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II ABSTRACT 

 

Robotic machining is a relatively new and promising technology that aims to substitute the 

conventional approach of Computer Numeric Control machine tools. Due to the low 

positional accuracy and variable stiffness of the industrial robots, the machining operations 

performed by robotic systems are subject to variations in the quality of the finished product. 

The main focus of this work is to provide a means of improving the performance of a robotic 

machining process by the use of in-process monitoring of key process variables that directly 

influence the quality of the machined part. To this end, an intelligent monitoring system is 

designed, which uses sensor signals collected during machining to predict the amount of 

errors that the robotic system introduces into the manufacturing process in terms of 

imperfections of the finished product. A multi-step learning procedure that allows training of 

process models to take place during normal operation of the process is proposed. Moreover, 

applying an iterative probabilistic approach, these models are able to estimate, given the 

current training dataset, whether the prediction is likely to be correct and further training 

data is requested if necessary. The proposed monitoring system was tested in a robotic 

countersinking experiment for the in-process prediction of the countersink depth-of-cut and 

the results showed good ability of the models to provide accurate and reliable predictions. 
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1 INTRODUCTION 

Nowadays, modern industries rely extensively on robots for a wide range of applications 

including object manipulation and transportation, precision assembly, welding and painting. 

Even though the number of robot units applied in industry is continuously growing, a few of 

them are exploited in machining applications [1, 2]. Traditionally, the standard approach is 

to use multi-axis Computer Numerical Control (CNC) machines to perform operations such 

as drilling, turning and milling. Due to their high rigidity and positioning accuracy, these 

machines can achieve very high accuracies and obtain parts with relatively complex 

geometries.  

On the other hand, robots offer flexibility, high dexterity, large working envelopes, ease of 

programming and relatively lower costs, which are all highly desired features that can suggest 

the exploitation of robotic systems as an alternative of CNC machines in the factory of the 

future. Yet, robotic machining is still in its infancy because of several issues it faces [1-3]. The 

majority of the machining operations that are successfully performed by robots involve 

finishing applications such as polishing, grinding and deburring. Articulated multi-joint 

industrial robots have lower positioning accuracy and repeatability comparing to the CNC 

machines and, most importantly, they have limited stiffness, which hinders their use in 

machining operations where large process forces are involved. Tool deflections and 

vibrations are typically induced and the quality of the finished product is compromised. 

Further research is therefore required in order to promote the use of this technology. 

The recent trend towards the vision of the fourth industrial revolution encourages the use of 

information technology in manufacturing [4]. Therefore conventional machining research is 

focused on the development of intelligent ways of exploiting information for process 

monitoring. Sensory data collected during the cutting process of a typical machining 

operation is used to infer several aspects of the process, such as the condition of the 

machine, cutting tool wear and breakage, workpiece surface roughness and imperfections as 

well as diagnosis of common process failures. The use of these intelligent monitoring systems 

has clearly impacted the reliability and robustness of the machining processes. 
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1.1 Motivation 

Several solutions for enabling robotic machining have been published in the literature 

including the development of specific Computer-Aided Design (CAD) and Computer-Aided 

Manufacturing (CAM) software packages [5], incorporation of a high dynamics compensation 

mechanism [6, 7], implementation of adaptive position and/or force control strategies [8-10] 

and effective path planning considering the robot stiffness at the particular configuration 

[11]. In some cases [12, 13], dual robot cells were applied for rapid prototyping milling 

applications, where softer, non-metallic materials such as plastic, wood, wax or ice blocks 

were used. In general, good results were reported in dealing with the issues of robotic 

systems, indicating that the technology is rapidly advancing. 

However, all these solutions have focused exclusively in enabling the robotic machining 

technology by directly addressing the problem from the robotic structure perspective and no 

attempt was made to develop a dedicated monitoring system for the actual machining 

process. In contrast, monitoring systems have been extensively applied in conventional 

machining processes in a range of operations and monitoring scopes [14-19]. This lack of 

specifically designed monitoring systems for robotic machining processes is due to the fact 

that the technology itself is relatively new compared to the machine tools counterpart and, 

as it advances further, new intelligent ways of process monitoring will be required in order 

to confidently exploit industrial robots in material cutting operations. 

This thesis provides an innovative method to integrate both research fields of robotic 

machining and intelligent monitoring systems in an attempt to further advance this 

developing technology. 

In terms of the industrial motivation, process monitoring could be applied for in-process 

prediction of the quality of the machined part, which is extremely useful in a production 

environment, where an inspection step is typically required after the machining operation. 

This inspection is either included in the process operational cycle (automatic in-process 

inspection) or often it is performed (manually or automatically) at the end of the whole 

process using specific equipment. In either case, the process down time inevitably increases 

due to the time spent for the inspection task and/or delays associated with the preparation 

of the workpiece for inspection. Given the industrial focus on high productivity rates, it is 

essential therefore that this inspection time is kept at minimum. In order to further increase 

productivity without compromising the overall process quality, a method that indirectly 
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infers the quality of the poduct (i.e. the result of the inspection step) from in-process 

information rather than the post-process direct measurements, is required. The method 

proposed by this thesis aims to substitute the inspection step by predicting the quality of the 

finished part from sensory data collected during machining. 

1.2 Research Aim and Objectives 

This work aims to design and test an intelligent monitoring system which can improve the 

performance of robotic machining processes by online prediction of key process variables 

that directly influence the quality of the machined part. The proposed system will use sensor 

signals collected during machining to predict the amount of errors that the robotic structure 

introduces into the manufacturing process in terms of variations in the final product shape. 

In particular, this work will improve the performance of a typical robotic machining process 

in the following ways: 

• Provide additional in-process feedback on the quality of the machined part, which will 

allow to avoid the quality inspection step that is usually performed post-process. This 

will improve the overall process time.  

• Potential use of the in-process predictions to drive corrective actions (manually or 

automatically). This will increase the probability of having final products with quality 

within the specified tolerances. 

In order to deliver the above overall aim, this project had the following four objectives: 

1. Setup of a suitable data acquisition system and signal processing scheme for in-process 

extraction of the information that reflects the machining process. This includes both 

the hardware and software aspects of the system. 

2. Develop a method for selection of the relevant information (with respect to the 

process output variable) from all the collected sensor signals. 

3. Establish a set of process models and train them during normal operation of the 

machining process, without any interruptions. This will allow the monitoring system to 

be applied in a production environment with minimum disruption of the process. 

4. Provide a means of assessing the reliability of the process models. This includes having 

a measure of the confidence of the models in the predicted outputs. 
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1.3 Thesis Outline 

This thesis presents a novel approach to improve the performance of robotic machining 

processes by intelligent monitoring of key process variables that directly influence the quality 

of the machined part. A summary of the thesis is presented below. 

Chapter 1 introduces the scope, motivation, research aim and objectives of this work. An 

extensive literature review of the two main research areas of robotic machining and 

intelligent monitoring systems for machining processes follows in Chapter 2. The elements 

of an intelligent monitoring system are described in detail including the sensor system, digital 

signal analysis, feature selection methods and machine learning techniques.  

The robotic machining case study used in this work is described in Chapter 3. The system was 

applied into a multi-robot countersinking process for the monitoring of the obtained 

countersink depths in composite aircraft components. The robotic cell consisted of two 

industrial robots that work together to automatically countersink previously drilled holes in 

Carbon Fibre Reinforced Polymers (CFRP) panels. 

Chapter 4 defines the case study problem reflecting on the current limits of the considered 

robotic countersinking technology and presents the research methodology of this work. A 

multi-step process method is proposed to improve the performance of the robotic 

countersinking process. The method integrates concepts of intelligent monitoring systems 

such as signal processing, feature extraction and machine learning techniques into the 

particular robotic machining context, addressing the current gap in the number of 

applications that combine these two research areas. The requirements of the monitoring 

system and the design considerations for its applicability in a production environment are 

also outlined in this chapter. 

Chapter 5 presents the details of the experiment conducted by this work, covering the data 

acquisition system and the signal processing scheme applied to extract in-process 

information from the machining process. The experiment was designed to apply the 

proposed multi-step process method for testing and validation of the system. Non-intrusive 

and easy to install sensors were used to extract the information from the machining process, 

including three single-axis accelerometers, a power transducer and an acoustic emission 

sensor. A central data acquisition unit was applied to ensure synchronisation of all the 

acquired signals. The raw signals were filtered, segmented and processed through advanced 

feature extraction techniques for further analysis. The methods used for signal processing 
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are well-established advanced techniques in the process monitoring research area, such as 

digital filtering and signal domain transformations (time, frequency and joint time-frequency 

analysis). In this work, the signal processing scheme was performed automatically, without 

any manual intervention. 

The supervised learning method applied to the dataset obtained from the experiment 

designed by this work is presented in Chapter 6. Process models that can predict the 

countersink depth from the extracted sensory information were built and tested in a 

regression problem. In particular, a probabilistic learning approach based on Gaussian 

Process Regression (GPR) was used for this purpose. Another aspect of the monitoring system 

considered in this study is the selection of relevant signal features with respect to the process 

output variable. A GPR model that implements an Automatic Relevance Determination (ARD) 

in the training optimisation procedure was applied to select the relevant signal features. This 

method, although known in the machine learning literature, is entirely unexplored in the 

process monitoring context. 

Having covered the technical aspects of the system and performed an extensive offline 

analysis of the proposed process models, Chapter 7 moves on to present an online (in-

process) version of the system to be used in the considered robotic countersinking process. 

A multi-step learning procedure is proposed to build and train process models during normal 

operation of the machining process, without any down time for collection of training data. 

This method was tested using the data collected from the experiment, simulating the online 

execution of the process. A way of assessing the model reliability was also investigated in this 

study by exploiting the probabilistic framework of the GPR models. A threshold value on the 

standard deviation of the prediction (provided as an output of the models) was applied in 

order to identify the input data where the models were likely to have large prediction errors. 

Finally, the thesis conclusions and further work are discussed in Chapter 8 and Chapter 9. 

The theoretical framework of Gaussian Processes is presented in the thesis Appendices A.1. 
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2 LITERATURE REVIEW 

This chapter provides an overview of the recent advances in robotic machining research as 

well as an extensive review of the published literature in the field of Intelligent Monitoring 

Systems (IMS) for machining processes. The main elements of an IMS are described in detail 

including the sensor system, digital signal analysis, feature selection methods and machine 

learning techniques. The current research gap of the above two areas is then analysed in 

order to highlight the contribution of this work. The chapter concludes with a summary of 

the reviewed material. 

2.1 Advances in Robotic Machining 

The term robotic machining refers to a manufacturing operation in which the cutting process 

of raw material is controlled by means of one or more industrial robots. This differs from the 

conventional machining approach which uses multi-axis Computer Numeric Control (CNC) 

machines to accurately control the cutting tool path during the material-removal process. 

The increasing trend towards robotics and automation over the last decades, has motivated 

industries and researchers to look into robotic machining as a flexible and relatively low-cost 

alternative that will advance further the traditional machining approach. 

Some of the most desirable characteristics and potential advantages of robotic machining 

technology against conventional CNC machining are as follows: 

1. Higher flexibility: Robots are very flexible both in tool positioning within the working 

area and the range of operations that they are able to perform due to the large number 

of Degrees-of-Freedom (DOF) and the ease of programming, respectively. This is a big 

advantage of robotic structures over CNC machine tools. An articulated robotic arm 

can carry out operations in multiple axes which enables the production of complex 

parts with great detail and also it can easily switch between different spindles and 

cutting tools if required by the specific machining task. On the contrary, CNC machines 

have limited flexibility in the range of operations. If, for example, a specific part 

requires several operations with different procedures and cutting tools, then there are 

often required different machines to perform all the various tasks.  

2. Larger working area: In general the robots’ wide working envelope allows for 

machining of bigger parts such as those typically used in aerospace industry. Iglesias 



Literature Review  7 
 

 
 

et al. [20] reported a working volume of 7-8 m3 for a standard industrial robot. 

Moreover, this can be further increased if external linear or rotatory axes are used. 

The machine tools, on the other hand, have limited working area. For instance, if the 

workpiece is too big to fit into the machine’s available space, then the part needs to 

be broken apart in smaller pieces which are usually machined separately and 

reassembled after completion. In some extreme cases, as noted by Pandremenos et 

al. [2], in order to accommodate larger parts, the machine itself needs to be modified, 

which could lead in a very expensive solution. 

3. Lower costs: In order to sustain the current demand and still remain competitive in 

the machining industry, manufacturers are looking for ways to increase production at 

a lower cost. In this context, robotic machining has great potential. According to 

DePree and Gesswein [21] the estimated cost reduction of a comparable robotic 

solution is between 35% and 50% with respect to the conventional approach. This 

allows less capital to be invested or an increase in production by adding extra 

machining stations for example.  

4. Robotic machining lines: The concept of discrete processes with individual robots 

rather than operational roll up on a single machine tool platform exploits in full the 

capabilities of industrial robots within manufacturing. This idea of a robotic machining 

line similar to those seen in factory assembly lines, where multiple robots perform 

different stages on one part (a dedicated robot for each operation such as loading, 

rough machining, finishing), was proposed by Chen and Dong [1] as part of the future 

research issues to address in order to advance the current technology.  

Motivated by the enormous potential of robotic machining, research in this area is actively 

growing. According to Chen and Dong [1], the first studies of industrial robots performing 

machining-related operations started in the 1990s and, since then, a large body of literature 

has investigated the development, application areas and the technical challenges/limitations 

of this technology.  

Pandremenos et al. [2] argued that despite the prominent advantages of robotic machining 

in terms of both higher flexibility and cost efficiency compared to CNC machines, industrial 

robots have some serious limitations related to their positional accuracy and repeatability. 

These main issues make them not suitable to perform all of the machining tasks, especially 

when hard materials are involved. However, the authors pointed out that industrial robots, 

due to their extra DOF and large working envelope, are an excellent alternative to rapid 
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prototyping machines which generally use softer materials (wood, wax, plastic) and require 

lower accuracies. Consequently, a number of successful applications are found in the 

literature involving robots in rapid prototyping [12, 22, 23] and surface finishing processes 

[24, 25] mainly polishing, grinding and deburring. Chen and Dong [1] reported that a 6-DoF 

robotic arm can outperform a three-axis CNC machine in polishing operations due to the 

robot’s position redundancy, which allows for the polishing tool to be oriented and 

maintained always normal to the surface of the workpiece generating smoother results. 

Similarly, Iglesias et al. [20] established that industrial robots are currently considered as a 

valid alternative of CNC machines for a range of machining tasks, subject to the hardness 

level of the material. Most non-metallic materials such as wood, plastic, etc., can be 

machined by robotic cells in any of the production stages (prototyping, intermediate or final 

product), whereas, with the increasing degree of hardness, the robotic structure starts 

suffering from the higher level of forces generated. In such cases, the use of robots is limited 

mainly to the prototyping stage, pre-machining at lower tolerances and/or surface finishing 

processes that require relatively lower level of accuracy. 

The limitations of robotic machining have been extensively discussed in literature by a large 

number of researchers [26-35]. Therefore, it has been possible to identify most of the current 

challenges this technology faces. It is now well established that the major issue of an 

articulated robotic arm is its inherent lower static and dynamic stiffness that, in comparison 

with a machine tool, is about 50 times lower (less than 1 N/µm against the 50 N/µm or greater 

of CNC machines, as reported in Pan et al. [36]) due to the serial kinematic structure. 

Moreover, the overall stiffness of the robotic arm is subject to vary considerably with the 

specific configuration (joints values), the payload installed on the end-effector and the 

different cutting conditions. This fact becomes even more apparent when machining hard 

materials because of the vibration (chatter) which occurs during the cutting process as result 

of the robot’s lower resistance to the generated forces. Consequently, the overall product 

geometry and surface quality is compromised. Some other issues reported by the researchers 

include the relatively poor positional accuracy and repeatability of the robots which makes it 

difficult to achieve part geometries of high quality, especially in different cutting conditions; 

the lack of programming standards in terms of robotic machining simulation software and 

path generating language such as the G-Code equivalent of CNC machines. In addition, 

Barnfather et al. [37] pointed out that typical issues found in conventional machining such as 

tool deflection, tool wear and gear backlash are generally more severe in robotic systems 

due to the differences in the kinematic structure. Moreover, the thermal variations and the 
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robots’ joint flexibility under different payloads influence the overall positioning accuracy 

and therefore they need to be taken into account as well. Dumas et al. [31] identified the 

robot joint stiffness as an important factor that influences the part quality and presented a 

method to compute the joint stiffness values of any industrial robot. The authors claim that 

such information is generally missing in the robot specifications or it is difficult to obtain by 

the robot manufacturer. According to Pan et al. [36], the main issue of robotic machining is 

due to the chatter (vibration) caused by the low structural stiffness and base natural 

frequency (typically around 10 Hz) of the industrial robots. The authors referred to it as 

coupling chatter given its low frequency content which is in the range of the robot’s natural 

frequency. 

It is clear, therefore, that in order to adopt this prominent technology in a larger scale, all the 

above challenges need to be addressed through constant research and development of new 

methods to deal with the errors introduced by the robotic structure. Some of the main 

technological and research improvement steps are discussed in the following sub-sections. 

2.1.1 Steps towards Robotic Machining 

Motivated by the size of potential market, big robot enterprises such as ABB, KUKA, FANUC, 

COMAU and STÄUBLI have started developing industrial robots specifically designed for 

machining applications with higher stiffness values and improved position accuracy and 

repeatability. Some examples include the ABB IRB 6660, KUKA KR 500-MT, FANUC F200iB, 

COMAU NJ-130-2.6 and STÄUBLI RX160 HSM. In addition, software packages to simulate the 

robot trajectory during the machining process are also provided as part of the robotic 

solution. The evolution of CAD/CAM tools has greatly reduced the development time and 

facilitated the transition from simulation to real-world applications. Such tools give the 

possibility to the operator to generate the robot Tool Centre Point (TCP) path based on the 

CAD information of the workpiece, similar to the way it is computed in standard CNC 

machines. Therefore, the process is first studied in a virtual simulator to ensure that the robot 

path is feasible and factors such as the axis limits, travel time, singularity positions or collision 

with other parts of the cell are taken into consideration. Examples of software packages often 

mentioned in the literature are the AUTODESK (previously DELCAM) PowerMILL Robotic 

Interface, KUKA CAMRob (now KUKA.CNC), ABB RobotWare Machining FC and FANUC 

RoboGuide. 
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In terms of the current research developments, there has been a large number of published 

studies describing new methods to address most robotic machining issues. The main 

categories comprise: (i) robot calibration including identification of robot joint stiffness 

values, (ii) development of a stiffness map for robot posture optimisation, (iii) chatter 

avoidance methods and (iv) compensation strategies for cutting tool deflection.  

Robot calibration is crucial in machining applications given the importance of improving the 

robot’s positional accuracy when controlling the cutting tool. Moreover, the forces acting on 

the robot during the cutting operation can cause deflections of TCP up to 2 mm from the 

planned trajectory, as reported by Denkena and Lepper [26]. This calibration, which is often 

referred to as non-kinematic calibration, considers all the errors caused by thermal effects, 

compliance of the robot’s links and joints, compliance in the joints bearings, gears friction 

and backlash as well as dynamic effects. Work in this area has been conducted by Abele et 

al. [35], Dumas et al. [31] and Yang et al. [38]. Some other studies (Bu et al. [28], Guo et al. 

[39] and Lin et al. [40]) focused on the analysis and creation of a stiffness map of the robot’s 

workspace. This information was then used to identify the best possible configuration of the 

robot’s joints for performing the required machining task. In terms of chatter avoidance 

methods, Pan et al. [36] extensively studied the vibration characteristics in a robotic milling 

process and devised a method to minimise the occurrence of coupling chatter. 

2.1.2 Compensation Strategies for Tool Deflection 

The research focused on the development of compensation methods for tool deflection is of 

particular interest for this thesis work, especially those that use data driven process models 

based on machine learning algorithms. 

Reinl et al. [41] presented a model-based off-line method to predict and compensate the 

robot path deviation caused by the process forces in milling operations. The proposed 

approach consisted in coupling an extended dynamic model of the robot (including joint 

elasticities and tilting effects) with a milling forces simulation model. The result was an 

entirely off-line simulation-based compensation strategy that predicts the path errors in 

advance and uses the predictions to correct the robot path before the actual cutting occurs.  

Denkena and Lepper [26] reported a tool deflection compensation approach to deal with the 

positioning errors of the robot TCP during machining of large frame parts for the aerospace 

industry. The authors designed a sensing spindle holder that measures the forces acting on 
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the spindle during milling operation and built a static deflection model of the industrial robot 

based on these measurements. The model could then be used for selection of the optimal 

path to perform the required operation. The ultimate goal of the method was to combine 

the compliance model of the robot with the force measurement to obtain an online 

compensation of the displacement of the cutting tool during machining. However, no results 

of the actual compensation approach were presented in the paper, which was mainly focused 

on the development and calibration of the force sensor. The authors referred to further 

research for the development of the compensation method. 

Furtado et al. [32] presented a fully experimental approach to improve the position accuracy 

of a 6-DOF industrial robot during a milling operation. Their method consisted of a set of five 

experiments, each one used to optimise a particular aspect of the overall process. The 

compensation strategy was based on the surface waviness measurement of previously 

machined workpieces. The inverse profile was then calculated for compensation of the robot 

trajectory. The method seemed intuitive, however it was long and involved too many 

experiments for the setup phase. Therefore, it could be applicable in manufacturing of 

products with low variety and high volume. Also, the approach neglected other factors that 

could influence the process accuracy after the initial setup was done, such as the material 

variability of the parts and the cutting tool wear. Moreover, it would require a new set of 

experiments to find the new best configuration if, for example, a few small changes of the 

overall process were needed. 

In order to improve robotic machining performance, Pan and Zhang [8] proposed a solution 

based on robot stiffness modelling and active force control strategy for real-time 

compensation of cutting tool errors. The identification of the robot stiffness parameters was 

done experimentally by applying a known load on the tool tip and then measuring its 

deformation. The compensation approach used force measurements to control the robot 

joints configuration through a closed loop scheme that was implemented in the industrial 

robot controller, leading to a hybrid position/force control platform. The experimental 

results showed a higher surface quality, however, the method required direct access to the 

robot controller. 

In a similar direction, as part of the COMET project [42], Schneider et al. [43] proposed a 3D 

piezo-actuated high-dynamic compensation mechanism to use for robotic milling 

applications. The authors presented an integrated solution which considered the robot 

holding the workpiece, whereas the machining spindle and cutting tool was installed on the 
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compensation unit, mounted on the ground. An optical tracking system was used to measure 

the robot deviations during milling. Based on this information the robot and the 

compensation unit contributed jointly in the compensation process handling both the low 

and high frequency errors, respectively. A closed-loop control scheme that adapts the spindle 

position was implemented in order to increase the machining performance. 

An interesting use of machine learning techniques as a compensation method to improve the 

robot’s absolute positional accuracy for robotic drilling applications was reported by Yuan et 

al. [44]. The authors used the robot’s theoretical position as input and the actual positional 

error measured by a high-precision laser tracker as output to train and build an error 

prediction model, based on Artificial Neural Networks (ANN). In particular, a single hidden 

layer forward network was used and the training was performed by the Extreme Learning 

Machine (ELM) algorithm, originally proposed by Huang et al. [45]. In order to obtain the 

training dataset, 2000 random points were evenly distributed within the robot workspace 

and the actual robot TCP position was measured with the laser tracker. A series of 

experiments were then performed to determine the optimal model parameters in terms of 

the required number of training samples and nodes in the hidden layer. The approach 

showed an improvement of the robot absolute position accuracy within its workspace by 

75.89% for the average values and 80.93% for maximum values of positional errors, however, 

this work did not consider the influence of machining forces on the robot end-effector, which 

will introduce further positional deviations from the theoretical values. 

Marchal et al. [46] investigated the use of Iterative Learning Control (ILC) in robotic milling 

processes and proposed two different ILC algorithms in order to reduce the positional errors 

in robotic machining tasks. The first approach was based on accurate position measurements 

taken by an optical laser tracker, whereas the second relied on force/torque data measured 

on the robot end-effector during a milling operation. The authors applied data-driven system 

identification methods to fit the data measured during the experiments and used these 

models for the iterative procedure. The experimental setup included a fixed spindle with the 

milling tool and the robot holding the workpiece and moving according to the process path. 

Both methods successfully reduced the robot position errors by 85% and 50% respectively, 

with the first one clearly outperforming the second due to the fact that a direct measurement 

of the path deviation was obtained. In contrast, the second approach used the derived 

compliance model of the robot to estimate the position deviations from the force 

measurements, with the advantage of being a cost-effective and practical solution. It was 
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noted that the force-based ILC algorithm was not able to compensate for constant offsets 

and low-frequency deviations resulting, for example, from kinematic calibration errors. The 

authors suggested the application of other stiffness calibration methods to complement the 

proposed system identification approach. Another drawback of the procedure was the fact 

that considering its repetitive pattern, the algorithm could not compensate for individual 

variations of the workpieces or non-repetitive errors introduced by tool wear. 

In conclusion, the vast amount of research carried out in the field of robot machining has 

enabled this new technology to be applied as a flexible and cost-effective alternative of 

standard CNC machine tools in a number of applications where the level of precision required 

can meet the accuracy limitations of the robots. Still, there is continuous research going on 

in order to find new methods for improving the process performance and this thesis will 

explore the use of intelligent monitoring systems in the attempt to do so. 

2.2 Intelligent Monitoring Systems 

Nowadays, manufacturing enterprises are looking into automation as an effective solution in 

order to cope with the growing demand of increased product quality, greater variability and 

shorter lifecycles, reduced cost and global competition. Considering the value of machining 

in most industries, the automation of machining processes is of critical importance in the 

manufacturing sector, which in turn requires the development of reliable and robust 

monitoring systems [14]. The ability to collect useful data from the machining process and 

then apply this information to make appropriate decisions based on the condition of the 

machine and/or cutting tool is the main drive for this technology. In particular, manufacturing 

processes such as milling, drilling and turning require a lot of capital investment in equipment 

and machines, and hence it is crucial to detect and avoid any failures. Moreover, the 

utilisation of the cutting tool within its actual life span by continuous tool wear monitoring 

could bring further revenue and add value to the manufacturing process. 

A considerable amount of literature has been published in the last 25 years on monitoring 

systems for machining processes, mostly focused in Tool Conditioning Monitoring (TCM). As 

reported by Teti et al. [16], only in the time frame between 1996–2006, about 500 new 

publications were added to the existing TCM literature database [47], bringing a total of more 

than 1000 cited references. The authors presented a comprehensive review of advanced 

monitoring techniques applied in machining operations breaking down the discussion in the 

current developments of sensor systems technologies, advanced signal processing methods, 
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monitoring scopes, decision making paradigms and application areas. Liang et al. [14] 

observed that despite the successful application of these monitoring systems in laboratory 

and field testing, there was still little availability in production environment. This was 

attributed to a number of reasons such as the current lack of robust sensor hardware and 

monitoring algorithms, embedded sensor and actuators, coordination in the research 

community, standardisation in automation and communication protocols. 

In terms of monitoring scopes and applications, a variety of them has been reported in the 

current process monitoring literature. The vast majority of the research studies was focused 

on identification of the tool wear state or tool breakage during a machining process [48-52]. 

Others considered the surface integrity of the machined part including surface roughness 

[53-55] and surface anomalies [56-58]. Some researchers investigated methods on chatter 

detection [59-61], whereas a few publications presented monitoring systems for chip 

formation [62, 63] and machine condition [64]. 

The Intelligent Monitoring Systems (IMS) were reviewed by Abellan-Nebot and Subiron [15], 

where particular attention was given to the Artificial Intelligence (AI) approaches used in the 

existing literature for the creation of process models that can learn from the data and 

incorporate this knowledge in the decision making procedure. The Artificial Neural Networks 

(ANN) were identified as the main AI technique used for process modelling purposes in 

machining research, followed by the fuzzy logic systems, the neuro-fuzzy inference, which is 

a hybridisation of the previous two and finally, monitoring systems based on Bayesian 

networks. Other approaches such as hidden Markov models, evolutionary algorithms and 

Support Vector Machines (SVM) were believed to become more popular in future research. 

Similarly, Worden et al. [17] added to the above list the use of Gaussian Processes (GP), 

graphical models and deep belief networks. 

According to Abellan-Nebot and Subiron [15], despite the large body of research conducted 

in the IMS field, a clear methodology in the development of machining monitoring systems 

is still lacking. Instead, the design of the monitoring system is strictly dictated by the specific 

machining application. The selection of the sensors and the hardware used for data 

acquisition, the signal processing techniques, the data fusion and decision making schemes, 

are all dependent on the characteristics of the particular process under investigation. The 

authors proposed a generic methodology which encloses the main elements of the 

monitoring system and it seems to be consistent with those suggested by other papers 
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reviewed during this work. This methodology is also adopted in the research conducted here 

and it is composed of the following five design steps (from [15], see also Figure 2.1): 

1. Sensors 

2. Signal processing 

3. Feature extraction 

4. Feature selection 

5. Model selection and diagnosis 

Figure 2.1 illustrates the design steps of the IMS implemented in this study. Indication of the 

technologies/methods related to each element is also provided in the figure. 

 

Figure 2.1 Intelligent Monitoring System Design (after [15]). 

The first step of an IMS is the selection of sensors which convert the physical quantities 

generated during machining into the corresponding electrical signals. The choice of the 

sensors system is generally dependent on the particular application and monitoring purpose, 

however, other factors such as the cost of the equipment and its intrusive nature in the 

machining process should be taken into consideration. Typical sensors choices reported in 

the literature include dynamometers, power transducers, accelerometers, thermistors and 

Acoustic Emission (AE) sensors. 

The next step of signal processing is specific to the type of the acquired signal, however, it 

usually includes amplification and filtering, Analogue-Digital (A/D) conversion and digital 



Literature Review  16 
 

 
 

signal processing. In some cases signal segmentation is required to extract the relevant parts 

of the signal data for further analysis. 

If the raw signal is still not suitable to use due to the high size of the data, feature extraction 

is performed to make all the necessary transformations for data size reduction. This step 

generates what are typically referred to as signal features or descriptors, which reduce 

significantly the size of the initial data set. The transformations often include analysis of the 

acquired signal in time, frequency, joint time-frequency and/or wavelet domain. 

The extracted features can be either related to the process performance variables or not 

related at all, therefore it is important to identify those that describe adequately the 

machining process. Hence the reason of the feature selection step: it will further reduce data 

size by filtering out the features that are not related to the process. This in turn reduces the 

complexity of the process model and the computational burden of the next step, potentially 

improving the process model accuracy. 

Finally, the selected features are used as input variables to train and build process models 

based on Machine Learning (ML) methods, which can learn the complex non-linear 

relationship between the signal features and the process variables of interest. The choice of 

the ML approach or statistical learning method is crucial in order to make accurate decisions 

on the process performance variables. 

A more detailed, in-depth presentation of all the above design steps and the relevant 

published literature is given in the following sub-sections. 

2.2.1 Sensors 

Sensor technologies have been extensively discussed by almost all the papers found in the 

machining process monitoring literature. According to Teti et al. [16], the sensing techniques 

for the monitoring of machining processes are generally classified in two different types: 

direct and indirect measurements. The direct technique refers to the actual quantity of the 

variable being measured, for instance, tool wear can be directly measured by cameras for 

visual inspection, microscopes, electrical resistance, etc. These methods are very accurate 

but also very expensive and thus they are employed mostly in research laboratories for 

verification and investigation purposes. Also, direct measurements have some practical 

limitation when it comes to applying them into the shop floor, the majority of which are 

caused by access problems during machining, illumination and use of the cutting fluid. The 
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indirect technique, on the other side, uses the measurements of auxiliary quantities such as 

the spindle power or cutting force and then infers the actual quantity via empirically 

determined correlations. Indirect methods are less accurate than the direct ones, but they 

are also less complex, less expensive and easy to apply in practical application. Therefore, 

indirect methods are the most used in industry.  

Lauro et al. [19] analysed a range of sensors commonly used in machining processes for 

measurement of quantities such as cutting forces, vibration, temperatures, sound, Acoustic 

Emission (AE) and ultrasonic waves. Liang et al. [65] extended the above sensor list with 

vision, power, torque, dimensional gauges and micro magnetic measurements. Abellan-

Nebot and Subiron [15] noted that the majority of applications used the following four main 

sensors: dynamometers, accelerometers, AE and current/power sensor. In addition, the 

authors presented a table, as shown in Table 2.1, where each sensor technology was scored 

based on its cost, intrusive nature and signal reliability for machining modelling purposes. 

Table 2.1 Sensor technologies ranked by Abellan-Nebot and Subiron [15]. 

Sensor Cost Intrusive nature Signal reliability 

Dynamometer *** *** *** 

Accelerometer ** ** ** 

AE ** ** ** 

Current/Power * * * 

It is important to note that the cost of the equipment as well as its intrusive nature with the 

machining process are crucial factors to consider in production environments. An example 

here would be the dynamometer (see Table 2.1). Equipment that provides accurate force 

measurements is very expensive and it also requires installation in the vicinity of the spindle 

or workpiece, which, despite the high reliability of the signal, makes the dynamometer not 

suitable for use in production.  

Some of the common sensor technologies used in process monitoring research are briefly 

reviewed in the following paragraphs. 

2.2.1.1 Cutting Force 

Cutting force measurements are very popular in research environments for monitoring of 

machining processes due to the fact that they are directly related to the amount of material 
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being removed from the workpiece. Higher level of forces measured during the cutting 

process indicate higher material removal rates. Dynamometers with three piezoelectric 

sensing elements (one for each direction X, Y and Z) are commonly used for force 

measurements. An electrical charge proportional to the load in the measurement direction 

is obtained by the sensing element. In machining literature, the information provided by 

force measurements has been used for monitoring of tool wear [50, 51, 66-68], tool breakage 

[48, 49], chip conditioning [48, 49] and surface roughness [57, 58, 69]. The detection of tool 

wear can be observed with force measurement as it occurs due to the progressive increase 

of friction forces. Whereas, a tool breakage will cause first an instant spike and then a drop 

of the cutting force signal. As mentioned above this sensing technology is being successfully 

applied in research environments, however, the high cost of the equipment for accurate 

measurements and, most importantly, the intrusive nature in the vicinity of the machining 

process limit its utilisation in production environments. 

2.2.1.2 Spindle Power and Current 

Unlike with force sensors, power and current measurements of the spindle drive are seen as 

a relatively low-cost and easy to install sensing technology, which provides a signal that is 

proportional to the cutting force. Therefore, several studies [48-50, 52, 70-72] reported the 

use of spindle power sensors, often as an indirect measurement of force or torque, for 

monitoring of machining processes. To obtain the power measurements, there is no need to 

interfere with the cutting area since the signal is usually available from the spindle drive 

controller and requires just a way to read it directly from there. This fact and also the 

relatively low cost of the equipment, make such sensors the ideal choice to use production 

environments. However, using measurement of power as an indirect force measurement can 

suffer significant electrical and mechanical noise therefore it is not as accurate as a direct 

force measurement. Moreover, the power signal has a poor dynamic response and it is less 

sensitive to small changes in the cutting process. The amount of power required for the actual 

cutting process can be a portion of the total spindle power and, as noted by Teti et al. [16], 

other factors such as the temperature of the machine, the axis condition and the lubrication 

state of the drive motors should be taken into consideration as they can influence the power 

consumption of the spindle during machining. 
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2.2.1.3 Vibration 

Vibration measurements are widely used in both research and industry environments with a 

large number of published papers [48-52, 59, 60, 62, 66, 72, 73]. The measurements are 

usually taken by single or multi-axes accelerometers attached to the fixture, workpiece, the 

cutting tool or spindle surface. A piezoelectric material pre-loaded with a mass is used to 

produce an electric charge proportional to the acceleration of the mass in either direction 

(compression or expansion). Small displacement of the cutting tool due to vibration 

influences the quality of the surface of the machined part, therefore, vibration 

measurements are mainly applied for monitoring and prediction of surface roughness [54, 

56, 62, 74, 75], but also for tool condition monitoring [50, 52, 66, 73] and chatter detection 

[59, 60]. Tool wear can be observed from the continuous increase of the contact area 

between the tool and the workpiece, which reduces the vibration due to the higher frictional 

damping. However, when the tool is completely worn or tool breakage occurs, the spindle 

vibration will increase as result of the large cutting forces [15]. The amplitude of the signal is 

also highly sensitive to the distance of the sensor from the cutting tool.  It is therefore 

important to place the sensor in proximity of the cutting area and keep its distance as 

consistent as possible during the cutting process. This is often difficult to obtain in production 

and it can be an issue for industrial applications, especially for large part manufacture. 

Vibration measurements are not as accurate as force measurements, but they are relatively 

cheaper, easy to install and less intrusive. 

2.2.1.4 Acoustic Emission (AE) 

Measurements of AE in the ultrasonic frequency range generated during the cutting process 

have had a lot of interest in the current literature. The AE signal is typically used for diagnosis 

of tool wear [50, 51, 57, 58, 62, 69, 76, 77] and tool breakage detection [48, 49, 73].  An AE 

is defined as a stress wave that travel through a material as result of a rapid release of energy 

from a localised source [77]. Therefore, an AE sensor converts the mechanical energy of the 

stress wave into an electrical signal by means of piezoelectric elements. A big advantage of 

the AE signal is its wide frequency range, usually from 100 kHz to 1000 kHz, which makes it 

very distinguishable from other unwanted noise caused by the workshop activity or any 

adjacent machines. The range of frequencies of interest can be isolated by means of a high 

pass filter in order to achieve higher signal to noise ratio. However, similarly to 

accelerometers, the sensor location is very important. The signal amplitude decreases rapidly 

with the distance, thus the proximity to the cutting edge is a key factor. A review of AE-based 
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sensing methodologies for tool wear monitoring in turning processes was reported by where 

the author lists the different sources of the AE signal as well as common processing methods 

for extracting the relevant signal features. According to Li [77] and Teti et al. [16] the common 

sources of AE in machining processes include the friction on rake face, tool-workpiece 

interaction, residual stress, plastic deformation, chip break and chip strike. AE sensors are 

generally less expensive than dynamometers, relatively easy to install and the wide 

bandwidth makes them suitable for use in production environments.  

2.2.1.5 Other Sensing Technologies 

Some of the other sensing technologies used in machining for process monitoring purposes 

include the temperature sensors, optical sensors, ultra-sonic and conductance sensors. 

Temperature measurements are of crucial importance in any cutting process. Accurate 

measurement of the cutting temperature would be very useful since it is correlated with tool 

wear due to changes in the tool geometry. Moreover, the cutting temperature influences 

chip formation, accelerates tool wear and influences tool stiffness. However, obtaining 

accurate measurement of cutting tool temperature is rather complicated and usually average 

values are provided with significant loss of information. A good review of the methods and 

techniques used for detection of the cutting temperature in machining processes is 

presented by Davies et al. [78]. 

Optical sensors such as machine vision systems are based on a light source to illuminate the 

surface and to acquire a digital image. As in many applications using machine vision, object 

illumination influences considerably the performance of the system itself and this fact limits 

their use in industry [15, 16].  Moreover, the production environment with cutting fluids, 

chips, etc., makes it extremely difficult to apply in-process optical measurements and usually 

these measurements are performed once the cutting has finished or in between different 

cutting cycles. A review of vision systems applied for tool condition monitoring can be found 

in Kurada and Bradley [79]. 

The use of ultra-sonic sensors was investigated by Prickett et al. [80] for real-time monitoring 

of the depth of cut arising during milling operations. The depth of cut was computed by 

means of two ultrasonic sensors which measured the two distances from the sensors to the 

workpiece surface before and after the cutting, respectively. This information was then 

integrated within the tool condition monitoring system. 
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Castano et al. [81] have recently presented a conductance sensing method for monitoring 

micro-machining of conductive materials. The sensor measures the electrical contact 

resistance of the tool-workpiece interface in order to determine the state of the cutting 

operation. 

2.2.2 Signal Processing 

Signal processing is a key element in the development of process monitoring systems. The 

raw sensory data should be transformed in a suitable representation in order to extract 

relevant information about the process variables of interest. The stages of a general signal 

processing scheme are shown in Figure 2.2. They include filtering and amplification, A/D 

conversion, segmentation and feature extraction. The first three stages are usually referred 

as a pre-processing step that, in addition to feature extraction and sometimes also feature 

selection (see Section 2.2.5), completes the signal processing scheme. 

 

Figure 2.2. Signal Processing Scheme (after [16]). 

First, the analogue signal from the sensor is filtered to keep it within the range of the 

frequency response of the sensor suppressing continuous biases or high frequency noise. 

This part of processing before the digital conversion is usually embedded in the sensor itself. 

The filtered signal is then subject to further processing depending on the sensor type. To 

prevent signal distortion during signal acquisition due to aliasing, the sampling rate should 

be fixed according to the Nyquist–Shannon [82] sampling theorem, i.e. a sampling rate (𝑓𝑓𝑠𝑠) 

greater than two times the signal bandwidth (𝐵𝐵 ), ( 𝑓𝑓𝑠𝑠 > 2𝐵𝐵 ). In general, just before 

conversion, in order to obtain the highest possible accuracy, the analogue signal is amplified 

such that the maximum voltage range equals the maximum input range of the A/D converter. 

The obtained signal is then ready to be further processed in digital form through filtering, 

segmentation and transformation into frequency or wavelet domain. Envelope analysis is 

also a well-known technique in condition monitoring, mostly used for the detection of faults 
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in industrial machines associated with rolling elements (bearings) [83, 84]. The method 

extracts the amplitude modulated signal, from the rotating machine vibrations, generated by 

the periodic changes in the forces due to the development of a fault. 

In some works [50, 57, 58, 69], segmentation was also part of the processing scheme. It refers 

to the operation of extraction of the portion of signal that contains information about the 

cutting process or tool conditions, i.e. the part when the tool is actually removing material. 

However, as noted by Abellan-Nebot and Subiron [15], the segmentation prevents the 

resulting signal from being analysed in the frequency and wavelet domain. For instance, if 

the signal is segmented and then reconstructed by putting all the extracted portions in a 

single time series, one next to the other, the resulting signal is not equivalent with the original 

one and therefore the frequency content will be distorted. 

The next step in the processing scheme is the feature extraction, which, as will be discussed 

in details in the next section, transforms the digital signal into several signal features. These 

features are typically calculated through transformation and analysis of the sensor signal in 

the time, frequency and wavelet domain with the intention to reduce the dimension of the 

input space while preserving the relevant information that characterise the machining 

process. It will be clear later in Section 2.2.5 that it is very important to keep the dimension 

of the feature vectors to the lowest possible. 

2.2.3 Feature Extraction 

A number of feature types and extraction methods have been reported in the machining 

process monitoring literature [14-17, 19]. Common methods of the reviewed papers include 

signal analysis in the time and frequency domain, but also some more advanced processing 

methods such as analysis in joint time-frequency and the wavelet (time-scale) domain. All 

such methods are presented and discussed in the following. 

2.2.3.1 Time Domain Analysis 

A simple group of features that provides an overall picture of the time-signal is based on 

statistic descriptors such as the arithmetic mean, Root Mean Square (RMS), variance, 

skewness and kurtosis, as shown in Table 2.2. Time domain features extracted from sensor 

signals collected during machining have been reported in a number of research papers [48-

50, 52, 56, 62, 73, 76, 85-87] , including those of Binsaeid and Cho [48, 49] after which this 

table was built. 
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Suppose that the signal of interest 𝑥𝑥(𝑡𝑡) has been sampled at regular intervals and a total of 

𝑁𝑁  points have been obtained. The data is now the set of values [𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑁𝑁] and the 

following time-domain features, summarised in Table 2.2, can be extracted. 

Table 2.2 Features extracted from time domain signals (after [48, 49]). 

Feature Symbol Definition Equation 

Arithmetic 
Mean M The mean of N amplitude values of raw 

data signal 𝑀𝑀 =
1
𝑁𝑁
�𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

Root Mean 
Square RMS RMS of a sample length of N amplitude 

values in the raw data 𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
�𝑥𝑥𝑖𝑖2
𝑁𝑁

𝑖𝑖=1

 

Variance  Var Variance of a sample length of N values 
with mean M 𝑉𝑉𝑉𝑉𝑉𝑉 =

∑ (𝑥𝑥𝑖𝑖 − 𝑀𝑀)2𝑁𝑁
𝑖𝑖=1
𝑁𝑁 − 1

 

Skewness Sk 
A measure of the asymmetry of the 
probability distribution (𝜎𝜎 = √𝑉𝑉𝑉𝑉𝑉𝑉) 𝑆𝑆𝑆𝑆 =

1
𝑁𝑁
∑ (𝑥𝑥𝑖𝑖 − 𝑀𝑀)3𝑁𝑁
𝑖𝑖=1

𝜎𝜎3
 

Kurtosis Ku 
A measure of the “peakedness” of the 
probability distribution (𝜎𝜎 = √𝑉𝑉𝑉𝑉𝑉𝑉) 𝐾𝐾𝐾𝐾 =

1
𝑁𝑁
∑ (𝑥𝑥𝑖𝑖 − 𝑀𝑀)4𝑁𝑁
𝑖𝑖=1

𝜎𝜎4
 

Power PWR Signal power as the measured area 
under the rectified signal envelope 𝑃𝑃𝑃𝑃𝑃𝑃 =

1
𝑁𝑁
�𝑥𝑥𝑖𝑖2
𝑁𝑁

𝑖𝑖=1

 

Peak-to-
Peak pp 

Difference between the highest peak 
value and the lowest peak value for a 
given sample of N values 

𝑝𝑝𝑝𝑝
= max

𝑁𝑁
(𝑥𝑥𝑖𝑖) − min

𝑁𝑁
(𝑥𝑥𝑖𝑖) 

Crest Factor CF The peak amplitude divided the RMS 
value of raw data signal  𝐶𝐶𝐶𝐶 =

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑅𝑅𝑅𝑅𝑅𝑅

 

Burst rate* 
(Pulse rate) BR Number of times the signal exceeds 

pre-set thresholds per second.  ----- 

(*) BR can only be applied to vibration and AE signals 
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2.2.3.2 Frequency Domain Analysis 

The frequency spectrum 𝑋𝑋(𝑓𝑓) of a continuous signal 𝑥𝑥(𝑡𝑡) can be calculated by means of the 

Fourier transforms, as follows: 

 𝑋𝑋(𝑓𝑓) =  � 𝑥𝑥(𝑡𝑡)𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋
∞

−∞
𝑑𝑑𝑑𝑑 (2.1) 

Where 𝑓𝑓 is the frequency variable measured in 𝐻𝐻𝐻𝐻. In case of sampled signals, the frequency 

content is represented as the discrete Fourier transform and a common algorithm used for 

its efficient computation is the Fast Fourier Transform (FFT).  

Frequency domain features are reported in several machining related research works [48, 

49, 52, 56, 62, 73, 85, 87]. The raw sensor data is transformed into the frequency domain 

using the FFT algorithm and the Power Spectral Density (PSD) is obtained. A Hanning window 

is usually applied to the raw data to prevent leakage. The PSD gives information about the 

signal power in a particular spectral component 𝑆𝑆(𝑓𝑓). Similar features based on statistical 

information such as the mean, variance, skewness and kurtosis can be calculated for the 

power spectrum values over a specific frequency band. Following from Binsaeid and Cho [48, 

49], the most commonly used frequency domain features for machining monitoring 

applications are illustrated in Table 2.3. 
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Table 2.3 Features extracted from frequency domain signals (after [48, 49]).  

Feature Symbol Definition Equation 

Sum of Total 
Band Power STBP The total power in the signal or in 

a particular freq. range (𝑓𝑓1,  𝑓𝑓2) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = � 𝑆𝑆(𝑓𝑓) 𝑑𝑑𝑑𝑑
𝑓𝑓2

𝑓𝑓1
 

Mean of 
Band Power MBP Mean of power spectrum in a 

specific freq. band of length N 𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�𝑆𝑆(𝑓𝑓)𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

Variance of 
Band Power VBP Variance of power spectrum in a 

specific freq. band of length N 
𝑉𝑉𝑉𝑉𝑉𝑉

=
∑ (𝑆𝑆(𝑓𝑓)𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁 − 1
 

Skewness of 
Band Power SkBP 

Skewness of power spectrum in a 
specific freq. band of length N 
with mean MBP and variance VBP 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

=
1
𝑁𝑁
∑ (𝑆𝑆(𝑓𝑓)𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀)3𝑁𝑁
𝑖𝑖=1

𝑉𝑉𝑉𝑉𝑉𝑉3 2�
 

Kurtosis of 
Band Power KuBP 

Kurtosis of power spectrum in a 
specific freq. band of length N 
with mean MBP and variance VBP 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

=
1
𝑁𝑁
∑ (𝑆𝑆(𝑓𝑓)𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀)4𝑁𝑁
𝑖𝑖=1

𝑉𝑉𝑉𝑉𝑉𝑉4 2�
 

Peak of Band 
Power PBP The peak of power spectrum in a 

specific frequency band B 𝑃𝑃𝑃𝑃𝑃𝑃 = max
𝐵𝐵

 𝑆𝑆(𝑓𝑓) 

Frequency of 
max Peak of 
Band Power 

FPBP 
The frequency that corresponds to 
the highest amplitude of power 
spectrum in a specific freq. band 

----- 

Relative 
Spectral Peak 
per Band 

RSPB The ratio of Peak of Band Power 
over the Mean of Band Power 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

𝑃𝑃𝑃𝑃𝑃𝑃
𝑀𝑀𝑀𝑀𝑀𝑀

 

Total 
Harmonic 
Band Power 

THBP 
The total power of Tool Passing 
Frequency (𝑇𝑇𝑇𝑇𝑇𝑇)* and all the 
harmonics in the frequency range 
of the signal 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑆𝑆(𝑘𝑘 𝑇𝑇𝑇𝑇𝑇𝑇)𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 

(*) The Tool Passing Frequency is calculated as 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅
60

 𝑥𝑥  𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ 
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2.2.3.3 Time-Frequency Analysis 

If the frequency content of a signal varies over time, the FFT will provide just a time average 

summary of all the frequencies and no other information about the time when those 

frequencies varied will be given. The analysis of non-stationary signals such as those detected 

during machining requires specific time-variant techniques that go beyond the classical 

Fourier approach [17]. These techniques are typically divided in two groups: time-frequency 

analysis and time-scale (wavelet) analysis. 

The joint time-frequency analyses the frequency content of a signal within a window which 

is fixed in size and moves with time along the signal. The signal is assumed to be stationary 

within the window and thus the FFT can be applied to calculate the spectral content of this 

short length of data. Then the window slides along the time axis to a new position and the 

calculation is repeated. The time information is provided by computing different FFT for 

consecutive time intervals and then putting all together. When the window is rectangular, 

i.e. just a finite segment of data is selected, this analysis leads to the Short-Time Fourier 

Transform (STFT). The major drawback of this approach is that the window width decides on 

both the time and frequency resolution. A narrow window implies good time resolution, but, 

on the other hand, it results in a poor frequency resolution and vice versa. A trade-off must 

be made for the desired time and frequency resolution. However, it is possible to choose the 

window in such a way to minimise the negative effects of this trade-off. For instance, if one 

chooses a Gaussian window instead of the rectangular one, the optimum performance is 

obtained and this analysis leads to the Gabor transform [88]. Some machining related 

research works that report the use of STST for feature extraction are those conducted by 

Marinescu and Axinte [57, 58, 69]. 

2.2.3.4 Time-Scale Analysis: Wavelet Domain 

A completely different approach that overcomes the above resolution problem of the STFT 

is based on the wavelet theory developed by Mallat [89] and Daubechies [90]. Unlike the 

Fourier bases, the Wavelet Transform (WT) basis functions are localised in time and they are 

all scaled and translated versions of one single function called the mother wavelet. The 

original time signal is transformed into the time-scale domain.  

The WT can be seen as the STFT, but with windows of different lengths for different 

frequencies, allowing a multi resolution analysis of the signal [91]. The mother wavelet acts 

as a window function and its scaled versions modify the window length, whereas its 
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translated versions change the window location in the time axis. Scale and frequency are 

inversely related: low scales refer to high frequency and vice versa. Therefore, for high 

frequency (low scales values) the windows are very narrow in time and better time resolution 

is achieved, whereas for low frequencies (high scales values) the windows became wider in 

time and better frequency resolution is obtained. In other words, for the high frequency 

content of the signal that changes quickly and has a short duration in time the WT offers 

better time resolution to localise this duration, whereas in case of the low frequency content 

of the signal that often has a long duration in time, the WT offers better frequency resolution.   

Practical implementations of WT are the Discrete Wavelet Transform (DWT) [89] and the 

Wavelet Packet Decomposition (WPD) [92],  which are relatively easy to implement and also 

have a fast algorithm for estimating the wavelet coefficients. In the machining context, 

different studies [73, 76, 77, 93, 94] have reported the use of wavelets for processing the 

signals collected during the process. A review of the wavelet analysis applied for tool 

condition monitoring is presented by Zhu et al [93].  

2.2.4 Feature Selection Methods 

After extracting the features from sensor signals, the next step is to identify those with 

relevant information about the specific monitoring purpose. This task can be very difficult 

especially if the number of features is large and they cannot be easily related to the process 

variable of interest. Therefore, the feature selection step is of critical importance in the 

development of robust and reliable monitoring systems. The objective of feature selection is 

to preserve relevant information by identifying those features that contain the most relevant 

information about the process under investigation, and, at the same time, to reduce the 

feature space by and removing redundant or irrelevant features. Good features are those 

which vary (with respect to some criteria) in a similar way with the variations of the target 

value, i.e. the process variable of interest. Therefore, they help to distinguish between the 

various classes defined on the target variable in a classification problem or obtain accurate 

numerical predictions in a regression problem. 

The problem of feature selection is well-known in the Machine Learning (ML) and pattern 

recognition research [65, 95, 96], in which the number of features (or attributes in the ML 

terminology) is usually very large and complex learning algorithms are required. However, in 

machining monitoring applications, just few works [48, 49, 73, 97, 98] have reported a 

separate feature selection step as part of their system design. The majority of the researchers 
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extracted the sensor features based on previous works of the specific application or 

monitoring purpose and without considering any particular strategy for feature selection.  

There are many advantages of applying feature selection to a machining monitoring system 

[15, 17]. First of all, a lower number of features, leads into a low-dimensional input space for 

the learning problem (see Section 2.2.5) when building a process model. This is very 

important because it avoids a well-known problem of the ML community called ‘the curse of 

dimensionality’, which was introduced by Richard Bellman [99]. This term refers to the 

various issues that arise when handling high-dimensional input spaces [100]. In particular, 

the learning problem becomes more difficult with the increasing dimension of the input 

space since more training data is needed in order to build an accurate model. In machining, 

the data is expensive to obtain since it involves experiments. Moreover, simpler models can 

be built using fewer features, which are more robust on small datasets and present less 

variance on noise or outliers. Low-dimensional data can also be easily plotted and visualised, 

thus providing a better understanding about the process. Finally, using just a small subset of 

the original feature set to build the model means that further measurements and signal 

processing can be reduced to extract just those few selected features with a considerable 

reduction of computational time.   

According to the ML research [65, 95, 96], feature selection methods typically fall in three 

categories: filter-based, wrapper-based and embedded methods. Filter methods are used to 

reduce the feature input space by filtering out less relevant features. Generally, they are 

applied as a pre-processing step before the learning commences and do not dependent on 

the choice of the learning technique. A suitable metric is used as ranking criterion to score 

and order the features. Then, a pre-set threshold value is used to remove the lower scored 

features. The advantages of this method are its simplicity, scalability, and high degree of 

empirical success [95, 96]. It is also computationally efficient since it requires only the 

computation of one score for each feature. Wrapper-based methods, presented by Kohavi 

and John [101], make use of the learning algorithm to evaluate the quality of the selected 

features. These methods give a score to a subset of features based on the predictive 

performance of a pre-selected learning technique that uses these features in input. In other 

words, given a subset of features, the learning algorithm acts as a black box to evaluate their 

quality based on the learning performance and then, the feature subset that obtains the 

highest score is selected. The subset search space for 𝐷𝐷 features is 2𝐷𝐷 , which makes the 

exhaustive search impractical when 𝐷𝐷 is large (this is a NP-hard problem). Therefore, 
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different searching algorithms are typically employed, which yield local optimum results but 

are computationally feasible. Embedded methods [95, 96] provide a trade-off solution 

between filter and wrapper methods in terms of the computational costs. They incorporate 

the feature selection into the training process as part of the objective function defined for 

learning. This improves the selection process compared to wrapper methods since it avoids 

re-training the predictor from scratch for each subset evaluation. Typically, the objective 

function of the learning technique consists of two terms: a term for the goodness-of-fit to be 

maximised and a term for the number of features to be minimised. The latter is often referred 

to as a regularisation term, which aims to ‘shrink’ the parameters. 

2.2.4.1 Ranking Criterions for Feature Relevance 

In the field of machining monitoring systems the most widely applied are filter-based 

methods due to their simplicity and low computational cost. Some of the ranking criterions 

used to assess the relevance of a feature with respect to the process variable of interest 

include Pearson’s correlation coefficient [75, 97, 98], mutual information [48, 49] and 

correlation-based methods [48, 49], among others. 

Pearson’s correlation criterion 

This is the classical approach of measuring the linear correlation between two random 

variables. The most well-known measure is the Pearson’s correlation coefficient, which for a 

pair of random variables (𝑋𝑋,𝑌𝑌) is given by the formula: 

 𝑟𝑟 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑖𝑖

�∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑖𝑖 �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑖𝑖
 (2.2) 

Where 𝑥̅𝑥  and 𝑦𝑦�  are the mean of 𝑋𝑋  and  𝑌𝑌 , respectively. The value of 𝑟𝑟  lies in the 

interval [−1,1]. Limit values (1 or −1) indicates a complete linear correlation between 𝑋𝑋 

and 𝑌𝑌, whereas for 𝑟𝑟 = 0 a totally independence is indicated. Typically the value of 𝑟𝑟2 is used 

since the goal is to find those variables which best relate to the process variable of interest 

regardless the correlation sign. A drawback of this approach is that it can only give a measure 

of linear correlation between the variables without considering for other non-linear 

correlations. It also requires that all the features are numeric values.  



Literature Review  30 
 

 
 

Mutual information 

This is a correlation measure based on information theory [102]. It uses the concept of 

entropy, which represents a measure of the uncertainty of a discrete random variable. The 

entropy of a discrete random variable 𝑌𝑌 is defined as: 

 𝐻𝐻(𝑌𝑌) = −� 𝑝𝑝(𝑦𝑦𝑖𝑖) log2�𝑝𝑝(𝑦𝑦𝑖𝑖)�
𝑦𝑦𝑖𝑖∈𝑌𝑌

 (2.3) 

Where 𝑦𝑦𝑖𝑖  denotes a specific value of random variable 𝑌𝑌,  𝑝𝑝(𝑦𝑦𝑖𝑖) denotes the probability of 𝑦𝑦𝑖𝑖  

over all possible values of 𝑌𝑌, which can be estimated from the data. Suppose 𝑌𝑌 represents 

the output variable and an observation of another discrete random variable 𝑋𝑋 is made.  Then 

the conditional entropy of 𝑌𝑌 given the observation data 𝑋𝑋 is defined as:  

 𝐻𝐻(𝑌𝑌|𝑋𝑋) = − � 𝑝𝑝�𝑥𝑥𝑗𝑗�
𝑥𝑥𝑗𝑗∈𝑋𝑋

� 𝑝𝑝�𝑦𝑦𝑖𝑖|𝑥𝑥𝑗𝑗� log2 𝑝𝑝�𝑦𝑦𝑖𝑖|𝑥𝑥𝑗𝑗�
𝑦𝑦𝑖𝑖∈𝑌𝑌

 (2.4) 

Where 𝑝𝑝(𝑥𝑥𝑗𝑗) is the prior probability of 𝑥𝑥𝑗𝑗, whereas  𝑝𝑝�𝑦𝑦𝑖𝑖|𝑥𝑥𝑗𝑗� is the conditional probability of 

𝑦𝑦𝑖𝑖  given 𝑥𝑥𝑗𝑗 . Equation (2.4) implies that by observing a variable 𝑋𝑋, the uncertainty in the 

output 𝑌𝑌 is reduced. The decrease in uncertainty is given as: 

 𝐼𝐼(𝑌𝑌,𝑋𝑋) = 𝐻𝐻(𝑌𝑌) −𝐻𝐻(𝑌𝑌|𝑋𝑋) (2.5) 

Where 𝐼𝐼(𝑌𝑌,𝑋𝑋) is called information gain and, since it measures the amount of information 

shared by the two variables together, it is often referred as Mutual Information (MI). It can 

be noticed that MI is symmetric such that  𝐼𝐼(𝑌𝑌,𝑋𝑋) = 𝐼𝐼(𝑋𝑋,𝑌𝑌). It is zero if the discrete variables 

𝑌𝑌 and 𝑋𝑋 are independent and greater than zero if there is some dependency between the 

two variables. However, as reported by Yu and Liu [103], information gain presents a bias in 

favour of features with more values and normalisation is required. To overcome these issues, 

the authors used the Symmetrical Uncertainty (SU) coefficient: 

 𝑆𝑆𝑆𝑆(𝑋𝑋,𝑌𝑌) = 2 �
𝐼𝐼(𝑌𝑌,𝑋𝑋)

𝐻𝐻(𝑋𝑋) + 𝐻𝐻(𝑌𝑌)�
 (2.6) 

SU value is normalised to the range [0, 1] . The value zero indicates that 𝑋𝑋  and 𝑌𝑌  are 

independent, whereas the value 1  indicates that knowledge of either one variable 
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completely predicts the other. Note that entropy based methods work with nominal 

features, but they can be applied to numeric features if their values are properly discretised 

in advance [65, 95, 103]. A common discretisation method used for this purpose is the one 

proposed by Fayyad and Irani [104].  

Correlation-based Feature Selection (CFS) 

This method, proposed by Hall [105], is able to handle the problem of feature redundancy by 

considering the level of inter-feature correlation in the selection procedure. The correlations 

are evaluated by the entropy measurements, such the MI or the SU coefficient presented in 

Equation (2.6). The CFS is defined for classification tasks and it takes into account both the 

relevance with the class and the redundancy of the features. High scores are assigned to 

features that are highly correlated with the class, yet have low inter-correlation with each 

other. Unlike the other criterions discussed above, the CFS method does not evaluate each 

feature individually, instead it gives a score to a subset of features taking into account the 

inter-correlations of among features within the subset under evaluation. The merit 

coefficient 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑠𝑠 of a subset of features 𝑆𝑆 is defined as: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑆𝑆 =
𝑘𝑘 𝑟𝑟𝑐𝑐𝑐𝑐����

�𝑘𝑘 + 𝑘𝑘(𝑘𝑘 − 1) 𝑟𝑟𝑓𝑓𝑓𝑓����
 (2.7) 

Where, 𝑘𝑘 is the number of features within 𝑆𝑆;  𝑟𝑟𝑐𝑐𝑐𝑐�����  and  𝑟𝑟𝑓𝑓𝑓𝑓����  are the average values of feature-

class correlation and feature-feature inter-correlation, respectively. Note that the numerator 

measures the relevance of the features, whereas the denominator considers the redundancy 

among the features within the subset. An application of the CFS in machining monitoring 

systems was presented by Binsaeid et al. [48]. The method was applied to evaluate the 

relevance of different signal features with respect to tool condition classes.  

Borah et al. [106] proposed an Enhanced Correlation-based Feature Selection (ECFS) method 

which uses statistical techniques instead of information theory measurements to assess both 

feature-feature correlation and the feature-class correlation. This ECFS method was tested 

and compared with other feature selection methods in several ML datasets. 
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2.2.4.2 Other Feature Selection Strategies 

Some other ranking criterions and feature selection methods used in machining monitoring 

applications include the Relief algorithm [107], Fisher score [98], Class separability [98], 

Orthogonal Arrays [73], Analysis of Variance [75] and 𝜒𝜒2 statistic-based methods [49]. 

Zhang et al. [98] proposed an interesting hybrid approach to select relevant features for 

machinery condition monitoring. The method consisted in three main parts: filter, voting and 

wrapper. The filter part was used to pre-rank the sensor features through four different 

ranking criterions including Pearson’s correlation, Relief algorithm, Fisher score and Class 

separability. The voting part was introduced to re-rank the features through a weighted 

voting scheme of the above four methods. In the wrapper part, subset searching strategies 

such as the binary search and backward elimination were applied to further reduce the 

feature number and obtain the final subset. 

Al-Habaibeh and Gindy [73] applied Taguchi’s Orthogonal Arrays (OA) to calculate the 

dependency (sensitivity) of the sensory features on the machining parameters and the tool 

conditions. The features with higher dependency on the tool conditions rather than on the 

machining parameters were selected for further analysis. 

Cho et al. [49] investigated the CFS and 𝜒𝜒2 statistic-based methods to assess the relevance 

of sensory features with respect to classes defined on the tool state. They studied the 

influence of reducing the feature space in a classification problem using process models built 

by several ML algorithms. 

2.2.5 Process Model Selection 

The final step of the development of an IMS for machining processes consists of building a 

suitable process model based on ML approaches. This section will first introduce the concepts 

of supervised learning in the process monitoring context, then discuss methods to validate 

the performance of the models and finally, review the most popular approaches. 

2.2.5.1 Supervised Learning Methods 

The supervised learning approach [17, 100, 108] requires learning the relationship between 

two sets of data: a 𝐷𝐷-dimensional input space, denoted with 𝑥𝑥 and a one-dimensional output 

space, denoted with 𝑦𝑦. This differs from the unsupervised learning approach, where the 

output space is not provided and the learning algorithm seeks intrinsic relationships within 
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the input data in order to categorise (group) them into clusters with similar characteristics. 

In supervised methods, the underlying relationship is induced based on a set of training 

data �𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘�;  𝑘𝑘 = 1, … ,𝑁𝑁, where each input vector 𝑥𝑥𝑘𝑘 is paired with a ‘true’ value of the 

output variable  𝑦𝑦𝑘𝑘  and  𝑁𝑁  is the number of the available pairs (called instances) in the 

dataset. Depending on the type of the output variable, the problem can be one of regression, 

if 𝑦𝑦 is a continuous numerical variable, or one of classification if 𝑦𝑦 is a nominal variable (class 

label). Denoting the mapping between the two sets with 𝑓𝑓, the relationship can be written 

as  𝑦𝑦 = 𝑓𝑓(𝑥𝑥,𝑤𝑤), where 𝑤𝑤 is a vector of free parameters that can be adjusted to give the best-

fit of the model on the training data. Therefore, the aim of a learning machine is to find an 

optimal choice for the parameters 𝑤𝑤  with respect to some objective function which 

maximises the goodness of fit of the model [100]. 

In the context of process monitoring, the input data consist of 𝑁𝑁 measurements (instances) 

with 𝐷𝐷 extracted/selected features (called attributes or predictors in the ML community) for 

each measurement. The objective of a learning algorithm is to learn the relationship of the 

input features with respect to the process variable of interest (or target variable) that, 

depending on the monitoring scope, can be the tool wear, surface roughness, chip condition 

or another process variable that one wants to predict. The target variable can either be a 

nominal label for classification problems or a continuous numeric value for regression 

problems. 

A common issue of ML techniques is referred to as overfitting. This is the problem of 

memorising the training data rather than learning the underlying function of interest and it 

occurs when there are too many parameters in the model compared to the number of 

training instances. This means that the machine is actually learning about peculiarities of the 

training instances and it will fail to generalise on new, previously unseen data. The 

generalisation capacity is related with the model complexity: a more complex model (with 

more free parameters 𝑤𝑤  in 𝑓𝑓) has higher probability of overfitting the training data and 

therefore it could fail to generalise. It is therefore important to assess the generalisation 

performance of the model on previously unseen data. 

2.2.5.2 Model Performance Validation 

A very popular method for evaluating the generalisation performance of a learning algorithm 

(i.e. the process model) is to split the entire available data into two parts: one for the actual 

training called the training set, and the other for testing the performance of the trained 
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model, called the testing set. Since the data of the testing set are not used during the training 

procedure, they are all new and unseen for the obtained model, thus the accuracy on this 

dataset gives an estimate of the algorithm’s true generalisation performance.  

In cases where the data availability is large, one can further divide the training data in two 

parts: training set and validation set. The data of the validation set are used as extra test data 

for evaluation in order to determine the hyper-parameters of the particular model. There is 

however a risk of discarding representative training data when dividing the dataset, which 

could potentially lead to a suboptimal assessment that would depend on the particular 

choice of training and testing sets. In addition, the size of the portion of data left for testing 

is important. If it is too small then the estimate of the generalisation performance may be 

not realistic, whereas if a large portion of the dataset is used for testing then the remaining 

data for training may be too low which will lead to poor training. Furthermore, there is no 

guarantee that the portion of testing data (regardless its size) is a representative example of 

other new future data. For example, in a classification problem, it might happen that the 

instances of the testing set are located very close or much further to the decision boundary 

resulting to a very difficult or too simple classification, respectively. 

One way to overcome the above issues is to use the cross validation (CV) approach [109] to 

estimate the generalisation performance of the learning algorithm. The method is called 𝑘𝑘-

fold CV and it is illustrated in Figure 2.7 (after Polikar [110]).  

 

Figure 2.3 Illustration of k-fold cross validation method (after [110]). 
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The method consists of dividing the entire dataset is into 𝑘𝑘 > 2 blocks (folds) of data. One of 

the blocks is used for testing, whereas the remaining 𝑘𝑘 − 1  serve as training data. The 

performance based on this partition is then computed and stored. The procedure is repeated 

𝑘𝑘 times, using in each case a different block for testing, until all the blocks have been used. 

The estimate of the true generalisation performance of the learning algorithm is then 

calculated as the average value of the performances obtained for each trial. Note that the 𝑘𝑘-

fold CV method allows fully utilisation of all available data. All the instances are used for 

training as well as for testing, but never at the same time. In addition, since the average 

performance value over the 𝑘𝑘 trials is obtained, there is a lower probability of choosing a 

particular unusual partition of representative data, which might give ‘false’ performances.  

The choice of the parameter 𝑘𝑘 depends on the data availability. If 𝑘𝑘 is too large, it divides the 

data in too many blocks, which means that the training set will be much bigger than the 

testing set. However, few test instances can result in large variations on the test 

performances. On the other hand, choosing  𝑘𝑘 too small results in few blocks which means 

that not enough training data may be provided. Typical values of 𝑘𝑘  for sufficiently large 

datasets include 5 or 10 [100, 109, 110]. When the data is in short supply 𝑘𝑘 may be chosen 

large to allow for a larger training set. The extreme case of choosing 𝑘𝑘 = 𝑁𝑁, where 𝑁𝑁 is the 

number of all the available instances, is also known as Leave-One-Out (LOO) cross validation 

method [109, 111]. In this case, for each training session, the entire dataset except one is 

used and then the model is tested only on that one remaining instance. The procedure is 

repeated for 𝑁𝑁 times. In theory, this method provides the best estimate of the generalisation 

performance, since every data is tested, but it is computationally more expensive than the 

𝑘𝑘-fold CV. In classification tasks with unbalanced datasets, a slightly different version of the 

algorithm, called the stratified k-fold CV [111], is usually applied. It creates blocks of stratified 

data, in which the original distribution of class labels is conserved. 

2.2.5.3 Common ML approaches 

The Artificial Neural Networks (ANNs) are considered to be the most commonly used 

approach in machining research. The main applications include cutting tool state diagnosis 

[48-51, 73, 85, 112, 113], surface roughness prediction [56, 114] and process fault diagnosis 

[85]. Typically, a large number of samples obtained through experimental trials is required to 

achieve high accuracy and good generalisation capability. The main drawback of these 

systems is that they are unable to adapt to different processes without having a large amount 

of experimental data to use for training. Another popular ML method consists of the Support 
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Vector Machines (SVMs) [115], which have been successfully applied in several machining 

operations including milling for tool state diagnosis [48, 49], broaching for tool wear 

prediction [66] and turning for surface roughness [54]. The optimisation problem of the SVMs 

has a convex objective function, which can be solved efficiently through numerical methods 

and a local solution is also the global minimum. 

Some other learning approaches are based on Artificial Intelligence (AI) such as fuzzy systems 

[73, 116], the hybridisation neuro-fuzzy [68, 117], evolutionary algorithms [53, 76] and 

probabilistic methods [86, 87, 118]. A recent review of the applications of AI in fault diagnosis 

of rotary machinery can be found in Liu et al. [119]. 

The systems based on fuzzy logic [120] require previous knowledge of the process in order 

to function. This knowledge is used to define the fuzzy rules which are the basis of the 

systems computation. These systems can work with a low amount of experimental data 

available, which makes them more flexible and suitable to apply in new processes. However, 

they do not have much learning capabilities compared with the ANN [15]. The hybridisation 

of ANN and fuzzy systems leads to the neuro-fuzzy systems. Applications of neuro-fuzzy 

systems for tool wear monitoring can be found in Azmi [68] and Gajate et al. [117]. 

Evolutionary methods have also been applied for process models in monitoring applications. 

Xiang et al. [76] used the artificial immune algorithm to detect faulty conditions in grinding 

operations, whereas Colak et al. [53] applied genetic algorithms for surface roughness 

prediction in milling processes.  

Probabilistic based monitoring systems [86, 87, 118] are particularly suited in application 

where the process has a highly stochastic behaviour. Such systems can use previous 

knowledge on the process behaviour and extract hidden causal relationships and 

probabilities from experimental data. Probabilistic models can also provide predictions with 

an expected uncertainty level, which can be seen as a measure of the model’s confidence in 

the prediction value. A probabilistic approach that is getting more attention in the current 

machining research consists of Gaussian Processes (GP) [121-123]. A GP is a generalisation of 

the Gaussian probability that describes a distribution over functions (instead of scalars or 

vectors). Very few works have applied GP for monitoring purposes, however, the interest in 

this area is continuously growing. Two recent examples include the work of Teimouri et al. 

[124] reporting a GP-based approach for structural health monitoring and the paper of Kong 

et al. [125] concerning the use of GP regression for tool wear prediction. This approach was 

also used in the work conducted here for the development of the monitoring system. In 
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particular, process models based on Gaussian Process Regression (GPR) were created from 

the experimental data (ref. to Chapter 6). A detailed presentation of the GPR theory is also 

given in the Appendices (ref. to Section A.1). 

2.3 Research Gap Analysis 

Different aspects of the two main research fields of robotic machining and IMS for machining 

processes have been reviewed and discussed extensively in the previous sections of this 

chapter. However, in order to better understand the contribution of this work into the 

current literature, it is useful to analyse the main outcomes of the reviewed material and the 

existing challenges of these two research areas. 

One key aspect of robotic machining is that the technology itself is still in its beginnings and 

constant research is required in order to advance it further, up to the state of being 

considered a valid alternative to conventional CNC machining. It was identified in Section 2.1 

that the main challenges of this technology were due to the limited and variable stiffness of 

robots and their low positional accuracy, which inevitably introduced non-systematic 

(random) errors into the machining process that were difficult to anticipate. From the 

process point of view, such errors could be quantified in terms of variations (imperfections) 

in the quality of the finish product (surface roughness, part geometry) or in the process 

response variables, called the Key Performance Indicators (KPIs). 

Most of the solutions published in the robotic machining literature have addressed this 

problem from the robotic structure perspective, proposing methods to directly minimise the 

above sources of errors (i.e. the robot’s low stiffness and positional accuracy) and enable 

industrial robots for machining operations. Some relevant research papers of compensation 

strategies based on ML approaches were reviewed in Section 2.1.2. Typically, accurate 

measurements from optical laser trackers and/or dynamometers were used to build an error 

map of the robot positioning within its workspace. This information was then integrated into 

the robot path planner or controller in order to compensate offline or online (by closed loop 

control schemes) the cutting tool deviations. Satisfactory results have been reported, 

however, these solutions were mainly applied in a controlled environment such as a research 

laboratory, where the goal was to test the feasibility of the approach. Moreover, the 

experiments often required the use of expensive and/or intrusive equipment, such as high 

accuracy laser trackers and dynamometers to measure the displacement of the robot TCP 

and monitor the process forces. In order to transfer these solutions into an industrial 
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environment, new strategies with focus on high productivity rate are required. In particular, 

the process down time for the initial set-up, the cost of equipment used for data collection, 

their intrusive nature and the time required for obtaining the training data when ML models 

are all factors to consider in the development of a monitoring system. There is therefore an 

opportunity for the work conducted here to design an industrial-friendly IMS that takes into 

account the above issues of current solutions. 

The IMS for machining processes, on the other side, is considered a mature research area, 

with a large number of published literature over the last 25 years, mainly focused on tool 

condition monitoring. This has permitted researches to identify effective signal processing 

methods and ML techniques to obtain accurate predictions of several process KPIs. Despite 

its popularity in conventional machining processes, very few applications of process 

monitoring systems in robotic machining context were found. This is because the IMS 

research was concerned with other factors that influence the quality of the products (tool 

wear and breakage, machine condition, fault diagnosis, chatter analysis), which differ from 

those of robotic machining discussed above. In fact, process variables, such as the actual 

depth of cut, feed rate and cutting tool trajectory present much lower amount of uncertainty 

(deviations from the nominal values) in conventional machining compared to the robotic 

case. Consequently, their influence in the quality of the workpiece is considered negligible 

due to the higher stiffness and tool positional accuracy of the CNC machine tools. 

While most of the reviewed IMS research focused on tool condition monitoring, fault 

diagnosis, surface roughness and chatter analysis, this work investigates the use of intelligent 

systems in monitoring of other process variables (depth of cut, tool trajectory) which are 

subject to variations during robotic machining. In particular, the proposed method integrates 

the concepts of IMS such as signal processing, feature extraction and ML techniques into the 

robotic machining context, addressing therefore the current gap in the number of 

applications that combine these two research areas. 

Unlike previous works, this thesis focus on the effects of the robotic structure into the 

manufacturing process, considering the robots performing the operation as an additional 

source of error that has a major influence to the overall process performance, resulting in 

imperfections of the finished product. Therefore, if the errors introduced by the robotic 

structure can somehow be quantified in terms of deviations of the process response variable, 

then applying an IMS that provides in-process predictions of the amount of such errors, can 
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drive corrective actions (when possible) to ensure the quality of the final product is within 

the process tolerances.  

The main focus of this work is to provide a means of improving the performance of a robotic 

machining process by the use of in-process monitoring of key process variables which directly 

influence the quality of the machined part. The proposed solution designs an IMS that uses 

sensor signals collected during machining to predict the amount of errors introduced into the 

manufacturing process in terms of imperfections of the finish product (i.e. variations from 

the nominal values).  

2.4 Literature Review Summary 

This chapter presented and discussed the latest research developments in the fields of 

robotic machining technology and intelligent monitoring of machining processes based on 

supervised learning approaches. 

In terms of robotic machining literature, the advantages (potentiality) as well as the 

limitations (challenges) of this new emerging technology were identified. Several 

publications agreed in the fact that the extra flexibility and the lower costs of the robots are 

the main drives to apply them in manufacturing processes. However, a number of challenges 

needed to be addressed by current research, with the two most serious being the robot’s 

limited stiffness and low positional accuracy. The main technical improvements of robotic 

machining technology included the design of robotic structures with higher stiffness and 

better positional accuracy, evolution of CAD/CAM tools for robotic process simulation and 

the integration of software packages for robot programming. In terms of the research 

developments, the main categories included robot calibration and joint stiffness 

identification under non-kinematic errors, creation of a stiffness map for robot posture 

optimisation, chatter avoidance methods and compensation strategies for cutting tool 

deflection. This last research category was discussed in more detail presenting the 

publications with focus on ML approaches, relevant to this thesis.  

In terms of process monitoring research, all elements of IMS used in conventional machining 

operations were described in detail. The discussion started with the review of the sensory 

systems, typically applied to gather information during the machining process. A variety of 

sensor types was used for monitoring purposes including the spindle power and current 

sensors, dynamometers for measuring the cutting tool forces, accelerometers for workpiece 
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and tool vibration and the AE sensors. The majority of the researchers preferred to apply 

multiple-sensor systems in order to get different signals about the same process. The signal 

processing scheme was also reviewed. Common operations on the sensory data included 

digital filtering, signal segmentation and the domain transformation. Signal analysis in the 

time, frequency, joint time-frequency and wavelet domain was usually performed to extract 

several features describing the process. Another important aspect of the review conducted 

in this study was the investigation of the feature selection problem. Methods for the 

identification of the most relevant features as well as the criterions used to assess the feature 

relevance were discussed. Feature selection methods are typically applied in pattern 

recognition tasks in order to reduce the feature (input) space. However, the integration of 

such methods in the monitoring system was investigated in this work. Using fewer features 

to describe the process would lead to the creation of simpler models that are faster to train 

and therefore suitable for real-time operations. Different techniques, borrowed from the ML 

research were presented and discussed in order to understand how the process models were 

built and how their generalisation performance was assessed. Finally, the chapter concluded 

with an analysis of the reviewed material, highlighting the research gap opportunity for the 

work conducted by this study.  
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3 CASE STUDY: ROBOTIC COUNTERSINKING PROCESS 

This chapter presents the details of the case study used for the implementation of the IMS 

proposed by this work. It starts with an introduction of the robotic countersinking technology 

and a description of all the components of the robotic cell in Section 3.1. Then, further details 

on the process steps required to perform the specified machining operation are given in 

Section 3.2. Finally, the countersinking metrology and the current limits of the process are 

discussed in Section 3.3. 

3.1 Robotic Cell Components 

In this work, sensor data collected during a robotic countersinking process have been 

analysed and used as a case study for the implementation of the proposed monitoring 

system. In particular, the robotic cell consisted of two industrial articulated robots that work 

together to countersink previously drilled holes in composite aircraft components. The 

technology itself, including the cell components and process steps, was developed by the 

Advanced Manufacturing Research Centre (AMRC), The University of Sheffield as part of a 

research project for BAE Systems [126], led by the AMRC in collaboration with KUKA System 

UK. The output of this project was a full scale production demonstrator. A similar robotic cell, 

completely functional for production is currently installed at BAE Systems in the UK. 

The robotic cell located at the AMRC was made available during all the experimental work 

required for this study. A close up view of the cell is shown in Figure 3.1. It consisted of two 

KUKA robots: a large KR360 (master robot) with countersinking end-effector, illustrated on 

the left side of Figure 3.1 and a (relatively) smaller KR180 (slave robot) with anvil end-effector 

to react process loads, located on the right side of Figure 3.1. Both robots used Kuka KRC2 

controllers and ran RoboTeam software to facilitate the co-operation functionality of the cell. 

The end-effectors were controlled by a central Siemens Programmable Logic Controller (PLC) 

system. The objective of the cell was to automatically countersink aircraft panels, made of 

Carbon Fibre Reinforced Polymers (CFRP), which had been previously drilled on a high 

precision machine tool. 
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Figure 3.1 Close up view of the Countersinking Robotic Cell (after [126]). 

The overall countersinking process flow could be briefly described as follows: both robots 

moved in the vicinity of a pre-drilled hole and precisely located over it; the slave advanced 

slowly towards the panel until contact was made and then stopped; the master activated an 

air-driven Pressure Foot (PF) installed at the end-effector, clamped the panel and then the 

cutting commenced. A schematic diagram of the process is presented in Figure 3.2. 

 

Figure 3.2 Schematic Diagram of Robotic Countersinking Process. 

The diagram illustrates four snapshots of particular interest during the cutting cycle. Figure 

3.2a shows the robots’ waiting positions: both robots are located over a hole and they are 

either about to clamp the panel and start cutting or they have just machined the hole and 
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then unclamped the panel. In Figure 3.2b is depicted the moment when the PF clamps the 

panel while the slave robot maintains contact from the other side. The spindle is still in its 

home position. As will be clear later in Chapter 5, this moment is the starting position for the 

signal acquisition. Figure 3.2c presents the moment when the tool tip enters the hole and the 

cutting elements start removing material from the panel, i.e. start of the cutting process. 

Finally, in Figure 3.2d is illustrated the moment when the maximum countersink depth is 

reached and the spindle is about to retrieve to the home position. For the particular problem 

considered in this study (ref. to Section 4.1), this depth level defines the process output 

variable and, therefore, the performance of the whole process is measured in terms of the 

depth variation from the nominal target value. The objective is to maintain these variations 

to a minimum respecting the process tolerances. 

The two robots’ end-effectors were specifically designed by the AMRC to enable the robotic 

cell to achieve the required process performance. Therefore, a number of different 

components had been installed and then integrated into the overall process controller with 

the intention to improve the robots’ positional accuracy during machining. 

3.1.1 Master Robot End-Effector 

The end-effector of the master robot is shown in Figure 3.3. It was a multifunctional drilling 

head equipped with various hardware, sensors and actuators, which allowed the robot to 

perform the machining process. The main components included (see the labels in the figure): 

(1) a clamping unit for system stabilisation, (2) a spindle drive unit, (3) a vision guidance 

system and (4) an inspection unit. These are further detailed in the following sub-sections. 

 
Figure 3.3 End-effector of the Master robot (both sides). 
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3.1.2 Clamping Unit 

The clamping unit consisted of a PF with two air-driven rams as shown in Figure 3.4. It was 

used to provide precise pressure to the panel before the cutting commenced, which ensured 

that the relative position of the PF with respect to the panel remained constant during cutting 

(minimal panel movement). In addition, to react the process load, the slave robot also 

provided a constant force to the other side of the panel, acting as an anvil and ensuring that 

the panel stayed in position. This helped to increase the overall stiffness of the robots and 

stabilise the process since the errors in robot positioning due to the cutting forces were kept 

at minimum. A Micro-Epsilon laser displacement sensor with a precision of 3 𝜇𝜇𝜇𝜇 and a travel 

distance of 50 𝑚𝑚𝑚𝑚 was installed in proximity of the PF to measure the displacement of PF 

when it touches the panel. The value was then sent to the spindle drive controller to specify 

the target depth of the process in order to obtain the desired depth of cut. 

 

Figure 3.4 Clamping Unit: Pressure Foot (PF) and Micro-Epsilon Laser sensor. 

3.1.3 Cutting Unit 

The cutting unit handled the countersinking work. It consisted of a Precise spindle (with 

HSK32 spindle interface), a lead-screw driven feed drive and a 2-flute Exactaform cutting tool. 

The feed displacement was controlled by a Heidenhain glass scale encoder with an accuracy 

of less than 0.01 𝑚𝑚𝑚𝑚. The structure is shown in Figure 3.5. 
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Figure 3.5 Cutting Unit: Feed Drive, Spindle, Cutting Tool and Heidenhain Encoder. 

3.1.4 Lucana Aero Vision System 

A Lucana Aero vision system was applied for precise localisation of the panel’s pre-drilled 

holes in the Cartesian coordinate system. The system used two laser projections as a 

triangulation sensor for measurement of the surface normality. A schematic diagram of the 

localisation method of the Lucana Aero sensor is shown Figure 3.6. The two red crossed lines 

are the laser projections used to calculate the surface normality. 

 

Figure 3.6 Lucana Aero Diagram. 

Mounted inside the PF body in the proximity of the cutting tool, the camera guided the robot 

to precisely normalise to the surface of the panel and accurately find the centre of the hole 
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for positioning. Figure 3.7 shows the camera mounting position, a snapshot of the software 

output during the localisation procedure and the panel with 44 pre-drilled holes. 

 

Figure 3.7 Lucana Aero Vision System, Hole localisation example and Panel with 44 holes. 

After normalising over the hole, the camera identified the centre of the circle as shown in 

the figure (top left corner), and then it adjusted the robots’ position before starting cutting. 

The panels used during the experiments were Carbon Fibre Reinforced Polymers (CFRP) of 

dimensions 30x21x7mm with 44 pre-drilled holes distributed in a regular rectangular grid as 

illustrated in the figure (bottom left corner). Prior to the experiments, all the panels were 

paint in white in order to facilitate the vision analysis. 

3.1.5 Inspection Unit 

The inspection unit, shown in Figure 3.8, consisted of a Cognex camera with telecentric 

lenses. Telecentric lenses produce images with the same apparent size of the objects 

regardless of their distance from the camera. This property was particularly useful for 

inspection of the true countersink depth at the end of the process. It allowed for accurate 

measurements of the size of the machined hole and countersink maximum diameters, which, 

assuming a constant chamfer angle, could then be used to compute the countersink depth. 
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Figure 3.8 Inspection Unit: Cognex Camera with Telecentric Lenses. 

A pivot drive was used to align the camera with the hole and take an image. It switched 

between the tool and camera position depending on the current step of the process: tool for 

cutting and camera for inspection. This functionality is shown in Figure 3.9. 

 

Figure 3.9 Tool and Camera positions for the inspection unit. 

Note that the camera was attached to the spindle and, once aligned with the hole, the feed 

drive moved it towards the panel to take the image. This image was then processed to 

compute the hole diameter, providing therefore a direct measurement of the process output 

(ref. to Section 3.3 for further details). 
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3.1.6 Slave Robot End-Effector 

As previously mentioned, the role of the slave robot was to react the process load and 

provide the required support to hold the panel in position during machining. The use of two 

robots, and, in particular, the application of the clamping system, allowed working parts with 

different sizes and shapes (greater flexibility), without paying for expensive holding fixtures 

(lower costs). Therefore, the robotic cell could accommodate most of the aircraft parts that 

typically consist of large panels with curved surfaces.  

The end-effector of the slave robot is shown in Figure 3.10. Like the master, it had various 

components installed during the development phase, but most of which were not currently 

in use. The main units of the current functionality included a Kistler load cell that was used 

to detect the panel’s contacting force and a swarf extraction unit. 

 

Figure 3.10 End-effector of the Slave robot with Kistler Load Cell. 

The Kistler sensor was used to sense when the robot touched the panel and it sent a stop 

signal to the robot controller, which then ensured the robot brakes were activated during 

the whole cutting process. 

3.1.7 Swarf Extraction Units 

Both robots were equipped with extraction units in order to effectively remove the excessive 

dust and swarf produced during cutting. This was particularly important for the inspection 

step, since the quantity of swarf could seriously compromise the image quality and lead to 

wrong camera measurements. Figure 3.11 indicates the position of both extractors.  
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Figure 3.11 Swarf Extraction Units for Master and Slave robot. 

Note that the master’s extractor tube passes into a cavity through the PF body to access the 

cutting area close to the tool tip. 

3.2 Machining Process Steps 

This section presents a detailed description of all the steps involved in the machining process. 

These steps were accurately designed by the AMRC following extensive trials during the 

development of the robotic cell. The experimental work conducted here focused on 

improving the current process performance without causing any major modifications of the 

countersinking process itself, consequently the original settings were preserved. 

The process steps of the above countersinking robotic cell are as follows: 

1. Both robots approach a pre-drilled hole (from either side). 

2. Lucana Aero sensor normalises over the hole. 

3. Lucana Aero roughly locates the hole and guides the Master’s end-effector over it 

adjusting along X and Y direction; Slave robot follows Master movements and gets in 

position (from the other side). 

4. Simultaneously: 

a. Lucana Aero sensor adjusts Master X, Y, Z position and normality to tight tolerance. 

b. Slave robot moves towards panel until Kistler load cell detects contact and stops. 

5. Slave is stopped; Master fires the PF (air rams move forward) to pre-defined force to 

contact the panel. 
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6. Spindle (kept to cutting speed all the time) is feed towards the surface, stopping at a 

set distance before it (based on PF movement forward, measured previously by Micro-

Epsilon laser). 

7. Spindle moves to countersink depth, as defined by the program, computed from PF 

movement (recorded before the spindle moved forward) and the surface curvature 

(where appropriate/provided by Lucana Aero sensor). 

8. Spindle advances at a set feed rate (however, due to cutting forces, the feed rate is 

observed to vary from the nominal value). 

9. Spindle waits at depth for a pre-defined dwell period. 

10. Spindle withdraws to home position. 

11. Master robot unclamps (air rams withdraw). 

12. Slave robot retreats from panel. 

13. Process moves to the next hole. 

All the above steps are repeated for each hole of the panel (44 in total in the experiments 

conducted here). The variables of the process are categorised as follows: 

• Controllable input variables: Target depth specified to the spindle feed drive. 

• Uncontrollable variables (measured): Direct measurement of the countersink depth 

(by camera or manual inspection). 

• Uncontrollable variables (not measured): Tool wear, assumed negligible. 

• Constant input variables: Process parameters such as the cutting speed, feed rate, 

dwell time and PF force. 

The following two outputs are provided by the process: 

• In-process responses: Sensor signals collected during machining (monitoring system). 

• Post-process responses: Diameter of the machined hole (inspection unit). 

With reference to the above process variables, this work will exploit the experimental space 

defined by the controllable variable (target depth) to train process models that can 

accurately and robustly predict the post-process responses (countersink depths) from the 

data obtained by the in-process responses (sensor signals). Having the prediction of the 

actual countersink depth available at the end of the cutting process, would reduce or avoid 

completely the need for post-process quality inspection (manual or automatic), saving 

valuable time. 
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3.3 Countersinking Metrology 

The main output variable of the above countersinking process (i.e. the process KPI) is the 

final depth value obtained in correspondence of the maximum displacement of the spindle 

towards the surface of the panel, just before it retrieves back in the home position. This value 

is commonly referred to as the countersink Depth-of-Cut (DoC), as illustrated in Figure 3.12. 

 

Figure 3.12 Countersink Depth-of-Cut (DoC) illustration. 

In this work, two different ways to measure the DoC values of a finished panel were 

considered. The first involved a manual inspection at the end of the process using specific 

hardware (countersink gauge) to measure and then record the DoC value of every single hole. 

This method is considered to be the traditional measurement approach for this type of 

applications because it is both simple and intuitive, and, most importantly, it allows the 

machining process to complete with shorter cycle times (no further actions from the robots 

are required). On the other hand, when the number of holes to inspect is large, the manual 

inspection can become a long and tiring process with higher probability of human errors. A 

limitation of this method for the work conducted here was that it couldn’t be applied online 

since the panel needed to be physically removed from the fixture in order to take the 

measurements.  

The second method involved the inspection unit presented in Section 3.1.5, which used the 

Cognex camera to take images of the surface of the panel once the cutting process had 

finished. Note that the camera didn’t measure directly the countersink DoC, but it provided 

an image of the machined hole, which was then processed to compute the DoC value by the 

following formula:  
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 𝐷𝐷𝐷𝐷𝐷𝐷 = (𝑅𝑅 − 𝑟𝑟) ∗ tan(900 − 𝛼𝛼 2⁄ ) (3.1) 

Where 𝑅𝑅 and 𝑟𝑟 are the outer and inner radii of the machined hole, respectively, and 𝛼𝛼 is the 

cutting tool angle (in degrees), as indicated in Figure 3.13. 

 

Figure 3.13 Diagram of the Cutting Tool and a machined Hole. 

The angle 𝛼𝛼  is a characteristic of the cutting tool and it can be retrieved from the tool 

drawing. The tool used for all the experiments performed during this work had an angle 𝛼𝛼 =

100° with a tolerance on the angle of 0.5°. The inner radius 𝑟𝑟 was also known: the size of the 

pre-drilled holes was 6.35 mm with 5 µm of tolerance, therefore their radius was  𝑟𝑟 =

3.175 𝑚𝑚𝑚𝑚. The outer radius 𝑅𝑅 was obtained by the camera image taken at the end of the 

cutting cycle for each hole individually. A snapshot of the outcome from the camera software 

is shown in Figure 3.14. 

 

Figure 3.14 Snapshot of Cognex camera inspection. 

The software searches the best circle fit for the outer perimeter of the hole (the large yellow 

circle shown in the figure) and computes its radius. The red marks identify the area of the 

search: for the outer perimeter the software searches the area between the medium and the 
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large red circles. This method was accurate (with maximum calibration error of 0.036 mm), 

provided fast measurements and could be implemented online for automated inspection of 

the holes, however, it involved adding a few extra steps in the process that inevitably 

increased the cycle time. These extra inspection steps were added in between step 11 and 

12 of the list presented in Section 3.2 (ref. to Figure 3.9 for the inspection unit): 

11. Master robot unclamps (air rams withdraw). 

a. Pivot drive switches to camera position. 

b. Spindle (and camera) advances towards the panel and an image is taken. 

c. Spindle retrieves back to the home position. 

d. Pivot drive switches to tool position. 

12. Slave retreats from the panel. 

The total time of the inspection routine for a single hole (i.e. to perform the above steps a-d) 

was approximately 8 seconds that were added to the overall process cycle time. Therefore, 

given the importance of the process throughput in a production environment, this measuring 

method is not practical for panels with a large number of holes (not in the long run at least), 

but it can be applied in research environment for testing purposes. Moreover, to obtain 

accurate measurements, particular attention is required for the camera inspection. Common 

sources of errors include the different lighting conditions, the colour of the surface of the 

panel (contrast between the inner and outer area), the camera settings for the inspection 

routine (circle fit parameters) and the removal of swarf and dust produced during cutting. 

Usually, some preliminary tests and preparation of the panel’s surface are necessary in order 

to find the optimal camera settings and minimise the inspection errors. 

Independently of the measuring method, the current countersinking process presented some 

limitations. During the development phase of the technology by the AMRC, the robotic cell 

has had several preliminary cutting trials performed outside this study, in which different 

cutting methods and cell configurations were tested. The major issue encountered during 

those trials was related to the countersink depth of the machined holes. Although the use of 

the clamping system increased the overall process stability and the spindle movement was 

precisely controlled by the Heidenhain encoder (ref. to Figure 3.5), the final DoC values were 

different from the nominal target (i.e. the expected value). In particular, after manual 

inspection at the end of the process, it was found that random holes exceeded the nominal 

depth value very close to the process tolerance of 0.2 𝑚𝑚𝑚𝑚. This means that there was a 

higher risk of scrapping the entire panel: it was sufficient just a single hole with depth over 
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the process tolerance. The reason of this variation was attributed to the movement of the 

slave during machining, which failed to hold in position due to the process load, but further 

investigation was necessary. 

To identify the causes of the depth variation, it was proposed the installation of some extra 

sensors for monitoring purposes. This thesis expands the approach further by applying the 

concepts of the IMS as discussed in Section 2.2 of the literature review.  
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4 RESEARCH METHODOLOGY 

This chapter presents the research methodology applied in this work. It first defines the 

robotic countersinking problem in Section 4.1. Then, the approach proposed by this thesis is 

presented and discussed in Section 4.2. The requirements of the monitoring system are 

outlined in Section 4.3, with particular focus on its practical application in a production 

environment. Finally, the system design considerations for the fulfilment of those 

requirements are discussed in Section 4.4. 

4.1 Robotic Countersinking Problem 

In order to understand the complexity of the countersinking process described in Chapter 3, 

it is useful to highlight some aspects of the technical challenges that inevitably introduce 

errors (variations) in the process response variable (i.e. the countersink depth). In the 

experiments conducted by this work, these variations were observed to be in a range of 

±10% of the required depth, which, for targets of more than 2 𝑚𝑚𝑚𝑚, would lead to errors 

over the process tolerance. The main technical challenges are presented below: 

• Despite the application of the PF to react the process load, the low static and dynamic 

stiffness of the robotic structure still has a major influence in machining holes with 

countersink depths that vary from the specified target.  

• The complexity of the system is further increased due to the fact that the two robots 

collaborate to dynamically hold the panel in place during cutting (the panel fixture 

compensates just for the gravity forces). Unlike the Master that uses the PF to clamp 

the panel, the Slave robot relies on its structure stiffness to react the process load. 

• The robot position in X and Y axis is not a cause of concern due to the high accuracy of 

the Lucana Aero camera in the localisation of the hole. In contrast, the Z position (along 

the feed direction) is computed from the PF distance measurement performed by the 

micro-epsilon laser (ref. to Figure 3.4) before the cutting commences. Therefore, the 

spindle Z movement is subject to measurement errors and/or any displacement of the 

panel during the cutting process (i.e. after the PF distance was taken). 

• The spindle movement towards the panel is controlled by the feed drive with high 

precision, however, as illustrated in Figure 3.7, the fixture of the panel does not 

completely isolate the panel movement; it relies in the slave robot to contrast the 
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machining forces. This can introduce small variations of the panel surface along the Z 

direction as the tool progresses, which are not taken into account by the spindle drive 

controller, resulting in errors of the obtained countersink depth. 

The case study problem considered in this work consists of developing a monitoring system 

based on data-driven process models (ML approach) that can: 

1. map the sensor signals (input variables) to the countersink depth variations (output 

variables), providing therefore an in-process output prediction; 

2. devise a method to keep these errors at minimum and within the specified tolerance 

of ± 0.2 𝑚𝑚𝑚𝑚. 

Given the extra complexity that two robots add to the manufacturing process, a suitable 

approach that considers the overall effect of several sources of errors in the process output 

variable is necessary. In this work, a probabilistic framework is proposed, which naturally 

deals with uncertainties associated with the input data (sensor signals) and output variables 

(process responses) of a ML model. 

It is also important to note that a supervised learning approach would require a relatively 

high number of training data (i.e. multiple runs of the process) in order to obtain accurate 

predictions of the process output variable. Moreover, since this data needs to be a 

representative example of the process behaviour, a relatively large variety of cutting trials 

(from under- to over-target holes, as well as normal holes) is necessary. This would require a 

dedicated experiment for collection of all the training data during which the robotic cell could 

not be operated for normal production, wasting valuable time and material. Consequently, 

obtaining the necessary data for training is one of the main challenges that supervised 

learning approaches face in industry, especially in manufacturing processes of high value 

aerospace components.  

In this work, the problem of collecting the training data is addressed by introducing a direct 

measurement (inspection camera) to obtain the output variable while operating as normal, 

without interruption of the process. As previously mentioned, the in-process inspection 

routine adds extra time to the process cycle, but it also allows to expand the training set as 

more cuts are performed. Then eventually, the model will collect enough data to provide 

accurate depth predictions and, when this happens, the inspection step will not be necessary 

any more. Further details of the approach are given in the next section. 
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4.2 Proposed Approach 

As previously noted, a typical manufacturing process consists of a machining (material 

removal) process followed by an inspection system for the quality checks. Usually these 

checks are performed at the end of the process and they may also involve removing the 

workpiece from the machine to a dedicated inspection area. In the case study considered 

here, the inspection step was included as part of the overall process cycle in order to obtain 

a direct measurement of the countersink depth as soon as the hole was machined. The 

inspection result was then compared with the depth target previously specified to the spindle 

drive controller and the depth error was calculated (i.e. the process output variable). With 

reference to Section 3.2, the process input variables consisted of all the machining 

parameters (constant variables) such as the cutting speed, feed rate, dwell time, PF force, 

etc., as well as the controllable variable of the target depth that defined the experimental 

space for the supervised learning approach. Different depth targets would produce different 

levels of cuts with a multitude of countersink depths and sensor signals, providing therefore 

the necessary data variability to train the process model.  

A schematic diagram of a monitoring system based on a supervised learning approach for 

prediction of the countersink depth is shown in Figure 4.1. Figure 4.1a illustrates the system 

during the training phase, while new pairs of sensor signals (input variables) and the 

corresponding depth error value (output variable) are collected. Figure 4.1b shows how the 

overall manufacturing process is different, once the system has collected enough data 

(trained model) and it is ready to produce accurate predictions. 

The necessary data variability is ensured by adding a programmatically controlled 

disturbance variable to the process target depth. From the machining process perspective, 

this disturbance acts in a similar way as the robotic structure, causing variations of the 

process output variable that result in workpiece imperfections. For instance, selecting the 

disturbance value in a range of data up to ± 25% of the target depth would simulate the 

process behaviour in extreme conditions, where the robotic structure presents very low 

stiffness and positional accuracy. Hence the name in the figure as robotic system disturbance. 

It is important to note that in addition to the above robotic disturbance that is introduced 

programmatically for greater data variability, there are other sources of errors in the process 

output variable, as explained in Section 4.1. These include the clamping process, the 

measurement errors of the PF distance and the inspection procedure, the panel movement 
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during cutting, etc. However, their overall contribution in the final countersink depth is 

relatively small in comparison with the robotic disturbance, which is considered to be the 

main source of errors. Moreover, since this disturbance represents the influence of the 

robotic structure in the process output variable, it will depend on the particular robot joints’ 

configuration. In the considered case study, the robots change their configuration every time 

a new hole of the panel is located, i.e. for every iteration of the process. 

 

Figure 4.1 Schematic diagram of a supervised learning approach: a) process model during 
training and b) after the training phase has finished (trained model). 

The target specified at the input of the overall manufacturing process is the desired (nominal) 

value of the process depth of cut. The proposed monitoring system is represented by the 

process model shown in the figure. It takes an input from the sensor signals collected during 

the cutting (i.e. the in-process response variables) and provides as an output a prediction of 

the inspection result (i.e. the post-process response variable). A supervised learning method 

is applied, therefore training instances are required to map the underlying relationship. 

During the training phase (ref. to Figure 4.1a) the model builds a dataset with the acquired 

sensor data (signal features) and the corresponding inspection measurement (output 

variable). A prediction is then provided given the current dataset and it is compared with the 

true measurement value. The accuracy of the model is assessed in terms of the difference 
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between the true and the predicted output value, called the prediction error. The model is 

considered trained when enough data has been collected for the prediction error to be within 

acceptable levels. A trained model is then ready to be applied for accurate prediction of the 

inspection measurement, as illustrated in Figure 4.1b. This ability of indirectly measuring the 

performance of the process without any inspection step or process interruptions can 

potentially reduce the overall process operational cycle time, increasing productivity. 

Moreover, the additional information on the quality of the final product provided by the 

sensors, could be used to support the operator in making appropriate corrective actions 

should they be required. 

Note that, unlike the solutions reviewed in Section 2.1.2, the proposed method does not 

attempt to deal directly with the technical challenges of the robotic machining technology, 

but, its main focus is to provide in-process feedback of the quality of the machined part, 

based exclusively on sensory information acquired during normal operation of the process. 

Provided that the system has collected enough training data, then the operator can rely on 

the prediction output of the trained model to decide whether the inspection step is 

necessary. For instance, if the model predicts small variations from the nominal values 

indicating an acceptable part quality (with a certain level of prediction accuracy defined 

during the training phase), then there is no need for the inspection step to take place. The 

process can continue without the direct measurement, saving valuable time. The inspection 

step would be required only in the cases when the in-process prediction indicates not 

satisfactory results. Therefore, this method represents a valid solution for the production 

environment in the long run, reducing the process cycle time every time the inspection step 

is not used due to the accurate model prediction. 

The approach presented in Figure 4.1 has however the following limitations: 

• An experiment is required to train the monitoring system. The sensor signals are 

mapped to the corresponding process KPI (output variable) through a number of 

examples (i.e. iterations of the process), preferably in different conditions for greater 

variability of the data. As discussed previously, this can be obtained by means of 

controlling the target specified as input to the machining process. In particular, to 

modify the target, one can add a programmatically controlled disturbance variable 

that simulates the various ranges of robot operation resulting in different error levels. 

• The predicted output is computed from the sensor signals collected in the current 

process iteration. This means that a prediction is only available once the cutting 
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process is completed. Depending on the type of process, from one iteration to the 

next, the robot might change its configuration modifying the disturbance added to the 

process, accordingly. Therefore, considering a generic case, the error observed at the 

end of the current process iteration is unrelated to the error of the next iteration. This 

means that from the process point of view, the disturbance value is not known at the 

beginning of the current iteration. 

• An unknown (and unrelated) robotic disturbance prevents the monitoring system to 

make any corrections to the process target input of the current iteration, based on the 

errors observed in the previous iterations. The target correction strategy would be 

possible if an error map of the robot’s operational range was available, following a 

similar approach to those reviewed in the literature. However, this would be a solution 

limited to the specific robot, performing a specific machining process and it would also 

require a large number of training data to build an accurate error map. 

In order to overcome the above limitations, this thesis proposes to split the process iteration 

of the method presented in Figure 4.1 in two steps using different target inputs for the 

machining operation, namely Target 1 and Target 2 as shown in Figure 4.2. In particular, the 

first step executes one process cycle to a semi-finish level specified by Target 1. An output 

measurement (Out 1) is obtained by the inspection system at the end of Step 1. Then, the 

repeats the same operation is repeated for Step 2 to the finish level specified by Target 2. 

However, this time, the actual input target (In 2) of the machining process is adjusted by the 

previous step output (Out 1). The final inspection of the finished product provides the output 

of the overall manufacturing process, completing therefore one full process iteration. A 

schematic diagram of this multi-step process method is presented in Figure 4.2, following the 

same notation as before. 

 

Figure 4.2 Schematic diagram of the multi-step process method proposed by this study. 
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Similarly, the disturbance that represents the errors introduced by the robotic structure into 

the machining process is added to both Target 1 and Target 2. Considering that the robot 

joints’ configuration does not significantly change during one full iteration of the process 

(starting with Step 1 and then completing with Step 2), the same disturbance value is used 

for both process steps. It is important to understand that this disturbance variable is 

programmatically introduced in order to obtain the necessary data variability for the training 

phase by simulating extreme input conditions. The machining process will contribute to 

further errors of the output variable as result of other error sources, not necessarily coming 

from the robotic structure, which will depend on the particular application. 

Note that in Figure 4.2, two process models (Model 1 and Model 2) are shown, one for each 

step, even though they refer to exactly the same physical machining process. This was 

included purely for notation purposes in order to distinguish the different input settings of 

the model between the two process steps. Therefore, the sensor signals acquired during Step 

1 are used to predict the inspection output of Step 1 and similarly for Step 2. Note that due 

to the different initial conditions of the workpiece between the two steps (Step 2 starts with 

the part already machined to a semi-finish level), the sensor signals would have as well a 

slightly different signature. 

With reference to Figure 4.2, the actual input target used for Process Step 1 is: 

 𝐼𝐼𝐼𝐼1 = 𝑇𝑇1 + 𝑅𝑅𝑅𝑅 (4.1) 

Where 𝑇𝑇1 is the desired (nominal) target of Process Step 1 (at semi-finish level) and 𝑅𝑅𝑅𝑅 is the 

programmatically controlled robotic disturbance. At the end of Step 1, the inspection system 

will provide the following measurement: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1 = 𝐼𝐼𝐼𝐼1 +𝑁𝑁𝑃𝑃1  (4.2) 

Where 𝑁𝑁𝑃𝑃1  represents the errors added to the output variable by the machining process 

when operating to a semi-finish level (i.e. the process noise). The difference between the 

inspection measurement and the nominal target defines the process output variable, which 

for Step 1 is obtained by substituting Eq. (4.1) into Eq. (4.2), as follows: 

 𝑂𝑂𝑂𝑂𝑂𝑂1 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1 − 𝑇𝑇1 =  𝑅𝑅𝑅𝑅 + 𝑁𝑁𝑃𝑃1  (4.3) 
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Therefore, the output of Step 1 is the total error introduced to the process response variable 

by two sources: the robotic disturbance (major contribution, manually introduced) and the 

machining process itself (random contribution of the process noise).  

Following the diagram of Figure 4.2 for the second step, the actual input target of Process 

Step 2 can be expressed as: 

 𝐼𝐼𝐼𝐼2 = 𝑇𝑇2 − 𝑂𝑂𝑂𝑂𝑂𝑂1 + 𝑅𝑅𝑅𝑅 (4.4) 

Where 𝑇𝑇2 is the desired final target for the overall machining process (at finish level). This is 

also the nominal target originally specified in the previous approach when using one single 

process step (ref. to Figure 4.1). The inspection measurement at the end of Step 2 would be: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 = 𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑃𝑃2 (4.5) 

Where 𝑁𝑁𝑃𝑃2 represents the process noise added to the output variable when operating to a 

finish level. Then, substituting Eq. (4.3) and Eq. (4.4) into Eq. (4.5) gives the following 

expression for the final inspection measurement: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 = 𝑇𝑇2 + (𝑁𝑁𝑃𝑃2 − 𝑁𝑁𝑃𝑃1) (4.6) 

Eq. (4.6) represents the output variable of the whole process iteration (including both steps 

of the process) completed at the desired final level specified by 𝑇𝑇2 . Note that the error 

introduced to the response variable is dependent on the difference between the errors 

introduces by the machining process in Step 2 and Step 1. Consequently, if these two errors 

are assumed to be of a comparable amount (within negligible differences), then the final 

inspection measurement would be approximately equal to the desired final target, i.e. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 ≅ 𝑇𝑇2. This assumption may seem too restrictive, however, one can select Target 1 

and Target 2 appropriately in order to obtain two process steps as similar as possible in terms 

of the forces involved and material removed from the workpiece, which will then help to 

make the assumption valid. 

In the case study considered here, the errors in the final depth value coming from the 

machining forces were minimised by the use of the PF. Although cutting at different levels of 

target depth would produce different levels of process load, the PF force magnitude was 

much higher than the force differences between the two cuts. Therefore, the errors observed 
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in the final depth value would primarily depend on the clamping forces and the position of 

the current hole (i.e. the robot joints’ configuration). This means that when cutting the same 

hole in different levels of depth, the errors that the process introduces in both cuts will be of 

a comparable amount, given that the robot configuration remains unchanged during the 

whole process iteration. In contrast, from one process iteration to the next, the robot 

changes its configuration to locate the new hole, introducing therefore a different depth 

error as result of the forces applied by the two robots when clamping the panel. 

Since the machining operation is not performed to the finish level in one go, the monitoring 

system has now an opportunity to compensate for the robot’s errors observed during Step 1 

(at semi-finish level). In particular, the target specified as an input to the process in Step 2 is 

adjusted by the previous step’s error (directly measured or predicted by the model) in order 

to ensure the desired finish level is obtained (ref. to Eq. (4.4)). If control is required in addition 

to monitoring, the system may drive the corrective actions autonomously by specifying the 

corrected target value (of the second step) into the robot controller. 

A key aspect of the proposed solution is the fact that the data necessary for training of the 

process models can be collected while operating as normal, without any interruption or 

process down time. This means that a planned experiment for the training phase is no longer 

needed. Model 1 can be trained by controlling the robotic disturbance variable (𝑅𝑅𝑅𝑅) in order 

to provide the required variability of the data. The input target of Step 2 is adjusted by the 

output of Step 1 (inspection measurement), as shown Eq. (4.4). This means that the data 

variability of Step 1 is transferred to Step 2. Note that due to the target adjustment, Step 2 

will aim to complete the operation at the final desired level (ref. to Eq. (4.6)), ensuring the 

process iteration is still valid. Therefore, the training phase can start from the first iteration 

of the overall manufacturing process using the inspection measurements to collect the data, 

while operating as normal. Once enough data have been collected, the process will use the 

predictions instead of the direct inspection measurements similar to the previous method. 

To summarise, the proposed approach will add value to the overall process in two ways: 

1) Substituting the inspection step with the one-step process option shown in Figure 4.1 

(requires a specifically designed experiment for the training phase). 

2) Correcting the target with the multi-step process option illustrated in Figure 4.2 

(training data are collected while operation is running as normal). 
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The first point will reduce the overall process cycle time once the training phase is completed 

and the system is ready to provide accurate predictions. Moreover, the operator will have 

additional in-process feedback of the quality of the part provided by the process model. 

The second point will exploit the capabilities of the monitoring system further, allowing for 

corrective actions to be included (automatically or manually) as part of the overall process 

cycle. In addition, it avoids a prior experiment or any process interruptions for obtaining the 

necessary training data. 

4.3 System Requirements 

An important aspect of the proposed monitoring system is its ability to be used in a 

production environment. To this end, the following practical requirements need to be 

addressed during the development of the monitoring system: 

I) Hardware suitable for production environment. 

II) In-process data acquisition and signal processing. 

III) Ability to train during normal operation (no interruptions). 

IV) Possibility to substitute inspection step with in-process predictions.  

The first requirement addresses the need for suitable hardware. This means that 

characteristics of the equipment, such as the ease of installation, non-intrusive nature and 

robustness to external disturbances are highly desired. The choice of the sensors will depend 

on the particular process and monitoring scope, however, equipment with minimum 

disruption of the normal operation of the manufacturing process is preferred when possible. 

Moreover, the sensor signals acquired during operation need to be accurate, consistent and 

robust to noise and disturbances introduced from other machines around the shop floor. The 

cost of the equipment is also a key factor to consider. Expensive sensors will increase the 

overall cost of the system, making it less attractive to Small and Medium-size Enterprises 

(SMEs) and limiting its application in production. 

The second requirement outlines the ability of the system for in-process extraction of sensory 

information. In particular, all sensor signals need to be perfectly synchronised (i.e. refer to 

the exact same point in time) despite their origin (sensor type) or sample rate. If signal 

segmentation is required, it should be performed automatically during data acquisition 

(based on previous knowledge of the signals’ signatures) and without intervention of the 

operator. The signal processing and feature extraction steps are also to be performed in an 
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autonomous way, ensuring the sensor information is presented in the correct format for 

further analysis as soon as it is recorded. 

The third requirement defines the ability of the system to collect training data during normal 

operation of the process, minimising the process down time for any scheduled interruptions 

for training purposes. An inspection step that provides a direct measurement of the process 

KPI is necessary for the training data to be collected during operation. Process models are to 

be trained on the current available dataset, which will continuously grow every time a new 

observation (inspection) is made. A selection of most relevant features should be included in 

the training procedure in order to achieve better performances and faster training times as 

the size of the dataset increases. 

The forth requirement refers to the possibility of building process models that can provide 

accurate and reliable predictions of the process KPI, given the current dataset. This would 

make it possible to avoid the use of the inspection step completely, once the process models 

have had enough training data to provide accurate predictions. It is important to note that a 

measure of the confidence of the model in the predicted value is required in order to assess 

the validity of the prediction and the optimal training size. 

4.4 Design Considerations 

In the light of the system requirements outlined in Section 4.3, the implementation steps of 

the monitoring system proposed by this work need to answer to the following questions: 

• What sensor will be installed and why? 

• What signal analysis will be performed? 

• How will the relevant features be selected? 

• What ML technique for creation of the models will be used? 

• How will the models’ confidence be assessed? 

The first question to address is about the selection of a suitable sensor system. The 

monitoring system requires the sensors to be applicable in a production environment. With 

reference to Section 2.2.1 of the literature review, good candidates for this purpose are 

power/current transducers, AE sensors and accelerometers, being both low-cost and non-

intrusive sensor technologies (ref. also to the Table 2.1). They can be typically installed in the 

proximity of the cutting area and often do not require specific modifications of the robot’s 

end-effector. Dynamometers, on the other side, despite the direct force measurements and 
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their popularity in machining process monitoring, are not suitable for the proposed system 

because of their cost (generally more expensive than the other technologies) and highly 

intrusive nature (they need to be integrated into the spindle holder). 

The second question is related to the signal analysis. The system requires in-process data 

acquisition and extraction of sensory information. It is crucial therefore that special attention 

is dedicated to the selection of the hardware used for the data acquisition as well as the 

signal processing scheme (filtering, segmentation and feature extraction). In terms of the 

data acquisition hardware, the system requires robust (industrial standards) acquisition and 

synchronisation capabilities. A suitable choice for this purpose is a central data acquisition 

scheme that can handle signals from different sensor sources with various sample rates, 

ensuring the overall data synchronisation. In terms of the signal processing scheme, the 

system is expected to be applicable in a range of machining processes (with non-standard 

process KPIs), therefore flexibility is a key factor. To this end different filtering techniques as 

well as the signal domain transformations reviewed in Section 2.2.3 should be explored. 

Intuitively, extracting a high number of features will increase the probability of having among 

them those that contain relevant information to the particular process KPI. 

The third question concerns the choice of a suitable feature selection method for the 

proposed monitoring system. This step is required to identify the relevant features (with 

respect to the particular process KPI) among all those extracted during the acquisition. 

Moreover, the feature selection improves the training time of the process models by 

reducing their input space. With reference to Section 2.2.4, possible choices for selection of 

the features consist of filter methods, which are both fast and intuitive, however they do not 

consider the ML algorithm when assessing the feature relevance. A wrapper or embedded 

approach would be more appropriate if the learning method is already decided, since the 

selection of the feature subset is driven by the model prediction accuracy. 

The last two questions are both related to the selection of an appropriate ML technique for 

the creation of process models with accurate predictions of the process KPI. The choice of 

the ML algorithm will depend on the particular learning problem (classification or regression). 

A regression problem represents better the method presented here, since the process KPI is 

likely to be a numeric value. Probabilistic regression methods that naturally deal with 

uncertain inputs and outputs are ideal in this case. Moreover, the Bayesian framework offers 

a measure of the model’s confidence in the predicted value, expressed in terms of the 

predictive covariance (ref. to Section A.1 in the Appendices for further details). This measure 
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can be used to understand whether the model is going far from the learnt state and provide 

new training data should they be needed. 

Before presenting the implementation details of the proposed approach, it is useful to 

understand how such system can improve the performance of the robotic countersinking 

process considered in this work. In particular, improvement of the process performance can 

be achieved by either of the following:  

• Reduce the inspection time of a single hole. 

• Ensure the holes are machined within the limits in the first place. 

The first point refers to the possibility of avoiding the current manual measurement of the 

DoC values at the end of the process. The monitoring system could be applied to learn the 

underlying relationship between the sensory data collected during cutting and the final DoC 

variation. This means that the system can be trained to predict the DoC value at the end of 

the cutting task, providing an immediate feedback of the quality of the hole. The manual 

checks can then be performed only to the panels already identified by the monitoring system 

as ‘not good’. A finished panel is considered to be of good quality if the depth variation values 

of all the machined holes in it are within the process tolerance. 

The second point refers to the possibility of exploiting the capabilities of the monitoring 

system further by using the multi-step process method presented in Section 4.1 (ref. to Figure 

4.2). The target depth of Step 2 (at finish level) can be adjusted by the information collected 

from Step 1 (at semi-finish level) to keep the final DoC within the limits. In other words, the 

system can potentially capture the behaviour of the process during a first cut at semi-finish 

level and then indicate the necessary target corrections for the second cut to reduce the final 

depth variation.  

Furthermore, for this particular case study, the requirements of the monitoring system 

outlined in Section 4.3 can be adapted as below: 

1. Hardware suitable for a production environment. 

• Easy to install and non-intrusive sensors. 

• No major modifications of the cell design and/or process steps.  

• Accurate and robust sensory data in different workshop conditions. 

2. In-process data acquisition and signal processing. 

• Synchronised acquisition of different sensor signals and sampling rates. 
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• Automatic signal segmentation and feature extraction. 

3. Ability to train during the machining process. 

• In-process direct measurement of the DoC value (camera inspection). 

• Dataset should grow online with every new observation. 

• Feature selection step to reduce training time. 

4. Possibility to substitute the camera inspection step. 

• Accurate and reliable depth predictions from sensory information. 

• Assessment of the model’s confidence in the prediction value. 

• Suggestion of target adjustments in real time (according to depth predictions). 

The following chapters will present the implementation steps, experimental work and 

learning methods proposed by this work for the development of a monitoring system to fulfil 

the above requirements. 
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5 EXTRACTING IN-PROCESS INFORMATION 

This chapter presents the implementation details of the techniques applied to extract 

information from the machining process. An experiment was designed with the aim to test 

and validate the capabilities of the monitoring system proposed by this work taking into 

account the requirements discussed in Section 4.3. The details of the experimental setup, 

data acquisition system, signal processing methods and feature extraction techniques are 

discussed in the following sections. 

5.1 Experimental Setup 

In order to test and validate the functionality of the proposed monitoring system in the 

robotic countersinking case study presented in Chapter 3, the following experiment was 

designed as part of this thesis work. The experiment was divided in two phases, which were 

conducted in different times from each other. The first phase involved machining four panels 

of 44 holes each for a total of 176 holes, and, in the second phase, three more panels of 44 

holes each (132 holes) were considered. Overall, seven panels (308 holes) were machined. 

The reason for this division was due to some issues encountered during Phase 1 with one of 

the sensors and the camera inspection routine. During the trials of Phase 1, one of the 

vibration sensors’ cable was damaged and it was temporally disconnected. The sensor cable 

was replaced in time for Phase 2, in which all the sensors were perfectly functional. 

Furthermore, the camera inspection routine (ref. to Figure 3.14 in Section 3.3) presented 

some issues in detecting the hole diameter after the first cut, especially for smaller diameters 

(shallow holes). The reason for this was associated to the low quality of the paint used for 

the panels, which was stripped away from the hole during the cutting process producing dark 

patches around the edges. The surface of the panel was another factor that influenced the 

paint adhesion: the CFRP panels had very different surfaces, which introduced further errors 

to the inspection result. All these issues concerning the inspection routine were taken into 

account when selecting the three panels (P5, P6 and P7) used for Phase 2.  

The purpose of the experiment was to provide the necessary data for the creation of process 

models that can accurately predict the obtained DoC values. The cutting method used in both 

phases of the experiment included two cuts for every single hole, where a direct depth 

measurement form the inspection camera was obtained after each cut. Although this choice 

increased the process cycle time considerably (two inspection routines were added for every 
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hole of the panel), it allowed collection of the actual DoC value after each cut and without 

interruption of the process. These depth values together with the corresponding recorded 

sensor signals were then used for training purposes. 

In particular, the cutting cycle of a single hole followed the multi-step method presented in 

Section 4.2 (ref. to Figure 4.2) and it included the following steps: 

• A first cut was performed to a pre-set (semi-finish) target depth plus an additional 

random perturbation (programmatically controlled) to obtain depth variability. The 

process steps remained the same as described in Section 3.2 up to step 11, when the 

master robot unclamps the panel (PF retreated), after the cut was completed. 

• A direct measurement of the DoC value (semi-finish level) was obtained by the 

inspection camera (ref. to Section 3.3 for the extra inspection steps). 

• Master robot fired the PF again, clamped the panel and performed the second cut to 

a set (finish) target depth adjusted by the error calculated from the previous camera 

measurement, according to the multi-step approach discussed in Section 4.2. The 

process steps from 5 to 11 (ref. to Section 3.2) were repeated for the second cut. Note 

that in between the two cuts both robots remained in position above the hole, thus 

there was no need to locate the hole again through the Lucana Aero sensor. 

• Another direct measurement of the DoC value (finish level) was obtained by the 

inspection camera. 

• Slave robot retreated from the panel and the process moved to the next hole. 

An example of the 44-holes panels before and after countersinking is illustrated in Figure 5.1. 

 

Figure 5.1 Panel with 44 pre-drilled holes used for the experiment: before (left) and after 
(right) countersinking. 
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The direct depth measurement obtained by the inspection camera provided the necessary 

output variable to train the system online, while running the operation as normal. Splitting 

the cutting process in two parts and collecting the sensor signals with the corresponding DoC 

value after each cut, permitted to train a process model for the prediction of two depth 

values:  the semi-finish depth (𝑑𝑑1), referred to as Model 1 and the final depth (𝑑𝑑2), referred 

to as Model 2. As previously noted, Model 1 and Model 2 are not two different models, but 

they represent the different input conditions of the same physical machining process. The 

distinction was introduced for notation purposes to separate the analysis between the two 

steps of the process. Therefore, in the experiment, Model 1 used the sensor data collected 

during the first cut, whereas Model 2 used the data collected during the second cut. 

Moreover, the output error observed at the end of the first cut in terms of the depth variation 

from the nominal semi-finish target was used to adjust the input target of the second cut in 

order to obtain a final DoC value within the ±0.2 𝑚𝑚𝑚𝑚 tolerance. In the experiment described 

here, the semi-finish target was set at 𝑑𝑑1 = 2 𝑚𝑚𝑚𝑚 and the final target at 𝑑𝑑2 = 2.74 𝑚𝑚𝑚𝑚. 

The cutting tool used in the experiment was the same for all the cuts of Phase 1 and 2, starting 

from an almost fresh state at Panel 1. Unfortunately, there was no information available of 

the exact state of the cutting tool in terms of the number of cuts performed to date and, due 

to technical issues with the tool supplier, it was not possible to get a completely fresh tool 

ready for the experiment. At the end of Phase 1 trials, the flutes of the cutting tool were 

visually inspected for any damages or excessive wear and then the tool was carefully cleaned 

up and re-installed for Phase 2 trials. In this experiment, the tool wear was not constantly 

monitored and it was assumed to be negligible. 

The random perturbation added to the depth target was introduced to obtain depth 

variability (deep and shallow holes) during the cuts. This allowed the model to learn how 

small variations of the output variable (the DoC value) were related to the input data (sensor 

signals) collected during cutting. For this experiment the added perturbation was a Gaussian 

𝑁𝑁(𝜇𝜇,𝜎𝜎2) with mean 𝜇𝜇 = 0 and standard deviation 𝜎𝜎 =  0.25. 

In all the cuts performed during the experiment, the final target level was adjusted based on 

the direct camera measurement of the DoC value after the first cut, however, the ultimate 

goal of the monitoring system was to use the depth prediction provided by the trained model 

instead. This would allow the system to avoid the camera inspection step and therefore 

return to the normal process speed.  
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The process parameters were set as follows: spindle speed  4976 𝑅𝑅𝑅𝑅𝑅𝑅; feed rate 298 𝑚𝑚𝑚𝑚/

𝑚𝑚𝑚𝑚𝑚𝑚; dwell time 0.3 𝑠𝑠 and PF force 500 𝑁𝑁. 

5.2 Data Acquisition System 

The data acquisition system was designed taking into account the requirements of the 

proposed monitoring system presented in Section 4.3. In particular, the first two 

requirements outline the specifications of the hardware and software for extraction of the 

process information.  

The hardware used for the experiment was chosen to be easy to install, minimally intrusive 

with the machining process and suitable for production environment. The installation of the 

sensors had to fit into the current design of the robotic cell, not requiring any major 

modifications of the cell’s operation. This requirement made it difficult to find an optimal 

location for mounting the sensors, since the space near to the cutting tool was very limited 

due to all the other components as described in Section 3.1. 

The following sensors were installed on the master robot end-effector: 

• 3x One-axis High Frequency Accelerometers from PCB (type 621B40) 

• 1x Acoustic Emission (AE) sensor from Kistler (type 8152C01) 

• 1x Power Transducer from Caron Engineering (TMAC – Tool Monitoring Adaptive 

Control) 

• 1x Linear Encoder (digital probe) from Sony (type DK50PR5) 

The location of the sensors is illustrated in Figure 5.2. The power sensor is not shown in the 

figure because the transducer was located inside the PLC cabinet. The three phases of power 

cable to the spindle were fed through the device, which then provided an output voltage 

signal proportional to spindle power consumption. This signal was directly wired to the data 

acquisition device. The vibration sensors and the AE sensor had magnetic clamps and they 

could be easily mounted on the metallic surfaces of the spindle holder and the PF. The linear 

encoder was already installed for testing purposes as part of some previous cutting trials 

performed outside the work of this thesis. However, given its intrusive nature, it was not 

included in the production version of the cell currently used at BAE facility. 
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Figure 5.2 Location of the sensors used for the experiment: three one-axis PCB 
accelerometers, a Kistler AE sensor and a Sony probe encoder. 

The first vibration sensor (denoted by VIB1) was located as close as possible to the cutting 

tool with its sensitive axis being aligned to the feed direction (Z axis) in order to detect the 

tool vibration during cutting. The second and the third were installed on the PF body: one 

(VIB2) measured the vibration in the perpendicular direction (X axis) and the other (VIB3) in 

the feed direction (Z axis). The Kistler AE sensor was mounted on the PF as close as possible 

to the cutting area to measure the acoustic emissions generated during the process. The Sony 

probe encoder was installed on the spindle holder to measure the linear displacement of the 

cutting tool towards the surface of the panel. In the experiment this encoder was used as a 

trigger for the acquisition of the other sensor data. The movement of the PF towards the 

panel when it is activated (i.e. just before the start of the cutting process) was easily detected 

by the probe signal. This event was ideal for automatically triggering the acquisition since it 

was repeated for every cut. In case of the production cell where the probe is not installed, 

the vibration signal measured by VIB3 could be used as a trigger instead, since it presented a 

clear spike when the PF touched the panel during clamping. The probe signal was recorded 

in all the cutting trials performed for this experiment, but not used for training purposes 

because this sensor was not available in the production cell and it would have limited the 

application of the proposed monitoring system to a purely laboratory solution. A summary 

of all the sensors selected for the validation experiment is shown in Table 5.1. 
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Table 5.1 Summary of the sensors used for the experiment. 

Sensor Description and 
Manufacturer 

Short 
Name Location Bandwidth Sensitivity 

High Freq. Accelerometer 
(PCB, 621B40, One-axis) VIB1 Spindle Holder 

(Z direction) 1.6 - 30k Hz 10 mV/g 
(+/- 500g scale) 

High Freq. Accelerometer 
(PCB, 621B40, One-axis) VIB2 Pressure Foot  

(X direction) 1.6 - 30k Hz 10 mV/g 
(+/- 500g scale) 

High Freq. Accelerometer 
(PCB, 621B40, One-axis) VIB3 Pressure Foot 

(Z direction) 1.6 - 30k Hz 10 mV/g 
(+/- 500g scale) 

Acoustic Emission (AE) 
(Kistler, 8152C01) AE Pressure Foot 

(cutting area) 50k - 400k Hz 57 dB ref 
1V/(m/s) 

Power Transducer 
(Caron Engineering, TMAC) PWR PLC controller 

(spindle motor) 0 - 50 Hz Min 0.75 W/V 
(1.5 - 67 kW range) 

Linear Encoder (Probe) 
(Sony, DK50PR5) Probe 

Spindle Holder 
(spindle linear 
displacement) 

Counter Freq. 
Max 5 MHz 

Res. 0.5 µm/pulse 
Accuracy 2 µm  
(Range 50 mm) 

All the sensor were connected to a central data acquisition device (compact DAQ) from 

National Instruments (NI cDAQ-9178) and the data was collected and processed using NI 

LabVIEW software. The data acquisition system is shown in Figure 5.3. 

 

Figure 5.3 Data Acquisition System used for the experiment. 

A different NI module designed to measure the specific type of signal at the required 

sampling rate was used for each sensor. The AE sensor was first connected to an AE coupler 

(Kistler 5125C0) designed to filter and process the raw data obtained by the sensor. The 
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coupler had a built-in RMS converter with selectable integration time constant and selectable 

gain. The default values of 1.2 𝑚𝑚𝑚𝑚 for the integration time constant of the RMS converter 

and 10 for the gain were selected in the experiment. The two output signals coming from the 

AE coupler (raw AE and the converted AE-RMS) were acquired through the NI-9223 module, 

which offered a maximum sampling rate of 1 𝑀𝑀𝑀𝑀/𝑠𝑠 for each individual channel. 

The power transducer signal was filtered by means a Low-Pass Filter (LPF) in order to remove 

the unwanted high frequency noise of the raw spindle power data. The filter was realised 

through an RC circuit with 𝑅𝑅 = 22𝑘𝑘Ω and 𝐶𝐶 = 0.1µ𝐹𝐹, cut-off frequency of 𝐹𝐹𝑐𝑐 = 72.4𝐻𝐻𝐻𝐻. The 

two power signals (raw data and the LPF data) were acquired through the NI-9201 module 

that had a maximum sampling rate of 62.5 𝑘𝑘𝑘𝑘/𝑠𝑠  for each individual channel (500 𝑘𝑘𝑘𝑘/𝑠𝑠 

aggregate – 8 channels). 

The three accelerometers were connected directly to the NI-9232 module (one sensor per 

channel), using the BNC cables provided by the manufacturer. Each cable had a length of 10 

m. The module offered a maximum sampling rate of 102 𝑘𝑘𝑘𝑘/𝑠𝑠 for each individual channel. 

The digital signal of the Sony probe (encoder) was acquired through the NI-9401 (digital I/O) 

module, which could measure digital lines up to a maximum switching frequency per channel 

of 9 𝑀𝑀𝑀𝑀𝑀𝑀 for 8 digital input channels. 

The compact DAQ device (NI cDAQ-9178) was connected by an USB cable to a windows PC 

running LabVIEW 2017 with DAQmx software packages installed. This central acquisition unit 

made it possible to set a synchronised start for the sensor data collection and to 

simultaneously acquire several signals of different types and sample rates. 

5.3 Digital Signal Analysis 

This section examines the signals acquired during the cutting tests performed as part of the 

above experiment and presents the processing methods applied to the raw data. Previous 

analysis (not mentioned here) suggested a possible correlation of the actual duration of the 

cutting process (i.e. the time in cut) with the obtained DoC value, therefore the focus of the 

processing methods presented here was to convert the raw data into suitable features that 

could accurately represent the region of the signal when the cutting process was taking place. 

The signal processing techniques were based on advanced methods from the IMS literature, 

as reviewed in sections 2.2.2 and 2.2.3. 
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5.3.1 Signal Processing 

All the signals recorded during a single cutting cycle were time series of 8 seconds. The probe 

signal was used as a trigger for the acquisition of all the data. The NI cDAQ device in 

combination with the NI software allowed for robust acquisition and perfect synchronisation 

of the data, despite using disparate sensor types and different sample rates. 

An example of the time domain data recorded for each sensor is illustrated in the following 

figures (Figure 5.4 through Figure 5.9). The raw signals are shown in the left hand side (blue 

plots) and the RMS of the signals, computed at 100 samples per second (0.01 𝑠𝑠 integration 

time constant), is presented in the right hand side (red plots). The figures show the signals 

collected from both cuts of a typical process cycle (first for cut 1 and then cut 2 of the same 

hole, respectively), repeated for each hole of the panel (the names of the signals are also 

indicated in the figures). 

 

Figure 5.4 Vibration signals (blue plots) and the converted RMS signals (red plots) 
acquired during the first cut. 
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Figure 5.5 Vibration signals (blue plots) and the converted RMS signals (red plots) 
acquired during the second cut. 

The sample rate of the three vibration signals, shown in Figure 5.4 (first cut) and Figure 5.5 

(second cut), was set at 10240 𝐻𝐻𝐻𝐻. All signals presented a similar pattern and showed an 

increase in the magnitude when the cutting commenced approximately at time 3.6 𝑠𝑠 for the 

first cut and 4 𝑠𝑠 for the second. This fact was also emphasised by the converted RMS signals, 

making them suitable to use for the segmentation of the raw data. In particular, the spindle 

vibration data (VIB1) showed the highest change in the signal magnitude between the two 

regions: in-cut and out-of-cut. The signals of the second cut (Figure 5.5) appeared to be more 

concentrated in the region of interest, simplifying the segmentation of the original data. That 

was because the second cut started with a hole previously machined at a semi-finish level 

and the vibration, which occurred after the tool reached that semi-finish level, presented 

rapid changes in the magnitude of the recorded signal due to the greater contacting area. 

Figure 5.6 and Figure 5.7 show the spindle power data recorded during the first cut and the 

second cut, respectively. The signals refer to the same hole considered for the vibration data 
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in order to highlight the synchronisation of the signals across the sensors. Given the low 

frequency content of the power signals, the acquisition sample rate was set at 1600 𝐻𝐻𝐻𝐻.  

 

Figure 5.6 Power signals (blue plots) and the converted RMS signals (red plots) acquired 
during the first cut. 

 

Figure 5.7 Power signals (blue plots) and the converted RMS signals (red plots) acquired 
during the second cut. 

The Acoustic Emissions (AE) data recorded during the first and the second cut are presented 

in Figure 5.8 and Figure 5.9, respectively. The hardware (NI-9223 module) allowed acquisition 
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rates up to 1 million samples per second, however, in order to ensure the synchronisation 

and the online visualisation and processing of the data, a lower sample rate of 409600 𝐻𝐻𝐻𝐻 

was used for the acquisition of the AE signals. 

 

Figure 5.8 Acoustic Emissions signals (blue plots) and the converted RMS signals (red 
plots) acquired during the first cut. 

 

Figure 5.9 Acoustic Emissions signals (blue plots) and the converted RMS signals (red 
plots) acquired during the second cut. 
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Similar to the vibration data, the power and AE graphs showed an increase of the signal 

magnitude when entering the cutting process, reaching the peak value shortly after the cut 

starts, at approximately 4 𝑠𝑠 for the first cut and 4.2 𝑠𝑠 for the second cut. However, unlike the 

vibration data, the signals quickly dropped in magnitude, especially the AE data, indicating 

that the cutting tool was not removing material from the panel anymore and the target depth 

level was reached. This fact, emphasised by the converted RMS signals, was clearly observed 

in the graphs related to the second cut where the actual time in cut was considerably shorter. 

The raw power data (ref. Figure 5.6 and Figure 5.7) showed significant signal noise, which 

was mostly removed by the RMS conversion. A small increase of the signal magnitude was 

observed just before the cutting commenced, which made it difficult to identify the exact 

cutting entry point. The Low-Pass Filtered (LPF) power data provided by the RC circuit was 

introduced as an additional physical channel (acquired by the same NI module) with the 

intention to limit the amount of signal noise, originally observed. Although the signal 

succeeded in removing the noise, it showed some periodic disturbances which were probably 

caused by electrical interferences due to not proper isolation of the wires. These periodic 

disturbances were present in the signals recorded from the first cut only (see Figure 5.6) and 

they were largely removed when converting to RMS. For this reason the converted RMS 

signal of the LPF power data was used for further analysis instead of the original signal. 

In terms of AE data, both raw signals (blue plots of Figure 5.8 and Figure 5.9 ) clearly showed 

the region when the tool was cutting material, however, the data provided by the coupler’s 

RMS converter (AE-rms) was less affected by signal noise, making it a suitable choice for 

segmentation purposes. Similar to power data, the further RMS conversion at 100 samples 

per second appeared to remove most of the signal noise and therefore it was used for further 

analysis instead of the original raw data coming from the coupler’s RMS converter. 

Finally, for completeness of information, the probe data is shown in Figure 5.10. As previously 

mentioned, this signal was not used for the analysis presented here, however, it helps to 

understand the overall process cycle. The probe sensor measured the linear displacement of 

the spindle with respect to the pressure foot. For comparison with the other signals, the two 

graphs shown in the figure refer to the same hole, with the signals relative to the first cut on 

the left hand side and those of the second cut on the right hand side. They both appeared to 

be very similar in shape with just a few differences in the time when they reached the peak 

value, which was approximately 4 𝑠𝑠 for the first cut and 4.2 𝑠𝑠 for the second cut, confirming 

the observations made from the other sensors. 
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Figure 5.10 Probe signals acquired during the first cut (left) and the second cut (right). 

Examining the probe graphs, the first rise in the signal magnitude showed that the spindle 

was rapidly advancing in the feed direction (Z-axis) towards the panel. It then stopped for a 

short time at about 10 mm from the target depth (i.e. the maximum value) before advancing 

again (at time approx. 2 𝑠𝑠) with constant speed to perform the cutting (the feed rate was set 

by the program). After reaching the target depth level, the spindle remained in position for 

the specified dwell time and then quickly retrieved back to the initial position (at approx. 6 

s). The PF movement returning to its home position during unclamping was also captured by 

the signal (at approx. 6.2 𝑠𝑠 and 6.4 𝑠𝑠 for the first and second cut, respectively). 

5.3.2 Automatic Segmentation Method 

As previously noted in Section 5.1, particular attention was given to the selection of the 

panels used during Phase 2 of the experiment. This resulted in having panels with better 

surface quality and paint adhesion than those in Phase 1, which improved the inspection 

routine. However, these small differences in terms of panels’ material quality led to sensor 

signals with slightly different signal-to-noise ratios from what was observed during the trials 

of Phase 1. It was therefore necessary to identify a new “best signal” with the highest signal-

to-noise ratio to use for the segmentation task. 

For instance, preliminary examination of the signals recorded during the first phase of the 

experiment suggested that the AE data was the most suitable to use for the signal 

segmentation task. In particular, the AE-rms signal showed greater signal-to-noise ratio in 

the first four panels (P1-P4) machined during this phase. Therefore, it was decided to use the 

AE-rms signal (RMS computed at 100 samples per second) for the segmentation of all the 

other signals. An example of the method is shown in Figure 5.11 for the first cut data (left 

plot) and the second cut data (right plot). The segmentation procedure automatically 

identifies the entry/exit points (time stamps) of the region of interest and then uses this 

information to segment all the other signals for further processing. 
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Figure 5.11 Signal segmentation method used for Phase 1 of the experiment (P1-P4). 

In the case of the last three panels (P5-P7) machined during the second phase of the 

experiment, the AE-rms signal showed much higher noise levels, which made it difficult to 

apply the segmentation method used in the first phase. On the other hand, the spindle 

vibration data (VIB1), which had a lot of signal noise during the first phase, presented much 

clearer signal in all the panels of the second phase. It was decided, therefore, to use the 

converted RMS signal (computed at 100 samples per second) of the VIB1 data for the 

segmentation of all the other signals. Figure 5.12 shows an example of the method applied 

on the first cut data (left plot) and the second cut data (right plot). 

 

Figure 5.12 Signal segmentation method used for Phase 2 of the experiment (P5-P7). 

The synchronisation of the signals due to the cDAQ device, ensured that the part of the signal 

identified by the segmentation procedure as the cutting region referred to the same event 

across all the sensors. Once the time information of the cutting entry/exit points was 

calculated, only the segmented parts of the raw signals were considered for further analysis. 
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5.4 Feature Extraction 

This section presents the further processing steps and extraction methods applied to the 

above segmented signals in order to obtain a vector of signal features that could potentially 

describe the cutting process. In particular, the proposed monitoring system is looking for 

those features that carry information about the process variable of interest, i.e. the 

countersink DoC value. Following from the feature extraction methods reviewed in the 

literature, presented in Section 2.2.3, three signal domains were investigated in this study: 

time domain, frequency domain and the joint time-frequency domain. The signals extracted 

from the original sensor data and the analysis performed in each of the above domains are 

described in the following sub-sections. 

5.4.1 Time Domain Analysis  

In terms of the vibration sensors (three accelerometers), in addition to the raw data (VIB) 

and the converted RMS data (VIB.RMS), three more signals were extracted:  

• The envelope signal (VIB.ENV) obtained by an envelope analysis of the raw data. 

• The residual signal (VIB.RES) obtained by filtering out the Tool Passing Frequency (TPF) 

and all the harmonics in the signal frequency range. 

• The converted RMS (calculated at 100 samples per second) of the residual signal 

(VIB.RES.RMS). 

The TPF was computed from the spindle speed by the formula: 

 𝑇𝑇𝑇𝑇𝑇𝑇 =  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅

60
×  𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ (5.1) 

In this experiment, the spindle speed was set at 4978 𝑅𝑅𝑅𝑅𝑅𝑅, which led to a 𝑇𝑇𝑇𝑇𝑇𝑇 ≅ 165 𝐻𝐻𝐻𝐻 

(for a 2-flute cutting tool) and a fundamental frequency component at 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅  ≅  83 𝐻𝐻𝐻𝐻 

(approximately), related to the spindle RPMs (Rotations per Minutes).  

An example of all the time domain signals extracted from the spindle vibration data (VIB1) 

collected during the first cut is illustrated in Figure 5.13. Similar patterns were found for the 

second cut signals and the other accelerometers as well. The two black vertical lines indicate 

the cutting region as identified by the segmentation method. A total number of 15 time 

domain signals were extracted (five for each accelerometer).  
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Figure 5.13 Spindle vibration (VIB1) time domain signals considered for further analysis. 

The envelope analysis (ref. to Section 2.2.2) was applied to detect the amplitude modulated 

signal around the TPF due to the cutting forces. It was performed on the raw vibration signal 

with central frequency at TPF (first order) and 40 Hz of bandwidth span. In order to obtain 

the residual signal, the fundamental frequency and all its harmonics (60 in total up to 5 kHz, 

including the TPF), were filtered out from the original data. This led to a new signal (VIB.RES) 

with similar amplitude, but shorter duration in time. Considering that the tool actually cuts 

material during the first part of the signal until the peak amplitude is reached (before quickly 

dropping to the normal level), the residual signal appeared to describe better the cutting 

process. Since its magnitude dropped faster than the original one, it could localise the cutting 

region with greater precision. The signal duration, computed from the converted RMS data 

(VIB.RES.RMS) as the time that the amplitude of the signal remained over a certain threshold, 

was included in the feature vector, due to its potential correlation with the DoC. 

In terms of the power transducer, four time domain signals were extracted:  

• The raw power data (PWR). 

• Its RMS signal (PWR.RMS). 

• The Low-Pass Filtered signal (PWR.LPF) obtained from the RC circuit (and the further 

RMS conversion step). 
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• The Time-Frequency Filtered signal (PWR.TFF) generated by exploring the time-

frequency domain of the original data (ref. to Section 2.2.3.3).  

In particular, the TFF signal was computed by applying a Gabor transform with all coefficients 

below a certain threshold set to zero, leaving just those that carried the signal energy. The 

time domain signal was then reconstructed from the remaining coefficients. The parameters 

used for the Gabor transform were the following: threshold value 0.87, time steps 8, 

frequency bins 512, window length 512 (Gaussian).  

Figure 5.14 presents an example of all the above time domain signals extracted from the 

spindle power data recorded during the first cut (of the same hole showed in the vibration 

graphs). Again, the black vertical lines indicate the segmented region considered for the 

feature extraction step. 

 

Figure 5.14 Spindle power time domain signals considered for further analysis. 

The time domain signals extracted from the AE sensor data collected during the first cut (of 

the same hole as before) are shown in Figure 5.15. In addition to the two original signals 

provided by the AE coupler, the raw AE and the converted RMS signal (AE.RMS), two more 

were considered for further analysis:  

• The Band-Pass Filtered signal (AE.BPF). 
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• Its RMS signal (AE.BPF.RMS). 

As seen in the figure, the BPF signal (bottom left plot) presented considerably less noise than 

the original one, making it easier to separate between the two regions (in-cut and out-of-

cut). This fact was also highlighted by the converted RMS data (bottom right plot) showing a 

clear gap when exiting the region of interest. A 3rd order Butterworth filter with frequency 

band of [15𝑘𝑘 − 25𝑘𝑘𝑘𝑘𝑘𝑘] was used to obtain the BPF signal. This frequency band was chosen 

after the examination of the original data in the frequency and the joint time-frequency 

domain, as will be explained in the following sub-sections. 

 

Figure 5.15 AE time domain signals considered for further analysis. 

To summarise, the time domain analysis produced a total of 23 (segmented) signals to 

consider for the feature extraction step: 15 from the vibration sensors (five for each 

accelerometer), four from the power transducer and four from the AE sensor. 

The time domain features extracted from the above signals included the statistic descriptors 

presented in Section 2.2.3.1 (ref. to Table 2.2), such as the signal mean, RMS, variance, 

skewness, kurtosis, peak and crest factor. In addition, some other features potentially related 

to the DoC value such as the cutting cycle duration (duration of the segmented part of the 

signals), the Time-to-Peak (time spent to reach the peak amplitude) and the duration of the 

VIB.RES.RMS signal were also included.  
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5.4.2 Frequency Domain Analysis 

In order to assess the frequency content of the signals, the Power Spectral Density (PSD) was 

calculated for each of the raw sensor data in the cutting region, identified by the 

segmentation method. An example of the power spectrum of the spindle vibration data 

(VIB1) collected during the first cut is shown in Figure 5.16. A linear amplitude, rather than a 

log one (dB scale), was chosen for better visualisation of the peaks corresponding to the TPF 

and harmonics. The top graph presents the PSD of the original data, whereas the bottom 

graph shows the power spectrum of the residual signal, i.e. what remains after removing the 

TFP and all the harmonics up to 5𝑘𝑘𝑘𝑘𝑘𝑘 (the entire frequency range of the raw data). The 

residual signal presented the peak amplitude at approximately 2650 𝐻𝐻𝐻𝐻, with most of its 

frequency content located inside the band [2𝑘𝑘 − 3.5𝑘𝑘𝑘𝑘𝑘𝑘], as illustrated in the figure. Similar 

graphs were found from the data of the other accelerometers (VIB2 and VIB3), as well as 

those collected from the second cut. 

 

Figure 5.16 Power Spectrum for spindle vibration data (VIB1): raw signal (top) and 
residual signal with TPF and harmonics removed (bottom). 

An example of the power spectrum of the AE data collected from the first cut is shown in 

Figure 5.17. The top graph presents the PSD of the raw signal with indication of the two bands 

where most of the frequency content was concentrated. The spectral peak amplitude was 

found inside the first band (Band1 [15𝑘𝑘– 25𝑘𝑘𝑘𝑘𝑘𝑘]) at approximately 20𝑘𝑘𝑘𝑘𝑘𝑘. Note that Band1 

represents also the frequency range of the BPF signal considered previously for the time 

domain analysis. The second band (Band2 [80𝑘𝑘 − 160𝑘𝑘𝑘𝑘𝑘𝑘]) contained the rest of the power 
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spectrum, with a peak at approximately 135𝑘𝑘𝑘𝑘𝑘𝑘. It will be clear later in the time-frequency 

analysis that this peak corresponds to a spectral noise, which was present during the entire 

8 seconds of recording of the signal, not only in the cutting region. For this reason, it was 

decided to filter it out and the remaining power spectrum, denoted as Band3, is shown in the 

bottom graph of Figure 5.17. Band3 has the same frequency range of Band2, but with the 

noise spectral peak removed.  

 

Figure 5.17 Power Spectrum for AE data: raw signal (top) and filtered signal with noise 
peak at 135 kHz removed (bottom). 

In terms of the spindle power sensor, the PSD of the raw power data didn’t show any 

particular spectral peaks (rather than the one in zero frequency) or any presence of the TPF 

harmonics. Given the low frequency response of the power transducer, a spectral band of 

[10 − 100𝐻𝐻𝐻𝐻] was considered for further treatment.  

As discussed in Section 2.2.3.2, the frequency domain analysis extract features from bands 

of the power spectrum. In the analysis here, the frequency domain features were extracted 

from two main spectra: the complete power spectrum of the raw data (this includes also the 

VIB residual signal) and bands of the power spectrum obtained from the original PSDs. These 

bands were chosen based on observations of the signal’s original PSD and they were specific 

to each sensor: Vibration, [2k-3.5kHz]; AE, Band1 [15k-25kHz], Band2 [80k-160kHz] and 

Band3 [80k-160kHz] (Filtered); Spindle Power, [10-100Hz].  
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To summarise, a total of 18 frequency domain signals (bands of PSD) were considered for the 

feature extraction step: 12 from the vibration sensors (four for each accelerometer, two 

original PSDs and two bands), two from the power transducer (original PSD and one band) 

and four from the AE sensor (original PSD and three bands). 

The frequency domain features included statistic descriptors relative to bands of power 

spectrum, such as the spectral mean, variance, skewness, kurtosis and peak amplitude (ref. 

to Table 2.3). The sum of total band power, the relative spectral peak per band and the total 

harmonic band power (only for the vibration data) were also calculated. Given the purpose 

of this study to extract features that could potentially be related to the DoC, some other 

frequency features were extracted, but not considered for further treatment. For instance, 

the peak frequency of the band power and the amplitudes of all the TPF harmonics are 

features that are usually used for tool wear monitoring and detection of faults in rotating 

machining components (gears, bearings), since they can detect changes in the spindle RPMs, 

however, there was no evidence to suggest a potential correlation of them with the DoC. 

5.4.3 Time-Frequency Analysis 

The joint time-frequency analysis was considered in order to understand how the frequency 

content of the signals changed over time, especially in the cutting region. Figure 5.18 

presents the spectrogram of the vibration data (VIB1) collected during the first cut (only the 

segmented part). The left graph shows the raw signal, whereas the residual signal (the TPF 

and harmonics removed) is illustrated in the right graph. Note that most of the frequency 

content of the latter was concentrated in the first 0.5 s from the start of the cutting process. 

 

Figure 5.18 Spectrogram for vibration data (VIB1): raw (left) and filtered (right) signal. 
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The spectrogram of the AE data collected during the first cut is shown in Figure 5.19. The left 

graph presents the original signal (entire recording of 8 s), whereas the right graph shows 

only the segmented part. It is clear now the reason of the filtered band in the AE PSD (Band3), 

given the constant presence of the spectrum noise at approximately 135𝑘𝑘𝑘𝑘𝑘𝑘. 

 

Figure 5.19 Spectrogram for raw AE data: original (left) and segmented (right) signal. 

In this study, the spectrograms were mainly introduced for better understanding of the 

frequency content of the signals and time-frequency domain features were extracted, but 

not considered for further treatment. They typically include the Mean Instantaneous 

Frequency (MIF), Mean Instantaneous Bandwidth (MIB), Time Marginal Integral (TMI) and 

Frequency Marginal Integral (FMI). 

Finally, a summary of all the signals and all the features considered for the experiment is 

presented in Table 5.2 and Table 5.3, respectively. 

Table 5.2 Summary of the signals considered for further processing. 

Extracted Signals Vibration x3 Spindle Power Acoustic Emissions 

Time 
Domain 
Analysis 

Periodic VIB (Raw) 
VIB.RES  AE (Raw) 

AE.BPF 

Non-Periodic VIB.ENV 
PWR (Raw) 
PWR.LPF 
PWR.TFF 

 

RMS Signals VIB.RMS 
VIB.RES.RMS PWR.RMS AE.RMS 

AE.BPF.RMS 

Frequency 
Domain 
Analysis 

Original VIB.PSD 
VIB.RES.PSD PWR.PSD AE.PSD 

Bands of Power 
Spectrum 

VIB.BP 
VIB.RES.BP PWR.BP 

AE.BP1 
AE.BP2 
AE.BP3 
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Table 5.3 Summary of the signal features extracted for the experiment. 

 Time Domain Frequency Domain 

Extracted Features Periodic  Non-
Periodic 

RMS 
Signals 

Original 
Spectrum 

PSD 
Bands 

Duration* Du - - x - - 

Mean 
(of Band Power) 

M 
MBP 

- 
x 
 

x 
 

x 
 

 
x 

Root Mean Square RMS x x - - - 

Variance 
(of Band Power) 

V 
VBP 

x 
 

x 
 

x 
 

x 
 

 
x 

Skewness 
(of Band Power) 

Sk 
SkBP 

x 
 

x 
 

x 
 

x 
 

 
x 

Kurtosis 
(of Band Power) 

Ku 
KuBP 

x 
 

x 
 

x 
 

x 
 

 
x 

Peak (absolute) 
(of Band Power) 

P 
PBP 

- 
x 
 

x 
 

x 
 

 
x 

Peak to Peak (Range)  Rng x - - - - 

Time to Peak TP - x x - - 

Crest Factor CF x x x - - 

Sum of Total Band Power STBP - - - x x 

Relative Spectral Peak 
per Band RSPB - - - x x 

Total Harmonic Band 
Power** THBP - - - x - 

Total Number of Features 163 129 

(*) applied only to the RMS data of the residual vibration signals (VIB.RES.RMS) 
(**) applied only to vibration signals (TPF and Harmonics up to 5kHz) 

Note that the time domain signals were categorised in periodic (oscillating signals such as 

those of VIB and AE data), non-periodic (PWR data) and the converted RMS signals. The total 

number of features extracted from all the sensor signals was 292.  

The data acquisition and the further processing, including the segmentation and feature 

extraction step was performed in real time, during the machining process. After each cutting 

cycle, a vector of 292 feature values was produced in output from the collected signals (one 

vector for each cut, for each hole of the panel). These feature vectors, together with the 

measured DoC values (obtained by the inspection camera) provided the two datasets (one 

for each cutting cycle) for the regression tests presented in the next chapter (see Section 6.1). 
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6 SUPERVISED LEARNING METHOD 

This chapter presents the supervised learning method applied to the data collected from the 

experiment conducted by this work. A regression problem was considered in order to build 

and test process models that can accurately predict the countersink depth from the signal 

features extracted by the methods discussed in Chapter 5. A probabilistic learning approach 

based on Gaussian Process Regression (GPR) was used for creation of the process models. 

The aim and objectives of the regression tests are outlined in Section 6.1. The two datasets 

extracted from the experimental trials (one for each cut) are discussed in Section 6.2. The 

feature selection method applied to the dataset and the learning algorithm for the process 

models are presented in Section 6.3. Finally, the results obtained from the tests are given in 

Section 6.4. The chapter concludes with a summary of the main outcomes. 

6.1 Regression Tests 

In the regression tests performed in this work, a probabilistic framework based on Gaussian 

Process Regression (GPR) was applied to the data obtained from the experiment described 

in Section 5.1. In particular, a process model was trained using the two datasets created from 

examples of the extracted signal features and the corresponding countersink depth, as 

explained at the end of Chapter 5. 

During the experiment, each hole was processed by two cutting cycles (semi-finish and finish 

level) and a camera inspection was performed after each cut to collect the depth 

measurement. The inclusion of this camera inspection step at the end of the cutting cycle, 

allowed to build the above datasets online, while the process was running and without any 

interruptions. 

The regression tests considered in this work aimed to assess the accuracy and reliability of 

the proposed process model. The main objectives included: 

• Investigation of a probabilistic learning approach for the prediction of countersink 

depth values. 

• Identification of a suitable method for the selection of relevant signal features. 

• Creation and validation of a regression model that provides accurate depth predictions 

with uncertainty estimation in the prediction value. 
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The two datasets obtained from the experimental trials (one for each cut), the feature 

selection method and the learning algorithm, as well as the obtained results are discussed in 

the following sections. 

6.2 Datasets 

It was noted in Section 5.1 that during the trials of Phase 1, one of the vibration sensors’ 

cable was damaged. Therefore, the sensor VIB3 was disconnected and all the features 

obtained from VIB3 were ignored in the signal processing step. This reduced the total number 

of the extracted features to 228 for the Phase 1 of the experiment (P1 to P4). The sensor 

cable was replaced in time for Phase 2, in which three more panels (P5 to P7) were machined. 

Here, all the sensors were perfectly working and installed as described in Section 5.1 of the 

experimental setup. A total of 292 signal feature values were extracted for each cutting cycle 

of every hole machined during Phase 2. 

Two datasets (one for each cut) were obtained during the experiment. Dataset 1 contained 

samples of the feature vector extracted from the first cut together with the measured DoC 

value of the semi-finish level (from the inspection camera). Dataset 2 contained samples of 

the second cut’s features together with the corresponding final DoC value, as measured by 

the inspection camera at the end of cutting process. These datasets were then used to build 

two regression models: Model 1 and Model 2, respectively.  

It is important to note that while the first cut was performed under the same initial conditions 

with a new hole every time (all the pre-drilled holes of the panel had the same initial size), 

the starting conditions of the second cut were dependent on the previous cutting cycle and 

the already machined semi-finish depth level. This was the reason why the pattern of the 

signals was different between the two cuts. In a new hole the contacting area between the 

cutting tool tip and the panel surface increased as the tool entered the hole and advanced 

towards the panel, whereas in a previously countersunk hole (at semi-finish level) the greater 

contacting area from the start of cutting process caused rapid changes in the magnitude of 

the recorded signals and different patterns were obtained (ref. to Section 5.3.1 for 

examination of the signals). Since this contacting area depended on the semi-finish depth 

level of the previous cut, in theory, several models should be used (one for each different 

starting DoC value). However, this would be impractical due to the uncertainties in the semi-

finish depth value. Moreover, after examination of the signals collected from the second cut, 

it was observed that they all presented similar patterns, independently of the starting depth 
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conditions. Therefore, an averaged model was considered instead, which operated in a range 

of starting conditions with expected (mean) value at the nominal semi-finish level including 

also the depth variations introduced by the Gaussian perturbation added in the process 

depth target. Using only one model for the representation of all the different initial 

conditions of the second cut allowed the system to be more robust and flexible since it could 

make use of all the data available in Dataset 2. 

6.2.1 Dataset 1: Semi-Finish Depth Data 

In the experiment, the Gaussian perturbation was manually added to the depth target 

specified into the spindle drive controller before cutting of each hole. This allowed to obtain 

examples of first cuts with different DoC values, distributed (normally) around the nominal 

semi-finish target (𝑑𝑑1), set at 2 mm in the tests. Figure 6.1 shows the semi-finish depth 

variation values (i.e. the depth errors calculated as the difference between the camera 

measurement and the nominal target 𝑑𝑑1) obtained at the end of the first cut for all the holes 

considered in the experiment. The vertical (dashed) red line divides the two phases: Phase 1 

(panels P1-P4) and Phase 2 (panels P5-P7). Negative values represent holes with under-depth 

data with respect to the semi-finish level (shallow holes) and positive values refer to over-

depth data (deep holes). In the following, the term semi-finish depth or DoC value is used to 

refer to the above depth variation (error) value, which is also the process output variable. 

 

Figure 6.1 Depth variation data obtained after the first cut (semi-finish level). 

The Gaussian perturbation added to the target had mean 𝜇𝜇 = 0 and standard deviation 𝜎𝜎 =

 0.25, therefore, most of its values belonged to the interval [-0.5 0.5]. Adding this variable to 

the semi-finish depth target, one would expect to obtain depth variation values in the same 
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range of data. However, this was not the case, as illustrated in Figure 6.1. The measured 

values were distributed in the range [-0.3 0.7] mm and presented a positive bias of 

approximately 0.27 mm, with the majority of the holes having over-depth data. The depth 

variability required to accurately train Model 1 was still maintained in accordance with the 

perturbation variable, taking values within the interval [-0.3 0.7], centred at 𝑑𝑑1 = 2𝑚𝑚𝑚𝑚. The 

effect of the perturbation variable into the observed DoC value is shown in the two charts of 

Figure 6.2: the first one (in the left) shows the correlation between the perturbation and the 

DoC values obtained after the first cuts; the second chart (right) illustrates the depth 

variability introduced by the perturbation variable in the form of a histogram (blue boxes) 

with a Gaussian distribution fit (red line). 

 
Figure 6.2 Correlation between the Perturbation and Semi-Finish Depth values (left); 

Semi-Finish Depth variability chart expressed as a histogram with distribution fit (right). 

The charts in Figure 6.2 highlight the systematic error (bias), which produced holes that 

exceeded the depth target (positive value). The sources of this error were attributed to the 

incorrect calibration of the offset introduced by the tool length (tool dimensions) and/or the 

measurement errors introduced by the inspection camera (vision system). In addition to the 

bias, there was also a random noise component as result of the complexity of the machining 

process. These random fluctuations around the specified depth target (plus the bias value) 

consisted of what was referred to as process noise 𝑁𝑁𝑃𝑃1 in Eq. (4.2) (ref. to Section 4.2). The 

semi-finish depth variability introduced by the perturbation variable showed a good fit with 

a Gaussian distribution, confirming its intended purpose and it had a mean value 𝜇𝜇 = 0.27 

and standard deviation 𝜎𝜎 =  0.18. 

As stated in the beginning of this section, Dataset 1 contained examples (instances) of the 

feature vectors extracted during the first cut (according to the methods described in Section 
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5.4) together with the corresponding DoC value (semi-finish level) of each single hole of the 

panel. Using a supervised learning approach, a regression model of the machining process 

(Model 1) could be built from Dataset 1. The inputs of the model consisted of the feature 

vector extracted from the sensor signals and the output variable, i.e. the one to predict, was 

the semi-finish DoC value. The model was trained in a number of instances (training set) and 

then predictions were made on new, previously unseen input data (testing set). The accuracy 

of the model was measured in terms of the Mean Squared Error (MSE) of the predictions, 

also referred as the out-of-samples MSE and the model was validated by means of the k-fold 

cross-validation method described in Section 2.2.5.2. 

Before reviewing the depth data obtained from the second cut, it is convenient to summarise 

the instances included in Dataset 1. At the end of the trials, Phase 1 (panels P1-P4) provided 

176 samples of sensor signals with 228 extracted features each (VIB3 was disconnected), and 

Phase 2 (panels P5-P7) provided 130 samples (two holes were discarded due to bad signal 

quality) with 292 extracted features each (here, all the features extracted from VIB3 signal 

were included). Considering both phases of the experiment, Dataset 1 contained a total of 

306 instances with 228 features each (VIB3 features excluded for consistency), together with 

the 306 semi-finish DoC values (output variable) calculated from the camera measurement. 

6.2.2 Dataset 2: Final Depth Data 

The final depth variation values (i.e. the final depth errors) calculated from the camera 

measurement after the second cut, for all the holes considered in the experiment, are shown 

in Figure 6.3. Since these values represented the overall process performance variable, in 

order to comply with the process requirements, they all needed to be within the process 

tolerance of ±0.2 𝑚𝑚𝑚𝑚. The depth error data plotted in the figure presented a decreasing 

trend with the number of holes (illustrated with the dashed black line). This means that the 

process quality oscillated from holes with almost perfect sizes at the beginning of P1 to very 

shallow holes (few were under the tolerance) at P6 and P7. Overall, almost all the holes were 

concentrated in the lower half interval of the process tolerance, indicating final depth values 

under the nominal depth 𝑑𝑑2 = 2.74 𝑚𝑚𝑚𝑚. 
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Figure 6.3 Depth variation data obtained after the second cut (final depth). 

In all the trials, the target of the second cut was adjusted from the previous camera depth 

measurement relative to the first cut of the same hole. The new target value was computed 

as the difference between the nominal target (𝑑𝑑2) and the previously obtained semi-finish 

depth error. This corrected value was then specified into the spindle drive controller before 

the second cut commenced. The Perturbation value added to the target of the first cut was 

passed unchanged onto the second cut target since it was specific to the hole, not to the 

particular cut (ref. to the robotic disturbance in Figure 4.2).  

The trend observed in the final depth error data indicated that correcting the second cut 

target from the previously measured semi-finish error did not completely compensate for all 

the error sources of the second cuts. The average magnitude of the final depth error became 

larger as the number of holes increased. This means that despite compensating for the semi-

finish errors in full, the process behaved differently in the second cuts, producing 

continuously under-target holes as more holes were machined going from P1 to P7. The most 

plausible explanation for this behaviour was related to the cutting tool wear (not directly 

monitored here), which increases with the number of cuts causing the tool to remove less 

material (in average) for the same target specification. Moreover, since the second cuts were 

performed on the remaining depth of the current hole, less material than the first cuts was 

typically removed and, as the tool wear increased, it became more difficult to accurately 

remove small quantities of material (less depth resolution). In order to capture this behaviour 

during the training phase of the process models, two more features (independent from the 

sensor signals) were added: (i) Tool Hole Counter (THCount), which counted the number of 

holes that the tool had machined so far, starting at one at first hole of P1, and (ii) Hole 
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Position (HPos), which was the normalised value of the current hole number within the 44-

holes of the entire panel. 

Figure 6.4 compares the depth variability of the first cuts and second cuts for all the holes 

considered in the experiment. The graph in the left hand side is a histogram of the obtained 

data that illustrates the semi-finish levels (first cuts) in blue and the final depths (second cuts) 

in orange. The graph in the right hand side is a box plot that emphasises the range of values 

of the depth variation data obtained from both cuts, respectively. The central red mark 

indicates the median, the box extends from the 25th to the 75th percentiles and the outliers 

are individually plotted in red crosses. These two graphs indicate that the target adjustment 

method based on the camera measurement (of the semi-finish level) has reduced the process 

depth variability (caused by the Gaussian perturbation) from the initial 1 mm range (interval 

[-0.3 0.7] mm) of the first cuts into the final 0.2 mm range (interval [-0.2 0] mm) for the 

second cuts, obtaining an 80% reduction in size. 

 

Figure 6.4 Comparison between the depth variability of the first cuts (semi-finish level) 
and the second cuts (final depth): histogram (left) and box plot graph (right). 

In terms of the supervised learning approach, Dataset 2 contained examples of the features 

extracted during the second cut and the corresponding depth value. It is important here to 

distinguish between the final DoC value, the depth variation (error) value and the actual 

depth of the second cut. The final DoC refers to the value obtained from the inspection 

camera after the second cut; the final depth error is the difference between the above 

camera measurement and the nominal target 𝑑𝑑2. The actual depth, however, refers to the 

depth machined during the second cut, which could be computed as the difference between 

the two camera measurements of the same hole. These depth values were the outputs to 

predict from the features extracted in the second cuts. Figure 6.5 shows the actual depth 

values of the second cuts for all the holes considered in the experiment. 
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Figure 6.5 Actual countersink depth machined during the second cut. 

Note that the depth values were distributed in the interval [0 0.9] mm and presented a linear 

decreasing trend (illustrated with the black dashed line), similar to the final depth errors 

showed in Figure 6.3. This confirmed the above tool wear theory that caused the cutting tool 

to remove less material (on average) as the number of cuts increases, even though the target 

remained constant (on average). In fact, the semi-finish depths were normally distributed in 

the interval [-0.3 0.7] mm, with no apparent trend in the data (ref. to in Figure 6.3), which, in 

turn translated into normally distributed targets for the remaining depth of the second cuts. 

However, as observed in Figure 6.5, these targets led to actual depth values that continuously 

got smaller over time, as more cuts were performed. 

The data of Dataset 2 was used to build a regression model for prediction of the second cut’s 

depth values (Model 2). The inputs of the model consisted of the feature vectors and the 

output variable was the actual depth obtained from the second cut. The same considerations 

previously stated for Model 1 in terms of the training and testing sets, model accuracy and 

validation apply to Model 2 as well.  

The size of Dataset 2 was as follows. Phase 1 (panels P1-P4) provided 174 samples of sensor 

signals (two holes were discarded due to bad signal quality) with 228 extracted features each 

(no VIB3 features), and Phase 2 (panels P5-P7) provided 132 samples with 292 extracted 

features each (all features included). Considering both phases of the experiment, Dataset 2 

contained a total of 306 instances of 228 features (again VIB3 features were excluded for 

consistency) together with the 306 actual depth values (process output variable).  
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To conclude this section, Table 6.1 summarises the two datasets extracted from the 

experiment in terms of their number of instances and features during each phase. 

Table 6.1 Size of the two datasets extracted from the experiment. 

Experiment Dataset 1 Dataset 2 

 Instances Features* Instances Features* 

Phase 1 (P1-P4) 176 230 174 230 

Phase 2 (P5-P7) 130 294 132 294 

All Panels** (P1-P7) 306 230 306 230 
(*) Tool Hole Counter and Hole Position are included in the total number 
(**) Features from VIB3 signal are excluded for consistency with Phase 1 

6.3 Feature Selection and Regression Model 

This section describes the feature selection method used to reduce the number of signal 

features extracted from the experiment as well as the process regression models (ML 

algorithms) applied for the prediction of DoC values, relative to the first and second cuts of 

each hole of the panel. The analysis and the methods presented below were all implemented 

in MATLAB using the Statistics and Machine Learning Toolbox.  

The feature selection strategy consisted of an embedded approach (ref. to Section 2.2.4) 

integrated with the learning algorithm of the model, which was suitable for both datasets 

discussed in Section 6.2. The method applied the Gaussian Process Regression (GPR) to 

perform Automatic Relevance Determination (ARD), as explained in the Appendices of this 

thesis (ref. to Section A.1). This can be obtained by selecting a particular type of covariance 

function for the Gaussian Process (GP), such as the Squared Exponential (SE) with variable 

length-scale parameter, also called the ARD-SE kernel defined in Eq. (A.9). Choosing an ARD-

SE kernel in a GPR model, automatically assigns weights to the input dimensions (signal 

features) according to their relevance, in the optimisation procedure during training. This 

means that at the end of the training phase, the features with higher weights will have 

greater influence in the model’s output variable than those with lower weights. Therefore, 

setting a threshold on the weight value would effectively reduce the original feature space 

by removing all the irrelevant features that fall under such threshold. 

From the learning point of view, GPR models were considered due to their ability to deal with 

uncertainty in a probabilistic (Bayesian) framework and to provide error bars (confidence 

intervals) in the predicted value.  In addition, such models require less training data, can 
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incorporate new knowledge (evidence) as more data becomes available and, since the 

number of hyper-parameters to optimise during training is typically low, they are less 

affected from the overfitting problem. In the tests conducted by this study, the initial values 

for the hyper-parameters of the GPR model (relative to the GP prior distribution) were 

determined from the training data according to the GP framework described in Section A.1 

of the Appendices. The parameters of the GPR model with ARD-SE kernel were set as follows:  

• the initial signal standard deviation  𝜎𝜎𝑓𝑓 =
𝑠𝑠𝑠𝑠𝑠𝑠�𝑦𝑦�

√2
 

• the initial individual length-scale for each feature ℓ𝑖𝑖 =  √𝑑𝑑 

• the initial noise standard deviation 𝜎𝜎𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑦𝑦� 

Where 𝑠𝑠𝑠𝑠𝑠𝑠(∙) = �𝑉𝑉𝑉𝑉𝑉𝑉(∙) refers to the standard deviation of the distribution function of the 

observations 𝑦𝑦 and 𝑑𝑑 is the number of features in the dataset (i.e. the input dimension). In 

absence of observations, the above hyper-parameters can be initialised with values 

estimated by previous knowledge of the process. In this work, the default values (i.e. no 

training data available) of 𝜎𝜎𝑓𝑓 ,ℓ𝑖𝑖 and 𝜎𝜎𝑛𝑛 were set at 0.15, 15 and 0.1, respectively. 

Note that the feature weights (computed from the length-scale parameter ℓ𝑖𝑖) are optimised 

during the training of the GPR model, therefore they will depend on the particular training 

set. This means that using training sets of different sizes and/or containing different data 

samples will result in different weight values for the features. Hence, a strategy was required 

in order to obtain good generalisation properties. The simplest (and intuitive) solution was 

to utilise all the available training data to get the feature weights, however this would leave 

no testing samples for the validation of the (trained) model performance. Another option 

was the cross validation approach presented in Section 2.2.5.2, which divides the original 

dataset in training and testing data. In order to keep the training set as large as possible, in 

the tests here, the Leave-One-Out Cross Validation (LOO-CV) method was applied (ref. to 

Section 2.2.5.2). All the available data but one sample was used to train a GPR model with 

ARD-SE kernel, which was then tested on the left out sample. The process was repeated for 

all the samples in the dataset, building a new model each iteration and recording the feature 

weights assigned during training. At the end of the procedure, the weight of each feature 

was calculated as the average over the values assigned to that feature by all the trained 

models. The features were then sorted based on their weight and only those with weights 

over the pre-set threshold value were selected for further analysis. This method was 

computationally expensive and the time to train all the models increased considerably with 
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the size of the dataset, however, for the purpose of these tests (offline analysis), it provided 

more robustness in the assessment of the features relevance as well as a way to assess the 

generalisation performance of the GPR models. In a real-time scenario such as the online 

analysis presented in Chapter 7, the features would be assessed using all the currently 

available training data to build only one GPR model and a prediction would then be made on 

the new data as it is collected. 

The two phases of the experiment were treated separately due to the different initial number 

of features (Phase 1 didn’t contain the VIB3 features, whereas in Phase 2 they were included). 

For each experimental Phase (P = 1 or 2), two GPR models, denoted as Model 1.P and Model 

2.P, were created using the data from Dataset 1 and Dataset 2, respectively. The threshold 

value on the overall (normalised) weights of the features was set at 0.001. The following sub-

sections present the results obtained from the above feature selection strategy, comparing 

the selected features of both models, divided by the experimental phases. 

6.3.1 Experimental Phase 1: Panels P1-P4 

Figure 6.6 presents the overall normalised weights of the features assigned by the training 

procedure of Model 1.1 (top graph) and Model 2.1 (bottom graph). The names of the features 

that obtained higher weights are also indicated in the figure. As previously discussed, the 

feature weights were computed as the average over the values assigned by the various GPR 

models with ARD-SE kernel built in the LOO-CV method. The training data available in Dataset 

1 and Dataset 2 (relative to Phase 1) was used to initialise the hyper-parameters.  
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Figure 6.6 Overall feature weights assigned by the LOO-CV method for Model 1.1 (top) 
and Model 2.1 (bottom) relative to Phase 1 of the experiment. 

The above two graphs indicate that the models assigned different weights to the features 

depending on the output variable to predict (i.e. the semi-finish DoC for Model 1.1 and the 

final DoC for Model 2.1). Model 1.1 appeared to be more sensitive to features extracted from 

VIB1 signal, with the top two being VIB1.RES.RMS.P and VIB1.ENV.RMS (ref. to Section 5.4 

for the feature names), whereas Model 2.1 assigned higher weights to features extracted 

from AE signals, such as AE.RMS.V and AE.RMS.Ku. Both models identified the CutDur feature 

(duration of the cutting cycle) to be in the top three (first for Model 2.1), which was 

consistent with expectations. Moreover, the majority of the selected features came from the 

time-domain analysis rather than the frequency-domain. 

At the end of the training process, the features were sorted according to their weights and a 

threshold value of 0.001 was applied for the selection. Table 6.2 summarises all the selected 

features (sorted by relevance) for each model, indicating their weight value, index and name. 

The selection method identified 19 features for Model 1.1 and 17 features for Model 2.1 as 

relevant to consider for further analysis.  
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Table 6.2 Signal features selected by the LOO-CV method for the experimental Phase 1. 

 Dataset 1 Phase1 (Model 1.1) Dataset 2 Phase 1 (Model 2.1) 

No Normalised 
Weight Index Feature Name Normalised 

Weight Index Feature Name 

1 0.419 63 VIB1.RES.RMS.P 0.417 3 CutDur 
2 0.139 31 VIB1.ENV.RMS 0.304 81 AE.RMS.V 
3 0.118 3 CutDur 0.181 83 AE.RMS.Ku 
4 0.075 34 VIB1.ENV.Ku 0.031 215 AE.BP3.STBP 
5 0.074 82 AE.RMS.Sk 0.014 77 AE.Ku 
6 0.044 114 PWR.LPF.TP 0.008 194 AE.PSD.STBP 
7 0.031 113 PWR.LPF.P 0.008 209 AE.BP2.RSPB 
8 0.024 108 PWR.LPF.M 0.007 59 VIB1.RES.RMS.M 
9 0.024 182 VIB2.RES.BP.MBP 0.005 113 PWR.LPF.P 

10 0.014 187 VIB2.RES.BP.STBP 0.004 1 THCount 
11 0.012 65 VIB1.RES.RMS.CF 0.003 138 VIB1.PSD.THBP 
12 0.006 44 VIB2.ENV.TP 0.003 74 AE.RMS 
13 0.004 227 PWR.BP.KuBP 0.003 208 AE.BP2.STBP 
14 0.004 83 AE.RMS.Ku 0.002 46 VIB1.RES.RMS 
15 0.002 40 VIB2.ENV.V 0.002 110 PWR.LPF.V 
16 0.002 30 VIB1.ENV.M 0.001 43 VIB2.ENV.P 
17 0.001 109 PWR.LPF.RMS 0.001 195 AE.PSD.RSPB 
18 0.001 225 PWR.BP.VBP    
19 0.001 195 AE.PSD.RSPB    

As previously noted, the LOO-CV approach used for training the GPR models provides also an 

accurate indication of their generalisation performance, since each sample of the dataset 

gets a prediction when it is left out for testing. This means that at the end of the procedure, 

all the samples will have a predicted value and the overall performance of the LOO-CV model 

is measured in terms of the Mean Squared Error (MSE) of such predictions with respect to 

the corresponding (true) target values, referred to as the Loss of the regression model. In 

order to assess the effectiveness of the selection method, the entire procedure was repeated 

for GPR models trained on the same dataset, but this time using only the selected features. 

A SE kernel (defined in Eq. (A.3)) was chosen for these GPR models to speed up the training 

phase, since there was no need to assign different weights to the (already) selected features. 

The results are shown in Figure 6.7, in terms of box plots of the prediction errors, comparing 

the two versions (all features vs. selected features) of each respective model: Model 1.1 (left 

graph) and Model 2.1 (right graph).  
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Figure 6.7 Box plot of the LOO-CV prediction errors of Model 1.1 (left) and Model 2.1 
(right) comparing between models using all the features and only the selected ones. 

The comparison results show that using only the selected features to train the GPR models 

reduced the prediction error range in both cases: Model 1.1 reduced its Loss value from 0.007 

(all features) to 0.003 (selected features) and the Loss of Model 2.1 decreased from 0.005 

(all features) to 0.003 (selected features). This confirmed the purpose of the proposed 

feature selection method in identifying relevant signal features that allowed to improve both 

training time and prediction accuracy of the models. 

It is important to observe that the targets to predict by all models of Dataset 2 consisted in 

the process output variables relative to the second cut of every hole, i.e. the actual 

countersink depths machined during the second cutting cycle, as shown in Figure 6.5. These 

differed from the final DoC values measured from the inspection camera, which were used 

to compute the final depth errors illustrated in Figure 6.3. 

6.3.2 Experimental Phase 2: Panels P5-P7 

This sub-section presents the feature selection results of the LOO-CV procedure relative to 

Phase 2 of the experiment. Similar to Phase 1, the two GPR models with ARD-SE kernel built 

during Phase 2 assigned different weights to the features based on their contribution in the 

prediction of the output targets. Figure 6.8 illustrates the overall feature weights assigned by 

Model 1.2 (top graph) and Model 2.2 (bottom graph) as well as a few names of those with 

higher values. In Phase 2, the features of VIB3 signal were included into the initial feature 

set, increasing the total number of features from 230 (Phase 1) to 294. 
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Figure 6.8 Overall feature weights assigned by the LOO-CV method for Model 1.2 (top) 
and Model 2.2 (bottom) relative to Phase 2 of the experiment. 

Again, given the differences in the output targets, the two GPR models assigned different 

weights to the features. Model 1.2 identified THCount (Tool Hole Counter), as the most 

relevant feature, followed by VIB1.ENV.TP and PWR.LPF.TP, whereas for Model 2.2 the top 

three features included CutDur, VIB1.RES.V and AE.BP2.STBP. Both models assigned higher 

weights to features extracted from the time-domain analysis of the collected signals.  

Note that the THCount feature was introduced to capture the linear (decreasing) trend 

observed in the final DoC values (ref. to Figure 6.3) caused by the progressive tool wear with 

the number of cuts.  Such a trend was not visible in the semi-finish DoC data shown in Figure 

6.1 due to the Gaussian Perturbation added to the semi-finish target, however, the large 

value of the THCount weight in Model 1.2 suggested that this trend was present when 

considering the data of the last 3 panels separately. 

All the selected features obtained at the end of the training procedure during Phase 2 of the 

experiment are summarised in Table 6.3. The normalised weight value used for ranking the 

features, their index and name are also indicated in the table. The selection method (using 
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the same threshold value as in Phase 1) identified 28 relevant signal features for Model 1.2 

and 26 signal features for Model 2.2. 

Table 6.3 Signal features selected by the LOO-CV method for the experimental Phase 2. 

 Dataset 1 Phase 2 (Model 1.2) Dataset 2 Phase 2 (Model 2.2) 

No Normalised 
Weight Index Feature Name Normalised 

Weight Index Feature Name 

1 0.250 1 THCount 0.527 3 CutDur 
2 0.195 49 VIB1.ENV.TP 0.155 68 VIB1.RES.V 
3 0.172 149 PWR.LPF.TP 0.062 272 AE.BP2.STBP 
4 0.092 77 VIB2.RES.Rng 0.055 116 AE.RMS.V 
5 0.079 144 PWR.LPF.RMS 0.031 62 VIB3.ENV.Sk 
6 0.079 8 VIB1.Rng 0.023 97 VIB2.RES.RMS.Ku 
7 0.032 87 VIB1.RES.RMS.V 0.020 95 VIB2.RES.RMS.V 
8 0.021 63 VIB3.ENV.Ku 0.012 79 VIB3.RES.RMS 
9 0.012 95 VIB2.RES.RMS.V 0.012 45 VIB1.ENV.V 

10 0.011 76 VIB2.RES.Ku 0.011 160 PWR.RMS.V 
11 0.009 120 AE.RMS.TP 0.011 153 PWR.TFF.V 
12 0.009 98 VIB2.RES.RMS.P 0.011 279 AE.BP3.STBP 
13 0.008 21 VIB3.CF 0.011 64 VIB3.ENV.P 
14 0.004 6 VIB1.Sk 0.009 148 PWR.LPF.P 
15 0.002 41 VIB3.RMS.TP 0.007 106 VIB3.RES.RMS.P 
16 0.002 148 PWR.LPF.P 0.005 66 VIB3.ENV.CF 
17 0.002 75 VIB2.RES.Sk 0.005 86 VIB1.RES.RMS.M 
18 0.002 71 VIB1.RES.Rng 0.005 258 AE.PSD.STBP 
19 0.002 43 VIB1.ENV.M 0.005 16 VIB3.RMS 
20 0.002 134 AE.BPF.RMS.CF 0.003 124 AE.BPF.Sk 
21 0.002 244 VIB2.RES.BP.STBP 0.002 112 AE.Ku 
22 0.001 288 PWR.BP.MBP 0.002 98 VIB2.RES.RMS.P 
23 0.001 181 VIB2.PSD.THBP 0.002 271 AE.BP2.PBP 
24 0.001 239 VIB2.RES.BP.MBP 0.002 244 VIB2.RES.BP.STBP 
25 0.001 126 AE.BPF.Rng 0.001 61 VIB3.ENV.V 
26 0.001 47 VIB1.ENV.Ku 0.001 125 AE.BPF.Ku 
27 0.001 66 VIB3.ENV.CF    
28 0.001 145 PWR.LPF.V    

Following the same analysis presented for Phase 1, the LOO-CV procedure was repeated for 

the datasets with the reduced feature subsets, training two GPR models with SE kernel and 

then comparing their performance with the original ones using all the features. Figure 6.9 

presents the results in terms of the prediction errors (illustrated as a box plot) obtained by 

both versions of Model 1.2 (left graph) and Model 2.2 (right graph). 
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Figure 6.9 Box plot of the LOO-CV prediction error of Model 1.2 (left) and Model 2.2 
(right) comparing between models using all the features and only the selected ones. 

The comparison results, once again, confirmed the successful application of the proposed 

feature selection method: both models showed higher prediction accuracies when using only 

the selected features. In particular, Model 1.2 presented a big improvement with Loss values 

going from 0.008 to 0.002, which resulted in prediction errors within the range [-0.1 0.1]. 

Model 2.2, on the other side, reduced its Loss from 0.007 to 0.004. 

6.3.3 Experimental Phase 1&2: Panels P1-P7 

To conclude the discussion of the feature selection method, this last sub-section presents the 

results obtained by the LOO-CV method considering all the panels machined in the 

experiment (during both phases). The two datasets used to build the respective GPR models 

are those discussed in Section 6.2 (ref. to Table 6.1 for their sizes), i.e. Dataset 1 for Model 1 

and Dataset 2 for Model 2. As previously noted, Dataset 2 ignored all the features of VIB3 

signal for consistency with Dataset 1. Given the large size of the two datasets, the overall 

LOO-CV procedure of building 306 GPR models with ARD-SE kernel, every one of each 

optimises the 230 feature weights during training, required a considerable amount of time 

(1h to 1.5h), which is not acceptable in production environment. However, the purpose of 

the offline tests presented here was to assess the feature selection method with the best 

possible generalisation properties obtained by the LOO-CV method. The overall feature 

weights assigned by Model 1 (top graph) and Model 2 (bottom graph) are shown in Figure 

6.10 with indication of the names of the features that obtained higher weight values. 
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Figure 6.10 Overall feature weights assigned by the LOO-CV method for Model 1 (top) and 
Model 2 (bottom) relative to all the panels considered in the experiment. 

The above two graphs indicate that Model 1 assigned higher weights to features extracted 

from VIB signals, such as VIB2.RES.Ku and VIB1.ENV.RMS, followed by PWR.LPF.P and 

AE.BP1.STBP, whereas Model 2 identified THCount as the most relevant one, followed by 

features extracted from AE signals (AE.RMS.V and AE.BP3.STBP) and CutDur. Note that both 

models agreed with THCount and CutDur, although in Model 1 they had lower values, to be 

included into the selected features. This was consistent with the previous results obtained 

when treating Phase 1 and Phase 2 separately. As expected, Model 2 assigned a high weight 

to the THCount feature due to the linear decreasing trend observed in the (actual) final depth 

data shown in Figure 6.5.  

All the selected features obtained at the end of the training procedure during both phases of 

the experiment (considering all seven panels) are summarised in Table 6.4. Again, the weight 

values, indices and names of the features for both models are shown in the table. The 

number of signal features selected from the method was 19 for Model 1 and 12 for Model 2. 
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Table 6.4 Signal features selected by the LOO-CV method for all panels of the experiment. 

 Dataset 1 – All Panels (Model 1) Dataset 2 – All Panels (Model 2) 

No Normalised 
Weight Index Feature Name Normalised 

Weight Index Feature Name 

1 0.245 55 VIB2.RES.Ku 0.319 1 THCount 
2 0.245 31 VIB1.ENV.RMS 0.211 81 AE.RMS.V 
3 0.119 113 PWR.LPF.P 0.173 215 AE.BP3.STBP 
4 0.107 201 AE.BP1.STBP 0.162 3 CutDur 
5 0.062 114 PWR.LPF.TP 0.044 208 AE.BP2.STBP 
6 0.061 57 VIB2.RES.CF 0.027 84 AE.RMS.P 
7 0.049 3 CutDur 0.022 83 AE.RMS.Ku 
8 0.031 1 THCount 0.015 60 VIB1.RES.RMS.V 
9 0.024 94 AE.BPF.RMS.V 0.008 32 VIB1.ENV.V 

10 0.020 82 AE.RMS.Sk 0.008 113 PWR.LPF.P 
11 0.010 109 PWR.LPF.RMS 0.005 77 AE.Ku 
12 0.008 67 VIB2.RES.RMS.M 0.003 35 VIB1.ENV.P 
13 0.003 229 PWR.BP.STBP    
14 0.003 224 PWR.BP.MBP    
15 0.002 2 HPos    
16 0.002 51 VIB1.RES.CF    
17 0.002 34 VIB1.ENV.Ku    
18 0.002 49 VIB1.RES.Ku    
19 0.001 106 PWR.TP    

Finally, Figure 6.11 presents the comparison results in terms of the prediction errors of the 

LOO-CV procedure between the two versions (all features vs. selected features) of Model 1 

(left graph) and Model 2 (right graph). 

 

Figure 6.11 Box plot of the LOO-CV prediction error of Model 1 (left) and Model 2 (right) 
comparing between models using all the features and only the selected ones. 
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Similar to previous results, both models showed an improvement in the prediction accuracy 

when using only the selected features. The Loss of Model 1 decreased from 0.005 (all 

features) to 0.003 (selected features), whereas Model 2 already had achieved good results 

and it reduced slightly its Loss value from 0.0028 (all features) to 0.0026 (selected features) 

by removing a few of the outliners illustrated with red crosses in Figure 6.11. In addition, the 

overall LOO-CV procedure of training 306 GPR models (SE kernel) with the reduced feature 

subset took considerably less time (approximately 1 minute vs. 1.5 hours) compared to the 

case when using all the features. 

6.4 Regression Results 

This section provides more insights into the results obtained by the regression tests 

conducted in this work. The feature selection method proposed in the previous section 

proved to be effective in the identification of relevant signal features with respect to the 

model’s output variable. This allowed to achieve higher prediction accuracies and faster 

training times for both the considered models: Model 1 and Model 2. Therefore, the 

regression tests discussed in this section will use the results obtained from the feature 

selection step and consider GPR models with SE kernel using only the selected features 

summarised in Table 6.4 for Model 1 and Model 2, respectively. 

As previously mentioned, the LOO-CV method is an extreme case of the k-fold CV approach 

discussed in Section 2.2.5.2, where 𝑘𝑘 = 𝑁𝑁, the number of samples (instances) in the dataset. 

It provides the best estimate of the generalisation performance of the model, since every 

sample is tested using the maximum training set possible. The results obtained by this 

method in terms of box plots of the prediction errors were briefly presented in Section 6.3, 

in which the models trained with the reduced feature subset were compared to the ‘all 

features’ case. Here, the regression results are discussed in more detail in relation to the 

accuracy of the GPR models. Figure 6.12 illustrates the predicted values (by the blue line), 

the true depth targets (by the red line) and the prediction errors (by the black dashed line), 

calculated as the difference between true and prediction values. The top graph includes the 

prediction results obtained by Model 1, whereas those of Model 2 are shown in the bottom 

graph. The LOO-CV procedure used GPR models with SE kernel (GPR-SE) trained on all the 

available data. The hyper-parameters (𝜎𝜎𝑓𝑓 , ℓ and 𝜎𝜎𝑛𝑛) of the GPR models were initialised based 

on the training data, as discussed in the beginning of Section 6.3. The reduced feature subset 

was applied to speed-up the overall training time and the feature values were standardised. 
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Figure 6.12 Prediction results of LOO-CV method relative to Model 1 (top) and Model 2 
(bottom) using a GPR model with SE kernel trained on the reduced feature subset. 

The histograms (with a Gaussian fit) of the prediction errors obtained by Model 1 (left graph) 

and Model 2 (right graph) are illustrated in Figure 6.13.  

 

Figure 6.13 Histogram of LOO-CV prediction errors of Model 1 (left) and Model 2 (right). 
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The LOO-CV results of Figure 6.12 and Figure 6.13 indicated a good ability of the proposed 

GPR models to provide accurate depth prediction values. The prediction error of Model 1 

(relative to the Semi-Finish DoC values) was within the [-0.2 0.2] mm interval with the 

majority of errors laying in the range [-0.1 0.1] mm. The overall model Loss (i.e. MSE of the 

predictions) was 0.0033. Model 2, on the other side, showed slightly better prediction 

accuracies with the error values (relative to the Final depths) within the [-0.15 0.15] mm 

interval. The majority of prediction errors belonged to the range [-0.05 0.05] mm and the 

overall model Loss was 0.0026. 

To better understand the potential of a GPR model and fully exploit the power of its 

probabilistic framework, the following test was performed. First, 44 data points (equivalent 

to one panel of data) were randomly chosen from the entire dataset and set apart for testing. 

Then, a GPR-SE model was trained on the remaining dataset (equivalent to six panels of data). 

The model used the reduced feature subset with standardised values and the hyper-

parameters were initialised based on the training set, i.e. the original dataset excluding the 

extracted 44 testing points. After the training phase was finished, the model provided an 

expected predicted output (with a mean value and its corresponding variance) for each 

testing point presented in input (ref. to Section A.1 for the details of GPR). This extra 

information of the variance represents a measure of the confidence of the model, given the 

current training set, and it was used to draw error bars in the output value. 

An example of the results obtained by the above test for Model 1 (using the data in Dataset 

1) is illustrated in Figure 6.14. The shaded region represents the 95% CI (Confidence Interval) 

of the prediction (mean) value indicated by the blue crosses. The true depth observations 

(relative to the semi-finish DoC values) are indicated by the red crosses. The 95% CI was 

calculated as the interval of two times the standard deviation (i.e. the square root of the 

predicted variance) around the mean value. Note that (almost) all the testing points were 

located inside the shaded region meaning that the model accurately identified the 95% CI.  

The prediction errors together with the corresponding standard deviations provided by the 

GPR model are shown in Figure 6.15. The graph on the left hand side plots both the prediction 

errors (red line) and standard deviation values (denoted with std and indicated by the blue 

line) for each input point. On the right hand side, it is illustrated the histogram (with Gaussian 

fit) of the obtained prediction errors. All the std values that define the width of the 95% CI 

were located in a small range of data, between 0.005 and 0.008 mm. This indicated that the 

model was highly confident in the accuracy of the output value (depth prediction) due to the 
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fact that it had probably seen similar input data (with respect to the multivariate Gaussian 

input space) during the training phase. The model Loss value was 0.0024. 

 

Figure 6.14 Prediction results of a GPR-SE model for 44 randomly selected testing points 
from Dataset 1 (Model 1). 

 

Figure 6.15 Test results for Model 1: prediction errors and standard deviation values 
(left); histogram of prediction errors (right). 

Similar results were observed in the case of Model 2 when running the test with the data 

available in Dataset 2, as illustrated in Figure 6.16. The prediction values are indicated by the 

blue crosses, the true target values (relative to the second cut depths) are shown with the 

red crosses and the shaded region represents the 95% CI of the predictions. Note that the 
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model achieved good prediction accuracies and identified again the correct region where 

most of the target values were located. 

 

Figure 6.16 Prediction results of a GPR-SE model for 44 randomly selected testing points 
from Dataset 2 (Model 2). 

Figure 6.17 illustrates the prediction errors and the corresponding std values (left graph), as 

well as the histogram of the prediction errors (right graph). Similarly, most std values were 

located in a small range around 0.05 mm (with a few spikes close to 0.1 mm), indicating the 

high confidence of the model in the prediction value. The model Loss was 0.0031. 

 

Figure 6.17 Test results for Model 2: prediction errors and standard deviation values 
(left); histogram of prediction errors (right). 
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Note that the prediction std values provide an indication of the model’s confidence in the 

output value, given the current dataset used during training. This presents a big advantage 

of the GPR models (and the probabilistic framework in general) over other ML techniques, 

when dealing with uncertain data. For the problem considered here, this additional 

information of the predictive variance could be applied to drive the decision on whether to 

use the depth prediction or the direct camera measurement, increasing therefore the 

reliability of the model. Moreover, it is useful to mention that the variance estimation of a 

testing instance depends on the individual instance under test and the current training set. 

In particular, if the instance is far away (with respect to some metric measure) from the 

multivariate Gaussian distribution of the training set, then the model will output a large std 

value, suggesting a higher level of uncertainty in the prediction. Further information on the 

matter is provided in the next chapter (ref. to Section 7.1). 

In conclusion, the results obtained by the LOO-CV method confirmed the ability of the 

proposed GPR models to accurately predict the countersink depth based exclusively on the 

information provided by the sensor signals during machining. The application of a 

probabilistic framework that handles both the selection of the most relevant features and 

the uncertainty estimation in the prediction values (95% CI region), helped to considerably 

improve the reliability and accuracy of the process models. 

6.5 Chapter Summary 

This chapter described the details and discussed the result of the regression tests performed 

on the data extracted from the experiment presented in Chapter 5. The relatively high 

number of training data as well as the depth variability introduced by the Gaussian 

perturbation added to the depth targets allowed the system to be trained with a variety of 

examples of sensor signals in a (relatively) wide range of depth data. The use of a probabilistic 

learning approach was investigated to test the prediction performance of the proposed 

process models. The additional information provided by the probabilistic framework 

regarding the prediction variance, was identified as a potential measure of the model’s 

confidence. This allowed error bars to be drawn, resulting in more reliable process models. 

The feature selection step was integrated into the training phase of the models, 

implementing an embedded approach. The obtained results showed a good ability of the 

models to identify most relevant features and provide predictions of the true countersink 

depth value within an acceptable level of tolerance. 
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7 MULTI-STEP LEARNING PROCEDURE 

The results of Chapter 6 indicated a good ability of the proposed process models to provide 

accurate predictions of the observed countersink depth values. This chapter moves on to 

discuss how a multi-step learning procedure can be applied to further exploit the capabilities 

of the monitoring system designed by this work. First, a way to assess the confidence of a 

GPR model is suggested and analysed in Section 7.1. Then, the multi-step learning method 

for the particular case study of robotic countersinking process is described in Section 7.2. An 

algorithm that simulates the in-process execution of the proposed system is presented in 

Section 7.3. Finally, the results of the simulation tests and further considerations on the 

learning approach are discussed in sections 7.4 and 7.5, respectively. 

7.1 Model Confidence Assessment 

At the end of Section 6.4, it was noted that the prediction standard deviation (denoted by 

std) expresses a measure of the model’s confidence in the predicted output. This section 

explores the concept in more detail, analysing and discussing how the predictive variance of 

a GPR model is affected by the size of the dataset and the new input data. 

In order to predict new testing inputs, a GPR model computes the covariance matrix of all 

pairs of training and testing inputs, considering a joint Gaussian distribution (ref. to Section 

A.1 for further details). In particular, with reference to Eq. (A.7), the calculation of the 

predictive covariance of the testing inputs depends only on the covariance matrices (of both 

training and testing input data), not the observations (output targets). Therefore, the choice 

of the covariance function used for the computation of these matrices will affect the 

predictive covariance of the GPR model. The SE kernel function adopted in this study (ref. to 

Eq.(A.3)) computes the covariance of a pair of input instances (i.e. feature vectors) in terms 

of their distance (Euclidean) in the d-dimensional feature space. Thus, inputs that are close 

to each other in the feature space will be highly correlated, while those far away 

uncorrelated. This means that new testing inputs far away from the multivariate Gaussian 

distribution defined by the training data will have higher std values, indicating that the model 

is not confident in the predicted outputs. 

To illustrate how the model confidence is affected by the distance of the testing inputs, the 

following test was conducted. A GPR-SE model, similar to those considered in Section 6.4, 
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was trained using the input data of the first two panels P1 and P2 (i.e. 88 data points in total) 

and then, predictions of the remaining instances (relative to the panels P3-P7) were 

obtained. The test was performed in both datasets described in Section 6.2 and the results 

obtained are shown in the following two figures (Figure 7.1 and Figure 7.2). 

 

Figure 7.1 Prediction results obtained by using 88 training points (in order of collection): 
Model 1 (top) and Model 2 (bottom). 

 

Figure 7.2 Prediction error and std values obtained by using 88 training points (in order of 
collection): Model 1 (left) and Model 2 (right). 
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Figure 7.1 presents the prediction results of Model 1 (top graph) and Model 2 (bottom graph): 

the predicted values are indicated by the blue crosses, the true outputs (i.e. the semi-finish 

DoC values obtained by the inspection camera) are shown with the red crosses and the 

shaded region represents the 95% CI of the predictions. The prediction errors (red line) and 

the corresponding standard deviations (std, shown by a blue line) of all the testing points are 

highlighted in Figure 7.2. The results of Model 1 are shown in the left graph and those of 

Model 2 in the right graph. The corresponding panel numbers of the testing instances are 

also indicated in both figures by the dashed vertical lines. The data is presented in order of 

collection, starting from the first hole of P3 (at index 0) to the last hole of P7 (at index 218). 

A first examination of the figures reveals a continual growth of the shaded region of 95% CI 

with the number of holes from P3 to P7, indicating that the uncertainty in the predictions 

was continuously increasing. This is emphasised by the prediction std values illustrated in 

Figure 7.2, which showed a rise from an initial level of approximately 0.1 to 0.25 mm for 

Model 1 and from 0.06 to 0.2 mm for Model 2. The prediction errors were also getting larger 

in magnitude, especially for the last 2-3 panels, showing values in the range [-0.4 0.25] mm 

for Model 1 and [-0.5 0.2] mm for Model 2. Surprisingly, Model 2 appeared to provide a 

constant prediction value (with very high level of uncertainty) for all the depth values of 

panels P5, P6 and P7, failing therefore to accurately predict them. 

This diversity between the performances of the two models can be explained by a closer 

examination of the patterns of sensor signals and the selected features of Phase1 and Phase 

2 of the validation experiment described in Section 5.2. The two phases were performed in 

different time frames (and conditions), which caused slight variations in the observed signal 

patters. In particular, as previously mentioned (ref. to Section 5.3.2), a new segmentation 

method based on VIB1 data was necessary for Phase 2 due to the higher noise levels 

presented in the AE signals. In fact, this was also reflected in the next step of feature selection 

(ref. to Section 6.3). While most selected features of Model 2.1 came from AE signals, those 

of Model 2.2 were from the other sensor sources. Then, when considering all the panels for 

Model 2, still half of the selected features were related to AE signals (ref. to Table 6.4) due 

to the higher number of instances (cutting examples) considered in Phase 1. In the test 

conducted here, the GPR models used a SE kernel with the reduced feature set, therefore, 

the feature vectors collected from Phase 2 would have slightly different values (at least in 

half of the dimensions for Model 2) from those of Phase 1 used for training (i.e. panels P1 

and P2). In other words, the testing instances coming from P5-P7 were far away (in terms of 
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the Euclidean distance in the feature space) from the training data of P1 and P2. For Model 

2 in particular, the instances were far enough away to be uncorrelated. This explains the rapid 

increase of the predictions uncertainty at the beginning of P5: the model simply had not 

enough information to confidently predict the depth values. 

A further examination of the figures reveals also a gradual increase of the prediction std 

values in both models with the number of testing instances form P3 to P7. This is due to 

THCount feature (selected by both models), which counts the number of holes the cutting 

tool has machined so far. It was introduced into the feature space after observation of the 

trend in the final depth data (ref. to Section 6.2.2). Since the same tool was used for all the 

panels, THCount gradually incremented its value as more holes were machined. 

Increasing the number of training points to 180 and repeating the above test for both models 

yielded to the results illustrated in Figure 7.3 and Figure 7.4. The same notation of the 

previous figures is maintained to facilitate the comparison. Note that the hole number 180 

refers to Hole 4 of P5 for Model 1 (Dataset 1 of Phase 1 included 176 holes) and Hole 6 of P5 

for Model 2 (Dataset 2 of Phase 1 included 174 holes). 

 

Figure 7.3 Prediction results obtained by using 180 training points (in order of collection): 
Model 1 (top) and Model 2 (bottom). 
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Figure 7.4 Prediction error and std values obtained using 180 training points (in order of 
collection): Model 1 (left) and Model 2 (right). 

From the comparison of the two cases (80 vs. 180 training points) the following emerged: 

• The inclusion of the first four data points (Model 1) or six data points (Model 2) from 

panel P5 had considerably improved the performance of the models with respect to 

the data of the experimental Phase 2.  

• The shaded region of 95% CI presented a reduction in size in both models, indicating 

that the information gained from the first few holes of P5, helped to lower the 

uncertainty levels for the prediction of the remaining data of P5, P6 and P7. 

• In both models the prediction errors and std values were reduced. As highlighted in 

Figure 7.4, the prediction errors were in the range [-0.25 0.15] mm for Model 1 and 

the range [-0.35 0.25] mm for Model 2, whereas the prediction std was within the 

range [0.06 0.12] mm for Model 1 and [0.05 0.2] mm for Model 2. 

• Model 1 showed significant improvement of the prediction accuracy at (almost) 

acceptable levels, especially for the remaining data of P5. Note that Model 2 had 

gained enough information from the training data to provide predictions of the 

remaining depths of P5-P7. The accuracy was still not as good as Model 1, however it 

had improved considerably from the previous case. 

• The gradual increase of the std values was still observed in the data of both models 

(although with a lower slope) due to the THCount feature as previously discussed. 

In order to show how the confidence of the model is affected by the size of training set, the 

following test was performed. A subset of 44 randomly selected instances (one panel 

equivalent) from the entire dataset was left out of the analysis for testing, as a validation set. 
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Then, a series of GPR-SE models were trained on the remaining data, incrementing the 

training size by one instance every time, starting from a pre-set minimum up to the maximum 

available (i.e. the equivalent of six panels). The prediction accuracy of all the models was 

assessed always on the validation set (i.e. the data previously excluded from the dataset). 

The random selection of the validation set, ensures that the obtained accuracies of the 

models are minimally affected by the testing instances, as discussed in the previous test (i.e. 

their distances in the feature space from the training data). 

The results of the above test for both Model 1 (top graph) and Model 2 (bottom graph) are 

shown in Figure 7.5. A minimum dataset of 22 points (half panel equivalent) was set as the 

initial dataset size. The results are expressed in terms of the model loss calculated as the MSE 

of the predictions (indicated by the red line) and the predicted std (indicated by the blue line) 

computed as the average over the 44 std values obtained from the testing instances. 

 

Figure 7.5 Assessment of GPR-SE model confidence: Model 1 (top) and Model 2 (bottom). 
The model loss and std are computed in a validation set of 44 randomly selected points. 

It is apparent from the figure that incrementing the size of training dataset would reduce the 

amplitude of the model loss and the average prediction variance in both models considered 

in the test. The prediction std values presented initial peaks of approximately 0.29 mm for 

Model 1 and 0.28 mm for Model 2 when the dataset consisted of just 22 training data and 
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then, their values gradually decreased (although Model 2 showed a few initial oscillations) as 

more training instances were included in the dataset. The final levels of 0.06 and 0.05 mm 

for Model 1 and Model 2, respectively, corresponded at the maximum training size (six panels 

equivalent). Similar results were observed for the model loss, which values after a few initial 

oscillations, gradually decreased from a maximum of 0.04 and 0.036 to a minimum of 0.003 

and 0.002 for Model 1 and Model 2, respectively. 

The results shown in Figure 7.5 are an indication of the fact that both the model accuracy 

and the confidence in the predicted values increase as the size of the dataset increases. 

Moreover, it is possible to infer a minimum size of the dataset in order to obtain accurate 

prediction with high confidence. For the test presented here, this minimum size would be in 

the range 120 to 160 for Model 1 and 150 to 190 for Model 2, resulting in prediction std 

values of approximately 0.06 and 0.05 mm for Model 1 and Model 2, respectively.  

In summary, the first test presented in this section showed how the model confidence 

depends on the testing instances, in particular on their Euclidian distance from the training 

data in the feature input space. It was observed from the experimental data that both models 

presented higher levels of confidence (i.e. lower std values) for the prediction of new testing 

instances close to those used for training, whereas for instances far away, the models showed 

lower levels of confidence (i.e. higher uncertainty) in the predicted outputs. The second test 

considered in this section illustrated how the model confidence changes with the size of the 

training data. It was shown that the confidence of both models in the prediction of a fixed-

size and randomly selected validation set gradually increased as more data were included in 

the training set. 

7.2 Proposed Learning Procedure 

The learning method discussed so far in this thesis has considered an offline analysis of the 

monitoring system designed by this work using all the available experimental data to assess 

the performance (and confidence) of the process models. This section proposes an online 

version of the system to be used in the robotic countersinking process described in Chapter 

3. In particular, this online method applies the multi-step approach presented in Section 4.2 

into the particular case study of this work. 

The diagram of the multi-step learning procedure is shown in Figure 7.6. The legend of the 

diagram is indicated in Table 7.1. 
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Figure 7.6 Diagram of the Multi-Step Learning Procedure. 

Table 7.1 Legend of the Multi-Step Learning Diagram. 

𝑠𝑠𝑥𝑥 Sensor signals acquired during the first and second cuts 

𝑑𝑑𝑥𝑥 Nominal depth targets for the semi-finish and finish level 

𝑁𝑁(0,𝜎𝜎𝑝𝑝2) Gaussian perturbation programmatically added to target depth 

𝑇𝑇𝑥𝑥 Actual target depth sent to the spindle drive controller 

𝐷𝐷𝑥𝑥 True depth value as measured by the camera 

𝐷𝐷�𝑥𝑥 Model’s depth prediction (mean value) 

𝜎𝜎�𝑥𝑥 Model’s prediction uncertainty (std value) 

𝑒𝑒𝑥𝑥 True depth error (computed from depth measurement) 

𝑒̂𝑒𝑥𝑥 Estimated depth error (computed from depth prediction) 

𝑇𝑇ℎ𝑥𝑥 Uncertainty threshold value 

𝑇𝑇𝑇𝑇𝑇𝑇 Process depth tolerance value 
(*) 𝑥𝑥 ∈ {1, 2} refers to the cutting cycle of a single hole (first and second cut). 
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With reference to Figure 7.6, the proposed learning method consists of the following steps: 

1. The process starts by setting a target depth (𝑇𝑇1) to the spindle drive controller. The 

first cut is performed to a semi-finish level ( 𝑑𝑑1 ) plus the additional Gaussian 

perturbation 𝑁𝑁(0,𝜎𝜎𝑝𝑝2) with mean 0 and standard deviation 𝜎𝜎𝑝𝑝. 

2. Sensor signals (𝑠𝑠1) are acquired during the cutting process and the GPR model (Model 

1) provides a prediction mean (𝐷𝐷�1 ) and standard deviation (𝜎𝜎�1 ) of the obtained 

countersink depth, given the current dataset. A minimum dataset is required before 

the model can start making predictions. This is set in advance. 

3. Based on 𝜎𝜎�1, it is decided whether or not to obtain a direct depth measurement from 

the inspection camera. If 𝜎𝜎�1 is greater than a pre-set uncertainty threshold (𝑇𝑇ℎ1), then 

the model confidence is low (ref. to Section 7.1), indicating that 𝐷𝐷�1 is likely to be wrong 

due to the high uncertainty levels, therefore a direct measure (𝐷𝐷1 ) is required. 

Whereas lower values of 𝜎𝜎�1 indicate higher confidence in 𝐷𝐷�1, thus there is no need for 

the inspection camera. Every time a direct measurement is obtained, the pair (𝑠𝑠1,𝐷𝐷1) 

is included in the current dataset of the GPR model. 

4. A depth error value (𝑒̂𝑒1 or 𝑒𝑒1) is calculated from 𝐷𝐷�1 or 𝐷𝐷1 depending on the result of 

the previous check on 𝜎𝜎�1, i.e. whether the inspection was performed or not.  

5. The target depth of the second cut (𝑇𝑇2) is then adjusted by the above depth error. The 

second cut is performed to the adjusted finish level plus the Gaussian perturbation 

𝑁𝑁(0,𝜎𝜎𝑝𝑝2) added in the first cut. 

6. The above steps 2, 3 and 4 are repeated for the second cut, referring to sensor 

signals 𝑠𝑠2, direct measurement 𝐷𝐷2, GPR model (Model 2) with predictions 𝐷𝐷�2 and 𝜎𝜎�2, 

uncertainty threshold 𝑇𝑇ℎ2 and depth error 𝑒̂𝑒2 or 𝑒𝑒2. 

7. A final check on the amplitude of 𝑒̂𝑒2  or 𝑒𝑒2  is performed to ensure it is within the 

process depth tolerance (𝑇𝑇𝑇𝑇𝑇𝑇). The process continues to the next hole if the final check 

is successful, otherwise an option to repeat the second cut (step 5 and 6) is offered 

with the target depth adjusted by the latest true depth error 𝑒𝑒2.  

Note that the diagram in Figure 7.6 includes the possibility of repeating the second cut to 

ensure that the process would reach the desired depth level within the tolerance. In practical 

applications however, more than two steps in the same iteration of the cutting process would 

considerably increase the process cycle time, therefore, in the experiment conducted in this 

study it was decided to perform the second cut only once. The process continued to the next 

hole regardless to the final check result. 



Multi-Step Learning Procedure  126 
 

 
 

The Gaussian perturbation programmatically added to the target depth (of both cuts) was 

included in the process for two main purposes: (i) to provide the depth variability required 

for training of the models online, i.e. during the normal operation of the process (no 

interruptions) and (ii) to simulate large robotic disturbances by exaggerating the current 

process behaviour and obtaining extreme cases of depth errors. 

Following from the diagram shown in Figure 7.6, the true depth value corresponding to the 

first cut can be expressed as (ref. to Table 7.1 for the terms): 

 𝐷𝐷1 = 𝑇𝑇1 + 𝑁𝑁𝑝𝑝1 (7.1) 

Where 𝑁𝑁𝑝𝑝1  represents the noise that process adds to the semi-finish depth. The target depth 

for the first cut (𝑇𝑇1) is defined as: 

 𝑇𝑇1 = 𝑑𝑑1 + 𝑁𝑁�0,𝜎𝜎𝑝𝑝2� (7.2) 

Therefore, substituting Eq. (7.1) to Eq. (7.2) results as follows: 

 𝐷𝐷1 = 𝑑𝑑1 + 𝑁𝑁�0,𝜎𝜎𝑝𝑝2�+ 𝑁𝑁𝑝𝑝1 (7.3) 

From Eq. (7.3) the true depth error of the first cut can be expressed as:  

 𝑒𝑒1 = 𝐷𝐷1 − 𝑑𝑑1 = 𝑁𝑁�0,𝜎𝜎𝑝𝑝2�+ 𝑁𝑁𝑝𝑝1 (7.4) 

For the true depth value of the second cut (𝐷𝐷2) further attention in terms of the error sources 

is required. With reference to the process steps described in Section 5.1, it was mentioned 

that the master robot unclamped the panel after performing the first cut to allow the 

inspection camera to take an image of the machined hole. The robots remained in position 

during the inspection task. Then, the pressure foot was activated again before the second cut 

commenced. This re-clamping process of the pressure foot may introduce errors in the 

process that have not been observed during the first cut. Thus, the true depth of the second 

cut can be expressed as: 

   𝐷𝐷2 = 𝑇𝑇2 + 𝑁𝑁𝑝𝑝2 + 𝑁𝑁𝑟𝑟𝑟𝑟 (7.5) 
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Where 𝑁𝑁𝑟𝑟𝑟𝑟 is the additional noise caused by the re-clamping process and 𝑁𝑁𝑝𝑝2 is the process 

noise added to the final depth, as discussed previously for the first cut. The target depth for 

the second cut (𝑇𝑇2) is given by (ref. to Figure 7.6): 

 𝑇𝑇2 = 𝑑𝑑2 − 𝑒𝑒1 + 𝑁𝑁�0,𝜎𝜎𝑝𝑝2� (7.6) 

Then, substituting Eq. (7.6) and Eq. (7.4) in Eq. (7.5) gives the following expression for 𝐷𝐷2: 

 𝐷𝐷2 = 𝑑𝑑2 + 𝑁𝑁𝑟𝑟𝑟𝑟 + �𝑁𝑁𝑝𝑝2 − 𝑁𝑁𝑝𝑝1� (7.7) 

The re-clamping noise 𝑁𝑁𝑟𝑟𝑟𝑟 can be considered negligible because both robots maintained the 

same position in the 3D Cartesian space during the camera depth inspection. Moreover, the 

errors originated from the movement of the panel were kept at minimum due to the dynamic 

stiffness created by the clamping forces. 

The assumption made by this thesis when presenting the proposed multi-step approach in 

Section 4.2 was in regards to the errors introduced to the output variable by the two steps 

of machining process. It was argued that given the same process iteration, the errors of the 

first step at semi-finish level are of a comparable amount (within negligible variation) of the 

errors of the second step at finish level, which for the case study considered in this work 

means that 𝑁𝑁𝑝𝑝1 ≅ 𝑁𝑁𝑝𝑝2. 

Under the above two assumptions the final true depth of Eq. (7.7) becomes approximately 

equal to the desired final depth target, i.e. 𝐷𝐷2 ≅ 𝑑𝑑2. 

When considering the depth predictions of both cuts rather than the true measured values, 

an additional source of error due to the model predictions needs to be taken into account. 

This model error (𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸) is defined as the difference between the true (𝐷𝐷) and the estimated 

(predicted) depth (𝐷𝐷�), i.e. 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐷𝐷 − 𝐷𝐷�. Following the same steps as above, the estimated 

depth values corresponding to the first cut (𝐷𝐷�1) and the second cut (𝐷𝐷�2) can be expressed as: 

 𝐷𝐷�1 = 𝑑𝑑1 + 𝑁𝑁�0,𝜎𝜎𝑝𝑝2� + 𝑁𝑁𝑝𝑝1 −𝑀𝑀1𝐸𝐸𝐸𝐸𝐸𝐸  (7.8) 

 𝐷𝐷�2 = 𝑑𝑑2 + 𝑁𝑁𝑟𝑟𝑟𝑟 + �𝑁𝑁𝑝𝑝2 − 𝑁𝑁𝑝𝑝1� − �𝑀𝑀2𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑀𝑀1𝐸𝐸𝐸𝐸𝐸𝐸� (7.9) 
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Where 𝑀𝑀1𝐸𝐸𝐸𝐸𝐸𝐸  and  𝑀𝑀2𝐸𝐸𝐸𝐸𝐸𝐸  are the GPR model prediction errors of Model 1 and Model 2, 

respectively. Note that as seen by the previous (offline) analysis performed in this thesis (ref. 

to Sections 6.4 and 7.1), the prediction accuracy of the proposed GPR models improves as 

more training data are collected, therefore driving the model errors close to 0 through 

continual growth of the dataset would revert Eq. (7.9) back to the previous case of the true 

depths of Eq. (7.7), with 𝐷𝐷�2 approximately equal to the desired final level 𝑑𝑑2. 

7.3 In-Process Execution Algorithm 

This section discusses the online version of the multi-step learning procedure illustrated in 

Figure 7.6. The pseudocode of such learning approach is shown in Table 7.2. 

Table 7.2 Pseudocode of the online execution of the multi-step learning procedure. 

 Multi-Step Learning Procedure (In-Process Execution) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Set: min Dataset (DS) size,  min Feature Subset (FS) size and Uncertainty Threshold 
Initialise: DS and FS variables 
Start current iteration of the process 
if current DS size < min DS size then 

Get new input data (feature vector) and observation (direct measure) 
Compute the true depth error (from direct measure) and Update DS 
Adjust target depth and repeat steps 5-6 for the second cut 
Check final depth and Proceed to the next iteration of the process 

else 
Get new input data (feature vector from sensor signals) 
If Update DS = True (new data was added in the previous iteration) then 

Apply feature selection step and Update FS 
Train a new GPR-SE model on current DS and FS 

else 
Use current model to obtain the prediction Mean and Std of new input data 
if Std > Uncertainty Threshold then 

Get new observation (direct measure)  
Compute the true depth error (from direct measure) and Update DS 
Adjust target depth and Repeat from step 10 for the second cut 
Check final depth and Proceed to the next iteration of the process 

else 
Compute the estimated depth error (from Mean prediction) 
Adjust target depth and Repeat from step 10 for the second cut 
Check final depth and Proceed to the next iteration of the process 

end if 
end if 

end if 
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The algorithm starts by setting the model parameters and initialising the variables (lines 1-

2). The current iteration of the process commences in line 3. The lines 4-8 ensure that the 

dataset reaches the minimum size necessary for the GPR models, collecting the camera depth 

measurement after every cut and updating the current dataset. Note that each model builds 

its own dataset, as explained in Section 6.2. Once the minimum dataset is available, the 

learning procedure continues by acquiring the new input data, i.e. the feature vector 

obtained from the sensor signals (line 10).  

The lines 11-13 check whether the current dataset was updated in the previous process 

iteration (i.e. new depth data was added) and if positive, a new model (or re-training) is 

required to include the new information provided by the current (previously updated) 

dataset. The feature selection step is also included as part of the training process using the 

ARD method described in Section 6.3. Since the selected features depend on the current 

dataset, a new selection is necessary. The feature subset is then updated with the newly 

selected features (line 12) and a new GPR-SE model is trained using the current dataset and 

feature subset (line 13).  

In line 15, the current GPR-SE model is used to make a prediction of the new input data 

previously acquired in line 10, providing the prediction mean and standard deviation (std) 

values. The lines 16-20 handle the case when the prediction std value is greater than the pre-

set uncertainty threshold, meaning that the model has low confidence in the prediction 

value. A new depth measurement from the inspection camera is obtained and then the 

corresponding true depth error is added to the current dataset (line 17-18). The depth target 

(finish level) is adjusted and the above steps from the acquisition of a new input data (in line 

10) are repeated for the second cut (line 19), referring to its own current GPR model, dataset 

and feature subset. Note that the current dataset is updated every time a new depth 

measurement is obtained by the inspection camera. 

In the case of the model showing high enough confidence in the prediction value (lines 21-

24), a new depth measurement is not necessary and the prediction mean can be used 

instead. The estimated depth error is computed and the final depth target is adjusted 

accordingly. Note that the current GPR model, dataset and feature subset remain unchanged 

since no new observation (depth measurement) is obtained. After correcting the depth 

target, the second cut starts and the procedure is repeated from step 10 (lines 22-23), similar 

to the previous case in line 19. Before proceeding to the next iteration (i.e. the next hole of 
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the panel), the final depth error (true or estimated) is checked towards the process tolerance 

limit (line 20 or 24, respectively). 

The results of the above algorithm using the two datasets presented in Section 6.2 and 

simulating the online execution of the experiment are discussed in the next section. 

7.4 Simulation Results 

Having covered all other aspects of the proposed monitoring system in terms of the in-

process data acquisition and extraction of sensory information as well as extensive offline 

analysis of the process models, this section presents and discusses the online execution of 

the system in the robotic countersinking process, as outlined in Section 7.2. 

The experiment described in Section 5.1 was initially designed with the intention to test the 

in-process capabilities of the proposed monitoring system by following the multi-step 

learning procedure illustrated in Figure 7.6. However, due to technical issues of accessing the 

robotic cell, it was only possible to adjust the target depth of the second cut by means of the 

direct camera measurements, not the depth predictions. Therefore, the experiment was 

performed by using the inspection step in every iteration of the process (i.e. every single hole 

of the panel) to obtain the true countersink depth data of the first and second cut. The two 

datasets obtained from both phases of the experiment with respect to the semi-finish depth 

values (used for Model 1) and final depth values (for Model 2) were presented in Section 6.2. 

These datasets provided all the necessary data to run simulation tests of the multi-step 

learning algorithm described in Table 7.2 (i.e. the online execution of the system).  

The aim of the simulation tests was to assess the validity and performance of the proposed 

learning method to identify instances of the available dataset where the direct depth 

measurement could have been ignored, without compromising the overall prediction 

accuracy of the models. In a real-time scenario, this would be translated as in-process 

suggestions on whether it could have been possible to avoid the inspection step, based on 

the dataset (i.e. process knowledge) available at the time of the current process iteration. 

For data consistency and ease of comparison between the two models, it was decided to 

remove from the considered dataset the instances that were missing in any of the datasets 

due to the bad signal quality (two from Dataset 1 and two more from Dataset 2). Therefore, 

the final datasets consisted of 304 cutting examples (instances) of 230 features for each of 

the considered models. 
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As previously mentioned, the multi-step learning procedure requires an initial dataset to 

start with, which is obtained during the initialisation phase of the algorithm by collection of 

the camera measurements for the pre-defined number of process iterations (minimum DS 

size). In simulation, this initial dataset was ensured by the inclusion of the available instances 

in order of collection starting from the first hole of Panel 1 up to the specified minimum size. 

In the analysis presented in Section 7.1, it was explained how the accuracy and confidence of 

the GPR models is affected by the training size, therefore the selection of a suitable value for 

the initial training size is of great importance, since it will influence all the subsequent process 

iterations. Furthermore, another parameter to specify prior execution is the uncertainty 

threshold defined on the prediction standard deviation value (denoted by std). This is the key 

parameter that drives the decision on the inspection step. Possible choices of these two 

parameters can be inferred from the previous offline analysis performed in Section 7.1. In 

particular referring to Figure 7.5, an initial dataset of 22 training instances (half panel 

equivalent) was used to present how the confidence of the model changes with the size of 

the training set. Despite the low accuracy and high uncertainty, the models were able to 

provide depth predictions with that minimal size of the dataset. Moreover, lower loss values 

of both models corresponded to std values in the range from 0.05 to 0.06 mm, indicating 

possible choices for the uncertainty threshold. 

The learning algorithm presented in Table 7.2 requires the selection of another parameter 

corresponding to the minimum size of the Feature Subset (FS). This parameter was not used 

in the previous regression tests, since the features were selected based on a threshold 

defined on their normalised weights, as explained in Section 6.3. However, these feature 

weights were dependent on the training data and a few issues arose when considering a 

variable size training set such as that of the tests discussed here. In particular, for the small 

datasets at the beginning of the procedure, the feature weights threshold was typically 

selecting just a few number of features (from three to four) due to the lack of information, 

affecting all the subsequent iterations of the process. An attempt to lower the threshold 

value from 10−3  to 10−5  was made, however this did not consistently solve the issues 

related to the variable size of the dataset. It was therefore decided to define a minimum 

number of the selected features, which, in conjunction with the above modified threshold 

value, ensured the validity of the ARD-SE feature selection method. 

In order to find the optimal values for the above three parameters (i.e. min DS size, min FS 

size and std threshold) a series of simulation tests were performed considering three possible 
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choices for the initial DS size (22, 43 and 65 corresponding to 0.5, 1 and 1.5 panels), three for 

the minimum FS size (15, 25 and 25) and two for the std threshold value (0.05 and 0.06). The 

tests were performed in a regular grid of all the possible combinations of these three 

parameters (18 in total) for each of the considered models. The results obtained by the tests 

are shown in Table 7.3 and Table 7.4 for Model 1 and Model 2, respectively.  

Both tables present the results in terms of: 

• The final size of the dataset. 

• The overall prediction MSE computed at the end of the procedure. 

• The range of prediction errors observed in the training instances (i.e. those included in 

the final dataset due to the higher prediction std values).  

• The range of prediction errors of the remaining instances (i.e. those not included in 

the final dataset due to the model’s higher confidence in the prediction value). 

The tests that showed the best results are indicated in red. In terms of Model 1, the selected 

parameters were as follows (ref. to Test 4 in Table 7.3): initial DS size of 22 (half panel), 

minimum FS size of 20 and std threshold of 0.06 mm. Model 2 performed better in Test 10 

with the following parameters:  initial DS size of 43 (one panel), minimum FS size of 20 and 

std threshold of 0.06 mm. 

Table 7.3 Tests results of the online execution of the proposed system for Model 1. 

Test 
No 

Init DS 
size 

Min FS 
size 

Std 
Threshold 

Final 
DS size 

Prediction 
MSE 

Train Error 
Range 

Pred Error 
Range 

1 22 15 0.05 170 0.009 0.66 0.45 
2 22 15 0.06 126 0.009 0.84 0.42 
3 22 20 0.05 224 0.008 0.78 0.38 
4 22 20 0.06 129 0.009 0.76 0.41 
5 22 25 0.05 149 0.009 0.66 0.53 
6 22 25 0.06 85 0.011 0.88 0.50 
7 43 15 0.05 209 0.010 0.69 0.45 
8 43 15 0.06 110 0.013 0.60 0.57 
9 43 20 0.05 220 0.009 0.79 0.38 

10 43 20 0.06 83 0.020 1.57 0.60 
11 43 25 0.05 191 0.009 0.67 0.46 
12 43 25 0.06 137 0.010 0.86 0.50 
13 65 15 0.05 242 0.007 0.72 0.39 
14 65 15 0.06 154 0.007 0.47 0.61 
15 65 20 0.05 233 0.007 0.74 0.37 
16 65 20 0.06 152 0.007 0.47 0.61 
17 65 25 0.05 244 0.008 0.87 0.50 
18 65 25 0.06 178 0.007 0.53 0.54 
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Table 7.4 Test results of the online execution of the proposed system for Model 2. 

Test 
No 

Init DS 
size 

Min FS 
size 

Std 
Threshold 

Final 
DS size 

Prediction 
MSE 

Train Error 
Range 

Pred Error 
Range 

1 22 15 0.05 173 0.007 0.66 0.39 
2 22 15 0.06 95 0.009 0.62 0.46 
3 22 20 0.05 189 0.009 0.71 0.42 
4 22 20 0.06 103 0.010 0.60 0.66 
5 22 25 0.05 120 0.010 0.59 0.42 
6 22 25 0.06 125 0.011 0.68 0.43 
7 43 15 0.05 189 0.007 0.75 0.34 
8 43 15 0.06 127 0.008 0.66 0.45 
9 43 20 0.05 204 0.006 0.66 0.32 

10 43 20 0.06 140 0.007 0.75 0.36 
11 43 25 0.05 202 0.007 0.70 0.34 
12 43 25 0.06 145 0.007 0.52 0.41 
13 65 15 0.05 214 0.006 0.57 0.33 
14 65 15 0.06 157 0.006 0.52 0.44 
15 65 20 0.05 210 0.006 0.57 0.39 
16 65 20 0.06 165 0.006 0.51 0.38 
17 65 25 0.05 197 0.006 0.48 0.33 
18 65 25 0.06 158 0.005 0.53 0.37 

Note that one of the instances of Panel 1 (hole 42) was removed from the dataset due to the 

bad signal quality, thus Panel 1 had a total of 43 instances. Following the recommendations 

given at the end of Section 7.1, the best test was chosen as the one with a final DS in the 

range from 120 to 190 (considering both models), having the lowest prediction error range 

(i.e. the data of the last column in both tables). Most tests with lower ranges of the prediction 

error presented higher final dataset sizes (around 200). However, after inspection of the 

results, it was observed that this was due to the std threshold value being too low, thus the 

majority of the data was included in the training set leaving only a few instances to use for 

the depth predictions. Moreover, since the purpose of the learning procedure was to 

minimise the use of the inspection camera, higher priority was given to tests with lower final 

DS size, yet showing acceptable error levels. 

Having decided the optimal values of the three free parameters for the proposed in-process 

learning procedure, the remaining part of this section will present and discuss the results 

obtained by the execution of the algorithm for the above two selected tests. 

Figure 7.7 shows the instances included in the final dataset with respect to their index (hole 

number) for Model 1 (top graph) and Model 2 (bottom graph). The included instances 

(training data) are indicated by a blue vertical bar, whereas the others (testing data) are 
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drawn with a white colour. The corresponding panel indices are also illustrated in the figure 

by the vertical dashed lines. The final DS size was 129 for Model 1 and 140 for Model 2. 

 

Figure 7.7 Instances included in the final dataset from the multi-step learning procedure: 
Model 1 (top) and Model 2 (bottom). 

From the figure it can be observed that both models had included one or more instances 

from each of the considered panels. In terms of Model 1, the information gained from the 

initial dataset (half of Panel 1) was enough to predict most depths of Panel 2. The 

intervention of the camera was mainly required in Panel 3 and then occasionally for Panel 4 

and 5. In contrast, most instances of Panel 6 were added to the final dataset, indicating that 

the system was probably collecting signals slightly different from those previously seen in the 

other panels. The camera measurements were also required for the beginning of Panel 7 until 

the model had acquired enough data to confidently predict the remaining instances. A similar 

behaviour was observed for Model 2, which, after using the entire Panel 1 as an initial 

dataset, was confident in most depth predictions of Panel 2. Frequent camera measurements 

during the first half of Panel 3 helped to increase the model confidence in the prediction of 

depth values of the remaining of Panel 3 and Panel 4. The start of the experimental Phase 2 

(i.e. Panel 5) required the intervention of the camera. Note that this behaviour of the process 

was previously seen when discussing the assessment of the model’s confidence in Section 

7.1 (ref. to Figure 7.1). Panel 6 was also mostly included in the dataset, but not as much as 
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the case of Model 1. For the last panel (Panel 7) direct measurement were occasionally 

needed, indicating that the model had collected enough training data to predict depth values 

with a high level of confidence. 

Further insights of the prediction errors and standard deviations (std values) obtained during 

the execution of the proposed learning procedure are presented in Figure 7.8. The errors are 

illustrated by the red lines and the blue vertical bars represent the std values. The uncertainty 

threshold (applied on the prediction std) is indicated by a horizontal black line and the vertical 

dashed lines are the corresponding panel indices. The top graph illustrates the results relative 

to Model 1 and those of Model 2 are shown in the bottom graph. 

 

Figure 7.8 Prediction Error and Std values obtained from the multi-step learning 
procedure: Model 1 (top) and Model 2 (bottom). 

From the examination of Figure 7.8, it can be observed that the range of the prediction errors 

of both models had considerably increased in comparison to the range of errors obtained in 

the offline (LOO-CV) analysis performed in Section 6.4. This is due to the fact that less training 

data was used when attempting to make the predictions online. The highest errors appeared 
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to be in correspondence of the beginning of new panels, especially for Panel 3, 5 and 6. 

Furthermore, the uncertainty threshold applied to the std values appeared to have identified 

the majority of instances with higher prediction errors, indicating high correlation between 

the std values and the magnitude of the errors. 

It is important to note that the above prediction errors and std values refer to the output of 

the GPR model for each iteration of the process based on all the available information 

(dataset) that the model had at the time when the new input data was presented. This means 

that instances of Panel 2 would have predictions based only on the dataset composed of the 

data from Panel 1 (and any other instances eventually included by the algorithm up to that 

point), whereas the predictions for Panel 7 would rely on more information (larger dataset) 

being collected while machining the previous panels. Moreover, to compute the prediction 

errors, the direct measurement is required, therefore in a real-time scenario this 

measurement would not have been available because the monitoring system had decided to 

use the prediction. In the simulations performed here, however, since the aim of the tests 

was to assess the performance of the learning method, the error values are shown for all the 

data that the model provided a prediction, independently of the decision made on the 

inspection step. 

The correlation between the obtained prediction errors and the corresponding std values is 

highlighted in Figure 7.9 for Model 1 (left plot) and Model 2 (right plot). The uncertainty 

threshold is indicated by the red dashed line. 

 

Figure 7.9 Correlation between the prediction Error and Std values: Model 1 (left) and 
Model 2 (right). 

A closer view of Figure 7.9 reveals that the threshold had successfully identified the instances 

with higher prediction error values in both models. The method achieved better results for 
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the data obtained from Model 2 in terms of separation of the dataset. The majority of the 

data under the threshold value was located within the range [-0.2 0.2] mm, which can be 

considered acceptable for the online version of the IMS, given the size of the available 

dataset. In order to further improve the prediction performance of the models, more training 

data would be required, as the LOO-CV analysis have shown (ref. to Section 6.4). As 

previously mentioned, all the instances with prediction std over the threshold value were 

added to the current dataset to be used as training data for the subsequent iterations of the 

process. The instances under the threshold value were those actually ‘tested’ by the system 

since they were not considered for further training. 

Finally, Figure 7.10 illustrates the prediction errors of the instances included in the dataset 

from the algorithm, denoted as train data (on the left side) and those with lower std values 

(i.e. showing higher model confidence), denoted as test data (on the right side). The results 

relative to Model 1 are shown in the top two graphs and those of Model 2 are illustrated in 

the bottom two graphs. 

 

Figure 7.10 Prediction Errors divided as Train data (left side) and Test data (right side) for 
Model 1 (top graphs) and Model 2 (bottom graphs), respectively. 



Multi-Step Learning Procedure  138 
 

 
 

The results shown in Figure 7.10 emphasise the separation of the instances in training and 

testing data as it was decided by the proposed learning procedure. The range of the 

prediction errors had almost halved from the training data to the test data for both models. 

Moreover, most values of the test data were contained in the interval [-0.15 0.15] mm, 

confirming the intended use of the uncertainty threshold. 

In summary, the results of the simulation tests presented in this section proved the ability of 

the proposed multi-step learning algorithm to correctly identify the instances where the 

predicted outputs would have had high enough prediction accuracy to skip the inspection 

step. In addition, the predictions of the instances included in the final dataset showed 

generally higher error ranges than the predictions of the instances that were not included, 

meaning that the monitoring system was right to ask for the camera intervention. 

Furthermore, the proposed uncertainty threshold showed good ability to detect the 

instances that would bring more information into the current process knowledge (dataset), 

improving therefore the prediction accuracies for the subsequent input data. This last 

characteristic of the system was observed in the examination of the final dataset shown in 

Figure 7.7, where new instances were required every time a new panel was introduced and 

at the beginning of Phase 2 of the experiment (Panels 5-7). The information gained by the 

newly added instances helped the process model to adapt to the slightly different sensor 

signals between the two phases of the experiment or small changes in the material properties 

between two subsequent panels. 

7.5 Final Remarks 

Before concluding this chapter, it is important to examine the proposed multi-step approach 

from the process perspective by analysing the experimental depth data obtained from the 

experiment. As previously noted, the depth target of the second cut was always corrected 

based on the direct camera measurement, not the prediction provided by the model. 

Therefore, following the diagram of the multi-step method shown in Figure 7.6 and the 

considerations given in Section 7.2 with regards to Eq. (7.7), one would expect to find final 

depth values close to the desired level, i.e. 𝐷𝐷2 ≅ 𝑑𝑑2. Surprisingly, this was not the case for 

the experiment performed in this thesis. 

The final depth errors were previously presented in Section 6.2.2 (ref. to Figure 6.3) in the 

context of the output values of the dataset used for training the process models, where it 

was also discussed the possible cause for the observed trend in the data. However, it is useful 



Multi-Step Learning Procedure  139 
 

 
 

to review them in further detail here, after having presented the multi-step method. Figure 

7.11 illustrates the camera depth measurements (top graph) obtained at the end of the first 

cut (blue) and at the end of the second cut (red). The graph at the bottom of the figure 

highlights the final depth errors. The two desired depth targets (𝑑𝑑1 and 𝑑𝑑2) in the top graph 

and the process tolerance level (𝑇𝑇𝑇𝑇𝑇𝑇) in the bottom graph are indicated by the horizontal 

dashed lines. The panel indices are drawn with vertical dotted lines.  

 

Figure 7.11 Countersink depth measurements (top) and final depth errors (bottom). 

From the examination of the figure, it can be observed that the depth values of the first cut 

(blue dots) with target 𝑇𝑇1 defined in Eq. (7.2) presented a systematic error (positive bias) that 

resulted in holes with depths over the desired target. As discussed in Section 6.2.1, this 

positive bias was associated to a calibration error, which was corrected by the multi-step 

method. Moreover, the large depth variability of the first cut, programmatically introduced 

by the Gaussian perturbation, was significantly reduced in the second cut.  
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However, as previously noted, the final depth data (red dots) showed a decreasing trend 

which is illustrated by the blue dotted line in the figure. Almost all the final depth values were 

under the desired target (𝑑𝑑2 = 2.74 𝑚𝑚𝑚𝑚) and a few of them (mainly from Panel 6 and 7) 

were under the process tolerance (𝑇𝑇𝑇𝑇𝑇𝑇 = −0.2 𝑚𝑚𝑚𝑚). Possible causes of the decreasing trend 

observed in the final depth data can be associated with the following: 

1. Cutting tool wear: this was already discussed in Section 6.2.2.  

2. Inspection camera errors that would directly affect the target of the second cuts since 

the correction was based on this direct measurement. For example, if the camera 

measures a slightly bigger hole (more depth) than the real size after the first cut, then 

a larger compensation value will be computed and  𝑇𝑇2 will be adjusted accordingly (ref. 

to Eq. (7.6)). This will result in depths under the desired final target (𝑑𝑑2). 

3. The assumption made by the multi-step method of 𝑁𝑁𝑝𝑝1 ≅ 𝑁𝑁𝑝𝑝2  was not valid (ref. to 

Section 7.2 and Section 4.2). This case explores the possibility that the errors 

introduced by the countersinking process in the first cut are not comparable with those 

of the second cut. In particular, with reference to Eq. (7.7), in order to obtain under-

target depths the process errors of the first cut need to be greater than those of the 

second cut, i.e. 𝑁𝑁𝑝𝑝1 > 𝑁𝑁𝑝𝑝2. 

From the above three possible causes, the cutting tool wear is the one that explains better 

the observed decreasing trend of the data, since the tool wear gradually increases as the 

number of holes (cuts) increases. The other two may explain the random fluctuations of the 

final depth values because their error contribution is of a random nature, unless a systematic 

calibration error is observed, as it was the case of the first cut’s bias.  

While the tool wear can be sensed from the acquired signals and therefore predicted by the 

monitoring system, the camera errors are not detectable from the process models. Given the 

supervised learning approach, the camera measurement is considered to be the true depth 

value that the model is trained to predict. If this true value is wrong, then the best the model 

can do is to predict that exact (wrong) value. 

The errors coming from the above third point can be reduced by minimising the differences 

between the two steps of the process. For the particular case, this would be possible by 

setting the semi-finish target depth as half of the finish depth, meaning that the process 

would remove comparable amount of material (on average) from both cuts. 
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In conclusion, a possible way to correct the observed behaviour of the process would be the 

inclusion of an extra compensation term in the target adjustment block of the diagram of 

Figure 7.6, which takes into account the final depth data of previous iterations of the process.  

This idea is referred to a further development of the work conducted by this thesis, as 

discussed in Chapter 9. 
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8 CONCLUSIONS 

The main aim of this thesis was to design and test an intelligent monitoring system suitable 

for robotic machining processes that is capable to accurately and reliably predict key process 

variables which directly influence the quality of the finished product. By considering the 

robotic system as an additional source of error (disturbance) that affects the quality of the 

machined part, this work has successfully integrated the concepts of process monitoring of 

conventional operations into a robotic machining context. 

A multi-step learning approach was proposed, which allowed corrective actions to be 

included into the overall process cycle by performing the cutting process in two different 

levels of finishing (semi-finish and finish). The desired target of the finish level was adjusted 

from the observed error of the previous cut in semi-finish level. The method was tested in an 

experiment by using an inspection camera (direct measurement) for the collection of the 

output values (depth errors) at the end of each cutting step. The range of errors observed at 

the end of the first cut (semi-finish level) was significantly greater than that observed in the 

second cut (finish level), meaning that the target correction method had successfully 

compensated for the errors of the previous step. 

The monitoring system designed by this work was tested using the dataset extracted from 

the experiment in two different scenarios: (i) an offline analysis using all the available 

experimental data and (ii) an online analysis simulating the execution of the process with the 

data becoming available as more iterations were completed. The offline analysis proved the 

ability of the process models to provide accurate predictions of the output variable. The 

online analysis demonstrated the reliability of the system by successfully identifying the 

process iterations when the camera inspection step was necessary due to the high 

uncertainty of the predicted output value. 

The first objective of this work was to select suitable hardware and software for the in-

process extraction of the machining process information. The data acquisition systems was 

designed to use non-intrusive and easy to install sensors, such as accelerometers, AE sensors 

and power transducers. A central data acquisition unit was applied to ensure synchronisation 

of all the acquired signals. Several filtering techniques as well as signal domain 

transformations (time, frequency and joint time-frequency domains) were used for the 

extraction of a large number of signal features that describe the machining process. The 
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signal segmentation, processing and feature extraction steps were performed automatically, 

as soon as the data was available after the cutting process. 

The second objective was to identify an appropriate method for selection of the most useful 

signal features for describing the machining process. In the regression tests conducted in this 

work, a GPR model with ARD-SE kernel was applied as a way to select the relevant signal 

features. The method consisted of an embedded approach that integrated the feature 

selection step into the training phase of the GPR models. The relevant features were selected 

based on the weights that were assigned by the model during training. The method was 

tested with the dataset extracted from the experiment considering the two phases of the 

experiment separately and jointly. In all tests the models that used the reduced subset of 

features (as selected by the ARD method) performed better than those that used all the 

features. This method, although known in the machine learning literature, has not been used 

before in the machining monitoring context. This thesis has shown the use of GP with ARD-

SE kernel as an effective technique for the selection of the most useful signal features that 

describe the machining process. 

The third objective of this work was to design a system that can be trained during normal 

operation of the machining process, without any interruptions. The multi-step learning 

approach proposed by this thesis allowed process models to be training online. In particular, 

a Gaussian perturbation was programmatically added to the process input target in order to 

provide the required data variability for training the models in different conditions. 

Moreover, by correcting the target of the second step of the process from the error observed 

in the previous step, this method ensured that the second step was still able to reach the 

desired finish level. Therefore, an experiment specifically designed for obtaining the training 

data was no longer required. 

The fourth objective of this thesis was to provide a means of assessing the reliability of the 

process models. This has been addressed by the use of a probabilistic learning approach, 

which naturally deals with uncertain inputs and outputs and provides predictions with an 

estimated (mean) value and the corresponding variance. This prediction variance expresses 

the confidence of the model in the predicted output and it is inferred from the new testing 

input and the currently available training data, not the observations (outputs). Therefore, 

this work used the prediction variance to assess the model reliability. A decision on the 

inspection step was made based on this prediction variance: a high value of variance, 

indicated low confidence of the model in the predicted output, thus an inspection was 
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required; whereas a low value of the prediction variance represented a high confidence of 

the model in the predicted output, thus the inspection step could be avoided. The method 

was tested with the dataset extracted from the experiment by simulating an online execution 

of the process and the results proved the ability of the method to successfully identify the 

cases when the inspection step could have been avoided. 
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9 FURTHER WORK 

This thesis presented a novel method to improve the performance of a robotic machining 

process by the use of in-process monitoring of key process variables that directly affect the 

quality of the final product. In the current literature, there were not many research works 

that reported the use of intelligent monitoring systems into a robotic machining context, 

therefore, more research is required to increase the number of applications that combine 

these two research areas. In order to further progress the work carried out by this thesis, a 

few key future developments have been identified and presented below. 

Firstly, in this work the multi-step learning method was tested through simulation tests 

performed on the dataset extracted from the experiment. A natural progression of this work 

would therefore consist of conducting an experiment where the depth predictions of the first 

cut are used to correct the target of the second cut, depending on the decision made by the 

monitoring system. This would allow to see the overall effect of the compensation method 

in the final depth values. Testing the flexibility of the proposed approach in a different 

machining process would also be an interesting future development.  

The regression tests conducted in this work used an embedded approach to select the 

relevant features based on the weights that were assigned during training the process 

models. In particular, a GPR with ARD-SE kernel was applied, using a threshold on the feature 

weight for the selection process. The value of such threshold was inferred based on previous 

observations and/or knowledge of the process. Future work in this direction might explore 

the use filter methods that are generally faster and do not rely on the particular learning 

algorithm and/or consider the redundancy of the selected features. 

In terms of the assessment of the model’s confidence, this work applied an uncertainty 

threshold on the standard deviation of the prediction provided by the GPR models. Further 

research could usefully investigate the use of Mahalanobis distance [127] to measure how 

far (in terms of standard deviations) a new input instance (feature vector) is from the multi-

variate Gaussian distribution defined by the training data. This measure could then be used 

as an alternative (and faster) method to estimate the model’s confidence without involving 

any training of the model. This would result in faster execution time of the algorithm, 

especially for large datasets. 
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Considering the proposed multi-step method from the process perspective, it was briefly 

suggested at the end of Chapter 7 the idea of adding a further compensation term to address 

the observed trend in the depth data. The addition of a term that considers the process 

output of previous iterations would correct for errors that depend on the number of process 

iterations such as the tool wear. It might be useful investigate the integration of this term in 

the overall multi-step scheme presented in Chapter 4. 

Finally, a generalisation of the proposed approach is suggested for further research work. In 

a production environment, a manufacturing process is usually performed in several stages 

involving different processes applied on the same workpiece. Typically, an individual stage 

consists of the actual physical (material removal) process where the part is being worked, 

followed by an inspection step to ensure that the process has met the quality requirements, 

before progressing to the next stage. An extension of the method proposed by this thesis 

into a multi-stage process, where each stage refers to an individual machining process would 

be an interesting area to investigate. However, in this case the assumption of comparable 

errors between two subsequent stages of the overall process is not valid. Therefore a way to 

infer how the errors are propagated from one stage to the other is necessary. 
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A APPENDICES 

A.1 Gaussian Process Regression (GPR) 

Rasmussen and Williams [121] define a Gaussian Process (GP) as “a collection of random 

variables, any finite number of which have a joint Gaussian distribution”. It is a generalisation 

of the Gaussian probability that describes a distribution over functions (instead of scalars or 

vectors) and allows therefore to consider inference directly in the function space. The main 

reference for the GP theory in ML context is the book of Rasmussen and Williams [121]. Other 

previous work in the field was performed by Neal [122] and MacKay [123]. 

To better understand the concept of distribution over functions, a simple one-dimensional 

regression problem of mapping an input 𝑥𝑥  to the output function 𝑓𝑓(𝑥𝑥), is considered in 

Figure 2.6 (following from [121]). The GP framework is Bayesian, hence it specifies a prior 

distribution for 𝑓𝑓(𝑥𝑥), which represents the prior knowledge (belief) about the set of possible 

output function variables, without observing any target data. This is illustrated in the left plot 

of Figure A.1, where three samples of such function variables are randomly drawn from the 

GP prior distribution, and then plotted for a specified region of inputs 𝑥𝑥. In the absence of 

evidence (observations) from the training data, the set of random output functions is jointly 

Gaussian with mean zero. The shaded region (in both plots) represents the variance of the 

random functions computed as the interval of two times the standard deviation around the 

mean value for each input value (corresponding to the 95% Confidence Interval (CI)).  

 

Figure A.1 Illustration of GP prior and GP posterior (after [121]). 

When few target values are observed from the training set, the posterior distribution gives 

priority to the functions that pass through these observed values, taking the form shown in 
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the right plot of Figure A.1. In probabilistic terms, this operation corresponds to conditioning 

the joint GP prior on the new observations (ref. to [121] for more details). In the figure, the 

observed values are illustrated with black crosses (five in total) and all three functions drawn 

from the GP posterior distribution agree with the observations, incorporating the knowledge 

acquired from the training data. The shaded region representing the variance of the GP 

posterior is now reduced for input values close to the observations and it becomes larger as 

the inputs go far from them.  

For the d-dimensional regression problem, let 𝒟𝒟 = ��𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘��𝑘𝑘 = 1, … ,𝑁𝑁� denote a training 

dataset of 𝑁𝑁 instances of the input vector 𝑥𝑥𝑘𝑘 ∈ ℝ𝑑𝑑 and the corresponding output value 𝑦𝑦𝑘𝑘 ∈

ℝ. A Gaussian process 𝑓𝑓(𝑥𝑥) can be fully specified by its mean function 𝑚𝑚(𝑥𝑥) and covariance 

function 𝑘𝑘(𝑥𝑥,𝑥𝑥′), denoted as: 

 𝑓𝑓�𝑥𝑥� ~ 𝒢𝒢𝒢𝒢�𝑚𝑚�𝑥𝑥�,𝑘𝑘(𝑥𝑥, 𝑥𝑥′)� (A.1) 

Where 𝑚𝑚�𝑥𝑥� and 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) are defined as: 

 
𝑚𝑚�𝑥𝑥� =  𝔼𝔼�𝑓𝑓�𝑥𝑥��

𝑘𝑘�𝑥𝑥,𝑥𝑥′� =  𝔼𝔼 ��𝑓𝑓�𝑥𝑥� − 𝑚𝑚�𝑥𝑥�� �𝑓𝑓�𝑥𝑥′� − 𝑚𝑚�𝑥𝑥′���
 (A.2) 

The mean function 𝑚𝑚�𝑥𝑥� is the expected value of the function 𝑓𝑓�𝑥𝑥� at input location 𝑥𝑥 and 

the covariance function 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) is a positive-definite function that expresses the confidence 

for 𝑚𝑚�𝑥𝑥�. In general, for notation simplicity, the mean function is set at zero (see [121] for 

full details). The covariance function determines the covariance between pairs of random 

functions 𝑓𝑓�𝑥𝑥� at different input locations 𝑥𝑥 and 𝑥𝑥′ and it needs to be specified in order to 

define a particular GP. A common choice for 𝑘𝑘(𝑥𝑥,𝑥𝑥′)  is the Squared Exponential (SE) 

covariance, defined as: 

 𝑘𝑘�𝑥𝑥, 𝑥𝑥′� = 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑓𝑓�𝑥𝑥�,𝑓𝑓�𝑥𝑥′�� = 𝜎𝜎𝑓𝑓2 𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2
�
�𝑥𝑥 − 𝑥𝑥′�2

ℓ2
�� (A.3) 

Where 𝜎𝜎𝑓𝑓 and ℓ are called the signal standard deviation and the characteristic length-scale, 

respectively. Both are hyper-parameters that are optimised during training. The length-scale 

parameter represents a measure of how rapidly 𝑓𝑓�𝑥𝑥� can change in the input space, i.e. how 

far two inputs need to be, to become uncorrelated. Note that 𝑘𝑘�𝑥𝑥,𝑥𝑥′�  expresses the 
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covariance of the outputs in terms of the inputs 𝑥𝑥 and 𝑥𝑥’, using the well-known ‘kernel trick’ 

to map the input data into a higher-dimensional space and evaluate their inner product 

rather than calculate them explicitly. 

In real applications, the observations are often subject to an additive measurement noise in 

the form of 𝑦𝑦 = 𝑓𝑓�𝑥𝑥� + 𝜀𝜀. Assuming a Gaussian distribution for 𝜀𝜀 ~ 𝒩𝒩(0,𝜎𝜎𝑛𝑛2 ), with 0 mean 

and standard deviation 𝜎𝜎𝑛𝑛, leads to the following prior covariance function for the observed 

targets (following the notation from [121], with the matrix version on the right): 

 𝑐𝑐𝑐𝑐𝑐𝑐�𝑦𝑦𝑝𝑝,𝑦𝑦𝑞𝑞�  = 𝑘𝑘�𝑥𝑥𝑝𝑝,𝑥𝑥𝑞𝑞� + 𝜎𝜎𝑛𝑛2𝛿𝛿𝑝𝑝𝑝𝑝    or    𝑐𝑐𝑐𝑐𝑐𝑐 �𝑦𝑦� = 𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2 𝐼𝐼  (A.4) 

Where 𝛿𝛿𝑝𝑝𝑝𝑝  is the Kronecker delta function which is 1 iff 𝑝𝑝 = 𝑞𝑞  and 0 otherwise. 𝐾𝐾(𝑋𝑋,𝑋𝑋) 

denotes the covariance matrix evaluated at all pairs of the training inputs and 𝐼𝐼 is the identity 

matrix. In order to make predictions on new testing points 𝑋𝑋∗, the GP framework considers 

the joint distribution of the noisy training targets 𝑦𝑦  and the new predictions 𝑓𝑓∗ = 𝑓𝑓(𝑋𝑋∗), 

which is still a Gaussian with prior denoted as: 

 �
𝑦𝑦
𝑓𝑓∗�~ 𝒩𝒩�0, �𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼 𝐾𝐾(𝑋𝑋,𝑋𝑋∗)

𝐾𝐾(𝑋𝑋∗,𝑋𝑋) 𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗)�� (A.5) 

Where 𝐾𝐾(𝑋𝑋∗,𝑋𝑋),𝐾𝐾(𝑋𝑋,𝑋𝑋∗) and 𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗) are the covariance matrices evaluated at all pairs of 

testing and training points, training and testing points and only testing points, respectively.  

The posterior distribution for the predictions is calculated by conditioning the prior to the 

training dataset (both inputs and observations) and it is denoted as: 

 𝑓𝑓∗� 𝑋𝑋,𝑦𝑦,𝑋𝑋∗ ~ 𝒩𝒩�𝑓𝑓∗� , 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑓𝑓∗�� (A.6) 

Where  

 
𝑓𝑓∗� =  𝐾𝐾(𝑋𝑋∗,𝑋𝑋) [𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼]−1 𝑦𝑦

 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑓𝑓∗� =  𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗) − 𝐾𝐾(𝑋𝑋∗,𝑋𝑋) [𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼]−1 𝐾𝐾(𝑋𝑋,𝑋𝑋∗)
 (A.7) 
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The two expressions of Eq. (A.7) represent the key predictive equations of the Gaussian 

Process Regression (GPR), which respectively compute the mean function 𝑓𝑓∗�  and the 

covariance function 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑓𝑓∗� of new testing points 𝑋𝑋∗.  

Note that the GPR is a non-parametric regression model, since the predictive outputs are 

computed from the (training and testing) inputs and the observed targets. Moreover, a key 

feature of the GPR is the fact that the predictive covariance depends only on the training 

inputs and the new testing points, not the observed targets. This means that it represents a 

measure of confidence in the predicted values, allowing error bars to be drawn (such as the 

95% CI described in Figure A.1). A practical implementation of GPR is presented by 

Rasmussen and Williams (see algorithm 2.1 in [121]).  

The learning problem of a GPR model consists of finding the optimal values for the hyper-

parameters specified into the covariance function defined in Eq. (A.3). They can be inferred 

from the training data, using a maximum likelihood estimation approach. In particular, the 

log marginal likelihood is given by: 

 log𝑝𝑝 �𝑦𝑦�𝑋𝑋,Θ� = −
1
2
𝑦𝑦𝑇𝑇(𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼)−1 𝑦𝑦 −

1
2

|𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼|−
𝑁𝑁
2

log 2𝜋𝜋 (A.8) 

Were Θ is the vector of the hyper-parameters in the covariance matrix 𝐾𝐾. The optimal values 

are found by maximising Eq. (A.8) with respect to Θ and, since the number of parameters is 

usually small, this yields to a trivial optimisation problem. 

To conclude the discussion of GPR, some final notes about the selection of the covariance 

function are given. As previously mentioned, the covariance function defines the individual 

GP, therefore it is important to choose it consistent with the prior knowledge of the process. 

An interesting choice is the one consisting in a particular type of the SE covariance defined in 

Eq. (A.3), where each of the input dimensions has an individual length-scale parameter. This 

is referred to as the Automatic Relevance Determination (ARD) SE kernel and is defined as: 

 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴�𝑥𝑥,𝑥𝑥′� = 𝜎𝜎𝑓𝑓2 𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2
��

‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′‖2

ℓ𝑖𝑖2
�

𝑑𝑑

𝑖𝑖=1

� (A.9) 

Where 𝑑𝑑 is the dimension of the input vector 𝑥𝑥, 𝜎𝜎𝑓𝑓 is the signal standard deviation and ℓ𝑖𝑖 is 

the individual length-scale hyper-parameter for each input dimension 𝑥𝑥𝑖𝑖. Note that Eq. (A.9) 
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implements ARD since the inverse of the length-scale determines the importance of the input 

dimension: a large value of ℓ𝑖𝑖, yields to a small covariance term for 𝑥𝑥𝑖𝑖, meaning that this 

particular input dimension has little influence in the inference. The choice of an ARD-SE 

covariance function can be used therefore as an effective feature selection method, 

intrinsically implemented in the training process of the GPR model. This approach was also 

used in the regression tests of this work, presented in Chapter 6. ARD has been successfully 

applied as a feature reduction method in William and Rasmussen [128]. Lawrence et al. [129] 

introduce the GP Latent Variable Model (GPLVM) as a non-linear (probabilistic) extension of 

the Principal Component Analysis (PCA) algorithm for dimensionality reduction of high 

dimension data spaces. 
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