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Abstract

In this thesis we consider Einstein-Yang-Mills black holes in asymptoti-
cally anti-de Sitter space, in the presence of an su(N) gauge field. For
a purely magnetic gauge field we define a set of charges, namely the
mass and N − 1 gauge invariant magnetic charges, and show that they
characterize stable black holes.

We then go on to consider dyonic black holes which carry both electric
and magnetic charge. We investigate spherically symmetric black holes
and solitons, and find equations of motion for solutions with su(N) gauge
fields. These equations are solved numerically to find black hole and
soliton solutions with su(2) and su(3) gauge groups.

We then turn to dyonic black holes with planar event horizons and in-
vestigate their suitability as gravitational analogues to high temperature
superconductors under the AdS/CFT correspondence. We generalise a
previously known ansatz for su(2) gauge groups to su(N), and show
that there is a critical temperature above which non-abelian solutions do
not exist. Below this critical temperature, we show that they are ther-
modynamically favoured over equivalent Reissner-Nordström solutions,
and have infinite D.C. conductivity.
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Preface

Throughout this thesis, the metric signature is (−,+,+,+), and unless otherwise

stated we take 4πG/g2 = 1, where G is the four dimensional Newton’s gravitational

constant and g is the gauge coupling constant. Greek indices are used to denote

space-time dimensions, which take the values 0, 1, 2, 3. Roman letters are used for

Lie algebra indices, which take integer values greater than zero, the largest of which

depends on the gauge group. Repeated indices are summed over in both cases.

Much of chapter 2 reviews research already undertaken, although expressions

for the charges (section 2.5.2) are an original contribution by the author, as is the

distinguishabillity of solitons from black holes (section 2.6.2) [69]. Numerical results

were produced by the author using code in C++ developed by M. Helbling [8, 9].

Chapter 3 reproduces and extends known results for the su(2) gauge groups

[18, 19]. All work for su(N) gauge groups with general N , as well as numerical

results and soliton boundary conditions for su(3) are original contributions [70].

The ansatze in chapter 4 are known for su(2) [37, 38, 62], but generalised to

su(N) by the author. While some of the results for su(2) are known, the su(2)

conductivity as well as all results for su(3) or su(N) with general N are original

contributions [71].

The author would like to acknowledge the help and support of his supervisor,

Prof. E. Winstanley, as well as the financial support of the EPSRC.
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Chapter 1

Introduction

In this thesis we consider black holes in the presence of su(N) Yang-Mills fields,

known as Einstein-Yang-Mills (EYM) black holes, in asymptotically anti-de Sitter

(AdS) space. Yang-Mills fields are of interest in particle physics, as the strong and

weak nuclear forces are su(3) and su(2) Yang-Mills fields respectively. While we

will try to use a generalised su(N) field as much as possible, it will be necessary to

specify a value of N in order to generate numerical solutions to the field equations.

When this happens, we consider the su(2) and su(3) cases.

Anti-de Sitter (AdS) space is a space with a negative (attractive) cosmological

constant. While observations suggest that this does not reflect the universe in which

we live, there is still considerable interest in AdS. We will consider two reasons

for this. Firstly, we investigate an extension to the black hole uniqueness theorem

known as the “no-hair” conjecture, and secondly we examine the possibility of an

application to condensed matter physics through a correspondence between gravita-

tional systems in AdS, and conformal field theories (CFTs) known as the AdS/CFT

correspondence [60].

The black hole uniqueness theorem [25, 26, 44] states that stationary, four di-

mensional, asymptotically flat black hole solutions of the Einstein equations in a

vacuum or in the presence of an electromagnetic field are characterized uniquely

by their mass, angular momentum and electric or magnetic charge. The geometry

exterior to the event horizon is then a member of the Kerr-Newman family and is

determined entirely by these three global quantities which can, at least in princi-

ple, be measured at infinity. When applied to other matter models this statement is

known as the “no-hair” conjecture [65]. Since Bartnik and McKinnon discovered the

1
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first self gravitating Einstein-Yang-Mills soliton in 1988 [6], a variety of new black

hole solutions which violate the no-hair conjecture (i.e. black holes not described

uniquely by their mass, angular momentum and electric or magnetic charge) have

been discovered.

In asymptotically flat space, EYM black holes have been found which violate the

no-hair conjecture. For su(2) EYM, discrete families of numerical solutions have

been found, indexed by the number of zeros (or nodes) n in the gauge field function

ω [16, 53, 77, 78], all of which have n > 0. These solutions carry no magnetic

charge, and are indistinguishable from Schwarzschild black holes [30, 31]. Note that

the results of [30, 31] do not extend to larger gauge groups or to asymptotically

AdS space. For su(N) we can have solutions that carry both electric and magnetic

charge, which we return to later.

Although these asymptotically flat EYM solitons and black holes violate the no-

hair conjecture, they have been shown to be unstable [23, 24, 34, 73, 72, 76, 85].

This led Bizon to make several modifications to the no-hair conjecture in [17], the

most relaxed of which states that within a given matter model, a stable stationary

black hole is uniquely determined by global charges (charges given by a surface

integral at spatial infinity). Clearly this is satisfied by the su(2) asymptotically flat

black holes since the only stable posibility is the Schwarzschild solution. In de-Sitter

space (which takes a positive cosmological constant) there are also EYM black hole

solutions to the field equations [74], although all are found to be unstable [24], and

are not considered further in this thesis.

We therefore turn to asymptotically AdS space, and investigate whether we can

find stable black holes which satisfy the no-hair conjecture. Since the boundary

conditions at infinity are less restrictive, it is possible to find not only continuous

sets of EYM spherically symmetric black holes and solitons, but also solutions for

which the gauge field function has no nodes, leading to the possibility of stable

solutions (there has been much work on EYM black holes, see [79, 82] for detailed

reviews). There are also non-spherically symmetric solutions (see e.g. [48, 49]),

although they will not be considered in this thesis.

For spherically symmetric black holes with no electric charge, stability under

spherically symmetric linear perturbations has been proved [7, 9, 10, 81, 82] for

fields with su(N) gauge groups, and investigating whether such black holes obey

Bizon’s modified no-hair conjecture will be the subject of chapter 2. Since in AdS

we can have vacuum black holes with positive specific heat [41], we will consider
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not only classical stability, but also thermodynamic stability. The global charges

we will use are the mass (computed using the counterterm formalism of [4]), and

N − 1 su(N) charges which we will construct using the approach of [27]. We will

then present both numerical and analytic evidence that suggests that su(N) EYM

black holes in AdS do indeed obey Bizon’s modified no-hair conjecture.

As mentioned previously, there are EYM black holes and solitons which carry

both electric and magnetic charge, which are known as dyonic black holes. Unlike in

flat space, in AdS it is possible to find dyonic black holes and solitons with an su(2)

gauge group [18, 19]. The subject of chapter 3 will be to extend the work of [18, 19]

(which considered su(2) dyonic black hole and solitons) to the su(N) gauge group,

for both black holes with spherical event horizons and solitons. We will present

numerical results for su(2) (for comparison with [18, 19]) and su(3). However, the

stability analysis of such black holes remains an open problem (the su(2) case is

currently being undertaken [63]), and because of this we do not consider dyonic

black holes in the context of the modified no-hair conjecture.

Unlike in asymptotically flat space, in asymptotically AdS space the event horizon

of a black hole is not constrained to be spherically symmetric [15, 22, 56, 57, 58, 75];

we can also find black holes with planar or hyperbolic event horizons, and this result

can be extended to black holes with stable su(2) Yang-Mills fields [64]. In particular,

EYM black holes with planar event horizons and su(N) gauge fields will be the

subject of chapter 4. Although the stability of such black holes is currently a work

in progress [11], the motivation for studying such black holes does not arise from the

modified no-hair conjecture, but instead from the AdS/CFT correspondence.

The AdS/CFT correspondence [60] proposes an equivalence between type IIB

string theory in AdS5 × S5 (the product of five dimensional anti-de Sitter space

and a five dimensional sphere), and maximally supersymmetric su(N) Yang-Mills

theory in conformally flat space [60, 84]. The boundary of AdS5 is conformal to

four dimensional flat space, and the gravitational theory in the bulk is mapped

to the conformal field theory (CFT) on the boundary (see [1] for a review). This

not only provides a way of investigating type IIB supergravity or string theory by

studying Yang-Mills fields, but also a way of studying strongly coupled field theories

(such as QCD) in the limit where the gravitational field theory can be approximated

by classical gravity. In this way, the AdS/CFT correspondence provides a way of

studying d-dimensional strongly coupled field theories in flat space by mapping them

to a gravitational theory in (d+ 1)–dimensional asymptotically anti-de Sitter space.
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There has been much recent interest applying this correspondence to condensed

matter systems, in particular superconductivity (see [39, 43, 45, 47] for reviews).

Superconductivity occurs when, below a certain critical temperature TC , the

electrical resistivity of most metals drops to zero, which was first observed in mercury

at 4.2K. A phenomenological description of this property was given by F. and H.

London in 1935 [59]. In 1950, Ginzburg and Landau described superconductivity

in terms of a phase transition with order parameter φ , occurring at the critical

temperature TC [35]. For temperatures above TC , the minimum free energy occurs

at φ = 0, while below TC the minimum free energy occurs at a non-zero value

of φ . The order parameter φ is related to the number density of superconducting

electrons ns by ns = |φ|2 , so that above TC the state with the minimum free

energy has no superconducting electrons, while below TC the number density of

superconducting electrons is greater than zero. A mechanism for this was discovered

by Bardeen, Cooper and Schrieffer in 1957, and is known as BCS theory [5]. In BCS

theory, electrons with opposite spin couple together to form pairs, called Cooper

pairs. These Cooper pairs are effectively spin zero particles, which allows them to

condense into the ground state at low temperatures. As long as the energy gap

between the ground state and first excited state is sufficiently large, the Cooper

pairs remain in the ground state and do not interact with the metal ions, giving rise

to superconductivity.

More recently, new types of superconductor have been discovered with much

higher critical temperatures (typically around 100K). These are the layered cuprates

[13, 14], and while there is evidence that in this case superconductivity is caused by

condensation of electron pairs [29], the pairing mechanism is not well understood as,

unlike BCS theory, the field theory is strongly coupled, and there are few methods

in condensed matter physics to study strongly coupled field theories. The AdS/CFT

correspondence provides an alternative way to study these systems, and due to the

layered nature of cuprate superconductors, there has been much recent interest in

the gravitational dual to (2 + 1)-dimensional strongly coupled feld theories at finite

temperature.

One of the first models was proposed by Gubser in [36]. To introduce a tem-

perature in the dual field theory, a black hole was added to the bulk, with the

temperature of the field theory being equal to the Hawking temperature of the black

hole. The role of the electron condensate was played by a scalar field - the critical

result being that a charged black hole can support a charged scalar field at low tem-
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peratures but not at high temperatures, thus the scalar field behaves like an electron

condensate, forming only below a certain critical temperature. Models with a scalar

field condensate have been extensively studied, for reviews see, for example, [45, 66].

There have since been models which employ dyonic su(2) black holes, where

the magnetic part of the gauge field acts as a dual to the condensate rather than

a scalar field. Two were proposed by Gubser in [37, 38]. The ansatz presented in

[37] was symmetric under rotations in the (x, y) plane, and was intended as a dual

to an s-wave superconductor. The ansatz in [38] was superconducting only in the x

direction and behaved as a normal metal in the y direction, as would be expected

from a p-wave superconductor.

Both ansatze from [37, 38] were generalised to higher dimensions in [62]. How-

ever, in this thesis we will take a different approach and extend the ansatze to larger

gauge groups, while keeping a (3 + 1)-dimensional bulk theory. We will be inter-

ested in three main properties of superconductors, which we expect to be shared

by planar dyonic EYM black holes: that the condensate (the magnetic part of the

Yang-Mills field) exists only below a critical temperature; that it is thermodynami-

cally favourable to form a condensate below the critical temperature, and that the

frequency dependent electrical conductivity behaves as one would expect from a real

superconductor, especially that the D.C. conductivity is infinite.
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Chapter 2

Characterization of spherically

symmetric su(N) EYM black holes

In this chapter we consider the case of static, four dimensional, asymptotically anti

de-Sitter (AdS) black holes in the presence of an su(N) Yang-Mills field, in the

context of the “no-hair” conjecture. While a natural extension of the black hole

uniqueness theorem [65] would be that black holes are characterized by their mass,

angular momentum and electric or magnetic charge, we will see that this is not the

case for su(N) EYM black holes in AdS. We will instead argue, based on numerical

evidence and analytic arguments, that the black holes considered in this chapter

obey Bizon’s modified no-hair conjecture, which states that, within a given matter

model, stable stationary black holes are characterized by a set of global charges [17]

(see chapter 1 for further details). In order to check whether Bizon’s modified no-hair

conjecture holds for su(N) EYM black holes in AdS, we therefore must find black

holes which are stable, construct the global charges associated with them, and then

check whether these global charges do indeed characterize the stable black holes.

We begin by reviewing the ansatz, field equations and black hole solutions of

the field equations of su(N) EYM theory in AdS in sections 2.1 to 2.3. Existence

of solutions which are stable under spherically symmetric perturbations has been

proved for large |Λ| in a neighbourhood of embedded su(2) solutions, and we review

the results presented in [7, 9, 10, 81, 82] in sections 2.4.1 and 2.4.2. In particular,

we will present the conditions which must be satisfied in order for black holes to

be stable under linear, spherically symmetric perturbations. We will then go on to

discuss thermodynamics in section 2.4.3 and show that, for sufficiently large event

horizon radius rh , there are black holes which have a positive specific heat, and are

7



8 CHAPTER 2. CHARACTERIZATION OF EYM BLACK HOLES

therefore thermodynamically stable.

The next step will be to find the global charges carried by su(N) EYM black holes

in AdS. We will review the counterterm formalism [4] used to compute a divergence-

free mass for black holes in AdS in section 2.5.1, and then in section 2.5.2 use the

approach of [27] to find expressions for the N−1 charges associated with the su(N)

gauge field.

Finally we will consider black holes which satisfy the (necessary but not sufficient)

conditions to be stable, both thermodynamically and under spherically symmetric

linear perturbations (i.e. we expect to include all black holes which are stable, as

well as some that are not) in section 2.6. We will present numerical and analytic

evidence that these black holes are characterized by their mass and su(N) charges.

We therefore conclude that stable (and possibly some unstable) su(N) black holes

in AdS are characterized by global charges, and therefore su(N) EYM black holes

in AdS do obey Bizon’s modified no-hair conjecture.

§ 2.1 Gauge field, metric ansatz and field equations

We consider static, spherically symmetric black hole geometries in AdS space, with

line element given by

ds2 = −σ2µ dt2 + r2(dθ2 + sin2 θ dφ2) + µ−1dr2, (2.1)

where the metric function µ = µ(r) is given by

µ = 1− 2m(r)

r
− Λr2

3
, (2.2)

with a negative cosmological constant Λ, and σ = σ(r) is a function of r only. We

study four dimensional su(N) Einstein-Yang-Mills (EYM) theory described by the

action

SEYM =

∫
d4x
√
−g
[

1

16πG
(R− 2Λ)− 1

4
TrF a

µνF
aµν

]
(2.3)

where R is the Ricci scalar and the field strength tensor

Fµν = F a
µνTa = ∂µAν − ∂νAµ + g[Aµ, Aν ], (2.4)
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with coupling constant g , and Ta denoting the generators of the Lie algebra su(N)

(see appendix A). Varying the action (2.3) gives the field equations

Tµν = Rµν −
1

2
Rgµν + Λgµν ; (2.5)

DµF
µ
ν = ∇µF

µ
ν + g [Aµ, F

µ
ν ] = 0; (2.6)

where the stress-energy tensor is

Tµν = F a
µαF

a
νβg

αβ − 1

4
gµνF

a
αβF

aαβ. (2.7)

The generalised ansatz for a spherically symmetric su(N) gauge potential is given

by [51]

gA = A dt+
1

2

(
C − CH

)
dθ − i

2

[(
C + CH

)
sin θ +D cos θ

]
dφ+ B dr (2.8)

where A , B , C and D are N ×N matrices which depend only on r . The matrices

A and B are purely imaginary, diagonal and traceless. For a purely magnetic gauge

field we set A = 0, and we can set B = 0 by a choice of gauge [51]. The matrix C

is upper triangular, with non-zero entries

Cj,j+1 = ωj(r)e
iγj(r). (2.9)

The constant matrix D is diagonal and traceless, and is given by

D = diag(N − 1, N − 3, ..., 3−N, 1−N). (2.10)

If ωj 6= 0 for all j then one of the Yang-Mills equations becomes γj = 0 for all j

and (2.8) reduces to

gA = gAµdx
µ =

1

2
(C − CH)dθ − i

2

[
(C + CH) sin θ +D cos θ

]
dφ, (2.11)

where the only non-zero entries in the matrix C are now

Cj,j+1 = ωj(r). (2.12)
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The gauge field is then described by the N − 1 gauge field functions ωj , and there

are N − 1 non-trivial Yang-Mills equations for the ωj given by [82]

0 = ω′′j +

(
σ′

σ
+
µ′

µ

)
ω′j +

ωj
2µr2

(
2 + ω2

j−1 − 2ω2
j + ω2

j+1

)
(2.13)

where j = 1, 2, ..., N − 1, a prime denotes differentiation with respect to r , i.e.

ω′j =
dωj
dr

and we take ω0 = ωN = 0. The corresponding Einstein equations are then

m′ = α2

N−1∑
j=1

{
j(j + 1)

4r2

(
1−

ω2
j

j
+
ω2
j+1

j + 1

)2

+ µω′2j

}
, (2.14)

σ′ =
2α2σ

r

N−1∑
j=1

ω′2j , (2.15)

and we set the coupling α2 = 4πG/g2 = 1. We note that in the literature (see e.g.

[82]) the equation for m′ is written in terms of

pθ =
1

4r4

N∑
j=1

[(
ω2
j − ω2

j−1 −N − 1 + 2j
)2
]
, (2.16)

but that the expressions for m′ are the same since

N∑
j=1

[(
ω2
j − ω2

j−1 −N − 1 + 2j
)2
]

=
N−1∑
j=1

j(j + 1)

(
1−

ω2
j

j
+
ω2
j+1

j + 1

)2

. (2.17)

We use the form (2.14) since it is written in terms of the magnetic charges carried

by the gauge field (see section 2.5.2).

§ 2.2 Boundary conditions

We wish to find black hole solutions to the EYM equations (2.13–2.15), which have

an event horizon at r = rh . We assume the variables σ(r), ωj(r) and m(r) have

regular Taylor expansions near r = rh ,

ωj(r) = ωj(rh) + ω′j(rh)(r − rh) + ... ,

m(r) = m(rh) +m′(rh)(r − rh) + ... ,

σ(r) = σ(rh) + σ′(rh)(r − rh) + ... . (2.18)
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At the event horizon we have

µ(rh) = 0⇒ m(rh) =
rh
2

(
1− Λr2

h

3

)
. (2.19)

For the black hole to be non-extremal (i.e. have a non-zero surface gravity and

Hawking temperature) we require

µ′(rh) =
1

rh
− 2m′(rh)

rh
− Λrh > 0. (2.20)

To find the values of ω′j(rh), m′(rh) and σ′(rh), we multiply (2.13) through by

µ , and evaluate (2.13–2.15) at the event horizon, giving

ω′j(rh) =
ωj(rh)

2µ′(rh)r2
h

(
2ωj(rh)

2 − 2− ωj−1(rh)
2 − ωj+1(rh)

2
)
,

m′(rh) =
N−1∑
j=1

j(j + 1)

4r2
h

(
1− ωj(rh)

2

j
+
ωj+1(rh)

2

j + 1

)2

,

σ′(rh) =
2σ(rh)

rh

N−1∑
j=1

ω′j(r
′
h)

2. (2.21)

We then have

ωj(r) = ωj(rh) +
ωj(rh)

2µ′(rh)r2
h

(
2ωj(rh)

2 − 2− ωj−1(rh)
2 − ωj+1(rh)

2
)

(r − rh) + ...

m(r) =
rh
2

(
1− Λr2

h

3

)
+

N−1∑
j=1

j(j + 1)

4r2
h

(
1− ωj(rh)

2

j
+
ωj+1(rh)

2

j + 1

)2

(r − rh) + ...

σ(r) = σ(rh) +
2σ(rh)

rh

N−1∑
j=1

ω′j(r
′
h)

2(r − rh) + ... (2.22)

where

µ′(rh) =
1

rh
−

N−1∑
j=1

j(j + 1)

2r3
h

(
1− ωj(rh)

2

j
+
ωj+1(rh)

2

j + 1

)2

− Λrh > 0. (2.23)

Since the space-time is asymptotically AdS we expect the following expansions

in the limit r →∞ :

σ(r) = 1 +O

(
1

r

)
;



12 CHAPTER 2. CHARACTERIZATION OF EYM BLACK HOLES

ωj(r) = ωj,∞ +
cj
r

+O

(
1

r2

)
;

m(r) = m0 +O

(
1

r

)
. (2.24)

While in asymptotically flat space the values of the gauge field functions at infinity

are constrained to be ωj,∞ = ±
√
j(N − j) [52], there are no such constraints in

AdS space, hence we expect continuous sets of black hole solutions. Proof of local

existence of solutions in the neighbourhoods of r = 0, r = rh and r = ∞ are

given in [12], where it was found that at the event horizon black hole solutions are

characterized by the N + 1 parameters rh , ωj(rh) and Λ. At infinity, there is a 2N

parameter family of solutions, which are uniquely specified by Λ, cj , ωj,∞ and the

mass parameter m0 . We return to this point in section 2.6, where we argue that

only N + 1 of these parameters are independent, with the cj being single valued

functions of Λ, ωj(∞) and m0 .

§ 2.3 Solutions of the field equations

In this section we find solutions to the field equations (2.13–2.15). While (2.13–2.15)

cannot be solved analytically in general, there are some “trivial” solutions which we

discuss in section 2.3.1. We will then go on to discuss numerical solutions with su(2)

and su(3) gauge groups in sections 2.3.2–2.3.4.

2.3.1 Trivial solutions

Although the field equations (2.13–2.15) are non-linear and have to be solved nu-

merically in general, there are some “trivial” solutions:

• Schwarzschild-AdS

Setting ωj(r) ≡ ±
√
j(N − j) for all j gives the Schwarzschild-AdS black hole

with m(r) = m0 = constant.

• Reissner-Nordström-AdS

Setting ωj(r) ≡ 0 for all j gives the Reissner-Nordström-AdS black hole with

magnetic charge given by

Q2 =
1

6
N(N + 1)(N − 1). (2.25)
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• Embedded su(2) solutions

Setting

ωj(r) = ±
√
j(N − j)ω(r), (2.26)

and rescaling the variables

R = λ−1
N r; Λ̃ = λ2

NΛ; m̃(R) = λ−1
N m(r);

σ̃(R) = σ(r); ω̃(R) = ω(r); (2.27)

where

λN =

√
1

2
N(N − 1)(N + 1), (2.28)

gives the su(2) field equations [82] with

µ = 1− 2m̃(R)

R
− Λ̃R2

3
. (2.29)

Since we can always embed su(2) in su(N) we can check our results for general

N in section 2.5 by ensuring that embedded su(2) charges are proportional

to the well-known su(2) charges. We can also test code used to produce

numerical results by checking that results for larger gauge groups reduce to

the well known results for su(2).

2.3.2 su(2) spherically symmetric black holes

The su(2) case has been widely studied in the literature (see e.g. [18, 19, 61, 81, 82]).

In this section we reproduce the numerical results for Λ = -0.1, -3 and -10. The

EYM equations for su(2) are given by

0 = ω′′ +

(
σ′

σ
+
µ′

µ

)
ω′ +

ω

µr2
(1− ω2), (2.30)

m′ = µω′2 +
ω2 − 1

2r2
, σ′ =

2σω′2

r
, (2.31)

with boundary conditions at the event horizon given by

ω(r) = ω(rh) +
ω(rh)

µ′(rh)r2
h

(
ω(rh)

2 − 1
)

(r − rh) + ...

m(r) =
rh
2

(
1− Λr2

h

3

)
+

1

2r2
h

(
1− ω(rh)

2
)2

(r − rh) + ...
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σ(r) = σ(rh) +
2σ(rh)ω

′(rh)
2

rh
(r − rh) + ... (2.32)

where

µ′(rh) =
1

rh
− 1

r3
h

(
1− ω(rh)

2
)2 − Λrh > 0. (2.33)

We will require the values of the constant c1 in equation (2.24) in section 2.6, since

at infinity su(2) EYM black holes in AdS can be characterized by their mass, ω(∞)

and c1 [12]. Differentiating (2.24) and rearranging gives

c1 = −r2ω′(r) +O

(
1

r

)
. (2.34)

We then define a function c1(r) by

c1(r) = −r2ω′(r), (2.35)

so that the constant c1 is given by

c1 = lim
r→∞

c1(r) = lim
r→∞

[
−r2ω′(r)

]
. (2.36)

In general we cannot solve (2.30, 2.31) analytically. Instead, we first decouple (2.30)

into two first order ODEs in ω and ω′ , and then use a Bulirsch-Stoer algorithm [32]

to solve the field equations numerically subject to the initial conditions (2.32). Since

the field equations are singular at r = rh , we start at r − rh = 10−7 and integrate

outwards to large r , using a step length of 10−7 in r . While we are interested in

the values of ω and c1 at infinity, we cannot integrate outwards with increasing r

indefinitely. However, we expect ω(r) and c1(r) to converge to constant values at

large r . For this reason, we use relative convergence criteria of 10−7 in ω and c1 , i.e.

we stop the integration at some rf when ω(rf ) and c1(rf ) differ from ω(rf − 10−7)

and c1(rf − 10−7) by a factor of 10−7 or less.

In the su(2) case, solutions are characterized by rh , ω(rh) and Λ at the event

horizon [12], so for each value of Λ we vary rh and ω(rh) with a step size of 10−3

in log10(rh) and ω(rh). Since (2.30, 2.31) are invariant under the transformation

ω(r) → −ω(r) we can consider only values of ω(rh) > 0 without loss of generality.

We write to file data for ω(r), m(r), σ(r) and c1(r) in the large r limit, as well

as the number of zeros n in the gauge field function ω(r), as we are interested in

stable solutions with n = 0 [81].
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Figures 2.1 – 2.3 show the phase spaces of su(2) black holes with Λ = −0.1,

−3 and −10 respectively, colour coded by the number of zeros in the gauge field

function ω . The regions labeled “no solution” correspond to where the inequality

(2.33) is satisfied, but we do not find black hole solutions. It is clear that the size

of the region where we find n = 0 (potentially stable - see section 2.4) black hole

solutions increases with the value of |Λ| .

While there are continuous sets of solutions for Λ < 0, this continuum of solutions

becomes discrete in the Λ → 0 limit, and remains discrete for all Λ > 0 [74, 80].

At Λ = 0, for any given value of rh , there are discrete values of ω(rh) for which we

find solutions, with different ω(rh) corresponding to different numbers of nodes in

the gauge field function (these values of ω(rh) can be found for rh = 1 in [16]).

Black hole solutions with the su(2) gauge group can be embedded to give su(N)

black holes for any N , and existence of su(N) black hole solutions in a neighbour-

hood of these embedded su(2) solutions has been proved in [12] for |Λ| � 1.

2.3.3 su(2) topological black holes

It has been shown that in the presence of a negative cosmological constant, the

topology of the event horizon is no longer restricted to be spherical [3, 15, 22, 56, 57,

58, 75]. The set of black hole solutions can be extended to those with flat (k = 0)

and hyperbolic (k = −1) horizons (see, e.g. [3]), and this has been extended to the

su(2) EYM case in [64] (k = 1 corresponds to spherical topology). The line element

for these topological black hole solutions is given by [64]

ds2 = −σ2µ dt2 + µ−1dr2 + r2(dθ2 + f 2(θ) dφ2), (2.37)

where

µ = k − 2m(r)

r
− Λr2

3
, (2.38)

and

f(θ) =


sin θ for k = 1,

θ, for k = 0,

sinh θ for k = −1.

(2.39)

The Einstein-Yang-Mills equations are given by [64]

0 = ω′′ +

(
σ′

σ
+
µ′

µ

)
ω′ +

ω

µr2
(k − ω2),
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Figure 2.1: Phase space plot for su(2) spherically symmetric black holes with Λ =
−0.1, colour coded by the number of nodes n in the gauge field function ω(r). The
red “no solution” region indicates where the inequality (2.33) is satisfied but we do
not find black hole solutions. The green “n = 0” region indicates nodeless solutions
(potentially stable, see section 2.4).

m′ = µω′2 +
(ω2 − k)2

2r2
, rσ′ = 2ω′2σ, (2.40)

while the inequality (2.33) becomes

µ′(rh) =
k

rh
− 1

r3
h

(
k − ω(rh)

2
)2 − Λrh > 0 (2.41)

for k = 0,−1 (for k = 1 we recover the spherically symmetric su(2) solutions, see

section 2.3.2). We note that in the k = −1 case there is a minimum value of rh ,

since we require

r2
h

(
|Λ|r2

h − 1
)
>
(
1 + ω(rh)

2
)2
. (2.42)

Using equations (2.40), along with the constraint (2.41), we find solutions in the

same way as in section 2.3.2 for Λ = −3 with k = 0,−1. The phase space plots are
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Figure 2.2: Phase space plot for su(2) spherically symmetric black holes with Λ =
−3, colour coded by the number of nodes n in the gauge field function ω(r). The
red “no solution” region indicates where the inequality (2.33) is satisfied but we do
not find black hole solutions. The green “n = 0” region indicates nodeless solutions
(potentially stable, see section 2.4).

very similar, and for this reason we present only the k = 0 case (figure 2.4). We

note in figure 2.4 that there are only nodeless (n = 0) solutions, in agreement with

[64], and this is also the case when k = −1. Stability under linear perturbations

of these black hole solutions has been proved in [64] for nodeless solutions with

ω(∞) > 0 and |Λ| sufficiently large. Thermodynamic stability has been proved in

[61]. Research into the existence and stability of topological su(N) black holes is

currently being undertaken by J. Baxter and E. Winstanley [11].

2.3.4 su(3) spherically symmetric black holes

In the su(3) case we have two gauge field functions ω1 and ω2 . Black holes are

characterized by Λ, rh , ω1(rh) and ω2(rh) at the event horizon, and as before we
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Figure 2.3: Phase space plot for su(2) spherically symmetric black holes with Λ =
−10, colour coded by the number of nodes n in the gauge field function ω(r).
The red “no solution” region indicates where the inequality (2.33) is satisfied but
we do not find black hole solutions. The green “n = 0” region indicates nodeless
solutions (potentially stable, see section 2.4). Since |Λ| is large, we find only nodeless
solutions.

set ω1(rh), ω2(rh) > 0 using the symmetry of the field equations under the mapping

ωj → −ωj . At infinity su(3) black holes are characterized by Λ, m0 , ω1(∞),

ω2(∞), c1 and c2 [12]. As before we define new functions cj(r) such that

cj(r) = −r2ω′j(r) (2.43)

so the constants cj are

cj = lim
r→∞

[
−r2ω′j(r)

]
. (2.44)

We now have two Yang-Mills equations for ω1 and ω2 (2.13), in addition to the

Einstein equations (2.14, 2.15), and we can recover the embedded su(2) solutions
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Figure 2.4: Phase space plot for topological k = 0 black holes with Λ = −3. The
red “no solution” region indicates where the inequality (2.41) is satisfied but we do
not find black hole solutions. When k = 0 we find solutions as rh approaches zero.
This is in constrast to the k = −1 case where there is a minimum value of rh due
to (2.41).

by setting

ω1(r) =
√

2ω(r) = ω2(r). (2.45)

From (2.23), for the event horizon to be non-extremal we require

[
ω1(rh)

2 − 2
]2

+
[
ω1(rh)

2 − ω2(rh)
2
]2

+
[
2− ω2(rh)

2
]2
< 2r2

h

(
1− Λr2

h

)
. (2.46)

As in previous sections, we integrate outwards from r− rh = 10−7 , but this time

we require ωj and cj for j = 1, 2. Since we must scan over all values of ω2 for

which (2.46) is satisfied for each value of ω1 , and vice versa, we used a larger step

size of 10−2 in log10(rh), ω1(rh) and ω2(rh) to reduce the running time and output
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file size, but once again used a 10−7 test for convergence in ω1(∞), ω2(∞), c1(∞)

and c2(∞).

In the su(3) case, black holes are characterized at the event horizon by rh , Λ,

ω1(rh) and ω2(rh) [12], so to obtain a two dimensional plot we must fix two variables.

A phase space plot of our data at fixed rh = 1, Λ = −3 is shown in figure 2.5, where

we have scanned over ωj(rh) > 0 for j = 1, 2 (similar plots for λ = −0.0001,−1,−5

can be found in [8]). The nodeless region (n1 = n2 = 0) shows where there are

potentially stable black holes, and expands as we increase |Λ| [8]. We do not expect

to find stable black holes in the regions where n1 = 1 or n2 = 1 (see section 2.4).

Again, the “no solution” region is where (2.46) is satisfied but we do not find black

hole solutions.

Figure 2.5: Phase space plot for spherically symmetric su(3) solutions with rh = 1
and Λ = −3. The red “no solution” region indicates where the inequality (2.46) is
satisfied but we do not find black hole solutions. The green “n = 0” region indicates
nodeless solutions (potentially stable, see section 2.4). If either n1 = 1 (ω1 has a
node) or n2 = 1 (ω2 has a node) then we expect the black holes to be unstable.
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§ 2.4 Stability

We wish to check whether Bizon’s modified no hair conjecture holds for su(N) EYM

black holes in AdS, i.e. whether stable stationary black holes are characterized by a

set of global charges. Having found solutions to the field equations, we will now look

at conditions for stability, both thermodynamically and under linear perturbations.

In sections 2.4.1 and 2.4.2 we review the results given in [7, 9, 81, 82] regarding

the stability of the black hole solutions under time dependent, linear, spherically

symmetric perturbations. We note that the stability analysis for non-spherically

symmetric perturbations with the su(2) gauge group is carried out in [67, 83]. We

will then go on to discuss thermodynamic stability in section 2.4.3.

We start by returning to the generalised ansatz for the gauge potential (2.8),

although the matrices A , B and C now depend on the time t as well as r , and set

A = 0 through a choice of gauge. We consider time dependent perturbations of the

form

ωj(t, r) = ω0
j (r) + δω(t, r),

µ(t, r) = µ0(r) + δµ(t, r),

σ(t, r) = σ0(r) + δσ(t, r), (2.47)

where ω0
j (r), µ0(r) and σ0(r) are the equilibrium functions. We also have pertur-

bations δγj (2.9), and δβj , where the matrix B is given by

B = diag(iδβ1, ..., iδβN). (2.48)

We will also use the “tortoise” co-ordinate r∗ defined by

dr∗
dr

=
1

µ0σ0

. (2.49)

The perturbations now separate into the “sphaleronic” and “gravitational” sectors

[55], and we follow the analysis of [7, 9, 10, 81].

2.4.1 Sphaleronic sector

The sphaleronic sector is comprised of the perturbations δβj and δγj . We define

new variables δεj and δΦj for j = 1, ..., N − 1 by [7]
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δεj = r
√
µδβj, δΦj = ω0

j δγj (2.50)

where ω0
j are the unperturbed gauge field functions. The perturbation equations

for the sphaleronic sector arise from the Yang-Mills equations [82] and after some

algebra can be cast in the form

− Ψ̈ =MSΨ (2.51)

where Ψ = (δε1, ..., δεN , δΦ1, ..., δΦN−1), MS is a second order differential operator

in r∗ and a dot denotes differentiation with respect to time t (the detailed form of

MS can be found in [7]). The solutions are stable under the perturbations δΦj and

δεj if the matrix MS is regular and positive definite. It can be shown [7] that this

is the case if the unperturbed gauge field functions ω0
j have no zeros and satisfy the

N − 1 inequalities

ω0
j

2
> 1 +

1

2

(
ω0
j+1

2
+ ω0

j−1
2
)

(2.52)

for all r ≥ rh and all j = 1, ..., N − 1. Figure 2.6 shows the region of figure 2.5

where (2.52) is satisfied at the event horizon. It has been shown [7] that for any N

and sufficiently large |Λ| , black hole solutions exist for which (2.52) are satisfied for

all r ≥ rh , i.e. for at least some of the solutions where (2.52) is satisfied at the event

horizon, the gauge field functions remain in this region for all r ≥ rh .

2.4.2 Gravitational sector

The gravitational sector consists of the perturbations δµ , δσ and δωj , although the

metric perturbations can be eliminated to obtain [7]

δ ω̈ = ∂2
r∗(δω ) +MGδω , (2.53)

where δω = (δω1, ..., δωN−1)T . The (N − 1) × (N − 1) matrix MG is a function

of r and contains only equilibrium quantities and no derivatives. The system is

stable under these perturbations if MG is negative definite. It has been shown [81]

that this is the case for su(2) solutions if we have sufficiently large |Λ| , as long as

ω2(r) > 1/3 for all r ≥ rh , and existence of these solutions has also been proved in

[81]. There then exist genuinely su(N) solutions a neighbourhood of the embedded

su(2) solutions such that (2.52) are satisfied for all r ≥ rh and MG remains negative

definite [7]. We conclude that there are some genuinely su(N) EYM solutions in
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Figure 2.6: Solution space for su(3) black holes with Λ = −3, rh = 1 where (2.52)
holds at the horizon. Potentially stable solutions are found in the “n = 0” region.
For the black holes to be stable, we require (2.52) to be satisfied at all r ≥ rh .
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AdS which are stable under spherically symmetric perturbations in the sphaleronic

and gravitational sectors, provided that |Λ| is sufficiently large [7].

2.4.3 Thermodynamic stability

As in flat space, black holes in AdS space have thermodynamic properties including a

characteristic temperature and an intrinsic entropy, which for a gravitational action

of the form (2.3) is proportional to one quarter of the area of the event horizon [46].

In asymptotically flat space, while a black hole can be in equilibrium with thermal

radiation at the same temperature, this equilibrium is unstable. Any increase in

mass would cause the temperature of the black hole to decrease, hence the absorption

would increase and the black hole would continue to grow. However, in AdS space,

black holes above a certain mass may have a positive specific heat, and therefore may

be in equilibrium with thermal radiation at a fixed temperature [41], and we take

this as being the condition for thermodynamic stability. In this section we extend

the approach of [41] to su(N) EYM black holes in AdS space, as has been done for

the su(2) case in [61].

The heat capacity C of a black hole is given by

C = TH

(
∂TH
∂S

)
Q

, (2.54)

where TH is the Hawking temperature, S is the entropy, and the derivative is taken

at fixed charge Q (we note here that this statement is only relevant if we can define

global charges to hold fixed, see section 2.5). The Hawking temperature is given by

TH =
σ(rh)(1− 2m′(rh)− Λr2

h)

4πrh
, (2.55)

where σ(rh) refers to the metric function in (2.1), m′(rh) is given by (2.21) and the

entropy associated with the action (2.3) is

S =
A

4
, (2.56)

where A is the area of the event horizon. Thermodynamic stability requires a

positive heat capacity, i.e. C > 0 [41]. Figure 2.7 shows the Hawking temperature

plotted as a function of entropy for su(2) black holes at fixed ω(∞) (which is

equivalent to fixing the charge, see section 2.5 for details). Clearly there are two
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branches of solutions, one which is thermodynamically stable, and one which is not.

We note also that there is a minimum temperature for which black holes are stable

(which is noted for the Schwarzschild-AdS case in [41]), and a phase transition where

the plotted line tends to the vertical (similar results were found in [61]). We also

find that stable solutions have higher entropy (and therefore larger rh ) than the

unstable solutions.

Figure 2.7: Entropy plotted as a function of Hawking temperature for su(2) EYM
black holes with Λ = −3. Thermodynamically stable soutions lie on the part of
the line with positive slope (and therefore positive heat capacity), and have higher
entropy (and therefore larger rh ) than thermodynamically unstable solutions.

Figure 2.8 shows a plot of Hawking temperature for su(3) black holes with

Λ = −3. Again we have fixed the values of ω1(∞) and ω2(∞), which is equiv-

alent to fixing the charges (see section 2.5.2). We find solutions with positive heat

capacity for both embedded su(2) (where ω1(∞) = ω2(∞)) and genuinely su(3)

solutions. While there are both stable and unstable solutions for the embedded

su(2) solutions, numerically only thermodynamiclly stable solutions were found for

genuinely su(3) solutions. It is unclear whether there are no unstable solutions, or

simply that none were found in our analysis. However, here we are only interested

in thermodynamically stable solutions.

As mentioned in the introduction, version three of Bizon’s modification of the no



26 CHAPTER 2. CHARACTERIZATION OF EYM BLACK HOLES

Figure 2.8: Entropy plotted as a function of Hawking temperature for su(3) EYM
black holes with Λ = −3. Thermodynamically stable solutions lie on the part of the
line with positive slope (and therefore positive heat capacity). Thermodynamically
stable solutions are found for both embedded su(2) and genuinely su(3) solutions.

hair conjecture [17] states that within a given model, stable stationary black hole

solutions are uniquely determined by a set of global charges. For the remainder

of the chapter we will therefore restrict our attention to thermodynamically stable

black holes.

§ 2.5 Definition of charges for su(N) EYM

In this section we define and then calculate the conserved charges measured from

infinity, i.e. the mass and the su(N) magnetic charges (our ansatz for the gauge

potential (2.11) has no electric part) as we require these, along with the cosmological

constant Λ, to characterize the stable black hole solutions uniquely from infinity. In

AdS space we find divergent quantities in the mass, and we review the counterterm

formalism proposed by Balasubramanian and Kraus in [4] and applied to su(2) EYM

black holes in [61] to remove these divergent quantities.

We find conserved charges corresponding to diagonal generators of the Lie algebra

of su(N). The rank of su(N) is N − 1 and we find N − 1 conserved charges. As
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noted in [61] the problem of constructing these charges has been approached in

different ways by different authors. In this section we use the approach of [27] to

construct these charges in a gauge invariant way. The particular case of su(2) has

been widely studied in the literature, and we find that our results are in agreement

with [28] and [61]. We then go on to generalise these results first to su(3), for which

we have numerical results, and then to su(N).

2.5.1 Mass

In this section we calculate the mass of black hole solutions in AdS space with

line element given by (2.1), using the boundary counterterm subtraction method

of Balasubramanian and Kraus [4], which was applied to the su(2) case in [61].

It is unnatural, in a generally covariant theory, to assign a local energy-momentum

tensor to a gravitational field. Instead, we define a “quasilocal stress tensor”, defined

locally on the boundary of a given space-time. The quasilocal stress tensor is given

by [4]

T µν =
2√
−γ

δSgrav
δγµν

(2.57)

where the gravitational action Sgrav = Sgrav(γµν) is viewed as being a function of

the boundary metric γµν . In AdS space, the stress tensor typically diverges as the

boundary is taken to infinity. However, we are free to add boundary terms Sct to

the action, as these do not alter the equations of motion in the bulk. We then need

to vary the action with respect to the boundary metric. Since we are considering

solutions to the equations of motion, only the boundary term contributes and the

quasilocal stress tensor is given by [4]

T µν =
1

2

(
Θµν −Θγµν +

2√
−γ

δSct
δγµν

)
. (2.58)

The extrinsic curvature Θµν is given by [4]

Θµν = −1

2
(∇µn̂ν +∇νn̂µ) (2.59)

and n̂µ is the outward pointing normal to surfaces of constant r . For a line element

given by (2.1) we have

n̂µ = (0, 0, 0, µ
1
2 )T , (2.60)
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and

Θµν = diag

(
µσ(r)′ + σ(r)µ′

µ
5
2σ3

,−µ
1
2

r3
,− µ

1
2

r3 sin2 θ
, 0

)
. (2.61)

The counterterms in [4] and [61] are given by

Sct = −2

l

∫
∂Mr

√
−γ
(

1− l2

4
R

)
, (2.62)

where ∂Mr is the large r boundary, and the boundary stress tensor becomes

T µν =
1

2

(
Θµν −Θγµν − 2

l
γµν − lGµν

)
, (2.63)

where Gµν is the Einstein tensor of the boundary metric and is divergence free

(which is a requirement of energy conservation).

We obtain the mass by integrating the quasilocal stress tensor (2.63) over a sphere

of constant r in the limit r →∞ , and we require T µν ∼ rk where k ≤ 0 for a finite

mass. In the su(2) case, the asymptotic expressions at large r for S(r), ω(r) and

m(r) (2.24) are given by [61]

σ(r) =

[
1 +

c2
1

r4
+O

(
1

r5

)]−1

,

ω(r) = ω∞ +
c1

r
+O

(
1

r2

)
,

m(r) = m0 +

[
Λc2

1

3
− 1

2

(
ω2
∞ − 1

)2
]

1

r
+O

(
1

r

)
, (2.64)

and substituting into (2.63) gives

Ttt =
m0

lr
− 4c2

1 + l2(ω2
∞ − 1)2

r2l3
+O

(
1

r3

)
. (2.65)

In agreement with [61], the gauge field quantities ω∞ and c1 appear only in the

order r−2 term. We do find some discrepancy with regards to the exact form of this

term as compared to [61], where Ttt is given as

Ttt =
m0

lr
− 8c2

1 + 4l2(ω2
∞ − 1)2 − l4

4r2
+O

(
1

r3

)
. (2.66)

However, this discrepancy does not affect the mass, which is given by [4]
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M =

∫
lrT00 d

2x = 4πm0. (2.67)

We note here that in the su(2) case the gauge field function does not contribute

directly to the mass. Similarly we can also find the mass from the asymptotic value

of the variable m for su(N) gauge fields. However, the gauge fields do contribute

indirectly to the mass since they appear in the differential equation for m (2.14).

2.5.2 su(N) charges

The Cartan subalgebra of a Lie algebra is defined to be the largest set of group ele-

ments which commute with themselves [42]. In the matrix representation of the Lie

algebra, elements of the Cartan subalgebra are formed by taking linear combinations

of the diagonal generators of the Lie algebra since diagonal matrices commute with

each other.

In particle physics, the rank of the symmetry group is the number of conserved

charges that each particle carries, with one charge for each diagonal generator. For

example, there is an approximate su(3)× u(1) symmetry between the three lightest

quarks. In total there are three diagonal generators in the group su(3) × u(1),

corresponding to three conserved charges: isospin, baryon number and strangeness.

The number of diagonal generators in a Lie algebra, those which make up the Cartan

subalgebra, is called the rank, and su(N) has rank N−1. We then expect our su(N)

EYM black holes to carry N − 1 conserved charges.

In electromagnetism the magnetic charge is given by Q =
∫
S∞

F , where S∞

denotes a sphere at spatial infinity, over which the integration is taken, and F =
1
2
Fµνdx

µ ∧ dxν where Fµν is the electromagnetic field strength tensor. Since the

components of Fµν are gauge scalars, the expression for Q is inherently gauge in-

variant. However, this is not the case for su(N) EYM theory, as the components

of Fµν are N × N matrices (see equations (2.4) and (2.11)), which are not gauge

invariant in general.

While there is agreement in the literature that the su(N) charges (and any

observable quantity) should be gauge invariant, constructing the charges has been

approached by different authors in different ways (see e.g. [20, 27, 28, 50, 54]).

Details regarding quantization of charge can be found in [20], although in this section

we will consider a purely classical approach.
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In [28] (a similar approach was used in [50]), the single charge associated with

an su(2) gauge field was found using

Q =
1

4π

∮
S∞

√√√√ 3∑
i=1

(
F i
θφ

)2
dθ dφ, (2.68)

where

Fθφ =
3∑
i=1

F i
θφTi, (2.69)

and the sum is taken over the generators Ti of su(2) (see appendix A for details).

While this works when we are only interested in finding a single charge, there is no

obvious way to generalise this to find the N − 1 charges associated with an su(N)

gauge field (in fact it turns out that this expression gives us the effective charge, to

which we will return later in this section).

An alternative definition was provided in [27] (a similar definition can be found

in [54]), which we will use since it allows us to find N − 1 charges associated with

an su(N) gauge field. We define

Q(X,Σ) =
1

4π
sup
g(x)

k

(
X,

∫
S∞

g−1Fg

)
(2.70)

where X is in the Cartan subalgebra X of su(N), g is an element of the group

SU(N) (see appendix A), and k(X, Y ) = Tr{adXadY } is the Killing form [68],

with adX denoting the adjoint representation of the Cartan subalgebra element X

as defined in [68]. The integrand takes its maximal value when g−1Fg ∈ X [27].

The integral is taken over a sphere of constant radius in the limit r →∞ , so since

dr = 0 and our ansatz is time-independent we need only consider

F =
1

2
(Fθφ dθ ∧ dφ+ Fφθ dφ ∧ dθ) = Fθφ dθ ∧ dφ (2.71)

where

Fθφ = ∂θAφ − ∂φAθ + [Aθ, Aφ]. (2.72)

From (2.11) we have

Aθ =
1

2
(C − CH), Aφ = − i

2

(
(C + CH) sin θ +D cosφ

)
(2.73)
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and substituting into (2.72) gives

Fθφ = − i
2

(
[C,CH ]−D

)
sin θ (2.74)

with

[C,CH ] = diag(ω2
1, ω

2
2 − ω2

1, ω
2
3 − ω2

2, ...,−ω2
N−1). (2.75)

The charges (2.70) are then given by

Qi(X,Σ) =
1

4π
k

(
X,

∫
S∞

g−1Fθφg dθ dφ

)
(2.76)

where the group element g is chosen such that g−1Fθφg is an element of the Cartan

subalgebra X . We will show that in fact Fθφ is already an element of X , so we

will take g = e . We note here that there may be other possible choices of g which

transform Fθφ into a different element of X . However, in both cases the values

along the diagonal must be the eigenvalues of Fθφ , so doing such a transformation

corresponds to choosing a different basis for X . This would give a different set of

equally physical charges.

We define an effective charge by requiring that in the Reissner-Nordström case,

the metric function µ(r) reduces to

µ(r) = 1− 2m(r)

r
− Λr2

3
= 1− 2M

r
+
Q2

r2
− Λr2

3
(2.77)

with constant mass M and charge Q , i.e.

m(r) = M − Q2

2r
⇒ Q2 = 2r2m′(r). (2.78)

By comparison with (2.14) we take

Q2 =
N−1∑
j=1

j(j + 1)

2

(
1− ωj(∞)2

j
+
ωj+1(∞)2

j + 1

)2

, (2.79)

which reduces in the Reissner-Nordström case (ωj ≡ 0 for all j ) to

Q2 =
1

6
N(N − 1)(N + 1). (2.80)

In the rest of this section we will explicitly calculate the charges for su(2) and su(3)
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gauge fields, checking that they give the appropriate effective charge (2.79), and

then go on to generalise these results to su(N) gauge fields with general N .

Charge carried by an su(2) gauge field

For the su(2) case we have only one gauge field function ω(r), and

[C,CH ] =

(
ω2 0

0 −ω2

)
, D =

(
1 0

0 −1

)
. (2.81)

Substituting into (2.74), and expressing Fθφ in terms of the generators Ti of the

real Lie algebra of su(2)(see appendix A) we have

Fθφ = − i
2

(
ω2

(
1 0

0 −1

)
−

(
1 0

0 −1

))
sin θ

= (ω2 − 1)T3 sin θ. (2.82)

The Lie algebra su(2) is of rank one and we have only one generator of the Cartan

subalgebra, T3 , and one conserved charge. Since Fθφ is proportional to the diagonal

generator, it is already an element of the Cartan subalgebra, so we can choose g = e

where e is the identity. If X is an element of the Cartan subalgebra it must be

proportional to T3 , hence X = α3T3 for X ∈ X and substituting into (2.76) gives

Q =
1

4π
k
(
X, 4π(ω(∞)2 − 1)T3

)
= 2α3(ω(∞)2 − 1) (2.83)

since Tr{adTi adTj} = Nδij for su(N) [20]. We then have

Q2 = 4α2
3(ω(∞)2 − 1)2 (2.84)

so (2.79) is only satisfied if we take α3 = ±1
2
, i.e. Q = ±(1 − ω(∞)2)2 . To agree

with conventions in the literature [28, 61] we take the positive root

Q = 1− ω(∞)2, (2.85)

i.e. the negative of the coefficient of sin(θ)T3 in Fθφ in equation (2.82), with the

gauge field function evaluated at infinity.
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Charges carried by an su(3) gauge field

We now have two gauge field functions ω1 and ω2 , and

[C,CH ] =

ω
2
1 0 0

0 ω2
2 − ω2

1 0

0 0 −ω2
2

 , D =

2 0 0

0 0 0

0 0 −2

 . (2.86)

Substituting into (2.74)

Fθφ = − i
2


ω

2
1 0 0

0 ω2
2 − ω2

1 0

0 0 −ω2
2

−
2 0 0

0 0 0

0 0 −2


 sin θ

= sin θ

[(
ω2

1 − 1− ω2
2

2

)
T3 +

√
3

(
ω2

2

2
− 1

)
T8

]
, (2.87)

where Ti are the generators of the su(3) Lie algebra and are defined in appendix

A. The Cartan subalgebra X of su(3) is generated by T3 and T8 , so the elements

X of X are given by X = ρT3 + σT8 for some ρ and σ . We expect to find two

charges, and therefore require two elements of the Cartan subalgebra to substitute

into (2.76), which we denote Xi = ρiT3 + σiT8 for i = 1, 2. As in the su(2) case,

Fθφ is also a linear combination of diagonal generators, so we can choose g = e in

(2.76). Evaluating (2.76) using (2.87) then gives

Qi = 3ρi

(
ω1(∞)2 − 1− ω2(∞)2

2

)
+ 3
√

3σi

(
ω2(∞)2

2
− 1

)
(2.88)

or equivalently

Qi = αiω1(∞)2 +
βi − αi

2
ω2(∞)2 − (αi + βi), (2.89)

where αi = 3ρi and βi = 3
√

3σi . The Lie algebra su(3) has rank two and we have

two conserved charges. Using (2.79), the effective charge squared is

Q2
1 +Q2

2 = ω1(∞)4 + ω2(∞)4 − 2ω1(∞)2 − 2ω2(∞)2 − ω1(∞)2ω2(∞)2 + 4. (2.90)

We now square and add (2.89) and compare coefficients with (2.90). This gives six

simultaneous equations in the four unknowns, of which three are independent:
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α2
1 + α2

2 = 1; (2.91)

α1β1 + α2β2 = 0; (2.92)

β2
1 + β2

2 = 3. (2.93)

Combining (2.92) and (2.93), and then using (2.91) gives

β2
1 +

β2
1α

2
1

α2
2

= β2
1

(
1 +

1− α2
2

α2
2

)
=
β2

1

α2
2

= 3 (2.94)

so β2
1 = 3α2

2 , and similarly β2
2 = 3α2

1 . Substituting for α2 from (2.91) the charges

become

Q1 = α1ω1(∞)2 +

√
3− 3α2

1 − α1

2
ω2(∞)2 −

(
α1 +

√
3− 3α2

1

)
,

Q2 =
√

1− α2
1ω1(∞)2 +

√
3α1 −

√
1− α2

1

2
ω2(∞)2 −

(√
1− α2

1 +
√

3α1

)
.

(2.95)

Calculating Q2
1 +Q2

2 , we obtain (2.90) plus terms proportional to
√

3− 3α2
1 , imply-

ing that α1 = ±1. We then have

Q1 = ±
(
ω1(∞)2 − 1− ω2(∞)2

2

)
, Q2 = ±

√
3

(
ω2(∞)2

2
− 1

)
. (2.96)

We require the charges Q1 and Q2 to be proportional to the su(2) charge (2.85)

for embedded su(2) solutions, when we insert equation (2.26) into (2.96). For this

reason we take the negative root, i.e.

Q1 =

(
1− ω1(∞)2 +

ω2(∞)2

2

)
, Q2 =

√
3

(
1− ω2(∞)2

2

)
, (2.97)

such that the charges for the embedded su(2) solutions become Q1 = 1 − ω2 ,

Q2 =
√

3 (1− ω2). Once again the charges are the coefficients of Tk sin θ in Fθφ

multiplied by −1, where Tk ∈ X , and the gauge field functions are evaluated at

infinity.
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Charges carried by an su(N) gauge field

The Cartan subalgebra of the Lie algebra su(N) has N − 1 generators, denoted Hi

for i = 1, 2, ..., N − 1 and given in appendix A. We find we can express Fθφ (2.74)

in terms of the Hi , so Fθφ is then a member of the Cartan subalgebra and we do

not need to make a gauge transformation before using equation (2.76). To find Fθφ

we first require

[C,CH ] = diag(ω2
1, ω

2
2 − ω2

1, ω
2
3 − ω2

2, ...,−ω2
N−1)

= ω2
1diag(1,−1, 0, ..., 0) + ω2

2diag(0, 1,−1, 0, ...0)

+...+ ω2
N−1diag(0, ..., 0, 1,−1)

= 2iω2
1H1 + iω2

2

(√
3H2 −H1

)
+...+

i

N − 1
ω2
N−1

(√
2N(N − 1)HN−1 −

√
2(N − 1)(N − 2)HN−2

)
.

(2.98)

In (2.98) the matrix multiplying ω2
k is given by

i

k

(√
2k(k + 1)Hk −

√
2k(k − 1)Hk−1

)
. (2.99)

Hence

[C,CH ] =
N−1∑
k=1

i

k

(√
2k(k + 1)Hk −

√
2k(k − 1)Hk−1

)
ω2
k. (2.100)

We also note that

N−1∑
k=1

i
√

2k(k + 1)Hk = diag(N − 1, N − 3, ..., 3−N, 1−N) = D (2.101)

so we can write

Fθφ =
sin(θ)

2

N−1∑
k=1

(√
2k(k + 1)

(
ω2
k

k
− 1

)
Hk −

√
2k(k − 1)Hk−1

ω2
k

k

)
. (2.102)



36 CHAPTER 2. CHARACTERIZATION OF EYM BLACK HOLES

Since

N−1∑
k=1

√
2k(k − 1)Hk−1

ω2
k

k
=

N−1∑
k=1

√
2k(k + 1)Hk

ω2
k+1

k + 1
(2.103)

(where we have used the fact that H0 = ωN = 0), equation (2.102) becomes

Fθφ =
sin(θ)

2

N−1∑
k=1

√
2k(k + 1)

(
ω2
k

k
− 1−

ω2
k+1

k + 1

)
Hk. (2.104)

We now have Fθφ in the Cartan subalgebra for su(N) EYM black holes for all N .

By comparison with the results of the previous sections we have

Qk =

√
2k(k + 1)

2

(
1− ωk(∞)2

k
+
ωk+1(∞)2

k + 1

)
, (2.105)

with ω0 = ωN = 0. For the su(2) case this gives Q = 1−ω(∞)2 , while for su(3) we

have Q1 = 1− ω1(∞)2 + ω2(∞)2

2
, Q2 =

√
3
(

1− ω2(∞)2

2

)
. The su(3) effective charge

squared is then

Q2
1 +Q2

2 =

(
1− ω1(∞)2 +

ω2(∞)2

2

)2

+ 3

(
1− ω2(∞)2

2

)2

=
2∑
j=1

j(j + 1)

2

(
1− ωj(∞)2

j
+
ωj+1(∞)2

j + 1

)2

(2.106)

since ω3 = 0 for su(3), which is in agreement with (2.79). Similarly, in the su(N)

case the effective charge squared is

Q2 =
N−1∑
j=1

Q2
j =

N−1∑
j=1

j(j + 1)

2

(
1− ωj(∞)2

j
+
ωj+1(∞)2

j + 1

)2

. (2.107)

We wish to show that stable black hole solutions can be determined uniquely by their

global charges. Since the black holes are characterized by the values of the gauge

field functions at infinity (as well as the mass M , cosmological constant Λ and the

constants cj ) [12], we need to be able to determine the values of the gauge field

functions at infinity from the charges, i.e. we require that the expressions (2.105)

are invertible. Rearranging (2.105) for k = N − 1 gives

ωN−1(∞)2

N − 1
= 1− 2QN−1√

2N(N − 1)
. (2.108)



2.6. CHARACTERIZATION OF STABLE BLACK HOLES 37

Similarly

ωN−2(∞)2

N − 2
= 1− 2QN−2√

2(N − 1)(N − 2)
+
ωN−1(∞)2

N − 1

= 2− 2

(
QN−2√

2(N − 1)(N − 2)
+

QN−1√
2N(N − 1)

)
, (2.109)

ωN−3(∞)2

N − 3
= 3− 2QN−3√

2(N − 2)(N − 3)

−2

(
QN−2√

2(N − 1)(N − 2)
+

QN−1√
2N(N − 1)

)
, (2.110)

and in general

ωj(∞)2 = j

(
(N − j)− 2

N−1∑
k=j

Qk√
2k(k + 1)

)
. (2.111)

Again we check with the expressions for su(2) and su(3). From (2.85) we have

ω(∞)2 = 1−Q while substituting N = 2 into (2.111) gives ω2
1 = 1− 2Q1√

4
= 1−Q1 .

For su(3), equation (2.111) implies

ω1(∞)2 = 2− 2
2∑

k=1

Qk√
2k(k + 1)

= 2−Q1 −
Q2√

3
,

ω2(∞)2 = 2

(
1− 2

Q2

2
√

3

)
= 2

(
1− Q2√

3

)
, (2.112)

which can be rearranged to give (2.97) as required. We note that, up to an overall

sign, the values of the gauge field functions at infinity can be determined from the

charges. Since the EYM equations (2.13–2.15) are invariant under the transforma-

tions ωj → −ωj , the sign is irrelevant. Therefore, since we can characterize su(N)

EYM black holes in AdS at infinity by Λ, the mass M , the quantities cj and the

ωj(∞) [12], we can equivalently characterize them by Λ, M , cj and Qj .

§ 2.6 Characterization of stable black holes

According to the “no-hair” conjecture [65], in asymptotically flat space and in the

presence of an electromagnetic field, black holes are characterized by their mass,

angular momentum, and electric or magnetic charge. However, as we shall demon-

strate in this section, static EYM black holes with an su(N) gauge field in AdS space

are not characterized uniquely by their mass and total effective charge Q given by
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(2.79) if N > 2. With an su(N) gauge field there are N − 1 gauge field functions,

or equivalently N − 1 charges Qi (see previous section). The aim of this section is

to argue, based on numerical evidence in section 2.6.1 and analytic work in section

2.6.2, that the charges Qi , along with the mass M and cosmological constant Λ, are

sufficient to characterize stable black hole solutions uniquely. Hence the purely mag-

netic su(N) EYM black holes, in the presence of a negative cosmological constant,

obey Bizon’s modified no hair conjecture [17].

2.6.1 Numerical evidence

In the su(2) case, there is only one magnetic charge Q , which we plot against the

mass parameter m0 at fixed Λ = −3 with various values of the event horizon radius

rh in figure 2.9. At the event horizon, these black holes are characterized by Λ, rh

and ω(rh) [12]. Since there are no two black holes with the same M and Q but

different values of rh , we conclude that the black holes are indeed characterized by

their mass M and charge Q . However, in the su(3) case there are two magnetic

charges Q1 and Q2 , and the effective charge Q =
√
Q2

1 +Q2
2 . At the event horizon,

these black holes are characterized by Λ, rh , ω1(rh) and ω2(rh) [12]. If su(3) black

holes were characterized uniquely by M and Q , we would therefore not expect to

find two black holes with the same M and Q , but different rh . In figure 2.10 we

plot M and Q for su(3) black holes with Λ = −3 and various values of rh . We

note that there are solutions with the same mass parameter m0 = 6.1 and effective

charge Q = 5 for rh = 1, 1.25 and 1.5. We therefore conclude that su(3) black

holes are not uniquely characterized by M and Q .

As shown in [12], su(N) EYM black holes are characterized by N+1 parameters

at the event horizon: the cosmological constant Λ, the event horizon radius rh and

the N − 1 gauge field functions ωj(rh). At infinity, they are characterized by 2N

parameters: Λ, the mass M as measured from infinity (or equivalently the mass

parameter m0 = M
4π

, see section 2.5.1), the N − 1 charges Qj (or equivalently the

gauge field functions at infinity, see section 2.5.2) and the N − 1 quantities cj [12].

We therefore have N − 1 additional parameters at infinity, we will argue that the

cj are single valued functions of M , Λ and the ωj(∞) and that the solutions are

therefore characterized uniquely by these latter N + 1 parameters.

A plot of c as a function of m0 and Q for su(2) black holes is given in figure

2.11, where the constraint (2.52) is satisfied both at the horizon and at infinity. In

figure 2.11, c appears to be single valued for Λ = −3 (similar results are obtained
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for Λ = −10 and −0.1). The equivalent plots for the su(3) case, with Λ = −3,

for c1 and c2 are shown in figure 2.12 and figure 2.13 respectively. In these we have

plotted m0 = 10±0.1, 20±0.1, 30±0.1, which gives rise to the bands. If we were to

plot the exact values, these bands would decrease to rings, although we did not have

sufficient resolution in our data to do this. Once again we have added the constraint

that the stability inequalities (2.52) are satisfied both on the horizon and at infinity.

Figures 2.12 and 2.13 show that in the su(3) case, and for the range of data plotted,

the cj appear to be single valued functions of the charges Qj and the mass M . The

numerical evidence therefore suggests that the cj are functions of M , Λ and the

Qj .

Figure 2.9: Mass parameter m0 plotted as a function of charge Q for spherically
symmetric su(2) black holes with Λ = −3 and n = 0. Since we do not find two
black holes with the same m0 and Q but different rh , we conclude that su(2) black
holes are characterized by their mass and charge.

To provide further numerical evidence, we examined the space of solutions in

terms of the mass M and the charges Qj at fixed Λ. Figures 2.9 and 2.14 show

plots of M and Qj for su(2) and su(3) black holes respectively. The lines in figure

2.9, and the surfaces in figure 2.14, appear to foliate the whole of the parameter

space, and unlike figure 2.10 we do not see any places where two different solutions

have the same mass and charges.
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Figure 2.10: Mass parameter m0 plotted as a function of total effective charge Q
for spherically symmetric su(3) black holes with Λ = −3, n1 = 0, n2 = 0. We find
that there are black holes with the same m0 and Q , but different rh , hence su(3)
black holes are not characterized uniquely by their mass and effective charge.

Therefore the numerical evidence suggests firstly that the cj are functions of M ,

Λ and Qj , which in turn means that the N + 1 parameters required to characterize

the black holes at infinity are M , Λ and Qj . Secondly, by looking directly at M ,

Λ and Qj the numerical evidence suggests that we do not require any additional

parameters to characterize the black holes at infinity.

2.6.2 Analytic work

In the previous section, we found numerical evidence suggesting that, for a given

value of Λ, black holes are characterized at infinity by their mass M and charges

Qj . In this section we will prove that this is the case, at least for stable black holes

with |Λ| large but fixed. We know that the black holes are characterized at the

event horizon by rh and the ωj(rh) [12].

The goal of this section will be to find an approximate, invertible, analytic map

(rh, ωj(rh)) → (M,Qj), which we expect to be valid when l =
√
−3/Λ. If such a

map exists, we can deduce that M and Qj uniquely characterize the black holes.
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Figure 2.11: c1 plotted as a function of the m0 and charge for spherically symmetric
su(2) black holes with Λ = −3, n = 0. It appears that c1 is a single valued function
of the mass and charge Q , and hence not required to characterize the black holes at
infinity.

We start by introducing a new dimensionless radial co-ordinate x = r/rh , such

that x ∈ [1,∞) for all values of the event horizon radius rh . The field equations

(2.13–2.15) become
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Figure 2.12: c1 plotted as a function of the two su(3) charges Q1 and Q2 for
spherically symmetric su(3) black holes with Λ = −3 and n = 0. It appears that c1

is a single valued function of M , Q1 and Q2 , and hence not required to characterize
the black holes at infinity.

0 = x2µ
d2ωj
dx2

+ x2

(
µ

σ

dσ

dx
+
dµ

dx

)
dωj
dx

+
ωj
2

(
2 + ω2

j−1 − 2ω2
j + ω2

j+1

)
(2.113)

dm̂

dx
=

α2

r2
h

N−1∑
j=1

{
j(j + 1)

4x2

(
1−

ω2
j

j
+
ω2
j+1

j + 1

)2

+ µ

(
dωj
dx

)2
}
, (2.114)

dσ

dx
=

2α2σ

r2
hx

N−1∑
j=1

(
dωj
dx

)2

, (2.115)

where m̂ = m/rh . At the event horizon, x = 1, we have

m̂(1) =
1

2

(
1 +

r2
h

l2

)
, (2.116)

which becomes large as l → 0 for fixed rh . We define a further new variable m̃(x)

by

m̂(x) = m1 + m̃(x) (2.117)
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Figure 2.13: c2 plotted as a function of the two su(3) charges Q1 and Q2 for
spherically symmetric su(3) black holes with Λ = −3 and n = 0. It appears that c2

is a single valued function of M , Q1 and Q2 , and hence not required to characterize
the black holes at infinity.

where m1 = m̂(1) (2.116). Multiplying through by l2 , using

µ = 1− 2m

r
+
r2

l2
= 1− 2m1

x
− 2m̃

x
+
r2
hx

2

l2
, (2.118)

and substituting for dσ
dx

and dµ
dx

using (2.114, 2.115, 2.118) we can write (2.113, 2.114)

as

0 = x2

[
l2 − 2m1l

2

x
− 2m̃l2

x
+ r2

hx
2

]
d2ωj
dx2

+
[
2m1l

2 + 2m̃l2 − 2r2
hx

3l2pθ + 2r2
hx

3
] dωj
dx

+ l2Wjωj, (2.119)

l2
dm̃

dx
=

1

r2
h

[
l2 − 2m1l

2

x
− 2m̃l2

x
+ r2

hx
2

]N−1∑
j=1

(
dωj
dx

)2

+
l2

4x2r2
h

N∑
j=1

[(
ω2
j − ω2

j−1 −N − 1 + 2j
)2
]
, (2.120)
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Figure 2.14: Mass parameter m0 plotted as a function of the two su(3) charges
Q1 and Q2 as given in (2.97) for spherically symmetric black hole solutions with
Λ = −3 and n = 0. We do not find two black holes with the same mass and
charges but different event horizon radii, providing evidence that su(3) black holes
are characterized by m0 , Q1 and Q2 .

where

pθ =
N−1∑
j=1

j(j + 1)

4r2
hx

2

(
1−

ω2
j

j
+
ω2
j+1

j + 1

)2

, (2.121)

Wj = 1− ω2
j +

1

2

(
ω2
j−1 + ω2

j+1

)
, (2.122)

and we have used (2.17).

From the constraint (2.23) that the event horizon must be non-extremal, we have

l2
N∑
j=1

[(
ω2
j (rh)− ω2

j−1(rh)−N − 1 + 2j
)2
]
< 2r2

hl
2 + 6r4

h, (2.123)

and therefore for each j we must have

l2
(
ω2
j (rh)− ω2

j−1(rh)−N − 1 + 2j
)2
< 2r2

hl
2 + 6r4

h. (2.124)
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If we define

%j = ω2
j (rh)− ω2

j−1(rh)−N − 1 + 2j, (2.125)

λj = ω2
j (rh)− j(N − j), (2.126)

then we have

l|%1| = l|λ1| <
(
2r2

hl
2 + 6r4

h

) 1
2

l|%2| = l|λ2 − λ1| <
(
2r2

hl
2 + 6r4

h

) 1
2 ⇒ l|λ2| < 2

(
2r2

hl
2 + 6r4

h

) 1
2

l|%j| = l|λj − λj−1| <
(
2r2

hl
2 + 6r4

h

) 1
2 ⇒ l|λj| < j

(
2r2

hl
2 + 6r4

h

) 1
2 ,

(2.127)

and hence we have a bound on (ω2
j (rh)− j(N − j)) given by

l|ω2
j (rh)− j(N − j)| < j

(
2r2

hl
2 + 6r4

h

) 1
2 . (2.128)

The phase space plots in section 2.3 suggest that we do not find black hole

solutions close to the edges of the region defined by (2.123), so we do not need to

consider all ωj(rh) such that (2.123) is satisfied. We also note that the region where

we find n = 0 (potentially stable) solutions grows as l decreases. We therefore

consider a region of the ωj(rh) parameter space which, for small l , is smaller than

the region defined by (2.123) but grows as l decreases. We therefore define new

functions qj by

l2
[
ω2
j (r)− j (N − j)

]2
= l2ςq2

j (x), (2.129)

where the constant ς > 0 is the same for all j , and qj(x) is order one for small

l . Setting ς = 0 then corresponds to considering the whole of the region of the

parameter space satisfying (2.123), while ς = 1 corresponds to an upper bound on

ωj which is independent of l . We therefore expect that 0 < ς < 1.

For su(2) black holes, l−1ω′(r) → 0 as l → 0 [81], so we define new functions

ηj(x) by

l−1dωj
dx

= lκηj(x) (2.130)

for some κ > 0, where η is of order one for small l . Our goal will now be to find

suitable values of the constants ς and κ which give approximate analytic solutions

to the field equations (2.119, 2.120) for small l - we view qj and ηj as being the first

terms in asymptotic series for the field variables, which is asymptotic for small l .
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We start by writing (2.119, 2.120) in terms of qj and ηj :

l2
dm̃

dx
=

l2κ+2

r2
h

[
l2 − 2m1l

2

x
− 2m̃l2

x
+ r2

hx
2

]N−1∑
j=1

η2
j (x)

+
l2ς

4x2r2
h

N∑
j=1

[qj(x)− qj−1(x)]2 ; (2.131)

0 = x2lκ+1

[
l2 − 2m1l

2

x
− 2m̃l2

x
+ r2

hx
2

]
dηj
dx

+lκ+1
[
2m1l

2 + 2m̃l2 − 2r2
hx

3l2pθ + 2r2
hx

3
]
ηj(x)

+
1

2
lς+1 [qj+1(x)− 2qj(x) + qj−1(x)]ωj(x). (2.132)

For equation (2.132) to be non-trivial, we require the first two terms on the right

hand side to be of the same order in l as the last term. Since from (2.129) we have

ωj ∼ l
ς−1
2 , it must be the case that

κ + 1 =
3ς

2
+

1

2
⇒ κ =

3ς

2
− 1

2
, (2.133)

so requiring that κ > 0 means we must have ς > 1/3. Turning to equation (2.131),

it must be the case that the first line on the right hand side is small compared to

the second line for small l since 2κ + 2 = 3ς + 3 > 2ς . Differentiating (2.129) and

comparing with (2.130) gives
dqj
dx
∼ 2qjηjl

1+ς (2.134)

for ω4
j ∼ l2ς−2q2

j and κ given by (2.133). Therefore the functions qj(x) are ap-

proximately constant for small l . Integrating (2.131) then gives, to leading order in

l ,

l2m̃(x) =
l2ς

4r2
h

(
1− 1

x

) N∑
j=1

[qj(1)− qj−1(1)]2

=
l2

4r2
h

(
1− 1

x

) N∑
j=1

[(
ω2
j (rh)− ω2

j−1(rh)−N − 1 + 2j
)2
]
, (2.135)

where we have used the initial condition m̃ = 0 at the event horizon x = 1. We

note that (2.135) implies that m̃ ∼ O (l2ς−2), so the l2m̃ terms in (2.132) are small

compared with l2m1 ∼ O(1) for small l and so can be ignored to leading order in l .

If we take the leading order expression ωj = l
1
2

(ς−1)q
1
2
j , the Yang-Mills equations
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(2.132) are given by

0 = x2

[
r2
hx

2 − 2m1l
2

x

]
dηj
dx

+
[
2m1l

2 + 2r2
hx

3
]
ηj(x)

+
1

2
[qj+1(x)− 2qj(x) + qj−1(x)] qj(x)

1
2 , (2.136)

to leading order in l , since m̃ ∼ O (l2ς−2) and

2r2
hx

3l2pθ = 2r2
hx

3l2ς
N∑
j=1

[qj(x)− qj−1(x)]2 . (2.137)

Taking the qj(x) to be approximately constant, (2.136) can be integrated directly

to give
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ηj(x) = − 1

2r2
h (x2 + x+ 1)

[qj+1(1)− 2qj(1) + qj−1(1)] qj(1)
1
2 , (2.138)

where we have chosen the arbitrary constant of integration to be such that η(x) is

finite at the event horizon x = 1.

We have now obtained a consistent, approximate set of solutions of the field

equations which are valid for all rh � l and all ωj(rh) such that

[
ω2
j (rh)− j (N − j)

]2
< l2ς−2 (2.139)

for some ς ∈
(

1
3
, 1
)
. For these approximate solutions, the gauge field functions ωj

are approximately constant, and therefore the charges (2.105) are given by

Qj =

√
j(j + 1)√

2

(
1− ωj(rh)

2

j
+
ωj+1(rh)

2

j + 1

)
, (2.140)

while the masses of the black holes are given by

M =
rh
2
− Λr3

h

6
+

1

4rh

N∑
j=1

[(
ω2
j (rh)− ω2

j−1(rh)−N − 1 + 2j
)2
]
. (2.141)

At the event horizon, black holes are characterized by Λ, rh and ωj(rh). We

wish to show that these approximate analytic solutions are characterized by Λ, M

and Qj at infinity, which will be the case if we can determine the values of rh and

ωj(rh) from M and the Qj , i.e. if the expressions (2.140) and (2.141) are invertible.

Using the inverse function theorem, this will be the case if the Jacobian

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂M

∂rh

∂M

∂ω1(rh)
· · · ∂M

∂ωN−1(rh)
∂Q1

∂rh

∂Q1

∂ω1(rh)
· · · ∂Q1

∂ωN−1(rh)
...

...
. . .

...
∂QN−1

∂rh

∂QN−1

∂ω1(rh)
· · · ∂QN−1

∂ωN−1(rh)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.142)

is non-zero.
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Differentiating (2.140) and (2.141) we find

∂M

∂rh
=

1

2
− Λr2

h

2
− 1

4r2
h

N∑
j=1

[(
ω2
j (rh)− ω2

j−1(rh)−N − 1 + 2j
)2
]

;

∂M

∂ωk(rh)
= − 2

rh
Wk(rh)ωk(rh);

∂Qj

∂rh
= 0;

∂Qj

∂ωk(rh)
=

√
j(j + 1)√

2

2ωk(rh)

k
(−δj,k + δj+1,k) . (2.143)

Since the Qj do not depend on the rh , we have

J =
∂M

∂rh
JQ, (2.144)

where JQ is the Jacobian of the charges Qj in terms of the ωk(rh). From (2.23) it

can be shown that ∂M
∂rh

> 0, while JQ must be non-zero since we can determine the

ωj(rh) from the charges (2.111). Therefore the Jacobian J (2.144) is non-zero and

rh and ωj(rh) can be uniquely determined from M and the Qj .

Since black holes are characterized uniquely by rh and ωj(rh), they are therefore

also characterized uniquely by M and Qj , at least when l is small.

Figures 2.15 – 2.17 show the accuracy of the approximations. In figures 2.15 and

2.16 we plot ω1 and ω2 respectively for su(3) black holes with increasing values

of |Λ| . We note that the gauge field functions are indeed approximately constant

for large |Λ| , and that this approximation becomes increasingly accurate as |Λ|
increases.

Figure 2.17 shows the difference between the mass as a function of raduis m(r)

for an su(3) black hole with large |Λ| , and the approximation (2.141). We note that

at large r this difference is approximately zero, and that therefore the M is a good

approximation to the mass measured from infinity.

2.6.3 Distinguishability of solitons from black holes

In the previous section we derived approximate analytic expressions for the mass M

and charges Qj of black hole solutions to the EYM equations for small but fixed

l , and showed that these approximate analytic expressions are characterized by M
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Figure 2.15: Plot of ω1(r) for su(3) black holes with ω1(rh) = 1 and increasing values
of |Λ| . We that note the accuracy of the approximation ωj = const. increases with
|Λ| .

and Qj at infinity. In this section we will use a similar approach to find approximate

analytic soliton solutions to the EYM equations, and check whether it is possible

to distinguish between solitons and black holes from infinity given the mass M and

charges Qj .

Solitons are globally regular and have no event horizon. There is therefore only

one length scale, the AdS length l , and we define a new radial co-ordinate by y = r/l .

Following the analysis of [12] we consider the (N − 1) × (N − 1) matrix A with

entries

Ai,j = [j (N − j)]
1
2 [2δi,j − δi+1,j − δi−1,j] , (2.145)

and eigenvectors ϕk such that

Aϕk = k (k − 1) ϕk. (2.146)

We then write the gauge field functions ωj as

ωj(r) = [j (N − j)]
1
2 uj(y), (2.147)
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Figure 2.16: Plot of ω1(r) for su(3) black holes with ω2(rh) = 3 and increasing values
of |Λ| . We that note the accuracy of the approximation ωj = const. increases with
|Λ| .

where the vector

u(y) = (u1, . . . , uN−1)T = u0 +
N∑
k=2

ϕk(y)yklk, (2.148)

and u0 = (1, 1, . . . , 1)T . Next we define scalar variables ζk(y) by

ζk(y) = υTk ϕk(y), (2.149)

where υTk is the k−th left eigenvector of the matrix A . In terms of these new

variables, the Yang-Mills equations (2.13) can be written as [12],

0 = y2µ

[
yk
d2ζk
dy2

+ 2kyk−1dζk
dy

+ k (k − 1) yk−2ζk

]
+
[
2m̂+ 2y3 − P̃

] [
yk
dζk
dy

+ kyk−1ζk

]
+

1

lk
υTkW . (2.150)
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Figure 2.17: Difference between the mass function m(r) and the approximate mass
M given by (2.141) for su(3) black holes with ω1(rh) = 1, ω2(rh) = 3, Λ = 104 ,
showing good agreement for large r , so that M is a good approximation to the mass
measured from infinity. Results become more accurate with increasing |Λ| .

The vector W is defined by W = (W1,W2, . . . ,WN−1)T , with Wj given by

Wj = 1− ω2
j +

1

2

(
ω2
j−1 + ω2

j+1

)
, (2.151)

and

m̂(y) =
m(r)

l
, P̃ (y) =

1

2yl2

N∑
j=1

(
ω2
j − ω2

j−1 −N − 1 + 2j
)2
. (2.152)

Using (2.17), the Einstein equation (2.14) becomes

dm̂

dy
=

1

2y
P̃ + µG, (2.153)

where

G =
N−1∑
j=1

(
dωj
dy

)2

. (2.154)

In a neighbourhood of the origin, soliton solutions are determined by Λ and the
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N−1 parameters ζj(0) [12]. While there are no upper bounds on the values of ζj(0)

for the existence of regular solutions, like the black hole case the size of the region

where we find n = 0 (potentially stable) solutions increases as l decreases [8]. It

is argued in [21] that in the su(2) case, the parameter space expands like l−1 . We

therefore define new variables αk(y) by

ζk(y) = αk(y)lςk−1, (2.155)

where the ςk are constants, but unlike the black hole case we allow for different

values of ςk for each k . We expect that ςk < 1 so that the space of solutions to

be considered grows as l decreases. In the su(2) case, taking 0 < ς < 1 would

correspond to considering a region of the parameter space smaller than that studied

in [21]. Like the black hole case we will assume that the αk(y) are of order one for

small l and all y .

In terms of the new variables, the Yang-Mills equation (2.150) takes the form

0 = y2µ

[
yk
d2αk
dy2

+ 2kyk−1dαk
dy

+ k (k − 1) yk−2αk

]
+
[
2m̂+ 2y3 − P̃

] [
yk
dαk
dy

+ kyk−1αk

]
+

1

lk+σk−1
σTkW . (2.156)

We start by considering the term σT
kW which is given by [12]

υTkW = −k (k − 1) yklk+ςk−1αk +
Z∑

j=k+1

υTk τ jy
jlj, (2.157)

for some Z ∈ N . The σT
k τ j are involve products of up to three of the ζk and are

therefore of order lj−3+ςa+ςb+ςc for some a , b , c . These will be subleading compared

to the first term in (2.157) if k + ςk − 1 < j − 3 + ςa + ςb + ςc , with j ≥ k + 1. This

inequality is satisfied if ςj > 2/3 for all j , in which case we consider only the first

term in (2.157). This gives, to leading order in l ,

0 = µ

[
y2d

2αk
dy2

+ 2ky
dαk
dy

+ k (k − 1)αk

]
+
[
2m̂+ 2y3 − P̃

] [dαk
dy

+ ky−1αk

]
− k (k − 1)αk. (2.158)

We now turn our attention to the quantities G and P̃ . We start by writing the
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β k as

β k(y) = v kζk(y) = v kl
ςk−1αk(y), (2.159)

where the v k = (vk,1, vk,2, . . . , vk,N−1) are right-eigenvectors of the matrix A . The

ωj are then given by

ωj = [j (N − j)]
1
2

[
1 +

N∑
k=2

vk,jy
klk+ςk−1αk(y)

]
. (2.160)

The leading order in l clearly has k = 2, and therefore the leading order behaviour

of G (2.154) is

G = l2ς2ΣG

[
y2dα2

dy
+ 2yα2

]2

+ o
(
l2
)
, (2.161)

where

ΣG =
N−1∑
j=1

j (N − j) v2
2,j. (2.162)

Using the expression (2.160) we find that

ω2
j − ω2

j−1 −N − 1 + 2j = 2 [j (N − j)]
N∑
k=2

vk,jy
klk+ςk−1αk(y)

+ [j (N − j)]

(
N∑
k=2

vk,jy
klk+ςk−1αk(y)

)2

−2 [(j − 1) (N − j + 1)]
N∑
k=2

vk,j−1y
klk+ςk−1αk(y)

− [(j − 1) (N − j + 1)]

(
N∑
k=2

vk,j−1y
klk+ςk−1αk(y)

)2

,

(2.163)

which to leading order in l is given by

ω2
j − ω2

j−1 −N − 1 + 2j = 2Σpy
2l1+ς2α2(y), (2.164)

where

Σp =
N−1∑
j=1

[j (N − j) v2,j − (j − 1) (N − j + 1) v2,j−1] . (2.165)
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Substituting into (2.152), we find that the leading order behaviour of P̃ is

P̃ = 2l2ς2Σ2
Pα

2
2y

3. (2.166)

Substituting the leading order expressions for G (2.161) and P̃ (2.166) into the

Einstein equation (2.153), we find a consistent, non-trivial solution when

m̂ = l2ς2χ(y), (2.167)

with χ(y) satisfying, to leading order in l , the differential equation

dχ

dy
=
(
1 + y2

)
ΣG

[
y2dα2

dy
+ 2yα2

]2

+ Σ2
Pα

2
2y

2. (2.168)

If ς2 > 0, the m̂ and P̃ terms in (2.156) are subleading since they are both of

order l2ς2 , and (2.156) becomes

0 = y
(
1 + y2

) d2αk
dy2

+ 2
[
k + (k + 1) y2

] dαk
dy

+ k (k + 1) yαk. (2.169)

The solution to (2.169) is a hypergeometric function

αk(y) = 2F1

(
1

2
[k + 1] ,

k

2
; k +

1

2
;−y2

)
αk(0), (2.170)

which has a magnitude bounded by |αk(0)| and tends monotonically to zero as

y → ∞ as y−2 for k = 2 and y4−2k for k > 2. Equation (2.168) can then be

integrated directly to find χ(y), which has the boundary conditions

χ(y) = O(y3), y → 0, χ(y) = χ∞ +O(y−1), y →∞. (2.171)

Hence we have a consistent, approximate set of solutions valid for small l . Re-

turning to the original variables, we find that m(r), and therefore the mass is of

order l2ς2+1 , where 0 < ς2 < 1, and

ωj(r) = [j (N − j)]
1
2

[
1 +

N∑
k=2

vk,jr
kαk(y)lςk−1

]
. (2.172)

We find that, unlike black holes, in the small l limit solitons with a non-negligible

charge have a negligible mass. We therefore conclude that it is possible to distinguish
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between solitons and black holes from infinity, by measuring the mass and non-

abelian charges Qi .

§ 2.7 Summary

The purpose of this chapter was to investigate whether EYM black holes in AdS with

an su(N) gauge field obey Bizon’s modified no hair conjecture, that is whether stable

black holes are uniquely characterized by global charges. In this case the appropriate

charges are the mass and N − 1 magnetic charges, which we have constructed. We

have found both numerical and approximate analytic solutions to the field equations,

and in both cases found evidence that the solutions are characterized by global

charges, once we have removed some black holes which we know to be unstable.

This chapter has focussed entirely on purely magnetic gauge fields. In the next

chapter we will consider spherically symmetric dyonic black holes and solitons, where

the gauge field has both a magnetic part (again with N − 1 magnetic charges), but

also a non-zero electric part.



Chapter 3

Spherically symmetric dyons

In this chapter, we extend the work of chapter 2 by considering dyonic black holes

with spherical event horizons as well as dyonic solitons, i.e. we will consider a gauge

potential that has both an electric part and a magnetic part. Such black holes and

solitons with an su(2) gauge field have been considered in [18, 19], and in this chapter

we consider a generalization to black holes and solitons with an su(N) gauge field.

We begin in section 3.1 by extending the gauge potential considered in chapter

2 to include an electric part, and present the EYM equations, which reduce to those

considered in chapter 2 in the limit of vanishing electric field. We will then find trivial

solutions in section 3.2 which are the Schwarzschild-AdS, Reissner-Nordström-AdS

and embedded su(2) solutions.

In section 3.3 we will consider appropriate boundary conditions. For solitons,

which are globally regular, we will find boundary conditions at the origin for su(2)

and su(3). For black holes, we will be interested in boundary conditions close to

the event horizon, which we will find for black holes with an su(N) gauge field for

general N . We will also find boundary conditions at infinity, which are relevant for

both solitons and black holes with an su(N) gauge field.

In section 3.4 we will describe the numerical method used to find solutions to

the field equations. While for black holes this is similar to the method described in

the previous chapter, for solitons we must use a different treatment to increase the

accuracy of our results when using double precision in C++, which is an extension of

the method developed in [8] for the purely magnetic case. Finally, in section 3.5 we

will present numerical results. For comparison with [18, 19] we will present results

for black holes and solitons with su(2) gauge fields, as well as results with the larger

57
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su(3) gauge group.

§ 3.1 Gauge field, metric ansatz and field equations

An appropriate line element for spherically symmetric solutions is given by

ds2 = −σ2µ dt2 + r2(dθ2 + sin2 θ dφ2) + µ−1dr2, (3.1)

where the function σ = σ(r) must be determined from the field equations. The

metric function µ is given by

µ = 1− 2m(r)

r
− Λr2

3
, (3.2)

where Λ = −3/l2 is the cosmological constant, and for the space-time to be asymp-

totically AdS we require σ = 1 at large r .

As in the previous chapter, we take the generalised ansatz for a spherically sym-

metric su(N) gauge potential, which is given by [51]

gA = A dt+
1

2

(
C − CH

)
dθ − i

2

[(
C + CH

)
sin θ +D cos θ

]
dφ+ B dr (3.3)

where A , B , C and D are N ×N matrices which depend only on r . The matrices

A and B are purely imaginary, diagonal and traceless. Since we are now considering

black hole solutions with non-zero electric field, the matrix A is non-zero, although

we can once again set B = 0 by a choice of gauge [51]. The matrix C is upper

triangular, with non-zero entries

Cj,j+1 = ωj(r)e
iγj(r). (3.4)

The constant matrix D is diagonal and traceless, and is given by

D = diag(N − 1, N − 3, ..., 3−N, 1−N). (3.5)

If ωj 6= 0 for all j then one of the Yang-Mills equations becomes γj = 0 for all j

and (3.3) reduces to

gA = gAµdx
µ = A dt+

1

2
(C − CH)dθ − i

2

[
(C + CH) sin θ +D cos θ

]
dφ, (3.6)
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where the only non-zero entries in the matrix C are now

Cj,j+1 = ωj(r). (3.7)

The electric part of the potential

A = −
N−1∑
l=1

hlHl, (3.8)

where hl = hl(r) are also scalar functions of r only, and the Hl are members of

the Cartan subalgebra of su(N), and are given in Appendix A. We can decompose(
C + CH

)
and

(
C − CH

)
into

C + CH = 2i
N−1∑
m=1

ωmF
(1)
m , C − CH = −2

N−1∑
m=1

ωmG
(1)
m , (3.9)

where the N × N matrices F
(1)
m and G

(1)
m are generators of the Lie algebra su(N)

and are also given in Appendix A.

The Einstein-Yang-Mills equations corresponding to the potential (3.6) and line

element (3.1) are derived in Appendix B and are given by

m′ = α2

N−1∑
k=1

 ω2
k

σ2µ

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
r2h′2k
2σ2


+α2

N−1∑
k=1

{
µω′2k +

k(k + 1)

4r2

(
1− ω2

k

k
+
ω2
k+1

k + 1

)2
}
, (3.10)

σ′ = α2

N−1∑
k=1

 2ω2
k

σµ2r

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
2σω′2k
r

 , (3.11)

h′′k = h′k

(
σ′

σ
− 2

r

)
+

√
2(k + 1)

k

ω2
k

µr2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)

+

√
2k

k + 1

ω2
k+1

µr2

(√
k

2(k + 1)
hk −

√
k + 2

2(k + 1)
hk+1

)
, (3.12)

0 = ω′′k + ω′k

(
σ′

σ
+
µ′

µ

)
+

ωk
σ2µ2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
ωk
µr2

(
1− ω2

k +
1

2

(
ω2
k−1 + ω2

k+1

))
, (3.13)
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and for the rest of the chapter we will set the coupling α2 = 4πG/g2 = 1. As

required, equations (3.10–3.13) reduce to the field equations of the previous chapter

when we take hk = 0 for all k . The planar black holes found in chapter 4 have

similar field equations, except with 0 rather than 1 appearing in the expressions(
1− ω2

k

k
+
ω2
k+1

k + 1

)
,

(
1− ω2

k +
1

2

(
ω2
k−1 + ω2

k+1

))
, µ = 1− 2m

r
− Λr2

3
.

(3.14)

§ 3.2 Trivial solutions

Although closed form solutions of the field equations (3.10–3.13) cannot be easily

found in general, there are some “trivial” solutions. In this section we will find

special cases where the line element (3.1) reduces to the Schwarzschild-AdS and

Reissner-Nordström-AdS line elements, as well as finding embedded su(2) solutions.

3.2.1 Schwarzschild-AdS

The line element for the Schwarzschild-AdS solution is given by

ds2 = −
(

1− 2m0

r
− Λr2

3

)
dt2 + r2(dθ2 + sin2 θ dφ2) +

(
1− 2m0

r
− Λr2

3

)−1

dr2,

(3.15)

where the mass m0 is a constant. To obtain this solution, we set σ = 1, remove the

electric field (i.e. set hk = 0 for all k ), and require that m′ = 0. Equation (3.10)

then implies
N−1∑
k=1

[
k(k + 1)

4r2

(
1− ω2

k

k
+
ω2
k+1

k + 1

)2

+ µω′2k

]
= 0. (3.16)

If we take ωk to be constant for all k , we are left with

N−1∑
k=1

k(k + 1)

4r2

(
1− ω2

k

k
+
ω2
k+1

k + 1

)2

= 0, (3.17)

which can be solved by taking ωk = ±
√
k(N − k), as in the previous chapter. This

expression is consistent with equation (3.13), while equations (3.11, 3.12) vanish

identically.
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3.2.2 Reissner-Nordström-AdS

The line element for the Reissner-Nordström-AdS black hole is given by

ds2 = −µRNdt2 + r2(dθ2 + sin2 θ dφ2) + µ−1
RNdr

2, (3.18)

where

µRN = 1− 2m0

r
+
α2
RNq

2

r2
− Λr2

3
, (3.19)

and where both the mass m0 and charge q are constant. Again we set σ = 1, but

in this case we set ωk = 0 for all k . Equation (3.12) then reduces to

h′′k = −2h′k
r

⇒ hk = bk −
ak
r
, (3.20)

by direct integration, with constants of integration ak and bk . Equation (3.10)

becomes

m′ =
N−1∑
k=1

(
r2h′2k

2
+
k(k + 1)

4r2

)
=
α2
RN

2r2

N−1∑
k=1

(
a2
k +

k(k + 1)

2

)
(3.21)

so that

m = m0 −
α2
RN

2r

N−1∑
k=1

(
a2
k +

k(k + 1)

2

)
. (3.22)

Substituting this into the metric function (3.2) gives

µ = 1− 2m0

r
+
α2
RN

r2

N−1∑
k=1

(
a2
k +

k(k + 1)

2

)
− Λr2

3
, (3.23)

and by comparison with (3.19) we find

q2 =
N−1∑
k=1

(
a2
k +

k(k + 1)

2

)
=

N−1∑
k=1

(
h′2k r

4 +
k(k + 1)

2

)
, (3.24)

so the effective charge

q =

√√√√N−1∑
k=1

(
h′2k r

4 +
k(k + 1)

2

)
. (3.25)
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Note that this charge carries an electric component from the h′k term, which was

absent in the Reissner-Nordström black hole of chapter 2, and that if we take ak = 0

we find the Reissner-Nordströ solution from chapter 2 with the same charge.

3.2.3 Embedded su(2) solutions

To obtain embedded su(2) solutions we start by setting

ωk = Akω, hk = Bkh, (3.26)

where ω = ω(r), h = h(r), and Ak and Bk are constants. Substituting into the

Einstein equations (3.10, 3.11), and comparing with the N = 2 case, we require

N−1∑
k=1

A2
k

(√
k + 1

2k
Bk −

√
k − 1

2k
Bk−1

)2

=
N−1∑
k=1

A2
k =

N−1∑
k=1

B2
k =

N−1∑
k=1

k(k + 1)

2
, (3.27)

(
A2
k

k
−
A2
k+1

k + 1

)2

= 1. (3.28)

Substituting (3.26) into the Yang-Mills equations (3.12, 3.13), we require

1 =

(√
k + 1

2k
Bk −

√
k − 1

2k
Bk−1

)2

=
2A2

k − A2
k+1 − A2

k−1

2

=

√
2k(k + 1)

2

A2
k+1

k + 1

(√
k

2(k + 1)
−

√
k + 2

2(k + 1)

Bk+1

Bk

)

+

√
2k(k + 1)

2

A2
k

k

(√
k + 1

2k
−
√
k − 1

2k

Bk−1

Bk

)
(3.29)

to recover the N = 2 case. We can solve (3.27–3.29) by taking

Ak =
√
k(N − k), Bk =

√
k(k + 1)

2
. (3.30)

If we substitute our expressions (3.26) and (3.30) into the field equations (3.10–3.13),

and then rescale the variables as follows

R = λ−1
N r, m̃ = λ−1

N m, h̃ = λNh, Λ̃ = λ2
NΛ, (3.31)
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where

λ2
N =

N−1∑
k=1

A2
k =

N−1∑
k=1

B2
k =

1

6
N(N2 − 1), (3.32)

we find that the field equations are

dm̃

dR
=

ω2h̃2

σ2µ
+
R2

2σ2

(
dh̃

dR

)2

+
1

2R2

(
1− ω2

)2
+ µ

(
dw

dR

)2

,

dσ

dR
=

2ω2h̃2

Rσµ2
+

2σ

R

(
dω

dR

)2

,

d2h̃

dR2
=

dh̃

dR

(
1

σ

dσ

dR
− 2

R

)
+

2h̃ω2

µR2
,

0 =
d2ω

dR2
+
dω

dR

(
1

σ

dσ

dR
+

1

µ

dµ

dR

)
+
ω

µ

(
h̃2

σ2µ
+

1

R2

(
1− ω2

))
, (3.33)

which are precisely the su(2) field equations in terms of the new variables. As with

the full EYM equations, if we set h̃ to zero we recover the embedded su(2) solutions

from the previous chapter. We also find that these equations reduce to the embedded

su(2) equations found in chapter 4 for planar black holes if we replace (ω2−1) with

ω2 , albeit with a different metric function µ .

§ 3.3 Boundary conditions

In this section we will find boundary conditions for su(2) and su(3) solitons, and

su(N) black holes, which we will use to solve the field equations (3.10–3.13) numer-

ically in section 3.5. Solitons are globally regular, and we expect the variables to

have regular expansions at the origin, while for black holes we expect the variables

to have regular expansions at the event horizon. We also expect both black holes

and solitons to be regular at infinity.

3.3.1 At the origin

Boundary conditions for solitons are in general very complicated, and in this section

we consider only gauge groups su(2) and su(3). The generalised su(N) boundary

conditions are presented in [12], although only for purely magnetic solutions, and

we take a similar approach to find the dyonic boundary conditions in this section.

Dyonic boundary conditions for su(2) solitons are presented in [18, 19].
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su(2) solitons

In the su(2) case, the field equations are given by

m′ =
h2

1ω
2
1

σ2µ
+
r2h′21
2σ2

+
(1− ω2

1)
2

2r2
+ µω′21 , (3.34)

σ′ = 2

(
ω2

1h
2
1

σµ2r
+
σω′21
r

)
, (3.35)

ω′′1 = −
(
σ′

σ
+
µ′

µ

)
ω′1 −

ω1h
2
1

σ2µ2
− ω1 (1− ω2

1)

µr2
, (3.36)

h′′1 =

(
σ′

σ
− 2

r

)
h′1 + 2

ω2
1h1

µr2
. (3.37)

We assume that the variables m , σ , ω and h have regular Taylor expansions near

the origin, given by

m = m0 +m1r +m2r
2 +m3r

3 +O
(
r4
)
,

σ = σ0 + σ1r + σ2r
2 +O

(
r3
)
,

ω1 = ω1,0 + ω1,1r + ω1,2r
2 +O

(
r3
)
,

h1 = h1,0 + h1,1r + h1,2r
2 + h1,3r

3 +O
(
r4
)
. (3.38)

For the metric function (3.2) to be regular at the origin, we require m0 = 0, which

gives µ ∼ O(1) to leading order. The third term on the right hand side of (3.34) is

given by

(1− ω2
1)

2

2r2
=

1

2r2

(
1− 2ω2

1,0 + ω4
1,0 + 4ω1,0ω1,1r − 4ω3

1,0ω1,1r +O
(
r2
))
. (3.39)

For regularity of (3.34), we require

1− 2ω2
1,0 + ω4

1,0 = 0, 4ω1,1(ω1,0 − ω3
1,0) = 0, (3.40)

which are solved by ω1,0 = ±1. We take ω1,0 = 1 without loss of generality, since

the field equations are invariant under the transformation ω1 → −ω1 . Turning now

to equation (3.36), we have

ω1

(
1− ω2

1

)
=
[
1 + ω1,1r +O

(
r2
)] [
−2ω1,1r +O

(
r2
)]
, (3.41)
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which must be of order r2 or higher to avoid divergences in (3.36), so that

ω1,1 = 0. Similarly, the leading order behaviour of the right hand side of (3.37) is

2h1,0

(1− 2m1)r2
+

2h1,1

r

(
1

1− 2m1

− 1

)
+O(1), (3.42)

so we must have h1,0 = 0 and either h1,1 = 0 or m1 = 0. From (3.34, 3.35), we now

have

m′ = m1 + 2m2r + 3m3r
2 +O(r3) =

(
3h2

1,1

2σ2
0

+ 6ω2
1,2

)
r2 +O(r3), (3.43)

and

σ′ = σ1 + 2σ2r +O
(
r2
)

= 2

(
h2

1,1

σ0

+ 4σ0ω
2
1,2

)
r +O

(
r2
)
, (3.44)

so that m1 , m2 and σ1 must all be zero and

m3 =
h2

1,1

2σ2
0

+ 2ω2
1,2, σ2 =

h2
1,1

σ0

+ 4σ0ω
2
1,2. (3.45)

Returning to equation (3.37) we have

h′′1 = 2h1,2 + 6h1,3r +O
(
r2
)

= −2h1,2 +

[
2h1,1

(
σ2

σ0

+ 2m3 +
Λ

3
+ 2ω1,2

)
− 4h1,3

]
r +O

(
r2
)
,(3.46)

hence h1,2 = 0, and

h1,3 =
h1,1

5

(
σ2

σ0

+ 2m3 +
Λ

3
+ 2ω1,2

)
. (3.47)

Equation (3.36) provides no further constraints on ω1,2 , and altogether we have

m =

(
h2

1,1

2σ2
0

+ 2ω2
1,2

)
r3 +O

(
r4
)
,

σ = σ0 +

(
h2

1,1

σ0

+ 4σ0ω
2
1,2

)
r2 +O

(
r3
)
,

ω1 = 1 + ω1,2r
2 +O

(
r3
)
,

h1 = h1,1r +
h1,1

5

(
2
h2

1,1

σ2
0

+ 8ω2
1,2 +

Λ

3
+ 2ω1,2

)
r3 +O

(
r4
)
. (3.48)

The value of σ0 is fixed by the requirement that σ approaches one at large r (i.e.
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the space is asymptotically AdS). There are therefore two free parameters, h1,1 and

ω1,2 , along with the cosmological constant Λ.

su(3) solitons

In the su(3) case we have 6 variables, m , σ , ω1 , ω2 , h1 and h2 , with field equations

given by

m′ =
h2

1ω
2
1

σ2µ
+

(√
3

2
h2 −

1

2
h1

)2
ω2

2

σ2µ
+

r2

2σ2

(
h′21 + h′22

)
+

1

2r2

(
1− ω2

1 +
ω2

2

2

)2

+
3

2r2

(
1− ω3

2

2

)2

+ µ
(
ω′21 + ω′22

)
, (3.49)

σ′ =
2ω2

1h
2
1

σµ2r
+

2ω2
2

σµ2r

(√
3

2
h2 −

1

2
h1

)2

+
2σ

r

(
ω′21 + ω′22

)
, (3.50)

ω′′1 = −
(
σ′

σ
+
µ′

µ

)
ω′1 −

ω1h
2
1

σ2µ2
− ω1

µr2

(
1− ω2

1 +
ω2

2

2

)
, (3.51)

ω′′2 = −
(
σ′

σ
+
µ′

µ

)
ω′2 −

ω2

σ2µ2

(√
3

2
h2 −

1

2
h1

)2

− ω2

µr2

(
1− ω2

2 +
ω2

1

2

)
,

(3.52)

h′′1 =

(
σ′

σ
− 2

r

)
h′1 +

1

µr2

[
ω2

2

(
1

2
h1 −

√
3

2
h2

)
+ 2ω2

1h1

]
, (3.53)

h′′2 =

(
σ′

σ
− 2

r

)
h′2 +

√
3ω2

2

µr2

(√
3

2
h2 −

1

2
h1

)
, (3.54)

and once again we assume that the variables have regular Taylor expansions at the

origin:

m = m0 +m1r +m2r
2 +m3r

3 +O
(
r4
)
,

σ = σ0 + σ1r + σ2r
2 +O

(
r3
)
,

ω1 = ω1,0 + ω1,1r + ω1,2r
2 + ω1,3r

3 +O
(
r4
)
,

ω2 = ω2,0 + ω2,1r + ω2,2r
2 + ω2,3r

3 +O
(
r4
)
,

h1 = h1,0 + h1,1r + h1,2r
2 +O

(
r3
)
,

h2 = h2,0 + h2,1r + h2,2r
2 +O

(
r3
)
. (3.55)
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Again we start by considering the r−2 term in the m′ equation (3.49). This time

for regularity we require

1

2

(
1− ω2

1,0 +
ω2

2,0

2

)2

+
3

2

(
1−

ω3
2,0

2

)2

= 0, (3.56)

which is solved by ω2
1,0 = 2 = ω2

2,0 , and once again we take the positive square root

without loss of generality. As in the su(2) case, regularity of equations (3.51–3.54)

requires that there are no terms of order r in the expansions for the ωj , and no terms

of order one in the hj , i.e. ω1,1 , ω2,1 , h1,0 and h2,0 are all zero. By considering the

leading order terms on the right hand sides of equations (3.49, 3.50) we again find

that m1 , m2 and σ1 are all zero along with

3m3 =
ω2

1,0h
2
1,1

σ2
0

+
ω2

2,0

σ2
0

(√
3

2
h2,1 −

1

2
h1,1

)2

+
(h1,1 + h2,1)2

2σ2
0

+
1

2
(2ω1,0ω1,2 − ω2,0ω2,2)2 +

3

2
ω2

2,0ω
2
2,2 + 4ω2

1,2 + 4ω2
2,2, (3.57)

2σ2 =
4

σ0

h2
1,1 +

(√
3

2
h2,1 −

1

2
h1,1

)2
+ 8σ0

(
ω2

1,2 + ω2
2,2

)
. (3.58)

Substituting the expansions (3.55) into equations (3.51–3.52) one can write the con-

ditions in matrix form as

2ω2 =M2ω2 , 6ω3 =M2ω3 , (3.59)

where ω2 = (ω1,2, ω2,2)T , ω3 = (ω1,3, ω2,3)T , and the matrix

M2 =

(
4 −2

−2 4

)
. (3.60)

The matrix M2 has normalized eigenvectors

v1 =
1√
2

(
1

1

)
, v2 =

1√
2

(
1

−1

)
, (3.61)

corresponding to eigenvalues of 2 and 6 respectively (note that this is the same

matrix and eigenvalues as found in [8]). Hence ω2 must be proportional to v1 and

ω3 must be proportional to v2 . We therefore define new constants b1 and b2 such
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that ω2 = b1v1 , ω3 = b2v2 , and we have

ω1,2 =
1√
2
b1, ω2,2 =

1√
2
b1, ω1,3 =

1√
2
b2, ω2,3 = − 1√

2
b2. (3.62)

Similarly, from equations (3.53, 3.54) we find

− 2h1 = N2h1 , 2h2 = N2h2 , (3.63)

where h1 = (h1,1, h2,1)T , h2 = (h1,2, h2,2)T , and the matrix

N2 =

(
1 −

√
3

−
√

3 −1

)
(3.64)

has eigenvalues of −2 and 2 (note that this is not the same as the matrix form

for the conditions on the ωk , although it is also symmetric). The corresponding

normalized eigenvectors are given by

u1 =
1

2

(
1√
3

)
, u2 =

1

2

(
−
√

3

1

)
, (3.65)

and we again define new constants g1 , g2 such that h1 = g1u1 , h2 = g2u2 , and

therefore

h1,1 =
1

2
g1, h2,1 =

√
3

2
g1, h1,2 = −

√
3

2
g2, h2,2 =

1

2
g2. (3.66)

Altogether, we then have

m =

(
2h1,1

σ0

+ 4ω1,2

)
r3 +O

(
r4
)
,

σ =
(
4h2

1,1 + 8σ0ω
2
1,2

)
r2 +O

(
r3
)
,

ω1 =
√

2 +
1√
2
b1r

2 +
1√
2
b2r

3 +O
(
r4
)
,

ω2 =
√

2 +
1√
2
b1r

2 − 1√
2
b2r

3 +O
(
r4
)
,

h1 =
1

2
g1r −

√
3

2
g2r

2 +O
(
r3
)
,

h2 =

√
3

2
g1r +

1

2
g2r

2 +O
(
r3
)
. (3.67)

Once again the value of σ0 is fixed by the requirement that σ approaches one at
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large r . We now have two free parameters which determine the behaviour of the ωk ,

and two for the hk . For the purely magnetic case, there are N − 1 free parameters

for general N [8], while for dyonic solitons we expect to find 2(N − 1), and require

expansions up to rN in the ωk , and rN−1 in hk .

3.3.2 At the event horizon

We start by Taylor expanding our variables in a neighbourhood of the event horizon:

m(r) = m(rh) +m′(rh)(r − rh) +O(r − rh)2,

σ(r) = σ(rh) + σ′(rh)(r − rh) +O(r − rh)2,

ωk(r) = ωk(rh) + ω′k(rh)(r − rh) +O(r − rh)2,

hk(r) = h′k(rh)(r − rh) +O(r − rh)2,

µ(r) = µ′(rh)(r − rh) +O(r − rh)2. (3.68)

We are looking for solutions where all quantities are regular at the event horizon,

so we have set hk(rh) = 0 to avoid a singularity in equation (3.12) at r = rh .

Substituting µ(rh) = hk(rh) = 0 into equation (3.10), and noting that both µ and

hk are of order (r − rh) so that h2
k/µ vanishes at r = rh , we find that

m′(rh) =
N−1∑
k=1

[
r2
hh
′
k(rh)

2

2σ(rh)2
+
k(k + 1)

4r2
h

(
1− ωk(rh)

2

k
+
ωk+1(rh)

2

k + 1

)2
]
, (3.69)

which reduces to the result from the previous chapter (2.21) when h′k(rh) = 0 for all

k . Multiplying equation (3.13) through by µ and evaluating it at the event horizon,

we find that

ω′k(rh) =
ωk(rh)

µ′(rh)r2
h

(
ωk(rh)

2 − 1− 1

2

(
ωk−1(rh)

2 + ωk+1(rh)
2
))

, (3.70)

which does not contain any hk and is therefore the same as in the previous chapter

(2.21). Evaluating (3.11) at the event horizon we find

σ′(rh) = 2
N−1∑
k=1

 ωk(rh)
2

σ(rh)µ′(rh)2rh

(√
k + 1

2k
h′k(rh)−

√
k − 1

2k
h′k−1(rh)

)2


+2
N−1∑
k=1

σ(rh)ω
′
k(rh)

2

rh
, (3.71)
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which again reduces to the result from the previous chapter (2.21) if all the hk(rh)

are zero. For the black hole to be non-extremal (and therefore have non-zero surface

gravity and Hawking temperature) we also require

µ′(rh) =
1

rh
− 2m′(rh)

rh
− Λrh > 0. (3.72)

To summarize, the boundary conditions of our variables at the event horizon are

given by:

m(r) =
rh
2
− Λr3

h

6
+m′(rh)(r − rh) +O(r − rh)2,

σ(r) = σ(rh) + σ′(rh)(r − rh) +O(r − rh)2,

ωk(r) = ωk(rh) + ω′k(rh)(r − rh) +O(r − rh)2,

hk(r) = h′k(rh)(r − rh) +O(r − rh)2, (3.73)

where

ω′k(rh) =
ωk(rh)

µ′(rh)r2
h

(
ωk(rh)

2 − 1− 1

2

(
ωk−1(rh)

2 + ωk+1(rh)
2
))

,

m′(rh) =
N−1∑
k=1

[
r2
hh
′2
k

2σ(rh)2
+
k(k + 1)

4r2
h

(
1− ωk(rh)

2

k
+
ωk+1(rh)

2

k + 1

)2
]
,

σ′(rh) = 2
N−1∑
k=1

 ωk(rh)
2

σ(rh)µ′(rh)2rh

(√
k + 1

2k
h′k(rh)−

√
k − 1

2k
h′k−1(rh)

)2


+2
N−1∑
k=1

σ(rh)ω
′
k(rh)

2

rh
, (3.74)

and

µ′(rh) =
1

rh
− 2m′(rh)

rh
− Λrh > 0. (3.75)

There are 2(N − 1) free parameters in the theory: the ωk(rh) and the h′k(rh) for

k = 1, .., N − 1. The value of σ(rh) is fixed by the requirement that σ approaches

one at large r . When searching for numerical solutions in sections 3.5.1 and 3.5.2 we

will consider only values of the parameters such that (3.72) is satisfied. In fact, we

do not find solutions for all such values of the parameters, as can be seen in figures

3.2–3.9, as in the purely magnetic case.
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3.3.3 At infinity

We assume that our variables have regular Taylor series expansions at large r :

m = m0 +
m1

r
+O

(
1

r2

)
,

σ = σ0 +
σ1

r
+
σ2

r2
+
σ3

r3
+
σ4

r4
+O

(
1

r5

)
,

ωk = ωk,∞ +
ck,1
r

+O
(

1

r2

)
,

hk = hk,∞ +
hk,1
r

+O
(

1

r2

)
. (3.76)

The expansions (3.76) are the same as in chapter 2, except that we now have an

additional Taylor expansion for the hk . We are looking for asymptotically AdS

solutions, and therefore require σ0 = 1 so that the line element (3.1) approaches the

line element for anti-de Sitter space in the large r limit. Using (3.76) to evaluate

(3.10) at large r gives

m′ =
1

r2

N−1∑
k=1

[
k(k + 1)

4

(
1−

ω2
k,∞

k
+
ω2
k+1,∞

k + 1

)2

+
h2
k,1

2
+
c2
k,1

l2

]
(3.77)

+
1

r2

N−1∑
k=1

[
ω2
k,∞

(√
k + 1

2k
hk,∞ −

√
k − 1

2k
hk−1,∞

)]
+O

(
1

r3

)
. (3.78)

Turning now to equation (3.11) we have

σ′ =
2

r5

N−1∑
k=1

l4ω2
k,∞

(√
k + 1

2k
hk,∞ −

√
k − 1

2k
hk−1,∞

)2

+ c2
k,1

+O
(

1

r6

)
. (3.79)

Since the right hand side of (3.79) is of order r−5 , we must have σ1 = σ2 = σ3 = 0.

Finally, our Yang-Mills equations for ωk and hk give no constraints on ck,1 or hk,1

and we have
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ωk(r) = ωk,∞ +
ck,1
r

+O
(

1

r2

)
,

hk(r) = hk,∞ +
hk,1
r

+O
(

1

r2

)
,

m(r) = m0 −
1

r

N−1∑
k=1

[
k(k + 1)

4

(
1−

ω2
k,∞

k
+
ω2
k+1,∞

k + 1

)2

+
h2
k,1

2
+
c2
k,1

l2

]

−1

r

N−1∑
k=1

[
ω2
k,∞l

2

(√
k + 1

2k
hk,∞ −

√
k − 1

2k
hk−1,∞

)]
+O

(
1

r3

)
.

σ(r) = 1− 1

2r4

N−1∑
k=1

l4ω2
k,∞

(√
k + 1

2k
hk,∞ −

√
k − 1

2k
hk−1,∞

)2

+ ck,1

 ,
(3.80)

where l2 = −3/Λ. As required, the expansions (3.80) reduce to those of the purely

magnetic solutions of chapter 2 when we take hk,∞ = 0 = hk,1 for all k .

§ 3.4 Numerical method

Numerical solutions to the field equations for black holes are found in the same way

as in the previous chapter, except we have N − 1 additional variables, which are

the functions hk describing the electric part of the potential. The N − 1 second

order ODEs for the hk are broken into 2N −2 first order ODEs in hk and h′k in the

same way as the equations for the ωk , giving a total of 4N − 2 first order ODEs in

m , σ , hk , h′k , ωk and ω′k . The field equations (3.10–3.13) are singular at the event

horizon, so the boundary conditions (3.73) are implemented at r − rh = 10−7 . We

then integrate outwards to large r using a Bulirsch-Stoer algorithm in C++ [32].

However, for the solitons it is a little more complicated, particularly in the su(3)

case. In the su(2) case, we parameterize ω1 at the origin using the constant ω1,2

(3.48). Close to the origin we have ω1 = 1 + ω1,2r
2 + O(r2), where r is small, but

due to the limited precision of variables in C++, we risk large errors in terms of the

form (1−ω2
1). We therefore introduce a new variable ψ = ω2

1 − 1, along with a new

first order ODE

ψ′ = 2ω1ω
′
1. (3.81)
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In the su(3) case, we introduce new variables β1(r) and β2(r) as in [8], such that

ω1 =
√

2 +
1√
2

(β1 + β2) , ω2 =
√

2 +
1√
2

(β1 + β2) , (3.82)

and which have boundary conditions at the origin given by

βj(r) = bjr
j+1 +O

(
rj+2

)
. (3.83)

Similarly for the h1 and h2 we introduce ς1(r) and ς2(r) such that

h1 =
1

2
ς1 −

√
3

2
ς2, h2 =

√
3

2
ς1 +

1

2
ς2 (3.84)

and near the origin

ςj = gjr
j +O

(
rj+1

)
. (3.85)

Our new variables then have equations given by

β′′1 = −
(
σ′

σ
+
µ′

µ

)
β′1 +

1

4µr2
(2 + β1)(β2

1 + 4β1 + 7β2
2)

− 1√
2σ2µ2

[
√

2

(
9ς2

1

16
+

3ς2
2

2

)
+
β1√

2

(
9ς2

1

16
+

3ς2
2

2

)
−
√

3β2ς1ς2√
2

]
,

β′′2 = −
(
σ′

σ
+
µ′

µ

)
β′2 +

1

4µr2
(7β2

1 + 28β2 + β2
2 + 24)β2

− 1√
2σ2µ2

[
√

6ς1ς2 +

√
3β2ς1ς2√

2
− β1√

2

(
9ς2

1

16
+

3ς2
2

2

)]
,

ς ′′1 =

(
σ′

σ
− 2

r

)
ς ′1 +

2ς1
µr2

+
1

µr2

(
1

2
(β2

1 + β2
2) + 2(β1 − β2)− β1β2

)(
1

2
ς1 +

√
3

2
ς2

)

+
1

µr2

(
1

2
(β2

1 + β2
2) + 2(β1 + β2) + β1β2

)(
1

2
ς1 −

√
3

2
ς2

)
,

ς ′′2 =

(
σ′

σ
− 2

r

)
ς ′2 +

6ς2
µr2

+
1

µr2

(
1

2
(β2

1 + β2
2) + 2(β1 − β2)− β1β2

)(√
3

2
ς1 +

3

2
ς2

)

+
1

µr2

(
1

2
(β2

1 + β2
2) + 2(β1 + β2) + β1β2

)(√
3

2
ς1 −

3

2
ς2

)
. (3.86)
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Equations (3.86) can then be integrated as described above, along with (3.49, 3.50),

and reduce to those of [8] if we take ς1 = 0 = ς2 .

§ 3.5 Numerical results

In this section we present numerical results obtained using the method discussed in

section 3.4, for su(2) and su(3) black holes and solitons. We note that the su(2)

case has already been studied in the literature [18, 19].

3.5.1 su(2) black holes

We begin with su(2) black holes. The equation for h1 is

h′′1 =

(
σ′

σ
− 2

r

)
h′1 + 2

ω2
1h1

µr2
. (3.87)

If (3.87) has a turning point at r = r0 , then h′(r0) = 0 and

h1(r0)′′ = 2
ω1(r0)2h1(r0)

µr2
0

. (3.88)

Since µ > 0 for r > rh , if h1(r0) > 0 the turning point is a minimum, and if

h1(r0) > 0 the turning point is a maximum. Hence we conclude that h1 is monotonic

for su(2) (we also find this is true numerically from su(3)). We therefore label

solutions by the number of nodes n in ω1 . Figure 3.1 shows a typical solution

for an su(2) black hole with Λ = −0.01. As expected, h1 is monotonic, and for

ω1(rh) = 0.95, h′1(rh) = 0.01 we find one node in the gauge field function ω1 (n = 1).

Figure 3.2 shows a phase space plot for black holes with Λ = −0.01, part of

which is shown in [18]. We restrict our attention to the region of the parameter

space where (3.72) is satisfied. However there are some regions of the parameter

space where (3.72) is satisfied but we do not find black hole solutions, which are

in the red “no solution” region. All other points on the plot represent black hole

solutions with particular values of h′1(rh) and ω1(rh), with rh = 1, and are colour

coded by the number of nodes n in the gauge field function ω1 . While the plot in

[18] concentrated on the nodeless n = 0 region, we find that the parameter space is

very rich for this value of Λ, with solutions with up to 17 nodes. For comparison

with [18], figure 3.3 shows a close up of the n = 0 region which is in agreement with

[18].
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Figure 3.1: Typical n = 1 solution for an su(2) black hole with Λ = −0.01, with
ω1(rh) = 0.95, h′1(rh) = 0.01. As expected from (3.88), the electric field function
h1(r) is monotonic.

Figure 3.4 shows a similar plot for su(2) black holes with rh = 1 and Λ = −3.

As in the previous chapter, we find that as |Λ| increases, the size of the n = 0 region

increases, and for these value of Λ and rh we find no solutions with nodes. We also

note a small line of “no solution” points at ω1(rh) = 1 and small h′1(rh), although

it is possible that this is due to numerical error.

It was found in [16] that in flat space, and in the absence of an electric field,

there are discrete families of solutions, which are indexed by the number of nodes in

the gauge field function ω1 . It was found that there was a solution with one node

for ω(rh) = 0.632206952. In figure 3.5 we plot h′1(rh) against log10(Λ) for black

holes with rh = 1 and the n = 1 value of ω1(rh) = 0.632206952. We note that

for this value of ω1(rh) we do find solutions as Λ approaches zero, although to find

solutions we also require h′1(rh) to approach zero, as expected. This is in contrast

to figure 3.6, which takes ω1(rh) = 0.5. This value of ω1(rh) does not correspond to

a solution in flat space. In AdS we find that there is a critical value of Λ which is
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Figure 3.2: Phase space plot for su(2) dyonic black holes with Λ = −0.01 and
rh = 1. The red “no solution” region indicates where (3.72) is satisfied but we do
not find black hole solutions. We note that the n = 0 region where the gauge field
function has no nodes makes up a small region of the parameter space, which is
located around ω1(rh) = 1, h′1(rh) = 0.

around 10−9 , below which we do not find any solutions for any values of h′1(rh).
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Figure 3.3: Close up view of the area surrounding the n = 0 region from figure 3.2.
The n = 0 region found here is in agreement with that found in [18].
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Figure 3.4: Phase space plot for su(2) dyonic black holes with Λ = −3 and rh = 1.
The red “no solution” region indicates where (3.72) is satisfied but we do not find
black hole solutions. We note that, as in the previous chapter, for su(2) black holes
with Λ = −3 we do not find black holes which have nodes in the gauge field function
ω1 .
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Figure 3.5: Plot of h′1(rh) against cosmological constant Λ for the n = 1 asymptot-
ically flat value of ω1(rh) = 0.632206952 [16], colour coded by the number of nodes
in the gauge field function ω1 . We note that there are n = 1 solutions in the limit
Λ→ 0 and h′(rh)→ 0. We also note a very rich structure, with potentially a very
high number of nodes as |Λ| decreases.
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Figure 3.6: Plot of h′1(rh) against cosmological constant Λ with ω1(rh) = 0.5, colour
coded by the number of nodes in the gauge field function ω1 . We note that there
are no solutions in the limit Λ→ 0.
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3.5.2 su(3) black holes

We next turn to su(3) black holes. In addition to the cosmological constant Λ and

event horizon radius rh (we will take the value rh = 1 for all numerical results in this

section), we now have four parameters at the event hozion, ω1(rh), ω2(rh), h′1(rh)

and h′2(rh). Figure 3.7 shows a typical solution for a black hole with Λ = −0.01. The

horizon parameters are ω1(rh) = ω2(rh) = 1.2, h′1(rh) = 0.01 and h′2(rh) = 0.005.

As in previous sections we label solutions by the number of nodes in the gauge field

functions ωk , noting that the electric field functions h1 and h2 are monotonic, with

this particular solution having n1 = 2, n2 = 3.

Figure 3.7: Typical solution for su(3) dyonic black holes with Λ = −0.01. At the
horizon ω1(rh) = ω2(rh) = 1.2, h′1(rh) = 0.01 and h′2(rh) = 0.005, giving a solution
with n1 = 2, n2 = 3.

As before, we find a very rich solution space for small values of |Λ| . Figure 3.8

shows a phase space plot for su(3) black holes with Λ = −0.01, where we have fixed

the values of ω1(rh) = 1.2 = ω2(rh) and scanned over values of h′1(rh) and h′2(rh).

We find that there are no nodeless solutions in this case, with the smallest number

of nodes being the n1 = 2 = n2 region, which is the blue region with low values of

h′1(rh) and h′2(rh) in figure 3.8. The adjacent regions are the n1 = 2, n2 = 3 region

in yellow, and the n1 = 3, n2 = 2 in green, with the number of nodes increasing with

h′1(rh) and h′2(rh). We also note that this phase space plot is symmetric about the



82 CHAPTER 3. SPHERICALLY SYMMETRIC DYONS

line h′2(rh) =
√

3h′1(rh), and that this line corresponds to embedded su(2) solutions

(see section 3.2.3).

Figure 3.8: Phase space plot for su(3) dyonic black holes with Λ = −0.01, rh = 1
and ω1(rh) = ω2(rh) = 1.2, colour coded by the number of zeros of the gauge field
functions. For these values of the parameters at the horizon, there are no nodeless
solutions, with the lowest number of nodes being n1 = n2 = 2 at small h′1(rh) and
h′2(rh). In the large red region (3.72) is satisfied but we do not find black hole
solutions.

In contrast, figure 3.9 shows a similar plot for su(3) black holes with Λ = −3,

this time with ω1(rh) = 1.3, ω2(rh) = 1.2. As can be seen in figure 2.5, black

holes with these horizon parameters and cosmological constant are nodeless when

no electric field is present. From figure 3.9 it is clear that solutions are nodeless for

all allowed values of the electric field. Note however that we do not expect this to

hold for all values of ω1(rh) and ω2(rh), since it can be seen from figure 2.5 that

there are some solutions with nodes.
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Figure 3.9: Phase space plot for su(3) dyonic black holes with Λ = −3, rh = 1,
ω1(rh) = 1.3, ω2(rh) = 1.2, colour coded by the number of zeros in the gauge field
function. In this case there are only nodeless solutions.
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3.5.3 su(2) solitons

In this section we consider the case of su(2) soliton solutions, which have been

considered in [18, 19]. Soliton solutions have no event horizon, and are regular

at the origin. In the su(2) case, they are characterized by two parameters at the

origin, denoted ω1,2 and h1,1 (3.48), along with the cosmological constant Λ. A

typical solution is shown in figure 3.10, where the gauge field function ω1(r) has one

node.

Figure 3.10: Typical n = 1 solution for a su(2) soliton with Λ = −0.01, ω1,2 =
−0.002, h1,1 = 0.003 and rh = 1.

The full solution space for solitons with Λ = −0.01 is shown in figure 3.11. As

with the black holes, the n = 0 region is given in [18], and for comparison a similar

region is shown in figure 3.12, which is in agreement with [18]. The parameter space

for Λ = −0.01 is again very rich, with solutions possessing up to 17 nodes. While,

as in [18], we do find nodeless solutions, we find that these make up a very small

part of the parameter space.

Again this is in contrast with the Λ = −3 solutions, which have a much simpler
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Figure 3.11: Phase space plot for su(2) dyonic solitons with Λ = −0.01. We note
that the green n = 0 region where the gauge field function has no nodes (around
ω1,2 = 0, h1,1 = 0) makes up a small region of the parameter space.

parameter space. The phase space for su(2) solitons with Λ = −3 is shown in figure

3.13, and posessess only nodeless and n = 1 solutions, with the n = 0 region being

much larger than in the smaller |Λ| case.
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Figure 3.12: Close up view of the area surrounding the n = 0 region from figure
3.11. As for the black holes, the n = 0 region found here is in agreement with that
shown in [18].



3.5. NUMERICAL RESULTS 87

Figure 3.13: Phase space plot for su(2) dyonic solitons with Λ = −3. As with the
black holes, we find the solution space is much simpler with a larger value of |Λ| ,
and has a larger n = 0 region.
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3.5.4 su(3) solitons

Finally we consider the case of su(3) solitons, which are characterized at the origin

by b1 , b2 , g1 and g2 , in addition to the cosmological constant Λ (3.67). A typical

solution with Λ = −0.01 is shown in figure 3.14, with parameters b1 = −0.002,

b2 = −0.00001, g1 = 0.001 and g2 = 0.0005. As with the black holes, h1 and h2 are

monotonic functions, and we label solutions by the number of nodes in the gauge

field functions ω1 and ω2 , with this particular solution taking n1 = 1, n2 = 1.

The full phase space plot for Λ = −0.01 is again very complicated, as in previous

sections. In figure 3.15 we fix b1 = −0.002, b2 = −0.00001, and scan over values

of g1 and g2 . Since there is no event horizon, there is no analogue of (3.72), and

therefore no obvious range of values to scan over for g1 and g2 .

For clarity the “no solution” region is omitted, and only solutions are included.

The nodeless region is the red region with small g2 , with the adjacent n1 = 1, n2 = 0

region in yellow, n1 = 0, n2 = 1 region in green, and higher numbers of nodes as

g2 increases. We note that, despite the treatment of the numerics in section 3.4, we

still find some numerical errors, as can be seen in the blurred line between light blue

n1 = 3, n2 = 1, and dark blue n1 = 3, n2 = 3 regions.

Again, the Λ = −3 region is much less complicated, and is plotted in figure

3.16 with fixed b1 = −0.2, b2 = −0.1. Once again we find that the nodeless region

dominates the parameter space. However, we do find a small n1 = 0, n2 = 1 region,

and, although it is difficult to see from figure 3.16, a very small n1 = 1, n2 = 0

region.

§ 3.6 Summary

To summarise, we have found black hole and soliton solutions with su(2) and su(3)

gauge fields. In the previous chapter it was found that, for zero electric field, the

size of the nodeless region of the parameter space increases with |Λ| , up to a certain

value of |Λ| above which we find only nodeless solutions. From our numerical results

this appears to be the case for nonzero electric fields as well. It is likely that the

nodeless region of the parameter space will play an important role in the stability

analysis of the dyonic solutions, as the presence of an electric field is not expected

to change the stability of the solutions [18]. However, such an analysis remains an

open problem (the su(2) case is currently being studied by E. Winstanley and B.
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Figure 3.14: Typical n1 = 1, n2 = 0 solution for an su(3) soliton with Λ = −0.01.
Parameters at the event horizon are b1 = −0.002, b2 = −0.00001, g1 = 0.001,
g2 = 0.0005.

Nolan [63]).

Much of the work on black holes in AdS space is motivated by the AdS/CFT

correspondence. While dyonic black holes with spherical event horizons have no

obvious application to this correspondence, dyonic black holes with planar event

horizons have been considered in the context of holographic superconductivity, and

are the subject of the next chapter.
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Figure 3.15: Phase space plot for su(3) dyonic solitons with Λ = −0.01, b1 =
−0.002, b2 = −0.00001. Once again, we find a very rich solution space for small
|Λ| , with potentially a very large number of nodes. Again, the nodeless region makes
up a small area of the parameter space, at small g1 and g2 .
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Figure 3.16: Phase space plot for su(3) dyonic solitons with Λ = −3, b1 = −0.2,
b2 = −0.1. Once again, we find the solution space is much simpler with a larger
value of |Λ| , and has a larger nodeless region. For these values of the parameters,
we also find solutions where either ω1 or ω2 has a single node.
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Chapter 4

Planar black holes with

superconducting horizons

Motivated by the AdS/CFT correspondence, and the work of [37, 38, 62], in this

chapter we will consider Einstein-Yang-Mills black holes in 3 + 1 dimensions which

provide a possible gravitational dual to the 2+1 layered cuprate superconductors as

discussed in chapter 1. We will require a normal, non-superconducting state which

possesses an abelian gauge symmetry, and a superconducting condensate which spon-

taneously breaks this symmetry at non-zero temperature. There have been a number

of different gravitational analogues proposed in the literature, which are reviewed

in section 4.1. As in [37, 38, 62], the role of the normal, non-superconducting state

will be played by a planar Reissner-Nordström-AdS black hole, and our supercon-

ducting states will consist of black hole solutions with non-abelian gauge fields. As

in previous chapters, we will generalise the well-known su(2) case [37, 38, 62] to

solutions with an su(N) gauge group. The goal will be to find black hole solutions

to the Einstein-Yang-Mills equations which have the same properties as the layered

cuprates. In particular, we require that there is a critical temperature TC below

which superconducting solutions exist and are thermodynamically favoured over the

Reissner-Nordström solutions. We also require that there is a mechanism by which

the normal state can decay into a superconducting state, i.e. the Reissner-Nordström

solution admits a static su(N) EYM perturbation. Finally, we require that the fre-

quency dependent conductivity of the su(N) solutions exhibits the same behaviour

as real layered cuprate superconductors, i.e. there is a gap at non-zero frequency,

with lower conductivity at lower frequencies than at higher ones, and that on the

boundary the conductivity becomes infinite at zero frequency. We note here that

93
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despite being motivated by the AdS/CFT correspondence, we will not derive the

gravitational theory from string theory, instead we will take a similar approach to

[37, 38, 62] and simply look for a gravitational theory with the desired properties

described above.

We will consider asymptotically AdS black holes, as required by the AdS/CFT

correspondence. Unlike the situation in asymptotically flat space, in asymptotically

AdS space we can find planar black holes [15, 22, 56, 57, 58, 75]. We can also find

planar black holes with stable Yang-Mills fields [64], which are the most relevant

to (2 + 1)-dimensional layered superconductors. In the planar case, we have much

more freedom in our choice of gauge field ansatz, and we will not attempt to use

the most general ansatz compatible with the symmetries of our space-time. We will

instead propose a generalization of the ansatze in [37, 38, 62], and show that it is

compatible with the space-time symmetries and the field equations. In section 4.2 we

will present our ansatz and field equations, and in section 4.3 we will show that the

ansatz is a solution of the symmetry equations. We will then find the appropriate

boundary conditions in section 4.4, some trivial solutions in section 4.5 and the

scaling symmetries of the field equations in section 4.6. In section 4.7 we will discuss

the numerical method used to solve the field equations and present some numerical

results.

We will then go on to study some properties of the solutions, and show that

our solutions have the same properties as real layered cuprate superconductors, as

discussed above. The mass, charges and thermodynamics are discussed in section

4.8. The critical temperature TC is calculated in section 4.9, and the frequency

dependent conductivity is discussed in section 4.10.

Derivations of all the Einstein-Yang-Mills equations presented in this chapter can

be found in section B.2 of Appendix B.

§ 4.1 Review of known solutions

In this section we will review some previously proposed gravitational duals to su-

perconductors. One of the first models employing a scalar field as a dual to the

condensate was proposed in [36], and consists of a charged black hole and a charged

scalar field with action

S =

∫
d4x
√
−g
(
R +

6

l2
− 1

4
FµνF

µν − |∇ψ − iqAψ|2 −m2|ψ|2
)
, (4.1)
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where R is the Ricci scalar, Fµν is the field strength tensor, ψ is the scalar field

and m is its mass. Black hole solutions with this action were shown to form scalar

hair (playing the role of the superconducting condensate) at low temperatures, while

above a critical temperature TC the only solution has ψ = 0. A perturbation of the

Maxwell field in the x direction Ax was added in the bulk, with time dependence

e−iξt and asymptotic expansion at large r given by

Ax = A(0)
x +

A
(1)
x

r
+O

(
1

r2

)
. (4.2)

On the boundary r →∞ this corresponds to an applied electric field with frequency

ξ . The electrical conductivity on the boundary is then [40]

σ(ξ) = − iA
(0)
x

ξA
(1)
x

. (4.3)

The Maxwell equation for Ax is given by

A′′x +
µ′

µ
A′x +

(
ξ2

µ2
− 2ψ

µ

)
Ax = 0, (4.4)

where the metric function

µ = −M
r2
− ΛR2

3
, (4.5)

with constant mass M . The Maxwell equation (4.4) must be integrated numerically

to find A
(0)
x and A

(1)
x . It was shown in [40] that when ψ = 0, the conductivity

σ is always finite. However, when ψ 6= 0, the conductivity becomes infinite at

ξ = 0. Infinite conductivity corresponds to zero resistance, and ξ = 0 corresponds

to an applied DC current. Hence we have zero DC resistance below the critical

temperature. There has since been much interest in solutions with a scalar field (see

e.g. [45, 66] for reviews), although they will not be considered further here.

It has also been shown [37, 38, 62] that a charged black hole with a non-abelian

gauge field can produce similar results, with the gauge field playing the role of the

superconducting condensate. Above the critical temperature TC , the only solutions

to the field equations are the planar Reissner-Nordström-AdS black holes, which

play the role of the normal state. Below TC solutions with a non-abelian gauge field

are found, and these are thermodynamically favoured over the normal state. Two

ansatze for models with su(2) gauge fields were proposed in [37] and [38], with gauge



96CHAPTER 4. PLANAR BLACKHOLESWITH SUPERCONDUCTING HORIZONS

potentials given by

A = ΦT3dt+ ω (T1dx+ T2dy) , (4.6)

and

A = ΦT3dt+ ωT1dx (4.7)

respectively, where Φ = Φ(r) is the electric potential, ω = ω(r) describes the

su(2) gauge field, and Ti are the generators of the su(2) Lie algebra (A.1), where

i = 1, 2, 3. The gauge field (or condensate) is localized near the horizon, such

that ω(∞) = 0, and the solutions carry no magnetic charge. The ansatze of [37, 38]

were generalised to arbitrary space-time dimensions in [62], with (4.6) corresponding

to ansatz I, and (4.7) corresponding to ansatz II in the terminology of [62]. The

potential in (4.6) corresponds to an s-wave superconductor, which is isotropic in

the (x, y) plane. This means that the conductivity of the superconductor does not

depend on the direction in which the electric field is applied. For the ansatz (4.7)

it was found in [38] that below the critical temperature, the conductivity becomes

infinite when a DC current is applied.

A p-wave superconductor has different responses to electric fields applied in dif-

ferent directions in the (x, y) plane, which motivated the potential given in (4.7).

For an electric field with time dependence eiξt applied in the x direction, it was

found in [38] that the conductivity becomes infinite for small but non-zero ξ . How-

ever, in real p-wave materials, the conductivity is finite at non-zero ξ due to electron

scattering, which is caused by impurities in the superconductor.

§ 4.2 Gauge field, metric ansatz and field equations

In this section we will propose an ansatz for a gauge field on a planar black hole

background which generalises the su(2) ansatze given in [37, 38, 62] to gauge group

su(N). We will decompose this ansatz into the generators of su(N), and present

the field equations, a detailed derivation of which can be found in Appendix B.

Our metric ansatz will correspond to that of [62], but uses a different choice of

co-ordinates to the metric ansatz of [37, 38].

In the spherically symmetric case, the symmetry requirements of the space-time

are sufficiently restrictive that a generalised expression for the su(N) gauge field

ansatz can be derived [51] (see chapter 2). However, the symmetries of a planar

black hole are less restrictive. In ansatz I from [62], in addition to translational
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symmetry we also have an SO(2) space-time symmetry corresponding to rotations

in the (x, y) plane. In ansatz II there is no rotational symmetry, only translational

symmetry in t , x and y . In both cases we cannot write down a completely general

ansatz. Instead we propose an ansatz that generalises the potential from [62] (which

has a gauge group of su(2)), to one with a gauge group su(N), and check that it is

valid by showing that it is compatible with both the symmetries of the space-time

(see section 4.3), and the field equations.

An appropriate line element for a planar black hole with an electric field and a

Yang-Mills gauge field is given by [62]

ds2 = −σ2µ dt2 + r2f 2dx2 +
r2

f 2
dy2 + µ−1dr2, (4.8)

where the function σ = σ(r), µ = µ(r) and f = f(r) must be determined from the

field equations in both cases. The metric function µ is given by

µ = −2m(r)

r
− Λr2

3
, (4.9)

which is the same as that used in chapters 2 and 3, except we have replaced the

initial 1 with 0. For the space-time to be asymptotically AdS we require f = σ = 1

at large r (see section 4.4.2). The action is given by

S =

∫
d4x
√
−g
[

1

16πG
(R− 2Λ)− 1

4
TrF a

µνF
aµν

]
(4.10)

where R is the Ricci scalar and the field strength tensor

Fµν = F a
µνTa = ∂µAν − ∂νAµ + g[Aµ, Aν ], (4.11)

with coupling constant g , and Ta denoting the generators of the Lie algebra su(N)

(see appendix A). Varying the action (4.10) gives the field equations

Tµν = Rµν −
1

2
Rgµν + Λgµν ;

DµF
µ
ν = ∇µF

µ
ν + g [Aµ, F

µ
ν ] = 0; (4.12)

where the stress-energy tensor is

Tµν = F a
µαF

a
νβg

αβ − 1

4
gµνF

a
αβF

aαβ. (4.13)
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We generalise the ansatz for the su(2) solutions of [62] to su(N) by taking

gA = gAµdx
µ = A dt+

i

2

(
C + CH

)
dx+

ζ

2

(
C − CH

)
dy, (4.14)

where A , C and CH are N ×N matrices, and are independent of t , x and y . The

ζ = 1 case is a generalization of ansatz I in [62] to larger gauge group, while ζ = 0

is a generalization of ansatz II. If ζ = 1 then f = 1 in the line element (4.8), while

if ζ = 0 then f = f(r) must be determined from the field equations. The electric

part of the potential

A = −
N−1∑
l=1

hlHl, (4.15)

where hl = hl(r) are also scalar functions of r only, and the Hl are members of the

Cartan subalgebra of su(N), and are given in Appendix A (A.3). The only non-zero

entries of the upper triangular matrix C are Cj,j+1 = ωj , where j = 1, 2, ..., N − 1

and ωj = ωj(r) are N − 1 scalar functions of the radial co-ordinate r only. We can

decompose
(
C + CH

)
and

(
C − CH

)
into

C + CH = 2i
N−1∑
m=1

ωmF
(1)
m , C − CH = −2

N−1∑
m=1

ωmG
(1)
m , (4.16)

where the N × N matrices F
(1)
m and G

(1)
m are generators of the Lie algebra su(N)

and are also given in Appendix A (A.4, A.5).

The Einstein-Yang-Mills equations corresponding to the potential (4.14) and line

element (4.8) are derived in section B.2 (Appendix B) and are given by

m′ =
µr2f ′2

2f 2
+ α2

N−1∑
k=1

 ω2
k

2σ2µ

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2(
1

f 2
+ ζ2f 2

)
+α2

N−1∑
k=1

{
r2h′2k
2σ2

+
µω′2k

2

(
1

f 2
+ ζ2f 2

)
+
k(k + 1)ζ2

4r2

(
ω2
k

k
−
ω2
k+1

k + 1

)2
}
,(4.17)

σ′ =
rσf ′2

f 2
+ α2

N−1∑
k=1

 ω2
k

2σµ2r

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2(
1

f 2
+ ζ2f 2

)
+α2

N−1∑
k=1

{
σω′2k
r

(
1

f 2
+ ζ2f 2

)}
, (4.18)
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f ′′ = α2

(
1

f 2
− ζ2f 2

)N−1∑
k=1

{
2ω2

kh
2
k

k(k + 1)σ2µ2r2
− ω′2k

r2

}
−f ′

(
σ′

σ
+
µ′

µ
+

2

r
− f ′

f

)
, (4.19)

h′′k = h′k

(
σ′

σ
− 2

r

)
+

√
k(k + 1)

2µr2

ω2
k

k

(√
k + 1

k
hk −

√
k − 1

k
hk−1

)(
1

f 2
+ ζ2f 2

)

+

√
k(k + 1)

2µr2

ω2
k+1

k + 1

(√
k

k + 1
hk −

√
k + 2

k + 1
hk+1

)(
1

f 2
+ ζ2f 2

)
, (4.20)

0 = ω′′k + ω′k

(
σ′

σ
+
µ′

µ
− 2f ′

f

)
+

ωk
σ2µ2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
ζ2f 2ωk
2µr2

(
ω2
k−1 − 2ω2

k + ω2
k+1

)
, (4.21)

along with a constraint equation:

0 =
(
ωkω

′
k+1 − ωk+1ω

′
k

)( 1

f 2
− ζ2f 2

)
, (4.22)

where α2 = 4πG
g2

. We note that in the N = 2 case, (4.17–4.21) reduce to the d = 4

case in [62], with ζ = 1 corresponding to ansatz I, and ζ = 0 corresponding to

ansatz II. The field equations in [38] are found in the limit where the gauge fields

do not back react on the metric, and are recovered if we take σ = 1, m = 1/(2l2),

together with ζ = f = 1. We note that the constraint equation (4.22) is solved

automatically for the ζ = f = 1 case, while for ζ = 0 we require all ωk to be scalar

multiples of each other (assuming all ωk are non-zero). Hence the only non-trivial

solution for ζ = 0 is the embedded su(2) solution (see section 4.5.3). We also note

that there are no obvious inconsistencies in the field equations, and that we have

the correct number of equations for the number of variables.

§ 4.3 Symmetry equations

In the f = 1 case, the line element (4.8) possesses an SO(2) symmetry, correspond-

ing to rotations in the (x, y) plane. As shown in [33], the physical quantities associ-
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ated with the field will be invariant under these SO(2) rotations if the infinitesimal

space-time symmetry transformations are equivalent to infinitesimal gauge transfor-

mations, since all physical quantities must be gauge invariant. This leads to a set

of equations relating the ansatz, the space-time symmetries and the gauge group,

called the symmetry equations, which must be satisfied for the ansatz to be valid.

In this section we will construct the symmetry equations for planar black holes in

the ζ = f = 1 case and show that our ansatz does indeed satisfy the symmetry

equations. Note that since the ζ = 0 case breaks the SO(2) symmetry, there are no

further constraints on the ansatz from the space-time, since we have already assumed

that ∂tA = ∂xA = ∂yA = 0.

If ζ = f = 1, the planar black hole space-times described by the line element

(4.8) are invariant under rotations in the (x, y) plane. For infinitesimal rotations,

these take the form(
x

y

)
→

(
x′

y′

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)
≈

(
x

y

)
+ θ

(
−y
x

)
. (4.23)

We require the physical quantities associated with our gauge field to be invariant

under these transformations. Since our physical quantities must be gauge invariant,

this will be the case if our co-ordinate transformation is equivalent to a gauge trans-

formation. Under the co-ordinate transformation xµ → xµ + εξµ , the gauge field

transforms as [33]

Aµ → Aµ + ε (∂µξ
ν)Aν + εξν (∂νAµ) +O

(
ε2
)
. (4.24)

For rotations in the (x, y) plane, in co-ordinates xµ = (t, x, y, r), we have ξµ =

(0,−y, x, 0) from (4.23), which gives

Aµ → Aµ + ε [−(∂µy)A1 + (∂µx)A2 − y(∂1Aµ) + x(∂2Aµ)] +O
(
ε2
)
. (4.25)

Applying an infinitesimal gauge transformation to the gauge field gives

Aµ → Aµ + ε (∂µW − [Aµ,W ]) , (4.26)

where W is an element of the Lie algebra of the gauge group, i.e. W = W a(x)T a

where the T a are the generators of the gauge group. The requirement that the

rotations in the (x, y) plane are equivalent to gauge transformations gives a set of
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four symmetry equations. By comparing (4.25, 4.26) we find

∂0W − [A0,W ] = x (∂2A0)− y (∂1A0) , (4.27)

∂1W − [A1,W ] = A2 + x (∂2A1)− y (∂1A1) , (4.28)

∂2W − [A2,W ] = −A1 + x (∂2A2)− y (∂1A2) , (4.29)

∂3W − [A3,W ] = x (∂2A3)− y (∂1A3) . (4.30)

Our proposed ansatz is valid only if we can find some W in the Lie algebra that

satisfies these equations.

In the su(2) case, the generators of the Lie algebra are given by T a = −iσa/2,

where σa are the Pauli matrices (A.1). Expanding W = W 1T 1 + W 2T 2 + W 3T 3 ,

and substituting into equations (4.27–4.30), we can solve the symmetry equations

to find

W = T 3 = − i
2

(
1 0

0 −1

)
. (4.31)

Similarly we can solve the symmetry equations for su(3) explicitly by taking the

Gell-Mann matrices (A.2) as the generators, in which case we find

W = − i
2

1 0 0

0 −1 0

0 0 0

− i

2

1 0 0

0 1 0

0 0 −2

 = −i

1 0 0

0 0 0

0 0 −1

 . (4.32)

For the su(N) case, rather than try to solve the symmetry equations explicitly, we

will take

W =
N−1∑
p=1

√
2p(p+ 1)

2
Hp, (4.33)

and verify that it is a solution to the symmetry equations. Since our gauge field

Aµ(x) depends only on the radial co-ordinate r , we have ∂1Aµ = ∂0Aµ = 0 for

all µ . We also have ∂0W = ∂3W = 0 since W does not depend on t or r , and

[A0,W ] = [A3,W ] = 0 since A3 = 0 and W is in the Cartan subalgebra. Therefore

equations (4.27) and (4.30) are satisfied automatically. The two remaining equations

become

[A1,W ] = −A2, [A2,W ] = A1. (4.34)
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Using the commutation relations (A.9) we find

[A1,W ] = − 1

2g

[
N−1∑
m=1

ωmF
(1)
m ,

N−1∑
p=1

√
2p(p+ 1)Hp

]

= − 1

2g

N−1∑
k=1

√
2k(k + 1)

(
ωk

[
F

(1)
k , Hk

]
+ ωk+1

[
F

(1)
k+1, Hk

])
=

i

4g

N−1∑
k=1

[
(k + 1)ωkG

(1)
k − kωk+1G

(1)
k+1

]
, (4.35)

where we have used the fact that ωN = 0. Using

N−1∑
k=1

kωk+1G
(1)
k+1 =

N∑
k=2

(k − 1)ωkG
(1)
k =

N−1∑
k=2

(k − 1)ωkG
(1)
k (4.36)

we have

[A1,W ] =
1

2g

(
2ω1G

(1)
1 +

N−1∑
k=2

(k + 1− k + 1)ωkG
(1)
k

)

=
1

g

N−1∑
k=1

ωkG
(1)
k

= −A2. (4.37)

Similarly

[A2,W ] = − 1

2g

[
N−1∑
n=1

ωnG
(1)
n ,

N−1∑
p=1

√
2p(p+ 1)Hp

]

= − 1

2g

N−1∑
k=1

√
2k(k + 1)

(
ωk

[
G

(1)
k , Hk

]
+ ωk+1

[
G

(1)
k+1, Hk

])
= − 1

2g

N−1∑
k=1

[
(k + 1)ωkF

(1)
k − kωk+1F

(1)
k+1

]
= − 1

2g

(
2ωkF

(1)
k +

N−1∑
k=2

(k + 1− k + 1)ωkF
(1)
k

)

= −1

g

N−1∑
k=1

ωkF
(1)
k

= A1. (4.38)
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Hence we have shown that an infinitesimal rotation in the (x, y) plane is equivalent

to an infinitesimal gauge transformation of the form (4.33). Since our physical

quantities are gauge invariant, they are therefore also invariant under rotations in

the (x, y) plane. Our ansatz is therefore valid, since it is compatible with both the

Einstein-Yang-Mills equations and the symmetry equations.

§ 4.4 Boundary conditions

In this section we find the boundary conditions for our variables m , σ , f , hk and

ωk at the event horizon and at infinity, keeping ζ general for completeness. We

assume that our variables have regular Taylor expansions close to the event horizon

and at large r , and find the leading order terms in the expansions by evaluating the

field equations (4.17–4.21) in the two limits and requiring that they are regular.

4.4.1 At the event horizon

We start by Taylor expanding our variables in a neighbourhood of the event horizon:

m(r) = m(rh) +m′(rh)(r − rh) +O(r − rh)2,

ωk(r) = ωk(rh) + ω′k(rh)(r − rh) +O(r − rh)2,

f(r) = f(rh) + f ′(rh)(r − rh) +O(r − rh)2,

σ(r) = σ(rh) + σ′(rh)(r − rh) +O(r − rh)2,

hk(r) = h′k(rh)(r − rh) +O(r − rh)2,

µ(r) = µ′(rh)(r − rh) +O(r − rh)2. (4.39)

At the event horizon we have µ(rh) = 0, and for the black hole to be non-extremal

(and therefore have non-zero surface gravity and Hawking temperature) we also

require

µ′(rh) = −Λrh −
2m′(rh)

rh
> 0. (4.40)

We are looking for solutions where all quantities are regular at the event horizon,

so we have set hk(rh) = 0 to avoid a singularity in equation (4.20) at r = rh .

Substituting µ(rh) = hk(rh) = 0 into equation (4.17), and noting that both µ and
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hk are of order (r − rh) so that h2
k/µ vanishes at r = rh , we find that

m′(rh) = α2

N−1∑
k=1

[
r2
hh
′2
k

2σ(rh)2
+
k(k + 1)ζ2

4r2
h

(
ωk(rh)

2

k
− ωk+1(rh)

2

k + 1

)2
]
. (4.41)

Multiplying equation (4.21) through by µ and evaluating it at the event horizon, we

find that

ω′k(rh) =
ζ2f(rh)

2ωk(rh)

2µ′(rh)r2
h

(
2ωk(rh)

2 − ωk−1(rh)
2 − ωk+1(rh)

2
)

=
ζ2l2f(rh)

2ωk(rh) (2ωk(rh)
2 − ωk−1(rh)

2 − ωk+1(rh)
2)

2r2
h (3rh − 2m′(rh)l2)

, (4.42)

where we have used m(rh) = r3
h/2l

2 with l2 = −3/Λ. Multiplying equation (4.19)

through by µ and evaluating at the event horizon we find that the only term that

survives is f ′(rh)µ
′(rh), from which we conclude that f ′(rh) = 0.

Close to the event horizon we have

µ = µ′(rh)(r − rh) +O(r − rh)2 =
3rh − 2m′(rh)l

2

rhl2
(r − rh) +O(r − rh)2, (4.43)

so that using l’Hôpital’s rule

hk
µ

=
rhl

2h′k(rh)

3rh − 2m′(rh)l2
+O(r − rh). (4.44)

Using this to evaluate (4.18) at the event horizon we find

σ′(rh) = α2

(
1

f(rh)
+ ζ2f(rh)

2

)N−1∑
k=1

[
2ωk(rh)

2h′k(rh)
2rhl

4

k(k + 1)σ(rh) (3r2
h − 2m′(rh)l2)

2

]

+α2

(
1

f(rh)
+ ζ2f(rh)

2

)N−1∑
k=1

[
σ(rh)ω

′
k(rh)

2

rh

]
. (4.45)
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To summarize, the boundary conditions of our variables at the event horizon are

given by:

m(r) =
r3
h

2l2
+m′(rh)(r − rh) +O(r − rh)2,

ωk(r) = ωk(rh) + ω′k(rh)(r − rh) +O(r − rh)2,

f(r) = f(rh) +O(r − rh)2,

σ(r) = σ(rh) + σ′(rh)(r − rh) +O(r − rh)2,

hk(r) = h′k(rh)(r − rh) +O(r − rh)2, (4.46)

where

ω′k(rh) =
ζ2l2f(rh)

2ωk(rh) (2ωk(rh)
2 − ωk−1(rh)

2 − ωk+1(rh)
2)

2r2
h (3rh − 2m′(rh)l2)

,

m′(rh) = α2

N−1∑
k=1

{
r2
hh
′2
k

2σ(rh)2
+
k(k + 1)ζ2

4r2
h

(
ωk(rh)

2

k
− ωk+1(rh)

2

k + 1

)2
}
,

σ′(rh) = α2

(
1

f(rh)
+ ζ2f(rh)

2

)N−1∑
k=1

[
2ωk(rh)

2h′k(rh)
2rhl

4

k(k + 1)σ(rh) (3r2
h − 2m′(rh)l2)

2

]

+α2

(
1

f(rh)
+ ζ2f(rh)

2

)N−1∑
k=1

[
σ(rh)ω

′
k(rh)

2

rh

]
, (4.47)

and

m′(rh) < −Λr2
h. (4.48)

4.4.2 At infinity

We assume that our variables have regular Taylor series expansions at large r :

m = m0 +
m1

r
+O

(
1

r2

)
, f = f0 +

f1

r
+
f2

r2
+
f3

r3
+O

(
1

r4

)
,

σ = σ0 +
σ1

r
+
σ2

r2
+
σ3

r3
+
σ4

r4
+O

(
1

r5

)
, (4.49)

ωk = ωk,∞ +
ck,1
r

+O
(

1

r2

)
, hk = hk,∞ +

hk,1
r

+O
(

1

r2

)
.

We are looking for asymptotically anti-de Sitter solutions, so we require f0 = σ0 = 1

so that the line element (4.8) approaches the line element for anti-de Sitter space in
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the large r limit. Using (4.49) to evaluate (4.17) at large r gives

m′ =
1

2l2

(
−f1 −

2f2

r

)2

+
α2

r2

N−1∑
k=1

[
k(k + 1)ζ2

4

(
ω2
k

k
−
ω2
k+1

k + 1

)2

+
h2
k,1

2
+
c2
k,1

2l2
(
1 + ζ2

)]

+
α2

r2

N−1∑
k=1

[
ω2
k,∞l

2

(√
k + 1

2k
hk,∞ −

√
k − 1

2k
hk−1,∞

)(
1 + ζ2

)]

+O
(

1

r3

)
. (4.50)

Since terms of order r0 in our expression for m′ will lead to a divergent mass (see

section 4.8.2), we must have f1 = 0, so that

m′ = − f 2
2

l2r2
+
α2

r2

N−1∑
k=1

[
k(k + 1)ζ2

4

(
ω2
k

k
−
ω2
k+1

k + 1

)2

+
h2
k,1

2
+
c2
k,1

2l2
(
1 + ζ2

)]

+
α2

r2

N−1∑
k=1

ω2
k,∞l

2

2

(√
k + 1

2k
hk,∞ −

√
k − 1

2k
hk−1,∞

)2 (
1 + ζ2

)
+O

(
1

r3

)
. (4.51)

Turning now to equation (4.18) we have

σ′ =
f 2

2

r5
+

(1 + ζ2)α2

r5

N−1∑
k=1

l4ω2
k,∞

(√
k + 1

2k
hk,∞ −

√
k − 1

2k
hk−1,∞

)2


+
(1 + ζ2)α2

r5

N−1∑
k=1

c2
k,1 +O

(
1

r6

)
. (4.52)

Since the right hand side of (4.52) is of order r−5 , we must have σ1 = σ2 = σ3 = 0.
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Inserting our asymptotic expansions into (4.19) gives

f ′′ =
1

r4

(
2f2 +

3f3

r

)(
4 +

2f2

r2

)

+
(1− ζ2)α2

r6

N−1∑
k=1

l4ω2
k,∞

(√
k + 1

2k
hk,∞ −

√
k − 1

2k
hk−1,∞

)2

− c2
k,1


+O

(
1

r7

)
=

8f2

r4
+

12f3

r5
+O

(
1

r6

)
. (4.53)

Differentiating the asymptotic expression for f in (4.49) gives

f ′′ = 6f2r
−4 + 12f3r

−5 +O
(
r−6
)
. (4.54)

Comparing (4.53, 4.54) yields f2 = 0, but gives no constraint on f3 .

Finally, our Yang-Mills equation for ωk reduces to

2ck,1
r3
− 2ck,1

r3
+O

(
1

r4

)
= 0. (4.55)

The O(r−4) term relates ck,1 to higher order terms in the expansion of ωk , and

hence we have no constraint on ck,1 . However, we require the gauge fields to be

localized around the event horizon [38, 62], and hence it must be the case that ωk

approaches zero at infinity, i.e. ωk,∞ = 0. The equation for hk gives

h′′k =
2hk,1
r3

+O
(

1

r4

)
, (4.56)

and again we find no constraint on hk,1 .
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The boundary conditions at infinity are therefore given by:

ωk(r) =
ck,1
r

+O
(

1

r2

)
,

hk(r) = hk,∞ +
hk,1
r

+O
(

1

r2

)
,

f(r) = 1 +
f3

r3
+O

(
1

r4

)
,

m(r) = m0 −
α2

r

N−1∑
k=1

ω2
k,∞l

2

2

(√
k + 1

2k
hk,∞ −

√
k − 1

2k
hk−1,∞

)2 (
1 + ζ2

)
−α

2

r

N−1∑
k=1

[
k(k + 1)ζ2

4

(
ω2
k

k
−
ω2
k+1

k + 1

)2

+
h2
k,1

2
+
c2
k,1

2l2
(
1 + ζ2

)]
+O

(
1

r2

)
.

σ(r) = 1− (1 + ζ2)

4r4
α2

N−1∑
k=1

l4ω2
k,∞

(√
k + 1

2k
hk,∞ −

√
k − 1

2k
hk−1,∞

)2


−(1 + ζ2)α2

4r4

N−1∑
k=1

c2
k,1 +O

(
1

r5

)
. (4.57)

§ 4.5 Trivial solutions

Although closed form solutions of the field equations (4.17–4.21) cannot be easily

found in general, there are some “trivial” solutions. In this section we will find

constraints on our variables that will reduce our line element (4.8) to those of the

planar Schwarzschild-AdS and planar Reissner-Nordström-AdS, the free energy of

which will be of particular interest in section 4.8.2. We will also embed the su(2)

solutions of [62] into our su(N) framework.

4.5.1 Planar Schwarzschild-AdS

The line element for the planar Schwarzschild-AdS solution is given by [75]

ds2 = −
(
−2m0

r
− Λr2

3

)
dt2 + r2dx2 + r2dy2 +

(
−2m0

r
− Λr2

3

)−1

dr2, (4.58)

where the mass m0 is a constant. To obtain this solution, we set f = σ = 1, remove

the electric field (i.e. set hk = 0 for all k ), and require that m′ = 0. Since the

planar Schwarzschild-AdS solution is isotropic in x and y we will also take ζ = 1.
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Equation (4.17) then implies

N−1∑
k=1

[
k(k + 1)

4r2

(
ω2
k

k
−
ω2
k+1

k + 1

)2

+ µω′2k

]
= 0. (4.59)

Therefore it must be the case that ω′k = 0 and

N−1∑
k=1

k(k + 1)

4r2

(
ω2
k

k
−
ω2
k+1

k + 1

)2

= 0, (4.60)

which can be solved by taking ωk = ±A
√
k for some constant A , where A is the

same for all k . In the spherically symmetric case, the constant A is fixed by the

field equations, although in this case we have more freedom and we find that A is

arbitrary due to scaling symmetries discussed later. We note that with hk = 0 for

all k , and with constant ωk , f and σ , all other field equations (4.18–4.21) vanish

identically.

4.5.2 Planar Reissner-Nordström-AdS

The line element for the planar Reissner-Nordström-AdS black hole is given by [22]

ds2 = −µRNdt2 + r2dx2 + r2dy2 + µ−1
RNdr

2, (4.61)

where

µRN = −2m0

r
+
α2
RNq

2

r2
− Λr2

3
, (4.62)

and where both the mass m0 and charge q are constant. Again we set f = σ = 1,

but in this case we set ωk = 0 for all k . Equation (4.20) then reduces to

h′′k = −2h′k
r

⇒ hk = bk −
ak
r
, (4.63)

by direct integration, with constants of integration ak and bk . Equation (4.17)

becomes

m′ = α2
RN

N−1∑
k=1

r2h′2k
2

=
α2
RN

2r2

N−1∑
k=1

a2
k (4.64)

so that

m = m0 −
α2
RN

2r

N−1∑
k=1

a2
k. (4.65)
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Substituting this into the metric function (4.9) gives

µ = −2m0

r
+
α2
RN

r2

N−1∑
k=1

a2
k −

Λr2

3
, (4.66)

and by comparison with (4.62)

q2 =
N−1∑
k=1

a2
k =

N−1∑
k=1

h′2k r
4 ⇒ q =

√√√√N−1∑
k=1

h′2k r
4. (4.67)

4.5.3 Embedded su(2) solutions

To obtain embedded su(2) solutions we start by setting

ωk = Akω, hk = Bkh, (4.68)

where ω = ω(r), h = h(r), and Ak and Bk are constants. Substituting into the

Einstein equations (4.17–4.19), and comparing with the N = 2 case, we require

N−1∑
k=1

A2
k

(√
k + 1

2k
Bk −

√
k − 1

2k
Bk−1

)2

=
N−1∑
k=1

A2
k

=
N−1∑
k=1

B2
k =

N−1∑
k=1

k(k + 1)

2

(
A2
k

k
−
A2
k+1

k + 1

)2

. (4.69)

Substituting (4.68) into the Yang-Mills equations (4.20, 4.21), we require

1 =

(√
k + 1

2k
Bk −

√
k − 1

2k
Bk−1

)2

=
2A2

k − A2
k+1 − A2

k−1

2

=

√
2k(k + 1)

2

A2
k+1

k + 1

(√
k

2(k + 1)
−

√
k + 2

2(k + 1)

Bk+1

Bk

)

+

√
2k(k + 1)

2

A2
k

k

(√
k + 1

2k
−
√
k − 1

2k

Bk−1

Bk

)
(4.70)

to recover the N = 2 case. We can solve both (4.69) and (4.70) by taking

Ak =
√
k(N − k), Bk =

√
k(k + 1)

2
. (4.71)
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If we substitute our expressions (4.68) and (4.71) into the field equations (4.20, 4.21)

and (4.17–4.19), and then rescale the variables as follows

R = λ−1
N r, m̃ = λ−1

N m, h̃ = λNh, Λ̃ = λ2
NΛ, (4.72)

where

λ2
N =

N−1∑
k=1

A2
k =

N−1∑
k=1

k(N − k) =
1

6
N(N2 − 1), (4.73)

we find that the field equations are

dm̃

dR
=

µR2

2f 2

(
df

dR

)2

+ α2

ω2h̃2

2σ2µ

(
1

f 2
+ ζ2f 2

)
+
R2

2σ2

(
dh̃

dR

)2


+α2

{
ζ2ω4

2R2
+
µ

2

(
dw

dR

)2(
1

f 2
+ ζ2f 2

)}
, (4.74)

dσ

dR
=

Rσ

f 2

(
df

dR

)2

+ α2

{(
1

f 2
+ ζ2f 2

)(
ω2h̃2

Rσµ2
+
σ

R

(
dω

dR

)2
)}

, (4.75)

d2f

dR2
= α2

(
1

f 2
− ζ2f 2

){
ω2h2

σ2µ2R2
− 1

R2

(
dω

dR

)2
}

− df
dR

(
1

σ

dσ

dR
+

1

µ

dµ

dR
+

2

R
− 1

f

df

dR

)
, (4.76)

d2h̃

dR2
=

dh̃

dR

(
1

σ

dσ

dR
− 2

R

)
+
h̃ω2

µR2

(
1

f 2
+ ζ2f 2

)
, (4.77)

0 =
d2ω

dR2
+
dω

dR

(
1

σ

dσ

dR
+

1

µ

dµ

dR
− 2

f

df

dR

)
+
ω

µ

(
h̃2

σ2µ
− ζ2ω2f 2

R2

)
, (4.78)

which are precisely the su(2) field equations in terms of the new variables.

§ 4.6 Scaling symmetries

The Einstein-Yang-Mills equations (4.17–4.21) possess several scaling symmetries

[62], and these can be used to reduce the number of numerically relevant parameters.

We first notice that the equations are invariant under the transformations;

r → λr, m→ λm, l→ λl, hk → λ−1hk, α→ λα. (4.79)
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Hence by transforming the variables using λ = α−1 we can effectively set α = 1.

The second set of transformations under which the field equations remain invariant

is

r → λr, ωk → λωk, hk → λhk, m→ λ3m, (4.80)

in which case µ transforms to λ2µ . We can use this symmetry to remove rh from

the equations by setting λ = r−1
h . We then have two remaining symmetries, the first

of which is

hk → λhk, σ → λσ, (4.81)

which can be used to set σ(∞) = 1 by taking λ = σ(∞)−1 , and ωk → −ωk , which

means that we can restrict our attention to ω(rh) > 0 without loss of generality.

The overall transformations are

r → r̄ = α−1r−1
h r, l→ l̄ = α−1l, α→ ᾱ = 1,

σ → σ̄ = σ(∞)−1σ, ωk → ω̄k = r−1
h ωk, µ→ µ̄ = r−2

h µ,

m→ m̄ = α−1r−3
h m, hk → h̄k = αr−1

h σ(∞)−1hk, (4.82)

with f unchanged. The field equations then become:

h̄′′k = h̄′k

(
σ̄′

σ̄
− 2

r̄

)
+

√
2k(k + 1)

2µ̄r̄2

ω̄2
k

k

(√
k + 1

2k
h̄k −

√
k − 1

2k
h̄k−1

)(
1

f 2
+ ζ2f 2

)

+

√
2k(k + 1)

2µ̄r̄2

ω̄2
k+1

k + 1

(√
k

2(k + 1)
h̄k −

√
k + 2

2(k + 1)
h̄k+1

)(
1

f 2
+ ζ2f 2

)
,(4.83)

0 = ω̄′′k + ω̄′k

(
σ̄′

σ̄
+
µ̄′

µ̄
− 2f ′

f

)
+

ω̄k
σ̄2µ̄2

(√
k + 1

2k
h̄k −

√
k − 1

2k
h̄k−1

)2

+
ζ2f 2ω̄2

k

2µ̄r̄2

(
ω̄2
k−1 − 2ω̄2

k + ω̄2
k+1

)
, (4.84)

m̄′ =
µ̄r̄2f ′2

2f 2
+

N−1∑
k=1

 ω̄2
k

2σ̄2µ̄

(√
k + 1

2k
h̄k −

√
k − 1

2k
h̄k−1

)2(
1

f 2
+ ζ2f 2

)
+

N−1∑
k=1

{
r̄2h̄′2k
2σ̄2

+
µ̄ω̄′2k

2

(
1

f 2
+ ζ2f 2

)
+
k(k + 1)ζ2

4r̄2

(
ω̄2
k

k
−
ω̄2
k+1

k + 1

)2
}
, (4.85)
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σ̄′ =
r̄σ̄f ′2

f 2
+

N−1∑
k=1

 ω̄2
k

2σ̄µ̄2r̄

(√
k + 1

2k
h̄k −

√
k − 1

2k
h̄k−1

)2(
1

f 2
+ ζ2f 2

)
+

N−1∑
k=1

{
σ̄ω̄′2k
r̄

(
1

f 2
+ ζ2f 2

)}
, (4.86)

f ′′ =

(
1

f 2
− ζ2f 2

)N−1∑
k=1

{
2ω̄2

kh̄
2
k

k(k + 1)σ̄2µ̄2r̄2
− ω̄′2k

r̄2

}
− f ′

(
σ̄′

σ̄
+
µ̄′

µ̄
+

2

r̄
− f ′

f

)
, (4.87)

with boundary conditions at the event horizon:

m̄(r̄) =
1

2l̄2
+ m̄′(1)(r̄ − 1) +O(r̄ − 1)2,

ω̄k(r̄) = ω̄k(1) + ω̄′k(1)(r̄ − 1) +O(r̄ − 1)2,

f(r̄) = f(1) +O(r̄ − 1)2,

σ̄ = σ̄(1) + σ̄′(1)(r̄ − 1) +O(r̄ − 1)2,

h̄k(r̄) = h̄′k(1)(r̄ − 1) +O(r̄ − 1)2, (4.88)

where

ω̄′k(1) =
ζ2l̄2f(1)2ω̄k(1) (2ω̄k(1)2 − ω̄k−1(1)2 − ω̄k+1(1)2)

2
(
3− 2m̄′(1)l̄2

) ,

m̄′(1) = α2

N−1∑
k=1

{
h̄′2k

2σ̄(1)2
+
k(k + 1)ζ2

4

(
ω̄k(1)2

k
− ω̄k+1(1)2

k + 1

)2
}
,

σ̄′(1) =

(
1

f(1)
+ ζ2f(1)2

)N−1∑
k=1

[
2ω̄k(1)2h̄′k(1)2l̄4

k(k + 1)σ̄(1)
(
3− 2m̄′(1)l̄2

)2

]

+

(
1

f(1)
+ ζ2f(1)2

)N−1∑
k=1

σ̄(1)ω̄′k(1)2. (4.89)

In (4.83–4.89), all quantities are functions of the new radial co-ordinate r̄ , and

a prime now denotes differentiation with respect to r̄ . For the remainder of this

chapter we shall assume that the variables have been rescaled in this way, i.e. so

that rh = α = σ(∞) = 1, although we will revert to the original notation, i.e. in

subsequent sections we will denote ω̄k simply as ωk etc.
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§ 4.7 Solutions of the field equations

In this section, and for the rest of the chapter, we consider the f = ζ = 1 case, since

we do not find genuinely su(N) solutions for ζ = 0. The field equations are then

given by

m′ = α2

N−1∑
k=1

 ω2
k

σ2µ

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2


+α2

N−1∑
k=1

{
r2h′2k
2σ2

+ µω′2k +
k(k + 1)

4r2

(
ω2
k

k
−
ω2
k+1

k + 1

)2
}
, (4.90)

σ′ = α2

N−1∑
k=1

 2ω2
k

σµ2r

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
2σω′2k
r

 , (4.91)

h′′k = h′k

(
σ′

σ
− 2

r

)
+

√
2k(k + 1)

µr2

ω2
k

k

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)

+

√
2k(k + 1)

µr2

ω2
k+1

k + 1

(√
k

2(k + 1)
hk −

√
k + 2

2(k + 1)
hk+1

)
, (4.92)

0 = ω′′k + ω′k

(
σ′

σ
+
µ′

µ

)
+

ωk
σ2µ2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
ωk

2µr2

(
ω2
k−1 − 2ω2

k + ω2
k+1

)
. (4.93)

The field equations (4.90–4.93) cannot be solved analytically. To solve them

numerically, we first decouple the second order differential equations for h′′k (4.92)

and ω′′k (4.93) into first order ODEs in hk , h′k , ωk and ω′k . We then have a set

of 4N − 2 first order ODEs. We solve these numerically using a Bulirsch-Stoer

algorithm in C++ [32], and we use the scaling symmetries from section 4.6 to reduce

the number of parameters. Since the field equations diverge at the event horizon

where µ = 0, we start at r− 1 = 10−7 , using the boundary conditions (4.88) to give

our initial values, and integrate outwards using (4.90–4.93). We have rh = 1 using

the scaling symmetries from section 4.6, and we require σ(∞) = 1 for the space-

time to be asymptotically AdS. However, since the field equations are invariant under

σ → λσ , hk → λhk , numerically we take σ(1) = 1, and then rescale σ and hk by
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σ(∞)−1 after we have performed the integration. The solutions are then uniquely

determined by h′k(1), ωk(1) and Λ.

Our variables have regular expansions at infinity given by (4.57), so we can stop

integrating outwards when our variables have converged. In the results presented

below we have used a relative convergence criterion of 10−7 in the quantities hk ,

h′kr
2 , ωk and ω′kr

2 , i.e. for a step size rstep , our final value of r , rf , will be such

that hk(rf ) differs from hk(rf − rstep) by a factor of less than 10−7 , and similarly

for the other quantities.

In the su(2) case, the equation of motion for h is given by

h′′ = h′
(
σ′

σ
− 2

r

)
+

2hω2

µr2
. (4.94)

Since µ > 0 when r > 1, at a stationary point h′ = 0 it must be the case that h′′

has the same sign as h . Therefore if h is positive, stationary points can only be

minima, and if h is negative stationary points must be maxima. Hence we conclude

that h is monotonic and zero only at the event horizon. We find numerically that

this is also the case for larger gauge groups, and therefore label solutions by the

number of nodes in ωk . Note that we are interested in nodeless solutions as these

have lower free energy (see section 4.8.2), and which are localized around the horizon

(ωk approaches zero at large r , see section 4.4.2).

Figures 4.1 and 4.2 show phase space plots for su(2) solutions with Λ = −0.6

and Λ = −0.3 respectively, colour coded by the number of nodes n in the gauge

field function ω . The red “no solution” region is where the condition for a non-

extremal event horizon (4.40) is satisfied, but we do not find black hole solutions.

We are interested in nodeless solutions where the gauge field function goes to zero

at infinity, which is on the border between the green n = 0 and blue n = 1 regions.

We also find solutions for which the gauge field function goes to zero at large r on

the border between the blue n = 1 and purple n = 2 regions in figure 4.2, but these

have a node and therefore higher free energy (see section 4.8.2). These solutions

with a node only exist below a certain value of |Λ| , and similarly, if |Λ| is too high

we find only nodeless solutions [12], in which case we cannot find solutions for which

ω goes to zero at large r .

Figure 4.3 shows a phase space plot for su(3) solutions with Λ = −0.1 and

ω1(rh) = ω2(rh) = 0.1. The plot is colour coded by the number of nodes in the

gauge field functions, where n1 is the number of nodes in ω1 , and n2 is the number
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Figure 4.1: Phase space plot for su(2) planar black holes with Λ = −0.6, colour
coded by the number of nodes in the gauge field function. The red “no solution”
region is where the condition (4.40) is satisfied but we do not find black hole solutions.
We are interested in solutions which are nodeless, but where ω tends to zero at large
r , which lie on the border between the green n = 0 and blue n = 1 regions.

of nodes in ω2 . The point where both ω1 and ω2 go to zero, and where ω1 and ω2

have no nodes, is where the green (n1 = n2 = 0), blue (n1 = 0, n2 = 1), yellow

(n1 = 0, n2 = 1) and black (n1 = n2 = 1) regions meet, which is marked with a red

cross. Again we find continuous ranges of ω1(rh) and ω2(rh) that give these solutions,

with a unique value of (h′1(rh), h
′
2(rh)) associated with each (ω1(rh), ω2(rh)). Figure

4.4 shows a similar plot, but this time with Λ = −0.03. Again the solution where

ω1 and ω2 go to zero at infinity and are nodeless is marked with a red cross, which

is where the green (n1 = n2 = 0), blue (n1 = 0, n2 = 1), orange (n1 = 0, n2 = 1)

and grey (n1 = n2 = 1) regions meet. As in the su(2) case we note that there are

more solutions with nodes at lower |Λ| .

Since the relevant solutions are those in which ωk goes to zero at large r for all

k [62], we use the GSL multidimensional root finder [2] to find these solutions. At

fixed cosmological constant Λ, this involves a Newton iterative procedure, using a

numerical estimate of the Jacobian, over values of h′k(rh) to ensure ωk(∞) = 0 for

all k . We find solutions in which the gauge field functions ωk have no nodes, as well
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Figure 4.2: Phase space plot for su(2) planar black holes with Λ = −0.3, colour
coded by the number of nodes in the gauge field function. The red “no solution”
region is where the condition (4.40) is satisfied but we do not find black hole solutions.
We are interested in solutions which are nodeless, but where ω tends to zero at large
r , which lie on the border between the green n = 0 and blue n = 1 regions.

as solutions that have nodes, and that those with nodes have higher free energy and

are ignored here. However, since the root finder does not find solutions for which

the gauge field functions go exactly to zero at large r , rather to small (positive

or negative) values due to numerical error, we are looking not only for gauge field

functions ωk with no nodes, but also those with one node, a small negative value

at infinity and a negative gradient at infinity (since we are considering only positive

ωk(rh)).

We note that, for a given value of Λ, there is a continuous range of values of

ωk(rh) for which ωk approach zero at large r , and that for each ωk(rh) there is a

unique value of h′k(rh) for each k that gives ωk(∞) = 0. Figure 4.5 shows such a

solution for su(2) black holes with Λ = −0.03, ω(rh) = 0.1, where h′(rh) has been

chosen such that ω goes to zero at large r . Figure 4.6 shows a solution for su(3)

black holes with ω1(rh) = 0.15, ω2(rh) = 0.1, where ω1 and ω2 approach zero at

large r . As noted above, h1 and h2 are monotonically increasing functions of r .
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Figure 4.3: Phase space plot for su(3) planar black holes with Λ = −0.1 and
ω1(rh) = ω2(rh) = 0.1, colour coded by the number of nodes in the gauge field
functions ω1 and ω2 . In the red “no solution” region the constraint (4.40) is satisfied
but we do not find black hole solutions. The nodeless solution where ω1 and ω2 go
to zero at large r is marked with a red cross.
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Figure 4.4: Phase space plot for su(3) planar black holes with Λ = −0.03 and
ω1(rh) = ω2(rh) = 0.1, colour coded by the number of nodes in the gauge field
functions ω1 and ω2 . In the red “no solution” region the constraint (4.40) is satisfied
but we do not find black hole solutions. The nodeless solution where ω1 and ω2 go
to zero at large r is marked with a red cross.
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Figure 4.5: Plot of su(2) solution with Λ = −0.03, ω(rh) = 0.1. The value of
h′(rh) is such that ω goes to zero at large r . As expected, h(r) is monotonically
increasing.

Figure 4.6: Plot of su(3) solution with Λ = −0.03. the values of h′1(rh) and h′2(rh)
are such that ω1 and ω2 go to zero at large r . We note that, as in the su(2) case,
h1(r) and h2(r) are monotonically increasing.
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§ 4.8 Physical quantities

In this section we calculate the physical quantities associated with our gauge field.

Our su(N) gauge field carries N − 1 conserved electric charges, and we find ex-

pressions for them in section 4.8.1. We then go on to calculate the thermodynamic

quantities associated with our black hole in section 4.8.2, in particular the Hawk-

ing temperature, which plays the role of the temperature in our superconducting

field theory, and the free energy, which tells us whether the superconducting state

is thermodynamically favoured over the normal state.

4.8.1 Electric charges

In chapter 2 we found magnetic charges associated with an su(N) gauge field using

the field strength tensor Fµν . In this section we use the same method to find electric

charges, using the Hodge dual of the field strength tensor ∗Fµν . Since the Lie algebra

su(N) has rank N−1 we have N−1 gauge invariant electric charges Qj associated

with the gauge potential (4.14) (see chapter 2), which we define by [27, 69]

Qj =
1

4π
sup
g(x)

k

(
X,

∫
Σ∞

g−1 ∗ Fg
)
, (4.95)

where the supremum is taken over all possible gauge transformations g(x). As in

chapter 2, X is an element of the Cartan subalgebra of su(N), the integral is taken

over a surface at spatial infinity denoted Σ∞ , and the dual field strength is given by

∗ F = ∗Fµνdxµ ∧ dxν =
r2σ

2
εµναβF

αβdxµ ∧ dxν = −r2σ
N−1∑
k=1

h′kHk dx ∧ dy, (4.96)

on Σ∞ (at r =∞), since our field strength is time independent and dr = 0 on Σ∞ .

The integrand in (4.95) takes its maximal value when g−1 ∗ Fg is a member of

the Cartan subalgebra [27], but since ∗F is already in the Cartan subalgebra there is

no need to perform a gauge transformation to find the supremum. Although we can

choose any elements of the Cartan subalgebra to substitute for X , corresponding to

a choice of basis, a natural choice is to take the N − 1 diagonal generators of the

Cartan subalgebra Hk , in which case we find

Qj ∝ A0 lim
r→∞

σ(r)r2h′j(r), (4.97)
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where A0 is the unit area of Σ∞ , and we are free to choose the normalization. We

will use the convention of [62] and define

Qj =
qj
g

=
1

g
lim
r→∞

r2h′j(r). (4.98)

We will also define a total effective charge by analogy with (4.67) as

Q2 =
q2

g
=

1

g

N−1∑
j=1

q2
j . (4.99)

In general the magnetic part of the gauge field also carries N − 1 conserved

charges. For planar black holes the expressions for these charges are given by

Qk =

√
2k(k + 1)

2

(
ωk+1(∞)2

k + 1
− ωk(∞)2

k

)
, (4.100)

which is the same as chapter 2, but again replacing 1 with 0. However, since we are

considering solutions in which the ωk go to zero at large r for all k , we find that all

the magnetic charges are zero.

4.8.2 Thermodynamic quantities

We use the counterterm formalism of Balasubramanian and Kraus [4] to define a

“quasilocal stress tensor” on the boundary, given by

T µνB =
2√
−γ

δSgrav
δγµν

, (4.101)

where the gravitational action Sgrav = Sgrav(γµν) is viewed as being a function of

the boundary metric γµν . In AdS space the stress tensor typically diverges as the

boundary is taken to infinity. However, we are free to add boundary terms Sct to

the action, as these do not alter the equations of motion in the bulk. We then need

to vary the action with respect to the boundary metric. Since we are considering

solutions to the equations of motion, only the boundary term contributes and the

quasilocal stress tensor is given by [4]

T µνB =
1

2

(
Θµν −Θγµν − 2

l
γµν − lGµν

)
, (4.102)
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where γµν is the boundary metric, Gµν is the Einstein tensor on the boundary, and

the extrinsic curvature Θµν is given by [4]

Θµν = −1

2
(∇µn̂ν +∇νn̂µ) , (4.103)

where n̂µ is the outward pointing normal to surfaces of constant r .

The boundary surface Σ∞ is a surface of constant r , in the limit where r is

taken to infinity. We can then define a divergence free-mass by

M =

∫
Σ∞

lrTtt dx dy (4.104)

=
1

4πG

∫
Σ∞

dx dy

[
m0 +

1

r

(
2m1 −

4σ4

l2

)
+O

(
1

r4

)]
=

A0m0

4πG
(4.105)

at large r , where A0 is the unit area of the surface Σ∞ and is arbitrary [22].

The entropy S is given by S = A/4G , where A is the area of the event horizon,

so for our planar black holes we have

S =
A0

4G
. (4.106)

The Hawking temperature TH is given by

TH =
µ′(1)σ(1)

4π
, (4.107)

so that we can define the free energy by

F = M − TS =
A0

4πG

(
m0 −

µ′(1)σ(1)

4

)
. (4.108)

We wish to check whether a non-abelian su(N) black hole is thermodynamically

favoured over a Reissner-Nordström black hole. If we consider a Reissner-Nordström

black hole with the same Hawking temperature and effective charge as our su(N)

black hole, and denote its free energy as FRN , the su(N) black hole will be thermo-

dynamically favoured when

∆F = F − FRN < 0. (4.109)
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We can determine the event horizon radius of the relevant Reissner-Nordström black

hole, which we denote rRNh , using the requirement that the effective charges and

Hawking temperatures are the same as those of the non-abelian solution. Using the

Reissner-Nordström metric function (4.62), and (4.107) with σ = 1, the Hawking

temperature of an embedded Reissner-Nordström black hole with effective charge q

is given by

TRNH = − 1

4π

(
α2q2

rRNh
3 −

3rRNh
l2

)
. (4.110)

We can then determine rRNh by solving (4.110) for rRNh , where q2 is given by (4.99).

Since the metric function µ(r) goes to zero at the event horizon, we have

mRN
0 =

q2

2rRNh
+
rRNh

3

2l2
, (4.111)

so we can write the free energy of the embedded Reissner-Nordström black hole as

FRN =
A0

4πG

(
3α2q2

4rRNh
− rRNh

3

4l2

)
, (4.112)

and hence

∆F =
A0

4πG

(
m0 −

µ(1)σ(1)

4
− 3α2q2

4rRNh
+
rRNh

3

4l2

)
. (4.113)

We will be interested in the range of temperatures for which we find non-abelian

solutions, which we expect to exist only below a critical temperature TC (see section

4.9). After finding a solution to the field equations (see section 4.7), we then use the

GSL root finding algorithm [2] to solve equation (4.110), and hence find the difference

in free energy between our non-abelian solution and a Reissner-Nordström black hole

with the same temperature and charge using (4.113). We can then check whether

our solutions with a gauge field (playing the role of a superconducting condensate)

are thermodynamically favoured over the Reissner-Nordström black hole.

Figure 4.7 shows a plot of ∆F against ω(rh) for su(2) black holes at various

values of l =
√
−3/Λ. We note that the su(2) solutions approach the Reissner-

Nordström solutions in the limit of ω(rh) going to zero, since if this is the case,

the field equations ensure that ω(r) remains zero for all r . We also note that, as

expected, ∆F is negative for all solutions with non-zero ω(rh), and therefore all

genuinely su(2) solutions are thermodynamically favoured over Reissner-Nordström
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solutions with the same temperature and charge (as was found in [62]).

Figure 4.7: Difference in free energy between su(2) solutions and Reissner-
Nordström solutions with the same Hawking temperature and charge, against values
of the gauge field function at the event horizon ω(rh), for l =

√
−3/Λ = 3, 4, 5.

We note that ∆F is always negative for non-zero ω(rh), and hence an su(2) black
hole is always thermodynamically favoured over the equivalent Reissner-Nordström
black hole.

Figure 4.8 shows a plot of ∆F against ω1(rh) and ω2(rh) for su(3) solutions

with l = 5. Again the su(3) solutions approach the Reissner-Nordström solutions

in the limit of ω1(rh) and ω2(rh) going to zero, and ∆F is negative for all solu-

tions with non-zero ω1(rh) and ω2(rh). Therefore all genuinely su(3) solutions are

also thermodynamically favourable over Reissner-Nordström solutions with the same

temperature and charge.

Figure 4.9 shows a plot of the electric charges Q1 and Q2 for su(3) black holes,

with the embedded su(2) solutions overlaid. Figure 4.10 again shows Q1 and Q2

for su(3) black holes, but this time against ∆F . The dotted embedded su(2) line in

figure 4.9 corresponds to the apexes of the surfaces in figure 4.10, and as such |∆F |
is smaller for the embedded su(2) solutions than for genuinely su(3) solutions. This

means that the genuinely su(3) solutions are thermodynamically favoured over the

embedded su(2) solutions. The interpretation of this is that for su(3) solutions there
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Figure 4.8: Difference in free energy between su(3) solutions and Reissner-
Nordström solutions with the same Hawking temperature and charge, against values
of the gauge field functions at the event horizon, with l = 5.

are more possible field configurations that give us any particular effective charge, and

hence more chance of finding a configuration with a lower free energy.

In the su(2) case, there is a current on the boundary [62], given by

J = − lim
r→∞

ω′r2. (4.114)

In the su(N) case we have N − 1 gauge field functions ωk , and N − 1 currents

associated with our gauge field functions, which are

Jk = − lim
r→∞

ω′kr
2. (4.115)

We expect to find a phase transition at some critical temperature TC , above which

only the Reissner-Nordström solutions exist, and below which the su(N) solutions

exist and have ∆F < 0. The holographic interpretation for the single current in [37]

is that this is an order parameter, which is zero at temperatures at and above the

phase transition T ≥ TC . This is expected since ω ≡ 0 for the Reissner-Nordström

solution. Since our embedded Reissner-Nordström has ωk ≡ 0 for all k , we expect
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Figure 4.9: Electric charges of su(3) black holes at various values of l , with embed-
ded su(2) solutions (Q2 =

√
3Q1 ) overlaid. Points which lie on the embedded su(2)

line correspond to those with the lowest |∆F | in figure 4.10.

Jk = 0 for all k at the phase transition. We will therefore consider the Jk to be

components of a vector order parameter, the length of which is zero at the phase

transition, i.e. we expect

J2 =
N−1∑
k=1

J2
k = 0 (4.116)

for T ≥ TC , and

J2 =
N−1∑
k=1

J2
k 6= 0 (4.117)

for T < TC . In figure 4.11 we have plotted the quantity T/Q0.5 (which is invariant

under the rescaling in section 4.6), where Q is the effective charge (4.99), against

the components of our vector order parameter J1 and J2 for su(3) black holes. We

find that the maximum temperature is approached as the length of our vector order

parameter J =
√
J2

1 + J2
2 goes to zero, i.e. as we approach the Reissner-Nordström

solution. As expected, we find non-zero values of J1 and J2 at temperatures below

the transition from the Reissner-Nordström solution. In the following section we will

verify that this is indeed the critical temperature TC .
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Figure 4.10: Difference in free energy between su(3) solutions and Reissner-
Nordström solutions with the same temperature and effective charge, plotted against
electric charges Q1 and Q2 .

§ 4.9 Perturbations of the Reissner-Nordström solution

We expect to find a phase transition between the Reissner-Nordström (RN) solution

and the su(N) solution when the temperature decreases below the critical temper-

ature TC . In addition to the su(N) solution having lower free energy than the RN

solution, we require that the RN solution admits a static su(N) perturbation at TC .

If this is the case, then the RN solution can decay into the su(N) solution when it

becomes thermodynamically favourable to do so.

We consider a RN solution, with su(N) gauge field perturbations δhk and δωk ,

and a gauge potential given by

A = −1

g

∑
l

[hl,0 + δhl(r)]Hl dt−
1

g

∑
m

δωm(r)F (1)
m dx− 1

g

∑
n

δωn(r)G(1)
n dy (4.118)

where hl,0 are the equilibrium values of hl from section 4.5.2. Since the gauge field
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Figure 4.11: Hawking temperature divided by effective charge plotted against com-
ponents of vector order parameter J1 and J2 for su(3) black holes with l = 4.

perturbations give contributions to the mass, the line element is given by

ds2 = − [1 + δσ(r)]2 [µ0(r) + δµ(r)] dt2

+r2dx2 + r2dy2 + [µ0(r) + δµ(r)]−1 dr2,

≈ − [µ0(r) + δµ(r) + 2µ0(r)δσ(r)] dt2

+r2dx2 + r2dy2 +
µ0(r)− δµ(r)

µ0(r)2
dr2, (4.119)

where

µ0(r) = −2m0(r)

r
− Λr2

r
, δµ(r) = −2δm(r)

r
. (4.120)

The equilibrium mass function m0(r) is given by

m0(r) = mRN
0 − α2

RNq
2

2r
, (4.121)

so that the RN solution is recovered when all perturbations go to zero (see sec-
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tion 4.5.2). The linearized Einstein-Yang-Mills equations for the perturbations are

derived in Appendix B, and are given by

δm′ = α2r2

N−1∑
k=1

(
2h′k,0δh

′
k − 2h′2k,0δσ

)
, (4.122)

δσ′ = 0, (4.123)

0 = δω′′k +
µ′0δω

′
k

µ0

+
δωk
µ

(√
k + 1

2k
hk,0 −

√
k − 1

2k
hk−1,0

)
, (4.124)

δh′′k = h′k,0δσ
′ − 2

r
δh′k. (4.125)

From section 4.5.2 the equilibrium values of hk are

hk,0 = bk −
ak
r
⇒ h′k =

ak
r2

(4.126)

and since hk(1) = 0, we have bk = ak = h′k(1), giving

0 = δω′′k +
µ′0δω

′
k

µ0

+
δωk
µ

(√
k + 1

2k
h′k(1)−

√
k − 1

2k
h′k−1(1)

)(
1− 1

r

)
. (4.127)

We use the GSL root finding algorithm [2] to find solutions to (4.127) where the

perturbations δωk go to zero at large r . This determines the values of h′k(1), and

we find the charge using (4.67). The temperature is then determined from (4.110).

Since we expect the temperature at which the RN solution admits this perturbation

to be the critical temperature TC , it should be the case that the non-abelian su(N)

solutions exist only at temperatures less that the critical temperature TC .

Figure 4.12 shows a plot of the scale invariant quantity T/Q0.5 against the length

scale l for ω(rh) = 0.1 and ω(rh) = 0.01, together with the critical temperature TC

for su(2). The ω(rh) = 0.01 curve lies slightly below the critical temperature curve.

As expected, we find that su(2) solutions exist only for temperatures less than the

critical temperature, and that the critical temperature is approached as ω(rh) goes

to zero, i.e. as the RN solution is approached. Figure 4.13 is a similar plot for

su(3), except at discrete values of l and scanning over a range of values of ω1(rh)

and ω2(rh). Again we find that the su(3) solutions exist only at temperatures less

than TC , and that TC is approached as ω1(rh) and ω2(rh) approach zero. However,

since it becomes increasingly difficult to distinguish between nodeless solutions and

those with nodes as ω1(rh) and ω2(rh) decrease, we were unable to find solutions
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very close to the phase transition.

Figure 4.12: Plot of temperature divided by the square root of the electric charge
against l =

√
−3/Λ for su(2) planar black holes with various values of ω(rh),

together with the critical temperature TC . The ω(rh) = 0.01 curve lies slightly
below the critical temperature curve.

In this section we have shown that there is a phase transition at a critical tem-

perature TC at which the RN solution can decay into su(2) or su(3) solutions,

and that these solutions exist at temperatures below TC . We approach the critical

temperature as our non-abelian solutions approach the RN solution, so our order

parameter J approaches zero as we approach the phase transition from below, and

is equal to zero above the critical temperature as expected. It was also shown in the

previous section that su(2) and su(3) solutions are thermodynamically favourable

over RN solutions with the same mass and charge. Since the su(3) solution is ther-

modynamically favoured over su(2), we expect larger gauge groups to have lower

free energies, and that a RN solution will decay into the most complicated solution

possible.



132CHAPTER 4. PLANAR BLACKHOLESWITH SUPERCONDUCTING HORIZONS

Figure 4.13: Plot of temperature divided by the square root of the electric charge
against l =

√
−3/Λ for su(3) planar black holes over a range of values of ω1(rh)

and ω2(rh) for which ω1 and ω2 go to zero at large r and are nodeless, together
with the critical temperature TC . Each dot on the vertical lines corresponds to an
su(3) black hole solution.
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§ 4.10 Electromagnetic perturbations

In this section we will follow the prodcedure of [38] to compute the frequency de-

pendent conductivity of the su(N) solutions on a fixed background. We will apply

a time dependent perturbation to the gauge field which is analogous to applying an

oscillating electric field to our superconductor. We start by generalising the su(2)

perturbation of [38] to su(N). As in [36], which is reviewed in section 4.1, the

conductivity is determined from the asymptotic behaviour of the perturbations. Al-

though we keep the field equations general, we will find numerical solutions for su(2)

and su(3) only, as the number of equations to be solved increases rapidly with the

size of the gauge group.

4.10.1 Ansatz and field equations

We will now apply an oscillating perturbation to the gauge field with frequency ξ .

We generalise the ansatz of [38] by taking

gA = −
N−1∑
l=1

(
hlHl + e−iξtδulF

(1)
l + e−iξtδvlG

(1)
l

)
dt

−
N−1∑
m=1

(
ωmF

(1)
m + e−iξtδh1,mHm

)
dx

−
N−1∑
n=1

(
ωnG

(1)
n + e−iξtδh2,nHn

)
dy, (4.128)

which reduces to that of [38] in the su(2) case. As in [38], we will neglect the back-

reaction of the fields on to the background planar Schwarzschild-AdS metric, such

that the equations for hk and ωk are given by (4.92) and (4.93), with m = −Λ/6

and σ = 1. In terms of new complex variables

Ak = δuk + iδvk, Bk = δuk − iδvk,

Ck = δh1,k + iδh2,k, Dk = δh1,k − iδh2,k, (4.129)

the 4(N − 1) Yang-Mills equations, which are derived in Appendix B, are given by
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A′′k = −2

r
A′k +

1

µr2

[ωk+1

2
(Akωk+1 − Ak+1ωk) +

ωk−1

2
(Akωk−1 − Ak−1ωk)

]
+
ωk
µr2

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)(√
k + 1

2k
Ck −

√
k − 1

2k
Ck−1

)

+
(k + 1)ωk

2µr2

(
Akωk
k
− Ak+1ωk+1

k + 1

)
+

(k − 1)ωk−1

2µr2

(
Akωk
k
− Ak−1ωk−1

k − 1

)
−ξωk
µr2

(√
k − 1

2k
Ck−1 −

√
k + 1

2k
Ck

)
, (4.130)

B′′k = −2

r
A′k +

1

µr2

[ωk+1

2
(Bkωk+1 −Bk+1ωk) +

ωk−1

2
(Bkωk−1 −Bk−1ωk)

]
+
ωk
µr2

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)(√
k + 1

2k
Dk −

√
k − 1

2k
Dk−1

)

+
(k + 1)ωk

2µr2

(
Bkωk
k
− Bk+1ωk+1

k + 1

)
+

(k − 1)ωk−1

2µr2

(
Bkωk
k
− Bk−1ωk−1

k − 1

)
+
ξωk
µr2

(√
k − 1

2k
Dk−1 −

√
k + 1

2k
Dk

)
, (4.131)

0 = C ′′k +
µ′

µ
C ′k +

√
k + 1

2k

Akωk
µ2

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)

+

√
k

2(k + 1)

Ak+1ωk+1

µ2

(√
k + 2

2(k + 1)
hk+1 −

√
k

2(k + 1)
hk

)

+

√
k + 1

2k

ω2
k

µr2

(√
k − 1

2k
Ck−1 −

√
k + 1

2k
Ck

)

+

√
k

2(k + 1)

ω2
k+1

µr2

(√
k + 2

2(k + 1)
Ck+1 −

√
k

2(k + 1)
Ck

)

+
ξ

µ2

(√
k + 1

2k
Akωk −

√
k

2(k + 1)
Ak+1ωk+1 + ξCk

)
, (4.132)



4.10. ELECTROMAGNETIC PERTURBATIONS 135

0 = D′′k +
µ′

µ
D′k +

√
k + 1

2k

Bkωk
µ2

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)

+

√
k

2(k + 1)

Bk+1ωk+1

µ2

(√
k + 2

2(k + 1)
hk+1 −

√
k

2(k + 1)
hk

)

+

√
k + 1

2k

ω2
k

µr2

(√
k − 1

2k
Dk−1 −

√
k + 1

2k
Dk

)

+

√
k

2(k + 1)

ω2
k+1

µr2

(√
k + 2

2(k + 1)
Dk+1 −

√
k

2(k + 1)
Dk

)

− ξ

µ2

(√
k + 1

2k
Bkωk −

√
k

2(k + 1)
Bk+1ωk+1 − ξDk

)
, (4.133)

where k = 1, 2, ..., N − 1. We also have 2(N − 2) zeroth order constraint equations,

which are given by

0 =
hk√

2k(k + 1)
(Akωk+1 − Ak+1ωk) +

√
k + 2

2(k + 1)
hk+1 (Akωk+1 − Ak+1ωk)

+

√
k − 1

2k
hk−1 (Ak+1ωk − Akωk+1) + ξ (Akωk+1 − Ak+1ωk)

+Akωk+1

(√
k + 2

2(k + 1)
hk+1 −

√
k

2(k + 1)
hk

)

+Ak+1ωk

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)

+
µωkωk+1

r2

(√
k

2(k + 1)
Ck −

√
k + 2

2(k + 1)
Ck+1

)

+
µωkωk+1

r2

(√
k + 1

2k
Ck −

√
k − 1

2k
Ck−1

)
, (4.134)
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0 =
hk√

2k(k + 1)
(Bkωk+1 −Bk+1ωk) +

√
k + 2

2(k + 1)
hk+1 (Bkωk+1 −Bk+1ωk)

+

√
k − 1

2k
hk−1 (Bk+1ωk −Bkωk+1)− ξ (Bkωk+1 −Bk+1ωk)

+Bkωk+1

(√
k + 2

2(k + 1)
hk+1 −

√
k

2(k + 1)
hk

)

+Bk+1ωk

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)

+
µωkωk+1

r2

(√
k

2(k + 1)
Dk −

√
k + 2

2(k + 1)
Dk+1

)

+
µωkωk+1

r2

(√
k + 1

2k
Dk −

√
k − 1

2k
Dk−1

)
, (4.135)

where k = 1, 2, ..., N − 1, but where the k = N − 1 equations vanish since ωN =

AN = 0, and 2(N − 1) first order constraint equations,

0 =

√
k + 1

2k
(hkA

′
k − Akh′k) +

√
k − 1

2k

(
Akh

′
k−1 − hk−1A

′
k

)
+
µ

r2

(√
k + 1

2k
(ωkC

′
k − Ckω′k) +

√
k − 1

2k

(
Ck−1ω

′
k − ωkC ′k−1

))
+ξA′k, (4.136)

0 =

√
k + 1

2k
(hkB

′
k −Bkh

′
k) +

√
k − 1

2k

(
Bkh

′
k−1 − hk−1B

′
k

)
+
µ

r2

(√
k + 1

2k
(ωkD

′
k −Dkω

′
k) +

√
k − 1

2k

(
Dk−1ω

′
k − ωkD′k−1

))
−ξB′k, (4.137)

where k = 1, 2, ..., N − 1. The equations for A and C are coupled, as are the

equations for B and D , although the two sets of equations are independent of each

other. We note that the two sets of equations differ only by the sign of the ξ terms.

If we differentiate the first order constraints (4.136) and (4.137), we find that they

are consistent with the field equations (4.130–4.133) and the zeroth order constraints

(4.134) and (4.135). Therefore, if the field equations and zeroth order constraints

are satisfied, the first order constraints must also be satisfied. We conclude that the
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first order constraints propagate, i.e. that if they are satisfied at one point in space,

they will be satisfied everywhere as long as (4.130–4.135) are satisfied everywhere.

However, this is not the case for the zeroth order constraints, so equations (4.134)

and (4.135) must be implemented directly. This is achieved by using the zeroth

order constraints to write 2(N − 2) variables in terms of the other 2N variables,

and hence we have 2N independent variables.

4.10.2 Boundary conditions at the event horizon for the su(2) case

In the su(2) case, the zeroth order constraints (4.134) and (4.135) vanish, since

AN = BN = ωN = 0, and we consider only the field equations and the first order

constriaints. We have four variables A , B , C and D , and two first order constraints.

We start by considering the variables A and C , which have equations of motion given

by

A′′ = −2

r
A′ +

1

µr2

(
Aω2 − hωC + ξωC

)
,

C ′′ = −µ
′

µ
C ′ +

Ahω

µ2
+
ω2C

µr2
− ξ

µ2
(Aω + ξC) , (4.138)

and a single first order constraint given by

hA′ − Ah′ + µ

r2
(ωC ′ − Cω′) + ξA′ = 0. (4.139)

Following [38] we take the expansions of A and C near the horizon to be

A = (r − 1)iξρ+λA
(
x(0) + x(1)(r − 1) + x(2)(r − 1)2 + ...

)
,

C = (r − 1)iξρ+λC
(
y(0) + y(1)(r − 1) + y(2)(r − 1)2 + ...

)
, (4.140)

where ρ , λA , λC and all x(a) and y(a) are real constants. Substituting into (4.138)

yields

0 =
3

l2
(r − 1)iξρ+λA−1(iξρ+ λA)(iξρ+ λA − 1)x(0)

+(r − 1)iξρ+λA

(
6

l2
(iξρ+ λA)− ω(1)2x(0)

)
+(r − 1)iξρ+λA

(
3

l2
(iξρ+ λA)(iξρ+ λA + 1)x(1) +O(r − 1)

)
−(r − 1)iξρ+λC

(
ξω(1)y(0) +O(r − 1)

)
, (4.141)
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where we have Taylor expanded h , ω and µ at the event horizon as in section

4.4.1. For this equation to be non-trivial, we require either x(0) = 0 and λA = λC ,

or λA = λC + 1. In fact, these two are equivalent, since in both cases we require

A ∼ (r− 1)iξρ+λC+1 to leading order. We will take λA = λC with x(0) = 0. Turning

now to equation (4.138) we have

0 = (r − 1)iξρ+λC

[
ξ2 +

9

l4
(iξρ+ λC)2

]
y(0) +O

(
(r − 1)iξρ+λC+1

)
, (4.142)

to leading order, so that

ξ2 +
9

l2
(
λ2
C + 2iξρλC − ξ2ρ2

)
= 0. (4.143)

Since we wish to consider solutions with real and non-zero ξ , we must take λC = 0

We then have

ρ2 =
l4

9
⇒ ρ = ± l

2

3
= ± 1

4πTH
. (4.144)

Following [38] we will consider the infalling solution and take the negative root of

(4.144). Since our field equations (4.138) and constraint (4.139) are invariant under

the rescaling A → γA , C → γC , we can rescale our variables by γ = 1/y(0) . We

then have

A = (r − 1)−
iξl2

3

(
x(1)(r − 1) + x(2)(r − 1)2 + ...

)
,

C = (r − 1)−
iξl2

3

(
1 + y(1)(r − 1) + y(2)(r − 1)2 + ...

)
. (4.145)

To leading order, the first order constraint (4.139) is given by

0 = −iω(1) +

(
1− iξl2

3

)
x(1), (4.146)

so that

x(1) =
iω(1)

1− iξl2

3

. (4.147)
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We then have

A = (r − 1)1− iξl
2

3

(
iω(1)

1− iξl2

3

+O (r − 1)

)
,

C = (r − 1)−
iξl2

3 (1 +O (r − 1)) . (4.148)

The equations of motion and constraint for B and D are the same as for A and

C , except with ξ → −ξ . The leading order dependence of B and D on (r − 1)

is therefore the same, as is the symmetry B → γB , D → γD . We can therefore

expand B and D near the horizon as

B = (r − 1)1− iξl
2

3

(
z(1) +O (r − 1)

)
,

D = (r − 1)−
iξl2

3 (1 +O (r − 1)) . (4.149)

From the first order constraint (4.139) we have

z(1) =
iω(1)
iξl2

3
− 1

, (4.150)

and therefore

B = (r − 1)1− iξl
2

3

(
iω(1)
iξl2

3
− 1

+O (r − 1)

)
,

D = (r − 1)−
iξl2

3 (1 +O (r − 1)) . (4.151)

4.10.3 Boundary conditions at the event horizon for the su(3) case

In the su(3) case we now have eight variables: Ak , Bk , Ck and Dk , for k = 1, 2,

and we begin by considering the Ak and Ck . We then have four equations of motion

given by (4.130, 4.132), one zeroth order constraint (4.134), and two first order

constraints (4.134). The near horizon expansions for the Ak and Ck , are given by

Ak = (r − 1)iξρ+λA
(
x

(0)
k + x

(1)
k (r − 1) + x

(2)
k (r − 1)2 + ...

)
,

Ck = (r − 1)iξρ+λC
(
y

(0)
k + y

(1)
k (r − 1) + y

(2)
k (r − 1)2 + ...

)
. (4.152)



140CHAPTER 4. PLANAR BLACKHOLESWITH SUPERCONDUCTING HORIZONS

Substituting into (4.130) for k = 1 yields

0 =
3

l2
(r − 1)iξρ+λA−1 (iξρ+ λA) (iξρ+ λA − 1)x

(0)
1

+(r − 1)iξρ+λA

(
−x(0)

1 ω1(1)2 − 1

2
x

(0)
1 ω2(1)2 + x

(0)
2 ω1(1)ω2(1)

)
+(r − 1)iξρ+λA

3

l2
(iξρ+ λA) (iξρ+ λA + 1)x

(1)
1

+(r − 1)iξρ+λA

(
3

l2
(iξρ+ λA)x

(0)
1 +O(r − 1)

)
−(r − 1)iξρ+λC

(
ξω1(1)y

(0)
1 +O(r − 1)

)
, (4.153)

while for k = 2 we have

0 =
3

l2
(r − 1)iξρ+λA−1 (iξρ+ λA) (iξρ+ λA − 1)x

(0)
2

+(r − 1)iξρ+λA

(
−x(0)

2 ω2(1)2 − 1

2
x

(0)
2 ω1(1)2 + x

(0)
1 ω1(1)ω2(1)

)
+(r − 1)iξρ+λA

3

l2
(iξρ+ λA) (iξρ+ λA + 1)x

(1)
2

+(r − 1)iξρ+λA

(
3

l2
(iξρ+ λA)x

(0)
2 +O(r − 1)

)
−(r − 1)iξρ+λC

(√
3

2
ξω2(1)y

(0)
2 −

1

2
ξω2(1)y

(0)
1 +O(r − 1)

)
. (4.154)

As in the su(2) case, we require either λA = λC with x
(0)
1 = x

(0)
2 = 0, or λA = λC+1.

As before the two are equivalent and we take λA = λC , and set x
(0)
1 = x

(0)
2 = 0.

Substituting (4.152) into equation (4.132) we find

0 = (r − 1)iξρ+λA

(
ξx

(0)
1 −

1

2
ξx

(0)
2 ω2(1) +O(r − 1)

)
+(r − 1)iξρ+λC

(
9

l4
(iξρ+ λC)2 y

(0)
1 + ξ2y

(0)
1 +O(r − 1)

)
, (4.155)

for k = 1, and

0 = (r − 1)iξρ+λA

(√
3

2
ξx

(0)
2 ω2(1) +O(r − 1)

)

+(r − 1)iξρ+λC

(
9

l4
(iξρ+ λC)2 y

(0)
2 + ξ2y

(0)
2 +O(r − 1)

)
, (4.156)
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for k = 2. Both (4.155) and (4.156) yield

9

l4
(iξρ+ λC)2 + ξ2 = 0. (4.157)

As in the su(2) case we take λC = λA = 0 and find

ρ2 =
l4

9
⇒ ρ = ± l

2

3
= ± 1

4πTH
, (4.158)

and as before take the negative root. Again our equations are invariant under the

transformation Ak → γAk , Ck → γCk , and we set γ = 1/y
(0)
1 so that our expansions

become

A1 = (r − 1)−
iξl2

3

(
x

(1)
1 (r − 1) + x

(2)
2 (r − 1)2 + ...

)
,

A2 = (r − 1)−
iξl2

3

(
x

(1)
2 (r − 1) + x

(2)
2 (r − 1)2 + ...

)
,

C1 = (r − 1)−
iξl2

3

(
1 + y

(1)
1 (r − 1) + y

(2)
2 (r − 1)2 + ...

)
,

C2 = (r − 1)−
iξl2

3

(
y

(0)
2 + y

(1)
2 (r − 1) + y

(2)
2 (r − 1)2 + ...

)
. (4.159)

In the su(3) case we have two first order constraints. Substituting (4.159) into

(4.136) and taking k = 1 we find

0 = −iω(1) +

(
1− iξl2

3

)
x

(1)
1 (4.160)

to leading order, so that

x
(1)
1 =

iω1(1)

1− iξl2

3

. (4.161)

Similarly for k = 2 we find

x
(1)
2 =

iω2(1)

(1− iξl2

3
)

(√
3

2
y

(0)
2 −

1

2

)
. (4.162)

We also have a single zeroth order constraint (4.134), which to leading order is given

by

(r − 1)1− iξl
2

3

[
3

l2
ω1(1)ω2(1)

(
3

2
−
√

3

2
y

(0)
2

)
+ ξ

(
x

(1)
1 ω2(1)− x(1)

2 ω1(1)
)]

= 0.

(4.163)
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Substituting for x
(1)
1 and x

(1)
2 from (4.161) and (4.162) we find that y

(0)
2 =

√
3, so

that all together we have

A1 = (r − 1)1− iξl
2

3

(
iω1(1)

1− iξl2

3

(r − 1) +O(r − 1)2

)
,

A2 = (r − 1)1− iξl
2

3

(
iω2(1)

(1− iξl2

3
)
(r − 1) +O(r − 1)2

)
,

C1 = (r − 1)−
iξl2

3 (1 +O(r − 1)) ,

C2 = (r − 1)−
iξl2

3

(√
3 +O(r − 1)

)
. (4.164)

Following the same procedure for the Bk and Dk equations of motion (4.131) and

(4.133), and constraints (4.135) and (4.137), we find

B1 = (r − 1)1− iξl
2

3

(
iω1(1)
iξl2

3
− 1

(r − 1) +O(r − 1)

)
,

B2 = (r − 1)1− iξl
2

3

(
iω2(1)
iξl2

3
− 1

(r − 1) +O(r − 1)

)
,

D1 = (r − 1)−
iξl2

3 (1 +O(r − 1)) ,

D2 = (r − 1)−
iξl2

3

(√
3 +O(r − 1)

)
. (4.165)

4.10.4 Conductivity of su(2) solutions

In this section we compute the conductivity of su(2) solutions with ζ = 1, the ζ = 0

case having been studied in [38]. The conductivity is computed using the boundary

values of the perturbations. If we wish to compute the conductivity with respect

to electric fields applied in the x direction, we therefore consider the behaviour of

δh1 at large r . Since the conductivity is an observable quantity, it must be gauge

invariant.

In the su(2) case, there is a set of gauge transformations which leave the matrix

structure of the gauge potential (4.128) invariant. We consider an infinitesimal gauge

transformation of the form

W = e−iξt(W1F
(1)
1 +W2G

(1)
1 +W3H1), (4.166)

where F , G and H are the generators of su(2). The potential (4.128) transforms
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as

Aµ → Aµ + ε (∂µW − [Aµ,W ]) , (4.167)

so that, once terms of the form ε multiplied by a perturbation are neglected due to

being quadratically small, we have

A0 → −e−iξt(δu+ εhW2 + iξεW1)F
(1)
1 − e−iξt(δv + iξεW2 − hW1)G

(1)
1

−(h+ iξεe−iξtW3)H1

A1 → (εe−iξt∂1W1 − ω)F
(1)
1 + εe−iξt(∂1W2 − ωW3)G

(1)
1

−e−iξt(δh1 − ε∂1W3 − εωW2)H1

A2 → εe−iξt(∂2W1 + ωW3)F
(1)
1 + (εe−iξt∂2W2 − ω)G

(1)
1

−e−iξt(δh2 − ε∂2W3 − εωW1)H1

A3 → εe−iξt
[
∂3W1F

(1)
1 + ∂3W1G

(1)
1 + ∂3W3H1

]
. (4.168)

For A3 = 0, we require

∂1W2 − ωW3 = ∂2W1 + ωW3 = 0, (4.169)

which satisfied if W is constant and W3 = 0. If this is case, the transformation

(4.168) is equivalent to

δu→ δu+ ε(hW2 + iξW1), δv → δv + ε(iξW2 − hW1),

δh1 → δh1 − εωW2, δh2 → δh2 − εωW1. (4.170)

However, since our conductivity (and all observable quantities) must be gauge in-

variant, we consider the quantities

ˆδh1 = δh1 +
ω(iξδv + hδu)

h2 − ξ2
, ˆδh2 = δh2 +

ω(iξδu− hδv)

h2 − ξ2
, (4.171)

which are invariant under (4.170).

The conductivity in the x direction can be computed following [38], by expanding
ˆδh1 near the boundary at large r .
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If we have

ˆδh1 = δh1 +
ω(iξδv + hδu)

h2 − ξ2

=
1

2
(C +D) +

ω

h2 − ξ2

(
ξ

2
(A−B) +

h

2
(A+B)

)
= H(0)

1 +
H(1)

1

r
+ ... (4.172)

at large r , then the conductivity in the x direction is given by

σxx = − i

ξl2
H(1)

1

H(0)
1

. (4.173)

Similarly, if

ˆδh2 = δh2 +
ω(iξδu− hδv)

h2 − ξ2
= H(0)

2 +
H(1)

2

r
+ ... (4.174)

then the conductivity in the y-direction is

σyy = − i

ξl2
H(1)

2

H(0)
2

. (4.175)

When looking for solutions to (4.130–4.133), the first step is to numerically find

solutions to the background equations as described in section 4.7, i.e. to find solu-

tions to the equations (4.83–4.86), subject to the boundary conditions (4.88), and

where ω(r) approaches zero at large r . We then use the same method, the Bulirsch-

Stoer algorithm in C++ [32] using a 10−7 convergence criteria to solve the equations

for A , B , C and D (4.130–4.133) subject to the boundary conditions (4.148, 4.151),

integrating outwards from r − 1 = 10−7 .

The conductivities are then computed from the asymptotic values of A , B , C ,

D and their derivatives using (4.173) and (4.175), with

H(0)
1 = lim

r→∞
ˆδh1

= lim
r→∞

1

2
(C +D) +

ω

h2 − ξ2

(
ξ

2
(A−B) +

h

2
(A+B)

)
, (4.176)
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H(1)
1 = lim

r→∞
−r2 ˆδh′1

= lim
r→∞

{
−r

2

2
(C ′ +D′)

}
− lim

r→∞

{
ω

h2 − ξ2

(
ξ

2
(A′ −B′) +

h

2
(A′ +B′) +

h′

2
(A+B)

)
r2

}
− lim

r→∞

{
(h2 − ξ2)ω′ − 2ωhh′

(h2 − ξ2)2

(
ξ

2
(A−B) +

h

2
(A+B)

)
r2

}
, (4.177)

and similarly

H(0)
2 = lim

r→∞

i

2
(D − C) +

ω

h2 − ξ2

(
iξ

2
(A+B) +

ih

2
(A−B)

)
, (4.178)

H(1)
2 = lim

r→∞

{
ir2

2
(C ′ −D′)

}
− lim

r→∞

{
ω

h2 − ξ2

(
iξ

2
(A′ +B′) +

ih

2
(A′ −B′) +

ih′

2
(A−B)

)
r2

}
− lim

r→∞

{
(h2 − ξ2)ω′ − 2ωhh′

(h2 − ξ2)2

(
iξ

2
(A+B) +

ih

2
(A−B)

)
r2

}
. (4.179)

Figure 4.14 shows the real parts of the conductivities in the x and y directions

plotted as a function of frequency ξ . We note that, as expected, there is a gap at

low frequencies in both directions, i.e. the low frequency conducitvity is lower than

the higher frequency conductivity, with a larger gap in σyy than σxx . As in [38], we

also note that there is a pole in the imaginary part of the conductivity, plotted in

figure 4.15. The same result was found in [38], from which it was deduced that there

was a delta function at zero frequency in the real part of the conductivity, and we

infer that the same must be true here. Both of these properties are what we would

expect from a real superconductor [14, 13].

However, we also note that the conductivity diverges at non-zero frequency. Since

H(0)
1 includes a (h2 − ξ2)−1 term, and H(1)

1 includes a (h2 − ξ2)−2 term, as the

frequency ξ approaches the asymptotic value of h , the conductivity σxx ∼ H(1)
1 /H(0)

1

diverges, which is not a feature of real superconducting materials [13]. This feature

was not found in [38] with the ζ = 0 ansatz. The conductivity of the ζ = 1 ansatz

was not computed in [37, 62].
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Figure 4.14: Plot of the real part of the frequency dependent conductivity for an
su(2) black hole with Λ = −0.65, ω(rh) = 0.1. As expected, we find a gap in the
frequency dependent conductivity between low and high frequencies, and infinite
D.C. conductivity. However, the divergence around ξ = 0.9 is not a feature of real
superconducting materials.

4.10.5 Conductivity of su(3) solutions

In the su(3) case there are no gauge tranformations which preserve the matrix

structure of (4.128), and hence it is sufficient to consider the asymptotic values of

the quantities δh1,1 , δh1,2 , δh2,1 and δh2,2 . However, the situation is made more

complicated by the presence of two perturbations in both the x and y directions.

The conductivity is determined from [38]

J |bdy = iξ
(
δh∗1,1 δh∗1,1 ... δv∗2

)
σ


δh1,1

δh1,1

...

δv2

 (4.180)

where σ is the conductivity matrix and J |bdy is the large r limit of

J = r (δu∗1∂rδu1 + δu∗2∂rδu2 + δv∗1∂rδv1 + δv∗2∂rδv2)

−µ
(
δh∗1,1∂rδh1,1 + δh∗1,2∂rδh1,2 + δh∗2,1∂rδh2,1 + δh∗2,2∂rδh2,2

)
. (4.181)
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Figure 4.15: Plot of the imaginary part of the frequency dependent conductivity for
an su(2) black hole with Λ = −0.65, ω(rh) = 0.1. Results found here are similar
to those of [38], although as with the real part we find a divergence around ξ = 0.9
which was not present in [38].

Considering only perterbations in the x direction δh1,1 and δh1,2 , the appropriate

part of (4.181) is

J =
1− r3

l2r

(
δh∗1,1∂rδh1,1 + δh∗1,2∂rδh1,2

)
. (4.182)

Using the zeroth order constraints (4.134, 4.135) we can write δh1,2 in terms of δh1,1

as

δh1,2 =
√

3δh1,1 + ... (4.183)

We have omitted terms involving δui and δvi , since these lead to off diagonal terms

in the conductivity matrix. We are interested in the behaviour of δh1,1 at large r ,

which is given by

δh1,1 = H(0)
1,1 +

H(1)
1,1

r
+ ... (4.184)
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The large r behaviour of (4.182) is then given by

iξH(0)
1,1

∗ (
σ1,1 +

√
3σ1,2 +

√
3σ2,1 + 3σ2,2

)
H(0)

1,1 =
4r2

l2
H(0)

1,1

∗H(0)
1,1

r2
+ ...

=
4

l2
H(0)

1,1

∗H(1)
1,1

H(0)
1,1

H0
1,1 + ...

(4.185)

so that using (4.182) we have

σxx = − 4i

ξl2
H(1)

1,1

H(0)
1,1

, (4.186)

where σxx is the part of σ depending only on δh1,1 and δh2,2 . Similarly

σyy = − 4i

ξl2
H(1)

2,1

H(0)
2,1

, (4.187)

The first step in computing the conductivity will be to solve the field equations

(4.130–4.133), subject to the constraints (4.134–4.137). The four first order con-

straints, given by (4.136, 4.137) are satisfied at the event horizon by our choice of

boundary conditions, and are therefore satisfied everywhere since they propagate

(we can therefore determine the accuracy of the numerical results from the size of

the left hand sides of (4.136, 4.137)). However, we also have two zeroth order con-

straints which must be implemented directly. We use the zeroth order constraints

to write

A2 =
1

3
2
h1ω2 +

√
3

2
h2ω1 + ξω1

{
A1ω2

(√
3h2 + ξω2

)
+
µω1ω2

2r2

(
C1 −

√
3C2

)}
,

B2 =
1

3
2
h1ω2 +

√
3

2
h2ω1 − ξω1

{
B1ω2

(√
3h2 − ξω2

)
+
µω1ω2

2r2

(
D1 −

√
3D2

)}
.

(4.188)

We then have six independendent complex second order ODEs for A1 , B1 , C1 , C2 ,

D1 and D2 , which we separate into real and imaginary parts, and then separate

again into first order equations in A1 , A′1 etc. to give twenty four first order ODEs.

Again we solve these, together with the background equations in ω1 , ω2 , h1 and

h2 , using the same Bulirsch-Stoer algorithm in C++ [32] using a 10−7 convergence
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criteria, subject to the boundary conditions (4.164–4.165). We use the GSL root

finding algorithm [2] to ensure the background gauge fields have ω2 and ω2 going to

zero at large r , and we are interested in solutions where ω1 and ω2 have no nodes,

since these have lower free energy, and are therefore thermodynamically favoured

over solutions with nodes in ω1 and ω2 (see section 4.8.2).

Once solutions are obtained, we determine the conductivity in the x direction

using the large r behaviour of C1 and D1 and (4.186) by noting that

δh1,1 =
1

2
(C1 +D1) , (4.189)

so that

H(0)
1,1 = lim

r→∞

1

2
(C1 +D1) , H(1)

1,1 = − lim
r→∞

r2

2
(C ′1 +D′1) , (4.190)

and therefore

σxx = lim
r→∞

4ir2

ξl2
C ′1 +D′1
C1 +D1

. (4.191)

Similarly

σyy = lim
r→∞

4ir2

ξl2
C ′1 +D′1
C1 +D1

. (4.192)

Figure 4.16 shows a plot of the real part of the conductivity in the x direction

σxx as a function of frequency ξ for su(3) black holes at various temperatures. As

expected, we notice a gapped dependence in the conductivity at non-zero frequency,

with a higher conductivity at higher frequencies. We also note that, as is the case

in real superconducting materials, the gap decreases with increasing temperature.

Unlike the su(2) case, we do not find a divergence at a particular non-zero frequency,

since we did not requre an additional term to make δh1,1 gauge invariant (4.171).

We also find that the conductivity becomes infinite in the zero frequency D.C. limit.

However, unlike the su(2) case, this does not need to be inferred from the imaginary

part of the conductivity. Instead the real part of the frequency rises very sharply at

small but non-zero frequencies and becomes large as ξ approaches zero.

Figure 4.17 shows the imaginary part of σxx As with the real part, we find the

same features as we would expect from a real superconductor, without the unphysical

divergence. In particular, we find that the imaginary part is large at small ξ , and

tends to zero at large ξ , as was found in [38].

Figures 4.18 and 4.19 show the real and imaginary parts of the conductivity in
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Figure 4.16: Plot of the real part of the frequency dependent conductivity in the x
direction for an su(3) black hole with l = 5 at various temperatures. As expected,
there is a gap in the frequency dependent conductivity between low and high fre-
quencies which, as expected, grows as the temperature decreases. Unlike the su(2)
case, there is no unphysical divergence at non-zero frequency.

the y direction, σyy . We find the same qualitative features as with σxx , which we

expect from a real superconductor, without the unphysical divergences. However,

the exact form is not the same as σxx in particular, we find a much larger gap in

the conductivity at non-zero frequency at the same temperature, as we did in the

su(2) case. We also note that, while the gap does increase as temperature decreases,

unlike in the x direction this difference is too small to be seen on a graph.

§ 4.11 Summary

In this chapter we have investigated planar dyonic black holes in the context of

the AdS/CFT correspondence and superconductivity. We have found a gravita-

tional analogue to superconductors which displays some of the main properties of
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Figure 4.17: Plot of the imaginary part of the frequency dependent conductivity in
the x direction for an su(3) black hole with l = 5 at various temperatures. We find
a divergence as ξ → 0, and that the imaginary part of the conductivity approaches
zero at large ξ , as we expect from a real superconductor.

superconductors. Our solutions can have a condensate, whose role is played by the

su(N) gauge field, below a certain critical temperature but not above. At the criti-

cal temperature, the “normal state” Reissner-Nordström solution admits an su(N)

perturbation. It is also the case that the superconducting solution (with a gauge

field) is thermodynamically favourable over the Reissner-Nordström solution.

Furthermore, we have calculated the frequency dependent conductivity. In both

the su(2) and su(3) cases, we find infinite D.C. conductivity, as well as a gap at

non-zero frequency. Although there is an unphysical divergence in the conductivity

at non-zero frequency for the su(2) case, this is not the case for su(3).
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Figure 4.18: Plot of the real part of the frequency dependent conductivity in the
y direction for an su(3) black hole with l = 5 and T = 0.004050. The from is
the same as in the x direction (and what we expect from a real superconductor),
although as in the su(2) case we find a larger gap at non-zero frequency than in the
x direction.
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Figure 4.19: Plot of the imaginary part of the frequency dependent conductivity in
the x direction for an su(3) black hole with l = 5 and T = 0.004050. As in the x
direction, we find a divergence as ξ → 0, and that Im(σyy) approaches zero at large
ξ .
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Chapter 5

Conclusions

This thesis is concerned with static EYM black holes in AdS space, in the presence

of an su(N) gauge field. We studied black holes with purely magnetic gauge fields

as well as dyonic black holes which carry both electric and magnetic charges. We

considered both spherically symmetric and topological event horizons. There were

two main motivations for this: firstly to check whether we can find stable black holes

which satisfy the no-hair conjecture, and secondly to find gravitational analogues to

superconductors in the context of the AdS/CFT correspondence.

In chapter 2 we studied spherically symmetric black holes with a purely magnetic

gauge field in the context of the no-hair conjecture. After summarizing previous work

on stability under linear perturbations, we looked at thermodynamic stability. We

then went on to define the global charges carried by the black holes, and found both

a non-divergent mass (which is non-trivial in asymptotically AdS space), and also

expressions for the N − 1 gauge invariant magnetic charges Qj associated with the

Yang-Mills field.

Although we found numerically that the black holes were not characterized by

their mass and a single (effective) charge, we found evidence that they obey Bizon’s

modified no-hair conjecture, i.e. that stable black holes are characterized by their

mass and global charges. We provided numerical evidence that the independent

parameters required to characterize the black holes at infinity were the mass M and

charges Qj . Analytically, we argued that if |Λ| is large, there is an approximate

map between the parameters required to characterize the black holes at the event

horizon and (M,Qi).

Then, in chapter 3, we turned to spherically symmetric dyons, with both soliton
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and black hole boundary conditions. We found the field equations and boundary

conditions which generalised the su(2) solutions of [18, 19] to su(N), and found a

method extending that of [8] to find numerical su(3) solitons. We then presented

numerical results for black holes and solitons with su(2) and su(3) gauge groups.

Since a stability analysis is a work in progress [63], we did not investigate the dyons

in the context of the no-hair conjecture. However, we did find that the nodeless

region of the parameter space grows as |Λ| increases, which is likely to be important

for the stability analysis.

Finally, in chapter 4, we studied planar dyonic black holes as a candidate for an

analogue to high temperature superconductors under the AdS/CFT correspondence.

We generalised the su(2) ansatze from [37, 38, 62] to su(N). From the field equations

we deduced that only the ansatz which is symmetric under rotations in the (x, y)

plane gave a genuinely su(N) field, rather than embedded su(2).

We took the Reissner-Nordström solution as the normal phase, with the su(N)

gauge field acting as a superconducting condensate, and investigated some of the

main properties of real superconducting materials. We found that, as expected, there

is a critical temperature TC at which the Reissner-Nordström solution admits an

su(N) perturbation. Solutions with a Yang-Mills field were found to exist below this

critical temperature, and where they exist they are thermodynamically favourable

over the Reissner-Nordström solutions.

We then computed the frequency dependent conductivity of the su(2) and su(3)

solutions. In both cases we found the D.C. conductivity to be infinite, and at non-

zero frequency we found a pseudogap in the conductivity between low and high

frequencies. However, unlike in [38], for the rotationally symmetric ansatz we found

an unphysical divergence in the conductivity at non-zero frequency in the su(2) case.

This arose from additional terms required to make the conductivity gauge invariant,

as is required for observable quantities. No such terms were required in the su(3)

case, and we found an agreement in the form of the frequency and temperature

dependent conductivity with real superconducting materials found experimentally

in [13].

While we found that a certain subset of purely magnetic EYM black holes

obey the modified no-hair conjecture, whether all do remains an open question,

i.e. whether all stable EYM black holes are uniquely characterized by their global

charges. It would also be interesting to investigate whether dyonic black holes also

obey the modified no-hair conjecture, although this would require a stability analysis
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to be carried out first.

With regard to the planar black holes with superconducting horizons, one would

guess that larger gauge groups are thermodynamically favoured over smaller ones, i.e.

that su(4) solutions have lower free energy than those with an su(3) gauge group.

It may be possible to prove this in general. If this is the case, it may also be the

case that solutions with larger gauge groups are better analogues to superconductors

than those with smaller gauge groups. In addition, for the correspondence between

su(N) black holes and condensed matter systems to hold, it would be necessary to

use the full string theory approach, rather than the classical approximation to the

gravitational side which is taken here. We leave these questions for future work.
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Appendix A

The Lie group SU(N) and Lie

algebra su(N)

stuff

In this appendix we present a matrix representation of the generators of the

Lie algebra su(N), which generalises the Pauli matrices for su(2) and Gell-Mann

matrices for su(3). The group SU(N) has dimension N2− 1 (which is equal to the

number of generators) and rank N − 1 (which is equal to the number of diagonal

traceless generators which make up the Cartan subalgebra).

The generators of the real Lie algebra of su(2) given by Ti = − i
2
σi , where σi

are the Pauli matrices (we note here that other authors may take 1
2
σi to be the

generators of su(2) as these are Hermitian, although in this case the coefficients are

purely imaginary [68] - the important thing is that the charges are real). Explicitly

they are

T1 = − i
2

(
0 1

1 0

)
, T2 = − i

2

(
0 −i
i 0

)
, T3 = − i

2

(
1 0

0 1

)
. (A.1)

The Cartan subalgebra X of su(2) is generated by T3 , so the elements X of X are

given by X = ρT3 for some ρ .

The generators of su(3) are similarly defined by Tj = − i
2
λj , where λi are the

159
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Gell-Mann matrices [68], so that

T1 = − i
2

0 1 0

1 0 0

0 0 0

 , T2 = − i
2

0 −i 0

i 0 0

0 0 0

 ,

T3 = − i
2

1 0 0

0 −1 0

0 0 0

 , T4 = − i
2

0 0 1

0 1 0

1 0 0

 ,

T5 = − i
2

0 0 −i
0 0 0

i 0 0

 , T6 = − i
2

0 0 0

0 0 1

0 1 0

 ,

T7 = − i
2

0 0 0

0 0 −i
0 i 0

 , T8 = − i

2
√

3

1 0 0

0 1 0

0 0 −2

 . (A.2)

The Cartan subalgebra X of su(3) is generated by T3 and T8 , so the elements X

of X are given by X = ρT3 + σT8 for some ρ and σ .

For su(N), we note that there are three families of generators. Firstly there are

the N − 1 diagonal generators of the Cartan subalgebra, which we denote Hl , and

define in a smiliar way to [20], using a slightly different normalisation:

[Hl]j,k = − i√
2l(l + 1)

(
l∑

p=1

[δj,pδk,p]− lδj,l+1δk,l+1

)
, (A.3)

for l = 1, .., N − 1. In the su(2) case we have only H1 , which is equal to T3 from

(A.1), while in the su(3) case we have H1 and H2 , which are equal to T3 and

T8 from (A.2) respectively. We split the remaining N(N − 1) generators into two

groups. The first are complex and are of the form T1 , T4 and T6 from (A.2) for

su(3), which we denote F
(n)
m and are

[
F (n)
m

]
j,k

= − i
2

(δj,mδk,m+n + δj,m+nδk,m) , (A.4)

and the second, which are real, and are of the form T2 , T5 and T7 from (A.2) for
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su(3), which we denote G
(n)
m and are

[
G(n)
m

]
j,k

=
1

2
(δj,m+nδk,m − δj,mδk,m+n) . (A.5)

The indices take the values n = 1, 2, ..., N−1, m = 1, 2, ..., N−n to give the correct

number of generators. Comparison with (A.2) yields, for su(3),

F
(1)
1 = T1, G

(1)
1 = T2, H1 = T3, F

(2)
1 = T4,

G
(2)
1 = T5, F

(1)
2 = T6, G

(1)
2 = T7, H2 = T8, (A.6)

For the spherically symmetric black holes considered in chapters 2 and 3, we will

consider the matrix

D = diag(N − 1, N − 3, ..., 3−N, 1−N), (A.7)

which can be written in terms of the generators of su(N) as

D =
N−1∑
k=1

i
√

2k(k + 1)Hk. (A.8)

The non-zero commutation relations between the F
(n)
m , G

(n)
m , Hm and D which are

used in this thesis are then:

[Fk−1, Fk] =
1

2
G

(2)
k−1, [Fk, Hk] = −

√
k + 1

2k
Gk, [Fk, Hk−1] =

√
k − 1

2k
Gk,

[Fk, Gk] = − 1

2k

(√
2k(k + 1)Hk −

√
2k(k − 1)Hk−1

)
,

[Fk−1, Gk] = −1

2
F

(2)
k−1, [Fk, Gk−1] =

1

2
G

(2)
k−1,

[Gk−1, Gk] = −1

2
G

(2)
k−1, [Gk, Hk] =

√
k + 1

2k
Fk, [Gk, Hk−1] = −

√
k − 1

2k
Fk,

[
F

(2)
k , Hk

]
= − 1√

2k(k + 1)
G

(2)
k ,

[
F

(2)
k+1, Hk

]
=

√
k

2(k + 1)
G

(2)
k+1,

[
G

(2)
k , Hk

]
=

1√
2k(k + 1)

F
(2)
k ,

[
G

(2)
k+1, Hk

]
= −

√
k

2(k + 1)
F

(2)
k+1,
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[
F

(2)
k , Hk+1

]
= −

√
k + 2

2(k + 1)
G

(2)
k

[
G

(2)
k , Hk+1

]
=

√
k + 2

2(k + 1)
F

(2)
k ,

[
Fk, G

(2)
k

]
= −1

2
Fk+1,

[
Fk+1, G

(2)
k

]
=

1

2
Fk,

[
Fk, G

(2)
k+1

]
= −1

2
F

(3)
k ,[

Fk+2, G
(2)
k

]
=

1

2
F

(3)
k ,

[
Fk, F

(2)
k

]
=

1

2
Gk+1,

[
Fk+1, F

(2)
k

]
= −1

2
Gk,[

Fk, F
(2)
k+1

]
=

1

2
G

(3)
k ,

[
Fk+2, F

(2)
k

]
= −1

2
G

(3)
k ,

[
Gk, F

(2)
k

]
=

1

2
Fk+1,[

Gk+1, F
(2)
k

]
= −1

2
Fk,

[
Gk, F

(2)
k+1

]
= −1

2
F

(3)
k ,

[
Gk+1, F

(2)
k

]
=

1

2
F

(3)
k ,[

Gk, G
(2)
k

]
=

1

2
Gk+1,

[
Gk+1, G

(2)
k

]
= −1

2
Gk,

[
Gk, G

(2)
k+1

]
= −1

2
G

(3)
k ,[

Gk+2, G
(2)
k

]
=

1

2
G

(3)
k , [D,Fk] = 2iGk, [D,Gk] = −2iFk (A.9)

where k = 1, 2, ..., N − 1.



Appendix B

The Einstein-Yang-Mills equations

[] In this appendix we derive the Einstein-Yang-Mills equations used in chapters 3

and 4. In each case, the first stage will be to find the components of the field strength

tensor

Fµν = ∂µAν − ∂νAµ + g [Aµ, Aν ] , (B.1)

for the gauge potential A = Aµdx
µ , with coupling constant g . The components of

(B.1), along with the Christoffel symbols

Γαβγ =
1

2
gαµ (gµβ,γ + gµγ,β − gβγ,µ) , (B.2)

where gµν is the metric tensor, then give the Yang-Mills equations

DµF
µν = ∂µF

µν + ΓµµαF
αν + ΓνµαF

µα + g [Aµ, F
µν ] = 0. (B.3)

We can also find the components of the stress tensor using (B.1), which are given by

Tµν = F a
µαF

a
νβg

αβ − 1

4
gµνF

a
αβF

aαβ. (B.4)

These in turn determine the Einstein equations, which are

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (B.5)
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§B.1 Dyonic solutions

The spherically symmetric line element (3.1) is

ds2 = −σ2µ dt2 + r2(dθ2 + sin2 θdφ2) + µ−1dr2, (B.6)

with metric function (3.2)

µ = 1− 2m(r)

r
− Λr2

3
. (B.7)

In terms of the generators (A.3–A.5), the gauge potential (3.6) is

gA =
N−1∑
k=1

{
−hkHk dt− ωkG(1)

k dθ +

[
ωkF

(1)
k sin θ +

√
k(k + 1)

2
Hk cos θ

]
dφ

}
,

(B.8)

where hk and ωk depend on r only. Using (B.1) and the commutation relations

(A.9), the components of the field strength tensor are

F01 =
1

g

N−1∑
k=1

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk+1

)
ωkG

(1)
k , F03 =

1

g

N−1∑
k=1

h′kHk,

F02 =
sin θ

g

N−1∑
k=1

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)
ωkG

(1)
k , F13 =

1

g

N−1∑
k=1

ω′kG
(1)
k ,

F12 =
sin θ

g

N−1∑
k=1

√
2k(k + 1)

(
ω2
k

k
−
ω2
k+1

k + 1
− 1

)
Hk, F23 = −sin θ

g

N−1∑
k=1

ω′kF
(1)
k .

(B.9)

Substituting (B.9) into equation (B.3) we obtain three Yang-Mills equations;

0 =
N−1∑
k=1

{
−2h′k
σ2r

+
σ′h′k
σ3
− h′′k
σ2

}
Hk

+
N−1∑
k=1

{√
2k(k + 1)

σ2µr2

ω2
k+1

k + 1

(√
k

2(k + 1)
hk −

√
k + 2

2(k + 1)
hk+1

)}
Hk

+
N−1∑
k=1

{√
2k(k + 1)

σ2µr2

ω2
k

k

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)}
Hk, (B.10)
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0 =
N−1∑
k=1

{
µω′k
r2

(
σ′

σ
+
µ′

µ

)
+
ωk
2r4

(
2 + ω2

k−1 − 2ω2
k + ω2

k+1

)}
G

(1)
k

+
N−1∑
k=1

µω′′kr2
+

ωk
σ2µr2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2
G

(1)
k , (B.11)

0 =
N−1∑
k=1

{
µω′k
r2

(
σ′

σ
+
µ′

µ

)
+
ωk
2r4

(
2 + ω2

k−1 − 2ω2
k + ω2

k+1

)}
F

(1)
k

+
N−1∑
k=1

µω′′kr2
+

ωk
σ2µr2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2
F

(1)
k , (B.12)

while the fourth vanishes identically. Equations (B.11) and (B.12) are equivalent,

giving two Yang-Mills equations:

h′′k = h′k

(
σ′

σ
− 2

r

)
+

√
2(k + 1)

k

ω2
k

µr2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)

+

√
2k

k + 1

ω2
k+1

µr2

(√
k

2(k + 1)
hk −

√
k + 2

2(k + 1)
hk+1

)
, (B.13)

0 = ω′′k + ω′k

(
σ′

σ
+
µ′

µ

)
+

ωk
σ2µ2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
ωk
µr2

(
1− ω2

k +
1

2

(
ω2
k−1 + ω2

k+1

))
. (B.14)
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Substituting (B.9) into (B.4) gives the components of the field strength tensor

T00 =
1

g2

N−1∑
k=1

ω2
k

r2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
µh′2k

2


+

1

g2

N−1∑
k=1

[
σ2µ2ω′2k
r2

+
k(k + 1)σ2µ

4r4

(
1− ω2

k

k
+
ω2
k+1

k + 1

)2
]
,

T11 =
1

g2

N−1∑
k=1

[
k(k + 1)

4r2

(
1− ω2

k

k
+
ω2
k+1

k + 1

)2

+
r2h′2k
2σ2

]
,

T22 =
sin2 θ

g2

N−1∑
k=1

[
k(k + 1)

4r2

(
1− ω2

k

k
+
ω2
k+1

k + 1

)2

+
r2h′2k
2σ2

]
,

T33 =
1

g2

N−1∑
k=1

 ω2
k

σ2µ2r2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

− h′2k
2σ2µ


+

1

g2

N−1∑
k=1

[
ω′2k
r2

+
k(k + 1)

4µr4

(
1− ω2

k

k
+
ω2
k+1

k + 1

)2
]
, (B.15)

with the corresponding Einstein tensor

G00 =
2σ2µm′

r2
− Λσ2µ

3
− 2σ2µm

r3
− σ2µ2

r2
, (B.16)

G11 =
µrσ′

σ
+ µ′r +

3

2

µ′r2σ′

σ
+
µr2σ′′

σ
+ Λr2 +

µ′′r2

2
, (B.17)

G22 = sin2 θ

(
µrσ′

σ
+ µ′r +

3

2

µ′r2σ′

σ
+
µr2σ′′

σ
+ Λr2 +

µ′′r2

2

)
, (B.18)

G33 =
µ′

µr
+

2σ′

rσ
+

1

r2
+

Λ

µ
− 1

µr2
. (B.19)

Rearranging (B.16), substituting for µ (B.7) and using (B.5) we find

m′ =
4πGr2T00

σ2µ

= α2

N−1∑
k=1

 ω2
k

σ2µ

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
r2h′2k
2σ2


+α2

N−1∑
k=1

{
µω′2k +

k(k + 1)

4r2

(
1− ω2

k

k
+
ω2
k+1

k + 1

)2
}
, (B.20)
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where α2 = 4πG/g2 . Similarly (B.19) yields

σ′ =
4πGrT00

σµ2
+ 4πGrσT33

+α2

N−1∑
k=1

 2ω2
k

σµ2r

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
2σω′2k
r

 . (B.21)

The remaining Einstein equations are G11 = 8πGT11 and G22 = 8πGT22 , which are

equivalent and vanish identically using (B.20, B.21). Altogether the EYM equations

are

m′ = α2

N−1∑
k=1

 ω2
k

σ2µ

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
r2h′2k
2σ2


+α2

N−1∑
k=1

{
µω′2k +

k(k + 1)

4r2

(
1− ω2

k

k
+
ω2
k+1

k + 1

)2
}
,

σ′ = α2

N−1∑
k=1

 2ω2
k

σµ2r

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
2σω′2k
r

 ,

h′′k = h′k

(
σ′

σ
− 2

r

)
+

√
2(k + 1)

k

ω2
k

µr2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)

+

√
2k

k + 1

ω2
k+1

µr2

(√
k

2(k + 1)
hk −

√
k + 2

2(k + 1)
hk+1

)

0 = ω′′k + ω′k

(
σ′

σ
+
µ′

µ

)
+

ωk
σ2µ2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
ωk
µr2

(
1− ω2

k +
1

2

(
ω2
k−1 + ω2

k+1

))
. (B.22)

§B.2 Planar dyonic black holes

We begin with the gauge potential

gA = gAµdx
µ = −

N−1∑
l=1

hlHl dt−
N−1∑
m=1

ωmF
(1)
m dx− ζ

N−1∑
m=1

ωmG
(1)
m dy, (B.23)
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and planar line element

ds2 = −σ2µ dt2 + r2f 2dx2 +
r2

f 2
dy2 + µ−1dr2, (B.24)

where

µ = −2m(r)

r
− Λr2

3
. (B.25)

Using (B.1), and the commutation relations (A.9), the components of the field

strength tensor are

F01 =
1

g

N−1∑
k=1

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)
ωkG

(1)
k , F03 =

1

g

N−1∑
k=1

h′kHk,

F02 =
ζ

g

N−1∑
k=1

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)
ωkF

(1)
k , F13 =

i

2g

N−1∑
k=1

ω′kF
(1)
k ,

F12 =
ζ

g

N−1∑
k=1

√
2k(k + 1)

(
ω2
k

k
−
ω2
k+1

k + 1

)
Hk, F23 =

iζ

2g

N−1∑
k=1

ω′kG
(1)
k . (B.26)

Substituting (B.26) into equation (B.3) we obtain four Yang-Mills equations;

0 =
N−1∑
k=1

{
−2hk(r)

′

σ2r
+
σ′h′k
σ3
− h′′k
σ2

}
Hk

+
N−1∑
k=1

{√
2k(k + 1)

2σ2µr2

ω2
k+1

k + 1

(√
k

2(k + 1)
hk −

√
k + 2

2(k + 1)
hk+1

)(
1

f 2
+ ζ2f 2

)}
Hk

+
N−1∑
k=1

{√
2k(k + 1)

2σ2µr2

ω2
k

k

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)(
1

f 2
+ ζ2f 2

)}
Hk, (B.27)

0 =
N−1∑
k=1

{
µω′k
f 2r2

(
σ′

σ
+
µ′

µ
− 2f ′

f

)
+
ωk
2r4

(
ω2
k−1 − 2ω2

k + ω2
k+1

)}
F

(1)
k

+
N−1∑
k=1

 µω′′k
r2f 2

+
ωk

σ2µf 2r2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2
F

(1)
k , (B.28)
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0 = ζ
N−1∑
k=1

{
ω′kµf

2

r2

(
σ′

σ
+
µ′

µ
+

2f ′

f

)
+
ζ2ωk
2r4

(
ω2
k−1 − 2ω2

k + ω2
k+1

)}
F

(1)
k

+ζ
N−1∑
k=1

f 2µω′′k
r2

+
f 2ωk
σ2µr2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2
F

(1)
k , (B.29)

0 =
µ

4r2

N−1∑
k=1

(
ωkω

′
k+1 − ωk+1ω

′
k

)( 1

f 2
− ζ2f 2

)
iG

(2)
k . (B.30)

We note that equation (B.29) is non-trivial only if ζ = 1, in which case we have

f = 1, and (B.29) reduces to (B.28) in the ζ = f = 1 case. By considering the

components of the matrices F
(1)
k , G

(2)
k and Hk we can split these four equations into

two Yang-Mills equations which govern ωk and hk ;

h′′k = h′k

(
σ′

σ
− 2

r

)
+

√
2k(k + 1)

2µr2

ω2
k

k

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)(
1

f 2
+ ζ2f 2

)

+

√
2k(k + 1)

2µr2

ω2
k+1

k + 1

(√
k

2(k + 1)
hk −

√
k + 2

2(k + 1)
hk+1

)(
1

f 2
+ ζ2f 2

)
,(B.31)

0 = ω′′k + ω′k

(
σ′

σ
+
µ′

µ
− 2f ′

f

)
+

ωk
σ2µ2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2

+
ζ2f 2ω2

k

2µr2

(
ω2
k−1 − 2ω2

k + ω2
k+1

)
, (B.32)

and a constraint equation;

0 =
(
ωkω

′
k+1 − ωk+1ω

′
k

)( 1

f 2
− ζ2f 2

)
, (B.33)

where k = 1, 2, ..., N − 1 and ω0 = ωN = 0. The constraint equation is satisfied

automatically for ζ = 1, while for ζ = 0, we have

ωkω
′
k+1 − ωk+1ω

′
k = 0, (B.34)

which is solved by
ωk
ωk+1

=
ω′k
ω′k+1

. (B.35)



170 APPENDIX B. THE EINSTEIN-YANG-MILLS EQUATIONS

This means that all ωk must be scalar multiples of each other (assuming all ωk are

non-zero). In the N = 2 case, equations (B.31) and (B.32) reduce to the d = 4

Yang-Mills equations in [62], where taking ζ = 1 corresponds to ansatz I, and ζ = 0

corresponds to ansatz II. The constraint equation (B.33) vanishes in the N = 2 case

since we have h2 = ω2 = 0.

The components of the stress tensor (B.4) are

T00 =
1

g2

N−1∑
k=1

 ω2
k

2r2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2(
1

f 2
+ ζ2f 2

)
+
µh′2k

2


+

1

g2

N−1∑
k=1

[
σ2µ2ω′2k

2r2

(
1

f 2
+ ζ2f 2

)
+
ζ2k(k + 1)σ2µ

4r4

(
ω2
k

k
−
ω2
k+1

k + 1

)2
]
, (B.36)

T11 =
1

g2

N−1∑
k=1

 ω2
k

2σ2µ

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2 (
ζ2f 4 − 1

)
+
f 2r2h′2k

2σ2


+

1

g2

N−1∑
k=1

[
µω′2k

2

(
1− ζ2f 2

)
+
ζ2f 2k(k + 1)

4r2

(
ω2
k

k
−
ω2
k+1

k + 1

)2
]
, (B.37)

T22 =
1

g2

N−1∑
k=1

 ω2
k

2σ2µ

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2(
1

f 4
− ζ2

)
+

r2h′2k
2σ2f 2


+

1

g2

N−1∑
k=1

[
µω′2k

2

(
ζ2 − 1

f 4

)
+
ζ2k(k + 1)

4f 2r2

(
ω2
k

k
−
ω2
k+1

k + 1

)2
]
, (B.38)

T33 =
1

g2

N−1∑
k=1

 ω2
k

2σ2µ2r2

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2(
1

f 2
+ ζ2f 2

)
− h′2k

2σ2µ


+

1

g2

N−1∑
k=1

[
ω′2k
2r2

(
1

f 2
+ ζ2f 2

)
+
ζ2k(k + 1)

4µr4

(
ω2
k

k
−
ω2
k+1

k + 1

)2
]
, (B.39)
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while the corresponding components of the Einstein tensor are

G00 =
2σ2µm′

r2
− Λσ2µ

3
− 2σ2µm

r3
− σ2µ2

r2
− σ2µ2f ′2

f 2
, (B.40)

G11 =
f 2µrσ′

σ
− ff ′µr2σ′

σ
+ f 2µ′r − ff ′µ′r2 + 2f ′µr2 − 2ff ′µr − ff ′′µr2

+
3

2

f 2µ′r2σ′

σ
+
f 2µr2σ′′

σ
+ Λf 2r2 +

f 2µ′′r2

2
+
f 2µr2σ′′

σ
, (B.41)

G22 =
µrσ′

f 2σ
+
f ′µr2σ′

f 3σ
+
µ′r

f 2
+
f ′µ′r2

f 3
+

2f ′µr

f 3

+
f ′′µr2

f 3
+

3

2

µ′r2σ′

f 2σ
+

Λr2

f 2
+
µ′′r2

2f 2
+
µr2σ′′

f 2σ
, (B.42)

G33 =
µ′

µr
− f ′2

f 2
+

2σ′

rσ
+

1

r2
+

Λ

µ
. (B.43)

Using (B.25) we can cancel three of the terms in (B.40), and rearranging gives

m′ =
µr2f ′2

2f 2
+
r2G00

2σ2µ
, (B.44)

which implies that

µ′ =
2m

r2
− 2Λr

3
− µrf ′2

f 2
+
rG00

σ2µ
. (B.45)

Rearranging (B.43) and substituting for µ′ using (B.45) gives

σ′ =
rσf ′2

f 2
+
rG00

2σµ2
+
rσG33

2
. (B.46)

Finally, by looking at the last two terms in equations (B.41) and (B.42) we can see

that by taking G11−f 4G22 we can eliminate both the σ′′ and µ′′ terms. After some

cancellations we then obtain

f ′′ =
f 3

2µr2

(
G22 −

G11

f 4

)
− f ′

(
σ′

σ
+
µ′

µ
+

2

r
− f ′

f

)
, (B.47)

giving Einstein equations for m′ , σ′ and f ′′ . We are now in a position to substitute

for Gµν using our expressions (B.36–B.39) and Gµν = 8πGTµν , which gives the field
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equations

m′ =
µr2f ′2

2f 2
+ α2

N−1∑
k=1

 ω2
k

2σ2µ

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2(
1

f 2
+ ζ2f 2

)
+α2

N−1∑
k=1

{
r2h′2k
2σ2

+
µω′2k

2

(
1

f 2
+ ζ2f 2

)
+
k(k + 1)ζ2

4r2

(
ω2
k

k
−
ω2
k+1

k + 1

)2
}
,(B.48)

σ′ =
rσf ′2

f 2
+ α2

N−1∑
k=1

 ω2
k

2σµ2r

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)2(
1

f 2
+ ζ2f 2

) ,

+α2

N−1∑
k=1

{
σω′2k
r

(
1

f 2
+ ζ2f 2

)}
, (B.49)

f ′′ = α2

(
1

f 2
− ζ2f 2

)N−1∑
k=1

{
2ω2

kh
2
k

k(k + 1)σ2µ2r2
− ω′2k

r2

}
−f ′

(
σ′

σ
+
µ′

µ
+

2

r
− f ′

f

)
, (B.50)

where α2 = 4πG
g2

. We note that in the N = 2 case, these equations reduce to the

d = 4 case in [62], with ζ = 1 corresponding to ansatz I, and ζ = 0 corresponding

to ansatz II. Our ansatz also satisfies the symmetry equations in the ζ = 1 case,

and there are no inconsistencies in the field equations.

B.2.1 Perturbations of the Reissner-Nordström solution

The gauge potential is

A = −1

g

∑
l

[hl,0 + δhl(r)]Hldt−
1

g

∑
m

δωm(r)F (1)
m dx− 1

g

∑
n

δωn(r)G(1)
n dy (B.51)

where hl,0 are the equilibrium values of hl from section 4.5.2. The line element is

given by

ds2 = − [1 + δσ(r)]2 [µ0(r) + δµ(r)] dt2

+r2dx2 + r2dy2 + [µ0(r) + δµ(r)]−1 dr2,

≈ − [µ0(r) + δµ(r) + 2µ0(r)δσ(r)] dt2

+r2dx2 + r2dy2 +
µ0(r)− δµ(r)

µ0(r)2
dr2, (B.52)
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where

µ0(r) = −2m0(r)

r
− Λr2

r
, δµ(r) = −2δm(r)

r
. (B.53)

The equilibrium mass function m0(r) is given by

m0(r) = mRN
0 − α2

RNq
2

2r
. (B.54)

To leading order in the perturbations, the components of the field strength tensor

are then given by

F01 =
1

g

N−1∑
k=1

(√
k + 1

2k
hk,0 −

√
k − 1

2k
hk−1,0

)
δωkG

(1)
k , (B.55)

F02 =
a

g

N−1∑
k=1

(√
k − 1

2k
hk−1,0 −

√
k + 1

2k
hk,0

)
δωk F

(1)
k , (B.56)

F03 =
1

g

N−1∑
k=1

(
h′k,0 + δh′k

)
Hk, (B.57)

F12 = 0, (B.58)

F13 =
1

g

N−1∑
k=1

δω′kF
(1)
k , (B.59)

F23 =
a

g

N−1∑
k=1

δω′kG
(1)
k , (B.60)

where a prime denotes differentiation with respect to r . Since we are considering

only terms which are first order in δωk and δhk , only the F03 component contributes
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to the stress tensor, which then has components

T00 ≈
(µ0 + δµ)

2g2

N−1∑
k=1

(
h′k,0 + δh′k

)2

≈ 1

2g2

N−1∑
k=1

[
h′2k,0 (µ0 + δµ) + 2µ0hk,0δhk

]
, (B.61)

T11 ≈
r2(1 + δf)2

2g2(1 + δσ)2

N−1∑
k=1

(
h′k,0 + δh′k

)2

≈ r2

g2 (1 + δσ)2

N−2∑
k=1

[
h′2k,0 (1 + 2δf) + 2hk,0δf

]
, (B.62)

T22 ≈
r2

2g2(1 + δσ)2

N−1∑
k=1

(
h′k,0 + δh′k

)2

≈ r2

g2 (1 + 2δf + 2δσ)

N−2∑
k=1

(
h′2k,0 + 2h′k,0δh

′
k

)
, (B.63)

T33 ≈ − 1

2g2(1 + δσ)2(µ0 + δµ)

N−1∑
k=1

(
h′k,0 + δh′k

)2

≈ − 1

2g2 (µ0 + δµ+ 2µ0δσ)

N−2∑
k=1

(
h′2k,0 + 2h′k,0δh

′
k

)
. (B.64)

The corresponding components of the Einstein tensor are

G00 = −(µ0 + δµ)(1 + δσ)2

(
µ′0 + δµ′

r
+
µ0 + δµ

r2
+ Λ

)
= − 1

r2

(
rµ0µ

′
0 + rµ0δµ

′ + µ2
0 + µ0δµ+ 2rµ0µ

′
0δσ + 2µ2

0δσ
)

− 1

r2
(rµ′0δµ+ µ0δµ)− Λ (µ0 + δµ+ 2µ0δσ) , (B.65)

G03 = −
˙δµ

(µ0 + δµ)r
, (B.66)

G11 =
rµ0δσ

′

1 + δσ
+ µ0µ

′
0 + µ0δµ

′ +
3

2

r2µ′0δσ
′

1 + δσ
+
r2µ0δσ

′′

1 + δσ
+
r2µ′′0

2

+
Λr2

(1 + δf(r, t))2 , (B.67)
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G22 =
rµ0δσ

′

1 + δσ
+ µ0µ

′
0 + µ0δµ

′ +
3

2

r2µ′0δσ
′

1 + δσ
+
r2µ0δσ

′′

1 + δσ
+
r2µ′′0

2

+
r2δ̈µ

2(µ2
0 + 2µ0δµ+ 2µ2

0δσ)
+ Λr2 (1 + δf(r, t))2 , (B.68)

G33 =
1

r2

(
r(µ′0 + δµ′)

µ0 + δµ
+

2rδσ′

1 + δσ
+ 1

)
+ Λ (µ0(r) + δµ(r, t))−1 , (B.69)

to leading order, and are related to the components of the stress tensor by the

Einstein equation

Gµν = 8πGTµν . (B.70)

Since the stress tensor has no off diagonal components, it is clear from (B.66) that
˙δµ = 0, i.e. δµ and therefore δm are functions of r only. Substituting for µ0 and

δµ from (B.53) into (B.65) and rearranging gives

δm′ =
r2G00

2(µ+ δµ+ 2µδσ)
−m′0

=
α2r2

1 + 2δσ

N−1∑
k=1

(
h′2k,0 + 2h′k,0δh

′
k

)
−m′0. (B.71)

Combining equations (B.65) and (B.69) and rearranging gives

δσ′ =
r(1 + δσ)

2
G33 +

r

2(µ0 + δµ)2(1 + δσ)
G00

= 4πGr(1 + δσ)T33 +
4πGrT00

(µ0 + δµ)2(1 + δσ)

= 0. (B.72)

Using the ansatz (B.51), the line element (B.52) and the components of the field

strength tensor (B.55 – B.60), we can construct the Yang-Mills equations, which are

approximately given by:

0 =
1

g

N−1∑
k=1

[
2(h′k,0 − δh′k)

r
−

h′k,0
1 + δσ

+ h′′k,0 + δh′′k

]
Hk, (B.73)

0 =
1

g

N−1∑
k=1

[
µδω′′

r2
− δ̈ω

µ0 + δµ+ 2µ0δσ
+
µ′0δω

′
k

r2

]
F

(1)
k

+
1

g

N−1∑
k=1

[
δωk

r2(µ+ δµ+ µδσ)

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)]
F

(1)
k . (B.74)
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By considering the components of the matrices F
(1)
k and Hk we then have

0 = δω′′k +

(
δσ′

1 + δσ
+
µ′ + δµ′

µ+ δµ

)
δω′k

+
δωk

µ+ δµ+ µδσ

(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)
, (B.75)

δh′′k = h′k,0

(
δσ′

1 + δσ
− 2

r

)
− 2

r
δh′k − h′′k,0. (B.76)

B.2.2 The conductivity

The gauge potential (4.128) is

gA = −
N−1∑
l=1

(
hlHl + e−iξtδulF

(1)
l + e−iξtδvlG

(1)
l

)
dt

−
N−1∑
m=1

(
ωmF

(1)
m + e−iξtδh1,mHm

)
dx

−
N−1∑
n=1

(
ωnG

(1)
n + e−iξtδh2,nHn

)
dy, (B.77)

and we take a fixed background with ζ = f = 1

ds2 = −σ2µ dt2 + r2dx2 + r2dy2 + µ−1dr2, (B.78)

where

µ = −2m0

r
− Λr2

3
(B.79)

with constant mass m0 . The components of the field strength tensor are

F01 =
1

g

N−1∑
k=1

[(√
k + 1

2k
hk −

√
k − 1

2k
hk−1

)
ωkG

(1)
k − iξe

−iξtδh1,kHk

]

+
e−iξt

g

N−1∑
k=1

[
1

2
(δvk+1ωk − δvkωk+1)F

(2)
k +

1

2
(δukωk+1 − δuk+1ωk)G

(2)
k

]

+
e−iξt

g

N−1∑
k=1

[√
2k(k + 1)

2

(
δvk+1ωk+1

k + 1
− δvkωk

k

)
Hk

]
,
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F02 =
1

g

N−1∑
k=1

[(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)
ωkF

(1)
k − iξe

−iξtδh2,kHk

]

+
e−iξt

g

N−1∑
k=1

[
1

2
(δuk+1ωk − δukωk+1)F

(2)
k +

1

2
(δvk+1ωk − δvkωk+1)G

(2)
k

]

+
e−iξt

g

N−1∑
k=1

[√
2k(k + 1)

2

(
δukωk
k
− δuk+1ωk+1

k + 1

)
Hk

]
,

F03 =
1

g

N−1∑
k=1

[
h′kHk + e−iξtδu′kF

(1)
k + e−iξtδv′kG

(1)
k

]
,

F12 =
1

g

N−1∑
k=1

[√
2k(k + 1)

(
ω2
k

k
−
ω2
k+1

k + 1

)
Hk

]

+
e−iξt

g

N−1∑
k=1

[
ωk

(√
k + 1

2k
δh2,k −

√
k − 1

2k
δh2,k−1

)
G

(1)
k

]

+
e−iξt

g

N−1∑
k=1

[
ωk

(√
k + 1

2k
δh1,k −

√
k − 1

2k
δh1,k−1

)
F

(1)
k

]
,

F13 =
N−1∑
k=1

(
ω′kFk + e−iξtδh′1,kHk

)
,

F23 =
N−1∑
k=1

(
ωkGk + e−iξtδh2,kHk

)
. (B.80)

We then substitute (B.80) into (B.3) to find the Yang-Mills equations. For ν = 0

we recover an equilibrium equation for h′′k , together with

δu′′k = −2

r
δu′k +

1

µr2

[ωk+1

2
(δukωk+1 − δuk+1ωk) +

ωk−1

2
(δukωk−1 − δuk−1ωk)

]
+
ωk
µr2

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)(√
k + 1

2k
δh1,k −

√
k − 1

2k
δh1,k−1

)

+
(k + 1)ωk

2µr2

(
δukωk
k
− δuk+1ωk+1

k + 1

)
+

(k − 1)ωk−1

2µr2

(
δukωk
k
− δuk−1ωk−1

k − 1

)
−iξωk
µr2

(√
k − 1

2k
δh2,k−1 −

√
k + 1

2k
δh2,k

)
, (B.81)
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δv′′k = −2

r
δv′k +

1

µr2

[ωk+1

2
(δvkωk+1 − δvk+1ωk) +

ωk−1

2
(δvkωk−1 − δvk−1ωk)

]
+
ωk
µr2

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)(√
k + 1

2k
δh2,k −

√
k − 1

2k
δh2,k−1

)

+
(k + 1)ωk

2µr2

(
δvkωk
k
− δvk+1ωk+1

k + 1

)
+

(k − 1)ωk−1

2µr2

(
δvkωk
k
− δvk−1ωk−1

k − 1

)
+
iξωk
µr2

(√
k − 1

2k
δh1,k−1 −

√
k + 1

2k
δh1,k

)
. (B.82)

From the ν = 1 equation we find

0 = δh′′1,k +
µ′

µ
δh′1,k +

√
k + 1

2k

δukωk
µ2

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)

+

√
k

2(k + 1)

δuk+1ωk+1

µ2

(√
k + 2

2(k + 1)
hk+1 −

√
k

2(k + 1)
hk

)

+

√
k + 1

2k

ω2
k

µr2

(√
k − 1

2k
δh1,k−1 −

√
k + 1

2k
δh1,k

)

+

√
k

2(k + 1)

ω2
k+1

µr2

(√
k + 2

2(k + 1)
δh1,k+1 −

√
k

2(k + 1)
δh1,k

)

+
iξ

µ2

(√
k + 1

2k
δvkωk −

√
k

2(k + 1)
δvk+1ωk+1 − iξδh1,k

)
, (B.83)

while from ν = 2 we have

0 = δh′′2,k +
µ′

µ
δh′2,k +

√
k + 1

2k

δvkωk
µ2

(√
k − 1

2k
hk−1 −

√
k + 1

2k
hk

)

+

√
k

2(k + 1)

δvk+1ωk+1

µ2

(√
k + 2

2(k + 1)
hk+1 −

√
k

2(k + 1)
hk

)

+

√
k + 1

2k

ω2
k

µr2

(√
k − 1

2k
δh2,k−1 −

√
k + 1

2k
δh2,k

)

+

√
k

2(k + 1)

ω2
k+1
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with both the ν = 1 and ν = 2 equations also yielding
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The ν = 3 equation yields two further constraints
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Altogether, we have second order differential equations for δuk , δvk , δh1,k and

δh2,k (B.81–B.84), along with two zeroth order constraints (B.85, B.86), and two

first order constraints (B.87, B.88). If we introduce new complex variables

Ak = δuk + iδvk, Bk = δuk − iδvk,

Ck = δh1,k + iδh2,k, Dk = δh1,k − iδh2,k, (B.89)

we find that the equations in Ak and Ck decouple from those in Bk and Dk , and

that the two sets of equations differ only by the sign of ξ to give
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with constraints
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