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Abstract

The notion of a symplectic groupoid first arose as an apparatus to solve
the quantization problem for Poisson manifolds. It is well known that not
every Poisson manifold can be globally realised by a symplectic groupoid.
A key motivation for this thesis was Lu and Weinstein’s construction of
a (global) symplectic double groupoid for an arbitrary Poisson Lie group.
We develop an extensive exposition of their results, and analyse some of
the possible extensions of their construction. In particular, we produce a
symplectic double groupoid for any pair of dual Poisson groupoids where
the underlying Lie groupoid structures are of trivial type. Alongside these
ideas, we also study the actions of double Lie structures. A detailed
account of the actions of double Lie groupoids is given, and notions for the
actions of LA-groupoids are defined. As an application of these double
actions, we consider an alternative approach to Xu’s study of Poisson
reduced spaces for actions of a symplectic groupoid. This approach is
then extended to consider the Poisson reduced spaces for more general
actions of Poisson groupoids.
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Introduction

A brief history of the subject

Lie group theory was initially developed as the study of continuous symmetries of
mathematical objects. From this viewpoint, the natural extension of Lie groups are
Lie groupoids, which arise in the study of symmetric properties of bundle struc-
tures, and more complicated forms of symmetry. A groupoid can be thought of as a
‘many-object’ generalisation of a group. The study of groupoids was first initiated by
Brandt [5], although he defined what are now referred to as transitive groupoids. The
substantial scope of mathematics in which the usage of groupoids appears is often un-
derstated. Groupoids have arisen in algebraic geometry, as a means to study moduli
spaces; in algebraic topology, whilst considering fundamental groups; and in analysis,
to handle ergodic actions of groups.1 Within differential geometry, the introduction of
Lie groupoids can be traced back to C. Ehresmann [20]. His work was largely focused
on studying categories with extra structure as a means to unify different aspects of
mathematics.2

The development of a Lie theory for Lie groupoids that generalises the relation be-
tween Lie groups and Lie algebras was first outlined by J. Pradines in a series of papers
[55, 56, 57, 58]. The proposed concept of a Lie algebroid provided a ‘many-object’
generalisation of a Lie algebra that proved fundamental in establishing the Lie theory
for Lie groupoids. The construction of a Lie algebroid for a Lie groupoid follows in
a similar fashion to the construction of a Lie algebra for a Lie group. However, not
every Lie algebroid is integrable, so one does not have an analogue of Lie’s Third
Theorem. The first example of a (transitive) Lie algebroid which is not the Lie alg-
ebroid of any Lie groupoid was discovered by Almeida and Molino [3]. Obstructions
to the integrability of transitive Lie algebroids were first described by Mackenzie in
the monograph [42]. Over a decade later, obstructions to the integrability of arbitrary
Lie algebroids were introduced by Crainic and Fernandes [13].

The emergence of the Lie theory of Lie groupoids in Poisson geometry began with
the introduction of symplectic groupoids by Weinstein [62, 12]. They were also
discovered independently by Karasev [29], and later by Zakrzewski [68, 69]. The
question of whether every Poisson manifold admits a symplectic realisation was the
chief motivation. Briefly, a symplectic realisation of a Poisson manifold P is a Poisson
map φ : Σ→ P in which Σ is a symplectic manifold, and such that φ is a surjective sub-
mersion. A key observation of the Poisson bracket of a Poisson manifold P is that it
gives rise to a Lie algebroid structure on the cotangent bundle T ∗P . Moreover, when

1Brown [6] and Weinstein [64] give detailed surveys of the prevalence of groupoids within mathe-
matics.

2A collection of his works with commentaries provided by A. Ehresmann can be found in [22].
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viii INTRODUCTION

this Lie algebroid T ∗P is integrable, one gets a symplectic groupoid whose target
projection provides a symplectic realisation of P . In situations where the cotangent
bundle cannot be integrated, one only gets a local symplectic groupoid; however,
Weinstein constructs a gluing argument that still produces a symplectic realisation of
P [61, 12]. The same process was described by Karasev [29]. Other approaches were
later provided by Cattaneo and Felder [10, 9], and Crainic and Fernandes [14, 15].
More recently, a direct global proof of the existence of a symplectic realisation was
produced by Crainic and Mǎrcuţ [16].

Another vibrant topic of interest within Poisson geometry, which appeared during the
late twentieth century, was that of Poisson Lie groups. In short, they are Lie groups
with a Poisson structure such that the group multiplication is a Poisson map. They
can be thought of as the classical limit of quantum groups. Poisson Lie groups were
introduced by Drinfel’d [18, 19], and were well studied by Semenov-Tian-Shansky
[59] and Lu and Weinstein [40].3 Their infinitesimal counterparts are Lie bialgebras.
Drinfel’d also described the correspondence between Poisson Lie groups and Lie bi-
algebras.4 In the late 1980s, Lu and Weinstein [39, 37] showed that every Poisson
Lie group G has a (global) symplectic groupoid Σ. Moreover, they showed that Σ
also has a symplectic groupoid structure with base the dual Poisson Lie group G∗,
and that this gives Σ the structure of a symplectic double groupoid. Mackenzie later
showed, more generally, that the side groupoids of any symplectic double groupoid
are dual Poisson groupoids [44].

A Poisson groupoid was another concept introduced by Weinstein [63] that unified
the notions of a symplectic groupoid and a Poisson Lie group. Mackenzie and Xu
were the first to uncover the infinitesimal analogues of Poisson groupoids – the so
called Lie bialgebroids [49]. The standard formulation of Lie bialgebroids owes much
to Y. Kosmann-Schwarzbach [30]. Mackenzie and Xu also later went on to prove the
integrability of Lie bialgebroids [50].

For extensive details and references on the subject, we recommend the books of:
Mackenzie [47]; Cannas da Silva and Weinstein [8]; Laurent-Gengoux, Pichereau and
Vanhaecke [33]; Abraham and Marsden [1]; Vaisman [60]; Libermann and Marle [36];
Ortega and Ratiu [54]; McDuff and Salamon [51]; and Dufour and Zung [28].

An outline of the thesis

The thesis begins with a detailed overview of the theory of Lie groupoids and Lie
algebroids. Within the categories of these objects, we give the relevant notions for
morphisms, sub-objects and actions. Much of the material in the opening sections
follows a similar formulation of the theory to that given in the comprehensive book
of Mackenzie [47]. Our first chapter finishes with an introduction to double Lie
structures. The notions of double Lie groupoids, VB-groupoids, and LA-groupoids are
defined. We introduce the concept of a weak double Lie groupoid, which relaxes the
usual surjectivity condition on the double source map, but helps unify the treatment
of symplectic double groupoids within the literature. A detailed account of the cores
of these double structures is also given.

The second chapter reviews the basics of Poisson geometry. The account we give

3Further references can be found in the book of Chari and Pressley [11].
4A thorough review of the theory of Lie bialgebras and Poisson Lie groups is given by Y. Kosmann-

Schwarzbach [31] (see also [32]).
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can be divided into two parts, the first of which gives a standard approach to the
subject. Beyond the initial definitions, we introduce Poisson Lie groups and their Lie
bialgebras, and revise the properties of coisotropic submanifolds. The second half of
the chapter focuses on the relationship that Lie groupoids and Lie algebroids have
with Poisson Geometry. We begin by showing how every Poisson manifold gives rise
to a Lie algebroid structure on its cotangent bundle. Later the crucial concept of a
Poisson groupoid is introduced, and we show how it simultaneously generalises the
notions of a Poisson Lie group and a symplectic groupoid. We further show how
every Poisson groupoid induces a Lie algebroid structure on the dual bundle of its
Lie algebroid, and discuss the notion of duality. The chapter ends with a discourse
on the role of double Lie structures within the Poisson and symplectic realms.

In the third chapter, we discuss Lu and Weinstein’s construction of a symplectic
double groupoid for a Poisson Lie group. We start with an analysis of the relations
between a Poisson Lie group G, its dual G∗, and the corresponding Drinfel’d double
Lie group. After this, we introduce two important Poisson structures on the Drinfel’d
double Lie group, and describe their connection with the Poisson structures on the
original Poisson Lie group and its dual. We then show how this gives rise to Poisson
structures on the product manifolds G×G∗ and G∗×G, and to a symplectic structure
on a specific pullback manifold Σ. In the second half of the chapter, we show that
Σ has the structure of a symplectic double groupoid with side groupoids given by G
and G∗.

In the fourth chapter, we discuss possible extensions of Lu and Weinstein’s construc-
tion. We introduce the notion of a Lie groupoid triple which generalises the concept
of a double Lie group given in [40]. We give two constructions of weak double Lie
groupoids which extend Lu and Weinstein’s double groupoid. Then we go on to show
that in the case of a pair of dual Poisson groupoids which are trivial Lie groupoids,
one of these constructions gives rise to a symplectic double groupoid.

In the fifth and final chapter, we study the actions of double Lie structures. We first
review the notion of an action of a double Lie groupoid given by Brown and Mackenzie
[7]. Then we proceed to introduce two concepts of action for LA-groupoids. In
addition, we show that an action of a double Lie groupoid gives rise to both types
of action for an LA-groupoid. In the final section, we discuss an application of
these actions within Poisson geometry. We consider a construction of a symplectic
groupoid for the Poisson reduced space of a free and proper Poisson groupoid action
of a symplectic groupoid, given by Xu [67]. We show that there is an underlying
action of a double Lie groupoid arising here. We then show that in the more general
case of an arbitrary free and proper Poisson groupoid action, there is an underlying
action of an LA-groupoid.
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Chapter 1

Lie groupoids, Lie algebroids,
and double structures

This first chapter is concerned with establishing the general theory of Lie groupoids,
Lie algebroids, and double Lie structures. The opening sections on Lie groupoids and
Lie algebroids review much of the theory detailed in [47, 27]. The final section on
double Lie structures follows many of the same conventions as laid out in [43, 45].

§ 1.1 Lie groupoid theory

We begin by introducing the concept of a Lie groupoid which provides a ‘many-
object’ generalisation of a Lie group. We then extend the notions of Lie group homo-
morphisms, Lie subgroups, and Lie group actions to morphisms of Lie groupoids, Lie
subgroupoids, and Lie groupoid actions, respectively. We present many of the tools
and key examples needed for later sections.

1.1.1 Lie groupoids

Let us first define the main objects of our study – groupoids. They give a natural
generalisation of groups and arise in connection with the symmetries of objects which
possess a bundle structure.

Definition 1.1. A groupoid is a pair of sets, G and M , equipped with the following
maps:

� Two maps α, β : G → M , which we will call the source and target projections,
respectively;

� A partial multiplication map κ : G ∗G → G, (h, g) 7→ hg := κ(h, g), where
G ∗G = {(h, g) ∈ G×G | α(h) = β(g)};

� An identity map 1: M → G, x 7→ 1x;

� And an inversion map ι : G→ G, g 7→ g−1 := ι(g);

which satisfy the following properties:

1



2 CHAPTER 1. LIE GROUPOIDS, LIE ALGEBROIDS, AND DOUBLE STRUCTURES

(i) α(1x) = β(1x) = x for all x ∈M ;

(ii) α(hg) = α(g) and β(hg) = β(h) for all (h, g) ∈ G ∗G;

(iii) k(hg) = (kh)g for all k, h, g ∈ G such that (k, h), (h, g) ∈ G ∗G;

(iv) g1α(g) = g and 1β(g)g = g for all g ∈ G;

(v) (g, g−1), (g−1, g) ∈ G ∗G, g−1g = 1α(g) and gg−1 = 1β(g) for all g ∈ G.

It is clear to see that when M is taken as a singleton set, the definition reduces to
that of a group. A more concise definition is that a groupoid is a category in which
all arrows are invertible. Interpreted this way, it is natural to refer to elements of G
as arrows, and elements of M as objects. We also borrow the notation G⇒M from
category theory to denote a groupoid. Here, the two arrows represent the source and
target projections. When referring to a groupoid, we may say that ‘G is a groupoid
with base M ’, or simply that ‘G is a groupoid on M ’. The maps α, β, κ, 1 and ι are
called the structure maps of the groupoid.

We list some basic properties for groupoids, which follow immediately from the defi-
nition.

Proposition 1.2. Let G be a groupoid with base M , with structure maps labelled as
above. Then the following hold:

(i) α, β and κ are surjections;

(ii) The identity map 1 is an injection;

(iii) The inversion map ι is a bijection which is self-inverse;

(iv) We have the following cancellation laws:

– For (h, g), (k, g) ∈ G ∗G, hg = kg =⇒ h = k;

– For (g, h), (g, k) ∈ G ∗G, gh = gk =⇒ h = k;

(v) α ◦ ι = β, β ◦ ι = α and ι ◦ 1 = 1.

We often refer to elements of the form 1x, for x ∈ M , as identity elements, and
elements g−1, for g ∈ G, as inverses. Analogous to a group, these elements have
the expected uniqueness properties as a consequence of the cancellation laws given
above. We will denote the set of identity elements by 1M . We may sometimes use
the alternative notation G(2) for the domain of the partial multiplication in place of
the usual G ∗G.

Given x ∈ M , we call the subset Gx := α−1(x) the α–fibre over x, and the subset
Gx := β−1(x) the β–fibre over x. We will also use the notation Gyx := Gx ∩ Gy, for
x, y ∈ M . In particular, we refer to the subset Gxx as the vertex group at x – it is
indeed a group under the operation given by restriction of the partial multiplication.

When studying geometric objects, often the groupoids we might be interested in
possess additional smooth structure. This leads to the concept of a Lie groupoid,
which generalises the notion of a Lie group within the realm of groupoids.

Definition 1.3. A Lie groupoid is a groupoid G with base M , such that G and
M have smooth manifold structures that make the source and target projections
submersions and the partial multiplication and identity maps smooth.
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Since the source and target projections of a Lie groupoid G are submersions, they
are transverse to one another, and so the domain of the partial multiplication map
G ∗G = (α× β)−1(∆M ) inherits a smooth manifold structure that makes it a closed
embedded submanifold of G × G. It is also worth noting that since the source and
target projections are smooth submersions, all α– and β–fibres are closed embedded
submanifolds of G.

We collect some further properties of the structure maps of a Lie groupoid, which are
straight-forward to verify.

Proposition 1.4. Let G be a Lie groupoid with base manifold M , with structure
maps labelled as above. Then the following hold:

(i) The partial multiplication κ is a submersion;

(ii) The identity map 1 is an immersion;

(iii) The inversion map ι is a diffeomorphism.

Just as in the theory of Lie groups, we also have notions of left- and right-translations
for Lie groupoids. Given a Lie groupoid G on base M , and g ∈ G, we define the left-
translation by g to be the map of β–fibres

Lg : Gα(g) → Gβ(g) , h 7→ gh.

In a similar manner, we define the right-translation by g, to be the map of α–fibres

Rg : Gβ(g) → Gα(g) , h 7→ hg.

Since the partial multiplication is smooth, it follows that these two maps are diffeo-
morphisms of the respective fibres.

We now cover some key examples, which will all appear again in later sections.

Example 1.5. Given a smooth manifold M , we can give the product manifold M×M
the structure of a Lie groupoid with base M . We take the projections onto the first
and second factors as the target and source projections, respectively. Given pairs
(z, y), (y, x) ∈M ×M , the partial multiplication is given by (z, y)(y, x) = (z, x). For
x ∈M , the corresponding identity element is the pair (x, x). For (z, y) ∈M ×M , the
corresponding inverse is the pair (y, z). With these structure maps, we call M ×M
the pair groupoid on M . �

Example 1.6. Let G and G′ be Lie groupoids on M and M ′ respectively. There is a
Lie groupoid structure on the product manifold G×G′ with base M×M ′. The source
and target projections are given by the product maps α×α′ and β × β′ respectively.
The partial multiplication is given by (h, h′)(g, g′) = (hg, h′g′), for compatible pairs.
The identity and inversion maps are just given by the product maps 1× 1′ and ι× ι′
respectively. We call G×G′ the Cartesian product groupoid on base M ×M ′. �

Example 1.7. Given any Lie groupoid G⇒M , by applying the tangent functor to
each of the structure maps we get a Lie groupoid structure on TG with base TM .
Note that, more precisely, the partial multiplication is given by the composite map

TG ∗TM TG T (G ∗M G) TG.
∼= T (κ)

Here, we have used the property that the tangent functor preserves pullbacks. We
call this Lie groupoid the tangent prolongation groupoid of G⇒M . �
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Example 1.8. Suppose θ : G×M →M , (g,m) 7→ g ·m is an action of a Lie group G
on a smooth manifold M . We get an induced Lie groupoid structure on the product
manifold G ×M with base M . The source projection is given by α : G ×M → M ,
(g,m) 7→ m, and the target projection by β : G ×M → M , (g,m) 7→ g · m. The
partial multiplication is defined by (h, y)(g, x) = (hg, x) for compatible pairs. The
identity map is given by x 7→ (1, x), and the inversion map by (g, x) 7→ (g−1, g · x).
We call this Lie groupoid the action groupoid of θ and denote it by G^M . �

Example 1.9. For any Lie group G with Lie algebra g, we can define a groupoid
structure on T ∗G with base g∗ in the following way. We define source and target
projections by

α(ϕ) = ϕ ◦ T (Lg), β(ϕ) = ϕ ◦ T (Rg),

for ϕ ∈ T ∗gG. The partial multiplication is defined by

κ(ψ,ϕ) = ψ ◦ T (Rg−1) = ϕ ◦ T (Lh−1),

where ϕ ∈ T ∗gG, ψ ∈ T ∗hG, and α(ψ) = β(ϕ). The identity map is inclusion. �

Given a groupoid G with base M , there is an induced equivalence relation defined on
M , called the transitivity relation. For m,m′ ∈M , we write m ∼ m′ whenever there
exists g ∈ G with β(g) = m and α(g) = m′. We call the corresponding equivalence
classes transitivity orbits (or transitivity components). Furthermore, the space of all
equivalence classes is denoted by τ(G) and called the transitivity orbit space.

In the study of Lie groups the class of simply connected Lie groups plays a vital role.
We finish this section by defining a useful analogue for Lie groupoids.

Definition 1.10. A Lie groupoid G with base M is α–simply connected if the α–fibre
Gx is simply connected for every x ∈M .

1.1.2 Morphisms of Lie groupoids and Lie subgroupoids

We now turn our attention towards the morphisms and sub-objects within the cate-
gory of Lie groupoids.

Definition 1.11. Let G and G′ be groupoids on M and M ′, respectively, and let
F : G → G′ and f : M → M ′ be a pair of maps. We say that F is a morphism of
groupoids over f if the following relations hold (on the domains for which they are
well-defined):

(i) α′ ◦ F = f ◦ α;

(ii) β′ ◦ F = f ◦ β;

(iii) κ′ ◦ (F × F ) = F ◦ κ.

Alternatively, we can say that (F, f) is a morphism of groupoids.

When G and G′ are groupoids on the same base M , and f is just the identity map
on M , we say that F is a morphism over M .

If G and G′ are Lie groupoids, and F and f are smooth maps, we say that F is a
morphism of Lie groupoids over f .

F is said to be an isomorphism of Lie groupoids if F is also a diffeomorphism.
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One might ask why we do not require similar commutativity relations for F and
f with the identity and inversion maps. In fact, the assumptions in the definition
immediately imply such relations.

Proposition 1.12. Let F : G → G′ be a morphism of groupoids over f : M → M ′.
Then the following relations hold:

(iv) F ◦ 1 = 1′ ◦ f ;

(v) ι′ ◦ F = F ◦ ι.

Remark 1.13. Given a morphism of groupoids F : G → G′, the properties (i)–(v)
can be rewritten in the following equivalent way:

(i) α′(F (g)) = f(α(g)) for all g ∈ G;

(ii) β′(F (g)) = f(β(g)) for all g ∈ G;

(iii) F (hg) = F (g)F (h) for all (h, g) ∈ G ∗G;

(iv) F (1m) = 1′f(m) for all m ∈M ;

(v) F (g)−1 = F (g−1) for all g ∈ G.

The following are the simplest examples of morphisms of Lie groupoids that one can
manufacture.

Example 1.14. Let f : M → M ′ be a smooth map of manifolds. The product map
f × f : M ×M →M ′ ×M ′ defines a morphism of Lie groupoids over f between the
pair groupoids M ×M and M ′ ×M ′, as defined in Example 1.5. �

Example 1.15. Let G be a Lie groupoid with base manifold M . The map given by
χ = (β, α) : G→M ×M is a morphism of Lie groupoids over M . Here M ×M is the
pair groupoid on base M . This morphism is often referred to as the anchor of G. �

This notion of anchor gives us a method to classify certain types of Lie groupoid.

Definition 1.16. Let G be a Lie groupoid with base M . Then G is called locally
trivial if the anchor χ : G→M ×M is a surjective submersion.

Definition 1.17. Let G be a groupoid with base M . Then G is called totally in-
transitive if the source and target projections are identical. This is equivalent to the
image of the anchor χ : G→M ×M being equal to the diagonal ∆M .

We also can extend the notion of a kernel of a group homomorphism to the kernel of
a morphisms of groupoids.

Definition 1.18. Let F : G → G′ be a morphism of groupoids over f : M → M ′.
The kernel of (F, f) is the subset of G given by

ker(F, f) = {g ∈ G | F (g) ∈ 1M ′}.

Let us now define some classes of morphisms of Lie groupoids which will arise in later
constructions. Consider a morphism of Lie groupoids F : G′ → G over a smooth map
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f : M ′ → M . We denote the pullback manifold of f and α by f !G. The pullback
diagram is given by

f !G G

M ′ M.

α

f

(1.1)

We use the notation F ! : G′ → f !G for the map defined by g′ 7→ (α′(g′), F (g′)). This
is a well-defined map because F is a morphism of Lie groupoids.

Definition 1.19. A morphism of Lie groupoids F : G′ → G over f : M ′ → M is a
partial fibration if the map F ! : G′ → f !G is a submersion.

F is called a fibration when F ! is a surjective submersion, and an action morphism
when F ! is a diffeomorphism.

The concepts of a subgroup and a normal group have analogues within the theory of
groupoids. We briefly introduce these notions here.

Definition 1.20. Let G be a groupoid with base M . A groupoid G′ with base M ′

is a subgroupoid of G if there exists injections ĩ : G′ → G and i : M ′ → M , such that
(̃i, i) is a morphism of groupoids.

If in addition, M ′ = M and i = idM , we call G′ a wide subgroupoid of G.

When G ⇒ M and G′ ⇒ M ′ are Lie groupoids and the injections ĩ : G′ → G and
i : M ′ →M are immersions, we say that G′ is a Lie subgroupoid of G.

We call G′ an embedded Lie subgroupoid of G when we have the further condition
that ĩ and i are smooth embeddings.

Example 1.21. Let G be a groupoid with base M . Consider the subset of G given
by

IG = {g ∈ G | α(g) = β(g)}.

Then the structure maps of G restrict to give IG a groupoid structure with base
M . It follows that IG is a subgroupoid of G via inclusion. We call IG the inner
subgroupoid of G. Note that IG is not necessarily a Lie subgroupoid when G is a Lie
groupoid.1

Definition 1.22. Let G be a groupoid with base M , and N a totally intransitive wide
subgroupoid of G. Denote the source and target projection of N by q : N →M . Then
N is a normal subgroupoid of G if for all g ∈ G and n ∈ N satisfying α(g) = q(n), we
have gng−1 ∈ N .

Example 1.23. Let G and G′ be groupoids on the same base M . Suppose that
F : G → G′ is a morphism of groupoids over M . Then the kernel of (F, idM ) is
a normal subgroupoid of G ⇒ M . Moreover, it can be shown that every normal
subgroupoid is the kernel of a morphism of groupoids over a fixed base. �

1One situation in which IG has a Lie subgroupoid structure occurs when G is taken to be a locally
trivial Lie groupoid (see [47, Proposition 1.3.9]).
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1.1.3 Actions of Lie groupoids

The notion of an action of a Lie group can be extended to an action of a Lie groupoid.

Definition 1.24. Let G be a groupoid on base M , and f : M ′ → M a map. A
groupoid action of G on f is a map θ : G ∗M ′ →M ′, (g,m′) 7→ g ·m′, satisfying

(i) f(g ·m′) = β(g), for all (g,m′) ∈ G ∗M ′;

(ii) h · (g · m′) = (hg) · m′, for all (h, g) ∈ G ∗ G, and all m′ ∈ M ′, such that
(g,m′) ∈ G ∗M ′;

(iii) 1f(m′) ·m′ = m′, for all m′ ∈M ′;

where G ∗M ′ = (α× f)−1(∆M ).

Given a groupoid G ⇒ M , and a groupoid action of G on a map f : M ′ → M , we
get an induced groupoid structure on the set G ∗M ′ with base M ′. This is similar to
the construction in Example 1.8 for an action of a Lie group. The source and target
projections are defined by

α^ : G ∗M ′ →M ′ , (g,m′) 7→ m′; β^ : G ∗M ′ →M ′ , (g,m′) 7→ g ·m′;

and the partial multiplication is defined by

κ^ : G ∗M ′(2) → G ∗M ′ , (h, n′)(g,m′) = (hg,m′).

The identity map is given by

1^ : M ′ → G ∗M ′ , m′ 7→ (1f(m′),m
′).

and the inversion map by

ι^ : G ∗M ′ → G ∗M ′ , (g,m′) 7→ (g−1, g ·m′).

With this groupoid structure, we denote G ∗M ′ by G^M ′ or G^ f . We refer to a
groupoid of this form as an action groupoid.

Definition 1.25. Let G be a Lie groupoid on base M , and f : M ′ → M a smooth
map. A Lie groupoid action of G on f is a groupoid action θ : G ∗M ′ →M ′ which is
also a smooth map.

Given a Lie groupoid action of a Lie groupoid G⇒M on a smooth map f : M ′ →M ,
the pullback G ∗M ′ = (α × f)−1(∆M ) is an embedded submanifold of the product
G×M ′. It is not hard to verify that the corresponding action groupoid G^M ′ ⇒M ′

is in fact a Lie groupoid. Furthermore, the projection f! : G^M ′ → G, (g,m′) 7→ g
is an action morphism over f : M ′ →M .

Example 1.26. Let θ be a Lie groupoid action of a Lie groupoid G ⇒ M on a
smooth map f : M ′ → M . Consider the tangent prolongation groupoid TG ⇒ TM
of Example 1.7, and the differential of f , T (f) : TM ′ → TM . The differential of θ
produces a smooth map T (θ) : TG ∗ TM ′ → TM ′. Here, we are using the property
that the tangent functor preserves pullbacks to identify T (G ∗M ′) with TG ∗ TM ′.
It is straightforward to verify that T (θ) defines a Lie groupoid action of TG ⇒ TM
on T (f). We call this the tangent action of G on f . �
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Example 1.27. Let G be a Lie group with Lie algebra g, and M a smooth manifold.
Consider a Lie group action θ : G×M →M . We get a Lie algebra action g→ X(M),
X 7→ X† where

X†(m) = Te(θm)(X).

Dualizing this infinitesimal action produces a map p : T ∗M → g∗ given by

〈p(ϕ), X〉 = 〈ϕ,X†(m)〉,

for ϕ ∈ T ∗mM , X ∈ g. We call p the pith of the action.

We claim that θ lifts to a Lie groupoid action θ̃ : T ∗G ∗ T ∗M → T ∗M of the Lie
groupoid T ∗G⇒ g∗ (see Example 1.9) on the pith p, by

ψ · ϕ = ϕ ◦ T (θg−1),

for ψ ∈ T ∗gG and ϕ ∈ T ∗M with α(ψ) = p(ϕ). Before proving this claim, we make
the following observation. For any g, h ∈ G and m ∈M ,

θg−1 ◦ θg·m(h) = g−1 · (h · (g ·m)) = (g−1hg) ·m = θm ◦ Cg−1(h),

where Cg−1 : G→ G represents conjugation by g−1. Hence, for any X ∈ g, ψ ∈ T ∗gG,
and ϕ ∈ T ∗mM with α(ψ) = p(ϕ), we have

〈p(ψ · ϕ), X〉 = 〈ψ · ϕ,X†(g ·m)〉
= 〈ϕ ◦ T (θg−1), Te(θg·m)(X)〉
= 〈ϕ, Te(θg−1 ◦ θg·m)(X)〉
= 〈ϕ, Te(θm ◦ Cg−1)(X)〉
= 〈ϕ, (Adg−1(X))†(m)〉
= 〈p(ϕ),Adg−1(X)〉
= 〈Ad∗g(p(ϕ)), X〉.

Therefore, we have the relation p(ψ ·ϕ) = Ad∗g(p(ϕ)). Let us now show that θ̃ defines
a Lie groupoid action on the pith p. Firstly note that, for any X ∈ g, ψ ∈ T ∗gG, and
ϕ ∈ T ∗mM with α(ψ) = p(ϕ), we have

〈p(ψ · ϕ), X〉 = 〈p(ϕ),Adg−1(X)〉
= 〈α(ψ),Adg−1(X)〉
= 〈ψ ◦ T (Lg),Adg−1(X)〉
= 〈ψ ◦ T (Rg), X〉
= 〈β(ψ), X〉.

Next, note that for ψ2 ∈ T ∗hG, ψ1 ∈ T ∗gG, and ϕ ∈ T ∗mM , with α(ψ2) = β(ψ1) and
α(ψ1) = p(ϕ), we have

ψ2 · (ψ1 · ϕ) = ψ2 · (ϕ ◦ T (θg−1))

= ϕ ◦ T (θg−1) ◦ T (θh−1)

= ϕ ◦ T (θ(hg)−1)

= κ(ψ2, ψ1) · ϕ.

The last line follows since κ(ψ2, ψ1) ∈ T ∗hgG. Lastly, observe that for any ϕ ∈ T ∗M ,

1p(ϕ) · ϕ = p(ϕ) · ϕ = ϕ ◦ T (θe−1) = ϕ.

Thus, θ̃ forms a Lie groupoid action of T ∗G⇒ g∗ on p. �
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The notion of an action for groupoids gives us a natural way to generalise semidirect
products from groups to groupoids.

Consider a groupoid G on base M , and a totally intransitive groupoid H also on base
M , with source (and target) projection denoted by q : H → M . Suppose we have a
groupoid action of G on q, denoted θ : G ∗H → H, such that the map

θg : Hα(g) → Hβ(g) , h 7→ h · g,

is an isomorphism of groups, for every g ∈ G. Then we can define a groupoid structure
on G ∗H with base M that generalises the group structure of a semidirect product.
We define the source and target projections by

α′(g, h) = α(g) , β′(g, h) = β(g),

for all (g, h) ∈ G ∗H. The partial multiplication is defined by

(g2, h2)(g1, h1) = (g2g1, (g
−1
1 · h2)h1),

for compatible pairs (g2, h2), (g1, h1) ∈ G ∗ H. For any m ∈ M , the corresponding
identity element is given by

1′m = (1Gm, 1
H
m),

and for any (g, h) ∈ G ∗H, the corresponding inverse is given by

(g, h)−1 = (g−1, g · (h−1)).

To check that this gives a well-defined groupoid is routine. Let us verify the associa-
tivity of the partial multiplication; the remaining checks we leave to the reader. For
pairs (g3, h3), (g2, h2), (g1, h1) ∈ G ∗ H, satisfying α(g3) = β(g2) and α(g2) = β(g1),
we have

(g3, h3)
(
(g2, h2)(g1, h1)

)
= (g3, h3)(g2g1, (g

−1
1 · h2)h1)

= (g3g2g1, ((g2g1)−1 · h3)(g−1
1 · h2)h1)

= (g3g2g1, (g
−1
1 · (g

−1
2 · h3))(g−1

1 · h2)h1)

= (g3g2g1, (g
−1
1 · ((g

−1
2 · h3)h2))h1)

= (g3g2, (g
−1
2 · h3)h2)(g1, h1)

=
(
(g3, h3)(g2, h2)

)
(g1, h1).

Note that in the fourth line of this computation we have used the fact that the map
θg−1

1
: Hβ(g1) → Hα(g1) is an isomorphism of groups.

We denote this groupoid by GnH ⇒M ; it is called the semidirect product groupoid.

Example 1.28. Let G be a groupoid on base M , and N a normal subgroupoid.
Then, we have a groupoid action θ : G ∗N → N , defined by

(g, n) 7→ g · n := gng−1.

Since the action is just by conjugation, it should be clear that, for any g ∈ G, the map
θg : Nα(g) → Nβ(g) is an isomorphism of groups. Hence, we can form the semidirect
product groupoid GnN ⇒M . �
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Given a semidirect product groupoid GnH ⇒M , we can make a slight modification
that induces another groupoid structure on G ∗H with base M . We first redefine the
partial multiplication by

(g2, h2)(g1, h1) = (g2g1, h1(g−1
1 · h2)), (1.2)

for compatible pairs (g2, h2), (g1, h1) ∈ G∗H. The remaining structure maps we keep
as before. To check that this again defines a groupoid is straightforward and only
differs slightly from the original case. We call this the opposite semidirect product
groupoid and denote it by G n̄H ⇒M .

The construction of semidirect products can also be extended to the case of Lie
groupoids.

Proposition 1.29. Let G and H be Lie groupoids on a base manifold M . Suppose
that H is totally intransitive with source and target projection denoted by q : H →M .
If θ : G ∗H → H is a Lie groupoid action of G on q, such that

θg : Hα(g) → Hβ(g) , h 7→ h · g,

is an isomorphism of Lie groups, for every g ∈ G, then the semidirect product groupoid
GnH ⇒M is a Lie groupoid.

Proof. Since the source projection of G is a submersion, it follows that the space
G∗H = (α× q)−1(∆M ) is an embedded submanifold of the product manifold G×H.
It is not hard to confirm that the structure maps of G nH are smooth. It remains
only to show that the source and target projections are submersions.

For an arbitrary pair (g, h) ∈ G∗H, consider the tangent map of the source projection
T(g,h)(α

′) : T(g,h)(G ∗H)→ Tα(g)M . Take any Z ∈ Tα(g)M = Tq(h)M . Then since the
source projections α and q are submersions, there exists X ∈ TgG and Y ∈ ThH such
that

T (α)(X) = Z = T (q)(Y ).

Hence, (X,Y ) ∈ T(g,h)(G ∗H), and T (α′)(X,Y ) = T (α)(X) = Z. Thus, the tangent
map T(g,h)(α

′) is surjective, and so α′ is a submersion. We can prove that the target
projection is also a submersion in an analogous way.

The groupoid actions we have been discussing are more accurately referred to as left
groupoid actions. We will continue to omit the term ‘left’ whenever it is clear from
the context. We finish this section by discussing the notion of a right groupoid action.

Definition 1.30. Let G be a groupoid on base M , and f : M ′ →M a map. A right
groupoid action of G on f is a map θ : M ′ ∗G→M ′, (m′, g) 7→ m′ · g, satisfying

(i) f(m′ · g) = α(g), for all (m′, g) ∈M ′ ∗G;

(ii) (m′ · h) · g = m′ · (hg), for all (h, g) ∈ G ∗ G, and all m′ ∈ M ′, such that
(m′, g) ∈M ′ ∗G;

(iii) m′ · 1f(m′) = m′, for all m′ ∈M ′;

where G ∗M ′ = (β × f)−1(∆M ).

Moreover, if G⇒M is a Lie groupoid and θ and f are smooth maps, then we call θ
a right Lie groupoid action of G on f .
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1.1.4 Pullback groupoids

Given a Lie groupoid G with base manifold M , and a smooth map f : M ′ → M , we
have an induced groupoid structure on the set

M ′ ∗G ∗M ′ = {(y′, g, x′) ∈M ′ ×G×M ′ | f(y′) = β(g), α(g) = f(x′)}

with base M ′. The target and source projections are defined by the projections
onto the first and third factors, respectively. For compatible elements, the partial
multiplication is given by

(z′, h, y′)(y′, g, x′) = (z′, hg, x′).

For x′ ∈M ′, the corresponding identity element is (x′, 1f(x′), x
′); and for an element

(y′, g, x′) ∈M ′ ∗G∗M ′, the corresponding inverse is given by (x′, g−1, y′). With these
structure maps, we denote M ′ ∗G ∗M ′ by f !!G and call it the pullback groupoid of G
over f .

The groupoid structure takes this name, primarily, because it can be obtained by
taking the pullback in the category of groupoids of the morphisms (f × f, f) and
(χ, idM ). Here, f×f : M ′×M ′ →M×M is the morphism of pair groupoids described
in Example 1.14, and χ : G → M ×M is the anchor of G defined in Example 1.15.
The pullback diagram is given by:

f !!G G

M ′ ×M ′ M ×M

M ′ M

M ′ M

χ

f×f

idM
f

(1.3)

Note that f !!G is not necessarily a Lie groupoid. As a set, we can view M ′ ∗G∗M ′ as
the pullback of f × f and χ = (β, α), which has a manifold structure if these smooth
maps are transversal. However, this transversality condition is not always sufficient
as the source and target projections may not be submersions. This can be rectified if
we take the further condition that the map f !G→M , (g, x′) 7→ β(g) is a submersion
(where f !G is the pullback manifold of f and α). One situation in which these two
conditions are met is when f is a submersion.

When G is taken to be just a Lie group, then the corresponding pullback groupoid
that we get is referred to as a trivial Lie groupoid. Moreover, if G is the trivial group,
then we are just reduced to a pair groupoid as defined in Example 1.5. A more
interesting example will be described later in Example 1.68.

§ 1.2 Lie algebroid theory

In this section, we provide a concise treatment of the infinitesimal objects associated
to Lie groupoids. Entitled Lie algebroids, these objects were first introduced by
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Pradines [57], whose objective was to describe a Lie theory for Lie groupoids. The
main results and terminology in this section follow closely the work of Higgins and
Mackenzie [27].

1.2.1 Lie algebroids

We begin with the abstract notion of a Lie algebroid. In the next section, we will see
how these arise as infinitesimal invariants of Lie groupoids.

Definition 1.31. A Lie algebroid is a smooth vector bundle A → M with a Lie
algebra structure on its module of sections Γ(A), equipped with a vector bundle
morphism a : A→ TM , that satisfies the following ‘Leibniz rule’,

[X, fY ] = f [X,Y ] + a(X)(f)Y, (1.4)

for all X,Y ∈ Γ(A) f ∈ C∞(M). We call a the anchor map of the Lie algebroid.

We refer to M as the base of the Lie algebroid, and we will often use the phrase ‘A is
a Lie algebroid on M ’. In the literature, the following consequence is often included
within the definition.

Lemma 1.32. Let A be a Lie algebroid on M . Then the anchor map, considered as
a map of sections a : Γ(A)→ X(M), is a Lie algebra homomorphism.

Proof. Let X,Y ∈ Γ(A). For any f ∈ C∞(M) and Z ∈ Γ(A), we have

[X, [Y, fZ]] = [X, f [Y,Z] + a(Y )(f)Z]

= f [X, [Y,Z]] + a(X)(f)[Y, Z] + a(Y )(f)[X,Z] + a(X)(a(Y )(f))Z.

On the other hand, the Jacobi identity leads to the following,

[X, [Y, fZ]] = [Y, [X, fZ]] + [[X,Y ], fZ]

= f [Y, [X,Z]] + a(Y )(f)[X,Z] + a(X)(f)[Y,Z] + a(Y )(a(X)(f))Z

+ f [[X,Y ], Z] + a([X,Y ])(f)Z.

Equating these two expressions, and utilising the Jacobi identity again, we get the
equation

(a(X) ◦ a(Y )− a(Y ) ◦ a(X)− a([X,Y ]))(f)Z = 0.

Since this holds for every given f and Z, we deduce that a([X,Y ]) = [a(X), a(Y )].

It should be clear that a Lie algebra g is a Lie algebroid by considering g as a vector
bundle on a singleton set, and then identifying its module of sections Γ(g) with itself
g. Its anchor map a is the zero map, and by identifying smooth functions on this
singleton set with R, property (1.4) is trivial. The next simplest example of a Lie
algebroid is the tangent bundle of a smooth manifold with the identity map serving
as its anchor. In Example 1.8 we saw that an action of a Lie group gave rise to a Lie
groupoid; there is an analogous result for an action of a Lie algebra.

Example 1.33. Suppose that θ̂ : g → X(M), X 7→ X† is an action of a Lie algebra
g on a smooth manifold M . There is an induced Lie algebroid structure on the
trivial vector bundle g ×M on M . The anchor map a : g ×M → TM is given by
a(X,m) = X†(m). Note that we can identify sections of this vector bundle with
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smooth vector valued functions V : M → g. For constant maps V,W : M → g we
define the bracket by [V,W ](m) = [V (m),W (m)] for m ∈M , and one can check that
in fact this is enough to determine the bracket everywhere. In general, for smooth
maps V,W : M → g, and m ∈M , we have

[V,M ](m) = [V (m),W (m)] + (LV (m)†W − LW (m)†V )(m).

We call this the action Lie algebroid of θ̂ and denote it by g^M . �

Definition 1.34. Let A be a Lie algebroid on M with anchor map a : A→ TM . We
say that:

(i) A is transitive if a is a fibrewise surjection;

(ii) A is regular if a has constant rank;

(iii) A is totally intransitive if a is the zero map.

1.2.2 The Lie algebroid of a Lie groupoid

In the study of Lie groups, an important construction is that of the Lie algebra of a
Lie group. In this section, we focus on the analogous construction of the Lie algebroid
of a Lie groupoid.

For a Lie group, one preference is to consider its space of right-invariant vector fields.
This space inherits the standard bracket of vector fields which makes it a Lie algebra.
As a vector space, it is often identified with the tangent space at the identity element of
the group because it can be shown that every right-invariant vector field is determined
by only its value at the identity.

In the extension to the general case, given a Lie groupoid G on base M , we construct a
Lie algebroid on M . The underlying vector bundle of this Lie algebroid is denoted by
AG. We extend the notion of right-invariance to vector fields on Lie groupoids. Then
it becomes natural to identify the sections of AG with the right-invariant vector
fields of G. Once again, the Lie bracket is inherited from the standard bracket of
vector fields on G. The anchor map for AG is in some sense just a restriction of the
differential of the target projection.

Let us now examine this construction in more detail. We fix a Lie groupoid G on
base M with structure maps denoted in the usual way by α, β, κ, 1 and ι.

Definition 1.35. The vector bundle AG → M is the pullback bundle of TαG → G
by the identity map 1: M → G,

AG TαG

M G.1

(1.5)

Since the identity map is an embedding, for each x ∈ M the fibre AxG can be
naturally identified with the tangent space T1x(Gx). This identification will be used
throughout without further comment.
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Definition 1.36. The anchor map aG : AG → TM is the composite of the vector
bundle morphisms

AG TαG TG TM

M G G M.

T (β)

1 β

(1.6)

It is important to note that aG is a bundle morphism over M since the base map β ◦1
is equal to the identity map idM .

It remains to equip the module of sections Γ(AG) with an appropriate Lie bracket.
To do this, we will consider an alternative description of these sections. In this
endeavour, we first give a definition of right-invariance for vector fields on the Lie
groupoid G.

Definition 1.37. Let X ∈ X(G). We say that:

(i) X is a vertical vector field on G if X(g) ∈ Tαg G, for all g ∈ G;

(ii) X is a right-invariant vector field on G if it is vertical and satisfies the condition
that X(hg) = Th(Rg)(X(h)), for all (h, g) ∈ G ∗G.

Note that right-invariant vector fields on G are determined solely by the values they
take on the identity elements of the groupoid. This follows because any vertical vector
field X ∈ X(G) is right-invariant if and only if X(g) = T1x(Rg)(X(1x)), for all g ∈ Gx,
and x ∈M .

We denote the set of right-invariant vector fields on G by XR(G). It is a C∞(G)–
submodule of both X(G) and Γ(TαG). It is also a C∞(M)–module under the scalar
multiplication fX = (f ◦ β)X, where f ∈ C∞(M), X ∈ XR(G). Clearly, XR(G) is a
vector subspace of X(G), moreover we have the following result.

Lemma 1.38. XR(G) is a Lie subalgebra of X(G).

Proof. Let X,Y ∈ XR(G). We need to show that [X,Y ] ∈ XR(G).

Since X and Y are vertical vector fields on G, X and Y are both α–related to the
zero section of TM . It follows by the naturality of the Lie bracket that [X,Y ] is also
α–related to the zero section, and so [X,Y ] is a vertical vector field.

The condition that X and Y are right-invariant implies that for any g ∈ Gyx, x, y ∈M ,
the restrictions X|Gy and Y |Gy areRg-related to X|Gx and Y |Gx , respectively. Hence,

[X,Y ]|Gy is Rg-related to [X,Y ]|Gx , again using the naturality of the Lie bracket.

This property, paired with the fact that [X,Y ] is vertical, is enough to conclude the
right-invariance of [X,Y ].

We would like to show that, as C∞(M)–modules, Γ(AG) and XR(G) are equivalent.
To do this, we first show that vertical vector fields on G can be identified with sections
of another vector bundle. The bundle we are interested in is the pullback bundle of
AG → M by the tangent projection β : G → M . We have the following pullback
diagram,

β!AG AG

G M.

β!

β

(1.7)
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Recall that for X ∈ Γ(AG) we use the notation X ! to denote its corresponding
pullback section in Γ(β!AG). It is the unique section such that β! ◦X ! = X ◦ β.

Proposition 1.39. The map Φ: β!AG→ TαG defined on fibres by

Φg = T1β(g)
(Rg) : {g} × T1β(g)

(Gβ(g))→ Tg(Gα(g)),

is an isomorphism of vector bundles over G.

Proof. It should be clear that each fibre Φg is a linear isomorphism which preserves the
base point g ∈ G. It remains only to show that Φ is smooth. This arises immediately
when we view Φ as the composition of the following smooth maps,

β!AG TG ∗ TG TG

(g, Y1β(g)
) (Y1β(g)

, 0g) T1β(g)
(Rg)(Y1β(g)

).

T (κ)

(1.8)

This result leads us to the following consequence.

Corollary 1.40. Let G be a Lie groupoid on M . For X ∈ Γ(AG), the section
−→
X := Φ(X !) of TαG is a right-invariant vector field of G.

Proof. Let X ∈ Γ(AG), for any g ∈ Gx, x ∈M , we have

−→
X (g) = Φg(X

!(g)) = Φg(g,X(x)) = T1x(Rg)(X(x)).

On the other hand,

−→
X (1x) = Φ1x(X !(1x)) = Φ1x(1x, X(x)) = X(x).

Thus, we have the relation
−→
X (g) = T1x(Rg)(

−→
X (1x)), and so

−→
X is a right-invariant

vector field of G.

We now have all the components we require to specify an identification between the
sections of AG and right-invariant vector fields of G. The checks are all straight-
forward and are left to the reader.

Proposition 1.41. The map Γ(AG) → XR(G), X 7→
−→
X , is an isomorphism of

C∞(M)–modules with inverse XR(G)→ Γ(AG), X 7→ X ◦ 1.

We can now use this isomorphism to transfer the Lie algebra structure on XR(G) to
Γ(AG). We define a Lie bracket by

[X,Y ] = [
−→
X,
−→
Y ] ◦ 1, (1.9)

for X,Y ∈ Γ(AG). Because of the isomorphism of modules, this Lie bracket should
have the relationship with the module structure on Γ(AG) that we desire.

Proposition 1.42. The vector bundle AG → M , with the Lie algebra structure on
Γ(AG) defined by (1.9), equipped with the anchor aG, is a Lie algebroid.
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Proof. We only need to check the ‘Leibniz rule’ (1.4) given in the definition of a Lie
algebroid. Let X,Y ∈ Γ(AG), f ∈ C∞(M), and x ∈M . We first observe that

−→
X (f ◦ β)(1x) = T (β)(

−→
X (1x))(f) = T (β)(X(x))(f) = (a(X)(f))(x).

Hence, it follows that

[X, fY ] = [
−→
X,
−→
fY ] ◦ 1

= [
−→
X, (f ◦ β)

−→
Y ] ◦ 1

= ((f ◦ β)[
−→
X,
−→
Y ] +

−→
X (f ◦ β)

−→
Y ) ◦ 1

= (f ◦ β ◦ 1)([
−→
X,
−→
Y ] ◦ 1) + (

−→
X (f ◦ β) ◦ 1)(

−→
Y ◦ 1)

= f [X,Y ] + a(X)(f)Y.

With this structure, we call AG→M the Lie algebroid of G.

Example 1.43. Let M be a smooth manifold and consider the pair groupoid M×M
on base M , as defined in Example 1.5. Let us construct the Lie algebroid of this Lie
groupoid. Observe that, for x ∈M ,

Ax(M ×M) = T1x(M ×M)x = T(x,x)(M × {x}) ∼= TxM.

Moreover, it is clear to see that the induced anchor map is just the identity map
idTM : TM → TM . This immediately implies that the Lie bracket is given precisely
by the standard bracket of vector fields. Hence, the Lie algebroid A(M ×M) → M
is nothing more than the tangent bundle TM →M . �

1.2.3 Morphisms of Lie algebroids and Lie subalgebroids

We now look at the morphisms in the category of Lie algebroids. Let us first recall
some results about vector bundle morphisms and introduce some notation.

Let q′ : E′ → M ′ and q : E → M be smooth vector bundles. Given a vector bundle
morphism ϕ : E′ → E over a smooth map f : M ′ → M , we can form the pullback
bundle f !E over M ′. As a C∞(M ′)-module, we can identify Γ(f !(E)) with the tensor
product C∞(M ′)⊗Γ(E) via the isomorphism u′⊗X 7→ u′X ! (see [24, Section 2.26]).
We also have a vector bundle morphism ϕ! : E′ → f !E over M ′, given by the mapping
X ′ 7→ (q′(X ′), ϕ(X ′)). This induces a map on sections ϕ! : Γ(E′)→ Γ(f !E), which is
linear over C∞(M ′). Hence, for any X ′ ∈ Γ(E′), we have

ϕ!(X ′) =
∑
i

u′i ⊗Xi, (1.10)

for some u′i ∈ C∞(M ′), Xi ∈ Γ(E). Alternatively, this equation can be written in the
form

ϕ ◦X ′ =
∑
i

u′i(Xi ◦ f). (1.11)

We refer to both (1.10) and (1.11) as ϕ–decompositions of X ′.

Definition 1.44. Let A′ and A be Lie algebroids on bases M ′ and M with anchor
maps a′ and a, respectively. A morphism of Lie algebroids is a vector bundle mor-
phism ϕ : A′ → A over a smooth map f : M ′ → M satisfying a ◦ ϕ = T (f) ◦ a′, and
such that for any X ′, Y ′ ∈ Γ(A′) with ϕ–decompositions

ϕ!(X ′) =
∑

i u
′
i ⊗Xi , ϕ!(Y ′) =

∑
j v
′
j ⊗ Yj ,
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we have

ϕ!([X ′, Y ′]) =
∑
i,j

u′iv
′
j ⊗ [Xi, Yj ] +

∑
j

a′(X ′)(v′j)⊗ Yj −
∑
i

a′(Y ′)(u′i)⊗Xi.

We also say that (ϕ, f) is a morphism of Lie algebroids.

We leave to the reader the checks needed to prove the well-definedness of the defini-
tion.

Proposition 1.45. Given morphisms of Lie algebroids ψ : A′′ → A′ and ϕ : A′ → A,
the composition ϕ ◦ ψ : A′′ → A is a morphism of Lie algebroids.

Remark 1.46. Given Lie algebroids A′ and A on the same base M , and a vector
bundle morphism ϕ : A′ → A over M , the conditions that ϕ is a morphism of Lie
algebroids reduce to a ◦ ϕ = a′ and ϕ([X ′, Y ′]) = [ϕ(X ′), ϕ(Y ′)] for all sections
X ′, Y ′ ∈ Γ(A′).

Definition 1.47. Let A′ and A be Lie algebroids on the same base manifold M . An
isomorphism of Lie algebroids over M is a morphism of Lie algebroids ϕ : A′ → A
over M which is also a diffeomorphism.

We now look at our first natural example of a morphism of Lie algebroids.

Proposition 1.48. Let F : M ′ → M be a smooth map. Then the differential of F ,
T (F ) : TM ′ → TM , is a morphism of Lie algebroids over F .

Proof. Since the anchor maps of TM ′ and TM are just identity maps, the anchor
preservation condition for T (F ) to be a morphism is trivial. To check the bracket
condition, let X ′, Y ′ ∈ X(M ′) and choose T (F )–decompositions

T (F ) ◦X ′ =
∑

i u
′
i(Xi ◦ F ) , T (F ) ◦ Y ′ =

∑
j v
′
j(Yj ◦ F ) ,

for some u′i, v
′
j ∈ C∞(M ′), Xi, Yj ∈ X(M). Observe that for any w ∈ C∞(M) we have

X ′(Y ′(w ◦ F )) = X ′
(∑

j
v′j(Yj(w) ◦ F )

)
=
∑

j

(
X ′(v′j)(Yj(w) ◦ F ) + v′jX

′(Yj(w) ◦ F )
)

=
∑

j
X ′(v′j)(Yj(w) ◦ F ) +

∑
i,j
v′ju
′
i(Xi(Yj(w)) ◦ F ).

Similarly, we can show that

Y ′(X ′(w ◦ F )) =
∑

i
Y ′(u′i)(Xi(w) ◦ F ) +

∑
i,j
u′iv
′
j(Yj(Xi(w)) ◦ F ).

Hence,

[X ′, Y ′](w ◦ F ) =
∑

i,j
u′iv
′
j([Xi, Yj ](w) ◦ F )

+
∑

j
X ′(v′j)(Yj(w) ◦ F )−

∑
i
Y ′(u′i)(Xi(w) ◦ F ).

However, this is precisely the condition that

T (F )!([X ′, Y ′]) =
∑
i,j

u′iv
′
j ⊗ [Xi, Yj ] +

∑
j

X ′(v′j)⊗ Yj −
∑
i

Y ′(u′i)⊗Xi.
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In the study of Lie groups, a homomorphism of Lie groups gives rise to a homo-
morphism of the respective Lie algebras. A similar phenomenon occurs for morphisms
in the category of Lie groupoids.

Let F : G′ → G be a morphism of Lie groupoids over a smooth map f : M ′ → M .
The differential T (F ) restricts to a vector bundle morphism Tα(F ) : Tα

′
G′ → TαG

because of the property α ◦ F = f ◦ α′. We define A(F ) : AG′ → AG to be the
unique vector bundle morphism over f : M ′ →M such that the following diagram of
morphisms commutes:

Tα
′
G′ TαG

AG′ AG

G′ G

M ′ M

Tα(F )

1′!

A(F )

1!

F

1′

f

1

(1.12)

Proposition 1.49. For a morphism of Lie groupoids F : G′ → G over f : M ′ →M ,
the map A(F ) : AG′ → AG is a morphism of Lie algebroids over f .

Proof. The anchor preservation condition, T (f)◦aG′ = aG◦A(F ), is easily verified by
utilising the commutativity relations of (1.12) and the property that β ◦ F = f ◦B′.

To establish the bracket condition, we first take any X ′, Y ′ ∈ Γ(AG′) with A(F )–
decompositions

A(F ) ◦X ′ =
∑

i u
′
i(Xi ◦ f) , A(F ) ◦ Y ′ =

∑
j v
′
j(Yj ◦ f) ,

where u′i, v
′
j ∈ C∞(M ′), and Xi, Yj ∈ Γ(AG). By recalling the vector bundle isomor-

phisms Φ′ : β′!AG→ Tα
′
G′ and Φ: β!AG→ TαG defined in Proposition 1.39, observe

that

T (F ) ◦
−→
X ′ = T (F ) ◦ Φ′ ◦X ′ ◦ β′

= Φ ◦A(F ) ◦X ′ ◦ β′

= Φ ◦
(∑

i
u′i(Xi ◦ f)

)
◦ β′

=
∑

i
(u′i ◦ β′)(Φ ◦Xi ◦ f ◦ β′)

=
∑

i
(u′i ◦ β′)(

−→
Xi ◦ F ).

Similarly, we can also show that T (F ) ◦
−→
Y ′ =

∑
j(v
′
j ◦ β′)(

−→
Yj ◦ F ). Hence, by Propo-

sition 1.48, we have

T (F ) ◦ [
−→
X ′,
−→
Y ′] =

∑
i,j

(u′i ◦ β′)(v′j ◦ β′)([
−→
Xi,
−→
Yj ] ◦ F )

+
∑

j

−→
X ′(v′j ◦ β′)(

−→
Yj ◦ F )−

∑
i

−→
Y ′(u′i ◦ β′)(

−→
Xi ◦ F ).

Note that
−→
X ′ are

−→
Y ′ are β′-related to aG′(X

′) and aG′(Y
′), respectively. That is,

−→
X ′(u′ ◦ β′) = aG′(X

′)(u′) ◦ β′, and
−→
Y ′(u′ ◦ β′) = aG′(Y

′)(u′) ◦ β′ for any u ∈ C∞(M ′).
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From this inspection, it follows that

A(F ) ◦ [X ′, Y ′] = T (F ) ◦ [
−→
X ′,
−→
Y ′] ◦ 1′

=
∑

i,j
u′iv
′
j([Xi, Yj ] ◦ f)

+
∑

j
aG′(X

′)(v′j)(Yj ◦ f)−
∑

i
aG′(Y

′)(u′i)(Xi ◦ f).

One can check that the assignment G 7→ AG, F 7→ A(F ) gives a well-defined functor
from the category of Lie groupoids to the category of Lie algebroids. We denote this
functor by A and it is appropriately named the Lie functor.

We now give the statement of a useful criterion for when a vector bundle morphism
of Lie algebroids is a morphism of Lie algebroids.

Proposition 1.50 ([27, Proposition 1.5]). Let ϕ : A′ → A be a vector bundle mor-
phism of Lie algebroids over a map f : M ′ →M ,

A′ A

M ′ M

ϕ

f

(1.13)

and suppose that ϕ is a fibrewise surjection. If we have a ◦ϕ = T (f) ◦ a′ and for any
X1, X2 ∈ Γ(A′), Y1, Y2 ∈ Γ(A), we have

ϕ ◦Xi = Yi ◦ f, ∀i = 1, 2 =⇒ ϕ ◦ [X1, X2] = [Y1, Y2] ◦ f, (1.14)

then (ϕ, f) is a morphism of Lie algebroids.

Remark 1.51 ([47, page 162]). The previous result still holds if the assumption that
ϕ is a fibrewise surjection is replaced with the condition that ϕ is of constant rank.

Lemma 1.52. Let (ϕ, f) be a vector bundle morphism of Lie algebroids as in (1.13),
which satisfies the property (1.14). If for any X1, X2 ∈ Γ(A′), Y1, Y2 ∈ Γ(A), we have

ϕ ◦X1 ≡ Y1 ◦ f, ϕ ◦X2 ≡ Y2 ◦ f,

in a neighbourhood of a point y ∈M ′, then

ϕ([X1, X2](y)) = [Y1, Y2](f(y)).

We finish this section with a discussion of the sub-objects in the category of Lie
algebroids.

Definition 1.53. Let A be a Lie algebroid on base M . A Lie algebroid A′ on base
M ′ is a Lie subalgebroid of A if there exist injective immersions ĩ : A′ → A and
i : M ′ →M such that (̃i, i) is a morphism of Lie algebroids.

If, in addition, the maps ĩ and i are smooth embeddings, we call A′ an embedded Lie
subalgebroid of A.

Proposition 1.54. Let A be a Lie algebroid on a base manifold M , and M ′ a closed
embedded submanifold of M . Then a vector subbundle A′ → M ′ of A|M ′ → M ′ is a
Lie subalgebroid of A if and only if the following properties hold:

(i) the anchor map a : A→ TM restricts to a map A′ → TM ′;

(ii) if X,Y ∈ Γ(A) satisfy X|M ′ , Y |M ′ ∈ Γ(A′), then [X,Y ]|M ′ ∈ Γ(A′);

(iii) if X,Y ∈ Γ(A) satisfy X|M ′ = 0 and Y |M ′ ∈ Γ(A′), then [X,Y ]|M ′ = 0.
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1.2.4 Direct product Lie algebroids

Let A1 → M1 and A2 → M2 be Lie algebroids and consider the Cartesian product
vector bundle A1 × A2 → M1 ×M2. We would like to put a Lie algebroid structure
on A1×A2 such that the two projections p̃r1 : A1×A2 → A1 and p̃r2 : A1 ×A2 → A2

are morphisms of Lie algebroids over the projections pr1 : M1 × M2 → M1 and
pr2 : M1 ×M2 →M2, respectively. Let us suppose that A1 × A2 has such a Lie alg-
ebroid structure, then in particular we must have

a1 ◦ p̃r1 = T (pr1) ◦ a , a2 ◦ p̃r2 = T (pr1) ◦ a ,

where a is the anchor map of A1 × A2, and a1 and a2 are the anchors of A1 and
A2, respectively. Viewed as a map from A1 × A2 to TM1 × TM2, it follows that
a = (a1 ◦ p̃r1, a2 ◦ p̃r2). That is, for a pair X = (X1, X2) ∈ A1 × A2, we have
a(X) = (a1(X1), a2(X2)).

The bracket condition for p̃r1 tells us that if the sections X,Y ∈ Γ(A1 × A2) have
p̃r1–decompositions

p̃r!
1(X) =

∑
i u

1
i ⊗X1

i , p̃r!
1(Y ) =

∑
j v

1
j ⊗ Y 1

j ,

where X1
i , Y

1
j ∈ Γ(A1) and u1

i , v
1
j ∈ C∞(M1 ×M2), then

p̃r!
1([X,Y ]) =

∑
i,j
u1
i v

1
j ⊗ [X1

i , Y
1
j ] +

∑
j
a(X)(v1

j )Y
1
j −

∑
i
a(Y )(u1

i )X
1
i . (1.15)

Similarly, if X and Y have p̃r2–decompositions given by

p̃r!
2(X) =

∑
k u

2
k ⊗X2

k , p̃r!
2(Y ) =

∑
l v

2
l ⊗ Y 2

l ,

where X2
k , Y

2
l ∈ Γ(A2) and u2

k, v
2
l ∈ C∞(M1×M2), then the assumption that p̃r2 is a

morphism of Lie algebroids implies

p̃r!
2([X,Y ]) =

∑
k,l
u2
kv

2
l ⊗ [X2

k , Y
2
l ] +

∑
l
a(X)(v2

l )Y
2
l −

∑
k
a(Y )(u2

k)X
2
k . (1.16)

We have a natural identification between the Cartesian product vector bundle A1×A2

and the Whitney sum pr!
1(A1)⊕ pr!

2(A2). From this viewpoint, we can write

X =
∑

i

(
u1
i ⊗X1

i

)
⊕
∑

k

(
u2
k ⊗X2

k

)
, Y =

∑
j

(
v1
j ⊗ Y 1

j

)
⊕
∑

l

(
v2
l ⊗ Y 2

l

)
,

and then equations (1.15) and (1.16) immediately imply that

[X,Y ] =
(∑

i,j
u1
i v

1
j ⊗ [X1

i , Y
1
j ] +

∑
j
a(X)(v1

j )Y
1
j −

∑
i
a(Y )(u1

i )X
1
i

)
(1.17)

⊕
(∑

k,l
u2
kv

2
l ⊗ [X2

k , Y
2
l ] +

∑
l
a(X)(v2

l )Y
2
l −

∑
k
a(Y )(u2

k)X
2
k

)
.

If we also utilise the identification between the vector bundles T (M1 × M2) and
pr!

1(TM1)⊕ pr!
2(TM2), the anchor map has the form

a(X) =
∑
i

(
u1
i ⊗ a1(X1

i )
)
⊕
∑
k

(
u2
k ⊗ a2(X2

k)
)
. (1.18)

Removing all prior assumptions, it is straightforward to check that A1×A2 becomes
a Lie algebroid when equipped with a bracket defined by (1.17) and an anchor map
defined by (1.18). We call it the direct product Lie algebroid of A1 and A2. By
construction, it is the unique Lie algebroid such that p̃r1 and p̃r2 are morphisms of
Lie algebroids. Thus, unsurprisingly, it follows that it is the direct product of A1 and
A2 in the category of Lie algebroids.
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Proposition 1.55. Let A1, A2 and A3 be Lie algebroids with base manifolds M1, M2

and M3, respectively. Then the direct product Lie algebroid (A1×A2)×A3 with base
(M1×M2)×M3 is isomorphic to the direct product Lie algebroid A1× (A2×A3) with
base M1 × (M2 ×M3).

Proposition 1.56. Let G1 and G2 be Lie groupoids with base manifolds M1 and M2,
respectively. Then the Lie algebroid A(G1 × G2) of the Cartesian product groupoid
G1×G2 with base manifold M1×M2 is isomorphic to the direct product Lie algebroid
AG1 ×AG2.

1.2.5 Actions of Lie algebroids

The notion of a Lie algebra action extends in a natural way to a notion of a Lie
algebroid action.

Definition 1.57. Let A be a Lie algebroid on M , and let f : M ′ →M be a smooth
map. Then a Lie algebroid action of A on f is a homomorphism of Lie algebras
Γ(A) → X(M ′), X 7→ X†, which is also a homomorphism of C∞(M)-modules, and
satisfies the following condition:

T (f) ◦X† = a(X) ◦ f,

for all X ∈ Γ(A).

Given an action of a Lie algebroid A → M on a smooth map f : M ′ → M , for
every m′ ∈M ′, we have an induced linear map Af(m′) → Tm′M

′, v 7→ v†, defined by

v† = ṽ†(m′), where ṽ is any smooth section of A satisfying ṽ(f(m′)) = v. We also
acquire an induced Lie algebroid structure on the pullback vector bundle f !A→M ′.
The anchor map of this Lie algebroid structure is defined by

a† : f !(A)→ TM, (v,m′) 7→ v†.

Again we recall that, as a C∞(M ′)-module, Γ(f !(A)) can be identified with the tensor
product C∞(M ′)⊗ Γ(A). Then, the Lie bracket is defined by∑

i

u′i ⊗Xi,
∑
j

v′j ⊗ Yj

 =
∑
i,j

u′iv
′
j ⊗ [Xi, Yj ] + u′iX

†
i (v
′
j)⊗ Yj − v′jY

†
j (u′i)⊗Xi.

If we view the anchor as a map of sections, then we have

a†

(∑
i

u′i ⊗Xi

)
=
∑
i

u′iX
†
i .

It is not too hard to show that this structure determines a well-defined Lie algebroid.2

We refer to a Lie algebroid of this form as an action Lie algebroid and denote it by
A^M ′ or A^ f .

In a similar manner that a Lie group action gives rise to a Lie algebra action, a Lie
groupoid action gives rise to a Lie algebroid action. Indeed, if G is a Lie groupoid on
base M and θ is a Lie groupoid action of G on a smooth map f : M ′ → M , then we
have a Lie algebroid action of AG on f defined by

X†(m′) = T1f(m′)(θm′)(X(f(m′))), (1.19)

for X ∈ Γ(AG), m′ ∈M ′.
2See [47, Proposition 4.1.2] or [27, Theorem 2.4] for details.
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Proposition 1.58 ([27, Theorem 2.5]). Let G be a Lie groupoid with base manifold
M and f : M ′ →M a smooth map. Suppose that we have a Lie groupoid action of G
on f . Then the Lie algebroid of the action groupoid G^ f is isomorphic to the action
Lie algebroid AG^ f .

§ 1.3 Double Lie structures

A key attribute that the notion of a groupoid has over the notion of a group is the
ability to produce interesting objects by taking groupoid objects in a category. Note
that a group object in the category of groups is nothing more than an abelian group;
however, when we consider a groupoid object in the category of groupoids a new and
interesting object appears. In this section, we will consider groupoid objects in the
categories of Lie groupoids, Lie algebroids and vector bundles.

1.3.1 Double Lie groupoids

The introduction of double groupoids is accredited to Ehresmann [21]. The develop-
ment of a Lie theory for double Lie groupoids was initiated by Mackenzie [43, 45].
Let us begin with the definition of a double groupoid.

Definition 1.59. A double groupoid is a quadruple of sets (S;H,V ;M), such that
H and V have groupoid structures with base M , and S has two groupoid structures,
one with base V and one with base H, such that the structure maps of S ⇒ V are
morphisms of groupoids over the corresponding structure maps of H ⇒M .

The groupoid structure on S with base V is called the horizontal structure; likewise
the groupoid structure on S with base H is called the vertical structure. The two
groupoid structures with base M are referred to as the side groupoids, and M itself
is often referred to as the double base.

We often illustrate the groupoid structures of a double groupoid diagrammatically:

S V

H M.

α̃V ,β̃V

α̃H ,β̃H

αV ,βV

αH ,βH

(1.20)

Given a double groupoid (S;H,V ;M), let us clarify the notation that we will use
throughout. We denote the source and target projections of the groupoid H ⇒M by
αH and βH , respectively, and the partial multiplication, identity and inversion maps
by κH , 1H and ιH , respectively. Similarly, we denote the structure maps of V ⇒ M
by αV , βV , κV , 1V and ιV .

For the horizontal groupoid structure S ⇒ V , we denote the source and target pro-
jections by α̃H and β̃H , respectively, and the partial multiplication, identity and
inversion maps by κ̃H , 1̃H and ι̃H , respectively. For (s2, s1) ∈ S ∗V S, we denote the
product κ̃H(s2, s1) by s2 � s1, and the inverse of any s ∈ S by s−1(H). (Here, we are
using H as a subscript and superscript to indicate the horizontal structure.)
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Similarly, for the vertical groupoid structure S ⇒ H, we will denote the structure
maps by α̃V , β̃V , κ̃V , 1̃V and ι̃V . For a pair (s2, s1) ∈ S ∗H S, we denote the product
κ̃V (s2, s1) by s2 � s1, and we use s−1(V ) to denote the inverse of an element s ∈ S.
For any m ∈M , we denote the double identity 1̃H

1Vm
= 1̃V

1Hm
by 12

m.

Remark 1.60. The definition of a double groupoid (S;H,V ;M) is symmetrical in
the following sense. The condition that the structure maps of the horizontal structure
are groupoid morphisms over the corresponding structure maps of H ⇒M is equiv-
alent to the condition that the structure maps of the vertical structure are groupoid
morphisms over the corresponding structure maps of V ⇒M .

Definition 1.61. A double Lie groupoid is a double groupoid (S;H,V ;M) with
smooth manifold structures on each set, such that all four groupoid structures are Lie
groupoid structures, and the double source map (α̃V , α̃H) : S → H×αV is a surjective
submersion. Here, H×α V is just the pullback manifold given by (αH × αV )−1(∆M ).

We call (S;H,V ;M) a weak double Lie groupoid when the condition that the double
source map is surjective is removed.

In some sense, a double groupoid can be seen as a groupoid object in the category of
groupoids.3 In fact, this type of interpretation can be extended. That is, every weak
double Lie groupoid is a groupoid object in the category of Lie groupoids. However,
this statement alludes to the fact that the domains of the partial multiplications are
Lie groupoids themselves, which is not immediately obvious. The following result will
provide us with a mechanism to prove this fact.

Proposition 1.62.4 Let F1 : G1 → G and F2 : G2 → G be partial fibrations over
smooth maps f1 : M1 → M and f2 : M2 → M , respectively. Suppose that f1 and f2

are transversal to each other. Then the pullback G1×GG2 of F1 and F2 is an embedded
submanifold of the product G1 × G2 and has a Lie groupoid structure with base the
pullback manifold M1 ×M M2. Moreover, G1 ×G G2 is an embedded Lie subgroupoid
of the Cartesian product groupoid G1 ×G2.

Proof. Let α̃, β̃, κ̃, 1̃ and ι̃ denote the restrictions of the structure maps of the
Cartesian product groupoid G1×G2 to the pullbacks G1×GG2 and M1×M M2. We
first check that restricting the codomains of these maps give structure maps for a
groupoid structure on G1 ×G G2 with base M1 ×M M2. To do this, it suffices just
to verify that these maps are well-defined. However, this is a simple check using the
fact that F1 and F2 are morphisms of groupoids over f1 and f2, respectively.

Since f1 and f2 are transversal to each other, it follows that M1×MM2 is an embedded
submanifold of M1×M2. Let us now check that G1×GG2 is an embedded submanifold
of the product G1 ×G2.

Consider the maps defined by

ψ1 : f !
1G→ G , (m1, g) 7→ g ; ψ2 : f !

2G→ G , (m2, g) 7→ g.

It is straightforward to verify that these maps are transversal to each other, again
using the fact that f1 and f2 are transversal to each other. Thus, we get an embedded
submanifold S := (ψ1 × ψ2)−1(∆G) of f !

1G× f !
2G.

3For the notion of a groupoid object in a category, see for example [41, Section XII.1]
4This result was given for fibrations by Brown and Mackenzie [7, Proposition 1.2]. Here, we

strengthen the result to include partial fibrations.
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Next, consider the map F := F !
1 × F !

2 : G1 × G2 → f !
1G × f !

2G. Since F1 and F2 are
partial fibrations it follows that F is a submersion. Thus, F−1(S) is an embedded
submanifold of G1 ×G2. However, one can see that F−1(S) is precisely G1 ×G G2.

It remains to show that G1×GG2 is a Lie groupoid on M1×M M2. Let us first show
that the source projection α̃ is a submersion.

Consider the diagonal map f : M1 ×M M2 → M , (m1,m2) 7→ f1(m1) = f2(m2), and
the induced pullback manifold given by the diagram

f !G G

M1 ×M M2 M.

p α

f

Note, since α is a submersion, it follows that p is a submersion. We also have a
diffeomorphism ψ : f !G → S given by ((m1,m2), g) 7→ ((m1, g), (m2, g)). One can
also check that the restriction of F , to domain G1 ×G G2 and codomain S, remains
a submersion. Let us denote this restriction by F̃ .

We can see that the source projection can be decomposed as α̃ = p ◦ψ−1 ◦ F̃ . Hence,
α̃ is a submersion as it is just a composition of submersions.

Since inversion in the Cartesian product groupoid G1 ×G2 is a diffeomorphism, ι̃ is
also a diffeomorphism, as it is a restriction of the domain and codomain to embedded
submanifolds. Now since β̃ = α̃ ◦ ι̃, it follows that the target projection β̃ is also a
submersion.

The partial multiplication κ̃ and the identity map 1̃ are smooth since they are just
restrictions of smooth maps to embedded submanifolds.5 Hence G1 ×G G2 is a Lie
groupoid; moreover, it is an embedded Lie subgroupoid of G1 ×G2.

Consider a weak double Lie groupoid (S;H,V ;M). Since the double source map
(α̃V , α̃H) : S → H ×α V is a submersion, it follows that both the source projections
α̃H and α̃V are partial fibrations over αH and αV , respectively. Using the property
that the inversion maps are diffeomorphisms, one can also deduce that the target
projections β̃H and β̃V are partial fibrations over βH and βV , respectively. Now
Proposition 1.62 implies that the domains S ∗V S and S ∗H S of the partial multi-
plications in S are embedded Lie subgroupoids of the Cartesian product groupoids
S×S ⇒ H×H and S×S ⇒ V ×V with base manifolds H ∗H and V ∗V , respectively.

The double source map of the weak double Lie groupoid (S;H,V ;M) being a sub-
mersion also has another important implication. It induces another Lie groupoid
structure with base M . Referred to as the core groupoid, it was first introduced for
double Lie groupoids by Mackenzie and Brown [7, 43].

Let us first consider a general double groupoid (S;H,V ;M). The core of (S;H,V ;M)
is defined to be the subset of S given by

C := {c ∈ S | ∃m ∈M s.t. α̃H(c) = 1Vm, α̃V (c) = 1Hm}.

Indeed, the core has a natural groupoid structure on M , with source and target
projections defined by αC := αV ◦ α̃H |C , and βC := βV ◦ β̃H |C , respectively. For any

5See for example [34, Theorem 5.27, Corollary 5.30] for proofs of these standard results.
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pair (c2, c1) ∈ C ∗ C, we define their product by

c2 � c1 :=
(
c2 � 1̃V

β̃V (c1)

)
� c1 =

(
c2 � 1̃H

β̃H(c1)

)
� c1.

The identity map is given by 1C : M → C; m 7→ 1Cm := 12
m, and for any c ∈ C, we

define its inverse by

c−1(C) := c−1(H) � 1̃H
β̃H(c)−1 = c−1(V ) � 1̃V

β̃V (c)−1 .

The checks that these structure maps are well-defined and do define a groupoid over
M are straightforward and left to the reader.

Definition 1.63. Let (S;H,V ;M) be a double groupoid. The groupoid C ⇒ M
described above is called the core groupoid of (S;H,V ;M).

It was stated in [7] that the core groupoid of a double Lie groupoid is in fact a Lie
groupoid. We extend this result to include the core groupoids of weak double Lie
groupoids.

Proposition 1.64. Let (S;H,V ;M) be a weak double Lie groupoid. Then the core
groupoid C ⇒M has a Lie groupoid structure.

Proof. On inspection, it should be clear that we can express the core C as the subspace
(α̃V , α̃H)−1(1H × 1V (∆M )). Hence, C is an embedded submanifold of S, using the
fact that (α̃V , α̃H) is a submersion and the identity maps are smooth embeddings.

It is not hard to verify that all the structure maps of the core groupoid are smooth.
The fact that the inversion map ιC : C → C is self-inverse also implies that it is a
diffeomorphism.

It remains to show that the source and target projections are submersions. Let us
start with the source projection αC : C → M . Fix c ∈ C and let m = αC(c); we
need to show that the tangent map Tc(αC) : TcC → TmM is surjective. Note that the
tangent space of the core at c is just given by

TcC = {X ∈ TcS | ∃Y ∈ TmM s.t. T (α̃H)(X) = T (1V )(Y ), T (α̃V )(X) = T (1H)(Y )}.

Take Y ∈ TmM , and consider Ỹ := (T (1H)(Y ), T (1V )(Y )) ∈ T(1Hm,1
V
m)(H×αV ). Since

the double source map (α̃V , α̃H) : S → H ×α V is a submersion, there exists X ∈ TcS
such that T (α̃V , α̃H)(X) = Ỹ . That is,

(T (α̃V )(X), T (α̃H)(X)) = (T (1H)(Y ), T (1V )(Y )).

Hence, it follows that X ∈ TcC. Moreover,

T (αC)(X) = T (αV )(T (α̃H)(X)) = T (αV )(T (1V )(Y )) = Y.

Thus, αC is a submersion. Since we can express the target projection as a composition
of submersions, βC = αC ◦ ιC , it is also a submersion.

Let us consider some examples of double Lie groupoids and their corresponding core
groupoids.6 We will see some examples of weak double Lie groupoids appearing in
Chapters 3 and 4.

6The following are standard examples given in the literature; compare with the examples given in
[63, 7, 43].
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Example 1.65. Consider a smooth manifold M . Let Θ: M4 → M4 be the diffeo-
morphism defined by (m,x, y, z) 7→ (m, y, x, z). We can construct a double Lie group-
oid (M4;M ×M,M ×M ;M), whose side groupoids are given by the pair groupoid
M ×M on M . The vertical structure is given by the pair groupoid M4 on M ×M ,
and the horizontal structure is defined so that its image Θ(M4) is a pair groupoid
on M ×M , and so that Θ is an isomorphism of groupoids over M ×M . The core
groupoid is also isomorphic to the pair groupoid M ×M on M . �

Example 1.66. Let G be a Lie groupoid on a base manifold M . We can form a
double Lie groupoid structure on the quadruple (G × G;G,M ×M ;M). The side
groupoids for which are the pair groupoid M×M on M , and the original Lie groupoid
G on M . The horizontal structure is given by the Cartesian product G×G on base
M ×M , and the vertical structure is given by the pair groupoid G × G on base G.
Diagrammatically, we have

G×G M ×M

G M.

It is not hard to see that the core groupoid is in fact isomorphic to the original Lie
groupoid G⇒M . �

Example 1.67. Let (S1;H1, V1;M1) and (S2;H2, V2;M2) be double Lie groupoids.
We can give S1×S2 Cartesian product groupoid structures on base manifolds H1×H2

and V1 × V2. Moreover, H1 × H2 and V1 × V2 have Cartesian product groupoid
structures on the base manifold M1 ×M2, and it is straightforward to check that
(S1×S2;H1×H2, V1× V2;M1×M2) forms a double Lie groupoid. This is called the
Cartesian product double groupoid. An identical construction can also be done for
weak double Lie groupoids.

Example 1.68. Recall from Example 1.15 that the anchor of a Lie groupoid G⇒M
is defined as the map χG = (β, α) : G → M ×M . Let us introduce the notation χ̃G
for the similar map (α, β) : G→M ×M .

Consider two Lie groupoids H and V on the same base manifold M , with anchor
maps χH and χV which are transversal to each other. We can form the pullback7

groupoid χ̃!!
H(V × V ) on base H, and also the pullback groupoid χ!!

V (H ×H) on base
V . We have the following pullback diagrams

χ̃!!
H(V × V ) V × V χ!!

V (H ×H) H ×H

H ×H M4 V × V M4.

χV×V χH×H

χ̃H×χ̃H χV ×χV

Note, via the diffeomorphism χ!!
V (H ×H)→ χ̃!!

H(V ×V ), (v, g, h, u) 7→ (g, u, v, h), we
can give χ̃!!

H(V × V ) a Lie groupoid structure with base V . We denote χ̃!!
H(V × V )

with these two groupoid structures by �(H,V ). It is straightforward to check that

7See Section 1.1.4 for the construction of a pullback groupoid.
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this forms a double Lie groupoid,

�(H,V ) V

H M.

As a manifold, the core is diffeomorphic to the pullback of χH and χV . It is an
embedded Lie subgroupoid of the Cartesian product groupoid H × V via inclusion
over the diagonal map. �

We finish this subsection by giving the notion of a morphism for these double struc-
tures.

Definition 1.69. Let (S;H,V,M) and (S′;H ′, V ′;M ′) be double groupoids with
maps F : S′ → S, FH : H ′ → H, FV : V ′ → V and f : M ′ → M . We say that
(F ;FH , FV ; f) : (S′;H ′, V ′;M ′) → (S;H,V,M) is a morphism of double groupoids if
the four pairs (F, FH), (F, FV ), (FH , f) and (FV , f) are all morphisms of groupoids.

When, in addition, (S;H,V,M) and (S′;H ′, V ′;M ′) are weak double Lie group-
oids and the maps F , FH , FV and f are all smooth, we say that (F ;FH , FV ; f)
is a morphism of double Lie groupoids. If F is also a diffeomorphism then we call
(F ;FH , FV ; f) an isomorphism of double Lie groupoids.

1.3.2 VB-groupoids

In this subsection, we consider the groupoid objects in the category of vector bundles.

Definition 1.70. A VB-groupoid is a quadruple of smooth manifolds (Ω;A,G;M),
such that Ω and G are Lie groupoids with bases A and M , respectively, and Ω and A
are vector bundles over G and M , respectively, such that the structure maps of the
Lie groupoid Ω ⇒ A are vector bundle morphisms over the corresponding structure
maps of G⇒M .

Ω G

A M.

α̃,β̃

q̃

α,β

q

(1.21)

The observant reader should spot that we have made no assumption that the double
source map (q̃, α̃) : Ω → G ×M A is a surjective submersion, as we did for double
Lie groupoids. However, the following result of Li-Bland and Ševera shows that this
property is still upheld.

Proposition 1.71 ([35, Appendix A., Lemma 2]). Let (Ω;A,G;M) be a VB-groupoid,
then the double source map (q̃, α̃) : Ω→ G×M A is a surjective submersion.

As an immediate consequence, we see that every VB-groupoid is an example of a
double Lie groupoid.
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We define the core of a VB-groupoid (Ω;A,G;M) to be the subset of Ω given by

K := {k ∈ Ω | ∃m ∈M s.t. α̃(k) = 0m, q̃(k) = 1m}.

A secondary consequence of the previous proposition is that K = (q̃, α̃)−1(1×0(∆M ))
is an embedded submanifold of Ω. Moreover, the core K becomes a vector bundle over
M by restricting the structure maps of the vector bundle Ω → G. We call K → M
the core vector bundle of the VB-groupoid.

Example 1.72. Let G be a Lie groupoid with base manifold M . Consider the tangent
prolongation groupoid of G ⇒ M defined in Example 1.7. Recall that the structure
maps of TG ⇒ TM are obtained by applying the tangent functor to each of the
structure maps of G, and hence, in particular, they are all vector bundle morphisms.

TG G

TM M

T (α),T (β) α,β

Thus, (TG;TM,G;M) is an example of a VB-groupoid. The core vector bundle is
given by AG→M . �

Example 1.73. We now generalise the construction of Example 1.9. Let G be a Lie
groupoid on base M . We will construct a Lie groupoid structure on T ∗G with base
A∗G, the source and target projections for which are defined in the following way.
Take ϕ ∈ T ∗gG and define α̃(ϕ) ∈ A∗α(g)G and β̃(ϕ) ∈ A∗β(g)G by

〈α̃(ϕ), X〉 = 〈ϕ, T (Lg)(X − T (1)(a(X)))〉,

〈β̃(ϕ), Y 〉 = 〈ϕ, T (Rg)(Y )〉,

for X ∈ Aα(g)G and Y ∈ Aβ(g)G. To define the product of ϕ2 ∈ T ∗hG and ϕ ∈ T ∗gG
such that α̃(ϕ2) = β̃(ϕ2), we first observe that, since the partial multiplication of
G is a submersion, for any Z ∈ ThgG, there exists X ∈ ThG and Y ∈ TgG with
T (κ)(X,Y ) = Z. We define

〈ϕ2ϕ1, Z〉 = 〈ϕ2, X〉+ 〈ϕ1, Y 〉.

To define the identity element of ψ ∈ A∗mG, we first make the observation that any
Z ∈ T1mG can be written as Z = T (1)(x) + X for some x ∈ TmM and X ∈ AmG.
We then define 1̃ψ ∈ T ∗1mG by

〈1̃ψ, Z〉 = 〈ψ,X〉.

One can check that this defines a Lie groupoid structure T ∗G⇒ A∗G. Furthermore,
this structure actually gives rise to a VB-groupoid (T ∗G;A∗G,G;M). We call this the
dual VB-groupoid8 of (TG;TM,G;M). The core vector bundle of (T ∗G;A∗G,G;M)
is given by the tangent bundle TM →M . �

We now briefly define morphisms for VB-groupoids.

8There exists an abstract notion of dual VB-groupoid; see [44, §1] for more details.
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Definition 1.74. Let (Ω;A,G;M) and (Ω′;A′, G′;M ′) be VB-groupoids with maps
F : Ω′ → Ω, FA : A′ → A, FG : G′ → G and f : M ′ → M . We say that (F ;FA, FG; f)
is a morphism of VB-groupoids if (F, FA) and (FG, f) are morphisms of Lie groupoids,
and (F, FG) and (FA, f) are vector bundle morphisms.

Ω′ G′

Ω G

A′ M ′

A M

F FG

FA f

1.3.3 LA-groupoids

In this final subsection, we introduce the groupoid objects in the category of Lie
algebroids.

Definition 1.75. An LA-groupoid is a VB-groupoid (Ω;A,G;M) such that both
Ω → G and A → M are Lie algebroids, and the structure maps of the Lie groupoid
Ω⇒ A are morphisms of Lie algebroids over the corresponding structure maps of the
Lie groupoid G⇒M .

Example 1.76. Let G be a Lie groupoid with base manifold M . Consider the VB-
groupoid (TG;TM,G;M) of Example 1.72. Recall that the structure maps of the
tangent prolongation groupoid TG ⇒ TM are obtained by applying the tangent
functor to each of the structure maps of G ⇒ M . Hence, by Proposition 1.48, all of
these structure maps are morphisms of Lie algebroids over the corresponding structure
maps of G⇒M . Thus, (TG;TM,G;M) is an LA-groupoid. �

Example 1.77. Let (S;H,V ;M) be a double Lie groupoid. We can consider the
Lie algebroid AHS → V of the horizontal structure S ⇒ V , and the Lie algebroid
AH →M of the side groupoid H ⇒M . By applying the Lie functor to the structure
maps of the vertical structure S ⇒ H, we produce structure maps for a Lie groupoid
structure on AHS with base AH. Note, the partial multiplication for which is given
by the composite

AHS ∗AH AHS A(S ∗V S) AHS,
∼= A(κ̃V )

where here we have used the property that the Lie functor preserves pullbacks. By
Proposition 1.49, the structure maps of AHS ⇒ AH are all morphisms of Lie algebr-
oids over the corresponding structure maps of V ⇒ M . Hence, (AHS;AH,V ;M) is
an LA-groupoid.

AHS V AV S AV

AH M H M.

A(α̃V ),A(β̃V ) αV ,βV

A(α̃H),A(β̃H)

αH ,βH
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Similarly, we may take the Lie algebroid AV S → H of the vertical structure S ⇒ H,
and the Lie algebroid AV →M of the side groupoid V ⇒M . Then, applying the Lie
functor to the structure maps of the horizontal structure S ⇒ V gives structure maps
for a Lie groupoid AV S ⇒ AV . An analogous argument shows that (AV S;AV,H;M)
is an LA-groupoid. �

We finish by introducing the corresponding notion of a morphism.

Definition 1.78. Let (Ω;A,G;M) and (Ω′;A′, G′;M ′) be LA-groupoids with maps
F : Ω′ → Ω, FA : A′ → A, FG : G′ → G and f : M ′ → M . We say that (F ;FA, FG; f)
is a morphism of LA-groupoids if (F, FA) and (FG, f) are morphisms of Lie groupoids,
and (F, FG) and (FA, f) are morphisms of Lie algebroids.



Chapter 2

Poisson geometry

In this chapter, we give an overview of the key topics in Poisson geometry. After
providing a standard treatment of the theory, we go on to outline the prevalence of
Lie groupoids and Lie algebroids within the field. We also describe the role that
double Lie structures play within Poisson and symplectic geometry.

§ 2.1 Poisson structures

In this section, we will present preliminaries on Poisson manifolds, coisotropic sub-
manifolds, Poisson Lie groups, Lie bialgebras and Manin triples.

2.1.1 Poisson manifolds

Let us begin with a discussion of the primary objects of Poisson geometry.

Definition 2.1. A Poisson manifold is a smooth manifold P endowed with a Lie
algebra structure on its space of functions C∞(P ) such that the bracket satisfies the
following property:

{f, gh} = g{f, h}+ h{f, g}, (2.1)

for all f, g, h ∈ C∞(M). We call a Lie bracket satisfying this condition a Poisson
bracket.

It follows from condition (2.1), that for any function f ∈ C∞(P ) on a Poisson manifold
P , the linear operator {f, ·} : C∞(P )→ C∞(P ) is a derivation. Thus, this derivation
defines a vector field on P which we denote by Xf . Explicitly, this vector field is
defined by

Xf (g) = {f, g},

for all g ∈ C∞(P ). We refer to vector fields on a Poisson manifold of this form as
Hamiltonian vector fields.

Proposition 2.2. The map C∞(P ) → X(P ), f 7→ Xf , is a Lie algebra homo-
morphism.

Proof. Firstly note that the linearity of the map follows immediately from the bilin-
earity of the Poisson bracket. Now for any f, g, h ∈ C∞(P ), the Jacobi identity for

31
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the Poisson bracket implies that

[Xf , Xg](h) = Xf (Xg(h))−Xg(Xf (h))

= {f, {g, h}} − {g, {f, h}}
= {{f, g}, h}
= X{f,g}(h).

Let (xi) be local coordinates on a given Poisson manifold P . We can construct a
(rough) contravariant 2-tensor field π : P → TP ⊗ TP , defined locally by

π = πij
∂

∂xi
⊗ ∂

∂xj
,

where the component functions are given by πij = {xi, xj}. Since each component
function of π is smooth in every smooth coordinate chart, it follows that π is smooth.
Since the bracket is anti-symmetric, each of the component functions satisfies the
property that πij = −πji, and hence π is alternating. Alternating contravariant 2-
tensor fields are often referred to simply as bivector fields. Due to this, one will often
see π referred to as the Poisson bivector of P .

One may wonder whether the Jacobi identity for the bracket can be expressed in a
form involving only this bivector field. To give a satisfactory answer to this query,
we need to introduce some more machinery.

Recall that a k-multivector field on a smooth manifold M , is a smooth section of
the tensor bundle

∧k TM . We will use the notation Ωk(M) = Γ(
∧k TM) to denote

this space of sections. Note that a Poisson bivector π, as described above, is a 2-
multivector field.

Those with any interest in differential geometry will have undoubtedly come across
the Lie derivative – an operator LX : Ωk(M) → Ωk(M) defined for any vector field
X ∈ X(M). It provides a natural extension of the usual bracket of vector fields;
indeed LXY = [X,Y ], for any X,Y ∈ X(M). In fact, it is possible to formulate a
further extension to give a bracket of multivector fields.

Theorem 2.3. 1 Let M be a smooth manifold. There exists a unique local type
extension of the Lie derivative to a biderivation, [[· , ·]] : Ωk(M)×Ωl(M)→ Ωk+l−1(M),
such that

[[X1 ∧ · · · ∧Xk, V ]] =

k∑
i=1

(−1)i+1X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xk ∧ LXiV, (2.2)

for all Xi ∈ X(M), V ∈ Ω•(M).

This biderivation is called the Schouten bracket (also sometimes referred to as the
Schouten-Nijenhuis bracket). It has the following properties:

(i) [[A,B]] = (−1)ab[[B,A]],

(ii) [[A,B ∧ C]] = [[A,B]] ∧ C + (−1)(a+1)bB ∧ [[A,C]],

(iii) (−1)ac[[[[A,B]], C]] + (−1)ba[[[[B,C]], A]] + (−1)cb[[[[C,A]], B]] = 0,

1A proof can be found in [60, Theorem 1.1].
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for all A ∈ Ωa(M), B ∈ Ωb(M), C ∈ Ωc(M). One can think of this third property as
a graded version of the Jacobi identity. We can also deduce the following property,2

which gives a relationship for when a differential form is paired with the Schouten
bracket of two multivector fields:

(iv) i[[A,B]]ω = (−1)(a+1)biAd(iBω) + (−1)aiBd(iAω)− iA∧Bdω,

for A ∈ Ωa(M), B ∈ Ωb(M), and ω ∈ Ωa+b−1(M).

Returning to the case of a Poisson manifold P , it should be clear from the construction
of the bivector field π that the corresponding Poisson bracket can be expressed in the
form {f, g} = π(df, dg), for f, g ∈ C∞(P ). Moreover, with a little extra work, one can
now show that the Jacobi identity for the Poisson bracket implies that

[[π, π]] = 0. (2.3)

We omit the computation here;3 instead we prefer to give a proof of the converse
result:

Proposition 2.4. Let π be a bivector field on a smooth manifold P , satisfying
[[π, π]] = 0. Then P is a Poisson manifold with Poisson bracket defined by

{f, g} = π(df, dg),

for any f, g ∈ C∞(P ).

Proof. The anti-symmetry of the bracket and property (2.1) follow immediately from
the fact π is a bivector field. It remains to show that the bracket satisfies the Jacobi
identity.

Let ω = df ∧ dg ∧ dh, for some functions f, g, h ∈ C∞(P ). By property (iv) above, we
have

i[[π,π]]ω = (−1)6iπd(iπω) + (−1)2iπd(iπω)− iπ∧πdω = 2iπd(iπω).

Note that the term iπ∧πdω vanishes as ω is a closed form. It is a straightforward
computation to show that

iπω =	π(df, dg)dh =	{f, g}dh.

Here, 	 denotes the sum over the circular permutations of f, g, h. Another standard
computation gives

i[[π,π]]ω = 2iπd
(
	{f, g}dh

)
= 2	π(d{f, g}, dh) = 2	{{f, g}, h}.

The coefficient here will depend on how the wedge product has been defined. Now
[[π, π]] = 0 implies that 	{{f, g}, h} = 0, which is precisely the Jacobi identity.

A bivector field on a smooth manifold that satisfies equation (2.3) is called a Poisson
tensor. We will use the term Poisson structure to refer to either a Poisson bracket
or a Poisson tensor. In subsequent sections, we may denote a Poisson manifold as a
pair (P, π) to indicate the Poisson structure.

2The computation is straightforward, see [4] for further details.
3Full details can be found in [60, Proposition 1.4] or [47, Proposition 10.1.3].
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Any Poisson tensor π on a manifold P has an associated vector bundle morphism
π# : T ∗P → TP , defined by

〈ψ, π#(ϕ)〉 = π(ϕ,ψ),

for ϕ,ψ ∈ T ∗P . Here, the bracket 〈·, ·〉 denotes the natural pairing of a vector bundle
and its dual – this notation will be adopted throughout. We call π# the Poisson
anchor of P .

Every smooth manifold can be given the trivial Poisson structure, where the bracket
maps any two smooth functions to the zero function. Given a Poisson manifold (P, π),
we can give P another Poisson structure by assigning the Poisson tensor to be −π.
This is often referred to as the opposite Poisson structure, and we will use the short-
hand notation P to indicate when we would like to consider P as a Poisson manifold
with this structure. Let us now take a look at some more interesting examples.

Example 2.5. Let (M,ω) be a symplectic manifold. Nondegeneracy of the sym-
plectic form ω implies that the vector bundle morphism ω[ : TM → T ∗M , defined
by

〈ω[(X), Y 〉 = ω(X,Y ),

for X,Y ∈ TM , is an isomorphism. Consider a bivector field π with anchor defined
by π# = −(ω[)−1. That π is alternating follows immediately from the fact that ω is
alternating. Note that, in particular, we have ω[(Xf ) = −df .

We claim that π defines a Poisson structure on M . All that needs to be checked is
that the associated bracket given by

{f, g} = π(df, dg) = ω(Xf , Xg),

for f, g ∈ C∞(M), satisfies the Jacobi identity. Let f, g, h ∈ C∞(M), and observe that

dω(Xf , Xg, Xh) =	
(
Xf (ω(Xg, Xh))− ω([Xf , Xg], Xh)

)
=	

(
{f, {g, h}} −

(
{f, {g, h}} − {g, {f, h}}

))
=	{g, {f, h}}.

Again, we are using 	 here to denote the sum over the circular permutations of f, g, h.
However, since ω is a closed form, we have dω = 0, and thus the Jacobi identity is
immediate. �

Example 2.6. Let g be a Lie algebra. The dual vector space g∗ can be given a
natural Poisson structure. We first make the observation that for any f ∈ C∞(g∗)
and ξ ∈ g∗ we have df(ξ) ∈ T ∗ξ g∗ ∼= g. We thus can define a bracket by

{f, g}(ξ) = 〈[df(ξ), dg(ξ)], ξ〉,

for all f, g ∈ C∞(g∗), ξ ∈ g∗. It is routine to check that this defines a Poisson bracket
on g∗. This is called the Lie-Poisson structure. �

Example 2.7. Suppose that (P, πP ) and (Q, πQ) are Poisson manifolds. The product
manifold P ×Q inherits a natural Poisson structure given by πP×Q = πP ⊕ πQ. One
can easily verify that the corresponding Poisson bracket is given by

{f, g}P×Q(x, y) = {f(·, y), g(·, y)}P (x) + {f(x, ·), g(x, ·)}Q(y),

for x ∈ P , y ∈ Q, and f, g ∈ C∞(P ×Q). We call this the product Poisson structure
on P ×Q. �
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2.1.2 Poisson maps and coisotropic submanifolds

We now consider the morphisms and sub-objects in the category of Poisson manifolds;
these are called Poisson maps and Poisson submanifolds, respectively. We also discuss
coisotropic submanifolds, which play a role in Poisson geometry similar to that played
by Lagrangian submanifolds in symplectic geometry.

Definition 2.8. Let P and Q be Poisson manifolds. A smooth map F : P → Q is a
Poisson map if it preserves the Poisson brackets. That is,

{f, g}Q ◦ F = {f ◦ F, g ◦ F}P , (2.4)

for all f, g ∈ C∞(Q).

Alternatively, we can express this condition between the Poisson brackets as a con-
dition between the Poisson tensors.

Proposition 2.9. Let (P, πP ) and (Q, πQ) be Poisson manifolds, and F : P → Q
a smooth map. Then F is a Poisson map if and only if the Poisson tensors are
F -related. That is,

(T (F )⊗ T (F ))(πP (x)) = πQ(F (x)), (2.5)

for every x ∈ P .

Proof. Suppose that F is a Poisson map. Let x ∈ P , and observe that for any
f, g ∈ C∞(Q), we have

〈(df ⊗ dg)(F (x)), (T (F )⊗ T (F ))(πP (x))〉 = 〈(d(f ◦ F )⊗ d(g ◦ F ))(x), πP (x)〉
= {f ◦ F, g ◦ F}P (x)

= {f, g}Q(F (x))

= 〈(df ⊗ dg)(F (x)), πQ(F (x))〉.

Now consider an arbitrary 2-covector field ϕ of Q. In a smooth chart containing F (x),
we can write ϕ locally as

ϕ =
∑
i,j

uijdxi ⊗ dxj ,

where uij ∈ C∞(Q), and (xi) are local coordinates on Q. Hence, by the calculation
above, it follows that

〈ϕ(F (x)),(T (F )⊗ T (F ))(πP (x))〉

=
∑
i,j

uij(F (x))〈(dxi ⊗ dxj)(F (x)), (T (F )⊗ T (F ))(πP (x))〉

=
∑
i,j

uij(F (x))〈(dxi ⊗ dxj)(F (x)), πQ(F (x))〉

= 〈ϕ(F (x)), πQ(F (x))〉.

Thus, equation (2.5) holds. The converse is even simpler to show.

Remark 2.10. Note that the identity (2.5) can also be expressed in terms of the
Poisson anchors. Then the previous result can be restated as F is Poisson if and only
if

T (F ) ◦ π#
P (F ∗ϕ) = π#

Q (ϕ) ◦ F,

for all ϕ ∈ Ω1(Q).
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As a consequence of this result, and from the definition of the product Poisson struc-
ture seen in Example 2.7, we arrive at the following:

Proposition 2.11. Suppose (P, πP ), (Q, πQ), and (M,πM ) are Poisson manifolds,
and F : P × Q → M is a smooth map. Then, with P × Q equipped with the product
Poisson structure, F is a Poisson map if and only if

πM (F (x, y)) = T (Fx)(πQ(y)) + T (Fy)(πP (x)),

for all x ∈ P , y ∈ Q. Here, we define Fx : Q → M and Fy : P → M by the relations
Fx(y) = Fy(x) = F (x, y), for x ∈ P , y ∈ Q.

We also have another criterion for a Poisson map involving the Hamiltonian vector
fields.

Proposition 2.12. Let P and Q be Poisson manifolds, and F : P → Q a smooth
map. Then F is a Poisson map if and only if

T (F ) ◦Xf◦F = Xf ◦ F

for every f ∈ C∞(Q).

Proof. Take any f, g ∈ C∞(Q) and x ∈ Q, and observe that

(T (F ) ◦Xf◦F (x))(g) = Xf◦F (x)(g ◦ F ) = {f ◦ F, g ◦ F}(x).

On the other hand,

(Xf ◦ F )(x)(g) = Xf (F (x))(g) = {f, g}(F (x)).

Hence,

T (F ) ◦Xf◦F = Xf ◦ F,

for every f ∈ C∞(Q), if and only if

{f ◦ F, g ◦ F} = {f, g} ◦ F,

for every f, g ∈ C∞(Q).

The following class of Poisson maps are useful for lifting trajectories of Hamiltonian
vector fields in a Poisson manifold. We only provide a definition here, further details
can be found in [8, Section 6.2].

Definition 2.13. A Poisson map F : P → Q is complete if whenever the Hamiltonian
vector field Xf is complete, for f ∈ C∞(Q), the Hamiltonian vector field Xf◦F is also
complete.

Another useful notion for smooth maps between Poisson manifolds is the following:

Definition 2.14. Let P and Q be Poisson manifolds, and F : P → Q a smooth map.
We say that F is an anti-Poisson map if F : P → Q is a Poisson map.

We now begin a brief discussion of two important classes of submanifolds of Poisson
manifolds.
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Definition 2.15. Let P be a Poisson manifold. We say that S is a Poisson sub-
manifold of P if S is a submanifold of P that is equipped with a Poisson structure
such that the inclusion map is a Poisson map.

It turns out that the submanifolds in Poisson geometry that perform the most crucial
role are those which we coin coisotropic. They have a similar function in Poisson
geometry to what Lagrangian submanifolds have in symplectic geometry.

Definition 2.16. Let (P, π) be a Poisson manifold and C an embedded submanifold
of P . We call C a coisotropic submanifold of P if

π#((TC)◦) ⊆ TC.

Here, (TC)◦ is the conormal bundle of C in P given by

(TC)◦ = {ϕ ∈ T ∗xP | x ∈ C , 〈ϕ, TxC〉 = 0}.

Example 2.17. Let (P, π) be a Poisson manifold. Consider the embedded sub-
manifold ∆P of the product manifold P × P . Recall that T (∆P ) = ∆TP , and so the
conormal bundle of ∆P in P × P is given by

T (∆P )◦ = {(ϕ,ψ) ∈ T ∗xP × T ∗xP | 〈(ϕ,ψ), (X,X)〉 = 0 , ∀X ∈ TxP, x ∈ P}.

Thus, (ϕ,ψ) ∈ T(x,x)(∆P )◦ if and only if

〈ϕ,X〉+ 〈ψ,X〉 = 0,

for all X ∈ TxP . This holds if and only if ϕ = −ψ. However, in this scenario(
π# ⊕ (−π#)

)
(ϕ,ψ) = (π#(ϕ), π#(ϕ)) ∈ T (∆P ).

Hence, we have proved that ∆P is a coisotropic submanifold of P × P . �

Proposition 2.18 ([63, Corollary 2.2.5]). Let F : P → Q be a Poisson map and C a
coisotropic submanifold of Q. If F is transverse to C, then F−1(C) is a coisotropic
submanifold of P .

One important application of coisotropic submanifolds is that they give another useful
criterion for a map to be Poisson.

Proposition 2.19. Let F : P → Q be a smooth map of Poisson manifolds. Then F
is a Poisson map if and only if the graph of F is a coisotropic submanifold of P ×Q.

Proof. Let us denote the graph of F by C. The conormal bundle of C in P × Q is
given by

(TC)◦ = {(ϕ,ψ) ∈ T ∗xP × T ∗F (x)Q | 〈(ϕ,ψ), T(x,F (x))C〉 = 0 , x ∈ P}.

Recall that TC = Gr(T (F )). Hence, (ϕ,ψ) ∈ (T(x,F (x))C)◦ if and only if

〈(ϕ,ψ), (X,T (F )(X))〉 = 0,

for all X ∈ TxP . This is equivalent to the relation ϕ+ T ∗x (F )(ψ) = 0.
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Hence, C is coisotropic in P ×Q if and only if(
π#
P (F ∗ψ)(x),−π#

Q (−ψ)(F (x))
)
∈ TC,

for all ψ ∈ Ω1(Q), x ∈ P . Which holds true if and only if

T (F ) ◦ π#
P (F ∗ψ) = π#

Q (ψ) ◦ F,

for all ψ ∈ Ω1(Q). That is, if and only if F is a Poisson map.

Proposition 2.20 ([37, Lemma 3.33]). Let F : (P, πP )→ (Q, πQ) be a Poisson map,
and C a coisotropic submanifold of P . Then the graph of F |C : C → Q,

Γ(F |C) = {(x, F (x)) | x ∈ C} ,

is a coisotropic submanifold of the Poisson manifold P ×Q if and only if

π#
P ((TC)◦) ⊆ ker(T (F )).

Proof. By definition, the conormal bundle of Γ(F |C) in P ×Q is given by

T (Γ(F |C))◦ =
{

(θ, ψ) ∈ T ∗xP × T ∗F (x)Q | x ∈ C, 〈θ ⊕ ψ, Tx(Γ(F |C))〉 = 0
}
.

Note that, given x ∈ C, (θ, ψ) ∈ T(x,F (x))(Γ(F |C))◦, and an arbitrary X ∈ TxC, we
have

〈θ ⊕ ψ,X ⊕ Tx(F )(X)〉 = 〈θ + T ∗x (F )(ψ), X〉.

By setting ϕ = θ + T ∗x (F )(ψ), the above equality implies that the condition

〈θ ⊕ ψ, Tx(Γ(F |C))〉 = 0

is equivalent to the condition that ϕ ∈ (TxC)◦. Hence, the conormal bundle can be
described as

T (Γ(F |C))◦ =
{

(ϕ− T ∗x (F )(ψ), ψ) | x ∈ C,ϕ ∈ (TxC)◦, ψ ∈ T ∗F (x)Q
}
.

Therefore, Γ(F |C) is coisotropic in P ×Q if and only if

Tx(F )
(
π#
P (ϕ− T ∗x (F )(ψ))

)
= −π#

Q (ψ), (2.6)

for all x ∈ C, ϕ ∈ (TxC)◦, and ψ ∈ T ∗F (x)Q. Note that we can write this equation as

Tx(F )(π#
P (ϕ))− Tx(F ) ◦ π#

P ◦ T
∗
x (F )(ψ) = −π#

Q (ψ).

Since F is Poisson, we have

Tx(F ) ◦ π#
P ◦ T

∗
x (F ) = π#

Q ,

for all x ∈ P . Thus, the condition (2.6) holds if and only if

T (F )(π#
P (ϕ)) = 0,

for all ϕ ∈ (TC)◦. That is, if and only if

π#
P ((TC)◦) ⊆ ker(T (F )).
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2.1.3 Poisson Lie groups

In this subsection, we will look at Poisson manifolds which also have a Lie group
structure. In particular, we will focus on Poisson Lie groups. They are geometric
objects of this type, which also come with a compatibility property between their
Poisson and group structures.

Before giving a definition of a Poisson Lie group, we first introduce some results about
multivector fields on a Lie group. If F : M → N is a smooth map of manifolds, and
V a k-multivector field on M , then to simplify notation we will write T (F )(V (x)) in
place of (⊗kT (F ))(V (x)), for x ∈M .

Definition 2.21. We call a multivector field V on a Lie group G multiplicative if for
every g, h ∈ G,

V (hg) = T (Lh)(V (g)) + T (Rg)(V (h)). (2.7)

Note, an immediate consequence of this is that V (e) = 0, where e is the identity
element of G.

Remark 2.22. Let G be a Lie group with Lie algebra g. Given any vector Ve ∈
∧k g,

we can construct a multiplicative k-multivector field V by defining

V (g) = T (Lg)(Ve)− T (Rg)(Ve),

for every g ∈ G.

Given any k-multivector field V on a Lie group G, we can define the following map,

V R : G→
∧k

g , V R(g) = T (Rg−1)(V (g)),

where g denotes the Lie algebra of G. When V is multiplicative, it is natural to
try to express equation (2.7) in terms of V R. This leads to the following alternative
criterion for when a multivector field is multiplicative:

Proposition 2.23. A k-multivector field V on a Lie group G is multiplicative if and
only if

V R(hg) = V R(h) + Adh(V R(g)), (2.8)

for all g, h ∈ G.

Remark 2.24. When V is a bivector field on a Lie group G, equation (2.8) is precisely
the condition that V R is a 1-cocycle4 on G with respect to the adjoint representation
of G on g ∧ g.

The next result gives an insight into the behaviour of multiplicative multivector fields
when they have been operated on by the Lie derivative. It gives yet another criterion
for the multiplicity of a multivector field.

Proposition 2.25. Let V be a multivector field on a connected Lie group G. Then
V is multiplicative if and only if V (e) = 0 and LXV is left-invariant for every left-
invariant vector field X on G.

4An exposition of the cohomology theories of Lie groups and Lie algebras can be found in the
appendix of [36].
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Proof. Suppose that V is multiplicative. We have already seen this immediately
implies that V (e) = 0. Let X̄ be a left-invariant vector field on G with flow θt, and
X = X̄(e). The left-invariance of X̄ implies that θt = Rexp tX . Observe that, for any
g ∈ G,

LX̄V (g) =
d

dt

∣∣∣∣
t=0

T (θ−t)(V (θt(g)))

=
d

dt

∣∣∣∣
t=0

T (Rexp(−tX))(V (g exp tX))

=
d

dt

∣∣∣∣
t=0

T (Rexp(−tX))(T (Lg)(V (exp tX)) + T (Rexp tX)(V (g)))

=
d

dt

∣∣∣∣
t=0

T (Rexp(−tX) ◦ Lg)(V (exp tX)).

Hence, for any g, h ∈ G, we have

LX̄V (hg) =
d

dt

∣∣∣∣
t=0

T (Rexp(−tX) ◦ Lhg)(V (exp tX))

= T (Lh)

(
d

dt

∣∣∣∣
t=0

T (Rexp(−tX) ◦ Lg)(V (exp tX))

)
= T (Lh)(LX̄V (g)).

Hence, LX̄V is left-invariant. We omit the proof of the converse statement here, but
the reader can consult [60, Proposition 10.5] for the details.

Remark 2.26. A k-multivector field V on a Lie group G also gives rise to a map
V L : G→

∧k g, defined by V L(g) = T (Lg−1)(V (g)). There is a corresponding version
of Proposition 2.23 for V L. That is, V is multiplicative if and only if

V L(hg) = V L(g) + Adg−1(V L(h)), (2.9)

for all h, g ∈ G.

In Proposition 2.25, we saw that the Lie derivative preserves left-invariance when it
operates on a multiplicative multivector field. An analogous result holds for right-
invariance. The statement is given by replacing the term ‘left-invariant’ by ‘right-
invariant’ whenever it occurs in Proposition 2.25.

We now collect some further properties of multivector fields given by the Schouten
bracket of two multivector fields.

Proposition 2.27. Let V and W be multivector fields on a Lie group G. Suppose
that V is left-invariant and W is right-invariant, then [[V,W ]] = 0.

Proof. Let X̄ be a left-invariant vector field on G with X = X̄(e), and W any right-
invariant multivector field on G. Then, for any g ∈ G, we have

[[X̄,W ]](g) = LX̄W (g)

=
d

dt

∣∣∣∣
t=0

T (Rexp(−tX))(W (g exp tX))

=
d

dt

∣∣∣∣
t=0

T (Rexp(−tX))(T (Rexp tX)(W (g)))

=
d

dt

∣∣∣∣
t=0

W (g)

= 0.
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In the general case, when V is any left-invariant multivector field on G we use the
computation above, and property (2.2) of the Schouten bracket.

In fact, in the case of a connected Lie group, we also have a reverse statement.

Proposition 2.28. 5 Let V be a multivector field on a connected Lie group G. Then
V is left-invariant if and only if LY V = 0 for every right-invariant Y ∈ X(G).

We also have an analogous result with the terms ‘left-invariant’ and ‘right-invariant’
interchanged.

Proposition 2.29. Suppose that V and W are multiplicative multivector fields on a
connected Lie group G. Then [[V,W ]] is multiplicative.

Proof. First note that, since V and W are multiplicative, V (e) = 0 and W (e) = 0.
It follows that [[V,W ]](e) = 0. The simplest way to see this is to write down local
coordinate expressions for V and W , and then use the properties of the Schouten
bracket to find a local coordinate expression for [[V,W ]]. The result should then be
obvious.

Now take any two vector fields X,Y ∈ X(G). By the graded Jacobi identity for the
Schouten bracket, we can deduce

LX [[V,W ]] = [[V,LXW ]] + [[LXV,W ]].

Iterating this result, we find that

LY LX [[V,W ]] = [[LY V,LXW ]] + [[V,LY LXW ]] + [[LY LXV,W ]] + [[LXV,LYW ]].

Suppose now that X is left-invariant, and Y is right-invariant. Then since V and
W are multiplicative, LXV and LXW are left-invariant by Proposition 2.25, and
LXV and LXW are right-invariant by Remark 2.26. Thus, by Proposition 2.27,
[[LY V,LXW ]] = 0 and [[LXV,LYW ]] = 0.

Moreover, since G is connected, LY LXW = 0 and LY LXV = 0 by Proposition 2.28.
Hence, we can conclude that

LY LX [[V,W ]] = 0.

This holds true for every right-invariant vector field Y , and so by Proposition 2.28
again LX [[V,W ]] must be left-invariant for every left-invariant vector field X. This
property, coupled with the fact [[V,W ]](e) = 0, is enough to conclude the multiplicity
of [[V,W ]] by Proposition 2.25.

Let us now turn our attention towards Poisson Lie groups. We will see that they are
a particular class of Lie groups which come endowed with a multiplicative multivector
field.

Definition 2.30. A Poisson Lie group is a Lie group G with a Poisson structure
such that the multiplication in the group κ : G×G→ G is a Poisson map.

For completeness, let us briefly define the morphisms and sub-objects in the category
of Poisson Lie groups.

5When V is just a vector field, we are reduced to the standard result in Lie group theory. The
proof of this proposition can be produced in a similar manner.
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Definition 2.31. A morphism of Poisson Lie groups is a Lie group homomorphism
φ : G→ H between Poisson Lie groups that is also a Poisson map.

A Poisson Lie subgroup is a Lie subgroup S of a Poisson Lie group G, endowed with
a Poisson structure that also makes it a Poisson submanifold of G.

In light of Proposition 2.11, for any Poisson Lie group (G, π), the condition that the
multiplication is a Poisson map is equivalent to the condition that

π(hg) = T (Lh)(π(g)) + T (Rg)(π(h)),

for all g, h ∈ G. This gives us the following criterion for a Poisson Lie group.

Proposition 2.32. Let G be a Lie group with a Poisson structure π. Then G is a
Poisson Lie group if and only if π is multiplicative.

The simplest example of a Poisson Lie group is any Lie group equipped with the
trivial Poisson structure (see page 34). Let us briefly discuss some more interesting
examples.

Example 2.33. Let g be a Lie algebra. We saw that the dual vector space g∗

obtains the Lie-Poisson structure in Example 2.6. In fact, with this Poisson structure
g∗ becomes a Poisson Lie group. �

Example 2.34. Consider the abelian Lie group R2 with global coordinates (x, y).
Note that any Poisson structure on R2 is completely determined by {x, y}. It can be
shown that such a Poisson structure is multiplicative if and only if

{x, y} = ax+ by,

for some a, b ∈ R. �

Example 2.35. The following is an example of a non-abelian Lie group with a non-
trivial Poisson structure. Consider the matrix group

M =

{(
x y
0 1

) ∣∣∣∣ x, y ∈ R, x > 0

}
.

Given any fixed λ 6= 0, we can identify M with R2 via the diffeomorphism(
x y
0 1

)
7→
(

log(x)

λ
,
y√
x

)
.

The group structure on M can be transferred over to R2 and is given by

(x1, y1)(x2, y2) =
(
x1 + x2, y2e

λx1
2 + y1e

−λx2
2

)
,

for any (x1, y1), (x2, y2) ∈ R2. We will denote this Lie group by R2
λ. Mikami showed

that all multiplicative Poisson structures on R2
λ are determined by

{x, y} = a sinh

(
λx

2

)
+ by,

for some a, b ∈ R [52, Proposition 2.6]. �
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Let (G, π) be a Poisson Lie group with Lie algebra g. Remark 2.24 tells us that πR

can be interpreted as a 1-cocycle of G. One reason for taking this perspective is that
πR actually gives rise to a 1-cocycle of the Lie algebra g, as we will see in what follows.

Suppose V is a k-multivector field on a smooth manifold M , which has V (x) = 0 for
some x ∈M . We define the intrinsic derivative6 of V at x to be the map

dxV : TxM →
k∧
TxM ; X 7→ LX̄V (x),

where X̄ ∈ X(M) is any vector field satisfying X̄(x) = X. To prove that this map is
well-defined is a standard exercise and relies on the fact that V (x) = 0. We call the
dual map, (dxV )∗ :

∧k T ∗xM → T ∗xM , the linearisation of V at x.

In the scenario where V is a multiplicative k-multivector field on a Lie group G, the
intrinsic derivative of V at e can be interpreted in another way. Consider the usual
derivative of V R at e – the linear map TeV

R : g →
∧k g. Here g denotes the Lie

algebra of G. Note that given any X ∈ g, with corresponding left-invariant vector
field denoted by X̄, we have

TeV
R(X) =

d

dt

∣∣∣∣
t=0

V R(exp tX)

=
d

dt

∣∣∣∣
t=0

T (R(exp tX)−1)(V (exp tX))

=
d

dt

∣∣∣∣
t=0

T (Rexp−tX)(V (exp tX))

= LX̄V (e).

We see that the usual derivative of V R at e coincides with the intrinsic derivative of
V at e. An analogous argument shows that TeV

L also coincides with deV .

Proposition 2.36. Let V be a multiplicative bivector field on a Lie group G. Then
the intrinsic derivative of V at e, ε = deV : g → g ∧ g, defines a 1-cocycle of g with
respect to the adjoint representation of g on g ∧ g. That is,

adX(ε(Y ))− adY (ε(X))− ε([X,Y ]) = 0,

for all X,Y ∈ g.

Remark 2.37. In the equation above, we are using the slightly ambiguous, but
shorter, notation adX , to denote the representation adX ⊗1 + 1⊗adX . In this second
expression, adX denotes the usual adjoint representation of g on g.

Proof. Let X,Y ∈ g, with corresponding left-invariant vector fields denoted by X̄
and Ȳ , respectively. By the definition of intrinsic derivative, it is clear that

ε([X,Y ]) = deV ([X,Y ]) = L[X̄,Ȳ ]V (e).

Since V is multiplicative, Proposition 2.25 tells us that LX̄V and LȲ V are also left-

6For a deeper intuition behind this definition, the reader should consult [23, p64].
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invariant. It follows that

adX(ε(Y )) = adX(LȲ V (e))

=
d

dt

∣∣∣∣
t=0

Adexp tX(LȲ V (e))

=
d

dt

∣∣∣∣
t=0

T (Rexp(−tX))(T (Lexp tX)(LȲ V (e)))

=
d

dt

∣∣∣∣
t=0

T (Rexp(−tX))(LȲ V (exp tX))

= LX̄LȲ V (e).

A similar result holds for adY (ε(X)). Hence,

adX(ε(Y ))− adY (ε(X))− ε([X,Y ]) = LX̄LȲ V (e)− LȲ LX̄V (e)− L[X̄,Ȳ ]V (e) = 0.

The last step can be realised by utilising the graded Jacobi identity of the Schouten
bracket.

The next result gives us a useful relationship between a multiplicative multivector
field and its intrinsic derivative.

Proposition 2.38. Let V be a multiplicative multivector field on a connected Lie
group G. Then V ≡ 0 if and only if deV = 0. Moreover, if W is another multiplicative
multivector field on G, then V ≡W if and only if deV = deW .

Proof. That V ≡ 0 implies deV = 0 is clear. To prove the converse statement, note
that deV = 0 means that LXV (e) = 0 for every left-invariant vector field X ∈ X(G).
On the other hand, by Proposition 2.25 LXV is left-invariant whenever X is left-
invariant, because of the multiplicity of V . Hence LXV ≡ 0, for every left-invariant
vector field X. However, then V must be right-invariant by Proposition 2.28. Since
V (e) = 0, it follows that V ≡ 0.

To prove the second assertion, note that the difference V −W is also a multiplicative
multivector field on G. Now applying the first result to V −W and employing linearity
leads to the desired conclusion.

Consider a multiplicative bivector field V on a Lie group G. The linearisation of V
at the identity element e gives us a map

[· , ·]V : g∗ ∧ g∗ → g∗.

For ξ, η ∈ g∗, we have a convenient way to interpret the vector [ξ, η]V . First take
any X ∈ g and choose ξ̄, η̄ ∈ Ω1(G), X̄ ∈ X(G) such that ξ̄(e) = ξ, η̄(e) = η and
X̄(e) = X. Then, using properties of the Lie derivative and the fact V (e) = 0, we
have

〈[ξ, η]V , X〉 = 〈ξ ∧ η, deV (X)〉
= 〈ξ̄ ∧ η̄,LX̄V 〉(e)
=
(
LX̄〈ξ̄ ∧ η̄, V 〉 − 〈LX̄(ξ̄ ∧ η̄), V 〉

)
(e)

= LX̄(V (ξ̄, η̄))(e)− 〈LX̄(ξ̄ ∧ η̄)(e), V (e)〉
= 〈de(V (ξ̄, η̄)), X〉.

That is, we have [ξ, η]V = de(V (ξ̄, η̄)). The reason why we have used a bracket to
denote this map becomes apparent in light of the following theorem.
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Theorem 2.39. 7 Let G be a connected Lie group with Lie algebra g. A multiplicative
bivector field π is a Poisson tensor on G if and only if [· , ·]π defines a Lie bracket on
g∗.

Proof. Let ξ, η, ζ ∈ g∗ and choose ξ̄, η̄, ζ̄ ∈ Ω1(G) with ξ̄(e) = ξ, η̄(e) = η and
ζ̄(e) = ζ. As we saw above,

[ξ, η]π = de(π(ξ̄, η̄)) = diπ(ξ̄ ∧ η̄)(e).

It follows that,
[[ξ, η]π, ζ]π = diπ(diπ(ξ̄ ∧ η̄) ∧ ζ̄)(e).

Now consider the multiplicative multivector field [[π, π]]. We denote ω = ξ̄∧ η̄∧ ζ̄. By
property (iv) of the Schouten bracket we have

i[[π,π]](ξ̄ ∧ η̄ ∧ ζ̄) = (−1)6iπdiπω + (−1)2iπdiπω − iπ∧πdω
= 2iπdiπω − iπiπdω
= 2iπdiπ(ξ̄ ∧ η̄ ∧ ζ̄).

Here we have used the property iπ ◦ iπ = 0. Observe that,

iπ(ξ̄ ∧ η̄ ∧ ζ̄) =	 iπ(ξ̄ ∧ η̄)ζ̄,

where 	 denotes the summation over the circular permutations of ξ̄, η̄, ζ̄. Thus,
using the standard properties of exterior differentiation,

i[[π,π]](ξ̄ ∧ η̄ ∧ ζ̄) = 2iπd
(
	 iπ(ξ̄ ∧ η̄)ζ̄

)
= 2	

(
iπ(diπ(ξ̄ ∧ η̄) ∧ ζ̄) + iπ(iπ(ξ̄ ∧ η̄)dζ̄)

)
.

Let us first focus on the second term of this expression. Note that,

d(iπ(iπ(ξ̄ ∧ η̄)dζ̄))(e) = d(iπ(ξ̄ ∧ η̄)iπdζ̄)(e)

= iπ(ξ̄ ∧ η̄)(e)diπdζ̄(e) + iπdζ̄(e)diπ(ξ̄ ∧ η̄)(e)

= 0,

since π(e) = 0. Hence,

di[[π,π]](ξ̄ ∧ η̄ ∧ ζ̄)(e) = 2	 diπ(diπ(ξ̄ ∧ η̄) ∧ ζ̄)(e) = 2	 [[ξ, η]π, ζ]π.

On the other hand, for any X ∈ g,

〈de[[π, π]](X), ξ ∧ η ∧ ζ〉 = 〈LX̄ [[π, π]], ξ̄ ∧ η̄ ∧ ζ̄〉(e)
= LX̄〈[[π, π]], ξ̄ ∧ η̄ ∧ ζ̄〉(e)− 〈[[π, π]](e),LX̄(ξ̄ ∧ η̄ ∧ ζ̄)(e)〉
= de〈[[π, π]], ξ̄ ∧ η̄ ∧ ζ̄〉(X)

= 〈di[[π,π]](ξ̄ ∧ η̄ ∧ ζ̄)(e), X〉
= 2	〈[[ξ, η]π, ζ]π, X〉.

Finally, we can conclude that [· , ·]π satisfies the Jacobi identity if and only if we have
de[[π, π]] = 0. By Proposition 2.38, this occurs if and only if [[π, π]] ≡ 0.

We finish this section by giving a notion of an action for Poisson Lie groups.

Definition 2.40. Let G be a Poisson Lie group and P a Poisson manifold. A Poisson
action is a Lie group action θ : G×P → P such that θ is a Poisson map when G×P
is given the product Poisson structure.

7We follow a similar method of proof to that given in [17, Theorem 2.2].
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2.1.4 Lie bialgebras

We now present a brief introduction to Lie bialgebras. They arise as the infinitesimal
objects associated to Poisson Lie groups. We will assume that all Lie algebras in this
subsection are finite-dimensional.

From our study of Poisson Lie groups, the result of Theorem 2.39 implies that ev-
ery Poisson Lie group (G, π), with Lie algebra g, gives rise to a second Lie algebra
structure on the dual space g∗. The Lie bracket for which, [· , ·]π, is given by the
linearisation of π at the identity element e. Moreover, from Proposition 2.36 we can
deduce that the dual of this Lie bracket, which is given by deπ : g → g ∧ g, is a
1-cocycle of g with respect to the adjoint representation of g on g ∧ g.

These properties that this pair of Lie algebras have can be abstracted to give the
following definition.

Definition 2.41. Let g be a Lie algebra with dual vector space g∗. The pair (g, g∗)
is called a Lie bialgebra if g∗ has a Lie algebra structure such that the dual map to its
Lie bracket, ε : g→ g∧g, is a 1-cocycle of g with respect to the adjoint representation
of g on g ∧ g.

Often a Lie bialgebra is alternatively denoted by (g, ε), when it is necessary to em-
phasize the corresponding 1-cocycle.

It should be clear from the above passage that any Poisson Lie group (G, π), with Lie
algebra g, induces a Lie bialgebra structure on the pair (g, g∗) with the corresponding
1-cocycle given by ε = deπ. We call (g, g∗) the tangent Lie bialgebra to (G, π).

Given an arbitrary Lie bialgebra (g, ε), the 1-cocycle condition for ε : g→ g∧ g states
that

adX(ε(Y ))− adY (ε(X))− ε([X,Y ]) = 0, (2.10)

for every X,Y ∈ g. Let us try to unravel this condition further.

We first note that the Lie bracket on g∗ and the cocycle ε are related by the equation

〈ξ ∧ η, ε([X,Y ])〉 = 〈[ξ, η], [X,Y ]〉,

for X,Y ∈ g, and ξ, η ∈ g∗.

Next, we make the observation that

〈ξ ∧ η, adX(ε(Y ))〉 = 〈ξ ∧ η, (adX ⊗1 + 1⊗ adX)(ε(Y ))〉
= 〈(ξ ◦ adX) ∧ η + ξ ∧ (η ◦ adX), ε(Y )〉
= 〈(− ad∗X ξ) ∧ η + ξ ∧ (− ad∗X η), ε(Y )〉
= 〈[η, ad∗X ξ] + [ad∗X η, ξ], Y 〉
= 〈adη(ad∗X ξ)− adξ(ad∗X η), Y 〉
= 〈ad∗X η, ad∗ξ Y 〉 − 〈ad∗X ξ, ad∗η Y 〉.

By a symmetrical argument, it follows that

〈ξ ∧ η, adY (ε(X))〉 = 〈ad∗Y η, ad∗ξ X〉 − 〈ad∗Y ξ, ad∗ηX〉.

Hence, by nondegeneracy of the pairing of wedge products, condition (2.10) is equiv-
alent to the condition

〈ad∗X η, ad∗ξ Y 〉 − 〈ad∗X ξ, ad∗η Y 〉 − 〈ad∗Y η, ad∗ξ X〉
+〈ad∗Y ξ, ad∗ηX〉 − 〈[ξ, η], [X,Y ]〉 = 0,

(2.11)
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for every X,Y ∈ g, and ξ, η ∈ g∗.

This equation indicates the symmetry between the roles played by g and g∗ in the
definition of a Lie bialgebra. In fact, if we denote the dual of the Lie algebra bracket
on g by ψ : g∗ → g∗ ∧ g∗, then condition (2.11) is equivalent to ψ being a 1-cocycle
of g∗ with respect to the adjoint representation of g∗ on g∗ ∧ g∗. We have proved the
following result:

Proposition 2.42. (g, g∗) is a Lie bialgebra if and only if (g∗, g) is a Lie bialgebra.

Remark 2.43. Let g be a Lie algebra with Lie bracket [· , ·]. We denote by ḡ the Lie
algebra, which as a vector space is just g, but whose Lie bracket is given by −[· , ·].
Note that (g, g∗) is a Lie bialgebra if and only if (ḡ, g∗) is a Lie bialgebra. We call
the Lie bialgebra (g∗, ḡ) the flip of the Lie bialgebra (g, g∗).

Definition 2.44. Two Lie bialgebras (g, g∗) and (h, h∗) are isomorphic if there ex-
ists an isomorphism of Lie algebras φ : g → h whose dual map φ∗ : h∗ → g∗ is an
isomorphism of Lie algebras.

We say that (g, g∗) and (h, h∗) are dual Lie bialgebras if (g, g∗) is isomorphic to the
flip (h∗, h̄).

We have seen that a Poisson Lie group (G, π), with Lie algebra g, gives rise to a Lie
bialgebra structure on (g, g∗). As it happens, there is actually a reverse construc-
tion. This process relies on the following result, which can be seen as a converse to
Proposition 2.36.

Proposition 2.45. 8 Let G be a connected, simply-connected Lie group with Lie
algebra g. Suppose that ε : g → g ∧ g is a 1-cocycle of g with respect to the adjoint
representation of g on g ∧ g. Then there exists a unique multiplicative bivector field
V on G such that deV = ε.

This proposition effectively gives us an integration result for Lie bialgebras. Let
(g, g∗) be a Lie bialgebra, and G be the connected, simply-connected Lie group with
Lie algebra g. Then the dual of the Lie bracket on g∗ is a 1-cocycle ε : g → g ∧ g
of g with respect to the adjoint representation of g on g ∧ g. Proposition 2.45 now
provides a unique multiplicative bivector field π on G satisfying deπ = ε. Moreover,
the induced bracket [· , ·]π is precisely the Lie bracket on g∗ that is already given.
Hence, by Theorem 2.39 we can conclude that π is also Poisson, and so (G, π) is a
Poisson Lie group. We have proved Drinfel’d’s theorem:

Theorem 2.46 ([18, Theorem 3]). Let G be a connected, simply-connected Lie group,
and suppose that its Lie algebra g has a given Lie bialgebra structure (g, g∗). Then
there exists a unique multiplicative Poisson structure π on G such that (g, g∗) is the
tangent Lie bialgebra to (G, π).

We now focus on another construction that arises from a Lie bialgebra. Let (g, g∗) be
an arbitrary Lie bialgebra, and consider the vector space d = g⊕ g∗. We claim that
d has a natural Lie algebra structure, with bracket9 given by

[X ⊕ ξ, Y ⊕ η] =
(
[X,Y ] + ad∗ξ Y − ad∗ηX

)
⊕ ([ξ, η] + ad∗X η − ad∗Y ξ) , (2.12)

8A rigorous proof can be found in [60, Theorem 10.9]. The method used particularises the results
of [32, §3].

9In the next subsection on Manin triples, the intuition as to why this bracket is natural will
become apparent.
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for X ⊕ ξ, Y ⊕ η ∈ d. This bracket is clearly bilinear and anti-symmetric, and so to
show it defines a Lie bracket on d, it remains only to show that the Jacobi identity is
satisfied. By bilinearity, it suffices to check the Jacobi identity holds just in the cases
where elements have only a g or g∗ component.

Let us denote the natural inclusions of g and g∗ into d by

ι1 : g→ d , X 7→ X̄; ι2 : g∗ → d , ξ 7→ ξ̄. (2.13)

For triples (X̄, Ȳ , Z̄) of elements with only a g component, and for triples (ξ̄, η̄, ζ̄)
of elements with only a g∗ component, the Jacobi identity just follows from the fact
that the Lie brackets on g and g∗ both satisfy the Jacobi identity.

Let us next verify the Jacobi identity for triples of the form (X̄, Ȳ , ξ̄) where X,Y ∈ g,
and ξ ∈ g∗. Observe,

[X̄, [Ȳ ,ξ̄]] + [Ȳ , [ξ̄, X̄]] + [ξ̄, [X̄, Ȳ ]] (2.14)

= [X̄,− ad∗ξ Y ⊕ ad∗Y ξ] + [Ȳ , ad∗ξ X ⊕− ad∗X ξ] +
(

ad∗ξ([X,Y ])⊕− ad∗[X,Y ] ξ
)

=
((
−[X, ad∗ξ Y ]− ad∗ad∗Y ξ

X
)
⊕ ad∗X(ad∗Y ξ)

)
+
((

[Y, ad∗ξ X] + ad∗ad∗X ξ Y
)
⊕− ad∗Y (ad∗X ξ)

)
+
(

ad∗ξ([X,Y ])⊕
(
− ad∗X(ad∗Y ξ) + ad∗Y (ad∗X ξ)

))
=
(
−[X, ad∗ξ Y ]− ad∗ad∗Y ξ

X + [Y, ad∗ξ X] + ad∗ad∗X ξ Y + ad∗ξ([X,Y ])
)
⊕ 0.

Since this expression has no g∗ component, we can view it as an element of g. Let us
denote it by

Λ = −[X, ad∗ξ Y ]− ad∗ad∗Y ξ
X + [Y, ad∗ξ X] + ad∗ad∗X ξ Y + ad∗ξ([X,Y ]).

Then, for any η ∈ g∗, we have

〈η,Λ〉 = −〈η, [X, ad∗ξ Y ]〉 − 〈η, ad∗ad∗Y ξ
X〉+ 〈η, [Y, ad∗ξ X]〉 (2.15)

+ 〈η, ad∗ad∗X ξ Y 〉+ 〈η, ad∗ξ([X,Y ])〉

= 〈ad∗X η, ad∗ξ Y 〉+ 〈ad∗Y ξ, ad∗ηX〉 − 〈ad∗Y η, ad∗ξ X〉
− 〈ad∗X ξ, ad∗η Y 〉 − 〈[ξ, η], [X,Y ]〉.

Now since (g, g∗) is a Lie bialgebra, we notice that this expression vanishes because
of the identity (2.11). By nondegeneracy of the pairing 〈· , ·〉 of g with its dual space
g∗, it follows that the Jacobi identity is satisfied.

The remaining case of triples of the form (X̄, ξ̄, η̄) where X ∈ g, and ξ, η ∈ g∗, has a
completely symmetric argument to the above. Therefore, we can conclude that the
bracket defined by (2.12) satisfies the Jacobi identity, and hence provides d with a
Lie algebra structure.

Definition 2.47. For a Lie bialgebra (g, g∗), we write g ./ g∗ to denote the Lie
algebra d = g⊕g∗ defined by the Lie bracket (2.12). We call d = g ./ g∗ the Drinfel’d
double Lie algebra of the Lie bialgebra (g, g∗).
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2.1.5 Manin triples

Any study of Lie bialgebras would be incomplete without touching on the notion of a
Manin triple. Manin triples were first introduced by Drinfel’d (see [19, p803]). They
are useful objects in our study primarily because there is a natural correspondence
between them and Lie bialgebras. Again, we will assume that all Lie algebras in this
subsection are finite-dimensional.

Definition 2.48. A Manin triple (p, p1, p2) consists of a Lie algebra p endowed with
a symmetric, nondegenerate, ad–invariant bilinear form 〈· | ·〉 on p, and isotropic Lie
subalgebras p1, p2 of p, such that p = p1 ⊕ p2 as a vector space.

Let us see how a Lie bialgebra (g, g∗) gives rise to a Manin triple. Consider the
Drinfel’d double Lie algebra d = g ./ g∗. We can define a symmetric bilinear form
〈· | ·〉 on d as follows:

〈X ⊕ ξ | Y ⊕ η〉 = 〈ξ, Y 〉+ 〈η,X〉. (2.16)

Nondegeneracy follows immediately from the nondegeneracy of the pairing 〈· , ·〉. By
this construction of 〈· | ·〉, it should be clear that g and g∗ form isotropic Lie subal-
gebras of d. It remains to check the ad-invariance of 〈· | ·〉. Making use of bilinearity,
we only need to check the cases for which the elements of d have only a g or g∗

component.

Let us consider the case of triples of the form (X̄, Ȳ , ξ̄), with X,Y ∈ g, and ξ ∈ g∗.
We have,

〈[X̄, Ȳ ] | ξ̄〉+ 〈Ȳ | [X̄, ξ̄]〉 = 〈ξ, [X,Y ]〉+ 〈Ȳ | − ad∗ξ X ⊕ ad∗X ξ〉
= 〈ξ, [X,Y ]〉+ 〈ad∗X ξ, Y 〉
= 〈ξ, adX Y 〉 − 〈ξ, adX Y 〉
= 0.

We have a symmetric argument for triples of the form (X̄, ξ̄, η̄), with X ∈ g, and
ξ, η ∈ g∗. For triples (X̄, Ȳ , Z̄) or triples (ξ̄, η̄, ζ̄), where X,Y, Z ∈ g, and ξ, η, ζ ∈ g∗,
the proof of ad–invariance is even simpler, as all terms on the right-hand side of (2.16)
vanish.

Hence, we can conclude that (d, g, g∗) is a Manin triple with respect to the bilinear
form 〈· | ·〉 defined by (2.16).

It turns out that we also have a construction that goes in the opposite direction –
from Manin triples to Lie bialgebras. We show this construction in the proof of the
following theorem.

Theorem 2.49. There is a one-to-one correspondence between the isomorphism
classes of Lie bialgebras and the isomorphism classes of Manin triples.

Proof. We have seen that given a Lie bialgebra (g, g∗), we can construct a Manin
triple (d, g, g∗), where d = g ./ g∗ is the Drinfel’d double Lie algebra. Conversely,
suppose (p, p1, p2) is a Manin triple with respect to a symmetric, nondegenerate, ad-
invariant, bilinear form on p, which we will denote by 〈· | ·〉. We aim to construct a
Lie bialgebra, and then show that these two constructions are mutually inverse.

For the inclusions of p1 and p2 into p, we will use the notation

p1 ↪→ p , X 7→ X̄; p2 ↪→ p , Y 7→ Ȳ . (2.17)
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We first define a linear map φ : p2 → p∗1 by

〈φ(Y ), X〉 = 〈Ȳ | X̄〉,

for Y ∈ p2, and X ∈ p1. We claim that this map gives an isomorphism of vector
spaces. To show injectivity, suppose that φ(Y ) = 0 for some Y ∈ p2. This implies
that 〈Ȳ | X̄〉 = 0 for every X ∈ p1. On the other hand, 〈Ȳ | Z̄〉 = 0 for every Z ∈ p2,
since p2 is an isotropic subspace of p. Because p = p1⊕ p2, it follows that 〈Ȳ |P 〉 = 0,
for every P ∈ p. Thus, by nondegeneracy, we deduce that Y = 0, and therefore φ is
injective.

To show surjectivity, suppose that ξ ∈ p∗1. By nondegeneracy, the map ψ : p → p∗,
given by P 7→ 〈P | ·〉, is an isomorphism. Hence, there exists X ∈ p1, and Y ∈ p2,
such that ξ ⊕ 0 = ψ(X ⊕ Y ). Then, for every Z ∈ p1, we have

〈ξ, Z〉 = 〈X ⊕ Y | Z̄〉 = 〈X̄ | Z̄〉+ 〈Ȳ | Z̄〉 = 〈Ȳ | Z̄〉.

The last equality uses the fact p1 is an isotropic subspace of p. Hence ξ = φ(Y ), and
so the map is surjective.

We can now transfer the Lie algebra structure on p = p1 ⊕ p2 to the vector space
q := p1 ⊕ p∗1 via the isomorphism id⊕φ. More precisely, for X1 ⊕ ξ1, X2 ⊕ ξ2 ∈ q,
take the unique elements Y1, Y2 ∈ p2 such that φ(Yi) = ξi, for i = 1, 2. Next, take the
unique elements X3 ∈ p1, Y3 ∈ p2 satisfying

[X1 ⊕ Y1, X2 ⊕ Y2]p = X3 ⊕ Y3.

Then we define the Lie bracket on q by

[X1 ⊕ ξ1, X2 ⊕ ξ2]q = X3 ⊕ φ(Y3).

Now, since p2 is a Lie subalgebra of p, this Lie bracket on q restricts to a Lie bracket
on p∗1, which we denote by [· , ·]p∗1 .

Note, we can also transfer the bilinear form 〈· | ·〉 of p onto q via the isomorphism
id⊕φ. To be precise, we set

〈X1 ⊕ ξ1|X2 ⊕ ξ2〉q = 〈X1 ⊕ Y1|X2 ⊕ Y2〉.

We claim that (p1, p
∗
1) forms a Lie bialgebra, where the Lie bracket on p∗1 is the bracket

[· , ·]p∗1 constructed above. To show this we need to check that the cocycle condition
(2.10) is satisfied, or equivalently show that the identity (2.11) is satisfied.

We further claim that the Lie bracket on q is exactly the Lie bracket defined by
(2.12), and the bilinear form on q is exactly (2.16), so that the Manin triple that one
constructs from the Lie bialgebra (p1, p

∗
1) is in fact isomorphic to the original Manin

triple (p, p1, p2). Furthermore, these two constructions are mutually inverse to one
another.

Let us first show that the Lie bracket on q satisfies (2.12). For the inclusions of p1

and p2 into p, we will also use the notation

p1 ↪→ q , X 7→ X̄; p∗1 ↪→ q , ξ 7→ ξ̄. (2.18)

Take elements X1 ⊕ ξ1, X2 ⊕ ξ2 ∈ q. By bilinearity, we can write

[X1 ⊕ ξ1, X2 ⊕ ξ2]q = [X̄1, X̄2]q + [X̄1, ξ̄2]q + [ξ̄1, X̄2]q + [ξ̄1, ξ̄2]q. (2.19)
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It should be clear from the construction that we have the following two equalities:

[X̄1, X̄2]q = [X1, X2]p1
, [ξ̄1, ξ̄2]q = [ξ1, ξ2]p∗1

.

Let us compute the remaining two terms from the right-hand side of equation (2.19).

Since φ is an isomorphism, there exists a unique element Y1 ∈ p2, such that φ(Y1) = ξ2.
We also have unique elements X3 ∈ p1, Y2 ∈ p2, such that [X̄1, Ȳ1]p = X3⊕Y2. Thus,

[X̄1, ξ̄2]q = X3 ⊕ φ(Y2).

We compute X3 by observing that for any Y3 ∈ p2 we have the following

〈φ(Y3), X3〉 = 〈Ȳ3 | X̄3〉
= 〈Ȳ3 | X3 ⊕ Y2〉
= 〈Ȳ3 | [X̄1, Ȳ1]p〉
= 〈[Ȳ1, Ȳ3]p | X̄1〉
= 〈φ([Y1, Y3]p2

), X1〉
= 〈[φ(Y1), φ(Y3)]p∗1

, X1〉

= 〈φ(Y3),− ad∗φ(Y1)X1〉.

By nondegeneracy of the pairing 〈· , ·〉, and from the fact that φ is an isomorphism,
we deduce

X3 = − ad∗φ(Y1)X1 = − ad∗ξ2 X1. (2.20)

On the other hand, for any X4 ∈ p1 we have

〈φ(Y2), X4〉 = 〈Ȳ2 | X̄4〉
= 〈X3 ⊕ Y2 | X̄4〉
= 〈[X̄1, Ȳ1]p | X̄4〉
= −〈Ȳ1 | [X̄1, X̄4]p1

〉
= −〈φ(Y1), [X1, X4]p1

〉
= 〈ad∗X1

φ(Y1), X4〉.

Again, by utilising the nondegeneracy of the pairing 〈· , ·〉, we find

φ(Y2) = ad∗X1
φ(Y1) = ad∗X1

ξ2. (2.21)

Hence, combining the results of (2.20) and (2.21) gives

[X̄1, ξ̄2]q = − ad∗ξ2 X1 ⊕ ad∗X1
ξ2.

Now, since [· , ·]q is a well-defined Lie bracket, by anti-symmetry we can infer that

[ξ̄1, X̄2]q = ad∗ξ1 X2 ⊕− ad∗X2
ξ1.

Putting all this together, we find that [X1 ⊕ ξ1, X2 ⊕ ξ2]q is given by the expression(
[X1, X2]p1

+ ad∗ξ1 X2 − ad∗ξ2 X1

)
⊕
(

[ξ1, ξ2]p∗1
+ ad∗X1

ξ2 − ad∗X2
ξ1

)
.

Up to relabelling, this is exactly how the Lie bracket given by equation (2.12) is
defined.
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Also observe that, we have

〈X1 ⊕ ξ1|X2 ⊕ ξ2〉q = 〈X1 ⊕ φ−1(ξ1)|X2 ⊕ φ−1(ξ2)〉p
= 〈X1|φ−1(ξ2)〉p + 〈φ−1(ξ1)|X2〉p
= 〈φ(φ−1(ξ2)), X1〉+ 〈φ(φ−1(ξ1)), X2〉
= 〈ξ2, X1〉+ 〈ξ1, X2〉.

Therefore, we see that the bilinear form 〈· | ·〉q is indeed given by equation (2.16).

It remains to show that the Lie algebra structures we now have on p1 and p∗1 make
(p1, p

∗
1) into a Lie bialgebra. That is, we need to check that the Lie brackets satisfy

equation (2.11). However, we note that the computations (2.14) and (2.15) combined
show that relation (2.11) is in fact equivalent to the condition that the Lie bracket
on q satisfies the Jacobi identity. Moreover, since q is a well-defined Lie algebra, the
Jacobi identity certainly holds, and so we are done.

§ 2.2 Groupoids in Poisson geometry

The second half of this chapter is dedicated to illustrating the importance of Lie
groupoids, Lie algebroids, and double Lie structures in Poisson and symplectic geom-
etry. We begin with the observation that every Poisson manifold gives rise to a Lie
algebroid structure on its cotangent bundle.

2.2.1 The cotangent Lie algebroid

Let (P, π) be a Poisson manifold. The Poisson anchor π# : T ∗P → TP is an anchor
map for a Lie algebroid structure on the cotangent bundle T ∗P → P , with Lie bracket
defined by

[ϕ,ψ] = Lπ#(ϕ)(ψ)− Lπ#(ψ)(ϕ)− d(π(ϕ,ψ)), (2.22)

for ϕ,ψ ∈ Ω1(P ). It is the unique Lie algebroid structure on T ∗P with anchor map
π# satisfying [df, dg] = d{f, g} for f, g ∈ C∞(P ). We call this the cotangent Lie
algebroid of P .

Proposition 2.50 ([47, Theorem 10.4.2]). Let C be a coisotropic closed embedded
submanifold of a Poisson manifold P . Then the conormal bundle (TC)◦ → C is a
Lie subalgebroid of the cotangent Lie algebroid T ∗P .

Given a coisotropic closed embedded submanifold C of a Poisson manifold P , we call
the induced Lie algebroid on (TC)◦ → C the conormal Lie algebroid of C in P .

Example 2.51. Let (P, π) be a Poisson manifold. Suppose that π(x) = 0 for some
x ∈ P , then {x} is a coisotropic closed embedded submanifold P . The corresponding
conormal Lie algebroid is a Lie algebra structure on the cotangent space T ∗xP .

Consider a Poisson Lie group (G, π) with Lie algebra g∗. Then π(e) = 0, where e is
the identity element. Thus, we get an induced Lie algebra structure on T ∗eG

∼= g∗.
This Lie algebra structure coincides with the one given by the linearisation of π at e,
as in Theorem 2.39. �
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2.2.2 Symplectic groupoids

Symplectic groupoids first arose as a means to construct symplectic realisations of
Poisson manifolds.

Definition 2.52. Let P be a Poisson manifold. A symplectic realisation of P is
a surjective submersion F : Σ → P , from a symplectic manifold Σ, which is also a
Poisson map.

Weinstein [12] and Karasev [29] proved the existence of a symplectic realisation for
every Poisson manifold.10 Briefly, they constructed a symplectic realisation by patch-
ing together the target projections of local symplectic groupoids. Note that the key
property utilised is that the target projection of a symplectic groupoid is a symplec-
tic realisation of the base manifold. In this section, we will introduce symplectic
groupoids and their basic properties.

Definition 2.53. Let Σ be a symplectic manifold and a Lie groupoid on base P . We
say that Σ⇒ P is a symplectic groupoid if the graph of the partial multiplication

Γ(κ) = {(h, g, κ(h, g)) | (h, g) ∈ Σ ∗ Σ} ,

is a Lagrangian submanifold of the product manifold Σ× Σ× Σ.

Theorem 2.54 ([53, Proposition 1.5, Theorem 1.6(iii)]). Let Σ⇒ P be a symplectic
groupoid. Then:

(i) 1P is a Lagrangian submanifold of Σ;

(ii) The inversion map ι : Σ→ Σ is an anti-symplectomorphism;

(iii) For any x ∈ P , the tangent spaces of Gx and Gx are symplectically orthogonal;

(iv) There exists a unique Poisson structure on P such that the target projection
β : Σ → P is a Poisson map and the source projection α : Σ → P is an anti-
Poisson map.

The notion of a Lie groupoid action extends to give a sensible concept of action for
symplectic groupoids.

Definition 2.55. Let M ′ be a symplectic manifold and Σ a symplectic groupoid on
base M . A symplectic groupoid action is a Lie groupoid action of Σ on a smooth map
J : M ′ →M such that the graph of the action map

Γ = {(g,m′, g ·m′) ∈ Σ×M ′ ×M ′ | α(g) = J(m′)}

is a Lagrangian submanifold of Σ ×M ′ ×M ′. J is called the moment map of the
action.

Proposition 2.56 ([53, Theorem 3.8]). Let M ′ be a symplectic manifold and Σ a
symplectic groupoid on base M . Suppose that θ : Σ∗M ′ →M ′ is a symplectic groupoid
action of Σ on a moment map J : M ′ →M . Then J is a Poisson map.

10However, not every Poisson manifold admits a complete symplectic realisation. Obstructions to
their existence were introduced by Crainic and Fernandes [14] (see also [15]).
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Proof. Let us denote the graph of the action θ by Γ and the symplectic structures on Σ
and M ′ by ωΣ and ωM ′ , respectively. The symplectic structure on G×M ′×M ′ is thus
given by ω̃ = ωΣ ⊕ ωM ′ ⊕ (−ωM ′). Take any arbitrary f, g ∈ C∞(M) and m′ ∈ M ′.
Since the source projection α is surjective, there exists g ∈ Σ with α(g) = J(m′),
and so the triple γ = (g,m′, g · m′) is an element of the graph Γ. Consider the
tangent vector (−Xf◦α(g), Xf◦J(m′), 0) ∈ TgΣ ⊕ Tm′M

′ ⊕ Tg·m′M
′, and take any

(X,Y, Z) ∈ TγΓ. In particular, we have T (α)(X) = T (J)(Y ). Now observe that

ω̃((−Xf◦α(g), Xf◦J(m′), 0), (X,Y, Z)) = ωΣ(−Xf◦α(g), X) + ωM ′(Xf◦J(m′), Y )

= 〈−ω[Σ(Xf◦α(g)), X〉+ 〈ω[M ′(Xf◦J(m′)), Y 〉
= 〈d(f ◦ α)(g), X〉 − 〈d(f ◦ J)(m′), Y 〉
= 〈(α∗df)(g), X〉 − 〈(J∗df)(m′), Y 〉
= 〈df(α(g)), T (α)(X)〉 − 〈df(J(m′)), T (J)(Y )〉
= 〈df(J(m′)), T (α)(X)− T (J)(Y )〉
= 0

Thus, (−Xf◦α(g), Xf◦J(m′), 0) ∈ (TγΓ)⊥ = TγΓ. It follows that

T (J)(Xf◦J(m′)) = T (α)(−Xf◦α(g)).

However, since the source projection α is an anti-Poisson map, by Proposition 2.12
we have T (α) ◦Xf◦α = −Xf ◦ α. Hence,

T (J)(Xf◦J(m′)) = Xf (α(g)) = Xf (J(m′)).

Since this identity holds for every m′ ∈ M ′, Proposition 2.12 implies that J is a
Poisson map.

The following result of Xu gives us a useful method of constructing symplectic group-
oid actions.

Proposition 2.57 ([65, Theorem 3.1]). Let M ′ be a symplectic manifold and Σ an
α–simply connected symplectic groupoid on base M . Then a smooth map J : M ′ →M
is a complete symplectic realisation if and only if there exists a symplectic groupoid
action of Σ on J .

Remark 2.58. Note that, if we replace the condition that J : M ′ →M be a Poisson
map, in the proposition, with the condition that J be an anti-Poisson map, one
instead gets a right symplectic groupoid action of Σ on J .

2.2.3 Poisson groupoids

In this section, we unify the notions of Poisson Lie groups and symplectic groupoids.
Recall that a Poisson Lie group was defined to be a Lie group G equipped with a
Poisson structure for which the group multiplication is a Poisson map. In light of
Proposition 2.19, this is equivalent to the condition that the graph of the multipli-
cation is a coisotropic submanifold of G × G × G. On the other hand, a symplectic
groupoid was defined to be a Lie groupoid Σ⇒ P equipped with a symplectic struc-
ture for which the graph of the partial multiplication is a Lagrangian submanifold
of Σ × Σ × Σ. The symplectic structure on Σ gives rise to a Poisson structure on
Σ, and the condition above implies that the graph of the partial multiplication is a
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coisotropic submanifold of Σ×Σ×Σ with respect to this Poisson structure. It should
now be immediately clear how one can define a general object which incorporates
both of these notions.

Definition 2.59. Let G be a Poisson manifold and a Lie groupoid on base P . We
say that G⇒ P is a Poisson groupoid if the graph of the partial multiplication

Γ(κ) = {(h, g, κ(h, g)) | (h, g) ∈ G ∗G} ,

is a coisotropic submanifold of the product manifold G×G×G.

The following result offers another interpretation of the relationship between the
Poisson structure and the groupoid operations of a Poisson groupoid.

Proposition 2.60 ([49, Proposition 8.1], [2]). Let (G, π) be a Poisson manifold and
a Lie groupoid on base P . Then G ⇒ P is a Poisson groupoid if and only if the
Poisson anchor

T ∗G TG

A∗G TP.

π#

a∗

(2.23)

is a morphism of Lie groupoids over a map a∗ : A∗G→ TP .

Here, the Lie groupoid structure on T ∗G with base A∗G is defined as in Example 1.73.
Note that for a Poisson groupoid G with base manifold P , we actually have a mor-
phism of VB-groupoids:

T ∗G G

TG G

A∗G P

TP P

π#

a∗

We now state an analogue of Theorem 2.54 for Poisson groupoids. The properties in
this theorem can be derived by standard arguments involving coisotropic submanifolds
(see for example the original formulation [63]), or alternatively by making use of the
previous proposition (as in [47, §11]).

Theorem 2.61 ([63, Theorem 4.2.3]). Let G⇒ P be a Poisson groupoid. Then:

(i) 1P is a coisotropic submanifold of G;

(ii) The inversion map ι : G→ G is an anti-Poisson map;

(iv) There exists a unique Poisson structure on P such that the target projection
β : G → P is a Poisson map and the source projection α : G → P is an anti-
Poisson map.
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Given a Poisson groupoid G on a base manifold P , the conormal bundle of 1P is given
by the dual bundle A∗G→ P . Moreover, the previous result immediately implies that
this dual bundle has the structure of a conormal Lie algebroid. We call A∗G → P
the dual Lie algebroid.

Proposition 2.62. Let G ⇒ P be a Poisson groupoid, with the associated Poisson
structure on G denoted by π. Then the maps a∗ : A∗G → TP and −a∗∗ : T ∗P → AG
are morphisms of Lie algebroids over P .

The following criterion gives us a useful tool for verifying whether one has a symplectic
groupoid. We will make use of this result in a later section.

Proposition 2.63. Let Σ be a symplectic manifold and a Lie groupoid on base P .
Denote the Poisson structure associated to Σ by π. Then Σ ⇒ P is a symplectic
groupoid if and only if Σ⇒ P is a Poisson groupoid with respect to π.

We also have an analogue of Proposition 2.62 for symplectic groupoids:

Proposition 2.64. Let Σ⇒ P be a symplectic groupoid, with the associated Poisson
structure on G denoted by π. Then the maps a∗ : A∗Σ → TP and −a∗∗ : T ∗P → AΣ
are isomorphisms of Lie algebroids over P .

Let us now consider a few of the core examples of Poisson groupoids.

Example 2.65. Let (P, πP ) be a Poisson manifold. We claim that the product
Poisson manifold P × P , with the pair groupoid structure on base P , is a Poisson
groupoid.

Let Γ denote the graph of the partial multiplication of the pair groupoid on P ,
and let π denote the Poisson structure πP ⊕ (−πP ). Take an arbitrary element
γ = ((x, y), (y, z), (x, z)) ∈ Γ, and note that

TγΓ = {(X ⊕ Y, Y ⊕ Z,X ⊕ Z) | X ∈ TxP, Y ∈ TyP, Z ∈ TzP}.

Thus, (ϕ1 ⊕ ψ1, ϕ2 ⊕ ψ2, ϕ3 ⊕ ψ3) ∈ (TγΓ)◦ if and only if

〈ϕ1 ⊕ ψ1, X ⊕ Y 〉+ 〈ϕ2 ⊕ ψ2, Y ⊕ Z〉+ 〈ϕ3 ⊕ ψ3, X ⊕ Z〉 = 0

for every X ∈ TxP , Y ∈ TyP , and Z ∈ TzP . This occurs, if and only if we have
〈ϕ1 + ϕ3, X〉 = 0 for every X ∈ TxP , 〈ψ1 + ϕ2, Y 〉 = 0 for every Y ∈ TyP , and
〈ψ2 + ψ3, Z〉 = 0 for every Z ∈ TzP . Furthermore, this is the case if and only if
ϕ3 = −ϕ1, ϕ2 = −ψ1 and ψ3 = −ψ2. Hence, elements of (TγΓ)◦ have the form(

ϕ⊕ ψ, (−ψ)⊕ θ, (−ϕ)⊕ (−θ)
)
,

where ϕ ∈ T ∗xP , ψ ∈ T ∗yP , and θ ∈ T ∗z P . Given such an element, observe that(
π# ⊕ π# ⊕ (−π#)

)(
ϕ⊕ ψ, (−ψ)⊕ θ, (−ϕ)⊕ (−θ)

)
=
(
π#
P (ϕ)⊕ (−π#

P (ψ)), (−π#
P (ψ))⊕ (−π#

P (θ)), π#
P (ϕ)⊕ (−π#

P (θ))
)
∈ TγΓ.

Therefore,
(
π# ⊕ π# ⊕ (−π#)

)(
(TγΓ)◦

)
⊆ TγΓ, and so the graph of the partial mul-

tiplication of the pair groupoid is a coisotropic submanifold of the product manifold
(P × P )× (P × P )× (P × P ). Hence, P × P ⇒ P is a Poisson groupoid. �
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Proposition 2.66. Let G⇒ P and H ⇒ Q be Poisson groupoids. Then the Carte-
sian product groupoid G × H on base P × Q is a Poisson groupoid when G × H is
equipped with the product Poisson structure.

This result is really a corollary of the following simple lemma.

Lemma 2.67. Let W be a subspace of a direct sum vector space V1 ⊕ V2. Suppose
that W = W1 ⊕W2 for some subspaces W1 and W2 of V1 and V2, respectively. Then
W ◦ = W ◦1 ⊕W ◦2 .

Proof. First observe that

W ◦ = {ϕ⊕ ψ ∈ V ∗1 ⊕ V ∗2 | 〈ϕ⊕ ψ,X ⊕ Y 〉 = 0 , ∀X ⊕ Y ∈W1 ⊕W2}.

Thus, ϕ⊕ ψ ∈W ◦, if and only if

〈ϕ,X〉+ 〈ψ, Y 〉 = 0,

for every X ∈ W1, Y ∈ W2. This is the case, if and only if 〈ϕ,X〉 = 0 for every
X ∈ W1, and 〈ψ, Y 〉 = 0 for every Y ∈ W2. Moreover, this occurs if and only if
ϕ⊕ ψ ∈W ◦1 ⊕W ◦2 .

Proof of Proposition 2.66. Let πG and πH denote the Poisson tensors of G and H,
respectively, and let π denote the product Poisson structure on G ×H. Also, let Γ,
ΓG and ΓH denote the graphs of the partial multiplications of the groupoids G×H,
G and H, respectively. Fix an element γ = ((g2, h2), (g1, h1), (g2g1, h2h1)) ∈ Γ.
It follows that the elements γG := (g2, g1, g2g1) and γH := (h2, h1, h2h1) lie in the
graphs ΓG and ΓH , respectively. It should be clear that Γ is diffeomorphic to the
product manifold ΓG × ΓH . Hence, the tangent space TγΓ is isomorphic to the
direct sum TγGΓG ⊕ TγHΓH . Moreover, by Lemma 2.67, (TγΓ)◦ is isomorphic to
(TγGΓG)◦ ⊕ (TγHΓH)◦. Now since G and H are Poisson groupoids, we have(

π#
G ⊕ π

#
G ⊕ (−π#

G )
)(

(TγGΓG)◦
)
⊆ TγGΓG,

and (
π#
H ⊕ π

#
H ⊕ (−π#

H)
)(

(TγHΓH)◦
)
⊆ TγHΓH .

It follows that (
π# ⊕ π# ⊕ (−π#)

)(
(TγΓ)◦

)
⊆ TγΓ.

Thus the graph Γ of the partial multiplication of G×H is a coisotropic submanifold
of (G×H)× (G×H)× (G×H), and so G×H ⇒ P ×Q is a Poisson groupoid.

Next, we briefly define the corresponding notion of morphism for Poisson groupoids.

Definition 2.68. Let G and G′ be Poisson groupoids with base manifolds P and P ′,
respectively. Then a morphism of Poisson groupoids is a morphism F : G → G′ of
Lie groupoids over a smooth map f : P → P ′ such that F is also a Poisson map.

If, in addition, F is also a diffeomorphism, we say that F is an isomorphism of Poisson
groupoids over f .

We now turn our attention to the concept of duality for Poisson groupoids. There
are varying ways in which one can give a sensible definition of duality. We will take
the following approach:
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Definition 2.69. A Lie algebroid pair (A,A∗) is a pair of Lie algebroids A and A∗

with the same base manifold P , which are dual as vector bundles.

If the Lie algebroid A has anchor map denoted by a and Lie bracket denoted by [· , ·],
the Lie algebroid A denotes the vector bundle A → P , equipped with the anchor
map −a and the Lie bracket −[· , ·]. We call the Lie algebroid pair (A∗, A) the flip of
(A,A∗).

We say that two Lie algebroid pairs (A,A∗) and (B,B∗) are isomorphic if there exists
an isomorphism of Lie algebroids φ : A→ B such that the dual map φ∗ : B∗ → A∗ is
an isomorphism of Lie algebroids.

The Lie algebroid pairs that we will be most interested in are those that arise from
Poisson groupoids. Given a Poisson groupoid G ⇒ P , we saw that A∗G → P has
a Lie algebroid structure. We call the Lie algebroid pair (AG,A∗G) the tangent Lie
bialgebroid of G.11

Definition 2.70. Let G and H be Poisson groupoids on the same base manifold P ,
with tangent Lie bialgebroids (AG,A∗G) and (AH,A∗H), respectively. We say that
G and H are dual Poisson groupoids if (AG,A∗G) and (A∗H,AH) are isomorphic.12

Example 2.71. Let G be a Poisson Lie group with tangent Lie bialgebra (g, g∗).
By Theorem 2.46, there exists a unique simply-connected Poisson Lie group G∗ with
tangent Lie bialgebra (g∗, ḡ). Thus, G and G∗ are dual Poisson Lie groups.13 �

Example 2.72. Let M be a symplectic manifold with associated Poisson structure
π. By Example 2.65, we know that the pair groupoid M × M on base M is a
Poisson groupoid. In fact, Proposition 2.63 implies further that M ×M ⇒ M is a
symplectic groupoid. We have seen in Example 1.43 that the Lie algebroid of M ×M
is the tangent bundle TM , it follows that the dual Lie algebroid is the cotangent Lie
algebroid T ∗M . Hence, (TM, T ∗M) is the tangent Lie bialgebroid of M ×M ⇒ M .
Now the Poisson anchor π# : T ∗M → TM is an isomorphism of Lie algebroids, and
so it follows that −π# : T ∗M → TM is an isomorphism of Lie algebroids. However,
by anti-symmetry we know that (π#)∗ = −π#. Thus, (TM, T ∗M) and (T ∗M,TM)
are isomorphic Lie algebroid pairs, and so the symplectic groupoid M ×M is dual to
itself. �

Example 2.73. Let Σ ⇒ P be a symplectic groupoid. In Proposition 2.64 we saw
that we have isomorphisms of Lie algebroids a∗ : A∗Σ→ TP and −a∗∗ : T ∗P → AΣ. It
follows that a∗∗ : T ∗P → AΣ is an isomorphism of Lie algebroids, and hence (A∗Σ, AΣ)
and (TP, T ∗P ) are isomorphic Lie algebroid pairs. Thus, Σ⇒ P is dual to the Poisson
groupoid P × P ⇒ P . Note that the previous example is just a special case of this
example. �

We finish this section by unifying the notions of a Poisson action and a symplectic
groupoid action under a single notion of an action for Poisson groupoids.

Definition 2.74. Let P be a Poisson manifold and G a Poisson groupoid on base M .
A Poisson groupoid action is a Lie groupoid action of G on a smooth map J : P →M

11More generally, a Lie bialgebroid is a Lie algebroid pair (A,A∗) with a compatibility condition
that generalises that of a Lie bialgebra. See [49] for the general theory.

12Compare with [63, Definition 4.4.1].
13This notion of duality for Poisson Lie groups differs slightly from the original definition of Drin-

fel’d [18]. The Poisson tensor of the dual Poisson Lie group G∗ will differ by a minus sign.
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such that the graph of the action map

Γ = {(g, p, g · p) ∈ G× P × P | α(g) = J(p)}

is a coisotropic submanifold of G× P × P . As with symplectic groupoid actions, we
also call J the moment map of the action.

Theorem 2.75 ([63, Theorem 4.3.1, Remark 4.3.2]). Let P be a Poisson manifold and
G a Poisson groupoid on base M . Suppose that there is a Poisson groupoid action of
G on a moment map J : P →M such that the orbit space P/G has a smooth manifold
structure for which the natural projection p : P → P/G is a submersion. Then, P/G
has a unique Poisson structure that makes p a Poisson map.

When the hypotheses of the above theorem are met, the orbit space P/G equipped
with this Poisson structure is called a Poisson reduced space.

Remark 2.76. Similar reduction results have been given for Poisson actions and sym-
plectic groupoid actions. Reduction for Poisson actions was first studied by Semenov-
Tian-Shansky [59] and Lu [38]. The Poisson reduced spaces for symplectic groupoid
actions were introduced by Weinstein and Mikami [53] and also studied by Xu [66].

2.2.4 Double Lie structures in Poisson and symplectic geometry

In this final subsection, we describe some of the roles that double Lie structures play
in Poisson and symplectic geometry.

Definition 2.77. Let (S;H,V ;P ) be a weak double Lie groupoid and π a Poisson
structure on S. Then (S;H,V ;P ) is a Poisson double groupoid if the horizontal and
vertical structures on S are Poisson groupoids with respect to π.

Definition 2.78. Let (S;H,V ;P ) be a weak double Lie groupoid and S a symplectic
manifold with associated Poisson structure π. Then (S;H,V ;P ) is a symplectic double
groupoid if it is a Poisson double groupoid with respect to π.

Example 2.79. Let M be a symplectic manifold. We saw in Example 2.72 that the
pair groupoid M×M on base M is a symplectic groupoid. By the same reasoning, the
pair groupoid M ×M ×M ×M on base M ×M is also a symplectic groupoid. Hence,
the double Lie groupoid (M ×M ×M ×M ;M ×M,M ×M ;M) of Example 1.65 is
a symplectic double groupoid. �

Example 2.80. Let G ⇒ P be a Poisson groupoid. We saw in Example 2.65 that
the pair groupoid G × G on base G is a Poisson groupoid. On the other hand,
Proposition 2.66 shows that the Cartesian product groupoid G×G on base P ×P is
a Poisson groupoid. It follows that the double Lie groupoid (G×G;G,P × P , P ) of
Example 1.66 is a Poisson double groupoid. When G⇒ P is taken to be a symplectic
groupoid, the above construction leads to a symplectic double groupoid. �

An observant reader may have noted that the side groupoids for these examples
of symplectic double groupoids are in fact dual Poisson groupoids. This is not a
coincidence, as we will see in Chapter 4, the side groupoids of any symplectic double
groupoid are Poisson groupoids in duality.

We now consider some examples of LA-groupoids that naturally arise in Poisson
geometry.
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Example 2.81. Let (G, π) be a Poisson Lie group with Lie algebra g. We saw
in Theorem 2.39 that the linearisation of π at the identity e defines a Lie algebra
structure on the dual vector space g∗. We also saw in Example 1.9 that T ∗G has
a Lie groupoid structure with base g∗. On the other hand, since G is a Poisson
manifold, T ∗G possesses the cotangent Lie algebroid structure on G.

T ∗G G

g∗ {·}

Moreover, the structures are compatible in the sense that (T ∗G; g∗, G; {·}) forms an
LA-groupoid. �

Example 2.82. The previous example can be extended to a construction for Poisson
groupoids. Consider a Poisson groupoid G on base P . We have the dual Lie algebroid
A∗G → P , and the cotangent Lie algebroid T ∗G → G. Furthermore, we saw in
Example 1.73 that T ∗G has a Lie groupoid structure on base A∗G.

T ∗G G

A∗G P

It turns out that these Lie structures form an LA-groupoid (T ∗G;A∗G,G;P ). �



Chapter 3

Symplectic double groupoids of
Poisson Lie groups

In this chapter, we will analyse the construction of a symplectic double groupoid for
every pair of dual Poisson Lie groups.

Groupoids were first introduced into symplectic geometry by Karasev [29], Weinstein
[62, 12] and Zakrzewski [68, 69]. As mentioned in the introduction, symplectic group-
oids arose in relation to the existence of symplectic realisations. The construction of
local symplectic groupoids gave a positive answer to the question of whether every
Poisson manifold admits a symplectic realisation. Given an arbitrary Poisson man-
ifold P , Weinstein outlined the construction of a local symplectic groupoid Σ with
base manifold P [12, Chapter III][61].

The result is stronger in the case of Poisson Lie groups. In [39], Lu and Weinstein
showed that every Poisson Lie group G gives rise to a (global) symplectic groupoid Σ
with base manifold G. In fact, it turns out that Σ has another groupoid structure with
base manifold the dual Poisson Lie group G∗. Moreover, the compatibility between
these groupoid structures satisfies that of a symplectic double groupoid,

Σ G∗

G {·}.

We will give a full exposition of Lu and Weinstein’s results. In Chapter 4, we will
see that there is a reverse procedure; that is, for a symplectic double groupoid with
a singleton base manifold, the side groupoids obtain Poisson structures that make
them dual Poisson Lie groups.

§ 3.1 The Drinfel’d double Lie group

In the previous chapter, we saw that a Poisson Lie group gives rise to a Lie bialgebra,
from which one can form the Drinfel’d double Lie algebra. This can be integrated to
give another Lie group. In this section, we look at some of the possible Poisson struc-
tures on this Lie group and examine how they correspond to the Poisson structures
of the original Poisson Lie group and its dual.

61
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3.1.1 The adjoint and coadjoint representations of the Drinfel’d double

Let (G, πG) be a simply-connected Poisson Lie group with tangent Lie bialgebra
(g, g∗). We denote the unique simply-connected Poisson Lie group with tangent Lie
bialgebra (g∗, ḡ) by (G∗, πG∗). Thus, G and G∗ are dual Poison Lie groups. Recall
that the Lie brackets on g and ḡ only differ by a minus sign (see Remark 2.43).

In Chapter 2, we saw that we can construct another Lie algebra structure on the
direct sum d = g⊕ g∗, by defining a Lie bracket in the following way:

[X ⊕ ξ, Y ⊕ η] =
(
[X,Y ] + ad∗ξ Y − ad∗ηX

)
⊕ ([ξ, η] + ad∗X η − ad∗Y ξ) , (3.1)

for X,Y ∈ g, ξ, η ∈ g∗. We called this the Drinfel’d double Lie algebra (see Defini-
tion 2.47) and denoted it by d = g ./ g∗. The simply-connected Lie group D with
corresponding Lie algebra d we call the Drinfel’d double Lie group.

The Drinfel’d double Lie algebra d is also endowed with a natural symmetric, nonde-
generate, ad–invariant bilinear form, given by

〈X ⊕ ξ | Y ⊕ η〉 = 〈ξ, Y 〉+ 〈η,X〉, (3.2)

where X,Y ∈ g, and ξ, η ∈ g∗. Equipped with this bilinear form, g and g∗ form
isotropic Lie subalgebras of d, and (d, g, g∗) forms a Manin triple.

Recall that ad–invariance means that for any X,Y, Z ∈ g, and ξ, η, ζ ∈ g∗, the
following holds

〈[X ⊕ ξ, Y ⊕ η] | Z ⊕ ζ〉+ 〈Y ⊕ η | [X ⊕ ξ, Z ⊕ ζ]〉 = 0.

Note that this is equivalent to Ad–invariance of the bilinear form, which means that
for every d ∈ D, X,Y ∈ g, and ξ, η ∈ g∗, we have

〈Add(X ⊕ ξ) | Add(Y ⊕ η)〉 = 〈X ⊕ ξ | Y ⊕ η〉.

Another observation is that the natural pairing between d and its dual space d∗ (which
we identify with g∗ ⊕ g) is given by

〈ξ ⊕X,Y ⊕ η〉 = 〈ξ, Y 〉+ 〈η,X〉 = 〈X ⊕ ξ | Y ⊕ η〉,

where X,Y ∈ g, and ξ, η ∈ g∗.

We denote the natural projections by p1 : d → g and p2 : d → g∗, and the inclusions
by i1 : g → d, X 7→ X̄, and i2 : g∗ → d, ξ 7→ ξ̄. These inclusions integrate to give
unique Lie group homomorphisms,

φ1 : G→ D , g 7→ ḡ; φ2 : G∗ → D , u 7→ ū,

satisfying (φ1)∗ = i1, (φ2)∗ = i2.

Let us also fix some notation for the natural maps involving the dual space d∗ = g∗⊕g.
We denote the projections by q1 : d∗ → g∗ and q2 : d∗ → g, and the inclusions by
j 1 : g∗ → d∗ and j 2 : g → d∗. Note that these projections and inclusions are related
by i∗1 = q1, i∗2 = q2, j ∗1 = p1 and j ∗2 = p2. We also let Θ: d→ d∗ denote the canonical
linear isomorphism given by the mapping X ⊕ ξ 7→ ξ ⊕X, for X ∈ g, ξ ∈ g∗. This
involution relates the projections in d and d∗ by p1 = q2 ◦Θ and p2 = q1 ◦Θ.

Let us now examine the adjoint and coadjoint representations of d and D in more
detail. We first observe how the involution Θ: d→ d∗ defined above can allow us to
describe the coadjoint representations in terms of the adjoint representations.
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Lemma 3.1. The coadjoint representation of d on d∗ is given by

ad∗X⊕ξ(η ⊕ Y ) = Θ(adX⊕ξ(Y ⊕ η)), (3.3)

for X,Y ∈ g, ξ, η ∈ g∗. Similarly, the coadjoint representation of D on d∗ is given by

Ad∗d(ξ ⊕X) = Θ(Add(X ⊕ ξ)), (3.4)

for d ∈ D, X ∈ g, ξ ∈ g∗.

Proof. The results can be proved directly from the definition of the Lie bracket on d
given by (3.1). However, it is simpler to utilise the ad–invariance of the bilinear form
defined by (3.2). Let X,Y, Z ∈ g, and ξ, η, ζ ∈ g∗, and observe that

〈ad∗X⊕ξ(η ⊕ Y ), Z ⊕ ζ〉 = −〈η ⊕ Y, adX⊕ξ(Z ⊕ ζ)〉
= −〈Y ⊕ η | adX⊕ξ(Z ⊕ ζ)〉
= 〈adX⊕ξ(Y ⊕ η) | Z ⊕ ζ〉
= 〈Θ(adX⊕ξ(Y ⊕ η)), Z ⊕ ζ〉.

Hence, by nondegeneracy of the pairing, the first result follows. For the second
formula, take any d ∈ D, X,Y ∈ g, ξ, η ∈ g∗, and observe

〈Ad∗d(ξ ⊕X), Y ⊕ η〉 = 〈ξ ⊕X,Add−1(Y ⊕ η)〉
= 〈X ⊕ ξ | Add−1(Y ⊕ η)〉
= 〈Add(X ⊕ ξ) | Y ⊕ η〉
= 〈Θ(Add(X ⊕ ξ)), Y ⊕ η〉.

Again, the result then follows from the nondegeneracy of the pairing.

Remark 3.2. The second result (3.4) of Lemma 3.1 gives us the following identities

q1(Ad∗d(ξ ⊕X)) = p2(Add(X ⊕ ξ)),

q2(Ad∗d(ξ ⊕X)) = p1(Add(X ⊕ ξ)),
(3.5)

for all d ∈ D, X1 ∈ g, ξ1 ∈ g∗.

The previous lemma implies that the coadjoint representations can be understood in
terms of the adjoint representations. From (3.1) we can see that the adjoint represen-
tation of d can be formulated in terms of the adjoint and coadjoint representations
of g and g∗. We now try to relate the adjoint representation of D to the adjoint and
coadjoint representations of G and G∗.

Proposition 3.3. The adjoint representation of D on d has the following properties:

(i) Adḡ(X̄) = Adg(X), for all g ∈ G, X ∈ g.

(ii) Adū(ξ̄) = Adu(ξ), for all u ∈ G∗, ξ ∈ g∗.

(iii) p2(Adḡ(X ⊕ ξ)) = Ad∗g(ξ), for all g ∈ G, X ∈ g, ξ ∈ g∗.

(iv) p1(Adū(X ⊕ ξ)) = Ad∗u(X), for all u ∈ G∗, X ∈ g, ξ ∈ g∗.
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Proof. Denote by L̃d and R̃d, respectively, the left and right translations in D by an
element d ∈ D, and Lg and Rg, the left and right translations in G by an element
g ∈ G. Let g, h ∈ G, and observe that since φ1 is a group homomorphism, we have

L̃ḡ ◦ R̃ḡ−1 ◦ φ1(h) = φ1(g)φ1(h)φ1(g)−1

= φ1(ghg−1)

= φ1 ◦ Lg ◦Rg−1(h).

As h was arbitrarily chosen, it follows that L̃ḡ ◦ R̃ḡ−1 ◦ φ1 = φ1 ◦ Lg ◦ Rg−1 , and
applying the tangent functor at the identity gives

Adḡ ◦ i1 = i1 ◦Adg . (3.6)

Evaluating this equation at an element X ∈ g proves part (i). The statement of (ii)
is proved in an analogous way.

To show statement (iii), replace g with g−1 in (3.6) and take the dual of both sides
of the equation to give

i∗1 ◦Ad∗ḡ = Ad∗g ◦ i∗1 .

Evaluating this equation at an arbitrary element ξ ⊕ X ∈ d∗, and recalling that
i∗1 = q1, gives

q1(Ad∗ḡ(ξ ⊕X)) = Ad∗g(q1(ξ ⊕X)).

It follows by equation (3.5) in Remark 3.2 that

p2(Adḡ(X ⊕ ξ)) = Ad∗g(ξ).

We can describe the Lie brackets of g and g∗ in terms of the Lie bracket of the
Drinfel’d double Lie algebra by

[X,Y ] = p1([X̄, Ȳ ]), [ξ, η] = p2([ξ̄, η̄]),

for X,Y ∈ g, ξ, η ∈ g∗. On the other hand, these brackets can be obtained by
linearising the Poisson tensors −πG∗ and πG, respectively, at the identity elements.
We can combine these two facts to find alternative expressions for the Poisson tensors,
which involve the adjoint representation of the Drinfel’d double Lie group.

Proposition 3.4 ([39],[37, Theorem 2.31]). The Poisson tensors on G and G∗ are
given by the following formulas:

(πG)L(g)(ξ, η) = −〈p2(Adḡ(ξ̄)), p1(Adḡ(η̄))〉, (3.7)

for g ∈ G, and ξ, η ∈ g∗;

(πG∗)
R(u)(X,Y ) = 〈p2(Adū−1(X̄)), p1(Adū−1(Ȳ ))〉, (3.8)

for u ∈ G∗, and X,Y ∈ g.

Proof. To show the first statement, let us first define a bivector field π by setting
πL(g)(ξ, η) equal to the right-hand side of (3.7), for g ∈ G, and ξ, η ∈ g∗. We aim to
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show that π is identical to πG. The fact that π is anti-symmetric is apparent from
the following computation. For g ∈ G, ξ, η ∈ g∗, we have

πL(g)(ξ, η) + πL(g)(η, ξ) = −〈p2(Adḡ(ξ̄)), p1(Adḡ(η̄))〉 − 〈p2(Adḡ(η̄)), p1(Adḡ(ξ̄))〉
= −〈p1(Adḡ(ξ̄))⊕ p2(Adḡ(ξ̄)) | p1(Adḡ(η̄))⊕ p2(Adḡ(η̄))〉
= −〈Adḡ(ξ̄) | Adḡ(η̄)〉
= −〈ξ̄ | η̄〉
= 0.

Next, we would like to show that π is multiplicative. By Remark 2.26, it is equivalent
to show that

πL(hg) = πL(g) + Adg−1(πL(h)), (3.9)

for all h, g ∈ G. To deduce this equation, let us first fix h, g ∈ G, ξ, η ∈ g∗, and
consider

πL(hg)(ξ, η) = −〈p2(Adh̄ḡ(ξ̄)), p1(Adh̄ḡ(η̄))〉 = −〈Ad∗hg(ξ), p1(Adh̄ḡ(η̄))〉. (3.10)

Applying the results of Proposition 3.3, we find

p1(Adh̄ḡ(η̄)) = p1(Adh̄(p1(Adḡ(η̄))⊕ p2(Adḡ(η̄))))

= p1(Adh̄(p1(Adḡ(η̄)))) + p1(Adh̄(p2(Adḡ(η̄))))

= Adh(p1(Adḡ(η̄))) + p1(Adh̄(Ad∗g(η))).

Hence, equation (3.10) becomes

πL(hg)(ξ, η) = −〈Ad∗hg(ξ),Adh(p1(Adḡ(η̄)))〉 − 〈Ad∗hg(ξ), p1(Adh̄(Ad∗g(η)))〉. (3.11)

However, we can compute

〈Ad∗hg(ξ),Adh(p1(Adḡ(η̄)))〉 = 〈Ad∗h−1(Ad∗hg(ξ)), p1(Adḡ(η̄))〉
= 〈Ad∗g(ξ), p1(Adḡ(η̄))〉
= 〈p2(Adḡ(ξ̄)), p1(Adḡ(η̄))〉
= −πL(g)(ξ, η),

and

〈Ad∗hg(ξ), p1(Adh̄(Ad∗g(η)))〉 = 〈Ad∗h(Ad∗g(ξ)), p1(Adh̄(Ad∗g(η)))〉

= 〈p2(Adh̄(Ad∗g(ξ))), p1(Adh̄(Ad∗g(η)))〉
= −πL(h)(Ad∗g(ξ),Ad∗g(η))

= −Adg−1(πL(h))(ξ, η)

Thus, since equation (3.11) holds for all ξ, η ∈ g∗, we arrive at equation (3.9).

Now let us consider the linearisation of π at the identity e of G. For any X ∈ g, and
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ξ, η ∈ g∗, we have

〈[ξ, η]π, X〉 = Teπ
L(X)(ξ, η)

=
d

dt

∣∣∣∣
t=0

T (Lexp(−tX))π(exp tX)(ξ, η)

= − d

dt

∣∣∣∣
t=0

〈p2(Adexp tX(ξ̄)), p1(Adexp tX(η̄))〉

= −〈 d
dt

∣∣∣∣
t=0

(
p2(Adexp tX̄(ξ̄))

)
, 0〉 − 〈ξ, d

dt

∣∣∣∣
t=0

(
p1(Adexp tX̄(η̄)

)
〉

= −〈ξ, d
dt

∣∣∣∣
t=0

(
p1(Adexp tX̄(η̄)

)
〉

= −〈ξ, p1(adX̄(η̄))〉
= −〈ξ,− ad∗η(X)〉
= 〈[ξ, η], X〉.

Hence, the linearisation of π at the identity of G defines precisely the Lie bracket
on g∗ given by linearising πG at the identity. By Theorem 2.39, we deduce that π is
Poisson, and thus (G, π) forms a Poisson Lie group. Moreover, (G, π) has the same
tangent Lie bialgebra as (G, πG) and so by the uniqueness statement of Theorem 2.46
we have πG = π. The second formula can be shown using a similar method.

Remark 3.5. The Poisson structures on G and G∗ are also given by the following
formulas, which can be verified using the result of Proposition 3.4, or proved directly.

(πG)R(g)(ξ, η) = 〈p2(Adḡ−1(ξ̄)), p1(Adḡ−1(η̄))〉, (3.12)

for g ∈ G, and ξ, η ∈ g∗;

(πG∗)
L(u)(X,Y ) = −〈p2(Adū(X̄)), p1(Adū(Ȳ ))〉, (3.13)

for u ∈ G∗, and X,Y ∈ g.

3.1.2 Poisson structures on the Drinfel’d double

We will now try to construct two different Poisson structures on D. Firstly, consider
the element π0 ∈ d ∧ d defined by

π0(ξ ⊕X, η ⊕ Y ) = 〈η,X〉 − 〈ξ, Y 〉, (3.14)

for X,Y ∈ g, ξ, η ∈ g∗. Note that π0 is just the standard symplectic form on the
vector space d = g ⊕ g∗. By Remark 2.22, there is a multiplicative bivector field π−
on D, given by

π−(d) =
1

2
(T (Rd)(π0)− T (Ld)(π0)), (3.15)

for d ∈ D. In a similar way, we can also define another bivector field π+ on D by

π+(d) =
1

2
(T (Rd)(π0) + T (Ld)(π0)), (3.16)

where d ∈ D.

Proposition 3.6 ([37, Proposition 2.34(1)]). The two bivector fields π− and π+ are
Poisson structures on D.
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Proof. We first check whether the linearisation of π− at the identity element e of D
defines a Lie algebra structure on d∗. If this is the case, then Theorem 2.39 implies
that π− is Poisson. For ξ ⊕X, η ⊕ Y ∈ d∗, and Z ⊕ ζ ∈ d, observe that

〈[ξ ⊕X, η ⊕ Y ], Z ⊕ ζ〉 = Teπ
R
−(Z ⊕ ζ)(ξ ⊕X, η ⊕ Y )

=
d

dt

∣∣∣∣
t=0

T (Rexp−t(Z⊕ζ))π−(exp t(Z ⊕ ζ))(ξ ⊕X, η ⊕ Y )

=
1

2

d

dt

∣∣∣∣
t=0

(
π0 −Adexp t(Z⊕ζ)(π0)

)
(ξ ⊕X, η ⊕ Y )

= −1

2

d

dt

∣∣∣∣
t=0

(
Adexp t(Z⊕ζ)(π0)

)
(ξ ⊕X, η ⊕ Y )

= −1

2
adZ⊕ζ(π0)(ξ ⊕X, η ⊕ Y )

=
1

2
π0(ad∗Z⊕ζ(ξ ⊕X), η ⊕ Y ) +

1

2
π0(ξ ⊕X, ad∗Z⊕ζ(η ⊕ Y )).

Making use of Lemma 3.1, we find that

π0(ad∗Z⊕ζ(ξ ⊕X), η ⊕ Y ) = π0(Θ(adZ⊕ζ(X ⊕ ξ)), η ⊕ Y )

= 〈η, p1(adZ⊕ζ(X ⊕ ξ))〉 − 〈p2(adZ⊕ζ(X ⊕ ξ)), Y 〉
= 〈η, [Z,X] + ad∗ζ X − ad∗ξ Z〉 − 〈[ζ, ξ] + ad∗Z ξ − ad∗X ζ, Y 〉
= 〈η, [Z,X]〉 − 〈[ζ, η], X〉+ 〈[ξ, η], Z〉
− 〈[ζ, ξ], Y 〉+ 〈ξ, [Z, Y ]〉 − 〈ζ, [X,Y ]〉.

A similar computation shows that

π0(ξ ⊕X, ad∗Z⊕ζ(η ⊕ Y )) = 〈[ζ, η], X〉 − 〈η, [Z,X]〉+ 〈ζ, [Y,X]〉
− 〈ξ, [Z, Y ]〉+ 〈[ζ, ξ], Y 〉 − 〈[η, ξ], Z〉.

By combining these results, we can deduce that

〈[ξ ⊕X, η ⊕ Y ], Z ⊕ ζ〉 =
1

2
(2〈[ξ, η], Z〉 − 2〈ζ, [X,Y ]〉) = 〈[ξ, η]⊕−[X,Y ], Z ⊕ ζ〉.

Hence, we have shown that the linearisation of π− at the identity element of D defines
a well defined Lie bracket on d∗, given by

[ξ ⊕X, η ⊕ Y ] = [ξ, η]⊕−[X,Y ], (3.17)

where ξ ⊕X, η ⊕ Y ∈ d∗. Thus, by Theorem 2.39, π− is Poisson.

To show π+ is also Poisson, first let us define the following bivector fields on D by

πR0 (d) := T (Rd)(π0) , πL0 (d) := T (Ld)(π0),

for d ∈ D. This allows us to write our bivector fields π− and π+ on D as

π± =
1

2
(πR0 ± πL0 ).

Note that πR0 is right-invariant and πL0 is left-invariant. Recall that the Schouten
bracket of a left-invariant multivector field and a right-invariant multivector field on
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a Lie group vanishes (see Proposition 2.27). Thus, we have the following results,

Jπ+, π+K =
1

4
JπR0 + πL0 , π

R
0 + πL0 K

=
1

4

(
JπR0 , π

R
0 K + JπL0 , π

L
0 K + JπL0 , π

R
0 K + JπR0 , π

L
0 K
)

=
1

4

(
JπR0 , π

R
0 K + JπL0 , π

L
0 K
)
,

and

Jπ−, π−K =
1

4
JπR0 − πL0 , πR0 − πL0 K

=
1

4

(
JπR0 , π

R
0 K + JπL0 , π

L
0 K− JπL0 , π

R
0 K− JπR0 , π

L
0 K
)

=
1

4

(
JπR0 , π

R
0 K + JπL0 , π

L
0 K
)
.

Whence, Jπ+, π+K = Jπ−, π−K = 0, and so π+ is also Poisson.

We have shown that π− is a multiplicative Poisson structure, and so (D,π−) is a
Poisson Lie group. It has tangent Lie bialgebra (d, d∗), where the Lie algebra structure
on d∗ is given by (3.17).

On the other hand, π+ is not multiplicative as π+(e) 6= 0, and therefore does not
generate a Poisson Lie group structure on D.

Proposition 3.7 ([37, Proposition 2.34(3)]). Suppose that d ∈ D can be written as
d = ḡū , for some g ∈ G, u ∈ G∗. Then the following relation holds for π+:

(T (Lḡ−1 ◦Rū−1)π+(d))(ξ⊕X, η⊕Y ) = π0(ξ⊕X, η⊕Y )+πLG(g)(ξ, η)−πRG∗(u)(X,Y ),

for X,Y ∈ g, ξ, η ∈ g∗. We also have the following relation for π− given by

(T (Lḡ−1 ◦Rū−1)π−(d))(ξ ⊕X, η ⊕ Y ) = πLG(g)(ξ, η) + πRG∗(u)(X,Y ),

where X,Y ∈ g, ξ, η ∈ g∗.

Proof. To prove the first formula, take d ∈ D that satisfies d = ḡū for some g ∈ G,
u ∈ G∗, and notice that

T (Lḡ−1 ◦Rū−1)π+(d) =
1

2

(
Adḡ−1(π0) + Adū(π0)

)
.

To evaluate this further, let us try to compute the terms Adḡ−1(π0) and Adū(π0). Let
us first fix elements ξ ⊕X, η ⊕ Y ∈ d∗.

Note that by Lemma 3.1, we have the following

Ad∗ḡ(ξ ⊕X) = Θ(Adḡ(X ⊕ ξ))
= p2(Adḡ(X ⊕ ξ))⊕ p1(Adḡ(X ⊕ ξ))
= Ad∗g(ξ)⊕

(
Adg(X) + p1(Adḡ(ξ̄))

)
,

where in the last line we have made use of the results of Proposition 3.3.
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Implementing this calculation, and recalling the definition of π0, we find

Adḡ−1(π0)(ξ ⊕X, η ⊕ Y ) = π0

(
Ad∗ḡ(ξ ⊕X),Ad∗ḡ(η ⊕ Y )

)
= 〈Ad∗g(η),Adg(X) + p1(Adḡ(ξ̄))〉
− 〈Ad∗g(ξ),Adg(Y ) + p1(Adḡ(η̄))〉

= 〈η,X〉+ 〈Ad∗g(η), p1(Adḡ(ξ̄))〉
− 〈ξ, Y 〉 − 〈Ad∗g(ξ), p1(Adḡ(η̄))〉

= 〈η,X〉+ 〈p2(Adḡ(η̄)), p1(Adḡ(ξ̄))〉
− 〈ξ, Y 〉 − 〈p2(Adḡ(ξ̄)), p1(Adḡ(η̄))〉

= π0(ξ ⊕X, η ⊕ Y ) + 2(πLG(g)(ξ, η)).

A similar computation shows that,

Adū(π0)(ξ ⊕X, η ⊕ Y ) = π0(ξ ⊕X, η ⊕ Y )− 2(πRG∗(u)(X,Y )).

Combining these results, we have

(T (Lḡ−1◦Rū−1)π+(d))(ξ⊕X, η⊕Y ) =
1

2

(
Adḡ−1(π0) + Adū(π0)

)
(ξ ⊕X, η ⊕ Y )

= π0(ξ⊕X, η⊕Y )+πLG(g)(ξ, η)−πRG∗(u)(X,Y ).

The second formula now follows straightforwardly;

(T (Lḡ−1 ◦Rū−1)π−(d))(ξ ⊕X, η ⊕ Y ) =
1

2

(
Adḡ−1(π0)−Adū(π0)

)
(ξ ⊕X, η ⊕ Y )

= πLG(g)(ξ, η) + πRG∗(u)(X,Y ).

In a similar fashion, we can also prove the following comparable descriptions for π+

and π−.

Proposition 3.8. Suppose that d ∈ D can be written as d = v̄h̄, for some v ∈ G∗,
h ∈ G. Then the following relation holds for π+:

(T (Lv̄−1 ◦Rh̄−1)π+(d))(ξ⊕X, η⊕Y ) = π0(ξ⊕X, η⊕Y )−πRG(h)(ξ, η)+πLG∗(v)(X,Y ),

for X,Y ∈ g, ξ, η ∈ g∗. We also have the following relation for π− given by

(T (Lv̄−1 ◦Rh̄−1)π−(d))(ξ ⊕X, η ⊕ Y ) = πRG(h)(ξ, η) + πLG∗(v)(X,Y ),

where X,Y ∈ g, ξ, η ∈ g∗.

It is straightforward to show that φ1 : G→ D and φ2 : G∗ → D are immersions. Let
us consider the case when φ1 and φ2 are also injective. In this situation, we can
identify G and G∗ with Lie subgroups of D. We have seen that D is a Poisson Lie
group when it is equipped with the Poisson structure π−. The following result implies
that, in this scenario, (G, πG) and (G∗, πG∗) are Poisson Lie subgroups of (D,π−).

Proposition 3.9 ([37, Proposition 2.36(1)]). The following maps are Poisson:

φ1 : (G, πG)→ (D,π−), g 7→ ḡ;

φ2 : (G∗, πG∗)→ (D,π−), u 7→ ū.
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Proof. Let us fix g ∈ G. We need to show that

T (φ1)(πG(g)) = π−(ḡ), (3.18)

to prove that φ1 is a Poisson map.

By the formula given in Proposition 3.7, for any ξ ⊕X, η ⊕ Y ∈ d∗, we find

(T (Lḡ−1)π−(ḡ))(ξ ⊕X, η ⊕ Y ) = πLG(g)(ξ, η) + πRG∗(e)(X,Y ) = πLG(g)(ξ, η).

On the other hand,

(T (Lḡ−1 ◦ φ1)πG(g))(ξ ⊕X, η ⊕ Y ) = (T (φ1 ◦ Lg−1)πG(g))(ξ ⊕X, η ⊕ Y )

= i1(πLG(g))(ξ ⊕X, η ⊕ Y )

= πLG(g)(i∗1(ξ ⊕X), i∗1(η ⊕ Y ))

= πLG(g)(q1(ξ ⊕X), q1(η ⊕ Y ))

= πLG(g)(ξ, η).

This shows that

T (Lḡ−1) ◦ T (φ1)(πG(g)) = T (Lḡ−1)(π−(ḡ)),

and then we are reduced to (3.18) by applying the linear isomorphism Te(Lḡ) to both
sides of this equation. We can show that φ2 is a Poisson map using an analogous
method.

We have seen some of the importance of the Poisson structure π−. Let us now focus
on our second Poisson structure π+ and what properties it possesses.

Proposition 3.10.1 Suppose that d ∈ D can be decomposed as d = ḡū = v̄h̄ for some
g, h ∈ G, u, v ∈ G∗. Then π+ is nondegenerate at d.

Proof. Let d ∈ D be an element that has the factorisations d = ḡū = v̄h̄, for some
g, h ∈ G, u, v ∈ G∗. We first make the simple observation that π+(d) is nondegenerate
if and only if (T (Lḡ−1) ◦ T (Rū−1)π+(d)) is nondegenerate.

Suppose that ξ ⊕X ∈ d∗ satisfies

(T (Lḡ−1 ◦Rū−1)π+(d))(ξ ⊕X, η ⊕ Y ) = 0,

for every η ⊕ Y ∈ d∗. We need to show that this implies that ξ ⊕X = 0.

By Proposition 3.7, we can show that for every η ∈ g∗,

(T (Lḡ−1 ◦Rū−1)π+(d))(ξ ⊕X, η̄) = π0(ξ ⊕X, η̄)− πLG(η, ξ)

= 〈η,X〉+ 〈p2(Adḡ(η̄)), p1(Adḡ(ξ̄))〉
= 〈Ad∗g(η),Adg(X)〉+ 〈Ad∗g(η), p1(Adḡ(ξ̄))〉
= 〈Ad∗g(η),Adg(X) + p1(Adḡ(ξ̄))〉
= 〈Ad∗g(η), p1(Adḡ(X̄)) + p1(Adḡ(ξ̄))〉
= 〈Ad∗g(η), p1(Adḡ(X ⊕ ξ))〉

1A statement of this result was given by Semenov-Tian-Shansky [59, Proposition 6]. We follow
the proof outlined by Lu [37, Proposition 2.35].
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Similarly, it can be shown that

(T (Lḡ−1 ◦Rū−1)π+(d))(ξ ⊕X, Ȳ ) = −〈p2(Adū−1(X ⊕ ξ)),Ad∗u−1(Y )〉

for all Y ∈ g.

By our initial assumption, these two equations must vanish for every η ∈ g∗ and
Y ∈ g, and so we deduce that p1(Adḡ(X ⊕ ξ)) = 0, and p2(Adū−1(X ⊕ ξ)) = 0. Thus
there exists Z ∈ g and ζ ∈ g∗, such that Adū−1(X ⊕ ξ) = Z̄ and Adḡ(X ⊕ ξ) = ζ̄.

Rearranging these two equations leads us to the identity Adū(Z̄) = Adḡ−1(ζ̄). How-
ever, then Adh̄(Z̄) = Adv̄−1(ζ̄), utilising the property that ḡū = v̄h̄. Now applying
the results of Proposition 3.3 we arrive at the equation

Adh(Z)⊕ 0 = 0⊕Adv−1(ζ).

Thus, Adh(Z) = 0 ∈ g, and Adv−1(ζ) = 0 ∈ g∗. Finally, we conclude that both Z = 0
and ζ = 0; then it follows that X ⊕ ξ = 0.

The next result shows that when the Drinfel’d double D is equipped with the Poisson
structure π+, we have natural Poisson actions of G and G∗ on D.

Proposition 3.11 ([39, Proposition 2]). The following maps are Poisson and anti-
Poisson, respectively:

σ1 : (G, πG)× (D,π+)→ (D,π+), (g, d) 7→ ḡd;

σ2 : (D,π+)× (G∗, πG∗)→ (D,π+), (d, u) 7→ dū.

Proof. We will prove that the first map is Poisson; the second map can be shown
to be anti-Poisson using a similar method. Firstly, to simplify notation let us write
σ = σ1 and σ(g, d) = ḡd = σg(d) = σd(g), for g ∈ G, d ∈ D. Note that σg = Lḡ, and
σd = Rd ◦ φ1. By Proposition 2.11, we only need to show that

π+(ḡd) = T (σg)(π+(d)) + T (σd)(πG(g)),

for all g ∈ G, d ∈ D. Observe that

π+(ḡd)− T (σg)(π+(d)) =
1

2
(T (Rḡd)(π0) + T (Lḡd)(π0))

− T (Lḡ)

(
1

2
(T (Rd)(π0) + T (Ld)(π0))

)
=

1

2

(
T (Rd) ◦ T (Rḡ)(π0)− T (Lḡ) ◦ T (Rd)(π0)

)
= T (Rd)(π−(ḡ)),

for g ∈ G, d ∈ D. Hence, it remains to show that

T (Rd)(π−(ḡ)) = T (σd)(πG(g)) = T (Rd) ◦ T (φ1)(πG(g)),

for all g ∈ G, d ∈ D. Equivalently, we just need to show that

T (φ1)(πG(g)) = π−(ḡ),

for all g ∈ G, to prove that σ1 is a Poisson map. However, this is just the statement
that φ1 is a Poisson map, which was proved in Proposition 3.9.
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We now look to induce Poisson structures on the product manifoldsG×G∗ andG∗×G,
using the Poisson structure π+ defined on D. We do this by first constructing local
diffeomorphisms from G×G∗ and G∗ ×G into D.

Proposition 3.12 ([26, Lemma 5.2]). The maps given by

Φ1 : G×G∗ → D, (g, u) 7→ ḡū;

Φ2 : G∗ ×G→ D, (v, h) 7→ v̄h̄;

are local diffeomorphisms.

Proof. To prove the statement about Φ1, it is equivalent to show that Φ1 is étale at
every point of G × G∗. That is, for every (g, u) ∈ G × G∗, we are required to show
that the linear map,

T(g,u)Φ1 : T(g,u)(G×G∗)→ TḡūD,

is an isomorphism.

Let us fix g ∈ G, u ∈ G∗. We first make the canonical identification between the
vector spaces T(g,u)(G×G∗) and TgG⊕ TuG∗, and note that

dim(TgG⊕ TuG∗) = dim(g⊕ g∗) = dim(d) = dim(TḡūD).

It thus suffices to show that T(g,u)Φ1 is injective.

Let X̃ ∈ TgG, ξ̃ ∈ TuG∗, and suppose

TΦ1(X̃, ξ̃) = 0. (3.19)

It remains to show that both X̃ = 0, and ξ̃ = 0.

Let X ∈ g, ξ ∈ g∗ denote the unique vectors such that X̃ = T (Lg)(X), ξ̃ = T (Lu)(ξ).
Observe that the curve t 7→ g exp tX in G has tangent vector T (Lg)(X) at g, and the
curve t 7→ u exp tξ in G∗ has tangent vector T (Lu)(ξ) at u. Hence,

TΦ1(X̃, ξ̃) = TΦ1(T (Lg)(X), 0) + TΦ1(0, T (Lu)(ξ))

=
d

dt

∣∣∣∣
t=0

(
Φ1(g exp tX, u)

)
+

d

dt

∣∣∣∣
t=0

(
Φ1(g, u exp tξ)

)
. (3.20)

Note that

Φ1(g exp tX, u) = φ1(g exp tX)φ2(u)

= φ1(g)φ1(exp tX)φ2(u)

= φ1(g) exp(t(φ1)∗X)φ2(u)

= ḡ exp(tX̄)ū.

Also, notice that

ū−1 exp(tX̄)ū = (Lū−1 ◦Rū)(exp tX̄)

= exp(t(Lū−1 ◦Rū)∗X̄)

= exp(tAdū−1(X̄)).

Thus, exp(tX̄)ū = ū exp(tAdū−1(X̄)), and so

Φ1(g exp tX, u) = ḡū exp(tAdū−1(X̄)).
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Similarly, we have
Φ1(g, u exp tξ) = ḡū exp tξ̄.

Hence, equation (3.20) becomes

TΦ1(X̃, ξ̃) =
d

dt

∣∣∣∣
t=0

(
ḡū exp(t(Adū−1(X̄) + ξ̄))

)
= T (Lḡū)(Adū−1(X̄) + ξ̄).

By the assumption (3.19), this implies that Adū−1(X̄) + ξ̄ = 0. Rearranging and
making use of Proposition 3.3 gives X ⊕ Adu(ξ) = 0. It follows that X = 0, and
ξ = 0, and thus X̃ = 0, and ξ̃ = 0.

These two local diffeomorphisms Φ1 and Φ2 give us a way of defining Poisson struc-
tures on G × G∗ and G∗ × G. Denote by π1 the unique Poisson structure such that
Φ1 : (G×G∗, π1)→ (D,π+) is a Poisson map, and similarly denote by π2 the unique
Poisson structure such that Φ2 : (G∗ ×G, π2)→ (D,π+) is a Poisson map.

Explicitly, π1 is given by

π1(g, u) = T(g,u)(Φ1)−1(π+(ḡū)),

for (g, u) ∈ G×G∗, and π2 is given by

π2(v, h) = T(v,h)(Φ2)−1(π+(v̄h̄)),

for (v, h) ∈ G∗ ×G. In terms of the Poisson anchors we have the following relations:

π#
1 (g, u) = T(g,u)(Φ1)−1 ◦ π#

+ (ḡū) ◦ T ∗
(g,u)(Φ1)−1;

π#
2 (v, h) = T(v,h)(Φ2)−1 ◦ π#

+ (v̄h̄) ◦ T ∗
(v,h)(Φ2)−1.

Next we will see that the formulas for π+ given in Propositions 3.7 and 3.8 induce
similar formulas for π1 and π2.

Proposition 3.13. For (g, u) ∈ G×G∗, and ξ⊕X, η⊕Y ∈ d∗, we have the following
formula for π1:

(T (L(g−1,e) ◦R(e,u−1))π1(g, u))(ξ ⊕X, η ⊕ Y ) = π0(ξ ⊕X, η ⊕ Y )

+ πLG(g)(ξ, η)− πRG∗(u)(X,Y );

and for (v, h) ∈ G∗ ×G, we have the following formula for π2:

(T (L(v−1,e) ◦R(e,h−1))π2(v, h))(X ⊕ ξ, Y ⊕ η) = π0(ξ ⊕X, η ⊕ Y )

− πRG(h)(ξ, η) + πLG∗(v)(X,Y ).

Proof. Fix (g, u) ∈ G×G∗, and ξ⊕X, η⊕Y ∈ d∗. Firstly, we note that the following
relations are easily verified:

Φ1 ◦ L(g−1,e) = Lḡ−1 ◦ Φ1;

Φ1 ◦R(e,u−1) = Rū−1 ◦ Φ1.

By applying the tangent functor to these equations and rearranging, it follows that

T(g,u)(L(g−1,e) ◦R(e,u−1)) = T(e,e)(Φ1)−1 ◦ Tḡū(Lḡ−1 ◦Rū−1) ◦ T(g,u)(Φ1).
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Hence, we have

(T (L(g−1,e) ◦R(e,u−1))π1(g, u))(ξ ⊕X, η ⊕ Y )

= ((T(e,e)(Φ1)−1 ◦ Tḡū(Lḡ−1 ◦Rū−1) ◦ T(g,u)(Φ1))π1(g, u))(ξ ⊕X, η ⊕ Y )

= (T (Lḡ−1 ◦Rū−1)π+(ḡū))(T ∗(e,e)(Φ1)−1(ξ ⊕X), T ∗(e,e)(Φ1)−1(η ⊕ Y ))

= (T (Lḡ−1 ◦Rū−1)π+(ḡū))(ξ ⊕X, η ⊕ Y )

= π0(ξ ⊕X, η ⊕ Y ) + πLG(g)(ξ, η)− πRG∗(u)(X,Y ).

The formula for π2 can be proved in a similar manner.

§ 3.2 The Lu & Weinstein symplectic double groupoid

In this section we finally describe Lu and Weinstein’s construction of a symplectic
double groupoid for every pair of dual Poisson Lie groups G and G∗. The results were
announced in [39] and further details were given in [37].

3.2.1 A symplectic double groupoid of G and G∗

Let G and G∗ be dual Poisson Lie groups and D the corresponding Drinfel’d double
Lie group. For now, we assume that G and G∗ are both simply-connected. We
begin the construction by considering a specific submanifold of the product manifold
G × G∗ × G∗ × G. In the previous section, we saw that the maps Φ1 : G × G∗ → D
and Φ2 : G × G∗ → D are local diffeomorphisms. In particular, it follows that Φ1

and Φ2 are transversal to each other. Thus, the pullback Σ = (Φ1×Φ2)−1(∆D) is an
embedded submanifold of G×G∗×G∗×G of codimension equal to dimD = 2 dimG.
Explicitly, we can express

Σ = {(g, u, v, h) ∈ G×G∗ ×G∗ ×G | ḡū = v̄h̄}.

Note that, by definition of codimension, we have

codim Σ = dim(G×G∗ ×G∗ ×G)− dim Σ.

This becomes,
2 dimG = 4 dimG− dim Σ,

and thus, dim Σ = 2 dimG.

We now aim to give Σ the structure of a double groupoid with side groupoids given
by G and G∗. We make the initial observation that Σ is contained in the manifold
�(G,G∗) of Example 1.68. Moreover, we claim that the structure maps of �(G,G∗)
restrict to Σ to define a double groupoid (Σ;G,G∗; {·}).

Σ G∗

G {·}.

α, β

α∗, β∗

To verify this that this is the case, it is sufficient to check that the restrictions of the
structure maps are well-defined. The checks are routine and left to the reader.
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Let us explicitly write down the structure maps. The vertical structure Σ ⇒ G, has
source and target projections given by

α : Σ→ G , (g, u, v, h) 7→ h;

β : Σ→ G , (g, u, v, h) 7→ g.

The partial multiplication κ : Σ ∗G Σ→ Σ is defined by

(g2, u2, v2, h2)� (g1, u1, v1, h1) = (g2, u2u1, v2v1, h1).

Note that the space of compatible pairs is determined by

Σ ∗G Σ = {((g2, u2, v2, h2), (g1, u1, v1, h1)) ∈ Σ× Σ | h2 = g1}.

The identity map is given by

1G : G→ Σ , g 7→ (g, e, e, g);

and the inversion map is given by

ι : Σ→ Σ , (g, u, v, h) 7→ (h, u−1, v−1, g).

On the other hand, the horizontal structure Σ⇒ G∗ has source and target projections
given by

α∗ : Σ→ G∗ , (g, u, v, h) 7→ u;

β∗ : Σ→ G∗ , (g, u, v, h) 7→ v.

The partial multiplication κ∗ : Σ ∗G∗ Σ→ Σ is defined by

(g2, u2, v2, h2) � (g1, u1, v1, h1) = (g2g1, u1, v2, h2h1);

where the space of compatible elements is governed by

Σ ∗G∗ Σ = {((g2, u2, v2, h2), (g1, u1, v1, h1)) ∈ Σ× Σ | u2 = v1}.

Lastly, the identity map is given by

1G
∗
: G∗ → Σ , u 7→ (e, u, u, e);

and the inversion map is given by

ι∗ : Σ→ Σ , (g, u, v, h) 7→ (g−1, v, u, h−1).

Proposition 3.14. With the structure maps defined as above, (Σ;G,G∗; {·}) is a
weak double Lie groupoid.

Proof. Since the structure maps of the double Lie groupoid �(G,G∗) are smooth,
the structure maps of Σ must also be smooth because they are simply restrictions of
the domains and codomains of these maps to embedded submanifolds. In particular,
since the inversion maps are self-inverse they must also be diffeomorphisms. It remains
only to show that the double source map and the source and target projections of the
horizontal and vertical structures are all submersions.

We first focus on the source projection of the vertical structure. Consider an ar-
bitrary element s = (g, u, v, h) ∈ Σ; we would like to show that the tangent map
Ts(α) : TsΣ → ThG is a surjection. Fix Y ∈ ThG, and choose any η ∈ TvG∗. Then,
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we have T (Φ2)(η, Y ) ∈ Tv̄h̄D = TḡūD, and so, since Φ1 is a local diffeomorphism,
there exist vectors X ∈ TgG and ξ ∈ TuG

∗ such that T (Φ1)(X, ξ) = T (Φ2)(η, Y ).
Thus, (X, ξ, η, Y ) ∈ TsΣ and, moreover, T (α)(X, ξ, η, Y ) = Y . Hence, the source
projection α is a submersion.

Since the target projection of the vertical structure β = α ◦ ι is a composite of sub-
mersions, it is also a submersion. We can show that the source and target projections
of the horizontal structure are submersions using analogous arguments.

Finally, we show that the double source map α2 := (α, α∗) : Σ → G × G∗ is a sub-
mersion. Consider an arbitrary element s = (g, u, v, h) ∈ Σ and the corresponding
tangent map Ts(α2) : TsΣ → ThG ⊕ TuG∗. Let us denote the inversion map of the
Lie group G by ιG : G → G. Fix any Y ∈ ThG and ξ ∈ TuG

∗, and then define
Y ′ = T (ιG)(Y ) ∈ Th−1G. It follows that T (Φ2)(ξ, Y ′) ∈ Tūh̄−1D = Tḡ−1v̄D. Now,
since Φ1 is a local diffeomorphism, there exists X ′ ∈ Tg−1G and η ∈ TvG

∗ with
T (Φ1)(X ′, η) = T (Φ2)(ξ, Y ′). Thus, we have (X ′, η, ξ, Y ′) ∈ Tι∗(s)Σ. We now further
define X = T (ιG)(X ′) ∈ TgG, and make the observation that

T (ι∗)(X
′, η, ξ, Y ′) = (T (ιG)(X ′), ξ, η, T (ιG)(Y ′)) = (X, ξ, η, Y ).

Therefore, (X, ξ, η, Y ) ∈ TsΣ and, moreover, T (α2)(X, ξ, η, Y ) = (Y, ξ). This shows
that the tangent map Ts(α2) is surjective. Hence, the double source map is a sub-
mersion.

Our remaining objective is to provide Σ with a symplectic structure that makes
(Σ;G,G∗; {·}) a symplectic double groupoid. In the previous section, we built Poisson
structures on the Drinfel’d double Lie group D and the product manifolds G × G∗
and G∗×G. In a bid to pull back these Poisson structures onto Σ, we first construct
local diffeomorphisms from Σ to D, G×G∗, and G∗ ×G.

Proposition 3.15. The maps given by

Ψ1 : Σ→ G×G∗, (g, u, v, h) 7→ (g, u);

Ψ2 : Σ→ G∗ ×G, (g, u, v, h) 7→ (v, h);

are local diffeomorphisms.

Proof. To show that Ψ1 is a local diffeomorphism we will prove that, for an arbitrary
s = (g, u, v, h) ∈ Σ, the tangent map

Ts(Ψ1) : TsΣ→ TgG⊕ TuG∗

is an isomorphism. Since dim Σ = 2 dimG = dim(G × G∗), we need only show that
Ts(Ψ1) is injective.

Let (X, ξ, η, Y ) ∈ TsΣ, and suppose that Ts(Ψ1)(X, ξ, η, Y ) = (0, 0). Now, since Ψ1

is just a projection, we have Ts(Ψ1)(X, ξ, η, Y ) = (X, ξ), and so X = 0 and ξ = 0.
We also have the property that

T(g,u)(Φ1)(X, ξ) = T(v,h)(Φ2)(η, Y ),

and since T(v,h)(Φ2) is an isomorphism by Proposition 3.12, we also deduce that η = 0
and Y = 0. Hence, Ts(Ψ1) is an injection and thus Ψ1 is a local diffeomorphism. A
similar proof shows that Ψ2 is also a local diffeomorphism.
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Since both Ψ1 and Φ1 are local diffeomorphisms, their composition

Φ: Σ→ D; (g, u, v, h) 7→ ḡū,

is also a local diffeomorphism. This allows us to define a Poisson structure π on Σ –
the unique Poisson structure such that Φ: (Σ, π)→ (D,π+) is a Poisson map. More
precisely, π is defined by

π(s) = Ts(Φ)−1(π+(d)),

for s = (g, u, v, h) ∈ Σ, where d = ḡū ∈ D. In terms of the Poisson anchor we can
formulate this relation as

π#(s) = Ts(Φ)−1 ◦ π#
+ (d) ◦ T ∗s (Φ)−1.

We saw in Proposition 3.10 that π+ is nondegenerate at every d ∈ Im(Φ), that is,

π#
+ (d) is an isomorphism. It follows by the above relationship that π is nondegenerate

at every point of Σ. Hence, π gives rise to a symplectic structure on Σ.

Note that Φ is also equal to the composition of Ψ2 and Φ2, and so we have the
following commutative diagram of Poisson local diffeomorphisms:

(Σ, π) (G∗ ×G, π2)

(G×G∗, π1) (D,π+).

Ψ1

Ψ2

Φ2

Φ1

We now deduce some useful properties of this Poisson structure on Σ.

Proposition 3.16. With Σ endowed with the Poisson structure π, the target pro-
jections β : Σ → G and β∗ : Σ → G∗ are Poisson maps, and the source projections
α : Σ→ G and α∗ : Σ→ G∗ are anti-Poisson maps.

Proof. Let us start by considering the target projection β : Σ → G. We define the
following map of Poisson manifolds:

β̃ : (G×G∗, π1)→ (G, πG) , (g, u) 7→ g.

Note that we have β = β̃ ◦ Ψ1. Since Ψ1 : (Σ, π) → (G × G∗, π1) is a Poisson map,
it is sufficient to prove that β̃ is a Poisson map to conclude that β is also a Poisson
map.

Take any g ∈ G, u ∈ G∗, and ϕ,ψ ∈ T ∗gG, and observe that

T(g,u)(β̃)(π1(g, u))(ϕ,ψ)

= π1(g, u)
(
T ∗

(g,u)(β̃)(ϕ), T ∗
(g,u)(β̃)(ψ)

)
= π1(g, u)(ϕ⊕ 0, ψ ⊕ 0)

= (T (L(g−1,e) ◦R(e,u−1))π1(g, u)) (T ∗e (Lg)(ϕ)⊕ 0, T ∗e (Lg)(ψ)⊕ 0)

= 〈0, T ∗e (Lg)(ψ)〉 − 〈0, T ∗e (Lg)(ϕ)〉
+ πLG(g)(T ∗e (Lg)(ϕ), T ∗e (Lg)(ψ))− πRG∗(u)(0, 0)

= πG(g)(ϕ,ψ).
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This shows that β̃ is a Poisson map, and hence so is the target projection β. Note
that in the second to last line of the computation above, we are using the formula for
π1 given in Proposition 3.8.

To prove that the source projection α : Σ → G is a Poisson map, we first define the
map of Poisson manifolds

α̃ : (G∗ ×G, π2)→ (G, πG) , (v, h) 7→ h.

Since α = α̃ ◦Ψ2, and Ψ2 : (Σ, π)→ (G∗ ×G, π2) is a Poisson map, it is sufficient to
show that α̃ is an anti-Poisson map to prove that the source projection α is also an
anti-Poisson map.

Observe that for any h ∈ G, v ∈ G∗, and ϕ,ψ ∈ T ∗hG, we have

T(v,h)(α̃)(π2(v, h))(ϕ,ψ)

= π2(v, h)
(
T ∗

(v,h)(α̃)(ϕ), T ∗
(v,h)(α̃)(ψ)

)
= π2(v, h)(0⊕ ϕ, 0⊕ ψ)

= (T (L(v−1,e) ◦R(e,h−1))π2(v, h)) (0⊕ T ∗e (Rh)(ϕ), 0⊕ T ∗e (Rh)(ψ))

= 〈0, T ∗e (Rh)(ψ)〉 − 〈0, T ∗e (Rh)(ϕ)〉
− πRG(h)(T ∗e (Rh)(ϕ), T ∗e (Rh)(ψ)) + πLG∗(v)(0, 0)

= −πG(h)(ϕ,ψ).

Thus, α̃ is an anti-Poisson map, and hence so is the source projection α. Here, in the
second to last line of the computation above, we are using the formula for π2 given
in Proposition 3.8.

Similar arguments show that the source and target projections of the horizontal struc-
ture Σ⇒ G∗ are also Poisson and anti-Poisson maps, respectively.

Proposition 3.17. The domains Σ ∗G Σ and Σ ∗G∗ Σ of the partial multiplication
maps of Σ are coisotropic submanifolds of Σ× Σ.

Proof. As a consequence of Proposition 3.16, the map α × β : Σ × Σ → G × G is a
Poisson map. In Example 2.17, we showed that the diagonal ∆G is a coisotropic sub-
manifold of G×G. Thus, by Proposition 2.18 the domain Σ∗GΣ = (α×β)−1(∆G) of
the partial multiplication in the vertical structure Σ⇒ G is a coisotropic submanifold
of Σ× Σ. Arguing in a similar fashion shows that the domain Σ ∗G∗ Σ of the partial
multiplication in the horizontal structure Σ ⇒ G∗ is also a coisotropic submanifold
of Σ× Σ.

We now state Lu and Weinstein’s theorem, which is the main result of this section.

Theorem 3.18 ([39, Theorem 3]). With Σ endowed with the Poisson structure π,
(Σ;G,G∗; {·}) is a symplectic double groupoid.

Before giving a complete proof of this theorem, we first prove some preliminaries
results.

Let us introduce some new notation to make more compact some of the formulas that
will follow. Given vectors X ∈ TgG, ξ ∈ TuG∗, η ∈ T ∗hG, Y ∈ T ∗vG∗, we denote by
XL, XR, YL, YR ∈ g and ξL, ξR, ηL, ηR ∈ g∗, the unique vectors satisfying

X = T (Lg)(XL) = T (Rg)(XR), ξ = T (Lu)(ξL) = T (Ru)(ξR),

η = T ∗h (Lh−1)(ηL) = T ∗h (Rh−1)(ηR), Y = T ∗v (Lv−1)(YL) = T ∗v (Rv−1)(YR).
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Lemma 3.19. Let (X, ξ, η, Y ) ∈ TsΣ, with s = (g, u, v, h) ∈ Σ. Then we have the
relations

XL ⊕ ξR = Adḡ−1(ηR) + Adū(YL), (3.21)

and
YR ⊕ ηL = Adv̄−1(XR) + Adh̄(ξL). (3.22)

Proof. Since Σ is the pullback manifold (Φ1 × Φ2)−1(∆D), we have the equation

T (Φ1)(X, ξ) = T (Φ2)(η, Y ).

The relations follow after computing the tangent maps of Φ1 and Φ2.

Corollary 3.20. Let (X, ξ, η, Y ) ∈ TsΣ, with s = (g, u, v, h) ∈ Σ. Then we have the
relations

(i) XL = p1(Adḡ−1(ηR)) + Ad∗u(YL);

(ii) ξR = Ad∗g−1(ηR) + p2(Adū(YL));

(iii) ηL = p2(Adv̄−1(XR)) + Ad∗h(ξL);

(iv) YR = Ad∗v−1(XR) + p1(Adh̄(ξL)).

Proposition 3.21. Let (s1, s2) ∈ Σ ∗G Σ, with si = (gi, ui, vi, hi), for i = 1, 2. Then
the space (π# ⊕ π#)(T(s1,s2)(Σ ∗G Σ)◦) consists of elements of the form(

(0, T (Lu1)(ξ), T (Lv1)(η), T (Rh1)(Y )), (T (Rh1)(Y ),−T (Ru2)(ξ),−T (Rv2)(η), 0)
)
,

where ξ, η ∈ g∗, Y ∈ g are vectors satisfying Y ⊕ η = Adh̄1
(ξ).

Proof. Let us fix an arbitrary pair (s1, s2) ∈ Σ ∗G Σ, where si = (gi, ui, vi, hi), for
i = 1, 2. In particular, we have h1 = g2. We claim that,

T(s1,s2)(Σ ∗G Σ)◦ = {(T ∗s1(α)(ϕ),−T ∗s2(β)(ϕ)) ∈ T ∗s1Σ× T ∗s2Σ | ϕ ∈ T ∗h1
G}.

The inclusion of the right-hand side is easily seen from that fact that Σ ∗G Σ is given
by the pullback manifold (α × β)−1(∆G), and the reverse inclusion follows from a
dimension count. Therefore, (π# ⊕ π#)(T(s1,s2)(Σ ∗G Σ)◦) consists of elements of the
form (

π#(T ∗s1(α)(ϕ)),−π#(T ∗s2(β)(ϕ))
)
,

where ϕ ∈ T ∗h1
G. Let us define (X1, ξ1, η1, Y1) = π#(T ∗s1(α)(ϕ)), and (X2, ξ2, η2, Y2) =

π#(T ∗s2(β)(ϕ)), for a fixed ϕ ∈ T ∗h1
G. Our next objective is to find more explicit

relations between ϕ and Xi, ξi, ηi, Yi, for i = 1, 2.

Recall, from the proof of Proposition 3.16, the projections α̃ : G∗ × G → G, and
β̃ : G×G∗ → G, which satisfy α = α̃ ◦Ψ2 and β = β̃ ◦Ψ1. Observe that we have

π#
s1 ◦ T

∗
s1(α) = (Ts1(Ψ2)−1 ◦ π#

2 (v1, h1) ◦ T ∗s1(Ψ2)−1) ◦ (T ∗s1(Ψ2) ◦ T ∗(v1,h1)(α̃))

= Ts1(Ψ2)−1 ◦ π#
2 (v1, h1) ◦ T ∗(v1,h1)(α̃),

and

π#
s2 ◦ T

∗
s2(β) = (Ts2(Ψ1)−1 ◦ π#1(g2, u2) ◦ T ∗s2(Ψ1)−1) ◦ (T ∗s2(Ψ1) ◦ T ∗(g2,u2)(β̃))

= Ts2(Ψ1)−1 ◦ π#
1 (g2, u2) ◦ T ∗(g2,u2)(β̃).
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Using these relations, we conclude that

(η1, Y1) = Ts1(Ψ2)(X1, ξ1, η1, Y1) = π#
2 (v1, h1)(T ∗(v1,h1)(α̃)(ϕ)),

and
(X2, ξ2) = Ts2(Ψ1)(X2, ξ2, η2, Y2) = π#

1 (g2, u2)(T ∗(g2,u2)(β̃)(ϕ)).

Moreover, since the maps α̃ and β̃ are projections we also have T ∗(v1,h1)(α̃)(ϕ) = 0⊕ϕ
and T ∗(g2,u2)(β̃)(ϕ) = ϕ⊕ 0.

Now, fix arbitrary vectors X̃ ∈ T ∗v1
G∗, ξ̃ ∈ T ∗h1

G, and observe that

〈η1 ⊕ Y1, X̃ ⊕ ξ̃〉 = 〈π#
2 (v1, h1)(0⊕ ϕ), X̃ ⊕ ξ̃〉 = π2(v1, h1)(0⊕ ϕ, X̃ ⊕ ξ̃)

= (T (L(v−1
1 ,e) ◦R(e,h−1

1 ))π2(v1, h1))(0⊕ T ∗e (Rh1)(ϕ), T ∗e (Lv1)(X̃)⊕ T ∗e (Rh1)(ξ̃))

= −〈T ∗e (Lv1)(X̃), T ∗e (Rh1)(ϕ)〉 − πRG(h1)(T ∗e (Rh1)(ϕ), T ∗e (Rh1)(ξ̃)).

Using the more compact notation discussed on page 78, we can write this as

〈η1,L ⊕ Y1,R, X̃L ⊕ ξ̃R〉 = −〈X̃L, ϕR〉 − πRG(h1)(ϕR, ξ̃R)

= 〈X̃L,−ϕR〉+ 〈p1(Adh̄−1
1

(ϕR)), p2(Adh̄−1
1

(ξ̃R))〉

= 〈X̃L,−ϕR〉+ 〈p1(Adh̄−1
1

(ϕR)),Ad∗
h−1

1
(ξ̃R)〉

= 〈X̃L,−ϕR〉+ 〈Adh1(p1(Adh̄−1
1

(ϕR))), ξ̃R〉

= 〈(−ϕR)⊕Adh1(p1(Adh̄−1
1

(ϕR))), X̃L ⊕ ξ̃R〉.

Here, we have made use of the properties given in Proposition 3.3. The nondegeneracy
of the pairing implies that

η1,L = −ϕR , Y1,R = Adh1(p1(Adh̄−1
1

(ϕR))).

Alternatively, we can write these relations as

η1,R = −Adv1(ϕR) , Y1,L = p1(Adh̄−1
1

(ϕR)).

Arguing similarly, fix η̃ ⊕ Ỹ ∈ T ∗g2
G⊕ T ∗u2

G∗, and observe that

〈X2 ⊕ ξ2, η̃ ⊕ Ỹ 〉 = 〈π#
1 (g2, u2)(ϕ⊕ 0), η̃ ⊕ Ỹ 〉 = π1(g2, u2)(ϕ⊕ 0, η̃ ⊕ Ỹ )

= (T (L(g−1
2 ,e) ◦R(e,u−1

2 ))π1(g2, u2))(T ∗e (Lg2)(ϕ)⊕ 0, T ∗e (Lg2)(η̃)⊕ T ∗e (Ru2)(Ỹ ))

= −〈T ∗e (Ru2)(Ỹ ), T ∗e (Lg2)(ϕ)〉+ πLG(g2)(T ∗e (Lg2)(ϕ), T ∗e (Lg2)(η̃)).

Switching to our compact notation, this equation becomes

〈X2,L ⊕ ξ2,R, η̃L ⊕ ỸR〉 = −〈ỸR, ϕL〉+ πLG(g2)(ϕL, η̃L)

= 〈ỸR,−ϕL〉+ 〈p1(Adḡ2(ϕL)), p2(Adḡ2(η̃L))〉
= 〈ỸR,−ϕL〉+ 〈p1(Adḡ2(ϕL)),Ad∗g2

(η̃L)〉
= 〈ỸR,−ϕL〉+ 〈Adg−1

2
(p1(Adḡ2(ϕL))), η̃L〉

= 〈Adg−1
2

(p1(Adḡ2(ϕL)))⊕ (−ϕL), η̃L ⊕ ỸR〉.

Again, the nondegeneracy of the pairing implies that

X2,L = Adg−1
2

(p1(Adḡ2(ϕL))) , ξ2,R = −ϕL.
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We can also write these relations as

X2,R = p1(Adḡ2(ϕL)) , ξ2,L = −Adu−1
2

(ϕL).

Now, since (X1, ξ1, η1, Y1) ∈ Ts1Σ, the relation (3.22) of Lemma 3.19 gives

Y1,R ⊕ η1,L = Adv̄−1
1

(X1,R) + Adh̄1
(ξ1,L). (3.23)

Observe that, by property (i) of Corollary 3.20, we have

X1,L = p1(Adḡ−1
1

(η1,R)) + Ad∗u1
(Y1,L)

= p1(Adḡ−1
1

(−Adv1(ϕR))) + Ad∗u1
(p1(Adh̄−1

1
(ϕR)))

= − p1(Adḡ−1
1

(Adv̄1(ϕR))) + p1(Adū1(Adh̄−1
1

(ϕR)))

= 0,

since ḡ−1
1 v̄1 = ū1h̄

−1
1 . Let us define vectors ξ, η ∈ g∗, Y ∈ g, such that ξ = ξ1,L,

η = η1,L, and Y = Y1,R. Then equation (3.23) becomes

Y ⊕ η = Adh̄1
(ξ). (3.24)

Notice that by this relation, Y and η are uniquely determined by ξ. We also have

(X1, ξ1, η1, Y1) = (0, T (Lu1)(ξ), T (Lv1)(η), T (Rh1)(Y )).

Finally, let us try to compute (X2, ξ2, η2, Y2) in terms of ξ, η, and Y . We will prove
that the following relations hold:

(i) X2,R = −Y ;

(ii) ξ2,R = ξ;

(iii) η2,R = η;

(iv) Y2,R = 0.

To prove the first statement (i), we need to show Y1,R + X2,R = 0. Recall that we
have Y1,R = Adh1(p1(Adh̄−1

1
(ϕR))) and X2,R = p1(Adḡ2(ϕL)). Also, note that we

have h1 = g2. Pairing Y1,R +X2,R with an arbitrary element ζ ∈ g∗ gives

〈Y1,R +X2,R, ζ〉 = 〈Adh1(p1(Adh̄−1
1

(ϕR))), ζ〉+ 〈p1(Adh̄1
(ϕL)), ζ〉

= 〈Adh̄−1
1

(ϕR) | Ad∗
h−1

1
(ζ)〉+ 〈Adh̄1

(Ad∗
h−1

1
(ϕR)) | ζ〉

= 〈Adh̄−1
1

(ϕR) | p2(Adh̄−1
1

(ζ))〉+ 〈Ad∗
h−1

1
(ϕR) | Adh̄−1

1
(ζ)〉

= 〈Adh̄−1
1

(ϕR) | p2(Adh̄−1
1

(ζ))〉+ 〈p2(Adh̄−1
1

(ϕR)) | Adh̄−1
1

(ζ)〉

= 〈Adh̄−1
1

(ϕR) | p2(Adh̄−1
1

(ζ))〉+ 〈Adh̄−1
1

(ϕR) | p1(Adh̄−1
1

(ζ))〉

= 〈Adh̄−1
1

(ϕR) | Adh̄−1
1

(ζ)〉

= 〈ϕR | ζ〉
= 0.

From the nondegeneracy of the pairing, we deduce Y1,R +X2,R = 0.
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Next, we prove (iv). By the fourth relation of Corollary 3.20, we have

Y2,R = Ad∗
v−1
2

(X2,R) + p1(Adh̄2
(ξ2,R))

= Ad∗
v−1
2

(p1(Adḡ2(ϕL))) + p1(Adh̄2
(−Adu−1

2
(ϕL)))

= p1(Adv̄−1
2

(Adḡ2(ϕL)))− p1(Adh̄2
(Adū−1

2
(ϕL)))

= 0.

The last line follows because v̄−1
2 ḡ2 = h̄2ū

−1
2 . This further implies that Y2 = 0.

For the second statement (ii), recall that we have ξ2,R = −ϕL, and so we need to
show that ξ = −ϕL. By the equation (3.24), this is equivalent to showing that
Y ⊕ η = −Adh̄1

(ϕL). Observe that

η = η1,L = −ϕR = −Ad∗h1
(ϕL) = − p2(Adh̄1

(ϕL)).

Therefore, it remains only to show that Y = − p1(Adh̄1
(ϕL)). Recall that we have

Y = Y1,R = Adh1(p1(Adh̄−1
1

(ϕR))). By pairing Y with an arbitrary element ζ ∈ g∗,

we find

〈Y, ζ〉 = 〈Adh1(p1(Adh̄−1
1

(ϕR))), ζ〉

= 〈p1(Adh̄−1
1

(ϕR)),Ad∗
h−1

1
(ζ)〉

= 〈Adh̄−1
1

(ϕR) | Ad∗
h−1

1
(ζ)〉

= 〈ϕR | Adh̄1
(Ad∗

h−1
1

(ζ))〉

= 〈Ad∗h1
(ϕL) | Adh̄1

(Ad∗
h−1

1
(ζ))〉

= 〈p2(Adh̄1
(ϕL)) | Adh̄1

(Ad∗
h−1

1
(ζ))〉

= 〈Adh̄1
(ϕL) | p1(Adh̄1

(Ad∗
h−1

1
(ζ)))〉

= 〈Adh̄1
(ϕL) | Adh̄1

(Ad∗
h−1

1
(ζ))〉

− 〈Adh̄1
(ϕL) | p2(Adh̄1

(Ad∗
h−1

1
(ζ)))〉

= 〈ϕL | Ad∗
h−1

1
(ζ)〉 − 〈Adh̄1

(ϕL) | Ad∗h1
(Ad∗

h−1
1

(ζ))〉

= −〈Adh̄1
(ϕL) | ζ〉

= 〈− p1(Adh̄1
(ϕL)), ζ〉.

By nondegeneracy of the pairing, the required result follows.

To prove the third statement (iii), first recall that η = η1,L = −ϕR. Thus, we need
to show that η2,R = −ϕR. By Corollary 3.20 and statement (iv), this is equivalent to
showing that

X2,L ⊕ ξ2,R = −Adḡ−1
2

(ϕR).

However, we notice that

ξ2,R = −ϕL = −Ad∗
g−1
2

(ϕR) = − p2(Adḡ−1
2

(ϕR)).

Hence, it remains to show that X2,L = − p1(Adḡ−1
2

(ϕR)). Pairing X2,L with an
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arbitrary element ζ ∈ g∗ gives

〈X2,L, ζ〉 = 〈Adg−1
2

(p1(Adḡ2(ϕL))), ζ〉

= 〈p1(Adḡ2(ϕL)),Ad∗g2
(ζ)〉

= 〈Adḡ2(ϕL) | Ad∗g2
(ζ)〉

= 〈ϕL | Adḡ−1
2

(Ad∗g2
(ζ))〉

= 〈Ad∗
g−1
2

(ϕR) | Adḡ−1
2

(Ad∗g2
(ζ))〉

= 〈p2(Adḡ−1
2

(ϕR)) | Adḡ−1
2

(Ad∗g2
(ζ))〉

= 〈Adḡ−1
2

(ϕR) | p1(Adḡ−1
2

(Ad∗g2
(ζ)))〉

= 〈Adḡ−1
2

(ϕR) | Adḡ−1
2

(Ad∗g2
(ζ))〉

− 〈Adḡ−1
2

(ϕR) | p2(Adḡ−1
2

(Ad∗g2
(ζ)))〉

= 〈ϕR | Ad∗g2
(ζ)〉 − 〈Adḡ−1

2
(ϕR) | Ad∗

g−1
2

(Ad∗g2
(ζ))〉

= −〈Adḡ−1
2

(ϕR) | ζ〉

= 〈− p1(Adḡ−1
2

(ϕR)), ζ〉.

The nondegeneracy of the pairing, gives the required result.

Properties (i)–(iv) lead us to the conclusion that

(X2, ξ2, η2, Y2) = (−T (Rg2)(Y ), T (Ru2)(ξ), T (Rv2)(η), 0).

Hence, we have shown that the space (π#⊕π#)(T(s1,s2)(Σ∗GΣ)◦) contains only pairs
of the form(

(0, T (Lu1)(ξ), T (Lv1)(η), T (Rh1)(Y )), (T (Rh1)(Y ),−T (Ru2)(ξ),−T (Rv2)(η), 0)
)
,

where ξ, η ∈ g∗, Y ∈ g are vectors satisfying Y ⊕ η = Adh̄1
(ξ).

We are now able to give a proof of Lu and Weinstein’s theorem.

Proof of Theorem 3.18. To prove that (Σ;G,G∗; {·}) is a symplectic groupoid, we
need only to show that the vertical structure Σ ⇒ G and the horizontal structure
Σ⇒ G∗ are Poisson groupoids with respect to π. We will prove only that the vertical
structure is a Poisson groupoid; a similar argument can be used for the horizontal
structure.

By definition of a Poisson groupoid, we need to show that the graph of the partial
multiplication,

Γ(κ) = {(s2, s1, κ(s1, s2)) | (s1, s2) ∈ Σ ∗G Σ}
= {((g2, u2, v2, h2), (g1, u1, v1, h1), (g2, u2u1, v2v1, h1)) ∈ (Σ ∗G Σ)× Σ},

is a coisotropic submanifold of Σ× Σ× Σ.

We consider the graph Γ(µ) of the map

µ : Σ ∗G Σ→ D , ((g2, u2, v2, h2), (g1, u1, v1, h1)) 7→ ḡ2ū2ū1.



84 CHAPTER 3. SYMPLECTIC DOUBLE GROUPOIDS OF POISSON LIE GROUPS

Observe that Γ(κ) is diffeomorphic to Γ(µ) via the Poisson local diffeomorphism
idΣ∗GΣ×Φ. Hence, Γ(κ) is a coisotropic submanifold of Σ × Σ × Σ, if and only if,
Γ(µ) is a coisotropic submanifold of Σ× Σ×D.

Note that µ is the restriction of the map

µ̃ : Σ× Σ→ D , ((g2, u2, v2, h2), (g1, u1, v1, h1)) 7→ ḡ2ū2ū1,

to Σ∗GΣ, and we can write µ̃ = σ2◦(Φ×α∗). Recall σ2 : D×G∗ → D; (d, u) 7→ dū, is
an anti-Poisson map by Proposition 3.11, the source projection α∗ : Σ→ G∗ is an anti-
Poisson map by Proposition 3.16, and Φ: Σ → D is a Poisson map by construction
of π. Therefore, µ̃ is a Poisson map.

By Proposition 2.20, we deduce that Γ(µ) is a coisotropic submanifold of Σ×Σ×D,
if and only if,

(π# ⊕ π#)(T (Σ ∗G Σ)◦) ⊆ ker(T (µ̃)).

A simple calculation shows that, for any (s1, s2) ∈ Σ ∗G Σ, with si = (gi, ui, vi, hi),
for i = 1, 2, and any pair ((X1, ξ1, η1, Y1), (X2, ξ2, η2, Y2)) ∈ T(s1,s2)(Σ ∗G Σ), we have

T (µ̃)((X1, ξ1, η1, Y1), (X2, ξ2, η2, Y2))

= T (Rū1ū2 ◦ φ1)(X1) + T (Lḡ1 ◦Rū2 ◦ φ2)(ξ1) + T (Lḡ1 ◦ Lū1 ◦ φ2)(ξ2).

In Proposition 3.21, we saw that the space (π#⊕π#)(T(s1,s2)(Σ∗GΣ)◦) contains only
pairs of the form

((0, T (Lu1)(ξ), T (Lv1)(η), T (Rh1)(Y )), (T (Rh1)(Y ),−T (Ru2)(ξ),−T (Rv2)(η), 0)),

where ξ, η ∈ g∗, Y ∈ g are vectors satisfying Y ⊕ η = Adh̄1
(ξ). However, T (µ̃) sends

elements of this form to

T (Rū1ū2 ◦ φ1)(0) + T (Lḡ1 ◦Rū2 ◦ φ2)(T (Lu1)(ξ)) + T (Lḡ1 ◦ Lū1 ◦ φ2)(−T (Ru2)(ξ))

= T (Lḡ1 ◦Rū2 ◦ Lū1 ◦ φ2)(ξ)− T (Lḡ1 ◦ Lū1 ◦Rū2 ◦ φ2)(ξ)

= 0.

This completes the proof.

Remark 3.22. In the construction of (Σ;G,G∗; {·}) we have assumed that G and G∗

are simply-connected. When this condition is removed, one can consider the universal
covering groups G̃ and G̃∗. By constructing the symplectic double groupoid of G̃ and
G̃∗ in the manner described above, a symplectic double groupoid of G and G∗ can be
obtained as a quotient. See [37, Remark 4.6] for the details.



Chapter 4

Symplectic double groupoids of
Poisson groupoids

In the previous chapter we saw that any pair of dual Poisson Lie groups, G and G∗,
give rise to a symplectic double groupoid whose side groupoids are given by G and G∗.
There is of course a reverse procedure: given any symplectic double groupoid with
base manifold given by a singleton set, the side groupoids obtain Poisson structures
for which they are dual Poisson Lie groups. In fact, Mackenzie proved a more general
result:

Theorem 4.1 ([44, Theorem 2.9]). Let (S;H,V ;P ) be a symplectic double groupoid.
Then the side groupoids H ⇒ P and V ⇒ P are Poisson groupoids in duality, and
the core groupoid C ⇒ P is a symplectic groupoid.

The original proof was given for symplectic double groupoids for which the double
source map is also a surjection. However, the proof extends without change to include
the symplectic double groupoids defined in this thesis.

§ 4.1 Generalisations of the Lu-Weinstein double
groupoid

We have just seen that a symplectic double groupoid induces Poisson structures on
its side groupoids which make them dual Poisson groupoids. This section will be
devoted to considering scenarios where this process can be reversed. More precisely,
given a pair of dual Poisson groupoids, we will assess in which situations there exists a
symplectic double groupoid whose side groupoids are given by this pair. In particular,
we would like to be able to describe a construction principle for such a symplectic
double groupoid, that generalises that of Lu and Weinstein [39]. A symplectic double
groupoid will not exist for every pair of dual Poisson groupoids, although one should
exist locally (see [63, §4.5]). We are only interested in the cases where a construction
can be done globally.

4.1.1 Constructions of weak double Lie groupoids

Before considering any Poisson or symplectic structures, we first try to construct weak
double Lie groupoids that give generalisations of the Lu-Weinstein double groupoid

85
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of Chapter 3.

We saw that for a pair of dual Poisson Lie groups G and G∗, the structure maps
of the Lu-Weinstein double groupoid Σ were inherited from the double Lie groupoid
�(G,G∗). Moreover, the construction of Σ depended on the relationship of the triple
(D,G,G∗), where D was the Drinfel’d double Lie group. We begin by introducing
the following notion, which generalises the relationship of this triple.

Definition 4.2. Let M be a smooth manifold. A Lie groupoid triple on M is a triple
of Lie groupoids (D,H, V ) each with base manifold M , equipped with morphisms of
Lie groupoids φ1 : H → D, h 7→ h̄ and φ2 : V → D, v 7→ v̄ over M , such that the map
Φ1 : H ∗ V → D, (h, v) 7→ h̄v̄ is a submersion. Here, H ∗ V is the pullback manifold
defined by (αH × βV )−1(∆M ).

Remark 4.3. This generalises the notion of a double Lie group given by Lu and
Weinstein [40, §3]. In particular, a Poisson Lie group G and its dual Poisson Lie
group G∗, together with the corresponding Drinfel’d double Lie group D, form a Lie
groupoid triple (D,G,G∗) on base a singleton set.

Example 4.4. Let M be a smooth manifold. Consider the pair groupoid M ×M on
base M . We have a Lie groupoid triple (M ×M,M ×M,M ×M) on M , where φ1

and φ2 are given by the identity map idM×M . The map Φ1 is identical to the partial
multiplication of the pair groupoid on M , and so is a diffeomorphism.

Example 4.5. Let G be a Lie groupoid with base manifold M . The anchor map
χ = (β, α) : G → M ×M is a morphism of Lie groupoids over M , where M ×M is
the pair groupoid on M . We claim that (M ×M,G,M ×M) is a Lie groupoid triple,
with φ1 = χ and φ2 = idM×M . We need to check that the map

Φ1 : G ∗ (M ×M)→M ×M, (g,m1,m2) 7→ (β(g),m2),

is a submersion. Note that

G ∗ (M ×M) = {(g,m1,m2) ∈ G×M ×M | α(g) = m1}.

Hence, we have a diffeomorphism F : G×M → G ∗ (M ×M), (g,m) 7→ (g, α(g),m).
Moreover, we can write Φ1 as the composite F−1 ◦ (β × idM ). Since the target
projection β is a submersion, it follows that Φ1 is also a submersion. �

Example 4.6. Let H and V be Lie groupoids with the same base manifold M .
Suppose that H is locally trivial. Then (M ×M,H, V ) is a Lie groupoid triple on M ,
with φ1 and φ2 equal to the anchor maps χH and χV , respectively. Here M ×M is
just the pair groupoid on M . Let us check that the map

Φ1 : H ∗ V →M ×M, (h, v) 7→ (βH(h), αV (v)),

is a submersion. Given (h, v) ∈ H ∗ V , we need to show that the tangent map
T(h,v)(Φ1) : T(h,v)(H ∗ V ) → TβH(h)M ⊕ TαV (v)M is a surjection. Take an arbitrary
pair (Y,Z) ∈ TβH(h)M ⊕ TαV (v)M . Now since the source projection αV : V → M is
a submersion, there exists ξ ∈ TvV such that T (αV )(ξ) = Z. The condition that
H is locally trivial means that the anchor map χH = (βH , αH) : H → M ×M is a
submersion. Since αH(h) = βV (v), we have (Y, T (βV )(ξ)) ∈ TχH(h)(M ×M), and so
there exists X ∈ ThH with

T (χH)(X) = (T (βH)(X), T (αH)(X)) = (Y, T (βV )(ξ)).
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Thus, (X, ξ) ∈ T(h,v)(H ∗ V ). Moreover,

T (Φ1)(X, ξ) = (T (βH)(X), T (αV )(ξ)) = (Y,Z).

Hence, the tangent map T(h,v)(Φ1) is surjective, and Φ1 is a submersion. �

For our first construction, let us suppose we are given a Lie groupoid triple (D,H, V )
on base manifold M . Let us construct the double groupoid �(H,V ) of Example 1.68.
Explicitly, the structure maps for the vertical structure are given as follows. The
source and target projections are

α̃V : �(H,V )→ H , (g, u, v, h) 7→ h;

β̃V : �(H,V )→ H , (g, u, v, h) 7→ g.

The partial multiplication κ̃V : �(H,V ) ∗H �(H,V )→ �(H,V ) is defined by

(g2, u2, v2, h2)� (g1, u1, v1, h1) = (g2, u2u1, v2v1, h1).

The identity map is given by

1̃V : H → �(H,V ) , g 7→ (g, 1VαH(g), 1
V
βH(g), g);

and the inversion map given by

ι̃V : �(H,V )→ �(H,V ) , (g, u, v, h) 7→ (h, u−1, v−1, g).

On the other hand, the horizontal structure has source and target projections given
by

α̃H : �(H,V )→ V , (g, u, v, h) 7→ u;

β̃H : �(H,V )→ V , (g, u, v, h) 7→ v.

The partial multiplication κ̃H : �(H,V ) ∗V �(H,V )→ �(H,V ) is defined by

(g2, u2, v2, h2) � (g1, u1, v1, h1) = (g2g1, u1, v2, h2h1).

The identity map is given by

1̃H : V → �(H,V ) , u 7→ (1HβV (u), u, u, 1
H
αV (u));

and the inversion map given by

ι̃H : �(H,V )→ �(H,V ) , (g, u, v, h) 7→ (g−1, v, u, h−1).

The map Φ1 : H ∗ V → D, (g, u) 7→ ḡū is a submersion by assumption. Let V ∗ H
denote the pullback manifold defined by (αV × βH)−1(∆M ). Then it follows that the
map defined by Φ2 : V ∗H → D, (v, h) 7→ v̄h̄ is also a submersion.

Now consider the embedded submanifold Σ̃ of �(H,V ) defined by (Φ1×Φ2)−1(∆D).
We claim that the structure maps of the double groupoid �(H,V ) restrict to Σ̃ to give
a well-defined double groupoid (Σ̃;H,V ;M). To show that this is the case, one only
needs to check that the restrictions of the structure maps are themselves well-defined,
which is straightforward. In fact, we have a stronger result.

Theorem 4.7. Let (D,H, V ) be a Lie groupoid triple on base manifold M . Then
(Σ̃;H,V ;M) is a weak double Lie groupoid.
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Proof. We first note that all of the structure maps of the double groupoid �(H,V )
described above are smooth. Since the structure maps of Σ̃ are just restrictions of
the domains and codomains of these maps to embedded submanifolds, it follows that
they are also smooth. In particular, this shows that the inversion maps must be
diffeomorphisms because they are self-inverse.

It remains to show that the source and target projections of the horizontal and vertical
structures are submersions, and also that the double source map is a submersion.

Let us first consider the source projection of the vertical structure. Given an element
s = (g, u, v, h) ∈ Σ̃, we need to show that the tangent map Ts(α̃V ) : TsΣ̃ → ThH is
surjective. Take Y ∈ ThH, then T (βH)(Y ) ∈ TβH(h)M = TαV (v)M . Now since αV
is a submersion, there exists η ∈ TvV such that T (αV )(η) = T (βH)(Y ). Moreover,
T (Φ2)(η, Y ) ∈ Tv̄h̄D = TḡūD, and so, since Φ1 is a submersion, there exists a pair

(X, ξ) ∈ T(g,u)(H ∗V ) such that T (Φ1)(X, ξ) = T (Φ2)(η, Y ). Thus, (X, ξ, η, Y ) ∈ TsΣ̃
and T (α̃V )(X, ξ, η, Y ) = Y . Hence, the source projection α̃V is a submersion.

The target projection of the vertical structure can also be seen to be a submersion
by writing it as a composition of submersions, β̃V = α̃V ◦ ι̃V . We can show that
the source and target projections of the horizontal structure are submersions using a
similar style of argument.

Finally, let us show that the double source map α2 := (α̃V , α̃H) : Σ̃ → H ×α V is a
submersion. Let s = (g, u, v, h) ∈ Σ̃, and consider the corresponding tangent map
Ts(α2) : TsΣ̃ → T(h,u)(H ×α V ). Given an arbitrary pair (Y, ξ) ∈ T(h,u)(H ×α V ),
define Y ′ = T (ιH)(Y ) ∈ Th−1H. Observe that

T (βH)(Y ′) = T (βH ◦ ιH)(Y ) = T (αH)(Y ) = T (αV )(ξ),

and so (ξ, Y ′) ∈ T(u,h−1)(V ∗ H). Furthermore, T (Φ2)(ξ, Y ′) ∈ Tūh̄−1D = Tḡ−1v̄D.
Now, since Φ1 is a submersion there exists a pair (X ′, η) ∈ T(g−1,v)(H ∗ V ) with

T (Φ1)(X ′, η) = T (Φ2)(ξ, Y ′). Thus, we have (X ′, η, ξ, Y ′) ∈ Ts−1(H)Σ̃. Next, we
define X = T (ιH)(X ′) ∈ TgH, and observe that

T (ι̃H)(X ′, η, ξ, Y ′) = (T (ιH)(X ′), ξ, η, T (ιH)(Y ′)) = (X, ξ, η, Y ).

Hence, (X, ξ, η, Y ) ∈ TsΣ̃ and moreover T (α2)(X, ξ, η, Y ) = (Y, ξ). This shows that
the tangent map Ts(α2) is surjective. Therefore, the double source map is a submer-
sion.

The core of (Σ̃;H,V ;M) can be identified with (φ1×φ2)−1(∆D). It is a subgroupoid
of the Cartesian product groupoid H × V over the diagonal map.

When we consider the Lie groupoid triple (D,G,G∗), with G and G∗ dual Poisson Lie
groups and D the Drinfel’d double Lie group, (Σ̃;G,G∗; {·}) is precisely the double
groupoid constructed by Lu and Weinstein. Note that in this scenario, the map
Φ1 : G×G∗ → D is a local diffeomorphism.

In the general case, if (D,H, V ) is a Lie groupoid triple over M such that the map
Φ1 : H ∗ V → D is a local diffeomorphism, we can show that

dim(Σ̃) = dim(H) + dim(V )− dim(M).

However, if H and V are taken as dual Poisson groupoids with M non-trivial, then
dim(Σ̃) 6= 2 dim(H) = 2 dim(V ). This means that Σ̃ has no symplectic structure
that makes (Σ̃;H,V ;M) a symplectic double groupoid. On the other hand, when Φ1



4.1. GENERALISATIONS OF THE LU-WEINSTEIN DOUBLE GROUPOID 89

is not a local diffeomorphism, there exist cases where (Σ̃;H,V ;M) can be made a
symplectic double groupoid. We will see examples of this in Section 4.1.2.

Example 4.8. Let M be a smooth manifold, and consider the Lie groupoid triple
(M×M,M×M,M×M) on M of Example 4.4. Here, the maps φ1 and φ2 are given by
the identity map idM×M . For the (weak) double Lie groupoid (Σ̃;M×M,M×M ;M),
the manifold Σ̃ has elements of the form

s = ((z, y), (y, x), (z,m), (m,x)) ∈M8.

Thus, we have a diffeomorphism F : Σ̃→M4 given by s 7→ (z, y,m, x). It is straight-
forward to show that F is an isomorphism of Lie groupoids between the vertical
structure of Σ̃ and the pair groupoid M4 on M ×M .

Recall, from Example 1.65, the involutive diffeomorphism Θ: M4 → M4 given by
(z, y,m, x) 7→ (z,m, y, x). We can also show that Θ ◦ F is an isomorphism of Lie
groupoids between the horizontal structure of Σ̃ and the pair groupoid M4 on M×M .
Hence, (F ; idM×M , idM×M ; idM ) provides an isomorphism of double Lie groupoids
between (Σ̃;M ×M,M ×M ;M) and (M4;M ×M,M ×M ;M) of Example 1.65.

Example 4.9. Let G be a Lie groupoid with base manifold M . Consider the Lie
groupoid triple (M×M,G,M×M) onM of Example 4.5 with φ1 = χ, the anchor ofG,
and φ2 = idM×M . Let us construct the (weak) double Lie groupoid (Σ̃;G,M×M ;M).
As a manifold, Σ̃ consists of elements

(g2, (m2,m1), (m4,m3), g1) ∈ G×M4 ×G,

such that χ(g2) = (m4,m2) and χ(g1) = (m3,m1). It is clear that we have a diffeo-
morphism F : G×G→ Σ̃ given by

(g2, g1) 7→ (g2, (α(g2), α(g1)), (β(g2), β(g1)), g1).

Moreover, if we equip G×G with the pair groupoid structure on base G, it is straight-
forward to show that F is a morphism of Lie groupoids over G. On the other hand, if
we give G×G the Cartesian product groupoid structure on base M ×M , we can also
show that F is a morphism of Lie groupoids over M ×M . Hence, (Σ̃;G,M ×M ;M)
is isomorphic to the double Lie groupoid (G×G;G,M ×M ;M) of Example 1.66. �

Example 4.10. Let H and V be Lie groupoids with the same base manifold M , and
suppose that H is locally trivial. Consider the Lie groupoid triple (M ×M,H, V ) of
Example 4.6, where φ1 and φ2 are equal to the anchor maps of H and V , respectively.
Let us construct the (weak) double Lie groupoid (Σ̃;H,V ;M). As a manifold, we can
check that Σ̃ consists of elements

(g, u, v, h) ∈ H × V × V ×H,

satisfying αH(g) = βV (u), αV (v) = βH(h), βH(g) = βV (v), and αV (u) = αH(h).
However, these are precisely the elements of �(H,V ). Since the structure maps of Σ̃
are just restrictions of the structure maps of �(H,V ), it follows that (Σ̃;H,V ;M) is
equal to the double Lie groupoid (�(H,V );H,V ;M) of Example 1.68. �

We will now give another construction of a weak double Lie groupoid starting from a
Lie groupoid triple. When the corresponding Φ1 map is a local diffeomorphism, there
are cases where the dimensions are suitable for it to be a symplectic double groupoid.
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We start by again considering a Lie groupoid triple (D,H, V ) on base manifold M .
Suppose there exists a common embedded normal Lie subgroupoid N of H and V such
that φ1 and φ2 agree on N and are also injective when restricted to N . We denote
the source projection of N by q : N → M ; it is also equal to the target projection
of N . The normality condition gives us actions of the Lie groupoids H ⇒ M and
V ⇒M on q : N →M by conjugation,

H ∗N → N , (h, n) 7→ h · n := hnh−1;

V ∗N → N , (v, n) 7→ v · n := vnv−1.

We also have an action of the Lie groupoidD ⇒M on the inner subgroupoid ID →M
by conjugation,

D ∗ ID → ID , (d, n) 7→ d · n := dnd−1.

Thus, we can form the semi-direct product groupoids H nN , V nN and Dn ID all
on base M . (The construction can be recalled from Example 1.28.)

Consider the smooth map Φ̃2 : V ∗H ∗N → D defined by (v, h, n) 7→ v̄h̄n̄, where

V ∗H ∗N = {(v, h, n) ∈ V ×H ×N | χH(h) = (αV (v), q(n))}.

We aim to put a double groupoid structure on the manifold S̃ = (Φ1 × Φ̃2)−1(∆D).
Explicitly, this pullback is given by

S̃ = {(g, u, v, h;n) ∈ (H ∗ V )× (V ∗H ∗N) | ḡū = v̄h̄n̄}

We now construct two groupoid structures on S̃, one with base H and the other
with base V . As the first step in this endeavour, we again consider the two groupoid
structures on �(H,V ).

Proposition 4.11. The map

δV : �(H,V )→ D n ID , (g, u, v, h) 7→ (h̄, h̄−1v̄−1ḡū),

is a morphism of groupoids over αV : V →M . Similarly, the map

δH : �(H,V )→ D n̄ ID , (g, u, v, h) 7→ (ū, h̄−1v̄−1ḡū),

is a morphism of groupoids over αH : H → M . Here, D n̄ ID denotes the opposite
semi-direct product groupoid.

Proof. We will show that (δV , αV ) is a morphism of groupoids; showing that (δH , αH)
is also a morphism follows by a similar argument. The notation for the source and
target projections of the two groupoid structures has been illustrated in the following
diagram:

�(H,V ) D n ID

V M.

δV

α̃H ,β̃H α,β

αV

Observe that for any element (g, u, v, h) ∈ �(H,V ), we have

α ◦ δV (g, u, v, h) = α(h̄, h̄−1v̄−1ḡū) = αD(h̄) = αH(h) = αV (u) = αV ◦ α̃H(g, u, v, h),
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and

β ◦ δV (g, u, v, h) = β(h̄, h̄−1v̄−1ḡū) = βD(h̄) = βH(h) = αV (v) = αV ◦ β̃H(g, u, v, h).

Now, for any pair ((g2, u2, v2, h2), (g1, u1, v1, h1)) ∈ �(H,V ) ∗V �(H,V ), we have

δV ((g2, u2, v2, h2) � (g1, u1, v1, h1)) = δV (g2g1, u1, v2, h2h1)

= (h̄2h̄1, (h̄2h̄1)−1v̄−1
2 ḡ2ḡ1ū1).

On the other hand, we have

δV (g2, u2, v2, h2)δV (g1, u1, v1, h1) = (h̄2, h̄
−1
2 v̄−1

2 ḡ2ū2)(h̄1, h̄
−1
1 v̄−1

1 ḡ1ū1)

= (h̄2h̄1, (h̄
−1
1 · (h̄

−1
2 v̄−1

2 ḡ2ū2))h̄−1
1 v̄−1

1 ḡ1ū1)

= (h̄2h̄1, h̄
−1
1 h̄−1

2 v̄−1
2 ḡ2ū2v̄

−1
1 ḡ1ū1)

= (h̄2h̄1, (h̄2h̄1)−1v̄−1
2 ḡ2ḡ1ū1).

Note that in the third line we have used the fact that u2 = v1. Hence, we have

δV ((g2, u2, v2, h2) � (g1, u1, v1, h1)) = δV (g2, u2, v2, h2)δV (g1, u1, v1, h1),

which shows that δV is indeed a morphism of groupoids over αV .

In light of this result, we can form the pullback in the category of groupoids of the
groupoids �(H,V )⇒ V and H nN ⇒M . This can be identified with the manifold
S̃, with the base manifold identified with V . Similarly, we can form the pullback of
the groupoids �(H,V )⇒ H and V n̄N ⇒M . Again this can be identified with the
manifold S̃, and the base can be identified with H. We have the following pullback
diagrams,

H nN V n̄N

�(H,V ) D n ID �(H,V ) D n̄ ID.

φ1×φ1 φ2×φ2

δV δH

Let us explicitly write down the structure maps of these two groupoids. The groupoid
S̃ ⇒ H has source and target projections given by

α̃V : S̃ → H , (g, u, v, h;n) 7→ h;

β̃V : S̃ → H , (g, u, v, h;n) 7→ g.

The partial multiplication κ̃V : S̃ ∗H S̃ → S̃ is defined by

(g2, u2, v2, h2;n2)� (g1, u1, v1, h1;n1) = (g2, u2u1, v2v1, h1;n1(u−1
1 · n2)).

The identity map is given by

1̃V : H → S̃ , g 7→ (g, 1VαH(g), 1
V
βH(g), g; 1NαH(g));

and the inversion map given by

ι̃V : S̃ → S̃ , (g, u, v, h;n) 7→ (h, u−1, v−1, g;u · (n−1)).
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For the groupoid S̃ ⇒ V , the source and target projections are given by

α̃H : S̃ → V , (g, u, v, h;n) 7→ u;

β̃H : S̃ → V , (g, u, v, h;n) 7→ v.

The partial multiplication κ̃H : S̃ ∗V S̃ → S̃ is defined by

(g2, u2, v2, h2;n2) � (g1, u1, v1, h1;n1) = (g2g1, u1, v2, h2h1; (h−1
1 · n2)n1).

The identity map is given by

1̃H : V → S̃ , u 7→ (1HβV (u), u, u, 1
H
αV (u); 1NαV (u));

and the inversion map given by

ι̃H : S̃ → S̃ , (g, u, v, h;n) 7→ (g−1, v, u, h−1;h · (n−1)).

Let us now show that these groupoid structures form a weak double Lie groupoid.

Proposition 4.12. Let (D,H, V ) be a Lie groupoid triple on base manifold M , and
let N be a common embedded normal Lie subgroupoid of H and V such that φ1 and
φ2 agree on N and are also injective when restricted to N . Then (S̃;H,V ;M) is a
double groupoid.

Proof. We will show that the structure maps of S̃ ⇒ V are morphisms of groupoids
over the structure maps of H ⇒ M . We will denote arbitrary elements of S̃ by
s = (g, u, v, h;n).

To see that the source projection α̃H is a morphism of groupoids over αH , first observe
that for any s ∈ S̃,

αV ◦ α̃H(s) = αV (u) = αH(h) = αH ◦ α̃V (s),

and also
βV ◦ α̃H(s) = βV (u) = αH(g) = αH ◦ β̃V (s).

Furthermore, for any pair (s2, s1) ∈ S̃ ∗H S̃,

α̃H(s2 � s1) = u2u1 = α̃H(s2)α̃H(s1).

Similarly, to see that the target projection β̃H is a morphism of groupoids over βH ,
observe that for any s ∈ S̃,

αV ◦ β̃H(s) = αV (v) = βH(h) = βH ◦ α̃V (s),

and also
βV ◦ β̃H(s) = βV (v) = βH(g) = βH ◦ β̃V (s).

In addition, for any pair (s2, s1) ∈ S̃ ∗H S̃,

β̃H(s2 � s1) = v2v1 = β̃H(s2)β̃H(s1).

We next show that the partial multiplication of the horizontal structure is a morphism
of groupoids over the partial multiplication of H. Observe that for an arbitrary pair
(s2, s1) ∈ S̃ ∗V S̃,

α̃V (s2 � s1) = h2h1 = α̃V (s2)α̃V (s1),
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and also

β̃V (s2 � s1) = g2g1 = β̃V (s2)β̃V (s1).

It remains to show the following interchange law

(s4 � s2) � (s3 � s1) = (s4 � s3)� (s2 � s1),

for compatible elements. A simple calculation shows that the left-hand side is given
by (

g4g3, u3u1, v4v2, h2h1; (h−1
1 · n2)(h−1

1 · (u
−1
2 · n4))n1(u−1

1 · n3)
)
,

and the right-hand side is given by(
g4g3, u3u1, v4v2, h2h1; (h−1

1 · n2)n1(u−1
1 · (h

−1
3 · n4))(u−1

1 · n3)
)
.

Thus, we are reduced to showing the following relation,

(h−1
1 · (u

−1
2 · n4))n1 = n1(u−1

1 · (h
−1
3 · n4)). (4.1)

Observe that

φ1((h−1
1 · (u

−1
2 · n4))n1) = φ1(h−1

1 (u−1
2 n4u2)h1n1)

= h̄−1
1 ū−1

2 n̄4ū2h̄1n̄1

= (n̄1ū
−1
1 ḡ−1

1 v̄1)ū−1
2 n̄4ū2h̄1n̄1

= n̄1ū
−1
1 h̄−1

3 ū2ū
−1
2 n̄4(v̄1h̄1n̄1)

= n̄1ū
−1
1 h̄−1

3 n̄4(ḡ1ū1)

= n̄1ū
−1
1 h̄−1

3 n̄4h̄3ū1

= φ1(n1u
−1
1 (h−1

3 n4h3)u1)

= φ1(n1(u−1
1 · (h

−1
3 · n4))).

Here we have used the properties φ1|N = φ2|N , ḡ1ū1 = v̄1h̄1n̄1, g1 = h3, and v1 = u2.
The injectivity of φ1|N now proves that equation (4.1) holds, as required.

Now let us show that the identity map 1̃H is a morphism of groupoids over 1H . It is
clear that, for any v ∈ V , we have the two identities

α̃V (1̃Hv ) = 1HαV (v) , β̃V (1̃Hv ) = 1HβV (v).

Moreover, for all pairs (v2, v1) ∈ V ∗ V , we have

1̃Hv2
� 1̃Hv1

=
(

1HβV (v2), v2v1, v2v1, 1
H
αV (v1); 1NαV (v1)

(
v−1

1 · 1
N
αV (v2)

))
=
(

1HβV (v2v1), v2v1, v2v1, 1
H
αV (v2v1); 1NαV (v2v1)

)
= 1̃Hv2v1

.

Finally, we show that the inversion map ι̃H is a morphism of groupoids over ιH .
Observe that for any s ∈ S̃, we have

α̃V ◦ ι̃H(s) = h−1 = ιH ◦ α̃V (s),

and also

β̃V ◦ ι̃H(s) = g−1 = ιH ◦ β̃V (s).
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We also need to show that ι̃H(s2�s1) = ι̃H(s2)� ι̃H(s1), for any pair (s2, s1) ∈ S̃∗H S̃.
We can calculate the left-hand side as(

g−1
2 , v2v1, u2u1, h

−1
1 ;h1 · ((n1(u−1

1 · n2))−1)
)
,

and the right-hand side as(
g−1

2 , v2v1, u2u1, h
−1
1 ; (h1 · (n−1

1 ))(v−1
1 · (h2 · (n−1

2 )))
)
.

It remains to show that the final entries of these two expressions are equal. That is,

h1 · ((n1(u−1
1 · n2))−1) = (h1 · (n−1

1 ))(v−1
1 · (h2 · (n−1

2 ))) (4.2)

To deduce this equality, observe that

φ1

(
h1 · ((n1(u−1

1 · n2))−1)
)

= φ1

(
h1(u−1

1 n−1
2 u1)n−1

1 h−1
1

)
= h̄1ū

−1
1 n̄−1

2 ū1n̄
−1
1 h̄−1

1

= h̄1(n̄−1
1 h̄−1

1 v̄−1
1 ḡ1)n̄−1

2 ū1n̄
−1
1 h̄−1

1

= h̄1n̄
−1
1 h̄−1

1 v̄−1
1 h̄2n̄

−1
2 (ū1n̄

−1
1 h̄−1

1 )

= h̄1n̄
−1
1 h̄−1

1 v̄−1
1 h̄2n̄

−1
2 (ḡ−1

1 v̄1)

= h̄1n̄
−1
1 h̄−1

1 v̄−1
1 h̄2n̄

−1
2 h̄−1

2 v̄1

= φ1

(
(h1n

−1
1 h−1

1 )v−1
1 (h2n

−1
2 h−1

2 )v1

)
= φ1

(
(h1 · (n−1

1 ))(v−1
1 · (h2 · (n−1

2 )))
)

Here we have used the properties φ1|N = φ2|N , ḡ1ū1 = v̄1h̄1n̄1, and g1 = h2. The
injectivity of φ1|N now proves that equation (4.2) holds.

Theorem 4.13. Let (D,H, V ) be a Lie groupoid triple on base manifold M , and let
N be a common embedded normal Lie subgroupoid of H and V such that φ1 and φ2

agree on N and are also injective when restricted to N . Then (S̃;H,V ;M) is a weak
double Lie groupoid.

Proof. To verify that all the structure maps of (S̃;H,V ;M) described above are
smooth is straightforward. This shows, in particular, that the inversion maps are
diffeomorphisms because they are self-inverse. Thus, it only remains to check that the
source and target projections of the horizontal and vertical structures are submersions,
and that the double source map is a submersion.

We first consider the source projection of the vertical structure. We need to show that,
for any s = (g, u, v, h;n) ∈ S̃, the tangent map Ts(α̃V ) : TsS̃ → ThH is a surjection.
Take Y ∈ ThH, and note that (v, h, n) ∈ V ∗ H ∗ N . Now, since αV : V → M and
q : N →M are submersions, there exists η ∈ TvV and ν ∈ TnN , such that

T (αV )(η) = T (βH)(Y ) , T (αH)(Y ) = T (q)(ν).

Which means that (η, Y, ν) ∈ T(v,h,n)(V ∗H ∗N). Since Φ1 is a submersion, there also
exists a pair (X, ξ) ∈ T(g,u)(H ∗ V ) with

T (Φ1)(X, ξ) = T (Φ̃2)(η, Y, ν).

Hence, (X, ξ, η, Y ; ν) ∈ TsS̃, and moreover T (α̃V )(X, ξ, η, Y ; ν) = Y . This proves
the surjectivity of this tangent map, and verifies that the source projection α̃V is a
submersion.
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Since the inversion map ι̃V is a diffeomorphism, it follows that the target projection
β̃V = α̃V ◦ ι̃V is also a submersion. A similar argument shows that the source and
target projections of the horizontal structure are submersions too.

Lastly, let us verify that the double source map α2 = (α̃V , α̃H) : S → H ×α V is
a submersion. Given s = (g, u, v, h;n) ∈ S̃, we will show that the tangent map
Ts(α2) : TsS → T(h,u)(H×α V ) is surjective. To do this, we first consider an arbitrary
pair (Y, ξ) ∈ T(h,u)(H ×α V ), and define Y ′ := T (ιH)(Y ) ∈ Th−1H. Note that,

T (αV )(ξ) = T (αH)(Y ) = T (βH)(Y ′).

Also, since q : N → M is a submersion there exists ν ′ ∈ Th·(n−1)N , such that
T (αH)(Y ′) = T (q)(ν ′). Hence, (ξ, Y ′, ν ′) ∈ T(u,h−1,h·(n−1))(V ∗ H ∗ N). Now since
Φ1 is a submersion, there exists a pair (X ′, η) ∈ T(g−1,v)(H ∗ V ) such that

T (Φ1)(X ′, η) = T (Φ̃2)(ξ, Y ′, ν ′),

and so (X ′, η, ξ, Y ′; ν ′) ∈ Ts−1(H)S̃. Next, we consider the map θ : H ∗ N → N ,
(h, n) 7→ h·(n−1), where H∗N = (αH ∗q)−1(∆M ). We define ν = T (θ)(Y ′, ν ′) ∈ TnN ,
and X = T (ιH)(X ′) ∈ TgH. Observe that,

T (ι̃H)(X ′, η, ξ, Y ′; ν ′) = (T (ιH)(X ′), ξ, η, T (ιH)(Y ′);T (θ)(Y ′, ν ′)) = (X, ξ, η, Y ; ν).

Thus, (X, ξ, η, Y ; ν) ∈ Ts(S̃), and furthermore T (α2)(X, ξ, η, Y ; ν) = (Y, ξ). This
shows that the double source map α2 is a submersion, and hence completes the
proof.

The core of (S̃;H,V ;M) consists of all the elements (g, 1VαH(g), v, 1
H
αV (v);n) ∈ S̃ sat-

isfying v̄−1ḡ = n̄. We can identify this space with the pullback of the following
diagram,

N

V ∗H D,

φ1|N

Φ2

where Φ2 : V ∗ H → D is the map defined by (v, h) 7→ v̄h̄. Here, V ∗ H is the
pullback manifold (αV × βH)−1(∆M ). Note that since the map Φ1 is a submersion
by assumption, it follows that Φ2 is a submersion. The dimension of the core is thus
given by

dim(C) = (dim(H) + dim(V )− dim(M)) + dim(N)− dim(D). (4.3)

Also, since S̃ = (Φ1 × Φ̃2)−1(∆D), we have

dim(S̃) = 2 dim(H) + 2 dim(V ) + dim(N)− 3 dim(M)− dim(D). (4.4)

We now attempt to search for a case where S̃ and C have the correct dimensions for
(S̃;H,V ;M) to be a symplectic double groupoid. Note that when Φ1 : H ∗ V → D is
a local diffeomorphism,

dim(H) + dim(V )− dim(M) = dim(D).

It follows from equation (4.3) that dim(C) = dim(N). If (S̃;H,V ;M) was a symplec-
tic double groupoid, then the core groupoid C ⇒M would be a symplectic groupoid,
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and thus a necessary condition is dim(N) = 2 dim(M). However, in this scenario, it
follows from equation (4.4) that dim(S̃) = dim(H) + dim(V ). Hence, if additionally
H and V are dual Poisson groupoids, S̃ has the correct dimension for (S̃;H,V ;M)
to be a symplectic double groupoid.

Finally, we remark that when we consider the Lie groupoid triple (D,G,G∗), where
G and G∗ are dual Poisson Lie groups and D the Drinfel’d double Lie group, and we
take N to be the trivial subgroup of G and G∗, this construction leads to precisely
the Lu-Weinstein double groupoid.

4.1.2 A generalised Lu-Weinstein symplectic double groupoid

In the previous subsection we saw some constructions of weak double Lie groupoids
that generalise the Lu-Weinstein double groupoid. We now consider some cases where
the first construction gives rise to a symplectic double groupoid.

Example 4.14. Let M be a symplectic manifold. In Example 4.4, we saw that this
gives a Lie groupoid triple (M ×M,M ×M,M ×M), with maps φ1 and φ2 given by
the identity map idM×M . Then, in Example 4.8, we saw that the double groupoid
(Σ̃;M ×M,M ×M ;M) was isomorphic to (M4;M ×M,M ×M ;M). Moreover, this
was already shown to be a symplectic double groupoid in Example 2.79.

Example 4.15. Let G be a symplectic groupoid on base P . We saw in Example 4.5
that (P×P,G, P×P ) was a Lie groupoid triple with φ1 = χ, the anchor ofG, and φ2 =
idP×P . The resulting double groupoid (Σ̃;G,P × P ;P ) was shown in Example 4.9
to be isomorphic to the double Lie groupoid (G × G;G,P × P ;P ). However, in
Example 2.80 we saw that (G × G;G,P × P ;P ) was in fact a symplectic double
groupoid. Thus, via the aforementioned isomorphism, we can make (Σ̃;G,P × P ;P )
a symplectic double groupoid. �

We now take a look at a more interesting example. Consider a pair of dual Poisson
Lie groups G and G∗, and a symplectic manifold M . We can form the trivial Lie
groupoids M ×G×M and M ×G∗ ×M with base manifold M , which were defined
in Section 1.1.4. For the Lie groupoid M ×G×M , recall that the source and target
projections are given by

α : M ×G×M →M, (y, g, x) 7→ x;

β : M ×G×M →M, (y, g, x) 7→ y;

For compatible elements, the partial multiplication is given by

(z, h, y)(y, g, x) = (z, hg, x).

For x ∈ M the corresponding identity element is (x, 1G, x), and the inverse of an
element (y, g, x) ∈M ×G×M is given by (x, g−1, y). The structure maps for the Lie
groupoid M ×G∗×M are defined analogously. We will now show that both of these
Lie groupoids can be made into Poisson groupoids in a natural way.

Proposition 4.16. Let G and G∗ be dual Poisson Lie groups, and let M be a sym-
plectic manifold. Then the trivial Lie groupoids M × G ×M and M × G∗ ×M on
base M are dual Poisson groupoids.
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Proof. Note that we have the obvious diffeomorphism F : M ×G×M →M ×M ×G
given by (y, g, x) 7→ (y, x, g). Consider the pair groupoid M ×M on base M . We saw
in Example 2.72 that M ×M is a symplectic groupoid. We can also regard G as a
Poisson groupoid on a singleton set. Now we can form the Cartesian product groupoid
M×M×G on base M , which is a Poisson groupoid by Proposition 2.66. Moreover, F
is an isomorphism of Lie groupoids over M , and as a map F : M×G×M →M×M×G
is Poisson. Hence, M ×G×M is also a Poisson groupoid.

By a parallel argument, we can show that M ×G∗ ×M is a Poisson groupoid which
is isomorphic to the Cartesian product groupoid M ×M ×G∗.

We will show that M×M×G and M×M×G∗ are dual Poisson groupoids. It will then
follow that M ×G×M and M ×G∗×M are also dual. Let g denote the Lie algebra
of G, and let πM denote the Poisson structure associated to the symplectic manifold
M . In light of Proposition 1.56, the tangent Lie bialgebroids of M ×M × G and
M ×M ×G∗ are given by (TM ×g, T ∗M ×g∗) and (TM ×g∗, T ∗M ×g), respectively.
Observe that the map

π#
M × idg∗ : T ∗M × g∗ → TM × g∗

is an isomorphism of Lie algebroids (because M is symplectic), and has dual map
given by

(−π#
M )× idg : T ∗M × g→ TM × g.

By the same reasoning, this dual map is also an isomorphism of Lie algebroids. Thus,
(T ∗M × g∗, TM × g) and (TM × g∗, T ∗M × g) are isomorphic Lie algebroid pairs.
Hence, M ×M ×G and M ×M ×G∗ are dual Poisson groupoids.

It should be clear that the underlining principle behind this proof can be extended
to give the following result.

Proposition 4.17. Let G1 and H1 be dual Poisson groupoids with base manifold
P1, and let G2 and H2 be dual Poisson groupoids with base manifold P2. Then the
Cartesian product groupoids G1 × G2 and H1 ×H2 are dual Poisson groupoids with
base P1 × P2.

Consider the Drinfel’d double Lie group D associated to the Poisson Lie group G.
We have already seen that (D,G,G∗) forms a Lie groupoid triple with the usual Lie
group homomorphisms

φ1 : G→ D, g 7→ ḡ; φ2 : G∗ → D, u 7→ ū. (4.5)

Note that we can also form the trivial Lie groupoid M ×D ×M on base M .

Proposition 4.18. Let M be a smooth manifold, and let G and G∗ be dual Poisson
Lie groups with associated Drinfel’d double Lie group D. Then we have a Lie groupoid
triple on base M given by (M ×D ×M,M ×G×M,M ×G∗ ×M).

Proof. The following maps

φ̃1 : M ×G×M →M ×D ×M, (y, g, x) 7→ (y, ḡ, x);

φ̃2 : M ×G∗ ×M →M ×D ×M, (y, u, x) 7→ (y, ū, x);
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are morphisms of Lie groupoids over M . Note that we have φ̃1 = idM ×φ1× idM and
φ̃2 = idM ×φ2 × idM , where φ1 and φ2 are the Lie group homomorphisms given in
Equation (4.5).

It remains to check that the smooth map

Φ̃1 : (M ×G×M) ∗ (M ×G∗ ×M)→M ×D ×M ;

((z, g, y), (y, u, x)) 7→ (z, ḡū, x),

is a submersion. We first observe that we have a natural diffeomorphism given by

F̃ : (M ×G×M) ∗ (M ×G∗ ×M)→M3 ×G×G∗;
((z, g, y), (y, u, x)) 7→ (z, y, x, g, u).

In Proposition 3.12, we saw that the map

Φ1 : G×G∗ → D, (g, u) 7→ ḡū,

was a local diffeomorphism. Additionally, the projection map p : M3 → M2 defined
by (z, y, x) 7→ (z, x) is clearly a submersion. Lastly, note that the map defined by

F : M ×M ×D →M ×D ×M, (y, x, d) 7→ (y, d, x),

is also a diffeomorphism. Now we can express Φ̃1 as the composite F ◦ (p× Φ1) ◦ F̃ ,
and thus Φ̃1 is a submersion.

From the Lie groupoid triple (M × D ×M,M × G ×M,M × G∗ ×M) on M , we
can now form the weak double Lie groupoid (Σ̃;M ×G×M,M ×G∗ ×M ;M). Let
us show that this becomes a symplectic double groupoid in a natural way, by first
introducing a useful lemma.

Lemma 4.19. Let (S1;H1, V1;M1) and (S2;H2, V2;M2) be symplectic double group-
oids. Then the Cartesian product double groupoid (S1×S2;H1×H2, V1×V2;M1×M2)
is a symplectic double groupoid.

Proof. It is routine to verify that (S1 × S2;H1 ×H2, V1 × V2;M1 ×M2) is a double
Lie groupoid. Let us denote the symplectic structures of S1 and S2 by ω1 and ω2,
respectively. Similarly, we let the associated Poisson structures be denoted by π1 and
π2, respectively. The product manifold S1 × S2 becomes a symplectic manifold with
symplectic structure ω1 ⊕ ω2 and associated Poisson structure π1 ⊕ π2. It follows by
Proposition 2.66 that the horizontal and vertical structures of the double Lie groupoid
(S1 × S2;H1 ×H2, V1 × V2;M1 ×M2) are Poisson groupoids with respect to π1 ⊕ π2

and hence the result follows.

Proposition 4.20. Let G and G∗ be dual Poisson Lie groups, and let M be a sym-
plectic manifold. Then there exists a symplectic structure on Σ̃ such that the weak
double Lie groupoid (Σ̃;M×G×M,M×G∗×M ;M) is a symplectic double groupoid.

Proof. We will show that the double groupoid (Σ̃;M ×G ×M,M ×G∗ ×M ;M) is
intricately related to the Lu-Weinstein double groupoid (Σ;G,G∗; {·}) and the double
groupoid (M4;M ×M,M ×M ;M) of Example 1.65. We first note that elements of
Σ̃ take the form

s = ((z, g, y), (y, u, x), (z, v,m), (m,h, x)), (4.6)
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where z, y,m, x ∈ M , g, h ∈ G, u, v ∈ G∗, and such that ḡū = v̄h̄. Hence, we have
the obvious diffeomorphism given by

F : Σ̃→M4 × Σ, s 7→ ((z, y,m, x), (g, u, v, h)).

Note that M4 has a pair groupoid structure on base M ×M , and Σ has Lie groupoid
structures with base manifolds G and G∗. Thus, we can form two Cartesian product
groupoid structures on M4 ×Σ; one with base M ×M ×G, and the other with base
M ×M ×G∗. We now show that F is actually an isomorphism of Lie groupoids over
the diffeomorphism defined by

f : M ×G×M →M ×M ×G, (y, g, z) 7→ (y, z, g).

Let the source and target projections of Σ̃ and Σ be denoted as in the following
diagram;

Σ̃ M ×G∗ ×M Σ G∗

M ×G×M M G {·}.

α̃V , β̃V

α̃H , β̃H

α, β

α∗, β∗

Additionally, let us denote the source and target projections of the pair groupoid
M4 on base M ×M by αM and βM , respectively. Take s ∈ Σ̃ of the form given in
Equation (4.6). Then,

f ◦ α̃V (s) = f(m,h, x) = (m,x, h).

On the other hand,

(αM × α) ◦ F (s) = (αM × α)((z, y,m, x), (g, u, v, h)) = (m,x, h).

Thus, f ◦ α̃V = (αM × α) ◦ F . Arguing similarly, we observe that

f ◦ β̃V (s) = f(z, g, y) = (z, y, g),

and
(βM × β) ◦ F (s) = (βM × β)((z, y,m, x), (g, u, v, h)) = (z, y, g).

Hence, we also have f ◦ β̃V = (βM × β) ◦ F .

Now suppose we are given s2, s1 ∈ Σ̃ satisfying α̃V (s2) = β̃V (s1). As in Equation (4.6),
these elements take the form

s2 = ((z2, g2, y2), (y2, u2, x2), (z2, v2,m2), (m2, h2, x2)),

s1 = ((z1, g1, y1), (y1, u1, x1), (z1, v1,m1), (m1, h1, x1)),

and satisfy ḡ2ū2 = v̄2h̄2, ḡ1ū1 = v̄1h̄1, and (m2, h2, x2) = (z1, g1, y1). We have

F (s2 � s1) = F ((z2, g2, y2), (y2, u2u1, x1), (z2, v2v1,m1), (m1, h1, x1))

= ((z2, y2,m1, x1), (g2, u2u1, v2v1, h1)).

However, note that

(g2, u2u1, v2v1, h1) = (g2, u2, v2, h2) ∗G (g1, u1, v1, h1),
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and
(z2, y2,m1, x1) = (z2, y2,m2, x2)(z1, y1,m1, x1).

Hence, it is clear that F (s2�s1) = F (s2)F (s1). This shows that F is an isomorphism
of Lie groupoids over f .

Next, we recall the diffeomorphism Θ: M4 → M4 of Example 1.65, defined by
(m,x, y, z) 7→ (m, y, x, z). This induces another diffeomorphism G := (Θ × idΣ) ◦ F
from Σ̃ to M4×Σ. A similar argument to the above shows that G is also an isomor-
phism of Lie groupoids, this time over the diffeomorphism defined by

g : M ×G∗ ×M →M ×M ×G∗, (y, u, x) 7→ (y, x, u).

Moreover, the maps f and g are isomorphisms of Lie groupoids over M . It follows that
(F ; f, g; idM ) is an isomorphism of double Lie groupoids from the weak double Lie
groupoid (Σ̃;M ×G×M,M ×G∗×M ;M) to the Cartesian product double groupoid
of (M4;M ×M,M ×M ;M) and the Lu-Weinstein double groupoid (Σ;G,G∗; {·}).

We have seen that both (M4;M ×M,M ×M ;M) and (Σ;G,G∗; {·}) are symplec-
tic double groupoids and thus the corresponding Cartesian product double groupoid
(M4 × Σ;M × M × G,M × M × G∗;M) is also a symplectic double groupoid by
Lemma 4.19. We can give Σ̃ the unique symplectic structure that makes the diffeo-
morphism F a symplectomorphism. Finally, since (F ; f, g; idM ) is an isomorphism of
double Lie groupoids, this symplectic structure makes (Σ̃;M×G×M,M×G∗×M ;M)
a symplectic double groupoid.

It should be clear from the proof of Proposition 4.20, that the symplectic double
groupoid (Σ̃;M ×G×M,M ×G∗ ×M ;M) generalises the Lu-Weinstein symplectic
double groupoid. Indeed, when M is just a singleton set the construction gives
precisely the Lu-Weinstein symplectic double groupoid.



Chapter 5

Actions of double structures
and Poisson reduction

In this final chapter, we study some of the possible extensions of the notions of Lie
groupoid and Lie algebroid actions to double structures. We first review the actions
of double Lie groupoids introduced by Brown and Mackenzie [7]. The definition we
give naturally leads to sensible notions of action for LA-groupoids, and we give an
in-depth study of these objects.

The second half of this chapter centres on an application of actions of double struc-
tures to the study of Poisson reduced spaces. In [67], Xu gave a construction of a
symplectic groupoid whose base manifold is the Poisson reduced space of a free and
proper Poisson groupoid action of a symplectic groupoid. We present an alternate
approach to this construction utilising the actions of double Lie groupoids. We also
show how a similar method can be used to construct the cotangent Lie algebroid of
the Poisson reduced space of any free and proper Poisson groupoid action.

§ 5.1 Actions of double structures

The purpose of this section is to consider abstract notions of actions of double Lie
groupoids and LA-groupoids. After examining actions of double Lie groupoids in
some detail, we focus on a particular example of an action of the double Lie groupoid
(G×G;G,M ×M ;M) of Example 1.66, which is motivated by the work of Xu [67].
We show that such a double action can be obtained from a pair of Lie groupoid
actions of G satisfying certain properties. Moreover, we show that there is also a
reverse construction.

We then turn our attention towards the actions of LA-groupoids. It turns out that
there are two reasonable notions for an action of an LA-groupoid: an action of an
LA-groupoid on a morphism of Lie groupoids, and an action of an LA-groupoid on a
morphism of Lie algebroids. Just as a Lie groupoid action gives rise to a Lie algebroid
action, we show that an action of a double Lie groupoid gives rise to an action of an
LA-groupoid of both types.

101
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5.1.1 Actions of double Lie groupoids

In Section 1.1.3, we defined an action of a Lie groupoid on a smooth map of manifolds.
We would like to generalise this notion of an action from the category of smooth
manifolds to the category of Lie groupoids. To be more precise, we are seeking a
notion of an action of a double Lie groupoid on a morphism of Lie groupoids. This
leads us to the following definition proposed by Brown and Mackenzie [7].

Definition 5.1. Let (S;H,V ;M) be a double Lie groupoid, G⇒ P a Lie groupoid,
and F : G→ V a morphism of Lie groupoids over a smooth map f : P →M .

G

S V

P

H M

F

αG,βG

α̃V ,β̃V

α̃H ,β̃H

αV ,βV

fαH ,βH

(5.1)

An action of (S;H,V ;M) on (F, f) (or on G⇒ P ) consists of a Lie groupoid action
θ̃ of the horizontal structure S ⇒ V on F , and a Lie groupoid action θ of the Lie
groupoid H ⇒M on f , such that (θ̃, θ) is a morphism of Lie groupoids.1

Note that the action (θ̃, θ) of a double Lie groupoid (S;H,V ;M) on a morphism of
Lie groupoids can be expressed diagrammatically as follows,

S ^G G

H ^P P,

θ̃

θ

(5.2)

where here the Lie groupoid structure on S ^G with base H ^P is the unique group-
oid structure that makes it an embedded Lie subgroupoid of the Cartesian product
groupoid S ×G via inclusion.

Remark 5.2. In the above definition, the condition that (θ̃, θ) is a morphism of Lie
groupoids implies the following properties:

� αG(s · g) = α̃V (s) · αG(g) for all (s, g) ∈ S ^G;

� βG(s · g) = β̃V (s) · βG(g) for all (s, g) ∈ S ^G;

� (s2 · g2)(s1 · g1) = (s2 � s1) · (g1g2) for all (s2, g2), (s1, g1) ∈ S ^G, such that
(s2, s1) ∈ S ∗H S and (g2, g1) ∈ G ∗G;

� 1̃Vh · 1Gp = 1Gh·p for all (h, p) ∈ H ^P ;

� (s · g)−1 = s−1(V ) · g−1 for all (s, g) ∈ S ^G.

1Note that in the original formulation [7, Definition 1.5], conditions (i) and (ii) together are

equivalent to (θ̃, θ) being a morphism of groupoids. Condition (iii) is a consequence of the previous
two conditions, and so is redundant.
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The first three conditions are immediate from the definition of a morphism of Lie
groupoids (Definition 1.11). The fourth and fifth conditions are just consequences of
the previous three (Proposition 1.12).

Given an action of a double Lie groupoid (S;H,V ;M) on a Lie groupoid G ⇒ P ,
we get action groupoids S ^G and H ^P on base manifolds G and P , respectively.
In addition, S ^G also has a Lie groupoid structure on base H ^P . We can present
these groupoid structures in the following diagram:

S ^G G

H ^P P.

α̃V ∗αG, β̃V ∗βG

α̃^, β̃^

αG, βG

α^, β^

(5.3)

Proposition 5.3. Let (θ̃, θ) be an action of a double Lie groupoid (S;H,V ;M) on
a morphism of Lie groupoids F : G → V over a smooth map f : P → M . Then
(S ^G;H ^P,G;P ) is a double Lie groupoid.

Proof. We will use the standard notation2 for the structure maps of the double Lie
groupoid (S;H,V ;M). The structure maps of (S ^G;H ^P,G;P ) will take the
notation indicated in the above diagram (Equation (5.3)). In the Lie groupoid
S ^G ⇒ H ^P , the product of two compatible elements will just be denoted by
usual concatenation.

We need to verify that the structure maps of the action groupoid S ^G ⇒ G are
morphisms of Lie groupoids over the corresponding structure maps of H ^P ⇒ P .

We first show that the source projection α̃^ : S ^G→ G is a morphism of Lie group-
oids over the source projection α^ : H ^P → P . Observe that, for any (s, g) ∈ S ^G,
we have

α^(α̃V ∗ αG(s, g)) = α^(α̃V (s), αG(g))

= αG(g)

= αG(α̃^(s, g)),

and

α^(β̃V ∗ βG(s, g)) = α^(β̃V (s), βG(g))

= βG(g)

= βG(α̃^(s, g)).

Moreover, for any ((s2, g2), (s1, g1)) ∈ (S ^G) ∗H ^P (S ^G), we have

α̃^((s2, g2)(s1, g1)) = α̃^(s2 � s1, g2g1)

= g2g1

= α̃^(s2, g2)α̃^(s1, g1).

We next show that the target projection β̃^ : S ^G→ G is a morphism of Lie group-
oids over target projection β^ : H ^P → P . Observe that, for any (s, g) ∈ S ^G, we

2See page 22 for details of the standard notation we use for a double groupoid.
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have

β^(α̃V ∗ αG(s, g)) = β^(α̃V (s), αG(g))

= α̃V (s) · αG(g)

= αG(s · g)

= αG(β̃^(s, g)),

and

β^(β̃V ∗ βG(s, g)) = β^(β̃V (s), βG(g))

= β̃V (s) · βG(g)

= βG(s · g)

= βG(β̃^(s, g)).

Furthermore, for any ((s2, g2), (s1, g1)) ∈ (S ^G) ∗H ^P (S ^G), we have

β̃^((s2, g2)(s1, g1)) = β̃^(s2 � s1, g2g1)

= (s2 � s1) · (g2g1)

= (s2 · g2)(s1 · g1)

= β̃^(s2, g2)β̃^(s1, g1).

We will now show that the partial multiplication κ̃^ of the action groupoid S ^G is
a morphism of Lie groupoids over the partial multiplication κ^ of H ^P . For any
((s2, g2), (s1, g1)) ∈ (S ^G) ∗G (S ^G), we have

κ^(α̃V ∗ αG(s2, g2), α̃V ∗ αG(s1, g1)) = κ^((α̃V (s2), αG(g2)), (α̃V (s1), αG(g1)))

= (α̃V (s2)α̃V (s1), αG(g1))

= (α̃V (s2 � s1), αG(g1))

= α̃V ∗ αG(s2 � s1, g1)

= α̃V ∗ αG(κ̃^((s2, g2), (s1, g1))),

and

κ^(β̃V ∗ βG(s2, g2), β̃V ∗ βG(s1, g1)) = κ^((β̃V (s2), βG(g2)), (β̃V (s1), βG(g1)))

= (β̃V (s2)β̃V (s1), βG(g1))

= (β̃V (s2 � s1), βG(g1))

= β̃V ∗ βG(s2 � s1, g1)

= β̃V ∗ βG(κ̃^((s2, g2), (s1, g1))).

Moreover, for any ((s4, g4), (s2, g2)), ((s3, g3), (s1, g1)) ∈ (S ^G)∗G (S ^G), such that
((s4, g4), (s3, g3)), ((s2, g2), (s1, g1)) ∈ (S ^G) ∗H ^P (S ^G), we find that

κ̃^((s4, g4)(s3, g3), (s2, g2)(s1, g1)) = κ̃^((s4 � s3, g4g3), (s2 � s1, g2g1))

= ((s4 � s3) � (s2 � s1), g2g1)

= ((s4 � s2)� (s3 � s1), g2g1)

= (s4 � s2, g2)(s3 � s1, g1)

= κ̃^((s4, g4), (s2, g2))κ̃^((s3, g3), (s1, g1)).
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Next, we will show that the identity map 1̃^ : G → S ^G is a morphism of Lie
groupoids over 1^ : P → H ^P . Observe that, for any g ∈ G, we have

1^αG(g) =
(

1Hf(αG(g)), αG(g)
)

=
(

1HαV (F (g)), αG(g)
)

=
(
α̃V (1̃HF (g)), αG(g)

)
= α̃V ∗ αG(1̃HF (g), g)

= α̃V ∗ αG(1̃^g ),

and

1^βG(g) =
(

1Hf(βG(g)), βG(g)
)

=
(

1HβV (F (g)), βG(g)
)

=
(
β̃V (1̃HF (g)), βG(g)

)
= β̃V ∗ βG(1̃HF (g), g)

= β̃V ∗ βG(1̃^g ).

We also see that, for any (g2, g1) ∈ G ∗G,

1̃^g2g1
=
(

1̃HF (g2g1), g2g1

)
=
(

1̃HF (g2)F (g1), g2g1

)
=
(

1̃HF (g2) � 1̃HF (g1), g2g1

)
=
(

1̃HF (g2), g2

)(
1̃HF (g1), g1

)
= 1̃^g2

1̃^g1
.

Finally, we show that inversion map ι̃^ : S ^G→ S ^G is a morphism of Lie group-
oids over the inversion ι^ : H ^P → H ^P . For any (s, g) ∈ S ^G, we have

ι^(α̃V ∗ αG(s, g)) = ι^(α̃V (s), αG(g))

= (α̃V (s)−1, α̃V (s) · αG(g))

= (α̃V (s−1(H)), αG(s · g))

= α̃V ∗ αG(s−1(H), s · g)

= α̃V ∗ αG(ι̃^(s, g)),

and

ι^(β̃V ∗ βG(s, g)) = ι^(β̃V (s), βG(g))

= (β̃V (s)−1, β̃V (s) · βG(g))

= (β̃V (s−1(H)), βG(s · g))

= β̃V ∗ βG(s−1(H), s · g)

= β̃V ∗ βG(ι̃^(s, g)).
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Lastly, observe that, for any ((s2, g2), (s1, g1)) ∈ (S ^G) ∗H ^P (S ^G), we have

ι̃^((s2, g2)(s1, g1)) = ι̃^(s2 � s1, g2g1)

=
(

(s2 � s1)−1(H), (s2 � s1) · (g2g1)
)

=
(
s
−1(H)
2 � s−1(H)

1 , (s2 · g2)(s1 · g1)
)

= (s
−1(H)
2 , s2 · g2)(s

−1(H)
1 , s1 · g1)

= ι̃^(s2, g2)ι̃^(s1, g1).

To complete the proof, it remains to show that the double source map of the double
groupoid (S ^G;H ^P,G;P ) is a surjective submersion. This map is given by

α^2 : S ^G→ (H ^P )×P G, (s, g) 7→ (α̃V (s), αG(g), g),

where (H ^P ) ×P G = {(h, p, g) ∈ H × P × G | αH(h) = f(p), p = αG(g)}. We
will use the property that the double source map of the original double groupoid
(S;H,V ;M) is a surjective submersion. This is the map given by

α2 : S → H ×M V, s 7→ (α̃V (s), α̃H(s)),

where H ×M V = {(h, v) ∈ H × V | αH(h) = αV (v)}. To first show surjectivity,
consider any triple (h, p, g) ∈ (H ^P ) ×P G. We have the relations αH(h) = f(p)
and p = αG(g). Thus, we deduce

αV (F (g)) = f(αG(g)) = f(p) = αH(h),

and so (h, F (g)) ∈ H ×M V . The surjectivity of α2 immediately implies that there
exists an s ∈ S, such that α̃V (s) = h and α̃H(s) = F (g). The latter relation tells us
that (s, g) ∈ S ^G, and furthermore we find that

α^2 (s, g) = (α̃V (s), αG(g), g) = (h, p, g).

Hence, the map α^2 is surjective. To show that this map is also a submersion, we
must check that, for any given (s, g) ∈ S ^G, the linear map

T(s,g)(α
^
2 ) : T(s,g)(S ^G)→ Tα^

2 (s,g)((H ^P )×P G)

is a surjection. Take any triple (Z, Y,X) ∈ Tα^
2 (s,g)((H ^P ) ×P G). In more de-

tail, we have Z ∈ Tα̃V (s)H, Y ∈ TαG(g)P and X ∈ TgG, satisfying the relations
Tα̃V (s)(αH)(Z) = TαG(g)(f)(Y ) and Y = Tg(αG)(X). Now observe that

TF (g)(αV )(Tg(F )(X)) = Tg(αV ◦ F )(X)

= Tg(f ◦ αG)(X)

= TαG(g)(f)(Tg(αG)(X))

= TαG(g)(f)(Y )

= Tα̃V (s)(αH)(Z).

Hence, (Z, Tg(F )(X)) ∈ Tα2(s)(H ×M V ). Since α2 is a submersion, it follows that
there exists an ξ ∈ TsS such that Ts(α̃V )(ξ) = Z, and Ts(α̃H)(ξ) = Tg(F )(X). The
latter relation implies that (ξ,X) ∈ T(s,g)(S ^G), and moreover

T(s,g)(α
^
2 )(ξ,X) = (Ts(α̃V )(ξ), Tg(αG)(X), X) = (Z, Y,X).

Therefore, T(s,g)(α
^
2 ) is a surjection, and thus α^2 is a submersion.
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Given an action of a double Lie groupoid (S;H,V ;M) on a morphism of Lie group-
oids F : G → V over f : P → M , we call the corresponding double Lie groupoid
(S ^G;H ^P,G;P ) an action double groupoid.

Note that the action groupoids S ^G and H ^P give rise to the action morphisms
F! : S ^G→ S and f! : H ^P → H over F and f , respectively (see page 7). Moreover,
it is routine to show that F! is also a morphism of Lie groupoids over f!. Hence, we
get a morphism of double Lie groupoids (F!; f!, F ; f) from the action double groupoid
(S ^G;H ^P,G;P ) to the original double Lie groupoid (S;H,V ;M).

S ^G G

S V

H ^P P

H M

F! F

f! f

Remark 5.4. We can extend this notion of action to include weak double Lie group-
oids, and a similar proof to the above shows that the corresponding action double
groupoid is also a weak double Lie groupoid.

5.1.2 Actions of G×G

We now consider a special class of actions of double Lie groupoids, which often appear
naturally in the literature. Let G be a Lie groupoid on a base manifold M , and
consider the double Lie groupoid (G×G;G,M ×M ;M) of Example 1.66.

G×G M ×M

G M.

α̃G, β̃G

αG×G, βG×G αM×M , βM×M

αG, βG

(5.4)

Recall that the horizontal structure of G × G is the Cartesian product groupoid on
base M ×M , and the vertical structure is the pair groupoid on base G. Here, M ×M
also has the pair groupoid structure on base M .

Suppose we have another Lie groupoid Π on a base manifold P , and a smooth map
f : P → M . By Examples 1.14 and 1.15, the map f × f : P × P → M ×M and
the anchor χ = (β, α) : Π → P × P are morphisms of Lie groupoids over f and P ,
respectively. Hence the composite (f × f) ◦ χ : Π → M ×M is a morphism of Lie
groupoids over f .

Π M ×M

P M.

(f×f)◦χ

α, β αM×M , βM×M

f

(5.5)

The aim of this subsection is to detail a one-to-one correspondence between actions
of the double Lie groupoid (G×G;G,M ×M ;M) on the morphism (f × f) ◦χ, with
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a special class of triples of Lie groupoid actions. A triple of this type appears in Xu’s
work on symplectic groupoids of Poisson reduced spaces [67]. We will investigate this
example in Section 5.2.1.

To show this correspondence, let us first suppose that (G × G;G,M ×M ;M) acts
on the morphism of Lie groupoids ((f × f) ◦ χ, f). Thus, we have two Lie groupoid
actions

θ̃ : (G×G) ∗Π→ Π , ((h, g), ξ) 7→ (h, g) · ξ, (5.6)

θ : G ∗ P → P , (g, p) 7→ g · p, (5.7)

acting on the maps (f × f) ◦ χ and f respectively, such that (θ̃, θ) is a morphism of
Lie groupoids.

In what follows, we will denote the source and target projections of the groupoid
structures in the same way that they have been denoted in the above diagrams
(Equations (5.4) and (5.5)). We will use the standard notation for the partial
multiplication in the horizontal and vertical structures of the double Lie groupoid
(G×G;G,M ×M ;M), and we will continue to use concatenation to denote partial
multiplication in the Lie groupoid Π⇒ P .

We first start by defining the following smooth maps:

θL : G ∗Π→ Π , (g, ξ) 7→ g · ξ := (g, 1f◦α(ξ)) · ξ, (5.8)

θR : Π ∗G→ Π , (ξ, g) 7→ ξ · g := (1f◦β(ξ), g
−1) · ξ, (5.9)

where G∗Π and Π∗G are the pullback manifolds defined by (αG×(f ◦β))−1(∆M ) and
((f ◦ α) × βG)−1(∆M ), respectively. We claim that these maps define left and right
Lie groupoid actions of G on the maps f ◦β : Π→M and f ◦α : Π→M , respectively.
Before verifying this claim, we first deduce some properties of these maps.

Proposition 5.5. Let the maps θL and θR be defined as above. For any ξ ∈ Π and
g, h ∈ G, which satisfy αG(g) = f ◦ β(ξ) and βG(h) = f ◦ α(ξ), we have the following
properties:

(1) α(g · ξ) = α(ξ);

(2) β(g · ξ) = g · β(ξ);

(3) α(ξ · h) = h−1 · α(ξ);

(4) β(ξ · h) = β(ξ).

Proof. First suppose that g ∈ G and ξ ∈ Π satisfy αG(g) = f ◦β(ξ). We can compute
the source and target of the element g · ξ as follows,

α(g · ξ) = α
(
(g, 1f◦α(ξ)) · ξ

)
= αG×G(g, 1f◦α(ξ)) · α(ξ) = 1f◦α(ξ) · α(ξ) = α(ξ),

β(g · ξ) = β((g, 1f◦α(ξ)) · ξ) = βG×G(g, 1f◦α(ξ)) · β(ξ) = g · β(ξ).

Now suppose that h ∈ G and ξ ∈ Π satisfy βG(h) = f ◦ α(ξ). Similar computations
to the above show that the source and target of the element ξ · h are given as

α(ξ · h) = α
(
(1f◦β(ξ), h

−1) · ξ
)

= αG×G
(
1f◦β(ξ), h

−1
)
· α(ξ) = h−1 · α(ξ),

β(ξ ·h) = β
(
(1f◦β(ξ), h

−1) · ξ
)

= βG×G
(
1f◦β(ξ), h

−1
)
·β(ξ) = 1f◦β(ξ) ·β(ξ) = β(ξ).
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Proposition 5.6. The maps θL and θR define left and right Lie groupoid actions of
G on the maps f ◦ β : Π→M and f ◦ α : Π→M , respectively.

Proof. Let us first show that θL is a left Lie groupoid action of G on f ◦ β : Π→M .
Suppose that (g, ξ) ∈ G ∗Π, so that αG(g) = f(β(ξ)). Then, using property (2),

f ◦ β(g · ξ) = f (g · β(ξ)) = βG(g).

Next, suppose that (h, g) ∈ G ∗G and ξ ∈ Π, such that (g, ξ) ∈ G ∗Π. Thus, we have
αG(h) = βG(g), and αG(g) = f ◦ β(ξ). It follows by property (1) that

h · (g · ξ) = (h, 1f◦α(g·ξ)) ·
(
(g, 1f◦α(ξ)) · ξ

)
= (h, 1f◦α(ξ)) ·

(
(g, 1f◦α(ξ)) · ξ

)
=
(
(h, 1f◦α(ξ)) � (g, 1f◦α(ξ))

)
· ξ

= (hg, 1f◦α(ξ)) · ξ
= (hg) · ξ.

Lastly, observe that for any ξ ∈ Π,

1f◦β(ξ) · ξ = (1f◦β(ξ), 1f◦α(ξ)) · ξ = 1̃(f×f)◦χ(ξ) · ξ = ξ.

Hence, θL defines a left Lie groupoid action of G on f ◦ β : Π→M .

Next, let us verify that θR defines a right Lie groupoid action of G on the map
f ◦ α : Π → M . Suppose that (ξ, g) ∈ Π ∗G, so that βG(g) = f(α(ξ)). Property (3)
implies that

f ◦ α(ξ · g) = f(g−1 · α(ξ)) = βG(g−1) = αG(g).

Moreover, suppose that (h, g) ∈ G ∗G, and ξ ∈ Π such that (ξ, h) ∈ Π ∗G. That is,
αG(h) = βG(g) and βG(h) = f ◦ α(ξ). Then, using property (4), we have

(ξ · h) · g = (1f◦β(ξ·h), g
−1) ·

(
(1f◦β(ξ), h

−1) · ξ
)

= (1f◦β(ξ), g
−1) ·

(
(1f◦β(ξ), h

−1) · ξ
)

=
(
(1f◦β(ξ), g

−1) � (1f◦β(ξ), h
−1)
)
· ξ

=
(
1f◦β(ξ), g

−1h−1
)
· ξ

=
(
1f◦β(ξ), (hg)−1

)
· ξ

= ξ · (hg).

Finally, we observe that for any ξ ∈ Π,

ξ · 1f◦α(ξ) =
(

1f◦β(ξ), 1
−1
f◦α(ξ)

)
· ξ =

(
1f◦β(ξ), 1f◦α(ξ)

)
· ξ = 1̃(f×f)◦χ(ξ) · ξ = ξ.

Thus, the map θR defines a right Lie groupoid action of G on f ◦ α : Π→M .

The following results give us a relationship between the left and the right Lie groupoid
actions of G, and a relationship between these actions and the partial multiplication
of the Lie groupoid Π⇒ P .

Proposition 5.7. With the actions defined as above, we have the following property:

(5) For any ξ ∈ Π, g, h ∈ G, such that αG(g) = f ◦ β(ξ), and βG(h) = f ◦ α(ξ),

(g · ξ) · h = g · (ξ · h).
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Proof. We first note that both sides of the equation above are well-defined by virtue
of properties (1) and (4). The left-hand side is given by

(g · ξ) · h = (1f◦β(g·ξ), h
−1) ·

(
(g, 1f◦α(ξ)) · ξ

)
=
(
(1f◦β(g·ξ), h

−1) � (g, 1f◦α(ξ))
)
· ξ

=
(
1f◦β(g·ξ)g, h

−11f◦α(ξ)

)
· ξ

=
(
1βG(g)g, h

−11βG(h)

)
· ξ

= (g, h−1) · ξ.

However, we see that the right-hand side is given by

g · (ξ · h) = (g, 1f◦α(ξ·h)) ·
(
(1f◦β(ξ), h

−1) · ξ
)

=
(
(g, 1f◦α(ξ·h)) � (1f◦β(ξ), h

−1)
)
· ξ

=
(
g1f◦β(ξ), 1f◦α(ξ·h)h

−1
)
· ξ

=
(
g1αG(g), 1αG(h)h

−1
)
· ξ

= (g, h−1) · ξ.

Hence, we deduce the postulated identity.

Proposition 5.8. With the actions defined as above, we have the following properties:

(6) For (ξ, η) ∈ Π ∗Π and g ∈ G, such that (g, ξ) ∈ G ∗Π, we have

(g · ξ)η = g · (ξη);

(7) For (ξ, η) ∈ Π ∗Π and g ∈ G, such that (η, g) ∈ Π ∗G, we have

ξ(η · g) = (ξη) · g;

(8) For (ξ, g) ∈ Π ∗G and η ∈ Π, such that (ξ · g, η) ∈ Π ∗Π, we have

(ξ · g)η = ξ(g · η).

Proof. To prove (6), we first note that both sides of the equation are well-defined
because of the property (1) and the fact that β(ξη) = β(ξ). Now, observe that

(g · ξ)η = (g · ξ)(1f◦β(η) · η)

=
(
(g, 1f◦α(ξ)) · ξ

) (
(1f◦β(η), 1f◦α(η)) · η

)
=
(
(g, 1f◦α(ξ))� (1f◦β(η), 1f◦α(η))

)
· (ξη)

= (g, 1f◦α(η)) · (ξη)

= (g, 1f◦α(ξη)) · (ξη)

= g · (ξη).

To prove (7), we can first verify that both sides of the equation are well-defined using
the property (4) and the fact that α(ξη) = α(η). Then, we observe that

ξ(η · g) = (ξ · 1f◦α(ξ))(η · g)

=
(

(1f◦β(ξ), 1
−1
f◦α(ξ)) · ξ

) (
(1f◦β(η), g

−1) · η
)

=
(
(1f◦β(ξ), 1f◦α(ξ))� (1f◦β(η), g

−1)
)
· (ξη)

= (1f◦β(ξ), g
−1) · (ξη)

= (1f◦β(ξη), g
−1) · (ξη)

= (ξη) · g.
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To prove (8), let us first verify that the right-hand side of the equation is well-defined.
Using properties (2) and (3), we have

β(g · η) = g · β(η)

= g · α(ξ · g)

= g · (g−1 · α(ξ))

= 1βG(g) · α(ξ)

= α(ξ),

and

f ◦ β(η) = f ◦ α(ξ · g) = αG(g).

Thus, (ξ, g · η) ∈ Π ∗Π and (g, η) ∈ G ∗Π, as required. Finally, we observe that

(ξ · g)η = (ξ · g)(g−1 · (g · η))

=
(
(1f◦β(ξ), g

−1) · ξ
) (

(g−1, 1f◦α(g·η)) · (g · η)
)

=
(
(1f◦β(ξ), g

−1)� (g−1, 1f◦α(g·η))
)
· (ξ(g · η))

= (1f◦β(ξ), 1f◦α(g·η)) · (ξ(g · η))

= 1̃f◦χ(ξ(g·η)) · (ξ(g · η))

= ξ(g · η).

We have seen that an action of the double Lie groupoid (G × G;G,M ×M ;M) on
the morphism ((f × f) ◦ χ, f) gives rise to a left and a right action of G⇒M on Π,
satisfying the properties (1)–(8). Let us now look at the reverse process.

Proposition 5.9. Let G and Π be Lie groupoids with base manifolds M and P ,
respectively, and let θ : G ∗ P → P be a Lie groupoid action of G on a smooth map
f : P → M . Suppose that we have a left Lie groupoid action of G on f ◦ β : Π → M
and a right Lie groupoid action of G on f ◦ α : Π→M , such that properties (1)–(8)
are satisfied. Then the smooth map θ̃ : (G×G) ∗Π→ Π defined by,

((h, g), ξ) 7→ (h, g) · ξ := (h · ξ) · g−1, (5.10)

is a Lie groupoid action of the Lie groupoid G × G ⇒ M ×M on the smooth map
(f × f) ◦ χ : Π→M ×M .

Moreover, (θ̃, θ) is an action of the double Lie groupoid (G × G;G,M ×M ;M) on
the morphism of Lie groupoids ((f × f) ◦ χ, f).

Proof. To first see that the map θ̃ : (G × G) ∗ Π → Π is well-defined, we note that
if ((h, g), ξ) ∈ (G × G) ∗ Π, then α̃G(h, g) = (f × f) ◦ χ(ξ). This is equivalent to
the statement that f ◦ β(ξ) = αG(h) and f ◦ α(ξ) = βG(g−1), and then property
(5) immediately implies that the map is well-defined. Furthermore, we see that the
parentheses used in the above formula for θ̃ are unnecessary.

Let us now show that θ̃ defines a Lie groupoid action of the Cartesian product group-
oid G × G ⇒ M ×M on the smooth map (f × f) ◦ χ : Π → M ×M . Suppose that
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((h, g), ξ) ∈ (G×G) ∗Π and observe

(f × f) ◦ χ((h, g) · ξ) = (f × f) ◦ χ((h · ξ) · g−1)

=
(
f ◦ β(h · (ξ · g−1)), f ◦ α((h · ξ) · g−1)

)
=
(
βG(h), αG(g−1)

)
= (βG(h), βG(g))

= β̃G(h, g).

Next, suppose that ((h2, h1), (g2, g1)) ∈ (G × G) ∗ (G × G), and ξ ∈ Π satisfies
((g2, g1), ξ) ∈ (G×G) ∗Π. Then,

(h2, h1) · ((g2, g1) · ξ) = (h2 · ((g2 · ξ) · g−1
1 )) · h−1

1

= ((h2 · (g2 · ξ)) · g−1
1 ) · h−1

1

= ((h2g2) · ξ) · (g−1
1 h−1

1 )

= (h2g2, h1g1) · ξ
= ((h2, h1) � (g2, g1)) · ξ.

Lastly, we observe that for any ξ ∈ Π,

1(f×f)◦χ(ξ) · ξ = (1f◦β(ξ), 1f◦α(ξ)) · ξ = (1f◦β(ξ) · ξ) · 1f◦α(ξ) = ξ.

Hence, θ̃ indeed defines a Lie groupoid action of G×G⇒M ×M on (f × f) ◦ χ.

Finally, it remains to show that (θ̃, θ) gives an action of the double Lie groupoid
(G × G;G,M × M ;M) on the morphism of Lie groupoids ((f × f) ◦ χ, f). That
is, we need to show that (θ̃, θ) is a morphism of Lie groupoids. We see that, for
((h, g), ξ) ∈ (G×G) ∗Π, we have

α((h, g) · ξ) = α((h · ξ) · g−1)

= α(ξ · g−1)

= g · α(ξ)

= αG×G(h, g) · α(ξ),

and

β((h, g) · ξ) = β((h · ξ) · g−1)

= β(h · ξ)
= h · β(ξ)

= βG×G(h, g) · β(ξ).

Furthermore, for (((k, h), ξ), ((h, g), η)) ∈ ((G×G)^Π) ∗ ((G×G)^Π), we have

((k, h) · ξ)((h, g) · η) =
(
(k · ξ) · h−1

) (
(h · η) · g−1

)
=
(
((k · ξ) · h−1) · h

)
(η · g−1)

= (k · ξ)(η · g−1)

= ((k · ξ)η) · g−1

= (k · (ξη)) · g−1

= (k, g) · (ξη)

= ((k, h)� (h, g)) · (ξη).
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Hence, we can conclude that (θ̃, θ) is a morphism of Lie groupoids, and thus gives
rise to an action of the double Lie groupoid (G×G;G,M ×M ;M) on the morphism
of Lie groupoids (f × f) ◦ χ. Note that in the computations above, we have used all
the properties (1)–(8).

It should be immediately clear that these two constructions that have been described
are mutually inverse. To conclude, we combine all of the results of this section to
arrive at the following theorem:

Theorem 5.10. Let Π ⇒ P be a Lie groupoid with source and target projections
denoted by α and β, respectively, and suppose that there exists a Lie groupoid action
of a Lie groupoid G⇒ M on a smooth map f : P → M . Then there is a one-to-one
correspondence between actions of the double Lie groupoid (G × G;G,M × M ;M)
on the morphism ((f × f) ◦ χ, f), and pairs of left and right Lie groupoid actions of
G⇒M on the maps f ◦β and f ◦α, respectively, satisfying the properties (1)–(8).

5.1.3 LA-actions of LA-groupoids

We saw in Section 5.1.1 that we can generalise Lie groupoid actions to actions of
double Lie groupoids. We now consider an analogous approach to generalise Lie
algebroid actions to actions of LA-groupoids. In some sense, we are extending the
notion of a Lie algebroid action from the category of smooth manifolds to the category
of Lie groupoids.

Definition 5.11. Let (Ω;A, V ;M) be an LA-groupoid, G⇒ P a Lie groupoid, and
F : G→ V a morphism of Lie groupoids over a smooth map f : P →M .

G

Ω V

P

A M

F

αG,βG

α̃,β̃

q̃

α,β

f

q

(5.11)

An LA-action of (Ω;A, V ;M) on (F, f) (or on G ⇒ P ) consists of a Lie algebroid
action of Ω → V on F , and a Lie algebroid action of A → M on f , such that the
anchor map ã† : Ω^G → TG is a morphism of Lie groupoids over the anchor map
a† : A^P → TP .

The morphism (ã†, a†) that corresponds to an LA-action of (Ω;A, V ;M) on a Lie
groupoid G⇒ P can be expressed diagrammatically,

Ω^G TG

A^P TP.

ã†

a†

(5.12)

Here, the Lie groupoid structure on Ω^G with base A^P is the unique groupoid
structure that makes Ω^G an embedded Lie subgroupoid of the Cartesian product
groupoid Ω×G⇒ A× P via inclusion.
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Remark 5.12. In the above definition, the condition that (ã†, a†) be a morphism of
Lie groupoids immediately implies the following properties:

(i) T (αG)(ξ†(g)) = α̃(ξ(F (g)))†, for all ξ ∈ Γ(Ω), g ∈ G;

(ii) T (βG)(ξ†(g)) = β̃(ξ(F (g)))†, for all ξ ∈ Γ(Ω), g ∈ G;

(iii) T (κG)(ξ†(h), η†(g)) = κ̃(ξ(F (h)), η(F (g)))†, for all ξ, η ∈ Γ(Ω), (h, g) ∈ G ∗ G,
such that (ξ(F (h)), η(F (g))) ∈ Ω ∗ Ω ;

(iv) T (1G)(X†(p)) = (1̃X(f(p)))
†, for all X ∈ Γ(A), p ∈ P ;

(v) T (ιG)(ξ†(g)) = ι̃(ξ(F (g)))†, for all ξ ∈ Γ(Ω), g ∈ G.

Given an LA-action of an LA-groupoid (Ω;A, V ;M) on a Lie groupoid G ⇒ P , we
get action Lie algebroids Ω^G and A^P on base manifolds G and P , respectively.
In addition, Ω^G also has a Lie groupoid structure on base A^P . We can present
these Lie groupoid and Lie algebroid structures in the following diagram:

Ω^G G

A^P P.

α̃∗αG, β̃∗βG

q̃^

αG, βG

q^

(5.13)

Theorem 5.13. Let (Ω;A, V ;M) be an LA-groupoid, G a Lie groupoid on base P ,
and F : G→ V a morphism of Lie groupoids over a smooth map f : P →M . Suppose
that we have an LA-action of (Ω;A, V ;M) on (F, f). Then (Ω^G;A^P,G;P ) is
an LA-groupoid.

To give a rigorous proof of this theorem we will first need to prove some preliminary
results.

Lemma 5.14. Let q : E → M and q′ : E′ → M ′ be smooth vector bundles of rank k
and r, respectively, and let F : E → E′ be a vector bundle morphism over f : M →M ′.

E E′

M M ′,

F

f

(5.14)

Given any x ∈M , there exists a local frame (σi)
k
i=1 of E defined over a neighbourhood

U of x, and a local frame (σ′i)
r
i=1 of E defined over an open set V ⊇ f(U), such that

(i) when F is a submersion,

F ◦ σi(y) =

{
σ′i ◦ f(y) ∀ 1 ≤ i ≤ r,
0f(y) ∀ r < i ≤ k,

for every y ∈ U ;
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(ii) and when F is an immersion,

F ◦ σi(y) = σ′i ◦ f(y), ∀ 1 ≤ i ≤ k,

for every y ∈ U .

Proof. This result is essentially a corollary of the Rank Theorem.3 Let us begin with
the first statement (i). Since F is a submersion there exists neighbourhoods U and V
of x and f(x), respectively, such that F (q−1(U)) ⊆ (q′)−1(V ), and local trivialisations
Φ: q−1(U)→ U × Rk and Φ′ : (q′)−1(V )→ V × Rr, such that

Φ′ ◦ F ◦ Φ−1 : U × Rk → V × Rr

is given by

(y, (v1, . . . , vr, vr+1, . . . , vk)) 7→ (f(y), (v1, . . . , vr)).

Let e1, . . . , ek be the standard coordinate bases of Rk, and let e′1, . . . , e
′
r be the stan-

dard coordinate bases of Rr. We can define local sections on U by

σi : U → E, y 7→ Φ−1(y, ei),

for i = 1, . . . , k. Note that Φ ◦ σi is smooth by construction, and since Φ is a diffeo-
morphism, it follows that σi is smooth. Clearly (σi)

k
i=1 form a local frame for E over

U . We can also define smooth local sections on V by

σ′i : V → E′, z 7→ (Φ′)−1(z, e′i),

for i = 1, . . . , r, and (σ′i)
r
i=1 forms a local frame for E′ over V .

Lastly, observe that for any y ∈ U , if 1 ≤ i ≤ r,

F (σi(y)) = F (Φ−1(y, ei))

= (Φ′)−1(Φ′ ◦ F ◦ Φ−1(y, ei))

= (Φ′)−1(f(y), e′i)

= σ′i(f(y)).

On the other hand, if r < i ≤ k,

F (σi(y)) = F (Φ−1(y, ei))

= (Φ′)−1(Φ′ ◦ F ◦ Φ−1(y, ei))

= (Φ′)−1(f(y), 0)

= 0f(y).

The second statement can be proved in a similar fashion.

Lemma 5.15. Let q : E →M be a smooth vector bundle, and f : M ′ →M a smooth
map. Suppose that (σi) is a smooth local frame for E over some neighbourhood U ,
then (σ!

i) is a smooth local frame for f !E over f−1(U).

The following result is the key step to proving Theorem 5.13.

3See [34, Theorem 4.12] for a statement of the Rank Theorem.
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Proposition 5.16. Let Ω and A be Lie algebroids on base manifolds V and M ,
respectively, and ϕ̃ : Ω → A a morphism of Lie algebroids over a map ϕ : V → M .
Suppose we have a Lie algebroid action of Ω on a smooth map F : G → V , a Lie
algebroid action of A on a smooth map f : P → M , and a smooth map ϕG : G → P
satisfying ϕ ◦ F = f ◦ ϕG. Additionally, we further suppose that ϕ̃, ϕG and ϕ are all
surjective submersions.

G

Ω V

P

A M

F

ϕG

ϕ̃

q̃

ϕ

f

q

(5.15)

Let ϕ̃ ∗ ϕG denote the restriction of the product map ϕ̃ × ϕG : Ω × G → A × P to a
smooth map Ω^G→ A^P . If a† ◦ (ϕ̃ ∗ ϕG) = T (ϕG) ◦ ã†, where ã† and a† are the
anchor maps of the action Lie algebroids Ω^G and A^P , respectively, then ϕ̃ ∗ ϕG
is a morphism of Lie algebroids over ϕG.

Proof. We first check that ϕ̃∗ϕG is a vector bundle morphism over ϕG. Observe that
for any (ξ, g) ∈ Ω^G, we have

q^ ◦ (ϕ̃ ∗ ϕG)(ξ, g) = q^(ϕ̃(ξ), ϕG(g)) = ϕG(g) = ϕG ◦ q̃^(ξ, g).

Hence, ϕ̃ ∗ ϕG is a fibrewise map. Moreover, for any λ ∈ R, g ∈ G, and any pairs
(ξ, g), (η, g) ∈ (Ω^G)g, we have

λ(ϕ̃ ∗ ϕG)(ξ, g) + (ϕ̃ ∗ ϕG)(η, g) = (λϕ̃(ξ), ϕG(g)) + (ϕ̃(η), ϕG(g))

= (λϕ̃(ξ) + ϕ̃(η), ϕG(g))

= (ϕ̃(λξ + η), ϕG(g))

= ϕ̃ ∗ ϕG(λξ + η, g)

= ϕ̃ ∗ ϕG(λ(ξ, g) + (η, g)).

Thus ϕ̃ ∗ ϕG is linear on fibres, and is therefore a vector bundle morphism.

To prove that ϕ̃∗ϕG is a morphism of Lie algebroids, we make use of Proposition 1.50.
Since ϕ̃ ∗ ϕG is a fibrewise surjection, and a† ◦ (ϕ̃ ∗ ϕG) = T (ϕ) ◦ ã† by assumption,
we only need to check that property (1.14) holds. In this endeavour, we take any
sections ξ̃, η̃ ∈ Γ(Ω^G), and X̃, Ỹ ∈ Γ(A^P ), satisfying

(ϕ̃ ∗ ϕG) ◦ ξ̃ = X̃ ◦ ϕG , (ϕ̃ ∗ ϕG) ◦ η̃ = Ỹ ◦ ϕG.

We need to show that
(ϕ̃ ∗ ϕG) ◦ [ξ̃, η̃] = [X̃, Ỹ ] ◦ ϕG.

Fix an arbitrary g ∈ G. Let us assume that as vector bundles Ω → V and A → M
have ranks k and r, respectively. Since (ϕ̃, ϕ) is a vector bundle morphism, and ϕ̃ is
a surjective submersion, by Lemma 5.14 there exists a smooth local frame (ξi)

k
i=1 of

Ω defined in a neighbourhood of F (g), and a smooth local frame (Xi)
r
i=1 of A defined

in a neighbourhood of ϕ(F (g)), such that

ϕ̃ ◦ ξi ≡
{
Xi ◦ ϕ ∀1 ≤ i ≤ r,
0 ◦ ϕ ∀r < i ≤ k, (5.16)



5.1. ACTIONS OF DOUBLE STRUCTURES 117

in a neighbourhood of F (g). By Lemma 5.15 there exist ui, vi ∈ C∞(G), such that

ξ̃ ≡
k∑
i=1

ui ⊗ ξi, η̃ ≡
k∑
i=1

vi ⊗ ξi,

in some neighbourhood of g. Similarly, there exist wj , yj ∈ C∞(P ), such that

X̃ ≡
r∑
j=1

wj ⊗Xj , Ỹ ≡
r∑
j=1

yj ⊗Xj ,

in some neighbourhood of ϕG(g). Because (ϕ̃ ∗ ϕG) ◦ ξ̃ = X̃ ◦ ϕG, it follows that

k∑
i=1

ui(ϕ̃ ◦ ξi ◦ F ) ≡
r∑
j=1

(wj ◦ ϕG)(Xj ◦ ϕ ◦ F ), (5.17)

in a neighbourhood of g. On the other hand, by the properties given in equation
(5.16), we have

k∑
i=1

ui(ϕ̃ ◦ ξi ◦ F ) ≡
r∑
i=1

ui(Xi ◦ ϕ ◦ F ), (5.18)

in a neighbourhood of g. Equating (5.17) and (5.18), implies that ui ≡ wi ◦ ϕG in a
neighbourhood of g, for all i = 1, . . . , r. Using a similar argument, we can also show
that vi ≡ yi ◦ ϕG in a neighbourhood of g, for all i = 1, . . . , r.

By recalling the definition of the Lie bracket4 for the action Lie algebroid Ω^G, we
find that

(ϕ̃ ∗ ϕG)([ξ̃, η̃](g)) = (Λ1 + Λ2 + Λ3, ϕG(g)),

where Λ1, Λ2 and Λ3 are the summands given by

Λ1 =
k∑

i,j=1

ui(g)vj(g)(ϕ̃ ◦ [ξi, ξj ])(F (g)),

Λ2 =
k∑

i,j=1

ui(g)ξ†i (g)(vj)(ϕ̃ ◦ ξj)(F (g)), Λ3 = −
k∑

i,j=1

vj(g)ξ†j (g)(ui)(ϕ̃ ◦ ξi)(F (g)).

Let us now consider these three summands separately. To compute Λ1, note that
Lemma 1.52 immediately implies that

(ϕ̃ ◦ [ξi, ξj ])(F (g)) = ([Xi, Xj ] ◦ ϕ)(F (g)),

whenever 1 ≤ i, j ≤ r. Furthermore, we also see that

(ϕ̃ ◦ [ξi, ξj ])(F (g)) = 0F (g),

whenever i > r, or j > r. Hence, the first summand is given by

Λ1 =
k∑

i,j=1

ui(g)vj(g)(ϕ̃ ◦ [ξi, ξj ])(F (g))

=
r∑

i,j=1

ui(g)vj(g)([Xi, Xj ] ◦ ϕ)(F (g))

=

r∑
i,j=1

(wi ◦ ϕG)(g)(yj ◦ ϕG)(g)[Xi, Xj ](f(ϕG(g)))

4See page 21 for the definition of the Lie bracket for an action Lie algebroid.
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For the second summand, note that whenever 1 ≤ i ≤ r, we have

ξ†i (g)(vj) = ξ†i (g)(yj ◦ ϕG) = T (ϕG)(ξ†i (g))(yj) = ϕ̃(ξi(F (g)))†(yj) = X†i (ϕG(g))(yj).

Hence, it follows that this second summand is given by

Λ2 =
k∑

i,j=1

ui(g)ξ†i (g)(vj)(ϕ̃ ◦ ξj)(F (g))

=
r∑

i,j=1

ui(g)X†i (ϕG(g))(yj)(Xj ◦ ϕ)(F (g))

=

r∑
i,j=1

(wi ◦ ϕG)(g)X†i (ϕG(g))(yj)Xj(f(ϕG(g))).

We can apply a similar argument for the third summand, and then in total we have
obtained

(ϕ̃ ∗ ϕG)([ξ̃, η̃](g)) =

 r∑
i,j=1

(wi ◦ ϕG)(g)(yj ◦ ϕg)(g)[Xi, Xj ](f(ϕG(g)))

+
r∑

i,j=1

(wi ◦ ϕG)(g)X†i (ϕG(g))(yj)Xj(f(ϕG(g)))

−
r∑

i,j=1

(yj ◦ ϕG)(g)X†j (ϕG(g))(wi)Xi(f(ϕG(g))), ϕG(g)


=

 r∑
i=1

wi ⊗Xi,
r∑
j=1

yj ⊗Xj

 (ϕG(g))

= [X̃, Ỹ ](ϕG(g)).

Since g ∈ G was arbitrarily chosen, we conclude that (ϕ̃ ∗ ϕG) ◦ [ξ̃, η̃] = [X̃, Ỹ ] ◦ ϕG.
Hence, ϕ̃ ∗ ϕG is a morphism of Lie algebroids over ϕG.

We now have the tools to prove the theorem.

Proof of Theorem 5.13. To prove this result, we need to show that the structure
maps of the Lie groupoid Ω^G ⇒ A^P are Lie algebroid morphisms over the
corresponding structure maps of G ⇒ P . By assumption, the structure maps α̃, β̃,
κ̃, 1̃, ι̃ of Ω⇒ A are all morphisms of Lie algebroids over the structure maps α, β, κ,
1, ι of V ⇒ M , respectively. Moreover, since F is a morphism of Lie groupoids over
f , we have the relations

α ◦ F = f ◦ αG, β ◦ F = f ◦ βG, κ ◦ (F × F )|G∗G = F ◦ κG,
1 ◦ f = F ◦ 1G, ι ◦ F = F ◦ ιG.

Note that the source and target projections of the Lie groupoid Ω^G ⇒ A^P are
given by the maps α̃ ∗ αG and β̃ ∗ βG, respectively (as defined in Proposition 5.16).
Similarly, the identity and inversion maps are given by 1̃ ∗ 1G and ι̃ ∗ ιG. The partial
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multiplication is given by the composite

(Ω^G) ∗ (Ω^G) (Ω ∗ Ω)^(G ∗G) Ω^G

G ∗G G ∗G G.

∼= κ̃∗κG

idG∗G κG

(5.19)

Let us denote the anchor map of the action Lie algebroid (Ω ∗ Ω)^(G ∗G)→ G ∗G
by a†Ω∗Ω. Then the condition that (ã†, a†) is a morphism of Lie groupoids also gives
us the relations

T (αG) ◦ ã† = a† ◦ (α̃ ∗ αG), T (βG) ◦ ã† = a† ◦ (β̃ ∗ βG),

T (κG) ◦ a†Ω∗Ω = ã† ◦ (κ̃ ∗ κG),

T (1G) ◦ a† = ã† ◦ (1̃ ∗ 1G), T (ιG) ◦ ã† = ã† ◦ (ι̃ ∗ ιG).

Since the source and target projections, α̃ and β̃, the partial multiplication κ̃, and
the inversion map ι̃ are all surjective submersions, we can apply Proposition 5.16 to
deduce that α̃ ∗ αG, β̃ ∗ βG, κ̃ ∗ κG and ι̃ ∗ ιG are all morphisms of Lie algebroids.

It remains to show that 1̃ ∗ 1G is a morphism of Lie algebroids. Note that 1̃ ∗ 1G is an
injective immersion, and hence of constant rank. Since we have already shown that
T (1G) ◦ a† = ã† ◦ (1̃ ∗ 1G), by Remark 1.51 and Proposition 1.50, we only need to
check that we have the property (1.14). Let us take sections X̃, Ỹ ∈ Γ(A^P ), and
ξ̃, η̃ ∈ Γ(Ω^G), satisfying

(1̃ ∗ 1G) ◦ X̃ = ξ̃ ◦ 1G , (1̃ ∗ 1G) ◦ Ỹ = η̃ ◦ 1G.

We need to show that
(1̃ ∗ 1G) ◦ [X̃, Ỹ ] = [ξ̃, η̃] ◦ 1G.

Fix an arbitrary p ∈ P . We assume that as vector bundles Ω→ V and A→M have
ranks k and r, respectively. Now since (1̃, 1) is a vector bundle morphism, and 1̃ is
an injective immersion, by part (ii) of Lemma 5.14, there exists a smooth local frame
(Xi)

r
i=1 of A defined in a neighbourhood of f(p), and a smooth local frame (ξi)

k
i=1 of

Ω defined in a neighbourhood of 1f(p), such that

1̃ ◦Xi ≡ ξi ◦ 1, ∀1 ≤ i ≤ r (5.20)

in a neighbourhood of f(p). By Lemma 5.15, there exist wi, yi ∈ C∞(P ) such that

X̃ ≡
r∑
i=1

wi ⊗Xi, Ỹ ≡
r∑
i=1

yi ⊗Xi,

in some neighbourhood of p. There also exist uj , vj ∈ C∞(G) such that

ξ̃ ≡
k∑
j=1

uj ⊗ ξj , η̃ ≡
k∑
j=1

vj ⊗ ξj ,

in some neighbourhood of 1Gp . Since (1̃ ∗ 1G) ◦ X̃ = ξ̃ ◦ 1G, it follows that

r∑
i=1

wi(1̃ ◦Xi ◦ f) ≡
k∑
j=1

(uj ◦ 1G)(ξj ◦ 1 ◦ f), (5.21)
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in a neighbourhood of p. On the other hand, by the condition (5.20), we have

r∑
i=1

wi(1̃ ◦Xi ◦ f) ≡
r∑
i=1

wi(ξi ◦ 1 ◦ f), (5.22)

in a neighbourhood of p. Equating (5.21) and (5.22), implies that wi ≡ ui ◦ 1G in
a neighbourhood of p, for all 1 ≤ i ≤ r, and ui ◦ 1G ≡ 0 in a neighbourhood of p,
for all i > r. Using a similar argument, we can also show that yi ≡ vi ◦ 1G in a
neighbourhood of p, for all 1 ≤ i ≤ r, and vi ◦ 1G ≡ 0 in a neighbourhood of p, for all
i > r.

Using the definition of the Lie bracket for the action Lie algebroid A^P , we find

(1̃ ∗ 1G)([X̃, Ỹ ](p)) = (Λ1 + Λ2 + Λ3, 1
G
p ),

where Λ1, Λ2 and Λ3 are the summands given by

Λ1 =

r∑
i,j=1

wi(p)yj(p)(1̃ ◦ [Xi, Xj ])(f(p)),

Λ2 =
r∑

i,j=1

wi(p)X
†
i (p)(yj)(1̃ ◦Xj)(f(p)), Λ3 = −

r∑
i,j=1

yj(g)X†j (p)(wi)(1̃ ◦Xi)(f(p)).

Let us now consider these three summands separately. To compute Λ1, note that
Lemma 1.52 immediately implies that

(1̃ ◦ [Xi, Xj ])(f(p)) = ([ξi, ξj ] ◦ 1)(f(p)),

whenever 1 ≤ i, j ≤ r. We also have that (ui ◦ 1G)(p) = (vi ◦ 1G)(p) = 0, for all i > r.
Hence, the first summand is given by

Λ1 =
r∑

i,j=1

wi(p)yj(p)([ξi, ξj ] ◦ 1)(f(p))

=
k∑

i,j=1

(ui ◦ 1G)(p)(vj ◦ 1G)(p)[ξi, ξj ](F (1Gp )).

For the second summand, we first observe that for 1 ≤ i ≤ r,

X†i (p)(vj ◦ 1G) = T (1G)(X†i (p))(vj) = 1̃(Xi(f(p)))†(vj) = ξi(1f(p))
†(vj) = ξ†i (1

G
p )(vj).

Thus, X†i (p)(yj) = ξ†i (1
G
p )(vj) for 1 ≤ i, j ≤ r. Moreover, ξ†i (1

G
p )(vj) = 0 for j > r,

and since ui ◦ 1G(p) = 0 for i > r, we have

Λ2 =

r∑
i,j=1

wi(p)X
†
i (p)(yj)(1̃ ◦Xj)(f(p))

=
r∑

i,j=1

wi(p)ξ
†
i (1

G
p )(vj)(ξj ◦ 1)(f(p))

=
k∑

i,j=1

(ui ◦ 1G)(p)ξ†i (1
G
p )(vj)ξj(F (1Gp )).
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We can apply a similar argument for the third summand, and then in total we have

(1̃ ∗ 1G)([X̃, Ỹ ](p)) =

 k∑
i,j=1

(ui ◦ 1G)(p)(vj ◦ 1G)(p)[ξi, ξj ](F (1Gp ))

+
k∑

i,j=1

(ui ◦ 1G)(p)ξ†i (1
G
p )(vj)ξj(F (1Gp ))

−
k∑

i,j=1

(vj ◦ 1G)(p)ξ†j (1
G
p )(ui)ξi(F (1Gp )), 1Gp


=

 k∑
i=1

ui ⊗ ξi,
k∑
j=1

vj ⊗ ξj

 (1Gp )

= [ξ̃, η̃](1Gp ).

Since p ∈ P was arbitrarily chosen, we conclude that (1̃ ∗ 1G) ◦ [X̃, Ỹ ] = [ξ̃, η̃] ◦ 1G.
Hence, the identity map 1̃∗1G is a morphism of Lie algebroids over 1G. This completes
the proof of the theorem.

Given an LA-action of an LA-groupoid (Ω;A, V ;M) on a morphism of Lie groupoids
F : G → V over a smooth map f : P → M , we call the corresponding LA-groupoid
(Ω^G;A^P,G;P ) an LA-action LA-groupoid.

We finish this section by showing how an action of a double Lie groupoid gives rise
to an LA-action of an LA-groupoid.

Proposition 5.17. Let (θ̃, θ) be an action of a double Lie groupoid (S;H,V ;M) on
a morphism of Lie groupoids F : G → V over f : P → M . Then there exists an
LA-action of the LA-groupoid (AHS;AH,V ;M) on the morphism of Lie groupoids
(F, f).

Proof. We denote the structure maps of the groupoids as indicated in the following
diagram.

G

S V

P

H M

F

αG,βG

α̃V ,β̃V

α̃H ,β̃H

αV ,βV

fαH ,βH

(5.23)

Now consider the LA-groupoid (AHS;AH,V ;M) of Example 1.77. The Lie groupoid
action θ̃ of S ⇒ V on F gives rise to a Lie algebroid action of AHS → V on F by the
formula given in (1.19). Similarly, the Lie groupoid action θ of H ⇒ M on f gives
rise to a Lie algebroid action of AH → M on f . We claim that that these two Lie
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algebroid actions form an LA-action of (AHS;AH,V ;M) on (F, f).

G

AHS V

P

AH M

F

αG,βG

A(α̃V ),A(β̃V )

q̃

αV ,βV

f
q

(5.24)

Let the anchor maps of the action Lie algebroids AHS ^G and AH ^P be denoted by
ã† and a†, respectively. We need to show that (ã†, a†) is a morphism of Lie groupoids.

First, we make the observation that, for any (s, g) ∈ S ^G, we have

αG ◦ θ̃g(s) = αG(s · g) = α̃V (s) · αG(g) = θαG(g) ◦ α̃V (s),

and
βG ◦ θ̃g(s) = βG(s · g) = β̃V (s) · βG(g) = θβG(g) ◦ β̃V (s).

Hence, for any (X, g) ∈ AHS ^G, we have

T (αG)(ã†(X, g)) = T (αG)(T1̃F (g)
(θ̃g)(X))

= T1αV (F (g))
(θαG(g))(T1̃F (g)

(α̃V )(X))

= T1f(αG(g))
(θαG(g))(A(α̃V )(X))

= a†(A(α̃V )(X), αG(g)),

and also

T (βG)(ã†(X, g)) = T (βG)(T1̃F (g)
(θ̃g)(X))

= T1βV (F (g))
(θβG(g))(T1̃F (g)

(β̃V )(X))

= T1f(βG(g))
(θβG(g))(A(β̃V )(X))

= a†(A(β̃V )(X), βG(g)).

We also note that, for any (s2, h), (s1, g) ∈ S ^G such that (s2, s1) ∈ S ∗H S and
(h, g) ∈ G ∗G, we have

κG ◦ (θ̃h × θ̃g)(s2, s1) = (s2 · h)(s1 · g) = (s2 � s1) · (hg) = θ̃hg ◦ κ̃V (s2, s1).

Thus, for any ((X,h), (Y, g)) ∈ (AHS ^G) ∗ (AHS ^G), we deduce that

T (κG)(ã†(X,h), ã†(Y, g)) = T (κG)(T1̃F (h)
(θ̃h)(X), T1̃F (g)

(θ̃g)(Y ))

= T1̃F (hg)
(θ̃hg)(T(1̃F (h),1̃F (g))

(κ̃V )(X,Y ))

= T1̃F (hg)
(θ̃hg)(A(κ̃V )(X,Y ))

= ã†(A(κ̃V )(X,Y ), hg).

We have shown that the axioms of Definition 1.11 have been met, and so the anchor
map ã† is a morphism of Lie groupoids over the anchor map a†.
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5.1.4 LG-actions of LA-groupoids

We now define another type of action for LA-groupoids. It can be interpreted as an
extension of the notion of a Lie groupoid action in the category of smooth manifolds
to the category of Lie algebroids.

Definition 5.18. Let (Ω;E,H;M) be an LA-groupoid, A→ P a Lie algebroid, and
F : A→ E a morphism of Lie algebroids over a smooth map f : P →M .

A

Ω E

P

H M

F

qA

q̃

α̃,β̃

q

fα,β

(5.25)

An LG-action of (Ω;E,H;M) on (F, f) (or on A → P ) consists of a Lie groupoid
action θ̃ of Ω ⇒ E on F , and a Lie groupoid action θ of H ⇒ M on f , such that
(θ̃, θ) is a morphism of Lie algebroids.

The morphism (θ̃, θ) that corresponds to an LG-action of (Ω;A, V ;M) on a Lie alg-
ebroid A→ P can be expressed diagrammatically,

Ω^A A

H ^P P.

θ̃

θ

(5.26)

Here, the Lie algebroid structure on Ω^A with base H ^P is the unique Lie algebroid
structure that makes it an embedded Lie subalgebroid of the direct product Lie
algebroid Ω × A via inclusion. We also have the action Lie groupoids Ω^A and
H ^P on base manifolds A and P , respectively. These Lie groupoid and Lie algebroid
structures can be displayed in the following diagram:

Ω^A A

H ^P P.

q̃∗qA

α̃^, β̃^

qA

α^, β^

(5.27)

Theorem 5.19. Let (Ω;E,H;M) be an LA-groupoid, A a Lie algebroid on base P ,
and F : A→ E a morphism of Lie algebroids over a smooth map f : P →M . Suppose
that we have an LG-action of (Ω;E,H;M) on (F, f). Then (Ω^A;A,H ^P ;P ) is
an LA-groupoid.

Proof. We need to show that the structure maps of the action groupoid Ω^A ⇒ A
are all morphisms of Lie algebroids over the corresponding structure maps of the
action groupoid H ^P ⇒ P .
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We first observe that the source projection α̃^ can be realised as a composite of the
following Lie algebroid morphisms:

Ω^A Ω×A A

H ^P H × P P.

p̃r2

pr2

When we defined direct product Lie algebroids, we saw that the projection maps
were morphisms of Lie algebroids (see page 20), and thus α̃^ is a morphism of Lie
algebroids over α^.

The target projections β̃^ and β^ are given by the action maps θ̃ and θ, respectively,
and so β̃^ is a morphism of Lie algebroids over β^ by assumption.

We can view the partial multiplication κ̃^ as a composite of the following morphisms
of Lie algebroids over κ^ with restricted codomain:

(Ω^A) ∗ (Ω^A) (Ω ∗ Ω)×A×A Ω×A

(H ^P ) ∗ (H ^P ) (H ∗H)× P × P H × P.

κ̃×p̃r2

κ×pr2

Hence, κ̃^ is also a morphism of Lie algebroids over κ^. Note that here we are
implicitly making use of Proposition 1.55.

In a similar fashion, the identity map 1̃^ can be viewed as the composite of the
following morphisms of Lie algebroids with restricted codomain:

A ∆A A×A Ω×A

P ∆P P × P H × P,

∼= (1̃◦F )×idA

∼= (1◦f)×idP

and the inversion map ι̃^ can be viewed as a composite of the following morphisms
of Lie algebroids with restricted codomain:

Ω^A ∆Ω^A Ω× (Ω^A) Ω×A

H ^P ∆H ^P H × (H ^P ) H × P.

∼= ι̃×θ̃

∼= ι×θ

Hence, the identity map 1̃^ is a morphism of Lie algebroids over 1^, and the inversion
map ι̃^ is a morphism of Lie algebroids over ι^.

Given an LG-action of an LA-groupoid (Ω;E,H;M) on a morphism of Lie algebroids
F : A → E over a smooth map f : P → M , we call the corresponding LA-groupoid
(Ω^A;A,H ^P ;P ) an LG-action LA-groupoid.



5.1. ACTIONS OF DOUBLE STRUCTURES 125

Recall that the action groupoids Ω^A and H ^P give rise to the action morphisms
F! : Ω^A → Ω and f! : H ^P → H over F and f , respectively (see page 7). Fur-
thermore, we claim that F! is also a morphism of Lie algebroids over f!. Thus,
we get a morphism of LA-groupoids (F!;F, f!; f) from the LG-action LA-groupoid
(Ω^A;A,H ^P ;P ) to the original LA-groupoid (Ω;E,H;M).

Ω^A A

Ω E

H ^P P

H M

F! F

f! f

In the previous section we saw how an action of a double Lie groupoid gave rise to an
LA-action of an LA-groupoid. It is also true that an action of a double Lie groupoid
gives rise to an LG-action of an LA-groupoid.

Proposition 5.20. Let (θ̃, θ) be an action of a double Lie groupoid (S;H,V ;M) on
a morphism of Lie groupoids F : G → V over f : P → M . Then there exists an
LG-action of the LA-groupoid (AV S;AV,H;M) on the morphism of Lie algebroids
A(F ) over f .

Proof. We consider the LA-groupoid (AV S;AV,H;M) of Example 1.77. Applying
the Lie functor to the morphism of Lie groupoids F gives a morphism of Lie algebroids
A(F ) by Proposition 1.49. Moreover, applying the Lie functor to the Lie groupoid
action θ̃ defines a Lie groupoid action A(θ̃) of AV S ⇒ AV on A(F ). The proof of
this statement is routine and follows in a similar fashion to Example 1.26.

AG

AV S AV

P

H M

A(F )

qG

q̃

A(α̃H),A(β̃H)

q

fαH ,βH

(5.28)

Now, since A(θ̃) is a morphism of Lie algebroids over θ we get an LG-action of
(AV S;AV,H;M) on (A(F ), f).

We finish this section with an example of an LG-action on an LA-groupoid arising in
Poisson geometry. This example provides a basis for the final section of this chapter.

Example 5.21. Let (G, πG) be a Poisson Lie group with Lie algebra g, and (P, πP )
a Poisson manifold. Consider a Poisson action θ : G × P → P . This gives rise to a
Lie algebra action g → X(P ), X 7→ X† which dualizes to give a map p : T ∗P → g∗

given by
〈p(ϕ), X〉 = 〈ϕ,X†(p)〉,
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for ϕ ∈ T ∗pP , X ∈ g. In Example 1.27, we called p the pith of the action, and

showed that θ lifts to a Lie groupoid action θ̃ : T ∗G ∗T ∗P → T ∗P of T ∗G⇒ g∗ on p.
Explicitly, this action was defined by

ψ · ϕ = ϕ ◦ T (θg−1),

for ψ ∈ T ∗gG and ϕ ∈ T ∗P with α(ψ) = p(ϕ).

Note that, as in Example 2.81, the Poisson Lie group G gives rise to an LA-groupoid
(T ∗G; g∗, G; {·}). Since P is a Poisson manifold, T ∗P → P has the cotangent Lie
algebroid structure. It is also known that the pith p : T ∗P → g∗ is a morphism of Lie
algebroids [25, Theorem 3.3].

T ∗P

T ∗P g∗

P

G {·}

p

α,β

Moreover, Mackenzie proved that the action θ̃ : T ∗G ∗ T ∗P → T ∗P is a morphism of
Lie algebroids over θ : G× P → P [46, Theorem 3.1]. Hence, we get an LG-action of
(T ∗G; g∗, G; {·}) on the pith.

Let us show that the anchors π#
G ∗π

#
P and π#

P of T ∗G^T ∗P → G×P and T ∗P → P ,
respectively, satisfy the property

T (θ) ◦ (π#
G ∗ π

#
P ) = π#

P ◦ θ̃.

We first make the observation that since the action θ : G× P → P is a Poisson map,
by Proposition 2.19, the graph of the action Γ(θ) is a coisotropic submanifold of
G× P × P . This means that

π#
G ⊕ π

#
P ⊕ (−π#

P )((TΓ(θ))◦) ⊆ TΓ(θ).

Now fix g ∈ G, p ∈ P and let γ := (g, p, g · p) ∈ Γ(θ). Take arbitrary ψ ∈ T ∗gG and
ϕ ∈ T ∗pP such that α(ψ) = p(ϕ), and arbitrary X ∈ TgG and Y ∈ TpP . Note that
the tangent action can be expressed as

T (θ)(X,Y ) = T (θp)(X) + T (θg)(Y ).

Now observe that

〈ψ · ϕ, T (θ)(X,Y )〉 = 〈ϕ ◦ T (θg−1), T (θp)(X)〉+ 〈ϕ ◦ T (θg−1), T (θg)(Y )〉
= 〈ϕ, T (θg−1 ◦ θp)(X)〉+ 〈ϕ, Y 〉
= 〈ϕ, T (θp ◦ Lg−1)(X)〉+ 〈ϕ, Y 〉
= 〈ϕ, (T (Lg−1)(X))†(p)〉+ 〈ϕ, Y 〉
= 〈p(ϕ), T (Lg−1)(X)〉+ 〈ϕ, Y 〉
= 〈α(ψ), T (Lg−1)(X)〉+ 〈ϕ, Y 〉
= 〈ψ ◦ T (Lg−1), T (Lg−1)(X)〉+ 〈ϕ, Y 〉
= 〈ψ,X〉+ 〈ϕ, Y 〉.



5.2. AN APPLICATION TO POISSON REDUCTION 127

Hence, (ψ,ϕ,−ψ ·ϕ) ∈ (TγΓ(θ))◦, and moreover (π#
G (ψ), π#

P (ϕ), π#
P (ψ ·ϕ)) ∈ TγΓ(θ).

However, this then implies that

T (θ)(π#
G (ψ), π#

P (ϕ)) = π#
P (ψ · ϕ). �

§ 5.2 An application to Poisson reduction

In this final section, we consider an example of the appearance of actions of double Lie
structures in Poisson geometry. The majority of the results in this section are stated
without proof, but references have been given. We will see that actions of double Lie
structures arise in the study of Poisson reduced spaces of Poisson groupoid actions.

5.2.1 Poisson reduced spaces for actions of symplectic groupoids

In [66, Theorem 3.2], Xu constructed a symplectic groupoid for the Poisson reduced
space of every free and proper symplectic groupoid action. This was later extended
to a construction of a symplectic groupoid for the Poisson reduced space of every
free and proper Poisson groupoid action of a symplectic groupoid in [67]. We now
discuss this construction and show how there exists an underlying action of a double
Lie groupoid.

Let P be a Poisson manifold and Σ an α–simply connected Lie groupoid on base
M . Suppose that we have a free and proper Poisson groupoid action θ : Σ ∗ P → P ,
(g, p) 7→ g ·p of Σ on a complete Poisson map J : P →M . Since the action is free and
proper the orbit space P/Σ has a smooth manifold structure for which the natural
projection p : P → P/Σ is a submersion. Hence, by Theorem 2.75, P/Σ has a unique
Poisson structure for which p is a Poisson map. Recall that we called P/Σ the Poisson
reduced space.

Now suppose we have a symplectic groupoid Π with base manifold P . By Theo-
rem 2.54, the source and target projections of Π, denoted as in the following diagram,
are anti-Poisson and Poisson maps, respectively.

Π

Σ

P

M

α,β

αΣ,βΣ

J

Since the source and target projections of any symplectic groupoid are complete, it
follows that the composite J ◦ α : Π → M is a complete anti-Poisson map and the
composite J ◦β : Π→M is a complete Poisson map. Hence, by Proposition 2.57 there
is an induced right symplectic groupoid action θR : Π ∗ Σ→ Π, (ξ, g) 7→ ξ · g of Σ on
J ◦ α, and an induced left symplectic groupoid action θL : Σ ∗ Π → Π, (g, ξ) 7→ g · ξ
of Σ on J ◦ β.

In [67], Xu showed that, as a result of the properties of the Poisson and symplectic
structures, these actions satisfy the following relations:
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Proposition 5.22 ([67, Proposition 2.1]). Let the actions θL and θR be defined as
above. For any ξ ∈ Π and g, h ∈ Σ, which satisfy αΣ(g) = f ◦ β(ξ) and βΣ(h) =
f ◦ α(ξ), we have the following properties:

(1) α(g · ξ) = α(ξ);

(2) β(g · ξ) = g · β(ξ);

(3) α(ξ · h) = h−1 · α(ξ);

(4) β(ξ · h) = β(ξ);

(5) (g · ξ) · h = g · (ξ · h).

Moreover, it was shown that these actions interact with the partial multiplication of
Π in the following way:

Proposition 5.23 ([67, Proposition 2.2]). With the actions defined as above, we have
the following properties:

(6) For (ξ, η) ∈ Π ∗Π and g ∈ Σ, such that (g, ξ) ∈ Σ ∗Π, we have

(g · ξ)η = g · (ξη);

(7) For (ξ, η) ∈ Π ∗Π and g ∈ Σ, such that (η, g) ∈ Π ∗ Σ, we have

ξ(η · g) = (ξη) · g;

(8) For (ξ, g) ∈ Π ∗ Σ and η ∈ Π, such that (ξ · g, η) ∈ Π ∗Π, we have

(ξ · g)η = ξ(g · η).

Note that these two propositions show that θL and θR satisfy the properties (1)–(8)
discussed in Section 5.1.2. Thus, by Proposition 5.9, we have an induced Lie groupoid
action θ̃ : (Σ× Σ) ∗Π→ Π, defined by

((h, g), ξ) 7→ (h, g) · ξ := (h · ξ) · g−1,

of the Cartesian product groupoid Σ × Σ ⇒ M ×M on the smooth composite map
J̃ := (J × J) ◦ χ : Π → M ×M . Furthermore, (θ̃, θ) defines an action of the double
Lie groupoid (Σ× Σ; Σ,M ×M ;M) on the morphism of Lie groupoids (J̃ , J).

Π

Σ× Σ M ×M

P

Σ M

J̃

α,β
α̃Σ,β̃Σ

JαΣ,βΣ

This action gives rise to an action double groupoid ((Σ × Σ)^Π; Σ^P,Π;P ), and
to a morphism of double Lie groupoids (J̃!; J!, J̃ ; J) from the action double groupoid
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to the original double Lie groupoid (Σ × Σ; Σ,M × M ;M) (see the discussion on
page 107).

(Σ× Σ)^Π Π

Σ× Σ M ×M

Σ^P P

Σ M

J̃! J̃

J! J

We now consider the kernels of the morphisms of Lie groupoids (J̃!, J!) and (J̃ , J).
We use the notation K̃ = ker(J̃!, J!) and K = ker(J̃ , J). It is straightforward to check
that the structure maps of the action double groupoid restrict to form a double Lie
groupoid (K̃; Σ^P,K;P ). Moreover, the horizontal structure K̃ ⇒ K can be shown
to be isomorphic to the action groupoid Σ^K ⇒ K, where the Lie groupoid action
of Σ on (J ◦ α)|K = (J ◦ β)|K is given by

Σ ∗K → K, (g, k) 7→ (g, g) · k.

It follows immediately from the relations of Proposition 5.22 that this action is free.
Let us make the assumption that the action is also proper, so that the orbit space K/Σ
has a smooth manifold structure for which the projection K → K/Σ is a submersion.

Σ^K K

Σ^P P

We now state a useful result due to Mackenzie:

Proposition 5.24 ([43, Proposition 3.1]). Let (S;H,V ;M) be a double Lie groupoid
such that the transitivity orbit spaces τH(S) and τ(H) of the Lie groupoids S ⇒ V
and H ⇒ M have smooth manifold structures for which the projections V → τH(S)
and M → τ(H) are submersions. Further, suppose that the anchor χH : H → Im(χH)
is a surjective submersion. Then, there is a unique Lie groupoid structure on τH(S)
with base manifold τ(H) for which the projection V → τH(S) is a morphism of Lie
groupoids over the projection M → τ(H).

Since the transitivity orbit spaces of the two action groupoids Σ^K ⇒ K and
Σ^P ⇒ P are given by K/Σ and P/Σ, respectively, Proposition 5.24 provides us
with a Lie groupoid structure on K/Σ with base manifold P/Σ. In fact, K/Σ⇒ P/Σ
is precisely the Lie groupoid Xu constructs in [67]. It was further shown that K/Σ
has a symplectic structure for which K/Σ⇒ P/Σ is a symplectic groupoid.

5.2.2 Poisson reduced spaces for actions of Poisson groupoids

We now try a similar approach to investigate the Poisson reduced space of an arbitrary
free and proper Poisson groupoid action.
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Let P be a Poisson manifold and G a Poisson groupoid on base M . Suppose that
we have a free and proper Poisson groupoid action θ : G ∗ P → P , (g, p) 7→ g · p
of G on a moment map J : P → M . The assumption that the action is free and
proper implies that the orbit space P/G has a smooth manifold structure for which
the projection p : P → P/G is a submersion. By Theorem 2.75, there exists a unique
Poisson structure on P/G for which p is a Poisson map.

Note that the Lie groupoid action θ gives rise to a Lie algebroid action Γ(AG)→ X(P ),
X 7→ X†. Dualizing this infinitesimal action gives a map p : T ∗P → A∗G, which we
again call the pith of the action.

We now lift θ to a Lie groupoid action θ̃ : T ∗G ∗ T ∗P → T ∗P of T ∗G ⇒ A∗G on
the pith p. Take any ψ ∈ T ∗gG and ϕ ∈ T ∗pP with α̃(ψ) = p(ϕ). Since the action θ
is a submersion, for any Z ∈ Tg·pP , there exists X ∈ TgG and Y ∈ TpP for which
T (θ)(X,Y ) = Z. We define ψ · ϕ ∈ T ∗g·pP by

〈ψ · ϕ,Z〉 = 〈ψ,X〉+ 〈ϕ, Y 〉.

The condition that α̃(ψ) = p(ϕ) is sufficient to prove that this definition is well-
defined. The check that this defines a Lie groupoid action follows similarly to Exam-
ple 1.27.

Since G ⇒ P is a Poisson groupoid we have a LA-groupoid (T ∗G;A∗G,G;P ) as in
Example 2.82. It has also been proven that the pith p : T ∗P → A∗G is a morphism of
Lie algebroids over the moment map J : P →M [25, Theorem 3.3]. It was announced
in [48] that this action θ̃ : T ∗G^T ∗P → T ∗P gives a morphism of Lie algebroids
over θ : G^P → P . Hence, (θ̃, θ) defines an LG-action of (T ∗G;A∗G,G;P ) on the
morphism of Lie algebroids (p, J).

T ∗P

T ∗G A∗G

P

G M

p

α̃,β̃

Jα,β

This action gives rise to an LG-action LA-groupoid (T ∗G^T ∗P ;T ∗P,G^P ;P ), and
to a morphism of LA-groupoids (p!; p, J!; J) from the LG-action LA-groupoid to the
original LA-groupoid (T ∗G;A∗G,G;P ) (see page 125).

T ∗G^T ∗P T ∗P

T ∗G A∗G

G^P P

G M

p! p

J! J

We now consider the kernels of the morphisms of Lie algebroids (p!, J!) and (p, J).
We denote these kernels by K̃ = ker(p!, J!) and K = ker(p, J). We assume that
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the pith is a constant rank map, so that K̃ and K become Lie subalgebroids of
T ∗G^T ∗P and T ∗P , respectively. Moreover, the structure maps of the LG-action
LA-groupoid restrict to form an LA-groupoid (K̃;K,G^P ;P ). In a similar fashion
to the previous section we see that the Lie groupoid K̃ ⇒ K is isomorphic to an action
groupoid G^K ⇒ K. We make the assumption that this action of G on K → P
is free and proper, so that the orbit space K/G has a smooth manifold structure for
which the projection K → K/G is a submersion.

G^K K

G^P P

We have the following result of Mackenzie, which gives an analogue of Proposition 5.24
for LA-groupoids.

Proposition 5.25 ([46, Proposition 4.1]). Let (Ω;A,H;M) be an LA-groupoid such
that the transitivity orbit spaces τ(Ω) and τ(H) of the Lie groupoids Ω ⇒ A and
H ⇒ M have smooth manifold structures for which the projections A → τ(Ω) and
M → τ(H) are submersions. Then, there is a unique Lie algebroid structure on τ(Ω)
with base manifold τ(H) for which the projection A → τ(Ω) is a morphism of Lie
algebroids over the projection M → τ(H).

Since the transitivity orbit spaces of the two action groupoids G^K ⇒ K and
G^P ⇒ P are given by K/G and P/G, respectively, Proposition 5.25 provides us
with a Lie algebroid structure on K/G with base manifold P/G. In the case where G
is a Poisson Lie group, it was announced that this Lie algebroid is isomorphic to the
cotangent Lie algebroid of P/G [46, Theorem 4.2]. We believe the same result holds
in the more general case of a Poisson groupoid.
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426, 1963.
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