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Abstract

The Zinc-Nickel single flow battery (ZNB) is a new and special type of

flow batteries with a number of promising features, such as membrane

free and high scalability, and thus has attracted substantial interests

in recent years. However, little has been done so far to investigate

how to effectively and reliably manage this new type of batteries. Sig-

nificant developments are required from the engineering prospective:

investigation of battery modelling and battery characterization tech-

niques, accurate state estimation, the ability of instantaneous power

acceptance and deliverance, the judgement of the battery health, the

determination of battery maintenance time, and long-term perfor-

mance characterization in real applications. This thesis consists of

original contributions in the battery modelling and management at

system level.

Three battery modelling techniques, namely the artificial neural net-

work (ANN) based battery modelling, electrochemical mathematical

battery modelling approaches and the equivalent circuit based bat-

tery modelling are examined and compared. Due to the timeliness

of the state estimation, the state-of-charge (SoC) estimation needs to

be conducted online in the battery management system. In order to

improve computing efficiency, an open-circuit-voltage (OCV) observer

based on-line joint estimation of both the state-of-charge (SoC) and

the state-of-health (SoH) is proposed. At this point, the proposed

open-circuit-voltage (OCV) observer can not only enhance the esti-

mation accuracy, but also provide a novel framework where the filter

dimension is reduced to one, which offsets the increased complexity



issue when higher order equivalent circuit models (ECMs) are intro-

duced. On the other hand, the performance of battery management

system (BMS) is highly dependent on the accuracy of state estima-

tion. By incorporating the merits of model predictive control (MPC)

scheme, a novel model predictive control based observer (MPCO) for

the working conditions monitoring is then proposed. Two remarkable

advantages can be achieved against some current state-of-the-art stud-

ies. One benefit comes from the rolling horizon scheme and another

is introduced by the imposed constraints on the optimization problem.

Due to the high variability of the intermittent renewable energy sources,

load demands, and operating conditions, the state of charge (SoC) is

not an ideal indicator to gauge the battery capability to deliver the re-

quired services. Alternatively, the peak power is more closely related

to the instantaneous power acceptance and deliverance, and its real-

time estimation plays a key role in grid-tied energy storage systems. In

this thesis, a novel peak power prediction method is developed based

on rolling prediction horizon. Four indices are proposed to capture the

characteristics of the peak power capability over variable prediction

windows. The consequent impact of the electrode material and ap-

plied flow rate on peak power deliverability are analysed qualitatively.

From the battery maintenance perspective, longer lifespan can be ob-

tained by the periodic reconditioning. However, there are no indica-

tors to explicitly identify the health status of Zinc-Nickel single flow

battery and determine the moment of reconditioning. In this thesis,

two health indices in terms of the growth of internal resistance and

degradation of the battery capacity are compared. Experimental re-

sults confirm that the health status of Zinc-Nickel single flow battery

is more sensitive to capacity variations. An indicator according to the

capacity changes is thus proposed to judge the timing of recondition-

ing.
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I
INTRODUCTION

The concept of Redox flow batteries (RFBs) was proposed for almost five

decades ago and RFBs are now regarded as one of the most promising and versa-

tile options to store electric energy for both medium sized and large grids as an

important category of electrochemical energy storage systems (ESSs). This work

targets the management of an innovative RFB type based on the zinc nickel redox

couples, namely Zinc-Nickel Single Flow Battery (ZNB), where the originality of

this thesis comes from by handling various challenges relating to the manage-

ment of this new type of batteries. This Chapter begins with a brief introduction

of the distinguished advantages and unique battery structure of RFBs. Current

progress and facing challenges of ZNBs have been touched in order to detail the

contributions and motivations of this work.
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1.1 Introduction

1.1 Introduction

In recent years, the landscape change in the energy sector has renewed enormous

interests in the energy storage systems (ESSs) [8; 9]. This is largely due to the

significant renewable generation penetration [10], crucial capital investment on

the management of grid peak demands [11] and high cost in grid infrastructure

upgrades for reliability and smart grid initiatives [12]. Similar to transmission

and distribution (T&D) systems to deliver the electricity over distances to end

users, ESS is able to deliver electricity over time when and where the electric-

ity is required [8; 13]. Moreover, the imbalance between the increasing variable

renewable generation and the limited capacity of existing assets and the asso-

ciated challenges can be leveraged through energy storage systems (ESSs). [10].

With improvements in commercial availability, ESS plays a pivotal role in the

development of key applications along the entire value chain of the electrical

power systems [14; 15]. In particular, the roll-out of ESSs can help facilitate the

renewable energy integration, defer capital investment on the generation, trans-

mission and distribution, optimize the power schedule in the peak load shaving,

load leveling and shifting, benefit the development of distributed energy stor-

age systems (DESSs) thus enhancing the power quality and the regulation of

spinning reserve, and reduce the system cost of emergency backup power instral-

lations [5; 16; 17; 18].

Form the engineering perspective, the integration of energy storage applica-

tions into the power grid promotes high penetration of renewable sources, in par-

ticular, the wind and solar power [9; 19; 20]. Long-life rechargeable batteries are

not subject to terrain restraints [1], hence can flexibly address the sporadic avail-

ability issues of the renewable energy resource, and a number of scaled-up battery

systems have been installed alongside renewable generators to improve the power

quality and system reliability [21]. In addition, the profit margins of renewable

energy suppliers can be increased by introducing the rechargeable batteries in the

deregulated market, even providing extra arbitrage over the anticipation [19; 20].

For energy storage in the range of 10kW to 10MW , compared to the existing

energy storage systems (ESSs), like the compressed air and hydro-power based
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energy storage systems, redox flow batteries (RFBs) are regarded as a promising

alternative to lithium batteries and sodium sulphur batteries for next generation

grid-tied energy storage devices, due to a number of benefits, such as scalability,

safety, depth of discharge, flexibility and rapid response time in millisecond [1; 22].

1.1.1 Background of Redox Flow Battery

Redox flow battery (RFB) is one of the most promising grid-tied energy storage

technologies in the marketplace. Similar to other electrochemical energy accumu-

lators, RFBs convert the electricity to the chemical energy when they are in the

charging modes, and then releasing the stored electrical energy in a controlled

fashion once required. Because the redox reactions, i.e., reduction and oxidation

take place between two active materials (redox couples) with the assistance of cir-

culating electrolytes to store or release energy, such a kind of battery technique

is therefore named as redox flow battery. RFB firstly appeared in a patent [23],

and in 1955 Posner [24] revisited this patent. The first flow based secondary cell

can be traced back to a Zn-air hybrid RFB framework [25], where the Zn-air

hybrid RFB was made with a flowing aqueous solution. It is interesting to note

that National Aeronautics and Space Administration (NASA) has promoted the

improvement of a modern RFB structure. Motivated by a series ambitious power

source plans for the spaceflight [26; 27], NASA pioneered the development of dif-

ferent RFBs such as Fe− Cr battery [28], Fe− Ti battery [29], and Br−/Br−3 ,

V 2+/V 3+ and V 4+/V 5+ [27; 29]. Further, NASA defined the electrode configu-

rations [27], and discovered that the energy losses in RFB cycling come from the

shunt current [30] and external pumping system [31; 32]. Followed on with new

developments in materials, advanced RFBs techniques are introduced, such as

Zn−Cl RFB system [33], Zn−air RFB system [34], Zn−Br RFB system [35],

Zn− ferricyanide RFB system [36], H2−Br2 RFB system [37], all− iron RFB

system [38], Br− polysulfide RFB system [39] and all− vanadium RFB system

in 1985 [40].
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1.1 Introduction

Figure 1.1: The V2O5 precipitation of electrolyte above 40◦C

Since the introduction of the all−vanadium flow batteries (VFBs), researches

are mainly focused on the improvement of electrode structure. As the conse-

quence of commercialization, largely led by the US, the all − vanadium flow

batteries (VFBs) pioneered in [40] has become the most popular redox system.

Due to vanadium ions used in both tanks to ease the ions cross-contamination

problem commonly occurring in other types of RFBs, the lifetime of VFBs is

able to be secured hence enhancing its commercial viability. However, the energy

density of VFBs is still limited by the intrinsically low solubility of vanadium.

Other challenges [1; 21] such as energy wastes, extra costs on membranes, and

high system complexities still remain, largely because the fact that the electrolyte

is separated into two reservoirs. Further, as shown in Fig.1.1 in our tests, there is

a limited temperature window of VFBs due to precipitation of electrolyte above

40◦C. On the other hand, the vanadium prices are skyrocketing due to new regu-

lations introduced in supplying chains like China and some new financial models

like leasing are currently under evaluation to offset the increasing costs on raw

materials.
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In contrast to conventional battery techniques, a typical individual RFB sys-

tem is relieved from the constraints between storage capacity and the rated power

by separating the electrolyte reservoir and the battery stacks [1; 6; 21; 22]. A

typical divided RFB framework is illustrated in Fig.1.2, where the applied mem-

brane/separator permits ionic transfer between the electrodes in each half-cell

and prevents the cross-contamination of electrolytes stored in the two tanks re-

spectively from being contact with each other [21; 41]. The external pumps drive

the recirculation of the electrolytes between the cell stack and the external elec-

trolyte reservoirs. Whereas, the disadvantages of a divided RFB are obvious.

Similar to VFBs, the efficiency of such a system is compromised by the structure

complexity, energy loss consumed by the pumps, and expensive ionic membranes.

Alternatively, an undivided RFBs framework has been proposed, where two re-

dox couples can be dissolved in the same electrolyte. Therefore, only one flowing

passenger is left making the system membrane-free. Fig.1.3 gives a comparison

between these two frameworks in RFBs. The single flow framework has only one

reservoir and one pump to further reduce the energy loss on the pumping system

and simplify the structure of the stacks.

Fig.1.4(a) presents a zoom-in view of a typical RFB reactor. Each electro-

chemical reactor consists of bipolar plates, current collectors embedded in flow

flied frames, felt electrodes and membranes/separators. These plates are encased

in series with the rigid end-plates/terminals yielding a RFB stack as shown in

Fig.1.4(b). The internal reaction rate, stack voltage and induced current are gov-

erned by the principles of electrochemical engineering, particularly related with

the framework design and materials used [41].

As mentioned above, RFB is favorable due to its unique advantages that bat-

tery power design can be independent from the energy/capacity required [41; 42].

In the conventional RFBs techniques, the capacity is only determined by the

prescribed electrolyte volume and active species concentration [22; 42]. Stacking

more cells in series and enlarging the size of the electrodes can readily increase

the desired outputs. Whereas, expanding the volume of the auxiliary tank and
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Figure 1.2: A typical divided RFB framework, the electrolyte is recirculating

from the tanks to the cell stacks driven by the external pumping control

Figure 1.3: The general structure of RFB, (a) a separated framework membranes

included and (b) a single flow framework without membranes [1]
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(a) zoom-in view of a typical RFB reactor (b) RFBs stack

Figure 1.4: RFBs stack components a) exploded view of a typical RFB reactor

showing its components and b) an assembled stack.

raising the concentration of the electroactive species can increase the battery ca-

pacity [1]. This unique characteristic is theoretically capable of optimizing the

capacity based on various requirements. Fig.1.5 illustrates the two applications

of the FRBs according to different scale requirements. Small size of FRBs in

Fig.1.5(a) can be adopted in the utilization of residential energy storage. On the

other hand, in Fig.1.5(b), large grid scale VRBs have been used in Fraunhofer

ICT, Germany to regulate the wind generators [43]. However, this distinguished

factor is not applicable in the case of hybrid RFBs listed in Fig.1.3, which will

be detailed in the discussion of Zinc Nickel single flow battery.

Besides, due to the circulating electrolyte, heat generation and dissipation is

under control in most cases. Hence the working environment of RFBs is not a

restriction. On the other word, RFBs are able to be operated under the normal

ambient temperature and pressure environment. Compared with electrolysis-fuel

cell plants, the operation of RFBs does not produce pollution emissions leading to

offering a safer alternative to other type battery plants such as the fuel cells and

lithium cells. Moreover, cell balancing issue when cycling a bulk of lithium bat-

teries does not appear in RFBs operation. For example, in the scenario of widely
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(a) a demonstrator of small scale RFB reactor (b) the schematic diagram of large scale RFBs

Figure 1.5: RFB implementations a) a small scale RFB reactor and b) large scale

RFBs.

adopted divided RFBs, the balance issue only needs to be considered between

two external electrolytes tanks. Because of the partial re-usability of battery

materials [21], the disposal of redox couples is more effective and economical.

However, unlike lithium batteries, the aqueous based electrolyte is widely used

in RFB, leading to the small solubility of the active species in aqueous elec-

trolyte, which restrains the electrolyte conditions and averages current material

density, resulting in relatively low energy density. Considering the combination

of the aforementioned factors including the advantages and disadvantages, RFBs

have ultimately proved promising in the development of medium- and large-scale

energy storage systems [1; 44]. Also, the RBF applications can be deployed along-

side the wind, tidal and solar generators. Furthermore, it is interesting to note

that if the consumed electrolytes can be substituted promptly leading to a quick

recuperation of the used-up RFBs energy, the RFBs is able to be implemented in

specialised transportation tools.

1.1.2 Development of Zinc Nickel Flow Battery

As alternatives to the lithium batteries and other RFB counterparts, an inno-

vative RFB system based on nickel and zinc redox couples was first proposed
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by [45]. The theoretical capacity and energy ratio of Zinc-Nickel single flow bat-

teries (ZNBs) are higher than other RFB counterparts. The intrinsic electromo-

tive force is above 1.72V [46], which is much higher than VBFs 1.20V [40], leading

to an improved specific energy (upper than 85Wh/kg) [2; 45]. The nominal volt-

age maintains constant up to 1.60V throughout the discharging period [2; 45].

The discharging voltage is relatively constant at broad ranges of current rates.

Moreover, the aqueous electrolyte exhibits distinctive stability and non-toxicity

under over-charging and over-discharging scenarios [2]. An interesting feature of

ZNBs is the membrane-free, which differs from conventional RFB technologies.

In this regard, ZNBs employ only a single electrolyte and therefore can operate

without a membrane/separator. The expensive membranes are exempted from

the system design leading to cost-saving and manufacture-simplifying [45]. The

schematic diagram of ZNBs and a 200Ah pilot-scale ZNBs application are give in

Fig.1.6. Only one pump is required in this system, thus the system efficiency is

further improved due to the less power consumed by the pump.

Figure 1.6: A pilot-scale Zinc Nickel flow battery from Fraunhofer ICT, Germany

and Leeds, UK

The design of a nickel-zinc flow battery is very similar to an all-lead battery
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with a single tank [47]. Zhang et al in 2008 [2] first used copper electrodes for the

zinc deposition, which they electroplated with cadmium to avoid gassing. The

group later changed the copper electrode to cadmium coated nickel [45]. Other

groups also used carbon composite plates. The cathode in a ZNB system is usu-

ally made of nickel foam. The nickel hydroxide is coated there in form of a nickel

hydroxide paste. Regarding electrolyte, an alkaline zincate solution (pH > 14) is

applied. The stack design of a nickel zinc flow battery is different from conven-

tional bipolar arrangements in stacks. As illustrated in Fig.1.7, the ZNBs stack

usually consists of cell distribution plates, which are holding the electrode and also

provide manifolds for the distribution for the zincate electrolyte. The electrodes

in such a stack are connected electrically in parallel, which results in a voltage

of 1.6V OCV of the cell stack. The principal reactions are briefly given as follows.

Cathode chemical reaction:

2NiOOH + 2H2O + 2e−
discharging−−−−−−→
charging

2Ni (OH)2 + 2OH−

Anode chemical reaction:

Zn+ 2OH−
discharging−−−−−−→
charging

Zn (OH)2 + 2e−

Overall chemical reaction:

Zn+ 2H2O + 2NiOOH
discharging−−−−−−→
charging

2Ni (OH)2 + Zn (OH)2

So far the research of ZNBs largely focuses on the bench-scale cells. After

a promising magnitude of voltage over 1.6V in discharging phase was presented

in [45], [48; 49] further examined particular features of the ZNBs. The relationship

between applied flowrate and generated zinc morphology has been investigated

in [49], and a high rate flow has been reported to maintain the zinc morphology

in the good shape during the charging process. More then 1500 cycles have

been achieved under a flowrate of 15cm/s, but the applied current density has

to be limited by 20mA/cm2. In addition, further research [48] has demonstrated

that though gassing occurs in both charging and discharging processes due to

the charge efficiency loss, the flowing electrolyte can attenuate the gas evolution

10



1.1 Introduction

Figure 1.7: A nickel zinc stack design by Chen et al [2], (1) Perspex end plate,

(2) rubber gasket, (3) flow passage, (4) work electrode: cadmium-plated nickel

plate, (5) counter electrode: sintered nickel electrode and (6) location hole of the

reference electrode

process. As a result, the evolved H2 and O2 are less than the gas evolved in

a Zinc-air battery, which reduces the safety hazards associated with a mixed

H2 and O2 gas releasing. In [50], the influence of additives has been examined.

Lead ion and tetrabutylammonium bromide (TBAB) have been tested in their

work. The favorable result signifies that these additives can inhibit the growth

of spongy zinc, leading to smoother zinc deposition with higher charge efficiency.

As shown in Fig.1.8, a commercialization oriented ZNBs project has been carried

on in the cellar of energy institute at CUNY for many years [51], in which a

30kWh battery string assembled with ZNBs was made at the energy institute.

According to their reports, by the end of 2013 summer, the battery string has

been operated more than 900 deep cycles retaining the coulombic efficiency over

95%. Followed on under the support of Department of Energy, USA, Con Ed, and

NYSERDA, a larger 200kWh battery string was constructed by the university

spin-off company, Urban Electric Power. These prototypes of ZNBs are designed

for a long service life over 10 years, more than 5000 − 10000 charge cycles. In

this regard, this battery string is expected to be able to yield more the $6000

saving per month through the regulation of peak demands in the Steinman Hall.

This newly constructed battery string has demonstrated the feasibility of using

ZNBs to reduce the peak electrical load in the Steinman Hall resulting in extra
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revenue from the decreased electrical utility bill of CUNY. In addition, scaled-up

prototypes of ZNBs have been developed as well in CNUY. From 6.5Wh research

batteries to the 35Wh small-scale “workhorse” batteries, the energy institute at

CUNY definitely is the pioneer in the commercialization path of ZNBs.

Figure 1.8: A prototype ZNB located in Steinman Hall, CUNY

1.1.3 Challenges for Zinc Nickel Flow Battery

Due to the merits of environment friendly, less cost, and alternative to nickel

cadmium batteries, ZNBs are expected to replace the lead-acid batteries at the

lower cost end of the market in long term. Though ZNBs are innovative and have

been announced as a low-cost batteries that are safe, non-toxic, reliable with fast

discharge rates and high energy densities, and a promising competitive battery

technology to the existing lithium-ion cells, cyclability of this systems is rather

poor. In the charging phase, the dendrites are crystalline structures in zinc anode.

The growth of zinc dendrites should mainly be responsible for the poor cyclabil-

ity. In order to scale up ZNBs for commercialization, dendrite build-up has to

be addressed in advance. Along with the growth of dendrite, serious side effects

may occur when cycling the battery, such as the capacity fluctuations, unstable
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terminal voltage signals with voltage jumps, charge efficiency reduction leading

to serious gas evolution and manifold blocked due to the loose zinc deposits, etc.

For example, in high pH alkaline media (pH greater than 14), this alkaline me-

dia encourages the desirable reaction at the sintered nickel form (cathode), and

thus the gas formation is limited. However, in this case, as the cell potential

drifts higher during the zinc deposition over time, electrode surface conditions

are forced to be far away from the favorable environment for Zn formation at

the anode and NiOOH oxidation at the cathodes, which is however in favor of

gas generation. In Fig.1.9(a), once the discharging process cannot consume all

the generated zinc depositions, the flowing electrolyte may take deposition out of

the surface of electrodes, then floating with the electrolyte recirculation. At this

point, the floating zinc depositions will increase the risk to block the pipe and

pump, leading to the halt in pump. Furthermore, after long-term cell cycling,

the reactants are consumed leading to the decrease of the charge efficiency, as a

consequence the growth of zinc dendrite as shown in Fig.1.9(c) and gas evolution

as shown in Fig.1.9(b) become apparent.

Besides, low applied current density is another issue to hinder the viability

of ZNBs commercialization [45]. This challenge is also associated with the den-

drite build-up. The problem of dendrite formation and zinc morphology variation

exists in most Alkaline zinc based cells. Zinc depositions in alkaline media are

generated at different pH levels. For example, zinc morphology is the solid zinc

hydroxides in low alkalinity. And then, these hydroxides can further alter to zinc

oxide, which is highly insoluble. At a higher alkalinity, zinc can dissolve to form

zincates, resulting in over-saturated zinc oxide solution. The latter is favourable,

because it reduces the anode potential. But in such a high pH alkaline media,

it leads to a lower anode potential, resulting in uniform deposition of zinc at

the anode. At high current densities, zincate tends to form a sponge-like deposi-

tion, which can lead to dendrite formation [52], and than the generated dendrite

formation can lead to micro shortages inside of the battery, and thus reducing

lifetime tremendously. Thereby, the applied current densities is difficult to reach

to an ideal level but maintaining around 20mA/cm2 [53].
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(a) floating undissolved zinc deposition af-

ter discharging phase

(b) gas evolution over time

(c) the zinc dendrite build-up after 3.5h charging pro-

cess

Figure 1.9: Observed issues in our tests, a) the floating undissolved zinc deposition

will block the main manifolds and inlet of pump, b) due to loss of charge efficiency,

gassing is more apparent, c) the growth of dendrite can be inspected after a long

charging protocol

For stationary storage applications, the dendrite growth problem can partially

be circumvented by flowing electrolyte like the nickel-zinc single flow battery. Fur-

ther, for ZNBs, the issues like the sponge-like zinc morphology or zinc dendrite

can be partially solved by introducing the “stripping cycles” operation, thus im-

proving the battery lifespan. This procedure was first implemented on ion neutral
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pH zinc bromine batteries. During these stripping cycles the whole deposited zinc

will be stripped from the anode by deep discharging the battery. If all zincs are

dissolved, the zinc deposition can be started anew. From the engineering per-

spective, the stripping method can avoid the battery internal short-out. However,

stripping cannot maintain a stable discharging performance as the zinc residual

will be accumulated again after per stripping to reduce the active material ar-

eas for precipitation, leading to fluctuations in discharging capacity and voltage

profiles. As observed in Fig.1.10, voltage jumps take place occasionally, which

increases the difficulty in battery management. The fluctuated capacity over time

makes the estimation of state of change (SoC) error-prone. The error of SoC es-

timation can easily lead to overcharge or over-discharge, which will progressively

provoke the growth of dendrites associated with non-equilibrium [49]. Besides,

the other challenge is to determine the moment of reconditioning/maintenance.

Though in [51], reconditioning maintenance has been recommended per 15 cycles,

reconditioning time is dependently determined by the materials of electrodes, the

structure design, and the applied flow rate. As shown in [54], novel materials can

postpone the timing of reconditioning maintenance. Neither over-frequent nor

late reconditioning has benefits for the management of ZNBs, resulting in less

utility ratio or irreversible capacity degradation respectively.
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Figure 1.10: An abnormal voltage in discharging process
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On the other hand, as mentioned in Section 1.1.1 and shown in Fig.1.3, ZNB

framework relies on a low cost, hybrid RFB structure. Hence the expensive mem-

branes have been removed from the battery design, and battery manufacturing

has been simplified significantly. However, using the hybrid RFB structure will

lose the beauty of RFBs, in which the battery capacity has been restricted by the

active areas on the negative electrodes. In other words, the cell capacity cannot

be simply increased by either improving reactants concentration or scaling up the

tank volume. Additionally, once the applied number of negative electrodes has

been confirmed, the battery capacity is thus fixed, losing the flexibility of the

RFBs. At this point, this feature impels battery manufacturers and researchers

to seek new methods to increase the porosity of anodes. Other side affects have

appeared such as the raised manufacturing complexity and cost, so that the via-

bility of a commercial ZNBs is still a pending issue.

1.2 Research Motivations and Contributions

ZNBs have been researched from the aspects of material science and chemistry

science to improve the cell performance. However none of them fully satisfies

the cost and performance requirements. Significant developments and efforts are

still required at all levels: investigation of new chemistries, materials engineering,

cell design, long-term performance characterization in realistic environments and

battery management system design. This work gives a comprehensive coverage

of the ZNB management from the engineering perspective, where the character-

istics in terms of voltage, power, capacity are investigated. Incorporating with

the state-of-the-art battery management system (BMS), this thesis addresses the

existing technical issues in ZNB modelling, state estimation and battery mainte-

nance.

The main contributions of this work can be summarized as follows:

1. A new heuristic optimization method, namely, teaching-learning-feedback-

based optimization (TLFBO) is proposed based on the existing teaching-

learning based optimization (TLBO). The proposed TLFBO is then used to
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identify parameters in the artificial neural network (ANN) based nonlinear

battery model.

2. Two improved methods are proposed to improve the SoC estimation tech-

niques. One method relies on a newly proposed open-circuit voltage (OCV)

observer to address the computing complexity issues when higher order

ECMs are used in state estimation but also secure a high estimate preci-

sion. On the other hand, inspired by the model predictive control (MPC)

paradigm, a model predictive control scheme based observer (MPCO) is

developed to further increase the accuracy of SoC estimation. Because the

proposed MPCO takes advantages of the mechanism of MPC on rolling

horizon framework and solving constraints, the knowledge of the electro-

chemical process can be incorporated in the state estimation. Substantial

experiments and simulations are conducted and the results confirm that

the proposed MPCO outperforms some existing approaches in terms of

convergence, robustness, effectiveness and generality. In addition, the com-

petitiveness is demonstrated by analytical comparisons against other three

state-of-the-art estimators. In this regard, the relationships of the proposed

observer with other estimators are summarized briefly.

3. The peak deliverability of ZNBs is elaborated. A novel peak power predic-

tion method is developed based on the rolling prediction horizon algorithms.

Four indices are proposed to capture the characteristics of the peak power

capability over length-varying prediction windows. The consequent impacts

of the electrode material and applied flow rate on peak power deliverability

are analysed qualitatively.

4. Two capacity estimation methods are outlined in this work. A couple popu-

lar model free methods, i.e., incremental capacity analysis (ICA)/differential

voltage analysis (DVA) are used. In particular, due to fluctuations in the

battery capacity and voltages, noises and error spikes rejection approaches

for processing the raw data are given in details. However, experiments have

demonstrated these model free methods are not applicable for capacity es-

timation of ZNBs. On the other hand, model based capacity estimation
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methods are presented alternatively. Along with the proposed OCV ob-

server and MPCO methods, the capacity can be estimated accurately. An

indicator according to the capacity changes is thus identified to judge the

moment of battery maintenance.

1.3 Outline of Thesis

This thesis mainly deals with the development of BMS algorithms for ZNBs, in-

cluding battery modelling, real-time SoC and SoH estimation, and the judgement

of reconditioning moment for battery maintenance.

Fig.1.11 summarizes the interdependence of thesis chapters. The thesis begins

with Chapter 1, the background introduction of ZNBs, in which the advantages

and unique features of flow batteries are reviewed. Compared with other types of

batteries, the main drawbacks of zinc-based flow batteries and the corresponding

solutions from the material perspective are discussed in Chapter 2. In order to ad-

dress the operational issues from the engineering perspective, Chapter 3 presents

the details of the design of battery structure and experimental procedures. Then,

the research objectives to investigate the advanced battery management to reg-

ulate the operation of ZNBs including state estimation, function prediction, and

battery maintenance, are introduced. Chapter 4 investigates the online battery

modelling and SoC estimation techniques. Incorporating the online SOC esti-

mation technique, Chapter 5 and Chapter 6 details the research on the power

deliverability and capacity degradation modes of ZNBs, respectively.

The remainder of the thesis is organized as follows:

∆ Chapter 2 presents a literature survey on battery management for zinc-

based redox flow batteries from the material perspective. A brief intro-

duction to different battery applications encompassing cell performance,

challenges, and prospects is given first. Then the existing solutions to the

ZNB cycling problems are surveyed from the material perspective.
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Figure 1.11: The interdependence of thesis chapters

∆ Chapter 3 focuses on the design of testing regimes and ZNB demonstrator

fabrication process. The design procedures of a hand-made ZNB demon-

strator is detailed and the testing regimes used in this work are provided as

a valuable reference for the peers. In addition, the blueprint for a pilot-scale

ZNB is described at the end.

∆ Chapter 4 studies three popular battery modelling tools, i.e., Artificial Neu-

ral Network Model, Electrochemical Mathematical Model, and Equivalent

Circuit Model. According to the intrinsic features of ZNBs, the Equiv-

alent Circuit Model (ECM) based battery SoC estimation techniques are

elaborated.

∆ Chapter 5 deals with ZNBs peak power estimation in real-time. Since lit-

tle work has been done to examine the peak power delivery capability of

ZNBs, this Chapter details the procedures of online peak power prediction

techniques. In addition, the ability of instantaneous power acceptance and

deliverance are examined according to the peak power prediction during

the charging and discharging processes. The results confirm the outstand-

ing power deliverability of ZNBs.
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∆ Chapter 6 extends the research work in Chapter 4, the proposed SoC meth-

ods are employed in this chapter for State of Health (SoH) estimation. The

experimental work has confirmed that the capacity estimate is deemed to be

a good indicator for SoH. Other state-of-the-art capacity estimate methods

are compared. Based on the observation that the capacity degradation of

zinc-nickel flow cell can be correlated with zinc deposition characteristics,

a methodology using the capacity estimation as the indicator to determine

the reconditioning time for cell maintenance is then proposed.

∆ Chapter 7 concludes this thesis. The research contributions, as well as some

reflections and suggestions for future work, are summarized.

∆ Chapter 8 itemizes the published work.
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II
LITERATURE SURVEY

Alkaline zinc battery cells are regarded as a promising and competitive bat-

tery technology to the existing lithium-ion cells. The advantages of alkaline zinc

cells are high energy density at low material costs and the usage of non-toxic

non-flammable electrolytes. These features make alkaline zinc cells attractive for

stationary storage applications. The redox couple of Zn2+/Zn is highly soluble

in most aqueous electrolytes, and it generates a more negative standard potential

with minimal overpotentials due to the rapid kinetics. Thus, among the redox

flow batteries, zinc based flow batteries gradually gain substantial interests and

attentions in recent years. However, the performance is greatly affected by the

zinc deposition in charging process and zinc corrosion at rest. In addition, in a

medium or large scale energy storage system, the behaviours of zinc based flow

cells are restrained by the zinc metal deposition. Therefore, researchers have pro-

posed various management methods from the material perspective to remedy the

poor cyclability deficiency of different zinc based flow batteries. In the follow-

ing, two widely adopted cell architectures are compared. This literature survey

further reveals that the presented zinc nickel single flow battery (ZNB) has the

potential for commercial production. In particular, the existing battery man-

agement methods to solve various issues in relation to the zinc-nickel single flow

batteries (ZNBs) are reviewed. In addition, comparisons among popular battery

applications are given at the end.
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2.1 Zinc-Bromine Redox Flow Battery

The research of Zinc-Bromine cell can be traced back to 1970s [53], when one of

the earliest RBF was presented [1]. After almost four decades of development,

Zinc-Bromine Redox Flow Battery (Zn-Br) is now at the commercial stage due

to its maturity. There are two major battery developers in the market, i.e., ZBB

Corporation in USA, and Redflow Technologies Ltd. in Australia. Zn-Br exhibits

some outstanding features compared with other counterparts, as higher energy

density (70Wh/kg) at lower cost [55; 56].

2.1.1 Performance, Challenges and Management

During the charging process, analogous to other zinc-based batteries, metallic

zinc is deposited forming into a thin film on the carbon composite negative elec-

trode. In the meantime, bromide ions alter to bromine by oxidization at the

positive electrodes, but also commonly reacting with the organic agent, forming

a the thick bromine oil that will sink down to the bottom [5; 57]. The reverse

reaction occurs during the discharging process, where the zinc oxidizes and ele-

mental bromine reduces, thus generating up to 1.82V theoretical cell potential.

However, the net efficiency of such a system is not high, around 75% [5]. It is

worthy to mention that compared with Zinc-Bromine cell, the reactants and pro-

duces in ZNBs are highly soluble, which simplifies the battery cycling procedures

significantly, enabling online modeling and state estimation introduced which will

be elaborated this thesis.

There are two major hurdles for the Zn-Br commercialization, which needs to

be addressed in battery management. The first is the high self-discharging rate.

A separator can prevent the migration of bromine ions from traveling across to

the zinc electrode compartment [58]. In this regard, the self-discharging rate

can be reduced but at an increased cost. On the other hand, the produced

bromine has to be stored in one agent [57]. In details, the generated bromine

has to be collected by other agents. As a result, the applied organic agents

mixed with the bromine ions form an insoluble emulsion [59]. At this point,
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2.1 Zinc-Bromine Redox Flow Battery

the cell operation and battery management are meticulous, and thus a manual

battery management has to be carried out. Since the insoluble emulsion con-

tains the produced bromide and has different density from water, the bromide

retention can be achieved when circulating the electrolyte to separate emulsion

in the bottom of the tank according to the gravity. When the Zinc-Bromine

cell is cycling under such a management paradigm, the additional separation

procedure adds further efforts to operate the cell. Some commonly used com-

plex agents, such as N − methyl − N − ethyl − morpholiniumbromide and

N − methyl − N − ethyl − prolidiniumbromide [1], make the Zn-Br cell very

sticky and unclean.

Other commonly noted issues are related to the Zinc electrodes, such as the

material corrosion, and dendrite formation over time. At this point, ZNBs are

subject to the similar issues when batteries are cycling. In addition, the reac-

tion rate of redox couples Zn/Zn2+ is faster than bromide couples, leading to

the increasing polarization and ultimate cell failure [59]. This problem can be

partially circumscribed by the cell management techniques from the material as-

pects. From the carbon cathode aspect, special materials should be coated on

the surface of the electrodes [60].

2.1.2 Cell Prospects

The Zn-Br battery has been researched for over four decades. The first demonstra-

tion project in 3kWh, 10kWh and 20kWh sub-modules was reported in 1983 [1].

As illustrated in Fig.2.1, 10KWh pilot-scale Zn-Br was tested in the Laboratory.

A commercial scale of Zn-Br batteries are now available in US and Australia.

However, the complex system restrained the development of battery manage-

ment for Zinc-Bromine cells. More efforts have been made on the material im-

provements to further increase the cell efficiency as alternative. Up till now, the

specific energy of Zn-Br battery reaches up to 440Wh/kg with reasonable cy-

cling efficiency around 80%. Due to the high degree of reversibility of the redox

couples, the cost of Zn-Br system satisfies commercial requirements.
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2.2 Zinc-Cerium Redox Flow Battery

Figure 2.1: RedFlow Zn-Br 10kWh flow batteries in a performance testing lab

2.2 Zinc-Cerium Redox Flow Battery

The Zinc-Cerium is a newly proposed concept based on a hybrid redox battery

framework, and the initiative appeared in two US patents filed in 2004 [61] and

2005 [62]. The research on zinc deposition/stripping and cerium redox half-cell

reactions led to the proposal of the Zinc-Cerium redox batteries (Zn-Ce). Though

Zn-Ce was introduced not for long, the research on cerium redox couples can be

traced back to many decades ago on half-cell investigation of Ce(III) and Ce(IV).

The Methanesulfonic acid is commonly employed as the electrolyte due to the

ability to dissolve cerium ions [63]. The magnitudes of cell current and voltage

are determined by the size of electrodes and the number of cells stacked, respec-

tively. At first, a carefully selected membrane is used in the Zn-Ce cell. However,

the mixture of zinc and cerium can yet be observed over time, in practice. In

other words, the applied membranes are not strictly effective to proton trans-

port selection. Therefore, the potential for membrane-free battery architecture

has been raised, leading to the proposal of a hybrid framework. In this regard,

only one electrolyte reservoir is required, in which the zinc and cerium can be
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2.2 Zinc-Cerium Redox Flow Battery

mixed together [64]. Similar to the Zn-Ce, ZNBs take the advantage of this hy-

brid framework to significantly simplify the complexity of the battery structure

and reduce the battery cost. Moreover, the hybrid framework avoid the State of

charge (SoC)imbalance between two electrolyte reservoirs. Consequently, the cell

SoC may be estimated using the terminal measurements through the proper elec-

trical battery modeling approaches. In addition, the introduced hybrid framework

enables the designs of advanced battery management methods from the engineer-

ing perspective, which is the main focus in this thesis. As the unique advantage,

the cell open-circuit potential of Zn-Ce up to 2.4V is relatively high compared

with other flow batteries [65], thus a high energy density 25−35 Wh/L was then

achieved.

2.2.1 Performance, Challenges and Management

In [64] and [66], an undivided Zn-Ce redox flow battery has been examined. Up

to 2.1V voltage can be achieved in the discharging process when using 20mA/cm2

applied current density. The experiments have demonstrated that an averaged

energy efficiency above 75% can be guaranteed. The carbon felt electrode has

been employed as the positive electrodes. However, the performance is by large

affected by the well-known residual zinc deposition issues on the zinc electrodes.

At this point, similar to all zinc-based redox flow batteries, how to deposit a

uniform, thick zinc layer on the negative electrodes is the main challenge. In

the exisiting literature, the majority of management methods to address zinc

deposition issues are proposed from the material and chemical perspectives. In

particular, for Zn-Ce, a number of studies have been conducted [66; 67; 68; 69; 70].

For example, with the medium of Methanesulfonic acid, it is possible to achieve a

dendrite-free zinc deposition with the carbon electrodes [68], incorporating with

the proper additives [66]. Whereas, the rate of zinc corrosion when at rest is high,

which is deemed to be another problem for the Zn-Ce battery. Without addi-

tives [70], the corrosion rate cannot be controlled resulting in significant hydrogen

evolution [67]. The corrosion rate tends to increase as the acid concentration and

temperature increase. But the corrosion rate will remain at the same level when
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the applied current densities vary [67]. Though some additives have been demon-

strated to inhibit the gas evolution and dendrite formation effectively, there exists

the additives consuming issue, leading to the decrease in effectiveness over time

until full depletion. Overall, the used Methanesulfonic acid can help with the

formation of a compact zinc layer. The gas evolved and zinc corrosion are the

remaining problems to be attenuated. In a word, though current management

methods to use chemical additives are able to reduce the corrosion rate and form

the compact zinc layers, there is however no effective indicator to assess when the

cell begins to fail. As a consequence, battery management methods developed

from the engineering perspective are required to further improve the cell opera-

tion efficiency.

For the cerium positive electrode, several materials have been discussed in [71].

It has been reported that the carbon felt based positive electrodes can still yield

a high potential even at a high applied current density rate up to 50mA/cm2,

but the cell performance has been compromised by the low stability. As stated

in [71], Pt/T i mesh is the best option for a scaled-up Zn-Ce battery, because

the conversion of Ce(III) to Ce(IV) can maintain at over 75% current efficiency.

Besides, in order to enhance the kinetics of the Ce(IV)/Ce(III) reaction and

increase the stability of Ce(IV) ions, mixed acids solution methods have been

proposed [70; 72]. According to [72], an additive with 0.5mol/dm3 H2SO4 can

increase the exchange current density in comparison to the usage of Methane-

sulfonic acid electrolyte only, achieving an energy efficiency of 73%. However,

zinc-based flow batteries are commonly operating in the alkaline environment,

these management methods solely relying on the acidic additives are thus limited

in general. In this thesis, in order to handle the aforementioned issues, a capacity

based battery management method is proposed and the proposed method can be

broadly used in all kinds of zinc-based cells.
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2.2.2 Cell Prospects

Currently, there are two types of Zn-Ce redox flow batteries [73] based on the

divided Zn-Ce framework. In this regard, the negative electrode may experience

the hydrogen emissions, resulting in a progressive acidification of negative elec-

trolytes in the corresponding reservoir. As a result, the acidulated electrolyte

speeds up the side reaction to further degrade the cell performance. On the

other hand, an undivided Zn-Ce framework has been investigated to avoid the

divergence of acid concentration in the two separated half cells. As introduced

in Section 1.1.1, the undivided system is a membrane-free framework with the

unique advantages to simplify the electrolyte flow circuit, which is also employed

in ZNBs. Regarding this novel undivided system, however, most of the available

results are still obtained from bench-scale flow cells prototypes in the laboratory

environment. The carbon felt based positive electrodes have been thoroughly

tested. At low current density 20mA/cm2, the charge efficiency can achieve over

80% with energy efficiency above 72%. Though the development of undivided

Zn-Ce cell is only partially disclosed, it is noted that this ambitious attempt of

the undivided Zn-Ce framework is instructive, which can simplify the cell con-

struction and address the problem of membrane potential drops.

On the other hand, a 2kW pilot-scale Zn-Ce battery was evaluated by Plurion

Ltd. [65] in Scotland in 2010s. However, neither the coulombic efficiency nor the

energy efficiency was satisfactory. In spite of the early commercial interest and

capital investment in the Zn-Ce battery, the previous research has shown that

such a system has not yet passed the scale-up tests [73]. Significant advances

are therefore required from both the material and engineering perspectives, such

as electrode materials selections, optimization of applied current density rate,

compound electrolyte compositions tests, cell frame design and advanced battery

management system. Further, similar to other zinc-based flow batteries, the

capacity loss should be minimised when operating Zn-Ce batteries. Finally, the

gas evolution and concentration discrepancy of methanesulfonic acid between the

positive and negative half-cells should be attenuated.
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2.3 Zinc-Nickel RFBs: Challenges and Poten-

tial Solutions

The commercialization of nickel zinc battery (ZNB) has been hindered by the

well-known dendrite formation and zinc morphology variation over time. Two key

problems associated with the NZBs are the swelling of the nickel electrode (cath-

ode) resulted from the uneven current distribution, and the poor cycling charac-

teristics of the zinc electrode (anode) due to the growth of zinc dendrites [74].

Throughout the charging phase, the active materials are redistributed leading to

a nonlinear distribution, and the redox reaction is far from the equilibrium sta-

tus. As a result, a concentrated layer of zincate boundary is grown around the

surface of the zinc electrode, resulting in the appearance of dendritic zinc depo-

sitions [46; 49]. Once the dendrite is formed, due to the higher current density at

the tips, the dendrites growth is more aggressive [75; 76]. These phenomena may

eventually lead to battery failures, such as internal short circuits, cell housing

damage, capacity deterioration, and unreliable cell performance, etc. As men-

tioned in Section 1.1, in this work, an advanced battery management system has

been proposed from the engineering perspective for ZNBs. Finally, some most

recent developments to address various drawbacks of ZNBs are summarized as

follows:

1. New chemicals/additives to reduce gassing and dendrite growths during

charging phase.

The electrolyte contains dissolved ZnO2. The formed zincate ions as the

active species show inconsistent deposition. Electrolyte additives can help

to control the morphology of zinc plating on high alkalinity environment.

The integration of additives/dopants into anolyte can potentially reduce

the occurrence of undesirable side reactions like sponge-like deposition or

dendrite formation. In the industry of alkaline zinc plating, different addi-

tives are commonly used.
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An important issue is the over potential of the hydrogen evolution. Gassing

reaction has been prevented in alkaline batteries with the addition of trace

amounts of Mercury, Thallium or Cadmium, as these metals exhibit a very

high overpotential against hydrogen evolution reaction [77; 78]. Neverthe-

less these metals are not favored anymore due to toxic concerns. Today

electrolyte additive of Bismuth is often used in alkaline batteries. El-Sayed

et al. [79; 80] proposed the addition of trace amounts of nickel salts or

K3[Fe(CN)6)]. Also addition of chromium has been reported to reverse

this side reaction. Addition of small amounts of Calcium or Tin can also

prevent gassing, because they can stabilize the calcium/Tin zincate forma-

tion [78].

Besides, since the negative electrode of ZNBs is analogous to the Zn-Air

battery system, the cycling also leads to the dendrite growths. To use

bi-functional electrolyte additives for smoothing the zinc deposition and in-

hibiting the gas evolution is still the most popular strategy, since the effects

of electrolyte additives are efficient in not only enabling the complete disso-

lution of the zinc deposition after per discharge but also depleting zinc ions

in the electrolyte to retain the electrode at low potential [78]. Table 2.1

lists the most effective electrolyte additives including the organics, acids,

polymers and metal ions. However, it is time-consuming to find a proper

additive based on extensive experiments. Alongside the unknown effective

volumes of the additives, there is no effective means to determine the mo-

ment of additives depletion, making the experiments even more challenging.

The effectiveness of additives will be diminished when they are depleted.

2. New surface modification techniques to control the electrode shape

Surface modification techniques have been investigated to improve the long-

term cycling performance. Synthesized ZnO was used by [74; 75; 76] to con-

trol the shape of anode [76]. There is considerable diversity in the structure

of the synthesized ZnO, so that substantial experiments are needed before

the commercialization.
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Table 2.1: Effective electrolyte additives for zinc electrodeposition and dissolution

in alkaline bath

Additives Electrolyte Ref

Calcium hydroxide Potassium hydroxide [81]

Polyethylenimine Potassium hydroxide [82]

Thiourea Potassium hydroxide [83]

Furfuraldehydethiosemicarbazone Sodium hydroxide [84]

Citric acid Potassium hydroxide [85]

Tartaric acid Potassium hydroxide [85]

Succinic acid Potassium hydroxide [85]

Cellulose Potassium hydroxide [86]

Polyvinylalcohol Sodium hydroxide/sodium chloride [87]

Hydroxylamine Alkaline phosphate/sulfate [88]

Sorbitol Sodium hydroxide/sodium sulfate [89]

CTAB Potassium hydroxide [90]

3. Current control to suppress the dendrite build-up

Besides, a compact zinc morphology is achievable through limiting the ap-

plied current densities [49]. Nevertheless, the current magnitude is limited

at a low level in order to suppress the dendrites growth, which is hardly

manageable in real applications. Instead, pulsed current was suggested

in [91], where a new method was proposed to generate the compact zinc de-

position by altering the charging protocol to high frequency pulse currents.

In addition, more effective zinc electrodeposition can be achieved in diluted

KOH electrolytes by using the proposed pulsed current charging. In order

to implement the pulse charging, to understand the ZNB working condi-

tions is crucial to avoid battery being overcharged, and an accurate state of

charge (SoC) estimation is a key. In this regard, the state estimation will

be comprehensively researched in this thesis.

4. Flow rate control to suppress the dendrite build-up

30



2.3 Zinc-Nickel RFBs: Challenges and Potential Solutions

In [92] and [93], the relationship between mass transport and flow fluxes

has been detailed. The applied flow rate can be expressed as a function

of the Reynolds number and current densities, and then a limited current

density is introduced as an indicator [94] to further map the flow to the

deposition morphology. Particularly, in the laminar regime, dendrite build-

up can be suppressed by increasing the flow rates, while compact deposits

can be observed in turbulent flow regime. In [94], it has been further re-

ported that longer cycle life can be achieved when applying a flow rate over

15cm/s. The flow rate is therefore an important factor in zinc dendrite

build-up. This method is effective even at high charge rates, where a higher

flow rate can encourage the growth of dendrites toward the same direction

thus preventing the battery failure from a short circuit. However, circulat-

ing electrolytes fast leads to more power consumed and system efficiency

reduced.

5. 3−D porous electrode design

With the development of materials and manufacturing process, the three-

dimensional zinc sponge electrode design has become a focus for producing

the next generation RFBs. A three-dimensional zinc sponge electrode has

been fabricated in [95]. The proposed 3−D electrodes have yielded dendrite

free after extensive cycling up to 188mAh/g (Zn). Moreover, a Zn/Cu 3−D
foam electrode has been investigated by [96]. The specific capacity of the

3 − D Zn/Cu foam electrode can reach up to 620mAh/g (Zn) after 9000

cycles tested by their ZNBs prototype, which has exhibited the superior

cycling stability. Other research [97] has achieved the similar results that the

3−D wired zinc architectures are capable of suppressing dendrite formation

innately. However, the design and optimization of a 3 − D electrode to

match the needs of commercialization is still an important topic yet to be

fully addressed.

31



2.4 Zinc-Nickel RFBs: Cell Prospects

From the application perspective, the concept of periodic reconditioning to

prolong the battery service life first appeared in a US patent [73] and further de-

tails can be found in [49; 51]. According to the proposed method, after a number

of cycles, the reconditioning maintenance operation will be applied to ZNBs, i.e.

a slowly trickling discharging cycle will be introduced. In this way, the undis-

solved zinc depositions can be stripped off from the surface of the electrode. A

number of reconditioning experiments have been conducted on bench-top ZNB

stacks and grid-tied ZNB applications. The results have demonstrated that the

battery life can last for more than 1000 cycles with the introduction of periodic

reconditioning [51]. Although the previous research has provided a feasible man-

agement method through a periodic reconditioning, the unstable performance of

ZNBs has not been fully addressed. Specifically, two challenges are prevailing.

One is that the unpredictable zinc dendrites growth and residual uneven zinc mor-

phology lead to the variations in battery capacities after each discharging cycle,

resulting in shifting of State of Charge (SoC) estimation. In this regard, unlike

other counterparts, the SoC estimation of ZNBs has turned out to be inaccurate

and unreliable. The other difficulty is to determine the timing of recondition-

ing maintenance. The time for reconditioning depends on the used materials of

electrodes, the battery architecture, and the applied flow rates. As shown in

[54], the introduction of some new materials can postpone the timing of recon-

ditioning. Neither over-frequent nor delayed reconditioning benefits the battery

management of ZNBs. On the other hand, the error of SoC estimation can lead to

overcharging or over-dischargeing operations, which will aggressively provoke the

growth of dendrites associated with non-equilibrium [49]. Therefore, the periodic

reconditioning has to be incorporated into a reliable battery management system

to effectively operate the ZNBs.

2.4 Zinc-Nickel RFBs: Cell Prospects

The challenges with the ZNBs are apparent, and the solutions largely focus on the

material aspect. So far, two well-known pilot-scale ZNBs have been developed by
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the Zhangjiagang Smart Grid Fanghua Electrical Energy Storage Research Insti-

tute Co. Ltd. and the City University of New York. Through the comparison

of the published results, ZNBs generally outperform other zinc-based RFBs with

less cost, and thus ZNBs have great potential for commercialization.

However, there are still a number of issues yet to be solved, such as the

improvement of energy density and electrolyte conductivity, materials selection

of the positive electrode, and the control of zinc deposition morphology. Be-

sides, performance improvement and battery management from the engineering

prospective have not been well addressed yet and this thesis thus aims to fill in

the gaps.

2.5 Comparisons: Different Batteries

Table 2.2: Comparison of different battery technologies [1; 4; 5; 6; 7]

Energy density Power density Efficiency Self-discharge Life cycle Capital Cost

(Wh/kg) (W/kg) (%) (rate/day) (cycles) ($/kWh)

Lead-acid 30-50 75-300 85-90 0.1%-0.3% 500-1000 200-400

NiCd 50-75 150-300 60-70 0.2%-0.6% 2000-2500 800-1500

NaS 150-240 150-230 75 ±20% 2500 300-500

Li-ion 75-200 150-315 87-92 0.1%-0.3% 1000- 600-2500

VRB 65-75 Negligible 12000+ 150-1000

ZnBr 30-50 60-65 Negligible 2000+ 150-1000

Zn-Ni Flow 20 65-85 1%-5% 10000+ 300-500/700

Table 2.2 compares the the Zn-Ni flow battery with other popular and well-

developed battery types. Further discussions are given as follows:

1. Energy and power density

The power density (W/kg or W/L) refers to the ratio between output power

and the volume or the gravitational mass of storage devices. Besides, the
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energy density is the amount of energy stored in watt-hour per unit volume

or weight. As shown in Table 2.2, NaS and Li-ion batteries provide the

highest power and energy density. Due to the low active material concen-

tration of the applied aqueous solution, energy densities are lower for flow

batteries which restrains the implementations of flow batteries in space lim-

ited applications. However, flow batteries naturally release the energy and

power anxieties due to the separations of power and energy components as

illustrated in Fig.1.2. Combined with the system cost, flow batteries are

suitable energy storage systems for power grid to provide large-scale energy

demands.

2. Cycle efficiency

The cycle efficiency is used to define the ”round-trip” efficiency, which is

the ratio of the electricity output to the electricity input. One observation

from Table 2.2 is that the cycle efficiency of lithium batteries is the highest,

but the capital cost is almost doubled of the cost for Zc-Ni flow batter-

ies. For grid-tied applications, much higher cycle life complemented with

low investment makes the Zn-Ni batteries become competitive than lithium

batteries.

3. Life time

The life cycle is a crucial index for assessing the cost-efficiency of different

batteries technologies. In principle, unlike other types of batteries, there

are no solid-to-solid phase transitions in the flow batteries. Therefore, as

shown in Table 2.2 flow batteries have longer life time, which is a desirable

advantage of flow batteries. It is reasonable to assume that the useful life

time of flow batteries can exceed ten years.
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III
EXPERIMENTAL SETUP AND TESTS

The design of battery architecture and testing regimes play an important role in

the development of Zinc Nickel batteries. Battery leaking, flow channel blocking

and aggressive stimulation may lead the premature battery failures in the exper-

iments. In this Chapter, the design procedures of a hand-made ZNBs demon-

strator used and tested in this thesis are outlined and the corresponding testing

regimes are provided as the benchmarking reference for the subsequent Zinc Nickel

batteries tests. In addition, the blueprint for a pilot-scale ZNB is discussed at

the end.
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3.1 Experiment Set-up

The system level investigations of ZNBs is quite limited in the literature, the de-

sign of the prototype Zn-Ni flow battery and its testing regimes presented in this

thesis would be a valuable reference for future research in this area. A hand-made

ZNBs demonstrator has been first fabricated at the University of Macau, which

has been tested and investigated in this research. Fig.3.1 illustrates the schematic

of the experimental apparatus. The design of this demonstrator was based on

the previous studies [2; 45]. Four sintered nickel oxide plates (Jiangsu Highstar

Battery Manufacturing) are used as the nickel electrodes (positive/cathodes elec-

trode) and three inert electrodes such as the polished stainless steel sheets are

adopted as the zinc electrodes (negative/anodes electrode). All the electrodes are

shaped as the 70mm×70mm squares and are stacked in parallel, while sandwich-

ing the acrylic spacers to prevent the electrolyte leaking from the space between

neighbouring electrodes. The designed capacity of this ZNBs demonstrator is

3.70Ah. The current is collected by two outward 10mm × 10mm rectangular

conductors differentiated as positive and negative ends, respectively. In order to

reduce the volumetric flow rate of electrolyte and maintain the flow rate evenly,

the snakelike design of flow channel is employed to provide longer flow path as

depicted in Fig.3.1. The channel pads are 5mm thick, and are placed facing to the

zinc electrodes. The electrolyte is prepared based on [45], where zinc oxide (1Mol)

dissolves in the potassium hydroxide solution (10Mol/L) and then 20g/L Lithium

hydroxide is added into the mixture. Additionally, as shown in the zoom-in area

of Fig.3.1, gaskets are cut to encircle around the spacer borders to keep the frames

sealed. The electrolyte is circulating through the battery stacks and the outside

reservoir from bottom to top by a peristaltic pump. The operating flow rate

is kept at 19cm/s [45]. The battery tester NEWARECT − 3008W − 15V 3A

generates the testing currents for the ZNBs demonstrator. According to the

specification of battery tester, the measurement errors are bounded within 0.1%.

Throughout the entire experiments, the room temperature maintains 25 ± 3◦C,

and the output data will be logged by an external host computer. It is notable

that the separators are not required in such a single flow system.
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Figure 3.1: Schematic diagram and experimental apparatus

3.2 Testing Design

3.2.1 Pulse Tests

Three current profiles, 0.5C(1.85A), 1C(3.70A), and 1.5C(5.55A) are fed to the

battery stack in pulses. The dis/charging rates are controllable by the variable

user-defined width of the pulses, specifically, 15min for 0.5C, 10min for 1C, and

5min for 1.5C in this work. Differing from the SoC-OCV tests, only pulses are

employed to excite the battery over each cycle. The pulsed intervals stabilise

the demonstrator while equalising the reaction before the next pulse current is

applied. In this work, neither electrode material nor flow channel is well opti-

mised. Therefore, the demonstrator is susceptible to premature degradation due

to over-excitation. Given this consideration, the applied pulse tests allow the

redox reaction to keep pace with the rate of injected electrical energy to sustain

the desirable working condition. For example, 1C current rate in pulse is used to

excite the batteries in a moderate manner. Consequently, the applied pulse tests

protect the unmatured, hand-made ZNBs demonstrator from over-excitations and

rapid deterioration. In particular, the battery rests for 15min after each pulse

to ensure the completeness of the redox reactions. On the other hand, dynamic

pulse tests are carried out as well, which reflect the responsive performance of
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the battery under the scenario of frequency control [98]. Four pulse patterns in

terms of 1C, 1.5C, 0.5C, and 1C are consecutively loaded into the battery dur-

ing charge/discharge processes. The dynamic pulse tests are conducted under an

acceptable current stress for short-term testing, aiming to examine the transient

behaviours, convergence and tracking performance of the proposed model and

observer, while preventing the demonstrator from over-excitation.

3.2.2 SoC-OCV Tests

The SoC-OCV table explicitly interprets the monotonous relationships between

SoC and OCV, and thus it is widely adopted in the model based real-time SoC

estimation. In this paper, the incremental OCV (IO) method is used to obtain the

SoC-OCV table. Before the discharging process, the battery demonstrator is fully

charged by constant current constant voltage (CCCV) mode. In every charging

cycle, 0.5C(1.85A) is used to charge the ZNB until the voltage reaches 2.05V

the upper cut-off voltage, and then the charging cycle will be terminated until

the current value drops under the current threshold 0.4A(0.1C). According to

the Pulse tests, as the ZNB demonstrator is sensitive to the the applied current

stress, three moderate current profiles are adopted in the IO method, such as

0.5C(1.85A), 1C(3.70A), and 1.5C(5.55A) to drain off the capacity, when the

terminal voltage drops to the lower cut-off value 1.2V . The length of each constant

discharging current pulse is set as 10% SoC drop interval. Afterwards, in order

to guarantee the equilibrium of redox reaction, a relaxation period of 30min is

applied between two discharging intervals. The SoC recorded by CC method

is treated as the reference. In addition, the OCV values are logged at the end

of each charging/discharging interval to characterise the SoC-OCV curve. OCV

values are averaged over the dis/charging phases for calibration purpose. SoC-

OCV Table can be then determined as a fifth order polynomial expression [99]:

Voc = G(SoC) =
o∑
q=0

ρqSoC
q (3.1)

where o is the selected order of least square (LS) polynomial curve fitting method.

ρq, q = 1, · · · , o are the polynomial coefficients to fit the nonlinear correlation.
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An example of the SoC-OCV function for ZNBs is given below:

G(x) =1.6442 + 0.3471x− 0.7168x2

+ 0.98012x3 − 0.7353x4 + 0.3300x5

3.2.3 Capacity Tests

Galvanostatic cycle tests [100] are carried out using the constant charge/discharge

rates of 1C (3.70A). The objective of these tests is to verify the effectiveness of the

methods proposed in the thesis to handle the capacity fluctuation issues. In each

cycle, the charging phase is terminated once the ZNBs demonstrator has reached

its full capacity 3700mAh. It is notable that the capacity calculation in this paper

is based on the ability of nickel electrode. And then, the demonstrator is treated

as fully discharged when the terminal voltage Vt drops to the cut-off voltage 1.2V .

However, during the continuous galvanostatic cycling, the residual zinc deposits

are accumulated on the zinc electrode. With this effect, the battery capacity is

not stable and keeps fluctuating at each discharging cycle. In order to control the

ZNBs more accurately, in principle, battery capacity is better to be estimated

and updated after each discharge cycle. Therefore, the knowledge of working

conditions, i.e. remaining capacity and the tendency of capacity degradation,

can be provided by the proposed BMS, which is the key information to determine

the timing of reconditioning maintenance and to operate the battery effectively.

Besides, similar tests have been conducted on a large-scale 200Ah ZNB stacks to

further verify the proposed methods in this research.

3.2.4 Applicability Tests

To further validate the generality of the proposed observer in more complex cur-

rent profiles and deal with different electrochemical storage applications, the Fed-

eral Urban Driving Schedule (FUDS) test [100] is carried out on a 5Ah lithium

battery to test the proposed method. The regime of FUDS satisfies the auto-

mobile industry standards. In addition, it represents the power requirements in

the practical utilization of electric vehicles (EVs). The FUDS test starts with a

fully charged state under the CCCV charging mode, and the test is terminated
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3.2 Testing Design

by consuming all the net capacity.

Throughout each process of above tests, the reference SoC trajectory is ob-

tained by the reliable Colombo Counting (CC) method. All the testing regimens

are detailed in Fig.3.2, where the current profiles and voltage responses are de-

picted in black and red lines respectively.
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Figure 3.2: Details of the tests, where the red and black lines stand for voltage

and current signals respectively
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3.3 Design Improvements

Based on the experiences gained from the ZNB demonstrator fabricated in Macau,

a pilot-scale ZNB has been assembled by our research partner Fraunhofer Institute

for Chemical Technology (ICT), led by Dr Peter Fischer. The stack design is

different from conventional bipolar arrangements in stacks. The stack consists of

cell distribution plates, which are holding the electrode and also provide manifolds

for the distribution of the zincate electrolyte. Fig.3.3 illustrates the improved

design.

• Project Background 

The nickel-zinc single flow battery was first described by Zhang et al in 2008 [1]. The design 

of a nickel-zinc flow battery is very similar to an all-lead battery with a single tank [2]. Zhang 

et al first used copper electrodes as the anodes for the zinc deposition, which they 

electroplated with cadmium to avoid gassing. The group later changed the copper electrode 

to cadmium coated nickel [3]. Other groups also used carbon composite plates. The cathode 

in a nickel zinc electrode is usually made of nickel foam or porous nickel sheet. The nickel 

hydroxide is coated there in form of a nickel hydroxide paste. As electrolyte an alkaline zincate 

solution (pH > 14) is applied. 

The stack design of a nickel-zinc single flow battery is different from conventional bipolar 

arrangements in stacks. The stack usually consists of cell distribution plates, which are holding 

the electrode and also provide manifolds for the distribution for the zincate electrolyte. As am 

example, Fig.1 details the arrangements in stacks of our design.  

 

Figure 1: a) flow distribution plate of a nickel zinc flow battery – free electrode area = 100x100 
mm, b) single cell composed of a zinc electrode (grey), a nickel electrode (black) and two flow 
distribution plates, c) cut through the center of the nickel zinc flow battery cell made of 11 
nickel and 10 zinc electrodes. 

 

The electrodes in such a stack are connected electrically in parallel. This results in a voltage 

of ~1.6V Open circuit voltage (OCV) of the cell stack. 

In this project, a bench-scale demonstrator of a nickel-zinc flow battery will be fabricated at 

Fraunhofer ICT, and the demonstrator consists of the following parts: 

The electrolyte reservoir is made of commodity polymer for the alkaline zinc electrolyte. The 

volume of the tank should be in the range of 1 to 2 litre. A flow cycle consisting of the tubing/ 

fluidic connections of the cell with the pumps made from alkaline resistant material. A pump is 

used to drive the electrolyte circulating toward the bottom to the top of the flow distribution 

plate, make flowing evenly. A temperature sensor included in the fluidic cycle is mounted a 

line with flow sensors.  The transportable housing of alumina profiles with safety containment/ 

tray is used for the demonstrator.   

In the preliminary step, the electrodes are not optimized, thus made of as follows: 

Figure 3.3: a) flow distribution plate of a nickel zinc flow battery: free electrode

area = 100 ∗ 100mm, b) single cell composed of a zinc electrode (grey), a nickel

electrode (black) and two flow distribution plates, c) cut through the center of

the nickel zinc flow battery cell made of 11 nickel and 10 zinc electrodes.

The electrodes in such a stack are connected electrically in parallel. This ar-

rangement results in a voltage of 1.6V Open circuit voltage (OCV) of the cell

stack. The electrolyte reservoir is made of commodity polymer for the alkaline

zinc electrolyte. The volume of the tank is in the range of 1 to 2 litre. A flow

cycle consist of the tubing/fluidic connections of the cell with the pumps, where

all the apparatuses are made from alkaline resistant materials. A pump is used to

41



3.4 Conclusion

drive the electrolyte circulating from the bottom to the top of the flow distribu-

tion plate, resulting uniform flow of electrolyte. A temperature sensor is mounted

along with the flow sensors. The transportable housing of alumina profiles with

safety containment/tray is used for this demonstrator. The electrodes are made

as follows:

A carbon composite plate is used as the anode electrode, and a nickel foam

pasted with nickel hydroxide paste acts as the cathode electrode. The electrodes

have an active area of 10∗10cm (geometrical area). The electrodes are connected

to a terminal. The terminals are collected above the flow distribution plate. In

this prototype, there will be 11 nickel hydroxide pasted electrodes (cathode) in

parallel connections combined to the plus pole and 10 zinc-deposition electrodes

(anodes) in parallel connection combined to the negative pole. The cell connectors

are insulated separately.

3.4 Conclusion

In this chapter, the cell construction procedures and testing design are briefed.

Note that all the tests conducted in this thesis include the pulse tests used for the

battery modelling and model verification; the SoC-OCV tests used to build the

SoC-OCV relationship; Galvanostatic cycle tests conducted for the capacity esti-

mation; and additional tests on a 5Ah lithium battery to verify the generalization

of the proposed methods. Finally, the design of a pilot-scale ZNB is introduced.
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IV
BATTERY MODELLING AND STATE OF

CHARGE ESTIMATION

In Battery Management System (BMS), battery modelling is required for mon-

itoring the battery working conditions, estimating the internal states, and diag-

nosing potential faults. In addition, a comprehensive battery model is able to cap-

ture the key characteristics of cell reactions, providing important electrochemical

know-how for the manufacturers and academic researchers. Besides, when cycling

a cell, the dynamic knowledge of battery states, e.g., State of Charge (SoC), State

of Power (SoP), and State of Health (SoH), etc. cannot be measured directly by

external sensors and they have to be inferred by the developed battery mod-

els. Therefore, the accurate battery modelling and state estimate are essential in

BMS. In this chapter, three popular battery modelling tools have been reviewed.

According to the intrinsic features of ZNBs, the Equivalent Circuit Model (ECM)

based battery State of Charge (SoC) estimate techniques are further elaborated.
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4.1 Battery Modelling

4.1.1 Artificial Neural Network Model

The battery modelling based on Artificial Neural Network (ANN) has been inten-

sively researched in battery management system (BMS) design in early days [101;

102; 103; 104; 105]. It is free of the knowledge of internal electrochemical pro-

cesses and thus easy to be adopted for different battery systems. In [105], the

available capacity of lead-acid batteries is calculated by the ANN. The used model

improves the accuracy of the Peukert equation [106; 107]. Then, the wavelet-

neural-network (WNN) based battery model is proposed in [102] to reproduce

the dynamic electrical characteristics of lithium batteries. For ANN based mod-

elling methods, the terminal signals can be readily fused with the battery shell

temperature to build a comprehensive model with improved model accuracy and

the resultant models are also adaptable for varying discharge rates. In order to

reduce the impact of the measurement noises on the model accuracy, a range of

filters are introduced [101; 104]. In some recent studies [103], the OCV (open

circuit voltage) is also taken into consideration, leading to a dual neural network

battery model, where two ANN models are connected in series. The first model

is used to identify the parameters of a electrochemical model. The subsequent

ANN model represents the SoC-OCV table. In this regard, the weights of the

constructed dual ANN models can represent different physical quantities in the

electrochemical process model. However, most of the state-of-the-art ANN mod-

els are black-box models and they are error-prone when dealing with unseen data.

In this section, ZNBs are first modelled by on a Radial Basis Function (RBF)

neural network. The relationship of the ZNB terminal voltage with other mea-

sured variables such as currents is represented by the proposed RBF ANN model.

This model can then be used for internal states estimation as long as the proper

filters such as EKF or Particle filter (PF) are incorporated. In our proposed RBF

model, both the linear and non-linear parameters in the model are tuned through

a presently proposed feedback-learning phase assisted Teaching-Learning-Based
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4.1 Battery Modelling

Optimization (TLBO) method, namely Teaching-Learning-Feedback-Based Op-

timization (TLFBO) [108]. Besides, the fast recursive algorithm (FRA) [109] is

applied to select the proper inputs and network structure to reduce the modelling

error and computational efforts.

Radial Basis Function Neural Networks

The RBF neural network possesses a simple structure for modelling non-linear

systems, which has been intensively researched and used to model other battery

types [101]. Herein, a general multiple-input-single-output RBF neural network

is considered. The outputs are formulated as follows.

y (t) =
n∑
i=1

ωi · φi(X) (4.1)

where y (t) is the RBF neural model output representing the system outputs in

discrete sampling time. ωi is the linear parameter and denotes the output weight

for the corresponding i − th RBF node. X is the inputs of the ZNB system in

terms of the readily measurable terminal voltage and applied current signals. The

output of the hidden node is given as follows.

φi(X) = exp(− 1
2σ2
i
‖X − ci‖), i = 1, 2, · · · , n (4.2)

where σi and ci are the non-linear parameters in the Gaussian function φi and

denote values of width and centre vectors for the corresponding i− th node.

When the RBF network is used to model the ZNBs, three issues, including in-

puts selection, the number of hidden neurons, and optimization of the linear/non-

linear parameters, need to be considered. In this paper, the FRA method is first

applied to select both the model structure and identify the significant input terms.

The novel TLFBO is proposed to optimize the parameters in the RBF network

simultaneously.
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4.1 Battery Modelling

Fast Recursive Algorithm

The Fast Recursive Algorithm (FRA) is a powerful fast forward method to both

select the model structure and estimate the model parameters. In this work the

battery model is considered as a discrete non-linear dynamic system f(.) including

20 input items and single output outlined as follows:

y(t) = f (V (t− 1), · · · , V (t− l10), I(t− 1), · · · , I(t− l10)) (4.3)

According to Eq.(4.1), the pre-set 20 input terms as the inputs X for the RBF

NN will cause significant computational expenses. Besides, the number of RBF

hidden nodes needs to be decided. It is clear that the modelling accuracy and

the computational efforts increase as the number of hidden nodes increases. Ac-

cording to [110], the number of RBF hidden nodes can be selected based on a

simpler ARX model built from the system input and output data. Thereby, the

FRA method is applied to pre-select the RBF neural inputs X and the number

of hidden nodes. According to [109], a recursive matrix Mk and a residual matrix

Rk are defined as the basis for the FRA method.

Assuming that

Φ = {V (t− 1), · · · , V (t− l10), I(t), · · · , I(t− l9)} (4.4)

Mk , ΦT
kΦk Mk ∈ <N×k, k = 1, · · · , n

Rk , I−ΦkM
−1
k ΦT

k ,R0 , I
(4.5)

where V (t− i), i = 1, · · · , 10 and I(t− i), i = 0, · · · , 9 are the battery voltage and

current at time instant i, and these are candidate neural inputs which need to be

selected. Φk = [ϕ1, · · · , ϕk] , k = 1, · · · , p represents the selected items from the

regression matrix Φ and ϕi = [ϕi(1), · · · , ϕi(N)]. Further, the form of recursive

matrix is defined as follows.

Rk+1 = Rk −
Rkϕk+1ϕ

T
k+1R

T
k

ϕTk+1Rkϕk+1

, k = 0, 1, · · · , n− 1 (4.6)
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4.1 Battery Modelling

Based on [111], R has the following properties.

RT
k = Rk; (Rk)

2 = Rk, k = 0, 1, · · · , n (4.7)

RiRj = RjRi = Ri, i ≥ j; i, j = 0, 1, · · · , n (4.8)

Rkϕi = 0, ∀i = 0, 1, · · · , n (4.9)

Ek denotes the modelling error

Ek = yTRky (4.10)

Applying Eq.(4.6) and Eq.(4.10) and the fundamental properties of recursive

matrix from Eq.(4.7) to Eq.(4.9), the net contribution to the cost function by the

(k + 1)th element can be expressed as.

∆Ek+1 = yT (Rk −Rk+1)y =
yTRkϕk+1ϕ

T
k+1Rky

ϕTk+1Rkϕk+1

(4.11)

Using the FRA method, the most significant terms with the maximum net con-

tributions are selected to further refine the candidates pools and the number of

applied hidden nodes of RBF network. In this work, five important terms with ap-

propriate time lags are chosen, including V (t−1), V (t−5), V (t−10), I(t), I(t−7)

and 6 effective hidden nodes are chosen from 20 candidate hidden neurons to pre-

define the network structure.

Teaching-Learning-Feedback-Based Optimization

The Teaching-Learning-based-Optimization (TLBO) method mimics the process

of knowledge sharing in the class to optimize non-linear dynamic systems. In-

spired by the supervised learning, a Feedback learning phase is added to the

original TLBO in [108] to increase the converging speed. Followed by the learner

phase, the last global optima denoted as the previous teacher collaborates with

the newly selected teacher to provide collective feedbacks of the learning results.

This new TLBO variant is called TLFBO. In this work, the linear and non-linear

parameters of the RBF network are optimized by this novel proposed TLFBO

method.
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1. Teacher Phase

A teacher is expected to circulate knowledge to improve the mean solution

of the whole class. Students learn from the differences between teacher and

the mean solution. The updating procedure is formulated below.

DMi = rand1 ∗ (Teacheri − TF ∗Mi). (4.12)

where Mi is the mean solution, and Teacheri denotes the teacher who has

the best solution. The teaching factor TF is chosen as 1 or 2.

TF = round(1 + rand2(0, 1)) (4.13)

Stnewi = Stcurrenti +DMi (4.14)

where the Stnewi is the newly generated population after obtaining the in-

formation from the teacher. As aforementioned, the most knowledgeable

particle will be the updated teacher for the following populations.

2. Learner Phase

The learner phase is a mutually learning stage where students exchange

their knowledge randomly. The optimum solution is achieved through two

steps expressed as follows.

Stnewk =

{
Stcurrentk + rand3(Stk − Stj) if (Stk < Stj)
Stcurrentk + rand3(Stj − Stk) if (Stj > Stk)

}
(4.15)

where according to the fitness function or objective function, the marks of

students Stk and Stj are compared randomly.

3. Feedback Learning Phase

Contradictory to the well-known Particle Swarm Optimization (PSO) method

[112], though TLBO is a precise exploration, and the convergence speed is

slow. Therefore, an extra learning phase is employed to gain feedbacks
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from the previous teacher (the previous optima) and current teacher to ac-

celerate the convergence speed as shown in [108]. This procedure can be is

formulated as follows.

Stnewi = Stcurrenti + l1 ∗ w ∗Dlast + l2 ∗ w ∗Dcurrent (4.16)

Dlast = Trlasti − Stcurrenti (4.17)

Dcurrent = Trcurrenti − Stcurrenti (4.18)

w = (Gtotal −Gcurrent/Gtotal) (4.19)

where w is the mutation weight to restrain the exploring scope. l1, l2 range

between 0 to 1 and l1 + l2 = 1, they are used to tune the feedback weights

from the selected teachers. Gtotal is the predefined total generations; Gcurrent

is the current generation index.

The complete TLFBO algorithm is depicted in Fig.4.1 [3].

TLFBO Based RBF Network Modelling

The Root Mean Squared Error (RMSE) is used as the objective function.

RMSE =

√√√√ 1

N
·
N∑
i=1

(ŷ − y) (4.20)

Based on the Eq.(4.1) and Eq.(4.2), the modelling estimates ŷ is calculated. The

procedures of building the RBF neural model are given below.

1. Input Selection

As shown in Section 4.1.1, the past battery voltage and current measure-

ments with up to 10 time lags are used as the candidate neural model

inputs. Then, an ARX model with 20 terms is constructed, and the contri-

bution of each term is computed. Applying the FRA method, the most 5

significant terms are selected, from which the following 5 significant inputs
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Figure 4.1: Flow chart of the proposed TLFBO algorithm [3]
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V (t − 1), V (t − 5), V (t − 10), I(t), I(t − 7) are selected to build the RBF

neural model.

2. Network Construction

At beginning, the number of hidden neurons was chosen to be 20 by trial

and error, where the initial parameters of the RBF neurons are generated

randomly. Then, using the FRA method, 6 largest contributors from the

original 20 neurons are chosen to build the RBF neural model, and the 6

hidden neurons are further optimized using the TLFBO method as given

below.

3. Network Parameters Optimization

The non-linear and linear variables including σi , ci and ωi in the radial

function are optimized simultaneously using the TLFBO given in Section

4.1.1. The optimization procedures are outlined as follows,

(a) Initialization:

i. Configure the inputsX and RBF structure in terms of the numbers

of neurons hn;

ii. Pre-set the numbers of generations Gm = 50, population size Np =

30 and the upper/lower bounds of each solution as Stup = 5,

Stlow = 0;

iii. Randomize the first population St1 where the dimension of the

parameters is D = 3 ∗ 6 = 18, as there are 3 parameters in one

neuron to be optimized.

iv. Check the constraints to adjust the position of all the particles Xi

to avoid violating system constraints;

(b) Teacher Phase:

i. Compute the objective function f to select the teacher Ti;

ii. Calculate the mean Mi in column-wise;
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4.1 Battery Modelling

iii. Apply the different performance between teacher Ti and mean

value Mi denoted as DMi according to Eq.(4.14) to exert the in-

fluence of teacher;

iv. Update the generation Stnewi .

(c) Learner Phase :

i. Compute the objective function f and students mutually exchange

the knowledge to improve the solutions described in Eq.(4.15);

ii. Choose most knowledgeable one as the next Teacher;

(d) Feedback Learning Phase:

i. Calculate the differences between students and the previous teacher/current

teacher denoted as Dlast, Dcurrent;

ii. Pre-set the learning weight values as l1 = 0.3, l2 = 0.7 apply

the different performance between teacher Ti and mean value Mi

denoted as DMi according to Equ.(4.14) to exert the influence of

two teachers;

iii. Update the generation Stnewi and choose the most knowledgeable

one as the next Teacher.

Training Error

The training data has been collected from a bench-scale 3.7Ah ZNB [93; 113].

For the handmade 3.7Ah battery, the charging/discharging current rate is based

1C pulse test as depicted in Section 3.2.1. The validation data has been collected

from 200Ah pilot-scale ZNBs battery using 0.25C pulse test for charging and

discharging processes. All the details can refer to Section 3.2 and Fig.3.2

The training errors of conventional RBF network and RBF neural model as-

sisted within FRA selection are shown in Fig.4.2 and 4.3. The RMSE modelling

errors associated with the two cases are extremely small as 6.77E−4 and 2.77E−5

respectively. It is clear that the proposed FRA selection method not only im-

proved the modelling performance, but also reduced the computational efforts

significantly.
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Figure 4.2: TLFBO based RBF modelling without FRA selection
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Figure 4.3: TLFBO based RBF modelling with FRA selection
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Validation Error

The validation errors of the two methods are shown in Fig.4.4. The RMSE values

are quite similar on these two optimizers as 3.74E−2 and 2.67E−2 respectively.

However, it can be seen that the proposed TLFBO method outperforms the PSO

method in addressing the over-fitting and local optimum issues. The TLFBO

is more efficient to optimize the linear and non-linear parameters in the RBF

neural model simultaneously. The experimental results show that the developed

model can well predict the battery terminal voltage outputs, in terms of both the

training accuracy and the generalization capability.

Discussion

This section presents an example of ANN battery modelling. The proposed BRF

based ANN battery model is free of the priori-knowledge of ZNBs, and simple

to construct. On the other hand, the accuracy of constructed ANN model satis-

fies the engineering acceptance. The main novelty of the proposed work is that

the usage of FRA method further reduces the computational efforts and simplifies

the model structure. Additionally, the nonlinear and linear parameters have been

optimized by the proposed TLFBO methods [108]. Such a combination can be

applied with appropriate filter design to readily achieve accurate estimates, which

will be elaborated in the following Section 4.3. However, as mentioned in Chap-

ter 1 and shown in Fig.1.10, the cycling performance of ZNBs is unstable with

unexpected voltage peaks occurred in both charging and discharging processes.

This undesirable characteristic of the resultant model will lead to additional train-

ing efforts for ANN based battery modelling. The unpredictable voltage peaks

will result in large modelling error. One solution to this problem is to adapt the

parameters online. However, in order to secure a quick convergence, the number

of model parameters have to be limited, which may be not applicable for ANN

based battery modelling. Instead of online model identification techniques will be

applied to a simple Equivalent Circuit Model (ECM) as detailed in the following

Section 4.1.3.
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Figure 4.4: Comparisons of the Validation results
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4.1.2 Electrochemical Mathematical Model

Electrochemical processes are governed by the conservation laws in charge, mass

and momentum. In particular, when the conservation laws are applied to the

charges(current) transport in the electrolyte and electrode, the mass transport

for each solute species in electrolyte, as well as the momentum in a solution or

mixture, a series of partial differential equations (PDEs) can thus be derived to

describe the electrochemical process mathematically [114].

For example, the charge conservation obeys the Gauss’s law in Eq.(4.21),

while the mass transport obeys the Nernst-lanck formula in Eq.(4.22) and the

mass continuity in Eq.(4.23).

−∇ · (ε∇ϕ) = ρ (4.21)

~Ni = −Di∇ci − ziciui∇φ+ ~vci (4.22)

∂ci
∂t

+∇ · ~Ni = Ri (4.23)

where ε is the permittivity constant (F/m), ϕ, ρ , and ci are the potential

(V ), applied charge density (C/m3), and concentration of species i (mol/L), re-

spectively. Di is the diffusion coefficient of species i (m2/s); zi is the charge

number of species i. And ui and ~v denote the mobility of species i (m2/V s)

and bulk velocity (m/s), respectively. Finally, Ri stands for the mass source of

species i (1000mol/Ls). The above equations together represent the well-known

Nernst-Planck-Poisson equitation to describe the charge and mass transport in an

infinitely dilute electrolyte in general. The boundary conditions are employed to

represent the electrolysis and the penetration process of chemical species at elec-

trodes surfaces and different interfaces. However, due to the high non-linearity of

the Nernst-Planck-Poisson equation, much work has to be considered to reduce

the computational cost in solving these equations practically.
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In general, there are two kinds of methods to simplify the governing equations

in different scenarios. The single particle (SP) model [115] and pseudo two-

dimensional (P2D) model [115] are commonly used in the literature to reproduce

the electrochemical process with high precision. So far, the physical modelling

of nickel electrodes in nickel-hydride batteries has been well investigated [116;

117; 118; 119]. However, no physical modelling study of zinc electrodes has been

reported in the current literature. In the following section, a the challenges and

solutions of ZNB mathematical model briefly reviewed, and the related work can

be refer to [120].

Challenges to solving the PDE models

According to [120], the main functions to be solved are c1, c2, cH , φS, and φl. Note

that φS and φl are the potentials, which have no variability to the position vari-

able x and only depend on time variable t. In [120], through the mathematical

derivations, two equations involving all five functions but no partial derivative

exists can be achieved. Combine these five equations, the system can be easily

solved by explicit finite difference scheme, i.e. backward inductions starting from

boundary conditions.

However, the stability and convergence will not be guaranteed for solving

such a complex system, which increase the uncertainties of the mathematical

modelling. On the other hand, the implicit method or Crank-Nicolson method

in such a complex system may not be feasible. In other words, specific software

or tools are indispensable to solve such a PDE system, which compromises the

generality of the mathematical modelling. Additional concern is the value of

constants, as they vary for different systems and applied materials. The accuracy

of such a system cannot be guaranteed.

Possible Outcomes

Firstly, the developed mathematical model can be verified by plotting the SOC-

voltage curve. For given constant current densities and flow rate, as well as initial

conditions for hydroxide ion concentration, zinc ion concentration, and storage
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tank volume, by setting up different SOC levels, it is feasible to solve for differ-

ent voltages. Comparing the simulated curve with experimental curve obtained

under the galvanostatic cycling test, validity of this model can be demonstrated.

Due to the intrinsic high fidelity of the electrochemical mathematical modeling,

terminal voltage changes can be simulated over different SoC when varying the

initial conditions such as hydroxide ion concentration, zinc ion concentration, and

storage tank volume. For example, one can see the effects of concentration by

changing the initial concentration levels for both hydroxide ion and zinc ion, and

re-plot the SOC-voltage curve. We should expect to confirm the optimal con-

centration ranges through the comparison of voltage curve changes according to

concentration differences. In this way, ZNBs cell can be optimally designed thus

reducing the effort of experimental trials.

In addition, the detailed distribution at one SoC slice can be checked accord-

ingly. At this point, the developed PDE system will be solved when choosing a

fixed SoC level. Therefore, different layers of concentrations along the length of

the electrodes can be examined by plotting the liquid phase ions and solid phase

proton concentration distributions. As a result, various reaction rates occurring

at different locations will be observed. The cell structure in particular for the

flow channels, can be thus optimised leading to enhanced cycling performance.

Similarly, the distributions of transfer current densities and over-potentials in

the porous positive electrode can be further explored, when applying different

initial concentration levels. On the other hand, the applied current densities and

flow rates can also be changed (one at a time) to see their influences on the cell

performance.

The electrochemical mathematical modelling is deemed with high modelling

fidelity under the correct settings. Nevertheless, different materials and additives

will affect the initial settings and preliminaries, resulting in low the modelling ac-

curacy, and more attempts have to be conducted to prescribe the initial settings.

Once such a complex PDE system is developed, it can benefit both manufacturers

in cell structure design and the academics in cell material investigation. On the
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other hand, to solve the PDE model is time-consuming, which hinders the appli-

cability of electrochemical mathematical modelling for real-time applications.

4.1.3 Equivalent Circuit Model

As mentioned above, the cycling behaviours of ZNBs are very sensitive to zinc

morphology variation over time, which means the residual zinc deposition will

significantly affect the terminal signals. Equivalent Circuit Model (ECM) has

been viewed as an effective model in the literature [7]. Substantial researches

have confirmed that the ECM based battery modelling techniques and its vari-

ants exhibit some distinctive merits such as adaptability, easy implementation

and desirable accuracy, and thus it is seen as a promising candidate for the on-

board studies [121]. In particular, the combination of ECM and other online

model identification algorithms such as recursive least square (RLS) prevails in

most battery modelling approaches for the real time applications. In order to

solve the modelling error introduced by the large voltage jumps/peaks and adapt

to most charging/discharging cycling profiles, in this Section, a commonly used

first-order ECM framework is investigated. Specific applications in the following

chapters will use a few ECM variants, which will be detailed accordingly.

Generally, the accurate modelling of battery electrical dynamics is the essence

of the battery management system (BMS). The higher order ECMs increase the

accuracy but will be also compromised by the computational expense and numer-

ical instability. Based on the studies in [122], the first-order ECM is an acceptable

trade-off for battery modelling in reproducing the transient and dynamic perfor-

mances in most cases. Additionally, the first-order ECM is able to simplify the

filter design for the state estimation to attenuate the cross-interference in the

estimations from the higher dimensions. Fig.4.7 illustrate the basic structure of

a first-order ECM, where Rs is the ohmic resistance representing the resistant

losses in the electrodes and electrolyte phases. The parallel RC branch mimics

the electrochemical behaviours of the ZNBs in terms of the transient responses

and relaxation effects. Rp and Cp represent the polarisation resistance and capac-

itance, respectively. The terminal current and voltage signals are denoted by IL
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and Vt. When the battery is disconnected from the circuit, the terminal voltage

will gradually converge to the equilibrium value denoted as Voc.

RS

Voc

RP

CP

IL +

-

+

-
VTVP+ -

Figure 4.5: Schematic diagram of the first-order ECM

Online model parameter identification

Herein, the charging current is predefined as the negative sign, and vice versa.

In the basis of the RC responses, the first order equivalent electric circuit model

can be then expressed as follows:

Cp
dVp
dt

+
Vp
Rp

= IL (4.24)

Vt = VOC − Vp − ILRs (4.25)

the discrete-time expression of Eq.(4.33) is of the form:

Vp(t) = e
− ∆ts
RpCp Vp(t−∆ts) +

(
1− e−

∆ts
RpCp

)
RpIL(t−∆ts) (4.26)
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where the start-up time is 0, and ∆ts denotes a fixed time interval. Define

Vp(k) = Vp(k∆ts) and the analogous definitions are imposed on VOC , Vt, and IL.

A neat format is given as follows:

Vp(k) = e
− ∆ts
RpCp Vp(k − 1) +

(
1− e−

∆ts
RpCp

)
RpIL(k − 1) (4.27)

According to Eq.(4.32), substituting Vp = VOC − Vt − ILRs to Eq.(4.27), the

expression of Vt(k) is yielded as:

Vt(k) = βVt(k − 1)−RsIL(k) + (β ·Rs − (1− β)Rp)IL(k − 1)

+ (VOC(k)− βVOC(k − 1)) , (4.28)

where β = e
− ∆ts
RpCp . One time step difference is introduced to Eq.(4.37), the

differential voltage of Vt is given as:

∆Vt(k) = β∆Vt(k − 1)−Rs∆IL(k) + (β ·Rs − (1− β)Rp)∆IL(k − 1)

+ (∆VOC(k)− β∆VOC(k − 1)) (4.29)

where the last term (∆VOC(k)− β∆VOC(k − 1)) is treated as the error term,

denoted as e(k), due to the slow varying OCV in the ZNBs. In this regard, the

regression formula is expressed as:

h(k) = θT (k)φ(k) + e(k), (4.30)

where

h(k) = ∆Vt(k), θ(k) = α = [α1, α2, α3]T = [β, −Rs, (β ·Rs − (1− β)Rp)]
T ,

φ(k) = [∆Vt(k − 1),∆IL(k),∆IL(k − 1)]T , e(k) = ∆VOC(k)− α1∆VOC(k − 1).
(4.31)

The RLS method [123] is employed to estimate θ(k) recursively. After obtaining

θ̂(k), the model parameters [R̂s, R̂p, Ĉp]
T can be reversely derived by:

R̂s = −α̂2, β̂ = α̂1,

R̂p =
β̂ · R̂s − α̂3

1− β̂
=
−α̂1α̂2 − α̂3

1− α̂1

,

Ĉp = − ∆ts

R̂p log(β̂)
=

∆ts · (1− α̂1)

(α̂1α̂2 + α̂3) log(α̂1)
.
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Assuming independent and identically distributed (i.i.d.) measurement noise,

differential treatment further transforms the errors into zero-mean and symmet-

rically distributed. Hence, constant term explaining the bias is not needed in 4.30.

Note that this modelling error may not necessarily be a Gaussian noise sequence

globally, but given the differential treatment in formulating the regression equa-

tion and utilization of the forgetting factors in RLS, the Direct Current (DC) bias

is significantly attenuated, so as for any bias introduced into the model parameter

estimation.

In RLS, the forgetting factor λ = 0.98 is used. Meanwhile, in order to smooth

the fluctuations in these variables at different time scales, the multi-timescale RLS

algorithm [124] is adopted in the identification process, where the sample rate for

Rs is set as 1s, oppositely, 4s are sampling time is used for both Vp and Cp. Note

that the ZNBs is a slow time-varying system, and different electrical elements have

different convergence speeds. In this regard, the multi-time scale RLS with fixed

forgetting factors is employed for the online parameter identification in this work.

Model verification

Since the State of Charge (SoC) can not be accurately measured online by exist-

ing sensor techniques, the SoC estimation is fused into the model identification

process. Thereby, the accurate battery model not only reproduces the dynamics

in the charging and discharging processes and reflects the real-time operating

condition but also affirms the fidelity of SoC estimation. Fig.4.6 illustrates the

results of EKF based SoC estimation and RLS online model identification. As no

prior knowledge is available on the model parameters, the parameters are erro-

neously initialised as Rs = Rp = 0.01Ω and Cp = 1000F . It is apparent that the

model matches the measured terminal voltage in the entire experiments and the

error bounds are stabilised less than 0.01V . The relatively large error spikes can

be observed at the start-up point only, due to the intently erroneous initialisa-

tion. However, it converges to the reference value quickly within 5s. The similar

pattern is revealed in the SoC estimation. The estimation errors are limited to
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4.2 State of Charge (SoC) estimate

1% throughout the tests, which manifests the effectiveness and accuracy of the

synthesised RLS based ECM battery modelling approach. Additionally, through

the online adaption technique, the influence of the varying ambient environment

changes can be easily taken into full consideration. Therefore, the periodic cal-

ibration of battery model can be revoked. It is noted that the applied methods

relating to SoC estimate will be detailed in the following Section 4.3.
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Figure 4.6: Model identification and SoC estimation

4.2 State of Charge (SoC) estimate

Battery modelling and state estimation are two primary goals of BMS. According

to the real-time estimated battery state information, a well-conditioned battery

management system (BMS) can attenuate the concentration polarisation and op-

timize the applied current densities leading to uniform current distribution. The

routine SoC estimation approaches can be divided into four categories. Firstly,

the Coulomb counting (CC) is straightforward to implement but suffers from

error-prone pitfalls due to SoC initial deviation [125]. The open-loop frame-

work of CC method is also subject to accumulated measurement noise over time.
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4.2 State of Charge (SoC) estimate

The second category is comprised of computational intelligence-based approaches

which are free of particular battery priori-knowledge [126; 127]. However, as we

discussed in Section 4.1.1, their generalization is poor for the unseen data, highly

depending on the efforts of cumbersome model training processes, and are in-

tractable for online applications. The look-up open-circuit-voltage (OCV) table

method falls into the third category, which relies on the inherent monotonous

correlation between SoC and OCV. Nevertheless, to get accurate OCV readings,

the battery has to maintain rest in the open circuit state for hours, which makes

the pure OCV-SoC method impractical in active duty. Therefore, the equiva-

lent circuit model (ECM) based SoC observer approach within the last category

has dominated in most online applications [121; 125; 128; 129; 130]. The model

errors and measurement noises can be effectively handled by a close-loop filter

design. In other words, ECM is responsible for battery dynamic electrical be-

haviours modelling, and an appropriate filter can then be designed to observe

the internal states of the battery. This combination has been the subject of ex-

tensive research, including recursive least squares filter (RLS) [125], canonical

Kalman filter counterparts e.g. extended Kalman filter (EKF) [131; 132], adap-

tive EKF (AEKF) [133], adaptive unscented Kalman Filter (AUKF) [134], as well

as other control-oriented based methods e.g. the Luenberger observer [135], slid-

ing mode observer [136], H-infinity filter [137; 138] and particle filter-based data

fusion approach [139]. Besides, other effective hybrid SoC estimation methods

have also been proposed [140; 141]. Among these implementations, there are two

on-going topics surrounding the development of SoC estimation approaches. One

is to further enhance the computing efficiency as the scale of BMS chips is getting

smaller and more complex. On the other hand, the accurate estimate of SoC is

the fundamental step of the subsequent peak power prediction and capacity es-

timation as indicated in the following Section 5 and Section 6. Though a higher

order ECM model guarantees the accuracy [122], it is compromised by the costly

matrix calculations [99; 124].
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4.2.1 Open Circuit Voltage (OCV) Observer based State

Estimate

In order to address the aforementioned issue of computing burden in higher order

ECM, we develop a novel SoC estimation method based on a proposed Open

Circuit Voltage (OCV) observer. It is noted that unlike other parts of this the-

sis, a second-order ECM is used in this section as an instance to demonstrate

the higher computational efficiency of the proposed OCV observer based SOC

estimation method using higher order ECM approach. Since the mechanism and

applied online parameter identification tool are the same as first-order ECM in-

troduced in Section 4.1.3, corresponding equations and derivation procedures are

given as a reference only. Specifically, to compensate for the extra computational

effort incurred in using a second order rather than a first order model, which is

a critical issue for real-time applications, a new OCV observer is proposed which

can not only offset the additional computational cost incurred from using a sec-

ond order ECM model, but it also helps to reduce the overall computational cost

for online SoC estimation.

An example of Second-order ECM

Specifically, battery impedance can be illustrated with the second-order ECM

given in Fig.4.7. The ohmic resistance Rs stands for the resistant losses of the

electrodes and electrolytes. Two parallel resistances and capacitors branches are

employed to model the electrochemical behaviours of the ZNBs in the short-

term and long-term transient responses and relaxation effects, where R1 is the

activation polarisation resistance, C1 is the activation polarisation capacitance,

while the concentration polarisation resistance and capacitance are reflected by

R2 and C2, respectively. The auxiliary pump system enforces the electrolyte to

circle consecutively in the battery stack. Thereby, the relaxation effect will be

less significant than lithium-ion batteries, yet it still demands a specific period of

time to wait for the terminal voltage, Vt, slowly converge to its equilibrium voltage

Voc. The charging current is predefined as the negative sign and vice versa for the

discharging current. The battery transient response can be expressed as follows:
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RS
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C1
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Figure 4.7: Schematic diagram of a second-order ECM

Vt = VOC − V1 − V2 − ILRs (4.32)

Cl
dVl
dt

+
Vl
Rl

= IL, l = 1, 2 (4.33)

where the terminal current is represented by IL and the discrete expression of

Eq.(4.33) is of the following form [99]:

Vl(t) =e
− ∆ts
RlCl Vl(t−∆ts)

+
(

1− e−
∆ts
RlCl

)
RlIL(t−∆ts), l = 1, 2

(4.34)

where the time interval ∆ts is interpreted as the selected sampling rate. Define

V1(k) = V1(k∆ts), and the analogous definitions are introduced to V2, VOC , Vt,

IL, therefore, a neat format is given:

Vl(k) = e
− ∆ts
RlCl Vl(k − 1) +

(
1− e−

∆ts
RlCl

)
RlIL(k − 1),

l = 1, 2
(4.35)

Rewriting Eq.(4.32) and Eq.(4.35) for time instants k − 1 and k, the expression
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of V2(k − 1) can be obtained:

V2(k − 1) =
1

β1 − β2

[(β1VOC(k − 1)− VOC(k))

+Rs(IL(k)− β1IL(k − 1))

+ (Vt(k)− β1Vt(k − 1)) + γIL(k − 1)]

(4.36)

where γ = (1 − β1)R1 + (1 − β2)R2 and βl = e
− ∆ts
RlCl , l = 1, 2. For a second

order ECM, R1C1 < R2C2, therefore, β1 < β2. Shifting V2(k) and V2(k − 1) in

Eq.(4.35), then, the terminal voltage can be concisely formulated as follows:

Vt(k) =α1Vt(k − 1) + α2Vt(k − 2) + α3IL(k)

+ α4IL(k − 1) + α5IL(k − 2) +
(
VOC(k)

− α1VOC(k − 1)− α2VOC(k − 2)
) (4.37)

where

α1 = β1 + β2, α2 = −β1β2, α3 = −Rs,

α4 = Rs(β1 + β2)− (1− β1)R1 − (1− β2)R2,

α5 = (1− β1)β2R1 + (1− β2)β1R2 −Rsβ1β2.

In order to cancel out the cross-interference between the model identification and

state estimation, both V1 and V2 are eliminated from Eq.(4.37). Taking one step

time difference into consideration, the differential voltage of Vt is yielded:

∆Vt(k) =α1∆Vt(k − 1) + α2∆Vt(k − 2) + α3∆IL(k)+

α4∆IL(k − 1) + α5∆IL(k − 2)+

(∆VOC(k)− α1∆VOC(k − 1)− α2∆VOC(k − 2))

(4.38)

where the differential definitions are imposed on the other terms in Eq.(4.38).

Based on Eq.(4.37), regression expression is of the form:

y(k) = θT (k)φ(k) + e(k), (4.39)
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where

y(k) =Vt(k)− Vt(k − 1),

θ(k) =α = [α1, α2, α3, α4, α5]T ,

φ(k) =[Vt(k − 1)− Vt(k − 2), Vt(k − 2)− Vt(k − 3),

IL(k)− IL(k − 1), IL(k − 1)− IL(k − 2),

IL(k − 2)− IL(k − 3)]T .

e(k) is the modelling error consisting of the measurement noise, discretization

error, and OCV estimation error, etc. Assuming independent and identically

distributed (i.i.d.) modelling error for all variables, differential operation further

transforms e(k) into a zero-mean and symmetrically distributed sequence. Hence,

constant term explaining the bias is no longer needed in Eq.(4.39). Note that this

modelling error may not necessarily be a Gaussian noise sequence globally. But

given the differential operation in formulating the regression equation, the bias

introduced into the model parameter estimation is significantly attenuated. This

is verified in the experimental section.

In order to make the online parameter identification converge, as discussed

above the widely adopted RLS method with a predefined forgetting factor λ is

employed to identify θ(k) [142]. The forgetting factor is maintained as 0.98.

Note that the ZNBs is a slow time-varying system, and different electrical ele-

ments, representing different subsystems have different convergence speeds. In

this regard, the multi-time scale RLS with fixed forgetting factors is employed

for the online parameter identification. According to [142], the errors e(k) will

be tuned down to an acceptable level, due to a fixed forgetting factor. Revisiting

Eq.(4.39), the slowly time-varying parameters θ(k) under the different working

environments and initial states can be readily calculated. Therefore, the model

parameters can be reversely deduced as:
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R̂s = −α̂3, (4.40)

[R̂1, R̂2]T = (4.41)[
1− β̂1 1− β̂2

(1− β̂1)β̂2 (1− β̂2)β̂1

]−1 [
Rsα̂1 − α̂4

α̂5 − R̂sα̂2

]
,

Ĉl = − ∆ts

R̂l log(β̂l)
, l = 1, 2. (4.42)

where

∆ = max 1{α̂2
1 + 4α̂2, 0.000001}

β̂1 =
α̂1 −

√
∆

2

β̂2 =
α̂1 +

√
∆

2

The Proposed OCV Observer

Parameter identification errors and measurement noises are mainly responsible

for the inaccuracy of state estimation. The second-order ECM model guarantees

a fairly desirable modelling accuracy for most applications, but the overall state

estimation accuracy also depends on the filter design. For instance, a fourth order

EKF based algorithm has been employed in [128], where the hysteresis effects Vh,

polarisation voltage V1, V2, and SoC form the state vector. This scheme simulta-

neously estimates key states, yet its real-time implementation is computationally

expensive. To tackle this issue, this paper presents an OCV observer to sim-

plify the filter design and keep only one dimension of state estimation. Based on

Eq.(4.37), the VOC can be estimated using the following equation:

1The max operation is to ensure validity of
√

∆
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V̂OC(k) =α̂1V̂OC(k − 1) + α̂2V̂OC(k − 2) + Vt(k)

− α̂1Vt(k − 1)− α̂2Vt(k − 2)− α̂3IL(k)

− α̂4IL(k − 1)− α̂5IL(k − 2) (4.43)

ε(k) =VOC(k)− V̂OC(k) (4.44)

where ε(k) is the estimation error of the proposed OCV observer. Due to

the operational characteristics of ZNBs, the effects of subtle variations in OCV

between two consecutive sampling instants are assumed to be negligible. It is

worthwhile to note that 1s is set as the sampling rate in this work. According

to Eq.(4.43), the OCV observer is stable and consistently produces good per-

formance regardless of the choice of the initial value as long as the identified

parameters converge. In this work, the initial VOC is randomly selected between

1.6V and 1.85V , which is ZNBs potential range of OCV in active duty. Since

the ZNBs system is slowly time-varying and the charging/discharging regimes are

moderate in practice, it can be assumed that the parameter convergence speed is

much faster than the system dynamics. Additionally, through a statistical check-

out for the recursive expressions, the error is rationally small. Thereby, in the

following SoC estimate, the error ε(k) is regarded as a source of the measurement

noise and will be handled by the applied filters. Further, the proposed OCV

observer can benefit recent novel methods [137] for the periodic calibration of the

OCV-SOC table.

The major novelty of the proposed observer is two-fold. The first is utilisation

of differential operation in RLS. When comparing with traditional RLS based

method such as in [143], the proposed RLS is more stable to non-stationary data,

in which case the traditional method would fail to converge. The second is from

the observer-EKF combined system. The traditional method as in [143] directly

estimates VOC as one of the states in RLS. However, it would suffer greatly from

non-robust data. In the proposed method, the estimate to VOC comes from the

comparison of two OCV sources: SoC-OCV table and OCV observer. Integrated

into the update step in EKF, the novel observer can thus take the advantage of

filters and lead to more robust results.
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Higher order ECM based SoC Estimation Using OCV Observer

The EKF algorithm has been widely used for battery state estimation[99; 124;

125]. The estimation error of proposed OCV observer is complemented by EKF

to improve the accuracy. Note however that with the proposed OCV observer,

the dimension of the state vector in the EKF is effectively reduced. In particular,

the unknown polarisation voltages V1, V2 are cancelled, resulting in only one SoC

state in the EKF. A widely accepted SoC recursion model is given by [131]:

SoC(k) = SoC(k − 1)− ηIL(k − 1)∆ts
Q

(4.45)

where Q denotes battery capacity, and its value keeps constant during a full cy-

cle of charging/discharging but slowly changed through the entire process, which

may include multiple cycles. The coulombic efficiency η is set as 100% for sim-

plification. Herein, the errors in the proposed OCV observer are viewed as the

measurement noise. By combining the OCV observer Eq.(4.43) with the SoC

state-space model Eq.(5.5), EKF expression will be re-formulated as:{
SoC(k) = F (SoC(k − 1)) + w(k)

V̂oc(k) = G(SoC(k)) + v(k)
(4.46)

where F (SoC(k−1)) stands for the relationship Eq.(5.5), while G(SoC(k)) is the

SoC-OCV look-up table obtained from the SoC-OCV test. w(k) and v(k) are the

process noise and the measurement noise respectively, which are assumed to be

independent, zero-mean, Gaussian noise processes with covariance matrices
∑

w

and
∑

v, respectively. In this respect, the discrete-time prediction and update

equations of EKF are summarized as follows:

Prediction

ˆSoC
−

(k) = F ( ˆSoC
+

(k − 1))

Σ̂−x (k) = Ak−1Σ̂+
x (k − 1)ATk−1 + Σw
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Update

e(k) = V̂OC(k)−G( ˆSoC
−

(k))

Lk = Σ̂−x (k)CT
k

[
CkΣ̂

−
x (k)CT

k + Σv

]−1

ˆSoC
+

(k) = ˆSoC
−

(k) + Lk · e(k)

Σ̂+
x (k) = (I − LkCk)Σ̂−x (k)

Define

Ak−1 =
∂F (x)

∂x
|
x= ˆSoC

+
(k−1)

Ck =
∂G(x)

∂x
|
x= ˆSoC

−
(k)

(4.47)

where the superscripts − and + denote the priori state update and posterior state

update phases respectively, where are displayed in Fig.4.16. Then an EKF with

reduced dimension can be used for on-line SOC estimation. Further details of

EKF can be refereed to [131].

Computational Cost Analysis

In this work, the extra computing cost incurred from using the second-order

ECM has been offset by the proposed OCV observer, which is another merit of

this work. In terms of the computational complexity of using the second-order

rather than the first-order ECM with the RLS and EKF, since the proposed

method does not require the matrix inverse calculation, they are thus very fast

to implement. Furthermore, the increased computational cost is only incurred in

the RLS regression, but the developed OCV observer reduces the computational

complexity of the EKF which has only one state variable, i.e. SoC.

In general, the theoretical number of operations in a n−th order ECM is

given below for both traditional RLS-EKF system and the proposed method.

The proposed observer and RLS-EKF system are straightforward to be extended

to the n−th order case. No matter which model is used, the inputs are instant
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Figure 4.8: Systematic flowchart of the OCV based SoC/Capacity estimation
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terminal voltage and current, while the output is instant SoC estimate. The total

number of operations in RLS is

4(2n+ 1)2 + 7(2n+ 1) + 4 = 16n2 + 30n+ 15

The total number of operations in calculating observer is 5n+ 2.

The total number of operations in high dimensional EKF is

Predict : 4n3 + 13n2 + 14n+ 5

Update : 4n2 + 9n+ 7

Total : 4n3 + 17n2 + 23n+ 12

If applying the observer in the EKF, the problem becomes one-dimensional. So

the number of operations is the above expression with n = 0, i.e. 12. Hence, the

proposed observer decreases the complexity in EKF from 4n3 + 17n2 + 23n+ 12

to 4n2 + 9n+ 19.

Table. 4.1 lists the computation time for the test-runs on traditional RLS-

EKF using the first/second order ECM, as well as on the proposed method.

The results include the computational time incurred for running both RLS and

EKF (with proposed observer if applicable). This test is based on a complete

discharging process which includes 6685 observations. Note that all experiments

Table 4.1: Computational Speed Comparisons

Method
Traditional EKF

Proposed Method
First Order Second Order

Avg. Time Spent / Step (ms) 0.06924 0.08955 0.06218

were conducted on a MacBook Air with 1.6GHz dual-core Intel Core i5 (Turbo

Boost up to 2.7GHz) with 3MB shared L3 cache. Additionally, the results reveal

that the proposed OCV observer based RLS-EKF method is even faster than RLS-

EKF using the first-order model and also using the second-order model. It only

takes 0.06218ms for each step including the RLS online regression and EKF based
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SoC estimation. In summary, although the use of the second-order ECM has

led to the increased computational cost in RLS regression, the introduced OCV

observer has reduced the computational cost in the SoC estimation due to the

dimension reduction. Overall, a reduced computational complexity is achieved

using the proposed method. The proposed framework is thus suitable for on-

board applications and has achieved our target to improve the online computing

efficiency.

Algorithm Validation

The proposed approach is first applied to the ZNBs on 4 pulse test data. The

testing regimens have been outlined in Section 3.2. The initialisation is pre-

scribed as Rs = R1 = R1 = 0.010Ω, C1 = C2 = 1000mF , Q = 3.7Ah and SoC

is erroneously initialised as 80%. The reference OCV values are obtained based

on Eq.(3.1) according to reference SoC values, which are acquired using the CC

method as mentioned earlier and can refer to Section 3.2.2. Fig.4.10 details the

algorithmic performance. The SoC estimation and OCV observer converge to the

reference value in less than 5s, and the error bounds are stabilised within 2%.

The subtle discrepancies can be observed during the state shift from the pulse ex-

citation to none. In this situation, the large estimated errors arise from the OCV

observer. According to Eq.(4.43), when the demonstrator is disconnected from

the circuit, the real OCV value should remain constant until the next current

pulse excitation. However, due to the proposed OCV observer, the slow decreas-

ing terminal voltage will be accounted in the OCV observer recursion, leading to

a subtle voltage drop in the OCV observations as shown in the Fig.4.12. Whereas,

this error is quickly amended by the followed-on SoC estimator. Further, due to

the fast convergence of the online RLS identification, the OCV observations will

also reach a stable range, and the effects of the terminal voltage drops are atten-

uated. Fig.4.11 illustrates the convergence of the model parameters in a zoom-in

window, wherein all the parameters converge quickly within 8s. The convergence

speed matches well with the assumptions of OCV observer construction and guar-

antees a faster convergence of the proposed method before changes of the slowly

time-varying system becomes significant. In addition, the assumption using in
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Eq.4.38 and Eq.4.39 is the term ∆VOC(k) − α1∆VOC(k − 1) − α2∆VOC(k − 2)

sufficiently small and hence can be regarded as the error term e(k) as in Eq.4.39.

This hypothesis is further confirmed by the Fig.4.9, which shows that the ratio

of the squared error is less than 8% during the first phase (before 216s) of the

simulation. With the RLS method, the modelling errors are attenuated and the

parameters converge toward their true trajectories. The ratio of the squared er-

rors is further bounded within 2% after 216s(0.06h), which is sufficiently small

as the error term e(k). Therefore, Eq.4.38 and Eq.4.39 can be used in this work.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Times (h)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E
rr

o
r 

R
a
ti
o

The ratio of squared error

Err R-Sq

Figure 4.9: The Ratio of Squared Errors

The similar pattern can also be observed in Fig.4.12, where the OCV estima-

tions agree with the reference OCV regularly. The worst case is 0.02V voltage

divergence. An interesting situation is noticed where once the 1.5C current is

loaded, the applied current density on the electrode is approaching the material

limitation, and this will go against the validity of the SoC-OCV table.

On the other hand, as shown in Fig.4.10, the estimation of internal resistance

Rs exhibits a consistent trend. Rs starts with the value of 0.02Ω and maintains
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Figure 4.10: SoC and Rs estimation in pulse tests
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Figure 4.12: Behaviours of OCV observer in pulse tests

around 0.04Ω at the end of discharging. The increased internal resistance is fore-

seeable, where the reaction product with poor conductance is generated at the

end of discharging phase [2]. As depicted in Fig.4.10, higher internal resistance

occurs when SoC become lower than 20%. In order to improve the operating

efficiency of the ZNBs, the optimal working range should be above 20% SoC.

Additionally, the dynamic pulse tests, listed in Section 3.2.1, are carried out

to impose a more complicated current excitations on the demonstrator. Fig.4.13

illustrates the simulation results, which implies that the OCV value can be reliably

estimated using the proposed method. In the process of OCV estimation, only a

few of error spikes less than 0.03V occurred as the feed-in current changes. This

is due to the erroneously initial values used in the OCV observer at each new

current pulse interval. But the proposed method can reduce the impact of the

initial value in a fast manner, almost converging to the reference trajectory within

one sample interval. Furthermore, no significant impact on the SoC estimation is

observed. Thereby, the proposed OCV observer based SoC estimation has shown

a competitive performance at less computational cost. The SoC estimation errors
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Figure 4.13: Performance in dynamic pulse tests

are bounded within 2%1. The effectiveness of the proposed method is further

validated by the varying testing regimes introduced in Section 3.2, as shown

Table.4.2.

Table 4.2: MSE Values of Different Tests

0.5C 1.0C 1.5C Dynamic Pulse

SoC 5.08× 10−5 3.29× 10−4 4.57× 10−5 7.31× 10−5

OCV 4.55× 10−5 2.04× 10−4 6.19× 10−5 3.82× 10−5

Extendability Analysis

It is notable to mention that the operation dynamics of ZNBs differs from other

flow batteries, but is rather similar to the lithium batteries, which are both

electrode-dominated. In traditional battery management, only the on-board cur-

1Herein, the error bound means the maximum absolute error through whole testing process.
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rent IL and voltage Vt are loaded to excite the model in the absence of any priori-

knowledge of specific electrochemistry. In order to manifest the extendability

of the proposed method, a 5Ah prismatic LiFePO4-Graphite battery made by

GWL/Power Company is tested as depicted in Section 3.2.4. The same second-

order ECM framework with normal three-dimensional EKF algorithm (polarisa-

tion voltage V1, V2 and SoC) is employed for the fair comparison purpose. Mean-

while, the identification precision is enhanced by a novel multi-timescale RLS

method [124]. The identical initial settings for both RLS and EKF are adopted

in line with the proposed OCV based method. As illustrated in Fig.4.14, both

SoC estimations exhibit larger error bounds than the ZNBs demonstrator. The

flaws can be explained by the transitory overshoots occurred on the loaded cur-

rent profiles. Due to the oversized changes (5C) on the loaded current, the error

spikes, derived from the OCV observer, cannot be eliminated and converge as

depicted in Fig.4.15. However, the proposed method is shown to be able to at-

tenuate the uncertainties induced by the higher dimensional EKF, achieving an

acceptable error bounds less than 8%. With respect to the convergence of SoC es-

timation, the traditional EKF algorithm converges slowly as well. It is due to the

wrong estimates of polarisation voltages V1 and V2. The estimation precision of

the traditional EKF method will be deteriorated accordingly as shown in Fig.4.14.

Moreover, the apparent modelling flaws can be observed at the end phases in both

methods as shown in Fig.4.15, which seem derived from the parameter identifica-

tion process. In Eq.(4.38), e(k) = ∆VOC(k) − α1∆VOC(k − 1) − α2∆VOC(k − 2)

is regarded as the modelling errors, which is based on the assumption that the

magnitude of e(k) is far less than the ∆Vt. Further, this assumption matches the

nature of ZNBs. However, the fast falling OCV value in lithium batteries violates

the aforementioned assumption, therefore amplifying the modelling errors.

Discussion

The above work mainly presents how to efficiently control the introduced com-

putational cost with a higher order ECM. A second-order ECM is given as an

example to achieve more accurate battery dynamics modelling. Then an improved

OCV observer is incorporated with the higher order model to solve the increased
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Figure 4.14: SoC estimation in FUDS tests
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Figure 4.15: Behaviours of OCV observer in FUDS tests
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computational complexity issues. In this framework, the model identification

process is separated from the state estimation. The proposed OCV observer in

recursive format allows a simpler filter design, leading to reduced computational

burden and improved performance.

4.2.2 Model Predictive Control Scheme Based Observer

(MPCO) based State Estimate

The OCV based observer has achieved the reduction of computational cost, es-

pecially for the higher order ECM. In this section, a novel Model Predictive

Control Scheme Based Observer (MPCO) is introduced to address the measure-

ment noises and intermittent error spikes to enhance the accuracy of the SoC

estimation. Model Predictive Control (MPC) is a process control strategy devel-

oped in the 1970s [144]. The systematic mathematical model is used to assess

the influence of the current control actions on the plant performance in the fu-

ture [145]. The most remarkable advantage of MPC is multiple constraints

handling [146]. Moreover, the optimum solution will be solved at each time step

over a finite prediction horizon [147]. Analogous to MPC scheme, in this work,

the electrochemical constraints against the state estimates in terms of the polar-

ization voltage and SoC are imposed based on a first-order electrical equivalent

model (ECM). On the other hand, the implantation of rolling-horizon (window)

technique improves the precision of capacity estimation. Therefore, the influences

of capacity fluctuations are attenuated effectively by the proposed method. In

addition, the analysis of computational burden and the comparison among other

state-of-the-art SoC estimate approaches are provided as well.

MPC based Observer Design

Model Predictive Control (MPC) is a powerful scheme taking all the model-based

process interactions into consideration, where the best control action at each sam-

pling point will be determined by solving the finite horizon optimization in real

time. The MPC scheme has been widely used in the industrial applications. In

practice, nearly every application imposes constraints. MPC is a suitable con-

trol scheme to advantageously handle the constraints on manipulated variables
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and states simultaneously. In this paper, inspired by the control paradigm of

MPC [144] and SMO [148], a novel MPC-based SoC observer (MPCO) is intro-

duced in this section. Note in this section, for the sake of simplification, the

first-order ECM presented in Section 4.1.3 is used as an example. It is known

that the outputs of such a simple ECM are not precise matches to the real mea-

surements. The errors from measurements, discretization process, and parameter

identification in RLS have to be compensated by the proposed SoC observer.

According to Eq.(4.27), the two-dimensional state equations along with small

friction terms are formulated as follows:{
SoC(k) = SoC(k − 1)− η∆ts

Q
IL(k − 1) + f1(k − 1)

Vp(k) = e
− ∆ts
RpCp Vp(k − 1) +

(
1− e−

∆ts
RpCp

)
RpIL(k − 1) + f2(k − 1)

(4.48)

where Q is the capacity of ZNBs, whilst f1 and f2 stand for the errors not only

from measurements, modelling, and discretization, but also from the time-varying

parameters identified in RLS. Analogous to other observer/filter designs, the ter-

minal voltage Vt is the main focus of measurement equation:

Vt(k) = f(SoC(k))− Vp(k)−RsIL(k) + f3(k) (4.49)

where f is the pre-calibrated SoC-OCV table expressed as VOC = f(SoC). Herein,

the f1(k) and f2(k) are systematic frictions. In coincidence with the framework

of the state equations Eq.(4.48), f3(k) represents measurement equation friction.

Assuming the systematic frictions and measurement friction are independent, and

thus are of the expressions as:[
f1(k)
f2(k)

]
∼ N(0,Σ), f3(k) ∼ N(0, σ2) (4.50)

where Σ and σ are error covariance matrix and the standard deviation, respec-

tively, which are used to solve control law in the followed-on process. Denotes

x(k) = [SoC(k), Vp(k)]T and thus the state vector X(k) and measurement vec-

tor Y(k) for n steps are derived as: ‘

X(k) =


x(k − n+ 1)
x(k − n+ 2)

...
x(k)

 , Y(k) =


Vt(k − n+ 1)
Vt(k − n+ 2)

...
Vt(k)

 (4.51)
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where n is the decision window in the MPCO. Therefore, a neat state equation

is written as:

X(k + 1) = Ak ·X(k) +Bk · u(k) + f(k) (4.52)

where

Ak =


0 I2 0 · · · 0
0 0 I2 · · · 0
...

...
...

...
...

0 0 0 · · · I2

0 0 0 · · · A

 , Bk =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0
0 0 0 · · · B

 ,

u(k) =


IL(k − n+ 1)
IL(k − n+ 2)

...
IL(k − 1)
IL(k)



f(k) =


0
0
...
0

f(k)

 , A =

[
1 0

0 e
− ∆ts
RpCp

]
,

B =

[
−η∆ts

Q

1− e−
∆ts
RpCp

]
, f(k) =

[
f1(k)
f2(k)

]

Suppose the posteriori-estimate X̂(k) and the corresponding error covariance ma-

trix Σ̂k have been obtained after the k-th measurement. Thereby, the interme-

diate priori-estimate X̂−(k + 1) in the next sample instant can be calculated as

follows:

X̂−(k + 1) = Ak · X̂(k) +Bk · u(k) (4.53)

Afterwards, the posteriori-estimate X̂(k + 1) can be corrected by solving the

control law as:

X̂(k+ 1) = x̂
(n)
− (k+ 1) + ∆x(k+ 1) = Ak · X̂(k) +Bk · u(k) + ∆x(k+ 1) (4.54)

where ∆x(k + 1) is not only the MPC control law obtained from the solution

of the quadratic programming as disclosed in the following content, but also the
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correction to priori-estimate. The errors of the priori-estimate and posteriori-

estimate are expressed as follows, respectively:

e−(k + 1) = Ak · e(k) + f(k),

e(k + 1) = e−(k + 1)−∆x(k + 1)
(4.55)

According to the ECM, the posteriori-estimate for ˆY(k + 1) can be calculated:

Ŷ(k + 1) = F (C1 · X̂(k + 1))− C2 · X̂(k + 1)−Rs · u(k + 1)

≈ F (C1 · X̂−(k + 1)) +
∂F

∂X

∣∣∣∣
x=C1·X̂−(k+1)

(4.56)

· C1 ·∆X(k + 1)− C2 · X̂(k + 1)−Rs · u(k + 1)

= F (C1 · X̂−(k + 1))− C2 · X̂−(k + 1)−Rs · u(k + 1) (4.57)

+

(
∂F

∂x
· C1 − C2

)
·∆x(k + 1)

(4.58)

where due to the nature of recursive properties, a set of n outputs from model

can be estimated. A neat form of ˆY(k + 1) is thus reformulated as :

Ŷ(k + 1) = yk+1 + G ·∆x(k + 1) (4.59)

where

C1 = blkdiag{[1 0], . . . , [1 0]}, C2 = blkdiag{[0 1], . . . , [0 1]}

F



x1

x2
...
xl


 =


f(x1)
f(x2)

...
f(xl)

 , ∂F

∂x



x1

x2
...
xl


 = diag{f ′(x1), f ′(x2), . . . , f ′(xl)}

yk+1 = F (C1 · x̂−(k + 1))− C2 · x̂−(k + 1)−Rs · u(k + 1), G =
∂F

∂x
· C1 − C2

Analogous to the control paradigm of MPC, the optimal control law i.e. the

gain of the proposed MPCO, can be determined by minimizing the following cost

function:

J =||Ŷ(k + 1)−Y(k + 1)||2Q + ||x(k + 1)− x−(k + 1)||2R
=||G ·∆x(k + 1) + yk+1 −Y(k + 1)||2Q + ||∆x(k + 1)||2R

(4.60)

86



4.2 State of Charge (SoC) estimate

where Ŷ(k + 1) is the estimated vector of future Vt given the controlled state

vector ∆x(k + 1). On the other hand, Y(k + 1) is the vector of the real voltage

measurements, which are considered as references. Herein, the length of the

decision horizon is n. It is should be noted that differing from the traditional

framework of MPC, during each optimization step, the moment k and n − 1

steps ahead model outputs, which equal to the length of the decision horizon n,

are compared with the real measurements. By substituting Eq.(4.59) into the

Eq.(4.60), a quadratic expression is given:

J =∆x(k + 1)T · (GTQG +R) ·∆x(k + 1)

+ 2 (yk+1 −Y(k + 1))T QG ·∆x(k + 1) +Qy

(4.61)

where Qy =
(
yk+1 − y(n)(k + 1)

)T · Q · (yk+1 − y(n)(k + 1)
)
. In additional, the

positive definite weighting matrices R and Q denote the measurement error co-

variance and priori-estimate error covariance respectively, which can be derived

as follows:

Q−1 = diag{σ2, σ2, . . . , σ2}, R−1 = AkΣ̂kA
T
k + diag{0, . . . ,Σ} (4.62)

For the unconstrained optimization problem min∆x(k+1) J , an analytical solution

could be readily found below:

∆x∗(k + 1) = (GTQG +R)−1GTQ(Y(k + 1)− yk+1)
def
= L · (Y(k + 1)− yk+1) (4.63)

where L is defined to simplify equations:

L
def
= (GTQG +R)−1GTQ,

I − LG = I − (GTQG +R)−1GTQG

= (GTQG +R)−1R (4.64)

According to matrix inverse formula, yielding:

(GTQG +R)−1 = R−1 −R−1GT
(
Q−1 + GR−1GT

)−1
GR−1 (4.65)
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Hence the new covariance matrix will be expressed as:

Σ̂+
k+1 = V ar[x̂+(k + 1)] = V ar[x̂−(k + 1) + ∆x(k + 1)]

= V ar[x̂−(k + 1)− L · yk+1 + L ·Y(k + 1)]

= V ar[(I − LG)x̂−(k + 1) + L ·Y(k + 1)]

= (I − LG)R−1(I − LG)T + LQ−1LT

= (GTQG +R)−1R(GTQG +R)−1 + (GTQG +R)−1GTQG(GTQG +R)−1

= (GTQG +R)−1 (4.66)

For unconstrained case, calculating R is unnecessary. The only costly calculation

might be (Q−1 + GR−1GT )−1 in Eq. 4.65, which has O(n3) time complexity.

However, calculating R has 7 times more complexity as the number of rows and

columns of R is twice of GR−1GT +Q−1.

Constrained formulation on SoC Observer

In order to improve the accuracy of the proposed SoC observer, a couple of con-

straints can be integrated into the process of the SoC estimation while keeping

in line with the MPC paradigm. When incorporating the ZNBs intrinsic electro-

chemical characteristics into observer formulation, the controlled state variables

∆x(k+ 1) has to be bounded within the feasible regions derived by the potential

constraints. Taking polarization voltage Vp as an example, though the enlarged

distance among electrodes increases the value of Vp, the circulating electrolyte

can offset the distance effects to drag Vp back within ±0.06V . A faster flow rate

may even further reduce the polarization voltage. Apart from Vp, the varying

ranges of SoC also has to be restrained between 0 and 1. Alternatively, the SoC

changes can also be limited into other ranges depending on the realistic operating

conditions. Therefore, linear constraints e.g. lower and upper thresholds for SoC

and Vp are integrated into the control formulation:

C1∆X(k + 1) ∈
[
sl − C1X̂−(k + 1), su − C1X̂−(k + 1)

]
(4.67)

C2∆X(k + 1) ∈
[
Vp,l − C2X̂−(k + 1),Vp,u − C2X̂−(k + 1)

]
(4.68)
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where the inequalities Eq.(4.67) and Eq.(4.68) guarantee the states constraints.

Then the above problem is transformed to solve a quadratic programming prob-

lem under the linear constraints. It is worth noting that in order to comply with

the control theory of the MPC, the optimized solutions will be updated at each

sampling point, and then only the first control signal with regard to the current

instant is loaded to the actuator [149]. Analogously, merely the first line of ∆X

is employed as the gain value to update the state estimations. Owing to the mer-

its of the imposed constraints, the estimated results will show a perfect match

to the theoretical values. And thus the state estimations will converge quickly,

providing a more accurate SoC estimation for the followed capacity estimation.

For the QP problem, the solution is solved either in the interior of constrained

area, or at the border. Therefore, two cases are discusses as follows. If the solu-

tion is in the interior, it is equivalent to the solution without constraints. And

if the solution is on the boundaries , it means the solution is actually truncated

by constraints. As the true values of the state variables lie in the constraint bor-

ders, the solution will have less error variance than no-constraint-solution, leading

to less correction effect. However, the state variable is fixed at the constrained

values in this case, resulting in 0 variance. In order to cope with filter system,

the unconstrained covariance matrix is used to approximate constrained covari-

ance matrix, which is smaller in theory. By doing so, similar to the scheme of

H−infinity filter, the larger covariance matrix along with a less correction effect

brings extra robustness to the estimation.

Time Complexity Analysis

In this section, only one window is considered. Complexity analysis is more

focused on feasibility of online estimation. Multi-window is only considered as

a more accurate alternative for capacity updates after each cycle. The general

method to solve quadratic programming problem with linear constraints is already

sketched in the Section 4.2.3, which is detailed as follows:
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1. Suppose the problem is

min
x

1

2
xTQx+ fTx (4.69)

s.t. Cix <= gi, 1 ≤ i ≤ l (4.70)

where gi is a number and each gi represents for a constraint.

2. As the solution will be at the border or within the border for each constraint,

consider a combination of the l constraints, and solve the problem with these

constraints being equal. For example, if the i1, i2, . . . , ik−th constraints

are selected, i.e. to solve

min
x

1

2
xTQx+ fTx (4.71)

s.t. Cix = gi, i = i1, i2, . . . .ik (4.72)

The above problem can thus be easily solved using Lagrange multiplier. If

the solution satisfies all constraints, it will be kept, otherwise is discarded.

3. Consider all combinations and compare the corresponding results. There

will be 2l combinations and less than 2l valid results. Select the one with

the minimum cost function value as the global minimum solution.

In this work, the state variable x is two-dimensional. There are four con-

straints but only 9 possible solutions are attainable, detailed as: one solution

without constraints, four with one constraints, and other four with two con-

straints. The problem with one constraints are thus reduced to a one-dimensional

quadratic function minimization problem. Additionally, two constraints directly

determine the solution. These are trivial cases to solve. Thereby, little extra time

complexity will be added to the problem.

The main computational burden in this work appears in solving the problem

without constraints. As stated in the last part of Section of MPC based Ob-

server Design, solving this case has similar complexity to H−infinity filter, but

will be slower than Kalman Filter (EKF), hence also slower than Sliding Mode

Observer (SMO). However, they just differ by a small constant scalar. On the
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other hand, the experimental time used for each method is summarised in Ta-

ble 4.3. The elapsed time is tiny as 0.2541ms per loop. Although the MPCO

proposed in this paper is the slowest among the comparisons, it is yet fast enough

for online application.

Filter Method SMO EKF H−finity MPCO

Elapsed Time (ms) per Loop 0.1062 0.1364 0.1456 0.2542

Table 4.3: Experimental Time Complexity Comparisons

The Framework of the Proposed Observer

In this work, the RLS based online identification method is used to parameterize

the time-varying system, i.e. the ECM model. Therefore, the effects of aging

evolution and varying working conditions have been considered in the process

of parameters identification. Afterwards, the identified parameters are applied

to the proposed MPCO to obtain a robust SoC estimation. Then the capacity

is updated at the end of a full cycle, which will be used as the base capacity

in the following cycle to overcome the capacity fluctuation issues. The capacity

estimate is regarded as an indicator for the reconditioning and maintenance. The

systematic flowchart of the proposed method is given in Fig.4.16. The proposed

MPCO ultimately inherits the distinguishing merits of MPC optimal control the-

ory. Two remarkable advantages can be achieved against the current state-of-the-

art studies [150]. One benefit comes from rolling horizon theory and the other

is introduced by the imposed constraints. Firstly, MPC observer calculates the

optimal gain over the multi-window decision horizon rather than using the single

window knowledge at instant time. Hence, the proposed observer is capable of

handling errors not only from measurements, modelling, and discretization, but

also from the time-varying parameters identified in RLS. And MPCO can thus

further smooth the disturbance from a sudden measurement fault. Secondly,

complemented by the introduced constraints of states in line with electrochem-

ical information, the proposed observer has achieved outperforming accuracy of

estimation. Consequently, the built-in constraints on polarization voltage and
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Figure 4.16: Implementation flowchart of the MPCO method

SoC operating range, favourably enhance the stability and convergence of the

proposed MPCO. More reliable capacity estimation can be readily achieved in

this process to accurately determine the moment of maintenance. The proposed

MPCO effectively overcomes the existing deficiency in the management of ZNBs

from the application perspective.
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Accuracy of SoC estimates

In this work, the pulse tests listed in Section 3.2.1, as shown in Fig.3.2 are carried

out to mimic the practical RFBs working conditions introducing the intermit-

tence of renewable electricity sources. Additionally, for the purpose to compare

the performance of state estimates among different algorithms in terms of the SoC

tracking performance, transient behaviours, estimation robustness, convergence.

etc., a more complex excitation is imposed on the ZNBs, namely dynamic pulse

tests as shown in the Fig.3.2. With an intentionally initial SoC error of −20%,

the resultant SoC estimation of the proposed MPCO method is compared with

the state-of-the-art algorithms such as EKF, H-infinity, and SMO. In order to

conduct fair comparisons among all SoC estimators, the efforts on the parame-

ters tuning process, e.g. P , Σ, and σ. etc. are kept in a similar level, besides,

it should be noted that the size of the decision window (horizon) is set as one

to guarantee the approximate computational burden. The SoC estimation and

comparisons are displayed in Fig.4.17.

According to Fig.4.17(a) and Fig.4.17(b), the estimation of MPCO presents

a good convergence behaviour to the SoC reference trajectory, resulting from the

imposed hard constraints on the polarization voltage estimation Vp revealed in

Fig.4.17(c). Specifically, as illustrated in the zoom-in plot of the starting stage,

the SoC estimation provided by MPCO converges to the CC reference faster than

other counterparts, while SMO shows the slowest convergence performance. The

relative poor convergence is foreseeable in SMO, due to its simplest structural

design. In this regard, the analytical discussion among different estimators are

detailed at the end of this section. Apart from the ending stage, the worst tran-

sient behaviours occurs in the first transient pulse, where the current changes from

1C to 1.5C. It can be explained by the effects of the unstable model parameters in

the initial stage. As shown in Fig.4.17(b), the estimation performances of EKF,

H-infinity and SMO, are getting worse in the ending stage. The comparisons of

SoC estimate error among these four approaches are detailed in Table.4.4, where

the proposed MPCO method provides the best accuracy of the SoC estimation.

Additionally, unlike the other counterparts, MPCO exhibits strong robustness,
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and the estimation accuracy of MPCO still remains stable yet, with the SoC

estimation errors almost bounded within 1.5%. These phenomena are owing to

the introduced hard constraints on the polarization voltage Vp. As presented

in Fig.4.17(c), the proposed MPCO method is capable of not only incorporat-

ing the priori-knowledge of the battery intrinsic electrochemical properties into

SoC estimation, but also restricting the SoC estimation within reasonable re-

gion. Therefore, the SoC estimation is further optimised by the proposed MPCO

method. On the other hand, the proposed MPCO inherits the advantages of

MPC that are good at handling the non-Gaussian noises according to Eq.(5.1)

and Eq.(5.2). In this paper, for the convenience sake, only the Gaussian noises

with a standard deviation of 10mV is imposed on the voltage measurement for

all the SoC estimators. Moreover, the accuracy of capacity estimation will be en-

hanced by raising the length of the windows, as discussed in the following content

Section 6.2.5.

SoC Error MPCO SMO EKF H-Infiinty

Mean −0.0087 −0.0314 −0.0227 −0.0225

Std. Dev. 0.0187 0.0458 0.0229 0.0250

Table 4.4: Dynamic Charging Profile SoC Estimate Error Summary

Validation of applicability

In this work, the terminal current and the voltage are used as the excitation

signals for the online model identification and state estimation, where the priori-

knowledge of ZNBs is incorporated as the constraints into the observer design.

In principle, the proposed MPCO method is able to be used for other type of

batteries. In order to test the generality of the proposed MPCO, a 5Ah prismatic

LiFePO4-Graphite lithium battery (GWL/Power Company) has been tested.

Throughout the entire tests, the same initial settings in the above content and

narration are adopted on EKF, H-infinity, and SMO approaches as well. The

94



4.2 State of Charge (SoC) estimate

0 0.2 0.4 0.6 0.8 1 1.2

Time (h)

0

0.5

1

S
o
C

Dynamic Discharging Profile SoC Estimate

MPCO

SMO

EKF

H-Infinity

Reference

0 0.1 0.2 0.3 0.4

Time (h)

0.6

0.7

0.8

0.9

1

S
o
C

Zoom-in of Starting Stage

0.8 0.9 1 1.1 1.2

Time (h)

0

0.1

0.2

0.3

0.4

S
o
C

Zoom-in of Ending Stage

(a) SoC estimations under different filter designs

0 0.2 0.4 0.6 0.8 1 1.2

Time (h)

-0.2

-0.1

0

0.1

S
o
C

 E
rr

o
r

Dynamic Discharging Profile SoC Estimate Error (Comparing with Reference)

MPCO

SMO

EKF

H-Infinity

0 0.1 0.2 0.3 0.4

Time (h)

-0.2

-0.1

0

0.1

S
o
C

 E
rr

o
r

Zoom-in of Starting Stage

0.8 0.9 1 1.1 1.2

Time (h)

-0.1

-0.05

0

S
o
C

 E
rr

o
r

Zoom-in of Ending Stage

(b) Error of Soc estimation under different filter designs

0 0.2 0.4 0.6 0.8 1 1.2

Time (h)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

V
p
 (

V
)

Dynamic Discharging Profile Vp Estimate

MPCO

SMO

EKF

H-Infinity

(c) Polarization voltage Vp estimations under different filter designs

Figure 4.17: The state estimation results and comparisons during the dynamic

pulse tests
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SoC and polarization voltage Vp are restricted within 0 to 1 and ±0.04V , respec-

tively. The FUDS testing profile, given in the Fig.3.2, is loaded to the lithium

battery with the erroneously initial SoC value of −20%. According to the afore-

mentioned, the length of the decision window is set as 1 to provide a short-term

comparison of SoC estimation among different SoC estimators. In addition, at

the early stage of FUDS tests, an artificial perturbation, 10A charging current

lasts for 5s, is intentionally inserted in the input current to evaluate the robust-

ness of the proposed methods.

As shown in Fig.4.18, all the estimators attempt to attenuate the initial errors

in a fast manner. As shown in the zoom-ins in Fig.4.18(a), before the artificial

perturbation, the SoC estimation converge to the reference value fast. Yet, a

slower convergence speed can be observed on SMO, which is in accordance with

the ZNBs tests. In other words, EKF, H−infinity and the proposed MPCO give

similar estimation accuracy and convergence speed. Afterwards, an artificial per-

turbation in the charging current with a pulse form of 100A magnitude is imposed

on the input signals at t = 1000s. Due to the prescribed constraints on the in-

ternal states in the observer design, the proposed MPCO method outperforms

among all four approaches, showing up the best performance of disturbance re-

jecting and robustness. We believe these phenomena are owing to the imposed

estimation constraints, which limit the state estimation in a reasonable range

and reduce the estimation errors. Additionally, Fig.4.18(b) reveals that SMO

provides the worst performance in terms of robustness and convergence at the

starting stage, in which the convergence speed can be adjusted by the prescribed

value of error covariance. Typically, a large value can converge more quickly, but

it will also bring ripples to the SoC estimation, losing the accuracy. However, as

depicted in Fig.4.18(b) the error of SoC estimation will remarkably increase when

the discharging phase is approaching the end and the terminal voltage is close

to the cut-off voltage. It is because of the progressive nonlinearity of SoC-OCV

table in the range of lower SoC. In this regard, the utilized first-order ECM is

not able to capture the battery dynamics anymore, leading to equally poor per-

formance of MPCO, EKF and H-infinity. However, the primary goal of MPCO

to comply with the intrinsic electrochemical properties has still been achieved as
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(a) SoC estimations under different filter designs

(b) Error of Soc estimation under different filter designs

(c) Polarization voltage Vp estimations under different filter designs

Figure 4.18: The state estimation results and comparisons during FUDS tests
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depicted in Fig.4.18(c). Based on Eq.(4.67) and Eq.(4.68), the hard constraints

are imposed on the polarization voltage and SoC. All the estimated Vp are thus

bounded within the empirical value ±0.04V , which pre-filters out the interfer-

ence of estimation outliers, leading to more accurate estimation of Vp. It is worth

noting that the MPCO provides potential ways to leverage the electrochemical

knowledge of batteries. If more explicit constraints can be prescribed, in prin-

ciple, the accuracy of SoC estimation can be increased significantly through the

proposed MPCO scheme. The simulation results verify the applicability of the

proposed method on other eletrochemical systems. In particular, the proposed

MPCO performs competitively on the SoC estimation for lithium batteries, even

more effectively in the convergence speed. Additionally, the robustness of the

proposed method is stronger than other counterparts.

Discussion

This work develops a novel SoC estimation method, namely MPCO, inspired by

the MPC mechanism. The RLS method is incorporated with a widely accepted

first-order ECM for the parameter identification, which provides a simple im-

plementation of ZNBs modelling not only to ensure the modelling accuracy and

adapt to varying working conditions but also to simplify the battery model struc-

ture. Moreover, there are two major advantages of the proposed observer. Firstly,

based on the inherent electrochemical knowledge, state constraints are incorpo-

rated into the estimation process, which brings more robust estimates. Secondly,

an attempt in multi-window framework has demonstrated better performance in

capacity estimation, which will be elaborated in the Chapter 6. Underpinned by

the advantages of the proposed MPCO, this method can provide a robust and

reliable SoC estimate , and then MPCO can be readily adopted for ZNBs capac-

ity estimation as well, with a good tracking behaviour to handle the fluctuating

capacity issues.

4.2.3 Analytical Comparisons among Different Estimators

This section provides a brief analytical comparison among the four different online

SOC estimators mentioned in this paper. Firstly, consider the first-order ECM
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model given in Eq.(4.73):

x(k) = Ak · x(k − 1) +Bk · u(k) + ωk

y(k) = f(x(k), u(k)) + νk (4.73)

where xk is the state variables vector, which represents [SoC(k), Vp(k)]T in pre-

vious sections, and yk is the measurement variable, which is the measured Vt in

the modelling process. ωk and νk denote the updating error and measurement

error respectively. Starting with the simplest and fastest method, namely Sliding

Mode Observer (SMO), this observer updates the state vector estimate according

to measurement equation by:

x+(k) = x−(k) +

{
g1, f(x−(k), u(k)) > y(k)
g2, f(x−(k), u(k)) < y(k)

where g1 and g2 satisfy {
gT1

∂f
∂x
< 0, f(x, u(k)) > y(k)

gT2
∂f
∂x
> 0, f(x, u(k)) < y(k)

Due to the simple structure of SMO, the advantages of SMO are obvious. It is

straightforward to be utilised, and thus has the smallest computational burden.

Furthermore, the updating step vector g1 and g2 are easy to find. On the other

hand, the disadvantages of SMO are apparent as well. The most unbearable one

is that the arbitrary selection for g1 and g2 might result in poor convergence,

which has been reflected in the aforementioned simulation.

To overcome the drawbacks of SMO, the Kalman Filter/Extended Kalman

Filter (EKF) acts as an advanced method which maintains the basic logic on

sliding of SMO, but further introduces the covariance matrix of the state vector.

The Kalman gain has secured the sliding requirements on g1 and g2 in SMO:

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k + Σν)

−1

x+(k) = x−(k) +Kkek = x−(k) + gk

eTkCkgk = eTkCkKkek = eTkCkPk|k−1C
T
k (CkPk|k−1C

T
k + Σν)

−1ek

= eTkCkPk|k−1C
T
k ek(CkPk|k−1C

T
k + Σν)

−1 > 0
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4.2 State of Charge (SoC) estimate

For one-dimensional measurement variable y(k), it is easy to affirm that the above

value is positive. In other words, the Kalman Filter (KF) can be viewed as choos-

ing customized gk (g1 and g2 in SMO) at each time instant. The KF estimation

aims at acquiring state estimate with the smallest covariance matrix, i.e. any

linear combination of state variables with the smallest variance. In this way, KF,

therefore, should exhibit the strongest convergence.

However, Kalman Filter also shows its limitations. The most widely argued

point is the assumption that errors follow normal distributions. This priori knowl-

edge is not applicable to most cases in the real world. In order to solve this issue,

the H−infinity filter has been proposed, in which the problem is formulated

within the engineer-nature gaming system. Comparing with Kalman Filter, the

H−infinity filter has the following gain value and covariance matrix update:

Ŝk = LTk SkLk

Pk|k = Pk|k−1

(
I − θŜkPk|k−1 + CT

k Σ−1
ν CkPk|k−1

)−1

Kk = Pk|kC
T
k Σ−1

ν

As mentioned above, KF aims to minimize the variance in the form of any linear

combination of state variables. The H−infinity is only interested in the user-

defined linear combination of state variables, i.e. Lkx(k). Another difference is

in user-defined parameter θ. This positive value will make the covariance matrix

and gain value slightly larger than in Kalman Filter, intentionally leading to a

more robust result at the expense of larger covariances. In addition, it can be

verified with simple algebra that when Lk = I and θ = 0, H−infinity is equivalent

to Kalman Filter.

Nevertheless, all three methods discussed above cannot cope with constraints

issues. The method proposed in this paper is based on MPC framework to induce

constrained estimates. It can also be shown that without constraints, the perfor-

mance of MPCO is equivalent to the Kalman Filter, which has further guaranteed

the correctness of the rationale behind the proposed MPCO method. Besides,
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MPCO is easy to understand and readily implementable.

Finally, a brief discussion on time complexity is provided. It is clear that SMO

has the least computational burden, because of the simplest structure designed.

The Kalman Filter is the second fastest approach. The computational complexity

of H−infinity is slightly higher than Kalman Filter, and the method proposed

in this paper is equivalent to H−infinity. It is noteworthy that all these four

methods have linear time complexity (O(n)), which means they only differ by a

constant scalar. This analysis has been further confirmed by Table.4.3

4.3 Conclusion

In this chapter, three popular battery modelling tools including the ANN battery

model, Electrochemical battery model and ECM have been revisited. Among

them, the ANN is straightforward for implementation and free of specific electro-

chemical knowledge but it is intractable for adaption to varying working con-

ditions once the main framework has been affirmed. Therefore, due to the

interference of occurred intermittent voltage peaks/jumps when cycling ZNBs,

ANN-based battery modelling loses its accuracy in the cases of abnormal volt-

age profiles. The Electrochemical battery model uses the Partial Differential

Equation (PDE) to represent the main electrochmical process taking place in the

electrolyte and the surface of electrodes, which can serve as an analytic tool for

the battery manufacturers and academic in electrochemical research. Though

Electrochemical battery model is a white-box model which can be used for bat-

tery design, it is difficult to be used for real-time battery management. And

the parameters in such a model are always identified according to the engineer-

ing experience, which weakens the accuracy and practicability of electrochemical

battery modelling. Besides, the solutions of PDE are time-consuming and require

the help of special solvers. ECM is commonly used in online battery modelling

and the subsequent state estimations. Due to the intermittent and unpredictable

voltage spikes/jumps over ZNB cycling, the online ECM identification is suitable

for real time battery management. Less computing cost and more accurate SoC
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4.3 Conclusion

estimation with desirable robustness, are the two targets achieved in this chap-

ter. An OCV observer based SoC estimate method is proposed to reduce the

computational cost due to the introduction of higher order ECMs. On the other

hand, the developed MPCO can provide more accurate SoC estimate against

other counterparts. The competitiveness of MPCO is demonstrated by analyti-

cal comparisons against other three the state-of-the-art SoC estimators. In this

regard, the relationships of the proposed MPCO with other SoC estimators are

summarized briefly. The proposed SoC estimation methods will be used for the

subsequent work on peak power prediction and remaining capacity estimation to

be presented in the following chapters.
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V
PEAK POWER PREDICTION

Zinc Nickel single flow batteries (ZNBs) can be used as large scale stationary

energy storage devices, connected to the renewable energy sources to improve the

power quality. Due to the high variability of the intermittent renewable energy

sources, load demands, and the operating conditions, the state of charge (SoC)

is not an ideal indicator to gauge the potential cycling abilities of Zinc Nickel

single flow batteries (ZNBs). The peak power, so-called “State of Power (SoP)”

is more closely related to the instantaneous power acceptance and deliverance,

and its real-time estimation plays a key role in grid-based energy storage systems.

Little work has been done so far to examine the peak power delivery capability of

Zinc Nickel single flow batteries (ZNBs). To bridge this gap, this chapter details

the corresponding procedures of online peak power prediction techniques. In

addition, the instantaneous power acceptance and deliverance of ZNBs have been

discussed according to the resultant peak power predictions during the charging

and discharging processes.
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5.1 Peak Power

5.1 Peak Power

Underpinned by the on-line battery modelling and real-time SoC estimation meth-

ods presented in previous chapters, another objective of this thesis is to investi-

gate the instantaneous power deliverability of ZNBs. The peak power capability

is an instantaneous state relating to the loading capacity in battery applica-

tions [151; 152; 153]. It can be interpreted by the maximum remaining abilities

of a battery to meet the subsequent power demands [121; 154]. Battery SoC

only represents the ratio of the residual charges in a specific operating point to

the capacity. Relying only on such knowledge, it is still not possible to know

exactly how much power can be drawn from the battery in a specific demanding

time window. When ZNBs are used as the grid-tied energy storage system, it

is imperative to know its absorbing and delivering limitations at time-varying

working conditions. For instance, in the renewable energy market [155], the state

information of peak power will assist the system operator to regulate the amount

of battery absorption/delivery power in response to the instantaneous changes in

supply and demand, and to abnormal operation conditions. For instance, the in-

formation of peak power is critical to protect the battery stack when the instantly

excessive generation from renewable power by wind turbines and solar panels is

greater than the its accepting potential of energy storage systems. Thereby, an

accurate prediction of the peak power capability is pivotal for safely and reliably

operating the grid-based ZNBs energy storage systems.

The essence of peak power prediction is to render the value of the maximum

power in a short-term without violating the safe operating area (SoA) [153].

Over the past decades, the hybrid pulse power characterisation tests (HPPC) are

broadly adopted in the lithium batteries online tests [100]. HPPC tests at once

were also considered for other electrical accumulators like all-vanadium redox flow

batteries (VRBs). The research of [156] reports the temperature dependency in

the peak power prediction. However, the HPPC method restrains the magnitudes

of terminal voltages. The HPPC based peak power prediction is thus flawed due

to the absence of constraints imposed on the SoC estimation, leading to the

overoptimistic prediction at higher and lower SoC segments. In addition, the
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5.1 Peak Power

HPPC prediction fails to consider the effects of increasing resistance at the low

SoC segments. Overpredictions will be problematic for the battery operation as

it may result in overcharging/discharging peoblems [157]. In contrast, the model

based peak power prediction is more reliable and effective [152; 158]. With the

merits of the real time model identification, the uncertainties arising from the

varying conditions will be addressed easily. Hence a suitable battery model is

indispensable in accurate peak power predictions.

For real time applications, the ECM models are among the most popular

ones [7]. In [154] and [123], a first order ECM model is adopted to achieve accurate

peak power predication in short-term prediction horizons. While, [159] and [151]

improved the model by integrating the thermal model with the ECM to ensure

the model fidelity and investigating the current dependency of the internal re-

sistance, respectively. Analogously, Zhang [160] proposed an ECM model taking

into account of the ion diffusion process. However, the offline model training is

highly dependent on the experimental dataset and is not online adaptable. The

performance can be significantly deteriorated for given unseen data. Recently,

Wei et al [123] investigated the peak power prediction of VRBs. The peak power

predictions are made over different prediction horizons, which is regarded as the

benchmarks for RFBs. However, a common drawback of the state-of-the-art

methods is that the terminal current signal applied across the predictive horizon

is assumed to be a constant value. Thereby, the correlation between terminal

signals in terms of current and voltage is assumed to be rigorously monotonous.

The peak power prediction is thus converted to a problem of how to ascertain the

peak current while the peak current is solved from a set of equality constraints.

However, in reality, the terminal signals (current/voltage) are time-varying and

highly dynamic.

To overcome the aforementioned drawbacks, in this chapter, the first-order

ECM based state space model and the broadly accepted recursive least square (RLS)

method are adopted as well to capture the battery dynamics and update the

model parameters in real time. Then the SoC is estimated online by the Ex-

tended Kalman filter (EKF). With these preliminaries, the peak power predic-
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tion of ZNBs is achieved online using the prediction horizon concept where the

prediction of peak power is calculated in the range from 1s to 20s [161] with the

assistance of the linear programming technique. In addition to the peak power,

three additional indices, namely the the peak current, peak terminal voltage,

and peak SoC, are designed to render the user-end comprehensive insights into

the information of peak power against various prediction horizons. Finally, the

additional current bounds due to the influences of material and flow rates are

discussed as a supplementary discussion.

5.2 Online Peak Power Prediction

Motivated by the receding horizon concept in model predictive control that has

been widely adopted in process industry [146; 162], a moving horizon scheme

for peak power prediction is proposed in this section. This method handles the

dynamics of the current and voltage within the prediction window, where the

discharging and charging currents are not assumed to be constant. Similar to the

MPC [162] strategy, the constraints could be explicitly formulated in the peak

power prediction equations, and constraints on the terminal voltage, SoC, flow

effects, and electrode material limitation can all be included. This approach can

thus easily search the optimum by solving linear programming problems, whilst

taking all the constraints into the optimisation process. If one variable reaches

to its constraint, the discharging and charging current in the prediction horizon

will be fixed. In this regard, it enables the safe operations.

5.2.1 SoC Online Estimation based on EKF Algorithm

Since SoC represents the ratio of the remaining charge to the nominal capacity

value at a specific operating time instant, the first step to predict peak power after

a specific moment is to estimate the SoC value of current time instant. The CC

method is readily implementable and reliable, but it is subject to the unknown

perturbations and initial deviations [124]. Additionally, the SoC-OCV look-up

table is an open-loop method, in which the SoC can be read straightforward from
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the inherent monotonous SoC-OCV table. Nevertheless, the pre-trained SoC-

OCV table has to be calibrated periodically, due to the effects of the battery

degradation. Additionally, the measurement noises and uncertainties introduced

into the model are still not dealt with appropriately. In our case, as the ZNBs

cycling behaviours fluctuate with the zinc deposition growth, the efficiency of

the above methods may be affected by the fluctuations. As a widely accepted

method, the extended Kalman filter (EKF) estimates the SoC values in a closed-

loop manner and dynamically filter out the measurement noises and uncertainties

introduced into the SOC estimation compared with the open-loop method. Thus

in this work, the EKF is employed to estimate the SoC firstly. Based on Eq.(4.27),

a two-dimensional state equation can be derived as:{
SoC(k) = SoC(k − 1)− η∆ts

Q
IL(k − 1)

Vp(k) = e
− ∆ts
RpCp Vp(k − 1) +

(
1− e−

∆ts
RpCp

)
RpIL(k − 1)

(5.1)

The terminal voltage signal Vt is formulated as the measurement equation:

Vt(k) = f(SoC(k))− Vp(k)−RsIL(k) (5.2)

where VOC = f(SoC), thereby, f is formulated through the OCV tests [137] which

correlates OCV with SoC. A standard expression of EKF is then formulated as

follows: {
s(k) = Ak · s(k − 1) + bk · IL(k − 1) + w(k)
Vt(k) = F (s(k), IL(k)) + v(k)

(5.3)

where

s(k) = [SoC(k) Vp(k)]T , Ak =

[
1 0

0 e
− ∆ts
RpCp

]
,

bk =

[
−η∆ts

Q
(1− e−

∆ts
RpCp )Rp

]T
,

F (s, I) = f(s1)− s2 −RsI,
∂F

∂s
= [f ′(s1) − 1].

w(k) and v(k) are the process noise and the measurement noise respectively,

which are assumed to be independent, zero-mean, Gaussian noise processes with

covariance matrices
∑

w and
∑

v. In this respect, the discrete-time prediction
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and update equations of EKF are summarized as follows:

Prediction

ŝ−(k) = Ak · ŝ+(k − 1) + bk · IL(k − 1)

Σ̂−s (k) = AkΣ̂
+
s (k − 1)AT

k + Σw

Update

e(k) = Vt(k)− F (ŝ−(k), IL(k))

Lk = Σ̂−s (k)HT
k

[
HkΣ̂

−
s (k)HT

k + Σv

]−1

ŝ+(k) = ŝ−(k) + Lk · e(k)

Σ̂+
s (k) = (I− Lk ·Hk)Σ̂

−
s (k)

Define

Ak =

[
1 0

0 β̂

]
,

Hk =
∂F (s, IL(k))

∂s
|s=ŝ−(k) = [f ′( ˆSoC

−
(k)) − 1]

(5.4)

where β̂ is the identified parameter in Eq.(4.30) and Eq.(4.31), and the super-

scripts − and + denote the priori state update and posterior state update phases

respectively. For the details of the EKF based SoC estimation adopted in this

work, please refer to [131].

5.2.2 Battery State Space Model for Peak Power Predic-

tion

It should be noted that in this work, the combination of first-order ECM and

RLS is used to model battery dynamics and identify the model parameters in

real-time. In this regard, refer to Section 4.1.3, the induced computational cost

is under control but also the accuracy is a good match to ZNBs online modelling

request. Due to the implicit relationship between SoC and current IL, the CC

method can be expressed as:

SoCk = SoCk−1 −
ηIL(k − 1)∆ts

Q
(5.5)
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where Q denotes the slowly changing battery capacity. It should be noted that

the value of Q is assumed to be constant within the first half of discharging and

charging cycle. The coulombic efficiency η is set as 100% for simplification. By

applying the Taylor approximation to the equation of VOC = f(SoC), a recursive

formula for VOC is yielded accordingly:

VOC(k + i|k) = f(SoC(k + i|k)) ≈ VOC(k) + f ′(SoC(k)) [SoC(k + i|k)− SoC(k)]

= VOC(k)− f ′(SoC(k))
η∆ts
Q

i−1∑
j=0

IL(k + j) (5.6)

Since the change of SoC depends on the slowly accumulating current effect, during

the period of two consecutive sample instants, the values of SoC(k + i|k) and

SoC(k) are very close. The above equation could then be reformulated as:

VOC(k + i|k) = VOC(k + i− 1|k)− f ′(SoC(k))
η∆ts
Q

IL(k + i− 1) (5.7)

Combined with Eq.(5.1) and Eq.(5.2), the battery model can be expressed in the

state space form. Therefore, a three-dimensional predictive state equation system

is formulated as follows:{
x(k + i|k) = Pk · x(k + i− 1|k) + qk · u(k + i− 1)
y(k + i|k) = Ck · x(k + i|k) + dk · u(k + i)

(5.8)

where

x(k + i|k) = [SoC(k + i|k) Vp(k + i|k) VOC(k + i|k)]T ,

Pk =

 1 0 0

0 e
− ∆ts
RpCp 0

0 0 1

 , qk = [−η∆ts
Q

(1− e−
∆ts
RpCp )Rp − f ′(SoC(k))

η∆ts
Q

]T ,

y(k + i|k) = Vt(k + i|k), Ck = [0 − 1 1]T , dk = −Rs, u(k + i) = IL(k),

According to the rolling horizon scheme, the prediction of the state vector and

input variable (IL) are further denoted by x(k + i|k), and u(k + i), respectively.

Therefore, the neat expression of x(k + i|k) can be then derived as follows:

x(k + i|k) = Pi
k · x(k) +

i−1∑
j=0

Pi−1−j
k qk · u(k + j) (5.9)
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Impose the vector notation on the prediction state x(k + i|k), and Eq.(5.9) can

be then expanded over a prediction window of n steps:

~x(n)(k) =


x(k + 1|k)
x(k + 2|k)

...
x(k + n|k)

 = P
(n)
k · x(k) + P

(n)
q,k ·


u(k)

u(k + 1)
...

u(k + n− 1)

 (5.10)

= A
(n)
x,k · ~u

(n)(k) + b
(n)
x,k (5.11)

where

P
(n)
k =


Pk

P2
k

...
Pn
k

 , P
(n)
q,k =


qk 0 · · · 0

Pk · qk qk · · · 0
...

...
...

...
Pn−1
k · qk Pm−2

k · qk · · · qk

 ,

~u(n)(k) =


u(k + 1)
u(k + 2)

...
u(k + n)

 ,

A
(n)
x,k = P

(n)
q,k ·

[
0 0
In−1 0

]
, b

(n)
x,k = P

(n)
k · x(k) + P

(n)
q,k ·


u(k)

0
...
0


Similarly, a set of n ahead predictions y(k + i|k) can be accordingly deduced as

follows:

~y(n)(k) =


y(k + 1|k)
y(k + 2|k)

...
y(k + n|k)

 =


Ck 0 · · · 0
0 Ck · · · 0
...

...
...

...
0 0 · · · Ck

 (5.12)

· ~x(n)(k) +


dk 0 · · · 0
0 dk · · · 0
...

...
...

...
0 0 · · · dk

 · ~u(n)(k)

= A
(n)
y,k · ~u

(n)(k) + b
(n)
y,k (5.13)
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where

A
(n)
y,k = diag(Ck,Ck, · · · ,Ck) ·A(n)

x,k + diag(dk, dk, · · · , dk),

b
(n)
y,k = diag(Ck,Ck, · · · ,Ck) · b(n)

x,k

Note that the peak power prediction horizon is often set within short-term view

(in the range from 1s to 20s). At an operating point, the RLS based model identi-

fication will be executed first to update the parameters. The model dynamics will

be fully taken into the following prediction steps. Herein, the prediction window

(prediction horizon) n begins from 1s and ends at 20s. The imposed constraints

on the voltage, SoC and current are strictly guaranteed at each prediction step.

5.2.3 Moving Horizon Scheme based Optimisation

Due to the similar equation derivation and optimisation procedure for both the

charging and discharging phases, only the discharging phase is selected for pre-

sentation in this section. In this regard, the average power in the prediction

window is to be maximized. In the meantime, the SoC and Vt are confined

within their particularly allowable ranges. Hence, the objective function can be

further interpreted as:

P dis
peak = max

~u(n)(k)

1

n

n∑
i=1

u(k + i)y(k + i|k) = max
~u(n)(k)

1

n
~u(n)(k)T · ~y(n)(k)

= max
~u(n)(k)

~u(n)(k)T ·A(n)
y,k · ~u

(n)(k) + b
(n)
y,k

T
· ~u(n)(k) (5.14)

Combined with constraints on the voltage, current, and SoC, the optimization

problem can be stated as follows:
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max
~u(n)(k)

1

2
~u(n)(k)T ·

(
A

(n)
y,k + A

(n)
y,k

T
)
· ~u(n)(k) + b

(n)
y,k

T
· ~u(n)(k) (5.15)

s.t.


Vt,min
Vt,min

...
Vt,min

 ≤ ~y(n)(k) = A
(n)
y,k · ~u

(n)(k) + b
(n)
y,k ≤


Vt,max
Vt,max

...
Vt,max

 ,

SoCmin
SoCmin

...
SoCmin

 ≤ diag(e1, e1, · · · , e1) · (A(n)
x,k · ~u

(n)(k) + b
(n)
x,k) ≤


SoCmax
SoCmax

...
SoCmax

 ,

IL,min
IL,min

...
IL,min

 ≤ ~u(n)(k) ≤


IL,max
IL,max

...
IL,max


where e1 = [1 0 0] is a unit vector. The above problem is a convex optimization

problem, as matrix −
(
A

(n)
y,k + A

(n)
y,k

T
)

is positive definite. Consequently, it can

be solved using the quadratic programming. Once the optimal solution ~u
(n)
opt(k)

is obtained, the peak average power can be predicted as:

P
(n)
peak(k) =

1

n

n∑
i=1

Vt(k + i|k)|
~u

(n)
opt(k)

· uopt(k + i) (5.16)

In addition to the peak power, three plus indices encompassing the peak current,

peak terminal voltage, and peak SoC are used jointly over a varying prediction

horizon:

I
(n)
L,peak(k) =

1

n

n∑
i=1

uopt(k + i), (5.17)

V
(n)
t,peak(k) =

1

n

n∑
i=1

Vt(k + i|k)|
~u

(n)
opt(k)

, (5.18)

SoC
(n)
peak =

1

n

n∑
i=1

SoC(k + i|k)|
~u

(n)
opt(k)

(5.19)
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This above elaborated approach makes full use of the dynamic correlations

between battery terminal current and voltage, while the amplitude of the future

current does not have to be a constant, an assumption imposed by the exist-

ing approaches. Further, the over-optimistic and over-pessimistic predictions are

avoided, rendering reliable and safe operations in the future. Compared with the

existing methods, the predictions of the peak power at each instant SoC state

are solved simply by the linear programming. The average peak power predic-

tion presents the power limit in the corresponding prediction horizon, and all

other peak power predictions over the relative prediction horizon can then be

discounted. The computational cost of the proposed method is also competitive

for online applications, in comparison with the existing methods.

5.3 Experimental Results and Peak Power Pre-

diction

Based on the previous research [2; 45], a hand-made 3.7Ah ZNB prototype has

been tested in this study as introduced in Section 3.1. As described in Sec-

tion 3.2.3 and Fig.3.2, ZNBs are cycling with the Galvanostatic regime, which

is commonly adopted in the flow battery test. The testing data will be used for

the RLS based model identification in real time. For the sake of comparison,

the SoC trajectory is recorded by the coulomb counting method. Furthermore,

the proposed methods provide the instantaneous prediction purely relying on the

correlation between terminal signals e.g. current and voltage, it promises the

abilities to be generalised for other batteries counterparts.

5.3.1 Peak Power Prediction Considering both Voltage

and SoC Constraints

The loaded current and applied flow rate play an important role in shaping the

behaviours of ZNBs. However, they are not only limited by the microscopic reac-

tions on the electrodes such as the mass transfer and ion immigration but also by

the selected materials due to side reactions and zinc deposition formation. For
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the sake of simplification, the effects of flow rate will be decoupled from the cut-

off voltage and operating SoC constraints, and it has been discussed separately

in Section 5.3.2.

The ZNBs are favourable energy storage systems, which have a very high en-

ergy and power densities explained by a desirably practical range of operating

voltage and SoC. In the literature [2; 45], ZNB is able to tolerate the broad scope

of operating SoC (from 0 to 100%) and voltage (from 0.8V to 2.05V ). Impos-

ing the voltage and SoC restraints on the ZNBs, the predicted peak power value

over different prediction windows is shown in Fig.5.1. And Fig.5.2 illustrates

the thorough predictions at three selected SoC states. Since the almost identical

mechanism and constraints are employed for charging and discharging, in this

section, only the prediction results at the discharging phase are detailed.

Four different indices in terms of the peak current, peak SoC, peak voltage and

peak power are introduced to give a comprehensive assessment of the predictions

over different prediction windows. Furthermore, these four indices as a whole

depict the maximum power supplying capability at the different SoC states.

Discharging Phase

Fig. 5.1 and Fig.5.2 show the dynamics of constraint variables along discharging

process over different prediction windows. There are four main observations which

can be inferred from these subplots:

1. The proposed ZNBs system possesses highly desirable peak power

deliverability over the entire discharging process. As illustrated

in the second subplot of Fig.5.1, for the majority of the operating time,

the peak power prediction will stay at 38W for this small ZNB prototype

(3.7Ah). Specifically, in the lower SoC ranges (0.17) as shown in the second

subplot of Fig.5.2, the peak power deliverability still maintains over 20W ,

where this observation also reveals that ZNBs are very promising energy

storage systems amongst a range of defined RFBs.
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Figure 5.1: Peak power prediction along the discharging process
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2. The constraints on peak voltage and SoC are complementary,

which alternatively affect the peak power predictions. By inspec-

tions from the third and fourth subplots of Fig.5.1, the turn points represent

the timing when the control modes are switched from cut-off voltage con-

trol to SoC control. However, it has to be noted that the cut-off voltage

constraint is only applicable, when the prediction window comes to n = 1,

because in this case the SoC constraint only considers one time step, result-

ing in the extremely high discharging current (depicted in the first subplot

of Fig.5.1).

3. The prediction results of the longer prediction window n are very

sensitive to the SoC and cut-off voltage constraints. As shown in

Fig.5.1 and Fig.5.2, the proposed four indices are sketched to illustrate the

changes in prediction windows, where the predicted peak values are reduced

as the length of the prediction horizon increases. The instantaneous power is

greater over short prediction horizons i.e. n ≤ 5 as illustrated in the second

subplot of Fig.5.2. However, as the gradual prediction window increasing,

the maximal power delivered is reduced distinctively. In addition, as shown

in the first and second subplots of Fig. 5.2, except for the prediction horizon

n = 1, similar patterns are evident for both the peak current and peak

power predictions, where the cut-off voltage is the main constraint cross

the whole discharging phase. The third subplot of Fig.5.2 reveals that if

the length of the prediction window is short, the cut-off voltage as the

major applicable constraint, will dominate the predictions cross the entire

discharging process. While the fourth subplot of Fig.5.2 further details

the SoC constraint is only applicable when the battery is operating at a

relatively lower SoC range (17%) and that the prediction window is longer

than n = 10.

4. For optimal operation, ZNBs are not recommended to operate at

a lower SoC range.

The above observations show that the four indices can provide a reliable and

comprehensive characterisation of the predicted power delivery capability. In ad-

dition, the proposed maximal power prediction scheme can assist with optimal
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battery discharging operations. To further elaborate the adequacy of the four

indices to characterise the power delivery capability at different SoC states, addi-

tional Fig. 5.3 is given to illustrate the prediction results over different prediction

windows. Again, the prediction results confirm the previous observations.

Figure 5.3: Peak power prediction dynamics in 3D view

For short prediction windows, in order to provide the maximum power de-

livery, the predicted peak values are subject to the discharging cut-off voltage

control. As the prediction window increases, the voltage control will give way to

the SoC control, and the SoC threshold starts to dominate the predictions. As

a consequence, the predicted peak power is reduced and the operation moves to

the voltage and SoC control modes. These observations can be interpreted by

the fact that the remaining charges in the battery are gradually drawn out by

the peak discharging current over a long prediction horizon. It is further revealed

that the peak current drops to the normal value for the 20s prediction window.
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Therefore, it is meaningless to adopt longer prediction horizons (> 20s). On the

other hand, the discharging potential decreases significantly as the SoC drops,

which implies that meticulous attention should be paid to the lower SoC range

for the operation safety.

Fig.5.4 presents a zoom-in view at one predicted time instant over the 20s

prediction horizon. By using the proposed moving windows scheme, at each time

instant, 20 predicted discharging current values (IL) will be produced, among

which the average predicted value is regarded as the peak value in the discharg-

ing process. Unlike existing approaches, the battery dynamics are taken into

account in the proposed scheme in predicting the peak power capacity within an

operation window. Another remarkable feature of this method is that constraints

imposed on the state variables are satisfied to maintain safe battery operation.

An interesting observation is drawn from the results is that most of the predicted

values of discharge currents are identical as shown in first subplot which agrees

with the results obtained by other approaches presented in the literature. For

different SoC states (0.86 and 0.17), it is seen inspected that a larger SoC renders

a broader operating potential as revealed by the higher peak values of the four

indices. While for a lower SoC state, the SoC constraint easily affects the battery

operating potentials as shown in the fourth subplot and that all the four indices

are reduced significantly.

Charging Phase

The proposed approach is also applied to the charging process, and the prediction

results are briefly illustrated in Fig.5.5 and 5.6. Similarly, the cut-off voltage pre-

vails in most cases, except for a longer prediction window and larger SoC states.

When the prediction window >= 5, it is apparent that the value of predicted

peak current decreases, resulting in drops in the predicted power. However, as

the prediction horizon further increases, the predicted values are almost similar.

At the beginning of the charging phase, due to lower SoC values, similar to the

discharging phase discussion, the voltage constraints prevail as reflected in all

the predicted values. As the charging proceeds, the effective constraints have
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Figure 5.4: The inside view of each prediction window
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been shifted from the voltage control to both the voltage and SoC controls. On

the other hand, for long prediction windows, the instantaneous charging abilities

are weakened. At the end of charging phase, the SoC control completely replace

the voltage control, as shown in the fourth subplot of Fig.5.6. Therefore, it is

essential to avoid overcharging at the end of the charging phase.
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Figure 5.5: Peak power prediction along the charging process

5.3.2 Discussions on the Current and Flow Rate Con-

straints

Current Constraint

The used materials and the structure of ZNBs are two major limiting factors for

applied current density on the surface of electrodes, thus the magnitude limit of

the imposed current of the battery stack. Existing work reveals that the battery
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Figure 5.6: Peak power prediction in different SoC states in the charging process
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performance is bounded by the nonuniform zinc deposition and the oxygen evo-

lution [49]. These side effects become more serious under higher applied current

densities. Therefore, ZNBs have to be operated at low current densities (be-

low 20mA/cm2 ) [45] in the past, which is not acceptable in the real applications.

Much of the work that has been done so far in the literature mainly focuses on the

development of new materials for the battery, and a continuous charge-discharge

cycle test at 80mA/cm2 operating current density on a new material design shows

that the average coulombic efficiency (CE) stays at 96% [163]. Similar promis-

ing results are also reported in other published work. The latest Ni − 3D Zn

configuration [54; 97] has demonstrated fourfold increase in the applied current

density, and the cost can be significantly reduced. Note that popular materials

in RBFs used in existing batteries, including the one used in this study, are still

not optimally designed. Given these considerations, only approximated current

constraints are imposed in this study, for a bench-marking reference. Once the

accurate constraints are confirmed, it can be readily integrated into Eq.(5.15)

according to the proposed algorithms. The detailed analysis is presented below

for the ZNBs.

In this work, the NiOOH sheets (positive electrode) and the stainless steels

sheets (negative electrode) are stacked in parallel. Then, all the electrodes are ma-

chined into 7cm∗7cm size. If the applied current density is set up as 80mA/cm2,

the loaded current thresholds is then calculated as 80mA/cm2 ∗ 7cm ∗ 7cm ∗ 7 =

27.440A, in which 7 individual cells are stacked in parallel. As illustrated in the

second subplot of Fig.5.7, the predicted peak current is irrelevant to the current

constraints in the charging phase, implying that in the charging phase, other con-

straints prevail over the acceptable bounds for the charging current.

On the other hand, in the discharging phase, the first subplot reveals that

the situation is reversed. With the exception for small SoC ranges (between

0 to 0.2) over longer prediction horizons, other predicted peak current will be

constrained by the material-determined current threshold 27.440A. This implies

that the state-of-the-art electrode materials are though far from the optimum,

which is the main challenge of ZNBs. Nevertheless, even with this limitation,
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when compared with other RFBs, ZNBs still exhibit the highest instantaneous

discharging peak power due to the relatively lower cut-off voltage (0.8V). As new

materials are introduced, the material-determined current threshold 27.440 can

be further relaxed.
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Figure 5.7: Predicted peak current considering material limits

Flow Rate Constraint

The electrolyte in ZNBs will take away the generated heat and moderate the ther-

mal influence on the battery operations. The introduction of the flowing assisted

system also helps to attenuate the dendrite formation [2; 45; 164]. As a conse-

quence, the entire lifespan of ZNBs can meet the acceptable industry requirement.

Therefore, the flow rate has a significant impact on the ZNB operation efficiency.
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To achieve compact zinc deposition, the flowing velocity on the surface of

electrodes should be sufficiently big to achieve steady convection control for the

immigration reaction. The forced convection of the electrolyte close to the work-

ing electrodes will generate a constant thickness of the diffusion layer δN . Two

widely accepted assumptions are taken into the consideration [93]:

* Flow direction. The flow direction is ideally in parallel to the electrode

plates and perpendicular to the diffusion direction of the reactive ion.

* Laminated distribution. The laminar flow of the electrolyte is assumed.

As the presentation of friction, the flow velocity near the electrodes is zero.

While the velocity maintains at the steady velocity u0 far from the electrodes

(> δPr).

Given the above assumptions, for the steady convection control of the reaction,

the thickness of the diffusion layer δN can be formulated as [93]:

δN ≈ D1/3ν1/6y1/2u
−1/2
0 (5.20)

where D, y and ν are the diffusion constant, length of the plate, and viscosity

coefficient of the supporting electrolyte (10Mol KOH + 1Mol ZnO), respec-

tively. Therefore, the maximal tolerant current densities Ilim at a certain flowing

velocity u0 can be derived reversely:

Ilim = nFD
c0

δN
≈ nFD2/3ν−1/6y−1/2u

−1/2
0 c0 (5.21)

where n is relative to the redox reaction for a given amount number of participated

electrons. c0 stands for the time-varying bulk concentration of zinc. F and δPr

represent the Faraday equation, namely the Faraday’s constant and the thickness

of Prandt’s boundary layer, respectively. In a normal charging/discharging cy-

cling, the concentration of zinc will be replenished or consumed with the progress

of the redox reactions. As a consequent, the bulk concentration of zinc is SoC

dependent variable and can be represented on the form:

c0 = ci −
SOC(%)× Cbat(Ah)× 3600

nF × V
(5.22)
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where V is the total volume of the electrolyte, and Cbat is the rated capacity of

the battery. While ci represents the initial zinc concentration.

Theoretically, the applied current densities are bounded by the flow rate and

other inherent aspects as interpreted by Eq.(5.21). In this work, the flow rate

is large enough to eliminate the side influences. Note that in real applications,

due to superbly high concentration of electrolytes applied, the subtle fluctuations

of the concentration caused by the redox reaction is negligible. Throughout the

entire discharging and charging phases, the zinc concentration is varied slightly,

rather stable. Thereby, the magnitude of the limited current densities Ilim is

relative stable during the reactions. Due to Eq.(5.21) and Eq.(5.22), the similar

assumptions have also been applied to the analysis of other RBFs, and in this

work, the current constraints incurred by the flow rate can be ignored in ZNBs.

5.4 Conclusion

This chapter solves an engineering issue through presenting a novel peak power

prediction approach for the Zinc Nickel single flow batteries. The proposed dif-

ferential calculations in Chapter 4 are used for RLS based real-time model identi-

fication to acquire an accurate battery model, thus the uncertainties incurred by

different operating conditions can be addressed in real time. Then an EKF based

SoC estimator is employed to acquire precise estimation which is verified in the

experiments. With these preliminaries, a window-based peak power prediction

framework is proposed which guarantees that the dynamics of current and voltage

across the entire prediction windows are fully taken into the considerations. The

proposed framework is capable of incorporating all the constraints on the current,

voltage, and SoC. Experimental results confirm the effectiveness of the proposed

scheme. Further, four indices are derived to assess the power delivery/absorption

capabilities of ZNBs while operation constraints are guaranteed. The influences

of the used material and flow rate on the peak power predictions are analysed

qualitatively, providing a bench-marking paradigm in the RFBs research.
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VI
BATTERY HEALTH AND

MAINTENANCE

So far, grid-scale Zinc Nickel flow batteries have been tested at both Energy

Institute of the City College of New York and some Chinese companies such as

Zhangjiagang Smart Grid Fanghua Electrical Energy Storage Research Institute

Co. limited. They have claimed either the current efficiency or the energy ef-

ficiency is desirable. Nevertheless, the cyclability of this system is rather poor,

which is hindered by the zinc dendrite build-up and zinc morphology variation

over time. In order to handle the poor cyclability issue, the monitoring and evalu-

ation of battery health are indispensable. A periodic maintenance to recondition

the cell can strip off the whole deposited zinc from the anode by deep discharging

the battery, and then the cell can be operated afresh. In this chapter, following

Chapter 4, the state-of-the-art capacity estimation methods along with a novel

model predictive control scheme based SoC observer are presented to obtain more

accurate capacity estimation online. On the other hand, the induced computing

complexity when applying higher order ECMs has been offset by another intro-

duced OCV observer, thus achieving faster capacity estimation. We have found

that the capacity degradation of zinc-nickel flow cell can be correlated with zinc

deposition characteristics. From this perspective, we first attempt to determine

the reconditioning moment for cell maintenance of ZNBs.
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6.1 Battery Health

6.1 Battery Health

The cell health so-called the State of Health (SoH) is an indicator to represent

the life condition. In general, SoH describes the remaining deliverability of the

specified performance against to a fresh cell. SoH is a long-term, composite index

rather than an absolute measurement that considers many battery factors such

as the remaining acceptance of charges, the growth of internal resistance, the

releasable capacity, terminal voltage distortion, etc. Through the SoH measure-

ment, users can have the basic insights into the left lifetime of the cell. At this

point, SoH can also serve as an indicator to conduct the cells maintenance and

replacement. During the use-time of a battery, its health is getting deteriorated

inevitably due to the changes in internal physics and chemistry. Different kinds

of batteries are thus sensitive to different features. In other words, SoH is a

subjective measurement varied in different battery applications and it cannot be

measured directly like SoC. For example, the cyclability and deliverability play

important roles when it comes to EV. Thereby, the remaining capacity always

appears to come to the limitation firstly. The SoH is thus derived from the com-

parison between current capacity and the rated capacity. On the other hand, for

the heavy load hybrid electric vehicle (HEV), in order to deliver the as largest

as possible specified power, the current flow is much high. Hence even a small

increase of the direct current (DC) resistance will lead to a significant heat gen-

eration, which may lead to disastrous outcomes. The SoH in this scenario needs

to consider the battery resistance growth. In most cases, SoH is calculated from

as ratio between current DC resistance and its initial value.

As mentioned earlier, the upscale of ZNBs has been hindered by the well-

known zinc deposition problem [2; 165; 166]. It is difficult to judge the SoH of a

flow based ZNB, because the morphological variations of zinc depositions lead to

the fluctuations in capacity and drops in life cycle. The reactions happen in zinc

anode should mainly be responsible for the poor cyclability [49; 165]. Zinc depo-

sitions in alkaline media can happen at different pH levels [68]. In low alkalinity

zinc reacts with the electrolyte to form solid zinc hydroxides. These hydroxides

can further alter to zinc oxide, which is highly insoluble. At a higher pH value,
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zinc can dissolve to form zincates, resulting in a form of over-saturated zinc oxide

solution. The latter is favourable, because it reduces the anode potential [2; 68].

But in such a high pH solution, nonuniform deposition of zinc at the anode

limits the cyclability of zinc-nickel battery. Specifically, at high current densi-

ties, zincate tends to form a sponge-like deposition, which can lead to dendrite

formation. If the cell is cycling with such a poor condition, micro shortages will

occur inside of the battery, resulting in lifetime drops tremendously [49; 167; 168].

The problems of dendrite build-up can partially be circumvented by forcing the

flows of electrolyte. The first communication [2; 45] has demonstrated the flow-

ing electrolyte is able to achieve significant improvements of the life cycles [51],

while suppressing both dendrite formation and morphological variation. That is

the main reason why such a kind of flow based ZNB has gained more and more

attentions. However, the capacity of flow based ZNBs have not yet ever stable

during the cycling process. It is interesting to note that the zinc nickel redox flow

cell has the advantage, that in case of sponge-like or dendritic zinc deposition,

the battery can be reconditioned by the so-called “stripping cycles” [169]. After

the strip cycle, the entire deposited zinc will be stripped from the anode by deep

discharging. If all zinc is dissolved, the zinc deposition can be started anew. In

this way, favorable service life is achievable. However, the stripping cycles have

renew the cell capacity. In other words, the SoH may be refreshed to the initial

again [49]. The above processes lead to a difficulty in SoH estimation of ZNBs.

According to the previous research on the zinc reaction, the capacity estimation

can be assumed that is the key element in the health evaluation of ZNBs. On the

other hand, since performing the battery maintenance in time can recondition

the cell health, it is important to determine the reconditioning time to secure the

cell in a good healthy status.

Besides, the battery internal resistance is a crucial feature to the SoH eval-

uation. In general, the gradually increased resistance reflects the degree of the

ageing state and the growth of zinc dendrite. However, as given in Fig.6.1, the

estimation of internal resistance Rs exhibits a consistent trend. Rs starts with

the value of 0.02Ω and maintains around 0.04Ω at the end of discharging. The

increased internal resistance is foreseeable, where the reaction product with poor
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conductance is generated at the end of discharging phase [2]. Whereas, as less as

0.02Ω changes in resistance can be observed during one cycle, this phenomenon

signifies the fact that the health of ZNBs is resistance insensitive. Higher in-

ternal resistance occurs when SoC become lower than 20%, which implies the

optimal working range should be above 20% SoC, in order to improve the oper-

ating efficiency of the ZNBs. As ZNBs are connected in bulk to supply as much

as possible electricity for the grid-based utilization, working ranges of ZNBs are

routinely limited within its optimum. Therefore, the growth of internal resistance

is illegible. In other words, the capacity should be regarded as an important fea-

ture to evaluate the battery health. Hence in the following sections, the capacity

has been selected as the measurement of ZNBs healthy status.
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Figure 6.1: DC Internal resistance (Rs) estimation in pulse tests

6.2 Capacity Estimation

The accurate diagnosis of capacity degradation is indispensable to safety and effi-

ciently manage ZNBs. As stated above, capacity is a reliable index to describe the

SoH of ZNBs rather than others. There are many studies and discussion on how

to evaluate the health status of batteries based on the capacity estimate [124; 133;

130



6.2 Capacity Estimation

170; 171; 172; 173; 174; 175; 176; 177; 178; 179; 180; 181; 182; 183], which can be

roughly categorised as three groups. Model-based methods dominate most of the

corresponding research [124; 133; 170; 171; 172], in which the ECM is employed

to first estimate the SoC and then the capacity can be derived as the inverse of

Colombo counting methods. In this regard, the related preliminaries and detail

work have been described in Section 6.2.4. On the other hand, learning based ap-

proaches have been used to estimate the capacity by features extraction from the

current and voltage profiles [173; 174; 175; 176; 177; 178; 179; 180; 181; 182; 183].

These methods are able to represent the nonlinear relationship between the ex-

tracted features and capacities. For example, in [178], realistic profiles including

the driving schedule, internal resistance, polarization resistance, terminal signals

and voltage variation have been trained by least squares support vector (LSSV)

to gain the capacity estimation. Nevertheless, in order to obtain measurements in

bulk, thousands of cycles are conducted in lithium-ion batteries, which is imprac-

tical for ZNBs operation. Additionally, the growth of dendrite does not possess

the empirically statistical characteristics, which means the terminal signals may

be influenced by the residual zinc depositions to exhibit weak characteristics in

statistics. It is foreseeable that the learning based approaches are unsuitable for

the capacity estimate of ZNBs. The third group is regarded as a fast capacity es-

timation method based on the incremental capacity analysis (ICA) / differential

voltage analysis (DVA). This group has been used to sort the voltage data and

split the SoC into pieces of narrow intervals firstly. And then, different regres-

sion models according to the sorted SoC narrow intervals will give the capacity

estimation in a fast action [179; 180]. The related work has been investigated in

Section 6.2.1, Section 6.2.2, and Section 6.2.3.

In this Chapter, two popular methods have been used for ZNBs capacity es-

timation. One method depends the calculations from the differential voltage and

differential capacity, namely incremental capacity analysis (ICA) and differen-

tial voltage analysis (DVA). The other is on the basis of the real-time battery

modelling and SoC estimation techniques. Followed-on, a novel model predictive

control scheme based observer (MPCO) and a newly developed OCV observer

are used to evaluate and update the cell capacity in real-time.
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6.2.1 Incremental Capacity Analysis (ICA)

The ICA method can be used in both battery degradation identification and the

SoH estimation with less computational cost. In principle, ICA is an ideal tool

to accommodate in different types of batteries by just reading terminal voltages

and capacity [184]. In this regard, the measurements are used directly without

the requirement of a battery model. ICA approach is easy to understand and

thus readily to be implemented in the real-time applications. Incremental Capac-

ity (IC) value can be calculated by differentiating the subtle changes in battery

capacity to the corresponding terminal voltage changes as follows [185]:

dQ

dV
=

∆Q

∆V
=
Qt −Qt−1

Vt − Vt−1

(6.1)

where Qt and Vt stand for the capacity value and terminal voltage at t instant.

ICA is able to be employed in either charging phase or discharging phase. When

applying ICA, different voltage patterns on the voltage curve will be translated

as the electrochemical information [186]. In particular, the existing voltage flat

plateau will be transformed into a couple of identifiable peak/valley points and

illustrated in the newly calculated IC plot [187]. During the cell internal redox

reactions, the flat potential plateau means local coordination of transition metal

ions remains unchanged. Once there is a phase transition or change in oxida-

tion state, potential changes abruptly. For lithium ion batteries, the potential

plateau appears at the point where charging or discharging leads to formation

of a new phase on one of the electrodes. The potential will remain the same

as long as both initial and final phase exist on the electrode. If charging goes

through formation of the non-stoichiometric compound and gradual change of

its composition, the voltage will also gradually change with SoC. Therefore, the

degradation modes and different reaction stages can be easily identified by the

plotted IC curve. In addition, the peak/valley points on the IC curve signify

the on-going ion transportation along with the reaction time scale (SoC), which

means each peak/valley represents a unique electrochemical process taking place

inside the cell [188]. Thereby, the variations of peaks/valleys position and inten-

sity imply the corresponding electrochemical processes occur in advance or are
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postponed, which is closely related to the battery capacity fading and can be used

to identify the degrees of discharging and charging processes [186; 187]. Normally,

after plotting the IC curve, a simple regression model [189] can be established by

the peaks/valleys distribution to fast estimate the capacity at specific SoC stages.

According to the previous research [179; 182; 190; 191] on the differential anal-

ysis, ICA has been demonstrated as an effective tool to fast evaluate the capacity

online. Two stages related capacity fading modes have been found in [190; 191]

though the analysis of IC curve, in which the loss of anode and cathode mate-

rials are the main culprits. In [179], ICA has been used incorporating with the

support vector regression to estimate the battery capacity on-broad through a

partial charging data. The results have revealed the intensity of peaks/valleys

in IC curve can be correlated with the capacity loss. Though ICA is promis-

ing, two main drawbacks of ICA obstruct its implementation. One is that the

requirement of static charging and discharging voltage-capacity profiles [181]. In

order to track of the corresponding electrochemical processes, the loaded current

stress not only should be limited but also the current is always constant, which is

problematic and unrealistic in the most EV/HEV based applications. The other

problem is that the differential analysis is very sensitive to the measurement noise

and trembling [189]. To transfer the voltage-capacity information into IC curve,

the method is intuitive as is applies numerical derivation on the raw data directly.

In this regard, the IC curve will be definitely polluted by noises so that the peak

and valley points may be overwhelmed in the noise spikes.

On the other hand, when operating ZNB, additional trouble has been raised.

As mentioned in Section 1.1.3, the residual zinc depositions on the negative elec-

trodes will lead to capacity fluctuation and unpredictable sudden voltage jumps

as depicted in Fig.6.3(a). Since ZNBs are routinely installed with the renewable

energy sources as the stationary energy storage, the cycling regime is moderate to

satisfy the static charging and discharging requirements. The challenges relating

to noise pollution and voltage jumps remain as the targets of this work. In the

following sections, we thus mainly focus on addressing the smoothing problem
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and eliminating the voltage jumps.

Fig.6.2 and Fig.6.3 take two discharging patterns into discussion, where the

raw voltage-capacity data were collected from normal discharging cycle 16 without

voltage jump issue and abnormal discharging cycle 23 with a sudden voltage jump,

respectively. In order to smooth the IC curve, the moving average (MA) [192] is

used to remove measurement noises from the numerical derivative on the raw data

but preserve the useful information. In this work, the sliding horizon is denoted

as k, where the cases of k = 20, 40, 60, 80 and 100 are compared. It should be

noted that the applied MA is a simple filtering technique and thus the unweighted

mean of the both sides of central data is used to filter out the noises. This func-

tion guarantees that variations in the mean are in line with the variations in the

data rather than being shifted. Afterwards, the median filter (MF) is expected to

offset the intermittent voltage jump influences [193]. Fig.6.2(a) gives an example

of the IC curve achieved directly by the numerical derivative method, where the

time interval ∆ = 5s. The results are foreseeable, the IC curve has been polluted

by the noises largely. It seems only one voltage valley can be observed, but it

is impossible to identify its position due to the noises pollution. Fig.6.2(b) and

Fig.6.3(b) present the smoothed results in different horizons after individually

applying MA and MF. As the length of horizon is increased, the pattern of IC

curve is getting clear. However, the improved smoothing effect may lead to a

deformation of obtained IC curve and thus resulting in false interpretation of fea-

tures on the IC curve. As given in Fig.6.2(b), when the k > 80, the noises have

been limited into acceptable levels. After applying k = 100, a smoother IC curve

is achieved without information loss. Considering the computational cost, when

applying MA filter, k = 100 is appropriate for smoothing IC curve in our case.

On the other hand, in the comparison between Fig.6.2(b) and Fig.6.2(c), MF is

able to attenuate the influence of the low frequency impulse noises on the IC curve.

Whereas, when it comes to the abnormal cycle with a sudden voltage jump,

as illustrated in Fig.6.3, using the horizon k = 100, MA is efficient to handle most

high frequency noises as previous one. In Fig.6.3(c), MF is then introduced on

the sets of pre-filtered data by MA, to yield enhanced smoothing effect. In such
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Figure 6.2: An example of normal discharging pattern: IC discharging curve(s)

of 200Ah pilot-scale ZNBs under current rate of 0.25C with sampling rate of 1s

(a) without applying Moving Average (MA) Smoother (b) after applying aver-

age smoothing methods with different horizons of 20, 40, 60, 80, and 100 (c)

after applying Median Filter (MF) to cancel the influences on measurement error

spikes.
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Figure 6.3: An example of unstable discharging pattern (voltage jump inclusive):

IC discharging curve(s) of 200Ah pilot-scale ZNBs under current rate of 0.25C

with sampling rate of 1s (a) without applying Moving Average (MA) Smoother

(b) after applying average smoothing methods with different horizons of 20, 40,

60, 80, and 100 (c) Median Filter (MF) introduced on the sets of pre-filtered data

with MA to offset measurement error spikes.
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a combination, MF successfully filters out the low frequency intermittent spikes,

generating satisfactory reductions of high frequency noises and low frequency

spikes. Even in the case of k = 20, the combination of MA and MF is able to

improve the curve smoothing effect significantly while preserving all the signifi-

cant features of IC curve. Nevertheless, as shown in Fig.6.3(b) and Fig.6.3(c), the

voltage jumps make the IC curve deformed, where it does not signify the on-going

electrochemical reaction. What’s worse, this flaw cannot be remedied from the

IC curve after applying the combination of MA and MF. In other word, incorrect

characteristics of electrochemical processes may be extracted from the plotted IC

curves, leading to failures in the subsequent capacity estimation. Hence, further

attempts are required to deal with the low frequency intermittent voltage jumps.
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Figure 6.4: Variation of valley positions and intensity under different cycles,

where the numbers are the labels of tested cycles

Fig.6.4 presents the variation of valley positions and intensity according to

the plotted IC curves under different cycles, in the case of k = 80. It is worth to

note that in order to achieve the static cycling patterns, the Galvanostatic cycle

tests are conducted on a pilot-scale 210Ah ZNBs to log the raw voltage-capacity

dataset. During the Galvanostatic cycling, reconditioning is performed per 30

cycles [194]. After the reconditioning, the battery health is regarded anew. It
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can be seen from Fig.6.4, this set of IC curves is polluted seriously by the voltage

jumps occur in abnormal cycles. Thereby, the valley positions are not identifiable

from the IC curves. On the other hand, it seems the depth of valleys are getting

shallow as the number of cycles increases. But the evolution of valley position

changes is hard to be recognised. As a result, the used combination of MA and

MF fails to address the voltage jump issues. The experimental results signify that

the random white noise can be reduced, however, the voltage jump is sustained.

As shown in Fig.6.3(c), the applying MF solely cannot offset the voltage jumps

in the unstable discharging cycles, leading to irregularity in presentation. Hence

the corresponding feature points of voltage valley are difficult to be extracted.

Similar to the functionality of MF, Gaussian Filter (GF) was introduced in [195]

to eliminate the low frequency noises as well. As mentioned before, the discharg-

ing behaviour of ZNBs is not stable resulting in the appearance of voltage jumps

occasionally. Due to the appearance of low frequency voltage jumps, GF has

been used in this work to separate the low frequency variations from the higher

frequency noises. In this way, the smoothing effects are further enhanced to elim-

inate the influences of the low frequency voltage jumps on IC curves.

Denote the length of moving horizon is k. A GF employs the Gaussian distri-

bution expressed with the following wight functions [195]:

G(x) =
1

σ
√

2π
exp(

1(x− µ)2

2σ2
) (6.2)

where µ is the mean value and σ is the standard deviation controls the filter

horizon, which have set as 0 and the k/2, respectively. In principle, µ adjusts

how effective each data in the horizon is. Normally, the value of µ is set to be 0

to serve as the biggest effect on the smoothed updates. σ is a user-defined pa-

rameter to determine smoothing degree. Specifically, a big value of σ will lead to

smoother effect but it may lose features exist in the raw dataset. Also, we present

the cases of k = 20, 40, 60, 80 and 100. Unlike the MA averaging the neighbours

to smooth each data point and playing equal weights in the entire horizon, GF

replaces the data points by a weighted average of neighbours. Hence, the nearest
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Figure 6.5: An example of unstable discharging pattern (voltage jump inclusive):

IC discharging curve(s) of 200Ah pilot-scale ZNBs under current rate of 0.25C

with sampling rate of 1s (a) (b) after applying Gaussian filter (GF) with different

horizons of 20, 40, 60, 80, and 100 on ab/normal discharging cycles, respectively
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data plays a more important role on the average while the distant data does less.

Similar to the implementation of MF, GF is introduced on the sets of pre-

filtered data by MA to provide satisfactory reductions of the variability. However,

as given in Fig.6.5, the results still cannot eliminate the influence of voltage

jumps. In the comparison between Fig.6.3(c) and Fig.6.5(b), the combination of

MA and GF is able to offer enhanced smoothing effect against the combination

of MA and MF. There is no significant improvement of smoothing effect can be

observed when applying longer horizons. Even in the case of k = 20, the noises

can be effectively removed and the features can be well preserved on IC curves.

However, further investigation is required to offset the interference of intermittent

voltage jumps.

6.2.2 Differential Voltage Analysis (DVA)

Though Section 6.2.1 discusses the experimental results of ICA method and

demonstrates the effectiveness of MA, MF and GF, one intractable issue remains

in reducing the influence of low frequency voltage jumps on IC curves. As defined

in Eq.6.1, differential voltage analysis (DVA) approach is derived from the inverse

calculation of ICA, which can be expressed as follows:

dV

dQ
=

∆V

∆Q
=

Vt − Vt−1

Qt −Qt−1

(6.3)

In the comparison of ICA, DV curve refers to the battery capacity rather than

refers to the terminal voltage. In this regard, DVA might be able to overcome the

flaws of voltage profiles such as the intermittently occurred voltage jumps, thus

handling the voltage jumps problem. In [196], the DVA has been employed to

analyse the mechanism of battery capacity fading. The DV curve has successfully

implied that the side reaction taking place on the negative electrodes leads to

the main degradation of battery capacity. Furthermore, the research of [193]

has indicated that, despite cell degradation, the shape of DV curves near the

first peak has been relatively stable, and the position and intensity have been

almost constant. In this work, the procedures of DVA are aligned with ICA

method. Firstly, the raw DV curve is obtained through the numerical derivatives.
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Afterwards, the combination MA and GF method is used to smooth the DV

curves. Herein, the length of horizon is set as 20 to moderate the computational

burden.
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Figure 6.6: Differential voltage curves (dV/dQ) of 200Ah pilot-scale ZNBs under

current rate of 0.25C with sampling rate of 1s

As shown in Fig.6.6, the plotted DV curves are in alignment with the hypoth-

esis. The most of the intermittently occurred voltage jumps have been filtered.

Though the patterns of DV curves maintain almost constant until the three quar-

ters of the entire discharging process, no obvious peaks/valleys can be observed

from the obtained DV curves. Since the applied horizon is selected as short as

20, this phenomenon cannot be referred to a over-smoothing problem. Hence, we

believe the DVA method is inapplicable to ZNBs.

6.2.3 Probability Density Function (PDF) method

According to the previous discussion in Section 6.2.1 and Section 6.2.2, neither

CIA nor DVA can fully circumvent the voltage issues. In order to offset the ef-

fects of the unpredictable upward voltage jumps, the Probability density function

(PDF) based dis/charging data analysis has been introduced in this work. The

PDF method was fist discussed in [197] to evaluate SoH of EV batteries. In

essence, the rationales behind PDF method is equivalent to DVA. Herein, denote
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δV as the voltage interval to discretize probability density function. For instance,

0.01V is the applied discretization interval as given in Figure 6.7. In each inter-

val, the number of observations is then to be counted, and converted to density

by dividing by the total number of observations and interval size.
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Figure 6.7: Demonstration on PDF Method

Then the discretized density function is obtained as illustrated in Figure 6.8.

Through smoothing over the density according to some kernel function, the re-

sultant density can be easily plotted.

In the normal voltage profile, the voltage curve is supposed to be monotonic.

Therefore, in the discretized density calculation, [V, V +∆V ) is considered as the

voltage interval. Assume there are m observations in this interval as follows:

(V1, Q1), . . . , (Vm, Qm)

Because the Galvanostatic cycle test, the discharging and charging current

are both constant, a neat expression is given as:

Q2 −Q1 = Q3 −Q2 = · · · = Qm −Qm−1 = δQ, Qm −Q1 = (m− 1) · δQ
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Denote (V0, Q0) to be the observation just before the observation (V1, Q1). In

the discharge process, the voltage relationship can be of the following form:

V0 ≥ V + ∆V > V1

Q0 = Q1 − δQ

Hence, the discretized density will be calculated as:

fDD(V + ∆V ) =
m

N ·∆V
(6.4)

where N is the total number of observations. As for DVA, the voltage curve is

denoted as function Vi = g(Qi), ∀i = 0, 1, . . . ,m. Assume Q′ = g−1(V +∆V ) and

Q′′ = g−1(V ) such that Q0 ≤ Q′ < Q1 and Qm ≤ Q′′. Then the DVA calculates

the derivative at V + ∆V as:

fDV (V + ∆V ) =
Q′′ −Q′

∆V

If the derivative curve is normalized such that
∫
fDV (V )dV = 1, the following

expressions can be achieved accordingly:
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fnDV (V + ∆V ) =
Q′′ −Q′

(Qmax −Qmin)∆V
=

Q′′ −Q′

N · δQ ·∆V

Recall the constant current in battery cycling, there thus exists (m−1) ·δQ <

Q′′ − Q′ < (m + 1) · δQ. Hence the normalized derivative can be formulated as

follows:

m− 1

N ·∆V
< fnDV (V + ∆V ) <

m+ 1

N ·∆V
(6.5)

Compare the above equation with 6.4, and derive that:

||fDD − fnDV ||∞ <
1

N ·∆V

where || · ||∞ represents the infinity norm. The above analysis discusses the

similarity between PDF method and DVA method.

It was believed that the PDF method can handle the upward voltage jump

while DVA can not. In either CIA or DVA, the voltage curve has to be monotonic

voltage curve. Whereas in the abnormal tests, the discharging voltage is not sta-

ble and the upward voltage jump in the discharge curve means non-monotonic

voltage curve, which messed up the DVA definition. As there might be two dif-

ferent dQ/dV values at the same V , where one is ahead of the jump, and the

other is after the jump. When using the PDF method, we take the advantage

of distribution calculation, which focuses on the distribution of voltage. In other

words, applying the PDF method on jump data is the same as sorting data to

eliminate jumps and then applying the PDF method. The distribution of volt-

age guarantees the same value for both jump data and sorted data. Hence, the

discharging voltage profiles with voltage jump data are not problematic for PDF

method.

In this work, the PDF method is introduced on the sets of pre-filtered data

by MA, to reduce the influence on voltage jumps. It can be seen from Fig.6.9(c),

144



6.2 Capacity Estimation

0 5000 10000 15000Second (s)
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
V

o
lt
a

g
e

 (
V

)
Cycle 23

(a) abnormal voltage jump

0 2000 4000 6000 8000 10000 12000 14000 16000

Time (s)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

T
e
rm

in
a
l 
V

o
lt
a
g
e
 (

V
)

DisCharging

1
2
5
7
10
13
16
19
21
23
25
27
30
32
36
38
40
42
45
48
51
55
58

Voltage Jump

(b) discharging voltage profiles

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Terminal Voltage (V)

0

1

2

3

4

5

6

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

DisCharging Cycle 23 PDF

0.0001

0.0005

0.001

0.005

0.01

(c) after applying the Probability density function (PDF) method

Figure 6.9: An example of unstable discharging pattern (voltage jump inclusive):

IC discharging curve(s) of 200Ah pilot-scale ZNBs under current rate of 0.25C

with sampling rate of 1s (a) (b) a specific cycle with abnormal voltage jump

occurred and discharging voltage profiles (e) Probability density function (PDF)

method with different intervals applied to offset voltage jump.
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the results conform to our anticipation, where all the voltage jumps have been fil-

tered out. The obtained PDF curves are smooth enough among different lengths

of voltage intervals. In addition, as given in Fig.6.10(a), only one peak can be

identified form the bunch of PDF curves, and the peak positions are relatively

fixed corresponding to the early stage of discharging process. More specifically,

the height of peak is getting small with the battery cycling. Once the recondi-

tioning performed, the height of peak (cycle 30) returns back to the initial cycle

(cycle 1) again. But another problem has been raised, when extracting the peak

points from Fig.6.9(c). As shown in Fig.6.10(b), due to such a broad range of

peak positions as long as one quarter of discharging process, the built regression

model cannot well match the extracted peak points. In other words, the each peak

point randomly occurs during the one quarter of discharging process, so that its

distribution might be stochastic bringing difficulty to model. This phenomenon

might be interpreted by intrinsic reaction of flow based ZNBs. As aforementioned

before, the peak/valley points are related to the flat voltage plateau. However,

there may be no significant voltage plateau when cycling the ZNBs. One hypothe-

sis provided by us could be responsible for the above Fig.6.9(c). As the kinetics of

the electrochemical processes are changed due to the applied flowing electrolytes,

which speeds up the reactions for electroplating/electrolytic processes. Therefore,

the suppression factors in the mass transportation have been attenuated. In other

words, despite the voltage jumps, the charging and discharging voltage profiles

are shaped flatness and smoothness in the entire cycling process, as depicted in

Fig.6.9(a) and Fig.6.9(b). The upward/downward voltage steps are unidentifi-

able, leading to the failures of both CIA and DVA in the capacity estimation of

ZNBs.

6.2.4 OCV Observer for Capacity Estimation

The estimation of SoH has been reviewed as another functionality of BMS to

evaluate the battery performance online. As discussed above, the capacity esti-

mation can be regarded as a key index to judge the health state of flow based

ZNB. Compared with the model free methods, i.e. CIA and DVA, the model

based capacity estimate methods have come out much earlier. In this regard, the
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Figure 6.10: PDF discharging profiles of 200Ah pilot-scale ZNBs under current

rate of 0.25C with sampling rate of 1s. Herein, the SoH is defined as the ratio

of releasable capacity to the rated capacity. (a) Variation of peak positions and

intensities under different cycles (b) the battery SoH as function of the position

of peaks.
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capacity estimation can be derived from the accurate estimate of SoC. For exam-

ple, in [198], an online method is proposed for SoH estimation of valve-regulated

lead acid (VRLA) batteries. It combines the SoC estimation using the EKF and

a neural-network battery model with the correlation analysis between SoC and

OCV using fuzzy logic and RLS method. In [121], a co-estimation scheme of SoC,

SoH, and state of function (SoF) is proposed for lithium-ion batteries, where SoC

estimation is achieved using EKF, while battery parameters related to the SoH

and SoF are identified online through RLS method. Besides, coulomb counting

method [199; 200] has been adapted widely to calculate the released charges for

capacity estimation. However, unlike the model based SoC estimator using a

close loop to update its outputs, the calculated capacity relays on an open loop

framework, which is highly conditional on SoC accuracy. Though overwhelming

studies have been conducted on the capacity estimation based on different battery

types, two issues still remain. One is the accuracy of capacity estimate. Since

the capacity estimation is derived from SoC values, many aspects during the cal-

culation and measurement processes may affect the estimate precision. A basic

architecture of capacity estimation can be summarised as: (S1) model identifica-

tion; (S2) SoC estimation; (S3) capacity estimation. Therefore, errors can result

from many areas. In order to yield accurate capacity estimation, the errors from

measurements, discretization process, and parameters identification.etc. have to

be compensated by the SoC estimator. On the other hand, simplification of ca-

pacity estimate architecture results in reducing computing burden to save the

memories of BMS chips is another topic in research. Additionally, few progresses

has been achieved in the literature to estimate the ZNBs capacity. The zinc den-

drites build-up make the design of capacity estimator complex, which requires

the implemented SoC estimator exhibiting a good robustness to reject the inter-

mittent error spikes and disturbances. Meantime, the computing complexity is

of the subject to the limitation of online implementations.

In this section, as an extension of Section 4.2.1, the proposed OCV observer

based SoC estimate method can serve for the followed-on capacity estimation.

Particularly, when in the cases of accuracy demanding, higher order ECM are

used to model the ZNBs electric dynamics. At this point, the proposed OCV
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observer can further attenuate the computational burden and limit the computing

time cost. Revisiting Eq.(5.5), the capacity can be interpreted by the ratio of the

accumulated coulomb count to the SoC change within a certain period of time:

Q̂ =
η
∫ tβ
tα
ILdt

ˆSoCtβ − ˆSoCtα

(6.6)

where tα and tβ are the two pre-defined time instants, and the coulombic ef-

ficiency η is set as 100% for simplification. Note that the robustness of SoC

estimations ˆSoCtα and ˆSoCtβ , is the prerequisite to accurate capacity estimate.

A longer time interval may efficiently make SoC estimate converge and filter out

short-term temporal influences from other factors such as measurement noises,

ambient temperature fluctuations, SoC estimation flaws, etc. ˆSoCtα and ˆSoCtβ

are obtained by the EKF algorithm, for which the system is specified in Eq.(4.46).

Analysis of Capacity Estimation

When applying the OCV observer based SoC estimation method under galvano-

static cycle testing regime as outlined in Section 3.2.3 and illustrated in Fig.3.2,

the capacity can be thus obtained from Eq.(6.6). It should be noted that in order

to achieve accurate capacity estimation, herein, the second-order ECM has been

employed to repreduce the ZNBs electrical characteristics. Fig.6.12 presents the

a representative result of galvanostatic cycle tests. The discharging capacity is

not constant but rather resides around the nominal value. Slight increases of

the discharging capacity are observed since the active materials have been fully

activated. However, after 20 cycles, the accumulated zinc depositions incur an

apparent capacity drops, and 10% capacity degeneration can be detected sud-

denly. Simultaneously, the discharging curves as shown in Fig.3.2 are becoming

steep dramatically. This is followed by the observations that the ZNB will lose

its discharging capacity in the forthcoming circles quickly. This phenomenon

is also reported in [49], which implies that the reconditioning operation is pre-

ferred. In Fig.6.12, the estimated capacities match the reference values very well,

which demonstrates that the proposed approach is suitable for the SoH monitor-

ing, capacity correction, and the indicator for the reconditioning maintenance.

According to Eq.(5.5), a poorly estimated capacity value will lead to a serious

149



6.2 Capacity Estimation

0 5 10 15 20 25 30

Time (h)

0

0.5

1

S
o
C

Galvanostatic Cycle Tests

Non-adaptive Method

Reference SoC

Adaptive Method

0 5 10 15 20 25 30Time (h)

-0.02

0

0.02

0.04

0.06

0.08

S
o
C

 E
r
r
o
r

Non-adaptive Method

Adaptive Method

Figure 6.11: SoC estimation in galvanostatic cycle tests

0 5 10 15 20 25
Cycle

3.5

3.55

3.6

3.65

3.7

3.75

3.8

3.85

3.9

3.95

C
a
p
a
c
it
y
 (

A
h
)

Galvanostatic Cycle Tests

Reference Capacity

Estimated Capacity

X: 24

Y: 3.485

Figure 6.12: Capacity change in galvanostatic cycle tests

150



6.2 Capacity Estimation

deviation of the SoC estimation. In this regard, the capacity is better to be eval-

uated and updated after each cycle to ensure the accurate SoC estimate, namely

adaptive capacity estimation. In this work, the adaptive capacity estimation by

the proposed approach is compared with a non-adaptive method as displayed in

Fig. 6.11. The non-adaptive method exhibits error-prone SOC estimations re-

sulting from the interference of incorrect capacity estimations. Oppositely, the

capacity updates are incorporated into the SoC estimation process, resulting in

the SOC estimation error bounds being within 2% range. The results thus con-

firm the effectiveness and efficacy of the proposed method. On the other hand, in

terms of the computing cost in time, Table 4.3 lists the entire computation time

for the test-runs on traditional RLS-EKF using the first/second order ECM, as

well as on the proposed method using OCV observer based second-order ECM.

Although the use of the second-order ECM has raised the computational cost

in RLS regression, the introduced OCV observer has reduced the computational

cost in the SoC estimation due to the dimension reduction. According to the

comparisons in Table 4.3, when applying the proposed methods, the entire time

cost relating to SoC and capacity estimation, is even less than solely using the

first order ECM. However, due to the implementation of higher order ECM, the

accuracy of capacity estimation has been secured as the comparisons in Fig.6.12

without any compromised resulting from the dimension reduction. The proposed

OCV observer based capacity estimation approach is thus readily achievable on

board.

6.2.5 MPC Observer for Capacity Estimation

According to Eq.6.6, the developed MPCO approach in Section 4.2.2, provides

another framework using the multi-windows method to improve the accuracy of

the SoC estimation. Followed-on, the capacity estimate has been thus benefited

by the improved SoC estimation. Similar to the above discussion, the time in-

tervals should be set sufficiently large to make SoC estimate converge. In this

attempt, tα and tβ are prescribed as the 100 sample points after the start-up and

100 sample points ahead of the end-point, respectively.
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Capacity estimation and effects of windows sizes

A major objective of the proposed MPCO is to estimate capacity dynamically.

The proposed MPCO is used for the SoC estimation over the galvanostatic tests

as depicted in Fig.3.2. In this work, in order to obtain a robust estimation of

capacity, different horizon window of the state variable are tested. Furthermore,

the effects of window size are discussed.

Fig.6.13(a) concludes the resultant SoC estimates over 15 discharging cycles.

Large error spikes only occur at the starting stage of each discharging cycle, due to

the intentional −20% SoC initialization error. However, all the applied methods

attenuate the initial errors and converge quickly. Through comparison with EKF

in Fig.6.13, MPCO has remarkably outperformed in the SoC estimation. In this

regard, as the number of cycling increases, the SoC estimations provided by EKF

are going far from the CC references, where larger discrepancies can be observed

after 10 cycles. These phenomena can be explained from two aspects. Firstly,

even single window MPCO outperforms EKF due to the constraints in SoC es-

timation. At the start of each cycle, an intentional SoC initialization error is

considered. The SoC constraints help in faster convergence and prevent underes-

timation (below 0) at the end of each cycle. While EKF is tend to underestimate

SoC when approaching later cycles (from 11 to 15) due to weak traceability of

battery capacities. The underestimation of SoC then results in poorer capac-

ity estimates as detailed in Fig.6.13(b). With the constraints in the proposed

MPCO, this cross-interference can be more manageable. Secondly, as illustrated

in Fig.6.13(b), longer window outperforms in the convergence speed of the capac-

ity estimation. For instance, when the window length increases to 6, the capacity

estimate converges to the reference value quickly, bringing the estimation error

down to tiny values, merely after 1 cycle. As interpreted by Eq.(4.60), in the

process of solving objective function, more previous measurements are involved

in the optimization when longer windows are used. Consequently, the past SoC

estimates are updated as well, becoming closer to the SoC-OCV table. Except

for the faster convergence speed, the performance of these counterparts (window

lengths from 1 to 6) is comparable and outperforms traditional EKF, which is
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(a) SoC estimation under different windows
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Figure 6.13: Capacity estimation and effects of windows sizes during the galvano-

static cycling tests
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foreseeable as explained in previous context. Throughout the entire 15 discharg-

ing cycles, the estimation errors of the capacity are subtle, only within ±2%.

According to Eq.(6.6), the accurate estimation of SoC thus reinforces the pre-

cision of capacity estimates accordingly. The simulation results further verify

the effectiveness of the proposed MPCO method as given in Fig.6.13. Therefore,

the proposed MPCO is able to reflect the dynamics of the practical capacity,

with an outperforming performance compared with traditional EKF model based

estimation no matter the length of the window used.

6.3 Battery Maintenance

(a) First test sample (b) Second test sample

Figure 6.14: Zinc electrode degradation and deformation after several cycles

A significant challenge of the viability of commercial flow based ZNBs is the

well-known phenomena of dendrite formation and zinc morphology variation over

time. In specific, the morphologies of the build-up zinc depositions on the zinc
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electrodes will conspicuously affect the cell capacity when cycling ZNBs. Undis-

solved zinc depositions are the culprits to the capacity degradation and poor cy-

clability. Researches have suggested that the implementation of varying flow rates

and periodic inversion of the electrolyte could extend the service life. Though ap-

plying electrolyte flow to traditional ZNBs can significantly prolong the lifetime

by reducing both dendrite formation and morphological variation, a periodic bat-

tery maintenance has to be conducted to strip all the residual zinc depositions

off from the electrodes then making the battery anew. As discussed above, the

periodic reconditioning operation is the most effective approach to prevent the

ZNBs from the internal short-circuit and capacity degradation [45; 49]. Sub-

stantial investigations on bench-scale and grid-scale ZNBs, have indicated that a

periodic reconditioning operation (every 15/20 cycles) [49], i.e. discharging the

ZNBs in a trickle current profile, would effectively reactivate the battery. By

doing so, even after 3000+ cycles, ZNBs are still performing well [51]. However,

little contribution has been made on identifying the reconditioning moment in

the literature. In practice, frequent or premature recondition maintenance will

lead to a waste of energy in the storage system, because the process of trickle

discharging can last for more than a day. Additionally, if ZNBs are cycling under

the poor conditions, the chain reactions to damage the cell housing and electrodes

catastrophically will be progressively provoked. As shown in the Fig.6.14(a) and

Fig.6.14(b), the preliminary studies signify that in poor operating conditions,

ZNBs are of the subject to two main issues, which are anodes self-corrosion and

cathodes transformation. The latter one specifically refers to active materials

stripping and swelling. As a result, the effective reaction areas of electrode are

not stable leading to the variations in capacity, and it will then deteriorate the

accuracy of SoC estimate.

In this work, the estimated capacity has been employed as an indicator to

determine the time for the battery maintenance. The capacity gauging is ex-

ecuted followed by the SoC estimation, while the current capacity information

will be calibrated online. If the estimated capacity suddenly drops to 90% of the

nominal capacity, the stripping circle will be executed to recondition the ZNBs.

In this regard, two advanced ECM model-based online capacity estimation and
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updates methods i.e. OCV observer and MPCO, have been well-introduced in

the above Section 6.2.5 and Section 6.2.4. The moment for reconditioning oper-

ation is readily reflected by the accurate capacity estimation, which will de-risk

the over-cycling issue of ZNBs and extend the lifespan to the full extent in a real

application. Fig.6.13, Fig.6.11 and Fig.6.12 further confirm the efficacy of the pro-

posed assumptions. Due to the high accuracy of the estimation, the estimated

capacity is an appropriate indicator to determine the time of reconditioning.

6.4 Conclusion

Zinc-nickel single flow batteries (ZNBs) have been demonstrated as a promising

alternative to lithium batteries for next generation grid-tied energy storage. How-

ever, due to the dendritic growth, the working behaviours of ZNBs are not sta-

ble, particular in capacity fluctuations and voltage jumps, when cycling the cells.

Therefore, the accurate capacity estimation is important but intractable. In this

chapter, two electrical features including the growth of cell DC resistance and cell

capacity degradation, which both affect the health status of ZNBs, are compared.

Because ZNBs cycling performance is more sensitive to the capacity variations

over time, the estimated capacity value has been chosen as the health index to

judge the SoH of flow cell. ICA and DVA methods are reviewed comprehensively

in this work. As the highly promising tools in battery capacity estimation, both

ICA and DVA approaches are model free and straightforward to be implemented.

Whereas, due to the ZNBs intrinsic electrochemical process taking place over the

redox reactions, neither ICA nor DVA is capable of yielding an accurate capacity

estimation under the static cycling scenario. On the other hand, although longer

lifespan can be obtained by the periodic reconditioning maintenance according

to the existing research, there is no mature method to identify the moment of

reconditioning. In order to overcome the voltage excursions occurred during cell

abnormal cycling, underpinned by the already proposed battery modelling and

state estimation techniques presented in Chapter 4, the ECM model-based online

battery identification technique has been employed in this work. Two methods

are discussed: OCV based observer secures the efficient computing cost when
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using higher order ECM, in which the higher order ECM guarantees the accu-

racy of battery modelling and SoC estimation. In addition, MPC is a popular

optimization paradigm in the process control. By incorporating with the merits

of MPC, a novel MPCO has been developed for the working conditions monitor-

ing and capacity estimation. Strong evidence from substantial experiments and

simulations manifests the convergence, robustness, effectiveness and generality of

the proposed MPCO methods. The competitiveness is demonstrated by the ana-

lytical comparisons against transitional model based EKF estimator. At last, the

capacity estimation is regarded as an indicator to judge the moment of recondi-

tioning. If the estimated capacity loss drops more than 10% of the rated capacity,

ZNBs should stop from the current cycling to conduct the battery maintenance.
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VII
CONCLUSION AND FUTURE WORK

The Zinc Nickel Single Flow Battery (ZNB) distinguishes itself from other Re-

dox Flow Batteries (RFBs) for its outperforming performance, competitively low

cost and environmental impact, and simplicity in structure design. Substantive

researches have been conducted from the electrochemical and material aspects,

which has manifested a brilliant prospect of Zinc Nickel single flow batteries.

However, related research from the engineering aspects has not been touched in

particular for battery modelling, state estimations, power deliverability and bat-

tery health management. This thesis presents the original work on Zinc Nickel

flow battery modelling and management.
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7.1 Summaries and Main Contributions

This thesis have studied the battery management system for zinc nickel single flow

batteries (ZNBs), encompassing the state-of-the-art techniques in ZNBs battery

modelling, state of charge estimation, battery health judgement, remaining ca-

pacity estimation, peak power prediction and battery maintenance management.

On the other hand, valuable guidance to the peers in terms of the cell construc-

tion and testing design has been provided. The contributions of this thesis are

summarized as follows:

� A new heuristic optimization method (TLFBO) has been pro-

posed.

In order to identify the nonlinear parameters in the ANN-based RBF bat-

tery model, the teaching-learning feedback based optimization (TLFBO)

method has been proposed to improve the performance of traditional teaching-

learning based optimization (TLBO) method. A new learning phase, namely

feedback learning is employed to guarantee the convergence. In this regard,

the computing cost is reduced while maintaining high modelling accuracy.

� The differential operations have been introduced into the ECM

based online battery modelling.

According to the experimental observations, ZNB is a time-varying slow

system. Therefore, the subtle variations of open-circuit voltage are negli-

gible. In this thesis, the differential operation is applied to the terminal

voltage equations to eliminate the unknown OCV terms. In this way, the

ECM can be reformulated in a regression equation, where the model inputs

are instantaneous currents and terminal voltages, and the model outputs

are the identified parameters. These parameters are directly used in the

subsequent OCV observer construction and state estimation.

� An new OCV observer is developed.
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The novelty of the proposed observer is two-fold. The first is utilisation of

differential operation in RLS. When comparing with other method, the pro-

posed differential operation is more stable for non-stationary data, in which

case the traditional method would fail to converge. The second is from the

observer-EKF combined system. The traditional SoC estimators directly

estimate VOC as one of the states in RLS. However, it may suffer greatly

due to inconsistent data. In the proposed method, the estimate to VOC

comes from the comparison of two OCV sources: SoC-OCV table and OCV

observer. Integrated into the update step in EKF, the novel observer can

thus take the advantage of filters and lead to more robust results. For an

instance, in this work, a second-order ECM is applied to achieve more accu-

rate modelling of the battery dynamics. Then an improved OCV observer

is incorporated with the higher order ECM to solve the arisen complexity

issues. Further, the model identification process is separated from the state

estimation. The proposed OCV observer in a recursive format allows a sim-

pler filter design, leading to reduced computational burden and improved

performance.

� A novel framework of the SoC observer is introduced by the in-

spiration of model predictive control (MPC), namely, model pre-

dictive control scheme based observer (MPCO).

There are two major advantages of the proposed SoC observer. Firstly,

based on the inherent electrochemical knowledge, state constraints are in-

corporated into the estimation process, which brings more robust estimates.

Secondly, an attempt in multi-window framework has demonstrated better

performance in capacity estimation. In this way, the developed MPCO is

able to provide more accurate SoC and capacity estimate. The resultant

experiments and simulations have verified the convergence, effectiveness,

and the generality of the proposed MPCO approach. Additionally, the re-

lationships among the state-of-the-art SoC estimators have been discussed

briefly in this work.

160



7.1 Summaries and Main Contributions

� A novel peak power prediction method is developed based on

rolling prediction horizon scheme.

In this thesis, a novel framework for ZNBs peak power prediction has been

described. The RLS based real-time model identification process is first

introduced to acquire an accurate battery model, thus the uncertainties

incurred by different operating conditions can be addressed in real time.

Then an EKF based SoC estimator is employed to acquire precise estima-

tions which is confirmed in the experiments. With these preliminaries, a

window-based peak power prediction framework is proposed which guaran-

tees that the dynamics of current and voltage across the entire prediction

windows are taken into the considerations. The proposed framework is ca-

pable of incorporating all the constraints on the current, voltage, and SoC.

In addition, four indices are proposed to capture the characteristics of the

peak power capability over length-varying prediction windows. Finally, the

consequent impact of the electrode material and applied flow rate on peak

power deliverability are analysed qualitatively.

� A comprehensive discussion in terms of SoH monitoring, capacity

estimations, battery maintenance has been provided.

In this thesis, two health factors of ZNBs including the growth of cell DC

resistance and cell capacity degradation are compared. Because ZNBs cy-

cling characteristics is more sensitive to the capacity variations over time,

the estimated capacity value has been chosen as the health index to judge

the SoH of ZNBs flow battery.

Followed on, two effective capacity estimation tools, i.e., ICA and DVA,

are then reviewed comprehensively, which are favourable with advantages

in model-free and straightforward to be implemented. Whereas, due to the

ZNBs intrinsic electrochemical process taking place over the redox reaction,

neither ICA nor DVA is capable of providing an accurate capacity estima-

tion under the scenario of ZNBs cycling. The corresponding rationales
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behind the failures of ICA/DVA are given resorting to a related discussion

and resultant experiments.

On the other hand, although longer lifespan can be obtained by the peri-

odic reconditioning maintenance according to the existing research, there

is no mature method to identify the moment of reconditioning. In order to

overcome the voltage jumps occur in the cell cycling, underpinned by the

proposed battery modelling and state estimation approaches in this thesis,

the ECM based online battery identification technique has been employed

in this work to provide capacity estimation and keep capacity updated. The

two main contributions are: (1) OCV based observer offset the extra com-

putational cost incurred by introducing a higher order ECM, in which the

higher order ECM employed guarantees the modelling accuracy. (2) The

novel MPCO has been used to yield more accurate capacity estimation.

MPCO calculates the optimal gain over the multi-window decision horizon

rather than using the single window knowledge at instant time. Hence, the

proposed MPCO is capable of handling errors not only from measurements,

modelling, and discretization, but also from the time-varying parameters

identified in RLS. In addition, MPCO can further smooth the disturbance

from a sudden measurement fault. Thereby, the proposed MPCO has sig-

nificantly increased the accuracy of the capacity estimation.

At the end, a comparative study on both adaptive and non-adaptive SoC/SoH

estimation has been conducted, and the experimental results have confirmed

the superiority of the adaptive method. Underpinned by the accurate es-

timation of the capacity degradation, this thesis employs a capacity-based

indicator to determine the time of reconditioning maintenance. The pro-

posed method can thus determine the moment for battery maintenance. At

this point, the cell utilization should be increased significantly. Moreover,

the proposed method may effectively extend the service life of ZNBs due

to the accurate identification of the reconditioning time, while presenting a

highly promising solution for the real applications.
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7.2 Further Work

In this thesis, key elements in building an advanced battery management sys-

tems for ZNBs have been discussed. For ZNBs, the electrolyte is continuously

circulated by the external pumping system. Since the pumps and relative piping

systems have been installed routinely nearby the cell stacks, in principle, it will

not introduce any significant logistical problems. However, according to the pre-

vious investigation, a flowing electrolyte is able to suppress the dendrite build-up

and force the dendrite growths toward one direction, thus prolonging the service

life of ZNBs. It is thus reasonable to infer that the benefits of flowing electrolyte

likely reside primarily during the charging process. Therefore, the discharging

process may require a new protocol. Whereby flow is only needed during the

charging process, but then eliminated in the following discharging process. At

this point, the pump and the corresponding flow apparatuses can be released from

the entire procedure.

As a result, an interesting and portable ZNBs system may be proposed then,

thus allowing for a broad array of potential applications in the future. In other

words, the new ZNBs will only be connected to the pump for electrolyte circu-

lation when charging it. And then, this system can be discharged pump-free in

any environment and condition to provide electrical power. According to this

assumption, more efforts need to be conducted such as the focuses to investigate

the effects of flow-free discharging protocols on the cell cycling characteristics, to

set up the new discharging protocols to protect the cell when discharging under

a flow-free mode, and to determine the new battery maintenance regimens. An

extension to this interesting hypothesis, such a simplified system can be used for

a specified transportation system to lower the capital cost ultimately. In this

regard, a more comprehensive battery management system is indispensable, in

order to achieve safe operation.
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