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Abstract 

 

This thesis proposes a solution to the problem motivating Albert Einstein‘s question, 

‗How can it be that mathematics … is so admirably appropriate to the objects of 

reality?‘; the problem of mathematical applicability. It considers Mark Steiner‘s 

anthropocentric non-naturalist attitude to the problem in the light of Hartry Field‘s 

fictionalism, contending that Field‘s proposed solution, though prima facie naturalist 

in character, in fact inherits non-naturalist commitments which were problematic in 

anthropocentric solutions. Specifically, Field‘s solution retains a view of the 

grammar of our mathematical expressions as based on the model of object-and-

designation. However, Field finds importance in the notion that what 

mathematicians know is non-propositional in the sense of being concerned with 

inference rules rather than assertions of existence, and a way of exorcising the rogue 

grammatical commitment in question from the fictionalist account can develop from 

a focus on this aspect of our talk about mathematics tout court rather than just 

epistemologically. The view that emerges when we do this, in the first instance 

enables a naturalistic and wholly adequate solution to the problem of mathematical 

applicability, and in the second instance is precisely that articulated by Ludwig  

Wittgenstein. Einstein‘s question seems pressing only if we understand the 

applicability of mathematics on the model of a kind of ‗fit‘ between two realities, the 

mathematical and the physical/empirical. Once we attain an overview of the 

grammar of our mathematical talk and thereby recognise it for what it is, the 

question of fit between mathematics and the world can be seen to be empty. The 

importance of the notion of an overview of the problem and the general 

philosophical terrain in which it sits chimes with Wittgenstein‘s own attitude to the 

requirement for philosophy of achieving what he calls an ‗übersichtliche 

Darstellung‘.  
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Introduction 

 

In an address to the Prussian academy of Sciences in Berlin in 1921, Albert Einstein 

famously asked the question, ‗How can it be that mathematics … is so admirably 

appropriate to the objects of reality?‘ (1922, p. 28) This thesis proposes a solution to 

the problem motivating Einstein‘s question; the problem of mathematical 

applicability.  

I argue that Einstein‘s question seems pressing only if we understand the 

applicability of mathematics on the model of a kind of ‗fit‘ between two realities, the 

mathematical and the physical/empirical. This model depends on a particular view 

of the grammar of mathematical sentences, namely that such sentences express 

propositions or judgements about mathematical reality. However, I will suggest, a 

grammatical investigation into what mathematicians say and do when practising 

mathematics (rather than talking about mathematics) enables a point of view from 

which it is possible to see the sentences of mathematics as being, in an important 

sense (which will need careful clarification) not about anything at all. 

Einstein sets the problem in a particular way. Hidden by the ellipsis in the quotation 

above is the claim that mathematics is ‗… after all a product of human thought 

which is independent of experience‘, something that should tip us off about 

Einstein‘s question as a variety of Immanuel Kant‘s ‗proper problem of pure reason‘ 

(‗die eigentliche Aufgabe der reinen Vernunft‘):
1
 

… the proper problem of pure reason  is contained in the question: How are 

synthetical judgments a priori possible? (1934, p. 35) 

Regarding this ‗proper problem‘, Kant goes on to say 

… In the solution of the above problem, we … have therefore to answer the questions: 

How is pure mathematics possible?  How is pure science of nature possible? (ibid.)
2
 

Nowadays ‗pure mathematics‘ is most often taken in opposition to ‗applied 

mathematics‘, but I take Kant not to be trading in any such distinction. The question 

Kant is pointing up is that of how, given that mathematics is a priori, ‗a product of 

human thought independent of all experience‘ as Einstein had it, it is synthetic and 

hence can usefully be applied to the world – is ‗so admirably appropriate to the 

objects of reality‘.  

That is my problem, then: the problem of mathematical applicability, of explaining 

how mathematics is so useful in application to the real world. As we will see, it will 

 

                                                                            
 

1
 Reading the Critique of Pure reason is also what started me thinking about this problem, 

many years ago, which is another reason for my wanting to reference Kant here at the 

beginning. (This will be my last autobiographical detail!)  
2
 The problem, for Kant, is wider than that of simply accounting for the applicability of 

mathematics. The latter is perhaps its most important aspect, however. 
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be important for the account that I want to advance that we have a clear view of how 

the problem has developed; I will examine some other characterisations and 

expressions of this problem and situate it historically in Chapter 1. 

One way of attempting to solve the problem of mathematical applicability is to 

appeal to what we might call anthropocentric non-naturalism. See, for instance 

Steiner 1998, where he claims in conclusion that there is a 

… true ‗correspondence‘ … between the human brain and the physical world as a 

whole. The world, in other words, looks ‗user friendly‘. This is a challenge to 

naturalism. (p. 176)
3
 

I do not want to make that move. We should be wary of the implicit appeal to some 

version of ‗God organises it so‘ that such anthropocentric non-naturalism makes. 

That this view can even be considered in this context I take to suggest more the 

difficulty of the problem rather than anything we could call a solution. I will be 

referencing Steiner‘s work at several points in the thesis, although I will take it to be 

a constraint on an adequate solution to the problem of mathematical applicability 

that the solution be naturalistic in precisely the way that Steiner‘s is not. 

Steiner‘s anthropocentric non-naturalism can seem the only possible solution to the 

problem because, as the quotation above makes clear, the problem seems to demand 

an explanation of the match between mathematical objects of thought and the natural 

world. A requirement for such a match may itself be seen as deriving from some 

kind of realism about mathematics, given that it may appear that mathematics has to 

match the real world in order to apply to it.  

However, more influential than Steiner‘s ‗non-naturalism‘ about mathematics in 

recent times, particularly with regard to mathematical applicability, has been a kind 

of naturalist anti-realism about mathematics, developing within what Michael 

Friedman described as 

The first (recent) serious study of what we might call the philosophy of applied 

mathematics: the use of mathematics in empirical theories. (1981, p. 505.) 

Friedman is referring to Hartry Field‘s fictionalist philosophy of mathematics as first 

adumbrated in his seminal monograph Science Without Numbers. I will begin 

seriously to consider Field and fictionalism in Chapter 2. 

Field‘s fictionalism shows us a particular way of turning away from realism (so-

called ‗Platonism‘ of one sort or another) in the philosophy of mathematics, and 

hence of avoiding a commitment to anthropocentric non-naturalism. However, I will 

argue that Field‘s proposed solution to the problem of mathematical applicability, 

though prima facie naturalist in character, in fact inherits non-naturalist 

 

                                                                            
 

3
 In his 2005, Steiner explains his non-naturalism as a genre of ‗Pythagoreanism‘; see 

p. 648. The moral is the same as in his earlier work, I take it. ‗The world is made of numbers 

[or matrices of (complex) numbers]‘ (ibid.) seems as much a sidestep – as little a solution of 

the problem of mathematical applicability – as ‗God makes it happen‘.  
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commitments which were problematic in anthropocentric solutions. Specifically, 

Field‘s solution retains a view of the grammar of our mathematical expressions as 

based on the model of object-and-designation. This observation will lead me to ask 

whether there is a way of rejecting this commitment. 

Apart from the turn away from mathematical realism, Field finds an importance in 

the notion that what mathematicians know is non-propositional in the sense of being 

concerned with inference rules rather than involving assertions of existence. I argue 

that a way of exorcising the rogue grammatical commitment in question from 

Field‘s account can develop from a focus on this aspect of our talk about 

mathematics tout court rather than just epistemologically. The view that emerges 

when we do this, in the first instance enables a naturalistic and wholly adequate 

solution to the problem of mathematical applicability, and in the second instance is 

precisely that which is articulated by Wittgenstein in his later writings. I argue that 

once we attain an overview of the grammar of our mathematical talk and thereby 

recognise it for what it is, the question of fit between mathematics and the world (or 

between mind and world) can be seen to be empty. 

This notion of ‗recognising it for what it is‘, and of gaining an ‗overview‘ can be 

misleading. The claim here is not that we should, for instance, adopt a semantic 

theory about mathematical discourse that takes mathematical assertions as 

expressing rules rather than existential commitment. It is part of my argument that 

the debate between realism and anti-realism in the philosophy of mathematics is not 

to be ended by filling putative gaps in the logical space of available theories in such 

a manner. Rather, I claim, a perspicuous overview
4
 of the philosophical terrain in 

question is just in itself what is needed. Such an overview resists summary 

expression by its very nature, but my hope is that this thesis will epitomise a manner 

of attaining one such.  

I am not going to expatiate here in any detail on Wittgenstein‘s well-known (and 

still controversial) remarks about the nature of philosophy. The consequences of 

some of these may – I hope they will – come to light as we proceed. However, there 

 

                                                                            
 

4
 An ‗übersichtliche Darstellung‘, see Philosophical Investigations §122 for instance. The 

notion Wittgenstein is putting in play here is subtle and somewhat tricky; its translation is 

controversial, as is its import. Anscombe in her translation has ‗perspicuous representation‘; 

Hacker and Schulte in their more recent translation go for ‗surveyable presentation‘; 

Kuusela (2008) writes of ‗perspicuous presentation‘. For myself, I want to accent the 

‗overview‘. It is the lack of such that Wittgenstein stresses in §122 when he says ‗wir … 

nicht übersehen‘. ‗We do not oversee [the use of our words]‘ is connotationally clumsy in 

English, but the emphasis is plain.  I am not going to enter further into translational 

controversy except to assert that whatever the translation, Kuusela‘s gloss on the notion and 

its place in Wittgenstein‘s philosophy is more or less correct. (See Kuusela 2008 pp. 228-

238.) What I aim for in this thesis can be seen, I hope, as an example of what Wittgenstein 

meant. (There is a fairly thorough investigation of this notion of an overview (Übersicht) 

and its historical genesis in Glock 1996 pp. 278-283.) 
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is one specific aspect of Wittgenstein‘s methodology facilitating such an overview I 

want to highlight and adopt. According to his pupil Maurice O‘Connor Drury, 

Wittgenstein considered as a motto for Philosophical Investigations the line from 

King Lear, ‗I‘ll teach you differences‘ (Fann 1978, p. 69) – emphasising what he 

saw as a contrast between his own emphasis in philosophy on gaining a clear 

overview including particularities and the ‗craving for generality‘ he saw as at the 

root of many of our philosophical problems. (BB p. 17 etc.) There are two specific 

‗differences‘ of this kind that figure prominently in the thesis as a whole. 

First – this is what I investigate and develop in Chapter 3 – I want to look at the 

difference between what Wittgenstein  refers to as the ‗determination of a concept‘ 

as opposed to the discovery of ‗a fact of nature‘.
 
(RFM p. 131)

5
 This is a distinction 

that is germane to the development of our number system, and particularly with 

regard to mathematical notions of infinity. The idea of infinity in mathematics is one 

with perennial interest for the philosopher; it is central for much of the philosophy of 

mathematics as exemplar and generator of many of the perceived problems therein. 

A clear overview of the development of ideas of numbers in general and transfinite 

numbers in particular will help undermine the picture of our mathematical discourse 

that is responsible for the demand to explain the fit between mathematics and the 

world. 

Chapter 3, then, argues for due importance to be given to the notion of mathematics 

as proceeding via determination of concepts rather than common-or-garden 

discovery of facts. However, there is an immediate apparent difficulty with viewing 

mathematical development in this way. This connects with what I mentioned above 

as something shared by Field and Wittgenstein – the notion of mathematics as in 

some sense involved with rules of inference rather than assertions.
6
 The difficulty 

lies in the way in which such a focus away from discovery might seem to lead to 

some kind of conventionalism about mathematics and logic. The risk is that 

mathematics and logic might thereby lose their necessity. I deal with this in 

Chapter 4, arguing, along with Barry Stroud, that we can, with Wittgenstein, avoid 

the kind of conventionalism he is saddled with by philosophers such as Michael 

Dummett through paying careful attention to notions of sense. In brief, Stroud 

explains Wittgenstein as saying that the impossibility of its not being the case that p 

when p is necessary is based on the lack of sense we give to its not being the case 

that p.  

The idea of sense or lack thereof turns out to be important also for the second of the 

specific ‗differences‘ I mentioned above. In his Lectures on the Foundations of 

Mathematics Wittgenstein distinguishes two different ways in which we might try to 

make sense of mathematics being ‗responsible‘, as he puts it, to ‗a reality‘. (LFM, 
 

                                                                            
 

5
 The distinction has aspects worth consideration outwith the philosophy of mathematics, as 

we will see. I will not develop these in any detail, though. 
6
 As we saw, for Field this is an epistemological matter; much less so for Wittgenstein. This 

will all need careful unpacking. 
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xxv, passim.) Wittgenstein‘s distinction is close to a distinction associated with 

Rudolf Carnap, between ‗internal‘ and ‗external‘ questions of existence. (Carnap 

1956, pp. 205ff.) In Chapter 5, I develop and expand on this distinction, with 

reference to its use in a recent attack on mathematical fictionalism by John Burgess 

and a defence thereto by Mary Leng. This emphasis on the ‗two ways‘ in which 

mathematics might be said to be ‗responsible‘ in the light of this recent controversy 

emphasises for us how the ‗perspicuous overview‘ we have gained amounts to a 

solution to Kant‘s (and Einstein‘s etc.) ‗proper problem‘ of the applicability of 

mathematics.  

The ‗overview‘, and hence the solution I claim to have reached, is further aided by a 

reference back to Steiner‘s characterisation of the problem that I mentioned above, 

using a particular example of his which, he claims, shows how 

Wittgenstein‘s account of mathematical applicability was seriously lacking. 

(Steiner 2009, p. 26)  

In confounding this claim of Steiner and finding the wherewithal in the overview we 

have developed to see the problem aright, I claim finally to have solved the problem 

of mathematical applicability. 

 

(It is my hope that the thesis be understandable without advanced mathematical 

knowledge on the part of the reader. Some grasp of key concepts, however, will be 

useful for the overview I claim can be reached. So I end with two short 

mathematical Appendices explaining some basic notions for the non-mathematical 

philosopher.) 
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Chapter 1  The Problem Posed 

 

1.1 Generalities 

The idea that there are philosophical problems of mathematical applicability, in 

particular problems to do with the relationship between mathematics and the 

physical world, is not new. Surprise has been often expressed at the fact that 

mathematics is so fruitful – so useful in its applicability to physics. Often, indeed, 

the applicability of mathematics is seen as some sort of mystery, or ‗enigma‘, as 

Einstein called it, for instance, in the address I mentioned above in the Introduction. 

Einstein went on to remark that this ‗enigma … in all ages has agitated enquiring 

minds.‘(1922, p. 28) 

This is my starting point. To begin to get the flavour of the enigma, it will be useful 

to consider several specific – and varied – examples of mathematical applicability, 

beginning with ancient history and continuing through to the present day. Such 

examples – and although I hope to offer a good selection, there could be many more 

– may be seen as evidence of the ubiquity of the ‗enigma‘ as well as giving us a 

necessary part of the overview we seek.  

Further to these specific examples, soon I am going to be quoting some cris de coeur 

– one at some length – from distinguished (non-philosopher) scientists about the 

way in which they are surprised, even sometimes explicitly amazed, that 

mathematics applies to physical science. By itself that may not be enough to 

convince us that an explanation is required. It is at the very least indicative, though.  

But we, non-scientists or mathematicians, perhaps: how surprised should we be at 

the fact of mathematical applicability? It may be that we have become so used to the 

ubiquity of mathematical methods in the physical sciences, from the outside as it 

were, that it is difficult to feel any surprise at this. However, if we try to imagine 

ourselves in a situation in which the connection between mathematics and physics 

had yet to be made, we might see more clearly that there is something that appears to 

need explanation. 

Consider, by analogy, other human activities or pastimes. Suppose, for instance, it 

turned out that some kinds of board game – chess, say, or go, or even monopoly – 

were useful tools for understanding physical theories. Would surprise be an 

appropriate response? Indeed so: we would require, seek, an explanation. Or 

suppose a group of intellectuals to work at numerating words in some sacred texts, 

developing theories about how these numbers could be combined and so on. 

Suppose further that the resulting theories could then be used successfully to predict 

the winners of horse-races or movements of the FTSE100, say. Surprise would be an 

altogether appropriate response to such Cabbalistic applicability. There would also 

be an imperative to explain the workings of this apparent miracle, or at the very least 

(more likely, perhaps) to explain them away. 
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Now imagine a situation in which mathematics was not known to be so applicable to 

science. And suppose some group of intellectuals to work at investigating the 

properties of permutations of roots of polynomial equations, developing theories 

about how these permutations could be abstractly combined and so on. Suppose 

further that the resulting theories could be used successfully to predict properties of 

elementary sub-atomic particles, their possibilities of combination and even their 

very existence. Surprise seems an appropriate response in this case too. Once again, 

there would be an imperative in such a case to explain the workings of this apparent 

miracle. There ‗would be‘ an imperative; there is, then, such an imperative. In case it 

is not clear, this is an actual case. Group theory, developed initially in the context of 

considerations to do with roots of equations in the manner I described, has indeed 

turned out to be useful in physics in just this way.
7
 I will return to some aspects of 

this in a little more detail below. The history may in the end be not quite as brute as 

it appears on this first telling; nevertheless, the example exemplifies the prima facie 

requirement for an explanation of the apparently mysterious connection between 

mathematics and the physical world. 

So the very fact of mathematical applicability seems to need explaining. We can see 

something of a concern for the way in which mathematics applies to the world in 

earlier times than our own: Johannes Kepler, for instance, writing of how 

Geometry existed before the creation … geometry provided God with a model for the 

Creation …(Kepler 1619 IV, Ch. 1. Quoted in Koestler 1969 p. 264) 

Or, perhaps more familiarly, Galileo with his  

… book, the world … written in the language of mathematics …(Galileo 1623 p. 237) 

It may be stretching things to claim that Kepler and Galileo or their contemporaries 

found the applicability of mathematics particularly mysterious, especially given the 

religious background at the time at which they were writing. Nevertheless a concern 

with some kind of explanation of how mathematics relates to the physical world is 

evident here at the beginning of modern science. I will have a brief look further back 

in history shortly, but first I want to make the point that a feeling for the apparent  

mystery of mathematical applicability is far from unusual amongst Kepler‘s and 

Galileo‘s successors closer to our own time. 
 

                                                                            
 

7
 See, for instance, Lagrange‘s Réflexions sur la résolution algébrique des equations  in 

Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Berlin (1770,  

pp. 138-254), sections of which (including, for example, instances of what is now known as 

‗Lagrange‘s Theorem‘) amount to early work in group theory before this latter got its name. 

That the development of such determinedly a priori algebra contains clues about the 

symmetry of the electron or the existence of the omega-minus particle and the Higgs boson 

can appear magical, indeed. (I deal with some relevant aspects of electron symmetry and 

group theory below. … There is a picture of the first omega-minus track to be seen as well 

as a useful brief explanation of Gell-Man‘s ‗Eight-fold Way‘ at 

http://www.bnl.gov/bnlweb/history/Omega-minus.asp. ... The relation of the elusive Higgs 

particle to SU(2)xU(1) I leave as an exercise for the interested reader.) 
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Albert Einstein, in an address to the Prussian Academy of Science in Berlin in 1921, 

famously asked the question I mentioned in the introduction: 

How can it be that mathematics, being after all a product of human thought 

independent of all experience, is so admirably adapted to the objects of reality? 

(His answer is not quite so well known, perhaps: 

In my opinion the answer to this question is briefly thus: As far as the laws of 

mathematics refer to reality, they are not certain; and as far as they are certain, they do 

not refer to reality. (ibid.) 

– But now the same question can be raised about the relationship between Einstein‘s 

certain, non-referring laws of mathematics, and the uncertain, referring laws: how 

can it be that they are so admirably adapted one to the other? So we still have our 

apparent mystery.) 

Nor is Einstein a solitary figure amongst physicists in seeing something here that 

requires an explanation. 

Eugene Wigner claimed in his ‗The Unreasonable Effectiveness of Mathematics in 

the Natural Sciences‘ (1960), for example, 

…  that the enormous usefulness of mathematics in the natural sciences is something 

bordering on the mysterious and that there is no rational explanation for it. (p. 2) 

… And further 

… The miracle of the appropriateness of  the language of  mathematics for the 

formulation  of  the laws of physics is a wonderful gift which we neither understand 

nor deserve. (p. 14) 

Then there is Heinrich Hertz:  

One cannot escape the feeling that these mathematical formulae have an independent 

existence and intelligence of their own, and that they are wiser than we are, wiser even 

than their discoverers, that we get more out of them than was originally put into them. 

(Quoted in Steiner 1998 p. 13) 

And Steven Weinberg: 

It is positively spooky how the physicist finds that the mathematician has been there 

before him or her. (1986; quoted ibid.) 

Richard Feynman: 

I find it quite amazing that it is possible to predict what will happen by mathematics 

which is simply following rules which really have nothing to do with the original 

thing. (1992 p. 171) 

The list could be longer. As it is, it is enough of a chorus of surprise – amazement, 

even – at the fact that mathematics is just so well-suited to the task of explaining the 

workings of the world or helping us to understand physical reality that this fact 

demands to be taken seriously as a topic for philosophical investigation. However, 

as Mark Steiner has pointed out,  
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… such sentiments have either been ignored or dismissed by contemporary 

philosophers. (1998 p. 14)  

This claim may be too bold; as we will see, some contemporary philosophers do 

involve themselves with issues arising from the applicability of mathematics. Still, it 

might be suggested, the ‗dismissal‘ Steiner complains of may be well-founded. 

Steiner himself sees the problem of mathematical applicability as peculiarly central 

to philosophy per se: referencing major philosophers of the past such as Plato, 

Descartes, Spinoza, Berkeley, Kant and Mill, he goes on to claim that 

This short sample of Western philosophy illustrates that the central philosophical 

doctrines of these major philosophers were conceived in great measure to explain the 

applicability of mathematics to Nature. (Steiner 2005 p. 626)
8
  

That is a large claim and one we have to admit is not shared by ‗contemporary 

philosophers‘ in general. Pace Steiner, perhaps Einstein, Wigner and the rest of the 

chorus are just bad philosophers, whatever their credentials in other areas of thought. 

Maybe we should see their expressed concerns more in the way of a kind of 

generalised sense of wonder at the fact that the universe has the order and regularity 

it does rather than as expressing genuine philosophical concerns. Steiner thinks not, 

so much is plain. But still: does this chorus amount to anything more than a joint 

expression of a vague sense of wonder that the world is, at bottom, mathematical? I 

want to look at this idea – of the world being at bottom mathematical – a little more 

carefully.  

 

1.2 Ancient history 

Long ago, Pythagoras and his followers were very impressed by the way musical 

intervals could be expressed as simple ratios. Here is something surprising: pluck a 

taut string, then pluck the same string held down at exactly half-way along its 

length. The two notes so produced sound, to our ears, very similar – so similar, in 

fact that we often call them by the same name: Cmajor … Cmajor, or doh … doh, 

for instance. Of course, the two notes sound at what we call an octave – the most 

consonant of all harmonies. A ratio of 2:1 on a stretched string will always produce 

this harmony. Other similar simple ratios of lengths will produce other simple 

harmonies. For example, hold the string down to divide it in the ration 3:2 to obtain 

a fifth (For the non-musical: a fifth is the second most consonant interval after the 

octave. Think of the first two notes of the bugler‘s Last Post, the notes doh…soh in 

tonic solfah.) Of course the names of the harmonious intervals are somewhat 

arbitrary, being based on our European (twelve-semitone) eight note scale. By 

whatever name, though, the fifth, together with the octave and the fourth (ratio 4:3, 

 

                                                                            
 

8
 I mentioned Kant‘s characterisation of the problem of applicability in the Introduction. 

Steiner gives a brief summary of how each of the philosophers he mentions sees the 

problem, and of how each of them claims to solve it. Not all of Steiner‘s summaries are 

uncontroversial; I do agree with most of what he says at this point, however.  
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the next most consonant interval), have been the basis of musical harmony in just 

about all human cultures. We could, at this point, go on to talk of the next few 

simple integer ratios – 5:4 (major third); 6:5 (minor third) and so on. The 

consonance, though noticeable, is noticeably less than with the octave with which 

we began. 

This is all surprising. What has it to do with the notion of the world being at bottom 

mathematical, though? Well, Pythagoras, so the story goes, was stimulated by his 

study of musical intervals and harmony
9
 to conclude precisely that the world is, at 

bottom, composed of numbers. What this might mean precisely is perhaps a little 

obscure, but for our purposes now it is probably enough to gloss it as a claim to the 

effect that the physical world somehow embodies these abstract objects, the 

numbers. Further elucidation need not concern us just here: it‘s rather the impulse 

apparently given by the connection between numbers and an aspect of the 

experienced world – harmony – that I want to focus on. 

Consider knowing nothing about the physics of sound apart from what we can 

actually hear and see. The connection between the ratios of the lengths of strings on 

a musical instrument and the pure harmonies we have seen and heard to be 

associated with them might well strike us as remarkable. That‘s not enough by itself, 

to be sure, to make us think of the whole world as made up in some unspecified way 

by the numbers or ratios (whatever they might turn out to be), but, taken together 

with other instances – perhaps from applied geometry, say
10

 – of mathematics 

connecting apparently directly to an aspect of the experienced world, might we not 

be liable to express surprise at the way in which mathematics, a seemingly a priori 

intellectual exercise, manages to fit the physical world of experience so well?  

Pythagoras, we are told
11

, was the first to use the word cosmos of the whole 

universe: a use that has come down to us from the Greek. What has not survived into 

our use of the word is a particular connotation it had in Greek in Pythagoras‘ time, 

when it was used to express a kind of recognised or fitting order in what it referred 

to, be that a method of organisation of soldiers in ranks (a common use pre-

Pythagoras) or the universe itself with the particular order given it by its 

mathematical nature in Pythagoras‘ own coinage. The cosmos is an ordered world, 

in short – ordered by mathematics. 

 

                                                                            
 

9
 See Guthrie 1962 pp. 220 ff. for references. Differentiating Pythagoras the individual from 

his followers is not a simple task. Such differentiation is not important to the points I make, 

however, so I will use ‗Pythagoras‘ rather than ‗the Pythagoreans‘ etc., and ignore the point.  
10

 Or even from an interest in economic theory. Aristoxenus claimed Pythagoras‘ views 

about arithmetic to derive from an interest in finance and trade. (Guthrie op. cit.  p. 221.) 
11

 See, e.g. Guthrie op. cit. p. 208: ‗[Pythagoras] was traditionally supposed to have been the 

first to apply the name kosmos to the world, in recognition of the order that it displayed.‘ 

Guthrie (ibid. fn 1) gives a summary of the evidence for thinking this traditional supposition 

true. 
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It would be too much to pin the blame for the whole of the mystical/metaphysical 

tenor of Pythagorean thought on the simple fact that a ratio of 2:1 gives an octave. 

We might well see this simple fact, though, I am suggesting, as part of – and an 

exemplification of – the motivation for that particular tenor of thought. Take away 

any predisposition to see the world metaphysically in a Pythagorean cosmic sense, 

even, and there still seems to be something to explain, namely the fact that 

mathematics – numbers in this case – tell us about some aspect of the world that we 

had no reason to expect, prima facie, to be explicable or describable in such a simple 

numerical way. Are we surprised? Perhaps not, given our further knowledge of the 

physics of sound and wave mechanics. Did Pythagoras have a right to be surprised, 

given his knowledge? Yes. It seems he did. 

 

1.3 A contemporary example 

Here is an extract from Eugene Wigner‘s famous article on the unreasonable 

effectiveness of mathematics that I mentioned earlier: 

The … example is that of ordinary, elementary quantum mechanics. This originated 

when Max Born noticed that some rules of computation, given by Heisenberg, were 

formally identical with the rules of computation with matrices, established a long time 

before by mathematicians. Born, Jordan, and Heisenberg then proposed to replace by 

matrices the position and momentum variables of the equations of classical mechanics. 

They applied the rules of matrix mechanics to a few highly idealized problems and the 

results were quite satisfactory. However, there was, at that time, no rational evidence 

that their matrix mechanics would prove correct under more realistic conditions. 

Indeed, they say "if the mechanics as here proposed should already be correct in its 

essential traits." As a matter of fact, the first application of their mechanics to a 

realistic problem, that of the hydrogen atom, was given several months later, by Pauli. 

This application gave results in agreement with experience. This was satisfactory but 

still understandable because Heisenberg's rules of calculation were abstracted from 

problems which included the old theory of the hydrogen atom. The miracle occurred 

only when matrix mechanics, or a mathematically equivalent theory, was applied to 

problems for which Heisenberg's calculating rules were meaningless. Heisenberg's 

rules presupposed that the classical equations of motion had solutions with certain 

periodicity properties; and the equations of motion of the two electrons of the helium 

atom, or of the even greater number of electrons of heavier atoms, simply do not have 

these properties, so that Heisenberg's rules cannot be applied to these cases. 

Nevertheless, the calculation of the lowest energy level of helium, as carried out a few 

months ago by Kinoshita at Cornell and by Bazley at the Bureau of Standards, agrees 

with the experimental data within the accuracy of the observations, which is one part 

in ten million. Surely in this case we ―got something out‖ of the equations that we did 

not put in. (Wigner 1960 p. 9) 

That is quite a long extract, but it makes the point well. In just the same way as 

Pythagoras had no right to expect that the simple numerical ratios could be allied to 

harmonies of music, Wigner is claiming that he has no right to expect calculations 

with matrices to be allied to the energy levels of atoms. It may be that we can 

explain away Wigner‘s surprise here in terms of nothing more than an aspect of the 
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problem of induction: matrices work here and here, but what reason do we have to 

think they will work here as well? Wigner, though, certainly thinks that there‘s 

something special about the fact that the inductively projected methodology is 

mathematical.  

There is more than a concern with mathematics to unite Pythagoras and Wigner 

across the millennia. Where Pythagoras refers to the metaphysical thesis that all 

things are numbers, Wigner writes of what he calls the empirical law of 

epistemology, a thesis he puts forward to the effect that the laws of nature are best 

formulated in terms of mathematically manipulable concepts such as those of matrix 

algebra
12

.  

We have seen Pythagoras‘ motivation for his metaphysics to lie at least partly in his 

reaction to the fact of mathematical applicability as I have described. Wigner‘s 

empirical law of epistemology has the same kind of roots in a reaction to the fact that 

matrix algebra and other mathematics is so fruitful in describing and predicting 

aspects of the empirical world. The underlying notion, in both cases, seems to be 

that mathematics underlies the physical reality in some way, and that we should be 

surprised, if not amazed, that this should be so. We do not need to go along with the 

next step of either Pythagoras or Wigner to notice this similarity in their motivation. 

The very fact of mathematical applicability in general, then, is certainly grist for the 

philosopher‘s mill. I want to turn to some more examples, now, to make some more 

specific points and pick up some more specific aspects of the kinds of surprise 

we‘ve seen expressed by our chorus of physicists. First, I want to look at an example 

of surprise we saw expressed by Steven Weinberg above. Weinberg found it 

‗positively spooky‘, we recall, that mathematics somehow seemed to anticipate its 

own physical applications. I turn now to an example of this kind of ‗spookiness‘. 

The example is that of the development of complex numbers and applications 

thereof. 

 

1.4 Renaissance history 

First discussions of the possibility of using square roots of negative numbers in 

mathematics came in the sixteenth century – long before any genuine physical 

application of them was in the air. In Gerolamo Cardano‘s Ars Magna (1545), we 

find, for instance, an investigation into the ‗impossible‘ problem of finding two 

numbers which sum to 10 yet whose product is 40:  

… Putting aside the mental tortures involved, multiply 5 15 by 5 15    … 

hence this product is 40 … So progresses arithmetic subtlety the end of which, as is 

said, is as refined as it is useless. (Cardano 1968 pp. 219-220) 

 

                                                                            
 

12
 See Wigner 1960 p. 10: ‗… the appropriateness and accuracy of the mathematical 

formulation of the laws of nature in terms of concepts chosen for their manipulability …‘ 
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Much of the impetus at this time towards considering complex numbers came from 

attempts to solve polynomial equations. It is notable that Cardano‘s own method for 

solving cubic equations could give rise to complex roots in its inner workings, 

although Cardano himself ignored these in spite of considering them in other 

problems, as we have just seen.  

Rafael Bombelli, however, a contemporary of Cardano, did make use of complex 

roots. In Bombelli‘s Algebra, published in the year of his death (1572), we read  

I have found another kind of cube root of a compound expression very different from 

the other kinds, which results from the case of the cube equal to so many and a number 

… when the cube of the third of the things is greater than the square of the half of the 

number, the excess can be called neither plus nor minus. But I shall call it ‗plus of 

minus‘ when it is to be added, and when it is to be subtracted I shall call it ‗minus of 

minus‘ … (Bombelli 1966 pp. 133-134) 

This refers to the problem of solving the equation 3x cx d   for x: ‗the cube [of x] 

equal to so many [of x] plus a number‘ using Cardano‘s rule that I mentioned above. 

Suitably translated into modern algebraic notation, this works as follows. To solve 

the equation 3x cx d  , first evaluate 

  
2 31 1 13

2 2 3
( ) ( )u d d c   and 

2 31 1 13
2 2 3

( ) ( )v d d c    

 –  The solution is then given by x = u + v . 

It is now easy to see that when 3 21 1
3 2

( ) ( )c d  (‗the cube of the third of the things is 

greater than the square of the half of the number‘) the term inside the inner square 

root in each of the above formulae will be negative. Consider for example the 

equation 3 15 4x x  : Cardano‘s rule gives 
3

2 121u    and 
3

2 121v    . 

Now, it is possible to find these cube roots in complex numbers: they are, 

respectively, (2 + i) and (2 – i) (where 1i   ). Adding, we obtain as solution of 

our original equation x = 4, which is indeed a root of 3 15 4x x  .  

So Bombelli was aware that complex numbers could work in algebra to give correct 

results. There are few practical uses in this particular area, though, unless we have a 

decent method for finding cube roots of complex numbers in general. No such 

method was available to Bombelli or his contemporaries. Nevertheless we can see 

how striking it must have appeared to Bombelli that his ‗plus of minus‘ and ‗minus 

of minus‘ could be used in justification of Cardano‘s rule in cases where the 

complex cube root was not too difficult to find. Writing of the use of complex 

numbers
13

, he says 

 

                                                                            
 

13
 Of course Bombelli did not use this terminology. It makes sense to avoid the sixteenth 

century circumlocutions, though. 
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This will seem to many to be more artificial than real, and I held the same opinion 

myself until I found the geometrical demonstration … (Bombelli 1966 p. 134)
 14

 

In any case, Bombelli was so struck by ‗plus of minus‘ and so on that he went on to 

develop the basics of complex number algebra much as we know it today. Here is an 

extract: 

…first I shall deal with multiplication, setting down the rule of plus and minus. 

  Plus times plus of minus makes plus of minus 

  Minus times plus of minus makes minus of minus 

… … 

  Minus of minus times minus of minus makes minus …(ibid.) 

 – That is, (+1)(i) = + i, (– 1)(i) = – i and so on. It is clear that here Bombelli is 

developing the structure of complex numbers as a consequence of the structure of 

mathematics (or simple algebra at least) extant at the time he was working.  

Now, given the difficulties with solving equations of the type we have been 

considering (such the cubic with three real roots, which gives rise to square roots of 

negatives in Cardano‘s formula) – the practical impossibility, at the time, of finding 

cube roots of complex numbers – such equations were left to one side pending the 

discovery of different methods of solution, involving trigonometric methods rather 

than simple surds. Or, perhaps, we might even see the hiatus as due to a 

psychological impossibility instead of a practical one – ‗imaginary‘ numbers, as 

we‘ve seen, were considered unreal in one way or another. Here is another quotation 

from some time after Bombelli & co. Leibniz: 

The Divine Spirit found a sublime outlet in that wonder of analysis, that portent of the 

ideal world, that amphibian between being and not-being, which we call the imaginary 

root of negative unity. (Quoted in Kline 1972 p. 254)
15

 

Complex numbers, then, were available to mathematicians from the sixteenth 

century onwards at least – their structure had begun to be studied – but the 

techniques of calculating with them were left on the shelf as far as physical 

applications are concerned. We might mention briefly some of the developments of 

theories involving complex numbers within mathematics over succeeding centuries: 

the proof that every polynomial equation has a root, real or complex (the 

Fundamental Theorem of Algebra, indeed); the link between complex numbers and 

vectors in the plane (Argand/Gauss, de Moivre); Euler‘s relation uniting the 

elementary functions ( cos sinie i    ). All of this is intra mathematics, though. 

We still do not seem to have any application in physics. 

 

                                                                            
 

14
 I will not worry too much about the ‗geometrical demonstration‘ here: mathematics – 

even algebra – still needed geometric underpinning in sixteenth century Europe. 
15

 Kline adds that ‗Though Leibniz worked formally with complex numbers, he had no 

understanding of their nature.‘ I do not know what he (Kline) means by ‗their nature‘. 
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But, now, it turns out that complex numbers are useful in working theoretically with 

electric circuits. This is obviously a different application from that of solving 

equations. Think of alternating current, first, as modelled by a wave. Think of the 

wave as itself modelled in the obvious way by a trigonometric expression 

sin cosI a t b t   (I: current, t: time, the other letters constant real numbers). 

Now map this expression to the complex number a + bi. There are certain obvious 

equivalences: the structures are isomorphic for addition, for instance; the amplitude 

of the wave maps to the modulus of the complex number; and so on.  

What makes the complex number representation most useful, however, is maybe not 

so apparent. Consider an inductor, though: any induced potential, physical theory 

tells us, is proportional to the rate of change of the current – to its (time) derivative. 

Now, given that sin cosI a t b t   , cos sin
dI

a t b t
dt

     . But, mapping as 

before I to the complex number a + bi, we have that the derivative above maps to 

( )i a bi  . Differentiation of the alternating current – giving its rate of change and 

hence the inductance in a circuit – is equivalent to the simple multiplication of the 

representing complex number by iis, more or less, the period of the current or 

the wavelength of the corresponding wave.)  

There is more to it than just this, of course. However, it is easy to see how an easy 

multiplication in complex numbers might simplify the work involved in dealing with 

circuits, compared with the requirement to use methods from (differential, integral) 

calculus. This is a simplifying application, moreover, that Bombelli & co. could have 

had no inkling of, given the large development of physics and electronics from the 

sixteenth century to the present day. As such, it is about as good an example as there 

is of Weinberg‘s ‗spooky‘. The mathematician, in the person of Bombelli, was certainly 

‗there‘ with complex numbers, for all the ‗mental torture‘ involved in dealing with 

these ‗amphibian[s] between being and no-being‘ well before the physicist found 

them useful for simplifying work with alternating currents. 

Complex numbers are not just useful for working with alternating electrical currents, 

of course. Quantum mechanics, our most successful physical theory, requires complex 

numbers for its very formulation. To quote Wigner‘s ‗Unreasonable Effectiveness‘ 

paper again, 

There are two basic concepts in quantum mechanics: states and observables. The states 

are vectors in Hilbert space, the observables self-adjoint operators on these vectors.  … 

… the Hilbert space of quantum mechanics is the complex Hilbert space … 

(op. cit. p. 7) 

– That is, there is a requirement right at the foundational level of quantum mechanics 

for complex numbers as elements of the state-vectors. Wigner goes on to remark that  

… to the unpreoccupied mind, complex numbers are far from natural or simple and 

they  cannot  be suggested by physical observations.  Furthermore, the use of complex 
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numbers is in this case not a calculational trick of applied mathematics but comes 

close to being a necessity in the formulation of quantum mechanics. (ibid.) 

Whether, or to what extent, the use of mathematics in general, or here complex 

numbers in particular, is actually ‗a necessity‘ for science – whether mathematics is 

indispensable for modern science – is a large and much discussed question in 

contemporary philosophy of mathematics. I will return to the question of 

indispensability soon. For now, let it suffice that it is safe to say we have striking 

examples justifying Weinberg‘s notion that it is ‗spooky‘ how particular parts of 

mathematics become available (often long) before the development of physics puts 

them to use. Cardano and Bombelli certainly could not have foreseen how the 

‗refined‘, ‗useless‘ ‗amphibian between being and non-being‘ square root of 

negative unity came to be useful in the way I have described. This is a further aspect 

of surprising mathematical applicability from that which, I suggested, motivated 

Pythagoras. But, once again, would Cardano, Bombelli & co. have had a right to be 

surprised at the use to which this part of mathematics was put? Yes. It seems they 

would. And some of us – Weinberg for one – remain surprised. 

There is one further feature or genre of surprise expressed at mathematical 

applicability worth mentioning, something that makes the problem of accounting for 

applicability even more acute. This feature is exemplified by the ‗amazement‘ 

expressed by Richard Feynman in the quotation from him above. The kind of 

‗prediction‘ to be found in mathematics which has, as Feynman says, ‗nothing to do 

with the original thing‘, can be seen in an example given by Steiner in his 

Applicability of Mathematics as a Philosophical Problem. This is one of several 

illustrative and important examples Steiner offers.
16

 The example I deal with at this 

stage, motivating further the status of mathematical applicability as requiring 

philosophical treatment by considering the predictive power of mathematics, is that 

of Paul Dirac, his eponymous equation, and the a priori prediction – in advance of 

later empirical discovery – of the existence of the positron.  

 

1.5 Dirac’s equation and the positron 

In 1928, P.A.M. Dirac developed the equation that bears his name, giving a 

relativistic formulation of the quantum mechanics of the electron. His theory goes on 

to become the basis for quantum electrodynamics as developed, in particular, by 

Richard Feynman. I do not want to go that far, though: it will be enough here to see 

(in very general terms) how the Dirac equation accounts for electron spin and – the 

core of the surprise I am considering just at this point – predicts the existence of the 

positron. The positron was only observed later – in 1932, in fact, by Anderson. Is it 

surprising that Dirac‘s mathematics could predict the existence of a hitherto 

 

                                                                            
 

16
 Steiner‘s examples are unfailingly suggestive and exciting. I deal with another of these in 

some detail towards the end of Chapter 5. 
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unthought-of particle? Many people have thought so.
17

 To get to grips with the 

affair, I will go over some of the algebra involved in Dirac‘s derivation. This will be 

useful in clarifying the content of Dirac‘s equation and the surprise at what it 

predicts. 

Dirac‘s original formulation of his eponymous equation was as follows: 

 2c mc i
t


 


 


.P ,  

where   is the wave-function for the electron and  2c mc.P , the relativistic 

quantum energy operator or Hamiltonian
18

 (labelled H in what follows), is identified 

as the total energy of the particle.
19

 I want to look at the derivation of this ‗Dirac 

Hamiltonian‘. How did Dirac come up with the formulation
2c mc H .P ? 

Begin with energy in pre-quantum-mechanical physics: 

According to Einstein, the classical (in the sense of relativistic, but non-quantum-

mechanical) energy of a free particle of mass m and momentum p is given by  

2 2 2 4E c m c p ,  

where c is the speed of light.
20

 

Now, if we want to obtain the equivalent quantum mechanical equation, there is a 

conventional trick
21

. Given classical dynamical equations, as a standard text has it: 

… Corresponding equations in quantum mechanics are relations between operators, 

obtained by using the ―correspondence principle‖: dynamical variables in the 

appropriate classical equations are replaced by the corresponding quantum 

mechanical operators …(McMurry 1994 p. 53) 

Very well, then, applying this principle we might try to get the H in terms of the 

momentum operator P
22

, mass and speed of light as follows: 

 

                                                                            
 

17
 Including, of course, Mark Steiner himself.  

18
 Not quite the same as the classical Hamiltonian, but obviously related. 

19
 is the (reduced) Planck constant and i is of course the same square root of negative unity 

that we saw so troubled Bombelli, Leibniz and others. 
20

 We might note in passing that if p = 0 this equation reduces to the famous ‗E = mc
2
‘. 

21
 The success of this very ‗trick‘ is just about as surprising – and as deserving of 

philosophical explanation – as the predictions Dirac‘s equation makes, a point Steiner also 

makes. It is certainly not easy to find an explanation of just why this ‗trick‘ works. 

Textbooks tend to put it baldly, without justifications, and physicists of my acquaintance, 

once the question is raised, remain puzzled as to just why it works as it does. I have not the 

space here to deal with this in full; it is another example of a surprising feature of 

mathematical applicability, though. 
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2 2 2 4c m c H P  

That will not do though … we have no simple way of interpreting what we mean by 

the square root of an operator. (Squaring an operator amounts to iterating it; that 

seems fine, but the inverse process does not invariably – prima facie – offer itself.) 

We might just square through the equation to get 

2 2 2 2 4c m c H P , 

which has become known as the ‗Klein-Gordon‘ equation. In some ways, that will 

do. It gives the correct empirically-testable result for the energy as one of its 

solutions. There are problems with it, though. For one thing, it also gives rise to a 

negative energy solution. More about that soon. Another problem with it, in Dirac‘s 

eyes at any rate, is that it is second-order. Why is that a problem? Let us just say that 

he saw it as violating a formal feature of quantum mechanics
23

. At any rate, Dirac 

wanted to get a Hamiltonian that is linear in P, but that was such that its solutions 

were also solutions of the Klein-Gordon equation above. So: he set out to find an H 

expressible in terms of P such that H
2
 is as required by Klein-Gordon. We might 

think of this as involving a ‗factorisation‘ of the Klein-Gordon equation, which is 

how Steiner describes it, indeed (Steiner 1998 p. 159). Whether Dirac would have so 

described it I am not sure: in any case he came up with the idea of taking a 

Hamiltonian of the form 

2c mc H .P ,  

where 

x

y

z







 
 

  
 
 

  and  are parameters to be determined by the condition on H
2
. We 

can do the algebra here: 

 

2c mc H .P  

so 

                                                                                                                                    

22
 i  P , or 

x

i
y

z

 
 


 
 

 
 
 

 
 

. But we will not need all the technical details. 

23
 It is by no means clear – perhaps was not even clear to Dirac himself – exactly why he 

took the steps he did. What primed his intuition is obviously relevant when we come to ask 

about how the mathematics he did had the (surprising) applications it had.  
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 

 
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Now we want  
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which we will have if the ‘s and satisfy the following relations: 
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 

 

 

and   
2 1   

These conditions cannot be satisfied if the ‘s and are to be numbers, it is plain. 

Number multiplication is commutative, after all
24

. Matrix multiplication is not 

commutative, however … and Dirac was able to find four matrices which satisfy the 

relations. In fact, it can be shown that the minimum size of matrices which can 

satisfy all these conditions
25

 is 44.   

Now, if the coordinates of the equation are 44 matrices, any solutions
26

 must have 

four components. In fact, the solutions are spinors – similar to vectors
27

. Details of 

these spinors need not concern us. For our story what is important is just the fact that 

they have four components. Four seems to be three too many for just a single free 

particle. But – here is the surprise – each of the four components of the spinor gives 

specific physical information. And the three extra components give information 
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 I.e. for any numbers a and b, ab = ba. 

25
 As well as the anti-commutativity, in order to satisfy these conditions, the matrices need 

to have zero trace (the sum of the elements on their leading diagonals must be zero). The 

smallest such matrices are 44. 
26

 The equation being a differential equation, these solutions are functions, of course – wave 

functions, indeed. Each of the four components is a wave function. 
27

 But not invariant under rotations of a single turn (2 radians), though invariant under a 

rotation of 4There is a connection here with another example of Steiner‘s – that of 

representing the symmetries of the electron. See section 5.7, below. 
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about previously unknown physical phenomena. Physicists now say that the four 

components of the spinor give the probabilities
28

 of the particle being an electron 

with spin up, an electron with spin down, a positron with spin up or a positron with 

spin down. The phenomena of spin – intrinsic magnetic moment – and the existence 

of antimatter – matter (such as the positron) with all the same properties as ordinary 

matter (like the electron) but with opposite charge – are unknown to classical 

mechanics and even to non-relativistic quantum mechanics
29

. 

Dirac took the notion of spin on board more or less straight away, concluding that 

electron spin results from combining quantum mechanics with relativity. The first 

two components of the solution to Dirac‘s equation, we might say, are thus taken 

care of. The second two took a while longer. It is clear that these components were 

connected somehow with the negative solutions of the Klein-Gordon equation that I 

mentioned above. Negative energy solutions? The idea that a positively-charged 

particle might behave sufficiently like a negatively-charged one with negative 

energy seems attractive. And positively-charged particles – protons – were around to 

fit that particular niche, perhaps? For a while the conventional view tended to agree 

with Hermann Weyl, that  

The solution of this difficulty [of accounting for the two extra components] would 

seem to lie in the direction of interpreting our four differential equations as including 

the proton as well as the electron. (Weyl 1950 p. 255) 

That was a dead end, however. The proton‘s mass is much greater than that of the 

electron, for one thing, so it could not easily be made to fit. In any case, Dirac soon 

took seriously what his equation seemed to be (literally) saying, and tried to make 

sense of the existence of a particle more like a ‗positively-charged electron‘ – a 

positron. He even tried to theorise about why positrons had not been observed, and 

was vindicated spectacularly by Anderson‘s discovery of the positron in 1932. 

 

1.6 Steiner and homomorphism 

In this latter example we can see particularly clearly how it might seem ‗spooky‘ to 

Weinberg and ‗amazing‘ to Feynman that ‗the mathematician has been there before‘ 

the physicist and that mathematics ‗makes it possible to predict‘ what will happen. It 

does look, if not mysterious, at the very least demanding of explanation, that 

mathematics, an abstract a priori discipline, can predict matters of real existence 

such as that of the positron, particularly in that the aspects of mathematics in 
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 Of course quantum mechanics deals in probabilities – the square magnitude of the wave 

function that (see above) comprises each component gives the appropriate probability. 
29

 This oversimplifies a little. In fact spin was known about even pre-Schrödinger‘s 

equation. What is new with Dirac‘s equation (with due development from what I‘ve 

described) is the interaction of spin with the electromagnetic field. Even the Klein-Gordon 

equation does not cope with spin in that sense. 
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question seem to have been developed, in this and so many other instances, without 

any concern for such particular applications in physics.  

Now, we saw above something of Mark Steiner‘s claim of the pervasive influence of 

this demand for explanation in philosophy more generally. Steiner claims that 

To an unappreciated degree, the history of Western philosophy is the history of 

attempts to understand why mathematics is applicable to Nature, despite apparently 

good reasons to believe that it should not be. A cursory look at the great books of 

philosophy bears this out. (2005 p. 625) 

Steiner instances Plato: 

Plato's Republic invokes the theory of ―participation‖ to explain why, for instance, 

geometry is applicable … (ibid.) 

Descartes: 

Descartes‘s Meditations invokes no less than God to explain why the ideas of ―true 

and immutable essences‖ of mathematics (triangle, circle, etc.) that we grasp with our 

mind must represent existing entities in nature … (ibid.) 

… and other philosophers, including Spinoza, Berkeley, Kant and Mill. (I mentioned 

Kant‘s proper problem in the Introduction.) Explanations involving Plato‘s 

‗participation‘ or the intervention of a Cartesian deity strike the contemporary mind 

as unsatisfactory in their non-naturalism,
30

 but it is at least indicative of the 

seriousness of the problem of mathematical applicability that such appeals to non-

naturalism can seem at all plausible. 

Steiner himself explicitly draws a non-naturalist moral from the fact of certain kinds 

of mathematical applicability. His book (1998), he says, ‗challenges naturalism‘ 

(p. 10 and passim), and while he does not go the whole hog with Descartes in laying 

the blame squarely and uniquely on God‘s shoulders, his sympathies clearly lie 

explicitly with those who would give a theological account of mathematical 

applicability. The challenge to naturalism, he says, ‗… makes the book consistent 

with natural theology,‘ something he certainly takes as positive, even if, as he says, 

‗… there are many positions available that are neither natural nor theological.‘ 

(ibid.)  

I take it as a basic methodological principle of contemporary philosophy that 

recourse to ‗God making it so‘ ought to be at best a last resort. This being so, that a 
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 Here as earlier, I leave the idea of ‗naturalism‘ rather vague. As David Papineau has 

written, ‗The term ‗naturalism‘ has no very precise meaning in contemporary philosophy.‘ 

(2009; see also his 1993, p. 1, ‗… there is little consensus on its [sc. ‘naturalism‘s] 

meaning.‘) We can still use the term, in spite of this imprecision; as Papineau goes on to 

say, ‗The great majority of contemporary philosophers would happily accept naturalism as 

just characterized [sc. as the idea ‗…that reality is exhausted by nature, containing nothing 

‗supernatural‘…‘] (2009) – that is, they would at the very least reject ‗supernatural‘ entities. 

Steiner‘s brand of non-naturalism amounts to a challenge to this rejection of the 

supernatural, as his remarks about theology make clear. 
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doyen of philosophical work on the problem to hand such as Mark Steiner should 

conclude with the particular genre of non-natural solution he does is more evidence 

of the prima facie intractability of the problem. In spite of the difference in outlook 

implicit in Steiner‘s approach, however, I want to stick with him a little further, 

firstly for help with a specification of  the most important aspects of the problem and 

secondly for help with characterising its genesis. The genesis of the problem as 

characterised by Steiner will give us a useful pointer towards an important aspect of 

its manner of possible solution. 

I have written of the problem of mathematical applicability in the singular. In fact 

Steiner finds several different problems of mathematical applicability. In his 1998 he 

distinguishes the semantic and the descriptive senses of applicability (e.g. p.47), and 

in his 2005 he moves to a characterisation somewhat overlapping this distinction, in 

terms of what he calls canonical and non-canonical applications of mathematics. An 

application of a mathematical theory is canonical if the theory was developed in the 

first place to describe the application, and non-canonical otherwise. This distinction 

in Steiner‘s hands further resolves into applications that are empirical and those that 

are not, making a total, as he says, of four different kinds of mathematical 

applicability; canonical empirical, canonical non-empirical, non-canonical empirical, 

and non-canonical non-empirical. It is a moot point whether it is best to talk of 

several different problems or of several different aspects of one overarching 

problem. In any case, the most interesting and difficult cases – such as we‘ve seen in 

our example of Dirac‘s equation – belong to a single sub-category, that of the non-

canonical empirical in Steiner‘s later taxonomy, or of the descriptive if we adopt his 

earlier distinction.  

I intend to use another of Steiner‘s examples in a later chapter.
31

 This comes from 

his most recent (2009) paper, which takes on Wittgenstein‘s philosophy of 

mathematics. In this paper Steiner allows that Wittgenstein‘s view of mathematics 

can cope with cases of his, Steiner‘s, ‗canonical‘ sort of mathematical applicability. 

However, the example exemplifies, he claims, the manner in which  

Wittgenstein‘s account of mathematical application was seriously lacking. 

(Steiner 2009 p. 26) 

– Seriously lacking, that is, in that it fails to account for  

The tendency of mathematics to have non-canonical applications, applications of 

which the ‗inventors‘ of the mathematics could not have dreamed. (op. cit. p. 24) 

This ‗tendency‘, it is clear, relates to the kinds of mathematical applicability I have 

been discussing as examples of Weinberg‘s ‗spooky‘ and Feynman‘s ‗amazing‘; 

cases in which ‗the mathematician has been there before‘ the physicist or where 

mathematics ‗makes it possible to predict‘ aspects of physical reality or existence in 

advance of the development of related physical theory. This – non-canonical 

empirical applicability of mathematics in Steiner‘s taxonomy – is clearly where the 
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hard cases lie. Without belittling the canonical (I will make some brief remarks later 

about how what Steiner calls Wittgenstein‘s ‗account‘ of mathematics deals 

successfully with canonical cases, as Steiner claims), nevertheless we should allow 

that Steiner‘s non-canonical empirical requires our full attention. 

In the light of this, I will continue to talk of the problem of applicability. 

Steiner goes on to say, 

To be fair [to Wittgenstein], however, if there is something missing in Wittgenstein‘s 

philosophy, it is missing in all the others as well. (op. cit. p. 26) 

The non-canonical empirical kind of application of mathematics, claims Steiner, 

remains mysterious, to be explained if at all only in non-natural, possibly theological 

terms. I am going to claim that we can do better. I will return to the notion of 

‗something missing‘ in Wittgenstein‘s account in chapter 5, after we have garnered 

sufficient resources to challenge Steiner‘s claim. 

To begin garnering these resources, I want to take something else from Steiner; his 

summary and original characterisation of the problem of mathematical applicability 

in his 2005. We have seen above Steiner‘s claim that the history of Western 

philosophy is intimately linked with the history of attempts to deal with the problem 

of mathematical applicability. What all these attempts share, he goes on to say, is a 

particular view of what that problem amounts to. Following his claim of the ubiquity 

of the problem as generative of the doctrines of (essentially all) major philosophers, 

he goes on to say 

What is more, we conclude that (though they didn't use the word ―apply‖) all the 

doctrines presupposed the same concept of application: they all assumed that 

application is a relation (some approximation to a homomorphism) between 

mathematical theorems and empirical facts, a relation which can be used to ―read off‖ 

empirical facts from mathematical theorems. The question they ask is: Given the 

nature of mathematics, why should such a homomorphism exist? (Steiner 2005 p. 627) 

This summary characterisation is a useful first step. I take it to be clear how it relates 

to our examples and the general problem of mathematical applicability. The notion 

of a homomorphism here is key
32

. Furthermore, it is a notion which is also at the 

centre of what Michael Friedman described as 

The first (recent) serious study of what we might call the philosophy of applied 

mathematics: the use of mathematics in empirical theories. (Friedman 1981 p. 505) 

– That is, Hartry Field‘s much discussed and influential monograph Science Without 

Numbers. It is true that much of the discussion of Field‘s work has focussed away 

from particular issues of applicability and on to his fictionalist nominalism – his 

view that strictly speaking there are no mathematical entities and that mathematical 

 

                                                                            
 

32
 A homomorphism, roughly speaking, is a structure-preserving map or function. For a little 

more detail, see Appendix 1. 



 33 

propositions are but useful fictions. But I want us to take seriously Friedman‘s 

injunction that 

Future discussions of this area [of our understanding of applied mathematics] must 

take up where Field leaves off.
 
(op. cit. p. 506) 

Friedman describes the use of ‗representation theorems‘ as Field‘s ‗main theoretical 

device‘. A representation theorem asserts the existence of a ‗representing‘ 

homomorphism connecting physics and mathematics. Agreeing with both Steiner 

and Friedman, then, concerning the centrality of the notion of homomorphisms in 

setting up and attempting to deal with the problem of mathematical applicability, I 

turn in Chapter 2 to a consideration of how Hartry Field wields his ‗main theoretical 

device‘ to deal with (what he himself describes as) ‗the really fundamental‘ question 

in the philosophy of mathematics. 

 



 34 



 35 

Chapter 2  Fictionalism, Applicability, and Face Value 

 

2.1 Nominalism and indispensability 

Field argues for a type of nominalism, which he takes as the general view that 

abstract entities do not exist
33

. The particular brand of nominalism he espouses is 

fictionalism about mathematics, roughly the notion that abstract mathematical 

objects are ontologically similar to, say, Jane Eyre or Gormenghast in that they exist 

only in stories. Field expresses the doctrine he wishes to defend thus: 

A fictionalist about mathematics-taken-at-face-value is someone who does not 

literally believe mathematical sentences, at least when they are taken at face value. 

(Or … a fictionalist is someone who does not regard such sentences, taken at face 

value, as literally true.) (Field 1989 p. 2)
34

 

To take a sentence at face value, for Field here, is just to assume it makes a claim 

independently of whatever story it happens to be in. ‗The second perfect number is 

less than thirty‘ may in some sense be true within mathematics, but, Field claims, it 

is literally false because numbers – and a fortiori perfect numbers – do not literally 

exist. So, taken-at-face-value, the claim is simply false, according to fictionalism, 

just as the claim ‗Jane Eyre ended her life as Mrs Rochester‘ is simply false taken-

at-face-value. Though true within the novel it is literally false because Miss Eyre and 

Mr Rochester do (or did) not literally exist. According to the fictionalist, as Field 

himself puts the matter,  

… the sense in which 2 + 2 = 4 is true is pretty much the same as the sense in which 

‗Oliver Twist lived in London‘ is true: the latter is true only in the sense that it is 

true according to a certain well-known story, and the former is true only in that it is 

true according to standard mathematics. (op. cit. p. 3) 

Now, although I began by saying that Field argues for a type of nominalism, in fact 

he does not advance any positive arguments for nominalism in general, taking the 

line that all he needs to do is show what he sees as the major – possibly unique – 

anti-nominalist argument to be unsound. He takes the view that given well-known 

problems with Platonism in general and mathematical Platonism in particular,
35

 it is 

up to the Platonist to come up with the good arguments. And, he says, 
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 There is a clear overlap with traditional nominalism denying the independent existence of 

universals, a usage with a long history. Field‘s use of the term is not exactly this. His usage 

is fairly conventional in contemporary philosophy of mathematics, though: I will adopt it 

here. 
34

 There may be some cavil regarding talk of the truth of sentences rather than of what 

sentences express, or perhaps of propositions. Field makes nothing of this; no more will I. 
35

 I discuss one of the most influential contemporary aspects of Platonism‘s difficulties – 

characterised by Paul Benacerraf – a little later in this chapter. 
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The only non-question-begging arguments that I have ever heard for the view that 

mathematics is a body of truths all rest ultimately on the applicability of 

mathematics to the physical world; so if applicability to the physical world isn‘t a 

good argument either, then there is no reason to regard any part of mathematics as 

true. (Field 1980 p. viii) 

The argument to Platonism from the applicability of mathematics is part of what has 

become known as the (Quine/Putnam) indispensability thesis. Here is how Hilary 

Putnam summarises it: 

… quantification over mathematical entities is indispensable for science, both formal 

and physical; therefore we should accept such quantification; but this commits us to 

accepting the existence of the mathematical entities in question. This type of 

argument stems, of course, from Quine, who has for years stressed both the 

indispensability of quantification over mathematical entities and the intellectual 

dishonesty of denying the existence of what one daily presupposes. (1979 p. 347) 

At one time, indeed, Putnam held what we might call a ‗non-propositional‘ attitude 

to mathematical sentences, contrary to the view he expresses here. He claimed 

… the role of the formula ‗two plus two equals four‘ is not an added premiss … it is 

rather the principle by which the conclusion [concerning the number of physical 

objects] is derived …(1979 p. 28)
36

 

 – But he later changed his mind, on account of what he saw as the ineliminable way 

in which mathematics occurs within science, so that 

… mathematics and physics are integrated in such a way that it is not possible to be 

a realist with respect to physical theory and a nominalist with respect to 

mathematical theory. (1979 p. 74) 

This is precisely what Field denies. Of course he is not going to deny that 

mathematics is useful for science. He does think it is possible to be a realist about 

science at the same time as a nominalist about mathematics, though. So he denies 

the indispensability thesis.  

Field‘s adoption of fictionalism as the preferred brand of nominalism or anti-realism 

about mathematics is closely linked to his wish to ‗take mathematics at face value‘, 

as we saw above. He wishes simply to ignore what he describes as ‗the idealist form 

of anti-platonism‘ (e.g. Field 1989 p. 2), according to which 

Mathematical entities exist but only as some sort of ‗mental construction‘ or 

‗construction out of our linguistic practices‘. (op. cit. p. 1)
37
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 This is clearly reminiscent of TLP §6.211 as we will see below; there are also some close 

connections between this discarded view of Putnam‘s and those of the later Wittgenstein 

and, perhaps surprisingly, (certain aspects of) Field‘s own.  
37

 Elsewhere (Field 1989 p. 228 fn 2), Field claims that this kind of anti-realism is ‗not only 

too obscure to assert, but also too obscure to deny.‘ The attitude to idealism he expresses 

here is interestingly similar to what I will argue is an appropriate attitude to his fictionalism, 

as we will see, although he does not argue the case in any way similarly. 
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Field thinks it ‗not immediately obvious‘ that such idealism differs in any important 

way from his own manner of denial of ‗face-value‘ construals of mathematical 

propositions. Furthermore, he thinks it apparent that investigations of non-face-value 

construals (such as – or perhaps similar to – the ‗non-propositional‘ attitude we saw 

expressed by Putnam just above) are not worth the candle. He says, 

What my anti-realism involves is a disbelief in mathematics. Or at least, it involves a 

disbelief in mathematics if mathematics is taken at face value; coupled with a lack of 

commitment to (and lack of much interest in) the program of finding a non-face-

value interpretation of mathematics on which the mathematics becomes more 

believable. (1989 p. 227)  

I intend to look with some care at Field‘s notion of ‗taking mathematics at face 

value‘. That comes later in this chapter. For the present I continue with an 

explanation of Field‘s account of applicability. 

 

2.2 Conservativeness 

We need to be clear about what the dialectical situation forces on Field. If he wants 

to adopt a fictionalist stance, he needs to deny that mathematics is indispensable for 

science. (If mathematics is a requirement for science and mathematics is false, after 

all, then so much the worse for science.) But given the usefulness of mathematics for 

science, he needs to do two things in opposition to the believer in indispensability. 

Field needs to show both how to disentangle mathematics from scientific theory, and 

how to explain the usefulness of (false, recall, in his terms, as well as dispensable) 

mathematics for science. That is, he needs to show how to nominalise specific 

scientific theories, and he needs to explain how, in his own phraseology, 

mathematics ‗need not be true to be good‘. (See for instance Field 1989 p. 96: ‗My 

conclusion was that a mathematical theory needn‘t be true to be good.) 

A large part of Field‘s project – and much subsequent critique thereof – involves the 

first of these two imperatives, that of nominalising scientific theories. In his 1980, 

for instance, he formulates nominalistic versions of Newtonian space-time and 

gravitational theories as examples. The overall success of this project is moot, 

indeed, but anyway it is not the aspect I want to focus on. For my purposes, what is 

important is the second of the two imperatives, that of explaining how mathematics 

can be ‗good without being true‘. 

The two parts of this second imperative are independent; the ‗good‘ part of ‗good 

without being true‘ is independent of the (absence of) ‗truth‘ as Field himself 

implicitly recognises. He points out, for instance, that 

… a number of reviewers of my book [1980] have rejected its anti-platonism while 

endorsing its account of the application of mathematics. (Field 1989 p. 191) 

The ‗account of the application of mathematics‘ comes soon, and as we will see it is 

indeed independent of platonism or its denial. For now we are focused on what Field 

sees as replacing truth so that mathematics can nevertheless be good. 
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The property that mathematics has which, Field claims, enables it to be good without 

being true – to be a useful fiction in applications –  is ‗conservativeness‘. 

Mathematics is conservative with respect to physics-without-mathematics in the 

sense that adding mathematics to a physical theory will not licence any 

consequences of the theory that are not already consequences of the theory alone.
38

 

Field claims that mathematics has the possibility of being good so long as it is 

conservative; conservatism thus is a replacement for mathematical truth. 

Why is mathematics conservative? According Field the general answer hinges on the 

modal and/or epistemological status of mathematics.
39

 ‗And/or‘ needs something of 

a gloss. Essentially the same argument applies with the status of mathematics as 

necessary as with its status as a priori, and Field simply runs the two together. The 

problem of applicability as I originally posed it was mainly in terms of an 

epistemological clash; and I will have more to say about mathematical necessity in 

more detail below in Chapter 4. Here I simply state the argument in modal terms, 

leaving the epistemology to take care of itself.
40

  

Here is how Field‘s argument goes. Suppose that mathematics is not conservative 

with regard to some scientific theory S, say. Recall that this means that some result, 

R, say, is entailed by (S+mathematics), but that R is not entailed by S alone. Now, it 

follows from the fact that R is not entailed by S alone that it is possible that S be true 

but R false. But if it is possible for R to be false, then it follows from the fact that R 

is entailed by (S+mathematics), that if S is true, it is possible that mathematics
41

 is 

false. But mathematics (as most of us would agree) is necessarily true
42

. So 

mathematics must be conservative.  

In case the ‗necessarily‘s and ‗possible‘s are difficult to track, here is the argument 

again in possible-worldish
43

: Take S and R as before and again assume that 

(S+mathematics) entails R but that S (alone) does not. Since S does not entail R, 

there is some possible world in which S is true but R false. But in that world, since 

(S+mathematics) does entail R, it must be the case that (S+mathematics) is not true. 

Since S is true in that world, mathematics must be the guilty party. That is, there is 
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 Field makes this more formal and precise (see Field 1980 P. 11 ff), but I see no need to be 

particularly formal here. The general idea is what we need. 
39

 Field outlines two more formal proofs of the conservativeness of mathematics in an 

appendix to the main development of his (1980), one semantic (model-theoretic), the other 

proof-theoretic. Again, the main development is what we need, though. 
40

 Some have conflated necessity with a priority, of course. For my purposes nothing much 

hangs on the (il)legitimacy of such a move, as I hope will be clear. I will consider the modal 

status of mathematics in Chapter 4. 
41

 Or some relevant part thereof. 
42

 When true, or necessarily false when false, of course. I will leave such details tacit from 

now on. 
43

 I am not trying to be formal with possible world semantics for modal logic here. This is 

just a useful heuristic device. 
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some possible world in which mathematics is not true. That contradicts the feeling 

that most people have that mathematics is true in all possible worlds. So it cannot be 

the case that (S+mathematics) entails R but that S (alone) does not. That is, 

mathematics is conservative with regard to the scientific theory S. 

The argument as it stands is strictly unsound, of course. A ‗feeling that most people 

have‘ is not good enough: we cannot be sure that some parts of mathematics might 

not turn out to be false. Assuming that mathematics is necessarily true, though, 

seems not to be too controversial a move. What may seem strange, though, is to 

have Field, as part of an argument for fictionalism – a doctrine denying the truth of 

mathematics – using an argument that relies on the necessary truth of mathematics. 

This is not wholly illegitimate: Field can be read as arguing ad hominem
44

 against 

the Platonist, using Platonist premises (including at least one involving necessity of 

some appropriate sort) to argue against Platonism. And, indeed, this is the way he 

wishes to be read: 

‗Although … espousing nominalism, I am going to be using platonistic methods of 

argument …‘ (Field 1980 p. 5) 

If Field can, as he claims, prove from Platonist assumptions that the existence of 

abstracta is not a requirement for the use of mathematics in physical science, he will 

indeed have shown that what he claims as the only justification for believing in the 

existence of mathematical abstracta – their indispensability for science – is no 

justification at all. In short, Field argues, Platonism ‗entails its own unjustifiability‘ 

(op. cit.  p. 6). 

Furthermore, however, Field also sidesteps the implied objection at this point by 

denying that ‗the feeling that most people have‘ of the necessity of mathematics 

actually requires truth. Field‘s claim here is that conservativeness captures the 

important part of that ‗feeling‘ without requiring the truth of mathematics: 

Truth isn‘t required for goodness (so necessary truth isn‘t required either); what is 

required instead is … conservativeness, which embodies some of the features of 

necessary truth without involving truth.‘ (op. cit.  p. 5)  

In fact, conservativeness, Field claims, is – more or less – what we will be left with 

if we subtract truth from necessary truth: 

Conservativeness might loosely be thought of as ‗necessary truth without the truth‘. 

(Field 1989 p. 241) 

 So it is necessity rather than truth that does the work in the argument for 

conservativeness.  

Now, Field claims that actually – in this world – mathematics is false. And it turns 

out to be important for him to make the claim in this way, taking it that mathematics 

is contingently false, and not what looks at first glance the more natural claim, that 
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 In the Lockean sense; ‗to press a man with consequences drawn from his own principles‘; 

see John Locke 1689, IV, xviii 21. 
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mathematics is necessarily false. That Field‘s fictionalism can only be a contingent 

nominalism has been cited by Bob Hale and Crispin Wright as a major flaw in 

Field‘s position. Briefly, their argument goes as follows. Given conservativeness, it 

is evident that mathematics is consistent. So there could have been mathematical 

entities, even if, as Field claims, there are none. And, claim Hale and Wright, such 

contingent non-existence requires an explanation that Field cannot supply.
45

 

In answering Hale and Wright, Field accepts the label of ‗contingent nominalist‘ – 

he does not think that mathematics is necessarily false, but only that although there 

are possible worlds containing mathematicalia, we have no reason to think the actual 

world is one such.  

This brief look at Field‘s argument for conservativeness, then, gives an insight into 

just what conservativeness amounts to. And we should note in passing that a 

possible motivation for the sort of surprise we found expressed by our chorus of 

scientists might well be located in the apparent contrast between the contingency of 

physical science and the perceived necessity of mathematics, as much as in the 

difficulties in accounting for a priori knowledge that is at the same time synthetic 

that I have already canvassed. Seen in this light, Field‘s view of conservativeness, 

giving us a kind of ‗necessary truth without the truth‘, might help explain away the 

contrast and mitigate the surprise. At the very least this aspect of the problem of 

applicability motivates further work in consideration of mathematical necessity. I 

will take this up later.
46

 For now, having looked at this aspect of Field‘s project, I 

turn to his use of his ‗main theoretical device‘; having given us a substitute for true, 

he needs to show us how mathematics can be good. 

 

2.3 Representation theorems 

Suppose we agree with Field that mathematics is not indispensable. His way to the 

conclusion seems to make it too strong, since if we cannot get any new scientific 

results by adding mathematics to science, it starts to seem as though mathematics is 

simply otiose. Why not just do science nominalistically, without mathematics? 

Apparently we could, since mathematics is conservative. However, we know that 

mathematics is not otiose in this way. So our problem is still acute. We might agree 

with Field that mathematics need not be true to be good, but we know that 

mathematics is good – it is useful in science. Accounting for this usefulness is where 

we began with the problem of mathematical applicability. This is where we start to 

need representation theorems. 

A representation theorem is an assertion that a certain physical system is structurally 

the same as some mathematical system, so that the physical system can be mirrored  
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in – represented by, that is – the mathematical system.  It will be worth bearing in 

mind in a general way as we work through some specifics, just how this might look 

like it can help us to understand mathematical applicability. 

Consider some physical system – a collection of physical objects, say, to take a very 

simple case – to which we want to apply mathematics. (We might want to compare 

their sizes in some structured way, for example.) The idea is that if we can find a 

collection of mathematical objects
47

 that are related amongst themselves in the same 

way as are the physical objects in question, we may be able to work within the 

mathematical system rather than directly with the physical objects themselves. (Our 

reasons for doing this are just what is germane at this point, as well as being more-

or-less obvious: it may well just be easier to work with mathematics.) What we 

require is that the results of working with the mathematics can be applied back in the 

physical world (applied to the physical objects, that is). The possibility of such 

application will be guaranteed, so the claim goes, so long as these mathematical 

objects are indeed structured – related among themselves, as I said – in just the same 

way as the physical objects. This guarantee of structural identity is what a 

representation theorem supposedly supplies. 

Here is Field‘s own characterisation of how this goes: 

Suppose that using some mathematical theory S … we can prove the existence of some 

mathematical structure B with certain specified properties. If we can then … prove the 

existence of one or more homomorphisms (structure-preserving mappings) from 

concrete objects … into that mathematical structure B, then such a homomorphism will 

serve as a ―bridge‖ by which we can find abstract counterparts of concrete statements. 

Consequently, premises about the concreta can be ‗translated into‘ abstract 

counterparts; then, by reasoning within S, we can prove abstract counterparts of further 

concrete statements, and then use the homomorphism to descend to the concrete 

statements of which they are abstract counterparts. (Field 1980 pp. 24-25) 

‗Ascend‘ from the concrete to the abstract via a homomorphism – make some 

deductions concerning the abstracta – then ‗descend‘ back to apply those same 

results about the concreta. That is the general way in which representation theorems 

are intended to help us understand mathematical applicability. 

There are a couple of questions that might be raised at this point. First, we might ask 

why the structure-preserving map is taken to be a homomorphism rather than an 

isomorphism. (An isomorphism is a homomorphism with the added property of 

being a one-one correspondence. A homomorphism may be many-one in that it may 

map several elements to the same element.) The answer is simple enough. Suppose, 

for example, that we are looking at the way in which the lengths of physical objects 

can be dealt with mathematically. We certainly do not want to deny the possibility of 

several objects having the same length – that is, of several physical objects mapping 
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with the intention of raising questions later.  



 42 

to the same (abstract) number that represents their length. So we allow the structure-

preserving map to be many-one rather than specifying that it be one-one. The same 

goes for other physical attributes as well as length, too, of course, and in general it 

makes sense to keep with the more inclusive notion of homomorphism. 

The second question that might arise is linked to this. The representation theorem 

story of applicability asks us to consider moving in two different ways: from the 

concrete (via our homomorphism) to the abstract, then (once the work is done, so to 

speak) back to the concrete from the mathematics. Now, if the link from the concrete 

to the abstract is one-one, we will of course end up back where we started if we 

undertake this two-way journey. Once we allow the connection to be many-one, 

though, we might ask whether we will be guaranteed to end up back in the same 

place with our application of mathematics in the physical system.  

Technically, we can express this concern in terms of the fact that isomorphisms have 

(specific) inverses, whereas homomorphisms may be ambiguous as regards their 

inverse-images. Should this be a worry? Not for long. Think of the example of 

application we considered above, that of representing length. Several objects may 

have the same length. And suppose that we derive some mathematical result about 

numbers representing lengths – concerning their additivity, say – that we wish to 

apply to concrete objects themselves. Might we be misled because when we want to 

apply such a result there are several objects that count as the inverse-image of any 

particular length – several objects with the same length, that is? No: all we need do 

is demand that any such results apply to all objects with the same length. In general, 

it seems, any result gained mathematically, if we are to apply it concretely, needs to 

be capable of applying to any of the concrete objects that are represented by the 

mathematical object they each map to under the representing homomorphism. That, 

indeed, is a requirement of any mode of application we are trying to characterise in 

this way, rather than a difficulty with such a characterisation. 

So, although we may well often talk of representing isomorphisms
48

, indeed, there is 

nothing to be lost, and sometimes something to be gained, by sticking with the more 

general homomorphism when characterising the structure-preserving map at the core 

of representation theorems.  

Now for some of the details. Field‘s characterisation of a representation theorem 

(1980 p. 58) generalises the notion from Krantz, Luce, Suppes and Tversky 

A representation theorem asserts that if a given relational structure satisfies certain 

axioms, then a homomorphism into a certain numerical relational structure can be 

constructed. (Krantz et al 1971 p. 9) 

Field himself is explicit as to the debt he owes in his work to the representation 

theorems he takes – more or less whole – from measurement theory and the survey 

thereof supplied by Krantz et al. It is going to be worth our while here to consider at 
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least one such theorem: Kranz et al‘s Theorem 1. What is important in what follows 

is the use made of the notion of homomorphism, and in particular the way in which 

the statement and the proof of the theorem seem to bring to the surface just what it is 

that is required in order that a part of the physical world be capable of being 

represented mathematically – and in order that the mathematics in question then be 

applicable to the physical world in a specific manner.  

Suppose we want to apply the kind of ordering relation epitomised by the way real 

numbers can be ordered by the relation  (―greater than or equal to …‖). We might 

have, that is, some set of objects whose magnitudes we wish to compare in some 

more-or-less theoretical kind of way. What do we require of such a set as regards the 

structural aspects of the way the magnitudes can be compared in order to be able to 

apply real-number ordering? What must be true, that is, of the physical structure, the 

set of objects, in order that we can apply this particular bit of mathematics to it? Let 

us go a little formal: 

Suppose A is a set and ≿ is a binary relation defined on A. A definition: 

The relational structure < A,  ≿ > is said to be a weak order iff for all a, b and c 

from the set A, the following conditions hold: 

1.  Connectedness: either a ≿ b  or b ≿ a. 

2.  Transitivity: if a ≿ b  and  b ≿ c ,  then  a ≿ c .   

Armed with this definition, we are ready to state the representation theorem 

(Theorem 1 from Krantz et al 1971): 

Suppose that A is a finite non-empty set. If < A,  ≿ > is a weak order, then there 

exists a function mapping A into the real numbers such that for all a and b in the 

set A, a ≿ b  iff  a)  b). (That is to say, of course, that is a representing 

homomorphism.)
49

 

What are we to take forward from this example? We might consider, first, how the 

importance of the structure-preserving homomorphism property seems here so well 

exemplified. It seems clear how the property of the representing function   – that 

a ≿ b iff  (a)     (b), so that  preserves the working of the relevant relation (here 

of a basic type of order) in the move from the physical structure to the representing 

mathematical structure – is precisely what we need in order that the mathematics 

correctly represent the physical structure.  

Second, it is also worth a look at the specifics of what is important for the theorem 

to go through – the axioms or given of the theorem that enable the proof to work. In 

the example we needed elements of the physical structure to be capable of being 

related by means of a ‗weak order‘ – a relation that is both connected and transitive. 

We would be wasting our time trying to compare and measure an attribute that was 
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not transitive, for instance, using the order properties of the real numbers. Well, but 

we always knew that, I suppose it might be said here: there is no point trying to 

achieve a consistent ordering or measure of, say, desirability of prospective partners 

if it could be that A were more desirable than B, B more desirable than C and C 

more desirable than A.
50

 This may seem a trivial point. However, exhibiting the 

relevant representation theorem does manifest just what seems to be required in 

order that relevant parts of mathematics can be applied in situations where it is 

possible so to apply them.  

Field‘s ‗main theoretical device‘, then, we see, is indeed in the business of 

answering Steiner‘s question ‗Given the nature of mathematics, why should such a 

homomorphism exist?‘  

 

2.4 An initial worry 

However, now we have an idea of Field‘s account of mathematical applicability, I 

want to enter a preliminary caveat. It certainly seems that there is something to be 

got from considering how a representation theorem might be thought to explain how 

mathematics is applicable to the physical world. However, there may be some 

unease at this thought that a representation theorem gives an explanation of how 

mathematics applies, an unease that seems all the heavier in the context of Field‘s 

overall project. For consider: the map at the centre of any representation theorem 

supposedly connects physical objects to mathematical objects – two admittedly 

different sorts of things under any philosophical view of mathematics and 

particularly under Field‘s. The sort of things mathematical objects are, in Field‘s 

view, is about as different as it is possible to be from the sort of things physical 

objects are. Mathematical objects, according to Field, are non-existent, whereas 

physical objects paradigmatically exist, whatever else we may choose to say about 

them. Can we have a connection between non-existent objects and existing things, 

one that moreover bears the weight of explanation we are trying to give it here? It 

seems problematic, to say the least.  

Of course we do not consider the ontological status of mathematicalia when we are 

mapping within mathematics: the homomorphism from a group to its factor group by 

a normal subgroup, for instance – perhaps a paradigm case for the notion of 

homomorphism within mathematics
51

 – does not have its status at all put in question 

by considerations of the ontology of groups or their elements. We might well 
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consider the exhibiting of such a homomorphism to be indeed explanatory of the 

relation between object and image groups or of the structure of the group thereby 

factored; we may be said not really to understand this latter unless we can see how 

and why this homomorphism exists. That seems a different case, though, from the 

one under consideration where we are supposedly mapping between such different 

sorts of objects as (non-existent) abstract mathematical objects and real physical 

things. 

We might put the case as follows. It is clear what we mean when we exhibit a 

homomorphism within mathematics: we have already extant criteria for whether 

such a homomorphism exists as part of mathematics.
52

 In the light of this, the unease 

I have gestured at when we start to think of connecting different sorts of objects in 

maps from physics to mathematics might be explained in terms of questioning 

whether we really know what it means to say we have a map from physical to 

mathematical objects. It does seem that a representation theorem makes sense of 

such a map. On reflection, though, it is clear that it only does so without further ado 

so long as it is considered as itself a part of mathematics. We may have missed the 

point because we were thinking so much about linking mathematics to physics, but 

Krantz‘s Theorem 1 above is itself part of mathematics. It is stated, precisely, as a 

mathematical theorem about mathematical objects, and its proof consists, precisely, 

of mathematical conclusions drawn by deductions from mathematical premises 

according to the usual tenets of mathematical practice.  

In the light of this, it is worth beginning to question the way in which a 

representation theorem is supposed to show us how to bridge a supposed gap 

between the separate realms of physics and mathematics. According to Field, as I 

have emphasised, these ‗realms‘ are very different: one of them contains ordinary, 

common or garden concrete objects,
53

 the other nothing at all, or at least nothing that 

exists. So there is a sense in which, for a fictionalist like Field, the mathematical 

realm does not exist. At the same time, though, there is another sense in which, even 

for a fictionalist like Field, it appears the mathematical realm must exist in order for 

it to be mapped onto by the homomorphism at the core of a representation theorem. 

This latter sense, now, it is also becoming clear, is the sense which generates the 

search for ‗something like a homomorphism‘ that Steiner found at the heart of the 

 

                                                                            
 

52
 This is itself not as clear cut as it might seem. There is a sense, made much of by 

Wittgenstein, in which the meaning of a mathematical theorem fails to be independent of its 

manner of proof. Although I do not deal explicitly with this in exactly these terms, my hope 

is that my next chapter will go some way towards clarifying such matters. 
53

 Including such things as bosons and quarks in the category of ‗common or garden‘ objects 
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abstracta. The main difference regards the playing-out of Field‘s conservatism: the existence 

of quarks is not conservative over physics in the way the existence of numbers is. For now, 

though, just let the difference between concrete and abstract carry the weight. 
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philosophical problem of mathematical applicability in the work of philosophers 

through the ages. I want now to begin to put this sense in question.
54

 

 

2.5 Field and Wittgenstein; mathematics as rules  

The sense in which the mathematical realm does (or does not) exist so as to figure as 

the co-domain of a representing homomorphism will be illuminated by comparing 

Field‘s way of turning away from mathematical Platonism with Wittgenstein‘s way 

of so turning. Clearly there will be contrasts in this comparison; however, I want to 

focus first on a similarity. Both Wittgenstein and Field see mathematical 

propositions (or ‗so-called propositions‘, we might say to avoid any accusations of 

question-begging) as particularly related in some important way to rules of 

inference, a view that might be seen as forced once we make the turn away from 

Platonism. Forced or not, each of these two philosophers makes the implied move. 

Field writes of the importance of mathematics being  

… useful in facilitating inferences (between nominalistic premises and nominalistic 

conclusions) … (1989 p. 59) 

–  Just as Wittgenstein, in his Tractatus Logico-Philosophicus says 

Indeed in real life a mathematical proposition is never what we want. Rather, we 

make use of mathematical propositions only in inferences from propositions that do 

not belong to mathematics to others that likewise do not belong to mathematics. 

(TLP §6.211)
 

Whilst there are differences in emphasis, this Tractatus view of mathematics 

survives into Wittgenstein‘s later writings. In Remarks on the Foundations of 

Mathematics, for instance, we find him often writing of mathematical propositions 

explicitly as ‗rules‘.
55

 Field makes no such explicit move, although as we will soon 

see, he does take mathematicians‘ knowledge of  relations of consequence –  of 

‗what follows‘ –  as the uniquely important feature of mathematical epistemology.
56

  

Now, we should contrast the way in which each of Field and Wittgenstein deals with 

the notion of mathematics as inference-facilitating. Wittgenstein and Field both have 

the notion as an important part of the use of mathematics in practice. But Field has 

also, what Wittgenstein does not, the notion of a link between two realms – a 
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in Chapter 4.   
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 See, e.g., Field 1989, p. 83: ‗… the only knowledge that differentiates a person who 

knows lots of mathematics … is (i) knowledge that certain mathematical claims follow from 

certain other mathematical claims …‘ I deal with this in more detail below. 
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representing homomorphism between inferences in mathematics and inferences in 

(nominalised) science. Wittgenstein‘s move towards something like a closer 

identification of mathematics with the rules of inference that Field suggests are 

‗facilitated‘ by mathematics is blocked by Field‘s insistence on ‗taking mathematics 

at face value‘. Or, rather, as I shall argue, Wittgenstein‘s move here is blocked by 

Field taking ‗taking mathematics at face value‘ a certain way. It is going to be 

important to get this clear; I will take the trouble to unpack carefully.  

 

2.6 Semantic uniformity: taking mathematics at face value 

2.6.1 Benacerraf’s dilemma 

As well as situating Wittgenstein‘s thought in regard to what I am claiming as 

relevantly similar aspects of Field‘s account, I want to situate the views of both these 

philosophers in the light of what has become a canonical framework for much 

contemporary philosophy of mathematics, namely the dilemma set out in Paul 

Benacerraf‘s 1973 article ‗Mathematical Truth‘
57

. In the current Oxford Readings on 

the philosophy of mathematics, for instance, W.D. Hart claims that  

Benacerraf‘s dilemma … gives us a perspective from which to organise many, 

especially contemporary, philosophical discussions of mathematics. (Hart 1996 p. 5) 

Benacerraf claims there are two concerns or requirements that must be satisfied if 

we are to have what he describes as ‗a coherent over-all philosophic account of truth 

and knowledge‘ in our philosophy of mathematics. (p. 18) These requirements are as 

follows: 

(1) the concern for having a homogeneous semantical theory in which semantics for the 

propositions of mathematics parallel the semantics for the rest of the language, and 

(2) the concern that the account of mathematical truth mesh with a reasonable 

epistemology. (P. 14) 

Unfortunately, Benacerraf claims, these two concerns are such that they cannot be 

simultaneously satisfied by any extant philosophical accounts of relevant aspects of 

mathematics. This is because the only semantic game in town, so to speak, is 

Tarski‘s, according to which, as Hart reminds us, ‗… truth requires reference … to 

objects‘ (1996 p. 2);  and knowledge requires some causal connection between 

knower and thing known.
58

 But mathematical objects, supposing them to exist at all, 

are abstract and hence ipso facto non-causal. So, the argument goes, we need there 

to be mathematical objects for there to be mathematical truth, but we cannot get to 

know anything about such objects because they do not participate in causal relations. 
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Benacerraf‘s reliance on a causal epistemology might give us pause, but in fact most 

contemporary philosophers of mathematics see the crux of the dilemma 

independently of specific causal theories of knowledge. Knowledge of non-spatio-

temporal entities seems itself prima facie difficult to account for. Mark Balaguer, for 

instance, characterises the importance of Benacerraf‘s dilemma independently of 

causal epistemology nevertheless as ‗the epistemological argument against 

Platonism.‘(Balaguer 2011) Or, one more recent example to make the point; Stewart 

Shapiro: 

Here is our dilemma: the desired continuity between mathematical language and 

everyday and scientific language suggests realism, and this leaves us with seemingly 

intractable epistemic problems. (Shapiro 1997 p. 4)  

So, the dilemma arises from the difficulty – impossibility, says Benacerraf – of 

squaring the demand for uniformity of semantics with an appropriate epistemology 

of mathematics. I will be looking at the horn of the dilemma concerning 

mathematical knowledge, particularly in the light of Hartry Field‘s stance on this 

latter, below. In the end, though, my major concern in this and succeeding sections 

is to blunt the horn involving the concern for a homogeneous semantic theory.  

Why should we want uniformity of semantic theory? One reason is that we might 

want to mix propositions from different regions of discourse. Hart mentions  

… one banal fact which Tarski used … the conjunction … A and B is true if and only if 

A is true and B is true … (Hart 1996 pp. 2-3) 

Taking different varieties of truth for A and B seems to make the conjunction 

hopelessly equivocal, as Hart points out. (Suppose A to be a historical, and B a 

mathematical, proposition, for instance.) We want a uniform semantics because it is 

at best inconvenient if we do not have one, as well as to satisfy the desire for 

simplification to be had from a general theory. Along the same lines, think how 

complicated our lives as semantic theorists would be if we had to gloss some 

semantic value for a proposition p differently for p asserted simpliciter compared 

with an occurrence of p as part of a conditional ‗if p then q‘. We want – it seems we 

need – p to be the same as simple assertion as it is in a hypothesis or conditional, 

where ‗the same‘ refers to whatever semantic value is in question: meaning, truth 

conditions … or whatever. The requirement for semantic homogeneity stands or 

falls with this aspect of the compositional requirement on philosophical semantics.
59
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2.6.2 Challenging semantic homogeneity 1: Moore’s paradox 

I am going to challenge this everyday notion of semantic homogeneity in the hope 

that we can get a clearer view of what is going on that might make us less likely to 

get hung up on the likes of Benacerraf‘s dilemma. 

Before I start looking at the mathematical case, I want to prepare such a case by 

looking at an issue in philosophy of mind, largely construed, in order to sow some 

seeds of doubt about the general applicability of the requirement for semantic 

homogeneity.  

As I said just above, it seems we need that ‗p‘ as a simple assertion means the same 

(has the same truth conditions, whatever …) as ‗p‘ when it occurs as the antecedent 

in a conditional ‗if p then q‘. But look: suppose we take ‗p‘ as ‗I think it’s raining 

and it isn’t raining‘ and ‗q‘, say, as ‗I’ll carry an umbrella unnecessarily‘. ‗If I think 

it’s raining and it isn’t raining, then I’ll carry an umbrella unnecessarily.‘ … That 

is unexceptional. However, p as a simple assertion, ‗I think it’s raining and it isn’t 

raining‘ is – at the very least – an odd thing to say. Whether it is or is not a formal 

contradiction is not important.
60

 I want to focus just on the feature pointed out by 

Wittgenstein, that  

… it looks as though the assertion ―I believe‖ [I believe it’s raining…] were not the 

assertion of what is supposed in the hypothesis ―I believe‖! [If I believe it’s raining…] 

(Philosophical Investigations Part II xi)
61

 

The assertion ‗I believe it’s raining and it isn’t raining‘ seems not to make clear 

sense as an assertion or utterance. It is not something anyone could sensibly say. But 

embed it as the antecedent of a hypothetical or conditional, ‗If I believe it’s raining 

and it isn’t raining, then …‘ (‗I’ll end up carrying an umbrella I don’t need‘) … 

That is just fine.  

We are forced to conclude that here we have a case where, whatever else is going 

on, we have a proposition p that actually disallows homogeneity of semantic 

treatment over (i) simple assertion and (ii) as embedded in a molecular proposition, 

contrary to the requirement we thought necessary. And further, we should remark 

that this is not a problem that necessarily needs a theoretical fix; it is simply a 

feature of our language that this is the case. There may be important morals for the 

way we view ascription of so-called intentional attitudes, particularly in the first-

person singular present tense indicative, but this need not detain us. We should note, 

however, that a solution to the apparent paradox might well lie not in any change in 

the way we talk about belief or other aspects of our mental life but rather in seeing 
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clearly that what we thought to be a theoretical requirement is in fact nothing of the 

sort. The fault, we might say, lies in the theory rather than the language, in short. 

2.6.3 Challenging semantic homogeneity 2: taking mathematics at face value 

I am not going to get into a detailed treatment of Moore‘s Paradox.62 
But I hope to 

have sowed some seeds of doubt about the homogeneity requirement. With this in 

mind, I will turn back to mathematics and Hartry Field.  

The requirement for semantic homogeneity in Field‘s writings is apparent in his talk 

of taking mathematics ‗at face value‘. We have already seen the importance of 

‗taking mathematics at face value‘ for Field. It is worth trying to get his meaning as 

precisely as possible. Field obliges us: in his critical study of Crispin Wright‘s 

Frege’s Conception of Numbers as Objects
63

, he writes of 

… what might be called ‗the face value thesis‘, according to which both ‗line c‘ and 

‗the direction of line c‘ function semantically as singular terms. (op. cit. p. 151)
64

 

Field recommends this thesis to us: 

In my view, the face value thesis should be accepted. (ibid.)  

That is, Field wants us to accept the homogeneity of such things as the semantic 

function of singular terms in discourse concerning both the physical/concrete – 

‗line c‘ refers to a concrete physical object
65

,  and the abstract – ‗the direction of 

line c‘ refers to an abstract object. This is what I want to challenge. 

 

2.7 Frege, Wright and Field 

This takes us back to Frege in Foundations of Arithmetic and Crispin Wright‘s 

exegesis thereof. Field‘s study of Wright‘s book does not engage with Frege 

directly. Nor does it cover all of Wright‘s exegesis and comments in detail. What 

Field particularly challenges is Wright‘s development of Fregean Platonism, and it is 

this that should interest us. I want to get clear about just what is involved in this 

‗taking at face value‘, and for this it will be useful to look at what is going on in this 

latter challenge. There is no need here for anything like a thorough assessment of the 
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 Wittgenstein offers such a – convincing – treatment. Jane Heal gives a good account; see 

her 1994. 
63

 Reprinted as Platonism for cheap? in Field 1989 pp. 147ff. 
64

 The example, as well as the point it illustrates, is Frege‘s, of course. See Foundations of 

Arithmetic, §64ff, especially §66, ‗… the direction of a appears as an object‘. 
65

 Are lines bona fide concrete objects? The question is moot, as likewise are related 

questions about what Field is to be allowed to count as ‗nominalistically kosher‘ within his 

self-imposed task of ‗nominalising‘ different parts of science. That Field takes lines to be 

physical entities is clear: see for instance Field 1980 pp. 31-32, where he writes at length of 

‗physical‘ lines. Whether he is entitled to such talk within his overall project is not a 

question that needs answering here, however: surely some reduction of direction-talk to the 

concrete will be possible.  
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controversy between Wright‘s Platonism and Field‘s fictionalist anti-Platonism. My 

concern is not with differences between Field and Wright, but rather with what, 

overall, they share, as exemplified by Field‘s talk of ‗taking at face value‘. This will 

be clearer in the light of a brief description of the dialectic in which they are 

engaged. 

First, let us go back to Crispin Wright for a run-through of some important aspects 

of the argument for Platonism he finds in Frege. Wright is at pains to point out that 

Fregean Platonism is, as he remarks, 

… associated with no Gödelian epistemology. (Wright 1983 p. 51) 

This is anachronistic in a sense, since Gödel‘s epistemological ruminations post-

dated Foundations of Arithmetic. However, it is a natural point to make: the 

reference is to a view that has become particularly associated with Gödel, but that 

must strike any Platonist – any philosopher of mathematics indeed – as a possible 

answer to an apparently pressing problem, one we have seen sharpened as one of the 

horns of Benacerraf‘s dilemma. The problem is that of accounting for knowledge of 

abstract entities, supposing they exist, given such entities‘ apparent lack of 

interaction, causal or otherwise, with us as putative knowers. Here is an expression 

of Gödel‘s epistemology of mathematics: 

But, despite their remoteness from sense experience, we do have something like a 

perception also of the objects of set theory, as is seen from the fact that the axioms 

force themselves on us as being true. I don‘t see any reason why we should have less 

confidence in this kind of perception, i.e., in mathematical intuition, than in sense 

perception. (Gödel 1983 p. 271) 

This kind of Gödelian ‗perception‘, we might think, is as much a desperate move as 

Plato‘s theory of recollection or Descartes‘ ‗God is no deceiver‘ in attempting to 

account for mathematical knowledge. Be that as it may, we have seen Wright 

(above) – in exegesis of Frege, perhaps we should remind ourselves – setting out to 

eschew any such Gödelian epistemology. 

Field explains how this relates to Wright‘s
66

 metaphysics. Difficulties with the 

problem of accounting for knowledge of abstracta may well be taken as good 

reasons for denying Platonism, so that if a convincing epistemology can be supplied 

from elsewhere, Platonist metaphysics becomes all the more plausible. (It is easy to 

see this in the light of Benacerraf‘s dilemma.) However, Gödelian ‗perception‘ is 

implausible: we can do better in accounting for our knowledge of abstracta, Field 

explains on Wright‘s behalf: 
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 And Frege‘s? Doubts have been expressed about Frege‘s own commitment to Platonism, 

by Joan Weiner for instance (in her 1990 and elsewhere). It might also be worth mentioning 

in this regard Erich Reck‘s characterisation of Frege as ‗a contextual, not a metaphysical 

platonist‘ on account of the dependence of his account on the context principle. See Reck 

1997. To what extent we should read Frege as an out-and-out realist about mathematics is an 

interesting and subtle matter that unfortunately I have not the space to go into here. 
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A central tenet of Wright‘s approach to ontology is that one can and should be a 

platonist without endorsing Gödelian views about the ‗perception‘ of abstract objects. If 

we understand the Context Principle correctly, Wright thinks, we see that there is no 

need for such a faculty of ‗perception‘. For we can have knowledge of abstract objects 

if we can have knowledge of states of affairs in which those abstract objects figure. 

(Field 1989 p. 162) 

The ‗Context Principle‘ is one of three ‗fundamental principles‘ Frege sets out in the 

introduction to The Foundations of Arithmetic: 

never to ask for the meaning of a word in isolation, but only in the context of a 

proposition (P. x) 

What is important for us is Wright‘s gloss on it and Field‘s reaction to that. Field 

describes Wright‘s exegesis as ‗quite plausible‘ (Field 1989 p. 152). It consists of 

two components. The first is ‗pretty uncontroversial‘ (Field, ibid) and ‗fundamental 

to modern philosophical semantics‘ (Wright 1983 p. 50): it is a thesis of 

compositionality, according to which 

… a satisfactory account of the meaning or reference of a subsentential expression must 

make clear its contribution to the meaning or truth conditions of sentences that contain 

it. (Field 1989 p. 152)
67

 

We have seen the beginnings of an attack on this above, with particular reference to 

Moore‘s paradox. However, the second component is more germane just now. 

Wright describes it as follows: 

… the thesis of the priority of syntactic over ontological categories. (op. cit. p. 51) 

– More fully: 

… the question whether a particular expression is a candidate to refer to an object is 

entirely a matter of the sort of syntactic role which it plays in whole sentences. If it 

plays that sort of role, then the truth of appropriate sentences in which it so features will 

be sufficient to confer on it an objectual reference; and questions concerning the 

character of its reference should then be addressed by philosophical reflection on the 

truth-conditions of sentences of the appropriate kind. (ibid.) 

Of course it does not follow from ‗The maiden captured the unicorn‘ that there are 

unicorns. However, if we accept that syntactically ‗The unicorn‘ plays the role of a 

singular term, and that the sentence is true
68

, Wright will claim that it does so 

follow. There may still be caveats, of course. For instance, the truth of the sentence 

has to be of the right sort, or to put it another way, the truth conditions for such 

sentences must be ‗of the appropriate kind‘. It will not do if the sentence is only true 
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 See also Wright op. cit.p. 50. Field‘s expression mirrors Wright‘s except that Field has 

‗meaning or truth conditions‘ where Wright has just ‗meanings‘. 
68

 I am not going to make anything here of questions about the appropriateness of ascribing 

truth to sentences, or concerning the appropriateness of talk of ‗truth conditions‘ in this way. 

I will try to make something of such questions, in a general way, below, but for now I am 

just going along with Wright. 
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in a fairy-tale, for instance. The appropriateness of allowing different kinds of truth 

is largely what is at issue, however, we should remind ourselves.  

Field wants to split this ‗priority thesis‘ apart. He wants to take Wright‘s thesis (the 

‗Strong Priority Thesis‘) as the conjunction of two claims, only the first of which he 

accepts. The ‗Weak Priority Thesis‘, which Field agrees with, he expresses as 

follows: 

… that any expression which by syntactic criteria counts as a singular term also 

functions semantically as a singular term. (Field 1989 p. 153) 

The second part concerns the criteria for distinguishing the truth of sentences under 

question. It is this: 

(S) What is true according to ordinary criteria really is true, and any doubts that this is 

so are vacuous. (Field 1989 p. 155) 

Briefly, Field‘s explanation of this is as follows. Suppose, for example, there are at 

least three books in the room. According to Wright, this will count as an ‗ordinary 

criterion‘ for the truth of the statement, ‗The number of books in the room is greater 

than or equal to three.‘ Since ‗the number of books‘ counts as a singular term by 

syntactic criteria, according to the Weak Priority Thesis it also functions 

semantically as a singular term: that is, it refers to a number. But, according to 

Wright‘s argument as explained by Field
69

, a true statement referring to a number 

entails the existence of that number. 

Arguing against Wright, Field denies that ‗The number of books in the room is 

greater than or equal to three‘ is made true by there being at least three books in the 

room, whether this counts as an ordinary criterion for truth or not, since a sentence 

expressing that there are three books in the room can be glossed nominalistically 

using the familiar device of numerical quantifiers and so avoid reference to a 

number.
70

 According to Field, then, this is an example of how we can accept the 

Weak Priority Thesis, deny the principle (S) and in doing so keep the semantic part 

of the context principle without accepting any ontological entailment. 

Schematically, then, Wright‘s priority thesis, Field claims, gets us from syntax to 

ontology: 

Syntax----------------------------> Ontology 

For Field, this move is best seen when analysed: 

Syntax--(1)-->Semantics--(2)--> Ontology 
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 Field is tentative in his attribution of the details of this argument to Wright. He finds the 

content of (S) unclear, for instance (op. cit. P. 155). It is the overall thrust of Field‘s critique, 

though, that is important for us.  
70

 In case it is not clear, numerical quantifiers are expressible in first-order logic with 

identity without any use of number terms. Of course not every mathematical statement 

allows this kind of nominalistic reduction. I will not go into that here. 
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– and the link from syntax to semantics – (1) – is acceptable to Field, whereas the 

further link to the claim of existence – (2) –  is not, because it relies on this ‗truth by 

ordinary criteria‘ principle which Field has argued to fail. So overall the link breaks, 

according to Field, because although the move to semantics means that 

mathematical propositions do involve reference to abstract entities, we have no 

reason – he does not think Wright‘s Frege gives us any reason, nor can he find 

reasons elsewhere – to think there are any entities corresponding to the singular 

terms. There just are not, as a matter of fact
71

, any abstract objects for the terms in 

such propositions – singular (referring) terms in good standing though they be – to 

refer to. So syntax gets us semantics, according to both Wright and Field. Where 

they differ is in the further step from semantics to existence. 

We saw above the first component of Wright‘s exegesis of Frege‘s Context 

Principle, what I called a thesis of compositionality, and to which Field in his 

expression added the gloss of ‗truth conditions‘ to Wright‘s ‗meanings‘. We have 

also seen Field writing of the link between ‗knowledge of abstract objects‘ and 

‗knowledge of states of affairs‘. Here is that quotation again: 

… If we understand the Context Principle correctly, Wright thinks, we see that there is 

no need for such a faculty of ‗perception‘. For we can have knowledge of abstract 

objects if we can have knowledge of states of affairs in which those abstract objects 

figure. (Field 1989 p. 162) 

For Field there is no knowledge of states of affairs in which abstract objects figure, 

just because there are no abstract objects. But, we have seen, for him the semantics 

remains, so that although terms which purport to refer to abstract objects fail to do 

so, nevertheless their meaning involves this reference to non-existent abstracta. 

Wright thinks, what Field denies, that the states of affairs do pertain. And it is not 

possible, Wright claims, 

… to determine that a class of expressions have no genuine reference when, by the best 

syntactic criteria, these expressions function as singular terms in a range of statements 

… which we have every reason to suppose to be true; and thus that the states of affairs 

that make these statements true have no objects ‗in‘ them of the appropriate sort, bear 

no structural affinity, as it were, to the overt syntactic structure of the relevant 

statements. (1983 p. 25) 

To labour the point slightly, here is a little more of the same: 

If, therefore, certain expressions in a branch of our language function syntactically as 

singular terms, and descriptive and identity contexts containing them are true by 

ordinary criteria, there is no room for any ulterior failure of ‗fit‘ between these contexts 

and the structure of the states of affairs which make them true. (Wright 1983 p. 52) 

I want to emphasise that Field‘s disagreement with Wright hinges not on any denial 

of the appropriateness of such talk of ‗fit‘ between linguistic contexts and states of 

affairs, but only on the further move of denying the existence of the states of affairs  
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 We will recall Field‘s nominalism is contingent. 
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involving abstracta which ‗fit‘ the linguistic contexts. We have seen Field to hold on 

to the semantic theory while denying it any ontological entailments even in the 

mathematical case. It is this that I want to claim as his blind spot – the commitment 

to a particular semantic theory that makes him unable to take on board the full 

consequences of his movement away from abstract entities. 

It is clear how the notion of semantic homogeneity plays out in Field – and it is also 

clear from these latter remarks exactly what kind of theoretical account of semantics 

underlies the homogeneity claim; it is an account involving an imprecisely defined 

‗fit‘
72

 between ‗states of affairs‘ in which objects ‗figure‘ and the contexts of use of 

linguistic expressions describing or talking about such states of affairs and the 

objects (abstracta in the mathematical case, concreta in talk of physical objects) 

which figure in them.  

This commitment of Field‘s to uniformity is what I want to challenge: it is a 

uniformity of semantic theory that emphasises the similarity of how different 

linguistic terms function. On the surface, it looks as though ‗the number of books‘ in 

a sentence such as ‗The number of books is greater than three‘ functions in much the 

same way as ‗the sofa‘ in a sentence like ‗The sofa is larger than the table.‘ It seems 

a small step from there to the thought that, just as ‗the sofa‘ signifies a physical 

object or refers to an item of furniture, so ‗the number of books‘ signifies a non-

physical object or refers to a number. And at this point, it seems, philosophy has 

questions to answer. What is the ontological status of non-physical objects? How 

can we know about them if they are non-causal? This is familiar: we are back with 

Benacerraf‘s dilemma. It is time to begin to consider the other horn of this dilemma.  

 

2.7 Knowing non-existence 

I am going to continue with Field; the difficulties he encounters will be suggestive. 

Recall that Field‘s turn away from Platonism issues in fictionalism about 

mathematics; he wants to convince us that mathematics is uniformly false. If we 

consider mathematics to be false, however, then it seems there can be no 

mathematical knowledge. We cannot be said to know anything that is false, after all. 

We cannot just leave matters there, though. Clearly there is something that 

mathematicians can claim to know … and something that some mathematicians 

know more of than others. (There are many mathematicians who know more than 

me, for instance.) What can we make of such knowledge, though, once we allow that 

mathematics is uniformly false, as does Hartry Field? 

Field sees the problem, and offers us an epistemology for mathematics that sorts 

things out on his own terms. ‗[T]he idea that mathematical knowledge is just logical 

knowledge,‘ Field says, ‗is largely correct.‘ (1989 p. 81) (Logic for Field is 

conceptual necessity. (1989 p. 80)) Despite this claim, though, Field is not a logicist 
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in the way Frege was or tried to be (or the Scottish neo-Fregeans are). He denies that 

mathematics is analytic – ‗that is, true by logic and definitions alone‘. (1989 p. 79) 

Logic, says Field, should be taken as eschewing existential commitments. This is a 

point he takes from Kant
73

. According to Field, mathematics (‗taken at face value‘) 

does, whereas logic does not, involve existential commitment. Or, at least, we 

should so construe logic: there are, he claims, distinct advantages to be gained by 

taking such a Kantian (Field claims ‗normal‘) view of logic: 

… there is good reason not to depart from the normal sense of ‗logic‘ by counting 

existence assertions as part of logic: doing so would tend to mask the fact that there is a 

substantive epistemological question as to how it is possible to have knowledge of the 

entities in question (God, numbers, etc.). (Field 1989 p. 80) 

Field thinks that there is a moral here that Frege himself (eventually) saw. If we 

cannot get existence from logic, and mathematics involves claims of existence, we 

cannot reduce mathematics to logic. Field quotes Frege appositely in this regard: 

…it seems that [logic] alone cannot yield us any objects … [So] probably on its own 

the logical source of knowledge cannot yield numbers. (Frege, A new attempt at a 

foundation of arithmetic, quoted in Field 1989 p. 81.)
74

 

Of course the idea that logic has no existential commitments – that ‗logic cannot 

yield us any objects‘ – might be challenged.
75

 But this is not the place for such 

considerations. 

Field, we have seen, wants to claim that mathematics is not, strictly speaking – 

‗taken at face value‘ – true, although of course it is useful, the utility being in terms 

of mathematics as a kind of inference-tool. Now, suppose we take this to be all that 

mathematics amounts to in the way Field does. We may nevertheless want to give an 

account of mathematical knowledge that will allow us to distinguish someone who 

knows a lot of mathematics from someone who only knows a little. What is this 

knowledge that the former has more of? Given that mathematics in use is 

exclusively inferential at the same time as being uniformly false, we are going to 

have to gloss mathematical knowledge as knowledge about what follows from what. 

This is what Field does, more or less. Only ‗more or less‘, indeed, for there is a kind 

of mathematical knowledge, Field points out, which is just empirical. Someone who 
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commitment. 
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 It is worth emphasising that this comes late in Frege‘s life and in particular after he had 

tried – and failed – to solve the difficulties in his logic illuminated by Russell‘s Paradox. 

Earlier, he had thought that logic could ‗yield us [arithmetical] objects‘. Crispin Wright‘s 

Frege’s Conception … tries to rehabilitate Frege‘s earlier view, or at least whatever of it can 

be rehabilitated in Wright‘s eyes. We might also qualify the later Frege‘s apparent blanket 

denial of logical existential commitment by considering his view of the existence of 

concepts as well as (or, perhaps we should say, apart from) objects.  
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 By Bob Hale, for one. See, e.g. his 1987. 
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knows lots of mathematics will know more than average about which theorems the 

mathematical community accepts as proved, what are the accepted axioms of a 

group or Hilbert Space, and so on. This kind of knowledge, empirically gained, is 

not logical. According to Field, though, knowledge of ‗what follows‘ is a species of 

logical knowledge. It is in this sense, he claims, that mathematical knowledge is 

logical knowledge. 

Field labels as ‗deflationism‘ the view that, apart from the kinds of empirical 

knowledge such as those considered above,  knowledge of ‗what follows‘, 

supplemented with knowledge of consistency within mathematics, exhausts the 

possibilities for mathematical knowledge. He delineates his preferred kind of 

deflationism about mathematical knowledge in a basic way as follows: 

… the only knowledge that differentiates a person who knows lots of mathematics from 

a person who knows only a little (aside from empirical knowledge of various sorts …) 

is 

(i) knowledge that certain mathematical claims follow from certain other 

mathematical claims or bodies of claims, 

(ii) knowledge of the consistency of certain mathematical claims or bodies of 

claims 

and other knowledge of a basically similar sort; and that all this knowledge is logical. 

(Field 1989 p. 83) 

There is an immediate problem with this for Field, now, if he is to maintain his 

fictionalist nominalism. There are two standard ways of glossing claims of ‗what 

follows‘ and consistency, the semantic and the syntactic (or the model-theoretic and 

the proof-theoretic). Each of these, however, involves commitment to some kind of 

abstract entity – models in the case of the semantic, formal derivations in the case of 

the syntactic. The problem, then, is that a nominalist seems unable to deal with 

logical knowledge if that knowledge is, as it appears Field claims it to be, of models 

or derivations, since to a nominalist these latter exist no more than do any other 

abstracta. Field attempts to solve the problem by moving back from the 

metalanguage to the object language. 

Thus, instead of taking the knowledge involved in (i) to be metalogical, Field takes 

it to be modal. Suppose I know that B follows from A. Instead of glossing this as the 

claim that I know that in all models in which A is true, B is true, or that there exists 

a formal derivation of B from A, he suggests we take the claim as being that I know 

that it is necessary that A implies B. Thus, what I know is what is expressed by the 

object language sentence ―( A B )‖, where the ‗‘ is an operator on rather than a 

predicate of sentences. (See Field 1989 p. 85) Likewise, my knowledge that a 

conjunction C of mathematical statements is consistent should be glossed as my 

knowledge that C is possible (I know that ―C‖.) 

Now there seems to be a new problem for Field. How is he to gloss this modal talk 

as part of the object language? Again, it looks as though we‘re going to be forced to 

accept abstracta, insofar as the standard, Kripkean, semantics for modal logic makes 
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reference to models, in this case sets of possible worlds. Field responds by adopting 

a semantics for modality that is different from Kripke‘s. 

Field takes a semantics using ordinary model theory, but without possible worlds. 

Sentences asserting possibility in a particular model, then, will be true if and only if 

what is claimed to be possible in that model is actual in some other model
76

: 

B is true in M if and only if B is true in M
*
 for some model M

*
. (Field 1989 p. 118)

77
 

This is fine so far as it goes. But there is an immediate apparent further difficulty, as 

follows. Field‘s semantics for modal logic uses the very model theory he has tried to 

gloss away. He is explicit about this: 

The [alternative] model theory [for modal logic] will be, like Kripke‘s, platonistic, for it 

will presuppose a large body of pure set theory. (p. 116) 

The question is, how can a fictionalist avail himself so apparently insouciantly of an 

avowedly platonistic model theory? Field attacks the problem head on, situating it 

rather nicely with regard to his fictionalism and the apparent problem raised for it by 

mathematical applicability.
78

  

In accounting for mathematical knowledge, as we have seen, Field claims that all we 

need to deal with (apart from empirical knowledge that mathematicians have about 

how other mathematicians work and so on) is knowledge of notions such as logical 

consequence and consistency. Such notions, although standardly held to require 

knowledge of mathematical (metalogical) entities of some sort (models, formal 

derivations), can be dealt with, according to Field, by using modal analogues 

without ascending to a metalevel at all. However, the semantics of Field‘s modality 

seems to reinstate the requirement for some of those very mathematicalia that the 

whole enterprise of ‗modalising away‘ metalogic in favour of a use of modality at 

the level of the object-language was intended to enable us to eschew. Field needs 

ordinary model theory just as a scientist needs ordinary mathematics.
79

 And just as 

Field claims, as we have seen, to have given an account of how ordinary 

mathematics ‗need not be true to be good‘, so now he sees the need to explain how, 

likewise, ordinary model theory can be good without being true. As he says, 

 

                                                                            
 

76
 This oversimplifies, but not in any misleading way. 
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 The – slightly longer – statement involving formulae other than sentences is there too. We 

lose nothing important by keeping to the simplified version. 
78

 We have been here before with Field, of course. We might recall him in Science Without 

Numbers, arguing against the Platonist using Platonist premises. There he claimed that 

‗Platonism entails its own falsity‘. What follows here is very similar. 
79

 There is no claim in play here that model theory is only useful for purposes such as 

Field‘s, of course. An account of its utility may well be required independently, and Field 

often writes in such terms. Once again (see previous footnote) it is interesting to mirror the 

requirement for an account of the applicability of metalogic in Field‘s own account of the 

applicability of mathematics. 
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Traditionally, proof-theoretic concepts are defined in terms of mathematical entities, 

with the result that proof-theoretic reasoning becomes reasoning about mathematical 

entities. If we accept the usual definitions of proof-theoretic concepts, then a 

deflationist cannot regard proof theory as a subject of which we can have any 

knowledge. So how can a deflationist account for its utility? … [This] is a problem that 

arises for semantics as well as for proof theory. (Field 1989 pp. 100-101) 

Field explains how model theory and proof theory can be good without being true 

by, again, ‗modalising away‘ commitment to abstract entities. This is a little more 

complicated, but, as we will see, in essence it involves the same sort of move as he 

made earlier.  

Going into fine detail is not necessary. Some examples will serve to get us the major 

points. Field claims that 

… the central uses [to which model-theoretic semantics and proof theory are put] are as 

devices for finding out about logical possibility. (p. 104) 

How can we find out, that is come to know, whether something is logically possible? 

The standard Platonist, model theoretic, answer depends upon the existence of 

models. Here are two of the schemata Field pinpoints in this regard (the ‗model- 

theoretic possibility schema‘ and the ‗model existence schema‘): 

(MTP)  If there is a model for ‗A‘ then A 

(ME)    If there is no model for ‗A‘ then -A (ibid.)  

That is, we come to know that A is possible or impossible on account of the 

existence or non-existence of a model for A. But if there are no models, then, as 

Field points out, MTP is just ‘vacuously true‘ (p. 108) by ex falso quodlibet, and ME 

is invalid since its antecedent is true independently of whether A or -A. Schemata 

using proof theory rather than model theory for finding out about possibility and 

impossibility are similarly vacuous or invalid, mutatis mutandis. 

So it looks as though Field‘s deflationism is in trouble. However, Field claims that 

‗the problem is easily solved.‘ (ibid.) The modal equivalent of (MTP), for instance, 

allows us to specify how a deflationist can find out about possibility without taking 

on any commitment to the existence of models: 

(MTP
#
)  If   □( NBG  there is a model for ‗A‘) then ◊A (ibid.) [where ‗NBG‘ is von 

Neumann-Bernays-Gödel set theory, which Field takes as his standard base for 

mathematics.]
 
 

This looks similar to what he did above, taking talk of possibility to the object level 

to avoid metalevel commitment to the existence of possible worlds. Here the object 

level/metalevel distinction is not in play – what is in question is the form 

epistemological schemata for modality (‗devices for finding out about logical 

possibility‘ (ibid.)) should take – but the move looks familiar. 

Too familiar, it might be thought: there is an apparent whiff of circularity about 

Field‘s development here. He modalises away commitment to the existence of 

models, first, by expressing the notions of consequence and consistency in modal 
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terms in the object language. But, then, the semantics for these modal terms – 

avowedly Platonistic – seems itself to require commitment to the existence of 

models. Now in turn this commitment is modalised away by an expression of 

conditions for knowledge of modality in terms of (in our example) ―□( NBG  there 

is a model for ‗A‘)‖. It looks as though in order to know that something is possible 

we have to know that something else is necessary, where the meaning of this latter 

necessity is explained in terms, not of models, but of modality. In short, in Field‘s 

scheme it looks as though modality is explaining itself. 

Is there a way out of this circle? Yes. We are interested in what we can know about, 

and how we find out about, logical possibility and necessity. What Field has 

managed to do is to explain how we might find out about what is possible, not in 

terms of what things (models, formal derivations) exist, but in terms of what we 

might be able to do. If, using model theory (that is, a branch of mathematics), we 

can derive a statement (remaining within mathematics) saying that a certain 

conjunction of statements A has a model, then we know that A is logically possible. 

That is how we need to gloss the statement ―□( NBG  there is a model for ‗A‘)‖. 

We are bootstrapping modality, in a way, but we are beginning the process by 

thinking about what we can do, and not about what exists. As Field puts it 

The deflationist can use [MTP
#
 and similar schema] in much the same way the platonist 

uses [MTP likewise]: to find out that A is, or is not, logically consistent, it suffices to 

derive a model-theoretic or proof-theoretic statement from standard mathematics. 

(ibid.) 

Once we have taken this on board, we are free to use standard model theory just as 

the platonist does – and indeed we have a description of what is going on that does 

not depend upon existential commitment. 

 

2.8 Deductivism and implausibility 

Now, this exegesis of Field shows his turn away from Platonism, as well as 

involving a commitment to a view of mathematics in use as expressing rules rather 

than truths about some abstract realm, to be equally tied to a view of mathematics as 

based ultimately on what we do – on particular practices that we (as 

mathematicians) share. Both of these aspects of Field‘s view, as I hope will become 

clear, are going to be worth salvaging – and both are shared by Wittgenstein. 

However, I want to look more closely at the way in which Field‘s denial that 

mathematics expresses truths about an abstract realm plays out. He wants to say, in 

effect, that mathematical propositions do actually
80

 make claims on truths about an 

abstract realm in spite of this ultimate basis of mathematics in practice. Such claims, 

according to Field, are unfulfilled only because of the (contingent) non-existence of 

the mathematical objects that, given his commitment to semantic homogeneity, he 

nevertheless feels forced to maintain as referents for the mathematical terms in the 
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(rule-expressing) mathematical propositions. This is prima facie decidedly odd – 

something that Field himself admits, as we will see shortly. I am going to suggest we 

can tidy matters up considerably by engaging with some of Wittgenstein‘s remarks 

about what it might be to take mathematics ‗at face value‘ – an engagement which 

will involve considering what aspects of semantic homogeneity we should take 

seriously other than the commitment to an over-arching semantic theory such as that 

we have seen Field to support. 

Field takes the trouble to distance his development from a philosophical theory he 

designates ‗deductivism‘, (often elsewhere known as ‗if-thenism‘
81

). A deductivist 

about mathematics holds that any mathematical statement M should be interpreted as 

stating not baldly that M, but rather only that if (the axioms of some mathematical 

theory), then M. Field characterises the difference between his view and deductivism 

as follows: 

… deflationism, unlike deductivism, does not claim that mathematical claims mean 

other than what they appear to mean. (Field 1989 p. 114) 

This is important for Field. He does not want to reinterpret mathematical statements. 

He wants to take them at face value. On his account, mathematical objects play no 

role in our understanding of mathematical practice – but he holds that this is not 

reflected in the analysis of the meanings of mathematical propositions themselves, 

where it remains important as an aspect of this very ‗taking at face value‘. We have 

seen that for Field, the only alternative to either his fictionalism or basic Platonism is 

some other theory, usually idealism of one sort or another. This turn to other theories 

does not exhaust the philosophical possibilities, though. 

In fact, Field‘s commitment to taking mathematics ‗at face value‘ surfaces in the 

paper we have just been considering at the end of his discussion of mathematical 

knowledge. Thus, continuing the characterisation of the difference between 

deductivism and deflationism, he says 

Instead of saying that mathematical assertions don‘t mean what they appear to mean, 

the deflationist says that what they literally mean can‘t be known: the knowledge that 

underlies a mathematician‘s assertions is not what those assertions literally say. (ibid.) 

It is important to be clear about what Field is claiming here. It is not that 

mathematicians cannot know what they (literally) mean when they make a 

mathematical assertion. According to Field, they know very well what they mean, 

but given what they mean, what they assert is unknowable since the entities they 

refer to do not exist. Thus, what these mathematical assertions literally say is false, 

according to Field, and so indeed what they say cannot be known. Field has given us 

a plausible characterisation of what mathematical knowledge might amount to if we 

take all this on board – mathematical knowledge, he claims, is nothing to do with 

knowledge of entities, rather it is to do with knowledge of what follows from what. 

 

                                                                            
 

81
 See, for instance, Putnam 1979 pp. 20ff: ‗ ‗If-thenism‘ as a philosophy of mathematics‘. 

Bertrand Russell held to this for a while. 



 62 

But what of these ‗entities‘, now? It is clear that for Field the meaning of any 

mathematical assertion is closely connected to the existence of mathematical objects. 

When I say that 28 is a perfect number or that the square on the hypotenuse of any 

Euclidean right-angled triangle is equal to the sum of the squares on the other two 

sides, what I mean, according to Field, includes an assertion that numbers, triangles, 

squares and lines etc., taken in a mathematical sense
82

, all exist. Since they do not 

exist, according to Field, I cannot know what I assert, even though I can know what 

I mean when I make the assertion. According to Field I cannot know that 28 is a 

perfect number or that the square on the hypotenuse (etc.), because there are no 

numbers or hypotenuses. What I can know, however, he claims, is what follows from 

such assertions, and it is this that is uniquely important in doing mathematics as well 

as forming the basis for its application. 

Given the ultimate importance –recognised by Field, I have emphasised – of what is 

involved in doing mathematics as opposed to what, or whether, mathematical 

entities actually exist, it might seem otiose to press the connection between meaning 

and existence. This is not something that Field can allow, however, in the light of 

the way in which he takes the commitment to what he describes as ‗taking 

mathematics at face value‘. It is something I do want to press, though.  

That what mathematical statements mean cannot be known, Field admits, takes a bit 

of swallowing: 

I‘m afraid many readers will still find this implausible. (ibid.) 

But, then, characteristically, he goes on to say that it is less implausible than what 

the deductivist claims. There is no better theory in play, Field seems to be saying, 

and Platonism is itself so very implausible, so we should swallow the implausible 

consequences of his own theory. 

 

2.9 Meanings and beetles: Wittgenstein on semantic homogeneity 

It is clear that Field‘s ‗literal meanings‘ play no part in how mathematical assertions 

are used, nor in how we get to know mathematics in order to be able to use it. 

Wittgenstein finds a similar dissociation of meaning and use in talk about private 

mental ‗objects‘ of sensation. He has a striking and well-known figure to emphasise 

this point in Philosophical Investigations: 

… Suppose everyone had a box with something in it: we call it a ―beetle‖. No one can 

look into anyone else‘s box, and everyone says he knows what a beetle is only by 

looking at his beetle. – Here it would be quite possible for everyone to have something 

different in his box. One might even imagine such a thing constantly changing. –  But 

suppose the word ―beetle‖ had a use in these people‘s language?– If so it would not be 

used as the name of a thing. The thing in the box has no place in the language-game at 

 

                                                                            
 

82
 Of course Field allows that there are lines and so on in a physical sense. It is just their 

mathematical counterparts that are fictional. 



 63 

all; not even as a something: for the box might even be empty – No, one can ‗divide 

through‘ by the thing in the box; it cancels out, whatever it is. 

That is to say: if we construe the grammar of the expression of sensation on the model 

of ‗object and designation‘ the object drops out of consideration as irrelevant. (PI §293) 

There are clear differences between the cases of our talk of objects of sensation and 

of mathematical objects. However, I am claiming a similar dissociation of meaning 

from use in both cases, and I want to suggest we make use of Wittgenstein‘s figure 

in our case. We have seen, specifically, how Field makes the move away from 

commitment to the existence of abstract entities towards a conception of what we do 

in the sense of deriving mathematical assertions in ‗bootstrapping‘ knowledge of 

modality into his theory. The abstracta, which he claims not to exist, clearly play no 

part in this. And ‗what mathematical assertions literally mean‘ likewise plays no part 

in the account of mathematical knowledge he advances. That is to say, if we 

construe the grammar of the expression of mathematical assertion on the model of 

‗object and designation‘ the object drops out of consideration as irrelevant.
83

 

Field‘s abstract objects, which he claims do not exist, are ‗beetles in boxes‘. We 

have seen his involvement with these (self-admittedly implausible) non-existent 

semantic coleoptera to be generated by his commitment to semantic homogeneity – 

to his determination to take mathematics at face value. Or, rather, it is generated by 

the manner in which he feels he needs to take mathematics at face value, involving 

as it does a prior commitment to a particular semantic theory. What might it be to 

take mathematics at face value; what should count as taking mathematics at face 

value? These are questions I want to raise. 

I want to focus on the point about differences in use contrasting with apparent 

similarity of surface linguistic form. We have seen that Field‘s commitment to a 

particular semantic theory – and so to a particular way of glossing what ‗taking at 

face value‘ amounts to – makes it impossible for him to deal with this contrast 

satisfactorily. We just have to swallow the implausible consequences of this 

analysis, Field claims, including that ‗what [mathematical propositions] literally 

mean can‘t be known‘ and so on. However, I suggest we can escape from these 

implausible consequences if we attend carefully to just what ‗taking at face value‘ 

might amount to without shackling ourselves to a semantic theory such as we have 

seen Field to espouse.
84

 We need to re-establish a connection between meaning and 

use – a connection that should have all the more importance for one such as Field 

whose epistemology of mathematics finds the use of mathematics so fundamental. 
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Of course Wittgenstein reminds us of the importance of the relation of use to 

meaning. This is more than a slogan: In Philosophical Investigations §8, 

Wittgenstein asks us to consider a pared-down use of mathematics. Imagine some 

builders using a language with just a few names, ‗slab‘, ‗block‘, and so on, words for 

‗there‘ and ‗this‘, and some letters of the alphabet, ‗a‘, ‗b‘ and so on, these latter 

learned in order, so as to function as numerals. A builder might say to an assistant, 

‗d – slab – there‘, for example, and it is clear enough how such an order might be 

carried out. He goes on to consider how the words of this language signify, refer to, 

or what they may be said to mean: 

Now what do the words of this language signify? – What is supposed to shew what they 

signify, if not the kind of use they have? And we have already described that. So we are 

asking for the expression ―This word signifies this‖ to be made a part of the description. 

In other words the description ought to take the form: ―The word.... signifies....‖. 

Of course, one can reduce the description of the use of the word ―slab‖ to the statement 

that this word signifies this object. This will be done when, for example, it is merely a 

matter of removing the mistaken idea that the word ―slab‖ refers to the shape of 

building-stone that we in fact call a ―block‖ – but the kind of ‗referring‘ this is, that is 

to say the use of these words for the rest, is already known. 

Equally one can say that the signs ―a‖, ―b‖, etc. signify numbers; when for example this 

removes the mistaken idea that ―a‖, ―b‖, ―c‖, play the part actually played in language 

by ―block‖, ―slab‖, ―pillar‖. And one can also say that ―c‖ means this number and not 

that one; when for example this serves to explain that the letters are to be used in the 

order a, b, c, d, etc. and not in the order a, b, d, c. 

But assimilating the descriptions of the uses of words in this way cannot make the uses 

themselves any more like one another. For, as we see, they are absolutely unlike. 

(PI §10) 

We should note that Wittgenstein explicitly allows that we say ‗The word … 

signifies …‘ in different cases. As he points out, too, we can also talk of words 

‗referring‘ to something, or of them ‗meaning‘ this or that. There is no hint of a 

denial of face-value interpretation here: rather what is at issue is what ‗face value‘ 

might amount to. When Wittgenstein explicitly mentions ‗that ―c‖ means this 

number‘, he does not wish to deny either the utility or, in context, the truth of such 

an assertion. Wittgenstein‘s point is just that surface similarity does not make ―c‖ 

like ―slab‖ or ―here‖. ‗Signifies‘ does not express a relation that is always the same, 

and no more do its cognates such as ‗refers‘ or ‗means‘.  To know how a word 

signifies, refers to or means something, we have to look at the use we make of the 

word in question. 

We have in train an examination of what Field meant by ‗taking mathematics at face 

value‘. As we have seen, in Field‘s analysis this seemingly innocuous phrase stands 

proxy for a substantial commitment to an underlying semantic theory that seems to 

vitiate his conclusions pointing towards the use of mathematical propositions in 

inference rather than involving the existence of referents for mathematical terms in 
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his account of mathematical knowledge. Recall what Field feared many readers 

would find ‗implausible‘: 

Instead of saying that mathematical assertions don‘t mean what they appear to mean, 

the deflationist says that what they literally mean can‘t be known: the knowledge that 

underlies a mathematician‘s assertions is not what those assertions literally say. 

(Field 1989 p. 114) 

This expression of a radical dissociation of meaning and use is just what I am calling 

into question. Can we bring ‗taking at face value‘ back to earth in terms of how we 

use mathematical discourse while eschewing the commitment to semantic theory 

which seems to engender such disconnection? We can if we see ‗taking at face 

value‘ not just as a matter of the syntax or surface grammar of a linguistic item, but 

rather as a matter of looking at how the item in question is used.  

 

2.10 The mathematical realm 

Field is explicit about what his ‗taking at face value‘ entails. We saw above in his 

characterisation of the ‗face value thesis‘ how it connects with the requirement for 

homogeneity of semantics: reference to concrete objects in physical object language 

is supposedly mirrored by reference to abstract objects in mathematical language. 

This mirroring, in its turn, according to Field, entails taking a stance on a particular 

metaphysical issue, that of the existence or not of mathematical entities, where talk 

of the existence of such entities has the same import as talk of existence of concreta. 

There is a move made here that might go unnoticed, and again it is connected with 

an unexamined commitment to homogeneous semantic theory. From the 

homogeneity of the semantics, we move to the homogeneity, in some sense, of what 

we mean by the ‗existence‘ of the entities we‘re talking about. We need to look 

carefully at how this homogeneity of different kinds of existence plays out. 

G.H. Hardy expresses the underlying idea clearly: 

By physical reality I mean the material world … [but] there is another reality, which I 

will call ‗mathematical reality‘ … (Hardy 1992 pp. 122-123) 

The parallelism between the material world and ‗mathematical reality‘ – the idea 

that we can think of mathematical existence as simply on a par with real existence – 

is something Wittgenstein queries: 

Professor Hardy is comparing mathematical propositions to propositions of physics. 

This comparison is extremely misleading. (LFM p. 240)
85

 

Field‘s way with ‗face value‘ is equally misleading. Here is Field again: 

… a mathematical theory, taken at face value, is a theory that is primarily about some 

postulated realm of mathematical entities … (Field 1989 p. 2) 
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Taken with the assimilation of talk of abstracta to talk of concreta we saw in his 

characterisation of the ‗face value thesis‘, it is easy to see that Field is building his 

own notion of ‗face value‘ on what Wittgenstein describes as an extremely 

misleading comparison. Let us consider further how we might be misled. 

Recall Field‘s emphasis on a particular way with Frege‘s context principle. We saw 

above that for Field syntax determined semantics but not ontology, so that he was 

able to specify a semantic theory homogeneous over abstracta and concreta whilst 

denying the existence of the former though accepting the existence of the latter. 

Thus, for Field, mathematics is about mathematical objects even though there are no 

such objects. To engage in mathematical discourse, then, for Field, is to talk about 

some realm of mathematical objects – although since these objects do not exist, he 

claims, it turns out that mathematical discourse is universally false. However, we are 

not forced to follow Field here. To take mathematics at face value is not particularly 

to take mathematics as being about anything at all like Field‘s (or Hardy‘s) 

‗postulated realm‘, at least if taking things this way conceals the different ways 

mathematics and physics might be about their own realm. This difference will 

become apparent once we focus on the use we make of the different kinds of 

discourse. Thus, even if we decide to continue to talk in this way of mathematics 

being about the realm of mathematics, we should take the trouble to avoid being 

misled by the comparison with the physical realm that physical-object talk is in its 

own way about. We need to have an overview, that is, of the differences between the 

way in which we use mathematical propositions and propositions of physics even 

supposing we assimilate the descriptions of these uses under the banner of each 

being ‗about‘ its own realm. 

Let us agree with Field that to take mathematics at face value is to take mathematics 

as being about what it appears to be about – numbers, geometrical shapes, groups, 

Hilbert Spaces, and so on. An important issue that I am suggesting Field misses 

concerns the force of this ‗about‘: what is it for mathematics to be ‗about‘ numbers 

and so on? It‘s at this point that the homogeneity of semantic theory raises itself. 

Taking mathematics to be about numbers and so on does not entail that the way in 

which mathematics is about numbers is just the same as the way in which physics is 

about its objects.  

This is the moral Wittgenstein suggests to us in his consideration of how different 

words or signs signify in PI §10ff that I quoted earlier. As he concludes §10, 

… assimilating the descriptions of the uses of words in this way cannot make the uses 

themselves any more like one another. For, as we see, they are absolutely unlike. 

The language-game in question is to be taken as a point of comparison – as 

illustrating a particular aspect of our own use of language. Like the users of the 

‗block, pillar; … a, b; … here, there‘ language Wittgenstein posits, we use names of 

physical-object  types to refer to physical objects, as likewise we use numerals to 

refer to numbers, and indexicals of place to refer to particular positions. As 

Wittgenstein suggests, talk of each of these kinds of signs or words signifying or 
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referring is philosophically harmless … but only so long as we remain aware of the 

distinctively different uses each kind has in the language while we assimilate the 

descriptions of their uses under the banner of ‗signifying‘, ‗referring‘ or ‗being 

about‘ some particular realm. We can allow that a mathematical proposition is about 

abstract objects in the same breath as saying that a physical proposition is about 

physical objects, so long as we keep in mind the difference in the way we use 

propositions of mathematics compared with propositions of physics. 

 

2.11 Summary and envoi 

I have taken issue with Benacerraf‘s dilemma concerning the difficulty of 

maintaining a semantics that is homogeneous over mathematical and physical 

discourse contemporaneously with a suitable mathematical epistemology. 

Specifically, I have challenged the first horn of this dilemma. Øystein Linnebo, in 

his 2011, sets out the challenge: 

Let me just note that a lot of work is needed to substantiate this sort of challenge [sc. to 

what I‘ve called homogeneity of semantic theory as applied to mathematics]. The 

challenger will have to argue that the apparent semantic similarities between 

mathematical and non-mathematical language are deceptive. And these arguments will 

have to be of the sort that linguists and semanticists—with no vested interest in the 

philosophy of mathematics—could come to recognize as significant. 

‗This sort of challenge‘ is what I have suggested Wittgenstein makes in PI §10 and 

elsewhere. It is not that Wittgenstein wants to deny that we should take mathematics 

at face value, we have seen. Rather, he wants us to see that what ‗taking at face 

value‘ amounts to is itself not homogeneous. This is a delicate matter, but it is at 

least plain we should notice the differences between the way in which we allow that 

numerals refer to numbers and the way in which names of physical objects (or more 

precisely types thereof) refer to physical objects, even while we appreciate the 

similarities. An appreciation of these differences enables us to see the way in which 

talk of a Hardyesque ‗mathematical reality‘ or a Fieldian ‗postulated realm‘ is, as 

Wittgenstein claims, ‗highly misleading‘. Furthermore, an appreciation of these 

differences has enabled us to blunt a horn of Benacerraf‘s dilemma. 

What we have arrived at need not be seen as a knock-down argument against the 

philosophical utility of semantic theory or even of the Benacerrafian imperative for 

semantic homogeneity. There may be other reasons for sticking to a theoretical 

approach and attempting to accommodate what looks like recalcitrant data; Field 

himself may be read as taking such a view in so readily admitting the 

‗implausibility‘ of his results whilst nevertheless sticking to them. (Likewise, there 

are many accounts of Moore‘s paradox that attempt to fix the difficulty it brings to 

light by appropriate adjustment to the semantic theory in play.
86

) What we have 

from Wittgenstein is to be taken as suggesting or reminding us of a way of looking 
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at the matter to hand rather than a particular refutation of a Fieldian view of what 

‗taking at face value‘ amounts to. Nor, it should be emphasised, does such a way of 

looking at ‗face value‘ or requirements for semantic homogeneity itself associate 

itself naturally with a different theory about how numerals ‗refer‘ to numbers and so 

on.  

Nevertheless, in spite of such caveats we have made substantial progress. We can 

see now a way of blunting at least one of the horns of Benacerraf‘s dilemma by 

getting clear about different possibilities of taking ‗taking at face value‘ and 

accompanying perceived requirements for semantic homogeneity. Furthermore, this 

chapter‘s foray into Field‘s fictionalism has shown us the way in which Field‘s own 

turn away from mathematical Platonism leads to an emphasis on the importance of 

the use made of mathematical propositions as rules of inference as well as the 

unimportance of the notion of a mathematical realm separate from the physical in 

considering what we do when we so use mathematics.  

Further than this, though, we are beginning to see that this notion of a mathematical 

realm that mirrors the physical realm in some way is not just unimportant for our 

view of mathematics in use; it is very likely to be positively misleading. For 

example, thinking of a mathematical realm in this way makes plausible the idea of 

mathematical discovery as analogous to discovery in science; but we have seen the 

difficulties inherent in assimilating mathematical to physical epistemology, which 

should be enough in itself to give us pause. Is there another way of looking at 

mathematics that avoids such difficulties? Indeed there is, and it will come as no 

surprise to find it in Wittgenstein. It is this I turn to in the next chapter.  
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Chapter 3  Infinity and Concept-determination 

 

3.1 Face value and concept-determination 

We saw in the previous chapter how Hartry Field‘s characterisation of a ‗face value 

thesis‘ allied itself with the (Benacerrafian) requirement for a semantics 

homogeneous over mathematics and physics to generate the notion of mathematics 

being ‗about some postulated realm of mathematical entities‘. The implicit 

parallelism between such a ‗mathematical realm‘ and the physical realm – expressed 

by G.H. Hardy in terms of two different types of ‗reality‘, the physical and the 

mathematical, was something we saw Wittgenstein describing as ‗extremely 

misleading‘. Now I want to continue the investigation into what it is to ‗take 

mathematics at face value‘ by looking at another aspect of what Wittgenstein 

suggests to us as the aetiology of philosophical error regarding the ‗reality‘ of 

mathematics: 

The dangerous, deceptive thing about the idea: ― The real numbers cannot be arranged 

in a series‖, or again ― The set... is not denumerable‖ is that it makes the determination 

of a concept – concept formation – look like a fact of nature. (RFM p. 131). 

Here Wittgenstein is referring to some specifics of the development of the notion of 

infinity in mathematics.
87

 It is going to be useful for us to investigate this notion 

itself as well as Wittgenstein‘s particular strictures thereon. Both of these will be of 

interest as a further pointer towards what we have found important in ‗taking at face 

value‘ – just what is it to take the notion of infinity at face value as part of 

mathematics? Also, we will find, a consideration of the distinction Wittgenstein 

makes in the quote above between ‗determination of a concept‘ and ‗a fact of nature‘ 

will elucidate and emphasise what may mislead us concerning the relationship 

between mathematics and mathematical reality, physics and physical reality, and 

mathematics and physics. 

 

 

 

                                                                            
 

87
 Notions of infinity have always been important for distinguishing different positions in 

the philosophy of mathematics as well as in generating philosophical problems in their own 

right. See, for instance, Brown, 2008, p. 70; ‗Historically, paradoxes and conceptual 

problems of mathematics have usually stemmed from the infinite.‘ Most introductions to the 

philosophy of mathematics say something similar; I take the point as read. The current 

chapter considers the notion of infinity both in its own right and as exemplifying more 

general aspects of the philosophy of mathematics relating to our concerns about 

mathematical applicability. 
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3.2 Painless toothache and unconscious desires 

I am going to consider some aspects of the historical development of the concept of 

infinity in mathematics in the light of Wittgenstein‘s distinction between concept 

determination and discovery of facts. First, though, to help get a clearer grasp on the 

distinction itself, here is an example Wittgenstein offers in a different context from 

that of mathematical infinity:  

… examine the following example: It might be found practical to call a certain state of 

decay in a tooth, not accompanied by what we commonly call toothache, ―unconscious 

toothache‖ and to use in such a case the expression that we have toothache, but don't 

know it. It is in just this sense that psychoanalysis talks of unconscious thoughts, acts 

of volition, etc. Now is it wrong in this sense to say that I have toothache but don't 

know it? There is nothing wrong about it, as it is just a new terminology and can at 

any time be retranslated into ordinary language. (BB pp. 22-23) 

This example occurs in the context of a discussion of intentional states.  There is a 

general moral to take from it. It is not at all implausible that this ‗new terminology‘ 

should take hold, as it were, and become part of everyday usage. (‗For‘, as 

Wittgenstein asks, ‗What more can you ask of your notation than that it should 

distinguish between a bad tooth which doesn‘t give you toothache and one which 

does?‘ (ibid.) Suppose it does take hold, then. Suppose people to have learned to use 

such talk unthinkingly, along with the rest of our talk of toothache and pains in 

general. In such a situation we might well be puzzled by the expression (‗the 

puzzlement of philosophy‘, as Wittgenstein describes it (ibid.), and ask ‗How is 

unconscious toothache possible?‘ Wittgenstein imagines a scientist explaining, ‗… 

like a man who is destroying a common prejudice‘ (ibid.), that of course there is 

such a thing as unconscious toothache. There may even be a tendency to consider 

the existence of unconscious toothache as a discovery, much as, for instance, Freud 

felt able to talk of the discovery of unconscious desires and so on. 

Now, did Freud discover the unconscious, or rather did he offer us a new way of 

thinking about the world of our desires and other psychological states? The matter is 

perhaps moot. One thing that seems clear, though, is that we have found the notion 

of unconscious desire to be a useful one in all sorts of ways. Given such utility, 

whether we talk in terms of Freud ‗discovering‘ unconscious desire or not is largely 

irrelevant.  

This might seem strange in the light of philosophical issues to do with, say, the 

reality of mental states like desires. ‗Are there really such things as unconscious 

mental states?‘ we might imagine a philosopher asking …, ‗Or is talk of the 

Freudian unconscious just a façon de parler?‘ Consider, though, Wittgenstein‘s 

example of unconscious toothache, particularly in the light of the discussion in the 

previous chapter about how, or whether, numerals refer to numbers and so on. 

There, we found it immaterial whether we allowed that numerals ‗refer‘ to numbers 

or not, once we realised that such a locution made no difference to the use of 

numerals in everyday practice. Such a realisation, we found, could be achieved by a 
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focus on the different uses to which different kinds of words are put. In terms of 

‗taking at face value‘, this point arose once we considered, not the question of 

whether we should take talk of reference and so on at face value, but rather the prior 

question of what it might amount to to take such talk at face value. 

Now likewise, consider talk of whether unconscious toothache is really, properly so-

called, toothache or not in Wittgenstein‘s example. We might well gloss such a 

consideration in terms of whether we should take such talk ‗at face value‘. But by 

now we have learned to be a little wary of such a way of putting the matter. Indeed, 

we might say, we do want to take talk of unconscious toothache at face value – but 

our analysis has taught us that to do so is not necessarily to take it that, in the 

circumstances envisaged, unconscious toothache would have the same status as 

other scientific discoveries. There is nothing that debars us from claiming, in such 

circumstances, that unconscious toothache really is a kind of toothache – nor indeed 

even from claiming that it had been discovered to be so. Likewise, we might say 

similar things about Freudian unconscious desires and so on. Such talk might 

mislead, perhaps; but we will not be misled – or at the very least, I am claiming, we 

are much less likely to be so misled – if we are aware of the differences that there 

are between the different kinds of toothache (or desire), and so long as we keep in 

our minds the difference between determining a concept and discovering a matter of 

fact.  

This might seem to have something of an air of paradox. Does talk of unconscious 

toothache really depend on a discovery or is it really a case of concept-formation?  

(Is the distinction between discovery and concept-formation itself a discovery or a 

determination of a concept?) I may seem to be claiming both. The point is, however, 

that the distinction, once made, can be seen itself to be irrelevant for our use of the 

concept in question. And further, the distinction allows us to see more clearly how 

an unthinking reliance on the notion of taking things at face value may mislead. 

What is in question, once again, it what it amounts to to take talk of unconscious 

toothache at face value. Once this question is raised in this way, we can now see its 

answer as itself irrelevant to our concerns, even as by contrast we are pushed to 

acknowledge the importance of the utility of our talk – not as a determinant of the 

reality of the toothache, or even of the distinction itself, but rather just as a 

determinant of whether it ‗catches on‘ – whether it gets used or not.  

More than this, though, we can see the importance of this notion of how or whether 

a concept is used by contrast to the unimportance of traditional philosophical 

questions about whether numerals really refer to numbers and whether there really is 

a mathematical realm that mathematics is about just as there is a physical realm that 

physics is about … or, by the same stroke, whether, in Wittgenstein‘s example, 

unconscious toothache is really toothache (or whether unconscious desires are really 
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genuine desires and so on). Our considerations are leading us, willy-nilly to an 

appreciation of how such questions may be empty of real content.
88

 

With this in mind, now I move to a consideration of mathematical infinity. What is 

infinity, really? Or, given that we want to take the notion of infinity at face value, 

what will such taking at face value amount to? We will be wary of any such 

questions, as of questions about the mathematical realm that infinite numbers, if 

such there be, inhabit. An investigation of rival characterisations of the notion of 

infinity in mathematics, though, will help us avoid being misled by such claims as 

Hardy‘s about mathematical reality or Field‘s about a postulated realm.  

 

3.3 Catching-on to infinity (1):  

I mentioned above the notion of whether a particular manner in which a concept is 

determined ‗catches on‘. I am going to look now at a particular determination that 

did not catch on. It is a notion of infinity developed by John Wallis in his 

Arithmetica Infinitorum of 1655.
89

 I will explain his argument using updated 

notation. It is simple enough. 

Consider, first, taking a positive number, 
+
1, let us say for definiteness, and dividing 

it successively by ever decreasing numbers. Begin by dividing by a large number:  

…  1 ÷ 1 000 000  =  0.000 001; 

1 ÷ 1 000 =  0.001; 

1 ÷ 10  =  0.1; 

1 ÷ 5  =  0.2; 

1 ÷ 2  =  0.5; 

1 ÷ 1   =  1.0; 

1 ÷ 0.5  =  2.0; 

…  

 

                                                                            
 

88
 Although, as above with the reference to Wittgenstein‘s distinction applying to itself, this 

appreciation iterates on the emptiness. Is it really empty? Well …That is the point here, 

really. 
89

 Wallis was Savilian Professor of geometry at Oxford, a contemporary of and influence on 

Isaac Newton (Newton was Lucasian Professor at Cambridge partly contemporaneously 

with Wallis at Oxford.) According to Boyer and Merzbach, for example (1989 p. 437), 

‗Young Newton … studied … perhaps most important of all, Wallis‘ Arithmetica 

infinitorum.‘ For further references to the argument I give in the main text, see, for example, 

Romig 1924, pp. 387-389; Millar 1925 pp. 153ff. It is worth making the point that Wallis 

was far from being an eccentric – he was plumb in the mainstream of mathematical 

development, no more eccentric than any other mathematician of repute. His proof 

concerning the relevant size of negative numbers and infinity has largely been forgotten in 

spite of this.  
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… and so on, reducing the divisor all the time. Of course the quotients get larger as 

the divisors gets smaller. Now continue in this vein: 

1 ÷ 0.2  =  5; 

1 ÷ 0.1  = 10; 

1 ÷ 0.01 = 100; 

1 ÷ 0.001 = 1000; 

… 

And so on. It is clear that we can write, in order, 

…
1 1 1 1 1 1 1 1 1

...
10 5 2 1 0.5 0.2 0.1 0.01 0.001

          

Once again, as we decrease the divisor the quotient increases. So, continuing, we 

will have 

… 
1 1 1 1 1 1 1 1 1 1

...
10 5 2 1 0.5 0.2 0.1 0.01 0.001 0

          < … 

Zero is less than any positive number, so 
1

0
, or 1 0 , must be larger than any 

positive number. Let us denote ‗1 0 ‘ by ‗ ‘ (‗infinity‘). (This familiar symbol was 

invented by Wallis, and used in this way by him.) Now, continue past zero into the 

negative numbers
90

: the quotients will increase further: 

   … 
1 1 1 1 1

... ...
0 0.1 0.2 0.5 1
     

   
 

But 
1

1
1
 


. So 

1
1

0
  . That is, 1  . In words, infinity is less than negative 

one. 

Negative numbers are bigger than infinity! Nobody really thinks that nowadays. As I 

said above, this involves a notion of infinity that did not catch on. It did not take. 

Here is one determination of a concept, to put the matter another way, that was not 

acceptable to the mathematical community.  

  

 

                                                                            
 

90
 Wallis was also the originator of the now-familiar idea of the ‗number line‘, a line 

containing (we would now say) points representing all the real numbers in order. His ‗proof‘ 

here of the relative sizes of  and – 1 could perhaps better be thought of as working via the 

numbers (the divisors) as placed on such a number line, from the positives through zero to 

the negatives. Whether such a view makes the argument more convincing I am not sure. 
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Nowadays  does not count as a number at all
91

, although the notation survives, in 

talk of limits for instance. ‗
0

1

x
Lim

x

 
  

 
‘, for example, is acceptable contemporary 

notation: ‗the limit as x tends to zero of the reciprocal of x is infinity,‘ we can say. In 

so saying, we might be thought to be giving a meaning to  , at least if we follow 

Hartry Field and Crispin Wright in their semantics. (See Chapter 2 above.) If we 

follow Wright through to the ontology, we would seem also to be accepting the 

existence of via the truth of the proposition. For Field, of course, like all 

mathematical propositions, this one is false. However, any difficulties deriving from 

talk of infinity in such cases are generally considered to be avoidable by means of 

standard Cauchy/Weierstrass-style translations of limit statements into ‗epsilon-

delta‘ language which avoid any commitment to (or, indeed, use of) ‗infinity‘. That 

is what such translations are for. The development here, correctly described, can 

further bolster the case I am arguing, as I suggest below. 

I will eschew analysis of Wallis‘ ‗proof‘ that negative numbers are larger than 

infinity at this juncture. But it is worth a brief consideration of present-day attitudes 

to it. Here is an illustrative example of such attitudes from the distinguished 

historian of mathematics Morris Kline: 

On the whole not many sixteenth- and seventeenth-century mathematicians felt at ease 

with or accepted negative numbers as such … There were some curious beliefs about 

them. Though Wallis was advanced for his times and accepted negative numbers, he 

thought they were larger than infinity … (Kline 1972 p. 253) 

‗Curious beliefs‘: the implicit attitude – Wallis was not just wrong about infinity and 

negative numbers, his views were a little crazy – is something to bear in mind as we 

proceed. The ‗number‘  is in the dustbin of mathematical history. Do other 

attempts at determining a concept of infinity fare any better? 

 

3.4 Catching-on to infinity (2): 0 (and beyond!) 

Georg Cantor‘s treatment of infinite numbers is much more well known than 

Wallis‘. It behoves us to consider it, particularly in the light of Wittgenstein‘s own 

strictures on it.  

Some preliminaries: it might be claimed that a major difference between Cantor‘s 

theory and that of Wallis is that the details of Cantorian transfinite numbers can sit 

within a formal axiomatic system. Such a claim would be anachronistic were it to be 

taken to apply to Cantor‘s own expression of his theory, but, still, ‗proofs‘ of various 
 

                                                                            
 

91
 See, for instance, Speigel 1963, p. 24: ‗The symbols  (also written  ) and   are 

read plus infinity (or infinity) and minus infinity respectively, but it must be emphasised that 

they are not numbers.‘ Likewise the modern-day working mathematician has no use for a 

‗number‘ represented by 
1

0
 (or 1 0 ): division by zero is just not given a sense.  
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aspects of the theory might be claimed to gain a formally correct status once set in 

the system of, say, standard Zermelo-Fraenkel set theory. Such a claim will not 

wash, though: ZF set theory has an axiom of infinity. So a particular kind of 

existence of the ‗actual infinite‘, what we might call a particular way of taking the 

existence of transfinite numbers at face value, is built in at the ground floor. We are 

justified, then, in taking a less formal approach in investigating how Cantor 

determines the concept of infinity (or discovers facts about infinity). 

A good place to start is with the quotation I have above: 

The dangerous, deceptive thing about the idea: ―The real numbers cannot be arranged 

in a series‖, or again ―The set … is not denumerable‖ is that it makes the 

determination of a concept – concept formation – look like a fact of nature. 

(RFM p. 131) 

Begin with the notion of a denumerable set. Suppose first of all that I have a finite 

set of objects. I can ‗number‘ the set by counting the objects it contains. For each 

object in the set, I pronounce the name of one of the natural numbers, ‗one‘, ‗two‘, 

‗three‘, ‗four‘, … and so on. In this way I pair off the objects with the numbers taken 

in order, stopping when there are no objects left to count. The last number I have 

pronounced, now, will be the number of objects contained in the set – it will be the 

answer to the question, ‗How many?‘ applied to the objects in that set
92

. 

This ‗pairing-off‘ of objects with numbers is key to the notion of denumerability. I 

know there are as many knives as there are forks if there is one knife for every fork 

and one fork for every knife – if the knives and forks are in one-one correspondence, 

that is.
93

 Very well, then, if the objects in a set are in one-one correspondence with 

the set of numbers {1, 2, 3, 4, 5}, say, then there are as many objects as there are 

numbers in that set, namely five. 

That is counting for finite numbers. To answer the question, ‗How many?‘, we 

simply find by pairing-off which set of natural numbers is in one-one 

correspondence with the set of things we wish to count. What Cantor wants to do is 

to extend this idea into infinite sets.  

What is an infinite set? In some ways this question is just what is currently at issue; 

for now, though, let us just take Cantor‘s own characterisation: 

 

                                                                            
 

92
 I should perhaps mention that counting ‗in order‘ gives me an ordinal number, whereas 

the ‗how many?‘ question asks for a cardinal number. For ordinary (finite) numbers at least, 

these are the same. (It takes young children a while to realise this. Grown-ups tend to forget 

the difference.) 
93

 The underlying idea here is often nowadays known as ‗Hume‘s Principle‘(See Hume 

(1888) I, III, 1), but would better be called the ‗Cantor-Hume Principle‘, as Mike Beaney 

reminds me; Cantor was the first to use the principle for sets of infinite cardinality.  The 

principle is fundamental, for instance, to (neo-)Fregean developments of arithmetic itself.  
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Aggregates with finite cardinal numbers are called ―finite aggregates,‖ all others we 

will call ―transfinite aggregates‖ and their cardinal numbers ―transfinite cardinal 

numbers.‖ (Cantor 1955 p. 104) 

That is, finite sets are those with finite cardinality (finite cardinals being 1, 2, 3, and 

so on) and infinite sets just those that do not have finite cardinality.  

Are there any infinite sets, though? Cantor assumes their existence, plainly. 

Focussing on the numbers themselves rather than on sets with that cardinality is 

indicative of what is going on, and what Wittgenstein wants to suggest we look at 

more carefully. Cantor: 

The first example of a transfinite aggregate is given by the totality of finite cardinal 

numbers ;
94

 we call its cardinal number ―Aleph-zero‖ and denote it by 0 … 

 … The number 0 is greater than any finite number :    

0  > ibid.)

(Wittgenstein, we should note, denies this, at least by implication: ‗0 is not an 

enormous number‘, he says. (LFM  p. 32) We will see something soon of the history 

of a similar specific denial of what Cantor claims here – in particular by Galileo.) 

Now, a set is said to be ‗denumerable‘
95

, following Cantor, if its elements can be put 

into one-one correspondence with the elements of the set N of natural numbers. It 

follows that a denumerable set, according to Cantor, has 0 members. Further, we 

can, it seems, investigate the possibilities of making correspondences
96

 between the 

members of different sets and the natural numbers. It is easy to see, for instance, that 

the set of even natural numbers, {2, 4, 6, 8, …} can be mapped onto N by the 

function 1
2

x x . So, then, using our pairing-off one-one correspondence 

criterion (the Cantor-Hume Principle, recall), there are the same number, 0, of 

even numbers as there are natural numbers. Likewise, it is easy to see on the basis of 

this schema that, for instance, the set of squares {1, 4, 9, 16, …} also has cardinality 

0.
97

  

 

                                                                            
 

94
 This ‗‘ is our ‗N‘, of course. 

95
 Sometimes ‗countable‘. There are different uses. Likewise, sometimes ‗denumerable‘ is 

taken to apply to finite and infinite sets, sometimes only to infinite sets.   
96

 As we might expect, Wittgenstein puts the idea of ‗existence‘ of one-one correlations 

itself in question. See, for example, RFM P. 99, following the remark about ‗discovery‘ vs 

‗invention‘. It is worth bearing in mind the ubiquity of this latter aspect of Wittgenstein‘s 

thought – the consequent autonomy of mathematics goes all the way down, as it were. I will 

not develop this just here, though. We need to remain on one level just for the sake of 

clarity, even while being aware of attendant difficulties such as this that lurk below the 

surface. 
97

 If this is starting to look strange, or debateable (see remarks on Galileo’s paradox below, 

for instance), recall that likewise with Wallis‘s proof of the relative sizes of infinity and 

negatives, I postponed discussion of apparently fallacious moves. Here too: what was sauce 

for Wallis‘s goose is sauce for Cantor‘s gander. 
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We can push this notion of denumerability further, too. With a little thought, it 

seems we can extend the idea to show a one-one correspondence between positive 

rational numbers and natural numbers: 

 

 

 – set out the positive rationals in a grid, eliminate the fractions that ‗cancel‘ (like 
2

2
 

or 
2

4
, for instance), and count the remaining numbers in the order shown by the 

arrows, so that 
1

1
 is the ‗first‘ (corresponds to 1) rational number, 

2

1
  is the ‗second‘ 

(corresponds to 2),   
1

2
 is the ‗third‘ (corresponds to 3), … and so on. This way for 

every fraction we have a corresponding natural number and vice-versa. (We 

eliminate the ‗cancelling‘ fractions just to avoid double counting.) 

Just as many fractions (0 again, of course) as there are natural numbers! Could this 

count as a ‗curious belief‘ as we saw above Wallis‘ conclusion put in question? 

Even Cantor himself, writing to Dedekind in 1877 of his proof that, in similar 

fashion, the points in p-dimensional space can be put into one-one correspondence 

with the points on a finite line-segment, famously had to admit, 

Je le vois, mais je ne le crois pas! (quoted in Ewald, 1996 p. 860) 

However, putting such incredulity to one side for the present, we can move on with 

Cantor to consider whether all sets are denumerable in this sense of being one-one 

correspondable with N. In fact, as we will see shortly, the set of real numbers is non-
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denumerable, according to Cantor.
98

 As with Wallis‘s proof of the relative sizes of 

negative numbers and , I will set out Cantor‘s proof of this latter for the time being 

uncritically and fairly informally. 

Cantor‘s first proof of the non-denumerability of the reals was published in Crelle’s 

Journal in 1874. Later, he developed another proof in a form that has become 

known as that of a ‗diagonal proof‘, on account of how a picture of the real numbers 

in a sequential list can be added to by changing the numbers on the leading diagonal 

to get a number not already on the list. Here is a version of Cantor‘s diagonal proof: 

It goes by reductio. Suppose, contrary to what we are trying to prove, that we can 

put the real numbers between zero and one into one-one correspondence with the 

natural numbers. Then there will be a first, second, third, … and so on, real number 

according to this correspondence. Let us suppose we have all the real numbers in 

this ordered sequence expressed in decimal form
99

. (Every real number is 

expressible either as a terminating/repeating decimal (if it is rational) or as an 

infinite non-repeating decimal (if it is irrational)). To effect the reductio we 

characterise a number which differs from the first number on the list in the first 

decimal place; which differs from the second in the second decimal place; from the 

third in the third decimal place; … and so on. We do this as follows: if the nth digit 

of the nth number in the list is less than 9, add 1 to it (for terminating decimals, fill 

in with zeros at the end where necessary, before doing this), and if it is 9, replace 

with 0. Now this (‗diagonal‘) number is a number which cannot be on the list: it is 

not the first on the list (it differs from it at at least one decimal place, the first); it is 

not the second (it differs from it at at least the second decimal place); … and so on. 

So there is a number that is not on the list, contrary to the assumption that the 

correspondence is one-one. Hence the real numbers cannot be put into one-one 

correspondence with the natural numbers. That is, the set of real numbers is non-

denumerable. 

If we recall that the set of real numbers contains (strictly speaking, a copy of) the 

natural numbers, it seems we are forced to admit that there are more (in fact, 

infinitely more) real numbers than there are natural numbers or rationals (given that, 

as we have seen, the rationals are themselves denumerable).  

 

3.5  and (or versus) 0   

Now, recall that towards the end of section 3.3 I pointed out that ‗nobody nowadays 

thinks‘ along the lines of Wallis‘s explication of infinity-as- – a number equal to 
 

                                                                            
 

98
 For the time being, I am just assuming we know what the real numbers are: roughly 

speaking, any number representable on Wallis‘s number line is a real number, including 

integers, rational numbers and irrational numbers. For a little more precision, see below 

regarding Dedekind cuts and related matters. 
99

 Cantor, effectively, had the numbers expressed in binary. That is not important. 
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the reciprocal of zero, but less than any negative number. That conception of infinity 

did not catch on; in fact, we saw it described as a ‗curious belief‘ – something of an 

historical oddity. The opposite is true of Cantor‘s infinity-as-0 – a number 

answering the ‗how-many?‘ question asked of the totality of real numbers with 

‗more than the number of rationals or natural numbers.‘ Cantor‘s conception did 

catch on – it is a staple of contemporary philosophy of mathematics, and, arguably, 

even of mathematics itself.
100

 However, as we have seen, it is just this very point at 

which the Cantorian conception gets going that Wittgenstein points to as being 

‗dangerous, deceptive‘ in causing us to mistake concept formation for factual 

discovery. 

In fact Wittgenstein thinks the mistake is also exemplified by how Cantor‘s 

argument is taken. Wittgenstein is (in)famously polemical about this. He goes on, 

If it were said: ―Consideration of the diagonal procedure shews you that the concept 

‗real number‘ has much less analogy with the concept ‗cardinal number‘ than we, 

being misled by certain analogies, are inclined to believe‖, that would have a good and 

honest sense. But just the opposite happens: one pretends to compare the ‗set‘ of real 

numbers in magnitude with that of cardinal numbers. The difference in kind between 

the two conceptions is represented, by a skew form of expression, as difference of 

extension. I believe, and hope, that a future generation will laugh at this hocus pocus. 

(RFM p. 132) 

Can we contrast ‗hocus pocus‘ with the ‗curious belief‘ attributed to Wallis? I do not 

wish to advance the cause of infinity-as- over that of infinity-as-0 or anything 

like that. However, the contrast between the two – indeed the very existence of the 

two conceptions within the history of mathematics – should give us pause. There is a 

lesson to be learned from seeing the two conceptions of infinity in the light of 

Wittgenstein‘s distinction between concept formation and discovery of facts of 

nature. 

The notion that Cantor discovered once for all facts about the nature of infinite 

cardinality is put under question by Wittgenstein‘s distinction, and further under 

stress by the existence in history of other notions of infinity such as Wallis‘s . Or, 

perhaps, the matter is better put obversely: Wittgenstein‘s distinction is bolstered by 

the existence of different possible determinations of concepts such as infinity. Hence 

my talk of one concept rather than another ‗catching on‘. If, indeed, as I am 

suggesting, it is the catching on that is important rather than whether one particular 

way with the concept of infinity connects with the facts, it is to be expected that 

some different ways with the concept should make themselves available, ultimately 

to be taken up or not, to catch on or not with the general mathematical community 

and perhaps beyond. 

 

                                                                            
 

100
 It may be debateable whether we should describe studies in the foundations of 

mathematics that concern themselves with transfinite numbers as mathematics proper or 

philosophy of mathematics (or a mixture). I do not want to tread on any toes by coming 

down on either side in any such argument. 
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Of course it could be that certain ways with the concept of numerical infinity simply 

fail to do justice to the facts. Perhaps Wallis‘s development did not catch on because 

it was not correct, in accord with the facts about infinity, by contrast with Cantor‘s. 

If true, the correctness of a particular way of developing a concept would explain 

and justify that development.  In short, perhaps Cantor gets infinity right, and Wallis 

gets infinity wrong. We should investigate this possibility. 

There is a clear difficulty in Wallis‘s proof of the relative size of infinity and 

negatives. In the move from dividing by a very small positive number to dividing by 

a negative number, passing through (and assuming a continuity involved in) dividing 

by zero, the implication is that we move from small to smaller. But we end up with 

negative numbers larger than . It seems that Wallis proves that 1 1  by using 

the fact that 1 0 1   . So there is a contradiction in his ‗proof‘. That seems to 

vitiate that particular way of developing the concept of infinity. 

However, does Cantor do any better? Consider what has become known as 

‗Galileo‘s paradox‘: (see Galileo 1954 pp. 31-33) Every perfect square is a natural 

number, and not every natural number is a perfect square. So the set of perfect 

squares is a proper subset of the set of natural numbers. In short, and informally, the 

set of squares is a part of the set of integers. And the whole is greater than the 

part.
101

  So the set of natural numbers is greater than the set of squares . There 

are more natural numbers than there are perfect squares, it seems obvious. However, 

the set of perfect squares can clearly be put into one-one correspondence with the set 

of natural numbers, which according to Cantor means that there are the same number 

of squares as there are integers. This is a point Galileo himself makes: 

Salviati: If I should ask further how many squares there are one might reply truly that 

there are as many as the corresponding number of roots, since every square has its 

own root and every root its own square, while no square has more than one root and 

no root more than one square. (ibid.) 

So we have a contradiction. On the one hand we have more numbers than squares, 

but on the other hand we have the same number of each. To escape this contradiction, 

Galileo makes an obvious move. He denies that ‗more than‘, ‗less than‘, ‗same 

number as‘ are relations that can be applied to infinite sets: 

Salviati: … the attributes ―equal,‖ ―greater,‖ and ―less,‖ are not applicable to infinite, 

but only to finite, quantities. (ibid.) 

Cantor, however, swallows the contradiction. In fact, one modern day definition of 

numerical infinity (so-called Dedekind infinity) trades on this very contradiction, defining

an infinite set as one that can be put in one-one correspondence with a proper subset 

of itself.  

                                                                           

101
Euclid, Common Notions, 5.: ‗The whole is greater than the part.‘ See Heath 1956 P. 155. 
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So we find contradiction in Wallis‘s development of the notion of infinity, but also 

in Cantor‘s. Which contradiction we allow to stand, it seems, determines which 

particular brand of infinite number we are inclined to buy.  

 

3.6 Conceptual development more generally 

This is not a situation that is confined to the development of concepts of (putative) 

infinite numbers. Consider the historical development of our number system. At 

each step, it seems, from natural (‗counting‘) numbers to rationals, irrationals, 

negatives, real numbers, complex numbers, mathematicians had to swallow what 

looked like a contradiction. To allow complex numbers, for instance, we are forced 

to swallow a number whose square is negative, a manifest apparent contradiction 

since the square of any (real) number is positive. In fact, Wallis himself dealt 

explicitly with this latter case, and did so by comparing the development from real to 

complex with the move from accepting only positive numbers to allowing negatives 

as well. ‗Imaginary quantities,‘ he claimed, are 

Impossible … as to the first and strict notion of what is proposed. For it is not 

possible, that any Number (Negative or Affirmative) Multiplied into itself, can 

produce, for instance, – 4. But it is also Impossible that any Quantity (though not a 

Supposed Square) can be Negative. Since that it is not possible that any Magnitude can 

be Less than Nothing, or any Number Fewer than None. (Wallis 1685 p. 264)
102

 

Helena Pycior describes this as a ‗coattails argument‘:  

… if mathematicians accepted the negatives, they ought to accept numbers involving 

–1. (Pycior 1997 p. 129) 

For our purposes, though, it is enough to see something of the way developments of 

our number system – of what counts as a number, we might say, or of what the 

concept number includes – share some particular features. Consider the case of 

negative numbers. On the one hand, we might have thought, as Wallis said, that 

numbers represent magnitudes, and that a magnitude could not be less than nothing.  

On the other hand, though, we want our set of numbers to be closed under 

subtraction: given there is an answer to ‗5 – 3 = ?‘, we want there also to be an 

answer to  ‗3 – 5 = ?‘. We are, as it were, pulled two ways – or, to put it another 

way, we seem to have a conflict of criteria to apply – criteria for what is to count as 

a number.
103

 There is a choice, that is, between whether we apply the criterion that a 

number represents a magnitude, there being no magnitudes less than nothing, or the 
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 Wallis took the appellation ‗imaginary‘ from Descartes. Terminology was far from being 

settled at the time he was writing. 
103

 This way of putting the matter was suggested to me by Mike Beaney. It is a neat way of 

characterising this kind of conceptual change and/or development.  
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criterion that there must be an answer to a subtraction of numbers which is a number 

of some sort.
104

  

We have a similar conflict of criteria when considering whether to accept complex 

or imaginary numbers – should we allow that every number (including negatives, 

supposing us to have allowed them to be numbers) has a square root, or maintain the 

criterion that every square is positive? For just positive numbers and their roots, 

these criteria coincide; they are pulled apart, as it were, when the move to negatives 

and their roots is in the offing. 

Likewise, there is a criterial choice to be made when considering possible moves 

into the transfinite. As we saw just above, comparing Galileo and Cantor, the two 

criteria (1) that the whole is greater than the part, and (2) that 1-1 correspondence 

identifies cardinality, come apart when considering putative infinite numbers. 

Galileo, we saw, explicitly denied (2), whereas Cantor (implicitly) and Dedekind 

(explicitly) denied (1), in the move from finite to infinite. 

This informal characterisation of conceptual development in terms of criterial choice 

may help see more clearly what is going on once we allow ourselves to consider 

Wittgenstein‘s distinction between discovery of matters of fact and determination of 

mathematical concepts. I am suggesting that seeing matters thus more clearly – 

moving thereby towards some kind of perspicuous overview – is liable to bolster the 

plausibility and importance of this distinction.  

It is not always easy to see what determines the outcome of such questions of 

criterial choice. However, one particular feature of Wallis‘s argument in favour of 

accepting both negatives and imaginaries is worth a mention as something I will be 

returning to. As Pycior explains, Wallis wrote within a tradition that emphasised the 

importance of possibilities of applying new aspects of mathematics: 

… stressing applicability (as had Pell and Kesey), [Wallis] emphasised that the 

―Supposition (of Negative Quantities)‖ was neither ―Unuseful‖ nor ―Absurd‖. A 

negative number was, after all, susceptible of ―Physical Application … [and] denotes 

as Real a Quantity as if the Sign were +; but to be interpreted in a contrary sense.‖ 

(Pycior 1997 pp. 130-131; see Wallis 1685 pp. 265-266) 

Nowadays we make no cavil at considering movements along Wallis‘s ‗number 

line‘, if positive in one direction, to be negative in the opposite direction. If point C 

is 3 units forward from point A, and D is 3 units backwards from A, then, says 

Wallis, 

… –3 doth as truly design the Point D; as +3 designed the Point C. Not Forward, as 

was supposed; but backward, from A …(ibid.) 
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 We might see this in terms of whether to allow negative magnitudes, of course. Nothing 

turns on whether we see the matter in terms of what to allow as a magnitude or as what we 

allow as a number. 
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Further, Wallis tried, perhaps with somewhat less success, to justify the use of 

imaginary numbers with an argument involving the side of an area of land gained or 

lost to the sea. A gain of so many acres of land will be considered positive, whereas 

a loss might be denominated negative. So, suppose we lose 10 acres of land to the 

sea. In such a case, according to Wallis,  

The Gain is 10 Acres less than nothing. Which is the same as to say, there is a Loss of 

10 Acres: or of 1600 Square Perches. … [Suppose] this Negative Plain, –1600 

Perches, to be in the form of a Square. … [Concerning the side of the square:] We 

cannot say it is 40, nor that it is –40 … it is  –1600 (the Supposed Root of a Negative 

Square;) or (which is Equivalent thereunto) 10 –16, or 20 –4, or 40 –1. (ibid.)
105

 

In the absence of profit-and-loss accounts for lost fields and the lengths of their 

sides, this is not a particularly persuasive application of complex numbers. However, 

it is notable that Wallis and others, on the historical cusp of the acceptance of 

‗imaginaries‘ as numbers in good standing, saw questions about the possibility of 

application as at least in part determinative of such acceptance.  

Of course there are more important applications for complex numbers, as I 

mentioned above in Chapter 1. The extent to which such applications do determine 

the manner in which mathematical and other concepts are determined is one 

Wittgenstein raises; we will see more of this shortly. However, I want to consider, 

now, another example of how this determination – in both these senses – plays out. 

It is also an example which will nicely tie together some of our reflections on the 

historical development of the number system with questions about infinity.  The 

example is of irrational numbers, or more precisely, of real numbers including the 

irrationals.  

 

3.7 Incommensurables and irrational numbers 

Giving an example of a reductio proof in Prior Analytics, Aristotle refers somewhat 

cryptically to a proof of incommensurability, or, we might say, of the existence of a 

particular irrational number: 

For all who effect an argument per impossibile deduce what is false, and prove the 

original conclusion hypothetically when something impossible results from the 

assumption of its contradictory; e.g. that the diagonal of a square is incommensurate 

with the side, because odd numbers are equal to evens if it is supposed to be 

commensurate. One deduces that odd numbers come out equal to evens and one 

proves hypothetically the incommensurability of the diagonal, since a falsehood 

results from its contradictory. (Prior Analytics I, 23) 
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 An acre is – or was – an area 40 perches by 4 perches, 40 perches (a ‗furrow-long‘ or 

‗furlong‘, 220 yards) being held to be the distance a team of oxen could plough (‗furrow‘) in 

one go. The acre was finally put to death in 2007 by EU directive and is now no longer a 

legal standard measure. (None of this is of any philosophical import.) 
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I will fill in some of the details. Supposing the side of a square to be of unit length, 

we can apply Pythagoras‘ theorem to deduce that the diagonal must itself have a 

square of 2. Now, Aristotle claims, this diagonal is ‗incommensurate‘ with the side. 

That is, effectively, the diagonal of the square is not expressible as a ratio of the side 

of the square – there is no rational number equal to 2 . Proof? As Aristotle says, it 

goes by contradiction.
106

Here it is in present-day terminology: 

Suppose 2 is a rational number.  

That is, 2
a

b
 for some integers a and b.  

We can assume that a and b are not both even, for if they are we can divide them 

both by 2 leaving 2
a

b





, repeating if necessary if the new numerator and 

denominator are both even. So, let 2
a

b
 where at most one of a and b is even, the 

other being odd.
107

Now we argue as follows: 

2 22 2 2
a

a b a b
b

    

That is, a
2
 is even. So a must be even, since the square of an odd number is odd. 

Since just one of a and b is even, it follows that b is odd. 

But, now, since a is even it must be that a = 2p for some integer p. So 
2 24a p . But 

from above, 2 22a b . So 
2 22 4b p , or, dividing by 2, 

2 22b p . That is, b
2
 is even 

and so b is even.  

There is our contradiction. From the supposition that the length of the diagonal of a 

square ( 2 units where the side is 1 unit) is commensurate with the side (i.e. that 

2
a

b
 for some integers a and b), we have proved that ‗odd numbers come out 

equal to evens‘ as Aristotle puts it – we have proved that our integer b is both odd 

and even. So we have ‗prove[d] hypothetically the incommensurability of the 

diagonal [viz. that 2 is irrational], since a falsehood results from its contradictory 

[sc. that the diagonal is commensurable with the side, viz. that 2 is rational].‘ 

                                                                           

106
This is essentially the proof to be found in some editions of Euclid, though it seems it is a 

later addition there. (See Heath 1956 vol. 3 p. 2: ‗The proof formerly appeared in the texts 

of Euclid as x. 117, but is undoubtedly an interpolation ...‘) 
107

It is easy to see how this generalises for any prime number root, even if we do not have a 

single word for ‗divisible by p‘ or ‗not divisible by p‘ except for p = 2 (‗even‘; ‗odd‘). I 

keep to the special case to follow Aristotle‘s text.  
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Aristotle used this as a paradigmatic example of a proof by contradiction, perhaps 

indicating the importance of the conclusion for the development of Greek thought. I 

mentioned Pythagoras in my introductory chapter and suggested the development of 

the Pythagorean conception of cosmos – the world ordered by mathematics – as 

suggestive of an apparent requirement for somehow dealing with the way 

mathematics engages with the world. The story of how the ‗incommensurability‘ 

consequence of the Pythagorean theorem disturbed this conception is well known.
108

 

I will not retell the story here. Suffice for our present concerns that the proof of 

incommensurability/irrationality faces us, at least in hindsight, with a familiar 

apparent dilemma involving concept-determination and choice of criteria.  

Consider what it is to measure a length. We will need a unit length of some sort, and 

then any other length, it seems, can be given as a specific (rational) number of such 

units. Why a rational number? – Because, we assume, either the measure of length 

will be a specific whole number of units, or there will be some whole number of 

units exactly the same length as some other whole number of the length we are 

measuring. That is what it is for lengths to be commensurable – one of them can be 

measured with the other as a unit. In fact, the existence of the rational number itself 

is inessential – we can always measure a length in terms of (so many units) = (such-

and-such number of lengths), where both ‗so many‘ and ‗such-and-such number‘ are 

integers. Or, indeed, if we are allowed to pick a smaller length as our unit, 

decreasing appropriately – in proportion – will always allow a measurement in terms 

of whole numbers. For instance, if my desk is 1.72 metres in length, we can either 

say that 172 metre sticks will have the same length as (will measure) 100 desks, or, 

reducing the unit appropriately, that my desk measures 172 centimetres.  

So, given that we want lengths to be measured numerically, it seems that this 

requires that numbers be ratios. Here then are two criteria: (1) lengths have numbers 

associated with them; (2) numbers are expressible as ratios. The proof of the 

incommensurability of the diagonal with the side, now, shows us that we cannot 

keep both criteria. We can either allow there are some lengths that have no number 

associated with them, or allow there to be numbers which are not ratios. 

We know which way the determination went, of course. We deny the second 

criterion in order to keep the first. 2 is a number in good standing, though 

irrational, and every length is (still) measurable numerically. Highlighting the 

importance of the proof of incommensurability in Greek thought serves as a 

dramatisation of the historical moment at which this determination was first made. 

At least, I want to suggest, this is a plausible way of expressing the matter. Of course 

there is no suggestion of the determination being made explicitly. Nor are alternative 

ways of telling the story ruled out: we might well want to say that the Pythagoreans 
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 See, e.g. Kline 1972 P. 33. Whether or not the tale of Hippasus‘s assassination by 

drowning on account of his dealings with incommensurability is apocryphal, the very 

existence of the story is evidence of such disturbance. See op. cit. for further details. 
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discovered that there are irrational numbers, as we might say that later 

mathematicians discovered that there are imaginary or complex numbers. That we 

can tell the tale in terms of criterial choice or the determination of a concept 

proceeding by negotiation of criteria and adjustment of conceptual interrelations, 

however, at the very least highlights the difference between this kind of ‗discovery‘ 

in mathematics and discoveries of facts such as that the boiling point of water 

changes with air pressure or that there is a southern continent.  

Can we imagine the determination going the other way, the first criterion above 

being denied in order to keep the first? If so, it will further bolster Wittgenstein‘s 

way of seeing things. And, indeed, yes, in the light of the incommensurability of 

diagonal with side, we can certainly imagine holding tight to the idea of numbers-as-

ratios and so denying that every length is expressible numerically. We cannot 

measure any length absolutely precisely anyway, we might say: that certain lengths 

have no precise number associated with them should not be too difficult to swallow.  

So the development of our number system in its movement to include irrational as 

well as rational numbers, as with other such expansions of what is to count as a 

number, fits well with Wittgenstein‘s view of such development as representing 

concept-determination rather than fact-discovery.
109

 Once we adopt this way of 

thinking, moreover, we are primed to ask – and possibly answer – certain questions 

about the direction of such development. In terms of the criterial-choice manner I 

have mooted as an appropriate way of seeing concept-determination, we might ask 

why one criterion rather than another gets to be chosen once such different criteria 

pull apart. Such a question asks why the concept in question – largely the concept of 

number – developed the way it did. We saw above that Wallis and others 

emphasised the applicability of mathematical concepts to the physical world as a 

reason for adopting such concepts, and this emphasis is something I want to look at 

further.  

Before getting to that, though, a brief digression. I want to point out here that 

answers to such questions about the direction of concept development are hard to 

come by if we take an opposing view to Wittgenstein‘s. The opposition takes it that 

there is some (non-physical) fact that is discovered in conceptual development – we 

discover, that is, that there is a number 2  that is irrational, that there is a number 

0 that is infinite (and that there is no such number as ), and so on. However, if we 

come to ask how we discover such facts, we encounter difficulties. We may think 

that such discoveries are made mathematically  –  has not mathematics shown us 

that 2 is irrational and so on, after all? But this will not do. We cannot pin the 

blame on mathematics itself, as it were. As we have seen, what mathematics has 
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 I hope it is plain that the dichotomy here is not so clear cut as it might appear from such a 

bald statement. For example, we might well say that we discover that things can be so 

represented, etc. As ever, we seek, not a definitive theoretical pronouncement but a clear 

overview of the philosophical terrain, with all its hard cases and differences. 
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done in the case of incommensurables is show us that two criteria concerning 

numbers and lengths come apart in certain situations. What mathematics does not do 

is show us which criterion we should keep and which we should reject in such 

situations. And if it is a fact that there are irrational numbers such as 2 and that 

every length is thereby precisely numerically quantifiable, rather than it being a fact 

that the only numbers properly so-called are rational and that some lengths are not 

numerically quantifiable with precision, it is certainly mysterious how we might 

ever gain access to such facts. Mathematics itself, to reiterate, is silent on such 

questions – the proof of incommensurability of diagonal with side, for instance 

shows us only that we cannot maintain both that numbers are all rational and that 

lengths are all precisely numerically quantifiable.  

This is a point I want to flag up for further discussion.
110

 There is a distinction to be 

drawn here between what goes on inside mathematics and the manner in which 

mathematics itself develops – what we might think of rather in terms of mathematics 

as a whole seen as part of our intellectual life in general. In our most recent 

example, the proof of incommensurability is itself part of mathematics, but the 

manner or direction of development – the acceptance or rejection of irrational 

numbers as bona fide members of the family of numbers – needs determination other 

than by intra-mathematical already-fixed criteria. (Such latter determination might 

proceed by, but not necessarily be restricted to, questions of utility, as we saw with 

complex numbers above.)  

The distinction I am flagging applies, mutatis mutandis, for other developments in 

our number concepts. For example, mathematics itself has nothing to say about 

whether we should, with Galileo, deny that one-one correspondence establishes 

numerical equality and comparisons of magnitude whilst maintaining the criterion 

that the whole is greater than its parts, or, with Cantor and Dedekind, maintain the 

criterion of numerical equivalence and comparison of magnitude by one-one 

correspondence while denying that the whole is always greater than its parts. The 

two criteria in play here coincide for finite cardinals, of course, and we have good 

mathematical reasons for seeing how they pull apart when we move to the 

transfinite. But we do not have any good mathematical reasons for the choice 

between Galileo‘s ‗ … ―equal,‖ ―greater,‖ and ―less,‖ are not applicable to infinite 

… quantities‘ and Cantor‘s assertion that, for instance, ‗0<1‘ makes perfect 

sense. If there is indeed a matter of fact determining the choice between Galileo and 

Cantor it is difficult to see how we can gain access to it. We will need some extra-

mathematical help, it seems – and it is not at all clear where we are going to find 

such. 

I will return to the difference between questions within mathematics and the kinds of 

questions I am pointing to here that mathematics itself is, as I claim, silent about. 

For now, I just want to make the point that a Wittgensteinian ‗concept 
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 In Chapter 5 below. 
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determination‘ view of conceptual development of the kind we have been 

considering can avoid this aspect of the ‗access problem‘ that a ‗factual discovery‘ 

view is prone to. I have suggested that one important way of determining the choice 

– apparent in Wallis and other mathematicians of his time – connected with 

possibilities of application in the physical world. Wittgenstein also emphasises 

applicability in such contexts. 

 

 3.8 Real numbers and infinity ‘in the small’ 

We saw above something of Wittgenstein‘s quarrel with Cantor about the concept 

‗real number‘, and connected this to questioning the development of Cantor‘s notion 

of infinity – 0 and so on. We can link this with the development of 

incommensurability and the irrationality of 2. 

  Here is a diagram: 

 

I have copied this from Wittgenstein‘s RFM. (See p. 291) He comments on it thus: 

It is by combining calculation and construction that one gets the idea that there must 

be a point left out on the straight line, namely P, if one does not admit 2 as a measure 

of distance from O. ‗For, if I were to construct really accurately, then the circle would 

have to cut the straight line between its points.‘ 

And he goes on to say, 

This is a frightfully confusing picture … 

What is the application of the concept of a straight line in which a point is missing?! 

The application must be ‗common or garden‘. The expression ―straight line with a 

point missing‖ is a fearfully misleading picture. The yawning gulf between illustration 

and application. 

The ‗straight line with a point missing‘ is the (Wallis‘s) number line. The point that 

has gone missing is that representing the square root of 2, and the diagram shows 

how we can apply Pythagoras‘ Theorem to suggest the place where the missing 

number should go. Draw on the axes, as shown, a right-angled isosceles triangle of 

unit side, one unit side being placed along the horizontal axis. The hypotenuse of 

this triangle can then be transferred onto the horizontal … and its length is 2.  The 
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‗number‘ is missing from the line precisely because 2 is irrational or 

incommensurable with the unit length – it is this that Wittgenstein points to in 

talking of ‗2 as a measure of distance from O‘. There is no (rational) number of 

units that measures the distance from O to the point at which the arc (of radius 2 by 

Pythagoras‘ Theorem) cuts the line. If all the numbers are rational then indeed, it 

seems, we have a ‗straight line with a point missing‘.  

Wittgenstein describes this picture as ‗fearfully misleading‘. It will help us see what 

he means if we relate it to our earlier discussion. Recall the choice of criteria 

involved in deciding whether we should accept 2 as a number in good standing in 

spite of its irrationality, or alternatively deny that the diagonal of a unit square has a 

length that is expressible numerically. The picture seems to make the choice for us. 

Looking at the picture in the knowledge that there is no rational number of units 

from O to P, it can seem that nevertheless there is a point there – in a gap just where 

the arc cuts the line. The idea that we can find this gap there, as it were waiting to be 

filled, connects plainly with the notions that the real number 2 can be discovered 

and that there is a matter of fact about whether there really is such a number. 

One particular standard way of developing the notion of the real numbers involves 

taking, not the ‗cut‘ itself as point P in the diagram above, but rather thinking of 

such a cut as determining the number in terms of the two sets of numbers above and 

below. I am going to look at some passages where Wittgenstein takes this on. Here 

he can best be read as tackling the idea as it is expressed by his contemporary G.H. 

Hardy in what was for a long time the standard textbook for mathematical analysis 

in English, Hardy‘s A Course of Pure Mathematics.
111

 Thus, for example, here is 

Hardy considering the example of 2,  

The square of any rational number is either less than or greater than 2. We can 

therefore divide the positive rational numbers … into two classes, one containing the 

numbers whose squares are less than two, and the other those whose squares are 

greater than two. (Hardy 1952 p. 8)  

Hardy goes on to describe such a mode of division of the set of rational numbers 

into a lower and an upper set as an example of a ‗section‘. (op. cit. p. 11) The two 

properties, x
2
 < 2 and x

2
 > 2, are such that every rational number possesses one of 

them, and no rational number satisfies both. They define a section in Hardy‘s 

terminology, as will any pair of mutually exclusive properties defined on the set of 

rational numbers such that every rational number has one or other of the properties.  

Now some such pairs of properties define lower or upper sets with, respectively, a 

greatest or least member.
112

  (Consider 2x  and x >2, for instance.) Such pairs of 
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 I have no contemporary evidence, but it seems at least plausible reading the relevant 

sections of RFM alongside Hardy that Wittgenstein had Hardy‘s book to hand as he wrote. I 

offer some brief references to this below. 
112

 See op. cit. p. 12 for a proof that these are exclusive options, if that is not obvious. 
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properties can be associated with, or correspond to, that greatest or least rational 

number. This means, according to Hardy, that 

… we are almost forced to a generalisation of our number system. For there are 

sections (such as that [derived from x
2
 < 2 and x

2
 > 2]) which do not correspond to any 

rational number. The aggregate of sections is a larger aggregate than that of the 

positive rational numbers; it includes sections corresponding to all these numbers, and 

more besides. It is this fact which we make the basis of our generalisation of the idea 

of number. (Hardy 1952 pp. 13-14) 

That is, according to Hardy, and in terms I have used to characterise the conceptual 

development of our number system, consideration of the notion of a ‗cut‘ or 

‗section‘ (‗almost‘) forces the choice of criterion on us. It is clear, however, that this 

‗forcing‘ is non-mathematical – it derives, as Hardy himself admits, from the 

‗geometrical representation‘ – from the ‗picture‘ Wittgenstein draws, a picture that 

Hardy also refers to in getting the development up and running: 

The result of our geometrical representation of the rational numbers is therefore to 

suggest the desirability of enlarging our conception of ‗number‘ by the introduction of 

numbers of a new kind. (op. cit. p. 7) 

Hardy – and the standard development – goes on to prove ‗Dedekind‘s Theorem‘, 

that the real numbers so defined as sections of the rationals (as ‗Dedekind cuts‘) 

form a continuum. Dedekind‘s Theorem, indeed, is a part of mathematics, as is the 

completeness of the set of real numbers as Hardy characterises it. It would be 

tempting to think that Dedekind‘s Theorem guarantees that there are no ‗further 

gaps‘ in the (Wallis‘s) number line once the ‗gaps‘ like that at irrational points like 

2 have been filled. This would be a mistake, as Hardy himself carefully admits: 

It is convenient to suppose that the straight line … is composed of points 

corresponding to all the numbers of the arithmetical continuum and no others.* … 

* This supposition is merely a hypothesis … we use geometrical language only for 

purposes of illustration … (op. cit. p. 24) 

Now, coming back to Wittgenstein, we have seen him to characterise illustrations in 

this arena as ‗misleading‘. And, he says,  

The picture of the number line is an absolutely natural one up to a certain point; that is 

to say so long as it is not used for a general theory of real numbers. (RFM p. 286) 

It may be tempting to read Wittgenstein on Cantor and Dedekind/Hardy as somehow 

challenging the mathematics of real numbers. However, that is not his intent. 

Remember Philosophical Investigations §124,  

Philosophy … also leaves mathematics as it is … 

We are philosophically misled by the way illustrations work on our understanding 

here, Wittgenstein suggests. For example. 

The misleading thing about Dedekind‘s conception is the idea that the real numbers 

are there spread out in the number line. They may be known or not; that does not 
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matter. And in this way all that one has to do is to cut or divide into classes, and one 

has dealt with them all.(RFM p. 290) 

The idea that the numbers – real irrational as well as rational – are in some sense 

already there, waiting our discovery of them, is what Wittgenstein challenges. And 

this idea, of numbers somehow given in extension prior to the development of the 

mathematics that deals with them, is one that he points out as fostered by the manner 

of development Hardy espouses. 

I mentioned at the end of the last section that Wittgenstein, as we saw Wallis and 

some of his peers did, emphasised the importance of applications of mathematics for 

determining the direction of determination – what I characterised above in terms of 

criterial choice – of the concepts of mathematics. Here he is contrasting ‗misleading‘ 

illustrations of analysis with ‗essential‘ illustrations that are at the same time 

applications: 

The geometrical illustration of Analysis is indeed inessential
113

; not, however, the 

geometrical application. Originally the geometrical illustrations were applications of 

Analysis. Where they cease to be this they can be wholly misleading. 

What we have then is the imaginary application. The fanciful application. 

The idea of a ‗cut‘ is one such dangerous illustration. 

Only in so far as the illustrations are also applications do they avoid producing that 

special feeling of dizziness which the illustration produces in the moment at which it 

ceases to be a possible application; when, that is, it becomes stupid. (RFM p. 285) 

What might ‗illustrations [that] are also applications‘ be? Here is one such. Think of 

a standard way of illustrating mathematical analysis‘ way with instantaneous rates of 

change – via the tangent to a curve at a particular point. An illustration of how we 

find the gradient of this tangent might well go via a consideration of various secants 

to the curve drawn at the point of tangency, successive secants approaching closer 

and closer to the tangent as their points of intersection with the curve approach each 

other closer and closer. We can see such successively-drawn secants as heuristic in 

visualising the limiting process that gives us the gradient of the tangent on the curve. 

Below are some snapshots of an animation illustrating this process as graphed on 

Cartesian axes for the function f (x)  =  x
2
; the point of tangency is (0.8, 0.64): 
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 This is one of those instances where we might usefully think of Wittgenstein as 

responding directly to Hardy in A Course of Pure Mathematics. See, for instance, Hardy 

1952: ‗It is convenient, in many branches of mathematical analysis, to make a good deal of 

use of geometrical illustrations. The use of geometric illustrations in this way does not, of 

course, imply that analysis has any sort of dependence upon geometry: they are illustrations 

and nothing more …‘ This is a point Hardy reiterates several times (e.g. P. 24, P. 30, …). 

Wittgenstein looks for a diagnosis of where we might be misled, along with Hardy, by such 

illustrations; not mathematically, to be sure, but philosophically. 
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To reiterate, this geometric illustration is inessential to the actual analysis, while the 

geometric application – of finding the gradient of the tangent – is essential to what is 

going on. The mathematical illustration – the geometry – at the same time as 

suggesting the way the mathematics of a rate of change might best be formalised and 

worked out, does satisfyingly solve the problem of finding a tangent at a point on the 

curve.  

More than that, though, what this application of the limit process to the problem of 

finding a tangent makes clear is the way in which we extend our concept of a rate of 

change as a ratio of intervals (an average rate of change, e.g. the average speed over 

a given time-interval) to an instantaneous rate of change (a rate of change at a point, 

e.g. the speed at a given instant of time). It may be possible to see this as a 

discovery, perhaps, of what instantaneous rates of change actually amount to … but 

seeing the development in action like this certainly predisposes us to see in this case 

at least the possibility that what counts as an instantaneous rate of change may well 

depend on the determination – extension in a different sense – of the concept of a 
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rate of change rather than a discovery of the fact of what an instantaneous rate of 

change really is.  

That is a good example of how an illustration can be at the same time an application. 

The ‗yawning gulf between illustration and application‘ is bridged in this case. To 

spell it out again: finding the gradient of a tangent at a point is at the same time an 

application of the analytic process of differentiation as well as an illustration of that 

very process and why we take the process to be what it is. But the idea of a cut as 

determining the concept of a real number, we have seen Wittgenstein to claim, is 

‗dangerous‘ in that it has no aspect of possible application built in to it. More, and 

worse, such free-standing illustrations predispose us to see mathematical concepts – 

of real numbers in this case – as given somehow in extension prior to any 

application of concepts involving them – a mistaken way of seeing that Wittgenstein 

convicts Cantor, Dedekind, Hardy – all of us – as being tempted into and as leading 

to further philosophical error. 

With this examination of ‗infinity in the small‘, we have come almost full circle – 

back to questioning Cantor‘s ‘hocus pocus‘. We go wrong, I am suggesting with 

Wittgenstein, if we consider the development of mathematical (and other) concepts, 

including those of number and infinity, as driven by discovery of facts rather than as 

determinations of concepts. Further, an important aspect of how such concepts are 

determined is to be found in their application. Lacking application, we may find 

ourselves at a loss to see how  – even implicitly – a particular criterial choice in 

conceptual development can usefully be made. The choice between factual 

discovery and conceptual determination as descriptions of mathematical 

development may itself not be wholly cut-and-dried. (We might consider asking 

whether ‗concept determination‘ as opposed to ‗factual discovery‘ gets the facts 

right or is an example of concept determination, should we need convincing of this.) 

Taken all-in-all, though, the examples I have offered make at least a plausible case 

for seeing Wittgenstein‘s distinction as important and illuminating. I have one final 

example now, to make the point and tie together some of the themes of this chapter. 

 

3.9 Standard and non-standard analysis 

The example is that of Non-Standard Analysis (NSA), as developed originally by 

Abraham Robinson in the early 1960‘s. I want to set it in the context of what we 

might call ‗standard analysis‘, particularly the history of differential and integral 

calculus from Newton and Leibniz up to the present. This is a well-known story, 

which can be found in any competent history of mathematics.
114

 I will not go into all 

the details; some of the highlights will suit my purposes well enough.  

 

                                                                            
 

114
 For instance Kline 1972, Smith 1958, Boyer & Merzbach 1989. See also Fauvel & Gray 

1987 for an excellent collection of original sources and references. For a short summary of 

how the history is conventionally viewed, see Robinson 1996 pp. 260-261.  
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Robinson himself, at the end of his book in which he explains the technical details of 

NSA, advances much the same views as those I have been expounding as 

Wittgenstein‘s. For example,  

At the moment Cantor‘s point of view [concerning infinity] is that held by the majority 

of mathematicians. But … future generations of mathematicians, while accepting the 

formal results of set theory, may reject the platonistic claims currently associated with 

it. (Robinson  1996 p. 281) 

Likewise regarding the view I have earlier pointed out as shared by Wittgenstein and 

Fieldian fictionalists, that denial of the objects of mathematics might force an 

emphasis on mathematics as consisting of rules of inference. As Robinson says, 

… we may look at our theory syntactically and may consider that what we have done 

is to introduce new deductive procedures rather than new mathematical entities. 

(op. cit. p. 282) 

This introduction of ‗new deductive procedures‘ is, in a sense, a development of 

relatively new mathematics, as will become plain. However, it may equally well be 

seen as a re-development of some old mathematics. Robinson again: 

It is shown in [Robinson (1996)] that Leibniz‘ ideas [concerning ‗infinitesimal 

quantities‘] can be fully vindicated and that they lead to a novel and fruitful approach 

to classical Analysis and to many other branches of mathematics. (op. cit. p. 2) 

One aspect of the history of the development of calculus from Leibniz and Newton 

to the present day that I want particularly to flag up is the way in which ‗the greatest 

achievement of the seventeenth century‘
115

, differential and integral calculus, was 

used even though its conceptual grounds were felt to be so shaky for so long. I 

mentioned above the importance of considering applications in any attempt at a clear 

overview of conceptual development in mathematics. There is some confirmation in 

this of my earlier point about the direction of determination of mathematical 

concepts depending less on intra-mathematical results than on extra-mathematical 

applications. This is worth keeping in mind as we proceed. 

The traditional way of telling the story of the development of the calculus – now 

denominated part of mathematical ‗analysis‘ – goes as follows. Begun
116

 

independently in the seventeenth century by Newton and Leibniz, the evident 

success of the calculus meant it maintained its centrality in spite of dubious 

foundational aspects, until it was eventually put on a rigorous foundation in the 

nineteenth century by, especially, Cauchy, Bolzano and Weierstrass. In conceptual  

 

                                                                            
 

115
 See Kline 1972 p. 400: ‗ The greatest achievement of the seventeenth century was the 

calculus.‘ Special pleading, perhaps, from a historian of mathematics. Still, that it was a 

foundational aspect of the scientific revolution and hence of present-day technology is 

beyond doubt, which surely makes it one of the greatest achievements of the last few 

hundred years, for good or ill. 
116

 ‗Discovered‘? ‗Invented‘? The story can be told neutrally, although more often than not 

the question is thoroughly begged in favour of the former. 
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terms, the traditional history emphasises Newton‘s and Leibniz‘ (and their 

immediate successors‘) founding of calculus on notions of the infinitely small; 

infinitesimals (Leibniz) or fluxions (Newton). Such foundations having clear 

infelicities, not to say logical inconsistencies and fallacies such as those pointed out, 

particularly, by George Berkeley, calculus was only later made rigorous by turning 

away from such notions and dealing instead very carefully with the idea of a limit.  

I will give some highlights of this story. 

What we might call the first textbook of Differential Calculus was written by 

Leibniz‘ disciple the marquis de l‘Hôpital; Analyse des infiniments petits pour 

l’intelligence des lignes courbes in 1696. In the preface to the English edition 

(1730), the translator, Edward Stone, explained how Leibniz followed a path laid out 

by Newton: 

… upon this latter foundation [i.e. Newton‘s], is built the Calculus Differentialis, first 

published by Mr Leibniz in the year 1684 … (Fauvel & Gray 1987 p. 445) 

L‘Hôpital‘s (Leibniz‘) practice, Stone averred, ‗does not differ from that of 

Fluxions‘, which Newton ‗invented … before the year 1669.‘(ibid)
117

 Here is 

l‘Hôpital beginning his ‗Analyse‘: 

I Demande ou supposition. On demande qu‘on puisse prendre indifféremment l‘une 

pour l‘autre deux quantités qui ne diffère entr‘elles que d‘une quantité infiniment 

petite … (Quoted in Robinson 1996 p. 264)
118

 

This notion of ‗infinitely small‘ (infiniment petite) is problematic. It is worth looking 

at part of Berkeley‘s critique that I mentioned just above to see clearly why. 

Berkeley‘s title is indicative of his avowed polemical purpose: 

THE ANALYST; OR, A DISCOURSE Addressed to an Infidel MATHEMATICIAN. 

WHEREIN It is examined whether the Object, Principles, and Inferences of the 

modern Analysis are more distinctly conceived, or more evidently deduced, than 

Religious Mysteries and Points of Faith. (Berkeley 1734)
119

 

– And here is perhaps the most famous part of this polemic: 

XXXV. I know not whether it be worth while to observe, that possibly some Men may 

hope to operate by Symbols and Suppositions, in such sort as to avoid the use of 

Fluxions, Momentums, and Infinitesimals after the following manner. Suppose x to be 

one Absciss of a Curve, and z another Absciss of the same Curve. Suppose also that 

the respective Areas are xxx and zzz: and that z - x is the Increment of the Absciss, and 

zzz - xxx the Increment of the Area, without considering how great, or how small those 

Increments may be. Divide now zzz - xxx by z - x and the Quotient will be zz + zx + xx: 
 

                                                                            
 

117
 I have no reason to get into the debate about priority here. Nowadays, anyway, it is 

generally accepted that Newton and Leibniz each independently came up with the calculus. 
118

 I translate, ‗Requirement or supposition: when two quantities only differ from one 

another by an infinitely small quantity it is possible to take either one instead of the other.‘ 
119

 The mathematician in question was actually Edmond Halley, disciple of Newton. 

Berkeley clearly and explicitly intended the strictures to apply equally to Leibnizians, 

however. 
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and, supposing that z and x are equal, this same Quotient will be 3xx which in that case 

is the Ordinate, which therefore may be thus obtained independently of Fluxions and 

Infinitesimals. But herein is a direct Fallacy: for in the first place, it is supposed that 

the Abscisses z and x are unequal, without such supposition no one step could have 

been made; and in the second place, it is supposed they are equal; which is a manifest 

Inconsistency, and amounts to the same thing that hath been before considered. And 

there is indeed reason to apprehend, that all Attempts for setting the abstruse and fine 

Geometry on a right Foundation, and avoiding the Doctrine of Velocities, 

Momentums, &c. will be found impracticable, till such time as the Object and the End 

of Geometry are better understood, than hitherto they seem to have been. The great 

Author of the Method of Fluxions felt this Difficulty, and therefore he gave in to those 

nice Abstractions and Geometrical Metaphysics, without which he saw nothing could 

be done on the received Principles; and what in the way of Demonstration he hath 

done with them the Reader will judge. It must, indeed, be acknowledged, that he used 

Fluxions, like the Scaffold of a building, as things to be laid aside or got rid of, as soon 

as finite Lines were found proportional to them. But then these finite Exponents are 

found by the help of Fluxions. Whatever therefore is got by such Exponents and 

Proportions is to be ascribed to Fluxions: which must therefore be previously 

understood. And what are these Fluxions? The Velocities of evanescent Increments? 

And what are these same evanescent Increments? They are neither finite Quantities 

nor Quantities infinitely small, nor yet nothing. May we not call them the Ghosts of 

departed Quantities? 

That is rather a long quotation, but there is a lot packed into it. There is a hint of the 

fundamental theorem of calculus
120

 in Berkeley‘s consideration of an ‗Area‘ 

function. It may also be worth noticing his assimilation of ‗Fluxions, Momentums 

and Infinitesimals‘; Fluxions, Newton‘s preferred appellation, Infinitesimals, that of 

Leibniz, and Momentums (later linked with Velocities) pointing up the physical 

applications of the calculus.
121

 

I will eschew further exegetical analysis, apart from dealing with the (in)famous 

‗ghosts of departed quantities‘. It will be worth looking at Berkeley‘s specific 

example here to get a clear view of what is going on. I will explain in present-day 

terms. 

 Suppose we want to find the instantaneous rate of change or derivative of a function 

which varies as the cube of its input variable x ; 
3( )f x x . Allow x to increase to z, 

the increment being thereby ( )z x . The change of ( )f x  in this latter interval being 

thus ( ) ( )f z f x , the average rate of change over the interval will therefore be 

( ) ( )f z f x

z x




, or 

3 3z x

z x




. Algebraic division, now, gives us the average rate of 

change as 2 2z zx x   (Berkeley‘s ‗Quotient … zz + zx + xx‘.) But we want the 

instantaneous rate of change, for which we need the (fluxion or) infinitesimal 

 

                                                                            
 

120
 That integration (finding areas) and differentiation (finding rates of change, or 

equivalently, as we saw earlier, gradients of tangents) are inverse operations. 
121

 Via Newton‘s Second Law, for instance, linking force with rate of change of momentum. 
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increment ( )z x  to be zero. That is, we should take z x  in our expression for the 

average rate of change. This gives us the instantaneous rate of change as 23x … i.e. 
2( ) 3f x x  , a rule for differentiating that now enables us to find the instantaneous 

rate of change for any value of x without mention of, or ‗independently of Fluxions 

and Infinitesimals‘. 

This works. We can use such rules for determining ‗Velocities, Momentums, &c.‘. 

But, as Berkeley points out, there is a ‗direct fallacy‘, a ‗manifest inconsistency‘ in 

the derivation. z and x are first taken to be unequal, ‗without which supposition no 

one step could be taken‘; we could not divide by ( )z x  if z and x were equal 

because in that case ( )z x would be zero. Then, later in the derivation, we take z and 

x to be equal in order to obtain 23x  from the quotient. So Berkeley is well within his 

rights to cavil at the derivation; ‗… what are these same evanescent Increments?‘ 

Recall from above l‘Hôpital‘s ‗requirement‘ that in such cases ‗we may take‘ it that 

quantities that differ by an amount ‗infinitely small‘ are the same. In practice, this 

requirement can be seen to be manifestly inconsistent. Either they are the same or 

they are not the same. In the former case, we may not divide by their difference … 

but we need to do the division in order to get started. 

Here I am going to cut matters short and jump centuries to the present day, or at 

least to the twentieth century, when, following the ‗rigorisation‘ of the calculus by 

nineteenth century mathematicians, mathematical analysis in its standard form is 

based, not on infinitesimals or ‗infinitely small quantities‘, but on the concept of a 

limit. Any standard analysis text has near the beginning the definition of a limit, 

followed by definition of a derivative in terms of a limit.
122

 

Using Berkeley‘s x‘s and z‘s,
123

 we will have, in standard analysis, that the 

derivative or instantaneous rate of change of a function f for input x, that is ( )f x , is 

defined as follows:  

( ) ( )
'( ) lim

def

x z

f x f z
f x

x z

 
  

 
, 

where the ‗ lim
x z

‘ in this is explained as follows: 

( ) ( ) ( ) ( )
'( ) lim 0 : 0 ( )

x z

f x f z f x f z
f x x z f x

x z x z
   



  
          

  
. 

This is commonplace to first-year mathematics undergraduates, while they will be 

warned that the ‗intuitive‘ way of looking at this, namely that when ( )x z  is 
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 E.g. Spiegel 1963. See p. 23 and p. 57, respectively. We will find similar definitions of 

integrals, mutatis mutandis. 
123

 Berkeley has the x‘s and z‘s reversed here and there – that does not make any difference, 

though. 
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‗infinitely small‘, 
( ) ( )f x f z

x z




is ‗infinitely close‘ to ( )f x , is to be eschewed, at 

least as regards any proofs that are required, essentially on grounds identical to those 

advanced by Berkeley. 

Robinson‘s Non-Standard Analysis reinstates this ‗infinitely close‘ and ‗infinitely 

small‘ talk – talk of ‗infinitesimals‘ – thereby vindicating Leibniz in the light of 

Berkeley‘s critique. The existence of infinitesimal quantities, Robinson shows, can 

consistently be asserted while keeping the rest of standard analysis. That, essentially, 

is what NSA does. 

In very basic terms, here is how NSA works.
124

Start with Gödel‘s completeness 

theorem.
125

That is, if K is a set of first-order sentences with language L, then K has 

a model if and only if it is consistent. Next, note that it follows from this that such a 

K is compact (or, as Robinson puts it, it satisfies the Finiteness Principle) – viz. if 

every finite subset of K has a model/is consistent, then K itself has a model/is 

consistent. (The proof of this latter is straightforward enough. Suppose the contrary, 

that every finite subset of K is consistent but K is inconsistent. Since K is 

inconsistent it contains a contradiction; i.e. there must be some sentence S of K

whose negation is provable. But the proof of (not-S) can only have a finite number 

of sentences, and by hypothesis, this finite set containing (not-S) – call it K' – must 

be consistent. Adding S to K' gives another finite – so consistent – set. But that is 

contradictory since K' contains S and its negation.) 

Now, suppose we have a theory of real numbers, that is a set of sentences satisfied 

by the real numbers.
126

Call this set of sentences R. And suppose we add a constant 

symbol a to our language L. Consider now the (infinite) collection of sentences ‗

1a  ‘, ‗ 1
2

a  ‘, ‗ 1
3

a  ‘… If we add all these sentences to R, it is clear that every 

finite subset of this enlarged theory has a model, namely the real numbers. So every 

finite subset is consistent, and thus, by compactness, the whole enlarged theory is 

consistent. Hence there is a consistent enlargement of R that contains an a that 

satisfies every one of the sentences ‗ 1a  ‘, ‗ 1
2

a  ‘, ‗ 1
3

a  ‘ … that is, there is in 

this enlargement, *R, a ‗number‘ a, non-zero but smaller than any real number.  

                                                                           

124
There are other, often simpler, derivations, available nowadays. I give a simplified 

version of Robinson‘s own version here, more or less, with the aim of keeping the 

motivation close to the surface. The important ideas are easy enough to follow. 
125

Proved initially as his doctoral dissertation in 1939. There are, of course, later, more 

easy-to-follow proofs available now. Any appropriate logic text will have one. 
126

Here we have to be careful not to go higher order. Robinson gives a framework which 

amounts to keeping to first order by means of ‗type transforms‘, essentially mirroring 

appropriate sentences of higher type with ones of lower type. See Robinson 1996 pp. 19ff.   
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Robinson: 

A number *a R will be called infinitesimal or infinitely small if a m  for all 

positive numbers m in R. (1996 p. 56) 

That does it, essentially. We can do calculus in *R, consistently using infinitesimals 

… and, as Robinson goes on to prove, we will get the results we expect, that is the 

results that we now prove by means of the translation into talk of /  -type limits as 

in the explanation of ( )f x  just above. 

To what extent this vindicates Leibniz and shows Berkeley to have been wrong is 

certainly debateable. I am not concerned to adjudicate such issues. However, I do 

want to consider morals to do with what I have been advancing. I have been arguing 

that we should consider looking at conceptual development, particularly in 

mathematics, in Wittgensteinian terms as determination of concepts rather than as – 

what we might think of as the Platonist opposition – discovery of facts, generally 

perhaps about a realm of abstract objects, although not tied exactly to such a picture. 

We have seen that with regard to developments of the notion of infinity, it might 

appear that Cantor discovered that 0 < 1 and so on, whereas Wallis was simply 

wrong to think of a number, infinity , as the reciprocal of zero. My suggestion, 

though, has been rather to consider that whereas Wallis‘s conception was one that 

did not catch on – did not quite take – the later, Cantor manner of development did 

catch on. The development of Non-standard Analysis, seen against the 

conventionally-told history of standard mathematical analysis, further bolsters the 

philosophical utility of considering which concepts catch on and are accepted by 

mathematicians and scientists.  

Mathematics we know, is useful, particularly in science. Non-philosophically-

inclined mathematicians and scientists might well just leave the matter there. The 

philosophically minded, though, may well be inclined to ask further, of 

mathematical objects, whether they really (or really, or even Really) exist, or 

whether mathematical propositions are really (etc.) true. Mathematical realism can 

be seen as answering the question, ‗are there Really such things as numbers?‘ in the 

affirmative, and likewise, the associated (but different) question as to whether 

mathematical propositions are Really true. Mathematical fictionalists or other anti-

realists demur: ‗there are no such things as numbers‘, says the fictionalist, although 

they may well be useful fictions. Are there, then, Really such things as 

infinitesimals? Traditionally, and in the light of such strictures as Berkeley advanced 

so forcefully, the answer has been ‗no‘ … but given the utility of apparently 

assuming otherwise in the calculus, a work-round was required. Hence the attempts 

to ‗add rigour‘ to the infinitesimal calculus. Robinson‘s Non-Standard Analysis, 

now, might appear to give succour to the realist; were there (Really) infinitesimals 

all along? Robinson, we have seen, does not take the view that this is the case, and 

nor should we. Whether or not we allow the existence of infinitesimals, we can use 

the calculus for the purpose it was intended – and, indeed, for lots of other purposes 
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as well. The history I have outlined, rather than supporting either realism or 

antirealism about mathematics, suggests a way of seeing the traditional 

realism/antirealism philosophical debate as empty. 

The notion that matters could perhaps have gone differently, that concept-

determination might have taken a different turn with Wallis‘ and/or Cantor‘s ‘s, 

is bolstered once we are convinced, as we surely should be, that Leibnizian 

infinitesimals could have been accepted all along. We have also seen with this last 

example how the importance of the application of mathematical concepts can even 

overcome severe doubts about what looked like sheer inconsistencies in the concepts 

used in application. All of this, I am suggesting, is indicative of how we may be 

better off adopting a view of mathematical conceptual development, not as 

following some somehow predetermined course dictated by who-knows-what form 

of mathematical reality, but rather as determined, ultimately though often tacitly and 

inexplicitly, by mathematical utility in application.  

There is more to be said about this, and I will consider further such questions as 

whether or not there are ‗Really‘ such things as infinitesimals – or numbers and 

mathematicalia in general – in Chapter 5. Before getting to that, though, I want to 

raise what might look like a serious objection to the view I am advocating. In brief, 

if mathematical conceptual development can go in different ways depending on the 

whim of mathematicians – or even by the way the empirical world is to be best 

described – then it may start to seem there is no necessity to mathematics. It looks, 

that is, as though the normative force of mathematics, its apodictic necessity – what 

Wittgenstein calls ‗the hardness of the logical must‘ as applied to mathematics – is 

in danger of getting lost if we follow Wittgenstein on this. This is what I want to 

treat in Chapter 4. 
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Chapter 4  The Hardness of the Logical ‘Must’ 

 

4.1 Introduction 

The question with which I began the last chapter, ‗Just what is it to take the notion 

of infinity at face value as part of mathematics?‘ has been illuminated by 

Wittgenstein‘s emphasis on concept determination as opposed to discovery of facts.  

However, in recognising differences between ‗the kind of referring‘ involved, say, in 

talk of numerals referring to numbers compared with how names of concreta refer to 

physical objects, we are not forced to establish any anti-realist notion of numbers 

and other mathematicalia once we have turned away from realism in this 

recognition. Emphasising that this is so – and how it can be so – will be part of the 

object of the current chapter. 

We have seen how we can accept the imperative to take our talk about mathematics 

‗at face value‘ as suggested by Field and turn away from realism; it did not follow 

that we needed to follow Field into fictionalism or indeed to accept metaphysical 

anti-realism of any stripe. And there is also a related point we should consider. We 

saw that Berkeley, in effect justifiably, convicted Newton and Leibniz and other 

‗analysts‘ of ‗manifest inconsistency‘ in their founding development of the calculus. 

Robinson, with NSA, was able to overturn this verdict and give us a way to allow 

the consistency of infinitesimals. This example gives us a clear sense in which the 

‗vindication‘ of Leibnizean ideas amounts to a change in what is to count as 

consistency in mathematics. For, consider: it is plain that early attempts at 

conceptual foundations for the calculus foundered on specific inconsistencies; 

Berkeley, in pointing out these inconsistencies, was pushing at an open door. But, 

then, as we have seen, following the establishment of Robinson‘s NSA we can 

accept that Leibnizean infinitesimals are perfectly consistent after all. This amounts 

to a change in what is to count as consistent in mathematics – and it will be no 

surprise if I suggest we view such a  change more in terms of a conceptual 

determination than as a factual discovery of whether such-and-such is really 

consistent or what consistency itself really (or really or Really …) is. This fits well 

with Robinson‘s own claim that 

… what we have done is to introduce new deductive procedures … (Robinson 1996 

p. 282. See above section 3.9.) 

 – Notions of consistency mesh closely with those of logical consequence, after all. 

(We saw some of the details of this in Chapter 2.)  

However, seeing the development in this way emphasises an apparent difficulty. It 

seems we run the risk of losing the objectivity of mathematics once we allow that 

what is to count as correct in mathematics is determined by ourselves rather than 

discovered, even if such determination comes about, as I have been suggesting, 

mostly by tacit agreement rather than express fiat. And this risk seems all the more 
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acute if we allow that what counts as logical consequence or consistency is equally 

dependent on human agreement. So, to the risk of loss of objectivity, it now further 

seems, is added the risk of the loss of mathematical necessity, what Wittgenstein 

often calls ‗the hardness of the logical must‘.  

To get to grips with both these points, I will look again at both Platonism and the 

particular opposition thereto involved in mathematical fictionalism. We have seen 

how a turn away from Platonism can lead to an emphasis on mathematics as 

consisting of rules of inference rather than as a collection of assertions about abstract 

objects in our investigation of Hartry Field‘s epistemology of mathematics as well as 

in following Wittgenstein. It will be useful again to set off the view I want to 

advance against Field-style fictionalism. Also, however, for more general 

contextualisation of our investigation of objectivity, I want first to turn to Frege 

again. Recall that above in Chapter 2 Field‘s own view was illuminated by a contrast 

with Frege and Crispin Wright‘s Fregean critique. A similar contrast can serve well 

at this point too, particularly in the light of our concern with mathematical 

applicability. 

4.2 Fregean objectivity 

Frege was concerned with mathematical objectivity in contrast to what can be had 

from human psychology. For example, as he claims:  

… the number one … can no more be researched by making psychological 

observations than can the moon. (Frege 1964 p. 16)  

He also asserted that mathematical objectivity is on a par with that of physics:                                                    

Whether y follows … after x has in general nothing to do with our attention … it is a 

question of fact, just as much as it is a fact that a green leaf reflects light rays of 

certain wave-lengths …(Frege 1953 p. 37) 

Elsewhere, Frege is explicit about the importance of the applicability of mathematics 

for an assessment of its status: 

… it is applicability alone which raises arithmetic from a game to the rank of a 

science. So applicability necessarily belongs to it. (Frege 1952 p. 167) 

In this latter quotation Frege is arguing explicitly against the formalist idea that  

Arithmetic is concerned only with the rules governing the manipulation of the 

arithmetical signs, not, however, with the meaning of the signs. (Frege 1952 p. 164) 

Pulling together these thoughts about applicability and objectivity, one might put the 

point as follows. If mathematics – as opposed to a game such as chess, for 

example
127

– is to have any application, it needs to have genuine content. But 

                                                                           

127
Frege‘s own example. For instance, he says, ‗The reason [arithmetic renders services to 

natural science] can only be that numerical signs have meaning and chess pieces do not.‘ 

(op. cit. P. 165.) Wittgenstein, of course, draws significantly non-Fregean morals from the 
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applicability to the real world entails that this genuine content must be objective 

content, which cannot be supplied from human psychology. The only thing that can 

supply such genuine objective content, according to Frege, is the existence of 

abstract mathematical objects whose objective properties form the subject-matter of 

mathematical investigation.
128

 

A Fregean, then, seeing the need to account for the fact of mathematical 

applicability, infers that mathematics must be objectively true. And this objective 

truth, for the Fregean, then further involves a commitment to the existence of 

abstract objects – to Platonism. This argument from applicability to Platonism 

should be familiar; it is very similar to what I characterised at the beginning of 

Chapter 2 as the ‗Quine/Putnam indispensability thesis‘, the argument from the 

utility of mathematics in science to the truth of mathematics and hence to 

mathematical realism of one form or another.  

 

4.3 Objectivity and indispensability  

This brings us nicely back to Field. As we saw earlier, Field sees such arguments 

from applicability
129

 as unique in the field; and his fictionalist project proceeds by 

tackling the argument from applicability to truth. As he goes on to say following the 

quote I gave above in section 2.1,  

… so if applicability to the physical world isn‘t a good argument either, then there is 

no reason to regard any part of mathematics as true. (Field 1980 p. viii
 
)  

Field‘s project, as we saw, attempts to account for applicability other than in terms 

of truth. In his words, ‗a mathematical theory needn‘t be true to be good‘, and he 

needs to explain how mathematics can be good – applicable – without being true, 

which, as we have seen, he does by recourse to the notion of conservatism, a 

particular kind of (‗strong‘) consistency.  

                                                                                                                                    
same example. See, for instance, PI § 563: ‗Let us say that the meaning of a piece is its role 

in the game. …‘ ‗Meaning‘ has different import in the two cases, it is clear. 
128

 Once swallowed, this idea of the dependence of mathematical objectivity on a Platonist 

ontology can easily cut itself loose from its roots in applicability. I mentioned G.H. Hardy 

above as a particular foil for Wittgenstein; Hardy praises ‗real‘ mathematics for its very lack 

of application. See, for instance, his 1992, passim. (For instance, ‗Real mathematics,‘ says 

Hardy, ‗… must be justified as art if it can be justified at all.‘ (p. 139)) Wittgenstein sets his 

face firmly against this, as we might expect. See RFM p. 257, for example: ‗I want to say: it 

is essential to mathematics that its signs are also employed in mufti. It is the use outside 

mathematics, and so the meaning of the signs, that makes the sign-game into mathematics.‘ 

Mathematics, that is, according to Wittgenstein, needs application in order to make sense as 

mathematics. 
129 

Field himself writes in terms of ‗Quine/Putnam indispensability‘. See, for instance, in his 

1980: ‗… there is one and only one serious argument for the existence of mathematical 

entities and that is the Quinean …‘ (p. 5) 



106 

If I am worried about the philosophical problem of mathematical applicability, as 

indeed Field is,
130

I will naturally be concerned, in the same way as we have seen in 

Frege, with the objectivity of mathematics. Field sometimes talks of the ‗non-

arbitrariness‘ of mathematics rather than its objectivity, but we can take this ‗non-

arbitrariness‘ as a brand of objectivity. He says, for instance, 

There can be no doubt that the axioms of, say, real numbers … are non-arbitrary; 

(1980 p. 5) 

– and he goes on to claim that this non-arbitrariness is to be explained in terms of the 

applicability of the relevant parts of mathematics: 

… and an explanation of their non-arbitrariness, based on their applicability to the 

physical world … will be given …(ibid.) 

Field‘s ‗non-arbitrariness‘ amounts to a kind of objectivity-without-truth. His 

explanation of how mathematics can be non-arbitrary whilst not being true goes via 

appropriate representation theorems, allied with the conservatism of mathematics. 

Mathematical applicability, according to Field, can be explained by proving a 

representation theorem asserting the existence of a homomorphism guaranteeing a 

‗fit‘ between the physical world and a mathematical theory applied to it. The non-

arbitrariness of the mathematics comes to the surface in that the structure of the 

mathematics just has to be such as to ‗fit‘ the physical world in the way specified in 

the statement of any such representation theorem.131 And Field‘s claim is that given 

the conservativeness of mathematics over the physics it thus ‗represents‘, talk of the 

truth of the mathematics involved is superfluous.  

I have already entered a challenge to the coherence of this story in Chapter 2 

above.
132

Further details and an extension of the challenge come in Chapter 5. Here I 

am interested in telling the story again to illustrate how a concern with mathematical 

applicability pushes considerations of objectivity – and, as we will soon see, 

necessity – to the fore with Field and his fictionalism as much as with Frege or any 

Platonist. 

4.4 Necessity without truth 

So I want to point up the connection between objectivity and necessity in the light of 

Field‘s fictionalism and the way it meshes with his account of mathematical 

applicability. We have seen already the way Field‘s turn away from truth leads him 

to see mathematics in terms of inference-rules rather than as descriptive of a world 

of mathematical objects. We have also seen how his epistemology of  mathematics 

                                                                           

130
Recall Field‘s view ‗that [the] question [‗What sort of account is possible of how 

mathematics is applied to the physical world?‘] is the really fundamental one.‘ (Field 

1980 p. vii) 
131

We saw this at work in Chapter 2. 
132

See section 2.4. 
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hinges on questions of logical inference. This being so, it should have come as no 

surprise to find in Field a strong link between the objectivity of mathematics and its 

status as necessary. Indeed, as we will recall,
133

 he goes so far as to describe 

conservativeness – the property of mathematics that enables it to be applicable 

without being true, recall – as ‗necessary truth without truth‘: 

Conservativeness might loosely be thought of as ‗necessary truth without the truth‘.  A 

conservative theory, like a necessarily true one, is compatible with any possible state 

of the physical world; the only real difference between a conservative theory and a 

necessarily true one is that the conservative one need not be true at all. 

(Field 1989 p. 59) 

More than this, Field claims, in a later paper specifically dealing with mathematical 

objectivity,
134

 that mathematical objectivity amounts to nothing more than an 

application of the objectivity of logic. The article, he says, defends the view that 

…  logical objectivity is all the objectivity there is. (Field 2001 p. 331)
135

 

We should not be surprised at any of this. As we have seen before, once we turn 

away from the picture of mathematical objectivity as depending on mathematical 

objects and take account of the requirement that mathematics be applicable to the 

physical world, we will be primed to see mathematics in the light of something at 

least very much like TLP 6.211,
136 

as a collection of inference rules for transforming 

empirical propositions. And rules are normative: there is a sense of ‗must‘ in which 

if I am to follow a rule I must do what the rule specifies. Whether we gloss it as 

logical necessity of some sort, or as some other kind of necessity, it is clear that this 

normative ‗must‘ is closely allied to the requirement that mathematics be objective 

given the possibility – often actualised – of its being applied. Necessity, then, 

broadly construed, requires serious consideration in the light of this requirement for 

mathematical objectivity, which in turn gets its major importance from the fact of 

mathematical applicability. 

 

4.5 Wittgenstein and necessity 

For both Frege and Field then – for Platonist and fictionalist alike – the objectivity 

of mathematics is tied up with logical necessity. For Frege this objectivity is 

mediated by the existence of abstract objects, but as Field points out, such mediation 

is unnecessary: mathematical objectivity does not require mathematical objects if we  
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 From Chapter 2, see section 2.2. 

134
 ‗Mathematical Objectivity and Mathematical Objects‘, reprinted in Field 2001 pp. 315ff. 

135
 We should not take Field to be denying the objectivity of empirical statements here. In 

context, all that is in question is whether there is a kind of mathematical objectivity ‗that 

transcends logical objectivity‘, which Field denies. 
136

 See above, section 2.5. 
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concentrate on the use we make of mathematics. However, Field simply assumes 

that logic itself is objective: he says 

From now on I will be assuming that logic, hence mathematical proof, is fully 

objective. (ibid.) 

It would be unfair simply to charge Field with an unjustified assumption, as this 

might seem to imply. Elsewhere he does take up the issue of the apriority of logic, 

connecting with issues of objectivity.
137

 His ‗evaluativism‘ about apriority, he says, 

in fact, ‗does allow for a sort of moderate relativism‘ (Field 2001 p. 384), which 

might seem to contradict the assumption of objectivity we have seen him to make 

above. I do not want to develop this just here, but simply point out, once again, that 

here as elsewhere Field‘s analysis – or, perhaps better, the overview he develops – 

comes close to the one I pursue via Wittgenstein‘s, though without Field being able 

to take the crucial final step away from theoretical baggage. 

Field contrasts what he assumes about the objectivity of logic with something he 

finds in Wittgenstein – something I want to challenge. Field says, 

… one might hold with Wittgenstein 1956 (see also Kripke 1982) that there is 

something unobjective about the drawing of consequences in a formal derivation 

procedure. (Field 2001 p. 316) 

This gets us close to the considerations I raised in the introduction to the current 

chapter. I argued in Chapter 3 that we should take on board Wittgenstein‘s 

conception of mathematics developing through concept-determination rather than 

discovery. And I have agreed, with Wittgenstein, that doing so raises questions 

about the possible loss of the objectivity of logical inference. However, Field gets 

Wittgenstein wrong in claiming he holds there is ‗something unobjective‘ about the 

drawing of consequences in mathematics. Although it is true that Wittgenstein often 

points out that such a conclusion seems to follow from the considerations he 

advances, nevertheless the conclusion is one he explicitly denies, often in the same 

breath. For instance, in RFM we find 

What you say seems to amount to this, that logic belongs to the natural history of man. 

And that is not combinable with the hardness of the logical ―must‖. (RFM p. 352) 

That is clear enough in our own context. If mathematics – including mathematical 

inference – develops via concept-determination in the way I have canvassed, it does 

seem as though there is a kind of human agreement underlying such development. 

And it does also seem as though we cannot base logic on human agreement without 

losing the objectivity of that logic. It seems that mathematical and logical necessity 

– ‗the hardness of the logical ―must‖‘ – will ineluctably be softened once we allow 
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 See his ‗Apriority as an Evaluative Notion‘, 2000, reprinted in Field 2001, pp. 361ff. 

(Earlier, at least until 1989, Realism, Mathematics and Modality, Field wrote of ‗a 

prioricity‘. Even top-notch philosophers occasionally have cloth ears for their mother-

tongue.) 
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ourselves to simply agree to take one form of inference rather than another. 

However, concerning what ‗seems‘ to be the case, Wittgenstein continues: 

But the logical ―must‖ is a component part of the propositions of logic, and these are 

not propositions of human natural history. (RFM p. 353)  

This sets out the problem we are considering rather than bypassing it or claiming it 

simply solved: and there is a reading of Wittgenstein in this regard that contradicts 

Field‘s assertion that Wittgenstein simply accepts the unpalatable conclusion of the 

denial of the objectivity of mathematics and logic that seems to follow from the 

considerations I have advanced regarding the distinction to be drawn between 

determination of concepts and discovery of facts. To draw out this reading – and, I 

hope, to convince the reader that Wittgenstein is largely right in its regard – I am 

going to draw on an extant controversy in the philosophical literature around 

Wittgenstein exegesis on this point.  

 

4.6 Conventionalism 

The controversy centres around whether, or to what extent, Wittgenstein advances a 

conventionalist view both of logical and of mathematical necessity. I should make 

the point, first, that Wittgenstein does indeed consider both kinds of necessity under 

the same head: 

 ―But doesn‘t it follow with logical necessity that you get two when you add one to 

one, and three when you add one to two? and isn‘t this inexorability the same as that 

of logical inference?‖ – Yes! it is the same. (RFM p. 38)  

Further, the way he continues here is relevant for the dialectic I am engaged in and 

about to outline in more detail:  

– ―But isn‘t there a truth corresponding to logical inference? Isn‘t it true that this 

follows from that?‖ – The proposition: ―It is true that this follows from that‖ means 

simply: this follows from that. And how do we use this proposition? – What would 

happen if we made a different inference – how should we get into conflict with truth? 

 How should we get into conflict with truth, if our footrules were made of very soft 

rubber instead of wood and steel? – ―Well, we shouldn‘t get to know the correct 

measurement of the table.‖ – You mean: we should not get, or could not be sure of 

getting, that measurement which we get with our rigid rulers. So if you had measured 

the table with the elastic rulers and said it measured five feet by our usual way of 

measuring, you would be wrong; but if you say that it measured five feet by your way 

of measuring, that is correct. – ―But surely that isn‘t measuring at all‖ – It is similar to 

our measuring and capable, in certain circumstances, of fulfilling ‗practical purposes‘. 

(ibid.) 

The point Wittgenstein makes here can appear, like much of what he writes, 

allusive, not to say gnomic. I will take the space to illuminate it below. Before doing 

so, I first note that this allusive aspect of Wittgenstein‘s methodology might usefully 

be pinned to something I have already mentioned several times, namely the claim 

that we are not forced to offer an alternative to Platonism once we find it lacking in 
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explanatory force. Making the point here gives us the possibility of a diagnosis of 

just why it is that, as I argue, much of Wittgenstein exegesis goes wrong: the almost 

overwhelming desire to systematise, to offer theories in philosophy, lies at the 

bottom of the error I want to outline. 

Wittgenstein is not a Platonist like Frege, that much is evident. He is not, either, a 

fictionalist in the style of Hartry Field. The strong temptation, then, is to find some 

other kind of ‗– ist‘ to fill the gap in an assumed theory-space of mathematical and 

logical necessity.
138

 Strong though it is, this temptation is to be resisted. 

 

4.7 Dummett vs Stroud  

This latter temptation, however, beguiles Michael Dummett, for one. In his review
139

 

of Wittgenstein‘s Remarks on the Foundations of Mathematics, Dummett claims 

If … one regards [platonism and the various varieties of constructivism] as rivals, 

there remains the philosophical problem of deciding which of the various accounts is 

correct. Wittgenstein‘s book is intended as a contribution to the latter task only. 

Dummett 1978 p. 167) 

Dummett himself, it seems safe to say, wants an account of necessity; his reading of 

Wittgenstein criticises Wittgenstein in trying to arrive at such an account. But 

Dummett does not allow the possibility that Wittgenstein is not himself attempting 

an account of necessity that fits the theory-space, ‗platonism-and-its-rivals‘ model of 

how philosophical investigation might or should proceed. In missing this, Dummett 

misses a key aspect of Wittgenstein‘s thought, one that gets its clearest expression in 

Philosophical Investigations §109, 

… we may not advance any kind of theory. … 

The denial of the possibility of philosophical theorising is ubiquitous in 

Wittgenstein‘s thought and is one of the most radical aspects of his philosophy, as 

well as one of those most often ignored by exegetes. To give just one more example, 

Mark Balaguer writes:  

… regardless of what we say about the details of Wittgenstein‘s view [of 

mathematics], we will surely want to say that it is a version of anti-realism … 

(Balaguer 1998 p. 197) 

It certainly seems difficult for philosophers to accept Wittgenstein‘s own 

protestations about the impossibility of theories in philosophy. But at the very least 

it seems clear that (1) in his most careful exposition of his own views (in 

Philosophical Investigations) he said we may not advance any theories; and (2) anti-

realism is a theory just as much as Platonism or other forms of realism. Maybe 
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 Michael Beaney reminded me at this point of Gilbert Ryle‘s famous rejection of ‗isms‘ in 

philosophy, which he may well have got from Wittgenstein. 
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 Reprinted, for instance, in Dummett 1978 pp. 166ff.  
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Wittgenstein was inconsistent; but I suggest it is worth looking for a reading of what 

he says that makes what he says consistent. Stroud, at least, does that. 

By contrast to Dummett, Stroud suggests a way of reading that sees Wittgenstein as 

giving a descriptive critique of the notion of mathematical necessity rather than a 

theoretical account such as Dummett feels is required. I am going to follow this 

controversy through, in the hope of gaining a clear overview of mathematical 

necessity in the light of how I have described conceptual development in 

mathematics.  

It will help keep things clear if we consider also some commentary on the 

controversy by Hilary Putnam. The focus should be on the debate itself rather than 

on who says what; the to-and-fro of the dialectic, however, is clarified by Putnam‘s 

interjections.  

There is also another reason for allowing Putnam a say. These latter ‗interjections‘, 

in fact, come from the collection of Putnam‘s papers, Realism and Reason, 

published in 1983 as Volume 3 of his collected philosophical papers at the time. 

There he claimed that 

… the Wittgensteinian views that (1) mathematical statements do not express 

objective facts; and (2) their truth and necessity (or appearance of necessity) arise 

from and are explained by our nature, cannot be right. (Putnam 1983 p. 126) 

Characteristically, however (he is famous for changing his mind), Putnam later 

adopted a view closer to the one I advocate rather than what he expresses here and in 

what he says in and around the passages I quote from this collection. In his ‗Was 

Wittgenstein Really an Anti-realist about Mathematics‘, written some decades later, 

for instance, he says, approvingly of Wittgenstein (and with a hat-tip to Warren 

Goldfarb),  

… the Wittgensteinian strategy, I believe, is to argue that while there is such a thing as 

correctness in ethics, in interpretation, in mathematics, the way to understand that is 

not by trying to model it on the ways in which we get things right in physics, but by 

trying to understand the life we lead with our concepts in each of these distinct areas. 

(Putnam 2001 p. 186)  

This is very close to what I argue; and there is much to gained from following 

through Putnam‘s expression of his own conversion on this and related matters.
140

  

Putnam‘s earlier views are worth considering for the help they offer in clarifying the 

(Dummett‘s) opposition to Wittgenstein and Stroud, however. But in case there 

should be any doubt, I should say that I support Stroud‘s view as well as that of this 

later Putnam, both as exegesis of Wittgenstein on necessity and as giving us at least 

the beginnings of the clear overview we are seeking. 
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 Although I do not think that Putnam gets Wittgenstein right about mathematical 

applicability. 
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4.8 Full-blooded Conventionalism 

Now the ground is cleared and the protagonists have their places, let us begin with 

the promised debate. It is easy to see that one way of denying the objective nature of 

some practice is to see it as in some way bound by convention rather than 

determined by something independent of the practitioner. With regard to 

mathematics and logic,
141

 Dummett characterises Wittgenstein as a ‗radical‘ (or 

‗full-blooded‘) ‗conventionalist‘.  Why ‗radical‘? Why not simply ‗conventionalist‘? 

– Dummett wants to situate Wittgenstein‘s view by contrasting it with a different, 

‗moderate‘ or ‗modified‘ conventionalism. Dummett claims 

A great many philosophers nowadays subscribe to some form of conventionalist 

account of logical necessity … The conventionalism that is so widespread is, however, 

a modified conventionalism. (Dummett 1978 p. 169) 

‗Modified‘ conventionalism is the kind of conventionalism, Dummett says, with 

which we are familiar from logical positivism. The idea is as follows. Some basic 

mathematical ‗truths‘ (the ‗axioms‘ of some mathematical theory) are held to be true 

by convention: then mathematicians have the task of finding out the consequences of 

adopting such conventions or stipulations.  

We do not need to consider just axiomatic approaches to see moderate 

conventionalism at work. Here is Putnam explaining what he calls a ‗first 

approximation‘ to Wittgenstein‘s view: 

when we make a mathematical assertion, say ‗ 2 + 2 = 4‘, the ‗necessity‘ of this 

assertion is accounted for by the fact that we would not count anything as a 

counterexample to the statement. The statement is not a ‗description‘ of any fact, but a 

‗rule of description‘ …(Putnam 1983 p. 115) 

Putnam finds a problem with this view as so baldly expressed. It is one that, he says, 

‗Wittgenstein clearly points out‘ (ibid.), and it is also one that Dummett finds. It is 

this: there are just too many possible mathematical assertions.
142

 So most of them 

can only be consequences of the conventions – for Dummett, of the conventionally 

stipulated axioms of the theory. Why is this a problem? Because of course we can 

ask how consequences are to be drawn – and, equally of course, we reply that they 

are to be drawn with logical necessity. But then, as Putnam points out,  

The ‗exciting‘ thesis that logic [and mathematics] is true by convention reduces to the 

unexciting claim that logic is true by convention plus logic. No real advance has been 

made. (ibid.) 
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 And in other regards too. Dummett rightly sees Wittgenstein‘s remarks on mathematics 

as applying more generally if not universally. See, e.g. Dummett 1978 p. 185, ‗It is clear 

that considerations of this kind … are of quite general application‘. I narrow the focus here, 

though, to keep matters simple. 
142

 Perhaps ‗so-called‘ assertions would be appropriate here – it is not clear that ‗rules of 

description‘ count as being assertions simpliciter. Let that pass for now, as Putnam does. 
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‗Moderate‘ conventionalism gets us nowhere, in short. So, according to Dummett, 

Wittgenstein adopts a ‗full blooded‘ conventionalism according to which each and 

every true mathematical statement
143

 is itself necessarily true directly by convention: 

That a given statement is necessary consists always in our having expressly decided to 

treat that very statement as unassailable; it cannot rest on our having adopted certain 

other conventions which are found to involve our treating it so.  

(Dummett 1978 p.170) 

Radical conventionalism, in Dummett‘s terminology, then, involves that every 

individual statement that is held to be necessary is so held by direct convention – 

one (necessary) statement, one convention, we might say. ‗For [Wittgenstein],‘ says 

Dummett, 

The logical necessity of any statement is always the direct expression of a linguistic 

convention. (ibid.) 

It is true that Wittgenstein does sometimes write like this. PI §186, for instance: 

So when you gave the order + 2 you meant that he was to write 1002 after 1000 … It 

would almost be more correct to say, not that an intuition was needed at every stage, 

but that a new decision was needed at every stage. 

Or, one of many examples from RFM,  

―I have a particular concept of the rule. If in this sense one follows it, then from that 

number one can only arrive at this one‖. That is a spontaneous decision. (p. 326) 

We should be wary. ‗It would almost be more correct to say …‘: this is qualified, to 

say the least. We may have to agree with Dummett that the account he gives of 

Wittgenstein‘s view is ‗very difficult to accept‘ (Dummett 1978 p. 170), ‗extremely 

hard to swallow‘ (p. 173) and so on. But I want to suggest that we do not take 

Dummett‘s exegesis as Wittgenstein‘s own view. Here, as I said above, I want to 

call on Barry Stroud‘s challenge to Dummett‘s reading of Wittgenstein on 

mathematical necessity. 

 

4.9 Stroud on Dummett on Wittgenstein 

Putnam gives us a useful clear summary of Stroud‘s counter to Dummett: 

Barry Stroud pointed out that the position Dummett calls ‗radical conventionalism‘ 

cannot possibly be Wittgenstein‘s. A convention, in a literal sense, is something we 

can legislate either way. Wittgenstein does not anywhere say or suggest that the 

mathematician proving a theorem is legislating that it shall be a theorem … 
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 Again, it may not be appropriate to describe mathematical statements as simply ‗true‘ if 

they function as rules of inference rather than as descriptive propositions. Dummett makes 

nothing of this. Wittgenstein does, and so does Field, in a different way, we have seen. I will 

not follow this out just here. 
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Basing himself on a good deal of textual evidence, Stroud suggested that 

Wittgenstein‘s position was that it is not convention or legislation but our forms of life 

(i.e. our human nature as determined by our biology-plus-cultural-history) that cause 

us to accept certain proofs as proofs. (Putnam 1983 p. 117) 

‗Legislating either way‘: this is at the crux of the matter. On the one hand, the very 

necessity of mathematics and logic makes it impossible that things should be other 

than they are, mathematically or logically speaking. That is just what necessity 

amounts to: p is necessarily the case just when it is impossible for it not to be the 

case that p.
144

 On the other hand, if we are to consider ourselves as legislating 

necessity – as deciding what is to count as necessary – we need there to be the 

possibility of more than one way of legislating. Hobson‘s choice, as we might say, is 

no choice at all. 

Stroud explains Wittgenstein as saying that the impossibility of its not being the case 

that p when p is necessary is based on the lack of sense we have given to its not 

being the case that p. Wittgenstein works with examples – wood sellers who sell 

wood by area rather than volume, for instance; or the example we saw above of 

people with rubber rulers they seem to use for something like measuring; and so on. 

The point of these examples, according to Stroud, is that while we can entertain the 

possibility of there being different practices of calculating, measuring, counting, 

inferring and so on, we do not, at least without further ado, make sense of those 

different practices themselves. As Stroud says: 

Wittgenstein‘s examples are intended to oppose Platonism by showing that 

calculating, counting, inferring, and so forth, might have been done differently. … But 

we can understand and acknowledge the contingency of this fact … without 

understanding what those ways might have been. If so, then it does not follow that 

those rules by which calculating, and so forth, might have been carried out constitute a 

set of genuine alternatives open to us among which we could choose, or even among 

which we could have chosen. (Stroud 1965 p. 513) 

Wittgenstein‘s suggestion, according to Stroud, is that as things stand we just do not 

allow sense to a ‗calculation‘ that involved 2 + 2 = 5, say. Anything like that just 

would not be a calculation at all.  

 

4.10 Derogating from Stroud? – some asides 

The distinction here, we should note, is not always cut and dried. There is no 

definite boundary of sense, as it were, to cross which would mean we definitively no 

longer made sense. It is all the more important to realise this given our route up to 

this point in the dialectic: in Chapter 3 above I made play with the idea that we can 
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 For some special purposes we might try to have a modal logic in which necessity and 

possibility are not duals in this way. This might be one of those cases, if we try to do a more 

formal analysis. Such formal analysis certainly does violence to our everyday notion of what 

it is for something to be necessarily the case, though, at the very least.  
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consider different ways of proceeding in cases when mathematical criteria of 

application come apart. For example we allowed that acceptance or non-acceptance 

of irrational numbers or different notions of infinity could have gone either way, and 

that Newton‘s and Berkeley‘s notion of consistency is one we can understand even 

once we have accepted Robinson‘s introduction of ‗new deductive procedures‘ with 

NSA. Such cases, it appears, then, might seem to reinstate a kind of conventionalism 

after all.  

However, it is important to notice the difference between what I claimed in Chapter 

3 – that we can sometimes make sense of different ways of proceeding in conceptual 

determination, for instance in cases when mathematical criteria of application come 

apart – and what I advanced from Stroud just above as Wittgenstein‘s suggested way 

of seeing matters regarding eccentric (so-called) ‗calculation‘: namely that we 

simply do not allow sense to such latter behaviour as calculation. We need to be 

careful here. 

In any case if we were to see ourselves as giving any kind of theoretical account of 

necessity, it would be no use talking of what we can make sense of, because what 

we can make sense of is what it is possible for us to make sense of, which latter is 

equivalent to whatever it is not necessary that we do not make sense of. So we 

would be explaining necessity in terms of necessity. 

We are not to be seen as giving any kind of theoretical account, though. I have 

emphasised this point several times already with regard to Wittgenstein; no more 

does Stroud advance such an account; no more do I. That we do not allow the sense 

of  ‗2 + 2 = 5‘ as part of calculation is a reminder of a truism – a part of our form of 

life as humans who calculate; it is not a theoretical statement about the foundations 

of necessity or an example of the outcome of any such account. There is more that 

could be said about this, and I will be taking up the thread again in Chapter 5. For 

the present, I want to suggest that we see the different ways we might have gone in 

determining mathematical concepts as more of a derogation from Stroud‘s main 

point rather than a confutation thereof, as well as taking due notice of the modal 

status of the claims I have explained him as making on Wittgenstein‘s behalf.  

That sometimes an alternative is comprehensible is something Wittgenstein 

recognises. Think of the people with their rubber rulers who thereby arrive at 

different measures: recall from above 

… if you had measured the table with the elastic rulers and said it measured five feet 

by our usual way of measuring, you would be wrong; but if you say that it measured 

five feet by your way of measuring, that is correct. (RFM p. 38) 

Is their way of measuring genuinely a way of measuring? With regard to such 

questions Wittgenstein goes onto point out that their practice 
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… is similar to our measuring and capable, in certain circumstances, of fulfilling 

‗practical purposes‘. (A shopkeeper might use it to treat different customers 

differently.) (ibid.)
145

 

We have learned to be wary of such questions as whether there is a ‗genuine‘ 

measurement going on here. (We might ask whether this is really (‗really‘, or 

‗Really‘) measurement.) Again, I will attend to the status of such questions in more 

detail in the next chapter. For now, it is sufficient to see that the ‗boundary of sense‘ 

is not exact. Particularly if what the aberrant ruler-users do is sufficiently like our 

measuring, there is no harm in calling it measuring. Likewise with irrational 

numbers or the consistency of differential calculus based on infinitesimals: once we 

have a clear view of the matter nothing further is to be gained by asking whether an 

irrational number is a genuine number or whether NSA is genuinely consistent. Is 

there, though, a resurgent conventionalism here? No. Of course there is conceptual 

development in mathematics. That we can, with sufficient hindsight, allow that such 

development might have gone differently, and make sense of such a possibility, does 

amount in effect to a derogation from rather than an annulment of the major point 

that Stroud advances on behalf of Wittgenstein. Any practice sufficiently close to, 

say, our way of inferring, or measuring or calculating, might very well be seen as a 

kind of inferring, etc. That, in itself, does not mean that we would make sense of a 

designation in such terms of practices that diverge more radically from our own kind 

of inferring etc.  

The point is general: for example in RFM Wittgenstein writes of coming across an 

alien tribe whose language we do not understand,
146

  

We come to an alien tribe whose language we do not understand. Under what 

circumstances shall we say that they have a chief? What will occasion us to say that 

this man is the chief even if he is more poorly clad than others? The one whom the 

others obey – is he without question the chief? (RFM p. 352)
147

 

The hypothesis that the person in question is the chief is supported by some criteria 

but not by others. (We are used to such scenarios in the descriptions I gave of 

conceptual development in mathematics in Chapter 3.) Is he, then, ‗without question 

the chief‘? The lack of a determinate answer, as well as the likely lack of importance 

of such a lacuna given what we know of the scenario, is what Wittgenstein brings 

out with this question. And he goes on to point up the same lack of determinacy for 

the same purpose in cases to do with inference and calculating: 

 

                                                                            
 

145
 Ibid. The reference to ‗use‘ is important, as we saw above in Chapter 3. 

146
 Such examples – and there are several in Wittgenstein‘s writings – are reminiscent of 

scenarios examined in a tradition particularly influenced by Quine. Quine takes interestingly 

different morals from such cases of ‗radical translation‘, however. For a comparison of 

Quine with Wittgenstein in this context, see H-J Glock, ‗On Safari with Wittgenstein, Quine 

and Davidson‘ in Arrington & Glock 1996 p. 144ff. 
147

 (Note that Wittgenstein does not ask, ‗Under what circumstances could we say …?‘; or 

‗… ought we to say …?‘; or indeed ‗… must we say …?‘ or ‗… should we say …?‘.)  
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 What is the difference between inferring wrong and not inferring? between adding 

wrong and not adding? Consider this. (ibid.) 

We have considered this. Our conclusion should be that our practices allow that 

certain practices count as inferring, certain others as inferring wrong, and certain 

others as not inferring at all … but that also there may well be indeterminate cases 

where we are unsure whether to call a certain practice ‗inferring wrong‘ or ‗not 

inferring‘ at all.  

We should expect such outcomes of our deliberations, given that we are looking, not 

for a philosophical theory or account of our practice of inferring or imputing 

necessity, but rather for a clear overview of how we use the notion of necessity in 

mathematics and logic. Once we have this, it becomes simply otiose to seek 

definitive answers in uncertain cases.  

 

4.11 Dummett’s response to Stroud 

I return to the main thread. What of Dummett‘s response to Stroud? First, a detour 

via Putnam again. Putnam assimilates Dummett‘s interpretation and Stroud‘s in all 

that is important. He claims 

The real point is that if either Dummett or Stroud is right, then Wittgenstein is 

claiming that mathematical truth and necessity arise in us, that it is human nature and 

forms of life that explain mathematical truth and necessity. (Putnam 1983 p. 117)  

– And, as we saw above, Putnam goes on to claim that this ‗cannot be right.‘ 

(op. cit. p. 126) 

Replying in a later paper, Dummett denies the assimilation. He thinks Stroud‘s 

interpretation takes a step back: 

I do not think [Putnam] is right to accept Stroud‘s emendation of my interpretation. 

For it is really a version of moderate conventionalism in that it acknowledges 

something – namely human nature or our form of life – that determines the 

consequences of the basic necessary truths, or of the conventions that directly confer 

necessity upon them. (Dummett 1994 p. 52) 

Neither Dummett nor (early) Putnam, though, takes on board clearly what is 

distinctive about what Stroud brings to our attention, namely the focus on sense 

asserted and denied in thinking of mathematical and logical necessity. Both 

Dummett and Putnam take Stroud‘s point about Wittgenstein‘s emphasis on forms 

of life and the way in which the contingencies thereof underlie the necessity of 

mathematics. What both miss is the way in which this ‗underlying‘ does not justify, 

explain, or give an account of such necessity.  

The point is made. In the end Wittgenstein is no kind of conventionalist, in spite of 

what might have looked like an ineluctable conclusion to be drawn from his 

injunction to consider the development of mathematics in terms of determination of 

concepts rather than discovery of matters of fact. Further, we should not accept that 



118 

we are forced to deny the objectivity of mathematics and logic once we see such 

matters, as I suggest we should, in the way Wittgenstein suggests. Rather, a careful 

regard for how, in general, we actually think about and use notions of necessity and 

our practices of inferring, calculating, measuring and so on, shows us just that we do 

not make sense of deviant ways of inferring, calculating, etc.  

4.12 Mathematical responsibility to reality 

I want to end this chapter by looking at a another way in which Wittgenstein 

characterises something akin to what I take to be the major point of Stroud‘s 

exegesis, namely the lack of sense to be had regarding deviant practices and the like. 

In LFM, Wittgenstein writes 

If the logical laws do not hold – we don‘t get the game we want to get, we don‘t play 

the game we want to play. (LFM p. 243) 

This is similar in spirit to Stroud‘s characterisation of Wittgenstein on ‗the hardness 

of the logical must‘. It takes on something of a different emphasis in the context 

from which this latter quotation is drawn, however. 

Wittgenstein is here considering questions to do with what he describes as 

mathematics‘ ‗responsibility to reality‘. He distinguishes two ways mathematics is 

so responsible:  

With regard to ―responsibility to reality‖: On the one hand you might say, ―This 

conclusion is responsible to certain axioms and certain rules.‖ This responsibility is 

based on our particular practice of using these rules. But then there is another 

question: as to whether such a system as a whole is responsible to anything. 

(LFM . 242) 

It is in regard to the second question – ‗whether such a system as a whole is 

responsible to anything‘ – that Wittgenstein makes the point about us not ‗play[ing] 

the game we want to play‘. This reflects the point above about aberrant ‗calculators‘: 

as I said, we just do not allow sense to a ‗calculation‘ that involved 2 + 2 = 5 … that 

is, ‗2 + 2 = 5‘ is just not part of the ‗game‘ of calculating as we play it.  

Now recall the point I made above in Chapter 3 (section 3.7) about the distinction to 

be drawn concerning determination of mathematical concepts between what we 

might get from mathematics itself – from the inside, so to speak –  and what we 

might determine to be a part of mathematics from the outside, as it were. 

Mathematics itself, I pointed out, is silent about such questions as to whether we 

should maintain that numbers are all rational, or stick with lengths being precisely 

numerically quantifiable; likewise with the choice between Galileo and Cantor on 

infinite cardinality; and so on. I want to suggest now that we see such questions in 

terms of the second kind of ‗responsibility to reality‘ of mathematics that 

Wittgenstein says we might try to put in question, rather than the other (first) kind of 

responsibility, such as, for example, the responsibility the proof of 
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incommensurability of 2 answers to, ‗based on our particular practice of using 

these rules‘ within mathematics. 

I want to investigate with Wittgenstein these two different ways in which 

mathematics might be thought to be ‗responsible to reality‘. Here we are directly 

involved with the overall problem of the applicability of mathematics. I am going to 

suggest that a clear overview of these kinds of ‗responsibility‘, allied to the way we 

have approached mathematics as developing by concept-determination as well as to 

considerations of sense and the lack of the same such as those we have encountered 

in this chapter, will unite to give us the wherewithal to see the problem in its true 

colours. This is the task of my next chapter. 
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Chapter 5  The Problem Solved 

 

5.1 Conventionalism again 

In Philosophical Investigations Wittgenstein himself writes about the temptation to 

interpret him as advocating conventionalism of some sort: 

241. ―So you are saying that human agreement decides what is true and what is 

false?‖ – It is what human beings say that is true and false; and they agree in the 

language they use. That is not agreement in opinions but in form of life.  

242. If language is to be a means of communication there must be agreement not 

only in definitions but also (queer as this may sound) in judgments. This seems to 

abolish logic, but does not do so. – It is one thing to describe methods of 

measurement, and another to obtain and state results of measurement. But what we 

call ―measuring‖ is partly determined by a certain constancy in results of 

measurement. 

And in LFM, he is reported as asking us to  

Consider Professor Hardy‘s article (―Mathematical Proof‖) and his remark that ―to 

mathematical propositions there corresponds – in some sense, however sophisticated 

– a reality‖ (LFM p. 239)
148

, 

… in regard of which ‗reality‘ Wittgenstein goes on to say 

With regard to ―responsibility to reality‖: On the one hand you might say, ―This 

conclusion is responsible to certain axioms and certain rules.‖ This responsibility is 

based on our peculiar practice of using these rules. But then there is another 

question: as to whether such a system as a whole is responsible to anything. 

(LFM . 242) 

 

 

                                                                            
 

148
 Hardy does not mention ‗correspondence‘ here, in fact, as Cora Diamond, the editor of 

LFM points out (ibid.). It is clear enough what is going on, though. Wittgenstein adds the 

parenthetical remark (ibid.), ‗The fact that he said it does not matter; what is important is 

that it is a thing which lots of people would like to say.‘ Elsewhere Hardy writes of ‗reality‘,  

‗… I shall speak of ‗physical reality‘, and here again I shall be using the word in the 

ordinary sense. … I hardly suppose that, up to this point, any reader is likely to find 

trouble with my language, but now I am near to more difficult ground. For me, and I 

suppose for most mathematicians, there is another reality, which I will call 

‗mathematical reality‘ … (Hardy 1992 pp. 122-123) 

In this Hardy seems to anticipate Wittgenstein‘s ‗two ways‘ in which mathematics may be 

held to be ‗responsible‘ to reality in his (Hardy‘s) notion of different kinds of reality or 

different languages in use for physical and mathematical reality. He makes little of it, 

though, I suppose on account of his Platonism. In spite of protestations about differences, it 

does seem that Hardy trades on the sort of semantic homogeneity of which we have come to 

be suspicious. 
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As a first move towards unpacking here, consider the distinctions Wittgenstein 

makes in Philosophical Investigations  §241/2 above: The distinctions are between 

         what human beings say and the language human beings use 

         opinions and forms of life 

         results of measurement and methods of measurement 

Wittgenstein is suggesting we notice a similarity between these distinctions. 

Consider the first pair of conjuncts, for instance. A proposition – what I say – may 

be true or false, and is assessable for its truth. It makes sense without any further ado 

to ask about something I say – some proposition – whether or not it is true. Contrast 

with language itself, as a whole: there are many questions I might ask about the 

language I use to say something, but it does not ordinarily make sense to ask 

whether the language is true. (Note the claim is not that we cannot make sense of 

talk of language being true, but that we do not; this is intended as a description, once 

again, rather than part of, or a consequence of, a theory.) Language, we might say, is 

conventional, but this contrasts with what we say in language: we may agree on our 

language, but what we say in language is not dependent for its truth on our 

agreement. 

For each of the pair of conjuncts above, the first of the two has a similar normative 

aspect. What human beings say may be true or false: likewise opinions may be 

correct or incorrect, as may results of measurement. The second of each of the two 

conjuncts, by contrast, characterises the frameworks within which the normative 

practice of assessing the first takes place. While it makes sense to ask, for instance, 

whether my opinion on some matter is correct or not (and similarly in the other 

cases), the question of whether the form of life I share with other humans is correct 

(and so on) does not arise. Here is one aspect of how Wittgenstein deals with what 

looks like a drive to relativism of some sort or other via what might appear to be – 

but is not – conventionalism.  

There is a clear link here to what I explained, following Barry Stroud, as 

Wittgenstein‘s overview of the ‗hardness of the logical must‘ – of logical and 

mathematical necessity – in the previous chapter. In Philosophical Investigations 

§242 (above) Wittgenstein writes of the agreement in judgements that he adverts to 

as a condition of the possibility of human language as seeming ‗to abolish logic‘. 

That is, if human judgement determines what is or is not the case, or even more 

pertinently for our concerns, what is or is not necessarily the case, it seems that logic 

will lose its objectivity with its independence, as we saw Dummett and Putnam 

claiming. That this seeming abolition of logic is only apparent – a mere seeming –, 

however, as I claimed following Stroud‘s exegesis, is apparent once we note that the 

impossibility of its not being the case that p when p is necessary is based on the lack 

of sense we have given to its not being the case that p. 

 This lack of sense, now, can be seen in a particular light in its association with the 

move from the first to the second of each of the pairs of conjuncts I have highlighted 
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above; for example the sense we make within a system of measurement of 

considering whether such-and-such result of measurement is correct, contrasts with 

the lack of sense we allow to talk of whether a method or system of measurement is 

correct or incorrect. It is such lack of sense given or allowed which we saw above in 

chapter 4 to be deeply connected to the root of ascriptions of necessity. With this in 

mind let us add a line to the table of three conjuncts above taken from the distinction 

Wittgenstein makes in LFM between the two ways of considering mathematics to be 

‗responsible‘ to reality. 

The distinction is between 

mathematical propositions 

considered individually 

intra-mathematically  

 

and 

our practice of using the usual 

rules and axioms of 

mathematics 

Once again, the first conjunct here has a normative aspect; it makes sense to 

consider whether a particular mathematical proposition is responsible to ‗certain 

axioms and certain rules‘ – whether it is in accord with relevant parts of the rest of 

mathematics, in short. By contrast, again, the second of the two conjuncts 

characterises the framework within which such accord is assessed. We can mark the 

difference here by reference to the intra-mathematical aspect of talk of whether a 

certain mathematical conclusion is correct by contrast to extra-mathematical 

questions about whether ‗the system as a whole is responsible to anything‘.  

So, in these terms, now, what is important for us is how the distinction Wittgenstein 

points up between normative practices and the frameworks within which such 

practices take place plays out in the case of the distinction between intra-

mathematical propositions, assessed by our practice of using the usual rules and 

axioms of mathematics, and extra-mathematical questions about mathematics, such 

as whether the whole of mathematics is responsible to anything at all – or, by the 

same token, whether our practice of using the usual rules and axioms of mathematics 

is responsible to, or justified by, anything at all. I am going to argue that this 

distinction, and consequential differences between the sense we allow to such intra- 

and extra-mathematical propositions and questions, is key to solving the problem of 

mathematical applicability.  

We do need to be a little careful here. In assimilating some aspects of the distinction 

Wittgenstein draws between what I am calling intra- and extra- mathematical 

questions to the distinctions in play in Philosophical Investigations §241-2, we 

should (once again) beware of thinking that what is on offer is some sort of overall 

or general theory about the difference between, say, frameworks and normative 

practices within them. The comparison between the two distinctions is intended, not 

as a generalisation part way to becoming a theory, but – as usual – in the hope of 

clarification, of arriving at a perspicuous overview of the philosophical terrain. 
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5.2 Groups of (very) small order 

To make clear the distinction between the two kinds of ‗responsibility‘ Wittgenstein 

suggests mathematics might be said to have to ‗reality‘, it will help considerably to 

have an example in view. Basic arithmetic possibly comes with too much 

philosophical baggage attached. More advanced material risks losing sight of wood 

for trees. Group theory, at least in its beginnings, has an ideal simplicity and brevity 

for my purpose here. I will consider – we will do – some elementary group theory.  

A group is a set together with a binary operation defined thereon.
149

I will take the 

operation sign as read; ‗ab‘ will mean the result of combining elements a and b (in 

that order) in a group using whatever the operation is.  

The four group axioms (in a group G): 

Closure:  , ,a b G ab G  

Associativity:     , , ,a b c G ab c a bc  

Identity:  : ,i G a G ia a ai     

Inverse:  
1 1 1:a G a G a a i a a        (where i is the ‗identity‘ as in (3); 

1a is the ‗inverse‘ of a. I will take i as the identity unless otherwise specified.)

Now, for finite groups it is often convenient to display the group in a table (a so-

called ‗Cayley table‘): here is a table for a group of order 3 (the ‗order‘ of a group is 

the number of elements or members it has): 

i a b

i i a b

a a b i

b b i a

     

(the middle ‗b‘ in this table shows that aa = b; the ‗i‘ directly to its right, that ab = i, 

and so on. This is all conventional.) 

Now, in fact, although I said this is ‗a‘ group of order 3, there is also a strong sense 

in which this is the group of order 3. Any group with 3 elements will be isomorphic 

to this group: and it is conventional to call isomorphic groups the same group.  

To see why any group of order 3 will be isomorphic to this group, consider first a 

property of groups relating to their Cayley table: every element occurs exactly once 

in every row and column of a group table. For, suppose not: then either there is an 

element that does not occur in some row or column, or there is an element that 

occurs more than once in some row or column. Suppose the former. Then, since 

each row (for definiteness) has the same number of positions as there are elements in 

the group, there would have to be a position filled by something other than elements  

                                                                           

149
See Appendix 1 for some more basic background. 
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of the group. But that contradicts Axiom 1. So, suppose the latter; that in a group G 

there is some element that occurs in two different columns (for definiteness) in the 

same row of the table. Suppose that element is p: 

x y

a p p
 

… Thus for some a, x, and y in G (where x y ), we have that ax = ay (= p). 

But a has an inverse by axiom 4, and so 

  

 

1 1

1 1

( ) ( ) (byaxiom 4)

( ) ( ) (2)

(4)

3

ax ay a ax a ay

a a x a a y

ix iy

x y

 

 

  

 

 

 

 

… This contradicts the assumption that x y . So every element occurs exactly once 

in every row and column of the table. (A table with such a property is called a ‗Latin 

square‘. All group tables are Latin squares, we have proved.
150

) 

Now consider a group with 3 elements, say i, p, and q. (I will take i to name the 

identity in any group we consider.) Start to fill in its Cayley table: 

i p q

i i p q

p p

q q

 

– That much is evident since i is the identity.  

Now consider filling in the middle space (row 2 from the top, column 2 from the 

left, what I will call the space (2, 2)) in the table, pp: the fact that the table is a Latin 

square tells us that this space must be filled by q, since Axiom 1 entails that only i, 

p, and q are allowed, and  

p is already in row 2 at (2, 1); 

if i were in this place, q would have to be at (2, 3) by Latin squared-ness … but q is 

already in row 3 at (1, 3). 

So the table must have  

 

                                                                            
 

150
 The converse of this is false. Not every Latin square is a group table, though I will not 

prove that here.  
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i p q

i i p q

p p q

q q

 

… And now the Latin square property allows us to fill in the rest of the table too: 

 

i p q

i i p q

p p q i

q q i p

 

Compare this with the table from above: 

 

i a b

i i a b

a a b i

b b i a

 

Clearly these have the same structure; they are isomorphic. So there is just one 

group of order 3, according to our isomorphism criterion of identity for groups. 

I will continue with this a stage further.
151

 How many groups of order 4 are there? 

Consider a group with 4 elements i, a, b, c. Here is the beginning of its Cayley table: 

 

i a b c

i i a b c

a a

b b

c c

 

… Once again, this is forced by Axiom 3. 

Now consider the position (2, 3) in the table (2
nd

 row down, 3
rd

 column from the left, 

recall – the result of ab). This cannot be a or b since a is already in row 2 and b is 

already in column 3. It must be i or c. Suppose it to be i (I will return to this stage (*) 

below to consider the other possibility): 

 

                                                                            
 

151
 Written out, what follows probably looks longer and trickier than it actually is. The 

process is similar to working out a hand of bridge or the odds at poker, essentially by 

counting. We are seeking an overview, for which it is important to get down to the nitty-

gritty and hurly-burly, so we need this brief look at the details of some mathematics. (This 

remark is directed to the mathematical neophyte; balancing apologies to the mathematically-

adept philosopher for labouring the point are also in order.) 
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i a b c

i i a b c

a a i

b b

c c

 

The rest of the table is now forced by the Latin square criterion. For example, now 

in position (2, 4) we must have b, since a and i are already in row 2 and c in column 

4: 

 

i a b c

i i a b c

a a i b

b b

c c

 

The rest of the positions are similarly forced (it is easy enough to see each stage …): 

… 

i a b c

i i a b c

a a c i b

b b

c c

 … 

i a b c

i i a b c

a a c i b

b b i

c c

 … 

i a b c

i i a b c

a a c i b

b b i

c c b

 

… 

i a b c

i i a b c

a a c i b

b b i

c c b a

 … 

i a b c

i i a b c

a a c i b

b b i

c c b a i

 … 

i a b c

i i a b c

a a c i b

b b i c

c c b a i

 

… 

i a b c

i i a b c

a a c i b

b b i c a

c c b a i

 =  C1 

So this is one possibility. Call it C1. 

Now return to the stage (*) above. We filled position (2, 3) with i. Suppose the other 

alternative, that it be filled with c: 

i a b c

i i a b c

a a c

b b

c c
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Position (2, 4) can be filled with i or b. Choose i (and return to this stage (**) below 

for the other choice). 

 

i a b c

i i a b c

a a c i

b b

c c

 

… The rest of the positions are now forced: 

…  

i a b c

i i a b c

a a b c i

b b

c c

 … 

i a b c

i i a b c

a a b c i

b b a

c c

 … 

i a b c

i i a b c

a a b c i

b b a

c c b

 

… 

i a b c

i i a b c

a a b c i

b b a

c c i b

 … 

i a b c

i i a b c

a a b c i

b b a

c c i a b

 … 

i a b c

i i a b c

a a b c i

b b c a

c c i a b

 

… 

i a b c

i i a b c

a a b c i

b b c i a

c c i a b

 =   C2 

 – This, then, is a second possibility. Call it C2. 

Now back to (**) above, for the other choice; b in position (2, 4): 

 

i a b c

i i a b c

a a c b

b b

c c

 

This time not all choices are forced. The next few are, though: 

… 

i a b c

i i a b c

a a i c b

b b

c c

 … 

i a b c

i i a b c

a a i c b

b b c

c c

 … 

i a b c

i i a b c

a a i c b

b b c

c c b
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– But now there are two possibilities again. … First with a at (3, 3): 

 

i a b c

i i a b c

a a i c b

b b c a

c c b

 … giving  

i a b c

i i a b c

a a i c b

b b c a i

c c b i a

 =  C3 

… and next with i at (3, 3): 

 

i a b c

i i a b c

a a i c b

b b c i

c c b

 … giving   

i a b c

i i a b c

a a i c b

b b c i a

c c b a i

 =  V 

(I have left out a few forced steps in each of these; it is a simple matter to fill them 

in.) Name these tables C3 and V respectively. 

So, it seems we have four possibilities, C1, C2, C3 and V. However, perhaps 

surprisingly, all three Ci are isomorphic. We can see this once they have been 

rearranged (of course nothing is particularly special about the order the elements are 

given in, although it makes sense to keep the identity in the same place each time). 

C1 :  

i a b c

i i a b c

a a c i b

b b i c a

c c b a i

 … rearrange as follows:  

i a c b

i i a c b

a a c b i

c c b i a

b b i a c

 

C2 : 

i a b c

i i a b c

a a b c i

b b c i a

c c i a b

 … keep the same:  

i a b c

i i a b c

a a b c i

b b c i a

c c i a b

 

C3 : 

i a b c

i i a b c

a a i c b

b b c a i

c c b i a

 … rearrange:   

i b a c

i i b a c

b b a c i

a a c i b

c c i b a

 

If we still are unsure about the isomorphism, we can exhibit a map to and from each 

of these to another set, say {I, P, Q, R}, as follows: 
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C1: 

Ii

Pa

Rb

Qc









 

   C2: 

Ii

Pa

Qb

Rc









 

      C3: 

Ii

Qa

Pb

Rc









 

The set {I, P, Q, R } now has the imposed structure  

I P Q R

I I P Q R

P P Q R I

Q Q R I P

R R I P Q

  =  C 

whichever of these three maps we take. So it is clear (if it was not before, indeed) 

that the Ci all share this self-same structure. Call this C. 

Now, what we have done is show that there can be at most two different groups of 

order 4. We have not yet shown that we have two different groups rather than Latin 

squares with an identity element. In fact, though, each of these tables does represent 

a group – C, the cyclic group on four elements, which we might think of as the 

group of rotational symmetries of a square in Euclidean 2-space
152

; and V, often 

called the Klein group
153

, which might be characterised as the group of symmetries 

of a Euclidean rectangle.
154

 It is an easy task to check these claims. 

So, in conclusion, there are precisely two groups of order four. 

 
 

                                                                            
 

152
 We should be careful; this is not what this group is in any essentialist sense. We could 

equally categorise it as the group of integers modulo 4 under addition modulo 4, for 

instance. These are, we have said, the same group. Groups are abstract; not to be identified 

with any of their specific instantiations. We might think of defining the group as a certain 

equivalence class under isomorphism, but we do not need anything so formal. ‗Groups are 

the same when they are isomorphic‘ will do. 
153

 After Felix Klein. Klein himself called it V, for Vierergruppe (‗four-group‘). 
154

 Or, bearing in mind the note just above, as the group { 1, 3, 5, 7 } under multiplication 

modulo 8, for instance; or, indeed, the symmetry group of the rhombus.  
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5.3 Responsibility and sense 

This short example is intended to clarify Wittgenstein‘s notion of mathematical 

‗responsibility to reality‘. Recall Wittgenstein‘s remark, 

On the one hand you might say, ―This conclusion is responsible to certain axioms 

and certain rules.‖ This responsibility is based on our peculiar practice of using these 

rules. (LFM p. 242)  

The conclusion that there are exactly two groups of order four is evidently 

responsible to ‗certain axioms and certain rules‘ in just the sense Wittgenstein calls 

on here. Some of the axioms and rules have been explicitly cited, indeed, although 

of course there are also axioms and rules that remain tacit, some of which we might 

bring to the surface in further analysis. For example, in claiming that ‗since each 

row [of the Cayley table] has the same number of positions as there are elements in 

the group, there would have to be a position filled by something other than elements 

of the group‘ were there to be a group element missing, there is an implicit call on 

the so-called ‗pigeonhole principle‘.
155

 And there are also principles of logic that are 

called on implicitly. I do not intend to attempt an exhaustive account. 

I do want to note two specifics. First, notice that we have concluded with an 

existence claim: ‗There are …‘ Second, in our counting we have adopted a criterion 

of identity in the convention that groups are ‗the same‘ when isomorphic. Both of 

these aspects of our conclusion are ‗responsible to‘ the rules of mathematics, as is 

the conclusion as a whole. And in being so responsible, it thereby makes sense for us 

to ask whether our conclusion is true (answer: yes, it is, unless I have made a 

mistake), just as, earlier, in the first of the conjunctions we found in Philosophical 

Investigations §241-2, it made sense to ask whether what we say in language is true, 

and whether our opinions or results of measurement are correct.  

These expressions of different kinds of normativity were then contrasted with their 

non-normative frameworks; it does not make sense to ask whether our language 

itself is true or not; and so on. So, now, consider the other question Wittgenstein 

suggests might be asked about mathematical responsibility to reality: the question 

‗as to whether such a system as a whole is responsible to anything.‘ Seeing this 

question in the light of the distinctions advanced in Philosophical Investigations 

§241-2 should make us suspicious of its sense in the same way we are suspicious of 

the sense of questions as to the truth of our language and other normative questions 

that we might attempt to pose about the frameworks in which our normative 

practices reside. 

Questions like this, however, are just the sort of question that are raised by 

fictionalist philosophers like Hartry Field, and by their opposition in the Platonist or 

realist camp. Considering the fictionalist at work enlightens us quite specifically 
 

                                                                            
 

155
 Often elsewhere known as ‗Dirichlet‘s drawer principle‘ or just the ‗principe des tiroirs‘. 

If n < m and we try to match n pigeons with m holes, there will be at least one empty hole: a 

simple but surprisingly productive little principle. 
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here. We have seen that the question, ‗How many groups of order four?‘, gets to be 

answered (‗exactly two‘) intra-mathematically, responsible to the axioms and rules 

of group theory and the rest of mathematics. Looking at group theory as we have 

rather than arithmetic, say, with all its philosophical/historical baggage, helps to 

isolate and so clarify the important point just here. Because, after all, the fictionalist 

wants to say, without impugning the mathematics that led us to give that answer, 

that like all of mathematics, the claim that there are exactly two groups of order four 

is false. We are coming to see that the important issue here is not whether the 

fictionalist is right about this, or what his or her justifications are, but rather what 

she might mean. 

We saw in Chapter 2 above that Field‘s ‗meanings‘ were beetles in boxes (section 

2.9); they ‗can‘t be known‘, he said, and they play no part in mathematical practice. 

They ‗drop out of consideration as irrelevant‘.
156

 Now we are beginning to see the 

other side of this coin. Even if there were a clear (extra-mathematical) meaning for 

such statements as ‗there are groups‘ or ‗numbers exist‘, such meaning, as we saw in 

Chapter 2, plays no part in mathematical practice. Indeed there is, as we have just 

seen, a clear meaning – a use – within mathematical practice for such statements as 

‗there are exactly two groups of order four‘. But what the fictionalist is talking about 

in saying that such a statement is false cannot be such use intra-mathematically; it 

would be absurd in that way to assert that the mathematician is wrong to say that 

there are two groups of order four or that groups such as C1 and C2 are not really the 

same after all (on metaphysical grounds, no less!). And with Wittgenstein‘s 

distinction between intra- and extra-mathematical responsibility now in clear view, 

we are beginning to question whether there is any clear extra-mathematical meaning 

to be had for assertions such as this. The fictionalist requires such meaning. But it 

seems there is no such meaning to be had.  

We can go some way in consideration of Wittgenstein‘s second genre of 

mathematical responsibility to reality, ‗as to whether there such a system as a whole 

is responsible to anything‘. In effect, this is exactly the task we were engaged on in 

Chapter 3 above. The kind of responsibility we came up with, however, in terms of 

giving due weight to determination of concepts rather than focussing exclusively on 

discovery of facts in the development of mathematics ‗as a whole‘, is not at all such 

as to allow – what we see to be required by the fictionalist – extra-mathematical 

meaning to such questions as whether there are or not really (or ‗really‘ or ‗Really‘) 

such things as groups. 

The qualification ‗really‘ (‗really‘, ‗Really‘) points up this distinction between intra- 

and extra-mathematical questions. I take the locution ‗italics added real or capital-R 

Real existence‘ from John Burgess. (See Burgess 2004 p. 35) Consideration of a 

recent tussle between Burgess and Mary Leng, involving this way of speaking, will 

 

                                                                            
 

156
 The quote is from Wittgenstein in Philosophical Investigations §293. The analogy I am 

drawing is between Fieldian ‗meanings‘ and private mental (semantic) objects of sensation. 
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help me drive home this point about fictionalism requiring a sense for mathematical 

Platonism that is lacking. I intend to parlay this lack of sense into an overall solution 

to the problem of mathematical applicability by turning it back on to the work of 

Mark Steiner. It is probably becoming clear how this will play out, in general terms 

at least. I want to cover this Burgess/Leng controversy first, though, to make the 

point stick fast. 

 

5.4 Carnap, Burgess, and Leng 

Burgess (2004) tackles fictionalism using a distinction due to Rudolf Carnap that is 

very similar to Wittgenstein‘s; Leng (2005) replies.  

Burgess distinguishes two kinds of fictionalism, only the second of which – what he 

dubs ‗revolutionary fictionalism‘ – need concern us.
157

 A revolutionary fictionalist 

is, roughly speaking, a fictionalist like Hartry Field. As Leng puts it, revolutionary 

fictionalism is a philosophical doctrine 

… according to which mathematicians and scientists, when involved in making 

assertions that imply the existence of mathematical objects, are making assertions 

that we have no reason to believe to be true. (Leng 2005 p. 284) 

This agnostic way of putting the matter – ‗no reason to believe to be true‘ as 

opposed to ‗reason to believe false‘ is not important for Leng, as she explains in a 

footnote referring to Field. Field thinks, and Leng agrees, that so long as the 

‗hypothesis‘ that mathematical entities exist is dispensable (as he argues it is), then 

… it is natural to go beyond agnosticism and assert that mathematical entities do not 

exist. (Field 1989 p. 45. Referenced in Leng 2005 at p. 284fn.)  

Further, as Leng asserts, the move beyond agnosticism is ‗a step that many 

fictionalists would be inclined to take.‘(p. 283) And she does, indeed, make this step 

herself elsewhere in the same paper: 

… according to fictionalism, the correct understanding of mathematical assertions is 

not as literal assertions of truth. Rather, the revolutionary fictionalist seeks to 

explain how it is that such literally false theories can nevertheless be useful. 

(Leng 2005 p. 283)  

I will return to this move from ‗not literal assertions of truth‘ to ‗literally false‘ 

below.  

 

                                                                            
 

157
 The first kind, ‗hermeneutic‘ fictionalism, is the view that when we understand what 

mathematicians are saying we will see they are fictionalists: ‗The hermeneutic fictionalist,‘ 

Burgess says (op. cit. p. 23), ‗maintains that the mathematicians’ own understanding of their 

talk of mathematical entities is that it is a form of fiction, or akin to fiction: …‘ Burgess 

argues that hermeneutic fictionalism is ‗implausible‘ (p. 28), a conclusion with which Leng 

concurs: ‗Burgess‘s rejection of hermeneutic fictionalism is accepted…‘ (Leng 2005 P. 277) 
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Now, Burgess offers two arguments against the revolutionary fictionalist, and it is 

the second of these which will concern us.
158

 The argument in Burgess‘s hands 

derives from a distinction made by Rudolf Carnap that is very similar to the 

Wittgensteinian distinction I have explained above. Carnap‘s distinction relies on 

what Burgess describes as ‗the infamous ‗empiricist criterion of meaningfulness‘‘, 

something that would be anathema to the Wittgenstein of the LFM.
159

 Nevertheless, 

there is much to be gained from looking at Burgess‘s handling of it, and, even more 

pertinently, Leng‘s response thereto. 

Carnap‘s distinction is stated in terms of linguistic ‗frameworks‘ in which we may 

talk of ‗new entities‘. He claims: 

… we must distinguish two kinds of questions of existence: first, questions of the 

existence of certain entities of the new kind within the framework; we call them 

internal questions; and second, questions concerning the existence or reality of the 

system of entities as a whole, called external questions. (Carnap 1950 p. 206) 

This is remarkably similar to the Wittgensteinian distinction I outlined above. 

Carnap himself makes a ‗brief historical remark‘ in the article from which this 

quotation is taken, tracing his own ideas from Wittgenstein himself via the Vienna 

Circle. (See p. 215, ‗Influenced by the ideas of Wittgenstein …‘ etc.) I do not want 

to get into complications involving relations between Wittgenstein and the Logical 

Positivists. There is a major difference I want to highlight between Wittgenstein‘s 

explanation and Carnap‘s, though; it is that Carnap situates his internal/external 

distinction squarely within Logical Positivist semantic theory, according to which 

empirically unverifiable propositions are, if not logically analytic, strictly 

meaningless. Wittgenstein, as we have seen, would have no truck in his later 

writings with theory in philosophy at all; his own expression of the distinction is 

consequently more nuanced than Carnap‘s. 

Burgess makes something of this, though without mentioning Wittgenstein. Burgess 

describes the line of thought expressed by Carnap‘s distinction as one that has been 

‗consigned to the rubbish bin of philosophical history‘ because, as I said above, 

 

                                                                            
 

158
 The first involves the suggestion that it is inappropriate – even ‗chronically immodest‘, 

see Leng, op. cit. P. 283, or ‗comically immodest‘, see Burgess op. cit. P. 30 – for 

philosophy to set itself up as an arbiter for what mathematicians say and do. Think of the 

philosopher above telling the group theorist she is wrong to claim that there are two groups 

of order four or that the criterion of identity for groups is mistaken. Compare the successes 

of mathematics with those of philosophy – if there are any of the latter! Burgess refers to 

David Lewis‘s Credo: ‗Mathematics is an established, going concern. Philosophy is as 

shaky as can be. To reject mathematics on philosophical grounds would be absurd. … Even 

if we reject mathematics gently – explaining how it can be a most useful fiction, ‗good 

without being true‘ – we still reject it, and that‘s still absurd.‘ See the longer quote in 

Burgess and Rosen 1997 p. 34.  
159

 And arguably to Wittgenstein tout court, although I do not want to get into the fine 

details of such matters. 
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  Carnap‘s identification of the case he argues ‗was too much identified with the 

infamous ‗empiricist criterion of meaningfulness‘.‘ Burgess is consequently wary of 

swimming against the tide of philosophical history, and wants to  

… restate the essence of [Carnap‘s] argument in a way that strips it of most of its 

most dated formulations and presuppositions. (Burgess 2004 p. 34) 

In doing so, Burgess comes very close to what I have set the stage for as an 

application of the distinction between the intra-mathematical aspect of talk of 

whether a certain mathematical conclusion is correct by contrast to extra-

mathematical questions about whether ‗the system as a whole is responsible to 

anything‘ in Wittgenstein‘s words. Burgess agrees with Carnap that questions like 

this latter – questions in Carnap‘s terms that are external to the practice of 

mathematics – are absent ‗empirical meaning‘. (Burgess, op. cit. p. 35) That is, if we 

think of questions about the ‗italics-added real or capital-R Real existence of 

numbers‘, (ibid.) where such questions are about mathematics rather than within 

mathematics, then even if we feel we could make sense of such questions, our 

questions and their answers would make no difference at all to the world.
160

 
161

 

Burgess now takes this conclusion and compares the situation regarding (‗italics-

added‘) real existence of numbers and apparently similar real existence of certain 

fictions. Taking one of his examples, if Carlos Castañeda‘s books were non-fictions 

as some (strangely) have claimed, so that the characters and events therein described 

were not just real in the sense of being properly fictional characters and events, but 

(italics-added) real characters and events, then the world would be in some 

particular respects a different place from how it actually is. That, Burgess claims, 

contrasts with how things stand with regard to the real existence of numbers. 

Suppose, allowing that there are two perfect numbers less than 30, we ask the further 

(external) question whether there are really such things as perfect numbers; what 

possible difference could any answer to this latter question make to the world? 

None, answers Burgess; given which, as he says, whatever stance we might take 

within the philosophy of mathematics, ‗we should not call ourselves ‗fictionalists‘ ‘.  

Mary Leng enters the fray on behalf of the revolutionary fictionalist. She agrees with 

Burgess that external questions about what she calls the ‗metaphysical Reality of 

mathematical objects‘ lack empirical meaning: 

On the one hand, the fictionalist‘s denial [that mathematicians and scientists ought to 

believe the claims made within their disciplines] might be based on a denial of the 

metaphysical Reality of mathematical objects. If so, then as Carnap has shown, we 
 

                                                                            
 

160
 Burgess thinks we can make sense of such questions by turning them into ‗theological‘ 

questions about what God did or did not do at the time of creation. That seems a bizarre 

kind of sense and I confess to being somewhat at a loss about what he means. I will not 

pursue the matter, though. 
161

 Once again, note the similarity here to Field‘s ‗meanings‘ of mathematical terms, which 

likewise, as I argued just  above and as Field himself at least half-accepts, are semantically 

idle (see section 2.9 above), like Wittgenstein‘s beetles in their boxes. 
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have good reasons to suspect that the revolutionary fictionalist‘s thesis is empirically 

meaningless. (Leng 2005 p. 288) 

However, Leng goes on to imply, all the important work goes on internally, and it is 

this that the fictionalist should focus on: 

On the other hand, the fictionalist might be attempting to deny the small-r reality of 

the mathematical objects posited by our theories, while asserting the reality of (at 

least some of) the physical objects that our theories posit. (ibid.) 

This move takes talk of the existence of mathematical objects to be on a par with 

talk of the existence of tables, mountains, electrons, fields, and so on. Leng wants us 

to accept that scientific theories posit the existence of abstracta in just the same way 

as they posit the existence of concreta, the only difference being that concreta exist 

whereas abstracta do not. Or at least, according to Leng‘s fictionalism we have no 

reason to believe in abstracta, given that we can account for their utility in our 

theories other than by accepting their (small-r, recall) real existence. By keeping to 

talk of small-r real existence, she suggests, we can avoid the conclusion of loss of 

sense advanced by Burgess.  

There are several things that could be challenged in the move Leng makes here. For 

instance, she accepts the heterogeneity of talk of the ‗real‘ implicit in Carnap‘s 

distinction, but at the expense of requiring the homogeneity of talk of matters of 

‗existence‘ in considering the prima facie different discourses of mathematics and 

science. Carnap, we saw, puts in question this homogeneity precisely in talk of 

‗existence‘. I dealt with issues about semantic homogeneity above in Chapter 2 in 

considering what it might be to take certain discourses ‗at face value‘. Connectedly, 

the homogeneity Leng leans on also assumes that mathematical propositions are 

similar in assertive import to propositions involving physical objects, something we 

also found reason to question earlier considering how mathematical propositions 

function as rules of inference, not least as an issue connecting with Hartry Field‘s 

fictionalist epistemology.  

It would take us too far afield at this juncture to rehearse my critical remarks from 

above or to explore such issues in further detail. However, I do want to make one 

further particular challenge. I will suggest that the way fictionalism claims to 

establish the utility of mathematics independently of the existence of mathematical 

objects – or to put the matter in Hartry Field‘s words, how mathematics can be good 

without being true – itself vitiates the point Leng makes just here. I want to take this 

fairly slowly, as it bears directly on the problem of mathematical applicability – of 

the utility of mathematics in physical science. So I leave this particular thread 

hanging for the moment. 
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5.5 Steiner and Field; homomorphisms (1) 

Mark Steiner, we saw in chapter 1, suggests that  

… the central philosophical doctrines of these major philosophers [for example 

Plato, Descartes, Spinoza, Berkeley, Kant and Mill] were conceived in great 

measure to explain the applicability of mathematics to Nature. (Steiner 2005 p. 626)  

Further, we saw Steiner to go on to say, this motivation of ‗central philosophical 

doctrines‘ can be characterised universally in terms of the notion of a 

homomorphism between mathematics and physics, the key question for philosophy 

about mathematical applicability being, ‗Given the nature of mathematics, why 

should such a homomorphism exist?‘  

Again, recall the centrality of the notion of homomorphism also to Hartry Field‘s 

‗main theoretical device‘, that of the use of ‗representation theorems‘, theorems 

which assert the existence of ‗representing‘ homomorphisms connecting physics and 

mathematics. It was by means of such representation theorems, allied with the idea 

that mathematics is conservative over science, that Field could claim to be able to 

show how mathematics can be useful.
162

 

In Chapter 2, I gave a particular example of a representation theorem,
163

 and, 

looking at it as an exemplar, suggested in the light of the centrality of its 

representing homomorphism that we see such theorems as in the business of 

attempting to answer Steiner‘s question, ‗Given the nature of mathematics, why 

should such a homomorphism exist?‘ I also entered a preliminary caveat, what I 

called there ‗an initial worry‘ about the way in which such theorems are supposed to 

show us how to bridge a supposed gap between the separate realms of mathematics 

and physics. Now I want to expand on this initial worry. 

Consider the unease I claimed we might feel at the idea of separate ‗realms‘ of 

physics and mathematics given that for Field, the mathematical realm is one 

containing non-existent objects.
164

 This unease, now, is strengthened by Leng‘s 

attempt to situate mathematics as a homogeneous part of the physics to which it 

applies. For consider: the map at the centre of any representation theorem 

supposedly connects physical objects to mathematical objects – two different sorts 

of object, it seems. Leng wants them to be considered under the same head as posits 

of the physical theory; the only difference between the physical objects and the 

mathematical objects according to Leng is that the physical objects actually exist 

 

                                                                            
 

162
 I mentioned above in Chapter1that a strong case can be made for Field‘s main theoretical 

device being useful in explicating mathematical applicability no matter what the background 

metaphysical position, something we saw Field himself to be aware of. 
163

 See section 2.3, Theorem 1 from Krantz et al 1971. The statement and proof of this 

theorem is in Appendix 2. 
164

 Any difficulty we might have making sense of a ‗container‘ for non-existent objects is 

grist to the mill of my argument here, of course.  
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whereas the mathematical ones do not.
165

 That is a large difference. Moreover, it is 

not one that can be taken care of by considering the case with examples of other 

kinds of non-existent theoretical entities of whatever sort – mathematical objects, 

according to Field and Leng, are systematically non-existent.  

My discussion in Chapter 2 of semantic homogeneity in the light of Benacerraf‘s 

dilemma and the notion of ‗taking at face value‘ is relevant here. We are uncovering 

further reasons to be suspicious of claims of homogeneity in the light of difference. 

The overview we seek will be the more perspicuous if we keep in mind this earlier 

critique as we proceed. 

Pulling up the thread I left hanging at the end of the previous section, now, I want to 

suggest that Leng is not entitled to press the homogeneity of treatment of talk of 

abstracta and concreta once we allow that the fictionalist requires they be treated 

differently, as really existing (physical) objects on the one hand and as 

systematically non-existent (mathematical) objects on the other to be connected via a 

homomorphism. The difference between the two – the gap that opens up between 

the physical and the mathematical – is one that is required for a Fieldian 

representation theorem with its embedded homomorphism to be considered as 

explanatory of the applicability of mathematics. But once we disallow Leng‘s 

assimilation of physical and mathematical discourse in this way, we find ourselves 

back with the difficulties raised by talk of extra-mathematical questions; the 

question of the ‗responsibility‘ of mathematics to something outside mathematics 

such as the physical world to which it applies is not to be answered by 

considerations within mathematics such as the existence of homomorphisms.  

Field and Leng assume we know what it means to say we have a map from physical 

to mathematical objects or vice versa. That, I am suggesting, is something that is 

particularly called into question by Wittgenstein‘s distinction between the two ways 

mathematics can be held ‗responsible‘, or equivalently by Burgess‘s (non-theory-

laden) take on Carnap‘s inner/outer distinction. We can make straightforward sense 

of a map from one mathematical structure to another – it is quite another matter 

when we consider what sense we give to a map from a mathematical structure to a 

physical structure or vice versa. As I pointed out in Chapter 2, it might seem that a 

representation theorem does achieve such a map – but that we found to be an 

illusion. Look again at the statement and proof of Krantz‘s Theorem 1: it is 

undeniably a part of mathematics, mapping within mathematics. To repeat what I 

said earlier: this theorem is stated as a mathematical theorem about mathematical 

objects; its proof consists of mathematical conclusions drawn by deduction from 

mathematical premises according to conventional mathematical practice. That is, the 

‗conclusion‘  –  in  this  case  the  theorem itself  –  as  well  as  its  establishment,‗is  

 

                                                                            
 

165
 We might recall just here that ‗actually‘ is indeed what Field claims: his fictionalism – of 

which I take Leng‘s to be a sub-genre – is contingent. There might have been numbers, 

according to Field, although actually there are none. 
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responsible to certain [mathematical] axioms and certain [mathematical] rules‘, in 

Wittgenstein‘s words. It is every bit as much an intra-mathematical result as the 

conclusion we reached just above that there are exactly two groups of order four. 

In the end, this is the most valuable insight to be gained from exhibiting an actual 

such representation theorem rather than simply considering them in the abstract, as it 

were: it becomes clear that what we might have thought of – are required to think of 

in such manner if we are to accept Field‘s and Leng‘s claim to explicate 

mathematical utility/applicability – as something connecting two realms such as 

Hardy‘s physical and mathematical realms, is nothing of the sort. Rather, any such 

theorem remains – of course, how could it not?, it is a theorem – a part of 

mathematics rather than anything that can link mathematics to something other than 

itself.  

So, to emphasise once again, fictionalism requires sense to be made of external talk 

about mathematics if it is to explain the utility of mathematics as it sets out to do. 

The way in which such sense is both absent and yet required becomes plain through 

our consideration of the homomorphisms at the centre of representation theorems in 

the light of the distinction between intra- and extra-mathematical discourse as the 

homomorphism tricks us into thinking that we can link a shadowy fictional realm of 

non-existent objects with the realm of the real.  

I have denominated the sense of fictionalism‘s talk of a non-existent realm of 

abstracta as at the same time both absent and required.
166

 Recall Leng‘s and Field‘s 

insouciance at the move from the thought that we have no reason to think it true that 

mathematical objects exist to the thought that such a claim is false.
167

 This move 

itself can only be made supposing that in the context in question we have given 

sense to the notion that mathematical objects exist, which, as an extra-mathematical 

supposed proposition, I have suggested it does not. Fictionalism, in short, in 

attempting to deny the truth of Platonism, illegitimately assumes for Platonism a 

sense it has yet to be given. 

 

5.6 Steiner; Wittgenstein’s ‘gap’ 

I turn away from fictionalism, now, to consider how the distinction Wittgenstein 

brings to our attention in LFM XXV plays out with a specific example of 

mathematical applicability. The example is Mark Steiner‘s, from his 2009. It 

involves group theory; rather more advanced than we encountered in section 5.2, but 
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 Something we saw above to be in some ways explicitly accepted by Field in his 

discussions of the ‗meanings‘ of mathematical terms.  
167

 Recall also Field‘s claim that the only reason for thinking mathematics true is its utility in 

science (the indispensability argument for mathematical Platonism), denial of which unique 

purported justification of Platonism lies at the foundation of the fictionalist enterprise.  
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group theory all the same.
168

 Steiner uses the example to locate what he describes as 

a gap in Wittgenstein‘s account of mathematical applicability. He claims that  

‗Wittgenstein‘s account of mathematical applicability was seriously lacking.‘ 

(Steiner 2009 p. 26) I want to show how Wittgenstein gives us the resources to plug 

the gap Steiner finds. 

In fact, Steiner locates this ‗gap‘ in only one of the taxonomic groups of problems he 

delineates, what he calls ‗non-canonical empirical‘ applications of mathematics. 

(See section 1.6 above.) Steiner accepts that Wittgenstein deals successfully with 

‗canonical‘ applications of mathematics, viz. applications of mathematical 

propositions that, as Steiner puts it, ‗are supervenient on empirical regularities‘ (op. 

cit. p. 21):  

Did Wittgenstein, then, solve (or, really dissolve) the ‗problem‘ of the applicability 

of mathematics? For canonical applications, yes, in a manner of speaking. Canonical 

applications are what we call the empirical regularities upon which mathematical 

theorems are based. Rather than explaining cases of the application of mathematics, 

Wittgenstein rather explains them away – the applicability of mathematics is an 

illusion caused by our calling ‗mathematics‘ those very rules founded on what we 

call their application …(Steiner 2009 p. 23) 

This is not wholly wrong as an account of some of what Wittgenstein says. We often 

find him talking of an empirical regularity being ‗hardened‘ into a rule of inference 

and thereby becoming a mathematical proposition. For instance 

The justification of the proposition 25 × 25 = 625 is, naturally, that if anyone has 

been trained in such-and-such a way, then under normal circumstances he gets 625 

as the result of multiplying 25 by 25. But the arithmetical proposition does not assert 

that. It is so to speak an empirical proposition hardened into a rule. It stipulates that 

the rule has been followed only when that is the result of the multiplication. It is thus 

withdrawn from being checked by experience, but now serves as a paradigm for 

judging experience. (RFM p. 325)
169

 

This aspect of Wittgenstein‘s thought is also apparent in the quotation at the head of 

this chapter from Philosophical Investigations §242, reminding us that ‗ … what we 

call ―measuring‖ is partly determined by a certain constancy in results of 

measurement.‘ However, although an appreciation of this should be part of our 

overview, we should not take it as – it is far from being – the whole.  

I am not concerned to challenge Steiner on this aspect of his account of Wittgenstein 

on such ‗canonical applicability‘. As I said in Chapter 1, the more interesting cases 

of mathematical applicability, characterised by Feynman‘s ‗amazing‘ or Weinberg‘s 

‗positively spooky‘, fall into Steiner‘s non-canonical group of problems. It is here 

that Steiner locates the ‗gap‘ in Wittgenstein‘s ‗account‘. This I do wish to 
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 We might recall at this juncture how I used the example of group theory in section 1.1 to 

begin to motivate an appreciation of the problem of applicability. Here is a payoff for that. 
169

 Wittgenstein points out how this ‗hardening‘ is often a to-and-fro affair. (See, e.g. On 

Certainty P. 15). Such matters ramify in many directions, as usual. 
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challenge, and in so doing, to establish how Wittgenstein offers us the wherewithal 

to solve the problem of mathematical applicability tout court. 

Steiner‘s example of the ‗gap‘ comes via his explication of the use of the group 

SU(2) in describing the symmetries of the electron. It is an example, he says, of the 

application of a part of mathematics in a novel situation, an application, as he says, 

‗… of which the ‗inventors‘ of the mathematics could not have dreamed.‘   

 

5.7 Steiner; homomorphisms (2) 

Steiner summarises his example – ‗In order to see how remarkable all this is,‘ he 

says: 

The group of 2×2 unitary matrices with determinant +1 was introduced for 

convenience—to facilitate calculations with rotations needed in the kinematics of rigid 

bodies. The fact that this representation was not an isomorphism, but only a two-to-

one homomorphism onto the group of spatial rotations did not interfere with this 

application, although it apparently introduced superfluous information about each 

rotation: its parity. Yet this duplication was hinting at a fundamental topological 

difference between space and rotations of that very space: though space is simply 

connected (each closed loop in space can be shrunk to a point), the group of rotations 

on space is not. Nature makes use of this extra degree of freedom in the electron; its 

symmetry group is not that of the rotations, but of SU(2) itself. (Steiner 2009 p. 26)  

Steiner describes ‗this representation‘ as ‗a two-to-one homomorphism‘. The 

‗representation‘ here is similar, though not identical to, ‗representation‘ in 

representation theorems or in non-philosophical and non-mathematical English. 

There are a number of different kinds of ‗representation‘ in play here, and we should 

be careful about the differences as well as the similarities. Strictly speaking, a 

representation of a group in a vector space is a homomorphism from the group to the 

group of invertible linear transformations on the space. Such a representation, 

essentially, allows for group theory to be done in vector spaces, with elements of the 

group considered as linear transformations on the vector space. Or, indeed, we can 

think of the reverse of this, and consider studying linear transformations on a vector 

space by doing group theory in the group whose representation sits on the space, as 

it were. In our case of SU(2), we can think of its representation in the vector space 

R
3
 in terms of a map (a homomorphism of course) taking every element in SU(2) to 

a particular linear transformation – in fact a rotation – of the vector space R
3
. So we 

can study rotational symmetries in R
3
 by looking at the group SU(2).

170
  

 

                                                                            
 

170
 Steiner credits Felix Klein – he of the ‗Klein group‘ V (see section 5.2 above) – with 

‗inventing‘ the application of (what we now call) SU(2) to rotations in three dimensions. 

(Steiner 2009 p. 24). Steiner also reminds us of the other nineteenth century way with 3-D 

rotations: (Hamilton‘s) quaternions. Unit quaternions are isomorphic to SU(2). Their use has 

fallen into desuetude despite the fame of their inscription into the fabric of the Brougham 

Bridge in Dublin by the excited Hamilton in 1843. 
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However, as I mentioned above, and as Steiner emphasises, the map taking elements 

of SU(2) to rotations on R
3
 is a two-to-one homomorphism.

171
 An element of SU(2) 

can be given as 
x y

U
y x

 
  

 
, where x and y are complex numbers such that 

2 2
1x y  . ( x  is the complex conjugate of x.) If we parameterise U in terms of 

(the Euler angles) 1, , 2, writing 
2 1( )

2
2

cos
i

x e
 




 and 
2 1( )

2
2

sin
i

y i e
 




 , the 

homomorphism to SO(3), the group of rotations on R
3
, is given by the function f, 

where the matrix f(U) is 



























coscossinsinsin

sincoscoscoscossinsincossincoscossin

sinsinsincoscossincossinsincoscoscos

11

221122112

221122112

 

– the matrix which effects the rotation defined by the corresponding Euler angles.  

In terms just of the original variables x and y, we will have 

 

2 2 2 2

2 2 2 2

2 2

Re( ) Im( ) 2Re( )

( ) Im( ) Re( ) 2 Im( )

2Re( ) 2 Im( )

x y x y xy

f U x y x y xy

x y x y x y

   
 

    
 
  

,
172

 

 

and it is immediately evident that 
x y

U
y x

  
   

 
has the same image under f as U. 

A little work gives us the kernel of the homomorphism as {+I, – I} where I is the 

identity 2×2 matrix; every element in the group of rotations on R
3
 is mapped to by 

two similarly related matrices (+/–) in SU(2). So f is indeed two-to-one as Steiner 

points out.  

 This should not worry us for, say, combining simple rotations by using SU(2): we 

can ignore the overall sign (+/–) of the matrix easily enough. What is remarkable, 

though, as Steiner claims, is that while each simple rotation in R
3
 is coded by two 

(+/–) corresponding elements of SU(2), the rotational symmetries of the electron do 

not share this redundancy. The symmetry group of the electron requires the full 

 

                                                                            
 

171 
For an elementary account of what follows here, see, e.g. Carmeli & Malin 1976, 

chapters 3-4. For an equivalent development to that involving the non-trigonometric 

expression above see, e.g. Altmann 1986 P. 128ff. The attraction of working within SU(2) 

rather than directly with the Euler angles is apparent once we see these results. Still, though, 

it is clear that we remain within mathematics in all this.  
172

 ‗Re(z)‘ is the real part of the complex number z; ‗Im(z)‘ is the imaginary part of z. (If 

z = a + bi, then Re(z) = a and Im(z) = b.) 
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SU(2) representation. Given the (apparent) pre-existence of the representation of 

SU(2) in R
3
, and even more, given the ‗invention‘ of the group SU(2) for the 

purpose of simplifying rotations in space by Klein long ago (in 1888 – the electron 

itself was not discovered until 1897, much less quantum mechanics itself), this looks 

like an excellent example of what Steven Weinberg finds ‗spooky‘ and Richard 

Feynman ‗amazing‘. 

So we seem to have a problem of explaining how this piece of mathematics – SU(2), 

developed to facilitate work on rotations in R
3
 – is just the ticket for applying to the 

symmetries of the electron. Is there a real problem here? 

No. To see why, turn to Wittgenstein‘s distinction between intra- and extra-

mathematical responsibility. The suggestion deriving from this distinction is that the 

apparent problem comes about by taking questions about mathematics (‗Why should 

such a homomorphism exist?‘) and trying to think of them outside their natural 

habitat. Considered as part of mathematics, to be answered using the usual tenets of 

mathematical practice, such questions make sense. However, I am suggesting, 

following Wittgenstein, that the temptation to think of them as relating to the 

relation between some mythical (or fictional, or ‗italics-added really or capital-R 

Really exist[ing]‘) mathematical realm and the physical world should be avoided – 

they are at best inappropriate in such a setting. 

In the light of this, consider the homomorphism (in fact an isomorphism, as it is one-

one) connecting SU(2) with the symmetries of the electron. In Steiner‘s own 

explanation, this contrasts with the homomorphism from SU(2) to SO(3), the group 

of rotational symmetries in R
3
. There is an almost irresistible temptation now – to 

which Steiner succumbs – to continue these latter mapping processes out of the 

mathematics, as it were, and onto the real space ‗represented by‘
173

 R
3 

or the real 

electron and its symmetries as ‗represented‘ by its symmetry group. This, I am 

claiming, is a mistake. But let us try our best to make sense of this move out of the 

mathematics. It looks as though if we can get a representation theorem
174

, this will 

help answer the question, ‗why should such a homomorphism exist?‘ The axioms of 

any such theorem will give as clear a statement as anything can of just what needs to 

be the case for the mathematics to represent the physics, it seems. What more could 

we want in terms of answering the question, ‗why this homomorphism?‘? 

 

                                                                            
 

173
 This is a different sort of representation again, involving a semantic difference easily 

missed. 
174

 The representation here goes the other way by comparison with the group representation 

of SU(2) on R
3
, a fact that might give us pause for thought, indeed, in this context. Actually 

the homomorphism in any representation theorem here will be an isomorphism – hence 

reversible – so we need not be too picky about it anyway.  



 144 

So let us consider the form of a putative representation theorem here. We will not 

get a full statement of any such
175

, but at least of some relevant specifics it is clear 

enough what we would need: given that the symmetries of the electron require to be 

in a simply connected space, SO(3) will not do, whereas SU(2) will work fine. The 

axioms – the ‗given‘ – of our representation theorem will thus include being simply 

connected.
176

 And we can wave our hands for all the rest, because the point of this 

can now easily be seen. It is as follows: thinking of the connection between physics 

and mathematics, we consider how we might represent the physics in the maths. But 

any analysis of how such a representation could take place inevitably pushes us, 

willy-nilly, back into mathematics. We thought that a representation theorem could 

bridge the gap between physics and maths – a closer look helps us to see that this 

gap is not what we thought. Any representation taking place remains within 

mathematics, be it the representation of SU(2) on R
3
 or the representation achieved 

by a representation theorem. 

However, it is still worth thinking about what we get from considering the 

possibility of a representation theorem in this case (and others), as we did above 

when we looked at Kranz‘s Theorem 1. We may not have an explanation of why the 

homomorphism relating mathematics and physics exists, where physics and 

mathematics are considered as two separate realms: there is no such homomorphism 

relating mathematics to anything outside of mathematics as matters stand regarding 

the sense we allow via the ‗responsibility‘ of mathematics to its ‗reality‘. What we 

do get from looking carefully at the (putative in this latest case) representation 

theorem, though, is, once again, an indication – within mathematics – of just what is 

needed in order that this particular piece of mathematics be capable of applying in 

the case to hand. This is not an explanation of how mathematics relates to physics, 

we should note, so much as a description of a particular part of mathematics 

applying to physics:  
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There are no extant representation theorems for quantum mechanics, although see 

Balaguer 1996, also 1998 pp. 113-127 for an interesting suggestion involving the 

representation of propensities. 
176

 ‗Connectedness‘ is not quite the same thing here as in Kranz‘s Theorem 1. Steiner does 

explain (see Steiner 2009 P. 25), although possibly he is a little loose about distinguishing 

different meanings of ‗space‘ as well as relevant notions of connectedness. The required 

property of being simply connected (that SU(2) has but SO(3) lacks), is a property of the 

‗space‘ of rotations in SU(2) – the ‗points‘ of this ‗space‘ are linear transformations – 

rotations – and a ‗closed loop‘ in this ‗space‘ is a (continuous) subset of these rotations, 

each of which is ‗close‘ to its ‗neighbours‘ in the subset. The ‗shrinking‘ of such a ‗loop‘ to 

a ‗point‘ proceeds by continuous deformation; ‗points‘ move to ‗neighbouring points‘ which 

are not in the subset. This can all seem very mysterious, particularly if we start to wonder 

how it all connects with fermion spin. A clear view of the mathematics and the physics is 

what is needed to dispel any apparent mystery here, though. The details are not important 

for the philosophical issues to be clear.  
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We must do away with all explanation and description alone must take its place. 

(PI §109) 

 

5.8 Solved 

We have our overview, now. And this overview should disarm any temptation we 

may have felt to ask inappropriate questions about bridging hypothetical gaps 

between mythical realms. Such temptation disarmed, we find that we no longer have 

a problem of mathematical applicability. Think back to Steiner‘s characterisation of 

the problem of mathematical applicability as grounded in questions concerning 

homomorphisms between physical facts and mathematical theorems: ‗Why should 

such a homomorphism exist?‘ If, as I have argued, the existence of such a 

homomorphism is something to which we have so far not given any sense, then we 

have indeed solved the problem of mathematical applicability by seeing the lack of 

sense of the intended expression of the problem. ‗Solved‘, I claim, rather than what 

has been fashionable locution in some quarters, ‗dissolved‘ or ‗shown up as a 

pseudo-problem‘. No:–   

The problems arising through a misinterpretation of our forms of language have the 

character of depth. They are deep disquietudes … (PI §111)  

The problem of mathematical applicability was a deep disquietude. And it has been 

solved by looking into the workings of our language and getting a clearer description 

of those workings – of recognising them ‗in despite of an urge to misunderstand 

them‘: 

[Philosophical problems] are solved … by looking into the workings of our language 

…(PI §109)  

Solved. 
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Appendix 1  Groups, Transformations and Homomorphisms 

 

What follows is far from an exhaustive account of even the most elementary parts of 

basic group theory etc. However, it should give enough of a flavour of the topics to 

help a non-mathematical philosopher engage adequately with the philosophical 

issues raised by the examples in the thesis. 

 

Groups 

A group is a mathematical structure (finite or infinite) consisting of a set of 

mathematical objects (‗elements‘) together with a way of combining pairs of these 

objects (a ‗binary operation‘). Typical elements might be numbers, geometrical 

transformations, mathematical functions like ‗square‘, ‗double‘, and so on – any 

things that can be combined. Typical binary operations: addition, multiplication, 

combination (or ‗composition‘) of transformations or functions. The history of group 

theory dates back to the eighteenth and nineteenth centuries, Evariste Galois being 

the first to use the term ‗group‘ in 1832. (Though Galois‘ work was not published 

until later. The story is romantic and well-known. I will not tell it.) 

The structure of a group depends on the group axioms: in a group G with binary 

operation *, we must have 

Closure:  , , *a b G a b G    

Associativity:     , , , * * * *a b c G a b c a b c     

Identity:  : * *i G a G i a a a i       

Inverse:  
1 1 1: * *a G a G a a i a a          

Groups are considered the same if they are ‗isomorphic‘:–  

Isomorphism and homomorphism 

It is sometimes convenient to exhibit finite groups in a table (a ‗Cayley table‘, for 

Arthur Cayley, 1821-1895). Here are two such Cayley tables for groups P and Q, 

with elements and binary operations respectively <{0, 1, 2, 3, 4, 5}, * > and 

<{A, B, C, D, E, F}, o > 
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   P:          

4321055

3210544

2105433

1054322

0543211

5432100

543210*

                     Q:      

EDCBAFF

DCBAFEE

CBAFEDD

BAFEDCC

AFEDCBB

FEDCBAA

FEDCBAo

 

The first table exhibits the results of combining the elements of P using the 

unspecified operation ‗*‘; the second likewise for Q with its elements and operation 

‗o‘. Elements in such tables are conventionally taken by combining the element from 

the column on the left with the element in the corresponding row at the top, so, for 

example 4 * 3 =1. (In this case it would make no difference if we took the reverse 

order, since 3 * 4 = 1 as well; but this is not the case with every group, as we will 

see.)  

To be a little more concrete, we might interpret P as the addition table for arithmetic 

modulo 6 (‘Add, then write down the remainders on dividing by 6‘) and Q as the 

combination table for applying the rotation symmetries of a regular hexagon –  A: 

rotate 0º; B: rotate 30º; C: rotate 60º etc. A symmetry in this context is a 

transformation which maps a figure – a regular hexagon in this case – onto itself, 

and for instance we have B o C = D since the result of combing a rotation of 60º 

with a rotation of 30º is a rotation of 90º. (Again there are wrinkles here about the 

order of application of the transformations, dealt with below.) 

A moment‘s inspection will be enough to convince us that these two tables are 

structurally similar: ‗0‘ in P occurs in relatively the same places as ‗A’ in Q, ‗1‘ in 

the same places as ‘B‘ and so on. In fact, the two tables exemplify the same 

mathematical structure. The two groups are ‗isomorphic‘. We can capture this 

isomorphism – sameness of structure – algebraically by connecting the elements of 

P and Q (here in the obvious way: 0A; 1B; 2C and so on) one-to-one via a 

function or mapping,  f, say, from P to Q, and demanding of f that it satisfy the 

condition  

 , , ( * ) ( ) ( )i j f i j f i o f j  P  

To see that this does indeed capture the notion of sameness of structure, consider an 

example.  Take i to be 3 and j to be 4: we note that 3*4=1 in P; that 3 corresponds to 

D (i.e. f(3)=D) and 4 corresponds to E; that DoE=B in Q; and that 1 corresponds to 

B under the map f. Following this through with the two tables, we can see that the 

same thing happens whichever pair of elements of P we take i and j to be.   

The notion of a homomorphism is slightly more general, not requiring 1-1 

correspondence between the structures being compared.  

Here is another example to help see how this goes: 
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    Q (again):  

EDCBAFF

DCBAFEE

CBAFEDD

BAFEDCC

AFEDCBB

FEDCBAA

FEDCBAo

                              R:       









a



 

 

It is maybe not clear that we can usefully compare the structure Q with that of R in 

the same way as we did P with Q. A slight rearrangement will make things clearer, 

however. First of all, a re-ordering of the rows and columns of Q will have no effect 

on the structure itself, so long as we keep the results of combining two elements the 

same – CoD must still equal F, for instance, to take an example at random, and so 

on for all other pairs. Here is a suitably rearranged table for Q, then: 

   Q (rearranged):             

EBDACFF

BEADFCC

DACFBEE

ADFCEBB

CFBEADD

FCEBDAA

FCEBDAo

 

Now we can see how the two structures Q and R are structurally related. We can 

map each element of Q onto an element of R as follows; 

            




D

A
;   





E

B
; 





F

C
.   

And now, once again, we capture the similarity of structure by means of the same 

condition as previously, namely that (if g denotes this map from Q to R) 

     , , ( ) ( ) ( )i j g io j g i g j   Q  

Taking i as B and j as C, for example, we get g(BoC) = g(D) (since BoC = D from 

the table Q);  according to the map defined, g(B) = , g(C) =  and g(D) = ; and 

(from table R)  = So, indeed, we have that g(BoC) = g(B)g(C) in this case. 

Likewise for all other pairs. This property of the mapping g is just what we want in 

order to characterise the essential similarity of the structures of the two groups Q 

and R.  
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Homomorphisms, cosets and abelian groups 

Here is the table for a different group with six elements (another group of ‗order‘ 

six): 

T = 

I X Y P Q R

I I X Y P Q R

X X Y I R P Q

Y Y I X Q R P

P P Q R I X Y

Q Q R P Y I X

R R P Q X Y I

In fact, this is the group of symmetries of an equilateral triangle. (Or, more 

precisely, the symmetries of an equilateral triangle is one instantiation of this group. 

We need not be so precise, generally.) Suppose we have an equilateral triangle with 

vertices labelled A, B and C (to keep track of their positions think of the labels as 

stuck onto the triangle): 

We can ‗transform‘ such a triangle in six different ways so that it ends up in the 

same place (although with some or all of A, B and C occupying a different position). 

That is, there are six symmetry transformations of the equilateral triangle –six 

‗symmetries‘ for short. These symmetries are as follows. 

I: leave the triangle where it is (the identity transformation). 



151 

Y: Rotate 240
o
: 

P: Reflect in a (double-sided) mirror placed on the altitude through the top vertex: 

X: Rotate 120
o
 (about the centroid of the triangle – the obvious point at its centre).

This transforms the triangle like this: 



152 

R: Reflect in the altitude through the lower right vertex: 

Note that I have not specified in the table above how the group operation is 

symbolised. This is standard practice whenever, as here, there will be no confusion 

thereby caused. Concatenate the names of the transformations to indicate the 

combination: thus we have X P = R in the table, for instance. The group operation is 

so-called ‗composition‘ of transformations, so that, for instance X P is to be read as 

‗perform P then perform X ‘. (This probably seems backwards when first 

encountered. It will become clearer below.) ‗Reflect in the vertical altitude, then 

rotate 120
o
‘ is indeed equivalent in effect to the single transformation ‗Reflect in the 

altitude through the lower right vertex‘. 

Looking at this table T, now, it is clear that we do not have the same structure as 

above with P and Q. And no rearrangement will do the trick for us either, as a 

consideration of the symmetry of the different tables will make plain. P and Q, as 

Cayley tables, are each symmetric in the leading diagonal (upper left to bottom 

right), whereas T is not. This is because, whereas for each pair of elements in P we 

have a*b = b*a, it is not the case that, for instance, X P = P X in T. X P = R, as we 

saw, but P X = Q; ‗rotate 120
o
, then reflect in the vertical altitude‘ is equivalent to

‗reflect in altitude through the lower left vertex‘.  

The group T is not commutative, whereas our other group of order six is: that is, it is 

not the case that , ,a b ab ba  T , whereas it is true that , , a b aob boa  Q . A 

commutative group such as Q is called ‗abelian‘ (after Niels Henrik Abel, 

1802-1829). An abelian group cannot be isomorphic to a non-abelian group. 

Q: Reflect in the altitude through the left lower vertex: 
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We might notice that T contains a subset {I, X, Y }, which is isomorphic to the group 

R we used above to illustrate the notion of homomorphism. In fact this is a 

‗subgroup‘ of T. We might also notice that as well as this subgroup, in the table 

there is also the subset {P, Q, R} that reappears alternatively with the subgroup {I, 

X, Y }. {P, Q, R} is called a ‗coset‘ of the subgroup {I, X, Y } in T. (Compare the 

‗rearrangement‘ of Q above;  there it is easy to see the cosets of the subgroup {A, 

D} of Q.) 

 

Cosets, normal subgroups and quotient groups 

Some definitions: 

(We had the definition of a homomorphism above.) Given a homomorphism f from a 

group G to a group H, the set of elements of G that map to the identity element of H 

under f is called the kernel of f, written ker( f ). 

A subgroup of a group is a subset of the group which is itself a group under the 

group operation. 

A (left) coset of a subgroup H in a group G, denoted gH (where g G ) is the set 

{ : }gh h H . Likewise a (right) coset, Hg, is defined as { : }hg h H . 

 

(Of course if the group is abelian, left cosets and right cosets coincide; not so for 

non-abelian groups. However, some non-abelian groups may have subgroups whose 

left- and right- cosets do coincide. These are the ‗normal‘ subgroups:– ) 

A subgroup N of a group G is normal in G 
def

g G gN Ng   , where gN and Ng 

are cosets as defined above. 

Now consider the set / { : a G}
def

G N aN  , where N is a normal subgroup of G. That 

is, G / N is the set of all cosets of N in G (left or right being immaterial because N is 

normal in G). G / N is a group with operation defined as follows:  

, / ,
def

aN bN G N aNbN abN   . With this operation, G / N is called the quotient or 

factor group of G by N. 

There is a natural (or canonical) homomorphism p from G to G / N : 

, ( )g G p g gN   . That is, any element g of G maps to the coset of N in G that 

contains g. Now, the identity of the quotient group is iN, where i is the identity in G; 

and the kernel of the homomorphism p is just the normal subgroup N itself. 

In fact, for any homomorphism f from one group G to another H, the kernel of f is a 

normal subgroup of G.  

– Suppose now that G and H are groups and f is a homomorphism from G to H. Let 

N be a normal subgroup of G and p the canonical homomorphism from G to the 
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quotient G / N as above. Then if N is a subgroup of the kernel of f there exists a 

unique homomorphism h mapping G / N to H such that f = h p.  This is the 

‗fundamental homomorphism theorem‘. (And if N is all of the kernel of f, we have 

the ‗first isomorphism theorem‘, that H is isomorphic to N, the kernel of f.) 

A group with no normal subgroups is called simple. By factoring groups with 

normal subgroups/kernels of homomorphisms, we can reduce groups to simple 

groups, much as factoring composite numbers gives us primes. Or we can build in 

the other direction. We get more structure doing this in groups than with numbers of 

course. There is a long story here to tell. Suffice for now that homomorphisms, their 

kernels, and normal subgroups are tightly bound together. We might say that this is 

where homomorphisms are most at home, connecting groups with their quotients by 

normal subgroups. 

 

Linear algebra in the plane 

We might consider other mathematical structures defined axiomatically rather in the 

way I started above with group theory; amongst such structures might be that of a 

vector space, a generalisation of geometry as pursued by Euclid, though with many 

more applications than the strictly geometrical. I do not wish to take the axiomatic 

route here, though. We can be much more rough-and-ready given that we need just 

to get the flavour.  

Consider the group I called T above – the group of symmetries of an equilateral 

triangle, of certain transformations in a (two-dimensional) plane. We may think of 

doing geometry by considering transformations more generally. One way of doing 

the computation is to use matrices and vectors. 

Suppose I have a point in the (Euclidean) plane, furnished with Cartesian axes in the 

usual way, so that it is specified as P(x, y) relative to such (rectangular, 

‗orthonormal‘) axes. Any transformation of this point P that moves it to another 

point depending on where exactly P is – on the values of x and y, that is – might 

usefully be expressed as a transformation (call it A) that maps (x, y) to the point 

1,1 1,2 2,1 2,2( , )a x a y a x a y  . Any such transformation will be a so-called linear 

transformation.  

It is convenient to characterise such a transformation in terms of matrices and 

vectors as follows. Consider each point in terms of a directed line segment from the 

origin of coordinates, so that the instead of the point (x, y) we use the vector 
x

y

 
 
 

. 

The point that P(x, y) moves to (called the image of P under a given transformation) 

can be represented by ( , )P x y   , with corresponding vector 
x

y

 
  

. So, for our general 
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linear transformation, we will have, in vector terms, that 
1,1 1,2

2,1 2,2

a x a yx

a x a yy

   
       

. We 

can pull this apart a little, now, notationally, and write 
1,1 1,2

2,1 2,2

a ax x

a ay y

     
         

, 

where the matrix 
1,1 1,2

2,1 2,2

a a

a a

 
 
 

 can also be called A. Think of the matrix or the 

transformation it encodes as operating on the vector 
x

y

 
 
 

 to get the vector 
x

y

 
  

, its 

image under the transformation.  

Now consider combining transformations as we did above to get the table T. The 

‗multiplication‘ of the vector 
x

y

 
 
 

 by the matrix A to get the vector 
x

y

 
  

 has a 

similar form when we multiply (I will leave off the scare-quotes) matrices 

themselves. Call B the matrix (and the transformation it encodes) 
1,1 1,2

2,1 2,2

b b

b b

 
 
 

. 

Multiplying B by A according to the schema gives us 

1,1 1,2 1,1 1,2 1,1 1,1 1,2 2,1 1,1 1,2 1,2 2,2

2,1 2,2 2,1 2,2 2,1 1,1 2,2 2,1 2,1 1,2 2,2 2,2

a a b b a b a b a b a b

a a b b a b a b a b a b

     
    

     
 

... and the matrix 
1,1 1,1 1,2 2,1 1,1 1,2 1,2 2,2

2,1 1,1 2,2 2,1 2,1 1,2 2,2 2,2

a b a b a b a b

a b a b a b a b

  
 

  
 does correctly encode the 

transformation ‗perform B than perform A‘. (Think of this as ‗multiply rows by 

columns, then add.) Note the order here: we want that  

1,1 1,2 1,1 1,2

2,1 2,2 2,1 2,2

a a b b x

a a b b y

     
      

    

, that is, the result of applying the composite 

transformation to P, to be the same as 
1,1 1,2 1,1 1,2

2,1 2,2 2,1 2,2

a a b b x

a a b b y

     
      

     

, which is the 

result of applying A to the result of applying B to P. (It should be clear now why the 

convention here is not ‗backwards‘, as it might have appeared.) 

What we have here is a statement that matrix multiplication is associative. And the 

rest works equally well. In fact, the group of linear transformations in the plane 

under composition is isomorphic to the group of matrices under matrix 

multiplication as so defined. So we can do transformations in the plane by 

multiplying matrices. 
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Linear transformations in 3-dimensions; Euler angles. 

A little trigonometry shows us that a rotation in the plane with angle is represented 

by the matrix 
cos sin

sin cos

 

 

 
 
 

. This can be obtained by checking the images of the 

base vectors in the plane under the transformation: 
1 cos

0 sin





   
   

   
, and 

0 sin

1 cos





   
   

   
 (This works so nicely because the identity matrix is 

1 0

0 1

 
 
 

: 

consider multiplying this by the transformation matrix.)  

Moving to 3-dimensions is simple enough, once we have this. Matrices become 

three-by-three, and for any transformation, to obtain its matrix we need to consider 

its columns as the images under the transformation of the base vectors in the 

directions of the x, y, and z axes respectively. Matrix multiplication extends in the 

obvious way into 3 dimensions – ‗multiply rows by columns and add‘, just with an 

extra entry in each row and column. 

Rotations in 3-D are conveniently represented in terms of so-called Euler angles 

(after Leonhard Euler, 1707-1783). There are several different conventions here. I 

adopt the following convention: any rotation can be expressed in terms of three 

(Euler) angles 1 2, ,  and     as follows: 

Rotate about the z-axis through an angle 1 . (Call this R1) 

Rotate about the new position of the x-axis through an angle  . (R2) 

Rotate about the new position of the z-axis through an angle of 2 . (R3) 

Each of these rotations can be thought of as a rotation in a plane: we can see how we 

get the matrices for each of the rotations R1,  R2 and R3 by embedding appropriate 

2-D matrices in our 3-D encodings: 

1.  

1 1

1 1

cos sin 0

sin cos 0

0 0 1

 

 

 
 
 
 
 

 (Note the z-axis 

0

0

1

 
 
 
 
 

 is fixed.) 

2.  

1 0 0

0 cos sin

0 sin cos

 

 

 
 

 
 
 

 (New x-axis fixed.) 

3. 

2 2

2 2

cos sin 0

sin cos 0

0 0 1

 

 

 
 
 
 
 

 (New z-axis fixed.) 
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Now the matrix for the whole rotation can be obtained by finding the product 

R3R2R1 (in that order, remember – and note that the product as written is well-

defined because the operation is associative: (R3R2)R1 = R3(R2R1)). I leave it as an 

exercise that this gives the right answer (see Chapter 5). 

The group of rotations in 3-dimensional Euclidean space is denoted SO(3) (the 

special orthogonal group of 3-by-3 real matrices). In Chapter 5 above, I describe the 

homomorphism from SU(2) (the special unitary group of 2-by-2 complex matrices) 

to SO(3). I will not go over that again here. These are continuous infinite groups. 

Once again, much more can be said, but there is enough here to give an idea of what 

is going on. 
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Appendix 2  A Representation Theorem  

This is Theorem 1 from Krantz et al 1971. (See P. 15.) I follow the proof outlined 

there, more or less, although I fill in much of the detail. 

Suppose A is a set and ≿ is a binary relation defined on A. A definition: 

The relational structure < A,  ≿ > is said to be a weak order iff for all a, b and c 

from the set A, the following conditions hold: 

1.  Connectedness: either a ≿ b  or b ≿ a. 

2.  Transitivity: if a ≿ b  and  b ≿ c ,  then  a ≿ c .   

Armed with this definition, we are ready to state the representation theorem: Sup-

pose that A is a finite non-empty set. If < A,  ≿ > is a weak order, then there 

exists a function mapping A into the real numbers such that for all a and b in the 

set A, a ≿ b  iff  a)   b). (That is to say, of course, that is a 

representing homomorphism.) 

Proof: 

Define a new relation on A, ― ~ ‖ , as follows:   a ~ b  iff  a ≿ b  and  b ≿ a.  

This relation, now, is  

Reflexive (i.e. a ~ a for every a), since 

a ≿ a for every a    

(by Condition 1. above) 

Symmetric (i.e. if a ~ b, then b ~ a), since 

a ~ b  a ≿ b  and  b ≿ a 

 b ≿ a  and  a ≿ b 

 b ~ a 

and 

Transitive (i.e. if a ~ b  and  b ~ c, then  a ~ c), since 

a ~ b  and  b ~ c  (a ≿ b  and  b ≿ a) and (b ≿ c  and  c ≿ b) 

 (a ≿ b  and  b ≿ c) and (c ≿ b  and  b ≿ a) 

 a ≿ c   and  c ≿ a     (by Condition 2. above) 

 a ~ c  
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Thus the relation ― ~ ‖ is an equivalence relation on A, and so partitions A into 

disjoint equivalence classes.  

We can name these equivalence classes:   a~ xA, x:x~ a , etc.  

That is, a~  is the set of all those members of A that are related to a by the relation 

― ~ ‖, and likewise for b
~

, the set of members of A related to b, and so on. Since 

― ~ ‖ is an equivalence relation, as we have seen, a~  and b
~

 have no members in 

common unless they have all their members in common, and every member of A is 

contained in one of the equivalence classes, a~ , b
~

, ….  

We can give the set of these equivalence classes a name, now:  

  , , , ...A a b c  

 And we can define a relation  on A
~

:   a~   b
~

  iff  a  ≿  b  . 

Now, this relation ―  ‖  has the following properties: 

1.  Connectedness ( a~   b
~

  or  b
~

  a~   for every a~ , b
~

, recall) 

  –  this follows directly from the connectedness of ― ≿ ‖. 

2.  Transitivity ( a~   b
~

 and  b
~

  c     a~ c ) 

  –  again, this follows from the transitivity of ― ≿ ‖: 

 a~   b
~

 and  b
~

  c      a  ≿  b  and  b  ≿  c 

   a  ≿  c 

     a~ c  

 

3.  Antisymmetry ( a~   b
~

  and  b
~

  a~      a~  = b
~

): 

 since       a~   b
~

  and  b
~

  a~     a  ≿  b  and  b  ≿  a 

   a  ~  b 

   a, b    a~  

   a~  = b
~

 

 

(The relation ―  ‖ is said to define a simple order on A
~

. What we have done is use 

the weak order defined by ― ≿ ‖ on A to get to this simple order on the set of 

equivalence classes. It is probably clear what to do now: ) 

Define a function   on A
~

 as follows: 
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 ( ) a  = the number of equivalence classes b
~

 such that a~   b
~

 . 

I claim that a~   b
~

  iff  ( ) a   ( ) b (this ―  ‖, of course, is the usual relation 

‗greater than or equal to‘ on the set of natural numbers): 

For suppose that  a~   b
~

:  then, for any  c ,  b
~

  c      a~   c , by transitivity. 

So if c  is counted for ( ) b , it is also counted for ( ) a . Hence ( ) a   ( ) b . 

Conversely, suppose that it is not the case that a~   b
~

:  then b
~

  a~   by 

connectedness:  it follows that it is not the case that a ≿ b, but that  b ≿ a. So a and b 

are not related by ― ~ ‖. Hence there is at least one element of A
~

, namely b
~

, which 

is counted in ( ) b  but not in ( ) a . So ( ) b  > ( ) a  (where, of course, once again, 

― > ‖ is the usual ‗greater than‘ relation on the set of natural numbers.) 

 

We have proved, then, to recap, that a~   b
~

  iff  ( ) a   ( ) b . All that remains to 

do is to define the function on A by  (a) = ( ) a  for every a in A. 

  So we have  a ≿ b iff     a~   b
~

 

   iff ( ) a    ( ) b  

   iff (a)     (b) . 

That completes the proof of the representation theorem. 
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