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Abstract 

Neurodevelopmental disorders (NDD) are a group of heterogenous conditions 

characterised by global developmental delay with additional neurological defects. While 

some NDDs display non-specific brain phenotypes, some NDDs may have particular 

distinguishing neurological phenotypes, such as agenesis of the corpus callosum or 

hypomyelination. This project aimed to delineate novel genetic causes of 

neurodevelopmental conditions using next generation sequencing (NGS) technologies 

in a family-based approach.  

 

As part of this study, thirteen families were recruited, with at least three individuals per 

family sequenced using whole exome sequencing (WES). Standardized bioinformatics 

pipeline analysis was carried out, prioritising variants based on segregation, in silico 

pathogenicity prediction tools and biological relevance. Known and candidate genes 

were successfully identified in the majority of the cases.  

 

A nonsense variant was identified in HERC2 in a family with severe global developmental 

delay. This finding provided a molecular diagnosis for this patient and expanded the 

known phenotype-genotype correlation associated with HERC2 mutations. In addition, 

a de novo variant in TUBA1A was discovered in a family with a clinical diagnosis of a 

Complex Moebius syndrome and perisylvian polymicrogyria and slight callosal 

dysmorphism. This finding further expanded the known phenotype caused by TUBA1A 

mutations. This study was able to establish new genotype-phenotype correlations that 

will be beneficial for future clinical diagnosis and patient care. 

 

Novel genetic causations for NDDs were established for the first time by the discovery 

of mutations in two disease genes. A nonsense variant in KLHL7 was identified as a 

cause of NDD. Specifically, the affected individuals presented with a phenotype similar 

to 4H syndrome with additional features of myopathy, stoke-like episodes, microcephaly 

and abnormal sweating. The second genetic discovery was a missense variant in MAL 

identified in a family with hypomyelinating leukodystrophy similar to Pelizaeus-

Merzbacher disease.  

 

The variants in HERC2, KLHL7 and MAL were modelled in vitro and functionally 

characterized as pathogenic by using cellular and biochemical approaches. The 

functional studies have provided novel insights into the disease mechanisms of NDD. 

For instance, the functional characterization of the variant in MAL determined its role in 

the process of myelination. This finding expands our current knowledge of the 
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mechanisms and proteins involved in myelin development. In the post-genomic era, it is 

crucial to characterise variants identified in rare autosomal recessive conditions, as they 

offer us a unique opportunity to gain further understanding of disease mechanisms and 

biological processes that would otherwise remain ambiguous. 
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Chapter 1  

Introduction  

1.1 The advancement of gene discovery techniques 

This study is focused on novel gene discovery of rare autosomal recessive 

neurodevelopmental disorders. Gene discovery is a process by which pathogenic or 

causative variants in certain genes are identified and linked to a particular phenotypic 

trait or disease. The process of gene discovery has been revolutionized by the recent 

introduction of next generation sequencing, with techniques that have accelerated the 

process of disease gene identification. Part of this study concentrates on using next 

generation techniques to identify novel variants in rare autosomal recessive 

neurodevelopmental conditions, with the majority of cases being from consanguineous 

families. It is known that there is an increased probability for the causative variant to be 

segregating within an autozygous region in consanguineous families (Alkuraya, 2012). 

Autozygosity mapping is a linkage analysis technique that was used in conjunction with 

Sanger sequencing, to establish regions where recessive variants could be located. The 

advancement of gene discovery techniques along with the use of older methods, such 

as autozygosity mapping, has been utilized in this project to help identify the causative 

variants. 

 

1.1.1 Autozygosity mapping  

Autozygosity mapping, also known as homozygosity mapping, is a key method for 

identifying autosomal recessive variants in consanguineous families by identifying 

homozygous haplotypes where the disease loci will be. Even though autosomal 

recessive conditions do not necessarily arise from consanguineous unions, the incidence 

of autosomal recessive traits is significantly increased in populations where these unions 

are common. For instance, 6% (1/16) of the genome of the offspring of a first cousin 

union is predicted to be homozygous, by inheriting genomic segments from their related 

parents. Accessing the incidence of homozygosity in the offsprings of first-cousin unions, 

Woods et al found that the homozygous regions composed of 11% of the genome 

instead of 6%, highlighting the increased probability of a disease allele segregating in 

these homozygous haplotypes (Woods et al., 2006). This phenomenon is known as 

autozygosity, where the same haplotype is inherited from the parental genomes. In 
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relation to disease, deleterious alleles may be segregating in an autozygous pattern, 

where the affected individual carries two deleterious recessive alleles that have 

segregated from the same ancestral haplotype as a result of consanguinity. The disease 

alleles that share a common ancestral origin are also known as identical-by-descent 

(IBD) alleles (Johnson, 2012). Identical-by-state (IBS) alleles exist as well, where certain 

part of the genome is homozygous, potentially carrying a recessive disease variant, but 

the haplotypes were inherited from unrelated parents (Powell et al., 2010). An example 

of autozygosity in a first cousin union is summarised below.  

 

 

Figure 1-1 Autozygosity mapping  
The above pedigree of a first cousin consanguineous family represents the principle of 

autozygosity. The great-grandmother is a carrier of a pathogenic recessive mutation (indicated in 

red), which is inherited to both of her children, along with the chromosomal haplotype surrounding 

it. Even though the gene is transmitted from generation to generation, the chromosomal region 

around it co-segregates but can decrease in size as a result of meiotic recombination. The 

affected individuals in generation IV carry both copies of the recessive mutation, and are also 

homozygous for the haplotype surrounding the disease gene. The minimal region that is inferred 

to contain the mutated gene is indicated on the diagram by “disease interval”.  

 

 

This idea was first proposed by Sir Archibald Garrod in 1902, when he demonstrated 

that the incidence of patients affected with autosomal recessive conditions, such as 

alkaptonuria, is higher in consanguineous marriages of first cousins (Garrod, 1902). 
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Taking this idea further, William Bateson explained at the Evolution Committee of the 

Royal Society in 1902 that the mating of first cousins could significantly increase the 

frequency of homozygous individuals who will manifest a recessive condition. He 

described the genetic explanation of this as homozygosity-by-decent, another term for 

autozygosity. In 1953, Cedric Smith described the fundamental hypothesis that an 

affected child from a consanguineous mating will not only be homozygous for a specific 

gene, but will also be homozygous for the genetic markers surrounding this gene as 

shown in the diagram above (Johnson, 2012). From this hypothesis, Smith suggested 

that these offspring can be used for mapping disease loci by genetic linkage, and thereby 

map the gene of interest. However, the means of doing such a study were unavailable 

at that time (Mueller and Bishop, 1993).  

 

1.1.1.1 Restriction Fragment Length Polymorphism  

All of the previous innovative ideas on autozygosity mapping offered the key to Lander 

and Botstein in 1987 to propose a way in which the linkage study described by Smith 

could actually be feasible. Their idea was based on Restriction Fragment Length 

Polymorphisms (RFLP), and it relied on the fact that an affected offspring of a 

consanguineous mating will be homozygous for a chromosomal region across a discrete 

genetic distance around the disease locus that will be shared with other affected 

members of the family. Searching for these identical-by-decent (IBD) regions would 

provide a powerful tool for mapping a recessive gene.  

 

Lander and Botstein proposed a mathematical model to predict the autozygosity. Firstly, 

the coefficient of inbreeding (F) was introduced and defined as the likelihood that a 

particular genetic locus will be homozygous-by-descent or IBD. For example, the value 

of F for siblings, first cousin and second cousin matings are expected to be 1/4, 1/16, 

and 1/64 respectively. Secondly, it was suggested that if a recessive disease allele 

occurs at a frequency q (assuming that the alleles are in Hardy-Weinberg equilibrium 

within a population), the probability that the particular disease locus being IBD is given 

by Fq. In addition, the probability of an affected offspring not being IBD is given by (1-

F)q2
, and therefore the overall probability (α) that a disease locus in an affected individual 

is IBD is given by α= Fq/ [Fq + (1-F)q2
]. 

 

Furthermore, the odds ratio (P1:P2) known as the LOD score was introduced, where P1 

was defined as the probability that the disease locus is IBD, and P2 the probability that 

the disease locus is unlinked. The LOD score is an indication (based on statistical 

estimates) of the proximity of two genes, or a genetic marker and a disease gene on a 



 4 

particular chromosome, hence an indication of inheritance used for autozygosity 

mapping. Based on LOD scores, Lander and Green introduce an algorithm to assist with 

the genetic analysis on linkage studies. They proposed a computer program called 

HOMMAP, which allowed quick analysis of sibling and cousin marriages (Lander and 

Botstein, 1987).  

 

1.1.1.2 Microsatellite markers  

Autozygosity mapping provided a novel way for gene localisation, particularly in 

consanguineous families where genetic heterogeneity is lower than non-

consanguineous families. However, the advances in autozygosity mapping in the 

following years allowed rapid progress in gene identification. Utilizing microsatellite 

markers for autozygosity mapping in genome-wide linkage studies was the next step 

forward in the field of genetic screening and gene discovery (Johnson, 2012). 

 

Microsatellites are di-, tri- or tetra nucleotide tandem repeats of genomic sequences that 

are used for mapping genes of interest as well as unravelling inheritance patterns. The 

frequency of repetition of a particular tandem repeat in a microsatellite can be extremely 

variable, a feature that makes microsatellites a very useful genetic marker. The variation 

in the number of repeats in a given case can indicate the dissimilarity between alleles, 

hence distinguishing a possible pattern of inheritance. The region around microsatellites 

can be amplified using fluorescently labeled primers and then the size of the DNA 

amplified can be determined for each individual in a family. Various different software 

programs exist that aid genotyping using microsatellite markers, such as ALLEGRO 

(Gudbjartsson et al., 2000) and MERLIN (Abecasis et al., 2002). 

 

1.1.1.3 Shifting from microsatellite markers to SNPs 

A single nucleotide polymorphism (SNP) is a type of genetic variation where a single 

nucleotide is altered. SNPs are the most common type of genetic variation, and arise on 

average once in every 300-400 nucleotides of the human genome. SNPs can occur 

anywhere in the genome with no pathogenic characteristics. However, it is possible that 

a SNP localised within an exon or in the regulatory region of a gene can have a key role 

in a disease (Woods et al., 2004).  

 

Notably, SNPs can be utilised as genetic markers for gene identification, and have been 

proven a more successful tool for genotyping than microsatellite markers. Microsatellite 

markers are multiallelic and more informative compared to biallelic SNPs, but they are 
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highly mutable, thus making them very good markers for genetic linkage studies as allelic 

identity-by-decent can be easily determined. Despite that, the high mutability factor of 

microsatellites can be challenging to interpret, as PCR reactions with microsatellites tend 

to be problematic, and therefore SNPs are usually preferred as they can be easily 

optimised with reduced cost and time. In addition, high-density SNPs can provide more 

inheritance information, as SNPs are abundant in the human genome and can be readily 

genotyped using high-throughput techniques like SNP microarrays (Gunderson et al., 

2004). High-density SNPs also allow genetic analysis of haplotypes, and are therefore 

very advantageous for autozygosity mapping. 

 

1.1.2 Sequencing of nucleic acids 

1.1.2.1 First Generation Sequencing  

The first attempt to sequence nucleic acids was done on transfer RNA, as this was a 

single-stranded sequence of nucleic acids making it easier to attempt sequencing. In 

1965, Robert Holley and colleagues succeeded in obtaining the first nucleic acid 

sequence, that of alanine, from tRNA from Saccharomyces cerevisiae by using selective 

ribonuclease treatments (Holley et al., 1965). In the 1970s, scientists worked to find the 

best technique to tackle double stranded nucleic acid sequences. Two protocols became 

available that utilize separation by polyacrylamide gel electrophoresis based on 

polynucleotide length. Alan Coulson and Fred Sanger developed the “plus and minus” 

system in 1975 (Sanger and Coulson, 1989), whereas Allan Maxam and Walter Gilbert 

proposed a chemical cleavage technique (Maxam and Gilbert, 1977). The “plus and 

minus” technique used DNA polymerase to synthesize a new DNA strand from a primer 

by performing a polymerization reaction and incorporating radiolabeled nucleotides. In a 

“plus” reaction, only a particular kind of nucleotide will be present and therefore end the 

extension of the stand with that nucleotide. In a “minus” reaction, all the other three types 

will be present and the sequence will continue until a “plus” reaction is achieved. In 

Maxam and Gilbert’s approach, radiolabeled DNA was treated with chemicals that will 

cleave the chain at certain bases, that was then run on the gel and based on the cleaved 

fragments the sequence was inferred (Heather and Chain, 2016).  

 

The real breakthrough in sequencing happened in 1977, with Sanger’s chain-termination 

protocol. His techniques involved the use of chemical analogues of deoxyribonucleotides 

(dNTPs) known as dideoxyribonucleotides (ddNTPs), that lack the 3’ hydroxyl group and 

therefore unable to bond with the 5’ phosphate of the next dNTP, causing a chain 

termination. Sanger et al. mixed radiolabeled ddNTPs and performed four DNA 
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polymerase reactions, one for each nucleotide, and ran them on polyacrylamide gel 

(Sanger et al., 1977). Each radioactive band based on size corresponded to a specific 

nucleotide as the sequence was progressing. This technique has been used for many 

years now, with improvements made upon it such as removal of radiolabeling and 

replacement with fluorophores that can be detected by capillary based electrophoresis 

(Prober et al., 1987).  

1.1.2.2 Next Generation Sequencing  

1.1.2.2.1 Whole Exome Sequencing  

As sequencing technologies advanced, several revolutionary methods were developed, 

known as next-generation sequencing (NGS), that allow high throughput or massively 

parallel sequencing, that can produce up to 6 billion reads. These provide a powerful tool 

for unravelling genetics variants that could possibly be pathogenic as well as translating 

scientific research into clinical diagnosis, especially for rare cases. NGS has significantly 

increased the pace of gene discovery while offering a hypothesis-free approach for 

genetic research.  

 

The NGS era was revolutionized with Whole Exome Sequencing (WES), which is the 

technique used to sequence the coding region of the human genome (approx. 1.5% of 

the total). WES is achieved by initial DNA fragmentation of specific adaptors, followed 

by an enrichment capture approach whereby RNA libraries are utilised to capture all the 

coding sequence of the DNA (see section 2.2.10). Most commercial systems for NGS 

sequencing use the sequencing-by-synthesis approach, based on Sanger’s protocol, 

whereby the machine detects fluorescent reversible terminators (Buermans and den 

Dunnen, 2014). Massive sequencing data sets are then analysed using bioinformatics 

and a case-specific pipeline to unravel any putative mutation (Buermans and den 

Dunnen, 2014). 

 

Interestingly, with certain software packages, WES data can also be used in autozygosity 

mapping to search for autozygous regions in members of a consanguineous family (Carr 

et al., 2013). Variant call format (vcf) files, prior to SNP filtration steps, are mapped to 

the human genome and compared with other members of a family to highlight 

autozygous regions where deleterious mutations are more likely to be found. Software 

with capabilities to perform autozygosity mapping include SNPviewer 

(https://sourceforge.net/p/snpviewer/wiki/Getting%20Started/) and the in-house 

software AgileMultiIdeogram (http://dna.leeds.ac.uk/agile/AgileMultiIdeogram/). 
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1.1.2.2.2 Whole Genome Sequencing 

NGS has further evolved into Whole Genome Sequencing (WGS), a technique that 

sequences every single nucleotide in the genome, providing a powerful tool for genomics 

research. WGS is superior to WES as it allows for large CNV to be picked up as well as 

non-coding pathogenic variants that otherwise would have been missed (Illumina Inc, 

2019). WGS has successfully identified SNVs (Yuen et al., 2017) and rare CNVs related 

to neurodevelopment (Costain et al., 2019). As WGS lacks the exome capture step, it 

allows for even better coverage of the exomic regions compared to WES (Belkadi et al., 

2015). Nevertheless, using WGS was much more expensive and more challenging than 

WES during the duration of this study. WGS has a number of limitations compared to 

WES. For instance, storage of large data files, lack of optimised analysis pipelines and 

shortage of fully comprehensive genome datasets for comparisons consisted of some 

key disadvantages of WGS. These issues are currently being overcome by the 

accumulation of more genomic datasets, such as gnomAD (Karczewski et al., 2019) and 

the 100k Genome Project (Genomic England). In addition, the cost of WGS has 

significantly decreased and the processing power enhanced, making it a more appealing 

approach for gene discovery nowadays. Furthermore, our increased understanding of 

the role of non-coding regions to biological processes and the effect of a mutation in 

intronic or promoter regions on a disease phenotype can be beneficial in variant 

interpretation (Cardoso et al., 2019, Lozano-Urena and Ferron, 2019). 
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1.2 Rare autosomal recessive disorders 

Autosomal recessive disorders are defined as those that can manifest if the affected 

individual has inherited two copies of the same gene, one from each parent, carrying a 

deleterious variant. If the same variant is inherited from each parent, then the affected 

individual is considered homozygous for a particular condition, whereas the parents are 

heterozygous and referred to as carriers of this trait. Autosomal recessive disorders can 

also arise from compound heterozygosity, which is the inheritance of two different 

heterozygous recessive mutations in the same gene (one on each chromosome, 

described to be in trans) that can therefore cause the genetic disorder.  

 

In some rare cases, autosomal recessive disorders can result from the inheritance of a 

heterozygous variant and the occurrence of a de novo mutation in the same gene (in 

trans), or from unipaternal disomy, where two copies of a chromosome come from the 

same parent carrying a pathogenic variant.  

1.2.1 Rare autosomal recessive disorders in consanguineous 
communities 

Most of the families studied in this report are from Bradford, West Yorkshire. Bradford is 

an ethnically diverse region of the Northern England, with a very large South Asian 

community, of which 90% of individuals are of Pakistani origin. As a cultural tradition, 

first cousin unions are very common in this community (37% of South Asian marriages) 

(Sheridan et al., 2013). For medical purposes, a consanguineous union is defined as a 

union between second degree cousins or closer. In these populations where the 

incidence of consanguinity is common, a higher rate of autosomal recessive diseases 

has been observed. This is explained by the increased probability of identity-by-descent 

for disease alleles.  

 

In particular, the Born in Bradford study identified that the overall rate of birth defects in 

neonates was approximately 3%, a number that is almost double the average national 

rate (Sheridan et al., 2013). Therefore, Bradford is a hotspot for rare genetic conditions, 

as first cousin unions increase the prevalence of autosomal recessive conditions in this 

local community. This allows rare conditions to manifest through the inheritance of 

autozygous haplotype regions, which is a very powerful tool for researchers, as patients 

with rare diseases can provide unique insights into human biology and disease 

mechanisms. 
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1.2.2 Neuromuscular disorders 

Neuromuscular disorder is a broad term that characterises several diseases that affect 

the functioning of the muscles. These diseases can arise from either a direct impairment 

of the voluntary muscle, or by an indirect damaging of the neuromuscular junction or 

peripheral nerves that results in impaired muscle function (Castro-Gago et al., 2014). 

Neuromuscular disorders can also be the result of central nervous system (CNS) 

damage. The symptoms of neuromuscular disorders fall within a wide range, with the 

most common ones being muscular weakness, muscle atrophy, and loss of muscular 

control (Engel et al., 1961). In addition, apart from some autoimmune cases, most 

neuromuscular disorders have a genetic cause that can manifest in both the direct and 

the indirect forms of neuromuscular disease. The disorders that will be discussed in this 

report include a Mitochondrial Myopathy, Congenital Muscular Dystrophy, 

Arthrogryposis, and Motor and Sensory Neuropathy.  

 

1.2.3 Neurodevelopmental disorders 

Neurodevelopmental disorders are characterised by growth and developmental 

impairments of the brain and the central nervous system. These diseases can have 

various causes, including genetic, metabolic, or immune defects. Specifically, the genetic 

background of a family with a 4H-like Syndrome is analysed. 4H Syndrome (MIM number 

607694) stands for hypomyelination, hypogonadotropic, hypogonadism and hypodontia, 

which describes the essential clinical features that comprise global developmental delay, 

lack of myelin in the CNS, abnormal puberty development, and tooth hypoplasia (Orcesi 

et al., 2010). Specifically, the family discussed in this study (family ND12) is 

characterised by additional features such as progressive motor decline, ataxia, mild 

cognitive regression, microcephaly and stroke-like episodes, and excessive sweating. 

The family was further reassessed upon new genetic findings (Angius et al., 2016), and 

was thought to have a Crisponi-like syndrome. The causative variant for this case lies 

within an E3-ubiquitin ligase. Proteins associated with the ubiquitin-proteasome system 

are often associated with neurodevelopmental disorders and this will be further 

discussed below (see section 1.3.1). 

 

1.2.4 Hypomyelinating Leukodystrophies 

Hypomyelinating leukodystrophies (HLDs) are a group of extremely heterogenous 

neurodevelopmental disorders whereby the myelin sheath formation is disrupted leading 

to white matter abnormalities in the brain. The white matter defects are often classified 
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by different MRI patterns into different kinds of HLDs, ranging in severity and clinical 

manifestations. However, most HLDs are characterised by severe developmental delay, 

intellectual disability, spasticity, hypotonia and usually movement disorders (Charzewska 

et al., 2016).  

 

The first reported familial case of white matter disorder was described by Pelizaeus and 

Merzbacher over a century ago, where they separately identified and described the 

occurrence of chronic progressive sclerotic hardening of white matter and lack of myelin 

(Merzbacher, 1909). This kind of hypomyelinating leukodystrophy subsequently received 

the medical eponym Pelizaeus-Merzbacher disease (PMD), and this study reports a 

potentially novel cause of this condition.  

 

PMD is characterised by CNS hypomyelination, developmental delay, spasticity, 

hypotonia, ataxia, and intellectual disability. MRI scans of this leukodystrophy shows 

diffuse hypomyelination, dilation of the lateral ventricles and thinning of the corpus 

callosum. PMD is caused by PLP1 mutations, where the affected proteolipid protein 1 

(PLP1) comprises the main component of myelin sheath. Most of the variants reported 

are point mutations and they cause a clinically more severe form of PMD. Point mutations 

lead to protein misfolding and aggregation of PLP1 in the ER. There are also some null 

mutation and deletions that cause null PMD syndrome and spastic paraplegia type 2 

(van der Knaap and Bugiani, 2017).  

 

1.2.5 Clinical impact of gene identification in rare diseases 

Neurodevelopmental disorders are extremely heterogeneous with a wide range of 

clinical symptoms and inheritance patterns. Identifying new genetic causes associated 

with neurodevelopmental conditions can significantly help in clinical diagnostics and 

patient care. This study focuses on the discovery of novel monogenic causes of 

neurodevelopmental conditions that will potentially assist in future clinical testing for rare 

disorders. Establishing clear genotype-phenotype correlations will provide clinical risk 

assessment opportunities and counseling for future pregnancies for the affected families. 

This will also allow relative screening, prenatal diagnosis and potential interventions. The 

ultimate goal for any gene discovery study is to hopefully inform translational approaches 

in targeted curative therapy for devastating genetic diseases.  

1.2.6 Therapeutic approaches in genetic disorders 

In the recent years there have been various different approaches in developing targeted 

therapies for genetic disorders. In well-characterised neuromuscular disorders, such as 



 11 

Duchenne muscular dystrophy (DMD) or spinal muscular atrophy (SMA), there have 

been numerous attempts to develop gene therapies. Adeno-associate virus (AAV) gene 

therapy has been used in SMA in a gene replacement approach to reintroduce the SMN 

protein(Foust et al., 2009). In summary, AAV9 carrying SMN cDNA was able to cross the 

blood-brain barrier (Foust et al., 2010) offering a successful intravenous therapy 

commercially available as Spinraza. An additional approach to SMA treatment is by AAV-

mediated antisense oligonucleotide (AON) therapy, also used in DMD. This approach 

was very important for DMD, as AAV gene therapy was not successful for DMD due to 

the size of the mutated dystrophin protein. Nonetheless, AAV-mediated AON therapy 

was able to alleviate the phenotype in a portion of the patients by restoring the disrupted 

reading frame by exon-skipping strategy. The two studies on AONs and currently 

available therapeutic agents are Eteplirsen (Lim et al., 2017) and Drisapersen (Goemans 

et al., 2016). 

 

Furthermore, when mutations result in abolition of enzymatic activity there are enzyme 

replacement therapies (ERT) that are now in mainstream clinical use. An example of 

such therapy is enzyme replacement therapy for Anderson-Fabry disease, where α-

galactosidase A is inactive. Fabrazyme and Replagal are two approved ERTs used for 

this genetic disorder (Bengtsson et al., 2003). 

 

Additionally, small molecule based therapies are becoming more popular with Ivacaftor 

being the first genotype-specific therapy for cystic fibrosis (Thursfield, 2013). Several 

studies in vitro and in vivo are using small molecule as therapeutic agents, but further 

experimental studies will be required to take more small molecules to clinical trials. 

Similarly, chaperone-based therapies are being examined, for instance in Krabbe 

disease, as a potential pharmacological agent promoting correct protein folding and 

trafficking, but further validation is required to proceed to clinical settings (Graziano et 

al., 2016).  

 

Lastly, when the CRISPR-Cas9 system was firstly used for genome editing in 2013, it 

provided a very appealing therapeutic option for gene editing and correcting mutation 

causing diseases (Cong et al., 2013). However, this system is currently only being used 

in animal models and pre-clinical settings for genome editing purposes. There are safety 

concerns that must be proven due to potential undesired off-target effects that can 

obstruct its clinical translation (Aguti et al., 2018, Nelson et al., 2017).  
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1.3 Disease mechanisms and pathways 

This section will outline the major pathways that have been associated with the disease 

phenotypes of the cases discussed in this study. These pathways include the ubiquitin-

proteasome system (UPS), as two families were identified with pathogenic variants in an 

E3-ubiquitin ligase and an E3-ubiquitin ligase adaptor, and the intracellular trafficking of 

proteins and its role in myelin formation, as the disease mechanism of family ND13. In 

addition, mitochondrial defects were identified as a common cellular phenotype in some 

of the families in this study, and the role of mitochondria in disease will be also 

summarised herein.  

 

1.3.1 Ubiquitination and other post-translational modifications 

Ubiquitination is an important form of post-translational modification that cells utilise to 

transmit signals by various proteins engaging in complex protein networks to facilitate 

the transmission of a particular signal. Ubiquitin is a small, 8.6kDa protein, that is 

covalently bound to proteins via the ubiquitin pathway, thereby determining their 

degradation, localisation, interacting partners, structure or activity (Pickart and Eddins, 

2004). The addition of ubiquitin molecules can have a signaling role since these are 

recognised by other proteins carrying Ubiquitin Binding Domains (UBDs) that further 

transduce the signal. The modification may also be reversible by the removal of ubiquitin 

by deubiquitinating enzymes (DUBs). Targeted proteins can either be mono-

ubiquitinated, where a single ubiquitin molecule is added, or poly-ubiquitinated where a 

polyubiquitin chain is attached. Each addition of ubiquitin molecule results to a different 

signal being transmitted ranging from gene expression to protein degradation (Woelk et 

al., 2007). 

 

1.3.1.1 The Ubiquitin-Proteasome system 

E1 enzymes are the first part of the UPS system and E1s are involved in activating 

ubiquitin and transferring it to the E2 active site. There are only two E1 enzymes in 

humans and they have an extremely crucial role in the maintenance of homeostasis 

(Allan and Phillips, 2017). Inhibition of this initial step of E1 activation of ubiquitin results 

to the complete shutdown of the UPS. The process by which E1s activate ubiquitin 

involve the ATP-dependent adenylation of the C-terminal carboxyl group of ubiquitin, 

forming a thioester bond between the C-terminus of ubiquitin and the catalytic cysteine 

residue of the E1 enzyme. During this initial process of the UPS pathway, conformational 
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changes take place during the activation and transfer of ubiquitin from E1 to E2 (Kleiger 

and Mayor, 2014). 

 

The second step of the pathway comprises the transfer of the ubiquitin molecule from 

the E1 enzyme onto the E2 ubiquitin conjugating enzyme by transferring ubiquitin to the 

active site cysteine of E2s forming an E2-Ub thioester bond. The ubiquitin can be 

transferred by either transferring the thioester bond from E1-Ub to a thiol group 

(transthiolation) or by transferring the thioester bond to an amino group (aminolysis). 

There are approximately 40 different E2s in humans, each of them showing a 

downstream specificity to the E3 ligase enzyme that they will bind to, often having the 

ability to bind to more than just one E3. E2 ubiquitin conjugating enzymes are key 

enzymes of the UPS as they are responsible for the transfer of ubiquitin molecules from 

the E1s to the targeted substrate by forming E3-ligases complex with E3 ligases and 

other complex adaptors (Stewart et al., 2016). 

 

In order to ubiquitinate a target substrate, E2 and E3 enzymes need to simultaneously 

interact, as part of a complex, whereby the ubiquitin molecule will be transferred from 

the E2 ubiquitin conjugating enzyme to the substrate, by interacting with the E3 ligase. 

In this case E3 ligases act as both a catalyst for the reaction and as a recognition 

molecule for targeting specific substrates. This process happens by the formation of an 

iso-peptide bond between the ubiquitin molecule and the substrate (Berndsen and 

Wolberger, 2014).  

 

There are over 600 identified E3 ligases in humans, with each E3 ligase presenting very 

specific binding affinities to specific targets. The E3 ligases are mainly categorised in two 

groups based on their structure: the RING type and the HECT type of E3s. The RING 

E3s make up the largest group of E3 ligases, and they have a very distinct U-box fold or 

RING catalytic domain that ubiquitinates targets by a direct ubiquitin transfer. They can 

exist as single polypeptide units that interact with E2s, or as multicomponent complexes 

that interact with E2s and other adaptor proteins to form an E3-ligase complex. Examples 

include the cullin-RING ligase complex and the heterodimer of BRCA1 and BARD1 

complex. On the other hand, HECT-type of E3s do not transfer ubiquitin directly to 

substrates. Instead they form a thioester-linked intermediate with ubiquitin molecule, by 

attaching a ubiquitin molecule to an active site cysteine on the E3, before transferring it 

to the substrate. This is done by the process of transthiolation (Zheng and Shabek, 

2017). A simplified UPS pathway is outlined in figure 1-2. 
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Figure 1-2 The Ubiquitin-Proteasome system  
Outline of the ubiquitin-proteasome system, from ubiquitin activation by E1s to substrate 

ubiquitination. The ubiquitination of the substrate can lead to very specific downstream processes, 

either involved in cellular singaling or targeting certain substrates for proteasomal degradation. 

Focusing on the E3-ligase complex, a representation of specific E2 and E3 adaptors is outlined, 

as these proteins also participate in the complex formation to bring E2s and E3s together. One of 

the cases outlined in the results sections includes a variant in an E3-adaptor protein.   

 

 

Ubiquitinated substrates at the end of the pathway are either targeted to the proteasome 

for protein degradation or act as signals for downstream processes. Substrates that are 

targeted for degradation have a poly-ubiquitinated chain attached to them, most 

commonly joined at lysine-48. It has also been reported that lysine-11, -29 and -63 can 

also act as signals for proteasome degradation, sometimes after being modified by DUB 

enzymes to distinguish between a proteasomal signal and other cellular signals (Ohtake 

et al., 2018, Kleiger and Mayor, 2014).  
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Nonetheless, ubiquitination also serves as a signaling cue for a range of downstream 

processes including endocytosis, DNA repair, gene expression, NF-kB activation, 

ribosomal functions and others. Substrates being mono-ubiquitinated are only aimed for 

downstream signaling purposes, whereas poly-ubiquitinated chains can also serve as 

signaling cues. There is a range of poly-ubiquitinated chains that serve for cellular 

signaling. Recent studies are also identifying more complex forms of ubiquitination, 

known as branched poly-ubiquitination, that seems to be involved in NF-kB regulation 

(Ohtake et al., 2016). However, the role of branched poly-ubiquitination is largely 

unknown (Woelk et al., 2007). A brief summary of the localisation of the ubiquitin chain 

formation and its relevant roles is summarised in figure 1-3. 

 

 

 

 

Figure 1-3 Main types of ubiquitination  
Representation of the main types of ubiquitination and their key roles. On the left, the main binding 

sites of lysine residues on ubiquitin molecules are outlined. On the right, the ways by which a 

substrate can be mono- or poly- ubiquitinated and the corresponding downstream processes of 

each type of ubiquitination. It is worth emphasizing that the way poly-ubiquitin chains are being 

formed and how each chain dictates the downstream mechanism of action is still largely unknown 

and currently being investigated by the field. In addition, ubiqutination can also occur on residues 

other than lysines (methionine, valine, isoleucine and cysteine) but with much less affinity 

compared to lysine. 
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In this study, two independent cases with a neurodevelopmental delay phenotype were 

identified with variants in an E3-ligase and in an E3-ligase adaptor protein, HERC2 and 

KLHL7 respectively. Interestingly, HERC2 is an E3-ligase of the HECT-type (Garcia-

Cano et al., 2019) and KLHL7 is an adaptor to Cullin-RING ligases through the BTB 

domain (Canning et al., 2013). HERC2 is an extremely large protein that seems to play 

a role in a range of cellular functions including cell proliferation, DNA damage repair and 

neurodevelopment (Garcia-Cano et al., 2019). On the other hand, KLHL7 seems to be 

implicated in ubiquitination of target proteins for proteasomal degradation (Kigoshi et al., 

2011).  

 

These findings provide more evidence that support the crucial role of E3 ubiquitin ligases, 

and of the whole UPS, in neurodevelopmental diseases (George et al., 2018). Examples 

of such cases include the Angelman syndrome, with variants in UBE3A (Sadikovic et al., 

2014), Charcot-Marie-Tooth Type 2, with variants in LRSAM1 (Zhao et al., 2018) and 

TRIM2 (Pehlivan et al., 2015), and Limb-girdle muscular dystrophy 2H with variants in 

TRIM32 (Saccone et al., 2008), as well as Bardet-Biedl syndrome type 11 with a private 

mutation in TRIM32 (Chiang et al., 2006). 

 

1.3.1.2 Membrane-associated post-translational modifications 

Membrane proteins often undergo lipid modifications post-translationally, in order to be 

incorporated into the correct sides of the membrane bilayer. These modifications include 

prenylation, palmitoylation and myristoylation, and have been discussed in this study 

with regards to the MAL protein and its potential modifications as a membrane protein.  

 

Prenylation is a post-translational modification that provides membrane proteins with a 

hydrophobic C terminus, allowing them to interact or be attached to the plasma 

membrane. This process happens by the attachment of a geranylgeranyl isoprenoid or 

a farnesyl group to the C-terminal of proteins. This process is vital for a number of 

signaling proteins to maintain their cellular activity and localisation. Some of these 

proteins include the Ras family of GTPases and the hererotrimeric G-proteins 

(Palsuledesai and Distefano, 2015).  

 

Palmitoylation is a lipid modification process that is reversible. It acts as a lipid anchor 

for membrane localization of proteins, but it also has a role in shuttling modified proteins 

between different cellular compartments or different regions of the membrane into lipid 

rafts. This role has a significant downstream signaling effect (Guan and Fierke, 2011). 

This process comprises of the reversible addition of fatty acids (16 carbon fatty acid) 
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onto cysteines, and less frequently serine and threonine residues. This reversible 

mechanism occurs rapidly and close to the cytosol-membrane interface. The cysteines 

that get modified are often surrounded by basic or hydrophobic amino acids and are 

close to myristoylation or prenylation sites (Salaun et al., 2010). 

 

Myristoylation is another form of lipid modification that plays a role in targeting proteins 

to the plasma membrane or endomembrane systems, as well as being involved in 

cellular signaling and protein-protein interactions. Myristoylation is the attachement of a 

myristic acid to the N-terminus of a protein, a reaction catalyzed by the N-

myristoyltransferase enzyme. This process usually occurs cotranslationally on newly 

synthesized proteins, after the initial methionine is cleaved off  by methionine 

aminopeptidase and myristic acid is attached. Myristoylation can also occur on proteins 

at post-translational stages, specifically on glycine residues. A proteolytic cleavage can 

take place at the N-terminus of the protein on a glycine residue, followed by the 

attachment of myristic acid (Udenwobele et al., 2017).  

 

1.3.2 Nonsense mediated decay in disease 

Some of the variants identified in this study are nonsense variants, leading to premature 

termination codons (PTCs) in the mRNAs and potentially leading to either the translation 

of a truncated protein or the complete abolition of that particular protein as a result of 

nonsense mediated decay (NMD). The NMD pathway is a surveillance mechanism of 

the cell that can selectively identify and degrade faulty mRNAs carrying PTCs, by 

recruiting RNA helicases to promote mRNA decay (Hug et al., 2016).  

 

The first step of the NMD pathway is to correctly distinguish a PTC from a normal 

termination codon. This is usually linked to pre-mRNA splicing, and any mRNAs that 

have a PTC approximately 50 nucleotides upstream of the last exon-exon junction will 

be degraded. This process is supported by the signaling of a multi-subunit protein 

complex, known as the exon-junction complex, which is deposited 20-24 nucleotides 

away from an exon-exon junction during splicing (Le Hir et al., 2001). Once a PTC is 

identified, RNA helicases (UPF1/SMG2 complex) are recruited to the site and clamp to 

mRNA in an ATP-dependent fashion. The RNA helicase complex undergo cycles of 

phosphorylation, recruiting SMG phospho-binging proteins, such as SMG6 and SMG7 

to promote mRNA decay. SMG6 is an endonuclease that will initiate the NMD-mediated 

mRNA degradation (Hug et al., 2016).  
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In some instances, the nonsense variant might be close to the exon-exon junction, 

thereby easily missed by the NMD machinery. In cases such as these, nonsense-

mediated altered splicing (NAS) takes place, whereby the exon carrying the mutation is 

skipped during pre-mRNA splicing (Wang et al., 2002). Sometimes more than one exon 

can also be skipped, either way leading to a shorter version of the protein that will no 

longer carry the variant. The protein may no longer be functional, but this is an attempt 

to eliminate a potentially damaging variant from the translating protein. The mechanisms 

that dictate whether NMD or NAS will take place as a result of the PTC process are not 

yet fully understood (Liu et al., 2001). 

 

1.3.3 Myelin formation and intracellular protein trafficking  

1.3.3.1 Myelin formation  

During cellular evolution in vertebrates, the formation of an insulating layer of myelin 

sheath wrapped around neuronal axons was established, transforming the way neural 

signals were being transmitted across axons. Myelin sheath is an insulating structure of 

highly compacted layers of cell membrane wrapped around axons, with periodic break 

points known as Nodes of Ranvier, forcing the neural impulses to jump between nodes. 

This increased the speed of neuronal signaling and thereby enhanced neural function in 

vertebrates (Fields, 2014). The process of myelination occurs relatively late in 

development. In mice, myelination starts at birth and it is completed at postnatal day 60. 

In humans, myelination starts during the third trimester of embryonic development but 

peaks during the first year of life, and in some cortical areas it continues until young 

adulthood (Snaidero and Simons, 2014).  

 

In the CNS, myelin is formed by oligodendrocyte cells, whereas in the PNS myelin is 

formed by Schwann cells. The complex development of myelin sheath requires the 

formation of huge quantities of specialized cell membranes, precise cell-cell recognition 

and cell motility. Damage of myelin leads to disruption of neuronal signal transmission 

and thereby the source of a wide range of neurological diseases, ranging from late onset 

Multiple Sclerosis to congenital leukodystrophies (Fields, 2014).  

 

In the CNS, myelin is formed by oligodendrocytes that are able to extend their 

membranes and spiral them around axons forming a compact multiple layer of 

overlapping membranes. This process is initiated once an oligodendrocyte cell makes 

contact with an axon forming a membrane junction known as the “spot weld” (Luse, 

1959). This membrane domain promotes intercellular communication between 
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oligodendrocytes and neurons, initiating encirculation of membranes around axons. 

During the multilayer membrane formation, the cytoplasm becomes expelled from all the 

layers, except the outermost and innermost layer of myelin which provide insulation. The 

intervening layers are then joined by the myelin basic protein (MBP) to make a compact 

layer (Fields, 2014). 

 

 

Figure 1-4 Myelinated neuron  
A representation of a myelinated neuron, showing how myelin sheath wraps around the axon, 

either by oligodendrocytes or Schwann cells, and the formation or Nodes of Ranvier. 

 

 

During myelin formation, oligodendrocyte progenitor cells become highly polarized 

driving extensive membrane trafficking of vesicles, proteins and mRNAs towards the 

leading edge of myelin biosynthesis. The constant delivery of proteins to the leading 

edge of the inner tongue of uncompacted membrane layers is essential for the wrapping 

and maturation of oligodendrocytes into compacted myelin membranes (Snaidero et al., 

2014). The maturation of oligodendrocyte progenitor cells is a complex process that 

starts with the cell cycle exit and necessitates the coordination of expression of several 

genes and signaling pathways. For instance the activation of the PI3K/Akt pathway is 

essential for oligodendrocyte differentiation and myelination (Flores et al., 2008). 

Activation of PI3K can also promote myelination via receptor coupling, such as the 

insulin-like growth factor 1 receptor (IGF-1), which itself promotes Akt phosphorylation 

and activation in oligodendrocytes during myelination (Goebbels et al., 2010). In addition, 

the mammalian target of rapamycin (mTOR) pathway regulates oligodendrocyte 

progenitor cell maturation and myelination. mTOR has a key role in Akt Ser 473 

phosphorylation and activation that promotes myelination. mTOR seems to act both as 

a regulator of Akt activity, as well as a signaling effector of  PI3K/Akt pathway, having a 

central role in oligodendrocyte differentiation (Tyler et al., 2009). 
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1.3.3.2 Intracellular protein trafficking  

As mentioned above, efficient and constant delivery of proteins and vesicles to the 

plasma membrane by intracellular trafficking is vital for the progression and maturation 

of myelination. One key aspect of the protein trafficking discussed in this study is the 

involvement of MAL in regulating intracellular transcytosis of PLP1 (Bijlard et al., 2016) 

and its correct redirection to the basolateral membranes for myelin development. PLP1, 

or proteolipid protein 1, is the major constituent of myelin in the CNS (Diehl et al., 1986) 

and it is required for the formation and maintenance of the multilamellar structure of 

myelin. PLP1 also has an essential role in adult life, as it is required to preserve myelin 

integrity in the CNS (Luders et al., 2019). 

 

In comparison to other membranes, myelin membranes have an extremely high lipid to 

protein ratio primarily made from cholesterol, galactolipids, sulfatide and 

galactosylceramide. These lipids are often involved in the assembly of membrane 

microdomains, known as lipid rafts, that are necessary for protein trafficking and sorting 

during myelin development (Ozgen et al., 2014). With regard to PLP1, galactolipids have 

a fundamental role in facilitating vesicle-mediated transport of PLP1 to the myelinating 

membranes (Baron and Hoekstra, 2010). Baron et al. described that the transport of 

PLP1 to the myelin membrane is governed by a transcytotic mechanisms, involving a 

complex network of vesicular trafficking and lipid-protein interactions (Baron and 

Hoekstra, 2010). The transport of PLP1 to the membrane involved the vesicle-soluble N-

ethylmaleimide-sensitive factor attachment protein receptors (v-SNAREs), specifically 

VAMP3 and VAMP7. Once PLP1 reaches the apical or the basolateral membrane, 

membrane-localized target SNAREs (t-SNAREs) are involved in the docking and fusion 

of transport vesicles to the membrane. In particular, syntaxin 3 and 4 seem to be 

implicated in the process and they bind VAMP7 and VAMP3 respectively (Baron et al., 

2015).  

 

A closely related protein to PLP1 is the myelin and lymphocyte protein (MAL), that is 

highly expressed during active myelination (Schaerenwiemers et al., 1995) and 

suggested to be implicated with PLP1 trafficking. MAL is a known regulator of direct 

apical sorting (Cheong et al., 1999) and it is associated with galactosylceramide and 

sulfatide in forming membrane microdomains; both strongly linked to PLP1 transport and 

membrane internalization (Ozgen et al., 2014). MAL also seems to be involved in 

biogenesis and maintenance of myelin membrane (Kim et al., 1996) and has a role in 

axon-glia interactions promoting myelination (Schaeren-Wiemers et al., 2004).  
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Bijlard et al. proposed that once PLP1 is translated and exits the Golgi apparatus, it then 

follows the transcytotic pathway proposed by Baron et al. to reach the apical membrane 

of polarized oligodendrocytes, whereby it interacts with MAL. Upon this interaction, PLP1 

seems to undergo a conformational change, prior to reaching the myelin membrane 

(Bijlard et al., 2016). It is thought that MAL and PLP1 interact at the apical membrane 

and that MAL plays a key role in PLP1 conformational change and recruitment to 

membrane microdomains. Bijlard et al. proposed that MAL has a fundamental role in 

PLP1 trafficking, but that it mainly facilitates the lateral diffusion of PLP1 to the myelin 

membranes at the stage when the myelin starts to be compacted. They proposed that 

from that stage onwards the transcytosis pathway is shifted to a lateral diffusion 

governed by MAL, as the myelin membranes get tightly packed into forming the myelin 

sheath (Bijlard et al., 2016).  

 

In this study, a potentially pathogenic variant has been identified in MAL that prevents 

the correct localisation of the protein to the apical membrane of the cell, and could 

thereby impact the accurate distribution of PLP1 during myelination. The patients 

identified with this variant were diagnosed with a hypomyelinating leukodystrophy, 

similar to Pelizaeus-Merzbacher disease which is caused by variants in PLP1 (Osorio 

and Goldman, 2018). Considering the role of MAL in regulating PLP1, it will be 

reasonable to assume that variants in both genes can lead to a hypomyelinating 

phenotype as myelin membrane formation will be probably disrupted. Another interesting 

observation discussed in this study is how missense variants in both genes, MAL and 

PLP1, cause aggregates in the endoplasmic reticulum leading to mis-localized proteins 

and initiation of the unfolded protein response as an additional cause of disease (Inoue, 

2017).  

 

1.3.3.3 Unfolded protein response in disease  

The unfolded protein response (UPR) is a complex signaling response that occurs in the 

endoplasmic reticulum (ER), if and when homeostasis is disrupted, in an attempt to 

alleviate ER stress. The endoplasmic reticulum is an important and multifunctioning 

organelle that is vital for protein synthesis, folding and processing. The ER is also a 

master regulator of calcium homeostasis (Bravo et al., 2013). In some instances, genetic 

variants can severely impact protein folding, leading to the formation of protein 

aggregates in the ER. These aggregates can accumulate and cause ER stress, that will 

then activate the UPR to restore homeostasis (Schroder and Kaufman, 2005). If the UPR 

fails to restore physiological ER function and reduce stress, it will then mediate UPR-

dependent apoptosis (Tabas and Ron, 2011). This process is often associated with 
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disease pathogenesis in various disease, and is a common cause in disorders of 

myelinating glia such as Pelizaeus-Merzbacher disease, Vanishing White Matter 

disease, Charcot-Marie-Tooth and Multiple Sclerosis (Clayton and Popko, 2016). 

 

ER stresses are sensed by the immunoglobin-binding protein (BiP) that is originally 

bound to the three ER transmembrane proteins that regulate the UPR. Upon stress, BiP 

dissociates from the three regulators of UPR, PKR-like ER kinase (PERK), Inositol 

Requiring 1 (IRE1) and Activating Transcription Factor 6 (ATF6), and thereby initiates 

UPR. This response will then activate a cascade of signaling events that will attempt to 

restore stress by an adaptive response, restore homeostasis by a feedback control, and 

determine cell fate based on whether the ER stress has been relieved (Oslowski and 

Urano, 2011). The adaptive response of the UPR is associated with the up-regulation of 

molecular chaperones that will promote folding and handling of unfolded protein 

aggregates. It is also involved in attenuating translation in order to reduce ER load and 

prevent additional accumulation of unfolded proteins. Furthermore, the adaptive 

response promotes increased expression of proteins linked to clearance of unwanted 

proteins, a response known as ER-associated protein degradation (ERAD). The 

feedback response of the UPR is a homeostatic control that will negatively regulate the 

UPR once ER stress is reduced in order to avoid hyperactivation of the UPR. However, 

if homeostasis cannot be achieved the cell fate response will switch to promote 

apoptosis, a response that plays a crucial role in pathogenesis of ER stress-related 

diseases (Oslowski and Urano, 2011).  

 

The first regulator of the UPR is PERK, which is an ER kinase that oligomerizes upon 

BiP dissociation as a response to ER stress. PERK has a luminal domain and a 

cytoplasmic domain that possesses the kinase activity. When PERK oligomerizes it can 

then autophosphorylate and then further phosphorylate the α subunit of eukaryotic 

initiation factor (eIF2α) (Harding et al., 1999). Once eIF2α is phosphorylated by PERK, 

it binds to eIF2β, and prevents the formation of an active translation-initiation complex 

(Dever, 2002). This result in a global inhibition of mRNA translation in an attempt to 

release ER load. In addition, eIF2α phosphorylation promotes translation of activating 

transcription factor 4 (ATF4) that regulates the expression of proteins that initiate ER 

stress-mediated apoptosis such as C/EBP homologous protein (CHOP). In case 

homeostasis is not restored, certain proteins like CHOP can also initiate cell death 

(Oslowski and Urano, 2011).  

 

The second regulator of the UPR is IRE1 which becomes activated by dimerization and 

autophosphorylation upon ER stress. IRE1 has two isoforms, IRE1α and IRE1β, with 
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IRE1α ubiquitously expressed and well-studied. IRE1α acts by splicing X-box binding 

protein 1 (XBP1) mRNA. The spliced form of XBP1 regulates the expression of certain 

genes involved in protein folding, such as disulfide isomerase (PDI). It also up-regulates 

expression of specific proteins involved in ER-associated degradation such as like the 

ER-degradation-enhancing- α-mannidose-like protein (Oslowski and Urano, 2011). In 

prolonged ER stress, IRE1α activates c-Jun N-terminal protein kinase (JNK) by the 

recruitment of TNF-receptor-associated factor 2 (TRAF2). This process requires the 

activation of apoptosis-signaling-kinase 1 (ASK1) that is upstream of JNK and will induce 

apoptosis and increase expression of BiP (Shinkai et al., 2010).  

 

The last regulator of the UPR is ATF6, an ER transmembrane transcription factor that 

transmits stress signals from the ER directly to the nucleus as a response of stress 

(Bravo et al., 2013). ATF6 has two isoforms, ATFα and ATFβ, with two and one Golgi 

localisation sequences respectively. ATF6 is maintained normally in the ER by binding 

to calreticulin and BiP. Upon ER stress, ATF6 translocates to the Golgi apparatus where 

site-1 and site-2 proteases cleave the protein. The N-terminal portion of ATF6α then 

moves to the nucleus where it promotes transcription of UPR genes (Oslowski and 

Urano, 2011). ATF6α seems to up-regulate the expression of XBP1 (Yoshida et al., 

2001) and CHOP (Ma et al., 2002) that cross-talk with the other UPR regulating 

pathways. ATF6α also promotes transcription of BiP and GRP94 chaperones (Schroder 

and Kaufman, 2005), and other proteins associated with ER homeostasis such as 

SERCA (Thuerauf et al., 2001) and p58IPK/DNAJC3 (van Huizen et al., 2003). ATF6β 

seems to act as an antagonist to ATF6α and represses the transcriptional signal of 

ATF6α. This process acts as a negative regulator of this UPR pathway that terminates 

the response once homeostasis is reached (Thuerauf et al., 2004).  

 

The diagram in figure 1-5 summarises the three regulating pathways of the UPR, upon 

sensing ER-stress and the potential outcomes of these responses. The mechanism 

discussed in this section was observed as a result of the missense variant identified in 

MAL. The mutant protein formed ER aggregates and thereby triggered the UPR as a 

result of ER stress. This is a very common pathomechanism in Pelizaeus-Merzbacher 

disease observed by missense variants in PLP1.  
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Figure 1-5 The Unfolded Protein Response  
The diagram above summarises the UPR with the three responses: adaptive, feedback and cell 

fate response. In the adaptive response, the three main regulators of the UPR initiate downstream 

signaling cascades in order to restore ER stress. 
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1.3.4 Mitochondria in disease 

Mitochondria are very important organelles for a functioning eukaryotic cell. They form 

an extensive and dynamic network across a cell, and maintain mitochondrial 

homeostasis by fission and fusion mechanisms, mitophagy and mitochondrial 

biogenesis. They possess a complex proteome made up of proteins encoded by 

mitochondrial genes as well as nuclear. Mitochondria are multifunctional and are 

associated with other cellular processes apart from metabolism and aerobic energy 

production. Mitochondria are closely associated with cellular ion homeostasis, Ca
2+

 

storage and Ca
2+

 dependent cell signalling and apoptosis (Herst et al., 2017).  

 

As part of this study, different aspects of mitochondrial biology are covered and their 

involvement in inherited disease. Initially, a previously identified variant in MICU1 was 

further functionally characterised in this research project. The mitochondrial calcium 

uptake 1 protein (MICU1) is an important subunit of the mitochondrial calcium uniporter 

(MCU) that it is an essential channel for regulating calcium ions in the mitochondria and 

maintaining cellular homeostasis (Antony et al., 2016). MCU is composed primarily of 

MICU1 and MICU2, along with the calcium sensing regulators. MICU1 is the main 

gatekeeper of the channel, closing the uniporter under low calcium cytosolic levels and 

opening the channel in high calcium cytosolic levels. Loss-of-function mutations in 

MICU1, as well as MICU2 (Shamseldin et al., 2017), abolish the correct gating of the 

uniporter leading to pathogenesis by the disruption of homeostasis and induction of 

mitochondrial stress (Logan et al., 2014). Patients with mutations in MICU1 and MICU2 

are affected by proximal myopathy and movement disorder. This outlines a direct 

impairment of mitochondrial function by the calcium overload that can lead to 

mitochondrial stress and induction of cell death. 

 

Additionally, mutations in other genes that are not localised in the mitochondria seem to 

have a significant impact on mitochondrial function. A well-known example of such 

association is loss-of-function mutations in PRKN, an E3-ubiquitin ligase, that causes 

early-onset Parkinson’s disease. PRKN seems to be implicated in the elimination of 

impaired mitochondria by promoting autophagy, a process that is compromised in 

Parkinson’s disease (Narendra et al., 2008). There seems to be an emerging theme as 

part of this research project, whereby mutations in members of the UPS seem to affect 

mitochondrial functions. For instance, part of this project revealed that variants in UPS 

members are able to impact mitochondrial OXPHOS chains, potentially by disrupting 

cellular homeostasis, and interrupting the healthy mitochondrial network leading to 

mitochondrial fragmentation. 
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Many E3-ligases complex are known to localize at the mitochondrial outer membrane, 

likely to be involved in ubiquitinating various mitochondrial proteins for degradation. The 

UPS is known to have a key role in quality control and maintenance of damage proteins 

in the mitochondria. It is also associated with regulating mitochondrial dynamics by 

controlling fission and fusion proteins, a process that sustains cellular functions. Fission 

and fusion work antagonistically to each other and it is a very active process that requires 

several proteins. When Mitofusin1 (Mfn1) and Mitofusin 2 (Mnf2) are ubiquitinated for 

degradation, and Dynamin related protein (Drp1) and Mitochondrial fission 1 protein 

(Fis1) accumulate on the outer mitochondrial membrane fission occurs. On the other 

hand, when Drp1 and Fis1 are tagged for proteasomal degradation but Mfn1 and Mfn2 

accumulate fusion occurs (Bragoszewski et al., 2017). A potential disruption in the UPS 

activity, perhaps by loss-of-function variants in UPS proteins, can severely dysregulate 

the processes of fission and fusion leading to fragmented or hyperfused mitochondria 

respectively. A fragmented mitochondrial network is a common feature observed in 

primary patient cells carrying variants in proteins comprising the E3-ligase complex 

(Karbowski et al., 2007). 

 

Another potential explanation of the observed fragmented mitochondrial network caused 

by UPS-related mutations, might be due to disrupted homeostasis and induced stress 

response in the mitochondria. The UPS is involved in many signaling pathways in 

addition to regulating protein turnover. Loss-of-function variants or even complete loss 

of a member of the UPS pathway may lead to disruption of a downstream signaling 

pathway and cellular balance. Mitochondria are sensitive to cellular stress as they can 

either act in an attempt to restore cellular homeostasis and ion balance or trigger 

autophagy and apoptosis if stress levels are not restored. The exact association of the 

identified UPS variants of this study and their role in mitochondria is largely unknown, 

but interesting observations have been established that support the significant role of the 

UPS in mitochondrial function.  
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1.4 Aims and objectives 

The overall aim of this study was to use next generation sequencing technologies to 

identify novel disease genes in rare autosomal recessive conditions. Subsequent cellular 

modelling of identified variants was used to prove pathogenicity and gain insights into 

cellular mechanisms of disease. The research project was mainly focused on 

neuromuscular and neurodevelopmental disorders that remained unsolved by regional 

NHS genetic testing. Patient recruitment was accomplished by close collaborations with 

clinical geneticist and diagnostic labs in the Leeds-Bradford area, with the full inclusion 

criteria given in appendix A. In addition, by identifying variants in novel genes, this project 

also aimed to establish novel genotype-phenotype correlations for neurodevelopmental 

conditions and provide patients with a molecular diagnosis. Any research findings from 

this study would also be helpful in expanding clinical diagnostic panels and promote 

accurate diagnosis of future cases. Lastly, cellular modelling of identified variants were 

used to confirm pathogenicity and to provide useful knowledge on potential 

pathomechanisms that could form the basis for characterization of novel druggable 

targets in the future.  

 

The following were the specific objectives of the research project:  

1) Use Whole Exome Sequencing on selected individuals from the recruited families 

to identify novel genes that cause rare autosomal recessive disorders, specifically 

neuromuscular or neurodevelopmental disorders 

2) Perform bioinformatics analysis on the WES data to identify novel disease genes 

according to family pedigree and pattern of inheritance. 

3) Screen cohorts of patients with similar phenotypes in a specific family, to enable 

independent replication of a WES result in order to prove pathogenicity of variants 

in a candidate gene.  

4) Identify additional families carrying putative mutations in any disease gene by 

sharing data with worldwide datasets, such as Decipher. 

5) To validate pathogenicity of variants by using established biochemical and cell 

biology techniques on primary patient cells, to assess protein levels and 

phenotypic cellular effects as a result of the variant. 

6) To validate pathogenicity of variants by functional characterization using cloning 

techniques to model disease variants in vitro and further assessment using 

biochemical techniques.  

7) To study protein localization and protein-protein interactions in the mutant models 

to gain insight into disease mechanisms.  
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Chapter 2  
Materials and Methods  

2.1 Materials  

Room temperature (RT) is defined as 20-25
o
C. 

2.1.1 General Reagents 

Water Millipore 

Nuclease-free Water Ambion 

Ethanol Sigma-Aldrich 

Methanol Sigma-Aldrich 

Isopropanol Sigma-Aldrich 

Phosphate Buffered Saline (PBS) 1x Sigma-Aldrich 

 

2.1.2 Solutions  

2.1.2.1 PBST 1x 

1x PBS 

0.1% [v/v] Tween-20 Sigma-Aldrich 

2.1.2.2 TBS 10x 

0.2M  Tris HCl (pH 7.4)     Sigma-Aldrich  

1.5M NaCl      Sigma-Aldrich  

2.1.2.3 Tris-Acetate-EDTA (TAE) Buffer 50x 

2M Tris HCl (pH 7.4) Sigma-Aldrich 

50mM EDTA (pH 8.0) Ambion 

0.97M Glacial acetic acid Sigma-Aldrich 

2.1.2.4 Tris-EDTA (TE) Buffer 1x 

10mM Tris HCl (pH 7.4) Sigma-Aldrich 

1mM EDTA (pH 8.0) Ambion 
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2.1.2.5 Tris-Borate-EDTA (TBE) Buffer 10x 

890mM Tris HCl  Sigma-Aldrich  

890mM Boric Acid  Sigma-Aldrich 

20mM EDTA Ambion 

2.1.2.6 Agarose Gel Loading Dye 2x 

50% [v/v] Glycerol Sigma-Aldrich 

10% [v/v] TBE 10x 

0.1% [v/v] Orange G Sigma-Aldrich 

0.1% [v/v] Xylene Cyanol Sigma-Aldrich 

2.1.2.7 NP-40 Cell Lysis Buffer  

50mM  Tris-HCl (pH 8.0) Sigma-Aldrich 

150mM NaCl Sigma-Aldrich  

1% [v/v] NP-40 Sigma-Aldrich  

1x Protease/Phosphatase Inhibitors Thermo Fisher Scientific 

2.1.2.8 Radio Immunoprecipitation Assay (RIPA) Lysis Buffer 

50mM Tris-HCl (pH 8.0)  Sigma-Aldrich 

150mM NaCl Sigma-Aldrich  

0.1% [v/v] SDS Melford Laboratories Ltd 

1% [v/v] NP-40 Sigma-Aldrich 

0.5% [v/v] Sodium Deoxycholate BDH   

2.1.2.9 Cell Lysis Buffer for Genomic DNA Extraction  

10mM  Tris HCl (pH 8.0)  Sigma-Aldrich 

100mM EDTA Ambion 

0.25% [v/v] SDS BDH 

20μg/ml RNAase A Sigma-Aldrich 

2.1.2.10 IP Incubation Buffer for Transmembrane Proteins 

25mM  NaCl Sigma-Aldrich  

20mM Tris-HCl (pH 8.0) Sigma-Aldrich 

2mM EDTA Ambion 

10% [v/v] Ethanol Sigma-Aldrich  

10% [v/v] Glycerol Sigma-Aldrich  

1x Protease Inhibitors  Thermo Fisher Scientific 
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2.1.2.11 IP Wash Buffer 

150mM NaCl  Sigma-Aldrich 

50mM Tris-HCl (pH 8.0) Sigma-Aldrich 

0.5mM EDTA Ambion 

0.1% [v/v] NP-40 Sigma-Aldrich 

2.1.2.12 BioID Cell Lysis Buffer 

500mM NaCl  Sigma-Aldrich 

50mM Tris-HCl (pH 7.4) Sigma-Aldrich 

0.2% [v/v] SDS BDH 

1mM DTT Sigma-Aldrich 

1x Protease Inhibitors Thermo Fisher Scientific  

2.1.2.13 BioID Wash Buffer  

0.1% [v/v] NP-40 Roche 

10x TBS  

1% [v/v] Protease Inhibitors Thermo Fisher Scientific 

1% [v/v] Phosphatase Inhibitors Thermo Fisher Scientific 

2.1.2.14 Bovine Serum Albumin Blocking Buffer for BioID 

1% [w/v] Bovine Serum Albumin Sigma-Aldrich 

0.2% [v/v] Triton X-100 Sigma-Aldrich 

1x PBS – bring up to final volume 

2.1.2.15 Normal Donkey Serum (NDS) Blocking Buffer for BioID 

10% [v/v]  Normal Donkey Serum Alpha Diagnostics 

1% [v/v] Triton X-100 Sigma-Aldrich 

1x PBS – bring up to final volume  

2.1.2.16 Quenching Solution  

3% [w/v] Sodium Azide Sigma-Aldrich 

4.5% [v/v] Hydrogen Peroxide Thermo Fisher Scientific 

1x  PBS – bring up to final volume  
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2.1.2.17 On-Beads Digest Buffer 1 

2M Urea (pH 8.0) Invitrogen 

50mM Tris-HCl (pH 7.5) Sigma-Aldrich 

50μg/ml Trypsin NB Sequencing Grade Serva Electrophoresis 

2.1.2.18 On-Beads Digest Buffer 2 

2M Urea (pH 8.0) Invitrogen 

50mM Tris-HCl (pH 7.5) Sigma-Aldrich 

1mM DTT  Sigma-Aldrich 

2.1.2.19 Seahorse Assay Culture Medium for Mito Stress Test 

1x  Seahorse XF Base Medium   Agilent Technologies   

1mM Pyruvate    Invitrogen  

2mM Glutamine    Sigma-Aldrich 

10mM Glucose    Sigma-Aldrich 

2.1.2.20 Seahorse Assay Culture Medium for Glycolysis Stress Test 

1x  Seahorse XF Base Medium   Agilent Technologies   

1mM Glutamine    Sigma-Aldrich 

2.1.2.21 Crystal Violet Solution 

0.5% [w/v] Crystal Violet     Alfa Aesar 

20% [v/v] Methanol    Sigma-Aldrich 

80% [v/v] dH2O     Millipore 
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2.1.3 Cell Lines  

The cell lines used for all the experiments of this project are summarised in table 2.1. 

Primary cell lines were obtained from skin biopsies through the NHS Cytogenetics 

Laboratory.  

 

 

Table 2-1 List of Cell Lines  
Table includes the organism and the tissue that each cell line originates from and the source from 

which it was obtained. 

 

 

  

Name Origin Source
hTERT- RPE1 hTERT immortalised human retinal pigmented epithelium ATCC 

MDCK Dog kidney epithelium ATCC 
hTERT- HDFneo hTERT immortalised neonatal human dermal fibroblasts Genlantis

HDF Bet23 Human dermal fibroblasts (adult) Primary/NHS
HDF Adult Human dermal fibroblasts (adult) Primary/NHS

MICU1 - HDF Human dermal fibroblasts from patient with MICU1  mutation 
(c.547C>T) Primary/NHS

HERC2 - HDF Human dermal fibroblasts from patient with HERC2 mutation 
(c.13767_13770delTGAA) Primary/NHS

KLHL7-  HDF Human dermal fibroblasts from patient with KLHL7  mutation 
(c.947G>A) Primary/NHS
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2.1.4 Primers 

 

Table 2-2 List of primers used for confirming variant segregation 
Table includes the gene name, exon number and nucleotide sequence of each primer, as well as 

the primer melting temperature (Tm). 

 

 

Table 2-3 List of primers used for cloning  
Table includes the gene name and the nucleotide sequence of each primer, as well as the specific 

melting temperature (Tm). 

Gene Exon Forward Reverse Tm°  

ADAMTS15 8 TTCTATCTGCCCAAAGAGCC 63.2
ADAMTS15 8 GGCAGAACGCTGGCATATC 65.7

EPHB2 12 TGGTTTCCCATTATGAGGATG 63.4
EPHB2 12 GTCTTGCAGGGAGAGATGGA 64.4
EPHB2 14 GTAAGATGGGCCTGGCAGAG 65.9
EPHB2 14 AGGAAGAGCATTTGCCTGAA 63.8
HERC2 90 AGATGCACTTGAGGCTGACC 64.5
HERC2 90 TGGAGCCAAATCCATTACTTT 62.1
KLHL7 8 TCTTTGCATTGTCCTTTTCAG 61.8
KLHL7 8 AAGAAAGTATCTGGACAAATAATACCA 60.8
MAL 1 GAGCCAGCGAGAGGTCTG 64.1
MAL 1 CAGCTAGCGGATCCCGTC 66.0
MAL 2 CACTCCAGTCACCCCATGT 63.7
MAL 2 ATCCTACTGGGCCAGGGAC 65.2
MAL 3 GGGACCTCAGCTCTGCATCT 65.9
MAL 3 GAAAACAGACCAAGGGCCTA 62.9
MAL 4 CTGGATGCAGTGCAGACG 64.7
MAL 4 ACCATCAAGGGCATTTCTGT 63.3

NCOR2 34 CCGAGGTCCCTATCCTCAA 64.0
NCOR2 34 TGATGCCTAAGGAGTCCCTG 64.1
PNPT1 6+7 GCCATATAGTGCTCTTGTATTTTAGG 61.8
PNPT1 6+7 CCATTGCTGTAACATGGTCACTA 63.6

SH3TC2 8 CTGGGAACCCCTCATTTTCT 64.0
SH3TC2 8 GCAAATCTGCTCAAAGAGGG 63.8

SHETC2-short 8 CACTTGTCCTGAACTTGTCG 61.0
SHETC2-short 8 TGTTCATGTCTTCTGTAGCTGA 60.1

SUPV3L1 9 TAGTCACAAGAAGTTGAGTTGG 62.8
SUPV3L1 9 TTACCAGGTGGGAGACTGC 58.5

TTN 359 TTCTAAATTCAGCTTCCCAAAA 61.5
TTN 359 CAAATTGTATTCTGGAATTAGGAAAA 61.9

TUBA1A 4 GGACACAATTTGACCTATTAACCTA 60.9
TUBA1A 4 ATGAACTATTTGATGTCATTTTGTA 58.1

UNKL 8 AAGTCCTCTGTGTCCTCCTGA 62.9
UNKL 8 ATGGAACTGCTGCTCCGT 63.6

Gene Primer Sequence Tm°  
BioID KLHL7 EcoRI_side ATCCTGGTGGAGCTGACA 62

BioID KLHL7 HindIII_side GCAGGTATCTTTCTTTCCTGG 61.6

InFusion KLHL7 Forward GATATCTGCAGAATTCCTGGGAGGGACTGATTGCA 61.5

InFusion KLHL7 Reverse GTTTAAACTTAAGCTTTCATGTTTCAAGGGTCTCTTCA 59.4

KLHL7 Internal Forward AGGAAAGAAAGATACCTGCT 56.2

KLHL7 Internal Reverse ACCCACAGCAAATATCTTGT 58.5

Q5 SDM MAL_pENTR223 Forward GAGGCCCTGGACACCATCACG 73.3

Q5 SDM MAL_pENTR223 Reverse CAGGACTGAGGCGCTGAG 65.2



 34 

2.1.5 Antibodies 

Primary and secondary antibodies were used as detailed in tables 2.4 and 2.5 respectively. Specific dilutions are provided for both Western 

Blotting and Immunofluorescence microscopy were appropriate.  

 

Table 2-4 List of Primary Antibodies  
Table includes the species that the antibody was raised in and its reactivity, the type of isotype, specific dilutions for western blotting (WB) and 
immunofluorescence (IF) staining, as well as the supplier.   

ANTIGEN SPECIES    
RAISED IN

SPECIES REACTIVITY POLYCLONAL/  
MONOCLONAL; 

ISOTYPE

IF DILUTION 
(1/X)

WB 
DILUTION 

(1/X)

SUPPLIER CATALOGUE 
NUMBER

PLP1 Rabbit Human Polyclonal ; IgG 200 1000 Novus Biological C106511

ET3-PLP Rabbit N/A Polyclonal; IgG 100 N/A
Kind gift from        
Dr Wia Baron

N/A

MAL Rabbit Human, Mouse, Rat, Dog, Frog Polyclonal; IgG 200 500 Abcam Ab15418
Calreticulin Rabbit Human, Mouse, Rat, Dog, Rabbit Polyclonal; IgG 200 N/A Abcam Ab2907

HERC2 Rabbit Human, Mouse Polyclonal; IgG N/A 1000
Bethyl 

Laboratories Inc
A301-905A-T

IDH3G Rabbit Human, Mouse Polyclonal; IgG N/A 500 Proteintech 25848-1-AP

KLHL7 Rabbit
Human, Mouse, Rat, Rabbit, Dog, 

Chicken, Cow
Polyclonal; IgG N/A 500 Abcam Ab90915

MICU1 
(CBARA1)

Goat
Human, Mouse, Rat, Rabbit, 

Horse, Chicken, Cow, Dog, Pig
Polyclonal; IgG 200 500 Abcam Ab115025

MTCO2 Mouse Human, Mouse, Rat, Rabbit Monoclonal; IgG1 200 N/A Abcam Ab3298
MCU Rabbit Human, Rat Polyclonal; IgG 100 N/A Abcam Ab121499

UBE3A Mouse Human Monoclonal; IgG2a 200 1000 Abcam Ab58266
GFP Mouse wtGFP, rGFP, eGFP Monoclonal; IgG1 100 1000 Abcam Ab1218

C-myc Mouse Human Monoclonal; IgG1 200 1000 Sigma-Aldrich M4439
PCM1 Rabbit Human, Mouse Polyclonal; IgG N/A 1000 Proteintech 19856-1-AP

CEP170 Rabbit N/A Polyclonal; IgG N/A 1000 N/A N/A

XPA Rabbit N/A Polyclonal; IgG N/A 500
Kind gift from      

Prof Majlinda Lako
N/A

Flag Mouse N/A Monoclonal; IgG1 N/A 1500 Sigma-Aldrich F3165

V5 Mouse V5 tag Monoclonal; IgG2a 100 1000
ThermoFisher 

Scientific
R960-25

β-actin Mouse
Human, Mouse, Rat, Rabbit, Dog, 

Chicken, Cow
Monoclonal; IgG1 N/A 10000 Abcam Ab6276
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Table 2-5 List of Secondary antibodies for Immunofluorescence microscopy 
Table includes the species that the antibody was raised in and its reactivity, specific dilutions for IF and conjugated fluorophore, as well as the supplier.  

 
 

SPECIES 
REACTIVITY

SPECIES    
RAISED IN

CLASS; 
ISOTYPE CONJUGATE

IF 
DILUTION 

(1/X)
SUPPLIER CATALOGUE 

NUMBER

Rabbit Goat Polyclonal; IgG Alexa Fluor® 488 1000 ThermoFisher 
Scientific A11034

Rabbit Goat Polyclonal; IgG Alexa Fluor® 568 1000 ThermoFisher 
Scientific A11011

Mouse Goat Polyclonal; IgG Alexa Fluor® 488 1000 ThermoFisher 
Scientific A11029

Mouse Goat Polyclonal; IgG Alexa Fluor® 568 1000 ThermoFisher 
Scientific A11031

Mouse Goat Polyclonal; IgG Alexa Fluor® 633 1000 ThermoFisher 
Scientific A21052

Rabbit Donkey Polyclonal; IgG Alexa Fluor® 488 1000 ThermoFisher 
Scientific A21206

Goat Donkey Polyclonal; IgG Alexa Fluor® 488 1000 ThermoFisher 
Scientific A11055
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2.2 Methods 

2.2.1 Patient Identification 

The affected children presented with rare forms of autosomal recessive disorders, 

including myopathic, neurological or developmental delay phenotypes. Clinical 

geneticists and pathologists performed the clinical evaluations at Bradford Teaching 

Hospitals NHS Foundation Trust or Leeds Teaching Hospitals NHS Trust. 

2.2.2 Ethical Approval and Consent 

Blood samples were taken from consanguineous and non-consanguineous families that 

were recruited for research studies, funded by a Sir Jules Thorn Award for Biomedical 

Research (ref. JTA/09). All DNA samples used for this research project were obtained 

with informed consent for research from the participants or their families (Appendix B) 

under ethical approval from the NRES Committee Yorkshire & The Humber, South 

Yorkshire (REC reference 11/H1310/1) (Appendix C). 

2.2.3 DNA samples 

DNA samples were obtained from affected children and their parents. Where feasible, 

DNA samples were also obtained from unaffected siblings or affected individuals from 

different sibships within the same family. DNA sampling included either blood or saliva. 

Blood collection was performed by standard methods, and Oragene collection kits were 

used for saliva collection.   

2.2.4 Tissue Biopsies 

Skin punch biopsies (4-6mm) were obtained under local anesthesia from a single 

affected child in three different families with homozygous mutations in MICU1, HERC2 

and KLHL7.  

2.2.5 DNA Extraction  

2.2.5.1 Peripheral Blood Samples  

Genomic DNA extraction from blood lymphocytes was carried out by the Yorkshire 

Regional Genetics Service, using a standard salt precipitation protocol. DNA samples 

were re-diluted and stored in 1x Tris-EDTA buffer (pH 8.0). 
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2.2.5.2 Saliva Samples 

DNA extraction from saliva was performed using the prepIT-L2P DNA extraction kit, 

followed by ethanol precipitation as advised by the manufacturer’s protocol. DNA was 

re-suspended in 1x TE buffer for long-term storage. 

2.2.5.3 Primary cell cultures 

DNA extraction from primary cell cultures was by standard phenol/chlorophorm 

extraction. Pelleted cells were resuspended in 750μl of Lysis Buffer (See 2.1.2.9) and 

incubated at 37°C for one hour. 3μl of Proteinase K (23mg/ml) was added and incubated 

at 55°C for one hour. Phenol/chloroform (1:1) was added and the solution was vortexed 

until it turned milky and then centrifuged for 10 min at 13,400 x g . The aqueous phase 

was then collected into a new Eppendorf tube and chloroform 1:1 [v/v] was added, mixed 

by inverting the tube and centrifuged for 5 min at 13,400 x g. DNA was precipitated from 

the aqueous phase in 20μl of 5M NaCl and 2 volumes of 100% ethanol centrifuged for 5 

min at 13,400 x g. The supernatant was discarded and 2 volumes of 75% [v/v] freshly 

prepared ethanol were added, mixed by inverting and centrifuged for 5 min at 13,400 x 

g. The supernatant was discarded and the pellet was allowed to air-dry and re-

suspended in 50μl of EB (Qiagen). 

2.2.6 Polymerase Chain Reaction (PCR) 

2.2.6.1 Primer Design  

Primer design was performed using the Exon Primer software (https://ihg.helmholtz-

muenchen.de/ihg/ExonPrimer.html), which is a Perl script that designs intronic primers 

for exonic PCR amplification. Exon Primer retrieves gene information from the UCSC 

(University of California Santa Cruz) Genome Browser and designs the primer sequence 

per exon using Primer 3 (http://bioinfo.ut.ee/primer3/). All primers were designed with 

specific parameters such as an optimum annealing temperature of 58-65 oC, a minimum 

of 15bp of flanking intronic sequence, excluding common SNPs and producing PCR 

products of 200-600bp in size. All primer sequences were checked using the BLAST tool 

(http://blast.ncbi.nlm.nih.gov/Blast), to confirm that they uniquely bound to the gene of 

interest. Exons with small introns (<150bp) were combined and amplified together, 

whereas larger exons (>450bp) were amplified using more than one set of overlapping 

primers. Primer sequences used for PCR amplifications in this project are listed in table 

2.2.  
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2.2.6.2 PCR Reaction  

PCR reactions were performed in a total volume of 10μl, containing 1μl of genomic DNA 

(at approx. 20ng/μl), 1μl of 10μM primer mixture of forward and reverse primers (Sigma-

Aldrich), 3μl of HotShot Master Mix (Clent Life Sciences) and 5μl of dH2O. For GC rich 

regions, the PCR reaction was supplemented with 5x Combinational Enhancer Solution 

(5x CES) containing 6.7mM DTT, 2.7M Betaine, 6.7% DMSO and 5μg/ml BSA. 

 

Reactions were run in a Veriti Thermal Cycler (Thermo Fisher Scientific) under the 

following conditions: denaturation was at 95oC for 3 min, followed by 35 cycles of 94oC 

for 30s; reaction specific annealing temperature was for 30s; extension was at 72oC for 

1 min; and lastly, the reaction finished at 72oC for 5 min. Final PCR products were 

visualised by agarose gel electrophoresis (see section 2.2.7). 

2.2.7 Agarose Gel Electrophoresis  

Post-PCR or plasmid DNA samples were mixed in a 1:1 [v/v] ratio with 2x Loading Dye 

(see section 2.1.2.6). The gel was made by dissolving molecular biology grade agarose 

powder (Bioline, London, UK) in 1x TAE to a final concentration of 1.5-4% [w/v] 

depending on the separation required. 0.5μg/ml of ethidium bromide (Sigma-Aldrich) or 

5μl per 100ml gel of Midori Green (Geneflow, Staffordshire, UK) was added to the melted 

agarose gel. A standard DNA size ladder (Easy Ladder I, Bioline), or a 2-log DNA ladder 

(New England Biolabs) for larger sized fragments, was used. 120V was then applied for 

40 min and the gel was visualised on a UV translluminator (Bio-Rad, Hemel Hempstead, 

UK) and displayed on Image Lab (v. 4.0) software for analysis (Bio-Rad, Life Science, 

Berkley, California, USA). 

2.2.8 Exonuclease I – Shrimp Alkaline Phosphatase (ExoSAP) PCR 

purification  

PCR products were purified by enzymatic treatment with Exonuclease I and Shrimp 

Alkaline Phosphatase (ExoSAP-ITÒ) (Affymetrix, Thermo Fisher Scientific) prior to 

sequencing. The clean-up was achieved by the addition of 1μl of ExoSAP-IT to 2.5μl 

(approx. 2 to 5μg) of amplicon, followed by an incubation of 37°C for 30 min and 

inactivation at 80°C for 15 min.  

2.2.9 Sanger Sequencing  

Sequencing of the purified PCR products was achieved using the BigDyeÒ Terminator 

v3.1 Sequencing Kit (Applied Biosystems). The sequencing reaction was performed in a 

total volume of 10μl and consisted of 1μl of purified PCR product, 1μl Big DyeÒ 
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Terminator v3.1, 1.5μl Big DyeÒ Sequencing Buffer (5x), 1μl of either the 5’ or the 3’ 

primer at 2μM, and 5.5μl of dH2O. The reaction mixtures were then placed in a Veriti 

Thermal Cycler (Thermo Fisher Scientific) for the following temperature incubations: 

96°C for 1 min, followed by 45 cycles of 96°C for 10s, 50°C for 5s, 60°C for 4 min, and 

then hold at 4°C until precipitation. 

Ethanol precipitation was performed by adding 5μl of 125mM EDTA and 60μl of 100% 

ethanol to each sequencing reaction. These were then centrifuged at 3100 x g for 30min 

at 22°C, followed by an inverted spin for 15s at 18 x g. 60μl of freshly prepared 70% 

ethanol was then added and the products were centrifuged again at 800 x g for 15 min 

at 4°C, followed by an inverted spin for 15s at 18 x g. The precipitated pellets were then 

left to air dry for 15 min at room temperature out of light. Dry pellets were resuspended 

in 10μl of “Hi-Di” deionized formamide (Applied Biosystems, Thermo Fisher Scientific) 

and run on an ABI 3130xl Genetic Analyzer (Applied Biosystems) using standard 

protocols and a POP7 polymer (Applied Biosystems). Sequencing data was analysed 

using 4Peaks (Mek&Tosj.com) or Seqscape v2.5 (Applied Biosystems). 

2.2.10 Next Generation Sequiencing  

2.2.10.1 DNA quantification  

DNA samples were quantified using the manufacturer’s protocol for the Quant-iT dsDNA 

BR assay (Life Technologies, Waltham, MA, USA). Samples were read in a Qubit 

fluorometer using the Qubit ds BR assay reading. DNA samples further underwent serial 

dilutions in order to ensure that 25ng of DNA per sample was used for downstream 

shearing. 

2.2.10.2 Whole Exome Sequencing using SureSelect QXT method 

Whole Exome Sequencing (WES) was performed using the Sure SelectQXT Target 

Enrichment kit according to the manufacturer’s instructions (Agilent Technologies). 

Briefly, 25ng of genomic DNA was fragmented and adaptors were attached in a single 

enzymatic step using SureSelect QXT Enzyme Mix ILM. The reaction mixture was 

incubated for 10 min at 45oC, and purification of the adaptor-tagged library was 

performed using AMPure XP beads (Beckman Coulter). Following purification the library 

was amplified in an 8 cycle PCR reaction using Herculase II fusion DNA polymerase, 

and purified again with AMPure XP beads. The size and quality of the fragmented DNA 

was evaluated using an Agilent 2100 Bioanalyzer and the DNA 1000 Assay (Agilent 

Technologies), according to manufacturer’s instructions (see Appendix D).  

The fragments were hybridised to the SureSelectQXT Human All Exon V6 biotinylated 

baits (Agilent Technologies), to enrich for exonic sequences, followed by capturing the 
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hybridised libraries using DynabeadsÒ MyOneTM Streptavidin T1 magnetic beads (Life 

Technologies). The captured libraries were then amplified and indexed using Herculase 

II Fusion DNA polymerase in a 10 cycle PCR, followed by a purification step using 

AMPure XP beads (Beckman Coulter). The quantity and quality of the indexed libraries 

was evaluated using the Agilent 2100 Bioanalzer and the High Sensitivity DNA standard 

procedure (Agilent Technologies) (see Appendix D). Equal molar quantities of each 

captured library were pooled and sequenced on the Illumina HiSeq 3000 platform 

(Illumina, San Diego, CA), using a 150bp paired end protocol (figure 2-1). Nine or ten 

samples were pooled per lane. 

 

Figure 2-1 Illumina Sequencing protocol 

A representation of Illumina’s Sequencing protocol showing binding to flow cell and cluster 
amplification of fragments by forming a bridge between the two adaptors. Fluorescently-tagged 
terminator nucleotides are added to each strand in a “base-by-base” addition and upon laser 
excitation each nucleotide emits a color that is detected by the sequencer. Following the detection 
of one nucleotide, the terminator becomes chemically inactivated so that the next cycle of 
sequencing-by-synthesis can commence.  
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2.2.10.3 WES Data Analysis 

A standard in-house bioinformatics pipeline was used for all samples. The pipeline is 

summarised in figure 2.2 and the linux commands are presented in Appendix E. HiSeq 

sequencing data for each sample was stored in a forward (r1) and reverse (r2) FASTQ 

file, containing both the raw data and quality scores in a text based format. Burrows-

Wheeler Aligner software package (BWA-MEM) (Li and Durbin, 2009) was used to 

successfully align both forward and reverse FASTQ files to the human reference genome 

(GRCh37, Genome Reference Consortium, human reference assembly build 37) 

creating a binary alignment map (bam) file. Following alignment, the bam file was sorted 

in chromosome order using Picard tools v.2.5.0 (http://picard.sourceforge.net). Picard 

tools were also used to mark PCR and optical duplicates present in the data, and the 

Genome Analysis Toolkit (GATK, Broad Institute, USA) was utilised for 

IndelRealignment, where small mismatching bases were better realigned, and for 

BaseRecalibration, that pre-processed data for systematic errors and estimated the 

accuracy per base call (DePristo et al., 2011). 

 

HaplotypeCaller (GATK) was then used for variant calling, resulting in a variant call 

format (vcf) file output. HaplotypeCaller was run on each sample individually producing 

separate gvcf files. For each family, the gvcf files were subsequently combined and 

genotyped creating a combined vcf for more effective filtering and segregation 

assessment. The combined vcf was then passed through hard filtering utilizing the 

VariantFiltration programme (GATK). To achieve this, SNPs and indels were separated 

before proceeding to hard filtering. Hard filtering removes any variants that have 

annotations or statistical values above or below certain thresholds. The parameters for 

the statistical annotation are summarised in table 2.6. 
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Table 2-6 Summary of parameters of hard filtering 
 

 

Variants passing the hard filtering were further filtered using various databases at a minor 

allele frequency (MAF) of either ≤1% when modeling rare recessive inheritance in a 

subject family or ≤ 0.1% for suspected de novo cases. The first database used for filtering 

was the National Center for Biotechnology Information’s (NCBI) database for SNPs 

(dbSNP) version 146 (Sherry et al., 2001), while cross-referencing and maintaining any 

variants classified as pathogenic on ClinVar. Variants were also filtered on the NHLBI 

Exome Sequencing Project (ESP) database (http://evs.gs.washington.edu/EVS/) and 

the Broad Institute’s Exome Aggregation Consortium (ExAC) version 0.3 database 

(http://exac.broadinstitute.org). Variants were also checked manually on the Genome 

Aggregation Database (gnomAD) (http://gnomad.broadinstitute.org/) when it became 

available.  

 

Variants were subsequently annotated using the Variant Effect Predictor (Ensembl) to 

determine any non-synonymous, likely functional variants (McLaren et al., 2010). The 

resulting vcf was then filtered using adapted perl scripts ‘vcf hacks’ (v.0.2.0) (written by 

Dr David Parry, https://github.com/gantzgraf/vcfhacks) to filter for biallelic or 

homozygous variants. In most of the cases, a family pedigree was incorporated in the 

analysis by the use of a .ped file allowing for identification of variants based on 

segregation. The resulting putative mutations were assessed for pathogenicity 

predictions using SIFT (http://sift.jcvi.org) (Ng and Henikoff, 2003), PolyPhen2 

((http://genetics.bwh.harvard.edu/pph2/) (Adzhubei et al., 2010) and Condel 

Variation Abbreviation Character Parameter 
threshold 

QD Quality by Depth <2.0 reads

FS
Fisher Strand PHRED; 
scaled p-value for strand 
bias

>200.0

ReadPosRankSum
Mann-Whitney test for distant 
of alternate allele from the 
end of read

<-20

QD Quality by Depth <2.0 reads

FS Fishe Strand PHRED >60.0

ReadPosRankSum
Mann-Whitney test for distant 
of alternate variant from the 
end of read

<-8

MappingQualityRankSum
Mann-Whitney Rank Test for 
Mapping Qualities (reference 
vs alternate allele)

<-12.5

Indel 

SNP/MNP
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(http://bg.upf.edu/fannsdb/), (Gonzalez-Perez and Lopez-Bigas, 2011) and ranked 

according to the Combined Annotation Dependent Depletion (CADD) score version 1.3 

(http://cadd.gs.washington.edu) (Kircher et al., 2014). The variants that passed all the 

filtering steps were annotated with summaries of gene function and mouse model 

phenotypes where applicable. The resulting file was then exported in to Microsoft Excel 

format, with all the pathogenicity predictions and annotations attached. Variants with 

CADD scores ≤15 were excluded from further variant assessment and interpretation. 

Variants with CADD scores above 15 represent the top 3% of deleterious variants, and 

variants with CADD scores above 30 represent the top 0.1% of deleterious variants in 

the human genome. The workflow of the bioinformatics analysis of WES is summarised 

in figure 1.2 and the actual command line is presented in Appendix E. 

 

 

Figure 2-2 Bioinformatics pipeline for WES data analysis. 

The flow chart above summarises the optimised bioinformatics pipeline used for WES data 
analysis for all of the cases outlined in this study.  
  

Alignment of FastQ files to reference 

genome

Duplicates removed and read recalibration 

with Picard tools 

Variant calling with GATK 

Hard Filtering

Filter for rare variants on various 

databases with MAF ≤1%

Filter for functional variants with VEP

Filter for segregation based on family 

structure 

CADD ranking and annotate with in silico 

pathogenicity scores.
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2.2.10.4 WES Quality Control (QC)  

The first level of Quality Control (QC) was applied to the raw FastQ sequence data that 

was collected from high-throughput sequencing. This was run on the FastQC program 

(Babraham Bioinformatics) and it provided a simple checkpoint for the quality of data 

obtained. Figure 1.3 illustrates how a high quality data set should look compared to a 

low quality one.  

 

Figure 2-3 Representation of FastQC outputs 

A – Representation of high quality data. B – Representation of low quality data. In both cases the 
yellow boxes represent the interquartile range of the data, the red line marks the median value, 
the blue line marks the mean quality and the upper and lower whiskers indicate the 10% and 90% 
range of the data points. The y-axis that indicates the per base sequence quality score is 
separated into three coloured regions. High quality scores are within the green region, reasonable 
quality scores in the orange, and poor quality scores in the red. 
 
 
The second check point for QC assessment was performed on the final bam file using 

Picard tools CollectMultipleMetrics (https://broadinstitute.github.io/picard/command-line-

overview.html#CollectMultipleMetrics). This command runs various QC metrics including 

insert size metrics, quality score distribution, mean quality by cycle and base distribution 

by cycle for sequencing artifact control. The QC output of this method is in a graphical 

representation that can be compared across samples and runs. Figure 1.4 demonstrates 

the difference in quality between QC outputs for the same sample sequenced on two 

different runs. The QC metrics for each sequencing run throughout this project are 

summarised in Appendix F. 

 

A B
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Figure 2-4 Representation of QC metrics from CollectMultipleMetrics command 

A – Representation of good quality QC with mean Quality by Cycle staying above 30 and quality 

score distribution is mostly above QS of 30. B – Representation of bad quality QC with mean of 

Quality by cycle dropping below 30 early on in the second cycle and increased reads with QS 

less than 30 (marked with red arrow). The data with bad quality QC were obtained from a 

unsuccessful run where the machine failed due to temperature issue. 

 

Finally, the Depth of Coverage tool (GATK) was used to assess average read depth 

across the exome and evaluate the percentage of regions with coverage <5 reads. A 

table outlining the output of Depth of Coverage for each sequencing run throughout this 

project can be found in Appendix G. 

2.2.10.5 Variant Interpretation and Pathogenicity Assessment 

As stated above, the final gene list with CADD scores ³10 was inspected for variant 

interpretation. Pathogenicity assessment was initially evaluated from the Excel output of 

the bioinformatics pipeline, by looking at CADD scores, and other in silico pathogenicity 

prediction tools that included PolyPhen2, SIFT and Condel. Nonsense and splice-site 

A

B
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variants were initially flagged for the most damaging and potentially pathogenic variants, 

but other missense variants were also interpreted by other means. For example, a 

literature review was conducted for the best candidate genes to investigate a potential 

role in neurodevelopment or other organ-specific function based on the family’s 

phenotype. In addition, interacting partners were explored using STRING (https://string-

db.org/) and protein expression levels and localization were inspected on UNIPROT 

(https://www.uniprot.org/). Furthermore, the phenotypes of any available mutant models  

were inspected on MGI (http://www.informatics.jax.org/) for mouse models or ZFIN for 

zebrafish models (https://zfin.org/) to assess any phenotypic overlap. Where possible, 

protein modelling was also used in order to compare the impact of a variant on the overall 

structure of the protein. Programs used for this purpose included i-TASSER 

(https://zhanglab.ccmb.med.umich.edu/I-TASSER/), TmHelix TMHMM Server v.2.0 

(http://www.cbs.dtu.dk/services/TMHMM/) and Swiss Pdb-viewer (https://spdbv.vital-

it.ch/). 

2.2.10.6  Autozygosity Mapping using WES data 

Autozygosity mapping was performed when the family pedigree suggested 

consanguinity. Homozygous regions identified were then used for prioritising variants 

within them. Autozygosity mapping was performed using AgileMultiIdeogram software 

(http://dna.leeds.ac.uk/agile/AgileMultiIdeogram/) (written by Dr Ian Carr, University of 

Leeds) that identifies shared autozygous regions between affected individuals in a 

pedigree and displays the output in a circular ideogram of chromosomes 1-22. The 

regions can be identified from WES data in the form of a vcf file prior to SNP filtration.  

2.2.10.7 Copy Number Variant Identification using WES data 

Most of the cases recruited to the study have been previously tested with Array CGH as 

part of standard diagnostic workflows in Clinical Genetics. However, CNVs smaller than 

100kb cannot be picked up by Array CGH. All the cases that have been recruited to this 

project have therefore been further analysed for CNVs using the WES data, regardless 

if any Array CGH had already been performed.  

 

Exome Depth was the program used in order to identify CNVs from WES data (Plagnol 

et al., 2012). The program was run in R and it allowed for comparison of read depth 

between the test sample and 8-10 control samples. The control samples used for 

comparison had to be unrelated to the test sample and each other, and with the least 

possible technical variations during the library preparation. For example, unrelated 

samples run on the same sequencing run and prepared on the same day as the test 
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sample were considered ideal controls. Also, the controls samples had to be exome 

sequenced using the same exome libraries as the test sample.  

 

The Exome Depth output was a summary table in the form of a .csv file, with all identified 

variations. Common CNVs identified in control populations were annotated (Conrad et 

al., 2010). All calls were ranked by the Bayes Factor, a statistical index defined by the 

log10 likelihood ratio of the reads of a CNV call divided by the normal copy number reads. 

CNV calls were then manually reviewed to evaluate read ratio and genes involved. Any 

candidate calls were further inspected using the Broad Institute’s Integrative Genomics 

Viewer (IGV) (Robinson et al., 2011) and crossed-reference with any available literature 

for possible connections to neurodevelopmental or neuromuscular disorders. 

2.2.11 Microbiology 

Microbiology experiments were carried out in a dedicated laboratory. Luria Bertani (LB) 

broth was made up by dissolving 20g of LB powder (Sigma-Aldrich) in 1l of dH2O and 

autoclaved using a bench top autoclave (Prestige Medical, Coventry UK). SOC medium 

was commercially obtained (New England Biolabs). Agar was made by dissolving 10g of 

LB powder (Sigma-Aldrich) and 10g of agar powder (Merck) in 500ml of dH2O, and then 

autoclaved in a bench top autoclave (Prestige Medical, Coventry UK). After autoclaving, 

agar was allowed to cool to about 50oC in a water bath and a relevant antibiotic was 

added at the appropriate concentration (see table 2.6). 25ml of agar was poured in 

microbiology plates in a hood, left to cool and stored at 4oC up to 3 months.  

 

 

Table 2-7 List of antibiotics used for microbiology purposes  

Table includes the working concentrations of each antibiotic and the supplier. 

2.2.11.1 Gateway Cloning  

Gateway cloning is a highly efficient and fast method of cloning that is based on the 

recombination properties of bacteriophage lambda I to integrate its DNA in E. coli. This 

cloning method is based on the specific recombination sites known as attP in 

bacteriophage lambda and the attB site in E. coli. In vitro cloning reactions based on 

these properties were made two directional, or reversible, using specific att site 

development. The reactions are known as either the LR and the BP reaction and are 

summarised in figure 2.5 

Antibiotic Working Concentration Supplier
Ampicillin 50μg/ml Melforth labs (Suffolk, UK)

Kanamycin 50μg/ml Sigma-Aldrich
Spectinomycin 100μg/ml Sigma-Aldrich
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Figure 2-5 Gateway Cloning technology  

Gateway cloning is an efficient and reversible method of transferring DNA fragments between 
plasmids. This method utilises the site-specific recombination between the ‘att’ sites. As illustrated 
above, the LR reaction recognises the attL and attR sites between an entry vector and a 
destination vector respectively, producing the expression vector of interest. The reversible 
reaction is known as the BP reaction and occurs between attB and attP sites between an 
expression vector and a donor vector respectively, giving an entry clone of interest.  
 

For the purposes of this project, only the LR Clonase Gateway reaction (Thermo Fisher 

Scientific) was performed, as described in the manufacturer’s instructions. 150ng of 

Gateway Entry (pENTR) vector and 150ng of Destination vector (pDEST) were added to 

2μl 5xLR Clonase Reaction Buffer and 4μl TE buffer. The LR Clonase enzyme mix was 

thawed on ice for 2 min and briefly vortexed. 1μl of the enzyme mix was added to the 

reaction mixture, vortexed briefly and incubated for 1hr at 25 oC. Upon completion of 

incubation, 2μg of proteinase K was added to the reaction mixture and incubated for 10 

min at 37oC to terminate the reaction. The resulting plasmids were transformed in E. coli 

DH5-Alpha Competent cells (New England Biolabs) (see section 2.2.11.4) and DNA 

extraction was obtained by mini or maxi preps from bacterial cultures (see section 

2.2.11.5 and 2.2.11.6 respectively). All cDNA clones were confirmed by Sanger 

sequencing, using the primers listed in Table 1.3, or other commonly used plasmid 

primers.  

2.2.11.2 In-Fusion Cloning  

In-Fusion Cloning technology allows for a fast and directional method of cloning of one 

or more fragments of DNA into any vector of interest. The In-Fusion HD Cloning Kit 

(Takara Bio USA, Inc) offers efficient fusion between the DNA fragments and the 

linearised vector by precisely recognizing 15bp overhangs at each end. The overhanging 

15bp can be engineered by designing appropriate primers for PCR amplification of a 

desired sequence, that will be complementary to the sites where the vector has been 

linearised. The procedure of In-Fusion Cloning is summarised in figure 2.3.  

+
attL1 attR1attL2 attR2
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ccdBMAL

LR clonase
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Figure 2-6 In-Fusion Cloning technology  

In-Fusion Cloning is a highly efficient method of cloning that is comprised of two separate steps. 
Initially, the desired vector needs to be linearised by restriction enzyme digest. Secondly, the 
gene of interest is amplified by specific primers designed to have 15bp extensions homologous 
to the vector ends. Once the PCR product is purified, both products are added to a single tube 
reaction where the In-Fusion Enzyme allows for the homologous overhangs to join and form the 
new plasmid. In-Fusion cloning was used to construct the BioID vectors. 
 

In-Fusion Cloning was carried as described by the manufacturer’s protocol. The desired 

vector (pcDNA3.1_mycBioID_N-term – see appendix H) was linearised by restriction 

enzyme digest (see section 2.2.12) using EcoRI and HindII. The linearised vector was 

then run on an agarose gel and the correct size band was extracted from the gel and 

purified using a Gel Extraction Kit (Qiagen). Depending on the specific sites of enzymatic 

digest, the appropriate primers were designed for the PCR amplification step, including 

the 15bp extensions that are complementary to the linearised vector ends.  Primers were 

designed manually, but confirmed using the online In-Fusion PCR primer design tool 

(http://www.takarabio.com). The PCR amplification was performed from a pENTR clone, 

thus 1ng of DNA was used for the PCR reaction. PCR conditions were set up according 

to the Fusion HF Enzyme Guidelines and the PCR product was purified using a PCR 

Clean up Kit (New England Biolabs). Once both fragments were purified, the cloning 

reaction was set up as follows: 1μl of 50-100ng of linearised vector, 1μl of purified PCR 

fragment, 2μl of 5X In-Fusion HD Enzyme Premix (Clontech Laboratories), and 6μl of 

dH2O. The reaction mixture was incubated at 50o C for 15 min and the newly formed 

plasmid was then transformed into competent cells (see section 2.2.11.4).  
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2.2.11.3 Site Directed Mutagenesis 

Site-directed mutagenesis (SDM) was achieved using the Q5 site-directed mutagenesis 

kit (New England Biolabs). The procedure was carried out as described by the 

manufacturer’s instructions. Primers were designed using the NEBaseChanger website 

(http://nebasechanger.neb.com), and  are listed in table 1.3. Briefly, the reaction 

comprised of 1µl plasmid DNA (25ng/µl), 12.5µl Hot Start High-Fidelity Master mix (2x), 

1.25µl of forward primer (10µM), 1.25µl of reverse primer (10µM), and 9µl dH2O. The 

reaction mixture was then placed in a Veriti Thermal Cycler (Thermo Fisher Scientific) 

for a PCR with the following conditions: 98oC for 30s, 25 cycles of 98oC for 10s, ‘X’oC for 

30s and 72oC for ‘Y’s, then 72oC for 2 min and hold at 4oC. For these conditions ‘X’ 

represents the appropriate temperature for primer annealing, as calculated by 

NEBaseChanger, and ‘Y’ stands for the elongation time for each plasmid which is equal 

to 30s per kb of plasmid DNA. At PCR completion, the ‘KLD’ step was performed, which 

stands for Kinase, Ligase and Dpnl. For this reaction, 1µl of PCR product was mixed with 

5µl 2x KLD reaction buffer, 1µl 10x KLD enzyme mix and 3µl dH2O. The reaction mixture 

was pipette-mixed and incubated at room temperature for 5 min. The final mutated 

plasmid was transformed into competent cells (see section 2.2.11.4). 

2.2.11.4 Bacterial Transformation and cultures 

An aliquot of E. coli α-Select Gold DH5-alpha chemically competent cells (Bioline) was 

allowed to thaw on ice. 1μl of the plasmid was added to 25μl of competent cells, flicked 

briefly to mix gently and then incubated for 30 min on ice. After incubation was 

completed, a heat shock at 42 oC for 45s was performed in a water bath. The reaction 

mixture was then immediately transferred on ice for 2 min, followed by recovery in SOC 

medium (New England Biolabs). 200μl of prewarmed SOC medium was added to each 

transformation mixture and then placed in an orbital shaker (Excella E25, Eppendorf, 

Hamburg, Germany) at 250rpm, 37oC for 1 hr. 50μl of the bacterial mixture was spread 

on an LB Agar plate, with the appropriate antibiotic based on the resistance gene in each 

plasmid. To increase colony numbers, if required, the bacterial mixture could be spun 

down at 800 xg for 1 min, most of the supernatant discarded and the entire transformation 

mixture spread on an LB Agar plate. The plates were incubated for 10-16 hr at 37 oC to 

allow for bacterial growth. 

After the 10-16 hr incubation, 5ml cultures were prepared in universal tubes. 5ml of LB 

broth and the appropriate antibiotic were added first and then single colonies were 

selected using a pipette tip. The pipette tip with the bacterial colony was left in a universal 

container and allowed to grow. The cultures were incubated in an orbital shaker (Excella 

E25, Eppendorf, Hamburg, Germany) at 250rpm at 37oC overnight, to ensure adequate 

aeration of the culture. 



 51 
DNA was then extracted from the bacterial samples using a Mini Prep Kit (Qiagen) (see 

section 2.2.11.5) and DNA sequence was verified using Sanger sequencing. Samples 

with the correct sequence were further grown into 200ml LB cultures in microbiology 

conical flasks with the appropriate antibiotic and purified DNA was extracted using a Maxi 

Prep Kit (Qiagen) (see section 1.2.11.6). 

2.2.11.5 Mini Preps of Plasmid DNA  

Bacterial colonies were grown into cultures in 5ml LB broth at 37oC overnight in an orbital 

shaker. Mini prep (Qiagen) was performed according to the manufacturer’s instructions. 

1ml of the bacterial culture was pelleted by centrifugation at 10,000 x g for 3 min, and 

pellets were resuspended in 250μl of resuspension buffer (P1). 250µl of alkaline lysis 

buffer (P2) was added and the reaction was mixed by inverting the tube 4-6 times, 

followed by the addition of 350µl of neutralizing buffer (N3). The mixture was again mixed 

by inverting the tube 4-6 times, and then centrifuged for 10 min at 17,900 x g. The 

supernatant was added to a QIA prep spin column and centrifuged for 60s at 17,900 x g 

to bind DNA to the column. A first wash with 0.5ml of buffer PB and centrifuged for 60 s 

was performed. Columns were further washed with 0.75ml of buffer PE and centrifuged 

again for 60 s. For the DNA to be eluted from the spin column, 30μl of buffer EB was 

added, left to stand for 1 min. and then centrifuged for 1 min. at 17,900 x g. A Nanodrop-

1000 Instrument (Thermo Fisher Scientific) was used to measure the DNA concentration 

prior to Sanger sequencing.  

2.2.11.6 Maxi Preps of Plasmid DNA  

Maxi preps (Qiagen) were used for large-scale plasmid growth and DNA extraction. For 

maxi preps, bacterial cultures were grown in 200ml of LB broth at 37oC for 12-16 hr and 

the procedure was performed according to the manufacturer’s protocol. Bacterial cells 

from the whole culture were pelleted by centrifugation at 4000 x g for 25 min at 4oC, and 

resuspended in buffer P1. 10ml of alkaline lysis buffer (P2) was added, mixed by 

inverting 4-6 times and incubated at room temperature for 5 min. After incubation, 10ml 

of neutralizing buffer (P3) was added and mixed by inverting again. The lysate was 

poured into a QIAfilter Cartridge and incubated for 10 min at room temperature. Following 

this, 10ml of buffer QBT was utilised to equilibrate the Qiagen-tip and allowed to drip 

through. The lysate was discharged through the QIAfilter Cartridge into the Qiagen-tip 

and allowed to enter the resin by gravity. The DNA was then bound and washed twice 

with 30ml of buffer QC. 15ml of buffer QF was used to elute the DNA, followed by 

precipitation with 10.5ml of isopropanol and centrifugation at 15,000 x g for 30 min at 4 

oC. The supernatant was discarded and 5ml of 70% ethanol was added and centrifuged 

for 10 min at 15,000 x g. The supernatant was discarded again and the DNA pellet was 



 52 
left to air-dry for 10 min. The pellet was re-dissolved in 300μL of sterile TE buffer, and 

DNA concentration was measured using the Nanodrop-1000 Instrument (Thermo Fisher 

Scientific). 

2.2.12 Restriction Enzyme Digest  

Restriction enzyme digest was carried out in order to confirm the correct organisation 

within a plasmid, or to verify that an insert had been successfully incorporated in a vector 

after a cloning reaction. Restriction enzyme digest was also used for In-Fusion cloning 

to create specific ends for cloning. The digest was performed using a specific restriction 

enzyme according to the site within the construct. SNAP gene viewer 

(http://www.snapgene.com) was used to visualise the map of the construct and choose 

the correct site for enzymatic digestion. The digestion was achieved using the correct 

concentration of the enzyme and the appropriate buffer (New England Biolabs), and 

incubated on a thermocycler according to the manufacturer’s instructions. The resulting 

fragments were checked using a 2% agarose gel electrophoresis (see section 1.2.7). 

2.2.13 Cell Culture  

Routine cell culture was performed using standard aseptic techniques in a dedicated 

tissue culture room. Primary cultures of patient fibroblasts were grown in DMEM/F12 

(1:1) + GlutaMAX™ (ThermoFisher Scientific) nutrient mixture containing 10% Fetal 

Bovine Serum  (FBS) and 1% penicillin/streptomycin. MDCK cells were grown using 

Dulbecco’s Modified Eagle’s Medium High Glucose (Sigma-Aldrich) supplemented with 

10% FBS, and hTERT-RPE1 cells were cultured in DMEM/F12 (1:1) containing 

GlutaMAX™ (ThermoFisher Scientific) nutrient mixture and 10% FBS. Cell cultures 

were kept in 5% CO2 humidified tissue culture incubators at 37°C, and primary cell lines 

were kept in a dedicated incubator under the same conditions. The cells were passaged 

twice a week, unless required otherwise to avoid over-confluent cultures (see section 

2.2.14).   

2.2.14 Cell Passage and Harvesting  

Cell lines were usually grown in T75 canted neck cell culture flasks with vented cap 

(Corning ®) and were passaged when the cells were around 80-90% confluency. During 

cell passaging, growth media was removed and the cells were washed in 5ml 1x PBS. 

Once the PBS was removed, 2ml of 1x Trypsin/EDTA was added to the culture and left 

for 2-5 min in the 37°C/ 5% CO2 incubator, for the cells to lift into suspension. 8ml of 

growth media was then added to the culture and the appropriate volume of cells was 

transferred into a new T75 flask, supplemented with fresh warmed media. All cell lines 

were split according to the supplier’s instructions: MDCK cells 1:12 twice weekly, hTERT-
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RPE1 cells 1:10 twice weekly, HDF 1:8 weekly, MICU1-HDF, HERC2-HDF and KLHL7-

HDF 1:5 weekly. When cells were seeded for specific experiments, a specific cell number 

was required to be seeded to accomplish the correct confluency for the experiment. Cell 

number was determined using a Trypan Blue stain (Invitrogen) and CountessÒ cell 

counter and slides (Invitrogen). Cell lines were passaged up to a maximum of 30 

passages before being discarded. Primary cell lines were only used up to passage 

number 15. 

 

When cell lines were harvested for storage the same procedure was carried out, but 

once the cells were in suspension in Trypsin/EDTA, the growth media was added and 

the cells were collected in a 15ml Falcon tube. The cell suspensions were then pelleted 

by centrifugation at 200 x g for 5 min. The cell pellets were resuspended in freeze-down 

media (45% DMEM/F12 GlutaMAX™ or Dulbecco’s Modified Eagle’s Medium High 

Glucose (Sigma-Aldrich) according to the cell type, 45% FBS and 10% DMSO) and 

stored in 1ml volumes in cryovials. The cryovials were allowed to cool overnight at -80°C 

in a “Mr Frosty” cryo-cooling container and then stored for long-term use in liquid nitrogen 

stores.  

 

2.2.15 Transient Transfection for Over-expression 

Cell cultures were grown in 24 well plates for immunofluorescence experiments, 6-well 

plates for optimization of protein experiments and T75 flasks for experiments for which 

larger amounts of proteins were needed such as co-Immunoprecipitation assays or BioID 

experiments. Independent of where the cells were cultured, cells were allowed to reach 

60-70% confluency before transfection. If immunofluorescence microscopy was going to 

be performed, the base of the wells was covered with glass coverslips treated with 

acetone and ethanol. For preparing the transfection complexes, Opti-MEMTM was mixed 

with LipofectamineÒ2000 in a fresh Eppendorf tube, mixed gently by flicking and then 

incubated for 5 min. After incubation, plasmid DNA was added to the Opti-

MEMTM/LipofectamineÒ2000 mixture, vortexed, spun down and incubated for another 

20 min for the plasmid to be encapsulated in the lipid bilayer of LipofectamineÒ2000. 

The specific amounts of each reagent required for each plate or flask are summarised in 

table 1.7. 
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Table 2-8 List of specific amounts of reagents used for transfections 

Table includes the amount of each reagent used for transfections in 24 and 6 well plates, as well 
as T75 flask.   
 

Before transfections, the growing media was replaced with Opti-MEMTM and the 

transfection complexes were added. The cells were left to incubate for 3-5 hr and then 

the media was changed back to normal growing media. Assays were performed after 48-

72 hr, but for immunofluorescence microscopy a 24 hr period was allowed for cell growth 

in order to avoid over-confluent coverslips.  

2.2.16 Phenylbutyrate Treatment 

MDCK cells transfected with MAL constructs (wildtype and mutant) were further treated 

with sodium 4-phenylbutyrate, a well-described chemical chaperone (Brookes et al., 

2014). Sodium 4-phenylbutyrate was diluted in culture media at a final concentration of 

0.5mM and incubated for 24 hr. 

2.2.17 Immunofluorescence and Confocal Microscopy  

For immunofluorescence staining, transfected or non-transfected cells were fixed on 

coverslips at 80% confluency. Fixation was performed either with para-formaldehyde 

(PFA) or with methanol. For PFA fixation, 4% [w/v] of PFA was added to the cells for 20 

min at room temperature and then permeabilised with 0.01% [v/v] Triton X-100 for 5 min. 

For methanol fixation, ice-cold methanol was added to the cells and incubated at -20°C 

for 5 min. Fixed coverslips were then blocked with either 1% [w/v] Marvel milk solution 

or 1% [w/v] BSA depending on the antibodies used downstream. All solutions were spun 

before use to remove particulates. Blocking solutions were added to each well containing 

a coverslip and incubated for 30 min on a rocker. Primary antibodies (see table 1.4) were 

made up in 1% Marvel milk solution or 1% BSA according to manufacturer’s instructions 

and incubated with coverslips in a humid chamber overnight at 4°C. Coverslips were 

then washed three times in 1x PBS, followed by incubation with the suitable AlexaFluorÒ 

conjugated secondary antibodies (Life Technologies) and DAPI for nuclear staining. 

Secondary antibodies (see table 1.5) and DAPI were added to 1% Marvel milk solution 

or 1% BSA and incubated in the humid chamber for 1 hr out of light. Once the incubation 

Optimem (μl) Lipofectamine (μl) Plasmid DNA (μg)
24 well plate 62.5 1.5 0.25
6 well plate 250 6 1
T75 flask 1500 45 6
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was completed, the coverslips were washed three times in 1x PBS and twice in dH2O. 

Coverslips were allowed to set on slides using 10μL MowiolÒ (Sigma-Aldrich). 

 

Confocal imaging was performed on the Nikon A1R confocal microscope and all images 

were processed by NIS-Elements Confocal 4.5 (Nikon) software. For post-capture image 

processing and analysis, Fiji (https://fiji.sc) was used. Corrected Total Cell Fluorescence 

(CTCF) or co-localisation assessments were done using Fiji’s plug-ins. For co-

localisation analysis between two different colour channels, the colocalization threshold 

plug-in was used by setting the region of interest and the channels of interest. Further 

statistical analysis was performed on the Rcoloc values obtained from each cell, in three 

biological replicates. For CTCF, a designated region was chosen for all the 

measurements and the following formula was used:  

 

Corrected total cell fluorescence (CTCF) = Integrated Density – (Area of selected cell X 

Mean fluorescence of background readings) 

 

 

Following the same pattern of analysis, statistical analysis was performed on the CTCF 

values obtained from each cell, in three biological replicates. More details on statistical 

analysis are summarized in section 2.2.23.  

 

2.2.18 Live cell Imaging  

2.2.18.1 Live cell imaging using MitoTracker® Green FM 

Primary fibroblasts were seeded in 35mm 4-well imaging microplates (Ibidi® ) 18-20 

hours prior to imaging, aiming for about 70-80% confluency. The MitoTracker® Green 

FM (Invitrogen) was initially dissolved in DMSO to obtain a final concentration of 1mM, 

and was then diluted with DMEM/F12 GlutaMAX™ (Sigma-Aldrich) to reach a working 

concentration of 100nM. The culture media was then removed and replaced with pre-

warmed (37°C) staining media containing the MitoTracker probe, and incubated at 37°C 

for 45 min. After incubation was completed, the staining media was replaced with fresh 

pre-warmed growth media and the microplate was placed in a Nikon BioStation IM 

instrument for live cell imaging. Imaging was usually set to a 24-36 hr period. The videos 

and images captured were analysed using Image J software (https://imagej.nih.gov/ij/). 
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2.2.18.2 Live cell imaging for GFP-tagged protein 

MDCK cells were seeded in 35mm 4-well imaging microplates (Ibidi® ) 18-20 hours prior 

to imaging, aiming for about 70-80% confluency. Once this was reached, the cells were 

transfected using Lipofectamine2000 (see section 1.2.15) in the same DNA to 

Lipofectamine ratio as for the 24-well plates. Cell were incubated with the transfection 

complexes for 3-4 hr and then the media was changed to fresh Dulbecco’s Modified 

Eagle’s Medium High Glucose (Sigma-Aldrich), and the plate was placed in a Nikon 

BioStation IM instrument for live cell imaging. Imaging was set to a range of 24-48 hr. 

The videos and images captured were analysed using Image J software 

(https://imagej.nih.gov/ij/). 
 

2.2.19 Western Blotting  

2.2.19.1 Whole cell extract  

Whole cell extracts (WCE) were collected from cell cultures following cell lysis. Prior to 

cell lysis, the cells were washed twice with ice-cold PBS. For cell lysis, according to the 

protein of interest the appropriate lysis buffer was added to the cells at a volume of 300μl 

for a T75 and 50μl for a 6-well plate. Cells were then incubated with lysis buffer for 5 min 

on ice and scraped to collect WCE in Eppendorf tubes. Samples were further incubated 

on ice for 30 min, while pipette mixing every 10 min. After the incubation, the lysates 

were centrifuged at 14000 x g for 15 min, collecting only the soluble fraction of the WCE. 

At this stage, protein concentration was calculated using a Bradford Assay following the 

manufacturer’s instructions (Bio-Rad, Life Science, Berkley, California, USA). For protein 

determination, sample absorbance was measured on a spectrophotometer at 595nm 

and compared to a range of BSA standards (Sigma).  

2.2.19.2 SDS-PAGE and Western Blotting  

Equal amount of protein per sample (around 10-20μg) was mixed with 2xSDS loading 

buffer and 10x Reducing agent (DTT). Samples were then heated at 95 oC for 5 min on 

a heat block, and electrophoresed in NuPAGE™ 4-12% Bis-Tris gels or NuPAGE™ 3-

8% Tris-Acetate gels (ThermoFisher Scientific) for proteins over 200kDa. All samples 

were run alongside Precision Plus Protein™ All Blue Protein Standards (Bio-Rad) or 

HiMark™ Pre-Stained Standard (ThermoFisher Scientific) for higher molecular weights. 

Protein gels were run in NuPAGE™ MES SDS Running Buffer or NuPage™ Tris-Acetate 

SDS Running Buffer (ThermoFisher Scientific) for 1.5 hr at 120V. Transfer of proteins to 

PVDF membranes (ThermoFisher Scientific) was performed in NuPAGE™ Transfer 
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Buffer (ThermoFisher Scientific) supplemented with 10% methanol. Transfer was run for 

1.5 hr at 30V, or 4 hr at 30V at 4oC for larger proteins. 

2.2.19.3 Antibody staining and membrane visualization  

Membranes were blocked in 5% Marvel milk solution in 1xPBST (see section 2.1.2.1) or 

1% BSA solution for 1 hr, followed by incubation of membranes in primary antibody 

solutions for 1 hr at room temperature or overnight at 4oC. Membranes were then washed 

four times with 1xPBST in 10min intervals, followed by 1 hr incubation at RT with the 

appropriate HRP-tagged secondary antibody solution (Dako, Agilent Technologies) at a 

concentration of 1:5000. Membranes were washed four times again with 1xPBST in 10-

min intervals, followed by membrane developing using SuperSignal West Femto kit 

(ThermoFisher Scientific). Bio-Rad molecular image ChemiDoc™ MP Imaging System 

with a UV transilluminator was used to acquire membrane images. Analysis of 

membranes was performed on Image Lab (v. 4.0) software (Bio-Rad, Life Science, 

Berkley, California, USA) and all band intensity measurements were compared to beta-

actin loading control for quantification.  

 

In order to re-probe the membrane with different antibodies, membrane stripping was 

required. For this purpose, the membrane was incubated in 5ml of Restore™ Plus 

stripping buffer (ThermoFisher Scientific) for 5-10 min, followed by three 1xPBST washes 

prior to further blocking and staining.  

2.2.20 Co-Immunoprecipitation using GFP-Trap® Magnetic beads 

GFP-tagged protein was co-transfected with another protein of interest containing a V5 

tag. WCEs were prepared using the same protocol as for western blotting (see section 

2.2.18). Once the WCEs were collected, they were further sonicated for 10s using a 

Sanyo Soniprep 150 Sonicator and centrifuged at 20,000x g for 10 min at 4oC to collect 

the soluble fragment of the lysate. Incubation buffer (see section 2.1.2.10) was then 

added to each sample in equal volume as the lysis buffer used. Alongside, 25μl of 

Dynabeads™ MyOne™ Streptavidin C1 bead slurry (ThermoFisher Scientific) were 

added to 500μl of ice-cold dilution buffer to be equilibrated. The magnetic beads were 

then collected using a magnetic stand and the supernatant was discarded. This was 

repeated two more times to achieve equilibrated GFP-Trap® Magnetic beads, that were 

then added to the diluted lysates. Samples were incubated with beads by gentle tumbling 

end-over-end for 2 hr at 4o C. After incubation, the beads were magnetically separated 

on a stand until the supernatant was clear. At this point, the supernatant was discarded 

and beads were washed three times with ice-cold wash buffer. The beads were then 

resuspended in 80μl of 2x SDS-sample buffer and boiled for 10 min at 95o C to dissociate 
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immunocomplexes from the magnetic beads. SDS-PAGE and western blotting was 

performed using the resulting supernatant (see section 2.2.18.2). Potential protein 

interactions were identified by staining with anti-V5 antibody and pull-down verification 

was confirmed with anti-GFP staining. 

2.2.21 BioID for identification of protein-protein interactions 

The BioID assays were developed and optimised for both the original version of BioID, 

that uses an engineered BirA* biotin ligase from E. coli (Roux et al., 2012), and the 

updated version known as BioID2 that utilizes the biotin ligase activity from A. aeolicus 

(Kim et al., 2016). KLHL7 was cloned into a BioID plasmid using In-Fusion cloning (see 

section 2.2.11.2), and MAL was cloned into a BioID2 plasmid that is compatible with 

Gateway cloning (see section 2.2.11.1). Maps of each expression plasmid used can be 

found in Appendix I. 

2.2.21.1 Biotinylation and Cell lysis  

hTERT-RPE1 and MDCK cells were transfected with BioID and BioID2 plasmids, 

respectively, using the transfection protocol described in section 2.2.15. Cells were 

allowed to recover for 16-24 hr post-transfection and were then incubated in 1x Biotin 

Media (50μM biotin in culture media) for 24 hr for the BioID plasmid, and 4 hr for the 

BioID2 plasmid to induce biotinylation of interacting/ proximal proteins (see figure 2.4). 

Following biotin incubation, the cells were washed twice with 1x PBS and 300μl of Lysis 

buffer (see section 2.1.2.12) was added to each flask and incubated for 5 min on ice. 

Cells were then scraped and whole cell lysate collected. To each sample, 120μl of 20% 

Triton X-100 was added followed by two sessions of sonication (using a Sanyo Soniprep 

150 Sonicator), each session consisting of pulses of 40μm for 10 seconds. 1ml of 

prechilled 50mM Tris-Cl, pH 7.4 was then added to each sample, followed by one more 

sonication session. Each sample was then spun down for 10 min at 16,500 x g at 4o C. 

30μl of each sample were taken forward for SDS-PAGE electrophoresis and western 

blotting for validation of biotinylation. Membranes were blocked with BSA blocking buffer 

(see section 2.1.2.14) for 30 min and then agitated with streptavidin-HRP (Vector 

Laboratories) using a dilution of 1:1000 for 45 min. Membranes were then washed twice 

with 1xPBST and then agitated again in NDS blocking buffer (see section 2.1.2.15) for 5 

min to reduce background signal. Visualisation of membranes was performed using 

standard procedures described in (2.2.18.3). For staining of membranes with additional 

antibodies for specific tags, membranes had to be agitated in quenching solution (see 

section 2.1.2.16) for 20 min. 

  



 59 
 

 

Figure 2-7 Outline of the BioID procedure 

The diagram outlines the mechanism of action of the BioID technology, indicating the tagging of 
proximal proteins by inducing biotinylation through the BirA-fusion protein. Proximal or interacting 
proteins will get biotinylated once incubated with biotin, therefore allow for affinity capture using 
streptavidin or streptactin beads and further identification using mass spectrometry. 
 
 
Prior to performing the immunoprecipitation (IP), 50μl of Strep-Tactin-Beads per sample 

were washed with 600μl of 1xTBS. Bead solutions were centrifuged at 5,000 xg for 30s 

at 4o C, and the supernatant was discarded. Beads were then mixed with 500μl of Lysis 

Buffer (see section 2.1.2.12), and centrifuged at 5,000 xg for 30s at 4o C to discard the 

supernatant. Beads were then washed twice with 500μl of Wash buffer (see section 

2.1.2.13), discarding the supernatant. After the last wash, the beads were mixed with 2x 

bead volume Wash buffer and transferred to a clean tube. Lysates were mixed with bead 

solution and incubated for 2 hr at 4o C on an end-over-end shaker. Samples were then 

centrifuged at 5,000 xg for 1 min at 4o C and supernatant was discarded. At this stage, 

the beads were washed four times with 500μl 1x TBS before proceeding to on-bead 

trypsin digest. Standard operating procedures for on-bead digest and sample 

preparation for mass spectrometry analysis was performed by collaborators in Dr 

Karsten Boldt’s laboratory, University of Tübingen. C-MS/MS analysis was performed on 

Ultimate3000 nanoRSLC systems (Thermo Scientific) coupled to an Orbitrap Fusion 

Tribrid mass spectrometer (Thermo Scientific) by a nano spray ion source. 
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Biotin
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2.2.22 Seahorse Metabolism Assays 

2.2.22.1 Mito Stress Test  

The Seahorse Mito Stress Test (Agilent) is an assay that measures key parameters of 

mitochondrial function. This is achieved by the measurement of oxygen consumption 

rate (OCR) of the cells before and after sequential injection of toxins that block different 

processes of oxidative phosphorylation. This allows for identification of important 

measures of mitochondrial function such as ATP production, basal and maximal 

respiration, spare respiratory capacity, proton leak and non-mitochondrial respiration. 

This is represented in figure 2.8. 

 

 

Figure 2-8 Mito Stress Test trace  

A representation of the Mito Stress Test trace, indicating the three injection points and the 
measurements obtained from each one. Adapted from Agilent Seahorse.  
 
 

One day prior to the assay, primary patient and control cells were seeded in the Seahorse 

XF Cell Culture Microplate at a seeding density of 15,000 cells per well. In addition, the 

Seahorse Sensor Cartridge was hydrated using the Seahorse XF Calibrant and 

incubated at 37o C in a non-CO2 incubator overnight. On the day of the assay, the normal 

culture media was changed to the Seahorse Mito Stress Assay Medium (see section 

2.1.2.19) and incubated for 1 hr at 37o C in a non-CO2 incubator. During incubation, the 

toxins were loaded on the sensor cartridge plate at the following concentrations; 

Oligomycin at 1.0μM, FCCP at 2.0μM and Rotenone/Antimycin A at 0.5μM, in ports A, B 

and C respectively. Oligomycin blocks the ATP synthase (complex V) leading to 
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minimum respiration, FCCP is an uncoupling agent that activates proton conductance 

and allows maximal respiration. Rotenone blocks NADH Dehydrogenase (complex I) and 

Antimycin A blocks Cytochrome C reductase (complex III), leading to complete block of 

the electron transport chain and oxidative phosphorylation.  

 

At the end of the assay, the differences between cell numbers in each well were 

normalised using a Crystal Violet Assay (see section 2.2.23). Data analysis was 

performed using Wave Software, Microsoft Excel and Prism for calculations and 

statistical tests. 

 

2.2.22.2 Glycolysis Stress Test  

The Seahorse Glycolysis Stress Test (Agilent Tehnologies) is an assay that measures 

the basic glycolytic function of the cells by correlating extracellular acidification rate 

(ECAR) measurements before and after specific inhibitor treatments. These sequential 

injections of glucose, oligomycin and 2-Deoxy-d-glucose (2-DG) affect different 

parameters of the glycolysis pathway allowing for measurements of the following 

functions: Glycolysis, Glycolytic Reserve, Glycolytic Capacity and Non-Glycolytic 

Acidification. This is summarised by the Glycolysis Stress Test trace in figure 2.9. 

 

 

Figure 2-9 Glycolysis Stress Test trace 

A representation of the Glycolysis Stress Test trace, indicating the three injection points and the 
measurements obtained from each one. Adapted from Agilent Seahorse.  
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One day prior to the assay, primary patient and control cells were seeded and the 

Seahorse Sensor Cartridge was hydrated as stated in section 2.2.21.1. On the day of 

the assay, the normal culture media was changed to the Seahorse Glycolysis Stress 

Assay Medium (see section 2.1.2.20) and incubated for 1 hr at 37o C in a non-CO2 

incubator. During incubation, the toxins were loaded on the sensor cartridge plate at the 

following concentrations: glucose at 10.0mM, oligomycin at 1.0μM and 2-DG at 50.0mM, 

in ports A, B and C respectively. Glucose was added to the cells initially to promote 

glycolysis. Oligomycin blocks the ATP synthase (complex V) leading to minimum 

respiration, thereby increasing dependence on glycolysis for energy production. 2-DG is 

a competitive inhibitor of glucose that therefore completely blocks glycolysis.   

 

At the end of the assay, the differences between cell numbers in each well were 

normalised using a Crystal Violet Assay (see section 2.2.23). Data analysis was 

performed using Wave Software, Microsoft Excel and Prism for calculations and 

statistical tests. 

2.2.23 Crystal Violet Assay 

This assay was performed for normalisation purposes for the Seahorse experiments. 

Culture media was aspirated off and the cells were washed twice in gentle stream of tap 

water. Excess water was removed by gently tapping the plate on tissue. 50μl of 0.5% 

[w/v] crystal violet solution (see section 2.1.2.21) was added to each well and incubated 

on a bench rocker at 20 oscillations per minute for 20 min. After incubation, the plate was 

washed five times in a stream of tap water and let to air-dry for 16 hr at room temperature. 

200μl of methanol was then added to each well and incubated on a bench rocker at 20 

oscillations per minute for 20 min. This solubilised the crystals into a purple solution 

allowing the optical density of each well to be measured using a plate reader at 570nm 

absorbance. The absorbance values were used to normalise the seahorse 

measurements on the Wave software.   

2.2.24 MTT Assay 

Primary fibroblasts (1x104) were plated in a 96-well plate and grown to 90% confluency. 

MTT reagent was freshly prepared at a working concentration of 1mg/ml using 1x PBS. 

100μl was added to each well, and the plate was wrapped in foil and incubated at 37°C 

for 3-4 hours. After incubation, the MTT reagent was removed and replaced by 100μl of 

propan-1-ol, which was mixed by pipetting to solubilise the violet crystals. The 

quantification of the colour change was done by an Opsys MR plate reader (Dynex 

Technologies) at 570nm.    
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2.2.25 Statistical Analysis 

Statistical analysis was performed using functions in Microsoft Excel and Prism 7 

(https://www.graphpad.com/). In large samples, normal distribution was assumed based 

on the Assumption of Normality, where n>30. Where necessary, normal distribution was 

tested by plotting a normal Q-Q plot. Results were represented in the form of bar charts 

or box plots where variability and clustering of data had to be illustrated. Error bars were 

also plotted on the graphs, representing the Standard Error of the Mean. Statistical 

significance between the means was tested using the Independent Sample T test, and 

significance was described as p≤0.05. All experiments of this study, unless stated 

otherwise, were performed in three biological replicates, where cell samples and 

reagents were different between each replicate.  

2.2.26 Mass Spectroscopy Analysis 

Mass spectroscopy analysis was performed by Dr Karsten Boldt; a collaborator on the 

BioID projects. Specifically, MS/MS data were analyzed using the MaxQuant software 

(version 1.6.1.0) (Cox and Mann, 2008, Cox et al., 2009). As a digesting enzyme, 

Trypsin/P was selected with maximal 2 missed cleavages. The data were analyzed by 

label-free quantification with the minimum ratio count of 3. The first search peptide 

tolerance was set to 20, the main search peptide tolerance to 4.5 ppm and the re-quantify 

option was selected. For peptide and protein identification the human subset of the 

SwissProt database (release 2014_11) was used and contaminants were detected using 

the MaxQuant contaminant search. A minimum peptide number of 2 and a minimum 

length of 7 amino acids was tolerated. Unique and razor peptides were used for 

quantification. The match between run option was enabled with a match time window of 

0.7 min and an alignment time window of 20 min. The statistical analysis including ratio, 

t-test and significance A calculation was done using the Perseus software (version 

1.5.5.3) (Tyanova et al., 2016). Significance A is a Q-function that detects outliers from 

a normal distribution. The background binders are the normal distribution and the 

interactors are the outliers.  
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Chapter 3  

Identification and functional characterisation of variants in 

genes already associated with neurodevelopmental and 

neuromuscular disorders  

3.1 Introduction  

This chapter outlines the genetic investigation of three families that resulted in the 

identification of causative mutations in known disease genes. Despite the fact that no 

variants were identified in any novel disease genes, this part of the study describes how 

whole exome sequencing done on research basis can also be utilised in the clinical 

setting, offering a molecular diagnosis to the patiens. The affected individuals of the first 

family (ND1) presented with a very severe form of arthrogryposis, with one of the three 

affected individuals dying in the neonatal period. DNA samples from all members of the 

family were processed for WES. In-house bioinformatics analysis led to the identification 

of a nonsense variant in CHRNG, a known arthrogryposis gene (Morgan et al., 2006). 

The findings of family ND1 were not taken forward for functional studies, as mutations in 

this gene are well-established as a cause of arthrogryposis. The second family (ND2) 

presented with muscular dystrophy similar to Limb Girdle Muscular Dystrophy. WES for 

this family was performed by collaborators in Newcastle University and revealed a 

pathogenic nonsense variant in MICU1, a novel disease gene that was identified in the 

same year by Dr Clare Logan (Logan et al., 2014). Variants in MICU1 were novel at the 

time of this finding, so functional studies were designed in order to elucidate the effect of 

MICU1 null mutations on mitochondrial function and the possible pathomechanism of 

this condition. The third family (ND3) presented with a severe form of developmental 

delay, and three affected individuals as well as an unaffected sibling were taken forward 

for WES. In-house bioinformatics analysis revealed a frameshift variant in HERC2, a 

gene that is mutated as a cause of Angelman-like syndrome (Harlalka et al., 2013). 

Functional studies on the missense variant in HERC2 are also be described in this 

chapter, in order to confirm the pathogenic impact of this variant and to extend the 

phenotype-genotype correlations of HERC2 mutations. This work highlights the variable 

phenotypic spectrum of Angelman-like syndrome. Finally, all variants identified in known 

disease genes have been reported back to the referring clinician in order to inform the 

families and to offer potential diagnostic testing. 
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3.2 WES identifies a nonsense variant in CHRNG, a known 

arthrogryposis gene 

3.2.1 Clinical Phenotype  

Family ND1 is a consanguineous South Asian family with three affected individuals 

presenting with arthrogryposis at birth. One of the affected children died in the neonatal 

period from respiratory failure. The other two children have significant arthrogryposis with 

multiple contractures of both upper and lower limbs; at elbows, wrists, proximal and distal 

interphalangeal joints of hands and feet. The family pedigree is outlined in figure 3-1. 

 

 
 

Figure 3-1 Pedigree of family ND1 

Pedigree outlining five generations of the family and the consanguineous union. DNA samples 
indicated by anonymized codes have been used for genetic investigations using WES. 
 

3.2.2 Autozygosity mapping  

In the presence of consanguinity autozygosity mapping was performed using WES data. 

Precisely, the vcf file prior to SNP filtering (.raw.vcf) from all  members of the family that 

have been taken forward for WES were used (see section 2.2.10.6). Homozygous 

regions shared by the three affected individuals, but absent from the parents and the 

unaffected sibling, are summarised in Table 3-1. 

I

II

III

IV

V

JT707 JT706

JT708 JT710A JT709 JT710
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Table 3-1 Common regions of homozygosity amongst affected individuals. 

The homozygous regions are listed in descending order based on the size of each region. The 
human genome assembly GRCh37/hg19 was used. 

 

3.2.3 Whole exome sequencing  

DNA samples from all the individuals with a JT identifier were taken forward for WES 

library preparation using the Illumina QXT protocol (section 2.2.10). During library 

preparation, Bioanalyzer traces were used to assess the size and quantity of the DNA 

fragments at post-shearing and post-hybridization stages (Appendix D). The samples 

were pooled, aiming for a total of ten samples per lane, and sequencing was performed 

on the Illumina HiSeq 3000 platform. 

 

Prior to data analysis, the fastq files and subsequent bam files generated were also 

assessed for the quality of sequencing. An in-house bioinformatics pipeline was used for 

data analysis (section 2.2.10.3), assuming a recessive mode of inheritance that allowed 

variants to be prioritized in previously identified homozygous regions. In addition, 

segregation analysis enabled the filtering out of variants that were not compatible with 

Mendelian segregation of an autosomal recessive condition. Table 3-2 summarises the 

only variant identified after filtering with a CADD score >15. Figure 3-2 illustrates the 

presence of the CHRNG variant in the largest homozygous region shared by the affected 

individuals. 

 

Chromosome Start End Length 
2 228560800 236433161 7872361
16 103423 732287 628864
2 219920037 220284779 364742
11 56143198 56143730 532
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Table 3-2 Homozygous variant identified in family ND1. 
Homozygous variant c.136C>T in CHRNG (NM_005199.5) was annotated based on the human 
genome assembly GRCh37/hg19. 

 

 

Figure 3-2 Ideogram illustrating the homozygous region shared by the affected 
individuals in family ND3. 
The ideograms in light pink are from the unaffected individuals, whereas the three outer 
ideograms in light blue are from the affected children. The regions highlighted in red represent 
the shared homozygous regions. The homozygous CHRNG variant lies within chromosome 2 
(2q36.3-q37.3), indicated by the red arrow. The human genome assembly GRCh37/hg19 was 
used. 

3.2.4 Variant confirmation using IGV and allele depth  

Since all available members of the family were sequenced by WES, the variant was 

confirmed by visualizing the bam file on Integrative Genomics Viewer (IGV). This allows 

for visualization of the region where the variant is located, as well as giving an indication 

Gene Location Variant Protein change

CHRNG 2:233404782 c.136C>T p.R46*

Condel Polyphen2 SIFT CADD score
___ ___ ___ 35

MAF gnomAD Protein Function OMIM In Homozygous 
region 

0.000054
Gamma subunit of 

acetylcholine 
receptor

Escobar 
Syndrome

Yes

Variant Information

Pathogenicity prediction 

Frequency and function 
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of the read depth over this region (major allele = C, variant allele = T). IGV images are 

shown in figure 3-3 following the structure of the family’s pedigree. The allele depth for 

this variant in all sequencing individuals is summarised in table 3-4, showing a 

segregation pattern compatible with autosomal recessive inheritance with all affected 

individuals homozygous for the variant. Following this conformation, this research finding 

in CHRNG was reported back to the referring clinician. Sanger sequencing for diagnostic 

confirmation was performed by the Yorkshire Regional Genetics Service diagnostics lab, 

prior to reporting the finding to the patients. 

  

 

Figure 3-3 IGV images confirming segregation of the CHRNG variant in family ND1. 

IGV screenshots illustrate the presence of the variant T allele (red) in the affected individuals with 
very high coverage, and the presence of the variant in approximately half the reads in the parents 
and unaffected sibling, consistent with autosomal recessive segregation.  

JT707 JT706

JT708
(unaffected)

JT710A
(affected)

JT709
(affected)

JT709
(affected)
JT710
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Table 3-3 Summary of allele depth per WES sample and outlined segregation 

pattern. 

The allele depth for every individual is very high, with approximately equal reads for each 
nucleotide in the heterozygous individuals and no reads for the cytosine nucleotide in the affected 
individuals, confirming the segregation pattern visualized by IGV. 
 
 

3.2.5 CHRNG and Arthrogryposis  

The CHRNG gene encodes for the gamma subunit of the acetylcholine receptor and it is 

known to cause autosomal recessive, lethal and non-lethal Escobar syndrome (MIM 

number: 265000) (Morgan et al., 2006). The clinical synopsis of this syndrome matches 

the phenotype of the family, with the key feature being the incidence of arthrogryposis.  

 

The WES data for family ND1 were of limited scientific interest, as mutations in the gene 

have already been described as a cause of this condition and this specific nonsense 

mutation has already been reported in the literature (Morgan et al., 2006). However, the 

outcome has been reported to the referring clinician and is likely to benefit the family in 

the future through accurate molecular diagnostic testing and genetic counselling. 

  

JT706 JT707 JT708 JT709 JT710 JT710A
Segregation C/T C/T C/T T/T T/T T/T

Allele Depth C=89/T=73 C=126/T=105 C=90/T=91 C=0/T=157 C=0/T=133 C=0/T=221
Phred Genotype 

Confidence 99 99 99 99 99 99
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3.3 Mutation in MICU1 as a cause of muscular dystrophy 

3.3.1  Clinical Phenotype  

Family ND2 is a consanguineous family of Saudi Arabian origin with two affected boys 

who presented with elevated creatine kinase levels and mild proximal weakness. No 

learning difficulties or abnormal movement was reported by the clinician responsible for 

this family’s care, but muscle biopsy revealed minimal myopathic changes. The family 

pedigree is shown in figure 3-4. 

 
 

Figure 3-4 Pedigree of family ND2. 

Pedigree outlining two generations of the family and the consanguineous union.  

3.3.2 Whole Exome Sequencing  

WES was performed by our collaborators at the Wellcome Centre for Mitochondrial 

Research at Newcastle University. DNA samples from the two affected individuals were 

prepared using the Illumina QXT kit and the Agilent v5 library. Samples were pooled on 

a lane and run on the Illumina HiSeq2500 platform. Data analysis was carried out using 

their in-house bioinformatics pipeline, revealing a homozygous nonsense mutation 

c.547C>T (p.Q183*) in exon 6 of the MICU1 gene (NM_001195518.2). Both parents 

were screened for this variant and were heterozygous, confirming the recessive mode of 

inheritance.  

3.3.3 The Mitochondrial Calcium Uptake 1 (MICU1) gene 

The Mitochondrial Calcium Uptake 1 (MICU1) gene encodes for a protein that is a key 

regulator of the Mitochondrial Calcium Uniporter (MCU) (Marchi and Pinton, 2014). MCU 

is a calcium channel localised at the mitochondrial inner membrane, which is regulated 

by its various subunits including MICU1, MICU2 and EMRE (Sancak et al., 2013). MICU1 

is an important regulator of the opening of the channel under increased Ca2+ levels, 

whereas MICU2 acts antagonistically to MICU1 and inhibits MCU activity under low Ca2+ 

levels (Patron et al., 2014). Both MICU1 and MICU2 interact with the uniporter by forming 

I

II
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heterodimers, which comprise of EF-hand domains that can sense calcium levels, 

allowing instant responses to calcium transients. 

The MICU1 interaction with the MCU, via EMRE, is crucial in maintaining basal calcium 

conditions. A disruption of the gating of the uniporter can lead to pathological Ca2+ 

overload, which can thereby lead to oxidative stress and perhaps apoptosis. Such 

disruptions of MCU gating have been reported in cases where the MICU1 gene was 

mutated and could no longer bind and interact with the uniporter. Splicing mutations, 

c.1078-1G>C and c.741+1G>A (Logan et al., 2014), and a 2755 bp homozygous deletion 

in exon 1 (Lewis-Smith et al., 2016), are causative for a myopathy phenotype with 

extrapyramidal signs. 

 
 

Figure 3-5 The MCU complex under low or high calcium concentrations. 
A representation of the MCU complex showing all components of the complex, their interactions, 
and how calcium levels can regulate the MICU1 and MICU2 interactions and thereby the gating 
of the channel (Kamer and Mootha, 2015). 
 

3.3.4 Functional characterisation using patient fibroblasts 

3.3.4.1 Confirming the c.547C>T variant in patient fibroblasts 

A skin biopsy was obtained from one of the affected children under informed consent for 

research as described in section 2.2.2 and 2.2.4. Primary fibroblast cultures were grown 

from the skin biopsy at the Yorkshire Regional Genetic Service cytogenetics lab, St 

James’ University Hospital. Genomic DNA extraction and Sanger sequencing (section 

2.2.5.3 and 2.2.9) were used to confirm the nonsense mutation identified by WES (see 

figure 3-6). 
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Figure 3-6 The electropherogram confirming the MICU1 c.547C>T, p.Q183* 

nonsense mutation. 

Genomic DNA was extracted from affected patient primary fibroblasts and normal control human 
primary fibroblasts to confirm the mutation.  

3.3.4.2 Mitochondrial fragmentation revealed by IF microscopy 

Initially, an IF experiment was set up in order to assess how the mutation affected the 

mitochondrial network. To achieve this, wildtype and mutant primary human dermal 

fibroblasts were utilised. For the purposes of the IF staining, an antibody against MTCO2 

was used as a marker for mitochondria in addition to either MICU1 or MCU to visualize 

the localization of the uniporter complex. The antibody staining for MICU1 and MCU did 

not reveal any obvious differences between wildtype and mutant (see figure 3-7). 

However, mitochondrial staining for MTCO2 revealed a disrupted mitochondrial network 

in the affected patient cells compared to the normal controls. The mitochondrial 

fragmentation is an observation that was expected because the MICU1 mutation is likely 

to directly affect the calcium homeostasis of the mitochondria by uncoupling the calcium 

uniporter (Logan et al., 2014). This observation could also indicate that the fragmentation 

might be due to disrupted mitochondrial trafficking via the microtubules, which is also 

calcium-dependent. Disrupted calcium buffering around the mitochondria might have an 

effect on the calcium-dependent binding of the Miro/Milton complex to the kinesin motor 

protein of the microtubules (Wang and Schwarz, 2009). To investigate this further, we 

used live cell imaging to visualize mitochondrial trafficking over time (section 3.3.4.3). 

  

A A A A T T T C C C A G G A A C A A A A T T T C C T A G G A A C

HDF control MICU1 mut - c.547 C>T
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Figure 3-7 IF confocal microscopy revealing mitochondrial fragmentation. 

A: Immunofluorescence confocal microscopy of MICU1 (green) and the mitochondrial marker 
MTCO2 (red) in MICU1 c.547 C>T (p. Q183X) primary fibroblasts compared to wildtype normal 
control fibroblasts (HDF). B: Immunofluorescence confocal microscopy of MCU (green) and the 
mitochondrial marker MTCO2 (red) in MICU1 c.547 C>T (p. Q183X) primary fibroblasts compared 
to wildtype control fibroblasts (HDF). Scale bars = 20 µm. 

3.3.4.3 Live cell imaging investigating the mitochondrial distribution  

Live cell imaging was used in an attempt to investigate the hypothesis of mitochondrial 

fragmentation arising from disrupted mitochondrial trafficking via the microtubules. Live 

cell mitochondrial staining was accomplished using MitoTracker® Green FM (Invitrogen), 

which is a green fluorescent stain that stains mitochondria in live cells, regardless of the 

mitochondrial membrane potential. MitoTracker® Green FM is used in this instance as a 

measure of mitochondrial distribution in order to test whether or not there is any 

difference in mitochondrial numbers, morphology and overall function between the 

control and mutant MICU1 p.Q183* fibroblasts. Figure 3-8 summarises a few of the 

replicates acquired from live cell imaging. 
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Figure 3-8 Live cell imaging investigating mitochondrial distribution 

Summary of images obtained at specific time intervals, showing the MitoTracker® Green FM 
(Invitrogen) staining and phase contrast to identify the cell boundaries. 
 

 

Individual tiff files where collected and analysis was performed for each field of view at 

20 minutes intervals. Analysis was carried out on FIJI by using the protocol for 

“Measuring Cell Fluorescence” using the following formula:  

 

Corrected total cell fluorescence (CTCF) = Integrated Density – (Area of selected cell X 

Mean fluorescence of background readings) 

 

For each field of view, every cell was selected using the phase contrast view to visualize 

the cell boundaries and marked as “Region of Interest” (ROI). For each ROI the 

Integrated Density of the green fluorescence was measured. Subsequently, three 

background readings were collected around each ROI and were used to subtract any 

background fluorescence. Three biological replicates, of three technical replicates each, 

were imaged (see section 2.2.18.1) and analysed using the above protocol. The results 

of the live cell imaging experiment are summarised in figure 3-9, comparing the CTCF 

value between wildtype and mutant MICU1 p.Q183* human dermal fibroblasts. 
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Figure 3-9 Graphical representation for the averages of the Corrected Total Cell 

Fluorescence (CTCF) between wildtype and MICU1 p.Q183* mutant fibroblasts.  

A representation of the average values of CTCF from nine fields of view taken from each biological 
replicate, indicating a reduction in CTCF in the mutant fibroblasts compared to the control.  
 

The experiment revealed reduced CTCF in the mutant fibroblasts compared to the 

control. Statistical analysis using a two-tailed t-test indicated a significant reduction in 

CTCF (p-value: 0.0013). However, reduction of CTCF correlates with reduced 

mitochondrial levels. This could be interpreted as a disruption in mitochondrial trafficking 

on the microtubules (Wang and Schwarz, 2009), with most mitochondrial clustering 

around the nucleus in the mutant fibroblasts, thereby giving a reduced CTCF value. In 

addition, a disturbance of the balance between fission and fusion (Scott, 2016) could 

also lead to a more fragmented mitochondrial network. In particular, if fission is occurring 

more frequently than fusion, then the overall mitochondrial levels may also seem reduced 

as the network fragments. Lastly, the significant disruption of calcium homeostasis may 

lead to stressed mitochondria and potential initiation of apoptotic events (Elmore, 2007). 

 

3.3.4.4 MTT Assay 

Another key aspect that was investigated was the effect of the MICU1 c.547 C>T 

p.Q183* mutation on cell metabolic activity. As the mutation is implicated in uncoupling 

the mitochondrial calcium uniporter, it was a reasonable assumption that it would have 

a downstream impact on calcium buffering, ionic homeostasis and the proton-motive 

force that drives oxidative phosphorylation. The first attempt to obtain more insights 

about metabolism was by using the MTT assay, which is a colorimetric test for measuring 
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cell metabolic activity. The tetrazolium dye MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide is reduced to formazan, an insoluble purple crystal, by 

dehydrogenase enzymes (Sylvester, 2011). This experiment was performed in a dose-

response manner to eliminate any false positive results due to cell number differences. 

 

 

Figure 3-10 MTT assay in a dose-response experiment 

A representation of a dose-response MTT experiment with cell numbers ranging from 10,000 to 
25,000 cells per well. In all cases, the reduction of MTT to formazan was significantly increased 
in the mutant fibroblasts compared to the control.  
 

 

The statistical analysis of the results, using a two-tailed t-test, indicated that the 

metabolic activity of the mutant cells is significantly higher compared to the controls. This 

assay is based on the activity of dehydrogenase enzymes, which are involved in energy 

production via the Kreb’s cycle and electron transport chain in the mitochondria. 

Increased activity could be explained by the disrupted calcium buffering caused by the 

MICU1 mutation, because calcium is a key metabolic regulator of the citric acid cycle 

with important roles in activating specific dehydrogenases to promote energy production 

(Denton, 2009). In particular, calcium can activate pyruvate dehydrogenase, 2-

oxoglutarate dehydrogenase and NAD+-dependent isocitrate dehydrogenase, all key 

enzymes of the Kreb’s cycle, thereby activating ATP production by the mitochondria 

(Traaseth et al., 2004). High calcium concentrations in the mitochondria, as a result of 

the MICU1 mutation, can potentially result to overstimulated dehydrogenases activity 

and thereby increased reduction of MTT in this experiment.  
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These descriptive observations are interesting and suggest possible new avenues to 

investigate the pathomechanism of MICU1 mutations as a cause of muscular dystrophy. 

However, at the time of study, MICU1 variants were no longer novel, with a number 

already published in the literature. Furthermore, Lee et al had solved part of the structure 

of the calcium uniporter (Lee et al., 2015) and, particularly for MICU1, Liu et al had 

rescued the phenotype seen in MICU1- knockout mice by introducing a heterozygous 

knockout mutation in EMRE (Liu et al., 2016) which significantly rescued the gating of 

MCU. The scientific novelty of further functional characterization of MICU1 was therefore 

limited, and we prioritized the investigations presented in chapters 5 and 6. 
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3.4 Expanding the genotype-phenotype correlation in 

developmental delay disorders and functional 

characterization of a novel HERC2 frameshift variant 

3.4.1 Clinical Phenotype 

Family ND3 is a consanguineous South Asian family with three affected individuals 

presenting severe developmental delay. Two of the affected children died in very early 

childhood. All of the affected children shared the same clinical symptoms, including 

movement difficulties and profound developmental delay. A more detailed clinical picture 

was obtained from the affected boy, from whom we also obtain a skin biopsy. The 

affected child has severe hypotonia, with some involuntary movements, choreoathetoid 

seizures and no head control. He is also blind, even though his eyes are structurally 

normal. The family pedigree is outlined in figure 3-11.  

 

 

Figure 3-11 Pedigree of family ND3 

Pedigree outlining two generations of the family and the consanguineous union. DNA samples of 
individuals marked with star have been used for genetic investigations using WES. 

3.4.2 Autozygosity Mapping  

In the presence of consanguinity autozygosity mapping was performed using WES data. 

Precisely, the vcf file prior to SNP filtering (.raw.vcf) from the four members of the family 

that have been taken forward for WES were used (see section 2.2.10.6). Homozygous 

regions shared by the three affected individuals, but absent from the parents and the 

unaffected sibling, are summarised in Table 3-4. 
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Table 3-4 Common regions of homozygosity amongst affected individuals. 

The homozygous regions are listed in descending order based on the size of each region. The 
human genome assembly GRCh37/hg19 was used. 
 
 

3.4.3 Whole Exome Sequencing  

DNA samples from the three affected individuals and the unaffected sibling were taken 

forward for WES library preparation using the Illumina QXT protocol (section 2.2.10). 

During library preparation, Bioanalyzer traces were used to assess the size and quantity 

of the DNA fragments at post-shearing and post-hybridization stages (Appendix D).  The 

samples were pooled together aiming for a total of ten samples per lane and sequencing 

was performed on the Illumina HiSeq 3000 platform. 

 

Prior to data analysis, the fastq files and subsequent bam files generated were also 

assessed for the quality of sequencing. An in-house bioinformatics pipeline was used for 

data analysis (section 2.2.10.3) assuming a recessive mode of inheritance that allowed 

variants to be prioritized in previously identified homozygous regions. In addition, 

segregation analysis enabled the filtering out of variants that were not compatible with 

Mendelian segregation of an autosomal recessive condition. Table 3-5 summarises the 

only variant identified after filtering with a CADD score >15. Figure 3-12 illustrates the 

presence of a homozygous frameshift HERC2 variant in the largest homozygous region 

shared by the affected individuals.  

 

Chromosome Start End Length
15 28200408 34640378 6439970
12 9450357 10149851 699494
20 60572663 60966318 393655
6 32487209 32546838 59629
6 29856633 29858530 1897
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Table 3-5 Homozygous variant identified in family ND2. 
Homozygous variant c.13767_13770delTGAA in HERC2 (NM_004667.6) was annotated based 
on the human genome assembly GRCh37/hg19. 
 

 

 

Figure 3-12 Ideogram illustrating the homozygous regions shared by the affected 

individuals in family ND3. 

The ideogram in light pink is from the unaffected individual, whereas the three outer ideograms 
in light blue are from the affected children. The regions highlighted in red represent the 
homozygous regions. The homozygous variant lies within the largest region on chromosome 15 
(q13.1-q14) and it is indicated by the red arrow. The human genome assembly GRCh37/hg19 
was used. 
 
 
 
 

Gene Location Variant Protein change

HERC2 15:28359900 c.13767_13770delTGAA p.N4589KTer4598

Condel Polyphen2 SIFT CADD score

___ ___ ___ 34
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3.4.4 Variant confirmation using Sanger sequencing  

Sanger sequencing was used to confirm the deletion identified by WES in the affected 

individuals. All members of the family were sequenced over this region using the relevant 

primers (see section 2.2.4). The c.13767_13770delTGAA variant in HERC2 segregated 

with the condition, consistent with autosomal recessive inheritance. This research finding 

was reported back to the referring clinician. The electropherograms that summarise this 

research finding are shown in Figure 3-13. 

 

 

Figure 3-13 Electropherograms of the c.13767_13770delTGAA frameshift deletion 

in HERC2. 

Electropherograms illustrating wildtype sequence from control DNA, heterozygous sequence from 
parental DNA and the homozygous mutant sequence from the patients DNA. The red frame marks 
the 4bp region that has been deleted and the red line highlights the break point of the deletion in 
the parental carrier and affected individual.  
  

Control DNA – Wildtype

Parental DNA – Heterozygous

Patient DNA – Homozygous

Control DNA – Wildtype 

Parental DNA – Heterozygous 

Patient DNA – Homozygous 
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3.4.5 Variants in HERC2 lead to severe developmental delay 

3.4.5.1 HERC2 and its biological function  

The HERC2 gene codes for a 527kDa E3 ubiquitin protein ligase consisting of multiple 

structural domains. Some of its key domains include the RCC1-like domain (RLD) that 

is predicted to act as a guanine nucleotide exchange factor, and the HECT domain that 

is shared by a number of E3 ubiquitin protein ligases and has enzymatic activity (figure 

3-14) (Kuhnle et al., 2011). The main function of HERC2 is to control the ubiquitin-

dependent retention of DNA repair proteins and specifically promote the ubiquitination 

and proteasomal degradation of XPA (Lee et al., 2014). XPA plays a crucial role in the 

nucleotide excision repair (NER) mechanism and its correct turnover by HERC2 can 

critically affect the circadian oscillation of the NER activity, particularly in the brain (Kang 

et al., 2010). Apart from XPA, HERC2 appears to interact with proteins implicated in 

mitosis and cell cycle regulation. Possible interactors of HERC2 include UBE3A, ASPM, 

PCM1 and CEP170 (Galligan et al., 2015).  

 

UBE3A encodes another E3 ubiquitin protein ligase that is involved in the ubiquitin 

protein degradation system (Philpot et al., 2011). This gene is paternally imprinted and 

the maternally inherited allele is expressed in the brain (Sell and Margolis, 2015). 

Maternal inheritance of a deletion on chromosome 15q11.2 – q13, encompassing the 

UBE3A gene, has been associated with Angleman syndrome. This is characterised by 

intellectual disability, movement disorder, typical abnormal behaviours and speech 

limitations (Williams et al., 2010). These clinical features tend to overlap with many 

Angelman-like phenotypes, covering a wide range of genotypes, that are otherwise 

clinically indistinguishable. However, the genotype-phenotype correlation for specific 

genes such as HERC2 have not been determined, comprising an important clinical need. 

 

Abnormal Sprindle-like Microcephaly associated protein, ASPM, is a large protein 

involved in the regulation of mitotic spindle formation and microtubule dynamics. 

Expression studies of Aspm mRNA in mice revealed that ASPM seems to be significantly 

expressed at sites of active neurogenesis (Bond et al., 2002). Mutations in this gene are 

linked with Type 5 primary microcephaly, with mild to moderate intellectual disability 

(Bond et al., 2003).  

 

In addition, PCM1 encodes pericentriolar material 1 protein that is required for 

centrosome assembly and function. In particular, PCM1 is a component of the centriolar 

satellites and it is involved in correct anchoring of microtubules to the centrosome 

(Dammermann and Merdes, 2002). It has also been shown that PCM1 forms granules 
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that are concentrated around centrioles, which tend to disassemble during mitosis and 

reassemble once the cells enter interphase in a cell-cycle dependent manner (Kubo and 

Tsukita, 2003). PCM1 seems to also be implicated in regulating primary cilia disassemble 

before entering mitosis (Villumsen et al., 2013).  

 

Furthermore, CEP170 is a gene encoding centrosomal protein 170 which is another 

component of the centrosome. Immunoelectron microscopy revealed that CEP170 

specifically localizes to the mother centriole, at the subdistal appendage. CEP170 seems 

to be implicated with spindle formation, and maintaining microtubular organisation and 

cellular morphology (Guarguaglini et al., 2005).  

3.4.5.2 The HERC2 frameshift variant leads to complete loss of protein 

The c.13767_13770delTGAA four nucleotide deletion in HERC2 lies within the HECT 

domain, and the frameshift results in a stop codon eight amino acids after the breakpoint. 

The impact of this variant on the encoded protein was further investigated, in order to 

clarify if the stop codon results in a truncated protein with impaired E3 ligase activity or 

if the mRNA undergoes nonsense-mediated decay. The premature stop codon could 

also lead to exon-skipping with retention of minor protein isoforms, that was also worth 

investigating.   

 

 
 

Figure 3-14 Illustration of the HERC2 protein and its multiple domains 

Schematic diagram illustrating the different domains of the HERC2 protein (Galligan et al., 2015) 
and outlining the impact of the four nucleotide deletion within exon 90, resulting in a downstream 
stop codon. 
 

To accomplish this, soluble protein was extracted from primary control HDFs and primary 

patient fibroblasts obtained from a skin biopsy. Protein was then denatured and run on 

an SDS-PAGE and analysed using Western blotting (see section 2.2.19) staining with 

an anti-HERC2 antibody (Table 2.4). The staining revealed complete loss of full-length 

HERC2 protein as a result of the frameshift deletion. However, there is a lower size band 

appearing as a result of either non-specific binding of the antibody or of a possible 

RLD1 Cyt-bS MIB RLD2 RLD3DOCZF HECT
HERC2

4457          4794     

c.13767_13770delTGAA

CGA GAC AAT GAA GCC ACC TCA GAG GAG TTT GAA GCC ATG AGC CTG
R      D      N      E      A       T      S     E      E       F      E     A      M     S      L

CGA GAC AAG CCA CCT CAG AGG AGT TTG AAG CCA TGA GCC TG
R      D      K      P      P      Q      R      S      L      K      P    stop

Exon 903/9
HERC2 Wildtype

Mutant
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retention of a smaller 270kDa isoform that has not been identified yet. (Figure 3-15). 

Based on this result the patient fibroblasts were treated as HERC2-null and were 

subsequently used to further characterise the impact of the mutation on cellular 

phenotypes and protein interactions. 

 

 
 

Figure 3-15 Complete loss of HERC2 protein revealed by Western blot. 

Western blot analysis showed absence of a band at the expected size of 527kDa for the mutant 
protein when stained with the anti-HERC2 antibody. The epitope recognised by the antibody maps 
to the RLD2 domain and between 4784-4834 of the HECT domain. There is a lower 270kDa band 
on the membrane, but this is likely to be due to non-specific binding of the antibody rather than a 
minor protein isoform because there is no known HERC2 coding transcript that encodes a protein 
of that size. 
 
 

3.4.5.3 Loss of HERC2 elicits impaired mitochondria  

Once it was established that the four nucleotide deletion caused protein loss, the HERC2 

null fibroblasts were used as a cellular model of disease. This is currently the best model 

to study the pathomechanisms of HERC2-related disease, considering the size of this 

protein and the obvious limitations of over-expression studies. 

 

3.4.5.3.1 HERC2 null cells exhibit striking mitochondrial fragmentation 

Based on some of the clinical features of the affected children, particularly muscle 

atrophy and hypotonia, we considered it important to investigate the impact of the 

HERC2 c.13767_13770delTGAA frameshift variant on mitochondrial function. Loss of 

HERC2 is likely to affect many cellular processes, specifically cell cycle regulation and 

DNA repair mechanisms, resulting in cellular stress and defective cellular homeostasis 
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as a downstream consequence. Unbalanced homeostasis can be critical in mitochondrial 

dynamics and function (Willems et al., 2015).  

 
In an attempt to assess these cellular phenotypes, the fibroblasts were seeded on 

coverslips and mitochondrial number and morphology visualized by 

immunofluorescence microscopy (section 2.2.17). Striking mitochondrial fragmentation 

was apparent in the mutant fibroblast compared to the control when visualized for the 

MTCO2 mitochondrial marker(Figure 3-16). 

 

 

 
 

Figure 3-16 IF confocal microscopy of HERC2 null fibroblasts revealed 

mitochondrial fragmentation. 

Mitochondrial staining with MTCO2 antibody (green) in wildtype and HERC2 mutant fibroblasts, 
showing mitochondrial fragmentation (detail shown in magnified insets). Scale bar = 20 µm. 
 
  

Wildtype - HDF HERC2 mutant - HDF

20μm



 86 
3.4.5.3.2 Mitochondrial dysfunction due to HERC2 mutation  

In order to further elucidate the effect of a HERC2 null mutation on mitochondrial function 

and cellular phenotypes, the oxidative phosphorylation pathway of energy production 

was tested using a Seahorse XFe96 Extracellular Flux Analyzer running the the 

MitoStress test (section 2.2.22). Control and mutant fibroblasts (annotated as HDF and 

HERC2 respectively) were challenged with various toxins that block different processes 

of the oxidative phosphorylation pathway, in three biological replicates. The oxygen 

consumption rate (OCR) of the cells was measured before and after each toxin injection 

allowing for identification of important measures of mitochondrial function. The trace 

below shows the changes in OCR in real time (Figure 3-17). 

 

 
 

Figure 3-17 Seahorse trace for the MitoStress test of HERC2 null fibroblasts 

Traces of real-time OCR changes between wildtype and mutant fibroblasts. The first injection was 
with oligomycin to block ATP synthase, the second injection was with FCCP to uncouple the 
electron transport chain and, lastly, Antimycin A/ Rotenone completely blocked electron transport. 
 
 
Further analysis of the OCR measurements at certain time points of the experiment allow 

for identification of key aspects of mitochondrial function, such as basal and maximal 

respiration, ATP production, proton leak and spare respiratory capacity. The analysis of 

each one of these mitochondrial characteristics is summarised in Figure 3-18. Basal 

respiration, ATP production, proton leak and coupling efficiency were significantly 

different in mutant HERC2 cells compared to wildtype. 
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Figure 3-18 Metrics of mitochondrial function in mutant HERC2 and normal 

wildtype fibroblasts. 

Bar graphs that quantitate the metrics obtained from the MitoStress Test. Measurements at 
specific time points before or after toxin injections allowed for the calculation of each of the key 
aspects of mitochondrial function. HERC2 mutant fibroblasts were significantly under-respiring at 
basal levels, producing less ATP by oxidative phosphorylation and had a disrupted proton-motive 
force. All statistical tests were performed by a two-tailed Student t-test (n=3; ns, not significant; * 
p<0.05; ***p<0.001). Error bars indicate s.e.m. 
 
 
The results of the MitoStress test indicated that, when forced, the mitochondria of the 

HERC2 mutant cells can reach almost the same maximum respiration level as in the 

wildtype control cells. This is also validated by the fact that there is no significant 

difference between their spare respiratory capacity and their coupling efficiency. 

However, under normal respiratory conditions the basal respiration of the HERC2 mutant 

cells is significantly less than the basal respiration seen in normal control cells. This was 

one of the indications that suggests the HERC2 mutant cells have switched their energy 

production to other means rather than oxidative phosphorylation. To test this hypothesis, 

we performed a Glycolysis stress test (Figure 3-19). In addition, the MitoStress test also 

revealed that the overall ATP production from oxidative phosphorylation in the HERC2 

mutant cells is significantly lower than in normal controls, supporting the hypothesis that 

mutant cells switch to other less efficient processes for energy production. One of the 

reasons for doing so could be a defect in the ionic homeostasis due to altered proton 
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leak in the mitochondria, affecting the proton-motive force and therefore the production 

of ATP (Papa et al., 2012). The observations from the MitoStress test were informative, 

but further experiments are needed to understand the molecular mechanism of the defect 

and thereby the origin of the mitochondrial fragmentation phenotype (Figure 3-16).  

 

 

In order to further investigate this observation, a Glycolysis Stress test was performed. 

Normal control and mutant fibroblasts were challenged with various toxins that block 

different processes of either glycolysis or the oxidative phosphorylation pathway, in three 

biological replicates. The extracellular acidification rate (ECAR) of the cells was 

measured before and after each injection, allowing for the identification of key aspects 

of glycolysis. The trace below shows the changes in ECAR in real time (Figure 3-19). 

 

 
 

Figure 3-19 Seahorse trace for the Glycolysis Stress test of HERC2 null fibroblasts 

Representation of the changes in ECAR in real time between normal control and mutant 
fibroblasts. The first injection was with glucose to promote glycolysis, then oligomycin was added 
to block the ATP synthase and any ATP production from oxidative phosphorylation, and the last 
injection was with 2-deoxyglucose (2-DG), a structural analogue of glucose that completely blocks 
glycolysis. 
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Figure 3-20 ECAR metrics accessing glycolysis.  

Representation of all the metrics obtained from the Glycolysis Stress test. Measurements at 
specific time points before or after each injection allowed for the calculation of each of the above 
properties to be obtained (Agilent protocol). HERC2 mutant fibroblasts seem to have the same 
glycolytic phenotype as the control HDF cells, except from the non-glycolytic acidification 
measurement. All statistical tests were performed by a two-tailed Student t-test (n=3; ns, not 
significant; * p<0.05; ***p<0.001). Error bars indicate s.e.m. 
 
 
The results from the Glycolysis Stress test did not reveal any great differences between 

the normal control and HERC2 mutant fibroblasts. The level of glycolysis (or in other 

words the conversion of glycose to pyruvate) was almost the same between the two cell 

types. A non-significant difference was also observed in the glycolytic reserve and the 

glycolytic capacity between the wildtype and mutant cell line. This indicates that under 

normal conditions both cell types have the same rate of glycolysis and, when forced, 

both cell types have the potential to reach maximum glycolysis. The only significant 

difference observed was in the non-glycolytic acidification rate observed in the wildtype 

and mutant fibroblast. HERC2 mutant fibroblasts had a significantly increased non-

glycolytic acidification level compared to the wildtype fibroblasts, indicating a source of 

acidification separate to the glycolysis pathway. This can potentially arise from the 
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conversion of pyruvate to lactate that is further reduced to lactic acid inducing 

acidification (Mookerjee et al., 2015). The diagram in figure 3-21 outlines the two 

possible outcomes following glycolysis.  

 

 

Figure 3-21 Outline of aerobic and anaerobic metabolism pathways 

The diagram illustrates the two potential uses of pyruvate in aerobic and anaerobic metabolism. 
Pyruvate can be converted into Acetyl CoA and fed into the Kreb’s cycle and the oxidative 
phosphorylation chain for maximum production of ATP by aerobic respiration. Pyruvate can also 
be converted to lactate for immediate energy demands when aerobic metabolism cannot produce 
enough ATP at any given instance, for example during exercise. Lactate can be further reduced 
to lactic acid leading to acidification.  
 
 
Overall, this investigation has revealed that there is a defect in the oxidative 

phosphorylation chain resulting in reduced basal aerobic respiration and ATP production 

in HERC2 null fibroblasts. This could be due to the proton-motive force, or more 

specifically due to one of the complexes of the oxidative phosphorylation chain, being 

impaired (Ghezzi and Zeviani, 2018). In addition, the mitochondria could be under 

excessive stress resulting in impaired aerobic metabolism and fragmentation of the 

network. This is also supported by the fact that the mutant cells tend to have increased 

acidification levels, perhaps due to the conversion of pyruvate to lactate in order to 

maintain their energy requirements. These are interesting descriptive observations, but 

further experiments are required in order to confirm that lactate is the source of 

acidification observed, and to further try and understand how the HERC2 mutation can 

have such a severe effect on mitochondrial function.  
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3.4.5.4 Loss of HERC2 impacts other protein-protein interactions 

Once it was established that the HERC2 frameshift mutation led to complete loss of the 

protein, it was also worth investigating the impact that HERC2 loss had on potential 

interacting proteins (discussed in section 3.4.5.1). Soluble protein was extracted from 

normal control and HERC2 null patient fibroblasts and run on western blots to assess 

the impact on the protein levels of interacting proteins and potential HERC2 substrates. 

Since HERC2 is an E3 Ubiquitin-ligase protein, we hypothesized that HERC2 loss would 

increase the protein levels of potential substrates. For example, XPA appears to be 

ubiquitinated by the HERC2 E3 ligase at K48 for regulated degradation through the 

ubiquitin-proteasome system (Lee et al., 2014). Additionally, other interacting proteins 

that may be ubiquitinated by HERC2 for signalling purposes, via K11 or K63 for example, 

could be potentially affected by the loss of HERC2. The result of this investigation is 

summarised in figure 3-22. 

A    

 

B 

 

Figure 3-22 Western blot analysis to investigate the impact of HERC2 deficit to 

other interacting proteins.  
A – Representation of protein levels on western blot membranes for the indicated interacting 
protein compared to loading control β-actin. Western blots include all three biological replicated 
of each experiment. B -  Bar graphs quantitating the results from all three biological replicates 
normalised to β-actin. All statistical tests were performed by a two-tailed Student t-test (n=3; ns, 
not significant; * p<0.05; ***p<0.001). Error bars indicate s.e.m. 
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The western blot analysis of three interacting proteins of HERC2 revealed significant 

alterations in their protein levels. For example, levels of XPA are significantly higher in 

mutant cells compared to the controls, supporting the fact that XPA could be one of the 

substrates of HERC2 that is tagged for degradation. Loss of HERC2 then potentially 

causes XPA accumulation in the cells that could either affect its function in DNA repair 

mechanisms or promote a pathogenic outcome due to aggregating protein complexes. 

In addition, levels of CEP170 and PCM1 are significantly reduced in the mutant cells 

compared to the controls, potentially disrupting downstream processes of mitosis and 

cell-cycle regulation. In these instances, HERC2 could mediate ubiquitin signalling 

cascades that are separate to protein degradation pathways. These observations are 

worth investigating further to understand more about the function of HERC2 and its 

interacting partners, and how loss of HERC2, can have such a dramatic impact on health. 

Due to time constraints and reagent limitations, this study only investigated the protein 

levels of a few candidate interactors that appear to mediate cell cycle regulation. 

However, HERC2 is a massive protein and is likely to be implicated in many other 

protein-protein interactions and to have diverse roles on cellular processes. 

 

In addition, the only variant in HERC2 that has been associated with an Angelman-like 

phenotype is the homozygous missense p.Pro594Leu variant (Puffenberger et al., 2012), 

that seems to be better tolerated resulting in a less severe developmental phenotype. 

However, a 286kb homozygous deletion over a region comprising the HERC2 gene, 

appears to cause a much more severe form of developmental delay and lethality (Morice-

Picard et al., 2017). The complete loss of a large and important E3 ligase will have a 

detrimental effect on diverse cellular processes, including DNA damage repair and cell 

cycle regulation, which is supported by the observation that the HERC2 homozygous null 

mouse model is embryonically lethal (Cubillos-Rojas et al., 2016). From a clinical 

perspective, this work establishes, for the first time, a clear genotype-phenotype 

correlation for the HERC2 gene. This finding will allow clinicians to offer diagnostic 

testing to affected families and to include HERC2 in the genetic screening of patients 

with developmental delay but without a molecular diagnosis. This is important for the 

future stratification and management of inherited disorders with non-syndromic, profound 

developmental delay because, without a molecular diagnosis, these conditions are often 

clinically indistinguishable.  
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Chapter 4  

Candidate gene discovery using whole exome sequencing for 

autosomal recessive neuromuscular or neurodevelopmental 

disorders 

4.1 Introduction 

This chapter summarises the library preparation and data analysis for Whole Exome 

Sequencing of eight families that were recruited to the “Jules Thorn Biomedical Award” 

genetic research study. For each affected individual presented in this chapter, a clinical 

overview and variant filtering strategy is given. Candidate variants are then discussed in 

detail where appropriate, and for any unsolved families other alternative methods are 

proposed for gene discovery purposes.  

 

Candidate variants presented in this chapter have not been functionally characterised as 

part of this study. Cases where the candidate variants have been further functionally 

characterised are discussed in detail in chapters 5 and 6.  

 

A number of possible disease-causing variants identified from these cases were then 

uploaded on the Deciphering Developmental Delay (DDD) project, in an attempt to 

discover additional individuals and families with similar phenotypes and mutations in the 

same gene.  

 

4.2 Methodology for gene discovery  

4.2.1 Patient Recruitment and Phenotyping  

From the families recruited for the “Jules Thorn Biomedical Award” genetic research 

study, eight were investigated as part of this chapter. All family members that were 

included in the study gave informed consent for research (see section 2.2.2) and their 

DNA was collected either from blood or saliva samples. Affected individuals were 

phenotyped by Clinical Geneticists in regional hospitals (see section 2.2.1). 

  



 94 

4.2.2 Whole Exome Sequencing  

Genomic DNA samples from affected individuals, parents or unaffected sibling were 

taken forward for WES library preparation using the Illumina QXT protocol (section 

2.2.10). In addition to sequencing family trios (both parents and affected child) used in 

sequencing, additional affected individuals or unaffected siblings were also sequenced 

to narrow down the candidate genes by segregation. 

 

During library preparation, Bioanalyzer traces were used to assess the size and quantity 

of the DNA fragments at post-shearing and post-hybridization stages (Appendix D). The 

samples were pooled together aiming for a total of ten samples per lane and sequencing 

was performed on the Illumina HiSeq 3000 platform. 

 

Prior to data analysis, the .fastq files generated and subsequent .bam files were also 

evaluated for the quality of sequencing (Appendix F). Subsequently, the depth of 

coverage across the exome was also assessed as an additional quality check of the 

sequencing libraries. An in-house bioinformatics pipeline was used for data analysis 

(section 2.2.10.3) assuming a recessive mode of inheritance and prioritizing variants in 

previously identified homozygous regions (see section 2.2.10.6). In non-consanguineous 

families, all biallelic variants were considered without taking into consideration the 

homozygous regions. In addition, segregation analysis was run, filtering out any variants 

that did not segregate with the family pedigree. CNV analysis was also carried out for all 

cases outlined in this chapter, to look for larger duplications or deletions that were not 

detected by the standard pipeline used for analysis (see section 2.2.10.3). In cases with 

only a single affected individual, in a family with multiple siblings, analysis to identify 

potential de novo variants was also used to check this possibility.  

 

Candidate genes were then prioritized based on the function of the encoded protein and 

the relevance to disease phenotype. Variants with convincing pathogenicity scores 

(CADD scores ³10) are outlined in the first section of this chapter, whereas cases with 

no candidate genes are discussed at the last section. Novel potentially pathogenic 

variants will require further validation work to provide sufficient evidence that the variant 

identified affects the function of a protein and downstream processes. On the other hand, 

cases with no identified candidate variants that could be interpreted as pathogenic are 

appropriate cases for further NGS investigations using Whole Genome Sequencing 

(WGS). Intronic or regulatory region variants might be the cause of the disease, but WES 

often does not provide coverage of these regions to detect such variants.   
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4.3 Families with variants in Candidate Genes 

4.3.1 Family ND4  

4.3.1.1 Clinical Phenotype 

Family ND4 is a multiply consanguineous South Asian family with several affected 

individuals in two different generations. The clinical phenotype shared by all affected 

individuals include microcephaly, central hypotonia and four limb spasticity. Individuals 

in generation V have been extensively examined by the Clinical Geneticists revealing 

right convergent squint and reduced white matter volume on MRI scans. Individual JT807 

was assessed at a later stage. The affected individuals (in generation V) were also 

screened for a panel of genes known to cause white matter abnormalities, but no variants 

were found. The details of the diagnostic screening panel are described here: 

(https://www.leedsth.nhs.uk/a-z-of-services/the-leeds-genetics-

laboratory/constitutional-genetics/molecular-genetics/by-disorder/leukodystrophy/).  

 

DNA samples have been collected from all individuals and assigned a study identifier 

(“JT number”) as indicated on the pedigree in figure 4.1. Samples from all labelled 

individuals were processed for WES, except from individual JT807 as the DNA sample 

was not available at the time. However, DNA sample from JT807 was further used for 

segregation purposes.  

 

 

Figure 4-1 Pedigree of family ND4 

Pedigree outlining five generations of the family and the consanguineous unions, indicated with 
a double line. DNA samples of individuals with study identifiers (“JT numbers”) have been used 
for genetic investigations. 
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4.3.1.2 Autozygosity Mapping  

Autozygosity mapping was performed on all available WES data (vcf files prior to filtering 

out of common SNPs) from all members of the family. Homozygous regions shared by 

the affected individuals (JT804, JT805, JT811), but not by the unaffected parents are 

summarized in table 4-1 and presented on the ideogram in figure 4-2.  

 

 

Table 4-1 Common regions of homozygosity amongst affected individuals of 

family ND4. 

The homozygous regions are listed in descending order based on the size of each region. The 
human genome assembly GRCh37/hg19 was used. 
 

 

 

Figure 4-2 Ideogram illustrating the homozygous regions shared by the affected 

individuals in family ND4. 

The ideograms in light pink are from the unaffected individuals, whereas the outer ideograms in 
light blue are from the affected children. The regions highlighted in red represent the homozygous 
regions in chromosome 3 and 10. The human genome assembly GRCh37/hg19 was used. 
  

Chromosome Start End Length 
3 124646705 133191453 8544748
10 64944317 73403490 8459173
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4.3.1.3 Candidate gene  

An in-house bioinformatics pipeline was used for data analysis (section 2.2.10.3) 

assuming a recessive mode of inheritance and prioritizing variants in previously identified 

homozygous regions. In addition, segregation analysis was performed, filtering out any 

variants that did not segregate in a pattern consistent with the family pedigree. Table 4-

2 summarizes the only homozygous variant identified with a CADD score above 15.  The 

variant also lies within the homozygous region on chromosome 10, supporting our initial 

hypothesis that, for a multiply consanguineous family such as ND4, it is more likely for 

the pathogenic variant to be within a homozygous region. 
 

 

Table 4-2 Homozygous variant identified in family ND4. 

Homozygous variant c.1093C>T in SUPV3L1 (NM_003171.5) was annotated based on the 
human genome assembly GRCh37/hg19. 
 

 

In addition to the standard pipeline, CNV analysis was also carried out for this family (see 

section 2.2.10.7) to identify any potential CNV that could cause the phenotype. CNV 

analysis did not reveal anything that could be interpreted as pathogenic, increasing our 

confidence that the candidate gene variant in SUPV3L1 was the causative variant. 

 

The variant p.R365W in SUPV3L1 can be assumed to significantly impact the structure 

and function of the protein as a polar amino acid, arginine, is replaced by a non-polar 

aromatic amino acid, tryptophan. This change is predicted by Condel, Polyphen2 and 

SIFT to be deleterious, with a striking CADD score of 34. The p.R365W SUP3VL1 variant 

has a low frequency in gnomAD but not in homozygous state. Segregation analysis for 

all members of family ND4 confirmed the variant in SUPV3L1 identified by WES. Patients 

Gene Location Variant Protein change

SUPV3L1 10:70958197 c.1093C>T p.R365W

Condel Polyphen2 SIFT CADD score

deleterious 
(0.645)

possibly_damaging 
(0.582)

deleterious (0) 34

MAF gnomAD Protein Function OMIM In Homozygous 
region 

0.00001769 ATP-dependent 
RNA helicase

___ Yes

Variant Information

Pathogenicity prediction 

Frequency and function 
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were homozygous for the change and all unaffected parents were heterozygous. The 

segregation analysis is summarised in figure 4-3. 

 

Figure 4-3 Segregation analysis for family ND4. 

The electropherograms illustrate the homozygous change c.1093C>T in patient DNA and the 
heterozygous state in the parental DNA. Sanger sequencing was performed on all members of 
the family with JT identifier.  
 
Conservation analysis revealed that the p.R365W variant is conserved in a proportion of 

the species outlined in figure 4-4. Despite the fact that the actual mutated residue is not 

fully conserved, in species such as M.musculus, the surrounding region is well 

conserved. Specifically, the position of the p.R365W variant lies between a predicted 

alpha helix and a beta strand, where both of these secondary structures seem to be 

conserved from H. sapiens to X. tropicalis. The addition of a big aromatic ring between 

these structures could impact the tertiary and quaternary structure of the overall protein, 

potentially leading to disruption of function. Visualization of the exact location of arginine 

at position 365 is shown in figure 4-5, in relation to the partial structure of SUPV3L1 

between amino acids 47 and 772. It seems that arginine 365, a polar basic residue, is 

exposed on the outer part of the structure. A dramatic effect on protein structure is 

predicted if arginine is replaced by the non-polar and hydrophobic tryptophan.  

 

Figure 4-4 Conservation analysis of the SUPV3L1 protein  

A representation of the conservation analysis of SUPV3L1 protein around the location of the 
variant identified, showing protein sequences from H. sapiens down to X. tropicalis. The amino 
acid mutated is shown by the arrow.   
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A 

 
 

B 

 
 

Figure 4-5 Visualisation of the position of arginine 365 on the overall structure of 

SUPV3L1 protein. 

A – Illustration of the overall structure of SUPV3L1, indicating the position of the mutated amino 
acid by an arrow. B – Zoom-in version of the same structure showing that arginine 365 lies 
between an α-helix (grey ball-and-stick structures) and a β-sheet (beige ribbon) on the outermost 
part of the protein, which can be detrimental for the replaced hydrophobic tryptophan. 
 

4.3.1.4 Variant in SUPV3L1 as a potential cause of developmental delay  

The SUPV3L1 gene is located on chromosome 10q22.1 and it encodes an ATP-

dependent RNA helicase that is localised mainly in the mitochondria (Dmochowska et 

al., 1998). SUPV3L1 is considered to have a major role in mitochondrial RNA metabolism 

and is involved in the RNA surveillance system in mitochondria, by regulating the mtRNA 

turnover and processing (Khidr et al., 2008, Szczesny et al., 2007). In addition, down-

regulation of SUPV3L1 induces caspase-dependent apoptosis (Szczesny et al., 2007) 

and Supv3l1 deletion in mice has been proven to be embryonic lethal . Another mouse 

Arg 365 
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model where Supv3l1 was progressively inactivated resulted in mutant mice that 

appeared normal at birth but gradually revealed signs of delayed growth, loss of adipose 

tissue and muscle mass, reduced life span (Paul et al., 2009). 

 

Considering all of the above evidence on SUPV3L1 function, there was some justification 

as to how this candidate gene could potentially affect growth and development as seen 

in family ND4. In addition, as a protein localised in the mitochondria, SUPV3L1 could be 

interacting with other key proteins that have been shown to be involved in developmental 

disorders, specifically with white matter abnormalities. In particular, SUPV3L1 is known 

to interact with PNPT1, an RNA binding protein involved in RNA metabolism and a 

component of the mitochondrial RNA degradosome. The mitochondrial RNA 

degradosome complex is a heteropentamer consisting of a PNPT1 trimer and a 

SUPV3L1 dimer, that in yeast has been demonstrated to degrade double-stranded RNA 

in the presence of ATP (Wang et al., 2009). If one of the two components of the 

heteropentamer is disrupted, the activity of the degradosome is abolished.  

Interestingly, biallelic variants in PNPT1 are also shown to be associated with abnormal 

myelination in patients with neurodevelopmental disease and mitochondrial dysfunction 

(Sato et al., 2018a). This association of PNPT1 variants with a similar phenotype to 

affected individuals in family ND4 provides additional more evidence that variants in 

SUPV3L1 could also lead to a neurodevelopmental condition with white matter 

abnormalities.  

 

4.3.1.5 Second family with variants in SUPV3L1 identified from the 

Decipher consortium 

The findings from family ND4,, amongst many others, had been uploaded on the 

Decipher consortium website (www.decipher.sanger.ac.uk) in an attempt to identify a 

second family with the same phenotype having a biallelic variant in SUPV3L1 gene (Firth 

et al., 2009). A second family have been matched to our case, with the homozygous 

variant c.329G>A, p.G110D in SUPV3L1 (Patient ID: 386801, online access: 

https://decipher.sanger.ac.uk/patient/386801#genotype/snv/69993/browser). The 

clinical features of the family include profound developmental delay, intellectual 

disability, CNS hypomyelination, nystagmus and seizures. Despite the fact that 

additional evidence is now available indicating that variants in SUPV3L1 are likely to be 

the cause of a novel neurodevelopmental disorder, no further work has been performed 

on this project due to time constraints. The second family was identified at the end of this 

study and future work is required to establish the pathomechanism of SUPV3L1 variants.  
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4.3.2 Family ND5 

4.3.2.1 Clinical Phenotype  

Family ND4 is a non-consanguineous family with twin girls born with antenatally agenesis 

of the corpus callosum. At delivery both infants had marked pedal oedema, and pleural 

oedema both of which subsequently resolved. Central hypotonia was a noticeable 

feature of the phenotype, the infants had reasonable anti-gravity movements of all four 

limbs, with poor head movement, suck and initially respiratory distress. Neither infant 

required intubation, and both were tube fed for six weeks. At last review (aged 8 months) 

central hypotonia persisted, and delayed milestones were noted (not sitting unsupported, 

not rolling from side to side, not reaching out for objects). Vision and hearing were 

normal. Clinical investigations performed include aCGH (array comparative genomic 

hybridization), and a focused clinical exome for neonatal hypotonia testing for variants in 

the following genes: GJC2, VEGFC, FLT4, LMPHM2, EPHB4, PIEZO1 and FAT4. These 

and other clinical investigations were normal.  

 

 

Figure 4-6 Pedigree of family ND5 

Pedigree showing two generations of the family. DNA samples of the parents and one of the 
monozygotic twins have been used for genetic investigations. 
 
 

4.3.2.2 Candidate gene  

Our in-house bioinformatics pipeline was used for data analysis (section 2.2.10.3) 

assuming a recessive mode of inheritance, prioritizing both homozygous and compound 

heterozygous variants, as this family has no evidence of consanguinity. For the same 

reason, autozygosity mapping was not performed for this family as the pathogenic variant 

is less likely to be in an autozygous region. In addition, segregation analysis was run, 

filtering out any variants that had a pattern of segregation that was not compatible with 
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the pedigree. Separate de novo analysis was also performed, revealing no variants. 

Table 4-3 summarises the three variants identified with a CADD score above 15.  
 

 

Table 4-3 Variants identified in family ND5 

The table summarises the three variants identified in family ND5 with CADD score above 15. The 
variants include a compound heterozygous variant (marked in blue) in EPHB2 (NM_004442.7) 
and a homozygous variant in CARS2 (NM_024537.4). Annotation was based on the human 
genome assembly GRCh37/hg19. 
 

 

In addition to the standard pipeline, the family was also extensively assessed for any 

variants in FAT4 based on their clinical presentation. The phenotype of this family is 

similar to Hennekam Lymphangiectasia-Lymphedema Syndrome 2 (MIM number: 

616006), that is caused by variants in FAT4. No variants have been identified for this 

family, in the coding region or splice sites of FAT4 to the extent allowed by WES. In 

addition, the possibility of de novo variants were also assessed and excluded as a likely 

pathogenic cause in this family. Furthermore, CNV analysis also excluded the presence 

of any potential CNVs that could be interpreted as pathogenic in this family (see section 

2.2.10.7). These analyses provides more evidence that one the variants summarized in 

table 4-3 is likely to be causative.  

Gene Location Variant

EPHB2 1:23234500 het c.2191G>A

EPHB2 1:23236988 het c.2616G>C

CARS2 13:111340076 hom c.563G>A

Gene Condel Polyphen2 SIFT CADD score

EPHB2 deleterious (0.791) possibly_damaging (0.887) deleterious (0) 34

EPHB2 deleterious (0.516) possibly_damaging (0.501) deleterious (0.04) 23.6

CARS2 deleterious (0.897) probably_damaging (0.994) deleterious (0) 24.5

Gene MAF gnomAD Protein Function OMIM
In 

Homozygous 
region 

EPHB2 0.00008837
Tyrosine-protein kinase Eph 

receptor B2

Prostate cancer             

(somatic mutations)
N/A

EPHB2 Absent
Tyrosine-protein kinase Eph 

receptor B2

Prostate cancer             

(somatic mutations)
N/A

CARS2 0.0002797 Cysteinyl-tRNA synthetase

Combined oxidative 

phosphorylation 

deficiency 27

N/A

Variant Information

Frequency and function 

Protein change

p.A731T

p.K872N

p.T188M

Pathogenicity prediction 
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Figure 4-7 IGV analysis for EPHB2 variant segregation  

IGV analysis of the compound heterozygous variant in EPHB2. In blue letters, the variant 
c.2616G>C is shown, segregating from the mother and in green the variant c.2191G>A 
segregating from the father. Parents are shown here to be heterozygous for each variant and the 
child having a compound heterozygous variant in EPHB2.  
 

  

JT819

JT817 JT818
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Upon careful consideration of both variants and their established association with 

disease, the in trans compound heterozygous variants in EPHB2 was considered the 

best candidate gene for this case. The homozygous variant in CARS2 is predicted to be 

pathogenic, but variants in this genes have been associated with combined oxidative 

phosphorylation deficiency 27 (MIM number 616672) (Coughlin et al., 2015) which is 

phenotypically different to the clinical features of family ND5. This does not completely 

exclude the variant in CARS2 as a candidate variant, but the compound heterozygous 

variant in EPHB2 is a better candidate as the function of the EPHB2 protein fits the 

phenotype. Further functional characterization is still necessary to prove this hypothesis. 

 

4.3.2.3 Variants in EPHB2 as a novel cause of lymphoedema  

EPHB2 belongs to the Eph receptor family of tyrosine kinase transmembrane 

glycoprotein receptors. These receptors bind ephrins by cell-cell contact (Jorgensen et 

al., 2009) and are involved in a range of cellular process, including axon guidance (Egea 

and Klein, 2007) and neural development (Klein, 2009). Somatic mutations in EPHB2 

have been associated with prostate cancer (Huusko et al., 2004) and germline mutations 

are linked to a major platelet functional defect identified in just a single family (Berrou et 

al., 2018). However, heterozygous variants in EPHB4 have been recently linked to 

autosomal dominant lymphatic-related (nonimmune) hydrops fetalis (LRHF) (Martin-

Almedina et al., 2016). These variants seem to be devoid of the tyrosine kinase activity, 

suggesting that loss of ephrin signaling could contribute to LRHF pathogenesis.  

 

Similarly, the mutations identified in family ND5 are both localized within the intracellular 

kinase domain of the EPHB2 receptor, potentially abolishing tyrosine kinase activity and 

any downstream ephrin-mediated signaling. Taking into account that EPHB4 receptor 

belongs to the same Eph receptor family, disruption of the EPHB2 receptor activity may 

lead to similar pathomechanisms. This hypothesis needs to be further investigated in 

order to assess whether or not the two compound heterozygous variants affect the 

function of the EPHB2 receptor. Initially, modelling the variants and measuring the kinase 

activity by determining the level of phosphorylation on EPHB2 kinase substrates could 

indicate whether activity is affected or not.  
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4.3.3 Family ND6 

4.3.3.1 Clinical Phenotype 

Family ND6 is a consanguineous South Asian family, with two affected sons presenting 

a myopathy phenotype, similar to limb-girdle muscular dystrophy. The two affected 

children presented with axial muscle weakness and mild peroneal nerve dysfunction. 

The muscle biopsy suggested core myopathy and leg muscle MRI scans showed 

abnormalities, principally STIR image changes in the rectus femoris muscle, and bilateral 

changes in the soleus muscles suggesting oedema. Neither parent was affected, 

suggesting a recessive mode of inheritance. DNA samples have been collected from all 

individuals presented in the pedigree and were analysed by WES. 

 

 

Figure 4-8 Pedigree of family ND6 

Pedigree outlining two generations of the family and the consanguineous union. DNA samples of 
individuals with study identifiers (“JT numbers”) have been used for genetic investigations. 
 

4.3.3.2 Autozygosity mapping  

Autozygosity mapping was performed on WES data (vcf files prior to filtering of common 

SNPs) from all  members of the family that had been taken forward for WES. 

Homozygous regions shared by the affected individuals, but absent from the parents are 

summarised in table 4-4 and presented on the ideogram in figure 4-8. 

 

I

II

JT244 JT241

JT242JT243
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Table 4-4 Common regions of homozygosity amongst affected individuals of 
family ND6 
The homozygous regions are listed in descending order based on the size of each region. The 
human genome assembly GRCh37/hg19 was used. 
 

 

Figure 4-9 Ideogram illustrating the homozygous regions shared by the affected 

individuals in family ND6. 
The ideogram in light pink are from the unaffected individuals, whereas the outer ideograms in 
light blue are from the affected children. The regions highlighted in red represent the homozygous 
regions. The human genome assembly GRCh37/hg19 was used. 

Chromosome Start End Length 
5 19721490 102891695 83170205
2 176988290 225630435 48642145
6 62407067 102247673 39840606
12 32134638 47471439 15336801
2 272203 8943291 8671088
11 124253181 130784754 6531573
10 97127462 102506070 5378608
16 86565826 90127080 3561254
12 28605426 31244846 2639420
15 78632830 81212608 2579778
7 286402 1590443 1304041
9 131790531 132402908 612377
11 7022160 7509682 487522
5 149360877 149792337 431460
17 73125173 73552185 427012
6 30711805 31105891 394086
10 134981837 135351362 369525
11 63883985 64138905 254920
6 29691390 29798140 106750
16 1961674 2059674 98000
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4.3.3.3 Candidate genes 

An in-house bioinformatics pipeline was used for data analysis (section 2.2.10.3) 

assuming a recessive mode of inheritance and prioritizing variants in the identified 

homozygous regions. In addition, segregation analysis was run, filtering out any variants 

that did not segregate with the family pedigree. Table 4-5 summarises possible 

candidate variants identified with a CADD score above 15. 

 

 

Table 4-5 Variants in candidates genes identified in family ND6. 
Homozygous variants in ADAMTS15 (NM_139055.3), TTN (NM_001267550.2) and PTH2R 
(NM_001309516.2) were annotated based on the human genome assembly GRCh37/hg19. 
 

All the variants summarised above occur within a homozygous region shared by the 

affected individuals. The variant in PTH2R is predicted to be benign, and the known 

functions of the encoded protein do not make it a biologically plausible candidate for the 

phenotype of family ND6 (Dobolyi et al., 2012). PTH2R was therefore not prioritized in 

the list of candidate genes. On the other hand, both variants in ADAMTS15 and TTN 

were predicted to be damaging and both proteins had biological relevance to the 

phenotype of the family. As a result, both variants were initially checked for segregation, 

and both variants were validated both using IGV Viewer and Sanger sequencing.  

 

Gene Location Variant
ADAMTS15 11:130343097 c.2234C>T

TTN 2:179394686 c.101608+1C>T
PTH2R 2:209358262 c.1531G>A

Gene Condel Polyphen2 SIFT CADD score

ADAMTS15 deleterious (0.01) benign (0.195) tolerated (0.9) 35
TTN N/A N/A N/A 25.7
PTH2R tolerated (0.06) benign (0.04) neutral (0.325) 23.2

Gene MAF gnomAD Protein Function OMIM
In 

Homozygou
s region 

ADAMTS15 0.0001712 Zinc- dependent 
metallopeptidase

____ Yes

TTN 0.00000447
Abundant protein 
of striated muscle

Muscular dystrophy,     
limb-girdle, autosomal 

recessive 10
Yes

PTH2R 0.0009746
Parathyroid 
Hormone 2 
Receptor 

____ Yes

Frequency and function 

splice
p.E511K

Variant Information

Protein change
p.A745V

Pathogenicity prediction 



 108 

 

Figure 4-10 Segregation analysis of variants in ADAMTS15 and TTN in family ND6 
A – Segregation analysis using IGV viewer, showing the variants (in red) in ADAMTS15 and TTN all members of the family (JT242 and JT243 affected individuals; 
JT241 and JT244 parents). B – Sanger sequencing confirming the variant in parental DNA (heterozygous traces) and patient DNA (homozygous trace).  

ADAMTS15
c.2234C>T

JT241JT244

JT242JT243

JT241JT244

JT242JT243

TTN
c.101608+1C>T

ADAMTS15
wildtype

CB

TTN
wildtype

T



 109 

The ADAMTS15 missense variant has the highest CADD score and high pathogenicity 

predictions. The allele frequency of this variant in gnomAD is 0.0001712. In addition, the 

function of ADAMTS15 could potentially fit with the phenotype, as it has been reported 

to be involved in myoblast fusion during myogenesis (Stupka et al., 2013). ADAMTS15 

(a disintegrin and metallopeptidase with thrombospondin type 1 motif 15) belongs to the 

ADAMTS family of genes that code for proteinases that are implicated in a range of 

molecular processes, including myogenesis (Kelwick et al., 2015). During myogenesis, 

myoblasts are aligned within a versican-rich pericellular matrix, that is considered anti-

adhesive due to versican properties. Enzymatic proteolysis of versican by ADAMTS15 

clears the pericellular matrix, allowing cell membrane contact between the denuded 

myoblasts, and thereby fusion of myoblasts to form multinucleated myotubes. 

 

On the other hand, variants in TTN are mainly linked to cardiomyopathy (Itoh-Satoh et 

al., 2002).TTN is one of the largest genes in the human genome and carries a huge 

number of benign polymorphisms making variant interpretation challenging. TTN is a 

giant muscle protein spanning half of the sarcomere, from Z-disk to M-band (Savarese 

et al., 2016). TTN variants have been associated with several skeletal muscle diseases 

as well as cardiomyopathies. The TTN splice-site variant identified in family ND6 has a 

very low frequency in gnomAD (0.00000447) and is considered most likely pathogenic 

because of the potential effect on transcript splicing. Upon further literature review, the 

association of biallelic TTN variants and autosomal recessive myopathy similar to limb-

girdle muscular dystrophy was established, sharing clinical features similar to family ND6 

(Zheng et al., 2016).  

 

At this point of the study, no further functional work was performed for this case. Both 

variants seem to be implicated with muscle development and function, and based on the 

pathogenic predictions none of the variants can be excluded. The TTN variant seems 

more likely to be the causative variant as it directly affects a splice-site and a previous 

association with biallelic variants in TTN and limb-girdle muscular dystrophy has been 

made. On the other hand, the ADAMTS15 variant is a missense one that might not affect 

the function of the protein. This is worth further investigation. For instance, in silico 

protein modeling could provide insights into the effect of the ADAMTS15 missense 

variant on predicted protein structure.  
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4.3.4 Family ND7 

4.3.4.1 Clinical Phenotype 

Family ND7 is a multiply consanguineous South Asian family with two affected 

individuals in two different sibships. The clinical phenotype shared by all affected 

individuals include congenital myopathy, severe developmental delay with diaphragmatic 

weakness, profound respiratory distress and generalized muscle weakness. Additionally, 

MRI scans of JT635 revealed frontal temporal atrophy. Clinical investigations included 

genetic testing by sanger sequencing for Prader Willi syndrome and for the following 

genes: IGHMBP2, SMN1, CHRND. DNA samples have been collected from all 

individuals with a JT number as indicated on the pedigree in figure 4.10, and processed 

for WES. 

 

 
 

Figure 4-11 Pedigree of family ND6 
Pedigree outlining five generations of the family and the consanguineous unions. DNA samples 
of individuals with JT numbers have been used for genetic investigations. 
 

4.3.4.2 Autozygosity mapping  

Autozygosity mapping was performed on WES data (vcf files prior to filtering of common 

SNPs) from all members of the family that were sequenced. Homozygous regions shared 

by the affected individuals (JT614, JT635), but absent from the parents (JT814, JT815) 

and unaffected siblings are summarized in table 4-6 and presented on the ideogram in 

figure 4-11.  

 

JT814JT815

JT635 JT614JT816JT634

I

II

III

IV

V
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Table 4-6 Common regions of homozygosity amongst affected individuals of 
family ND6. 
The homozygous regions are listed in descending order based on the size of each region. The 
human genome assembly GRCh37/hg19 was used. 
 

 

Figure 4-12 Ideogram illustrating the homozygous regions shared by the affected 
individuals in family ND6. 
The ideogram in light pink are from the unaffected individuals, whereas the outer ideograms in 
light blue are from the affected children. The regions highlighted in red represent the homozygous 
regions. The human genome assembly GRCh37/hg19 was used. 

Chromosome Start End Length 
5 17630439 78154189 60523750
12 32716988 51752897 19035909
5 137521479 154395158 16873679
11 10655609 27077118 16421509
11 89133449 99428929 10295480
22 28316591 36661842 8345251
1 15764869 21583973 5819104
9 13183256 18907122 5723866
8 22785013 27645704 4860691
10 99991408 102771573 2780165
2 58276280 61008036 2731756
1 45205598 47904909 2699311
19 51217550 52917723 1700173
16 81639 1291608 1209969
20 60992224 62127584 1135360
1 1115994 1417696 301702
2 220356806 220494118 137312
6 29759066 29855706 96640
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4.3.4.3 Candidate genes 

Our in-house bioinformatics pipeline was used for data analysis (section 2.2.10.3) 

assuming a recessive mode of inheritance and prioritizing variants in previously identified 

homozygous regions. In addition, segregation analysis was run, filtering out any variants 

that did not segregate with the family pedigree. Table 4-7 summarises possible 

candidate variants identified with a CADD score above 15.  

 

 

Table 4-7 Variants in candidates genes identified in family ND7 
Homozygous variants in NUP210 (NM_024923.4) and TATDN2 (NM_014760.4) were annotated 
based on the human genome assembly GRCh37/hg19. 
 

The only variants that segregated with family pedigree are the variants summarised 

above in the NUP210 and TATDN2 genes. Both variants lie within homozygous regions, 

however the pathogenicity predictions are not convincing. CADD scores are just above 

the threshold of filtering and Condel, Polyphen2 and SIFT predict that both variants are 

benign. Furthermore, the variants NUP210 c.1819C>T and TATDN2 c.215G>A have 

been reported in the gnomAD database in homozygous state in South Asian populations, 

3 and 4 times respectively. Based on the first output of the analysis, none of the variants 

identified appeared to be pathogenic and as a result we checked for compound 

hetergozygous variants, variants outside homozygous regions and CNV variants. The 

secondary analysis revealed a CNV variant that was compatible with the phenotype of 

family ND7.   

  

Gene Location Variant

NUP210 3:13407559 c.1819C>T

TATDN2 3:10291099 c.215G>A

Gene Condel Polyphen2 SIFT CADD score

NUP210 neutral (0.018) benign (0.195) tolerated (0.9) 17.34

TATDN2 neutral (0.252) benign (0.038)
tolerated_low_confidence

(0.14) 16.72

Gene MAF gnomAD Protein Function OMIM
In 

Homozygous 
region 

NUP210
0.0009095                   

(3 homozygous South 
Asians)

Major component of the 
nuclear pore complex 

____ Yes

TATDN2
0.0006097                   

(4 homozygous South 
Asians)

Putative deoxyribonuclease ____ Yes

p.G72D

Frequency and function 

Pathogenicity prediction 

Variant Information

Protein change

p.G607S



 113 

4.3.4.4 Copy number variant in MTMR2 identified using WES  

The Exome Depth program was used in order to assess any CNVs (see section 

2.2.10.7). The comparison of read depth was performed between the test sample 

(JT614) and 10 unrelated control samples. The analysis revealed a CNV in the MTMR2 

gene, deleting the last ten exons of the gene. Further details for the CNV are summarised 

in table 4-8, and figure 4-13 illustrates the deletion of the ten exons in the affected 

individual compared to the other affected individual. 

 

 
 

Table 4-8 Details of CNV in MTMR2 identified in family ND7 
Summary of the MTMR2 (NM_016156.6) deletion identified in patient JT614, including location of 
deletion, number of exons affected, reads expected and observed as well as Conrad.hg and 
Bayes Factor (BF). The human genome assembly GRCh37/hg19 was used. 
 

 

The 23.3kb deletion at the end of MTMR2 gene, removing the last ten exons of the gene, 

is predicted to either result in a truncated protein with approximately 65% of the protein 

missing, or lead to a complete loss of the protein by nonsense mediated decay. Either 

product is likely to have detrimental effect on the function of this protein. 

 

MTMR2 (myotubularin related protein 2) is a member of the myotubularin family of 

phosphoinositide lipid phosphatases. Berger et al. determined that phosphatidylinositol 

3-phosphate (PI3P) and phosphatidylinositol 3,5-bisphophate (PI3,5P2) is 

dephosphorylated with high affinity by mouse Mtmr2 (Berger et al., 2002). Furthermore, 

MTMR2 is highly expressed in all cytoplasmic compartments of Schwann cells as well 

as sensory and motor neurons (Previtali et al., 2003).  

  

Type Location BF

Deletion chr11:95568455-95591796 51.3

Gene Number of exons Exons

MTMR2 10 exons 6-15

Conrad.hg Reads expected Reads observed

N/A 573 1
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Mutations in MTMR2 have been associated with Charcot-Marie-Tooth disease, type 4B1 

(MIM number 601382) (Bolino et al., 2000). The clinical features of Charcot-Marie-Tooth 

disease type 4B1 include peripheral motor and sensory neuropathy, muscle weakness 

and atrophy, delayed motor development and irregular loops and focal folding of myelin 

sheaths. This seems to fit with the phenotype of family ND7, however further detailed 

clinical assessment needs to be performed, particularly for the MRI scans, by the 

referring clinician.  

 

The MTMR2 deletion was also assessed for segregation in the other affected patient 

(JT635). Surprisingly, the deletion was not present in the other affected individual (see 

figure 4.13), despite this locus being identified within a homozygous region. A potential 

explanation for this could be due to the fact that the location of this deletion is at the end 

of a homozygous region identified on chromosome 11 and could potentially be falsely 

identified as homozygous. This could be explained as the computational tool that 

recognizes the regions uses common SNPs that are less accurate for identifying 

homozygous regions, compared to microsatellites. 

 

In addition, this finding could be revealing a two-gene segregation within this family, with 

one sibship having the MTMR2 deletion as the causative CNV for their phenotype, and 

the second sibship might have a different variant segregating that we failed to identified. 

The patient JT614 with the MTMR2 deletion was deceased, however the research finding 

has been reported to the referring clinician for further clinical assessment of patient 

JT635, and comparison of her phenotype in relation to JT614. Further clinical 

investigation may be beneficial as they may have different features that will help us prove 

this hypothesis. Also, more analysis with adjusted pipelines can be used to investigate 

whether a separate variant is segregating. This observation highlights some of the 

weaknesses in the current pipelines and the underlying assumptions made during 

analysis, based on pedigree structures. In some cases, the patterns of inheritance might 

not be as obvious and more complex genetic inheritance might occur (Khan et al., 2013). 
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Figure 4-13 MTMR2 segregation analysis 
Segregation analysis of the MTMR2 deletion using IGV. Top image shows the deletion 
of 10 exons in MTMR2 gene in JT614, as no reads are being identified within that region. 
Bottom image shows the absence of that deletion in JT635, as reads are being identified 
for each exon within that region.  
 
 
  

JT614

JT635
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4.3.5 Family ND8 

4.3.5.1 Clinical Phenotype 

Family ND8 is a multiply consanguineous South Asian family with affected individuals in 

different sibships as well as different generations. The affected individuals in generation 

VI presented in early childhood with delay in achieving weight-bearing posture and ability 

to walk independently. Individual VI-E below presented with a limping gait at age two, 

repeated falls and difficulty ascending the stairs at age 4. JT561 and JT562 below were 

reported to display similar difficulties. Individual IV-G in the pedigree below reported a 

similar history with increasing difficulty walking, and became wheelchair-bound in her 

mid 40s. 

 

Examination of individual JT561 at age 6 revealed normal power and tone in all muscle 

groups except for ankle dorsiflexors. Reflexes were normal apart from absent ankle jerks, 

but sensation was normal in all modalities. Further investigations in patient IV-G and in 

JT561 revealed a demyelinating sensory and motor neuropathy.  

 

 

Figure 4-14 Pedigree of family ND8 
Pedigree outlining six generations of the family and the consanguineous unions. DNA samples of 
individuals with JT numbers have been used for NGS genetic investigations. Samples from 
individuals A-G were acquired at a later stage for segregation purposes. 
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4.3.5.2 Autozygosity mapping  

Autozygosity mapping was performed on WES data (vcf files prior to filtering of common 

SNPs) from all  members of the family that have been taken forward for WES. 

Homozygous regions shared by the affected individuals (JT562, JT561), but absent from 

the parents are summarised in table 4-9 and presented on the ideogram in figure 4-15. 

 

 
 

Table 4-9 Common regions of homozygosity amongst affected individuals of 
family ND8. 
The homozygous regions are listed in descending order based on the size of each region. The 
human genome assembly GRCh37/hg19 was used. 
 

 

 

  

Chromosome Start End Length 
11 82644904 95825797 13180893
13 19775755 30109939 10334184
6 161173946 170878886 9704940
4 55141055 62599289 7458234
4 178274565 185709891 7435326
8 119941173 125597409 5656236
15 39876495 45250756 5374261
12 122817507 125438549 2621042
9 128074807 130504070 2429263
9 122001000 124091135 2090135
11 65649774 67374581 1724807
8 145066886 145830894 764008
2 27163044 27857992 694948
7 149476666 150093701 617035
20 33867697 34457513 589816
19 3977486 4511140 533654
5 140167463 140517174 349711
10 134997480 135237196 239716
1 228399482 228560700 161218
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Figure 4-15 Ideogram illustrating the homozygous regions shared by the affected 
individuals in family ND8. 
The ideogram in light pink are from the parents, whereas the outer ideograms in light blue are 
from the affected children. The regions highlighted in red represent the homozygous regions. The 
human genome assembly GRCh37/hg19 was used. 
 
 

4.3.5.3 Candidate genes 

An in-house bioinformatics pipeline was used for data analysis (section 2.2.10.3) 

assuming a recessive mode of inheritance and prioritizing variants in previously identified 

homozygous regions. In addition, segregation analysis was run, filtering out any variants 

that did not segregate with the family pedigree. CNV analysis did not reveal any variants 

that could be interpreted as pathogenic. Table 4-10 summarises possible candidate 

variants identified with a CADD score above 15.  
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Table 4-10 Variants in candidate genes identified in family ND8. 
Homozygous variant in SH3TC2 (NM_024577.4) and compound heterozygous variant in RGS12 
(NM_198229.2) were annotated based on the human genome assembly GRCh37/hg19. 
 

 

None of the variants that passed the filtering criteria were within a homozygous region. 

As a result, candidate genes based on pathogenicity predictions and biological relevance 

were prioritised. The best candidate gene was initially considered to be SH3TC2, as 

mutations in this gene are known to cause Charcot-Marie-Tooth (CMT) diseae type 4C 

(MIM number 608206) (Tazir et al., 2013), and the clinical features match perfectly with 

the phenotype of this family.  

 

As SH3TC2 was an ideal candidate variant for this case, Sanger sequencing analysis 

was performed to confirm segregation of the variant in family ND8. However, the variant 

did not segregate between the ascertained individuals that were sequenced. It was 

decided to include additional members of the family in this study. DNA was extracted 

Gene Location Variant

SH3TC2 5:148418008 hom c.850_878dup

RGS12 4:3422399 het c.2792G>A

RGS12 4:3319069 het c.1172G>A

Gene Condel Polyphen2 SIFT CADD score

SH3TC2 N/A N/A N/A 24.4

RGS12 deleterious (0.935) probably_damaging 
(0.999)

deleterious (0) 29.7

RGS12 deleterious (0.646) possibly_damaging 
(0.676)

deleterious (0.01) 21.9

Gene MAF gnomAD Protein Function OMIM
In 

Homozygous 
region 

SH3TC2 Absent

Exclusively expressed in 
Schwann cells and 

involved in endocytic 
membrane trafficking

Charcot-Marie-
Tooth disease, 

type 4C
No

RGS12  0.00001997 N/A

RGS12  0.00006763 N/A

Frequency and function 

p.R391Q

Guanosine 
triphosphatase 

(GTPase)-activating 
protein as well as a 

transcriptional repressor.

N/A

Variant Information

Protein change

p.K284RP*

p.R931H

Pathogenicity prediction 
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from saliva samples from individuals marked A-G, and segregation was assessed again 

using all eleven members of family ND8. The variant did not segregate in the family, 

assuming an autosomal recessive mode of inheritance with complete penetrance, 

because it was heterozygous in individual JT559 and all other individuals were 

homozygous for the duplication. To eliminate any source of uncertainty, new primers 

were designed surrounding the duplication, and the whole process was repeated twice, 

again failing to confirm segregation (figure 4.16). 

 

 

  

Figure 4-16 Segregation analysis for SH3TC2 variant 
Segregation analysis for duplication in SH3TC2. A – Sanger sequencing analysis showing the 
duplication region present in all members of the family (homozygous) apart from individual JT559 
that was heterozygous for the duplication, shown by the overlapping electropherograms. B – 
Agarose gel image showing the size difference of the heterozygous duplication in JT599 and the 
homozygous state in all other members.  
 
 

At this stage the duplication identified in SH3TC2 was considered non-pathogenic as 

healthy individuals of this family (individuals JT560, A to D, and F) were homozygous for 

this variant, thereby excluding it as a potential candidate gene for family ND8 despite the 

perfect match of SH3TC2-related phenotypes with that of family ND8.  
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The compound heterozygous variant in RGS12 was then assessed for segregation using 

IGV viewer (Thorvaldsdottir et al., 2013). Sanger sequencing was not performed due to 

the time constraints of the project, however IGV viewer output confirmed segregation of 

the compound heterozygous variants c.1172G>A and c.2792G>A, carried in trans for 

affected individuals. Segregation analysis is summarised in figure 4.17. 

 

 

 

Figure 4-17 Segregation analysis for RGS12 variant. 
Segregation analysis for the compound heterozygous variant in RGS12 using IGV viewer. 
Individuals JT559 and JT560 carry only one of the two variants (parents), whereas individuals 
JT561 and JT562 carry both variants in RGS12 (affected). 
  

JT559JT560

het c.2792G>AWildtypehet c.1172G>A

JT561JT562

het c.2792G>Ahet c.1172G>A

Wildtype

het c.2792G>Ahet c.1172G>A
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RGS12 is a member of the R12 subfamily of RGS proteins, including RGS10 and 

RGS14, all involved in numerous signaling pathways. RGS12 functions as a guanosine 

triphosphatase (GTPase) activating protein, regulating hormone release or 

neurotransmitter signaling (Hepler, 1999). RGS12 is highly expressed in the human brain 

and myometrium (Chatterjee and Fisher, 2000). It also seems to play a role in 

mammalian myogenesis and neurogenesis, as it is highly expressed in dorsal root 

ganglia (DRG) and trigeminal neurons, as well as muscle, in the E14.5 embryonic mouse 

(Martin-McCaffrey et al., 2005). RGS12 could be a good candidate gene, but further 

functional work will be required to prove the potential pathomechanism it is involved in.   
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4.4 A candidate gene identified from analysis of de novo 
variants 

4.4.1 Family ND9 

4.4.1.1 Clinical Phenotype 

Family ND9 is a non-consanguineous family, with no previous family history. Individual 

JT753 presented symptoms at very early age. He had partial left third nerve palsy and 

left sixth nerve palsy, as well as right sided ptosis and lower limb dystonia. It was reported 

that he has unusual movements of his legs and had hyperekplexia in both lower limbs. 

He also presented ocular motility problems. The clinical diagnosis was one of Complex 

Moebius syndrome. MRI scans showed right perisylvian polymicrogyria and slight 

callosal dysmorphism. Figure 4-18 oultines the family pedigree and figure 4-19 shows 

sections of the MRI scans.  

 

 

 

Figure 4-18 Pedigree of family ND9 
Pedigree outlining two generations of the family ND9. DNA samples of individuals with JT 
numbers were available, but only individuals marked with an asterisks (*) have been used for 
NGS genetic investigations.  
 

I
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JT750 JT753JT751 JT754JT752

* *
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Figure 4-19 MRI scans from individual JT753. 
MRI scans of individual JT753 showing brain malformations. Right perisylvian polymicrogyria as 
demonstrated by the indistinct grey/white matter interface; (Blue arrow). Slight callosal 
dysmorphism, with a bulky anterior limb and constricted splenium; (White arrows).  
 

4.4.1.2 Candidate gene 

An in house bioinformatics pipeline was used for data analysis (section 2.2.10.3), in the 

first instance, assuming de novo incidence as only a single individual was affected in the 

family and there was no history of consanguinity. Analysis for a recessive mode of 

inheritance was also performed, identifying both homozygous and compound 

heterozygous variants. As there was no history of consanguinity, autozygosity mapping 

was not performed for this family. Filtering of biallelic variants did not reveal any potential 

T2 Axial T1 Coronal

T1 CoronalT1 Sagital
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pathogenic variant, however an interesting de novo variant was identified. Table 4-11 

summarizes the de novo variants identified in family ND9 with a CADD score above 15.  

 

Furthermore, CNV analysis was also carried out for this family (see section 2.2.10.7) to 

identify potential CNVs that could cause the phenotype. CNV analysis did not reveal any 

variants that could be interpreted as pathogenic, increasing our confidence in the 

TUBA1A variant summarised in table 4-11. 

 

 

Table 4-11 De novo variant identified in family ND9. 
De novo variant in TUBA1A (NM_006009.4) was annotated based on the human genome 
assembly GRCh37/hg19. 
 

4.4.1.3 Novel de novo variant in TUBA1A 

Alpha and beta tubulins form the heterodimers that comprise the major components of 

the microtubules, a major constituent of the cytoskeleton. Microtubules are essential for 

various cellular processes such as mitosis and intracellular transport (Forth and Kapoor, 

2017). Nine α-tubulin and nine β-tubulin isotypes have been identified (Gadadhar et al., 

2017) with tissue specific expression variability. Tubulin genes are also known to play a 

key role in central nervous system development, particularly in axonal guidance and 

neuronal migration, and mutations in various α- or β-tubulins genes have linked to 

developmental disorders with brain malformations. These malformations include defects 

in cortical development, polymicrogyria, gyral disorganisation, and agenesis or 

abnormalities of the midline commissural structures, such as the corpus callosum. 

Mutated tubulin genes known to cause these disorders include TUBA1A, TUBA8, 

TUBB2A, TUBB4A, TUBB, TUBB2B and TUBB3 (Romaniello, 2015). 

 

Gene Location Variant Protein change

TUBA1A 12:49579706 c.443C>T p.G148E

Condel Polyphen2 SIFT CADD score

deleterious 
(0.873)

probably_damaging 
(0.983)

deleterious_low_
confidence (0)

26.8

MAF 
gnomAD Protein Function OMIM In Homozygous 

region 

Absent
Major components 

of microtubules Lissencephaly 3 N/A

Variant Information

Pathogenicity prediction 

Frequency and function 
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TUBA1A is a highly-conserved gene that expresses predominantly in the developing 

brain, and decreases in postnatal and adult periods (Gardner et al., 2018). Heterozygous 

mutations in TUBA1A have been mainly associated with lissencephaly type 3 (MIM 

number: 611603). Most of the cases reported consist of patients with de novo variants in 

TUBA1A (Keays et al., 2007), but a hereditary form has been identified where in two 

sisters who inherited a heterozygous TUBA1A variant from their mother, who had 

somatic mutation in the gene (Jansen et al., 2011).  

 

Recent genetic studies have expanded the clinical spectrum of TUBA1A-associated 

disorders, with cases presenting overlapping brain malformations but not necessarily 

lissencephaly. An interesting study reporting a de novo TUBA1A p.R2H variant identified 

in four unrelated patients but without presenting lissenchephaly. The patients described 

in this study had mild phenotypic variability, but shared phenotypes included 

developmental delay, microcephaly, dysplasia or thinning of the corpus callosum, 

dysmorphic basal ganglia and hypoplasia of the cerebellar vermis (Gardner et al., 2018). 

Two of the patients also had bilateral perisylvian polymicrogyria, resembling the 

phenotypes observed in family ND9. 

 

Another recently published study describes a different de novo variant in TUBA1A 

(p.D127E) but the described patient does not have lissenchephaly. Clinical features of 

this case include motor delay, occipital polymicrogyria, hypoplasia of the corpus 

callosum, cerebellar hypoplasia, dysplastic brainstem, on-separative basal ganglia and 

volume loss of the white matter (Sato et al., 2018b). 

 

Sato et al. outline two variants (p.R2H and p.D127E) that appear to have a minimal 

change of amino acid residue in terms of physicochemical properties, yet sufficient to 

cause a pathogenic phenotype. It is important to appreciate that a highly conserved 

protein such as TUBA1A has critical functions in cell cycle and maintenance that could 

be disrupted even with subtle changes of amino acid residues. Such changes could 

possibly affect the way in which α- and β-tubulins form heterodimers and polymerise to 

form the microtubule network. Disruption in the microtubule formation or stability could 

potentially affect downstream cellular mechanisms that are key to development. It is 

essential to establish a new genotype-phenotype correlation with variants in TUBA1A, 

as many recent studies are identifying variants that cause a wide range of brain 

malformations that may or may not include lissencephaly.  
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4.5 Unsolved cases with no variants that are interpreted as 
pathogenic in the coding DNA sequence.  

This section summarizes the genetic investigation of two consanguineous families, ND10 

and ND11, for whom WES was unable to detect any potentially pathogenic variants. 

More precisely, the same in-house bioinformatics pipeline was used for data analysis 

(section 2.2.10.3) assuming an autosomal recessive mode of inheritance and prioritizing 

variants in previously identified homozygous regions. This first line of analysis revealed 

no homozygous variants above CADD score of 15. There were no biallelic variants 

outside of the homozygous regions that could be interpreted as pathogenic. In addition, 

CNV analysis excluded the involvement of potentially pathogenic CNVs as the cause of 

disease in families ND10 and ND11. 

 

The sections below summarize the clinical phenotype of the two cases, along with the 

family pedigree and discuss further options of investigating the genetic basis of these 

diseases, such as whole genome sequencing and/or RNAseq.  

  



 128 

4.5.1 Family ND10 

4.5.1.1 Clinical Phenotype 

Family ND10 is a consanguineous South Asian family, with no previous family history. 

Parents of the two affected individuals are first cousins. The affected children presented 

global developmental delay, learning difficulties and delayed speech. They were 

reported to have delayed language development and unsteady gait. 

 

Diagnostic array CGH revealed no pathogenic variation, and a gene panel for early onset 

epileptic encephalopathy was normal (https://ukgtn.nhs.uk/find-a-test/search-by-

disorder-gene/epileptic-encephalopathies-early-infantile-72-gene-panel-670/), and as a 

result this family was investigated further using NGS.  

 

 

Figure 4-20 Pedigree of family ND10 
Pedigree outlining four generations of the family ND10, and the consanguineous union between 
first cousins. DNA samples of individuals with study identifiers (“JT numbers”) were available, but 
only individuals marked with an asterisks (*) have been used for NGS genetic investigations.  
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4.5.2 Family ND11 

4.5.2.1 Clinical phenotype 

 

Family ND10 is a consanguineous South Asian family, with all affected members of this 

family presented with a consistent clinical phenotype of four limb spasticity, and marked 

developmental delay, with very limited developmental progress made. No children 

developed speech or independent ambulation. All remained dependent on parents for 

simple activities of daily living including, washing, feeding, toileting. All had a consistent 

MRI phenotype of progressive frontal atrophy, but with very little in the way of localising 

features. White matter appearances were normal. aCGH and a gene panel for cerebral 

malformations were normal (https://www.leedsth.nhs.uk/a-z-of-services/the-leeds-

genetics-laboratory/constitutional-genetics/molecular-genetics/by-disorder/cerebral-

malformations/ ). 

 

 

 

Figure 4-21 Pedigree of family ND11 
Pedigree outlining four generations of the family ND11, and the consanguineous unions. DNA 
samples of individuals with study identifiers (“JT numbers”) were used for NGS genetic 
investigations.  
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4.5.3 Genetic Findings 

Both of the families ND10 and ND11 were considered unsolved at this stage of the 

project, as no variants have been identified that would segregate with family pedigree. 

Both homozygous and compound heterozygous variants were checked, along with 

autozygosity mapping, but no variant passed the filtering strategy. In addition, CNV 

analysis also revealed no potential variant that could be interpreted as pathogenic, 

thereby classifying these cases as unsolved. 

4.5.4 Further genetic investigations of the unsolved cases 

These unsolved cases have been taken forward by a different study for further genetic 

investigations, where a combined approach using WGS and RNA sequencing will be 

performed in an attempt to identify the genetic basis of these diseases. WGS will be 

initially carried out to check for deep intronic variants or complex CNVs that WES did not 

capture. Alongside WGS, RNA sequencing will also be used to assess whether any 

intronic variants identified might disrupt the splicing or expression of a particular gene, 

thereby affecting downstream function of the protein. RNA sequencing will be performed 

by extracting RNA from patient cells. Increasing numbers of Mendelian disorders that 

were not be solved using WES, are now being solved using RNAseq, with analyses 

revealing cryptic splice sites, private exons, or aberrant splicing events that are proving 

to be pathogenic (Kremer et al., 2017). 
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Chapter 5  
A novel homozygous null variant in KLHL7 as a cause of a 

recessive neurodevelopmental condition 

5.1 Introduction 

This chapter summarises the identification of a null variant in KLHL7 that is associated 

with an autosomal recessive neurodevelopmental condition in a single consanguineous 

family. The chapter outlines library preparation for whole exome sequencing of 

individuals in this family, the follow-up functional characterization of the KLHL7 variant 

and the association of the encoded protein with neurodevelopment. A clinical overview 

and variant filtering strategy is given, in the same format as discussed previously, and 

the candidate variant is then functionally assessed using patient-derived dermal 

fibroblasts and cell-lines. 

 

5.2 Variant identification by whole exome sequencing   

5.2.1 Patient Recruitment  

Family ND12 was recruited and processed as part of the Jules Thorn Biomedical Award 

study for molecular genetic research. All family members that were included in the study 

gave informed consent for research and their genomic DNA was collected from blood by 

using standard methods. Skin biopsy was also collected from affected individual JT728 

(see method 2.2.4). Affected individuals were phenotyped by Clinical Geneticists in 

regional hospitals (see section 2.2.1).  

 

5.2.2 Clinical Ascertainment 

Family ND12 is a consanguineous South Asian family with three affected sons with 

profound developmental delay. In these children the initial assessment revealed 

abnormal movements, and a suspected white matter abnormality. The boys also 

presented with hypogenitalism raising the suspicion of hypogonadism. This led to an 

initial clinical diagnosis of 4H Syndrome (MIM number: 607694). This is a childhood 

onset autosomal recessive neurodegenerative disorder. It is characterized by 

progressive motor decline that can manifest as tremor, ataxia, spasticity, and cerebellar 

signs, as well as mild cognitive regression (Wolf et al., 2007). Other features may include 

hypogonadotropic hypogonadism and hypodontia or oligodontia. Causative variants 
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have been reported in POLR3A and POLR3B (Cayami et al., 2015). Clinical 

investigations included a focused clinical exome for Hypomyelinating Leukodystrophy, 

testing for 12 genes, including POLR3A and POLR3B (https://ukgtn.nhs.uk/find-a-

test/search-by-disorder-gene/details/6736/).  

 

Later review revealed that the children’s symptoms included abnormal movement, 

ptyalism, failure to thrive, myopathy, developmental delay, poor feeding and evidence of 

and stroke-like episodes.. They also had abnormal brain scans, demonstrating 

hypomyelination and microcephaly. Excessive sweating was a distinct feature noted for 

the younger boy once he was admitted to hospital. Further examinations revealed 

elevated blood lactate levels, with normal CSF lactate, and a skeletal muscle biopsy 

showed a severe combined deficiency of mitochondrial respiratory chain complexes I 

and IV.   

 

 

Figure 5-1 Pedigree of family ND12 
Pedigree outlining two generations of the family and the consanguineous union. DNA samples 
indicated by anonymized codes have been used for genetic investigations using WES. 
 

5.2.3 Autozygosity mapping 

Autozygosity mapping was performed using WES data. Precisely, the vcf file prior to 

SNP filtering (.raw.vcf) from the four  members of the family that have been taken forward 

for WES were used (see section 2.2.10.6). Homozygous regions shared by the three 

affected individuals, but absent from the parents and the unaffected sibling, are 

summarised in Table 5-1. 
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Table 5-1 Common regions of homozygosity amongst affected individuals. 
The homozygous regions are listed in descending order based on the size of each region. The 
human genome assembly GRCh37/hg19 was used. 

5.2.4 Whole exome sequencing  

DNA samples from all the individuals with a JT identifier (Figure 5.1) were taken forward 

for WES library preparation using the Illumina QXT protocol (section 2.2.10). During 

library preparation, Bioanalyzer traces were used to assess the size and quantity of the 

DNA fragments at post-shearing and post-hybridization stages (Appendix D). The 

samples were pooled, aiming for a total of ten samples per flowcell, and sequencing was 

performed on the Illumina HiSeq 3000 platform. 

 

Prior to data analysis, the .fastq files, and subsequent .bam files, were also assessed for 

the quality of sequencing (section 2.2.10.4). An in-house bioinformatics pipeline was 

used for data analysis (section 2.2.10.3), assuming a recessive mode of inheritance that 

allowed variants to be prioritized in the shared homozygous regions identified previously. 

In addition, segregation analysis enabled the filtering out of variants that were not 

compatible with Mendelian segregation of an autosomal recessive condition. 

Investigation of any variants in either POLR3A and POLR3B was also carried out, based 

on the 4H-like phenotype of the family, with no homozygous or compound heterozygous 

variants being identified, confirming the previous clinical investigations. Table 5-2 

summarises the variants identified after filtering with a CADD score >15. Figure 5-2 

illustrates the presence of the best candidate variant in KLHL7 in the homozygous region 

previously identified. Given the pedigree structure, further analysis for variants 

associated with X-linked inheritance was also performed but no variants were identified.  

Chromosome Start End Length 
7 16834551 24758645 7924094
10 93945 3182941 3088996
9 131689361 132625602 936241
17 73089524 73565262 475738
17 40811781 41167957 356176
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Table 5-2 Homozygous variants identified in family ND12 
Homozygous variants in KLHL7 (NM_001031710.3) and MAML3 (NM_018717.5) were annotated 
based on the human genome assembly GRCh37/hg19. 
 

 

Figure 5-2 Ideogram illustrating the homozygous regions shared by the affected 
individuals in family ND12 
The ideogram illustrates the homozygous regions of the three affected individuals. The regions 
highlighted in red represent the shared homozygous regions. The homozygous KLHL7 variant 
lies within chromosome 7 (7p15.3), indicated by the red arrow. The human genome assembly 
GRCh37/hg19 was used.  

Gene Location Variant

KLHL7 7:23205327 c.947G>A

MAML3 4:140811083 c.1506delG

Gene Condel Polyphen2 SIFT CADD score

KLHL7 N/A N/A N/A 39

MAML3 N/A N/A N/A 26

Gene MAF gnomAD Protein Function OMIM In 
Homozygous 

KLHL7 0.000003978
Substrate-specific 

adapter of E3 
ubiquitin ligases

Retinitis         
pigmentosa 42 (AD)                        

Cold-induced sweating 
syndrome 3 (AR)

Yes

MAML3 0.7481
 Transcriptional 
coactivator for 

NOTCH proteins
N/A No

Variant Information

Protein change

p.W316*

Pathogenicity prediction 

Frequency and function 

p.Q502HfsTer20
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5.2.5 Variant confirmation using Sanger Sequencing  

Due to the presence of consanguinity in family ND12, the variants in the homozygous 

regions were initially prioritized. In this case, the variant in KLHL7 (c.947G>A, p.W316*) 

was considered the best candidate variant as it was within a homozygous region, had a 

higher CADD score compared to the variant in MAML3, and the minor allele frequency 

on gnomAD was very low, compatible with the frequency of a pathogenic rare disease 

allele. The allele frequency of MAML3 was high and was therefore excluded as 

pathogenic and causative. 

 

Sanger sequencing was used to confirm that the c. 947G>A variant in KLHL7 identified 

by WES was in the homozygous state in all affected individuals, and heterozygous in the 

unaffected father.  DNA from all members of the family was amplified and Sanger 

sequenced using exon specific primers (see section 2.1.4). The c.947G>A variant in 

KLHL7 segregated with the condition, consistent with autosomal recessive inheritance. 

This research finding was reported back to the referring clinician. The electropherograms 

that summarise this research finding are shown in Figure 5-3. 

 

 

Figure 5-3 Electropherograms of the c.947G>A variant in KLHL7. 
Electropherograms illustrating heterozygous sequence from parental DNA and the homozygous 
mutant sequence from the patients DNA. The red arrow indicates the changed nucleotide in the 
patients DNA. All affected individuals are homozygous for this variant. 
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5.3 Interpretation of the c.947G>A variant in KLHL7 

5.3.1 Conservation and expression pattern of KLHL7 

Conservation analysis revealed that the amino acid residue p.W316 and this region of 

the KLHL7 protein are highly conserved in vertebrate species from Humans down to frog 

and zebrafish (Figure 5-4). This suggests that the specific amino acid, as well as the 

region surrounding this residue, is likely to have a key role in the function of this protein 

in order to be so highly conserved during evolution. 

 

 

Figure 5-4 Conservation analysis of a region of KLHL7 protein 
A representation of the conservation analysis of KLHL7 protein around the location of the variant 
identified, showing protein sequences from H. sapiens down to X. tropicalis. The mutated amino 
acid residue p.W316 is highlighted in red.  
 
 
In addition, RNA in situ hybridisation assays in mouse embryos (embryonic day 14.5) 

indicate that KLHL7 is expressed in the brain, spinal cord, thoracic ganglion and 

trigeminal ganglion and the eye. This suggests that the tissue expression pattern is 

consistent with the disease phenotype in humans (figure 5-5). This information was 

important at the time of the variant discovery, because KLHL7 was at that time only 

associated with autosomal dominant (AD) retinitis pigmentosa type 42 (Friedman et al., 

2009) and the expression profile provided further confidence in pursuing this research 

study into functional characterization. 
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D. rerio
X. tropicalis



 137 

 

Figure 5-5 Representation of KLHL7 expression pattern in mouse models. 
This image is adapted from the Mouse Genome Informatics (MGI) database illustrating the 
expression pattern of KLHL7 by using RNA in situ hybridization assays (Finger et al., 2017). This 
provided evidence supporting the high expression level of KLHL7 in the central nervous system 
(brain, spinal cord, thoracic ganglion and trigeminal ganglion) and the eye, and the potential 
relevance of KLHL7 in an autosomal recessive neurodevelopmental disorder.  
Website link: http://www.informatics.jax.org/assay/MGI:4825807#euxassay_011530_17_id 
[Accessed January 2016]. 
 

Clinically, this case was challenging to interpret because the children had no eye 

phenotype and the parents, who carried a heterozygous variant in KLHL7, would be 

expected to have symptoms of autosomal dominant retinitis pigmentosa type 42. 

However, the parents did not have a detectable eye phenotype, perhaps due to their 

young age, as retinitis pigmentosa type 42 is usually a late onset disease and the parents 

are in their early thirties. Interestingly, during the progress of this study the first study 

was published linking a KLHL7 mutation to an autosomal recessive neurodevelopmental 

condition (Angius et al., 2016), providing more certainty that this is the causative variant 

in family ND12. 
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5.3.2 The biological function of KLHL7 protein in disease 

KLHL7 encodes a 66kDa substrate-specific adapter of E3 ubiquitin ligase complexes, 

specifically targeting substrates for degradation. The KLHL7 protein is made up of a BTB 

and BACK domain that mediates binding to E3 ligases, followed by six Kelch repeat 

domains that appear to be a substrate-specific binding site (figure 5-6). A known E3 

ubiquitin ligase complex is the CUL3-KLHL7 complex, where KLHL7 forms a dimer with 

CUL3 through its BTB and BACK domains. The enzymatic activity is exerted by a RING 

finger-based E3 ligase complex formed by bringing an E2 ubiquitin conjugating enzyme 

and the substrate in close proximity (Kigoshi et al., 2011). It is known that KLHL7 induces 

polyubiquitination at ubiquitin residue Lys48, targeting substrates for proteasomal 

degradation (Li and Ye, 2008). However, it is not yet known which substrates KLHL7 

specifically binds to and which are the specific E2 ubiquitin conjugating enzymes and E3 

ligases that form a complex with KLHL7. 

 

Up until 2016, mutations in KLHL7 have only been associated with autosomal dominant 

retinitis pigmentosa type 42 (RP42), with all the variants reported being within the BACK 

domain of the KLHL7 protein (Friedman et al., 2009, Hugosson et al., 2010). Functional 

characterisation of the missense variants in the BACK domain revealed that the E3 ligase 

activity was diminished, as a result of the missense variant interfering with the 

incorporation of KLHL7 and CUL3 to form a complex. This resulted in the inappropriate 

accumulation of substrates that would have otherwise be tagged for degradation (Kigoshi 

et al., 2011). However, as these variants were heterozygous the E3 ligase activity was 

not completely abolished, therefore a proportion of the substrates would still be properly 

degraded. One of the reasons that these variants only cause a phenotype in the eye is 

potentially due to the fact the even a small amount of aggregated substrates would 

potentially cause a pathogenic phenotype in more susceptible tissues. The reason why 

retinal tissue is particularly susceptible in this disease context is unclear. 

 

The same year of our identification of the candidate pathogenic variant in family ND12, 

the first association of KLHL7 and a recessive neurodevelopmental disorder was 

established by Angius et al. Their work revealed four families with homozygous variants 

in KLHL7 affected by a rare autosomal recessive disorder known as Criponi syndrome 

(Angius et al., 2016). The clinical features reported in this study matched the features of 

the affected individuals in family ND12. Two years later another case was reported with 

a homozygous nonsense variant, establishing a new association of KLHL7 mutations 

other than with autosomal dominant RP42 (Jeffries et al., 2018). A key characteristic that 

is shared by these cases is that all the mutations reported to be associated with the 

autosomal recessive disease, are all present within the Kelch domains which are 
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responsible for substrate binding. Figure 5-6A outlines the KLHL7 protein structure and 

indicates the location of the RP42 specific mutations as well as the Crisponi syndorme-

specific mutations. In addition, the diagram indicates the nonsense variant that we have 

identified. This localizes at the first Kelch domain, either abolishing the protein 

completely, or in case of a truncated protein, entirely stopping any substrate from 

binding. Figure 5-6B illustrates  the structure of the Kelch domains, showing the 6 

repeats and the location of our identified variant. 

 

Figure 5-6 Structure outline of KLHL7 protein 
A – A representation of the KLHL7 protein outlining the different domains of the protein, showing 
specifically how the BTB and BACK domain are binding to the active side region of the E3 ligase 
and how the six KELCH repeats are specific for substrate binding. Arrows also show the different 
mutations identified in KLHL7, separating the ones that are causing autosomal dominant retinitis 
pigmentosa type 42 and the ones causing autosomal recessive Crisponi syndrome. B – A protein 
structure adapted from UniProt, showing the six Kelch repeats. The location of the variant 
identified in family ND12 is marked in yellow at the start of the first Kelch repeat.   
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5.4 Functional characterisation of p.W316* in KLHL7 

At the time of discovery, the homozygous nonsense variant p.W316* was novel and no 

initial associations had been made between KLHL7 mutations and autosomal recessive 

disease that may or may not have an eye phenotype (Angius et al., 2016). This possibility 

was puzzling both clinically and scientifically, and further functional characterisation of 

the variant was necessary in order to gain more insight on the pathomechanism  

associated with the recessive neurodevelopmental phenotype.  

 

5.4.1 Assessing the impact of p.W316* on metabolism 

According to the NHS Highly Specialised Service for Rare Mitochondrial Disorders, a 

severe combined deficiency of mitochondrial respiratory chain complexes I and IV was 

observed in a skeletal muscle biopsy from individual JT728. The results from the biopsy 

are entirely compatible with the stroke-like episodes, developmental delay, failure to 

thrive, myopathy and elevated blood lactate levels. Clinical immunohistochemical 

evidence of mitochondrial biochemical defects were not conclusive, therefore a more 

detailed biochemical test needed to be performed to further understand the effect of the 

KLHL7 p.W316* mutation on metabolism. 

 

In order to interpret the effect that the nonsense variant in KLHL7 has on mitochondrial 

function, the oxidative phosphorylation pathway of energy production was initially tested 

using a Seahorse XFe96 Extracellular Flux Analyzer, running the MitoStress test (section 

2.2.22). Control and patient fibroblasts were challenged with toxins that block different 

processes of the oxidative phosphorylation pathway, in three biological replicates. The 

oxygen consumption rate (OCR) of the cells was measured before and after each toxin 

injection allowing for identification of important measures of mitochondrial function. The 

trace in figure 5-7 shows the changes in OCR in real time. 
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Figure 5-7 Seahorse trace for the MitoStress test of KLHL7 p.W316* fibroblasts 
Traces of real-time OCR changes between wildtype and patient fibroblasts. The first injection was 
with oligomycin to block ATP synthase, the second injection was with FCCP to uncouple the 
electron transport chain and, lastly, Antimycin A/ Rotenone to completely block electron transport. 
 

Further analysis of the OCR measurements at certain time points of the experiment allow 

for identification of key aspects of mitochondrial function, such as basal and maximal 

respiration, ATP production, proton leak and spare respiratory capacity. The analysis of 

each one of these characteristics is summarised in Figure 5-8. There was no difference 

in ATP production between wildtype and patient fibroblast, but the basal and maximal 

respiration, spare respiratory capacity, proton leak and coupling efficiency were 

significantly different in mutant KLHL7 cells compared to wildtype. 

 

More precisely, the MitoStress test revealed that the basal respiration of patient 

fibroblasts is slightly reduced compared to wildtype, but when forced, the patient 

fibroblasts cannot reach maximum respiration. This observation validates a defect in the 

oxidative phosphorylation pathway, as observed by the muscle biopsy testing. In 

addition, the patient fibroblasts show significantly reduced spare respiratory capacity 

compared to the wildtype, again supporting the hypothesis of a defect in the oxidative 

phosphorylation chain. This is further supported by the reduced proton leak and the 

increased coupling efficiency in the patient fibroblasts compared to the wildtype control, 

suggesting a potential disruption in ionic homeostasis (Papa et al., 2012). This would 

lead to increased H+ concentration in the intermembrane space, affecting the proton-

motive force and the coupling efficiency, since more H+ will flow through ATP synthase 

(figure 5-8.) 
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Figure 5-8 Metrics of mitochondrial function in wildtype and patient fibroblasts. 
Bar graphs that quantitate the metrics obtained from the MitoStress Test. Measurements at specific time points before or after toxin injections allowed for the calculation 

of each of the key aspects of mitochondrial function. A) Patient fibroblasts were significantly under-respiring at basal levels and when forced to maximum respiration, 

had a disrupted proton-motive force, but produce similar amounts of ATP. B) This representation shows the same results, but highlights the defect in achieving 

maximum respiration in the patient fibroblast upon FCCP injection. All statistical tests were performed by a two-tailed Student t-test (n=3; NS, not significant; * p<0.05; 

** p<0.01; ***p<0.001). Error bars indicate s.e.m. 
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The MitoStress test indicated a clear disruption of the oxidative phosphorylation chain, 

as respiration is significantly reduced both at basal and maximum levels. However, ATP 

levels were similar between wildtype and patient fibroblasts, suggesting the utilization of 

a different pathway for energy production such as glycolysis. In order to further 

investigate this observation, a Glycolysis Stress test was performed. Wildtype and 

patient fibroblasts were challenged with various toxins that block different processes of 

either glycolysis or the oxidative phosphorylation pathway, in three biological replicates. 

The extracellular acidification rate (ECAR) of the cells was measured before and after 

each injection, at regular intervals, allowing measurements to be taken during key 

aspects of glycolysis. The trace below shows the changes in ECAR in real time (Figure 

5-9). 

 

 

Figure 5-9 Seahorse trace for the Glycolysis Stress test of KLHL7 p.W316* 
fibroblasts 
Representation of the changes in ECAR in real time between normal control and patient 

fibroblasts. The first injection was with glucose to promote glycolysis, then oligomycin to block 

ATP synthase and any ATP production from oxidative phosphorylation, and lastly 2-deoxyglucose 

(2-DG), a structural analogue of glucose that completely blocks glycolysis, was injected. 
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Figure 5-10 ECAR metrics accessing glycolysis in KLHL7 p.W316* fibroblasts 
Representation of all the metrics obtained from the Glycolysis Stress test. Measurements at 

specific time points before or after each injection allowed for the calculation of each of the above 

properties to be obtained (Agilent protocol). KLHL7 patient fibroblasts seem to have an increased 

glycolytic phenotype compared to the control HDF cells. All statistical tests were performed by a 

two-tailed Student t-test (n=3; ns, not significant; * p<0.05; ***p<0.001). Error bars indicate s.e.m. 

 

 

The Glycolysis Stress test revealed significant differences between wildtype and KLHL7 

patient fibroblasts. The level of glycolysis (or in other words the conversion of glucose to 

pyruvate) was much higher in the KLHL7 patient fibroblasts compared to the wildtype, 

supporting the previous findings that oxidative phosphorylation is disrupted in the mutant 

cells and an alternative method for energy production had to be recruited. The same 

pattern was also observed in the glycolytic reserve and the glycolytic capacity between 

the wildtype and mutant cell line. This indicates that when forced, KLHL7 mutant cells 

have the potential to reach maximum glycolysis in a much higher level compared to 

wildtype control, suggesting that all the pyruvate made is mostly used in glycolysis and 

barely used in aerobic metabolism through oxidative phosphorylation. In addition, a 

significant difference was also observed in the non-glycolytic acidification rate observed 

in the wildtype and patient fibroblasts. KLHL7 p.W316* fibroblasts had a significantly 
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increased non-glycolytic acidification level compared to the wildtype fibroblasts, 

indicating a source of acidification separate to the glycolysis pathway. This can 

potentially arise from the conversion of pyruvate to lactate that is further reduced to lactic 

acid inducing acidification (Mookerjee et al., 2015). The diagram in figure 5-11 outlines 

the two possible outcomes following glycolysis.  

 

 

Figure 5-11 Outline of aerobic and anaerobic metabolism pathways 
The diagram illustrates the two potential uses of pyruvate in aerobic and anaerobic metabolism. 

Pyruvate can be converted into acetyl CoA and fed into the Kreb’s cycle and the oxidative 

phosphorylation chain for maximum production of ATP by aerobic respiration. Pyruvate can also 

be converted to lactate for immediate energy demands when aerobic metabolism cannot produce 

enough ATP at any given instance, for example during exercise. Lactate can be further reduced 

to lactic acid leading to acidification. 

 

Overall, this investigation supported the results obtained from the clinical tests on the 

muscle biopsies, revealing a defect in the oxidative phosphorylation chain resulting in 

reduced aerobic respiration in KLHL7 null fibroblasts. This could be due to the proton-

motive force, or more specifically due to one of the complexes of the oxidative 

phosphorylation chain being impaired, as suggested by the clinical tests (Ghezzi and 

Zeviani, 2018). In addition, the mitochondria could be under excessive stress resulting 

in impaired aerobic metabolism. This is also supported by the fact that the mutant cells 

tend to have increased acidification levels, perhaps due to the conversion of pyruvate to 

lactate in order to maintain their energy requirements. These are interesting descriptive 

observations, but further experiments are required in order to understand how the KLHL7 

mutation can have such a severe effect on mitochondrial function. 
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5.4.2 Using BioID to identifying novel protein interactions of KLHL7 
within the ubiquitin proteasome system. 

5.4.2.1 Design and optimisation of BioID experiments 

BioID was used to detect physiologically relevant protein-protein interactions associated 

with KLHL7, because this technique allows for identification of weak and transient 

interactions (Roux et al., 2018). This is key for this project as KLHL7 is involved in forming 

an E3-ligase complex for ubiquitinating substrates for proteasomal degradation and this 

process is relatively fast with many interactions being transient and some even indirect. 

However, BioID is powerful enough to identify these interactions using a promiscuous 

biotin ligase (BirA*) that is fused to the protein of interest and is capable of biotinylating 

proximal endogenous proteins. More precisely, in our experiment, KLHL7 was N-

terminally tagged with BirA* and then transfected into hTERT-RPE1 cells to induce 

biotinylation upon addition of exogenous biotin. Interacting proteins are then isolated by 

a standard biotin-affinity capture and identified using mass spectroscopy (Roux et al., 

2012). A summary of the experimental plan is illustrated in Figure 5-12. 
 

 

Figure 5-12 Outline of experimental plan for BioID 
A summary of the key steps in the BioID experiment, starting with exogenous expression of the 

BirA* biotin ligase-KLHL7 fusion protein in hTERT-RPE1 cells. Addition of exogenous biotin 

causes biotinylation of proximal or closely interacting proteins followed by cell lysis and biotin-

affinity capture of labelled proteins. Protein identification is achieved by using mass spectrometry.  
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The BirA tagged KLHL7 (BirA-KLHL7) protein was exogenously expressed using a 

standard transient transfection protocol (see section 2.2.15).The design and construction 

of the BirA-KLHL7 plasmid was done using the In-Fusion cloning methodology (see 

section 2.2.11.2). The KLHL7 full-length ORF sequence was amplified from a pENTR221 

plasmid (DNASU, plasmid HsCD00351708) using specifically designed flanking primers 

(see section 2.1.4) and was cloned into the pcDNA3.1 myc-BioID plasmid (Addgene, 

plasmid #35700) (Appendix H). The final map of the biotin ligase KLHL7 fusion protein 

(BirA-KLHL7 plasmid) is illustrated in figure 5-13, together with the PCR validations of 

each cloning step. The final plasmid was verified by Sanger sequencing (see section 

2.2.9) using T7 and bGH primers, along with internal primers designed within the KLHL7 

sequence (see section 2.1.4). 

 

Figure 5-13 Construction of BirA-KLHL7 plasmid for BioID experiment 
A – PCR validation steps for In-Fusion cloning protocol. On the left, a validation of the double 

digest performed using EcoRI and BamHI enzymes to obtain a linearised vector and on the right 

the band from the PCR amplification of the KLHL7 insert. B – The final map of BirA-KLHL7 plasmid 

used for the BioID experiment.  
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Once the plasmid was purified and sequence verified, the next step of the procedure was 

to optimise the conditions of the BioID experiment. Standard transfections were used 

(see section 2.2.15), followed by incubation with media supplemented with biotin once 

the transfection complexes were removed. However, incubation times with biotin-

supplemented media after transfection had to be optimized in order to achieve the best 

possible biotinylation levels. In the first instance, we used a 24 hour incubation period, 

which is the maximum incubation time recommended (Roux et al., 2012), allowing 

sufficient time for BirA-KLHL7 to be expressed and for induction of biotinylation. These 

conditions were validated between three different BioID plasmids (USP39 and RBX1 are 

relevant to other projects) and the appropriate controls, as outlined in figure 5-14. This 

clearly showed that 24 hr are necessary for KLHL7 to reach a good expression level 

(shown by anti-c-myc staining) and to have sufficient biotinylation (shown by the 

streptavidin staining). 

 

 

Figure 5-14 Validation of BirA-KLHL7 plasmid by western blotting. 
A – Western blot showing, on the left, the induction of biotinylation in transfected cells that have 

been incubated with biotin media for 24 hr. On the right, the same transfections but without biotin 

incubation show the absence of higher molecular weight material, indicating that biotinylation is 

being induced with the biotin media. B – Western blot showing the transfection level of KLHL7 

fusion protein during the 24 hr incubation period along, with the β-actin staining for loading control. 

The other proteins shown on these blots (USP39 and RBX1) were run alongside kLHL7 for 

validation purposes but are not relevant to this project.   
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Once the biotin incubation time and transfection protocol were optimised, BioID 

experiments were performed (see section 2.2.21) using the hTERT-RPE1 cell-line as our 

model system. Ideally, a neuronal cell line would be the best model system based on the 

phenotype of the patients, but due to the challenges of optimizing transient transfection 

in neuronal lines it was decided to select an easier model to work with but still relevant 

to KLHL7 biological mechanisms. Since KLHL7 mutations are a known cause of retinitis 

pigmentosa, the hTERT-RPE1 cell line was considered an appropriate model system to 

resemble the mechanisms and interacting partners that KLHL7 is involved with in retinal 

tissue. BioID experiments were performed, lysates specifically pulled  down with 

streptactin  beads, trypsinised and then sent to our collaborator (Karsten Boldt, University 

of Tubingen) for mass spectroscopy analysis. For this project, three different biological 

replicates were used with the appropriate controls in place (Figure 5.15) to help with the 

downstream filtering of identified proteins. In addition, a proteasomal inhibitor (MG132) 

was also used as an additional experiment for each biological replicate. Given that 

KLHL7 specifically targets proteins for degradation, the proteasome was inhibited in 

order to enhance the amount of potential biotinylated substrates present in the final 

lysate. Without proteasomal inhibition, many of the tagged substrates may have been 

degraded and thus might have been missed. 

 

 

Figure 5-15 Experimental samples and controls for BioID experiments 
The table summarises each sample prepared for each biological replicate for the BioID 

experiments. Untransfected samples without biotin treatment were considered as the negative 

control of the experiment and any hits obtained by these samples were discarded. Untransfected 

samples with 24 hr incubation with biotin were considered as one of the positive controls of the 

experiments that helped in excluding any false positive results arising from excess biotin in cells. 

Transfected samples without biotin were also considered as positive controls that helped in 

excluding any false positive results arising from having an active biotin ligase enzyme within the 

cells that could potentially biotinylate proteins in near proximity using endogenous biotin present 

within the cells. Furthermore, having the same setup with and without the proteasome inhibitor 

was beneficial in downstream analysis, specifically looking for any enriched proteins that could 

be considered as potential substrates of the E3 ligase complex that contains KLHL7 as a 

component. 
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5.4.2.2 Analysis of mass spectroscopy data 

Affinity purified eluates were precipitated with chloroform and methanol followed by 

trypsin digestion as described before (Gloeckner et al., 2009). C-MS/MS analysis was 

performed on Ultimate3000 nanoRSLC systems (Thermo Scientific) coupled to an 

Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific) by a nano spray ion 

source. MS/MS data were analyzed using the MaxQuant software (version 1.6.1.0) (Cox 

and Mann, 2008, Cox et al., 2009). As a digesting enzyme, Trypsin/P was selected with 

maximal 2 missed cleavages. The data were analyzed by label-free quantification with 

the minimum ratio count of 3. The first search peptide tolerance was set to 20, the main 

search peptide tolerance to 4.5 ppm and the re-quantify option was selected. For peptide 

and protein identification the human subset of the SwissProt database (release 2014_11) 

was used and contaminants were detected using the MaxQuant contaminant search. A 

minimum peptide number of 2 and a minimum length of 7 amino acids was tolerated. 

Unique and razor peptides were used for quantification. The match between run option 

was enabled with a match time window of 0.7 min and an alignment time window of 20 

min. The statistical analysis including ratio, t-test and significance A calculation was done 

using the Perseus software (version 1.5.5.3) (Tyanova et al., 2016). Significance A is a 

Q-function that detects outliers from a normal distribution. The background binders are 

the normal distribution and the interactors are the outliers. The output of the analysis is 

plotted in figure 5-16. 

  



 151 

 

 

Figure 5-16 MS/MS data analysis using MaxQuant software 
Plotted are the log10 ratios (x-axes) and the log10 intensities (y-axes) for all proteins quantified 

by the MaxQuant software. Proteins significantly enriched from the background noise are 

highlighted in red (Benjamini-Hochberg corrected, left sided Significance A < 0.05).This 

represents proteins that deviate from the normal distribution and are considered as outliers. These 

outliers are the proteins that are significantly enriched when KLHL7 is biotinylated. . 
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to help us construct the complex for which KLHL7 is an adaptor protein, thereby 

understanding more about the disease mechanism. In addition, any hits that had 

previously been associated with similar diseases or have a neuronal function were 

highlighted. The figure below (figure 5.17) illustrates the top hits obtained by the BioID 

experiment, ranked based on the average number of peptides identified per biological 

replicate. The figure also highlights potential E2s and E3s, as well as the enriched hits 

that could be potential substrates. 

 
 

 
 

Figure 5-17 List of top hits identified from the BioID experiment 
All the hits are presented in an ascending order based on the average number of peptides 

identified per run. All the hits listed passed the A-significance test from the analysis. Proteins 

coloured in green could be potential E3-ligases, and proteins coloured in yellow potential E2-

ubiquitin-conjugating enzymes, all working in the same complex as KLHL7. The remaining 

proteins (in black) could be potential substrates of this complex.   
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5.4.2.4 Protein network analysis 

In order to comprehend the most significant hits of the BioID experiment listed above, 

various computational tools were used to help with grouping proteins and building 

networks based on known protein-protein interactions. To achieve this a database of 

known and predicted protein-protein interactions, known as STRING, was used (Snel et 

al., 2000). This database comprises of interactions that include both physical (or direct) 

and functional (or indirect) associations derived from the following sources: genomic 

context predictions, high-throughput lab experiments, conservations and co-expression 

datasets, automated text-mining and previous knowledge from databases. By using 

STRING v11.0 (Szklarczyk et al., 2019), we were able to identify two already known 

networks of protein-protein interactions. The first big network illustrated on the left side 

of figure 5-18 contains all the hits that are associated with forming the E2/E3 ubiquitin 

ligase complex, comprising of interactions between various E3 ligases (DTX3L, TRIM21, 

HERC5, HERC6), E2 ubiquitin-conjugating enzymes (UBE2G2, UBE2L6) and a few 

other interactors that may or may not have a role in ubiquitination. On the right side of 

the figure there is another smaller network, mainly comprising of protein associated with 

cell cycle, cytokinesis and cytoskeleton maintenance. This provides evidence of a 

potential pathomechism that implicates KLHL7 in these cellular processes. There are 

also a few hits that are not associated with any of the two networks, with potential novel 

links to functional mechanisms associated with neurodevelopment making them 

interesting candidates for future investigations. An example is ARL3, mutations in which 

cause both AD retinitis pigmentosa type 83 (Holtan et al., 2019) and AR Joubert 

syndrome type 35 (Alkanderi et al., 2018). With these established genetic links, ARL3 

could be an interesting interacting partner of KLHL7 since they share similarities in both 

the eye phenotype of RP and a severe global developmental syndrome. Surprisingly, in 

this high-throughput experiment to identify protein-protein interactions, KLHL7 was not 

associated with any of the hits analysed using STRING, indicating an extremely novel 

protein with no established associations. This provides numerous possibilities for future 

work in understanding the role of this protein and how its disruption can either cause an 

AD phenotype of the eye or a severe AR global developmental delay phenotype.   
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Figure 5-18 KLHL7 protein-protein interaction network from BioID experiments 
The figure above illustrates the networks forming from the significant hits obtained from KLHL7 

BioID experiments using STRING v11.0 software. The network on the left mostly comprises 

proteins involved in the ubiquitin-proteasome system, and the network on the right mostly of 

proteins involved in cell cycle, cytokinesis and cytoskeleton. Interestingly, KLHL7 is not 

associated with any of the hits, highlighting the novelty and importance of this dataset in 

understanding the role of this protein in neurodevelopment.  
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5.4.2.5 Pathway enrichment analysis  

To further interpret the BioID data, a pathway enrichment analysis was performed using 

the Database for Annotation, Visualization and Integrated Discovery (DAVID v6.8). 

DAVID provides a comprehensive set of functional annotation tools useful for interpreting 

large list of genes (Huang et al., 2009b). DAVID can functionally annotate and classify 

genes, mainly using GO terms for enriched biological themes (Huang et al., 2009a). Such 

an enrichment analysis for pathway/process was performed with the 33 significant hits 

from the BioID data, highlighting a few key processes that are significantly enriched in 

this dataset. A summary of this analysis is illustrated in figure 5-19.  

 

 

 

Figure 5-19 Pathway enrichment analysis for the BioID dataset. 
A summary of the main pathways or processes enriched in the BioID dataset, with most of them 

being significant (p≤0.05 - above the red threshold line). The number above each bar represents 

the number of genes associated with each process.   
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The obvious and expected process to be significantly highlighted was the ubiquitin-

protein transferase activity with the greatest number of genes being linked to this 

pathway. This result was expected since KLHL7 is an E3-ligase adaptor and the purpose 

of the BioID experiment was to identify other partners of KLHL7 that participate in forming 

the E2/E3 ligase complex for tagging proteins for degradation. A few other ubiquitin-

dependent processes have been identified, such as protein polyubiquitination, ligase 

activity and ubiquitin-dependent protein catabolic processes, again supporting the 

existing literature on KLHL7 being an adaptor responsible for tagging substrates for 

proteasomal degradation.  

 

The second most significant process is mitotic cytokinesis. This pathway was still 

expected based on the previous STRING analysis, as the majority of the genes identified 

are involved in cytokinesis and cell cycle regulation. Again, a few other relevant 

processes to cytokinesis are picked up, such as midbody, mitotic nuclear division and 

microtubule binding.  

 

Furthermore, some novel pathways have also been detected that implicate a few 

interesting cellular processes. These include single-stranded RNA binding and immune 

responses. The single-stranded RNA binding could involve binding to various RNA 

species that can have a huge range of roles. Also, the immune response processes 

include a defense response to virus and the innate immune response.  
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5.4.2.6 Functional validation and future work   

The output from the BioID data revealed a strong association of KLHL7 with cell cycle 

and cytokinesis, something worth investigating to further understand the biological 

function of this protein and its associated pathomechanism. To achieve this the 

nonsense variant in KLHL7 could be modelled using CRISPR/Cas9 technology to 

characterize any potential impact of the mutation on cell cycle progression and 

cytokinesis. The cell line produced, carrying the nonsense variant, can be used in a flow 

cytometry assay for cell cycle analysis or stain for different markers for spindle formation 

to study cytokinesis.  

 

In addition, a number of UPS components were identified, including E2 and E3 enzymes, 

that could potentially be studied using in-vitro ubiquitination assays to gain insights into 

the E3-ligase complexes formed with KLHL7, and possibly verify novel substrates from 

the BioID dataset. Specific substrates of the KLHL7 complex could be validated by 

adding E1-ubiquitin activating enzyme, one of the two identified E2-ubiqtuin conjugating 

enzymes, one of the E3-ligases identified, KLHL7 as the adaptor, potential substrates 

and ATP. The substrates that get poly-ubiquitinated will be specific to the E3-ligase 

complex associated with KLHL7. Validating these substrates can provide novel insights 

into biological mechanisms of the UPS and how this specific complex ubiquitinates its 

substrates.  

 

Also, the patient cells can be used as a model system to extract protein to assess 

whether or not the mutation in KLHL7 leads to accumulation of a specific substrate. For 

instance, obtaining antibodies for potential substrates and running western blots can 

determine whether a particular protein is accumulating in the mutant cell line.  

 

It will also be interesting to try and understand how the missense variants that cause RP-

42 differ to the biallelic variants that cause a recessive neurodevelopmental disorder in 

terms of biological functions and protein interactions.  
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Chapter 6  
A novel missense mutation in MAL is associated with a rare 

leukodystrophy similar to Pelizaeus-Merzbacher disease 

6.1 Introduction 

This chapter summarises the identification of a missense variant in MAL that is 

associated with a recessive neurodevelopmental condition, characterised by cerebellar 

atrophy, neurodevelopmental delay and central hypomyelination/ leukodystrophy. 

Leukodystrophies (LD) are genetic disorders affecting the white matter of the central 

nervous system (CNS). The majority of LD present with motor symptoms, chiefly delay 

in the achievement of motor milestones. Cognitive impairment and seizures can also be 

present. Early involvement of the corticospinal tracts leads to a pattern of central 

weakness and evolving spasticity. Movement disorders are a common feature: loss of 

cerebellar volume can lead to a progressive ataxia, whilst involvement of the deep gray 

nuclei can result in dystonia or chorea. Genetic forms of LD display considerable locus 

heterogeneity with numerous different causative genes. One of the most common 

causes of hypomyelinating LD is mutations in PLP1, which results in the classic disorder, 

Pelizaeus-Merzbacher disease (Osorio and Goldman, 2018). In this study, a novel 

mutation in MAL, encoding a gene product that interacts with PLP1, was identified as a 

cause of a neurodevelopmental condition characterised by central hypomyelination and 

cerebellar atrophy, similar to Pelizaeus-Merzbacher disease. 

 

This chapter outlines the library preparation for Whole Exome Sequencing of affected 

individuals, the follow-up functional characterisation of the variant and its association 

with neurodevelopment and white matter abnormalities. A clinical overview and variant 

filtering strategy is given, as for each case discussed previously, and the candidate 

variant is then functionally assessed by modelling the mutation in established cell-lines. 
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6.2 Variant identification by Whole Exome Sequencing  

6.2.1 Patient Recruitment 

Family ND13 was ascertained and recruited as part of the Jules Thorn genetics research 

study, as described elsewhere (see section 2.2.2). All family members that were included 

in the study gave informed consent for research and their DNA was collected from blood. 

A skin biopsy was also collected from affected individual JT778 (see method 2.2.4). 

Affected individuals were phenotyped by Clinical Geneticists in regional hospitals (see 

method 2.2.1). 

6.2.2 Clinical Ascertainment  

Family ND13 is a consanguineous UK family of Pakistani origin. Two affected individuals 

presented with significant developmental delay and learning disabilities, feeding 

difficulties, cerebellar developmental defects, and cortical white matter abnormalities 

similar to Pelizaeus-Merzbacher disease. The pedigree structure was compatible with 

both autosomal recessive and X-linked inheritance. The affected individuals were 

screened for a panel of genes known to cause white matter abnormalities, including 

PLP1, but no variants were found. The details of the diagnostic screening panel are 

described here: (https://www.leedsth.nhs.uk/a-z-of-services/the-leeds-genetics-

laboratory/constitutional-genetics/molecular-genetics/by-disorder/leukodystrophy/). 

 

 

Figure 6-1 Pedigree of family ND13 
Pedigree outlining four generations of the family and the consanguineous union. Individuals 

recruited to the study are indicated by anonymized codes and individuals whose DNA samples 

have been used for genetic investigations using WES are marked with a star (*). 

I

II

III

IV

JT779 JT778JT776 JT777 JT775

JT773JT774

* * *
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Figure 6-2 MRI scan from individual JT779 
MRI scans from Individual JT779. Left panel (T2 Axial view); mild central hypomyelination (black 

arrows) and prominence of extra axial spaces indicative of cerebral volume loss (red arrows). 

Right panel (T1 Axial view); prominence of cerebellar folia, and vermian hypoplasia, indicating 

cerebellar volume loss. Flattening of the posterior aspect of the skull vault indicative of 

plagiocephaly.  

 

 

6.2.3 Autozygosity mapping  

Autozygosity mapping was performed using WES data. Precisely, the vcf file prior to 

SNP filtering (.raw.vcf) from the individuals that have been taken forward for WES were 

used (see section 2.2.10.6). Homozygous regions shared by the two affected individuals, 

but absent from the unaffected sibling, are summarised in Table 6-1. 

 

 

T2 Axial T1 axial
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Table 6-1 Common regions of homozygosity amongst affected individuals. 
The homozygous regions are listed in descending order based on the size of each region. The 

human genome assembly GRCh37/hg19 was used. 

 

6.2.4 Whole Exome Sequencing  

DNA samples from all the individuals indicated (Figure 6.1) were taken forward for WES 

library preparation using the Illumina QXT protocol (section 2.2.10). During library 

preparation, Bioanalyzer traces were used to assess the size and quantity of the DNA 

fragments at post-shearing and post-hybridization stages (Appendix D). The samples 

were pooled, aiming for a total of ten samples per lane, and sequencing was performed 

on the Illumina HiSeq 3000 platform. 

 

Prior to data analysis, the fastq files and subsequent bam files generated were also 

assessed for the quality of sequencing. An in-house bioinformatics pipeline was used for 

data analysis (section 2.2.10.3), assuming a recessive mode of inheritance that allowed 

variants to be prioritized in previously identified homozygous regions. In addition, 

segregation analysis enabled the filtering out of variants that were not compatible with 

Mendelian segregation of an autosomal recessive condition. Additional analysis was also 

performed for any X-linked variants, based on the pedigree structure, with no variants 

identified that could be interpreted as pathogenic. Table 6-2 summarises the variants 

identified after filtering with a CADD score >15. Figure 6-2 illustrates the presence of the 

candidate variants in the homozygous regions shared by the affected individuals, with 

the best candidate variant in MAL being present in the largest homozygous region. All 

candidate variants were further processed for segregation analysis.  

Chromosome Start End Length 
2 91873492 121740505 29867013
7 102755330 131347374 28592044
2 33540172 61175312 27635140
2 69409029 88926729 19517700
5 135178081 147286054 12107973
1 234563060 241767930 7204870
8 11142389 15978063 4835674
7 98460824 102136550 3675726
5 178634619 180582604 1947985
11 45672261 47238522 1566261
7 1518336 2515382 997046
6 33036388 33136575 100187
6 31236853 31239010 2157
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Table 6-2 Homozygous variants identified in family ND13 
Homozygous variants in PNPT1 (NM_033109.5)p, ZNHIT1 (NM_006349.3) and MAL 

(NM_002371.4) were annotated based on the human genome assembly GRCh37/hg19. 

 

  

Gene Location Variant

PNPT1 2:55907990 c.517G>A

ZNHIT1 7:100867096 c.416G>A

MAL 2:95715390 c.326C>A

Gene Condel Polyphen2 SIFT CADD score

PNPT1
deleterious 

(0.572) possibly damaging (0.554)
deleterious 

(0.02) 34

ZNHIT1
deleterious 

(0.600) possibly damaging (0.621)
deleterious 

(0.02) 32

MAL
deleterious 

(0.621) possibly damaging (0.839)
deleterious 

(0.08) 28.7

Gene MAF gnomAD Protein Function OMIM
In 

Homozygous 
region 

PNPT1
0.0001355                   
(0.001% in 

South Asians)

Polyribonucleotide 
nucleotidyltransferase; 

implicated in RNA 
processing and degradation

Combined 
oxidative 

phosphorylation 
deficiency 13

Yes

ZNHIT1
0.00009172    
(0.0006% in 

South Asians)

Zinc Finger HIT-Type 
Containing 1; involved in 
p53-mediated apoptosis

____ Yes

MAL Absent

Highly hydrophobic integral 
membrane protein 

implicated in myelin 
biogenesis and function 

____ Yes

Variant Information

Protein change

p.A173T

p.A109D

Pathogenicity prediction 

Frequency and function 

p.R139H
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Figure 6-3 Ideogram illustrating the homozygous regions shared by the affected 
individuals in family ND13 
The ideograms illustrate the homozygous regions of the two affected individuals. The regions 

highlighted in red represent the shared homozygous regions, that are absent from the unaffected 

individual (regions in pink). The variant in PNPT1 localises within the first homozygous region on 

chromosome 2, the variant in MAL in the last and biggest homozygous region on chromosome 2, 

and the variant in ZNHIT1 in the homozygous region on chromosome 7. The human genome 

assembly GRCh37/hg19 was used. 

 

6.2.5 Variant confirmation using Sanger Sequencing 

The homozygous variants summarised in Table 5-2 were the only variants passing the 

biallelic filtering criteria from the bioinformatics analysis. All three variants are within a 

homozygous region, therefore none of them can be prioritised based on autozygosity 

mapping, as the causative variant is more likely to segregate within a homozygous 

haplotype. Segregation analysis was therefore used to determine if the segregation of 

all variants within the family’s pedigree were compatible with autosomal recessive 

inheritance. Sanger sequencing was used to confirm the c.517G>A variant in PNPT1, 

c.416G>A variant in ZNHIT1, and c.326C>A variant in MAL that were identified by WES. 

All members of the family with the anonymised codes were sequenced using the relevant 

primers (see section 2.1.4). The variant in MAL and ZNHIT1 segregated according to the 

family pedigree, consistent with autosomal recessive inheritance. The variant in PNPT1 

did not segregate and was therefore excluded as a candidate for this condition. 

Segregation analysis is outlined in figure 6-4.   
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Figure 6-4 Segregation analysis for the variants identified in ND13 
The electropherograms above outline the segregation analysis for all the members of the family 

for whom DNA sample was available. Each pedigree shows the sequencing for the variants 

identified by WES, with the segregation of the variant in PNPT1 not compatible with an autosomal 

recessive inheritance pattern in this family pedigree.  

MAL

c.326C>A
hom

c.326C>A
het

c.326C>A
het

WTc.326C>A
het c.326C>A

hom
Affected Affected

* *

* *
WT
*

Unaffected

ZNHIT1

c.416G>A
hom

c.416G>A
hom

c.416G>A
het

c.416G>A
het

c.416G>A
het

Affected Affected

* *

* *
c.416G>A

het
c.416G>A
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*

Unaffected

PNPT1
No segragation

c.517G>A
het

c.517G>A
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c.517G>A
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WT

* *

* *

c.517G>A
hom

c.517G>A
hom
Affected Affected

c.517G>A
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The pathogenicity predictions for the two variants in MAL and PNPT1 were very similar, 

therefore no conclusion could be drawn based on pathogenicity prediction scores alone. 

However, it is worth noting that the variant in MAL was completely absent from gnomAD, 

whereas the variant in PNPT1 has an allele frequency of 0.006% in South Asians.  

 

As a result, a literature search was carried out on both genes to assess whether any of 

the two would be a better candidate gene, based on functional relevance to the disease 

phenotype or protein function. With regard to ZNHIT1, little is known about its function 

but there is some indication that it is involved in cancers. It seems to be downregulated 

in breast cancer cell lines and overexpression seems to inhibit tumorigenesis by 

regulating PI3K/Akt/mTOR pathway via PTEN-mediated inactivation (Cui et al., 2019).  

 
On the other hand, MAL (myelin and lymphocyte protein) is a 16kDa membrane 

proteolipid with four transmembrane domains. It seems to have a role in vesicular 

trafficking in polarized cells (Marazuela and Alonso, 2004), specifically involved in apical 

transport via a direct route from the Golgi apparatus (Puertollano and Alonso, 1999), and 

in transcytosis to basolateral membrane (Bijlard et al., 2016). MAL also seems to be 

regulating the distribution of PLP1 (Bijlard et al., 2016), the major myelin-resident protein, 

by targeting PLP1 to the basolateral membrane where myelin assembly initiates. The 

distribution and correct assembly of PLP1 protein is a key element for the mechanism of 

myelin formation (Baron et al., 2015).  

 

The fact that MAL has an association with myelin assembly processes, clearly makes it 

a better functional candidate gene for future validation work compared to ZNHIT1. 

Furthermore, mutations in PLP1 are a known cause of Pelizaeus-Merzbacher disease, 

a rare X-linked recessive hypomyelination disorder (Hoffman-Zacharska et al., 2013). 

Family ND13 have a very similar phenotype to Pelizaeus-Merzbacher disease with a 

characteristic MRI scan, giving us more confidence that the variant in MAL is probably 

the disease-causing variant. In addition, the most severe forms of Pelizaeus-Merzbacher 

disease are caused by missense mutations (Hoffman-Zacharska et al., 2013), just like 

the one in MAL, often leading to ER aggregates as the cause of the disease (Inoue, 

2017). As discussed below, we observed the same mechanism of action for the 

missense variant in MAL.  
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In addition, MAL has a high expression pattern in pre-mature Schwann cells as well as 

in oligodendrocytes and mature Schwann cells, and the protein predominantly localizes 

in compact myelin (Frank, 2000). Based on a major study by Zhang et al., focusing on 

RNA-sequencing data from different cellular classes of the brain, MAL seems to have a 

very high expression pattern in myelinating oligodendrocytes, but once myelination is 

completed MAL levels decrease (Zhang et al., 2015). Potentially, MAL could be essential 

during the neurodevelopmental period, whilst oligodendrocytes are forming myelin 

sheaths.  

 

 

Figure 6-5 RNA-expression of MAL in the brain. 
The figure above illustrates the expression levels of MAL in different types of cells in the brain, 

mainly being present in oligodendrocytes. The expression level is proportional to the FPKM 

(Fragments Per Kilobase of transcript per Million mapped reads) value. In other words, the 

expression of a particular transcript in RNAseq is proportional to the number of cDNA fragments. 

Figure adapted from Zhang et al., 2015.  

 

 

Based on the evidence found in the literature for MAL, as opposed to ZNHIT1, MAL was 

considered a better functional candidate gene for the phenotype of family ND13. MAL 

also appears to regulate the distribution of PLP1, encoded by a gene that is mutated as 

a cause of the same phenotype. For that reason the variant c.326C>A in MAL was 

modelled using computational tools (see section 6.4) and further functionally 

characterised using cellular modelling of the variant to assess the possible 

pathomechanisms of disease (see section 6.5). 
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6.3 Identification of additional patients with variants in MAL 

6.3.1 Sanger sequencing local leukodystrophy patients 

Regional patients, at the Leeds Teaching Hospitals NHS Trust, with clinical features 

similar to Pelizaeus-Merzbacher disease and a negative result on the NHS 

leukodystrophy panel, were recruited for MAL screening under the ethical approval from 

the NRES Committee Yorkshire & The Humber, South Yorkshire (REC reference 

11/H1310/1). Thirty-three independent cases were screened for MAL variants using 

Sanger sequencing (see section 2.2.9), with primers spanning all four exons (see section 

2.1.4). No biallelic variants were identified in the coding region of MAL.  

 

An additional case was also sent by Dr Paul J. Benke from Joe DiMaggio Children’s 

Hospital in Florida, with the affected individual being part of a Pakistani consanguineous 

family, sharing the same phenotype with patient in ND13. Screening did not reveal any 

variants in the coding region of MAL.  

 

6.3.2 Sharing data with other centers and databases.  

The genetic information regarding family ND13 (genotype and phenotype) was shared 

with national and international centers that specialize in white matter abnormalities, again 

with no additional cases with pathogenic variants in MAL being identified.  

 

The genotypic and phenotypic information of ND13 were therefore uploaded on to the 

Decipher database (https://decipher.sanger.ac.uk/), with one match being identified. This 

cases was identified via Gene Matcher, but the variant in MAL was heterozygous and 

the phenotype did not match that of family ND13.  
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6.4 Prediction of impact of MAL p.A109D variant on protein 

Prior to investing into further studies into functional characterisation of the MAL p.A109D 

variant, computational tools were used to predict the impact that this variant may have 

on the overall protein structure. Such tools may be informative and provide more 

evidence to support a hypothesis for further investigations. The main reason for 

performing such prediction tests was due to the fact that a small non-polar amino acid 

with hydrophobic side chain (alanine), was replaced by a slightly larger, negatively 

charged amino acid with a hydrophilic side chain (aspartic acid). Considering that this 

change occurred within a transmembrane domain of the MAL protein, the impact of the 

substitution on the protein structure was expected to be severe as a hydrophilic amino 

acid was now incorporated into a hydrophobic domain that spans the cell membrane. An 

illustration of the location of the change is shown in Figure 6-6a. 

 

The first computational tool used was the Transmembrane Helix Prediction TMHMM 

Server v.2.0 (http://www.cbs.dtu.dk/services/TMHMM/). TMHMM allows for prediction of 

transmembrane helices based on a hidden Markov model. The model is trained on a set 

of 160 transmembrane proteins, and 645 non-membrane proteins as negative controls, 

giving it power to distinguish between soluble and membrane proteins with high degree 

of accuracy (Krogh et al., 2001). Apart from detecting the transmembrane helices, it can 

even differentiate which part of the protein is cytoplasmic (in) or non-cytoplasmic 

(outside). TMHMM output of the wildtype sequence illustrated the expected behavior of 

the MAL protein, with four domains spanning the membrane (Figure 6-6b). However, 

output from the mutant sequence suggested that the third transmembrane domain, that 

carries the missense variant, is no longer incorporated in the membrane. Instead, this 

transmembrane helix appears to remain on the non-cytoplasmic (outside) region. This 

supports the original hypothesis that the replacement of the hydrophobic alanine with a 

charged amino acid will have a deleterious effect on the transmembrane domain. This 

supports the conjecture that the p.A109D variant is likely to be the causative variant in 

family ND13. 

 

The second computational tool used was HeliQuest (http://heliquest.ipmc.cnrs.fr/), a 

software that can identify helices by screening a particular amino acid sequence against 

a biobank, searching for segments that possess similar features to a helix (Gautier et al., 

2008). It recognises these segments by calculating the physiochemical properties and 

amino acid composition of each helix from the biobank. HeliQuest uses algorithms that 

can also determine various properties such as amino acid composition per helix, 

hydrophobicity, hydrophobic phase and net charge. The server also allows the user to 
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manually mutate particular amino acids and to calculate the impact of the mutation on 

the formation of a helix. Wildtype and mutant MAL sequences were input on HeliQuest 

in an attempt to predict the impact of p.A109D variant on the formation of the alpha helix. 

The result revealed a potentially disrupted helix, as the hydrophobic phase was severely 

reduced as shown in figure 6-6c. The overall hydrophobicity (H) of the mutant sequence 

was decreased compared to the wildtype, the overall net charge decreased and an 

additional charged residue was introduced potentially affecting the formation of the alpha 

helix.  

 

 

 

Figure 6-6 Computational prediction of p.A109D variant  
A – Representation of the orientation and helix organization of the MAL protein spanning the 

membrane. The red star indicates the location of the p.A109D variant in the third transmembrane 

domain. B – Graphical output of the TMHMM Transmembrane Helix Prediction tool. Top image 

represents the wildtype protein, clearly showing how each domain spans the membrane in 

accordance to the predicated organization of MAL. Bottom image shows the prediction for the 

mutant protein, whereby the third transmembrane domain is impacted by the p.A109D and is no 

longer able to be incorporated into the membrane. C – Illustration of the output from HeliQuest 

showing the alpha helices that comprise the p.A109D variant. On the left side of each helix is the 

location of the variant that is replaced from an alanine to an aspartic acid (shown in red on the 

bottom helix). Some key outputs from this tool are summarised, and the hydrophobic phase is 

outlined on the side of each helix. 
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The prediction analyses suggested that the p.A109D variant is expected to have a 

significant impact on MAL protein organisation and function, and therefore is likely to be 

pathogenic. The computational analyses provided confidence to proceed to further 

functional studies as described below in this chapter, in order to validate p.A109D as a 

causative pathogenic variant for the described leukodystrophy. 

 

6.5 Functional characterisation of MAL p.A109D variant  

6.5.1 Construction of MAL expressing plasmids 

Using the gateway cloning technique (see section 2.2.11.1) a MAL entry vector 

pENTR223 (DNASU, plasmid HsCD00505233) was cloned into destination vectors 

containing either eYFP and c-Myc tags (pDEST504) or V5 and 6His tags (pDEST40), as 

outlined in figure 6-7. Both of these plasmids were also mutated for MAL c,326C>A 

using site-directed mutagenesis (see section 2.2.11.3) and all plasmids were sequenced 

verified before used. 

 

 

              

 

A 
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Figure 6-7 Maps for MAL expressing plasmids 
A – Plasmid map of MAL tagged with V5 and 6 x His at the c-terminal of the protein (called 

MAL_V5). B – Plasmid map of MAL tagged with eYFP and c-myc at the c-terminal of the protein 

(called MAL_eYFP). 

 

 

The plasmids cloned for the purpose of this study were used for overexpression of the 

wildtype and mutant MAL protein in the Madin-Darby Canine Kidney cells (MDCK) cell 

line, enabling various functional assays such as immunoprecipitation experiments and 

immunofluorescence microscopy. The choice of the MDCK cell line was primarily 

because these cells are a commonly used mammalian model of cell polarity and 

formation of adherens junctions (Balcarovastander et al., 1984). MDCK cells provided a 

good model to study our hypothesis, as transcytosis occurs following cell polarisation, 

enabling us to study the role of MAL in intracellular transport of PLP1 vesicles during 

myelin formation.   

  

B 
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6.5.2 Mutant MAL protein aggregates in the endoplasmic reticulum 

6.5.2.1 MAL p.A109D aggregation revealed by imaging 

The first assessment of the MAL p.A109D variant was performed by live cell imaging 

(see section 2.2.18). Wildtype and mutant MAL-eYFP fusion proteins were 

overexpressed (see section 2.2.15) in MDCK cells cultured in 35mm 4-well imaging 

microplates. Four hours post-transfection, the transfecting complexes were washed off 

and fresh media was added to the cells prior to live cell imaging on a Nikon BioStation 

IM (at magnification of x20). The cells were imaged for a period of 24 hours, allowing 

sufficient time for MAL protein tagged with eYFP to be produced and detected. Live cell 

imaging revealed eYFP signal from the wildtype protein in perinuclear regions, possibly 

localized to the endoplasmic reticulum (ER), which is expected at a certain level due to 

the overexpression of this protein. Wildtype protein also revealed a distinct localisation 

at the membrane of the cell, in the expected localization of MAL. However, mutant MAL 

protein was exclusively localized as large and prominent aggregates in perinuclear 

regions without any membrane localization (Figure 6.8). This suggests that mutant MAL 

could aggregate in the ER, potentially due to the severe impact of the p.A109D variant 

on overall protein organisation. 

 

Figure 6-8 Live cell imaging of MAL wildtype and p.A109D mutant protein 
MDCK cells transfected with wild-type and mutant MAL-eYFP, visualised using the BioStation for 

a total of 24 hours. The top panel shows the wildtype MAL protein localised at the membrane of 

the cell, and the bottom panel shows the mutant MAL protein forming aggregates, potentially in 

the endoplasmic reticulum, as indicated by the arrow. The figure shows representative images 

from two independent biological replicates.   
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Live cell imaging was used as an initial experiment to visualise the behaviour of wildtype 

and mutant MAL proteins, therefore the data were only processed as images and were 

not further analysed at this point. This was due to limitations such as magnification and 

multicolour imaging of the Nikon BioStation IM. Therefore, it was decided to use other 

means of imaging, that allowed higher resolution and multicolour staining, in order to 

prove that the aggregation observed is indeed localised in the ER.  

 

Immunofluorescence microscopy and confocal imaging was used for this purpose (see 

section 2.2.17). MDCK cells were again transfected with wildtype and mutant eYFP 

tagged MAL protein, and 24 hours post-transfection cells were fixed with PFA and 

stained with antibodies against calreticulin, a marker of the ER, and DAPI (see section 

2.1.5). Imaging was carried out on a Nikon A1R confocal microscope, at x100 

magnification and images were analysed using the co-localisation plug-ins on Fiji. The 

confocal images revealed the same pattern of staining for wildtype and mutant MAL 

proteins, again showing the distinct formation of aggregates for the mutant protein. Using 

the calreticulin staining, and merging the channels, the mutant MAL_eYFP protein 

appeared to colocalise with the endoplasmic reticulum marker, supporting the conjecture 

that mutant MAL is unable to be correctly trafficked from the ER (see figure 6.9).  

 

To further validate this observation, 100 cells were analysed from three independent 

biological replicates and the colocalization between the green channel (MAL protein) and 

the red channel (ER marker calreticulin) was assessed using the colocalization threshold 

plug-in in Fiji. For this analysis z-stacks of each image taken from the confocal had to be 

uploaded on Fiji and a region of interest had to be set around each cell analysed. The 

colocalization analysis provided an Rcoloc value for each cell, and these values were 

used for statistical analysis. The Rcoloc value is directly proportional to the level of 

colocalization between the two channels. Statistical analysis revealed a statistically 

significant difference in ER colocalization between the wildtype and p.A109D MAL 

proteins, proving the initial observation of mutant MAL forming aggregates in the ER (see 

figure 6-10).  
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Figure 6-9 Immunofluorescence microscopy of wildtype and p.A109D MAL protein 
Immunofluorescence staining (IF) and confocal microscopy imaging of wildtype and mutant MAL eYFP tagged-protein overexpression in MDCK cells. PFA fixation 
and  co-staining with calreticulin (red) and DAPI (blue), and imaging at x100 magnification. Magnified insets are indicated by the white frames. Merging of channels 
allowed for colocalization of mutant MAL_eYFP and calreticulin to be visible (orange colour, indicated by the arrow), supporting the hypothesis that mutant MAL protein 
aggregates in the ER. Wildtype MAL localizes at the plasma membrane as expected (indicated by the arrow). IF experiments were performed in three independent 
biological replicates, of three technical replicates each, and a total of 100 cells were analyzed. Scale bar = 20μm.  
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Figure 6-10 Colocalisation analysis using Fiji 
Analysis of MAL protein and ER colocalization using Fiji. Rcoloc values calculated for each 

transfected cell, indicating a significant difference in ER colocalization with the mutant MAL 

protein compared to the wildtype. Analysis included a total of 100 cells, from three independent 

biological replicates. Statistical test was performed by a two-tailed Student t-test (****p<0.0001). 

Error bars indicate s.e.m. 

 

 

As predicted by the computational analyses, the variant p.A109D was expected to impact 

the organisation of the MAL protein, as well as the correct incorporation of it within the 

cellular membrane. As shown by the preliminary functional work described above, the 

missense variant seems to severely affect protein folding thereby leading to protein 

aggregates being formed in the ER.  

 

Apart from its many other roles, the ER is also responsible for assessing the quality of 

newly synthesized proteins for correct folding, prior to the secretion of these proteins to 

their functionally relevant compartment of the cell. Misfolded proteins that do not pass 

the quality control tend to form aggregates that lead to ER stress (Ihara et al., 2017). 

This signal will activate another mechanism known as the unfolded protein response 

(UPR) (Walter and Ron, 2011) that will try to mitigate and overcome the stress by 

diminishing translation of the protein, degrading the ER aggregates and increasing the 

expression of ER residential chaperones that often tend to resolve ER stress by 

promoting secretion of the aggregates (Schröder M, 2005). If this fails, the increasing ER 
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stress will eventually lead to apoptosis (Tabas and Ron, 2011). The proteinopathies 

caused by point mutations that can directly affect the ER via aggregates formation is a 

common disease mechanism seen in various genetic diseases (Brookes et al., 2017) as 

well as neurodegenerative diseases (Xiang et al., 2017). 

 

Based on the initial observations, it was hypothesized that the disease mechanism 

responsible for the phenotype observed in family ND13 was a proteinopathy, whereby 

the p.A109D variant was causing severe misfolding of MAL. The misfolded protein was 

causing the formation of ER aggregates and inducing ER stress. Our disease model 

clearly showed the formation of ER aggregates and the endogenous UPR was potentially 

unable to resolve the stress from the ER. As a result, the disease model was further used 

to assess whether or not addition of exogenous ER chaperones would be able to relieve 

the stress and potentially allow release of protein in the ER aggregates in order to restore 

correct localization. This does not mean that the correctly trafficked mutant MAL protein 

will be functional, but it is a key investigation to validate our observations.  

 

To achieve this, we used a chemical chaperone, 4-phenylbutyrate (4-PBA) that is known 

to relieve ER stress (Mimori et al., 2012). It was previously shown in other 

proteinopathies, such as amylogenesis imperfecta, that 4-PBA can alleviate symptoms 

in affected mice by diminishing ER stress and promoting cell survival (Brookes et al., 

2014). Since it was assumed that the ER signal shown by the mutant MAL is due to 

protein aggregates formed as a result of the missense variant, it was decided to assess 

the alleviation of ER stress by using 4-phenylbutarate (4-PBA).  
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For this experiment, we performed initial staining to assess whether or not 4-PBA has an 

effect on removing the ER aggregates. MDCK cells were transfected with wildtype and 

mutant MAL-eYFP plasmid, showing again the same pattern of protein aggregation in 

the ER by the mutant MAL. Once 0.5mM of 4-PBA was used, the staining pattern of the 

mutant MAL-eYFP resembled that of the wildtype, with most of the ER signal now lost 

(figure 6-11). Following this observation, 4-PBA was considered an effective way to 

relieve ER stress, and the experiment was then repeated with ER marker calreticulin to 

allow for quantification of the level of ER aggregate removal (figure 6-12). For this 

experiment, 30 cells were visualized and quantified for each condition (wildtype or 

mutant; treated or untreated) giving a total of 120 cells from three independent biological 

replicates.  

 

 
 

Figure 6-11 Use of 4-PBA to relieve ER stress caused by the mutant MAL. 
Immunofluorescence staining (IF) and confocal microscopy imaging of wildtype and mutant MAL 

eYFP tagged-protein overexpression in MDCK cells. Cell expressing mutant MAL protein were 

also treated with 4-PBA to check whether or not the use of ER chaperones may have an effect 

on removing ER aggregation and stress. PFA fixation and co-staining with DAPI (blue) was 

carried out, and imaging at x100 magnification. Scale bar = 20μm. 
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Figure 6-12 Immunofluorescence microscopy of wildtype and p.A109D MAL protein using 4-PBA to reduce ER aggregates. 
Immunofluorescence staining (IF) and confocal microscopy imaging of wildtype and mutant MAL eYFP tagged-protein overexpression in MDCK cells, with and without 
4-PBA treatment. PFA fixation and  co-staining with calreticulin (red) and DAPI (blue), and imaging at x100 magnification. Merging of channels allowed for colocalization 
of mutant MAL_eYFP and calreticulin to be visible and further quantify the level of ER aggregate reduction upon 4-PBA treatment. MAL localisation shown with the 
arrows, and magnified cells are indicated by the box. IF experiments were performed in three independent biological replicates, of three technical replicates each, and 
a total of 120 cells were analyzed. Scale bar = 20μm .  
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The colocalization between the green channel (MAL protein) and the red channel (ER 

marker calreticulin) was assessed using the colocalization threshold plug-in in Fiji. For 

this analysis z-stacks of each image taken from the confocal had to be uploaded on Fiji 

and a region of interest had to be set around each cell analysed. The colocalization 

analysis provided an Rcoloc value for each cell, and these values were used for 

statistical analysis. The Rcoloc value is directly proportional to the level of colocalization 

between the two channels. Statistical analysis revealed a significant difference between 

colocalization of ER and MAL in treated and untreated cells expressing p.A109D MAL 

protein, supporting our initial finding. The statistical analysis for each condition is 

summarised in figure 6-13.  

 

 

 

Figure 6-13 Quantification of ER aggregates rescue using 4-PBA 
Analysis of MAL protein and ER colocalization, for 4-PBA treated or untreated cells. Rcoloc values 

for each cell analysed indicate a significant difference in ER colocalization for the treated cells 

expressing mutant MAL compared to the untreated cells expressing mutant MAL. There was also 

no significant difference in ER colocalization between wildtype untreated and wildtype treated 

cells, indicative that 4-PBA is having a specific effect only on ER aggregates and not other non-

specific cellular impacts. Statistical tests was performed by a two-tailed Student t-test (ns=not 

significant; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). Error bars indicate s.e.m.  
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The result from this experiment revealed a significant difference between the mutant 

MAL and ER colocalisation in untreated and 4-PBA treated cells, and no significant 

difference between the wildtype MAL and ER colocalisation in untreated and treated 4-

PBA cells, respectively. This means that the 4-PBA does not have any non-specific 

effects on the cells or overexpression of the protein. Instead it appears to act as a 

synthetic chaperone and promote correct trafficking of misfolded proteins from the ER, 

relieving the stress from the mutant aggregates (Yam et al., 2007). When comparing 

each condition with its corresponding control, there is still a significant difference 

between wildtype and mutant MAL and ER colocalisation (in treated and untreated 

conditions), indicating that this treatment does not completely abolish the aggregates 

from the ER. Despite this, there is a significant decrease in mutant MAL aggregating in 

the ER, an observation that could potentially lead to a treatment strategy for this family. 

An improved way to study this will be in modelling the MAL p.A109D variant in a more 

stable and physiologically relevant setting, for instance using CRISPR/Cas9 

technologies, in order to access the effect of 4-PBA on promoting ER secretion of 

misfolded proteins. This will eliminate any effects that overexpression of a protein might 

have on ER itself.  

 

The above result supports our initial hypothesis that the pathomechanism of MAL 

p.A109D is likely to be a proteinopathy, whereby protein misfolding leads to disease 

pathology (Neumann et al., 2007). In this case, the missense variant in MAL seems to 

be severely affecting protein orientation and conformation, as predicted by computational 

analyses, leading to ER aggregates formation as the misfolded protein is unable to be 

correctly trafficked. This effect can potentially lead to induced ER stress and subsequent 

UPR mediated apoptosis, if the UPR response cannot relieve the stress (Tabas and Ron, 

2011, Walter and Ron, 2011). The proposed pathomechanism can be potentially rescued 

with synthetic chaperones, such as 4-PBA, possibly  rescuing the phenotype by relieving 

ER stress and preventing apoptosis. It has been shown previously that 4-PBA is involved 

in restoring normal ER secretory function and cell survival over UPR mediated apoptosis 

(Zode et al., 2015). 4-PBA has been used in various studies and clinical trials, both in 

vivo and in vitro, with proven potential therapeutic capacities in a range of conformational 

diseases including spinal muscular atrophy, cancer, cystic fibrosis, Huntington’s disease 

(Iannitti and Palmieri, 2011) and amelogenesis imperfecta (Brookes et al., 2014).  
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6.5.3 The missense variant p.A109D affects interaction between 
MAL and PLP1. 

MAL is known to be involved in protein sorting in polarised transport, or transcytosis, 

between the trans-Golgi network and the plasma membrane (Cheong et al., 1999, 

Puertollano and Alonso, 1999). As discussed previously, it has been shown that MAL 

acts as a regulator of PLP1, by trafficking PLP1 to the basolateral membrane during 

myelin formation (Bijlard et al., 2016). MAL is not involved in PLP1 transport from the 

Golgi to the apical membrane, but it seems to play a key role in redirecting the transport 

of PLP1 from the apical membrane to the basolateral membrane where myelin begins to 

form in oligodendrocytes (Bijlard et al., 2016, Baron et al., 2015). It is also shown that 

PLP1 undergoes a conformational change at the apical membrane before being 

redirected to the basolateral membrane, whereby the secondary structure of the second 

extracellular loop is altered (Jung et al., 1996). I hypothesised that MAL could be involved 

in this process by interacting with PLP1 at the apical membrane, and further 

investigations on this interaction were undertaken. Importantly, I also investigated the 

impact of the missense variant in MAL on the MAL-PLP1 interaction. 

 

To assess whether or not p.A109D affects the interaction between MAL and PLP1 

proteins, immunoprecipitation methods were used (see section 2.2.20). In summary, the 

GFP-Trap method (Chromotek) was used that consists of anti-GFP magnetic agarose 

beads with high affinity for GFP. To perform this method, MDCK cells were co-

transfected with a PLP1-GFP plasmid and a wildtype or mutant MAL-V5 plasmid (see 

section 2.2.15) and allowed to grow to confluency, to allow transcytosis to be initiated. 

At that stage, cell lysates were collected and incubated with the GFP-Trap magnetic 

beads and the beads were then isolated with a magnet. The pull-down proteins were 

then run on a western blot (see section 2.2.19) and stained with anti-V5 antibody (see 

section 2.1.5) to assess whether or not MAL is indeed an interactor of PLP1 and if the 

mutation abolishes this interaction. This experiment was performed in three independent 

biological replicates. 
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The quantified whole cell extract signal was normalised to β-actin levels as a loading 

control, and further compared to the bands from the V5 antibody staining in the 

immunoprecipitation lane using Image Lab. Analysis revealed 56% loss of the MAL and 

PLP1 interaction as a result of the missense mutation. This can potentially be explained 

based on the previous results, as most of the p.A109D MAL protein seems to be 

aggregating in the ER, thereby never reaching the apical membrane where MAL and 

PLP1 interact. However, judging from the immunofluorescence imaging, a portion of the 

overexpressed mutant MAL protein appears to escape ER aggregation, with moderate 

levels localizing to the membrane. This could potentially explain why this interaction is 

not completely abolished by the missense mutation (figure 6.14). Also, the 

overexpression of the two proteins could force a false positive interaction, and a more 

physiologically relevant model could be developed to further this interaction. However, a 

56% loss of interaction could be enough to have a biological impact in myelin formation, 

as not all of PLP1 will be directed to the basolateral membrane for myelin formation, 

potentially leading to the hypomyelination features observed in the patients.  

 

 

 

Figure 6-14 The p.A109D variant reduces MAL interaction with PLP1  
A – Western blot analysis of immunoprecipitation experiment for assessing interaction of PLP1-

GFP protein with wildtype and mutant MAL-V5 protein. Pull-down was performed with GFP-beads 

and antibody staining was performed using V5 antibody, which targets MAL protein (expected 

size 16kDa). B – Quantification of MAL and PLP1 interaction in wildtype and mutant cases from 

three independent biological replicates. Student t-test (**p<0.01). Error bars indicate s.e.m. 
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Using the same technique as above, the MAL and PLP1 interaction was assessed upon 

treatment with ER chaperone, 4-PBA. Taking into consideration the IF microscopy 

results, it was hypothesized that 4-PBA would potentially recover some of the mutant 

MAL and PLP1 interaction, as more of the mutant protein will be released from the ER. 

The quantified whole cell extract signal was normalised to β-actin levels, and further 

compared to the bands from the V5 antibody staining in the immunoprecipitation lane 

using Image Lab. Analysis revealed the interaction between mutant MAL and PLP1 is 

slightly increased upon the treatment with 4-PBA (figure 6.15). This supports my 

previous observations using IF microscopy, whereby more mutant MAL is able to reach 

the membrane and thereby interact with PLP1. This experiment was only performed once 

due to time constraints, but should be repeated at least for three biological replicates for 

the purposes of quantification and statistical significance testing. 

 

The IP experiments also resolved a second band for wildtype MAL but not for the mutant 

MAL protein (figure 6.15). This minor band seems to be 1-2 kDa larger than the major 

MAL band, potentially due to post-translational modifications. This is also supported by 

previous observations, as mutant MAL potentially never leaves the ER in order to reach 

the Golgi apparatus where most post-translational modifications occur. However, 

wildtype MAL is able to undergo post translational modifications. Many transmembrane 

proteins undergo post-translational modifications for functional significance, in order for 

the protein to be able to be incorporated in the membrane (Souda et al., 2011). 
 

Lipoproteins are post-translationally modified in order to anchor or be targeted to the 

plasma membrane. These modifications include myristoylation, palmitoylation and 

prenylation (Bateman et al., 2019). Prenylation is a lipid modification whereby a 

hydrophobic group is covalently added to cysteine residues near or at the C-terminus of 

a protein. MAL does not have a cysteine residue at its C-terminus, therefore prenylation 

is not the expected post-translational modification in this instance. On the other hand, 

palmitoylation is the reversible addition of fatty acids (16 carbon fatty acid) onto 

cysteines, and less frequently serine and threonine residues. This reversible mechanism 

occurs rapidly, facilitating shuttling of protein between the plasma membrane and the 

Golgi apparatus (Salaun et al., 2010). In addition, myristoylation is another lipid 

modification process whereby a myristic acid is attached to glycine residues (alpha 

amino acid) of the N-terminus of the protein. It is thought that it occurs following cleavage 

of either the methionine residue, if it is followed by a glycine, or by a proteolytic cleavage 

of a few amino acids at the N-terminus, leading to a glycine at the alpha amino acid 

position (Udenwobele et al., 2017). Regarding MAL, both myristoylation and 
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palmitoylation processes can occur post-translationally as a requirement for membrane 

targeting of a lipoprotein.  

 

 

Figure 6-15 MAL – PLP1 interaction can be rescued by 4-PBA treatment. 
A – Western blot analysis of immunoprecipitation experiment for assessing interaction of PLP1-

GFP protein with wildtype and mutant MAL-V5 protein, with and without 4-PBA treatment. Pull-

down was performed with GFP-beads and antibody staining was performed using V5 antibody, 

which targets MAL protein (expected size 16kDa). Arrows indicates the extra band in wildtype 

MAL as a result of post-translational modification, that is absent from mutant MAL. B – 

Quantification of MAL and PLP1 interaction in all four different conditions was achieved by Image 

Lab. This experiment was performed on one biological replicate.  
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6.5.4 Missense variant p.A109D possibly affects PLP1 activation 
and redirection to the basolateral membrane 

I hypothesised that MAL is a regulator of the intracellular trafficking of PLP1 and drives 

its redirection to the basolateral membrane. I therefore decided to assess this by 

determining apical membrane localisation using the EZ-Link Sulfo-NHS-Biotin assay that 

allows for cell surface protein labelling. This assay uses sulfo-N-hydroxysuccinimide 

(NHS) esters of biotin that react with primary amino groups, specifically the side chain of 

lysine residues, to form stable amide bonds at pH 7 to 9. The reagent cannot permeate 

the cell membrane, thereby only exposed primary amines on the apical surface of the 

plasma membrane will become biotinylated.  

 

Using the EZ-Link Sulfo-NHS-Biotin assay as a working strategy, the amino acid chains 

of our proteins of interest were assessed for lysine residues. MAL protein only has one 

lysine residue whereas PLP1 has twelve, hence PLP1 is likely to be a better biotinyation 

target in this assay. The assay was performed on confluent and polarized MDCK cells, 

over-expressing wildtype MAL, mutant MAL and PLP1 proteins. From my previous 

results, it was expected that PLP1 would be redirected to the basolateral membrane in 

the wildtype MAL cellular model, and therefore not biotinylated and detected by this 

assay. In contrast, PLP1 would remain on the apical cell membrane in the mutant MAL 

model because PLP1 transcytosis is impaired due to incorrect targeting of mutant MAL, 

and PLP1 would therefore be biotinylated and detected by this assay. The diagram below 

(figure 6-16) summarises the hypothesis that forms the basis of this assay.  

 

 

 

Figure 6-16 EZ-Link-Sulfo-NHS-Biotin assay hypothesis 
The diagram outlines the hypothesis of assessing PLP1 localisation within a cell in the wildtype 

and mutant MAL cellular models. A – The overall working hypothesis of the role of MAL as a 

regulator of intracellular PLP1 trafficking. B – The two models whereby PLP1 correctly localizes 

in the basolateral membrane in the wildtype MAL model but remains in the apical membrane in 

the mutant MAL model. 
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Figure 6-17 EZ-Link-Sulfo-NHS-Biotin assay for wildtype and mutant MAL model 
A – Western blot results from the biotinylation assay showing a reduction in PLP1 levels from the 

apical membrane in the wildtype MAL model compared to the mutant MAL model. B – 

Quantification of western blot results using Image Lab. Anti-PLP1 band intensity from the pull-

down was normalised to whole cell extract (WCE) anti-PLP1 bands, which was normalised to 

loading control. 

 

 

For this experiment, wildtype and mutant MAL-V5 plasmids were overexpressed in 

MDCK cells, together with a PLP1-GFP plasmid. Cells were allowed to grow to full 

confluency and polarize. At that time, EZ-Link-Sulfo-NHS-Biotin reagent was added to 

the cells and cell lysate was then used for a pull-down assay using Streptavidin beads 

(collecting only biotinylated surface proteins). The pull-down proteins along with whole 

cell extracts were run on western blots and the membrane was stained for both the 

tagged PLP1 and MAL proteins. As expected, MAL was not targeted therefore the 

staining revealed no bands. For PLP1, bands were detected with more PLP1 protein 

being detected in the apical membrane in the mutant MAL cell model compared to the 

wildtype. This supports our previous findings and our intial hypothesis, proving that MAL 

has a key role in regulating intracellular transcytosis of PLP1, and potentially other 

proteins.  

 
  

β-actin

anti-PLP1

anti-PLP1

WCE

WCE

EZ-link 
pull down

MAL w
ild

typ
e

MAL p
.A

10
9D

A B



 187 

6.5.5 Investigation of novel protein-protein interactions using 
BioID2 and the impact of p.A109D on those interactions 

6.5.5.1 Design and optimization of BioID2 experiments 

As previously discussed, the BioID technique was used in this study to detect 

physiologically relevant protein-protein interactions, because this method allows the 

capture of weak and transient interactions (Roux et al., 2012). The original BioID protocol 

was improved to BioID2 by Kim et al. (2016), allowing for more efficient and faster 

biotinylation of proteins in proximity to the BirA*-tagged protein (Kim et al., 2016). This 

was achieved by using a smaller BirA biotin ligase from A. aeolicus instead of E. coli with 

a size of 25kDa instead of 35kDa, respectively (Kim et al., 2016). For the purposes of 

this study, the BioID protocol was updated to BioID2 in an attempt to identify key 

interactions that might be lost as a result of the p.A109D variant in MAL. Wildtype and 

mutant MAL was C-terminally tagged with BirA2* and then transfected into MDCK cells 

to induce biotinylation upon addition of exogenous biotin. Interacting proteins are then 

isolated by a standard biotin-affinity capture and identified using mass spectrometry, 

similar to the original protocol (Roux et al., 2012). A summary of the experimental plan 

is outlined in Figure 6-18.  

 

Figure 6-18 Outline of experimental plan for BioID2. 
The illustration summarises the key steps in the BioID2 experiment, starting with exogenous 

expression of MAL-BirA2 fusion protein in MDCK cells. Addition of exogenous biotin causes 

biotinylation of proximal or closely interacting proteins followed by cell lysis and biotin-affinity 

capture of labelled proteins. Protein identification is achieved by using mass spectrometry. 
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The wildtype and mutant MAL-BirA2 fusion proteins were exogenously expressed using 

a standard transient transfection protocol (see section 2.2.15). The plasmids were 

constructed using Gateway technology (see section 2.2.11.1), where the MAL entry 

vector pENTR223 (DNASU, plasmid HsCD00505233) was cloned into destination 

vectors expressing the biotin ligase and a flag tag (a kind gift from Dr Taipale). Once the 

plasmid was constructed, the MAL c.326C>A mutation was introduced using site-

directed mutagenesis (see section 2.2.11.3) and all plasmids were sequenced verified 

before used. The map of the plasmid is outlined below (figure 6-19). 

 

Figure 6-19 Map of MAL-BirA2 plasmid for BioID2 experiment 
 

 

Once the plasmids were purified and sequence verified, the next step of the procedure 

was to optimise the conditions of the BioID2 experiment, as biotinylation was now 

occurring at a faster rate compared to the previous BioID experiment. Standard 

transfections were used, followed by incubation with media supplemented with biotin 

once the transfection complexes were removed. However, incubation times with biotin-

supplemented media after transfection had to be optimized in order to achieve the best 

possible biotinylation levels. In the first instance, we used a range of incubation times 

ranging from 1 to 12 hours, allowing sufficient time for MAL-BirA2 to be expressed and 

for induction of biotinylation. Figure 6-20 outlines the validation of biotinylation levels by 

western blotting. It was concluded that 4 hour incubation period would be the minimum 

time required to achieve adequate levels of biotinylation.  
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Figure 6-20 Optimisation of biotin incubation for BioID2 
Western blot analysis of a range of different biotin incubation times (1-12 hours) to detect optimal 

levels of biotinylation. Streptavidin HRP stains for biotinylated proteins in the whole cell extracts 

and anti-flag antibody stains for levels of transfection (MAL-BirA2 protein is tagged with flag). 

Optimal incubation time before oversaturation of biotinylation was determined at 4 hours.  

 

Once the biotin incubation time and transfection protocol was established, BioID2 

experiments were performed (see section 2.2.21), using the MDCK cell-line as our model 

system since my previous experiments suggest that it polarizes and targets PLP1 

correctly. BioID2 experiments were performed, lysates specifically pulled down with 

streptactin beads, trypsinised and then sent to my collaborator (Karsten Boldt, University 

of Tubingen) for mass spectroscopy analysis. For this project, three different biological 

replicates were used for wildtype and mutant MAL, with the appropriate controls in place 

(figure 6-21) to help with the downstream filtering of identified proteins.  

 

 

Figure 6-21 Experimental samples and controls for BioID2 experiment 
The table summarises each sample prepared for each biological replicate for the BioID2 

experiments. Untransfected samples without biotin treatment were considered as the negative 

control of the experiment and any hits obtained by these samples were discarded. Untransfected 

samples with 4 hr incubation with biotin were considered as one of the positive controls of the 

experiments that helped in excluding any false positive results arising from excess biotin in cells. 

Transfected samples without biotin were also considered as positive controls that helped in 

excluding any false positive results arising from having an active biotin ligase enzyme within the 

cells that could potentially biotinylate proteins in near proximity using endogenous biotin present 

within the cells.   
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6.5.5.2 Analysis of mass spectroscopy data 

Affinity purified eluates were precipitated with chloroform and methanol followed by 

trypsin digestion as described before (Gloeckner et al., 2009). C-MS/MS analysis was 

performed on Ultimate3000 nanoRSLC systems (Thermo Scientific) coupled to an 

Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific) by a nano spray ion 

source. MS/MS data were analyzed using the MaxQuant software (version 1.6.1.0) (Cox 

and Mann, 2008, Cox et al., 2009). As a digesting enzyme, Trypsin/P was selected with 

maximal 2 missed cleavages. The data were analyzed by label-free quantification with 

the minimum ratio count of 3. The first search peptide tolerance was set to 20, the main 

search peptide tolerance to 4.5 ppm and the re-quantify option was selected. For peptide 

and protein identification the human subset of the SwissProt database (release 2014_11) 

was used and contaminants were detected using the MaxQuant contaminant search. A 

minimum peptide number of 2 and a minimum length of 7 amino acids was tolerated. 

Unique and razor peptides were used for quantification. The match between run option 

was enabled with a match time window of 0.7 min and an alignment time window of 20 

min. The statistical analysis including ratio, t-test and significance A calculation was done 

using the Perseus software (version 1.5.5.3) (Tyanova et al., 2016). Significance A is a 

Q-function that detects outliers from a normal distribution. The background binders are 

the normal distribution and the interactors are the outliers. The output of the analysis is 

plotted in figure 6-22. 
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Figure 6-22 MS/MS data analysis using MaxQuant software 
Plotted are the log10 ratios (x-axes) and the log10 intensities (y-axes) for all proteins quantified 

by the MaxQuant software. A – Wildtype MAL experiment. B – Mutant MAL experiment. Proteins 

significantly enriched are highlighted in red in both plots (Benjamini-Hochberg corrected, left sided 

Significance A < 0.05). This represents proteins that deviate from the normal distribution and are 

considered as outliers. These outliers are interacting proteins that are significantly enriched when 

wildtype and mutant MAL are biotinylated respectively. 
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6.5.5.3 Identification of protein-protein interactions  

Following specialized analysis of data by Dr Boldt as mentioned above, further manual 

analysis was performed on the identified hits. Manual analysis was performed using 

different criteria at each step. Initially any hit that was not passing the t-test and 

significance A calculation was excluded from the list, and any hits enriched in negative 

or positive controls were also being excluded. Furthermore, any hits that were unique to 

either the wildtype MAL model or the mutant MAL model were used for downstream 

analysis, prioritising hits according to their biological relevance or cellular compartments 

and pathways. In addition, any hits that had previously been associated with similar 

diseases or have a neuronal function were highlighted.  

 

The figure below (figure 6.23) illustrates the top hits obtained by the BioID2 experiment, 

that are unique to the wildtype MAL protein, ranked based on the average number of 

peptides identified per biological replicate. Some of the hits are highlighted based on 

their relevance to the function of MAL and disease association. None of these hits were 

identified with the mutant MAL protein.  
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Figure 6-23 List of PPIs identified for wildtype MAL  
The graph illustrates the hits obtained for wildtype MAL ranked based on the average number of 

peptides identified per run. None of this hits were identified in the mutant MAL pull-down. 

Highlighted are different genes associated with neurodevelopmental disorders or have a 

functional relevance to MAL and its cellular function.  
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MAL and PLP1 were not picked up by mass spectrometry, possibly because of the 

limited trypsin cleavage sites of those proteins. To validate this ExPASy PeptideCutter 

(Gasteiger et al., 2003) was used to perform an in silico trypsin cleavage for both MAL 

and PLP1. MAL has only got 3 cleavage sites at positions 120, 149 and 151, resulting in 

very few protein fragments to be read by the mass spectrometer. Protein size is not the 

issue, and detection is solely dependent on the tryptic sites for the cleavage products. A 

protein with fewer than 10 cleavage sites is assumed to be very difficult to be detected 

by this method. For example, VAMP3 is an 11kDa protein but has 13 tryptic sites making 

it possible to be identified. On the other hand, PLP1 has 19 tryptic sides so, in theory, 

should have been detected. However, the low endogenous expression of PLP1 in kidney 

epithelial cells could explain why it was not detected. Although mass spectroscopy did 

not detect these proteins, western blotting demonstrated that MAL and PLP1 were 

expressed and present in BioID2 pull-downs (figure 6-24).  

 

 

Figure 6-24 BioID2 validation for MAL and PLP1 pull downs 
Pull-down validation for BioID2 by western blotting for MAL and PLP1 proteins. A – Staining with 

flag antibody (for BioID2-MAL plasmid with flag tag) and with PLP1 antibody, showing that both 

MAL and PLP1 proteins are present in the BioID2 experiment. Immunoprecipitation is done with 

streptavidin beads, following the BioID2 protocol. B – Strep-HRP staining showing the induction 

of biotinylation in the WCE lanes and the presence of MAL in the IP lanes.  
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6.5.5.4 Protein network analysis  

In order to comprehend the most significant hits of the BioID2 experiment listed above, 

various computational tools were used to help us group proteins and build networks 

based on known protein-protein interactions (PPIs). By grouping hits based on their 

function, differences between wildtype and mutant MAL PPIs can be determined as well 

as the effect of the missense variant on these PPIs. To achieve this, I used a database 

of known and predicted protein-protein interactions known as STRING (Snel et al., 2000). 

This database comprises of interactions that include both physical (or direct) and 

functional (or indirect) associations derived from the following sources: genomic context 

predictions, high-throughput lab experiments, conservations and co-expression 

datasets, automated text-mining and previous knowledge from databases. By using 

STRING v11.0 (Szklarczyk et al., 2019), we were able to group the hits identified by both 

wildtype and mutant MAL in groups based on their biological processes using GO terms.  

 

For wildtype MAL, PPI hits were grouped in cellular processes involving post-Golgi 

vesicle-mediated protein transport, macromolecule localization and protein localization 

to the membrane. Interestingly, protein-containing complex assembly were also 

identified potentially involved in MAL complex assembly, suggesting possible PPIs 

involved in the activating conformational change of PLP1 (Bijlard et al., 2016). Other 

interesting proteins include VAPB, a vesicle or plasma membrane protein involved in 

vesicle trafficking, that has been implicated in Amyotrophic Lateral Sclerosis (Kanekura 

et al., 2006) and Spinal Muscular Atrophy (Nishimura et al., 2004). VAMP2 and VAMP3 

interact with VAPB and are involved in vesicle trafficking and SNARE complex formation. 

They also have a role in docking of synaptic vesicle in presynaptic neurons (Schwarz et 

al., 2017). Mutations in VAMP2 impact synaptic membrane fusion and 

neurodevelopment (Salpietro et al., 2019). Another functionally relevant hit is SCAMP3 

that participates in protein trafficking to the cell surface and involved in post-Golgi 

recycling pathways (Thomas et al., 2016). ERP44 was also identified as an interactor of 

MAL. ERP44 acts as a chaperone, having a role in protein quality control that participates 

in the transport of proteins from the ER to the Golgi (Watanabe et al., 2017).  

 

In addition, RAB18 was also identified which is a protein known to regulate vesicle 

transport and membrane trafficking, and that is required for eye and brain development 

(Wu et al., 2016). Mutations in this gene are a cause of Warburg Micro Syndrome Type 

3 (Bem et al., 2011). Furthermore, LRPPRC is a protein that may play a role in vesicular 

transport and the organization of the cytoskeleton. Mutations in this gene are associated 

with Leigh Syndrome, French Canadian Type, with severe neurological and metabolic 

features (Debray et al., 2011). Lastly, a very interesting hit is CKAP5 that also encodes 
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a cytoskeleton-associated protein and microtubule binding. However, CKAP5 is also 

involved in the translation of myelin basic protein (MBP), supporting the hypothesis that 

MAL has a key role in myelin formation during neurodevelopment (Francone et al., 2007).  

 

Taking into consideration disease-related hits, many of the proteins interacting with 

wildtype MAL are known to be mutated in a range of neurological or neurodevelopmental 

phenotypes, which supports a central role for MAL during neurodevelopment. 

Furthermore, wildtype MAL is associated with intracellular trafficking of proteins and 

targeting to the plasma membrane as an enriched functional process, consistent with my 

previous data and the existing literature on the role of MAL. The results are summarised 

in a STRING map (figure 6-25). 
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Figure 6-25 STRING map analysis for PPIs in wildtype MAL using BioID2 
The map outlines the private hits obtained from the BioID2 experiment of wildtype MAL, with lines 

joining proteins indicating known PPIs. The different colours used correspond to specific 

biological processes identified between this proteins, using GO terms. It is noteworthy that MAL 

has not previously been described to interact with any of the above proteins, indicating the novelty 

of this dataset.  
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The same analysis was also performed for the hits obtained from the mutant MAL. In 

contrast with the biological processes identified for the wildtype protein, the mutant MAL 

dataset revealed a completely different enrichment of processes, consistent with the 

expected impact of the p.A109D variant on the mutant protein localization. Processes 

highlighted in this dataset include translation initiation, SRP-dependent protein targeting 

to the membrane, and RNA and heterocycle catabolic processes. These may represent 

proteins associated with the ER, or that are involved in ER stress and implicated in the 

subsequent UPR initiation, as a result of the MAL aggregates. 

 

Firstly, a majority of proteins being identified are proteins that encode a component of 

the ribosomes, such as RPS18, RPS12, RLP9, RLP8 and RLP18A (Bateman et al., 

2019). These proteins comprise of hits that are private only to the mutant MAL dataset, 

suggesting that they have been biotinylated by being in near proximity with the MAL 

aggregates in the rough ER.  

 

Another ER-associated protein being identified is ERP29, which acts as a molecular 

chaperone for the release of proteins from the ER (McLaughlin et al., 2018). HSPBP1 

protein was also a hit for mutant MAL, and it plays a role in regulating chaperone 

expression (Rogon et al., 2014). Increase in expression of chaperone-associated 

proteins may indicate that the UPR is initiated by mutant MAL protein, as a response to 

alleviate ER stress and to remove aggregates from the ER (Bravo et al., 2013). 

 

To support the involvement of the UPR with processing of mutant MAL, eIF2B2, eIF3B 

and eIF3H proteins were all identified and are closely linked to the UPR. eIF2α is 

phosphorylated by the PERK pathway as part of the UPR to inhibit translation (Bravo et 

al., 2013). Specifically, eIF2α phosphorylation converts eIF2-GDP into a competitive 

inhibitor of eIF2B, which then delays protein synthesis (Bogorad et al., 2017). eIF3B, 

along with eIF3H, form parts of the eIF3 complex that is also required for translation 

initiation by interacting with mRNA and the 40S ribosomal subunit (Sharma et al., 2016). 

The eIF3 complex can play a role in attenuation of protein translation by regulating the 

eIF2 complex. This regulation is driven by pro-apoptotic stress signals and inactivation 

of the eIF3 complex eventually leads to apoptosis by caspases (Lasfargues et al., 2013).  
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Another hit, PDCD6, is a calcium-binding protein involved in ER-Golgi vesicular 

transport. In addition to its role in protein transport, PDCD6 is considered to be an 

apoptotic mediator via the caspase-3 dependent pathway (Lee et al., 2005), potentially 

supporting the hypothesis that UPR has been initiated in mutant MAL cells.  

 
Another interesting hit is SRP72, that is involved in forming the signal recognition particle 

which is an essential for proper membrane localization of proteins. Perhaps this hit is 

private to the mutant MAL, as aggregates are being targeted but struggle to reach the 

plasma membrane, therefore keeping SRP bound to them (Akopian et al., 2013). 

Moreover, mutant MAL interactants include a calcium-related protein, potentially 

handling calcium release from the ER lumen stores to the cytosol (Bravo et al., 2013). 

STIM1 maintains Ca2+levels by monitoring ER-luminal Ca2+ release (Gudlur et al., 2018). 

STIM1 can also be linked to UPR and apoptosis initiation, as failed UPR can lead to 

severe disturbance in homeostasis leading to pro-apoptotic signaling via Ca2+ signaling 

(Bahar et al., 2016). 
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Figure 6-26 STRING map analysis for PPIs in mutant MAL using BioID2 
The map outlines the private hits obtained from the BioID2 experiment of wildtype MAL, with lines 

joining proteins indicating known PPIs. The different colours used correspond to specific 

biological processes identified between this proteins, using GO terms. It is noteworthy that MAL 

is not associated with any of the above proteins, indicating the novelty of this dataset.  
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6.5.5.5 Pathway enrichment analysis  

To further interpret the BioID2 data, a pathway enrichment analysis was performed using 

the Database for Annotation, Visualization and Integrated Discovery (DAVID v6.8). 

DAVID provides a comprehensive set of functional annotation tools useful for interpreting 

large lists of genes (Huang et al., 2009b). DAVID can functionally annotate and classify 

genes, mainly using GO terms for enriched biological themes (Huang et al., 2009a). Such 

an enrichment analysis for pathway/process was performed with the significant hits from 

the BioID2 data, highlighting a few key processes that are significantly enriched. A 

summary of this analysis is illustrated in figure 6-27.  

 

As expected, many of the enriched pathways identified in the wildtype MAL BioID2 

dataset include intracellular vesicle-mediated transport and plasma membrane 

components, supporting my previous findings. Additionally, lipoprotein and membrane 

raft pathways are significantly enriched, highlighting the key role of MAL as a lipoprotein 

at the apical membrane of cells. Protein complex assembly is also enriched, a process 

that is presumably required for the MAL-PLP1 interaction and redistribution of PLP1, 

upon a conformational change, to the basolateral membrane. 

 

In contrast, the mutant MAL BioID2 did not have any enriched pathways related to 

intracellular protein transport, protein complex assembly or membrane parts. This 

observation is consistent with the STRING analyses, suggesting that mutant MAL 

aggregates in the ER and is unable to act as a regulator of intracellular trafficking. The 

enriched pathways are linked to cell death processes such as phagosome acidification, 

probably of apoptotic cells as a result of failed UPR. Also, enrichment of translation 

associated pathways are also a part of the UPR, with certain proteins such as 

chaperones being overexpressed whereas the translation of other proteins is attenuated 

in order to release ER stress. 
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Figure 6-27 Pathway enrichment analysis for the BioID2 dataset for wildtype and mutant MAL. 
The figure summarises the main pathways or processes enriched in the BioID2 dataset, between wildtype and mutant MAL. Processes above threshold are considered 
to be significant (p≤0.05 - above the red threshold line).  
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6.6 Future work  

The work outlined in this chapter characterizes the identification of a variant c.326C>A 

in MAL, that establishes a novel cause for a rare form of leukodystrophy similar to 

Pelizaeus-Merzbacher disease. The variant identified in family ND13 was first assessed 

using in silico protein modelling to check if the variant is predicted to have any pathogenic 

effect on the protein. In silico modelling revealed that the missense variant impacts the 

third hydrophobic domain, probably preventing its incorporation to the membrane. As a 

result, the study was then extended to functional characterisation of the impact of the 

variant on cellular processes, by modelling wildtype and mutant MAL proteins using 

transient transfections.  

 

The functional work described herein reveals that the missense variant in MAL causes 

protein aggregates to be formed in the ER, without reaching the plasma membrane 

where MAL is supposed to be localised to accommodate its function in intracellular 

trafficking. In addition, the ER aggregates, leading to induction of ER stress and 

potentially triggering the UPR, is a very common pathomechanism seen in a variety of 

disorders including Pelizaeus-Merzbacher disease (Dhaunchak and Nave, 2007), 

Vanishing White Matter Disease (VWMD) and Charcot-Marie-Tooth disease (Volpi et al., 

2017). 

 

Additional work on the current setup of experiments, would be to prove that UPR is 

induced as a result of ER stress by checking for specific markers. The UPR is initiated 

via IRE1, PERK and ATF6. IRE1 undergoes autophosphorylation upon ER-stress and 

UPR, something that can be measured by western blotting. PERK also undergoes 

autophosphorylation during the UPR, and also phosphorylates eIF2α to reduce global 

translation of mRNA. Both of these targets can be assessed with phospho-specific 

antibodies by western blotting. In addition, in response to ER-stress ATF6α translocates 

from the ER to the Golgi apparatus, something that can be tracked with 

immunofluorescence microscopy. Other downstream markers of the UPR activation 

include BiP, that acts as a sensor of ER stress and an ER chaperone, and could be 

assessed with western blotting or qPCR. In addition, CHOP is a marker of UPR, that is 

regulated by the PERK-eIF2a-ATF4 pathway and its expression level is usually low. 

CHOP is over-expressed upon UPR and it induces ER stress-mediated apoptosis. 

Checking the levels of CHOP and its targeted pro-apoptotic genes by qPCR could be 

another way of assessing UPR initiation and whether it leads to apoptosis or ER-

associated protein degradation (Oslowski and Urano, 2011).  
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For future work on this study, transient expression of proteins would potentially be 

replaced by gene-editing technologies using CRISPR-Cas9 to obtain a more 

physiological expression of the wildtype and mutant MAL proteins. In addition, although 

MDCK cells are a good model for polarization and initiation of transcytosis, the same 

experiments should also be performed in a neuronal cell line, if achievable, as they are 

more relevant to the disease phenotype. If editing neuronal cell lines turns out to be 

challenging, embryonic stem cells could be potentially used for gene editing and then 

differentiating them into oligodendrocytes precursors or even 3D culture models 

(Rodrigues et al., 2017, Madhavan et al., 2018) to asses myelin formation. 

 
As stated in this chapter, this finding is already shared with the scientific community 

working on rare diseases. Hopefully, identifying an independent replication of this variant 

in a different family with similar phenotype will help make this study stronger and benefit 

future clinical assessment of patients with leukodystrophies. 
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Chapter 7  
Final Discussion  

7.1 Summary of key findings  

This study aimed to investigate the genetic causes of rare autosomal recessive 

neurodevelopmental and neuromuscular conditions using whole exome sequencing and 

functional characterization of identified variants in the best candidate genes. For this 

study, thirteen families were recruited and DNA was collected from multiple members of 

each family via blood or saliva samples. The affected individuals were fully assessed by 

clinical geneticists at regional hospitals. The sequencing strategy for each family varied 

according to sample availability or pedigree structure, but usually a trio was sequenced 

and often an unaffected sibling. Variant segregation, using multiple individuals from a 

family, provided a powerful tool in filtering out non-pathogenic variants, and in some 

cases fundamental for identifying the disease-causing variant.  

 

In chapter 3, three families were described with mutations in known disease genes. The 

affected children in the first family (ND1) have significant arthrogryposis with multiple 

contractures of both upper and lower limbs. WES revealed a nonsense variant (p.R46X) 

in CHRNG that is a known cause of lethal and non-lethal Escobar syndrome (MIM 

number: 265000) (Morgan et al., 2006). The clinical synopsis of this syndrome matches 

the phenotype of family ND1, providing a molecular diagnosis for the family. Family ND2 

presented with myopathy, abnormal movement and learning difficulties. For this family 

the WES investigations were performed by collaborators in Newcastle University, but the 

genetic finding revealed another nonsense variant (p.Q183*) in MICU1. At the time of 

this discovery MICU1 was already established as a disease gene (Logan et al., 2014), 

and the variant p.Q183* was functionally characterized using patient fibroblasts. The 

third family of this chapter (ND3) presented with a severe form of developmental delay. 

WES revealed a frameshift variant in HERC2 that caused a premature stop codon. This 

variant was functionally assessed using patient fibroblast, revealing complete loss of 

protein that is compatible with this variant being causative and pathogenic. However, 

HERC2 is currently considered as a disease gene for Angelman-like syndrome 

(Puffenberger et al., 2012); a much milder phenotype compared to that for family ND3. 

The identification of this frameshift variant expands the genotype-phenotype correlation 

of HERC2 mutations, whilst also providing a diagnosis for the patients. This finding was 

considered extremely important for aiding correct clinical diagnosis and care of future 

cases with severe developmental phenotypes carrying HERC2 mutations. 
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In chapter 4, WES investigations of eight more families were discussed, with some of 

these cases still remaining unsolved. Family ND4 presented with microcephaly, central 

hypotonia and four limb spasticity. WES revealed a single homozygous variant 

(p.R365W) in SUPV3L1. At the end of this study, a second family with a variant in 

SUPV3L1 was identified via the Decipher consortium, increasing the chances of 

SUPV3L1 being a novel disease-causing gene. Furthermore, family ND5 presented with 

lymphoedema and antenatally agenesis of the corpus callosum. WES revealed 

compound heterozygous variants in EPHB2 (p.A731T and p.K872N), that could 

potentially be a novel cause of lymphoedema. Both of the above variants seem likely to 

be the causative mutations of each family, however further functional validation is 

necessary to establish the pathogenic nature of each variant. 

 

In addition, family ND6 had a myopathy phenotype similar to limb-girdle muscular 

dystrophy. Genetic investigations identified variants in two candidate genes; a missense 

variant (p.A745V) in ADAMTS15 and a splice-site variant (c.101608+1C>T) in TTN. Both 

genes are implicated in muscle formation and function, but the splice-site variant in TTN 

was considered the more likely causative variant due to the nature of the genetic 

variation identified. Also, biallelic variants in TTN have been previously associated with 

autosomal recessive myopathy similar to limb-girdle muscular dystrophy (Zheng et al., 

2016). Family ND8 presented with motor and sensory neuropathy and WES revealed a 

homozygous duplication in SH3TC2 that phenotypically was the best candidate gene 

identified. However, upon segregation analysis of the extended pedigree, including 9 

individuals, the variant in SH3TC2 did not segregate and therefore excluded. The next 

best candidate variant for this family was compound heterozygous variants in RGS12 

(p.R392Q and p.R931H), a protein that has been suggested to have a biological role in 

neurogenesis and myogenesis. As mentioned above, the candidate variants identified in 

this chapter need further validation to prove whether they are causative and pathogenic.  

 

Interestingly, a de novo case was also analyzed as part of this study. Family ND9 was 

clinically diagnosed with complex Moebius syndrome (MIM number:157900). MRI scans 

showed right perisylvian polymicrogyria and slight callosal dysmorphism. Sequencing 

revealed a de novo variant (p.G148E) in TUBA1A. This finding was important as it 

expands the genotype-phenotype correlation of TUBA1A to a wider range of brain 

malformations, apart from just lissencephaly. Some studies have reported similar cases 

to family ND8 (Gardner et al., 2018, Sato et al., 2018b), but the more variants that are 

reported with different brain defects to lissencephaly, the better the delineation of this 

novel TUBA1A phenotype-genotype correlation.  
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Lastly, families ND6 and ND10-ND11 described in chapter 4 remained unsolved. These 

families were multiplex and consisted of multiply consanguineous pedigree that identified 

clear homozygous regions, but no variants were identified in the coding exome that could 

be interpreted as pathogenic. Perhaps the disease causing variant lies within the intronic 

regions the genome and will require WGS in order to unravel the pathogenic causes of 

these families. On the other hand, the causative variant might be a synonymous variant 

within the exome that can cause cryptic splice sites. Such variants are being filtered out 

by our current bioinformatics pipelines and will require RNAseq along with WGS to 

resolve such complex genetic variations. Additional bioinformatics analysis tools with 

novel algorithms are being developed to detect potentially pathogenic intronic or 

synonymous variants that may interfere with splicing. An example of algorithm is splice 

AI (Jaganathan et al., 2019). 

 

Chapter 5 describes a novel homozygous missense variant in KLHL7 that is associated 

with a recessive neurodevelopmental condition. This chapter outlines the genetic 

investigation of family ND12 that presented with profound developmental delay and a 

phenotype similar to 4H syndrome (MIM number: 607694). The affected individuals also 

had abnormal brain scans with indications of microcephaly, and abnormal sweating. 

WES revealed a nonsense variant (p.W316*) in KLHL7, a gene that was at the time 

known to be mutated as a cause of autosomal dominant retinitis pigmentosa type 42 

(RP42) (Friedman et al., 2009). A few months after this discovery, a study was published 

that characterized an autosomal recessive disorder associated with mutations in KLHL7 

(Angius et al., 2016). The patients in this study had the same phenotype as family ND12, 

confirming the finding of a disease-causing variant in KLHL7. KLHL7 is an E3-ligase 

adaptor, responsible for tagging substrates for proteasomal degradation. The intriguing 

part of this finding was that all the mutations associated with RP42 were localised in the 

BTB and BACK domain, which forms the region that binds to active side of the E3-ligasae 

complex, whereas mutations associated with the recessive neurodevelopmental disorder 

localize in the Kelch domains that form the substrate binding domain.  

 

Patient fibroblasts were obtained from family ND12, and further functional studies were 

performed in order to investigate the pathogenic effects of p.W316*. Initially the impact 

of the null mutation on the cellular metabolism was assessed using a Seahorse XFe96. 

By using various toxins, the OXPHOS chain and glycolytic activity of the cells were 

evaluated. The results indicated a clear disruption of the OXPHOS chain and increased 

non-glycolytic acidification rate of the mutant cells compared to the wildtype. This may 

suggest that the mutation in KLHL7 indirectly impacted on mitochondrial function and 

energy production, and that the mutant cells use lactate for their source of energy. This 
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observation supports the clinical observations of increased lactate levels in the blood of 

affected individuals. 

 
Furthermore, novel protein-protein interactions of KLHL7 were identified using BioID 

experiments to capture stable and transient interactions. This was only performed in 

wildtype KLHL7 and identified potential E2s and E3s that could be binding partners with 

KLHL7 in the UPS pathway. The BioID experiment also revealed a clear association of 

KLHL7 with proteins involved in cell cycle and cytokinesis. A very interesting hit identified 

was ARL3, which is mutated as a known cause of autosomal dominant retinitis 

pigmentosa type 83 (Holtan et al., 2019) and autosomal recessive Joubert syndrome 

type 35 (Alkanderi et al., 2018). This could be a potential substrate of the KLHL7-

associated E3-ligase complex, but further investigation will be required to establish this 

link.  

 

Lastly, chapter 6 describes the identification of a homozygous missense variant 

(p.A109D) in MAL and the establishment of a novel disease gene associated with 

hypomyelinating leukodystrophy. The variant was identified in family ND13 that 

presented significant developmental delay and learning disabilities, feeding difficulties, 

cerebellar developmental defects, and cortical white matter abnormalities similar to 

Pelizaeus-Merzbacher disease (PMD). WES revealed variants in three candidate genes; 

PNPT1, ZNHIT1 and MAL, but the variants in PNPT1 did not segregate with family 

pedigree and the biological relevance of MAL made it the best functional candidate gene 

for this family. The p.A109D variant in MAL is in the third transmembrane domain and it 

was predicted in silico to impact the incorporation of that transmembrane domain in the 

membrane, due to the substitution of a hydrophobic to a hydrophilic amino acid.  

 

Cellular modeling of the variant in MDCK epithelial cells revealed that the mutant MAL 

protein formed aggregates in the endoplasmic reticulum (ER). This was firstly observed 

by live cell imaging and further validated by immunofluorescence microscopy. This is a 

noteworthy as missense mutations in PLP1, the known cause of PMD (Hoffman-

Zacharska et al., 2013), behave in the same way by forming ER aggregates leading to 

ER stress and triggering the unfolded protein response (UPR) (Bravo et al., 2013). This 

pathogenic phenotype was partly rescued by treating the cells with the chemical 

chaperone 4-phenylbuterate (4-PBA). Furthermore, MAL was thought to regulate the 

distribution of PLP1 (Bijlard et al., 2016), and as a result their potential interaction was 

assessed by immunoprecipitation experiments. The interaction between MAL and PLP1 

was 60% reduced in the mutant MAL model compared to the wildtype. This was again 

partly rescued with the 4-PBA treatment.  
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Additionally, the overall protein-protein interaction network of MAL was assessed using 

BioID experiments, in an attempt to identify novel proteins potentially being involved in 

the process of intracellular trafficking and regulation of PLP1 during myelination. For this 

pupose, wildtype and mutant MAL protein were used which revealed completely distinct 

protein-protein interaction networks. The wildtype MAL seems to interact with proteins 

encoded by a few disease-causing genes, such as OGT, LRPPRC and SARS. Wildtype 

MAL also interacts with CKAP5, a protein already known to be associated with the 

translation of the myelin basic protein (MBP) (Francone et al., 2007). Interestingly, 

wildtype MAL has also revealed proteins essential for intracellular transcytosis 

mechanisms, such as VAPB, VAMP2/3 and RAB18. This highlighted the mechanistic 

role of MAL in intracellular trafficking mechanisms. On the other hand, the majority of 

interactions in the mutant MAL experiment were associated with the ER. Many ribosomal 

proteins were identified as well as ER molecular chaperones. A key observation was the 

identification of proteins such as EIF2B2 and EIF3B and EIF3H, all closely linked to the 

UPR (Bogorad et al., 2017). Also, PDCD6 was identified as an interactant of mutant MAL 

protein, which is a protein associated with apoptosis through the caspase-3 dependent 

pathway (Lee et al., 2005). This further supported the hypothesis of UPR initiation in 

mutant MAL cells and potential apoptotic signals as a result of unresolved ER stress.  

 

Further research investigations will be required to further understand how MAL regulates 

PLP1 during the process of myelination, but the functional experiments outlined in 

chapter 6 provide novel insights into the pathomechanism related to the MAL mutation. 

There is clear evidence supporting the hypothesis that ER aggregates and unresolved 

ER stress lead to the pathogenic phenotype observed in family ND13. PLP1 is also not 

being transported to the correct membrane location, a process that is key during 

myelination and that could explain the leukodystrophy feature. Understanding more 

about this intracellular regulation mechanism during myelination will expand our current 

knowledge of the biology of neurogenesis and myelination. 
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7.2 Plans for future research  

This research project can be further expanded in various other ways. Firstly, mining the 

100K Genome Project dataset and screening additional patients with similar phenotype 

will be valuable in obtaining an independent replication of any of the private variants 

identified as part of this study. Achieving this will provide more supporting evidence that 

the variants identified herein are indeed pathogenic. Secondly, functionally 

characterizing the best candidate variants outlined  in this project will establish whether 

or not they have any pathogenic effect. This could provide a confirmed diagnosis to the 

patients of the affected families recruited as part of this study, and will also improve future 

clinical diagnosis and care. Furthermore, functionally characterizing a variant can be 

advantageous in understanding more about the disease mechanism and gain insights 

into potentially novel uncharacterized biological mechanisms. For instance, cellular 

modeling of the variants in EPHB2 (a gene that codes for a tyrosine kinase receptor) 

would be possible through subsequent identification of phosphorylation in ephrins by 

western blot staining with an anti-phosho ephrin antibody. Perhaps more elaborate 

kinase activity assays can be performed to assess any effect on phosphorylation. 

Purified wildtype and mutant EPHB2 protein, ephrin ligands and ATP are incubated in 

vitro (in-tube assay) to model phosphorylation. By measuring the ATP and ADP levels of 

the assay (ATP to ADP conversion) in wildtype and mutant proteins, the kinase activity 

can be determined (Peck, 2006).  

 

In a similar approach, an in vitro ubiquitination assay could be used for any of the variants 

identified in proteins associated with the UPS (Zhao et al., 2012). HERC2 is an extremely 

large protein that might be problematic in purifying and performing this assay. However, 

KLHL7 (E3 adaptor protein) can be purified along with E1 ubiquitin-activating enzyme, 

potential E2-ubiqtuitin conjugating enzymes, E3-ligases and potential substrates 

identified from the BioID experiment. By adding all the components of the UPS along 

with ubiquitin and ATP in a tube and detecting ubiquitination of the substrate, specific 

E3-ligase complexes and their substrates can be identified expanding our current 

knowledge of KLHL7 function. In addition, the impact of the nonsense variant can be 

assessed by purifying a truncated protein and checking whether or not the ubiquitination 

of the substrate will be disrupted. This technique can be utilized to validate the BioID hits 

presented in this study. 

 

For proteins such as HERC2, that are extremely large, transient cellular modeling via 

expression of a plasmid is not possible. In these instances, CRISPR-Cas9 technologies 

can be used instead to model and functionally assess a mutation. Using genome editing 
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methods to model variants is also considered a superior method than exogenous 

expression of plasmids, as the expression of the mutant protein will be matched to 

endogenous levels and will better represent physiological levels of the protein. Over the 

past few years, CRISPR-Cas9 technologies have significantly improved with many 

different options of genome editing now available. Loss of function variants, such as the 

one in HERC2, can be modelled by knock out CRISPR/Cas9 methods. These models 

consist of an RNA guided approach where a 20 base pair guide RNA (known as crRNA) 

directs the Cas9 endonuclease at the target sequence to create a double-strand cut. This 

will then be repaired by Non-Homologous End Joining (NHEJ), leading to disruption of 

the sequence’s frame and complete knock out of the targeted gene (Au et al., 2019, 

Friedland et al., 2013).  

 

A similar approach can be used to create knock-in models in order to model specific 

genetic variants, such as the missense mutation in MAL. As in the knock-out models, a 

guide RNA approach is used to direct Cas9 to generate a double stranded cut. However, 

for knock-in models a specific sequence is used as a template for genome editing 

through homology-directed repair (HDR) (Niccheri et al., 2017, Aslan et al., 2017). This 

methodology can model specific indels or SNPs but it is proven to be more challenging 

than knock-out models. In both cases, the efficiency of generating an edited cell line 

depends on the specificity and efficiency of the guide RNAs to target the correct region 

of the genome. This attempt may also generate off target effects, due to guide RNAs 

binding to other sides of the genome (Wilbie et al., 2019). This could be potentially 

overcome by using two guides instead of one to make the Cas9 cut more precisely. Off 

target effects in any generated cell-lines can be detected by sequenced with WGS.  

 

Using genome editing of established cell lines can offer significant understanding to 

protein function and pathomechanism caused by genetic variants. However, editing stem 

cells (iPSCs) and growing them into a relevant 3D organoid model can offer great 

insights into biological functions of a certain protein in the overall function of an organ. 

This technology allows researchers to bridge the gap between two dimensional culture 

model and in vivo animal models, while offering sufficient power to recapitulate organ 

development and disease pathways in a 3D culture (Xu et al., 2018). With relevance to 

this study, development of human cortical spheroids carrying the MAL mutation will give 

us the opportunity to more efficiently model this variant and study how this variant can 

affect the process of myelination. Madhavan et al. proved that treating cortical spheroids 

with platelet-derived growth factor AA, insulin-like growth factor and thyroid hormone can 

promote the proliferation of oligodendrocyte progenitor cells and induce myelination in 

the 3D brain models. Furthermore, they also modelled three different variants in PLP1 
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(a deletion, a duplication and a missense variant), and demonstrated impaired 

myelination relevant to the PDM phenotype. Interestingly, the missense variant showed 

the most severe defects in the cortical organoid models. This study also used an inhibitor 

for the protein-kinase-R-like ER kinase, GSK2656157, which promoted mobilization of 

PLP1 away from the ER, resulting in improved myelination (Madhavan et al., 2018). This 

could also be used for the MAL model, as these two proteins seem to be working in a 

similar fashion.  

 

7.3 Potential therapeutic approaches in genetic disorders 

A wide range of genetic disorders still remain untreatable, with researchers trying to 

discover new methods to create treatment strategies for these patients. With regards to 

this study, a potential enzyme replacement therapy (Bengtsson et al., 2003) could be 

investigated, whereby the mutated E3 ligases enzymes would be replaced. Furthermore, 

chemical chaperones or the optimised PERK inhibitor mentioned above could be utilised 

in cases such as family ND13, where the mutant variant results in ER aggregates and 

induction of ER stress leading to the disease phenotype (Axten et al., 2013). 

 

In addition, gene therapies could be examined where the mutant or abolished protein will 

be substituted by gene replacement approaches, using an adeno-associated virus (AAV) 

for delivery (Aguti et al., 2018). For cases where a nonsense variant is identified, gene 

therapies using antisense oligonucleotides (AON) might be a useful (Collin et al., 2012), 

resulting in a bypass of the premature stop and the generation of a shorter but potentially 

functional protein. Some of these therapies are already in clinical trials or used in clinic, 

like the gene therapy used in SMA and DMD (Lim et al., 2017), but developing new 

approaches specific to the variants identified herein requires additional research and 

validation of the therapeutic effect of each strategy.  

 

Lastly, CRISPR-Cas9 genome editing approach could be used in order to correct the 

genetic variation that causes the disease phenotype (Papasavva et al., 2019). Currently, 

the first clinical trial has been launched, using gene-editing to correct a mutation in 

CEP290 that causes Leber’s congenital amaurosis. Preliminary in vivo work showed that 

the common IVS26 intronic mutation was corrected giving the green light from the US 

Food and Drug Administration to start the clinical trial (Sheridan, 2018, Maeder et al., 

2019). As the editing is performed locally, only targeting somatic cells in the eye, it 

overcomes the ethical and safety considerations of editing the germline genome.  
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Others have tried to use CRISPR-Cas9 technologies in human embryos, to correct 

germline variants with mixed success. Tang et al. have demonstrated that they could use 

CRISPR-Cas9 methodology with HDR to correct point mutations in HBB and G6PD 

which cause thalassemia and hemolytic anemia respectively (Tang et al., 2017). These 

experiments were performed in dual pronuclear state human zygotes, but a poor 

mutation rate was observed due to low targeting efficiencies of the guide RNAs. Also, 

off-target effects were reported as well as high incidences of mosaicism. Schenkwein et 

al. tried a similar approach to correct a heterozygous mutation in MYBPC3 that causes 

hypertrophic cardiomyopathy. They performed the editing at an earlier stage during 

fertilization (MII-phase egg cells were injected with CRISPR/Cas9 reagents and sperm) 

and observed a higher efficiency rate, with 72.4% of cases having the corrected version 

of the gene. They only had a single embryo with mosaicism and reduced off-target effects 

(Schenkwein and Yla-Herttuala, 2018). 

 

In theory, similar approaches can be used as for in vitro fertilization (IVF) of single cell 

level embryos in order to correct any genetic variation that will lead to a disease. 

However, these approaches still remain under strong moral and ethical considerations 

that may or may not be resolved in the near future. A major safety consideration is the 

ability of this system to cause off target effects elsewhere in the genome, with unknown 

clinical outcomes. Potentially advancing the targeting efficiency and overcoming the off-

target effects could significantly improve the safety considerations regarding genome 

editing approaches to therapy. In addition, there is still a major ethical unease about 

manipulating the human genome and rewriting the gene pool for the future generations 

(Lanphier et al., 2015). The recent scandal in China with He Jiankui shocked the scientific 

community and raises further concerns as to whether more regulations or bans should 

be placed regarding gene editing tools. He Jiankui unethically edited the genomes of 

embryos that were then implanted in women, giving birth to the first genetically edited 

humans (Cyranoski, 2019). I believe that this is unacceptable practice, as He didn’t 

consider the ethical and safety considerations prior to doing this, jeopardizing life of the 

three babies. In the future, genome editing technologies should be strictly regulated and 

utilized to treat conditions as opposed to eugenic manipulation. 
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7.4 The impact of studying autosomal recessive diseases 

Studying autosomal recessive diseases can have a great impact on both clinical and 

scientific settings. From the clinical perspective, this study offered molecular diagnosis 

for patients that would otherwise remain undiagnosed from the standard NHS genetic 

panel testing. This can be vital for the treating clinician, as knowing the cause of the 

disease can help with prescription of any available drugs that might alleviate symptoms. 

In addition, knowing the genetic background of the patient can help with future treatment 

strategies or clinical trial enrolment of potentially available gene therapies. Furthermore, 

obtaining a molecular diagnosis can be extremely helpful in genetic counseling of other 

members of the family that might be potential carriers of the disease variant, as well as 

prenatal screening for any future pregnancies of the affected family. In addition, if a family 

would consider IVF for future pregnancies, having a molecular diagnosis can help with 

pre-implantation genetic diagnosis to test the embryo prior to implantation in the womb.  

 

The molecular diagnosis can be valuable for the parents and the patients, as it gives 

them clarity about their disease. Diagnosis often comes with a clinical syndrome’s name 

that patients and their parents can read about further. In many instances, affected 

families join support groups and meet with other people affected by the same condition, 

offering them hope and a sense of belonging. In my opinion, offering the patients with 

the diagnostic clarity is precious, even if no treatment options are available for them. 

 

Moreover, the study of autosomal recessive disorders can be beneficial for the scientific 

community too, offering novel knowledge about biological processes and disease 

mechanisms. With regards to this study, the identification of a genetic variant that causes 

a rare autosomal recessive condition can establish a new genotype-phenotype 

correlation and provide us with biological insights that would otherwise remain unknown. 

For instance, the discovery of the variant in MAL determines for the first time its role in 

myelination and its association with a leukodystrophy phenotype similar to PMD. 

 

In contrast with big genomic projects, such as the 100K Genomes, this study offers 

higher resolution for variant identification. The hypothesis-free and family-based 

approached (trio or more) of this study, offers better chances of truly identifying the 

causative variant. As demonstrated in family ND13, more than one variant in a 

biologically-relevant gene can be identified via WES. However, extensive segregation 

analysis in additional family members can be critical in ruling out variants that do not 

segregate, increasing the chances of identifying the correct mutation. In contrast, with 

studies such as the 100K Genomes or the 5 million Genome Projects, this study also 



 215 
utilized variant modelling and functional characterisation to elucidate the pathogenicity 

of a variant. The big genomic studies do not offer any functional interpretation of variants, 

something that I believe is very important in clarifying pathogenic variants from non-

pathogenic ones, and understanding more about disease mechanisms. However, the 

advantage of the current and future big genomic projects is the establishment of large 

datasets that will enhance the identification of independent replications of certain 

variants, that currently remain private to a single family.  
 

7.5 Conclusions  

The family-based and hypothesis-free approach for the genetic investigations of this 

project lead to a number of key findings. Novel disease genes have been identified in 

two cases with global neurodevelopmental condition and a distinct hypomyelinating 

leukodystrophy. In addition, several candidate genes have been identified in other cases 

outlined in this study, that require further validation to prove pathogenicity and gain 

insights into disease mechanism. Most of the variants discussed in this study are private 

and future investigations will be needed to discover independent replication of variants 

in the genes mentioned herein.  

 

Next generation sequencing techniques have been growing rapidly, offering higher 

quality and coverage of sequencing. The genomics field has also been developing new 

approaches to analyze and interpret big genomic data. These developments offer great 

opportunities for big studies such as the 100K Genomes and the 5 Million Genomes 

Projects to develop big dataset of genetic variants associated with disease. This might 

help researchers in the field establish novel disease genes by data-sharing and matching 

cases. Despite the fact that these big genome projects can provide genetic input into 

establishing new genotype-phenotype correlations, they lack the family-approach 

strategies outlined in this study that often provided the fundamental aspect in solving a 

case via segregation analysis. In addition, this research project was valuable as it 

proposed new pathomechanisms and provided insights into the biological function of 

certain proteins by performing numerous functional studies. Functional characterisation 

of variants is a crucial step in resolving the cause of genetic conditions, both because it 

contributes to the current knowledge of the scientific community but it also provides 

essential information for developing future therapies. 
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CTCF Corrected Total Cell Fluoerescence 
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DDD Deciphering Developmental Delay  
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DTT Dithiothreitol 

DUB Deubiquitinating enzyme 
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GATK Genome Analysis Toolkit 
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HDF Human Dermal Fibroblasts 
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HRP Horseradish Peroxidase 

IBD Identical by Decent 
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IP Immunoprecipitation 
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PNS Peripheral Nervous System  

PolyPhen-2 Polymorphism Phenotyping v2 

PPI Protein-Protein Interaction 
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PVDF Polyvinylidene Difluoride 
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RIPA Radio Immunoprecipitation Assay 

RNA Ribonucleic Acid  
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RPE Retinal Pigmented Epithelium 

SDM Side Directed Mutagenesis 
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Appendix A 

A.1 Inclusion Criteria  
The inclusion criteria for family recruitment to this study is based on the phenotypic 

presence of neurodevelopmental defects. This may include global developmental 

defects, neurological defects, neuromuscular defects and brain abnormalities. 

 

Most of the cases recruited were paediatric cases with autosomal recessive patterns of 

inheritance, and in a few instances some de novo cases too. In addition, the majority of 

the cases analysed in this study were consanguineous families, with the exception of a 

few non-consanguineous families.  

 

All of the families recruited must meet the following criteria:  

1) Presence of a rare paediatric neurodevelopmental phenotype. 
2) No previous clinical diagnosis from NHS genetic testing.  
3) Normal karyotype and array CGH in affected individuals.  
4) Informed consent provided by a parent.  
5) Patient under the care of Clinical Geneticists. 
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Appendix B  

B.1 Participants information sheet  
 

 

 
 
 
PARTICIPANT’S INFORMATION SHEET for parents 

INVITATION TO TAKE PART IN RESEARCH TO STUDY GENES THAT CAUSE RECESSIVE INHERITED 
CONDITIONS: 

“Molecular Genetic Investigations of Autosomal Recessive Conditions” 
 
Before you decide, it is important for you to understand why the research is being done and what it will involve. 
Please take time to read the following information carefully. Talk to others about the study if you wish. 
• Part 1 tells you the purpose of this study and what will happen to you if you take part. 
• Part 2 gives you more detailed information about the conduct of the study. 
Ask us if there is anything that is not clear or if you would like more information. Take time to decide whether or 
not you wish to take part. 
 
PART 1: to give you first thoughts about the project  
 
WHAT DO WE WANT TO DO? 
We are studying the inherited factors (genes) involved in recessive conditions. Recessive conditions are genetic 
conditions that a couple can pass on to their children, but do not affect the couple themselves. Some children might 
problems with their walking or learning, and might need operations because they have structural birth defects, such 
as like heart defects, kidney defects, or abnormalities picked up on a brain scan. In some cases the gene causing the 
condition isn’t known and the aim of this study is to do research to find these faulty genes. This could lead to a better 
understanding of the condition. 
 
WHY ARE WE ASKING FOR YOUR HELP? 
You have been asked to take part in this research study because your child has a recessive condition but the genetic 
cause still isn’t known. As most recessive conditions are very rare, we are seeking your help so that we can look at 
the genes of many families with exactly the same condition.  
 
DO I HAVE TO TAKE PART? 
No. It is up to you to decide whether or not to take part. If you do, you will be given this information sheet to keep 
and be asked to sign a consent form. If at a later date you decide you do not want to take part in the study you can 
change your mind for any reason. If you do not wish to take part in the study this will not affect your or your family’s 
medical care in any way. 
 
WHAT WILL WE BE ASKING YOU TO DO? 
A researcher will discuss the study with you and answer any questions you may have. When you are satisfied you 
have all the information you require and if you decide to take part, we will ask you to read and complete a consent 
form. The researcher will ask you to sign this form to give your consent. The form will ask your permission for an extra 
blood test on your child, yourself and your partner. We will try to only take blood from your child at a time when 
blood is being taken as part of the usual clinical care. If we already have a sample of your child’s blood we may ask 
you if we can use that instead of taking a new sample. We may also ask for a saliva sample in addition or instead of a 
blood sample, and we may ask your permission to take samples from your other children if you have them, including 
those that are healthy. We will ask some questions about your medical and family history, and we may also ask your 
permission to look at your medical records. You will be given a copy of this information sheet and your signed consent 
form to keep. 
 
WHAT INFORMATION WILL WE HOLD? 
We will hold information that is routinely collected as part of your child’s usual clinical care. We will also hold 
information that we gain from the blood samples that we have taken. In the future, we may need to contact you again 
for further medical information. 
 
ARE THERE ANY POSSIBLE DISADVANTAGES TO TAKING PART IN THE STUDY? 
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We do not think that taking part in this study will harm you in any way. We will be gathering information which is 
already routinely collected by health professionals. If at any point you would like to discuss the study and your 
involvement in it, you will be able to speak to a researcher. Contact details are provided at the end of this information 
sheet. 
 
WILL THIS PROJECT BENEFIT MY FAMILY? 
There are no immediate short term advantages to taking part in this study. We cannot guarantee to discover anything 
that will directly benefit you or your family. However if we do find the faulty gene causing the condition in your family 
then tests may be available for your relatives to find out if they are at risk of having children with the condition. We 
also hope that studying the genetic causes of recessive conditions will help to discover the reasons why these 
conditions occur. By increasing understanding in this way we may, in the long term, be able to offer better help to 
children and their families 
 
WHAT IF THERE IS A PROBLEM? 
We will address any complaint about the way you have been dealt with during the study or any possible harm that 
you might suffer. The detailed information on this is given in Part 2. 
 
THIS COMPLETES PART 1 OF THE INFORMATION SHEET 
If the information in Part 1 has interested you and you are considering participation, please continue to read the 
additional information in Part 2 before making any decision. 
 
PART 2: information you need to know if you still want to take part 
 
WHAT IF NEW INFORMATION BECOMES AVAILABLE? 
We hope that this study will uncover the genetic cause for your child’s problems. If we do find the faulty gene, this 
information will be fed back to you in the course of the clinics run by the doctors caring for your child. We will also 
inform your local clinical genetics department so they can contact you. It may be possible to then offer tests to the 
wider family, if they wish to see if they carry the same gene or not. It may also be possible to offer tests to either you 
or your partner during a future pregnancy. 
 
HOW DO WE ENSURE CONFIDENTIALITY? 
All information recorded on paper and any biological samples stored will be kept under conditions of strict 
confidentiality as a legal requirement under the Data Protection and Human Tissue Acts. We will put information 
about your family onto a secure computer database. However, we will remove all personal details, such as names and 
addresses, so your family cannot be recognized from it. A study number, which can only be linked to you by the 
research team, will be the identifier of the information. This is necessary so that we can put together your information 
throughout the study. The results from any information or biological samples that we collect will only be used for 
research purposes and will not be available to anyone else. 
 
WILL MY GENERAL PRACTITIONER/FAMILY DOCTOR KNOW THAT I AM PART OF THIS STUDY? 
With your permission, we will contact your G.P. or other doctor involved in your family’s care to let them know that 
your child is included in the study. 
 
WILL ANYONE ELSE KNOW ABOUT MY TAKING PART? 
The information collected about you during the course of the research project will be kept strictly confidential and 
you will not be identifiable from it. If any research results are published in medical articles as a result of this project, 
all personal details will be removed so that your family cannot be recognized from it. 
 
WHAT WILL HAPPEN TO ANY SAMPLES THAT I GIVE? 
We will request an extra sample bottle be filled at the time your child is having blood tests as part of their usual clinical 
care. We will also request a sample of blood from you and your partner. We may also ask to take samples from your 
other children if you have them, including those that are healthy. We could also ask you or your partner to give a 
saliva sample instead or in addition to a blood sample. The samples will be sent to our lab and DNA will be extracted. 
We will analyse the DNA to see if we can determine if there is a genetic cause for your child’s problems. If you change 
your mind later and decide not to take part in the study then you should let us know what we should do with any 
DNA samples. We need to ask you because it can often take some years to find the faulty gene that causes the specific 
condition in your family. We can either keep the DNA for research in the future, or keep the DNA but remove any 
details that can identify it as yours, or destroy the sample. 
 
WILL ANY GENETIC TESTS BE DONE? 
Tests will be done to try to establish if your child’s problems are caused by a faulty gene. We will not use the sample 
for any other genetic tests. We may use new technology (called “clonal” or next generation sequencing) to look at 
many genes at once rather than one after another. We want to use this new technology because we might find the 
faulty gene more quickly, but we will only use it for studies appropriate for your child’s condition. It is possible that 
we may uncover other findings that are unconnected to your child’s condition but might be important for your health. 
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With your permission, we will inform your local clinical genetics department so they can contact you about this 
information. 
 
WHO IS ORGANISING AND FUNDING THE RESEARCH? 
The study is organized by the University of Leeds. The study is funded by a medical research charity called the Sir Jules 
Thorn Charitable Trust. Neither you nor the researchers involved will benefit financially from this project. 
 
WHO HAS REVIEWED THE STUDY? 
All research in the NHS is looked at by an independent group of people, called a Research Ethics Committee to protect 
your safety, rights, wellbeing and dignity. This study has been reviewed and given a favourable opinion by South 
Yorkshire Research Ethics Committee. The research has also been reviewed by the Sir Jules Thorn Charitable Trust, to 
ensure that the proper science is being done for this study. 
 
WHAT IF I HAVE ANY CONCERNS? 
If you have any concerns, other questions about this study or the way it has been carried out, you should contact the 
investigators in charge of running the study: 

 
Prof. Colin A. Johnson  
 
Section of Ophthalmology and Neurosciences 
Wellcome Trust Brenner Building 
Leeds Institute of Molecular Medicine 
St James's University Hospital 
Beckett Street 
Leeds, LS9 7TF, U.K. 
 
tel: (+44) 0113 343 8443 
 
e-mail: c.johnson@leeds.ac.uk 
 

 
Dr. Eamonn Sheridan: 

 
Section of Genetics 
Wellcome Trust Brenner Building 
Leeds Institute of Molecular Medicine 
St James's University Hospital 
Beckett Street 
Leeds, LS9 7TF, U.K. 
 
tel: (+44) 0113 206 5927 
 
e-mail: e.sheridan@leeds.ac.uk 

COMPLAINTS 
If you have a concern about any aspect of this study, you should ask to speak with the researchers who will do their 
best to answer your questions. Please contact Prof. Johnson on 0113 343 8443 or Dr. Sheridan on 0113 206 5927 in 
the first instance. If you remain unhappy and wish to complain formally, you can do this through the NHS Complaints 
Procedure. Details can be obtained from the hospital. 
 
HARM 
In the event that something does go wrong and you are harmed during the research study there are no special 
compensation arrangements. If you are harmed and this is due to someone’s negligence then you may have grounds 
for a legal action for compensation against Leeds Teaching Hospitals NHS Trust but you may have to pay your legal 
costs. The normal National Health Service complaints procedure will still be available to you. 
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B.2 Consent form  
 

 
              
 
 
 

Title of Project: MOLECULAR GENETIC INVESTIGATIONS OF AUTOSOMAL RECESSIVE 
CONDITIONS 
 
 
CONSENT FORM: for patients, or parents/guardians and children in the family  
Participant to circle responses to all parts: 

1. I confirm that I have read and understand the information sheet for the study. I have had the 
opportunity to consider the information, ask questions, and have had these answered 
satisfactorily 

2. I understand that my participation is voluntary and that I am free to withdraw at any time, 
without giving any reason, and without my medical care or legal rights being affected 

3. I understand that sections of any of my/my child’s medical notes may be reviewed by the 
researchers and other responsible individuals from regulatory authorities or from the NHS Trust, 
where it is relevant to my taking part in research. I give permission for these individuals to have 
access to my/our records 

4. i) I agree to allow medical information about me/my family to be entered on a confidential 
computer database. I understand that personal details (including names and addresses) about 
myself and my family will be accessed only by researcher team leaders (Johnson, Sheridan & 
Bonthron). Information accessed by other researchers will have personal details removed, 
thereby maintaining our privacy 

ii) If further medical information is requested by researchers, I agree to be contacted again 
for this purpose. 

5. i) I agree that a blood sample/saliva sample/stored DNA sample from me may be used for 
genetic research studies appropriate to my family’s condition. I understand that any results 
arising from this research work will be kept strictly confidential. 

ii)  OR I agree that blood samples/saliva samples/stored DNA samples from the following 
children in the family can be used for the project: 

list of children agreed to be part of the research: 
1. 5. 
2. 6. 
3. 7. 
4. 8. 

6. i) If a genetic test, or other genetic finding that might have health implications, becomes 
available as a result of medical research on my own or my family’s sample(s) I would like to have 
the opportunity to discuss the implications of these findings with appropriate medical experts, 
including my local clinical genetics department 

ii) I understand that genetic testing may sometimes reveal information that might have 
health implications unconnected to my family’s condition. I would like to have the opportunity 
to discuss the implications of any such findings with appropriate medical experts, including my 
local clinical genetics department 

iii) I agree that my G.P, or other healthcare professional in charge of my or my family’s care, 
is informed that I/we are taking part in this study and of the result of any genetic test 

 
 
 
 
 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 
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________________________ ________________ ____________________ 
Participant/Family Representative  Date Signature 
on behalf of children in the family 
 
_________________________ ________________ ____________________ 
Name of Person taking consent Date  Signature 
 
 
_________________________ ________________ ____________________ 
Researcher   Date  Signature 
 

when completed copies: one for participant;  one for researcher;  signed original to be kept with hospital notes 
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Appendix C  

C.1 Ethical approval  
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C.2 NHS permission for research  
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Appendix D  

D.1 Agilent 2100 Bioanalyzer DNA 1000 Assay 
The following traces outline a typical Bioanalyzer DNA 1000 assay trace, evaluating the 

DNA fragments after tagmentation reaction in WES. 
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D.2 Agilent 2100 Bioanalyzer High Sensitivity Assay 
The following traces outline a typical Bioanalyzer High Sensitivity assay trace, evaluating 

the quantity and quality of the indexed libraries prior to pooling. 
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Appendix E  

E.1 Linux command-line for WES data analysis 
The following commands were used in the standard data analysis pipeline for filtering 

variants from WES data. 

 

1. Alignment to GRCh37 using BWA 
bwa mem -t 12 -M /home/ref/b37/human_g1k_v37.fasta 

/data/medmelp/JTXXX_S1_L001_R1_001.fastq.gz 

/data/medmelp/JTXXX_S1_L001_R2_001.fastq.gz -v 1 -R 

'@RG\tID:JTXXX\tSM:JTXXX\tPL:Illumina\tPU:HiSeq3000\tLB:JTXXX_WES_exome' -

M |samtools view -Sb - > /data/medmelp/JTXXX.bwamem.bam 

2. Sort bam file 
java -Xmx4g -jar /home/picard/picard-tools-2.5.0/picard.jar SortSam 

I=/data/medmelp/JTXXX.bwamem.bam O=/data/medmelp/JTXXX.bwamem.sort.bam 

SO=coordinate CREATE_INDEX=TRUE 

3. Mark duplicates 
java -Xmx4g -jar /home/picard/picard-tools-2.5.0/picard.jar MarkDuplicates 

I=/data/medmelp/JTXXX.bwamem.sort.bam 

O=/data/medmelp/JTXXX.bwamem.sort.dedup.bam 

M=/data/medmelp/JT7XXX.bwamem.sort.dedup.metrics CREATE_INDEX=TRUE 

4. Create indel realigner targets 
java -Xmx4g -jar /home/GATK/GenomeAnalysisTK-3.5-0/GenomeAnalysisTK.jar -T 

RealignerTargetCreator -R /home/ref/b37/human_g1k_v37.fasta -known 

/home/ref/b37/1000G_phase1.indels.b37.vcf -known 

/home/ref/b37/Mills_and_1000G_gold_standard.indels.b37.sites.vcf -I 

/data/medmelp/JTXXX.bwamem.sort.dedup.bam -o 

/data/medmelp/JTXXX.bwamem.sort.dedup.intervals 

5. Perform indel realignment  
java -Xmx4g -jar /home/GATK/GenomeAnalysisTK-3.5-0/GenomeAnalysisTK.jar -T 

IndelRealigner -R /home/ref/b37/human_g1k_v37.fasta -known 

/home/ref/b37/1000G_phase1.indels.b37.vcf -known 

/home/ref/b37/Mills_and_1000G_gold_standard.indels.b37.sites.vcf -I 

/data/medmelp/JTXXX.bwamem.sort.dedup.bam -targetIntervals 

/data/medmelp/JTXXX.bwamem.sort.dedup.intervals -o 

/data/medmelp/JTXXX.bwamem.sort.dedup.indelrealn.bam 
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6. Get recalibration model 
java -Xmx4g -jar /home/GATK/GenomeAnalysisTK-3.5-0/GenomeAnalysisTK.jar -T 

BaseRecalibrator -R /home/ref/b37/human_g1k_v37.fasta -knownSites 

/home/ref/b37/1000G_phase1.indels.b37.vcf -knownSites 

/home/ref/b37/Mills_and_1000G_gold_standard.indels.b37.sites.vcf -knownSites 

/home/ref/b37/dbSnp146.b37.vcf.gz -I 

/data/medmelp/JTXXX.bwamem.sort.dedup.indelrealn.bam -o 

/data/medmelp/JTXXX.bwamem.sort.dedup.indelrealn.recal.grp -nct 6  

7. Apply recalibration  
java -Xmx4g -jar /home/GATK/GenomeAnalysisTK-3.5-0/GenomeAnalysisTK.jar -T 

PrintReads -R /home/ref/b37/human_g1k_v37.fasta -I 

/data/medmelp/JTXXX.bwamem.sort.dedup.indelrealn.bam -BQSR 

/data/medmelp/JTXXX.bwamem.sort.dedup.indelrealn.recal.grp -o 

/data/medmelp/JTXXX.bwamem.sort.dedup.indelrealn.recal.bam  

8. Haplotype Caller for variant calling  
java -Xmx4g -jar /home/GATK/GenomeAnalysisTK-3.5-0/GenomeAnalysisTK.jar -T 

HaplotypeCaller --emitRefConfidence GVCF --variant_index_type LINEAR --

variant_index_parameter 128000 -R /home/ref/b37/human_g1k_v37.fasta -D 

/home/ref/b37/dbSnp146.b37.vcf.gz -stand_call_conf 30 -stand_emit_conf 10 -I 

/data/medmelp/JTXXX.bwamem.sort.dedup.indelrealn.recal.bam -o 

/data/medmelp/JTXXX.g.vcf  

9. Genotype gVCF and merge family vcfs together 
java -Xmx4g -jar /home/GATK/GenomeAnalysisTK-3.5-0/GenomeAnalysisTK.jar -T 

GenotypeGVCFs -R /home/ref/b37/human_g1k_v37.fasta -D 

/home/ref/b37/dbSnp146.b37.vcf.gz -stand_call_conf 30 -stand_emit_conf 10 -V 

/data/medmelp/JTXXX.g.vcf -V /data/medmelp/JTXXX.g.vcf -V 

/data/medmelp/JTXXX.g.vcf -V /data/medmelp/JTXXX.g.vcf -o /data/medmelp/JTXXX-

XXX.raw.vcf –showFullBamList 

10. Separate SNPs 
java -Xmx4g -jar /home/GATK/GenomeAnalysisTK-3.5-0/GenomeAnalysisTK.jar -T 

SelectVariants -R /home/ref/b37/human_g1k_v37.fasta --variant /data/medmelp/JTXXX-

XXX.raw.vcf -selectType SNP -o /data/medmelp/JTXXX-XXX.snps.vcf 

11. Separate INDELS 
java -Xmx4g -jar /home/GATK/GenomeAnalysisTK-3.5-0/GenomeAnalysisTK.jar -T 

SelectVariants -R /home/ref/b37/human_g1k_v37.fasta --variant /data/medmelp/JTXXX-

XXX.raw.vcf -selectType INDEL -selectType MNP -o /data/medmelp/JTXXX-

XXX.indels.vcf 
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12. Variant hard filtering for SNPs  
java -Xmx4g -jar /home/GATK/GenomeAnalysisTK-3.5-0/GenomeAnalysisTK.jar -T 

VariantFiltration -R /home/ref/b37/human_g1k_v37.fasta -V /data/medmelp/JTXXX-

XXX.snps.vcf --filterExpression "QD < 2.0 || FS > 60.0 || MQ < 40.0 || 

MappingQualityRankSum < -12.5" --filterName "snp_hard_filter" -o 

/data/medmelp/JTXXX-XXX.fltd-snps.vcf 

13. Variant hard filtering for INDELS 
java -Xmx4g -jar /home/GATK/GenomeAnalysisTK-3.5-0/GenomeAnalysisTK.jar -T 

VariantFiltration -R /home/ref/b37/human_g1k_v37.fasta -V /data/medmelp/JTXXX-

XXX.indels.vcf --filterExpression "QD < 2.0 || FS > 200.0" --filterName "indel_hard_filter" 

-o /data/medmelp/JTXXX-XXX.fltd-indels.vcf 

14. Combine variants into a merged vcf 
java -Xmx4g -jar /home/GATK/GenomeAnalysisTK-3.5-0/GenomeAnalysisTK.jar -T 

CombineVariants -R /home/ref/b37/human_g1k_v37.fasta --variant 

/data/medmelp/JTXXX-XXX.fltd-snps.vcf --variant /data/medmelp/JTXXX-XXX.fltd-

indels.vcf  -o /data/medmelp/JTXXX-XXX.fltd-combinedvars.vcf --genotypemergeoption 

UNSORTED 

15. Filter on dbSNP with <1%MAF 
perl /home/vcfhacks-v0.2.0/annotateSnps.pl -d /home/ref/b37/dbSnp146.b37.vcf.gz 

/home/ref/b37/clinvar_20160531.vcf.gz -f 1 -pathogenic -i /data/medmelp/JTXXX-

XXX.fltd-combinedvars.vcf -o /data/medmelp/JTXXX-XXX.fltd-

combinedvars.1pcdbsnp.vcf 

16. Filter on EVS with <1% MAF 
perl /home/vcfhacks-v0.2.0/filterOnEvsMaf.pl -d /home/ref/evs/ -f 1 --progress -i 

/data/medmelp/JTXXX-XXX.fltd-combinedvars.1pcdbsnp.vcf -o /data/medmelp/JTXXX-

XXX.fltd-combinedvars.1pcdbsnp.1pcEVS.vcf 

17. Filter on ExAC with <1% MAF 
perl /home/vcfhacks-v0.2.0/filterVcfOnVcf.pl -f 

/home/ref/ExAC/ExAC.r0.3.sites.vep.vcf.gz -w -y 0.01 -i /data/medmelp/JTXXX-

XXX.fltd-combinedvars.1pcdbsnp.1pcEVS.vcf -o /data/medmelp/JTXXX-XXX.fltd-

combinedvars.1pcdbsnp.1pcEVS.exac.vcf -progress -fork 12 

 
 

18. Apply variant effect predictor (VEP) 
perl /home/variant_effect_predictor/variant_effect_predictor.pl --offline --vcf --everything 

--dir /home/variant_effect_predictor/vep_cache --plugin 
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Condel,/home/variant_effect_predictor/vep_cache/Plugins/config/Condel/config/ --

plugin SpliceConsensus --assembly GRCh37 -input /data/medmelp/JTXXX-XXX.fltd-

combinedvars.1pcdbsnp.1pcEVS.exac.vcf -o /data/medmelp/JTXXX-XXX.fltd-

combinedvars.1pcdbsnp.1pcEVS.exac.vep.vcf 

19. Find biallelic variants (based on pedigree file) 
perl /home/vcfhacks-v0.2.0/findBiallelic.pl -i /data/medmelp/JTXXX-XXX.fltd-

combinedvars.1pcdbsnp.1pcEVS.exac.vep.vcf -o /data/medmelp/JTXXX-XXX.fltd-

biallelic.vep.vcf -f /data/medmelp/JTXXX-XXX.ped 

Or filter for de novo variants (for some cases) 
perl /home/vcfhacks-v0.2.0/filterOnSample.pl --input /data/medmelp/JTXXX-XXX.fltd-

combinedvars.1pcdbsnp.1pcEVS.vep.vcf --samples [samples to keep variants if present 

in all] --reject [samples to reject variants from if present in any] 

20. Get functional variants (optional)  
perl /home/vcfhacks-v0.2.0/getFunctionalVariants.pl -i /data/medmelp/JTXXX-

XXX.vep.vcf --damaging all --keep_any_damaging --pass --progress -o 

/data/JTXXX.functvyarvep.vcf 

21. Rank on CADD score 
perl /home/vcfhacks-v0.2.0/rankOnCaddScore.pl -c /data/shared/cadd/v1.3/*.gz -i 

/data/medmelp/JTXXX-XXX.fltd-biallelic.vep.vcf  -o /data/medmelp/JTXXX-XXX.fltd-

combinedvars.1pcdbsnp.1pcEVS.vep.cadd_ranked.vcf -n cadd_not_found.tsv --

progress 

22. Gene annotator 
perl /home/vcfhacks-v0.2.0/geneAnnotator.pl -d /home/vcfhacks-

v0.2.0/data/geneAnnotatorDb -m vep -i /data/medmelp/JTXXX-XXX.fltd-

combinedvars.1pcdbsnp.1pcEVS.vep.cadd_ranked.vcf -o /data/medmelp/JTXXX-

XXX.fltd-BiallelicVars.gene_anno 

23. Convert to excel file 
perl /home/vcfhacks-v0.2.0/annovcfToSimple.pl -i /data/medmelp/JTXXX-XXX.fltd-

BiallelicVars.gene_anno --vep --gene_anno -o /data/medmelp/JTXXX-XXX.fltd-

BiallelicVars.vep.cadd_ranked.filtered.gene_anno.xlsx -f 
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Appendix F  

F.1 Quality control using Picard tools 
The following command line was used for quality control of the .bam files generated for 

each sample sequenced. The tool is known as Picard tools CollectMultipleMetrics 

(https://broadinstitute.github.io/picard/command-line-

overview.html#CollectMultipleMetrics). 

 

Clean Bam: 
java -Xmx4g -jar /home/picard/picard-tools-1.141/picard.jar CleanSam 

I=/data/medmelp/JTXXX.bwamem.sort.dedup.indelrealn.recal.bam  O=/data/medmelp/

XXX.bwamem.sort.dedup.indelrealn.recal.cln.bam CREATE_INDEX=TRUE 

 

Collect Multiple Metrics – Graphical representation  
java -Xmx4g -jar /home/picard/picard-tools-1.141/picard.jar CollectMultipleMetrics 

I=/data/medmelp/JTXXX.bwamem.sort.dedup.indelrealn.recal.cln.bam 

O=/data/medmelp/JTXXX/alignment_metrics/JTXXX.bwamem.sort.dedup.indelrealn.re

cal.cln R=/home/ref/b37/human_g1k_v37.fasta 

 

Checking % Duplicates 
samtools flagstat /data/medmelp/JTXXX.bwamem.sort.dedup.indelrealn.recal.cln.bam > 

/data/medmelp/JTXXX/alignment_metrics/JTXXX.flagstat.metrics.txt 
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F.2 Exemplar of CollectMultipleMetrics output 
The following graphical representations outline the output obtained for each sample 

sequenced using CollectMultipleMetrics from Picard tools.  
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Appendix G  

G.1 Depth of coverage command  
 

$ java –Xmx10g –jar GATK.jar –T DepthOfCoverage –

R /home/ref/b37/human_g1k_v37.fasta -i sample_1.bam -i sample_2.bam -I 

sample_3.bam –o output.coveragedepth.txt –

L /home/ref/SureSelectAllExonV5/S04380110_Regions_b37.bed –ct 5 –ct 10 –ct 20 

 

G.2 Exemplar output of depth of coverage 
 

Sample ID total mean third quartile median first quartile  
JT725 8354771371 138.28 181 128 85  
JT726 7582420392 125.49 166 113 72  
JT727 4459553701 73.81 98 66 41  
JT728 9370917192 155.09 205 139 88  
Total 29767662656 492.67     

       
 

      

Sample ID %bases_ 
above5 

%bases_ 
above10 

%bases_ 
above15 

%bases_ 
above20 

 
 

JT725 99.5 99.2 98.8 98.2  
 

JT726 99.6 99.1 98.4 97.5  
 

JT727 99.3 98.1 96 93.2  
 

JT728 99.7 99.4 98.9 98.3  
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Appendix H  

H.1 Plasmid used for BioID cloning  
The following plasmid, pcDNA3.1_mycBioID_N-term, was obtained from Addgene 

(www.addgene.org) for BioID cloning purposes.  
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Appendix I  

I.1 Expression vectors 
The following expression vectors for MAL (pENTR223) and KLHL7 (pENTR221) were 

used for cloning purposes.  

 
 



 270 

Appendix J  

J.1 Raw data from KLHL7 BioID experiment 

 

T: Majority 
protein IDs

T: Gene 
names

KLHL7_B_x/y_
KLHL7

KLHL7_B_x/y_
Control_B

KLHL7_x/y_
Control

C: Student's T-
test Significant 
KLHL7_B_Contr

ol_B

C: Student's T-
test Significant 
KLHL7_Control

C: Student's T-
test significant

C: 
KLHL7_B_x/y_K

LHL7 A 
significant

C: 
KLHL7_B_x/y_C

ontrol_B A 
significant

C: 
KLHL7_x/y_Con

trol A 
significant

C: KB_x/y_K A 
significant

C: KB_x/y_CB A 
significant

N: Peptides

Q9NVP2 ASF1B 104017000 5.27536 1.32E-08 + KLHL7_Control + + 4
P46060 RANGAP1 48477000 48477000 1 + + 8
O15111 CHUK 4.55756 3.60065 10176500 + + 6
P60604 UBE2G2 3.80422 3.6424 41460500 + + + 3
Q86UE8 TLK2 3.76747 3.24132 17671000 + + 4

Q8IXQ5 KLHL7 3.44239 4197300000 1.219E+09 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + + 27
Q6NYC1 JMJD6 3.41327 71545500 20961000 + + + 4
Q14142 TRIM14 3.32829 62878000 18892000 + + + + + 4
Q8WUF5 PPP1R13L 3.14766 2.57776 11814500 + + 8
Q9NRW7 VPS45 3.14639 0.897755 22710500 + + 5
P19474 TRIM21 3.00211 90378600 30105000 + + + + 4
Q8IWT6 LRRC8A 2.95473 0.966026 27036500 + + 7
Q6P3W7 SCYL2 2.79667 0.893638 22758500 + + 7
Q9HAV4 XPO5 2.75177 1.12651 44331500 + + 11
P36405 ARL3 2.40501 87917500 36556000 + + + + 3
Q9H9Y6 POLR1B 2.24282 103045000 45944500 + KLHL7_Control + + + + 7

P51148 RAB5C 2.20573 167845000 76095000 +
KLHL7_B_Contr

ol_B + + 6
Q8TEM1 NUP210 2.15364 84028500 39017000 + KLHL7_Control + + 4
Q99685 MGLL 1.7238 114308000 66311500 + KLHL7_Control + + + 4
Q96GD4 AURKB 1.589 69528400 43756000 + + 6

Q8IY21 DDX60 1.54659 18.0078 45.1951 +
KLHL7_B_Contr

ol_B + + + 26

Q8TCS8 PNPT1 1.52308 146520000 96199600 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + 13
Q9NUQ7 UFSP2 1.50545 78386000 52068000 + KLHL7_Control + + + 3
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T: Majority 
protein IDs

T: Gene 
names

KLHL7_B_x/y_
KLHL7

KLHL7_B_x/y_
Control_B

KLHL7_x/y_
Control

C: Student's T-
test Significant 
KLHL7_B_Contr

ol_B

C: Student's T-
test Significant 
KLHL7_Control

C: Student's T-
test significant

C: 
KLHL7_B_x/y_K

LHL7 A 
significant

C: 
KLHL7_B_x/y_C

ontrol_B A 
significant

C: 
KLHL7_x/y_Con

trol A 
significant

C: KB_x/y_K A 
significant

C: KB_x/y_CB A 
significant

N: Peptides

Q8IVG5 SAMD9L 1.38192 16.2139 32.4615 +
KLHL7_B_Contr

ol_B + + + 29

Q13287 NMI 1.34436 146985000 109334000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 8

P09914 IFIT1 1.31651 43.6681 70.7665 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 39

Q8IXQ6 PARP9 1.28534 12.6096 484540000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 19

P20591 MX1 1.24914 149340000 119555000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 9
Q8N6T3 ARFGAP1 1.22028 90674000 74306000 + + + + 7

P29728 OAS2 1.17395 841460000 716779000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 19

Q8IVU3 HERC6 1.16779 539885000 462315000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 25

Q96C10 DHX58 1.16014 136925000 118025000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 8

P20339 RAB5A 1.15216 97575000 84689100 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + 7

Q8TDB6 DTX3L 1.15047 191070000 166080000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 13
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T: Majority 
protein IDs

T: Gene 
names

KLHL7_B_x/y_
KLHL7

KLHL7_B_x/y_
Control_B

KLHL7_x/y_
Control

C: Student's T-
test Significant 
KLHL7_B_Contr

ol_B

C: Student's T-
test Significant 
KLHL7_Control

C: Student's T-
test significant

C: 
KLHL7_B_x/y_K

LHL7 A 
significant

C: 
KLHL7_B_x/y_C

ontrol_B A 
significant

C: 
KLHL7_x/y_Con

trol A 
significant

C: KB_x/y_K A 
significant

C: KB_x/y_CB A 
significant

N: Peptides

Q53EU6 AGPAT9 1.14034 126235000 110699000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 6

Q9H930 SP140L 1.12216 90198900 80380000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 11

P20592 MX2 1.11896 582190000 520295000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 17
Q9UP95 SLC12A4 1.10931 73467000 66227500 + KLHL7_Control + + + 10

P09913 IFIT2 1.10717 1803850000 1.629E+09 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 27

O14879 IFIT3 1.08895 260580000 239295000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 15
O14933 UBE2L6 1.05953 13.0554 182665000 + KLHL7_Control + + + 7

Q9BYX4 IFIH1 1.0513 332785000 316545000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 18

Q9UII4 HERC5 1.0283 868250000 844355000 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 18

Q9Y6K5 OAS3 1.02347 26.2604 28.0346 + +

KLHL7_B_Contr
ol_B;KLHL7_Co

ntrol + + + 45

O95786 DDX58 1.01778 97.8502 121.96 +
KLHL7_B_Contr

ol_B + + + 42
Q03518 TAP1 1.01075 63.1628 2.243E+09 + KLHL7_Control + + + 16
Q03519 TAP2 1.00764 14.6324 958286000 + KLHL7_Control + + + 13
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Appendix K  

K.1 Raw data from MAL BioID2 experiment (wildtype) 

  

T: Majority 
protein IDs T: Gene names WB_x/y_CB WB_x/y_W MB_x/y_CB MB_x/y_M MB_x/y_W

B

C: 
WB_x/y_CB 
A significant

C: 
MB_x/y_CB 
A significant

C: 
MB_x/y_W

B A 
significant

O14828 SCAMP3 113270000 113270000 1 1 8.83E-09 + +
O15294 OGT 205540000 205540000 1 1 4.87E-09 + +
O43747 AP1G1 183570000 183570000 1 5.55E-09 5.45E-09 + +
O43865;Q96H
N2 SEPT3. 127180000 127180000 1 1 7.86E-09 + +
O95292 VAPB 243170000 243170000 1 1 4.11E-09 + +
P02511 CRYAB 424730000 424730000 1 1 2.35E-09 + +
P09874 PARP1 235580000 235580000 1 1 4.24E-09 + +
P12081 HARS 175210000 175210000 1 5.21E-09 5.71E-09 + +
P13861 PRKAR2A 93972000 93972000 1 9.70E-09 1.06E-08 + +
P14314 PRKCSH 292710000 292710000 1 1 3.42E-09 + +
P27105 STOM 128690000 128690000 1 1 7.77E-09 + +
P30876 POLR2B 302040000 302040000 1 1 3.31E-09 + +
P42704 LRPPRC 211640000 211640000 1 4.36E-09 4.73E-09 + +
P49591 SARS 176420000 0.973084 1 1 5.67E-09 + +
P52788 SMS 137330000 137330000 1 1 7.28E-09 + +
P84095 RHOG 140110000 140110000 1 1 7.14E-09 + +
Q13557 CAMK2D 309760000 309760000 1 1 3.23E-09 + +
Q13573 SNW1 149920000 149920000 1 1 6.67E-09 + +
Q14008 CKAP5 153390000 153390000 1 1 6.52E-09 + +
Q14254 FLOT2 80492000 80492000 1 1 1.24E-08 + +
Q15836;P6302
7 VAMP3;VAMP2 143230000 143230000 1 7.40E-09 6.98E-09 + +
Q6P1M3 LLGL2 125650000 125650000 1 1 7.96E-09 + +
Q7Z2W4 ZC3HAV1 136670000 136670000 1 1 7.32E-09 + +
Q92900 UPF1 236770000 236770000 1 2.93E-09 4.22E-09 + +
Q99653 CHP1 105170000 105170000 1 1 9.51E-09 + +
Q9BS26 ERP44 109800000 109800000 1 1 9.11E-09 + +
Q9NP72 RAB18 107010000 107010000 1 1 9.34E-09 + +
Q9NT62 ATG3 201520000 201520000 1 1 4.96E-09 + +
Q9Y224 C14orf166 649450000 649450000 1 1 1.54E-09 + +
Q9Y5B9 SUPT16H 3.70569 6.75382 1.9331 1.14503 0.521657 +
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K.2 Raw data from MAL BioID2 experiment (mutant) 

 

T: Majority protein 
IDs T: Gene names WB_x/y_CB WB_x/y_W MB_x/y_CB MB_x/y_M MB_x/y_W

B

C: 
WB_x/y_CB 
A significant

C: 
MB_x/y_CB 
A significant

C: 
MB_x/y_W

B A 
significant

O14776 TCERG1 1 1 101620000 101620000 101620000 + +
O15126 SCAMP1 1 1 188730000 188730000 188730000 + +
O15372 EIF3H 1 1 196220000 0.896268 196220000 + +
O60664 PLIN3 1 1 123240000 123240000 123240000 + +
O75348;O95670 ATP6V1G1;ATP6V1G2 1 1 122070000 0.733242 122070000 + +
O76094 SRP72 1 1 84873000 84873000 84873000 + +
P08574 CYC1 1 1 219840000 219840000 219840000 + +
P08754 GNAI3 1 1 164840000 0.928415 164840000 + +
P15374 UCHL3 1 1.17E-08 90696000 0.94543 90696000 + +
P30038 ALDH4A1 1 1 125740000 0.946125 125740000 + +
P30040 ERP29 1 1 247120000 247120000 247120000 + +
P31949 S100A11 1 1 1405700000 0.850393 1405700000 + +
P39748 FEN1 1 1 174610000 174610000 174610000 + +
P46087 NOP2 1 1 265550000 265550000 265550000 + +
P49770 EIF2B2 1 1 31099000 0.969844 31099000 + +
P54105 CLNS1A 1 1 203530000 0.745887 203530000 + +
P54577 YARS 1 1 385610000 385610000 385610000 + +
P55884 EIF3B 1 1 143150000 143150000 143150000 + +
P63010 AP2B1 1 1 376530000 0.911077 376530000 + +
Q00688 FKBP3 1 1 195280000 195280000 195280000 + +
Q02543 RPL18A 2.2794 1.42122 9.39644 2.06444 4.12233 + +
Q13310 PABPC4 1 1 460830000 460830000 460830000 + +
Q13586 STIM1 1 1 159700000 159700000 159700000 + +
Q14683 SMC1A 1 1 151560000 0.720205 151560000 + +
Q9H8S9;Q7L9L4 MOB1A;MOB1B 1 1 154550000 154550000 154550000 + +
Q8WVJ2 NUDCD2 1 1 125930000 1.25959 125930000 + +
Q8WWI1 LMO7 1 1 342840000 342840000 342840000 + +
Q92599 SEPT8 1 1 250070000 0.848817 250070000 + +
Q92804 TAF15 1 1 314490000 314490000 314490000 + +
Q99757 TXN2 1 1 212780000 212780000 212780000 + +
Q9NZL4 HSPBP1 1 1 61683000 61683000 61683000 + +
Q9P2R3 ANKFY1 1 1 144060000 144060000 144060000 + +
Q9UI12 ATP6V1H 1 1 235350000 235350000 235350000 + +
Q9UKV3 ACIN1 1 1 336970000 336970000 336970000 + +
Q9UKY7 CDV3 1 1 356720000 356720000 356720000 + +
Q9Y2B0 CNPY2 1 1 261770000 261770000 261770000 + +


