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ABSTRACT 

The research presented in this thesis was part of a larger collaborated project 

(LastForm Programme) to research engineering solutions for the rapid manufacture of 

large scale (0.5m – 5.0m in length)  low, medium and high temperature tooling (from 

room temperature to 1000C) for use in the automotive and aerospace industry. All 

research was conducted using small scale investigations but with a final discussion 

including implications of the work in future large scale planning.  

The aim of the work presented in this thesis was to develop current understanding 

about the sintering and melting behaviour of metal powders by Selective Laser 

Sintering (SLS). The powder used in the research was an argon atomised austenitic 

stainless steel of type 314s HC. The powder was supplied in four batches, each 

differentiated by particle size distribution; -300+150m, -150+75m, -75+38m and -

38m. The characteristics of each powder, in particular flow properties,  differed 

considerably allowing powder handling and powder flow during melting to also be 

explored in this work. Three different environmental conditions were also investigated 

to asses the role of atmospheric and residual (powder) oxygen: (1) air atmosphere 

(control), (2) argon atmosphere and (3) argon atmosphere with argon percolation 

through the powder layer. In this, the design of an environmental control chamber and 

its integration into a research SLS machine was central to the work.  

Experimental studies of the selective laser sintering/melting process on room 

temperature stainless steel 314s powder beds has been successfully carried out. The 

methodology was progressive; from tracks to layers to multiple layers. Single tracks 

were produced by melting the powder by varying laser power and scan speed. Results 

from experiments have been used to construct a series of process maps. Each map 

successfully charts the heating and melting behaviour of the irradiated powder. 

Behaviours can now be predicted with reasonable accuracy over a dense power and 

speed range, including laser powers up to 200W and scan speeds up to 50mm/s. The 

experiments also allowed melt pool geometries to be investigated. Three types of melt 

cross-section were categorised; flattened, rounded and  bell  shape. Flat tracks generally 
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occurred at low speed (0.5mm/s) but also occurred up to 4mm/s at lower power (77W). 

Rounded tracks occurred between 1mm/s and 4mm/s and had a much larger area than 

expected. In the rounded track regime tracks sink well into the powder bed. Powder to 

either side of a track collapses into it, leaving a trench surrounding the track. The 

admission of extra powder is thought to be one cause of increased mass. However, a 

remaining question that still needs answering is what causes the change from a flattened 

to a rounded track. 

Values of laser absorptivity were also estimated from track mass per unit length 

data and from melting boundaries displayed within the process maps. The results 

showed that absorptivity changed considerably depending on the powder, process 

conditions and atmospheric conditions. Within an argon atmosphere an „effective‟ 

absorptivity from mass data was estimated to range from 0.1 to 0.65, the lower value at 

low speed scanning (0.5mm/s) and the higher value from high speed scanning 

(>4mm/s). These values were much higher than expected for a CO2 laser. 

Melt pool balling was found to be a big problem, limiting the process speed at 

which continuous tracks could be successfully constructed (<12mm/s). Comparisons 

between a mathematical model developed in this work and experimental results 

suggested that balling within an air environment occurred when the ratio of melt pool 

length to width reached a critical value close to . Balling within an argon atmosphere 

was more difficult to model due to higher viscous melts caused by the take up of 

surrounding powder. 

Melted single layers were produced by varying laser power, scan speed, scan 

length and scan spacing or melt track overlap. Scan length proved to be a significant 

factor affecting layer warping and surface cracking. Provided the scan length remained 

below 15mm, layer warping could be largely avoided.  

Multiple layer blocks were produced by melting layers, one on top of the other. 

They were constructed over a range of conditions by varying  laser power, scan speed, 

scan spacing and layer thickness. Layer thickness was a crucial parameter in controlling 

the interfacial bond between layers, but the spreading mechanism proved to be the 

overriding factor affecting layer thickness and therefore the quality and density of the 

blocks. 
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CHAPTER ONE 

1             INTRODUCTION AND LITERATURE REVIEW  

Introduction and Project Overview 

Conventional tool production techniques can be expensive and often slow, and 

therefore contribute significantly to the cost and lead times of product manufacture. In 

an attempt to address these issues, several existing Rapid Prototyping (RP) technologies 

are being developed further to exploit their construction speed and process flexibility for 

applications in direct tooling production. This phase of RP development, known as 

Rapid Tooling (RT), aims to initially support but then ultimately replace traditional tool 

making methods and bring about reductions in manufacturing lead times and cost.  

RP technologies use a layer by layer material additive manufacturing methodology 

to build up shapes defined by a three-dimensional CAD model. The CAD model is 

numerically sliced into a stack of layers and each layer is sequentially converted into a 

physical layer and bonded to the preceding layer without the need for additional tooling 

or fixtures. In the Selective Laser Sintering (SLS) process, layers are created by melting 

a pre-placed powder, or partially melting a powder mixture by scanning an infrared 

laser beam. In the Laminated Object Manufacturing (LOM) process, cut to shape 

laminates are bonded together. In the Stereolithography process (SLA), a photosensitive 

polymer resin is cured, layer on layer, using a scanning ultraviolet laser beam. In Three-

Dimensional Printing (3DP), layers are created from powders, onto which a traversing 

ink jet head prints a bonding agent.  Tooling made by these methods can be used for the 

following (Childs et al., 1998; Radstok, 1999): 

1. making sacrificial patterns for investment casting (SLA, SLS, LOM);  

2. making polymer and ceramic based investment casting shells or patterns for sand 

casting directly (SLS, LOM,  3DP);  
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3. making injection moulding tooling from polymer/metal composites (SLA, SLS, 

3DP); and 

4. recently, for making injection mould and pressure die casting tooling directly from 

metal materials (SLS, LOM). 

In response to the growth of RP for tooling applications the IMI/EPSRC LAST-

FORM research programme was started. LAST-FORM is an acronym for: Large Scale 

Tooling For Rapid Manufacture. This project is a collaboration between three 

Universities (Leeds, Liverpool and Warwick), each with its own expertise in layer 

manufacturing, in researching routes for the rapid manufacture of tooling to be of use to 

four aerospace (BAe (MAD), BAe Airbus, Rolls Royce Plc and Short Bros. Plc) and 

one automotive industrial partner (Rover Plc), one CAD/CAM software developer 

(Delcam) and a machine manufacturer exploiter (Quantum Laser Engineering). 

The project‟s aim is to develop strategies and to research engineering solutions for 

the direct rapid creation of tooling for prototype and small batch aerospace and 

automotive manufacture. Tooling requirements include sheet metal forming tools (room 

temperature at ~75MPa), plastics injection mould tooling (250C - 350C at 200MPa) 

and tooling for Super Plastic Forming (SPF) and diffusion bonding of titanium alloys 

(900C at gas pressures around 30MPa). In all cases, solutions must be practical for 

future scale up (tools ranging from 0.5m – 5.0m in length). 

LOM techniques are investigated in the LAST-FORM programme as prime routes 

for RT due to their inherent relatively low materials cost, ease of materials handling and 

short fabrication time. This process, like many other RP technologies, is also capable of 

incorporating complex tooling features, including conformal cooling channels, which 

are otherwise difficult to fabricate by conventional means.  

A feasibility study is also being developed to asses the impact of introducing thick 

sectioned (3mm – 8mm) laminate sheets into the LOM build cycle to help ease material 

handling issues when constructing larger tooling. Therefore, in supporting this research, 

slant laser cutting, laser cladding and welding techniques are also being developed to 

either avoid, remove or fill in the steps that are present on angled surfaces created by the 

thickness of the layers.  
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The LOM process, however, could prove ineffective as a method for producing 

high temperature tooling. Many adhesives and brazing alloys currently used to bond 

laminates have poor mechanical strength and low working temperatures. High 

temperature brazing materials, clamping methods or welding techniques could provide 

possible solutions but these techniques are either largely unproven,  could disrupt tool 

alignment or increase the number of manufacturing stages respectively.  

The expertise in RP at Leeds University is in the SLS process. Metal powder 

routes potentially offer more freedom of material choice and are likely to be more 

suitable for the more demanding high temperature tooling requirements. However, the 

proposed route of melting pre-alloyed powders is not without complications. Firstly, 

single stage, high density pre-alloyed powder consolidation is only feasible with full 

particle melting. This often produces a melt volume which is unpredictable and difficult 

to control, where the actions of surface properties and internal heat and fluid flow can 

cause melt pool balling, induce layer distortions, compromise accuracy and affect 

surface quality (Kruth et al., 1998a; Radstok, 1999). Secondly, the components 

produced are often porous, even with large melt volumes inter-run porosity can often be 

high due to the directional construction strategy and the cylindrical shape of the melt 

pool. Therefore, research on issues concerning changes in melt pool morphology and 

break-up kinetics are still taking place.   

In supporting this research, it is important to identify conditions where the effects 

of surface tension forces can be controlled and melt pool morphology can be predicted, 

allowing the tailoring of melt pool shape. In this work, the aim of the research is 

twofold. Firstly, to provide a detailed empirical study that maps the melt history of a 

pre-alloyed stainless steel powder during laser exposure and to identify conditions 

where melt pool stability, repeatability and reproducibility can be maximised. Secondly, 

to apply the information presented in the maps and discuss construction strategies and 

equipment issues geared towards large scale tool production.  
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Direct Metal Laser Sintering: Theory and Process Overview  

Figure 1.1 shows a schematic diagram detailing primary components of a typical 

SLS machine that is configured for use in Direct Metal Laser Sintering (DMLS). The 

process begins by spreading and levelling a thin layer of metal powder on top of a 

piston unit. Spreading usually occurs by traversing a rotating or counter-rotating roller 

across the build zone. This is generally the most popular method but other mechanisms 

are in use; a wiper blade or slot feeder being the most common (Van der Schueren and 

Kruth, 1995). The thickness of each deposited layer typically falls within the range of 

50m to 1.5mm. Its value is often constant throughout a build and is a parameter that 

plays an important part in affecting construction speed, part resolution and the quality 

and strength of the bond between layers.  

Once environmental conditions have been achieved (see Section 1.6), an infrared 

laser beam, directed by a scanning mirror system, delivers power, P, to the powder bed 

surface to selectively reproduce the first numerical layer. The inherently rough surface 

of the powder layer improves laser absorptivity and so surface energy values required 

for melting are often lower than those used in other laser machining and laser welding 

processes. For comparative reasons, Figure 1.2  maps regional values of the laser power 

density per unit time used in a number of laser based machining, welding and surface 

marking processes; DMLS has been superimposed onto the figure. It illustrates the 

phase change (if any) associated with each process and the required energy (power 

density/interaction time) to produce this change.  

However, care must be taken when considering the layout of this Figure. Firstly, 

SLA creates layers by photo-polymerisation and not through heating. Secondly, layers 

are often cured at scan speeds, u, in excess of 0.7m/s (3D Systems). Assuming a beam 

diameter, 2a, of 0.3mm (3D Systems), calculations reveal that the interaction time 

(P/2a.u) is more likely to be two orders of  magnitude lower than values given in Figure 

1.2. It is therefore unclear whether this is an isolated error, or whether power density 

values displayed in Figure 1.2 are defined at some maximum depth of heat penetration 

rather than at the irradiated surface; the latter often being the method of choice.. 
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Figure 1.1: Schematic view of a typical selective laser sintering arrangement. 

 

Figure 1.2: Range of laser processes mapped against power density per unit time 
(Steen, 1998). 
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Figure 1.3 shows the surface layer in plan. Every layer is reproduced by traversing 

the laser beam in a back and forth motion, creating overlapping tracks line by line. This 

technique, called raster scanning, allows for a progressive and systematic coverage of 

the powder bed surface. Other scanning  routines have also been investigated, but layer 

geometry often dictates the benefits (Crawford, 1993) and therefore, alternative 

techniques are not discussed in this Thesis.  

During rastering, the laser beam scans at a speed of u in the direction of  x, over 

the current layer width, w, (scan length), while indexing with a spacing, s, in the 

direction of +y. The rastering motion of the beam therefore develops a process front that 

moves in the +y direction at a speed of v; assuming negligible laser toggling transients. 

The effective diameter of the laser, or heat source width, is difficult to define because it 

will increase as the peak temperature it creates increases (including a heat affected 

zone). Therefore, the effective diameter is often equated to the beam diameter, 2a, 

which can be measured using a beam profileometer. 

Figure 1.3: Selective laser sintering scanning strategy and sign convention. 

 

Every time a new layer is to be added, both the melted and non-melted areas are 

moved downwards by one layer thickness and a new layer of powder is spread over the 

surface: building always occurs in the plane z = 0.  Powder areas not sintered remain in 

position suspending and supporting the part at every level of its construction. When all 

layers in a build are complete, the supporting powder can be brushed away revealing the 

completed component. 
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Pre-Alloyed Metal Powder Consolidation  

There are two approaches to metal powder consolidation by SLS. Both fall under 

the general heading of Direct Metal Laser Sintering (DMLS). The first method, and 

arguably the easier route, uses a mixture of two metal powders: a high melting point 

metal (structural material) and a low melting point „binder‟ metal. Controlled heating of 

the metal powder mixture by the laser beam causes irradiated binder particles  to melt 

and flow into surrounding porosity formed by the non-molten structural particles. This 

method of powder densification is known as Liquid Phase Sintering (LPS) (German, 

1994). LPS is used extensively in conventional powder metallurgy processing where a 

strong literature database has been the driving force for this avenue of research (Kruth et 

al., 1998). However, this method of consolidation often creates an inhomogeneous 

component or green product with mechanical strength suitable only for further post 

processing i.e. metal infiltration or furnace sintering (Kruth et al., 1998; Lauwers et al., 

1998a; Wieters et al., 1996). However, for large scale high temperature tooling 

infiltration would be impractical. The reasons are twofold. Firstly, achieving 

homogeneity of mechanical and physical properties during metal infiltration has been 

found to be extremely difficult. Stewart et al., (1998) demonstrated that material 

properties generally degrade with increasing distance from the point of infiltration. 

Stewart also added that infiltration is strongly time dependant with parts in excess of 2 

inches thick (a negligible value when compared to the sizing requirements of LAST-

FORM tools) would require special attention and increased infiltration times. For 

reference, the DTM default infiltration time of 1.5 hours at 1156C is for a typical 6 

inch square block with a 2 inch thickness (DTM Corporation, 1996). Secondly, tooling 

would be restricted by the working temperature of the binder particles or infiltrate. 

The second DMLS materials route, known more specifically as Selective Laser 

Powder Remelting (SLPR) or Selective Laser Melting (SLM)1 uses higher laser powers 

to create a conduction limited melt volume sourced from directly irradiated particles and 

from a large number of surrounding particles (Fuesting et al., 1996a/b; Niu and Chang, 

1999a/b; Meiners et al., 1999; Abe et al., 2000). As the laser traverses the metal powder 

bed, surface tension forces localise the melt volume creating a series of highly dense 

                                                 
1 This abbreviation will be used in this work. 
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tracks, each having an appearance analogous to deposited weld or clad melt beads (see 

Figure 1.4a (Steen, 1998 Yevko et al., 1998).  

However, the melt bead created may or may not be stable, depending on the 

processing and environmental conditions. For example, if processing speeds are high or  

if the melt is in contact with a cooler substrate or if there is an addition of solute oxygen 

(Mills et al., 1998; Steen, 1998; Meiners et al., 1999), then the melt bead will typically 

be unstable, and will quickly reshape itself into a series of sessile drops or balls, much 

like a liquid jet (Schiaffino and Sonin, 1997) (see Figure 1.4b). Other liquid and 

material problems may yield further different results: the bead may develop bulges but 

not separate into pieces (see Figure 1.4c/d), or it may show no signs of instability at all 

and remain perfectly uniform along its entire length (see Figure 1.4a). Generally 

speaking, the processing parameters and localised conditions act to determine the 

thermal profile and temperature time history of the localised melt pool which in turn 

affects melt pool behaviour and solidification. Furthermore, during pre-placed powder 

cladding, the collapse of powder into the melt volume plays an additional role (Steen, 

1998). 

The remainder of this chapter discusses the response of the melt pool to changes in 

the process conditions outlined above. Given the shortage of information in the SLM 

literature, this chapter also discusses and compares literature from welding, laser 

welding and laser cladding sources. It may, however, be beneficial to begin with a 

discussion on melt pool heat and fluid in order to help in the understanding of the 

effects of changing the process conditions. 
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Figure 1.4: Shapes and geometrical parameters for (a) stable melt bead, (b) an 
unstable melt bead, (c) a perturbed bead maintaining with a constant contact 
angle and (d) a perturbed bead with arrested parallel contact lines. 
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Heat and Fluid Flow 

1.1.1   Surface Tension Driven Fluid Flow  

When an interface between two immiscible fluids is subjected to a temperature (or 

concentration) gradient, its interfacial tension will vary from point to point. These 

surface tension gradients will induce shear stresses that result in fluid motion. This will 

cause  fluid to be drawn along the surface from regions of low surface tension (hot 

areas) to regions of high surface tension (cold areas) (Mills et al., 1998). Since liquids 

are viscous, they are dragged along causing bulk fluid motions and local reciprocal 

stirring of the melt pool; a phenomena commonly known as Marangoni convection. 

 Marangoni convection has been shown to trigger circulatory flows in weld pool 

deposits causing changes to the temperature gradient and cooling rate in the melt pool, 

and therefore affecting the solidification microstructure (see Section 1.8) (Welch, 1997). 

These flows also lead to changes in the depth/width ratio (d/b) of the melt pool and so 

Marangoni convection is often used as a measure to predict weld penetration into 

underlying layers (El-Batahgy, 1997; Mills et al., 1998).  

1.1.1.1 Effects on Melt Pool Shape and Melt Penetration 

Heiple and Roper, (1982) first developed the theories that weld penetration into a 

substrate is a result of differences in the fluid flow in the weld pool resulting from 

variations in the direction and magnitude of thermocapillary forces. Furthermore, they 

suggested that these were controlled by concentrations of surface active elements such 

as oxygen in the metal. Most pure metals and many alloys with low oxygen and sulphur 

contents exhibit a decrease in surface tension as the temperature increases, resulting in 

what is termed a negative surface tension temperature coefficient (Heiple and Roper, 

1981/1990). 

In such molten beads, the surface tension is at its maximum at the pool surface 

(the coldest part), and lowest under the heat source (the hottest part). Under these 

conditions, an outward fluid flow would result, producing a wide, shallow geometry 

(see Figure 1.5a). However, the additions of surface active impurities, sulphur and 

oxygen being the most notable in steels (Zacharia & David, 1993), can segregate 
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Figure 1.5: Schematic diagram illustrating the Heiple-Roper theory for weld 
penetration. The views are in a direction normal to the direction of scan 
(Heiple and Roper, 1982). 

 

preferentially to the surface of the liquid alloy and lower the surface tension. Burgardt 

and Heiple, (1986) suggested that oxygen and sulphur concentrations exceeding 

~50ppm will change the temperature coefficient of surface tension (d/dT) from 

negative to positive. They further suggested that since a large temperature gradient 

exists between the centre and the edges of the weld pool, a large surface tension 

gradient will be produced across the surface. This will cause the surface tension to be 

greater in the high temperature region (at the centre of the pool) causing an inward fluid 

flow along the surface and down to the centre of the weld pool. This will transfer hot 

metal to the bottom of the weld pool resulting in a deep narrow weld (see Figure 1.5b). 

Systems which exhibit a positive surface tension temperature coefficient must go 

through a maximum at some temperature and thus produce a complex flow similar to 

that shown in Figure 1.5c. Therefore, a negative surface temperature coefficient only 

occurs for a limited range of temperatures above the melting point (Heiple and Roper, 

1982;1990). Mills et al., (1998) also noted that Marangoni convection is only affected 

by the concentration of soluble oxygen and not the combined oxygen in the form of 

surface films. They added that surface films tend to suppress surface flows and thus 

produce stagnant regions at the edges of the weld pool. 

T T T

  

TA, TB < TC
A, B > C

TA, TB < TC
A, B < C T0

A C B A C B

T0

(a) (b) (c)



Chapter 1: Introduction and Literature Review           12 

Figure 1.6: The d/b ratio as a function of the linear energy (Mills et al., 1998), where 
LS is low sulphur, HS is high sulphur and MS is some middle value (medium 
sulphur). 

 

Mathematical models and empirical investigations have shown that the fluid flow 

in the weld pool is complex, despite the fact that thermocapillary forces tend to 

dominate (Ergy et al., 1998; Wahab et al., 1998; Longtin et al., 1999; Ricci et al., 1998). 

Nevertheless, on the basis of the Heiple-Roper theory some correlation between d/b and 

the temperature gradient ( xT  ) can be expected. Burgardt and Heiple, (1986) 

suggested that since Marangoni forces are typically dominant, the effects of altering 

welding conditions can be best explained in terms of the impact these changes would 

have on the temperature gradient. Therefore, any change which brings about an increase 

in the temperature gradient i.e. an increase in linear energy, would cause an increase in 

weld pool penetration depth (and a decrease in width) in high oxygen or high sulphur 

metals and increased width (and a decrease in depth) in low oxygen or low sulphur 

metals. Mills et al., (1998) agreed, and further suggested that the linear energy allows 

the effect of VI   and u on the Marangoni forces to be taken into account 

simultaneously, but they emphasised that this  does not account for other forces that act 

in the weld pool; where, I, is the arc current and, V, is the voltage. Figure 1.6 shows 

these relationships. It illustrates the rate of change of the d/b ratio with linear energy and 
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melt pool shape can be large with respect to its actual size, and hence the angle of 

contact between the melt and its substrate will also change (see 1.5.2.2). 

On the basis of these experiments, Mills concluded that the temperature gradient 

( xT  ) is related to the power input ( VI  ), but added that the travel speed, u, 

primarily affects the rate of heat input and so it is this quantity that controls ( xT  ) 

(see also Sections 1.5 and 1.8). Mills added that these results are essentially in 

agreement with the earlier proposals by Burgardt and Heiple, (1986). 

O‟Neill et al., (1998) were the first to recognise that an awareness of weld pool 

heat and fluid flow could be the key to a better understanding of melt pool behaviour 

during SLM. They further cautiously added that changes in melt pool fluid flow may 

also help explain why large discrepancies are frequently found in the quality of fusion 

bonds between rastered tracks; though they admitted that at the time of writing no 

evidence could be found in their work or in the literature to support this claim. 

In more recent experimental works, Niu and Chang, (1999a) concluded that 

Marangoni convection was the driving phenomena causing shape changes in melt pools 

that they had been observing. They reported that the d/b ratio of melt pools, in absence 

of an underlying substrate, changed from a wide shallow geometry to a deep narrow 

geometry when switching from gas atomised high speed steel powders to  water 

atomised high speed steel powders. Niu and Chang argued that these shape changes 

were a direct consequence of a changing temperature coefficient of surface tension 

(from negative to positive) which was triggered by differences in the oxygen 

concentration of each powder being irradiated (200ppm in gas atomised powders and 

1000ppm in water atomised powders). When referring to the concluding remarks made 

by Mills et al., (1998) (see page 11 of this thesis), Niu and Chang‟s results imply that 

the oxygen concentration of the powder dictates the amount of soluble oxygen in the 

melt and that more importantly, the change in soluble oxygen was sufficient to 

influence fluid flow behaviour in the SLM generated melt pool. Niu and Chang reported 

that the consequence of changing from a wide, shallow melt pool to one with a deep 

narrow geometry reduced the bond between neighbouring melt tracks causing an 

increase in inter-run porosity (see Figures 1.7, 1.8 and 1.9). This caused single layers to 

have a furrowed surface morphology. They also added that the problem of inter-run 
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porosity became particularly evident at higher laser powers (>30W) (see Figure 1.8c 

and Figure 1.9c/d). However, it is not clear in their work how the phenomena is affected 

by scan speed.  

Niu and Chang also reported additional increases in inter-run porosity and 

directional surface morphology when irradiating two different batches of High Speed 

Steel (HSS) powder, both of which contained smaller particles (see Figure 1.9). One 

batch contained 32m water atomised powder particles (see Figure 1.9a/c) and the other 

contained 11m particles produced by milling a percentage of the first batch. They 

reported that residual gas analysis (RGA) revealed an oxygen concentration of 1700ppm 

for the first batch, but results for the second batch were not given. Nevertheless, it can 

be speculated that a smaller particle size, together with the milling operation, are likely 

to yield even higher oxygen concentrations (German, 1994). This  would account for the 

additional increases in inter-run porosity observed by Niu and Chang when irradiating 

the latter powder.  They therefore concluded that a positive surface tension temperature 

coefficient, invoked by residual oxygen and causing a deep narrow melt pool geometry, 

was a significant factor affecting surface morphology and inter-run porosity during 

SLM.  

The Heiple-Roper theory makes two further important assumptions that 

strengthens the concluding remarks made by Niu and Chang. These assumptions are: (1) 

that the heat transfer in the weld pool is controlled by the fluid flow in the pool and not 

the heat conduction into the work piece and, (2) that Marangoni or thermocapillary 

forces are the dominant forces within a weld pool. The first of these assumptions 

suggests that observations of shape change triggered by Marangoni convection will 

occur irrespective of the locality of solid material and secondly, that other mechanisms 

known to affect melt pool behaviour, namely aerodynamic drag forces and buoyancy 

forces can be considered as negligible. Aerodynamic drag and buoyancy forces are 

briefly discussed in the following sections. 
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Figure 1.7: A Visual definition of inter-run porosity when (a) melt tracks are shallow 
and (b) melt tracks are deep and narrow. 

Figure 1.8: SEM images of laser sintered HSS surfaces using a scan speed of 1mm/s 
and a scan spacing of 0.15mm for (a) water atomised 100m particles at 10W, 
(b) gas atomised 117m particles at 10W, (c) water atomised 100m particles 
at 30W and (d) gas atomised 117m particles at 30W (Niu and Chang 1999a). 
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Figure 1.9: SEM images of laser sintered HSS surfaces using a scan speed of 1mm/s 
and a scan spacing of 0.15mm for (a) water atomised 32m particles at 10W, 
(b) as milled 11m particles at 10W, (c) water atomised 32m particles at 30W 
and (d) as milled 11m particles at 30W (Niu and Chang 1999a).                                                                                                                                

 

1.1.2 Aerodynamic Drag Forces 

Aerodynamic drag forces during conventional arc welding can occur from 

frictional forces between the molten pool and the plasma stream. This frictional force 

produces very fast stirring and a rapid outward radial flow. The concept and potential of 

a plasma stream during SLM has been reported by O‟Neill et al., (1998; 1999). They 

discussed that a laser operating in pulsed mode creates a plasma shock wave, directed 

towards the melt, which bombards the melt and causes geometry modifications. The 

process is currently somewhat hypothetical, and lacks physical interpretation, but the 

results are promising with reports of improved fluid flow that is creating layers with 

good surface quality and high levels of densification. However the occurrence of the 
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plasma stream, in a sufficient capacity to bring about change, is only thought possible 

when the laser operates in pulsed mode.  

1.1.3 Buoyancy Forces 

Buoyancy forces occur when the heat flux from the welding arc generates spatial 

and temporal density gradients in the molten bead which causes thermally activated 

driven flows. The hotter liquid metal (near the centre of a weld pool) under the 

influence of the buoyancy force floats up to the surface. The cooler liquid metal (near 

the pool boundary) has a higher density and so sinks to the bottom. This produces fluid 

flow on a weld pool surface. However, the radially outward driven flow is relatively 

slow and is suppressed by high cooling rates and is therefore thought to be the least 

dominate force in weld pools, especially when the melt pool is less that 10mm in depth 

(Welch, 1997; Mills et al., 1998).  

1.1.4 Summary 

The results presented by Niu and Chang are based on the extent of inter-run 

porosity rather than providing direct evidence  of melt pool width and depth changes. 

Furthermore, because it is not clear how effective their protective atmosphere was, nor 

is there any evidence to suggest the use of a degassed powder, it is possible that their 

results were a product of poor wetting through oxide formation (as discussed by Abe 

and Osakada, 1996a) rather than through Marangoni convection. It is therefore unclear 

in their work whether Marangoni convection, surface oxidation or some combination of 

the two are responsible for increased inter-run porosity and reduced surface quality. 

Furthermore,  the size and shape of powder particles used in their study varied 

considerably. Discussions in Section 1.7 reveal that changes in powder characteristics in 

addition to the amount of residual oxygen can also greatly influence melting. 

Furthermore, if a positive surface tension temperature gradient can exist without 

significantly affecting the balance of surface energies i.e. reducing wetting,  then 

providing any geometric changes are constant along the length of the melt pool, it is 

likely that inter-run porosity can be reduced by simply altering the scan spacing to 

maintain a smaller scan overlap. Therefore, if Marangoni convection is the singular 
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problem as implied by Niu and Chang, then scanning routines may compensate for 

geometry changes and the inherent problem may be easily controlled.  

It is apparent that a large majority of current SLM literature considers Marangoni 

convection and related fluid flow phenomena to be a negative aspect of the process. 

However, discussions in Section 1.5.2 reveal that melt pool shape changes can also be 

advantageous, leading to surface quality improvements and reduced porosity during 

area coverage.  
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Scanning Parameters: Effects on Melt Pool Size, Melt Pool Stability 

and Density 

1.1.5 Spot Diameter  

Steen, (1998) discusses that the principle parameters in laser processing are power 

(P), scan speed (u) and spot size or spot diameter (2a), the most important is spot size. 

This acts in two ways; firstly, a decrease in spot size will increase the power density 

(P/(a2) which increases energy absorption and secondly, a decrease will lead to a 

reduction in exposure area. Generally, a smaller spot size for a given power density 

allows for increased part definition during laser sintering, but will equally increase build 

time during area coverage (Miller et al., 1997). No literature could be found that 

discusses the effects of spot size on melt pool shape and stability. 

1.1.6 Laser Power and Scan Speed 

The overall effect of increasing power is to allow melting at faster speeds and/or 

greater depths of heat penetration. The faster the scan speed, the less time there is for 

heating and therefore, for a given laser power, less time for the heat to diffuse sideways, 

causing a narrowing of the melt region and heat affected zone. With a Gaussian laser 

beam there is a „sharpened pencil‟ effect in that as the speed increases there becomes 

only sufficient energy at the tip of the Gaussian curve, or centre of the beam, to cause 

melting (Steen, 1998). To readdress the balance, a corresponding increases in laser 

power is required.  

Because of this strong association between power and speed, a suitable way of 

expressing their influences on powder interaction is in the form of a compound variable 

which is referred to as the specific energy density (Es) (Williams and Deckard, 1998), 

where: 
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It is obvious from Equation 1.1 that the energy received at the powder surface will 

increase with increasing power or decrease with decreasing spot size and/or scan speed. 

Gedda, (2000) found Equation 1.1 to be a useful tool to compare the melting responses 

of different powders. However, he added that Equation 1.1 was rather limited as a 

universal predictor and instead only introduces a linear model that gives a semi-

quantitative idea of the melting response. This is because a number of assumptions have 

to be made in order to arrive at its solution. These assumptions include (Miller et al., 

1997): 

1. There are no considerations of a melting model and so the physical and chemical 

properties of the material are assumed to be fixed; 

2. The optical properties of the powder bed and melted areas are assumed identical 

and remain fixed throughout the duration of the build cycle (see Section 1.7.2);  

3. Changes in layer geometry or vector length have no influence on the melting 

response; 

4. There are no heat losses due to convection, conduction or radiation. 

For the purposes of modelling, these assumptions often lead to a great many 

inaccuracies. However, despite these obvious drawbacks, changes in laser power and 

scan speed are often used to observe and correlate empirical data, allowing strong trends 

to be forged. It is these observations and trends that will now be discussed. Before this 

however, it is important to note that it is apparent in the literature that there are two 

approaches  to the production of a single track melt bead; melting of pre-placed powder 

in absence of an underlying substrate (see Figure 1.10a) and melting of pre-placed 

powder on top of an underlying substrate (see Figure 1.10b). A substrate, in this case, 

refers to a consolidated or melted powder layer or a flat plate machined from solid. The 

former method presents itself when melting the first layer of an unanchored build or 

when constructing the first layer of any overhanging feature(s). The latter method 

presents itself when the aim is to overlay one layer with another to form a strong 

interfacial bond when building up layers. The first layer of a build is also often bonded 

to an underlying plate to form an anchorage point for successive layers. Since each 

approach affects melt pool behaviour differently, it is appropriate to channel 

forthcoming discussions accordingly. Here the former method is treated first. 
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Figure 1.10: Single track building within (a)  a deep powder layer and (b) on a solid 
substrate. 

 

1.1.6.1 Melting in Absence of an Underlying Substrate 

When the melt bead is supported by the surrounding powder (see Figure 1.10a), 

Abe and Osakada, (1996a), Karapatis et al., (1998) and Niu and Chang, (1999b)  have 

reported that surface tension forces and surface tension driven fluid flows (see Section 

1.4) dictate melt pool geometry and stability. Therefore, since surface tension forces are 

strong in liquid metals, the melt track will assume a form such that its surface area will 

be a minimum and its volume a maximum i.e. cylindrical in shape with an area cross 

section equal to that of an ellipse or circle. However, due to heat transfer and capillary 

flows, Niu and Chang found that a large number of surrounding particles will bond to 

the already molten core, and subsequently distort its final overall shape (see Figure 

1.11). Niu and Chang further added that the strong surface tension forces will act to 

minimise the surface area further by breaking up the liquid bead into a series of balls (a 

shape where its surface area is a minimum and its volume a maximum). This 

phenomenon was found to be a major concern during early DMLS research (Manriquez-

Fayre and Bourell, 1990;1991; Agarwala et al., 1995a). Nevertheless, Niu and  Chang 

demonstrated, like Deckard and Miller, (1995) before them, that this problem could 

generally be controlled by maintaining a low scan speed. They reported that a 

continuous CO2 laser scanning at speeds lower than 20mm/s was sufficient to suppress 
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Figure 1.11: SEM images of single track melt pool cross sections showing fused 
powder agglomerates around their periphery. Tracks were produced using (a) 
gas atomised M2-117 powder at 50W and 10mm/s and (b) water atomised M2-
94 powder at 40W and 10mm/s (Niu and Chang, 1999b). 

 

balling in a HSS over a power range not exceeding 80W. At greater powers balling was 

again difficult to control. These observations also held when processing a number of 

different powder batches fabricated by different means (gas atomisation, water 

atomisation and milling). Although, they added that balling became more difficult to 

control when irradiating powders containing smaller particles, they speculated that these 

problems occurred due to Marangoni convection, triggered by the high oxygen content 

of the powder and the high linear energy respectively, and causing a radially inward 

driven fluid flow (see Section 1.4). However, they further added that both problems 

could be easily solved by simply reducing the temperature gradient within the melt i.e. 

reducing power or increasing scan speed, with the required size of the reduction 

increasing with decreasing particle size; although a large increase in speed would again 

trigger balling.  

With further testing, Niu and Chang also found that a reduction in scan speed 

could also suppress balling when irradiating powders at high laser powers. However, 

since this action would increase the temperature gradient in the melt, it would seem that 

this method would only appear viable in a low oxygen environment where the effects of 

the parameters which trigger circulatory flows are seemingly reversed (see Section 

1.4.1.1). Despite these latter observations, which currently lack a full understanding in 

the SLM literature, Niu and Chang argued that balling could generally be expected 

when the diameter of the melt was small, since the melt diameter substantially reduced 

at high scan speeds. Niu and Chang furthered this discussion by suggesting, like others 
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before them (Gratzke et al., 1992) that the balling phenomena of a liquid cylinder 

closely follows Plateau‟s theory on the collapse of cylindrical structures.  

In the 18th century Plateau, and later Raleigh, found that a neutrally buoyant liquid 

bridge is stable to small perturbations as long as its length, , is less than its 

circumference 2r, such that; (see Figure 1.13a)  

 

 < 2r  (1.2)

  

If in the case the wave length exceeds the circumference of the cylinder 

instabilities will commence and the perturbations will be begin to grow. Eventually the 

cylinder will break up into a series of droplets. Furthermore, the analysis provides a 

growth time, , of that disturbance which grows fastest where 

 

33 r



   (1.3) 

 

where, , is the liquid density and  is the surface tension. Note that   3r is a 

characteristic time constant whenever surface tension is the dominant driving force. In 

laser welding it also characterises the collapse of a keyhole after the laser is switched 

off (Gratzke et al., 1992). If we assume the weld bead to have the shape of a cylinder, 

and associate the wavelength, , of the disturbance with the length of the molten region 

in the weld pool, then for stability, S <  where S = /2r . Hence S is often known as the 

slenderness of the bridge (Burcham et al., 1998). When  /2r =  the liquid bridge 

becomes unstable and breaks. This critical condition is known as the Rayleigh-Plateau 

limit (RPL) or pinch effect (Marr-Lyon et al., 1998). Since a liquid bridge is a liquid 

mass supported solely by capillary forces (surface tension and wetting constraints), a 

liquid cylinder will tend to minimise its surface area by forming spheres. As the liquid 

cylinder grows in length, surface tension forces cause the cylinder to take a form similar 

to that of an hour glass (see Figure 1.12b). Due to high curvature stresses in the neck 
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region and an increased internal pressure due to the contracting diameter, the liquid 

cylinder will become unstable and will fragment when the length of the cylinder reaches 

RPL (see Figure 1.12c). Often, smaller spheres will form between the larger spheres due 

to the neck region forming further independent liquid cylinders (Singer, 1997). This 

formation is called a spider web structure and has been observed in early metal SLS 

studies (Deckard and Miller, 1995). 

Results presented by Niu and Chang, appear to agree with Raleigh‟s theory, 

although their concluding remarks that the diameter of the melt is the critical factor 

appear a little misleading. To explain, Figure 1.13 shows examples of their results and 

implies that tracks produced at conditions of 50W and 5mm/s and 150W and 20mm/s, 

giving specific energy densities of 20J/mm2 and 15J/mm2 respectively (with a spot 

diameter of 0.5mm), are of a similar size, yet only the track produced at the higher scan 

speed showed signs of balling. Nevertheless, it is possible for the faster travelling melt 

front to have an extended molten region, hence the condition /2r =   is met and the 

melt front will solidify into a series of balls.    

Earlier discussion by Abe and Osakada, (1996a/b) agreed with the results 

presented by Niu and Chang, (1999b). However, they also suggested that since balling 

was difficult to control at high linear energies, the apparent increase in surface tension 

related activity is likely to be linked to a lower melt viscosity, though they failed to 

prove this experimentally. Also, this argument disagrees with Niu and Chang‟s results 

presented above. Nevertheless, Abe and Osakada speculated that a pre-alloyed powder 

when melted to a mushy state i.e. in the region of its phase diagram bounded by the 

solidus and liquidus lines, would resist tendencies to ball because of increased melt 

viscosity caused by the precipitation of solid from the liquid. They concluded that it 

would therefore be beneficial to heat a pre-alloyed powder to a temperature which just 

exceeds its melting point, presumably however, provided the scan speed remains low.  
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Figure 1.12: Break up kinetics of the liquid cylinder (Singer, 1997). 

Figure 1.13: SEM images of laser sintered single line tracks of gas atomised M2 
High Speed Steel powders (117m) using a CO2 laser with a spot size of 
0.5mm. The laser power and scan speeds are; (a) 50W at 5.0mm/s, (b) 50W at 
20mm.s, (c) 150W at 5mm/s and (d) 150W at 20mm/s (Niu and Chang, 
(1999b). 
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1.1.6.2 Melting to an underlying substrate 

When the melt bonds to a flat underlying substrate, Steen, (1998) reported that the 

shape of a single track clad bead can be summarised by three general area cross sections 

(see Figure 1.14). For rastering to be achieved without porosity between tracks the angle 

 (wetting angle) must be acute, as shown in Figure 1.14a; this can be defined by the 

aspect ratio (depth/width). If the energy density is extremely high then a strong fusion 

bond with the underlying layer can be achieved for a given powder layer thickness (see 

Figure 1.14b). Steen further discusses that the strength of the fusion bond is primarily 

dependant on Marangoni convection (See Section 1.4.1.1) and heat penetration.  

When the scan speed is extremely high, and often, when the laser power is low, a 

discontinuous melt bead will occur (balling). This phenomena forms through 

insufficient wetting due to poor heating of the substrate. A wetting liquid has a small 

contact angle , defined by the equilibrium of surface energies (German, 1985); 

 

)cos(θγγγ LVSLSV     (1.4) 

 

where SV is the solid-vapour surface energy, SL is the solid-liquid surface energy and 

LV is the liquid-vapour surface energy. If a balance of these surface energies creates a 

large contact angle  (wetting angle),  then the liquid will not spread and wet the solid 

surface (see Figure 1.14c). Schiaffino and Sonin, (1997) also discussed that the stability 

of the bead also depends upon the boundary conditions at its contact line.  Davis, (1980) 

used a linearised hydrodynamic theory to derive sufficient conditions for stability for 

three cases: (a) beads whose contact angle, , remains fixed at an equilibrium value 

while the contact lines are free to move, as in Figure 1.4c; (b) beads whose contact 

angle depends on the contact line speed, but reduces to an equilibrium value at zero 

speed, and (c) beads whose contact lines are arrested in a parallel state while the 
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Figure 1.14: The three generalised cross sections of single track melt bead profiles 
when bonded to a solid substrate (Steen, 1998). 

 

contact angle is free to change, as in Figure 1.4d. Davis showed that, like Raleigh‟s 

liquid cylinder, cases (a) and (b) will always be unstable at some disturbance 

wavelengths, but that case (c) will be stable if  < ½. Furthermore, Schiaffino and 

Sonin, (1997) observed severe undulations on the surfaces of melt pools when  > ½. 

These undulations have been observed by numerous authors, including Gratzke et al., 

(1992) during welding processes where this disturbance phenomenon is known as 

humping. Humping again appears to occur at higher heat inputs and/or higher scanning 

speeds, and are thus thought to be strongly associated with Raleigh‟s theory of 

instability (Gratzke et al., 1992). On the other hand, Mills and Keane, (1990) proposed 

Marangoni convection as the underlying physical mechanism for humping. However, 

their suggestion that the entire flow in the weld pool is determined solely by the 

increase of surface tension with temperature in the range 1440C to 1800C appears 

somewhat extreme in view of the fact that the surface of the weld pool will not lie 

entirely in this range, but can reach 3300C near the central region of the pool where the 

surface tension is  likely to decrease with temperature. Their conjecture also suggests 

humping even for a stationary arc, but this has not so far been observed. Therefore, 

Gratzke et al., (1992), concluded that humping cannot be fully explained as surface 

elevation due to Marangoni convection. However, Marangoni flow as a substantial 

contributor to the fluid flow in a weld pool is a totally different matter, and certainly has 

an impact of weld pool shape and therefore may be indirectly related to the humping 

phenomenon.  



Melt
Heat Affected Zone
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For a continuous melt bead, Yevko et al, (1998) demonstrated  that the change in 

the width of the melt pool was almost linear with changes in both power and scan speed 

(increasing with increasing power and decreasing speed) (see Figure 1.15a/b). As they 

predicted, a similar relationship was also observed for the height of the bead. However, 

at very high laser powers the relationship changed and the height was found to decrease 

with further increases in power (see Figure 1.15c/d). They tentatively suggested that this 

sudden drop in height was caused by an insufficient volume of powder for melting, 

since the width was still increasing. They admitted that there was no evidence for this 

theory, yet they thought it appeared to be a logical explanation since the volume of 

powder available for melting is fixed, and so would choke expansion of the melt pool at 

high energy densities. However, it would also seem equally probable that a similar 

occurrence would occur at low scan speeds, since at low scan speeds the energy density 

is also very high, but this is clearly not shown in the results by Yevko.  

Figure 1.15: (a) single track width vs. scan speed, (b) single track width vs. laser 
power, (c) single track depth vs. scan speed and (d) single track depth vs. laser 
power (Yevko et al., 1998).   
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1.1.7 Scan spacing  

If area coverage is to be achieved, overlapping of melt pool tracks will have to 

take place. Research concerning the selection and optimisation of the overlapping ratio 

(scan spacing) to achieve uniform density and track layer thickness has been well 

documented and some of this research will be reviewed in this section. However, more 

important to the work of this thesis is the understanding of melt pool behaviour during 

overlap. This is an area containing little research. Nevertheless, there are some general 

observations that have been made, and it is these observations that will be discussed 

first. 

1.1.7.1 Effects on Melt Pool Behaviour 

Niu and Chang, (2000) reported that high levels of porosity within a single layer 

generally occurred at conditions where single tracks were found to ball i.e. at high scan 

speeds (see Section 1.5.1.1), implying that both a rastered and unrastered spot 

influences the behaviour of the melt in much the same way. They constructed a process 

map which summarises, for a scan overlap of 0.15mm, the change in surface 

morphology of a single layer melted using a range of laser powers (0 - 100W) and 

process speeds (1.0mm/s – 36mm/s) (see Figure 1.16). The map consists of five zones 

(Z1 – Z5), with each zone representing a different, and presumably generalised, mode of 

solidification; (Z1) interconnected porosity (predominantly occurring at temperatures 

below the melting point), (Z2) inter-run porosity, (Z3) a highly dense structure but with 

small areas of isolated porosity, (Z4) a highly dense structure but with large areas of 

isolated porosity and (Z5) a fully dense structure with no porosity. Z1 covers an area 

bounded by low laser powers (<20W). Furthermore, and to some surprise, this boundary  

is shown to be impervious to changes in scan speed. With increasing power, Z4, Z3 and 

Z2 occur next with Z4 occurring at low scan speeds (<6mm/s) and low laser powers 

(<40W), Z3 primarily covers an area mapped out by an intermediate speed and power 

range (6mm/s – 26mm/s and 20W - ~70W) but extending to a higher speed range at 

higher laser powers and Z2 is concentrated over a high scan speed range (>16mm/s). 

Finally, zone 5 covers a large scan speed range at powers above 40W.  Within this 

regime, the speed range increased with increasing power.  
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Since Niu and Chang argued that melt pool balling was the key to single layer 

porosity, then it would appear possible to gauge the effects that rastering has on melt 

behaviour by comparing Figure 1.16 with melting results obtained when traversing an 

unrastered spot (see Sections 1.4.1 and 1.5.2). Such comparisons reveal large 

differences in the speed and power range over which balling takes place. In Section 

1.5.2 it was reported that Niu and Chang had discussed that balling could generally be 

controlled at speeds below 20mm/s and laser powers below 80W. However, in Figure 

1.16 it is clear that a single layer can be produced without porosity (and therefore 

without balling) over a much larger speed and power range (up to 30mm/s at 100W). 

This would seem logical since the behaviour of the melt changes when it comes into 

contact with an underlying substrate (see Sections 1.5.2.1 and 1.5.2.2). 

1.1.7.2 Effects on Surface Morphology 

Li and Ma, (1997) found that a strong relationship exists between the surface 

roughness, scan spacing and clad height. In their simulation, a series of clad melt beads 

were assumed to be symmetrically parabolic in shape and deposited onto a solid 

substrate. The overlapping process was described as that schematically shown in Figure 

1.17, where T is the maximum height of the overlapped track, H is the minimum height 

of the overlapped track, s is the scan spacing, d and b are the depth and width of the first 

Figure 1.16: Variations in single layer porosity with changes in laser power and scan 
speed (Niu and Chang, 2000). 
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clad track respectively (control) and k is a scan overlap parameter depicting the 

overlapping ratio (   bsbk  . It was found in their analysis that surface roughness 

was dependant on the height, d, and the overlapping ratio, k, but independent of single 

clad track width, b. Figure 1.18, shows the relationship between the surface roughness, 

H/d (H = T – H), and k. It illustrates that the surface roughness is oscillatory in 

nature with a maximum surface roughness occurring at H = d(1 –  k) i.e. at 

overlapping ratios of 50%, 66%, 75% etc.  

 In contrast, when H = 0.24d(1 –  k) the surface roughness was found to be a 

minimum i.e. at overlapping ratios of  29.3%, 59.2%, 71.7% etc. Figure 1.19, shows 

these results graphically, which were later verified with an empirical study observing 

changes in surface roughness of deposited stainless steel particles. 

Li and Ma further discussed that surface roughness will generally become smaller 

with increasing scan overlap, whether the overlapping ratio takes the optimised value or 

not. However, they added that a very large scan overlap can be impractical because this 

will decrease the covering speed of the melt front, implying that a trade off between 

surface quality and surface coverage speed needs to be considered. They also added that 

the overlapping ratio should not be too high because inter run porosity defects will be 

produced. Niu and Chang agreed, and further suggested that an increase in linear energy 

would counteract the problem of inter-run porosity, presumably, because it would 

increase the amount of material melted. However, this action is also likely to increase 

the size of the layer produced, and it would therefore seem more preferential to reduce 

the scan overlap.  

Li and Ma also simulated the overlapping process with different area cross section 

profiles, including (1) an asymmetric profile composed of two parabolic ones; (2) a 

symmetric circle segment and (3) a symmetric profile composed of two circle segments 

with different radii. Using the same model as before they found that the relationships 

between H/d and k were comparable to the results obtained in the first experiment. 

They therefore concluded that the two optimised scan overlap ratios are 29.3% and 

59.2%. The high tolerance of these ratios further suggests that the geometry of the 

tracks are highly reproducible.  
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Finally, Li and Ma also found that a scan overlap ratio of 29.3% produces an 

effective clad layer thickness of 0.82d. Alternatively, when the overlapping ratio takes a 

value of  59.2%, the effective layer thickness was found to increase to 1.56d, implying 

that the height of the clad track relative to the  surface of the powder layer increases, 

which may prove to hinder the recoating of fresh powder layers during SLM. Figure 

1.20, shows the relationship between the ratio of H/d, and the overlapping ratio, k. 

Figure 1.17: Model of overlapping process (Li and Ma, 1997). 

Figure 1.18:  Surface roughness as a function of overlapping ratio (Li and Ma, 1996). 
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Figure 1.19: Section profiles of overlapped cladding layers at some critical ratios (Li 
and Ma, 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.20: Section profiles of overlapped cladding layers at some critical ratios (Li 
and Ma, 1997). 
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1.1.8 Layer Thickness  

Steen, (1996) discusses that a thin layer of powder is an important  requirement 

during layer manufacturing because the bond required to fuse consecutive layers is often 

difficult to achieve by virtue of the pre-placed powder layer. This is because the 

underlying solidified layer needs to be remelted in order to achieve a strong fusion 

bond. But, since the substrate is not directly irradiated, the degree of remelting will 

depend on the transmitted energies through the powder layer. Hence, there is a general 

agreement in the literature, backed up by empirical studies, that a smaller layer 

thickness will increase the bond between layers, resulting in higher density components 

(Marcus et al., 1994; Agarwala et al., 1995a/b; Lauwers et al., 1998). 

Steen further discusses that this problem heightens as the underlying layer 

increases in density. As the molten front of the current layer proceeds through the 

powder to the underlying layer, it will refreeze at the point of contact due to the 

additional thermal load caused by the high thermal conductivity of the lower layer; to 

ensure a strong fusion bond the current layer must be remelted before the substrate 

melts. If the current layer refreezes prematurely, then a lower penetration liquid-solid 

bond will form. However, Steen adds that if the lower layer remains cold, then the 

current layer will not wet the substrate and balling can be expected. Figure  1.21 shows 

the theoretical  position of the melt front during pre-placed powder cladding. It 

Figure 1.21: Theoretical estimation of the position of the melt front during laser 
irradiation of a pre-placed powder layer (Steen, 1998). 
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illustrates the importance of how an increase in dwell time, caused by a reduction in 

scan speed, will allow sufficient melting at the interface between layers to cause a good 

fusion bond. 

Benda, (1994) also found that the melt depth or penetration depth of the melt front 

changed depending on the value of the scan spacing. He found that an increase in scan 

overlap caused a reduction in melt depth and a decrease in scan overlap resulted in an 

opposite effect. He suggested that the phenomena occurred due to changes in the 

absorptivity of the laser light since the surface roughness and porosity of the bed 

changes drastically when powder is melted. He found that increasing the scan spacing or 

reducing the layer thickness counteracted the problem of reduced penetration. He also 

discussed that an increase in linear energy may also prove beneficial, but since the 

understanding of laser absorptivity during SLM and other powder based processes is 

currently in a state of infancy, this possibility is only speculative. The factors affecting 

laser absorptivity are discussed in greater detail in Section 1.73. 

Finally, Hu and Baker, (1999) also noted that the melt depth tended to fluctuate 

within a layer, particularly at the beginning where the depth was found to increase with 

an increasing number of tracks, only reaching steady state conditions after about 10 

consecutive scans.  Hu and Baker failed to provide an explanation for this behaviour, 

though it is plausible that the natural preheating of the powder layer that takes place 

during scanning may have some bearing over these observations. Hu and Baker 

concluded that a variable melt depth made it difficult to choose an adequate layer 

thickness to maintain a consistency in the bonds between layers.  

Oxidation: Effects and Methods of Prevention 

The high specific surface area of a powder allows a large amount of material to be 

directly exposed to the surroundings. Therefore, during powder production, storage, 

handling and processing many contaminants can be easily picked up from the 

surrounding medium through adsorption and chemisorption processes (Thümmler and 

Oberacker, 1993; German, 1994). In many cases these impurities segregate to the 

particle surface, giving rise to two powder specific problems: 

1. The reaction between the powder melt and the impurities. 
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2. The effect of impurities on the final material properties. 

Oxygen is one of the most damaging impurities during metal powder melting 

(Carter and Jones, 1993). It can be present within the processing atmosphere, in the 

form of an oxide created on particle surfaces during powder production or as a gas that 

has become absorbed during inadequate storage and careless handling. If no measures 

are taken to reduce oxygen or oxide levels, severe further oxidation can take place since 

raster scanning and the progressive construction of layers causes every melted layer to 

run through a temperature cycle which is very conductive to oxide formation. This will 

lead to poor wetting conditions and at worse, melt pool balling, which often proves 

impossible to stop once it occurs (Carter and Jones, 1993; Das et al., 1998a/b; Niu and 

Chang, 1998). Furthermore, if oxygen is absorbed to excess during melting, it will 

combine with deoxidants and become rejected in the form of a slag (Lancaster, 1999). It 

is therefore generally accepted  that a metal powder (in most circumstances) cannot be 

directly exposed to high levels of laser radiation without firstly establishing a protective 

atmosphere.  

There are several criteria which need to be considered when selecting a suitable 

atmosphere, including prevention and/or removal of oxides, removal of contaminants 

and by-products, chemistry control and finally cost. Because current SLM research is 

largely focused on process and melt phase control rather than chemistry or metallurgical 

control, atmospheric selection is principally driven by the need for oxide prevention 

and/or removal only. However, due to a poor literature coverage, the choice of 

atmosphere for use in SLM still remains diverse with little cohesion. The most common 

types of atmosphere currently used are: 

1. Vacuum. 

2. Vacuum with inert/reducing gas backfill. 

3. Inert gasses (including argon or nitrogen)  

4. Oxide reducing gasses (including hydrogen, forming gas or dissociated ammonia).  

In most cases each system has proven to be an effective route to oxide reduction, 

removal or in some cases prevention, causing vast improvements in wetting conditions 

and general fluid flow behaviour (Agarwala et al., 1994; Das et al., 1997a/b; O‟Neill et 
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al., 1998; Niu and Chang, 2000). However, the suitability and relative importance of 

each of the different systems and the degree of effort required to maintain each system 

has been the source of much debate. The most common arguments occur between a 

vacuum based atmosphere and an inert gas based atmosphere. Sections 1.6.1 and 1.6.2 

discusses the advantages and disadvantages of  both.  

1.1.9 Vacuum  

Vacuum sintering or vacuum sintering with inert and/or reducing gas backfill has 

been identified as being the most reliable, repeatable and controllable atmosphere 

during SLS (Zong et al., 1992; Das et al., 1997a/b; Das et al., 1998a/b; Wohlert et al., 

1999). Furthermore, a vacuum is a useful means of producing a non reactive 

environment, though Das et al., (1998b) demonstrated that a high vacuum and the use of 

specialist equipment was required to achieve this (a pressure of <5x10-5 Torr when 

melting a cobalt based superalloy). 

In addition to atmospheric control, Carter and Jones, (1993), Das et al., (1997a), 

Wohlert et al., (1999) and others have also discussed that powder conditioning prior to 

SLS processing is a further important step in the control of oxidation and increased melt 

fluidity. In particular, Carter and Jones speculated that interlayer porosity would always 

be a problem if powder pre-processing steps were not implemented since enough 

residual oxygen would be present in each freshly deposited powder layer to cause the 

interface between melted layers to oxidise during cooling and prevent a good interfacial 

bond. This will also lead to melt pool shape changes (see Section 1.4). 

Powder treatments often involve vacuum outgassing or exposure to a stream of 

inert or reducing gases. The reported processing times and gas flow rates are however 

not specific and range from several hours to several days. The gas flow rates are also 

wide ranging, making it difficult to determine the most reliable method. Nevertheless, 

Wohlert summarised by stating that more effort spent at the pre-processing level will 

lead to greatly increased long term benefits during SLS, since an untreated or coarsely 

treated powder will tend to produce parts with solidification cracks and a large amount 

of porosity, irrespective of the processing environment used (see Figure 1.22). Wohlert 

also added that the application of heat during pre-processing, values again varying 
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widely between 100C and 1000C, will hasten powder cleansing allowing overnight 

treatment.  

Using a pre-processed powder (exact processing conditions were not given), 

Wohlert produced a „thin walled‟ pressure cylinder from a nickel based superalloy 

powder. The pressure cylinder concept created a vehicle for which the unmelted powder 

contained in its core could be increased to full density by a post processing route known 

as HIPing (Hot Isostatic Pressing). HIPing worked by exposing the cylinder to very 

high pressures and temperatures, creating a cylinder exhibiting a fully dense core and 

integral wall. However, success could only be achieved if the leak rate of the 

pressurised gas through the cylinder wall did not exceed 1x10-9cm3/s. This  translated to 

a required wall density of 98.5% (Das et al., 1997a). The reported success of the work 

by Wohlert et al. (1999) implies that powder conditioning allows for improvements in 

both melt density and perhaps more importantly, in density homogeneity. 

Figure 1.23 shows the shape and surface quality of an SLS processed pressure 

cylinder produced by Wohlert et al. (1999). It clearly illustrates the difference in density 

between the wall and the core.  Micrographs showing the microstructure of the wall of 

the cylinder, prior to HIPing, in both a transverse and longitudinal direction to the 

powder layer orientation are also shown in Figure 1.24. These micrographs illustrate 

Figure 1.22: SLM processed nickel superalloy  powder with (a) no powder 
conditioning and (b) after 12 hours vacuum conditioning  at temperatures of 
450C (Wohlert et al., 1999).  
The dark shading represent areas of porosity and trailing black lines show 
solidification cracking. 

(a) (b) 
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Figure 1.23: Transverse cross-section showing a typical SLS processed nickel 
superalloy cylinder at the interface between bottom cap, side wall and core 
(Wohlert et al., 1999).  

 

Figure 1.24: Microstructure of the wall of  a HIP cylinder produced by  SLS showing 
(a) columnar grains orientated vertically in the build direction and (b) equiaxed 
grains across the surface of a single layer. The height of each image is  
representative of seven layers (Wohlert et al., 1999). 

 

elongated columnar grain growth orientated vertically in the build direction (see Figure 

1.24a), and an equiaxed grain structure growing in a direction parallel to the powder 

layers (see Figure 1.24b).  Wohlert added that the orientation of the columnar grains 
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indicates that the solidification front originates from the surface of the underlying layer.  

It is also interesting to note that no distinct boundaries between the layers or adjacent 

scan tracks are visible, re-emphasising the quality of the fusion bonds obtained in this 

work. Prior work on SLS/HIP development for titanium alloy powders (Ti-6Al-4V) has 

also been reported with equally successful results under the same atmospheric 

conditions (Das et al., 1998d; Das et al., 1999).  

Although Wohlert failed to suggests reasons for the observed improvements in 

melt fluidity, there is however some general information available explaining the 

detrimental effects of solid films on fluid flow. Some of these effects have been listed 

below (Barlow, 1970): 

1. Strong films can form a continuous layer around the liquid phase, raising the 

apparent surface tension, thereby reducing fluidity and decreasing the effective  

cross-sectional area of the melt volume. 

2. Solid films can be entrained in the metal, restricting flow and increasing 

turbulence. 

3. A film can act as a thermally insulating barrier, reducing temperature and 

therefore increasing viscosity. However, growing evidence suggests that surface 

oxide films often increase laser energy absorptivity, thereby counteracting  the 

insulating properties of the film (see Section 1.7.2). 

1.1.10 Inert Gas 

Work by Meiners et al., (1999) dismissed results and observations presented by 

Wohlert by demonstrating success in constructing single and multiple layer 

components, with high densities and reasonable surface finishes, whilst shielding the 

build cylinder with argon gas. Furthermore, they discussed that powder pre-

conditioning was not necessary, and therefore they chose to process untreated powder; 

the only powder requirement reported in their work was the use of a powder containing 

spherical particles with sizes ranging from  20m to 50m, though they failed to 

explain the significance of these particular powder properties nor did they give any 

indication of the „as received‟ condition of the powder or the method by which it was 

stored. 



Chapter 1: Introduction and Literature Review           41 

Nevertheless, Meiners reported component densities exceeding 99% of theoretical 

density with linear accuracy‟s of 0.1mm. Post processes like infiltration were thought  

unnecessary and machining steps to improve surface roughness yielded mirror like 

finishes. However, Meiners stressed the importance of scanning strategies and gas flow 

rates when attempting to achieve and maintain such high tolerances, though no further 

information was relayed in their work. 

Figure 1.25, shows the typical structure, in a direction normal to the direction of 

scan, of components produced from stainless steel (316L) and titanium alloy (TiAl6V4)  

powders when melted in an argon atmosphere. It illustrates the quality of the fusion 

bonds between both tracks and layers, where arguably, the titanium samples appear 

analogous to samples produced by Das et al., (1999) under more strict environmental 

conditions (see Section 1.6.1).  

Laser melted samples produced from stainless steel powders also show great 

promise, but it is not clear whether the boundary lines visible in Figure 1.25a represent 

areas of inter-run porosity formed through inadequate fusion or just differences in grain 

orientation (see Section 1.9). However, due to the reported homogeneity of material 

properties, this would suggest that the boundary lines are formed through changes in 

grain orientation rather than through inter-run porosity. Furthermore, no explanation 

was given as to why boundary lines between tracks only appear on alternate layers, 

though this is likely to be caused by a rotational build technique where every alternative 

layer is built on a 90 rotation. If this is the case, then this build method would also 

account for the high tensile strength measurements taken in a direction normal to the 

direction of scan; raster scanning often produces inhomogeneous layer properties (Kruth 

et al, 1998a). Tensile strength values for both orientations were within the range of the 

materials specification (490 – 690 N/mm2 for stainless steel 316L).  

In comparison, O‟Neill et al. (1998;1999) observed large differences when 

comparing the density between adjacent rastered tracks and between consecutive layers 

when melting untreated stainless steel powders in an argon gas stream (see Figures 1.26 

and 1.27). They concluded that layer warping together with their inability to maintain a 

constant layer thickness were the primary causes for inter-layer porosity, although it is 

equally likely that the porosity was caused by powder contamination. 
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Figure 1.25: Sample cross sections of SLM parts made from (a) stainless steel 316L 
and (b) titanium (TiAl6V4) powders  (Meiners et al., 1999).  

The insert shows an aeronautical component which is representative of parts 
produced from titanium powders: note the surface roughness. 

 

Figure 1.26: Micrographs showing single layer pads of stainless steel powder 
produced within an argon atmosphere using lasing conditions of (a) continuous 
wave at 20A and 15W, (b) pulsed at 20kHz at 20A and 10W, (c) pulsed at 
40kHz at 20A and 11W (O‟Neill et al., 1998). 

(a) (b)
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Figure 1.27: Micrographs showing cross sections of blocks produced using twenty 
layers of 80m thick. Average power 12W, speed 100mm/s, overlap 25% of 
beam diameter, laser pulse frequency of (a) 48kHz and (b) 53kHz (O‟Neill et 
al., 1999). 

Powder Bed Behaviour 

1.1.11 Powder Properties 

An exhaustive literature database of conventional powder metallurgy research 

often underlines the benefits of tailoring specific powder  properties, through simple 

steps, to allow significant improvements in the properties of the sintered component and 

to increase efficiencies during  powder handling, packing and compacting (Goetzel, 

1949; Tsukerman, 1965; Thummler and Oberacker, 1993; German, 1994). The strength 

of results from this literature has directed several researchers to recognise similar 

benefits during DMLS.  In particular, the properties of individual particles (such as size 

and shape) and the collective (bulk) properties of a powder (such as packing density, 

and flowability) can be customised leading to changes in melt pool behaviour, sintering 

kinetics and laser absorptivity (Van der Schueren and Kruth, 1995; Smugeresky et al., 

1997; Lauwers et al., 1998; Karapatis et al., 1998; Niu and Chang, 1998; Karapatis et 

al., 1999). The impact of these powder property changes will be discussed here. 
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1.1.11.1 Particle Size and Shape 

Powder metallurgy techniques generally deal with powder particles that are larger 

than smoke particles (0.01 to 1.0m), but smaller than sand (0.1 to 3mm). They can be 

supplied in a vast number of shapes, where each shape is determined by the production 

parameters and method (German, 1994). Because it is difficult to quantify every particle 

shape, several qualitative descriptors are frequently used, the most common of which 

are given in Figure 1.28.  

In the context of SLM, the size distribution of metal particles within a bulk 

powder generally range from 20.0m up to 200m and they are often produced by gas 

atomisation techniques. This production method produces spherical shaped particles 

with smooth surfaces and due to the inert production gasses, the powder often has low 

levels of residual oxygen and surface oxidation (German, 1998). These characteristics 

allow for ideal flow properties and reduced surface contamination which are arguably, 

the primary concerns when selecting powders for use in SLM (see Section 1.7.1.3).  

Reports concerning the effects of particle size and shape on melt pool behaviour 

are however limited and generally restricted to powder contamination issues rather than 

actual particle size effects (see Sections 1.4 and 1.72). However, those reports that do 

 

Figure 1.28: A qualitative description of possible powder particle shapes (German, 
1994). 
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attempt to address the effects of particle size and shape often leave the reader wondering 

whether contamination through oxidation is the real issue. For example, Niu and Chang, 

(2000) found that melting of HSS powders produced a highly porous structure when the 

particle size was small (<38m). Since oxidation is more prevalent when heating 

powders containing smaller particles, it is likely that the porous structure has formed 

through inefficient wetting rather than by some mechanism governed solely by particle 

size effects.  

Niu and Chang also reported that large particles (>100m) required higher laser 

powers for melting since heat transfer into the powder layer was lower. Therefore, for a 

given energy density, the structure produced was generally more porous that a structure 

produced using smaller particles (See Figure 1.29c/d). Discussions in Section 1.7.1 also 

reveal a further mechanism by which surface oxidation strongly affects laser 

absorptivity. 

Figure 1.29: SEM images of laser sintered high speed steel powders using laser 
powers of 50W and a scan rate of 5.0mm/s and a scan line spacing of 0.15mm. 
Particle sizes were: (a) as supplied form .atomiser (full range), (b) 53m - 
150m, (c)>150m and (d) <38m (Niu and Chang, 2000). 

x 

y 
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In addition to the effects of particle size and shape on melting, Wieters et al., 

(1996), Das et al., (1999), Karapatis et al., (1998) and others have also found that 

particle size often dictates the surface roughness of the finished article. Due to local heat 

transfer, surrounding particles will fuse to the molten region and hence the surface 

roughness is often found to be a direct function of particle size, implying that finer 

particles will produce the best surface finish under ideal melting conditions. Van der 

Schueren and Kruth, (1995) and Lauwers et al., (1999) generally agreed with these 

results, but they also highlighted that surface quality is ultimately governed by the 

flowability characteristics of the bulk powder. If the particle size is too small and the 

shape too irregular, then these characteristics will impede the smooth deposition of 

layers which in turn will affect the quality of the irradiated layer (see Section 1.7.1.3). 

Finally, Agarwala et al., (1995a/b), Van der Schueren and Kruth, (1995) and 

Karapatis et al., (1998) have also established that the particle size and the presence of 

any agglomerated particles will determine the dimensions of the minimum layer 

thickness that can be deposited during a build. Agarwala concluded that if the layer 

thickness falls below the dimensions of the largest powder agglomerates, then 

deposition of fresh layers, without disturbing previously melted areas becomes difficult. 

1.1.11.2 Powder Packing Density 

A deposited powder layer that exhibits a high packing density has been identified 

as making an important contribution to the density of the sintered or melted layer 

following laser exposure. In this, particle size, particle size distribution and mixing can 

affect its value. For liquid phase sintered metal powders the relationship between 

powder and sintered density is often direct (Wieters et al., 1996; Lauwers et al., 1998), 

with final consolidated part densities often equating to the initial density of the powder 

bed. However, during full melt processing of pre-alloyed powders, where part densities 

can approach theoretical density, the effects of particle packing on melt density is less 

clear. 

1.1.11.3 Powder Fluidity  

Powder deposition and spreading is a critical step during SLS. The surface 

morphology and density of the melted layers together with the fusion bond between 
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them is ultimately dependant upon the uniformity, packing efficiency and smoothness 

of every deposited powder layer, implying that any  surface irregularities present in the 

deposited powder layer will be echoed in the sintered or melted surface, though the 

sensitivity of this transfer is not clear. In this, the choice of deposition mechanism and 

the efficiency of powder fluidity play a decisive role. Here the second is discussed first.  

Powder fluidity or flow rate is usually expressed as the time taken for 50g of 

powder to flow through a Hall flow meter (German, 1994). Short flow times indicate 

free flowing powders while long flow times suggest high interparticle friction. The 

friction between particles is dominated by particle shape, surface area, surface 

roughness and surface chemistry. As the surface roughness and surface area increases, 

or the particle size decreases, the amount of friction within a powder mass will increase.  

There are also a number of weak forces, namely van der Waals attraction forces, 

electrostatic charges, magnetic forces and capillary liquid forces which all act to reduce 

powder fluidity by causing particle agglomeration. Each of these forces becomes more 

noticeable as the  particle size decreases e.g. <100m for capillary forces and <0.05m 

for van der Waals forces (German, 1994). In general, a bulk powder containing 

spherical particles greater than 45m can usually be considered as free flowing, but 

there will be an inherent resistance to de-agglomeration up to particle sizes of 100m 

(Tsukerman,  1965; German, 1994).  

1.1.12 Powder Deposition and Spreading  

There are three powder deposition mechanisms in general use during SLS. The 

first is based on the use of a scraper blade. A predefined shot of powder is placed in 

front of the blade and swept across the build zone, spreading and levelling in one 

operation (See Figure 1.30a). This system is capable of depositing a uniform powder 

layer but there are some basic problems related to this solution (Van der Schueren and 

Kruth, 1995): 

1. The quantity of powder required is not regulated or controlled during each sweep 

and so a surplus is needed to ensure complete coverage of the build cylinder; 
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2. Surplus powder increases the weight of the powder shot causing an increase in 

friction between the moving powder heap and the underlying melted layer: this 

can cause shearing and displacement leading to misalignment of layers; 

3. A fixed line contact between the blade and the surface of the powder bed can 

cause irregularities in the powder (such as agglomerated particles) to be swept 

along tracing furrows in the powder surface; and  

4. The approach offers no means to compact the powder during deposition. 

The problem of the fixed contact line is solved with a counter rotating roller (see 

Figure 1.30b). In this second approach, the rotary motion of the roller will cause 

irregularities  appearing on the contact line between the powder and the roller to leave 

this contact line a few moments later, giving only small traces of disturbance. Another  

 

Figure 1.30: Three solutions for powder deposition and spreading during SLS, based 
on (a) scraper blade, (b) counter rotating roller and (c) slot feeder (Van Der 
Schueren and Kruth, (1995). 

 

advantage of the roller mechanism is the ability to apply, simultaneously, a vertical 

vibratory motion. This vibration resembles a tapping operation which should yield a 

higher powder density, known as the tap density.  

To minimised friction between the moving powder heap and the previously 

deposited layer, a slot feed mechanism can be used (see Figure 1.30c). Unlike the first 

two techniques, this third mechanism continually deposits powder during transit rather 

than pushing a heap of powder across the build cylinder, minimising the interaction 

between powder and melted layer. The outflow from the hopper acts as a natural blade 

a b c
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to deliver a final levelling action. There is no tapping operation to increase powder 

density but this mechanism often proves successful in reducing layer displacement. 

Because no single system fulfils all the deposition requirements imposed by SLS, 

Van Der Schueren and Kruth, (1995) planned a two phase deposition, spreading and 

compacting mechanism which combines a slot feeder and a rotating roller. They 

proposed a four stage deposition cycle as follows: 

1. The build cylinder piston lowers to a depth just below the required layer thickness. 

2. The slot feeder deposits a layer of loose, uncompacted powder. 

3. The piston raises up to the required layer thickness. 

4. A roller, rotating in the direction of motion, traverses across the powder bed and 

compacts the projecting powder layer. 

Van Der Schueren and Kruth speculated that such a mechanism should achieve a 

powder bed density that approaches the powder tap density. In a previous study, 

research by Lee et al., (1993) found evidence which supports this theory by performing 

compaction experiments on Alumina powder layers with a rotating roller. They found 

that the tap density for irregular shaped particles could be reached using this method 

(40% of theoretical density). However, Lee et al., (1993) also reported that powder layer 

compaction, which is difficult to achieve consistently due to the irregular distribution of 

particles, can cause previously melted layers to displace vertically from their suspended 

positions. Lee concluded that object dimensional accuracy could not be guaranteed 

during compaction. Figure 1.31 shows the effect of vertical layer displacement during 

powder compaction. It illustrates how the static height, h, between two remote features 

cannot be guaranteed during layer compaction. 
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Figure 1.31: Effects of layer position accuracy during powder compaction. 

 

1.1.13 Laser Energy Absorption 

1.1.13.1 Introduction  

Kruth et al., (1998b) stated that a study of powder absorptivity is of a particular 

interest to SLS  because it allows for the creation of more accurate sintering windows. 

Furthermore, prior knowledge of such  information will lead to improved levels of 

experimental and process reproducibility and uniformity, and therefore its 

understanding has been considered important for the work of this thesis.  

1.1.13.2 Coupling  

Since a laser beam is a light source, when it falls incident on the surface of an 

opaque powder bed, a part of its heat energy reflects to the surroundings, away from the 

powder surface. The remainder will be absorbed by the powder particles. The ratio of 

the laser absorptivity to reflectivity, commonly termed „laser coupling‟ or „energy 

coupling‟ is a measure of the transfer efficiency of the laser‟s radiant energy into the 

surface of the work piece. For opaque matter the incident laser power, P, will be 

partially absorbed (PA) and partially reflected (PR) according to (Hügel and Dausinger, 

1996): 

 

P = PR + PA = P + P (1.4) 

h1

a b

h1

a b

h2

a b

loadload loadload



Chapter 1: Introduction and Literature Review           51 

where  and  are the absorptivity and reflectivity ratios respectively, hence  +  = 1. 

The thermal energy per unit time released into the interaction zone is therefore 

equivalent to the absorbed power. Figure 1.32, gives a first approximation for the 

magnitude of  for both CO2 and Nd:YAG lasers. It illustrates, for normal angles of 

incidence, how the absorptivity changes with both laser wavelength, , and the 

materials chemical composition. It also illustrates the low efficiency of the energy 

transfer into the workpiece, especially for those metals which are commonly used in 

SLM (iron, nickel, chromium). The depth penetration of the absorbed radiation 

(excluding heat transfer) is also very small for opaque materials, typically of the order 

of 10nm - 1m over the range of wavelengths having industrial interest (Tolochko et al., 

2000).  

Similar to fully dense materials, only a fraction of the incident radiation will be 

directly absorbed by a singular metal particle surface. However, within a powder layer, 

which contains many hundreds of particles, a high proportion of the remaining or 

reflected energy will penetrate surrounding porosity where multi-reflections between 

particles will increase the overall absorptivity, thus allowing the radiation to interact 

with underlying particles (Hügel et al., 1994). In this, an irregular particle shape also 

plays a decisive role (Steen, 1998; Niu and  Chang, 2000). This phenomena is perhaps  

Figure 1.32:  Absorptivity as a function of wavelength for normal incidence, smooth 
surface and at room temperature. Metals 1 are those with full inner electron 
shells (Au, Ag, Cu,…) and Metals 2 are transition metals (Fe, Ni, Cr,…) 
(Hügel and Dausinger, 1996). 
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analogous to the observations of increased absorptivity when a keyhole forms during 

laser drilling or cutting. Again, the beam is subjected to many reflections down the hole 

due to the irregularity of the walls.  Interestingly, as the depth of the key hole increases, 

the number of reflections increase and the effects of radiation wavelength become less 

significant (Hügel and Dausinger, 1996). 

Simulation studies by Sih and Barlow, (1995) and empirical research by Tolochko 

et al., (2000) independently discussed that the laser absorption into a metal powder, 

particularly if the powder bed is pre-heated, can  approach idealised values i.e.  = 1 

(black body).  However, Hügel et al., (1994) disagreed by stating that tabulated data for 

powder absorptivity must be approached with caution because results are strongly 

influenced by a great many processing conditions. In particular, the surface condition, 

temperature and optical properties of the workpiece together with the radiation 

wavelength, polarisation, power and mode quality have all been shown to affect 

absorptivity. Therefore, Hügel tentatively suggested that the coupling efficiency for 

CO2 laser radiation, at values far below those to reach surface melting, will realistically 

approach values of 35% and 45% for a pure metal and a pre-alloyed powder 

respectively. 

Hügel added that oxidation is likely to be the decisive factor affecting absorptivity 

accuracy due to the difficulties when trying to maintain a reproducible, oxygen free 

atmosphere. Tolochko et al., (2000) agreed and presented data showing an increase in 

absorptivity, reaching almost idealised values, for CO2 radiation  when incident on the 

surface of a number of oxidised alloyed samples. Hügel also suggested that oxidation, 

or the lack of it, is the primary reason  for reduced energy coupling when the incident 

laser power is high. At these conditions an enhanced convective stirring of the melt 

volume  limits the growth of oxide layers. 

1.1.13.3 Heat Penetration  

Wang and Kruth, (2000) proposed through simulations that a strong relationship 

exists between the energy absorption, penetration depth and the lasing wavelength. In 

their simulation a powder bed which was a mixture of Fe and Cu (30wt%) with porosity 

of 0.75 was irradiated by two types of laser source: CO2 and Nd:YAG. Absorption of 

the Nd:YAG laser was 54% into the Fe and 12% into the Cu or in coupling, 66%. In 



Chapter 1: Introduction and Literature Review           53 

contrast, absorption of the CO2 laser was 26% into the Fe and 7% into the Cu or in 

coupling, 33%. Their theoretical results predicted, as first hypothesized, that an increase 

in energy absorption will be followed by an increase in depth of penetration. However, 

their results also showed that for the same energy absorption, Nd:YAG lasers gave a 

lower depth penetration than a CO2 laser. This may be caused by a larger number of 

inter-particle reflections during CO2 radiation which penetrate the bed more readily. 

Both Benda, (1994) and Bunnell et al., (1996) independently discussed that in-situ 

changes of the laser absorptivity during scanning, triggered by the changes in density 

and surface quality of the melted powder, is likely to affect wetting between the liquid 

and the solid phases. During raster scanning, if the powder absorbs all of the laser 

energy, then the molten metal may not wet the cooler solid resulting in non fusion 

bonding and balling of the melt phase. Benda suggested that  this is a particular problem 

when melting powder in close proximity to solidified powder. They added that ideally 

the amount of power required to uniformly sinter the powder should be modulated 

depending on the proximity and amount of the previously melted powder. Part growth 

near the edges, layer warping and poor adhesion between layers are probable 

detrimental effects. Benda  chose to keep  track of the temperature history of the powder 

as it is melted. This was accomplished by analysing the reflected laser beam emitted 

from the powder surface. This proposed method was still in its early stages of 

development, but improvements in layer warping were noticeable.  

Solidification Mechanisms 

1.1.14 Grain Structure 

During welding and laser cladding, and therefore likely during SLM, the melt pool 

can be considered as a small casting, often a continuous casting formed under 

specialised conditions: melt pool stirring (Marangoni convection), high temperature 

gradients, rapid solidification, intimate contact between the molten alloy and the 

underlying layer including partial melting of the underlying layer (Brody, 1986; 

McLean et al., 1997).          
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Grain formation in alloys is usually presented as a nucleation and growth process. 

However, in weld zone solidification the nucleation step is not required. Instead, the 

crystals that form are nucleated by the solid crystals located at the solid-liquid interface 

(s/l). This type of crystal growth is known as „epitaxial‟. Hence, each crystal in the melt 

pool forms initially as a continuation of one of the grains that lie along the s/l interface. 

(Brody, 1986; Berjeza et al., 1995; Lancaster, 1999). Additionally, unmelted powder 

particles, often found fused to the surface of clad melt pools, have been implicated by 

Smugeresky et al.,  (1997) as being ideal sites for nucleation (these „satellite‟ particles  

occur due to an excess of blown powder), implying that melt tracks created by SLM 

will be nucleated by the surrounding powder bed. Smugeresky reported that 

observations of the re-solidified melt pool, in a direction normal to the direction of scan, 

revealed a localisation of the microstructure in areas adjacent to fused particles (see 

Figure 1.33). They also added that the hardness of solidified tracks increased with 

decreasing particle size. Since hardness is a function of grain size (Cottrell, 1995) and 

that the grain structure of an individual particle is dependent upon its diameter (German, 

1994), this observation strengthens the previous argument concerning epitaxial growth. 

 

 

Figure 1.33: Microstructure of cladding melt beads, in a direction normal to the 
direction of scan, showing evidence of epitaxial grain growth from attached 
satellite particles (Smugeresky et al., 1997). 
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Figure 1.34: Epitaxial and columnar growth near the fusion line in an iridium alloy 
(Brody, 1986). 

 

As the fusion line progresses through the melt, the primary grain structure 

continues to grow in a columnar fashion. Competition between grains results in some 

change in relative size, but in general the primary grain size and crystallographic 

orientation of the solidified melt pool is determined by the grains in the underlying  

metal at the fusion line (Brody, 1986). Figure 1.34, shows epitaxial and columnar grain 

growth in a solidified weld pool. It illustrates the relationship between underlying layer 

grains and primary weld zone grains at the fusion line. 

 

Figure 1.35: Supercooling in alloy solidification (a) stable interface and (b) unstable 
interface (Steen, 1998). 
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A fusion weld or clad melt pool has a primary grain structure, and individual 

grains have a structure that results from micro segregation (Lancaster, 1999). The type 

of substructure that forms is determined by the conditions of heat transport. 

Solidification at the solid/liquid (s/l) boundary will proceed as either a stable planar 

front or an unstable front leading to dendritic or cellular grains. The type of 

solidification interface morphology that forms depends on supercooling. Supercooling 

is achieved by extracting heat without nucleating the solid phase and is a measure of the 

actual temperature below the equilibrium transformation temperature. If the liquid is 

cooled significantly below the equilibrium temperature then the solidification front will 

become unstable (see Figure 1.35). Hence, two key parameters with respect to the 

resulting microstructure are solute content, Co, and a solidification parameter which is 

equal to the  temperature gradient, G, in the direction of solidification divided by the 

rate of advance, R, of the solidification front. Both G and R are related to the cooling 

rate which is determined by heat extraction (German, 1994; Steen, 1998; Lancaster, 

1999). 

1.1.15 Heat Extraction 

Heat extraction changes the energy of the phases (solid and liquid) in two ways 

(Kurz and Fisher, 1989):  

1. There is a decrease in the enthalpy of the liquid or solid, due to cooling,  which is 

given by:  cdTH  where c is the specific heat. 

2. There is a decrease in enthalpy, due to the transformation from liquid to solid, 

which is equal to the latent heat of fusion per mole, Hf . 

Heat extraction is achieved by applying a suitable means of cooling to the melt in 

order to create an external heat flux, eq . The resultant cooling rate dtdT / , can be 

deduced from a simple heat balance if the metal is isothermal and the specific heats of 

the liquid and the solid are the same. Using the latent heat of fusion per unit volume 

mvHfhf / , and also the specific heat per unit volume, c, in order to conform with 

the dimensions of other factors, then: 
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The first term on the right hand side of equation 1.6 reflects the effect of melt 

geometry (ratio of surface area, A’, to its volume v) upon the extraction of sensible heat, 

while the second term  takes account of the continuing evolution of latent heat of fusion 

during solidification. For an alloy, where solidification occurs over a range of 

temperatures, the variation of solid as a function of time ( dtdf s / ) must be calculated 

from the relationship: 
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since sf  is a function of temperature, the cooling rates becomes: 
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It can be seen from Equation 1.8 that solidification decreases the cooling rate since 

dTdf s /  is negative. With a moving heat source the cooling rate at a given located and 

time is given by (Kurz and Fisher, 1989): 
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where R is the rate of movement of the (s/l) interface (solidification growth rate) and G 

is the thermal gradient across the s/l  interface. At high solidification rates (>102 K/s), 

typical of laser melting (Steen, 1998), the microstructure tends to become more 

dendritic as the ratio G/R decreases (see Figure 1.36), while the dendrite spacing tends 

to increase as the freezing time (expressed as 1/GR) increases. Hence increasing GR 

will lead to a finer microstructure (Minkoff, 1986; Steen, 1998). Eventually, at high 

values of 1/GR (increasing supercooling) the dendrites nucleate at a point and the 

structure becomes equiaxed. Figure 1.37, illustrates these relationships and further 

introduces the concept of „absolute stability‟ when the solidification rate, R, is so large 

that there is insufficient time for diffusion. 

 

Figure 1.36: Representation of planar to equiaxed growth through changes in G/R 
(temperature gradient/solidification rate) and solute content Co (Lancaster, 
1999). 
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 Figure 1.37: Plot of temperature gradient versus solidification rate and solidification 
morphology (Minkoff, 1986). 

 

1.1.16 Solidification Control  

In laser welding the solidification velocity, R, is equal to the scan speed, u, 

multiplied by the epitaxial growth angle, , (Lancaster, 1999; Steen, 1998): 

 

sinφu R  (1.10) 

 

where, , is the angle between the tangent of the growth vector and the scanning 

direction. The temperature gradient, G, from equation 1.9 is: 

 

dx
dTG     (1.11) 

 

this can be written as: 
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For three dimensional heat flow, the gradient at the rear of the melt pool is, 

numerically: 

 

1

1
x
T

dt
dT

u
G p

  (1.13)

  

where Tp is the melt pool temperature, and x1 is the distance between the heat 

source and the rear of the weld pool (see Figure 1.38). At this point sin  =1 and: 

 

1ux
T

R
G p
  (1.14) 

 

hence, if the rate of movement of the solidification interface, R, increases, the 

solidification parameter, G/R, decreases.  

The structure of a weld pool for a range of scanning conditions is shown in Figure 

1.38. At the lowest scan rates and thus the highest value of the solidification parameter, 

the central part of the weld is occupied by grains running longitudinally, and this is 

associated with a nearly circular weld pool (see Figure 1.38a). With higher scan speeds 

and a more elongated pool, the grains established near the fusion boundaries are later 

blocked by grains growing from the rear of the melt pool, giving a random grain 

orientation (see Figure 1.38b). At still higher speeds, the melt pool becomes kite shaped 

and the grains form a herringbone pattern. Equiaxed grains can sometime be observed 

as shown in Figure 1.38e; these are thought to be nucleated by heterogeneous and are 

not necessarily related to the solidification parameter. Planar growth structures have 

also been observed at the fusion boundaries since G/R can have high values in this 

region (Lancaster, 1999). Since solidification is largely directional, McLean et al., 

(1997) found that identifying adjacent scan tracks and layers during the Laser 
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Engineered Net Shaping (LENS) process becomes easy due to changes in dendritic 

growth. 

A preparatory study by Fuesting et al., (1996a/b) indicated  that the solidification 

microstructure of a  melt bead produced by SLM could also be influenced by 

controlling the laser energy density. A series of test coupons (1”x0.5”x0.06”) containing 

two types of titanium coated ceramic abrasive grit, a nickel alloy matrix and a lower 

melting point cobalt brazed material, were melted and prepared for metallographic 

examinations. Fuesting found that energy densities between 2000J/cm2 and 4000J/cm2 

were required to eliminate porosity. Within this range energy densities of 2500 - 

3500J/cm2 will produce a dendritic microstructure and energy densities in the range of 

1900 – 2200J/cm2 will produce an equiaxed microstructure. These reported changes in 

microstructure show an early potential of the process as a method to control 

solidification, though at this stage, the results are rather crude and differentiated only by 

large changes in laser energy density.  

 

Figure 1.38: The macrostructure observed in flat sections of gas tungsten arc welds 
in low carbon steel (Lancaster, 1999). 

 

 

 

(a) Axial (2.5mm/s) (b) Stray (3.3mm/s)

(c) Columnar  (7.5mm/s) (d) Centreline  (16.7mm/s)

(e) Partially equiaxed  (8.3mm/s)
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The work by Fuesting et al., (1996a/b) was later continued and refined by Das et 

al., (1998a/b) who demonstrated more accurate control in the type, scale and 

directionality of the solidification microstructure with changes in the scanning 

conditions. However, there was still no direct evidence in the work presented by Das to 

suggest the sensitivity or reproducibility of these changes. Das further added that 

powder pre-heating also plays an influential role in affecting the cooling rate of the melt 

pool. Because no further results were presented, it remains unclear whether the changes 

in microstructure reported by Das were influenced by  laser scanning routines or powder 

pre-heating. However, the directionality of the microstructure in results presented by 

Das appears to have been lost, suggesting continued grain growth after the laser heat 

source has passed. This effect can be observed in a number of papers, each being linked 

by the use of powder-preheating (Wohlert et al., 1999; Das et al., 1998c/d; Das et al., 

1997a). 

Finally, Berjeza et al., (1995) has also shown that a transition from a planar front 

to a cellular structure also forms when observing the solidified melt in a direction 

normal to the direction of scan. The transitions from a planar front to a cellular structure 

and from a cellular structure to a dendritic structure were found to occur at dimensional 

depths of 0.6 – 0.8 (u = 0.8mm/s), 0.8 – 0.9 (u = 1.7mm/s) and 0.9 (u = 3.3mm/s) 

respectively (see Figure 1.39). Hence, the depth of transition from a cellular to cellular 

dendritic structure depends on the  scan speed, with a decrease in transition depth with 

decreasing beam velocity. Hence at the solid/liquid boundary the G/R ratio is greatest 

and a planar front is possible. As the point of interest shifts towards the surface, a 

cellular structure begins to emerge. However, Steen suggests that this will only occur if 

convective mixing forces (Marangoni convective forces) are low, implying that a well 

defined boundary between  different solidification microstructures is a good measure 

that Marangoni convection is not acting in the weld pool. 
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Figure 1.39: The dependence of G/R (a) and T (b) versus dimensionless melt depth 
z/H at the interface in the plane y = 0: (1) u = 0.8mm/s, (2) u = 1.7mm/s and 
(3) 3.3mm/s (Berjeza, 1995). 

Summary of Background 

Previous SLM research geared towards the development and production of high 

density layers and multiple layers by fully melting a pre-alloyed metal powder bed has 

highlighted the importance of being able to predict melt pool shape and control melt 

pool stability (Meiners et al., 1999). It has been shown that if these two criteria are met, 

then among other things, the size of the fusion zone between adjacent melt beads can be 

maximised leading to minimal or complete elimination of inter-run porosity. This 

research has led to the recognition of five influential process parameters; environmental, 

powder characteristics, scanning variants, layer thickness and material properties. 

Research in other areas, namely laser welding and cladding, have also demonstrated that 

melt pool shape is adversely affected by the conditions and locality of an underlying 

substrate. This is likely, though not evidentially conclusive in the literature, to cause 

two possible outcomes during SLM since construction of objects with overhanging 

features or with complex geometries can yield melting of powder both local to and 

remote from underlying layers. 

Clearly, each of the properties reported above have been implicated throughout the 

literature as having strong influences on melt pool behaviour with their effects being 

linked to what influence each has over melt pool wetting conditions, surface tension 

(a) (b)
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forces and surface tension driven fluid flows. However, this research has also raised 

many questions concerning the benefits and importance of each. Ongoing studies are 

debating whether construction and scanning issues or contamination within the 

surrounding atmosphere and within the powder layer are the more dominant. 

Nevertheless, it has become apparent in the literature that oxygen concentrations within 

the powder bed  play a decisive role due to the high variability and ease of 

contamination. However, these concerns are yet to be proven because investigations 

studying the effects of each of the variables in question are often conducted 

independently, making discussions and conclusions biased. It is therefore difficult when 

reviewing the literature to gauge the relative importance of each. It is this lack of a full 

understanding that has led to the formulation of this research. 

Aims and Objectives of the Thesis 

This thesis is concerned with the study of the SLS process specifically geared 

towards stainless steel 314s HC powder processing. Its purpose is to develop an 

understanding of  the dependence of suspended melt pool stability on contamination by 

oxidation, laser scanning parameters of power, speed, scan spacing and spot size and on 

the properties of the powder bed. Results from this work will then be used to develop 

and discuss construction strategies which would become central to future SLS 

technology scale-up involving the production of large scale tooling (Progression of the 

SLS technology to large scale production was not part of the objectives of this thesis). 

To achieve this end it was decided, with full agreement with the industrial partners, that 

the following research objectives should be met: 
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1. Observe changes during the heating of the powder and to asses melt pool 

behaviour over a wide range of scanning conditions. The results are to be 

presented as a series of process maps. 

2. Develop the results in (1) for a number of environmental conditions and bulk 

powders differentiated by  oxygen content and flow characteristics respectively.  

3. An analysis of melt pool solidification behaviour for all the conditions covered, 

aiming towards improving the understanding of solidification and melt pool fluid 

flow during SLM.  

4. Develop mathematical tools which model the behaviour of the melt pool. 

Organisation of the Thesis 

This thesis consists of five chapters. Chapter one contains an introduction and a 

literature review. Chapter two describes material, experimental methods and equipment 

design. This involves powder mixer design, operating protocol, Scanning Electron 

Microscope (SEM) studies, optical microscopy, and experimental works on a research 

SLS machine. Chapter three contains the results of the experimental works and 

microscopy studies described in Chapter two for single track melt pool behaviour 

studies. Chapter four contains the results from single layer studies discussed in Chapter 

two. Chapter five discusses the results from the work carried out in this thesis. In this 

chapter discussions are focused on the effects of the powder bed, environmental control 

and scanning issues including a discussions concerning their potential impact during 

large scale production. Chapter five is closed with conclusions and future work. 

 

1 1
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CHAPTER TWO 

2                              EXPERIMENTAL METHODS  

Introduction  

In order to accomplish the objectives set out in this research (see Chapter 1, 

Section 1.10) several distinct tasks had to be completed. The first encompassed a 

number of SLS machine related tasks; including equipment design (see Section 2.3), the 

compilation of software to perform several duties during machine set-up and scanning 

(see Section 2.4) and several machine calibration procedures (see Section 2.6). 

The second task comprised single track melting experiments, melting experiments 

conducted under conditions agreed upon by the industrial partners (see Section 2.5.1). 

Four batches of powder, each differing in particle size and particle size distribution were 

examined, melted by systematically tracing a series of single line scans in air and argon 

atmospheres, at different laser powers, scan speeds and scan lengths and remote from 

solid material or an underlying substrate. The experiment also included depth, width 

and mass measurements of the tracks, observational studies of melt pool behaviour and 

surface morphology, comparative studies between the different powder batches and 

microscopy studies observing changes in the solidification microstructure.  

Dimensional measurement was performed particularly to determine the effects of 

powder, scanning and atmospheric and environmental conditions on melt pool shape 

and growth. The observational studies have been conducted to gather information about 

the change in behaviour of the melt pool, forming a foundation on which to construct 

process maps that detail the melt history of each of the powder batches for single line 

scanning. The optical microscopy experiments have been carried out to determine the 

mode of solidification and to help identify the effects of the processing conditions on 

solidification behaviour. 
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The third task expanded on the results from task two, with an aim of examining 

the effects of single track morphological changes on surface roughness and porosity 

during single and multiple layer construction. The experiments also included 

observational studies of melt pool behaviour during rastering and dimensional 

measurements of individual tracks within a layer to verify, or otherwise, that the melt 

pool morphological changes observed during single track production are also applicable 

during single and multiple layer construction.  

Since it was necessary to consider the role of oxygen on melt pool behaviour, the 

design and use of environmental conditioning equipment became central to this work. 

The design required both independent and coupled control over oxygen levels in the 

powder layer and within the processing atmosphere. The development of equipment 

was carried out in partnership with a parallel project (see Section 2.3). Initial concepts, 

the design of a piston assembly and the structuring of environmental control strategies 

to ensure accurate and repeatable results during operational use of the equipment was 

the focus of this study.  

It was also necessary to design a powder deposition and spreading mechanism for 

use in the multiple layer experiments. This work was again carried out in collaboration 

with the parallel project. Several designs for the spreading mechanism and supporting 

apparatus were generated and prototyped. Each design proved successful for the 

deposition of the first powder layer, but were found to be unsuccessful during the 

recoating stages, thereby making multiple layer construction difficult. These difficulties 

significantly reduced the number of experiments conducted in this area (see Sections 

2.3.1.3 and 2.5.1).  

Finally, since it was important at the onset of this study to establish a sufficient 

level of consistency in and between deposited powder layers it was thought necessary to 

design and use powder mixing equipment to break down agglomerated particles and in 

doing so, regain particle distribution homogeneity in the stored powder prior to its 

deposition (see Section 2.3.3). The mixing equipment proved successful, and was found 

to maximise and balance the particle packing density between deposited powder  layers.  

Previous research has identified that a high variance in particle size distribution and 

packing density between powder deposits can alter the effects of melt pool behaviour 
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(see Chapter 1, Section 1.7). The levels of testing required to investigate these 

observations was outside the scope of this research; however, in order to maintain 

consistency in a potentially changeable variable, it was agreed by the industrial partners 

to employ powder mixing prior to all melt tests.  

This chapter outlines the materials, equipment, software compilation, experimental 

procedures and calibration procedures listed above. Section 2.2 describes the 

experimental powder, Section 2.3 describes the experimental apparatus used in each 

section of the research, Section 2.4 describes the software compilation and the 

conditions for scanning, Section 2.5 describes the procedures followed in each case and 

Section 2.6 describes the calibration procedures and displays the results in each case. 

Experimental Powder 

The powder used in this research was an argon atomised austenitic stainless steel 

alloy of type 314s HC, supplied by Osprey Metals Ltd (West Glamorgan, UK). The 

abbreviation, HC, denotes its high carbon content. A breakdown of the materials 

composition is given  in Table 2.1. The material was selected, as instructed by the 

industrial partners (Chapter 1, Section 1.1), for its high creep and corrosion resistant 

properties at elevated temperatures, making it ideally suited for SPF (Super Plastic 

Forming) tooling manufacture. The melting temperature of the material is 

approximately 1350C (Monypenny, 1954). The powder was received from the supplier 

in four batches, each batch differentiated by particle size distribution; (1) -300+150m, 

(2) -150+75m, (3) -75+38m and (4) -38m. Each batch will be referred to in this 

work as 300/150, 150/75, 75/38 and 38 respectively. These distributions were chosen 

because they are representative of a large proportion of particle sizes typically 

encountered in the SLM literature and because they differ in flow properties, giving rise 

to important powder handling issues which will need to be considered upon technology 

scale-up. Gas atomisation was the powder production method of choice because the 

particles that are produced are generally spherical in shape, have smooth surfaces and 

generally exhibit low surface oxidation. These characteristics allow for a more accurate 

comparison of flow properties between batches and reduce the problems associated with 

powder contamination (see Chapter 1, Section 1.71). 
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Table 2.1:  Composition of the experimental material. 

Elements Fe Ni Cr C Si 

Wt.% Bal. 20.0 25.0 0.4 1.0 

 

2.1.1 Storage and Use 

The powder was supplied in 5.0kg capacity self-sealing plastic containers (see 

Figure 2.1). These containers were also used for storing the powder. Used powder was 

sieved to remove solidified melt debris then stored separately. The spent powder was 

used only for proving trials and machine calibration procedures where required.  

2.1.2 Preparation  

The powder was used in its „as received state‟ and hence no attempts were made to 

heat treat the powder, condition the powder by inert gas exposure or add fluxes or 

lubricants to the powder prior to its deposition and spreading in the build zone, build 

tray or pin fixture (see Sections 2.3.1.3 and 2.3.2). However, in some experiments the 

powder was degassed by percolating argon gas through the bed during irradiation (see 

Section 2.5.2.3) . 

Figure 2.1: (a) Powder storage container, as supplied and (b) spent and mixed 
powder storage. A 6inch rule is pictured. 

(a) (b)
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2.1.3 Handling 

Powder handling was kept to a minimum throughout the duration of this research. 

Reasons for this safeguarded approach were twofold. Firstly, to limit the adsorption of 

contaminants from the atmosphere, and secondly, to maintain the reproducibility of data 

by limiting particle segregation and exposure during handling. To achieve these ends, 

the caps of storage containers were only removed when powder was required and the 

pouring height of the powder from its container into the hopper or build tray was kept to 

a minimum to limit aeration of the powder. 

Experimental Apparatus 

2.1.4 Selective Laser Sintering Equipment  

Melting of all powder reported in this thesis was carried out using a research SLS 

machine. The machine was constructed specifically for use in the LAST-FORM 

programme and was the focus of a parallel research project running concurrently with 

the work presented in this thesis. Figures 2.2 and 2.3 show an overview of the 

experimental set-up. An introductory explanation of how an SLS machine works is 

given in Chapter 1, Section 1.2.  

The machine consisted of four principle subsystems; the laser and focusing optics 

(se Section 2.3.1.1), the X-Y scan head (see Section 2.3.1.2), the process chamber and 

powder handling apparatus (see Section 2.3.1.3) and finally the motion control table 

(see Section 2.3.1.4). The control module was centred around a Pentium PC running X-

Y scan head driver and calibration software (PC-Mark MT and Postgrid), motion 

control software for the positioning table (Talk2bus) and software (L-Scan) written 

specifically for this research to configure system level commands and to generate a list 

of input commands to control the direction of the mirrors (see Section 2.4). 

The remainder of this section details the equipment, arrangement and coupling of 

each subsystem together with the design of additional equipment to assist in the 

experimental works  listed in Section 2.1. 
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2.1.4.1 Laser and Focussing Optics 

The laser used in this study was a SYNRAD 240 Watt “Duo - Lase“ CO2 Laser 

emitting an infrared beam with a wavelength of 10.6m. The laser head and its control 

hardware and software was supplied by Laser Lines (Banbury, UK). The laser head 

consisted of two 60-1 series 125W laser tubes mounted side by side. Each tube is 

controlled by a water cooled solid state RF power supply, each delivering 1.4kW of RF 

through two RG 8 type coax cables to the laser head. Within the laser head both tubes 

feed an optical beam combiner. The beam combiner is nearly 100% efficient in 

combining the two linearly polarised beams, giving a maximum output power of 250W 

and a beam mode quality of TEMOO (Transverse Electromagnetic Mode) at 90% purity. 

However, difficulties with one of the three Synrad DC-100 power packs feeding the RF 

power supplies reduced the maximum output power to 200W over the duration of this 

research. Laser lines ensured that only the power output would be effected by this. The 

laser was water cooled by a closed loop NESLAB CFT-300 re-circulating chiller unit. 

The beam diameter at the laser head aperture was 4.4mm. A BEZ 10 beam 

expander supplied by V&S Scientific Ltd (London, UK), located at a distance of 0.35m 

from the laser aperture (distance to focussing optic), was used to focus the propagating 

beam onto the powder bed surface (see Figure 2.3). At the powder bed surface (a 

distance of 0.85m from the laser output aperture including passage through mirrors) the 

spot size was 1.1mm. The large spot size was selected as a means to speed up surface 

coverage during raster scanning. The spot size was fixed throughout the duration of this 

research. 

Power Output Control 

In this research the laser power was controlled by the operator. This was achieved 

by using a Synrad UC-1000 Laser Controller. However, to increase accuracy, a 

potentiometer and integral 1000 division counter was added which bypassed the factory 

fitted potentiometer and fascia mounted controller (see Figure 2.5). Calibration of the 

mechanical scale with the output power rating is described in Section 2.6.2. To avoid 

toggling delays between power switching and scanning, the gate input on the UC-1000 

was provided with a TTL (Transistor-Transistor logic) signal (+3.5 – 5v high and 0 – 

0.5V low). The TTL signal, sourced from the computer‟s power supply, and modulated 
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by signals sent from the PCMARK MT scanning software to the X-Y scan head HC/2 

hardware (see Section 2.4), synchronised laser toggling with end of scan markers 

located in the  HPGL file(s) (see Section 2.4.2). 
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Figure 2.2: Schematic diagram showing the principle subsystems of the SLS research machine.  
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Figure 2.3: Photograph showing the SLS apparatus used to melt powders in this 
study.  

 

 

Figure 2.4: Photograph showing the laser head and BEZ 10 beam expander. 
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Figure 2.5: Photograph showing the UC-1000 laser controller with the additional 
potentiometer and numerical counter. 

 

2.1.4.2 X-Y Scan Head  

The scan head used to direct the laser beam over the powder bed surface is of type 

G325DT supplied by General Scanning Inc (Banbury, UK). The mirrors within the scan 

head are placed orthogonal to each other and each have a scan angle of 40 peak to 

peak.  The lower mirror produces the X scan and the larger upper mirror reflects the X 

axis in the Y direction, producing the Y axis beam (see Figure 2.6). As the beam passes 

through the mirrors it translates through 90 and onto the powder bed surface. The 

movements of both mirrors are achieved by limited rotation closed loop galvanometers 

which are driven by the Digital Scanner Controller (DSC) and controlled by PC based 

software (see Figure 2.7). The software programme is called PC-Mark MT and is 

described in Section 2.4. 
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Figure 2.6: Photograph showing the X-Y scan head.  

Figure 2.7: Schematic diagram of the X-Y scan head control system. 
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2.1.4.3 Process Chamber and Powder Handling Apparatus 

Figures 2.8 to 2.10 show a picture of the process chamber, a schematic diagram 

detailing the gas flow through the chamber and pictures of the powder handling 

apparatus respectively. The chamber and powder handling apparatus were designed to 

store, deposit and condition, on-demand, layers of powder while maintaining a 

controlled atmosphere.  The process chamber consisted of four key elements; the build 

chamber, the build cylinder, the powder handling equipment and the build tray. Each 

piece of apparatus is discussed in the following paragraphs. 

Build Chamber 

The walls and roof of the build chamber were constructed using 10mm thick 

stainless steel (AISI 304L) plate which was welded together then bolted to a 25mm 

thick stainless steel base plate to form an air tight cavity 460mm long, 260mm high and 

250mm deep. This cavity housed the powder handling apparatus and two build areas: 

the build zone and the build tray. A doorway, 250mm long and 150 mm high was 

machined into the front wall of the chamber to give access to the powder handling 

equipment and both build areas. During operation an access plate fitted with a 

polycarbonate viewing window and sealing ring was located over the doorway and 

secured and sealed to the chamber wall using eight equally spaced M8 cap head bolts. 

All tapped holes were blind to ensure no leakage at the fixation points during operation.  

A 75mm diameter hole was machined into the base plate of the build chamber  to 

give access to the build cylinder and piston unit. The laser beam entered the build 

chamber through an identical hole machined into the roof of the  build chamber. Both 

holes were located on the same centre line. A 180mm long stainless steel cylinder with 

flanged ends, a wall thickness of 6.0mm and an inner diameter of 75mm was located on 

the outside of the chamber roof and was sealed around the upper hole using twelve M8 

cap head bolts. The open end of the assembly was capped and sealed using a flanged 

collar which housed a  Zinc/Selenium  laser window (see Figure 2.9). The window was 

sealed into the collar using rubber o-rings. 

Inert gas entering the build chamber was regulated using a  flow control valve. 

The exhaust flow was regulated using a vacuum pump and a fine leak control valve, 

both supplied by Edwards High Vacuum International (Sussex, UK). The vacuum pump 
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was an RV3 rotary vane pump capable of a maximum pumping speed of 3.3 m3/hour. 

The pressure inside the chamber was monitored using an Edwards pressure sensor 

connected to an Edwards Active Digital Display (ADD) unit.  

Build Cylinder 

The build cylinder had two functions; firstly to house the piston assembly and 

secondly, to store the deposited powder and the sintered component during multiple 

layer construction. The cylinder comprised of a 150mm long stainless steel cylinder 

with a bore ground to a diameter of 75mm. The  wall thickness of the cylinder was 

6.0mm. A stainless steel flange was welded to the cylinder at one end. The flange was 

located and sealed to a machined surface on the underside of the build chamber base 

plate using eight M8 cap head bolts. The opposite end of the cylinder was sealed using a 

threaded end cap and vacuum seal. The end cap was fitted with a gas outlet pipe which 

was connected via an Edwards fine leak control valve to the vacuum pump.  The end 

cap also housed a sealed linear bearing, located axially, which positioned the connecting 

rod which linked the motion control table to the piston head.  

The piston head, onto which the powder was deposited, consisted of a conical 

stainless steel shell which housed a 3065/15M sintered ceramic disc sandwiched 

between two perforated stainless steel plates. The ceramic disc had a porosity rating of 

5m (P10) and was supplied by Bibby Sterilin Ltd (Staffordshire, UK). The design 

allowed for inert gas (and not powder) to be drawn from the build chamber, through the 

piston head assembly, and exhausted through the outlet pipe located in the end cap of 

the build cylinder.  The piston head was moved by the Motion Control Table (see 

Section 2.3.1.4) An engineering drawing of the piston head is given in Appendix A. 

Powder Handling Equipment 

The storage, deposition and levelling of powder over the build zone was 

accomplished using a hopper and wiper blade (see Figure 2.10). The design and use of a  

counter rotating roller in addition to the blade was also investigated; however, this 

design proved unsuccessful, and so was not used in the main body of research. The 

results from studies investigating the use of both arrangements is discussed in detail in 

Chapter 4.   
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The blade was made of a 5mm thick stainless steel plate with a round rubber strip 

(diameter 3mm) bonded to its working edge. The blade was mounted onto a docking 

cradle which was located between two parallel runners, positioned either side of the 

cradle using sealed roller bearings. This assembly was designed to ensure smooth 

passage of the cradle and blade when traversed across the build zone. The cradle was 

moved using a hand operated push rod which exited through a sealed brass fitting 

located in the wall of the upper chamber. 

The roller mechanism consisted of a ground 50mm diameter (outer diameter) 

stainless steel tube which was closed at both ends using weighted end caps. A shaft was 

welded about the central axis of the roller which located the roller into the docking 

cradle. Also located and locked onto the axial shaft, either side of the roller, were two 

15 tooth spur gears. These gears engaged two 15 tooth driver gears mounted on the 

docking cradle. Sealed roller bearings were attached to the ends of the axial shaft. The 

bearings located the roller and cradle apparatus into the parallel runners while the driver 

gears engaged the toothed racks (6 tpi) running along each side of the build zone. The  

roller was again pushed by hand across the build zone where the action of the spur gears 

and rack reversed the direction of rotation of the roller.  

The powder used for spreading was stored in a Perspex hopper located inside the 

chamber. When required, powder was deposited in front of the blade/roller by rotating a 

spool (through 90) located at the hopper outlet. The spool had a machined slot which 

transferred then dropped a predefined volume of powder from the hopper to the front 

edge of the blade/roller respectively (see Figure 2.10). The spool was rotated by hand 

from outside of the chamber using a lever and rotary linkage system. 
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Figure 2.8: Schematic diagram of the process chamber. 
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Figure 2.9: Schematic diagram showing the passage of gas flow through the process 
chamber. 
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Figure 2.10: Schematic diagram and photographs of the power handling apparatus.  
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Build Tray 

To maximise productivity during a build cycle a tray was used for all single line 

and single layer experiments which did not require gas percolation. The tray consisted 

of a 170mm x 140mm x 10.0mm thick stainless steel plate with a machined pocket of 

dimensions 140mm x 130mm x 7.0mm deep, into which the powder was deposited and 

levelled prior to the plates insertion into the build chamber. Four flanged wheels fixed 

to the plate located the tray onto the upper level of the parallel runners housed within 

the build chamber (see Figure 2.8). Once environmental conditions were established 

inside the chamber the plate could be traversed across the exposure range to maximise 

the effective powder layer area (see Section 2.4). The linear movement of the tray was 

achieved by a push rod which exited through the wall of the build chamber via a 

vacuum sealed brass fitting. 

2.1.4.4 Motion Control Table  

The depth change of the powder bed within the process chamber was  controlled 

by a single axis positioning system supplied by Naples Coombe Ltd (Chaddleworth, 

UK). The equipment was centred around an NC2000 series linear translation stage 

capable of indexing a load of 150kg over a vertical distance of 250mm while 

maintaining a guaranteed accuracy of 0.1mm per 50mm of travel. The stage was driven 

by a servo motor and gearbox (5:1 reduction) while an encoder (accuracy 0.01mm) 

tracked the position of the stage. Attached to the stage was a 400mm x 400mm 

mounting platform with an array of M6 inserts onto which was mounted the connecting 

rod which  formed a rigid link between the stage and the piston head (see Figures 2.2 

and 2.3). The table was driven by a PC based single axis DMC 1010 motion control 

card and a Galil DMC 1010 rack mountable enclosure housing an AMC 12A8 brushed 

servo amplifier. A DOS based software programme, called talk2bus, was used to control 

the table.  
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2.1.5 Pin fixture Array 

The design and use of a fixture to anchor the first layer of a multiple layer build 

was found to be successful for reducing layer movements during a multi layer build 

operation (see Figure 2.11).  The fixture consisted of a circular stainless steel block 

machined to hold an array of pins (standard dressmaker pins), onto which the first layer 

of a build could be bonded. The block slide fitted into a sleeve forming an adjustable 

recess into which powder could be deposited. The assembly was then located on top of 

the piston head where additional holes machined through the pin block still allowed air 

to percolate through the powder bed. 

The design allowed for minimal interaction between the pins and the melt volume 

so that  the behaviour of the melt pool would not be affected by the fixture. An 

engineering drawing of the pin fixture is given in Appendix A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Stainless steel pin fixture used for securing the first layer of a multi 
layer build. 
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2.1.6 Powder Mixing Equipment 

Powder mixing was carried out using a cascade of five v-cone or twin shell mixers 

designed and built specifically for this study (see Figure 2.12). The design allowed for 

several different samples of powder or an entire storage container to be mixed 

simultaneously. Each individual mixer consisted of two stainless steel tubes, cut and 

welded together to form a 60 V. The open end of each tube was used to load the 

powder into the mixer cavity before being sealed using a threaded end cap fitted with a 

rubber o-ring.  

Each v-cone mixer was fitted to a central shaft at 72 rotation between each V-

cone to minimise vibration during use. The mixer assembly was then turned by placing 

the shaft between centres of a Harrison lathe; a single v-cone mixer, capable of mixing 

similar quantities of powder would have been too large to rotate using the Harrison 

lathe, thereby compromising safety within the laboratory. An engineering drawing 

detailing the mixer assembly can be seen in Appendix A. 

  

 

Figure 2.12: V-cone mixer assembly used for mixing of powders. 
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2.1.7 Microscopy and Materials Preparation Equipment 

Two instruments were used for observing solidification microstructure. Firstly, a 

CAMSCAN CS44EX Scanning Electron Microscope (SEM) with link Systems EDX 

for image capture was used to observed powder particle shape and particle 

microstructure. The second was a Leitz Laborlux 12ME ST optical microscope fitted 

with a micrometer adjustable stage. A JVC digital camera fitted to the optical 

microscope and linked to a Pentium II PC was used for image capture. The software 

used for image capture was Image Pro Plus V3.0.  

All samples prepared for inspection were cut using a Struers Actum 5 circular 

cutting machine equipped with a 356CA circular cutting wheel (HV 500 grit). Samples 

were lapped using a Metaserve 2000 grinding wheel using progressively finer grinding 

papers (P800 and P1200).  Samples were polished using Metalo polishing wheels; 

firstly using a wheel containing 6m diamond compound, then a final stage wheel 

containing 1m diamond compound. 

Cross sectional images of melt tracks were obtained using a Nikon Shadow graph 

at x10 and x30 magnification. The smaller magnification being used for the larger melt 

tracks. The projected image was captured using a Sony digital Mavica camera. Low 

background lighting during image capture was found to dramatically increase the 

contrast of the image. A 2mm square graduated grid, placed over the projected image, 

was used to calibrate the size of the captured image.  

2.1.8 Measurement Equipment 

The optical microscope with micrometer adjusted stage and a digital vernier 

calliper was used for dimensional measurement. Both had an accuracy of 0.01mm. An 

electronic balance with 0.001 grams accuracy was used for all mass measurements. 
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Scanning and Scanning Software 

In this research two scanning techniques were used. The first was a unidirectional 

traverse to create single tracks (see Figure 2.15a). The second was raster scanning and 

was used to scan areas of the powder bed to build up layers (see Figure 2.15b). The 

basic approach to raster scanning and the scanning co-ordinate system adopted in this 

thesis has been described elsewhere (see Chapter 1, Section 1.2). However, to limit the 

build up of heat at the start and end of each scanned line, the laser was automatically 

switched to tickle mode during crossover (see Figure 2.15b). This switching mechanism 

during scanning is implemented in the commercial DTM SinterStation 2000TM. The size 

and shape of the raster geometries used in the experimental works are described in 

Section 2.5.1.1. 

PC-Mark MT is the software hub for scanning control. It uses Printer Command 

Language (PCL) as the control structure. The PCL structure controls all of the scan head 

features except those used for vector graphics, which are controlled by HPGL (Hewlett 

Packard Graphics Language) commands. HPGL commands are based on a vector 

graphics architecture, which  comes in the form of points and lines that are 

geometrically and mathematically associated. Points are stored using the coordinates, 

for example, a two-dimensional point is stored as (x, y). Lines are stored as a series of 

point pairs, where each pair represents a straight line segment, for example, (x1, y1) and 

(x2, y2) indicating a line from (x1, y1) to (x2, y2).  Each line can be either active or non 

active i.e. the mirrors can follow the path of the vector with the laser on or off. 

A software programme, referred to in this thesis as L-SCAN, was written at the 

onset of this research to compile a list of HPGL commands based on dimensional 

parameters inputted by the user. A programme flow chart detailing the steps used to 

generate the HPGL code is given in Figures 2.13 and 2.14. Examples of raster scanning 

routines generated using L-Scan are shown in Figure 2.15. The dashed lines in Figure 

2.15 describe the route taken by the laser spot when in tickle mode. An example HPGL 

data file can be seen in Appendix B. 
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2.1.8.1 Scan Length and Laser Beam Offset 

Dimensional accuracy was not considered nor investigated in this work.  However, 

scan length accuracy was important for scan speed calibration procedures (see Section 

2.6.1). As the beam scans using its centre as the reference point, excess material at the 

ends of each scanned line will melt and affect the dimensional accuracy. To compensate 

for this error, twice the beam offset needs to be subtracted from the scan length. The 

offset is equal to the radius, 2a, of the laser beam i.e. an equal offset, a, from both ends. 

Figure 2.16 shows an intended size and the excess dimension due to the beam offset. L-

Scan automatically configured the HPGL file(s) to compensate for this over sizing 

effect. Scan speed calibration procedures are given in Section  2.6.1. 
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Figure 2.13: Programme flow chart for HPGL file generation (Part A). 
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Figure 2.14:  Programme flow chart for HPGL file generation (Part B). 
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Figure 2.15: Example scanning routines (a) single lines and (b) single layers. 
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Figure 2.16: Intended size and excess dimension due to beam offset. 

Experimental Procedure 

All test conditions were carried out using three different environmental conditions, 

four batches of stainless steel powder (environmental conditions are described in 

Section 2.5.2 and the powder characteristics and composition for each batch is described 

in Section 2.1) and a range of laser scanning conditions (see Section 2.5.1.). 

2.1.9 Scanning Conditions 

A simple unidirectional traverse was used to mark a series of tracks in the 

deposited powder layer (see Figure 2.15). The scan speed was varied from 0.5mm/s to 

50mm/s and the laser power was varied from 8W to 190W. The specific conditions are 

charted in Figure 2.17. In Figure 2.17 the laser power conditions appear arbitrary in 

nature. However, they have been selected based on results from the laser power 

calibration procedures described in Section 2.6.2. The other scanning conditions and 

mirror parameters, which remained constant for all tests, are listed in Appendix C. 

The length of the tracks were also varied from 5mm to 100mm (in steps of 

10mm), in order to observe the effects of scan length on melt behaviour. The spacing 

between each track (centre to centre) was assigned a value of 8mm throughout all 
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testing to ensure no interaction between neighbouring melt tracks. A one minute cooling 

down period was also enforced between the laser off command at the end of one track to 

the laser on command at the start of another to minimise the potential effects of changes 

in powder bed temperature caused by a localised heat affected zone. Finally, a minimum 

powder layer thickness of 7mm was also employed during all single layer experiments 

to ensure that the melt volume was not influenced by or interacted with the top of the 

piston head or the base plate material of the build tray. 

 

Figure 2.17: Chart showing the scanning conditions used during the experimental 
works. Each node represents 1 of 374 different conditions.  

Tracks produced at conditions represented by grey nodes were also used for 
dimensional and mass measurement and for testing the repeatability and 
reproducibility of results (particle size dependant).  
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2.1.9.1 Single Layer Test Conditions 

All single layer experiments were carried out using scanning conditions selected 

based on the results from single track experiments described in Section 2.5.1. In 

addition to these conditions,  scan spacing‟s of 0.75, 0.5, 0.25 and 0.1 were used 

together with scan lengths ranging from 5mm to 100mm and the number of rastered 

tracks ranging from 2 to 50 (depending on space within the build area). The values of 

scan spacing represent the fraction of melt pool overlap; hence, the scan spacing was 

measured with reference to the width of the melt track produced for a given set of 

conditions rather than with reference to the beam diameter. This method was thought 

necessary since the width of the melt track was highly variable and in most cases was 

larger than the spot diameter.  

When using the build tray, a large number of samples could be constructed within 

one environmental purge cycle, during which, the build tray would heat up to 

temperatures which would require careful handling of the plate after processing. 

Therefore, to maintain good repeatability of results and impose safe handling, the 

number of coupons  produced on the build tray was restricted to a maximum of 10 when 

the scan speed was less that 10mm/s and the laser power was greater than 80W. 

2.1.9.2 Multiple Layer Test Conditions 

Multiple layer tests were conducted in three stages. The first stage was the 

construction of multiple layer objects using the roller mechanisms (see Section 2.3.1.3) 

and the build zone. The second stage tests were conducted using the wiper blade and 

build zone. The final series of tests were conducted using the wiper blade and pin 

fixture (see Section 2.3.2). All multiple layer experiments were carried out using 

scanning conditions selected based on the results from single layer experiments 

described in Section 2.5.1.2. In addition to these conditions several values of layer 

thickness were chosen, 0.25mm, 0.5mm, 0.6mm, 1.0mm and 1.5mm and each remained 

fixed for the duration of a build. The number of layers within a build was also varied 

between 2 and 16. 
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2.1.10 Environmental Conditions 

2.1.10.1 Air Atmosphere 

The air atmosphere was typical of a laboratory atmosphere and was achieved by 

removing the door of the process chamber during scanning. For safety reasons a 

polycarbonate screen was slid across the build chamber opening to scatter any reflected 

laser light (see Figure 2.2).  

2.1.10.2 Argon Rich Atmosphere 

An Argon rich atmosphere was achieved by a combination of build chamber 

evacuation (to approximately 50mbar gauge pressure)  followed by an argon gas purge 

until local atmospheric pressure was re-established. This procedure was repeated twice 

before balancing the flow rate of argon through the build chamber at a slight 

overpressure (50mbar). Since no flow gauges were available, to maintain consistency 

the flow rate was balanced at the maximum pumping speed of the vacuum pump (see 

Section 2.3.1.3). The inlet flow from the gas bottle was regulated using the LV10K flow 

control valve connected to the outlet flow of the build chamber (see Figure 2.2). The 

flow control valve which controlled the out gas flow from the build cylinder remained 

closed at all times. 

Once the flow rate through the build chamber was balanced the build chamber was 

left for a 10 minute settling period before laser exposure. These conditions were 

maintained throughout the duration of each experimental test and during a 5 minute 

cooling down period at the end. The total cycle time for build chamber conditioning 

prior to laser exposure was 25 minutes. The argon was supplied by BOC and was 

bottled with a  99.9% purity. Trace elements of other gases, particularly oxygen, are still 

likely to reside within the build chamber. However, it was thought that the three 

environmental conditions chosen for this work were sufficiently diverse to warrant 

evading the measurement of trace gasses. Evacuation was found to be essential to 

increase cycle time and to improve the consistency of results. 
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2.1.10.3 Argon Rich Atmosphere with Argon Percolation 

An argon rich atmosphere with argon percolation was achieved using the same 

procedures outlined in Section 2.5.2.2. However, the flow of argon through the chamber 

was balanced using the flow control valve connected to the outflow of the build 

cylinder; allowing purged argon to be drawn through the powder layer and expelled 

through the gas outlet in the build cylinder. The flow control valve connected to the out 

flow of the build chamber was closed at all times. 

During the deposition and spreading of each fresh powder layer the build cylinder 

flow control valve was momentarily closed. If the bed remained fluidised during the 

recoating cycle, the deposited powder layer was found to have reduced surface quality 

with large areas of open porosity. Between each recoating cycle the  system was left for 

a 10 minute settling period before laser exposure to maintain consistency between the  

first deposit layer and all subsequent layers.  

2.1.11 Repeatability of Results 

The repeatability of results is defined in this work as the consistency of the melted 

tracks for any given powder deposit and at any given point in time within the purge 

cycle. The reliability of data from testing is important when comparisons between 

different tests are required. Therefore it was important at the onset of this study to 

establish and maintain a sufficient level of consistency in the melting results. 

 To test the repeatability of the data three tracks were produced on the same 

powder sample using the same scanning conditions and over a three minute time frame 

within the purge cycle. The tests were carried out as outlined in Section 2.5.1.1. Each 

track was then measured, weighed and any surface irregularities recorded. The range of 

conditions used for repeatability testing are represented by grey nodes in the scanning 

parameter chart of Figure 2.17. However, not all conditions displayed in this chart 

created tracks suitable for measurement. The  range of conditions available for 

measurement fluctuated depending of the powder batch being used.. These tests were 

repeated for all four powder batches and all three atmospheric conditions.  
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2.1.12 Reproducibility of Results 

The reproducibility of the data is defined in this work as the consistency of the 

melted tracks produced using different powder deposits from the same batch and after 

prolonged atmospheric conditioning. Reasons for the importance of the reproducibility 

of the data are as follows: 

1. Testing was carried out over many atmospheric conditioning cycles. 

2. Gas purging was often continuous for up to 2 hours  when using the build plate. 

3. Many powder samples were used, and 

4. Testing was performed over a period of two years (for all melting experiments 

presented in this thesis. 

To examine the reproducibility of data the results from tests described in Section 

2.5.3 were repeated for different powder deposits; once after a 15 minute purge and 

once after a 90 minute purge. The tests were also conducted using the air atmosphere to 

ensure powder and environmental comparisons were being made between reproducible 

results. To monitor the reproducibility of data, control data was taken at three intervals 

over the two year period. The results are presented in Chapter 3. 

2.1.13 Dimensional Measurement 

Dimensional measurement was carried out in the y and z directions of single 

tracks, when on their own and within single and multiple layers. These parameter 

settings have been described in Section 2.5.1. The equipment used for dimensional 

measurement was a digital vernier calliper and optical microscope. Both pieces of 

equipment have been described previously in Section 2.3.4.  

2.1.13.1 Single Tracks 

Dimensional measurement  of melt tracks was carried out in two steps. The first 

step was measurement of track width and depth in the y and z directions using the 

digital vernier calliper. Three positions were selected to be measured for each direction, 

at the middle and at the ends. The positions of each, shown in Figure 2.18, are 

numbered Y1, Y2 and Y3  and Z1, Z2 and Z3. The variance between each measurement 

was calculated and used to evaluate melt track uniformity. The second step was to 



Chapter 2: Experimental Methods            98 

section and mount each track in a direction perpendicular to the direction of scan and 

measure the y and z directions using the optical microscope. Specimen preparation 

procedures are outlined in Section 2.5.6. The prepared samples were placed onto the 

microscope stage and secured using plasticine. Crosshairs superimposed onto the 

eyepiece  of the microscope were used to reference the position of the sample as the 

stage was traversed using the x and y stage micrometers. The second measurement step 

allowed for a more precise measurement and could take into account any powder 

particles attached to the core melt volume. 

 

 

Figure 2.18: Position of measurement for single tracks. 

 

 

2.1.13.2 Single and Multiple Layers 

Dimensional measurement of single tracks within layers and multiple layers was 

carried out by sectioning and measuring using the optical microscope. The procedure 

has been previously outlined in Section 2.5.5.1. 
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2.1.14 Sample Preparation for Microscopy Inspection 

2.1.14.1 Powder 

In preparation of specimens for the SEM, a small sample of powder from each of 

the powder batches was taken and independently mounted by suspending the particles 

in a solution of Epofix resin and Hardener (Struers). Left overnight the resin hardened 

to a clear translucent solid. The surface of the resin was then ground until the suspended 

powder particles became exposed. Polishing of the sample then took place as outlined in 

Section 2.3.4. The epoxy mount was then glued to a conductive fixture. A track of 

graphite paste was then applied between the polished surface and the conductive fixture 

before placing the sample into the SEM. 

Specimens containing samples selected from the 300/150 and 150/75 powder 

batches were etched by placing the specimens face down in Marbles Reagent (10g 

copper sulphate, 50ml HCL and 50ml distilled water) for a period of 30 seconds. 

Specimens containing powder samples from the 75/38 and 38 batches proved difficult 

to etch due to differences in cooling rate between small and large particles. 

2.1.14.2 Melt Tracks 

Single line scan tracks were sectioned parallel to the direction of scan and in a 

direction normal to the direction of scan (see Figure 2.19). The tracks were cut using a 

Actum 5 (Struers) equipped with a 356CA cutting wheel containing HV 500 grit. The 

cut specimens were mounted in Bakelite then lapped with progressively finer grit 

papers. The specimens were then polished then etched as outlined in Sections 2.3.4. and 

2.7.7.1 respectively.  

2.1.15 Measurement of Grain Size 

The grain size was measured by the mean linear intercept method (MLI) as 

outlined by Pickering, (1975). In this, the MLI was measured from a linear traverse by 

counting the number of boundaries which intercept the traverse of known length, L. 

This was achieved by capturing the area of interest using the microscope and image 

capture software. The image was then blown up and a line of known length, relative to 

the image, was arbitrarily drawn across the image. The MLI is given by: 
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N
Ld 



  (2.1) 

 

where N is the number of intercepting boundaries. 

 

 

Figure 2.19: Area cross-sections of single lines for microscopic inspection. 

 

2.1.16 Powder Mixing Procedure  

Powder was poured from its storage container into a glass beaker until a pre-

marked limit line was reached. The limit line corresponded to a 25% fill capacity when 

the contents were transferred to one of the v-cone mixers. German, (1994) suggests that 

a powder volume between 20% and 40% of the mixer‟s total capacity is usually 

optimal. The powder was then mixed for a period of 15 minutes at a rotational speed of 

120rpm. The time period was chosen based on results from the powder mixing 

calibration results (see Section 2.5.9.1 and Chapter 3, Section 3.2) and the rotational 

speed was calculated using equations given in Appendix A. 
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2.1.16.1 Mixing Time Calibration 

Powder mixing time was investigated by comparing the powder density variance 

with mixing time for sixteen randomly selected storage containers from a possible forty 

(four from each batch giving a total of four sets of experiments - A, B, C, D). Each of 

the sixteen containers had their contents equally split into five smaller samples, giving a 

total of 80 samples. Each of the five samples were taken from different heights in the 

container so that the effects of particle segregation could also be monitored (see Figure 

2.20). Before mixing, a small shot of powder was removed from each of the 80 samples 

and used for control purposes.  

Each of the five samples were placed into separate v-cone mixers and mixed for 

7.5, 15, 30, 45, and 60 minutes and at a fixed rotational speed of 120rpm (see Appendix 

A). The mixing times were cumulative, and so at the close of each time segment, 

rotation of the mixer was paused and a  small shot of powder was removed for density 

measurements. At the end of 60 minutes the volume of powder remaining in each of the 

five mixers was still greater than the lower mixing efficiency limit of 20% of the total 

mixing volume. 

After mixing each shot of powder was deposited into a machined nylon cup; 

10mm deep and 70mm in diameter (inner). Deposition occurred by placing the nylon 

cup on top of the piston assembly in the process chamber (see Section 2.3.1.3). The shot 

of powder was placed in front of the wiper blade then spread across the build zone, 

filling the cup from right to left (see Figure 2.21). The weight of the powder, w, was 

measured using an electronic balance with 0.001 grams accuracy. The volume, V, of the 

cup was measured using a digital vernier calliper. The density of each shot was 

calculated according to equation 2.2;  

 

V
ww c

  (2.2) 

 

Where wc is the weight of the cup. The average density of the powder contained 

within one storage cylinder was then obtained by applying equation 2.3 with n=5. 
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where 


  is the average density and the index i is the number of the part, 1 to n. The 

results from the calibration tests are given in Chapter 3, Section 3.2. 

 

Figure 2.20: Showing relative position and sample identity numbers  of powder 
samples taken for mixing calibration. 

 

Figure 2.21: Filling of nylon cup during powder density calibration. 
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Machine Calibration Procedures and Results 

2.1.17 Galvanometer and Beam Velocity  

The velocity of the beam over the power bed surface (for both build areas) was 

calculated using the procedure and equations given in Appendix C. The equations were 

used to generate look-up tables (see Appendix C) containing data to allow easy 

configuration of the mark parameter settings in the  PC-Mark MT software (see Section 

2.4).  

The accuracy of the calculated results were compared with experimental values. 

The experimental values were obtained by measuring the time taken for the laser spot to 

pass between too fixed points located on the powder bed surface. Both the build zone 

and the build tray were used in the experimental testing. The distance between the 

points remained fixed at 70mm, but the test run was carried out at different locations 

within the powder bed.  

Although a small variation did occur between the experimental and calculated 

results (see Figure 2.22), the differences were thought not to be significant for two main 

reasons. Firstly, it was evident that the greatest variance occurred when the scan speeds 

were high, suggesting that the increase was caused by discrepancies in the hand-eye 

reaction time when required to start/stop the digital timer at the start/end of each scan. 

Secondly, the experimental testing discussed previously in Section 2.5 was centred 

around scan speeds no greater than 20mm/s, an area showing less that 1% deviation in 

the experimental results. Finally, no speed variations, other than those accountable 

through experimental error, were recorded in experiments carried out at different 

locations within the powder bed.  

2.1.18 Laser Power 

The laser power output was calibrated using a laser power probe with a 5% 

accuracy over 500W. The probe was supplied by L.G. Products Ltd (Slough, UK) and 

was calibrated by them prior to dispatch. The power of the laser was measured by 

placing the heat sink of the power probe into the path of the laser beam at a position 

approximately 150mm above the build zone. This position was  not critical provided it 

was at a location sufficiently away from the focal point of the laser. At the focal point  



Chapter 2: Experimental Methods            104 

 

Figure 2.22: Deviation of scan speed experimental results from calculated results. 

 

the high heat intensities could damage the surface coating on the heat sink, 

compromising the accuracy of the probe. 

The probe was exposed to the stationary beam for a period of 20 seconds, 

removed, then left for a further 15 seconds before taking the reading. The reading was 

then multiplied by a factory set calibration factor of 1.032 to ensure a 5% accuracy. 

Between all measurements, the UC-1000 controller was left in „standby‟ mode. This 

mode supplied a tickle or pulse (every 1 sec) below the lasing threshold to maintain 

the plasma in the lasing tubes in an ionised state, allowing positive laser switching; 

therefore eliminating the need for a warm up period.  

The laser power was measured for every 50th unit recorded on the numerical 

counter . The graph in Figure 2.23 shows the relationship between changes in the values 

of the numerical power control counter and the power output from the laser head. The 

error bars in Figure 2.23 represent a 3% error recorded over three consecutive tests 
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when the laser power was greater than 20W. At 16W the error increased to 6% and at 

8W the error was 15%. To maintain consistency between experimental results the 

calibration procedure was repeated several times over the duration of the research. This 

was important as the research  was performed over a period of approximately 2 years. 

Figure 2.24 shows the results from these trials. It illustrates that all results fall within the 

error values recorded in Figure 2.23, implying the laser output power remained stable 

throughout the duration of the research.   

Summary 

Methods of handling, storing and preparing powder for melting were established, 

and melt test protocols and environmental conditioning cycles were developed. The 

results in Chapter 3 suggest good reproducibility and repeatability of each. The design 

of integral and auxiliary SLS equipment has also been demonstrated together with the 

compilation of a successful computer programme to generate HPGL source code and 

control the switching of system level commands. Furthermore, other SLS equipment has 

been introduced and described in such detail to aid discussions in Chapter 5 concerning 

equipment design and its use during processing. Finally, machine calibration procedures 

were also successfully developed showing good reliability of the equipment. These 

techniques procedures were used to identify factors influencing the melting behaviour 

of a stainless steel powder during melting by SLS.  
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Figure 2.23: Calibration graph for manual laser power modulation. Error bars show 
97% confidence limits. 

Figure 2.24: Calibration graph showing laser power deviance during manual power 
modulation over an 18 month period. 
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CHAPTER THREE 

3 RESULTS OF SINGLE TRACK MELT TESTS USING 

DIFFERENT ENVIROMENTAL CONDITIONS, SCANNING 

CONDITIONS AND POWDERS 

Introduction 

This chapter firstly sets out the results and a brief discussion concerning the work 

on powder mixing and powder mixing calibration (see Section 3.2). This is followed by 

the results of the microscopy studies observing powder particle structure and shape 

(Section 3.3). The main body of work then follows which reports on the observations 

made and measurements taken during the construction of single tracks. The literature 

review in Chapter 2 showed that a single track melt pool can experience large changes 

in shape, volume and flowability. It was also clear in the literature that surface tensions 

forces, scanning conditions, laser-material interactions, powder characteristics and 

atmosphere play a decisive role in affecting these changes. However, the importance 

and effects of these parameters,  both as a single entity and when in combination with 

each other, is less clear. Therefore, the purpose of the work presented in this Chapter is 

geared towards increasing the understanding of these parameters for melt pools created 

in deep powder beds. Results from this work has also allowed for the development of 

mathematical models to model a number of process aspects such as melt fragmentation 

and laser-material interactions. The models are presented in Chapter 5 of this thesis.  

Each of the four powder batches, described previously in Chapter 2, Section 2.2, 

has been melted using the scanning conditions reported in Chapter 2, Section 2.5.1 and 

all three environmental conditions reported in Chapter 2, Section 2.5.2. The results fall 

into separate sections, with the air atmosphere results first (Section 3.4), followed by the 

argon atmosphere results (Section 3.5) and finally, the argon atmosphere with argon 
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percolation results (Section 3.6). In each section the 150/75 powder batch, selected at 

random, forms the foundation of the research to which all other powder batches are 

compared. Included in these results are observations and measurements of melt track 

dimensional changes; including width, depth and area cross section together with 

measurements of mass changes of good quality melt tracks. Good quality in this case, 

refers to a continuous un-rastered melt pool. Microstructural examinations of the melt 

tracks and observations of powder displacements and trenching during laser exposure 

and their influence over melt behaviour have also been recorded here.  

A number of experimental tests were also conducted to asses the role of scan 

length on melt pool behaviour, experimental repeatability and experimental 

reproducibility. The experimental conditions are given in Chapter 2, Sections 2.5.1, 

2.5.3 and 2.5.4 respectively. Results examining the role of scan length demonstrated 

that changes in scan length had few noticeable effects on many melt pool 

characteristics, including dimensional and volume changes, mass changes, track 

deformations and changes in oxidation behaviour. Experiments to prove the 

repeatability and reproducibility of results also had a similar outcome, where any 

recorded changes fell within acceptable limits. Importantly, the results also emphasised 

that a 10-15 minute purge of argon gas into the process chamber prior to melting 

stopped all visible signs of oxidation progression. A purge time of less than 10 minutes 

caused severe oxidation and purge times greater than 15 minutes were considered to be 

unnecessary and imparted no noticeable improvements over oxidation control and melt 

pool quality and growth. No further reporting on this subject matter is deemed 

necessary.  Finally, all track data, which can also be used to compare track repeatability, 

can be seen in Appendix D. 
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Powder Mixing Calibration Results 

The experimental apparatus used in the powder mixing trials is given in Chapter 2, 

Section 2.3.3, the mixing and density measurement procedures have been discussed in 

Chapter 2, Section 2.5.8 and all calibration data accumulated during the experimental 

works  has been tabulated in Appendix E. Figure 3.1 displays the results of changes in 

the average packing density with mixing time for each of the four batches of powder. 

The figure emphasises the importance of powder mixing for both the attainment of 

higher packing densities and as a method to ensure a high reproducibility between 

packing density data. Reproducibility is presented as error bars in the figure and 

includes the density variation between all samples investigated including samples taken 

at different depths within the storage container.  

The results of the 300/150, 150/75 and 75/38 batches were similar, showing a peak 

in average packing density after 15 minutes of mixing. Furthermore, at this time period 

the density variation between all samples measured was at a minimum. Above 15 

minutes of mixing there was an initial decrease in packing density,  but not as abruptly 

as the initial increase observed between 0 and 15 minutes, followed by a period of little 

change. It is also interesting to note that the greatest density variation  in each of the 

three powder batches occurred in samples taken from the unmixed powder and powder 

that was mixed for 60 minutes. This first observation is likely to be due to particle 

segregation caused by transportation and prolonged storage. The second observation can 

often be triggered by over mixing causing particle re-segregation. It is well documented 

that if the mobility and density of the particles differ as a result of their forms and sizes, 

the effect of external forces may cause segregation (German, 1998). 

It is also evident when comparing Figures 3.1a-c, that the average packing density 

recorded at each mixing time interval generally decreased with decreasing particle size 

and the average packing density variation was shown to increase. These two 

observations are likely to be both caused by a change in the flow properties of the 

powder samples, where powder flow is known to reduce with reducing particle size 

(German, 1998).  
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The results for the -38 powder batch followed a different trend, although the 

average powder packing density recorded at each mixing time interval remained lower 

than values recorded at similar time intervals in the other three powder batches. As a 

general rule, an increase in mixing time caused the packing density to decrease and the 

packing density variance to increase; hence this was the only powder batch to have its 

highest packing density recorded in its unmixed state. This suggests that the mixing 

process acted only to cause re-segregation. These differences are again likely to be 

connected to the poor flow properties which were observed when handling samples 

taken from this powder batch. It is reasonable to assume that the poor flow properties 

restricted the mixing efficiency of the V-cone mixers and the filling efficiency of the 

plastic cup during the density measurements.  

The change in density of powder samples taken from different heights within each 

of the storage containers was also investigated. The data points were compared for 

mixing times of 0, 7.5, 15, 30 and 45 minutes and none of the differences were found to 

be statistically significant. However, after 60 minutes of mixing and due to reasons 

described above, the drop in density was considered significant, especially in samples 

taken from the bottom of the storage containers.  

Given the results obtained from the powder mixing trials, powder samples taken 

from the 300/150, 150/75 and 75/38 powder batches were mixed for 15 minutes prior to 

their deposition and melting in the research SLS machine. This time period was chosen 

to ensure the highest reproducibility between all deposited powder layers and was not 

chosen on the basis of a high packing density; the latter factor being largely 

indeterminate during SLM (see Chapter 1, Section 1.7.1.2). For the –38 powder batch, 

the highest reproducibility occurred in the unmixed samples and so no further mixing 

was carried out on this powder.  
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(a) (b) 

(c) (d) 

 

 

Figure 3.1: Density variation with mixing time for (a) 300/150 powder batch, (b) 
150/75 powder batch, (c) 75/38 powder batch and (c) 38 powder batch. 
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Powder Microscopy Results 

SEM micrographs showing typical particle grain structures observed in this study 

are shown in Figure 3.2. From the figure it can be seen that the solidified structure was 

almost always equiaxed and generally uniform in size and shape. This can be expected 

since this type of structure is characteristic of a rapidly solidified  alloy.  

Figure 3.3, charts the results of the changes in grain size with particle size for 

particles taken from the 300/150, 150/75 and 75/38 powder batches. The grain size was 

measured using pictures similar to those shown in Figure 3.2 and the method outlined in 

Chapter 2, Section 2.5.7. The grain structure of particles within the –38 powder batch 

could not be obtained because the particles were too small to mount and etch correctly 

with the available equipment. The powder particle grain size measurement data obtained 

during the experimental works has been tabulated in Appendix E.  

The variation of particle grain size, 
-
d , with particle diameter approximately 

follows the relationship: 

 

-
d r  (3.1) 

 

where, r, is the particle radius, as can be seen from the  plot on the same figure of 

grain size  powdersize, with the constant of proportionality of 1.0. The dependence 

on particle grain size may be related to the cooling rate during gas atomisation 

manufacture of the powder. The cooling rate of a particle can be found from a heat 

balance on the particle i.e. equating the sensible heat loss of a particle to the heat loss 

through the particle surface, such that: 

 

 ΔTπrh 2
p 4

t
TVρC 


   (3.2) 

 

 



Chapter 3: Results of Single Track Melt Tests Using Different Environmental  
                  Conditions, Scanning Conditions and Powders  111 

 where    

     h     =  surface heat transfer coefficient (W/m2.K)    

    V   =  volume of powder particle (m3) 

     T  =  Tparticle - Tambient (K) 

          = density of particle  (kg/m3) 

 Cp = specific heat J/kg.K 

 r = radius of spherical particle (m) 

 

assuming, h, is constant during the period of solidification, then: 

 

)(4
3
4 23 TrhrC

t
T

p 



   (3.3) 

 

 
r
1ΔT

ρC
3h

t
T

p 














   (3.4) 

 

Thus cooling rate is proportional to 1/r and cooling time is proportional to r. 

Previous studies discussed in Chapter 1, Section 1.8.2 suggest that microstructure 

depends on the square root of cooling time with equiaxed structures occurring at very 

low values of time . Equation 3.1 is in line with this observation. 
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Figure 3.2: Particle shape and grain structure in powder batches (a/b) 300/150, (c/d) 
150/75 and (e/f) 75/38. 

  

(a)   (b )   

( d )   ( c )   

( e )   ( f )   
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Figure 3.3: Variation of grain size with particle diameter for particles contained 
within the 300/150, 150/75 and 75/38 powder batches.  The  calculated curve 
has been plotted with a constant of proportionality of 1.0. 

Selective Laser Sintering of Single Tracks Scanned in an Air 

Atmosphere 

The purpose of carrying out single track melting tests within an oxygen based 

atmosphere (laboratory air) was to establish a benchmark study to help determine the 

role of oxygen and the effects of oxidation on melt pool behaviour. Particular attention 

was given to the type of melt front growth and oxide scales that form during laser 

scanning.  

3.1.1 Qualitative Observations  

Figures 3.4 – 3.7 show pictures of typical melt tracks produced by scanning a 

series of unidirectional traverses of the laser beam. In the figures, a number of tracks 

have been intentionally slanted to indicate melt solidity; a procedure carried out after 

the melt had cooled. All four powder batches are represented in the figures.  

Due to the complexity of characterising all of the discrete changes observed in the 

powder during exposure a number of changes of a qualitative classification have been 

chosen to be representative of each powder‟s total heating and melting response. 
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Oxidation, particle bonding and melt pool growth and quality were all taken into 

account during their selection. It is important to note here that powder particles located 

within the heat affected zone (HAZ), but which lie outside of the beam spot, are not 

considered by the process maps unless those particles have directly interacted with the 

melt volume. The classifications are listed below.  

Powder heating but no marking: A focussed, moving Gaussian beam impingent on 

the surface of a powder layer causes no physical changes, including, no discolorations 

of particle surfaces, no melt formation and no bonding between neighbouring particles 

(See Figure 3.4: Part A). Due to the short heating times inherent in SLM, it was 

assumed that a melt phase was required to initiate particle bonding. Therefore, melt 

formation (or the lack of it) was determined by observing, then comparing with virgin 

powder, the movements of individual particles  and the interactions between 

neighbouring particles whilst disturbing the irradiated powder layer with a knife edge. 

Temper Colorations but no melting: A focussed, moving Gaussian beam 

impingent on the surface of a powder layer causes temper colorations on the surfaces of 

irradiated particles and on particles situated within a localised HAZ (See Figures 3.4: 

Part A, 3.8: Part A and 3.9: Part A). During exposure, particles with the smallest size 

fraction may be melting causing some liquid action. However, due to a combination of a 

small liquid volume and an imbalance of surface energies caused by the oxide scale, the 

liquid does not wet, and therefore does not form bonds between larger unmelted 

particles. This produces tempered tracks with a powdery surface finish which fall to a 

loose powder when disturbed. The temper colorations are a consequence of a thickening 

oxide layer which changes colour with increasing temperature. For a visual comparison, 

Table 3.1 summarises the colour changes inherent in a stainless steel block heated over 

a range of temperatures from 300C to 750C (Monypenny, 1954). In Table 3.1, the 

colours and name representations follow closely the colorations observed in the 

experimental works. For example, pale straw colorations were found to occur on all 
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Figure 3.4: Part A:  Tracks melted in air atmosphere using 300/150m powder 
batch at different scanning conditions. 
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Figure 3.4:  Part B:  Tracks melted in air atmosphere using 300/150m powder batch 
at different scanning conditions. 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.4:  Part C:  Tracks melted in air atmosphere using 300/150m powder batch 
at different scanning conditions. 
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Figure 3.5: Part A:  Tracks melted in air atmosphere using 150/75m powder batch 
at different scanning conditions. 
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Figure 3.5:  Part B:  Tracks melted in air atmosphere using 150/75m powder batch 
at different scanning conditions  
 

 

 

 

 

 

 

 

 

Figure 3.5:  Part C:  Tracks melted in air atmosphere using 150/75m powder batch 
at different scanning conditions  
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Figure 3.6: Part A:  Tracks melted in air atmosphere using 75/38m powder batch 
at different scanning conditions 
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Figure 3.6:  Part B:  Tracks melted in air atmosphere using 75/38m powder batch at 

different scanning conditions  
 

 

 

 

 

 

 

 

 

 
Figure 3.6:  Part C:  Tracks melted in air atmosphere using 75/38m powder batch at 

different scanning conditions  
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Figure 3.7: Part A:  Tracks melted in air atmosphere using -38m powder batch at 
different scanning conditions 
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Figure 3.7:  Part B:  Tracks melted in air atmosphere using -38m powder batch at 
different scanning conditions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.7:  Part C:  Tracks melted in air atmosphere using -38m powder batch at 
different scanning conditions 
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directly irradiated particles exposed to the lowest values of energy density recorded 

within the limits of this regime (see Figures 3.4: Part A and 3.6: Part A and process 

maps in Figures 3.8 to 3.10 for boundary locations). These colorations were also often 

found on particles located within the periphery of many HAZ‟s caused by much higher 

energy density exposure (see Figures 3.4: Part A and 3.7: Part A). 

On the other hand, grey/black colorations were found to occur on all directly 

irradiated particles exposed to the highest values of energy density recorded within the 

limits of this regime (see Figures 3.4: Part A and 3.6: Part A). A grey/black surface 

scale was also observed on the surfaces of fully molten powder at the onset of balling 

(see Figures 3.4: Part A and 3.6: Part A). Due to the difficulty  in measuring the surface 

temperature of the irradiated powder, a more detailed analysis was not obtained nor 

deemed necessary for the purposes of this work. 

Table 3.1: Temper colorations observed during the heating of the powder (Monypenny, 
1954). 
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Temper Colorations and partial melting: A focussed, moving Gaussian beam 

impingent on the surface of a powder layer (75/38 and 38 powder batches only) causes 

temper colorations on the surfaces of irradiated particles and on particles situated within 

a localised HAZ. During exposure, particles with the smallest size fraction are melting 

causing some liquid action. Because of the greater number of smaller particles in the 

75/38 and 38 powder batches, the liquid volume is sufficient in quantity to wick into the 

neck region between neighbouring unmelted larger particles, creating a network of re-

solidified melt and suspended particles. This produces tempered tracks with a powdery 

surface finish. However, since wetting is still impeded by the oxide scale, the tracks are 

very fragile, but do remain intact with careful handling (see Figure 3.7: Part A). The 

oxide colour scale presented in Table 3.1 is again applicable here as a colour 

comparator. However, the order in which the oxide scales occur, particularly in the -38 

powder batch, appear random in nature (see Figure 3.7: Part A). For example, it is 

shown in Table 3.1 that grey/black colorations will occur when cooling from a high 

temperature (~750C) and brownish/straw colorations occur when cooling from a much 

lower temperature (~350C). In comparison, Figure 3.7: Part A shows grey black 

temper colorations occurring on particle surfaces after being irradiated with lower 

values of energy density than those particles that have cooled and formed a surface scale 

showing brownish/straw colorations. The reason for these differences is likely to be 

linked to the complexity of surface scale control and the cleanliness of the powder layer; 

oxygen and other contaminants such as water vapour can greatly affect oxide thickness. 

Full Particle Melting with Temper Colorations A focussed, moving Gaussian 

beam impingent on the surface of the powder layer causes full particle melting, forming 

a conduction limited melt pool. The amount of powder directly under the line source of 

energy is small in comparison to the actual amount melted. All except the very smallest 

of tracks produced at low energy densities are visibly larger in cross section than the 

nominal amount of powder available for melting (see Section 3.4.3 and 3.4.5). This 

occurs because powder on each side of the melt pool collapses into it. This is especially 

noticeable when the melt width contracts and forms a cylindrical cross section, leaving 

behind an unstable wall of powder. The admission of this extra powder allows for 

increased melt volume, but also leaves denuded areas (or a trench) around all sides of 

the melt (see Figures 3.4: Part C and 3.9: Part C). The extent of this gathering of 
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surrounding powder is affected by the speed and power of processing which governs the 

width and average temperature of the melt as well as its vertical position within the 

powder layer (see Section 3.48). Upon removal of the solidified melt pool from the 

surrounding powder layer, the underlying powder was almost always blue/violet in 

colour. Powder within the wall of the denuded area was unaffected by surface coloration 

suggesting that powder in this area was subjected to only very small temperature rises. 

The melt had a yellowish silver appearance that is attributed to the oxide scale 

forming on the surface of the melt pool. Due to its colour, it is likely that the slag is rich 

in chromium (Cr2O3). 

The aspect ratio of the melt was almost always close to unity (circular aspect ratio 

creating cylindrical melt tracks). This occurrence might also have been caused by the 

slag covering. In Section 3.4.5, microstructural observations show distinct regions of re-

solidification, suggesting little or no melt pool stirring i.e. no surface tension driven 

fluid flows. Work reported in Chapter 1, Section 1.4, clearly show that such forces 

would otherwise dictate melt geometry. 

There were also very few particles attached to the solidified melt, even on the 

underside, giving it a smooth surface finish. As the laser spot travels over the surface of 

the powder layer, three different types of melt pool growth were observed (see Figure 

3.8): 

Growth Type I (Melting with Balling): At generally higher scan speeds, a 

molten pool, approximately circular in cross section, is produced whose growth type is 

strongly influenced by surface tension forces. A struggle appears to exist between 

interaction time, power density and surface tension forces. Because the interaction time 

is short, and the power density is therefore small in comparison, the high surface to 

volume ratio of the melt means that the major effect controlling the morphology of the 

melt is surface tension. To reduce the surface free energy, the melt pool fragments, 

forming a series of equi-sized, equi-spaced melt balls. Furthermore, because the 

interaction times are generally small, the melt volume is very small and short lived, and 

therefore has a low average temperature in comparison with other melts to be discussed. 

This explains the low interaction observed with surrounding powder causing only a 

small denuded area (see Figure 3.6: Part B as one example). Nevertheless, the 
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admission of even small amounts of powder will help to cool the surface of the melt still 

further. 

Growth Type II (Melting with Breakages or Fragmentation): As processing 

speeds are decreased, the increased laser interaction melts even more material resulting 

in a melt pool with an approximately circular cross section and a reduced surface to 

volume ratio. The outcome is a more continuous melt pool, but which still exhibits 

random fragmentation along its length (see Figure 3.7: Part C as one example). This 

hotter more extensive melt pool incorporates an increased proportion of incoming 

powder through trenching, until the combination of laser removal and incoming powder 

solidify the melt. However, the coalescence of neighbouring particles does not 

sufficiently denude the surrounding area of powder completely, leading to a build up of 

loosely bonded material at the sides of the melt pool (see Section 3.4.5). 

Growth Type III (Continuous Melting): At even slower processing speeds, the 

increased laser interaction melts even more material resulting in a melt pool with an 

approximately circular cross section and a much reduced surface to volume ratio. The 

outcome is a continuous melt pool surrounded by large denuded areas. Due to more 

excessive trenching, the melt volume has a greater number of attached powder particles 

and agglomerates. On a large number of tracks there is also a highly noticeable „bobble‟  

or build up of melt at the start of each track. It is believed this bobble is linked to the 

trenching phenomena and is discussed in detail in Section 3.4.5. 
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Figure 3.8: Qualitative classification of the three types of solidification observed in 
the experimental works. 

Growth Type I: Balling, Growth Type II: Melting with Breakages, Growth Type 
III: Continuous melting. 

 

3.1.2 Process Maps 

Process maps plotting the heating and melting response of the powders have been 

constructed to help increase the understanding of melt front progression as laser powers, 

scan speeds and particle size distribution change.  

The  maps, given in Figures 3.9 to 3.12, have similar regions or regimes. Each 

regime is based on the qualitative classifications presented in Section 3.4.1. They are in 

most part well defined and the regimes in the 300/150, 150/75 and 75/38 process maps 

are closely associated. The nodal array displayed on each map indicates the number and 

value of experimental points used in the construction of the maps and the coloured 

nodes located along region boundaries help communicate boundary accuracy by 

indicating the degree of regime crossover.  
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In all four maps a diagonal boundary line a-a separates the regimes of powder 

heating but no marking below from the regime of  temper colorations but no melting 

above. The boundary is linear, suggesting  that a critical value of energy density must be 

reached before the powder will oxidise under the incident radiation. The values range 

between 0.2J/mm and 0.5J/mm and increase with increasing powder particle size. It is 

also clear from all four process maps that this boundary line cuts the laser power axis at 

approximately 8W, suggesting that at least 8W of laser power is required before the 

powder will react to the incident radiation.   

A boundary line b-b separates the temper colorations but no melting regime to the 

right from a melting with balling regime to the left. In the 75/38 and -38 process maps 

this boundary is again distinct and linear. However, the distinction is less clear in the 

300/150 and 150/75  process maps, particularly at higher laser powers and scan speeds. 

These regions are highlighted by the closed boundaries WXYZ and XYZ in Figures 3.9 

and 3.10 respectively. Irradiating the powder at conditions within these regions, as both 

the maps and Figures 3.4 and 3.5 suggest, would cause temper colorations to form on 

particle surfaces. However, there were also a small number of sporadic groups of what 

appeared to be agglomerated particles forming along the length of the irradiated track. 

Although melting was visually inconclusive, it is highly likely that the agglomeration of 

particles was caused by capillary forces triggered by the presence of a melt volume. If 

melting is indeed occurring in these regions, then the shape of the boundary line b-b in 

the 300/150 and 150/75 process maps would change and become close to linear, 

continuing the trend observed in the 75/38 and –38 process maps. This trend is a 

reasonable assumptions since it is also reasonable to assume that some critical value of 

energy density is required to promote melting of the irradiated powder; providing that a 

thickening surface oxide layer does not affect radiation absorptivity. Hence, the 

argument concerning melt formation in the regions bounded by WXYZ and XYZ is 

strengthened. Assuming the boundary line b-b is linear for all four process maps, then 

the values of energy density along the boundary line would range between 1.4J/mm and 

2.5J/mm, again steadily increasing with increasing powder particle size. However, 

because these maps are based on visual interpretations, the regions bounded by WXYZ 

and XYZ will remain as regions portraying temper colorations but no melting. 
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A line c-c separates the melting with balling regime to the right from a fragmented 

melt pool regime to the left. Finally, a line d-d separates the fragmented melting regime 

to the right from a continuous melting regime to the left. The phenomenon of melt pool 

balling and fragmentation was widespread during air sintering. In the 300/150, 150/75 

and 75/38 powder batches balling was found to occur from the point of first melting and 

could only be controlled, whilst maintaining a melt volume, by reducing the scan speed. 

Hence, a continuous melt pool could only be maintained at scan speeds typically less 

than 10.0mm/s (boundary line d-d). If the laser power was very low (<32W although 

this value is dependant on the powder batch), then melting with balling could not be 

controlled at any value of scan speed. It was also noted that each re-solidified melt ball 

was uniform in shape, equi-spaced between its neighbours and grew in diameter and 

reduced in number as the energy density increased; melting with breakages also 

followed a similar relationship, except that the broken melt was obviously more 

elongated in shape.  

The dashed line in all four process maps indicate the range of scanning conditions 

over which the collapse of powder can be expected. Obviously, due to the unpredictable 

nature of the powder bed, the collapse of powder to reveal significant denude areas 

around the melt cannot always be predicted. Nevertheless, there is a general trend 

emerging. For the 300/150, 150/75 and 75/38 powder beds, significant collapse of 

powder generally occurs over all scanning conditions suitable for the creation of a 

continuous or fragmented melt pool. Powder collapse also occurs when the melt pool 

balls. However, due to reasons given above, the denude areas are very small and 

difficult to distinguish because of the highly disconnected melt bead and because of 

surface oxidation of surrounding particles which cast artificial shadows. For the -38 

powder batch, powder collapse generally occurs over similar regions to the other three 

powder batches providing there are no sinter bonded particles attached to the core melt 

volume i.e. at scan speeds greater than 3mm/s at high laser powers (>125W) and at 

higher scan speeds when the laser power is low. The cause and effects of sinter bonded 

particles is discussed in greater detail in Section 3.4.3.2. 

The main difference between the four process maps was the arrangement of the 

boundaries in the -38 process map once melting took place. The map shows that melting 

with balling and a fragmented melt pool only occur at high laser powers and high scan 
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speeds. This allows for two important differences. Firstly, a continuous melt pool can be 

produced from the point of first significant melting providing the scan speeds remains 

low (<30mm/s). Secondly, it allowed for a much larger process window at low powers 

in which to irradiate the powder bed whilst maintaining a continuous melt pool.  
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Figure 3.9: Process map for the 300/150 powder batch processed within a 
laboratory „air‟ atmosphere. 
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Figure 3.10: Process map for the 150/75 powder batch processed within a laboratory 
„air‟ atmosphere. 
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Figure 3.11:  Process map for the 75/38 powder batch processed within a laboratory 
„air‟ atmosphere. 

 

 

 

  

Continuous melting

Fragmented Melt Pool

Melting with balling

Temper Colorat ion's  but no melting

Powder heating but no melting

Boundary data point bias 

Significant Denude areas

mm
J

Speed in Change
 Powerin Change Where

8Wx
x
yy












x
y

Temper Colorat ion's  and partial melt ing

L
a

se
r 

P
o

w
e
r 

(W
).

Scanning Speed (mm/s)

~10

50

100

150

200

5 10 15 20 25 30 5045403510.5

. . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .
.. . . . . . . . . .. . . . . . . . . .

.. .. .... . . . . . . . . . .. .. . . .
. . . .
. . . ... ...... . . . . . . . . . .. ... ...... . . . . . . . . . .. .

.. .. .... . . . . . . . . . .. ... .. .... . . . . . . . . . .. ... ...... . . . . . . . . . .. .

.. ...... . . . . . . . . . .. ... ...... . . . . . . . . . .. .

. . . . . . . . . .
.

.

...

..

.

..

.

.

...

..

.

..

..

. .
.. ...... ..

.. .. .... ..

.. .. .... .... ...... .... ...... ..

.. .. .... .... ...... ..

.. ...... ..

.. ...... ..

.. ...... ..

.. .. .... ..
. . . . . .
. . . . . .. . . . . .

.

.

..

.

.

..
0.2J/mm

1.4J/mm
b

a
c

b 
a

b‟

cd

d



Chapter 3: Results of Single Track Melt Tests Using Different Environmental  
                  Conditions, Scanning Conditions and Powders  134 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Process map for the -38 powder batch processed within a laboratory 
„air‟ atmosphere. 
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3.1.3 Characteristics of the Melt Pool 

3.1.3.1 Melt Pool Form 

The pictures of melt tracks in Figures 3.4 – 3.7, the process maps displayed in 

Figures  3.9 – 3.12 and the measured results in Appendix D  show, for the 300/150, 

150/75 and 75/38 powder batches, that a variation of laser power from 30W to 200W 

and scan speeds from 0.5mm/s to 10mm/s (speed range increasing with increasing laser 

power) produced melt tracks that are largely continuous, have uniform width and depth 

along their entire length and are smooth in shape. The underside of the melt tracks (side 

facing the powder bed) was generally covered in sinter bonded powder at high energy 

densities (J/mm). However, as the energy density reduced the sintered bonded powder 

diminished leaving tracks with a reasonable smooth underside at high scan speeds (see 

Section 3.4.3.2). Some irregularities or melt pool „bulges‟ were recorded, but these are 

generally more prolific at low scan speeds and limited to the very start of the scan 

track.. The occurrence of these bulges is believed to be caused by a combination of melt 

pool balling at the point of first melting and a large volume collapse of powder (see 

Section 3.4.4). However, it is difficult to be precise on this matter due to the speed of 

formation and solidification of the melt tracks, even at such low speeds.  

Melt tracks produced from the -38 powder batch were largely similar in shape and 

form to tracks produced from the other three powder batches. There are however, some 

important differences. Firstly, combinations of low scan speeds (<3mm/s) and mid to 

high laser powers (>70W) produced tracks with large voids that looked analogous to 

blowholes or keyholes. Since such phenomena are associated with over heating, it is 

speculated that increased laser absorptivity, trigger by perhaps oxidation (see Chapter 1, 

Section 1.6 and 1.73) or an increase in apparent surface area due to finer particles, is the 

likely cause. Secondly, again at low scan speeds (<3mm/s) the melt was surrounded by 

a large amount of loosely bonded powder, caused by a probable increase in thermal 

conductivity due to a greater number of contacting spheres per unit volume, creating 

melt tracks with a much higher aspect ratio (depth/width). Finally, due to a combination 

of the „key hole‟ effect and sinter bonding of powder to the melt core, tracks produced 

at low scan speeds were very irregular in shape, rough and often fragile or broken in the 
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vicinity of a keyhole. For this reason, melt tracks produced below 3mm/s were not 

measured or weighed.  

3.1.3.2 Width and Depth Changes 

The single tracks described in Section 3.4.1 were removed, where possible, from 

their powder beds and their dimensions (width, depth and length) were measured and an 

average value was recorded. The width and depth of each track was measured to asses 

changes in melt pool shape (aspect ratio) and size as scanning conditions and powder 

particle size distribution change. In all cases the initial melt bobble that occurs at the 

start of many of the tracks was not taken into account during measurement (see Section 

3.4.4). The track length was also obtained in conjunction with track mass to enable mass 

per unit length data to be calculated. These latter results are described in Section 3.4.3.3. 

The equipment used to obtain the dimensional data is described in Chapter 2, 

Section 2.3.5 and data accumulated during measurement can be seen in Appendix D. 

Before each measurement was taken each track was lightly brushed to remove any loose 

debris i.e. excess powder and loosely bonded particles, to enable accurate measurement 

of the core re-solidified melt volume. As a final note, in Appendix D tabulated data 

showing track length can change significantly if the melt pool fragments (the process 

maps displayed in Figures 3.9 – 3.12 can be used to reference this phenomena).  

As outlined in Section 3.4.1 and discussed in greater detail in Section 3.4.5, the 

collapse of powder into the melt causes the melt pool width to grow and become very 

much greater than the beam width (beam width = 1.1mm). Hence, for the 300/150, 

150/75 and 75/38 powder batches the melt width reached a maximum value of 3.5mm 

and reduced steadily with decreasing scan speed and decreasing power. The minimum 

melt pool width generally ranged between 1.0mm and 2.0mm before balling and 

fragmentation commenced (see Figures 3.13 – 3.15). The curve d-d in the figures 

corresponds to the fragmented melt pool boundary line d-d in the process maps.  

There are however, a couple of exceptions to the general observations discussed 

above. Firstly, all melt pools produced from the 150/75 powder batch reached a 

minimum value of approximately 1.0mm before fragmentation and balling commenced, 

suggesting perhaps some link between melt pool width and beam width as a trigger for  
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Figure 3.13: Melt pool dimensions as a function of scan speed and laser powder. 
Results for the 300/150 powder batch are shown. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Melt pool dimensions as a function of scan speed and laser power. 
Results for the 150/75 powder batch are shown. 
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Figure 3.15: Melt pool dimensions as a function of scan speed and laser powder. 
Results for the 75/38 powder batch are shown. 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Melt pool dimensions as a function of scan speed and laser powder. 
Results for the -38 powder batch are shown. 
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balling. Secondly, at high laser powers (>125W) there is a drop off in width progression 

with all further increases in power. An immediate response to this observation might be 

to associate the observation with the formation of a small vapour cloud above the melt 

front which might be occurring at high energy densities (J/mm). This vapour cloud 

would act to obscure the laser radiation. However, it is apparent in Figures 3.13 – 3.15, 

that this width reduction phenomenon is not consistent between powder batches. For the 

300/150 powder batch, it only occurs at the high powers reported above  and at low scan 

speeds, i.e. supporting the claim of a vapour cloud. However, the phenomenon does not 

occur in the 150/75 powder batch and only occurs at high scan speeds in the 75/38 

powder batch, thus dismissing the vapour cloud theory. As an alternative solution, it 

might perhaps be better to consider the effects of the collapsing powder since this is 

known to affect melt dimension and be affected by powder fluidity i.e. powder particle 

size distribution. This argument is perhaps further strengthened if we now consider the 

relationships between width and depth and power and speed of melt tracks produced 

using the -38 powder batch (see Figure 3.16).  

The effects of speed and power on track width for the -38 powder batch  are given 

in Figure 3.16. At low scan speeds and/or high laser powers the melt width reached a 

maximum value of 5.0mm. Because the melt pool was subjected to only small amounts 

of collapsing powder, the increased width of the tracks, when comparing with tracks 

from the other three powder batches, was instead caused by large amounts of powder 

sinter bonding to the melt core through increased powder bed thermal conductivity. 

Hence, tacks produced at low speeds and high powers consisted of a fully melted core 

edged by liquid phase sintered powder within the heat affect zone. Because of limited 

powder collapse, the melt pool width reduced more rapidly in the speed range 3.0mm/s 

to 6.0mm/s compared to the other three powder batches. Between 6.0mm/s and 

12.0mm/s the melt width began to level out reaching values, again  between 1.0mm and 

2.0mm, and continued to remain at these values until much higher scan speeds once 

again triggered melt pool balling (15mm/s – 18mm/s). These steady state values are 

reached because the laser-material interaction time reduces with increasing speed and so 

the melt volume becomes more short lived and therefore the sinter bonding of 

surrounding powder particles reduce. This omission of extra powder, both from 
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conduction and collapse, creates track widths which remain smaller and at the lowest 

energy densities, they remain similar in width to the diameter of the laser spot. 

The effect of scan speed and laser power on melt pool depth is also shown in 

Figures 3.13 – 3.16. Because the melt pools are generally cylindrical in shape and 

governed by surface tension forces, the melt depth follows a similar relationship to that 

of width.  

The ratio, depth/width, known here as the melt aspect ratio, has been calculated 

for all melt tracks and the relationship as a function of scan speed has been plotted and 

given in Figure 3.17. Images showing the change in melt cross section as a function of 

change in incident energy source for an unrastered line  (i.e. showing melt pools in a 

direction normal to the direction of scan) are given in Figure 3.18. The width (b) and 

depth (d) dimensions are marked on the figure adjacent to the relevant cross section 

together with the values of the scanning parameters. For the 300/150, 150/75 and 75/38 

powder batches, at low scan speeds (<4mm/s) and/or high laser powers (>110W) the 

melt aspect ratio was generally high. This again can be attributed to the sinter bonding 

of loose powder on the underside of the melt and is clearly visible on the images of melt 

aspect ratio in Figure 3.18. As the speed increases when irradiating at high power, or 

when the power remains low (<110W) the melt aspect ratio approaches values in the 

range 0.9 – 1.0, irrespective of particle size distribution. In contrast, the aspect ratio of 

melt pools taken from -38 powder beds shows a more chaotic relationship as scan 

speeds increased. Most results falls between values of 0.9 and 1.2, but because of the 

large amount of sinter bonded powder around the underside, the aspect ratio of the melt 

core is somewhat disguised. Also shown on Figure 3.17 are two curves; (1) a curve 

representing the path taken of the d-d melt fragmentation boundary and (2) a curve 

which passes through the minimum points of all the d/b versus scan speed curves. In the 

figure it can be seen that both curves follow each other reasonably closely, are both 

reasonably horizontal and have average values of aspect ratio between 0.92 and 0.96. 

This suggests that for all scanning conditions and for all powder batches (excluding -38) 

the melt aspect ratio approaches a similar value when the transition boundary between 

continuous melting and melting with fragmentation is reached. If an average of all 

results is calculated (see Figure 3.17), then the melt aspect ratio is seen to reduce with 
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reducing powder particle size. An observation again linked to the amount of powder 

sinter bonded to the underside of the melt track. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Melt pool aspect ratio as a function of scan speed for the 300/150, 
150/75, 75/38 and -38 powder batches. 
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Figure 3.18: Images showing melt track aspect ratio. All tracks were removed from 
powder beds containing the 150/75 powder size distribution. The Images are 
approximately at X8 magnification. 
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Finally, Figure 3.19 shows contours of constant track width which have been 

superimposed onto duplicates of the process maps which were originally given in 

Figures 3.9 – 3.12. The purpose of this figure is to outline the change in dimensions of 

the melt tracks relative to the continuous melting – fragmented melt pool boundary. 

Once again a similar pattern is emerging where in all but the -38 powder batch, the  

contours of constant track width follows similar directions and changes in direction at 

the boundary line. Once again emphasising a possible link between melt pool shape and 

balling. These results will be discussed further in Chapter 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19: A plot showing contours of constant track width superimposed onto the 
process maps for the 300/150, 150/75, 75/38 and -38 powder batches. 
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3.1.3.3 Mass Changes 

As well as measuring melt pool dimensions, tracks removed from the 150/75 and 

75/38 powder beds were also weighed and plots of track mass per unit length 

(grams/mm) as a function of laser energy density (J/mm) were created. These plots can 

be seen in Figure 3.20. Most of the results again fall within one region bounded by two 

straight line slopes labelled High Speed (HS = >4mm/s) and Low Speed (LS = 

0.5mm/s). Data points that lie outside of this zone are generally associated with low 

laser powers. However, for the 150/75 powder batch, results of track mass per unit 

length for tracks produced at the very highest laser power (189W) have a much lower 

value than all of the other tracks produced at much lower laser powers. A reason for this 

anomaly cannot be determined and therefore the results at this particular  power level 

are considered to be the effect of some unknown experimental error. Values for laser 

absorptivity can be estimated from these plots. This will be considered further in the 

discussion in Chapter 5. 

 

Figure 3.20: Melt pool mass per unit length plotted as a function of laser energy 
density for the 150/75 and 75/38 powder batches. LS represents the Low Speed 
slope (0.5mm/s) and HS represents the High speed slope (>4mm/s). 
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3.1.4 Powder Trenching and Melt Pool Irregularities  

A number of melt pool irregularities, such as depth changes within the powder bed 

and the „bobble‟ that forms at the start of the melt track, are thought to be linked to the 

effects of suppressed surface tension driven fluid flows and powder displacements 

during melt formation, both of which cause a trench or denude area to form around the 

periphery of the melt volume. Before these irregularities are discussed, the mechanisms 

which cause trenching will be considered.  

3.1.4.1 Powder Trenching  

Due to the cylindrical shape of the melt volume, powder displacements leading to 

denude areas around the periphery of the melt pool were frequently observed. Typical 

examples of these observations are given in Figure 3.21. Due to the difficulty in 

photographing this phenomenon, the reader is urged to look at the shaded region under 

the ruler in the figure to gauge the degree of trenching around each melt pool.  

Trenching is triggered by the changing shape of the melt pool. Immediately upon 

melting, surface tension forces pull the melt into a cylindrical form (see Figure 3.22). 

This leaves a denude area all around the periphery of the melt volume (see Figure 

3.22b). Hence, due to the cylindrical shape of the majority of melt tracks, melting 

within an air atmosphere often causes this phenomenon; this is emphasised  by the 

process maps in Figures 3.9 – 3.12. 

Immediately after the change of shape of the melt pool, the walls of the trench 

become unstable and so collapses, causing movement of particles from the trench walls 

to the melt volume (see Figure 3.23). This causes both the trench and the melt volume 

to increase in size as well as affecting the solidification rate of the melt (see Section 

3.4.5). Hence, trenching appears to be a two stage process.  

Although not measured, the angle „‟ of the stable trench wall is likely to be 

closely associated with a powder characteristic known as the angle of repose. The 

repose angle „‟ (see Figure 3.22d) is the angle made between the slanted surface of a 

powder pile and the horizontal plane, and is  a measure frequently used to quantify the 

flowability of a powder (German, 1998). Since flowability is governed by particle size, 

the angle of repose and therefore the size of the trench, is affected by powder particle 
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size. The experimental results are in line with this assumption, where reductions in the 

size of the denude area are especially noticeable when irradiating the -38 powder batch 

(see Figure 3.7). Furthermore, because the angle of the trench wall is presumably 

constant for a particular power batch, the trench will therefore increase in size as the 

melt volume, or more specifically the melt depth, increases. Again, based on visual 

interpretations,  the experimental results agree with this assumption.  

 

 

 

 

 

 

 

 

Figure 3.21: Trench formation during SLS. 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: Stages of powder collapse and trench formation during SLS. 
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3.1.4.2 Melt Pool Irregularities  

During melting a large melt bobble was often found securely attached to the melt 

tracks at the point of first melting. Figure 3.23 shows a typical example of a series of 

solidified tracks lifted from their powder bed, placed on their side and photographed. In 

the figure, at high scan speeds (and low laser powers) the bobble is clearly visible. As 

the speed reduces (or the laser power increases) the bobble clear increases in size and 

exhibits a change in shape from spherical to more elliptical. At very low scan speeds 

(approx. < 5mm/s) the bobble is often followed by a downwards shift of the melt front, 

before a final period of horizontal growth. This causes the remainder of the melt volume 

to be situated significantly below the powder surface. It is also worth noting that at very 

low scan speeds (1mm/s) the underside of the melt is often distorted by a large number 

of sintered bonded particles. Schematic diagrams given  in Figures 3.24-3.26 show the 

„bobble‟ effect  and ensuing  melt growth more clearly as scanning conditions and 

powder particle sizes change. The figures emphasise that in all cases the melt bobble 

sticks up above the powder surface, that the magnitude of  the downwards shifting melt 

front is higher in the 75/38 powder batch, that the cross sectional area of the melt 

remains fairly constant throughout (excluding bobble) and that the size of the bobble 

reduces with reducing powder particle size.  

 

 

 

 

 

 

 

 

 

Figure 3.23: Melt pool irregularities during air melting. 

 

75/38 powder batch (77W)

1 2 3 4 5 6 7 8 9 10

Scan speed (mm/s)

x

z



Chapter 3: Results of Single Track Melt Tests Using Different Environmental  
                  Conditions, Scanning Conditions and Powders  148 

When the laser first hits the powder layer, a melt pool will be created which, due 

to surface tension forces, will take up the shape of a sphere. This will be followed 

almost immediately by the formation of a trench as outlined in Section 3.1.1.1. Due to 

the large amount of displaced powder falling into the melt (from all sides), the sphere 

will quickly freeze and remain intact (see Figure 3.27). As the laser scans the powder 

surface the subsequent melt is much smaller in volume because of fewer displaced 

particles (from the side and front only). Furthermore, as the beam scans the powder 

surface it is highly feasible that the beam will be irradiating powder particles located 

within the trench rather that at the powder bed surface. This might explain the 

downwards shift of the melt front, although it does not explain why this shift recedes 

after a short period of melt front growth.  

 

 

 

 

 

 

 

 

 

 

Figure 3.24: Bobble formation in melt tracks produced using the 300/150 and 150/75 
powder batches. 
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Figure 3.25: Bobble formation in melt tracks produced using the 75/38 powder 
batch. 

 

 

 

 

 

 

 

 

Figure 3.26: Bobble formation in melt tracks produced using the -38 powder batch. 

 

 

 

 

 

 

Figure 3.27: Bobble formation in melt tracks. 
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3.1.5 Microscopy studies 

The single tracks described in Section 3.4.1 were removed, where possible, from 

their powder beds and sectioned in a direction normal to the direction of scan. The 

samples were then prepared for inspection by mounting, polishing and etching as 

outlined in the procedures given in Chapter 2, Section 2.5.6. 

In Section 3.3, it was shown that the microstructure of the starting powder was 

predominantly equiaxed dendritic. As the laser scans the surface of the powder  (low 

power) the particles will heat up (still in the solid phase) and the microstructure will 

coarsen a little bit. The speed of heating and cooling is so rapid that solid phase bonding 

through atom migration will not occur and the powder particles can still be considered 

singular. As the laser power is increased further, the temperature of the particles 

increases and liquid action begins to occur. This can occur over a wide range of 

scanning conditions as outlines in the process maps in Figures 3.9 – 3.12. 

From a  powder consolidation point of view, the existence of the liquid phase 

occurs at the outer shell of the particles forming necks between neighbouring particles 

(see Figure 3.28). From a microstructural point of view, the presence of some liquid 

action will start to cause regions between the dendrites to become liquid. As the power 

increases further and the temperature is raised, more and more liquid becomes available. 

Because mass transfer is much faster in a liquid the coarsening rate increases 

dramatically. Therefore, the dendritic skeleton that was once present will coarsen and 

spheradise. With further heating, remelting and coarsening continues until the 

temperature of the melt, Tm, gets sufficiently high above the liquidus temperature, TL, 

such that the melt becomes fully liquid. TL is approximately 1350C for stainless steel 

314s HC.  

If partial remelting is only achieved before the laser power is removed (Tm<TL), 

such as conditions depicted by the partial melting region of the 75/38 or -38 process 

maps (see Figures 3.11 and 3.12),  then the solid phase will begin to re-grow from solid 

fragments that are present in the melt, since these are ideal nucleation points. If there is 

full remelting (Tm>TL), such as in the continuous melting regime, then no sites are 

available to nucleate the solid from within the melt pool. Instead, and ignoring the 

possibility of nucleation from impurities, the crystals that form are nucleated by the 
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particles attached to the underside of the melt volume. This will be referred to as the 

powder-liquid interface in this thesis. These particles originate from the underlying and 

surrounding powder layer and attach either through association or through entrapment 

as powder particles collapse into the melt from the walls of the surrounding trench (see 

Section 3.4.4).  

This type of crystal growth is known as epitaxial. Hence each crystal in the melt 

pool is forming initially as a continuation of one of the dendritic grains in the original 

powder particle. This is clearly shown in the micrographs given in Figures 3.29-3.31. 

Hence, the results of this work are in agreement with earlier work by Smugeresky et al.,  

(1997)  (see Chapter 1, Section 1.8).  

As the solid phase grows back into the liquid the temperature is sufficiently low to 

drive growth but not sufficiently low to cause further nucleation. Therefore, fully liquid 

nucleated particles at the bottom grow up, liquid closest to the laser beam (top of the 

melt track) never gets cold enough to have any other nucleation and so the crystals will 

re-grow unhindered all the way out creating a cellular or columnar structure i.e. growing 

in one direction and panning out in a direction opposite to the heat flux. This structure is 

often seen in cast or welded alloys. Once again, Figures 3.29 and 3.30 clearly 

demonstrates epitaxial growth of the cellular structure from the equiaxed dendritic 

crystals located at the interface between the two growth regimes.  

The size of the dendritic grains within the melt pool are strongly dependant on the 

grain size of the initial powder particle, hence grain refinement could theoretically be 

achieved by careful selection of particle size, since particle size dictates particle grain 

size (see Section 3.3). The effects of particle grain size on the growth of the cellular 

structure is however less clear. Since the cellular structure grows epitaxially from the 

dendritic microstructure, the results do suggest a link. However, because the dendritic 

structure coarsens as it progresses up through the melt, the differences clearly observed 

at the particle-liquid boundary were found to be less distinguishable at the 

dendritic/cellular interface. 

This interface between the equiaxed dendritic zone and the columnar zone is very 

distinct i.e. not highly diffusive, and this is a good indication of very little convective 

stirring occurring within the melt pool. Furthermore, it is likely that the boundary 



Chapter 3: Results of Single Track Melt Tests Using Different Environmental  
                  Conditions, Scanning Conditions and Powders  152 
between the two zones shows the position at which the melt volume reached the 

liquidus temperature of the material, TL. In the majority of cases this boundary was 

close to the bottom of the melt pool. It followed closely the contours of the melt and 

covered an area up to 180 about the vertical centre line of the melt. However, the 

boundary was found to move up marginally through the melt as the laser power density 

reduced (see 3.32). Hence, at the highest values of energy density the elevated 

temperature of the melt caused cellular crystals to grow directly from nucleation sites at 

the powder-liquid interface (see Figure 3.31). Interestingly, this structure was also 

found to occur at very low power densities in the 300/150, 150/75 and 75/38 powder 

batches, suggesting that perhaps nucleation is primarily initiated by displaced powder 

from trenching rather than underlying particles. In Section 3.4.4.1, is was discussed that 

trenching was less severe when the melt volume was small.  

It was thought that the above statement might perhaps be strengthen by observing 

the structure of  melt pools produced using the -38 powder batch since trenching was 

less severe when melting this powder. However, a far greater number of particles were 

found attached to the melt volume when processing this powder, and so these must of 

acted as effective nucleation sites, since the interface between equiaxed dendritic and 

the columnar microstructure was marginally higher (by approximately 10%) up the melt 

volume (see Figure 3.32).  

Finally, ignoring the small changes discussed above, in general powder particle 

size appeared to have little bearing on the location of the dendritic/cellular interface. 
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Figure 3.28: Particle necking and consolidation (images a,c,e) and microstructure 
coarsening (images b,d,f) during melting of the 75/38 powder batch in air. The 
laser power was fixed at 50W and the scan speed changed from (a/b) 35mm/s, 
(c/d)  30mm/s and (e/f) 25mm/s. 
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Figure 3.29: Microstructure of melt tracks scanned at low power densities (typically 
110W at 4mm/s) 
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Figure 3.30: Microstructure of melt tracks scanned at medium power densities 
(typically 125W at 1mm/s). 
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Figure 3.31: Microstructure of melt tracks scanned at high and very low power 
densities (typically 189W at 1mm/s). 

 

 

 

 

 

 

 

 

Figure 3.32: Percentage of columnar growth in melt tracks produced using the 
300/150, 150/75 and 75/38 powder batches as scanning conditions change. 
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Selective Laser Sintering of Single Tracks Scanned in an Argon 

Atmosphere 

The purpose of carrying out single track melting tests within an argon based 

atmosphere was to primarily observe and establish the effects of scanning conditions on 

melt behaviour patterns from within a controlled environment. The information gained 

from these experiments was then compared with results from experiments carried out 

within a non-controlled environment i.e. under oxidising conditions (see Section 3.4). 

These comparisons are discussed in Chapter 5 of this thesis. 

The second objective of this study was the investigation of scanning strategies to 

produce good quality single tracks which yield good quality single and multiple layers. 

Good quality in the first instance, refers to a continuous uniform melt bead. Good 

quality, in the case of single layers, refers to a smooth uniform surface with minimal 

porosity, and in the case of multiple layers, a good interfacial weld or bond between 

layers. It will also become clear in Chapter 4, that melt pool aspect ratio has some 

additional importance on these quality characteristics. The results of the single and 

multiple layer tests are given in Chapter 4 of this thesis. 

3.1.6 Qualitative Observations  

Figures 3.33 – 3.36 show pictures of typical melt tracks produced by scanning a 

series of unidirectional traverses of the laser beam in an argon atmosphere. In the 

figures, there are a number of tracks scanned at 0.2mm/s and 0.8mm/s. These scan 

speeds are not given as experimental data points in Chapter 2: Experimental Methods. 

The reason for this is due to an unexpected phenomenon occurring in the melt pools at 

low scan speeds (see Section 3.5.2). This phenomenon, which affected the melt depth, 

required further investigation and so these extra data points have be included. 

All four powder batches are represented in the figures. Once again, due to the 

complexity of characterising all of the discrete changes observed in the powder during 

exposure a number of changes of a qualitative classification have been chosen to be 

representative of each powders total heating and melting response. Due to a great 

number of similarities in melting behaviour between air and argon processing some of 

the classifications have already been described in detail elsewhere in this thesis. 
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Therefore, to minimise repetition, suitable cross-references will be given in the text 

where appropriate. The classifications are listed below. 

Powder heating but no marking (See Section 3.4.1): Scanning conditions over 

which this regime occurs during argon processing are generally limited to very low 

values of energy density (J/mm). An accurate summation of the extent of this regime 

over the scanning conditions covered in this work can be seen in the process maps of 

Figures 3.37 – 3.40. 

Partial Melting (Liquid Phase Sintering): A focussed, moving Gaussian beam 

impingent on the surface of the powder layer has sufficient intensity to only causes 

melting of those particles located within a finite depth of the powder bed. The melt front 

will locally penetrate surrounding porosity and solidify, causing neighbouring particles 

to bond together in a manner similar to conventional liquid phase sintering (German, 

1998). Because the penetrating melt front is short lived, the width of the tracks are often 

comparable in size to the laser spot diameter.  Furthermore, because the viscosity of the 

track is high (melt volume + solid particles) the track is always greater in width than 

depth. Due to the protective argon atmosphere there are no visible signs of oxidation on 

the surface of the track or in the surrounding area influenced by a heat affected zone. 

Examples of this regime can be seen in Figure 3.33 at a laser power of 32W and scan 

speeds greater than 5mm/s. 

Full Particle Melting (See Section 3.4.1): The behaviour of fully melted tracks 

produced within an argon atmosphere follow closely the behaviour of melt tracks 

produced within an oxidising atmosphere. There are however, some notable differences 

which will be discussed in the following text. Firstly, a continuous melt pool is not 

necessarily always cylindrical in shape. Due to surface tension driven fluid flows (see 

Chapter 1, Section 1.4.1) and increased melt viscosity due to the increase in sinter 

bonded particles on the underside of the melt, the melt track can assume a form where 

its width is very much greater than its depth. This is discussed in greater detail in 

Section 3.5.3. Secondly, all visible signs of oxidation are now largely diminished 

leaving the melt with a silver-metallic finish and all surrounding powder looking and 

behaving no differently to virgin powder. Thirdly, the highly visible „bobble‟ frequently 

recorded at the start of tracks produced within an oxidising atmosphere rarely occurs in 
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tracks produced within an argon atmosphere. Finally, when comparing the extent of 

powder collapse between the two sets of results, it has become clear that trenching is 

not only dependant on powder properties, but it appears to be also dependant on melt 

aspect ratio. Therefore, when tracks exhibit a low aspect ratio (depth/width), 

irrespective of scanning conditions, the amount of collapsing powder reduces. This has 

been discussed in detail previously in Section 3.4.3.2. As the laser spot travels over the 

surface of the powder layer, again three different types of melt pool growth are 

observed (see Section 3.4.1 for a more in depth explanation): 

Growth Type I (Melting with Balling): Typical examples of melting within this 

regime can be seen in Figure 3.35 at a laser power of 143W and a scan speed of 10mm/s 

and in Figure 3.36 at a laser power of 170W and scan speeds in the range of 30mm/s – 

50mm/s. 

Growth Type II (Melting with Breakages or Fragmentation): Typical examples of 

melting within this regime can be seen in Figure 3.34 at a laser power of 170W and a 

scan speed of 2mm/s and 5mm/s and in Figure 3.35 at a laser power of 110W and scan 

speeds in the range of 5mm/s – 10mm/s. 

Growth Type III (Continuous Melting): Typical examples of melting within this 

regime can be seen in Figure 3.33 at a laser power of 110W and scan speeds in the 

range of 0.2mm/s – 10mm/s and in Figure 3.34 at a laser power of 70W and scan speeds 

in the range of 0.2mm/s – 10mm/s. 
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Figure 3.33: Tracks melted in an argon atmosphere using -300+150m powder batch 
at different scanning conditions 
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Figure 3.34: Tracks melted in an argon atmosphere using -150+75m powder batch 
at different scanning conditions 
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Figure 3.35: Tracks melted in an argon atmosphere using -75+38m powder batch at 
different scanning conditions 
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Figure 3.36: Tracks melted in an argon atmosphere using -38m powder batch at 
different scanning conditions. 
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3.1.7 Process Maps 

Process maps plotting the heating and melting response of the powders have been 

constructed to help increase the understanding of melt front progression as laser powers, 

scan speeds and particle size distributions change.  

The  maps, given in Figures 3.37 to 3.40, have again similar regions or regimes. 

Each regime is based on the qualitative classifications presented in Section 3.5.1. They 

are in most part well defined, often very predictable, and the powder heating but no 

marking and partial melting regimes are closely associated. Once full melting is 

achieved, the association between powder batches becomes less obvious. These 

differences will be discussed throughout this section. The nodal array displayed on each 

map indicates the number and value of experimental points used in the construction of 

the maps and the coloured nodes located along region boundaries help communicate 

boundary accuracy by indicating the degree of regime crossover.  

In all four maps a diagonal boundary line a-a separates the regimes of powder 

heating but no marking below from the regime of partial melting (liquid phase sintering) 

above. The boundary is linear, suggesting  that a critical value of energy density must be 

reached before the powder will melt under the incident radiation. The values range 

between 0.17J/mm and 0.5J/mm and increase with increasing powder particle size. 

A boundary line b-b separates the partial melting regime to the right from a 

melting with breakages regime to the left. One significant difference observed between 

air and argon atmospheres is the break up kinetics of the melt. Section 3.4.2 

demonstrates that an unstable melt pool within an air atmosphere will initially fragment 

creating a series of shortened, capsule shaped melt pools. As the scan speed increases, 

the melt pool capsules will quickly shorten and increase in number until finally, the 

irradiated area contains a number of equi-sized spheres. This occurs over a very small 

scan speed increase, typically 5mm/s-10mm/s. On the other hand, an unstable melt pool 

created within an argon atmosphere will also fragment, but will remain fragmented over 

a greater scan speed range. As the speed increases, the length of the melt capsules was 

found to reduce while their number was found to increase. 

In the 300/150 and 150/75 powder batches, balling was found not to occur at all 

for scan speeds up to 50mm/s. In the 75/38 powder batch, balling was observed only at 
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high scan speeds, but since the melt volume was very small, processing conditions were 

difficult to define. Therefore, the melting with balling regime for this powder batch can 

only be approximated on the process map by an area to the left of the boundary line X-

Y. For the -38 powder batch melt pool balling was more wide spread and therefore 

easier to distinguish. The regime was generally limited to laser powers above 90W and 

scan speeds greater than 10mm/s and was not to dissimilar to the process conditions 

depicted in the same process map for air melting.    

A line c-c separates the fragmented melt pool regime to the right from a 

continuous melting regime to the left. For the 300/150 powder batch, the continuous 

melting regime covers a similar process window to that of air melting, hence the regime 

is still limited to a maximum scan speed of 10.0mm/s – 12.0mm/s before fragmentation 

commences. For the 150/75 powder batch the process window increases marginally 

along the scan speed axis, reaching a maximum value of approximately 15mm/s. 

However, this maximum value was found to peak around 100W, before reducing and 

falling back to 8.0mm/s-10.0mm/s at high laser powers. Within this regime there was 

also an isolated pocket where fragmentation took place. This occurred at laser powers 

above 150W and scan speeds below 5mm/s, where the behaviour of the melt was often 

unpredictable (see Figure 3.38). In the 75/38 and -38 powder batches the continuous 

melting regime was much reduced. Above 100W continuous melting could only be 

achieved at scan speeds below 2.0mm.s – 3.0mm/s. Below 100W continuous melting 

could be achieved at speeds up to 10mm/s in the 75/38 powder batch and up to 5.0mm/s 

in the -38 powder batch. However, in these two powders the melt volume was often 

extremely rough and not very uniform, especially at high laser powers (see Figures 3.35 

and 3.37). Furthermore, melt pools produced in the -38 powder batch had a number of 

slots or keyholes forming along the centre line of the melt track.  

In almost all cases the continuous melt pool was close to cylindrical in shape and 

so once again a denude area surrounding the melt pool could be observed. The dashed 

line in all four process maps indicates the range of scanning conditions over which a 

significant collapse of powder takes place. Again denude areas can be observed around 

fragmented and balled melt pools but since the melt volume is often much smaller, 

denude areas are also very small and difficult to distinguish. Powder collapse and 

trenching will be discussed in greater detail in Section 3.5.4. Finally, at low scans 
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speeds a region existed in the continuous melting regime where the melt pools had a 

low aspect ratio (depth/width). This and other observations concerning melt pool form 

will be discussed in greater detail in Sections 3.5.3. 

The main differences between the four process maps was the shape and 

arrangement of the boundary line c-c which separates the fragmented melt pool regime 

and the continuous melting regime and the amount of melt pool balling that takes place. 

The change in position of the boundary line c-c did cause the continuous melting regime 

to reduce in area as the powder particle size reduced, but the shape of the boundary 

proved difficult to predict. This is discussed in greater detail in Chapter 5.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



Chapter 3: Results of Single Track Melt Tests Using Different Environmental  
                  Conditions, Scanning Conditions and Powders  167 

 

 

Figure 3.37: Process map for the 300/150 powder batch processed within a argon 
atmosphere. 
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Figure 3.38: Process map for the 150/75 powder batch processed within a argon 
atmosphere. 
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Figure 3.39: Process map for the 75/38 powder batch processed within a argon 
atmosphere. 
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Figure 3.40: Process map for the 75/38 powder batch processed within a argon 
atmosphere. 
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3.1.8 Characteristics of the Melt Pool  

3.1.8.1 Melt Pool Form 

The pictures of melt tracks in Figures 3.33 – 3.36 and the process maps displayed 

in Figures  3.37 – 3.40 show that melt tracks produced within an argon atmosphere are 

highly variable in both form and surface quality and that these attributes change 

considerable with scan speed, laser power and powder batch. When considering the 

effects of the powder particle size, the 300/150 and 150/75 powder batches were the 

most closely associated. At laser powers below 50W and scans up to 5mm/s-6mm/s the 

melt tracks were continuous, highly repeatable, had a uniform width and depth along 

their entire length and had a low melt aspect ratio (see Section 3.5.3.2). The 

repeatability of results can be studied by looking at the experimental results tabulated in 

Appendix D. A theoretical and mathematical approach to the study of the various 

boundaries between the melting regimes is presented and discussed in Chapter 5. The 

section centres on visual interpretations of the melt volume while in the continuous 

state. 

 Between 50W and 100W the continuous melting regime increased over the scan 

speed range reaching values of 8mm/s in the 300/150 powder batch and 15mm/s in the 

150/75 powder batch. In this region the melt tracks were again continuous, showed 

good repeatability between experimental results and were uniform in both width and 

depth. However, there was a distinct boundary emerging throughout this region that, 

once crossed, the melt tracks changed from being flat with a low melt aspect ratio to 

cylindrical with a high melt aspect ratio. The positions of this boundary through the 

continuous melting regime was dependant on both power and speed at low laser powers 

(<125W) (see Figures 3.37 and 3.38). Above 125W, the low melt aspect ratio region 

reduced dramatically and was only found to occur at a scan speed of 0.5mm/s. 

Additional experimental testing (see Section 3.5.1), showed that this low melt aspect 

ratio also occurred at 0.2mm/s and 0.8mm/s, although the latter was less frequent. 

As the scan speed increased above 1.0mm/s the melt aspect ratio was again 

circular in cross section, remained continuous to the c-c boundary and was found to 

improve in both uniformity and repeatability as scan speeds increased. Above 140W, 

and excluding tracks produced at 0.2mm/s and to some extent 0.5mm/s, the solidified 
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melt pool, though still continuous, became extremely irregular in shape and had 

extremely poor repeatability. This is clearly shown in Figures 3.33 and 3.34 where the 

melt tracks at high powers have a far rougher surface quality and fluctuate considerably 

in width and depth along their length. However, melt tracks produced at 0.2mm/s were 

much more predictable and maintained a more uniform shape up to higher laser powers 

(<160W). 

Melt tracks produced from the 75/38 and -38 powder batches were generally 

extremely irregular in shape and therefore the dimension, uniformity and behaviour of 

the melt pool was extremely difficult to predict. This perhaps explains the more 

irregular shape of the c-c boundary and the greatly reduced continuous melting regime, 

all of which are clearly visible on the process maps in Figure 3.39 and 3.40. At laser 

powers below 50W the majority of solidified melt tracks created within the continuous 

melting regime had a low melt aspect ratio. These tracks were also highly repeatable 

and uniform in width and depth along their entire length. The position of the flat track 

regime boundary followed a similar line to the boundaries on the 300/150 and 150/75 

process maps. However, above 50W, the tracks, though predominantly larger in width, 

were highly irregular in shape and their melt behaviour was extremely unpredictable. 

Furthermore, melt tracks produced using the -38 powder batch exhibited a key-hole 

phenomena occurring along their centre line, this was especially noticeable at low scan 

speeds (0.2mm/s and 0.8m/s) suggesting that the powder is being over melted. 

In the majority of cases the solidified melt tracks had a large number of loosely 

bonded particles attached to their underside. This had a marginal effect on causing 

fluctuations in melt depth (see Section 3.5.3.2) but had no significant effect over melt 

irregularity; this was predominantly affected by melt pool behaviour and powder 

displacement (see Section 3.5.4). There was also no significant increase in the number 

of particles attached to the melt pool as the laser power increased, although the opposite 

was true for increases in scan speed, where numbers were found to reduce.  

Finally, the melt tracks produced in an argon atmosphere were largely more 

irregular than tracks produced within an air atmosphere. Furthermore, these 

irregularities were consistent throughout the length of the track and so there were  no 

isolated regions of irregularity i.e. no melt pool bobble at the start of the scan. There 
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was also no significant out of plane movements of the melt pool. (plane of reference 

being the powder surface). 

3.1.8.2 Width and Depth Changes 

The single tracks described in Section 3.5.1 were removed, where possible, from 

their powder beds and their dimensions (width, depth and length) were measured and an 

average value was recorded. The width and depth of each track was measured to asses 

changes in melt pool shape (aspect ratio) and size as scanning conditions and powder 

particle size distribution change. The track length was also obtained in conjunction with 

track mass to enable mass per unit length data to be calculated and evaluated. These 

latter results are described in Section 3.5.3.3. 

The equipment used to obtain the dimensional data is described in Chapter 2, 

Section 2.3.5 and data accumulated during measurement can be seen in Appendix D. 

Before each measurement was taken each track was lightly brushed to remove any loose 

debris i.e. excess powder and loosely bonded particles, to enable accurate measurement 

of the core re-solidified melt volume.  

As outlined previously in Section 3.4.1 and discussed in greater detail in Section 

3.4.5, the collapse of powder into the melt causes the melt pool width to grow and 

become very much greater than the beam width (beam width = 1.1mm). For this reason, 

melt tracks produced using the 300/150, and 150/75 powder batches reached maximum 

width values of 4.5mm. This upper value was found to reduce steadily with decreasing 

scan speed and/or decreasing laser power (see Figures 3.41 and 3.42). At the very 

lowest values of energy density for each power increment the minimum melt pool width 

generally ranged between 1.0 and 1.5mm and this was found to remain fairly static at 

the c-c regime boundary, suggesting an emerging relationship between melt width and 

melt pool fragmentation (this will be discussed in greater detail in Chapter 5). However, 

there appears to be obvious correlation between melt width and its value as a trigger for 

melt aspect ratio changes. 

The effects of speed and power on track width for the 75/38 and -38 powder 

batches are given in Figures 3.43 and 3.44. Again the changes in width with changes in 

speed and power follow a similar trend to that observed in the other two powder 

batches, although there are some minor differences. Firstly, the maximum  
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Figure 3.41: Melt pool dimensions as a function of scan speed and laser powder. 
Results for the 300/150 powder batch are shown. 
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Figure 3.42: Melt pool dimensions as a function of scan speed and laser powder. 
Results for the 150/75 powder batch are shown. 
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Figure 3.43: Melt pool dimensions as a function of scan speed and laser powder. 
Results for the 75/38 powder batch are shown. 
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Figure 3.44: Melt pool dimensions as a function of scan speed and laser powder. 
Results for the -38 powder batch are shown. 
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Finally, there were no significant differences in melt pool width across the 
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The effect of scan speed and laser power on melt pool depth is also shown in 

Figures 3.41 to 3.44. From the figures it is clear that changes in both power and speed 

have a different affect on melt depth than they do on melt width. This is certainly 

evident in the 300/150, 150/75 and 75/38 powder batches. At high scan speeds 

(>4mm/s) and for laser powers up to 100W the melt depth remains fairly static for each 

power increment and typically ranges between 0.5mm and 2mm; the range is greatest in 

the 150/75 powder batch and generally takes a little longer to settle as the power is 

reduced. As scan speeds reduce below 4mm/s the melt depth begins to rise steadily, 

reaching maximum values in the range of 3.5mm to 4mm; a phenomena particularly 

noticeable at higher laser powers (>120W). However, in the 300/150 and 150/75 

powder batches there is a sudden reduction in melt depth as the speeds falls below 

1mm/s. This decline is also noticeable in the 75/38 powder batch but only at higher 

laser powers. This sudden change in melt depth ties in with the boundary line d-d on the 

process maps i.e. the point at which the melt volume changes from a cylindrical to a flat 

cross section. Hence this change appears to be governed by depth changes and not by 

changes in width. 

Depth changes of solidified melt pools produced using the -38 powder batch show 

a general depreciating with increasing power or decreasing speed (see Figure 3.44). 

However, due to the extreme irregularity of the solidified melt track and the greater 

number of sinter bonded particles to the underside, these changes are difficult to record 

accurately; this is accentuated by the large fluctuations in the results in Figure 3.44. 

The ratio, depth/width, known here as the melt aspect ratio, has been calculated 

for all melt tracks and the relationship as a function of scan speed has been plotted and 

given in Figure 3.45. Figure 3.46 shows image manipulation of melt cross sections and 

Figures 3.47 – 3.50 shows the changes in melt cross section as power and scan speeds 

change. The width (b) and depth (d) dimensions are marked on the figure adjacent to the 

relevant cross section together with the values of the scanning parameters.  

For the 300/150 and 150/75 powder batches the melt aspect ratio typically falls 

between 0.4 and 1.0, with average values reaching 0.68 and 0.67 respectively. 

Generally, the aspect ratio increased with increasing scan speed, although at very high 

laser powers (>140W) the aspect ratio reached values close to 1.0 in the 1mm/s to  
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Figure 3.45: Melt pool aspect ratio as a function of scan speed for the 300/150, 
150/75, 75/38 and -38 powder batches. 

 

 

 

 

 

 

 

Figure 3.46: Track cross sections: before and after image processing. 
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Figure 3.47: Images showing melt track aspect ratio. All tracks were removed from 
powder beds containing the 150/75 powder size distribution.  
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Figure 3.48: Images showing melt track aspect ratio. All tracks were removed from 
powder beds containing the 150/75 powder size distribution. 
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Figure 3.49: Images showing melt track aspect ratio. All tracks were removed from 
powder beds containing the 150/75 powder size distribution. 
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Figure 3.50: Images showing melt track aspect ratio. All tracks were removed from 
powder beds containing the 150/75 powder size distribution. 
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4mm/s scan speed range. The effects of changes in laser power on melt aspect ratio is 

less clear. The results clearly show an overall size increase in the melt volume as the 

power increases, but the change in melt aspect ratio appears fairly static for each scan 

speed increment.  

For the 75/38 powder batch the change in melt aspect ratio typically falls between 

0.3 and 0.8, with an average value of 0.51. However, there are a large number of 

fluctuations in the results, making it extremely difficult to gauge the relationships 

between changes in melt aspect ratio and changes in power and speed.  

For the -38 powder batch the average value of melt aspect ratio was calculated to 

be 0.53. However, two distinct groups of results were emerging. For values of laser 

power up to and including 89W, the melt aspect ratio was found to steadily reduce with 

increasing scan speed with all values falling below the average value line. For laser 

powers above and including 110W, the melt aspect ratio was found to increases with 

increasing laser power with all values falling above the average value line.  

Also shown on Figure 3.45 are two curves; (1) a curve representing the path taken 

of the c-c melt fragmentation boundary and (2) a curve which passes through the 

minimum points of all the d/b versus scan speed curves. In the figure it can be seen that 

both curves follow each other reasonably closely, are both reasonably horizontal in the 

300/150 and 150/75 powder batches, showing  that the melt aspect ratio lies within a 

small range (0.5 -0.7 for the 300/150 and 0.5 – 0.6 for the 150/75 powder batch) when 

the transition boundary between continuous melting and melting with fragmentation is 

reached. If an average of all results is calculated (see Figure 3.17), then the melt aspect 

ratio is seen to reduce with reducing powder particle size.  

When comparing the shape of the melt aspect ratio in Figures 3.47 – 3.50, one can 

clearly see a third melt cross section shape emerging. The shape can best be described 

as bell shaped, a shape with a smooth and almost circular form except for two regions in 

the low left and right edges which protrude out in a horizontal manner away from the 

melt. microscopy studies in Section 3.5.5 reveal that these region contain a great 

number of prior particle contacts, furthermore, these particles are clearly seen within the 

melt volume. It is interesting to note at this point, that melt tracks of this shape are often 

associated with very rough and irregular melt tracks. Suggesting perhaps that these 



Chapter 3: Results of Single Track Melt Tests Using Different Environmental  
                  Conditions, Scanning Conditions and Powders  185 
entrapped particles, through powder displacements, are increasing the viscosity of the 

melt and therefore not allowing the melt to assume a more regular form. This 

observation has also been observed in the other three powder batches. This argument is 

further strengthen when considered the -38 powder batch, whose cross sectional 

microstructures reveal a greater number of prior particle contacts (see Section 3.5.5). 

Figure 3.51, again shows the changes in melt aspect ratio observed in the 150/75 

powder batch. However, the images have now been superimposed onto the 150/75 

process map. The figure clearly shows the increase in melt depth, and therefore overall 

melt volume, as scan speeds increase and cross the d-d boundary. The experimental 

results suggests that the absorptivity of the laser is changing at this point. A discussion 

and theoretical analysis of behaviours at this boundary is discussed in detail in Chapter 

5. Finally, it is also interesting to note that within the power range 100W to 143W and 

scan speed range 2mm/s to 4mm/s i.e. cylindrical track regime, the aspect ratio of the 

melt reduces marginally, causing the melt to change from near circular to oval. At 

higher scan speeds the melt reverts back to a more circular aspect ratio. This perhaps 

suggests that fluid flow phenomena is indeed acting within the melt volume and causing 

these changes. However, such phenomena is usually associated with changes in soluble 

oxygen. It is difficult to visualise where such changes might be occurring (see Chapter 

1, Section 1.4). 
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Figure 3.51: Images showing melt track aspect ratio superimposed onto the 150/75 
process map. 

 

3.1.8.3 Mass Changes 

As well as measuring melt pool dimensions, tracks removed from the powder beds 

were also weighed and plots of track mass per unit length (grams/mm) as a function of 

laser energy density (J/mm) were created. These plots can be seen in Figure 3.52. Most 

of the results again fall within one region bounded by two straight line slopes labelled 

High Speed (HS = >4mm/s) and Low Speed (LS = 0.5mm/s). Data points that lie 

outside of these zone are generally associated with very high laser powers. These graphs 

will be discussed further in Chapter 5. 
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Figure 3.52: Melt pool mass per unit length plotted as a function of laser energy 
density. LS represents the Low Speed slope (0.5mm/s) and HS represents the 
High speed slope (>4mm/s). 
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3.1.9 Powder Trenching and Melt Pool Irregularities 

Very few isolated melt pool irregularities were found to occur in melt pools 

created within an argon atmosphere. Those that do, have already been discussed in 

Sections 3.5.31 and 3.5.3.2. Conversely, melt pool trenching is again wide spread 

during argon processing and occurs predominantly around melt pools with a circular 

cross section. The reasons for this are given in Section 3.4.4. As well as creating a 

denude area around the periphery of the melt volume, it has also been observed that  

powder entrapment caused by displaced powder from the trench walls is likely to be 

increasing melt viscosity and could perhaps be linked to a more irregular melt volume 

thought reduced surface tension trigger fluid flows.   

3.1.10 Microscopy Studies 

The single tracks described in Section 3.4.1 were removed, where possible, from 

their powder beds and sectioned in a direction normal to the direction of scan. The 

samples were then prepared for inspection by mounting, polishing and etching as 

outlined in the procedures given in Chapter 2, Section 2.5.6. 

In Section 3.45, it was discussed that the microstructure of melt tracks produced 

within an air atmosphere are both dendritic at locations farthest from the  laser heat 

source and columnar in regions closest to the laser heat source. Hence a boundary is 

clearly visible running from left to right through melt track cross sections. This 

observation is also apparent in melt pools created with an argon atmosphere. Especially 

when the melt pools are cylindrical in shape. Therefore, the discussion given in Section 

3.45 is also relevant here. 

When the melt has a low aspect ratio, the melt volume is predominantly fully 

dendritic (see Figure 3.53). Grain coarsening also occurs but this is only within a finite 

layer in the upper region of the melt volume i.e. at a point closest to the beam, 

suggesting a vast number of nucleation sites within the melt. However, melt pools with 

a low aspect ratio are often created at very high values of incident energy density i.e. 

very low scan speeds. It would therefore stand to reason that the microstructure  could 

be expected as being fully columnar, due to the high heat input. Because this is clearly 

not the case, these results strengthen the discussion in  3.5.3.2 that a drop in absorbed 
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energy density maybe occurring across the boundary between flat and cylindrical tracks. 

Reasons for this change are still not clear. However, a number of theories have been 

generated and are discussed in Chapter 5.  

The microstructure of „bell‟ shape tracks (see Section 3.5.3.2) have also been 

examined and an overview of the observations are given in Figure 3.54. In figure 3.54, 

it is clear that the microstructure exists as a combination of the microstructures observed 

in both cylindrical and flat melt pools. The core melt volume is both equiaxed dendritic 

and cellular and the boundary between them, which runs from left to right, moves up 

through the melt as the absorbed energy density increases. Within the catchment area in 

the lower corners of the melt volume there is clearly a number of prior particle contacts. 

The original particle shape is easily distinguishable and there is clearly no evidence of 

full particle melting within these regions, though there is some evidence of a melt phase 

forming between the particles. The presence of these particle catchment regions causes 

the liquidus boundary to be much higher up the melt, proving that a greater number of 

nucleation sizes are occurring in the lower region of the melt volume. Hence, one again 

strengthen the theory that bell shape melt pools have an increased melt viscosity.  
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Figure 3.53: Typical examples of microstructure found in melt pools that exhibit a 
low melt aspect ratio.  
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Figure 3.54: An overview of typical microstructures found in melt pools that exhibit 
a „bell‟ shaped cross section i.e. 110W to 143W at 4mm/s to 5mm/s in the 
150/75 powder batch. 

 

Selective Laser Sintering of Single Tracks Scanned in an Argon 

Percolated Atmosphere 

Percolating argon gas through the powder bed as outlined in Chapter 2, Section 

2.5.2 resulted in virtually no differences in melt pool behaviour, dimensional and mass 

changes and solidification microstructure. There was some evidence of reduced melt 

pool irregularities at higher laser powers, and some improvements in the repeatability of 

melt pools created as scan speeds of 0.8mm/s. However, these differences are only 

small and therefore the results do not warrant a more detailed explanation in this thesis.   
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CHAPTER FOUR 

4 SINGLE AND MULTIPLE LAYER CONSTRUCTION 

4.1 Introduction 

This chapter discusses the observational results from the experimental work on 

single and multiple layer construction. Preliminary studies highlighted that 

understanding the interactions between the laser and the powder bed, the behaviour of 

the melt pool and its dimensional variations as laser power and scan speed change 

allows for process refinement, leading to improvements in the quality of melted layers 

and multiple layers. Therefore, much of the work presented in this chapter is an 

extension of the work in Chapter 3,  examining the similarities and distinctions between 

rastered and unrastered melt pools. The focus then shifted onto methods to improve 

layer surface quality and density. Layer dimensional accuracy was not investigated in 

this work. 

The powder selected for this investigation was the 150/75 powder batch. This was 

the powder batch of choice due to its heightened performance during single track 

scanning: including increased surface quality, form and reduced irregularity over a wide 

range of scanning conditions. Experiments were performed on a loose powder bed of 

arbitrary depth, 7mm. The scanning conditions used in the experimental works have, in 

part, been reported previously in Chapter 2, Section 2.5.1. However, the laser power and 

scan speed range was not confirmed until all single track experiments were complete. 

This decision allowed for a balanced account of the melting behaviour of single layers, 

allowing direct comparisons to be made between tracks, layers and multiple layers. The 

chosen experimental values are given throughout this chapter. 

The operation of the two spreading mechanisms detailed in Chapter 2, Section 

2.3.1.3 will also be discussed in this chapter.  Their functionality will be assessed and 

their strong influence governing the choice of layer thickness and overall build strategy 



Chapter 4: Single and Multiple Layer Construction  193 
 

will be reported. The design, testing and manufacture of each mechanism was the focus 

of a parallel research project.  

A number of experimental tests were also conducted to assess the importance of 

scan strategy, in particular scan length, in controlling layer warping and solidification 

cracking. These results will be discussed along with the implications of irradiating room 

temperature (cold) powder layers.  

4.2 Single Layer Build Strategy 

4.2.1 Layer Distortions and Methods of Reduction 

The distortion and warping of layers and the occurrence of solidification tearing 

between neighbouring tacks increases dramatically with increasing scan length (see 

Figure 4.1).  Apart from affecting the integrity of the layer,  the distortions also hinder 

the free movement of the powder spreading and deposition mechanism, causing the 

layer to move during deposition (see Section 4.5). 

The distortions are a consequence of the local thermal history as the layer is built 

(Carter et al., 1993). The cyclic heating, caused by the rastering melt front, creates a 

temperature gradient across neighbouring tracks. Consequently, the neighbouring tracks 

cool at different rates causing differential solidification and shrinkage. The differential 

shrinkage causes residual stresses which are relieved by shape change in the form of 

distortions and tearing. Hence, as the scan spacing reduces, residual stresses increase 

causing an increase in layer distortions; this is in agreement with the experimental 

observations.  

Carter et al., (1993) also suggested that the temperature gradient between the 

upper and lower surfaces of individual melt tracks were also responsible for layer 

distortions. However, this is likely to also lead to distortions in single tracks, but this 

was not observed in the experimental works described in Chapter 3.  
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Figure 4.1: Layer distortions and solidification tearing in (a) a layer with a scan 
length of 80mm, (b) a layer with a scan length of 50mm and (c) a layer with a 
longer progression length of 60mm. All layers were produced with a scan 
spacing ratio, sb, of 0.5, a laser power of 77W and a scan speed of 5mm/s. The 
atmosphere was argon. 
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The movement of the rastering melt front across the powder surface causes two 

types of distortion, in-plane distortions and out-of-plane distortions (see Figure 4.1a/b). 

The in-plane distortions occur within the plane of the powder bed, causing the tracks to 

bend in a direction opposing the direction of the rastering melt front. They occur in the 

first 10 – 20 scanned tracks only (the number increased with increasing scan length) and 

the magnitude of the distortion in the preceding tracks gradually increased as more 

tracks were created. Solidification tearing was also very severe at this stage of the 

developing layer (see Figure 4.1a). The majority of the tearing occurred around the 

edges of the layer, where temperature gradients between neighbouring tracks are lower, 

suggesting that tearing was perhaps a consequence of layer distortions and not a direct 

consequence of temperature differences.  

After the first 10 to 20 tracks, the in-plane distortions diminished (see Figure 4.1 

c). However, they were followed by out-of-plane distortions which became very severe 

at longer scan lengths (>70mm), causing the layer to bulge up from the powder surface 

by several mm. Their severity often caused the in-plane distorted tracks at the beginning 

of the layer to lift away from the powder surface. Shortening the scan length to ~40mm 

prevented all out-of-plane  distortions when the scan spacing (in mm) was 75% of the 

beam diameter. This reduced to ~20mm when the scan spacing was 25%. On the other 

hand, the in-plane distortions diminished at scan lengths shorter than ~30mm, a value 

which had less dependence on scan spacing. 

The effect of the progression length (or layer length) on layer distortion was also 

investigated (see Figure 4.2). It was found that an increasing layer length had only a 

marginal effect on increasing the magnitude of the out-of-plane distortion. The 

magnitude of the in-plane distortions was not affected and did not re-occur further down 

the layer, suggesting that the magnitude of all distortions peaked in the early stages of 

layer growth. Solidification tearing was however found to occur repeatedly throughout 

the progression length of a long layer, even when the scan length was short, and 

particularly when the scan spacing was 75% of the beam diameter. 
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Figure 4.2: Layers produced with a short scan length and a long progression length. 

 

 

Deeper layers, caused by increased energy density, were also found to resist layer 

distortions due to their increased efficiency to resist bending; though tearing was still 

noticeable at a larger scan spacing. The effect was difficult to illustrate using layers 

produced within the argon atmosphere because the melt track dimensions were less 

respondent to changes in energy density (this will be discussed in greater detail in 

Section 4.4). However, melt tracks produced within the air atmosphere were often much 

larger, particularly in depth (see Figure 4.3). The outcome was the occurrence of in-

plane distortions only, again in the first part of layer growth, and receding in the first 5-

10 scanned tracks. In this region solidification tearing still persisted. However, 

shortening the scan length  to ~45mm stopped all distortions, a value again having less 

dependence on scan spacing. 
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Figure 4.3: Distortions in layers created within an air atmosphere. 

 

There are several established methods available to reduce layer distortions 

including pre-heating the powder to reduce thermal gradients, bonding the layer to an 

underlying substrate to physically anchor the layer and careful planning of scanning 

conditions i.e. high energy densities. Observations from results presented here also 

show that limiting the scan length, and to some extent the progression length, also 

alleviates thermal distortions and solidification tearing. It is this latter solution that has 

been adopted in this work. This approach, however, limits the size of the layers that can 

be produced; further investigations revealed a distortion free layer only occurs if its 

dimensions are no greater than 15mm x 15mm. An example is given in Figure 4.4. 
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scanning conditions covered in this work; an unlikely outcome if scan condition 

planning was chosen as a method to alleviate distortions.  

From another practical view point, pre-heat temperatures required to reduce 

thermal gradients for metal powder processing need to approach half the melting 

temperature of the material to have any significant affect (Benda, 1994). Such a high 

temperature would be very difficult to achieve and would require specialist equipment 

to generate and retain the heat safely. Also, bonding layers to an underlying substrate 

was found unreliable because the laser energy density was insufficient to promote a 

sufficient fusion bond between the melt and the underlying solid substrate. This is 

discussed in detail in Section 4.5. 

 

Figure 4.4: Layers with a short scan length, created within a argon atmosphere.  
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4.3 Single Layer Air Atmosphere Results 

Constructing good quality layers within an air atmosphere proved almost 

impossible due to frequent balling and/or over melting causing deep globular layers. 

Figures 4.5 - 4.7 show three maps, each displaying the 150/75 single track process map 

for air which has been updated to include information on single layer melting behaviour 

for a scan spacing of 25%, 50% and 75% of the beam diameter respectively (or scan 

spacing ratio, sb, of 0.25, 0.5 and 0.75). The nodal array displayed on each map shows 

the number and frequency of the experimental conditions. Included on the maps are a 

number of superimposed regions, defined by thick boundary lines, which indicate the 

power and speed combinations over which several different heating and melting 

behaviours were observed. In the Figures, the qualitative regions are supported visually 

by  several single layer images. Furthermore, a selected number of these images also 

display a cross sectional image of the melted layer taken in a direction perpendicular to 

the direction of the rastering melt front. Five regions (or behaviours) were recognised:  

1. Temper Colorations without bonding;          

2. Temper colorations with bonding; 

3. Significant melting with balling;                                    

4. Uncontrolled melting; and 

5. Continuous melting. 

When comparing the single track boundary lines with the superimposed single 

layer boundary lines, there are clearly some significant differences. Firstly, due to repeat 

heating during the raster scanning procedure, layers produced at conditions which fall in 

the temper colorations but no melting regime of single tracks were found to be loosely 

bonded, particularly when irradiating the powder at power and speed combinations 

which fall in region 2 on the process maps. This, depending on the type of consolidation 

taking place (see following text), might suggest that little cooling takes place between 

consecutive passes of the laser spot, allowing individual particles to reach higher 

temperatures. However, it might also suggest that the individual particles are simply 

maintaining elevated temperatures for longer periods of time. These two possible 

temperature-time history changes allow for one of two different consolidation routes 
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(German, 1998). The first route might be by solid state sintering, triggered by the 

increased period at elevated temperature, causing necks to form between particles by 

atom migration; a route which is thought not to occur during single track production. 

The second route might be by liquid phase sintering where the potentially higher 

temperatures are triggering some „early‟ liquid action, where early is defined here as 

first significant melting at energy densities lower that those recorded during single track 

production. Neither route was examined in detail because it was deemed unnecessary 

for the purposes of this work. However, is important to note that the bond strength 

between the neighbouring particles was only just sufficient to facilitate careful layer 

removal from the powder bed. 
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Figure 4.5: 150/75 single track process map showing superimposed regions of 
differing single layer melting behaviour. The map has been produced using a 
scan spacing ratio, sb, of 0.25. 
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Figure 4.6: 150/75 single track process map showing superimposed regions of 
differing single layer melting behaviour. The map has been produced using a 
scan spacing ratio, sb, of 0.5. 
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Figure 4.7: 150/75 single track process map showing superimposed regions of 
differing single layer melting behaviour. The map has been produced using a 
scan spacing ratio, sb, of 0.75. 
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As the number of repeat scans increases, from, sb = 0.75 to sb = 0.25, the surface 

oxide layer darkens and particle bonding increases marginally, causing a downwards 

shift of the b‟-b‟ boundary.  

The boundary line c‟-c‟ which separates the temper colorations region to the left 

with the significant melting with balling region to the right, follows a similar path to the 

boundary line, b-b which separates similar behaviours during single track production. 

This suggests that repeat scanning, up to a maximum of 4 times per exposed area, (sb 

=0.25), has little affect on the temperature change of the molten powder causing only a 

marginal change in the power-speed combinations at which melting with balling can 

first occur. The reason for such a small change, which only occurs at high power and 

speed combinations and larger scan spacing ratios, is likely to be associated with 

reductions in incident energy  caused by increased reflectivity of the laser radiation 

when melting powder local to a solidified melt volume. This argument is perhaps 

strengthened when considering that the shift in the c‟-c‟ boundary is greater at larger 

scan spacing‟s.  

At laser powers below 100W, the melting with balling region of single layers was 

found to extend into lower power-speed combinations where single tracks were found to 

remain continuous. This was particularly apparent at scan spacing ratios, sb, of 0.25 and 

0.5. At these conditions, and in the majority of cases, only the first scanned line of the 

layer remained continuous; as predicted by the underlying single track process map (see 

Figures 4.5 and 4.6). However, all subsequent rastered tracks balled. This phenomenon 

is likely to be caused by poor wetting properties of the chromium rich oxide slag, which 

as the experimental results suggest, becomes more significant as the scan spacing ratio 

reduces.  

The boundary line e‟-e‟ which separates the melting with balling region to the 

right with the continuous melting region to the left defines a region where low scan 

speeds allow for  the rastering melt front to maintain a continuous melt pool (region 5). 

At a scan spacing ratio, sb, of 0.75, this region extends over a large power range where 

the boundary follows an identical path to the boundary line d-d which separates similar 

melt pool behaviours during single track production (see Figure 4.7). At a scan spacing 

ration, sb, of 0.5, a continuous rastering melt front again occurs but over a much smaller 
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power range; bounded by the melting with balling region at powers lower than 90W and 

the over melted layer region at laser powers greater than ~125W. Again this region 

terminates at scan speeds which fall along the d-d boundary, suggesting that a larger 

scan spacing (>50% of the beam diameter) allows tracks within the layer to behave in a 

manner similar to single tracks. The melt pool size between the two scanning conditions 

is also comparable. 

The boundary line d‟-d‟ which separates the melting with balling region to the 

right with the uncontrolled melting region to the left defines a region where high laser 

power and low scan speed combinations cause layers to become over melted, forming 

large globular layers. Interestingly, the distinctiveness of individual tracks within the 

layers are now lost. Instead, layers contain a number of melt globules which appear to 

have a random orientation. Observations during the experimental works suggest that the 

forming melt globules, which are likely to exist due to the presence of the oxide slag, 

appear to move around, increase in size and continually changing orientation (or 

perhaps simply changing shape) as the laser heat source passes back and forth over 

them.   

One factor contributing to the cause of these over melted layers might be realised 

if a scan spacing, as a percentage of single track width (st) is considered instead of as a 

percentage of beam diameter. If for example we have a laser power of 152W and a scan 

speed of 2.0mm/s, the resultant single track width is 2.92mm (Appendix D, Table D11). 

Using results from Figure 4.2 in this example, the scan spacing, s, is 0.55mm (1.1 x 

0.5). Hence, the beam will need to pass back and forth over five times before it clears 

the first melt tack (2.92/0.55). 

Figure 4.8 reproduces the maps shown previously in Figures 4.6 and 4.7, but 

instead shows single layer images produced using a scan spacing relative to the melt 

track width of 50% and 75%. This change eliminates large globular layers at higher 

energy densities. However, it does not change the speed and power range over which 

tracks remain continuous.  

Tables 4.1 to 4.3 tabulate calculated values of the scan spacing ratio, st, for a 

number of power-speed combinations which fall in regions 3-5 in Figures 4.6 and 4.7. 

The ratio has been calculated using values of melt track width recorded in Appendix D, 
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Tables D7-D12. The tabulated results suggest (assuming the rastered melt track width is 

the same as the unrastered melt track width) that a scan spacing ratio, st, lower that 

~0.25, will create globular layers.  

Finally, it as also interesting to note that the number of passes of the laser equals 

the number of melt tracks produced when the scan spacing is 50% and 75% of the beam 

diameter. This would at first seem an impossible situation given the size and size 

consistency of the melt tracks. However, closer inspection of the rastering melt front 

reveals powder displacement along the leading edge of the layer (see Figure 4.15). This 

must play a key role in providing the admission of extra powder which is clearly being 

melted on each pass of the laser beam. 
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Figure 4.8: 150/75 single track process maps showing superimposed regions of 
differing single layer melting behaviour. The map has been produced using a 
scan spacing ratio, st, of 0.75 and 0.5. 

 



Chapter 4: Single and Multiple Layer Construction  208 
 

Table 4.1: Values of st =0.25, calculated from b
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Table 4.2: Values of st = 0.5, calculated from b
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Table 4.3: Values of st =0.75 calculated from b
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4.4 Single Layer Argon Atmosphere Results 

This sections details all the single layer build results obtained by melting layers 

within an Argon based atmosphere. The experimental apparatus used in these trials is 

given in Chapter 2, Section 2.3. The scanning conditions ranged from 32W to 162W 

and 0.5mm/s up to 10mm/s. Over this range the behaviour of the melt was fairly 

consistent, though layer density, surface quality and strength was found to vary 

significantly.  

Figures 4.9 to 4.14 show the surface morphology of a mixture of 15mm x 12mm 

and 12mm x12mm  single layers, produced using a scan spacing of 25%, 50% and 75% 

of the beam diameter. A number of different qualitative observations can be seen, 

particularly concerning layer roughness and density. At a scan spacing of 75%, surface 

roughness and inter-run porosity was high, leading to fragile layers, particularly at low 

laser powers (see Figure 4.9). The high surface roughness occurred due to the 

cylindrical nature of the melt tracks, which were similar in size and dimension to the 

unrastered melt pools (see Figures 3.46 – 3.49, Chapter 3), causing a number of 

undulations running parallel to the rastering direction.  

At low energy densities (32 < P(W) < 89 and 2 < U(mm/s) < 10), the conduction 

limited melt pool was insufficient in width to attain strong fusion bonds between 

neighbouring tracks causing layers to crumble when handled. Layers produced at higher 

energy densities (125 < P(W) < 162 and 1 < U(mm/s) < 2), were significantly stronger, 

but isolated pockets of inter-run porosity was still a significant problem and surface 

undulations still persisted. Within this band of conditions, layers were found to have an 

overall density of approximately 60% of theoretical density; calculated assuming the 

layer has constant width, depth and height as measured about the central axis of the 

layer and assuming a solid density of 7,900 kg/m3. At a scan spacing of 50% and 25%, 

layers produced at low energy densities (32 < P(W) < 89 and 5 < U(mm/s) < 10) were 

still reasonably fragile and exhibited a high inter-run porosity, giving an overall layer 

density of approximately 50%. However, at high energy densities (89 < P(W) < 162 and 

1 < U(mm/s) < 2) inter-run porosity was low giving an approximate layer density in the 

region of 70% to 80%; the high density occurring at the smaller scan spacing. The 

surface morphology was also much flatter, even thought the conditions were still in the 

cylindrical track regime (see Figures  3.46 – 3.49, Chapter 3). The first track within the  
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Figure 4.9: Single layers produced at low power, with a 75% scan spacing as a 
percentage of beam diameter. 

 

Figure 4.10: Single layers produced at high power, with a 75% scan spacing as a 
percentage of beam diameter. 
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Figure 4.11: Single layers produced at low power, with a 50% scan spacing as a 
percentage of beam diameter. 

 

 

Figure 4.12: Single layers produced at high power, with a 50% scan spacing as a 
percentage of beam diameter. 
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Figure 4.13: Single layers produced at low power, with a 25% scan spacing as a 
percentage of beam diameter. 

 

 

Figure 4.14: Single layers produced at high power, with a 75% scan spacing as a 
percentage of beam diameter. 
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Figure 4.15: Powder displacement during single layer scanning. 

  

layer (as shown in Figure 4.12; 143W at 2mm/s) was often cylindrical, but subsequent 

ones were much flatter. There are two possible explanations for this. The presence of 

pre-existing tracks may suppress the rounding behaviour of the melt pool by affecting 

heat transfer into and through the localised powder bed. Or the admission of additional 

powder, through trench formation, is much less for subsequent tracks (see Figure 4.15).  

Adjusting the laser power and scan speed to create a flat track at the start of the 

layer i.e. using speeds of 0.5mm/s (see Figures 3.46 – 3.49, Chapter 3), could reduced 

the size imbalance between the first and all subsequent tracks, improving the overall 

layer morphology.  
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Figure 4.16: Layer delamination caused by oversized melt tracks at the start of each 
new layer. 

 

From a practical point of view, the presence of a large first track dictated the 

minimum layer thickness of powder that could be deposited during multiple layer 

scanning. Hence, when trying to bond layers together it was often found that a good 

fusion bond could only be achieved at the interface between first scanned lines, causing 

the layer to delaminate. The delaminating layer would often be hinged about the first 

scanned line of the current and previous layer as shown in Figure 4.16. The figure 

shows a three layer build with the final (third) layer detached from the previous two. 

Finally, at very high energy densities (>143W at 1mm/s) the melt volume was too 

large for the size of the layer being created, making it difficult to judge and compare the 

outcome accurately. 
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4.5 Multiple Layer Equipment and Build Strategy  

4.5.1 Powder Spreading, Deposition and Layer Displacement 

The two spreading mechanisms used in this study included a counter-rotating 

roller and a simple wiper blade. The design and operation of both is discussed in greater 

detail in Chapter 2, Section 2.3.1.3. Both mechanisms were moved by hand across the 

build zone by a push rod that passed through the process chamber wall. A gearing 

mechanism caused the roller to counter rotate as it was pushed. The wiper blade 

consisted of a metal plate with a rubber lined working edge. Each mechanism was 

returned back across the build zone after each deposition and spreading action (home 

position). If this cycle was not completed the push rod would block the path of the laser 

beam. A hopper, situated above the spreading mechanism when in the home position, 

deposited a predetermined heap of powder in front of it which could then be spread and 

levelled across the build area.  

The counter rotating roller mechanism was constructed and used first because it 

was loosely based on the successful mechanism currently employed in the DTM Sinter 

StationTM (DTM Corporation, 1996). However, the design of the Leeds system proved 

to have a significant flaw. The gearing mechanism used to rotate the roller was situated 

close to both the powder bed surface and the deposition zone of the powder hopper. 

Hence, the gearing mechanism often became coated in a layer of powder which 

prevented the smooth running of the roller, causing frequent seizures.  

The irregular and jerky motion of the roller caused ridges to form in the spread 

powder surface. These ridges appeared to have no significant affect on the behaviour of 

large melt volumes, but when scanning the surface at conditions approaching the 

fragmented melt pool regime (see Figures 3.37 – 3.40), i.e. when the melt pool was 

close to becoming unstable,  breaks did occur as the melt front passed over the ridges. 

Furthermore, the ridges were also found mirrored on the surface of irradiated layers 

when processed at conditions which fall within the partial melting regime of the process 

maps. 

Of greater concern however, was the interactions between the roller and the 

melted layer as it traversed the build area. These interactions displaced and rotated the 
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melted layers in the bed and were at first thought to be linked to the erratic motion of 

the traversing roller (see Figure 4.16). Therefore, the roller was replaced with the less 

complex and more smoother running wiper blade system. However, the problems were 

found to still persist.  

 In Chapter 1, Section 1.7.2, it was discussed that friction between the powder heap 

and the underlying melted layer caused the shearing and displacement of layers as the 

powder passed over the build area. However, reducing the weight of the powder shot by 

reducing the surplus once again proved unsuccessful, suggesting perhaps that 

protuberances on the melted layer surface were the cause of the interactions. With this 

in mind, further investigations revealed that an increase in layer thickness (>0.65mm) 

proved successful at limiting, but not completely reducing, layer displacements.  A layer 

thickness below 0.65mm would cause layer displacement and values below 0.4mm 

would often cause layers to rotate and skew (see Figure 4.16).   

In  4.16a, the degree of displacement can be gauged by comparing the differences 

in surface roughness between the two facing sides. Furthermore, the displacements were 

found to occur in two directions, each corresponding to the direction of movement of 

the wiper blade as it deposited and spread the powder in one direction  then returned to 

the home position in the opposite direction. It should also be made clear that the first 

layer of the build, which appears to be displaced in a direction perpendicular to the 

direction of spreading, is due to an error in the scanning procedure.  
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Figure 4.17: (a) Misalignment and (b) rotation and skew of melted layers processed 
within deep powder beds. The shape should be that of a pyramid. 

 

4.5.2 Build Strategy 

 The minimum layer thickness of 0.65mm imposed by the deposition and spreading 

mechanism (see Section 4.5.1) was found to be too large when trying to obtain a strong 

interfacial bond between layers. This was apparent even at very high energy densities, 

where weak interfacial bonds caused adjacent layers to delaminate. A number of 

attempts were made to alleviate layer displacement by bonding or anchoring the first 

layer of a build to an underlying substrate. It was anticipated that such a route would 

allow any melt protuberances that would otherwise interact with the passing wiper blade 

to be broken off, allowing the melted layer to remain in its intended position 

The first attempt involved the bonding of the first layer of a build to a room 

temperature mild steel or stainless steel solid plate positioned at depths of 0.2mm, 

0.4mm, 0.6mm and 0.8mm below the powder surface. However, this technique caused 
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the melt volume to ball with no or very little adhesion to the substrate. Attempts to 

increase the temperature of the substrate by approx 100C-150C as a method to reduce 

the thermal load and temperature gradient across the interface, were made but the 

method was found to be to impractical and not particularly successful The limited 

success can probably be linked to the relatively small temperature increase of the 

substrate, which was restricted to 150C by the rubber seals located within the piston 

assembly of the process chamber. 

A second attempt involved the bonding of the first layer to a wire mesh which 

itself was pinned to a mild steel substrate located under the powder surface. The mesh 

consisted of 0.5mm gauge steel wire with a 3mm grid spacing. This method proved 

more successful with reasonable attachment being made at the interface between the 

melt pool and the wire, preventing layer misalignment during powder spreading and 

deposition. However, the melted surface layer was often very rough, following the 

undulations of the wire mesh; the melting of several layers was needed before the layer 

overcame this initial disturbance.  

A third approach was to bond the first layer of a build to a series of dress maker 

pins situated within the powder layer (see Figure 4.17). The method proved successful 

and appeared to impose no adverse affects on layer melting behaviour. Therefore, this 

was the „anchoring‟ method of choice for multiple layer experiments reported in the 

following Section. Proving trials conducted to investigate the  depth requirement of the 

pins relative to the powder layer surface, including depths ranging from 0 to 1.5mm, 

suggested there was no height requirement, providing the pins were situated 

comfortably within the melt depth of the layer. 

Finally, the pins had low stiffness and were free to move vertically in their 

supports to allow easy removal of the melted layers after solidification. Hence the pins 

were ineffective as a method to prevent layer distortions. Furthermore, a minimum layer 

thickness of 0.4mm was still necessary because layers still had a tendency to move 

around at lower values, though less frequently. 
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Figure 4.18: Layer building using supporting pins 

 

4.6 Multiple Layer Results 

 Producing multiple layers, using equipment and methods described in Chapter 2, 

Section 2.5.1.2 and Sections 4.4 and  4.5 of this Chapter, proved to be very difficult, 

primarily due to limited time being available to fully evaluate the powder spreading and 

deposition equipment. With the current set-up, a minimum powder layer thickness of 

0.4mm, imposed by the equipment, still proved to be too large, preventing strong fusion 

bonds being attained between layers, whilst also trying to maintaining a controlled melt 

front. Figure 4.19 shows a near best attempt at producing a multiple layer block. The 

cross-section view of the block shows that all layers are still easily distinguishable, 

suggesting little interlayer remelting. The density of the block was approximately 55% 

when compared to a theoretical density of 7900Kg/m3. However, it is clear from figure 

4.19 that the majority of the porosity is present between layers and between melt tracks, 

the tracks themselves are close to full density. 
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Figure 4.19: Multiple layer block consisting of 18 layers. 
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CHAPTER FIVE 

5 DISCUSSION AND CONCLUSIONS 

5.1 Introduction 

 The aim of the work presented in this thesis was to develop current understanding 
of the sintering and melting behaviour of metal powders during SLS. The distinguishing 
aspect being the melting of tracks and layers in absence of an underlying substrate. To 
achieve this end, results and observations of melting behaviour, mainly of single tracks, 
but also of single and multiple layers were successfully reported for both air and argon 
atmospheres, though multiple layer experiments were limited by the partial success of 
the powder deposition and spreading equipment. The powder used in this study was an 
argon atomised austenitic stainless steel of type 314s HC. It was supplied in four 
batches, each differentiated by particle size distribution; -300+150m, -150+75m, -
75+38m and -38m (referred to in this work as 300/150, 150/75, 75/38 and -38).  

 After a discussion on preliminary studies, this chapter will summarise the air and 
argon atmosphere results for single tracks presented in Chapter 3. The focus being on 
the changing characteristics of the melt pool (mass, volume, aspect ratio, stability) as 
the laser power and scan speed change. Mathematical models are also introduced to 
obtain estimates of laser absorptivity based on experimental mass per unit length data 
and to support discussions by developing theories on melt track break up. This will be 
followed by a summary of single layer and multi-layer construction, including the 
development of powder spreading and deposition equipment. The effects of melt 
behaviour on features such as density and surface quality will be compared and the 
changing behaviour of the melt pool during raster scanning will be discussed. This 
section will also discuss aspects of the work that would have significant implications 
when considering technology scale up. The chapter will close with conclusions and a 
final section on future work considerations. 
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5.2 Preliminary Studies 

 Mixing of powders for 7.5, 15, 30, 45 and 60 minutes, as outlined in Chapter 3, 
Section 3.2, changed the packing density of the deposited powder layer and the density 
variation between samples tested. The packing density of the 300/150, 150/75 and 75/38 
powder batches peaked after a 15 minute mixing period, reaching values of 62%, 62% 
and 60% respectively. Mixing of the -38 powder batch had no improvement over its 
unmixed density of 58%.  

In Chapter 1, Section 1.7.1 it was suggested that the packing density of the loose 

powder layer often affected the final density of the irradiated or consolidated powder. 

Because of the closeness of the powder density values recorded in this work this 

association proved impossible to evaluate. However, a number of qualitative 

observations may be relevant here. Firstly, once full melting takes place, there is a 

substantial movement of powder, relative to the size of the melt volume,  so the packing 

behaviour and density of powder local to the progressing melt front would differ to that 

of the starting powder. Furthermore, once full melting was taking place, the majority of 

tracks were considered fully dense, other than clusters of loosely bonded particles 

within the catchment area of the collapsing powder, suggesting perhaps that density and 

melt formation would be strongly influenced by powder flowability. Investigations in 

this work of melting behaviour of the -38 powder batch  showed that this powder 

behaved very differently to the other powders, though it is inconclusive whether the 

reduced flowability or the small particle size was the determining factor.  

5.3 Single Track Experiments 

5.3.1 Track Cross-Section Observations 

 Within the continuous melting regime track cross-sections were either flattened, 
rounded or bell shaped. In an argon atmosphere all three cross-sections were observed. 
Flat tracks formed predominantly at low power (<100W), and/or low scan speed 
(<1.0mm/s) and more frequently in the 300/150 and 150/75 powder batches, bell shaped 
tracks formed at high speed (>4mm/s) and rounded tracks occurred in the transition 
region between the other two. In an air atmosphere only rounded track cross-sections 
were observed. The formation of a surface oxide slag in the air atmosphere is strongly 
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thought to be the cause of the differences in melt behaviour between the two 
atmospheres. 

 Figure 3.51, Chapter 3 shows track cross-sections in argon for the 150/75 powder 
superimposed onto its process map. The boundary between the flattened and rounded 
tracks is indicated by the solid line. As the boundary is crossed a noticeable increase in 
track cross-section area with increasing speed is observed. This increase is associated 
with the sudden increase in melt depth and was unexpected, assuming a  constant rate of 
power absorption as the energy density reduces. Interestingly, the melt width, as 
perhaps expected, reduced steadily with increasing speed and showed little variation in 
this trend at the boundary between flat and rounded tracks. Because of the large increase 
in melt volume, surface tension driven fluid flows (see Chapter 1, Section 1.4) were 
thought not to be involved with the occurrence of these shape changes. A number of 
qualitative observations leading to possible explanations for this behaviour are relevant 
here.  

 A common observation in the rounded track regime is the admission of extra 
powder into the melt pool (defined by the region bounded by the dashed line in the 
process maps of Chapter 3). Tracks often sink into the powder bed and power from 
either side collapses in, leaving a trench around the track.  The admission of extra 
powder is likely to feed track growth, and maybe a reason for increased melt volume in 
the rounded track regime and of tracks processed within an air atmosphere. 

 At low scan speed and high power (110 < P(W) < 162 and 1.0 < U(mm/s) < 2) the 
collapsing powder is almost fully enveloped leaving track profiles smooth with only a 
few groups of satellite particles visible around the lower fringe (powder side) of the 
solidified track. At low power and high speeds (32 < P(W) < 77 and 5.0 < U(mm/s) < 
10 and 110 < P(W) < 162  and 2.0 < U(mm/s) < 10) the take-up of additional powder 
into the melt volume appears to be lower, leaving large clusters of sintered bonded 
particles around the lower edges of the track, giving rise to 'bell' shaped track cross-
sections. This situation is likely to arise from the time available for tracks to remain 
molten; longer at lower speeds.   

 The one question that remains is what triggers the change from flat to rounded 
tracks. Currently this cannot be answered by observations alone, though one clue might 
be found in the shape of the temperature field surrounding the laser beam. At low scan 
speeds (<0.5mm/s), the temperature field might take on a shape more reminiscent of a 
temperature field around a stationary heat source i.e. a more even heat distribution 
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rather than a higher concentrated behind the beam, perhaps changing the fluid flow 
within the molten pool. This however is only speculative. 

5.3.2 Track Masses per Unit Length 

 Examination of track cross-sections clearly shows an increase of area with 
increasing scan speed at the boundary between flattened and rounded tracks. However, 
due to the variability in track shape, the exact areas will vary along the length of the 
track. To obtain an average measure of track size, tracks were removed from their 
powder beds, weighed and their lengths measured. The results were plotted as mass per 
unit length against energy density for all four powder batches (see Figure 3.52 Chapter 
3). In each case data falls between two limits, an upper and a lower. All data for U 
>4mm/s fall on the upper limit, labelled HS and all data for U=0.5mm/s fall on the 
lower limit, labelled LS. However, at high laser powers (>110W), a large number of 
melt tracks produced between 1.0 < U(mm/s) < 4.0 also fall on this upper limit, 
reemphasising the sudden increase in melt volume observed in the track cross-sections.  

 Powder displacement, being one argument for increased track cross-section, has 
already been addressed in Section 5.3.1. In this section, changes in laser absorptivity are 
also considered. If absorptivity is directly responsible for these changes, then the 
variability in absorptivity during scanning is potential large. Measured track mass per 
unit length, mL, can be used to obtain an alternative estimate of absorptivity, *. 
Equation 5.1 as an equality is an expression for the minimum value of *, based on a 
heat balance. *(P/U) is the absorbed energy per unit track length while mL[Cp(Tm-To) 
+ L] is the energy to melt a unit track length. Where, L, is the latent heat of melting and, 
Cp, is the specific heat which is the average specific heat from ambient bed temperature, 
To, to the metal's melting temperature, Tm. All material property data is collected in 
Table 5.1. 

 

      LTTC UPm* oMpL   (5.1) 

 

 According to equation 5.1, a constant slope mL/(P/U) corresponds to a constant 
effective absorptivity, *. Therefore, obtaining the gradient of the HS and LS slopes 
will allow an estimate for the „effective‟ absorptivity to be calculated; assuming all 
power is available for melting. The HS and LS slope values, for all powder batches 
including those obtained within an air atmosphere, are collected in Table 5.2, in units of 
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gram/J. Table 5.2 also gives values of, *, calculated from the HS and LS slopes. The 
variation of, *, with powder batch is plotted in Figure 5.1. 

 Table 5.2 and Figure 5.1 highlight the significant differences in * as scan speeds 
change. At low speed (0.5mm/s), values fluctuated between 0.1 and 0.33 in argon and 
0.2 and 0.3 in air. At high speed (>4mm/s) values were much higher, fluctuating 
between 0.51 and 0.65 in argon and 0.86 and 0.93 in air. The effects of particle size on 


* is difficult to gauge. The results in Figure 5.1 might suggest an increase in  *  with 
increasing particle size at low scan speed and perhaps a reduction in  *   with increasing 
particle size at high speed, thought these observations are questionable due to the 
seemingly out of place values for the 75/38 powder batch. Nevertheless, of greater 
interest is the enormity of the *  values, particularly at high speed, suggesting that 
values of absorptivity for a CO2 laser into a metal powder bed are far higher than 
previously thought (See Chapter 1, Section 1.7.3). Discussions on this matter will 
continue in Section 5.3.4. 

Table 5.1: Material property data used in calculations throughout this chapter. 
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Table 5.2: LS and HS boundary gradients and * values calculated from mass/length 
vs. P/U figures in Chapter 3. 

 

 

Figure 5.1: Variation of laser effective absorptivity, *, with powder particle size. 

 

5.3.3 Process Maps 

 In the absence of an underlying substrate, tracks formed within an argon 
atmosphere as either a continuous melt with either a flattened, rounded or bell shape 
cross-section (see Section 5.3.1), a fragmented or balled melt or as a partially melted 
track with a flattened cross-section. An generalisation of these behaviours is given in 
Figure 5.2. The 150/75 process map is used in this example.  
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 Track type observations were recorded for lasers powers up to 200W and scan 
speeds ranging from 0.5mm/s to 50mm/s. The results were plotted on maps as regimes, 
one for each powder batch, that allow accurate prediction of track type as power and 
speed combinations change (see Figures 3.37 - 3.40, Chapter 3). A noticeable 
observation between the maps is the difference in boundary position between regimes as 
powder particle size changes.  The most notable being the increase in the fragmented or 
balled melt regime as particle size distribution reduced. This caused a notable reduction 
in the scan speed range, from a maximum of 12mm/s in the 300/150 to >5mm/s in the -
38 powder batch,  over which a continuous melt pool could be maintain. 

 Process maps plotting changes in track type for an air atmosphere over the same 
speed and power range were also created and compared with the argon process maps 
(see Figures 3.09 – 3.12, Chapter 3). Track types, the distribution of track type regimes 
and regime boundary changes between powder batches followed a very similar pattern 
for both sets of maps. The most notable differences were; the absence of a partial 
melting regime, instead the power tended to agglomerate and oxidise; the melt when 
unstable tended to form balls rather than melt fragments; and in the continuous melting 
regime all tracks were rounded, and like the rounded tracks within an argon atmosphere, 
they all sat within a deep powder trench (see Figure 5.2). The melting boundary and 
other boundaries depicting melt instability are discussed in more detail in the following 
sections.  

 

 

Figure 5.2: Generalisation of melting behaviour within an argon atmosphere. 
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5.3.4 Melting Boundary 

The boundary line b-b on the air process maps and the boundary line a-a on the 

argon process maps plots the speed and power relationship over which the irradiated 

powder begins to first form a significant melt volume (observed qualitatively), giving 

rise to flattened liquid phase sintered tracks in argon and the formation of tiny balls, not 

much bigger than perhaps several agglomerated particles, in air; though some balls were 

laid almost side by side. However, tracks similar to those in argon i.e. liquid phase 

sintered, were also categorised in the -38 powder batch when processed in air. This 

region was triggered at much lower J/mm (a-a boundary) than the balling region 

discussed for the other three powders (b-b boundary). Since a melt volume is strongly 

believed to be required for bonding in this process, the point of first significant melting 

is deemed to occur at the a-a boundary in the -38 powder.   

In each case the relationship was linear, or for the case of the 300/150 and 150/75 

powder batches in air, the relationship was judged to be linear after some debate (see 

Chapter 3, Section 3.4.2), giving rise to a constant slope P/U. Values of the P/U slopes 

for all powder batches in both atmospheres are collected in Table 5.3, in units of J/mm. 

From the table it is clear that the energy required to start melting reduces with reducing 

powder particle size, and is much higher for powders processed in air, the difference 

being particularly noticeable in the 75/38 and -38 powder batches. This is perhaps 

surprising since it was discussed in Chapter 1, Section 1.7.3, that surface oxidation often 

increases absorptivity. However, when a melt volume forms within an air atmosphere it 

develops a surface slag. This slag is enriched with chromium giving the melt an often 

shiny appearance, hence forming a potentially very reflective barrier.  

 

Table 5.3: Calculated values of constant energy density along boundary line b-b on the 
air process maps and the boundary line a-a on the argon process map. 
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 Equation 5.2, is another variation of equation 5.1 which is an expression for the value 
of absorptivity, , based on a heat balance. The theory being that at the point of first 

melting the power absorbed extends only to a depth, d, of one particle, forming a melt 
volume of area, bd/4. The width, b, being some fraction of the beam diameter to be 

determined later. Therefore, P/U (J/mm) is the absorbed energy per unit width while 
powderbd/4[Cp(Tm-To) + L] is the energy to melt the powder per unit width. Other 

material properties have been described elsewhere (see Section 5.3.2).  

 

  L  TTCbd
4U

P
omppowder 


  (5.2) 

 

Experimental observations have shown that the width of the melt tracks 

produced at conditions which fall along the b-b boundary in argon and along the a-a 

boundary on the -38 map produced from air melting range between 0.3mm and 0.4mm. 

Table 5.4 gives approximate values of, , derived from P/U values in Table 5.3 and an 

average track width of 0.35. This value was also a good estimate for the size of the 

balled tracks in air. The material property values are collected in Table 5.1. An example 

calculation using data for the 150/75 powder batch processed in argon is given below. 

 

   d1035.0
4

2800001320700x4800
u
P 3 


    (5.3) 

 

Therefore: 

 

d1059.1
u
P 6   (5.4) 

 

If we assume the depth of melting to be equal to the largest particle size in each 

powder batch, we can therefore estimate the value for  as: 
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27.0
9.0

15.059.1



   (5.5) 

  

 Table 5.3 and Figure 5.3 highlight the various  values between powder batches 
and atmospheres. The formation of a slag in air has already been discussed as one 
possible means for low  values calculated from the point of first melting. However, 
these values differ to * values calculated from mass per unit length data of larger melt 
pools, which approached 0.8 in air (see Section  5.3.2). Because the surface slag is 

Table 5.3: Values of  calculated from the a-a and b-b boundaries on the process maps 
in Chapter 3. 

 

 

 

Figure 5.3: Variation of  with powder particle size. Results calculated from slopes 
of melting boundaries a-a in air and b-b in argon. 

present on all melt pools, big or small,  the differences in the results leave initial doubt 
over the function of the slag as a reflector of laser radiation. However, it is also worth 
considering that reflected radiation, from off the melt pool, maybe irradiating additional 
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powder either to the front or side of the progressing melt front. This theory, might also 
explain why rounded tracks are generally larger than flattened tracks, since there is  a 
greater likelihood that any reflected radiation would be contained local to the 
progressing melt front due to the surrounding trench walls. Hence, even though 
reflections are likely to be occurring for most of the time, they perhaps only trigger 
additional melting in rounded tracks that sit within a trench. Since significant trenching 
does not occur around tracks produced along the boundary of first melting,  values, on 
the basis of this theory, would be much lower; as shown in the experimental results. 
This theory is again only speculative and does not explain the cause of the transition 
from flat to rounded tracks within the continuous melting regime. 

 The differences in  absorptivity when creating tracks in air and rounded tracks in 
argon is more difficult to resolve. There are two schools of thought, but each are 
currently lacking a full explanation. Firstly, based on the arguments above, the slag 
maybe reflecting more radiation onto other areas of the powder bed than the metallic 
surface of melt pools produced in argon. However, the net energy available for melting 
would be similar, and so there must have to be some losses during reflection.  Secondly, 
the take-up of displaced powder into the melt is higher when processing in air; a 
plausible suggestion due to the lack of loosely bonded powder around the periphery of 
tracks and the lack of nucleation sites within the melt volume. This situation may arise 
due to the insulating properties of slag‟s, which in this case might act like a thermal 
jacket around the melt pool, slowing the rate of solidification.  

 For the air atmosphere,  values (see Table 5.3) reduced with reducing powder 
particle size except for the value calculated from the -38 powder batch which was much 
higher.  There was however some doubt as to which boundary on the -38 map to use for 
these calculations, a-a or b-b, the a-a boundary was chosen (see discussions at the 
beginning of this section). However, recalculating  for the -38 powder using the b-b 
boundary continues the downwards trend (see Figure 5.3). It is likely that at the a-a 
boundary, which depicts the first point at which a track forms, the size of the melt pool 
has been grossly overestimated. It is likely that only a small melt forms which then 
wicks into surrounding powder. Using equation 5.4 and assuming an  value of 0.043 
(see Figure 5.3), the width of the melt is calculated to be 0.005mm and not 0.35mm as 
used in the initial calculations.  

 Finally, values of  calculated using date obtained from the argon atmosphere 
results appear to remain fairly static with changes in powder batch, though again we see 
a much higher values for the 75/38 powder. This difference was also found in the * 
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calculations, which either suggests something different is occurring when melting this 
powder, or more likely that there may be some experimental error.  

5.3.4.1 Melt Pool Fragmentation and Balling Boundaries 

It is noticeable that the melt front often becomes unstable during scanning leading 

to fragmentation and balling of the melt pool. In Chapter 1, Section 1.5.2.1, it was 

suggested that the melt front would remain stable provided the melt length, L, is less 

than the melt circumference, b, where, b, is the melt width. The critical condition 

being when L/b =  . Since it is difficult to gauge the length of a tracks molten region, a 

model has been developed which aims to derive a relationship between P (W) and U  

(mm/s) and involving the melt pool length, L, which can then be compared to melt 

instability boundaries on the single track process maps.  

 

P  conv

.

cond

.
qq                                                                                           (5.6) 

 

where (see Figure 5.3): 

P    = absorbed incident energy 

cond

.
q heat loss by conduction from the pool surfaces. 

conv

.
q heat loss by the convection of material  through the pool. 

 

There is no heat accumulated term since the melt pool size is constant during a run 

i.e. quassi steady state assumption. A simplified melt pool will also be used in the 

model as shown in Figure  5.3b with a cross section area equal to 4bd , where b and d 

are the width and depth of the melt pool respectively. In this model it is also assumed 

that the beam is stationary and the powder bed, and therefore the melt volume, are 

moving at a speed, u, with respect to the laser beam. Therefore the convective heat 

transfer component is: 
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Power out due to convection   pom CTTU
4
bd




                                     (5.7) 

 

The latent heat of melting is absorbed at the leading edge of the melt pool and 

rejected at the rear, hence it does not enter the heat balance. The conduction component 

is due to the heat loss from the surface when in contact with the surrounding powder  

Figure 5.4:  (a) temperature field and heat balance around a moving heat source and 
(b) a simplified melt pool shape. 

 

bed. The temperature of the surface is at the melting point, Tm. The heat will flow 

according to Fourier‟s 1st law down a thermal gradient of   xTT om  . Where, x, from 

heat diffusion theory, is the distance travelled of the main heat wave in a time, t. Hence 

t4x  , where ppowder CK  and is known as the thermal diffusivity of the 

powder bed. Kpowder is the thermal conductivity of the powder. The time, t, for the heat 

to flow is L/U, hence the approximate thermal gradient around the melt pool will be: 

 

Thermal gradient around melt pool = 

U
L4
TT om




                                            (5.8) 
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Hence according to Fourier‟s 1st law, the conduction loss from the melt pool will 

be: 
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Therefore, substituting for cond

.
q  and conv

.
q in equation 5.6, the heat balance on the 

melt pool is: 
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rearranging gives: 
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Hence, equation 5.11 has the general form (for constant pool length): 

 

2
1

bUaUP                                                                                                 (5.12) 

 

where, a, and b, and constants. Using the 150/75 process map for air, reasons for which 

will be given later, the values of a and b can be derived statistically by reading off 

several power and speed combinations along the melt instability boundary and solving 

versions of equation 5.8 simultaneously. However, on the maps there are in fact two 

instability boundaries, one depicting power and speed combinations which trigger melt 

fragmentation (c-c) and the other depicting power and speed combinations which trigger 
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melt pool balling (d-d), giving rise to a region of instability between them. It is likely 

that the melt fragmentation boundary is the more appropriate here since it indicates the 

first point of melt instability, though for comparative reasons both boundaries will be 

evaluated. The values of P and U acquired from the process map (see Figure 5.4) and 

calculated values of constants, a, and, b, are collected in Table 5.4. Figure 5.4 also 

includes superimposed traces showing the variation of P with U according to equation 

5.12 and the calculated values of, a, and, b, given in Table 5.4.  

In Figure 5.4, it is clear that the theory described above, accumulating in equation 

5.11, appears to not be a too bad a fit with the 150/75 experimental results, particularly 

if the melt fragmentation boundary is used as a comparator. However, further 

examinations with different powder batches and the different atmospheric conditions 

reveal that the model deviates from the experimental results when comparing argon 

atmosphere results and the -38, and to some extent the 75/38, powder batch within an 

air atmosphere. Some qualitative observations may be relevant here. When a powder 

with a large particle size (300/150 and 150/57) is melted within an air atmosphere there 

are very few satellite particles attached to the periphery of the melt track. There is also 

little evidence of  intact particles present within the solidified melt volume (see Figures 

3.29 – 3.31, Chapter 3). This would suggest that the viscosity of the melt is low, further 

suggesting that the melt volume is governed predominantly by capillary forces i.e. 

surface tension forces and wetting constraints. As the particle size reduces, or the air 

atmosphere is changed for argon, a greater number of particles can be observed around 

the periphery of the melt and within the solidified melt volume. This is likely to have a 

significant impact on melt behaviour, thus perhaps explaining why the output from the 

model deviates at these conditions.  
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Table 5.4: Calculated values for constants, a, and, b, using experimental data obtained 
from the 150/75 process maps created using an air atmosphere. 

 

 

 

Figure 5.5: Process map for the 150/75 powder batch processed in air showing the 
calculated boundary when a = 9.65 and b = 14.68.  

 

 Further verification of the model. Using heat loss by convection term in equation 
5.11, which describes the slope of the linear component of the model, a direct 
comparison can be made with the experimental results (see Figure 5.4). 
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values for, b, and, d, have been obtained from the 150/75 constant width contour plot 
given in Figure 3.20, Chapter 3. Assuming the melt to be cylindrical, the values of both 
width and depth, calculated by mathematical interpolation, are 1.1mm at the d-d 
boundary; a value  equal to the beam diameter. Taking reasonable values for all other 
material property data (collected in Table 5.5), and assuming a value for absorptivity, , 
of 0.86 for high speed processing within an air atmosphere  (see Table 5.1) the slope 
dP/dU can be calculated as follows: 
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 The experimental value of dP/dU taken from the slope of the linear section of the 
d-d boundary (see Figure 5.4) has a calculated value of 7.14J/mm, a value again not to 
dissimilar to the predicted value, giving a possible further indication that the theory 
developed in this thesis is not too far adrift.  However, the value of absorptivity is only 
an estimate from mass per unit length calculations. This value is perhaps higher than 
expected (see Chapter 1, Section 1.7.3) and so should be treated with a little caution.  

  

5.4 Multi-layers and Scale Up 

Single layers were created from the 150/75 powder batch, based on 
understanding from the single track experiments. This batch was selected because of 
good dimensional stability and consistency of single tracks produced using it over a 
wide range of scanning conditions, particularly at high energy densities. However, some 
single layer qualitative observations for all powers is relevant here. Preliminary trials 
demonstrated that at low laser energy densities, suitable for partial melting (see Figure 
5.2), all powers performed well, particular those with a smaller particle size fraction  
(75/38 and -38), creating flattened tracks with a high degree of  dimensional consistency 
throughout the length of the track. This consistency transferred through to the single 
layers giving them a very flat and regular surface morphology. However, producing 
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layers at these conditions was not perused passed the preliminary stages because of poor 
interlayer bonding when constructing multi-layer builds (see later).  

The surface morphology of fully melted layers produced from the 150/75 
powder batch were generally flat at a scan spacing of 25% and 50% (percentage of 
beam overlap). At a scan spacing of 75%, the track layer surface morphology became 
undulating, particularly as the energy dropped. If a scan spacing, as a percentage of 
single track width is considered instead of as a percentage of beam diameter, undulating 
layers occurred at values greater than ~50%. At these conditions the melt track cross-
section dimensions and overall melt behaviour was similar to the unrastered melt pool.   

At high laser powers  (>100W), the surface morphology of the layer changed 
slightly at the power and speed condition where single track cross sections changed 
from flattened to rounded. This change occurred only in the first scanned line of every 
layer, where the size of the first track was very much greater than all subsequent 
rastered tracks. This however could be compensated for by modifying the initial scan 
power and speed combinations to produce a flattened track at the start of each layer. 

Multiple layers could only be produced over a limited range of scanning 
conditions, generally at higher energy densities, so that a fusion bond sufficient to 
preserve the integrity of a build during its removal from the powder bed could be 
maintained. The problem was the ineffectiveness of the powder spreading equipment 
which could only deposit a minimum layer thickness of 0.4mm.  This proved to large to 
enable a good fusion bond between layers with a laser spot size of 1.1mm. 

Overall, the behaviour, dimension, form and  regularity of the melt pool 
remained consistent over scan lengths ranging from 15 – 100mm. Issues of size only 
became important during single layer production. Experiments showed that a scan 
length greater than 15mm would cause layer distortions, which generally increased in 
size with increasing scan length. Hence, large scale projects, as intended in the initial 
aims of the LastForm Program, would be impossible without some method in place to 
stop these distortions. However, due to the scale of planned tooling (0.5m and up) 
methods to control distortions would be extremely complex to implicate. Preheating a 
large power mass to a uniform temperature would be difficult. The processing time 
would be increased by several hours and there would also be a lengthy pre-heating stage 
between deposited layers. A more successful route is likely to be the anchoring of the 
first layer of a build to an underlying substrate, either a solid plate or a pin structure (see 
Chapter 4, Section 4.5.2). The problem with this method however, would be the 
anchoring of overhanging features. Either tool shape would have to be modified or 
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perhaps the PIN structure could be modified so that selected pins pushed their way up 
through the powder layer to reach overhanging features. It must also be considered that 
large area layers would have very large residual stresses and so the bonds of the layer to 
a substrate would have to be strong.  

Another consideration would be the design of the powder spreading equipment. 
Spreading and levelling the powder in one operation requires a large heap of powder to 
be moves across the build area. If covering a very large area, a large mass of powder 
would be difficult to spread, and spread evenly.  
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5.5 Conclusions 

In the absence of a constraining solid substrate, continuous fully melted tracks 

within an argon atmosphere form with a flattened section which sit at the power surface, 

a rounded section that sinks into the bed or as broken or balled segments which also 

sink. Behaviour repeatability is also high and so track states can be predicted with good 

accuracy. 

Laser absorptivity changes significantly with scan speed, ranging from 0.1 at 

low speed (0.5mm/s) to 0.7 at high speed (>4mm/s). The change in absorptivity affects 

melt pool size considerably and has some bearing on melt pool aspect ratio. The 

absorptivity between powder batches changes marginally, but are insignificant when 

compared to the changes observed with speed increases.  

Melt pool stability, repeatability and dimensional consistency along the melt 

reduces as powder bed particle size reduces. Powder falling into the melt volume affects 

the temperature history and viscosity of the melt making track balling or fragmentation 

difficult to model. When tracks are made at low energy densities which promote only 

partial melting then powder beds containing smaller particles produce more consistent 

tracks.  

In the absence of a constraining solid substrate, continuous fully melted tracks 

within an air atmosphere form with a rounded cross-section that sink into the powder 

bed. The critical condition for melt instability in air occurred at the point when melt 

pool length divided by the melt pool width equated to 3 (). 

To avoid layer distortions, all layers produced using a room temperature powder 

bed required the scan length to be lower than 15mm. The behaviour of the melt during 

rastering is similar to the unrastered melt pool when the scan spacing (percentage of 

melt track width) exceeds 60%. 

The density of multiple layer components was largely governed by the porosity 

between layers, which was affected by the layer thickness.   
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5.6 Future Work 

A remaining question to be answered is what causes the change from a flattened 

to a rounded track cross-section. Work is required to resolve this issue. Examining 

and/or modelling the temperature profile around the laser beam at different speeds may 

lead to a more informed explanation.  

Further investigations into powder spreading mechanisms are paramount to the 

success of multi-layer builds. Problems arise when trying to spread and level powder in 

one operation by pushing a heap of powder over the build area. A hopper mechanism 

which deposits powder from above while levelling maybe a better option but would 

need extensive investigation.  

The pin structure used to anchor the first layer of a build was proven to work 

well for reducing layer displacements during powder spreading. However, the pins used 

(dress maker pins) were quite flexible and often melted. Improving rigidity and heat 

resisting properties of the pins may also reduce layer distortions at longer  scan lengths.
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Appendix A 

6 Engineering Drawings and Powder Mixing Calculations 

A1 Piston Head Assembly 

 

Figure A1: Assembly diagram for piston head and build cylinder. 
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Figure A2: Perforated stainless steel plates used to sandwich ceramic filter.  
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Figure A3: (1) Piston Head and (2) nylon wiper seal. 
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Figure A4: Piston assembly end cap. 
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 A2 Pin Fixture Array  

7  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A5: Engineering drawing of pin fixture array. 
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A3 Powder Mixer Assembly and Rotational Speed Calculations 

Figure A6: Engineering drawing of a V-cone mixer. 

 

Figure A7: Engineering drawing showing coupling between two V-cone mixers. 

 

40mm
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Chuck end view showing 72 degree rotation
of each v-cone mixer
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130mm

For clarity the second v-cone mixer is drawn at a rotation of 180 with 
respect to the first (the actual rotation required is 72) 
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Calculations 1 (powder volume): 

The volume, V, of a V-cone mixer is: 

 

    3422 m102.8067.0188.0032.0)(r  V   xL  (A1) 

 

at 40% capacity the required powder volume = 41028.3  m3 (approx. 1.6Kg of 
powder)* 

at 25% capacity the required powder volume = 34 m102.05  (approx. 1.0Kg of 
powder)* 

at 20% capacity the required powder volume = 41064.1  m3 (approx. 0.8Kg of 
powder)* 

*Mass calculations were based on the average density of the powder in all batches tested. This was found to be 4750Kg/m3. 

Calculations 2: 

The critical rotational speed of a cylindrical mixer represents a balance 

between centrifugal and gravitational forces. At higher speeds mixing will not occur. 

At the critical rate Nc, the forces will balance. Let, d, be the rotational diameter of 

the mixer and, V, be the rotational velocity.  The centrifugal force on a particle of 

mass, m, at the mixer wall is given as Fc, 

d
Vm2F

2

c         (A2) 

and the gravitational force is given as Fg, 

gFg m  (A3) 

and the velocity of the mixer, V, at the outer wall depends on the rotational 

speed, N, and the rotational diameter, d, such that; 

2
πdN

V C       (A4) 

At the critical condition Fg = Fc giving; 

 













 


4
Nd

d
m2mg

2
C

22

 (A5) 
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or; 









dπ
2gN 2c  (A6)  

Therefore, the rotational speed of the mixer in rpm as a function of mixer 

diameter is;  

d
84N c   (A7) 

German, (1994) suggests that optimal mixing of a powder occurs when the 

mixer is run at approx. 75% of Nc, hence; 

d
63  No   (A8) 

where, No, is the optimal rotational speed (in RPM) and, d, is the diameter of 

the mixer (in meters) in a direction perpendicular to the direction of rotation. 

Assuming the eccentricity of the v-cone mixer assembly in Figures A6 and A7 is 

negligible (which is justified at such low speeds), the rotational speed can be 

calculated as follows; 

145rpm
.188
63No   (A9) 

The closest matching rotational speed of the Harrison lathe is 120rpm. 
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Appendix B 

8 HPGL Source Code 

B1 An example of HPGL code 

 The data is written in columns. 
 

.(;.I81;;17: 

.N;19: 

IN;SC;PU;PU;SP7; 

LT;VS36 

PU; 

SP1; 

PA-1530,1530; 

PD; 

PA1530,1530; 

PU; 

PA1530,1446; 

PD; 

PA-1530,1446; 

PU; 

PU; 

PA-1530,1362; 

PD; 

PA1530,1362; 

PU; 

PU; 

PA1530,1278; 

PD; 

PA-1530,1278; 

PU; 

PU; 

PA-1530,1193; 

PD; 

PA1530,1193; 

PU; 

PU; 

PA1530,1109; 

PD; 

PA-1530,1109; 

PU; 

PU; 

PA-1530,1025; 

PD; 

PA1530,1025; 

PU; 

PU; 

PA1530,941; 

PD; 

PA-1530,941; 

PU; 

PU; 

PA-1530,857; 

PD; 

PA1530,857; 

PU; 

PU; 

PA1530,773; 

PD; 

PA-1530,773; 

PU; 

PU; 

PA-1530,688; 

PD; 

PA1530,688; 

PU; 

PU; 

PA1530,604; 

PD; 

PA-1530,604; 

PU; 

PU; 

PA-1530,520; 

PD; 

PA1530,520; 

PU; 

PU; 

PA1530,436; 

PD; 

PA-1530,436; 

PU; 

PU; 

PA-1530,352; 

PD; 

PA1530,352; 

PU; 

PU; 

PA1530,268; 

PD; 

PA-1530,268; 

PU; 

PU; 

PA-1530,184; 

PD; 

PA1530,184; 

PU; 

PU; 

PA1530,99; 

PD; 

PA-1530,99; 

PU; 

PU; 

PA-1530,15; 

PD; 

PA1530,15; 

PU; 

PU; 

PA1530,-69; 

PD; 

PA-1530,-69; 

PU; 

PU; 

PA-1530,-153; 

PD; 

PA1530,-153; 

PU; 

PU; 

PA1530,-237; 

PD; 

PA-1530,-237; 

PU; 

PU; 

PA-1530,-321; 

PD; 

PA1530,-321; 

PU; 

PU; 

PA1530,-405; 

PD; 

PA-1530,-405; 

PU; 

PU; 

PA-1530,-490; 

PD; 

PA1530,-490; 

PU; 

PU; 

PA1530,-574; 

PD; 

PA-1530,-574; 

PU; 

PU; 

PA-1530,-658; 

PD; 

PA1530,-658; 

PU; 

PU; 

PA1530,-742; 

PD; 

PA-1530,-742; 

PU; 

PU; 

PA-1530,-826; 

PD; 

PA1530,-826; 

PU; 

PU; 

PA1530,-910; 

PD; 

PA-1530,-910; 

PU; 

PU; 

PA-1530,-995; 

PD; 

PA1530,-995; 

PU; 
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The above source code creates a rastered layer of dimensions 20mm x 20mm 

and with a scan spacing of 0.5mm when created using the build zone. 

 

 

 

Figure B1: Raster layered generated by the above program. 
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Appendix C 

9 Machine Parameter Settings and Beam Velocity Calculations 

C1 Machine Parameter Settings 

Table C1 displays a list of all the system level commands used during all 

scanning routines. Parameters 1-3, controlled the rotational speed of the mirror 

galvanometers and therefore determined the speed of scan of the laser across the 

powder surface. Look up tables were generated which listed the parameter 

combinations required to generate scan speeds in the range 0.5mm/s to 50mm/s (see 

Section C.2). All other parameters were kept at their default settings. 

Table C2:  System level commands 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix   257 
 

 

C2 Scan Speed  Calculations  

The  velocity of the galvanometers, and therefore the scan speed was 

calculated using equation C1: 

Time
DistanceVelocity   (C1) 

where: 

Distance = step size = number of steps of the galvanometer per  

                                    DAC command [LSB]                                                                                                                 

Time = step period = time for one DAC command [secs] 

Hence: 

Galvo velocity = 
Period Step
Size Step  (C2) 

Since the maximum scan field is 65535 LSB the beam velocity (marking 

speed) at the powder surface is: 

sec1
sec1

65535
(mm) Size Field

secs)( Period Step
(LSB) Size Step(mm) speed marking 




       (C3) 

Where the Field size is the maximum mark area. This had two values: 75mm 

for the build zone and 120mm for the build plate. Equation C3 was used to generate 

look-up tables for both build areas (see Tables C2/3). Both the Field size and the 

working distance (distance from the powder surface to the centre of the Y mirror) 

were set in the PC-MarkMT configuration file (default.asc) using PostGrid. PostGrid 

is General Scanning‟s software for the generation of grid correction files for 

scanning systems; the working distance had values of 680mm and 590mm for the 

build zone and the build plate respectively.  
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Table C3: Look-up table for mark speed selection (build zone). 

Table C4: Look-up table for mark speed selection (build tray). 

 

0.5 10 36622

1 20 36622

2 20 18311

3 20 12207

4 20 9155

5 20 7324

6 20 6104

7 20 5232

8 20 4578

9 20 4069

10 20 3662

11 20 3329

12 20 3052

13 20 2817

14 20 2616

15 20 2441

16 20 2289

17 20 2154

18 20 2035

19 20 1927

20 20 1831

21 20 1744

22 20 1665

23 20 1592

24 20 1526

25 20 1465

26 20 1409

27 20 1356

28 20 1308

29 20 1263

30 20 1221

31 20 1181

32 20 1144

33 20 1110

34 20 1077

35 20 1046

36 20 1017

37 20 990

38 20 964

39 20 939

40 20 916

41 20 893

42 20 872

43 20 852

44 20 832

45 20 814

46 20 796

47 20 779

48 20 763

49 20 747

50 20 732

Step Size 

(LSB)

Step period 

(micro secs)

Mark speed 

(mm/s)

0.5 20 42725

1 20 21363

2 20 10681

3 20 7121

4 20 5341

5 20 4273

6 20 3560

7 20 3052

8 20 2670

9 20 2374

10 20 2136

11 20 1942

12 20 1780

13 20 1643

14 20 1526

15 20 1424

16 20 1335

17 20 1257

18 20 1187

19 20 1124

20 20 1068

21 20 1017

22 20 971

23 20 929

24 20 890

25 20 855

26 20 822

27 20 791

28 20 763

29 20 737

30 20 712

31 20 689

32 20 668

33 20 647

34 20 628

35 20 610

36 20 593

37 20 577

38 20 562

39 20 548

40 20 534

41 20 521

42 20 509

43 20 497

44 20 486

45 20 475

46 20 464

47 20 455

48 20 445

49 20 436

50 20 427

Mark speed 

(mm/s)

Step Size 

(LSB)

Step period 

(micro secs)

C2 C3 
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Appendix D 

10 Melt track Dimensional and Mass Measurements 

D1 Air Atmosphere Results 

D.1.1 300/150 Powder Batch 

Table D 1 

 

 

 

 

Table D 2 

 

 

 

 

 

Table D 3 

 

 

 

 

 

 

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

58 0.5 1.96 1.71 1.94 1.73 1.97 1.71 1.96 1.72

58 1 1.78 1.60 1.78 1.60 1.82 1.57 1.79 1.59

58 2 1.52 1.41 1.50 1.37 1.50 1.38 1.51 1.38

58 3 1.20 1.09 1.16 1.04 1.19 1.13 1.18 1.09

58 4 0.98 0.91 1.00 0.94 0.99 0.93 0.99 0.93

150/75 Air (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

89 0.5 2.49 2.26 2.59 2.22 2.54 2.25 2.54 2.25

89 1 2.24 2.04 2.22 2.03 2.25 2.05 2.24 2.04

89 2 1.88 1.73 1.86 1.71 1.89 1.73 1.88 1.72

89 3 1.59 1.43 1.53 1.46 1.58 1.42 1.57 1.44

89 4 1.35 1.28 1.36 1.29 1.33 1.27 1.35 1.28

89 5 1.17 1.10 1.11 1.09 1.16 1.08 1.15 1.09

89 6 1.04 0.95 1.00 0.95 1.01 0.97 1.02 0.96

150/75 Air (Single tracks meaured using callipers)

Experiment 1 Experiment 3Experiment 2

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

110 0.5 2.95 2.89 2.95 2.88 2.90 2.92 2.93 2.89

110 1 2.68 2.66 2.70 2.66 2.65 2.67 2.68 2.66

110 2 2.28 2.22 2.30 2.24 2.27 2.22 2.28 2.23

110 3 1.86 1.83 1.90 1.80 1.92 1.78 1.89 1.80

110 4 1.64 1.53 1.70 1.53 1.65 1.51 1.66 1.52

110 5 1.43 1.37 1.47 1.40 1.47 1.40 1.46 1.39

110 6 1.30 1.25 1.34 1.23 1.32 1.20 1.32 1.23

110 7 1.30 1.23 1.38 1.23 1.35 1.20 1.34 1.22

150/75 Air (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3
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Table D 4 

 

 

 

 

 

 

Table D 5 

 

 

 

 

 

 

Table D 6 

 

 

 

 

 

 

 

D1.2 150/75 Powder Batch 

Table D 7 

 

 

 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

58 0.5 2.27 2.28 2.29 2.30 2.27 2.29 2.28 2.29 15.82 0.5368

58 1 2.06 2.07 2.05 2.03 2.04 2.03 2.05 2.04 25.34 0.6512

58 2 1.80 1.77 1.82 1.77 1.81 1.78 1.81 1.77 27.20 0.5343

58 3 1.46 1.38 1.43 1.40 1.45 1.37 1.45 1.38 27.51 0.5307

58 4 1.16 1.04 1.11 1.10 1.13 1.12 1.13 1.09 26.80 0.2679

150/75 Air (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

125 0.5 3.29 3.53 3.38 3.40 3.22 3.48 3.30 3.47

125 1 2.93 3.02 2.89 2.99 2.95 3.08 2.92 3.03

125 2 2.53 2.62 2.55 2.56 2.50 2.57 2.53 2.58

125 3 2.18 2.11 2.20 2.05 2.14 2.12 2.17 2.09

125 4 1.83 1.74 1.80 1.74 1.82 1.72 1.82 1.73

125 5 1.72 1.61 1.65 1.57 1.71 1.59 1.69 1.59

125 6 1.63 1.55 1.60 1.52 1.62 1.49 1.62 1.52

125 7 1.50 1.42 1.51 1.45 1.52 1.39 1.51 1.42

125 8 1.41 1.28 1.39 1.32 1.38 1.33 1.39 1.31

150/75 Air (Single tracks meaured using callipers)

Experiment 3Experiment 1 Experiment 2

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

152 0.5 3.27 4.15 3.27 4.19 3.32 4.27 3.29 4.20

152 1 3.12 3.62 3.09 3.58 3.10 3.64 3.10 3.61

152 2 2.79 2.94 2.80 2.91 2.83 2.95 2.81 2.93

152 3 2.54 2.42 2.58 2.45 2.57 2.53 2.56 2.47

152 4 2.24 2.21 2.26 2.14 2.24 2.18 2.25 2.18

152 5 2.05 1.91 1.96 1.85 2.00 1.90 2.00 1.89

152 6 1.80 1.70 1.85 1.70 1.84 1.71 1.83 1.70

152 7 1.64 1.53 1.62 1.53 1.65 1.50 1.64 1.52

152 8 1.56 1.40 1.57 1.46 1.59 1.49 1.57 1.45

150/75 Air (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

189 0.5 3.42 4.14 3.47 4.17 3.33 4.05 3.41 4.12

189 1 3.31 3.52 3.35 3.56 3.34 3.53 3.33 3.54

189 2 3.14 3.21 3.18 3.22 3.16 3.22 3.16 3.22

189 3 2.88 2.87 2.91 2.88 2.91 2.83 2.90 2.86

189 4 2.58 2.54 2.54 2.50 2.58 2.52 2.57 2.52

189 5 2.24 2.12 2.18 2.16 2.23 2.22 2.22 2.17

189 6 2.02 1.93 2.00 1.93 2.03 1.95 2.02 1.94

189 7 1.82 1.70 1.80 1.71 1.80 1.74 1.81 1.72

189 8 1.64 1.50 1.61 1.55 1.62 1.50 1.62 1.52

150/75 Air (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3
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Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

189 0.5 3.21 3.90 3.22 3.85 3.21 3.89 3.21 3.88 29.08 1.9074

189 1 3.14 3.60 3.18 3.64 3.17 3.69 3.16 3.64 28.24 1.6652

189 2 3.11 3.24 3.12 3.20 3.07 3.22 3.10 3.22 28.39 1.4584

189 3 2.66 2.69 2.72 2.65 2.60 2.70 2.66 2.68 28.02 1.3905

189 4 2.40 2.34 2.42 2.28 2.32 2.29 2.38 2.30 28.05 0.9245

189 5 2.04 1.99 2.11 1.98 2.07 2.03 2.07 2.00 27.94 0.8114

189 6 1.78 1.76 1.78 1.77 1.80 1.78 1.79 1.77 27.92 0.5910

189 7 1.60 1.50 1.55 1.51 1.64 1.51 1.60 1.51 28.06 0.4630

189 8 1.39 1.34 1.39 1.30 1.34 1.39 1.37 1.34 27.76 0.4211

189 10 1.08 1.07 1.02 1.03 1.08 1.05 1.06 1.05 27.16 0.3425

150/75 Air (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3

Table D 8 

 

 

 

 

Table D 9 

 

 

 

 

Table D 10 

 

 

 

 

 

Table D 11 

 

 

 

 

 

Table D 12 

 

 

 

 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

89 0.5 2.49 2.64 2.52 2.60 2.43 2.56 2.48 2.60 27.29 1.3323

89 1 2.41 2.48 2.33 2.47 2.32 2.46 2.35 2.47 27.57 1.0545

89 2 2.11 2.15 2.04 2.18 2.07 2.13 2.07 2.15 26.90 0.7111

89 3 1.81 1.75 1.71 1.73 1.74 1.72 1.75 1.73 26.58 0.5942

89 4 1.46 1.35 1.42 1.39 1.35 1.37 1.41 1.37 27.18 0.4259

89 5 1.07 1.05 1.10 1.07 1.12 1.03 1.10 1.05 27.02 0.3274

Experiment 2 Experiment 3

150/75 Air (Single tracks meaured using callipers)

Experiment 1

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

110 0.5 2.75 2.97 2.70 3.00 2.77 3.01 2.74 2.99 28.01 1.5381

110 1 2.60 2.80 2.64 2.82 2.61 2.78 2.62 2.80 24.55 0.9911

110 2 2.42 2.50 2.40 2.52 2.41 2.48 2.41 2.50 26.80 0.8762

110 3 2.08 2.19 2.17 2.15 2.14 2.15 2.13 2.16 26.97 0.7380

110 4 1.76 1.73 1.75 1.75 1.73 1.74 1.75 1.74 27.31 0.5432

110 5 1.50 1.48 1.52 1.46 1.49 1.46 1.50 1.47 27.28 0.4205

110 6 1.26 1.25 1.30 1.21 1.34 1.24 1.30 1.23 26.82 0.3348

Experiment 1 Experiment 3Experiment 2

150/75 Air (Single tracks meaured using callipers)

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

125 0.5 2.82 3.07 2.85 3.11 2.79 3.09 2.82 3.09 18.46 0.9971

125 1 2.71 2.92 2.74 2.91 2.75 2.89 2.73 2.91 17.30 0.7724

125 2 2.52 2.67 2.56 2.63 2.55 2.61 2.54 2.64 27.15 0.9931

125 3 2.24 2.32 2.28 2.36 2.26 2.27 2.26 2.32 27.13 0.8124

125 4 1.93 1.93 1.95 1.97 1.97 1.97 1.95 1.96 27.19 0.5761

125 5 1.60 1.59 1.60 1.60 1.64 1.57 1.61 1.59 27.20 0.4444

125 6 1.34 1.33 1.37 1.30 1.38 1.27 1.36 1.30 27.49 0.3698

125 7 1.11 1.07 1.15 1.09 1.13 1.08 1.13 1.08 27.26 0.3138

Experiment 1 Experiment 2 Experiment 3

150/75 Air (Single tracks meaured using callipers)

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

152 0.5 3.05 3.60 3.07 3.55 3.04 3.64 3.05 3.60 28.63 1.9841

152 1 2.83 3.16 2.83 3.18 2.80 3.14 2.82 3.16 28.38 1.6664

152 2 2.91 3.00 2.95 3.03 2.90 3.04 2.92 3.02 27.84 1.3212

152 3 2.52 2.60 2.46 2.55 2.58 2.52 2.52 2.56 27.13 0.9815

152 4 2.25 2.25 2.21 2.21 2.24 2.28 2.23 2.25 26.95 0.7026

152 5 1.93 1.89 1.96 1.89 1.99 1.95 1.96 1.91 26.98 0.5480

152 6 1.66 1.57 1.64 1.58 1.66 1.61 1.65 1.59 27.28 0.4553

152 7 1.45 1.36 1.37 1.35 1.45 1.41 1.42 1.37 27.43 0.3809

152 8 1.17 1.10 1.21 1.10 1.17 1.11 1.18 1.10 27.09 0.3341

Experiment 1 Experiment 2 Experiment 3

150/75 Air (Single tracks meaured using callipers)
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D1.3 75/38 Powder Batch 

Table D 13 

 

 

 

 

Table D 14 

 

 

 

 

Table D 15 

 

 

 

 

 

Table D 16 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

125 0.5 3.08 3.36 3.07 3.42 3 3.33 3.05 3.37 30.06 1.9129

125 1 2.94 3.22 2.91 3.14 2.85 3.16 2.90 3.17 28.73 2.0743

125 2 2.55 3.01 2.58 2.92 2.60 2.99 2.58 2.97 21.11 0.9975

125 3 2.34 2.39 2.25 2.47 2.31 2.42 2.30 2.43 28.10 1.0463

125 4 2.04 2.21 2.10 2.24 2.12 2.17 2.09 2.21 27.91 0.7581

125 5 1.99 2.01 2.07 2.07 2.05 1.98 2.04 2.02 27.68 0.5920

125 6 1.92 1.85 1.81 1.77 1.88 1.83 1.87 1.82 27.64 0.5021

125 7 1.70 1.66 1.74 1.62 1.68 1.68 1.71 1.65 27.36 0.4270

125 8 1.50 1.51 1.54 1.49 1.47 1.55 1.50 1.52 27.19 0.3823

75/38 Air (Single tracks meaured using callipers)

Experiment 2 Experiment 3Experiment 1

 

Table D 17 

 

 

 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

58 0.5 2.21 2.26 2.27 2.29 2.17 2.26 2.22 2.27 29.08 0.9074

58 1 2.03 2.09 2.00 2.08 2.00 2.08 2.01 2.08 28.24 0.6652

58 2 1.73 1.82 1.77 1.80 1.73 1.83 1.74 1.82 28.39 0.4584

58 3 1.52 1.60 1.60 1.62 1.57 1.60 1.56 1.61 28.02 0.3905

58 4 1.25 1.33 1.28 1.31 1.23 1.29 1.25 1.31 28.05 0.2944

58 5 1.07 1.10 1.07 1.12 1.05 1.10 1.06 1.11 27.94 0.2291

58 6 0.93 0.93 0.91 0.90 0.92 0.95 0.92 0.93 27.92 0.1830

75/38 Air (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

89 0.5 2.74 2.83 2.77 2.87 2.81 2.81 2.77 2.84 29.84 1.3263

89 1 2.54 2.65 2.55 2.67 2.54 2.66 2.54 2.66 28.55 1.1999

89 2 2.33 2.41 2.38 2.38 2.36 2.44 2.36 2.41 29.08 0.8358

89 3 2.05 2.04 1.99 2.01 1.99 2.02 2.01 2.02 28.13 0.6487

89 4 1.76 1.74 1.7 1.78 1.79 1.73 1.75 1.75 27.86 0.4369

89 5 1.61 1.57 1.57 1.59 1.63 1.62 1.60 1.59 27.88 0.3419

89 6 1.46 1.48 1.44 1.49 1.47 1.52 1.46 1.50 27.84 0.3031

89 7 1.37 1.34 1.33 1.4 1.38 1.38 1.36 1.37 27.85 0.2544

75/38 Air (Single tracks meaured using callipers)

Experiment 2 Experiment 3Experiment 1

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

110 0.5 2.98 3.11 2.97 3.16 3.07 3.18 3.01 3.15 29.37 1.8033

110 1 2.76 2.98 2.84 2.94 2.87 3.02 2.82 2.98 13.20 0.7860

110 2 2.50 2.75 2.57 2.83 2.62 2.80 2.56 2.79 28.34 1.3290

110 3 2.28 2.38 2.27 2.43 2.33 2.42 2.29 2.41 27.46 0.8854

110 4 2.18 2.18 2.16 2.22 2.14 2.14 2.16 2.18 27.86 0.5944

110 5 2.01 1.93 1.89 2.02 1.95 1.98 1.95 1.98 27.69 0.4625

110 6 1.92 1.76 1.80 1.81 1.86 1.79 1.86 1.79 28.01 0.3735

110 7 1.76 1.68 1.73 1.61 1.69 1.66 1.73 1.65 27.47 0.3116

110 8 1.60 1.52 1.57 1.57 1.54 1.56 1.57 1.55 27.83 0.2684

75/38 Air (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

152 0.5 3.13 3.74 3.2 3.81 3.1 3.79 3.14 3.78 29.66 2.1700

152 1 2.95 3.55 2.99 3.6 3.03 3.54 2.99 3.56 30.54 2.2577

152 2 2.71 3.14 2.74 3.1 2.7 3.11 2.72 3.12 27.15 1.7760

152 3 2.49 2.54 2.54 2.6 2.43 2.55 2.49 2.56 27.88 1.3385

152 4 2.12 2.16 2.12 2.29 2.14 2.25 2.13 2.23 27.97 0.9421

152 5 1.98 2.01 1.93 1.96 1.96 2.01 1.96 1.99 27.71 0.7520

152 6 1.74 1.79 1.76 1.75 1.77 1.74 1.76 1.76 27.64 0.6327

152 7 1.65 1.57 1.61 1.53 1.61 1.61 1.62 1.57 27.43 0.5518

152 8 1.52 1.43 1.53 1.5 1.55 1.46 1.53 1.46 27.22 0.4911

75/38 Air (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3
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Table D 18 

 

 

 

 

 

D1.4 38 Powder Batch 

Table D 19 

 

 

 

 

 

Table D 20 

 

 

 

 

 

 

Table D 21 

 

 

 

 

 

 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

189 0.5 3.36 4.37 3.39 4.28 3.4 4.26 3.38 4.30 29.99 2.5459

189 1 3.23 4.11 3.27 4.1 3.27 4.04 3.26 4.08 30.61 2.4256

189 2 2.93 3.48 2.99 3.48 2.93 3.46 2.95 3.47 27.45 2.1206

189 3 2.71 2.84 2.74 2.86 2.67 2.87 2.71 2.86 28.27 1.5705

189 4 2.35 2.42 2.39 2.38 2.3 2.35 2.35 2.38 27.76 1.1564

189 5 2.02 2.04 2.03 2.06 2 1.97 2.02 2.02 27.43 0.8869

189 6 1.82 1.8 1.77 1.85 1.86 1.75 1.82 1.80 27.28 0.7265

189 7 1.63 1.66 1.66 1.59 1.66 1.59 1.65 1.61 27.28 0.6213

189 8 1.57 1.51 1.57 1.45 1.53 1.55 1.56 1.50 27.26 0.5617

75/38 Air (Single tracks meaured using callipers)

Experiment 2 Experiment 3Experiment 1

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

32 3 1.23 1.42 1.25 1.36 1.21 1.40 1.23 1.39

32 4 1.15 1.23 1.13 1.17 1.14 1.28 1.14 1.23

32 5 1.01 1.10 0.99 1.08 1.01 1.03 1.00 1.07

32 6 0.92 0.90 0.90 0.84 0.92 0.95 0.91 0.89

32 7 0.87 0.84 0.86 0.78 0.88 0.83 0.87 0.82

32 8 0.81 0.77 0.83 0.72 0.82 0.74 0.82 0.74

32 10 0.71 0.70 0.68 0.74 0.69 0.66 0.69 0.70

Experiment 1 Experiment 2

38 Air (Single tracks meaured using callipers)

Experiment 3

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

58 3 1.40 1.77 1.4 1.80 1.42 1.86 1.41 1.81

58 4 1.30 1.34 1.33 1.27 1.3 1.38 1.31 1.33

58 5 1.19 1.27 1.2 1.2 1.22 1.23 1.20 1.23

58 6 1.04 1.24 1.01 1.19 1.06 1.16 1.04 1.19

58 7 0.98 1.13 1.02 1.06 0.99 1.05 0.99 1.08

58 8 0.91 1.01 0.96 0.93 0.95 0.97 0.94 0.97

58 10 0.86 0.89 0.9 0.93 0.81 0.91 0.86 0.91

58 12 0.85 0.86 0.8 0.79 0.89 0.84 0.85 0.83

58 15 0.83 0.84 0.89 0.78 0.83 0.82 0.85 0.81

58 18 0.72 0.76 0.7 0.73 0.77 0.78 0.73 0.76

Experiment 1 Experiment 2 Experiment 3

38 Air (Single tracks meaured using callipers)

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

89 3 2.42 2.80 2.26 2.50 2.49 2.90 2.39 2.73

89 4 1.82 2.04 1.90 1.96 1.78 1.85 1.83 1.95

89 5 1.61 1.92 1.70 1.72 1.68 1.79 1.66 1.81

89 6 1.32 1.77 1.41 1.60 1.38 1.50 1.37 1.62

89 7 1.24 1.48 1.27 1.40 1.18 1.33 1.23 1.40

89 8 1.20 1.34 1.13 1.23 1.26 1.20 1.20 1.26

89 10 1.04 1.12 1.07 1.07 1.06 1.03 1.06 1.07

89 12 0.93 0.94 0.95 0.98 0.87 0.91 0.92 0.94

89 15 0.87 0.83 0.90 0.86 0.82 0.81 0.86 0.83

89 18 0.80 0.81 0.83 0.84 0.77 0.75 0.80 0.80

Experiment 3Experiment 1 Experiment 2

38 Air (Single tracks meaured using callipers)
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Table D 22 

 

 

 

 

 

 

Table D 23  

 

 

 

 

 

 

Table D 24 

 

 

 

 

 

 

Table D 25 

 

 

 

 

 

 

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

110 3 3.35 3.46 3.15 3.04 3.02 3.28 3.17 3.26

110 4 2.38 2.56 2.53 2.32 2.49 2.25 2.47 2.38

110 5 1.64 1.96 1.85 2.04 1.80 1.92 1.76 1.97

110 6 1.54 1.69 1.52 1.68 1.59 1.77 1.55 1.71

110 7 1.44 1.62 1.40 1.68 1.47 1.55 1.44 1.62

110 8 1.31 1.59 1.31 1.52 1.32 1.41 1.31 1.51

110 10 1.25 1.31 1.20 1.24 1.25 1.35 1.23 1.30

110 12 1.08 1.15 1.06 1.24 1.03 1.06 1.06 1.15

110 15 1.01 1.02 0.97 0.98 0.95 1.15 0.98 1.05

38 Air (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

125 3 3.32 3.75 3.49 3.34 3.68 3.60 3.50 3.56

125 4 2.50 2.84 2.72 2.66 2.88 2.90 2.70 2.80

125 5 2.13 2.28 2.22 2.12 2.36 2.40 2.24 2.27

125 6 1.82 2.12 2.01 1.84 1.95 2.00 1.93 1.99

125 7 1.63 1.93 1.77 1.69 1.69 1.82 1.70 1.81

125 8 1.57 1.66 1.68 1.51 1.62 1.72 1.62 1.63

125 10 1.34 1.36 1.40 1.40 1.31 1.48 1.35 1.41

125 12 1.29 1.30 1.33 1.22 1.23 1.22 1.28 1.25

125 15 1.13 1.11 1.15 1.06 1.09 0.95 1.12 1.04

38 Air (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

152 3 4.08 4.21 3.58 3.86 3.85 3.57 3.84 3.88

152 4 3.30 2.86 2.52 3.23 2.94 3.08 2.92 3.06

152 5 2.62 2.55 2.35 2.82 2.86 2.75 2.61 2.71

152 6 2.08 2.24 2.08 2.05 2.12 2.45 2.09 2.25

152 7 1.93 2.00 2.04 2.11 1.84 1.81 1.94 1.97

152 8 1.83 1.82 1.68 1.70 1.92 1.75 1.81 1.76

152 10 1.51 1.72 1.37 1.58 1.61 1.83 1.50 1.71

152 12 1.51 1.66 1.46 1.53 1.46 1.61 1.48 1.60

152 15 1.35 1.51 1.34 1.44 1.31 1.34 1.33 1.43

Experiment 1 Experiment 2 Experiment 3

38 Air (Single tracks meaured using callipers)

Laser Scan Average Average

Power Speed Width Depth Width Depth Width Depth Width Depth

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

189 3 4.71 5.22 5.00 5.06 4.87 5.4 4.86 5.23

189 4 4.12 4.37 4.22 4.00 4.34 4.11 4.23 4.16

189 5 3.39 3.32 3.19 3.64 3.5 3.44 3.36 3.47

189 6 2.77 2.67 2.53 3.2 2.73 2.92 2.68 2.93

189 7 2.41 2.48 2.28 2.79 2.42 2.67 2.37 2.65

189 8 2.02 2.17 2.13 2.27 2.08 2.32 2.08 2.25

189 10 1.71 2.01 1.85 1.89 1.78 2.06 1.78 1.99

189 12 1.65 1.72 1.54 1.63 1.67 1.8 1.62 1.72

189 15 1.54 1.56 1.43 1.6 1.67 1.49 1.55 1.55

Experiment 2 Experiment 3Experiment 1

38 Air (Single tracks meaured using callipers)
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D2 Argon Atmosphere Results 

D2.1 300/150 Powder Batch 

Table D 26 

 

 

 

 

Table D 27 

 

 

 

 

 

Table D 28 

 

 

 

 

 

Table D 29 

 

 

 

 

 

 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

16 0.5 1.2 0.99 1.21 1.02 1.21 1.01 1.21 1.01 19.66 0.0658

16 1 1.09 0.96 1.11 0.95 1.11 0.95 1.10 0.95 11.61 0.0286

16 2 0.91 0.91 0.95 0.91 0.93 0.91 0.93 0.91 16.94 0.0224

16 3 0.97 0.77 0.98 0.77 0.99 0.79 0.98 0.78 x x

16 4 0.99 0.56 1.02 0.56 1.01 0.57 1.01 0.56 x x

300/150 Argon (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

32 0.5 1.92 1.08 1.98 1.12 1.94 1.1 1.95 1.10 30.34 0.1628

32 1 1.77 1.04 1.82 1.04 1.82 1.07 1.80 1.05 30 0.1408

32 2 1.55 1.3 1.58 1.33 1.56 1.32 1.56 1.32 30.8 0.2339

32 3 1.47 1.08 1.51 1.11 1.53 1.11 1.50 1.10 30.16 0.1479

32 4 1.5 1 1.54 1.04 1.53 1.04 1.52 1.03 29.47 0.1148

32 5 1.18 0.73 1.22 0.76 1.24 0.75 1.21 0.75 x x

32 6 1.09 0.7 1.13 0.68 1.14 0.7 1.12 0.69 x x

300/150 Argon (Single tracks meaured using callipers)

Experiment 1 Cross Section Pics Experiment 3

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

58 0.5 2.68 1.4 2.72 1.38 2.72 1.46 2.71 1.41 20.37 0.251

58 1 2.51 1.35 2.56 1.34 2.56 1.33 2.54 1.34 20.19 0.2271

58 2 2.37 1.42 2.33 1.42 2.34 1.37 2.35 1.40 19.58 0.1996

58 3 2.14 1.29 2.14 1.28 2.15 1.33 2.14 1.30 19.01 0.144

58 4 2 1.14 1.99 1.14 1.99 1.16 1.99 1.15 16.19 0.1008

58 5 1.68 1.07 1.62 1.08 1.65 1.11 1.65 1.09 11.51 0.0447

58 6 1.4 0.97 1.38 0.96 1.44 0.99 1.41 0.97 x x

58 7 1.27 0.91 1.28 0.95 1.28 0.97 1.28 0.94 x x

58 8 1.11 0.87 1.17 0.86 1.14 0.91 1.14 0.88 x x

Experiment 1 Experiment 2 Experiment 3

300/150 Argon (Single tracks meaured using callipers)

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

77 0.5 2.9 1.53 2.99 1.56 2.96 1.64 2.95 1.58 20.62 0.2983

77 1 2.7 1.58 2.77 1.63 2.75 1.62 2.74 1.61 19.77 0.2662

77 2 2.65 1.72 2.58 1.68 1.62 1.71 2.28 1.70 19.36 0.2295

77 3 2.44 1.64 2.38 1.73 2.41 1.71 2.41 1.69 18.94 0.187

77 4 2.16 1.48 2.22 1.55 2.2 1.53 2.19 1.52 19.05 0.1379

77 5 2.04 1.28 1.97 1.33 1.97 1.34 1.99 1.32 18.76 0.1054

77 6 1.91 1.41 1.85 1.37 1.86 1.36 1.87 1.38 8.66 0.0384

77 7 1.6 1.18 1.67 1.2 1.65 1.27 1.64 1.22 x x

77 8 1.36 1.12 1.39 1.16 1.44 1.16 1.40 1.15 x x

77 10 1.33 1.06 1.29 1.07 1.29 1.06 1.30 1.06 x x

77 12 1.17 1.01 1.19 1.01 1.17 0.99 1.18 1.00 x x

77 15 1.12 0.92 1.12 0.96 1.11 0.95 1.12 0.94 x x

Experiment 1 Experiment 2 Experiment 3

300/150 Argon (Single tracks meaured using callipers)
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Table D 30 

 

 

 

 

 

 

Table D 31 

 

 

 

 

 

 

Table D 32 

 

 

 

 

 

 

Table D 33 

 

 

 

 

 

 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

89 0.5 3.23 1.61 3.28 1.59 3.22 1.68 3.24 1.63 19.28 0.3316

89 1 2.95 1.49 3.05 1.56 3.02 1.58 3.01 1.54 18.44 0.3218

89 2 2.79 1.71 2.91 1.63 2.86 1.62 2.85 1.65 18.71 0.2957

89 3 2.5 1.51 2.57 1.46 2.66 1.41 2.58 1.46 17.95 0.2345

89 4 2.21 1.31 2.28 1.39 2.27 1.37 2.25 1.36 17.91 0.1694

89 5 1.99 1.28 2.08 1.25 2.07 1.24 2.05 1.26 17.6 0.1285

89 6 1.87 1.11 1.96 1.15 1.95 1.14 1.93 1.13 11.8 0.0523

89 7 1.58 1.07 1.62 1.03 1.71 1.03 1.64 1.04 9.36 0.0382

89 8 1.34 0.97 1.26 1.01 1.32 1 1.31 0.99 x x

89 10 1.18 0.9 1.25 0.9 1.23 0.95 1.22 0.92 x x

89 12 1.17 0.86 1.15 0.86 1.15 0.86 1.16 0.86 x x

89 15 1.09 0.77 1.14 0.77 1.11 0.79 1.11 0.78 x x

Experiment 1 Experiment 2 Experiment 3

300/150 Argon (Single tracks meaured using callipers)

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

110 0.5 3.5 1.57 3.59 1.62 3.53 1.66 3.54 1.62 21.21 0.5257

110 1 3.34 1.51 3.51 1.65 3.46 1.65 3.44 1.60 20.41 0.4893

110 2 3.25 1.82 3.29 1.77 3.44 1.7 3.33 1.76 19.36 0.4014

110 3 2.88 1.57 3.02 1.51 2.94 1.65 2.95 1.58 19.19 0.335

110 4 2.62 1.72 2.51 1.77 2.49 1.62 2.54 1.70 18.46 0.2477

110 5 2.22 1.47 2.33 1.52 2.26 1.4 2.27 1.46 18.7 0.1921

110 6 1.96 1.39 1.9 1.37 1.82 1.4 1.89 1.39 10.98 0.0871

110 7 1.66 1.4 1.51 1.48 1.53 1.42 1.57 1.43 9.17 0.0524

110 8 1.47 1.22 1.38 1.29 1.41 1.35 1.42 1.29 12.04 0.0514

110 10 1.3 1.18 1.35 1.24 1.3 1.23 1.32 1.22

110 12 1.14 1.05 1.14 1.01 1.22 1.02 1.17 1.03 x x

110 15 1.04 0.91 1.03 0.92 1.05 0.91 1.04 0.91 x x

Experiment 1 Experiment 2 Experiment 3

300/150 Argon (Single tracks meaured using callipers)

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

125 0.5 3.45 1.5 3.62 1.62 3.6 1.64 3.56 1.59 20.95 0.4476

125 1 3.64 1.66 4.02 1.79 3.85 1.77 3.84 1.74 20.23 0.5286

125 2 3.38 1.69 3.62 1.6 3.44 1.46 3.48 1.58 19.72 0.4776

125 3 2.71 1.77 2.91 1.74 2.85 1.61 2.82 1.71 18.77 0.4037

125 4 2.45 1.41 2.43 1.41 2.34 1.52 2.41 1.45 18.16 0.3057

125 5 2.19 1.31 2.28 1.33 2.14 1.27 2.20 1.30 18.5 0.2404

125 6 1.84 1.29 1.77 1.31 1.78 1.31 1.80 1.30 18.43 0.1964

125 7 1.79 1.48 1.8 1.5 1.8 1.52 1.80 1.50 18.37 0.0824

125 8 1.4 1.21 1.49 1.23 1.44 1.17 1.44 1.20 17.8 0.1328

125 10 1.37 1.15 1.37 1.15 1.39 1.15 1.38 1.15 15.82 0.1011

125 12 1.47 1.04 1.51 1.04 1.53 1.06 1.50 1.05 16.84 0.0564

125 15 1 0.97 1.01 0.97 1 0.99 1.00 0.98 9.36 0.027

Experiment 1 Experiment 2 Experiment 3

300/150 Argon (Single tracks meaured using callipers)

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

143 0.5 3.91 2.08 4.18 1.88 4.21 1.85 4.10 1.94 21.04 0.6057

143 1 4.25 2.41 4.54 2.45 4.45 2.66 4.41 2.51 20.55 0.701

143 2 3.58 2.19 3.77 2.38 3.74 2.34 3.70 2.30 19.66 0.5555

143 3 2.99 2.03 3.11 2.08 3.06 1.96 3.05 2.02 19.14 0.4479

143 4 2.61 1.69 2.71 1.64 2.64 1.66 2.65 1.66 18.7 0.3444

143 5 2.29 1.55 2.33 1.57 2.34 1.59 2.32 1.57 18.09 0.2747

143 6 2.1 1.57 2.01 1.51 2.03 1.48 2.05 1.52 17.9 0.2259

143 7 1.75 1.54 1.71 1.45 1.79 1.65 1.75 1.55 18.18 0.1879

143 8 1.88 1.22 1.91 1.27 1.91 1.25 1.90 1.25 18.47 0.1627

143 10 1.58 1.16 1.57 1.16 1.59 1.18 1.58 1.17 15.41 0.0989

143 12 1.31 1.13 1.31 1.14 1.31 1.14 1.31 1.14 x x

143 15 1.14 0.99 1.14 1.03 1.13 1.03 1.14 1.02 x x

Experiment 1 Experiment 2 Experiment 3

300/150 Argon (Single tracks meaured using callipers)
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Table D 34  

 

 

 

 

 

 

Table D 35 

 

 

 

 

 

 

 

D2.2 150/75 Powder Batch 

Table D 36 

 

 

 

 

Table D 37 

 

 

 

 

 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

162 0.5 4.18 2.58 4.45 2.78 4.41 2.51 4.35 2.62 21.19 0.5252

162 1 4.28 3.15 4.66 3.44 4.41 3.21 4.45 3.27 20.63 0.7594

162 2 3.36 2.5 3.31 2.51 3.12 2.7 3.26 2.57 18.96 0.5755

162 3 2.88 1.89 2.76 1.8 2.69 1.82 2.78 1.84 18.85 0.4955

162 4 2.59 1.55 2.48 1.63 2.38 1.66 2.48 1.61 18.09 0.3634

162 5 2.24 1.55 2.14 1.6 2.35 1.67 2.24 1.61 18.48 0.2893

162 6 2.04 1.6 2.08 1.55 2.05 1.58 2.06 1.58 18.46 0.2337

162 7 1.93 1.47 2.04 1.44 1.98 1.43 1.98 1.45 18.55 0.1925

162 8 1.73 1.22 1.75 1.24 1.74 1.28 1.74 1.25 17.95 0.1644

162 10 1.62 1.09 1.57 1.08 1.58 1.09 1.59 1.09 14.96 0.1015

162 12 1.33 0.99 1.34 1.02 1.27 1.02 1.31 1.01 10.02 0.0522

162 15 1.1 0.93 1.13 0.93 1.14 0.93 1.12 0.93 x x

Experiment 1 Experiment 2 Experiment 3

300/150 Argon (Single tracks meaured using callipers)

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

170 0.5 4.2 2.02 3.85 2.21 4.11 2.12 4.05 2.12 30.85 2.3658

170 1 3.98 3.6 4.22 3.83 4.16 3.64 4.12 3.69 31.5 2.5641

170 2 3.32 2.38 3.22 2.4 3.01 2.16 3.18 2.31 30.77 1.7584

170 3 2.96 1.85 3.12 1.89 3.16 1.75 3.08 1.83 32.68 1.2547

170 4 2.66 1.64 2.68 1.7 2.53 1.59 2.62 1.64 29.75 1.1389

170 5 2.3 1.73 2.31 1.71 2.24 1.66 2.28 1.70 28.34 0.6582

170 6 2.22 1.6 2.24 1.6 2.25 1.68 2.24 1.63 27.75 0.4752

170 7 2.18 1.55 2.18 1.59 2.2 1.64 2.19 1.59 29.05 0.5526

170 8 1.88 1.31 1.88 1.31 1.89 1.36 1.88 1.33 28.43 0.3256

170 10 1.77 1.25 1.77 1.22 1.71 1.26 1.75 1.24 28.37 0.2563

170 12 1.16 1.01 1.16 1.01 1.16 0.96 1.16 0.99 13.78 0.0553

170 15 1.03 0.9 1.04 0.92 1.07 0.92 1.05 0.91 x x

Experiment 1 Experiment 2 Experiment 3

300/150 Argon (Single tracks meaured using callipers)

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

16 0.5 1.58 0.69 1.58 0.72 1.62 0.67 1.59 0.69 18.64 0.0437

16 1 1.4 0.56 1.44 0.55 1.38 0.57 1.41 0.56 19.47 0.0331

16 2 1.22 0.48 1.25 0.44 1.24 0.46 1.24 0.46 14.98 0.0166

16 3 1.08 0.46 1.11 0.46 1.12 0.45 1.10 0.46 x x

16 4 0.95 0.42 0.97 0.43 0.97 0.41 0.96 0.42 x x

150/75 Argon (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

32 0.5 2.11 0.98 2.09 0.96 2.1 0.94 2.10 0.96 20.2 0.1134

32 1 1.7 0.81 1.64 0.77 1.72 0.8 1.69 0.79 19.83 0.0936

32 2 1.6 0.78 1.62 0.75 1.71 0.77 1.64 0.77 17.26 0.0637

32 3 1.45 0.74 1.4 0.73 1.42 0.77 1.42 0.75 12.5 0.0352

32 4 1.13 0.63 1.16 0.64 1.14 0.61 1.14 0.63 9.2 0.019

32 5 1.02 0.63 0.99 0.64 1.08 0.6 1.03 0.62 x x

32 6 0.88 0.55 0.91 0.52 0.92 0.51 0.90 0.53 x x

150/75 Argon (Single tracks meaured using callipers)

Experiment 1 Cross Section Pics Experiment 3
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Table D 38 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

58 0.5 2.58 1.09 2.55 1.11 2.56 1.08 2.56 1.09 20.51 0.2545

58 1 2.5 0.98 2.52 1.02 2.48 1.01 2.50 1.00 20.07 0.2092

58 2 2.16 0.82 2.15 0.83 2.15 0.82 2.15 0.82 19.63 0.1643

58 3 1.85 0.77 1.82 0.79 1.84 0.82 1.84 0.79 18.9 0.1392

58 4 1.48 0.72 1.44 0.73 1.52 0.73 1.48 0.73 18.85 0.1132

58 5 1.25 0.7 1.26 0.71 1.22 0.72 1.24 0.71 18.87 0.0913

58 6 1.11 0.65 1.09 0.66 1.12 0.66 1.11 0.66 18.42 0.0753

58 7 1.04 0.62 1.01 0.58 1.01 0.6 1.02 0.60 x x

58 8 0.93 0.55 0.94 0.58 0.87 0.52 0.91 0.55 x x

Experiment 1 Experiment 2 Experiment 3

150/75 Argon (Single tracks meaured using callipers)

 

Table D 39 

 

 

 

 

 

 

Table D 40 

  

 

 

 

 

 

Table D 41 

 

 

 

 

 

 

 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

77 0.5 2.77 1.41 2.7 1.44 2.85 1.47 2.77 1.44 31.56 0.4247

77 1 2.48 1.21 2.55 1.18 2.51 1.19 2.51 1.19 31.06 0.3198

77 2 2.16 1.11 2.17 1.15 2.19 1.12 2.17 1.13 30.54 0.2392

77 3 2 1.08 2.01 1.09 2.07 1.13 2.03 1.10 30.21 0.2662

77 4 2.21 1.06 2.14 1.01 2.15 0.96 2.17 1.01 30.74 0.2572

77 5 1.58 0.97 1.54 0.97 1.6 1.06 1.57 1.00 29.29 0.2216

77 6 1.23 0.91 1.19 0.99 1.29 0.92 1.24 0.94 29.16 0.132

77 7 1.23 0.83 1.2 0.9 1.28 0.92 1.24 0.88 28.92 0.1001

77 8 1.09 0.75 1.12 0.68 1.21 0.77 1.14 0.73 24.41 0.0701

77 10 0.99 0.71 0.95 0.68 0.95 0.67 0.96 0.69 x x

77 12 0.91 0.68 0.88 0.69 0.87 0.65 0.89 0.67 x x

77 15 0.83 0.62 0.84 0.59 0.81 0.6 0.83 0.60 x x

Experiment 1 Experiment 2 Experiment 3

150/75 Argon (Single tracks meaured using callipers)

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

89 0.5 3 1.58 3.11 1.64 3.15 1.51 3.09 1.58 20.71 0.3221

89 1 2.81 1.72 2.77 1.69 2.81 1.74 2.80 1.72 20.21 0.2879

89 2 2.41 1.44 2.54 1.36 2.64 1.39 2.53 1.40 19.48 0.225

89 3 2.48 1.31 2.39 1.24 2.41 1.25 2.43 1.27 19.24 0.1854

89 4 2.42 1.18 2.38 1.22 2.47 1.17 2.42 1.19 18.98 0.1508

89 5 1.89 1.18 1.77 1.29 1.98 1.19 1.88 1.22 18.91 0.1233

89 6 1.58 1.2 1.59 1.17 1.51 1.21 1.56 1.19 18.16 0.0985

89 7 1.24 1.04 1.21 0.91 1.26 0.94 1.24 0.96 14.4 0.064

89 8 1.17 1.02 1.23 1 1.19 1.08 1.20 1.03 13.85 0.0543

89 10 1.05 0.94 1.01 0.98 1.05 0.97 1.04 0.96 x x

89 12 0.99 0.94 0.94 0.95 0.93 0.91 0.95 0.93 x x

89 15 0.87 0.84 0.85 0.85 0.86 0.82 0.86 0.84 x x

Experiment 1 Experiment 2 Experiment 3

150/75 Argon (Single tracks meaured using callipers)

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

110 0.5 3.4 1.77 3.37 1.82 3.45 1.82 3.41 1.80 21.05 0.4984

110 1 3.2 1.60 3.22 1.58 3.18 1.7 3.20 1.63 19.83 0.7348

110 2 2.85 1.73 2.86 1.78 2.82 1.79 2.84 1.77 19.67 0.45

110 3 2.97 1.55 2.91 1.62 2.84 1.51 2.91 1.56 19.21 0.2957

110 4 2.71 1.3 2.65 1.24 2.67 1.41 2.68 1.32 19.29 0.2226

110 5 2.12 1.42 2.2 1.38 2.24 1.39 2.19 1.40 18.44 0.1795

110 6 1.65 1.24 1.65 1.23 1.68 1.3 1.66 1.26 18.07 0.149

110 7 1.42 1.17 1.41 1.14 1.47 1.11 1.43 1.14 14.74 0.098

110 8 1.4 1.1 1.33 1.11 1.39 1.21 1.37 1.14 18.05 0.1044

110 10 1.18 0.99 1.13 1.08 1.18 1.07 1.16 1.05 13.98 0.06

110 12 1.11 0.86 1.12 0.91 1.09 0.9 1.11 0.89 x x

110 15 0.98 0.78 1.02 0.78 1.05 0.76 1.02 0.77 x x

Experiment 1 Experiment 2 Experiment 3

150/75 Argon (Single tracks meaured using callipers)
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Table D 42 

 

 

 

 

 

 

Table D 43 

 

 

 

 

 

 

Table D 44 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

162 0.5 4.3 2.18 4.15 2.09 4.45 2.25 4.30 2.17 20.88 0.6277

162 1 4.11 3.79 4.34 3.89 4.22 4.08 4.22 3.92 19.82 1.2682

162 2 3.63 2.63 3.69 2.51 3.51 2.54 3.61 2.56 11.71 0.4073

162 3 3.51 2.24 3.38 2.4 3.4 2.41 3.43 2.35 9.14 0.2006

162 4 3.08 1.65 2.97 1.55 3.08 1.61 3.04 1.60 18.75 0.307

162 5 2.35 1.81 2.41 1.77 2.4 1.85 2.39 1.81 18.73 0.2468

162 6 1.98 1.45 1.91 1.28 2.02 1.32 1.97 1.35 18.45 0.2075

162 7 1.49 1.21 1.55 1.18 1.42 1.28 1.49 1.22 18.99 0.1722

162 8 1.38 1.15 1.45 1.25 1.44 1.18 1.42 1.19 19.02 0.1467

162 10 1.44 1.19 1.38 1.08 1.36 1.29 1.39 1.19 12.78 0.0786

162 12 1.37 1.08 1.33 1.05 1.32 1.07 1.34 1.07 x x

162 15 1.22 0.92 1.18 0.95 1.15 0.93 1.18 0.93 x x

Experiment 1 Experiment 2 Experiment 3

150/75 Argon (Single tracks meaured using callipers)

 

Table D 45 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

170 0.5 4.28 2.15 4.36 2.21 4.3 2.2 4.31 2.19 19.3 0.8676

170 1 3.98 3.68 4.2 4.21 4.11 4.28 4.10 4.06 21.2 1.387

170 2 3.22 3.4 3.38 3.59 3.35 3.12 3.32 3.37 6.74 0.24775934

170 3 2.97 2.41 2.91 2.52 3.09 2.59 2.99 2.51 5.55 0.138927505

170 4 2.68 2.05 2.61 2.06 2.63 2.17 2.64 2.09 7.12 0.134621525

170 5 2.47 1.66 2.42 1.58 2.56 1.48 2.48 1.57 8.22 0.124343598

170 6 2.05 1.31 2.11 1.39 2.09 1.28 2.08 1.33 19.29 0.237

170 7 1.66 1.21 1.71 1.25 1.71 1.24 1.69 1.23 18.36 0.1925

170 8 1.54 1.09 1.5 1.11 1.59 1.19 1.54 1.13 18.8 0.1684

170 10 1.35 1.05 1.44 1.11 1.39 1.15 1.39 1.10 18.23 0.1272

170 12 1.26 0.96 1.25 0.99 1.18 1.02 1.23 0.99 x x

170 15 1.14 0.84 1.11 0.83 1.11 0.84 1.12 0.84 x x

Experiment 1 Experiment 2 Experiment 3

150/75 Argon (Single tracks meaured using callipers)

 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

125 0.5 3.64 1.85 3.58 1.84 3.68 1.83 3.63 1.84 21.13 0.554

125 1 3.41 2.38 3.39 2.36 3.37 2.3 3.39 2.35 20.02 0.8674

125 2 3.18 2.28 3.02 2.15 3.08 2.18 3.09 2.20 19.09 0.523

125 3 2.95 1.87 2.84 1.81 2.97 1.89 2.92 1.86 19.28 0.3353

125 4 2.64 1.6 2.42 1.58 2.61 1.42 2.56 1.53 18.33 0.2238

125 5 2.19 1.53 2.25 1.3 2.21 1.25 2.22 1.36 15.14 0.1506

125 6 1.74 1.42 1.68 1.4 1.62 1.22 1.68 1.35 18.2 0.1491

125 7 1.45 1.29 1.4 1.21 1.38 1.25 1.41 1.25 16.33 0.1179

125 8 1.38 1.11 1.45 1.16 1.36 1.08 1.40 1.12 12.92 0.0843

125 10 1.31 1.02 1.29 0.99 1.3 0.98 1.30 1.00 x x

125 12 1.25 0.91 1.18 0.86 1.18 0.88 1.20 0.88 x x

125 15 1.12 0.86 1.1 0.87 1.07 0.83 1.10 0.85 x x

Experiment 1 Experiment 2 Experiment 3

150/75 Argon (Single tracks meaured using callipers)

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

143 0.5 3.9 2 4.02 1.96 3.91 1.94 3.94 1.97 32.24 0.9587

143 1 3.62 2.7 3.58 2.61 3.64 2.8 3.61 2.70 30.53 1.5807

143 2 3.1 2.25 3.18 2.19 3.17 2.18 3.15 2.21 30.66 1.3643

143 3 2.99 1.85 2.95 1.97 3.08 1.96 3.01 1.93 31.3 0.6271

143 4 2.51 1.9 2.45 1.87 2.44 1.82 2.47 1.86 23.66 0.9383

143 5 1.91 1.41 1.84 1.48 1.82 1.52 1.86 1.47 28.72 0.5845

143 6 1.6 1.44 1.78 1.52 1.66 1.41 1.68 1.46 28.74 0.2966

143 7 1.42 1.27 1.34 1.28 1.5 1.33 1.42 1.29 28.46 0.2322

143 8 1.3 1.12 1.41 1.15 1.31 1.2 1.34 1.16 9.18 0.0621

143 10 1.08 0.9 1.01 0.95 1.13 0.88 1.07 0.91 7.11 0.0422

143 12 0.97 0.79 0.95 0.82 0.92 0.77 0.95 0.79 x x

143 15 0.87 0.72 0.85 0.74 0.82 0.69 0.85 0.72 x x

Experiment 1 Experiment 2 Experiment 3

150/75 Argon (Single tracks meaured using callipers)
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D2.3 75/38 Powder Batch 

Table D 46 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

16 0.5 1.88 0.71 1.92 0.74 1.91 0.73 1.90 0.73 20.44 0.0638

16 1 1.55 0.61 1.59 0.62 1.6 0.59 1.58 0.61 19.73 0.0444

16 2 1.41 0.51 1.4 0.5 1.34 0.54 1.38 0.52 x x

16 3 1.23 0.55 1.24 0.54 1.27 0.54 1.25 0.54 x x

16 4 1.17 0.51 1.2 0.5 1.2 0.5 1.19 0.50 x x

16 5 1.14 0.46 1.08 0.47 1.08 0.47 1.10 0.47

16 6 1.03 0.44 1.02 0.47 1.02 0.47 1.02 0.46

75/38 Argon (Single tracks meaured using callipers)

Experiment 1 Experiment 2 Experiment 3

 

Table D 47 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

32 0.5 2.55 0.93 2.54 0.95 2.55 0.93 2.55 0.94 19.1 0.1383

32 1 2.31 0.79 2.36 0.77 2.38 0.77 2.35 0.78 19.89 0.1079

32 2 2.14 0.61 2.1 0.65 2.08 0.66 2.11 0.64 19.39 0.0683

32 3 1.9 0.63 1.93 0.64 1.93 0.63 1.92 0.63 19.31 0.0538

32 4 1.82 0.6 1.79 0.59 1.74 0.63 1.78 0.61 19.39 0.0459

32 5 1.66 0.57 1.66 0.59 1.66 0.56 1.66 0.57 11.15 0.0202

32 6 1.41 0.57 1.41 0.55 1.46 0.56 1.43 0.56 x x

32 7 1.34 0.52 1.33 0.53 1.39 0.54 1.35 0.53

32 8 1.21 0.54 1.22 0.55 1.22 0.55 1.22 0.55

32 10 1.16 0.48 1.16 0.47 1.17 0.53 1.16 0.49

75/38 Argon (Single tracks meaured using callipers)

Experiment 1 Cross Section Pics Experiment 3

 

Table D 48 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

58 0.5 3.24 1.01 3.26 1.07 3.26 1.05 3.25 1.04 20.57 0.2614

58 1 3.1 1.16 3.16 1.17 3.16 1.2 3.14 1.18 20.63 0.2612

58 2 2.69 0.73 2.69 0.77 2.77 0.74 2.72 0.75 19.55 0.1459

58 3 2.07 1.17 2.13 1.18 2.1 1.24 2.10 1.20 17.23 0.1566

58 4 1.93 1.15 1.92 1.15 1.92 1.1 1.92 1.13 18.51 0.1245

58 5 1.74 0.9 1.75 0.93 1.72 0.98 1.74 0.94 19.1 0.095

58 6 1.45 0.82 1.44 0.81 1.47 0.83 1.45 0.82 18.85 0.0786

58 7 1.7 0.62 1.7 0.66 1.64 0.68 1.68 0.65 11.3 0.0427

58 8 1.6 0.62 1.6 0.64 1.72 0.61 1.64 0.62 19.2 0.0587

Experiment 1 Experiment 2 Experiment 3

75/38 Argon (Single tracks meaured using callipers)

 

Table D 49 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

77 0.5 3.61 1.10 3.82 1.2 3.7 1.14 3.71 1.15 20.2 0.3256

77 1 3.62 1.24 3.39 1.33 3.48 1.36 3.50 1.31 19.79 0.3139

77 2 2.95 1.14 3.12 1.16 3.09 1.27 3.05 1.19 5.28 0.0714

77 3 2.24 0.99 2.51 1.09 2.6 1.16 2.45 1.08 7.22 0.076

77 4 2.38 1.13 2.3 0.98 2.04 1.08 2.24 1.06 6.33 0.0485

77 5 2.09 0.75 1.97 0.91 2.18 0.8 2.08 0.82 9.52 0.0526

77 6 1.92 0.66 1.99 0.78 1.78 0.74 1.90 0.73 18.93 0.0934

77 7 1.9 0.74 1.88 0.72 1.98 0.71 1.92 0.72 19.17 0.0784

77 8 1.68 0.71 1.68 0.7 1.77 0.7 1.71 0.70 17.79 0.0685

77 10 1.66 0.67 1.67 0.68 1.63 0.68 1.65 0.68 18.91 0.0559

77 12 1.61 0.71 1.65 0.71 1.68 0.69 1.65 0.70 15.47 0.0382

Experiment 1 Experiment 2 Experiment 3

75/38 Argon (Single tracks meaured using callipers)
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Table D 50 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

89 0.5 3.81 1.41 4.22 1.48 4.11 1.59 4.05 1.49 19.77 0.5088

89 1 3.21 1.39 3.58 1.35 3.4 1.55 3.40 1.43 19.95 0.5084

89 2 2.51 1.06 2.59 1.15 2.32 1.11 2.47 1.11 18.76 0.3479

89 3 2.21 1.09 2.29 0.99 2.42 1.02 2.31 1.03 18.18 0.2332

89 4 2.32 0.92 2.15 0.96 2.14 0.88 2.20 0.92 19.01 0.1899

89 5 2.02 1.05 2.08 1.08 2.14 1.01 2.08 1.05 19.04 0.1483

89 6 2.06 0.99 2.01 0.98 1.92 0.96 2.00 0.98 18.92 0.129

89 7 1.46 1 1.49 1.02 1.32 1.01 1.42 1.01 15.1 0.0879

89 8 1.33 0.72 1.24 0.83 1.42 0.81 1.33 0.79 18.11 0.0969

89 10 1.3 0.71 1.22 0.79 1.36 0.83 1.29 0.78 13.63 0.0556

Experiment 1 Experiment 2 Experiment 3

75/38 Argon (Single tracks meaured using callipers)

 

Table D 51 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

110 0.5 4.51 1.52 5.12 1.88 4.68 1.63 4.77 1.68 21.12 0.7511

110 1 4.27 2.25 3.42 1.86 4.18 2.11 3.96 2.07 19.67 0.7443

110 2 2.77 1.77 2.71 1.86 2.38 1.54 2.62 1.72 19.63 0.467

110 3 2.62 1.49 2.31 1.41 2.71 1.58 2.55 1.49 19.34 0.3225

110 4 2.49 1.18 2.41 1.16 2.42 1.15 2.44 1.16 14.22 0.19669

110 5 2.06 1.12 2.01 1.19 1.89 1.1 1.99 1.14 11.11 0.13011

110 6 2.14 1.07 1.99 1.01 2.07 1.11 2.07 1.06 8.88 0.08161

110 7 1.93 1.07 1.87 1.05 2.01 1.1 1.94 1.07 5.67 0.04833

110 8 1.75 0.99 1.99 0.84 2.05 1.03 1.93 0.95 4.66 0.03073

110 10 2 0.77 2.06 0.79 2.08 0.77 2.05 0.78 4.1 0.01788

Experiment 1 Experiment 2 Experiment 3

75/38 Argon (Single tracks meaured using callipers)

 

Table D 52 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

125 0.5 4.51 2.66 5.21 2.72 4.82 2.98 4.85 2.79 21.11 1.1208

125 1 3.77 2.59 3.88 2.61 4.21 2.38 3.95 2.53 20.15 0.8806

125 2 2.71 1.79 2.93 2.1 2.48 2.1 2.71 2.00 19.76 0.5299

125 3 2.63 1.59 2.54 1.53 2.41 1.43 2.53 1.52 18.75 0.3716

125 4 2.24 1.47 2.38 1.48 2.39 1.56 2.34 1.50 19.45 0.2947

125 5 2.29 1.43 2.21 1.48 2.38 1.4 2.29 1.44 9.12 0.11832

125 6 2.21 1.3 2.29 1.38 2.26 1.34 2.25 1.34 8.62 0.09072

125 7 2.21 1.22 2.29 1.29 2.19 1.3 2.23 1.27 5.77 0.05398

125 8 1.88 1.01 2.11 1.07 2.09 1.06 2.03 1.05 7.22 0.05921

125 10 1.66 1.31 1.69 1.32 1.75 1.32 1.70 1.32 3.55 0.02309

Experiment 1 Experiment 2 Experiment 3

75/38 Argon (Single tracks meaured using callipers)

 

Table D 53 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

143 0.5 4.89 3.62 5.41 3.59 5.32 4.31 5.21 3.84 21.23 1.6019

143 1 3.55 3.02 4.12 3.45 4.53 3.55 4.07 3.34 20.24 1.2337

143 2 2.77 2.55 3.12 2.33 3.21 2.39 3.03 2.42 18.83 0.6552

143 3 2.66 1.99 2.33 1.99 2.62 1.67 2.54 1.88 6.42 0.14813

143 4 2.19 1.51 2.49 1.59 2.24 1.68 2.31 1.59 5.98 0.10509

143 5 2.29 1.44 2.29 1.35 2.21 1.51 2.26 1.43 5.36 0.07766

143 6 2.37 1.33 2.39 1.37 2.44 1.36 2.40 1.35 4.22 0.05231

Experiment 1 Experiment 2 Experiment 3

75/38 Argon (Single tracks meaured using callipers)
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Table D 54 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

162 0.5 4.72 3.46 5.56 3.12 5 3.39 5.09 3.32 20.72 1.5814

162 1 4.29 3.21 4.42 3.11 4.03 3.49 4.25 3.27 20 1.2689

162 2 3.1 2.32 3.39 2.36 3.12 2.14 3.20 2.27 19.88 0.6649

162 3 2.77 1.61 2.79 1.69 2.59 1.75 2.72 1.68 7.22 0.1735

162 4 2.44 1.32 2.45 1.51 2.34 1.47 2.41 1.43 6.66 0.1230

162 5 2.22 1.52 2.47 1.41 2.3 1.44 2.33 1.46 8.13 0.1319

162 6 2.02 1.5 2.01 1.5 1.86 1.56 1.96 1.52 5.66 0.0745

162 7 2.11 1.33 2.12 1.32 2.17 1.31 2.13 1.32 4.33 0.0477

162 8 2.15 1.28 2.15 1.32 2.15 1.33 2.15 1.31 6.02 0.0592

Experiment 1 Experiment 2 Experiment 3

75/38 Argon (Single tracks meaured using callipers)

 

D2.4 -38 Powder Batch 

Table D 55 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

16 0.5 2.14 0.77 2.1 0.79 2.08 0.77 2.11 0.78 16.41 0.0682

16 1 1.88 0.66 1.94 0.66 1.93 0.68 1.92 0.67 15.23 0.0562

16 2 1.77 0.66 1.71 0.58 1.76 0.57 1.75 0.60 15.28 0.0421

16 3 1.55 0.53 1.61 0.51 1.57 0.54 1.58 0.53 15.83 0.0297

16 4 1.38 0.51 1.39 0.52 1.39 0.52 1.39 0.52 14.64 0.0241

16 5 1.23 0.49 1.23 0.5 1.21 0.5 1.22 0.50 13.55 0.0124

16 6 1.07 0.43 1.09 0.44 1.11 0.45 1.09 0.44 14.21 0.0118

38 Argon (Single tracks meaured using callipers)

Experiment 1 Cross Section Pics Experiment 3

 

Table D 56 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

32 0.5 3.01 1.22 3.09 1.26 3.07 1.29 3.06 1.26 10.05 0.1248

32 1 2.71 0.9 2.72 0.92 2.74 0.91 2.72 0.91 20.22 0.1523

32 2 2.25 0.73 2.35 0.74 2.31 0.71 2.30 0.73 19.61 0.0927

32 3 2.14 0.71 2.1 0.76 2.16 0.76 2.13 0.74 19.27 0.0735

32 4 2.07 0.72 2.05 0.69 2.05 0.7 2.06 0.70 19.2 0.0533

32 5 1.75 0.7 1.74 0.7 1.76 0.7 1.75 0.70 12.38 0.0295

32 6 1.75 0.62 1.75 0.63 1.78 0.62 1.76 0.62 19.13 0.0408

38 Argon (Single tracks meaured using callipers)

Experiment 1 Cross Section Pics Experiment 3

 

Table D 57 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

58 0.5 3.96 1.69 3.99 1.63 3.91 1.61 3.95 1.64 21.14 0.4548

58 1 3.47 1.2 3.42 1.18 3.43 1.21 3.44 1.20 20.46 0.2679

58 2 3.05 0.92 3.01 0.96 2.94 0.88 3.00 0.92 20.2 0.1637

58 3 2.83 0.74 2.85 0.75 2.76 0.79 2.81 0.76 19.86 0.1207

58 4 2.71 0.69 2.72 0.69 2.71 0.67 2.71 0.68 19.7 0.1006

58 5 2.52 0.61 2.47 0.63 2.56 0.64 2.52 0.63 19.51 0.0845

58 6 2.33 0.61 2.33 0.61 2.31 0.6 2.32 0.61 19.44 0.0729

58 7 2.38 0.58 2.37 0.59 2.45 0.54 2.40 0.57 19.31 0.0717

58 8 2 0.61 2.02 0.6 2.02 0.61 2.01 0.61 18.91 0.0622

Experiment 1 Experiment 2 Experiment 3

38 Argon (Single tracks meaured using callipers)
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Table D 58 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

77 0.5 3.87 1.51 4.05 1.63 4.09 1.61 4.00 1.58 21.2 0.462

77 1 3.32 1.21 3.68 1.39 3.71 1.32 3.57 1.31 20.61 0.2951

77 2 3.03 1.39 3.31 1.42 3.35 1.25 3.23 1.35 19.82 0.2799

77 3 3.11 0.77 3.08 0.83 2.74 0.84 2.98 0.81 19.98 0.131

77 4 2.7 0.65 2.83 0.73 2.74 0.74 2.76 0.71 13.83 0.0725

77 5 2.61 0.66 2.68 0.61 2.62 0.69 2.64 0.65 19.6 0.0966

77 6 2.39 0.76 2.37 0.71 2.28 0.72 2.35 0.73 18.84 0.0998

77 7 2.35 0.55 2.39 0.51 2.42 0.65 2.39 0.57 14.24 0.0622

77 8 2.14 0.82 2.17 0.84 2.25 0.77 2.19 0.81 19.22 0.0804

Experiment 1 Experiment 2 Experiment 3

38 Argon (Single tracks meaured using callipers)

 

Table D 59 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

89 0.5 4.19 1.61 4.41 1.71 4.39 1.95 4.33 1.76 21.27 0.5736

89 1 3.92 1.21 3.61 1.14 3.68 1.48 3.74 1.28 20.79 0.3465

89 2 2.98 1.69 3.14 1.81 3.45 2.08 3.19 1.86 20.1 0.3555

89 3 2.65 1.47 2.79 1.58 2.51 1.34 2.65 1.46 19.53 0.2472

89 4 2.52 0.89 2.34 1.15 2.9 1.04 2.59 1.03 19.28 0.1358

89 5 2.35 0.96 2.67 0.95 2.5 0.94 2.51 0.95 18.45 0.1285

89 6 2.45 0.93 2.45 0.88 2.34 0.92 2.41 0.91 19.15 0.1189

89 7 2.62 0.98 2.64 1.03 2.68 1 2.65 1.00 15.66 0.077

Experiment 1 Experiment 2 Experiment 3

38 Argon (Single tracks meaured using callipers)

 

Table D 60 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

110 0.5 4.25 2.25 5.02 2.31 5.1 2.84 4.79 2.47 21.75 0.7917

110 1 4.18 3.38 4.35 3.52 4.67 3.17 4.40 3.36 21.02 0.6251

110 2 3.59 2.59 3.5 2.84 3.45 2.91 3.51 2.78 20 0.5668

110 3 3.19 2.67 3.12 2.71 3.4 2.47 3.24 2.62 19.54 0.4192

110 4 2.96 2.51 3.21 2.63 3.32 2.6 3.16 2.58 18.32 0.3204

110 5 2.64 2.09 2.58 2.12 2.6 2.22 2.61 2.14 4.33 0.0587

110 6 2.54 2.39 2.56 2.52 2.57 2.59 2.56 2.50 4.11 0.0487

Experiment 1 Experiment 2 Experiment 3

38 Argon (Single tracks meaured using callipers)

 

Table D 61 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

125 0.5 4.22 1.97 4.67 2.11 4.84 2.53 4.58 2.20 21.95 0.7619

125 1 3.02 2.92 3.28 3.01 3.77 2.64 3.36 2.86 20.23 0.6317

125 2 3.99 1.47 4.1 1.65 4.35 1.71 4.15 1.61 21.07 0.4707

125 3 3.39 2.31 3.16 2.26 3.42 2.32 3.32 2.30 18.8 0.454

125 4 2.55 2.72 2.51 2.59 2.74 2.62 2.60 2.64 18.29 0.3583

125 5 2.77 2.33 2.68 2.43 2.68 2.45 2.71 2.40 19.15 0.2343

125 6 2.92 2.14 2.81 2.26 3 2.25 2.91 2.22 6.32 0.0671

125 7 2.23 1.72 2.2 1.71 2.18 1.72 2.20 1.72 6 0.0417

Experiment 1 Experiment 2 Experiment 3

38 Argon (Single tracks meaured using callipers)

 

Table D 62 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

143 0.5 3.99 2.33 5.14 2.48 5.34 3.1 4.82 2.64 21.81 0.8399

143 1 4.12 2.11 4.89 2.05 4.42 1.74 4.48 1.97 20.87 0.5639

143 2 3.54 3.02 4.01 3.09 4.19 3.28 3.91 3.13 20.3 0.6909

143 3 3.21 2.7 3.25 2.72 3.43 2.83 3.30 2.75 5.15 0.1347

143 4 3.23 2.84 2.83 2.59 2.66 2.49 2.91 2.64 4.76 0.061

143 5 2.39 2.45 2.68 2.38 2.77 2.36 2.61 2.40 4 0.0463

143 6 2.56 2.3 2.55 2.34 2.38 2.47 2.50 2.37 3.89 0.0478

143 7 2.51 2.11 2.56 2.11 2.57 2.19 2.55 2.14 5.7 0.0648

Experiment 1 Experiment 2 Experiment 3

38 Argon (Single tracks meaured using callipers)
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Table D 63 

Laser Scan Average Average Track Track 

Power Speed Width Depth Width Depth Width Depth Width Depth Length Mass

(W) (mm/s) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (grams)

162 0.5 4.79 3.95 5.37 4.12 5.62 3.57 5.26 3.88 22.06 1.1991

162 1 4.87 3.4 4.82 3.77 4.35 3.28 4.68 3.48 21.24 0.8984

162 2 3.77 3.18 4.17 3.22 4.1 3.39 4.01 3.26 20.16 0.8256

162 3 3.31 2.62 3.49 2.68 3.44 2.53 3.41 2.61 20.03 0.5356

162 4 3.14 2.59 3.07 2.56 3.09 2.51 3.10 2.55 19.2 0.4345

162 5 1.92 2.5 1.93 2.5 1.86 2.5 1.90 2.50 8.25 0.1412

162 6 2.21 2.36 2.2 2.38 2.2 2.4 2.20 2.38 6.32 0.0984

Experiment 1 Experiment 2 Experiment 3

38 Argon (Single tracks meaured using callipers)
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Appendix E 

11 Powder Density Data and Particle Grain Size Measurements 

E1 Powder Bed Density Data 
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E2 Particle Grain Size Measurements  

Table E4:  Particle grain size measurement data (set 1) 

Table E5:  Particle grain size measurement data (set 2) 

 

 

 

 

 

 

 

Table E6:  Particle grain size measurement data (set 3) 

 

 

 

 

 

 

1 2 3 Average

269 269 271 269.7

264 264 264 264.0

258 258 257 257.7

224 221 226 223.7

215 211 209 211.7

211 209 207 209.0

198 195 195 196.0

174 169 160 167.7

168 165 168 167.0

166 166 162 164.7

141 136 134 137.0

122 125 128 125.0

115 114 114 114.3

101 101 106 102.7

72 71 69 70.7

71 71 73 71.7

52 51 55 52.7

48 52 52 50.7

44 44 47 45.0

Particle Size (microns)     Grain size  (microns)Batch

Sample set 1

2.4

1.9

1.6

1.3

6.1

5.7

5.4

5.2

Particle diameter and grain size measurements

7.3

7.2

7.0

6.7

6.6

6.2

5

5.1

4.8

4.1

2.9

-300 + 150

-150 + 75

-75 + 38

1 2 3 Average

274 274 273 273.7

262 265 263 263.3

258 258 259 258.3

255 252 255 254.0

238 238 238 238.0

222 224 221 222.3

202 201 198 200.3

190 188 191 189.7

176 172 177 175.0

165 167 164 165.3

128 129 130 129.0

114 114 118 115.3

105 106 109 106.7

99 92 98 96.3

82 86 85 84.3

65 61 61 62.3

59 63 57 59.7

48 42 43 44.3

46 48 42 45.3

Particle Size (microns)     Grain size  (microns)

5.3

Batch

4.9

4.2

3.2

2.4

6.8

6.6

6.1

6.2

5.9

1.0

2.0

1.5

1.9

Particle diameter and grain size measurements

Sample set 1

7.2

7.0

6.8

6.9

5.5

-300 + 150

-150 + 75

-75 + 38

1 2 3 Average

268 268 268 268.0

259 259 258 258.7

242 251 252 248.3

238 231 232 233.7

205 206 206 205.7

200 201 201 200.7

198 192 192 194.0

160 160 161 160.3

181 182 183 182.0

147 148 149 148.0

138 135 135 136.0

118 120 121 119.7

111 111 113 111.7

95 96 98 96.3

82 81 78 80.3

68 68 67 67.7

52 51 47 50.0

47 54 54 51.7

40 36 37 37.7

Particle Size (microns)     Grain size  (microns)Batch

Particle diameter and grain size measurements

Sample set 1

6.9

7.2

7

7

6.6

6.3

5.9

5.6

5.6

4.8

5.1

5

4.6

3.7

3.2

2.1

1.3

1.1

0.9

-300 + 150

-150 + 75

-75 + 38


