNX15, 

ZKSCAN3, RAB5B, DEAF1, COQ3, H3F3A, CIITA, CRLF2, DCUN1D2, NUDT6, OTULIN, CAPN2, BC037034, PIK3R2, PDZD8, 
ELMO3, CCNDBP1, ZBTB5, CAT, SUOX, ING3, ELF1, GZMA, PATJ, RNF216, BRD2, VPS72, COQ7, ATG16L2, AP5M1, HINT2, 

SRCAP, GNL3L, TCHP, DSP, EPPK1, FBXO18, NCOR1, PPIG, JUP, PLEKHG3, ZFP24, TMEM192, XPA, EVI5, PURB, MYLK, 

WDFY2, CEP350, DCTN2, GHDC, ARRB2, KCNA3, FHIT, ZNHIT1, SELP, ALDOC, LRRC8A, TRIM33, MAPK1IP1L, ETAA1, AZI2, 
RAB43, DSCR3, FCRL1, COL6A2, MTF1, ATG16L1, PNPLA7, TSPAN14, PDLIM7, SMARCA4, PIAS3, ARHGAP24, RPRD1A, 

TIMM22, AMACR, SHISA8, STAT5B, TOB2, LRRCC1, DR1, NNT, GLTP, CPLX2, GALNT12, CMIP, S100A10, HMGN2, DCAF7, 

BCAS2, FTL1-PS1, DDHD1, SORT1, NEDD8, ASAP2, TBRG1, RASGRP1, DGKQ, ACOT8, TFDP2, TAF10, VAPB, MADD, 
TIMM17B, DPY19L3, UBE2V1, MIDN, HTT, SPATA6, ZBTB22, BRD1, TBCC, TINF2, TIRAP, MRPS36, PRSS34, SLC5A6, 

HIST1H2AA, IRGM1, 2210016F16RIK, CBR4, GSTZ1, AI413582, F8A, ITGA4, PARK7, NECAP1, MTMR10, PRKD3, NEIL1, UBL3, 

HTRA2, TNS3, CDYL, C1D, 40057, CYP4F13, MYO7A, ALDH9A1, OCRL, ZAP70, NEURL3, ERLIN1, SH2B3, NDUFS8, PHLDB3, 
CHD2, STAMBPL1, RNH1, DTNB, IRF2BP1, INPP4B, FLOT2, VAMP5, SNX11, RMC1, NUBPL, IRGM2, GM49361, PRPF40A, 

VPS39, PROS1, SMAP1, PCBP3, ZDHHC8, STN1, APLF, ZFP706 
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Table 6-22 | Genes/proteins consistently regulated in all three platforms studied amongst RNA-Sequencing, 

Microarray, Label Free Proteomics (cont.) 

Upregulated Gene Symbol (Total 362) 
XBP1, KIF4, JCHAIN, EDEM2, LMAN1, SLAMF7, ELL2, PDIA6, ERN1, SDF2L1, FNDC3B, SEC24D, TXNDC5, CKAP4, FKBP2, 

EAF2, DNAJC3, MANF, SIL1, SEC11C, CRELD2, HSPA13, MZB1, DDOST, RPN2, REXO2, PRDM1, SPCS2, PRDX4, FNDC3A, 

TXNDC11, HSP90B1, SND1, OS9, HERPUD1, RPN1, STT3A, HDLBP, PYCR1, IRF4, KCNK6, FKBP11, RCBTB2, UBE2J1, SEL1L, 
HID1, CALR, SLC35B1, SEC63, SLC33A1, ARFGAP3, SPN, MTDH, ARF4, ARMCX3, SLC31A1, SSR4, LRRC59, HSPA5, HYOU1, 

DERL1, ALDH18A1, RPS27L, WFS1, ATG13, YARS, TMEM97, GLT8D1, CLPB, RRBP1, SEC24A, FUT8, GANAB, SELENOK, 

SRPR, PPIB, FOCAD, CNPY2, RRM2, SLC7A5, SEC22B, TJP2, ERP44, UCK2, ADA, TMEM214, LMAN2, GFPT1, AARS, RBM47, 
PDIA4, TMED9, ANKRD28, MANEA, ERLEC1, NCAPG, PVR, EVI2A, BST2, PA2G4, PPFIBP2, DNAJC1, ISG20, NPC2, SLC30A7, 

PI4K2B, DENND5B, CARS, CDC45, PHGDH, OSTC, PPA1, MARS, ARCN1, IDE, ALDH7A1, GLA, NUCB1, CLN6, FADS1, PCK2, 

SAR1B, PIGK, COPE, SEC23B, CCDC167, MAN1A2, COPG1, GMDS, SSR1, ARID3A, MKI67, CHEK1, CDC20, DTL, MYDGF, 
ERO1L, SDF4, SRP72, NME2, EXT1, TPX2, ERGIC2, FAH, MGAT1, TECR, CAD, GOT1, PSAT1, TUBA1C, NT5DC2, CDCA3, 

RTN3, ASNS, SLC39A14, EPRS, MEF2B, TUBB2B, KIF20A, ALG5, TMCO1, EMC7, HMMR, GSTO1, CKAP2L, IMPA2, FAM129A, 

AURKA, NOMO1, SLC1A4, MRPL37, TECPR2, CASP3, SPC25, TK1, CDCA2, IQGAP3, TYMS, BRIP1, BSG, GOLGB1, ST7, LAP3, 
PFKM, NAPA, EIF2S2, MTHFD2, ARFGEF3, GLCCI1, ATF6, WWOX, KIF22, HAX1, FLT3, IARS, ESCO2, UAP1, GUSB, QPCTL, 

ITGB1, COPB2, ENTPD7, GGCX, SRP19, ATP8B2, SAPCD2, ALDH1L2, E2F8, TBL2, KIF11, UBE2C, UFSP2, TARS, NEIL3, 

TMEM263, SARS, RAB39B, PDIA3, PIK3R6, FTSJ1, KIF18B, MELK, DHDDS, OAT, NAA20, GALE, CLIC4, FDPS, PLOD3, 

DIAPH3, PSMD7, TNFRSF13B, MCM10, ARHGAP21, KIF2C, MLKL, GAS2L3, DNAJB11, PLXNB2, FAM98A, COPZ1, MGAT2, 

PIGT, SLC7A1, HJURP, PBK, C1GALT1C1, CANX, SRM, ARL1, CCDC47, GLCE, MUT, RAD54B, TXLNA, LRR1, TXNL1, 

SLC3A2, SLC43A1, SLC30A6, IBTK, ALG2, YIF1B, TMED5, MRPL51, CCNE1, DHCR24, CINP, ALG8, DNAJB12, PCLAF, ERAP1, 
TMEM33, SOWAHC, GLIPR2, NXN, HASPIN, MAN2A1, NSDHL, GNL3, IMPDH1, SRP54A, EIF2A, ETV6, P4HB, GALNT2, 

TXNDC15, MSANTD4, BET1, AMPD2, CYP20A1, PSMB2, RHEB, PRDX1, MRPS34, SPC24, PLXNA1, NME1, DDB1, EYA3, 

MRPL13, EDEM3, TRIM32, GOLIM4, ATG4A, LY75, SCFD1, BCKDK, XPOT, MINPP1, MRPL20, ANAPC5, GSPT1, BCAT1, 
NDUFAF2, CERS2, TXN1, HCFC2, HMBS, UQCC2, SSBP3, CCDC88A, PSMB6, HEXIM2, MCRIP2, MRPS2, NUS1, SEC23IP, 

KLHL9, RDH11, H13, COG4, AUH, GRN, SESN2, PSMB5, SYVN1, ATP2A2, TM9SF2, ORMDL2, MRPL17, PABPC4, SRP68, 

TMED1, EIF5B, PDE4DIP, NDUFB9, AAMP, CLPTM1, VPS25, EIF3C, SPG20, HMGN3, CLDND1, EIF2B4, PSMB7, TMEM41B, 
LIG3, DCUN1D5, SCFD2, ADRM1, LNPK 

 

Downregulated Gene Symbol (Total 393) 
ARHGEF18, SORL1, RIPOR2, SERPINB1A, RCSD1, RASGRP2, ZFP318, AFF3, ABLIM1, ARHGAP17, CD55, DEK, PXK, EVL, 

ETS1, TRAF5, HHEX, STK26, LBH, FMNL1, CIITA, SIPA1, SCML4, SP100, BTG1, BCL6, TMEM131L, CR2, BACH2, KMO, 

MORC3, PRKCB, TBC1D10C, CDK19, JAK1, CD22, SPIB, BTLA, AIDA, IFNGR1, ZBTB18, HCK, ACAP1, PIK3CD, FAM49B, 
SNX2, STAT6, IFIT2, ELL3, FCMR, DOCK11, SESN3, PACS1, ADD3, ARHGAP45, GGA2, REL, ARHGEF1, ELMSAN1, BLK, 

BMP2K, RIN3, EML4, ANKRD44, RGS18, ARHGDIB, CXCR5, PTPRJ, KYNU, USP25, NFKBID, LCK, SMIM14, TNRC6C, 

CAMK1D, ARHGAP25, DENND4B, MAST3, SNX29, SLC2A3, GMIP, FGR, BIN1, IRF8, ATAD2B, PAX5, MBP, ARHGAP4, 

DMXL1, HPS3, ARID1B, STK10, SMAP2, FRY, ELF4, MTSS1, AKT3, NFATC1, TMED8, XYLT1, ZMAT1, ACTR3, NCKAP1L, 

SETD2, AMPD3, TBC1D5, SP110, NIN, RASSF3, CARD11, RAP1GDS1, LRRFIP1, ACAP2, SNX5, ZFP639, RABEP2, CDK13, 
NUAK2, FKBP15, LPGAT1, IKBKB, GIT2, SIGLECG, KDM7A, SP4, ITPKB, SATB1, CHD3, AKAP13, PRKCE, TRIM7, CSK, 

FOXO1, VAV2, CDK5RAP2, RUNX1, MAP4K2, ADD1, FAM208A, LGALS8, NAAA, ARHGAP9, FCER2A, BRWD1, CD200, PHC1, 

PTBP3, ANKRD13A, TMOD3, IQGAP1, FLI1, ZFP263, PLEKHF2, VEZF1, CELF2, ACTR2, STK17B, FUS, ZFP518A, INPP5F, 
YEATS4, CRTC3, KAT6A, BPTF, CD2AP, INO80, SCAF11, SLC9A7, NFATC3, ZBTB5, REST, ADCY7, AP1G2, SKI, CD84, 

DENND6A, CD79A, INPP5D, SLC25A24, MPRIP, PLEKHO1, STX7, PLCB2, BCL7A, MAFK, TOP2B, CBLB, UBLCP1, ATG16L2, 

MPPE1, RASSF5, ROCK1, TOMM34, IRAK4, ZFP422, RXRB, MTM1, WDR82, AKAP8, METTL14, AP1S2, CEP135, KAT8, TRIO, 
LRCH1, SPTAN1, PPP1R12A, STK4, AGO1, CEP68, PSD4, RABEP1, NR3C1, SENP7, PDLIM2, MAPK14, DENND1C, MUM1, 

CEP295, TCP11L2, BICRAL, ZBTB7A, IL4RA, PPP1R21, PHF2, ARID4A, FMO5, PDP1, ARAP1, SCAF8, ATF7IP, STRIP1, EZH1, 

ARID1A, PIBF1, NUMA1, ATXN3, PGM2L1, SETX, HMGN1, ZFP638, IQSEC1, ZFP740, ARID4B, SUGP2, ARPC2, JARID2, 
CCDC82, NONO, AKAP8L, PEAK1, AGPAT2, NFATC2, DOPEY2, ZC3H6, OARD1, CAMK2D, TMEM2, THUMPD1, UTRN, 

KANSL3, PRKX, H2-EB1, CDKN2AIP, ZFP592, UBA7, RBM5, ATP2A3, TFEB, MSL2, ANKRD11, MECP2, SMC6, LNPEP, 

YWHAZ, RPRD2, NEK9, HECA, WASHC4, NR2C2, GANC, MCTP2, USP12, CEP170, H2-DMA, VPS13C, DAPP1, ARHGAP15, RP9, 
MAP4, KLF3, PPTC7, SYF2, ACCS, PRR14, CNTRL, TFAM, UVRAG, ILF3, IST1, ICOSL, TMEM63A, RBL2, DHX15, PDCD7, 

CPSF7, NIPBL, ANXA11, CREBBP, RCOR1, DENND5A, OTULIN, CREB1, UNC119, KLHL14, RYBP, IRF2BPL, ESCO1, XPC, 

MAP3K2, SLC23A2, NRF1, SNX6, ABCD4, DDX59, SPIN1, STK11IP, TAF3, NADSYN1, WASHC2, RAPGEF6, ZFP746, SNRK, 
APEX1, DIDO1, PIP4K2A, KBTBD2, EPC2, SLAIN2, SFPQ, RHBDF2, PDCD4, NCOA1, EP400, OSGEP, CCNY, TAPT1, NFATC2IP, 

ADO, BRWD3, SYPL, HACE1, TERF2, NCOR1, STK24, RSF1, CCNDBP1, PLEKHM1, PHF20, EIF4A2, ODF2, TERF1, PHC2, 

ACIN1, EFR3A, BRD4, CCDC12, UIMC1, ACSL1, EFHD2, ARHGEF7, TTC7, PGLS, KAT5, HMGXB4, PITPNM2, COPG2, ZBTB24, 
PPP3CA, RAB21, PPIL4, BRD3, SNX30, SH3BP2, ELF2, METTL3, AFF4, GABPB1, CAPG, WASF2, TRIP12, SLTM, DNMBP, 
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Table 6-23 | Genes/proteins consistently regulated in two out of three platforms studied amongst RNA-

Sequencing, Microarray, Label Free Proteomics (cont.) 

 

Upregulated Gene Symbol (Total 1136) 
SLC6A4, CALML4, DNAAF1, SCIN, CFAP46, RGS5, HIST1H2BG, TMEM167, CD59A, DERL3, SDC1, TMEM176B, MCTS2, MT1, 

TRAM2, BC004004, CREB3L2, PON3, TMEM176A, PLPP5, UBL5, SSR3, TRIB1, SLC44A1, ENTPD1, BCL2L1, WIPI1, CHID1, 

DNAJB9, BHLHA15, CCPG1, SEC61A1, GMPPA, NACC2, SLC39A7, YIPF2, KDELR2, TMED10, LAMP2, MAGED1, TNFRSF17, 
SLCO4A1, 1700017B05RIK, PISD, SURF4, SPCS1, NANS, SLC5A2, CD93, YIPF6, GPR55, AP3S1, ALPL, SSR2, SELENOS, USO1, 

H1F0, LAX1, ZBP1, CALU, RAB3D, SLC39A11, TRP73, ITM2C, MGLL, MCFD2, PLBD2, TCEAL9, SSPN, CREG1, LARP1B, CHPF, 

FBXW7, FICD, TBC1D24, CITED2, CD28, KDELR1, AGA, SLC17A5, ZBTB38, GPR155, BHLHE41, MAGT1, CSF2RB, UBXN4, 
COPZ2, B3GNT9, BUB1B, SLC48A1, LAG3, TMED2, CAPN5, PLS1, TXLNB, CLPTM1L, GMPPB, UBA5, PIM2, ST8SIA6, BTD, 

EEF1AKMT3, FAM129B, SEC31A, GFI1, GTSE1, TMED3, EXO1, CEP170B, VEGFA, TMEM205, BSCL2, OSBPL3, ATF5, TACC2, 

NCAPH, GGH, GCAT, SLC25A23, CCNE2, THBD, MVB12B, PECR, KRTCAP2, NUGGC, POU2AF1, TAPBPL, FEN1, CIB2, 
CSNK1E, TMEM39A, CST3, UFL1, LMF1, GM20388, CDC25A, PRRG4, SELPLG, PLCD3, SKA3, NAGA, GORASP2, TWSG1, 

LAMC1, DPAGT1, KCNMA1, LGALS1, SLC31A2, SEC13, GLMP, CPTP, ALDH3B1, TMEM184B, SOCS2, MARVELD1, RCN3, 

SMCO4, PCDH15, CCNB1, LY96, ATG9A, EDEM1, ITM2A, MAPRE3, LMNA, ANKRD55, PKM, ITM2B, BMI1, SLC1A5, GBA, 
CPOX, MBNL2, PTPN21, CTSL, PLEKHF1, STARD5, PGM3, PEX11G, NCAPG2, CLINT1, RAB2A, CLIC5, CSGALNACT1, TFG, 

YES1, CDK1, TMEM147, DLGAP5, DAP, ZBTB42, COG7, CTSB, CD2BP2, MAP1LC3B, SGO1, RAB26, ACAD11, PRSS16, KIFC1, 

NRP1, SERP1, GOLT1B, SUB1, MYO6, SEC61B, LAPTM4B, DAD1, ERGIC3, MANSC1, CFLAR, RCN1, PRR11, GSTT2, MYCBP, 
PLK1, BOLA2, NOL3, SLC43A3, NEK2, OGFOD3, CDC6, CORO2A, ASF1B, BRCA1, CCNA2, STK3, UNC13B, CKB, ENTPD4, 

RAD51, CAPN2, SGO2A, NMRAL1, MAGEH1, PSRC1, MAGED2, GPRC5D, TOX2, CEP55, GPX3, PAFAH1B3, NCKAP1, SPRED3, 

GOLPH3, EPCAM, EME1, AURKB, EPAS1, TTC7B, CDIP1, CST6, CDR2, GNG12, HARS, ABI2, PLA2G16, FAM114A1, STAC2, 
YIPF5, STAMBP, CHAC1, ASS1, CCNB2, MAOA, IL15RA, ABHD4, RECQL4, CDCA8, H2-T23, LRP8, YIPF3, TM9SF3, COPB1, 

ESPL1, ITGB6, BIRC5, GPR19, ABLIM2, HNRNPLL, COG6, FKBP14, GPT2, ANLN, NCAPD2, GNPNAT1, PCBD1, FUOM, 
METTL1, KCTD21, ABHD14A, GINS2, CACNG6, OST4, KLC3, ZFAND6, MAD2L1, TOP1, TM9SF4, EHHADH, MELTF, MFSD11, 

EIF3J1, LDLRAP1, CHST12, EBP, TMEM208, UBE2T, SETD3, MGST2, TTK, DHFR, CD274, ARHGAP11A, SCAMP2, FAS, ETFDH, 

SDF2, ARFIP2, SLC7A3, ORC1, SLC6A9, PDIA5, GPNMB, PKP2, ASRGL1, ZWINT, MYBL2, DERL2, ETL4, TICRR, AIG1, 
CYB561, BMP6, BUB1, CNKSR1, BIK, IFT122, SEC61G, ATXN1, YWHAE, CD68, TRIP13, CSRP1, SDC3, ARHGEF12, DCLRE1A, 

THYN1, MAN1B1, LRPAP1, H2-K1, EIF4E3, GOLGA2, MT2, LTBP3, CDPF1, NDUFA1, BMPR1A, SEC14L2, CDKN3, TEX2, 

TCTN3, TMEM141, CDKN2C, STT3B, NEK6, WDR45, SHCBP1, HIRIP3, ENPP6, MLEC, SLC35E1, ATP2B4, XK, CERCAM, 
FAM83D, NFIL3, DCAF12, CDK2AP2, IQCB1, RETSAT, SPOP, DTYMK, SQSTM1, LTBR, FAM162B, GINS1, ALG14, LGMN, 

CDC25C, PYCARD, EPN2, MBOAT2, MORF4L2, GOLGA3, EMC4, KDELC1, ULBP1, MAN1C1, SLC25A10, CLN3, ECT2, DUSP26, 

PCGF5, GOLGA5, CCR10, COMMD3, ACP2, 5730409E04RIK, LGALS3BP, PHLDB1, MGAT3, MPI, AZIN1, ASPM, PCX, ZNHIT1, 
CDV3, NCALD, DEPTOR, TMEM258, PNPO, EMP1, TMEM106C, SLC39A8, 1810055G02RIK, CREB3, SCD2, HSPB6, SYNDIG1L, 

ZC2HC1A, RAB4A, COPA, UBE2S, KPNA2, SLC7A11, YIF1A, TMEM256, SERINC3, SHB, SMOX, NDUFS5, PCNA, SWI5, 

LEPROT, DSTN, DARS, COX17, ITPRIPL2, ATRAID, AUNIP, SUMF2, ATP13A1, CCND2, GM17018, EIF3A, MTFR2, MOGS, 

DGCR6, SLC39A9, TMEM9, PTGR1, KAZALD1, HIBCH, MGAT4B, NFXL1, SLC38A10, TMEM255A, ARMCX2, NOD2, WDR62, 

PGAM2, ANG, 1110032A03RIK, ABCB6, MCPH1, ST14, SLC22A15, GIGYF2, PCYOX1, CAMSAP1, ARL3, ITGAL, MOSPD1, JUN, 

EDF1, ITFG1, PIPOX, PIF1, SLC11A2, INPP4A, KIF14, KNSTRN, RNF181, GALK2, FTL1, LCA5, ZDHHC14, TMED7, 
1110004E09RIK, B9D1, GSTP1, SEPT2, SMPDL3B, PTER, GOSR2, NMRK1, GAS8, H6PD, STXBP1, CEBPB, MSI2, UNC50, 

RPS6KA2, AKR1E1, MVB12A, CENPI, RRAGD, WARS, ANXA5, ABHD5, CXADR, TOX3, RHPN2, GM20425, CRYL1, DSCC1, 

HBS1L, UGGT1, KIF23, SLC29A3, SPAG5, TEX35, POLE2, MORN2, STARD3NL, CTSD, NARS, MS4A3, TOR2A, DHCR7, SAR1A, 
RSPH1, TG, PRADC1, RHBDD1, KNTC1, ALAD, LIMS1, EHD4, ITGA3, MAP2K2, RINT1, CRELD1, 6430548M08RIK, DOLK, 

GLRX, CLIP1, DLG3, CD63, ALG3, QTRT1, CMC1, 1700047I17RIK2, MARC2, ST6GAL1, TARSL2, CSNK2A1, ETFA, ACSS2, 

RIMKLA, VMP1, RNASE4, TESC, HELB, RER1, SLC39A4, NDUFA4, AIFM2, MDH1, HYKK, LOXL3, SEPT8, XRCC3, TMEM107, 
UNG, GOLGA1, PLXND1, CUTA, FECH, MCEE, FADS2, YTHDF1, SHISA4, IPO4, PIMREG, ALG9, NDEL1, ETNK1, SHQ1, 

UBE2L3, GOT2, FAF2, GTF2A1, CARD10, DEPDC1B, NODAL, IER3IP1, PRR5, ZFP64, HMGB3, MSRB1, ZMPSTE24, MITF, PVT1, 

PRKCSH, SEC14L1, TMED4, TRAPPC2L, FAM221A, NUDT9, IFRD2, NEU3, AVPI1, CENPE, FOXRED1, CYB5D2, METTL6, 
ASNA1, ZFPL1, NUDT22, PSMC2, ECH1, DCAF10, IPO5, TM7SF2, GART, GOLPH3L, GEMIN5, LPIN1, GPR15, BLVRA, 

TRMT10A, RABGGTA, GDE1, IL2RB, PLOD1, EXTL2, NADK2, CARHSP1, HEATR5A, ADAP1, COMT, PIGG, HAGH, PSMA5, 

ACO2, IER3, PPM1H, AU040320, LPCAT3, E2F7, PRC1, NDUFV3, ATG5, CEP19, BCL2L2, TMBIM4, EBI3, KCNAB2, FAHD2A, 
ANAPC13, RHBDD3, MAP3K20, VSIR, NEO1, MAFG, NUDCD2, GARS, TFDP1, SHPK, S100PBP, AKR1B10, LZTFL1, ST8SIA4, 

ACADVL, NELFE, C1QBP, COL7A1, SSX2IP, TBC1D7, TBCD, E2F6, SLC25A39, LRRC8D, SMIM7, HSD17B14, CMSS1, 

TOR1AIP2, CDCA5, CENPF, PUSL1, ATP5G3, VAT1, PSMD12, ACOXL, PSME3, FOXO3, MICALL2, BET1L, UMPS, PDXDC1, 

LAS1L, MTHFSD, PDK3, CLTB, HIST1H2BC, MUC1, DAAM1, IFNA1, LMAN2L, UBXN8, BLMH, CNTNAP1, SELENOM, 

THNSL2, INPP1, GRM1, PIEZO1, NT5C2, MIS12, PTCH1, RFT1, NDUFS3, GNAS, UFD1, SAMM50, TMTC2, DESI1, CDC34, 

PRDX2, HIBADH, FAM45A, PICK1, ETFB, COX7A2, DNAJB13, PSMC1, CASC4, FAM173A, IL12RB1, ATPIF1, RAB23, ISOC1, 
ISCA2, PSMD11, MBD1, GPR108, CHPF2, SLC35F2, GEMIN6, FITM2, UQCRQ, LYAR, ATP6V1D, RNF5, DRG2, GBF1, IL6RA, 

TMEM219, SLC45A4, TIMP2, EIF4G1, SDHAF4, PLCD1, TXNRD1, GSTM4, HINFP, SLC25A25, ZFP428, CLPX, PDZD11, IDH2, 

ALG10B, DNAJC28, LRRC41, TMEM70, POP1, MRPS7, HIVEP3, ANKRD46, PLD3, ACO1, DNAJA3, SURF1, RFC3, MIB1, 
MRPS12, SAP30, CSTB, INF2, WBP1, RND2, TFB1M, MND1, ZFP825, ATF6B, P4HA1, RSPH3A, UROD, CSF2RB2, KDELC2, 

FLNB, SNAP47, NGLY1, PSMC3, CTAGE5, MR1, PAPSS1, TNFRSF10B, XCR1, ANKRD6, GLB1, HACD3, XKR8, ATP6AP2, SVIL, 

MTX1, TM9SF1, CBWD1, MKRN2, PRMT7, KLHDC8B, DOCK4, SLC35B2, PNKD, GCDH, IFT43, EMC9, DNPH1, BFAR, OPA3, 
ISG15, EIF2B1, PRKCI, ELOC, TRPT1, SLFN9, CASKIN2, TUBG1, VSIG10, BRCA2, SUV39H2, REEP5, BCAT2, DCTN3, NDUFB6, 

LNP1, IGF2R, SLC17A9, PRDX6, PRIM2, TKTL1, NDUFB11, TIMM17A, RAB13, MLX, DHRS3, ABCF2, NIFK, EIF2AK3, STIL, 

ATP5J, UBE2G1, AHSA1, NDUFA13, NUPR1, FAAH, IKBIP, MAT2A, CRYZ, SIGMAR1, GINS3, NUDT5, GUK1, NENF, MRPL50, 
FNIP2, MCL1, PHPT1, USP54, CCT3, EIF2S1, UCHL5, PLXDC1, NCAPH2, NUDT2, LRRC28, TEX30, NDFIP2, RBKS, STAU1, 

CMC2, LUZP1, LMF2, MUL1, UBE4B, COX6A1, SELENOF, RGS10, EIF2AK1, ABHD2, USMG5, OXR1, PSMD6, COPS6, PPAT, 

TPI1, METTL9, HMOX2, COX5A, ATP5H, B4GALT1, ALDOA, DYNC2LI1, KIF1B, 4933434E20RIK, SKA2, GRAMD3, IPP, 
ATAD1, IGHG2C, ACOT13, MTX2, NDUFA2, DTD2, NAA38, SOD1, TMEM106B, SCYL1, MTERF4, ENKD1, MON2, COPS4, 

TMED6, PSENEN, TBC1D15, PEX11A, MYO5A, POLH, PSMB4, GALK1, PSMD13, NDUFA11, FLOT1, CHAC2, FABP3, ITFG2, 

MDH2, MRPL33, NAB1, NUP35, HSD17B4, MINOS1, CCT7, PTDSS2, UBE2K, SACM1L, RNF14, NTHL1, UEVLD, GSTM5, 
MMADHC, MRPL34, DDX54, JAG1, DUSP19, PYCRL, MBD3, CPD, DNAJC12, ICAM1, RARS, METTL26, ATP5J2, ACACB, 

TIMM21, CISD1, ST6GALNAC4, RABL3, PSMD8, RAD54L, PSMD14, BPGM, EMC1, GLRX2, UBFD1, PSPH, TUBB4B, MIA3, 
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Table 6-23 | Genes/proteins consistently regulated in two out of three platforms studied amongst RNA-

Sequencing, Microarray, Label Free Proteomics (cont.) 
MRPL22, GCLM, FKBP1A, RPAP3, MRPL35, TIMMDC1, PRMT1, RAB6A, VCP, DHRS7B, P3H1, ZCRB1, RABEPK, MRPS14, 

UBL4A, TSR1, TMEM165, CRLS1, KIF18A, ELP5, ACSL4, NEK4, MRPS15, SMYD2, EIF4EBP1, ZFP706, D16ERTD472E, MRPL53, 

CDK4, CIAO1, POMP, ELP4, CARM1, LSS, CNOT9, VPS37C, MRPL57, TVP23B, TIMM50, ACSL5, AIMP2, LARP1, HIGD1A, 
MRPS18A, NDUFA9, ARMC1, FAM120A, NSD2, FAM96A, NBR1, AVEN, PEX19, GLS, MRPL48, PSMG1, ATP1A1, TTLL12, 

WDR92, MRPL28, MRPL16, GRSF1, DCTD, BYSL, ISYNA1, MRPL27, PYCR2, PSMD1, PSMC4, PEX14, CTH, ELP3, PSMD4, 

MECR, PEX3, SLC52A2, TOX4, DDX19A, ZCCHC9, TARBP2, GMPS, EIF4E, DHRS1, KDM5C, NTMT1, OGT, NLN, UBOX5, 
EIF2B3, MRPS5, PSMC5, DDX3X, CHEK2, OGFOD1, POLR3D, PREPL, LACTB2, METTL15, NDUFAF1, FNTB, MRPL18, MRPS23, 

CKS1B, MRPL58, MRPL46, GSTT1, TULP3, SLC25A17, DNAJC15, NUDCD1, SCO2, MRPL4, RNASEH2C, NME6, FTO, SIRT4, 

POLDIP2, ALCAM, LARP4, MRPS24, DBI, AURKAIP1, EMC2, FZR1, RARS2, MRPL15, QSER1, TMEM129, MRPS11, CKAP5, 
ATP5K, MRPS17, TTC1, EEF1AKMT1, MRPL21, HNRNPAB, IGHG2B 

 
Downregulated Gene Symbol (Total 1093) 
FBXO41, STMN3, KIAA1683, OSBPL10, H3F3B, CAPZA1, HIST1H4E, L3MBTL4, LAMB1, SIAH1A, SLC44A2, MS4A1, BANK1, 

0610030E20RIK, GDF7, MARCH1, MRFAP1, EBF1, CD19, ZFP273, VMA21, COTL1, CD37, FCRL1, NCF1, NOTCH2, 

A430078G23RIK, CFAP44, BCL11A, S1PR1, CALD1, MYLIP, CCR7, TM6SF1, GPR174, LCP1, H2-OB, GRAP2, SLC4A7, RASSF2, 
CORO1A, MAPK11, KLF2, CD83, SLC28A2, PIK3AP1, DTX1, GCNT1, STAP1, GALNT10, ZBTB4, I830077J02RIK, CRLF3, FFAR1, 

NAP1L1, MYO1G, H2-EB2, FAM129C, CRYBG1, RASGRP1, RASGEF1B, APBB1IP, TLR1, GUCD1, SESN1, KIF21B, PTPN6, 

SLC25A37, HERC4, LY86, FGD3, DGKA, FMNL3, TMC8, DENND4A, TESPA1, TMEM243, PSTPIP1, MACF1, PIK3C2B, LTB, 
CD40, PTPRC, UBE2D1, ABCA1, CCR6, WDFY2, ZFP821, RETREG3, HVCN1, TTC9, RHOF, PPP1R18, CD72, FOXP1, S1PR4, 

NOD1, LMO2, SLC38A11, HMGB1, GRB2, EGR3, H2AFY, FAM172A, NLRC3, IRAK3, WDFY4, PARP8, TRIM58, SLC38A1, 

ARHGAP27, RPS6KA5, RGS19, SH3BGRL3, COLGALT1, CDC42SE1, AKNA, MAP4K4, TGFBR2, GMFB, PRKAB2, PDE7A, LYN, 
USP24, AP1B1, PRKACB, TNFAIP8L2, SWAP70, H3F3A, FLNA, PLCL2, JAKMIP1, RAC2, BIRC3, MARCKSL1, ZCCHC2, GPSM3, 

ARHGAP26, SLC15A4, TIMP3, PNRC2, IL21R, RGL2, PIK3IP1, ACOT2, CYB561A3, DIP2B, PITPNM1, GCH1, LYST, CHML, 

FKBP5, PLEKHA2, SLC43A2, ANKFY1, ORAI2, MYH9, MITD1, CRTC2, RDH12, FCHSD2, HIP1R, CORO7, SUSD1, MAP3K8, 
RUBCNL, TEX10, PHTF2, KDM3B, HS3ST1, CD2, WIPF1, TRAK1, SNN, CDC14A, FYN, SCAF4, PARVG, RPS6KA4, GPR18, 

SUN2, ARRB2, DOCK8, TRAF3IP3, CDC40, TNFRSF13C, STS, ZFP329, ZCCHC11, MYCBP2, MALT1, HNRNPA0, CD180, GAPT, 

LRRK2, SMARCD2, MNDAL, H2-Q6, CMTM6, TEP1, RHOH, EPSTI1, ZFP157, SYK, ZFP512, L3MBTL3, LGALS9, SLF1, RHOG, 
FAM46A, 2810021J22RIK, FCHO1, CD55B, MGAT5, PFN1, DPH5, CRIP3, RRAS2, AKAP5, ZFP65, RUBCN, MTPN, ID3, FOXK1, 

SSH2, CIB1, DENND2D, COBLL1, UBE2R2, TET3, ADAM28, VASP, FAM26F, SIRT7, KLHL36, CBL, PIP4K2B, CCND3, 

PTPRCAP, R3HDM2, ZFP90, DOCK2, SMG1, TRP53BP1, MYO9B, ZBTB14, IFIT3, SOCS5, CD79B, AP1S3, CHKB, SEPT6, RNF44, 
CWF19L1, SH3BP5, TMEM260, CAT, CNPY4, EXOC6, RETREG1, TMUB1, PLAC8, NSMF, ARHGAP24, XPO6, RARA, PAPOLG, 

GAB3, RELT, P2RY10, UHRF1BP1L, QK, TCTN1, HEATR6, CNRIP1, LRMP, RNF145, SH2B3, CCAR2, CHD7, RFX5, RALGPS2, 

CNN3, BIN2, DIAPH1, DEPDC5, LENG9, SIDT1, XPO1, DHX57, B3GNT7, AKAP10, USF3, ARHGEF3, CPNE1, WDR1, PHACTR4, 
RFX7, ZFP148, GPSM1, MDN1, TES, SASH3, CASP2, TRIM14, GATAD2A, DDX60, ANGEL2, CBFB, NUP160, 9130401M01RIK, 

ATR, ITPR1, SMARCA2, CARMIL2, SMURF2, SLC39A10, GLMN, IFNGR2, CEPT1, ZMYM6, ZMYM5, SNX8, ERP29, GRIPAP1, 

STX17, 2610507B11RIK, MKL1, DUSP10, INTS4, CYTH1, RUFY1, HSDL1, PARP6, MBTD1, GM14698, NFKB1, ARRB1, LPXN, 
HEATR1, MLLT11, STAG2, TCERG1, USP34, FAM107B, MED4, CEP85L, KLF16, CHD1L, JAK2, LPP, MAP4K5, SYNE3, CHD1, 

TAF7, ZEB2, DDX6, LYL1, PACS2, DTX4, OTUD4, FBXW4, RNMT, H2-OA, CYLD, HTT, CCDC88C, LBR, ATM, UBAC2, EGLN2, 

INVS, ATP11C, ZFP729B, RCC2, RAP2C, ATP8A1, MOB1A, TIGD2, RAB37, CAPRIN2, MYBPC2, ICE1, CYP4F18, DDX31, 
NUDT16L1, ZBTB25, BICRA, SLC12A6, GLUD1, NFKBIA, NUP153, PDS5A, ITSN2, TARBP1, FANCM, IKZF1, SKAP2, PARP11, 

WDR44, CLEC12A, CAPZB, SNX10, TAF1A, ABI3, MTERF1A, GABPB2, MCM9, SLC16A7, CD82, SIPA1L3, KDM5B, UNC93B1, 

CAP1, FAM102B, ERP27, ZCCHC7, INAFM1, UHMK1, HIP1, APPL1, ZFP385A, ZFP729A, PRKDC, CASD1, UBA2, TWISTNB, 
PTK2, RAE1, POLI, POLD4, CHMP2B, FUBP1, SIKE1, ARAP2, TAZ, CDKN2D, N4BP3, ZC3H4, PTEN, GNG2, SSH1, NUP133, 

BEGAIN, GNA13, KXD1, DYRK2, SURF6, LPCAT2, CAST, ZFP831, CDK17, ZMYM2, PIK3R1, CTPS2, SLC6A6, ZFP143, NOP53, 

SENP1, ABHD17B, PDS5B, TMEM131, GPALPP1, MICAL1, BLOC1S2, STX6, PHF21A, ZFP407, TSGA10, DHX9, PDCD10, 
ZBTB37, CTDSPL2, MICALL1, PCM1, PUM3, ATG16L1, BOD1L, MLLT6, YTHDC2, LDB1, ICE2, MEPCE, CD74, IRGC1, BBS4, 

WDR37, CCDC191, NUDT3, KANSL2, SIN3A, CHD6, OSTF1, GPM6B, KLHL42, CARNS1, ZCCHC8, SIPA1L1, PRRC2C, CPM, 

ULK3, SLC2A1, TUBA1A, FBXO31, ZDHHC17, ZDHHC23, FBXO11, RAB4B, RBM27, FBXL3, EXOC2, VIM, PHF23, CHD8, 
POLG2, IREB2, ZFP28, KDM2B, 2610008E11RIK, PRDM4, AKAP7, RRM2B, CCDC50, STRADA, WAS, ARF6, FASTKD5, RASA1, 

FBF1, CCDC137, ZFP335, FAM117B, RNF38, CC2D1A, CLASRP, ADRB2, TACC1, MTF2, DET1, DNAJC2, ABL2, OXSR1, 

MANBA, R3HCC1L, CD53, TADA3, TGS1, ZBTB11, PHF3, ZFP35, TMEM222, DSTYK, RNF220, DLGAP4, 0610010K14RIK, 
CYP2D22, IER5, SEC24B, TTF1, TAGAP, PPP4R3B, TAF4, GON4L, PLCG2, KLHL24, RAB32, PCMTD2, CHD4, WARS2, AHNAK, 

SLC22A5, FIP1L1, ARHGEF6, CHMP1B, FAM126A, KLHL5, HARS2, SLC25A30, MGEA5, PDSS1, ABRAXAS1, SMCHD1, SCIMP, 

GMCL1, NUCKS1, ARID5B, CHD2, EXO5, NT5C, UCKL1, DDB2, B230219D22RIK, LASP1, SETD1B, TAOK3, ASH1L, CSE1L, 
TSC22D2, FRAT1, EHMT1, TOB2, FBXL8, PADI2, DHX34, KDM6B, BRPF1, ATP2B1, HNRNPR, RPUSD2, MINDY2, SDCCAG8, 

UBXN1, USE1, IWS1, ACTR6, THOC1, PPP4R3A, CUX1, TRIM34A, CNOT6L, MAF1, LEMD3, RECQL, FAM102A, MKNK2, 

ZBTB10, ZFP317, CDS2, IFT74, TNKS2, EPB41, TMEM55B, KLHL20, ALOX5AP, SVBP, ZADH2, GGPS1, KLF7, ASTE1, MAML1, 
INPP5E, MAP2K1, TERF2IP, TBC1D32, MAU2, MFAP1B, PCIF1, PAK2, BEND5, PHIP, MFSD14A, RNF31, VPS13B, MSL1, SP1, 

SPTLC2, KAT2A, SNX3, TESK2, RAD52, KLF13, MAP3K14, SPOPL, ATXN7L3B, BCL10, MAML2, FNTA, ZBED4, LETM1, 

GNA12, TIA1, THOC2, GPR137B, CEP120, FAM49A, ZFP207, JMJD1C, MTMR14, HNRNPU, TRIM21, TAF5L, COQ2, CLK2, 
PIK3R4, 9130011E15RIK, RPL18, CEBPZ, ABCB1A, ACTR5, AP5Z1, TAF11, MAP3K3, ARL6IP6, PPIG, SDCBP, USP3, PCF11, 

TCEA2, OSBPL8, XIAP, TRPS1, KHDRBS1, SELP, NRDE2, FOXP4, RLF, GBA2, DCP2, MAPK1, H2-DMB2, TMEM43, ARMC10, 
FES, NOL11, RALGAPB, TMEM245, PTS, USP7, SPPL2B, MBNL1, TTLL3, CELF1, SART3, ERMP1, FAM168A, SACS, 

RALGAPA2, VPS18, CAR2, CREBRF, DCAF4, RBBP6, ZYG11B, IFI208, SNX25, RCN2, KCTD2, AQR, LMBR1L, HECTD1, RDH14, 

PRKD2, PUM2, RPGR, PHF14, ZFP326, GPATCH11, DNAJC27, MKL2, PYROXD2, KANSL1, CCDC94, ATXN2L, SZT2, CD1D1, 
CTCF, GPS2, MEF2C, MYNN, PTBP2, PKN1, TBL1X, MCRIP1, AP3B1, UBE2W, MYD88, DDX55, SMC5, HNRNPC, SF3A1, ELF1, 

SNRNP200, ARRDC2, EIF3F, PNKP, CMPK2, LTA4H, SFN, CCDC22, CMTM7, VHL, GPBP1L1, MKLN1, WIPF2, U2SURP, 

DDX39B, KLHL18, PHF20L1, YTHDC1, NUBP1, WDR11, POLR1C, KMT5B, CRTC1, BNIP3L, RWDD3, TRA2A, PEX6, AGFG1, 
MCM3AP, POLR2D, FBRS, TECPR1, CHTOP, FIG4, MTERF3, BTBD1, RPL8, PDPR, ABHD10, NCBP3, BICD2, BNIP2, 

4921507P07RIK, NUP205, UBL3, TCOF1, FBRSL1, TGIF1, GCC2, ZFP292, WSB1, PSMD5, KDM3A, RANBP6, SLC12A7, HUWE1, 

HSPBAP1, SECISBP2L, RNF216, SIRT1, TPK1, CAB39L, ZFP830, FBXO21, PLCG1, SDCCAG3, ATE1, FTH1, NPAT, DIAPH2, 

LIMK2, OVGP1, LONP2, ZHX2, CUL5, MEAF6, BRMS1, BMT2, UTP15, SRSF1, SF3B2, TRIM65, XRN2, GPATCH8, DYRK1A, 
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Table 6-23 | Genes/proteins consistently regulated in two out of three platforms studied amongst RNA-

Sequencing, Microarray, Label Free Proteomics (cont.) 
ZFP865, DTNBP1, SMARCA5, MCMBP, KMT2A, SCAPER, AP3M2, PDZD8, RLIM, SERPINE2, ZFP131, SMARCD1, RPL37, 

RPS11, SPATA13, UBTF, TPR, MLXIP, RALGAPA1, RERE, CIPC, TOR4A, API5, ZFYVE27, RPL37A, NOP16, ING1, TSR2, YPEL3, 

CERS4, ITPR3, BCOR, DDX23, SIRT5, PHKA2, FILIP1L, GIGYF1, TRAPPC8, CLK1, PTPN18, AMDHD2, SPG11, SGSH, MOB3B, 
SLC25A32, RNF41, SPAG9, TMEM134, ENO3, THUMPD2, LRBA, DNAJC9, INO80D, EIF1B, DDX27, PRDM2, TNPO1, STX4A, 

TNIP1, SDHAF2, GRK6, DHX36, PAN3, ZFP619, BRD8, FAM193A, RBM34, DPF2, ZBTB3, SPRTN, H2-AA, RICTOR, DGKD, 

LSM3, SF1, EXOC6B, XPA, ENSA, ZFP524, TMPO, BDP1, MYO9A, GATD1, CDK5RAP1, LACTB, IFI205, DNMT3A, HNRNPDL, 
AMZ1, ILF2, ZFP58, SH3GLB1, ALDH16A1, 1700037H04RIK, TSNAX, RPS25, CHIC2, SKAP1, FBXL12, IARS2, MAVS, SPG21, 

ZC3HAV1, IRF9, HNRNPUL2, HNRNPM, CBLL1, TRIM11, NCL, GSN, LUC7L3, RBM6, KCTD13, NSD3, RACK1, RPL23A, 

SBNO1, SRF, TAF8, LMBRD1, SPTBN1, AHI1, SAMHD1, CPSF6, PPCS, VPS16, ZFP346, POGZ, QDPR, ERBIN, FAM160A2, LSM6, 
FAM20B, DENND4C, RASSF1, ZHX1, RASA3, IKZF3, ANKRD12, AFTPH, CUL3, KDM5A, MTMR3, MYL6, EZR, MDM1, NFRKB, 

PPM1A, TGFBRAP1, SFSWAP, ITPR2, AGL, NSUN6, UCK1, BAHD1, KHNYN, METAP2, ZFP953, STRN, MNT, WDR47, CABIN1, 

SDE2, HEXA, CXXC5, CAND1, EPC1, ZFP800, VPS26A, RSRC1, LEMD2, AKT2, PHF1, GRAP, RPS6KA3, GMEB2, ZC3H12A, 
NDRG1, TLN1, PATJ, RAB24, LAMTOR1, FOXN3, FBXO38, GRAMD1A, HPS4, FCHSD1, UBE2I, KCTD18, VPS11, ATP9B, 

USP6NL, IKBKG, APPL2, ATP2C1, RELA, ADPRHL2, GDI1, ING3, H2-AB1, GNL3L, CCDC93, SPICE1, KDM2A, RNF114, SART1, 

TTC14, HIST1H1D, SELENOO, MAPK8IP3, ZFP654, TUBGCP6, TMEM71, TAB2, SNX12, CLCN7, ANP32A, ZFP429, CAPZA2, 
NFKBIE, MTRF1L, SMARCE1, WASHC1, RIPK2, ZFP809, SMC3, AKAP11, RUFY2, COQ8A, FAM32A, PIAS1, AP5M1, 

2410004B18RIK, ZFP455, MED17, ZFP383, CXORF57 
 

Table 6-24 | Genes upregulated in proteome data, but show inconsistencies in transcriptome. (cont.)  

CYP51, ZWILCH, CKAP2, TIMELESS, WDHD1, LIG1, FANCD2, HMGCS1, CIP2A, KIF15, LARS, SMC4, HELLS, UHRF1, 
CHAF1B, MTBP, SMC2, KNL1, ERCC6L, TFRC, ACACA, TOP2A, SLC38A2, BARD1, BLM, MCM4, NUSAP1, HK2, MCM5, 

IMPDH2, SHMT2, THADA, RBL1, NAA25, POLE, HEATR3, MCM2, FASN, DDX20, SQLE, FAR1, INCENP, TTF2, ACSL3, EZH2, 
CTPS, HMGCR, FANCI, DSN1, YBX3, MCM7, TUBB6, POLA1, RRP1B, KLHDC4, TACC3, ATAD5, RRM1, AEN, SRPK1, 

ANKRD52, MTRR, HAT1, AACS, IFIH1, CD36, AFG3L1, ARL6, ERI1, PITRM1, PDCD11, KNOP1, NFKBIZ, KSR1, MGAT4A, 

MVK, PITPNB, TOPBP1, SHMT1, GM48551, CHD7, IPO7, MCM6, ZFP281, NSA2, PASK, KTN1, RIF1, HERC1, OASL1, PRIM1, 
MCM3, CSDE1, DNMT1, PAICS, PRMT5, CD86, KIF20B, CLASP1, RFC4, DUT, LIAS, SPDL1, RSL1D1, IPO11, DENND4A, FPGS, 

PHF19, RACGAP1, CD69, HEATR1, ABCE1, AKAP1, UTP6, MDN1, CLUH, PFKP, USP36, ERCC6L2, EIF4A1, MIPEP, NOB1, 

NAA15, MTHFD1, LRRC40, MYBBP1A, IDI1, SLC16A1, EXT2, KIFC5B, NUF2, MSTO1, FOXK2, MAN1A1, MPP6, CHTF18, 
GFM1, ANKRD17, LSG1, GCN1L1, MPP7, EDRF1, RILPL2, NOA1, FASTKD5, PDE3B, RPF2, UTP14A, ZNHIT3, NLE1, FEM1B, 

FAM111A, AEBP2, MCM9, MMS22L, RIOK1, PIP5K1A, GM17296, LCMT2, FANCA, ECM29, TTC37, ABCB1B, UTP20, NAT10, 

GTF2E1, CDC27, PMVK, NOP2, DUS1L, YBX1, LDLR, NOC2L, IFT80, RFC2, ABCC4, GEMIN4, TRAP1, ZW10, FTSJ3, PSMC3IP, 
ASCC2, PDCD2L, DZIP3, POLR1A, RPS3A1, IMP3, NOL10, NCAPD3, BDH1, BIRC6, TTC27, TRAF3, ANKRD16, GTF2E2, 

DDX3Y, MTHFR, MRPS31, POLA2, TIGAR, URGCP, LARP4B, ZFP330, HELZ, DNA2, RPL7, RPLP0, TBCE, HELQ, MPHOSPH10, 

CDCA7, PHF10, WDR3, DDX27, FKBP4, SUV39H1, PMS1, WDR36, EIF3D, NOP14, G3BP1, KBTBD8, OTUD6B, RIOK2, MYO19, 
XPO5, EEF2KMT, RWDD4, ABCF1, UPF1, AHSA2, RPS5, NDC80, DAP3, NKRF, ZFP598, PWP2, NOL6, CDH17, PABPC1, 

TMEM126A, RPL23, EIF2B2, EIF3B, DICER1, DHRS13, DALRD3, BMS1, RPS2, DHX33, IKBKAP, EEF2, GEMIN2, CBX4, CCT5, 

USP33, DUSP12, MSH6, HSD17B7, GLIPR1, DNAJC21, RPS12, SLC39A10, RBMS2, NSUN2, GALNT7, RPL4, MVD, WDR6, 
EIF2B5, SAC3D1, NAF1, RPS17, ASCC3, CUL2, SLC29A1, LGALS9, BAG6, TRIP4, BZW2, ZC3H7A, ZFP280B, NDC1, MLH1, 

ATP13A3, UBR5, SLC12A2, CLSPN, NMT2, DIEXF, UTP4, COLGALT1, HUWE1, RPS7, MRPL2, TCP1, GM29394, CCT4, 

ALKBH8, CD44, KDM4C, EIF2S3X, SRGAP2, CENPK, SCPEP1, CEBPZ, POLR1B, EIF3G, TMLHE, NUFIP2, EIF4G2, PREP, 
SLC4A8, TONSL, PDSS2, RFC5, PELO, TBL3, RABGAP1L, DDX18, RTEL1, USP45, MRPS9, AMFR, BBC3, WDR74, DHRSX, 

METAP1, GRPEL2, R3HDM4, MRM3, NOL11, FABP5, NAA16, PEX13, FCF1, HNF1B, MRPL14, CDK5RAP1, MIS18BP1, UBR2, 

CCT8, WDR43, ESF1, XPO4, BORA, RPS19, CAR13, MRPL3, SLC25A16, YARS2, RRN3, NOC3L, TRDMT1, DHX30, ORC2, 
CHAF1A, BOP1, POLRMT, PPP5C, UQCC1, NASP, FAM207A, HSPA14, RAD51B, PER1, NUFIP1, RRP7A, DGKD, DROSHA, 

FIGNL1, NCLN, DUS4L, NUP107, YME1L1, ANAPC7, DONSON, NUDC, UBE2O, MRTO4, NVL, TRAF1, MRPS35, DHODH, 

TIPIN, NIP7, RIOK3, MAK16, AMMECR1, SLC25A33, SREBF2, FASTKD1, EIF2AK2, POLR1D, BAG2, KDM4A, PIH1D1, HSPH1, 
TPP2, DHX37, TIMM44, DCAF13, EIF3E, ZRANB3, GSTCD, DDX21, ASB6, URB1, SAMSN1, HSPA9, EMG1, AIMP1, NUP88, 

RRP12, HELZ2, RPS3, NUP98, ERO1LB, JMJD6, WDR75, MDM4, DDX52, LDB1, RPL24, TRMT2B, NUP93, TUBE1, PIN1, 

LRWD1, CIT, ATG2B, WDR46, PUM1, DNAJC7, MRPL47, EEF1G, EEF1A1, PRMT3, DNAJC2, NSUN4, KARS, PSMG2, STEAP3, 
PNPLA6, UTP11, SDHAF2, RPS4X, TRMT2A, NEMF, NET1, MRPS22, RBBP7, WDR90, RAD51AP1, ORC3, MRPS6, MTERF3, 

IMPACT, SASS6, TDP1, NUP214, IPO9, FCRL5, BATF, USP16, CCT2, MRPL9, CD19, SCD1, RACK1, MSMO1, USP10, NMD3, 

GET4, MRPS27, BAZ1A, RAD51C, UBR7, RPL18A, MS4A6C, ACAT2, SMARCAD1, NAA40, TRAF6, DDX51, PNO1, ZFP280C, 
GINS4, ATXN2L, UTP15, YTHDC2, MAP4K4, MINDY3, GBP3, LMO7, IL2RA, SERBP1, ORF11, IFIT1, RB1, ELP2, GTPBP10, 

RCL1, YDJC, PPFIBP1, MRPS18B, IMP4, DHX36, DAPK2, ERAL1, CASP8AP2, RANGAP1, PRRC2B, JADE3, SLC2A6, MILR1, 

COX10, NOL8, PINX1, DDX6, PGPEP1, SKIV2L, PTCD3, MASTL, TMCC3, STARD4, BCAR3, TELO2, EPM2AIP1, WDR77, 
SENP3, PTTG1, MMGT2, ZCCHC7, EPB41L5, BTAF1, PPP2R1B, DDX24, MARF1, SMYD5, ATIC, RPL7A, ATRIP, COX15, 

SUGT1, UTP18, AICDA, TTI1, PWP1, CDK6, RPAP2, TDRD3, EIF4ENIF1, ERGIC1, ANKMY2, NBAS, FAM162A, QARS, RPS9, 

PMM1, ABT1, DDX10, SIK3, GRWD1, FLVCR1, EIF3I, GEMIN8, SLC25A19, DDX56, ETF1, NMT1, CERS5, RPL6, NSUN5, 
NOTCH1, RPL5, PUS10, GPHN, GXYLT1, AK6, FAU, PNP2, FASTKD2, RPS14, FDFT1, MRPS30, GPCPD1, AMIGO2, TRMT11, 

NGDN, NCDN, HECTD1, SIMC1, NEDD4, TMEM154, PSMG3, INTS6L, PSMC6, RPF1, PSME4, 4931406P16RIK, KTI12, EIF1AX, 

CLUAP1, UTP14B, PPFIA1, SLC7A6OS, EIF5, SMYD3, CAPRIN1, SECISBP2, TTC13, SEMA7A, SLAMF6, MRPL44, ZC3H15, 
TROVE2, KPNA6, RPS20, RPL3, RRS1, ATXN7L3B, SYNCRIP, METTL13, NAA50, TUBA1B, NAMPT, NFKB2, USP28, ARMC6, 

DNMT3B, RANBP2, LTN1, CCDC124, MRPS16, ORC6, CACYBP, MEMO1, ATP6V0A1, CNOT6, LIN7C, IL21R, ATR, UBAP2, 

NAP1L1, SLC4A7, PSMD2, EIF3K, PGAM1, STRAP, BCL2A1, USP37, ARHGAP19, JAK3, RETREG1, 1110065P20RIK, CDC123, 
UBE2Z, APEX2, NAA35, UBAP2L, QTRT2, ERCC6, RPL17, FANCG, USP34, HPRT, SLC7A6, NSL1, GLE1, CPEB3, NOC4L, 

LSM14B, ASB3, MRPL45, HEG1, RPL27A, CHORDC1, ABCC1, VHL, COG1, CD40, RPL21, ZGRF1, PPID, CELF1, MGEA5, 

TOP3B, NOM1, REEP4, RPL10A, EIF3L, SPATA5, SOAT1, LSM12, MRPL1, MTMR14, GGNBP2, TPGS1, MARS2, RPL9, SUZ12, 
AAAS, ACOT7, APOBEC3, MACO1, HSPA4, PTAR1, FBXO3, GM9833, LARP2, GPATCH4, ZBTB32, HCCS, TCF25, TRIM56, 

PUS7, CUL1, FMR1, ATL2, RPS11, KYAT3, HSPBP1, PHLPP1, MUTYH, METTL16, FAM129C, TRIP11, EMC8, SCAP, MRPL32, 

GPN3, WEE1, TUBA1A, UXS1, TBRG4, MRPL30, TEFM, 4932438A13RIK, ATRN, ABCF3, PDF, ZEB2, LRPPRC, TNRC6A, PIM1, 
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Table 6-24 | Genes upregulated in proteome data, but show inconsistencies in transcriptome. (cont.)  

ANAPC1, USP14, ADAM9, DRG1, MRPS10, EEF1B2, RPS16, RPL10, APPBP2, TMEM131, RPL38, KLHDC2, PAIP2, FXR2, 

GM21987, CUL4B, MBNL3, FASTKD3, RPL36, HSPD1, MKLN1, RAD18, MTHFD1L, FAM117B, ANAPC10, AATF, TANGO6, 
PGS1, EIF4E2, GOLM1, ZBTB10, PDCD2, COG5, URB2, STAU2, PES1, LONP2, GM49333, NUP160, TRPC4AP, GAA, BZW1, 

LRRC57, ALKBH4, PMPCA, BTF3, ORC5, DLG1, KPNB1, HSP90AA1, NUP188, COX11, OSBPL8, RPS6KB1, EIF3H, IAP, TP53, 

RIC1, MNS1, FOXM1, CRY1, ABCD3, PRAG1, PUM3, SRFBP1, JUNB, RPS10, LY9, KPNA3, DNAJC10, ELP6, MTFMT, RRAD, 
INSR, UBE2E1, PHIP, ZCCHC4, ALG11, NUP155, RWDD1, MRPL49, SLC19A1, RPS6, NSD1, RPL30, MTAP, DMD, R3HDM1, 

NFX1, ZMAT3, CPPED1, VCPKMT, RMI2, RBM28, KDM4B, MCM8, MARK3, XRCC1, VEZT, NUP85, RPL32, TFB2M, ARL5C, 

DYM, POLR3B, PPAN, GTF3A, HMBOX1, HAUS6, TWNK, ZFP622, RFTN1, NOP53, TNPO3, WDR4, ANKHD1, TRMT1L, ITPK1, 
TTC39B, ZFP277, HERC2, IRS2, SDC4, TRUB2, COG2, MSH2, LYRM7, NQO1, GTF2I, SMYD4, TSEN15, UTP3, QSOX2, HERC6, 

CYB5B, MTF2, PTBP2, MRPL42, NOLC1, TAOK1, CDCA7L, RPA1, METTL22, LIG4, HSP90AB1, ORC4, GPN1, SLC9A8, NAA10, 

RALB, EIF5A, MRPL23, TCF12, COX18, APOBEC1, CCDC97, TMEM242, FARSB, RPSA, ANAPC4, MCMBP, CCNH, PNPT1, 
CENPN, GAPVD1, MRPS25, ZNHIT6, MCTS1, DDX49, TYW1, SIPA1L1, POLD3, USP47, METTL2, TRMT1, GNE, HIVEP1, GEN1, 

RPL27, ZC3HAV1, PTCD1, RTTN, RPS8, EIF3M, MRPL19, BCLAF1, MRPL10, RPL12, MIA2, HAUS7, GTPBP4, DOT1L, 

PROSER1, ATAD2, NUP205, SLC25A28, STOML2, SMARCC1, RPL13A, CD81, LTV1, STIP1, GLMN, E2F4, CSNK1D, OLA1, 
TLR7, CAND2, FANCL, ATAD3A, RBM3, TPRN, RNFT1, OXA1L, FCGR2B, TXNDC16, ZDHHC5, CCDC88B, NBEAL2, ATP1B3, 

ZDHHC20, BC027231, IVNS1ABP, PELP1, TSR3, SETD6, RPL31, DOCK9, ACBD6, KPNA4, TLK2, RPS13, SLF1, MRPL38, 

CNOT4, UBE3A, KIN, POLR3A, PIK3C2A, ATPAF2, CSNK1G1, NUP133, CCDC69, SURF2, POR, NACA, EEF1E1, NEU1, HAUS5, 

IGSF8, CCDC6, RPL14, GNL2, ANAPC2, QRSL1, PDP2, ZFC3H1, UGDH, SEH1L, PPP6R3, USP15, KLHL11, POLE4, AGPS, 

PTPN9, NAA11, IPO8, FANCB, UBN2, RNF219, POP4, GNB1L, SPECC1L, PSMD3, IDH3G, RUVBL2, PHAX, HOMER1, 

FAM193A, FAM208B, ARMC5, POLR1E, ANKRD39, AKAP9, NUP50, HSD17B12, ACLY, MRPL41, FARSA, EHD2, MTA1, ELL, 
CLCN6, G3BP2, TGS1, MRPL39, GRPEL1, AGGF1, FAN1, RPS27, RRP1, CEP72, RRAS2, ZMYM1, CNOT1, RPL23A, RPL7L1, 

DCAKD, FBXL15, CENPH, NKAP, CD3EAP, ATP7A, CCT6A, LATS1, NXPE3, CSE1L, SLC39A6, AGPAT4, 2700097O09RIK, 

RPAIN, ZC4H2, ULK1, SDAD1, DENR, WDR48, EDC4, EHMT1, UBE2Q2, RNASEH2B, NDUFAF7, GNAI3, YRDC, RNF168, 
RNF126, TTI2, FARS2, USP4, NUP62, DNAJC11, INTS5, PARL, HYPK, ENY2, DDX31, RPS15A, OPTN, MRPL24, PEX16, DTWD2, 

CDC16, TACO1, ADSL, SLC35A4, GOPC, AARS2, PFDN1, DCAF1, CTNNA1, PSMA2, PBDC1, DDX41, RANBP9, SMPD4, EMD, 

UBE4A, ALAS1, RPL8, HGH1, PSMG4, UTY, YOD1, USE1, APRT, BEND3, CCNT1, TNPO1, ING2, CNOT8, DDHD2, COX7A2L, 
PUS1, DAB2IP, LMO2, SRSF6, GADD45GIP1, EBNA1BP2, RPS21, CCDC86, VRK2, DYNC1LI2, C1GALT1, NUDT1, CDK8, 

LIN37, GM15800, ZFP36L1, RAE1, RMND5A, RPS24, SNUPN, HDAC6, TTC4, PSMB8, RPL35A, ZNFX1, UPF3B, WDR12, 

GABARAPL2, PWWP2A, KLHDC3, ATXN10, RSL24D1, ZNHIT2, NAPSA, COA3, OTUD5, RPAP1, ARID5A, CASP4, DHX29, 
STEAP4, LINS1, GEMIN7, STX18, ODR4, DNAJA1, DNAAF5, POMT1, XRN1, ELOVL5, TOP3A, CCNL2, MAPRE2, AKT1S1, 

CDK2, RPS15, EIF2S3Y, RGP1, UBR4, PTPMT1, PAPD5, SDHA, KCTD10, RBFA, SKIV2L2, IMPAD1, 2810428I15RIK, PAK1IP1, 

GNL1, PIDD1, TAF15, INTS7, DNMT3A, KPTN, GBP2, KRR1, EMB, RBM19, SLC25A13, CSRP2, SEPSECS, FBXW4, GTPBP1, 
METTL18, GYPC, MPP1, COQ8B, INTS11, TPT1, SH3GL1, HAUS3, ECSIT, RPL19, SLC25A4, ZDHHC21, CYP4A32, NOL9, 

PGAM5, RB1CC1, TIA1, KIFAP3, KLHL25, GPBP1L1, CSNK2A2, RABGGTB, KIF1BP, TTC9C, SLC35A3, OSGEPL1, MED28, 

ADSS, CBX2, CDC23, BRAF, ATXN2, EXD2, ADAM19, RFC1, CAPN7, IL2RG, BRIX1, ZPR1, STX12, 2310035C23RIK, PPP2R5D, 

MRPS21, GM38394, FUBP3, TMEM39B, ST3GAL6, ZDHHC13, RNF26, ZDHHC17, EMC10, NFU1, EXOC3, NUP37, CHD1L, 

SPPL2A, DUS2, ZC3H12D, METTL5, DCTPP1, RPS18, USP42, ZFYVE16, COPS5, DGCR8, CENPM, ARPP19, HNRNPA1, TMUB2, 

NARF, NLRC5, PALB2, ATP2B1, RCC1L, TOMM40, RBM34, CCDC18, FKBP3, SUMF1, UBE2A, ARL6IP1, DDX28, CBX5, 
AASDHPPT, CNOT10, CDK12, RAD50, CHFR, STRADA, CFP, SAP30BP, PRRC2C, ADAR, SRP9, SWAP70, GORASP1, RPL15, 

SLIRP, THUMPD3, MAN2B2, COG8, CYBB, PATL1, MRPL43, PEX10, GGTA1, H2-Q8, IFT172, PARP9, NPAT, LACC1, DOPEY1, 

TSTD2, FNTA, GK, FAM78A, DCP1A, SRRD, MAPK8, RRP9, MGME1, MPC2, MOSPD2, MTG2, USP1, RPS28, TRAF4, GTF3C5, 
PARVG, DCAF4, POLR3E, TSPYL1, TMX2, URI1, LZTR1, USP20, STUB1, TMEM161A, 38412, NEURL4, TOPORS, NPLOC4, 

RAB9A, GSTT3, CLK2, RPS19BP1, KLHL7, ZC3H8, PARP4, RRP8, ARL8B, GPAT4, GPS1, TRMT61A, TCF3, CTNND1, RICTOR, 

STMN1, MRPL11, ALKBH1, NT5DC3, SLC20A2, THG1L, MED30, H2-D1, RAB3GAP2, NOP16, DPH2, RAN, GRCC10, ADNP, 
ZFAND5, EXOSC10, TEX10, AP4B1, CCDC84, ZBED3, STYX, PRPS1, CNOT2, DHX58, MLLT10, TNPO2, SSSCA1, EED, ELAC2, 

PGK1, UBA3, DARS2, PCM1, KLHL20, CD83, NBN, ARID3B, DNAJC25, TOE1, TRIM25, POM121, PCGF6, PDE7A, RPLP1, 

WNK1, MTERF1B, FXR1, NPM3, EXOC4, GTF2H2, RPL35, CDC7, UXT, NAA30, AP4E1, MAP3K5, ABCC5, PEF1, SENP6, MTOR, 
LDHA, TSEN54, ZFP644, LARP7, FOXJ3, CEP85, ZBTB11, ZFP142, OIP5, GLRX3, GTF2H1, UBE2D3, DNM1L, TPST1, PMPCB, 

SS18L2, PCED1B, MRE11A, POMGNT1, COIL, PTPRA, ABHD13, NOTCH2, ZCCHC3, RASGRP3, CLK3, IP6K1, EFL1, H2-AA, 
POFUT1, TSG101, AHCTF1, AMMECR1L, TIMM10, ENTPD6, DPH1, PARP14, RASA4, RBM33, DDT, CNNM4, YIPF4, SREK1, 

ECD, UHRF1BP1, DTX3L, HAUS4, RAB3GAP1, RAB3IP, DNAJA2, SRSF3, ELOA, RC3H1, 2510039O18RIK, PPP2R1A, RPLP2, 

HM13, RSPRY1, SPTLC2, DDX11, SNRPB2, EDC3, EPHA2, FAF1, HDAC9, ATM, ARFGAP2, SUCO, PPP2CA, BID, KATNA1, 
HMG20B, CHD1, RCOR3 

 

Table 6-25 | Genes downregulated in proteome data, but show inconsistencies in transcriptome. (cont.)  

ALB, CPT1A, SFXN3, FGB, CROCC, EPHX1, ELMO2, SELENBP1, ANXA1, CDKN1B, ALDH2, ZYX, KCTD12, ALOX12, 

KBTBD11, SRPK3, NUDT16, FGG, LMNB2, AIF1, PGAP1, FCRLA, CFAP43, FGA, BLVRB, IFI209, SIGIRR, HIDE1, GP1BB, 

TTC38, HS1BP3, VWF, TGM2, MYL4, PLD4, DFFB, B4GALNT1, LSP1, GBP9, ALDH6A1, TUBB1, PARP3, CASP6, SFXN2, 
PLGRKT, GPD2, HAAO, LMNA, FSCN1, HIST1H1T, CCDC71, FBXO22, VCL, ACTN1, ITGA2B, PLEC, GP9, CRYL1, P2RX4, 

ACP6, ANXA5, HDAC10, KLC4, ASPH, GSTM1, ABR, C4B, GPD1L, FYB, AS3MT, CALHM2, GBE1, ZFP512B, LIPE, PARVB, 

PAXX, PLBD1, FHOD1, EML3, TMX4, TRP53I11, SH3KBP1, CDT1, DGUOK, MYL9, HMGA1, ACAA2, DFFA, NAGK, PLEKHA1, 
CEP95, CST3, ITGB7, DNTTIP1, VRK3, CGGBP1, THBS1, TLR9, MLYCD, CALHM6, ENGASE, CIRBP, MAP2K6, ARHGAP6, 

GIMAP9, MYOF, PGGHG, SH2D3C, ALDH1B1, TREML1, STOM, CBR1, SH3BP1, NFKBIB, DHDH, NPEPL1, PRKAR1A, 

PACSIN1, TNFSF13B, TMCC1, ANXA2, RGS14, ACSS1, ASAP1, HSPA1B, AHDC1, IRAK1, PPBP, PRKAR2B, DCXR, UVSSA, 
IVD, TLR3, GLYCTK, TSC22D4, DDX58, SMARCC2, AK3, CTSH, ECI1, STARD10, CAPN1, NQO2, SLC25A11, SERPINB9, RFX1, 

SELENOH, SORD, DCLK2, PLS1, ZMYND11, NUDT14, CHTF8, ARHGEF11, PRR12, DIABLO, PDE5A, GP5, PCTP, ABCG3, 

SYNE2, GALK2, DAPK3, PPOX, PPP1R9B, HMOX1, HSPA4L, HIVEP2, GAS7, MFN2, ANPEP, PFKFB4, MCCC2, TDRD7, 
SMAD5, RAP1GAP2, CAPNS1, CUTC, BRCC3, HDGF, LGALS3, ALDH4A1, IBA57, ADSSL1, CNN2, MCCC1, PAFAH1B3, 

CARD6, MYO18A, TEC, CRAT, CEP128, CBX1, TBC1D9B, RFXAP, HBB-BT, XPNPEP3, ZGPAT, RTF1, AAMDC, UGP2, DOK3, 

ENTPD5, ABHD16A, FBXO7, EAR1, GMFG, CIC, GIMAP8, MDP1, FAM98C, MYO1F, GGCT, LMNB1, OXSM, SYNJ1, CNP, 
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Table 6-25 | Genes downregulated in proteome data, but show inconsistencies in transcriptome. (cont.)  

PLAUR, NLRX1, TBXAS1, IDNK, FAM50A, H1FX, TNKS1BP1, IL16, BASP1, SH3GLB2, NDUFV3, TNIK, PYGL, MBD2, 

RPRD1B, ITGB3, PF4, ANXA6, LYZ2, APOBR, CEP78, TBCK, MICU2, GPAT3, MSRA, GRAMD4, NAXE, SP2, PML, TBC1D14, 
PGM1, DOCK4, GPX1, TWF2, LRSAM1, SHTN1, METTL7A1, CLU, HBA-A1, ABHD14B, PDXK, TLE3, CAR1, CORO1B, PTPRE, 

PRDX5, MPO, SHPK, KDM1B, KYAT1, OTUD7B, VWA5A, PPM1M, INPP4A, RMND1, OSBPL5, VPS8, MAPK12, CLCA3A1, 

HSPA2, BC017158, IFI203, CCDC90B, HIST1H1A, CIZ1, TAX1BP1, POT1B, WDR91, MEF2D, CNST, EML2, NLRC4, HCFC1, 
WDR81, KMT5C, RNF169, AGPAT1, RIDA, GDPGP1, DBNL, HSD17B10, CDK5, TBC1D20, SETD1A, STK19, POLR2G, IPCEF1, 

VTI1B, SERPINB6B, PARP1, PPT1, FCGRT, ALYREF2, NFIC, CBX8, FYCO1, APOE, IFI47, AKR1B3, BCR, BACH1, ECHS1, 

EEA1, AKAP2, RREB1, SERPINB6A, CDYL2, SYTL4, CAMP, CPT2, FGD2, CEP250, SPTB, NSF, PANK2, MARCKS, EMSY, 
UAP1L1, VPS33A, TMPPE, SLC4A1, DNM2, UPF3A, RAB11B, UBXN6, 9030617O03RIK, ALDH3A2, MON1A, DPP7, SQOR, 

TPD52, MTIF2, ITIH4, GNS, BPHL, NFIA, TRIM36, PFKFB2, BCL9, VPS33B, IQGAP2, TIPRL, ALDH3B1, PCCA, 

A430005L14RIK, ENDOG, OXR1, ECH1, TAF6, PSMB10, MPEG1, GIMAP1, SNAPIN, ACP5, SMUG1, FLYWCH1, ANXA4, EPN1, 
NAT2, ACSF2, SAFB2, FCER1G, TNK2, RAB6B, EPB41L3, TNIP2, CD97, LRP1, MDH1, PDK1, DCPS, D6WSU163E, H2-KE6, 

MFN1, GSE1, PTK2B, GSDMD, TPRGL, BUD13, PBX2, GM340, TOR1AIP1, GMEB1, TRIOBP, TALDO1, 2310033P09RIK, 

MACROD1, MSN, SLC40A1, SCLY, ZFP668, NEDD4L, VCAM1, F13A1, HADH, SLC25A20, BRMS1L, FDXR, TCEA1, ZMIZ1, 
SIRPA, WBP11, TUT4, RAB3IL1, CNTROB, PAG1, GSTK1, SCRN3, ABCB10, MTMR12, CARD9, CENPV, RAB27B, RNASEL, 

PPM1F, PDIA5, PCCB, DGKZ, DENND1B, COMMD7, HMGB2, TPCN1, EPS15L1, CHIL3, FAM213A, SCAF1, HK1, NMNAT1, 

ARL6IP4, BRD9, SLC25A12, EMILIN1, COMMD5, LCP2, PAXBP1, TKT, PIK3C3, TGFB1, ETFDH, MAPK3, ELK3, EPX, RALA, 

THA1, GP1BA, YWHAQ, TMEM201, ASAH1, TRIM59, NCF4, PTGR2, SLFN5, TBC1D8, AKAP12, NIT1, PLEKHG2, NCOR2, 

MRC1, MSANTD2, MGMT, HBP1, PANK4, HIST1H2BK, PMM2, OTUB1, SERPINA3K, MFF, GOLGA7, CBR3, BC026585, SGPL1, 

TEX9, PLA2G4A, AAK1, PKNOX1, HMGB3, TIFA, SLC25A46, HPCAL1, NGP, RFLNB, EIF4EBP2, SYNE1, ITGAD, CISD3, 
HIST1H1B, DRAP1, PPP2R5A, ASPSCR1, AGAP2, PTGS1, STAG1, TALPID3, ACOX3, ACAT1, SLAMF1, SSH3, CAMKK2, 

SH3BGRL2, TRAPPC5, DAXX, CRK, MSL3, ERLIN2, USP11, ABCD1, FUK, SLC41A3, RTCA, APEH, SLC9A9, ARMT1, PSME1, 

MTA3, SAP130, TGTP1, KCTD14, RESF1, SAMD1, ACAD10, SNX4, ANXA3, HAGH, RING1, HOOK3, SNX18, HOMER3, 
AI607873, 5031439G07RIK, HSF1, ZBP1, FECH, RDH13, PCYOX1, KIAA0226L, DDAH2, NRIF1, RENBP, 1600014C10RIK, 

PHRF1, CPQ, AP1M1, ZMYND8, CD38, ECI2, EARS2, COPS7B, LANCL1, RNF170, NHEJ1, NCF2, DTD1, DUSP28, RNF6, EHD3, 

PPP3CB, ZFP629, DENND1A, MTFR1L, RAB28, FOXO3, MOB2, STIM1, PDCD6, WDR70, PPCDC, NEMP1, PPA2, TMEM175, 
MTR, GM4737, TARDBP, PRCP, DCP1B, PUF60, DUSP7, SETDB2, POLL, PPP1R11, MCUR1, DCTN1, HLCS, EVI5L, HPS1, 

ACYP1, SELENOT, NAPG, ACADM, 9930111J21RIK2, POC1B, ZC3H3, GPX4, SRI, ACAD12, NCOA6, ARHGDIA, PIP4K2C, 

BAK1, FAHD2, NFYA, HMCES, UBE2N, PALM, SLFN1, LTBP1, UPRT, NME3, MAST2, HP, ESYT2, TRAPPC9, RAPGEF4, 
CNDP2, HNRNPK, CASP1, SBF1, SUDS3, IFI35, DYNLT3, WDR45B, SIGLEC1, GNPDA1, CCSAP, ANKRD27, VIPAS39, 

SERPINA1B, HDHD5, HNRNPUL1, BAG5, ZFP608, PPP1R13B, TBC1D8B, TTC28, RFTN2, PPP6R2, PDE2A, CBX3, ASRGL1, 

H1F0, NCOA3, CCDC71L, CYC1, TRIM24, AKR1B10, IGSF5, MGST1, ETV3, TUBA4A, PYGM, ARHGAP18, PIRB, GIMAP7, 
BPNT1, EPS8, FN1, INPPL1, COMMD1, NAGA, GM20498, RPS6KB2, SMARCB1, GGA1, HK3, BAG1, KMT2E, RAB11FIP1, 

ACTB, USF2, M6PR, LTF, GM43302, TGM1, IPO13, SRSF4, ITGA6, PURA, TUT7, RGS10, YWHAB, NCEH1, D10JHU81E, 

BLES03, LCN2, CAVIN2, ARPC5, PPM1D, BORCS5, POC5, CTSA, STX8, SLC27A4, COX7A2, PRCC, PZP, STXBP3, MYH14, 

SF3A3, TK2, CKB, CTDP1, PTPA, TBL1XR1, RALY, CHMP1A, OFD1, DOCK5, LIPT1, COQ5, UQCR10, ITGAX, SMPD3, PPM1E, 

CLEC16A, RSU1, B3GNT8, BECN1, SMG6, NFS1, NMI, PTGES2, HEMGN, ACSS2, CCNK, ATG3, ATG5, BLOC1S1, TST, DBN1, 

ZFP691, VPS35, PAK1, DDX17, FBXO4, RAB27A, TSPAN13, CASP7, RBCK1, ZFP553, RIC8A, 37316, RBM14, ZBTB2, CRIP2, 
WASHC5, ANTXR2, HDAC5, NUDT18, GIMAP5, NADK2, VAT1, THY1, OSBPL7, B2M, SCNM1, NRBP1, IMPA1, TUBA8, CLIC1, 

HEXB, FBXO28, ACAD8, TMEM65, PTPN23, NFYC, PSMB9, BCL9L, BCL2L13, KMT2D, 3110001I22RIK, COX4I1, DCAF11, 

FAM151B, SCIN, GTPBP3, ZBTB9, STARD3, PLA2G15, GNPDA2, ERCC4, NUDT13, ABHD12, TAF1, 4933427D14RIK, PIK3CA, 
NUCB2, TXNRD2, VPS4A, SNRPA, FMNL2, FBXL4, C3, MOCS1, VPS4B, CEP57, MAPKAPK2, RFXANK, SSBP1, CEP41, 

SLC25A45, 6330416G13RIK, PRG2, RCHY1, PRKACA, S100A9, NT5DC1, VAMP8, SMC1A, MEN1, AHR, EXOG, RAD21, 

SEPHS2, SF3B4, DXO, ACADS, ANKS1, DEF8, DDI2, NPEPPS, TMX3, WDR13, 1810043G02RIK, ACTL6A, RABIF, VAV3, UNKL, 
NDUFS3, UROS, PSPC1, HMGXB3, COQ6, PDLIM5, PSME2, GLB1, SINHCAF, FBXL17, CSAD, SCAMP3, SNAP29, HNRNPLL, 

MMAA, NDST1, OSBPL2, DUSP3, TP53RK, OGG1, CYTIP, MYO6, SRSF2, MYADM, FN3KRP, PBXIP1, HPS6, SUMO1, THNSL1, 

AKR7A5, HSCB, EPS8L1, HIF1AN, LIMA1, 9030624J02RIK, TAF6L, GLRX, HSPA12A, RASSF4, CSTF3, 1110004F10RIK, RUFY3, 
MRI1, ISOC1, BC017643, MYO1C, NCBP2, GCC1, PDXP, GM49405, DGAT1, ZFP84, ZBTB1, GPANK1, ITGA2, TRAPPC12, 

SLC25A44, RBBP5, SGK3, UTP23, SERPINH1, MMP9, CBFA2T3, CWC25, TRAPPC13, RAB3D, DPY19L1, AFG1L, NOL12, USB1, 
DPP9, POLR2A, HIST1H1C, UBE2G1, RAD23A, GNAQ, CRKL, CLEC1B, DIS3L, PPIA, MICU1, PHKG2, GFER, RBPMS, ZFP276, 

TRIM30D, TRIM8, SYNGR2, PTPN14, PAPSS1, FAHD1, BLOC1S5, MCU, TGOLN2, GIMAP4, UBXN7, PEX5, ATP1B1, CCDC15, 

DYNLL2, IDH1, RMDN1, PPP3CC, CHMP2A, AQP1, PRPF31, GSTZ1, ARFIP1, VWA8, MTMR10, SMPD2, PHC3, ECE1, ALG9, 
SLC29A3, RAB1B, PCMT1, TCIRG1, VARS2, MTHFS, SAFB, CMTR1, FAAH, CRLF2, UBL5, LAGE3, EXOSC9, CLYBL, PARN, 

NIPSNAP2, FAM213B, ZCCHC17, NDUFA4, LYRM4, EAR6, SYNRG, COX6C, SRR, POLR2C, ETHE1, LENG1, PLAA, MAN2C1, 

CSTF1, APOOL, GLYR1, ACADSB, QRICH1, MYL12B, PLBD2, CXXC1, MYH10, FXYD5, UNC13D, HIPK1, ACSF3, PPIF, BRF1, 
PRKCD, ANKIB1, TRAPPC1, KIF1C, JPT1, TRAPPC11, SAYSD1, ATF7, N4BP1, MAPKAPK3, TMEM120A, SNX15, IGSF6, DLD, 

NAIP2, SETD5, CUTA, ZNF326, ACADVL, SLC4A2, UBE3B, RANBP3, NCK1, XDH, TICAM1, CFAP20, STRN4, GPKOW, 

PSMA3, RAI1, IDH2, LRCH4, MICAL3, HP1BP3, UQCRC2, DPY30, IRAK2, TRAPPC10, ATP6V0D1, FLOT1, SH3PXD2A, TAF5, 
PIK3R2, TXNIP, SLC27A1, DNAJC14, PRKRA, FADD, GOLGA4, TOMM5, MOB3A, PSIP1, TUT1, UNC50, KIF1B, IGHG2C, 

SMTN, COA4, ACAA1A, CCDC9, KDM6A, THYN1, PRPH, TMCO4, FBXO18, SVIL, ZKSCAN3, PQBP1, F5, NUDT6, GTF2A1, 

SARNP, PCBD2, PPM1K, CEP44, FIZ1, CCAR1, CARMIL1, SUCLG2, SLX4, NCKIPSD, MCAT, CAPN2, AI413582, DOK2, 
CALCOCO1, ZC3H18, FBXO6, RAB5B, NSFL1C, SUOX, AP3S1, DEAF1, COQ3, MAP2K4, CD177, SPTA1, PDE1B, PPM1G, 

DIP2A, ANAPC11, PRPF19, DCUN1D2, CACTIN, SRRT, BC037034, LRRC45, GZMA, LSM2, YWHAG, ZFP280D, CECR2, 

ELMO3, STK38L, BRD2, TAPBPL, HBS1L, RGS3, DNAJC28, HINT2, DSP, CYP4F13, MAGOH, IRF2BP2, PRDX2, ZFP41, VPS72, 
FAM104A, COQ7, SRA1, TCHP, MAP3K11, PLP2, NUMBL, ELMO1, BLOC1S3, DNAJC16, XXYLT1, NSMAF, EPPK1, CYB5R3, 

SFXN5, TOMM40L, STAM2, PLRG1, SSFA2, CLIP2, BAP18, DTNB, LMBRD2, NDUFS4, OGFRL1, RNF146, FGD6, LLGL1, 

HSDL2, PPP1R37, HDAC8, PIN4, C2CD3, FAM192A, THEM4, PPME1 
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Table 6-26 | Genes predicted to be co-regulated with CREB3 and CREB3L2 

Transcription 

Factor 

Microarray Additional genes identified by Multi-omics 

Analysis 
CREB3L2 ITGB1; CLIC4; RAPH1; HDLBP; LAMC1; TRAM2; 

ALDH1L2; AFF1; TNS3; C11ORF24; ARHGEF12; 
ZBTB38; SSR3; FNDC3B; SLC39A14; SND1; PCYOX1; 

H6PD; EPAS1; ABHD2; SLC7A1; TM9SF3; ITPRIPL2; 

LIMA1; GANAB; PRRC1; PGRMC2; TMEM184B; 
ATP2B4; ELL2; DAP; CPD; ASXL2; PLXNB2; 

ALDH18A1; NFE2L1 

KDM5C, MCFD2, B4GALT1, CHPF, KDELR1, 

PLOD3, PLOD1, GOLGA3, SEC61A1, TIMP2, 
CAPN2, SLC39A7, NOMO1, PDIA3, CKAP4, PDIA4, 

TMEM214, GORASP2, CANX, KDELR2, PLBD2, 

COPA, FAM114A1, SEL1L, RRBP1, ATP1A1, 
TM9SF4, FAM129B, HSP90B1, LMAN1, LARP1, 

FAM120A, MLEC, SSR1, FLNB, UGGT1, SEC31A, 

SEC24A, HSPA5, WFS1, GALNT2, EDEM1, SURF4, 
GBF1, SYVN1, GNG12, ARCN1, EXT1, GOLGB1, 

CALU, HYOU1, CALR, COPG1, P4HB 

CREB3 ARF4, PSMD8, MYDGF, SEC61A1, NSDHL, LGALS1, 
TMEM147, GUK1, TMED3, ARFIP2, TMED2, NANS, 

PSENEN, RAB2A, SEC13, ANXA5, SARS, FTSJ1, 

COPZ1, BSCL2, GORASP2, DAD1, KDELR2, 

AURKAIP1, ERGIC3, PHPT1, PAFAH1B3, CUTA, 

MAGEH1, CD63, COPB2, FKBP2, COPA, FAM114A1, 

MAGED1, GOSR2, DCTN3, ARL1, TULP3, SLC3A2, 
PLD3, PSMB6, PSMB7, ASNA1, TMEM205, EMC4, 

EMC7, ATP6V1D, SEC23B, AAMP, SEC31A, MDH1, 

YIPF3, SLC31A1, YIPF5, DSTN, YIF1A, TMCO1, 
PSMC4, MARS, CALU, MAGED2, COPG1, COPE, 

SRP54, CLTA, DUSP14, RABGEF1, TRMT112, 

MRPL40, PPME1, PELO, C11ORF24, ANXA2, GLRX3, 
NDUFS8, TMX2, AKIP1, CSNK2B, KDELR3, HM13, 

MFF, RABAC1, POLR2L, PRELID1, RMDN3, ATAT1, 

CYCS 

TIMM17A, ZFPL1, TPI1, STARD3NL, DDOST, 
IFT43, MORF4L2, MMADHC, SAR1A, PSMD13, 

COPB1, RNF5, EIF2B4, ADRM1, MRPL28, MRPL21, 

TM9SF1, PSMC3, RHEB 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 

.array 

mBMPC

.array 

hPB 

.array 

hPC 

.array 

hBMPC 

.array 

mPB

.rSeq 

mSplPC 

.rSeq 

mBMPC

.rSeq 

hPB. 

rSeq 

hBMPC 

.rSeq 

mPB

.prot 

mPB93

.prot 

ANOVA 

Microarray 

Adj p-value 

ANOVA 

RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

1 ARHGEF18 -5.47 -2.85 -2.29 -2.49 -2.78 -4.91 -4.63 -4.47 -3.01 -6.2 -4.75 -4.14 1.90E-08 8.30E-08 2.60E-08 

2 XBP1 4.33 4.56 4.28 4.63 4.57 5.45 5.46 5.67 4.17 7.33 1.38 1.8 1.90E-08 2.60E-08 9.60E-05 

3 JCHAIN 10.19 3.08 3.37 3.26 2.18 11.23 12.18 12.62 7.56 8.17 1.8 1.58 3.40E-08 3.40E-08 1.30E-02 

4 EDEM2 5.47 4.17 3.48 3.02 2.51 3.35 4.21 4.48 1.34 2.7 1.73 1.21 2.00E-08 3.50E-08 1.40E-03 

5 LMAN1 3.92 4.04 3.4 3.04 2.12 3.97 3.91 4.07 2.55 3.73 2.43 2.16 1.90E-08 4.10E-08 7.00E-06 

6 SLAMF7 4.21 4.86 9.3 10.36 11.63 3.04 4.46 4.54 7.05 9.06 1.68 1.43 1.90E-08 4.20E-08 2.40E-05 

7 ELL2 3.55 3.04 2.27 2.02 1.89 4.51 4.25 4.28 4.27 4.73 2.83 2.18 3.70E-08 4.70E-08 1.30E-05 

8 ALDH18A1 2.15 2.47 3.82 2.99 2.7 2.73 2.84 2.82 2.5 1.96 2.68 2.63 2.70E-08 9.90E-07 5.00E-08 

9 NCAPG 8.06 3.44 6.61 2.98 3.42 5.78 3.15 2.83 7.16 0.23 2.86 3.16 1.90E-08 3.40E-06 5.00E-08 

10 SLC44A2 -5.01 -4.41 -3.74 -3.12 -3.78 -1.92 -4.09 -4.99 -1.41 -3.26 -0.83 0 1.90E-08 5.00E-08 2.80E-01 

11 SORL1 -9.41 -8.72 -6.75 -6.88 -6.47 -7.32 -6.76 -8.63 -3.31 -6.56 -4.38 -4.86 1.90E-08 5.10E-08 3.10E-07 

12 PDIA6 3.1 2.79 2.74 2.19 1.93 3.76 2.63 2.44 3.89 4.66 1.25 1.05 1.90E-08 5.20E-08 3.20E-05 

13 ERN1 4.98 5.24 2.97 3.99 4.47 4.31 5.15 4.71 5.13 5.23 2.63 2.41 3.10E-08 5.20E-08 1.00E-03 

14 SDF2L1 6.24 5.36 6.95 6.18 6.5 4.22 4.16 4.14 3.36 5.52 1.56 1.79 2.00E-08 5.30E-08 1.80E-04 

15 SEC24D 8.03 5.77 5.64 5.17 6.31 4.5 4.45 4.45 3.23 3.48 4.54 3.74 1.90E-08 5.50E-08 2.60E-07 

16 SIGLECG -3.1 -3.51 -6.05 -6.04 -5.27 -4.48 -4.42 -4.3 -2.5 -6.7 -1.37 -1.05 2.50E-08 5.50E-08 4.80E-05 

17 FNDC3B 5.5 6.1 8.46 8.37 8.85 5.52 6.86 6.99 4.2 7.02 3.01 2.19 1.90E-08 5.50E-08 5.50E-05 

18 IGHA 10.34 4.61 7.14 6.19 6.69 4.44 13.22 14.82 11.77 12.84 -5.44 -5.35 2.30E-08 5.50E-08 1.10E-04 

19 TXNDC5 3.16 5.05 3.2 3.12 2.9 4.9 5.23 5.16 5.52 6.76 2.29 1.57 2.00E-08 5.90E-08 1.60E-04 

20 CKAP4 5.06 4.55 5.78 5.63 5.11 3.78 4.06 4.12 4.43 5.83 1.59 0.37 5.50E-08 6.00E-08 4.70E-05 

21 RIPOR2 -3.46 -3.26 -0.85 -4.95 -6.24 -3.25 -3.45 -3.19 -0.81 -8.89 -2.47 -2.12 2.00E-08 6.10E-08 1.50E-05 

22 MS4A1 -3.91 -2.86 -9.56 -9.22 -8.59 -1.15 -3.56 -4.08 -7.28 -9.23 -0.32 0.18 1.90E-08 6.10E-08 6.60E-02 

23 SERPINB1A -8.98 -6.65 -2.99 -2.8 -2.49 -4.11 -6.41 -6.05 -4.09 -0.68 -3.5 -3.72 3.10E-08 3.90E-06 6.30E-08 

24 FKBP2 3.51 3.26 3.87 3.71 4.17 3.71 4.04 4.07 2.28 5.14 1.17 0.88 2.10E-08 6.40E-08 2.00E-02 

25 RCSD1 -4.53 -3.43 -5.51 -5.72 -8.4 -4.42 -4.19 -4.11 -1.97 -3.16 -2.41 -2.11 1.90E-08 7.20E-08 6.10E-06 

26 EAF2 8.58 5.94 4.29 5.16 6.04 6.38 6.8 6.48 1.78 2.64 2.06 2.05 1.90E-08 7.20E-08 1.90E-05 

27 IGHG2B 10.17 9.56 0.57 0.91 2.99 7.33 12 13.47 7.08 11.82 0.01 -0.08 2.00E-08 8.20E-08 9.50E-01 

28 DNAJC3 3.86 3.89 2.99 1.4 1.28 3.08 3.34 3.38 2.76 3.79 1.66 1.53 2.00E-08 9.50E-08 8.20E-05 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 

.array 

mBMPC

.array 

hPB 

.array 

hPC 

.array 

hBMPC 

.array 

mPB

.rSeq 

mSplPC 

.rSeq 

mBMPC

.rSeq 

hPB. 

rSeq 

hBMPC 

.rSeq 

mPB

.prot 

mPB93

.prot 

ANOVA 

Microarray 

Adj p-value 

ANOVA 

RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

29 MANF 3.95 3.41 4.37 3.94 4.16 4.04 3.45 3.45 5.21 4.84 2.62 2.07 1.90E-08 9.90E-08 2.30E-07 

30 ZFP318 -7.68 -6.6 -5.41 -5.49 -5.79 -5.4 -4.59 -5.56 -4.33 -3.89 -3.52 -3.27 1.90E-08 3.60E-07 1.00E-07 

31 SIL1 3.2 3.85 4.17 4.12 3.31 3.51 4.02 4.02 2.8 4.04 1.5 1.65 2.70E-08 1.00E-07 1.60E-06 

32 RASGRP2 -2.43 -1.69 -6.28 -6.93 -6.49 -4.44 -3.01 -2.87 -1.76 -6.47 -1.86 -1.78 1.00E-07 1.00E-07 5.40E-05 

33 GLIPR1 3.83 3.52 1.95 2.02 -0.69 4.48 3.74 4.64 -2.96 -1.79 1.79 2.28 3.20E-08 1.10E-07 2.70E-05 

34 DNAJB11 2.68 1.87 3.3 2.41 2.55 3.26 2.68 2.64 5.49 5.74 1.06 0.7 2.40E-08 1.10E-07 3.10E-04 

35 ENTPD1 7.74 6.69 8.47 8 0.09 1.87 3.76 3.77 1.94 -4.35 1.35 0.28 1.90E-08 1.10E-07 3.80E-03 

36 SLC44A1 3.73 3.98 9.84 9.76 8.3 3.2 4.5 4.49 2.3 2.7 1.48 0.5 1.90E-08 1.10E-07 1.30E-01 

37 TOP2A 6.53 3.51 6.06 1.66 -1.27 4.6 1.25 1.27 1.92 -3.69 3.72 3.51 2.30E-08 7.60E-06 1.20E-07 

38 CRELD2 4.48 4.07 3.89 3.25 3.3 4.93 5.09 4.9 1.74 3.74 2.23 1.73 1.90E-08 1.20E-07 1.30E-05 

39 AFF3 -3.25 -2.2 -5.4 -5.4 -5.4 -4.6 -4.28 -3.99 -3.75 -9.68 -3.13 -2.43 1.00E-07 1.30E-07 1.50E-04 

40 CHID1 4.12 5.05 4.85 4.71 5.48 2.94 3.55 3.56 1.68 3.27 0.28 -0.43 2.20E-08 1.30E-07 1.60E-01 

41 EBF1 -6.61 -2.52 -4.9 -4.9 -4.9 -2.7 -4.23 -4.08 -5.86 -4.96 -0.14 -0.11 1.90E-08 1.30E-07 7.40E-01 

42 SIPA1 -4.09 -3.36 -2.94 -2.74 -2.49 -3.02 -3.1 -3.15 -1.78 -3.56 -1.98 -2.01 6.70E-08 5.30E-07 1.40E-07 

43 IGHD -11.35 -6.3 4.85 5.12 6.04 -7.67 -5.33 -5.81 0.05 -4.83 -3.87 -4.61 1.90E-08 1.30E-06 1.40E-07 

44 RRM2 8.53 5.31 10.07 7.19 3.35 4.65 2.25 2.09 9.95 0.7 4.33 4.22 1.90E-08 1.70E-06 1.40E-07 

45 ABLIM1 -4.04 -1.74 -2.66 -3.86 -7.3 -1.87 -3.2 -2.89 -3.18 -3.32 -1.59 -1.31 2.10E-08 1.40E-07 4.00E-05 

46 CD19 -4.68 -3.77 -2.16 -3.84 -2.83 -2.31 -3.88 -4.37 -2.5 -6.27 0.13 1.14 2.00E-08 1.40E-07 1.50E-04 

47 RPN2 3.44 2.56 3.64 3.48 2.79 2.91 2.66 2.67 2.3 3.49 0.78 0.58 3.50E-08 1.40E-07 5.90E-03 

48 DDOST 3.46 3.01 2.4 1.72 1.86 3.57 2.7 2.71 2.18 3.26 0.78 0.95 2.60E-08 1.40E-07 4.70E-02 

49 REXO2 4.11 3.6 2.91 2.06 1.97 3.19 4.18 4.19 1.35 1.41 1.52 1.68 2.00E-08 1.50E-07 3.90E-06 

50 ARHGAP17 -3.5 -2.52 -3.24 -3.35 -2.94 -3.16 -2.04 -2.11 -5.18 -3.84 -1.44 -0.85 2.00E-08 1.50E-07 2.80E-03 

51 CYP51 1.67 0.32 1.74 0.9 -1.31 3.01 -0.27 -0.1 1.58 2.19 3.89 4.19 3.80E-07 1.60E-07 2.50E-08 

52 PRDM1 7.9 7.97 10.36 10.24 9.78 8.97 8.59 8.39 8.14 7.82 5.17 4.64 1.90E-08 1.60E-07 2.50E-06 

53 RIN3 -4.17 -3.86 -3.76 -3.8 -3.33 -4.32 -3.7 -5.05 0.19 -3.59 -2.96 -2.98 1.00E-07 3.80E-06 1.60E-07 

54 CD55 -7.23 -5.21 -4.84 -5.41 -3.37 -4.24 -3.26 -3.14 -1.93 -1.47 -2.55 -2.23 1.90E-08 1.60E-07 1.60E-03 

55 SPCS2 3.39 3.41 4.16 4.17 3.49 2.75 3.22 3.31 1.8 3.04 0.75 0.3 1.90E-08 1.60E-07 1.90E-02 

56 CCPG1 2.73 3.19 4.79 5.1 6.01 2.97 3.31 3.7 1.58 4.52 0.01 0.62 2.00E-08 1.60E-07 3.90E-01 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 

.array 

mBMPC

.array 

hPB 

.array 

hPC 

.array 

hBMPC 

.array 

mPB

.rSeq 

mSplPC 

.rSeq 

mBMPC

.rSeq 

hPB. 

rSeq 

hBMPC 

.rSeq 

mPB

.prot 

mPB93

.prot 

ANOVA 

Microarray 

Adj p-value 

ANOVA 

RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

57 ELMSAN1 -3.55 -2.05 -2.36 -4.49 -0.75 -3.2 -2.19 -2.22 -0.43 -1.75 -1.94 -1.83 2.40E-08 3.40E-06 1.70E-07 

58 PRDX4 3.87 4.39 5.66 5.65 6.09 5.54 5.25 5.38 3.96 6.1 1.69 1.35 1.90E-08 1.80E-07 1.30E-04 

59 TXNDC11 4.09 3.29 2.58 2.31 1.34 3.5 3.75 3.77 3.91 3.96 3.09 2.65 2.00E-08 1.80E-07 1.30E-04 

60 PXK -3.88 -3.43 -2.3 -2.21 -5.35 -2 -3.22 -3.47 -2.97 -3.77 -0.97 -0.73 1.90E-08 1.80E-07 5.20E-03 

61 SND1 2.8 2.97 2.52 2.27 1.15 2.62 2.53 2.49 2.6 2.27 1.46 1.43 3.30E-08 1.90E-07 1.20E-06 

62 HSP90B1 3.13 3.42 2.51 2.3 2.31 4.08 4.03 3.94 3.64 4.53 1.45 1.26 1.90E-08 1.90E-07 3.20E-05 

63 GMPPA 3.58 3.06 3.56 3.28 4.08 2.84 2.72 2.61 3 2.59 0.61 0.47 2.00E-08 1.90E-07 6.40E-02 

64 HERPUD1 2.5 2.13 1.75 1.7 1.54 2.6 3.26 3.47 4.2 5.76 2.31 2.09 2.30E-08 2.00E-07 6.30E-06 

65 COTL1 -3.66 -4.31 -0.88 -2.99 -2.38 -3.49 -4.72 -6.12 0.59 -4.77 -1.37 -1.27 3.50E-08 2.00E-07 9.60E-03 

66 CD37 -7 -4.84 -8.74 -8.57 -8.2 -3.14 -2.69 -2.77 -3.52 -3.31 -0.53 -0.1 2.00E-08 2.00E-07 1.30E-01 

67 EVL -8.24 -4.66 -4.07 -3.33 -2.43 -5 -3.81 -4.84 -2.54 -4.03 -2.42 -1.76 2.10E-08 2.10E-07 8.40E-07 

68 HDLBP 3.83 3.38 3.66 3.43 3.52 3.4 3.12 3.14 2.5 4.34 2.24 2 1.90E-08 2.10E-07 1.00E-06 

69 SEC11C 2.25 1.43 5.26 4.58 5.76 3.58 3.5 3.72 4.11 5.46 2.96 2.27 2.10E-07 1.10E-07 9.70E-05 

70 ETS1 -5.58 -3.29 -2.65 -3.97 -7.24 -2.2 -3.39 -3.33 -3.86 -5.2 -1.92 -1.16 3.80E-08 2.10E-07 2.10E-04 

71 MZB1 3.17 1.9 4.27 4.25 4.77 5.17 3.85 3.89 4.08 5.45 2.91 2.87 2.10E-07 1.30E-07 3.20E-04 

72 RPN1 3.5 2.91 3.55 2.84 1.21 3.31 2.48 2.48 2.35 2.93 1.1 1 1.90E-08 2.10E-07 3.10E-03 

73 STT3A 3.12 2.09 8.1 7.53 4.11 2.91 2.44 2.42 3.72 3.28 1.34 1.5 4.90E-08 2.10E-07 3.50E-03 

74 FCRL1 -4.68 -4.27 -9.77 -9.77 -5.38 -2.95 -3.55 -3.63 -3.36 -8.21 -0.19 -0.68 1.90E-08 2.10E-07 5.80E-02 

75 SSR3 2.38 1.7 5.92 5.87 5.73 3.28 2.59 2.61 3.43 4.25 1.26 0.16 2.10E-07 7.20E-08 7.00E-02 

76 SLC39A7 2.64 2.04 3.85 3.12 1.33 2.5 2.29 2.27 2.72 2.74 0.3 -0.68 2.10E-08 2.10E-07 9.40E-02 

77 YARS 3.26 3.44 2.16 1.85 1.42 2.87 2.55 2.43 1.94 0.34 2.17 2.1 6.70E-08 1.00E-06 2.20E-07 

78 PYCR1 8.3 10.2 1.9 1.48 1.07 7.1 7.73 7.85 9.57 9.71 1.99 1.57 7.40E-08 2.20E-07 9.50E-04 

79 KCNK6 8.07 6.07 6.75 5.5 5.71 4.65 4.38 4.3 3.31 3.59 0.83 0.71 1.90E-08 2.40E-07 2.50E-02 

80 FKBP11 6.95 7.06 3.88 3.67 3.79 5.45 4.66 4.48 6.62 8.01 2.97 1.57 1.90E-08 2.50E-07 7.30E-05 

81 NOTCH2 -4.03 -2.28 -4.67 -4.67 -4.67 -4.29 -4.06 -4.53 -2.01 -2.45 0.97 1.03 3.70E-08 2.50E-07 3.80E-02 

82 TMED10 3.02 2.59 2.87 2.63 2.66 2.9 2.73 2.8 2.33 4.06 0.7 0.5 2.10E-08 2.60E-07 8.50E-02 

83 DEK -2.18 -1.95 -6.26 -8.05 -4.38 -3.58 -5.03 -4.34 -5.46 -5.09 -1.48 -1.01 2.80E-07 1.70E-07 8.60E-05 

84 LAMP2 2.48 3.69 6.72 6.68 5.49 3.26 1.93 2.13 1.28 3.19 1.67 -0.33 2.00E-08 2.80E-07 1.40E-03 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 

.array 

mBMPC

.array 

hPB 

.array 

hPC 

.array 

hBMPC 

.array 

mPB

.rSeq 

mSplPC 

.rSeq 

mBMPC

.rSeq 

hPB. 

rSeq 

hBMPC 

.rSeq 

mPB

.prot 

mPB93

.prot 

ANOVA 

Microarray 

Adj p-value 

ANOVA 

RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

85 RCBTB2 4.64 4.6 6.48 5.08 7.1 3.48 3.9 4.06 5.09 5.82 1.44 0.87 1.90E-08 2.80E-07 2.80E-02 

86 TRAF5 -3.39 -3.62 -9.65 -9.65 -7.5 -4.96 -3.04 -3.57 -5.4 -4.93 -1.93 -1.65 1.90E-08 2.90E-07 3.70E-06 

87 BCL11A -6.01 -4.71 -6.68 -8.34 -5.7 -4.6 -6.12 -7.48 -5.25 -4.35 -0.47 -0.23 1.90E-08 3.00E-07 5.00E-02 

88 UBE2J1 3.23 3.16 4.25 3.79 3.65 2.43 3.16 3.26 2.57 3.02 1.59 1.43 1.90E-08 3.10E-07 1.80E-05 

89 SEL1L 4.21 5.23 6.84 7.13 6.47 3.94 4.6 4.72 1.91 3.63 1.88 1.52 1.90E-08 3.20E-07 8.20E-05 

90 HHEX -10.33 -5.62 -9.73 -9.88 -9.27 -5.34 -6.53 -6.45 -6.39 -7.36 -3.24 -1.76 1.90E-08 3.30E-07 2.20E-04 

91 SURF4 4.32 3.39 3.48 2.88 2.15 2.51 2.06 2.05 3 3.28 1.13 2.28 1.90E-08 3.40E-07 7.20E-02 

92 SLC35B1 3.5 2.45 2.83 2.3 2.3 2.93 2.06 2.19 3.51 3.33 2.29 1.89 6.20E-08 3.50E-07 3.90E-02 

93 STK26 -2.91 -1.44 -3.24 -3.33 -3.31 -2.99 -2.76 -2.52 -4.95 -2.59 -1.1 -0.63 2.20E-08 3.60E-07 1.20E-03 

94 SEC63 2.64 1.66 3.69 3.18 0.7 2.43 2.12 2.17 1.85 1.68 1.43 1.41 8.10E-08 3.60E-07 1.40E-03 

95 SPCS1 2.18 2.81 1.95 1.99 1.68 3.27 3.97 4.09 1.97 3.36 0.49 0.04 2.60E-08 3.60E-07 5.30E-02 

96 NANS 3.53 3.24 4.67 4.1 3.97 2.85 2.43 2.57 3.06 4 0.18 -0.19 1.90E-08 3.60E-07 7.30E-02 

97 SLC33A1 3.44 3.77 4.08 3.85 1.64 3.4 3.6 3.61 2.6 2.79 1.9 1.33 1.90E-08 3.80E-07 2.20E-05 

98 LBH -4.05 -2.57 -6.62 -7.48 -7.39 -2.36 -3.47 -3.57 -4.74 -6.22 -1.83 -0.99 1.90E-08 4.30E-07 3.10E-03 

99 FCMR -9.1 -4.03 -3.52 -5.35 -2.53 -4.9 -3.7 -4.13 -2.59 -5.64 -5.17 -4.94 2.10E-08 2.70E-06 4.40E-07 

100 KMO -4.31 -2.05 -4.49 -3.72 -3.49 -5.47 -2.31 -1.41 -3.59 -3.33 -2.54 -2.84 2.10E-08 1.10E-06 4.70E-07 

101 ARFGAP3 4.91 4.07 3.1 2.77 2.7 3.72 4.26 4.5 1.95 2.64 2.07 1.47 5.10E-08 4.90E-07 3.40E-05 

102 SLC4A7 -2.88 -2.37 -0.93 -3.01 -5.08 -0.6 -2.07 -2.41 -3.42 -3.92 1.47 1.16 3.80E-08 5.00E-07 5.70E-04 

103 CIITA -7.45 -9.93 -7.51 -6.74 -4.84 -5.67 -6.28 -7.07 -5.36 -8.28 -1.01 -1.7 5.50E-08 5.00E-07 3.60E-02 

104 SELENOS 2.39 2.27 6.66 6.53 7.33 3.18 3.13 3.16 4.68 5.39 0.67 0.36 1.90E-08 5.00E-07 5.70E-02 

105 USO1 2.13 2.21 2.88 2.7 1.93 2.08 2.44 2.53 1.52 2.02 0.52 0.33 2.00E-08 5.10E-07 5.40E-02 

106 MTDH 2.51 1.99 1.83 1.06 1.44 2.75 2.69 2.71 1.56 1.94 0.92 0.9 3.10E-08 5.20E-07 1.10E-04 

107 ZBP1 2.89 2.8 4.73 5.4 1.58 2.75 2.35 2.23 2.4 2.08 -1.2 -1.18 1.80E-07 5.20E-07 1.70E-03 

108 ARF4 4.05 2.65 4.84 4.1 4.28 1.96 2.12 2.28 2.33 3.29 1.11 -0.12 4.60E-08 5.30E-07 4.10E-02 

109 CALU 2.96 2.44 7.35 6.46 4.01 2.44 2.36 2.33 2.25 3.22 0.62 0.75 2.10E-08 5.40E-07 8.00E-02 

110 ARMCX3 4.88 4.44 2.16 2.01 1.48 3.75 3.43 3.37 1.64 2.61 2.94 2.46 2.00E-08 5.60E-07 7.10E-07 

111 SLC31A1 3.81 2.96 6.89 6.3 4.74 2.52 1.64 1.74 2.13 3.28 2.2 3.04 2.20E-08 5.70E-07 2.40E-03 

112 SSR4 3.44 3.03 2.72 3.28 3.38 4.67 4.1 4.38 3.85 6.19 1.42 0.54 6.60E-08 5.90E-07 1.10E-04 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 

.array 

mBMPC

.array 

hPB 

.array 

hPC 

.array 

hBMPC 

.array 

mPB

.rSeq 

mSplPC 

.rSeq 

mBMPC

.rSeq 

hPB. 

rSeq 

hBMPC 

.rSeq 

mPB

.prot 

mPB93

.prot 

ANOVA 

Microarray 

Adj p-value 

ANOVA 

RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

113 SELL -8.14 -3.45 1.02 1.1 -3.71 -5.73 -3.59 -5.39 -1.78 -8.71 -1.43 -0.69 3.00E-07 6.40E-07 7.10E-02 

114 ITM2C 5.75 5.52 3.45 3.91 4.38 4.23 5.37 5.37 3.44 4.33 0.06 0.79 4.80E-08 6.60E-07 1.80E-01 

115 IRF4 4.01 4.83 3.75 3.57 0.95 3.32 2.86 2.84 4.08 1.47 2.67 2.35 2.20E-06 2.30E-07 6.90E-07 

116 GLT8D1 2.5 2.54 2.71 2.92 4.14 2.14 2.58 2.65 0.86 1.75 3.28 2.1 3.10E-08 1.10E-06 7.00E-07 

117 SP100 -2.59 -2.41 -2.9 -1.49 -3.42 -1.28 -1.96 -1.92 -1.8 -2.03 -1.56 -1.38 4.20E-07 7.40E-07 4.90E-04 

118 SRPK3 -10.58 -4.71 0 0.13 0.15 -3.85 -4.23 -4.14 4.61 0.58 -3.74 -4.27 1.90E-01 7.40E-07 2.20E-07 

119 B4GALNT1 -5.04 -4.89 0 0 0 -3.64 -4.49 -4.19 5.9 2.28 -1.81 -1.86 4.90E-01 1.80E-07 7.50E-07 

120 PECAM1 -2.6 -2.48 1.04 2.78 2.75 -3.64 -2.06 -2.32 -3.34 2.76 -0.31 -0.43 3.50E-07 7.60E-07 1.90E-01 

121 HSPA5 1.82 0.96 3.61 3.56 3.31 3.43 2.76 2.65 3.83 4.43 1.03 0.85 7.70E-08 7.70E-07 7.70E-04 

122 DTX1 -7.03 -5.3 -2.97 -3.32 -3.23 0.28 -2.72 -3.42 -0.9 -5.19 -0.46 -1.05 3.60E-08 7.70E-07 3.30E-02 

123 BCL6 -6.76 -5.48 -1.26 -2.49 -5.37 -2.23 -5.41 -7.46 -2.54 -4.83 -1.66 -1.5 1.60E-07 7.90E-07 1.40E-02 

124 SCARB2 -3.45 0.19 2.76 3.1 2.49 -1.56 1.11 1.41 1.41 3.85 -0.43 -0.39 2.50E-08 7.90E-07 2.50E-01 

125 HYOU1 2.81 2.94 6.6 5.85 5.24 3.56 2.73 2.63 3.69 4.11 1.8 1.53 3.20E-07 8.00E-07 6.40E-05 

126 TMEM131L -4.18 -2.4 -6.33 -6.27 -5.57 -2.5 -2.77 -2.78 -0.67 -2.55 -0.83 -0.89 2.00E-08 8.00E-07 2.60E-03 

127 SLC7A5 2.95 4.31 3.62 2.69 0.73 4.34 4.07 3.65 7.24 7.22 3.7 4.1 8.30E-07 1.80E-06 1.40E-07 

128 HELLS 3.11 0.78 3.61 1.13 -0.54 1.78 -0.76 -0.7 -0.07 -3.28 2.79 2.7 8.40E-07 4.40E-06 5.00E-08 

129 CR2 -8.93 -8.77 -3.12 -1.33 -3.33 -3.77 -5.69 -8.09 -4.78 -3.85 -1.03 -1.29 5.60E-07 8.50E-07 2.50E-04 

130 DERL1 2.83 2.35 2.11 1.54 0.99 2.14 2.19 2.16 2.71 3.32 1.17 0.82 1.90E-08 8.60E-07 7.50E-04 

131 SAMD9L -7.8 -5.38 5.64 8.5 -0.06 -5.3 -5.31 -5.67 -0.1 -2.27 -0.23 0.06 1.90E-08 8.70E-07 2.10E-01 

132 BACH2 -8.12 -3.46 -9.34 -9.73 -9.17 -3.13 -4.33 -4.25 -5.44 -5.98 -0.79 -0.66 1.90E-08 8.90E-07 5.20E-03 

133 CREG1 4.2 4.11 4.02 4.15 5.38 3.31 2.61 2.62 0.26 2.64 2.02 2.2 9.00E-07 9.00E-07 2.40E-01 

134 OS9 2.59 2.29 2.19 1.28 2.33 2.83 2.24 2.25 1.52 2.93 2.03 1.94 1.30E-06 1.90E-07 9.80E-07 

135 CD93 3.56 4.92 0 0 1.07 3.82 3.3 4.02 5.72 1.81 2.98 3.84 1.80E-01 4.00E-07 9.80E-07 

136 IL4RA -4.61 -6.69 -8.3 -8.44 -7.44 -4 -5.65 -6.81 -5.84 -7.41 -1.46 -1.02 1.90E-08 9.90E-07 9.50E-04 

137 WFS1 4.05 5.5 5.99 5.37 6.07 2.82 3.94 4.08 2.87 5.52 1.7 0.3 3.40E-08 1.00E-06 4.80E-03 

138 EPHX1 -8.51 -5.21 0 0 0.81 -0.66 -3.06 -4.15 1.74 3.88 -3.08 -3.46 1.10E-02 1.00E-06 1.20E-07 

139 RPS27L 2.22 2.11 3.16 3.12 3.41 3.01 2.27 2.51 1.57 2.4 1.18 1.98 1.90E-08 1.00E-06 2.40E-02 

140 PAG1 -2.55 -2.13 1.47 1.6 -2.56 -2.69 -2.76 -2.86 0.49 -1.96 -1.36 -0.99 2.70E-08 1.10E-06 5.90E-04 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 

.array 

mBMPC

.array 

hPB 

.array 

hPC 

.array 

hBMPC 

.array 

mPB

.rSeq 

mSplPC 

.rSeq 

mBMPC

.rSeq 

hPB. 

rSeq 

hBMPC 

.rSeq 

mPB

.prot 

mPB93

.prot 

ANOVA 

Microarray 

Adj p-value 

ANOVA 

RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

141 BTG1 -4.88 -2.77 -10.96 -11.23 -8.29 -3.47 -4.66 -5.04 -2.54 -2.04 -2.08 -1.51 1.10E-06 7.60E-07 1.40E-02 

142 GALNT10 -4.16 -4.59 -2.37 -3.25 -5.16 -2.84 -3.59 -3.98 -1.77 -2.64 0.38 0.37 3.30E-07 1.10E-06 6.30E-01 

143 STAP1 -4.42 -4.08 -2.83 -0.51 -0.39 -1.6 -3.5 -3.76 -2.37 -1.44 -0.15 -0.03 2.00E-07 1.10E-06 8.30E-01 

144 ARHGAP4 -2.72 -3.5 -3.22 -3.22 -3.31 -1.85 -3.01 -3.37 -0.47 -1.92 -2.29 -2.43 2.50E-08 1.10E-05 1.20E-06 

145 HMGCS1 -0.16 -0.62 -7.55 -7.55 -7.55 2.33 -1.3 -1.12 1.51 0.08 3.74 4.11 1.90E-02 1.20E-06 3.50E-08 

146 CEACAM1 -5.77 -1.78 0.01 0 2.4 -4.46 -2.24 -1.48 5.49 1.86 -0.94 -0.34 1.90E-08 1.20E-06 1.10E-01 

147 OASL1 -3.59 -4 0.72 8.1 0.41 0.38 -3.12 -3.78 -2.66 2.37 2.22 2.17 7.00E-07 1.30E-06 1.40E-06 

148 SEC24A 2.84 2.06 3.41 3.27 2.98 3.16 2.55 2.31 2.58 3.11 2.56 1.68 2.80E-08 1.30E-06 1.90E-05 

149 MORC3 -3.56 -1.74 -1.79 -2.18 -3.47 -2.28 -1.98 -2.06 -4.77 -2.77 -1.24 -1.11 5.70E-08 1.30E-06 2.20E-05 

150 RRBP1 5.23 4.07 4.97 4.72 4.22 2.92 2.51 2.64 2.52 4.1 1.75 1.3 1.90E-08 1.30E-06 2.40E-05 

151 TBC1D10C -3.15 -2.43 -2.87 -2.53 -3.47 -2.13 -2.52 -2.49 -2.44 -3.15 -1.06 -1.2 2.40E-08 1.30E-06 4.60E-04 

152 NAP1L1 -3.24 -1.51 -4.83 -4.53 -4.49 -1.37 -2.29 -2.37 -1.52 -1.02 1.74 1.61 1.90E-08 1.30E-06 5.70E-04 

153 JAK1 -3.41 -2.16 -3.01 -2.85 -8.02 -2.1 -2.24 -2.26 -2.61 -1.38 -0.76 -0.53 1.90E-08 1.30E-06 1.90E-03 

154 PRKCB -4.39 -2.81 -4.36 -5.02 -4.94 -2.65 -3.17 -2.72 -1.92 -4.6 -0.42 -0.56 1.90E-08 1.30E-06 2.20E-02 

155 CDK19 -4.4 -2.52 -2.19 -2.89 -6.69 -2.37 -2.64 -2.7 -2.59 -4.98 -0.56 -0.43 1.90E-08 1.30E-06 2.20E-02 

156 KDELR1 2.79 2.4 4.54 3.26 0.64 2.06 2.27 2.34 2.53 4.01 0.78 0.66 2.40E-08 1.30E-06 4.70E-01 

157 CD22 -10.05 -7.83 -7.71 -7.65 -7.26 -4.75 -6.21 -5.9 -6.82 -9.5 -1.18 -0.8 1.90E-08 1.40E-06 3.60E-04 

158 FAM129C -7.94 -2.44 -8.78 -8.74 -8.57 -0.46 -4.36 -3.83 -7.46 -9.73 0.96 1.21 1.90E-08 1.40E-06 9.40E-04 

159 FUT8 6.43 5.6 3.03 2.73 -1.53 3.7 5.52 5.79 1.21 1.33 1.11 1.44 2.00E-08 1.40E-06 6.30E-03 

160 ADK 2.92 4.27 -1.66 -1.66 -1.66 2.97 4.22 4.37 -0.72 -2.78 0.26 0.36 1.90E-08 1.40E-06 2.80E-01 

161 AGA 1.6 2.67 4.77 4.98 5 1.44 2.37 2.73 0.62 2.73 0.22 -0.42 3.10E-08 1.40E-06 3.10E-01 

162 MYO1G -1.88 -2.1 -1.76 -1.42 -5.46 -1.38 -2.07 -1.91 -0.01 -3.86 -0.08 0.26 2.10E-07 1.40E-06 5.10E-01 

163 SRPR 2.47 2.45 1 0.78 0.27 2.7 2.69 2.74 1.87 2.48 2.46 2.08 6.10E-04 1.30E-07 1.50E-06 

164 SELENOK 2.65 2.43 1 0.88 1.47 2.7 2.68 2.89 2.5 4.25 3.51 0.21 7.80E-08 1.50E-06 1.70E-03 

165 CRLF3 -2.06 -2.16 0.48 -0.25 -1.54 -1.94 -2.14 -2.25 -1.01 -2.31 -0.84 -0.34 1.50E-06 1.20E-06 1.30E-02 

166 PPIB 1.6 1.52 3.14 2.52 2.17 3.27 1.72 1.62 4.1 3.55 1.03 1.39 1.90E-08 1.50E-06 1.80E-02 

167 CRYBG1 -3.97 -2.15 -4.05 -7.14 -6.62 -1.7 -2.04 -2.17 -1.61 -5.27 -0.31 -0.24 2.70E-08 1.50E-06 3.00E-01 

168 AARS 1.45 1.93 5.08 5.18 3.79 1.82 1.79 1.73 2.76 2.85 2.53 2.65 1.30E-07 3.00E-06 1.60E-06 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 

.array 

mBMPC

.array 

hPB 

.array 

hPC 

.array 

hBMPC 

.array 

mPB

.rSeq 

mSplPC 

.rSeq 

mBMPC

.rSeq 

hPB. 

rSeq 

hBMPC 

.rSeq 

mPB

.prot 

mPB93

.prot 

ANOVA 

Microarray 

Adj p-value 

ANOVA 

RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

169 MARS 1.33 1.79 1.71 1.92 0.67 1.8 1.87 1.84 1.42 1.42 1.49 1.61 6.60E-07 7.40E-06 1.60E-06 

170 EZH2 1.66 0.97 0.53 -0.44 -5.73 2.84 0.21 0.3 2.5 -2.46 2.03 2.04 1.10E-05 1.60E-06 3.10E-07 

171 H2-DMA -2.41 -3.27 -1.75 -2.67 -2.9 -4.72 -3.35 -3.91 -2.32 -3.51 -2.99 -2.32 1.90E-08 1.60E-06 4.60E-03 

172 BTLA -8.22 -2.1 -1.72 -5.27 -1.52 -2.9 -1.36 -1.67 -0.51 -2.22 -1.49 -1.5 2.60E-07 1.60E-06 4.60E-03 

173 KLHL6 -4.47 -2.98 5.31 5.4 5.9 -1.5 -3.51 -4.12 1.69 2.44 0.53 0.44 1.90E-08 1.60E-06 7.10E-02 

174 UBXN4 1.68 1.43 1.67 1.07 -1.82 2.15 1.98 2.17 0.75 2.18 0.76 1.3 2.50E-08 1.70E-06 3.70E-04 

175 IFNGR1 -3.11 -1.93 -6.89 -7.09 -6.73 -2.43 -1.99 -2.03 -3 -1.71 -1.12 -0.45 2.10E-08 1.70E-06 3.50E-03 

176 CNPY2 3.02 3.38 5.54 5.21 5.49 3.29 3.64 3.66 1.22 2.15 0.62 1.11 1.90E-08 1.70E-06 5.20E-03 

177 BUB1B 4.86 3.6 7.27 4.89 0.19 4.01 3.15 3.1 2.01 -3.74 4.8 4.71 2.00E-08 2.00E-06 1.80E-06 

178 HCK -6.33 -6.65 -0.07 -5.13 -0.68 -4.37 -3.64 -5.35 -4.86 -5 -2.16 -2.19 1.90E-08 1.80E-06 9.90E-06 

179 ZBTB18 -4.13 -2.06 -3.82 -3.82 -3.82 -3.22 -2.51 -2.88 -4.47 -3.69 -1.72 -1.98 2.60E-08 1.80E-06 3.60E-02 

180 RPS6KA5 -5.68 -3.8 -0.3 0.83 -3.8 -3.06 -2.73 -2.79 -0.68 -2.36 -3.01 -3.38 2.00E-08 1.10E-05 1.90E-06 

181 AIDA -3.83 -1.97 -0.86 -0.45 -1.05 -1.77 -2 -2.01 -2.75 -1.58 -0.9 -1.12 1.90E-06 1.70E-06 2.20E-02 

182 SLFN8 -5.28 -3.63 3.74 3.4 2.64 -2.89 -1.79 -2.34 0.39 1.71 -0.04 0.01 1.70E-07 1.90E-06 9.70E-01 

183 SEC22B 2.58 2 3.61 3.15 3.37 1.75 1.72 1.78 0.59 1.26 0.53 0.34 1.90E-08 2.00E-06 1.90E-02 

184 TLR1 -10.18 -10.52 -5.19 -6.57 -2.5 -5.54 -5.9 -8.52 -1.87 -0.16 -0.62 -0.54 7.10E-08 2.00E-06 1.50E-01 

185 FOCAD 3.46 2.98 4.02 3.52 2.42 1.17 2.3 2.63 3.48 2.04 1.44 1.61 6.50E-06 1.60E-06 2.10E-06 

186 CLPB 4.36 5.09 1.37 1.09 0.81 2.32 2.97 2.83 5.27 3.42 1.3 1.56 2.00E-05 1.20E-06 2.10E-06 

187 ERP44 2.59 1.96 3.59 3.08 3.18 2.66 1.76 1.77 -0.22 0.74 1.3 0.93 1.90E-08 2.10E-06 2.30E-04 

188 ACAP1 -3.29 -1.99 -0.72 -0.88 -2.71 -1.6 -2.77 -2.35 -1.83 -2.5 -1.13 -0.97 6.80E-08 2.10E-06 2.10E-03 

189 UCK2 5.76 5.04 4.85 2.27 0.94 2.77 2.44 2.86 2.9 1.06 2.62 2.74 3.80E-08 2.20E-06 5.70E-06 

190 FAM49B -4.05 -3.36 -3.62 -3.44 -4.72 -2.22 -2.89 -2.81 -1.36 -1.18 -1.15 -1.03 2.70E-08 2.20E-06 3.50E-04 

191 TMED2 4.36 3.27 1.63 1.33 0.54 2.91 2.26 2.47 3.03 3.46 1.29 2.59 2.10E-08 2.20E-06 1.30E-01 

192 DENND4A -2.89 -2.08 -3.89 -3.83 -6.05 -0.46 -2.07 -1.84 -2.85 -2.57 1.81 2.04 3.00E-08 4.00E-06 2.30E-06 

193 PLS1 2.13 10.04 4.37 1.68 0.05 5.72 8.75 9.04 0.37 3.3 -2.73 -4.45 2.20E-07 2.30E-06 2.10E-05 

194 PTPN6 -4.78 -1.77 -0.82 -2.98 0.44 -2.88 -1.49 -1.64 -1.25 -1.36 -1.35 -1.01 2.00E-08 2.30E-06 1.10E-04 

195 ADA 8.14 6.25 6.2 8.04 4.58 4.34 3.55 3.82 5.1 4.65 1.37 1.39 1.90E-08 2.30E-06 4.20E-04 

196 TMEM214 3.02 2.74 4.21 3.7 4.6 3.17 2.59 2.63 1.73 2.1 2.62 2.24 2.30E-08 2.40E-06 2.90E-05 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 

.array 
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.array 
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.array 

hPC 

.array 

hBMPC 

.array 

mPB

.rSeq 
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.rSeq 

mBMPC

.rSeq 

hPB. 

rSeq 
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.rSeq 

mPB

.prot 

mPB93

.prot 

ANOVA 

Microarray 

Adj p-value 
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RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

197 SNX2 6.75 3.31 6.41 4.37 1.41 -2.12 -2.65 -2.65 -2.5 -2.84 -1.19 -0.94 2.80E-08 2.40E-06 1.30E-03 

198 PLPP5 7.23 5.88 0.97 0.7 1.65 6.25 6.42 6.36 -1.46 0.39 2.43 2.29 2.40E-06 6.00E-08 1.80E-03 

199 STAT6 -3.88 -2.28 -2.67 -2.68 -2.48 -1.96 -1.89 -1.9 -2.71 -3.22 -1.57 -0.89 7.20E-08 2.50E-06 1.20E-04 

200 LMAN2 2.27 2.53 5.05 4.38 4.11 1.63 1.49 1.45 2.6 3.49 0.94 1.08 4.00E-07 2.60E-06 4.10E-04 

201 ZDHHC13 -5.41 -5.5 1.26 0.63 -2.56 -2.22 -2.98 -3.44 0.95 -0.75 0.69 0.68 2.30E-08 2.60E-06 1.60E-02 

202 GMPPB 3.62 3.5 4.86 4.19 3.76 2.51 2.08 2.46 2.9 3.8 0.22 0.1 1.90E-08 2.60E-06 3.10E-01 

203 CLPTM1L 1.83 2.06 2.65 2.47 2.09 3.23 2.73 2.74 2.64 3.77 -0.03 0.08 1.90E-08 2.60E-06 9.10E-01 

204 ELL3 -6.06 -5.43 -3.78 -3.78 -3.78 -6.75 -6.35 -7.78 -3.82 -7.42 -3.57 -3.95 8.40E-08 2.70E-06 1.70E-04 

205 PIM2 2.17 2.4 1.75 2.07 -0.67 2.15 2.62 2.52 2.95 3.39 1.7 1.18 9.60E-08 2.70E-06 5.70E-03 

206 UBA5 3.36 2.58 4.71 4.07 3.01 2.71 2.56 2.62 0.22 1.58 0.44 -0.15 1.90E-08 2.70E-06 2.00E-01 

207 GIMAP3 -5.55 -3.44 0 0.1 1.47 -1.53 -4.3 -3.53 2.72 6.12 0.31 -0.02 2.70E-06 1.20E-06 5.60E-01 

208 LY86 -4.07 -4.41 -6.93 -6.84 -2.53 -2.79 -4.11 -4.94 -5.21 -2.67 0.05 0.15 1.90E-08 2.70E-06 9.70E-01 

209 PFKP 1.23 0.71 0.47 -0.2 -4.46 2.32 1.97 1.39 1.67 -3.76 1 1.27 2.00E-07 2.80E-06 3.00E-06 

210 PACS1 -4.31 -1.73 -1.53 -1.49 -1.28 -1.88 -1.38 -1.2 -3.4 -3.72 -1.29 -1.14 1.20E-06 2.80E-06 1.70E-05 

211 SESN3 -5.65 -4.13 -8.23 -8.23 -8.23 -2.11 -3.95 -4.35 -3.88 -5.92 -1.99 -1.73 1.90E-08 2.80E-06 8.50E-04 

212 DOCK11 -2.03 -1.45 -1.8 -2.41 -4.65 -2.28 -2.16 -2.17 -1.54 -3.55 -0.49 -0.19 2.40E-08 2.80E-06 3.40E-02 

213 GFPT1 6.68 4.75 6.71 6.29 7.15 2.17 2.47 2.36 3.05 3.11 1.81 1.88 1.90E-08 2.90E-06 5.50E-06 

214 MTA3 -5.36 -3.29 2.32 2.5 1.06 -2.83 -2.5 -2.12 -0.86 0.94 -1.09 -0.98 5.10E-08 2.90E-06 1.60E-03 

215 RASGRP1 -7.93 -3.82 0.01 -1.94 -3.12 -3.27 -4.64 -6.04 0.16 -3.25 -0.44 -0.69 2.90E-06 1.50E-06 7.60E-02 

216 ADD3 -4.79 -3.07 -1.2 -1.79 -3.74 -3.15 -1.94 -1.97 -0.79 -1.73 -2.08 -1.45 2.40E-07 3.00E-06 2.00E-05 

217 RBM47 7.61 8.06 9.22 9.12 8.13 4.86 5.71 5.4 6.52 7.18 3.47 3.11 1.90E-08 3.00E-06 5.50E-05 

218 GGA2 -3.03 -2.32 -3.51 -6.24 -7.64 -2.53 -2.66 -2.57 -2.19 -2.53 -1.41 -1.42 1.90E-08 3.00E-06 1.00E-04 

219 TLR7 -3.15 -0.01 6.06 8.11 0.46 1.89 0.08 -1.45 -1.37 -4.69 1.36 1.73 3.00E-06 9.10E-07 3.80E-03 

220 GTSE1 2.45 1.88 6.09 2.24 1.58 3.67 -0.19 -0.35 3.13 -1.78 5.03 5.54 1.80E-03 3.10E-06 9.10E-08 

221 MANEA 2.25 1.85 7.61 8.4 7.94 1.97 2.56 2.39 4.6 4.19 0.93 1.51 4.30E-07 3.10E-06 2.00E-03 

222 MCM3 1.5 -0.06 2.03 1.09 -3.47 0.77 -1.97 -1.95 1.34 -1.29 1.88 2.16 2.10E-03 3.10E-06 1.50E-06 

223 TMED9 1.05 0.66 2.75 2.54 2.38 2.27 1.76 1.82 2.12 4.26 1.2 1.17 1.70E-07 3.10E-06 9.00E-03 

224 BLK -5.77 -3.12 -3.9 -6.44 -8.11 -1.73 -2.44 -2.9 -2.8 -4.62 -1.75 -2.25 1.90E-08 3.50E-06 3.20E-06 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 
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.prot 
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Adj p-value 
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RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

225 DGKA -1.46 -1.85 -2.65 -2.27 -2.5 -0.91 -1.51 -1.61 -3.1 -2.06 -0.61 -0.41 6.50E-07 3.20E-06 2.00E-01 

226 SLC12A2 2.89 3.09 1.1 -0.39 -2.75 1.83 3.38 3.85 -1.65 -1.18 1.43 1.47 3.80E-08 3.30E-06 3.60E-05 

227 ERLEC1 2.65 3.23 3.31 2.76 2.73 2.64 2.45 2.89 1.62 3.42 1.47 0.94 1.90E-08 3.30E-06 2.60E-03 

228 EVI2A 2.3 2.49 5.14 4.68 4.29 0.97 3.13 2.59 0.65 1.91 2.26 2.1 2.00E-08 3.40E-06 6.10E-05 

229 SLCO4A1 3.32 0.51 6.87 6.05 2.76 4.18 -0.15 -0.24 0.74 3.24 1.31 1 3.40E-06 3.30E-07 5.10E-02 

230 IDI1 1.63 -0.86 -2.09 -2.47 -4.68 2.77 -1.89 -1.92 -2.48 -0.97 2.86 3.12 2.90E-05 1.30E-06 3.60E-06 

231 BMP2K -2.99 -2.25 -5.58 -5.53 -5.58 -3.41 -2.46 -2.55 -3.59 -2.52 -0.41 -0.57 8.40E-07 3.60E-06 4.10E-03 

232 RASSF2 -4.1 -2.35 0.36 -1.17 -3.41 -2.24 -2.57 -2.55 -1.57 -3.24 -1.15 -0.93 3.70E-06 5.30E-07 3.00E-05 

233 SLC16A1 1.69 1.26 4.69 3.87 -0.97 1.8 -0.66 -0.08 3.46 1.27 2.27 2.45 3.40E-05 1.00E-06 3.70E-06 

234 BST2 3.03 3.17 2.41 3.75 1.6 2.05 2.26 2.71 -0.02 1.84 3.39 1.56 2.70E-07 3.70E-06 2.90E-02 

235 OSBPL3 5.82 7.6 3.1 2.27 1 2.01 6.51 7.65 1.64 3.98 0.45 -0.29 2.40E-07 3.80E-06 2.80E-01 

236 PGRMC1 0.74 1.39 2.85 2.17 0.23 -0.23 1.46 1.61 -4.43 0.08 -0.21 -0.11 3.80E-06 3.30E-06 6.00E-01 

237 EML4 -2.43 -1.22 -5.69 -5.69 -5.69 -1.8 -1.67 -1.72 -0.86 -2.19 -0.84 -0.46 5.00E-08 3.90E-06 1.50E-02 

238 PDIA4 5.45 2.73 9.04 8.27 8.12 3.61 3.23 3.05 4.43 3.6 0.77 0.51 4.00E-06 3.10E-06 2.20E-03 

239 TK2 -6.55 -2.68 0.5 0.9 2.36 -3.23 -1.56 -1.55 -0.04 2.44 -3.12 -2.7 1.60E-07 4.00E-06 5.20E-03 

240 NCAPH 5.53 2.13 3.77 1.06 0.17 3.94 0.06 -0.31 7.84 4.55 2.8 2.85 5.50E-05 4.10E-06 1.10E-07 

241 REL -4.45 -3.79 -7.08 -7.43 -7.39 -1.93 -4.1 -4.71 -6.4 -6.55 -1.3 -0.93 4.10E-06 3.20E-06 1.70E-03 

242 TESPA1 -5.24 -6.32 -0.09 -0.09 -0.09 -5.56 -6.7 -6.39 -3.12 -5.51 -2.2 -3.28 1.10E-01 4.10E-06 2.50E-06 

243 RAB1A 1.67 1 -2.73 -2.35 -2.73 1.86 1.52 1.67 1.55 2.1 -0.19 -0.42 4.20E-06 2.00E-06 2.50E-01 

244 ANKRD44 -1.73 -1.09 -4.7 -4.52 -4.86 -2.34 -1.38 -1.17 -2.69 -2.3 -1.54 -1.27 5.80E-07 4.30E-06 1.20E-05 

245 ZBTB4 -3.25 -0.78 -1.35 -0.92 -1.39 -1.91 -0.22 0.08 -2.67 0 -1.48 -0.97 4.30E-06 1.10E-06 1.60E-02 

246 BCL2L1 1.93 2.11 2.86 3.29 1.56 5.01 1.54 1.71 1.7 3.74 0.1 0.93 4.30E-06 1.30E-07 3.40E-01 

247 PECR 4.66 4.07 2.83 1.41 -0.18 3.43 3.72 3.99 0.37 -1.53 1.89 1.8 5.50E-08 5.00E-06 4.40E-06 

248 SIRPA 1.88 5.46 0 0.01 1.9 -1.01 3.61 3.28 4.68 2.63 -2.63 -3.2 4.40E-06 3.30E-06 5.60E-04 

249 DNAJC1 2.98 2.57 4.61 4.88 4.49 1.4 1.84 1.84 1.69 2.95 0.96 0.42 5.00E-08 4.40E-06 2.00E-03 

250 FGR -3.57 -1.52 -6.76 -6.85 -4.93 -5.32 -1.32 -1.02 -0.27 -8.28 -5.1 -5.72 4.40E-06 8.80E-06 4.50E-06 

251 CD38 -3.57 -2.27 8.45 9.71 9.64 -0.92 -2.73 -3.51 3.69 5.17 -1.97 -2.03 2.50E-07 4.50E-06 1.90E-03 

252 GCAT 3.52 4.16 0.55 0 0.59 4.41 4.04 4.46 3.24 5.73 3.12 2.79 2.50E-01 4.50E-06 4.20E-06 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 
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253 MACF1 -2.44 -1.28 -2.28 -2 -4.11 -2.24 -1.86 -1.95 -1.54 -2.48 0.1 0.13 6.80E-07 4.50E-06 5.20E-01 

254 CCDC125 -2.03 -0.69 -0.56 -0.88 -3.78 -1.29 -3.5 -3.98 -1.96 0.77 -0.59 -0.57 6.10E-07 4.50E-06 7.30E-01 

255 HSPA13 4.07 3.58 2.4 1.71 1.77 3.65 3.54 3.55 2.25 4.05 2.45 2.15 4.60E-06 1.30E-07 6.40E-05 

256 CCNE2 4.17 0.94 5.23 1.11 0.12 3.69 1.81 1.44 3.42 1.89 0.13 -0.12 5.70E-07 4.60E-06 6.90E-01 

257 NPC2 1.27 1.14 1.3 1.6 2.44 2.45 1.73 1.51 0.16 3.66 1.78 2.12 2.00E-08 4.80E-06 2.00E-05 

258 CD40 -7.25 -2.96 -5.2 -4.71 -4.52 -4.24 -3.43 -3.19 -2.76 -0.82 0.8 1.08 1.90E-08 4.90E-06 6.90E-04 

259 RAPGEF4 -7.44 -7.72 0 0.94 3.34 -6.28 -5.06 -4.91 6.61 6.67 -1.48 -2.11 4.80E-08 4.90E-06 3.10E-03 

260 PARP3 -3.57 -1.94 0.03 0.33 1.43 -3.07 -1.48 -1.33 -0.27 1.31 -3.17 -3.02 8.10E-03 4.90E-06 9.00E-07 

261 PTPRC -1.38 -1.51 -6.27 -6.37 -6.34 -0.34 -1.82 -2.12 -1.45 -5.54 -0.48 -0.2 1.90E-08 4.90E-06 7.30E-02 

262 CXCR5 -9.7 -10.79 -8.45 -8.42 -8.12 -4.08 -6.36 -9.1 -8.71 -8.03 -1.34 -1.9 1.90E-08 5.00E-06 7.10E-04 

263 KRTCAP2 2.39 3.45 2.08 1.9 3.11 2.72 2.63 2.68 1.06 3.44 -0.2 0.69 2.00E-08 5.00E-06 2.30E-01 

264 SPIB -8.14 -3.74 -3.78 -3.86 -3.24 -5.77 -7.47 -6.06 -5.25 -8.06 -1.56 -1.23 5.10E-06 1.50E-06 1.60E-03 

265 HTATIP2 3.43 3.9 -2.73 -3.24 -5.66 1.21 3.03 3.24 -2.82 -0.11 0.44 0.76 1.90E-08 5.10E-06 1.80E-01 

266 PTPRJ -3.81 -3.19 -0.77 -1.9 -5.3 -2.17 -2.52 -3.17 -1.69 -2.86 -2.37 -1.62 5.30E-07 5.30E-06 8.30E-06 

267 ARHGAP6 1.75 2.99 3.82 3.01 -2.05 -0.5 2.12 1.84 5.36 2.51 -1.92 -3.12 4.90E-06 5.30E-06 6.30E-06 

268 SLC30A7 4.31 3.52 2.9 1.79 0.15 2.52 2.55 2.75 1.4 0.82 1.08 1.05 1.70E-06 5.30E-06 2.70E-02 

269 TAPBPL 1.96 2.25 3.13 2.85 3.84 1.2 2.06 2.18 0.29 1.89 -0.57 -0.64 1.10E-07 5.30E-06 3.90E-02 

270 PLAUR -2.65 -6.64 0 0 4.51 -7.99 -5.8 -5.95 2.33 6.34 -2.33 -3.04 3.40E-08 5.40E-06 6.40E-05 

271 SESN1 -2.59 -0.97 -2.21 -1.9 -2.98 -2.28 -0.87 -0.86 -3.84 -1.21 -0.18 -0.42 5.40E-06 2.10E-06 4.00E-01 

272 KYNU -5.91 -7.73 -3.19 -3.77 -2.59 -5.39 -5.46 -6.79 -0.13 -6.97 -1.18 -0.67 2.70E-08 5.50E-06 5.00E-04 

273 RILPL2 3.34 2.77 -0.35 -1.01 -0.4 3.81 2.35 2.02 -4.37 -0.01 3.49 3.48 7.60E-03 5.60E-08 5.50E-06 

274 GALNT1 -1.3 -1.04 1.06 0.55 -3.81 -1.57 -1.73 -1.81 1.66 -0.92 -0.63 -0.15 4.80E-07 5.50E-06 1.10E-01 

275 ABCA1 -2.44 -0.37 -5.18 -6.91 -6.38 -3.92 -0.12 -0.79 -2.48 -5.17 -0.74 -0.23 7.10E-07 5.50E-06 1.70E-01 

276 ARHGAP45 -1.57 -1.89 -1.87 -1.89 -3.66 -1.78 -1.57 -1.61 -2.94 -2.74 -1.89 -1.59 2.10E-05 3.00E-06 5.60E-06 

277 BCL2 -7.48 -0.39 -5.98 -3.3 -2.07 -2.71 0.22 0.1 -3.28 1.88 0.27 0.77 1.90E-08 5.60E-06 3.50E-01 

278 ALDH2 -3.23 -3.13 2.04 0.19 1.85 -3.34 -2.66 -2.11 -2.31 1.63 -2.13 -2.03 5.70E-06 1.10E-05 1.70E-07 

279 USP25 -5.01 -2.48 -2.74 -0.88 -5.19 -2.58 -1.99 -1.98 -1.67 -1.55 -0.68 -0.24 2.00E-08 5.70E-06 4.40E-03 

280 WDFY2 -2.97 -3.4 -7.5 -7.44 -7.46 -2.3 -2.94 -3.55 -3.94 -4.55 -0.87 -1.27 2.10E-08 5.70E-06 5.00E-02 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 
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281 IL6ST 4.15 3.71 -2.15 -1.49 -0.68 3.74 3.28 2.94 0.6 3.35 0.61 -0.26 5.70E-06 1.60E-06 1.50E-01 

282 CSNK1E 0.66 3.86 4.24 4.51 2.86 1.78 1.83 1.87 -0.03 2.35 0.5 -0.02 7.50E-07 5.70E-06 5.30E-01 

283 DENND5B 3.63 3.73 1.68 1.61 2.09 1.78 2.16 1.99 0.04 1.65 0.68 0.03 1.10E-06 5.80E-06 5.70E-03 

284 TMEM39A 3.61 2.64 4.71 4.33 2.92 2.3 2.34 2.25 3.23 2.8 0.44 0.54 2.00E-08 5.80E-06 2.70E-01 

285 CST3 0.57 1.45 0 0 4.19 1.51 2.57 2.73 0.65 9.05 -2.52 -2.75 7.10E-04 5.90E-06 4.80E-06 

286 CARS 1.54 2.49 1.2 1.36 0.2 2.11 2.19 2.08 1.9 1.24 2.5 2.82 3.40E-03 6.10E-06 1.90E-07 

287 NFKBID -3.03 -4.53 -4.01 -4.01 -4.01 -1.89 -3.77 -3.63 -1.69 -3.75 -1.76 -2.99 2.00E-07 6.20E-06 1.80E-03 

288 UFL1 1.73 1.78 1.18 1.05 -2.11 1.82 1.71 1.73 -0.11 1.27 0.79 0.53 3.90E-07 6.30E-06 7.60E-04 

289 CDC45 5.99 4.27 2.07 0 0 3.97 0.74 0.65 8.67 1.7 5.84 5.94 4.40E-04 6.40E-06 5.00E-08 

290 NCF1 -6.93 -5.29 -0.53 -0.86 -2.85 -2.13 -4.47 -4.66 0.18 -3.27 0.13 0.56 6.50E-06 2.40E-07 2.00E-01 

291 IRF2BP2 -2.11 0.48 -2.27 -1.99 -4.87 -2.16 -0.47 -0.67 -0.78 0.72 -0.61 0.02 5.70E-06 6.70E-06 4.10E-02 

292 PHGDH 1.88 2.24 5.32 4.31 3.82 2.13 2.44 2.41 4.51 4.7 1.77 1.68 1.90E-08 6.90E-06 1.10E-05 

293 FOXP1 -3.14 -2.06 -7.2 -7.19 -7.08 -1.4 -2.11 -2.56 -4.95 -4.95 -0.02 -0.18 4.30E-08 6.90E-06 5.40E-01 

294 TTPAL -2.46 -2.53 0.04 -0.23 -3.17 -1.45 -2.28 -2.09 0.3 -1.45 -0.3 -0.2 5.90E-08 6.90E-06 7.00E-01 

295 CCNB1 8 4.64 8.72 4.99 -0.01 4.98 1.57 0.94 2.28 -1 5.22 5.57 1.90E-08 1.00E-05 7.00E-06 

296 TNRC6C -2.96 -1.19 -4.7 -4.49 -4.61 -1.9 -1.43 -1.69 -1.23 -2 -1.13 -1.54 2.20E-08 7.00E-06 2.20E-02 

297 CAMK1D -1.92 -1.01 -3.35 -3.1 -3.82 -2.01 -1.44 -1.48 -2.85 -1.92 -1.53 -1.14 2.20E-07 7.10E-06 3.00E-04 

298 NOD1 -3.67 -2.25 -5.19 -4.09 -3.76 -3.07 -1.41 -1.89 -0.85 -3.01 -0.9 -1.17 2.30E-08 7.10E-06 2.70E-01 

299 SELPLG 2.22 2.36 7.52 6.99 6.82 2.22 2.32 2.53 2.97 2.21 1.78 -1.01 1.90E-08 7.20E-06 3.00E-03 

300 PPA1 4.29 3.34 1.69 1.77 0.94 2.5 2.09 2.01 1.72 0.74 1.44 1.7 9.90E-07 7.30E-06 1.90E-04 

301 OSTC 2.68 2.17 3.42 2.84 2.89 2.73 1.97 1.65 2.81 2.72 1.46 -0.07 2.00E-08 7.30E-06 4.10E-03 

302 GORASP2 3.93 2.32 3.33 2.97 2.6 1.35 1.36 1.39 2.83 3.17 0.05 0.07 1.90E-08 7.40E-06 9.60E-01 

303 ARCN1 2.67 1.45 1.75 1.36 0.31 1.46 1.29 1.35 1.44 1.5 0.91 0.86 4.60E-06 7.70E-06 9.40E-04 

304 P2RX4 -1.28 1.53 2.13 1.96 1.61 -0.41 1.47 1.52 3.72 3.39 -2.87 -3.01 1.70E-03 7.70E-06 1.70E-06 

305 ARHGAP25 -2.47 -2.2 -2.01 -1.03 -2.68 -1.22 -1.77 -1.79 -0.57 -0.96 -1.02 -0.76 2.00E-08 7.80E-06 1.60E-04 

306 HID1 0.15 5.38 1.15 1.03 2.27 9.44 8.95 9.32 6.95 9.43 6.92 6.27 1.90E-04 3.50E-07 7.80E-06 

307 IDE 2.83 2.97 4.17 3.53 2.31 2.29 2.13 2.47 3.61 2.11 1.18 1.51 2.00E-08 7.80E-06 1.70E-03 

308 ALDH7A1 3.93 4.01 0.38 0.09 2.46 1.53 2.54 2.95 -0.09 3.3 0.9 0.64 3.60E-08 7.90E-06 3.90E-04 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 

.array 

mBMPC

.array 

hPB 

.array 

hPC 

.array 

hBMPC 

.array 

mPB

.rSeq 

mSplPC 

.rSeq 

mBMPC

.rSeq 

hPB. 

rSeq 

hBMPC 

.rSeq 

mPB

.prot 

mPB93

.prot 

ANOVA 

Microarray 

Adj p-value 

ANOVA 

RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

309 DENND4B -2.56 -1.89 -1.17 -1.32 -2.38 -3.96 -2.35 -2.83 -0.01 -2.95 -0.63 -0.52 5.80E-08 7.90E-06 1.20E-02 

310 PLD4 0.38 -1.15 -0.01 -0.01 -0.01 -2.1 -1.11 -1.32 0.6 -3.5 -2.73 -2.46 1.90E-01 7.90E-06 6.80E-07 

311 FAM172A -1.83 -0.78 -1.91 -1.68 -3.57 -1.67 -1.25 -1 -2.19 -1.41 0.06 -0.42 1.60E-07 8.00E-06 1.40E-01 

312 STOM 0 1.53 2.13 1.55 0.11 -0.74 4.85 4.73 2.45 3.56 -4.01 -3.92 7.90E-04 3.60E-06 8.20E-06 

313 TMEM65 1.81 2.26 3.86 3.15 -0.14 0.45 1.89 1.77 -6.71 -1.29 -1.67 -1.71 1.30E-07 8.20E-06 7.40E-03 

314 SNX29 -3.71 -1.84 -3.76 -3.82 -3.61 -3.37 -1.43 -1.46 -2.11 -2.05 -3.07 -3.47 2.10E-08 8.30E-06 2.00E-04 

315 GLA 6.8 5.49 2.69 1.88 -0.11 3.86 1.63 2.06 1.15 2.01 1.49 1.63 1.30E-07 8.40E-06 6.50E-04 

316 SLC2A3 -2.85 -2.42 -4.08 -6.2 -7.75 -0.86 -2.8 -2.87 -0.64 -3.59 -1.04 -0.88 2.00E-08 8.40E-06 1.30E-02 

317 LGALS1 4.09 3.29 6.87 5.04 7.86 3.02 3.04 3.15 5.38 4.71 0.48 1.07 2.20E-08 8.40E-06 2.50E-01 

318 STAT4 -1.77 -2.39 4.66 3.66 0.98 -0.98 -1.99 -2.09 5.31 5.59 -0.11 0.55 2.20E-06 8.50E-06 1.30E-01 

319 MCM5 1.54 -0.37 -0.39 -1.82 -3.8 0.68 -1.92 -2.2 0.48 -1.06 2.4 2.31 3.00E-05 8.80E-06 1.60E-07 

320 MCM7 1.98 0.03 -0.8 -4.11 -6.29 0.67 -1.12 -0.99 0.94 -1.19 1.88 1.81 1.80E-04 8.80E-06 3.80E-07 

321 LDLR -0.28 -1.26 7.62 4.12 6.06 2.1 -2.22 -1.13 5.27 4.45 4.33 4.19 4.10E-02 1.40E-06 9.00E-06 

322 RHOB 4.2 3.94 -3.16 -4.32 1.14 1.49 3.91 3.47 3.44 6.31 0.65 0.99 6.90E-07 9.10E-06 2.10E-01 

323 PCLAF 6.09 2.52 8.4 4.11 4 4.32 0.76 0.52 7.43 1.24 1.02 3.26 1.20E-07 9.30E-06 1.20E-03 

324 WDFY4 -1.8 -1.6 -4.5 -3.69 -4.2 -1.97 -1.98 -2.34 -1.72 -4.37 -0.18 0.19 6.60E-07 9.30E-06 1.40E-01 

325 FADS1 4.5 4.36 4.93 2.7 1.54 5.19 2.94 2.76 2.24 4.13 3.56 3.89 9.50E-08 9.40E-06 9.90E-06 

326 SEC13 2.13 1.58 3.28 2.73 2.03 1.65 1.07 1.34 2.12 2.66 0.26 0.54 2.00E-08 9.40E-06 2.50E-01 

327 BIN1 -5.47 -5.54 -5.84 -5.95 -2.74 -5.27 -5.42 -5.93 -2.1 -2.24 -2.11 -1.63 1.90E-05 9.50E-06 3.20E-06 

328 ALDH3B1 3.67 3.27 0.01 0 2.5 0.45 2.62 2.69 4.19 3.67 -1.02 -1.13 4.50E-07 9.60E-06 3.00E-04 

329 IRF8 -6 -2.59 -5.73 -7.14 -5.75 -1.29 -1.73 -2.01 -4.52 -8.44 -0.86 -0.44 1.90E-08 9.70E-06 1.00E-03 

330 IFIT2 -5.99 -5.56 -0.77 -0.71 -0.63 -5.08 -3.85 -5.02 -5.28 -5.32 -2.34 -2.45 9.70E-06 2.60E-06 1.50E-03 

331 TOPBP1 0.55 -0.8 -0.88 -1.38 -3.09 0.21 -1.44 -1.26 -0.09 -1.52 1.68 1.85 9.10E-03 9.70E-06 8.70E-07 

332 ATAD2B -0.07 -2.64 -4.01 -5.03 -4.98 -1.77 -1.57 -1.96 -1.61 -3.91 -1.18 -0.97 1.70E-07 1.00E-05 1.20E-04 

333 TXN1 2.48 1.58 5.74 5.88 5.84 2 2.28 2.55 3.54 3.3 0.73 1.26 2.40E-08 1.00E-05 7.70E-03 

334 SHMT1 0 0.08 3.17 1.93 1.78 1.14 -1.1 -1.4 3.54 1.32 1.78 1.68 1.00E-01 1.00E-05 8.70E-07 

335 GLMP 1.65 1.55 6.72 6.19 5 2.1 1.11 0.97 1.13 2.32 0.71 0.44 1.00E-05 9.40E-06 6.70E-01 

336 ARHGEF1 -2.16 -2.34 -1.39 -1.33 -1.83 -2.39 -2.15 -2.37 -0.85 -2.36 -1.34 -1.06 1.20E-05 3.30E-06 1.10E-05 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 
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.prot 

mPB93

.prot 
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Adj p-value 
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RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

337 SCML4 -5.52 -6.12 -3.2 -3.2 -3.2 -3.85 -4.85 -6.16 -4.05 -6.45 -3.53 -4.24 5.60E-05 6.90E-07 1.10E-05 

338 SLC7A6 1.1 0.88 -0.33 -0.84 -4.01 1.6 0.41 0.31 1.49 -0.83 1.95 1.68 3.50E-06 1.10E-05 6.30E-04 

339 PAX5 -5.65 -2.97 -5.18 -4.02 -4.02 -4.52 -6.84 -6.84 -3.3 -5.76 -1.21 -0.76 2.00E-08 1.10E-05 7.20E-04 

340 PRAG1 -2.92 -2 -3.38 -4.79 -0.97 1.21 -1.03 -1.28 1.62 -1.78 0.87 0.83 1.10E-05 6.40E-06 1.50E-03 

341 MBP -2.44 -1.33 -0.83 -2.18 -6.24 -3.07 -1.91 -1.76 -0.74 -1.62 -1.51 -1.02 1.20E-06 1.10E-05 1.40E-02 

342 COLGALT1 -1.83 -1.34 -3.3 -3.07 -2.72 -0.43 -1.46 -1.53 -0.34 -1.87 1.11 1.15 1.70E-06 1.20E-05 3.60E-05 

343 ARID1B -1.64 -0.68 -3.93 -4.12 -5.39 -1.53 -1.3 -1.38 -1.84 -0.91 -1.89 -1.5 3.20E-05 1.20E-05 5.80E-06 

344 MAP4K4 -2.45 -1.79 -3.68 -4.6 -8 -1.06 -1.66 -1.68 -1.67 -3.05 0.67 0.99 8.00E-07 1.20E-05 1.80E-04 

345 EDEM1 5.84 4.65 0.88 0.19 -1.23 5.03 4.71 4.83 2.22 0.9 2.03 1.17 4.70E-08 1.20E-05 3.00E-04 

346 SAR1B 2.12 1.79 5.55 5.71 5.18 2.02 1.38 1.49 2.98 3.14 0.94 0.88 2.00E-08 1.20E-05 1.30E-03 

347 TGFBR2 -4.58 -1.9 -2.47 -2.47 -2.44 -1.54 -1.93 -2.07 -5.11 -3.49 -0.26 0.03 1.90E-08 1.20E-05 3.00E-01 

348 GMFB -1.86 -1.27 -1.46 -1.64 -2.95 -1.21 -1.36 -1.23 -3.12 -1.72 0.08 0.72 2.50E-08 1.20E-05 3.30E-01 

349 STK10 -3.56 -3.48 -1.23 -0.96 -4.84 -2.86 -3.59 -3.88 -2.84 -1.72 -1.21 -1.24 2.60E-08 1.30E-05 3.10E-05 

350 LMNA 0.4 2.74 0 0 0.46 0.71 2.53 3.38 7.36 6.79 -2.54 -3.72 2.40E-04 1.30E-05 1.00E-06 

351 AKAP12 -5.3 -0.88 0 0 3.1 -1.45 -4.94 -3.31 1.68 5.84 -1.46 -0.96 6.00E-07 1.30E-05 9.10E-04 

352 FNDC3A 2.58 2.65 1.64 1.92 2.56 2.55 3.13 3.22 0.87 3.05 1.51 0.75 1.30E-05 1.80E-07 1.40E-03 

353 PIGK 3.1 2.75 8.01 7.8 7.31 1.72 1.25 1.44 1.68 2.57 0.56 0.09 1.90E-08 1.30E-05 2.50E-02 

354 PSIP1 1.86 1.98 -1.82 -1.83 -2.69 1.8 1.45 1.51 -1.49 -0.91 -0.48 -0.5 1.00E-07 1.30E-05 3.00E-02 

355 PDE7A -2.66 -1.94 -2.15 -2.22 -2.05 -1.13 -1.95 -2.11 -2.68 -3.11 1.31 1.19 1.10E-07 1.30E-05 3.20E-02 

356 MCM4 0.54 -0.85 3.85 0.12 0 0.37 -1.83 -1.75 3.1 -0.6 2.14 2.01 3.80E-02 1.30E-05 1.40E-07 

357 APMAP 2.17 2.28 3.12 2.65 1.05 0.89 1.68 2.14 -0.48 1.85 -0.39 -0.38 1.90E-08 1.30E-05 6.00E-02 

358 CPSF2 -2 -2.06 3.18 2.61 -0.25 -0.17 -1.4 -1.28 -2.44 0.08 -0.37 -0.08 9.00E-06 1.30E-05 9.90E-02 

359 USP24 -2.21 -1.63 -5.36 -5.34 -5.59 -1.48 -1.48 -1.61 -2.05 -3.22 -0.34 -0.16 2.30E-07 1.30E-05 1.40E-01 

360 LYN -2.93 -1.98 -3.25 -3.99 -3.67 -2.04 -2 -2.19 -1.21 -2.75 -0.42 -0.31 2.00E-08 1.30E-05 1.70E-01 

361 SEC62 0.83 0.71 5.53 5.46 6.71 1.48 1.32 1.47 -1.95 1.22 -1.03 -0.04 1.70E-06 1.30E-05 3.80E-01 

362 WEE1 2.3 3.38 -0.34 -1.28 -7.15 1.95 2.17 2.45 0.18 -6.37 1.37 1.6 1.70E-07 1.40E-05 9.60E-04 

363 SMAP2 -1.89 -1.18 -2.29 -2.78 -1.95 -1.37 -1.38 -1.27 -3.07 -0.31 -0.79 -0.88 3.30E-07 1.40E-05 2.10E-03 

364 ITM2B 1.18 1.19 1.53 1.37 1.57 1.93 1.51 1.71 -2.37 2.08 1.06 0.83 1.80E-06 1.40E-05 1.00E-02 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 
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365 PRKACB -2.66 -0.72 0.37 0.01 -3.81 -1.27 -1.26 -1.13 -2.02 -1.83 -0.38 -0.73 3.90E-08 1.40E-05 1.80E-02 

366 LCK -6.16 -4.28 -3.19 -3.94 -3.26 -1.2 -3.83 -4.44 -1.84 -3.46 -2.36 -2.61 2.00E-04 6.40E-06 1.50E-05 

367 SEC23B 2.04 1.39 4.84 4.73 4.78 1.92 1.58 1.58 1.78 2.24 1.33 1.16 2.10E-08 1.50E-05 1.20E-03 

368 TPM4 -2.16 -2.01 1.66 -1.14 0.96 -1.21 -2.13 -2.19 -0.21 1.87 -0.52 -0.17 2.20E-08 1.50E-05 1.50E-01 

369 TMEM154 0.79 3.25 -0.09 -0.44 -1.47 3.97 4.38 4.32 -0.72 -2.92 2.67 3.19 1.60E-05 5.10E-08 4.10E-04 

370 ARHGAP27 -1.57 -1.72 0 0 0 -1.36 -1.64 -1.7 -0.96 -1.8 -1.12 -0.97 4.90E-01 1.00E-05 1.60E-05 

371 ELF4 -2.73 -2.7 -1.22 -1.81 -4.76 -1.73 -2.06 -1.74 -5.08 -4.48 -0.95 -1.57 1.80E-05 1.50E-05 5.50E-04 

372 KLF2 -3.99 -3.95 -3.47 -7.02 -0.01 -7.41 -4.26 -4.79 -2.46 1.19 -1.54 -1.61 1.80E-05 5.70E-07 2.00E-02 

373 ISG20 5.48 4.35 0.74 1.64 1.24 3.92 3.66 3.54 1.7 1.79 1.59 1.69 1.90E-05 4.50E-06 1.60E-03 

374 CPQ 0 7.4 0.45 0.3 3.13 0.75 6.22 6.39 -0.82 4 -1.72 -2.26 2.30E-05 3.10E-06 1.90E-03 

375 COPE 2.34 2.3 2.41 1.7 3.16 2.16 2.13 2.24 2.41 1.42 0.81 0.75 2.30E-05 1.30E-05 5.30E-03 

376 PCK2 0.49 1.71 2.38 2.29 0.8 1.97 2.23 2.1 1.86 0.01 1.4 1.58 4.30E-05 9.90E-06 2.40E-05 

377 HERC4 -1.44 -1.37 0.97 1.16 -0.76 -1.88 -1.8 -1.98 -0.78 -2.29 -0.81 -0.56 2.40E-05 2.40E-06 3.60E-03 

378 LCP1 -2.37 -2.36 1.23 -0.93 -0.69 -3.03 -3.08 -2.95 -0.23 -3.35 -1.49 -0.84 1.70E-04 4.20E-07 2.60E-05 

379 FGD2 -3.2 -2.46 2.29 2.12 0.18 -2.37 -3.55 -3.4 0.27 -2.16 -1.21 -1.34 2.60E-05 8.50E-07 1.90E-04 

380 KIF21B -2.15 -2.36 -0.6 -1.75 -5.2 -1.81 -2.13 -2.12 -0.51 -2.49 0.25 0.16 2.60E-05 2.10E-06 2.80E-01 

381 TWF2 -3.5 -2.96 2.47 1.97 1.4 -2.81 -2.57 -2.55 0.64 -1.3 -1.2 -0.95 2.70E-05 1.10E-06 8.40E-05 

382 FRY -3.74 -2.44 -1.5 -1.5 -1.36 -2.9 -2.32 -2.03 -0.56 -5.51 -5.31 -4.12 2.50E-02 1.50E-05 2.90E-05 

383 MCFD2 2.43 2.65 0.77 0.55 1.45 1.92 2.25 2.11 0.73 1.98 1.51 0.98 2.90E-05 8.50E-07 3.00E-01 

384 SKA3 3.72 1.2 3.69 0.31 0 5.03 1.23 0.58 3.6 -1.67 3.98 3.78 3.00E-05 7.20E-06 1.00E-04 

385 SCCPDH 0.8 4.22 2.07 1.04 1.46 1.91 2.47 2.74 -3.26 1.41 -0.35 -0.84 3.00E-05 1.30E-05 1.50E-01 

386 SLAMF6 -2.03 -2.99 2.84 2.58 -0.42 0.57 -1.7 -1.58 -4.27 -2.76 1 1.6 3.10E-05 4.20E-06 4.60E-04 

387 AP1B1 -1.27 -0.92 -1.38 -1.43 -1.9 -1.48 -1.14 -1.1 0.32 -1.92 -0.55 -0.43 3.20E-05 1.30E-05 2.10E-02 

388 CLSPN 5.8 3.86 0.05 0.12 0.49 4.36 1.32 0.67 3.98 -1.2 5.82 5.57 1.10E-01 7.80E-06 3.60E-05 

389 MSN -1.27 -0.9 0.78 0.23 -1.34 -1.6 -2.55 -2.48 0.3 -1.72 -1.01 -1.01 4.10E-05 4.30E-07 4.60E-04 

390 GMIP -4.68 -3.4 -1.2 -1.32 -1.25 -2.36 -3.03 -2.93 -0.61 -2.2 -1.1 -0.96 4.30E-05 8.50E-06 1.30E-04 

391 LRRC59 3.58 2.82 1.65 0.72 0.51 2.66 2.4 2.39 3.58 3.49 1.72 1.39 9.90E-05 6.70E-07 4.40E-05 

392 SLFN5 -0.4 -2.17 3.42 7.11 1.04 -4.63 -3.6 -4.66 2.89 0.16 -4.57 -4.28 4.40E-05 4.90E-06 8.50E-04 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 
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393 MAGT1 1.87 2.37 1.76 1.39 0.64 3.02 2.42 2.32 0.82 2.11 0.6 0.58 4.90E-05 1.60E-06 1.90E-01 

394 CLN6 2.9 3.79 1.65 1.07 1.76 1.91 2.66 2.75 3.17 4.22 1.65 1.48 5.00E-05 9.00E-06 7.10E-04 

395 GIMAP8 -5.7 -2.96 0 0 3.84 -1.7 -2.97 -2.8 5.38 5.59 -1.2 -1.1 1.50E-04 3.60E-07 5.60E-05 

396 RHOF 1.76 3.29 -2.43 -2.49 -1.25 -1.89 -3.11 -2.53 -1.65 -2.19 -0.94 -1.05 5.60E-05 6.40E-06 1.50E-02 

397 DHRS7 1.91 2.77 2.58 2.36 2.61 1.76 2.52 2.55 -0.45 1.81 0.45 -0.03 5.60E-05 6.70E-07 1.60E-01 

398 DNAJC25 1.65 2.16 0.98 0.23 -1.48 2.59 2.16 2.4 -1.4 0.77 1.16 1.16 5.70E-05 1.50E-05 3.10E-02 

399 TMED3 1.93 3.22 1.89 0.68 1.89 1.86 2.84 2.71 2.53 2.36 0.15 0.19 6.30E-05 3.10E-06 8.70E-01 

400 ANKRD28 1.11 2.08 4.09 3.73 2.82 1 2.18 2.08 1.3 4.57 1.17 1.09 8.40E-05 3.10E-06 6.50E-05 

401 GRB2 -1.23 -1.23 1.33 1.23 -0.09 -0.41 -1.34 -1.47 -0.96 -1.38 -0.74 0.01 6.70E-05 7.40E-06 5.10E-03 

402 DMXL1 -1.88 -1.64 -1.58 -1.08 -2.18 -0.15 -1.51 -1.78 -2.16 -1.38 -0.27 -0.55 6.80E-05 1.20E-05 1.50E-02 

403 TNIK -3.92 -6.88 0.05 0.92 0.01 -3.58 -5.71 -9.07 3 -2.65 -2.18 -2.58 3.50E-02 4.70E-06 6.80E-05 

404 SMIM14 -5.7 -2.5 -0.77 -1.53 -2.62 -3.47 -2.13 -2.07 -3.09 -1.77 -1.37 -1.19 7.10E-05 6.80E-06 1.70E-02 

405 LMF1 2.01 3.9 2.03 2.65 3.97 2.05 2.14 2.27 0.62 4.48 -0.29 -0.65 7.20E-05 6.60E-06 1.30E-01 

406 CD9 4.65 2.53 1.19 -2.19 3.33 3.09 2.5 2.1 -1.89 4.49 -0.34 -0.55 7.20E-05 1.90E-06 2.80E-01 

407 RGS19 -1.96 -1.15 0.61 0.71 1.05 -2.17 -1.59 -1.47 -0.47 -2.65 -1.28 -1.83 2.30E-03 1.10E-05 7.50E-05 

408 METTL7A1 2.18 2.63 3.3 2.85 3.71 -2.97 2.63 3.11 0.44 1.11 -3.34 -4.23 5.40E-04 7.00E-07 8.80E-05 

409 TLE3 -0.98 -0.44 2.47 2.33 1.66 -3.07 -1.78 -1.72 1.4 1.76 -1.17 -0.96 6.90E-04 7.50E-06 9.10E-05 

410 ATG13 1.72 2.72 1.31 1.13 0.76 1.76 1.67 1.62 2.15 1.31 0.74 0.38 9.30E-05 1.00E-06 7.60E-03 

411 BTD 0.78 3.61 1.97 2.44 4.21 2.1 2.57 2.63 -0.83 2.51 1.09 0.71 9.30E-05 2.90E-06 2.20E-02 

412 ABCG1 -3.08 -1.38 -1.72 -8.88 -6.05 -2.48 0.34 -0.19 -2.33 -6.25 -0.09 -0.32 9.30E-05 8.10E-06 8.00E-01 

413 ZBTB38 1.64 2.45 4.38 4.72 3.33 2.17 2.34 2.16 3.03 3.87 -0.21 -0.01 9.50E-05 1.50E-06 4.80E-01 

414 CALR 1.03 1.24 2.07 0.55 2.68 2.76 1.99 1.79 3.02 2.52 0.53 0.54 9.90E-05 3.50E-07 6.70E-03 

415 PIM1 2.13 2.71 -0.37 -1.66 -1.88 4.55 3.89 4.15 -2.39 2.97 2.22 2.19 1.10E-04 4.30E-08 1.10E-03 

416 SAMSN1 -0.65 -0.59 4.51 4.12 2.37 1.43 -0.49 -0.65 1.87 2.45 1.12 1.57 9.50E-03 1.40E-05 1.10E-04 

417 CEP170B 0.65 2.74 0.25 0.03 0.86 2.39 1.54 2.16 6.69 4.41 -0.19 -0.01 1.20E-04 3.10E-06 6.20E-01 

418 NUCB1 3.12 3.93 2.34 2.1 1.46 3.69 3.55 3.66 2.47 2.2 0.99 0.96 1.60E-04 9.00E-06 8.90E-04 

419 APBB1IP -2.07 -3.28 -2.56 -2.69 -2.67 -3.04 -2.89 -2.8 0.27 -1.89 -0.77 -0.98 1.60E-04 1.90E-06 1.20E-03 

420 CORO1A -2.47 -3.6 -0.39 -1.47 -1.39 -2.99 -3.7 -3.63 1.33 -3.6 -1.82 -1.22 1.60E-04 5.50E-07 3.90E-03 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 

.array 

mBMPC

.array 

hPB 

.array 

hPC 

.array 

hBMPC 

.array 

mPB

.rSeq 

mSplPC 

.rSeq 

mBMPC

.rSeq 

hPB. 

rSeq 

hBMPC 

.rSeq 

mPB

.prot 

mPB93

.prot 

ANOVA 

Microarray 

Adj p-value 

ANOVA 

RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

421 AGPAT4 1.81 1.52 -3.57 -3.66 -3.57 2.65 1.17 1.08 0.07 -3.86 1.07 1.15 1.70E-04 3.20E-06 6.40E-03 

422 HPS3 -3.23 -1.54 -1.06 -1.12 -3.29 -2.4 -1.85 -1.76 -3.9 -2 -0.65 -0.46 1.70E-04 1.20E-05 1.10E-02 

423 IL2RA -0.03 1.47 -0.44 -0.49 -0.43 5.37 -0.18 0.71 -2.84 -5.11 2.54 3.35 3.70E-01 1.70E-07 1.80E-04 

424 GRAP2 -0.78 -2.47 0 0 0.25 -4.59 -1.62 -1.72 -3.27 -5.72 -1.53 -1.42 1.00E-01 4.70E-07 2.00E-04 

425 AP3S1 2.56 3 1.16 0.56 0.88 2.91 2.79 2.82 0.47 2.52 -0.85 -1.04 2.10E-04 4.30E-07 3.50E-02 

426 RAB3D 3.29 6.74 0.07 0 1.31 2.34 4.49 4.62 1.79 3.14 -0.47 -1.32 2.20E-04 5.50E-07 1.50E-02 

427 PKM 1.8 0.09 2.84 2.06 1.86 1.87 -0.18 0.03 1.3 -0.57 0.54 0.69 2.30E-04 1.40E-05 2.60E-03 

428 PTPN22 1.58 1.43 -0.46 -1.66 -1.42 1.94 1.78 1.58 -0.25 -1.46 0.14 -0.14 2.30E-04 1.20E-05 2.20E-01 

429 MAST3 -2.79 -1.96 -0.41 -0.51 -1.14 -2.56 -1.91 -2.03 -0.14 -1.39 -0.99 -1 2.40E-02 8.20E-06 2.40E-04 

430 GANAB 1.95 1.33 2.44 1.74 0.96 1.91 1.83 1.77 1.15 2.06 0.78 1.12 2.40E-04 1.40E-06 2.90E-02 

431 GPR183 -3.2 -2.86 1.14 0.22 -1.84 -2.48 -3.75 -3.96 -1.14 -3.45 -0.66 -0.71 2.40E-04 1.80E-07 4.80E-01 

432 STARD4 2.38 -0.84 -0.01 0.04 -2.52 1.57 -1.56 -1.45 -1.53 1.01 2.41 2.93 1.30E-03 5.50E-06 2.50E-04 

433 SEC31A 2.19 1.46 2.09 1.85 2.36 1.68 1.37 1.47 1.22 1.27 0.35 0.05 2.50E-04 3.10E-06 9.30E-02 

434 FGD3 -2.21 -2.1 -2.26 -2.01 -2.8 -1.16 -1.57 -1.73 0.79 -2.44 -0.5 -0.54 2.60E-04 3.10E-06 2.20E-02 

435 PLCD3 3.81 4.78 0.15 0.14 0 4.11 5.37 6.11 5.76 1.45 2.66 2.29 1.30E-01 7.20E-06 2.70E-04 

436 PPFIBP2 0.93 2.68 1.28 0.74 -0.08 0.26 2.3 2.23 2.46 1.39 0.96 1.02 3.80E-03 4.40E-06 3.10E-04 

437 TJP2 3.02 5.66 0.01 -0.09 1.47 3.15 3.2 3.34 4.01 1.74 0.91 1.23 2.30E-02 2.10E-06 3.50E-04 

438 CD83 -3.98 -2.04 -11.42 -10.96 -5.24 -2.37 -2.98 -3.3 -6.43 -7.7 -0.24 1.61 3.60E-04 6.10E-07 3.10E-02 

439 ACSF2 -2 -2.88 0.32 -0.13 -0.06 -1.97 -2.54 -2.49 2.18 0.09 -1.78 -1.79 2.60E-01 8.90E-07 3.60E-04 

440 EXO1 5.22 1.69 1.8 0.1 0.09 2.45 -1.05 -3.53 4.41 -1.84 2.35 2.34 5.10E-04 3.10E-06 4.00E-04 

441 DGKE 2.47 1.08 0.44 0.53 1.77 -0.58 1.47 1.61 2.16 0.14 0.85 0.04 4.80E-04 4.20E-06 6.40E-02 

442 C2CD5 0.48 1.37 -0.13 -0.22 -3.06 0.4 1.4 1.34 0.38 -1.45 -0.23 0.12 4.80E-04 1.10E-05 9.10E-02 

443 BHLHE41 2.49 3.99 10.23 9.95 8.98 1.91 3.36 3.67 3.06 5.26 1.06 1.19 5.00E-04 1.60E-06 7.10E-02 

444 LAMC1 1.7 2.61 3.18 1.61 0.88 2.15 1.46 1.25 -0.94 2.02 2.46 1.93 3.80E-03 8.10E-06 5.10E-04 

445 UBE2E3 1.98 2 -2.46 -2.02 -2.3 1.66 1.51 1.78 -0.51 1.59 0.66 1.19 5.10E-04 2.90E-06 7.60E-02 

446 ZFP260 0.8 1 4.29 5.22 1.99 1.69 1.57 1.48 -2.76 -2.34 -1.11 -0.62 5.30E-04 8.70E-06 5.60E-02 

447 GNE 3.25 2.96 0.05 -0.69 -1.17 1.73 2.52 2.5 -1.06 1.04 0.75 0.15 5.80E-04 1.70E-06 3.00E-03 

448 HSH2D -3.01 -3.04 -1.13 0.15 1.05 -2.18 -2.66 -3.16 2.03 2.05 -0.59 0.15 5.80E-04 1.50E-05 8.20E-02 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 

.array 

mBMPC

.array 

hPB 

.array 

hPC 

.array 

hBMPC 

.array 

mPB

.rSeq 

mSplPC 

.rSeq 

mBMPC

.rSeq 

hPB. 

rSeq 

hBMPC 

.rSeq 

mPB

.prot 

mPB93

.prot 

ANOVA 

Microarray 

Adj p-value 

ANOVA 

RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

449 ZBTB32 -0.04 -1.07 3.09 1.56 0.81 3.37 -0.96 -0.34 10.15 2.64 2.36 2.51 8.70E-03 1.80E-06 8.50E-04 

450 IRAK3 -5.9 -3.01 -1.86 -1.86 -1.8 -1.24 -2.53 -2.04 -0.16 -3.13 -0.04 0.03 8.70E-04 8.50E-06 9.50E-01 

451 PLEKHG2 -5.78 -4.59 0.84 0.32 -0.1 -1.92 -3.23 -3.99 1.46 -3 -1.27 -1.13 2.00E-01 1.40E-06 9.30E-04 

452 TVP23B 1.51 1.97 0.89 0.67 1.32 1.38 1.68 1.81 1.25 3.7 0.8 -0.14 1.10E-03 3.90E-06 1.20E-01 

453 TNFAIP8L2 -8.16 -5.76 0.07 0.16 0.15 -4.59 -5.08 -5.17 -3.14 -5.77 -2.38 -0.92 4.90E-01 1.40E-05 1.10E-03 

454 TNS3 4.39 4 2.18 2.37 1.63 3.05 3.77 3.81 -1.9 1.59 0.31 -0.57 1.40E-03 1.70E-07 1.20E-02 

455 FMNL1 -1.76 -2.79 -4.5 -2.95 -3.93 -2.07 -2.61 -2.3 0.08 -1.89 -1.09 -0.98 1.50E-03 4.30E-07 2.50E-03 

456 LMO2 -5.91 -2.46 -3.07 -2.79 -1.52 -2.63 -3.26 -3.31 -2.44 -3.71 1.71 1.08 1.60E-03 7.20E-06 8.80E-03 

457 SBNO2 -1.49 -0.83 1.58 0.67 0.45 2.34 -0.89 -1.14 3.04 -0.2 -0.01 -0.09 1.60E-03 5.10E-06 8.80E-01 

458 TMEM97 3.22 2.63 5.06 3.08 1.44 3.15 -0.21 0.02 2.4 0.65 1.54 2.27 4.00E-03 1.10E-06 1.80E-03 

459 OPTN -2.15 -0.96 2.25 2.67 1.77 1.48 -0.71 -1.29 2.25 2.31 1.21 0.9 2.90E-03 9.70E-06 7.60E-03 

460 SH3BGRL3 -2.13 -1.84 -1.2 -1.9 -0.63 -2.99 -2.95 -2.78 -0.37 -1.04 -1.02 -0.6 2.90E-03 1.10E-05 2.70E-01 

461 B2M -1.46 -0.49 0.83 1.13 0.78 2.22 2.32 2.4 0.28 2.24 -2.51 0.23 3.00E-03 1.30E-06 6.90E-03 

462 RPIA -0.14 1.45 9.84 10.48 10.9 0.04 1.47 1.7 -5.2 -2.31 -0.36 -0.76 3.10E-03 6.50E-06 1.30E-01 

463 H1F0 5.36 8.06 -0.09 0.69 0.45 6.01 6.25 6.28 5.07 5.82 -1.23 -1.42 3.70E-02 5.10E-07 3.60E-03 

464 SLC38A1 -0.83 -0.67 -0.36 -1.87 -5.89 -0.13 -1.37 -1.45 -1.37 -3 0.51 2.48 3.60E-03 9.80E-06 5.90E-02 

465 NAGA -0.22 1.17 6.81 5.46 4.81 0.95 1.87 1.95 3.1 2.27 -1.58 -1.99 1.60E-02 7.30E-06 3.90E-03 

466 NBEAL2 -0.43 -2.64 -1.14 -0.67 -0.28 -3.36 -3.44 -3.16 6.01 2.87 0.54 0.68 1.70E-02 8.50E-06 4.10E-03 

467 IGKC 0.65 0.79 2.87 3.08 2.92 6.36 7.15 7.49 4.05 7.51 1.68 1.85 4.10E-03 3.40E-08 4.70E-02 

468 AKNA -0.83 -2.76 -0.51 -0.88 -2.37 -2.17 -2.55 -2.5 -1.95 -2.63 -0.35 -0.07 4.10E-03 1.20E-05 1.30E-01 

469 TMEM243 -4.16 -2.74 -0.31 -0.8 0.29 -2.77 -3.11 -3.15 -1.47 -0.02 -1.12 -0.68 5.40E-03 4.20E-06 7.30E-03 

470 SPN 4.33 2.62 1.21 1.01 1.01 3.68 2.55 2.23 6.78 4.61 1.47 1.84 5.60E-03 5.10E-07 3.50E-02 

471 S1PR4 -2.69 -2.9 0.53 -0.22 0.21 -2.64 -2.89 -2.86 0.24 -3.6 -1.26 -0.42 1.50E-02 7.00E-06 5.70E-03 

472 AIM2 -1.21 -1.23 5.69 6.44 3.65 -2.82 -1.26 -1.15 3.4 1.45 0.27 0.56 5.70E-03 9.30E-06 9.50E-02 

473 STX5A 1.22 1.05 -0.75 -1.05 -1.02 1.88 1.58 1.55 1.24 1.42 0.3 0.47 5.70E-03 2.60E-06 4.30E-01 

474 ARHGDIB -1.08 -0.94 -0.48 -2.11 -1.06 -1.67 -2.04 -1.6 -0.18 -2.45 -1.23 -1.03 7.60E-03 4.80E-06 6.10E-03 

475 PSTPIP1 -6.3 -3.72 -1.67 -1.59 -0.95 -2.73 -3.57 -2.95 -2.75 -3.94 -0.3 -0.08 6.40E-03 4.40E-06 4.50E-01 

476 ALDOC -1.61 1.02 3.33 1.86 1.53 2.6 -0.44 0.3 -2.28 1.19 -0.33 -0.89 6.50E-03 1.30E-05 6.10E-02 
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Table 6-27 | Top 500 Differentially regulated Genes/Proteins across species and platforms. Sorted by median adjusted p-value for multiple group comparison. (cont.) 

Rank Symbol mSplPC 

.array 

mBMPC

.array 
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.array 

hPC 

.array 

hBMPC 

.array 

mPB

.rSeq 
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.rSeq 

mBMPC

.rSeq 

hPB. 

rSeq 

hBMPC 

.rSeq 

mPB

.prot 

mPB93

.prot 

ANOVA 

Microarray 

Adj p-value 

ANOVA 

RNA-Seq 

Adj p-value 

ANOVA 

MS/MS 

Adj p-value 

477 LAX1 1.1 0.97 5.62 6.07 5.43 2.16 2.04 2.12 4.05 4.7 0.15 0.06 6.80E-03 5.10E-07 8.30E-01 

478 TMC8 -1.3 -1.76 -2.28 -3.69 -3.95 -1.93 -2.14 -2.43 -2.46 -4.35 -0.55 -0.31 7.20E-03 3.90E-06 1.20E-01 

479 PIK3CD -0.81 -1.64 -3.37 -6.14 -5.37 0.17 -1.24 -1.6 -2.68 -5.4 -0.49 -0.26 7.70E-03 2.20E-06 4.90E-02 

480 MAP7 -0.01 -0.2 2.75 1.67 3.21 -2.91 -3.74 -3.58 1.13 3.99 -0.41 -0.67 8.30E-03 8.60E-06 3.60E-01 

481 TWSG1 -2.61 -0.3 2.35 1.62 1.1 3.1 0.83 0.46 0.71 3.15 -0.19 0.75 8.50E-03 7.40E-06 2.00E-01 

482 CARMIL1 -1.06 -1.15 0 -0.34 3.13 -3 -0.51 -0.16 -1.38 2.27 -1.06 -0.66 1.20E-02 6.80E-06 3.20E-02 

483 GALNS 2.96 2.27 -0.41 -0.53 -1.39 1.93 2.39 2.47 2.89 -0.01 0.65 0.42 1.30E-02 1.40E-06 2.80E-01 

484 TM9SF1 0.8 0.51 5.72 5.63 6.05 1.4 1.07 1.14 0.01 2.43 0.94 0.67 2.50E-01 1.40E-05 1.50E-02 

485 PLBD2 1.79 3.61 0.87 0.76 0.65 1.24 2.14 2.24 0.87 2.75 -0.39 -1.01 1.60E-02 8.90E-07 2.20E-02 

486 CAPN5 0.5 3.56 0 0 0.08 1.05 2.54 2.65 6.07 3.2 1.29 0.16 1.90E-01 2.30E-06 2.30E-02 

487 RETREG3 -1.27 -1.06 0.12 0.52 -0.09 -1.77 -0.9 -0.61 -2.26 -0.31 -0.8 -0.7 1.80E-01 5.90E-06 3.00E-02 

488 MYO1E -3.82 -4.28 0 0.02 0.47 -1.9 -2.15 -2.46 -1.77 -7.13 -0.25 -0.05 3.10E-02 6.70E-06 4.60E-01 

489 GBP7 -0.63 0.79 -3.08 -3.07 -3.07 -1.88 1.14 0.78 -6.81 -3.11 -0.21 0.24 3.30E-02 8.90E-06 2.40E-01 

490 FHIT 2.42 6.85 0 0 0.19 1.43 3.48 3.67 -4.85 1.5 -0.37 -0.66 1.60E-01 1.00E-05 6.10E-02 

491 SPR 3.21 3.99 0.68 0.93 0.04 0.48 2.46 2.33 3.37 4.91 -0.52 -0.5 7.90E-02 4.30E-06 1.70E-01 

492 ADPRM -0.12 0.45 -3.64 -3.33 -2.24 1.8 0.51 0.61 -1.41 -2.8 0.06 1.18 8.80E-02 1.00E-05 2.40E-01 

493 MFSD2A 3.04 2.77 0.07 -0.11 -0.4 5.01 1.64 1.36 5.78 4.82 0.96 1.43 1.90E-01 1.40E-05 1.20E-01 

494 IFT20 3.7 2.92 -0.6 -0.48 -0.75 2.84 2.31 2.29 1.18 1.1 -0.36 0.06 1.20E-01 3.70E-06 6.70E-01 

495 IGHV4-1 0.39 4.23 0 0 0.06 7.24 8.94 9.51 8.99 12.92 0.43 0.35 1.90E-01 4.70E-08 1.40E-01 

496 LIMD2 -3.68 -1.48 -0.65 -0.53 -0.14 -2.24 -1.98 -1.63 0.2 -4.01 -0.51 0.45 1.40E-01 1.20E-05 4.20E-01 

497 SFMBT2 -0.07 -0.32 1.7 3.07 0.3 5.86 -2.89 0.83 3.03 3.96 -1.7 -0.66 2.50E-01 6.30E-06 1.70E-01 

498 CHST3 -0.01 0 0 0 0.16 -2.22 -3.62 -4.02 3.7 4.99 -0.45 -0.32 4.30E-01 9.20E-08 1.80E-01 

499 JUND 0 0.05 -2.28 -1.93 -1.31 -1.64 0.48 0.32 -1.72 2.54 0.5 0.24 1.90E-01 3.60E-06 3.30E-01 

500 SIPA1L2 -4.75 -3.04 0 0 0.02 -1.2 -2.7 -3.55 6.07 2.34 -0.62 -0.03 1.90E-01 1.30E-05 3.40E-01 
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