
 

Characterisation of the subglacial 

environment using geophysical 

constrained Bayesian inversion 

techniques 

 

 

 

Siobhan Killingbeck 

 

 

 

Submitted in accordance with the requirements for the degree of 

Doctor of Philosophy 

 

 

 

The University of Leeds 

School of Earth and Environment 

 

 

 

March 2020 

 

 



ii 

 

The candidate confirms that the work submitted is his/her own, except where work which has 

formed part of jointly-authored publications has been included. The contribution of the 

candidate and the other authors to this work has been explicitly indicated below. The 

candidate confirms that appropriate credit has been given within the thesis where reference 

has been made to the work of others.   

The work presented in Chapter three of this thesis has appeared in the following publication:  

Killingbeck, S. F., Livermore, P. W., Booth, A. D., and West, L. J. (2018). Multimodal 

layered transdimensional inversion of seismic dispersion curves with depth constraints. 

Geochemistry, Geophysics, Geosystems, 19, 4957– 4971. doi.org/10.1029/2018GC008000 

SK was responsible for the acquisition, processing and interpretation of the dataset, 

preparation of all the figure and manuscript. SK and PL developed MuLTI. PL 

contributed to writing the methodology section. All authors commented on early 

drafts of the  manuscript. 

The work presented in Chapter four of this thesis has appeared in the following publication:  

Killingbeck, S., Booth, A., Livermore, P., West, L., Reinardy, B., and Nesje, A. (2019). 

Subglacial sediment distribution from constrained seismic inversion, using MuLTI software: 

Examples from Midtdalsbreen, Norway. Annals of Glaciology, 60(79), 206-219. 

doi:10.1017/aog.2019.13 

SK was responsible for the acquisition, processing and interpretation of the datasets, 

preparation of all the figure and manuscript. SK and AB acquired the data. All authors 

commented on early drafts of the  manuscript. 

The work presented in Chapter five of this thesis has appeared in the following publication:  

Killingbeck, S. F., Booth, A. D., Livermore, P. W., Bates, C. R., and West, L. J.: 

Characterisation of subglacial water using a constrained transdimensional Bayesian Time 

Domain Electromagnetic Inversion, Solid Earth Discuss., doi.org/10.5194/se-2019-126, 

accepted, 2019. 

SK was responsible for the acquisition, processing and interpretation of the dataset, 

preparation of all the figure and manuscript. SK and AB acquired the data. SK and 

PL developed MuLTI TEM. RB provided advice and support while using the TEM 

equipment. All authors commented on early drafts of the  manuscript. 

This copy has been supplied on the understanding that it is copyright material and that no 

quotation from the thesis may be published without proper acknowledgement. 

 

© 2020 The University of Leeds and Siobhan Killingbeck 



iii 

 

Acknowledgements 

This thesis was funded by the UK NERC SPHERES DTP, grant NE/L002574/1 and 

supervised by Dr Adam Booth, Dr Phil Livermore and Dr Jared West. They are 

thanked for their fantastic support, guidance, time and energy spent during this 

project, and always provided expert advice and feedback when asked.  

In the 2017 field campaign, GPR equipment was generously provided by Jostein 

Bakke (University of Bergen). Fieldwork was part-funded by the EVOGLAC project 

(University of Bergen, University of Oslo), and greatly assisted by the support and 

local expertise of Atle Nesje and Kjell Magne Tangen. In the 2018 field campaign, 

fieldwork was part-funded by the research project 'Snow Accumulation Patterns on 

Hardangerjøkulen Ice Cap (SNAP)', itself funded by the European Union’s Horizon 
2020 project INTERACT, under grant agreement No 730938. Fieldwork was greatly 

assisted by Emma Pearce and James Killingbeck, and again the support and local 

expertise of Atle Nesje and Kjell Magne Tangen. The time domain electromagnetic 

equipment was supplied by NERC Geophysical Equipment Facility, loan 1090. Alan 

Hobbs and all NERC GEF staff are thanked for their support and advice throughout 

the loan.  

Richard Bates is thanked for his support and advice in preparation for the TEM 

acquisition, during TEM deployment in the field, and analysis of the TEM results and 

interpretations.  

Richard Rigby is thanked for creating the gpdc and Leroi mex files enabling MuLTI 

and MuLTI-TEM to be run in Matlab (on Windows and Linux) and all his extra 

computing and IT support.  

Benedict Reinardy is thanked for his advice on the geomorphology of the field site, 

Midtdalsbreen, and surrounding area. 

Roger Clark is thanked for being my transfer chair, including his guidance and 

suggestions for progression of this work during the project.   

David Harbottle, Worldwide University Network, is thanked for funding a visit to 

Professor Doug Schmitt’s petrophysics labs in Edmonton, Alberta. 

This thesis benefited from discussions at the 2017 Glacial Seismology Summer 

School held at Colorado State University, sponsored by POLENET, SCAR, IGS and 

IACS.  

IAG is thanked for part-funding a glaciology training course in Svalbard in 2017. 



iv 

 

Abstract 

An accurate characterization of the inaccessible subglacial environment is key to 

accurately modelling the dynamic behaviour of ice sheets and glaciers, crucial for 

predicting sea-level rise. The composition and water content of subglacial material 

can be inferred from measurements of shear wave velocity (Vs) and bulk electrical 

resistivity (R), themselves derived from Rayleigh wave dispersion curves and 

transient electromagnetic (TEM) soundings.  

Conventional Rayleigh wave and TEM inversions can suffer from poor resolution and 

non-uniqueness. In this thesis, I present a novel constrained inversion methodology 

which applies  a Markov chain Monte Carlo implementation of Bayesian inversion to 

produce probability distributions of geophysical parameters. MuLTI (Multimodal 

Layered Transdimensional Inversion) is used to derive Vs from Rayleigh wave 

dispersion curves, and its TEM variant, MuLTI-TEM, for evaluating bulk electrical 

resistivity. The methodologies can include independent depth constraints, drawn from 

external data sources (e.g., boreholes or other geophysical data), which significantly 

improves the resolution compared to conventional unconstrained inversions. 

Compared to such inversions, synthetic studies suggested that MuLTI reduces the 

error between the true and best-fit models by a factor of 10, and reduces the vertically 

averaged spread of the Vs distribution twofold, based on the 95% credible intervals.  

MuLTI and MuLTI-TEM were applied to derive Vs and R profiles from seismic and 

TEM electromagnetic data acquired on the terminus of the Norwegian glacier 

Midtdalsbreen. Three subglacial material classifications were determined: sediment 

(Vs < 1600 m/s, 50 Ωm < R < 500 Ωm), permafrost (Vs > 1600 m/s, R > 500 Ωm) and 
weathered/fractured bedrock containing saline water (Vs > 1900 m/s, R < 50 Ωm). 
These algorithms offer a step-change in our ability to resolve and quantify the 

uncertainties in subsurface inversions, and show promise for constraining the 

properties of subglacial aquifers beneath Antarctic ice masses.  MuLTI and MuLTI-

TEM have both been made publicly available via GitHub to motivate users, in the 

cryosphere and other environmental settings, for continued advancement. 



v 

 

Table of Contents 

Acknowledgements ................................................................................................... iii 

Abstract ..................................................................................................................... iv 

Table of Contents ...................................................................................................... v 

List of Tables ............................................................................................................ ix 

List of Figures ............................................................................................................ x 

List of abbreviations ............................................................................................. xvii 

Chapter  1 Introduction ............................................................................................ 1 

1.1  The subglacial environment ........................................................................ 3 

1.2 Geophysical techniques used to characterise the subglacial 
environment............................................................................................... 5 

1.3 Integrating multiple geophysical observations using a Bayesian 
inversion framework ................................................................................. 9 

1.4 Objectives and thesis roadmap ................................................................... 13 

Chapter  2 Geophysical data acquisition .............................................................. 15 

2.1 Field site ..................................................................................................... 15 

2.2 Data acquisition .......................................................................................... 18 

2.2.1 MASW acquisition ......................................................................... 19 

2.2.2 Transient electromagnetics acquisition .......................................... 22 

2.2.3 Ground penetrating radar acquisition ............................................. 24 

Chapter 3 Multimodal Layered Transdimensional Inversion of Seismic 

Dispersion Curves With Depth Constraints ................................................ 26 

3.1 Abstract ...................................................................................................... 27 

3.2 Plain Language Summary .......................................................................... 27 

3.3 Introduction ................................................................................................ 28 

3.4 The MuLTI Algorithm ............................................................................... 30 

3.4.1 The data .......................................................................................... 31 

3.4.2 Model parameterisation .................................................................. 32 

3.4.3 The likelihood ................................................................................ 32 

3.4.4 Prior information ............................................................................ 33 

3.4.5 Numerical sampling of the posterior .............................................. 34 

3.5 Case Studies Using MuLTI ........................................................................ 37 

3.5.1 Data acquisition .............................................................................. 38 

3.5.2 Synthetic Data Tests ....................................................................... 40 



vi 

 

3.5.3 The effect of high frequencies on the inversion ............................. 41 

3.5.4 Model uncertainties caused by finite bandwidth ............................ 41 

3.5.5 Influence of survey design on MuLTI ........................................... 45 

3.5.6 Application to the Midtdalsbreen dataset ....................................... 47 

3.6 Discussion and Conclusions ....................................................................... 48 

3.8 Acknowledgments ...................................................................................... 50 

3.9 References .................................................................................................. 50 

Chapter 4 Subglacial sediment distribution from constrained seismic 

inversion, using MuLTI software: Examples from Midtdalsbreen, 

Norway ............................................................................................................ 54 

4.1 Abstract ...................................................................................................... 55 

4.2 Introduction ................................................................................................ 55 

4.3 Method .................................................................................................... 57 

4.3.1 Multichannel analysis of surface waves ......................................... 57 

4.3.2 MuLTI ............................................................................................ 59 

4.4 Field site: Midtdalsbreen ............................................................................ 61 

4.5 Data acquisition .......................................................................................... 62 

4.6 Synthetic study ........................................................................................... 66 

4.7 Results ........................................................................................................ 71 

4.7.1 1D shear wave velocity profiles ..................................................... 71 

4.7.2 2D shear wave velocity profiles ..................................................... 73 

4.8 Interpretation and discussion...................................................................... 74 

4.8.1 Interpretation of Vs profiles ........................................................... 74 

4.8.2 Discussion and further work .......................................................... 77 

4.9 Conclusions ................................................................................................ 78 

4.10 Acknowledgements .................................................................................. 79 

4.11 References ................................................................................................ 80 

Chapter 5 Characterisation of subglacial water using a constrained 

transdimensional Bayesian Transient Electromagnetic Inversion ............ 86 

5.1 Abstract ...................................................................................................... 87 

5.2 Introduction ................................................................................................ 87 

5.3 Method ....................................................................................................... 90 

5.3.1 Transient electromagnetics............................................................. 90 

5.3.2 MuLTI-TEM .................................................................................. 91 

5.4 Data acquisition .......................................................................................... 93 



vii 

 

5.5 Application of MuLTI-TEM to a synthetic dataset.................................... 97 

5.6 Application of MuLTI-TEM to the Midtdalsbreen dataset ...................... 100 

5.6.1 1D resistivity profiles ................................................................... 100 

5.6.2 2D resistivity profiles ................................................................... 102 

5.7 Interpretation and Discussion ................................................................... 104 

5.7.1 Joint interpretation of MuLTI-TEM with MuLTI seismic 
results ........................................................................................... 104 

5.7.2 Discussion .................................................................................... 108 

5.8 Conclusions .............................................................................................. 110 

5.9 Code availability ...................................................................................... 111 

5.10 Acknowledgements ................................................................................ 111 

5.11 References .............................................................................................. 111 

Chapter 6 Feasibility study for polar ice-sheet applications ............................. 116 

6.1 Synthetic ice-sheet models ....................................................................... 116 

6.2 Feasibility of resolving Vs structure from Rayleigh waves using 
MuLTI ................................................................................................... 117 

6.3 Feasibility of resolving resistivity structure from TEM using MuLTI-
TEM ...................................................................................................... 121 

6.4 Outlook for Antarctic and Greenland applications .................................. 123 

6.4.1 Summary of feasibility study ....................................................... 123 

6.4.2 Potential seismic sources and TEM systems used on polar ice 
sheets ............................................................................................ 123 

Chapter 7 Discussion ............................................................................................ 126 

7.1 Development of the Bayesian framework: strengths and limitations ...... 127 

7.1.1 MuLTI .......................................................................................... 129 

7.1.2 MuLTI-TEM ................................................................................ 129 

7.2 Joint R-Vs inversion strategy .................................................................... 130 

7.2.1 Probabilistic facies classification ................................................. 130 

7.2.2 Petrophysical interpretation ......................................................... 134 

7.3 Further MuLTI development.................................................................... 139 

7.3.1 MuLTI III ..................................................................................... 139 

7.3.1.1 Model parameterisation .................................................... 140 

7.3.1.2 Prior information .............................................................. 140 

7.3.1.3 Numerical sampling of the posterior ................................ 141 

7.3.1.4 Test application of MuLTI III .......................................... 142 



viii 

 

7.3.2 MuLTI IV with variable layer depths .......................................... 146 

Chapter 8 Conclusions .......................................................................................... 147 

8.1  Summaries of objectives and results ....................................................... 147 

8.2 Overall conclusions .................................................................................. 149 

References (Chapters 1, 2, 6 and 7) ..................................................................... 151 

Appendices ............................................................................................................. 165 

Appendix A .................................................................................................... 165 

Appendix B .................................................................................................... 170 

 



ix 

 

List of Tables 

Table 1.1 Comparison of ground-based geophysical methods used in cryosphere 
studies. 

Table 1.2 Comparison of common geophysical inversion methodologies. 

Table 3.1 Elastic parameter boundaries (priors) applied in MuLTI for the glaciated 
case study, adapted from Peters et al., 2008, Podolskiy et al., 2016 and Tsoflias 
et al., 2008. 

Table 4.1 Elastic parameter boundaries applied in MuLTI for the glacier feasibility 
study. The parameters are taken from Peters et al. (2008); Tsoflias et al. (2008a); 
Podolskiy and Walter (2016). 

Table 5.1 TEM survey parameters. 

Table 5.2 Resistivity parameter boundaries used in MuLTI-TEM for the glacier 
feasibility study. 

Table 5.3 Vs and resistivity ranges for subglacial material lithologies, used in analysis 
of both MASW and TEM. Material types have been defined from King et al., 
1988; Mikucki et al., 2015 and Killingbeck et al., 2019. 

Table 6.1 Inversion parameters used in MuLTI (MuLTI-TEM) for synthetic tests a-e 
in Figure 6.1. 

Table 7.1 Summary table of all MuLTI methods presented and discussed in the thesis.  

Table 7.2 Model parameters input to petrophysical four phase model based on the 
literature studies Hauck and Kneisel (2008), Kneisel et al. (2008) and  Hauck et 
al. (2011). The Poisson’s ratio was increased where very low Vs values (< 500 
m/s) exist (Vásárhelyi 2009; Mavko et al., 2019; Simonsen et al., 2002). 

Table A1. Inversion parameters used in MuLTI for the synthetic feasibility study and 
1D and 2D real data inversions, explained further in Killingbeck et al., 2018. 

Table B1 TEM survey parameters input to MuLTI-TEM, defined from the Leroi 
forward modelling algorithm. 

Table B2. Inversion parameters used in MuLTI-TEM for the synthetic feasibility 
study and 1D and 2D real data inversions, explained further in Killingbeck et al. 
(2018). Burn in number is the number of iterations discounted at the start of the 
chain to remove any dependencies of the initial conditions. Sigma resistivity, 
change, move and birth are user specified parameters that determine the 
magnitude of the four different perturbations that can be applied (change 
resistivity, move nucleus, give birth to a new nucleus, and remove a nucleus). 

 



x 

 

List of Figures 

Figure 1.1 Schematic diagram of the subglacial environment including geophysical 
methods used to characterise and monitor it. (Schematic adapted from the 
WISSARD project, online at: http://www.wissard.org/science-and-operations). 

Figure 1.2 Schematic diagram of ground based geophysical methods acquired on 
glaciers, highlighting the different techniques used for different thicknesses of 
ice. The glacier and subglacial material figure is adapted from the WISSARD 
project, online at: http://www.wissard.org/science-and-operations. 

Figure 2.1 a) Location of Hardangerjøkulen ice cap, South Norway. Google Earth 
satellite images taken in 2013. b) Google Earth image of Midtdalsbreen, an 
outlet glacier of the Hardangerjøkulen ice cap, with survey lines highlighted in 
red at the front of the glacier and profile 1 from Reinardy et al., 2019 GPR 
survey highlighted in the black dashed line. c) Schematic cross section of 
Midtdalsbreen’s wedge shaped profile, interpreted from Reinardy et al., 2019 
GPR profile 1. Note that b) is orientated away from north to enable optimal data 
comparison in later figures throughout the thesis. 

Figure 2.2 Calculated annual average subglacial water fluxes (m3s-1) beneath 
Midtdalsbreen presented in Willis et al., 2012, with the 2018 ice margin 
displayed in a black dashed line and 2018 survey lines displayed in red. Red 
closed/open circles are moulins yielding returns/no returns from previous dye 
tracing experiments detailed in Willis et al., 2012. 

Figure 2.3 Survey lines acquired during the 2017 and 2018 field seasons at the front 
of Midtdalsbreen. GPR common midpoint gathers (CMP) were acquired at the 
black stars and 1D TEM survey testing was completed at the midpoint of line 
B. 

Figure 2.4 a) Active seismic data acquisition using a sledge hammer and plate as the 
source (left image), b) 10 Hz vertical component geophones with a Geometrics 
GEODE system (right image), c) schematic image of 2018 seismic survey set 
up for the cross-glacier lines A, B and C.  

Figure 2.5 Dispersion curve analysis from the 2017 test field campaign compared to 
the 2018 main campaign. a) Acquired shot gather at Line C in 2017 using 24 
geophones. b) Acquired dispersion curve at Line C using 24 geophones, lowest 
frequencies picked were 18 Hz. c) Synthetic modelled dispersion curve (using 
the discrete wavenumber method) with 24 geophones showing poorly resolved 
dispersion curve picks especially at the low frequencies. d) Acquired shot gather 
at Line C in 2018 using 48 geophones. e) Acquired dispersion curve at Line C 
using 48 geophones, lowest frequencies picked were 14 Hz. f) Synthetic 
modelled dispersion curve (using the discrete wavenumber method) with 48 
geophones showing a much better resolved dispersion curve picked, in 
particular low frequencies down to 14 Hz can be clearly defined. The synthetic 
1D model used in this analysis was 20 m ice, 1860 m/s, on top of a 10 m low 
velocity zone, 1000 m/s, above basement, 2500 m/s. Note see Chapter 3 for 
detail on the discrete wavenumber method (DWM).  



xi 

 

Figure 2.6 Schematic diagram of the transmitter waveform, adapted from Geonics 
1994.  

Figure 2.7 a) TEM acquisition set up. b) Image of the receiver unit on top of a rug to 
protect unit from snow and easily drag along the lines. c) Image of transmitter 
unit sitting in bubble-wrap pocket used to protect unit and batteries from snow 
and cold. d) Schematic image of 2018 TEM survey set up for the cross-glacier 
lines A, B and C. 

Figure 2.8 GPR acquisition set up. 

Figure 3.1 Illustration of MuLTI’s model parameterisation using Voronoi nuclei 
(floating and confined) comparing (a) a 1-layer model with no internal layers 
and (b) a GPR-determined 3 layer structure assuming different ranges of Vs 
within each layer. Grey indicates the range of possible Vs values. Figure adapted 
from Bodin et al., 2012. 

Figure 3.2 Illustration of 4 possible perturbations to a current model (a) change Vs of 
a nucleus, (b) move a nucleus to a different depth, (c) give birth to a new floating 
nucleus and (d) remove a floating nucleus.  

Figure 3.3 Schematic illustration of MuLTI. Grey boxes highlight the starting input 
data and final output model of the algorithm. The circular workflow represents 
the iterative inversion processes at the core of MuLTI. 

Figure 3.4 a) Seismic shot gather acquired on Midtdalsbreen; the Rayleigh wavetrain 
is highlighted in the red polygon. b) GPR CMP gather acquired half way along 
the line. GPR velocities were derived by matching the curvature of diffraction 
hyperbolae, highlighted in blue, which were used to determine the thickness of 
snow and ice layers via Dix inversion (Dix, 1955). 

Figure 3.5 a) Synthetic Vs model of glaciated environment and (b) its associated 
Rayleigh wave dispersion curve image created from the Discrete Wavenumber 
Method (DWM). c) Picked dispersion curve (dotted red lines) with an estimate 
of the uncertainty σ(f) (solid red lines). The yellow lines display the theoretical 
true dispersion curves for this model, computed using the gpdc algorithm of 
Wathelet (2005) implemented within MuLTI. Vp and density are constant in 
each layer. 

Figure 3.6 GPR-constrained shear wave velocity inversion results from MuLTI with 
frequency ranges 1-140 Hz (I) and 1-100 Hz (II). a) Posterior distribution of 
shear wave velocity solution with probability density distribution; coloured 
values are only shown within the 95% credible intervals, b) posterior 
distribution on number of nuclei, c) synthetic data and modal dispersion curves 
of the single ensemble member with the lowest misfit. 



xii 

 

Figure 3.7 Shear wave velocity inversion results from MuLTI with (I) and without 
(II) GPR constraints applied, with a 14-100 Hz frequency range. a) Posterior 
distribution of shear wave velocity solution; coloured values are only shown 
within the 95% credible intervals, b) posterior distribution on number of nuclei, 
c) synthetic data and modal dispersion curves of the single ensemble member 
with the lowest misfit. 

Figure 3.8 a) Synthetic wavefield created from the Discrete Wavenumber Method 
(DWM) of the simulated glacier model (Figure 5a). b) Corresponding dispersion 
image, used to pick the surface wave dispersion curve. Dotted red lines indicate 
the picked dispersion curve with the solid red lines showing an estimate of the 
uncertainty σ(f). c) MuLTI inversion results with GPR constraints applied, 
showing the posterior distribution of Vs. 

Figure 3.9 a) Calculated surface wave dispersion image from Mitdalsbreen shot 
gather (Figure 4a) with associated picks (d) and uncertainty σ(f). b) Posterior 
distribution of shear wave velocity solution; coloured values are shown only 
within the 95% credible intervals. c) Posterior distribution on number of nuclei. 
d) Observed data and dispersion curves of the single ensemble member which 
has the lowest misfit. 

Figure 4.1 Illustration of MuLTI’s model parameterisation comparing (a) a 1-layer 
model with no internal layers and (b) a GPR-determined 3 layer structure 
assuming different ranges of Vs within each layer. Shaded boxes indicate the 
range of possible Vs values. Figure adapted from Killingbeck and others (2018). 

Figure 4.2 a) Location of Hardangerjøkulen ice cap, South Norway. b) Google Earth 
image of Midtdalsbreen, an outlet glacier of the Hardangerjøkulen ice cap. c) 
Survey lines acquired during the 2018 field season at the front of Midtdalsbreen. 
Google Earth satellite images taken in 2013. Note that (b) and (c) are orientated 
away from north to enable optimal data comparison in later figures. 

Figure 4.3 GPR lines acquired at the front of Midtdalsbreen directly along the 2D 
seismic survey lines: A, B, C and D. Snow (blue) and ice (red) horizons were 
picked in two-way traveltime (TWT). 

Figure 4.4 GPR CMP gathers acquired at the midpoint of lines B and C with 
corresponding semblance plots in two-way traveltime (TWT). a) CMP analysis 
for the midpoint of line C and b) CMP analysis for midpoint of line B. Picked 
velocities are highlighted by the white ‘X’ and their corresponding hyperbolae 
are shown in red (Booth and others, 2010). 

Figure 4.5 GPR velocity precision results, using Booth and others (2011) Monte 
Carlo simulation method, displaying probability density functions of a) ice and 
b) snow GPR velocities derived from CMP B and C. 



xiii 

 

Figure 4.6 1D block models created to simulate snow and ice thicknesses expected at 
Lines A, B and C (a-d). Blue, red and brown lines represent base snow, ice and 
soft substrate boundaries; DWM synthetic wavefield shot gathers (e-h); 
corresponding dispersion curves picked with an estimate of associated 
uncertainty derived from the width of the dispersion image (i-l). 

Figure 4.7 Posterior Vs distributions determined from MuLTI inversion (a-d) without 
depth constraints and (e-h) with depth constraints; the models correspond to 
those shown in figure 6 a-d. Colour scale represents the probability density 
distribution of Vs values within the 95% credible interval, red highlighting most 
likely. Black line shows the true synthetic Vs profiles. Blue, red and brown 
correlation lines highlight the snow, ice and soft substrate depths respectively. 

Figure 4.8 Mid-line C, B and A CMPCC gathers (a-c), corresponding dispersion 
images (d-f) and Vs distribution profiles (g-i), with the average of the 
distribution plotted in black. 

Figure 4.9 2D inversion outputs for Lines A-D. Left column: approximate 2D depth 
resolution, characterised by the range of phase velocity picks. Central column: 
most likely 2D Vs profiles output from multiple 1D MuLTI inversions. 
Diverging colour scale centred, in white, on Vs of ice (1750-1900 m/s). Right 
column: estimated uncertainty (half the interquartile range of the posterior 
distribution). Snow and ice depth horizons are plotted in blue and red 
respectively. 

Figure 4.10 a) 3D cross-section of lines A-D, showing the Vs mode solution and 
interpreted locations of sediment and bedrock. The black semi-transparent 
overlay shows where Lmax is exceeded, hence where results could be unreliable. 
b) Schematic 3D cross-section interpretation of Lines A-D. c) Base map 
annotated with line locations and the interpretations from (a). 

Figure 5.1 a) Location of Hardangerjølken ice cap in Norway and Google Earth image 
of Midtdalsbreen, survey area, with nearest sources of TEM noise (town and 
railway line) highlighted. b) Survey lines acquired during 2018 field season with 
the seismic Vs results obtained at the top rock horizon displayed. The orange 
border around (b) identifies the same area as the orange box in (a), note (b) is 
rotated away from North to enable optimal data comparison in later figures.  

Figure 5.2 Survey configuration testing at the intersection of B and D. a) 37m x 37m 
transmitter coil with receiver in the centre. b) 10m x 10m transmitter coil with 
receiver 15m offset. c) 5m x 5m transmitter coil with receiver 12.5m offset. d) 
Raw data acquired at the intersection of B and D (237.5Hz), from each survey 
configuration, plotted with background noise recorded with transmitter turned 
off.     

Figure 5.3 a) Survey configuration used for acquiring lines A, B, C and D on the 
glacier. b) Image of the receiver unit on top of a rug to protect unit from snow 
and easily drag along the lines. c) Image of transmitter unit sitting in bubble-
wrap pocket used to protect unit and batteries from snow and cold.    



xiv 

 

Figure 5.4 1D synthetic block models created to simulate different subsurface 
scenarios expected at Midtdalsbreen. 

Figure 5.5 Forward modelled responses for 1D synthetic block models a-e with 5 % 
random noise applied. The lines within the circles represent the 5% error bars.  

Figure 5.6 Posterior distributions of resistivity determined from MuLTI-TEM 
inversion. Top: i) without depth constraints. Bottom: ii) with depth constraints. 
The models correspond to those shown in Fig. 4a-e, highlighted by the black 
line. The colour scale represents the probability density distribution of resistivity 
within the 95% credible interval.  

Figure 5.7 Results of the 1D soundings acquired at the midpoint of lines A, B and C 
inverted using MuLTI-TEM. i) resistivity posterior probability distributions, 
with the maximum depth of investigation (DOI) plotted as the black dotted line. 
The blue and red solid lines highlight the snow-ice and ice-material depths.   ii) 
comparison of the observed data and 200 randomly chosen forward models from 
the model ensemble. The black X’s show anomalous data points removed. iii) 
posterior distribution of number of nuclei.  

Figure 5.8 2D inversion outputs for Lines A-D from multiple 1D MuLTI-TEM 
inversions. Left column: received voltages input to MuLTI-TEM; central 
column: most likely 2D resistivity profiles; right column: estimated uncertainty 
(half the interquartile range of the posterior distribution). Snow and ice horizons 
are plotted in blue and red respectively.  

Figure 5.9 Joint interpretation of Vs and resistivity profiles for lines A-D. Left 
column: modal Vs solution. Central column: modal resistivity solution. 
Example of areas with high Vs and high R is shown in Line A, low Vs and low 
R is shown in Line B and high Vs with low R is shown in Line D. Right column: 
estimated subglacial material when applying Vs and resistivity conditions of 
table 3. Note the sparse, disconnected areas identified as bedrock in Line A are 
regarded as a miss-allocation. 

Figure 5.10 i) 3-D cross-section of lines A-D, showing the subglacial material 
estimated from applying Vs and resistivity conditions stated in table 3. ii) Depth 
slice through 3-D cross at the top rock horizon. iii) Depth slice through 3-D 
cross-section at 38 m. 

Figure 6.1 1-D synthetic models of different scenarios of the Institute ice stream, 
Antarctica, as presented in Siegert et al. (2018), with elastic and resistivity 
parameters typical of each material.  

Figure 6.2 Dispersion curve analysis for synthetic models a – e, Figure 6.1, simulated 
using the modelling algorithm mat_disperse. Panel e shows the depth resolution 
(and so also the sounding depth), estimated using the one third wavelength 
approximation. 



xv 

 

Figure 6.3 Results of synthetic models a - e inverted using MuLTI with fixed depth 
constraints at base-ice, 2 km. i) Vs posterior probability distributions with the 
true model plotted in the black dashed line and mode solution plotted in the 
black solid line. ii) Comparison of the observed data with the forward model of 
the best fitting ensemble model. iii) Posterior distribution of number of nuclei. 

Figure 6.4 Results of synthetic models a - e inverted using MuLTI-TEM with fixed 
depth constraints at base-ice, 2 km. i) resistivity posterior probability 
distributions with the true model plotted in the black dashed line and mode 
solution plotted in the black solid line. ii) comparison of the observed data with 
the forward model of the best fitting ensemble model. iii) posterior distribution 
of number of nuclei. 

Figure 7.1 Left column: Facies classifications for lines A-D at Midtdalsbreen 
(Chapter 5), colour bar on the left. Right column: joint probability of Vs and R 
calculated from the product of the normalised PDF values (Equation 7.1), 
assuming Vs and R are independent. Note this is calculated for the subglacial 
material only with colour bar on the right. 

Figure 7.2 2D model parameters input to the petrophysical four phase model for lines 
A-D. Left column: estimated Vp profiles derived from the smoothed modal Vs 
profiles (Chapter 4) and estimated ν (Table 6.1) using equation 7.12. Centre 
column: modal resistivity profiles, detailed in Chapter 4. Right column: 
estimated porosity model using the facies classifications shown in Figure 4.9, 
Chapter 4, for subglacial material only. Blue and red lines are the base snow and 
ice horizons, respectively. 

Figure 7.3 Petrophysical four-phase model outputs for lines A-D at Midtdalsbreen. 
Left column: fraction of water content. Centre column: fraction of ice content. 
Right column: fraction of air content. The arrows in the right column point to 
anomalously high air content at depth, arising from anomalously low Vp values 
derived from observed low Vs, using equation 7.12. Note only the subglacial 
material is included in this analysis, the white snow and ice layers are not 
representative of the colour bars shown.   

Figure 7.4 Illustration of MuLTI III model parameterization using Voronoi nuclei 
(floating and confined) and prior distributions, reformed from the original 
MuLTI parameterization shown in figure 2.1. a) Prior distribution of Vs without 
depth constraints; b) prior distribution of Vs with depth constraints; c) prior 
distribution of both Vp and density.  

Figure 7.5 Illustration of six possible perturbations to a current model in MuLTI III, 
adapted from the original MuLTI perturbations shown in figure 2.2. a) change 
Vs of a nucleus, b) change Vp of a nucleus, c) change density of a nucleus, d) 
move a nucleus to a different depth, e) give birth to a new floating nucleus, and 
f) remove a floating nucleus.  



xvi 

 

Figure 7.6 Location of the firn aquifer field site in Greenland, adapted from 
Montgomery et al. (2017). a) Seismic acquisition parameters used for the 
surface wave study. b) Location of seismic surveys, sites 1-12, with drill sites 
indicated as DS16-1, DS16-2 and DS16-3. Here, only data from Site 7 are 
considered (highlighted in the red circle). c) Elevation profile along the glacier’s 
flow line (down slope) with all site locations marked by “X”. The top and base 
of the aquifer are shown, respectively, by the light and dark blue lines. 

Figure 7.7 Site 7 dispersion curve analysis and inversion results. a) Zero offset shot 
gather. b) Dispersion curve picked. c) Vs, Vp and density posterior distributions 
output using MuLTI III. The depths of the top and base aquifer are plotted in 
the red and red-dashed lines. The prior mean and spread of one standard 
deviation of Vp and density are plotted in the black and green lines, respectively. 
The mode Vs solution is plotted in the black line in the Vs PDF image.  
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Chapter  1 Introduction 

The cryosphere is changing rapidly under the impact of climatic warming. Glaciers 

store 70 percent of the world’s fresh water supply and are rapidly retreating in many 

areas (Vaughan et al., 2013), exposing a once concealed subglacial environment. 

Glacier melting has been one of the dominant contributors to 20th century global mean 

sea level rise (Church et al. 2013). Mounting evidence from satellite records and 

global temperature trends suggest the contribution of glaciers and ice-sheets to global 

sea level will increase in the coming decades (e.g., Meier et al., 2007; Bamber and 

Riva 2010; Kopp et al., 2014, 2017; Larour et al., 2017).  

Prediction of sea level rise relies on large scale ice sheet models having the best 

possible parameterisation of the ice sheets and their subglacial environment 

(Christoffersen et al., 2014). Characterising the subglacial environment and its 

hydrology is important for these models as it dictates the speed at which ice sheets 

slide over their beds (Bell 2008; Siegert et al., 2018). Through a complex system of 

interactions, water at the ice/bed interface can significantly modify glacier flow; it can 

act either as a lubricant to accelerate ice motion (e.g., Iken and Bindschadler, 1986; 

Mair et al., 2002; Bartholomaus et al., 2008; Bartholomew et al., 2010; Hoffman et 

al., 2011), or can lead to reductions in flow velocity by carving efficient drainage 

networks (e.g., Sundal et al., 2011). Glacio-geophysical methods are therefore needed 

for monitoring, imaging and mapping the remote and inaccessible subglacial 

environment and its drainage system.  

Geophysicists have developed a wide range of methods for investigating the physical 

properties of the broad glacier system. Many geophysical methods are well-suited to 

assessing the englacial and basal properties of glaciers and ice masses (e.g., seismic 

reflection, refraction and ground penetrating radar methods), but these can be 

problematic for characterising material much beyond the immediate vicinity (~2 m) 

of the glacier bed (Booth et al., 2012). Although much of the control on ice dynamics 

may be effectively located at such depths, sediment bodies such as subglacial aquifers 

and permafrost may extend to much greater depths (e.g., Mikucki et al., 2015; Hauck 

et al., 2001). The influence of such features on glacier dynamics may become 

increasingly important as they are modified and progressively exposed through 

deglaciation (Siegert et al., 2018; Haeberli et al., 2017; Cooper et al., 2017).   

A further problem in the analysis of geophysical data, in glaciology and pervasively 

throughout geophysical surveying, is non-uniqueness in interpretations and a lack of 
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constraints on layer boundary depths and parameters. The problem is exacerbated in 

the glaciological environment where ground-truth datasets are so seldom available. 

While interpretations may often draw on the potential of several co-located 

geophysical datasets, these are typically comparisons of the available data and do not 

blend them quantitatively. Joint inversions using multiple independent datasets can 

constrain the model space, combining and improving the depth sensitivity and 

resolution from each component. Additionally, the use of probabilistic Bayesian 

sampling-based inversion methods can provide a comprehensive quantitative 

uncertainty analysis.  

Glaciological surveying has benefitted widely from the experience of processing in 

other geophysical fields, notably by importing seismic analysis methods from the 

hydrocarbon industry (Anandakrishnan et al., 1998; Horgan et al., 2008; Holland & 

Anandakrishnan, 2009).  Seismic surface wave methods and electromagnetic methods 

have been used extensively in environmental/geotechnical investigations (Buselli et 

al., 1988; Stokoe et al., 2000; Auken et al., 2003; Penumadu and Park 2005; Pedersen 

et al., 2017) but have seen relatively little use within the glaciological field. In the 

geotechnical setting, they are used because of their sensitivity to water content and 

material type. Of particular relevance here is that shear wave velocities (Vs), estimated 

from surface wave methods, are sensitive to material stiffness; and electrical 

resistivity (R), estimated using electromagnetic methods, is sensitive to liquid water 

content. Such sensitivities suggest that these methods could be valuable for 

characterising hydrological regimes within the glaciological setting; indeed, they were 

identified by Siegert et al. (2018) as two promising ‘next generation’ geophysical 
methods for consideration. However, seismic and resistivity inversions are vulnerable 

to significant non-uniqueness issues hence could be improved using Bayesian analysis 

approaches. 

In this thesis, I therefore focus on exploring novel geophysical methods for 

characterising the subglacial environment, and develop the strategies by which the 

data they yield are jointly inverted. Specifically, the thesis focuses on 1) multichannel 

analysis of surface waves (MASW) and 2) transient (time-domain) electromagnetic 

(TEM) methods. The analyses comprise of extensive synthetic data trials before 

analysing new geophysical data acquired on the Norwegian glacier Midtdalsbreen, an 

outlet of the Hardangerjøkulen ice cap. Finally, I present a combined analysis of the 

MASW and TEM results and suggest the development of a novel joint R-Vs 

constrained inversion strategy to quantify the water contents of subglacial 

environment. 
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1.1  The subglacial environment 

The subglacial environment is one of our planet’s last great frontiers, concealed by 

snow and ice for thousands of years. Menzies and Shilts (2002) define the subglacial 

environment as a boundary interface between ice and material: “the glacial sub-system 

directly underlying an ice mass in close contact with the overlying ice, including those 

cavities and channels beneath the ice that are not influenced by subaerial processes”. 
The material composition and hydrology of the subglacial environment has substantial 

control on glacial erosional, transportational and depositional processes, affecting the 

flow dynamics of glaciers and ice masses (Bell 2008; Siegert et al., 2018). Subglacial 

erosion and deposition processes are among the most complex, yet least understood 

set of glacial processes. Our poor knowledge stems from the inaccessible nature of 

what occurs beneath an ice mass, making it difficult to explore. Measurements from 

direct access to the bed through ice-caves and drilling boreholes can prove accurate 

observations of the subglacial environment for that point in space, but data are 

difficult to extrapolate to larger areas and can be inefficient to acquire (and, in the 

case of ice-caving, potentially hazardous). In contrast, non-invasive, geophysical 

methods employed at or above the ice surface enable coverage of larger areas in a 

comparably short amount of time (Figure 1.1). 

Glaciers move by either: ice deformation, basal sliding or deformation of subglacial 

sediments (Cuffey and Paterson, 2010). A significant control on ice motion is whether 

ice is underlain by hard (frozen/bedrock) or soft (unfrozen) substrate, and therefore 

whether motion is governed by ice/sediment deformation (Hofstede et al., 2018) or 

sliding (Stearns and van der Veen, 2018). Sliding and friction laws are used to predict 

dynamic ice motion, e.g., Weertman1957, Budd et al., 1979, Schoof 2005, Gagliardini 

et al., 2007, Iverson 2010, of which accurate parametrization and understanding of 

basal boundary conditions is needed, in particular the basal sliding velocity (Ub), the 

speed of a glacier sliding over its material base. This velocity is dependent on a 

number of factors, including: 

 the type of drainage system (efficient or inefficient); e.g. Chandler et al., 2013 

 the basal roughness (smooth or large cavities); e.g. Rippin et al., 2011 

 the type and thickness of material (bedrock or deformable sediments); e.g. 

Murray 1997  

 the presence of water acting as a lubricant (causing stick - slip); e.g. Winberry 

et al., 2011 
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An important influence on Ub is the presence of liquid water at the glacier bed. 

Changes in water inputs can cause changes in basal slip (by altering the basal 

drag/resistance), throughout all ice-mass scales - from mountain glaciers (e.g., Iken 

and Bindschadler, 1986; Mair et al., 2002; Bartholomaus et al., 2008) to ice sheets 

(e.g., Bartholomew et al., 2010; Hoffman et al., 2011). Water can be produced in situ 

at the glacier bed through pressure melting, or can be routed as meltwater from the 

glacier surface through moulins, crevasses, and fractures. Water at the ice/bed 

interface can be dynamic and flowing through subglacial drainage channels, or static 

and stored in the pores of sediments within subglacial aquifers. Either way, 

observations of water content, sediment type and thickness are required to accurately 

predict basal sliding velocities and hence future flow dynamics of glaciers and ice 

masses.  

 

 

Figure 1.1 Schematic diagram of the subglacial environment including geophysical 
methods used to characterise and monitor it. (Schematic adapted from the 
WISSARD project, online at: http://www.wissard.org/science-and-operations). 
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1.2 Geophysical techniques used to characterise the subglacial 

environment 

Ground-based, airborne and space-borne geophysical methods are deployed to 

observe targets below ice that may be difficult or impossible to measure using direct 

observations, providing a spatial distribution of geophysical properties of the target 

(Figure 1.1).  Air- and space-borne methods can have particular benefit for remote 

and inaccessible areas. Satellite remote sensing allows for regular, regional, 

monitoring and mapping of glacier structures (e.g., Glasser and Scambos, 2008), 

glacier thinning (e.g., Holt et al., 2013), glacier velocity (e.g., Rignot et al., 2011), and 

many other applications. More densely sampled airborne methods have been applied, 

for example, to measure higher resolution ice-sheet bed topography (e.g., Blankenship 

et al., 2001), identify remotely located subglacial lakes (e.g., Rutishauser et al., 2018) 

and map the extent of permafrost and deep groundwater in polar regions (e.g., Minsley 

et al., 2012 and Mikucki et al., 2015). Having identified key areas of interest, ground-

based techniques then provide targeted datasets at key locations. They provide a link 

between sparse-but-detailed glaciological observations and the spatial coverage of the 

satellite/airborne datasets. A general overview of some ground-based geophysical 

techniques used in glaciology today, along with the type of observations they provide, 

are presented in Table 1.1.  

The most commonly used ground-based methods include ground penetrating radar 

(GPR), seismic reflection and seismic refraction (Figure 1.2 and see Table 1.1 for case 

studies); however, as stated in Section 1.1, the applicability of these can be limited 

given their poor penetration beyond the ice-bed interface. GPR methods are well 

suited to characterising englacial properties and basal topography, but glacier bed 

reflectivity and, in the case of temperate ice, high attenuation rates within the ice 

column limits the utility of subglacial radar sampling. Seismic reflection methods 

provide detailed englacial structure and basal topography; via amplitude-versus-offset 

(AVO) and anisotropy techniques, they also provide estimates of the mechanical 

properties of ice and glacial material (e.g., Anandakrishnan, 2003; Booth et al., 2012; 

Diez et al., 2015; Kulessa et al., 2017). However, they often lack the resolution and/or 

signal-to-noise ratio to quantify subglacial material properties. Seismic refraction 

methods are limited by their low depth penetration into subglacial material (e.g., Thiel 

and Ostenso, 1961; Bentley and Kohnen, 1976; King and Jarvis, 2007); refraction 

interpretations are impeded since an ice-sediment interface typically represents a 

velocity reduction, hence critical refraction will not occur and a head-wave will not 

be generated.  
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In this thesis, I explore the relatively novel glacio-geophysical methods of MASW 

and TEM (Figure 1.2), to evaluate their benefits for characterising the subglacial 

environment.  MASW is based on the analysis of dispersion curves from surface 

(Rayleigh) waves. Rayleigh waves are a form of seismic wave that travels along the 

ground-surface (highlighted by the blue rolling surface waves in Figure 1.2), termed 

‘groundroll’ in reflection seismology and often considered as noise. Rayleigh waves 

are important in engineering geophysics as their velocities are closely related to those 

of the shear wave in the same elastic media, and therefore can be used to estimate the 

shear wave velocity (Vs) of that media (e.g., Stokoe et al., 2000; Penumadu and Park 

2005). This is of particular interest for investigating properties of the basal material 

as Vs is related to the shear modulus (𝜇) or stiffness of a material: 𝑉𝑠 = √𝜇/𝜌                                                                                                                (1.1) 

where 𝜌 is the density. Therefore, it is possible to estimate how hard or soft, rigid or 

deformable the subglacial material is. From the viewpoint of subglacial hydrology, 

this could inform the potential for the hydrological erosion of subglacial sediment 

(Sundal et al., 2015; Kulessa et al., 2017) or the degree to which sediments are frozen. 

Dispersion curves can be obtained from either passive or active seismic sources. In 

this thesis I report acquisition of dispersion curves from active seismic sources using 

the multichannel analysis of surface waves (MASW) method (Park et al., 1999), 

discussed further in Chapter  2 and 4. 

Although Vs provides a good indication of the stiffness of a material, it does not 

inform the properties of pore water nor the degree of water saturation. Electrical 

methods are the only geophysical method that are directly influenced by the electrical 

properties of pore fluids (Archie, 1952). The state of pore water, whether liquid or 

frozen, can be inferred from electrical resistivity depth profiles. Electrical resistivity 

values increase by several orders of magnitude when water in pores freezes (Hoekstra 

and McNeill, 1973). Such profiles can be obtained from inversions of transient (time-

domain) electromagnetic soundings (TEM). This uses electromagnetic fields to 

investigate subsurface resistivity structure by measuring the decay of a secondary 

electromagnetic field created by subsurface eddy currents, which are induced by a 

primary magnetic field, generated by current transmitted through a coil (highlighted 

in Figure 1.2). TEM methods are used extensively in environmental investigations for 

example, searching for groundwater (Auken et al., 2003) and mapping its 

vulnerability to saltwater and/or contaminant intrusions (Buselli et al., 1988; Pedersen 

et al., 2017). In this thesis I acquire ground-based TEM data to estimate the resistivity 

structure of the subglacial environment, discussed further in Chapters  2 and 5.  
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The MASW and TEM data acquired for this project are around the front of a glacier, 

where the ice is relatively thin, aiming to test the depth sensitivities of these 

techniques. However, in chapter 6 I present a feasibility study highlighting the 

potential for these techniques to be extended to thicker ice applications, by using 

dispersion curves from passive seismic and large loop TEM (Figure 1.2).  

By characterising the seismic shear wave velocity and resistivity structure of the 

subsurface, I provide a promising means of distinguishing both material type and 

water content within the subglacial environment. 

 

 

Figure 1.2 Schematic diagram of ground based geophysical methods acquired on 
glaciers, highlighting the different techniques used for different thicknesses of 
ice. The glacier and subglacial material figure is adapted from the WISSARD 
project, online at: http://www.wissard.org/science-and-operations. 
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Table 1.1 (continued overleaf) Comparison of ground-based geophysical methods 
used in cryosphere studies 

Geophysical 

method 

Geophysical 

parameter 

estimated 

Depth penetration Cryosphere observations from 

geophysical method 

Ground 
penetrating 
radar (GPR) 

Dielectric 
impedance 

Depends on frequency 
of antenna used e.g., 
200 MHz: 100-meter 
scale  
2 MHz: km scale 
(through ice) 
The presence of water 
causes scattering of 
the waveform, making 
it very difficult to 
interpret signal below 
porous layers or 
temperate ice. 

 Ice-thickness including bed 
topography (Young et al., 
2010; Bingham et al., 2017; 
Lindbäck et al., 2018) 

 Englacial layering and 
properties (Murray et al., 
2007; Bohleber et al., 2017) 

 Snow structure, density and 
water equivalent (Booth et 
al., 2013; St. Clair and 
Holbrook 2017) 

Seismic 
reflection 

Acoustic 
impedance and 
P and S wave 
velocities 

Source dependant e.g.,  
hammer and plate: m 
to km scale,  
Explosives: km scale,  
Vibroseis: m to km 
scale. 
Although, attenuation 
in the ice and off the 
ice-bed interface 
affects the depth of 
penetration. 

 Ice-thickness including bed 
topography (Crary, 1963; 
Benjumea and Teixidó, 2001). 

 Investigate conditions and 
properties of the ice-bed 
interface (Smith 2007; 
Brisbourne  et al., 2017) 

 Subglacial material 
investigation at the ice-bed 
interface (Vaughan  et al., 2003; 
Booth et al., 2012; Kulessa et 
al., 2017); 

 Snow, firn and ice density 
profiles (Kohnen, 1972; Godio 
and Rege, 2015) 

Seismic 
refraction 

P wave 
velocity 

Source dependant e.g., 
hammer and plate: ~ 
10 m,  
Explosives: ~ 50 m 
Although, if there is a 
velocity reduction 
(e.g., ice-sediment or 
frozen-unfrozen 
interface) critical 
refraction will not 
occur. 

 Shallow snow, firn and ice 
mechanical properties, 
including P wave velocity and 
density profiles (Bentley and 
Kohnen, 1976; Picotti et al 
2015). 

 Determining frozen and 
unfrozen material in permafrost 
studies (Hauck et al., 2004; 
2007 and 2008) 

(continued overleaf) 
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Passive seismic Rayleigh wave 
velocity and 
estimate of 
shear wave 
velocity 

Low frequency source, 
provides km scale 
depths 

 Cryoseismicity, using glacier-
quakes to identify glacier 
movement and basal 
deformation (Winberry et al., 
2011) 

 Glacier and ice-sheet 
thicknesses and estimate basal 
seismic properties (Diez et al., 
2016; Picotti et al., 2017; 
Preiswerk and Walter, 2018) 

 Other applications discussed 
further in the detailed reviews 
Podolskiy and Walter, 2016 and 
Aster and Winberry, 2017.  

Seismic surface 
waves from 
active seismic 

Rayleigh wave 
velocity and 
estimate of 
shear wave 
velocity 

Source dependant e.g.,  
Hammer and plate: ~ 
50 m,  
Explosives: ~ 250 m,  
Vibroseis: ~ 250 m. 

 Firn and shallow ice velocity 
structure (Armstrong, 2009 and 
Tsoflias et al., 2008) 

 Anisotropy and crystalline 
fabric of ice sheets (Picotti et 
al., 2015), 

 Identifying unfrozen zones 
within subglacial material, 
(Tsuji et al., 2008) 

 Mapping low velocity 
zones/unfrozen zones  in 
permafrost (Dou and Ajo-
Franklin, 2014) 

Time domain 
electromagnetics 

Conductivity/ 
resistivity 

Depends on 
transmitter system, 
loop size and current 
used e.g., Geonics 
TEM47: 5 to 150 m 
TEM57: 200 to 500 m, 
TEM67: 1000 m. 

 Mapping permafrost on 
mountainous regions (Hauck et 
al., 2001) 

Airborne TEM: 
 Mapping Arctic permafrost 

(Minsley et al., 2012) 
 Mapping deep saline 

groundwater zones in 
Antarctica (Mikucki et al., 
2015) 

 

1.3 Integrating multiple geophysical observations using a Bayesian 

inversion framework 

Inversions of isolated geophysical datasets are unconstrained and non-unique, with 

many models of the subsurface matching the observed dataset to some required 

numerical criterion. Integrating multiple geophysical observations into one inversion 

can constrain the model space, combining depth and resolution sensitivities from 

multiple datasets. This can be completed by a constrained inversion, complementing 
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the model space with prior information from another independent dataset (e.g., Auken 

and Christiansen, 2004; Socco et al., 2009), or furthermore, by a direct joint inversion 

approach, allowing objective testing of the independent datasets interrelationships. 

Some examples of joint inversions include the combination of geoelectric and seismic 

surface wave data (e.g., Hering et al., 1995; Gallardo and Meju, 2003; Wisén and 

Christiansen, 2005, Ronczka et al., 2018), to improve the definition of layered 

structure in near surface environments. Reflection seismic and controlled source 

electromagnetics have been combined to estimate fluid properties of petroleum 

reservoirs, which could not be obtained from one survey-type alone (Hou et al., 2006; 

Hoversten et al., 2006).  

Isolated geophysical inversions can be vulnerable to inaccurate, insufficient or 

inconsistent data, causing ambiguities in the solution. They generally require a fixed 

number of layers and can be dependent on the starting model chosen, where inversions 

of the same dataset using slightly different starting parameters, can provide 

completely different solutions (Ellis et al., 1994; Foti et al., 2009). Furthermore, in 

many inversions, regularization is employed to penalize small-scale roughness to 

produce a single smooth solution (Auken and Christiansen, 2004). However, single 

solutions may not be sufficient given the non-uniqueness issues. Table 1.2 compares 

some of the different inversion methods used in geophysical problems. It directly 

compares the inversion method used (e.g. deterministic, stochastic, regularised), 

whether a global or local minimum is sought, the computational power needed, the 

form of output solution provided and an example case study, for each method detailed.  

Bayesian Markov Chain Monte Carlo (MCMC) is a type of method that 

probabilistically quantifies the model space consistent with the observations. The 

application of the method results in a posterior probability distribution of the 

subsurface structure, numerically approximated by an ensemble of models, from 

which representative models such as the mean or mode can be obtained, in addition 

to rigorous estimates of uncertainties. Additionally, using a transdimensional 

Bayesian method allows each ensemble member to self-select both its model values 

and complexity based on the data, therefore never fixing the number of layers in the 

model. This inversion methodology has been exploited in deep-earth investigations, 

where surface wave dispersion and teleseismic P wave receiver functions both supply 

constraints on the crustal and upper mantle geology and efficient Bayesian algorithms 

for joint inversions have been developed (e.g., Bodin et al., 2012; Julià et al., 2000; 

Shen et al., 2012). 

In this thesis I present a constrained Bayesian inversion technique, applying it to the 

inversion of Rayleigh wave dispersion curves and TEM datasets combined with 
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independent depth constraints. A pair of transdimensional Bayesian frameworks, 

termed “MuLTI” and “MuLTI-TEM” for MASW and TEM applications respectively, 

are used to probabilistically quantify the model space consistent with the observations, 

outputting individual Vs and R probability density functions (PDFs) allowing  

comprehensive uncertainty analysis. Here, I base the method on existing 

implementations of such a transdimensional method, which have successfully 

inverted both single and multiple data sets (Bodin et al., 2012; Bodin and Sambridge, 

2009; Livermore et al., 2018). Further details of the methodology are presented in 

Chapter 3.  

Using the probabilistic outputs of both R and Vs, from MuLTI and MuLTI-TEM, I 

consider two approaches: 1) probabilistic facies classification and 2) four- phase 

petrophysical modelling, for the development of a joint R-Vs constrained inversion 

strategy to quantify the water contents of the subglacial environment. The 

probabilistic facies classification follows the assumption that both methods are 

sensing the same underlying geology which, therefore, structurally controls the 

distribution of geophysical properties. This could lead to a more accurate 

understanding of the subsurface structure, utilizing the structural similarities between 

resistivity and seismic velocity (e.g., Gallardo and Meju, 2003; Wisén and 

Christiansen, 2005). Alternatively, petrophysical relationships could be derived to 

obtain and/or guide interpretations of the volumetric proportions of water, ice and air 

in the subsurface (e.g., Hauck et al., 2008). Further details of this discussion is 

presented in Chapter 7.  
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Table 1.2 Comparison of common geophysical inversion methodologies 

Inversion 

method 

Inversion 

type 

Global/ 

local 

minimum 

Computat-

ional power  

Solution 

output 

Examples 

Damped least 
squares 
(Levenberg, 1944; 
Marquardt,1963) 

Deterministic 
with fixed 
model space. 
No 
regularisation 
applied 

Local low Single best 
fit solution 
with RMS 
misfit 

Inversion of 
surface wave 
dispersion curves 
(Xia et al., 1999) 

Occams  
(Constable et al., 
1987) 

Deterministic 
with fixed 
model space. 
Regularisation 
applied 

Potential to 
get caught 
in local 
minimum 
but 
generally 
smoothest 
acceptable 
model 

low Smoothest 
acceptable 
model to 
within an 
expected 
tolerance 

Inversion of 
magnetotelluric 
and 
electromagnetic 
data (deGroot-
Hedlin and 
Constable 1990; 
Vallée and Smith 
2009)  

Genetic Algorithm 
(Holland, 1965) 

Stochastic with 
fixed model 
space. 
No 
regularisation 
applied 

Global High, 
depending on 
the number 
of iterations 
needed 

Single best 
fitting 
model and 
REM 
misfit, with 
access to 
the misfit 
of other 
models 
tested 

Inversion of 
surface wave 
dispersion curves 
(Yamanaka, and 
Ishida, 1996; 
Tsuji et al., 
2012) 

1D laterally 
constrained  
(Auken and 
Christiansen 2004) 

Deterministic 
with fixed 
model space. 
Regularisation 
applied in the 
form of prior 
information. 

Local 
minimum 
but prior 
information 
guides the 
inversion to 
what model 
space is 
expected. 

low Best fitting 
model with 
standard 
deviation 
analysis of 
the primary 
parameters 
in the 
model 

Inversion of 
resistivity data 
(Auken et al., 
2005) 

Bayesian 
transdimensional 
MCMC 
(Sisson, 2005) 

Stochastic with 
variable model 
space.  
Regularisation 
applied in the 
form of prior 
information. 

Global High, 
millions of 
iterations 
needed with 
multiple 
chains 

PDF 
solution, 
access to 
mode, 
average, 
best models 
with full 
uncertainty 
analysis 

Inversion of 
surface wave 
dispersion and 
teleseismic P 
wave receiver 
functions (Bodin 
et al., 2012; Julià 
et al., 2000; Shen 
et al., 2012) 
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1.4 Objectives and thesis roadmap 

In this work, I aimed to further develop non-conventional geophysical techniques used 

in cryosphere studies highlighting their strengths and limitations, to motivate other 

users and continued development of these methods, thus providing more varied 

geophysical parameterisation of the cryosphere’s subsurface. Specifically, this work 

focuses on the development of Rayleigh wave dispersion curves, from MASW, and 

TEM for characterising the subglacial environment. The objectives of the work are: 

1. The development of a novel inversion methodology, easily adaptable for 

different geophysical techniques, enabling multiple geophysical observations 

to be integrated into a single inversion.  

2. To evaluate the feasibility of using MASW and TEM techniques on glacier 

ice, to obtain the shear-wave and resistivity properties of the subglacial 

environment.  

3. To deploy MASW, TEM and complementary GPR surveys on Midtdalsbreen, 

an outlet glacier of the Hardangerjøkulen ice cap in Norway, using 

observations from (2) to inform and optimise acquisition design.  

4. To apply the novel inversion methodology developed in (1) to derived shear-

wave and resistivity models of the Midtdalsbreen subglacial environment.  

5. To develop a joint inversion strategy for combining observations from the 

seismic and TEM data.  

6. In discussion, to evaluate the applicability of these approaches for 

characterising larger ice sheets, for example in Antarctica and Greenland, 

where the evolution of the subglacial environment is an important 

consideration in predictions of future sea-level rise. 

This chapter provides an introduction and background to the research and geophysical 

techniques used, outlining the main aim and objectives of the thesis. Chapter 2 

summarises the MASW, TEM and GPR acquisitions undertaken during two field 

campaigns, in spring 2017 and spring 2018.  

The next three chapters are presented in the form of three papers published over the 

course of my studentship. Chapter 3 details the methodology, including the 

development of the Bayesian inversion methodology, MuLTI. Chapters 4 and 5 

demonstrate the application of MuLTI and its MuLTI-TEM variant for, respectively, 

the inversion of Rayleigh wave dispersion curves and TEM data, using data acquired 

on Midtdalsbreen glacier.  

In Chapter 6, I consider the feasibility of the MuLTI algorithm for characterising the 

subglacial environment beneath thicker ice sheets, thus evaluating its applicability for 
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use in Greenland and Antarctica. The discussion in Chapter 7 summarises the current 

strengths and limitations of the MuLTI and MuLTI-TEM techniques, and also 

considers the development of a joint inversion strategy by which seismic and TEM 

data can be numerically integrated.  Finally, Chapter 8 summarises the thesis 

conclusions and prioritises actions for further work.  
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Chapter  2 Geophysical data acquisition 

Ahead of describing the development of the inversion methodologies in this thesis and 

their application to field data, I first give an overview of the study area and review the 

geophysical acquisitions undertaken there.  

2.1 Field site 

GPR, active source seismic and TEM data acquisition was performed on 

Midtdalsbreen, a northeast-flowing outlet glacier of the Hardangerjøkulen ice cap in 

central-southern Norway (60.59°N, 7.52°E), 6.8 km2 in area, in April-May 2017 and 

2018 (Figure 2.1).  

Hardangerjøkulen is Norway’s 6th largest glacier (71.28 km2) (Andreassen and 

Winsvold, 2012) and is an important water source for local river catchments. Annual 

glacier length measurements performed by A. Nesje between 1982 and 2018 show 

that the front of Midtdalsbreen advanced 36 m between 1982 and 2001, but retreated 

219 m between 2001 and 2018 (e.g., nve.no/hydrologi/bre; Reinardy et al., 2019), thus 

exposing material recently melted out from beneath the glacier. Midtdalsbreen is 

surrounded by mountains of phyllite and crystalline granite and gneiss, with moraines 

on the glacier foreland primarily consisting of till with granite, gneiss and phyllite 

clasts. Foreland studies presented in Reinardy et al., 2019 and 2013 describe 

observations of debris rich ice that incorporate fine sediment (sands and clayey silts) 

and occasional bedrock clasts (phyllites). GPR data presented in Reinardy et al. 2019 

highlights a potential subglacial reflector corresponding to the base of a subglacial 

permafrost layer. Direct observations of exposed material around the front of the 

glacier, during data acquisition, also showed soft, wet sediment (sands and clays) and 

hard bedrock clasts. These observations of unfrozen fine grained sediment, frozen 

sediment (permafrost) and bedrock were used as the lithology types expected within 

the subglacial environment at Midtdalsbreen.  

Willis et al. in 2012 investigated the Midtdalsbreen’s subglacial drainage system using 
dye tracing methods. They suggested that the glacier has a split drainage system, with 

a hydraulically efficient distributed system on the eastern section (T1; Figure 2.2) and 

an inefficient linked cavity system on the central and western sections (T2 and T3; 

Figure 2.2). 

Åkesson et al. (2017) developed a numerical ice flow model of the Hardangerjøkulen 

ice cap, drawing on glacier and climate reconstructions, to highlight its sensitivity to 

climate change. They showed that the present day ice cap is highly sensitive to surface 
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mass balance changes and could disappear completely within a century, due to future 

warming climate predictions. However, the bed conditions are not well known; based 

on sparse sediment cover in the surrounding areas, Åkesson et al. (2017) assume 

Hardangerjøkulen to be hard-bedded, with no deformable sediments present. The 

extent to which this assumption is true is unknown, which highlights the importance 

of geophysical investigations to better characterise subglacial properties. 

Midtdalsbreen is well-suited to methodological development since it is both 

logistically accessible and has a simple wedge-shaped profile (Figure 2.1c), which is 

valuable for this study since ice thicknesses show little cross-glacier variation. The 

simple profile also allows different depth sensitivities of the surface wave seismic and 

TEM  techniques to be explored. The location of the survey lines were chosen in an 

area dominated by the distributed subglacial system (Figure 2.2), away from the 

channelized system, where the subsurface structure is more likely to be relatively 

homogenous with minimum variability and complexity compared to the subsurface 

around the channelized system. At the time of acquisition, April–May, the subsurface 

comprised snow (∼2–4 m thick) overlying a varying thickness (0–25 m) of glacier ice 

and a substrate of unknown subglacial material.  
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Figure 2.1 a) Location of Hardangerjøkulen ice cap, South Norway. Google Earth 
satellite images taken in 2013. b) Google Earth image of Midtdalsbreen, an 
outlet glacier of the Hardangerjøkulen ice cap, with survey lines highlighted in 
red at the front of the glacier and profile 1 from Reinardy et al., 2019 GPR survey 
highlighted in the black dashed line. c) Schematic cross section of 
Midtdalsbreen’s wedge shaped profile, interpreted from Reinardy et al., 2019 
GPR profile 1. Note that b) is orientated away from north to enable optimal data 
comparison in later figures throughout the thesis. 
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Figure 2.2 Calculated annual average subglacial water fluxes (m3s-1) beneath 
Midtdalsbreen presented in Willis et al., 2012, with the 2018 ice margin 
displayed in a black dashed line and 2018 survey lines displayed in red. Red 
closed/open circles are moulins yielding returns/no returns from previous dye 
tracing experiments detailed in Willis et al., 2012. 

2.2 Data acquisition 

Two field campaigns were completed during this project:  

i) in April-May 2017 – a test campaign acquiring active source seismic and 

GPR, and. 

ii) in April-May 2018 – the main field campaign, acquiring GPR, active 

source seismic and TEM around and over the front of the glacier. 

Survey lines A-D (Figure 2.3) were surveyed with all techniques. Results and 

interpretations of lines A-D, from the main field session in 2018, are discussed fully 

in Chapter 4 and 5, providing an insight to the properties of the Midtdalsbreen 

subglacial material. This section shows, in more detail than presented in the following 

chapters, the data acquisition for each geophysical method. 
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Figure 2.3 Survey lines acquired during the 2017 and 2018 field seasons at the front 
of Midtdalsbreen. GPR common midpoint gathers (CMP) were acquired at the 
black stars and 1D TEM survey testing was completed at the midpoint of line 
B. 

2.2.1 MASW acquisition 

MASW employs a linear array of geophones in line with an active seismic source 

acting on the ground surface. This method was initially introduced by Park et al., 1999. 

Field data collected in time and space are transformed into a domain (e.g. frequency-

wavenumber) where the phase velocities associated with different frequencies are 

easily chosen by picking the spectral maxima (Foti et al., 2015). The x, y-pairs of 

phase velocity (PV(f)) and frequency (f) define the dispersion curve. At a given 

frequency, the phase velocity (PV) specifies the resolvable wavelength λ associated 

with each datum (Stokoe et al., 1994) as  𝜆 =  𝑃𝑉(𝑓)𝑓                                                                                                                  (2.1) 

and its associated resolvable scale (L) is approximated using a one-third wavelength 

resolution criterion (Gazetas, 1982) 𝐿 = 𝜆3                                                                                                                        (2.2) 

The frequency range where the phase velocities are considered stable, where a clear 

spectral maxima can be picked, correspond to the minimum and maximum 

wavelengths of the surface waves recorded. This defines the surface waves resolvable 
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scale as Lmin ≤ L ≤Lmax, where Lmin is the thinnest resolvable layer and Lmax is the 

maximum resolvable depth, discussed further in Chapter 3. The survey design and 

parameters used to acquire the seismic data can have a large effect on the resolution 

of the dispersion curve’s spectra maxima. Larger wavelengths become well developed 

plane waves at longer offsets (Park et al., 2001) enabling lower frequencies to be 

picked, however body waves, including refractions, also become more dominant at 

far offsets (Park et al., 2001) and therefore a trade-off has to be considered, which will 

be field site specific.  

A test field campaign was completed in April-May 2017 to test the general 

performance of subglacial MASW imaging, plus the feasibility of a portable hammer-

and-plate source. Active source seismic data were acquired around the front of 

Midtdalsbreen along Lines A, B, C and D (Figure 2.3) with a Geometrics GEODE 

system and 24 10 Hz vertical-component geophones (Figure 2.4a-b), with 2 m spacing 

for the cross-glacier lines (A, B, C), and 4 m spacing for the wedge profile line (D). 

GPR profiles were also acquired along the length of the seismic lines to identify the 

structure and thickness of the ice. Dispersion curve analysis from the 2017 data 

acquisition showed the lowest frequencies generated from this survey design, above 

background noise levels, were 18 Hz (Figure 2.5a-c show examples from line C). This 

enabled imaging to an estimated 30 m depth (assuming a one-third wavelength 

resolution criterion, Gazetas 1982), which penetrated 10 m into the subglacial 

environment when the ice was ~20 m thick, estimated from the GPR data. However, 

identifying the low frequencies were mainly limited by poor resolution dispersion 

curves, most likely due to the maximum shot offset (46 m). Synthetic testing showed, 

using 48 geophones (doubling the offset but keeping the dense sampling to avoid 

spatial aliasing; Yilmaz 2001) would provide better resolved dispersion curves 

enabling lower frequencies to be picked (down to 14 Hz), for a greater depth 

penetration (~ 45 m) (Figure 2.5f). 

With this knowledge, in the main field session in 2018, the seismic data were acquired 

with the same system but with 48 10 Hz vertical-component geophones. With more 

geophones available, the length of the spread was doubled for each line, providing a 

higher resolution dispersion curve, especially at the lower frequencies, < 20 Hz, 

(Figure 2.5d-e). Some P wave energy is observed in this longer offset dispersion curve 

at the high frequencies, > 100 Hz, high phase velocities, > 3000 m/s, highlighted in 

Figure 2.5e, however this is not dominant at this offset and the surface wave dispersion 

curve can easily be picked. Detailed analysis, results and interpretations of the 2018 

MASW study is presented in Chapter 4.  
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Figure 2.4 a) Active seismic data acquisition using a sledge hammer and plate as the 
source (left image), b) 10 Hz vertical component geophones with a Geometrics 
GEODE system (right image), c) schematic image of 2018 seismic survey set 
up for the cross-glacier lines A, B and C.  
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Figure 2.5 Dispersion curve analysis from the 2017 test field campaign compared to 
the 2018 main campaign. a) Acquired shot gather at Line C in 2017 using 24 
geophones. b) Acquired dispersion curve at Line C using 24 geophones, lowest 
frequencies picked were 18 Hz. c) Synthetic modelled dispersion curve (using 
the discrete wavenumber method) with 24 geophones showing poorly resolved 
dispersion curve picks especially at the low frequencies. d) Acquired shot gather 
at Line C in 2018 using 48 geophones. e) Acquired dispersion curve at Line C 
using 48 geophones, lowest frequencies picked were 14 Hz. f) Synthetic 
modelled dispersion curve (using the discrete wavenumber method) with 48 
geophones showing a much better resolved dispersion curve picked, in particular 
low frequencies down to 14 Hz can be clearly defined. The synthetic 1D model 
used in this analysis was 20 m ice, 1860 m/s, on top of a 10 m low velocity zone, 
1000 m/s, above basement, 2500 m/s. Note see Chapter 3 for detail on the 
discrete wavenumber method (DWM).  

2.2.2 Transient electromagnetics acquisition 

Transient (time-domain) electromagnetics uses transient pulses of electric current to 

induce electric and magnetic fields in the subsurface, measuring the subsequent decay 
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response of the induced fields. A schematic of the transmitter waveform is shown in 

Figure 2.6, highlighting the transient pulses and receiver measurement windows, in 

the transmitter-off periods. The response of the subsurface is measured in terms of the 

decaying amplitude of the secondary electromagnetic field. This is recorded as a 

function of time, with later responses originating from greater depths. The measured 

voltages versus time can be inverted to provide a resistivity profile with depth.  Further 

detail on the TEM method is detailed in Chapter 5, Section 2.  

 

Figure 2.6 Schematic diagram of the transmitter waveform, adapted from Geonics 
1994.  

TEM data was acquired in the main field session in 2018, with a Geonics PROTEM 

47 system, consisting of a 3 channel digital time-domain receiver, a TEM-47 battery 

powered transmitter and a 3D multi-turn receiver coil, loaned from the NERC GEF, 

Figure 2.7a-c. Multiple 1D soundings were acquired along each line with a 4 m 

spacing for lines A, B and C (schematic diagram shown in Figure 2.7d), and 8 m 

spacing for line D. Detailed analysis, results and interpretations of the 2018 TEM 

study is presented in Chapter 5. 
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Figure 2.7 a) TEM acquisition set up. b) Image of the receiver unit on top of a rug to 
protect unit from snow and easily drag along the lines. c) Image of transmitter 
unit sitting in bubble-wrap pocket used to protect unit and batteries from snow 
and cold. d) Schematic image of 2018 TEM survey set up for the cross-glacier 
lines A, B and C. 

2.2.3 Ground penetrating radar acquisition 

GPR was acquired in both field sessions, 2017 and 2018, to identify the structure and 

thickness of the snow and ice, along all lines. The GPR was acquired with Sensors & 

Software PulseEKKO PRO unshielded 200 MHz antennas and towed along the back 

of a snowmobile, shown in Figure 2.8. Additional to these common offset profiles, 
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two common midpoint gathers were acquired at the midpoints of line B and C (at their 

intersection with Line D; highlighted in Figure 2.3) for velocity analysis to estimate 

snow and ice thicknesses. Results from the GPR dataset are presented in Chapter 4.  

 

Figure 2.8 GPR acquisition set up. 
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3.1 Abstract 

MuLTI (Multimodal Layered Transdimensional Inversion) is a Markov chain Monte 

Carlo implementation of Bayesian inversion for the probability distribution of shear-

wave velocity (Vs) as a function of depth.  Based on Multichannel Analysis of Surface 

Wave (MASW) methods, it requires as data (i) a Rayleigh-wave dispersion curve and 

(ii) additional layer depth constraints, the latter we show significantly improve 

resolution compared to conventional unconstrained inversions. Such depth constraints 

may be drawn from any source (e.g., boreholes, complementary geophysical data) 

provided they also represent a seismic interface.  We apply MuLTI to a Norwegian 

glacier, Midtdalsbreen, in which ground-penetrating radar (GPR) was used to 

constrain internal layers of snow, ice and subglacial sediments, with transitions at 2 

m and 25.5 m, and whose Vs is assumed to be in the range 500-1700 m/s, 1700-1950 

m/s and 200-2800 m/s respectively. Synthetic modelling demonstrates that MuLTI 

recovers the true model of Vs variation with depth. Significantly, compared to 

inversions without depth constraints, in this synthetic case MuLTI not only reduces 

by about a factor of 10 the error between the true and the best fitting model, but also 

reduces by a factor of 2 the vertically-averaged spread of the distribution of Vs based 

on the 95% credible intervals. We further show that using frequencies above about 

100Hz lead to unconverged solutions due to mode ambiguities associated with fine 

spatial structures. For our acquired data on Midtdalsbreen, we use 14-100Hz data for 

which MuLTI produces a large-scale converged inversion.  

3.2 Plain Language Summary 

Geophysical inversion is used to infer plausible subsurface features from surface 

measurements. However, inversions based on datasets acquired with a single 

geophysical technique often have poor resolution due to many different subsurface 

models fitting the data within the error tolerance. This study presents a novel method, 

MuLTI, for inverting seismic surface wave data with constraints on depths of internal 

layers to obtain a more accurate and reliable interpretation of the subsurface. Here, 

our depth constraints are drawn from ground-penetrating radar (GPR) horizon 

observations. MuLTI has been tested on an example dataset from a glaciated 

environment to determine the seismic wave velocity of the subglacial sediment, which 

has important implications for glacier flow dynamics. By constraining the subsurface 

with GPR depth horizons, results show the inverted solution being 2 times better 

resolved and 10 times more accurate within the glaciological subsurface, than without 

constraints applied. Thus, we demonstrate MuLTI can mitigate poor resolution of an 
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unconstrained inversion, particularly at increased depth. Although we present 

examples from a glaciated dataset, this novel methodology is applicable to any layered 

subsurface environment. 

3.3 Introduction 

Many inversions of geophysical data derived from a single type of geophysical 

instrument are under-constrained, a property that results from not only limitations of 

the size and accuracy of the dataset, but inherent non-uniqueness: many models of the 

subsurface may be consistent with the single class of surface-based constraints.  For 

this reason, joint inversions using datasets of mixed types can be a powerful method 

of constraining the model space, where ambiguities of one methodology are mitigated 

by resolution in the other. Over the past few decades several different joint inversion 

algorithms and techniques have been developed in various geological settings to 

overcome such under-constrained problems. Geoelectric and seismic surface wave 

data have been combined (Hering et al., 1995, Wisén and Christiansen 2005) to 

improve the definition of layered structure in near surface environments (e.g., 

Ronczka et al., 2018). Similarly, reflection seismic and controlled source 

electromagnetics have been combined to estimate fluid properties of petroleum 

reservoirs, which could not be obtained from one survey-type alone (Hoversten et al., 

2006). Colombo et al. (2017) used the joint inversion of seismic and airborne time 

domain electromagnetics to improve imaging of complex near surface structures to 

reduce risk in shallow petroleum exploration. In deep-Earth investigations, surface 

wave dispersion and teleseismic p-wave receiver functions both supply constraints on 

the crustal and upper mantle geology and efficient algorithms for joint inversions have 

been developed (e.g., Julià et al., 2000; Bodin et al. 2012; Shen et al., 2012). Our paper 

focuses on the use of constrained inversions to characterise a glaciated subsurface by 

inverting Rayleigh (surface) wave datasets in the presence of depth constraints here 

provided by ground-penetrating radar (GPR) data. 

Rayleigh waves are a type of seismic wave that travel along the ground surface, which, 

in an active seismic survey, are efficiently generated by a compressional wave source: 

such a source typically converts more than 2/3 of the total seismic energy into 

Rayleigh waves (Richart et al., 1970). Using Multichannel Analysis of Surface Wave 

(MASW) methods, the dispersive properties of the Rayleigh waves can be utilized to 

infer the elastic properties of the subsurface (Park et al., 1999), often expressed in 

terms of shear wave velocity (Vs), compressional wave velocity (Vp) and density. The 

MASW technique is most sensitive to Vs (Xia et al., 2003), being only weakly 

dependent on Vp and density (Wathelet, 2005). When inverted with no other 
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constraint, Rayleigh wave dispersion curves have poor depth sensitivity (Foti et al., 

2009) particularly given data collection issues including noise and finite bandwidth, 

the latter being problematic for resolving short length scales and near-surface 

structures. Indeed, a direct inversion of such data has a vertical resolution of only 1/3 

of the shortest wavelengths sampled (Gazetas 1982), typically with 1-10 meter 

resolution in active source surveys. In view of this limitation in resolution, many 

models of subsurface Vs structure may provide an acceptable level of fit to the 

observed data, therefore giving an ambiguous inversion.  

An independent geophysical survey technique is ground-penetrating radar, GPR, 

which is sensitive to changes in subsurface dielectric permittivity and can resolve the 

layered near-surface velocity-depth structure to centimetre accuracy (Booth et al., 

2010). However, as with MASW, GPR data itself cannot unambiguously constrain 

subsurface structure, and often has limited depth penetration. By combining Rayleigh 

wave observations and depth information from GPR data, constrained inversion offers 

a powerful way to reduce the ambiguities inherent in single-technique inversions, 

provided that subsurface interfaces correspond to co-located contrasts in both elastic 

and electromagnetic properties. This assumption is likely appropriate in (for 

example): a glaciated environment with snow, ice and a subglacial substrate (Tsuji et 

al., 2012); a permafrost environment featuring unfrozen and frozen ground (Kneisel 

et al., 2008); and hydrological settings such as the imaging of shallow aquifers 

(Cardimona et al., 1998).  Such inversions both honour the cm-scale accuracy of the 

GPR constraints and, assuming the layered GPR model can be interpreted, their major 

advantage is the narrowed range of elastic properties that is permitted for each layer 

within the model. This latter effect vastly reduces the space of subsurface models 

consistent with the data, and thus significantly improves the resolution of any 

inversion. Furthermore, layer constraints mean that poor surface wave resolution in 

one layer does not necessarily spread to the adjacent layers. Of course, this approach 

is only viable when the contrasts detected by the seismic and GPR methods are likely 

the same; in situations where a change in electromagnetic properties would produce 

no linked elastic contrast (e.g., a salinity horizon within an aquifer), our approach 

would not be useful.  In this study, we use synthetic and real data examples from a 

glaciological setting, modelling the subsurface distribution of snow, ice and subglacial 

material. In this setting, we expect that elastic and electromagnetic horizons will be 

co-located.  In practice, depth constraints could be added from any external data 

source – for example, from seismic reflection studies or borehole control.   

Even when multiply constrained, inversions are seldom unique. In many inversions, 

regularisation is employed to penalise small scale roughness to produce a single 
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smooth solution.  However, single solutions may not be sufficient given the non-

uniqueness issues in surface wave inversions. Bayesian Markov Chain Monte Carlo 

is a type of method that probabilistically quantifies the model space consistent with 

the observations. The application of the method results in a posterior probability 

distribution of the sub-surface structure, numerically approximated by an ensemble of 

models, from which representative models such as the mean or mode can be obtained, 

in addition to rigorous estimates of uncertainties. This posterior probability 

distribution must lie within the bounds defined by a specified prior distribution, but is 

honed by the data into peaks that correspond to the most likely models. A refinement, 

applied here, is to use a transdimensional Bayesian method that allows each ensemble 

member to self-select both its model values and complexity based on the data. 

Averaging over the many ensemble members, to obtain a mean solution, then provides 

an effective smoothing. Furthermore, in the case where surface observations are 

weakly informative (as is often the case in surface wave dispersion), a Bayesian 

transdimensional approach will prefer models with fewer layers, and therefore larger 

length scales (MacKay, 2003), rather than models with many thin layers. Here, we 

base our method on existing implementations of such a transdimensional method, 

which have successfully inverted both single and multiple datasets (Bodin and 

Sambridge, 2009, Bodin et al., 2012, Livermore et al., 2018). 

In this paper we present the algorithm MuLTI (Multimodal Layered Transdimensional 

Inversion), which implements a Bayesian inversion of surface wave data, honouring 

depth constraints. MuLTI is coded in Matlab and is freely available; we provide all 

datasets and scripts needed to reproduce the figures in this paper.  The remainder of 

the paper is structured as follows. We first describe MuLTI in detail and demonstrate 

its ability to retrieve a known sub-surface structure using synthetic datasets within a 

glacial setting. We then show an application of MuLTI to image the structure, both 

within and under, a Norwegian glacier using a dataset which we acquired in situ. 

Although we focus on glacial environments, MuLTI can be used in any layered 

geological environment where electromagnetic and elastic properties change at the 

same depths. 

3.4 The MuLTI Algorithm 

MuLTI is a Bayesian method which seeks to determine the posterior distribution of 

the shear wave velocity (Vs) as a function of depth, for a prescribed profile of Vp and 

density (see also Bodin et al. (2012), Wathelet (2005)). Denoting the dataset by 𝑑 and 

the model description of Vs by 𝑚, using Bayes’ theorem this can be written 
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𝑝(𝑚|𝑑) =  𝑝(𝑑|𝑚)𝑝(𝑚)/𝑝(𝑑)                                                                          (3.1) 

where 𝑝(𝑚|𝑑) is the posterior probability of the model given the data, 𝑝(𝑚) is the 

prior information known about the model before introduction of the data, 𝑝(𝑑|𝑚) is 

the likelihood (probability of observing the measured data given a particular model 

(m)) and 𝑝(𝑑) is the evidence. In what follows, we consider a Markov Chain Monte 

Carlo methodology to sample the posterior distribution, in which relative inference is 

sufficient: thus here the evidence does not enter our analysis. The algorithm traverses 

the space of admissible models, sampling with greater frequency those models that 

are more likely. Provided that the chain of models is long enough, the statistics of the 

discretised ensemble will converge to those of the underlying posterior distribution.  

It is important to note what we take to mean for the data, d. Both GPR and Rayleigh 

wave datasets are ‘data’ in the geophysical sense but, because the GPR-derived layer 

depths are comparatively so well resolved, we use the two datasets in different ways. 

The GPR data we take to be part of our background knowledge of the system and are 

included in the prior, while the Rayleigh wave data we take to comprise the data (d), 

used in the likelihood. Hence, the two datasets are not treated on an equal footing.  

MuLTI can run in two different modes. In the first, it conducts a constrained inversion 

using both seismic data and layer-depth constraints, here derived from GPR data and 

assuming an underlying infinite half-space. In the second mode, MuLTI runs with no 

pre-defined internal boundaries, and the subsurface here is described by an infinite 

half-space.  

3.4.1 The data 

Rather than using raw data from synthetic waveform models, seismograms or active 

seismic acquisitions, MASW uses the derived dispersion curve in the frequency-phase 

velocity domain. This dispersion curve is characterised by a discrete set of points that 

we term the data, 𝑑, by picking the phase velocity for a set of frequencies according 

to the spectral maximum (Foti et al. 2015). If N discrete points are picked in this 

domain, the data comprise N pairs of frequency (𝑓) and Rayleigh wave phase velocity 

(𝑃𝑉) values with corresponding standard deviation σ: 𝑑 = [𝑓1  𝑓2 … . 𝑓𝑁 , 𝑃𝑉1  𝑃𝑉2 … . 𝑃𝑉𝑁] ,                                                                    (3.2) 𝜎 = [ 𝜎1  𝜎2 … . 𝜎𝑁] .                                                                                               (3.3) 

The standard deviation of the phase velocities is a measure of uncertainty in the picked 

dispersion curve, which is either prescribed as a constant vector (for example, in a 

synthetic test), or determined as a function of frequency from the width of the 

waveform dispersion image. For the latter case, we note that the resolution of the 
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dispersion curve depends on the survey parameters used to acquire the seismic data. 

For example, a higher density of wavefield sampling, i.e. more receivers and longer 

source-receiver offset ranges, produces better resolved dispersion curves; 

furthermore, in general, higher frequencies are typically better resolved than lower 

frequencies (Park et al., 2001).  

3.4.2 Model parameterisation 

We describe the 1D variation of Vs with depth as a piecewise constant function using 

Voronoi nuclei (but see Dettmer et al. (2010) for an alternative), in which each layer 

is divided into a variable number of sub-layers with constant velocities; at each depth, 

the value of Vs is determined by its nearest nucleus within the same layer (Bodin et 

al. 2012), see Figure 3.1 for an illustration of this model parameterisation. To ensure 

that Vs within each pre-specified layer is always described (requiring a minimum 

number of nuclei of 1 within each layer), we define a set of confined nuclei, which are 

confined to the given layers but are otherwise unconstrained in depth. The number of 

confined nuclei is equal to the number, l, of internal layers including the half space. 

All other k nuclei in the model are unconstrained in depth, and are termed floating 

nuclei. The model vector is then 𝑚 = [𝑑𝑝1, 𝑑𝑝2, … . , 𝑑𝑝𝑘 , 𝑉𝑠1, 𝑉𝑠2, … . , 𝑉𝑠𝑘, 𝑘, 𝑑𝑝𝑐1, 𝑑𝑝𝑐2 … . 𝑑𝑝𝑐𝑙 , 𝑐, 𝑉𝑠𝑐2, … . , 𝑉𝑠𝑐𝑙]     (3.4) 

where 𝑑𝑝𝑖 are the floating nuclei depths, 𝑉𝑠𝑖 are the floating nuclei wave speeds, 𝑑𝑝𝑐𝑖 
are the depths of the confined nuclei, 𝑉𝑠𝑐𝑖 are the wave speeds of the confined nuclei, 

and k is the number of floating nuclei. In our transdimensional framework, the number 

of floating nuclei k≥0, characterising the complexity of the Vs profile, is a free 

parameter. All Voronoi nuclei are defined with depths ranging from 0 to a pre-defined 

maximum depth dpmax. We note that the lowermost Voronoi cell is unbounded in 

downwards vertical extent and describes an infinite half-space.  

3.4.3 The likelihood 

The likelihood expresses the probability of observing the data (in our case, the picked 

dispersion curve) given a specific model m, here achieved by running a forward 

calculation of the frequency-PV response and comparing to the observed  data (𝑑). 

For a given frequency, there are multiple phase velocities at which the Rayleigh wave 

can travel; the slowest velocity is called the fundamental mode, the next highest 

velocity is called the 1st higher-order mode, then the 2nd higher-order mode etc. (Park 

et al., 1999). Early models of surface wave inversion only considered the fundamental 

mode with simple near surface environments (Xia et al., 1999), although it has been 

shown subsequently that higher order modes are preferred over the fundamental mode 

in several types of velocity structures (e.g., when a high velocity layer overlies a low 
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velocity layer (Gucunski & Woods, 1992)). Here, we calculate all relevant modes 

(fundamental, 1st and 2nd higher order modes) and we assume that the probability of 

the ith datum PVi(fi) is normally distributed about the nearest modal value, c(fi), at 

frequency fi (of the three calculated) with standard deviation σi(fi). We deliberately do 

not specify which mode should be associated with any given datum because it is often 

difficult in practice to unambiguously assign the correct modal index (see section 3.5). 

Assuming that each datum (indexed by i = 1, 2… Ndata) is independent, the likelihood 𝑝(𝑚|𝑑) is then proportional to ∏ 𝑒−(𝑃𝑉𝑖− 𝑐(𝑓𝑖))22𝜎(𝑓𝑖)2𝑁𝑑𝑎𝑡𝑎𝑖=1                                                                                                (3.5) 

We calculate the modal dispersion curves using the Geopsy dispersion curve (gpdc) 

algorithm of Wathelet (2005), by first converting our Voronoi cells to a layer-model. 

The gpdc algorithm uses a propagator matrix method to find the eigenvalues of the 

dispersion equation (Wathelet, 2005). This is a fast algorithm suitable for running 

repeatedly within MuLTI. We note that there is an option within MuLTI to limit the 

calculation of misfit to use either only the fundamental mode, or to use only a subset 

of the frequency range. 

Our framework can be easily altered to include a different definition of likelihood: the 

choice we made above is not unique. Other definitions include a characterisation of 

the misfit in terms of a determinant, removing the need to calculate the modal curves 

(Maraschini & Foti, 2010), or use of a full wavefield inversion approach using the 

dispersion spectra instead of a picked curve (Dou & Ajo-Franklin, 2014).  

3.4.4 Prior information 

The remaining key aspect of our Bayesian method is the prior information that is 

assumed for the model parameters: the number (k), depth (dp) and material properties 

(Vs) associated with the Voronoi nuclei. By conditioning on the value of k, the prior 

can be written as 𝑝(𝑚) = 𝑝(𝑑𝑝1, 𝑑𝑝2, … . , 𝑑𝑝𝑘 , 𝑉𝑠1, 𝑉𝑠2 … . 𝑉𝑠𝑘 , 𝑑𝑝𝑐1, 𝑑𝑝𝑐2, … . , 𝑑𝑝𝑐𝑙  , 𝑉𝑠𝑐1, 𝑉𝑠𝑐2 , … . , 𝑉𝑠𝑐𝑙| 𝑘) 𝑝(𝑘) 

(3.6) 

By further assuming that each pair (dpj Vsj), for both the floating and confined nodes, 

is independent of the others, the above probability can be written as ∏ 𝑝(𝑉𝑠𝑗, 𝑑𝑝𝑗|𝑘)𝑘+𝑙𝑗=1 =  ∏ 𝑝(𝑉𝑠𝑗  | 𝑑𝑝𝑗, 𝑘) 𝑝(𝑑𝑝𝑗)𝑘+𝑙𝑗=1                                            (3.7) 

We assume that k is uniformly distributed between given bounds: we commonly take 

k ~ U[0,30], limiting the maximum number of floating nuclei to 30. We further assume 

that the depth of each Voronoi nucleus is independent and has a depth uniformly 
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distributed within given bounds: either the limits defined by GPR-defined layers for 

confined nuclei or dp ~ U[0, dpmax] for floating nuclei, with dpmax typically taken to 

be 40 m. The value of Vs attached to each nuclei is assumed to be uniformly 

distributed within bounds dependent on its assumed composition. Without GPR 

constraints, wide bounds are applied for the infinite half space, typically Vs ~ 

U[200,2800] m/s, but with GPR constraints the much narrower ranges are defined by 

the layers’ composition. 

Figure 3.1 illustrates the model geometry, and shows schematic differences between 

the unconstrained (Figure 3.1a) and GPR-constrained (Figure 3.1b) cases. Without 

GPR constraints, there is a large range of possible Vs values (grey shading) at any 

depth. The inclusion of GPR constraints reduces the model parameter space 

significantly, although Vs variability within each layer is permitted by the 

unconstrained number of floating Voronoi nuclei within each layer. 

While all the model prior distributions are uniform, this does not mean the 

distributions of all diagnostics of the prior are also uniform. For example, the 

distribution of nuclei depths is not uniform (when using GPR constraints), because 

the existence of the confined nuclei that are tied to certain layers skews the 

distribution. 

3.4.5 Numerical sampling of the posterior 

We sample the posterior distribution by using the Monte Carlo Markov chain 

(MCMC) algorithm, in which we iteratively generate a long chain of models. The 

algorithm is very similar to that described in Gallagher et al. (2011) and Bodin et al. 

(2009) and there is no need to reproduce all the details here; we present only the key 

features and any differences. At each step, a new model m’ is proposed that differs 

from the current model by one of four perturbations (Figure 3.2), which depend on a 
set of user specified parameters (𝜎𝑐ℎ𝑎𝑛𝑔𝑒, 𝜎𝑚𝑜𝑣𝑒 and 𝜎𝑏𝑖𝑟𝑡ℎ) whose values affect the 

speed of convergence to the posterior distribution:   

-  ‘change Vs’: perturb the velocity of a randomly chosen nucleus by a random 
amount distributed as N(0, 𝜎𝑐ℎ𝑎𝑛𝑔𝑒2) 

- ‘move nucleus’ : alter the depth of a randomly chosen nucleus; if it is a floating 
nucleus it is perturbed by an amount distributed as N(0, 𝜎𝑚𝑜𝑣𝑒2) and can move 

between the depth-derived layers; if it is a confined nucleus it is moved to a 

random depth distributed uniformly over that layer to which it is tied. 
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- ‘birth’ : add a floating nucleus to the existing model whose depth is uniformly 
distributed U[0, dpmax] and whose Vs is distributed N(v, 𝜎𝑏𝑖𝑟𝑡ℎ2), where v is the 

value of Vs based on the current nuclei distribution. 

- ‘death’: remove a floating nucleus from the existing model. Confined nuclei 
cannot be removed. 

 

Figure 3.1 Illustration of MuLTI’s model parameterisation using Voronoi nuclei 
(floating and confined) comparing (a) a 1-layer model with no internal layers 
and (b) a GPR-determined 3 layer structure assuming different ranges of Vs 
within each layer. Grey indicates the range of possible Vs values. Figure adapted 
from Bodin et al., 2012. 
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Figure 3.2 Illustration of 4 possible perturbations to a current model (a) change Vs of 
a nucleus, (b) move a nucleus to a different depth, (c) give birth to a new floating 
nucleus and (d) remove a floating nucleus. 

Each proposed model is tested to see if it satisfies a certain acceptance criterion which 

involves the quantity 𝛼 = min [1, 𝑝(𝑚′)𝑞(𝑚|𝑚′)𝑝(𝑑|𝑚′)𝑝(𝑚)𝑞(𝑚′|𝑚)𝑝(𝑑|𝑚) . |𝐽|]                                                                   (3.8) 

where 𝑞(𝑚′|𝑚) is the probability of moving from model m to 𝑚′. For the type of 

transdimensional proposal used in this approach, the Jacobian term (J) is unity (Bodin 

and Sambridge, 2009). The evaluation of α for the types of perturbation shown in 

Figure 3.2 is standard (and is not described here) except the move perturbation when 

considering floating nuclei. For this case, 𝑞(𝑚|𝑚′) = 𝑞(𝑚′|𝑚),  𝑝(𝑑|𝑚′) 𝑝(𝑑|𝑚)−1 is the ratio of the two model likelihoods and 𝑝(𝑚′)𝑝(𝑚)−1 is the 

ratio of the ranges of Vs between the layers that the nucleus may move between. After 

α is evaluated it is compared to a random number u ~ U[0,1]: if α>u the proposed 

model is accepted, added to the chain and becomes the current model; if it is not 

accepted the existing model is retained as the current model.  

The method is initialized with a randomised model from the prior and the method is 

run for a “burn-in” period. At this point, the Markov chain is presumed independent 
of the initial condition and statistics of the chain are recorded from then on. This 

technique therefore differs fundamentally from techniques such as the Genetic 

Algorithm which relies on an initial reference model to start the inversion process 
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(Hayashi, 2012). On completion, all diagnostics must be checked to ensure sufficient 

iterations have been taken to achieve convergence.  Perturbations that improve the 

data fit are mostly accepted; those which decrease the fit are most likely to be rejected 

but are occasionally (and randomly) accepted.  Proposed models that lie outside the 

prior bounds give 𝑝(𝑚′) = 0; it follows that α=0 and such models are never accepted. 

Figure 3.3 shows a schematic view of the algorithmic core of MuLTI. 

 

Figure 3.3 Schematic illustration of MuLTI. Grey boxes highlight the starting input 
data and final output model of the algorithm. The circular workflow represents 
the iterative inversion processes at the core of MuLTI. 

MuLTI produces a variety of diagnostic statistics of the ensemble. These include: the 

posterior probability of the model of Vs as a function of depth; the best model sampled 

with the lowest calculated misfit; the average and modal models; 95% credible 

intervals on Vs with depth; posterior distribution of the number of nuclei; comparative 

plots of the observed data with dispersion curves for the best, average and modal 

models; and plots of the misfit against iteration count highlighting convergence of the 

solution. We reiterate that MuLTI can be used in any geological layered environment 

where electromagnetic and elastic rock property changes are co-incident.  

3.5 Case Studies Using MuLTI 

This section describes applications of MuLTI to both synthetic test data created 

assuming a simple glacial structure, and real data acquired from a Norwegian glacier. 

Because the output of MuLTI depends upon the resolution of the input surface wave 

dispersion curve, we first describe the Norwegian field setting and the data acquisition 

procedure in order to motivate the specific synthetic tests that will provide insight into 

the reliability and limitations of inversions from real data.   
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3.5.1 Data acquisition  

Data were acquired on Midtdalsbreen, an outlet glacier of Norway’s 
Hardangerjøkulen ice cap (60.59ºN, 7.52ºE), with the aim of characterising the Vs 

properties of the subglacial environment. These properties provide an important 

insight into subglacial water storage and the flow dynamics of the overlying glacier, 

thus motivating this study. The subsurface comprises fresh snow over ~ 25 m of 

glacier ice, and a substrate of unknown subglacial material (likely sediment). 

Midtdalsbreen is surrounded by mountains of crystalline rock, and it is thought that 

this hard rock lies below the subglacial material. 

Seismic shots (e.g., Figure 3.4a) were recorded with 48 10 Hz vertical-component 

geophones at 2 m incremental offset from a hammer-and-plate source, and digitised 

using a Geometrics GEODE system. A GPR profile was acquired along the length of 

the seismic line with Malå Geosciences antennas of 200 MHz centre-frequency. The 

thickness of snow and ice layers were estimated from velocity analysis of a GPR 

common midpoint (CMP) gather located half way along the seismic spread (Figure 

3.4b), using the method described in Booth et al. (2010, 2011). The GPR velocity in 

the snow and ice layers was 0.213 +/- 0.0014 m/ns and 0.172 +/- 0.0015 m/ns 

respectively, with depths to their base of 2.0 +/- 0.07 m and 25.5 +/- 0.22 m 

respectively. The small relative size of the layer depth uncertainties compared with 

resolution of surface waves (typically 1-10 metres) supports our choice of fixing the 

layer depths. The underlying half-space is assumed to be unconsolidated sediment and 

bedrock. The prior distributions on Vs (defining the upper and lower bounds) for each 

layer were defined as the values listed in Table 3.1, obtained from previous 

glaciological seismic studies (Peters et al., 2008; Podolskiy et al., 2016; Tsoflias et 

al., 2008). The shear wave speed Vs is narrowly constrained within the snow and ice 

layers but, given the uncertainty about the subglacial material properties, we permit a 

large range of Vs to encompass soft, wet sediment to hard frozen sediment and 

bedrock.  
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Figure 3.4 a) Seismic shot gather acquired on Midtdalsbreen; the Rayleigh wavetrain 
is highlighted in the red polygon. b) GPR CMP gather acquired half way along 
the line. GPR velocities were derived by matching the curvature of diffraction 
hyperbolae, highlighted in blue, which were used to determine the thickness of 
snow and ice layers via Dix inversion (Dix, 1955). 

Table 3.1 Elastic parameter boundaries (priors) applied in MuLTI for the glaciated 
case study, adapted from Peters et al., 2008, Podolskiy et al., 2016 and Tsoflias 
et al., 2008. 

 

Material 
Elastic Property 

Density (g/cm3) 

Constant 
Vp (m/s) 

Constant 
Vs (m/s) 

Variable 

Snow 0.47 2500 500 - 1700 

Ice 0.92 3810 1700 - 1950 

Subglacial material 2.5 4000 200 - 2800 
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3.5.2 Synthetic Data Tests 

To evaluate the performance of MuLTI, we constructed a synthetic version of our 

acquired data, but underpinned by a simple known subsurface structure. Figure 3.5a 

shows our 4-layer model of snow, ice, soft sediment and hard sediment, that plausibly 

represents our glacial setting.  

 

Figure 3.5 a) Synthetic Vs model of glaciated environment and (b) its associated 
Rayleigh wave dispersion curve image created from the Discrete Wavenumber 
Method (DWM). c) Picked dispersion curve (dotted red lines) with an estimate 
of the uncertainty σ(f) (solid red lines). The yellow lines display the theoretical 
true dispersion curves for this model, computed using the gpdc algorithm of 
Wathelet (2005) implemented within MuLTI. Vp and density are constant in 
each layer. 

We use the discrete wavenumber method (DWM) (Bouchon & Aki, 1977) to generate 

a full synthetic waveform dataset, based on the “true model” shown in Figure 3.5a. A 

dispersion image is calculated from the waveform created by transforming into the 

frequency-phase velocity domain where the dispersive pattern of the Rayleigh wave 

can be determined (Figure 3.5b). The maximum amplitudes of the frequency-phase 

velocity image are picked to create the Rayleigh wave dispersion curve, which is input 

into MuLTI as the “data” (d) along with an estimate of its width, the uncertainty σ(f), 
Figure 3.5c. For the first two examples (Sections 3.3 and 3.4), the DWM parameters 

used to calculate the synthetic waveform were chosen to have a long offset and large 

number of receivers, in order to sample the full wavefield. However in the final 

synthetic example (section 3.5), we limit the DWM parameters to those used when 

acquiring the real Norwegian data to see the effect of a reduced dataset. 

MuLTI was run with and without GPR constraints applied. With constraints, the bases 

of snow and ice layers were fixed at respective depths of 2 m and 25.5 m. The 

maximum number of floating nuclei was set at 30 and the maximum depth, dpmax, of 

the model was set to 40 m. The burn-in chain length was set to 10000. We used 
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parameter values σchange = 20 m/s, σmove = 1 m and σbirth = 400 m/s, and 1 million 

iterations (including the burn-in) were found to be enough for convergence of the 

posterior distribution sampled by the single Markov chain. Convergence was also 

confirmed by running multiple independent chains with different initial states. To test 

the Markov chain was sampling correctly, the likelihood was set to unity, effectively 

removing the data (and rendering equivalent the posterior and prior distributions) and 

so the Markov chain sampled the known prior distribution against which it was 

benchmarked. As a preliminary test, we confirmed that MuLTI reproduced the prior 

distributions with the likelihood set to unity. 

3.5.3 The effect of high frequencies on the inversion 

We first assess whether or not MuLTI can recover the known subsurface structure 

from a full frequency spectrum. Figure 3.6 shows the results from MuLTI of the 

posterior Vs distribution with GPR constraints applied and frequency range of 1-140 

Hz and 1-100 Hz (band-limiting the high frequencies). Although ostensibly including 

high frequency (>100 Hz) picks adds extra data, they cause ambiguities in higher 

order modes associated with these frequencies, where many different models of Vs 

can fit the observed data. This arises because we do not assign any specific mode to 

each frequency, an unavoidable consequence of poor resolution in real data (see 

section 3.5). The plethora of complex models that all have a low misfit overwhelms 

the natural parsimony of the Bayesian method, producing a posterior density that is 

far from the true model. The probability density distribution of Vs values within their 

95 % credible interval are plotted as coloured contours alongside the true solution 

(black line). The highest density distribution (red) for each depth corresponds to the 

most likely values of Vs. These high frequency ambiguities are highlighted in Figure 

3.6(I); even though the observed data fit the final solution, the underlying true solution 

is not recovered. Limiting the high frequency range to 100 Hz (Figure 3.6(II)) 

mitigates this problem and the true solution is almost exactly recovered (to within ~60 

m/s) in this inversion.  

3.5.4 Model uncertainties caused by finite bandwidth 

As a second test that more closely aligns with the frequency content of real acquired 

data (e.g. those recorded with 10 Hz geophones), a new synthetic dataset was created 

with a frequency range of 14-100 Hz, avoiding the high-frequency ambiguities 

described above. Figure 3.7 displays the posterior Vs distribution respectively with 

and without GPR constraints applied. Figure 3.7(II) shows significant deviation 

between the true solution and the model ensemble particularly between 0-7 m and 25-

35 m depth, without GPR constraints applied. With GPR constraints applied the 
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results are much improved. The density plot in Figure 3.7(I) shows that MuLTI 

recovers a distribution that is everywhere peaked close to the true model. This 

difference in resolution can be quantified by comparing the range of Vs values 

between the lower and upper 95 % credible interval boundaries. Without and with 

GPR constraints, respectively, this range is 1140 m/s and 618 m/s, on average over 

the whole depth range. Therefore, including GPR constraints yields a stark decrease 

in the range of Vs (and therefore a reduction of uncertainty) by a factor of about 2. 

Quantified in a different way, the inversion using GPR constraints has a depth-

averaged absolute error between the modal and true values of 62 m/s, about a factor 

of ten smaller than the comparable error of 540 m/s associated with the inversion 

without GPR data. 
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Figure 3.6 GPR-constrained shear wave velocity inversion results from MuLTI with 
frequency ranges 1-140 Hz (I) and 1-100 Hz (II). a) Posterior distribution of 
shear wave velocity solution with probability density distribution; coloured 
values are only shown within the 95% credible intervals, b) posterior 
distribution on number of nuclei, c) synthetic data and modal dispersion curves 
of the single ensemble member with the lowest misfit. 
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Figure 3.7 Shear wave velocity inversion results from MuLTI with (I) and without 
(II) GPR constraints applied, with a 14-100 Hz frequency range. a) Posterior 
distribution of shear wave velocity solution; coloured values are only shown 
within the 95% credible intervals, b) posterior distribution on number of nuclei, 
c) synthetic data and modal dispersion curves of the single ensemble member 
with the lowest misfit.   

Here we briefly discuss the uncertainties in the recovered subsurface model which 

limit resolution at both small and large length scales. At a given frequency, the phase 

velocity PV specifies the resolvable wavelength λ associated with each datum (Stokoe 

et al., 1994) as 𝜆 = 𝑃𝑉(𝑓)𝑓 ,                                                                                                               (3.9) 

and its associated resolvable scale is L = λ/3, assuming a 1/3 wavelength resolution 

criterion (Gazetas, 1982). If the data points are bandlimited in the frequency range, 

which is the case for most real MASW datasets, this immediately limits the resolvable 
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scales by an unconstrained inversion to Lmin ≤ L ≤  Lmax, where Lmin is the thinnest 

resolvable layer and Lmax is the maximum resolvable depth. However, the addition of 

independent depth constraints will improve the resolution beyond what is possible 

with surface waves alone, so in the constrained inversion case these bounds will 

widen.  Because it is not possible to easily quantify these improved resolution bounds 

in a simple way, in what follows we use Lmin and Lmax as illustrative values. For the 

tests shown in section 3.4, the data points were bandlimited with frequency range 14-

100 Hz (Figure 3.7), illustrating the nature of any real dataset. Therefore in this 

example, L lies in the illustrative range 5 m ≤  L ≤  50 m. Which frequencies remain 

sufficiently clear above the noise level to be picked depends both on survey design: 

the dispersion curves are better resolved for a longer source-receiver offset, (Park et 

al., 1998, 2001) and on the specific frequency: lower frequencies have lower 

resolution and hence a larger error. 

Although the final inverted Vs solution may contain shallow and layers thinner than 

Lmin, the calculated Vs values for these layers may be considered unreliable (Park et 

al., 1999). An illustrative case is our first synthetic example, shown in section 3.3 

(Figure 3.6b), where Lmin = 5 m which is greater than the imposed snow depth (layer 

1). The structure within that layer is therefore not well resolved, as shown by the 95% 

credible intervals that span the majority of the prior range in Vs, hence the mismatch 

between the true and the modal posterior distribution of Vs in this layer. Put another 

way, in the snow layer the data are relatively uninformative and do not constrain the 

posterior much beyond what is already assumed in the prior. It is worth remarking 

however that the snow layer depth of 2 m, being less than the nominal resolution limit 

of 5 m from the surface waves, is well resolved by the additional GPR constraints. 

3.5.5 Influence of survey design on MuLTI 

In addition to the issues described above, there can also be resolution difficulties at 

large depths caused by cut-off at long λ (low frequencies), a realistic scenario when 

using dispersion curves derived from active source seismic data. If the signal to noise 

ratio is low, the dispersion curve can be difficult to pick out over the noise, and the 

low frequencies then unavoidably have a higher uncertainty.  

We illustrate this effect by creating a final full synthetic waveform dataset, designed 

to mimic as closely as possible the real data we acquired.  As before, this is based on 

the same “true” model as in section 3.2, using the discrete wavenumber method 

(DWM) (Bouchon & Aki, 1977). As for the usual processing, dispersion images are 

calculated from these waveforms created and dispersion curves picked from the 

images (Figure 3.8b). The DWM parameters used to calculate the synthetic waveform 
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were chosen to be equal to the parameters used when acquiring our Norwegian data: 

48 geophones with 2m spacing. The maximum amplitudes of the frequency-phase 

velocity image are picked to create the Rayleigh wave dispersion curve. It is especially 

noteworthy that the picked dispersion curve no longer overlies the true modal lines 

(as for the examples in sections 3.3, 3.4), due to the restriction to realistic survey 

parameters. In this synthetic example the lowest resolvable frequencies are limited to 

14 Hz, where the dispersion curve becomes very wide (with large uncertainty) with 

no clear maxima to pick below this frequency (see Figure 3.8b). From this picked 

dispersion curve Lmin is 5 m and the maximum resolvable length scale Lmax (i.e. the 

maximum resolvable depth) is 49 m. The Rayleigh wave dispersion curve picked from 

the DWM generated synthetic waveform, along with an estimate of its width, were 

used as the data d and uncertainty σ(f) (section 2.3) in MuLTI.  It is also noteworthy 

that the poor resolution of Figure 3.8(b) makes it difficult to uniquely identify the 1st 

and 2nd order modes, motivating our methodological choice of defining a likelihood 

based on the nearest modal value. 

With GPR constraints applied and using the same parameters as before, Figure 3.8b 

shows this DWM synthetic inversion. Within the resolvable depth interval, there is a 

high probability of the posterior Vs model (highlighted in red in the Vs plot) being 

very close to the true model. The Vs distribution scatter is however larger than the 

previous synthetic examples, due to the larger uncertainty caused by weak sensitivities 

of the observations to structures at 25 m depth, itself a result of the survey parameters 

used in this DWM synthetic. This example demonstrates MuLTI works well with 

dispersion curves picked from synthetic waveform data simulating a MASW dataset, 

within the data’s resolvable depths, and accurately reflects the sensitivities of the 
observations.   
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Figure 3.8 a) Synthetic wavefield created from the Discrete Wavenumber Method 
(DWM) of the simulated glacier model (Figure 5a). b) Corresponding dispersion 
image, used to pick the surface wave dispersion curve. Dotted red lines indicate 
the picked dispersion curve with the solid red lines showing an estimate of the 
uncertainty σ(f). c) MuLTI inversion results with GPR constraints applied, 
showing the posterior distribution of Vs. 

3.5.6 Application to the Midtdalsbreen dataset 

Figure 3.9a shows the dispersion curve corresponding to the seismic data in Figure 

3.4a, acquired on the glacier Midtdalsbreen. The dispersion curve from Figure 3.8b 

(derived from a synthetic model with a low velocity layer) and Figure 3.9a are visually 

comparable, suggesting that a low velocity zone under the glacier is plausible. From 

the picked dispersion curve, Equation 3.9 suggests that the thinnest resolvable layer 

(Lmin) in this real dataset is 5 m, and the maximum resolvable depth (Lmax) is 48 m. As 

elsewhere in this paper, we assumed 3D effects were negligible: there were no surface 

objects on the glacier front and we modelled the subsurface as laterally homogeneous. 

The same MuLTI inversion parameters were used for this real data example as the 

previous synthetic examples, and results are shown in Figures 3.9b, 3.9c and 3.9d. 

The modal Vs within the ice layer is shown to be at the low end of the prior 

distribution, around 1700 m/s. A low velocity zone is identified directly below the 

glacier (at 25 m depth), roughly 7 m thick, which could be due to unfrozen wet 

subglacial sediment. The high Vs zone at 32-40 m depth could be the hard bedrock 

boundary, underlying the sediment layer.  

Lastly, Figure 3.9(d) shows a comparison of the best-fitting model to the dataset, 

following comparable plots in previous sections. Although illustrative of data-fitting, 
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it is possible that this end-member model, which is consistent with the prior, 

nevertheless shows some extreme physical properties. Figure 3.9(d) shows an increase 

with frequency of one of the modal velocity curves, whereas it might be expected that 

all such curves decrease with frequency. Physically, the best-fit model is largely 

comparable to the modal model of Figure 3.9(b) with the exception of a rapid 

adjustment at 35 m depth to a low-velocity half space (of about 700 m/s), which is 

consistent with the prior but physically unexpected and rather exotic. 

 

Figure 3.9 a) Calculated surface wave dispersion image from Mitdalsbreen shot 
gather (Figure 4a) with associated picks (d) and uncertainty σ(f). b) Posterior 
distribution of shear wave velocity solution; coloured values are shown only 
within the 95% credible intervals. c) Posterior distribution on number of nuclei. 
d) Observed data and dispersion curves of the single ensemble member which 
has the lowest misfit. 

3.6 Discussion and Conclusions 

Many techniques have been recently established utilising Rayleigh wave dispersion 

curves to infer the seismic structure of the subsurface. However recurring problems 

in the inversion of Rayleigh wave dispersion curves are: poor depth sensitivity, low 

resolution and ambiguous, non-unique solutions. Here we have presented MuLTI 

(Multimodal Layered Transdimensional Inversion), a novel tool for the inversion of 

Rayleigh wave dispersion curves with additional depth constraints drawn from any 

external data source.  

MuLTI implements a Bayesian formulation using a Markov chain Monte Carlo 

approach to explore the dependence of Vs with depth, and rests on the assumption that 

subsurface interfaces correspond to co-located contrasts in both elastic and 
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electromagnetic properties. It uses a new methodology to restrict the space of 

admissible subsurface models that are compatible with the observed Rayleigh wave 

data by adding fixed depth constraints, here using a GPR-derived layered structure. 

The uncertainty in the depth constraints applied is negligible (cm-accuracy) compared 

to the dispersion curve uncertainty (of m-accuracy), motivating us to fix the internal 

interface depths. The constraining layered structure is implemented by narrowing the 

Vs bounds for each material layer defined from the GPR, however Vs variability 

within each layer is still permissible.  

The Bayesian formulation within MuLTI is employed to produce a variety of 

diagnostic statistics of the ensemble used to assess the reliability of the solution for 

interpretation. The multiple different outputs available enables a variety of marginal 

posterior distributions to be examined, for example, the most likely Vs solution along 

with its uncertainty range, and the distribution of the number of nuclei. A potential 

criticism of our methodology is that we only invert for S-wave velocity while holding 

Vp and density constant throughout the velocity model. By deriving material-layer 

boundaries we are able to fix the Vp and density appropriately in each layer according 

to the material expected. This is an improvement from models that have no defined 

layers with Vp and density fixed as constants throughout the model space (Hayashi, 

2012). However a development of the algorithm would be, at increased computational 

cost, to also consider resolving Vp and density in each layer.   

Using synthetic tests based on a glaciological snow-ice-sediment layered setting, we 

showed that the depth constrained inversion gives a marked improvement in accuracy 

(decreasing the absolute error between the best fitting and true model by a factor of 

10) and depth resolution compared to inverting Rayleigh wave data in isolation. Based 

on the difference between the upper and lower 95% credible interval limits, the 

posterior distribution of Vs in the constrained inversion compared to the non-

constrained inversion is 2 times better resolved within the glaciological subsurface. 

We also demonstrate that including high frequency data (>100 Hz) causes ambiguities 

in the higher order modes associated with spatially fine scale structure, which 

overwhelms the natural parsimony of the Bayesian methods, producing solutions that 

are far from the true model. Therefore, it is important to take caution if using 

frequencies >100 Hz in any multimodal Rayleigh wave dispersion curve inversion. 

We present a real data application of MuLTI to a glaciated field site in Norway. 

However MuLTI is applicable to any layered subsurface provided depth constraints 

and elastic property changes are co-located at the same depths.  
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3.7 Code availability 

MuLTI can be found at: https://github.com/eespr/MuLTI, DOI 

10.5281/zenodo.1489959 
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4.1 Abstract 

Fast ice flow is associated with the deformation of subglacial sediment. Seismic shear 

velocities, Vs, increase with the rigidity of a material and hence can be used to 

distinguish soft sediment from hard bedrock substrates. Depth profiles of Vs can be 

obtained from inversions of Rayleigh wave dispersion curves, from passive or active-

sources, but these can be highly ambiguous and lack depth sensitivity. Our novel 

Bayesian transdimensional algorithm, MuLTI, circumvents these issues by adding 

independent depth constraints to the inversion, also allowing comprehensive 

uncertainty analysis. We apply MuLTI to the inversion of a Rayleigh wave dataset, 

acquired using active-source (MASW) techniques, to characterise sediment 

distribution beneath the frontal margin of Midtdalsbreen, an outlet of Norway’s 
Hardangerjøkulen ice cap. Ice thickness (0-20 m) is constrained using co-located GPR 

data. Outputs from MuLTI suggest that partly-frozen sediment (Vs 500-1000 m/s), 

overlying bedrock (Vs 2000-2500 m/s), is present in patches with a thickness of ~4 m, 

although this approaches the resolvable limit of our Rayleigh wave frequencies (14-

100 Hz). Uncertainties immediately beneath the glacier bed are <280 m/s, implying 

that MuLTI can not only distinguish bedrock and sediment substrates but does so with 

an accuracy sufficient for resolving variations in sediment properties.  

4.2 Introduction 

The subglacial environment exerts a substantial control on the flow dynamics of 

glaciers and ice masses (Bell, 2008; Siegert et al., 2018). A major uncertainty in ice 

dynamic models is the limited understanding of processes at the ice/bed interface and 

the composition of subglacial material. A significant control on ice motion is whether 

ice is underlain by hard or soft substrate, and therefore whether motion is governed 

by ice/sediment deformation (Hofstede et al., 2018) or sliding (Stearns and van der 

Veen, 2018). Such compositional variations are typically parameterised in predictive 

models by assuming a frictional stress coefficient (Christoffersen et al., 2014; 

Åkesson et al., 2017), although recent work by Stearns and Van der Veen (2018) 

highlights the potentially greater influence of effective basal pressure. Where 

underlain by sediment, the hydrological properties of the subglacial environment 

therefore have a profound effect on glacial flow and require proper consideration in 

ice dynamic modelling (Kulessa et al., 2017; Siegert et al., 2018).  

Quantitative geophysical analysis of subglacial material is typically not 

straightforward: although many geophysical methods can assess the mechanical 

properties of glaciers and ice masses, they can be problematic for characterising 
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material much beyond the immediate vicinity (~2 m) of the glacier bed (Booth et al., 

2012). Seismic reflection methods often lack the resolution or signal-to-noise ratio for 

quantifying subglacial material properties and, for example, may be limited to 

amplitude-versus-offset (AVO) studies of basal reflectivity (e.g., Anandakrishnan, 

2003; Booth et al., 2012; Kulessa et al., 2017). Seismic refraction methods are limited 

by their low depth penetration into subglacial material (e.g., Thiel and Ostenso, 1961; 

Bentley and Kohnen, 1976; King and Jarvis, 2007); refraction interpretations are 

impeded since an ice-sediment interface typically represents a velocity reduction, 

hence critical refraction will not occur and a head-wave will not be generated. Ground 

penetrating radar (GPR) methods are well suited to characterising englacial properties 

(e.g., Murray et al., 2007; Young Kim et al., 2010; Booth et al., 2013; Lindbäck et al., 

2018), but glacier bed reflectivity and high attenuation within the ice column limits 

the utility of subglacial radar sampling. 

Dispersion curve analysis of surface (Rayleigh) waves presents an alternative method 

for characterising seismic properties of basal material, for both passive- or active-

sources, by constraining the variation of shear wave velocity (Vs) with depth (Xia et 

al., 2003). Rayleigh waves are a form of seismic wave that travel along the ground 

surface, termed ‘groundroll’ in reflection seismology and although often considered 
as noise, they contain roughly 2/3 of the total energy of a typical surface source 

(Richart et al., 1970). In passive seismology, Picotti et al. (2017) used the horizontal-

to-vertical spectral ratio (HVSR) technique to map glacier and ice sheet thicknesses 

and, in certain conditions, obtain reliable estimates of the basal seismic properties. 

Preiswerk and Walter (2018) used high frequency (>2 Hz) ambient seismic noise, 

collected on alpine glaciers, to estimate ice thickness and infer potential bed 

properties. These techniques are analogous to those used to determine the properties 

of the Earth’s deep interior (Shen et al., 2018). Within active seismology, the use of 

Rayleigh wave dispersion curves is termed ‘Multichannel Analysis of Surface Waves’ 
(MASW). 

Regardless of the source of the dispersion curve, characterising Vs offers a promising 

means of distinguishing material within the subglacial environment, since shear wave 

properties vary with rigidity (shear modulus). Various researchers have used Vs to 

distinguish between hard and soft glacier substrates (Picotti et al., 2015), or the 

boundary between frozen and unfrozen zones within sediment (Tsuji et al., 2012). 

Zimmerman and King (1986) showed that seismic velocities vary significantly with 

degree of pore-fluid freezing, with Vs increasing by as much as 90% as pore water 

freezes (Johansen et al., 2003). Current applications of MASW methods within 

cryosphere studies include: identifying velocity (Vs) and density structure within firn 
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(Armstrong, 2009; Diez et al., 2014), identifying velocity (Vs) structure within 

shallow ice (Tsoflias et al., 2008b; Young Kim et al., 2010), monitoring and mapping 

embedded low Vs zones in permafrost areas (Dou and Ajo-Franklin, 2014) and 

identifying unfrozen zones in subglacial sediments (Tsuji et al., 2012). 

However, Vs depth profiles obtained from MASW suffer from poor depth resolution 

(Foti et al., 2015). Even for the active-source case, using frequencies that are typically 

higher than for passive seismology, vertical resolution can be limited to ~10 m. 

Indeed, at a fundamental level, the inversion of dispersion curves is also non-unique: 

many profiles of Vs (spanning a disparate set of physical structures) may be consistent 

with the observed data within the error tolerance. These limitations can be mitigated 

by constraining the MASW inversion using independent and complementary 

information, in our case the high resolution determination of internal horizons using 

co-located GPR surveys, which vastly reduces the space of acceptable models with an 

associated marked increase in vertical resolution. Key to this method is that the 

relevant subsurface horizons (e.g., the snow-ice surface and the glacier bed) represent 

contrasts in both electromagnetic and elastic properties.  

A recently developed method for depth-constrained MASW inversion, MuLTI 

(Multimodal Layered Transdimensional Inversion; Killingbeck et al., 2018) is applied 

in this paper to characterise the subglacial environment. We invert surface wave 

dispersion curves to evaluate the variation of Vs with depth, and assess its accuracy 

and uncertainty. Following a synthetic study, we analyse a combined MASW-GPR 

dataset acquired using an active source on Midtdalsbreen, an outlet glacier of 

Norway’s Hardangerjøkulen ice cap. Although applied here to active-source data, the 

seismic data enters MuLTI only through a dispersion curve, implying that MuLTI is 

equally valuable as a tool for passive-source seismology with associated depth 

constraints (which can be from any independent source: for example, airborne radar 

or borehole control). Thus, MuLTI is a novel methodology for investigating the 

subglacial environment for a range of glacier settings and seismic data types. 

4.3 Method 

4.3.1 Multichannel analysis of surface waves 

MASW surveys use an array of geophones in-line with an active seismic source 

located on the ground surface, similar to the acquisition performed for a 2D seismic 

reflection survey. The original field records, in the time-space domain, are 

transformed into the frequency-wavenumber domain, where the dispersive pattern of 

the Rayleigh waves can be determined by picking the spectral maximum (Park et al., 

1998). 
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The above process requires the following detailed steps. Dispersion curves are 

calculated from the seismic data using common midpoint cross-correlation (CMPCC) 

gathers (Hayashi and Suzuki, 2004) and the MASW method introduced by Park et al. 

(1999). CMPCC gathers are created by cross-correlating every pair of traces in each 

shot gather before sorting into CMP gathers. In each CMP gather, the equally spaced 

traces were stacked in the time domain to yield CMPCC gathers. To image dispersion 

curves in the phase velocity-frequency domain, phases of the cross-correlated data 

were shifted and stacked in the frequency domain, as described in Park et al. (1999).  

The dispersion curve depends upon the near-surface elastic properties (compressional 

wave velocity (Vp), Vs and density), assumed horizontally homogeneous beneath the 

geophone spread, although with the strongest sensitivity to Vs (Xia et al., 2003). The 

frequency range over which phase velocity is considered reliable corresponds to the 

minimum and maximum wavelengths recorded. For any given frequency (f), the 

wavelength (λ) is specified as  𝜆 = 𝑃𝑉(𝑓)𝑓                                                                                                                (4.1) 

where PV is the phase velocity of any frequency component (Stokoe et al., 1994). The 

resolvable scale of a given frequency component, L, is approximately λ/3 (Gazetas, 

1982), implying that the finite bandwidth fmin to fmax is associated with a range of 

resolution from Lmax ≥ L ≥ Lmin, where Lmin is the thinnest resolvable layer and Lmax is 

the maximum resolvable depth. This maximum depth is considered conservative, as 

other researchers (e.g., Park et al., 1999; Tsuji et al., 2012) base this estimate on a λ/2 

approximation. However, MuLTI incorporates additional independent depth 

constraints (elaborated in the next section) which widen these bounds and improves 

the resolution beyond what is possible with surface waves alone (Killingbeck et al., 

2018). The useful bandwidth of the survey depends on the signal-to-noise ratio in the 

dataset, the frequency output of the source, and the length of the survey line. A long 

survey line is favourable for long wavelengths and hence large Lmax, but this risks 

invalidating the assumption of horizontal homogeneity; furthermore, lateral resolution 

is governed by the range of offsets in each CMPCC gather, hence longer offsets imply 

greater smearing of horizontal structure (Park, 2005). However, the resolution of 

dispersion curves improves as the ratio of wavelength to source-receiver offset 

increases; hence, for any fixed geophone spread, the low frequencies have a poorer 

resolution in the dispersion image and their interpretation is less precise (Park et al., 

2001).  

In layered media, inversion for subsurface structure is complicated by the fact that the 

observed dispersion curve is the combined effect of the different modes of 
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propagation (Foti et al., 2015), ultimately filtered by the physical survey itself which 

depends upon the survey design parameters. To ensure a good fit, models need to 

account for not only the fundamental mode (Park et al., 1999) but all its higher-order 

harmonics, referred to as ‘modes’ of propagation. Early models of surface wave 
inversion only considered the fundamental mode with simple near surface 

environments (Xia et al., 1999). However, higher order modes have shown to 

dominate in several types of velocity structures, for example when a high velocity 

layer overlays a low velocity layer (Gucunski and Woods, 1992). Therefore 

multimodal analysis of surface waves is important when anticipating these complex 

velocity profiles. Our MuLTI algorithm is compatible with such multimodal 

inversions. 

4.3.2 MuLTI 

MuLTI is a Bayesian inversion method that seeks to determine the posterior 

distribution of Vs, as a function of depth, for a prescribed profile of Vp and density, 

which is fully described in Killingbeck et al. (2018). The method does not require the 

number of subsurface layers to be fixed but rather, in a ‘transdimensional’ framework, 
allows the data to self-determine the required complexity of the distribution (e.g., 

Bodin and Sambridge, 2009; Bodin et al., 2012; Livermore et al., 2018). Its particular 

utility here is the ability to include subsurface depth constraints, mitigating poor 

resolution and non-uniqueness of inversions from surface wave dispersion curves 

alone.  

MuLTI is initiated with frequency-phase velocity picks of Rayleigh wave dispersion 

curves, together with a measure of their uncertainty derived from the half width of the 

dispersion curve, accounting for the resolution of the dispersion curve acquired. This 

depends on the survey parameters used to acquire the seismic data e.g., a higher 

density of wavefield sampling, i.e. more receivers and longer source-receiver offset, 

produces better resolved dispersion curves with a smaller half-width and hence 

smaller uncertainty. The depth constraints determined here from GPR data fix 

particular layer boundaries in the inversion, a self-consistent procedure as the GPR-

derived depths are accurate to the decimeter scale: about a factor of 100 more accurate 

than the sensitivity of the Rayleigh waves.  

Figure 4.1 illustrates MuLTI’s model geometry, and shows schematic differences 
between the unconstrained (Figure 4.1a) and depth-constrained (Figure 4.1b) cases. If 

no depth constraints of the subsurface interfaces are available, the unconstrained 

substructure is characterized (before the introduction of seismic data) by wide bounds 

on Vs (e.g., Vs between ~200 to 2800 m/s). However, when using co-located GPR 
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data, layer boundaries (e.g., snow/ice) can be identified and the constraints on Vs can 

be tightened assuming each layer can be attributed to a known material. For example, 

in this paper, we assume that the upper two layers within the glacier are snow and ice, 

each with known depth and assumed Vs range (500-1700 m/s for the snow layer and 

1700-1950 m/s for the ice layer), thus significantly reducing the model parameter 

space.  

MuLTI uses the Geopsy theoretical modal dispersion curve algorithm of Wathelet et 

al. (2004), Wathelet (2005) as a forward model to compare any proposed substructure 

model to the observed data (picked Rayleigh wave dispersion curve). It numerically 

approximates the posterior distribution by an ensemble of models (a Markov chain), 

traversing the space of admissible models (shaded boxes shown in Figure 4.1), 

sampling the models with greater likelihood more often. Provided the ensemble size 

is large enough, the statistics of the ensemble will converge to those of the underlying 

posterior distribution. MuLTI produces a variety of diagnostic statistics of the Vs 

ensemble that can be analyzed to quantify uncertainty in the subsurface properties. In 

our analysis, we mainly use the mode and average Vs profiles to visualize our 

preferred structure, along with the 95% credible interval as an estimate of uncertainty. 

 

 

Figure 4.1 Illustration of MuLTI’s model parameterisation comparing (a) a 1-layer 
model with no internal layers and (b) a GPR-determined 3 layer structure 
assuming different ranges of Vs within each layer. Shaded boxes indicate the 
range of possible Vs values. Figure adapted from Killingbeck et al. (2018). 
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4.4 Field site: Midtdalsbreen 

Midtdalsbreen, 6.8 km2 in area, is a NE-flowing outlet glacier of the Hardangerjøkulen 

ice cap in central-southern Norway (60.59ºN, 7.52ºE; Figure 4.2). Hardangerjøkulen 

is Norway’s 6th largest glacier (71.28 km2) (Andreassen and Winsvold 2012) and is 

an important water source for local river catchments. Annual glacier length 

measurements performed by A. Nesje between 1982-2018 show that the front of 

Midtdalsbreen advanced 36 m between 1982-2001, but retreated 219 m between 

2001-2018 (e.g., nve.no/hydrologi/bre; Reinardy et al., 2019), thus exposing material 

recently melted out from beneath the glacier. At the time of acquisition, April-May 

2018, the subsurface comprised snow (~2-4 m thick) overlying a varying thickness 

(0-25 m) of glacier ice, and a substrate of unknown subglacial material. Midtdalsbreen 

is well-suited to methodological development since it is both logistically accessible 

and has a simple wedge-shaped profile (Figure 4.3), which is valuable for this study 

since ice thicknesses show little cross-glacier variation. 

Previous GPR data acquisitions show the glacier to have a 40 m wide cold-ice zone 

within the majority of the glacier tongue, where ice thickness is <10 m (Reinardy et 

al., 2019). The glacier thickens beyond its tongue, and primarily consists of warm ice 

within the ablation area surveyed in this study. Midtdalsbreen is surrounded by 

mountains of phyllite and crystalline granite and gneiss. Little Ice Age marginal 

moraines (post-1750 CE) on the glacier foreland primarily consist of subglacial 

traction till with both granite, gneiss and phyllite clasts indicating the glacier has a 

debris-rich basal ice layer probably underlain by sediments and areas of eroded 

subglacial bedrock (Reinardy et al., 2013). 

Several studies have inferred subglacial erosion, transport and depositional processes 

at Midtdalsbreen from sedimentological and geomorphological observations made in 

the foreland (Andersen and Sollid, 1971; Etzelmüller and Hagen, 2005; Reinardy et 

al., 2013, 2019; Willis et al., 2012). Repeated observations indicate >50 cm thick 

sequences of highly saturated till, clay to silt-rich deposits linked to ponding 

meltwater, and comparatively lower volumes of sand/gravel meltwater stream 

deposits along with highly polished and striated phyllite. Directly in front of the 

glacier, end moraines and flutes are occasionally ice-cored while some till-covered 

areas of the foreland may also be underlain by dead-ice (ice disconnected from the 

glacier). However, the distribution of sediments can be highly variable, in both space 

and time, given the melting of ice cores and the erosion and reworking of sediment by 
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meltwater (Reinardy et al., 2013; 2019). The general lower limit of permafrost in this 

area is estimated to be 1550 m a.s.l., however DC-resistivity soundings at 1450 m 

a.s.l. and thermistor measurements of cold-ice (<0° C) at the glacier front of 

Midtdalsbreen indicate permafrost at lower elevations (Etzelmüller et al., 2003). 

To explore the subglacial extent of sediment, Willis et al. (2012) investigated the 

Midtdalsbreen’s subglacial drainage system using dye tracing methods. They 
suggested that the glacier has a split drainage system, with a hydraulically efficient 

distributed system on the eastern section and an inefficient linked cavity system on 

the central and western sections. In addition to demonstrating the performance of the 

MuLTI algorithm, we anticipate that our results will offer additional insight into 

sediment and ice flow characteristics at the site. 

 

Figure 4.2 a) Location of Hardangerjøkulen ice cap, South Norway. b) Google Earth 
image of Midtdalsbreen, an outlet glacier of the Hardangerjøkulen ice cap. c) 
Survey lines acquired during the 2018 field season at the front of Midtdalsbreen. 
Google Earth satellite images taken in 2013. Note that (b) and (c) are orientated 
away from north to enable optimal data comparison in later figures. 

4.5 Data acquisition 

Seismic acquisitions were performed around and over the glacier front (Figure 4.2c) 

with a Geometrics GEODE system and 48 10 Hz vertical-component geophones. For 

cross-glacier lines A, B and C, the source and geophone locations had 2 m intervals; 

for the down-glacier line D, these were increased to 4 m. GPR profiles were acquired 

along the length of the seismic lines with Sensors & Software PulseEKKO PRO 

unshielded 200 MHz antennas. Figure 4.3 displays the processed GPR lines and the 

interpreted position of snow-ice and ice-bed horizons. These horizons are generally 

well defined and can be picked with confidence, although the signal-to-noise ratio at 
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the glacier bed is low below the cold-warm transition surface (where the ice is >20 m 

thick).  

The thickness of snow and ice layers was estimated from velocity analysis of GPR 

common midpoint gathers (CMP) located half way along the seismic spreads B and 

C (Booth et al., 2011). Figure 4.4 shows CMP gathers B and C with their associated 

semblance responses, also marking the picked velocities and their corresponding 

reflection hyperbolae following velocity corrections using the method described in 

Booth et al. (2010). GPR velocities and their uncertainties are expressed as probability 

density functions in Figure 4.5, using a Monte Carlo method (Booth et al., 2011). For 

the snow layer (Figure 4.5b), the CMP analyses yielded a similar median, hence a 

single average interval velocity (0.2100 ± 0.0029 m/ns) is assumed in depth 

conversions. For the ice layer (Figure 4.5a), analysis from CMP B and CMP C 

determines differing velocities by ~6%, possibly related to the greater englacial water 

content at CMP C and therefore more intense radar scattering at this site. However, 

the velocity estimate from CMP C (0.1724 ± 0.0015 m/ns) is more consistent with ice 

from other locations (Murray et al., 2007; Saintenoy et al., 2013; Temminghoff et al., 

2018) hence this value is used to evaluate ice thickness. It is noted a more complex 

2D velocity model of the ice could be used to determine the ice thicknesses, 

representative of warm and cold ice, however this uncertainty is small (~1 m) 

compared to the thinnest resolvable layer of the surface waves (~ 5 m). 
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Figure 4.3 GPR lines acquired at the front of Midtdalsbreen directly along the 2D 

seismic survey lines: A, B, C and D. Snow (blue) and ice (red) horizons were picked 

in two-way traveltime (TWT). 

 

Figure 4.4 GPR CMP gathers acquired at the midpoint of lines B and C with 
corresponding semblance plots in two-way traveltime (TWT). a) CMP analysis 
for the midpoint of line C and b) CMP analysis for midpoint of line B. Picked 
velocities are highlighted by the white ‘X’ and their corresponding hyperbolae 
are shown in red (Booth et al., 2010). 
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Figure 4.5 GPR velocity precision results, using Booth et al. (2011) Monte Carlo 
simulation method, displaying probability density functions of a) ice and b) 
snow GPR velocities derived from CMP B and C. 
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4.6 Synthetic study 

A synthetic study was conducted to validate MuLTI based on a likely target 

subsurface and to determine inversion parameters for the acquired data. Various 1D-

block models, shown in Figure 4.6; a-d (note a-d are unrelated to the seismic lines 

denoted A-D) were created to represent different glacial and subglacial environments 

which may be expected at Midtdalsbreen glacier, including: snow, glacier ice, water 

saturated till (low Vs zone) and bedrock. Each layer was populated with Vp, Vs and 

density values representative of each layer (Figure 4.6), obtained from example 

glaciological seismic studies (Peters et al., 2008; Tsoflias et al., 2008a; Podolskiy and 

Walter, 2016). Inversion parameters are documented in Table A1 in the appendix, and 

explained fully in Killingbeck et al. (2018). 

Synthetic waveforms were calculated from the 1D block models using the Discrete 

Wavenumber Method (DWM) (Bouchon and Aki, 1977). This calculates the full 

waveform, which can be considered an analogue of the observed data in terms of 

phase velocity and amplitude (Figure 4.6e-h). The DWM parameters used to calculate 

the synthetic waveforms are the same as those used for acquisition of our cross-glacier 

lines: 48 geophones with 2 m spacing. The maximum amplitudes of the frequency-

phase velocity images were picked to create the Rayleigh wave dispersion curves 

which were used as input to MuLTI together with an estimate of their uncertainty, 

σ(f), approximated from the half width of the peak, in velocity, at each given 

frequency (red lines in Figure 4.6i-l); this is seen to decrease with increasing 

frequency. The synthetic dispersion images clearly display a fundamental mode along 

with first and second higher order modes (higher order modes being induced by the 

low velocity layer immediately underlying the high velocity ice). Comparing 

reference models (Figure 4.6i and 4.6l), with increasing velocity structure, to the 

complex velocity models (Figure 4.6j, k), shows that the presence of a sharp decrease 

in velocity causes a break in the fundamental mode and higher order modes become 

more dominant. The depth of the velocity change is directly related to the frequency 

at which the change in dominant mode (from fundamental to higher order) occurs. 

The resolution of the dispersion curve, and the precision with which its maxima can 

be picked, is influenced by survey parameters. Longer source-receiver offsets sharpen 

the dispersion curve, and clarify the transition between different modes. However, 

long offsets in real data become dominated by body waves (e.g., reflections and 

refractions) hence there is a compromise between dispersion resolution and signal-to-

noise ratio (Park et al., 2001; Park, 2005). This issue becomes evident in our real data 

and is considered in our discussion section. 
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In this synthetic example, picking of dispersion curves is restricted to frequencies of 

14-100 Hz, representative of the bandwidth in our real data. Killingbeck et al. (2018) 

show that including higher frequencies (>100 Hz) causes instabilities related to the 

appearance of higher-order modes hence we deliberately omit them in our analysis. 

Using Equation (1) and the λ/3 wavelength sampling approximation (Gazetas, 1982), 

the dispersion curves picked in these examples have a thinnest resolvable layer (Lmin) 

of 3 m (corresponding to no ice model, Figure 4.6d), 4.5 m (6 m ice model) and 5.6 

m (23.5 m ice models); and maximum resolvable depth (Lmax) of 30 m (no ice model), 

45 m (6 m ice model) and 46 m (23.5 m ice models).  
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Figure 4.6 1D block models created to simulate snow and ice thicknesses expected at 
Lines A, B and C (a-d). Blue, red and brown lines represent base snow, ice and 
soft substrate boundaries; DWM synthetic wavefield shot gathers (e-h); 
corresponding dispersion curves picked with an estimate of associated 
uncertainty derived from the width of the dispersion image (i-l). 
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The inversions were run using Vs boundaries, and corresponding Vp and density 

values, set to the parameters stated in Table 4.1. Tests on varying Vp and density on 

modal dispersion curves show small variations but these are mostly within the fitting 

error tolerance (σ) used in MuLTI, Figure A1 in the appendix. Given the maximum 

resolvable depth of 46 m (from purely surface wave data), inversions were performed 

for a maximum depth of 40 m. To highlight the benefit of additional depth constraints 

(e.g., derived from GPR), MuLTI is first run for an unconstrained case and thereafter 

with fixed depths of the snow-ice and ice-bed layers. One million iterations were ran 

and found to be sufficient for convergence of the posterior distribution sampled; more 

detailed inversion parameters used are documented in Table A1 in the Appendix and 

explained further in Killingbeck et al. (2018). 

Table 4.1 Elastic parameter boundaries applied in MuLTI for the glacier feasibility 
study. The parameters are taken from Peters et al. (2008); Tsoflias et al. (2008a); 
Podolskiy and Walter (2016). 

 

Material 

Elastic Property 

Density (g/cm3) 

Constant 
Vp (m/s) 

Constant 
Vs (m/s) 

Variable 

Snow 0.47 1800 500 - 1700 

Ice 0.92 3810 1700 - 1950 

Subglacial material 2.5 3000 200 - 2800 

 

Posterior Vs distributions produced from MuLTI are shown in Figure 4.7. The 

probability density distribution of Vs profiles within their 95% credible interval are 

plotted as coloured contours alongside the true solution (black line). The highest 

density distribution (red) for each depth corresponds to the most likely Vs model. The 

unconstrained inversions in Figures 4.7a-c show significant deviation between the true 

model and inversion output, with respective depth-averaged Vs errors of 680 m/s, 

1046 m/s and 567 m/s respectively based on the modal model; although the fit is better 

(240 m/s error) for 4.7d (and 4.7a in the ice layer only), given the simpler underlying 

parameter distribution, there are multiple Vs distribution peaks between 20-33 m. The 

addition of depth constraints improves the match throughout, and Figures 4.7e-h show 

errors of 256 m/s, 99 m/s, 164 m/s and 138 m/s respectively (factors of 2.7, 10, 3.5 

and 2 improved on their unconstrained equivalents).  

More complex synthetic modelling, including an additional ice debris layer (high Vs) 

at the base of the glacier which may not be detected by GPR data, shows MuLTI can 
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reliably resolve unconstrained layers not accounted for in the GPR depth constraints 

applied within MuLTI (Figure A2 and A3 in the appendix).  

This feasibility study demonstrates MuLTI works well for the expected geometries 

and parameter distributions for the Midtdalsbreen dataset. It also highlights the 

significant added value of depth constraint when a complex velocity profile is 

expected. 

 

Figure 4.7 Posterior Vs distributions determined from MuLTI inversion (a-d) without 
depth constraints and (e-h) with depth constraints; the models correspond to 
those shown in Figure 4.6 a-d. Colour scale represents the probability density 
distribution of Vs values within the 95% credible interval, red highlighting most 
likely. Black line shows the true synthetic Vs profiles. Blue, red and brown 
correlation lines highlight the snow, ice and soft substrate depths respectively. 
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4.7 Results 

4.7.1 1D shear wave velocity profiles 

We first produce 1D velocity profiles for CMPCC gathers (Hayashi and Suzuki, 2004) 

located at the centre of lines A, B and C (Figure 4.8). A different range of source-

receiver offsets was used in each gather due to differences in data quality and 

subsurface complexity. This minimises the spatial averaging affect beneath the 

geophone spread, particularly where the subsurface is not horizontally homogeneous 

(Park 2005). Line A shows significant interference between Rayleigh and body waves 

for offsets >50 m, whereas co-located GPR data suggest that the subsurface can only 

be described as 1D for offsets <60 m at Line B. However, data from Line C suffers 

from no such restrictions, hence its CMPCC gather uses the full 92 m offset range for 

this 1D analysis.  

The dispersion images shown in Figure 4.8a-c are similar to the synthetic dispersion 

images (Figure 4.6i-l) giving an initial insight into the structure expected at 

Midtdalsbreen. The dispersion curves, which have high signal-to-noise ratio, are 

picked for frequencies between 14-100 Hz, implying that the thinnest resolvable 

layers (Lmin) are 4.0 m (Line A), 3.8 m (Line B) and 5.7 m (C) and the maximum 

resolvable depths (Lmax) are 19.5 m (Line A), 33.5 m (Line B) and 45.7 m (Line C). 

The dispersion picks and their estimated uncertainty were supplied to MuLTI, 

together with the GPR depth constraints. The inversions used the same parameters 

used in the synthetic study. Posterior Vs distributions are shown in Figure 4.8g-i, the 

highest density velocities (coloured red) corresponding to the most likely (modal) 

solution. The average solution (black line) is the average of all accepted models, 

displaying a smoothed Vs solution, and its uncertainty is expressed as one-half of the 

95% credible interval range at each depth. These uncertainties are typically ±~600 m/s 

for the snow layer, ±~120 m/s for the ice layer and ±~1100 m/s for the subglacial 

material. The estimated uncertainty for the mode solution is one-half of the 

interquartile range at each depth, accounting for the skewed probability densities 

highlighted in Figures 4.8 g-i. This convention implies smaller uncertainties: ± ~250 

m/s in the snow layer, ± ~75 m/s in the ice layer, and ± 320-560 m/s in the subglacial 

material.  

The 1D inversions show low shear wave velocities, 500-1000 m/s beneath the 

constrained snow-ice horizon in Line A and the constrained ice-bed horizon in Line 

B; both are in turn underlain by a high Vs zone, 2000-2500 m/s. In contrast, high 

velocities, ~2400 m/s, occur directly below the thicker ice in Line C. This analysis 
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suggests a spatially variable pattern of subglacial Vs from the front of the glacier to 

Line C, 150 m up-glacier. 

 

Figure 4.8 Mid-line C, B and A CMPCC gathers (a-c), corresponding dispersion 
images (d-f) and Vs distribution profiles (g-i), with the average of the 
distribution plotted in black. 
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4.7.2 2D shear wave velocity profiles  

MuLTI is used to invert multiple independent 1D dispersion curves picked from all 

CMPCC gathers along each seismic line. Offsets are limited either to mitigate body 

wave contamination or prevent lateral smearing (particularly in line D where the 

thickness of ice decreases along the line and therefore we do not assume lateral 

homogeneity of Vs along this line). Dispersion patterns and the implied depth of 

penetration vary with ice thickness and the likely subglacial Vs, as shown by the depth 

range of input velocity picks in Figure 4.9 (leftmost column). These plots represent 

all 1D dispersion curves, picked at each CMPCC location along the line, indicate the 

maximum depth at which inversion results may be considered reliable.  

Consistent with initial observations in the 1D analysis, the 2D Vs profiles (Figure 4.9, 

central column) highlight a wide range of subglacial Vs values, ~500-2500 m/s. The 

2D profiles highlight spatial variability in Vs for the study region, both along- and 

cross- glacier profile (the latter evidenced in particular in Line B). The estimated 

uncertainties for the mode Vs solutions are displayed in Figure 4.9 (rightmost 

column). Consistent with the previous analysis, the estimated uncertainties in the 

average solution are generally very large, especially where input dispersion curve 

picks are absent (highlighted in Figure A4 in the appendix). The corresponding 

uncertainties in the mode solution are generally smaller, but still increase at depth, to 

± ~1000 m/s where Vs constraints are lacking. 
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Figure 4.9 2D inversion outputs for Lines A-D. Left column: approximate 2D depth 
resolution, characterised by the range of phase velocity picks. Central column: 
most likely 2D Vs profiles output from multiple 1D MuLTI inversions. 
Diverging colour scale centred, in white, on Vs of ice (1750-1900 m/s). Right 
column: estimated uncertainty (half the interquartile range of the posterior 
distribution). Snow and ice depth horizons are plotted in blue and red 
respectively. 

4.8 Interpretation and discussion 

4.8.1 Interpretation of Vs profiles  

Several studies have inferred subglacial erosion, transport and depositional processes 

at Midtdalsbreen, based on sedimentological and geomorphological evidence from 

the glacier foreland (Andersen and Sollid, 1971; Etzelmüller and Hagen, 2005; 

Reinardy et al., 2013, 2019; Willis et al., 2012). However, the type and distribution of 
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subglacial substrate is largely unknown, having not been directly imaged beneath the 

glacier. 

The variability of Vs (500-2500 m/s) in our MASW records points to a complex 

subglacial structure, comprising local accumulations of bedrock and softer material, 

potentially permafrost and/or till, overlying bedrock (Figure 4.10). We consider the 

abrupt lateral variations in the outputs to be noise (since a pseudo-2D inversion is used 

by running multiple independent 1D inversions only along the line) rather than 

genuine structure, and instead interpret the broader variation in lateral character as 

representative velocity structure. The lateral resolution in our imaging varies along 

each line, given the changing offset range in our CMPCC gathers. In Lines A-C, the 

limit of lateral resolution is between ± 4-30 m, and is between ± 8-40 m in Line D; 

the poorest resolution is observed in the centre of each line, where the offset range in 

the CMPCC is greatest. The key structures we interpret in Figure 4.10 are larger in 

spatial extent than these limits, hence we consider our lateral resolution to be 

sufficient. However, the vertical velocity structure is more resolved due to the addition 

of GPR depth constraints, hence we consider our vertical resolution to be sufficient 

without smoothing. 

Our slower velocities (500-1000 m/s) are interpreted to diagnose various types of 

partially frozen subglacial sediment, potentially the subglacial continuation of till and 

silt-rich deposits observed during summer on the glacier foreland. The higher 

velocities (2000-2500 m/s) are suggestive of phyllite or granite bedrock, with 

intermediate values (1000-1700 m/s) suggestive of frozen zones or weathered 

bedrock. Kneisel et al. (2008) suggest that a small increase in the unfrozen water 

content of sediment, from 10% to 13%, can cause Vs to decrease from 1400 m/s to 

600 m/s, implying Vs is potentially a good means of distinguishing frozen and 

partially-frozen sediment. Although there is potentially some overlap in our velocity 

ranges, we use: 

- Vs <1000 m/s to indicate partly-frozen sediment with water content >13%, 

- 1000< Vs <2000 m/s to indicate partly-frozen material with water content 

<13%, and 

- Vs >2000 m/s to indicate bedrock.  

Line C suggests that Midtdalsbreen is directly underlain by bedrock 150 m from its 

terminus, but Line D suggests a transition to a sediment under-burden towards the 

glacier front. The eastern half of Line B, parts of Line D and all of Line A (on the 

foreland) are likely underlain by soft (partially frozen) sediment deposits (Figure 4.10) 

with a maximum thickness of 4 m. This thickness approaches our limit of vertical 
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resolution, but uncertainties at the associated depth are low: ± 100 m/s in Line D and 

± 280 m/s in Lines A-C (Figure 4.9). Each inversion also indicates a return to high Vs 

at depth, consistent with underlying bedrock, although the greater uncertainties at 

these depths would motivate additional validation (e.g., from a lower-frequency 

seismic source or an alternate geophysical method such as time domain 

electromagnetics).   

The presence of both bedrock and sediment at the glacier bed suggests that flow both 

by sliding and substrate deformation is at least possible at Midtdalsbreen, although 

sub-resolution layers of deforming till may be present where a bedrock substrate is 

inferred. The implication of zones of basally-frozen and unfrozen regions is consistent 

with the complex basal thermal regime inferred by Reinardy et al. (2019), who also 

suggest that the entrainment and elevation of debris into the glacier requires the 

substrate to contain both soft and unfrozen material. The presence of thick patches of 

frozen sediment in the Midtdalsbreen foreland also concur with permafrost models 

for this area (Etzelmüller et al. 2003). In addition to adding constraint to controls on 

the Midtdalsbreen flow regime, this study may have implications for other valley 

glaciers and presents a method by which they could be explored.  
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Figure 4.10 a) 3D cross-section of lines A-D, showing the Vs mode solution and 
interpreted locations of sediment and bedrock. The black semi-transparent 
overlay shows where Lmax is exceeded, hence where results could be unreliable. 
b) Schematic 3D cross-section interpretation of Lines A-D. c) Base map 
annotated with line locations and the interpretations from (a). 

 

4.8.2 Discussion and further work 

Recurrent problems in Rayleigh wave inversions include poor depth sensitivity, low 

resolution and ambiguous, non-unique solutions. MuLTI combines a probabilistic 

approach with external depth constraints, mitigating many of these issues and 

reducing the size of the solution space. Our probabilistic method allows the 

uncertainty in any chosen model to be quantified at all depth levels. The addition of 

depth constraints also improves vertical resolution (Killingbeck et al., 2018), and 

further work is required to quantify this improvement.  

Nonetheless, the success of MuLTI depends inherently on the quality of the input data 

and their suitability for the specific target. MASW analyses fundamentally require 

data to be observed across an array of some minimum length, in order that low 

frequencies can be faithfully characterised and adequate depth sampling achieved. As 

such, there is always a loss of lateral resolution for the low frequency Rayleigh wave 
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related to the array length over which they are observed. This is why we rule out the 

abrupt lateral variations from our interpretation of Figure 4.9. We minimise this 

impact by reducing, where appropriate, the maximum offset in our CMPCC gathers, 

but the link between lateral resolution and spread-length requires refinement. Any 

geophysical data are also vulnerable to noise, and we note this for the low frequencies 

between 50-90 m in Line B. If these noisy data were neglected, we would severely 

restrict the data available for the inversion (Figure A5 in the appendix). Instead, we 

adopt the Bayesian paradigm in which all data are kept but with enhanced error 

budgets where relevant. Even with their increased uncertainties, these noisy data still 

provide important depth constraints to the posterior distribution. We note that our data 

acquisition used 10 Hz geophones, if we corrected our data for the instrument 

response we may have picked lower frequencies (<10 Hz) which could improve the 

posterior distribution at depth. 

Although this paper focuses exclusively on Rayleigh wave dispersion curves derived 

from active source seismology, with high-frequency sources and shallow depth 

penetration, MuLTI can be equivalently applied to dispersion curves from passive 

sources (e.g., Picotti et al., 2017; Walter et al., 2014) as the Geopsy forward modelling 

code, used in MuLTI, has the capability to model dispersion curves with frequencies 

<1 Hz. Being richer in low frequencies (<20 Hz), these may enable enhanced imaging 

of structure beneath polar ice sheets (Aster and Winberry, 2017; Siegert et al., 2018; 

Yan et al., 2018).  MuLTI would allow such data to be inverted with depth constraints 

drawn from radio echo sounding (RES) datasets, thereby highlighting areas of large 

ice masses with a dynamic sediment underburden, although the algorithm would 

likely require adaptation to accommodate anisotropic effects.  

The MuLTI framework also lends itself well to other geophysical inverse problems, 

where a theoretical geophysical response for a proposed model can be evaluated and 

compared probabilistically to observed data. An example of such an inverse problem 

would be the inclusion of time-domain electromagnetic (TEM) data to the existing 

approach, to which MuLTI could be readily adapted. Such a combined approach will 

be the subject of further investigations around the Midtdalsbreen margin, leading to a 

framework by which aquifer properties beneath large ice masses could be quantified 

(Hauck et al., 2011; Siegert et al., 2018). 

4.9 Conclusions 

The material properties of the subglacial environment exert a fundamental influence 

on glacier flow dynamics. These properties can be characterized by considering their 
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shear wave velocity, Vs, obtained by inverting Rayleigh wave dispersion curves. 

However, conventional dispersion curve inversions lack depth sensitivity and provide 

solutions that are highly non-unique. Such problems are overcome with the use of our 

algorithm MuLTI, a transdimensional Bayesian inversion approach, which reduces 

the ambiguity in the solution space by incorporated independent depth constraints. 

When trialed for synthetic Vs data representing a small glacier underlain by sediment, 

inclusion of such constraints results in an order-of-magnitude improvement in the 

depth-averaged uncertainty in the output model, reducing it for our thickest-ice case 

from ~1050 m/s to ~100 m/s. While an uncertainty of ~1000 m/s may not impede the 

value of conventional inversions for distinguishing sediment and bedrock substrates, 

the reduced range would be critical if observations of Vs were to be used to quantify 

detailed variations in sediment properties. As such, MuLTI is an important advance 

in the application of Rayleigh wave inversions. 

We apply MuLTI to a Rayleigh wave dataset acquired around the terminus of 

Midtdalsbreen, complementing it with depth-constraints derived from co-located 

GPR surveys. Although widely underlain by bedrock (Vs ~2500 ± 280 m/s), our data 

reveal that a patchy distribution of sediment is present directly beneath the glacier. 

These sediments are only partly frozen (Vs ~500 m/s ± 280 m/s), and exist in pockets 

that may be up to 4 m thick; the sediment under-burden extends to ~150 m up-glacier 

from the terminus. Our interpretation is consistent with recent studies of 

Midtdalsbreen, which highlight the supply of sediment to the glacier foreland and 

identify regions of basal sediment around the glacier front. 

The seismic data used by MuLTI is supplied in the form of a dispersion curve, hence 

the algorithm is compatible with Rayleigh wave data obtained from either active- or 

passive-source surveys. Equally, depth constraints are provided as numerical inputs 

and can therefore be drawn from any external source. MuLTI is therefore applicable 

for a broad spectrum of seismic data types, as a means of improving the quantitative 

analysis for a range of contemporary glaciological problems.  
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5.1 Abstract  

Subglacial water modulates glacier-bed friction and therefore is of fundamental 

importance when characterising the dynamics of ice masses. The state of subglacial 

pore water, whether liquid or frozen, is associated with differences in electrical 

resistivity that span several orders of magnitude, hence liquid water can be inferred 

from electrical resistivity depth profiles. Such profiles can be obtained from 

inversions of transient (time-domain) electromagnetics (TEM) soundings, but these 

are often non-unique. Here, we adapt an existing Bayesian transdimensional algorithm 

(‘MuLTI’) to the inversion of TEM data using independent depth constraints to 

provide statistical properties and uncertainty analysis of the resistivity profile with 

depth. The method was applied to ground-based TEM data acquired on the terminus 

of the Norwegian glacier Midtdalsbreen, with depth constraints provided by co-

located ground penetrating radar data.  Our inversion shows that the glacier bed is 

directly underlain by material of resistivity 102 Ωm ±1000 %, with thickness 5-40 m, 

in turn underlain by a highly conductive basement (100 Ωm ±15 %). High resistivity 

material, 5x104 Ωm ±25 %, exists at the front of the glacier. All uncertainties are 
defined by the interquartile range of the posterior resistivity distribution. Combining 

these resistivity profiles with those from co-located seismic shear-wave velocity 

inversions to further reduce ambiguity in the hydrogeological interpretation of the 

subsurface, we propose a new 3D interpretation in which the Midtdalsbreen 

subglacial material is partitioned into partially frozen sediment, frozen 

sediment/permafrost and weathered/fractured bedrock with saline water.  

5.2 Introduction 

Subglacial structure and material properties are one of several important controls on 

ice flow, both through composition and ice/material interactions. The potential for 

subglacial sediments to store and pressurise water is a key element in predicting the 

evolution of ice masses of all sizes, from small mountain glaciers to large polar ice-

sheets (Christoffersen et al., 2014; Siegert et al, 2018). Currently, the ability to 

develop accurate ice flow models is limited by poor understanding of processes acting 

at the ice/bed interface, and the composition of subglacial material. With increased 

knowledge of subglacial structure and sediment liquid water content, our ability to 

predict glacier retreat patterns would be greatly increased. 

Non-invasive geophysical imaging methods are widely and successfully applied to 

characterise the internal properties of glacier ice and its immediate basal environment. 

Such methods (including reflection seismology and ground-penetrating radar) can 
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underperform when characterising material properties beyond the first few metres of 

the glacier bed (Booth et al., 2012), yet subglacial aquifers, sediment accumulations 

and permafrost can extend to much greater depths (e.g., Mikucki et al., 2015 and 

Hauck et al., 2001). Further still, inversions of isolated geophysical datasets are 

unconstrained and non-unique, with many models of the subsurface matching the 

observed dataset. Joint inversions using multiple independent datasets can constrain 

the model space, combining depth and resolution sensitivities from multiple datasets. 

Glaciological surveys often involve the acquisition of multiple geophysical datasets: 

given the typical absence of ground-truth data, imaging the target with several 

methods provides a more robust interpretation (e.g., Merz et al., 2016). However, 

these datasets are seldom combined numerically. In this paper, we provide a 

mechanism for the constrained inversion of transient electromagnetics (TEM), with 

depth constraints derived from ground penetrating radar (GPR), to provide 

geophysical insight into the structure and water characteristics of the subglacial 

environment. This method is adapted from a transdimensional Bayesian framework, 

termed ‘MuLTI’ and described in Killingbeck et al. (2018), originally applied to 
characterise subglacial sediment distribution from seismic surface wave data  

(Killingbeck et al., 2019). Here, we explore a similar concept for the TEM method.  

Time domain electromagnetic methods use electromagnetic fields to sound the 

subsurface structure. Here we use the transient time-domain method (TEM) which 

indirectly probes the subsurface resistivity structure by measuring transient eddy 

currents induced by current transmitted through either a grounded-wire, coincided 

loop or offset coil. The method has a depth sensitivity ranging from a few meters to 

kilometres, depending on the survey parameters used. Of particular relevance here is 

that electrical resistivity increases by several orders of magnitude when water in pores 

freezes (Hoekstra and McNeill, 1973), allowing resistivity methods to indicate the 

liquid water content of subsurface materials. TEM methods have been extensively 

applied for hydrogeophysical exploration to map groundwater resources (Auken et 

al., 2003), mapping permafrost on mountainous regions under debris covered glaciers 

(Hauck et al., 2001), mapping arctic permafrost in Alaska (Minsley et al., 2012), and 

more recently mapping deep saline groundwater zones in Antarctica’s Taylor Valley 
(Mikucki et al., 2015). These studies illustrate that characterising the resistivity of the 

subsurface offers a promising means of distinguishing material type and water content 

within the subglacial environment.  

In common with most geophysical inversions, such resistivity profiles are non-unique: 

many profiles fit the data within error tolerance, and smoothing is usually employed 

to recover a single solution. Early inversion techniques for TEM data included non-
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linear least squares (Barnett, 1984) and an Occam-type regularization method to 

obtain a smooth solution (Constable et al., 1987), but these were prone to being 

trapped in local minima with any large resistivity variations becoming smoothed. 

More recent inversion methods include laterally- and spatially-constrained algorithms 

to regularize the inversion and obtain solutions that agree with the expected geological 

variations (e.g., Christensen and Tølbøll, 2009; Vignoli et al., 2015; Auken et al., 

2015). Yet, these methods do not provide detailed uncertainty analysis of the 

estimated model parameters and require a fixed number of layers in the model. The 

maximum depth of investigation (DOI) is generally estimated using methods, such as 

half-space skin depth (Spies, 1989) or the Jacobian sensitivity matrix (Christiansen 

and Auken, 2012), though these do not consider the non-linear sensitivity of the DOI 

to conductivity structure. These limitations in uncertainty quantification, fixed model 

space and DOI estimation can be mitigated by transdimensional Bayesian sampling-

based inverse methods. These produce an ensemble of models from which statistical 

properties of the model parameters, including model dimensions, can be inferred 

(Mosegaard and Tarantola, 1995, Blatter et al., 2018). The computed posterior 

probability density function (pdf) provides a robust measure of DOI, highlighting 

model uncertainty at each depth (Blatter et al., 2018). To further reduce the parameter 

space and improve vertical resolution, the inversion can be constrained with 

complementary depth information (e.g., from borehole records or other geophysical 

sources), which is most useful in the case that any internal layer represents a 

discontinuity in properties to which all techniques are sensitive. 

In this paper, we derive the implementation of ‘MuLTI-TEM’ (Multimodal Layered 
Transdimensional Inversion of Transient ElectroMagnetics) and its use for 

characterising the subglacial environment. After testing the method on a synthetic 

dataset, we analyse a TEM dataset acquired on the Norwegian glacier Midtdalsbreen, 

an outlet of the Hardangerjøkulen ice cap, using complementary GPR data for 

constraining the ice thickness. Since the glacier bed represents a transition in both 

dielectric constant and electrical resistivity, the GPR depth constraint can be used 

directly in the TEM inversion. Recent results from Killingbeck et al. (2019) interpret 

the Midtdalsbreen subsurface from seismic shear wave velocity (Vs) profiles, as local 

accumulations of soft material (partially frozen glacial till) and permafrost overlying 

bedrock. Finally, we show a combined 3D interpretation of previous shear wave 

inversions (Killingbeck et al., 2019) and results output from MuLTI-TEM, and 

suggest the development of a joint resistivity-Vs depth-constrained inversion strategy.  
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5.3 Method 

5.3.1 Transient electromagnetics 

In TEM surveying, an electromagnetic field is generated by sending a periodic, 

modified square-wave, current through a transmitter coil. When the current is on, a 

static electromagnetic field is established in the ground. The electromagnetic field is 

varied by terminating the current abruptly at the first quarter-period, being reduced to 

zero for the second quarter-period, the current is then reversed for the third quarter-

period before being reduced to zero again for the final quarter-period.  This switch off 

induces eddy currents in the subsurface, initiating within the immediate vicinity of the 

transmitter then spreading downwards. The eddy currents produce a secondary 

electromagnetic field which propagates back up through the subsurface, inducing a 

current in a receiver coil located at some distance from the transmitter. The receiver 

typically measures the induced secondary electromagnetic field in the transmitter-off 

periods. The response of the subsurface is measured in terms of the decaying 

amplitude of the secondary electromagnetic field. This is recorded as a function of 

time, with later responses originating from greater depths. With regards to 

conductivity of the subsurface, the more conductive the subsurface, the larger the eddy 

currents and the larger the measured secondary electromagnetic field will be, implying 

a slower transient decay. By taking repeated measurements a sounding curve, similar 

to DC resistivity soundings, is obtained (Geonics, 1994). The measured voltages 

versus time from the receiver coil are then used to constrain the resistivity profile with 

depth. 

The maximum depth of investigation (DOI) (ℎ), in meters, can be approximated by: ℎ ≈ 0.55 (𝐼 𝐴 𝜌𝜂𝑣 )1/5
                                                                                                (5.1)                                                                                    

where 𝐼 is the transmitter current, 𝐴 is the loop area, 𝜂𝑣 is the voltage noise level and 𝜌 is the average resistivity, in Ωm, of the underlying section (Spies, 1989). Equation 
5.1 shows the transmitter loop size is an important acquisition parameter controlling 

depth of investigation. Large loop soundings (e.g., > 40x40 m), where the receiver 

coil is located in the centre of the large transmitter coil, have been conducted on thick 

permafrost regions by Rozenberg and others (1985) and Todd and Dallimore (1998). 

Our depth of target (0 - 80 m) allows for a smaller, more portable loop size to be used. 

In this study, we use an efficient 10 x 10 m loop, with the receiver 15 m offset from 

the centre of the transmitter loop (to stop electromagnetic interference with the 

receiver) shown and discussed further in section 5.4.  
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5.3.2 MuLTI-TEM 

MuLTI-TEM is a Bayesian inversion Matlab code that determines the posterior 

distribution of resistivity as a function of depth. It is adapted from the MuLTI 

algorithm (‘Multimodal Layered Transdimensional Inversion), developed for seismic 
surface wave inversions (see detailed in Killingbeck et al. (2018)).  The data input, d, 

to MuLTI-TEM are the voltages (𝑣) at each of the N timegates, measured as the mean 

recording in a stack window. The mean, through central limiting, is assumed to be 

normally distributed with a variance 𝜎2, the variance of the measurements divided by 

the number of measurements in the stack window, so that the data and uncertainties 

can be written as:  𝑑 = [𝑣1, 𝑣2 … . 𝑣𝑁]                                                                                                                                             𝜎 = [𝜎1, 𝜎2 … . 𝜎𝑁]                                                                                                 (5.2)    

The method used to find the posterior distribution of the resistivity profile  𝑝(𝑚|𝑑) ∝ 𝑝(𝑑|𝑚)𝑝(𝑚)                                                                                       (5.3)                          

is outlined below, where 𝑝(𝑚|𝑑) is the posterior probability of the model (m) given 

d, 𝑝(𝑚) is the prior information known about the model before the introduction of 

data, and 𝑝(𝑑|𝑚) is the likelihood.. A Markov Chain Monte Carlo methodology is 

used to sample the posterior distribution, traversing the space of admissible models 

with the statistics of the ensemble converging to the underlying posterior distribution, 

provided the chain of models is long enough.  

We describe the 1D variation of resistivity with depth as a piecewise constant function 

using Voronoi nuclei (see Killingbeck et al., 2018). Any available depth constraints 

separate the resistivity into different depth layers. In our case, in which constraints are 

drawn from high resolution GPR data, we consider depth constraints to be exact since 

the accuracy of GPR depth estimation is decimetre scale (Killingbeck et al., 2019), 

compared to the meter scale resolution of the TEM. Within each layer, we define a 

single confined nucleus; aside from being confined to the given layer, this nucleus is 

otherwise unconstrained in depth. The number of confined layers, l,  is equal to the 

number of layered depth constraints applied with the addition of an assumed half 

space of constant resistivity extending to infinite depth. If no depth constraints are 

applied then l = 1, corresponding to a half space. We add in an additional k nuclei in 

the model that are unconstrained in depth, termed floating.  Our transdimensional 

framework allows the data to self-determine the required number of layers k (e.g., 

Bodin and Sambridge, 2009; Bodin et al., 2012, Livermore et al., 2018), thus k is also 

an unknown that we determine.  
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The model vector, that describes the resistivity profile, is then 𝑚 =[𝑑𝑝1, 𝑑𝑝2 … . 𝑑𝑝𝑘 , log (𝑅1), log (𝑅2) … . log (𝑅𝑘), 𝑘, 𝑑𝑝𝑐1, 𝑑𝑝𝑐2 … . 𝑑𝑝𝑐𝑙 , log (𝑅𝑐1), log (𝑅𝑐2) … . log (𝑅𝑐𝑙)] 
(5.4) 

where 𝑑𝑝𝑖 are the floating nuclei depths, log (𝑅𝑐𝑖) are the base-e log of the their 

respective resistivities, 𝑑𝑝𝑐𝑖 are the confined nuclei depths and log (𝑅𝑐𝑖) are the base-

e log of their respective resistivities. In our transdimensional framework the number 

of floating nuclei (k) is a free parameter and self-determined in the algorithm.  

For the choice of prior distribution in transdimensional calculations, it is worth noting 

that usually the geophysical properties of the cells (here the resistivity) and the cell 

depths are assumed independent, allowing a simple separated analytic form for the 

prior distribution (e.g. Bodin and Sambridge, 2009). This is followed in our simplest 

geometry with no GPR constraints, for which the prior distribution on the resistivity 

is depth-independent and uniform with wide bounds on log(R) (e.g., R between 100-

105 Ωm), to convey the fact that no prior information (beyond that which can be 
reasonably assumed for typical materials) is known about the subsurface. However, 

by interpreting any GPR-derived layers as different materials (Table 5.2) with much 

more narrowed ranges of resistivity, it is clear that a broad depth-independent prior 

distribution is no longer appropriate. Here we allow the prior distribution of resistivity 

to depend on depth, by defining for each layer a different uniform distribution that 

reflects the tightened bounds from lithological information. This restricted prior 

distribution then significantly decreases the number of permissible models describing 

resistivity with depth, reducing model ambiguity from any given set of data.  In terms 

of the model parameters, the prior of the resistivity for any nucleus is given by the 

specific layer that the nucleus is within (Killingbeck et al. (2018). Although a closed 

form expression for the depth-dependent prior distribution cannot be easily 

formulated, in the algorithm only the ratios of prior distributions are needed. 

Lastly, the likelihood is defined by assuming that the measurements are normally 

distributed about values calculated from a forward model of TEM response (assuming 

a given resistivity profile) and the estimated standard deviation 𝜎, where 𝜎 is dataset 

specific and defined for each different dataset. MuLTI-TEM uses the Leroi algorithm 

of the CSIRO and AMIRA project P223F (CSIRO and AMIRA, 2019) as a forward 

modeller to compare proposed subsurface models to the observed data. The Leroi 

algorithm is written in Fortran 95 and has a wide range of electromagnetic modelling 

capabilities, for more information see Raiche (2008). We have used a simplified 

version of this algorithm and created a MEX file to call the code in Matlab from within 
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the MuLTI-TEM algorithm. See Table B1 and Figure B1, in the appendix, for detailed 

TEM survey parameters input to MuLTI-TEM, defined from the Leroi forward 

modelling algorithm. 

MuLTI-TEM numerically approximates the posterior distribution by creating an 

ensemble of models, traversing the model space and sampling the models with greater 

likelihood more often than models with a poor fit to the observed data. Provided the 

ensemble is sufficiently sampled the numerically-obtained posterior distribution will 

converge to the true posterior. This is achieved by constructing a Markov-chain, each 

model in the chain being based on the previous model but randomly perturbed, the 

size of the perturbation being controlled by the user. We thin the Markov chain by 

using every 100th model when computing the distribution statistics, which suppresses 

any localised correlations of neighbouring models and speeds up convergence. 

MuLTI-TEM produces a variety of statistics of the resistivity ensemble including, but 

not limited to: the mean and mode (the most likely) solution and 95% credible 

intervals as an estimate of its uncertainty, thus giving a profile with a quantified 

uncertainty.  

5.4 Data acquisition 

Data acquisition was performed on Midtdalsbreen, a NE-flowing outlet glacier of the 

Hardangerjøkulen ice cap in central-southern Norway (60.59ºN, 7.52ºE; Figure 5.1a) 

in April-May 2018. Midtdalsbreen is surrounded by mountains of phyllite, crystalline 

granite and gneiss suggesting this as the underlying bedrock. The glacier is well-suited 

to methodological development as it is logistically accessible, especially with multiple 

types of geophysical surveying equipment. More detailed information on previous 

glaciological and geophysical studies on Midtdalsbreen can be found in Andersen and 

Sollid 1971; Etzelmüller and Hagen, 2005; Reinardy et al., 2013, 2019; Willis et al., 

2012. 

GPR, seismic and TEM surveys were performed around and over the glacier front 

(Figure 5.1). All methods were acquired at each line highlighted, A-D, in the same 

field season. Lines B and C are located entirely on the glacier, whereas Line A shows 

no glacier ice. Line D traverses through each of Lines A, B and C and extends beyond 

the glacier terminus. At the time of acquisition, the subsurface comprised snow (2-4 

m thick) overlying a varying thickness (0-25 m) of glacier ice, and a substrate of 

unknown subglacial material. This layered interpretation is based on the interpretation 

of the GPR dataset, which also suggest that the snow and ice layers show little 

variation in any of lines A, B and C.  
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Killingbeck et al. (2019) used MuLTI to jointly interpret the seismic and GPR data, 

defining regions of partially frozen sediment and hard bedrock based on subglacial 

shear wave velocities (Vs < 1000 m/s for the former, > 2000 m/s for the latter). Figure 

5.1b shows the seismic Vs results obtained at the glacier bed along all survey lines. 

This paper focuses initially on the joint inversion of the TEM and GPR data, and 

thereafter integrates the observations with the existing Vs distributions.  

 

Figure 5.1 a) Location of Hardangerjølken ice cap in Norway and Google Earth image 
of Midtdalsbreen, survey area, with nearest sources of TEM noise (town and 
railway line) highlighted. b) Survey lines acquired during 2018 field season with 
the seismic Vs results obtained at the top rock horizon displayed. The orange 
border around (b) identifies the same area as the orange box in (a), note (b) is 
rotated away from North to enable optimal data comparison in later figures. 

TEM data were acquired with a Geonics PROTEM 47 system, consisting of a 3 

channel digital time-domain receiver, a TEM-47 battery powered transmitter and a 

3D multi-turn receiver coil. All survey parameter are listed in Table 5.1. For cross-

glacier lines A, B and C, the system was moved along the lines in 4 m intervals; for 

the longer down-glacier line D, this was increased to 8 m. Multiple survey 

configurations were initially tested at the intersection of lines B and D to determine 

the optimal survey configuration for imaging the subglacial environment at 

Midtdalsbreen. These tests comprised the following (the maximum DOI of each test 

is estimated using Equation 5.1, with voltage noise level 1 nV/m2 (Figure 5.2d) and 

average underlying resistivity range as 0.1 to 1000 Ωm):  

a) 37 m x 37 m square transmitter with receiver in centre, with estimated DOI 

110 to 680 m (Figure 5.2a) 

b) 10 m x 10 m square transmitter with receiver 15m away from centre of 

transmitter square, with estimated DOI 64 to  400 m (Figure 5.2b.) 
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c) 5 m x 5 m square transmitter with receiver 12.5m away from centre of 

transmitter square, with estimated DOI 45 to 300 m (Figure 5.2c.) 

 

 

Figure 5.2 Survey configuration testing at the intersection of B and D. a) 37m x 37m 
transmitter coil with receiver in the centre. b) 10m x 10m transmitter coil with 
receiver 15m offset. c) 5m x 5m transmitter coil with receiver 12.5m offset. d) 
Raw data acquired at the intersection of B and D (237.5Hz), from each survey 
configuration, plotted with background noise recorded with transmitter turned 
off. 

For accurate resistivity soundings, the raw signal should be above background noise 

levels (Figure 5.2d). Background noise, measured with the transmitter coil turned off, 

is considered low at Midtdalsbreen since there are no large sources of electrical noise 

e.g. power lines, buildings, roads, metal infrastructure for ~5 km (where the nearest 

town, Finse, is located, Figure 5.1). The 10 m x 10 m square transmitter (Figure 5.2b, 

Figure 5.3) was chosen as the optimum survey configuration because: 

i) it had a fast turn off time (for imaging the shallow surface), 

ii) the raw signal (received voltage) recorded was sufficiently greater than the 

background noise (Figure 5.2d), 

iii) it was easily deployed on the glacier, and could be moved rapidly between 

the points of the survey lines (Figure 5.3), and 

iv) the estimated DOI (ranging from 64 m to 400 m depending on the 

underlying resistivity) is sufficient for imaging our target depth, subglacial 

sediments below ~25 m thick ice. 
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Figure 5.3 a) Survey configuration used for acquiring lines A, B, C and D on the 
glacier. b) Image of the receiver unit on top of a rug to protect unit from snow 
and easily drag along the lines. c) Image of transmitter unit sitting in bubble-
wrap pocket used to protect unit and batteries from snow and cold.    

Table 5.1 TEM survey parameters 

Fixed Survey Parameters 

 

Transmitter coil 10 m x 10 m 

Transmitter – receiver offset 15 m 

Turn off time 0.8 us 

Gain 4 

Frequency 237.5 Hz 

Orientation of Tx and Rx 220 degrees 

Gate 20 

Integration Time 15 seconds 

Repetition Base 50 Hz 

Receiver effective area 31.4 m2 

Number of repeat readings stacked 3 

Transmitter current 2 A 
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5.5 Application of MuLTI-TEM to a synthetic dataset 

Synthetic TEM responses from a variety of models representing different possible 

glacial and subglacial structures of the Midtdalsbreen glacier were input into MuLTI-

TEM for validation (models (a)-(e) in Figure 5.4). Each model included layers of 

snow, ice, and bedrock, with models (b)-(e) also including saturated subglacial 

sediment. Each layer was populated with representative resistivities from previous 

TEM studies (Mikucki et al., 2015). Certain models were designed to test particular 

aspects of the inversion: model (b) tested the maximum DOI using our specified 

survey design and synthetic, and model (c) tested whether the inversion can resolve a 

5 m-thin layer.  

Synthetic TEM responses were calculated from the 1D block models using the Leroi 

forward modelling algorithm (Raiche, 2008), then normally distributed random noise, 

with a magnitude of 5% of the signal at each timegate, was applied to all time gates, 

a similar noise model to Blatter et al. (2018), see Figure 5.5. The simulated TEM 

survey configuration assumed a 10 m x 10 m square transmitter with receiver 15m 

away, consistent with the field acquisition. 

 

Figure 5.4 1D synthetic block models created to simulate different subsurface 
scenarios expected at Midtdalsbreen. 
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Figure 5.5 Forward modelled responses for 1D synthetic block models a-e with 5 % 
random noise applied. The lines within the circles represent the 5% error bars. 

The inversions were run using resistivity ranges shown in Table 5.2 using a maximum 

depth of 80 m, consistent with the estimated maximum DOI for this configuration. To 

highlight the benefit of additional depth constraints, MuLTI-TEM is separately run 

for an unconstrained case, and a case in which the depths of snow-ice and ice-bed 

horizons are fixed. One million iterations were sufficient for the posterior distribution 

to converge (a test of 2 million iterations produced the same posterior, some example 

test results are shown in Figure B2). Additional figures in B3 show that the modal 

model from the depth constrained inversion fits the data better than that from the non-

constrained inversion, with, in general, a lower data misfit. Multiple chains were also 

tested with one million iterations using different initial conditions. For the constrained 

case, these produced similar posterior distributions with identical interpretation, 

indicating that only one chain was needed. For the unconstrained case, the posterior 

distributions differ slightly but are nevertheless qualitatively the same, suggesting that 

the unconstrained case is not yet converged (Figure B4). More detailed inversion 

parameters used are documented in Table B2.  
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Table 5.2 Resistivity parameter boundaries used in MuLTI-TEM for the glacier 
feasibility study. 

Material Resistivity boundaries (Ωm) 

Snow 100-103 

Ice 103 - 105 

Subglacial material 100 - 105 

Non constrained material 100 - 105 

 

Posterior probability density distributions (pdf) of the synthetic resistivity profiles 

produced from MuLTI-TEM are shown in Figure 5.6. These are shown, within their 

95% credible interval, as coloured contours, where red indicates the most likely 

values. Consistent with many previous studies, both the unconstrained and 

constrained inversions indicate that the TEM method can resolve conductive 

structures much more accurately than resistive ones, highlighted by the much tighter 

pdf over the conductive sediment layer compared to the resistive ice layer. The 

unconstrained inversions (Figure 5.6a) capture a similar structure to the true model, 

but they struggle to resolve true layer depths. The simple synthetic model (a) and thick 

resistive layered model (b) are relatively well resolved, however the more complicated 

synthetic models with thin layers and large resistivity contrasts (c, d and e) are not. 

The depth-averaged resistivity errors within the subglacial layer (calculated from the 

difference of the modal and true solutions) of each synthetic non-constrained solution 

are: a) 275 Ωm, b) 14 Ωm, c) 30 Ωm, d) 21 Ωm and e) 2000 Ωm. The addition of 
depth constraints (Figure 6b) improves the match throughout. The resistivity of the 

thin snow layers and conductive sediment layers are well-resolved in all synthetics, 

with depth-averaged resistivity errors within the subglacial layer reduced to: a) 8 Ωm, 
b) 14 Ωm, c) 23 Ωm, d) 10 Ωm and e) 25 Ωm (a factor of 34, 1, 1.3, 2.1 and 80 

improvement on their unconstrained equivalents). Note, imaging beneath a 

conductive structure is difficult for the TEM method due to the attenuated signal 

(Blatter et al., 2018); however our constrained inversion results show the bottom of 

the conductive layers (in (b) – (e) to be much better resolved, i.e. to within < 10 meters.  

The TEM method is generally more sensitive to conductance (the product of 

conductivity and thickness) rather than the layer conductivity or thickness alone 

(Geonics, 1994). Therefore, modelling is challenged by a non-unique problem, for 

example with thinner more conductive layers producing a similar TEM signal to 

thicker less conductive layers. The addition of depth constraints greatly reduces this 



 

100 

 

non-uniqueness enabling more accurate solutions to be obtained at all depths. 

However, an example where this TEM inversion struggles is when a thin conductive 

layer exists above a resistive basement (Figure B6). In this example (Figure  B6 left 

panel), a thin layer 1 m thick and resistivity 1 Ωm has conductance of 1 S, equivalent 

to a 10 m thick semi-conductive layer of 10 Ωm resistivity. Inverting this synthetic 

example with depth constraints in MuLTI-TEM shows that such a thin conductive 

layer above resistive basement cannot be fully resolved even by the constrained 

inversion, appearing as a much thicker, less conductive layer.  

This feasibility study highlights the significant added value of depth constraints when 

a complex resistivity structure is expected. It demonstrates MuLTI-TEM is promising 

for the potential distributions of resistivity beneath Midtdalsbreen.  

 

Figure 5.6 Posterior distributions of resistivity determined from MuLTI-TEM 
inversion. Top: i) without depth constraints. Bottom: ii) with depth constraints. 
The models correspond to those shown in Figure 5.4a-e, highlighted by the black 
line. The colour scale represents the probability density distribution of resistivity 
within the 95% credible interval. 

5.6 Application of MuLTI-TEM to the Midtdalsbreen dataset 

5.6.1 1D resistivity profiles 

Using the data collected at Midtdalsbreen, we produced 1D resistivity profiles for the 

soundings acquired at the midpoint of lines A, B and C (Figure 5.7). Anomalous data 

points either induced by residual current still in the transmitter (at early timegates) or 
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below the background noise level (at later timegates) were removed, shown as “X” in 
Figure 5.7(ii). Inversions were run with depth constraints taken from the GPR dataset 

for the snow-ice and glacier bed interfaces (red and blue horizons, respectively, in 

Figure 5.7). The same inversion parameters were used as the synthetic study (Table 

B2), but with the maximum depth extended to 160 m to test the limit of DOI. The data 

variance (𝜎) was kept at 5% of the signal at each timegate as this was a good 

representation of the data variance of each data point calculated from the 3 stack 

recordings acquired in the field. 

Posterior resistivity distributions are shown in Figure 5.7(i), comparison of data fit 

with 200 randomly chosen forward models from the model ensemble are shown in 

Figure 5.7(ii) and posterior distribution of the number of nuclei are shown in Figure 

5.7(iii). The estimated uncertainty for the most likely solution is calculated as one-

half of the interquartile range at each depth, used due to non-normal pdfs. As is clear 

from Figure 5.7(i), conductive layers identified within the subglacial material are well 

resolved with a tight pdf and low uncertainty. However, resistive layers (e.g., ice) 

have a wide pdf with large uncertainty estimates. For example, the uncertainty of the 

resistive ice layer is typically estimated as ~ ± 104 Ωm, whereas that of the conductive 
subglacial material is ~ ± 102 Ωm. The maximum DOI can also be identified in these 

distributions, expressed where the posterior distribution extends across the prior 

resistivity boundaries applied in a given layer (Table 5.2). This is 90 m for Line A, 87 

m Line B and 76 m for Line C. 

The 1D inversions show a ~10 m-thick layer, of 102 Ωm resistivity, directly under the 
ice, underlain in turn by conductive material of 100-101 Ωm for Line B and C. In 
contrast, Line A (off the ice margin, see Figure 5.1b) shows a ~70 m-thick resistive 

layer, 104-105 Ωm, immediately beneath the snow layer, underlain by either a very 

conductive thin layer (~1 Ωm) or a conductive material that extends to greater depth 
(these cannot be distinguished as it is close to the limit of DOI).  We ensured that our 

methodology can discriminate the thick conductive layers observed in Lines B and C, 

and thin conductive layers underlain by resistive material approaching the DOI, using 

forward modelling. When compared (Figure B5) to the data at the midpoint of Line 

C, the thicker conductive model has the closest resemblance to the observed data. This 

analysis suggests a spatially varying pattern of subglacial resistivities from the front 

of the glacier up to Line C.    
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Figure 5.7 Results of the 1D soundings acquired at the midpoint of lines A, B and C 
inverted using MuLTI-TEM. i) resistivity posterior probability distributions, 
with the maximum depth of investigation (DOI) plotted as the black dotted line. 
The blue and red solid lines highlight the snow-ice and ice-material depths.   ii) 
comparison of the observed data and 200 randomly chosen forward models from 
the model ensemble. The black X’s show anomalous data points removed. iii) 
posterior distribution of number of nuclei. 

5.6.2 2D resistivity profiles 

MuLTI-TEM is used to invert multiple independent 1D soundings acquired along 

Lines A, B, C (4 m intervals) and D (8 m intervals). Again, anomalous data points 

either induced by residual current in the transmitter (at early timegates) or below the 

background noise level (at later timegates) were removed, shown as the grey regions 

in Figure 5.8 (left column). The raw signal acquired is generally above the background 

noise level for all time gates, except some anomalous points in the centre of Line A, 

corresponding with anomalous points at the NE end of Line D, highlighted in Figure 

5.8 left column.  

When using a central loop TEM survey configuration the 1D response is simply 

located at the centre of the transmitter, where the receiver is located. However, with 

an offset transmitter-receiver survey configuration, used in this study, the location of 

the 1D sounding is a subject of debate. Some place the location below the receiver 
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and others midway between the transmitter and receiver (Hoekstra and Blohm, 1990). 

The entire section between the transmitter and receiver is expected to influence the 

measurements, especially at late times as the current is diffuse. In what follows, we 

assume the 1D location of each sounding to be at the centre point between the 

transmitter and receiver, although we note subsurface conditions near the transmitter 

may have a slightly larger influence on the received voltage measure at early times, 

when the current loop radius is approximately the same as the transmitter loop radius 

and not overlapping the receiver offset position.  

Inversions were run with depth constraints supplied from snow and ice horizons 

picked from the GPR data and using the same parameters as the synthetic study. We 

verified convergence of the solutions by running another Markov-chain and 

increasing the chain length to 1.5 million iterations: all tests reproduced the same 

posterior distribution. Consistent with initial observations in the 1D analysis, the 2D 

resistivity profiles (Figure 5.8, central column) highlight a wide range of subglacial 

resistivity values, from 100 to 105 Ωm, both along- and cross- glacier profiles, however 

there are some key consistent observations between these profiles, including 

 a ~ 102 Ωm layer directly below the ice, for ice thicknesses  < 20 m (mainly 
observed in Line B), which varies in thickness,  

 a high resistive layer, 104-105 Ωm, in line A which matches line D at their 
intersection, and  

 a lowermost layer of highly conductive material, ~100-101 Ωm, that 
generally extends to the DOI 

The estimated uncertainties for the mode resistivity solutions are displayed in Figure 

5.8 (rightmost column). This reiterates previous observations made from the synthetic 

study and 1D analysis, that conductive layers identified within the subglacial material 

are well resolved by the TEM method with low uncertainty, however TEM methods 

struggle to fully resolve the more resistive layers which therefore have a larger 

uncertainty. We note that marginal uncertainties along a 2D line can also be displayed 

as a 3D probability cube, with axes representing resistivity, line distance and depth, 

and colour bar representing the probability (e.g., Ray et al., 2014). This aids 

visualisation of the Bayesian solution and its uncertainty, particularly useful when 

characterising an anomalous target from a constant background resistivity e.g., a 

subglacial aquifer or lake underlain by bedrock. 
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Figure 5.8 2D inversion outputs for Lines A-D from multiple 1D MuLTI-TEM 
inversions. Left column: received voltages input to MuLTI-TEM; central 
column: most likely 2D resistivity profiles; right column: estimated uncertainty 
(half the interquartile range of the posterior distribution). Snow and ice horizons 
are plotted in blue and red respectively. 

5.7 Interpretation and Discussion  

5.7.1 Joint interpretation of MuLTI-TEM with MuLTI seismic results 

The variability of resistivity (100 – 105 Ωm) in our TEM profiles suggests a complex 
subsurface structure, in which subglacial water may be in liquid and frozen states. 

However, the nature of the matrix – whether sediment or bedrock – cannot be 

determined from resistivity alone.  Resistivity is related to the resistivity of the pore 
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fluids divided by the fractional porosity. A commonly used approximation is given by 

Archie’s law, which states that: 𝑅 = 𝑎𝑅𝑊/𝛷𝑚                                                                                                       (5.5)                                                                                            

where R is the bulk resistivity of a saturated porous medium, Φ is the porosity, 𝑅𝑊 is 

the pore fluid resistivity and m and a are empirical quantities determined by the 

geometry of the pores (Archie, 1942). A modified version can be used for clay-mineral 

bearing subglacial sediments e.g. Kulessa et al., 2006. However, it is difficult to 

distinguish material type, such as sediment or bedrock, from resistivity alone. By 

contrast, seismic shear wave methods are sensitive to the shear modulus, or stiffness, 

of a material but are insensitive to water content. However, a combined interpretation 

of resistivity and Vs profiles can be used to define a mutually-consistent system to 

characterise the material properties and water content of the subglacial environment. 

We do this using complementary seismic data, acquired alongside our TEM 

acquisitions in 2018. 

The initial interpretation of the seismic data was presented in Killingbeck et al. (2019). 

This study excluded certain phase velocities on the grounds that they were too high 

(Figure B7); but this merit re-evaluation when compared with the co-located 

observation of high resistivity. Therefore, in this integrated interpretation, the high 

phase velocities are include, thus providing broader bandwidth dispersion curves.  

Observing trends of Vs and resistivity in our profiles, three clear patterns emerge 

within the subglacial material: 

i) zones of low Vs and low resistivity, 

ii) high Vs and high resistivity, and 

iii) high Vs with low resistivity (Figure 5.9; leftmost and centre columns). 

These patterns have been used to define 3 different material types (Table 5.3). From 

previous electromagnetic and seismic studies (e.g., King et al., 1988; Schneider et al., 

2013; Wu at al., 2017), liquid water in the pores of unconsolidated material has a low 

resistivity and low Vs (we define this as partially frozen sediment), whereas frozen 

water in pores is very resistive with a high Vs (defined as frozen sediment/permafrost). 

We assume the bedrock comprises of phyllite, crystalline granite and gneiss with a 

high Vs and high resistivity. However, the resistivity profiles show the bedrock to 

have a very low resistivity suggesting it could be highly fractured and weathered with 

saline water in the fractures. The presence of saline water can decrease the electrical 

resistivity by as much as 9 orders of magnitudes (Olhoeft, 1981). An alternative 

explanation for this high Vs, low R lithology is consolidated sediment /till rich in clay-
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minerals, although the presence of bedrock clasts and outcrops around the glacier 

foreland suggest the former. 

Table 5.3 Vs and resistivity ranges for subglacial material lithologies, used in analysis 
of both MASW and TEM. Material types have been defined from King et al., 
1988; Mikucki et al., 2015 and Killingbeck et al., 2019. 

Material Vs range (m/s) Resistivity range (Ωm) 

Partial frozen sediment/till Vs < 1600 50 < R < 500 

Frozen sediment/permafrost Vs > 1900 R > 500 

Weathered/fractured bedrock with 

saline water 

Vs > 1900 R < 50 

 

The resistivity and Vs profiles are linearly interpolated such that they have mutually 

consistent sample intervals (1 m) and depth extents (40 m). The TEM and seismic 

were acquired in the same field season along the same lines, the acquisition parameters 

were chosen so the two methods could be directly comparable. However, the location 

of each 1D TEM sounding and seismic common midpoint gather are offset by 2 m, 

therefore, we linearly interpolated and resampled both the resistivity and Vs solutions, 

originally sampled every 4 m (Line A, B and C) and 8 m (Line D), to every meter thus 

making them directly comparable. Killingbeck et al. (2019) consider abrupt lateral 

variations in the Vs profiles to be noise, and interpret the broader variation in lateral 

and vertical character as the representative velocity structure. Therefore, since the 

lateral resolution of the Vs profiles (estimated from the length of the geophone spread; 

30-40 m) is larger than that of the resistivity profiles (estimated from the horizontal 

spacing between 1D soundings; 4-8 m), we apply lateral smoothing to the Vs profiles 

during the joint analysis. After these steps, we obtain a smooth joint interpretation of 

the predicted subglacial material shown in Figure 5.9 (rightmost column) and Figure 

5.10. 

The joint interpretation shows zones of mainly sediment and thick permafrost (> 40 

m) at the front of the glacier, along line A, matching observations at the corresponding 

intersection point with line D. Note the sparse, disconnected areas identified as 

bedrock in Line A are regarded as a misallocation, potentially due to abrupt lateral 

variations in Vs which we regard as noise. Unfrozen sediment occurs directly below 

the ice at line B, with a varying thickness of 30 m at the eastern end to 5 – 10 m 

towards the western end. In contrast, a mixture of frozen and unfrozen sediment is 

observed directly below the ice at line C, typically ~ 10 m thick. Underlying the ice 
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and sediment layers in all lines is the conductive bedrock with its structure shown 

clearly in the cross glacier line, D. This also highlights a thin zone of frozen sediment 

directly under the glacier tongue, matching observations from the GPR data shown in 

Reinardy et al. (2019), suggesting there is a frozen tongue.  

 

 

Figure 5.9 Joint interpretation of Vs and resistivity profiles for lines A-D. Left 
column: modal Vs solution. Central column: modal resistivity solution. Example 
of areas with high Vs and high R is shown in Line A, low Vs and low R is shown 
in Line B and high Vs with low R is shown in Line D. Right column: estimated 
subglacial material when applying Vs and resistivity conditions of Table 5.3. 
Note the sparse, disconnected areas identified as bedrock in Line A are regarded 
as a miss-allocation. 
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Figure 5.10 i) 3-D cross-section of lines A-D, showing the subglacial material 
estimated from applying Vs and resistivity conditions stated in Table 5.3. ii) 
Depth slice through 3-D cross at the top rock horizon. iii) Depth slice through 
3-D cross-section at 38 m. 

5.7.2 Discussion  

MuLTI-TEM combines a probabilistic approach with external depth constraints to 

mitigate ambiguous, non-unique solutions found in conventional TEM inversions. It 

provides a robust quantitative uncertainty analysis of any chosen model at all depth 

levels, also providing an accurate estimate of DOI using the posterior distribution. 

The addition of depth constraints improves the characterisation of material, 

particularly beneath conductive layers and enables a faster convergence of the 

solution, as demonstrated in the synthetic study. We note other methods could be used 

to enhance the efficiency of the transdimensional inversion, potentially providing 
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better convergence rates, such as proposing the birth parameters from the prior 

(instead of a Gaussian distribution) e.g., Dosso et al., 2014. Further still, having access 

to the full posterior distribution enables subsets of the posterior model probabilities to 

be selected, testing various hypothesis about the model structure (Ray and Key, 2012). 

Nevertheless, the success of MuLTI-TEM depends fundamentally on the input data 

quality and its suitability for the specific target imaged. With TEM methods, it is often 

not possible to determine separately the conductivity and thickness, only the 

conductance (product of thickness and conductivity) can be determined. Therefore, 

thorough synthetic modelling should be undertaken before acquiring data in the field 

to determine if the survey design and time range of measurements is sufficient and 

suitable to detect specific targets.  

Although this paper focuses on the specific TEM survey design used in this study, 

ground based 10 x 10 m transmitter with receiver 15 m away, MuLTI-TEM can be 

used with most TEM datasets. The Leroi forward modelling code can be used in 

frequency or time-domain mode to model most TEM transmitter/receiver 

combinations, ground based or airborne, and needs only to be adapted to the user 

specific TEM configuration (Raiche, 2008). Equally, depth constraints are provided 

as numerical inputs and can therefore be supplied from any external source e.g., 

borehole measurements or any complementary inference from an external geophysical 

data source. In our Midtdalsbreen case study, the uncertainty in the depth constraints 

applied is negligible (decimetre-accuracy from GPR data) compared to the observed 

data uncertainty (meter accuracy from TEM), motivating us to fix the internal 

interface depths. However, there remains a finite resolution in GPR data hence we are 

considering a modification to the MuLTI-TEM code to make it compatible with 

uncertain interface depths. This would also benefit depth constraints supplied from 

more uncertain data sources, thus making MuLTI-TEM more broadly applicable. 

This paper has presented how a joint analysis of three geophysical datasets can 

increase our understanding of the material in the subsurface and provide a more 

detailed interpretation. Using GPR information as a depth constraint, we have 

combined insight from TEM and seismic shear wave methods to provide a detailed 

characterisation of the material beneath the margins of Midtdalsbreen. Critically, 

TEM data reveal hydrological properties to which the seismic analysis was 

insensitive, whereas the seismic data indicate the varying stiffness of the subglacial 

material. Future extensions of this interpretative strategy could include petrophysical 

relationships to obtain and/or guide interpretations of the volumetric proportions of 

water, ice and air in the subsurface (e.g., Hauck et al., 2008).  A further promising 

extension would be a modification to calculate the joint distribution of resistivity and 
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Vs (rather than only the marginal distributions discussed in this paper) which could 

lead to a more accurate understanding of the subsurface structure (utilizing the 

structural similarities between resistivity and seismic velocity (e.g., Wisén and 

Christiansen, 2005). Such a combined approach would also result in more detailed 

analysis of the Midtdalsbreen margin, including a probabilistic facies classification, 

leading to a framework by which aquifer properties, such as porosity, water content 

and pore fluid conductivity/salinity, beneath large ice masses could be quantified. This 

could have a direct impact on basal parameters used as input to ice-flow models for a 

better prediction of ice motion over time, and hence future sea level rise.  

5.8 Conclusions  

The material properties of the subglacial environment, in particular their water content 

and saturation, can be characterised by inferences of their resistivity, obtained from 

TEM measurements. However, conventional TEM inversions provide solutions that 

are non-unique with no quantification of uncertainty estimates in depth and resistivity. 

This paper has presented the inversion algorithm ‘MuLTI-TEM’, used to overcome 
such problems. Our method uses a transdimensional Bayesian inversion approach 

adapted from the MuLTI algorithm (Killingbeck et al., 2018), which incorporates 

independent depth constraints to limit the solution space reducing ambiguity. 

Synthetic testing of multiple different scenarios representing a small glacier underlain 

by sediment showed the addition of depth constraints greatly improves numerical 

convergence. This results in constrained solutions having a large improvement in the 

depth-average uncertainty of the output model, an average factor of 15 improvement 

on their unconstrained equivalents, with little computational power needed to obtain 

these results. 

A joint interpretation, using Vs and resistivity boundaries, of the MuLTI-TEM results 

with MuLTI seismic surface wave results, presented in Killingbeck et al. (2019), 

considers three subglacial material classifications: sediment (Vs < 1600 m/s, 50 Ωm 
< R < 500 Ωm), permafrost (Vs > 1600 m/s, R > 500 Ωm) and weathered/fractured 
bedrock with saline water in the fractures (Vs > 1900 m/s, R < 50 Ωm). Their spatial 
extent, within the Midtdalsbreen’s subglacial environment, shows a mixture of 
sediment and permafrost directly below the ice, and in the moraine at the front of the 

glacier, underlain by bedrock. 

MuLTI-TEM is highly versatile being compatible with most TEM survey designs, 

ground based or airborne, as the Leroi forward modelling code can model most 

transmitter/receiver combination, along with the depth constraints being provided 
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from any external source. This study presents novel methodologies, through MuLTI-

TEM and MuLTI, by which other glacier and ice-sheets subglacial material can be 

explored, highlighting the importance of acquiring multiple geophysical datasets for 

accurately characterising the subglacial environment. 

5.9 Code availability 

MuLTI-TEM can be found at: https://github.com/eespr/MuLTI-TEM, DOI 

10.5281/zenodo.3471638. 
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Chapter 6 Feasibility study for polar ice-sheet 

applications  

This thesis has thus far considered applications of MuLTI and MuLTI-TEM on a 

glacier with ice thicknesses < 25 m. However, the dynamically-important regions of 

Antarctica and Greenland feature much thicker ice than the Midtdalsbreen example 

presented here. For example, Siegert et al. (2018) suggest that the subglacial aquifers 

which may underlie Antarctica’s Institute Ice Stream (IIS) may be beneath 2 km of 

ice. Furthermore, subglacial water is an important consideration across a range of 

depth and time scales; while water directly at the glacier bed may influence present-

day ice dynamics, thicker subglacial aquifers may act as a reservoir for prolonging 

and potentially buffering the supply of basal water over a longer time period. 

Therefore, development of geophysical techniques which can image deep within the 

subglacial environment is vital for monitoring and mapping such reservoirs. 

In this Chapter I undertake a feasibility study for polar ice-sheet applications using 

MuLTI and MuLTI-TEM. I model different scenarios of the Institute Ice Stream, as 

presented in Siegert et al. (2018), where ice thicknesses are 2 km. 

6.1 Synthetic ice-sheet models 

Five different scenarios for IIS, based on models developed by Siegert et al. (2018), 

are constructed including:  

(a) ice sheet directly underlain by bedrock (Figure 6.1a), 

(b) ice sheet directly underlain by a high porosity, liquid groundwater, 

sedimentary basin (on top of bedrock) (Figure 6.1b), 

(c) ice sheet directly underlain by permafrost 100 m thick, on top of sediment and 

basement (Figure 6.1c). 

(d) ice sheet directly underlain by permafrost 500 m thick, on top of sediment and 

basement (Figure 6.1d). 

(e) ice sheet directly underlain by permafrost 1000 m thick, on top of sediment 

and basement (Figure 6.1e). 

Each layer is matched with the resistivity parameters defined in Siegert et al. (2018) 

and elastic parameters typical of each material (Chapter 4; King et al., 1988; Peters et 

al., 2008). Rayleigh wave and TEM synthetics are created from these models and 

inverted using MuLTI and MuLTI-TEM, with the depth constraint of the 2 km ice 

thickness (as could be defined from, e.g., low-frequency radar sounding; Siegert et 
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al., 2016), to assess their reliability at recovering the true models, within the deep 

subglacial environment.  

 

Figure 6.1 1-D synthetic models of different scenarios of the Institute ice stream, 
Antarctica, as presented in Siegert et al. (2018), with elastic and resistivity 
parameters typical of each material.  

6.2 Feasibility of resolving Vs structure from Rayleigh waves using 

MuLTI 

Synthetic Rayleigh wave dispersion curves were simulated using the modelling 

algorithm mat_disperse, for all 1-D models shown in Figure 6.1. The mat_disperse 

function solves the eigenvalue problem for Rayleigh waves in an elastic vertically 

heterogeneous halfspace and returns the modal phase velocities (Rix and Lai, 2003). 

The DWM method, described in Chapter 3 and 4, was not used, as this generates a 

full synthetic waveform based on MASW acquisition which would have to be 

converted to a dispersion curve.  Here, the frequency information is used directly 

aiming to characterise the frequency ranges needed to resolve the Vs structure under 

thicker ice (2km).  

Synthetic dispersion curves were generated from 0.01 Hz to 2 Hz, shown in Figure 

6.2. Frequencies greater than 2 Hz are dominated by the ice velocity only, and 

therefore do not provide any extra information in the inversion for characterising the 

subglacial structure. In all models with a complex velocity structure and a low velocity 

zone, (b-e), multiple higher order modes dominate at frequencies > 0.5 Hz. The 

dispersion curves are also plotted with an approximate depth range, using the 1/3 
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wavelength approximation (Gazetas 1982), in Figure 6.2. This highlights that the 

lowest resolvable layer thicknesses are limited to ~ 500 m.      

The dominant curve from either the fundamental or two higher order modes were used 

as input to MuLTI. This was to avoid higher order mode ambiguities at relatively high 

frequencies, shown in Chapter 3. The parameters listed in Table 6.1 were assigned, 

described in Chapter 3, and posterior distributions of Vs were derived using MuLTI. 

Figure 6.3 shows the results from the Vs inversions for all synthetic models a-e. The 

simplest 2 layer synthetic model ((a) ice-basement) has a Vs structure recovered 

accurately, with mode solution 0.1 % within the true model. The 3 layer synthetic 

model ((b) ice-sediment-basement) has a Vs structure also recovered well, with mode 

solution 6.6 % within the true model, and identifies the unconstrained sediment-

basement boundary to +/- 160 m. However, the added permafrost layer in models c-e 

is not recovered well. The 100 m permafrost layer, model c, is too thin to even be 

identified (the thinnest resolvable layer is ~ 500 m, Figure 6.2), yet the inversion still 

identifies the unconstrained sediment and basement layers, accurate to +/- 10 %. 

Inversions of models d and e have a large uncertainty range of +/- 1050 m/s, calculated 

from the 95 % credible interval, between 2 km and 4 km (which includes the 

permafrost and sediments layers).  Their mode solutions are  22 % (model d) and 36 

% (model e) to within the true model, note the 1000 m permafrost synthetic inversion 

does identify a high velocity layer directly under the ice. However, these solutions are 

not fully converged, highlighted by the posterior distribution of number of nuclei, and 

therefore need to be investigated further by running more chains and testing different 

inversion parameters.  
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Table 6.1 Inversion parameters used in MuLTI (MuLTI-TEM) for synthetic tests a-e 
in Figure 6.1. 

Inversion parameters 

Maximum Depth 4500 m 

Number of floating nuclei 50 

Burn in 10000 

Number of iterations 500000 

Number of chains 3 

σchange, σmove, σbirth 200 m/s (2) , 500 m, 400 m/s (2) 

Number of layers 2 

Material Resistivity prior 

boundaries (Ωm) 

Density 

(g/cm3)  

Vp (m/s)  Vs (m/s) prior 

boundaries 

Ice 5x103 – 5x105  0.92 3810 1700-2000 
Rock 1 – 5x104 2.3 3800 500-2800 
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Figure 6.2 Dispersion curve analysis for synthetic models a – e, Figure 6.1, simulated 
using the modelling algorithm mat_disperse. Panel e shows the depth resolution 
(and so also the sounding depth), estimated using the one third wavelength 
approximation. 
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Figure 6.3 Results of synthetic models a - e inverted using MuLTI with fixed depth 
constraints at base-ice, 2 km. i) Vs posterior probability distributions with the 
true model plotted in the black dashed line and mode solution plotted in the 
black solid line. ii) Comparison of the observed data with the forward model of 
the best fitting ensemble model. iii) Posterior distribution of number of nuclei.   

6.3 Feasibility of resolving resistivity structure from TEM using 

MuLTI-TEM  

Key and Siegfried in 2017 showed for ice thicknesses > 1000 m airborne EM systems, 

previously used in Antarctica, would be poor at measuring the subglacial environment 

as the differentiating signal from the subglacial material would be below the system 

noise level. However, ground based systems can have a much larger loop size (up to 

2000 m), than what is practically possible for helicopters (~ 22 m), therefore, the 

system noise floor is much smaller, e.g., a loop with an order of magnitude larger area 

would result in a noise floor ten times smaller. They suggest that ground-based TEM 

soundings made with powerful antennas could be useful for mapping subglacial 

conductivity beneath thick ice.  

Therefore, synthetic TEM soundings were simulated with 1000 m x 1000 m 

transmitter loop, 10 Amps current and 3 Hz transmitter waveform frequency, using 
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the Leroi forward modelling algorithm (Raiche, 2008), for all models shown in Figure 

6.1. The inversion parameters listed in Table 6.1 were assigned and MuLTI-TEM was 

run with depth constraints applied at the base of the ice, 2 km. 

The results are shown in Figure 6.4. The simplest 2 layer synthetic model ((a) ice-

basement) resistivity structure is recovered accurately, with mode solution 2.4 % 

within the true model. For the sediment layer in model b, resistivity value is recovered 

well, with mode solution 0.6 % within the true model, however the unconstrained 

sediment-basement boundary (from 10 to 100 Ωm) is not detected at 4 km, this occurs 

also for models c and d. Yet, the added permafrost layers in models c-e are identified 

and resolved in the inversion, with mode solution 39 % (c), 44 % (d) and 41 % (e) 

within the true model. Model e is the only model to detect a resistivity increase near 

the unconstrained sediment-basement boundary, +/- 300 m within the true model 

boundary. 

 

 

Figure 6.4 Results of synthetic models a - e inverted using MuLTI-TEM with fixed 
depth constraints at base-ice, 2 km. i) resistivity posterior probability 
distributions with the true model plotted in the black dashed line and mode 
solution plotted in the black solid line. ii) comparison of the observed data with 
the forward model of the best fitting ensemble model. iii) posterior distribution 
of number of nuclei.   



 

123 

 

6.4 Outlook for Antarctic and Greenland applications 

6.4.1 Summary of feasibility study 

Here, I have completed a preliminary feasibility study to understand some of the 

strengths and limitations using the MuLTI and MuLTI-TEM methods, by modelling 

similar structures for IIS as predicted in Siegert et al. (2018).  Low frequency (< 2 Hz) 

dispersion curves from Rayleigh waves can resolve large scale (> 1 km) Vs structure 

under 2 km ice; all inversions detected the unconstrained sediment-basement 

boundary at 4 km depth. However, the inversions struggled to resolve Vs structures 

less than 1 km thick, highlighted in the permafrost models. On the other hand, TEM 

soundings from a high power system can recover smaller scale (< 1 km) resistivity 

structure under 2 km ice, the inversion of synthetic model c detected a permafrost 

layer only 100 m thick. However, the deeper unconstrained sediment-basement 

boundary (at 4 km) was not detected in most models. This highlights that Rayleigh 

wave dispersion curves and TEM soundings have different resolution sensitives, but 

that these are mutually complementary. Large scale structure can be identified using 

surface waves, whereas the smaller scale detail directly under the ice can be resolved 

with TEM. Such imaging could reconcile interpretative ambiguities in reflection 

seismic interpretations, e.g., Booth et al. (2012).  

The next step in this study would be to test many more synthetic models, representing 

different ice thicknesses, subglacial material layer thicknesses and properties, and 

bedrock properties, to further test the resolution and limitation of each technique.  

For MuLTI, further work could include passive seismic studies and the ability to 

resolve the dominant fundamental and higher order modes. Simulated receiver 

locations and sources could be used to find the optimum survey design for different 

subsurface models. Furthermore, the effect of anisotropic ice fabric on the seismic 

waves should be considered and modelled (e.g., Smith et al., 2017). 

For MuLTI-TEM, a better understanding of the background electrical noise levels, 

expected from the data acquisition environment, should be sought and used for 

synthetic tests (as detailed in Key and Siegfried (2017)), including testing different 

transmitter loop sizes and current. This will provide a better understanding of how 

long one can realistically measure (late time measurements) before the signal is below 

the background noise level.  

6.4.2 Potential seismic sources and TEM systems used on polar ice sheets 

This feasibility study shows how MuLTI and MuLTI-TEM can be used to identify 

subglacial structure under 2 km thick ice. Both techniques rely on appropriate 
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frequency sampling of the data, (and power output in the TEM case) to enable them 

to resolve the targeted subglacial structure. 

When seismic signals are coherent across a passive seismic recording network, array 

techniques can be used to calculate phase velocities of incoming waves (e.g., Rost and 

Thomas, 2002). Walter et al. (2015) used glacier seismicity and a match-field 

processing technique to obtain frequency-dependent phase velocity measurements on 

the Greenland ice sheet, with bandwidth 1 – 6 Hz. Diez at al. ( 2016) analysed 

Rayleigh wave dispersion curves (with bandwidth 4 - 18 Hz) on Antarctica’s Ross ice 

shelf, using ambient seismic noise, by beamforming the passive-source seismic array 

data to obtain the main propagation direction of the surface waves. However, these 

frequency ranges are not low enough to penetrate under 2 km of ice. Here, in my 

example, frequencies < 2 Hz are sensitive to the subglacial environment, which in turn 

causes problems resolving layer thicknesses < 1 km. This low frequency range could 

most likely be generated from regional earthquake sources (Qian et al., 2019), volcano 

tectonic earthquakes (McNutt et al., 2015) and primary and secondary microseisms 

(Chevrot et al., 2007).  

For TEM, to image deeper features requires a low frequency transmitter waveform 

(providing longer time measurements) and large current and transmitter loop 

(Equation 5.1). The Geonics TEM47 system, used in Chapter 4, is appropriate for 

shallow resistivity soundings down to 150 m and can use transmitter loops sizes 5 m 

to 100 m with current 1 to 3 Amps, ideal for the Midtdalsbreen case study. However 

in this Chapter, the Geonics TEM67 system is simulated for a deep resistivity 

sounding. The TEM67 is appropriate for resistivity soundings greater than 1000 m 

and can use transmitter loops sizes up to 2000 m with a maximum current of 25 Amps. 

In summary, for these methods to be used successfully on thick ice sheets in 

Antarctica or Greenland, some of the key survey requirements are listed below.   

For surface wave seismic:  

 broadband seismometers which can measure the frequency range required, 

 deployed in an array suitable for measuring wavelengths appropriate for the 

targeted depth. Where the array length should be at least equal to the maximum 

desired wavelength, which approximately corresponds to three times the 

desired investigation depth (Foti et al., 2018; Gazetas 1982), 

 synthetic testing to model different array sizes and wavelengths recovered,  

 a low frequency source which generates frequencies compatible for targeting 

depths under the ice thickness, e.g., primary and secondary microseisms 

(Chevrot et al., 2007). 



 

125 

 

For TEM:  

 a powerful TEM system (e.g., Geonics TEM67), 

 large transmitter loop and current. In this example 1000 x 1000 m was used,  

although a smaller loop with multiple turns can reproduce the same moment, 

providing a more efficient survey design.  

 synthetic testing to model different transmitter loop sizes and current, 

including an estimate of background electrical noise levels expected from the 

data acquisition environment (generally low on thick ice sheets).  
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Chapter 7 Discussion 

In this chapter, I first consider the current strengths and limitations of the MuLTI and 

MuLTI-TEM framework. I then discuss potential methodologies to directly combine 

these datasets in a joint R-Vs inversion/interpretation. Finally, further MuLTI 

developments are proposed, which address some of the current limitations of the 

framework, in particular, with regards to fixing and estimating unknown parameters.  

A summary of all MuLTI methods presented in the thesis so far, and in this discussion 

chapter, are detailed in Table 7.1. This lists the family of MuLTI techniques in a 

hierarchy of increasing complexity, starting with: the simplest MuLTI and MuLTI-

TEM (Chapter 3 and 5), MuLTI III  then introduces Vp and density from a prescribed 

distribution (Section 7.3.1), MuLTI IV considers the effect of uncertain layer depths 

(Section 7.3.2) and finally MuLTI MASW+TEM considers a probabilistic joint R-Vs 

inversion (Section 7.2). All these developments will be discussed in this chapter. 

Table 7.1 Summary table of all MuLTI methods presented and discussed in the thesis.  

 

Method 

Choice of prior distribution Posterior 

PDF output 
Vs Vp Density R Layer 

depths 

MuLTI Uniform Single 

value 

Single 

value 

- fixed Vs 

MuLTI-

TEM 

- - - Uniform fixed R 

MuLTI III Uniform Prescribed 

distribution 

Prescribed 

distribution 

- fixed Vs, Vp, density 

MuLTI IV 

(TEM)  

Uniform Prescribed 

distribution 

Prescribed 

distribution 

(Uniform) Prescribed 

distribution 

Vs, Vp, density, 

(R) layer depths 

MuLTI 

MASW+ 

TEM (joint 

R-Vs 

inversion) 

Uniform Prescribed 

distribution 

Prescribed 

distribution 

Uniform Prescribed 

distribution 

Vs, Vp, density, 

R, layer depths, 

facies 

classifications, 

petrophysical 

interpretations 

(e.g., fw, fi and 

fair) 
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7.1 Development of the Bayesian framework: strengths and 

limitations 

The MuLTI Bayesian framework is easily adaptable to multiple different geophysical 

methods. In this thesis, I have presented MuLTI for the inversion of Rayleigh wave 

dispersion curves and MuLTI-TEM for the inversion of TEM soundings, to obtain 

posterior distributions on Vs and R structure of the subsurface. It could also be 

developed for (for example) seismic refraction methods (e.g., Montgomery et al., 

2017) and electrical resistivity tomography methods (e.g. Andersen et al., 2003). 

The Bayesian formulation within MuLTI is employed to produce a PDF of the 

posterior distribution enabling access to the whole ensemble of models. This allows 

multiple outputs, e.g., average, mode, and a variety of marginal posterior distributions, 

to be examined to provide a comprehensive uncertainty analysis. Further still, having 

access to the full posterior distribution enables subsets of the posterior model 

probabilities to be selected, making it possible to test various hypothesis about the 

model structure (Ray and Key, 2012). Along a 2D line, marginal uncertainties can be 

displayed as a 3D probability cube, with axes representing subsurface property, line 

distance and depth, and colour bar representing the probability (e.g., Ray et al., 2014). 

This aids visualisation of the Bayesian solution and its uncertainty, particularly useful 

when characterising an anomalous target from a constant background e.g., a 

subglacial aquifer or lake underlain by bedrock.  

MuLTI adopts a transdimensional reverse jump approach, in which constraints for 

internal interface depths, provided numerically from external datasets, narrow the 

model space. For the choice of prior distribution required in the Bayesian 

transdimensional calculations, most authors assume that the prior subsurface structure 

is depth independent so that the prior PDF analytically separates completely into its 

constituent parts (e.g. Bodin & Sambridge, 2009). This is followed in the simplest 

geometry considered in this thesis in which no depth constraints are applied. However, 

as shown in Equation (3.7) such a depth-independent form is in fact not necessary and 

the prior distribution on the model (where the model includes both the depth and 

geophysical property value for each nucleus) can be written in terms of conditional 

probabilities. In this formulation, the prior distribution is completely specified (but 

does not have a straightforward analytic form) and the usual transdimensional 

methodology can be applied. 

In the case studies discussed in Chapters 4 and 5, the uncertainty in the depth 

constraints applied is small compared to the observed data uncertainty (e.g.,  

decimetre-scale depth accuracy from GPR data, vs. meter-scale accuracy from seismic 
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and TEM), motivating  the internal interface depths taken to be fixed. Yet, this may 

not be the case for depth observations from other external datasets, for example 

seismic reflection (Anandakrishnan et al., 1998) and refraction data (Montgomery et 

al., 2017), therefore further development to add uncertainty bounds in depth constraint 

should be considered (Section 7.3.2).  

MuLTI and MuLTI-TEM solve for structure in depth only. In Chapters 4 and 5, this 

has been extended to two spatial dimensions by running multiple 1-D inversions along 

the lines acquired at Midtdalsbreen. For MuLTI-TEM, each TEM sounding is 

recorded at single surface points along the line, therefore the inherent lateral resolution 

of MuLTI_TEM, extended to 2-D, is mainly driven by the measurement spacing. 

However, for MuLTI, the dispersion curve picked from CMPCC gathers (along a 2-

D seismic line) represent an average of the geophone spread and assumes the 

subsurface directly beneath is horizontally homogeneous. This causes lateral smearing 

along the line, where the horizontal resolution is as large as the CMP spread length. 

Therefore, in Chapter 4 offsets of the CMPCC gathers are limited to minimise lateral 

smearing, although this reduces the resolution of the dispersion curves picked, 

especially at the low frequencies, highlighted in the test field campaign (Chapter 2). 

With current advances in 2-D and 3-D seismic modelling algorithms (e.g., Zhang et 

al., 2019; Cao et al., 2019), the development of a 2-D implementation of MuLTI could 

circumvent this limited lateral resolution issue. 

The benefits gained from using a Bayesian sampling-based method comes at the price 

of significant computational cost. For each 1D inversion of MuLTI and MuLTI-TEM 

needed 1 million iterations for the posterior distribution to converge. Furthermore, if 

no depth constraints are applied, multiple chains are also required to prevent the 

unconstrained solution converging to a local minima. The speed of each iteration 

depends fundamentally on the speed of the forward model computation and the 

number of nuclei chosen in that iteration, with more nuclei taking longer, for example: 

a single iteration using MuLTI (gpdc forward modelling algorithm) takes 0.001 

seconds with 2 fixed nuclei and 0.065 seconds with 22 fixed nuclei. Therefore, one 

million iterations can take between ~5 and ~20 hours, which is also very similar for 

MuLTI-TEM. This could be reduced further by breaking down the one million 

iterations, for example, into 5 chains of 200000 iterations and using parallel 

computing constructs to run the chains in parallel (e.g., the use of 5 processing cores 

would reduce the time by a factor of 5). Other methods could also be used to enhance 

the efficiency of the transdimensional inversion, potentially providing faster and 

better convergence rates, such as proposing the birth parameters from the prior 

(instead of a Gaussian perturbation from the current model) e.g., Dosso et al. (2014).  
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In the following sections, I discuss some strengths and limitations specific to the 

MuLTI and MuLTI-TEM algorithms.  

7.1.1 MuLTI 

Although this thesis focuses on Rayleigh wave dispersion curves derived from active 

source seismic data, with high-frequency sources and shallow depth penetration, 

MuLTI can be equivalently applied to dispersion curves from passive sources (e.g., 

Walter et al., 2014; Picotti et al., 2017). The Geopsy forward modelling code, used in 

MuLTI, has the capability to model dispersion curves with frequencies <1 Hz. MuLTI 

would allow such data to be inverted with depth constraints drawn from, for example, 

radio-echo sounding datasets. Chapter 6 presented a feasibility study for imaging 

deeper targets, specifically under polar ice sheets 2 km thick, using low frequency 

(0.01 - 2 Hz) dispersion curves. This study showed that large scale (> 1 km) Vs 

structure, under 2 km ice, can be resolved to within 6 % of the true model, however 

layers < 1 km thick proved more difficult to resolve, with results to within 36 % of 

the true model.  

A potential criticism of the methodology is that it only inverts for Vs while holding 

Vp and density constant throughout. A further development of the algorithm would be 

to also consider inverting simultaneously for Vp and density. In addition to the 

increased computational cost of solving for two extra unknowns, there may be too 

many solutions in the model space which fit the data within its tolerance, so the 

uncertainties may be too large to be useful. In MuLTI, by deriving material-layer 

boundaries I am able to fix Vp and density appropriately in each layer according to 

the material expected. This is an improvement from inversions that have no defined 

layers, with Vp and density fixed throughout the model space (e.g. Hayashi, 2012). A 

further improvement is to use a prior distribution for both Vp and density that is far 

more refined (and possibly depth-dependent) than the uniform distribution adopted in 

MuLTI. This has been implemented in MuLTI III, discussed further in section 7.3.1.       

7.1.2 MuLTI-TEM 

MuLTI-TEM is compatible with any ground-based TEM survey design parameters. 

Chapter 6 presented a feasibility study for imaging under polar ice sheets 2 km thick 

using a simulated powerful TEM system with 1000 m x 1000 m transmitter loop, 10 

Amps current and 3 Hz transmitter waveform frequency. This study showed TEM can 

recover smaller scale (< 1 km) resistivity structure under 2 km ice, detecting layers as 

thin as 100 m. However, the inversion struggled to detect the deeper sediment-

basement boundary, at 4 km, in most models. 
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Furthermore, the original Leroi forward modelling code, developed in Fortran 95 

(Raiche, 2008), can be used in frequency or time-domain mode to model most EM 

transmitter/receiver combinations, ground based or airborne. Such surveys include, 

for example, (i) moving loop surveys with one or more magnetic dipole receivers 

moving at fixed horizontal offsets with respect to a rectangular loop, (ii) surface 

magnetic dipole-dipole surveys, (iii) coincident loop surveys, (iv) borehole magnetic 

dipole-dipole surveys and (v) CSAMT (controlled source audio magnetotellurics). 

The configuration in the Leroi code used can be adapted to the user’s specific EM 
configuration in MuLTI-TEM. 

The success of MuLTI-TEM depends fundamentally on the input data quality and its 

suitability for the specific target imaged. In general, with TEM methods, it is often 

not possible to determine separately the conductivity and thickness, only the 

conductance can be determined. Therefore, synthetic modelling along with in-field 

survey design testing for the recovery of a 1-D subsurface profile (Chapter 5) should 

be completed to determine if the survey design and time range of measurements are 

sufficient. 

7.2 Joint R-Vs inversion strategy 

Although the MuLTI and MuLTI-TEM frameworks integrate different data types in 

constrained inversions, it would be valuable to integrate MASW and TEM datasets 

into a fully-coupled joint inversion (MuLTI MASW+TEM). In this section, I firstly 

discuss a methodology for presenting the facies classifications (of Chapter 5) of the 

subglacial environment in a probabilistic manner, using the joint probabilistic outputs 

of Vs and R, from MuLTI and MuLTI-TEM. I then apply a petrophysical inversion, 

using derived petrophysical relationships which directly combine R and Vs to obtain 

the volumetric proportions of water, ice and air in the subsurface.  

7.2.1 Probabilistic facies classification 

The Midtdalsbreen facies classification shown in Figure 5.9 and 5.10, and defined in 

Table 5.3, uses the mode solutions of Vs and R individually, to identify the different 

facies in a relatively qualitative sense. It is possible to combine the facies 

classification in a probabilistic manner but, for this, the joint probability distribution 

of Vs and R is needed. If I assume Vs and R were independent variables, the normalised 

PDFs for Vs and R may be combined, by calculating the product, 𝑃(𝑉𝑠 = 𝑣𝑠 𝑎𝑛𝑑 𝑅 = 𝑟) = 𝑃(𝑉𝑠 = 𝑣𝑠). 𝑃(𝑅 = 𝑟)                                                    (7.1) 
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for all Vs and R (an example of this analysis is shown in Figure 7.1). However, 

although I can readily calculate the mode of this distribution to assess the facies 

classification, the uncertainty (however quantified) is a numerical value which is 

difficult to translate into a probability of miss-classification. Also realistically, Vs and 

R are not independent variables with depth, as they both depend on the same 

underlying subsurface structure. The joint probability density function 

(𝑓𝑉𝑠,𝑅(𝑣𝑠, 𝑟)) for two continuous random variables is given by, 𝑓𝑉𝑠,𝑅(𝑣𝑠, 𝑟) =  𝑓𝑅|𝑉𝑠(𝑟|𝑣𝑠)𝑓𝑉𝑠(𝑣𝑠) =  𝑓𝑉𝑠|𝑅(𝑣𝑠|𝑟)𝑓𝑅(𝑟)                                            (7.2) 

where 𝑓𝑅|𝑉𝑠(𝑟|𝑣𝑠) and 𝑓𝑉𝑠|𝑅(𝑣𝑠|𝑟) are the conditional distributions of R given Vs=𝑣𝑠 

and of Vs given R=r. Currently, I do not have access to these conditional distributions 

but only to the marginal distributions for each separate variable, 𝑓𝑉𝑠(𝑣𝑠) and 𝑓𝑅(𝑟). A 

direct joint Vs-R Bayesian inversion would provide an estimate of this joint 

probability distribution and output the facies classifications in a probabilistic manner.  

This probabilistic facies classification could be achieved by sampling models 

populated with both elastic and resistivity parameters and combining the likelihood 

functions from the seismic and TEM forward models, e.g., Hou et al. (2006). The 

model vector would therefore be given by, 𝑚 = [𝑑𝑝1 … , 𝑑𝑝𝑘 , 𝑉𝑠1 … , 𝑉𝑠𝑘, 𝑅1 … , 𝑅𝑘 , 𝑘, 𝑑𝑝𝑐1 … , 𝑑𝑝𝑐𝑙 , 𝑉𝑠𝑐1 … , 𝑉𝑠𝑐𝑙 , 𝑅𝑐1 … , 𝑅𝑐𝑙]    (7.3) 

where dp is the depth of each nucleus, k is the number of unconfined nuclei and l is 

the number of confined (c) nuclei, as described in Chapter 3. Forward modelling of 

the seismic dispersion curve g1, using the models’ elastic parameters and the gpdc 

algorithm, and TEM response g2, using the models’ resistivities and Leroi algorithm, 

can be combined to estimate the joint Vs-R likelihood probability 𝑝(𝑑|𝑚). Since the 

seismic and TEM techniques are sampling different geophysical properties (seismic 

wave velocity and resistivity), I can consider them independent (Hou et al, 2006). 

Thus, the joint Vs-R likelihood probability is given by, 𝑝(𝑑|𝑚) = 𝑝1(𝑑1|𝑚). 𝑝2(𝑑2|𝑚)                                                                                (7.4) 

where 𝑑1 = 𝑔1(𝑚) +  𝜀1 and 𝑑2 = 𝑔2(𝑚) +  𝜀2 represents the observations of the 

seismic surface waves and TEM responses (𝜀 denotes the difference between 

observations and forward model responses), respectively. I assume the probability of 

the ith datum PVi(fi) and Ri(ti) is normally distributed about the nearest modal value, 

cgpdc(fi) and cLeroi(ti), at frequency fi and time ti, with standard deviation σPVi(fi) and 

σRi(ti), respectively. Assuming that each datum for the seismic (indexed by i = 1, 2… 
Ndata) and TEM (indexed by j = 1, 2… Mdata) datasets is independent, the likelihood 𝑝(𝑑|𝑚) of the joint Vs-R model m is then proportional to: 
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∏ 𝑒−(𝑃𝑉𝑖− 𝑐𝑔𝑝𝑑𝑐(𝑓𝑖))22𝜎𝑃𝑉(𝑓𝑖)2𝑁𝑑𝑎𝑡𝑎𝑖=1  .  ∏ 𝑒−(𝑅𝑗− 𝑐𝐿𝑒𝑟𝑜𝑖(𝑡𝑗))22𝜎𝑅(𝑡𝑗)2𝑀𝑑𝑎𝑡𝑎𝑗=1                                                     (7.5)  

The prior information for Vs, R and any depth constraints can be input and applied in 

the same way as described in Chapter 3. During sampling of the posterior distribution, 

using the MCMC algorithm, at each step, a new model m  can be proposed that differs 

from the current model by one of five perturbations, which depends on a set of user 

specified parameters (σchangeVs, σchangeR, σmove, σbirthVs and σbirthR) whose values affect 

the speed of convergence to the posterior distribution, i.e.: 

 change Vs: same as MuLTI, defined in Chapter 3. 

 change R: perturb the resistivity of a randomly chosen nucleus by a random 

amount distributed as N(0,σchangeR
2 ). 

 move nucleus: same as MuLTI, defined in Chapter 3. Note, Vs and R stay the 

same for the randomly chosen nucleus. 

 birth: add a floating nucleus to the existing model whose depth is uniformly 

distributed U[0, dpmax] and whose Vs is distributed N(Vs, σbirthVs
2 ), where Vs 

is the value of Vs based on the current nuclei distribution, and R is distributed 

N(r, σbirthR
2 ), where r is the value of R based on the current nuclei distribution. 

 death: same as MuLTI, defined in Chapter 3. 

Each proposed model would be tested to see if it satisfies a certain acceptance 

criterion, shown in Equation 3.8, with all accepted models (including prior models 

when a proposed model is not accepted) added to the model ensemble. The facies 

classifications, detailed in Table 5.3, can also be applied to all models in the chain and 

added to an ensemble of facies classifications. This methodology would provide a 

posterior distribution of Vs, R and the facies classification, all with the same model 

space (in depth) and posterior distribution of number of nuclei.  
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Figure 7.1 Left column: Facies classifications for lines A-D at Midtdalsbreen 
(Chapter 5), colour bar on the left. Right column: joint probability of Vs and R 
calculated from the product of the normalised PDF values (Equation 7.1), 
assuming Vs and R are independent. Note this is calculated for the subglacial 
material only with colour bar on the right. 
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7.2.2 Petrophysical interpretation 

In this joint approach, petrophysical relationships are derived, from seismic velocity 

and resistivity empirical relationships, to obtain and/or guide interpretations of the 

volumetric proportions of water, ice and air in the subsurface. Here, the four-phase 

model of Hauck et al. (2011) is applied, to determine the volumetric fractions of rock 

(𝑓𝑟), water (𝑓𝑤), air (𝑓𝑎) and ice (𝑓𝑖) of the Midtdalsbreen subglacial environment. This 

model is based on geophysical mixing rules for electrical resistivity (Archie 1942) 

(Equation 7.6) and an extension of the time-averaged formula for seismic P-wave 

velocities, Vp, (Timur 1968) (Equation 7.7): 𝜌 = 𝑎𝜌𝑤Φ−𝑚𝑆𝑤−𝑛                                                                                                      (7.6) 1𝑉𝑝 =  𝑓𝑤𝑉𝑤 + 𝑓𝑟𝑉𝑟 + 𝑓𝑖𝑉𝑖 + 𝑓𝑎𝑉𝑎                                                                                                (7.7) 

using Φ = 1 − 𝑓𝑟 and  𝑆𝑤 = 𝑓𝑤 Φ⁄  and assuming 𝑓𝑤 + 𝑓𝑟 + 𝑓𝑖 + 𝑓𝑎 = 1                                                                                                (7.8) 

equations for the ice-, water- and air content can be written as 𝑓𝑖 = 𝑉𝑖𝑉𝑎𝑉𝑎−𝑉𝑖 [ 1𝑉𝑝 − 𝑓𝑟𝑉𝑟 − 1−𝑓𝑟𝑉𝑎 + (𝑎𝜌𝑤(1−𝑓𝑟)𝑛𝜌(1−𝑓𝑟)𝑚 )1 𝑛⁄ ( 1𝑉𝑎 − 1𝑉𝑤)]                                            (7.9) 

𝑓𝑎 = 𝑉𝑖𝑉𝑎𝑉𝑖−𝑉𝑎 [ 1𝑉𝑝 − 𝑓𝑟𝑉𝑟 + 𝑓𝑟−1𝑉𝑖 − (𝑎𝜌𝑤(1−𝑓𝑟)𝑛𝜌(1−𝑓𝑟)𝑚 )1 𝑛⁄ ( 1𝑉𝑤 − 1𝑉𝑖)]                                         (7.10) 

𝑓𝑤 = (𝑎𝜌𝑤(1−𝑓𝑟)𝑛𝜌(1−𝑓𝑟)𝑚 )1 𝑛⁄
                                                                                               (7.11) 

where 𝜌 and 𝜌𝑤  are the electrical resistivities (Ωm) of the bulk material and the pore 

water, Φ is the porosity, Sw is the water saturation, n, m and a are empirical constants, 

and Vp, Vw, Vr, Vi and Va are the seismic P wave velocities (m/s) of the bulk material, 

water, rock, ice and air. In general, the empirical constants and material properties (n, 

m, a, 𝜌𝑤, Vw, Vr, Vi and Va) can be estimated from laboratory results and literature (e.g. 

Hauck and Kneisel, 2008; Kneisel et al., 2008; Hauck et al., 2011). Provided R, Vp 

and a suitable porosity model can be derived or estimated for the subsurface,  ice- (𝑓𝑖), 
air- (𝑓𝑎) and unfrozen water content (𝑓𝑤) can be explicitly computed using Equations 

7.6, 7.7 and 7.8.  

In this section, the petrophysical analysis is applied to the Midtdalsbreen subglacial 

material, where Vs and R solutions have been derived from MuLTI and MuLTI-TEM, 

Chapters 4 and 5. Here, an estimated Poisson’s ratio is used to approximate Vp from 

the derived Vs, however further developments of MuLTI (presented in Section 7.2.1 
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and 7.3) aim to address limitations associated to fixing and approximating parameters, 

such as Vp and density, by solving for them in a probabilistic manner also. 

7.2.2.1 Input Parameters  

Poisson’s ratio () is the measure of material deformation response when subject to 

uniaxial stress and is commonly used in seismology to understand the elastic 

parameters of a material, where Vp can be derived from Vs (or vice versa) by,  𝑉𝑝 =  √𝑉𝑠2 2(1−𝜈)1−2𝜈                                                                                                    (7.12) 

Poisson’s ratio was estimated for the Midtdalsbreen subglacial material using 

literature presented in Vásárhelyi (2009), Mavko et al. (2019) and Simonsen et al. 

(2002), detailed in Table 7.2. Table 7.2 also details the parameters n, m, a, 𝜌𝑤, Vw, Vr, 

Vi and Va  estimated from literature presented in Hauck and Kneisel, (2008), Kneisel 

et al., (2008) and Hauck et al., (2011). These parameters were supplied as constants 

throughout the whole model, however, it is noted that these values may vary strongly 

over the model domain.  

Vp was approximated using equation 7.12 and the smoothed modal Vs solution (used 

in Chapter 5 for the facies classification). A 2D porosity model was approximated 

using the facies classifications, by populating each facies with an estimated porosity. 

Figure 7.2 shows the 2D parameters input to the four-phase petrophysical model, 

including Vp, R and porosity (for the subglacial material only).  

Hauck et al. (2011) showed in a sensitivity testing study, that n and m have a small 

effect on ice, water and air contents estimated. However, 𝜌𝑤 and Vr were shown to 

have a larger effect on the ice content estimated where low bulk velocities were 

measured. Also, Φ was shown to have a large effect on the ice content especially 

where high bulk velocities were measured. Further sensitivity testing of 𝜌𝑤, Vr , Φ and 

ν could be completed to better understand the uncertainty in the observed ice content 

estimated and the derived Vp profile. 
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Table 7.2 Model parameters input to petrophysical four phase model based on the 
literature studies Hauck and Kneisel (2008), Kneisel et al. (2008) and  Hauck et 
al. (2011). The Poisson’s ratio was increased where very low Vs values (< 500 
m/s) exist (Vásárhelyi 2009; Mavko et al., 2019; Simonsen et al., 2002). 

Model input parameters 

a 1 
n 2 
m 2 
Vi 3800 m/s 
Va 330 m/s 
Vr 4000 m/s 
Vw 1500 m/s 𝜌𝑤 10 Ωm 
ν 0.33 except 

0.45 if Vs < 500 m/s 

  

7.2.2.2 Four-phase model interpretations  

The results from the petrophysical four-phase model, for lines A-D, are shown in 

Figure 7.3. Within the subglacial material, the area below the base-ice (red) horizons, 

ice-, water- and air contents are normalised by the porosity showing the percentage of 

pore space which is filled by the respective material. All lines show a similar pattern 

to those observed in the facies interpretations (Figure 5.9). The zones of permafrost 

identified in the facies classification all show a high fraction of ice and a low fraction 

of water in the pores, particularly highlighted in line A and D. The areas of wet 

sediment identified in the facies classification all show a high fraction of water and a 

low fraction of ice in the pores,  highlighted in Lines B and C. The interpreted 

fractured bedrock facies is associated with a 100% estimate of water content in its 

pores/fractures, highly influenced by the low resistivities observed at depth. The 

fractional air content, for all lines, shows anomalously high values in deep pores 

(arrows in Figure 7.2), most likely a consequence of estimating Vp from Vs using ν, 

rather than measuring Vp directly. The anomalous high air content arises where there 

are zones of very low Vs (< 500 m/s). These low velocity zones are likely caused by 

wet unconsolidated material (soft), with a low shear modulus compared to the (hard) 

underlying bedrock. Even though Poisson’s ratio is increased (to 0.45) in these areas 

to attempt to account for this, some anomalously low Vp values are still obtained, 

relatively close to the seismic velocity in air (330 m/s).  
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Figure 7.2 2D model parameters input to the petrophysical four phase model for lines 
A-D. Left column: estimated Vp profiles derived from the smoothed modal Vs 
profiles (Chapter 4) and estimated ν (Table 6.1) using equation 7.12. Centre 
column: modal resistivity profiles, detailed in Chapter 5. Right column: 
estimated porosity model using the facies classifications shown in Figure 5.9, 
Chapter 5, for subglacial material only. Blue and red lines are the base snow and 
ice horizons, respectively. 
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Figure 7.3 Petrophysical four-phase model outputs for lines A-D at Midtdalsbreen. 
Left column: fraction of water content. Centre column: fraction of ice content. 
Right column: fraction of air content. The arrows in the right column point to 
anomalously high air content at depth, arising from anomalously low Vp values 
derived from observed low Vs, using equation 7.12. Note only the subglacial 
material is included in this analysis, the white snow and ice layers are not 
representative of the colour bars shown.   

7.2.2.3 Further petrophysical analysis 

This section presents a methodology (developed by Hauck et al. (2011)) for which a 

petrophysical analysis of the subglacial material can be completed. However, there 

are limitations with approximating important parameters such as Vp, Poisson’s ratio 
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and porosity, as well as having a poor knowledge of their uncertainty. Further 

developments of MuLTI (presented in 7.3) aim to address these limitations by solving 

for such parameters (e.g., Vp and density) directly using the Bayesian approach. 

Thereafter, through use of (e.g.) the Biot-Gassman theory (Biot 1941; Gassmann 

1951), the probabilistically derived Vp, Vs and density parameters could provide a 

more justifiable estimate of porosity and quantify its uncertainty.   

Furthermore, this four-phase model could be combined within a probabilistic joint Vs-

R inversion, approach detailed in Section 7.2.1, to provide a posterior distribution of 

Vs, R, (𝑓𝑖), (𝑓𝑎) and (𝑓𝑤), with all model parameters being defined in the same physical 

space (in depth), and posterior distribution of number of nuclei. Thus, also providing 

detailed uncertainty analysis for each fractional content (water, ice and air) enabling 

a more reliable interpretation of this analysis. 

7.3 Further MuLTI development  

Currently, MuLTI and MuLTI-TEM can be applied to many other glaciological, 

environmental and engineering applications, targeting shallow (e.g., Chapter 4 and 5) 

or deep (e.g., Chapter 6) structure. Yet, as with any software or algorithm, there are 

many different routes I could follow to continue and further develop the work 

presented in this thesis. In this section I discuss, in detail, some of the potential options 

for future development of the MuLTI framework, highlighted previously in the 

discussion, Section 7.1. This involves a preliminary study of an evolution of MuLTI, 

termed MuLTI III), in which Vp and density are allowed to vary, whereas they were 

fixed in the original MuLTI code. This feasibility study was funded by the Antarctic 

Science Bursaries, which supported a 3 week research visit to the University of 

Maryland, where full analysis and Vs inversions of a new dataset was completed. 

While these results are not yet finalised, nor their implications fully integrated with 

glaciological implications, they show promise for the future development of the 

MuLTI framework. 

7.3.1 MuLTI III 

MuLTI III has been developed to address a key limitation in the original MuLTI code, 

specifically that Vp and density must be fixed. MuLTI III overcomes this limitation 

by allowing both Vp and density to vary, together with estimates of their uncertainty. 

In this section, I therefore describe the new model parameterisation and sampling 

methodology, of Vp and density, and present an example case study using MuLTI III 

to derive the Vs structure of a firn aquifer in south eastern Greenland.      
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7.3.1.1 Model parameterisation  

Here, I describe the 1-D variation of Vp and density with depth as a piecewise constant 

function using Voronoi nuclei, in which each layer is divided into a variable number 

of sublayers with constant velocities, similar to the way Vs is described. At each depth, 

the value of Vp and density is determined by its nearest nucleus within the same layer, 

see Figure 7.4 for an illustration of this model parameterisation. The model vector for 

Vs, Vp and density is then  𝑚 = [𝑚𝑣𝑠, 𝑚𝑣𝑝, 𝑚𝑑𝑒𝑛]                                                                                          (7.13) 

(𝑚𝑉𝑠 = [𝑑𝑝1, 𝑑𝑝2, … , 𝑑𝑝𝑘 , 𝑉𝑠1, 𝑉𝑠2, … , 𝑉𝑠𝑘 , 𝑘, 𝑑𝑝𝑐1, 𝑑𝑝𝑐2 … 𝑑𝑝𝑐𝑙 , 𝑉𝑠𝑐1, 𝑉𝑠𝑐2, … , 𝑉𝑠𝑐𝑙]) 
(𝑚𝑉𝑝 = [𝑑𝑝1, 𝑑𝑝2, … , 𝑑𝑝𝑘 , 𝑉𝑝1, 𝑉𝑝2, … , 𝑉𝑝𝑘 , 𝑘, 𝑑𝑝𝑐1, 𝑑𝑝𝑐2 … 𝑑𝑝𝑐𝑙 , 𝑉𝑝𝑐1, 𝑉𝑝𝑐2, … , 𝑉𝑝𝑐𝑙]) 
(𝑚𝑑𝑒𝑛 = [𝑑𝑝1, 𝑑𝑝2, … , 𝑑𝑝𝑘 , 𝑑𝑒𝑛1, 𝑑𝑒𝑛2, … , 𝑑𝑒𝑛𝑘 , 𝑘, 𝑑𝑝𝑐1, 𝑑𝑝𝑐2 … 𝑑𝑝𝑐𝑙 , 𝑑𝑒𝑛𝑐1, 𝑑𝑒𝑛𝑐2, … , 𝑑𝑒𝑛𝑐𝑙]) 
where k is the number of floating nuclei, Vsi, Vpi and deni are the Vs, Vp and density 

of the floating nuclei, l is the number of confined nuclei, dpc are the depths of the 

confined nuclei and Vsci, Vpci and denci are the Vs, Vp and density of the confined 

nuclei, respectively.  

7.3.1.2 Prior information  

The prior distribution of Vp and density as a function of depth is taken to be normally 
distributed with both depth-dependent mean ( 𝜇𝑣𝑝 and  𝜇𝑑𝑒𝑛) and standard deviation 

( 𝜎𝑣𝑝 and  𝜎𝑑𝑒𝑛), Figure 7.4c. These depth-dependent parameters are interpolated 

between a discrete set of values read in by the code. 
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Figure 7.4 Illustration of MuLTI III model parameterization using Voronoi nuclei 
(floating and confined) and prior distributions, reformed from the original 
MuLTI parameterization shown in figure 2.1. a) Prior distribution of Vs without 
depth constraints; b) prior distribution of Vs with depth constraints; c) prior 
distribution of both Vp and density.  

7.3.1.3 Numerical sampling of the posterior  

As explained in Chapter 3, I sample the posterior distribution using the MCMC 

algorithm. At each step, a new model m’ is proposed that differs from the current 

model by, now, one of six perturbations (Figure 7.5), which depend on a set of user 

specified parameters (σchangeVs, σchangeVp, σchangeDen, σmove, σbirthVs, σbirthVp and σbirthDen) 

whose values affect the speed of convergence to the posterior distribution: 

 change Vs: same as MuLTI, defined in Chapter 3. 

 change Vp: perturb the velocity of a randomly chosen nucleus by a random 

amount distributed as N(0,σchangeVp
2 ). 

 change density: perturb the density of a randomly chosen nucleus by a random 

amount distributed as N(0,σchangeDen
2 ). 

 move nucleus: same as MuLTI, defined in Chapter 3. Note, Vs, Vp and density 

stay the same for the randomly chosen nucleus. 

 birth: add a floating nucleus to the existing model whose depth is uniformly 

distributed U[0, dpmax] and whose Vs is distributed N(Vs, σbirthVs
2 ), where Vs 

is the value of Vs based on the current nuclei distribution, Vp is distributed 

N(Vp, σbirthVp
2 ), where Vp is the value of Vp based on the current nuclei 

distribution and density is distributed N(den, σbirthDen
2 ), where den is the value 

of density based on the current nuclei distribution. 
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 death: same as MuLTI, defined in Chapter 3. 

Each proposed model is tested to see if it satisfies a certain acceptance criterion, which 

is amended from the original acceptance criterion of Equation 3.8, to account for these 

extra perturbations. The same methodology is applied thereafter to that in MuLTI, 

described in Chapter 3.  

 

 

Figure 7.5 Illustration of six possible perturbations to a current model in MuLTI III, 
adapted from the original MuLTI perturbations shown in figure 2.2. a) change 
Vs of a nucleus, b) change Vp of a nucleus, c) change density of a nucleus, d) 
move a nucleus to a different depth, e) give birth to a new floating nucleus, and 
f) remove a floating nucleus.  

7.3.1.4 Test application of MuLTI III 

Active source seismic, GPR and borehole data was acquired along a flow line at 

Helheim Glacier, south east Greenland (Figure 7.6), to investigate the structure of a 

firn aquifer, a perennial store of liquid water. The main goal of the survey was to 

constrain the local thickness of the aquifer layer and provide seismological estimates 

for the volume of water, for comparison to estimates derived from other geophysical 
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and hydrological measurements. The seismic acquisition is detailed in Montgomery 

et al., 2017, which presents a seismic refraction experiment conducted to determine 

the Vp structure of the aquifer, estimating the depth of the firn-ice transition to be on 

average 28 m below the surface (Figure 7.6). The density structure of the aquifer, 

determined from ice cores, are detailed in Miller at al., 2018. Here, I present a seismic 

Rayleigh wave study completed using the active source seismic dataset (Montgomery 

et al., 2017) and MuLTI III to obtain the Vs structure of the aquifer, thus, enabling 

elastic parameters such as the bulk and shear moduli, and the Vp/Vs ratio to be 

calculated. Additionally, through the use of (e.g.) the Biot-Gassman theory (Biot 

1941; Gassmann 1951), these parameters could be related to the water volume stored 

in the firn aquifer providing a more complete hydrological characterisation of the 

aquifer and its total water content. 

The Vs structure of the firn was evaluated using a constrained inversion of the 

Rayleigh wave dispersion curves in MuLTI III. For this trial analysis, I apply MuLTI 

III to Array 1 from Site 7 (Figure 7.6), as described in Montgomery et al. (2017). This 

array uses 24 geophones with a 5 m geophone interval. These data were transformed 

into frequency-phase velocity domain where the Rayleigh wave dispersion curve was 

picked (Figure 7.7b). Combined with the mean and standard deviation of distributions 

of Vp (derived from a Bayesian implementation of P-wave refraction tomography; 

Montgomery et al., 2017) and density (measured from ice cores; Miller et al., 2018), 

plus GPR- and seismic-derived depth constraints for the boundaries of the aquifer 

(Montgomery et al., 2017), this curve was input to MuLTI III. The Vs layer boundaries 

applied were: 

i) 500 – 2000 m/s in the firn above the aquifer (layer 1),  

ii) 500 – 1700 m/s in the firn aquifer (layer 2) and  

iii) 1200 – 2300 m/s in the ice (layer 3). 

The maximum number of floating nuclei was set to 50 and 1 million iterations 

(including the burn-in) were found to be enough for convergence of the posterior 

distribution sampled by the single Markov chain, although multiple chains were run 

to check they converged on the same posterior distribution. 

Figure 7.7c shows the results from MuLTI III. The posterior distribution of Vp and 

density are comparable to their prior distributions, although the marginal posterior 

distribution of Vs identifies a decrease through the aquifer, which could be due to an 

increase in density, caused by the storage of liquid water in the firn pores, Equation 

1.1.     
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Figure 7.6 Location of the firn aquifer field site in Greenland, adapted from 
Montgomery et al. (2017). a) Seismic acquisition parameters used for the surface 
wave study. b) Location of seismic surveys, sites 1-12, with drill sites indicated 
as DS16-1, DS16-2 and DS16-3. Here, only data from Site 7 are considered 
(highlighted in the red circle). c) Elevation profile along the glacier’s flow line 
(down slope) with all site locations marked by “X”. The top and base of the 
aquifer are shown, respectively, by the light and dark blue lines. 
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Figure 7.7 Site 7 dispersion curve analysis and inversion results. a) Zero offset shot 
gather. b) Dispersion curve picked. c) Vs, Vp and density posterior distributions 
output using MuLTI III. The depths of the top and base aquifer are plotted in the 
red and red-dashed lines. The prior mean and spread of one standard deviation 
of Vp and density are plotted in the black and green lines, respectively. The 
mode Vs solution is plotted in the black line in the Vs PDF image.  
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7.3.2 MuLTI IV with variable layer depths 

The next progression for the MuLTI framework, including both MuLTI and MuLTI-

TEM, is to address the limitation of fixed internal interfaces at layer boundaries. 

Currently, layer depths are input as a single numerical value, fixed to that depth, with 

no methodology in place to reflect their associated uncertainty. One way this could be 

achieved is to alter the prior distribution so that the layer depths themselves are drawn 

from a distribution rather than being assumed constant. For example, they may be 

assumed to be normally distributed  with given mean and standard deviation during 

numerical sampling of the posterior.  

The approach would involve input, to MuLTI as prior information, a mean ( 𝜇𝑧) and 

standard deviation ( 𝜎𝑧) for each layer depth (ldp), 𝑙𝑑𝑝  =  [ 𝜇𝑧1, 𝜇𝑧2, … 𝜇𝑧𝑛, 𝜎𝑧1, 𝜎2, … 𝜎𝑧𝑛]                                                                              (7.14) 

where n is the number of layers. I would then add a new perturbation step, sampling 

the posterior distribution using the MCMC algorithm, to perturb a randomly chosen 

layer depth using a normal distribution, derived from the mean ( 𝜇𝑧) and standard 

deviation ( 𝜎𝑧) of the chosen layer depth (𝑙𝑑𝑝). This new perturbation step would be 

called “change layer depth”. Any nuclei in the vicinity of this movement, causing a 

change in the nuclei’s originally defined layer, may therefore have a significant 
modification to the value of their prior distribution. 
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Chapter 8 Conclusions 

8.1  Summaries of objectives and results 

This thesis has presented a novel constrained inversion methodology (MuLTI) for  

further development of the geophysical techniques: MASW and TEM used in 

cryosphere studies. The algorithms have been made publicly available via GitHub to 

motivate other users and continue development of these methods. Here, I recap my 

objectives set out in Chapter 1, along with a summary of my results directly related to 

each objective, presented in this thesis.  

Objective 1. The development of a novel inversion methodology, easily adaptable for 

different geophysical techniques, enabling multiple geophysical observations to be 

integrated into a single inversion.  

Result: The constrained Bayesian inversion framework: MuLTI has been developed 

for the inversion of Rayleigh wave dispersion curves (Chapter 3) and MuLTI-TEM 

(Chapter 5) for the inversion of TEM soundings, with the ability to constrain layer 

depths from other geophysical datasets. Furthermore, the algorithm has been made 

publicly available via GitHub.  

Objective 2. To evaluate the feasibility of using MASW and TEM techniques on 

glacier ice, to obtain the shear-wave and resistivity properties of the subglacial 

environment.  

Result: Synthetic studies (presented in Chapter 4 and 5), including a test field 

campaign (presented in Chapter 2) were completed to evaluate the feasibility of these 

techniques.  

Objective 3. To deploy MASW, TEM and complementary GPR surveys on 

Midtdalsbreen, an outlet glacier of the Hardangerjøkulen ice cap in Norway, using 

observations from (2) to inform and optimise acquisition design.  

Result: The main field campaign was completed in spring 2018, where active source 

seismic, TEM and GPR were all acquired, along all profiles. Knowledge from the test 

field campaign , in 2017 (Chapter 2), aided the decision making on the seismic survey 

design. The TEM equipment was kindly loaded from the NERC GEF, where 1-D 

TEM survey testing was completed at the start of the field campaign (Chapter 5).    

Objective 4. To apply the novel inversion methodology developed in (1) to derived 

shear-wave and resistivity models of the Midtdalsbreen subglacial environment.  
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Result: The final shear-wave velocity and resistivity profiles of the Midtdalsbreen 

subglacial environment are presented in Chapter 4 and 5.  

Objective 5. To develop a joint inversion strategy for combining observations from 

the seismic and TEM data.  

Result: A methodology for presenting the facies classifications (of Chapter 5) of the 

subglacial environment in a probabilistic manner, using the joint probabilistic outputs 

of Vs and R, from MuLTI and MuLTI-TEM is presented in Chapter 7. Along with, a 

petrophysical inversion approach, using derived petrophysical relationships which 

directly combine R and Vs to obtain the volumetric proportions of water, ice and air 

in the subsurface.  

Objective 6. In discussion, to evaluate the applicability of these approaches for 

characterising larger ice sheets, for example in Antarctica and Greenland, where the 

evolution of the subglacial environment is an important consideration in predictions 

of future sea-level rise. 

Result: A feasibility study for a polar ice mass is presented in Chapter 6. This 

highlights the different resolution sensitives of both the Rayleigh wave dispersion 

curves and TEM soundings, which complement each other if used together. Large 

scale structure (> 2 km) can be identified using surface waves and the smaller scale 

detail (< 2 km), directly under the ice, can be resolved using TEM. Furthermore, I 

have shown that these methods could be applied with existing survey systems  and 

energy sources. 

Additionally, I have shown the applicability of an advanced formulation of MuLTI 

for evaluating meaningful hydrological properties of polar firn aquifers. 
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8.2 Overall conclusions 

Non-invasive geophysical techniques can be used to explore the inaccessible, widely 

unknown, basal environment of glaciers and ice masses.  An improved understanding 

of this environment, including its material composition and hydrology, has profound 

implications for predictions of glacier flow and dynamic evolution. The work 

presented in this thesis has developed two geophysical techniques for cryospheric 

applications, specifically seismic surface waves (MASW) and TEM, to gain insight 

into the material composition and water content of subglacial material.  

In particular, the composition and water content of the subglacial environment can be 

characterised by joint inferences from Vs and R structure. This thesis has presented a 

novel constrained Bayesian inversion framework MuLTI (Multimodal Layered 

Transdimensional Inversion; https://github.com/eespr), which uses a Markov chain 

Monte Carlo implementation of Bayesian inversion to produce a probability 

distribution of geophysical properties as a function of depth. The framework is easily 

adaptable to multiple different geophysical methods; here,  I have presented MuLTI 

for the inversion of Rayleigh wave dispersion curves and MuLTI-TEM for the 

inversion of TEM soundings, respectively to obtain posterior distributions of 

subsurface Vs and R structures. A novel aspect of the methodology allows independent 

depth constraints, drawn from any external data source (for example, GPR and 

borehole data), to be directly input to MuLTI. This mitigates recurring problems 

identified in isolated inversions of single datasets, such as poor depth sensitivity, low 

resolution, and ambiguous, non-unique solutions. Furthermore, the transdimensional 

Bayesian sampling-based method employed, produces an ensemble of models from 

which statistical properties of the model parameters, including model dimensions, are 

inferred, providing a robust quantitative uncertainty analysis of any chosen model at 

all depth levels.  

The method was applied to seismic and electromagnetic data acquired on the terminus 

of the Norwegian glacier Midtdalsbreen. By combining the resistivity and seismic 

shear-wave velocity profiles, a new 3D interpretation of the Midtdalsbreen subglacial 

structure was proposed. Three subglacial material classifications were considered 

using Vs and R boundaries from the MuLTI and MuLTI-TEM outputs: sediment (Vs 

< 1600 m/s, 50 Ωm < R < 500 Ωm), permafrost (Vs > 1600 m/s, R > 500 Ωm) and 
weathered/fractured bedrock with saline water in the fractures (Vs > 1900 m/s, R < 50 

Ωm). Their spatial extent, within Midtdalsbreen’s subglacial environment, showed a 
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mixture of sediment and permafrost directly below the ice, and in the moraine at the 

front of the glacier, all underlain by bedrock.  

Through synthetic studies and real-data applications, this study showed how joint 

analysis of three geophysical datasets can increase our understanding of the material 

in the subsurface and thus provide a more detailed interpretation. Critically, in the 

application presented, TEM data reveal hydrological properties to which the seismic 

analysis was insensitive, whereas the seismic data indicate the varying stiffness of the 

subglacial material.  

The adaptable and versatile MuLTI framework offers a promising platform for further 

methodological development and use in other glaciological applications. For example, 

directly combining MuLTI and MuLTI-TEM in a probabilistic joint facies 

classification would enable access to the joint distribution of subsurface R and Vs, 

which could lead to a more accurate understanding of the subsurface structure 

(utilizing structural similarities between resistivity and seismic velocity). Also, the 

development of MuLTI III (where independent Vp and density profiles along with 

their standard deviations are input) has enabled reliable characterisation of the Vs 

structure of a firn aquifer in South East Greenland, with important implications on the 

estimated volume of water stored in the aquifer. Furthermore, the feasibility study for 

polar ice sheet applications presented how MuLTI and MuTLI-TEM could be adapted 

and applied on polar ice sheets, up to 2 km thick, to characterise the deep subglacial 

environment.  

In summary, this thesis has presented novel methodologies to benefit the exploration 

of subsurface materials. By developing an integrative set of frameworks, the MuLTI 

and MuLTI-TEM approaches highlight the advantages of acquiring and combining 

multiple geophysical datasets for characterising the stiffness and electrical properties 

of the glaciated subsurface. The algorithms have been made publicly available via 

GitHub to motivate other users in the cryosphere and other (e.g., industrial 

engineering) settings, and to continue further development of these valuable 

geophysical techniques. 
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Appendices 

Appendix A 

Supplementary material for: Chapter 4 Subglacial sediment distribution from 

constrained seismic inversion, using MuLTI software: Examples from Midtdalsbreen, 

Norway 

 

Table A1. Inversion parameters used in MuLTI for the synthetic feasibility study and 
1D and 2D real data inversions, explained further in Killingbeck et al., 2018. 

Inversion Parameter Value 

Number of Layers 3 

Minimum number of total nuclei 3 

Maximum number of total nuclei 33 

Maximum depth  40 m 

Burn in number 10 000 

Number of Iterations (including burn in) 1 000 000 

Number of MCMC chains 1 

Sigma change 20 m/s 

Sigma move  1 m 

Sigma birth  400 m/s 
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Figure A1. Sensitivity testing Vp (b and c) and density (d and e) on modal dispersion 
curves for the synthetic model shown in a). 
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Figure A2. a) Complex synthetic model with added ice-debris layer and b) 
corresponding DWN synthetic dispersion curve. 

 

 

Figure A3. MuLTI inversion results from the ice-debris synthetic model (Figure A1) 
with a) no constraints applied, b) snow and top-ice debris depth constraints 
applied, c) snow and base-ice debris depth constraints applied and d) snow, top-
ice debris and base-ice debris depth constrains applied. 
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Figure A4. Resulting 2D average Vs profiles after applying multiple 1D MuLTI 
inversions, with GPR constraints, at each CMPCC along the seismic lines A-D 
(diverging colour scale centred, in white, on Vs of ice (1750-1900m/s)) and 
corresponding estimated error plots, calculated from the 95% credible interval 
half width. The snow and ice depth horizons are plotted in blue and red 
respectively. 
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Figure A5. a) Example dispersion curve from Line B highlighting the noisy low 
frequency picks. We believe these high phase velocities at the low frequencies 
are real and associated with the thin (4 m thick) ice layer at this location in Line 
B. Approximated depths of picked phase velocities without noisy low 
frequencies picked (b) and with noisy low frequencies picked (c). 
Corresponding estimated errors, calculated from half the interquartile range, 
using dispersion picks without noisy low frequencies (d) and with noisy low 
frequencies (e). 
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Appendix B 

Appendix for Chapter 5: Characterisation of subglacial water using a constrained 

transdimensional Bayesian Transient Electromagnetic Inversion. 

 

Table B1 (continued overleaf). TEM survey parameters input to MuLTI-TEM, 
defined from the Leroi forward modelling algorithm. 

Parameter 

name 

Unit Parameter description Midtdalsbreen 

parameters  
REFTYM msec Time from which TOPN & TCLS are 

measured. For example, this could be signal 
off-time or start of downward ramp. 

1.05 

OFFTYM msec Time between end of one pulse and the start of 
the next pulse (of opposite sign) since a bipolar 
waveform is assumed. This is most likely equal 
to ¼ period of the complete waveform. For 
systems which have a signal which is always 
on, OFFTIME = 0. 

1.05 

TXON msec Digitised time of each point in the waveform 
(fixed at 4 points). In most cases, TXON(1) = 
0, TXON(2) = pulse on-time, TXON(3) = pulse 
off-time, TXON(4) = REFTYM where 
TXON(4) - TXON(3) = turn off time. 

[0.0, 0.001, 1.0492, 
1.05] 

TXAMP amps Transmitter current at time TXON(J). If signal 
is normalised, this should be 1. 

[0.0, 1.0, 1.0, 0.0] 

TOPN msec Start times of receiver windows, the number of 
time gates is fixed at 20 (1x20). 

[0.006000, 0.007625, 
0.009750, 0.012500, 
0.015880, 0.020250, 
0.025880, 0.033000, 
0.042130, 0.053750, 
0.068500, 0.087380, 
0.111400, 0.151700, 
0.181100, 0.231000, 
0.294600, 0.375900, 
0.479500, 0.611600] 

TCLS msec End times of receiver windows, the number of 
time gates is fixed at 20 (1x20). 

[0.007625, 0.009750, 
0.012500, 0.015880, 
0.020250, 0.025880, 
0.033000, 0.042130, 
0.053750, 0.068500, 
0.087380, 0.111400, 
0.151700, 0.181100, 
0.231000, 0.294600, 
0.375900, 0.479500, 
0.611600, 0.780100] 

(continued overleaf) 
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SXE meters East coordinate of vertex I for loop position J, 
fixed at 4 vertices. Note the transmitter is fixed 
on the ground (Z=0) in this adapted Leroi code, 
for airborne data more parameters will need to 
be passed through the mex file to model. 

[5, -5, -5, 5] 

SXN meters North coordinate of vertex I for loop position J, 
fixed at 4 vertices.  

[5, 5, -5, -5] 

RXE meters Receiver easting. 15 
RXN meters Receiver northing. 0 
RXZ meters Receiver z (always be 0 for ground based 

TEM). 
0 

 

 

 

 

Figure B1. Schematic image of the transmitter waveform, highlighting the waveform 
parameters defined in MuLTI-TEM described in Table B1. 
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Table B2. Inversion parameters used in MuLTI-TEM for the synthetic feasibility 
study and 1D and 2D real data inversions, explained further in Killingbeck et al. 
(2018). Burn in number is the number of iterations discounted at the start of the 
chain to remove any dependencies of the initial conditions. Sigma resistivity, 
change, move and birth are user specified parameters that determine the 
magnitude of the four different perturbations that can be applied (change 
resistivity, move nucleus, give birth to a new nucleus, and remove a nucleus). 

Inversion Parameter Value 

Number of Layers (non-constrained) 1 

Number of Layers (constrained) 3 

Weighting (data variance, σ) 5% of the signal at each timegate 

Minimum number of total floating nuclei 0 

Maximum number of total floating nuclei 80 

Maximum depth 80 m 

Burn in number 10 000 

Number of Iterations (including burn in) 1 000 000 

Number of MCMC chains 1  

Sigma resistivity change (log(R)) 2 

Sigma move (meters) 10 

Sigma birth (log(R)) 2 
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Figure B2. Posterior distributions of resistivity determined from MuLTI-TEM 
inversion for the synthetic models b, c and e without depth constraints applied 
and with i) 1 million iterations (top) and ii) 2 million iterations (bottom). 
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Figure B3. Synthetic inversion results for all models in Figure 4 (a-e), showing 
comparison of data fit and posterior distribution of number of nuclei plots. 
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Figure B4. Posterior distribution of resistivity for synthetic model d using 3 different 
chains for the non-constrained and constrained inversions with MuLTI-TEM, 
highlighting the independence of the constrained solutions on chain index, 
whereas the non-constrained distributions show a weak variation across chains. 
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Figure B5. i) Example synthetic models created with a conductive thin layer on top 
of a resistive basement (green) and a conductive basement (blue), compared to 
the original synthetic model d. ii) Calculated responses, using the Leroi forward 
modelling code, of the synthetics compared to the observed data at the midpoint 
of line C. 
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Figure B6. MuLTI-TEM inverted result for the a) conductive thin layer synthetic 
model and the b) conductive basement synthetic model, shown in Figure B5. 
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Figure B7. i) Example of re-picked dispersion curves along line A at 20 m, 40 m and 
70 m. The noisy high phase velocities observed > 55 Hz (originally not picked) 
are now thought to be real, matching the high resistivity observations along Line 
A. Red circles highlight the extra high frequencies picked. ii) Most likely 
resistivity profile with locations of dispersion curves marked by the black lines. 
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Figure B8. Results of 1D soundings acquired at the midpoint of lines B and C inverted 
with extended prior boundaries of the snow and ice layers, to represent 
temperate ice resistivities (e.g. Kulessa, 2007). The mode solution and PDF of 
the subglacial R structure is identical to the results shown in Figure 5.7.  

 

 

 


